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Abstract

Theorem proving in undecidable theories has to resort to semi-decision procedures, i.e.
partial computable functions that halt when the input formula is a theorem, but may
not terminate otherwise. Their performance can be improved once heuristic mechan¬
isms are introduced to guide search. Heuristic functions, however, sometimes assume
the properties of a particular subclass of formulae to be valid in a larger domain, and
may as a result fail to recognise a theorem due to the loss of completeness.

Efficiency may be also improved when the decidability of subclasses of formulae is
explored. Decision procedures establish, after a finite amount of time and computation,
whether a formula of a. class is a theorem or not. Their main advantage is their total
computability, i.e. computation terminates for every formula of the domain, whether
it is a theorem or not. Their reduced scope of application and, in some cases, their
complexity are, nonetheless, the main limitations.

Evidence suggests that the development of efficient mechanical theorem provers re¬

quires the integration of both heuristic modules and decision procedures inside hybrid
systems. Integration is achieved through at least three strategies,
(i) juxtaposition, where each component of the system operates independently from the

others, and there is no communication between them,
(ii) cooperation, where the behaviour of a component influences others, and commu¬

nication is direct, and
(iii) interfacing, where transformation or simplification steps take place before a for¬

mula is delivered to a component of the system, in which case communication
amongst modules is mediated.

From the decision procedure viewpoint, the main effect of its integration into a prover
is the enlargement of the decidable domain, whereas, for the heuristic component, there
is a reduction in the number of subproblems it has to address.

Proof planning for normalisation provides a possible basis for the development of re¬
write systems for interfacing decision procedures to heuristic provers. It includes a

language for the description of recursive classes of formulae and a set of primitive op¬
erators or normalisation tactics for the construction of complex rewriters. Each tactic
performs a specific syntactic task, such as the removal of occurrences of a symbol,
the stratification of occurrences of a symbol over others, or the reorganisation of their
occurrences. Rewrite rules are selected along these guidelines, and additional control
mechanisms ensure that rewriting always terminates. Whenever an effective rewriter
has a decidable subclass as range, the resulting extended class, i.e. the domain of the
rewriter, is decidable. The introduction of new rules deductively strengthens the in¬
terface and enlarges the extended class, even though the full language in which the
theory is defined is never encompassed.

Two alternative mechanisms are available under the proof planning approach. A spe¬
cialised normaliser may be built by a planner to suit a particular description, given in
terms of properties of a decidable class and its targeted extension. Primitive tactics
are combined based on the partial specification provided by methods, until the de¬
sired reduction mechanism is obtained, whenever possible. Another solution involves
the use of general-purpose proof plans, families of normalisers whose parameters are
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instantiated in individual contexts to generate the desired system.

Since the development of interfaces relies entirely on the domain of a decision procedure,
rather than on any of its computational features, the approach is highly modular. It
is also general, given that any theory admits decidable subclasses. Empirical results
concerning the application of general-purpose proof plans to arithmetical verification
conditions indicate that they effectively widen the role of decision procedures in the
verification of program correctness.
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Chapter 1

Introduction

The verification of program correctness is one amongst several applications of mechan¬
ical theorem proving to software development. Evidence suggests that efficient provers
for program verification must contain both heuristic modules and decision procedures

integrated inside a unified system. Proof planning for normalisation provides a frame¬

work for the creation of interfaces for module connection. It includes a language for
the description of recursive classes of formulae and a set of atomic operators for the

construction of complex rewriting interfaces.

Program verification is briefly discussed in section 1.1. Section 1.2 describes the in¬

tegration problem for theorem provers, followed by a review of some of its solutions

in section 1.3. Sections 1.4 and 1.5 present the main elements that compose the proof

planning approach to normalisation. An outline of the remaining chapters of the dis¬
sertation in section 1.6 concludes the introduction.

1.1 Program Verification

The syntactic correctness of a program depends on the alphabet and the formation

rules of the language in which it is written. Since programs provide a representation for

mathematical objects such as sets, functions or relations, semantic correctness requires

comparing properties of such objects with their representation. Given a set S and a

(linguistic) representation R(S) for it, R(S) is corrects and only if every object that

belongs to R(S) also belongs to <S, and is complete if and only if every object of S also
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belongs to R(S). Whereas completeness is a desirable property for a representation,

correctness is usually regarded as essential, in the sense that it must be guaranteed
that none of the objects computed by R(S) lies outside S.

Informal correctness proofs frequently rely on the generation of a finite sample by a

program, and the comparison of this sample with the mathematical object the program

represents. For infinite objects, however, this approach is unsatisfactory. Rigorous
correctness proofs require two distinct representations for the same object, the program
itself and a description for the program (also expressed in a formal language), which
are then compared extensiona.lly. In the case of programs that compute functions, a

description for it may have the form of a pair of formulae, {<j>, <j>'), where <f establishes

properties of the domain (the preconditions), and <f>', of the image (the postconditions).
The partial correctness of a program P with respect to this description involves proving

that, whenever an object x satisfies property <j> and P computes an output y for x, y

satisfies property <f>', i.e.

(V®)(((/>[»] A P{x) — y) D <j>'[y]) (*)

An additional problem involves determining whether P halts for every element of the

domain specified by (f>,

(Va:)(</>[®] D (3y)(P(x) = y)) (**)

When (*) and (**) are valid, P is correct with respect to for every input that
satisfies <f>. the program computes an output that satisfies the postconditions1.

Condition (*) can be established from the analysis of the flowchart of P. The input and

output of P are associated with the description formulae, <f> and <f>', and intermediate

nodes are linked to formulae that state properties of relevant variables. A verification

condition,

ifri D

1 A description of the form ($,$') actually identifies the family of functions that have {x \ <^(x)} as
domain and {?/ | <t>'(y)} as image. Therefore, a program P is correct w.r.t,. if and only if P
computes an element of the family represented by the description. The notion of completeness is
not applicable in this context, since P computes a single function.
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is built for every path of the flowchart that links two nodes identified by formulae -0,-

and -0j • Once all of them have been proved, the correctness of P w.r.t. ((f). <f>') follows2.

1.2 Decision Procedures & Heuristic Provers

Automated provers are mechanisms that have the set of formulae of a language as

domain and a binary set, {1,0}, as image, where 1 is associated with theorems of a

particular theory, and 0 is reserved for non-theorems. Formal proofs may be derived

as a side effect of the computation. A prover is complete when it identifies all the
theorems of the theory. For undecidable axiomatisable theories, every complete prover

is a semi-decision procedure, i.e. a partial function that halts when the input formula

is a theorem, but may not terminate otherwise. Termination is arbitrarily obtained for

all the domain once time or space constraints are imposed.

The performance of a prover may be improved, with or without loss of completeness,

with the help of heuristic search mechanisms. Heuristic functions generalise partial

information or knowledge available about subclasses of formulae of the domain. They

may nonetheless fail to provide either the shortest proof for a conjecture, or a proof

at all, due to loss of completeness. Empirical results, on the other hand, support the

claim that domain knowledge effectively reduces search in the average case3.

Improvements in efficiency also take place when the decidability of certain classes of

formulae in undecidable theories is explored. Some theories admit effective algorithms

to determine, for instance, whether a quantifier-free formula is a theorem or not. The

main advantage of decision procedures is their total computability, i.e. computation

terminates for all formulae of their domain, whether it is a theorem or not. The

limitations are their reduced scope of application and, sometimes, their inefficiency.

Heuristic functions and decision procedures are both important components in the

construction of efficient provers for undecidable domains.

"Decision procedures, alone or in co-operation with other decision proced¬

ures, are fast and predictable but often too limited to be of general use. On

2 See [Anderson 79], p. 21-7, 80-2 and [Loeckx & Sieber 84], p. 113-5.
3 See [Shapiro 92], vol. 1, p. 611-15.
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the other hand, today's heuristic theorem provers are capable of producing

proofs of fairly deep theorems, but are generally so slow and unpredictable

that few users have the patience and knowledge to use them effectively. It is

generally agreed that when practical theorem provers are finally available

they will contain both heuristic components and many decision proced¬

ures." ([Boyer & Moore 88], p. 84)

The effective use of decision procedures, therefore, requires hybrid provers capable of

exploring limited decidable subdomains in as many ways as possible.

1.2.1 Exploring Decision Procedures

Besides the construction of hybrid systems, studies of the application of decision pro¬

cedures to theorem proving have been traditionally concentrated in two other areas4.
One of them concerns the complexity of decision procedures, in their full domains

or in particular subclasses of formulae. The search for less complex procedures fol¬

lows whenever required by a particular application. Theories targeted by such studies
include Presburger arithmetic (PrA), derived from Peano arithmetic (PA) after the
axioms involving multiplication are eliminated, and strictly multiplicative arithmetic

(SMA), which corresponds to the theory of multiplication of natural numbers, without
sum or successor.

The second area deals with the recognition of decidable subtheories and special decid¬

able classes. It has mainly targeted theories relevant to the representation of programs

and data structures, such as the theory of lists and the theory of arrays. New res¬

ults are obtained either through the direct inspection of a theory or subclass, or by

their reduction to another domain already known to be decidable: this is the case, for

instance, for the extension of certain decidable quantifier-free theories by the introduc¬

tion of undefined non-logical symbols. Subclasses selected for analysis are essentially
those generated by context-free grammars, with emphasis on prefix classes (i.e. sets of
formulae in prenex normal form whose prefixes satisfy certain restrictions, e.g. absence
of universal quantifiers).
4 See [Plaisted 90], p. 304-306.
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The most relevant area for the present study, however, concerns the integration of
decision procedures into (complete) theorem provers, which can be achieved through
at least three loosely defined strategies. The plain juxtaposition of a decision procedure
and a heuristic module lacks any form of communication between them, since both

components operate independently. The resulting system checks whether a conjecture

belongs to the decidable domain, directing it either to the corresponding procedure or

to the heuristic module, as indicated in figure 1.1. The limitation of juxtaposition is its

inability to stretch the use of a decision procedure beyond its domain. The application

of theorem proving to program verification shows that this solution is beneficial only

for a reduced number of representative verification conditions which happen to fall in

the original decidable domain5.

In the case of cooperation, the selection of any module in the first place does not

prevent the use of the other in subsequent steps of the process, as shown in figure 1.2.

Communication then is direct. As a result, the process ends up expanding the original

decidable domain: in certain cases, the inference module plays an auxiliary role with

respect to the decision procedures.

Example 1.2.1 Let a hybrid prover contain two decision procedures, respectively for

PrA and SMA, and a sequent calculus-based heuristic prover.

i. Given the conjecture

x2 x y3 = y X (x2 x y2) A 2x + s(y 1 3) < to! X z

since it does not belong to the domain of any of the decision procedures, it is

supplied to the heuristic module. After it is decomposed into two new subproblems

by the (backward) application of the A-right rule,

x2 x y3 = y X (x2 x y2) 2x + s(y + 3)<»2xz

the left formula can be reduced by the procedure for SMA to T. thus completing
this branch of the proof. Only one subproblem is left to the inference module; in

5 See [Boyer L Moore 88].
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this case, the decision procedure has an auxiliary role with respect to the heuristic

component of the system.

ii. For another conjecture,

x2 x y3 = y X (x2 x y2) A 1 < 2x + s(y + 3)

which does not belong to a decidable domain either, the subproblems derived by

the application of the A-right rule,

x2 x y3 == y X (x2 x y2) 1 < 2x + s(y + 3)

can be both reduced to T respectively by the decision procedure for SMA and PrA.

The application of inference rules in this example transforms the conjecture till

it can be entirely handled by the decision procedures. n

Finally, modules can be connected through interfacing, as in figure 1.3. Interfaces

may perform a range of transformation or simplification steps before a formula is

delivered to any of the components of the system. Communication between modules

therefore is mediated. There is a clear link between the extension of decidable domains

through interfacing and certain decision procedures which first require the reduction
of a conjecture to a given normal form, as in the case of quantifier elimination.

Example 1.2.2 Let the prover of example 1.2.1 have a simplifier based on the applic¬

ation of rewrite rules, and let

(x)(3y){z)(w)(x2 + (y x z3) - x2 + w)

be a conjecture. Since it does not belong to the domain of any of the decision procedures,

the simplifier is called, and. in the event that the rewrite rule

v\ T v2 = vi + v3 =>• v2 = v3

is available, the conjecture is simplified to

(x)(3y)(z)(w)(y X z3 = w)

6



(t>

Once a formula 4> is supplied to the hybrid system, a test is performed to establish
whether it belongs to the decidable class E. When this is the case, <j> is then
directed to the corresponding decision procedure.

Figure 1.1: Integration of DP & HP (I) — Juxtaposition

which falls in the domain of the procedure for SMA. It is worth noting that no cooper¬

ation took place in this solution, since no inference rule of the sequent calculus was

invoked. g

1.2.2 Extending Decidable Subclasses

From the viewpoint of a decision procedure, the main effect of its integration into a

prover is the enlargement of its domain. From the viewpoint of the heuristic component,

integration reduces the number of subproblems or subtasks it has to address. Both

cooperation and interfacing may therefore lead to the desired expansion of a decidable
domain. Cooperation can also improve the overall efficiency of the resulting system,

7



Decision Heuristic

Procedure Prover

4>

E decidable class

Figure 1.2: Integration of DP & HP (II) — Cooperation
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<s>

S decidable class

Figure 1.3: Integration of DP &: HP (III) — Interfacing
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at the cost of the development of tailor-made links which requires knowledge about
internal components of both heuristic prover and decision procedure. No component

is dealt with as a black box. The approach usually lacks generality, since one solution

is not necessarily translatable to other contexts.

The development of interfaces, on the other hand, depends only on the domain of a

decision procedure, and none of its computational features has to be disclosed. Proced¬

ures therefore may be replaced without any effect on the integration mechanism, which
amounts strictly to the extension of decidable classes. The main difference with respect

to other studies of decidable subclass generation lies in the direction of the process:

traditionally, a subclass is first chosen (e.g. the set of quantifier-free formulae, or the

formulae that do not contain a particular function symbol of the underlying language)

and then a procedure for its reduction to a decidable subclass is sought, whereas the
new approach starts with a reduction procedure (e.g. a set of rewrite rules), and the

newly delimited class, which is a fragment of the domain of the procedure, is determ¬

ined thereafter.

A decision procedure for the extended class results from the combination of the initial

procedure and the interface that reduces formulae to the original decidable domain.

The approach, therefore, is modular: rather than requiring the complete development
of new procedures, it explores existing ones, even though efficiency may suffer in some

cases. A general solution for the extension of families of classes that satisfy certain

syntactic properties can be formulated in the form of parameterised interfaces.

1.3 Integrated Systems

Various theorem provers operate in association with one or more decision procedures.

Cooperation, for instance, takes place in the Prototype Verification System (PVS).
GETFOL and the JOVIAL program verifier, on the other hand, have interfaces linking

decision procedures to other modules. A combined approach is present in three other

systems, the Stanford Pascal verifier, Talzelwurm and Nqthm6.
6 PVS is a system that operates both with program specification and verification, as described in
[Owre et al 92]. GETFOL, an interactive theorem prover based on Prawitz's natural deduction,
is discussed in [Giunchiglia Sz Traverso 91], The JOVIAL program verifier was developed to prove
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Two decision procedures, for ground equalities and linear inequalities, have mainly

a subsidiary role in the PVS system. As described in section 1.2.1, cooperation can

lead either to the simplification of a conjecture or to its reduction to one or more

decidable subclasses. In GETFOL, an interface based on rewriting is linked to a decision

procedure for a prefix class of the first-order predicate calculus. A second interface has

the purpose of identifying the propositional form of conjectures, and is connected to a

decision procedure for the propositional calculus. In the JOVIAL program verifier, the
interface is responsible for the expansion of the original conjecture by the introduction
of additional hypotheses, with the purpose of transforming it into an element of a
decidable subclass.

The Stanford Pascal verifier is one of the systems where cooperation and interfacing

coexist. The interface decomposes every input conjecture into subformulae, which are

distributed among a series of decision procedures. Additional links are established

between pairs of decision procedures for the exchange of information, when required.

Cooperation also takes place in Talzehvurm, where decision procedures take part of the

solution of subproblems. It incorporates the interface present in the Stanford Pascal

verifier as well, and the interaction between inference rules and decision procedures is

bidirectional. Nqthm, on the other hand, employs a decision procedure that cooperates

with a simplifier and a rewriter, whereas a complex interface is responsible for the

introduction of additional hypotheses. Individual components of the decision procedure

are finked to individual routines of the rewriter and the simplifier. Since the final

mechanism depends on the chosen procedure both extensionally and intensionally, the

procedure cannot be replaced with any other, even if it applies to the same class.

None of these systems addresses the problem of integration from a global or abstract

perspective. Even the solution incorporated in Nqthm by Boyer and Moore, who presen¬

ted the integration problem in a general setting, is particular for a single context, linear
arithmetic and its extensions', given that it relies on specific properties of these the-

verification conditions for programs implemented in JOVIAL, whereas the Stanford Pascal verifier
is an interactive system for reasoning about Pascal programs: they are respectively mentioned in
[Shostak 79] and [Nelson fc Oppen 79]. Talzehvurm, whose main features are briefly examined in
[Kaufl 89], is a prover based on the analytic tableau method. Nqthm, the Boyer and Moore theorem
prover, described in [Boyer & Moore 79], is a heuristic system specialised in inductive proofs.

'

Although the solution was initially presented by Shostak, Boyer and Moore were responsible for the
development of strategies to control the search present in Shostak's proposal.
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ories. Other mechanisms for the extension of decidable subclasses have similar limita¬

tions, except for the interface of GETFOL, which could be applied to any theory where
decidable classes have been identified8. The approach, however, lacks the necessary

control structures that guarantee effectiveness and overall efficiency for the resulting

system, since it is based on the exhaustive application of rewrite rules.

1.4 The Proof Planning Approach

Interfaces between mechanical provers and decision procedures can be abstractly mod¬

elled as effectively computable total functions whose domain and range are respectively
the expanded and the original decidable classes. Provided that the transformed for¬

mula is equivalent to the original one, each of them is a theorem if and only if the

other one is a theorem as well. Considering that the function is effective, the combined

procedure represents a decision procedure for the extended class. The interface oper¬

ates as a normaliser, since it transforms a formula into an equivalent expression of a,

pre-established class.

As mentioned in section 1.2, decidable subclasses can be extended by the application

of rewrite rules. The construction of rewriting interfaces involves identifying suitable

rules and control mechanisms to ensure termination and improve efficiency. Once

termination is ensured for a finite set of rules, the expanded class (i.e. the domain of
the rewrite system) is decidable. The continuous introduction of rules can deductively

strengthen the interface and enlarge the extended class, even though the full language

in which the theory is defined is never encompassed. Proof plans for normalisation

provide the necessary tools for the construction of rewriting interface or normalisers.

Plans are made up of methods and tactics, originally defined to handle inference rules.

All three notions are examined in the next section.

1.4.1 Tactics

Theorems of axiomatic theories can be generated by the application of inference rules to
axioms. Certain inference systems are both correct and complete for the representation

8 See [Armando & Giunchiglia 93], p. 500.
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of theories, i.e.

(i) any formula derived from the axioms is a theorem, and

(ii) every theorem can be generated from the axioms by the application of rules.

When the theory is undecidable, an inference system provides a semi-decision procedure
for it.

Rules can be applied backwards to a conjecture until a list of axioms is obtained,

whenever the formula is a theorem. Both forward and backward deduction may involve

a considerable number of inference steps, which lead to large proof trees. Tactics allow
the performance of arbitrarily large steps composed of primitive rules. Each tactic is a

function that maps a. formula <f> into a list of new formulae, such that the application of

inference rules to them results in <t>. The combination of tactics defines proof structures,

some of which are complete strategies for the recognition of classes of theorems (i.e.

the application of a complete tactic to a formula of the class reduces it to a finite list

of axioms).

The construction of a complete strategy for a conjecture involves search in a set of

tactics. The task of combining them, however, can be lifted to the specification level.

The specification for a tactic provided by methods includes properties of its domain,

under the form of preconditions, and properties of the image, in the postconditions.

Once the task of combining tactics is replaced by the combination of methods, there is,

under certain circumstances, a contraction of the original search space. A composite

method that converts a formula into a list of axioms of a theory represents a proof

plan. Since each method specifies a tactic, a complete tactic is mechanically derivable

from each plan.

1.4.2 Normalisation Planners

Under the proof planning approach, rewriting interfaces or normalisers are built from
the combination of elementary normalisers or primitive normalisation tactics. A spe¬

cification language for the description of both primitive and composite tactics simplifies
the task of combining them. Elementary normalisers correspond to the basic operations
that take place in the transformation of the members of a context-free generated class
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into members of a similar class. They include elimination operators, capable of remov¬

ing occurrences of symbols from the formulae of a class, and reorganisation operators,

which impose restrictions upon relative positions of occurrences of symbols. Each op¬

eration requires a special set of rules, selected from the rewrite rule base available to

the system. Remove rules are suitable for the elimination of occurrences of selected

symbols, whereas stratify rules move occurrences of a symbol beneath others. These

and other rules are mechanically recognisable as a result of their syntactic properties9.

The specification language is adequate for the description of context-free generated
classes. Its predicates allow the symbols that can occur in a formula of a class to be

determined, together with the permissible relative positions of their occurrences. The

description for a normaliser is provided by a pair of classes, its domain and image.

Both elementary and composite normalisers are usually only partially specified, in the

sense that their descriptions determine functions only partially defined in the chosen

domain. As a result, any normaliser for the expansion of a decidable subclass E can

be initially described as the partial function

A/*: Fmlc E

where the extended decidable class, E', is a subset of Fmlc, the set of formulae of

the underlying language. A planner generates the normaliser through the gradual
transformation of the initial class, Fmlc, into the target class, E', by the composition

of elementary normalisers. Given that this problem involves search in a universe of

primitive operators, searching strategies have to be made available to the planner

whenever efficiency has to be taken into account.

The construction of a normaliser, however, does not have to be necessarily handled by a,

planner. An alternative solution, still in the scope of proof planning, employs paramet-

erised tactics or general-purpose proof plans, which represent families of normalisers.

A normaliser for a particular extension task can be generated by the instantiation

of parameters of a general-purpose plan, as part of an operation that is considerably
less complex than the entire development of a normaliser by a planner. Given the

description (Si, S2), whereas the problem a planner has to solve is
9 See [Bundy 91].



(3J\f)(dom{Af) C Si & rng(Af) = S2)

in the presence of a general-purpose plan N{vx,... ,vn), it suffices to find a constructive

proof for

(3ui)...(3vn)(dom(J\f(vu... ,vn)) C & rng(J\f{vi,...,u„)) = S2)

The relevance of the second approach derives from its ability to address families of

interfacing problems in a dynamic context. Under certain circumstances, if the set of

function and predicate symbols of the underlying (object) language is expanded, the
rule base has to be extended but no structural change to the plans is required. Even

though other approaches, such as the hypothesis introduction mechanism of Nqthm,

can also handle new symbols, proof plans are more general, since they are applicable
to any theory that admits decidable subclasses.

1.5 Applications to Peano arithmetic

One of the families of normalisers defined by means of a general-purpose plan addresses
the normalisation problem defined by a pair (Si,S2) where every formula (f> in Si
contains at least an occurrence of one of the symbols S\,..., Sn, i.e.

occsym(Si, d>) V ... V occsym(Sn, 4>)

whereas formulae in S2 are free from occurrences of such symbols, i.e.

-iocc_sj/m(5i, <f>) & • • • & "■occ_sym(Sn, <fr)

The corresponding general-purpose plan then handles any normalisation problem strictly
based on the elimination of symbols which are absent from the target class S2.

Peano arithmetic is a possible domain of application for this plan, since this theory

admits two decidable subclasses which can be obtained from the original set of formulae

by the removal of deviant symbols. One of the decidable classes, CprAl consists of all
formulae (f) where X is absent, being representable therefore as
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-ioccsym(4>, x)

The other class, JZsma-, consists of formulae if in which the successor function and sum

are both absent,

-iocc_sym(if, s) & -loccsym^ip, +)

The general-purpose plan implemented for this purpose is a simplifier that operates
as an interface similar to that described in figure 1.3. The simplifier examines the

set of rewrite rules available to the system, selecting those able to eliminate symbols

that are deviant with respect to a chosen decidable subclass. The choice of a target

decidable class is influenced by heuristic functions. For instance, given the arithmetical

conjecture

(x)(3y)(x3y2 + 1 = s(xy4))

heuristic measures explore the fact that this formula could be reduced to the first class,

CPrA, after the removal of eight occurrences of x, whereas it would require the removal

of only one occurrence of + and one occurrence of s to reduce it to the second class,

l'sma-

1.6 Dissertation Outline

The systems mentioned in section 1.3 are further examined in two chapters. Chapter 2

presents the properties upon which their integration strategies are built, including

the separate normal form lemma and the additional hypothesis introduction lemma.

Chapter 3 describes how the introduction of additional hypotheses as been incorporated

in Nqthm. Control structures for hypothesis selection are analysed along with their

application to linear arithmetic.

The proof planning approach to normalisation is described in chapter 4, where tactics,

methods and proof plans are defined. After the description of generic normalisation pro¬

cesses, the three notions are extended to the domain of expression normalisation. Spe¬

cialised normalisers may then be constructed from the composition of tactics, specified
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by methods. Chapter 5 describes two types of proof plans for normalisation, special-

purpose plans, which are complex tactics that perform specific normalisation tasks,

and general-purpose plans, parameterised tactics that delineate families of normalisers.

The representation of two decision procedures b_y special-purpose plans illustrates the

strength and generality of proof planning.

Proof plans are applied to the extension of decidable subclasses in chapter 6. Attention

is mainly devoted to the control of the extension of decidable sublanguages, i.e. decid¬
able classes that correspond to the set of formulae of a sublanguage. Normalisation in

this context is reducible to the removal of deviant symbols. Control structures for this

task include heuristic functions that assist the plan at the stage of selecting decidable

classes and remove rules.

The elimination of disagreements between rewrite rules and conjectures is examined in

chapter 7, which reviews three inference systems for the predicate calculus with equal¬

ity: E-resolution, RUE-resolution and equality graph construction. Properties of these

procedures that are relevant from the point of view of disagreement elimination are

highlighted. Chapter 8 describes the rule generation mechanism (RGM), derived from
the above difference reduction systems, which deals more efficiently with disagreement

elimination in the course of rule matching, with loss of completeness.

Chapter 9 presents a group of general-purpose plans, including two simplifiers, for
the extension of sublanguages. Some of these plans are interfaced to RGM. Specific
features of Peano arithmetic and some of its extensions, particularly those generated

by the introduction of recursive functions, are then examined. Remove rules for the
deviant symbols with respect to two arithmetical decidable sublanguages, EPrA• and

jC-smai are incorporated in the arithmetical rule base 1ZPA>. The termination for the

application of chain-reducing rules is then proven. Some limitative results concerning
the enlargement of the rule base are derived from the essential undecidability of the

theory.

Empirical results related to the application of general-purpose proof plans to arith¬
metical conjectures are described in chapter 10. Four series of experiments have been
conducted. The first series assesses the effect of the heuristic components of the plans,

whose performances are compared with rewriters where one or more of such compon-
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ents are absent. The second series determines the relevance of proof planning in the
domain of program verification, based on the application of the simplifiers to a set of

representative verification conditions. The third series involves randomly generated
arithmetical formulae, which can provide a statistical mapping for the expanded de-

cidable classes. Finally, a group of quantifier-free formulae allows the comparison of

the performances of proof planned simplifiers and Nqthm.

The study ends with a discussion about future work and some conclusions. Chapter 11

describes some of the applications of proof planning that have not been covered in the

present study, including

(i) the introduction of general remove rules, implication rules and remove procedures
in the rule base,

(ii) the construction of general-purpose plans based on operations other than the strict

removal of symbols, and

(iii) the direct cooperation of proof plans with semidecision procedures.

Finally, chapter 12 discusses some of the consequences of the empirical and theoretical
results.

A series of appendices provides auxiliary information about the main text. Appendix A

lists all the symbols used in previous chapters. Appendix B is dedicated to basic

concepts related to the decision problem for first-order theories, including the notion

of effective computability, built upon the theory of recursive functions. The decision

problem for validity is formally introduced after the syntax and semantics of first-
order languages are defined. Methodologies for the establishment of the decidability
of a theory, such as quantifier elimination and model completeness, are also discussed.

Appendix C examines undecidable theories and the existence of recursive classes of

formulae for which decision procedures can be nonetheless exhibited. Three types of

such classes are identified. Appendix D defines a series of additional concepts, such

as rewrite systems and implication rewrite rules, whereas appendix E contains proofs
for some of the results quoted in the main text. Appendices F, G and H respectively

contain the PROLOG code for the general-purpose proof plans, the arithmetical con¬

jectures employed in the empirical stage, and the sets of arithmetical remove rules and
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elimination equations employed by the plans.

It has to be emphasised that the reading of the appendices is not a prerequisite for the

understanding of the dissertation. Appendices B to E, in particular, do not contain

any original contribution, and have been included with the sole purpose of sparing the
reader the effort of looking for basic definitions and proofs in the literature.
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Chapter 2

Enlarging Decidable Subclasses

Once a decidable subclass for a theory has been identified, there are mechanisms which

allow its extension. The upper bound for this process, which coincides with the full

set of formulae of the underlying language, is unreachable if the theory is undecidable.
When effectively performed, the extension of decidable domains strengthens the role

of decision procedures in mechanical theorem proving.

The concept of reduction class, which is relevant to the study of decidable subclass

extension, is examined in section 2.1. Section 2.2 describes results upon which extension

mechanisms can be built. Appbcations of these results include studies by Armando and

Giunchiglia (section 2.3), Nelson and Oppen (section 2.4), Shostak (section 2.5), Kaufl

(section 2.6) and Owre et al (section 2.7). Some of the limitations of these mechanisms
are summarised in section 2.8.

2.1 Reduction Classes

Given a decidable subclass E for an axiomatisable first-order theory T, it is always

possible to exhibit a proper extension of E that is also decidable for T. The least

upper bound (with respect to c) for such extension that is also a recursive class is the
set of formulae of the underlying language1.

The extension of a decidable subclass is representable, from a set-theoretical point of

1 For a proof of this result, see appendix E. First-order languages, first-order theories, recursive
functions and decision procedures are defined in appendix B. Decidable classes of formulae are
examined in appendix C.
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view, as the union of two sets,

Ax U Ao = A

where A! corresponds to the initial class, A, to the extended class, and A2 is non-empty.

Given that set union preserves decidability, if A2 is decidable, the same applies to A.

A trivial or inessential extension involves a set A2 whose decidability is established

independently of any property of Aj. As a result, the union of A! and A2 does not

yield any additional information.

In another case, the decidability of A2 is reduced to the decidability of Ax, i.e. only

a conditional proof for A2 in terms of A! is exhibited. Under these circumstances,

extending Aj by means of the union of both sets generates additional information,

since, given the conditional decidability of A2, if Aj is decidable, the same applies to

their union". Therefore, there are two basic processes related to the use of decidable

subclasses.

i. The identification of new subclasses, an unconditional process where the decid¬

ability of a particular formula does not rely upon the establishment of the same

property for any class of formulae, and

ii. The extension of a subclass, which relies essentially on conditional proofs in which

the decidability of a class depends upon others.

This distinction reflects the main approaches to the study of the decision problem for

validity in the predicate calculus, which consist of special and reduction cases3. The

2 A propositional representation to this argument includes an application of modus ponens.

decidable(Ai) k (decidable(Ai ) D decidable( A2))

decidable(Ai) k decidable(A2)
decidable(Ai UA2)

3
According to Currv, in the decision problem for validity in the predicate calculus, "two kinds of
results continue to be obtained: first, solutions of special cases (such as the case where only unary

predicates are present or where, in the Skolem normal form, r < 2), and second, reductions of
the general problem to cases where the proposition to be investigated is of a special form". See
[Curry 76], p. 358.
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informal notion of reduction of a decision problem is applicable to domains other than

formal theories.

Definition 2.1.1 (Reduction classes)

Let Id be a universe set, A and B, two of its subsets, and gu, a Godel function4 for Id.

i. A reduction class for U w.r.t. A is a proper subclass Id' C U such that there is

a recursive function f where f(f~ld~*) C rld'~* and. for every u € Id, u £ A iff

f(run) e r./r.

ii. A reduction class for B w.r.t. A (in U) is a proper subclass B' C B such that
there is a recursive function f where f(rBn) C rB'n and, for every u £ B, u £ A

ifff(ru^)erA\

In both cases, f represents a reduction function for Id (or B) w.r.t. A. In the second

case, B is the extended class for B' w.r.t. A.

The relevance of reduction classes in the domain of decidability stems from the fact

that, when the decision problem for A w.r.t. a reduction class U' C U has a positive

solution, represented by a recursive function h, the decision problem for A w.r.t. U

also has a positive solution, h', defined as

h'(ru^) = /i(/(r^))

where / is a reduction function for U w.r.t. A. Similarly, with respect to the second

case, whenever the decision problem for A w.r.t. a reduction B' in Id has a positive

solution, represented by a recursive function h, and rB~* is recursive, the decision

problem for A w.r.t. B in Id also has a positive solution, defined in the next lemma5.
4 Godel functions are defined in appendix B.
5 When r£>~1 is not recursive, the decidability of the reduction class alone does not guarantee the
decidability of B for A. For instance, let T be an undecidable theory in L, and let / be a recursive
function such that, for all (j> £ Fmlc, f (r^n) = rT"1. Then {T} is a reduction class for T with respect
to T itself, and / is a reduction function for T w.r.t. T, given that
(a) f(rTA C r{T}"\ and
(b) for every 0 € T, € T iff f(r<j>A € rTn (since f(r<t>~1) = rT~1)-
In spite of the fact that {T} is decidable for T in Fmlc, the same does not apply to T, since it is
by hypothesis undecidable.
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Lemma 2.1.1 Let A be a subset of LI. and let B and B' be tico subsets ofU such that

B' is a reduction class for B w.r.t. A. Let gu be a Godel function for U.

i. If f is a reduction function for B w.r.t. A. then f(rBn) n rA~l = f(rB D 4n).

ii. IfBn is recursive, and A is decidable in gftlf(f~£>n), then A is also decidable in

PROOF. For notational simplicity, gux o / o gu will be represented as /'.

i. u' £ f'(B)C\A iff u' £ f'(B) & u' £ A iff there is u £ B such that f'(u) = u' & u' £ A
iff there is u £ B C\ A such that f'(u) = u' (since u £ A iff f'(u) £ .4) iff
u' £ {/'(«) | u £ B n A} iff u' £ f'(B n A). Hence f'{B) n A = f'(B n A).

ii. Let h be a decision procedure for A w.r.t. f'(B).

Since for every u! £ f'(B) there is a formula u £ B such that u! = f'(u), and

considering that f'{B) fl A = f'(B fl A), then

B.

'

0 u'tf'(B)
h(run) = 1 ti'e f\B) - A

2 u'£f'(B)nA

o f'(u)<ff'(B)
1 f'(u) £ f'(B) - A =

= f'(u)£f'(B)-(f'{B)nA) =
h(rf'(uD = = /'(«) € f'(B) - f'(B n 4) =

= f'(u) £ f'{B - A)
2 f'(u)£ f'(B)nA =

= f'(u) £ f'(B n 4)

Given that rB~i is recursive, there is a recursive function lB such that

0 u & B
1 otherwise

Considering that f'{u) 0 f'(B) implies u ^ B, then

0 u#BV =
= u^B

lB(ru->) x h(rf'(u)n) =
I u £ B A f'(u) £ f'(B - A) =

= u £ B - A
2 u £ B A f'(u) £ f'(BnA) =

= u £ B n 4
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Fmlc

E' reduction class for E

/ reduction function
/' 9c1 0 f 0 9c

/'(E)nr = /'(snr)

Figure 2.1: Reduction Classes w.r.t. Theories

Hence .4 is decidable in B, and Au(/K(ru"1) x h(r f'(u)n)) is a decision procedure
for A w.r.t. B. I

Hence, it suffices to guarantee that A is decidable in f'(B) (and not necessarily in B')
to ensure that A is also decidable in B. The application of this result to first-order

theories is illustrated in figure 2.1. Some of the mechanisms that can be employed in

the identification of reduction classes are discussed in the next section.

2.2 Reduction Transformations

When applied to the domain of decidable subclasses for theories, definition 2.1.1 unfolds
into two cases. The first one involves reduction classes for Fmlc w.r.t. a theory T, as
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well as reduction functions that generate, for every formula <f> in Fmlc, an element ft

of a reduction class such that (f> and ft are equi-valid in T, i.e.

4> e T iff ft eT

In the second case, reduction classes are defined for a given subclass S w.r.t. T, where

S C Fmlc■ A reduction function then corresponds to an effective mechanism, in the

form of a. recursive function, that generates, for every element <f> € S, an element ft of

a reduction class such that q> and ft are also equi-valid in T.

Example 2.2.1 Let Id be the set of formulae of a language C.

i. Let Tf be a subset A of the universe set.

(a) The class of prenex normal form formulae of C is a reduction class for Fmlc
w.r.t. Tf, considering that an element of Fmlc is valid (i.e. it is an element

of Tq ) if and only if the corresponding reduced prenex formula is also valid.

Any effective mechanism for generating a prenex normal form formula from

an element of Fmlc is a reduction function for Fmlc w.r.t. Tf.

(b) Let B be the class of prenex formulae of C. Then the set of formulae in

prenex conjunctive normal form is a reduction class for B w.r.t. Tf, for a

formula in prenex form is valid (i.e. it belongs to Tjf) iff the correspond¬

ing formula in prenex conjunctive normal form is also valid. Any effective

mechanism for generating a prenex conjunctive normal form formula from

an element of B is a reduction function for B w.r.t. Tf.

ii. Given a decidable theory T in C, if T is negation complete, {T, _!_} is a reduction
class for Stnc w.r.t. T, since any sentence of C is T-equivalent to either T or _L.

Any decision procedure for T is a reduction function for Stnc w.r.t. T. g

These examples substantiate the claim that any reduction process in the context of

formal languages is a. special case of formula normalisation. They also make clear
that the first reduction case is relevant only for decidable theories, since, once the

decidability of a theory in the reduction class is established, its decidability in the full



language follows. For undecidable theories, not only there is no effective mechanism

for such a reduction, but moreover there are formulae for which the reduction to a

decidable class is impossible6.

Considering the first reduction case, reduction classes can be exhibited, for instance,

for any theory that admits quantifier elimination': in particular, if the set of quantifier-

free formulae is decidable for T. then T is decidable in Fmlc. The second case, on the

other hand, has a role in both decidable and undecidable theories: once the reduction

class £' has been proven decidable, the initial class £ C Fmlc becomes an extended

decidable class. When reduction and extended classes are decidable, they have the

same type, i.e. they must be both composed either solely of T-tlieorems, or of T-non-

theorems, or of both theorems and non-theorems. This property can be justified by

the fact that reduction preserves T-validity8.

There are at least two classes of validity-preserving transformations, one based on equi¬

valence and the other on strict equi-validity. There are also weaker forms of transforma¬

tions which can generate certain reduction classes, provided that additional restrictions

are met.

2.2.1 Equivalence

An effective formula transformation process in a theory T is equivalence-based iff

T (= 4> = <t>'

In this case, <j> and <f>' are equi-valid in T. Quantifier elimination provides once again

an example for this class of transformations, since every formula of the underlying

language of a theory is linked to an equivalent quantifier-free formula. Another process
that falls in this group consists of the application of rewrite rules. Since reduction
functions have to be effective, the chosen set of rules has to be finite, noetherian and

6 The connection between normalisation and formula reduction is examined in chapter 4. The exist¬
ence of formulae that cannot be reduced into a decidable subclass is established in appendix E.

' Elimination of quantifiers is defined in appendix B.3.2.
8 If E' has type II (i.e. it contains both theorems and non-theorems), as it is a subset of E, then E
must also be of type II. If E' has type I or III, all formulae in E are respectively either T-valid or
T-invalid, having therefore type I or III as well.
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canonical, as defined below9.

Definition 2.2.1 (Properties of Rewrite Sets)

Let TZ be a set of rewrite rules, and let e1;.. . ,e4 be expressions of a language C.

i. and e2 are similar under TZ iff

(a) ex 5- e2 or e2 e1} or

(b) there is an expression e3 such that both pairs, 61,63 and e2,e3, are similar

under TZ.

ii. TZ is noetherian iff every rewriting sequence for TZ is finite.

Hi. 1Z is canonical iff. whenever c2 and e3 are normal forms for ei? then e2 = e3.

iv. TZ is Church-Rosser iff, for every pair of similar expressions, 6i and e2, there is

an expression 63 such that ex 5- e3 and e2 5- e3.

v. TZ is locally confluent iff, for any two rewriting sequences of the form 6i =1- e2

and 6i e3, ivhere e2 jk e3 and R, R' G TZ, there are additional sequences of the

form e2 ^ e4 and e3 5- 64.

vi. TZ is confluent fjff. /or any two rewriting sequences of the form 6i e2 and

e1 => e3, where e2 ^ 63, f/iere are additional sequences of the form 62 e4 and
n

e3 => e4.

Canonical sets compute a single expression for any element of the domain, and, as a

result, denote (partial) functions. Finite and noetherian sets are guaranteed to halt for

every expression of their domain, being therefore total (i.e. defined for every element

of the domain). Hence a finite, noetherian and canonical set of rewrite rules represents

a total (effective) function.

A final case is based on the expansion of a conjecture by the introduction of a T-va.lid

antecedent, as justified in the lemma that follows.

3 Rewrite rules are defined in appendix D. Properties of rewrite sets are discussed, for instance, in
[Bundy 83], p. 153-5.
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Lemma 2.2.1 (Additional Hypothesis Introduction)

Let T and T' be theories in £ such that T' is an extension ofT, and let {0X,.. ., <fn} C T'.

If if € Fmlc, then

n

i. r m = (A &)D ^
2—1

n

m. If T \= (f\ <fi) D if, then if G X".
2 — 1

Proof.

i. Since (fi G T", the original problem can be reduced to T" |= if = (T D -0), i.e.
T' |= if = if, which is obviously the case.

ii. If T |= (A"=i 4>i) ^ Vb then, since T C T", ((A"=i <A) D 0) € T'. Given that

C(A?=1 <£«') 3 V>) = (^i 0), after n applications of modus ponens, it

follows that if £ T'. I

Given a theory T' in £, a finite subset $ = {0l5..., 0„} of T' and a decidable subthe-

ory TCP, the above lemma provides the justification for the construction of a class

of formulae E that contains T, as follows:

(a) given a formula (f G Fmlc, all the elements of $ are conjoined to form the

antecedent of a transformed formula, 0',

ft = «A&)D
2 — 1

and

(b) each formula 0' is supplied to a decision procedure for T; those which are elements

of T are collected into S, which can then be defined as10
10 A slightly modified version of the mechanism that builds E may clarify the principle behind its

construction. Each formula <p of C is first supplied to a decision procedure for T. If it is a theorem,
it is added to E, otherwise additional hypotheses are introduced as a new condition. The resulting
formula, <j>', is then submitted to the same decision procedure: if it belongs to T, <f> is finally included
in E, otherwise it is abandoned, and the process restarts from another element of Fmlc. Considering
that T is a subtheory of T", and in view of lemma 2.2.1, every element of E is a theorem of T'.
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£ = T\J{4>\ ((Afci fa) D <t>)£T}

Let g$ be a recursive function that represents the process of appending the conjunction
of the formulae of $ as antecedent to a formula 0, i.e.

- r(A?=i <t>i) => ^

and let h be a decision procedure for T. Then £ can be also represented as

£ = {<p G Fmlc | h{r(jp) = 1 V h(g$(r(P)) = 1}

It is then possible to show that (i) r£n is recursive and (ii) T is a reduction class for
£ (or £ is an extended class for T) w.r.t. T'. Since T is a decidable subtheory of T",
£ then is a decidable class of type I for T'. A peculiar feature of the extended class

is the fact that not only its decidability, but also its recursiveness (i.e. the fact that
r£n is a recursive set of formulae of £) depends upon the decidability of T, the initial

class11.

When $ is an infinite set of T'-theorems, for each formula cf> £ Fmlc, there is an infinite

number of possible transformed formulae, generated by the introduction of every finite

sequence of elements of $ as antecedent. Two alternative definitions for g$ are then

possible:

(a) a selection strategy that takes into account properties of cf> could choose a finite

subset of and a single transformed formula is obtained, or

(b) a finite set of transformed formulae is generated instead, in which case g$ links (f>

to a list, [d*1,..., <j>m].

As discussed in chapter 3, the second case is more common in applications of this

mechanism to theorem proving. Another use for the additional hypothesis introduction

lemma is examined in section 2.5.

11 Properties (i) and (ii) above are proven in appendix E. It lias to be recalled that the possibility
of reduction of a class £ to a decidable subclass for a theory T does not necessarily amount to the
decidability of E for T, for it is also necessary to establish that rE"1 is recursive.
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2.2.2 Equi-validity

There is a group of formula transformation processes that are not equivalence-based but

nonetheless preserve validity. Certain theorems guarantee their existence, particularly
for theories with undefined symbols.

Definition 2.2.2 Given an axiomatisable theory T in C, a non-logical symbol S of C
is undefined in T iff T admits an axiom set A such that S does not occur in A.

Theorem 2.2.1 [Shostak 79] Let T be a theory in L, C, an expansion of C, and T',
an extension of T to C such that T and, T' admit a common axiom set.

i. If <p is a quantifier-free formula of , there is a quantifier-free formula in C

such that

iff T'H

ii. If T is decidable in the class of quantifier-free formulae of C, then T' is also

decidable in the class of quantifier-free formulae of C.

PROOF. Let (f> be a quantifier-free formula of .

i. If (f € Fmlc, then, since Fmlc C Fmlc, (f> == (f>.

Otherwise must contain at least an occurrence of a non-logical symbol that

does not belong to C. It is possible to reduce to an equi-valid formula of Fmlc
as follows.

(a) For each predicate symbol p in (f> that does not belong to £, let fp be a

function symbol that does not belong to C. Each atom p(t1?.. .,tn) in d> is

replaced by the equation

fp(l 1 i ; In ) *-

where c is a constant symbol of C (if none is available there, C can be
further expanded to include one).
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(b) Let (f)' be the formula freed from occurrences of predicate letters that do

not belong to L. For each function symbol / in <f> that does not belong to

C. if / is the dominant symbol of n distinct subterms of <j>, n > 1, for each

pair /(<!,..., tm) and /(%,..., um) of such distinct subterms, let ip\ be the

formula

t\ U\ A A tm — Um D f(t J , . . . , tm ) — i • • • ; )

where 1 < i < k, k = . Each new formula is appended as antecedent to

<t>', so generating

D ■ ■ ■ D i/)f D <!>'

(c) If (f>" is the result of the above step, then <j>"' is generated from (j)" by the

replacement of each occurrence of a topmost composite term dominated by

a function symbol not in £ by a variable that does not occur in <j>" (i.e. only

terms and subterms dominated by such function symbols are replaced by

variables). This process is repeated until all the function symbols that do
not belong to C have been eliminated.

(d) Each constant symbol c in 4that does not belong to C is replaced by a

variable that does not occur in

ii. Since T and X" share a common axiom set, according to lemma B.2.3 iii, T'
is a conservative extension of T. As a result, if T is decidable in the class of

quantifier-free formulae of £, according to theorem C.5.2, T' is also decidable in

the class of quantifier-free formulae of C.

The mechanism described in theorem 2.2.1 above effectively generates, for every

quantifier-free formula (f> £ FmlC', a, formula 4> £ Fmlc such that 4> is valid in T" iff

<t> is valid in the same theory12. Then according to lemma 2.1.1, as T' is decidable

in the quantifier-free class of £, it must also be decidable in the quantifier-free
class of C. I

12 See [Shostak 79], p. 353-4.
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A reduction function for the class of quantifier-free formulae of C w.r.t. T' can be

defined from the above theorem as /(r<f>n) = r4>~1• If <t> G Fmlc is quantifier-free,

then is the Godel number of a quantifier-free formula of C. Also, f> £ T' iff

r^n € rT/_l.

Example 2.2.2 To illustrate the application of theorem 2.2.1 to Presburger arithmetic

(PrA), let 4>

((p(z) D z = 1) A g(y) = z + 4) D (f{g(y))=f(S + 2z)\/->p(l))

be a formula of the expanded language C*PrA = {0,1, s, + , /, g,p}. The generation of
an equi-valid formula in PrA has to follow the steps described above13.

i. Elimination of new predicate symbols.

((/?(+) = 0 3 2 = 1) A g(y) = z + 4) d (f{g(y)) = /(3 + 2z) v fp(l) ± 0)

ii. Elimination of function symbols

(a) Identification of the new antecedent

z=l D fp(z) = fp( 1)
g(y) = 3 + 2z D f(g(y)) = f(3 + 2z)

(b) Introduction of a new antecedent

(z = 1 D fp(z) = fp( 1)) A (g{y) = 3 + 2zD f{g{y)) = /(3 + 2z))
D

((fP{z) = 0 D z= 1)A = z + 4) D (f(g(y)) = /(3 + 2z) V /p(l) ^ 0)

fcj Replacement of composite terms by new variables

(z = 1 J Xi = a;2) A (x3 = 3 + 2z D a;4 = x5)
D

((»i = 0 D z = 1) A i3 = z + 4) D (i4 = i5 V i2 / 0)

□

13 This example has been extracted from [Shostak 79], p. 354. Presburger arithmetic is defined in
appendix B.
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Theorem '2.2.1 guarantees that, for every theory in C that admits as a decidable subclass

the set of quantifier-free formulae of a sublanguage of £, the decidable subclass can

be expanded to include the undefined constant, function and predicate symbols of

C. Such extended decidable classes play an important role in the theorem prover

examined in section 2.5. Another result that defines a validity-based transformation
for the extension of combination of decidable subclasses is presented in section 2.4.

2.2.3 Weaker Transformations

Given that there are formula transformations where validity is not preserved, the de¬

cidability of the reduction class does not guarantee the decidability of the extended
class. Nevertheless, it is still possible to effectively identify a partial extension of

the original decidable subclass, whose boundaries depend on the logical status of the
transformation performed. The notion of weak reduction class covers such cases.

Definition 2.2.3 (Weak reduction classes)

Let Id be a universe set, and let A and B be two of its subsets.

i. A weak reduction class for Id w.r.t. A is a proper subclass Id' C Id such that

there is a recursive function f where f(rIdn) C rldand, for every u £ Id, if

f(run) £ rAn, then u £ A.

ii. A weak reduction class for B w.r.t. A (in Id) is a proper subclass B' C B such
that there is a recursive function f where /(r£P) C rB'~i and, for every u £ B,

if fCu"1) £ rA'1, then u £ A.

In both cases, f represents a weak reduction function for Id (or B) w.r.t. A.

When compared to the definition of reduction classes, its weak counterpart does not

require that every element of A is transformed by the reduction function into another
element of the same set: there is only the guarantee that, if an element u of the universe

is reduced to A, then u must also belong to A. When A corresponds to a theory T, a
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weak transformation does not preserve validity in T. If <j> is the original formula and

<f>' is its transformed version, two conditions that do not amount to equi-validity are

i. T \= <f>' D (f)

ii. T (= (j)' implies T \= (j)

The first case includes transformations based on the application of implication rewrite

rules, and the second one, the use of inference rules14. The next sections examine five

distinct systems that apply either strong or weak transformation mechanisms to the
extension of decidable classes.

2.3 Subclass Extension in the Predicate Calculus

Armando and Giunchiglia incorporated in GETFOL a rewriting mechanism that ex¬

tends the scope of application of decision procedures. GETFOL is an interactive the¬

orem prover for the first-order predicate calculus with equality, based on the FOL

system. It operates in any first-order language, using a variation of Prawitz's natural

deduction as inference mechanism15.

The extended decider in GETFOL is composed of a hierarchy of rewriters and decision

procedures for subclasses of the first-order predicate calculus. It includes ptaut, a

propositional decider built upon the principle of partial assignments, and ptauteq,

which deals with the subclass of quantifier-free formulae with equality but without

function symbols. Decision procedures for other subclasses are obtained once three

rewriters are used to convert formulae to the domain of ptaut or ptauteq. The first

one, UE-dec, computes the Herbrand expansion of a formula, in three stages. Negations

are stratified over conjunctions and disjunctions by the application of de Morgan's laws,

followed by the elimination of double negation,
14 Even though property (i) implies property (ii), the converse is not valid. For instance, whereas for

any theory T in Cpa, T (= x = 0 implies T |= y = 0, it is not the case that PA [=i = 0Dj=0,
where PA stands for Peano arithmetic, a theory defined in appendix B. The use of implication rules
in the extension of decidable subclasses is discussed in chapter 13. Regarding inference rules, see
sections 2.3 and 2.6.

15 The integration of decision procedures in GETFOL is described in [Armando fc Giunchiglia 93].
FOL has been originally implemented by R. Weyhrauch, whereas GETFOL was developed by F.
Giunchiglia; see [Weyhrauch 77] and [Giunchiglia Traverso 91].
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h i})) = ->(f) V -up
-*(<f> V if>) = -i(f) A -iip

-1-1 <f = (f)

Existential quantifiers are next removed by means of skolemisation. The final stage

computes the partitioned Herbrand expansion for the class of UE-formulae in canonical

form. The combination of UE-dec and the decision procedures results in a decider for

the UE-subclass, which is made up of formulae where no existential quantifier (3u)
is applied to a subformula where v has a free occurrence in the scope of a universal

quantifier.

Definition 2.3.1. (UE-formulae)

The class of UE-formulae (or formulae in UE-form) of a language C is defined as

follows.

i. Any universal, existential or quantifier-free formula of C is in UE-form.

ii. If is in UE-form, then (3v)4>[fi\ is also in UE-form.

Hi. If i and d>2 are in UE-form, so are ->fix, (j)x V (f>2> <t>i A </>2, D 4>\ =

(v)4>\ ■

The second rewriter, tautren. maps a conjecture into its propositional form (mod¬
ulo bound variable renaming): the validity of the propositional form then entails the

validity of the conjecture. Finally, reduce applies equivalence-based rewrite rules for

UE-normal forming, thus enlarging the UE-subclass. The domain of reduce, for this

reason, is not the full subjacent language, since the predicate calculus is undecidable.
The interrelation of the five main modules is described in figure 2.2.

The set IZ of rewrite rules available to reduce is listed in table 2.1. The syntactic con¬

ditions imposed upon their application involve the notions of top normalisable, norm¬
alised and minimal formula, and guarantee that the set is noetherian and confluent16.
As a result, the function

16 See [Armando k. Giunchiglia 93], p. 493-6. Normalised, top normalisable and minimal formulae are
defined on p. 493.
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Rules Conditions

r, {Qv)p[jf>\ =► -

^2 (3u)(d> V VOb] =>• (3u)<?> V (3u)V> -

i?3 (Vv)(^> A VOb] ^ {Vv)(f> A (Vu)-0 -

r4 A #>D =*> p[y] A (3u)</>b] -

f?5 (Vv)(p[b] V $bD =7 p[^] V (Vu)</>b] -

re fr]°/j[/] =» />[?*] °<£b] lhs top normalisable
r7 (/o[^] 0 <^[u]) 0 ^[u] =7 p[f\0 (<fi[v\ O 1p[v]) Ihs top normabsable
r& V ^)[r] A 7[r] =7 (</> A 7b]) V (ip A 7b]) lhs top normalisable
R9 A ^I)[B] V 7(0] =7 (4> V 7b]) A (V* V 7b]) Ihs top normalisable
Rio </>[u] A (p[^] A ^H) p[^] A Ob] A VM) lhs top normalisable

(j)[v\ minimal w.r.t. (3,u)
r11 <£b] V (p[/] V tp[v]) =7 p[f[ V Ob] V Vb]) lhs top normalisable

cf>[v] minimal w.r.t. (V, v)
Rl2 7[u] A (</> V VOb] =>" (7b] A <^) V (7b] A-0) lhs top normahsable

4>[v\ minimal w.r.t. (3,u)
r\3 7b]v(0A,0)b] ^ (7b] ^ <^) a (tM v VO lhs top normalisable

7b] minimal w.r.t. (V, v)

Q V or 3
o V or A

Table 2.1: Rewrite Rules for reduce
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Decision Interface

Procedures

Figure 2.2: Decision Procedures in GETFOL

f(r^) = r(f>'n if 4> => <t>' and <t>' is in UE-form
0 otherwise

is recursive. These properties, in conjunction with the fact that the number of rules is

small, make exhaustive rewriting feasible. The class

E = {</> € Fmlc | /(r<^) # 0}

is the extension of the UE-subclass, whereas / is a reduction function for E with respect

to T0£, considering that

(i) /(rEn) is contained in the UE-class, and

(ii) for every <f> G E, 4> € Tjf iff fC^) G rT£n, given that 4> and its rewritten version
are logically equivalent.

Since S is recursive, it is a decidable subclass for T0£. In general, any noetherian and
canonical set of rewrite rules implicitly defines a (not necessarily proper) extension of
a decidable class.

37



Example 2.3.1

(3x)(y)(p(x) V q(y))

is not in UE-form, since there is a free occurrence of a variable in the scope of (Vy)
which is existentially quantified in the sentence. After the application of R5, the new

sentence,

(3x)(p(x) V (y)q(y))

is in UE-form, and, as such, can be supplied to the decision procedure for the UE-

subclass. g

The final enlarged subclass includes all the formulae in which

(a) every predicate symbol is monadic (i.e. has arity 1),

(b) every atom has at most one bound variable, and

(c) each atom either does not contain existentially quantified variables, or has a single

existentially quantified variable but no other bound variable.

Since the integration strategy is based on properties of decidable classes, rather than

on specific procedures or rewriters, it is highly modular: component decision proced¬
ures may be replaced and rule bases may be either expanded or contracted, while the

integration mechanism remains unchanged. The same strategy can be applied to the¬

ories other than the predicate calculus, provided that suitable rules are added to the

system1'. Also, as Tjf is undecidable, the rule base can be continuously augmented, in
order to further enlarge the decidable domain.

Example 2.3.2

i. The conjecture

(3x)(y)((q(y) A p(x, y)) V (q{y) A -.p(a, y)))

after the successive application of R9, R3, f?13, R3, f?13, R3, R? and R4, is reduced
to

17 See [Armando fc Giunchiglia 93], p. 492 and 500.
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(3x) (y)(q(y) V g(y))

a

(3s) ((y)(q(y) v -ip(x, y)) a {(y)(p(x, y) v q{y)) a (y)(p{x, y) v -np(x, y))))
V

v

<j>2

where <f>x and f>2 are both normalised w.r.t. (3a;). As no other rule from the
current rule base is applicable to it. the original conjecture cannot be reduced to

the JJE-class. However, the introduction of a neiv rule,

(4> a if) v (f> a ->v) 4>

allows the generation of (3x)(y)q(y), which is in UE-form.

ii. Formulae containing equality, as for instance (3a;)(y)(p(a;) a (q(x,y) a y = a)),
can also benefit from the introduction of new rules. The application of

4>[v] a v = u =£• <f>[u/v\ a v — u

to the above conjecture reduces it to

(3x)(p(x) a (q(x, a) a (y)(y = a)))

which is in UE-form. g

A substantial expansion of the rule base, however, would require the introduction of

stronger control structures, since noetherianity may be lost in the process. Even when

termination is ensured, additional control may be relevant to avoid exhaustive rewriting

and improve efficiency.

2.4 Combining Decidable Subclasses

Nelson and Oppen devised a general mechanism for the expansion of subclasses that

are decidable for a combination of theories. It consists of

(i) the transformation of a conjecture of the combined language into a

39



Boolean combination of formulae of the original languages,

(ii) the application of the original decision procedures to the new formulae, and

(iii) the use of the equality propagation for the transferral of relevant information about

these formulae among the original decision procedures18.

Their study is concerned with theories that are decidable for the class of quantifier-

free formulae. While rewrite-based procedures for subclass extension operate with a

single target decidable subclass, their approach reduces a conjecture into a collection
of subformulae that belong to disjoint classes.

2.4.1 Combination of Theories

If Ci and C2 are languages that do not share non-logical symbols, the process of

combining two theories, Ti and T2, respectively formulated in C\ and £2, preserves the

decidability of the quantifier-free class of formulae.

Definition 2.4.1 (Combination of Theories)

Let T\,..., Tn be theories respectively formulated in the languagesC\.

i. Li,... ,Cn are mutually disjoint iff Sym*Ct fl Sym*c. = 0, for i f j ■

ii. Ti,..., Tn are mutually disjoint iff Ci,..., Cn are mutually disjoint.

iii. IfTi,.. .,Tn are mutually disjoint, such that A, is an axiom set for Ti, the com¬

bination of T\,... ,Tn is a theory Tc in Cc that admits Ac as axiom set, where

n n

Sym*Cc = |J Sym*Ct and Ac = (J A,.
i=l 2=1

A proof for the fact that the class of quantifier-free formulae of £c is decidable for Tc

iff the class of quantifier-free formulae of Ci is decidable for T,, 1 <i< n, can be based
on the exhibition of a decision procedure for satisfiability (in Tc) w.r.t. the quantifier-
free formulae of Cc (considering that a formula is satisfiable in a theory T iff it is

satisfiable in at least one of the models of T). The first stage of the procedure, which

puts expressions into separate normal form, consists of the following steps.
18 See [Nelson fc Oppen 79],
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i. Given a quantifier-free formula </> in Lq- it is first replaced by an equivalent
formula <t>' in disjunctive normal form

^'=Mi v-vt

where

4>'i = 7»',i A • • • A 7,-^., 1 < i < m

ii. Each non-homogeneous literal 7^ (i.e. a literal in which non-logical symbols of
more than one of the component languages £, occur) is split into a conjunction
of homogeneous literals of the original languages.

(a) If a predicate symbol pCa (i.e. a symbol p that belongs to Ca) occurs in the

literal, the rewrite rules

p£„[/ *(*)/„] =7 pCa[v] A V = fCb(t)
-ipCa[f '(*)/"] -ipc" [n] A v = fCb(t)

where t is a list of terms, a 7^ b and v does not occur in <j> (or in any of
its rewritten versions prior to this step), are applied to 7,■ j to remove every

symbol fCb from the scope of pCa. Since all the rules ex =7 e2 employed at

this and next stage correspond to reverse implication rules, i.e. (=62 3 ei>

they cannot be applied to negative occurrences of subexpressions.

(b) If 7ij is either an equation, or the negation of an equation, and a function

symbol fCa dominates one of the sides of the equality, rules similar to those

described above are applied to 7itj to move every function symbol gc", a ^ b,
to another atom

/£-(ti) <gc"ih) => /£o(tj) <V A V = gCb{t2)
fc']9 =7 fCa[n] <1 u A v — gCb(t)
u < fc°[9 /v\ =7 u < fCa [u] A v = gCb{t)

where <1 stands for either = or / and t, G, t2 denote finite sequences of

terms.

iii. Once each literal in 4>'{ (including the equalities newly introduced by the applic¬
ation of rewrite rules) is transformed into expressions of the original languages,

literals of the same language are attracted, and is replaced by an expression

ipi of the form
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V# A • • • A 1>f*,

where each iffj is a conjunction of literals of FmlCr The formula if = ifiV- ■ -Vifm
is the separate normal form of cf.

The following lemma provides the justification for the shift of attention from the ori¬

ginal conjecture to its separate normal form.

Lemma 2.4.1 Let Cc be a combination of disjoint languagesC\and let A,- be
an axiom set for a theory in l < i < n. Let Tc be the combination of Tj,.. ., Tn

in Cc-

i. Tc is a conservative extension of Ti, l <i<n.

ii. Given a quantifier-free formula (f> in Cc, iftf represents its separate normal form,

then and if are equi-satisfiable, i.e. <f is (un)satisfiable iff if is (un)satisfiable.

Proof.

i. If (f G T{, then (f G Tc (since every axiom of T; is also an axiom of Tc) and

ct> G FmlCt (since Ti G FmlCl). hence (f G Tc fl FmlCt (*)•

If <f G Tc f~l FmlCt, then Ac 1= <f- Assume that <f> £ Ti, i.e. A,- cf. Then

there is a model for T,- such that 2l£> ^ <f. If Ac is consistent, there is an

expansion 2l£c of 2t£* to Cc such that 2l£c is a model of Ac, given that none of

the formulae of Ac — A,; contains any non-logical symbol of . Assuming that

it is possible to build a model for Ac — A,- with the same universe as 2t£>, then
2l£c would be a model of Ac but not of 6, thus contradicting the hypothesis that

Ac (= (f■ Therefore if (f G Tc H Fmlc,, then (f G T (**).

From (*) and (**), Tc n Fmlc, = T,-, and therefore Tc is a conservative extension
of Ti, for all i, 1 < i < n.
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ii. (Informal) If <p is already in disjunctive normal form, the rewrite rules required to

put it into a separate normal form formula are derived from logical equivalences
of the form

pC°[fCbM/v\
V[/£b(t)/M

/£a(ti) </b(t2)

fc-[9Cb(t)/v] <tu
U<fC°[9Cb( *)/»]

(3t>)(p£-[t;] At; = /£i(t))

(3u)(-.p£°[u] At = /£i,(t))

(3u)(/£o(t1) <v/\v = gCb(t2))

(3v)(fCa[v] <u/\v = gCb(t))

(3v)(u< fc"[v] A v = £f£i>(t))

where a ^ b, < denotes either = or and t, tx, t2 denote finite sequences of terms.
After <£ is rewritten by the exhaustive application of the equivalences above to

(positive) occurrences of literals, existential quantifiers can be collected into a

prefix, provided that each of the newly introduced variables does not occur in (f>

(or in any of its subsequent rewritten versions). The prenex disjunctive normal
form of the final rewritten conjecture 4>' can then be represented as

(3v0. • .(3vp)ip,

where tp is a separate normal form for <j>. Since a formula is satisfiable iff its

existential closure is satisfiable, and considering that <f> and <f>' are logically equi¬

valent, it follows that <t> is satisfiable iff <f>' is satisfiable iff [[<£']] is satisfiable iff ip
is satisfiable. I

The class

{~>ip | £ Fmlcc & tj) is in separate normal form}

is a reduction class for the class of quantifier-free formulae of Cc w.r.t. Tc■ It suffices to

consider that, given a quantifier-free formula <t> G FmlCc, <f> G Tc iff -|d> is unsatisfiable
in Tc iff tp' is unsatisfiable in Tc iff G Tc, where tp' is a separate normal form for
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-|0. The reduction function for the above class w.r.t. Tc associates each of its formulae

0 with the separate normal form formula for -i0. To determine the validity in Tc of

-1-0, or the unsatisfiability in Tc of 0,

i. Each expression 0fJ must be supplied to the decision procedure for Tj. If at
c,

least one of them is unsatisfiable (in Tj), 0* is unsatisfiable in Tc (since, if 0,-J
jC •

is unsatisfiable in Tj, then is valid in Tj, and, by extension, valid in Tc as

well, for Tj C Tc).

ii. As a result, Vfc=i ~1V'fli which is equivalent to -i0,-, is also valid in Tc, i.e. 0; is
unsatisfiable in Tc■ And if every disjunct of 0 is unsatisfiable in Tc, the same

applies to 0.

c, ■

However, in the event that every conjunct 0,J is satisfiable in Tc, the same conclu¬
sion does not necessarily apply to 0,, since the satisfiability of all the conjuncts does

not amount to the satisfiability of the conjunction. Each decision procedure actually
r

.

establishes whether 0,-,■ is satisfiable in Tj or not; however, since Tc is a conservative
extension of each component theory Tj, 0fj is satisfiable in Tj iff ipfj is satisfiable
in Tc• The last stage of the procedure then examines each 0,- which has not been
identified as unsatisfiable in Tc bv the original decision procedures.

2.4.2 Equality Propagation

Considering that a formula is satisfiable iff every formula it entails is also satisfiable,

a possible indirect method for establishing its satisfiability involves examining all of
its entailed expressions (excluding those in which the formula itself occurs as subex¬

pression). Let be defined as |J™ j E,pt, where Z^x is made up of expressions of the
form

or

v = u (*)

Vl = rij V • • • V vn = un (**)

such that
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(a) (*) and (**) (but not the disjuncts of (**)) are entailed by ifi,
(b) each v,u,Vj,Uj is a variable that occurs in ifi, and
(c) if = V>i V • • • V ifm.

For combinations of disjoint theories, if if is in separate normal form, only the entailed

formulae of have to be taken into account. It is possible to prove that tfi is unsatis-

fiable iff the conjunction of at least one of the (satisfiable) conjuncts iff] with all the
formulae in £^)i is unsatisfiable. An iterating procedure can then be applied to ifi to
assess its satisfiability19.

jC
i. If 8 is one of the equalities entailed by the conjunct ifij, then 8 is conjoined
to each of the other conjuncts iffI, and the decision procedure for each original

theory is applied to the new conjunctions. If the expanded formula is recognised

as unsatisfiable in Tc, it follows that ifi is unsatisfiable in Tc as well.

ii. If no atomic entailed equality is left, and no unsatisfiable expression has been

detected, entailed disjunctions of equalities have to be considered. Then ifi is

unsatisfiable iff there exists a formula 8* = 8f V ■ ■ • V 8* of the form (**) above
such that if A 8* is unsatisfiable, i.e. if is unsatisfiable iff for all j, 1 < j < n, if A 8*

is unsatisfiable. The procedure described above has then to be applied to this

extended expression.

iii. If unsatisfiability is not detected, and no other expression in £^x has been left,

ifi, as well as if, is satisfiable.

As £^x is finite, the procedure always terminates, and is therefore a decision procedure
for Tc-satisfiability w.r.t. the class of quantifier-free formulae of Cc• Figure 2.3 exhibits

the structure of the mechanism, which contains both cooperation of decision procedures

and interfaced connections.

19 A formula </> entails 6 iff (= <j> D 6; 4> entails 6 in a theory T iff T \= <j> D 6. A proof for the statement
that a formula is satisfiable iff every formula it entails is also satisfiable can be found in appendix E.
Equality propagation is discussed in [Nelson fc Oppen 79], p. 253-5.
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DP decision procedure
ep equality propagation
4> input formula

.. separate normal form formulae

Figure 2.3: Cooperation of Decision Procedures

2.4.3 Limitations

The mechanism of combination of decidable subclasses has been added to the Stanford

Pascal Verifier, an interactive system for reasoning about Pascal programs. Although
it provides a straightforward procedure for satisfiability, the main limitation is its

inability to deal with most of the extensions of combined theories which are commonly

used in the representation of data structures. For instance, let the combined theory

of arrays and natural numbers be defined by the union of an axiom set for Presburger

arithmetic20,
20 The Stanford Pascal Verifier is also described in [Nelson & Oppen 79]. According to Boyer and

Moore,

"Decidable theories are inadequate for the specification of most programs. The situ¬
ation is improved somewhat by the work of Oppen and Nelson (1979) which shows how
one can construct a system of co-operating decision procedures for disjoint theories. But
in our experience most theories of use to program verification are not disjoint. For ex¬

ample, the function LEN connects the theory of lists to that of the naturals and DELTA 1
connects character strings to naturals." ([Boyer & Moore 88], p. 122)

The set of axioms for Presburger arithmetic is distinct from that presented in appendix B.2, since
it contains an additional predicate symbol, nat.
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Pi nat( 0)
P2 nat(x) D (s(x) ^ 0)
P3 nat(x) D (nat(y) D (s(a:) = s(y) D x = y))
P4 nat(y) D (0 + y = y)
P5 nat(x) D (nat(y) D (s(x) + y = s(x + y)))
Pe <^[0] A (nat{y) D (<f>[y] D ^[-s(3/)]))

D

nat(x) D 4>[x\,

and an axiom set for TA, the theory of arrays21,

Ai array([ ])
A2 atom(u) D (array(v) D array(u o u))
A3 atom(u) D (array(v) Dtiot)/[ ])
A4 atom(u) A atom(t) A array(v) A array(w)

D

(uov = tow)Z)(u — tAv = w)
A5 atom(u) D u o [ ] = u
Aq ^[[ ]] A (atom(u) D (array(v) D (</>M D <^[u o v])))

D

array(u) D <^[u],
(if u does not occur free in <^[u]),

Since each component theory is decidable in the quantifier-free subclass of their re¬

spective languages, which are disjoint, the combined theory is decidable in the class

of quantifier-free formulae of the combined language. Nelson & Oppen's mechanism
then supplies a decision procedure for it. However, instead of their simple combina¬

tion, the theory of arrays of natural numbers, ANN, is more frequently found in the

representation of data structures. ANN is a non-conservative extension of the simple

combination that includes the axiom

Ni nat(x) = atom(x)

which restricts the elements of arrays to natural numbers. For this theory, the results

derived by Nelson and Oppen cannot be applied.

Besides such extensions, new functions and predicates can be also added to those

originally available in the combined theory22. For instance, the functions min and

max, which respectively identify the minimum and maximum elements of an array of
21 See [Manna & Waldinger 85].
22 See [Boyer &: Moore 88], p. 122.
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natural numbers, can be introduced in ANN by means of new axioms, provided that

an order relation over natural numbers has been previously added to the theory.

Mi nat{x) D min(x o [ ]) = x
Mo nat(x) D (array(u) D (x < min(u) D min(x o u) = a:))
M3 nat(x) D (array(u) D (min(u) < x D min{x o u) = min(u)))

nat(x) D max(x o [ ]) = a;
A/5 nat(x) D (array(u) D (x > max(u) D max(x o u) = x))
M6 nat(x) D (arra-y(u) D (max(u) > x D max(x o u) = raar(ti)))

For this extended theory, then, other mechanisms for decidable subclass extension have

to be sought.

2.5 Introducing Additional Hypotheses

To address the problem of proving certain verification conditions for JOVIAL programs,

Shostak devised a mechanism that explores the decidability of quantifier-free subclasses

for certain theories by means of the introduction of additional hypotheses23. Let T be
a theory in £ which is decidable in the class of quantifier-free formulae, and C be an

expansion of £. If T' is an extension of T in C for which T represents an axiom set,

then, according to theorem 2.2.1, the class of quantifier-free formulae of C is decidable
for T' in Fmlc■ Finally, if T" is a non-conservative extension of T' in £', whenever

a quantifier-free formula V in C is valid in T", it is also a theorem in T". However,

if -0 ^ T'. let d> = {(f>\, is a subset of quantifier-free T"-theorems, some of
which involve undefined symbols of T". Then, according to the additional hypothesis
introduction lemma ( 2.2.1), whenever

V |= 4>ix D ■ ■ O <\>im D

where (t>ij G it follows that G T".

Example 2.5.1 Since PrA is decidahle, the same applies to its subclass of quantifier-

free formulae. If max is an undefined function symbol in an extension PrA1 of this

theory, and PrA" is an extension of PrA' where max is defined as the standard binary
maximum; function over natural numbers, in order to prove that
23 See [Shostak 79],
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x = y + 2 D maxfx, y) — x (*)

zs a theorem in PrA", new hypotheses, such as

{x > y D max(i,i/) = x, y > x D max(x,y) = y}

should be added as antecedents to the formula above, until it could be recognised as a

PrA'-theorem. Thereafter, since

PrA" \= x > y D max(x, y) = x A y > x D max(x, y) = y

it follows that (*) is also a theorem of PrA". g

The hypothesis introduction lemma can be also applied in conjunction with the mech¬

anism for the combination of quantifier-free decidable subclasses. In the case of ANN,

discussed in section 2.4, given a conjecture cf in the combined language of Presburger

arithmetic and the theory of arrays, if

N\ ['/x] D (j)

where N^/x) is an instance of the axiom nat(x) = atom(x), can be shown to be valid
in the simple combination of the original theories, then 4> is a theorem of ANN. The

same mechanism can be used for the new function and predicate symbols of ANN*

as well. A formula (ft in Cann• can be expanded to include additional hypotheses

Si,.. ., 6n about the new symbols, and

if ANN |= Si D • • O Sn D <f> then ANN* 1= <j>

for Si,... ,Sn are theorems of ANN*. As a result, if

N^/x] D Si D • -O Sn D (f>

is valid in the simple combination of PrA and TA, then ANN* [= 4>.
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The lack of criteria for the selection of additional hypotheses is one of the deficiencies

of the approach. For instance, if PrA* is the extension of PrA to CPA = {0,1, s, +, x}
in which x is an undefined function symbol, given the conjecture

X4 — x5 A x2 X s(x:) + x4 = x5 + s(xi) X x3 D x2 = x3 (f)

in order to prove that it is a theorem of Peano arithmetic (PA), additional hypotheses
that involve multiplication are required24. Finite sequences of such theorems should

be tested, up to a pre-established maximum number of tests, until a suitable list, e.g.

{ x x2 = ^(cc!) x x3 D x2 = x3, s(zi) x x2 = x2 x s(£i) }

is eventually found. Given a set $ of such theorems, there is a search problem that
involves not only testing finite combinations of theorems, but also identifying the ad¬

equate instances, since the mechanism applies only to quantifier-free formulae. In the

example above, the first additional hypothesis is the only instance of the arithmetical

theorem

(a;)(2/)(^)(s(a:) x y = s(z) x z D y = z))

that is suitable for conjecture (f). Without control, the introduction of additional

hypotheses may be impractical from the viewpoint of effective mechanical theorem

proving.

2.6 Extending Combined Decidable Subclasses

Tatzelumrm is a first-order theorem prover based on the analytic tableau method,

which consists of the application of the rules of table 2.2 for the generation of semantic

trees. When a formula is unsatisfiable, its tree is finite, and each branch of the tree is

closed, i.e. it ends in a node that contains a complementary pair of literals. In rules

of type a, the premise is unsatisfiable if either of the derived formulae, aq and a2, is

unsatisfiable, hence both derived formulae are kept in the same branch. For rules of

type (3, the premise is unsatisfiable if both derived formulae are unsatisfiable, and so

24 Peano arithmetic is described in appendix B.
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a «1 ex 2

-i-i ef
(f A if

<f
<f if

-,(<f v if) -of -i if
-i((f> D if) <f —of

P Pi Pi
cf V if <f if

-i(efAif) -,<f -1 if
<f D if -of if
7 7i 72

(^v)cf[v] <f[a/v] (Vu)0[u]
-.(3u)<^[u]

S Si Si
(3v)<f[v] p[a/v] -

-i{yv)(f[v] ~«f[a/v\ -

Table 2.2: Rules for the Analytic Tableau

an additional derived branch is created. For any first-order language without equality,
the analytic tableau method provides a semi-decision procedure for the set of logically
valid formulae25.

Example 2.6.1 A refutation for the formula (x)p(x, z) A (3y)->p(y, z) can be obtained

by means of the analytic tableau method as follows.

(x)p(x.z) A (3y)->p(y,z)
I o

jx)p(x.z). (3y)-ip(y,z)
i 7

p(a,z), (x)p{x,z), (3y)-^p(y,z)
IS

p{a,z), (x)p(x,z), ->p(a,z)

The above tree has a single branch with four nodes. The fourth node contains a com¬

plementary pair of literals, therefore the branch is closed (i.e. there is no structure for
C = {a,p} in which the formulae of the fourth node could be jointly satisfied). Given
the nature of the rules employed in the derivation of a tableau, the root formula is

unsatisfiable as well. g

25 Tatzelwurm is described in [Kaufl 89], Concerning the analytic (or semantic) tableau method, a
more detailed description can be found, for instance, in [Ben-Ari 93], p. 33-44, 106-117.
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For a non-conservative extension T of T0£, formulated in the same language C, the set

of T-unsatisfiable formulae cannot be entirely identified by the tableau, since T0£ C T,
and the mechanism loses completeness. However, when T is obtained from T0£ by
the introduction of axioms for equality, as well as the axiom sets for disjoint theories

Tx,..., Tn, respectively formulated in the disjoint languages (with equality)
the inclusion of new rules and special procedures in the tableau method enlarges the

class of T-unsatisfiable formulae it can identify. Moreover, if each T, is decidable for

the class of quantifier-free formulae of £,-, and if the union of these languages coincides
with £, the class of quantifier-free formulae of £ is decidable for T, as described in

section 2.4, and their decision procedures are also integrated into the extended tableau.

In particular, the theory of pure equality, formulated in any language JZ1 that contains
only function symbols, can be included in virtually any combined theory. Since it has

no axioms, it is identical to T£/ and every non-logical symbol of Ls is undefined in

the theory. The quantifier-free class of formulae of £* is decidable for T£/, and a

decision procedure for this class can be built based on the congruence closure of sets
of equations26. This procedure allows a more efficient handling of equality inside the
combined theory: alternative solutions, based for instance on the introduction of the

rule

#s]),.s = ££'

which causes an explosive increase in the number of derived nodes, can be therefore

avoided, without any loss of deductive completeness. When the theory of pure equality

is a component of T, the extended tableau method includes

(a) rules for generating literals in separate normal form,

(b) decision procedures for the component theories Ti,...,T„ (w.r.t. quantifier-free

subclasses), and

(c) an equality propagation procedure, responsible for generating relevant entailed

equalities from satisfiable sets of homogeneous literals.

The generation of expressions in separate normal form is accomplished by two new

rules, r/ and £, listed in table 2.3. Sets of homogeneous literals are then supplied to

26 See [Nelson & Oppen 80].
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V Vi V-2

P{t 1, •

rr n

f\ Vi = ti A P(vu. ..,vn)
1= 1

P(tu...,tn)

c Cl C2

,... ,tn) "I

n

f\ Vi = ti D P(vu...,vn)
.1= 1

■I

P(tU...,tn)

Conditions

v\,..., vn do not occur in P(t\,... ,tn)
P(t\,... ,tn) is non-homogeneous

[<t>\ universal closure of f
[[(?!>]] existential closure of f

Table 2.3: New Rules for the Analytic Tableau

the decision procedure for each theory X) with respect to the quantifier-free class of
formulae. When a set of literals is satisfiable in T), entailed equalities are generated
and added to the new node of the branch. The definition of a closed branch has to be

expanded to conform to the new method.

Definition 2.6.1 (Closed branch in the extended tableau)

A branch of a tableau is closed iff it has a node £ that contains

i. a pair of complementary formulae, or

ii. a formula of the form t ^ t, or

Hi. two formulae, <p and ip\t\, ■ ■ • ,fn]], such that cp and crip are complementary, where
a is the replacement {Sl/t1,.. .,Sn/tn}, such that A f= (s] = C A • • • A sn = tn)
and ACS is a set of equations, or

iv. a subset of formulae T which belongs to a decidable subclass and is unsatisfiable.

The application of the extended tableau method is informally described in table 2.4. It
seems that the extended tableau represents a semi-decision procedure for T w.r.t. the

fully quantified underlying language. The integration of tableau rules with decision
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procedures ends up extending the boundaries of the decidable subclasses as well. For

instance, due to the application of 7 and <5 tableau rules, it is possible to derive a

quantifier-free formula <j> respectively from [4>\ and [[<£]]. If cf> is unsatisfiable in T, the
same then applies to its universal and existential closures, which can then be added to

an extended decidable class.

The extension of the quantifier-free subclass of C is obtained through weak quantifier
elimination. Given a sentence r of £, if -it is the root note of a tableau entirely

generated by the application of logical rules (a,/3,7 and/or 6), whose terminal nodes,

Tj,..r„, where T,; = {7,7,.. -,7i,m,}, are all made up of quantifier-free literals, let if
be the quantifier-free formula defined as

-,V> = ((71,1 A • • • A 7i,mi) V • • • V (7„,! A • • • A 7n,mJ)

Then T \= ip implies T (= r, which represents a weak transformation, as described in
section 2.2.3. The extended decidable class includes any quantified formula r whose

negation can be transformed into a quantifier-free formula that is identified as unsat¬

isfiable by the decision procedure for the combined theory2'.

Since the analytic tableau does not represent a decision procedure, there is no guarantee

that every quantified formula reducible to a quantifier-free formula can be effectively

recognised as such. Effectiveness however is achieved once limits are imposed on the

size of the tableau. Formulae that cannot be proved unsatisfiable by a tableau of

maximum size m, but have been identified as such by the extended tableau, under the

same size constraints, are elements of the extended decidable class. The extended class

can be defined as

£ = {fi G Fmlc | -ifi —* -lib & if G T & is quantifier-free}

2' The identification of the above formula rjj results from the following process. Let {t} be the root
node of a semantic tree, and let 17,..., rn be all its terminal nodes. Clearly, given the nature
of the tableau rules, if all such sets T, are T-unsatisfiable, then ~>r is T-unsatisfiable as well. The
unsatisfiability of a node F, = {7,7,..., 7,,m, } (i.e. the joint unsatisfiability of its elements) amounts
to the unsatisfiability of the conjunction 7,4 A ■ ■ • A 7,,m,. On the other hand, considering that

satT{4>\) or satr(<l>2) iff satr(<b V <P2)

the unsatisfiability of all branches (i.e. their individual unsatisfiability) then amounts to the unsat-
isfiabiiity of ((71,1 A • • • A 71 ,mi) V • ■ • V (7„,i A • • • A 7„,m„ ))■
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Let r0 = {~*(p} be the root node of a semantic tableau.

i. If each branch of the tableau is closed (according to definition 2.6.1), then T \= (j>

ii. If the terminal node Ln of each open branch of the tableau has only T-satisfiable
homogeneous literals, then T Y2 <t>

iii. Otherwise let Tn be the terminal node of an open branch.

(a) If rn contains composite formulae, logical rules are applied and new nodes
rn+1,..., rn+m are generated.

(b) If Tn contains non-homogeneous literals, rules 77 and ( are applied to them,
and the transformed expressions are included in a new node Tn+1

(c) If Tn has a subset of homogeneous literals which fall into the domain of a
decidable class, the equality propagation procedure generates the relevant
entailed equations and add them to the new node Tn+1

Table 2.4: Extended Analytic Tableau Procedure

where —► <f>2 indicates that a formula equivalent to <j>2 can be associated with a

tableau of maximum depth d generated from <j)\. When a maximum depth is given,

there are only finite many cases to be examined for each formula of L. Then there

is an effective procedure to determine whether a formula belongs to E or not. The

corresponding weak reduction function associates (j> with ip: for all <p E E, if its reduced
form -0 is a T-theorem, then (f> 6 T.

2.7 Propositionally Valid Formulae

Decision procedures are also used in the Prototype Verification System (PVS), which
combines a language for writing specifications and an interactive proof checker for

verifying their correctness. The proof checker has access to decision procedures for

ground equalities and linear inequalities, which are called to simplify IF-expressions,

datatype expressions, function definitions and conditions of conditional rewrite rules28.

The mechanism for the integration of decision procedures in PVS enlarges the class of

propositionally valid formulae29. Other decidable subclasses for a theory T in C can be
28 See [Owre et. al 92].
29 As discussed in appendix C.3, this class is decidable for any theory in the corresponding language

£, and has type I.
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I 1

Si quantifier-free decidable subclass
DPi decision procedure for T w.r.t. Ej
EP equality propagation

Figure 2.4: Extended Semantic Tableau Procedure
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explored to extend the propositionally valid set. The extension procedure consists of

the replacement of subformulae of a conjecture with propositional constants, T or _L,

whenever such subformulae or their negations are identified as T-theorems by a decision

procedure for T w.r.t. a particular subclass. The extended class can be characterised

as

£ = {4> € Fmlc | <f>' is propositionally valid}

where <fi is obtained from <f> by the replacement of T-valid or T-unsatisfiable subfor¬

mulae respectively with the propositional constants T or 1. The process is analogous

to subformula rewriting, with the proviso that all the rules have the form <f> =>■ T

or (j) => -L. The procedure that performs this replacement therefore computes the
reduction function for S w.r.t. T. Also, for all cj> £ E, cf € T iff <f' € T, since

i. If <f> £ £ and </> £ T, then according to the definition of £, <t>' is propositionally
valid. According to lemma C.3.1, £ T.

ii. If £ £ and <fi £ T, since cf>' is obtained from 4> by the replacement of T-

vahd/unsatisfiable subformulae of (f> with T/J., and considering that, for any

formula of C, if T |= and T \= ip' = i>", then T (= /V>'J, it follows
that 4> eT.

The same approach can be used for formula simplification, where subformulae are re¬

placed by propositional constants, as indicated above, but the transformed formula
does not have to be propositionally valid: instead of the original conjecture, its simpli¬

fied version can be thereafter supplied to a theorem prover. The example that follows

illustrates the role of the integrated system both in extending the decidable subclass

and simplifying expressions.

Example 2.7.1

i. Given the arithmetical formula <f>,

(3z)(w)(z2 + w3 = 5zw) D (x)(3y)(x + y = 3x)
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as the consequent, (x)(3y)(x + y = 3x), belongs to a decidable class for PA, it is

possible to effectively establish that it is a PA-theorem: as a result, this formula
is equivalent in PA to

(3z)(t«)(z2 + w3 = 5zw) D T

whose propositional form, p D T, is valid. Hence, <p is also a PA-theorem, and

belongs to the extension of the class of propositionally valid formulae in PA.

ii. Let <p' be the formula

(x)(3y)(x + y = 3x) D (3z)(w)(z2 + w3 = 5zw)

Since its antecedent is a valid formula of a decidable subclass of PA, <f' can be

replaced by an equivalent propositional constant,

T D (3z)(w)(z2 + w3 = 5zw)

Although its propositional form is not valid, it can nonetheless be replaced by a

propositionally equivalent and syntactically simpler formula,

(3z)(w)(z2 + w3 = 5zw)

which may be supplied to a theorem prover. g

The second example illustrates the possible use of decision procedures in conditional

rewriting: once an instance crip of the condition of a rule

tp el => e2

has been proven, aei => ae2 can then be applied to the expression under consideration.

2.8 Conclusions

Several mechanisms for decidable subclass extension have been incorporated in the¬

orem provers with the purpose of strengthening the role of decision procedures in the
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linear inequalities

Valid subformula

replacement
Simplification
Conditional rewriting

Tatzelwurm Interfacing k
Cooperation

quantifier-free classes
(pure equality k others)

Inference rules

(weak quantifier
elimination)

Simplification

Stanford Pascal
Verifier

Interfacing k
Cooperation

quantifier-free classes
•(R,+,<)
• arrays, lists,
• pure equality

Separate normal
forming
Equality propagation

—

JOVIAL program
Verifier

Interfacing quantifier-free classes
• PrA
• extensions of PrA

Additional hypothesis
introduction —

* Integration modes are described in chapter 1

Table 2.5: Summary - Hybrid Theorem Provers

mechanical recognition of theorems. The main properties of some of these systems are

summarised in table 2.5. Most of them suffer from the lack of suitable control struc¬

tures for a more efficient decidable subclass extension. Two in particular, one based

on the application of rewrite rules, and the other, on the introduction of additional

hypotheses, face efficiency problems in the presence of large sets of rules or theorems.

Under these circumstances, strategies for the identification of rules or additional hypo¬
theses can have a positive effect on the overall performance of the mechanisms. Some

guidelines concerning the selection of hypotheses are discussed in the next chapter.
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Chapter 3

Selecting Additional Hypotheses

The procedures for decidable subclass extension examined in the previous chapter rely

basically upon either the application of rewrite and inference rules, or the introduction

of additional hypotheses. In both cases, there is a potential search problem whenever

multiple rules or hypotheses are available. Search control can therefore reduce the

computational complexity of the process1.

Heuristic strategies for the selection of hypotheses are employed in Nqthm, the Boyer

and Moore theorem prover. Section 3.1 describes the main features of this system.

Section 3.2 then presents a mechanism that has been introduced in Nqthm for the choice

of potentially relevant definitions, axioms and theorems which, after instantiation, are

added to the hypothesis set of a conjecture.

3.1 The Boyer and Moore Theorem Prover

Boyer and Moore's Nqthm is a heuristic theorem prover that employs strategic inform¬

ation in the derivation of inductive proofs. As it has been used for the verification of

program correctness, decision procedures for arithmetic and related theories have been
added to the system to improve its efficiency. Such procedures are interfaced to two

modules of the prover, the simplifier and the rewriter.

1 Search space and control in the context of theorem proving are discussed in appendix D.
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3.1.1 Basic System

Nqthm operates in the quantifier-free fragment of a first-order language. Many-sorted
axiomatic theories are indirectly represented by means of the shell principle, which re¬

quires, whenever a new sort has to be implicitly introduced in the underlying language,
the inclusion of symbols for (i) a constructor function, (ii) a destructor function, (iii) in¬
dividual bottom constants, (iv) a well-founded order relation and (v) a sort-recogniser
function (or predicate)2. Natural numbers are introduced through the shell principle

as described in table 3.1. The corresponding axioms are

A\ -mat(T) A -mat(±)
A2 nat(O) A (nat(v) D nat(s(v)))
A3 s(v) f 0
A4 nat(v) A v f 0 D s(pr(v)) = v
A5 nat(v) D pr(s(u)) = v
Aq pr(0) = 0 A -mat(v) D pr(n) = 0
A7 (nat(u) A nat(v) Ar^O) D (u = pr(u)) = pr(u,u)
A8 [(-■nat(v) D 4>[v\) A ^>[0] A ((nat(v) A v ^ 0 A d>[pr^V«]) 3 <£M)] ^ <t)[v]

Three implicit sorts make up the basic theoretical background of Nqthm: natural num¬

bers, literal atoms and ordered pairs. The basic language of Nqthm, CNq, contains the
symbols required by the shell principle for each of these sorts. The basic theory of the

system, TNq, is defined by the union of the axiom sets for each of the three sorts. Since
every sort in T)v? admits a well-founded relation, proofs by Noetherian induction are

a priority for the system. Given a quantifier-free conjecture 4> in conjunctive normal

form, before trying to prove it by induction, it is supplied to a simplifier and a re-

writer, which try to reduce 4> to a propositional constant, T or T. When the reduction

cannot be accomplished, an inductive proof for the resulting simplified formula or set

of formulae is attempted.

The simplifier accepts only formulae in conjunctive normal form. Since a formula

fx A • • • A is Tjv9-valid iff each conjunct 4>i is also TNq-valid, each d>,- is dealt with
independently from the other conjuncts. With the purpose of establishing the validity
2 See [Boyer Moore 79], chapters II and III. The original formulation of the theory of Nqthm employs
a functional first-order language, i.e. a language in which every formula is an equation. The original
notation has been replaced throughout this text by a language that contains both function and
predicate symbols. Many-sorted theories, on the other hand, are defined in appendix D of this
dissertation.
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Shell element Symbol Properties/Intended Meaning
constructor s successor function
destructor pr pr(s(u)) = v
bottom constant 0 natural number 0

well-founded relation pr TTc/3IIIIITa

sort-recogniser nat nat(v) iff v is a natural number

Table 3.1: Natural Numbers in Nqthm

of fa, each of its literals is simplified in turn, starting with fap. The simplification of

4>i,ji 1 < i < 5 involves putting (f>i in conditional form,

m,

/\ ) &i,j
k= 1

and replacing it with the sequent $ — {-•faj} —► j, where $ = {^fa,j, | 1 < A: < m,}.

cfaj is thereafter rewritten under the set of assumptions $ — {-ifaj}. If (f>■ • is the final
rewritten literal, considering that rewrite rules are derived from T)v?-equivalences, then

(*)

is valid in TNq. If the original notation is restored, considering the distributivity of
conditionals over biconditional3, it follows from (*) that

k£j kjtj
m, m,

(/\ -<4>i,k D Aj) = (/\ D $,i)
k=1 fc=l

is valid in Tfiq, i.e. 1= 4>i = fa^*'1 As a result, the original clause is replaced
by the simplified equivalent clause in which fa, substitutes for faj. If far] is the pro-

positional constant T, <j>, is T^?-valid (since it is a disjunction), and is then replaced
by T as well. If (\>\ ■ is the constant _L, it is dropped from fa, otherwise the conjunct

fa^^1is preserved. In the last two cases, simplification restarts from literal faj+i-

3 (4> D (t/> = p)) = ((<£ D i>) = (<t> D p)) is a tautology. Concerning sequents, they are defined in
appendix D.

62



The rewriter in Nqthm works at two levels. It first checks the sort of objects present

in a composite term: whenever the corresponding sorts do not satisfy the restrictions

for the expression, it is rewritten to _L. For instance, given the equality

t\ = t2

if ti and f2 belong to distinct sorts, the equation is evaluated to _L. Nqthm also makes

use of conditional rewrite rules of the form4

V>i A • • • A Vn ->■ 8 => 8' (*)

where ipi,.. .,ipn are the conditions (or hypotheses) of the rule, and A A' is its body.

They are generated from T^-valid sequents of the form {ipi,..., tpn} -*6 = 8' (formula
rewrite rule) or {ipi,.. .,ipn} —*8 = 8' (term rewrite rule). In its cooperation with the

simplifier, the rewriter works in the presence of a set of assumptions. If (f> is a formula

to be proven from assumptions $ = {<t>h.. and R is a conditional rewrite rule
of form (*), the system first tries to establish whether there is an instance of 8 that is

syntactically identical to a subexpression (f) of the conjecture. If that is the case, the

corresponding substitution, a, is applied to the conditions of the rule, which have then

to be established from the set of assumptions. If there is an additional substitution r

(for the variables still free in the chosen instance of the conditions) such that

$ r(crVi) A • • ■ A r(cr^n)

is valid in the theory, by an application of modus ponens5. $ —* a8 => a8' is also valid

in TNq. If d>' be the formula generated from 4> after (f> has been replaced with cr8', then
4 This rule is represented in Nqthm as

(IMPLIES (AND In ... h„)
(EQUAL tj t2))

where each h, is a hypothesis of the rule.
s Or rather of the derived rule

<t> 3 (V> O P)
<t> D j>
<t>D P
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6

Figure 3.1: Nqthm: original configuration

$ —> (j) = <f>' is Ttv?-valid. Whenever </>' is the constant T, it is possible to conclude
that

Tnq |= $ 4>

To prove that T(atpi) A - • •Ar(cr'0n) follows from the set of assumptions <f», the rewriter
is recursively called for each conjunct until each of them is reduced to T under

<b, whenever possible.

The links between the three main modules of Nqthm are indicated in figure 3.1.

3.1.2 Linear Arithmetic Procedure

An initial difficulty with respect to the introduction of decision procedures in Nqthm

was the choice of a suitable decidable theory for the examination of arithmetical verific¬

ation conditions. Although Peano arithmetic has decidable subtheories (e.g. Presburger
arithmetic and linear arithmetic), due to the complexity of their decision procedures,

the resulting hybrid system that contains them is inefficient, according to Boyer and
Moore. The absence of decision procedures, on the other hand, would mean that

heuristic modules would have to handle inequalities and face the risk of exponential

explosions related to the transitivity axiom for < (or <)6.
6 Linear arithmetic [LA) is formulated in the language Cla = {<, +> —2, 0,1, 2,..., n,... }. For more
comments about the inefficiency of decision procedures for PrA and the difficulties in handling <,

64



An alternative solution is the selection of a decidable subclass for linear arithmetic that

admits a less complex decision procedure. One of such subclasses results from model

theoretical properties of DAG, the theory of dense ordered Abelian groups without

endpoints, formulated in CDAG = {0,1. +, <}- Although this theory does not admit
models having natural or integer numbers as universe, according to lemma C.5.1. de¬
cision procedures for DAG can be used to delimit a decidable subclass for LA, made

up of universal formulae, and supply the required information for the construction of a

linear procedure (i.e. a decision procedure for LA w.r.t. a quantifier-free subclass). This
application illustrates the beneficial role of decidable subclasses even in the context of

decidable theories.

Instead of DAG, its conservative extension DAG*, which includes — and < respectively

as new function and predicate symbols, is selected as the reference theory. Possible

definitions for the new symbols in terms of the original language are

V\ < v2 = (iq < v2) V (tq = v2)
tq — v2 = v3 = tq = v2 + v3

The linear procedure based on DAG* has an intricate structure. It has two slightly

distinct versions, one linked to the simplifier and the other to the rewriter. In the

first case, let </> be a (quantifier-free) conjecture in conjunctive normal form. If its

conjunct <^;(tq,..., vn) belongs to Lla, for each free variable Vj that occurs in 4>,
a corresponding linearisation hypothesis of the form nat(vj) is added to an initially

empty set of assumptions dq, where nat(vj) denotes that Vj is a natural number. As
a result, considering that, for any formula ^ of jCla,

TNq t= $1 v iff LA\= tp (*)

where <J>i is the set of linearisation hypotheses for t/q attention can be shifted from T^q
to linear arithmetic. A second group of linearisation hypotheses, $2,'s built as follows:

if the subterm tj — Uj, 1 < j < p, occurs in <j>i, then (Uj < tj) £ where p denotes the
total number of subexpressions in <f>,; dominated by —. Hence

if Ty |= then LA |= <b2 —<■ 0,- (**)

see [Boyer tz Moore 88], p. 88 and 85.
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where (f>\ = /\"=i(0 < vj) D <t>»■, 3* = (Z,0,1, —2, +, <, <), and Z is the set of integers'.
Conditions of the form 0 < v are necessary to guarantee that variables range only over

natural numbers (which can be linked to the set of non-negative integers). The formula
that is supplied to the decision procedure for DAG* is derived from the negation of 4>'i

by a process that puts it into linear form. It involves

(i) the removal of conditionals and the stratification of negation under other connectives

(based on the application of the de Morgan law for negation over e.g. conjunctions,

as described in [Bundy 91]),

(ii) the elimination of occurrences of = and <, which requires an ordered set of

rewrite rules8,

1 (11 — f2) ^ ^2 V t2 t\
< A) => h < ti

"'(A ^ ^2) =£■ t2 < ti
— t2 ^ t2 A t2 ^ t\

t\ <C t2 =t> <i + 1 < <2

(iii) the reordering of terms inside inequalities, which requires

t\ < t2 => t1-t2<0

(iv) the exhaustive application of rules

ki x (k2 xt) => (fci x k2) x t
k X (tj T f2) k x t\ T k x t2
kx(tx-t2) => kxtx-kxt2
t\ — (^2 + ^3) =t- (ti — i2) — t3

where k,kx,k2 denote natural numbers9, and
' Concerning $1, it has to be recalled that Nqthm works with distinct sorts, and that the linear
procedure derives results only about (natural) numbers. For this reason, sort restrictions have to be
imposed upon all the variables of any formula supplied to this procedure.

8 As the set of rules is ordered, each of them has to be exhaustively applied before its successor is
considered. Rule /1 < t2 => <1 + 1 < in particular is invalid in DAG*, given that

DAG* ^ (<1 < <2) = (ti + 1 < <2)

9 With respect to Cdag», k and k xt respectively represent abbreviations for

1 + 1 + --- + 1 t + i+-- + t

k occurrences k occurrences
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Phase Action Notation

1 Introduction of linearisation

hypotheses (first set)
nat(vi)

2 Introduction of linearisation

hypotheses (second set)
Uj < tj (if tj — Uj occurs in 0)

3 Restriction of range of variables
(non-negative integers)

0 < v{

4 Reduction of atoms to
linear form

±&i X Vi ± • • • ± kn X vn <0

Table 3.2: Linear Arithmetic Procedure in Nqthm

(v) the collection of summands and subtrahends containing the same variable and the

reduction of this formula to disjunctive normal form, which results in a new for¬

mula, 4>", such that

Td' 1= $ = "•<t>i (***)

4>" is thereafter supplied to the decision procedure for DAG*. If it is unsatisfiable in

DAG*, as a consequence of theorem C.5.1, it is also unsatisfiable in Ty. This stems

from the fact that 3* is a substructure of one of the models of DAG*, and, as a result,

every quantifier-free (and hence universal) formula that is valid in DAG* is also valid
in 3*- From (***), 0( is a theorem in Ty, and from (**), LA (= $2 —" 4>i- Finally,
from (* ), TNq |= U $2 -> <t>i- To complete the proof, it is necessary to establish that

4>i follows from the negation of each of the hypotheses in 4>! U 4>2. When that is the

case10,

TNq |= 4>i

The main features of the linear procedure are summarised in table 3.2. The relationship

between DAG* and Ty is illustrated in figure 3.2. An example that illustrates all the

phases of the procedure follows.

Example 3.1.1 Let <f> be the conjecture x<y/\y<xDx=y, whose conjunctive

normal form is

10 See appendix E.
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Ty

£ = {0,l,-2,+,<,<}

DAG* Theory of dense ordered Abelian
groups without endpoints

Ty Theory of 3* = (Z,0,1,-2,+,<,<)
T Class of universal formulae

£/ Decidable subclass of type I for Ty

Figure 3.2: DAG* & Ty
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~'(x < y) v —>(2/ < z) V x = y

The application of the linear arithmetic procedure involves the following steps.

i. Since <f> has only two variables, the first set of linearisation hypotheses is

= {nat(x), nat(y)}

$2; on the other hand, is empty, since — does not occur in <j>.

ii. <j)' is generated from 0 when restrictions are imposed on the range of its variables.

((0 < x) A (0 < y)) D (~i(x < y) V -1 (y < x) V x = y)

in. -ah' is linearised to i>", as follows

— (1 X x) < 0 A —(1 X y) < 0 A (lxx)-(lxy)<0 A (1 X y) — (1 X x) < 0
A

l + (lxx)-(lxt/)<0 A l + (lxt/)-(lxx)<0

iv. <p" is supplied to the decision procedure for DAG*. Since it is identified as unsat-

isfiable in DAG*, 4>' is a theorem in Ty and 4> is a theorem in LA, hence

TNq \= $ -► 4>

v. It is then necessary to show that can be also derived from the negation of each

of the linearisation hypotheses, as for instance

TNq \= nat(x) —► 4>

However, this is not possible, since T <±A_L<TI)T = ± is not a Tnq-
theorem11. Therefore TNq £ 4>. D

See [Boyer &: Moore 88], p. 89-90.
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The integration of the linear procedure with the rewriter follows similar guidelines. If

(i) -01 A • • • A 0n — S => 6' is a conditional rewrite rule,

(ii) $ = {<^!,.. .,0n} is the current set of assumptions, and

(iii) tpi is a conjunct in the condition of the above rule which belongs to CLA,

then the sequent — ipi, where is the strictly arithmetical subset of $ (i.e.
C FmlcLA), is supplied to the simplifier and dealt with as any conjunct of a con¬

jecture: linearisation hypotheses are identified and the non-negative status of all vari¬
ables is explicitly added to the formula, which is then negated, linearised and supplied
to the decision procedure12. If the resulting linearised formula is recognised as Tnj-
unsatisfiable, then

Tnq \= § — A

otherwise no conclusion about the derivability of from $ in LA can be taken.

The decision procedure for DAG* is derived from Hodes' algorithm, which is based on

quantifier elimination: given a formula of the form (3v)0, where 0 is a quantifier-free

conjunction of atoms,

i. if 0 has the form (v = t[fi\) A 0', the existential quantifier is removed once the
DAG-equi valence

(3u)(u = t[fi] A fi'[v}) =

is applied.

ii. if 0 has the form tfii/ < v or /\"=1 v < tfiy], (3v)0 is valid in DAG, and can

be replaced by any Zh4G-valid atomic sentence, e.g. 0 = 0.

iii. if 0 has the form /\"=1 < v A AJLi v < ujW\-> the existential quantifier can be
dropped after the application of the ZMG-equivalence

12 A more precise description of this stage of the procedure is presented in section 3.2.
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1 <j <m

(3f) (A <v A Av < Uj[ji} I = a u <
{i=1 j — 1 / KKn

A specialised procedure for DAG* has to take into account that Nqthm operates only in
the quantifier-free fragment of CDAG. (and therefore has to eliminate variables only),
that formulae are supplied in disjunctive normal form, and that atoms are represented

in linear form. As a result, there is only one case to be considered,

n m

A+ k{v < 0) AA- hv < 0) (*)
i=1 j=1

where ki:lj G N. Since this formula is quantifier-free, it is satisfiable iff its existential
closure is also satisfiable. The elimination of quantifiers from the equi-satisfiable for¬

mula follows basically the same properties adopted in the case of Hodes' algorithm,
and (3u)(*) can be replaced with its DAG*-equivalent version,

1 <j <m

A Ijti + kiUj < 0
1 < i<n

which is unsatisfiable iff (*) is unsatisfiable.

The Unear procedure can be extended to deal with an expansion of jCla that includes

undefined constant, function and predicate symbols. For the only component that

requires modification, the decision procedure for DAG*, two alternative versions are

available. The first one, based on theorem 2.2.1, eliminates undefined symbols of

quantifier-free formulae and generates an equi-valid formula that is supplied to the

algorithm. The second solution, which explores certain properties of the canonical
form to which literals are reduced, amounts to the elimination of composite terms. Let

(j) be a conjunction of literals,

n m

AKM + kit < 0) A A(wiM - < °)
i=1 j=1

where t is a term whose dominant symbol is not sum or subtraction. This formula is

equi-satisfiable to
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(3u) («,-[^] + kiV < 0) A /\(wj[f] - IjV < 0)
m

where v does not occur in 4>, to which the algorithm can be applied unchanged. When

there is a. single occurrence of an undefined function or predicate symbol in a conjunc¬

tion of literals, both solutions above coincide.

In the presence of additional non-logical symbols, the elimination of variables and/or

composite terms takes place according to an order imposed on the set of terms. The
heaviest terms are eliminated in the first place, through the cancellation of terms with
distinct signs (positive or negative) in distinct inequalities.

Definition 3.1.1 Let tx and t2 be terms of CNq.

i. tx is heavier than to iff

(a) the number of occurrences of variables in tx is greater than in t2, or,

(b) in case of the number of occurrences of variables is equal, the number of

function symbols in tx is greater than in t2, or,

(c) t2 lexicographically precedes tx.

ii. tx and to have the same weight iff tx is not heavier than t2 and t2 is not heavier

An immediate consequence of this definition is that two terms have the same weight
iff they are syntactically identical. The elimination of heaviest terms preserves satis¬

fiability: $ is satisfiable iff the set of assumptions generated from $ after the heaviest

terms have been removed is also satisfiable.

3.2 Hypothesis Introduction in Nqthm

The linear procedure described in the previous section has limitations at two levels: it
does not represent a. decision procedure for LA (even though LA is decidable), and,

than tx.
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as it stands, it cannot deal with extensions of LA. except those containing undefined

non-logical symbols. Both limitations can be partially overcome by the introduction
of additional formulae in the set of assumptions of a conjecture.

3.2.1 Additional Lemmas

The incompleteness of the linear procedure vis-a-vis decision procedures for LA is due

to the existence of 3*-valid quantifier-free formulae, e.g.

3 * x ^ 2

that cannot be identified as such by the decision procedure for DAG*. Incompleteness

at this level can be reduced by means of explicitation of arithmetical hypotheses, a

process that expands quantifier-free formulae which are valid in LA but invalid in

DAG* until their validity in LA becomes recognisable. If is such a formula, the
mechanism of explicitation of arithmetical hypotheses selects a set of quantifier-free

theorems $ in LA, such that DAG* |= $ —*► <f and, as a result, LA |= $ —* <j>. Since
$ C LA, then

LA j= <p

This mechanism can been successfully applied to some verification conditions.

Example 3.2.1 Let P be a program that searches for objects in a table, i.e. an array

of (even) length d in which odd positions contain keys, while each even position stores

the value associated with the key of the previous odd position13. A verification condition

(v.c.) for this program establishes that, whenever an index i corresponds to a key, then
i + 1 < d. If I and k are variables over natural numbers, this v.c. can be represented as

(0 < k A 0 < I A 2k + 1 < 21) D (2k + 2 < 21) (*)

where 21 = d and 2k + 1 = i (if i identifies a key). (*) is valid in LA, but invalid in

DAG*. Therefore the linear procedure cannot recognise it as a theorem. However, the
inclusion of the formula;

13 See [Boyer & Moore 88], p. 90.
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{k < I) D (k + 1 < /)

which represents the property that the difference between two distinct natural numbers

is not smaller than 1, as a new assumption for (*) transforms it into a DAG*-valid

formula and a recognisable LA-theorem. g

Arithmetical hypotheses must be invalid in DAG* to contribute towards the identi¬

fication of additional arithmetical theorems. For otherwise if $ C DAG*, then, as

DAG* f>, it must follow that DAG* ^ $ —► <j>, and once again no conclusion about
the validity of <f> in LA can be obtained. This mechanism faces serious search problems,

since virtually all arithmetical theorems that are invalid in DAG are suitable candid¬

ates for arithmetical hypotheses. Such a solution therefore is not explicitly employed

in Nqthm, and formulae of CLA that are invalid in DAG* are automatically forwarded

to the inductive module14. The only linearisation stage where arithmetical hypotheses
are implicitly introduced takes place when rule

t\ < ^2 ^ h f 1 ^ l-i i

which is invalid in DAG, is applied.

The second deficiency of the linear arithmetic procedure — its inability to deal with

extensions of LA — also has a negative impact on applications to program verifica¬

tion. For instance, in the verification of the Euclid algorithm for the greatest common

divider, it is necessary to prove that, whenever x < y and z\x (i.e. z divides x), then

z\y iff z\(y - x), i.e.

(x < y A z\x) D (z\y = z\(y - r))

Also, in the linearisation of bidimensional arrays, one of the conditions to be verified

states that elements occupying distinct positions in a bidimensional array, represented
as (ii,ji) and (^2?J2)7 must be mapped into distinct positions of the corresponding

This is actually the case of conjecture (*) above; see [Boyer & Moore 88], p. 89-91.
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linear array, + d X j\ and i2 + d x j2, where d is the rank of the bidimensional array,

i.e.

(i\ < d A i2 < d) D (i, + d X j1 = i2 + d X j2 = ('t'i = i2 A jq = j2))

Both formulae lie outside the domain of the procedure for LA, due to the occurrence

of symbols (| and x) that do not belong to CLA- Since many verification conditions
involve function and predicate symbols over other sorts, the impossibility of recognising

theorems of this nature reduces substantially the role of the new module inside the

prover15.

Given that Nqthm operates in the quantifier-free fragment of C^q, it is possible to

consider the application of the additional hypothesis lemma to overcome the above
limitation. A new module of the system is responsible for the introduction of hy¬

potheses, after several consultations of a database of definitions and theorems about

recursive operations and relations. This process makes the interfacing of the simplifier
to the decision procedure more complex than the mere application of Hodes' algorithm

to arithmetical conjectures16.

The validity of the process of introducing additional hypotheses has been discussed

in section 2.5. It is requested by the system whenever a conjunction of inequalities

that contains undefined symbols is identified as satisfiable by the linear procedure.

The criterion for the selection of theorems, in the form of (conditional) inequalities

(stored by the system), follows the same guideline for the elimination of multiplicands:
a new inequality is added to the formula only if it allows the elimination of the heaviest

multiplicand in that formula, and does not introduce any heavier term. After selection,

they are instantiated arid conjoined to the formula, until unsatisfiability is detected,
whenever possible. This guideline is more clearly illustrated in the example that follows.

Example 3.2.2 Let cj) be the conjecture

I < min(x) AO < k D I < max(x) + k
15 Comments in this respect are presented in [Boyer & Moore 88], p. 91, 94.
16 See [Boyer fc Moore 88], p. 90.
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Once -«fi has been linearised to

I — min(x) <0 A 1 — k < 0 A max(x) + k — I < 0 (*)

the resulting formula is supplied to the decision procedure for DA G*. Since it is satis-

fiable, the procedure restarts from the linearised negated conjecture, where the heaviest

multiplicand to be found in any of the atoms is min(x). After consulting a list of stored

lemmas, the theorem1'

min(v) < max(v)

which can be instantiated and linearised to

min(x) — max(x) < 0

is selected and conjoined to (*). Since it is suitable for the removal of the heaviest

term, the expanded formula

min(x) — max(x) < 0 A I — min(x) <0 A 1 — A; < 0 A max(x) + k — I < 0

is then supplied to the decision procedure: first min(x) is eliminated,

I — max(x) <0 A 1 — A; < 0 A max(x) + k — I < 0

followed by max(x),

1 + k-l<0 A 1 -k<0

and then the variable k, resulting in 1 < 0. which is unsatisfiable in DAG*. Hence <f

is a DAG*-theorem. g

There are cases where the additional hypothesis is a conditional formula. As a result,

besides checking the conjunction of the new hypothesis with the negated conjecture for

unsatisfiability, it is necessary to prove its associated condition from the current set of

hypotheses as well.
1' To simplify the presentation, additional conditions limiting the range of variables to non-negative

integers have been omitted.
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Example 3.2.3 Given the following function and predicate symbols, defined over lists,

memb{x,s) x occurs in a list s
len(s) = I I is the length of a list s

del(x,s) = s' s' is obtained from a list s after
all occurrences of x have been deleted

let <f be the conjecture

memb(z, a) A w + len(a) < k A 0 < v D w + len(del(z, a)) < k + v

After the linearisation of its negation,

memb(z, a) A w + len(a) — k < 0 A — v <0 A k + v — w — len(del(z, a)) < 0

since unsatisfiability cannot be detected, additional hypotheses for the heaviest multi¬

plicand, len(del(z, a)), are sought. A conditional theorem,

memb(v,u) D len(del(v, u)) < len(u)

is a suitable additional hypothesis, provided that its antecedent can be proved. As in

the case of conditional rewriting, this task is given to the rewriter. Assuming that

memb(z, a) is amongst the current assumptions, the rewriter can derive as valid the

formula

len(del(z, a)) < len(a)

which, after linearisation, is conjoined to the linearised negated conjecture, thus alloiu-

ing unsatisfiability to be found18.

1—len(a)+len(del(z, a)) < 0Amem6(z, a)Aw+len(a)—k < OA—v < OAk+v—w—len(del(z, a)) < 0

1 — len(a) + k + v — w < OA memb(z, a) A w + len(a) — k < 0 A — v < 0
I + k + v — iv + w — k < 0 A a) A — v < 0

1 + v < 0 A memb(z, a) A —v < 0
1 < 0 A memb(z, a)

±

0

18 As in the previous example, restrictions concerning the range of variables have been omitted when
not necessary for the derivation of _L.
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<f>

Figure 3.3: Nqthm & the Linear procedure

The complete integration mechanism is described in table 3.3. A block diagram can

be found in figure 3.3.

3.2.2 Optimisations

Once a disjunction of literals 4> is supplied to the simplifier of Nqthm, while one of

them is simplified, the remaining literals are negated and added to an assumption set.

When the simplifier operates in conjunction with the linear procedure, the heaviest

multiplicands are eliminated from the chosen literal after the introduction of heurist-

ically selected additional hypotheses, whenever necessary. This operation has to be

repeated, in principle, for each literal in <f>. However, exploring the fact that

|= T -»■ iff |= T U {-d>} -h. </>

a single assumption set can be defined, containing the complement of every literal in

4>. After the removal of the heaviest multiplicands from this set, the simplification of
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Simplifier. Given a disjunction of literals (px V • • • V 0n,

i. If (<px V • • • V 4>n) ^ FmlcLA, the simplifier successively supplies the sequents
$ —> 4>i, l < i < n, to the rewriter.

ii. If ^ € FmlcLA, the simplifier supplies it to the linearisation module.

If all the disjuncts of the simplified formula (f>\ V • • • V (f>'n are identical to J_, or
at least one of them is identical to T, the process halts, otherwise (p\ V • • • V <p'n
is supplied to the inductive prover.

Rewriter. Let $ —> 0|ej be a sequent. If 0!,...,0m —»• 6X => S2 is a conditional
rewrite rule, and if there is a substitution cr such that <j8x = e, then the sequents
d> —uipi, <r0m are supplied to the simplifier. In the event they are all
reduced to T, $ —» 0 is replaced by $ —> 0[<r'52/c]l-

Linearisation module. If 0 £ FmlcLA, then
(a) a set of linearisation assumptions for 0 is built,
(b) conditions stating the non-negative status of variables are introduced in 0,
(c) the extended formula is negated, and its atoms are linearised, and
(d) the resulting formula is put into disjunctive normal form, and then supplied

to the decision procedure for DAG*.
If the decision procedure returns _L, the linearisation module transforms 4> into
T and the process is complete. Otherwise <p is returned unchanged.

Decision procedure. If -0i A - ■ -Ais a linearised formula of CLA and it is reduced to
-L by the decision procedure for DAG*, the process halts. Otherwise, if it reduced
to T and at least one of the literals contains deviant symbols, then ^ A • • • A tpm
is supplied to the additional hypothesis mechanism.

Additional hypothesis mechanism. If t/q A • • • A ipm is a linearised formula whose
heaviest term is t, an additional hypothesis tp involving t is sought. If no suitable
hypothesis is found, the original formula is returned unchanged. Otherwise

i. If ip is a literal or a conjunction of literals, it is then conjoined to ipx A- • -Atpm,
and the expanded formula is supplied to the decision procedure.

ii. If '0 is a conditional formula, its consequent is conjoined to tpi A • • • A 0m,
and the expanded formula is supplied to the decision procedure. If unsat-
isfiability is detected, the conditions of 0 are individually supplied to the
simplifier. If they are all reduced to T, ipl A • • ■ A ipm is replaced by JL.

Table 3.3: Modules of Nqthm
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each literal can then be performed19.

Restrictions have to be observed, however, in the application of conditional rules.

Although the above property allows the inclusion of the complement of a literal <fg hi

its own assumption set, the conditions of a rule cannot be established based on the

complement of <f>{, or on any formula that depends upon the complement of this literal.

The example that follows justifies such restriction.

Example 3.2.4 Let <f> be the clause

(a + c = b) V -1(0 + 1 < b)

and let 7 be its second literal, (a+1 < b). Iff is selected for simplification, the set of as¬

sumptions is built with the complement of all literals, i.e. $ = {(a + c ^ b), (a+ 1 < b)}.
At the stage of rewriting 7, the following conditional lemma

Vi < v2 -> (ui + 1 < v2 = Hi + 1 7^ v2)

is selected, since the Ihs expression of its body can be matched against a subexpression

of 7, by means of substitution o = {a/«i, } - The corresponding instance of the
condition of this lemma has then to be established from, the current set of assumptions

4>. i.e.

{{a + c ^ b),(a + 1 < b)} ^ a < b,

has to be proven, a task the decision procedure for DAG* accomplishes, once the nega¬

tion of a < b is conjoined to . Hence

DAG* (= $ —► a + l<6 = a+ l^h

The rule a + 1 <b=>a + l^hb is then applied to 7, and the original clause is rewritten

to a non-equivalent formula,

(a + c = b) V (a + 1 = b)

□

19 See [Bover fe Moore 88], p. 97, for a discussion about the selection of multiplicands. The above
property involving the sequents f —♦ <j> and fu {—'<6} —<► <t> is proved in appendix E.

80



An incorrect step in the above rewriting sequence is the final representation of the

transformed clause: since the complement of 7 has been employed in the deduction, it
has to be included in the final clause,

(a + c = b) V -i(a + 1 < b) = {a + 1 < b} —*• ((a + c = b) V (a + 1 = b))

or, in standard first-order notation,

(a + c = b) V -i(a + 1 < b) = (a -f- c = b) V -1(0 + 1 < 6) V (a + 1 = b)

Under this new formulation, equivalence is preserved. However, although sound, the

process could not be regarded as the simplification of the original clause, since it just
adds new literals to it.

To prevent this problem, Boyer and Moore adopted a mechanism that links a. formula

to every assumption from which it has been derived. It is possible then to trace back

whether the complement of a literal is involved in a proof or not. For the example

above, it would suffice to consider that

i. The condition of the instantiated rewrite rule is derived from the complement

of the current literal, 7, after the decision procedure for DAG* has been called.

The rule condition should then be represented by the pair

(a < b, [(a + 1 < 6)] )

ii. The body of the rewrite rule has been obtained after its condition was proven

from the complement of the current literal. Hence, it could be represented as

(a+l<iEa+l/i, [a < 6, (a + 1 < &)] )

iii. The above rule is applied to 7, so its rewritten version has to be indicated as

( a + 1 = b. [-i(a = 1 < b), a+l<b=a+lfib, a < b, (0 + 1 < b)] )

At least in this example, by simple inspection of the list of assumptions involved in the
transformation, it is clear that the complement of the current literal 7 has been used

81



in the transformation of 7. Therefore the resulting formula, (a + 1 = 6), is rejected by
the simplifier.

Another aspect to be considered is the requirement that clauses have to be proved

under the complement of each individual linearisation hypothesis, once it has been

established in their presence. To reduce the number of cases, it suffices to determine,

as it has been done in example 3.2.4, which of the linearisation hypotheses are actually

required in the proof of the clause, restricting attention to them thereafter20.

3.2.3 Proving Verification Conditions

After the optimisations incorporated in the final system, the linear procedure, in con¬

junction with the hypothesis introduction module, has been able to prove a class of
verification conditions more efficiently21.

Example 3.2.5 Let <f> be the v.c.

0 < ms(a)4 + 2 X ms(a)2 X ms{b) — ms(a)2,

related to the termination of an algorithm where a unary function ms establishes a

certain measure over a set of ordered pairs. After <f is negated and linearised, resulting

in

ms(a)4 + 2 X ms(a)2 X ms(b) — ms(a)2 < 0

it is supplied to the linear arithmetic procedure, which does not identify it as unsat-

isfiable in LA. Since multiplication is present, the formula does not belong to jCla,

and additional hypotheses can be sought. The heaviest multiplicand in the inequality is

ms(a)4; the chosen additional hypothesis,
20 Boyer and Moore discuss additional ways of reducing the cases to be proven in [Boyer &: Moore 88],

p. 100.
21 This example has been taken from [Boyer L Moore 88], p. 101-3. vn is an abbreviation for

v x ■ • • x v

n occurrences of v
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0 < t; —- u < v x u (f)

is first instantiated, resulting in

0 < 7775(a) —► 7775(a)3 < 7775(a)4

After its condition 0 < ms(a) is reduced to T, the inequality is conjoined to the negated

conjecture and the heaviest term is eliminated. Since the new formula

ms(a)3 + 2 X ms(a)2 X ms(b) — ms(a)2 < 0

is not DAG*-unsatisfiable either, the next multiplicand, ms(a)2 x 7775(6) (which is heav¬
ier than ms(a)3, according to the lexicographic order adopted in Nqthm,) is chosen, and
formula (f), or rather its instance

0 < 7715(a) —> 7715(a) X 7775(6) < 7775(a) X (7775(a) X 7775(6))

is chosen as additional hypothesis. Its condition is reduced to T , and the linearised ver¬

sion of the inequality is conjoined to the transformed conjecture. After the elimination

of the heaviest multiplicand, the resulting formula,

7775(a)3 + 2 x 7775(a) x 7775(6) — 7775(a)2 < 0

is not DAG*-unsatisfiable either. Lemma (f) is used two more times to eliminate both

ms(a)3 and 7775(a) X 7775(6). thus generating

2 x 7775(6) < 0

Unsatisfiability in DAG* is found only after the last multiplicand, ms(b), is eliminated

by the application of lemma 0 < 7775(7;), which has been successively used in the previous

steps to prove the condition of lemma (j). After its instantiation and linearisation, the

final conjunction,

2 X 7775(6) < 0 A 1 — 7775(6) < 0
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is reduced to

2 < 0

which is DAG*-unsatisfiable. g

The example shows that the introduction of additional hypotheses and the operations

that take place thereafter bear a clear resemblance with conditional rewriting. Firstly,
once a substitution for the variables of the additional hypothesis is found, it is then

necessary to apply this substitution to the conditions of the hypothesis and to prove

the resulting instance. Secondly, when t is the heaviest multiplicand of a conjunction

of literals, assuming that the literal in which it occurs can be put in the form t < u,

a suitable additional hypothesis has the form ip D u' < t. The introduction of the

consequent of this hypothesis amongst the other literals would then allow the use of

implication rewrite rules22,

Vi < v2Av2 < v3 => v-i < v2 A Vi < v3

Ul < V2 A V2 < V3 =t> Uj < V3

derived from the transitivity of <, where the second rule is chosen when the term to

be removed occurs only in two literals23. For the multiplicand t, the suitable instance

of the second rule is u' < t A t < u =$■ u' < u. This two-step operation, consisting of

the introduction of a hypothesis and the application of a rewrite rule, can be collapsed

into a single rewriting step, based on another implication rule,

%; —* t < v u' < v

where tp D u' < t is valid in the underlying theory. For instance, in example 3.2.5, the

first required implication rule would be

0 < ms(a) ms(a)4 < v =>■ ms(a)3 < v

22 See appendix D.
23 When the heaviest multiplicand is an existentially quantified variable, the above implication rules

are replaced with an arithmetically valid equivalence,

(3i)2)("i < A v2 < r>3 A • • • A v2 < v„) = v\ < V3 A • • • A V\ < vn
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The example also reveals that the immediate purpose of the introduction of additional

hypotheses is the removal of chosen terms (the heaviest multiplicands) from a conjunc¬

tion of literals. The removal of assigned subexpressions is a syntactic operation that

occurs in other mechanisms related to the extension of decidable subclasses, particu¬

larly in the presence of rewrite rules, as described in chapter 4. Moreover, the previous

remarks open the possibility of representation of the whole process present in the linear

procedure of Nqthm as an instance of a more general rewriting process.

3.3 Conclusion

The mechanism of integration of decision procedures in Nqthm involves multiple mod¬

ules, one of which controls the introduction of additional hypotheses. The strategy em¬

bedded in the system privileges the elimination of syntactically heavier terms, through
the selection of adequate theorems. As the maximum syntactic weight diminishes when

an elimination is successful, the procedure succeeds or fails finitely. The selection of

additional hypotheses, apart from weight restrictions for the removed and the intro¬

duced terms (which may have been adopted mainly to guarantee termination), does
not observe any other guideline, and has in principle to rely on exhaustive search in a

database of theorems.

The complexity of the task of interfacing Hodes' algorithm to the simplifier suggests

that the overall efficiency of the system may increase more significantly when the

interface, rather than the algorithm, is improved. Given the possibility of simulation

of this mechanism by means of (implication) rewrite rules, control structures for rewrite

systems may contribute towards the strengthening of the selection strategies present

in Nqthm. Search problems involving rewrite rules start to be addressed in the next

chapter.
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Chapter 4

Tactics and Proof Plans

Since the linear procedure created by Boyer and Moore is restricted to a subclass of

the underlying language, additional mechanisms are needed whenever the decidable

domain has to be enlarged. One of these mechanisms, based on a controlled version of

the hypothesis introduction principle, turned out to be the most complex component

of the extended linear procedure.

Alternative or complementary strategies for extending decidable subclasses include
the use of rewrite rules, which also incur search problems. Proof plans, developed for
the representation of proof structures, provide a suitable framework for the creation of

rewriting control structures. Tactics and methods, upon which proof plans are defined,
are discussed in section 4.1. The links between reduction classes and normalisation, and

the representation of basic syntactic patterns present in normalisation are examined

in section 4.2. Section 4.3 describes plans for normal forming.

4.1 Plans for Theorem Proving

Proof plans have been originally conceived by Bundy to guide inductive proofs. They

are composed of methods, which in turn provide a partial specification for tactics. All

three notions have as common purpose the description of the structure of proof classes1.
1 See [Bundy 88].
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4.1.1 Tactics

LCF (Logic for Computable Functions) is an interactive theorem prover provided with
a set of commands for the representation of complex inference steps2. It operates at

two linguistic levels: axioms of formal theories are expressed at the object language,
whereas the corresponding metatheory, including the inference rules, is represented in

ML. Universal instantiation, for example, corresponds to the metatheoretical procedure

instantiate^, v,t) = <f>'

where <f>, v and t, respectively associated with the metalinguistic sorts form, var and

term, assume as values names for formulae, variables and terms of the object language.
When <f) is instantiated to a formula of the form (v)if[v], ft is f>\f/v\. The definition of
the rank of a metalinguistic function or predicate symbol has to take into account not

only the number of arguments, but also their sorts; the rank of instantiate, for instance,

is (form var term form). An additional subsort, thm, contained in form, allows specific
metavariables to range strictly over sets of theorems.

The use of metavariables and metaconstants eliminates any direct contact with the

object language. It also makes redundant the complete description of object level tasks.
For instance, once the required rewrite rules are introduced in the system, a LCF-proof

for (VX)(A~ = X U A) in Boolean algebra is obtained by exhaustive rewriting, without

any additional instruction3. The representation of proof skeletons and strategies in

LCF captures, to a certain extent, the structure of informal reasoning.

"When one mathematician A asks another B 'what is your proof of X?' he

often means 'how do you prove X?'; that is, a formal proof, step by step,

will not satisfy him nearly so well as a recipe for proof. (...) The point

is that such recipes — or strategies — appear to be built from combina¬

tions of smaller recipes (which we shall call tactics rather than strategies)."

([Gordon et al 77], p. 5)
2 See [Milner 79], p. 3. There are already at least two different implementations of this system, the
Edinburgh LCF and the Cambridge LCF, which later evolved into HOL, developed by Mike Gordon.
In this section, no attention has been paid to possible dissimilarities between them.

3 See [Milner 79], p. 7.
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Tactics can represent at least two operations,

(i) the application of inference rules and

(ii) the application of rewrite rules, a special case of deduction where the rules are

usually derived from equivalences.

An (inference) tactic is a (partial) function that associates a sequent of a language
£ with a pair (A, Val). where A is a finite list of sequents of the same language and
Val is a validation function of arity (thmlist thm), such that, if

VaZ([ri -> <t>u...,Tn -► 4>n]) = (rn+1 ->■ </>„+i), then

fj. ~ 01 2 • • • ? 1^11
Fn-fl * ^n+l

Tactics generate proofs backwards, i.e. when applied to a conjecture or goaf a list of

new sequents, A (called subgoals), is obtained. Val determines an object level derivation
of the goal from A such that, when the subgoals are proved, a formal proof for the goal
follows4.

Since formulae are represented as sequents, the inference system in LCF is provided

by the sequent calculus. Each left and right rule for connectives and quantifiers has an

associated primitive inference tactic5. For instance, given the right rule for conjunction,

r -» (j) Y
r —*■4> a if

the tactic conj consists of the subgoal list [r —» (f, T —» if] and the validation function

ValA,

Vak(r^d>,r->v) - (r —

When the goal is not a conjunction, the tactic fails. Apart from tactics for inference

rules, there is a special primitive tactic, idtac, that generates as single subgoal the goal

itself. Validation in this case is supplied by the identity function for sequents.

Rewriting tactics, on the other hand, are functions that take as input a goal and a list
of theorems, returning as output either an empty list of sequents, in the event the goal
4 See [Paulson 87], p. 209-10.
5 The rules for Gentzen sequent systems are described, for instance, in [Gallier 87], p. 187-92.
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is rewritten to T, or a list containing the exhaustively rewritten goal under the rewrite
set derived from the list of theorems, and a validation for the process. Validation is

provided by the sequence of instances of rewrite rules successively applied to the goal,

plus the list of subexpressions of the goal against which rules have been matched6.

Rewriting tactics in LCF differ amongst themselves only in terms of their sets of

theorems. Rewrite rules are classified into four groups, according to the features of the

associated theorem, (T —> </>): if ^ has the form

(a) (fj = t2). then T ti => t2 and T —> t2 =>• ti are term rewrite rules.

(b) (ip1 = r/»2), then T Vi => f/>2 and T —> ip2 Vh are formula rewrite rules.

(c) p(ti,.. .,tn), where p does not denote equality, then T —> p{t\,. .. ,tn) T is a

formula rewrite rule.

(d) ..., tn), then F —► p(t\,..., tn) => _L is a formula rewrite rule.

When limited to the domain of primitive inference rules, tactic deductions are essen¬

tially identical to their object level images, since every primitive step is explicitly repro¬

duced in the metalanguage'. The use of tacticals, functions of arity (tactic" tactic), n E

N, for the generation of composite tactics overcomes this limitation. The five main ex¬

amples are then, thenl. try. orelse and repeat.

i. taci then tac2 corresponds to the composition of its component tactics. When

applied to a goal Y —> <f>, taci(Y —> <j>) is first computed, followed by the applic¬

ation of tac2 to every subgoal generated by tacj. The subgoal list for taci then

tac2 is the concatenation of the lists of subgoals generated from the subgoals of

focqjr — (f>), and its validation is the composition of the validation functions for

t.aci and tac2.

ii. tac thenl [tac\,..., tacn\, is similar to then, except that a specific tactic <ac,; is

applied to each subgoal T,- —► Vh generated by tac. It fails if the number of such

subgoals is different from n.

iii. try tac extends tac to a total function in the domain of sequents of the underlying

language. For those goals where tac succeeds, try tac (T —► (j>) = tac (T —> </>).
6 See [Paulson 87], p. 248-9.

' Primitive rewrite tactics, 011 the other hand, may apply several rules in a single step.

89



When tac fails, it generates the input sequent as sole subgoal.

iv. taci orelse tac2 partially extends tacx w.r.t. tac2■ It either fails, or successfully

applies one and only one of the tactics taci or tac2 to the goal, where tacr has

precedence over tac2. The output contains the subgoal list and the validation

function of the successfully applied tactic.

v. repeat tac exhaustively applies tac to the current goal and subsequent subgoals.
For each subgoal, the process is iterated unless it is already the empty list of

subgoals, or tac is not applicable. The subgoals for which it fails are part of the

output. It can be defined as

(repeat tac){T —► <f>) = {{tac then repeat tac) orelse idtac) (T —> 4>)

Composite tactics, i.e. those defined by the application of tacticals to other tactics,

can be seen as families of derived inference rules. For instance, repeat conj represents

the infinite family

r — <f>i r — d>2 r — </>! r -> 4>2 r -»</>3 ... r ^ ... r — <f>n ...

r -> <£i a 4>2 r (f>x a <t>2 a d>3 r -> <t>x a • • • a 4>n

where n £ N. The introduction of tacticals allows the construction of complete tactics

to represent proof strategies that generate the empty list of sequents for a particular

goal.

4.1.2 Methods

The construction of complete proof strategies requires the organisation of several tactics

into a tree-structured object, where each derived subgoal is transformed until the empty

list of sequents is achieved. The scope of application of each strategy, however, is

usually limited to a subclass of sequents: a complete tactic for putting expressions
into disjunctive normal form in Boolean algebras, for instance, is unsuitable for other

normalisation tasks. To form a more general automated theorem prover, a collection
of strategies is required .
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There are two solutions for the representation of this collection: either the strategies
are explicitly given, or else a mechanism for their generation in the presence of a

particular goal has to be built. The construction of strategies involves the selection of

suitable tactics, and can therefore be simplified once information about the behaviour

of each tactic is taken into account. Properties of the output for a given input could
be obviously obtained from the direct application of a tactic to a conjecture, but the

amount of information generated in most cases exceeds what is essential for devising

a strategy.

An alternative source of information about a tactic is its specification, which describes
its behaviour in terms of properties of the domain and image sets, ignoring the ele¬

mentary processes that take place between input and output. Specifications consist

of four elements. The header identifies the name of the function and describes syn¬

tactic properties of its arguments and the output, such as their sorts and arity. Names

of parameters given in the header are shared with all the three remaining compon¬

ents. Semantic properties of the domain are described under the form of preconditions,

which become superfluous whenever the domain is equal to the underlying universe

(i.e. the specification for a tactic that is applicable to any formula has an empty list of

preconditions). The output names the parameters of the header that are modified by
the function. Postconditions (or effects), on the other hand, describe semantic prop¬

erties that apply to the parameters listed in the output, whenever the input satisfies

the preconditions. Assuming that (ft is the expression computed by a tactic for an

input formula f>, the effects can be represented as a formula F[(ft] of a specification

language. In those cases where F establishes a functional dependency between f> and

(ft, it provides an alternative procedure for computing the output of a tactic. If the

dependency is not functional, F determines a class,

{if £ Fmlc | F[ip]}

to which (ft belongs8.

Methods provide a partial specification for tactics. Their representation resorts to the

predicate method/6,

8 See [Liskov &; Guttag 86], p. 7-8, 42-5 and [Liskov & Berzins 86], p. 3-4.
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method ( name (...Args...),

Input formula,

Preconditions,

Effects,

Output formulae,

tactic(...Args...)

)•

The components of a method are essentially those present in a specification. A method

and its related tactic usually share the same name. The input formula represents

the goal, and the preconditions determine the patterns a goal has to satisfy to allow

the application of the tactic. The effects and the output formulae characterise the

structure of the results generated from the input. The final element of a method is

an implementation for the specified tactic, under the form tactic(...Args...). Methods
also inherit the same classification established for tactics, thus belonging either to the

inference or the rewriting group9.

As the specification is partial, the description of properties may be incomplete (or

possibly incorrect) either for the input or the output formulae. If a tactic is applicable
to a goal, the derived subgoals match the output pattern and satisfy the effects of the

corresponding method. The converse, however, is not necessarily true: when the tactic
is a partial function, it may fail for a goal, no matter if the corresponding method

succeeds. This disadvantage is a consequence of the choice of working with partial

specifications10. To overcome it, it would be necessary to employ the tactic itself, or

its reproduction in the metatheory.

"One could argue that the preconditions of methods should be strengthened
so that they implied the success of the tactic. However, note that, in prac¬

tice, this would amount to running the tactic "unofficially' in the precon¬

dition. to see if it succeeded, before running it 'officially'." ([Bundy 88], p.

16)

9 Methods are defined in [Bundy et at 91], The distinction between inference and rewriting methods
is actually not present in Clam, a proof planning system described in [Van Harmelen & et al 93].

10 See [Bundy 88], p. 7.
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The limitations associated with partial representations, nonetheless, are balanced in

most cases by the fact that search is pruned.

4.1.3 Proof Plans

Planners are systems designed for the mechanical creation of proof strategies from the

composition of methods. A mechanically generated strategy corresponds to a proof

plan. Methods may be implemented in Clam, a proof planning system interfaceable
to interactive theorem provers, including Oyster, which is based on Martin Lof's intu-

itionistic type theory11.

Planners have to solve a search problem: given a goal (a conjecture to be proven, a

formula or term to be rewritten), the system has to build a tree of methods, corres¬

ponding to a tree of tactics, that, when applicable, reduces the goal to the empty list of

subgoals. At each stage, there may be choices to be made, since more than one tactic

may be applicable to intermediate subgoals. Since the unguided construction of the

planning tree, until a suitable plan is found, is undesirably inefficient in the average

case, planning techniques are necessary. Four search approaches are available in Clam,

each of which features a distinct planner: depth-first, breadth-first, iterative deepening
and the heuristically guided best-first.

" Each planner takes the theorem to be proved as the initial state and finds

a tree of methods which will transform it into a list of trues. At each cycle it

finds a method that is applicable to the current state by matching that state
to the input pattern of the method and checking the preconditions. The

list of output formulae is then calculated from the output and the effects

of the method. The cycle is repeated for each of these output formulae."

([Bundv et al 91]. p. 7)

In the LCF terminology, instead of a list of trues, a planner has as target the generation

of an empty list of subgoals.

11 See [Van Harmelen &: et al 93],
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4.2 Rewrite Systems

The role of proof plans in theorem proving is not limited to inferences, since they can

control rewriting processes in general, particularly those related to expression norm¬

alisation. The identification of special methods for normal forming is based on the

analysis of the syntactic features of classes of transformations that make up normal¬
isation.

Once adequate methods have been identified, two main types of plans can be imple¬

mented: special-purpose plans, which are devised to represent specific normalisation

tasks, and general-purpose plans, which correspond to families of special-purpose plans

that share certain properties.

4.2.1 Expression Normalisation

From an algebraic point of view, the concept of normal form involves an equivalence

relation defined on a universe set and a subset of the universe that exhibits a pre-

established (in general syntactic) property12.

Definition 4.2.1 (Normal Forms)

Let A and B be subsets of a universe set U. and let E be an equivalence relation

in U.

i. Given a £ A, an element b £ B is a normal form of a (with respect to E and B)

iff E(a,b).

ii. A normaliser for A (with respect to E and B) is a function Af: A —> B such that,

for all a £ A, E(a,Af(a)). Af(A) is the set of normalised expressions of A w.r.t.

Af. Af is an effective normaliser iffAf is effectively computable.

Hence, the normal form of an element of A with respect to E and B is not necessarily

unique. When there is more than one normal form for at least one element of A,
12 See [Bundy 91], p. 2.
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more than one normaliser can be exhibited. This definition seems to capture all the

distinct uses of the term in mathematical logic, at least for first-order theories. In

the case of prenex normal forming in a language C, for example, the universe, as well
as the subset A of formulae to be normalised, corresponds to Fmlc. The equivalence

relation is logical equivalence (= ), while the set 8 of normalised expressions is the
class of prenex normal form formulae. Also, the identification of reduction classes for

a decision problem, as described in definition 2.1.1, is a special case of normalisation.

Lemma 4.2.1 Let A and 8 be subsets ofU, and let 8' be a reduction class for 8 w.r.t.

A inU. Let Af: 8 — 8' be a reduction function for 8 w.r.t. A. Then AS is a normaliser

for 8 w.r.t. 8'.

PROOF. Let E(b.b') be defined as

b 6 A iff b' e A

Then E is an equivalence relation in IA, since it is reflexive, symmetric and transitive.

According to the definition of reduction classes, for every b G 8, b G A iff Af(b) G A,
i.e. E(b,Af(b)). From this result and definition 4.2.1, it follows that AC: 8 — 8' is a

normaliser for 8 with respect to E and 8'. I

Definition 4.2.1 can be specialised to the context of reduction problems once the uni¬

verse set is replaced with the set of formulae of a language.

Definition 4.2.2 (r-normaliser)

Let T be a subset of Fmlc, and let r£in and r£2n be recursive subclasses of Fmlc.

i. A r-normaliser for £t w.r.t. E2 is a function Mr- Ei —* S2 such that

r |= Aj'r{4>) iff rM

ii. A/*r(Ei) is the r-normalised subclass generated by /r from Ei.
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According to the definition of reduction classes, when E2 C Elf a r-normaliser for Id

w.r.t. E2 is also a reduction function for E2 with respect to the theory that has T as

axiom set.

As discussed in section 2.2.1, certain normalisers may be implemented as noetherian

and confluent rewrite sets. Even when a rewrite set 7Z does not possess such properties,

it is still possible to generate effective mechanisms through the introduction of control

structures. Given two sets of formulae, Ei and E2, TZ determines a relation r in S2 X S2,

defined as

r(cf), <t>') iff <t> e Sj & 4>' 6 s2 & (f> ^ <f>'

whose computation requires the construction of every rewriting sequence for each ele¬
ment of Ej. Any subset of r extensionally represents a subrelation for r. Rewrite

systems (or controlled rewrite sets) provide an alternative representation for such sub-
relations. Control in this context amounts to a mechanism for the selection of rewrite

rules and subexpressions of a conjecture </>, such that the set of rewritten versions of <j>

becomes ordered.

An example of a rewrite system is based on (deterministic) Markov algorithms: a com¬

putable function is generated from a rewrite set once its rules are linearly ordered, and

rewriting proceeds e.g. from left to right of the input expression. The resulting func¬
tion is effective whenever the rewriting sequence so generated is finite13. Alternative

control structures are nonetheless required to explore the full potential of rewrite-based

computability.

Definition 4.2.3 (Rewrite systems)

Let 7Z be a rewrite set and £ be a set of expressions such that e € £.

i. A rewriting tree for e and TZ is a tree of expressions such that each path in the tree

that starts with e is a rewrite sequence for e and TZ. A rewriting tree is complete

iff each path of the tree is either infinite or ends in a normal form expression

(under TZ).
13 See [Dershowitz fc Jouannaud 90], p. 245, and [Sommerhalder Sz Van Westrhenen 88], p. 265-7.
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ii. The triple (£, 7Z, CF) is a rewrite system iff CF is a function defined in E with the

set of all finite lists of IZ-rewriting sequences as range, such that, for all e G E.

CF(e) ( (C D,1 ? • • *5 ■ • •)? * • •? ^n,l; • • •; £n,mn 5 • • •))

CF corresponds to the control function of the reiurite system.

CF determines an order for the generation of the search space (or rather of a fragment
of such space), which is implicit in the order of the rewriting sequences associated with

every element of E. A subrelation r' C r, where r is the relation defined by a rewrite

set 7Z and the classes Si and S2, can be characterised by reference to a rewrite system

(£,7Z, CF) as follows

r'(<j), (fi) iff <f> e Sj k </>' e s2 k (</> 4 </>') e CF(fi)

When CF associates each element of Si with at most one rewriting sequence, and if

this sequence is finite, the rewrite system defines a normaliser Jf: dom(CF) —> S2,
where dom(CF) C is the domain of CF, and AT(4>) = <j>' iff fi'). CF then is the

key element in the construction of a normaliser Af based on a set of rewrite rules 1Z,

and the effectiveness of J\f depends on the recursiveness of CF.

Besides an effective rewriter, the computational effectiveness of normalisation also

requires a recursive domain. Certain recursive sets of expressions can be represented
as syntactically defined classes, for which the membership relation is defined strictly in

syntactic terms, i.e. an object belongs to a syntactically defined class iff it satisfy certain

syntactic conditions. The definition below tries to capture this informal concept.

Definition 4.2.4 (Syntactically Defined Classes)

Let £ = (£,V,C,!F,V) be an effectivised first-order language, and S be a subclass

of Exp2-

i. S is syntactically defined iff one of the following conditions hold.

(a) rT~1 is a recursive subset ofrVn.
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(b) rEn is a recursive subset ofrCn.

(c) A C E (base set), and, for every e* £ A,: and e C E, Sk(e1,.. .,emk,e) £ E,

\<k<n, where (1) Sk is a non-logical symbol of C, (2) A, Ai,..., Am>.
are syntactically defined classes, and (3) 5*(ei,..., emk, e) is a well-formed

expression of C.

(d) E has the form EjL^, E1fiE2 orEi —E2, where Ex and E2 are syntactically

defined.

ii. E is syntactically definable iff there is a syntactically defined set E' such that

E = E#.

The sets of terms, formulae and expressions of a first-order language are only a few

examples of syntactically definable classes.

Example 4.2.1 Let C be a first-order language.

i. The set of universal formulae of £ can be syntactically defined by the productions

unv := qff\ (var)unv
qff := at™ qff \ qff/\ qff \ qffV qff \ qff D qff \ qff = qff

ii. The set of formulae of C whose prenex form are universal can be syntactically

defined as

unv' := atm \ (var)unv' | ->exs' \ unv' A unv' \ unv' V unv' | exs' D unv' | qff
exs' := atm \ (3var)exs' \ ->unv' \ exs' A exs' | exs' V exs' | unv' D exs' | qff-

where qff denotes a quantifier-free formula of C.

Hi. The class of terms £ recursively defined as

(a) Any atomic term of C is an element of £ (base set)

(b) If t £ £ and S £ Symc, then S(t,...,t) £ £, provided that S(t,...,t) is a

well-formed term of C

(c) Only the terms defined above are elements of £

is syntactically defined, according to item i(c) of definition 4-2.4- □
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All syntactically defined classes are recursive. Some of them can be generated bv
context-free grammars, as shown by in the above examples, whereas others cannot.

Lemma 4.2.2 There is a syntactically defined class of expressions of a language C

that cannot he generated by a context-free grammar.

PROOF. Context-free generated classes are not closed under intersection or comple¬

mentation. As a result, there are sets of expressions Id and T2 generated by context-free

grammars such that Old is not context-free. However, assuming that every context-

free generated class is syntactically definable, then according to definition 4.2.4, I\ fllA

is syntactically defined14. I

Example 4.2.1 iii involves a class that apparently cannot be generated by a context-free

grammar, as argued in appendix E. To describe this and all other syntactically defined

classes, a special many-sorted syntactic metalanguage, containing predicates such as

occsym, pos-occsym and Ink-occ^sym,

occ_sym(S, e) iff S occur in expression e

pos-occ_sym(S,e,p) iff S occur in expression e at position p

lnlc-Occsym(Si, S2, e) iff S2 has an occurrence in the immediate
scope of in expression e

has been devised. In this language, a description for a procedure that links an initial
class Ex to a final class E2 can be formulated in terms of syntactic features of both

classes15.

Three aspects of the current study on decidable class extension are affected by the

above results. First, the reduction of classes is entirely addressable from the point

of view of normalisation processes. Also, effective procedures for the reduction of

recursive classes into proper subclasses can be expressed by means of rewrite systems

14 See [Lewis k Papadimitriou 81], p. 126
15 A description, therefore, is not the same as a specification for a program, since the former lacks the

syntactic components of the latter, such as the names of input and output variables, or the arity of
function and predicate symbols. The above distinction does not match that established, for instance,
in [Lukey 80], where a description presents what a program does, and a specification determines
what it should do. The restriction of descriptions to the semantic aspects of a specification has been
proposed by R. C. Sanchez (private conversation).
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once suitable control functions are identified. Finally, syntactically definable sets, some

of which are generated by context-free grammars, form suitable normalisation domains,

since they are recursive.

4.2.2 Normalisation Patterns

A class of effective normalisers can be built by means of normalisation tactics, paramet-

erised functions of arity (form formlst form ) that result from the inclusion of special
control functions in a rewrite set16. Primitive normalisation tactics capture the struc¬

ture of normal forming operations present in theories such as the predicate calculus,

Abelian groups and Presburger arithmetic. One group of primitive operations concerns

the elimination of occurrences of symbols, by their complete removal or by a reduction

in their number. Another group involves the reorganisation of occurrences of symbols,

and includes the stratification of occurrences of a symbol over others and the reordering

of occurrences of a single symbol.

Given a. syntactically defined set of formulae and a subclass of normalised expressions,

it is in some cases possible to provide a syntactic description of the subclass w.r.t. the

initial set in terms of absent symbols, forbidden linked occurrences of symbols, forbidden

relative positions for occurrences of symbols and similar properties. Properties of both

initial and normalised classes provide a description for the tactic that links them1'.
Each of these operations is a normalisation process in its own right. They can be

schematically described by means of

(i) a pair of sets, one of which is a universe set of expressions, while the other is the
subset of normalised expressions, whose syntactic form varies according to the

specific transformation performed, and

(ii) a set of rewrite rules that are adequate to perform the transformation.

The construction of the universe set requires a single production,

exp := bas\Si(exp)\ ...\Sn(exp)

16 As discussed in appendix D.7, the arity of many-sorted function and predicate symbols consists of
an ordered list of sorts. Form and formlst are two metalinguistic sorts, respectively made up of
object level formulae and finite lists of such formulae.

11 Primitive operations present in normalisation are described in [Bundy 91], p. 2-8.
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where exp is a finite sequence of the form exp,..., exp. The removal of occurrences of

a symbol Sk demands a normaliser that associates an expression of the universe with

an element of its subclass

exp' := bas\S1(exp')\...\Sk-1(exp')\Sk+1(exp')\...\Sn(exp')

by applications of rewrite rules such as

Sk(vu..., vmk ) "*4° ^{^17 • • •) }

provided that .. - ,vmk} is an expression that does not contain Sk.

Example 4.2.2 If the initial set of expressions is generated by

prp := var\-*prp\prp V prp\prp A prp\prp D prp\prp = prp,

the exhaustive application of

<t>i D <t>2 => —'<bi V d>2

removes D and creates a new class,

prp' := var\-*prp'\prp' V prp'\prp' A prp'\prp' = prp',

which is a strict subclass of the universe. With respect to the normalised class, D is a

deviant symbol. g

There may also be rules for the reduction of the number of occurrences of Sk, whose

repeated application does not lead to the complete elimination of Sk. Reduce rules
have the form

45fc(ta),...,^(tn)i =* CJ1

where and t' are finite lists of terms free from occurrences of Sk, and m. ^ 0. The

rules
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(0i A 02) V Oi A 03) => 0i A (02 V 03)
(»1 X 112) + (fl x U3) =4 1?! X («2 + D3)

respectively cause the reduction of occurrences of conjunction and multiplication, and

the description of the final classes, in each case, would have to acknowledge the residual

presence of either A or x.

For the stratification of symbols, if the occurrences of a function symbol Sk have to be

moved below occurrences of other symbols of the universe set, the final subclass

exp' := bas'\ . .. |5,-(ea:p')| ..., i ^ k, 1 < i < n
bas' := bas\Sk(bas'),

would be generated by a set of rewrite rules of the form

^k ( ^11 • • • ? — 1) Sj ( XIj ), , . . ., Vmk ) 6 *(Vi, . . . , Vmk , XIj }

for each j. k and i, l<«<mfc, such that 6{vi,... ,vmk,Uj} belongs to the
normalised subclass.

Example 4.2.3 If

prp := lit\prp V prp\prp A prp

is the initial set of expressions, the exhaustive application of rules

0iV(02Ad>3) => (0! V 02) A (<£i V </>3)
(0i A V 03 =4 (01 V 4>3) A (02 V 03)

reduces it to

prp' := cls\prp' A prp1
els lit\clsM els

With respect to the normalised class, occurrences of conjunctions in the immediate

scope of disjunctions represent deviantly linked occurrences. g

Concerning the reordering of symbols, there are classes of expressions where one or

more arguments of a symbol Sk range over specific subclasses of expressions that do
not contain a symbol Sj. An example of an ordered subclass is
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exp' := bas\Si(exp[,. ..,exp'mi) | ...\Sk(exp[,..., exp'mk_j, bas)\ ...\Sn(exp\,. ,.,exp'mn)

whose generation may require rules of the form

Sk(u, Sk(v,w)) =>• Sk{Sk(u,v),w)

Example 4.2.4 If the associativity of+,

Vl + (v2 + V3) => (Vl+V2) + V3

is adopted as a rewrite rule, it transforms the class

trm := var\(trm + trm)

into

trm' := var\(trm' + var)

With respect to the final class, summands with composite right-hand side arguments,

such as x + (y + z), are deviantly ordered expressions. g

The rules required to perform each of the basic operations may be classified according

to their form. There are at least three different types of rules for the removal of

symbols, including total rules, applicable to any context of occurrence of the related

symbol, and also partial rules, which cover particular contexts only.

Definition 4.2.5 (Remove rules)

Let T be a theory in C, S be a symbol of C, and E be a subset of Expc, such that

S does not occur in E. Let represent either = or =.

i. If 6 is an element ofT,, then

103



(a) A (conditional) total remove rule for S in T w.r.t. E has the form

T — S(vu .. .,vn) =» S

where T — 5(u1?..., vn) ~ 6 is T-valid.

(b) A (conditional) partial dominant remove rule for S in T w.r.t. E has the

form

r -»• S(eu s

ivhere T —* 5(ei,..., en) ^6 is T-valid, and either there is a symbol S' that
occurs in €j, for some j,l < j < n (i.e. symbols other than variables occur

in the scope of S), or if all the terms in the scope of S are variables, then

e, = ej. for some i j.

(c) A (conditional) partial non-dominant remove rule for S in T w.r.t. E has
the form

r -

where e is not dominated by S and T —» e[5J — 6 is T-valid.

ii. A set of remove rules for S w.r.t. S is complete for C iff it either contains a total

remove rule for S, or has partial (dominant or non-dominant) rules,

^1,1 ^1,2

bn, 1 bn,2

such, that, for every formula <f £ Fmlc in which S occurs, and for each occurrence

of S in <f>, there is a subexpression of <p containing this occurrence which is an

instance of 1, for some i, 1 < i < n.

Partial non-dominant rules for 5" can be classified as first, ... , n-th degree rules, ac¬

cording to the position of occurrence of 5 in the left-hand side expression of the rule.

Also, a single rule may act as partial remove rule for more than one symbol.
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Example 4.2.5

i. Rule

4> = i> => {4> D ip) A (tp D <f>)

is total for biconditionals, since = is the dominant symbol of the Ihs (left hand

side) expression, and the only expressions that occur in its scope are distinct

variables (over formulae).

ii. Concerning the elimination of existential quantifiers,

(3u)(u = t) => T

is a partial dominant rule, since there are symbols other than variables in the

scope of the quantifier. For the removal of negations, rule

=> <p

is also partial dominant, due to the occurrence of the very symbol to be removed

as dominated symbol as well. Finally, rules

v + v =>■ double(v)
v x v =£> v2

share the same category with the above rules due to the multiple occurrences of a

single variable in the scope of the symbol being removed.

Hi. The rule

Vi + v2 = 0 => vx = 0 A v2 = 0

provides the partial removal of +. Given that + occurs in the immediate scope

of the dominant symbol, =, it is a first degree rule. On the other hand, the
conditional rule

v3 ^ 0 —► (vj + v2) X v3 = v3 =>■ (uj = 0 A v2 = 1) V (f! = 1 A v2 = 0)

is a second degree rule, since + occurs in the immediate scope of X, which in
turn is in the immediate scope of the dominant symbol, =. The second rule is

also a partial non-dominant remove rule of first degree for multiplication.
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iv. Given the class of variable-free formulae defined as

vfm
conj
aim

= conj\vfm A vfm
= atm\conj V atm
= 0 = 010 < 0,

the rules

f V (0 = 0)
(0 < 0)

0 = 0

form a complete set of partial remove rules for disjunction (with respect to the
initial class), as they cover all possible contexts of occurrence of this symbol. g

Stratify and reorder rules can also be classified into complete, partial dominant and

partial non-dominant. For instance,

(3v)(<f>[jf\ A tp) => <f>[f\ A (3v)tp

is a partial dominant stratify rule for 3 over A. Complete sets of stratify and reorder

rules are defined in a similar way. Since remove is the only group to be examined in

later applications, the formal definitions for the other two groups are not relevant in
the present context. Termination measures for remove rules are discussed in chapter 9.

Primitive normalisation tactics are then definable in terms of the type of rule required

to perform the corresponding transformation.

Definition 4.2.6 (Primitive Normalisation Tactic)

A primitive normalisation tactic is a parameterised function associated with a rewrite

system (<?, 1Z. CF), where the control function CF is defined by the restriction ofTZ to its
subset of remove, reduce, stratify, reorder or any other particular type of rules, which

are applied according to the order guidelines established in a (deterministic) Markov

algorithm.

Remove(lZ, 5), for instance, is defined as

removeiflZ, S)(f) = (ft iff 1Z' is the subset of 7Z formed by remove
7Z'

rules for 5, and <f> ft
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The corresponding control function depends on the argument (the input formula) and
the parameters of the tactic, which, in the case of remove, are the rewrite set and

(the name of) a deviant symbol. CF is responsible for the selection of the elements of

7Z that are remove rules for 5, and for their ordered application thereafter. Similar

definitions apply to each of the other tactics. The rewriting sequence computed by a

normalisation tactic provides its validation component, already defined for inference

tactics, and reveals intensional features of the tactic, since it describes the process of

construction of the value of the function for a particular input. When the subset of

rules selected by a normalisation tactic is noetherian, the corresponding function is

effective.

The restrictions embedded in a normalisation tactic can be simulated in a LCF re¬

writing tactic once the set of rules is delimited according to the syntactic task to be

performed: for instance, when only remove rules are available, a rewriting tactic as¬

sumes the behaviour of remove. In the proof planning approach, however, there is a

single rule base for all normalisation tactics, and each of them selects those suitable

for the task at stake, instead of applying every rule exhaustively.

4.2.3 Conditional Tacticals

Primitive operations are insufficient to represent complex normalisation tasks, which

may require the combination of several tactics by means of tacticals such as then, orelse,

try and repeat. Complete normalisation tactics are defined similarly to the inference

case: given two syntactically defined subclasses, Si and S2, of a language C and a

theory T in £, a normalisation tactic is complete w.r.t. Si and S2 iff it represents a

T-normaliser from a subset of Si into S2. Conjunctive normal forming is an example

of a normalisation task for which a complete tactic can be built.

Example 4.2.6 Let Fml be the quantifier-free class of formulae defined by the rule

fml := atm\~*fml\fml = fml\fml D fml\fml A fml\fml V fml

where atm denotes an atomic formula of the underlying language. Let Nrm be the set

of quantifier-free formulae in conjunctive normal form of the same language, defined

by
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0 = 0 => (0 D i>) A (0 D 0)
0 D 0 -10 V 0

-.(0 A0) -10 V -10
-.(0 v 0) => -10 A -10

-1-10 => 0
0 V (if A p) (0 V 0) A (0 V p)
(0 A 0) V p (0 V p) A (0 V p)
0 A (0 A p) (0 A 0) A p
0 V (-0 V p) =» (0 V 0) V p

Table 4.1: Rewrite Rules for Conjunctive Normal Forming

nrm := cjt\nrm A cjt
cjt := lit\cjtV lit
lit := atm\-iatm

A normaliser from Fml into Nrm is supplied by the rewrite set listed in table f.l.

Since it is noetherian and locally confluent, the exhaustive application of its rules to

quantifier-free formulae effectively reduces them to conjunctive normal form, and any

path in the rewriting tree leads to the same normal form. However, if a comparat¬

ive analysis of both initial and final classes is carried out in advance, their syntactic

features can be explored in the construction of more efficient normalisers.

* Given that the final class. Nrm, does not contain either = or D, remove rules for

these symbols should be applied in the first place. Considering that the remove rule

for biconditionals introduces conditionals, which in turn also have to be removed,

biconditionals are exhaustively eliminated before conditionals. Hence, the subclass

defined by

fml1 := atm\-ifml'\fml' D fml'\fml' A fml'\fml' V fml'

is obtained before the class

fml" := atm\-<fml"\fml" A fml"\fml" V fml"

* In Nrm, negations occur only in the scope of conjunctions and disjunctions,

whereas occurrences of disjunctions are limited to the scope of conjunctions. As a

108



result, occurrences of negation have to be moved beneath the remaining symbols,

followed by the stratification of disjunctions over conjunctions. The process is

repeated until the desired strata.

fmV" := cjt\fml"' A fmV"
cjt := djt\cjt\J cjt
djt := atm\-<djt

are generated.

* The removal of negations poses a special problem, since its remove rule is partial
dominant18. It can be applied to the conjecture at the initial stage, along with

other remove rules, at the stratification stage, and at any stage when another rule

is successfully applied, since any change of the context may make a partial rule

applicable. A negation-free class,

fml"" cjt\fml"" A fml""
cjt := djt\cjt V cjt
djt atm\-*atm

is then eventually obtained.

* The final stage consists of reordering conjuncts and disjuncts in their respective

strata.

The complete normalisation tactic that represents the above normaliser,

try remove(bicond)
then try remove(cond)

then try remove(neg)
then try stratify(neg,[conj,disj]) then try remove(neg)

then try stratify(disj,[conj]) then try remove(neg)
then try reorder(conj)

then try reorder(disj)

18 The stratification rules for negation over conjunction and disjunction,

—>(<!> A => —i<t> V —<ip
—<(<!> V tl>) => —i<j> A —>ij)

could both in principle be classified as partial non-dominant remove rules for conjunctions and
disjunctions as well. However, since each of them introduces the other symbol in the rewritten
formula, there is a potential risk of mutual cancellation of intended effects, as in the rewriting
sequence

—'(—'(P A ?)) =>• V -ig) => A

where the first rule replaces A with V, and the second one reintroduces A at the expense of V. For
this reason, they are not included in the set of remove rules.
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requires the use of three primitive tactics. □

Even though the set of tacticals inherited from LCF is suitable for the construction

of a large class of complete normalisers, there are cases where such constructs are

insufficient to provide effective search control, as in the case of normalisation processes

with multiple target classes, described in section 5.3.2. The implementation of richer

search strategies then requires a set of conditional tacticals. They include

if if then taci else tac2,

of rank ( form tactic tactic tactic ), which applies tac\ in the case if, a formula that
describes properties of the conjecture, is satisfiable, and tac2, otherwise,

if if then tac,

of rank ( form tactic tactic ), which applies tac whenever if is satisfiable, and

while if do tac,

also of rank ( form tactic tactic }, which applies tac whilst if remains satisfiable. The
last two tacticals are actually derived: if if then tac can be represented as if if then tac

else failtac, whereas while if do tac is equivalent to repeat (if if then tac). Conditional
tacticals allow the construction of context-sensitive structures for rule ordering and

selection that are more flexible than the plain application of ordered rewrite sets. In

their presence, the execution of a tactic involves, besides the application of rewrite

rules, the evaluation of conditions.

4.3 Normalisation Plans

Given an equivalence relation, any pair of classes of expressions (E1,S2) defines a

normalisation problem and provides the description for a normaliser, under the form

of a domain, a range and a property that each normalised expression must satisfy (i.e.

input and output expressions must be equivalent). If both Si and S2 are syntactically
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defined, a rewrite-based normabser Af: Id -» S2 may be built from the composition of

elementary normalisation tactics, as described in example 4.2.6. After their selection,

it is possible to determine the rewrite set TZ required to complete the implementation

of Af. The task at stake can then be formally defined as

(3r)(3A/")(A/* C r & dom(Af) C & rng(Af) = S2)

where r is the relation defined by TZ.

There are, however, alternative ways of specifying Af. If a rewrite set 7Z is given in

place of Sj, a normaliser derived from the description (TZ, S2) has the form Af: £ S2,
where £ is the domain of TZ. The construction ofAf then involves the selection of tactics

which gradually reduce some elements of £ into S2 and employ, for this purpose, only
those rules available in TZ. The process therefore requires finding a constructive proof

for

(3Af)(Af C r & dom(Af) C £ & rng(Af) = S2)

where r is the relation defined by TZ.

Two final descriptions replace the input class with a particular formula. If d> ^ S2, it

has then to be estabbshed whether there is a rewrite-based normabser M such that

Af(</>) G S2. Alternatively, if a rewrite set TZ is also given, it may be relevant to

determine whether there is a normabser Af derived from TZ such that Af(<j>) G S2. Each
case is respectively representable as

(3r)(3A0(Af C r kAT(<t>) G S2)

and

(3Af)(Af C r & Af(4>) G S2)

where r is the relation defined by TZ. The description in each case is provided by (</>, S2)
and ((f), TZ, S2).

As in the case of proof strategies, the construction of a normabser for any of the
above descriptions from a set of elementary normalisation tactics faces potential search
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problems. The task of solving these problems is simplified once a (partial) specification
for primitive tactics is given.

4.3.1 Primitive Methods

Partial specifications for normalisation tactics can be provided with increasing degree
of accuracy depending on the amount of knowledge extracted from the corresponding

rule set. As a result, more than one method for a single tactic may be exhibited. A

primitive normalisation method is represented by the predicate norm-method/6, defined
as

norm-mthd ( name (...Args...),

Input class,

Preconditions,

Effects,

Output class,

tactic(...Args...)

)■

The name, preconditions, effects and tactic have the same role as in the definition of a

method. The input class defines syntactic properties of the domain of the corresponding

tactic, whereas the output class refers to the range of the tactic. Let m(u) be a primitive

normalisation method, where m(v) is an abbreviation for ATAF m(r,u,r') and v is

the list of parameters of m. If {Vq,.. is the set of preconditions and {ip[,...
is the set of effects (or postconditions), then

m(v)(S,E')

(3u)(il)l{Y,,v,u} A • • • A ifn{T,,v,u} A S', v, ix} A ■ • • A T,',v,u})
is a logical consequence of the underlying specification theory, i.e. the set of precondi¬
tions and postconditions are both simultaneously satisfiable for a particular assignment

for v, T and T'. u is a list of additional variables.

The main difference with respect to inference methods is the presence of classes of

expressions, rather than a single goal or a list of subgoals, in the input and output slots.
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This feature does not exclude applications to specific formulae, though, since classes

may be unitary. Such a representation is particularly relevant for the construction of

normalisers defined in terms of pairs of classes of formulae.

The simplest specification for a normalisation tactic does not take into account any

information about the set of rewrite rules, and assumes that a complete rewrite set is

available for every symbol or lists of symbols of the object language. A conjecture is

abstractly represented by means of a structured list containing its symbols (other than

variables) and their relative positions, which describes a class of formulae that share
the same structure. The use of abstraction functions leads, as in the above case, to

the removal of irrelevant information in the representation of expressions, and is an

important element of program specification19. The method remove1, defined as

norm_mthd(removel(Sym),
CjtSymLst,
[member(Sym,CjtSymLst),
rem_rul(Sym,_)],
[delete(Sym,CjtSymLst.NewCjtSymLst)],
NewCjtSymLst,
remove(Sym)
).

where

rem-rul(Sym.Rul) iff Rul is a remove rule for Sym

provides minimal information about the tactic remove. CjtSymLst represents the class

to which the conjecture belongs. Removel(Sym) assumes the application of the cor¬

responding tactic succeeds whenever Sym occurs in CjtSymLst and there is at least

one remove rule for this symbol: it does not check, however, whether any of such rules

is actually applicable to the conjecture. The abstract representation of the output

class is obtained from CjtSymLst through the deletion of occurrences of the removed

symbol. Since the rhs (right hand side) expressions of the corresponding rules are not

examined, it is not possible to determine whether new symbols are introduced in the

conjecture as a result of rewriting. The method stratify1, on the other hand, is defined
as

19 See for instance [Liskov & Guttag 86], p. 56-7.
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norm_mthd(stratifyl(Sym,SymLst),
CjtSymLst,
[lnk_occ_sym(Sym,SymLst,CjtSymLst),
str_rul(Sym,_,_)],
[exchange(Sym,SymLst,CjtSymLst,NewCjtSymLst)],
NewCjtSymLst,
stratify(Sym,SymLst)
)•

where

there is a symbol of SymLst
which occurs in the immediate

scope of Sym in the list Cjt¬
SymLst
Rul is a stratify rule for Syml
w.r.t. Sym2
NewCjtSymLst is generated
from CjtSymLst by interchan¬
ging occurrences of symbols of
SymLst in the scope of Sym
with Sym

Stratifyl (Sym,SymLst) succeeds whenever there is an occurrence of one of the symbols
of SymLst in the immediate scope of Sym, and there is at least one stratification rule

for Sym: as in the case of remove1, the applicability of the rule to the conjecture is not

checked. The resulting list of symbols, NewCjtLst, is generated by simple exchange of

Sym with the symbols of SymLst.

Example 4.3.1 The formula

x x (y + z) = y D (x x x — z) x z < y

can be abstractly represented as a list of symbols,

[ [=,[X,[+]], <,[X,[-,[X]]]] ]

or a symbolic tree,

lnk-Occsym(Sym,SymLst, CjtSymLst) iff

str_rul(Syml,Sym2,Rul) iff

exchange (Sym,SymLst, CjtSymLst, NewCjtSymLst) iff
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3

= <

x x

+

X

where the order of branches is immaterial. If it is supplied to removel(D), all the
occurrences of D are deleted, thus generating

[[= ,[X,[+]], <,[x,[-,[x]]]]3

If the resulting representation is supplied to the method stratifyl(x, [+, —]), the output

list,

[[=,[+, [X]], [X,[X]]]]],

does not contain occurrences of either sum or subtraction in the immediate scope of

multiplication. g

The accuracy of the specification provided by each of these methods depends upon

the type of rules available to the tactic. Let and £( be the domain and range of
a normalisation tactic in a language £, and let S2 and £2 be the largest classes that

respectively satisfy the preconditions and postconditions of the corresponding method.

In the case of remouel, S2 is syntactically defined as the subclass of all formulae <t> of

C such that

occ_sym(S, <f>)

(i.e. those that contain a symbol 5), whereas S2 is contained in the complement of S2
w.r.t. Fmlc, which satisfies '
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-ioccsym(S, 4>)

(i.e. the class of formulae of C in which S is absent). Removel(S) therefore defines a

relation in the domain p(E2) X p(E2), since any subset of S2 that contains S satisfies

the preconditions of remove1, whereas the corresponding output class must be a subset
of S2, since it does not contain S. For instance, given CPA = {0,1, s, +, x}, if + is the
chosen symbol, S2 can be abstractly represented as

S2 = [+, =] U [+,=,-"] U • • • U [+, = , -1, A] U • • • U [+, -1, A, V, D, =, 3, V, T, _L, = , 0,1, s, x]

which is the union of the (disjoint) subclasses of formulae that respectively contain,

as sole non-variable symbols, -f and =, +, = and etc. The removal of -f from S2

generates

s'2 = [=] u[=,-i]u---u[=,-i,a]u---u[-i,a,v,d,=,3,v,t,i,=,o,i,s, x]

as output: in particular, ([+,=,->, A], [=,->, A]) € remove1(+). Since the method

removel(S) assumes that there is always a total remove rule for 5, when such a rule is

actually available to the corresponding tactic, the (largest) input class for removel(S)
and the domain of the remove(S) tactic coincide, as shown in figure 4.1. However, if
the set of remove rules for S is incomplete, E2 is always larger than the domain of
the tactic, E1? since there are formulae in S2 from which no occurrence of S can be

removed. For this reason, removel(S) provides a partial specification for remove(S),

considering that remove(S) is just a partial function in E2. Moreover, the range of the
tactic may not be entirely contained in E2, since there are formulae from which only
some occurrences of S can be removed, as it is shown in figure 4.2.

More accurate specifications for a normalisation tactic are obtained once information

about the rule set is taken into account. For instance, the preconditions of remove 1

can be extended to include a test for the applicability of a rule against each particular

conjecture (j). The input class, on the other hand, may contain <^> as sole element. For
the new method,
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tactic remove(S) £ £jSl
method removel(S) C p(S2) X p(S2)

When a total remove rule for S is available, the (largest) input class for removel(S),
E2, and the domain of the remove(S) tactic, Ei, coincide.

Figure 4.1: Totally removable symbols
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tactic remove(S) € H)2'
method removel(S) C p(S2) X p(S'2)

In the absence of total remove rules (or complete sets of remove rules) for S, the
domain of the tactic remove(S), Ei, is just a proper subset of the (largest) input
class for removel(S), E2, given that the latter always presupposes the existence
of total rules.

Figure 4.2: Partially removable symbols
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norm_mthd(remove2(Sym),
[Cjt] ,

[sym(Cjt,CjtSymLst),
occ_sym(Sym,CjtSymLst),
rem_rul(Sym,Rul),
applicable(Rul,Cjt)],
[delete(Sym,CjtSymLst,NewCjtSymLst)] ,

NewCjtSymLst,
remove(Sym)
).

the largest class E2 that satisfies the preconditions coincides with the domain of the

tactic remove, Ej. Ej and E'2, however, still do not coincide, since remove'2 presupposes

that every occurrence of Sym is removed from every conjecture. A similar version can

be built for stratify.2. In the limit, the specification provided by the method entirely

coincides with the tactic, for any set of rewrite rules, both for remove,

norm_mthd(remove(Sym),
[Cjt] ,

[occ_sym(Sym,Cjt),
rem_rul(Sym,Rul),
applicable(Rul,Cjt)],
[exh_rem(Sym,Cjt,NewCjt)],
[NewCjt] ,

remove(Sym)
)■

where

applicable (Rul,Cjt) iff Cjt has a subexpression against which
Rul can be matched

exh.rem(Sym, Cjt.NewCjt) iff NewCjt is generated from Cjt by the
exhaustive application of rem.ove rules for Sym

and stratify,

norm_mth.d(stratify (Sym,SymLst),
[Cjt] ,

[lnk_occ_sym(Sym,SymLst,Cjt),
str_rul(Sym,OthSym,Rul),
member(OthSym,SymLst),
applicable(Rul,Cjt)],
[exh_str(Sym,SymLst,Cjt,NewCjt)] ,

[NewCjt] ,

stratify(Sym,SymLst)
)•
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where

exhstr(Sym,SymLst,Cjt,NewCjt) iff NewCjt is generated from Cjt by the
exhaustive application of stratify rules
for Sym w.r.t. SymLst

or for any other tactic. Given that both input and output classes are unitary, they are

normally indicated by their single element instead, hence remove is usually denoted as

X(f>X(f>' remove((f>, Sym, ft).

Even when a method exactly describes the domain and image of a tactic, the construc¬

tion of strategies with methods does not amount to the same process at the tactic level.

While normalisation tactics apply rules to an expression, methods assess properties of

the input expression in the preconditions before rewriting starts. In the case of remove,
the corresponding tactic is applicable only if the chosen symbol occurs in the current

conjecture; if it does not, the method fails, without any consultation of the rewrite set.

At the tactic level, however, each remove rule for the chosen symbol would have to

be tentatively matched against the conjecture before the inapplicability of the tactic

could be asserted. Preconditions therefore establish an essential distinction between

methods and tactics.

Methods of the last type are relevant to the development of normalisers for descriptions

of the forms (cj>, S2) or (<f>, TZ, S2), i.e. those given in terms of a formula (and a rule

set) and a (decidable) class to which this formula does not belong. The development
of normalisers for such descriptions is further examined in chapter 6.

4.3.2 Methodicals

The combination of primitive methods requires the use of methodicals such as then,

orelse, try, repeat, if-then, if-then-else and while-do, which share similar properties with
the homonymous tacticals. Conditional methodicals represent a convenient mechanism

for extending the set of preconditions of a primitive method m: every composite method
of the form {if if then to) could in principle be replaced by a new atomic method

generated from m by the inclusion of if amongst its preconditions. The introduction
of methodicals adds the set of composite methods to the primitive core.
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Definition 4.3.1 (Normalisation Methods)

The set of normalisation methods is recursively defined as follows,

i. idmethod and failmethod are normalisation methods.

ii. Primitive normalisation methods (e.g. Temove(Sym). stratify(Sym, SymLst) and

reorder( 5f/m)) are normalisation methods.

Hi. If mi and. m2 are normalisation methods, then (mx then m2), (mx orelse m2),

(try mj) and (repeat mi) are normalisation methods.

iv. Ifmx and m2 are normalisation methods and if is a formula of the underlying spe¬

cification language, then(if if then mj), (if if then mx else m2), (while if do mx)
are normalisation methods.

v. Only the objects that satisfy one of the conditions above are normalisation meth¬

ods.

A normalisation method is conditional if it contains a conditional methodical, and

non-conditional otherwise.

Composite methods may be also identified by a name, which is linked to two types

of parameters. Essential parameters are strictly those inherited by a method from its

primitive components, which in turn coincide, by definition, with the parameters of

the corresponding tactic. Inessential parameters are those that occur in the condition

of conditional methodicals.

Definition 4.3.2 (Essential h Inessential Parameters)

Let m(v,v') be a normalisation method, where m(v,v') is an abbreviation for
AEAE' m(S, v, v', £'). The finite sequences of variables v and v' are respectively es¬

sentia] and inessential parameters of m iff one of the following conditions holds.

i. v' = [ ] and m(v) is a primitive method.
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ii. m{v,v') has any of the forms

mi(u1,u'1) then m2(u2,u'2)
mi(u1,u'1) orelse m2(u2,u'2)

repeat ufi)
try mx{ui,u'x)

where

(a) Ux and u2 are the essential parameters of and m2, and U u2 = v

(b) uj and u'2 are the inessential parameters of m\ and m2, and u^ U u'2 = v'

Hi. m(E, v, v', E') has the any of the forms

if w. w') then mi(E, u-y, tij, S') else m2(E, u2, ^2> ^')
if ipCE,w, w') then m^E, itj, tij, E')
while m, in') do mj(E, ttj, tE, E')

where

(a) Ux and u2 are the essential parameters ofmi and m2 such that Ux Uu2 = v

(b) u' and u'2 are the inessential parameters of and m2

(c) w C v, w' fl v = 0 and v' = tt'j U u'2 U w'

Example 4.3.2 Let (A Exp A NewExp cond_remove) be a method where cond_remove
is defined as

if [occ_sym(Exp,Sym,Pos)
remove(Exp,Sym,NewExp)
idmethod]

Sym and Pos are respectively its essential and inessential parameters. The instance

cond_remove( <, []) specifies a tactic whose domain is the set of atomic formulae dom¬
inated by <. q

Concerning the meaning of a composite normalisation method, let m(v), mx(vx) and

m2(v2) be methods and be a formula.

(a) If m(v) has the form (m1(u1) then m2(v2)), then
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m(t>)(E,E') = (3E")(m1(r1)(S,E")Am2(r2)(E",S'))

(b) If m(v) has the form orelse m2(v2)), then

m(r)(S,E') = m1(u1)(E, E') V (m2(f2)(E, S') A (VS//)-im1(u1)(E, E"))

(c) If m(v) has the form (repeatm'(v)), then

repeat(m'(v))(E,S') = (3E")(to'(u)(E, E") A repeat(m'(v))(T,", E'))
V

idmethod(E, S') A -n(3E"')m'(r)(E, E"')
(d) If m(v) has the form (try m'(vj), then

m(t>)(E,S') = m'(v)(E,E') V (idmethod)(Z, E') A (VE")im,(«)(E, E")

(e) If m(v) has the form ATAT' (if -ip(T, u) then mi(T, rj, T') else m2(T1v2, P)), then

m(r)(S,E') = (-^(S, u) A mj(u1)(E, E')) V (~ii/>(E, u) A m2(r2)(S, E'))

A method that specifies a complete normahsation tactic is a proof plan for normalisa¬

tion. A plan is special-purpose if it specifies a particular normalise!' for a subclass of

formulae, as e.g. in prenex normal forming. A general-purpose proof plan, on the other

hand, represents a family of special-purpose plans that share a common structure20.
Given a decidable class E2, an extended syntactically defined class Si in a language

C and a rewrite set 1Z of rules valid in a theory T, a T-normaliser from Ei into S2

could be implemented from descriptions such as (Si, E2), (7Z, E2), (</>, S2) or (<j), 71, S2),
where 4> belongs to the domain of 1Z. In each case, a tactic is mechanically created in

at least two ways.

i. The description is supplied to a planner, which combines primitive methods by

means of methodicals until a suitable special-purpose plan is completed. The ori¬

ginal problem is implicitly decomposed into a series of intermediate syntactically
defined classes, such that each pair of consecutive classes is linked by a primitive

normalisation tactic.

20 See [Bundy 91], p. 8.
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ii. Parameters of a general-purpose plan are instantiated until a tactic that satisfies

the chosen description is obtained.

Hence processes for the construction of a special-purpose proof plan vary along two

dimensions, the type of the description and the nature of the construction. In the first

case, if a description for the extended class is given, then the necessary rewrite rules

have to be sought, otherwise when the rewrite set is supplied with the description,
the extended class has to be built instead. For the second case, if the description is

supplied to a planner, planning techniques must be made available to it, whereas if it

is generated from a general-purpose plan, a suitable set of such plans must be given.

The dynamic generation of special-purpose plans for a description (Si, S2) is discussed
in the next section.

4.3.3 Automated Planning

Planners perform search in a set of methods. Since there are several methods for
each normalisation tactic, the required level of accuracy of the specification has to be

determined before search starts. When the description for a normaliser has the form of
a pair of syntactically defined classes and no rule set is given, methods such as remouel,

stratify1 and reorderl are a natural choice.

Example 4.3.3 Let L be a language, and £i C Fmlc be the class such that S\,..Sn

occur in every one of its elements. Let S2 he the class of the same language whose

elements have at least an occurrence of one of the above symbols. Finally, let S3 be the
class of formulae in ivhich the above symbols are absent. They can be represented as

Sj = {d> g Fmlc | occsym((f), Si) & occsym((f), S2) & ... & occsym(4>, 5„)} (*)

£2 = {<fi g Fmlc | occsym(<f>, Si) V occ.sym(f), S2) V ... V occ_sym(4>, Sn)}

and

S3 = {<p g Fmlc | ->occ.sym(<f>, 5i) & -ioccsym(<f), S2) & ... & ->occ_sym(4>, Sn)}

Let (£!,£3) and (£2,E3) be descriptions for two normalisers.



i. Once (£1, £3) is supplied to a planner, it looks for a method that is applicable
to Ei. Since there is no reference to the relative positions of symbols in this

class, reorganisation methods are excluded, leaving only removel and reducel for

consideration.

(a) If it is assumed that a complete set of remove rules for all the mentioned
symbols can be found, then there are n methods, or instances of methods,
that can be applied to the mentioned class: removel(5i), ... , removel(5'n).
The preconditions for these methods require the occurrence of Si in the initial

class, which are satisfied by the definition of £ j. Without loss of generality,

let removel (5i) be the first chosen method. The pre- and postcondition of
the method act as a rewrite rule which is applied to the definition of the

input class, thus introducing -ioccsym((j), S\) in expression (*),

-i occ_sym((/), 5i) & occjsymf^, S2.) & ... & occ_sym(<?!>, Sn)

thus defining a new class, £ j. The process is iterated until £3 is eventually
obtained (on the assumption that the removal of Si does not introduce Sj,
1 < i < n, j < i). The resulting method, is

removel(Si) then removel(S2) then ... then removel(Sn)

(b) In the event not all of the symbols Si,..Sn are expected to have complete
sets of remove rules, the order for the removal of symbols is relevant. A

more complex plan,

removel(Si) then removel(S2) then ... then removel(Sn)
orelse

removel(S2) then removel(Si) then .. . then removel(Sn)

orelse

orelse

removel(Sn) then removel(Sn-i) then ... then removel(Si)
is then required.

ii. For the pair (£2,£3), a suitable plan,
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try removel(Si) then try remouel(5,2) then ... then try removel(Sn)

could be similarly built. g

A normalisation planner, therefore, links a description for a normaliser with an imple¬

mentation in the form of a tactic. For the above example, once the tactic is defined,

remove rules for S\,..., Sn have to be sought.

For the particular normalisation problem of decidable subclass extension, given a T-
decidable class £ in C, the description of a normaliser for a generic extended class

is based on the full set of formulae of C. When T is undecidable, no extended class

coincides with the full set of formulae, hence the description (Fmlc, E) is partial, and
the described normaliser M is a partial function,

J\f: Fmlc ^ 2

This problem can be represented as the search for a constructive proof for the conjecture

(3r)(3r')(V^)(V^2)(r' CrkUk ((^ € Fmlc k fa £ E & r'(<j>i, D (T |= 4>i = *2))) (t)

where

(a) r is the binary relation defined by a rewrite set 7Z,

(b) r' defines a partial function Afr>: Fmlc E, and

(c) U, defined as

(V-0i)(VV'2)(Vi/;3)[(r'(i/'i,V'2) & r'(ipu tp3)) D (tpi 6 Fmlc & V2 € £ & ^2 = V'a)]

asserts the (syntactic) unicity of Afr'(<j>), for any formula <fi in the domain of AC'-

More precisely, the construction of a partial normaliser for (Fmlc, S) requires a rewrite
set 1Z from which Afr< is extracted by the introduction of a suitable control function.

The range of Afr> is E, and for any formula 4> € dom(AfT>), 4> and ATr>((/>) are equivalent
in T. Given that both Fmlc and £ are syntactically defined, the atoms <f>i £ Fmlc and

4>2 € E can be replaced by formulae and F2(4>2) of the specification language.
Since, a planner is limited to the construction of special-purpose plans, (|) may be

simplified to



(3p)(3u1).. .(3vn)(p(t>j,.. .,v„)(E1,E2))

where p is a normalisation plan.

The application of planners to a description is not examined in the present study.

Attention is otherwise concentrated on the generation of normalisers from general-

purpose plans, which involves proving that

(3ui).. .(3vn)(p(vu.. .,u„)(E1,E2))

where ATj AF2 p(F!, ux,..., vn, IE) is a plan and (Ei, S2) is a description. The instanti¬
ation of parameters is handled e.g. by a. resolution-based first-order theorem prover21.

4.4 Conclusions

The extension of decidable classes is a special case of formula normalisation. Syntactic¬

ally defined sets in general, and context-free grammars in particular, are amongst the
recursive classes for which a specification language has been identified. Normalisers

may be represented by means of rewrite rules, whose exhaustive application nonetheless

usually leads to inefficiency.

Effective procedures for the reduction of a class into a decidable domain are derived

from rewrite sets after the incorporation of control functions for the selection of rules.

Proof plans for normalisation in particular limit the application of rules through the

syntactic analysis of classes of formulae. Given a description for a normaliser, its

generation under the proof planning approach may take place either by the application

of a. planner to a set of methods, or by a simpler process of parameter instantiation in

a general-purpose plan. Before such plans are precisely defined, the analysis of a. few

special-purpose plans in the next chapter clarifies the nature of the transformations

that take place inside decision procedures.

21 Special and general-purpose plans are formally defined in the next chapter.
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Chapter 5

Special &c General Purpose Proof
Plans

General-purpose plans represent parameterised families of normalisers. Once para¬

meters are instantiated, a range of complete normalisation tactics is derived, covering

operators such as decision procedures and reduction functions. Special and general-

purpose plans are formally defined in section 5.1. The structure of two decision proced¬
ures based on quantifier-elimination is examined in section 5.2, followed by a tentative

representation for rewrite-based decision procedures in section -5.3.

5.1 Recursive Plans

A proof plan for normalisation is a method that specifies a complete tactic for a nor¬

malisation task. The generality of a plan derives from the occurrence of free variables

among its parameters. Some of the parameters identify symbols, or lists of symbols,

present in primitive tactics. For instance, the plan

repeat(try remove(Syml) then try stratify(Sym2.SymLst))

is general-purpose due to the presence of variables in its parameters. Its instance,

repeat(try remove(neg) then try stratify(neg,[conj,disj]))

is a special-purpose plan for the reduction of formulae containing negations, conjunc¬
tions and disjunctions as sole logical symbols to the subclass where negations occur
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only in the scope of literals. The family of special-purpose plans associated with a

general-purpose plan is made up of its variable-free (or ground) instances1.

Definition 5.1.1 (Proof plan for normalisation)

i. The set of proof plans for normalisation (ppn) is recursively defined as follows.

(a) Every normalisation method is a ppn.

(b) If pi and p2 are ppn, then

ivhere a is a primitive method and (3 = p(vx,... ,vn_\, v'n), is a ppn re¬

cursively defined from px and p2. For 1 <t<(n-l), if v{ is an essential

parameter of px and p2. then u,; is an essential parameter of p, and if V{ is

inessential in both px and p2, it is inessential in p. vn is essential in p iff it

is essential in p2.

(c) Only the objects defined above are ppn.

ii. A ppn p is conditional if a conditional methodical occurs in p, and non-conditional

otherwise. The set of conditions C of a plan p is recursively defined as follows.

(a) If p is non-conditional, then C = 0.

(b) If p is conditional and has the form pi orelse p2, repeat px or try pj, and C\
and C2 are respectively the sets of conditions of p\ andp2, then C = C\UC2.

(c) Ifp has the form if if then px else p2, and C\ and C2 are the sets of conditions

of pi and p2, then C = {tp} U C\ U C2.

(d) If p is conditional and is recursively defined from px and p2, then

1 None of the proof plans for normalisation informally described in this section has been actually
implemented.

p(vx,..., Vn_x, Vn) = Pi(vu..
if vn = [e\v'n\
then p2\P/a\(vu ..., vn_uvn)

C = Ci u C2.
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Hi. An instance of a ppn,

(r{X4>iX(f>2p{(b. .,vn,<j>2))

where a =
,..., f"/#n} and V\,...,vn are the (essential and inessential)

parameters of p, is a special-purpose ppn iff tt is either variable-free or has 4>i

and/or 7Z as sole variables, for all i, 1 < i < n.

iv. A ppn is general-purpose iff it is not special-purpose.

Example 5.1.1 The plan multiple-remove/!, which removes the occurrences of the

symbols listed in its argument, SymLst, is recursively defined as

if [SymLst = [ ]
idmethod

if [SymLst = [SymlLst]
remove(Sym)
then nmltiple_remove(Lst)]]

With respect to definition 5.1.1, the component plans pi and p2 respectively correspond

to idmethod and remove(Sym) then idmethod.- in this case, the replacement required
to generate multiple_remove/l is multiple_remove(Lst) for idmethod. g

Definition 5.1.1 is correct with respect to the informal notion of special-purpose plan,
since every ground instance of a general-purpose plan is linked to a single normaliser.

Lemma 5.1.1 Every special-purpose plan specifies a unique normaliser.

PROOF. (By induction on the length of p)

Let a(\<f>i\<f>2 p(4>i,TL,Vi,... ,vn,(f>2)) be a special-purpose plan, where
a - , *n/v„} and each is either variable-free, or contains (p\ and/or 1Z as

sole variables.
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Base case. If op is either remove(t\), stratify(ti,[t2,... .tn]), reorder[tx) or any other

primitive method, then op defines a unique normalises For instance,

\(t)\Xd>2 remove((j>x, 7Z, tx, <p2)

represents a rewrite system composed of remove rules for the symbol associated with t\.

Since tx is either variable-free or contains <fi and/or 7Z as sole variables, tx is uniquely
defined for each input formula tfi and rewrite set 1Z. The homonymous tactic consists of

the application of a finite set of rewrite rules that yields a unique rewritten expression,

due to the control imposed on their application.

Step case. Let opx and op2 be special-purpose plans that respectively represent norm-

alisers Ah and J\f2.

i. If p has the form px then p2, considering that

(pi then p2)(<f)u (f>2) = (3<^3)(pi(<f>i, 03) A p2(</>3, (f>2))

its instance (opx then &p2)(4>i, <f>2) is equivalent to

(3<^3)(A/i(^>I ) = (f>3 A A/"2(d>3) = (j>2)

which can be simplified to (Af2 °A/i)(</>i) = 4>2. Therefore opx then op2 represents

J\f2 o Mx.

ii. If p has the form px orelse p2, considering that

[px orelse p2){4>u(j)2) = Pi(^i, ^2) V (p2(^i, <^2) A , d>3))

then {px orelse p2)(<f>i, <f>2) is equivalent to

A/"i(d>i) = 4>2 v (Af2(4>x) = <t>2 A (Vd>3)(Ari(</>i) ^ d>3))

which amounts to (A/*i U N2)(4>\) — <p2, where Af2 denotes the restriction of Af2
to the subdomain where Nx is not defined. Hence opx orelse op2 denotes the

normaliser M\ U Af2 .
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iii. If p has the form repeat px, considering that

repeat pl((pu (t>2) = (3<f>3)(pi{<j>u <f3) A repeat pi(d>3, <j>2))
V

idmethod(<f>x, <fi2) A —i(3<^4)p!(^>j, <f>4)

then repeat Pi(<j>i,^>2) is equivalent to

(4>x = (f>2 A (V^)->Pi(^i,^)) V (pi(<^i,^2) A (VV>)-,Pi(</>2, VO) v
V (3^3)(p1(0i, 03) A Pi(<f>3, <f>2) A (VV')-'Pi(02, VO) V ...

The instance repeat aP\{4>\,(j)2) can be transformed into

(W>)(A/j(<£2) # V') a (<pi = <j>2 V = ^v (3<fo)(A/j(<£i) = ^3 A Af\{<t>3) = <t>2) V ... j
and simplified to

(V^)(A/"i(02) / V)A V N[(4>\) = </>2
i'SN

where Af°(ip) = V- If A,r is defined as the restriction of A/" to a subdomain 5"
such that, for every element e of this subdomain, A/"(e) ^ 5, then the normaliser
associated with repeat apx is U,-6nA/'1!.

iv. If p has the form if if then px else p2. for any instance of p where variables are

replaced by either constants or terms containing <fi and/or 1Z as sole variables,
can be evaluated to either T or 1 for each input conjecture (f>, in which case p

is reduced to either pj or p2- Therefore the normaliser associated with p can be
defined from A/j and Ar2.

v. Let p be recursively defined from pi and p2,

p(vu. ..,vn_uvn) =

if Vn - [ ]
_ J then pi(vu. .

else ifvn = [e\v'n]
then p2\P/a10i,. ..,vn_uvn)

where a is an atomic method and (5 = p(vi,..., vn_i,v'n). Since ap has only
the input formula arid 7Z as free variables, once they are both instantiated, the

corresponding definition of ap admits apx and <jp2 as basic components. Hence

ap can be defined from Aand Af2. l
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Variable-free instances of general-purpose plans correspond to intensionallv distinct

normalisers, i.e. any two distinct instances of a general-purpose plan are linked to

distinct sequences of atomic operations. There are cases, however, where all such

instances are extensionally identical, as for instance in the case of

remove(Sym]) then . .. then remove(Symn)

If Si,...,Sn are symbols for which there is a complete set of remove rules w.r.t. a

class S in which S\,..., Sn are absent, any instance of the plan above that involves a

permutation of these symbols amounts to the same normaliser, when defined strictly

in extensional terms (i.e. domain and image).

Given a particular rewrite set 1Z and a formula cp, the computation of the rewritten

formula <f' by the complete tactic related to a special-purpose plan requires the follow¬

ing steps: the evaluation of parameters, in case they are given in terms of (f> and 1Z,

the evaluation of conditions, which then leads to non-conditional ground tactics, and
the computation of primitive tactics.

Example 5.1.2 The plan built in example f.2.6,

try remove(bicond)
then try remove(cond)

then try remove(neg)
then try stratify(neg,[conj,disj] ) then try remove(neg)

then try stratify(disj, [conj]) then try remove(neg)
then try reorder(conj)

then try reorder(disj)

is an instance of the general-purpose plan

it [cpl_rem_sym(SymLstl)
multiple_remove(SymLstl)]

then if [prt_rem_sym(SymLst2)
multiple_remove(SymLst2)]

then if [(prt_rem_sym(SymLst3),
non_rem_sym(SymLst4),
append(SymLst3,SymLst4,SymLst5))
multiple_stratify(SymLst5)
then multiple_reorder(SymLst4)]

where multiple_remove(SymLst) is defined in example 5.1.1, multiple_stratify(SymLst)
is defined as
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if [SymLst == []
idmethod

if [(member(Sym,SymLst),
delete(Sym,SymLst.SubSymLst),
str_rul(Sym,SubSymLst))
try stratify(Sym,SubSymLst)
then if [prt_rem_sym(OthSymLst)

multiple_remove(DthSymLst)]
then multiple_stratify(SubSymLst)]]

and multiple_reorder(SymLst) as

if [SymLst == []
idmethod

if [SymLst = [SymlLst]
try reorder(Sym)
then multiple_reorder(Lst)]]

The essential parameters of the top general plan are SymLst 1, ... , SymLst5, plus

the rewrite set, 1Z, which is not explicitly indicated. The predicates that make up the

conditions of plans and subplans are

cpl_remjsym(SymLst) iff SymLst are completely removable

prt_rem_sym(SymLst)
non_rem_sym(SymLst)
str_rul( Sym,SymLst)

(i.e. there are complete sets of remove
rules for every symbol in SymLst )

iff SymLst are partially removable
iff SymLst are not removable
iff there is a stratify rule for Sym w.r.t.

every symbol in the list SymLst

The special-purpose plan of example 4.2.6 is obtained by parameter instantiation and.

condition evaluation. The rule set of table 4-1 is first supplied as argument to the plan,

then the substitution

a = j^—' /SymLstl, H/SymLst2, [~^/SymLst3, SymLstA, t-1' V]/SymLst51
is applied to it, where [=, D] is the list of completely removable symbols, [->], of partially
removable symbols, and [A, V], of non-removable symbols2. The first call of the recursive

subplan multiple_remove is then equivalent to

2 The plan lacks control elements requiring the removal of biconditional before conditionals, since
the removal of the former reintroduce the latter. More elaborate conditions that take this case into
account are examined in chapter 9.
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try remove(bicond)
then try remove(cond)

whereas the second call of the same plan can be reduced to

try remove(neg)

The stratification stage is evaluated to

try stratify(neg,[conj,disj])
then try remove(neg)

then stratify(disj,[conj])
then try remove(neg)

and the reordering stage to

try order(conj)
then try order(disj)

After the composition of these fragments, the expected special-purpose plan is obtained.

□

The original plan captures at least part of the reasoning that underlay the construction

of the resulting special-purpose plan.

i. Every symbol that is absent from the final normalised class and for which there

is a complete set of remove rules is completely eliminated from the conjecture in

the first place.

ii. Rules for partially removable symbols are applied after every successful applica¬

tion of a remove or stratify rule, since any change of context may turn a previously

inapplicable rule into an applicable one.

iii. Stratification is performed pending on the availability of rules for a given symbol
w.r.t. all the remaining symbols that occur in an expression. The auxiliary plan,

multiple^stratify, recursively stratify one symbol over all the others that have not

been already moved to lower strata.
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iv. Reorder rules are left to the end of the process.

The example illustrates the relevance of general-purpose plans for the definition of

individual normalisers. Their expressiveness may be further enriched through the re¬

cognition of additional patterns present in special-purpose plans.

5.2 Special Purpose Plans

A special-purpose plan defines a normaliser for e.g. a pair of syntactically defined
classes. Decision procedures fit into this category, since they have the set of sentences
of the underlying language as domain and a pair of propositional constants as image.

Procedures based on quantifier elimination in particular are a valuable source of general

patterns, some of which absent from the current set of primitive tactics.

5.2.1 Abelian Groups

Hodes' algorithm, a decision procedure for DAG, operates by eliminating quantifiers
from the following class of formulae

prfm = fm\(3var)prfm\(Vvar)prfm
fm = atom\-*fm\fm V fm\fm A fm\fm D fm\fm = fm

atom = tm = tm\tm < tm\tm > tm\tm < tm\tm > tm
tm = var\rat\ — tm\tm + tm\tm — tm\rat X var
var = x\y\z\xi\yi\zi\■ ■ ■

rat = Q\nat*\rat/nat*\ — rat
nat* = 112131 ...

where prfm stands for prefixed formula3. It explores theorem i, according to which a

theory T admits quantifier elimination in C if and only if it admits quantifier elimina¬
tion for the set of T-formulae of the form

(3U)(7! A • • • A 7m) (*)

where each 7, is a literal.

3 The algorithm actually deals with the full class of formulae of Cdag• The above subclass has
been chosen to simplify its representation through proof planning. For the original procedure, see

[Hodes 71],
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This and similar procedures are decomposable into three main segments, one for the
reduction of subformulae into expressions of the form (*), another for the elimination
of the existential quantifier from (*), and a final one to recognise valid and invalid

(in T) quantifier-free sentences. The first two stages have to be successively applied

for the complete removal of quantifiers, followed then by the decision procedure for

quantifier-free sentences. Assuming that plan^ plan2 and plan3 are the special-purpose

plans that respectively model each of these stages, the final plan corresponds to

repeat (plant then repeat plan2)
then plan3

Plarii includes the following sequence of transformations.

(i) the complete removal of universal quantifiers, biconditionals and conditionals, in

this order,

(ii) the stratification of negations with respect to the remaining connectives (conjunc¬
tions and disjunctions),

(iii) repeated applications of the remove rule for negations,

(iv) the stratification of conjunctions beneath disjunctions, and

(v) the stratification of existential quantifiers under disjunctions.

It is represented as

try remove(univer) then try remove(neg)
then try remove(bicond)

then try remove(cond) then try remove(neg)
then try stratify(neg,[disj,conj]) then try remove(neg)

then try stratify(conj,[disj])
then try stratify(exist,[disj])

which is similar to the plan devised for putting quantifier-free formulae into conjunctive

normal form.

The distinctive components of a normaliser for a decidable theory that admits elimin¬

ation of quantifiers are plan2 and plan3. Both involve rules that deal with the proper

symbols of the subjacent language. Plan2 has to put literals into canonical form to

simplify the elimination of the innermost existential quantifier. Simplification is ac¬

complished through the removal of >, > < and negations, by means of the additional
remove rules
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Vi > V2 => V2 < V\

Vy > V2 => V2 < Vy

Vy <V2 =>■ (i;x < V2) V (t>! = v2)
-,(vy = v2) =>• (rq < v2) V (u2 < t>i)
—'(^I < v2) => (Vi = v2) V (v2 < Vy)

Since the removal of < and negation has as side effect the reintroduction of disjunctions

inside a disjunct, the matrix has to be put back into disjunctive normal form. For

efficiency reasons, a new initial plan, plan\. has been devised to include the removal
of these additional symbols from the original class.

try remove(univer) then try remove(neg)
then try remove(bicond)

then try remove(cond) then try remove(neg)
then try remove(geq)

then try remove(great)
then try remove(leq)

then try stratify(neg,[disj,conj]) then try remove(neg)
then try stratify(conj,[disj])

then try stratify(exist,[disj] )

The removal of negations is performed in three steps: after the removal of universal

quantifiers, the removal of conditionals (both of which introduce new occurrences of

negations), and the stratification of negations over conjunctions and disjunctions. The
stratification step, however, does not render the set of remove rules for negation com¬

plete for the resulting class: occurrences of negations in the scope of literals can be all

ehmina.ted, since atoms axe dominated by either equality or <, but there may still be

other occurrences in the prefix, introduced by the elimination of universal quantifiers.

In any case, after the third call of remove(neg), no occurrence of this symbol is left
in the matrix. The transformed class can be built in two stages. A somewhat larger
class, defined by the rules,

tfm0 := tfmi\-itfmi\(3var)tfm0\-i(3var)tfm0
tfmx := f/m2|f/m1 V tfmx
tfm2 := tfm3\(3var )tfm2
tfm3 := atom'\tfm3 A tfm3
atom' tm = tm\tm < tm

where the set of terms is inherited unchanged from the original class, is initially taken

into account. It includes inadequate formulae, as for instance those where
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(i) negations dominate disjunctions,

-■(a: = y V z < 2x + 1)

(ii) negations dominate conjunctions,

~i(z < 2y A x < —z + 3)

(iii) negations dominate atoms,

-i (a: = x)

(iv) existential quantifiers dominate disjunctions,

(3z)((3y)(x = y) V (3z)(x < z))

To exclude them, additional strata are necessary. The rule

tfm[ := [3var)tfm2\tfm\ V tfm\

eliminates the undesirable cases involving negations, since all formulae it generates

have the existential quantifier as dominant symbol. Concerning the case of existential

quantifiers, the rules

tfm'0 := tfrriQ\(3var)tfm'0\->(3var)tfm'0
tfm0' := tfm2\-<tfm\

generate a subclass that does not contain any formula that presents a disjunction in the
immediate scope of a quantifier. The desired transformed class can then be represented

as

fm! = tfrrii l-if/mj \tfm'0
tfm'0 = tfm,Q\(3var)tfm'0\-'(3var
tfm'o = f/m2|-'t/m'1
tfm i = tfm2\tfm1 V tfmx
tfm\ — (3var)tfm2\tfm\ V tfm[
tfm2 = tfm3\(3var)tfm2
tfm3 = atom'\tfm3 A tfm3
atom' = tm = tm\tm < t,m.
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The next stage consists of the elimination of the innermost quantifier from prefixed

disjuncts, i.e. formulae of the form

(3vi). . .(3un)(71 A • • • A 7m) (*)

where 7,■ is an atom. All the syntactic operations examined so far were related to

constant symbols of the underlying language, including logical, predicate, function and
individual constant symbols. In the new stage, however, the operations involve mainly
individual variables. Even though the elimination and reorganisation of occurrences of
variables are similar to the operations involving constants, the current set of tactics and
methods is inadequate for such purposes, for two main reasons. First, unlike constant

symbols, individual variables do not admit specific rewrite rules to perform syntactic

operations, since free variables in a rule can be instantiated to any term. For instance,

i. No remove rule can be restricted to perform the removal of a particular individual

variable: whereas V\ — v2 => u1+(—n2) is a remove rule for binary — only, vxO => 0

removes occurrences of x and any term that substitutes for v, e.g. x,y,z,....

Hence, assuming that x (and only x) has to be removed from

xxO = j/+(zxO)

this task cannot be accomplished by the tactic remove, since the exhaustive

application of v x 0 =>■ 0 eliminates occurrences of both x and 2.

ii. nv + mv =7 (n + m)v, where n,m G N, is a reduce rule not only for v, but also
for any term that substitutes for v. Given the formula

(2x + 5x) + (3y + 5y) - z

if the simplification to be performed is the reduction of occurrences of x, it
would not be achieved by the exhaustive application of the above rule, which

would generate (2 + 5)x + (3 + 5)y = 2.

The second inadequacy is the inability of the current tactics to restrict the application
of rewrite rules to chosen subexpressions of a conjecture, such as the matrix in the
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Class Symbols
Constants Variables

Elimination remove

reduce
collect

Reorganisation stratify
reorder

attract

isolate

Table 5.1: Methods for Normalisation

scope of an existential quantifier. Transformations involving variables, however, must
be frequently limited in this way.

To overcome the first limitation, rule variables in the second example above have to be

first properly instantiated, and the newly introduced term, x, has to be dealt with as a

new individual constant, to prevent further instantiations. As a result, the exhaustive

application of nx + mx =>■ (n + m)x to the conjecture results in

(2 + 5)x + (3y + 5y) = z

For variables, therefore, checking a rule for applicability does not guarantee that

only the required transformation will be performed. Preventing unnecessary or un¬

desirable applications of a rule is an important feature of controlled rewriting. The
above mechanism of controlled variable instantiation is absent from tactics such as

rem.ove, reduce, stratify and reorder. Finally, for the second limitation, it suffices to add

an argument to the tactic, to highlight the target subexpression.

Methods for equation and inequality solving incorporated in the PRESS system satisfy
both additional requirements. Attract applies rules that reduce the distance between

occurrences of a variable inside the symbolic tree that represents the conjecture. Collect
tries to reduce the number of occurrences of a variable. Isolate reorders terms inside an

equation (or inequality), placing the assigned variable as sole symbol in one of its sides.
As indicated in table 5.1, both attract and isolate belong to the class of reorganisation

methods, together with stratify and reorder. Collect, remove and reduce are elimination
methods4.

4 PRESS is described in [Bundv &: Welham 81].
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The procedure for the removal of (3vn) from (*) has two components. Equations and

inequalities are first reduced to canonical form by means of the removal of subtrac¬

tion, the stratification of unary minus over multiplication and sum, the partial removal

of occurrences of unary minus, the stratification of multiplication over sum, and the

reordering of occurrences of summands. The second component is restricted to opera¬

tions over variables, starting with the attraction of occurrences of vn inside each atom,

through the application of rules5 such as

ti[v] + (^[^] + <3[®]) => (<1 [u] + t3\M)
*iH + (t2[v) + t3[f]) =i> M)
(h[v] + t2[ffi + f3[u] =>• (ii[u] +t3jM)

+ t2[v]) + f3[u] => + ^2M)
collection of occurrences of vn, rules

k x v + v => (k -f 1) X v
v -f k X v (Hl)xt

k x v + (~v) =f- (* + (-1)) X V

(—v) + k X v =t> (k + (-1)) x v

V + V 2 X v

v + (-v) => 0 x v

(-v) + V 0 x v

1+1 =f- (-2) x v
k 1 X v + k2 X v (k\ -f k2) X V

are required. The isolation of vn inside an atom, once the number of occurrences of vn

has been reduced to one in every equation and inequality, needs rules such as

ti + t[v] — t2 =>■ t[v] = (-ti) + t2
(-V ) = t => v = (-t)

0 x t[v] — u =>• 0 = u

t[v] + ty < t2 => t[v] < (-ti) + t2
h + Av\ < t2 t[v] < (—tx ) + t2

(-V)<t => (-t) < V
X0 < u 0 < u

as well as conditional rules

k\ k2 —* k\ X v -j-1\ — k2 X v T t2 v — (kx — ^2) ^ X b (k\ ^2) X tx
kx — k2 — k\ x v T tx — k2 x v -j-12 tx — t2

k 0 — k X f[u] = u =f- f[u] = (1 /k) X u
k > 0 — k X t.[v] < u => t[v] < (1 /k) X u
k < 0 — k X t[v] < u => (1 /k) X u < t[n]

5 In its current implementation, the preconditions of attract include a test which ensures that a variable
v occurs in the terms identified in the rules as t[r>], and that, it does not occur in the others. Attract
rules therefore represent conditional rules whose conditions remain implicit in the method.
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The next step involves the repeated application of a two-stage process, consisting of
the exhaustive attraction of atoms that contain vn,

(<?hM A ip) A 4>2[v] => (<t>i[v] A fi2[v]) A tp
(if) A <t>\[v\) A <j>2[v] => (^H A 4>\[v]) A
<t>i[v\ A (ip A <t>2[v]) => ip A (<f>i[v] A <j>2[v])
(j>i[v] A {<j>2[v\ A i/>) => V A A </>i[uj)

and the subsequent collection of their occurrences, by means of

= ty A v = t2 v = ty A ty = <2
= <1 A v < t2 => v = ty A ty < t2
— ti A <2 < V =>- V = ty A t2 < ty

v < t2 A v = ty =}> v = ty A ty < t2
t2 < V A V = ty => V = ty A t2 < ty
v < ty A v < t2 => u < min(ty,t2)
ty < v A t2 < v => max(ty ,t2) < u

At this stage, the partial stratification of existential quantifiers over conjunctions re¬

quires the application of conditional rules,

(3v)(<f>[v] A ip[fi]) => ip A (3v)<f>[v]
(3n)(^[^] A 4>[v\) ip A (3v)(f>[v]

Finally, existential quantifiers are removed by a set of six rules,

LU II 2- => T

(3u)(n < T

(3v)(t[jf] < v) => T

3v)(ty[fi\ < v A v < t2[fi\) => (ti < I2)
3v)(v < ty[fi] A t2[ff\ < V) {h < ty)

(3v)tpy\ =>

Plan2 is indicated below.

try remove(subtr)
then try stratify(unaminus,[times,plus]) then try remove(unaminus)

then try stratify(times,[plus])
then reorder(sum)

then try attract(Var,Var:pnat#(_#_))
then try collect(Var,Var:pnat#(_#_))

then try isolate(Var,Var:pnat#(_#_))
then try repeat(attract(Var,Var:pnat#(_#_))

then collect(Var,Var:pnat#(_#_)))
then try stratify(exist, [conj])

then remove(exist)
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After repeated applications of plan2 to remove all innermost quantifiers, the first plan
is recalled to generate new prefixed disjuncts, until the prefix of the formula is empty.

Since there are collect rules which introduce two new function symbols, max and min,

plan\ has to be modified to include steps for their complete removal as well. The final
version for the global plan is

repeat (plan''l then repeat plan2)
then plan3

The variable-free formulae of the final transformed quantifier-free class are generated

by

fm" = disj'\fm" V fm"
disj' = atom"\disj' A disj'

atom" = tm' ~ tm'\tm' < tm'
tm' = cst\tm' + tm'\cst X tm'
est = rat | — rat
rat' = 0\nat*\rat/nat*
nat* = 112131 ...

The validity of these sentences in DAG is established by a decision procedure for
the set of closed atoms (atom") and their boolean combinations, which could be also

represented as a special-purpose plan3. The complete plan has been implemented in

Clam, and a few formulae have been supplied to it. Time results are reported in the

next example.

Example 5.2.1

i. The formula

(3x)(x < 0 A 0 < x)

can be immediately simplified to the atom 0 < 0 by the application of the subplans

plan"! and plan2.

ii. The same subplans can convert the formula

(3a;)(3|/)(3t)(((((a; <zAx<y)Ay<z)/\x = y + z)Ay = 0)AQ<x)

to max(0. 0)<0A0<0A0 = 0A0 = 0 in 92.1 seconds.
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Hi. Given the lemma

(k)(l)(mn)(mx)((l < mn A 0 < k A mn < mx) D / < mx + k)

ivhich has been derived from a problem described by Boyer and Moore6, the global

plan, ivhich includes plan3; required 742.1 seconds to reduce it to T. g

The inefficiency of the above special-purpose plan can be illustrated by the fact that, for
the third conjecture of example 5.2.1. Hodes' algorithm requires less than one second to

identify it as a DAG-theorem'. Efficiency, however, as argued in later chapters, is not
the primary concern of the proof planning approach to normalisation. Some additional

elements may be nevertheless added to the final plan to improve its performance.

i. A numerical evaluator can simplify or evaluate numerical expressions, removing

therefore all the occurrences of -f, X and — i from variable-free terms.

ii. Plans could be called after the elimination of each quantifier, to remove closed

atomic formulae. In the absence of this step, closed atoms are propagated to

the whole conjecture when the stratification of conjunctions over disjunctions

takes place, thus increasing the size of rewritten expressions and the number of
occurrences of existential quantifiers. For instance, given the conjecture,

(3ar)(3r/)-i(3z)((2a; <j/ + 3Aj/ = 2-i)Vz<0)

the elimination of 3z leads to

(3x){3y)^{(2x < 2/ + 3Ay = 2 — ®)VT)

The removal of T would reduce this formula to X, otherwise it would be expanded

to

(3x)(3y)(y + 3 < 2x A i) V (3x)(3y)(y + 3 = 2x A ±)
V

(3a;)(3t/)(r/ <2-iAi)V (3x)(3y)(2 - x < y A X)

6 See [Boyer fc Moore 88].
' This test has been conducted witli the implementation of Hodes' algorithm that is embedded in the
linear procedure of the Boyer and Moore prover.
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5.2.2 Closed Fields

The theory of algebraically closed fields (ACF), formulated in CACf = {0, 1, — lf + , x},
also admits quantifier elimination. Besides the usual axioms for commutative fields,

an axiom of the form

(3x)(xk + xk_ixk~1 + • • • + xxx + x0 = 0)

has to be added for each k 6 N, k > 1. Although ACF is not negation complete,

completeness can be achieved with the inclusion of either an axiom of the form p — 0,

or all the axioms of the form p / 0. where p is a prime number8. Given a sentence

Facfi after it is submitted to plan1? described in section 5.2.1, or any suitable

variation, the elimination of existential quantifiers from a formula of form

(3t>!)... (3U„)(7! A • • • A 7m) (*)

where 7,• is an atom, requires a rule for reordering occurrences of terms inside literals,

t1 = t2 => <1 - t2 = 0, if t2 7^ 0

The attraction and collection of negated atoms is achieved by the application of

A 6) A =>•
fahW A (Vhtt-^l A 6) =>

t\ 0 A t2 7^ 0 =7

where ti 7^ t2 is an abbreviation for -i(ti
with m conjuncts is reduced to either

Oilb^i A V2M) A 6
6 A Oilb^I] A etc
t\t2 7^ 0

= t2). After this step, a matrix originally

fi=0Af2 = 0A--Afm=0

or

tx = 0 A U = 0 A • • • A fr_! = 0 A tr ± 0,

with 1 < r < m. The attraction, collection and reordering of occurrences of vn inside

each literal converts its left-hand side to the normalised polynomial
s The axioms for commutative fields can be found in [Kreisel k Krivine 67b], p. 57.
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t>Vn ' ' ' "t" t\vn + ^0)

such that vn does not occur in t,; stratify and reorder rules might be also necessary at

this stage. A recurrence rule,

(3v)(f5l v" + t' = 0 A tS3v'2 + t" = 0 A </>) => [T2 = 0 A (3v)(tfl v'1 + t' = 0 A t" = 0 A <t>)\
V

[fS2 ^ 0 A (3v){tS2t' — tSlt"vSl~*2 — OA
A ts.jV''2 +1" = 0 A f)\

for s} > s2, then reduces the rani-of vn in each system of equations, where

(a) the degree of a variable vn in a polynomial p is the highest power of vn in p, and

(b) the rank for a variable vn in a system of equations (and inequalities) is the sum of
the degrees of vn in each individual equation and inequality.

The exhaustive application of this rule leaves at most one equation in vn in the scope

of (3un). The matrix is then reducible to an expression of one of the forms

t[vn\ = o a ipyn]

t[vn] /oa tpyn]

ti[vn] = o A t2[vn] /OA if[fn\

The partial stratification of existential quantifiers over conjunctions,

(3v)(4>[v\ A tf[f]) =>• (3v)<f[v\ A if
(3v){if[jf\ A 4>[v]) => if A (3v)cf[v\

is followed by the removal of sum by the application of two partial non-dominant rules,

(3v)(tsv' + t. = 0) => ts / 0 V (t, = 0 A (3v)(t = 0))
(3v)(tsvs + t / 0) ts / 0 V (ts — 0 A (3u)(t / 0))

and the removal of existential quantifiers by the application of

(3u)(t1 [u] = 0 A t2[v] / 0) => p

(3v)(tsvs / 0) => t, / 0
(3v)(tsv* = 0) => T

(3v)if[f\ => if

where p is a quantifier-free formula in which v does not occur".
9 The construction of p is described in [Kreisel fe Krivine 67b], p. 58-9.
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The rule for the reduction of the rank of a system of equations and/or inequalities does
not seem to fit any of the current classes of rules, since it does not remove symbols,
terms or other proper subexpressions, and it is not clear whether any particular strat¬

ification or reordering step (for symbols, terms or subexpressions) takes place either.

To allow its use under the proof planning approach, one possible option is the intro¬

duction of a new method for the reduction of the complexity of an expression, measured

according to a given parameter, as for instance its rank. The arguments of the new

method would have to specify the chosen measure for each case. The new method
would then be required in the implementation of plan2 for ACF.

5.3 General Purpose Plans

The special-purpose plans that represent decision procedures for DAG and ACF con¬

firmed the relevance of remove, stratify and reorder, as well as the PRESS methods, in

normalisation. The study of the inner structure of both plans may supply additional

elements for the definition of more abstract plans, from which new normalisers are

generated by parameter instantiation. Particularly important for theorem proving is

the representation of generic decision procedures and reduction functions.

5.3.1 Decision Procedures

Although quantifier elimination could, in principle, be recognised as the deep struc¬

ture of Hodes' algorithm, this procedure is actually an instance of a mechanism that

encompasses an even larger rewrite-based family of normalisers. Since any decision

procedure for a (negation-complete) theory reduces a sentence of the subjacent lan¬

guage into a prepositional constant, the axis of rewriting is the removal of logical,

predicate and function symbols. All the remaining operations, such as the straiification
and reordering of occurrences of symbols, have a subsidiary role with respect to the

application of partial remove rules. Under this viewpoint, the decision procedure for
DAG is a mechanism that gradually removes all the logical (->, V, A, D, =, V, 3), pre¬

dicate ( = , <, <, >, >) and function symbols (-1: +, —2, x) from any sentence of CDAG.
The removal of individual variables and constants happens as a side effect, since they

occur only in the scope of function or predicate symbols.
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A complete set of remove rules for each of these symbols would suffice for the repres¬

entation of the decision procedure. Such rules are explicitly available, however, only

for =, D,V, >, >, < and binary —,

<P = ip => (-i^v^)a(-i^v^)
4> D ip ~«p V ip
(yv)4> =>■ ~>(3 v)-i(f)
tl > <2 ^ ^1 = ^2 V ^2 < f 1
tl > t? =t" ^2 < ^1
^1 T ^2 t\ — t% V t\ <C to
tl — t2 + (—12)

which, as indicated in the rhs expressions of the above rules, are eliminable in terms of

some of the remaining symbols (-i,3, A, V, <,=,+, X, — i, min and max). The applica¬
tion of complete sets of remove rules at the beginning of rewriting allows the following

stages to be entirely concentrated on partially removable symbols, if none of the partial
rules contains totally removable symbols: when this is not the case, total rules have to

be applied to partial rules before rewriting starts.

In the absence of complete sets of remove rules, the simplest rewriting strategy consists

of the application of partial rules, provided that, when no rule is applicable, there is

a mechanism to change the context in which the symbol to be removed occurs. A

strategy of context transformationminimises search when based on backivards reasoning

(i.e. from the set of propositional constants to the initial set of formulae). The partial
remove rules that have a propositional constant as left-hand side expression are those

for existential quantifiers,

(3v)(v = t[jf\) =► T
(3u)(u < t[f]) => T
(3v)(t.[p] < v) => T

{3v)ip => ip

for conjunctions,

6 A 1 => T

ib A T ip
i A <p => 1
T A ip =>• ip

for disjunctions,
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tp V 1 tp
(p V T => T

1 V tp =k i>
T V <b =k T

for negations,

-iT => _L

->J. =>■ T

and for predicate symbols,

(0 < 0) => 1
(0 = 0) => T

where ip is a propositional constant and <f> is a formula of Cdag■ As already mentioned,

the application of a partial rule for a symbol may have as side effect the removal of

others as well: for instance,

(3u)(u = t[jS\) => T

removes both existential quantifier and equality. This ambiguity is harmless, since in
the end all symbols have to be eliminated. Before partial rules are applied, symbols

usually have to be ordered to avoid the risk of their reintroduction in the course of

rewriting. The above rules introduce only propositional constants, hence any order is

acceptable.

For existential quantifiers, since the lhs expressions of the corresponding rules are

dominated by the quantifier, and the subexpressions it dominates contain either = or

< as main symbol, all the other logical symbols still possibly present in a conjecture

(-i. A, V) must be first removed from the scope of existential quantifiers10. If negation
is chosen in the first place, since there are no stratification rules relating occurrences of
10 Function symbols still present in the current subclass of formulae h, x, — i, min and max — are

allowed in the atoms dominated by the quantifier, since the lhs expression of all rules contains a
variable over terms. To determine which symbols may still occur in the scope of a partially removable
symbol, a normalisation plan has to take into account that
(a) if all partial rules contain variables over formulae, any symbol can occur in the expression to be

rewritten,
(b) if only variables over atomic formulae are present, only predicate and function symbols are

allowed in the expression, whereas
(c) variables over terms allow only the occurrence of function and individual constant symbols.
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existential quantifiers to occurrences of negations, it is necessary to examine the rules

for their partial removal. Rules

->(ti = t2) => ((ti < t2) V (t2 < ti))
->(ti < t2) => ((ti = t2) V (t2 < tj))

->(-«£) (f>

allow only three logical and predicate symbols in the immediate scope of a negation:

negation itself, = and <. The remaining logical and predicate symbols that could occur

in the scope of a quantifier, A and V, have to be removed from the scope of negations.
This operation calls for a, set of suitable total stratify rules, which are in fact available.

Their application results in a rewritten expression having negations applied just to

either atomic or negated formulae, for which partial remove rules are also available.

As a result, the removal of negations is accomplishable.

Two undesirable logical symbols, disjunctions and conjunctions, still occur in the scope

of existential quantifiers. For the first one, there are also suitable total stratify rules,

but their application does not suffice for the complete removal of disjunctions, since

occurrences of this symbol may take place in the scope of conjunctions. The stratifica¬

tion of conjunctions over disjunctions is then required; after that, the stratification of
existential quantifiers over disjunctions is completed11. For the second symbol, there

are only partial stratification rules,

(3u)((/)[u] A =>• if/\ (3v)f[v]
(3v)(if[j6\ f\ (f[v]) => ip/\ (3v)cf)[v\

The restriction for their application, however, is not related to logical, predicate or

function symbols, but to occurrences of variables in the context of atomic formulae,

i.e. equations and inequalities. This case requires an equational procedure based on

methods such as attract, collect and isolate.

The removal of all undesirable logical symbols from the scope of existential quantifi¬

ers has been achieved. Quantifier elimination requires a final test to determine, for

instance, that v does not occur in t in the application of the rule

11 It is clear at this stage that a mechanism for checking occurrences of a symbol S inside an expression
after the application of a partial remove rule for S is also necessary. In the event 5 still occurs in
the expression, and stratification rules are not applicable any more, there are two possible actions:
the removal of symbols that obstruct the application of a remove rule for 5, or the stratification of
occurrences of the remaining symbols over S.
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(3v)(v = f[^]) => T

Another equational plan is required to handle those cases with undesirable occurrences

of variables in equations and inequalities. Once equational transformations are com¬

pleted, remove rules for existential quantifiers are finally employed. A similar reasoning

applies to A,V,<,= and the remaining symbols for which remove rules with pro-

positional constants as rhs expressions are available. After their removal, since no

other logical or predicate symbol is left, the final expression must be a prepositional

constant.

Even though the above description is strictly linked to Modes' algorithm, it indicates

nonetheless the main elements for the construction of a general-purpose plan for the

representation of any rewrite-based decision procedure. New guidelines for the selection

of relevant rules have to be included in each stage. As already suggested, complete
sets of remove rules should precede partial remove rules. A mechanism of context

transformation could be based on the following principles.

i. Total rules have priority over partial rules, since the former do not involve addi¬

tional rewriting, unless they introduce additional deviant symbols, in which case

a partial rule may represent a less complex choice.

ii. The preference for total over partial rules has to be qualified in the presence of

stratify, since stratification tends to dramatically increase the size of the rewritten

expression. Partial remove may therefore generate a less complex process than a

total stratify rule.

iii. Whenever more than one type of total (partial) rule is applicable, remove should
have precedence over stratify, and stratify over reorder.

iv. When an order for the removal of a set of symbols fails to be accomplished,

alternative orderings may still achieve the desired goal, and must therefore be
tested.
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5.3.2 Extension of Decidable Classes

The implementation of a general-purpose plan that captures the structure of rewrite-

based decision procedures is no simple task. As informally described in the previous

section, not only the number of operations is very large, but also several additional
mechanisms for the selection of methods and rules are needed at each phase of the

process. The task can be nonetheless broken into simpler components that involve

intermediate classes of formulae. In the particular case of Hodes' algorithm, one of the
intermediate subclasses is implicitly defined by the set of terminal remove rules, i.e.

those that have a propositional constant as rhs expression.

/to — ->/to|/toA /to|/toV/to
fm' = atom\(3xi)atom\{3xi)(xi = tmi)\(3xi)(xi < tm,-)|(3a;i)(tmJ- < x{

atom. = T|T|rof = rat\rat < rat
tmi = varj\rat\ — tm\tm + tm\tm — tm\rat X uar, (for each i 6 N*)
vari = X\I . . .\xi_x\xi+i | ... (for each i £ N*)
var = Xi |a*211 • • •

rat = {)\nat*\rat/nat*
nat* = 112131 ...

The remaining rules available to the procedure have to transform each formula of Ldag

into an element of the above class. As a result, the first component of the mechanism

is an instance of the standard strategy of subclass reduction into a decidable domain12.
Remove loses its prominence over the other methods, and the new plan has to take

into account the structures of both initial and intermediate classes, to determine

i. the symbols of the initial class which are absent from the intermediate class, and

the necessary remove rules for them.

ii. the distribution of the remaining symbols amongst the strata in each class, and
the stratify rules required to make the symbol distribution pattern of the initial

class match that of the intermediate class.

iii. the relative position of symbols inside each stratum of the initial and intermediate

class, so that reorganisation rules could be employed until each one matches

against the other13.
12 See section 2.1.

1' Although only three basic methods have been taken into account, it seems that the main arguments
above can be extended to other methods as well.
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Since there may be more than one candidate intermediate subclass, there must also be

guidelines for the choice of the most suitable one. If the intermediate classes Ei,...,

are partially ordered according to their sets of logical, predicate and function symbols,

the closer a decidable class S,- is to the initial class, the simpler the rewriting process to

reach it. Measures other than the simple comparison of alphabets can be also defined,

as long as they effectively reflect the complexity of the rewriting process required to

reach a subclass. A weight assigned to each symbol would take into account

(a) the number of rewriting steps necessary to remove the symbol from an expression,

and

(b) the possible introduction of deviant symbols by the corresponding remove rules.

For instance, if a total remove rule for S does not introduce deviant symbols, the weight
of S should be minimal, whereas partially removable symbols should be associated with

higher weights. The decidable class with highest global weight is (at least in principle)
the easiest accessible from the initial set of formulae, since it requires the least number

of rewriting steps to be obtained.

A possible application of this normalisation strategy takes place in PA (Peano arith¬

metic), which admits two subclasses, respectively linked to PrA (Presburger arith¬

metic) and SMA (strictly multiplicative arithmetic), both relevant from the point of
view of formula reduction processes. Since PrA is decidable and negation complete,

PA is one of its conservative extensions. Hence, as established in theorem C.4.3, the

set of formulae of CprA, defined in BNF as

fm' := atom'\-ifm'\fm! V fm!\fm! A fm!\fm! D = fm'\(^var)fm'\(3var)fm.'
atom' := tm! — tm!
tm' := va.r\cst\s(tm')\tm' + tm'
est := 011
var := ®|j/|~| • • •

represents a decidable subclass of type II for PA. Similar remarks apply to SMA and

£sma, whose formulae are generated by the productions

fm" := atom"\-<fm"\fm" V A D = fm"\(yvar)fm"\(3var)fm"
atom" := tm" = tm"
tm" := var\cst\tm" x tm"
est := 011
var := ®|j/|^| • ■ ■

Given that the set of formulae of CPA corresponds to
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fm := atom\-ifm\fm V fm\fm A fm\fm D fmjfm = fm\(Vvar)fm\(3var)fm
atom := tm = tm

tm := var\cst\s(tm)\tm + tm\tm x tm
est := 011
var := a:|y|-z| ...

the comparison of the structure of all three classes shows that CPrA and jCsma are

both strictly definable in terms of CPA, once a group of absent symbols is identified,

FmlCprA = FmlCpA - {<f>\x occurs in 4>}
FmlCsMA = FmlcPA — {<^|s and/or + occur in <j)}

The reduction of formulae from the initial into any of these decidable classes can be

described in terms of the removal of occurrences of deviant symbols, {x} or {s,-f},
from elements of CPA. A simplified version of a general-purpose plan, decide, that

supervises this transformation, is described below,

if [(member(Cla),
decidable(Cla,Thr))
dec_pro(Cla,Thr)
if [min_dec_cla(DecCla,DevSymLst,Thr)

multiple_remove(DevSymLst)
then dec_pro(DecCla,Thr)]]

DecCla. is a decidable subclass for the

theory Thr
DecCla is the easiest accessible Thr-
decidable class for the current conjec¬
ture, and DevSymLst are the deviant
symbols of the language of Thr w.r.t.
DecCla

and dec-pro(DecCla. Thr) is a special-purpose plan that represents a decision procedure
for Thr w.r.t. DecCla. Decide checks whether a conjecture belongs to a decidable class,

and, in the affirmative case, supplies it to a suitable decision procedure. Otherwise

it identifies the most easily reachable decidable class, DecCla, and the list of symbols

DevSymLst that should be removed from the conjecture, to convert it into an element of
this class. For this purpose, remove is repeatedly called by the subplan multiple-remove

where

decidable(DecCla,Thr) iff

miri-dec-cla(DecCla;DevSymLst, Thr) iff
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which, when successful, delivers the transformed conjecture to a decision procedure for
DecCla.

The above simplified description, however, does not indicate, for a given conjecture,

how the easiest reachable decidable class is recognised, how deviant symbols are ordered

before their removal, or how remove rules are selected when there are several available.

5.4 Conclusion

The representation of two decision procedures based on quantifier elimination by means

of special-purpose plans stressed the relevance of primitive methods such as remove,

stratify and reorder for normalisation, and revealed the need for additional methods

to represent the equational components of the procedures. The analysis of one of

the plans provided the necessary elements for the construction of two generic general-

purpose plans from which families of normalisers can be derived.

The first general-purpose plan has been designed to capture patterns common to all
rewrite-based decision procedures, ft is built around the remove method, and provides

an instrument for the development of normalisers described as (Stric, {T, J.}). Since
its informal description suggests a highly complex structure, a simpler plan has been
obtained to represent individual stages of the process, identifiable by means of inter¬
mediate syntactically defined subclasses of formulae. The second plan, therefore, is

suitable for the development of normalisers described by means of pairs of classes,

(Si,S2), and is important for the study of the extension of decidable subclasses.

A simplified general-purpose proof plan built according to the second guideline can

model, for instance, reduction processes based 011 the removal of deviant symbols w.r.t.

a reduction class. Theories such as Peano arithmetic, a conservative extension of

two of its decidable subtheories, are potential domains for applications. Before more

elaborate plans can be built, however, other properties of the process of decidable

sublanguage extension must be investigated, to allow the definition of more efficient

strategies concerning the ordering of decidable classes, deviant symbols and remove

rules.
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Chapter 6

Extension of Decidable
Sublanguages

Normalisation tactics and methods are built from a combination of elementary syn¬

tactic operators. The classification of rewrite rules along guidelines set out by proof

planning represents the first fragment of a strategy for the control of rewriting pro¬

cesses in general. Additional control constructs may be provided for each particular
normalisation task, such as the extension of decidable sublanguages.

Section 6.1 presents theoretical results according to which the extension of decidable

sublanguages is reducible to the application of remove rules. Section 6.2 describes
control elements for noetherian sets of remove rules that do not affect the deductive

strength of the system. Heuristic measure functions for the complexity of rewriting are

described in section 6.3.

6.1 Decidable Sublanguages

When a decidable subclass for a theory T in £ coincides with the set of formulae of a

sublanguage £', £' is a decidable sublanguage for T. Their extensions can be generated

by the strict application of remove rules for deviant symbols of £ with respect to £',
i.e. non-logical symbols of £ that are absent from £'. A proof for this result first

requires establishing that the reduction of formulae to decidable sublanguages through

rewriting must include remove rules for deviant symbols1.
1 Decidable sublanguages are discussed in appendix C.4.3.
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Lemma 6.1.1 Let 1Z be a rewrite set. Given the expressions <5[[5]] and if there
is a rewriting sequence of the form

C -*Hl C R-2 **-n— 1 c i?n r

60 => => ... =>• Sn_1 =$ Sn

where Rj 6 1Z, S0 = S and Sn = e. then there is a pair (6j, <5;+i), 0 < j < n, such that S
occurs only in Sj.

PROOF. (By induction on the length of the rewriting sequence)

Base case. Trivial, for the sequence is reduced to

c Ri
o e

and, by hypothesis S contains S, whereas e does not.

Step case. Assume that, for any 7i-step rewriting sequence involving an initial expres¬

sion S that contains S and a final expression ? free from occurrences of that symbol,

there is a pair of contiguous expressions, (SilSi+i), such that S occurs only in <5,-. Let
S and e be expressions for which the rewritten sequence has n + 1 steps, i.e.

j «i r "2 iU c "»+1
o => Si =£•...=> 6n => e

Two possible cases may take place. If Sn contains 5, then (8n,e) is the sought pair.

Otherwise, according to the induction hypothesis, there must be a pair of rewritten

expressions (<?>,•, £i+1), 1 < i < n, that satisfies the mentioned condition, since the rewrit¬

ing sequence that links 6 to Sn has length n. I

Lemma 6.1.2 Let

(i) T be an undecidable theory in C,

(ii) C be a decidable sublanguage for T,

(iii) 1Z be a set of T-valid reivrite rules of the form

158



<*0i, • • .,vn) => 8'(vu .. .,vn)

(i.e. the free variables that occur in the rhs expression of each rule are exactly those

that also occur in its Ihs expression), and

(iv) £ be the TZ-extension of Fmlc.

If E is a proper extension, then 1Z contains a remove rule for a C-deviant symbol (w.r.t.

£').

PROOF. Let 4> be a, formula of £ — Fmlc■ As <p £ Fmlc<, there must be an occurrence

of a £-devia,nt symbol S in <f>. Also, since £ is the 7v-extension of Fmla, there is a

formula <f>n € Fmlc and a finite rewriting sequence such that

R\ t i?2 R-n—l I R-n /

00 => (Pi =? • • • => 4>n-1 =? <Pn

where 4> = <f>0. According to lemma 6.1.1, there must be contiguous formulae fa and

fa+i in this sequence such that fa contains S and fa+i does not2. Since fa+1 is generated
from fa by the application of Ri+1. 6 => 8', there is a substitution a such that fa and

fa+i have respectively the forms V,Icr<^l an(l Considering that S occurs in fa
but not in fa+i, there must be an occurrence of this symbol either in a or in 8.

If S occurs in a, there is a pair € a such that 5 occurs in t,-. Since by hypothesis

each variable that occurs in the Ihs expression of Ri+1 also occurs in its rhs expression,

then S also occurs in a8' and fa+\, thus contradicting the assumption that fa+x does
not contain 5. Hence S must occur in 8. Considering that it cannot occur in 8' (for
otherwise it would also occur in fa+1), Ri+1 is a remove rule for S. I

Even though extensions of decidable sublanguages require the existence of remove
rules for deviant symbols, the existence of such rules does not guarantee that the cor¬

responding extension is non-trivial. Proper extensions need that the rhs expression of
at least one remove rule is a well-formed expression of the original sublanguage.

2 General remove rules are described in chapter 11.
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Example 6.1.1 Let C = {51;..., 510} be a language, and let C = {58, Sg, 5i0} be one

of its sublanguages. Given the remove rules

S\(vuS9) => S2(<h,1>1)
S2(Sg,S7) => S4(Sg)

S3(v1,V2,V2) =>■ S2(v2,v2)

although they refer to symbols that are deviant w.r.t. C, their application to formulae

of C does not lead to a proper extension of Fmlc. considering that the rhs expressions

of all three rules contain deviant symbols as well. g

Lemma 6.1.2 is required in the proof that the reduction of a formula to a decidable

sublanguage can be limited to the application of remove rules for deviant symbols.

Lemma 6.1.3 LetT be an undecidable theory in L, C be a decidable sublanguage for
T and 1Z be a set of T-valid rewrite rules of the form 6{vi,..., vn) => S'(vi,..., v„).

If E is the LZ-extension of CJ, then, for any <f € (S — Fmlc), there are T-valid rules

R\,..., Rm, not necessarily in TZ. and a formula if £ Fmlc such that each Ri is a

remove rule for one or more deviant symbols of C w.r.t. £', and

1 Ra l R? R_m I
(J) => (1) J ^

PROOF. Let 0 be a formula of Fmlc — Fmlc whose reduction to a formula if of the

sublanguage C involves the rewrite sequence

/ Ra / Rf2 Rn- 1 , Rn I
<P => <Pl => • • • => <Pn-1 V

According to lemma 6.1.2, the sequence must contain Ri,,..., Rim, 1 < m < n, which are

remove rules for £'-deviant symbols. It can then be transformed through the iteration

of the following procedure: given the subsequence

/ Ai#1 , Ant-2 i(fi => (fi+1 => <pi+2

if either Ri+\ or Ri+2 (but not both) is a remove rule for a deviant symbol, then the
r'

subsequence is replaced with (fi =£' (fi+2, where R'i+1 is the most general rule derived
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from Ri+1 and ifh+2- Otherwise the subsequence is left unchanged. The exhaustive

application of the procedure leads to

Rf , R',o R>m-, , K
<t> => <t>i => ■ ■ ■ => <t>m-1 =?

where each R'- is a derived remove rules for one or more deviant symbols.

Lemma 6.1.3 has important implications for the proof planning approach to norm¬

alisation. As described in section 5.3.2, the reduction of a formula into a decidable

sublanguage involves two tasks, the removal of deviant symbols and, when necessary,

the elimination of fatal disagreements between formulae and remove rules. The second

task involves operations other than the plain removal of symbols, whose modeling

therefore requires more complex plans. The above lemma, however, guarantees that

sublanguages can be extended by the strict application of remove rules to a conjecture,

and indicates that disagreements may be dealt with strictly at the rule level. As a res¬

ult, a generic plan to control the extension of decidable sublanguages can be entirely

developed upon the method remove or any of its variations.

6.2 Basic Control

A rewrite set 1Z controlled by proof plans is limited in the first place to the exhaust¬

ive application of certain classes of rules, such as remove rules, according to a pre-

established order, similarly to the case of normal or deterministic Markov algorithms3.
Effectiveness and improved efficiency, however, usually demand stronger control fea¬

tures. In the context of decidable sublanguage extension, at least two of the new

control elements, based on properties of the rewritten formula and 1Z, do not jeopard¬

ise completeness with respect to exhaustive rewriting.

The first control guideline consists of checking, after each rewriting step, whether the

resulting expression belongs to a decidable sublanguage, in which case rewriting halts,

independently of the applicability of other rules. This restriction does not prevent any

reducible formula from being identified: if d> can be transformed into an element of the
3 See [Sommerhalder & Vail Westrlienen 88], p. 266.
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sublanguage by exhaustive rewriting, it can be transformed by restricted rewriting as

well.

The second guideline is valid only for confluent and noetherian sets of remove rules.

For these systems, there is no need to consider more than a single path of the rewriting

tree, since any of them leads to the same normalised expression. In the event of failure

for a path (i.e. when the normal form of a conjecture does not belong to a decidable

sublanguage), no other has to be examined. Additional restrictions can be imposed on

non-confluent systems, depending on the properties of the rewrite set.

6.2.1 Non-confluent Sets

When TZ is noetherian but non-confluent, priority can be given to the application of
total over partial remove rules, without loss of completeness w.r.t. exhaustive rewriting.

Provided that certain conditions are met, rewriting is decomposable into two independ¬
ent stages, the first of which has only total rules. One of the conditions involves the
notion of normalisable set of rules.

Definition 6.2.1 (Antecedent Relation for Rules)

Let TZ — {Ri,..., Rn}, where Rt has the form 6iti => <5i 2, he a set of remove rules

for a set of symbols S (i.e. for each Sj 6 S, there is at least one remove rule in TV).

i. TZ is normalised w.r.t. S iff, for every rule Ri E 7Z, does not contain any

symbol of S.

ii. TZ is normalisable w.r.t. S iff there is a set

vv = {(a;-. =» ^,2) <«■<»}
where TZ' is a set of remove rules for S that is normalised w.r.t. S.

Hi. If TZi and TZj are total remove rules respectively for 5) and Sj, Rj antecedes Rj,
or Ri c Rj, iff Sj occurs in the rhs expression of Ri.

iv. C is the reflexive and transitive closure of C.
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Example 6.2.1

i. Given the rules,

Ri. f{v l,V2) => k(vi,Vi,l{v2))
r2. g(vi,vi) => l(vi)
r3. g(vi,h{vi,v2)) m(vi,l(v2),v2)
r4. h(g(vi,v2),g(v2,Vi)) => l(k(vi,v2,v2))
r5. m(Vi,l(v2),v3) k(v3,Vi,v2)

Ri is a remove rule for f, R2, for g, R3, for g and h, R4, also for g and h, and

R5, for m and I. Rx is the only total rule of the group.

(a) 7Z = {Ru R2, R3, R4} is normalised w.r.t. {f,g, h), for none of these symbols
occurs in the rhs expression of any rule of 1Z.

(b) 1Z' = 7Zu{R5} is not normalised w.r.t. {/, g, h, m}, since m occurs in the rhs

expression of R3. However, since the application of 7Z' to the rhs expression

of R3 generates a normalised rule,

R's- g{.Vi,h(v1,v2)) => k{v2,Vi,v2)

1Z! is normalisable w.r.t. {f,g,h,m}.

(c) 7Z' is not normalisable w.r.t. {f, g ,h,m,l], considering that no rule of R!
can remove the occurrences of I from the rhs expressions of R2 and R4.

ii. The total remove rules

Ri- f(vi,v2) => h{vi,g(v2,v2))
R-2- 9{vuv2) => f(h(v2,a),Vi)

are such that Rx C R2 and R2 C R\. 7Z — {Ri,R2} is not normalised w.r.t.

S — {f,g}, since at least one of these symbols occurs in the rhs expressions of

Ri and R2. TZ is not normalisable w.r.t. S either, considering thai the reivriting

sequences for the rhs expressions of both Ri and R2,

h(vi,g(v2,v2)) 5- h(vu f(h(v2,a),v2)) ^ h(vi, h(h(v2, a), g(v2, v2))) 5- ...

f(h(v2, a), vi) =§> h(h(v2,a),g(vi,vi)) 5- h(h(v2,a), f(h(vx,a),v i)) S- ...

are such that no reivritten expression is free from. occurrences of both f and g.

□
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When totally removable deviant symbols are allowed in the rhs expression of a remove

rule, its application must be later followed by the total rules for the newly introduced

symbols. The normalisation of 1Z erases such symbols once and for all from the rule

level. Normalised sets of remove rules therefore prevent the superfluous introduction

of deviant symbols in the course of rewriting. If the subset of total remove rules of a

non-confluent set V, is normalisable, the subset is noetherian, as proved below.

Lemma 6.2.1 IflZ is a normalised set of total remove rides, then 1Z is noetherian.

PROOF. Let S be the set of symbols for which 1Z provides total remove rules, and,

given a formula <j>, let ms{(f>) be the list of natural numbers that identify the number of
occurrences of elements of S in each layer of this formula4. Termination for rewriting

is ensured once it is established that

(i) ms decreases (according to the lexicographic order for lists) after the application
of each rule of 7Z, and

(ii) the introduction of new layers in the rewritten formula has an upper bound5.

Concerning (i), since any total remove rule that is normalised w.r.t. S has the form

S{vu. ..,vn) =k <5{ui,. ..,vn}

where no symbol of 6 is removable by any element of 1Z, the application of a total
remove rule for S to cf> replaces an occurrence of S in a certain layer with another

symbol that does not belong to S. thus reducing by one the number of occurrences of S-

symbols in that layer6. Even though new occurrences of N-symbols may be introduced
4 The layers of an expression are defined in section 8.1.1.
5 The second requirement, derives from the fact that there is no minima] element, for the lexicographic
order of lists, e.g.

[1] > [0.1] > [0,0,1] > ...

As a result, the reduction of the number of occurrences of a symbol at higher layers does not
guarantee termination for the application of a generic rewrite rule. For instance,

R- f(v) => k(f(v))

reduces the number of occurrences of / at the top layer of the rewritten subexpression, but its
exhaustive application does not halt, since the lhs expression is a subexpression of the rhs expression.

6 This remark excludes total remove rules for identity and projection functions, which have the forms
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iii lower layers (since variables of [normalised] rules may be instantiated to expressions
that contain iS-symbols), the removal of a single higher occurrence of a tS-symbol

outweighs the introduction of any number of new occurrences below it, according to

the lexicographic order.

Concerning (ii), let

(a) n be total number of occurrences of <S-symbols in <j>,

(b) m be the maximum number of layers in a rhs expression of any rule of 1Z,

(c) L be the total number of layers of <f).

The removal of each occurrence of S causes the introduction of a maximum number of

(m — 2) new layers in the rewritten formula, as illustrated in figure 6.1. The maximum

expansion for <j> takes place when all the occurrences of <S-symbols in cf> are nested, with
each occurrence taking place at a. distinct layer, with or without other interleaving

symbols: in this case, n x (m — 2) new layers are introduced (i.e. (m — 2) layers for each
occurrence of a iS-symbol in the original formula)'.

Since the number of new layers is finite, and since ms decreases after each rule applic¬

ation, 7Z is noetherian. I

A termination measure is obtained from ms once the maximum number of symbols N

that can occur in any layer of the rewritten formula, cj>', is taken into account. Since
the maximum number of layers of cj>' is L + n x (m — 2), where L, n and m have been
defined in the above lemma, N depends on the greatest arity of any symbol that occurs

in {(f)} U 71. If r is such arity, then

jy _ rL+nx(m-2)-l

i(v) => v

fp,{v\,..., vn) => Vi

Termination for the application of these rules can be ensured based on the fact that, in both cases,
the rhs expression is a proper subexpression of the lhs expression.

7 See appendix E for an inductive proof of this result.
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s 1 S => S' 1

a a L w v m

Conjecture Total remove rule

S' 1

a a (m-l)+(L-l) = L + (m-2)

Rewritten conjecture

Figure 6.1: Expansion of rewritten formulae
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If n,: is the number of occurrences of totally removable symbols in the layer of depth i,
the measure defined as

/

mfifi) = J2n' x fVi+nx(m-2)+1-i
i=1

assigns a heavier weight to occurrences of 5-svmbols that take place at higher layers.

Clearly, mt assumes values only in N, and it decreases after the application of any

rule of 7v. However, since it is guaranteed that the expansion of the rewritten formula
has an upper bound, the original list measure ms can be adopted instead of its more

complex arithmetical version, as illustrated in the example below.

Example 6.2.2 The atomic formula ej>,

p{g{x, a), f(h(g(y, b), g(x,y),b)), h(c, x, z),a)

has five layers,

£\ p

4 g-, /, h, a
l3 x,a,h,c,x,z
U g,g,b
4 y,b,x,y

If a, g and h are deviant symbols for xvhich total remove rules are available, then

mfifi) = [0,3,2,2,0]. If the total remove rule

h(vuv2,v3) => k(vuvuf(v2),v3)

is applied to <f> for the removal of the occurrence of h that takes place at l3, the rewritten

formula <i>' is

P{g(x,a),f(k(g(y,b),g(y,b),f(g(x,y)),b)),h(c,x,z),a)

Given the new distribution of symbols amongst its layers,

4 P

4 9:f,h,a
l3 x,a,k,c,x,z
4 g-.gJ-.b
4 y,b,y,b,g
4 x,y
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it follows that mflfl) = [0,3,1,2,1,0]. The number of occurrences of totally removable
deviant symbols has been reduced by one inl3, and a new occurrence has been introduced

at l§. Since a reduction in the number of occurrences of totally removable deviant

symbols took place at a higher layer, the measure m has been reduced, i.e.

[0,3,1,2,1,0] < [0,3,2,2,0]

0

Local confluence for normalised sets of total remove rules is an immediate consequence

of the Ivnuth and Bendix theorem. Since they are also noetherian, their confluence

then follows8. Sets of partial remove rules, on the other hand, may be non-confluent.

Example 6.2.3 The set of partial remove rules for +, made up of

R\. v + 0 =>■ v

R2. Vi + v2 = Vi + v3 => v2 = v3

R3. Vi = Vi + v2 => 0 = v2

R4. Vl + v2 = Vi => v2 = 0

is not confluent, since x = x + 0 has two normal forms,

x+0

V1
x=x

0

As illustrated in example 6.2.1, not all sets of remove rules are normalisable. A sufficient

condition for normalisability requires the antecedent relation for total rules to be a

partial order.

Lemma 6.2.2 Given a setlZ = {Ru ..., Rn} of total remove rides for a set of symbols
S = {5i,. .., 5n}, 1Z is normalisable w.r.t. S provided that (1Z, C) is a partial order.

8 See [Knuth & Bendix 70] for a proof of this theorem. A restricted version of this proof, applied
to normalised sets of rules, can be found in appendix E. For an account on properties of rewrite
systems, see, for instance, [Bundy 83], p. 158-66.
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PROOF. (By induction on the number of remove rules)

Base case. Trivial, since TZ = {i?i} is normalised w.r.t. S = {5]}.

Step case. Assume that 7Z = {Rr,..., Rn} is normalisable w.r.t. S. As a result,
there is a set TZ' = {R\,..., R'n} that is normalised w.r.t. S. Let Rn+\ be a total
remove rule for a symbol 5n+1, such that (1Z U {f?n+i}, C) is a partial order. Two cases

have to be considered.

i. Rn+1 is minimal9. If 5n+i does not occur in any element of 7Z', let R'n+l be
derived from Rn+1 by the exhaustive application of 7Z' to its rhs expression.

According to lemma 6.2.1, the generation of R'n+1 is effective, and R'n+l is free
from occurrences of symbols from <S. Hence 7Z' U {R'n+i} is normalised w.r.t.
S U {5n+i}, and TZ U {72n+1} is normalisable w.r.t. S U {5n+i}.

ii. Rn+\ is not minimal. If 5n+1 occurs in rules of 7Z', let TZ" = {R'{ ,..., R'im}
contain all of such rules (and no other), hence R'{. C Rn+\, 1 < j < m (and also

R[ C Rn+h given that C is a subrelation of C). Since (TZ U (i?n+i},C) is a

partial order, the same applies to (TZ' U {72n+i}, C). Since R(. C Rn+i, 1 < j < m,

it follows that Rn+\ ^ hence Rn+\ (Z! R(. and 5,-5,-m do not occur in

Rn+1- Let R'n+j be derived from Rn+\ by the exhaustive application of TZ' — TZ" to
its rhs expression. Since TZ' is normalised w.r.t. <S, the same applies to TZ' — TZ".

Again, according to lemma 6.2.1, R'n+l is effectively generated, and is free from
any occurrence of symbols of iSU{5n+i}. Let R"i,...,R"m be generated from
R'{ ,..., R'im by the exhaustive application of R'n+1 to their rhs expressions. As
a result,

(7Z' — TZ") U {R"t,..., R"m, R'n+i}

is normalised w.r.t. 5U{5n+i}, and 7v.U{i2n+i} is normalisable w.r.t. lSu{5n+i}.

9 Given a partially ordered set (A,C), an element a £ A is minimal w.r.t. C iff there is no element
b £ A, b 7^ a, such that b C a.
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Based on lemma 6.2.1, it is possible to guarantee that the extension provided by a

normalised set of total remove rules is also a decidable sublanguage.

Lemma 6.2.3 Let T be an undecidable theory in C, and let C be a decidable sub¬

language for T. If IZ is a finite and normalised set of total remove rules for deviant

symbols of jC w.r.t. C, the domain of IZ is a decidable sublanguage for T.

PROOF. Let S\,..., Sn be T-symbols for which IZ provides total remove rules. The

domain of IZ is the set of all formulae of C that contain at least one occurrence of

S{, l <i<n. If C" is defined as the language whose set of non-logical symbols is

Symc, U {Si,..., Sn}, the domain of IZ can be defined as

S = FmlC" — Fmljri

Considering that

(i) any rewriting sequence under IZ is finite, since IZ is noetherian, and

(ii) IZ is finite (and therefore determining the existence of an applicable rule in IZ to

an expression is effective),

it follows that the computation of the normal form of any expression under IZ is ef¬
fective. Hence C" is a decidable sublanguage for T. I

This lemma can be extended to sets of rules containing complete sets of remove rules
as well. The possibility of decomposing rewriting into two independent stages follows
from the results obtained so far.

Lemma 6.2.4 Let IZ be a set of total remove rules for S and IZ' be a set of partial
remove rules for S', such that IZ and IZ' are normalised w.r.t. S. Given any expression
e and a rewriting sequence under IZ U IZ' of the form

TIWJZ' ,
e ==> e

there are (possibly empty) reivriting sequences under IZ and IZ' and an expression e"
such that
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e 5- e." and e" e'

PROOF. (By induction on the length of the rewriting sequence)

If e 7=P e', there is a finite rewriting sequence of the form

Rl R2 Rn- 1 ,
e=»€i=>-... en_x =>■ e

from which a sequence of the desired form can be derived, for any n £

Base case, e e (empty rewriting sequence). Trivial.

Step case. Assume that, for any rewriting sequence of length n, there is a sequence of

the desired form. Let then

Rl i?2 Rn Rn+1 / / \
e => €i =$ ... =? en =? e' (*)

be a sequence of length n + 1. If -ftn+i € according to the induction hypothesis,
R\ R"2 R Rn^-1

e =£ €i =$■ ...=$■ en can be reduced to a sequence e of the desired form, and e => e'
R R

is the new sequence for (*). On the other hand, if Rn+\ € TZ, let e =s> ... =£ e„ be

replaced by a rev

the subsequence

i?' r'
replaced by a rewriting sequence of the desired form, e =£ ... =£ e„, where pgN, Given

nr,+1 ,

en_i e„ =*► e

since i2n+i is applicable to en, it must be also applicable to en_i, considering that

(a) R'p is normalised w.r.t. S and does not introduce any occurrences of totally
removable symbols, and

(b) the applicability of Rn+\ to en means that 5„+i occurs in en.

From (a) and (b), it follows that there is an occurrence of Sn+1 in en which has not
been introduced by the application of R'r to ?n_i, hence Sn+1 must occur in ?n_i. If
en is the expression generated by the application of Rn+\ to ?n_i, there are yet again
two cases to be taken into account.
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i. If R'p has been previously matched against a subexpression of en-\ that does not
contain 5n+1 £ S, where Rn+\ is a total remove rule for 5n+i, then R'p can be
matched against an identical subexpression of?n.

ii. Otherwise let R'p have the form <5nil => bn2. As R'p is normalised w.r.t. S, <5n l is
matchable against a subexpression /3„_i of ?„_! that contains 5n+] iff there is a

substitution such that

{^/"H •••|5b+1U/»M •••,*"/«»} ^n,l = Pn- 1

for some i, l <i<n. Then it is also possible to match against /?„, where
R=£' fin, by means of the substitution

I*1/m, • • .,6"+^/v„ ..
such that 5n+iU => b'n,x 2 is an instance of Rn+\. I

Example 6.2.4 Let S = {s} and S' = {x}; and let 7Z and IZ' be unitary sets respect¬

ively composed of the following rewrite rules,

R\. s(u) => v + 1
R2 . v x 0 => 0

The conjecture

(s(x + y2)) xO < z

can be rewritten under IZUlZ' as follows.

/ / . o\ \ n 72.U7^ «(s(£ + y2)) x 0 < z => 0 < z

It can be also successively rewritten under IZ. then 1Z', in two alternative ways,

(s(x + y2)) x0<; =1- ((x + y2) + 1) x 0 < z 0 < z

and

(s(x + y2)) X 0 < z 5- (s(x + y2)) xO<z % 0 < z

and the same rewritten formula is obtained in all three cases. It is worth noting that,
in the third sequence, the rewriting sequence under IZ is empty. g
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The removal of deviant symbols can therefore be first limited to totally removable

symbols, which is then followed by the application of partial rules. For the first group

of symbols, assuming that the set of total rules 1Z is normalised, no additional control

guideline is in principle necessary, due to the confluence of the set. As shown in

figure 6.2, given an initial language £ and a decidable sublanguage £', 7Z defines
an intermediate sublanguage, £", to which any formula of £ can be reduced. The

restriction of the second rewriting stage to the application of partial rules contracts

the search space, thus improving efficiency.

6.2.2 Non-noetherian Sets

Termination is not an intrinsic property of sets of remove rules. Given a set of partial

rules respectively for the removal of /, g and i,

R\- f{xi a) => h(g(x, b),x)
R2. h(g(x. y). z) => i(a,h(x,y),z)
Rs. i(x.y.a) => f{a, a)

where a and b are individual constants, rewriting does not halt e.g. for f(a, a), since

f(a,a) ^ h(g(a,b),a) i(a, h(a,b),a) /(a, a)

Termination can be imposed upon non-noetherian sets by means of special control

devices, at the expense of completeness. There are at least three restrictions for the
selection of remove rules, each of which integrates a distinct strategy for cycle preven¬

tion: given a conjecture <6, a rule Si => S2 would be selected for application iff

(i) no deviant symbol occurs in S2, or

(ii) no deviant symbol absent from <2> occurs in S2, or

(iii) no deviant symbol previously removed from 4> occurs in S2.

Criteria (i) and (ii) are too strong, and would cause the exclusion of otherwise accept¬

able rules. Criterion (iii). in conjunction with a termination measure for the removal
of each individual deviant symbol, ensures that the global process halts. An irreflexive

relation for deviant symbols helps in the construction of an adequate ordering.
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£ Original language
(initial stage)

e Fmlc
£" Intermediate sublanguage

(second stage - application of total remove rules)
4>", ip" € Fmlc

£' Decidable sublanguage
(final stage - application of partial remove rules)
<t>' £ Fmlc, ^ FmlC'

E Extended decidable subclass

<t> € E, # E

Figure 6.2: Two-phased Removal of Deviant Symbols

174



Definition 6.2.2 (Irreflexive Relation for Symbols)

Let S be a set of symbols and 1Z be a set of remove rules for S.

i. Given Sy, S2 G S,

Sy -< S2

iff there is a remove rule for Sy in 1Z whose rhs expression contains an occurrence

of S2.

*

ii. -< is the transitive closure of

From the definition of remove rules, it follows that -< is irreflexive. If Ry and R2

are total remove rules respectively for S\ and S2 such that Ry C R2, then Sy -< S2.

A sufficient condition for the existence of a termination ordering for a set of deviant
*

symbols S is that (S,-<) is well-founded. Once a well-founded order is found, a total
order can be always exhibited.

Theorem 6.2.1 Let 7Z be a set of remove rules for a set of symbols S = {5j,..., Sn}
which are deviant w.r.t. a decidable sublanguage £. Let TZy, the subset of 7Z that

*

contains all the remove rules for Si, be noetherian, for each i, 1 <i <n. If -<) is
*

well-founded, then any extension of -< to a total order is a termination ordering for
the removal of deviant symbols of S.

PROOF. (By strong induction on the number of deviant symbols)

*

Assume that, for any set S with up to n deviant symbols, any extension of (S,-<)
to a total order ensures termination for the rewriting process. Let then Sn+i be a

deviant symbol for which there is a noetherian set of remove rules, 7Zn+y, such that

(S U {5n+i}, -<) is well-founded. Let also

<5i = {Sy £ S | Si -< 5n+i}
S2 — {Aj G S | 5n+i -< Sj}
^3 = € S | Sk -f 5n+i & Sn+y -f
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be a partition for S. Clearly, no remove rule for a symbol of S2 introduces any of the

symbols of S3, for otherwise there would be Sj £ S2 and Sk £ S3 such that S) -< Sk.
* *

From the definitions of S2 and it would then follow that 5n+i -< Sk, in contradiction
with the definition of iS3. Also, no remove rule for a symbol of S2 introduces any of the

symbols of Si, for otherwise there would be Sj £ S2 and S, £ Si such that Sj -< 5,.
* *

From the definitions of S2 and it would then follow that 5n+i -< 5,, in contradic-
* *

tion with the definition of and the asymmetry of -< (given that -< is a well-founded
relation and, therefore, an (irreflexive) partial order10).

As a result, no remove rule for 5n+J introduces any symbol of U S3, and no remove

rule for any symbol of S2 introduces a symbol of U S3 U {5n+i}. Hence, the removal
of Si U S3 may precede {Sn+1}, which in turn may precede S2. From the induction

hypothesis, given that #(Si U S3) < n and #(<S2) < n, there is a termination ordering
for the removal of symbols from both sets. Let S' and S" denote possible total ordering

respectively for U S3 and S2. Then

(S',Sn+i,S")

is a termination ordering for the removal of symbols of S U {5n+i}. I

To sum it up, given

(a) an undecidable theory T in C,

(b) a set of deviant symbols S U S' w.r.t. a decidable sublanguage C,

(c) a set of total remove rules 1Z for S, such that 1Z is normalised w.r.t. iS, and

(d) a set of partial remove rules 1Z' for S', such that 7Z' is normalised w.r.t. S,

rewriting control for the reduction of a formula (f> £ Fmlc into CJ starts with the set of

totally removable symbols. Since 1Z is normalised w.r.t. S, the exhaustive application
10 The ordered pair (A, <) is an irreflexive partial order iff

(i) (n)-i(n < v) (irreflexivity)
(ii) (ni)(n2)(n3)((ri < v2 A v2 < v3) D vi < v3) (transitivity)
From (i) and (ii), it follows that < is also asymmetric, i.e.

(wi)(t>2)(t>i < v2 D ->(l>2 < Vl))
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of its rules effectively reduces <j> to a formula ft £ Fmlc», where Sym.C" = Symc — S.

The order for the removal of symbols of S is immaterial, since 1Z is confluent. Once a

total ordering for the symbols of S' is built on top of a well-founded relation 0' is

further rewritten by the ordered application of rules from 1Z', provided that each subset

1Z\ for Si G S' is noetherian11. If all occurrences of each deviant symbol are removed,
or if the complete removal of any deviant symbol according to the pre-established order

fails, the process halts. There may be cases where more than one total ordering for S'
can be built from -<, in which case additional guidelines for the selection of an ordering
become relevant.

When the set 1Z of total remove rules is normalised (w.r.t. S), and none of its elements
introduces any of the partially removable deviant symbols of S', the order for the

removal of deviant symbols can be reversed. Partially removable symbols would then

come first, and totally removable symbols would be taken into account only if all

symbols of the first group were successfully eliminated from a conjecture. The desired
reduction would be always accomplishable once the first stage is completed, given that

total rules are always applicable, provided that the corresponding symbols occur in the

expression. Hence, in the event the removal of symbols of S' fails, no effort is wasted
in the elimination of symbols of S.

6.3 Additional Control Features

The control guidelines for noetherian rule sets examined in the previous sections cause

no deductive losses vis-a-vis exhaustive rewriting. Further constraints, based on heur¬
istic functions and measures, can be introduced, even though completeness may be

affected. There are at least three new aspects to be explored: the selection of a. decid-

able sublanguage, the choice of an ordering for partially removable symbols, and the
choice of remove rules for these symbols.

Concerning decidable sublanguages, the number of deviant symbols present in a conjec¬
ture and the type of the remove rules (total, partial dominant or partial non-dominant)
available for them have to be taken into account. The total number of steps required

11 Noetherian sets of partial rules are examined in chapter 9.
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to reduce a formula to a sublanguage can be estimated as the linear combination of

the complexity measures for the removal of each deviant symbol.

Orderings for partially removable deviant symbols of a particular decidable subclass

can then be identified, when more than one is permissible: properties of the partial

rules have a decisive role at this stage. Thereafter, partial remove rules for each
deviant symbol have to be organised, whenever there is more than one such rule. Their

types (dominant or non-dominant) and the new symbols introduced in the rewritten

conjecture are determinant factors. No additional loss of completeness occurs at any

of these two stages when all possible orderings are examined12.

Specific solutions regarding the above parameters can be based on a heuristic function

that assesses the complexity for the removal of a symbol, once a rule set is given.

6.3.1 Complexity Measure Functions

The complexity of a computation can be measured from the viewpoint of either time

or space properties. Time complexity determines the number of all atomic operations,

or the number of repetitions of a particular operation or group of operations, that take

place in a process. Space complexity assesses the sizes of the data structures involved

in such operations13.

Given a syntactic size function .s: Dom, —> N, defined in the domain Dom of a procedure

P. and a component operation q of P whose execution is to be counted, there are two

measures for time complexity. Worst case complexity (wcc) for a size z establishes the
maximum number of times q is executed when any object o £ Dom with size s(o) = z

is supplied to P,

wcc(z) = max({#q, P(o))), for all o £ Dom \ s(o) = z

The average case complexity (acc) for z requires a probability distribution function p

for Dorn (i.e. a function p: Dom — [0,1] such that ^ p(o) = 1). The measure for z
o£Dom

is the weighted sum of the complexity measures for every object o £ Dom of size z,

12 There may already be a loss of completeness, however, when there is more than one occurrence of
at least one of the deviant symbols in the conjecture. See example 6.3.4.

13 See [Sommerhalder & Van Westrhenen 88], p. 198-201.
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acc(z) = J2 P(°) x (#q-p(°))
s(o)=z

Complexity measures for the removal of deviant symbols are the primary element in the

construction of measures for decidable classes and remove rules. Their main purpose

is to determine the average (rather than the maximum) number of rewriting steps

expected to take place in each particular task, e.g. the removal of a disagreement, the
transformation of a conjecture into an element of a decidable subclass or the complete

normalisation of an expression. These functions can be entirely based upon syntactic

properties of the relevant objects (formulae, rules, or classes of formulae), and no

rewriting step has to be performed for their evaluation.

Concerning the removal of symbols, the type of the rule directly influences the size

of the transformation tree. Total rules require just one rewriting step to eliminate
an occurrence of a symbol, whereas partial rules may also involve the elimination

of disagreements, whenever the rule is not applicable and a context transformation

mechanism is interfaced to the system. An initial estimate for a dominant rule could

assume that one additional elimination step is required on the average (to cover one

disagreement), whereas two additional steps would suffice for a non-dominant rule (to

adjust both the expression in which the symbol occurs and the expression it dominates).
The function me,

then provides an estimate for the average-case time complexity for formulae where S
occurs only once, provided that R is a remove rule14. When more than one remove

rule for S is available, a new function, m„ takes into account their average effect,

14 The values for dominant, and non-dominant, remove rules should reflect the average number of steps
involved in the tentative application of if to a formula that contains a single occurrence of S. Both
estimated values could be replaced by a more accurate measure based 011 a suitable probability
distribution function, which could take experimental data into account.

n
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where R1,..., Rn are the remove rules for S.

Both me and m, are purely concerned with the removal of an occurrence of a symbol,
without any assessment of possible side effects. When a decidable sublanguage and,
as a result, a specific set of deviant symbols are determined, the removal of 5 must

also take into account the new occurrences of deviant symbols introduced through

rewriting, and the additional steps required for their later removal. In the case of

partial rules, another factor is the additional deviant symbols that may be removed as

part of a single rewriting step. The function md, defined as

assesses all these factors.

For formulae of size greater than one (i.e. those containing more than one occurrence

of S), a simplified average-case complexity function, indicative of the average number
of transformation steps (including those for raising disagreements) involved in the

complete removal of S, could be defined as n X md(S). The underlying assumption is
that the removal of n occurrences of S amounts to solving n problems where only one

occurrence of S takes place15.

6.3.2 Order Relations

One of the possible measures for the reduction of a formula (p into a decidable sub¬

language £' is defined in terms of the occurrences of deviant symbols in (p and the

complexity measure for the removal of these symbols,
1!i Ideally, the number of transformation steps predicted by a measure function should apply not only

to those cases where the removal of a symbol is possible, but also to those in which failure has to
be eventually acknowledged.

where

R\,..., Rn remove rules for S
nr(Ri) number of additional occurrences of deviant symbols removed by R,•

Si multiset of deviant symbols introduced by Rt
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mc((f>, C) = ylnixmd(si)
s,€s

where S denotes the set of deviant symbols of the original language w.r.t. C, and n,,

the number of occurrences of S\ in <j>, for each 5, G S. Classes are then put in an

increasing order, according to their respective measures.

Example 6.3.1 Let be the arithmetical conjecture,

(x)(y)(3z)(3iv)(x x (y + w) — x x z D z x y = z X w)

As it contains both + and x, it does not belong to either Cpr_\ = {0,1, s,+} or

£sma = {0,1, x}, both of which are decidable for PA. The options for its reduc¬
tion are

(i) the removal of x, with TprA as target sublanguage, or

(ii) the removal of A, for the generation of an expression of Csma-

Assuming that there are tivo rewrite rules

Ri- i>i x (v2 + v3) = V\ x v4 => Vi — 0 V t/>
R2- vi X v2 = v1 x v3 => Vi = 0 V v2 = v3

where tf is the formula16

s(s(v2)s2(v4)) S(S(U3)S2(U4)) = s(s(s(u2)s(u3))s((s2(u4))2))

it could then be taken into account that

(i) both Ri and R2 are immediately applicable to the conjecture,

(ii) there are four occurrences of X against only one of +, and the complete removal

of + requires only one rewriting step,

(iii) the remove rule for sum, R\, introduces a new CSMA-deviant symbol, s, ivhereas
the rule for X does not introduce any new deviant symbol, and

(iv) there is no remove rule for s in the rule base.
16 See [Boolos & Jeffrey 89], p. 219.
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Therefore, although both + and X can be completely eliminated from <f>, due to the lack

of remove rules for s, the measure md(s) is oo, and, as a result, the measure mc for

CprA Is lower. g

Once a decidable sublanguage is chosen, only remove rules for the corresponding de¬

viant symbols are eligible for application. An additional loss of completeness w.r.t.

exhaustive rewriting results then from the exclusion of rules for non-deviant symbols.

Example 6.3.2 Let 1Z be the following set of remove rules.

Ri Vi X v2 = Vi => Vi — 0 V v2 = 1
R2 Uj + v2 = 0 => vx = 0 A v2 = 0
R3 Vi + v2 = 1 =>• (uj = 1 A v2 = 0) V (Vi = 0 A v2 = 1)

Given the formula <£>.

(x2 + y2) x (z3 + w) = x2 + y2

it could be reduced to L-sma by the application of a remove rule for X, R\, followed by

two remove rules for +, R2 and R3, resulting in

(x2 = 0 A y2 = 0) V ((£3 = lAw = 0)V(/ = 0Aw=l))

Hoivever, since the application of remove rules is restricted to the deviant symbols w.r.t.

either Csma or Tpta (Le. to the removal of either + or X, but not both), cannot be
reduced under 1Z to any of these sublanguages1'. g

After the choice of a subclass, a total order for partially removable deviant symbols

must be built, based for instance on the termination arguments associated with the¬

orem 6.2.1. When there is more than one possible ordering, preference should be given

to those where the first symbols to be removed have rules that minimise the expansion

of the rewritten formula, since the proliferation of subexpressions at the first rewrit¬

ing stages may exaggerately multiply the number of occurrences of deviant symbols.
1' One of the roles of disagreement elimination mechanisms is to compensate for this deductive loss.

In this example, <f> could still be reduced to Csma by the strict application of remove rules for +,
provided that a modified version of R\ is employed as elimination equation (rather than as a remove
rule) to raise the disagreement between <j> and R3. See section 8.1.1.
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Sensitive symbols (i.e. those for which only a reduced number of partial rules is avail¬

able) should also have priority: in the presence of multiple rules, it is more likely that
a symbol can be removed at various stages of the process, whereas when just a few

contexts are covered, any transformation may prevent a removal.

Example 6.3.3 Let T be a theory in C — {a, /, g, h, P), and <j> be the conjecture

If£ = {a,h,P} is a decidable sublanguage for T, then f and g are the only deviant

symbols w.r.t. £ that occur in <j>. Assuming that the rule set 1Z contains

(i) there are two rules. Ri and R3, which are immediately applicable to (f and respect¬

ively remove all the occurrences of f and g,

(ii) R2 is also applicable, but it can remove just one of the occurrences of g, introducing
an occurrence of f as side effect,

(iii) Ri removes f at the expense of introducing another occurrence of g, already present
in the conjecture, and

(iv) R3 does not introduce any symbol in the rewritten formula.

The main element in the current strategy for ordering deviant symbols is the require¬

ment that a rule cannot reintroduce a deviant symbol previously removed from the
*

conjecture. For the above rule set, both f < g and g < f, in which case {IZ,<) is not

well-founded. For this reason. R2 should be dropped from 7Z, and f should be removed

before g. q

Since alternate removals are not allowed by the ordering mechanism and all the occur¬

rences of a symbol must be completely erased before others are considered, there may

be a loss of completeness when there are multiple occurrences of at least one of the

deviant symbols of a formula.

P{x,f{y,z)) A P(a,z) A P{y,g(y,z)) A P(g(y,z),h(x,y))

Ri P(vi,f(v2,v3)) P{vug(v2,v3))
R2 P{g(v i,v2),v3) => P(f(vuV2),V3)
P-3 P{vi,g{v2,v3)) A P{g(v2,v3),v4) => P(vi,V4)

Ri
Ri

then
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Example 6.3.4 Let d>

xy +z +1 + y x z = y x z

be an arithmetical conjecture, and let

R\ ^1 + v2 = v2 => Vi = 0
R2 vx + v2 = 0 => vx = 0 A v2 = 0
R3 Vj2 = 0 => t)i = 0 A J)2 / 0

be the elements of the rule set 1Z. With respect to Csma> 4> has two deviant symbols, +

and exp. In the absence of a disagreement elimination mechanism, none of the possible

orderings for this pair of symbols alloivs the successful conversion of <f> under TZ to a

formula of CSma ■ However, if the removal of occurrences of + could be interleaved

with exp, the above rules ivould suffice for the reduction, considering that

a.y-!+z"+ij~+~j^ X z = y X z =£ x exp (y2 -f z3 + 1) = 0 =£

i = 0 A -.((y2 + ^3)[T|l = 0) ^ i = 0 A -.(y2|~+>3 = 0 A 1 = 0) ^
x = 0 A -.(r = 0Az3 = OA1 = 0)

Finally, with respect to partial remove rules for deviant symbols, a possible measure

for the complexity of the application of a rule R is based on the deviant symbols
introduced by its rhs expression. A new function, mr, is defined as

mr(R) = ^ md(Si) - nr(R)
Si€S

where S denotes the multiset of deviant symbols introduced by R, nr(R) represents the
number of occurrences of additional deviant symbols that R eliminates as side effect,

and md is the measure for deviant symbols defined in section 6.3.1. The set of rules

for each symbol is then put in increasing order, according to mr.

Example 6.3.5 Given the rule set of example 6.3.3 and the conjecture

(x)(y)(P(h(x, y),g(x, y)) A P(g{x, y), y))

184



there are two applicable rules.

#2 P(g(vuv2),v3) => P{f(vl,v2),v3)
Rs P{vug(v2,v3)) A P(g{v2,v3),v4) => P(vuv4)

The first one removes a single occurrence of g, at the cost of introducing an occurrence

of another deviant symbol, f. The second rule removes two occurrences of the same

deviant symbol without introducing any other, being therefore the preferred choice, g

One of the guidelines concerning the ordering of symbols, which involves selecting

those whose rules generate the smallest possible expansion in the course of rewriting,

is also relevant from the point of view of rule selection. The expansion caused by a

rule can be estimated based on the number of occurrences of variables in its Ihs and

rhs expressions.

Example 6.3.6 Let (j) be the formula

ar+ (0 + (0 +••• + (() +y3)...)) =1
'- a

n occurrences of + & n — 1 occurrences of 0

and let

Rx. 0 + v => v

R2. Uj + v2 = 0 => V\ = 0 A v2 — 0
R3. Vi + v2 = 1 => (fj = 1 A v2 = 0) V (vi = 0 A v2 = 1)

be a set of partial remove rules for +. Both Rx and R3 are applicable to <f). As a matter

of fact, given additional propositional and atomic rewrite rules, such as

0 = 0 T 0 = 1 => ± 1 = 0 => _L 1 = 1 =>- X

T A => if T V ^ =>- T 1 => X X V V => V*

the extended rewrite set is confluent and noetherian, and, as a result, any rewriting

path leads to the same normalised formula. The size of each path, however, may vary

drastically. If R\ is chosen in the first place, it is possible to reduce <f> to Csma by n — 1

applications of this rule, followed by a single application of R3. However, if R3 is first

chosen, followed by applications of R2 and R3, the total number of rewriting steps is

n(n + 1)
2
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since

Base case, x2 + y3 = 1 =£ (x2 = 1 A y3 = 0) V (x2 = 0 A y3 = 1), and

Step case. Given an atom where + has n + 1 occurrences, the rewriting sequence has
the form

7i + l occurrences of +
/ " V

a;2 + (0 + (0 + ■ • ■ + (0 + j/3) ...)) = 1

^3

(x2 = 1 A (0 + (0 + • • • + (0 + y3) ...)) = 0) V (x2 = 0 A (0 + (0 + • • • + (0 + y3)...)) = 1)
V

v ' S v '
n occurrences of + u occurrences of -f

The first disjunct requires n additional applications of R2 till all occurrences of + are

eliminated, whereas, for the second disjunct, it is assumed as inductive hypothesis that
"("+11 steps are required. The total number of steps in the presence of n + 1 occurrences

of + then is

n(n + 1)
_ 2(re + 1) + n(n + 1) _ (re + 2)(n + 1) _ (re + l)((re +!)+!)

2~ 2 ~ 2 ~ 2

Hence, for the first path, the number of steps varies linearly with n, whereas for the

second path, it depends on n2. g

In the above example, Ri and R2 both preserve variables and their number of occur¬

rences, while the rhs expression of R3 has twice as many occurrences of variables as

its lhs. Any increase in the number of occurrences of variables indicates the potential

introduction of new occurrences of deviant symbols during rewriting, a factor that,

according to the definition of the measure function mr, should be also taken into ac¬

count. This, however, would require the inspection of the conjecture itself, and the

establishment of which variables of the rule must be instantiated to terms that contain

deviant symbols. The additional matching step could be justified on the grounds that
a shorter rewriting path may be eventually identified.
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6.3.3 Decidable Sub-subclasses

From a strictly logical point of view, given a recursive extension E of a decidable

sublanguage C for an undecidable theory T in £, any decision procedure for the

decidable subtheory TnFmlc suffices to decide a formula of the extended subclass, once
it has been rewritten into £'. Decision procedures in this context are only extensionally

relevant', and the actual process of reducing a sentence to a propositional constant is

immaterial. For this reason, attention has been entirely focused on decidable subclasses

rather than on possible procedures for them.

When the complexity of the overall decision process is taken into account, however,

specific features of each procedure have to be examined before a class is selected. The

complexity of a class E can be included in the measure function mc under the form

of an estimate for the complexity of the most efficient procedure available for S. The

new measure then determines the expected number of transformation steps for the
reduction of a sentence into a propositional constant, rather than just into an element

of a chosen class.

Besides influencing the choice of a decidable subclass, efficiency constraints can affect

the number of such classes and the selection of remove rules as well. For instance,

whenever a subclass E' of a decidable class E admits more efficient procedures than E

itself, E' may be included as an independent choice amongst the other classes. This

is the case of certain decidable theories where it is simpler to assess the validity of

a quantifier-free formula than of any other formula of the underlying language. Con¬

cerning remove rules, whenever the number of occurrences of quantifiers in a formula
affects the complexity of the decision process, the introduction of quantifiers is a source

of inefficiency. For such cases, priority must be given to rules whose rhs expressions

are free from quantifiers.

The complexity of a procedure therefore interferes in three ways with the selection
mechanisms described in the previous sections. Firstly, the measure function mc has
to be modified to take into account the complexity of the most efficient procedure for

each subclass. Secondly, the number of decidable subclasses available to the system

may increase due to the inclusion of sub-subclasses for which less complex procedures
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are available. In the case of PA. it would then be possible to distinguish between

reducing a formula to CprA or to the quantifier-free class of this sublanguage; for the
new subclass, two logical symbols, V and 3, become deviant. Finally, the measure

function for remove rules, mr, has also to take into account the efficiency loss that

results from the introduction of new occurrences of quantifiers in the rewritten formula,

even when quantifiers do not represent deviant symbols w.r.t. the chosen class. The

impact of the introduction of other symbols upon efficiency could be also examined for

each particular theory18.

6.4 Conclusions

In the course of the reduction of a formula into a decidable sublanguage, the removal of
deviant symbols has to be performed at the conjecture level, and can be restricted to

the application of remove rules for deviant symbols. The elimination of disagreements

between rules and formulae, on the other hand, may be entirely addressed at the

rule level. As a result, general-purpose proof plans for the extension of decidable

sublanguages can be built exclusively upon the method remove and its various versions.

Normalisation plans can impose certain constraints upon the application of rewrite

rules to prevent exhaustive rewriting: rules are first classified according to the syn¬

tactic operation they perform, and their application is then determined by a particular

sequence of tasks specified by the plan. Other constraints, involving aspects such as

the selection of decidable sublanguages, the ordering of deviant symbols and the order¬

ing of remove rules, can be added to the initial control setting by means of heuristic
functions.

The only missing element that still prevents general-purpose plans from being built
is a generic mechanism of context transformation that eliminates fatal disagreements
and supports the use of partial remove rules. This question is addressed in the coming
two chapters.

18 None of these three aspects has been fully addressed by the currently implemented heuristic func¬
tions. Chapter 9 though examines the complexity of decision procedures for arithmetical sublan¬
guages and its effect on the selection of subclasses. These topics are further discussed in chapter 11.
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Chapter 7

Difference Reduction Procedures

Special-purpose proof plans that reproduce decision procedures for theories such as

DAG incorporate two major operations, the elimination of disagreements between

conjectures and remove rules, and the removal of deviant symbols w.r.t. a particu¬

lar decidable subclass. Although a specific procedure to eliminate disagreements has
been built from the composition of primitive normalisation tactics, it is not suitable

for a proof plan that represents a generic reduction function for symbol removal.

General disagreement elimination mechanisms can be built on top of any difference

reduction procedure, which provides control for the application of paramodulation and

other rules involving equality. E-resolution is described in section 7.1, followed by

RUE-resolution in section 7.2 and ECOP in section 7.3. In section 7.4, E-resolution,

RUE-resolution and ECOP are compared from the point of view of completeness and

efficiency.

7.1 E-resolution

Paramodulation usually involves a large search space when employed in conjunction
with resolution and factoring. To reduce the number of possible applications of the

paramodulation rule, E-resolution restricts its domain of usage to pairs of potentially

complementary literals1. Let be a set of clauses to which two potentially resolvable

elements,

1 E-resolution is described in [Morris 69], Paramodulation is defined in appendix D.l.
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p(tu. ...tn) V Ci ->p(su.. .,sn) V C2

belong. If they are unifiable and a is their most general unifier (mgu), the corresponding
E-resolvent coincides with an ordinary resolvent, aCi V <jC2- Otherwise there are only

partial unifiers for them, i.e. given any substitution a', a'ti ^ ct's,-, for some i. A

disagreement set V = {{uu (um, u'm)} for {<r'p(U,..., tn), a'(->p(su ..., sn)))
can then be formed, and the expression

m

o'C\ V cr'C2 V \j (Uj ^ u'j)
3 =1

is supplied to a side module of the mechanism, the equality tree generator2. No form

of search control is available in this module, which relies on the exhaustive application

of inference rules. If it solves all disagreements, the E-resolvent, defined as

cr'(aC\) V a'(aC2) V \J 6k
k

includes the residual literals 6k introduced by paramodulation (whenever conditional

equations have been employed) and the compound substitution a' generated in the

course of the removal of inequalities. As it prevents the indiscriminate introduction

of paramodulated clauses in the refutation tree, the mechanism avoids unnecessarily

expanding the derived clause set.

To ensure that the generation of equality trees halts, an upper bound for their depth,
which is not sensitive to the input clause set, is determined in advance. If any disagree¬

ment is still left after the maximum tree size is reached, no E-resolvent is generated.

Further restrictions may be imposed on other parameters as well. For instance, the

restricted form of E-resolution takes into account only the left most general partial

unifier (mgpu) for complementary literals, and the innermost disagreement set. Such

restrictions, however, make the mechanism incomplete3.
2 Partial unifiers and disagreement sets are defined in appendix D. An overview of the difference
reduction strategy is given in appendix D.l.

3 See [Anderson 70].
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Example 7.1.1 Let d> be the conjecture

a = b Ad = c A (y)p(a, f(b, c),y)
D

(3x)p(x,f(x,d),e)

A constructive proof for the validity of <p must identify an instance of p(x, f(x, d),e)
which is a logical consequence of the hypotheses {a = b,d = c,(y)p(a, f(b,c),y)}, given
that, for any finite set of sentences tu ... ,rn,

|= (ti A ...t„) D V iff [t\,-■-,Tn} \= tp

For this purpose, the negation of 6 is first put into clausal form, and a set of clauses,

ft = {a = b,d = c,p(a,f(b,c),y),-ip(x,f(x,d),e)}

is obtained. Since p(a, f(b,c),y) and -ip(x, f(x, d), e) are the only complementary lit¬
erals in ft. they represent a. candidate pair for the possible derivation of an E-resolvent.

If the restricted version of the mechanism is chosen, given that the candidate pair is

not unifiable, its left mgpu, a = {a/x,e/y}, is applied, and the innermost disagreement

set,

v = {(b,a),(c,d)}

is obtained. An E-resolvent is derived as folloxvs.

p(a, f(b, c),y) -ipjx, f(x, d), e)
b 7^ a V c d a — b

b bW c d z = z

c d d — c

c ^ c w = w
□

Since all. the inequalities have been raised, the resulting clause, □, is an E-resolvent for
the pair of complementary literals. All the intermediate steps are then erased. g

In summary, E-resolution has three main advantages with respect to the plain applic¬
ation of paramodulation.

(i) paramodulation is used only with the purpose of eliminating fatal disagreement
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between complementary literals,

(ii) paramodulated clauses obtained in the course of the derivation of an E-resolvent are

not all included in the main refutation tree, thus reducing the number of derived

clauses, and

(iii) an additional rule present in E-resolution dispenses with the introduction of any

equality axioms in the clause set.

The reduction of differences between terms, therefore, takes place only under the form

of complete disagreement elimination.

7.2 Resolution by Unification and Equality

Even though inference steps in E-resolution require the complete elimination of dis¬

agreements between complementary literals, other procedures for the reduction of dif¬
ferences allow the introduction of intermediate resolvents as well. For instance, given

a clause set fI that contains p(t1,..., tn) V C\ and ~<p(si,..., sn) V C2, it is sound to

introduce an intermediate resolvent,

(ati — asi A ... A atn = crsn) D (<jC\ V aC2)

or, in clausal form,

ati asi V ... V crtn crsn V crCi V aC2 (*)

in the refutation tree, where a is a partial unifier (not necessarily a mgpu) for the pair
of literals. The desired resolvent, oC\ V aC2 V JD, may or may not be later generated,

depending on whether conditional equalities D{ V(crt,- = as,-) are derivable from clauses
of ft and resolved against (*). D = (Dx V • • • V Dn) is the residue clause generated in
the course of the elimination of inequalities.

The presence of intermediate resolvents is one of the main features of resolution by

unification and equality (RUE-resolution). Two new inference rules replace binary
resolution and paramodulation. There are three versions for the procedure, each of
which incorporates increasingly stronger control constructs4.
4 See [Digricoli fc Harrison 86], p. 258 - 262.
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7.2.1 Weak Version

Due to the presence of equality in a theory, resolvents may include the disjunction

of inequalities obtained as a side effect of a resolution step. Inequalities may later

be decomposed into subproblems, according to a chosen disagreement set. The NRF
and RUE rules of inference respectively cover these cases. Additional concepts such as

RUE factors are required to insert other properties of equality, e.g. symmetry, in the
inference system.

Definition 7.2.1 (RUE factor)

Let ..., tn) V l2(s\, • • • 5 ^n) V C be a clause where I\,l2 literals that contain
the same predicate symbol and have the same sign.

i. If l\, i2 are non-equational literals, a RUE factor for the above clause has the

form

£l(t1,...,tn)VCVD •

where D is a disjunction of inequalities generated from a disagreement set V for
the pair (£i(tu. • ••,«„))•

ii. If £x,£2 are equational literals, e.g. tx = t2 and Si = s2, a RUE factor for

tx = t2 V Si = s2 V C is any clause of one of the forms

1.1 — t2 V C V t\ ^ S\ \/ t2 -f- S2
h = 12 V C V f2 / Si V / s2

Definition 7.2.2 (RUE/NRF Rules of Inference - Open Form)

i. A RUE resolvent for the clauses p(tx,..., tn) V Cx and ->p(si,..., sn)V C2, where

p is not equality, is a clause

aCx V oC2 V D

where a is a substitution for the free variables of both clauses, and D is a dis¬

junction of inequalities generated from a disagreement set for the complementary

pair {(rp(tx,.. ap(tu ... ,tn)).
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ii. A RUE resolvent for the clauses (tx = t2) V C\ and (sj ^ s,)vC2 is either of the

formulae.

t\ 7~ ^1 v t2 ^ S2 V Ci V U*2
I2 / si V li / V Ci V C2

m. ^4 NRF (negative reflective function) resolvent for the clause (t fL s) V C is a

clause

aC V D

ivhere a is a substitution for the free variables of (t ^ s) V C, and D is a

disjunction of inequalities generated from a disagreement set for the pair (at, as).

iv. A RUE resolvent for p(ti,... ,tn) V C1 and ~<p(si,..., sn) V C2 is minimal iff
the associated substitution a minimises the number of disagreements between

P(tu.. .,tn) and p(su.. .,sn).

v. A NRF resolvent for (t 7^ s)VC is minimal iff the associated substitution a

minimises the number of disagreements between t and s.

The NRF rule makes redundant the inclusion of the reflexive axiom for equality in the

clause set. For instance, when it is applied to the clause

t ± t

since, for any substitution a, the only disagreement set for (at, at) is the empty set,

the NRF resolvent is the empty clause, hence

t 7^ t
□

From the viewpoint of difference reduction, the NRF rule has the purpose of lowering

disagreement sets. Hence, if the topmost disagreement set for a pair of complementary
literals is chosen in the first place, any other disagreement set can be subsequently
accessed by its application. This rule, as well as the RUE rule, is in open form given

that the substitution a and the disagreement set V are left unspecified. Both rules can

be integrated into a complete inference system for the predicate calculus with equality.
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Definition 7.2.3 (RUE-NRF Deduction)

i. Given a pair of clauses, C\ and C2, an extended RUE-resolvent of C\ and C2 is

a RUE-resolvent of C[ and C'2, where C- is either Ci or one of its RUE factors.

ii. An extended NRF-resolvent of a clause C is a NRF resolvent of C or of one of

its factors.

in. Given a set of clauses HI, a RUE-NRF deduction of a clause C from HI is a finite

sequence of clauses

Ct,...,Cn

in which C, is either an element of HI, or an extended RUE resolvent of a pair of

preceding clauses in the sequence, or an extended NRF resolvent of a preceding

clause, for 1 <i<{n— 1), and Cn = C.

Theorem 7.2.1 [Digricoli & Harrison 86] If HI is an unsatisfiable set of clauses in the

predicate calculus with equality, there is a RUE-NRF deduction of the empty clause

from HI.

7.2.2 Strong Version

There are guidelines for the selection of partial unifiers, disagreement sets and elim¬
ination equalities (i.e. those used to raise fatal disagreements between semantically
or fl-unifiable terms) which do not affect the completeness of the original inference

system. They are based on a few additional concepts, which are introduced next5.

Definition 7.2.4 (Viable disagreement set)

Let Hi be a set of (conditional) equalities of a first-order language C.
5 Semantic unification is discussed in [Dershowitz fc Jouannaud 90], p. 282-4.
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i. A disagreeing pair of terms6 (tx,t2) is potentially eliminable w.r.t. ft iff either
t\ and to are unifiable, or there are (conditional) equations ^ V si = s2 and

4>2 V >-s3 = -54 in & and there are pairs (tx, Sj) and {t2, sk), for some j, k, 1 < j, k < 4,

j ^ k. each of which satisfies one of the conditions

(a) tf unifies with s/, or

(b) tj, = S(ux,..., un), Si = S(u\,..., u'n), and there is a viable disagreement
set for each pair (Ui, u'f).

ii. If 6] and e2 are tivo C-expressions that do not share variables, and V is a dis¬

agreement set for (e\,e2), V is viable w.r.t. ft iff each element ofV is potentially
eliminable w.r.t. ft.

Example 7.2.1 Let

{ f(g(a,b)) = f(b), h(x) = c, g(f(a), y) = f(c) }

be a set of equations ivhere a, b, c are individual constants.

i. The disagreement pair (h(z), f(w)) is potentially eliminable, since each term of
the pair is unifi,able with either the rlis or Ihs expression of one the equations
above.

ii. The pair (f(f(z)),g(w,a)) is also potentially eliminable, for although f[f(z)) is
not unifiable with any of the dominant terms in the equations above, it has the
same dominant symbol as the term f(c), and (f(z),c) is potentially eliminable.

□

Considering that, for any pair of expressions, more than one disagreement set may be
viable, the strong form of RUE-resolution selects the topmost viable set. There is a

reduction in the search space, therefore, whenever the topmost disagreement set for
a pair of expressions is not viable. When a clause set contains either a clause of the
form C V V\ = v2, or a pair of clauses of the form C,- V Vi = i G {1,2}, where v{ is a

6 Disagreeing pairs are defined in appendix D.
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variable, any disagreement set is viable. In such cases, the selection criterion has no

effect over the search space.

Concerning substitutions, the choice falls on the RUE-unifier, which is built from a

mgpu a = {Ul/vi,.. .,Um/vm} for a pair of expressions (ei,e2) by the deletion of all

components Ul/vt, whenever ?;,■ occurs in a viable disagreement set for (e1,e2)- For the
selection of elimination equations, the equality restriction, which states that a RUE-

resolvent can be generated from a pair of clauses

( si / s2 V C\, ti = i2 V C2 }

iff Si and tj share the same dominant symbol, for some i, j e {1,2}, must be followed.
The purpose of this restriction is to guarantee the generation of subproblems by a

subsequent application of the NRF rule.

Example 7.2.2

i. Given the set of clauses

ft = {p(f(x)) V q(x), -.p(/(a)), b = c, f(a) = /(&)}

once the pair [p(f{x))\Jq{x), ->p(f(a))) is selected, its left mgpu is a = {a/x} and
the disagreement sets for the pair, prior to partial unification, are

Vi = {(f(x), f(a))}
V 2 = {(z,a)}

Both sets are viable: each element of the disagreeing pair in T>i can be unified

ivith, a distinct argument of an equation in ft, whereas the disagreeing pair in V2

is unifiable. Since the variable x occurs in a viable disagreement set, it has to be

dropped from the mentioned substitution to generate the RUE-unifier, which in
this case is empty.

ii. For the clause set

ft = {f(x,a) ± b, g{y) = h(y,b). a= f(b,c)}
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the only pair of clauses eligible for the application of the RUE-rule. according to

the equality restriction, is (f(x,a) b,a = f(b,c)), since at least one argument

of one of the complementary literals shares its dominant symbol with an argument

of the other literal. g

All three notions have been incorporated in a stronger version of the RUE and NRF

inference rules.

Definition 7.2.5 (RUE/NRF Rules of Inference - Strong Form)

i. The strong RUE resolvent for the clausesp(ti,... ,tn)\/C i and ~<p(si,..., sn)V C2
is the clause

<jC\ V aC2 V D

where cr is the RUE unifier of p(ti,... ,tn) and p(s\,... ,sn), and D is the dis¬

junction of inequalities generated from the topmost viable disagreement set for

(<rp(ti,. crp(tu.. .,tn)).

ii. The strong NRF (negative reflective function) resolvent for (t / s) V C is the
clause

aC V D

where a is the RUE unifier of t and s, and D is the disjunction of inequalities

generated from the topmost viable disagreement set for the pair (at, as).

The topmost viable disagreement set and the equality restriction preserve the complete¬
ness of the open form of RUE resolution. The effect of the RUE unifier on completeness
has not been formally established yet'.

' See [Digricoli fc Harrison 86], p. 277.
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7.2.3 Heuristic Version

Further improvements in efficiency can be obtained at the expense of completeness.

Heuristic control can be introduced at all three levels in which search is present, i.e. at

the selection of partial unifiers, disagreement sets and elimination equalities. Concern¬

ing partial unifiers, a mgpu is chosen in the first place, although not necessarily the

left mgpu8. When compared to the RUE-unifier, which does not exclude any viable

disagreement set in order to preserve completeness, the heuristic choice may lead to a

more compact refutation tree. For instance, given the pair of terms

(f(x,g(c,h(a,x))), f(b,g(y,h(c,d))))

assuming that the RUE unifier for this pair w.r.t. a set of clauses fi is the empty

substitution, the innermost disagreement set is

{(x,b),(c,y),(a,c),(x,d)}

If the left mgpu is chosen instead, the new set,

{(a,c),(M)}

can be reached from the first one after two applications of the NRF rule, which poten¬

tially increase the size of the first refutation tree.

The choice of a disagreement set favours the lowest one that does not contain an

irreducible inequality, instead of the topmost viable. Irreducible inequalities are those
whose negations (or rather instances of their negations) cannot be proven from the

equality base, as for instance inequalities entirely formed of Skolem constants. Finally,
the selection of elimination equations depends on the syntactic difference between

terms.

Definition 7.2.6 (Degree of Unification)

Let o be the left mgpu for (f) ^ t2) and the elimination equation uj = u2.

8 See [Digricoli fe Harrison 86], p. 283.
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i. The degree of unification w between the above inequality and elimination equation

is defined as

w(tl ^<2, Ui = u2) = w(ti,Ui = M2) + w{t2,U\ = M2)

ii. The degree of unification between a term t,- of the above inequality, i e {1,2}, and
the elimination equation is defined as follows.

(a) If there is a term Uj, j e {1,2} and a substitution a such that crti = auj, then
w(u, mi = u2) = 50.

(b) If ti has the form S(t\,.. .,t'n) and there is a term Uj, j e {1,2}, of the form

S(u[,..., u'n), then w(t,,ui = u2) — 20 + 30 X ivhere m is the number of

syntactically identical pairs (t'k,u'k).

(cj If neither U\ nor u2 has the same dominant symbol as ti; then

W(tt, Mi = M2 ) = 0.

The measure 100 is obtained if and only if the complementary literals are unifiable,

whereas 0 is obtained when the equality restriction for the selection of elimination

equations has not been observed.

Example 7.2.3 Assume it has to be proven that

a2 X o2 + (a26 + a2c) = a2(a2 + (c + b))

is a logical consequence of the commutativity of + and the distributivity of X over +.

The negation of the corresponding conjecture in clausal form is

Q = {xy + xz = (x(y + 2)), u + w = w + u, a2 x a2 + (a26 + a2c) ^ a2(a2 + (c + b))}

The equality restriction is satisfied e.g. for the pair

( a2 X a2 + {a'2b + a2c) 7^ a2(a2 + (c + b)), xy + xz = (x(y + z)) )

since a2 X a2 + (a2b + a2c) and xy + xz share the same dominant symbol. A RUE-
derivation of the em,pty clause from fl, both under the strong and the heuristic forms

of RUE-resolution, is indicated in figure 7.1. □
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a2 x a2 + (a26 + a2c) ^ a2(a2 + (c + b)) xy + xz = x(y + z) R
~a7~>T7i7~+Ja^+^a77y^lcy^flcTv~a^fa^fJF^+Tyj~^lc(y^r^) A
a2 x a2 + (a26 + a~c) ^ xy + xz \/ a2 ^ x \/ a2 ^ y \/ c + b ^ z N

AT

a26 + a2c ^ a2(c + b) x'y' + x'z' — x'(y' + z') R
a26™+"a2F^-pyr+™PPV™a2((r+™6y^-x7(yr+~zTj N

a~ ^ x' W b ^ y\/ a2 ^xVc^zV a2-^x\/c-{-b^y + z~ N
c + b ^ b + c u + w = w 4- u R

c+b^u+wVb+c^w+u N
c^uV/i^icVt^ioVc^u N

□

Strong Form

i2 x a2 + (a2b + a2c) ^ a2(a2 + (c + b)) xy + xz = x(y + z) (a{) R
(<r2) a2b + a2c ^ a2(c + 6) x'y' + x'z' = x'(y' + z') R

(03) c+6^6 + c u + iv = w + u R
□

Heuristic Form

C"1 {a*lx/lyM + h)lz}
0"2 {a2/x',b/y',c/z'}
<r3 {c/u, 6/w}
R RUE rule
N NRF rule

Figure 7.1: An Application of RUE-resolution
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7.3 Equality Graphs

Planning in the context of equality reasoning can benefit from the usage of graphs for
the representation of inference steps. In its pure form, an equality graph involves a pair

of terms, (t,u}, which is linked by means of equations,

(n = Si) —> (r2 = ••• = s„_i) —» (rn = sn) —> u
✓ \

, ✓ V _ > ^ ✓V V V

<72 <7n &n + l

where each r, = s,- belongs to a set of hypotheses and <7, is a. unifier for each underbraced

pair of terms. For notational simplicity, graphs are linearly represented as chains,

whenever possible9.

The existence of a local unifier for pairs of adjacent terms in a graph does not guarantee
the existence of a substitution for the A-unification of (t,u), where A is a set of

hypotheses. For instance, given the chain

f(a,b) — (f(x,y) = g(y,z)) —■» (g{a,z) = z) —■» c
<71 <7 2 <73

even though each underbraced pair of terms can be respectively unified by

= {7z,6M
= {a/y}
= {77

there is no common unifier for all three pairs. The chain, therefore, is incompatible.

Compatible graphs correspond to executable sequences of paramodulation steps, and

may lead to the resolution of non-unifiable complementary literals. There are three

necessary (but not sufficient) conditions which characterise compatibility,

(a) all the component unifiers associated with each paramodulation link have to fuse

into a most general unifier.

(b) access depths of terms must coincide.

(c) a graph that contains incompatible subgraphs is also incompatible10.
9
Equality reasoning designates any inference system for t heories that contain equality; see appendix D.

10 The access depth for a term is defined in [Blasius 87]. The incompatibility of a graph containing
incompatible subgraphs is mentioned in [Blasius & Siekmann 88], p. 403.
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In order to link the terminologies of RUE-resolution and ECOP, it is worth mentioning

that viable disagreement sets, defined in section 7.2.2, and compatible graphs do not

necessarily come together. Although the existence of a compatible graph linking terms

ti and t'2 implies that {t\,t2} has a viable disagreement set, the converse is not neces¬

sarily true, as indicated by the above example. Incompatible equality graphs, on the
other hand, do not imply the existence of a viable disagreement set. Selecting viable

disagreement sets and exhibiting equality graphs are two distinct strategies for the

establishment of the A-unifiability of two terms: the first one proceeds in width, and

actually indicates at least the first two steps of a compatible equality graph, whereas

the second one operates in depth.

The equality graph construction procedure (ECOP) employs equality graphs to establish
the unsa.tisfiability of sets of clauses containing equality. Unlike E- or RUE-resolution,
no partial unifier is applied to the initial pair of complementary literals, and each

original subproblem is solved independently from the others. Individual substitutions
are checked for compatibility only at the end of the process.

Example 7.3.1 Given the set ft that contains the clauses

P(g(a,w),z) iP(/(e),6)
g(x,x) = h(x,b) h(u,v) = h(v,u) h(b,a) = f(b)

b = c c = e

the pair of complementary literals, (P(g(a, w),z), ->P(/(e), 6)), determine two equalities

subproblems, represented by its innermost (and sole) disagreement set,

V = {(g(a,w),f(e)), (z,b)}

While the second disagreement is solvable, the first one requires the construction of a

chain,

f/(a, w) /(e)

where the dotted line indicates that the graph is incomplete11. The innermost disagree¬

ment set for these terms is simply represented as {(g,f)). Equations taken from ft
11 See [Blasius fc Siekmann 88], p. 404-406.
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are inserted in the chain with the purpose of eliminating disagreements. Amongst the

possible potential graphs for (g(a,xv), /(e)),

g(a,w) g{x,x)- h(x. b) h(b,a) = f(b) /(e)

is the shortest one, and is therefore the first to be examined. Three new subproblems,

(g(a,w),g(x,x))

(h(x, b), h(b, a))

(m,f(e))

are generated, and the same procedure has to be applied to each of them. In the particu¬

lar case of (h(x, b), h(b, a)), the pairs of the innermost disagreement set, {(a;, b), (b, a)}.
cannot be linked by equations of Fl. However, a new link can be inserted in the initial

graph by the introduction of a new equation between h(x,b) and h(b,a),

h(x,b) h(u,v) = h(v, u) h(b,a)

After it is placed into the original graph,

g(a,w) g{x,x) = h(x,b) h(u,v) = h(v,u) h(b,a) = f(b) /(e)

the process is restarted for the extended version. Since subproblems are solved independ¬

ently, none of the partial solutions have to be discarded. All the derived subproblems

of the new chain admit a local solution, as indicated in the final graph (figure 7.2). As
local unifiers can be composed into a global unifier, a = {a/x, a/w, a/u, ^/v}, the graph
is compatible. Hence

SI 1= (ag(a, w) = crf(e))

A RUE-refutation from fi that corresponds to the above equality graph is

P(g(a,w),z) -<P(f(e), b) RUE
g(a, w) /(e) V z b NRF (T\

g(a,w)fif(e) g(x, x) = h(x, b) RUE <r2
h(a,b) f(e) h(u,v) = h(v,u) RUE <r3

h(b, a) /(e) h{b,a) = f{b) RUE
f(b) # /(e) NRF

b e b - c RUE

c^e c = e RUE
~~□
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where ux = = {a/x,a/iu} and cr3 = {a/u, b/v}.

a

One difficulty at the planning level is related to those pairs whose innermost disagree¬
ment set cannot be solved, as in the case of (h(x, b), h(b, a)) of the above example. Such
cases require the expansion of the original graph by the introduction of new links and

equations. It seems that their introduction can be limited in principle to the level of the

immediate dominant symbol, in order to minimise the effect over other subproblems.

For instance, given the disagreeing pair of terms

f{a,h(b,g(d)))

f(b,h(x,g(e)))

whose innermost disagreement set is V = {(a, b), (b, x), {d, e)}, if (d, e) cannot be raised,
the set of subproblems identified by V has to be abandoned. ECOP would then suggest

the closest alternative set, {(a, 6), (b, x), (g(d),g(e))}. For the last pair, before global

planning is resumed, new links between g(d) and g(e),

g(t i) = F^t^.. .,tni) Eift;,...,^) =

fra(C,...,CJ = J7(0

have to be introduced. For each subproblem, the lowest set of disagreement pairs would

be chosen and solved, whenever possible.

The unrestricted search for compatible graphs in ECOP has an order of magnitude
similar to the search present in E- and RUE-resolution. One of the main problems in

all of these approaches is the possibility of unifying variables with any term of an equal¬

ity. Besides targeting variables or limiting search to the innermost disagreement set in
the first instance, more complex problems may require additional heuristics, concerning

Weights and Limits. Time and size constraints upon the reduction of differences may

be established by means of measures defined for the terms being transformed (e.g.
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number of occurrences of certain symbols, nesting depth of their occurrences, etc).

The decision of continuing or stopping the generation of a given graph is then based
on the behaviour of such parameters.

Difference Measure. Additional measures may be defined to assess the level of differ¬

ence between two terms. Such measures can be applied to the selection of equations,

to determine whether their application reduces differences efficiently.

Conflict Solving. The global instantiation of multiply occurring variables may be pre¬

vented by incompatible local substitutions. Incompatibilities between partial unifiers

may nonetheless be overcome by the construction of additional equality graphs.

7.4 Comparative Analysis

E-resolution, RUE-resolution and ECOP provide complete inference systems able to

determine whether two expressions, or any of their instances, are equal under a set of

hypotheses. AO of them substitute semantic equality for syntactic identity at the stage

of unifying expressions. From the point of view of proof strategies, they graduaUy
eliminate disagreeing pairs (i.e. reduce differences) between non-unifiable expressions.

Search control in equality reasoning is provided along at least four Ones. At the level
of global planning, equality connection graphs supply ECOP with a mechanism for

decomposing conjectures into subproblems, while E- and RUE-resolution seem to lack

any similar structure. After decomposition, each subproblem is solved independently

of the others, and no substitution adequate for a subproblem is propagated to any

other until a solution for each of them is found. The preservation of partial solutions

is one of the main advantages of ECOP over the two other procedures12. For partial

unification, as already indicated. ECOP resorts to the empty substitution at the global

level, and operates with most general unifiers locally, whenever the original problem
does not allow full unification. The choice of a unifier in RUE-resolution, on the other

hand, depends on the topmost viable disagreement set, while E-resolution may employ
the left mgpu with loss of completeness.
12 See [Blasius & Siekmann 88], p. 408-9.
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g(a,w)

l i

g(x,x) = h(x,b)

h(u,v) = h(v,u)

h(b,a) = f(b)

b=c

r1
c = e

f(e)

Figure 7.2: Compatible Equality Graph
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Procedure Variable
Instantiation

Disagreement
Set Selection

Elimination

Equality Selection
Other
Features

E-resolution

(restricted version)
(left) mgpu innermost — Incomplete

Controlled use of

paramodulation

E-resolution

(full version) — — —

Complete
Controlled use of
paramodulation

RUE-resolution

(open form) — — —

Complete
RUE & NRF rules of
inference (open form)

RUE-resolution

(strong form)
RUE-unifier topmost viable equality restriction Possibly complete

RUE & NRF rules of
inference (strong form)

RUE-resolution

(heuristic form)
mgpu lowest

adequate
minimally disagreeing

equality
Incomplete

ECOP local

mgu

innermost minimally disagreeing
equality

Independent solution
for subproblems
Complete
Global search control

Table 7.1: Difference Reduction Procedures — Comparative Assessment

Disagreement sets in RUE-resolution are initially restricted to the topmost viable set,

which is lowered by the application of the NRF rule, when necessary. ECOP starts

with the lowest set, moving upwards only if required. The advantage of operating at

a lower level is the comparatively smaller search space opened by the set. Concerning

elimination equalities, there are two criteria for their selection in RUE-resolution, the

equality restriction and the degree of unification, the second of which has apparently
been borrowed by ECOP. These and other main properties of all three mechanisms are

summarised in table 7.1.
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7.5 Conclusions

The process of enlarging decidable subclasses is strengthened when mechanisms for

the elimination of disagreements cooperate with the application of rewrite rules. A

restricted form of disagreement elimination can be built as a special case of A-matching,

a semantic process that involves determining whether there is an instance of a term

that is equal to another one, under a set A of hypotheses13.

Difference reduction procedures, on the other hand, are suitable for solving A-unification

problems, which concern the existence of instances of an equation that are logical con¬

sequences of a set of formulae A. Guidance for the derivation of a refutation tree is

provided along four dimensions: global planning, partial unification, disagreement set
selection and elimination equation ordering. Procedures such as E-resolution, RUE-
resolution and ECOP gradually remove disagreements between terms until syntactic¬

ally identical expressions are obtained, whenever possible. All three approaches are

complete, i.e. a proof for a A-unification problem (or rather a refutation for its neg¬

ation) is eventually found if it is actually solvable. Termination and efficiency are

affected as a result: given that the predicate calculus with equality is semidecidable,
there are formulae for which the above procedures do not halt.

As even heuristic versions for these mechanisms involve a considerable amount of search

in the average case, stronger control structures are required for the effective removal
of disagreements in the context of rewriting. Additional control and the use of A-
unification mechanisms for A-matching are discussed in the next chapter.

13 The links between disagreement elimination and A-matching are examined in appendix D.4.
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Chapter 8

The Rule Generation Mechanism

A generic mechanism for disagreement elimination can be derived from a difference
reduction procedure once A-matching is recognised as a special case of A-unification.
The rule generation mechanism (RGM), described in this chapter, addresses the specific

problems related to formula rewriting. Section 8.1 describes the core of the mechan¬
ism and the guidelines it follows for the selection of elimination equations and partial
unifiers. Section 8.2 presents a stronger version of RGM that provides a closer repres¬

entation for the context transformation mechanism devised for DAG. A comparison

between RGM and other difference reduction procedures follows in section 8.3.

8.1 Rule Generation

The inference systems examined in the previous chapter deal strictly with the unific¬
ation of terms in the context of paramodulation or related rules. Nonetheless, similar

procedures can be devised for expression matching as well. Fatal disagreements occur

in rewriting if, given a rewrite rule 8 =^- 6' and an expression e, where 8 and e do not

share variables, 6 cannot be syntactically matched against any subexpression of e, i.e.

there is no substitution a or subexpression e' such that a8 = e'. In the presence of a
set of conditional equations A, these expressions may be A-matched, that is

|= [<f>i D <u,i = c2,i] A • • • A [<t>n D elin = e2,„] D (3tq)... (3vm)(e = ..., um}) (*)

where (<& D eM = e2,<) € A, 1 < i < n. When the variables of e are implicitly replaced
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with individual constants, rule matching becomes ail instance of unification1.

Lemma 8.1.1 Let e(ui,..., vn) be a L-expression, and let a\,.. .,an be individual con¬
stants that do not belong to C. If R. =>• S2 25 a rewrite rule that does not share

variables with e, then

Ft R

e(vu...,vn) =b e' iff ae(vu ... ,vn) ere'

where a = {ai/fi, • • •, an/vn}.

Proof.

If R is applicable to e, there must be a. substitution r and a subexpression t of f

such that tSi = e. Then

ae = a(rb1) = (ar)^,

where a = {a,1/vi,.. ., an/vn}- Hence there is a substitution, or, which matches R

against ere, a subexpression of ae. Since e e' and e' = e|ri52/e|], then ae =>■ ae'.

If R is applicable to ere, there is a substitution r and a subexpression ae of ae such

that ae == tSi. Considering that none of the new constants a, occurs in e{vx,... ,vn),
e is syntactically derivable from ae through the replacement of each occurrence of a,

with Vi, an operation that can be applied to r as well. Then

e = (ae)* = (rS^* = t*6u

where 6* is the expression that results from <5 after the application of the replacement

operation described above. Therefore R is also applicable to e. I

Disagreement elimination procedures built on top of a difference reduction mechanism
have to take two additional elements into account, (i) the selection of a subexpression

1 Expression (*) above is actually a special case of the equational conjecture described in appendix D.l,
provided that variables that occur in c are regarded as new individual constant symbols.
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from the conjecture arid (ii) syntactic type checking for the selected subexpression. In

the context of resolution, inference rules (with the exception of the NRF rule) apply

only to complementary pairs of literals, and unification is limited to the corresponding

pairs of arguments. The application of a rewrite rule, on the other hand, requires ex¬

amining all subexpressions of an expression against which it has to be matched, hence
an additional search component is present. Also, whereas resolution in first-order lan¬

guages involves only the unification of terms, rewriting may involve either terms or

formulae. Its representation in a resolution-based framework requires either the in¬

troduction of syntactic sorts such as terms and formulae, or the identification of two

distinct processes, term and formula rewriting.

The rule generation mechanism (RGM), derived from both RUE-resolution and ECOP,
addresses these and other specific requirements of A-matching, where A is a set of

(conditional) equations. Besides matching a rule R against a conjecture, it also extracts
from the rewriting process the most general applicable rule, which is A-equivalent to
an instance of R. Also, in face of the inefficiency of complete mechanisms for difference

reduction, even in the presence of the heuristic components, new control features have

been added to prune the search tree even further2. Besides selecting disagreement sets,

elimination equations and partial unifiers, RGM also chooses fatal disagreeing pairs for
each disagreement set. Variable instantiation is restricted to three cases,

(a) multiply occurring variables,

(b) explicit introduction of disagreement pair in the elimination equation, and

(c) unification of elimination equations.

Finally, selected elimination equations have to preserve the upper context of a rule and
cannot reintroduce previously eliminated disagreements.

8.1.1 Equation Selection

RGM adopts as a general guideline for the selection of elimination equations the re¬

quirement that a fatal disagreement has to be removed in each transformation step. It
deals with both term and formula rewriting, applying therefore oriented equations and

2 Search problems faced by difference reduction procedures are briefly described in
[Cleve & Hutter 93], p. 1.
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equivalences. The term elimination equation refers then to both types of expressions,

which may be uniformly denoted as

($1 t— <*>2

where = represents either the equality or the biconditional symbol, depending on the

syntactic type of 6{. Given a disagreement pair and a disagreeing pair of expressions,
an adequate elimination equation has to meet requirements that include its partial

applicability.

Definition 8.1.1 (Upper Context)

Let e be an expression where a symbol S occurs at position p.

i. The list A(S,p, e) of upper symbols for the occurrence of S at p in e is recursively

defined as folloivs.

Ms,[],s) = []
A(S,[],S(tu...,tn)) = []

4(5", [i\p'],S'(eu...,en)) = [5'|A(5,p', e{)]

ii. The depth of the occurrence of S at p in e is the number of elements of A(S,p, e)
increased by one. The depth of a subexpression e! at position p in e is defined as

the depth of its dominant symbol in e.

Hi. The layer of depth d in e, denoted as t(c. d). is the ordered (from left to right)
list of symbols at depth d in e.

iv. If S occurs at depth d in t, the upper context of S in e is the initial fragment of
e containing all its symbols of depth less than d.

Example 8.1.1 The term t,

f{g(f(b.g(c,b)),a), h(b(g(f(b,b),c),h(a,a,b))))

can be also represented as a tree of symbols,
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i. As indicated in the above tree, there are six occurrences of the individual constant

symbol b in t, each of which has a specific list of upper symbols.

occurrence upper symbol list depth
1 [/: h] 3

2 [/) 9i /] 4

3 [f,h,h] 4

4 [f,9,f,9] 5

5 [f,h,g,f] 5
6 [f,h,g,f] 5

ii. The upper context for the second occurrence of b in t is

f

f a b g h

□

Definition 8.1.2 (Adequate Elimination Equation)

Let (ei,e2) be a disagreement pair, where e2 is variable-free, and let 52(ti2))
be a fatal disagreeing pair between them.

i. An equation 6] = b2 is an adequate elimination equation for (e!,e2) with respect

to S\ and S2 iff
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(a) Si is partially applicable to C\ w.r.t. S\.

(b) S\ has an occurrence in Si at the same position as S2 in S2.

(c) the upper context of Sj in Si is identical to the upper context of S2 in S2.

(d.) if e1 has a subexpression S(ti,... ,tn) at position p. such that S was in¬
troduced as a result of a fatal disagreement elimination, then Si has an

occurrence of S at position p (i.e. symbols at positions corresponding to

previously eliminated disagreements are not changed).

ii. An equation Si ?= S2 is partially applicable to an expression e w.r.t. a symbol S

ifr

(a) S ha.s an occurrence in e at the same position it occurs in Si.

(b) there is an instance S[ of Si such that S has the same upper context in both
e and S\.

In particular, if S is the dominant symbol of both Si and e, then <*>! = S2 is partially

applicable to e w.r.t. S. Also, any equation of the form

Si(ti,...,tni) —

is an adequate elimination equation w.r.t. 5] and S2 for any pair of expressions of the

form (S1(11-1), S2(u2))■ Finally, whenever Sx is partially applicable to e w.r.t. S, but Si
and e are not unifiable, fatal disagreements are restricted to symbols of depth equal or

greater than the depth of S in e.

When an adequate elimination equation Si — S2 is applicable to an expression e, the

disagreeing occurrence of S\ in e can be effectively replaced with 5*2• Since upper

contexts are preserved, there is no risk of introduction of higher disagreements in the
course of such replacement. Also, as no disagreement can be introduced at a position

from which another has already been eliminated, the search for new ones can be directed

strictly to the same or lower layers w.r.t. the replaced occurrence of S\.

Equation selection in RGM can be summarised as follows. Given a pair of disagreeing

expressions, (6,1b), a. list {Ei,..., En) of adequate elimination equations is built, and
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one of them. Ei, is selected for the removal of a fatal disagreement. If (the lhs or

rhs expression of) Ei is unifiable with 8, 8 is rewritten to 6' and a disagreeing pair is

consequently removed. 8' is then checked for matchability w.r.t. ip, and, in the negative

case, a new subproblem, {8',if), has to be tackled. The restrictions established for

equation selection prevent the reintroduction of previously removed disagreements.

Example 8.1.2 Let (j) be the arithmetical conjecture

x2 ^ 0 D x2 x x2 | + | (x2 x y + x2 x y) = x x x

R be the following remove rule for + ,

v\ + v2 = 1 => (% = 1 A r2 = 0) V (t)) = 0 A t)2 = 1)

and A be the set that contains the equations

Vi X v2 = V\ = v2 = 1 (uj jL 0)
V\ x (v2 + v3) = Vx x v2 + vx x v3

Vx X V2 = V2 X V\

(vi X V2) x v3 = Vi x (v2 X v3)

Since R cannot remove the marked occurrence of + in there is a fatal disagreement

between its Ihs expression. 6. and every subexpression of <j> of the same syntactic type

as 8, i.e. cf itself and ip. defined as x2 X x2 + (x2 X y + x2 X y) = x X x. With respect

to the second formula, the disagreement sets are

Vi = {(x2 x x2 + (:e2 x y + x2 x y) = x x x, Vi v2 = 1)}
V2 = {(l2XI2f(l2Xt/+I2Xt/),l)1 + D2), (ixi,1)}
V3 = {{x2 x x2,Vi), (x2 x y + x2 x y,v2), (x x x, 1)}

The innermost disagreement set. V3, is chosen in the first place. The only fatal dis¬

agreeing pair is (x xr,l), hence the mechanism tries to establish the equality x X x = 1

from A. Given that variables of d> are dealt with as individual constants, they cannot

be instantiated to reduce differences, and x X x = 1 cannot be proven from the set of

equations. V2 is excluded for the same reasons, and. the topmost disagreement set, Vx,
has to be selected instead. Although (x X x,l) still is the only fatal disagreeing pair,
the subproblem to be tackled is
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A 1= (3t;1)(3u2)((a;2 x x2 -f (x2 x y + x2 x y) = x x x) = (v1 + v2 = 1))

which can be schematically represented as

8. V\ + v2 — LiJ

(x2 xx2) + (x2 X y + x2 x y) = x| X |x

The (conditional) equivalence 8i — S2,

(v3 X V4) X V5 - V3 X vA = v5 = 1 (v3 xv4fiO)

which is in fact an instance of an element of A,

Vi X v2 = Vi = v2 = 1 (fi 0)

satisfies the conditions for elimination equations, since

(a) 82 is partially applicable to 8 w.r.t. the marked occurrence of 1 in 8, as 1 occurs in

the same position in both 8 and 82, and the upper context for each of these occur¬

rences, formed by a single symbol (= ), is the same,

(b) the function symbol x occurs in 8\ at the same position as the constant 1 occurs

in 82, and

(c) X is in the immediate scope of an equality in 8\, and the same applies to the occur¬

rence of 1 in 82, therefore the upper contexts are identical, as illustrated in fig¬

ure 8.1.

Hence, if the equivalence above becomes applicable to 8, the marked occurrence of 1 is

replaced with X, and the fatal disagreeing pair between 8 and if is raised. Since 8 and 82
can be syntactically unified, with rngv — {('Wl & 15 replaced with 8' = (J\8i,
thus generating a new ride,

R'. V3 X V4 0 —► (%Xti4)x(l)i + t)2) = i)3X»4 =>
=> (vj = 1 A v2 = 0) V (vi = 0 A v2 = 1)
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X X V5

x v5 v3 v4

w3 v4

J upper context

5 disagreeing symbol

Figure 8.1: Example of an adequate elimination equation

8' is still not matchable against if, therefore there must be a fatal disagreement between

them. The same process has to be applied to the new pair of expressions.

8'.

if.

(v3 X v4) [xj (vi+v2) = v3 x v4

(x2 X x2) | -f | {x2 x y + x2 x y) = x x x

The innermost disagreement set,

V = {{x2 x x2 + (x2 x y + x2 x y),(v3 x v4) x (vx + v2)), (x2,v3 x v4}}

has a sole fatal disagreeing pair, (x2 X x2 + (x2 X y + x2 X y), (u3 X u4) X (ui + v2)). The
elimination equation 81 — 82

V6 X V7 + V6 X v8 = w6 x (u7 + u8)

is adequate for this pair, since

(a) 82 is partially applicable to 8' w.r.t. X, where 8' is the term (v3 X v4) X (tq + v2),
as x dominates both 82 and 8', and

(b) 8! and 82 are respectively dominated by + and x.

A new substitution, a2 = {^3 XVi/ve,Vl/vT,V2/vs}, unifies 82 and 8', hence 8", defined
as ct28'\^ /b'\, integrates a new rule,
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R". V3 X V4 ft 0 —> (v3 X V4) X Dj + (v3 X V4) X v2 = v3 X v4 =>
=> (vi = 1 A v2 — 0) V («! = 0 A v2 = 1)

A final fatal disagreement can be detected betiveen 8" and if,

■ip.

(v3 X V4) X Vi + (v3 X v4) [xj V2 = V3 X v4

x2 x x1 + x2 x y [ + | x2 x y = x x x

The innermost disagreement set,

V = {(i,d3), (i,D4), (r.I)|), (l2X!/ + I2XlZ,(t)3XD4)Xt)2)}

admits (x2 x y + x2 x y, (v3 X v4) X v2) as fatal disagreeing pair. This disagreement can
be in principle eliminated, by a previously employed equation, with renamed variables,

v9 X (^10 + f11) = Vg X V10 + »n X V\2,

Once established that a3 = j'"10 + Vll/v2,V3 x Vi/v<>} is the mgu for the disagreeing subex¬

pression of 8" and the left-hand, side of the elimination equation, the third new rule,

v3xv4ftQ

R!". (v3 X v4) XD[ + ((v3 X V4) X v10 + (v3 X v4) X VU) = V3 X v4
=>

(t>! = 1 A (fj o + Vn) = 0) V K=0A (U10 + Vn) = 1)

is derived. For the subproblem (8"', ip),

8'". (v3 X V4) X V\ + ((t>3 X V4) X Vio + (v3 X V4) X Vn) = V3 X V4

ip. x2 X x2 -f* x2 X y + x2 x y = x x x

the innermost disagreement set

V = {(x,v3),(x,v4),(x2,v7),(y,v10),{y,vu)}

has no fatal disagreements. V itself represents a substitution that matches 8'" against if,
and R!" is the desired new rewrite rule. The full generation process can be represented



cry

•(x(x,x), +(x(x(x,x),y), x(x(x,x),y))),x(x,x))
0-3

a\

+(x(ui,u2), x(v1,u3)) = x(u1,+(u2,u3))

0"2

+(x(u4,u5), x(t>4,u6)) = x(u4,+(u5,u6))
<r4

0-5

'X(u7,U8),U7) == (f8, 1)
0"6

(+ (Vg, fio), 1)

Figure 8.2: An Equality Graph for RGM

by the ordered list of intermediate expressions, the corresponding elimination equations

and the unifiers, as indicated on page 221. Figure 8.2 presents the equality graph that

describes the generation of 8". g

Termination is guaranteed for two reasons,

(i) the number of stages is finite, since tp is a finite expression, and the procedure

either eliminates a fatal disagreement or fails: the maximum height of the disagree¬
ment between 6 and if therefore decreases, and

(ii) the set of elimination equations selected at each stage of the process is finite.

Due to the requirement that the dominant symbols of a fatal disagreeing pair must

respectively occur in the lhs and rhs of the equation, adequate elimination equations

may have to be derived from the equation base by instantiation. For instance, in the
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problem examined above, the adequate elimination equation displayed in figure 8.1 is

actually an instance of

t'i x v2 = Vi = v2 = 1 (u] 7^ 0)

which is not adequate for the disagreement pair in question. A special case of this

principle involves fatal disagreeing pairs which include variables of a conjecture 4>.

According to the initial assumption in the construction of RGM, variables in <j> have
to be dealt with as new individual constants; as a result, any disagreeing pair of the
form (t,v). where t is a composite term or individual constant, and v is a variable that
occurs in 0, is fatal. Their removal also has to observe the guidelines for the selection
of adequate elimination equations, and therefore v has to occur explicitly in the rhs

expression of any adequate elimination equation for (t,v). Given the pair

since the disagreeing variable x must be dealt with as a new individual constant, x,
the equation

Ul + (ih + v3) — (ui + V2) + v3

has to be instantiated to

x + (u2 + u3) = (x T v2) T u3

to become adequate.

8.1.2 Variable Instantiation

When variables do not have multiple occurrences in an expression 6 that has to be
matched against e, RGM deals with each fatal disagreeing pair of a disagreement set on
an individual basis. Multiply occurring variables, however, may prevent the derivation
of a global substitution, even when individual disagreements are eliminable. In such
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cases, all the distinct expressions {el5...,en} that should replace different occurrences
of a variable u have to be taken into account, and new subproblems are generated by the
substitution of each £,• for u in S. (6,e) is then replaced with a series of new problems,

(<5[ei/?t], e), ..[h[tn/u\, e), such that a positive solution to any of them amounts to a

solution for the original problem as well.

Example 8.1.3 Let A be the set of equations described in example 8.1.2. Given the

expressions

6. E X v + [IT] X w

e. (a: X x) x y + \x\x z

their innermost disagreement set is

V = {[u,x X x),(v,y),[u,x),[w,z)}

Each element ofV is solvable, but it is not possible to derive from it a substitution that

matches 6 against e, since there are two terms, x X x and x, that have to substitute for

u. Two new problems have to be examined, involving e and

6'. (x x x) x v + (x x x) x w
6". x x v + x x iv

The innermost disagreement set for [delta1, e) is

V = {{v,y),{x x x,x),(w,z)}

for which no solution can be obtained from A: neither can it be found for any higher

disagreement set, such as {((x X x) X v, [x X x) X y), ((x X x) X w, x X z)}. The second

subproblem, (S",e), involves the innermost disagreement set

V" = {(x,x x x),(v,y),(w,z)}

No solution can be provided here either. However, moving to a higher disagreement

set,
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the subproblem

V" = {(x x v, (x x x) x y), (x x w, x x z}}

[x~| X u + [jr] X in

(x x x) x y + @ X z

can be solved by the application of an equation of A. (ui X v2) X v3 = t>i X (t;2 X v3), or
rather its instance,

(x x v2) X v3 = x x (v2 X v3)

which successfully eliminates the disagreement between 6"' and e. □

When the list of conflicting terms consists of variables Ui,...,un of the conjecture,

instances of all the available equations, generated by the replacement of free variables

by Uj,.. .,un, have to be tested. Adequate instances, as defined in section 8.1.1, are

checked against the conjecture, and additional fatal disagreements may have to be
lifted to generate applicability. Since the disagreeing pairs have the form {uj, Uj), i # j,
a high number of adequate equations is expected, and may substantially increase the

complexity of the elimination task. To control the search, at first equations are selected

only when they are applicable to a subexpression that contains the occurrence of u, to
be eliminated, i.e. secondary disagreement elimination is discouraged.

Example 8.1.4 Given the pair of terms,

two instances of b must be examined.

b'. x X v + x X w

b". z X v + z X w
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If attention is restricted to 6', elimination equations for the replacement of x with z

must be identified. Equation uxv = vxu, in particular, is applicable to a subexpression

oft',

S'. x x v -f f®l Xxv

hence it can be checked for adequacy. For this example, its instance

z X x XX z

has all the properties of an adequate elimination equation. g

The variable strategy completes the core of RGM. Table 8.1 has a summary of the

algorithm3.

8.1.3 Subexpression Selection

When a rule R is not applicable to a conjecture, if a disagreement elimination mechan¬
ism is available, a subexpression against which R could be semantically matched must

be selected in the first place, as already stressed in section 8.1. The basic version of

RGM described above, however, does not provide any guideline for ordering candidate

expressions. Choices may be determined, for instance, by the agreement depth between

rule and subexpression.

The seventh step of the algorithm requires the notion of RGM-unifiability of a pair of expressions
(6,e), which is defined similarly to RGM-matchability, with the proviso that variable instantiation
and subexpression replacement may take place in both 6 and e. For this reason, termination is
not ensured. For instance, given the expressions 1 and I x 1, where t denotes a generic term of
the underlying language, and the elimination equation £.» = (» x 1) x 1, the following infinite
RGM-unification sequence,

where disagreeing symbols are indicated inside boxes, can be built. Additional restrictions can be
nonetheless imposed to guarantee termination. The current implementation of RGM achieves it
by operating with standard unification, which may be seen as a special case of RGM-unification in
which the set A of equations is empty.

(0X1) XI
f|~x~|l 0x1 — ((f[x~[l) X 1) X 1
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Let A be a set of (conditional) equations, (6, e) be a pair of expressions where e is
variable-free, and D be the set of all disagreement sets for (8,e).

i. (A,6,e) is RGM-matchable iff (A,8,e,D) is RGM-matchable.

ii. (A,8,e,D) is RGM-matchable iff D has the form [D\D'], and

(a) (A,6,€.V) is RGM-matchable, or
(b) (A,6,e,Dr) is RGM-matchable.

iii. (A,6,e,V) is RGM-matchable iff (A, 8, e, Di) is RGM-matchable, for all
i, l < i < n, where. V = {D\,..., Dn} is a disagreement set for (8, e).

iv. (A,6,e,Di) is RGM-matchable iff (A, 6, e. D,:, djj) is RGM-matchable, for each
j, 1 <j< m,, where is a disagreement pair for (6, e) and {dj-p,..., d, mi} is the
set of fatal disagreeing pairs of

v. (A, 8, e, Di, dij) is RGM-matchable iff (A, <5, e, £,p) is RGM-matchable,
where Sitj is the set of all adequate elimination equations, obtained from A, for
a fatal disagreeing pair dij.

vi. (A,6,e,Di,dij,£ij) is RGM-matchable iff Z{j has the form [.E|£'] and

(a) (A,6,e,T>i,dij,E) is RGM-matchable, or
(b) (A, 6. e,T>i, dij, £') is RGM-matchable.

vii. (A,6,e,(6',e') , di j, t\ =e2) is RGM-matchable iff

(a) 6' and ex are unifiable, with a as mgu, and (A, <r^|[e2/6'J], e, (<re2, (.')) is RGM-
matchable, or

(b) 8' and ej are RGM-unifiable, with a' as most general RGM-unifier, and
(A. cr'8\e2/e, (cr'e2. c')) is RGM-matchable,

where ei = e2 is an adequate elimination equation for a fatal disagreeing pair dt j
taken from a disagreement pair (8',e') for (8, e).

Table 8.1: An algorithm for RGM
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Definition 8.1.3 (Agreement & Disagreement Depth)

Let 4> be a formula in which a symbol S occurs at position p. and let eu...,en be

all the subexpressions of f> that contain the mentioned occurrence of S. Let R1,..., Rm

be remove rules for S.

i. For each syntactically compatible pair (Sj,€j) (i.e. Si and have identical syn¬
tactic types), where S{ is the Ihs expression of Ri, its agreement depth is the

depth d of the lowest layer of Cj, such that each layer of depth up to d of €j is

syntactically identical to the corresponding layer of crSi, for some partial unifier

a.

ii. The disagreement depth for (Si, e,) is the difference betiveen the number of layers
of €j and the agreement depth for (Si, ef.

From a heuristic viewpoint, the greater the disagreement depth, the larger the trans¬

formation process required to eliminate disagreements. For this reason, candidate

disagreeing pairs are ordered according to this parameter. Provided that all possible

pairs are checked, their ordering does not pose any additional threat to completeness.
There is a similarity between this heuristic ordering and the degree of unification in

RUE-resolution, defined in section 7.2.3, which, nonetheless, assesses essentially the

agreement and ignores the disagreement depth.

Example 8.1.5

i. Let (f> be the conjecture

i = 0 A y X (x -\- z) — z2

If + ha.s to be removed from it, the list of candidate subexpressions consists of
x + z. y X (x + z), y X (x + z) = z1, and d> itself. Given a set of remove rules for
+,

Ri 0 + v => v

R'2 V\ + V2 = t'l + v3 => V2 = v3
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the list of compatible pairs has four elements.

( 0 + v, x + z )
( 0 + v, y x (x + z) )

{ Uj + V2 = Uj + v3, y x (x + z) = z2 )
( v1 + v2 = vx + v3, x = 0 A y X (x + z) = z2 )

The agreement depths for these pairs are respectively 1,0,1 and 0, whereas the

disagreement depths are 1,3,3 and 5, which then define the order according to

which the rule generation mechanism (RGM) will try to semantically match a

rule against the conjecture.

ii. Let <f be the formula

x2 + {y2 + ~2) = 1 + o

and let the rule base contain the following remove rules for + ,

Ri Vi + v2 = 1 => (tti = 1 A v2 = 0) V (i>i = 0 A v2 = 1)
Ro + v2 = 0 => Vi = 0 A v2 = 0
R3 ^1 + v2 = Vi + v3 => v2 = v3

Only one compatible pair can be identified for each rule.

( X! + v2 = 1, x2 + (y2 + z2) = 1 + 0 )
( vx + v2 = 0, x2 + (y2 + z2) = 1 + 0 )

( vx + v2 = Vi + v3, X2 + (y2 + Z2) = 1 + 0 }
The agreement depths are respectively 1, 1 and 2, whereas the disagreement depths

are 4, 4 and 3. The last pair therefore is the first chosen, even though the first

is the only one that contains a raisable disagreement pair, (1,1 + 0). q

When a proof plan for normalisation is interfaced to RGM, a new heuristic measure for

remove rules, mr., takes into account both the complexity of disagreement elimination

and the introduction of new occurrences of deviant symbols. It is defined as

mr.(R.e) — mr(R) + d(6,e)

where e is a subexpression of the conjecture, R. 6 =i> 8' is a remove rule, d(6, e) is the

disagreement depth for the pair (6, e). and mT is the measure function for remove rules,
defined in section 6.3.2. There is an underlying assumption that each disagreeing layer

requires one additional transformation step.
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8.1.4 Most General Derived Rule

As already illustrated in a series of examples, RGM deals with rewriting problems where
a quantifier-free rule R. 6X =7 S2 is not applicable to a formula <f>, in which case there

must be a disagreement pair (o, e2) between 6X and if. Given an adequate elimination

equation E{. 71 q2 for (ex,e2) w.r.t. a disagreeing pair of symbols, (SX,S2), in the
event and ex admit a mgu cr, a new valid rule, R!. =7 aS2, which does not

contain the disagreeing pair (SX,S2), is eventually obtained.

Lemma 8.1.2 Let Ex. 71 ;= 72 and E2. ^1 ^ b2 be quantifier-free valid equations of
the same syntactic type (i.e. they are both derived from equations or equivalences) that
do not share variables. If a is a unifier for ^x and Sx, then

E. o"72 a62

is also a quantifier-free valid equation.

PROOF. Since 7, — 72 and dq ^ S2 are valid, any of their instances, e.g. <77! = oj2

and 061 — oh2 are valid as well. From the symmetry and transitivity of and since

Ex and E2 have the same syntactic type, it follows that aj2 == oS2 is valid. I

If 7j and ex are not unifiable, disagreeing pairs may still be eliminable from (71,
Their successful elimination, whenever possible, allows the construction of the desired

new rule. In the case only most general unifiers are used in the process, the most

general composite rule is derived.

Definition 8.1.4 (Composite Rules)

Let R. hx => S2 be a rewrite rule, £ = (Ex,..., En) be an ordered set of equations,
such that Ei has the form 6itX ;= 6X 2, and V = {p1,.. - ,pn} be a set of finite lists of
natural numbers.

i. R'. S'x =7 S2 is a composite rule derived from R, £ and V iff there exists a

unification chain
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Tl J • • • ? Tn+ l

that

(a) 7j = S2 and 7„+i =

(b) 7,+1 = 7i[(°'t^t>2>7»>Pf)l,- where a,- is a unifier for Sitl and %, the subexpres¬
sion of7i at position pi (i.e. 7;+1 is generated from 7 ,• when its subexpression
at position pi is replaced with (J,hl2), and

ii. R' is the most general composite rule /or R, £ and V iff every composite rule R"

derived from R, £ and V is an instance of R!.

Equations, therefore, are not used as rewrite rules in the course of rule composition,

since, rather than being matched against a selected rule R, they are unified with

subexpressions of R, as illustrated below.

Example 8.1.6 Let R. 61 => S2 be the arithmetical remove rule,

(c) 6'2 = ab2, where a = an o ■ ■ ■ o oq.

Vx X V2 = V\ X V3 => Vi = 0 V v2 — v3

and let

£ = (V4 X V5 = V5 X V4, Vq x (v7 + v8) = v6 x v7 + v6 x v8)

be an ordered set of equations. Given the unification chain,

V\ X v2 = »1 x 1)3

V4 X U5 ;=± O5 X V4 (J! = {"VO/t*}

V2 X V\ = V-i X v3

X (v7 + Vg) ^ V6 X V- + Vq X Vg a2 = + */v3}

v2 x V\ = Vi X V7 + V\ X Vg
S /

"V

230



ivhere the underlined subexpressions are unifiable with the rhs expression of an equation

of E, the global substitution, a = o2 o crx, is

{*/vt* + v»/v3*/vt*/vs}

Hence, the rule S[ => aS2,

V2 x Vi = V\ x V7 + V1 x VS => Vi = 0 v v2 = v7 + v8

is a composite rule derived from R, E and V = {[1], [2]}. g

Theorem 8.1.1 Given a rule R. <*>! S2 and an ordered set of equations

E = {Ei,..En), where each Ei has the form 8i}i = Sii2, 1 < i < n, and does not
share variables with any other equation of E, a rule R'. S[ S'2 is the most general

composite rule derived from R and E iff S\ = aSn]2 and S2 = ob2, where cr is the most

general unifier for the pairs

As R'. S[ =>■ 8j is a composite rule derived from R and E, there must be formulae

7i,..., 7n+i and substitutions 07,..., an such that ~)i = Si and

Since the equations of E do not share variables, the composite substitution

er = trn o • • • o 07, is a common unifier for each pair (£,72? ^t+i,i)> 1 <i<n. R!, therefore,
has the form aSn 2 => aS2. If a were not the most general unifier for these pairs, there

would be substitutions a1 and r such that

(^1? (^1,2? ^2,l)j (^2,2) ^3,1) i ■ ■ ■ > (^i,2> ^i+l,l)> • • • > {^n- 1,2; ^n,l)

Proof.

crffi = <Ti8iti = 72

(72(crl<i>l,2) = °2^2,1 = 73

(T3((T2^2,2) = °3^3,1 = 74

^n — 1 Sn—12) ~~ @n bn, 1

^nSfi, 2 ~~

In

7n+ l
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a = t o a' (f)

where r is a non-trivial substitution and a' is also a unifier for (£,-i2, £.+i,i). Therefore
R", defined as

g'&In,2 cr'^2> ( + )

would be also a composite rule for R and E. From (f), (f) and the definition of R', it
follows that R' = tR", in conflict with the assumption that R! is the most general com¬

posite rule derived from R and E. Hence a is the mgu for the above pairs of expressions.

(«-)
If a is the mgu for (6ii2, &i+1,1 }•1 < i <n, there is an associated composite rule,
R'■ 2 => c^2- If R' were not the most general composite rule for R and E, there

would be substitutions a' and r and another rule, R", defined as

1,1 O-'<5„]2 (f)

such that

R' = tR" (J)

From (f), (|) and the definition of R', it follows that a = to'. As a' is also a unifier
for (Sii2, £t+i,i)> it is not the mgu for them, in contradiction with the hypothesis. I

This result does not guarantee that a rule derived from R and (Ei,..., En) is the
most general rule for the full equation base from which each E, has been taken. An
additional condition for the rule base as a whole is the selection of adequate elimination

equations which subsume other equally adequate options.

Example 8.1.7 Let 6 and e,
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be a pair of expressions such that 8 has to be A-matched against e, where A is the

equation base. Assuming that A contains Ei and E2,

Ei v4 x v5 + v4 x v6 = v4 x (v5 + v6)
E2 {v4 x u5) x v6 + (v4 x v5) x v7 = (v4 x v5) x (u6 + v7)

two transformed expressions, 6' and 6",

6'. v4 x (v5 + u6) = v4 x v5 + v3
6". (v4 x v5) x (v6 + v7) = (v4 x v5) xv6 + v3

can be generated. Since E2 is an instance of E\, 8" is an instance of 8' as well, in

which case the most general rule for A requires the selection of the most general of the
available adequate elimination equations, E\. g

The selection of a most general adequate equation is relevant only in the context of rule

generation and A-matching. For A-unification, with which RUE-resolution and ECOP

are concerned, both solutions above are equally acceptable, since the lhs expression of

both Ei and E2 are unifiable with a subexpression of 8, and their rhs expressions are

unifiable with a. subexpression of e.

8.2 Extensions of RGM

At least two aspects of RGM are responsible for the incompleteness of the mechanism

with respect to the exhaustive scrutiny of the full equational tree. First, since elimin¬

ation rules have to contain the disagreeing pair split between the left and right-hand
side expressions, in the event the equation is or becomes applicable to the conjecture,

the disagreeing symbol is removed in a single rewriting step. When more than one

equation would be necessary to achieve this effect, the mechanism fails. Also, due to

the restriction concerning the reintroduction of disagreements, once a fatal disagreeing

pair between a remove rule and a conjecture is identified, the current strategy does

not allow either the introduction of any new higher disagreement, or the reintroduc¬
tion of a disagreement at a position from which a disagreement has been previously
removed. This requirement also affects the completeness of this mechanism w.r.t. the
full rewriting tree.
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Completeness is relevant in this context only if achieved under well-defined control

guidelines, and it is usually necessary to find a compromise between completeness and

efficiency. Nonetheless, it is also important to examine extensions of the mechanism

which could reduce its incompleteness through the enlargement of the set of solvable

A-matching problems (8, ift) under A. Possible extensions include the elimination of

disagreements along several steps, the introduction of additional subproblems and the

enlargement of context for disagreement elimination.

8.2.1 Multiple-Step Rewriting

Fatal disagreeing pairs which cannot be eliminated by the application of a single equa¬

tion may however be efficiently raised through planning strategies such as that available
in ECOP, where an equality connection graph is built to link disagreeing subexpres¬
sions. For instance, if the disagreeing symbol + in the conjecture

x2 x x2 + x2 x y + x2 x y = x x 0| + \y x 0

has to be replaced by 0, and the set of equations is limited to

E\. Vi X v2 + v3 x v2 = (tq + v3) X v2
E2. v X 0 = 0

the desired replacement cannot be completed, due to the absence of adequate elimina¬
tion equations: no equation (or instance of equation ) exhibits the dominant symbols of
the disagreeing pair split between the left and right-hand side expressions, at the same

positions. The connection graph in figure 8.3 shows however that the introduction of
a single additional step in the process allows the elimination of the disagreeing pair.

The inclusion of this additional feature in RGM could be done in two alternative ways.

The definition of adequate elimination equation could be replaced by the notion of

adequate elimination graph, made up of equations taken from the equality base. Al¬

ternatively, the current definition of adequate elimination equation could be preserved,
with the introduction of a parallel mechanism for the generation of new equations and

their aggregation to the equation base.

In the second case, some of the new rules would be generated through the transitive
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+(x(x,0), x(y,0))

+ (x(ui,u2), x(v3,v2)) = x(+ (vuv3),v2)

x(v,0) = 0

0

Figure 8.3: Multiple-Step Disagreement Elimination

closure of an equation base £, i.e. a new set £', SC. £' such that, whenever E\, E2 € £,
E E

<t> <t>' and 4>' =£ 4>", there exists a rule E3 € £' such that

Another solution would be the implementation of an additional mechanism for the

generation of composite elimination equations, whenever a fatal disagreeing pair cannot
be dealt with by the equational base. The first proposal generates an unmanageable

amount of explicit information, which can make the system inefficient. The second

solution keeps the necessary information implicit in the rule base and reveals it only

when necessary. The effects of the second alternative on the performance of the system,

however, are as yet unknown.

8.2.2 Intermediate Subproblems

The introduction of elimination equality graphs, as defined in the previous section,

does not eradicate incompleteness from RGM. Even when a disagreeing pair does not

admit an adequate graph, a solution may still be obtained after the introduction of
intermediate equations and the generation of new subproblems.

Example 8.2.1 Let A be a set made up of the folloiring equations,
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Vl x v2 = vx = v2 = 1 (^1 ^ 0)
Vi X (v2 + v3) = Vx X V2 + Vx X v3
VX X (V2 X f3) = (^1 X V2) X v3

vf X v?3 = ^2+"3

anc? let (f> be the formula

xy+x ± 0 D x^y+x)+3zy2 + xy+xy = xy+x

which is equivalent (in PA) to xy+x ^ 0 D xy+x(x3zy2 + y) = xy+x. It can therefore
be rewritten to xy+x ^ 0 D x3zy2 + 2/ = 1, from which it is possible to remove the only
occurrence of sum by the application of

Vi + v2 = 1 => (vx = 1 A v2 = 0) V (vi = 0 A v2 = 1) (*)

To establish whether a rule for the elimination of + from <f can be generated by RGM

from (*), (if, 6). where 6 is the Ihs expression of (*) and if is the consequent of (f, is
selected to be A-matched. Given its innermost disagreement set,

£>i = {(t\zy2 + hy = xy+x,vi + v2 = l)}

where 1x and t2 respectively denote the terms x^y+x^+3 and xy+x, and the fatal disagree¬

ing pair, (xy+x,l),

if. t\zy2 + t2y = x | exp (y + x)

6. vx-\- v2 = m

there is an adequate elimination equation for it.

(d3 exp»4) X vh = v3expv4 = v5 — 1 (u3expu4 7^ 0)

which is an instance of v3 7^ 0 —► v3 x v4 = v3 = v4 = 1. Its application to 6 generates

S',

(v3 exp v4) X {vi + v2) = v3 exp v4
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For the second subproblem, (if, 8'), given the disagreement set

= {{hzy2+ t2y,(v3expv4) X (v! + v2)),(x,v3),(y +x,v4)}

and the fatal disagreeing pair (t\zy2 + t2y, (^exp v4) X (vi + v2)),

if. Uzy2 [+] t2y = x exp (y + x)

8'. (v3expv4) |~>T| (v1 + v2) =- v3 exp v4

equation v5 X (v6 + v7) = v5 X v6 + v5 X v7 is adequate for its elimination. The new

expression. 6",

((v3 exp v4) X 1/]) + ((v3 exp v4) X v2) = v3 exp v4

introduces a third subproblem. (if, 8"), whose innermost disagreement set represents an

incompatible substitution.

V3 {(x,v3), ((y + x) + 3,i>4), (zy2,vf), (x,v3), (y + x,v4), (y,v2), (x,v3), (y + x,v4)}

since y + x and (y + x) -f 3 are both assigned to v4. Two new subproblems can be

derived from this disagreement set, the first of which is (if,{y~^x/vi}8"). Some of the

corresponding disagreement sets are

P4,i = {(x,v3),(y + x,y),(3,x),(zy2,vl),(y,v2)}
^4,2 = {(x,v3),((y + x) + 3,y + x),(zy2,v1),(y,v2)}
^4.3 = {(x{y+x]+3,vy3+x),(zy2,vl),(y,v2),(x,iu3}}
P4,4 = {(x(y+x)+3(zy2),vy3+xvx),(y,v2),(x,v3)}
^4,5 = {(x(y+xi+3(zy2) A-xy+xy,v\+xv^ + v%+xv2), (x,v3)}
V4S = {(x(y+x)+3(zy2) + xy+xy = xy+xv — Ty+x iiy+xi

1 3 V\ + vy3 v2 = vI+T)}
None of them has a solution under the current restrictions imposed on RGM, not even

if elimination graphs are allowed. A solution under ECOP, on the other hand, starts

examining disagreements from, the innermost set, moving up when no compatible graph

can be built. As indicated, in figure 8.4, the first three sets do not admit solution for the

current set of equations, A. The fourth disagreement set, however, admits a solution,

represented in figure 8.5. This graph suggests an extension of RGM which can address
this and similar equality problems. It requires the introduction of an intermediate

equation,
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exp

+

exp

v3 +

y X

F*4,l

x exp ((2/ + x) + 3) X
to

^4,2

v3 exp (y[ + k) X Vi

x\ exp !((?/ + a:) + 3) X (zy2)

V.4,3

u3| exp (y + x X Vi

Figure 8.4: A-unsolvable links
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2/+^ -v x

t>3 X "l
i y+x y-\-x+ V% V2 = V§

Figure 8.5: The ECOP solution

V4 X (v5 X u6) = (u4 X V5) X u6

which creates a new subproblem, (x^y+r^+zzy2 + t2y = t2, (v3+xv5)v6 + v3+xv2 — v3+x).
Given the disagreement set

V5 = {(x^y+x^+3,vy3+x X v5),(zy2,v6),(y,v2),(x,v3)}

and the disagreement pair (a^y+I,+3, v3+xv3),

fi. x |exp| ((?/+z) +3) x zy2 + xy+xy = xy+x

8'". v5 x v6
i y+x
+ Vv2

- vy+x— v3

the adequate elimination equation, X v?9 = Vyb+V9, finally allows the generation of

6"",

(y+rj+D 9 „y+* v _ „y+*»3" " ' xr6 + »3 x v2 - v?3

which can be matched against ip, as indicated in figure 8.6.
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Rule Elimination Equation Substitution

V3 exp (y + x) x v\ V4 X (VS X V6) = (v4 X V5) X VQ o-i

(vy3+x x v5) x v6 (v7 exp v8) x (v7 exp v9) = v7 exp(vs + v9) 0*2

v3 exp ((y + x) 4- vg) x v6

x exp ((y + x) + 3) x zy2

e selected subexpression
<5i ^ S2 intermediate equation

{v"+x/v„v^xvyv1}
a2 {vyv7,y + x/vs,v79/vs}

Figure 8.6: Intermediate Subproblems in RGM
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The elimination of the fatal disagreeing pair (+,y) with the preservation of the upper

context, represented in figure 8.7, has been achieved only after the application of an

intermediate equation, which actually changed the context. The introduction of in¬

termediate subproblems does not amount to multiple-step disagreement elimination,
described in section 8.2.1, since the latter involves the construction of a chain where

the original disagreeing pair of symbols, (5j, 52), is linked e.g. by a series of equations
of the form

S(Siti) = S(SiUj) S(SjUj) = S(S2u2) S(S2t2)

Intermediate subproblems, on the other hand, may break the sequence by the intro¬

duction of new disagreements at a higher level, e.g.

SiSiti) S(S1u1) = SiSiUj) S (SjUj) = S'(Sku2) S(S2t2)

In the above sequence, the disagreeing pair of symbols of the last equality link, (S', S),
occurs at a higher layer that the pair initially selected, {S\,S2). With respect to this

pair, the equation S(SjUj) = S'(Sku2) neither preserves upper symbolic layers nor

contains the desired symbol, S2, in the expected position. Intermediate subproblems

require additional control structures, since intermediate equations may not have any

relevant syntactic finks with other expressions in the rewrite sequence.

8.2.3 Widened Rules

A-matching a rule against a subexpression of a formula <f> is just a special case of the
more general problem of matching a rule against subexpressions of formulae that are

A-equivalent to <j>.

Definition 8.2.1 (Strong semantic matching)

Given a set of equations A, an expression e and a rewrite rule R. => h2 that does not

share variables with e, R, is strongly A-matchable against e iff there is a substitution

a and an expression e' such that

A |= e^e'
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O disagreeing symbol
I—| expected symbol

upper context

Figure 8.7: Extended Disagreement Elimination

and aSi = , where e" is a subexpression of e!.

Strong A-matchability is more general than standard A-matchability.

Lemma 8.2.1 Let A be a set of (conditional) equations of L, and let e and 6 be

expressions of C that do not share variables. If S is A-matchable against e, then 6 is

also strongly A-matchable against e.

PROOF. Let d be a subexpression of e such that A \= (a6 = e'), for some substitu¬
tion (7. Then A |= (e ^ e[<7S/e']]) and ^ (syntactically) matches 06. Hence <5 strongly
A-matches e. I

Example 8.2.2 The rule R. (a = b) => p(c), ivhere a,b and c are individual constants,

cannot be ty-matched against any of the subexpressions of (f),
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x = b A a = x

given that

(x = h A a = x) = (a = b)
(x — b) = (a = b)
(a = x) = (a — b)

are all invalid. However, given an equivalent version of f>,

x = b A a = b

it is possible to match R against the second conjunct. g

The strong version of A-matching can be partially incorporated to RGM through an

extension of the definition of adequate elimination equation. Given the pair (8,e),
where 8 has to be A-matched against the subexpression e of a conjecture, the selection

of elimination equations does not have to be restricted to those applicable to e. It

would be also possible to consider equations which match higher layers of the formula
from which e has been taken. For this to take place, it becomes necessary to widen 8

accordingly.

Definition 8.2.2 (Widened rewrite rule)

Let R. 8i =>■ <52 be a rule and e be an expression where the subexpression e' has a

single occurrence.

i. A generalised version for e w.r.t. e' is an expression e9 defined as follows.

(a) If each term that occurs in e but outside e! is either an individual variable
or a composite term that contains e' (in the event e' is a term), then e9 = e.

(b) If p{ti,. ..,tn) occurs in e and lies outside e' (in the event (! is a formula),
and tim, ij € {1, • • •, n}, are composite terms that do not contain e' (if
e' is a term), then e3 = (e\Vl/L,,..., VrnHim\)9, where vu .. .,vm are variables
that do not occur in e.
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ii. R'. e[^/e'I eI^2/e']l is the primitive widened rule for R w.r.t. e and e'.

Hi. R". => c'[fiVe'l is a most general widened rule for R w.r.t. iff e9 is

a generalised version for e w.r.t. e'.

Lemma 8.2.2 Let R. ^ So be a valid rule and A be a set of equations. Let (f> be a

formula in which the expression e has a single occurrence.

i. Both primitive and most general widened rules for R w.r.t. <f> and e are valid,

provided that e and Si have the same syntactic type.

ii. If a most general widened rule for R w.r.t. <£|ej] is A-matchable against 4>, then
R, is strongly A-matchable against </>.

Proof.

i. If Si => S2 is valid, then ^ is valid as well, for any formula (f>[ej.

ii. If <f>9\^can be A-matched to (j>, there is a substitution cr such that

A |= o<t>9l6l/el = <f>

Since can be matched against a subexpression of cr<f9(namely, crSi), R is
A-matchable to <t>. I

The next example illustrates how extended elimination equations cover some of the

cases where an expression can be A-matched against a proper subexpression of a trans¬

formed (A-equivalent) version of the conjecture, but not to any relevant subexpression
of the conjecture itself.

Example 8.2.3

i. Given the arithmetical conjecture <f>,

0 = x A y2 + z X w2 = x,
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and a set of equations. A,

vx + v2 = v2 + vx

Vi x v2 = v2 x Ui

Vi — v2 A v3 = Vi = «] = d2 A t)3 = v2

i/ie rule R.. + v2 = 0 =t* (uj = 0 A v2 = 0) cannot be A-matched against either

(f> or its subformula y2 + z X w2 = x: for the last case, given the disagreement set
V — {(V2 + z X w2 = x, Vi + v2 = 0)}, the disagreeing pair (0,2?),

cannot be raised due to the nonexistence of adequate elimination equations. However,

if a wider context, e.g. the full conjecture, is taken into account, the equivalence

(v3 = v4 A v5 — v3) = (v3 = v4 A v5 = v4), or rather its instance

can be adopted as an adequate elimination equation for (0,a;). After the primitive
widened rule for R w.r.t. (j>,

is generated, the disagreeing pair is eliminated: the Ihs expression of equation (f),
0 = a: A v5 = 0. is unified with the Ihs of the widened remove rule, and the final

rule,

0 = i A 1)i+I;2 = I => 0 = 2: A (»] = 0 A i)2 = 0)

is applicable to the conjecture.

ii. As described in example 8.2.2, the rule R. (a = b) => p(c) cannot be 0-matched

against any of the subexpressions of d>,

x = b A a = x

This situation does not change even in the presence of the unitary set A contain¬

ing the logically valid equivalence4
4 It suffices to consider that, given a set of logically valid formulae T and a formula +>, T (= -0 iff |= ip.

y2 + Z X W2
Vi + v2

(0 = x A v5 = 0) = (0 = x A v5 = x) (f)

0 = 2;A-Ui+t;2 = 0 =f> 0 = 2; A (»! = 0 A t)2 = 0)
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E. (uj = v2 A vx = t>3) = (v3 = v2 A = v3)

Let then

R'. a — b A a = x p(c) A a = x

be the primitive widened rule for R w.r.t. <j> and its left conjunct. For the disagree¬

ing pair (a,x) between R' and <f>, an instance of E,

(a = v2 A a = x) = (x = v2 A a = x), provides an adequate elimination

equation. The rule R" generated after the application of the above equivalence,

R". x = b A a = x =>■ p(c) A a — x

is then applicable to p. g

Standard and extended elimination equations can be jointly used in the generation of
rules.

Example 8.2.4 Rule

R. v\2 = 1 =$> = 1 V r2 = 0

is not (syntactically) matchable to

xy x w = z X w A z — 1

To generate a new rule for this formula, the pair (xy xw — zxw,v\2 — 1} is chosen in
the first place. The topmost disagreement set admits (xy X w,v\2) as fatal disagreeing

pair,

6.

xf.

Vl exp v2 - 1

xy X w ' z x w
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Given the set of conditional equations A, containing

t>4 # 0 -

an instance of one of its elements,

v3 = v5

v5 = v6 X v7 A v8 = v6

v3 x v4 = v5 x v4

v5 = v8 x v7 A v8 = ve

Ve7 = V5 = Vq7 X 1)4 = I)5 X #4 (v4 f 0)

is unifiable with 6, and = {Vl/ue, V2/vr, V"®} For F«e new rule, R',

vf2 X v4 = 1 X v4 => V\ = 1 V v-i = 0 (v4 7^ 0)

no adequate standard elimination equation is available for any of the subsequent sub-

problems, hence extended adequate elimination equations can be sought. Given the

disagreement pair,

6'.

V>-

v\2 X v4 = \T\ x v4

xy X W = Z X w

the Ihs expression of (v5 = v6 X v7 A v8 = v6) = (v5 = vs X v7 A v8 = v6), or rather
a subexpression of it, can be unified with 6', by means of <72 = j"1' x Vi/v<,, ^/v6, Vi/v7},
and a widened rule R",

v\2 X v4 = v8 X v4 A v8 = 1 =>■ (vj = 1 V v2 = 0) A v8 = 1 (v4 ^ 0)

is obtained. The final subproblem

6". v\2 X v4 = V8 X v4 A v8 = 1

<t>- Xy X w
—

2 X w A z = 1

admits a disagreement set which represents a substitution that matches 6" against cf>.

□
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8.3 RUE-resolution, ECOP & RGM

As in the case of other difference reduction procedures, RGM operates under the prin¬

ciple that syntactically distinct expressions can be proved (semantically) equal through
the gradual elimination of disagreeing pairs. RGM nonetheless is specialised to dealing

with rule matching and, unlike RUE-resolution and ECOP, it handles both terms and
formulae. From the strategic viewpoint, it can be regarded as a restricted version of
ECOP with a series of additional constraints to improve efficiency.

The restrictions imposed upon the selection of elimination equations substantially re¬

duce the search space and reinforce the difference reduction principle. Each disagreeing

pair has to be eliminated in a single transformation step, i.e. the disagreeing pair of

symbols have to be split between lhs and rhs expressions of the equation. There is

a similarity in this respect between RGM and E-resolution, since the latter allows

the generation of a resolvent only when all differences between complementary literals

are raised. At the level of equality tree generation, however, which establishes the

A-unifiability of terms, paramodulation is applied exhaustively, irrespectively of the

possible effect on difference reduction. E-resolution, therefore, provides effective differ¬

ence reduction only at one stage of the process, whereas RGM sticks to this guideline

permanently.

Elimination equations must also unify with the expression being rewritten and match at

least the upper context of occurrence of the expected symbol in the reference expression.

As a result, the degree of unification for an elimination equation, as defined in the
heuristic version of RUE-resolution, must necessarily be at least 70. This condition is

not sufficient for adequacy though, since an equation may have measure 70 without

actually unifying with any term of the inequality.

As in the case of ECOP, the innermost disagreement set is usually selected in the first

place. This choice however is also influenced by the set of elimination equalities. The
existence of a single adequate equation determines a disagreement set, or at least the

disagreement pair that contains the disagreeing symbol, considering that one of the
sides of the equation has to be unified with a subexpression of the expression being
rewritten. In such cases, the choice of a disagreement set ceases to be an independent
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parameter.

A substitution (not necessarily a partial unifier) still has to be chosen for those cases in

which there are multiply occurring variables, when the mechanism examines all possible

partial unifiers restricted to such variables. The rewriting tree is also pruned as a

result of the requirement that, once a disagreement has been eliminated, no alternative
solution for that pair is sought. This restriction is deductively harmless in those cases

where there is a single way of carrying out the replacement of a symbol with another
one.

Completeness is incorporated to RGM when the decomposition of disagreement elim¬
ination into a series of subproblems is allowed. Extended versions of RGM may be
based on bounded subproblem decompositions, according to a pre-established number
of intermediate steps. A higher number of intermediate elimination equations would be
also required to accommodate the introduction of elimination equality graphs. Heur¬

istic elements present in ECOP, particularly the context-sensitive functions based on

various syntactic measures, could be then employed to reduce the search space5.

Both ECOP and RGM have the ability to preserve solutions for subproblems, respect¬

ively under the form of equality graphs and derived rules. A most general derived
rule represents the solution for a family of subproblems, which can be retrieved from

a rulebase, when required, instead of being repeatedly generated by the mechanism.
This feature is particularly relevant in extended versions of RGM, where multiple-step

disagreement elimination increases the number of subproblems. The storage of solu¬
tions under the form of rules rather than graphs is particularly advantageous in the
context of A-matching, where variables are instantiated in one of the expressions only.

The restriction of disagreement elimination to the rule level makes RGM suitable to

cooperate with proof plans for normalisation, given that plans limit transformations at

the conjecture level to specific syntactic tasks, e.g. the removal of symbols, whereas the
removal of disagreements involves a more complex sequence of operations, as discussed
in chapter 5. The main properties of RGM are summarised in table 8.2.

5 See [Blasius k Siekmann 88], p. 410-1.
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Variable
Instantiation

Disagreement
Set Selection

Elimination

Equality Selection
Other

Features

mgpu

(multiply occurring
variables)

equality-base
sensitive

minimally disagreeing
equality

linked solution
for subproblems

incomplete

Table 8.2: RGM - Main properties

8.4 Conclusions

RGM is a procedure for equality reasoning where each equality link potentially elim¬

inates a fatal disagreeing pair of subexpressions. It provides a substantial reduction of

the search space, under the strict observance of the difference reduction principle. Stra¬

tegic control is mainly centered around the selection of adequate elimination equations,

which, in certain cases, determines the choice of a disagreement set as well.

Given the evidence that complete difference reduction mechanisms are too inefficient

for general use, RGM is then preferable to RUE-resolution or ECOP for appbcations

such as A-matching. Since RGM is suitable for representing certain weak forms of

disagreement elimination, it can cooperate with generic proof plans in the extension of
decidable classes of formulae.
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Chapter 9

Decidable Classes for Peano
Arithmetic

Heuristic functions and the rule generation mechanism may be incorporated in general-

purpose plans to enhance their deductive strength and performance. Peano arithmetic
and its extensions are relevant domains for the application of the resulting plans, due

to the role of these theories in the representation of verification conditions.

A series of plans for the extension of decidable sublanguages is examined in section 9.1.

Before they can be applied to PA, remove rules and elimination equations have to be

selected. A list of recursive functions and relations frequently found in verification

conditions is introduced in section 9.2. Remove rules for deviant symbols follow in

section 9.3. To ensure the effectiveness of the process of subclass enlargement, the

halting problem for sets of partial remove rules is discussed in section 9.4. Limitations

for the extension of arithmetical decidable subclasses and sets of remove rules are

examined in section 9.5, whereas the computation of members of extended classes is

discussed in section 9.6.

9.1 General Purpose Plans

Complexity measure functions and order relations defined for decidable subclasses,

deviant symbols and remove rules provide heuristic guidance for the extension of de¬
cidable sublanguages. Conditional methodicals allow the inclusion of these functions
and order relations among the preconditions of primitive normalisation methods, whose
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original definition is then kept unchanged,

from the composition of such constructs.

9.1.1 The Deciders

General-purpose plans are defined below

Decidel/1 contains the core strategy for the extension of decidable sublanguages.
Whenever more than one decidable sublanguage is known, the function mc is called to

organise them into decreasing order of preference. The subpla.n red_dec_cla/2 then tries

to perform the reduction. If it succeeds, the rewritten conjecture is eventually sup¬

plied to the corresponding decision procedure. Additional subplans are responsible for

calling the function and ordering deviant symbols with respect to the chosen sub¬

language. The subplans rem_devsym/3-b in particular control the removal of symbols
and the elimination of disagreements, employing for this purpose the rule generation
mechanism1.

A second plan, decide2/1, has the same search control as decidel/I for the selection of
decidable sublanguages, the hierarchisation of the deviant symbols and the choice of

remove rules. It is interfaced to a stronger version of RGM that explores conjecture

subexpressions other than the particular one directly involved in semantic matching,

as described in section 8.2.3. Thanks to this extension, given the conjecture

(x)(y)(z){x = 0 A y~ + z = x)

and the rule R. V\ + v2 = 0 => V\ = 0 A v2 = 0, a new rule,

R'. v3 = 0 A Vi + v2 — v3 => v3 = 0 A V\ = 0 A v2 = 0

can be generated to convert the conjecture into

(x)(y)(z){x = 0 A r = 0 A z = 0)

which belongs to CSma-
1 The Prolog code for this plan and all others described in this chapter is listed in appendix F.
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9.1.2 The Simplifiers

Some of the decision procedures integrated into theorem provers have been extended to

perform additional transformation tasks. In the Stanford Pascal Verifier, the decision

procedure for the quantifier-free subclass of Presburger arithmetic behaves as a sim-

plifier: given an expression e of the domain, it returns true if e is a theorem, false if it
is unsatisfiable, and a normalised expression if it is either a satisfiable invalid formula
or a term. In Nqthm, the domain of the simplifier is also larger than the domain of
its core decision procedure: if the input clause belongs to the decidable subclass, it is

reduced to a boolean value, otherwise the resulting transformed formula is supplied to

an inductive prover2.

Neither decidel/1 nor decide2/\ has this ability, since, when a formula cannot be
rewritten into a propositional constant, no output is generated. Another plan, sim¬

plify/1, on the other hand, explores the fact that, even if a formula is not reducible
to a decidable sublanguage, the rewriting process simplifies it, in the sense that the
number of occurrences of deviant symbols (or another measure for such symbols, as

the one described in lemma 6.2.1) decreases. When the reduction fails, the output of

simplify/1 consists of the initial formula and one simplified formula for each sublan¬

guage, corresponding to the failed reduction attempts. Since these expressions are all

equivalent to each other, they can be supplied to an alternative proving strategy, e.g.

induction. The choice of a potentially most adequate version of the conjecture has to

suit the requirements of the new proving strategy, and may be based on length, number
of occurrences of quantifiers, etc.

The new plan has two separate rewriting modules, as represented in figure 9.1. Sim¬

plify1/2 is not interfaced to any difference reduction procedure and is much faster and

deductively less powerful as a result. When a formula cannot be transformed into a

decidable sublanguage by this subplan, both this formula and its simplified version
are supplied to simplify!!/2, which chooses the best (i.e. simplest according to certain
heuristic criteria) candidate for the final rewriting stage, where RGM is called. As
one of the criteria concerns the number of occurrences of deviant symbols, the sim-

2 See [Nelson & Oppen 79], p. 246-7. and [Boyer fe Moore 88].
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plified formula is usually chosen. Rewriting halts whenever an element of a decidable

sublanguage is obtained, or no decidable sublanguage is left.

A second simplifier, weaksimplify/1, imposes additional restrictions on the selection

of equations from equality bases for the elimination of disagreements. It prevents the

application of any equation of the form

v — t or t = v

where v is a variable. The presence of such equalities in difference reduction procedures

increases the search space dramatically, due to the fact that individual variables can

be unified with any term in the course of disagreement ehmination3.

9.1.3 The Rewriters

The effect of each of the three control factors described in section 6.3 — ordering

sublanguages, deviant symbols and remove rules — over efficiency can be empirically

assessed by means of rewriters specially devised for this purpose. Two groups have been
built according to the presence or absence of a difference reduction mechanism, and,

in each group, six distinct cases have been classified according to their main control
features.

Rewrite 1 /4 exhaustively applies all the remove rules available to the system, until the

input expression is reduced to one of the decidable sublanguages, whenever possible.

Rules are applied in the order in which they are stored in the rule base. Each rule is

exhaustively applied before the next one is called.

Rewrite2/b is an extension of rewritel/f that includes RGM to raise disagreements.
As a result, whenever a rule is not applicable to a subexpression of a conjecture, the

system tries to eliminate the disagreements before considering the application of the

following rule.

Rewrites/5, another extension of rewrite1/4, selects a decidable sublanguage before

starting to apply rules, and. once it is selected, only remove rules for its deviant

symbols are tested. No heuristic measures are available though for the selection of
1
See [Blasius & Siekmann 88], p. 403.

254



<t>

Figure 9.1: Plan simplify/1
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sublanguages or rules. If the system fails to reduce a conjecture <f> to a particular

sublanguage, the next one is chosen and the process is repeated, until either cj) is

eventually reduced, or no decidable sublanguage is left. Since just one of the possible

orderings for the removal of deviant symbols is examined, it is deductively less powerful

than the rewriters that examine all of such orderings. Rewrites/5, as well as the systems

that follow, is interfaced to a difference reduction procedure.

Rewrite^/5 additionally restricts the application of remove rules to deviant subformu-

lae, i.e. those containing a deviant symbol. Although it may look irrelevant at first,
this criterion implicitly recognises the syntactic role of remove rules and prevents their

use for any other purpose. Such a feature is not present in standard rewrite systems,

where rules are not distinguished along syntactic lines and are tentatively applied to

any subexpression of a conjecture. Since rewrite^/5 works in connection with RGM,
when a subexpression of (j) does not contain a deviant symbol, the application of the

corresponding rule is not tried, and the mechanism of rule generation is not called

either, thus considerably cutting down the time allocated to unfruitful disagreement

elimination attempts. Rewrite^/5 examines every permissible ordering for the removal
of deviant symbols that occur in a conjecture. As in the case of rewrites/5, no heuristic

criterion is used in the selection of a sublanguage: they are retrieved according to a

fixed order.

Rewrite5/5, besides inheriting all the features of rewrite4/5, heuristically orders de¬
cidable sublanguages before rewriting starts. Decidable sublanguages are organised
in decreasing order of complexity w.r.t. the conjecture. All the permissible permuta¬

tions of deviant symbols that occur in the conjecture are tested, until the reduction is

completed, whenever possible.

Finally, rewrite6/5 has all the features of rewriteb/h and heuristically orders deviant

symbols w.r.t. the selected decidable sublanguage.

The next system in this hierarchy includes heuristic functions to guide the selection

of decidable sublanguages, deviant symbols and remove rules, and corresponds to the

general-purpose proof plan decide1/1. All the rewriters, excluding rewrite 1 /4, have in

principle the same deductive power as this plan, since they have access to the same

rule base and are linked to RGM. Table 9.1 has a summary of the main features of the
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Control Features Disagreement Elimination
absence presence

1. Strict application of remove rules rewrite1/4 rewrite2/ 5

2. Decidable-class oriented rewriting — rewrite,?/5

3. Deviant subexpression selection — rewrite4/5

4. Heuristically ordered decidable sublanguages — rewrite5/b

5. Heuristically ordered deviant symbols — rewrite6/b

6. Heuristically ordered remove rules — decide/1

Table 9.1: Rewrite Systems & Proof Plans for Normalisation

rewriters.

9.2 Subtheories &; Extensions of PA

Since general-purpose plans capture the common structure of families of normalisers,

they are applicable to more than a single theory. Plans devised for enlarging decidable

sublanguages can be equally applied, therefore, to both PA and its conservative exten¬

sions. Among these extensions are those obtained by the introduction of new recursive
functions and relations, which include user-defined operations. Before describing them,

the complexity of specific decision procedures for arithmetical subtheories is examined.

9.2.1 Decidable Subtheories

A simple extension of PA is obtained when the symbol < is added to the subjacent

language to represent the standard (irreflexive) order relation over natural numbers.
When the same symbol is added to the language of Presburger arithmetic, resulting
in CprA* = {0,1, s, +, <}, a new decidable theory, PrA*, is obtained. Any decision

procedure for PrA, PrA* or SMA is respectively adequate for any recursive subclass
of formulae of CPrA, CPrA• or CSma■ Nevertheless, from the point of view of time and
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space complexity, procedures valid for the same class may differ radically.

The most efficient known procedure for PrA, Cooper's algorithm, has deterministic

time complexity of the order of 22' for the worst case, where n denotes the length of
the input formula. A more acceptable behaviour can be observed in certain subsets

of formulae of CprA. The decision process leads to the combinatorial expansion of the

input formula, and depends on the number of alternate quantifiers in the prefix, among

other factors.

Concerning PrA*, the quantifier-free class of formulae of CPrA. admits a decision pro¬

cedure based on the SUP-INF method, whose complexity is not worse than 2n, n being

the length of the formula. Even if restricted to this class, Cooper's algorithm seems to

be less efficient than the SUP-INF based procedure, due to additional parameters that

affect formula expansion4.

For SMA, although there seems to be no study about its decision procedures or their

complexity, there are at least two proofs for its decidability, one based on quantifier

elimination and the other on the fundamental theorem of arithmetic. It is likely that

a procedure directly obtained from the first proof is more complex than Cooper's

algorithm5.

Complexity considerations may influence the choice of both decidable subclasses and

remove rules. Given the decidability of PrA* and the availability of an efficient pro¬

cedure for its quantifier-free subclass, the choice of CprA* instead of £prA as decidable

sublanguage eliminates < from the list of deviant symbols. Moreover, for quantifier-
free formulae involving <, given the options

(a) the reduction to CprA through the removal of < by the application of a total remove

rule,

vx < v2 => (3u3)(u3 / 0 A vt + v3 = v2)

4 Cooper's algorithm is described in [Cooper 72], Some remarks on the efficiency of this algorithm
and of the SUP-INF procedure can be found in [Shostak 77], p. 530.

5 None of the texts quoted in this dissertation makes any reference to decision procedures for SMA.
Also, the decidability of SMA is seldom mentioned in the literature; amongst the few exceptions
are [Boolos k Jeffrey 89], p. 219 and [Epstein k Carnielli 89], p. 202. Proofs for the decidability of
SMA can be found in [Skolem 70] and [Mostowski 52].
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which nonetheless introduces occurrences of quantifiers in the rewritten formula,

and

(b) the reduction to JZprA>, in which case < does not have to be eliminated,

the first solution excludes the use of the SUP-INF procedure for the decision of the

resulting quantified formula, whereas the second solution is still compatible with it.

As a result, CPrA* and jCsma become the new pair of decidable sublanguages.

Concerning remove rules, as already discussed in section 6.3.3, the use of those that

introduce quantifiers in the course of rewriting should be discouraged, both w.r.t. PrA*
and SMA, due to the effect of quantifiers on complexity. For PrA*, the presence of

quantifiers excludes the use of decision procedures for its quantifier-free class. For SMA,
which seems to require the use of procedures directly based on quantifier elimination,

the number of quantifiers in a formula directly influences the size of its expansion.

9.2.2 Definitional Extensions

A number theoretic function (of arity m) is any function that has Nm as domain and
N as range. A number theoretic relation (of arity m) is any subset of Nm. Number
theoretic functions and relations form in principle the universe from which extensions

of PA are derived. Some of these functions and relations are nonetheless representable

in PA.

Definition 9.2.1 (Weak & Strong Representability)

Let C'PA be the expansion of CPA generated by the inclusion of infinitely many individual

constant, function and predicate symbols of each arity, and let 9T' be a structure which

expands 9T = (N, 0,1, s, +, x) to CPA. Let T be a theory in CpA.

i. A number-theoretic relation p<71' (of arity j) is weakly representable in T iff there
is a formula 4>(v\,..., Vj) in CPA such that

?(«!,...,»,-)[«] iff tmK1(0),..,j"'(0))

for any assignment a = {ni/vi,...,nj/vj}, with nA,... ,nj £ N.
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ii. A number-theoretic relation pm (of arity j) is representable in T iff there is a

formula ..., Vj) in CPA such that

if fJl' \= p(vu ..., Vj)[a] then T |= cf(sni (0),..., s"J(0))
if W ^ p{vi,.. .,Vj)[a] then T f= -i0(sni(O),..., snj(0))

for any assignment a = {ni/vi,...,n]/v3}, with nl5..., nj G N.

Hi. A number-theoretic function fm' (of arity j) is representable in T iff there is a

formula f>(vi,... ,vj+i) in LPA such that, ifV\' }= f(vi,..., Vj)[a] = Vj+X[a], then

T (= ^(an'(0)1...>«ni(0)It»i+i)s(«J-+1 = an'+I(0))

for any assignment a = {ni/«i,.. .,n>+1/">+i}, with nu... ,nj+1 € N.

iv. A number-theoretic function (of arity j) is strongly representable in T iff
there is a formula (f(vi,... ,Vj+x) in CpA suchthat. if%\! \= f(vi,... ,Vj)[a] = Vj + l[a],
then

T (= <^(sni(0),.. . ,snj+1(0))

and T \= (3\vj+\)<f>(v\,..., Vj, vj+1), for any assignment a = {ni/m?..., "J+1/y,+i},
with ni,..., nj+i G N.

If pm is representable in PA by a formula 4>(vi,..Vj), then, according to defini¬
tion B.2.4, 4> is a possible definition for p in PA. A definitional extension of PA is

obtained after the introduction of

p(vu...,Vj) = <j>(vu . . . ,Vj)

as a new axiom. Let , on the other hand, be strongly representable by a formula

f>(vi,.. .,Vj+1). Given that if must satisfy the condition

if(vu.. .,vj+1) A if(vu.. .,Vj,vi+2/vJ+1) D vj+1 = vj +2

which ensures the unicity of the represented function for a given input v1:.. .,Vj, then,
also according to definition ii, if is a possible definition for f in PA. A definitional
extension of PA follows from the introduction of a new axiom,
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f(vu...,vj) = vj+1 = <t>(vu.. ,,vj+1)

Since definitional extensions are conservative, all the decidable subclasses for PA, ac¬

cording to theorem C.5.2, preserve their decidability and type when representable func¬
tions and relations are introduced. Moreover, any representable function or relation
admits a complete set of rules for their removal in terms of CpA.

Lemma 9.2.1 Let T be a theory in CpA. If /^' is strongly representable in T, and

p01 is representable in T, then there are T-valid complete sets of remove rules for f

and p w.r.t. CPA ■

PROOF. Since pm is representable in T, its defining axiom is the source of a total
remove rule, p(vx,..., Vj) => 4>(v\,..., Vj), where <f(v1,..., Vj) belongs to CPA. In the
case of a function , given a. possible definition

f(v1,...,vj) = vj+1 =

where if is also a formula of CpA, a complete remove rule scheme for / has the form

plf(vu.. => (3v)(ip(vi,Vj, v) A pY / ..,«>)])

where v does not occur in p. I

For function symbols, whenever a possible definition (f{v\,..., n/+1) is an equation of
the form uJ + 1 = t. where t is a term of CPA, then

f(V\, . . ., Vj ) => t

corresponds to a total remove rule for /. Given that

(i) every recursive relation is representable in PA, and

(ii) every recursive function is strongly representable in PA,
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it follows from the above lemma that the removal of symbols that stand for new recurs¬

ive functions and relations can be, at least in principle, entirely dealt with by complete

sets of rules6.

9.2.3 Recursive Functions and Relations

Subtraction, exponentiation and division are some of the recursive functions that fre¬

quently occur in verification conditions. A similar remark applies to recursive pre¬

dicates such as order relations. The complete list of new symbols added to CPA, as

well as their intended meaning, is given in tables 9.2 and 9.3. The resulting expanded

language, CPA., has two individual constant symbols, 0 and 1, fifteen function symbols,

s. -f, X, —, pr, exp, /, double, Sum„, half, gcd, gfc, rmdr, min„, max„

and nine predicate symbols,

<) >, >, |, even, prime, prime^ =n

PA* is obtained as the definitional extension of PA in which the above symbols are

defined by the CPA-formulae that represent in PA the corresponding functions and
relations. Order relations, for instance, require quantified formulae,

fj < V2 = (3u3)(u3 / 0 A Di + »3 = v2)
Vl < v2 = (3u3)(U! + v3 = v2)
Vi > V2 = (3u3)(u3 / 0 A v2 + v3 = Ui)
Vi > V2 = (3u3)(u2 + v3 = tq)

and the same applies to the other predicate symbols7,
6 Recursive functions and relations are also representable in Richard arithmetic, which is weaker
than PA. See for instance [Monk 76], p. 248. Also, a function is representable iff it is strongly
representable, as mentioned in [Mendelson 87], p. 130.
To simplify the presentation of these definitions, some of the newly introduced symbols are adopted
as abbreviations for CpA expressions, as for instance the symbol for divisibility in the definition of
primej, a relation defined in [Boyer &: Moore 79]. Also, (m ^ v2) is an abbreviation for -'(ui < v2).
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vi\v2 = V\ ^ 0 A (3v3)(vi x v3 — v2)
Vi =n v2 = (3v3)(3v4)(3v5)(vi =nx«3 + ti5A»2=nxi)4 + v5), for all n E N
even(vi) = (3v2)(vx = v2 + v2)
prime(i>i) = «i / OA (v2)(v3)(vi = v2 x v3 D ((v2 = 1 A v3 = vi) V (v2 = v\ A v3 = 1)))

prime!(ui,i>2) = «2 7^ 0 A (v3)((v3|vi A 1 < v3) D (v2 < v3))

Some of the new functions can be represented by means of equations,

double(n1) = v2 = V\ + tq = v2

Sumn(t)1,...,rn) = rn+1 = vn+l=vl + \-vn, for all n e N

whereas others require composite formulae,

Vl - V2 = V3

pr(ui) = v2

half(ui) = v2

min„(ui,. ,.,vn) = vn+1

max„(t)], ...,vn) = vn+i

= (v2 < vi A vi = v2 + v3) V (v2 </t vi A v3 = 0)
= (1 < vi A vi = s(v2)) V (1 vi A v2 = 0)
= vl = v2 + v2 V v! = s(v2 + v2)
= A"=i(wi A vn+i) A V"=i(vn+1 = Vj), for all n £ N
= ALiK A tfn+i) A V"=iK+i = Vj), for all n £ N

For some of the functions, the representation in CpA involves a considerable enlarge¬

ment of the original formula, even when some of the new symbols are adopted as

abbreviations for Cpa expressions.

gcd(vi, v2) = v3 = v3|vi A v3|v2 A (v4)((v4|vi A v4|v2) D v4|v3)
vi/v2 = v3 = ((v2 = 0 V vi < v2) A v3 = 0)

V (v2 / 0 A V) v2 A (3v4)(v4 < v2 A v3 x v2 + v4 = vi))
gfc(vi, v2) = v3 = ((vi < 1 V prime(vi)) A v3 = vl)

V (v3|vi A (v4)((v4|vi A v4 < v2) D v4 < v3))
rmdr(vi, v2) = v3 = (v2 = 0 A v3 = vi) V (v2 / 0 A v3 < r2 A (3v4)(vi = V4 x v2 + v3))

The only function symbol of CPA. still missing in the above list, exp, requires the

equation

Vi2 = V3 = v3 = S(e(vuv2),v2)

where
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e(vuv2) = (-lv3[6{v3,0) = 1 A (Vv4)(u4 < v2 D (S(v3,v4 + 1) = S(v3,v4) x tq))]
6(vi,V2) = P(K(V!),L(Vi),i>2)
K(vi) = ^v2[(^v3)(v3 < vx A J(v2, V3) = V!)]
L(vi) = pv2[(3v3)(v3 < Vi A J(v3,v2) = tq)]

j(vliv2) ~ H((V\ + tq) X (fl + V2 + 1)) + Vj

i?(vi) = nv2[vi <v2 + v2\

and n is the minimalisation operator. /3(vi,v2,v3) denotes the Godel ,5-function, which
is strongly representable in PA by the formula

(3n5)(n1 = (1 + (v3 + 1) X v2) x v5 + v4 A v4 < 1 + (v3 + 1) X v2)

Once formulae that strongly represent the functions A", X, if and // are introduced
in the equation that defines exponentiation, the resulting LPA expression is highly

complex from the syntactic viewpoint (i.e. length)8.

9.3 Arithmetical remove rules

When efficiency is ignored, given that there are complete sets of remove rules for every

new predicate and function symbol of Hpa- in terms of CPA, the reduction problem

for both CPA and its expansion are essentially identical. Provided that the set of total

and complete rules is normalised, all the new symbols can be eliminated in a first

rewriting stage, where no search control is required. As control matters only after a

formula of CPA is obtained, there would be no reason to examine conjectures outside

this language. In the set of formulae of CPA, on the other hand, partial rules have an

essential role from the deductive point of view, since the undecidability of PA means

that deviant symbols cannot be removed from all contexts.

If the complexity of the rewriting mechanism is taken into account, there are cases

where, to prevent the introduction of quantifiers, additional deviant symbols or heavily
8 The representation of exponentiation in PA is examined in [Enderton 72], p. 245 - 249. As discussed
in chapter 11, future extensions of the rule base may include implication rules as well, as for instance

xy — z => (j=OAz=l)V(t/ = lAi = z)Vl<}

264



Symbol Well-formed
term

Intended meaning

exp uv iterated product of u by itself (v iterations)
double double(u) double of v
half half(u) arithmetical half of v

/ v/u arithmetical quotient of v and u
rmdr rmdr(u, u) remainder of the quotient of v and u

gcd gcd(v,u) greatest common divider of v and u
- v — u arithmetical difference between v and u

pr pr(u) predecessor of v
gfc gfc(n, v) greatest factor of u less than or equal to v

min„
maxn

Sumn

min„(u1,.. ,,vn)
maxn(u1,..., vn)
Sumn(ui,... ,vn)

minimum element of the n-tuple
maximum element of the n-tuple
sum of the n-tuple

Table 9.2: Recursive Functions

Symbol Well-formed Intended meaning
formula

< u < V u is less than v

< U < V u is less than or equal to v
> U > V u is greater than v
> U > V u is greater than or equal to v

| u\v v is divisible by u
even even(u) v is a natural even number

prime prime) v) v is a natural prime number
primej primej (u, v) u has no non-unitary divisor less

than or equal to v

—n u =n V u and v are equivalent modulo n

Table 9.3: Recursive Relations
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expanded rewritten formulae, partial rules for completely removable symbols have to be

given preference. One of the most typical examples concerns exponentiation, which,
besides the total rule derived from its explicit definition, also admits partial rules

derived e.g. from the base equation of its recursive definition,

As a result, the transformation of formulae of £pA> cannot be restricted to the study

of CpA .

9.3.1 Totally Removable Symbols

Proof plans can be used for the extension of decidable subclasses only after a set of

remove rules has been selected. The definitions for the new symbols of CpA• in terms

of CPA, described in section 9.2.3, are the primary source for such rules. The symbols
for which a total remove rule is available are

Given the current rewriting strategy, according to which the removal of symbols is

divided into two blocks, made up of totally and partially removable symbols, the ap¬

plication of total rules has to come first, since at least some of them introduce partially

removable symbols that are deviant w.r.t. one of the decidable sublanguages. For in¬

stance, the rule for | introduces x, which is deviant w.r.t. CprA>, and the rule for even
introduces +, which is deviant w.r.t. Csma-

'<' is the only totally removable symbol for which additional partial rules are available

in the rule base. Given that it belongs to one of the decidable sublanguages, the rules
for the other order relation symbols have not been derived from their definitions in PA,

but rather from

which have the advantage of being quantifier-free. Once all total rules are normalised,

HpA• is replaced with

1

v x vu

<i >5 even, prime, prime^ |, s, double, pr

< v2 = (tq = v2) V (tq < v2)
> v2 = (tq = v2) V (v2 < tq)

tq > v2 = v2 < tq
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tpA*> = {0,1, +, X, exp, - , half, / , gfc, rmdr, gcd, minn, maxn, <}

where < is the only predicate symbol left. The new sets of deviant symbols

are { X, exp, —, half,/, gfc, rmdr, gcd, min„, max„} (with respect to CPrA.) and

{+, exp, —, half,/, gfc, rmdr, gcd, min„, maxn, <} (with respect to jCsma)■ Apart from
its total rule,

Vi < v2 => (3u3)(u3 ± 0 A vx + v3 = v2)

three additional quantifier-free partial rules for <,

0 < 0 => 1

0 < v => r / 0
1 < v => (r / 0)A (t) / 1)

have been selected. Since < is not deviant w.r.t. jCPrA*i these rules are used only when

C-sma is the target decidable sublanguage. When the total rule for < is applied in

the first place, the introduction of occurrences of + may prevent a formula from being

reduced to SMA.

Example 9.3.1 Given the conjecture x2 X y / z3 A 1 < x X y, the application of the
total remove rule for < generates

x2 x y ^ z3 A (3w)(w ^ 0 A 1 + w = xX|/)

which cannot he reduced to either CprA' or £sma by the current set of remove rules. If

a partial rule that does not introduce new occurrences of deviant symbols or quantifiers,

l<v => (r/OAr/l)

is chosen instead, the resulting rewritten formula,

a;2 X 1/ / z3 A x X y ^ 0 A ixt//l

now belongs to jCsma-
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Symbol Rule

- v\ - v2 = v3 => (v2 < A v\ = v2 + v3) V (v2 ft vi A v3 = 0)
Vl - v2 < v3 => (v2 < vi Avi < v2 + v3) V (v2 ft vi Av3 ^ 0)
Vi < v2 — v3 =4 v3 < v2 A vi + v3 < v2

Vl + (V2 - v3) = v4 =4 (v3 < v2 Avi +v2 = v3 + v4) V (v3 ft v2 Avi = v4)
Vl = v2 + (v3 - v4) =4 (v4 < v3 A in + v4 = v2 + v3) V (v4 ft v3 A vi = v2)
Vl = {v2 - V3) + V4 =4 (v3 < v2 A vi + v3 = v2 + v4) V (v3 ft v2 Avi = v4)
Vl + (v2 - v3) < v4 => (v3 < v2 A vi + v2 < v3 + v4) V (v3 ft v2 Avi < v4)
V\ < V2 + (v3 - v4) =4 (v4 < v3 A vi + v4 < v2 + v3) V (v4 ft v3 A vi < v2)

exp v\3 = 0 =4 vi = 0 A v2 ^ 0
Vl2 = 1 =4 vi = 1 V v2 = 0
Vo

vf = Vl =4 «i = 1 V ti2 = 1 V (i)i = 0 A »2 ^ 0)
V-2Vj2 = v2 =4 vi = 1 A v2 = 1

Vj2 < Vl =4 v2 = 0 A Vi 0 A Vi ^ 1
vVi2 < V2 =4 (vi = 0 A v2 ^ 0) V (vi =1Av2/0A»2^1)
Vl < Vj2 =4 (vi = 0 A ft = 0) V (vi / 0 Avj ^ 1 A d2 ^ 0 A »2 1)
v2 < v\2 =4 v2 = 0 V (vi ^ 0 A vi / 1)

Table 9.4: Partial rules for Subtraction and Exponentiation

For this reason, in the particular case of <, total and partial rules coexist in the rule
base. For subtraction, to avoid the existential quantifier of the remove rule-scheme,

6\vi - v2]] =4- (3u3)(((n2 < A vx = v3 + v2)V
V(v2 ft v1 A v3 = 0)) A <f>lV:i/(vi - «2)1)

an incomplete set of quantifier-free partial rules has been chosen instead, the first

of which is the definition of — in CPA.. Eight distinct contexts are covered. For

exponentiation, the selected partial rules avoid the main disadvantage of its total rule,
i.e. the size of the expanded formula. Both groups of rules are listed in table 9.4.

Quantified rules have been allowed for the remaining function symbols, partly due to

the fact that their possible definitions in CPA already contain quantifiers. They are

actually instances of the corresponding remove rule schemes, gcd, for instance, includes

gcd(u1, v2) = v3 => v3\vi A v3\v2 A (f4)((f4i A v4\v2) D v4\v3)
gcd(u1,u2) < v3 =4- (3v4)(v4 < v3 A v41'tq A v4\v2 A (u5)((u5|'U1 A v3\v2) D v3\v4))

The complete arithmetical rule set, 1ZPA*, can be found in appendix H.
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9.3.2 Partially Removable Symbols

Both + and X have only partial rules in the rule base lZpA*. All of the chosen rules

are quantifier-free. Most of them do not introduce deviant symbols, and only a few

contain < in their rhs expressions. They can be classified in three main groups. First,

there are those that simplify expressions, through their reduction either to proper

subexpressions,

» + 0 v

I) x 1 =>■ v

or to shorter expressions, unrelated to the original ones,

s(0) =t> 1
v° 1

There are also those which decompose atomic formulae into boolean combinations of

simpler atoms, where the arguments in the new subformulae are subterms of the argu¬

ments of the original atom, or individual constants of the underlying language, e.g.

Ui + v2 = 0 =► = 0 A r2 = 0
Vi < 1 + u2 Vi = v2 V V\ < v2

»i X t)2 = q X v3 => Vi = 0 V v2 = v3

A final group has rules which replace formulae by propositional constants, such as

t>i + v2 < 0 => -L

In spite of deductive limitations, partial rules play a major role when it comes to effi¬

ciency, due to the absence of explicit occurrences of any predicate or function symbols

(other than = or <) in their rhs expressions, and the limited expansion of the rewritten

formula, when compared to some of the total rules. The set of partial rules is also listed

in appendix H.

9.3.3 The Equality Base

The application of remove rules becomes blocked in the presence of fatal disagreements.
To eliminate them, difference reduction procedures such as RGM (the rule generation
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mechanism) employ equations in the construction of equality graphs, where neighbour¬

ing expressions are unifiable or matchable. Since decidel/l, decide2/1, simplify/1 and

weaksimplify/1 are interfaced to RGM, a set of equations must then be available to

these plans9. The algebraic properties of some of the symbols, specially their commut-

ativity, associativity and distributivity w.r.t. other symbols, are the primary source of

equations. The set of remove rules itself is an additional source, since they are derived
from either equalities or equivalences. Besides the absence of certain symbols in their

rhs expressions, they can also raise disagreements, as for instance one of the rules for

+ 5

Ui + v2 = Uj => v2 = 0

whose instance

vx + S(*i,.. .,t„) - V! => S(tu.. .,tn) = 0

is an elimination equation for the pair (+ ,5), where S is any function symbol.

A substantial reduction in the search space is obtained when rules whose lhs expressions

are terms are excluded from the generation of new rules, since terms are potentially
matchable to any subterm of the conjecture that contains the relevant deviant symbol.

Also, for equality bases such as SpA* , where the sides of each equation are either both

terms or both atoms, the selection of disagreement sets between remove rules and

conjectures can be limited to atomic subformulae of the conjecture, given that, under

these circumstances, semantic matching takes place only between atoms or terms. The
effects of both restrictions are examined in the next example.

Example 9.3.2 Suppose the conjecture

y X z2, < x A x x (y + z) = y X x

has to be reduced to CSMA, and that the available remove rules for + are

9 RGM is described in chapter 8. The complete set of arithmetical equations Spa* can be found in
appendix H.
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R

R-2

v + 0 => v

0 + v => v

R3 Vi + v2 = 0 => vi = 0 A v2 — 0
i?4 V! + V2 = V! =>• V2 = 0

i?! and i?2 are matchable to terms, whereas R3 and R4 are matchable to atoms. Since

none of them is applicable to the conjecture, elimination equations have to be selected
to try to raise disagreements. Each rule has to be examined in turn. Rx and R2 are

each linked to a pair of disagreement sets, all of which are made up of terms,

where the solution of any of them leads to a solution for the original problem. As

heuristic criteria discourage the generation of new rules applicable to terms, the four

pairs above are ignored.

For each of the other two remove rules, whose Ihs expressions are formulae, there are

also two disagreement sets. R4. for instance, involves

However, since all equations of Spa* , listed in appendix H, consist of formulae whose

rhs and Ihs expressions are both atoms or both terms, the first of the above pairs is

unsolvable, for no equality chain can link a composite to an atomic formula if there
is no equation where one of the sides is an atom and the other one is a composite

formula. Hence, from eight disagreement sets, six have been disregarded: four of them

were composed of terms, and tivo contained composite formulae. Only two then are

(x X {y + z), v + 0) (Rt)
(y + z, v + 0) (Ri)

(x x (y + z), 0 + v) (R2)
(y + 2, 0 + v) {R2)

(y x z2 < x A x x (y + z) = y X x, vi + v2 = V\)
(x x (y + z) = y x x, vx + v2 = vi)

left,

(x x {y + z) = y x x, vx + v2 = 0) (R3)
(x x (y + z) = y x x, vx + v2 - vf) (R4)

A new applicable remove rule is eventually obtained from R4. □
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9.4 Termination

The effective enlargement of a subclass requires that the process of removal of deviant

symbols halts. Termination has to be ensured both locally, w.r.t. the application of

rules for each symbol, and globally, for the elimination of all deviant symbols.

The existence of a well-founded relation for deviant symbols, as described in sec¬

tion 6.2.2, satisfies the requirements from the global point of view. Figure 9.2 presents

a well-founded order for deviant symbols with respect to CprA* and Csma- Total or¬

ders can be generated once certain restrictions are observed. Unconnected symbols
can be removed at any stage of rewriting: this is the case, for instance, of exp and —

with respect to CprA'. Bottom elements of chains, on the other hand, must be placed

towards the end of the total order. In the case of jCsma, < can be succeeded only by

exp, which is also minimal: for all the other symbols, since each of them has at least
one rule containing < in its rhs expression, their removal must antecede <. Global

termination can then be guaranteed on the following grounds: given a total ordering

(5j,..., Sn) for a finite set of deviant symbols,

i. If Si is the first symbol of this ordering that occurs in a conjecture <f>, remove

rules for 5< are exhaustively applied to a conjecture 4>.

ii. If Si is completely removed, the next symbol in the ordering is selected and the

process is repeated from start. When no symbol is left, the process is complete.

iii. If it is not possible to remove all occurrences of Si from <j>, the process fails.

Given that no rule for a symbol in this ordering, due to its construction, introduces

any previously removed symbol, no deviant symbol is left in the rewritten conjecture

after the removal of Sn, in which case an element of the chosen decidable subclass must

have been obtained. Local termination, on the other hand, is ensured only after the

set of remove rules for each deviant symbol is examined.
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SMA

Intermediate language
Decidable sublanguages

Deviant symbols

cpa"

Cpra' and Csma

x, exp, —, half, /, gfc, rmdr, gcd,
min„, max„ (w.r.t. CPrA-)
+ , exp, - , half,/, gfc, rmdr, gcd,
min„, maxn, < (w.r.t. CSMa)

Figure 9.2: Well-founded Orders for Deviant Symbols
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9.4.1 Chain-reducing Rules

The application of partial dominant rules always halts, given that the measure for total
rules of lemma 6.2.1 is also valid in this case: any rule of the form

Si(f1; • • • ; C) -4* Sj (tii 5 • • • i ^m )

where 5,- ^ Sj, reduces the number of occurrences of Si in a layer of depth d in a

conjecture f, and possibly increases the number of such occurrences at lower layers.
Since the expansion of the rewritten formula in the course of rewriting is finite, a

non-negative decreasing measure can be defined as a result.

This measure, however, does not necessarily decrease for partial non-dominant rules.

For instance, when

r>i + v2 = 1 X (it! + v3) =t> v2 = v3 (*)

is applied to x + (y + z) = 1 X (x + (w + 3)), which has one occurrence of + at depth

2, the resulting formula, y -\- z = tn + 3, has two occurrences of + at this depth. Each

group of non-dominant remove rules may require therefore a distinct measure. The

simplest case involves a reduction in the total number of occurrences of the deviant

symbol in the conjecture. For function symbols, this happens only when the number

of occurrences of each variable in the rhs expression of a rule is less than or equal to

the number of occurrences of the same variable in the lhs expression, as in

i>i2 = 0 => iq = 0 A v2 ^ 0
Vi X V2 = V3 X V2 => V2 = 0 V iq = V3

or even in (*). For predicate symbols, the number of occurrences always diminishes,

provided that the lhs expression of the rule is an atom.

Lemma 9.4.1 Any finite and normalised set of atomic remove rules10 for predicate

symbols is noetherian.

PROOF. Let 1Z be a normalised set of atomic remove rules for predicate symbols

S = {pj ,. .., pn}. Let msr(e) be defined as the number of occurrences of pi,...,pn
10 A rule is atomic iff its lhs expression is an atom.
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in an expression e. The application of any rule R of 1Z to a formula f> then reduces

msr{4>), given that R must have the form

■ • • ; ^ P(^l) • • • > ^m)

such that p £ S. Hence, since any instance of the rhs expression of a rule of TZ has
fewer occurrences of symbols of S than its lhs expression, msr is a termination measure

for this rewrite set11. I

The above lemma applies to the set of selected partial rules for <, since they are

all atomic. For the remaining symbols, however, other results must be sought. Two

distinct types of partial rules are examined after the introduction of the notion of chain

reduction.

Definition 9.4.1 (fTchains)

Let e be an expression of C, and R. 81 =>• S2 be a partial remove rule for a symbol S of

L.

i. A symbol chain S of e is any finite non-empty sequence of symbols that satisfies

one of the conditions.

(a) S = (S') and S' occurs in e, or

(b) S = (Si,...,Sn), e has a subexpression of the form Si(ti,..., cm), and

(S2, ■ ■ -Sn) is a symbol chain for ei; for some i, l <i<m.

ii. A 5-c.hain {Si,..., Sn) for e is a symbol chain for e such that Si = Sn = S. The

length of a S-chain is the number of occurrences of S in the chain.

Hi. R. is chain-reducing w.r.t. S iff, for every substitution o for the free variables of

81, the longest S-chain of aS2 has fewer occurrences of S than the longest S-chain

of cr8\.
11 For non-atomic rules, occurrences of the deviant predicate symbol may actually increase, as in the

case of the (rather artificial) remove rule for <,

(tU < v2) D <t> =S> (i>i = v2 A <j>) V (ru < v2 A 0) V t>2 < 1>1
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iv. R is chain-preserving w.r.t. S iff there is a substitution a for the free variables

of Si such that the longest S-chain of aS2 has the same number of occurrences of
S as the longest S-chain of aSi.

Example 9.4.1

i. Figure 9.3 shows three examples of S-chains, one with length 2 and two with

length 1.

ii. The rule

Vi + v2 = Vi + v3 => v2 = v3

is chain-reducing w.r.t. + . since, given any substitution o = {il / v-i /v2 /v3},

if the longest -\--chains of t\, t2 and t3 have respectively lengths ni, n2 and n3, then
the longest +-chain of (ti + t2 = + t3) has length max(ni + 1, n2 + 1, n3 + 1),
whereas the longest -\--chain of (t2 — t3) has length max(n2,n3).

Hi. The rule

Vi < 1 + v2 => (V! = v2 V V: < v2)

is chain-preserving w.r.t. +, for, given the substitution a = {-1 + + y>lv\, Qhi}>
the longest +-chain of both rhs and Ihs expressions of the rule, after the applica¬
tion of a, has length 2.

□

Chain-reducing rules may be redefined in terms of occurrences of variables in their rhs

and lhs expressions.

Lemma 9.4.2 Let R. ..., vn) => 82{vi, ... ,vn) be a partial remove rule for S
such that Vi,...,Vj, j < n, are the variables shared by 6i and S2. R is chain-reducing
w.r.t. S iff all the occurrences of V\,..., Vj in lie in the scope of occurrences of 5.

PROOF. If each occurrence of v,-, 1 < i <j, in 8\ takes place in the scope of occur¬
rences of S, then, for any substitution cr = {<]/vi, • • •, tn/vn}, the longest 5-chain of
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b c

Figure 9.3: Examples of 5-chains

c6\ has at least length / -f 1, where I is the length of the longest 5-chain of f1?..., tj.
Since 5 does not occur in 62, the longest 5-chain of ct<52 has length I.

If there is an occurrence of a variable u,-, l <i<j, in 61 that takes place outwith

the scope of an occurrence of 5, let a = {^/vi,..., /vn} be a substitution such that
has a 5-chain of length I. which is also the length of the longest 5-chain in a8x. Since

by hypothesis u; also occurs in <52, the longest 5-chain of both a8x and a62 has length
I. Thus R is not chain-reducing. I

Clearly, every total and partial dominant remove rule is chain-reducing. Termination

can be guaranteed for any set of chain-reducing rules for a symbol 5.

Lemma 9.4.3 If TZ is a finite set of chain-reducing partial remove rules for S, then

IZ is noetherian.

PROOF. (By transfinite induction on the length & number of occurrences of 5-chains)

1Z is noetherian iff. for every formula 6 of the underlying language, any ^-rewriting
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sequence for f> is finite. Let then the set of formulae of the underlying language be

partitioned in subclasses defined by a pair of parameters, (n,m), such that

i. n is the length of the longest 5-chain of every element of the subclass, and

ii. m is the number of occurrences of 5-chains of length n (i.e. the longest 5-chain)
in every element of the subclass.

Clearly, every formula of the underlying language belongs to one and only one element
of the above partition. As a result, TZ is noetherian iff, for every (n, m) £ N2, rewriting
halts for each formula of the subclass defined by (n,m). Since (N2,C) is well-ordered,
where C is the lexicographic order for N2, transfinite induction is applicable.

For any well-ordered set (X, <), the principle of transfinite induction asserts that

(u)(u el D ((v)((v £ X A v < u) D ip(v)) D if(u)))

D

(u)(u el D ip{u))

where if is a wf formula of the underlying language12. Taking (N2, C) as the well-
ordered set for the present lemma, the above principle can be instantiated to

(V(n, m))((n, m) £ N2 D ((V(n', m'))(((n', m') 6 N2A(n', m') C (n, m)) D ip({n',m'))) D ip((n, m))))

D

(V (n, m))((n, m) £ N2 D ip{{n, m)))

After a few manipulations, the induction hypothesis unfolds into a pair of hypotheses,
as schematically indicated below,

(n',m') C (n.m) D ip((n',m'))
(n' < nV (n' = n A m' < m)) D ip((n\m'))

(n' < n D m'))) A ((n' = n A m' < m) D if((n', m')))
whereas if((n,m)) remains as induction conclusion.

Let the induction hypotheses and conclusion be represented as

12 See for instance [Mendelson 87], p. 8.
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{IHi) Rewriting halts for every formula where 5-chains have length less than n

(IH2) Rewriting halts for every formula whose longest 5-chain has length n and
which contains fewer than m occurrences of 5-chains of this length

(IC) Rewriting halts for every formula where the longest 5-chain has length n and
which has m occurrences of 5-chains of this length

and let (f)Q be an element of the subclass defined by the pair (n,m).

Case (1) If no rule in 1Z is applicable to d>0, then the only possible rewriting sequence

for <f)o is empty.

Case (2) If there is a rule in 1Z which is applicable to <fi0, then let

/ -Ri / R^ Rp / Rp-t-1 / \4>o => 4>\ =>• • • • =>- 4>P => ■ ■ ■ 0)

be a rewriting sequence for (f>0. As indicated in figure 9.4, three cases must be con¬

sidered.

i. If there is a rule R. Si =>■ S2 which is applicable to a subexpression e of cf>0 that

has a 5-chain of length n, let a be the substitution such that e = aS\. Since each

rule of 1Z is chain-reducing w.r.t. 5, the longest 5-chain of e is shorter than the

longest 5-chain of aS2. Since e by hypothesis has a 5-chain of length n, it must

be the longest 5-chain of the expression (otherwise n would not be the length of
the longest 5-chain of 4>0). As a result, the longest 5-chain of a62 has length less
than n and has fewer than m 5-chains of length n. Then, according to

IH2, rewriting halts.

ii. If there is a rule R. =>• 62 that is applicable to a subexpression e of d>0, such that

e contains a proper fragment of a 5-chain of length n, then the longest 5-chain
that occurs in e must have length n' < n (for otherwise (j> would have a 5-chain
of length greater than n, as it can be inferred from figure 9.4, case 2 ii). Since R
is chain-reducing, and since there is a substitution cr such that a6i = e, then ad2
must have 5-chains of length less than n'. Hence, <^o|[ 2Al 'ias at most (m — 1)
5-chains of length n. Again, according to IH2, rewriting halts.

iii. If no rule in the sequence is applied to a subexpression of <f>0 containing a frag¬
ment (proper or not) of a 5-chain of length n, then the sequence must be finite.
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Case 2 i Case 2 ii Case 2 iii

5 ■ ■ ■ 5 5-chain of length n

subexpression e

Figure 9.4: Fragments of 5-chains

Otherwise, for every pgh, there would be a rewriting sequence of the form

where <// is obtained from 4>i through the replacement of the terminal subexpres¬

sion S(ui,..., up) of every 5-chain of length n with an expression e in which 5
does not occur13. However, since by construction (j)'0 has only 5-chains of length
less than n. it follows from (IHi) that </>'0 has a normal form </>', for some ?£H,
in contradiction with the assumption that (**) could be arbitrarily enlarged.

Since rewriting halts for every element of the partition, 7Z is noetherian. I

The group of chain-reducing rules is not contained in any of the two classes for which

halting measures (the reduction in the number of occurrences of a deviant symbol 5,
and the function mt defined in lemma 6.2.1) have been exhibited, i.e.

(i) there is a chain-reducing rule that does not reduce the number of occurrences of

See lemma E.5.1 in appendix E.
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the corresponding deviant symbol, and

(ii) there is a chain-reducing rule that does not reduce the number of occurrences of
the deviant symbol in the highest layers of the rewritten expression.

An example is given next.

Example 9.4.2 The partial, remove rule for f,

R h(f{v1,v2),h(v3,f(v1,v3))) => h(v2,v2)

does not necessarily reduce the total number of occurrences of f in an expression, since,

in the sequence

Kfia; c)-, b)), /K e))) => h(f(f(a,c),b),f(f(a,c),b))

the initial and final number of occurrences of f is f. The measure mt is not necessarily
decreased either, considering that, in the sequence

h{f(a, f{b,b)),h(c,f(a,c))) 4 h(f(b,b),f(b,b))

h h

the number of occurrences of f in the second layer increases. Nonetheless, according

to lemma 9.4-2, R is chain reducing and, as a result, its application aliuays halts. g

9.4.2 Chain-preserving Rules

Lemma 9.4.3 cannot be extended to chain-preserving partial rules, given that some of

them generate infinite rewriting sequences.
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Example 9.4.3

i. Let TZ be a set of remove rules for g that contains the rule

R- f{9(v1)5^2) fiv2,v2)- TZ then is not noetherian, since

f{g(a),g(a)) 4 /(ff(g),g(fl)) 4 ...

is infinite.

ii. Given the remove rules for f,

R\ g(f(vuv2)) => g(e)
R2 h(f(vuv2),g(e),v4) => h(v4, g(v4), vA)

where Rx is chain-reducing and R2 is chain-preserving, the set {Ri,R2} is not

noetherian. given that the sequence

h(f{a,b),g{f(a,b)),f(a,b)) 4 h(f(a,b),g(e),f{a.b)) §

4 h(f(a,b),g(f(a,b)),f{a,b)) 4 ...

is cyclical. g

Under certain circumstances, however, it is possible to guarantee termination for a set

1Z composed of both chain-reducing and chain-preserving rules. For any fragment of a

rewriting sequence of the form

... <t> 4 </>i 4-... 4 4>n+i 4 if...

where R and R' are chain-preserving and Rx,..., Rn are chain-reducing, the number of

rewriting steps involving chain-reducing rules must be finite, since any finite (sub)set
of such rules is noetherian. As a result, the subsequence can be collapsed into a series

of composite rules of the form

, r , R" 1
■ ■ -<t> => 4>\ => V7-• •

where R" is derived from the composition of Ri,...,Rn and R!. Since the resulting

composite rule can be either chain-reducing or chain-preserving, the same procedure
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can be repeatedly applied until either all chain-preserving or chain-reducing rules are

eliminated from the sequence. 1Z is non-halting only when there is a formula that

admits an infinite rewriting sequence entirely composed of (primitive or derived) chain-

preserving rules. Therefore, given a set 1Z containing chain-preserving and chain-

reducing remove rules, if it is possible to guarantee that

(i) there is no infinite rewriting sequence generated by chain-preserving rules of 7Z, and

(ii) all rules obtained from 1Z by the composition of chain-reducing and chain-preserving
elements are chain-reducing,

then 1Z is noetherian.

Concerning the rule generation mechanism, provided that the original set 1Z is noeth¬

erian, the same applies to the derived rules. This can be informally justified on the

grounds that the transformation that leads to the new rule can be reversed and applied
to the conjecture, since disagreements may be dealt with both at the rule and the con¬

jecture levels, and there is a one-to-one correspondence between both processes. Given

that rewriting halts at the conjecture level, because the removal of disagreements by

RGM involves a finite number of steps and 1Z is noetherian, the transformation at the

rule level must also terminate.

9.5 Limitative Results

Even though the expansion of the rule base 1Zpa> is always possible, the undecidability
of PA sets several constraints for such expansions and virtually excludes certain classes

of candidate rules. Similar remarks apply to possible extensions of any arithmetical

decidable subclass.

9.5.1 Expansions of PZpa*

Several candidate remove rules can be discarded as invalid as a direct consequence of

the essential undecidability of PA. All three types of rules (total, partial dominant and

partial non-dominant) are affected.
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Lemma 9.5.1 (Total rules)

There is no valid total remove rule for +, s or < w.r.t. jCsma-

PROOF. Once occurrences of successor are eliminated in favour of +, a total remove

rule for this symbol would eliminate all its occurrences from any formula of CpA,

effectively reducing it to an equivalent formula of T-sma, which is decidable, thus con¬

tradicting the undecidability of arithmetic. The non-existence of total rules for either

s or < follows from results reported in [Robinson 49]. I

Lemma 9.5.2 (Partial dominant rules)

i. No valid partial dominant remove rule for + has any of the forms

R\ v + v => <$i{u}
r2 v 1 82{v]
•^3 v\ + (^2 + v3) f>z{.vhvhv3,}
R4 + (t)2 X r3) => S4{vuv2,v3}

where Si is a term of Csma-

ii. No valid partial dominant remove rule for X has any of the forms

R5 v x v => <$i{u}
Re »xl =>• S2{v}
R7 vx x (v2 x v3) => S3{vuv2,v3}
R8 r] x (t)2 + r3) => S4{vuv2,v3}

where Si is a term of CprA.

Proof.

i. The first two rules, if valid, would have to have originated from an equation of

one of the forms

v + v = f!
v -+- 1 = t2
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where tx and t2 are terms of Csma- Since terms of Lsma can be effectively put

in one of the following normal forms

0, 1, vm x x • • • X

the above equations are reducible to

v + v = 0
v + v = 1
v + v = vm x u™1 x • • • x v™'

v + 1 = 0
v + 1 = 1
v + 1 = vm x u™1 x • • • x

which are JM-invalid. for all n,m,mx,.. .,mn € N.

Concerning i?,3 and R4. it has to be taken into account that any term of jCpa

in which + occurs can be effectively converted into expressions of the forms

ti + (12 + tz) and + [t2 X t3). A procedure for the first pattern has five steps,

(a) Occurrences of successor are totally eliminated by the rule s(v) =>• v -f- 1.

(b) Stratification rules,

VX X (V2 + U3) => vx X V2 + Uj X v3

(tq + v2) xv3 ^ v1 X v3 + v2 X v3

transform the term until it assumes the form t\ + t2-

(c) If + occurs in t2, the same stratification rules are applied to it, and an ex¬

pression of the desired form, tx + (t3 + t4), results.

(d) If + occurs only in tx, it is first reduced to (t3 f4), then the original term is

put into the desired form by the application of (uj + v2) + v3 => vx + (v2 + v3).

(e) If + occurs neither in tx nor in t2, t2 is replaced with t2 + 0.

A procedure for the second pattern adopts steps (a) and (b), plus an additional

one,

(c') If x is not the dominant symbol of t2, it is replaced with i2 X 1.

Hence any term could be effectively stripped of all the occurrences of + by the

exhaustive application of either R3 or R4, interleaved with calls to the above

procedures. Since both rules are chain-reducing and the procedures always ter¬

minate, any formula of CPA would be reducible to Csma-

ii. Similar to the above proof. I
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Lemma 9.5.3 (Partial non-dominant rules)

i. No valid remove rule for + has any of the forms

vt + v2 = v3 => <t>\{v\,v2,v3}
Vl + v2 = v3 + v4 => (f>2{V\,V2,V3,V4}
Vi+V2 = V3XV4 => <f>3{vUV2,V3,V4}
t)1XD2 + tl3 = f4 =>• <f>4{Vl,V2,V3,V4}

where each <j>i is a formula of jCsma-

ii. No valid remove rule for x has any of the forms

vx x v2 = v3 => <t>5{vuv2,v3}
VlXV2=V3XV4 =*> $6{Vl,V2,V3,V4}
V\ X V2 — V3 -\- V4 => <j)7{VUV2,V3,V4}
v1xv2 + v3 = v4 => <f>&{vuv2,v3,v4}

where each <f>i is a formula of CprA.

Hi. There is no remove rule for s of the form

vlxv2 = s(v3) => <t>{vuv2,v3}

where 0 is a formula of Csma- Also, there is no remove rule for X of the above

form, where 0 belongs to LPrA.

Proof.

i. The validity in PA of (t^ + v2 = v3) = 4>i{vi,v2,v3} would mean that a remove

rule scheme for +,

i>lv\ + V2I => (3^3)(V,r3/(t'l +"2)1 A <t>l{o\,V2,V3})

could be defined, thus contradicting the undecidability of PA. A similar argument

applies to the other three cases, considering that

Vi + v2 = v3 = Vi + v2 - v3 + 0 = (t>2{Vl,V2,V3,°/v4)
Vi+V2 = V3 = Vl + V2 = v3 X 1 = <p3{vi,V2,V3,1/v4}
Vl + V3 = V4 = (u, xl) + «3 = t4 = <t>4{vi ,1/V2,V3,V4}

and, again, a complete set of remove rules for + in terms of Csma could be
obtained.
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ii. If (t>i X v2 = v3) = <f>5{vi,v2,v3} is valid in PA, then

iplvi X v2} => (3v3)(V>P7(»i x t>2)I A <t>s{vi,v2,vz})

represents a remove rule scheme for x in terms of CprA, also contradicting the

undecidability of PA. A similar argument applies to the other three cases, con¬

sidering that

vl X v2 = v3 = vx X v2 = v3 X 1 = (f>6{v1,v2,v3,1/v4}
vx X v2 = v3 = vxxv2 = v3 + 0 = <f>7{v1,v2,v3,0/v4}
vx x v2 = v4 = (vxxv2) + 0 = v4 = <f>8{v1,v2,0/v3,v4}

iii. Assume

vx x v2 = s(u3) = </>{v1,v2,v3} (*)

is valid in PA. If <j){v\,v2,v3} is a formula of Psma, considering that v X 1 = v,

then, from a rewritten instance of (*),

vx = s(u3) = 4>{vullv2,v3}

a complete set of remove rules for s w.r.t. CSma could be obtained.

If (f>{vx,v2,v3} belonged to CprA instead, since

vx x v2 = v4 = (r4 = 0Vr4 / 0) A(«i X »2 = »4)
= [v4 = 0 A vx x v2 = 0) V (3u3)(u4 = s(u3) Avi X v2 = s(v3))
= (v4 - 0 A (fi = 0 V v2 = 0)) V (3u3)(u4 = s(u3) A 4>{v1, v2, v3})

there would then be a £pryl-formula equivalent to iq X v2 = v4, from which a

complete set of remove rules for X in terms of CprA could be derived. I

None of these negative results, however, excludes the existence of other partial non-

dominant rules for either sum or multiplication.

9.5.2 Extended Classes

The recursive axiomatisability of PA ensures that any of its decidable subclasses is

expandable. The undecidability of PA, on the other hand, prevents any recursive
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extension of such classes from embracing CpA- Another limitation is the absence of
undecidable formulae in extended classes of type II.14

Since both PrA* and SMA are negation complete, and since the generation of expan¬
sions of C,pra* and Csma by means of proof plans is currently based on rules originated
from equations and equivalences, no arithmetical undecidable formula can be incorpor¬

ated in the enlarged subclasses.

9.6 Recognising the Elements of the Extended Class

Theorem proving for recursively axiomatisable and undecidable theories has to resort

to heuristically guided semidecision procedures whenever a conjecture lies outside the

identified decidable domain. For this reason, the complexity of the process of com¬

puting the membership relation for decidable subclasses affects the overall efficiency

of hybrid systems. For the extended class Spa* generated by 1ZpA*, there is no mech¬

anism that establishes whether a formula d> belongs to it other than the application of
rewrite rules controlled bv proof plans (or any equivalent procedure), until an element
of a decidable sublanguage C is obtained, i.e.

<i> 6 iff (3if) & if) G Fmlc)

In the event the reduction process fails, the conjecture has then to be supplied to

a semidecision procedure. In such cases, if a proof is found, the total time for its

computation has to include the failed attempt involving the decision procedure. Hence,

since rewriting is in some cases very time consuming, particularly in the presence of
difference reduction procedures, the time performance of the integrated system suffers

as a result.

Ideally, given any formula of the underlying language, it should be possible to determ¬
ine whether it belongs to a decidable domain without any rewritten formula being
14 A proof for these two limitations can be found in appendix E. It is worth noting that they are not

equivalent. On one hand, a theory is undecidable iff none of its decidable classes can be extended
to the full set of formulae of the underlying language. On the other hand, the impossibility of
introducing undecidable formulae in a negation-complete decidable subclass as it is expanded by the
inclusion of (T)-equivalent formulae is not restricted to undecidable theories. This is due to the fact
that there are decidable consistent theories for which the set of undecidable sentences is not empty

(i.e. the theory is not negation complete). For such theories, lemma E.5.2 applies as well.
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generated as a side effect, in which case rewriting could be confined to the decision

process. Sublanguages, for instance, are classes where the computation of the mem¬

bership relation involves simply the search for deviant symbols in a conjecture <f>\ if

devsym(e, C) denotes the set of deviant symbols of an expression e with respect to a

decidable sublanguage £', then

For other context-free generated classes, elements may be also identified based on the
strict inspection of syntactic properties of formulae or terms. For decidable classes

extended by the application of rewrite rules, rewriting may be avoided once certain

properties of the rule base are taken into account.

Example 9.6.1 Let E be the class of terms of £PA* defined by the productions

tm := attm | double(tm)
attm := 0 | 1 | var
var := x \ y | ...

and let E' be the extended class generated from E by the application of the rule

R. v + v =t* double(v)

which can be represented as

Given that S' is recursively definable as

i. ECS'

ii. If t G E', then double(t) G S' and (t + t) G S'

it is then possible to determine whether a term t of LpA* belongs to E' by means of
a syntactic test that checks whether the symbols that occur in t are only variables.
0,1, + and double, and that, for each occurrence of + , both left and right subterms are

syntactically identical. []

<j> G Fmlc iff (f G Fmlc & devsym((f), £,') = 0
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Another solution is the identification of proper subsets of the extended class for which

a definition based on syntactic properties of the formulae can be given. There are some

simple examples involving 7ZpA--

Example 9.6.2 Let

S = j<£ G AtmCpA | (3^0(3^2) (f Q ipi {RA43i i>2 k ip2 G FmlCsM^j\
be a subset of the decidable class generated by TZpa', such that

R\ vx x v2 = vx =s> vx = 0 V v2 — 1
R2 V\ + v2 = 0 =>■ Vi = 0 A v2 = 0
R-3 Vi + v2 = 1 => (^! = 1 A v2 = 0) V (vi = 0 A v2 = 1)

Since R\ is applicable to every atom 4> of E, 4> must have the form

t\ X t2 — t\

ivhere 11 and t2 are terms of jCpa . After the application of R\. <p is transformed into

t1=0Vt2 = l

By induction on the length of the reivriting sequence, it can be proved that t\ and t2

are elements of the class 0, defined by the productions15

pol
sum

var

= sum\pol + pol
= 0|l\var\sum x sum
= x\\yi\zx\x2\...

Therefore, every element of S has the form

P\{vi,. • -,vni) X P2(vj, .. .,v„2) = Pi(ul5.. ,,vni)

where Pi{v\,..., vnf) is a polynomial of 0. No rewritten formula is derived in this

process16. q

15 See appendix E.
16 A similar approach has been adopted by Armando and Giunchiglia in their study of extensions of

the UE-form subclass. As described in [Armando & Giunchiglia 93], p. 498-9, certain syntactically
defined subsets of the extended class have been revealed after the formal analysis of the set of rules.
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The direct computation of the membership relation may be avoided once equivalent
but possibly simpler problems are identified. There are cases, for instance, in which a

formula (j> belongs to an extended class if and only if canonical versions of <f> share the

same property. For 7ZpA*. since every (primitive or derived) remove rule available to

the system is applicable either to a term or an atomic formula, then

<t> e iff 4>d € sPA. iff 4>° € (t)

where 4>D is the prenex disjunctive normal form (PDNF) of <f>, and SpA. is the inter¬
section of SpA. with the PDNF class of £PA.. The domain of the original relation can

therefore be limited to PDNF formulae1'. No similar result applies to the atom level

though. Due to the incompleteness of the rule generation mechanism and the limited
deductive power of 7ZpA', an atom may not be reducible into a decidable sublanguage

even when its canonical form (or other /M-equivalent atoms) is. For instance, the

conjecture

x2 x x2 + (x2 X y + x2 x y) = x2

is equivalent (in PA) to other atoms, e.g.

X2 X X2 + (y x x2 + y x x2) = z2 0)
x4 + (y x x2 + y x x2) = x2 (ii)

X X (X2 X x) + (x2 x y + x2 x y) = X2 (hi)
(x2 x x) X X + (y x z2 + y x x2) = X2 (iv)

X2 X x2 + ((x x y) X x + to X = X2 (v)

Nevertheless, only the original atom and formulae (i) - (iii) are reducible to CPrA

by the controlled application of 7ZpA>, on the assumption that £pA> is the set of

equations available for disagreement elimination. The assessment of the boundaries
17 See lemma E.5.4 in appendix E. When the rules are not conditional, each atom of <j> can be dealt
with as an independent expression, since

n

0 € E iff € E)
1=1

where <j>i,..., <t>„ are all the distinct atomic formulae that occur in <j>.
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of the enlarged decidable sublanguage cannot therefore be limited to the study of the

class of formulae containing atoms in e.g. polynomial form18.

Finally, once a partition p = {P1;..., Pnj for the universe set is given, the recognition
of members of an extended class 5 can be decomposed into a series of subtasks,

</> e z iff {<f> e E n pt) v ... v (cf> e £ n pn)

A possible partition for the PDNF class of jOpa has two elements, made up of

formulae whose disjuncts contain just a single literal,

(Q1U1).. .(Q„v„)(A V • • • Vfm)

where is a literal, and the complementary class, fi2- Various strategies may be

conceived for the approximate and empirical characterisation of each subclass

The use of representative formulae of each element of the partition and of randomly

generated formulae is described in the next chapter.

9.7 Conclusions

Two groups of general-purpose proof plans, made up respectively of deciders and simpli-

fiers, have been implemented to control the application of rewrite rules in the extension

of decidable sublanguages. The simphfiers mimic some of the features of other systems

that contain decision procedures, such as the Stanford Pascal Verifier and Nqthm.

Since these plans are applicable to any theory that admits decidable sublanguages,

they are suitable for Peano arithmetic and its extensions.

Extensions of PA obtained by the introduction of recursive functions and relations

are such that complete sets of remove rules can be provided for all the new symbols.

Complexity considerations, however, discourage the use of such rules whenever they
either introduce new occurrences of quantifiers and/or deviant symbols, or substantially

increase the size of a conjecture. In such cases, partial rules become an additional asset

for systems that convert formulae of the expanded language into a decidable domain.
18 Moreover, even when an atom and its canonical (polynomial) normal form are both reducible to a

decidable subclass by means of 7Zpa'■ time performance may vary significantly in each case.
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The effectiveness of rewriting requires 1ZPA• to be noetherian. Termination for this

rule set is guaranteed by the existence of a total ordering for deviant symbols, based

on a well-founded relation, and the noetherianity of certain subsets of partial remove

rules. The essential undecidability of PA rules out the introduction of total rules for

some symbols and affects the set of partial rules as well, particularly those matchable
to terms or atoms. It also prevents any extension of a decidable sublanguage from

embracing CPA. The boundaries of certain subsets of extended classes, on the other

hand, can be assessed by mechanisms which do not require the direct application of
rewrite rules.

An experiment involving arithmetical conjectures has been conducted to evaluate the

role of lZpA' in extending both CprA> and jCsmA, as well as the efficiency of plans such

as decidel/1 and simplify/1. Results are reported in the next chapter.
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Chapter 10

Empirical Results

Four groups of formulae have been supplied to the general-purpose plans described in

chapter 9 to assess their complexity and effect on the extension of decidable sublan¬

guages. The first group, examined in sections 10.1 and 10.2, shows that the control

mechanisms embedded in these plans have a positive impact on efficiency, at least for

a subdomain of CpA'. The second group, described in section 10.3, is made up of

arithmetical lemmas related to a set of representative verification conditions. A set

of randomly generated formulae then provides a statistical mapping for the extended

decidable classes, as described in section 10.4. The final group, composed of quantifier-
free conjectures, has been checked by Nqthm?s simplifier and by the the plans simplify/I
and weaksimplify] 1? as described in section 10.5.

10.1 Controlled Rewriters

The six rewriters defined in the previous chapter are ordered according to the scope of

their control structures, which impose restrictions upon the choice of decidable classes,

disagreement pairs or remove rules.

i. rewritel/4 exhaustively applies all the remove rules available to the system, until
the input expression is reduced to one of the decidable sublanguages, whenever

possible.

ii. rewrite2/5 is an extension of rewritel/4 that includes RGM (the rule generation

mechanism) to raise disagreements.
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iii. rewrite3/5 selects a decidable sublanguage before starting to apply rules, and,
once it is selected, only remove rules for its deviant symbols are tested.

iv. rewrites/5 additionally restricts the application of remove rules to deviant sub-

formulae, i.e. those containing deviant symbols.

v. rewrite5/5 heuristically orders decidable sublanguages before rewriting starts.

vi. rewrite6/5 heuristically orders the symbols that are deviant w.r.t. the selected
decidable sublanguage.

The plan decide1/1 is placed at the end of this order, since, besides all the control
elements of its predecessors, it also heuristically organises rules. RGM is interfaced

to all but the first system. Further reductions in the search space for disagreement
elimination have been obtained after both non-matchable remove rules applicable to

terms and disagreement pairs containing composite formulae have been discarded1.

Even though the control structures would be intuitively expected to have a cumulative

positive effect on the performance of the rewriters, that is not always the case, as shown

by the experiments conducted with a set of arithmetical formulae2. One of them is

derived from a verification condition proposed by Boyer and Moore, whose reduction

to a decidable sublanguage by decidel/1 is detailed below.

Example 10.1.1 Let be the formula

x 7^ 0 D x2 x x2 + (x2 X y + x2 x y) < x2 (*)

Once it is supplied to decidel/1, a decidable sublanguage is first chosen. With respect

to CprA*, </> has nine occurrences of deviant symbols (eight of X and one of <) and only
three with respect to Csma (two occurrences of + and one of <). Given the measures

for these symbols,

TOd( + i ^SMA)
md(X, CprA' )

£SMA)
TOd{ hLprA* )

2.44

2.33

3.00

1.00

1 The effect of these restrictions is discussed in section 9.3.3.
2 The set of conjectures is listed in table G.l.
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and the measures for the sublanguages,

rnc(4>,£PrA.) = 8 X md(x,£PrA.) + md(<,£PrA.)

mc(cf>,£PrA.) = 19.64

£sma) = 2 X md(+, £SMA) + md(<, £SMA)

mc(4>,£SMA) = 7.88

twenty rewriting steps are therefore expected to take place in the reduction of f> to

£pra' > If It is possible, whilst eight steps would suffice for £smai which is then chosen.

Given that < is totally removable and has only a single remove rule in the rule base,

(<•! +) Is the only total order for the set of deviant symbols that has to be considered.

After the removal of <, given the rewritten formula, <j>',

x ^ 0 D (x2 X x2 + (x2 X y + x2 X y) = x2 V x2 X x2 + (x2 X y + x2 X y) < x2)

since none of the nine remove rules for + in 1ZPA' is applicable to <f>', the rule generation

mechanism is invoked. Only seven rules are left though, because remove rules for terms

are not currently admitted by this mechanism. For the first disjunct of ft, the first

choice is

vx + v2 = vx => v2 = 0

given that the disagreement pair formed by an instance of its Ihs expression3,
xxx + v2 = xxx, and the first disjunct of (f) has the lowest disagreement depth,

fx] x \x] + v2 = x x x

(x| x [x) x (x| x |x) + (x2 x y + x2 x y) = x x x

3 A variable in a rule has to be instantiated in the course of disagreement elimination only when it has
multiple occurrences, and each occurrence is supposed to match syntactically distinct subexpressions
of the conjecture. For the above example, there are two candidates for the replacement of v2, x2 and
x2 xx2, the first of which has been chosen. This guideline has already been examined in chapter 8.
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After failed attempts to erase the disagreements of this pair, the next choice involves
two rules ivith equal disagreement depths,

Vi + v2 = 1 =>■ (t>i = 1 A v2 = 0) V (vi = 0 A v2 = 1)
Vi + v2 = 0 =>• (vj = 0 A v2 — 0)

For the first rule, the first disagreement, which occurs in the second layer,

vi + v2 =00

(i2 x i2) + (x2 x y + x2 x y) = x\ x \x

is eliminable, and a suitable applicable new rule is then generated, as described in sec¬

tion 8.1.1. The same procedure is repeated until all the occurrences of + are eliminated,
and (f) is successfully rewritten to <j>",

i/OD ((x2 = 1Aj/ = 0AJ/ = 0)V (J)
V (x2 = 0 A ((y = lAy = 0)V(y = 0Ay=l))V (x2 = OAy = OAy = 0)))

which belongs to the chosen decidable sublanguage. g

Two variants of <j>,

x4 + (x2 X y + x2 x y) = x2

x x (x2 x x) + (x2 x y + x2 x y) = x2

have also been successfully reduced to Csma by decidel/1. Experimental results4
involving these and other conjectures are listed in table G.2. Table G.3 and figure 10.1

show that decidel/1 required on the average less than one third of the time consumed

by rewrite!)f5, the second fastest of the systems interfaced to RGM. Moreover,

* The performance of decidel/I was superior to the performances of the rewriters

for 57% of the conjectures that required the intervention of RGM. Even when

the full sample is taken into account, decidel/1 is still the system that has the

highest joint rate of best or second best performances (76%)5.
4
Experiments have been conducted on a SunOS 4.1.2 workstation, with the exception of those
involving the verification conditions of section 10.3, which were run on a Solboume 6/702 (100
mips/cpu at 33MHz). All the times indicated have been obtained as a result of a single run.

5 The conjectures of table G.l for which decidel/1 consumed more time than at least one of the
rewriters are </>ioi, <^104, /uos, dio7, dios, duo to <j>n3, </>ns, </>i2o, <Ai2i, di23, <Ai25, di27, 4>202, <t>2ot,
<^302 and <t>303-
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* The gradual introduction of new control features, starting from rewrite2/5 till
the decider is reached, has in the end a positive effect on time performance for

50% to 80% of those conjectures whose reduction into a decidable sublanguage
has been accomplished, as shown in table G.4. When the conjectures solved by

rewritel/5 (without the help of RGM, therefore) are excluded, these numbers
raise to 64% and 100%. Significative improvements have been also observed

in the transitions from rewrite2/5 to rewrite5/5, rewrite2/5 to rewrite6/5 and

rewrites/5 to rewrite^/5.

* Rewrite^/5 in particular outperformed rewrites/5 in almost all examples, with
the exception of 9>io65 4>205 and 4>w\■ These cases are accounted for by the fact

that rewrites/5 allows semantic matching to take place between remove rules and

subexpressions of the conjecture that do not contain the corresponding deviant

symbols, whereas rewrites/5 does not allow such attempts. Although they will

usually lead to failure, thus increasing the time required for a successful reduction,

there are exceptions where a shorter rewriting path is unveiled, as in the case of
the above three conjectures6.

* Rewrite5/5 and rewrites/5 had similar performances, when it comes to the time

consumed for the average conjecture, and can be jointly regarded as the most

efficient systems after the decider. Decide1/5 outperformed both rewriters in
all but one of the cases where rewritel/4 failed (^m). Both rewrite5/5 and

rewrites/5 showed a better performance than rewrite2/5 on 70% of the sample.

They also led to a cut of at least 78% of the average running time consumed by

rewrites/5 and rewrite!)/5.

Since the control structures are mainly heuristic, their effect on efficiency is not uniform

over the domain of application of the plans. Decidel/1 has a poor performance in

some of the cases where the set of primitive rules alone can reduce the conjecture

to a decidable subclass. The heuristic measures it has to determine before rewriting

6 Previous experiments showed that rewrite3/5 fails to reduce <^203 and <t>301 when the order in which
the deviant symbols are stored by the system is changed. Unlike rewrite4/5, rewrite3/5 does not
examine every permissible total order for deviant symbols and, for these particular conjectures, if
< is not removed in the first place, 110 other deviant symbol can be eliminated.

298



starts can consume more time than the exhaustive application of primitive rules, as is

probably the case in conjectures <^i08 and <p113. Also,

* Decidel/1 performs even more poorly w.r.t. rewrite1/4 when the guideline that

only remove rules for deviant symbols should be applied precludes the discovery of

shorter rewriting paths. Rewritel/4, on the other hand, exhaustively applies all
remove rules of 1ZPA.: independently of the corresponding symbols being deviant
or not, and may benefit from such lack of constraints. This is the case for

conjectures <^ioi> <^204 and <^302-

* Rewrite2/5 exhibited a better performance than rewriteS/5 and rewrite4/5 in ten

cases (27.8% of the formulae where the reduction was successful), which suggests

that the non-heuristic selection of a decidable subclass without additional control

strategies can cause a considerable deviation from the shortest rewriting path.
In the worst case examined, d>203, the quotient between the times consumed

respectively by rewriteS/b and rewrite2/5 was 73.5.

* Amongst those problems where rewritel/4 failed but the reduction was possible,

rewrite^/5 exhibited a better performance than decidel/1 in 35.7% of the cases.

This can be explained by the fact that decidel/I may choose an unreachable de¬
cidable subclass in the first place, thus delaying the conclusion of rewriting. Such

examples are inevitable, since the choice of decidable sublanguages is heuristic.

* When considered individually, some heuristic control features do not have any

significant effect on efficiency for certain contexts. For instance, when ordering
mechanisms for both decidable classes and deviant symbols are added to re-

writeS/b, the performance improves in 38.9% of cases, but worsens for the same

percentage of the sample. The improvement therefore is entirely cancelled out if
mean time is not taken into account.

Another evidence about the damaging effect that narrow control structures may have
on performance is illustrated in the cases of rewrites/5 and rewrite4/5. For both

systems, rewriting is oriented towards a decidable class, but classes are not heuristically

selected, i.e. they are always tested according to a pre-established order. As a result,
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there were examples where only more elaborate rewriters have been able to identify
beforehand an accessible decible subclass. For instance, in the cases of conjectures <^102?

01091 0ii4 and 0203, all of which are reducible to CSMa by the current set of remove

rules and elimination equations, rewrite3/5 and rewritef/5 first tried to convert them
to CprA'■ As a result, for 0io2i 0io9> 0ii4, both rewriters consumed about tenfold the

time required by rewrite5/5, rewrite6/5 and decidel/1, whereas, for 0203, this factor
increased to 100. These results account for the fact that, although rewritef/5 had
the highest percentage of best time performances (due to several of the cases where
a conjecture could be reduced to CPtA.). it also exhibited the the second worst mean

time (due to the conjectures that could not be reduced to this subclass).

Four main conclusions can be derived from this experiment. Firstly, there is a domain

in which the mechanisms present in decidel/1 effectively reduce the rewriting search

space generated in the presence of RGM. Secondly, the combination of the strategic

elements of decidel/1 seems to prevent cases where limited search guidance locally

damages the performance of the system. Also, RGM makes a significant contribution
to the inference resources of all systems, since rewritel/5, which is not interfaced to

it, proved to be efficient but deductively weak: its success rate of 21.1% compares

unfavourably with more than 90% for the other systems. Finally, for some of the cases

where 1ZPA. suffices for the reduction of formulae to a sublanguage, decidel/5 proved
to be fairly inadequate, from the viewpoint of time performance.

10.2 Weak Simplification

The same set of formulae used to test the rewriters has been supplied to the plans

decidel/1, decide2/1, simplify/I and weaksimplify/1.

i. decide2/1 has the same search control as decidel/I for the selection of decid-
able sublanguages, the hierarchisa.tion of the deviant symbols and the choice of
remove rules, but is interfaced to a stronger version of RGM that explores conjec¬

ture subexpressions other than the particular one directly involved in semantic

matching.
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Decidel/1 was the most efficient of all six systems that have access to RGM.

Figure 10.1: Rewriters and decidel/1 (I)

ii. simplify/1 explores the fact that, even if a formula is not reducible to a decidable

sublanguage, the rewriting process simplifies it, in the sense that the number

of occurrences of deviant symbols usually decreases. When the reduction fails,

its output consists of the initial formula and one simplified formula for each

sublanguage, corresponding to the failed reduction attempts.

iii. weak.simplify/1 imposes additional restrictions on the selection of equations for
the elimination of disagreements'.

In the particular case of £PA-, weak.simplify/1 excludes two of its equations, v x 1 = v

and vl = v. The results presented in table G.6 reveal that, on the average, the

simplifiers performed better than the deciders. In particular,

* The performance of simplify/1 remained close to decidel/I in most cases, and

improved considerably for some of the problems where the primitive rules suffice
for normalisation. As a. result, a. reduction of 7% in the mean time consumed

' The set of conjectures is listed in table G.l. The above plans have already been described in
chapter 9.
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Best or Second Best Time Performances
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Worst Time Performance
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Decidtl/1 was either the fastest or the second fastest system to complete a success¬
ful reduction into a decidable sublanguage in about | of the sample (top graph).
Moreover, it was not associated with any of the cases of worst time performance
(bottom graph).

Figure 10.2: Rewriters and decidel/1 (II)
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The weak simplifier exhibited the lowest average running time of all four plans in
this sample.

Figure 10.3: Deciders and Simplifiers (I)
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Both simplifiers and decide1/1 showed a similar performance from the viewpoint
of running time. They all had a combined rate of best or second best performances
of at least 60%, and worst performance of 5% or less. Decide2/1, on the other
hand, was associated with most of the cases of worst performance.

Figure 10.4: Deciders and Simplifiers (II)

304



by decidel/5 has been observed for the simplifier, as indicated in table G.7 and

figure 10.3.

* Decidel/1 had a better performance than simplify/1 in 55.6% of the 36 conjec¬

tures in which both plans succeeded, as shown in table G.8. Time increments

brought about by the simplifier for these cases, however, have been relatively

small.

* Amongst the cases where simplify/1 outperformed decidel/I (44.4%), there are

examples of substantial time reduction, e.g. 92.9% for <j>204 and 94.3% for conjec¬

ture (^302- The disadvantage of decidel/I with respect to rewrite1/4 is overcome

in both simplifiers, considering that their initial module, which is absent from

the deciders, is limited to the application of primitive rules.

* The time consumed by the exhaustive application of the rules of 7ZpA> proved to

be confined to the order of seconds, and, as a result, even in the event of failure,

the amount of time spent in the process has no significant effect on the time

required by disagreement elimination (order of minutes).

With respect to the two extreme cases in the deductive scale — weaksimplify/1 and

decide2/1 — the gain in efficiency seems to have outweighed deductive losses.

* Decide2/1, which operates with a more powerful disagreement elimination mech¬

anism, generates a larger decidable subclass than the other plans. The trans¬

formation of conjectures (t>404 and 4>405 into a decidable sublanguage has been

possible only under the control of this plan.

* Decidel/I outperformed decide2/1 in 91.7% of the cases where both succeeded

(36 conjectures). The increase in running time has been significant, reaching a

factor of 50 for conjecture <£103.

* Weak-simplify/1. in spite of deductive losses caused by restrictions on disagree¬
ment elimination, exhibited the best performance of all four plans, consuming

less than half the time required by the second fastest plan, simplify/1, in the

average case. When attention is restricted to those conjectures for which it suc-

305



ceeded, a reduction in processing time w.r.t. decidel/1 has been observed in all
but two cases (conjectures <j>U8 and <^ng).

In summary, the use of the simplifiers seems to be more advantageous than the deciders,
for two reasons: they always deliver a rewritten formula, even when the deciders fail,

and they provide a significant time improvement in those cases where context trans¬

formation is superfluous. Decide2/2, on the other hand, has a very poor performance

w.r.t. the plans that operate with the standard disagreement elimination mechanism.

Its use could therefore be confined to those cases where other plans fail. The results also

suggest that equations having a variable for rhs or lhs expression should be excluded

from the first disagreement elimination attempt, thus confirming the outcome of sim¬
ilar experiments described in section 9.1.2. As a result, in the course of simplification,

the application of plans should start with weaksimplify/1, followed by simplify/1, in
the event of failure, and finally decide2/1. Since the simplifiers always deliver a trans¬

formed formula, the output of a plan can be the input of a subsequent one. The search

space for the combined plan, however, would have to be first examined, to determine

how to minimise the negative effects when it fails.

10.3 Verification Conditions

The role of proof plans in the verification of program correctness depends not only

on their efficiency, but also on the amount of verification conditions (v.c.) that fall
in the extended decidable classes. Verification conditions for implemented programs,

in contrast with those for theoretically computable functions, have to be empirically

surveyed. Since tests must be limited to finite samples, certain criteria have to be met

if results are to be generalised to larger domains. Bundy suggested three guidelines

for the selection of conjectures in general, the first of which recommends the use of

dissimilar examples8. In the domain of normalisation, it could be translated along two

lines,

(a) the partition of the universe of formulae into finitely many disjoint subclasses, and
H Personal communication from Alan Bundy (Blue Book note 863).
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(b) the uniform selection of conjectures from all subclasses9.

Independently supplied conjectures, identified as representative by researchers in the

area, according to their own perception and experience, form a second sample. Finally,

challenging examples may be also added, although verification conditions are usually

trivial problems, from the mathematical viewpoint10. Concerning the second guideline,

according to Boyer and Moore,

"Perhaps more realistic data is that obtained during the proof of the veri¬

fication conditions for the FORTRAN version for our fast string searching

algorithm. We regard this set of 5-3 lemmas and verification conditions to

be quite representative of the verification of practical programs."

([Boyer & Moore 88], p. 121111

The set of v.c. for this program contains seven formulae which concern properties of

strings and therefore do not belong to the language of arithmetic. However, related
arithmetical theorems, listed in tables G.9 and G.10, have to be proved in the process12.
These lemmas have been supplied to weaksimplify/1, the most efficient of the four plans

already built. An additional test has been conducted with its first subplan, simplify1/2,
which does not eliminate disagreements, to determine the effect of RGM in deductively

strengthening the weak simplifier. Remove rules for the new deviant symbols with

respect to both jCp,-a' and Csma are listed in appendix H. The time performances of

simplifyl/2 and weaksimplifyl/1 are described in tables G.12 and G.13. With respect

to these results,

* Simplify 1 /2 has been successful in the reduction of more than half of all lemmas

(56.8%). The inclusion of the rule generation mechanism, embedded in sim-

plify2/2, the second subplan of weaksimplify/1, increases the success rate to |
9 This guideline has been partially followed in the test of the rewriters, as it can be observed in
appendix G, since the conjectures have been taken from three disjoint classes. Even though they do
not cover the full set of formulae of Cpa•, a relevant domain for program verification is nonetheless
included.

10 See [Kaufl 89].
11

Emphasis has been added to the original text.
12 See [Boyer fc Moore 79], p. 291-304 (for the set of verification conditions) and the first appendix of

the same book (for the additional arithmetical lemmas).
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of the sample13.

* The time consumed on the average for a successful reduction was 524s for the

weak simplifier and only 3s for simplify1/2. If lemmas 227 and 306 are excluded,
the first result falls to 25s. Besides, weaksimplify/1 completed 39 reductions

(72.2% of all successful cases) in less than 5s, as indicated in tables 10.1 and 10.2.

* 48.1% of the sample has been reduced to CprA., and 18.5%, to jCsma■ In spite

of the prominence of CprA., CSma is nonetheless a relevant component of the

process, and the ability to explore several decidable subclasses allows proof plans

to discover shorter rewriting paths for certain expressions.

* In the case of failure, the average times consumed respectively by the plan and
its subplan were of 4.5min and 20s, which suggest that their use as interfaces to

an heuristic prover would not cause any significant damage to the efficiency of
the resulting system.

* All the lemmas which iveaksimplify/1 failed to reduce to a decidable sublanguage
have nonetheless been successfully simplified into CPA.

* Concerning the final simplified formulae, since remove rules for rmdr, gcd, / and

gfc tend to considerably increase the size of the rewritten formulae, the reduction

of lemmas containing these symbols, such as lemmas 227 and 306, was more time

consuming.

The expanded formulae in these last two cases may not provide the best option for the

establishment of their validity, due to the global complexity of the reduction process

and the number of quantifiers introduced for the removal of deviant symbols. Such

cases confirm previous expectations that the use of total remove rules, although feasible

in principle, may turn out to be inadequate, on certain occasions, from the point of

view of global efficiency. The inclusion of additional partial remove rules for totally
removable symbols could, for this reason, improve the performance of the simplifiers.
13 Three lemmas (186, 187 and 305) are already members of a decidable sublanguage. If they are

excluded from the sample, the success rates for simplify1/2 and weak.simplify/1 drops respectively
to 55.1% and 65.4%.
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Plan Sample
Size

Success
Rate

Decidable

Sublanguage (%) (%of
Time Range

successfully reduced lemmas)
% t-'PrA £sma 0 - 5 s 5 - 10 s 10 - 100 s +100 s

simplify1/2 81 56.8 44.4 12.3 82.6 10.9 6.5 0.0

weaksimplify/1 81 66.7 48.1 18.5 72.2 11.1 9.3 7.4

For more than 70% of the successful reductions of verification conditions, both the
weak simplifier and its subplan simplify1/2 completed each reduction in 5s or less.

Table 10.1: Success Rates - Simplifiers

Plan Sample Success Success Failure
Size* Rate

%
Mean

(s)
Deviation

(s)
Mean

(s)
Deviation

(s)

simplify1/2 78 55.1 3.1070 3.5113 20.6086 19.8180

weakjsimplify/1 78 65.4 524.0705 2,496.7334 270.7111 151.6404

* lemmas 186, 187 & 305 excluded

The higher success rate of the weak simplifier with respect to its subplan sim-

plifyl/2 was achieved at the expense of processing time, whose increase can be
attributed to RGM.

Table 10.2: Statistical Data - Simplifiers
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10.4 Randomly Generated Formulae

The boundaries of a decidable subclass extended by a simplifier can be statistically

delineated once a partition for the underlying language is given, as mentioned in sec¬

tion 9.6. Given a random generator of formulae, if it is employed as a source of conjec¬

tures for the simplifier, a probability rate that reflects the proportion of elements that

belong to the extended class is then assigned to each element of the partition14.

The resulting statistical map allows the task of determining whether a formula belongs
or not to the extended class to be decomposed into two operations. The element P of
the partition to which the formula belongs is identified in the first place. The prob¬

ability associated with P then determines whether the conjecture should be supplied

to the simplifier or not. A low concentration of elements of a decidable subclass in P

would suggest that a distinct proving strategy should be sought for expressions of that
domain.

Experiments with a random generator of formulae for the language

{0,1, s, T, X, exp, <, <}

have been conducted with simplify/1. The set of formulae of this language has been

decomposed into subsets according to the formula depth, and eight of such disjoint

subclasses have been examined. Since formulae are random, they lack any particu¬

lar mathematical interest. Results are listed in tables G.17 and G.18, and also in

figures 10.5 and 10.6. A few comments follow.

* The proportion of formulae reduced to a decidable sublanguage by the simplifier

decreases as the formula depth increases. For the final subclass (depth 10), the

success rate of ^ suggests that an enlarged set of remove rules or stronger versions
of RGM should be considered instead.

* For formulae up to depth 8, on the other hand, the global success rate of at
least | indicates that the current rewrite rule set, in association with RGM, is a

14 This approach is based on Monte Carlo methods, which employ modelling techniques, em¬
pirical simulation and sampling to evaluate e.g. functions and definite integrals. See
[Hammersley & Handscomb 64].
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relevant tool for the simplification of arithmetical expressions.

* The role of jCsma 's substantially less significant than the role of CPrA., both

from the point of view of efficiency and relative size of the extended subclasses

generated from it.

* A linearised representation for the logarithm of mean time versus formula depth,

indicated in figure 10.6, reveals a gradient of 0.48, 1.41 and 0.22 respectively
for the reduction of formulae to £PrA., to C-sma and for undecided formulae.

As a result, the average time for each of such cases is supposed to increase

respectively by a factor of 1.6 (= e0,48), 4.1 and 1.3, whenever the depth of a

formula increases by 1. Once again, this result indicates the greater complexity
of the task of converting a formula into an element of Csma-

Additional experiments could provide statistical descriptions of the extended classes

from the viewpoint of other syntactic parameters, such as

(i) number of occurrences of a particular (deviant) symbol in the formula,

(ii) maximum depth of atoms that occur in the formula (instead of the depth of the
formula itself),

(iii) the ratio of the number of occurrences of variables to the number of occurrences
of individual constants, etc.

Such measures would collectively provide more accurate guidance to a theorem prover

faced with the choice of attempting simplification or not.

10.5 Comparative Assessment

Given that both weak.simplify/1 and the linear procedure of Nqthm have been applied
to a common sample of arithmetical v.c., their strengths and deficiencies in this par¬

ticular domain may be compared. Although the success rate of Nqthm in this sample
was 100%, its simplifier, as indicated in table G.ll, was able to decide only 67.9% of

all verification conditions, while the remaining lemmas required the use of the induct¬
ive prover. Both simplifiers therefore showed essentially the same performance in this

representative set, given that the result for weaksimplify/1 was 66.7%. When the role
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Up to formula depth 9, more than 50% of the sample belongs to the global extended
decidable class, which includes successfully reduced formulae plus those originally
inside the decidable sublanguages (graph A). The amount of formulae actually
reduced into a decidable sublanguage (graph B) was in the range of 50% to 75%,
again up to formula depth 9. Most of the successfully reduced formulae were

converted into Cpta' (graph C), whereas Csma had a comparatively marginal
role in the experiment (graph D).

Figure 10.5: Randomly generated formulae (I)
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Mean Time

Mean Time (linearised)

£PrA* extension of Hpta*
£sma extension of £sma
a undecided formulae
b £sma — £-sma
c £prA* — £PrA*

The time performance of the weak simplifier is influenced by the depth of the input
formula (top graph). Of the two decidable sublanguages studied, Csma showed
the highest rate of time increase with formula depth. Lesser time increases were
observed for formulae outside the extended decidable class (bottom graph).

Figure 10.6: Randomly generated formulae (II)
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of the decision procedures is taken into account, Nqthm's simplifier exhibited however

a poorer result, considering that, of the 55 v.c. that it was able to simplify to a propos-

itional constant, only 37 (or 45.7% of the sample) actually required the intervention of

the linear arithmetic procedure15.

In spite of the almost identical performances of both simplifiers, the subsets of v.c.

decided by each of them did not coincide. Some of them have been successfully trans¬

formed only by weaksimplify/1, as indicated below.

Example 10.5.1 Lemma no. 180,

rmdr(y, 1) = 0

requires the application of a remove rule for rmdr,

rmdr(vi, v2) = v3 =>• (v2 = 0 A v3 = rq) V
V (v2 ^ 0 A (3x74)(*Ui = v4 X v2 + v3 A v3 < v2))

and the resulting formula,

(l=0A0 = j/) V (1 # 0 A (3vA){y = v4 X 1 + 0 A 0 < 1))

can be reduced to an element of the decidable sublanguage PrA*,

(1 = 0 A 0 = y) \J (1 ^ 0 A (3v4)(y = v4 + 0 A 0 < 1))

by a remove rule for X, 1 X v => v. This problem is handled by the initial module of

weak_simplify/./, since there is no disagreement to be eliminated. q

Nqthm, on the other hand, required induction to prove the above lemma. The strength
of proof planning in this context, as well as of any other rewrite-based interface, derives
from its ability to deal with quantifiers, which the linear procedure of Nqthm lacks.
As a result, several of the total remove rules listed in table H.l have no use in the

Boyer and Moore prover. Even in the absence of quantifiers, given a particular set

15 All the experiments involving the Boyer k Moore prover reported in this chapter have been con¬
ducted with Nqthm-1992, the latest publicly available version of the system. Its main features are
described in [Boyer k. Moore 93].

314



of quantifier-free additional lemmas (or rewrite rules), there are conjectures which are

successfully decided by the proof-plan-based simplifiers but not by the linear procedure,
as indicated below.

Example 10.5.2 Let f be a formula in conjunctive normal form,

x + x < 1 V x < x X (x + x)

and let E be an arithmetical lemma,

Vi < Vi X v2 = (tq yf 0 A 1 < v2)

i. If <p is supplied to Nqthm, the required linearisation hypothesis is first added to

it,

0 < x D (J: + I<1VJ:<IX(3; + x))

then it is normalised to x < 0 V x + x < 1 V x < x X (x + x). Since the linearised
form of its negation,

0 — x < 0 A 1 — 2x < 0 A IX(i + I)-I<0 (*)

is DAG*-satisfiable, additional hypotheses have to be sought16. For the heaviest

multiplicand of (*), x x (x-t-x), lemma E, or rather its restricted conditional form,

(tq / 0 A 1 < v2) D (iq < tq X v2), provides a suitable additional hypothesis, once

it is instantiated to

(x 7^ 0 A 1 < 2x) D x < x X (x + x) (**)

The linearised consequent of (**) can then be conjoined to (*),

0 — x < 0 A 1 — 2x < 0 A x X (x + x) — x < 0 A 1 + x — xx(x-(-x)<0

and once again supplied to the decision procedure for DAG*. After the removal

of the heaviest multiplicand, the resulting formula,
16 The term x x (x + x) can be dealt with as a new individual variable, since x is not a symbol of

I'DAG- ■
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0 — a: < 0 A 1 — 2a: < 0 A 1 < 0

is found to be unsatisfiable in DAG*. It remains to be proved that the condition

of (**), x / 0 A 1 < 2a;, follows from the current (empty) set of assumptions, i.e.
that LA |= x / 0 A 1 < 2a;. The linear procedure is called once again, as folloivs.

(a) non-negative status of variables. 0<iD(a:/0Al< 2a;)

(b) negation of resulting formula. 0 < x A (x = 0 V 2a: < 1)

(c) linearisation of atoms. 0 - a: < 0 A ((0 — a; < 0 A a: < 0) V 2a; — 1 < 0)

(d) disjunctive normal forming. (0 — x < 0 A 0 — a: < 0 A a: < 0) V

V (0 - x < 0 A 2a: - 1 < 0)

When the last formula is supplied to the decision procedure, it is reduced to

0 < 0 V 0 < 1

which is valid. Hence the original condition, a; / 0 A 1 < 2x, is invalid in LA,

and as a result the proof of unsatisfiability of (*) has to be discarded. Given the

absence of other deviant multiplicands or other additional lemmas, no alternative

transformation can be carried out, hence the simplifier fails to reduce the original

conjecture to a propositional constant17.

ii. If d> is supplied to the general-purpose plan simplify//, given that <p has a single

occurrence of a deviant symbol w.r.t. CprA*, a remove rule for X derived from E,

vx < v1 X v2 => (vi / 0 A 1 < v2)

is applied to the conjecture, which is then reduced to a formula of CprA*,

a: + a:<l V (a;/0Al<ifa)

□

11 Nqthm-1992 can actually prove the above conjecture by induction, both with and without the
intervention of E as an additional lemma. On the other hand, when the lemmas

V\ 5^ 0 O V2 X V\ V2

t'l X (V2 + V3) = (t>l X V2) + (fl x vs)
are available, its simplifier alone is able to reduce the conjecture to T.
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This example also indicates that there is a subdomain of Cpa* where the proof planning

approach is more efficient than the simplifier of the Boyer and Moore prover. The

linear procedure required the generation of linearisation hypotheses, followed by the

linearisation of atoms, the normalisation of the negated conjecture, two calls to the

decision procedure, and the selection of an additional hypothesis. Simplify/1, on the
other hand, applied a single rewrite rule, followed by a call to the decision procedure
for quantifier-free Presburger arithmetic.

Concerning the verification conditions that the proof plan was unable to reduce into

a decidable subclass, its failure can be justified upon formal limitations of the current

rewriting approach.

* Seven cases include a subformula of the form V\ — v2 X v3 + v4 and four cases

include a subformula of the form tq +u2 = v3 X v4 where tq, v2, v3 and v4 represent

distinct individual variables. As established in lemma 9.5.3, there is no valid

atomic rule in PA which could reduce any of these atoms to a formula of either

cpra* or c-sma-

* Two cases include atoms of the form tq X v2 = s(v3) or tq X v2 = v3 + 1, neither of

which, according to lemma 9.5.3, could be reduced to a decidable sublanguage.

* Five cases contain pairs of atoms of the forms tq X u2 = v3 and v4 < v5, and,

therefore, cannot be reduced to either CPrA• or Csma by the strict use of atomic

remove rules, since this would require either the eliminability of X in terms of

cpra'- or the eliminability of < in terms of CSma-

* Lemmas 210 and 216 could not be solved due to the incompleteness of the rule

generation mechanism, whereas lemma 292 would require the introduction of an
ad hoc atomic remove rule, with lhs expression identical to the lemma itself.

* Lemmas 301 and 308 both involve expressions of the forms rq X v2 = v3 and

v4 < 1 + v5, and while the first atom cannot be replaced with an equivalent

formula of CprA, as shown in lemma 9.5.3, the second atom cannot be replaced

with a formula of Csma-
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* Lemma 318 involves the atom V\ x v2 < v3, which cannot be reduced to either

Cpta or Csma-

The inclusion of implication rewrite rules, discussed in section 3.2.3, and remove rules

for composite formulae in would certainly increase the success rate of proof

planning, but it would be first necessary to assess the size of the new search space and
to determine additional search strategies.

The comparison of performances of the simplifiers cannot be restricted to the verific¬

ation conditions selected by Boyer and Moore, since, to a certain extent, they may be

regarded as a development sample to which the linear procedure of Nqthm has been

tuned. A new series of experiments has, for this reason, been conducted with a random

generator of arithmetical conjectures similar to the one described in section 10.4. As

indicated in section G.4, the new sample has 80 formulae equally distributed amongst

formula depths ranging from 3 to 10. All of them are quantifier-free, since the linear

arithmetic procedure cannot handle quantifiers.

Given that Nqthm operates with a many-sorted universe, each conjecture must have

its variables restricted to the set of natural numbers, to guarantee that the formulae
have the same meaning for both simplifiers. In the language of the Boyer and Moore

prover, each conjecture .. .,vn) is then represented as

A?=i numberp(Vi) D cf>(vu ... ,vn) (*)

where numberp(v) indicates that v € N. In order to fully explore the deductive strength
of the Nqthm simplifier, an additional formula,

A,"=i numberp{Vi) D -i ... ,vn) (**)

is supplied to the prover jointly with each conjecture of the form (*). Whenever one
of the elements of the pair ((*),(**)) is LA-valid, the other is LA-invalid. The set of
all 80 pairs of such formulae constitutes the extended random sample18.
18 See lemma E.6.1. The reason for the introduction of an additional formula for each conjecture is

the fact that there are at least two cases in which the Nqthm simplifier can identify one of them as

L4-valid, but not the other as Z,4-invalid.
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Four experiments have been conducted with the quantifier-free random sample. Two
of them involved the plans simplify/1 and weak.simplify/1. The other two required the
extended sample and have been conducted with Nqthm, one with the set of lemmas

described in the appendix A of [Boyer & Moore 79] available for use as additional

hypotheses (or rewrite lemmas), and the other in the absence of this set. The results
are detailed in tables G.19 and G.20, and also in figure 10.7. Both proof plans exhibited
a better performance than Nqthm in this sample.

* The success rate of the weak simplifier for this sample (65.0%) remained approx¬

imately the same as for the set of v.c. described in section 10.3, whereas, for the

Nqthm simplifier, in the absence of the set of arithmetical lemmas, it was limited

to 43.8% of the (extended) sample.

* Even when the set of lemmas of [Boyer & Moore 79] is made available to Nqthm,
its success rate for the extended sample increases only to 47.5%.

* For the original sample, the Nqthm simplifier was able to reduce only 17 conjec¬

tures (21.3% of the random sample) into a propositional constant.

* Of the 43.8% of the (extended) sample where the Nqthm simplifier was success¬

ful, only 15 cases (or 18.8% of the total sample) required the use of the linear
arithmetic procedure. The number of cases that required the intervention of this

procedure remained the same when the set of additional arithmetical lemmas was

loaded19.

i. Given a conjecture of the form (*) above, if ... ,vn) can be reduced to T by the rewriter,
the same applies to (*). If, °n the other hand, 0(«u,..., vn) is simplifiable to _L, (*) is reducible
to

n

V -inumberp(vi)
•=i

which is invalid but satisfiable in PA, and therefore cannot be reduced to a propositional
constant. For such cases, —><j){v\,.. . , vn) could be rewritten to T, and then, according to
lemma E.6.1, the original conjecture (*) could be recognised as 74-invalid.

ii. As discussed in chapter 3, when the decision procedure for DAG identifies a quantifier-free
formula <j> as valid, it follows that <j> is also valid in LA. However, if it is identified as invalid by
the procedure, the same conclusion cannot be extended to linear arithmetic. For such cases, it
is then possible to determine whether -><j> is ZMG-valid, in which case <f> is DA G-unsatisfiable
and (*) is unsat.isfiable in the underlying theory.

19 Even though the share of conjectures successfully decided by the Nqthm simplifier that required the
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* The performance of the Nqthm simplifier does not seem to be sensitive to the

depth of a formula, since the success rates for both experiments involving this

prover fluctuated around the average rate of about 45% for all the examined

depths.

* The success rates for both plans, weaksimplify/1 and simplify/1, was identical.
Table G.20 shows that only in a single case (depth 7) there has been a distinct
distribution of successfully reduced conjectures. This case actually concerns con¬

jecture qtf0704, which has been reduced to Cpr/by simplify/I and to C-sma by
the weak simplifier. Weaksimplify/1 actually consumed twice as much time as

the other simplifier to achieve this result, since it explored a distinct path of the

rewriting tree.

For formulae of depths ranging between 3 and 7, proof planning exhibited a clear

advantage over Nqthm, from the viewpoint of success rate. Depths 8 and 9 correspond
to a region where both approaches showed a similar performance. Nqthm had a visible

lead only for depth 10, which could be explained by the fact that the current rewriting

approach embedded in simplify/1 and weaksimplify/1 is limited to the reduction of
atoms. Syntactically more complex conjectures require the transformation of composite

subformulae, which involves additional search problems, as already mentioned in a

previous paragraph.

10.6 Conclusions

Empirical results indicate that proof plans for normalisation are effective in domains

where complete sets of syntactically simple (from the point of view of length and oc¬

currences of quantifiers) remove rules are available. A representative sample of arith¬

metical verification conditions showed that explicitly defined functions are abundant in

this area, and that therefore general-purpose plans can play a relevant role in program

verification. When complete sets of remove rules are not available or are too complex,

intervention of the linear procedure was rather limited, the role of the linear procedure is by no
means restricted to the simplification module of the prover, since it can be called in the course of
inductive proofs as well.
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Success rates

A Simplify/1 and weak.simplify/1
B Nqthm simplifier (with arithmetical lemmas)
C Nqthm simplifier

Both plans showed a high success rate (70% to 100%) in the region of formula depth
3-7 (graph A). The success rate for the Nqthm simplifier oscillated around 47%
for the whole sample (graph B). The set of additional lemmas had no significant
impact on Nqthm's performance (graph C).

Figure 10.7: Success rates - Nqthm and Proof Planning
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disagreement elimination procedures increase the strength of the approach through the

coverage of additional contexts.

Proof plans also showed their adequacy in addressing extensions of theories. As a

result, they represent a solution for one of the core problems in the integration of

decision procedures and theorem provers, namely the ability to handle user-defined

functions and relations, originally absent from the language of a decision procedure.
The flexibility of proof planning was confirmed in the course of its application to

formulae of CPA>, an expansion of CPA that has been dealt with by the introduction of

remove rules for the new deviant symbols, without any structural change to the original

plans. This application has been possible due to the fact that recursive functions and

relations are representable in PA, and, since the new extensions are conservative, the

use of remove rules suffices for the expansion of the original decidable sublanguages.

With respect to the simplifier incorporated in Nqthm, the simplifiers represented by

means of general-purpose proof plans exhibited an overall superior performance from

the point of view7 of success rate. Firstly, for the sample of representative arith¬
metical verification conditions, to which Nqthm has been apparently tuned, both

weaksimplify/1 and the Nqthm simplifier showed essentially the same results. Secondly,
for a sample of quantifier-free random conjectures, about | of the sample was success¬

fully handled by proof plans, whereas less than half was successfully decided by the

simplifier of Nqthm. Finally, since the Nqthm simplifier includes a linear procedure that

is defined only in the quantifier-free fragment of the underlying language, it cannot be

applied quantified formulae, whereas the proof planning approach does not share the

same limitation.

An additional positive feature of proof plans was their ability to effectively explore two

decidable sublanguages of PA*, CPrA' and CSMA, whereas other approaches tend to

concentrate exclusively on the first sublanguage.
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Chapter 11

Further Work

Several questions related to the use of proof planning in normalisation require ad¬
ditional investigation. Concerning the efficiency and deductive strength of currently

implemented plans, they may be improved through parameter changes affecting, for

instance, the rule set and one or more heuristic functions. As described in section 11.1,

the arithmetical rule base may be extended to include, among others, general remove

rules, implication rules and remove procedures. Also, the heuristic function that or¬

ders decidable classes could be redefined to take into account the complexity of the

corresponding decision procedures.

Concerning new applications, tasks other than the removal of symbols still have to be

examined. A tentative description for reorganisation plans and for a general-purpose

disagreement elimination plan can be found in section 11.2. Concerning alternative

architectures, systems where proof plans are not limited to the role of interfaces are

described in section 11.3.

11.1 Modified Parameters

The parameters of a proof plan for normalisation are distributed in two groups. Es¬
sential parameters are inherited from the component primitive normalisation methods,
and denote therefore the rule set and one or more lists of symbols to which a partic¬

ular syntactic operation is targeted. Inessential parameters, on the other hand, are

introduced by conditional methodicals, and include all the heuristic functions that

.323



provide additional guidance for a complex plan1. New rewrite systems result from any

adjustments to these parameters.

11.1.1 Remove Procedures

The current plans can be deductively strengthened by the inclusion of new remove

rules in the arithmetical rule set. In particular, composite remove rules (i.e. rules
whose lhs expressions are composite formulae), currently absent from IZpa*, might be
a valuable alternative to the use of the extended disagreement elimination mechanism,

incorporated in the plan decide2/1, which, according to the experiments conducted so

far, seems to be rather inefficient. They would probably allow a more adequate handling
of long conditional formulae, as those frequently found in program verification2. New
rules could be considered even for totally removable symbols. Given that total rules

for e.g. rmdr, gcd, / and gfc tend to considerably increase the size of the rewritten

formula, (quantifier-free) partial rules would improve the performance of the plan in

certain subdomains.

Another change involves the enlargement of the concept of remove rule, to include a

variety of elements that may assist in formula transformation. A first extension takes

into account the existence of general remove rules, which have the form

b{vi,...,u„) =» 6'{vl,...,vn}

where the set of free variables of the rhs expression is properly contained in the set of

variables of the lhs expression. Their generality follows from the fact that any term

that replaces a variable u,- that is missing in the rhs expression is removed in the course

of rewriting. For instance, given the partial remove rule for X,

#x0 => 0

its instances

(tq + v2) x 0 => 0
v\' x 0 => 0

(tq — u2) X 0 => 0

1 Essential and inessential parameters are defined in chapters 4 and 5.
2 See for instance [Polak 81], p. 207 - 210.
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are respectively partial remove rules for + , exp and — as well. A general rule, therefore,

is a family of partial rules.

Apart from rules obtained from equalities and equivalences, rewrite rules derived from

strict implications can also deductively enhance the proof planning strategy, even

though their application must observe certain restrictions3. Non-arithmetical func¬

tion symbols are amongst those which can benefit from this second extension of the

remove class.

Example 11.1.1 Let

y + y < s(x) A 0 < z + w A x<min(/1) A max(/i) < min(/2) A max(/2) < y

be an arithmetical conjecture, where min (7) and max(l) respectively denote the min¬
imum and maximum elements of a list of natural numbers I. With respect to the

decidable sublanguage CprA> = {0,1, s, +, <}, there are two deviant function symbols,
min and max. Let 1Z be a set that contains two rules derived from implications,

R\. v < min(Z) =£- v < max(/)
R2. tq < v2 A v2 < v3 => tq < v3

R2 in particular is a general rule, whose instantiation originates specific remove rules,

such as

R'2. tq < min(f) A min(/) < v3 => tq < v3
R'j. tq < max(/) A max(/) < v3 => tq < v3

Given that the current strategy for ordering deviant symbols requires that a rule does

not reintroduce a deviant symbol previously removed from the conjecture, the removal

of min should antecede max, as follows,

3 Implicational rewrite systems and some of their properties are discussed in appendix D.

325



y + y < s(x) A 0 < z + w A x < min(/1) A max(/:) < min(/2) A max(/2) < y

JJ- 2 x Rx

y + y < s(x) A 0 < z + w A x < max(l1) A max^t) < max(/2) A max(/2) < y

4- R'l

y + y < s(x) A 0 < z + w A x < max(I2) A max(/2) < y

y + y < s(x) A 0 < z + w A x < y

where the occurrence of each rewritten subexpression is positive. Since the resulting

formula belongs to CprA>, it is then supplied to the corresponding decision procedure.
Given that it is unsatisfiable in PA, the same applies to the original conjecture. g

A final extension introduces remove procedures, which may achieve the combined effect

of various remove rules more effectively.

Example 11.1.2 Let P be a procedure that can be informally described as

If a summand t occurs at least n times in each side of an equality (or

inequality), then n occurrences of the summand t may be deleted from

each side of the equality (or inequality).

and let R\ and R2 be the remove rules

Ri. vl+v2 = v3 + v2 => V! = v3
Ro. vx + Vo = Vi + v3 v2 = V3

Given the equation

((x + 2w) + w x y2) + (((r + 2w) + 3z) + (x + 2w)) = z3 + ((r + 2w) + ((2z + (x + 2w)) + (z + (i + 2w))))

a single application of P suffices for the removal of all underlined, summands, thus

generating
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w x y~ + 3z — z3 + 3z

One application of R% (or another call ofP) suffices then for its conversion to a formula

°f £-sma- In the absence of P, however, several applications of Rx and R2) interleaved

with calls to a disagreement elimination mechanism for reordering occurrences of sum-

mands, would be needed. g

Deductively more powerful procedures are obtained when semantic identity is taken

into account. For the above example, a related procedure could be defined as

If a summand t, which occurs at least n times in one side of an equality (or

inequality), and a summand V, which occurs at least n times in the other
side of the equality (or inequality), can be proved to be equal (in a theory

T), then n occurrences of t and/or t' may be respectively dropped from each
side of the equality (or inequality).

11.1.2 Expansion of the Equality Base

Specialised procedures may be also added to the equality base Spa- to speed up the

elimination of disagreements. The disagreeing pair of symbols (+, x), for instance, is

particularly relevant in the study of arithmetical conjectures, but £PA> has only two

explicitly adequate elimination equations for it,

(tq X v2) + (iq X v3) = r, X (v2 + v3)
(tq X v3) + (v2 X v3) = (rq+u2)xu3

A procedure that computes a. family of additional equations specialised in handling
terms in polynomial form in one variable could then be taken into account, whenever

the above disagreeing pair requires the transformation of a polynomial into a product.

Assuming it is given in canonical form,

an+pvn+p + • • • + ctjU T a0 (*)

the procedure would factorise (*) into polynomials of lower degrees, e.g.
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(bnvn H h bxv + b0) x (cpvp + f- cxv + c0) (**)

an operation that includes solving a system of equations of the form4

^n+p— 1 — 1 d~ bn—\Cp

i+j=k

r, ^'ci

Oo — b0c0

Given that the family of equations of the form (*) = (**) is infinite (since there is
at least one equation for each (n + p) G N), additional constraints must be imposed on

their selection in the course of disagreement elimination. A possible strategy would

identify the instance of (*) that is relevant for the context, i.e. the instance that can
be syntactically matched against a subexpression of the conjecture, as illustrated in

the next example.

Example 11.1.3 Let (f) be the formula

x3 + x2 = x + 1

As part of an attempt to reduce it to Csma, a remove rule for +,

+ v2 — 1 (r>i = 1 A v2 = 0) V (vi — 0 A v2 = 1)

is selected, and a fatal disagreement,

is found. As v3 7^ 0 —>■ (n4 = 1 = v3 x v4 = v3), or rather its instance
4 These polynomials belong to an expansion of Cpa to which infinite many individual constant symbols
representing natural numbers have been added.

<j>. x3 + x2 = x\ + |l
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^5 + ^6 fi 0 — V4 = 1 = (% + V6) X V4 = V5 + V6

is the only adequate equation available in Spa' for the elimination of this disagreement,

its Ihs expression is unified with 61, thus generating

V5 + v6 ^ 0 —» (v5 + v6) x (vi + wf) = v5 + v6 => {vi = 1 A i>2 = 0) V (vi = 0 A v2 = 1)

The next disagreement to be tackled involves the pair (+, x).

s[. (^5 + %) [x] (v1+v2) — + Ve

<i>. X3 [+] X2 = x + 1

The equation v7 X (vs + v9) = (v7 X v8) + (v7 X v9) is then selected, and further disagree¬
ments have to be solved thereafter. As indicated in figure 11.1, some of the attempts will

lead to failure. The successful generation of a new rule is accomplished once equations

applicable to terms, such as

v + 0 = v

1 X v = v

take part of disagreement elimination, as shown in figure 11.2. The use of equations

applicable to atoms, however, considerably expand the search space, as already men¬

tioned in chapter 9. Concerning the unsuccessful trial, it did not explore an important

feature of the conjecture, namely, that it is in canonical polynomial form, since the

final derived expression, 6"", is not in this form.

This deficiency could be overcome if the elimination procedure for the decomposition

of polynomials is chosen for the disagreeing pair (+ , x), since it would supply the
relevant options and avoid inadequate paths. For the disagreeing pair of expressions,

((^5 + ^6) x (vi +^2)5 x3 + x2}, the selection of an elimination equation would observe the
additional restriction that its rhs expression is matchable to the subexpression of the

conjecture. As a result, the elimination procedure has to decompose a single polynomial,

vi3 + f13? as follows

vi3 x (ui3 + ^13)
V13 X (V13 + 1)
('UJ'g + ^13) X ^13
{vl3 + 1) X v\3
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Rule Elim

Equation
Subst

61 Vi + V2 = 0 ei

k (t>5 + V6) E (Vi + V2) = V5 + Ve e2 "2

V5 x (vi + V2) + v6 x (vi -f v2) = v5 + Ve - 03

6'{' V5 X (viQ^) + 1 x (vi + v2) = v5 + 1 e3 <T4

6'{" ^5 X (v10 X (vn + u12)) + [1] X (vio X Vn + v10 X v12) = v5 + 1

<t> X X (x X X) + xxx -

X + 1

S disagreeing symbol

Ei. v4 = 1 = (v5 + v6) x v4 - v5 + v6 («5 + v6 ± 0)
E2- («7 + tig) X W9 = l>7 X Vg + Vs X 1>9

E3. vio x vji + via x v\2 = vio x (vn + f 12)

& 1 {(«i + »a)/W4}
{v*/v7,vyvs,(vi + v*)/v9}
rl /.. i

C2

<73 {1 / **6 }
ct4 |(flO X «ll)/Vi) (wio X

v4n unremovable disagreeing pair, (x, 1), was found between S["' and 4>

Figure 11.1: Rule generation: a failed attempt
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Rule Elimination

Equation
Substitution

61 fi + ^2 = P~] Ex Ol

(us + v6) [x] (^1 + 1^2) = V5 + v6 e2 o2

V5 X (vi + V2) + v6 X («1 + Vn) - V5 + V6 - o3

«? V5 x (fl[+>2) + 1 x (vi + Vn) = VZ + 1 e3 04

»5 X (vio x tin) + [T| x (v10 x vn) = V5 + 1 ea 05

V5 X (t'10 X vn) + U10 xtin = V5 + 1

4> x x (x x x) + XXX + 1

S disagreeing symbol

E1. 114 = 1 = (t)5+1)6)X!)4 = I)5+t)6 (^5+^6^0)
En- (»7 + »s)xt)9 = V7 X Vg + Vg X Vg

E3. (vio x vn) + 0 = Vio x vu

E4. 1 X (v\n X V13) = V12 X V\3

Ox {(*1+«*)/«4}
On {WV®7, (*1+,'a)/»9}
°3 {V"®}
<74 {("10 X
<7s {""Ma,""/""}

Figure 11.2: Rule generation: successful reduction
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The above decompositions cover all cases, in view of the requirement that all polyno¬
mials are in canonical form5. When the fourth equality. (v^3 + v\3) = (vi3 + 1) X v\3, is
selected, it can be RGM-unified with after the application of the equation

(1)14 X v15) + 0 = vi4 X v15, and the final remove rule,

V\3 + 1 0 -» v'f.j + Vj2g = Vi3 + 1 =h (vf3 = 1 A 0 = 0) V (u23 = 0 A 0 = 1)

or its version free from ground atoms,

V13 + V13 = + 1 => Vl23 = 1

is obtained. n

11.1.3 Selection of Decision Procedures

The measure function mc for decidable subclasses, defined in section 6.3.2, does not

take into account the complexity of the available decision procedures. Neither does it

consider that decision procedures of lower degrees of complexity may exist for proper

fragments of a class. When this is the case, such subsets should be regarded as new

independent entries in the list of decidable classes. For some of them, the reduc¬

tion process has to include logical symbols as deviant, e.g. quantifiers in the case of

quantifier-free classes. The degree of complexity of each class would then have to be
evaluated and incorporated in the measure function6.

Complexity issues that affect the heuristic choice of remove rules also require further

investigation. The consequences of the introduction of quantifiers during rewriting still
have to be measured. Moreover, increases in the number of occurrences of variables in

the rhs expression of a rule should discourage its selection, as discussed in section 6.3.2.

11.2 New Proof Plans

Although the current plans have been applied only to arithmetical conjectures, they are

in principle adequate for any theory that admits a decidable sublanguage. Particularly
5 The two missing options, (vj3 + «]3) x 1 and 1 x (nfj + «i3), are already covered by the equations
v X 1 = v and rq x i>2 = t>2 x v\.

6 See section 6.3.3.

332



relevant to the study of verification conditions are theories for data structures such as

lists, arrays, trees and finite sets. No structural change affecting the plans is required
for this purpose: only the sets of rewrite rules and elimination equations must be

adjusted to each context7.

Extending decidable classes other than sublanguages requires distinct plans, as for
instance those involving the reorganisation of occurrences of symbols.

11.2.1 Reorganisation Plans

Normalisation processes such as conjunctive or disjunctive normal forming cannot be
reduced to the use of remove rules. Given the class of formulae defined by the produc¬

tion

fm := atom\-<fm\fm A fm\fm V fm

and its conjunctive normal form subclass,

fm' := conj\fm' A fm'
conj := literal\conj V conj

literal \= atom\-iatom
the main syntactic task is the stratification of occurrences of connectives. A specific

strategy for this case has elements that are absent from the process of removal of

deviant symbols. For instance, given a conjecture generated by fm,

V q) A —it-)

once it is compared to the aimed normabsed class, two actions have to be considered,

(i) the stratification of negations beneath conjunctions,

(ii) the removal of occurrences of double negations.

As the remove rule for (double) negation is immediately applicable and does not in¬

troduce any new occurrence of a symbol in the conjecture, it should be preferred over

stratify rules8. Moreover, the removal of negations, unlike their stratification under
' For many-sorted t heories, however, variable instantiation has to take into account whether a variable
and an expression that is supposed to replace it belong to the same sort.

R

Although negations are not deviant symbols w.r.t. the final subclass, nested occurrences of this
symbol are not allowed.
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other connectives, promotes a desirable reduction in the number of logical symbols of
the rewritten conjecture. The above formula would then be rewritten to

(p V q) A ->r

which already belongs to the normalised class.

Besides representing normal forming procedures, reorganisation plans (i.e. proof plans
that include the application of reorganisation rules) may also play a role in the extension
of prefix decidable classes of the predicate calculus. This is the case of the set of

n2-formulae, defined bv

fm := exfm\(yiv)fm
exfm := qffm\(3v) exfm
qffm := atom\~iqffm\qffm A qffm\qffm V qffm\qffm D qffm\qffm = qffm,

which is decidable for the predicate calculus without function symbols, as well as for

some other first-order theories. A reorder rule such as

(3u1)(u2)(<^[^i] A VM) => (t>2)(3^i)(0 A i>)

could then be employed in the reduction of non-IT-formulae into this subclass.

The GETFOL mechanism for the extension of the UE-class could be also modelled as a

reorganisation plan. The elements of its rule base are all classifiable according to the

categories devised to represent normalisation processes in general9. The remove rules

employed by this system include

(Qv)p[fl P[A

There are also stratify,

(3v)((f> V if)[v] => (3v)4> V (3v)if
(Vu)(<^ A ip)[v] (Vu)</> A (Vv)V>

(3v)(p[jf]A <t>[v\) =7 p[f] f\ (3v)d)[v]
(Vu)(p[^] V 4>[v]) => p[ff] V (Vv)<£[t>]
(</>V^)[«]A7[d] =7 ((f) A 7[u]) V (if A 7[u])
(cf) A if))[v] V 7[u] =7 (<f> V 7[v]) A (tp V 7[u])
7[u] A ((f> V if)[v] => (t[u] A (f>) V (t[u] A if)
7[u] V ((f) A if)[v] =7 (7[u] V (f>) A (7 [f] V f>)

9 The rule base of GETFOL can be found in figure 2.1.
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and reorder rules,

<f>[v\opW\ => p[f] 0 (p[v)
0 #"])0 V'W =>• aM ° (<£M ° V'H)

</>b]A(/9[^] A VH) => /9[^j A ((^[u] A VM)
<£M v (p[^j v ip[v ) =>■ p[f\ v (<^[v] v VH)

where o represents either A or V. A proof plan for UE-normal forming would have to

remove occurrences of existentially bounded variables from the scope of universal quan¬

tifiers. A very simple mechanism for this task would apply remove rules to eliminate

undesirable occurrences of existentially bounded variables. Other plans would attempt

to reorganise occurrences of such variables, by means of stratify and reorder rules, until

they do not take place in forbidden positions. Strategies of increasing complexity could
be built up from the combination of elementary plans.

The use of proof plans for UE-normal forming would overcome potential difficulties re¬

lated to the extension of the rule base, such as the non-termination and the inefficiency
of exhaustive rewriting. Also, the guidelines for the classification of rules would allow

the automatic selection of new rules, thus incorporating dynamicity to the system.

For instance, the expansion of the rule base suggested in section 2.3 could take place

strictly according to the above classification: the new rules

{<p A tp) V (</> A -tip) <t>
{(p\/ ip) A ((pM -iip) => <P

<p A -op 1

<p V -id) => T

would then be added to the remove set.

11.2.2 Disagreement Elimination

The extension of decidable sublanguages requires two operations, the removal of devi¬

ant symbols and the elimination of disagreements between rules and formulae, when

necessary. The currently implemented general-purpose plans deal with each of these

operations separately. Deviant symbols are removed at the conjecture level, where

rewrite rules are controlled by proof plans. Disagreements, on the other hand, are

eliminated at the rule level by a difference reduction procedure specialised in semantic

(rule) matching, without the participation of plans.
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For theories that admit quantifier elimination, both processes are in principle repres-

entable as special-purpose proof plans10. In the extension of sublanguages, however,
even though the removal of deviant symbols is immediately captured by a relatively

simple general-purpose plan, the elimination of disagreements is outside the scope of

any elementary representation. Virtually all the basic normalisation operations, such
as the removal, stratification and reordering of symbols, as well as similar operations

restricted to the domain of individual variables, are involved in this task.

A general-purpose plan for disagreement elimination, therefore, has to start being built
from a broad outline for its main components. The elimination of a disagreeing occur¬

rence of a symbol could be described as either its removal from the expression or its

moving to another position, followed by its replacement with a different symbol. At

least the first two operations can be more immediately represented by means of proof

plans, and some of the guidelines to be considered in their construction include

(i) priority of total over partial rules,

(ii) priority of remove rules over stratify rules, and of stratify over reorder rules11.

Further studies, however, are needed to refine this description in terms of more ele¬

mentary operations.

11.2.3 Combination of Subclasses

Proof plans can also represent, at least partially, the Nelson and Oppen mechanism
for the combination of decision procedures12. The rules necessary for putting formulae

into separate normal form could be included either in a reorder set, as for example

fc°(t1)<gc»(t2) =>• /£"(ti) <v A v = gCb(t2)

or in a stratify set.

10 See chapter 5.
11 See section 5.3.1.

12 The combination of decision procedures is described in section 2.4.
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PCa[fCi(i;)] => PCa[v] A v = fCb(t)
~~'PCa[fCb(t)] => ->pCa[v] A v = fCb(t)

fC°[gCh(t)] => fCa[v]<\uAv = gCb(t)
u < fCa[gCh(t)] => u < fc"[v] A v — gCb(t)

where <1 stands tor either = or Given a language £c, obtained from the combination
of languages £1,..., £n, its original class of terms,

tmCc := var\consc11 .. . |consc" |/j£l(tm£c)| ... |/£J (tm£c)|/£2(tm£c)[ .. . |/£^(tm£c)

would then be transformed into n separate layers13,

tmCn := var\consCn\ffn(tmc")\ ... |/£^(tm£")

tmCl := uar|cons£l|/j£l(tm£')| .. ,|/£j(tm£l)
by a suitable separate normal forming plan.

Concerning the last stage of the procedure, the equality propagation mechanism, which

expands a conjecture by the inclusion of entailed expressions as new conjuncts, it would

be necessary to adopt rules of the form

4) => (4>A6) (t)
ip A -iij} =>• J_
i)/» =>■ ±

where 4> is in separate normal form and S is an entailed equality (that does not occur
in 4>)lA. Rules of type (f) do not seem to fit in any of the classes presently available
in the proof planning framework, even though the process they represent can be easily
described as the expansion of an expression by the introduction of new conjuncts.

Although it is still not clear how common is this process in the context of normalisation,

a method for expanding expressions could be created, provided that the expansion

would allow e.g. a later application of remove or stratify rules.
13 In other stratification processes, as for instance the transformation of formulae containing just A

and V into conjunctive or disjunctive normal form expressions, the resulting class consists of a
hierarchy of layers, each of which provides the base set for the next class. In the present case,

however, the base class is the same for all of the new layers, and none of them is contained in any
of the others.

14 The last requirement is necessary to guarantee termination for the application of such rules.
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11.2.4 Weaker Forms of Equality Propagation

A modified version of the Nelson and Oppen procedure could be used even when decid¬

able sublanguages share non-logical symbols. If Cx and C2 are non-disjoint decidable

sublanguages, T is an undecidable theory in the combined language Cc obtained from

Cx and C2, and cf> is a quantifier-free formula of Cc, 4> would first have to be put into

disjunctive normal form, thus assuming the form

4>x V • • • V <j>n

where <^f A (7,^ A- • -AEach disjunct would then be converted into a conjunction
of formulae of each decidable sublanguage, as follows15.

i. If non-logical symbols of Lb and (£a - Cb), a ^ b,a,b € {1,2}, occur in 7^, it is
put into separate normal form with respect to Cb and (La — Cb). Every disjunct

4>i can then be reduced to a conjunction xpi of the form

V# a $;!

ii. As a consequence of lemma 2.4.1, (f> is unsatisfiable iff every -0; is also unsatisfiable.

The decision procedure for T D FmlC:i would then be applied to each conjunct
Jl

xl>l j to verify its satisfiability.

iii. In the event both and ipf2 are satisfiable, atomic formulae involving symbols
of C\ fl £2 an<i entailed by one conjunct are added to the other one, and the

decision procedure for satisfiability is applied again. If the extended conjuncts

remain satisfiable after a pre-established finite number of iterations of the process,

no conclusion about the satisfiability of the conjunction can be derived.

Equality propagation therefore has to include terms other than just variables. Moreover,
as the original theory is undecidable, the new mechanism is a simplifier (i.e. a rewrite
15

Rigorously speaking, the resulting expression is not in separate normal form, for, according to the
original definition, languages (and therefore the decidable classes of formulae, with equality left
aside) must be disjoint.
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system that reduces a formula to either a. prepositional constant or a simplified expres¬

sion) rather than a decision procedure. It could be applied to Peano arithmetic and

its extensions to solve some classes of problems.

Example 11.2.1 Let

Ui X Xi + t- un X xn = 0 A tx + 1- tm < Xi A Ml ^ 0 A ... A ji„ / 0

be a formula where Uj is a term containing only 0, s and variables, tj has x as only
function symbol, and Xi £ {xi,..., xn}. Since 1ZpA• can eliminate + only from the first

equation, the standard reduction strategy does not work in this case. The formula then

is put into 'separate' normal form w.r.t. Cpra' end jCsma, which share two constant

symbols, 0 and 1, as shown below.

C-SMA k-'PrA*

Z\ = 2/1 X xi y\ = ux

— Vn X xn

Wx = tx
Vn = Un

Ul # 0

wm — tm Un 0
Z\ + • ■ ■ + zn = 0

Wx + b wm < Xi

Zi = 0
yi = 0 V Xi - 0

1

(SNF)

(PE)

SNF and PE respectively denote 'separate' normal form and propagated expressions.

Given that the formulae present in the top part of each column are satisfiable in their

respective subtheories, equalities and disjunction of equalities entailed by each of them
have to be propagated and conjoined to the other formula. In the above example, the
atom Zj = 0 is first derived from the right column and added to the left column. There¬

after the disjunction y,- = 0 V x{ = 0 can be obtained and propagated back to the

right column, thus allowing the derivation of J_. Hence, the original conjecture is PA-

unsatisfiable. g
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The example shows that this procedure can effectively handle certain arbitrarily large

conjunctions of literals, being as a result valuable in the domain of program verification.
One of its limitations is the potentially infinite number of entailed atomic formulae in

the presence of shared function and/or constant symbols. For this reason, criteria for

guiding their selection would have to be sought.

Proof plans could adopt this methodology as an alternative approach to the reduction
of conjectures into a single decidable class. Whenever this target cannot be achieved,
a second trial would consist of splitting (/) between distinct decidable sublanguages.
The list of deviant symbols would then be defined w.r.t. the combination of all such

languages, rather than w.r.t. each particular decidable class. Remove rules would

be necessary only for symbols absent from all such classes. Their removal would be

followed by 'separate' normal forming and calls to the necessary decision procedures.

To sum it up, in the context of proof planning and rewriting, the procedure developed

by Nelson and Oppen could be employed in two different ways.

i. As a source of decision procedures for the combination of theories in which veri¬

fication conditions are commonly expressed. Proof plans would then control the

process of rewriting conjectures into the decidable class delimited by this proced¬

ure.

ii. As the source of an alternative approach to the present strategy of rewriting

a conjecture into a single decidable class. Rewrite rules would be needed for

removing only certain deviant symbols and for decomposing a conjecture into

expressions of the decidable sublanguages.

11.3 Cooperation with Other Modules

The integration of proof plans inside hybrid provers has so far been limited to the pre¬

processing of conjectures before they are delivered to other modules of the system, as

in the case of the simplifiers16. Other roles involve, for instance, solving subproblems

generated by semidecision procedures.
16 This feature can be observed in figure 9.1, which describes the structure of the plan simplify/1.
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11.3.1 Subexpression reduction

There are cases where the reduction of a conjecture to a single decidable subclass can¬

not be accomplished by a particular rewrite set 7Z, even though distinct subexpressions

may be reduced to distinct decidable subclasses. A procedure for the decomposition

of a conjecture 0 into a list °f subformulae, such that 0 results from their proposi¬

tional combination, could be particularly useful for a quantifier-free conjecture, since

its atomic components always constitute a valid propositional partition. Once this list
is obtained, the decision procedures are employed as follows.

i. Given a subformula 0, if it is reducible to a formula 0' of a decidable sublan¬

guage, 0' is supplied to the corresponding decision procedure. If it is valid, each
occurrence of 0 in the original conjecture 0 is replaced with T.

ii. If 0' is found invalid, but ->0' is valid, then 0 is unsatisfiable, being therefore

replaceable with _L in d>.

iii. If both 0' and -i0' are invalid, 0 is not replaced with any propositional constant.

Example 11.3.1 Given the rules

R}. i'i x v2 < Vi => Vi / 0 A < 0
Ro. Vi X v2 = 0 =>■ vx = 0 V v2 — 0
Rs- T v2 = v2 t v3 vi = 1>3

and the conjecture

x2 x (s(y) + z) < x2 V x4 x y2 -\- y X z2 = y x z2 + (y X x2)2

each disjunct can be reduced to a distinct decidable subclass: the Ihs disjunct is reducible
to jCprA', hy the application of R\ and R2,

-1 (a; = 0 V x = 0) A (s(y) + z < 0)

and the rhs disjunct, to CSma > by a single application of R3,

x4 x y1 = (y X x1)1
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Given that the first subformula is found PA-unsatisfiable, it can be replaced with the

propositional constant JL. The second one is PA-valid. being therefore replaceable with
T. A propositional decider then suffices to establish that the original conjecture is

PA-valid. g

Under these circumstances, a proof plan would be connected to an initial module that

decomposes input formulae into lists of (atomic) subformulae. As in the PVS system,

decision procedures are then employed as complex rewrite procedures. PVS, however,

does not have a rewriting interface for the reduction of subformulae into a decidable
subclass1'.

11.3.2 Inferred Formula Reduction

Another possible link can be established between proof plans and semidecision proced¬
ures. A simplifier could tackle subproblems obtained in the course of the construction

of a proof or a refutation for a conjecture. The resulting proof (or refutation) tree

would then involve the use of both rewrite and inference rules.

Example 11.3.2 Let 4>

(Bx){y){z){x / 0 A x1 X y + z4 = a:3 + y X a:2) A (3z){3w)(z4 -\-wxz2<wxz+5)

be a conjecture. Given'the a-rule for conjunctions,

4>\ a f>2
4>\ >4*2

4> is first transformed into the pair

(3x)(y)(z)(x / 0 A x2 x y + z4 = x3 -f y x x2), (Bz)(3w)(z4 + w x z2 < w x z + 5)

ivhose Ihs formula is rewritten by simplify/1 for the elimination of occurrences of +,
as follows

17 PVS is described in chapter 2. The above process does not amount to the cooperation of procedures
mentioned in the previous section. The decomposition that takes place in the context of cooperation
requires 'separate' normal forming, which is absent in the above case.
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(3x)(y)(z)(x 0 f\ x2 X y + z4 = x3 -\- y x x2)
U-

(3x)(y)(z)(x /OA z4 = x3)

which requires the generation of a new remove rule,

(vi X v2) + v3 = v4 + (v2 X Vx) =>• v3 = v4

The rewritten formula belongs to CSma and is SMA-unsatisfiable. Therefore, the

only branch of the above semantic tree is closed, and the original formula, <f>, is PA-

unsatisfiable. g

Tatzelwurm already operates with a tableau-based inference system that is interfaced

to several decision procedures. The above example illustrates, however, that proof

plans can add as a new ingredient their capability of handling deviant symbols18.

11.4 Conclusions

Some of the applications of proof planning to normalisation that have been overlooked
in previous chapters require minor changes to the parameters of currently implemented

general-purpose plans. Other applications require the implementation of new plans
and the construction of control structures to improve their performance. Any of these

plans may have alternative uses inside a complex system, such as their cooperation
with semidecision procedures.

18 Tatzelwurm is described in chapter 2.
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Chapter 12

Conclusions

Proof plans may be used to effectively integrate decision procedures inside heuristic

theorem provers. Several problems arose in the course of the development of suitable

plans for this task, particularly in the domain of Peano arithmetic. Their solution

represents the contribution of this study to the fields of mechanical theorem proving

and the mechanical verification of program correctness.

The analysis of a series of provers that employ one or more decision procedures revealed

that, in most cases, the role of such procedures inside each system could be enlarged.

The reduction of formulae into a decidable domain suggests an additional strategy

from which almost any system could benefit. Proof plans for normalisation, devised

by Bundy for the control of rewriting processes, provide a suitable framework for

exploring this strategy1. It involves the use of normalisation tactics and methods, as

well as special sets of rewrite rules. A language in which syntactic properties of classes
of formulae may be expressed allows the description of normalisers. Methods may be

then combined by a planner to generate a plan that meets a description.

Two types of plans defined by Bundy, special and general-purpose plans, have been

investigated. A special-purpose plan has been implemented to represent Hodes' al¬

gorithm, a decision procedure based on quantifier elimination. The study of two famil¬
ies of normalisation processes, quantifier elimination and decidable subclass extension,

revealed the main elements required for their implementation as general-purpose plans.

1 See [Bundy 91].
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Decidable sublanguages in particular can be extended by general-purpose plans devised
for the removal of deviant symbols. A detailed study of remove rules disclosed a set of

sufficient conditions for the termination of rewriting for certain classes of such rules.

The performance of the resulting normalisers improved after various heuristic func¬

tions were added to them. Heuristic guidance is provided for the selection of a target
decidable sublanguage, for ordering the removal of deviant symbols, and for selecting
remove rules. RGM, a difference reduction procedure specialised in the generation of
new rules, has been interfaced to these plans to enlarge their range of application.

Plan performance has been empirically assessed by means of a set of representative

arithmetical v.c. and a sample of randomly generated conjectures. The results showed
that

i. the approach has an adequate performance in an important domain for program

verification,

ii. the combined use of the heuristic functions increased the efficiency of the plans,

iii. two arithmetical decidable sublanguages have been effectively explored in the

experiment, one of which, Tsmai is usually neglected in the study of arithmetical
decision procedures,

iv. proof planning provides a higher success rate than the mechanism of additional

hypothesis introduction present in the simplifier of Nqthm.

To further support the claim that proof planning is an original strategy for the devel¬

opment of normalisers, section 12.1 compares normalisation plans to other controlled
rewrite systems. Section 12.2 then examines the relevance of proof planning in view of
its flexibility.

12.1 Controlled Application of Rules

Rewrite rules have been traditionally used in theorem proving for simplification, sym¬

bolic evaluation and canonical normal forming2. At least some of the successfully
2 See [Bundy 83], p. 150-153.
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reduced conjectures may suggest that proof plans for normalisation perform just a

standard combination of these tasks, without adding any new relevant element to

them. For instance, the formula

(x)(y)(z)(w)(x / ODxxy|ixw = ixz + x2),

has been simplified by the plan decidel/1 to

(x)(y)(z)(w)(x / 0 J y + w = z + x)

whereas other cases are simple examples of equation solving, e.g.

(3x)(3r/)(3;>r)(x / 0 D (y ± 0) D (x X y) X (x + y) + (x X y) X (y + z) = x X y)

which has been transformed by the same plan into

(3x)(3y)(3z)(x / 0 D 1/ ^ 0 D ((((i =1Ai/ = O)V(i = OA3/=1))Aj/ = 0Az = O)V

V ((x = 0 A y = 0) A ((y = 1Az=0)V(j/ = 0A2 = 1)))))

All the remove rules for + and X present in TZpa' are classifiable along the three cat¬

egories above. Hence, any possible effective reduction of a conjecture into a decidable
class is an instance of simplification, evaluation or canonical normal forming.

The new ingredient introduced by proof plans in the development of rewrite systems,

however, does not take appear at the conjecture level, but in the control of the applic¬
ation of rules. The reduction of a formula to a decidable class by means of a proof plan

cannot be identified with standard expression simplification, since exhaustive rewriting

is excluded. An arithmetical formula such as

{x)(y)(z)(w)(x / ODxxjixt/Xzj + iX (w2 X y2 x x2) = x)

would be transformed by the decider into

{x){y){z)[w){x / 0 D ((x xyxz=l/\w2xy2xx2 = 0)V

V (x X y X 2 = 0 A w2 x y2 X x2 = 1)))
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which is an element of Csma-, and rewriting would then stop, in spite of the fact that
other rules of 7ZpA- are still matchable to it. The arithmetical validity of the resulting
formula can then be determined by a decision procedure, which is more efficient than

a generic rewrite system. One of the guidelines of the proof planning approach asserts

that rules should be applied only while necessary for a particular purpose, and not

exhaustively.

Another important aspect of planned rewriting is its ability to effectively employ vir¬

tually any set of rules, given that its control structures prevent non-termination. Plans

are able, therefore, to perform tasks that lie beyond the domain of exhaustive rewriting,

which is limited to the use of noetherian sets.

Two forms of search control may be embedded in a proof plan3. Firstly, the search space

of a problem can be reduced by the formal establishment of specific properties of parts

of its domain, which are then strictly explored inside such subdomains. This is the case

of certain results obtained about the extension of decidable sublanguages, which have

been used in the construction of plans that strictly apply remove rules for this task,

without completeness losses. Secondly, heuristic strategies may be added to a system

to improve its performance, possibly at the expense of completeness. This is the case,

for instance, of the mechanism of selection of decidable subclasses based on heuristic

measures for the complexity of the removal of deviant symbols: the prohibition of the

joint use of remove rules for deviant and non-deviant symbols actually prevents certain

formulae from being reduced into a decidable sublanguage.

Control mechanisms are not an exclusive element of rewrite systems built through

proof planning though. In ordered rewriting, the domain of the system is ordered,
and rules may be applied in either direction, provided that the rewritten expression

antecedes the original one according to the pre-established order. Conditional rewriting

requires a conjecture to satisfy certain conditions before a rule is applied. Finally, in

priority rewriting, a partial order is defined in the set of rules, as in the case of Markov

algorithms4.
3 Search control is discussed in appendix D.6.
4 Conditional rewriting is defined in appendix D. Ordered and priority rewriting are briefly discussed
in [Dershowitz fe Jouannaud 90], p. 259, 306-8.
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In both ordered and condit ional rewriting, the application of rewrite rules is sensitive to

the conjecture alone, whereas proof plans check the properties of the underlying theory
as well, such as the existence of decidable classes and the complexity of their decision

procedures. Proof plans, on the other hand, have some similarities with priority rewrite

systems, to the extent that rules are selected and ordered before their application starts.

Since the order is sensitive to the input formula, each plan may then be regarded as a

collection of priority rewriters.

Proof Plans & GETFOL

GETFOL is another system that makes use of rewrite rules to enlarge decidable do¬

mains, as for instance the class of UE-formulae. Special control structures ensure that
its rule set is noetherian. A first attempt to generalise these results suggests that the
same mechanism could be adopted in other domains as well.

"The integration of the reduce procedures with GETFOL general-purpose

rewriter is also under study. Such integration should allow to meet one

of the most promising advantages in designing procedures relying on the
notion of reducibility. Since the GETFOL rewriter accepts as input both

the formula to rewrite and the set of rewriting rules, decision procedures

for new classes of formulae can be obtained by simply changing the set of

rewriting rules" ([Armando & Giunchiglia 93], p. 500)

The concrete assessment of the effects of such generalisation on termination and ef¬

ficiency is, however, lacking. The plain expansion and/or change of a rule set does
not necessarily generate a new decision procedure, since rewrite systems may be non-

terminating. Also, the exhaustive application of rewrite rules, even when the system

is noetherian. is not necessarily the most effective way of extending a class. The use

of proof plans, which can apparently represent the GETFOL rewriter, as discussed in

chapter 11, could overcome these deficiencies.
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12.2 Flexibility versus Efficiency

Several theories admit mechanisms for the reduction of conjectures into a decidable

subclass that are more efficient than proof plans. Such mechanisms may consist of

several stages of canonical normal forming and simplification, not necessarily based on

rewriting. The representation of Hodes' algorithm as a special purpose plan showed

that, although some of its steps can be efficiently performed by rewrite rules, the same

does not apply to the equational component. Efficiency, however, is not the main

concern of the proof planning approach to normalisation: its first purpose is to achieve

generality and flexibility.

"The hypothesis we are trying to test is that proof plans will provide a

modular representation of decision procedures that will facilitate their syn¬

thesis and modification and their interaction with the theorem provers in

which they are embedded. The cost may be some inefficiency in the im¬

plementation of the decision procedures, but the Boyer-Moore experience

seems to suggest that this cost is not significant within the context of the

complete system."' ([Bundy 91], p. 2)

Arithmetical procedures may take into account the commutativity and associativity of

sum and multiplication to improve their efficiency. Such properties, however, may not

apply to other operations or theories. General procedures, as a result, cannot explore

the properties of specific domains, otherwise generality is lost5.

The advantage of general but less efficient procedures can be observed in domains where
new operators are frequently introduced. Explicitly defined functions and predicates do

not seem to pose any real problem for a specialised procedure, since they can be usually
eliminated in terms of the original language before the procedure is called. There are

cases, however, in which the elimination is not possible or the explicit definitions of
the new symbols are too complex from the syntactic viewpoint. When the available

procedures are highly efficient but specific, they will fail to cope with such cases, and
either new extended and efficient versions have to be devised for them, or a more

5 Specialised procedures can be nonetheless incorporated in the proof planning approach under the
form of remove or disagreement elimination procedures, as considered in chapter 11.
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general approach must be sought. General-purpose procedures have an advantage over

their special-purpose counterparts whenever the development of the latter cannot keep
the pace of a rapidly changing theoretical background.

"But what makes it hardest to apply the work on decision procedures to

program verification is the presence of user defined functions. (...) Such
functions are introduced not by the designer of the theorem prover but

by the user when he is confronted with the need to specify a given pro¬

gram. Since decision procedures for these extended theories are not gener¬

ally available, one must have more powerful proof techniques or be forced

to assume the more doubtful conjectures behind a program's correctness."

([Bover & Moore 88], p. 1'22)

Given the nature of general-purpose proof plans, it is possible to claim that they

provide a general solution to the problem of integrating decision procedures into the¬
orem provers. Integration mechanisms present in some provers can be actually mod¬
elled as proof plans.

Proof Plans & Nqthm

All the above arguments about flexibility and efficiency can be in principle applied to

the comparison between proof planned interfaces and the linear procedure present in

Nqthm. The extension mechanism chosen by Boyer and Moore, based on the introduc¬

tion of additional hypotheses, is less flexible than the strategy available under proof

planning, since the former requires the core quantifier-free theory to be decidable, and
the extension of this theory to any expansion of the original language (without any

change to the axiom set) to be decidable as well. The principles that underlie proof

planning, on the other hand, are applicable to any theory, since they only require the

availability of decidable classes and adequate rewrite rules.

Concerning success rates, proof plans outperformed the Nqthm simplifier in a sample of

randomly generated formulae, and exhibited approximately the same rate as this prover
in a set of representative verification conditions. The proof planning approach could be
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even further strengthened by the introduction of new rules and the widening of scope of

disagreement elimination, currently limited to atoms. Concerning time performances,
the present implementation of the general-purpose plans compares unfavourably with
the Boyer and Moore prover, not only because the latter is a well-developed system,

but also in view of the specificity of its linear procedure, which is destined to be

more efficient than a general-purpose mechanism, at least inside its limited domain

of application. It has to be added, though, that, when the number of transformation

steps alone is taken into account, there is a subdomain of formulae of CPA> where

general-purpose proof plans outperform the Nqthm simplifier6.

The linear procedure of Nqthm, on the other hand, has two deficiencies. Firstly, it

cannot deal with quantified formulae (other than universal formulae, which are valid iff

their matrixes are valid as well). Secondly, it operates with a weak reduction function

that ultimately relies 011 the use of implication rules. As a result, even when all

undefined symbols are eliminated, there is no guarantee that the transformed formula

belongs to the extended decidable subclass, since it is still necessary to check its validity

(or rather the unsa.tisfiability of its negation) in the target subtheory. When the formula
is not valid, the whole transformation attempt fails, and this failure does not point to

any alternative solution: the only additional action is to blindly start adding other

hypotheses until an unsatisfiable formula is obtained, whenever possible.

Since the introduction of additional hypotheses ends up removing undefined symbols

from a conjecture, proof plans could possibly model the procedure adopted by Boyer

and Moore'. It seems to be necessary though to take into account rewrite rules derived
from implications. Once the properties of implicational rewrite systems have been
further investigated arid suitable search strategies have been integrated to them, proof

planning could even improve the performance of the heuristic mechanisms present in

Nqthm\ the selection of additional hypotheses is presently conditioned by the heaviest

multiplicand of a conjecture (to ensure termination), whereas a plan makes use of
context-sensitive functions that may point to an alternative ordering for the removal

of symbols and lead to a shorter transformation. Even if implication remove rules
6 See example 10.5.2 and section 10.5.
7 See example 10.5.2.
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are added to proof plans, this would not prevent the joint use of equivalence and

implication rules, where the former would always have priority over the latter, thus

avoiding, under certain circumstances, the disadvantages of implicational rewriting.

The fact that proof plans can handle and introduce quantifiers in the rewritten conjec¬

ture carries as disadvantage the need to employ the more complex decision procedures
for quantified classes. Short formulae, however, such as most of those selected as rep¬

resentative by Boyer and Moore, stay within limits where decision procedures for e.g.

Presburger arithmetic have a reasonable performance, given that one of the major

causes for formula expansion, the size of the prefix, has little effect in such cases. Also,

in spite of the absence of quantified formulae in the list of representative problems,

they can nonetheless occur in the domain of program verification, or any other domain
of application for mechanical provers: the ability to handle quantifiers is significant

in itself, independently of the complexity of related decision procedures. Finally, the

complexity of a decision procedure does not seem to be as determining a factor for the

final performance of the extended procedure as the chosen integration mechanism8. For

several of the selected problems, proof plans provided a straightforward and efficient

reduction mechanism. This aspect compensates for any disadvantage related to the

use of less efficient decision procedures, at least in certain domains.

12.3 Summary

Several attempts have been made to integrate decision procedures in (heuristic) the¬
orem provers. Most of them are too limited in scope. Proof plans provide a more

adequate and general framework to solve this integration problem, based on the reduc¬
tion of formulae into a decidable domain. They seem to capture the structure of at

least two integration mechanisms, present in Nqt.hm and GETFOL.

Even though the reduction of formulae into decidable subclasses apparently amounts

H Once again according to Boyer and Moore,

"... an instantaneous oracle for deciding linear arithmetic problems [... ] would increase
the speed of our theorem prover on typical program verification problems by less than
3%." ([Boyer fc Moore 88], p. 90)
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to a standard application of rewrite rules for expression simplification, the originality
of proof planning in the domain of normalisation stems from its control devices that

prevent exhaustive rewriting and ensure termination. Moreover, even though simpli¬

fication processes performed by general-purpose plans are less efficient than specialised

procedures, the relevance of proof plans for normalisation derives from their generality
and flexibility.
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Appendix A

List of Symbols

Sets and Functions

Symbol Meaning P-

p(A) parts of a set A 368

f'.A-B total function 368

f:A^B partial function 368

f(A) image of / restricted to A 368

dom(f) domain of a function / 368

mg{f) range of a function / 368

im(f) image of a function / 368

f 0 9 composition of functions 368
N set of natural numbers 368

Z set of integers 419

Q set of rationals 377

E set of reals 377
Godel number 380

f 1 A restricted function 368

fiVi(R(vi,.. .,vn)) minimalisation operator 370

#A cardinal number of A 368
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First-order Logic

Syntax

Symbol Meaning p.

£ (first-order) language 371
£ effectivised (first-order) language 380
Symc set of symbols of a language 372
Sym*c set of proper symbols of a language 372
Fmlc set of formulae of a language 372
Stnc set of sentences of a language 374
Trmc set of terms of a language 372
Expc set of expressions of a language 373
7^ not equal 382
= equality predicate 372
3 existential quantifier 371
V universal quantifier 371
{v)(f> universal quantifier 373
3| unitary existential quantifier 371
A conjunction 371
V disjunction 371
-i negation 371
D conditional 371
= biconditional 371
— equality or biconditional 213
-L contradiction 371
T tautology 371
Tq predicate calculus for £ 381
\<j>\ universal closure 374
[[</>]] existential closure 374
= syntactic identify 375
F —> 4> sequent 439
FrVar[4>) list of free-variables 373
re~l Godel number 380

At axiom set for a theory T 381
& metatheoretical conjunction 387
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First-order Logic

Substitutions & Replacements

Symbol Meaning P-

e{ui,.. ,,vn} list of free-variables 373

e(vu. ..,vn) list of free-variables 373

e[vx,...,vn\ list of free-variables 373
list of subexpressions 375

4(^1,Pi), • ■ •, (^n,Pn)l list of subexpressions 375

€lSU...,Sn] list of occurring symbols 375

4.{SuPi)t ■ -(Sn,Pn)l list of occurring symbols 375

4A non-occurring (free) variable 376

non-occurring symbol 376

non-occurring expression 376

€l5V5,,...,5»/5nl replacement of symbols 376

eUS[,S1,p1)r..,{S'n,Sn,pnn replacement of symbols 376

/fil,.../"/«»! replacement of subexpressions 376

4(^1,^1, Pl)> • • •, (S'n,6n,Pn)j replacement of subexpressions 376

{U/Vl, ■ ■ variable substitution 374

Semantics

Symbol Meaning p.

|2l| universe of a structure 377
[= <t> valid formula 379
21 \= 4> model of a formula 379
21 |= 4>[oi\ variable assignment in a structure 378
r 1= cp T-validity (or logical consequence) 379
sat<n(4>) satisfiability of a formula in a structure 378
sat((f)) satisfiability of a formula 378
sa<a(r) satisfiability of a set of formulae in a structure 379
sat(T) satisfiability of a set of formulae 379
Ta theory of a structure 381

(N. 0,1, s, +) 397
(N, 0.1, x) 377
(N, 0,s, +, <, =2,. •., • • •) 394

n/vn} variable assignment 378
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First-order Theories

Symbol Meaning p.

SMA0 Basic Strictly Multiplicative Arithmetic 385
SMA Strictly Multiplicative Arithmetic 398
PAq Basic Peano Arithmetic 382
PA Peano Arithmetic 397

PA* Extended Peano Arithmetic 262

PrA0 Basic Presburger Arithmetic 382
PrA Presburger Arithmetic 398
PrA* Extended Presburger Arithmetic 257
LA Linear Arithmetic 64

DAG Densely Ordered Abelian Groups 372
DAG* Extended Densely Ordered Abelian Groups 65
£pa0 {0? s, +, x} 372
£pa {0. l,s,+,x} 372
£pa' {0,1, s, +, X, —, pr, exp, /, double, Sumn, half, gcd, gfc, 262

rmdr, minn, max„, <,>,>, |, even, prime, primej, =n)
PpA'* 266
GprAo {0,s,+} 372
-CprA {0,1, s,+} 372
£prA' {0, l,s, +,<} 257
Csma {0,1, x) 372
£dag {0, l,+,<} 372
Gdag' {0,1, +,—,<, <} 65
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Miscellaneous

Symbol Meaning p.

R. Sx =>■ 62 rewrite rule 426
R. </>—>■ 61 =>• S2 conditional rewrite rule 427

€\ =>■ e2 application of a rewrite rule 426
71
=> e2 application of a rewrite rule set 426

iff if and only if 370
mgu most general unifier 423
mgpu most general partial unifier 435
pu partial unifier 435
□ empty clause 424
rhs right hand side (expression) 113
lhs left hand side (expression) 105
mt termination measure for total remove rules 167
me measure function for rewrite rules 179
ms measure function for symbols 179
md measure function for deviant symbols 180
mc measure function for decidable classes 180
mr measure function for remove rules 184
mr' measure function for remove rules 228

(in the presence of disagreement elimination)
1ZpA" arithmetical rule base 268
Spa> arithmetical equality base 270
v.c. verification condition 73

364



Arithmetic

Symbol Meaning p.

+ sum 382
— subtraction 395
— arithmetical subtraction 265
X multiplication 382
/ arithmetical division 265
s successor 369

exp exponentiation 265
gcd greatest common divider 265
prime prime natural number 265
prime! 265
< less than 265

> greater than 265
< less than or equal to 265
> greater than or equal to 265
pr predecessor 265
=„ equivalence modulo n 265
Sumn sum of a n-tuple 265
| divisibility 265
even even natural number 265

double double 265
rmdr remainder 265

gfc greatest factor 265
half arithmetical half 265

■ft not less than 262
minn minimum element of n-tuple 265
maxn maximum element of n-tuple 265
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Metatheoretical many-sorted alphabet

Metavariables

5 symbols (of a first-order language)
v, w individual variables

t, u terms

7 ,£ literals
formulae

T,P sentences

S,e expressions
C, D clauses
E equations
R rewrite rules
a substitutions
a variable assignments
Af normaliser

CF control function

A,B.C,V sets

U universe sets

S set of symbols
i set of logical symbols (of £)
C set of individual constants (of C)
T set of function symbols (of C)
V set of predicate symbols (of £)
V set of individual variables (of C)
s,r,A,$ sets of formulae
s set of expressions (equations)
E (decidable) subclasses of formulae
A set of sequents
tt set of clauses
V disagreement sets
n sets of rewrite rules

366



Appendix B

The Decision Problem for
First-Order Theories

Decision procedures can be informally described as computable mechanisms that pro¬
cess finite amounts of information, generate results and halt after a finite amount of
time and computation. In the context of a formal theory, a decision procedure has to
establish, for each formula of the underlying language, whether it is a theorem or not.
Theories which admit decision procedures for the recognition of theorems are decidable.

Basic notions related to the decision problem for first-order theories are introduced
in section B.l, including recursive functions (upon which recursive computability is
built) and first-order languages. Section B.2 defines formal theories and presents two
classes of decision problems, one related to the recognition of valid, and the other
to the recognition of saiisfiable formulae. Section B.3 examines two methodologies for
establishing the decidability of a theory, quantifier elimination and model completeness,
and includes a proof for the decidability of Presburger arithmetic based on elimination
of quantifiers.

B.l Preliminary Concepts

The informal definition of decision procedures as effectively computable mechanisms is
too imprecise to receive mathematical treatment, which is particularly relevant when it
comes to the establishment of the undecidability of a problem: proving the nonexistence
of a decision procedure requires determining exactly what such a procedure is in the
first place. The notion of recursive decidability, built upon the theory of recursive
functions, provides one of the possible mathematical models for this informal concept.

When a decision problem involves the recognition of theorems, informal theories them¬
selves have to be replaced by a more rigorous concept. Processes such as formula
construction or deduction then become objects of mathematical treatment as well. In
the present context, first-order languages and theories are suitable substitutes for their
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informal counterparts1.

Concerning the notation for recursive functions and sets, /: A — B and g: A ^ B
respectively denote a total and a partial function with domain A and range B. A
function g is partial in a domain A when there exists an element a £ A such that g(a)
may not be defined: as a result, every total function is also partial. dom(f),rng(f)
and im-(f) respectively denote the domain, range and image of a function /. f(A)
represents the set {/(a) | a £ .4}, and fog represents the composition of / and g, such
that (/ o g)(n) = f(g(n)). Given a function /: A -* B and a subset A! C A, f f A'
denotes the restriction of / to A!. Finally, fiA stands for the cardinal of a set A, and
p(A) is the set of all subsets of A.

B.l.l Recursive Functions

A (partial) function / is computable in a domain V if and only if there is an algorithm
which, given d £ V, either generates f(d) after a finite amount of time and compu¬
tation. when / is defined for d, or may not halt otherwise. An algorithm is a set of
instructions that satisfy four properties:

(i) it must be fixed, and cannot be modified or adjusted to the input data,
(ii) it must be finite,
(iii) it must be ordered (although the order may be context-sensitive), and
(iv) the instructions are unambiguous, and invariably yield the same results for the

same input.
The input data supplied at a particular instant must also be finite. If the computation
terminates for every element of P, / is effectively computable in V.

There are several mathematical formalisms for the representation of computable func¬
tions: Turing machines. Herbrand-Godel-Kleene computable functions, Markov al¬
gorithms and partial recursive functions, among others. The classes of functions defined
by these formalisms are essentially equivalent2. Nonetheless, recursive functions are
more frequently used in the analysis of decision problems for first-order theories. Par¬
tial recursive functions are generated from an initial group of elementary functions by
the application of certain operations, which include definition by recursion.

Definition B.l.l (Generation of functions)

Let N be the set of natural numbers.

i. Given the functions f : Nm —+ N and gi : N" —* N. 1 < i < m, the function
h: N" —>■ N, defined as

h(x\,.. ., xn) — f(gi,..., xn),..., (:ri, • • ., xn))
is derived from f,gl:..., gm by substitution.

1 This section has been mainly based on [Monk 76], parts I and II, and [Mendelson 87], chapter 5.
Other texts consulted include [Gallier 87] and [Malitz 79],

2 See [Monk 76], p. 12.
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ii. Given the functions f: N" — N and g: Nn+2 —>■ N, the function h: Nn+1 — N.
defined as

h(X\, . . . , Xni 0) — f(xi, ..xn)
h(xu...,xn,s(y)) = g(xu.. .,xn,y,h(xu.. .,xn,y))

is derived from f and g by recursion.

Total recursive functions provide a mathematical representation for effective computab-
ility, since their computation terminates for every n-tuple of natural numbers. Amongst
total functions, the primitive recursive class contains all those which have an 'accept¬
able' degree of complexity3.

Definition B.1.2 (Total recursive functions)

i. A function is primitive recursive if and only if it belongs to the class defined as

folloxvs.

(a) The constant function z: N —> {0}, the successor function s: N —► N* and
the projection functions q'n : Nn —»■ N, 1 < i < n, n e N*, xvhich satisfy the
properties

z(x) = 0
s(x) = x + 1

Tn — X i G — i — n)

are primitive recursive.

(b) If f: Nm — N and gp. Nn — N, 1 < i < m. are primitive recursive, the func¬
tion h: N" — N derived from /, by substitution is also primitive
recursive.

(c) If f : N" — N and g : Nn+2 —»■ N are primitive recursive, the function
h: Nn+1 — N derived from f and g by recursion is also primitive recursive.

(d) Only the functions defined above are primitive recursive.

ii. A function is total recursive if and only if it belongs to the class defined as follows.

(a) Every primitive recursive function is total recursive.
(b) If f: Nm — N and gp Nn —> N. 1 < i < m, are total recursive, the function

h: Nn —» N derived from f,g\,...,gm by substitution is also total recursive.

(c) If f: N" — N and g: Nn+2 —> N are total recursive, the function h: Nn+1 — N.
derived from f and g by recursion, is also total recursive.

(d) If f: N"+1 —» N is total recursive, the function g: Nn —> N that satisfies the
condition

g(x\,....xn) = py(f(xi,.. .,xn, y) = 0),
3 See [Gallier 87], p. 370-1.
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where p,Xi(R[xi,..., xi:..., xm)) = min{z,: € N | R(x\,..., z,,..., xm)}, is
total recursive, provided that

(zi).. .(z„)(3y)(f(xi,...,xn,y) = 0)

is arithmetically valid.

(e) Only the functions defined above are total recursive.

The final extension of the class of recursively computable functions includes those which
may not be defined for all the elements of their respective domains. Partial functions
are obtained when the /r-operator is used without the restrictions originally present in
the definition of total functions.

Definition B.1.3 (Partial Recursive Functions)

A function is partial recursive if and only if it belongs to the class defined beloiv.

i. Every total recursive function is partial recursive.

ii. If f: Nm N and g,: N" N. 1 < i < m, are partial recursive, the function
h: N" N derived from f,gi,...,gm by substitution is also partial recursive.

Hi. If f: N" N and. g: Nn+2 N are partial recursive, the function h: Nn+1 ^ N,
derived from f and g by recursion, is also partial recursive.

iv. If f: Nn+1 N is partial recursive, the function g: N" N, defined as

g(xu...,xn) = p,y(f(xu...,xn,y) = 0)

is partial recursive.

v. Only the functions defined above are partial recursive.

Partial recursive functions satisfy the informal criteria that define computable func¬
tions, whereas total recursive functions meet the more strict conditions set for effect¬
ively computable functions. Hence, recursiveness provides a sound representation for
informal computability. To avoid discussions about the completeness of the recursive
representation (i.e. whether every (effectively) computable function has a (total) par¬
tial recursive counterpart), effectively computable and computable can be respectively
replaced by total and partial recursive in all domains restricted to natural numbers4.
Recursive functions can be employed in the identification of recursive and semi-recursive
sets of natural numbers. A subset A C N is recursive iff there exists a total recursive
function /: N {0,1} such that
4 The completeness of the recursive representation follows from Church's thesis, which states that a
number-theoretic function is effectively computable if and only if the function is (total) recursive:
see for instance [Mendelson 87], p. 165.
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(V,t 6 N)(x € A iff f(x) — 1 and x ^ A iff f(x) = 0)

/ can be schematically represented as

f(x)
1 x e A
0 otherwise

A subset A C N is semi-recursive (or recursively enumerable) ifF there exists a partial
recursive function /: N {0,1} such that

/(»)
l x e A
0 or undefined otherwise

Any recursive set is also recursively enumerable. The membership relation is comput¬
able for recursively enumerable sets, and effectively computable for recursive sets: it is
possible to determine in a finite amount of time whether a particular natural number
belongs to a recursive subset of N or not.

B.1.2 Syntax of First-Order Languages

The construction of a mechanism for the recognition of theorems of a particular theory
starts with the definition of the expressions of the language of the theory. Symbols,
expressions and sequences of expressions of certain formal languages — first-order
languages amongst them — can then be mapped into N. Processes in these and other
arithmetisable domains become thereafter representable in terms of recursive functions.

Definition B.1.4 (First-order languages)

i. A pure first-order language is a quintuple C = (l,V,C,!F,V) where £,V,C,E and
V are pairwise disjoint countable sets such that

(a) I = {T, _L, -i, A, V, D, =, V, 3} is the set of logical symbols5 of £.
(b) V is the infinite set of individual variables of C.
(c) C C {c],..., cn,... }, n £ N. is the set of individual constants of C.
(d) F C T U ■ • • U Tm U ..., m € N. is the set of function symbols of C. Each

Ti C {/i z,.. .. .}.j € N is the subset of function symbols of arity i.
(e) V C V\ U • • • U Vq U ..., q € N, is the set of predicate symbols of C. Each

Vi C {pu,.. -,Pj.i, ■ ■ -},j € N is the subset of predicate symbols of arity i.
5 An additional symbol, 3|. which represents the existence of a single object that satisfies a property,
may be useful in certain contexts. The expression (3|u)^[u] can be also regarded as an abbreviation
for

(3ui)<£[m] A (w2)(t'3)(W'2/«r] A <t>[V:i/vi]) D V2 = V3)
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ii. A first-order language with equality (or first-order language for short) is a pure
first-order language to whose set of logical symbols the symbol for equality, (=),
has been added.

in. The set of symbols of C is defined as

Symc = iOVuCi) DUV,

while Sym*c = C U T U V (or (C,T,V)) represents the non-logical symbols (i.e.
individual constant, function and predicate symbols) of C.

iv. IfC — (I, V, C', T', V) and C = (I, V, C, T, V) be first-order languages, C is an
expansion of C iff C C C, T C T' and V C V.

Basic Peano arithmetic (PA0), (first-order) Pea.no arithmetic (PA), basic Presbur-
ger arithmetic (PrA0), Presburger arithmetic (PrA), strictly multiphcative arithmetic
(SMA) and the theory of dense ordered Abelian groups without endpoints (DAG) are
some of the theories to be examined in this appendix and in the main text. Since
they can all be formulated in languages that share the same set of logical symbols
and variables, their languages are unequivocally defined by means of their non-logical
symbols.

£pa0 = {0, s, +, x)
C-pa = {0,1, s, +, x}

C-PrAo — {0,S,+}
£-PrA — {0, 1, s, +}
C'SMA ~ x}
I-'DAG ~ {0, l,+,<}

Symbols of a first-order language can be combined to form expressions. Sequences
of symbols that satisfy certain restrictions are called well-formed expressions, which
include terms and formulae.

Definition B.1.5 (Expressions of a first-order language)

i. The set of (well formed) terms Trmc of a first-order language C is recursively
defined as follows.

(a) An individual variable or an individual constant is a term (called atomic,).
(b) If fij is a function symbol of arity j in C, and f1?.. .,tj are terms, then

fi j(t\,... ,tj) is a term (called composite,).
(c) Only the expressions defined above are terms of C.

ii. The set of (well formed) formulae Frnlc of a first-order language C is recursively
defined as follows.

(a) T arid _L are (atomic) formulae of C.
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(b) If Pi j is a predicate symbol of arity j in C, and tx,...,tj are terms, then
Pij(ti,... ,tj) is an (atomic) formula of C. In particular, an atom of the
form tx=t2 is also called an equation or equality.

(c) If <j>, if are formulae of C and v is an individual variable, then

-Kj), 6 A if, ^V^), (fDif, <f = if, (yv)f) [or (v)<f>\, (3v)<f

are formulae of C (called composite,).
(d) Only the expressions defined above are formulae of C.

Hi. The set Expc of (well formed) expressions of C is defined as

Expc = Fmlc (J Trmc

Expc can be partitioned into disjoint subsets, called syntactic sorts or types. The set
of formulae and the set of terms constitute syntactic types for any set of expressions of
a first-order language. Atomic and composite terms are syntactic subtypes of Trmc,
whereas atoms and composite formulae are syntactic subtypes of Fmlc. Subclasses of
terms and formulae may be defined by means of syntactic restrictions imposed on their
structure, e.g. type of logical connective and/or their relative positions of occurrences.

Definition B.1.6 (Boolean Combination)

Let F = {<fx,..., 4>n,.. . } be a set of formulae of a language C. A Boolean combination
of formulae of T is any formula if that satisfies one of the conditions.

i. if is an element of I\

ii. if has any of the forms (ifx Aif2), (ifi Viff) or (~>ifi), where ifi and if2 are Boolean
combinations of formulae ofT.

B.1.3 Variable Substitution

An occurrence of a variable v in a formula 4> is free if it does not take place in the
scope of a quantifier (Vu) or (3u), and is bound otherwise. A formula that has free
occurrences of variables is open, whereas if all occurrences of variables are bound, it
is closed. If FrVar(4>) denotes the set of all variables that have a free occurrence in a
formula <j>, the notation

4>[v1,. ..,vn]

indicates that {iq,..., vn} is a subset of the set of variables that have free occurrences
in <f> (i.e. {rq,..., vn} C FrVar(4>)), while in

4>(vu...,vn)
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{vj,..., vn} corresponds to all the variables that occur free in <f> (i.e.
FrVar[4>) = {u1?..., vn}). Finally,

4>{Vi, ...,vn}

indicates that the free variables of cp are amongst those in {iq,..., v„} (i.e.
FrVar((f>) C {tq,..., un}). A formula whose set of free variables is empty is a sen¬
tence. The set of sentences of a language C is denoted by Stnc. Subsets of quantified
formulae can be delimited based on the position of occurrence of quantifiers in the
formula, as well as on the pattern of such occurrences.

Definition B.1.7 (Universal & Existential Closures)

Let 4>(vi,.... vn) be a formula in a first-order language C.

i. (j) is in prenex form iff it has the form

{Qiiq) . ..(QmVm)i>

where Qi is either a universal or existential quantifier, and xf is a quantifier-free
formula. (Qjtq).. .(Qmvm) is the prefix of <j>, and xfi is its matrix.

ii. (p is universal iff it is in prenex form and its prefix is composed entirely of uni¬
versal quantifiers: similarly, it is existential iff only existential quantifiers occur
in its prefix.

Hi. The universal closure of is the sentence (rq).. .(un)^(rq,..., vn), usually de¬
noted by [4>\.

iv. The existential closure of <f> is the sentence (3tq).. . (3un)<£(tq,.. .,vn), represen¬
ted as [[</>]].

New expressions can be syntactically derived from open expressions by the application
of substitutions. A substitution for free variables of an expression e[v\,..., vn] in £ is a
function a: V — Trmc, where {u1;.. .,un} C V, and, if <j(vt;) = £, does not contain
any of the variables in un}. A finite substitution is extensionally represented
as

(j = {tl/vi,...,t»/vn}
The application of a to an expression e[vx,..., vn] generates a (substitution) instance of
e, and is denoted as ae[vi,..., vn] or e[tl/vx,..., tn/v„]. When the names of the variables
being substituted for are not relevant, the resulting expression is simply represented
as e[ti,.. Similar notation applies to expressions of the forms e(vl:.. .,vn) and
e{vu..., vn}.
New expressions can be also generated bv means of the replacement of subexpressions
or symbols. An occurrence of a subexpression can be singled out once the position of
occurrence of its dominant symbol has been identified.
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Definition B.1.8 (Occurrences of Symbols and Expressions)

Let e be an expression of a language C.

i. The dominant symbol SD of e is defined as follows6.

(a) If e is an atomic term or a propositional constant, then SD = e.

(b) If e is a composite expression of the form S(e l5.. then SD = S.

(c) If e is a formula of the form (Qv)<f>, where Q is a quantifier, then SD = Qv.

ii. A symbol S has an occurrence at position p in e, i.e.

4(siP)l

where p is a finite list of natural numbers, iff

(a) e is an individual variable, individual constant or propositional constant,
S = e and p = [ ], or

(b) e has the form S(ei,..., en) and p = [ ], or
(c) e has the form 5'(e1?e,em), S has an occurrence at position p' in

€i, and p = [i\p'}.

When the position of occurrence of S in e is immaterial, the above notation can
be simplified to e|5].

Hi. An expression S is a subexpression of e, i.e. c|[^J iff
(a) 6 = e, or
(b) e = S(ei,..., en) and h is a subexpression of eit for some i, 1 < i < n, or

(c) e = (Qv)f>, where Q is a quantifier, and 6 is a subexpression of <f>.
,..., indicates that ,..., 6m are subexpressions of e.

iv. An expression 6 dominated by a symbol S has an occurrence at position p in e,

i.e. e[I(<5,p)l iff
(a) S occurs at position p in e, and
(b) the occurrence of S at p dominates a subexpression of e that is syntactically
identical to 6.

If the expressions 6^,..., 6m have occurrences in an expression e respectively at
positions pu .. ■ ,pm, this fact can be denoted as ed(«^i,Pi),..

The notation introduced so far covers four distinct contexts involving variables and
expressions:

(i) e|u]] denotes that there is an occurrence (free or bound) of v in e,
(ii) e[v] indicates that v has a free occurrence in e,
(iii) e(v) means that v is the only variable that occurs free in e, and
6 The symbol = denotes syntactic equality.
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(iv) e{u} means that v may occur free in e.

Finally, the additional metatheoretical expressions

respectively indicate that

(i) v does not have any free occurrence in c,

(ii) the symbol S does not occur in e, and
(iii) the expression S does not occur in e.

An expression e' can be generated from e[5]] through the replacement of each occurrence
of S with a symbol 5', provided that S and S' have the same syntactic type and arity,
in which case the resulting expression has the form /Sfl. The replacement can be
also restricted to a particular occurrence of S at position p in e, i.e. e[(5', 5, p)J. When
multiple replacements take place, they are either exhaustive,

45vs.,...,5»/s„J
or restricted to specific occurrences of symbols, as in e|(5J, 5i,pi),..., {S'n, 5„,p„)]].
The same syntactic operations may be extended to the domain of subexpressions:

represents the exhaustive replacement of subexpressions 8\,..., Sn with 6[,.. .,6'n, whereas
in e[(8[,8\.px), ..., (8'n,8n,pn)\] particular occurrences of subexpressions are selected
before replacements take place.

B.1.4 Semantics of First-Order Languages

Model-theoretic properties of theories are commonly invoked in the establishment of
their decidability. The semantics of first-order languages concerns their relationship
with algebraic structures. Once structures for first-order languages have been defined,
meaning can be attributed to their expressions'.

Definition B.1.9 (Structures for first-order languages)

i. A structure for a first-order language L = (C, T', V) is a quadruple 21 = (A, C, F. P)
ivhere A 0 is the domain (or universe) of the structure, and C,F,P are func¬
tions such that dom( C) = C, dom(F) = F, dom(P) = V, and

7 Model theoretical concepts have been given precedence over proof theoretical notions, since studies
on decidability are mainly concerned with identifying valid formulae in a theory rather than with
the exhibition of proofs. According to Church,

"The writer once proposed the name 'deducibility problem' for what is here called
the decision problem for provability, the intention being to reserve the name 'decision
problem' either for the semantical decision problem or for what is called (...) the decision
problem for validity." ([Church 56], p. 100)
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(a) C(cj) G A.

(b) F(fij) G AA°. where j is the arity of fj.
(c) P(pij) C A7 , where j is the arity of pitj.

C(ci), F(fi j) and P(pij) are respectively denoted by cf.f-a- andpf-, whereas A
can be also indicated as |2l|.

ii. 7/21 = (A, C, F, P) and 05 = (B, C\ F\ P') are structures for £ such that

(a) B C A,
(b) C(cj) = C\ci),
(c) F(fij) t B* = F'(fi}j),
(d) P(Pi,j) r\B3 = P\pitj),

then 05 is a substructure o/2l, one? 21 is an extension o/ IB.

iii. Let £ = (C1, T',V) be an expansion of C. A structure 21' for £ is an expansion
of 21 (or 21 is the restriction of 21' to C) iff (a) |2l| = |2l'| and (b) for every
non-logical symbol S of £,,

5a = Sa'

Example B.l.l

i. Csma = {0,1, x} admits the following structures

xmM)

Om = (Q,0Qm,1Qm, XQm)
93m = X*M)

where N, Q and R are respectively the sets of natural, rational and real numbers.

ii. is a substructure of both and 05^, since

(a) they are all structures of the same language,
(b)NcQCi.
(c) 0mM = O0M = 0Wm, 1^m = 1Qm = lmM, and
(d) T N2 = 1 N2 = x*M. D

The attribution of meaning to terms involves associating individual variables with
elements of the universe of a structure. Truth values can be assigned to formulae
thereafter.
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Definition B.1.10 (Variable Assignments)

i. An assignment is a function a defined over the set of individual variables of C
into the universe of a structure 21 for L, which is usually represented as

a = {ai/fi,...,an/«n,...}

The value (or denotation) of a term t of C in 21 for an assignment a is an element
t^[a] £ |2l| defined as follows.

(a) u?l[a] = a(vi), if Vi is an individual variable.
(b) cf [a] = cf, if Ci is an individual constant.
(c) fi,j{tu...fij)%[a] = f?j(tf[a],...,tf[a])

ii. An assignment a in a structure 21 for a language C satisfies a formula <f of C
(i.e. 21 |= <f\oi\) iff one of the following conditions is verified.

(a) f is an atomic formula of the form (ti=t2) and ff [cc] = tf[a]
(b) 4> is an atomic formula of the form p, j(t i,..., tj) and ( tf [a],..., tf[a\ ) G pfj
(c) (f) = (-of), and a does not satisfy if
(d) (j> = (tfi A if2), and a satisfies both if\ and if2.
(e) (f = (if 1 V if2), and a satisfies a.t least one of the disjuncts ifi,if2
(f) f> = (tf1 3 if2), and a satisfi.es -of 1 V if2
(g) = (tf1 = if2). and a satisfies (~<ifi V if2) A (~<if2 V ifi)
(h) (f = (Vvi)if, where V( is an individual variable of C, and every assignment

a' in 21 of the form (a — {a,/^>}) U {a '/"•} satisfies if
(i) = (3vi)if, where n, is an individual variable of C, and at least one assign¬

ment a' in 21 of the form (a — {a'/v,}) U {a '/«■} satisfies if

Satisfiability and validity are both related to the meaning of formulae. A formula
is satisfiable when there is an assignment for its variables which turn it into a true
statement in a structure. A formula is valid when it becomes a true statement for every

assignment in a structure. Each notion defines a modality of the decision problem
for formal languages, the decision problem for va.lidity and the decision problem for
satisfiability.

Definition B.l.ll (Satisfiability and Validity)

i. Let cf be a formula in a first-order language C.

(a) <f Is satisfiable in a structure 21 for C, i.e. sat2l(</>), iff there is an assignment
a in 21 such that a satisfies <f.

(b) f is satisfiable, i.e. sat(fi). iff there exists a structure for C in which <f is
satisfiable.
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(c) <p is valid in 21, i.e. 21 |= <f>, iff it is satisfied by every assignment in 21; the
structure 21 in this case represents a model for <f>.

(d) <t> is valid (or universally valid), i.e. (= </>, iff it is valid in every structure
for £.

(e) T and (->1.) are valid.

ii. Let T be a set of formulae in a first-order language C.

(a) T is satisfiable in a structure 21 for C, i.e. sat^(T), iff there is an assignment
a in 21 such that a satisfies each formula ofT.

(b) F is satisfiable. i.e. sat(T), iff there exists a structure for £ in which it is
satisfiable.

(c) T is valid in 21, i.e. 21 |= T, iff each element of T is satisfied by every

assignment in 21; the structure 21 in this case represents a model for T.

(d) F is valid (or universally valid), i.e. [= T, iff it is valid in every structure of
£.

in. A formula of £ is a logical consequence of a set of formulae T in £ (or (f) is
r-validJ. i.e.

rM

iff every model of T is also a model of (J). <f> is F-satisfiable iff there is a model of
T in which & is satisfiable.

Validity and satisfiability are linked in the next lemma.

Lemma B.l.l <f> is T-valid iff -af> is T-unsatisfiable.

PROOF. <j> is P-valid iff for every model 21 for T and every assignment a in 21,
21 (= iff for every model 21 and assignment a, 21 ^ _i<^>[a], iff there is no model for
T where -nf> is satisfiable iff -«p is T-unsatisfiable. I

B.2 First-Order Theories

First-order theories are sets of formulae that meet certain requirements. Under this
viewpoint, the recognition of theorems becomes a special case of the problem of identi¬
fying the elements of a set. When formulae are mapped into the set of natural num¬
bers, recursive functions assume a special role in the classification of theories. From an

initially broad definition, a first proper group is then defined based on semi-recursive
sets, which lead to the axiomatisable theories. Further restrictions lead to the decidable
theories, which are based on recursive sets.
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B.2.1 Effectivised Languages

Any countable set of symbols is translatable into the set of natural numbers. In ef¬
fectivised languages, it is possible to effectively determine which symbols are function,
predicate or individual constant symbols. The possibility of construction of effective
procedures for the recognition of well-formed expressions is then open in such lan¬
guages. An effective mechanism for the recognition of symbols, expressions and finite
sequences of formulae of a language is provided by Godel functions.

Definition B.2.1 (Godel Functions)

Let £ = (£,V ,C, T,V) be a first-order language.

i. gs: Symc —t N is a Godel function for the symbols of £ iff it is bijective, and
gs(V), gs(C), gs(J~) and gs(V) are recursive sets.

ii. ge: Expc —» N is a Godel function for the expressions of £ (w.r.t. gs) iff, given
an expression <f composed of the £-symbols Si,..., Sn, in this order,

n

<?eO) = IJprm(i)1+i?'(5,)
2—1

where prm(i) represents the i-th natural prime number8.
Hi. gse: LstFmlc —> N is a Godel function for the finite sequences of formulae of £

(w.r.t. gs) iff, for any sequence of formulae d>\,..., <j>n,
n

gse((<t>u- --An)) = Y[prm(i)1+9'i4'')
t=i

where prm(i) represents the i-th natural prime number,

iv. £ = (i.V,C,T,V,gt) is an effectivised first-order language.

The natural numbers gs(s), ge(<p) and gse((<t>i,..., <t>n)) can be respectively denoted as
rs~*, rcf£ and r(fii,..., d>n)~}. If F is a set of expressions of £, rrn denotes the set of
Godel numbers for each element of T.

Lemma B.2.1 Both ge and gse are injective.

PROOF. Let ge(4>) = ge{(b')- Applying the definition of ge to the hypothesis, it is
possible to derive that

n n'

Qpr(i)Ss(s,)+1 = pr(i)g,{sd+1
i = l i = 1

8 It would be actually necessary to include delimiters e.g. parentheses among the logical symbols of
£, otherwise a list of symbols would not necessarily represent a single formula.
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According to the fundamental theorem of arithmetic, every natural number greater
than 1 has a single decomposition into prime numbers (modulo ordering of prime
factors). Since all the exponents in both sides of the equality are non-null, and since
all the prime factors are in increasing order, it follows that n = n! and, for each
i, 1 < i < n.

g* (si) + i = 9»(s'i) + i

gAsi) = gs{s'i)
Since gs is bijective, then s, = s'- and s1?..., sn = s[,..., s'n,, i.e. <f> = <f)'.

A similar proof applies to gse. I

As a result, given that the images of g, | V, gs j C, g„ f T and gs f V are recursive,
and that terms and formulae of a first-order language are recursively defined, it only
takes a finite amount of computation to determine whether a sequence of symbols of
C is a well-formed expression or not.

B.2.2 Axiomatisable Theories

A first-order theory is any set of formulae that is closed with respect to the logical
consequence relation. Some theories can be generated from proper recursive subsets,
whose elements are their axioms.

Definition B.2.2 (Axiom Sets)

Let C be an effectivised first-order language.

i. A theory T in £ is a subset of Fml~ such that € T ijJT (= <j>. Each element of
T is a theorem of T (orT-theorem). C is the underlying (or subjacent) language
of T.

ii. An axiom, set for T is a subset At Q T such that <f> £ T iff At \=

Hi. T is finitely axiomatisable iff T admits a finite set of axioms. T is recursively
axiomatisable iff T admits a set of axioms At such that rAxn is recursive.

iv. The theory Ta of a structure 21 for C is the set of all the formulae <f> of C that
are valid in 21.

v. Tq is the set of all universally valid formulae of C (also called the (first-order)
predicate calculus for C).

Definition B.2.3 (Properties of First-order theories)

Let T be a theory in C.
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i. T is consistent iff it is not the case that, both r and -it belong to T, for any
t £ Stnc ■

ii. T is maximal consistent if. whenever T ^ r, then Tu{r} is inconsistent.

Hi. T is (negation) complete if, given any sentence r £ Stnc, either r £ T or -it £ T.

Lemma B.2.2 If T is a consistent theory in C, then there is no formula f) in Fmp
such that both <f and -«f> are elements of T.

PROOF. If <t) £ Stnc, the lemma is obviously true. Let then <j> be an open such that
both it and its negation belong to T. Then [</>] must also belong to T, and so

M]eT, (*)
since (= (v)if D (3v)ip. Also, as -of) is a F-theorem, the same applies to its universal
closure, [-n$]. Hence

-,[[^]] e T (**)

From (*) and (**), it follows that T is inconsistent, in contradiction with the hypo¬
thesis. I

Example B.2.1 PA0 (basic Peano arithmetic) and PrA0 (basic Presburger arith¬
metic), respectively formulated in CpAo and CprA0> are two examples of axiomatisable
theories. An axiom set for PA0 is listed below.

{PA I) 0 7^ s(x)
(PAI) s(a:) = s(y) D x = y
{PAD x + 0 = x

{PAD x + s{y) = s{x + y)
{PAD x x 0 = 0

{PAD x x s(y) = x + x X y

{PAD (#)] A (z)(#c] D <£[s(a:)])) D {x)(f>[x

This set of axioms is not finite due to the presence of axiom-scheme PA'0.
{PAj,. . ., PAAff U {PA'0} represents an axiom set for PrA0. Both PA0 and PrA0 are
consistent?. [I

Whereas languages can be expanded by means of the introduction of new non-logical
symbols, theories can be extended through the insertion of new formulae, taken either
from the original or an expanded language. An extension of a theory is conservative
iff none of its new elements belongs to the original underlying language. Definitional
extensions concern those cases where new symbols are introduced for notational con¬
venience: they can be always expressed in terms of the original symbols.
9 t u stands for ->(t = u).

382



Definition B.2.4 (Conservative and Definitional Extensions)

i. Let C be an expansion of C. and let T' and T respectively be theories in C! and
C.

(a) T' is an extension of T (and T is a subtheory of T') iff T C X".
(b) T' is a conservative extension of T iff T' is an extension of T and

V fl Fmlc = T

ii. Let C = (C',!F',V') be an expansion of C = (C,iF,V), such that C = C — C,
T — T' — T and V = V — V are non-empty sets, and let T and T' be theories
respectively in C and C.

(a) A possible definition for an individual constant symbol Ci of C over T is any
formula <j)Ct{v} of C that satisfies the following properties of existence and
uniqueness

(3v)6Cx{v}

(n)(v')(Qi)Ci{t>} A 4>c,{v /v} D v = v')

(b) A possible definition for a function symbol of arity j over T, where
fi j G J-, is any formula <j>ft .{vi,... ,Vj+i} of £ that satisfies the following
properties of existence and uniqueness

(»!).. .(t>j)(3vj+1)<t>fiij{vu. ..,vj+1}

(t7j). ..(vj+2)(fft j{vu. ..,vj+1} A <t>fu,{vu..®>+a/»i+l} J vj+1 = vj+2)
(c) A possible definition for a predicate symbol pij of arity j over T, where

fi,j € F, is any formula <f>Pi ;{t>i,.. .,Vj} of C.
(d) T' is a definitional extension of T if and only if. for every symbol 5,: in

C U T U V, there is a possible definition </>$, over T such that

V = stnc,n{i/>\Tu{cj>'Si,...,<j>'Sn,...}\=i>}
where <f'Sk is one of the sentences

(v)(<j>Ct = (d=v))

(«!). + = (fijivi, . ..,Vj)=Vj+1))
(vl) ■ ■ -(.VjX&p.j = Pij(v1,...,vj))

depending on whether ,S\ = a, or Sk = fi,j, or S,t = p,j.

Extensions of theories have an important role in the study of decidable theories. Partic¬
ularly relevant are the properties concerning (a) negation complete theories and their
extensions, and (b) definitional and conservative extensions.

383



Lemma B.2.3 Let £ be an expansion of C, and let T and T' respectively be theories
in C and £.

i. T is an extension of Tf.
ii. The restriction of T' to C (i.e. T' D Fmlc) is a theory.

Hi. IfAt is an axiom set for both T and T', then T' is a conservative extension of
T.

iv. If T is negation complete and T' is a consistent extension of T. then T' is a
conservative extension of T.

v. If T' is a definitional extension of T, it is also a conservative extension of T.

Proof.

i. If T is a theory in C, then <f> G T iff T \= <f>, for all 4> £ Fmlc. Since all universally
valid formulae are valid in the models of T, it follows that Tf C T.

ii. Let <f> £ Fmlc. If (T'Fmlc) |= d>, then T' \= (f>. Since T' is a theory, then <j> G T',
hence <f> £ T' D Fmlc.

iii. (a) If d> G T, then (f G Fmlc and AT (= <t>. Since £ is an expansion of C.
<f> G Frnlc as well, hence cp £ T' 0 Fmlc.

(b) If 4> £ Fmlc D T", i.e. d> £ Fmlc is a theorem of T', then Aj \= <j>. As T is a
theory in L for which AT is an axiom set, it follows that <f> £ T.
From (a) and (b), Fmlc D T' = T.

iv. Assume T' fl Fmlc ^ T; then there is a formula (f> £ Fmlc such that f> £ T' but
4> T. Given that T |= iff T \= [(f)] and that T is negation complete, then

€ T. Since T C T", ->[^] G T' as well. Therefore [(f)] and -i\<j)] are theorems
of T'. which must then be inconsistent.

v. See [Monk 76], p. '210. I

The relationship between PA0, PrA0 and SMA0 can be expressed in terms of the new

concepts.

Example B.2.2

i. PA0 is an extension of PrA0, since

(a) CpA0 — {0, s, +, x} is an expansion of CPrAo — {0,s,+}, and
(b) PrA0 admits an axiom set ivhich is a subset of the axiom set for PA0.
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ii. A simple definitional extension PA'0 of basic Peano arithmetic can be generated
in CPA = {0,1, s, +, X}_. with the introduction of a new axiom,

PA'o = StnCpA n {tp | PA0 U {O)((s(0)=u) = (l=u))} |= if}

Hi. Basic strictly multiplicative arithmetic (sma0) can be defined as

SMA0 = PA'0 n PmlCsMA

where jCsma = {0? T x}> and pa'0 is the definitional extension of pa0 described
above. pa'0 therefore is a conservative extension of sma0. g

B.2.3 Decidable Theories

Decision problems are present in various domains, including algebraic theories (e.g.
word problems) and mathematical logic. Many of them can be abstractly represented
as the problem of effectively identifying subsets of a particular universe, as well as their
complements. Whenever the universe can be mapped into the set of natural numbers
by means of a Godel function, recursive functions provide the means for the effective
recognition of decidable subsets10.

Definition B.2.5 (Decision Procedures)

Let A be a subset of a countable universe set U, and let gu be a Godel function for U
(i.e. an effective bijective mapping from Id into NJ.

i. A decision procedure for A w.r.t. U is a total recursive function f such that,
whenever u 6 U.

ii. A semi-decision procedure for A iv.r.t. U is a partial recursive function f such
that, whenever u G U.

10 See [Shoenfield 67], p. 106-7. The term decidable has a different meaning when applied to formulae:
a formula is decidable in a (consistent) theory T iff either it or its negation (but not both) belongs
to T. The existence of undecidable formulae in a theory does not prevent this theory from being
decidable.

f(ruA =
1 if u G A
0 otherwise

/C«n) =
1 if u e A
0 or undefined otherwise
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Hi. A is (recursively) decidable in U iff there exists a decision procedure for A w.r.t.
U. A is (recursively) semi-decidable in Id iff there exists a semi-decision procedure
for A iv.r.t. Id.

Clearly, A is (recursively) decidable if and only if rA'1 is recursive; otherwise it is
(recursively) undecidable (or unsolvable). If A is undecidable, it is (recursively) semi-
decidable if and only if rAn is semi-recursive (or recursively enumerable)11.

According to definition B.2.5, any pair (U, A), where Id is a countable universe and
A Fid, determines a decision problem. In the context of a first-order language C, the
first option for a universe is the set Sqnc of finite sequences of symbols of £. Given
a Godel function for sequences of ^-symbols g: Sqnc —»■ N, a decision procedure for a
subset A C Sqnc is a recursive function /: rSqnc~* —>■ N such that

Even when A is a subset of well-formed formulae, the universe cannot be restricted to

Fmlc if C is not elfectivised. since in this case Fmlc is not a decidable subset of Sqnc,
and there is no effective way of establishing whether a finite sequence of symbols is a
formula or not. When C is effectivised, on the other hand, a decision procedure for A
can be built as follows:

(i) given a finite sequence of symbols s £ Sqnc, it is first supplied to a recogniser for
wff of jC: if it is not a wff, it cannot belong to A either, and the process halts;

(ii) if s is a wff, it is supplied to the decision procedure for A.
As a result, in the context of effectivised languages, it suffices to exhibit a recursive
function / whose restriction to rFrnlcn satisfies the condition

for every G Fmlc ■

Once the universe and a corresponding Godel function are defined, a subset of formulae
A may be delimited by a property expressed in a (meta)language. In particular, there is
a class of logical decision problems where the definition ofA involves either the notion of
validity or the notion of satisfiability. Given a set of /^-structures A = {2E,..., 21,,...},
the decision problem for validity in A concerns the existence of an effective mechanism
for the identification of the formulae of C that are valid in all the structures in A; when
A contains every structure of C, it corresponds to the decision problem for validity in
C. A in this case can be defined as

The decision problem for satisfiability in A involves finding an effective mechanism to
determine whether a formula of C is satisfiable in at least one structure in A. A then
corresponds to

11 See section B.J.I.

/ro =
1 if s G A
0 otherwise

Kr<P) =
1 if <f G A
0 otherwise

<p £ A iff (V2l)(2l G A D 21 |= <f>)
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4> G A iff (32l)(2l € A & sat^{<f>))

Both problems are closely linked. It is actually possible to restrict the study of logical
decision problems to the case of validity12.

Lemma B.2.4 Let A = {2li,..., 21;,... } be a set of C-structures. The decision prob¬
lem for validity in A has a positive solution iff there is a solution for the decision
problem for satisfiability in A.

PROOF. If the decision problem for validity in A has a positive solution, there exists
a. recursive function / such that, for all <f> 6 Fmlc,

.

r /-i \ _ f 1 if 21; |= (f>, for all 21; 6 A®

y 0 otherwise
Since the validity of <j> implies the unsatisfiability of -uf (and vice versa), it follows that

/(r<^)
1 if (—10), for all 21; € A
0 if sat^f-af), for some 21; € A

If h is defined as h(r<j>n) = 1 — /(r —k^-1 ), h then is a decision procedure for satisfiability
in A.

A similar proof can be provided for the case where there is a positive solution to
the decision problem for satisfiability in A. I

When a decision problem for validity involves the set of models for a theory T, since
the set of formulae that are valid in all its models coincides with T itself, this is also
called the decision problem for T (w.r.t. Fmlc). Hence T is (recursively) decidable if
and only if there is a total recursive function / such that, for every formula <f> of C,

/(r^) =
1 if <p e T
0 if 4><£T

where / represents a decision procedure for T (w.r.t. Fmlc). Alternatively, T is (re¬
cursively) semi-decidable if and only if there is a partial recursive function h such that,
for every formula of C,

h(r^) =
1 if <f G T
0 or undefined if <f> £ T

12 As it is discussed in appendix C, this property may not hold for decision problems where the universe
is a proper subclass of Fmlc■ Also, the symbol & denotes metatheoretical conjunction.
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where h corresponds to a semi-decision procedure for T w.r.t. Fmlc. Any decision pro¬
cedure is also a semi-decision procedure for T w.r.t. Frnlc• Both cases are summarised
in the next definition13.

Definition B.2.6 (Recursive Decidability)

Let T be a theory in an effectivised language C.

i. T is (recursively) decidable (in Fml£•) iffrT~l is a recursive set.

ii. T is (recursively) semi-decidable (in Fml~) iff rT~1 is a recursively enumerable
set.

Presburger arithmetic (PrA) and Peano arithmetic {PA), defined in section B.3.2,
are respectively examples of a decidable and a semi-decidable theory. Given that all
the languages to be considered in this study are both first-order and effectivised, the
adjectives will be normally omitted.

B.3 Decidability Proofs

There are two approaches for the solution of the decision problem for theories. Given
that the existence of decision procedures is at stake, the direct or constructive approach
consists of exhibiting one for each decidable theory, or else presenting a method for its
construction. The indirect approach, on the other hand, searches for metatheoretical
properties of a theory which ensure its decidability. An indirect proofmay under certain
circumstances lead to the identification of a generic but usually inefficient procedure14.

B.3.1 Indirect Approach

Decidability is linked with metatheoretical properties such as negation completeness
and recursive axiomatisabilitv. Semidecision procedures, on the other hand, can be
always built for recursively axiomatisable theories.

Theorem B.3.1 [Monk 76] If T is a recursively axiomatisable theory in C, then rTn
is recursively enumerable.

13 Decidable theories do not necessarily have to be defined in effectivised languages. In a non-
effectivisable language, since the definition of a Godel function g cannot be effectively restricted
to the set of well-formed formulae of £, a decision procedure for a theory T must have Sqnc as
universe. In this case, when a sequence is not identified as a theorem, it is not always possible to
determine whether it is a non-theorem (i.e. a well-formed formula of £ that does not belong to T)
or a non-expression (i.e. a sequence of symbols of £ that does not represent a well-formed formula).

14 This section has been mainly based on [Shoenfield 67], [Monk 76], [Chang &: Keisler 73],
[Kreisel fc Krivine 67a] and [Enderton 72], Indirect proofs of decidability could be also called clas¬
sical, in the sense that a classical proof for an existential statement may simply establish the im¬
possibility of nonexistence of a particular object.
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PROOF. Let / be a recursive function that enumerates the axioms of T, and let g be
a recursive function that enumerates Fmlc. A procedure P(n) that generates all the
elements of T can be informally defined as follows.

i. -P(O) = {/(0)} (i.e. the first element of T is its first axiom, according to the
enumeration provided by /).

ii. For each n £ N, n > 0, let S be the set of all sequences of maximum length n,
made up of formulae of C taken from the set {</(0),... ,g(n)}, and let {sl5..., sm}
be the sequences of S that correspond to proofs in T in which the premisses are

only formulae already generated by / or P. Then P(n) is defined as the set of
all the last elements of the sequences s1?.. .,sm (i.e. the theorems whose proofs
have length less than or equal to n, and did not occur at a previous stage of the
process).

From P it is possible to define a recursive function h that enumerates T. I

Theorem B.3.2 Let T be a theory in £. IfT is negation complete, thenT is decidable
if and only if T is recursively axiomatisable.

PROOF. If T is negation complete and decidable, rT~[ is recursive. Since any theory
represents an axiom set for itself, it follows that T is recursively axiomatisable.

If T is negation complete and recursively axiomatisable, there are two cases to be taken
into account.

i. T is inconsistent. Then it is trivially decidable (since, in this case, T = Fmlc).

ii. T is consistent. Let then <j) £ Fmlc and r A [<£]. Since T is negation complete,
either r £ T or -it £ T. Since T is recursively axiomatisable, rTn is recursively
enumerable: there is a recursive function fT such that /t(^) € {rr~l, r-irn}, for
some n £ N. Hence the function gdefined as

f 1 if (3n G N)(/T(n) = rr~y)
m \ 0 if (3n e N)(/T(n) = r-rn)

is recursive, for (3n £ N)(/r(n) = rrn V fri71) = r_,Tn) is decidable. I

There are various results relating the decidability of a theory to the decidability of
its extensions. Certain theories that admit finite models have consistent decidable
extensions, as for instance in the case of the theory of groups and its extension DAG.
Some processes of extension, on the other hand, preserve the decidability of the original
theory.
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Theorem B.3.3 Let T be a theory in C and T' be a theory in C, where C is an

expansion of C. If T' is a decidable conservative extension of T, then T is decidable.

PROOF. Let /T< be a decision procedure for T' w.r.t. Fmlc, and let g be the recursive
function

?m = l I i,i£Fmk0 otherwise

The recursive function hx(r<^>n) = g(rqF) x frfff1) can be also represented as

hT(rr) =
1 if 4> S Fmlc H T'
0 otherwise

Since T' is a conservative extension of T, Fmlc FT' — T, hence ht is a decision pro¬
cedure for T w.r.t. Fmlc; a decision procedure for T w.r.t. Fmlc can be immediately
generated from hT. I

Before examining other results about extensions of theories, a few preliminary lemmas
are required.

Lemma B.3.1 Let (i) T be a theory in C. (ii) C be an expansion of C, and (iii) 21 be
a C-structure that is a model for T. Then any C-expansion of 21 is also a model for
T.

PROOF. Let 21' be a T'-expansion of 21. If <f> £ T, then 21 f= 0, i.e. for every
assignment a in 21,

21 |= d>[o]
From the definition of an expansion of a structure, it follows that

21' h
since |2l'| = |2l| and 521' = 5a, for every S £ Symc■ Hence, for any <j> € T, 21' [= <f>, i.e.
21' |=T. I

Lemma B.3.2 Let C — (C', T, V, g'e) be an effective expansion of a language C =

(C,!F,V,ge) such that C C C' (i.e. C is generated from C by the introduction of new
individual constants only). Let T and T' respectively be theories in C and C such that
T' is the extension of T defined as {fi £ Fmlc \ T [= fi). Let fi\cl,..., cnJ £ Fmlc,
where {cl5cnj C C — C. Then

T h iff T'\=^/cu...,v"/c4 (*)
whenever ul5..., vn are variables that do not occur in ..., cnJ.
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Proof.

If T' (= ..., "n/t:„], any instance of ,..., Vnlcn\ is also T'-valid, hence
V |= t%i,...,Cn],
If T' |= Vlci5 • • •) cnL then, from the definition of T", T |= t/'Jci,..., cn||. As a result,
for any /^'-structure 21 that is a model for T,

21 |= V>Ici,...,c„J (*)

If T" iplVl/c i, • • ./"/cnj, since T C T', it follows that T V'lIVl/ci 5 • • •iVnlcn\- Hence
there must be a /^-structure OS that is a model for T in which ..., "n/c„J is
invalid, i.e. there is an assignment (3 = { V»i, •• hn} in IB, with bi,...,bn G |0S|,
such that

® £ VP1 /*,•• -/"/CnIt/3]

Let IB' be a TP-expansion of IB such that cf = 6,, 1 < i < n. Then

<s' ^ (**)

From lemma B.3.1, OS' is a TP-model for T. From this result and (*), it follows that
IB' (= V'ttcir • • • > Cnl thus contradicting (**). Hence T' \= tflVl/ci,..., Vn/c„J. I

Theorem B.3.4 Let T and T' respectively be theories in C and TP.

i. If T is consistent and decidable, then there is a maximal consistent decidable
extension of T.

ii. If T' is an effective definitional extension of T, then T is decidable iff T' is
decidable.

Hi. IfC = (C, T,V, g'e) is an effective expansion of C = (C, T,V, ge) such thatC c C
(i.e. jC' is generated from C by the introduction of new individual constants only),
and if T' is an extension of T such that

T' = {(f G Fmlc, | T\=(j>}

then T is decidable iff T" is decidable15.

Proof.

i. See [Monk 76].
15 This lemma has been proposed as a problem in [Monk 76], p. 277.
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ii. See [Monk 76].
iii. Since T is an axiom set for T', according to lemma B.2.3, T' is a conservative

extension of T, i.e. X" n Fmlc = T.

If T is decidable, let ip be a. formula of C.

(a) If ip £ Fmljr, since T' is a conservative extension of T, it follows that

ipeT iff i/> £ T' (*)

(b) If ip $ Fmlc, then ip must have the form tp\ci,..., cnJ, where
{ci,...,cn} C C — C. From lemma B.3.2, T' |= ^[cj,..., c„J iff
T' |= ipfVl/ci,..., ""/c,,], where v1,...,vn are variables that do not occur
in ip\ci,..., c„]j. Since t/>pVci>..., Vnlcn\ G Fmlc, and again considering
that T' is a conservative extension of T, it follows that

iff vr/ci,.../"/cnl er (**)

(*) and (**) guarantee that a decision procedure for T' can be derived from any
decision procedure for T.

If T' is decidable, then, since it is a conservative extension of T, it follows from
theorem B.3.3 that T is decidable as well. I

The last two results will be further examined in chapter 2, as part of the study of
theories extended by the introduction of defined and undefined non-logical symbols.

In spite of the generality of the decision procedure described in theorems B.3.2 and B.3.1
— it can be applied to all negation complete decidable theories, provided that a re¬
cursive function that enumerates their axioms is given — it is too inefficient for any
conceivable application to mechanical theorem proving. Specialised procedures, there¬
fore, have to be sought for each individual theory.

B.3.2 Elimination of Quantifiers

Two of the standard methods for proving the decidability of a theory involve reducing
the set of formulae of the subjacent language into a particular subclass for which
the theory is known to be decidable. Quantifier elimination, as the name suggests,
transforms sentences into quantifier-free formulae. It admits two alternative definitions,
the first of which is more directly related to the intuitive meaning of the expression16.

Definition B.3.1 (Quantifier Elimination - First Version)

Let T be a theory in C.
16 For sentences, the elimination of quantifiers amounts to the complete removal of variables as well. For

this reason, some aut hors adopt the name variable elimination instead; see for instance [Shostak 79],
p. 352.
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i. T admits elimination of quantifiers in C for a formula 4>(vx,..., vn) £ Frnlc if
and only if there is a quantifier-free formula tf(vi,..., vn) in C such that

T |= . .,vn) = . .,vn)

ii. T admits elimination oj quantifiers in C if and only if it admits elimination of
quantifiers for every formula of C.

The relevance of this property to the study of decidability stems from the following
theorem.

Theorem B.3.5 Let T be a consistent and recursively axiomatisable theory in C such
that

i. T admits elimination of quantifiers (first version) in C,
ii. jC contains at least one individual constant c, and
Hi. T is negation complete w.r.t. the class £ of variable-free formulae of £

(i.e. for any f> £ E, either 4> £ T or -uf> £ T).

Then T is decidable and negation-complete.

PROOF. As T admits elimination of quantifiers in £, for every sentence r £ Stnc,
there is a quantifier-free sentence r' in the same language such that (r = r') £ T.
Since T is recursively axiomatisable, all of its elements can be effectively enumerated
by a recursive function /. Hence there is a n £ N such that f(n) — rr = r'n, for
some t' £ Fmlc. Once r' is identified, since it is variable-free, either it or its negation
belongs to T; f can then be used to enumerate the elements of T until one of these
sentences is derived. I

A direct proof that a theory T admits elimination of quantifiers in C, by the ex¬
hibition of a mechanism that generates a quantifier-free formula for each element of
Fmlc, yields a decision procedure for T. whenever there is a decision procedure for T
w.r.t. the class of quantifier-free formulae1'.

In the second version of quantifier elimination, the number of occurrences of quantifiers
is reduced rather than altogether eliminated, and the final formula is expressed in terms
of a Boolean combination of basic formulae. The definition of basic formula is relative
to each theory. When they constitute a decidable class18, the decidability of the theory
in the full language follows.

Definition B.3.2 (Quantifier Elimination - Second version)

Let T be a theory in C. T admits elimination of quantifiers in C if and only if there is

17 Some cases of indirect proofs for quantifier elimination are examined in [Shoenfield 67], p. 85-6.
18 Decidable subclasses of formulae are further discussed in appendix C.
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a recursive class A C Fmlc. formed by basic formulae of T in C, such that, for every
formula 4>{v\,.... vn} in L, there is a Boolean combination ip{v\,..., vn} of basic for¬
mulae such that

T |= (f>{vu...,vn} = ip{vu...,vn}

All theories that admit quantifier elimination in the first sense also admit it in the
second sense: it suffices to take the class of atomic formulae as basic set. The converse,

however, is not always true. For instance, the theory of equality (with one constant
symbol, 0) is consistent, negation incomplete and decidable, and is negation complete
w.r.t. the class of variable-free formulae (i.e. all the Boolean combinations of {0 = 0}).
Hence, according to theorem B.3.5, it does not admit quantifier elimination, first ver¬
sion, even though it is possible to show that it admits this property in the second
version19.

Proofs of quantifier elimination can be simplified in view of the fact that it suffices to
consider the elimination of existential quantifiers from formulae in disjunctive normal
form.

Theorem B.3.6 Let T be a theory in C.

i. T admits elimination of quantifiers (first sense) in C iff it admits quantifier
elimination for each formula of the form

(3v)(h

where /,• is either an atomic form,ula or the negation of an atomic formula.

ii. T admits elimination of quantifiers (second sense) in C iff it admits quantifier
elimination for each formula of the form (3v)(j>, where f is a Boolean combination
of basic formulae for T.

To illustrate how this property may lead to the construction of specialised decision
procedures, the cases of the theories of the structures Tand are next examined.

Theorem B.3.7 The theory T<j\e of the structure = (N, 0, s, +, <, =2,
admits elimination of quantifiers (first version) in Ct,j!e: •

PROOF20. Let OprA be the expansion of CPrAo generated by the introduction of the
binary predicate symbols < and, for each i € N, =,-. The new relations can be defined
in the original language as

19 See [Monk 76], p. 240-2.
20 Based on [Enderton 72], p. 188-92.

394



Vi < v2 = (3v3)(t>3 ^ 0 A Vx + v3 = v2)
V\ =, v-2 = \J (3u1)(3u2)(v1 = i X Ux + j A v2 = i X u2 + j)

OKj <i

for each i g N,i > 2. The elimination of existential quantifiers takes place in two stages,
one for putting formulae into canonical form, and the second one for the removal of
the innermost existential quantifier from canonical formulae. Given a formula <£,

(3u)(/1 A • • • A /„) (*)

the reduction to canonical form requires four steps.

i. Elimination of negation, by the application of the equivalences

~| {t\ = ti) = (fi < G) v (t2 < t\)
-> (ti < t2) = (tx - t2) v (<2 < E)

~1 (fl =i G) = V Cl =i f2 + j)
0<i<i

ii. Reduction of the resulting formula to a disjunction of formulae of the form

(3v)(l[A---Al'J (**)

where l' is an atomic expression of one of the forms

t(v) > u[jf]
t(v) t> Ui[/]-u2[)f]
u[^] < t(v)

uAi>]-uA'A < t(v)

and > G { = , <, =2,.. .} and t(v) is either v or kv. The expression v = u—t is an
abbreviation for v + t = u.

iii. Uniformisation of coefficients of v, which requires

(a) finding the least common multiplier k of all coefficients of v in (**),
(b) for each atom where v occurs, defining the multiplier k[ = k/ki: where k\ G N,

and

(c) with the help of the following equivalences

ti = t2 = k'ti = k't2
t\ <C t2 — k'ti k't2
t\ — n ^2 — k t \ —kin k t2

replacing (**) with a new formula (3v)d>" where all the coefficients of v are
equal to k.
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iv. Bound variable renaming, which requires

(a) identifying a variable v' that does not occur in (3v)<j>", and
(b) replacing occurrences of subexpressions kv with the new variable, which can

be justified by the equivalence

(3v)ip[kv] = (3v')(tl>[v'/kv] A v' =k 0)

In the end, (*) has been reduced to a disjunction of formulae of the form

(3u')(ai A ■ • • A a„)

where cnt- is an atom of one of the forms

v' < t[f]
t[f] < v'
v' — t[f]
v' —m t[f]

Once it is reorganised to

(3t/) | /\ v' = U A f\ Uj < v' A f\ v' < wk A /\ /\ v' =m z, (f)
= l j = 1 k= 1 l=lm=l J

the elimination of the existential quantifier has to take three cases into account.

i. p > 0 (presence of equations). If v' = is one of such equations, the elimination
of the quantifier is achieved by the application of the substitution a = {^/v1} to
the matrix of (f). An additional condition, 0 < t,, has to be introduced in those
cases where ti has the form t.-p—2- The resulting formula is

gol\ A • • • A aan A 0 < £,■

ii. p = 0 and s = 0 (absence of equalities and equivalences). Since no equality or
equivalence of any module occurs in (f), the problem is reduced to the search for
a. natural number which satisfies the lower and upper bounds established by the
inequalities. The formula can then be replaced by the equivalent quantifier-free
formula

q r r

f\ f\ s(uj) < wk A f\ 0 < wk
y = lfc=l k=\

which is obtained by exhaustive elimination of v' from all pairs of inequalities
(u < v',v' < w). based on the PA-equivalence

{3v)(u[ff\ < v A v < t[ff]) = s(u) < t
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iii. p — 0 and s > 0 (absence of equalities and presence of equivalences modulo m).
Let M be the least common multiplier of all moduli of equivalence symbols that
occur in (f). Intuitively, if there is a solution for v' in N for a conjunction of such
equivalences, it can be found by the inspection of any consecutive list of natural
numbers with M elements. In the event q > 0 and r > 0, it is also necessary
to take into account the lower and upper bounds set by the inequalities. The
elimination of the existential quantifier is accomplished with the introduction of
the quantifier-free formula

M q / q r s s' \

V V A ui < s'K-')A A < wkA A A s'(ur) ="» z<
i=l j'=l \j = l k= l 1=1 m=l J

Lemma B.3.3 T<j\e and, T^a: where 93^ = (N, 0,1, s, +), are decidable.

PROOF. Since admits quantifier elimination, any sentence r of C'PrA can be
converted into a quantifier-free sentence, which can be represented as a Boolean com¬
bination of atoms of the form

sp(0) = s«(0)
sp(0) < s«(0)
sp(0) =m s»(0)

where p,q,m 6 N. Since each of these atoms is decidable, r is reducible to a. propos¬
ition. As a result, T<j\e is decidable. Also, since it is a conservative extension of the
theory of the structure (N, 0, s, -f), according to theorem B.3.3, the theory of (N, 0, s, +}
is decidable. As T<j\a is a definitional extension of the theory of (N, 0, s,+), according
to theorem B.3.4, T<nA is decidable as well. I

The theory of the structure = (N, 0,1, x), on the other hand, admits elim¬
ination of quantifiers (first version) in jCsma■ Since XlnM is negation complete w.r.t.
the class of quantifier-free sentences of the underlying language, T<y\M is decidable21. A
new arithmetical theory can then be built as an extension of PA0, T<j\a and TmM-

Lemma B.3.4 Let Peano arithmetic (PA) be the theory in CPA = {0,1, s, +, X} which
admits the following axiom set

ApA = APAo U ATr,.^ U ATmM

Then, provided that PA0 is consistent. PA is consistent, recursively axiomatisable and
incomplete.

21 See [Mostowski 52], p. 20-3. The original proof of the decidability of this theory, based on an
application of the fundamental theorem of arithmetic, can be found in [Skolem 70],
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Proof.

Consistency. Each axiom in Apa is valid in 01 = (N, 0, l,s, +, x), since
(a) 9T.4 and are restrictions of 9T. and every formula that is

valid in a structure is valid in any expansion of this structure as well, and
(b) the axioms of PA0 are valid in 21. an assumption that amounts to the consistency

of PA0.

Hence PI is a model of PA, and therefore PA is consistent22.

Axiomatisability. PA0 is recursively axiomatisable, and any decidable theory is recurs¬

ively axiomatisable (for any theory is an axiom set for itself, and decidable theories
are recursive sets of formulae). Since the union of recursive sets is recursive, Apa is
recursive as well.

Incompleteness. Since PA is a recursively axiomatisable and consistent extension of
PA0, Godel's first incompleteness theorem is applicable. I

T<nA and T<xim will be respectively denoted as PrA (Presburger arithmetic) and SMA
(strictly multiplicative arithmetic).

B.3.3 Model Completeness

Model completeness is another concept that can be linked to the reduction of formulae
of a language into a. particular subclass; in this case, the class of universal formulae.
Its definition is based on the notion of elementary extension of a structure.

Definition B.3.3 (Model Completeness)

Let 21 and 03 be structures of a language C, and let T be a theory in C.

i. 23 is an elementary extension of 21 iff

(a) |2l| C |23|.
(b) For every formula cj> £ C, if a is an assignment in 21, then

21 |= <f>[a] iff 1= <j)[a]

ii. T is model complete iff, for any two models 21. 03 of T, if 21 is a substructure of
18. then 03 is an elementary extension of Hi.

Real-closed fields. Abelian groups and Boolean algebras are examples ofmodel-complete
theories. Amongst the consequences of the above definition is a theorem that provides
an alternative definition for model completeness.

22 An informal proof for the fact, that formulae that are valid in a structure are also valid in the
expansions of this structure can be found in [Shoenfield 67], p. 43-4. The remark that 07 is a model
for PAo is usually justified on set theoretical grounds; see for instance [Mendelson 87], p. 121.
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Lemma B.3.5 If 23 is an elementary extension of HI. then, for every sentence t in C,

21 |= r iff 23 \= t

(i.e. 21 and 23 are elementary equivalent).

Theorem B.3.8 For any consistent theory T in C. T is model complete iff for any
formula d> in C there exists a universal formula if in the same language such that both
contain the same set of free variables and T |= 6 = if.

Theorem B.3.8 assigns a role for model completeness in the recognition of decidable
theories: any model complete theory in a language £ which is decidable in the class of
universal formulae is also decidable in Fmlc. As in the case of quantifier elimination,
a decision procedure for the corresponding theory can be built whenever a decision
procedure for the theory w.r.t. the class of universal sentences is known.

B.4 Conclusions

Total recursive functions provide a mathematical model for the informal notion of
effective computability. Decision problems are abstractly characterised by means of a
pair of sets (Lt.A), such that U is countable and A C U. The decision problem for
a first-order theory T in C is defined as (Fmlc,T). Once first-order languages and
theories are formalised and the mechanism of Godel numbering is introduced, decision
procedures for first-order theories can be represented by means of recursive functions.
Indirect proofs of decidability are based on the inspection of metatheoretical properties
of a theory, whereas direct proofs, such as those derived from (constructive proofs of)
quantifier elimination and model completeness, lead to the construction of specific
decision procedures.
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Appendix C

Decidable Subclasses for
Undecidable Theories

Due to the existence of undecidable theories, mechanical theorem proving cannot be
limited to the study of decision procedures and their computational complexity. Non¬
etheless, the existence of decidable subclasses of formulae for any first-order theory
provides a role for decision procedures even in undecidable domains. Decidable theor¬
ies, particularly those that admit only highly complex procedures, also benefit from the
study of decidable subclasses, since restricted but less complex procedures are relevant
from the point of view of efficiency1.

Decidable subclasses, as well as some of the mechanisms for their exhibition, are in¬
vestigated in this appendix. Section C.l discusses two possible roles for decision pro¬
cedures in undecidable theories and introduces the notion of essential undecidability.
Section C.2 defines the concept of decidable subclass and describes some general res¬
ults concerning their presence in undecidable domains. Some of the classes that are
universally present in first-order theories are described in section C.3. Section C.4 ex¬
amines three special cases of context-free generated decidable subclasses, represented
by variable-free atoms, prefix classes and sublanguages. Other special classes, involving
the intersection and extension of theories, are surveyed in section C.5.

C.l Essentially Undecidable Theories

There are two possible levels at which a decision procedure can operate with respect
to an undecidable theory T in £: at a decidable extension of T, if there is one, or
at a decidable subclass of £. The first option has advantages over the second one:
even though the process of extension inevitably introduces as new theorems formulae
that do not belong to T, there is a guarantee that all the original theorems can be
effectively recognised in the extended theory. Moreover, whenever T has an intended
model 21, which is usually more relevant than any particular axiomatic representation

1 There is an application of this nature, for instance, in Nqthm, the Boyer and Moore theorem prover,
which is examined in chapter 3.
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that partially captures it, extending T does not cause any loss of relevant information,
provided that 21 remains a model for the decidable extension.

For this reason, before searching for decidable subclasses of formulae, it is important
to rule out the existence of decidable extensions for T. A consistent theory T is
essentially undecidable iff each one of its consistent extensions is undecidable. Essential
undecidability is linked to the inseparability of a theory, which in turn is based on the
notion of effective inseparability of subsets of natural numbers.

Definition C.l.l (Recursive and Effective Inseparability)

i. Let A\ and A2 be subsets of N, and let

Wu....Wn,...

be an enumeration of all recursively enumerable subsets of N.

(a) A\ and An are recursively separable iff there is a recursive set A3 C N such
that Ai C A3 and An C N — A:i.

(b) A\ and An are recursively inseparable iff A\ H A2 = 0 and A\ and A2 are
not recursively separable.

(c) A\ and An are effectively inseparable iff A\ n A2 = 0 and, for every pair
(Wp, Wq) of recursively enumerable sets such that Wp H Wq = 0, A\ C Wv
and A'j C Wq, there is a total recursive function f: N2 — N such that
f(p,q)?Wp\JW9.

ii. A theory T in L is inseparable iff rTn and rTn are effectively inseparable, where
T is the set of all sentences of C of the form -it, such that r € T.

Effective inseparability is stronger than recursive inseparability, in the sense that every
pair of effectively inseparable sets is also recursively inseparable, whereas the converse
is not always true2.

Given an undecidable, consistent and recursively axiomatisable theory T in C, the
search for a consistent and decidable extension can be informally described as a process
of gradual expansion of both T and T. rTn and rTn, which are disjoint and recursively
enumerable, have to be enlarged in a way that their three essential properties,
(a) T is a theory.
(b) rTn and rT~1 are recursively enumerable, and
(c) T and T are disjoint
are preserved. Iri the end. whenever possible, the extensions of rT~l and rTn embrace
N. Since both final sets are recursively enumerable, and one is the complement of
the other w.r.t. N. the extended theory obtained is decidable. When T is inseparable,
however, the process cannot be carried out, since, according to the definition of effective
inseparability, no disjoint pair of recursively enumerable sets containing respectively
rT~i and rTn covers N. as it is indicated in figure C.l.
2 See [Monk 76], p. 100.
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Wp Wq

rj1-! rL

N o r

T recursively axiomatisable
and consistent theory

Wp, Wq recursively enumerable sets

Figure C.l: Inseparable Theory

Theorem C.l.l Any inseparable theory is essentially undecidable.

PROOF. Since rrn and rTn are effectively inseparable, T fl T = 0 and, as a result,
T must be consistent. Assume that there is a consistent decidable extension T' of T.
Then rT'~l must be recursive, as well its complement, N— rT'~[. Since T' is consistent
and T C T", then T fi T' = 0. As a result, there are disjoint recursively enumerable
sets, rT'~[ and its complement, such that rTn C rT'~[ and rTn C N - rT'"1, in conflict
with the inseparability of T. Hence T has no consistent decidable extension, and is
essentially undecidable. I

For inseparable theories, therefore, it is meaningless to search for decidable extensions,
and the possible role of decision procedures is limited to subclasses of formulae of C.
Peano arithmetic is just one example of such theories3.
3 The inseparability of PA follows from Godel's first incompleteness theorem, considering that, for
every recursively axiomatisable extension of PA, if it is consistent, it is possible to effectively exhibit
a sentence that is undecidable in the extended theory.
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C.2 Decidable Subclasses of Formulae

From an informal viewpoint, a decidable subclass for a theory T in C is a set of
formulae E C Fmlc such that there is an effective mechanism for determining whether
an element of E is a theorem of T or not. An important element, however, is missing:
E itself must be effective, i.e. the recognition of its elements must be performed within
a finite amount of time and computation4.

C.2.1 A Taxonomy for Decidable Subclasses

The decidability of a theory T in a class of formulae other than the full (effectivised)
language where it is defined therefore requires

(i) an effective procedure for determining whether an element of Fmlc belongs to the
subclass (i.e. the subclass must be decidable in Fmlc), and

(ii) an effective procedure for discerning theorems from non-theorems in this subclass5.

Definition B.2.5, which introduces the notion of decidable subsets, is not adequate for
the current purposes, since it does not take into account both procedures required for
the characterisation of a subclass that is decidable for a theory. A generalised definition
for the decidability of a set avoids these difficulties.

Definition C.2.1 (Decidable Subclass)

Let A\ and A2 be subsets of a universe U, and let gu be a Godel function for U.
A\ is (recursively) decidable for A-> in U (or Ao is decidable in A\) iff there exists a
recursive function f^1 such that

f 0 if u (f A\
fA,{gu{u))=l 1 if u e A\ — A2

( 2 if t/ G A; n A2
where u £ U. f^1 then is a decision procedure for A\ w.r.t. A2.

In the context of the decision problem for a theory T, A-j corresponds to T, while U is
the set of formulae of the underlying language6. The function f^x effectively recognises
three disjoint subsets of Fmlc'.

4 Otherwise, given any theory X, since T is a subset of Fmlc, it could be chosen as a 'decidable
subclass' for itself, since there is a recursive function for the effective recognition of theorems in
this class, the constant function /(r<C) = 1- which simply indicates that every element of T is a
T-theorem. However, there is no effective way of determining whether an element of Fmlc belongs
to this class or not in the case of undecidable theories.

5 See [Church 56], p. 246.
G To see how this definition generalises definition B.2.5, it suffices to consider that a set A\ is decidable
in U (according to definition B.2.5) iff A\ is decidable for U in U (according to definition C.2.1 above).
Both definitions, however, will be used throughout this study.
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(a) the formulae that do not belong to the decidable subclass A\ (in which case
/4lm = o),

(b) the formulae of A\ that are not T-theorems (/^1(rd>"') = 1), and
(c) the formulae of A\ that are theorems of T (f^, (r(/>"*) = 2).

Example C.2.1 Let T(f be the predicate calculus in C.

i. The subclass formed by every equality containing syntactically identical terms,
i.e.

Tj = {f> £ Fmlc | <f> = (t=t)}
is decidable for Tf in Fmlc, since every element o/E/ is a theorem in Tf.

ii. The subclass

Ejrj = Fmlc

where L* is the sublanguage of L obtained by the removal of all non-logical sym¬
bols, is decidable for Iff in Fmlc, since the theory of pure equality is decidable7.

Hi. Since C admits structures of any finite (non-nil) cardinality, the sentences

T\ (3n1)(n2)(u1 = v2)
r2 (3n1)(3u2)(n3)(u1 v2 A (v3 = vx V v3 = v2))

n

Tn (3^) . . ,(3un)(un+ 1)( f\ V, / Vj A \J Vn+ 1 = Vi)
1 < {i ,j)<n i~ 1

each of which states that the number of distinct elements in the universe of the
structure is 1,2,... ,n,..., are undecidable in Tf. Given that, when a sentence
is undecidable in a theory, neither it nor its negation belongs to the theory, it
follows that the subclass

Till = {7"l5_,'rl5'r2 5 "'Til ■ ■ ■ iTni _,rn? • • • }
is decidable for Tf in Fmlc ■ 0

These examples illustrate the existence of three distinct types of decidable subclasses.

Type I
Type II
Type III

S/flT
Tu n T
Tui n T

' Also, Tf is a conservative extension of the theory of pure equality; section C.5.1 discusses the role
of subtheories as decidable subclasses.
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II III

Figure C.2: Types of Decidable Subclasses

Each of them is represented by a Venn diagram in figure C.2. Subclasses of type
I are entirely made up of theorems, type III classes contain only non-theorems. In
both cases, there is a trivial decision procedure for the recognition of theorems and
non-theorems: for E/,

/E,(v) = 2x5m w

where g is a decision procedure for S/ w.r.t. Fmlc, whereas for S///

fru,(rr) = 9(r<t>n) (**)
where g is a decision procedure for E/// w.r.t. Fmlc. Concerning classes of type II, the
proof of decidability of T in a subset S// may be broken into two parts, concerning
(i) the decidability of E// in Fmlc, and
(ii) the decidability of T D Eu in E//.
If g is a decision procedure for E// w.r.t. Fmlc, and h is a decision procedure for T H E//
w.r.t. S//, a decision procedure for T w.r.t. E/j can be defined as

hu{r = 9C(t>~1) + h(r4>n) (***)
The next lemma guarantees that these three procedures satisfy definition C.2.1.
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Lemma C.2.1 Functions /s, • /■£,, and /sUI defined above are decision procedures for
T w.r.t. E7,£77 and E777.

Proof.

i. Considering that g is a decision procedure for E7 in Fmlc, from (*) it follows
that /E/ can be represented as

f 0 if^E;
/Sl(r^)= \ 1 if © G 0 = (S; - T)

(2 if u G E/ = S/ n T

Hence, according to definition C.2.1, /Sj is a decision procedure for T w.r.t. S/.

ii. If g is a decision procedure for E77 w.r.t. Fmlc and h is a decision procedure for
(T n E//) w.r.t. £//, from (**) it follows that

0 if <f> ^ Ea and <f $ (T n S//)
f CrAT = 1 if ^ 6 S// arul & & (Tn S")/s'A 9 '

or 0 g E/j and <p G (T 0 E/7)
2 if (j) G S77 and f G (T n E77)

which can be simplified to

1f0 if cb e77 u (r n e77) = s77
hu(r^) = ; 1 if <j> g (e77 — (tn e77))u 0 = (e77-t)

12 if 4> g s77n(tne77) = (tn e77)

Therefore /Ef; is a decision procedure for T w.r.t. E77.

iii. If g is a decision procedure for E777 in Fmlc, from (***) it follows that

( 0 if <?!> £ S777
/Wr<n=< 1 if € E777 = (E777 - T)

[2 if <p G 0 = (S777 n T)
and therefore f^UI is a decision procedure for T w.r.t. E777. I

Under certain circumstances, classes of type I and III can be expanded into classes of
type II by the operation of closure with respect to negation.

i. If T is consistent, any class of type I can be expanded into one of type II, since
the negation of a theorem is a non-theorem.

ii. A class E777 of type III can be expanded at least, in two cases:

(a) when T is negation complete, in which case the negation of every formula, in
E777 must be an element of T. and
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(b) when all the elements of E/// are T-unsatisfiable, in which case th'eir negations
must be T-valid, i.e. elements of the theory8.

Decidable subclasses can be classified along other lines as well, as for instance the
complexity of the mechanisms required for their generation. Grammars provide a
suitable framework for the introduction of three groups of effectively computable sets.

C.2.2 The Chomsky Hierarchy

Recursive functions can operate both as recognisers and generators for the elements
of computable sets, given that the image of any total recursive function is recursively
enumerable. Since recursive functions are only one amongst several mathematical
models for informal computability, set generation can be based on alternative concepts,
one of which corresponds to the notion of grammar.

Grammars operate with a set of symbols or alphabet, which are used in the construction
of finite sequences of symbols or strings. The transformation of a string into a new one
is achieved through the application of rules. Distinct types of grammars are delimited
once restrictions are imposed upon the form of their rules9.

Definition C.2.2 (Grammars)

i. A grammar is a quadruple G = (V, E,R, S) such that V is the set of variables,
E is the alphabet, S £ V is the start variable, and R is a finite set of rules. S*
and. (E U V)* respectively denote the set of all finite strings (including the empty
stringJ made up of elements of E and EUk. A rule is any pair of strings of the
form (sivs2, s3), where sj, s2, s3 £ (E U V)*. and v £ V.

ii. A string s £ E* is generated, by G iff there is a finite sequence of strings of
(E U vy,

S i,..., sn,

such that Si is the start variable S, sn is the generated string s, and for, each
string s, in the sequence, 1 < i < n, there is a rule (s',s") in R such that s' is a
substring of s,-, and, ,sI+] is obtained, from Si by the replacement of an occurrence

of s' with, s".

iii. Let G — (V, S, R. S) be a grammar.

(a) G is context-sensitive iff. for every rule (s,s') £ R, the length of s is less
than or equal to the length of s', where the length of a string is the number
of symbols that occur in it.

8 If, on the other hand, T is negation incomplete, there is a formula that is undecidable in T (i.e.
neither it nor its negation is a T-theorem): as a result, it is not possible to guarantee that the
negation of a formula of E//r occurs in T. Also, if T,m contains a formula that is T-satisfiable, its
negation, which is T-invalid. does not occur in T either.

9 See [Lewis & Papadimitriou 81], p. 224-7, [Manna 74], p. 41-3 and [Hopcroft fe Ullman 79], p. 79-
82,217.
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(b) G is context-free iff. for every rule (s,s') £ R, s £ V (and s' £ (S U V)*).
(c) G is regular iff. for every rule (s.s') £ R, s £ V, and either s' £ E* or s'

has the form s'xs'2, where s'j £ E* and s'2 £ V.

The subset of strings of E* generated by a grammar G is the class of strings (or
expressions) generated by G. When the universe of all classes generated by each type
of grammar is taken into account, the Chomsky hierarchy is established.

regular generated classes
I

context-free generated classes
i

context-sensitive generated classes
I

effectively computable classes

Each group is properly contained in its successor; all classes generated by any of these
three types of grammars are therefore effectively computable. An important property
of the hierarchy is that the typical procedure that computes a class in one group is less
complex than the typical procedure for computing a class in any of its successors10.
Context-free grammars have a particular interest in the study of decision problems,
since they can generate most of the targeted subclasses of formulae.

Example C.2.2 Let G = (V, E,R,S) be a grammar such that

V = { fml, atm, trm, cte, var }
S = {(,),V,3,-i,A,V,D,=,=,x,0,l,a;1,a:2,...,a:n,...}
S = {fml}

and R is the set of rules11

fml := atm\{\/var)fml\(3var)fml\-<fml\fml A fml\fml V fm.l\fml D fml\fml = fml
atm := (trm = trm)
trm var\cte\trm x trm
cte := 0|1
var := xx\x2\ ■ ■ ■ \xn\ ...

Since each of the above rules belongs to hx(EU V)*, G is context-free. Two examples
of strings generated by G are indicated below.

fml, atm. (trm = trm), (var = trm), (var = cte), (var = 1), (x4 = 1)
10 See [Hopcroft Ullrnan 79], p. 285.
11 Backus Naur notation, described e.g. in [Soinmerhalder fe Van Westrhenen 88], p. 38-40, has been

chosen due to its simplicity.
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fml, (3var)fml, (3x3)fml, (3x3)->fmL (3x3)-^atm, (3x3)-i (trm = trm),

(3x3)-i (trm = var), (3x3)-i (var = var), (3x3)-i(var = var), (3x3)->(x10 = var),
(3x3)-i(x10 = x8)

It is possible to prove that G generates the set of formulae of CSMA = {0,1, x}. g

Since context-free generated classes cover just a fraction of effectively computable do¬
mains, a stronger universe of classes is examined in chapter 4.

C.3 General Decidable Subclasses

Axiomatisable first-order theories admit both logical decidable subclasses, entirely com¬

posed of logically valid formulae, as well as non-logical subclasses, which also contain
proper non-logical theorems. Concerning the second group, if T is a recursively ax¬
iomatisable theory in C, there is a set A of axioms for T which is decidable for T in
Fmlc, considering that

(i) ACT (type I), and
(ii) rAn is recursive, for some A.
With respect to the first group, since any theory includes all the valid formulae of its
underlying language (i.e. Tf C T), some of the decidable subclasses for Tf in Fmlc can
be used to identify decidable subclasses for any theory of the same language. Certain
prefix classes are known to be decidable for Tf, as for instance the classes of

i. Universal formulae, which can be generated by a context-free grammar having
the following rules

unvi = mtx\(\/var)unvi
mtx = atm\-imtx\mtx V mtx\mtx A mtx\mtx D mtx\mtx = mtx
atm = (trm=trm)\pl i(trm)\ .. . \pij{trmi,..., trmj)| ...
trm = var\cte\fi x{trm)\ . . .\fitj(trmu.. .,trmj)\ ...
cte = Cj| . . ,|C;| . . .

var = WjI .. .|iy| . . .

ii. Formulae of the form

M .. .(v„)(3«i).. .(3um)4>

n. m > 0. where the matrix is free from occurrences of function symbols,
individual constant symbols and equabtv. The rules required in this case are

unv2

ext

mix

aim

var

ext\(Vvar)unv2
mtx\(3var)ext
atm\^mtx\mtx V mtx\mtx A m.tx\mtx D mtx\mtx = mtx
P\.\{var)\ .. .\pi j{varu . ..,varj)\ .. .

Ui| . . .k | ...
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iii. Formulae of the form

M. ■ .(v„)(3«1)(3u2)(^1) . ..{wm)<f>

n,m > 0, where the matrix d> is free from occurrences of function symbols,
individual constant symbols and equality, which can be generated by the rules

unv4

unv3

mtx

atm

var

= (3var)(3var)unv3\(\/var)unv4
= mtx\(\/var)unv3
= atm\-imtx\mtx V mtx\mtx A mtx\mtx D mtx\mtx = mtx
= p1A(var)\ .. .\pitj(varu . ..,vavj)\ . ..

A proof for the decidability of the class of universal formulae can be derived from the
decidability of the same class in an equational theory. The decidability of the other
two classes follows from the fact that they share the finite model property, according
to which a set of formulae is satisfiable iff it is satisfiable in a finite structure. Other

prefix decidable subclasses for Tfi are defined by restrictions imposed on the form of
the matrix, as for instance the arity of predicate symbols12.

For each of the three logical decidable subclasses A above, let gA denote a decision
procedure for Tf w.r.t. A. The derived function

M gA(rfin) if even(#A(rd>n))
0 otherwise

then represents a decision procedure for any theory T in Fmfi w.r.t. a decidable sub¬
class E/ of type I, where E/ contains only the logically valid formulae of A: although
valid formulae are theorems in any theory of the same language, invalid formulae (i.e.
those for which g\ returns 1) do not have to correspond to non-theorems of T, since
T is a non-conservative extension of T0£. Theories and their extensions are further
examined in section C.5.2.

Another example of logical subclass that is decidable for any first-order theory is com¬

posed of propositionally valid formulae. The propositional form of a formula, is gen¬
erated through the replacement of its propositional components with propositional
symbols.

Definition C.3.1 (Propositional Form)

Let be a form,viae of C.

i. The set <f> of the propositional components of <f> is recursively defined as follows.

(a) If (J) Fs atomic, or if it has the form Qvif, where Q is a quantifier, then
d> = {0}.

12 See [Ben-Ari 93], p. 142-145.' Details about other prefix classes can be found for instance in
[Dreben fc Goldfarb 79] and [Gabbay fc Shehtman 93], p. 800-1.
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(b) If cb has the form -<0 and $' is the set of propositional components of if,
then <h = $'.

(c) If 0 has the form 0X A 02. ipi V 02, 0\ D 02 or 0X = 02 and $1 and
<J>2 are respectively the sets of propositional components of and tp2, then
$ = u <h2.

ii. If $ = {©j,..., 0n} is the set of propositional components of 0, then its proposi¬
tional form 0 is the proposition

0V ■ -,Pn/4>nJ

where p\,..., pn are distinct propositional symbols.

Hi. 0 is propositionally valid iff 0P is valid.

The class of propositionally valid formulae of £ is decidable for any theory of £.

Theorem C.3.1 Let T be a theory in £, and let E be the set of all propositionally
valid formulae of £. Then

(i) E C T (type I), and
(ii) S is decidable for T in Fml■£.

Proof.

i. Let 0(vx,..., vn) be a (logically) invalid formula of £ such that 0P is proposition-
ally valid. Then there is a structure 21 for £ and an assignment
a = {0l/tn,..., ""/«„} such that

21 (£ 0{vu.. ,,u„)[a]

Let £' = £ U {ci,...,c„}, and let 21' be a structure for £' that expands 21 such
that

cf — a,, 1 < i < n

Then 21' ^ 0'. where 0' = <f>(Cl/*n,..., Cn/vn) is a sentence. Let <!>' = {0\,..., 0'm}
be the set of propositional components of 0', and let F: <h' —> {T, T} be such that
F(0'i) = T if 21' |= 0'{, and F(0'i) = T otherwise. Clearly,
0>lF^) I J is also invalid in 21'. As 0 and 0' share the same pro-
positional form, the propositional assignment )/<£i, • • •, must turn
0P into T, in contradiction with the hypothesis. Hence, each formula in E must
be (logically) valid and, for this reason, also an element of T.

ii. Both the construction of propositional forms arid the establishment of validity
for propositions are effective. If g is a recursive function that generates the
propositional form 6P for each formula 0 in £. and h is a decision procedure for
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validity in the propositional calculus, then hog represents a decision procedure
for E w.r.t. Fmlc. According to lemma C.2.1, the function /E such that

/s(V) = 2 X h(g(rr))

is a decision procedure for T w.r.t. E, which has type I.

A stronger result (i.e. a larger decidable subclass) is obtained if the set of propositional
components of a formula is limited to distinct subformulae modulo bound variable
renaming: formulae such as (3x)(f>(x) V -<(3y)<j)(y) could then be identified as proposi-
tionally valid.

C.4 Context-free Generated Classes

Apart from general subclasses, there are also those whose decidability is restricted to
theories that satisfy certain conditions. The class of variable-free atoms, some prefix
classes and the set of formulae of a sublanguage are just a few examples.

C.4.1 Atomic Sentences

For some theories, the class of variable-free atomic formulae admits a decision procedure
entirely based on syntactic properties of atoms. This is the case, for instance, of the
theory of groups, defined in the language CG = {0,—,+}, which admits a set of five
axioms.

Any variable-free term is effectively reducible in this theory to the constant symbol 0,
making therefore any variable-free atom reducible to 0 = 0, which is logically valid.

Variable-free atoms are also decidable for PA\ given an atomic formula in Hpa - each
variable-free term can be effectively reduced to the form sn(0), where s°(0) = 0 and
sn+1(0) = s(sn(0)), by the application of the axioms for sum and multiplication as
rewrite rules. Any atom in this class is then equivalent to

^1 b (f2 f" "3) — (^1 f ^2) "f "3
v + 0 = v

0 4- v = v

v + (—v) = 0
( — v) + v = 0

V

0

0

sn(0) = sm(0)

where n.m £ N. The above atom is valid in PA iff n — m.
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C.4.2 Prefix Classes

As already discussed in section C.3, decidable prefix classes of type II for Tf provide
prefix classes of type I for any theory in the same language. Under certain circum¬
stances, theories other than Tf also admit prefix classes of type II. For instance, the
validity of a universal formula can be effectively decided in certain finitely axiomatis-
able theories.

Theorem C.4.1 Let C* be a pure first-order language that does not contain function
or individual constant symbols. If T is a finitely axiomatisable theory in C* that ad¬
mits a set of quantifier-free axioms, then the class of quantifier-free formulae of C* is
decidable for T in Fmlc.

PROOF. Let if G Fmlc> be quantifier-free, and let A = {<$!,..., <*)„} be a set of
quantifier-free axioms for T. From the definitions of logical consequence and validity
in a structure,

{61,.i= v iff • • • ,[<y} 1= M

and, by iterated applications of the deduction theorem,

],..., [tf„] |= [if] iff |= [<$i] D ■■■ D [<5n] D [if]

Hence, the set

{if G Fmlc' | A 1= if & if is quantifier-free}

is decidable for T in Fmlc> iff

{r G Stnc. | r A [<5j] D • • O [<5n] D [if]}

is also decidable for T in Fmlc- Without loss of generality, if FrVar(tf)= {vx,.. .,vn}
and FrVar(A) = {ui,..., u(}, it is possible to assume that FrVar(if)P\FrVar(A) = 0
(i.e. if does not share any variable with the axioms of T), otherwise bound variables (in
[if], [<5i],..., [<5n]) can be renamed. Given the sequence of logically equivalent sentences,

[<5^ D • ■ O [<5n] D [if]

[Mi]] v • • • v [[->£„]] v [if]

(l>l) • ■ . (vm)(({3lli) . . .(3u,)(-i6i V • • • V ->£„)) V if)

(uj).. .(vrn)(3tii).. .(3u,)(^ D ■ ■ ■ D Sn D if),
it follows that

A |= if iff |= (iq).. .(nm)(3tii).. .(3w,)(tfi D • • O 6n D if)
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As the prefix of the final expression above defines a decidable class for Tjf*, it follows
that the class of universal formulae is decidable for T in Fmlc>. I

Another result guarantees the decidability of the class of universal formulae for other
theories.

Theorem C.4.2 Let T be a theory in £,. such that the class of all formulae of Fmlc
of the form

71 V • • • V 7„

where 7,- is a literal (i.e. an atomic formula or the negation of an atomic formula), is
decidable for T. Then the class of quantifier-free formulae of C is also decidable for T.

PROOF. Let 4> be a quantifier-free formula of C, and let be its atomic
subformulae. cp is T-valid iff, for every model 21 of T, 51 \= <f>, i.e. for every assignment
a in 21, 21 |= (j)\oi\. The validity of 4>[a\ in 21 can be established in two stages.

i. for each Pi, it is first determined whether 21 (= /3,-[a]. When this is the case,
each occurrence of in <j>[a] can be replaced with the propositional constant T;
otherwise <f>[oi\ is replaced with _L.

ii. the validity of the proposition generated from p[a\ in (i) can be effectively assessed
by a decision procedure for the propositional calculus.

Step (i) therefore results from a variable assignment in 21, whereas step (ii) is a con¬
sequence of a propositional assignment to the atomic components of p[a\. The above
process has to be repeated for every assignment a in 21. However, in spite of the fact
that there may be infinite many assignments, considering that <f> has only n atoms,
there are only 2" propositions derivable from <j>. Whenever it is possible to determine
which are all the compatible propositional assignments derivable from any variable
assignment in 21, the validity of <f> in 21 can be reduced to a propositional problem,
represented by the second step13.

Since the original problem involves every model of T, it is necessary to determine all
compatible propositional assignments generated from them. Let
Vji {Pi,..., f3n} — {T. ±} represent a possible propositional assignment to the atomic
formulae in f>. Assume 1pj is a conjunction of literals
13 Not all of the possible propositional assignments have to be compatible, i.e. derivable from a variable

assignment. For instance, given the formula

x = y A y = x

even though there are two distinct component atoms, for any assignment to the variables of this
formula, in any possible structure of the subjacent language, there are only two compatible derived
propositional assignments, (T, T) and (J L): the other two possible pairs are excluded, since no
assignment in any structure could reduce the above formula to either of them.
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Pj. 1 A ' * * A f3j n

such that /3jti = /3i: if Vj(/3,-) = T, and Pjti = otherwise. If there is a model 21 for
T in which ipj is satisfiable, then Vj represents a compatible propositional assignment
for Pi,.. .,/3n. Given that

(a) ipj is satisfiable in T iff its negation, which has the form -ipxj V • • • V->/3n j. is invalid
in T, and

(b) according to the hypothesis, the class of disjunction of literals is decidable for T,
it is always possible to effectively determine whether Vj represents a compatible pro-
positional assignment for the atomic components of <p. After the process has been
repeated for every Vj, 1 < j < 2n, let / be the function

/(V,-
1 if T \p -iipj (i.e. ipj is T-satisfiable)
0 otherwise

If /(Vj) = 0, since ipj is jT-unsatisfiable, there is no variable assignment a in any model
21 for T such that, for all i. 1 < i < n,

21 |= pf[a\ = Vj{pi)

Let $ = {cTj(p | (jj = & /(Vj) = 1}. <p is valid in T iff every
possible derived propositional assignment for the atomic components of (p generates a

logically valid proposition. This is the case iff the set of propositions $ is proposition-
ally valid. Since the validity of $ can be effectively determined and (p is quantifier-free,
the set of quantifier-free formulae of C is decidable for T in Fmlc. I

As a result, for any theory that satisfies the conditions set by the theorem, the validity
of a quantifier-free formula can be established by a decision procedure for the pro-

positional calculus, such as the method of partial assignments or truth tables. If <p is
quantifier-free, its truth value for a particular variable assignment a in a model for
T can be propositionally determined from the truth value of its atomic constituents.
Given a propositional assignment to the atoms of a quantifier-free formula <p, it suf¬
fices to consider whether such assignment is compatible in T, i.e. if there is a variable
assignment a in a model for T in which the atoms assume the truth values set by the
propositional assignment. Once all compatible propositional assignments have been
identified, the validity of <p is reduced to a propositional problem14.

C.4.3 Sublanguages

Given that the set of formulae of any first-order language can be generated by a context-
free grammar, sublanguages represent natural candidates in the search for decidable
14 This result is used in GETFOL to provide a decision procedure for the class of quantifier-

free formulae of the predicate calculus with equality but without function symbols; see

[Armando fe Giunchiglia 93], p. 483-4.
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subclasses. If T is a theory in a language C that is an expansion of C is a decidable
sublanguage for T iff T is decidable in Fmlc. Given that the intersection of a theory
with a sublanguage is a theory, if T admits a decidable sublanguage, then it has a
decidable subtheory15.

Theorem C.4.3 Let T be a consistent decidable theory in C, C, an expansion of L.
and T'. a conservative extension of T in C. Then Fmlc represents a decidable class
of type II for T' in Fmlc ■ Moreover, if fT is a decision procedure for T w.r.t. Fmlc,
the function hjj,

Mr<£n) =

is a decision procedure for T' w.r.t. Fmlc■

0 if <j> £ (Fmlc — Fmlc)
1 + fT(r<P) otherwise

PROOF. hu is clearly recursive, since (Fmlc — Fmlc) is an effectively computable
set16. Since fT is a decision procedure for T w.r.t. Fmlc, hn can be represented as

hu{r<P) =
0 if <f> ^ Fmlc
1 if f G Fmlc ~ T
2 if <f> G T

As T' is a conservative extension of T. then

T 0 Fmlc = T
Fmlc — T' = Fmlc

Hence

\0h„{r<f>n) = j 1
From definition C.2.1, it follows that T' is
extension of a consistent theory, it must
both theorems and non-theorems of T', a

if <j> $ Fmlc
if 4> € Fmlc — T'
if <t> € T' fl Fmlc

decidable in Fmlc. Since T" is a conservative
also be consistent. Fmlc therefore contains
nd has type II. I

Once again Venn diagrams provide a suitable representation for such classes, as illus¬
trated in figure C.3. Examples of decidable sublanguages are examined in chapter 9.

15 Hence, the study of possible applications of decision procedures in undecidable theories starts with
the search for decidable extensions, as described in section C.l, and can then be followed by the
search for decidable subtheories.

16 If g is a decision procedure for (Funic' ~ Fmlc) in Fmlchu cal1 be represented as

h„F^) = (i-5(r0^)(i + /T-m)

which is recursive.
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Figure C.3: Conservative Extensions of Decidable Theories
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C.5 Other Decidable Subclasses

The previous section targeted a particular group of classes which have as common
structural feature the fact that their construction is based on context-free grammars.
Among the classes that do not share this property are those derived from decidable
theories. Given an undecidable theory T in C, any decidable theory T' in the same

language is a potential source of decidable subclasses for T, provided that the logical
links between both theories can be unveiled. There are two elementary cases in this
respect. If T' is a subtheory of T. then T" is a decidable subclass of type I for T in
Fmlc, since T' C T. On the other hand, whenever T fl T' = 0, T" provides a subclass
of type III for T.

Apart from decidable theories, decidable classes for other theories in C may also be
relevant in the identification of decidable subclasses for T. This potential has already
been explored in the case of Tf, and can be extended to any other theory in the same
language, whenever certain restrictions are met.

C.5.1 Intersection of Theories

When two theories have a non-empty intersection, but none of them is entirely con¬
tained in the other, model theoretic results can assist in assigning a role to each of
them with respect to the identification of a decidable domain.

Theorem C.5.1 Let Ti and To be theories in C which respectively admit 211 and 2l2
as models. If 212 is a substructure o/2li, then

i. IfT, is negation com.pl.ete, every existential sentence that is a T2-theorem is also
a Ti-theorem.

ii. IJT2 is negation complete, every universal formula that is a T\-theorem is also a
T2-theorern.

Proof.

i. Let r = (3t>i)... (3vn)f>(v\,... ,vn) be an existential sentence. If r is a theorem
in To, it is valid in 212. Hence there is an assignment a in 212 such that 212 1=
Since 212 is a substructure of 2ll5 a is also an assignment in Ax, so 21) |= <f>[a\,
i.e. 211 |= (Bui).. .{3vn)f>. Since T\ is negation complete, r has to be amongst its
theorems (otherwise -ir 6 and 21] \= ~>t).

ii. Let if = (vj).. . (vn)(j)(v\,..., vn,..., vn+m) be a universal formula. Assum¬
ing that it is a theorem of 7\, then, for every assignment a to the variables
vu ..., vn+rn in 2li. 21i f= <j)[a\. Since 2L> is a substructure of 2t1; any assignment
a to vx,.. .,v„+m in 2i2 is also an assignment in 2h; therefore, for every assign¬
ment a in 2U, 2l2 \= </>[o], i.e. 2l2 |= (fj). .. (vn)(f(vu ..., vn,..., vn+m). Since T2
is negation complete, if £ To. I
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L J

c

Tj decidable consistent theory
X2 negation complete consistent theory
T class of universal formulae

211 model for
212 model for T2

(where 2l2 is a substructure of 2li)
S/ decidable subclass of type I for T2

Figure C.4: Theories & Substructures

This result can be applied in particular to T3 and DAG, the theory of densely ordered
Abelian groups1'. Figure C.4 illustrates an application of the above theorem in the
delimitation of a decidable subclass.

C.5.2 Extension of Theories

Theories inherit some of the decidable subclasses for their subtheories. If T and T" are
theories such that X" is an extension of T, then

17 It suffices to consider that 3 = (2,0,1,+, <), where Z is the set of integers, is a substructure of
£J = {(Q),0, 1,+, <}, which in turn is a model for DAG. Although both theories are decidable, this
result allows the use of decision procedures for DAG. which are less complex than those currently
known for T3, to recognise theorems of T3 in a subclass of the subjacent language. See chapter 3.

419



* a decidable subclass E/ of type I for T is also a decidable subclass of type I for
T", since E;Cf C T'.

* a decidable subclass of type III for T' is also a decidable subclass of type III for
T, since £hi fl T' = 0 and T C T'.

Other types of subclasses, however, may not be preserved under extension, unless it is
conservative.

Theorem C.5.2 Let T be a theory in C, and let T' be a conservative extension ofT to
£. Then every decidable subclass E of type j for T in C is also a decidable subclass of
type j for T' in £. Moreover, if /v is a decision procedure for T w.r.t. £, the function

0 if 4> G (Fmlc — Fmlc
/s otherwiseMr<^)

is a decision procedure for T' w. r.t. E.

Proof.

i. j = I

Trivial, since E C T C T'. Let /s be a decision procedure for T w.r.t. E.

h(r<F) --

Then above is equivalent to

Mrd>n) =

0 if <f> ^ E (i.e. </> G (Fmlc — S))
2 ifd>GEnT=E

0 if (f> G (Fmlc — E)
2 if d> G S H T' = E

considering that (FmlC' — Fmlc) U (Fmlc ~ S) = (Fmlc — E). Hence /is is a
decision procedure for T' w.r.t. E in Fmlc-

ii. j = III

Trivial, since T is a conservative extension of T: in this case, S fl T = 0 iff
Efl T" = 0, hence S is a decidable subclass of type III for T' in £. Let /s be a
decision procedure for T w.r.t. E in Fmlc-

0 if 4> £ S (i.e. 4> G (Fmlc — E))
1 ifd>GE-T=E/s(r0n)=

Then h% is equivalent to

hs(r(j£) =

Hence /iE is a decision procedure for T' w.r.t. E in Fmlc>.

0 if <}> G (Fmlc — E)
1 if (j) G E - V = E
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iii. j = II

E can be decomposed into two disjoint subsets, Ej and Ej//, which respect¬
ively represent decidable subclasses of types I and III for T in Fmlc. According
to the first two cases of this proof, both E/ and Eui are decidable subclasses
respectively of types 1 and III for T' in Fmlc<■ Hence S = S/US//; is a decidable
class of type II for T' in Fmlc.
Moreover, let h^T and h^ni be decision procedures for T' w.r.t. the disjoint
subclasses.

Considering that E / U E/// = E and E / fl E//j = 0,
Itv = (/iS/ j rE;n) U T rEi/~l) is a function such that

Corollary C.5.1 Let T be a theory in C, and let T' be a definitional extension of T
to C. Then every decidable subclass E of type j for T in C is also a decidable subclass
of type j for T' in C.

PROOF. According to lemma B.2.3 v, every definitional extension of a theory is also

The main properties of the subclasses examined in this appendix are schematically
described in table C.l.

C.6 Conclusions

Any essentially undecidable theory admits decidable subclasses of formulae. They may
either be common to all the theories of a particular language, or may result from special
properties of the theory. The identification of decidable subclasses relies on the study
of other theories formulated in related languages, or on the inspection of effectively
computable classes, particularly those generated by context-free grammars. The role
of decision procedures, however, does not have to be restricted to such classes, since
they can be expanded.

Hence /is is a decision procedure for T' w.r.t. E in C.

conservative.
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Subclass

Description
Subclass

Type
Theory
Features

Logical Prefix Classes I —

Propositionally valid formulae I —

Non-logical Axiom set I recursively axiomatisable

Decidable subtheory I —

Subset of universal formulae 1 negation complete
extension as model for decidable theory

Decidable sublanguage II conservative extension of subtheory

Universal formulae II finitely axiomatisable
function-symbol-free language

Variable-free atoms II —

Table C.l: Decidable Subclasses for First-order Theories
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Appendix D

Additional Concepts

Several of the basic concepts involved in this study come from the area of equality
reasoning, introduced in section D.l. Rewrite rules, which are obtained from oriented
equations or equivalences, and, under certain circumstances, also from implications,
are defined in sections D.'2 and D.3. The application of rewrite rules under a set of
assumptions is described in section D.4, arid section D.5 is dedicated to disagreement
sets.

Control, a fundamental notion in computational processes in general, and in theorem
proving in particular, specially in the presence of large proof and rewrite trees, is
discussed in section D.6. Sorts correspond to subsets of the universe of a structure
for a (first-order) language, which allow the definition of operations and relations with
restricted domains. They are frequently required in the representation of statements
about computer programs that deal with objects of distinct nature, such as natural
numbers, arrays, lists, finite sets, etc. Sequents provide an alternative representation
(w.r.t. the standard syntax described in appendix B) for formulae in general, and
conditional statements in particular, which is convenient for conditional rewriting.
The last two concepts are examined in sections D.7 and D.8.

D.l Equality Reasoning

Resolution provides the basis for the construction of a complete inference system for
the pure predicate calculus1. Binary resolution is the rule

p(tu....tn) V Cx ^ p(su. . .,sn)V C2
aC\ V aC2

where p(ti,...,tn) V C\ and p(st,..., ) V C2 are clauses that do not share
variables, and a is the mgu (most general unifier) for the complementary pair
(p(ti,. .., t„), -ip(sj,..., sn)), i.e. at, = asi: for all i, 1 < i < n.

1 More precisely, the resolution rule of inference suffices for the identification of unsatisfiable formulae
in the class of clausal form sentences (where a clause is the universal closure of a disjunction of
literals). See [Gallier 87], p. 404.
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If equality is added to the underlying language, this rule alone does not guarantee
deductive completeness to the system. It can be nonetheless strengthened by the
replacement of syntactic identify with semantic equality in the second condition above:
given a set of clauses fI to which p(ft,. Vfy and ~<p(si,..., sn) V C2 belong, if

ft |= (ati = as{)

for all i, l < i < n. where a is a. partial unifier for p(ft,..., tn) and p(si,..., sn), then the
above rule remains correct. Semantic equalities, however, are more complex to verify
than their syntactic counterparts, due to their undecidability in the general case.

A possible way of restoring completeness to resolution in the presence of equality is
the explicit introduction of equality axioms in every set of clauses. As this approach
faces search problems, alternative solutions have to resort to more powerful inference
rules which implicitly represent properties of equality. One of such rules,

<t>m v (ft = t2) (*)
<rt2/*i v ofy

involves a quantifier-free formula, <£p]], a conditional equation, if V (ft = ft), that
does not share variables with 0[fj, and a substitution a such that <rft = t (i.e. ft is
matchable against t). Since transformation is limited to a subexpression of <j>, it follows
that 4>\t\ = 4)\at2/t\. A second rule,

<t>m j> v (ft = o) (**)
cfy[t2/<] V C0

where crft = crt (i.e. ft and t are unifiable), is such that variables may be instantiated
outwith subexpression t as well. Thus, the resulting formula, acj)\t'2/t\, is not necessarily
equivalent to Inference rules of type (*) are used for demodulation or term rewrit¬
ing, as already examined in section D.2. Rules of type (**) include paramodulation,
usually represented as

t\t\ Vfy u = u'VC2
alf /t\ V aC\ V aC2

where t is a literal, C\ and C2 are clauses and a is the mgu of t and u. In conjunction
with resolution, paramodulation provides the basis for a complete inference system for
the class of clausal form sentences of first-order languages with equality. In this sense,

paramodulation is deductively stronger than demodulation".

Theorem D.l.l [Peterson 83] Let ft be a (finite) set of clauses of a language C (with
equality), ft is unsatisfiahle iff the empty clause, □, is derivable from

ft U {v = n}
2 Demodulation provides a complete inference system for quantifier-free equational theories, as dis¬
cussed in [Gallier 87], p. 285-7.
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Difference reduction procedures have been devised to control the application of para-
modulation and other rules involving equality. Given a conjecture of the form

[^1 Dh=«i]A'--A [V>„ D tn = un] D [[f = «]]
whose negation can be expressed in clausal form as

V fj = ui) A • • • A (-.y>„ V tn = un) A(t^u)
where ipi is a conjunction of literals, any of such procedures gradually instantiates
variables in t and u and applies conditional equations taken from the hypothesis set as
rewrite rules, until two syntactically identical terms are obtained. As a result, at least
some of the intermediate pairs of terms (t',u') generated in the process must exhibit
a lower amount of disagreement according to some measure, which justifies the name
chosen for these mechanisms.

According to the dual form of the Herbrand theorem, a clausal sentence is unsatisfiable
if and only if there exists a finite set of variable-free instances of its clauses whose
conjunction is unsatisfiable. Since difference reduction procedures explore Herbrand
theorem, they not only provide a refutation for the sentence above, in the event it is
unsatisfiable, but also exhibit a substitution for its variables3.

Control of the elimination of differences is provided both globally and locally. At the
global level, a path in the search tree may be selected based on a description that in¬
cludes the initial state, (t = u, { }), intermediate stages, and the final state, (f = u', cr),
where a is the final substitution. At the local level, guidance has to be provided along
three dimensions, for the selection of (i) partial unifiers, (ii) disagreement sets and (iii)
elimination equalities. Partial unifiers reduce the differences between expressions by
the removal of solvable disagreements. Since there may exist several partial unifiers
for a single pair of non-unifiable expressions, it is necessary to choose amongst the
available options. Choices cannot be limited to mgpus (most general partial unifiers),
since they do not preserve completeness.

Once a unifier is chosen, there may be several possible disagreement sets between
the resulting partially unified expressions. Each set represents a list of decomposed
subproblems whose solution amounts to a solution for the original problem as well.
Finally, conditional equations for the elimination of disagreements also have to be
chosen. Each choice may introduce new difference reduction subproblems (in the event
neither of the sides of the equality can be unified with the chosen subterm), hence the
whole process has to be recursively applied to them.

D.2 Rewrite Rules

A first-order language is equational iff its set of predicate symbols is empty. A theory
is equational whenever it is formulated in an equational language. As a result, atomic
3 Since the Herbrand theorem applies to the pure predicate calculus, the presence of equality in
the sub jacent language requires the introduction of all equality axioms in the assumption set of a
conjecture.

425



formulae in equational theories are all equations. A particular class of problems in an

equational context has the form

{f 1 — U\ , . . ., tn — Un } |= + l — Un_|_ j

where f,-, ut-, l < i < n + l, are terms of an equational language. The equation tn+j = un+1
is a logical consequence of the set of equational axioms {t\ = ut,... ,tn = un} iff it can
be obtained from the axioms by the use of two inference rules, (equation) instantiation
and replacement of subterms by equal terms4. Alternative formalisms include those
based on the selection and application of rewrite rules, which are oriented equations
used for subexpression replacement. The equality fn+1 = un+\ is established whenever
the application of rewrite rules derived from equational axioms, or other equations
that are logical consequences of axioms, to each of tn+x and un+1 leads to a pair of
syntactically identical terms. A collection of such rules forms a term rewriting set.

This formalism can be generalised to contexts other than equational theories and lan¬
guages. Rules may be also derived from equivalences, thus opening the possibility of
both formula and term transformation. Additional applications of rewrite rules include
simplification (where redundant semantic information is eliminated, and expressions
are replaced by proper subexpressions), symbolic evaluation, and the reduction of ex¬
pressions to canonical form3.

Definition D.2.1 (Rewrite rules)

Let T be a theory in C.

i. A (T-valid) rewrite rule is an expression of the form

<5i => t>2

where 8\ = 82 is T-valid (if b\ and 82 are terms) or 61 = 82 is T-valid (if 81 and
82 are formulae). A rewrite set is any set of rewrite rules.

ii. Given a rewrite rule R. (iq => 82 and an expression e, e' is a rewritten expression
generated from e by the application of R, i.e.

iff e has a subexpression e and there is a substitution o such that (a) 08, = e and
(b)

Hi. A rewriting sequence for an expression e and a rewrite set 1Z is a sequence

4 See [Bachmair 91], p. 2.
5 See [Bundy 83], p. 150-3.
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(e0,

,» €
o rewritten version of e under IZ,

$ R
such that e = e0 and ri =£ ri+iri € N. where Ri G IZ. An expression e' represents

n /
e =>• e

i/f f/iere is a finite rewriting sequence for e and 1Z whose last element is e'. In
particular, e =§• e (empty rewriting sequence).

iv. Given a. finite rewriting sequence

R.i Rg Rn
e => £i =>...=> en

en is a normal form for e iff no rule of IZ is applicable to en.

v. A (T-valid) conditional rewrite rule is an expression of the form

— <SX => 82

where either d> D St = S2 (if Si and S2 are terms) or fi D (<5i = <$2) (if £ 1 and S2
are formulae) is T-valid.

vi. Given a formula tfi D if2; if1 D if'2 is its rewritten version generated by the
application of a conditional rewrite rule —» Si =>- S2, provided that if2 bas a

subexpression e and there is a substitution a such that

(a) crSi = €,

(b) ip2 is identical to and
(c) T |= fii D ad>.

Example D.2.1

i. Given the formula

x + 0 < 1 X y°

it can be simplified to x < y° by the application of rules

v + 0 => v

1X1) => V

whereas the subterm y° can be evaluated to 1 by the application of
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ii. The equation

(x2 + I + 3)xi = 0

is transformed into the canonical form equation x3 -\-x2 +3x = 0 (where x3 is an
abbreviation for (x X x) X x) by two applications of

(v1+v2)xv3 =>■ (®i X ®3) + (®2 X »3)

Hi. The arithmetical formula

D xy x w = 1 x w

can be first simplified, to y X iv 0 J xy = 1 by a conditional rule,

V\ 0 — v2 X Vi — v3 X Vi v2 = v3

or rather its instance,

w 0 —* xy X w = 1 X w => xy = 1

given that (y x w 0) D (?o / 0) is arithmetically valid. Then it can be put into
canonical form (which in this case is represented as a conditional set of equations
in polynomial form), y X w 0D(i= 1Vi/ = 0), after the application of

vvfi = 1 => Vi = 1 V v2 = 0

0

The role of rewrite rules in the extension of classes of formulae is discussed in section 2.3.

D.3 Implicational Rewrite Systems

The definition of rewrite systems may be extended once rules are distinguished between
those derived from equivalences and those derived from implications.

Definition D.3.1 (Implicational Rewrite Systems - IRS)

Let T be a theory in C and, let R. tpi => ip2 be a reivrite rule.

i. R is an equivalence rule (in T) iff

T (= , = V2
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ii. R is an implication rule (in T) iff

T |= (V>i D if?) and T ^ (if2 D Vi)

in. A rewrite system 7Z for T is implicational if and only if it contains implication
rewrite rules (in T). 7Z is strictly implicational iff all its rules are derived from
(T-valid) strict implications.

No strictly implicational system therefore can be exhibited for an inconsistent theory.
Neither has any of such systems a rule of the form

tl>=> .L,

since, for every if G Fmlc, if T |= if D -L, then T |= if = J_.

Lemma D.3.1 Every consistent theory T in C admits a strictly implicational rewrite
system.

PROOF. The set of rules

n = {Vi =* T,...,v>n =► t}

where if, G Fmlc and T 1 < i < n (e.g. tfrA-ufr, since T is consistent), constitutes
a rewrite system for T. considering that, for any formula d>, \= (f> D T, and that any
logical theorem of £ is also a T-theorem. As none of the rules is an equivalence rule,
1Z is a strictly implicational rewrite system for T. I

The use of implication rules has to be restricted, in principle, to the positive occurrences
of subformulae of a conjecture.

Definition D.3.2 (Subformula Polarity)

Let <j> and if he formulae of a language C.

i. if has a positive occurrence in (f iff

(a) 6 has any of the forms

if, if V if', if1 Vif, if A if', if A if', if' D if, (v)if, (3v)if

for some if' G Fmlc ■ or

(h) if has a positive (negative) occurrence in (ft, which in turn has a positive
(negative) occurrence in <f, for some proper subformula (ft of (f.

429



ii. xp has a negative occurrence in (p iff

(a) <p has any of the forms

-1-0, xp D xp', xp = xp', xp' = xp

for some xp' G Fmlc, or
(h) xp has a positive (negative) occurrence in ft and ft has a negative (positive)

occurrence in d>, for some proper subformula ft of <p.

Lemma D.3.2 Let (p\xp\ he a formula of C.

i. If xp' is obtained from xp by the application of a T-valid equivalence rule, then

t h= p\xp\ = cpfm
ii. If all the occurrences of xp in (p are positive, and xp' is obtained from xp by the

application of a T-valid implication rule, then

T b S

PROOF. The proof for a related result can be found in [Loveland 78], p. 40-1. I

As a consequence of lemma D.3.2, IRSs can be viewed as refutational procedures,
representing therefore mechanisms for the recognition of unsatisfiable sentences. Con¬
cerning subexpression replacement, whenever a subformula xp is rewritten to ±, since
it necessarily follows that T \= xp = L, there is no restriction about the polarity of its
occurrences. Implication rules may then take part of a rewriting sequence that starts
with (a negative occurrence of) xp, as in the example below.

Example D.3.1 Let (p be the formula

xp

and let

Ri v < min(/) v < max(/)
R2 Vi < v2 A v2 < v3 => vx < v3

R3 v < v => _L

be a set of implication and equivalence rewrite rules. The subexpression xp can then be
rewritten to T by the successive application of R\, R2 and R3. As a result, in spite of
the fact that xp has a negative occurrence in (p, the conjecture can be rexvritten to

JL D (min)/]) + p < k)

xvhich is reducible to T. n
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D.4 A-Matching &: Decidable Sublanguages

Certain undecidable theories, Peano arithmetic among them, admit decidable classes
that delimit sublanguages of the underlying language C. As a result, some of the non-

logical symbols of £ are deviant with respect to these subclasses. Any set 1Z of remove
rules for deviant symbols defines an extension of a. decidable sublanguage £', by the
application of elements of 1Z to formulae of C. The extended subclass, E', is recursively
defined as

(i) If 4> € Fmlc, then 6 G E'.
(ii) If tl"62/4 £ S' and

e = ob 1

where (R. 61 £) G K and a is a substitution (i.e. R matches a subexpression of
<f>), then (b € E'.

(iii) Only the formulae that satisfy one of the above conditions belong to E'.
It consists, therefore, of the formulae of C plus those of (Fmlc — Fmlc) from which
deviant symbols are completely removable bv the application of 7Z. Whenever 1Z is
noetherian, E' is recursive6.

E' is further enlarged when the more general notion of semantic or T-matching, which
operates with equivalence or equality (in a theory T) instead of syntactic identity, is
adopted. A rule is semanticallv applicable to <t> if and only if the Ihs expression of the
rule has an instance that is equivalent (or equal) to a subexpression of (p.

Definition D.4.1 (A-matching)

Let A be a set of formulae of a language C (with equality), and let e and be ex¬
pressions of C thai do not share variables.

i. b strictly A-matches e iff there is a substitution u such that A (= (e ?=± ab).

ii. b A-matches e iff there is a substitution a and a subexpression e! of e, such that
A |= (P = ab).

iii. A rewrite rule => b2 (strictly) A-matches e iff b^ (strictly) A-matches e.

When A represents a theory in C, theory-matching is obtained as a special case of
A-matching.

Example D.4.1 Let b be the expression (x + 0), and let €\,e2 and e3 respectively be
the expressions

(yxz) + 0
(y2 x 0 ) + y x z4

y2 + 2y < 1

6 See section 2.2.1.
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i. 6 matches e, with substitution al = {y x z/x}.
4

ii. 6 strictly PA-matches e2 with substitution e.g. o2 = {z x y/x}, considering that

{z4 X y) + 0 = 0 + (yxz4) = (y2 X 0) + y X z4

in PA.

Hi. S is PA-matchable against numerous subexpressions of e3, e.g.
2

(a) y2, with substitution cr3 = {y /x},
(b) y2 + 2y, with substitution o'.3 = {2y + y /x} and
(c) 1, with substitution cr'f = { /x}. g

Definition D.4.1 is relevant for the construction of semantic extensions of subclasses.
Given an undecidable theory T in C, a decidable sublanguage £ for T and a set TZ
of remove rules for deviant symbols, the semantically extended class IT is defined as
follows.

(i) If 4> G Fmlc, then ^ G II.
(ii) If 4^2/eJ S n and

T |= e — oSi (*)

where (R. Sl => 62) G PL. o is a substitution (i.e. R T-matches a subexpression of
(j>) and = denotes either the equality or the biconditional symbol, then 0 G II.

(iii) Only the formulae that satisfy one of the above conditions belong to II.
Since (*) is generally undecidable, II is not always recursive'.

The task of proving equivalences or equalities in T can be in principle replaced with
the less ambitious task of proving, from a finite set of T-valid hypotheses, A, that a

subexpression of a conjecture is equivalent or equal to an instance of the lhs expression
of a remove rule. However, since A-matching a rule against an expression can be
undecidable even if A is finite, the new subclass, n', is not recursive in general either.
A feasible alternative is the construction of recursive subclasses of n' which include
£' as proper subsets, with the help of mechanisms that define weaker versions of A-
matching and ensure the recursiveness of the extended class, £. With respect to the
continuous enlargement of E, there are two possible strategies,

(a) the introduction of new (independent) remove rules in 1Z, which enlarges the core

' Semantic unification is discussed, for instance, in [Dershowitz &: Jouannaud 90], p. 282-4. Concern¬
ing (*), when both e and are formulae and (*) is decidable, two derived problems,

{e}uT (= tr 61
H.}UT |= e

must be decidable as well. In particular, when is a theorem of T, then

T be

As f can be virt ually any formula of FtnU■ — Fmlcj, T would have to be decidable, in contradiction
with the original hypothesis.
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class X', and
(b) the inclusion of new hypotheses in A, which does not have any effect on X' but only

on X—X' (since X' results from the initial decidable class by the syntactic application
of remove rules, a process in which A has no role).

The relationship between all the classes described above is represented in figure D.l.

A-matching subsumes a restricted version of disagreement elimination. Let f be a

conjecture that contains a deviant symbol S, R be a remove rule for S which is not ap¬
plicable to ef>, and e be a subexpression of eb that contains S and has the same syntactic
type as the lhs expression of R. If the application of additional rules for disagreement
elimination is confined to e, a T-equivalent expression, e', is then generated, given that
rewrite rules in the current context are all derived from equivalences valid in a theory T
as well. In the event that R can be (syntactically) matched against e', then, according
to definition D.4.1. R is A-matchable against f, where A is the set of additional rules.

When confined to the scope of a subexpression of the conjecture, disagreement elimina¬
tion is deductively weaker than A-matching, for disagreement elimination is limited to
the application of oriented equations (i.e. rewrite rules), whereas A-matching requires
a complete inference apparatus. On the other hand, unrestricted disagreement elimin¬
ation is not reducible to a special case of A-matchability, given that additional rules
can be applied to subexpressions other the one against which a remove rule is eventu¬
ally matched. Such cases require a stronger notion of matching, which is examined in
section 8.2.3.

Since the enlargement of decidable classes has to preserve their recursiveness, the
extension of a decidable sublanguage has to target classes such as X, as described in
figure D.l. A possible strategy for their construction can be based on procedures that
generate extensions such as classes II or IT in the first place, upon which restrictions
may then be imposed until recursive extensions are obtained. Such procedures include
RUE-resolution. ECOP and other difference reduction mechanisms.

D.5 Disagreement Sets

Theorem provers for theories that contain equality tend to be rather complex in their
formulation, involving the terminology inherited from resolution and a new set of
proper concepts, such as partial unifiers and disagreement sets.

Definition D.5.1 (Partial unifiers)

Let €] and e2 be syntactically distinct expressions that do not share variables.

i. Ci and e2 disagree at position p iff

(a) e,; is an individual variable, individual constant or propositional constant,
for some i e {1,2}, and p = [ ], or

(b) Cj and e2 have respectively the forms .... 8\in ) and S2{h2A,...,
S i fL S2 and p =[]. or
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n

IT

£'

Fmlc

Fmlc

C Initial decidable sublanguage
E' Recursive extension of Fmlc

Syntactic application of remove rules
(syntactic matching)

E Recursive extension of E'
Controlled semantic application (with
respect to A) of remove rules
(controlled A-matching)

II' Non-recursive extension of E

Semantic application (with respect to A)
of remove rules

(A-matching)
II Non-recursive extension of If

Semantic application of remove rules
(T-matching)

Figure D.l: Extension of Decidable Sublanguages
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(c) ex ancle-, have respectively the forms S(Sx,...,Sn) and S(6'1,.. ., 6'n), and
8[ disagree at position p', and p = [i\p'\.

Whenever ex and e2 disagree at position p. (ex,e2) Is a disagreement pair and
(e'l,e'2)p represents a disagreeing pair for ex and e2) where e\ and e'2 occurs re¬
spectively in ex and e2 at position p.

ii. A disagreeing pair (e\,e'2)p hetiveen ex and e2 is solvable iff at least one of the
elements of the pair is a variable, and is fatal othenvise.

Hi. A partial unifier (pu) for ex and e2 is a substitution cr that eliminates all solvable
disagreements between ex and e2.

iv. A most general partial unifier (mgpu) for ex and e2 is a substitution cr such that

(a) a is a pu for ex and e2. and
(b) given a pu a' for ex and e2, if there is a substitution cr" such that a — a"a',

then a" is a variable-pure substitution.

Definition D.5.2 (Disagreement Sets)

i. A disagreement set V for a pair of terms (t,s) is any set of pairs of subterms
that satisfies one of the following conditions.

(a) V = { }. if t = s.

(b) V — {(t.s)}, iftfis (origin disagreement set).
(c) Tl snif t f{f-x .. • 5 ln+p )> ^ — f(s\ j • •. i sn+p); and

$

tj Sj. for l < j < n only (topmost disagreement set).
(d) If V is a disagreement set for (t,s) such that (t',s') £ V, and W is a

disagreement set for (t'.s'), then V*, defined as

(V-{(t',s')})UV'

is also a disagreement set for (t.s).

ii. A disagreement set for complementary literals (p(tx,..., tn), ->p(sx,..., sn)) is
defined as

n

V = U T>i
«=]

where Vx is a disagreement set for the pair (ti,Si).

A pair of expressions may admit more than one mgpu when a variable has multiple
occurrences in at least one of the expressions8.
H
The left mgpu for a pair of expressions can be obtained by the same algorithm presented e.g. in
[Gallier 87] for the computation of the most general unifier, with the proviso that it does not fail when
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Example D.5.1

i. Given the pair

{g(x,x,y,y), g(a, h(z), h(w),b))

where a.b are individual constants, a1 = {a/x, ^w'/y} and <t2 = are
both mgpu for it, while a3 = {a/x,h^/y,b/w} and cr4 = {^(a)/x, b/y, a/z} are pu
but not mgpu. since a3 = i and o4 = {a/z}<72.

ii. The disagreement sets for the pair (f(g(a,x,h(b,y))),f(g(b,h(b,c),h(b,c)))) are

= ' {(f{g{a,x,h{b.y))).f(g{b,h(b,c),h(b,c))))}
^2 = {{g(a,x,h(b,y)),g{b,h(b,c),h(b,c))}}
T>3 = {(a,b), (x,h(b,c)), {h(b,y),h(b,c)}}
V4 = {(a.b), (x,h(b.c)}, (y,c)}

Each one of these disagreement sets has three disagreeing pairs, one fatal, (a,b),
and two solvable, (x,h{b,c)) and (y,c). g

Each disagreement set represents a possible decomposition of an equality problem into
simpler subproblems, as justified by the following lemma.

Lemma D.5.1 If V = {(L, uf),..., (tu Uj)} is a disagreement set for a pair of terms
(t, u), then

|= {t u) D ((L ± Ui) V • • • V (tn ^ un))

PROOF. Immediate consequence of the substitution axioms for function symbols and
the definition of disagreement set. I

D.6 Search Control

Given a set of instructions (or actions), an algorithm is defined only when an order for
their application is determined. Such ordering represents the control of a computation.

a fatal disagreement is found. An algorit hm for the generation of all mgpus for a pair of expressions,
on the other hand, can be derived from any left mgpu algorithm, provided it is amended to include
the following condition.

Given a pair of terms (f(t i tn). f(s\. . . . , s„)), any rngpu for the pair
(/(Gd) G("))>/(spO) sp(n))>, where p : {1 n} — {l,...,n} is a permuta¬
tion function, is also a mgpu for (f(ti, ... ,tn), f(si, ..., sn)).
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Either a unique order for every possible input data is chosen, or else a context-sensitive
ordering that takes into account features of both input data, and intermediate results
has to be determined.

In mechanical theorem proving, instructions or actions include the application of infer¬
ence or rewrite rules, and the inclusion of additional hypotheses in a conjecture 0. The
process of recognition of theorems can be modelled as a succession of states that starts
with </>, where derived states are obtained from previous ones after a (legal) action takes
place. The universe of all possible states associated with 4> forms the search space for
4>. Control, under these circumstances, determines an order for the generation of this
space.

In the context of decidable subclass extension, a rewrite rule set or a list of potential
additional hypotheses implicitly define an extension for a decidable class. Given a
formula 4> of the underlying language, the process of determining whether <f> is a member
of the extended class or not defines a search space for 4>. It has then to be scrutinised
until a transformed formula that belongs to the original decidable (or reduction) class
is found.

Formula rewriting is usually associated with the exhaustive application of the rules
of a set 1Z. Control mechanisms, even though necessary, are immaterial from the
extensional point of view: provided that the rewriting tree is finite, and that every
path leads to an expression in normal form, any strategy (e.g. depth first, breadth first
or iterative deepening) generates the same results. In the presence of infinite or large
search spaces, however, exhaustive uniform search may be replaced by context-sensitive
mechanisms.

The formal analysis of subdomains may reveal properties which can lead to the creation
of specific search strategies for them. Also, properties that are known to be valid for
some elements of a domain can be generalised to others, even if no formal validation for
such generalisation is actually available, as part of the heuristic approach to problem
solving. Statistical criteria are then invoked to assess the merits of such generalisations.
Both formal analysis and heuristic approaches affect the search space; in the heuristic
case, the completeness of a representation may be lost, since guidelines can exclude
solutions9.

D.7 Many-sorted Theories

From the semantic viewpoint, many-sorted (first-order) languages differ from their
standard counterparts due to the presence of a collection of non-empty universes in
their structures. At the syntactic level, the alphabet of a. many-sorted language C*
reflects the fact that individual objects may belong to distinct universes. The set
of non-logical symbols of C includes a subset of sorts S = {fij,..., sn,...}, and an
infinite enumerable set of individual variables {uj',..., v®*,... } is assigned to each sort
Si. Individual constant symbols, if present, are also assigned a sort. The arity (or rank)
of a function or a predicate symbol, instead of a natural number, is a finite ordered
9 The use of heuristics in problem solving is considered, for instance, in [Luger & Stubblefield 89], p.
38.
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list of sorts. For predicate symbols, each element in its rank identifies the sort of the
corresponding argument. In the case of a function symbol /, the last element of the
rank identifies the sort of the object denoted by a /-dominated term10.
The definition of well-formed atomic formulae has to take into account the sort of the

arguments of a predicate symbol. If p has rank (sl5..., sn), the expression p(tu ..., f„)
is a well-formed atomic formula iff t{ is a term of sort 1 < i < n. For equations, tx = t2
is well-formed iff tx and t2 have the same sort. Composite formulae are defined in the
same way as in standard first-order languages. It is possible to translate formulae of a
many-sorted language C* into a standard language C as follows.

i. Excluding the symbols for sorts, all the non-logical symbols of C* are also non-

logical symbols of £, with the proviso that, if / is a function symbol of rank
($i,.. .,sn+1) in £*, it has rank n in £, and if p is a predicate symbol of rank
(si,..., 5n) in C*, p has rank n in L.

ii. For each sort s, in C*, a new unary predicate letter, pSi is introduced in C.

iii. Only the above symbols are non-logical symbols of C.

Given a formula </> in C*, its translated version in L is defined as follows:

(i) if (f> is quantifier-free, then = </,
(ii) if 0 = (W)V>, then </' = (Vu)(p5(i>) D ipi). and
(iii) if 4> = (3ns)'i/', then = (3n)(ps(n) A ipr).
Intuitively, the introduction of ps(v) for each quantifier (Qv) has the purpose of sim¬
ulating the existence of multiple universes in the structures for C: each universe in a

many-sorted structure corresponds to the subset of the universe for a structure of C
that satisfies the predicate ps.

A structure 21 for C can be built from a structure 21* of £*, provided that

(i) the universe of 21 is the union of the universes for 21*, and
(ii) the operations and relations in 21 are extensions of the corresponding operations

and relations in 21*.

21 then is a model for the set of ^-sentences

where / has rank (sx,..., sn+1) in C". The first condition reflects the fact that each
universe in 21* is non-empty, and the second one is related to the fact that composite
terms in C* denote objects of specific sorts. A many-sorted theory T* is a theory
defined over a many-sorted language £*, i.e. T* C Fmlc and / € T* iff T* <t>.
The translation mechanism for many-sorted languages also allows the reduction of
many-sorted into standard first-order theories.

10 See [Monk 76], p. 483-5.

(3v)pf:(v)1 1 < i < (n + 1)
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This translation mechanism is used in the Bover and Moore theorem prover for the
implicit representation of sorts, as discussed in section 3.1. The predicate symbols pSt
are the recognisers of the prover, thus reflecting their role in establishing a partition
for the universe of a structure.

D.8 Sequents

Sequents provide an alternative representation for conditional formulae in (first-order)
languages. Given two finite sets of formulae, 17 = {7i,i> • • • > 7i,n} and
r2 = {72,1, • • - ,72,m}; in a. language £, the sequent

r\ -> r2

is a metatheoretical abbreviation for

-"71,1 V ... V -17!_n V 72,1 V ... V 72,m

if I\ U T2 / 0, or for J_, otherwise. When both 17 and 17 are non-empty, the above
representation can be converted to conditional form,

(71,1 A • • • A 7!,n) D (72,1 V ■ • • V 72,m)

Sequents are notationally convenient, amongst other cases, when it is not relevant to

(i) explicitly include connectives in either the antecedent or the consequent of condi¬
tional formulae,

(ii) indicate an order for conjuncts and disjuncts, or
(iii) indicate the number of occurrences of each formula 71,,• or 72j in either 17 or f2

(since they are both sets, the number of occurrences of an element is immaterial).

Whenever 17 has a single element, it is replaced in the sequent by this element, hence

r-

where ip is a formula, is also a well-formed sequent.
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Appendix E

Additional Theorems and
Lemmas

The proofs for some of the auxiliary results required in previous chapters have been
gathered in this appendix. Given their elementary nature, none of them should be
regarded as original and, as a result , they are not to be taken as part of the contribution
of this dissertation.

E.l Chapter 2

Lemma E.l.l Let T be a recursively axiomatisable undecidable theory in C.

i. If E is a decidable subclass for T, then there is a subclass E' in Fmlc such that
S C S' and E' is also decidable for T.

ii. Fmlc is the least recursive upper bound (ivith respect to CJ for the process of
extension of any decidable subclass for T.

Proof.

i. Since T is recursively axiomatisable, there is a recursive function / that effect¬
ively enumerates its elements. Since T is undecidable, there is a formula <f> £ T
such that <f> £ E. Formulae of T — E can be effectively exhibited through the enu¬
meration of all the elements of T by / until n £ N is found such that f(n) = rfF
and <j> (f E. As E is a decidable class for T, there is an effective procedure for
determining whether is its element or not; as a result, the identification of such
formula consumes a finite amount of computation. If E' is defined as E U
then it is also a decidable subclass for T.

ii. Since T is undecidable, Fmlc is a recursive upper bound for the process of ex¬
tension of any decidable subclass E for T. Let S' be a proper recursive class of
Fmlc that contains E as proper subset.
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If T (f_ £', there is a formula cp £ T such that </> £ Fmlc - £'. Since T is
axiomatisable and £' is recursive, the same procedure described in the above
lemma can be used to effectively exhibit such formula. Hence £ U {</>} is also a
decidable subclass for T, and £ U {(p) <f_ £'.

If T C £', since £' is recursive, Fmlc ~ £' is a decidable subclass of type III
for T (since the complement of a recursive class is also recursive). Consequently
£ U (Fmlc — £') is a decidable subclass for T that is not a subset of £'.

Since no recursive subclass of Fmlc is an upper bound for the extension of £,
Fmlc is the least upper bound for this process. I

Lemma E.1.2 Let T be a recursively axiomatisable and undecidable theory T in C,
and let A be a subclass of Fmlc that is decidable for T in Fmlc. Then there exists a

formula <p € Fmlc ~ A such that, for every formula ip £ A,

T <P = ip

PROOF. Assume otherwise that, for every (p G Fmlc — A, there is a formula ip G A
such that T |= (p = ip. Considering that T is recursively axiomatisable, there is an
effective procedure for the exhibition of -ip. for each <p G Fmlc — A, consisting of the
recursive enumeration of all the elements of T, until a formula of the form <p = ip, with
ip G A. is found. As any T-theorem, according to such enumeration, has only finitely
many predecessors, and as the existence of such a theorem is guaranteed by hypothesis,
the search is finite.

Let h be a recursive function that represents the procedure for the recognition of
ip, and let / be a decision procedure for T w.r.t. A in Fmlc. Then h o f is a decision
procedure for T w.r.t. Fmlc• which contradicts the undecidability of T. I

Lemma E.1.3 Let

(i) T' be a theory in C,
(ii) T be a decidable subtheory of 7",
(iii) $ = {4>\,.. ., <pn} be a subset of T'. and
(iv) £ be the class of formulae defined as

£ = {<p G Fmlc | h(rcpn) = 1 V h{g4r^)) = 1}

where h is a decision procedure for T and is defined as

g*ir<P) = r(K=^i)D^
Then £ is an extended recursive class for T w.r.t. T'.
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PROOF. From the definition of E. it follows that E is recursive. Let / then be the
recursive function defined as

i. TCS, and

ii. / is a reduction function for E w.r.t. T", since

(a) /(E) C T, and
(b) If (his a formula of EOT', then /(r/n) € rTn C rT'T Also, if /(r/n) € rT'n,

then <f> G S C T. Hence <h G V iff /(r<hn) € rT'~l.

S then is an extended class for T w.r.t. T'. I

Lemma E.1.4 If is a formula of C, the following statements are equivalent,

i. 4> is satisfiable.

ii. Every formula entailed by <j> is satisfiable.

Hi. Each of the formulae entailed by cp that does not contain <t> as subexpression is
satisfiable.

Proof, (i — a — Hi — i)

i. If 4> is satisfiable, then cp cannot entail an unsatisfiable formula, otherwise
|= </ D i, i.e. |= -Kb, and therefore d> is unsatisfiable.

iii. Case (a) (f> does not entail any unsatisfiable formula. Then ^ (j> D 1, i.e. ^ -xj),
hence <p is satisfiable.
Case (b) d> entails an unsatisfiable formula if>. Then, according to the third
clause above, th must contain <f> as subexpression. Since fi\<f)\ is unsatisfiable and
|= <f> D /'I/I, given that |= thJ/J = JL, then (= 4> D 1, thus contradicting the
hypothesis. Therefore, (p does not entail any unsatisfiable formula, and, from
case (a), 4> is satisfiable. I

<hn if h{r<^) = 1
/(r/n)= $(r<hn) if h^eP) +%*On)) = 1

0 otherwise

Given that

ii. Trivial.
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E.2 Chapter 3

Lemma E.2.1 Let T be a theory in a language C. and let $ —*■ <f be a sequent of C,
where $ = Then T \= <j> iff

T|=4>^<f> & T \= ->4>i —► 4> & ... & T \= -i4>n —» (f>

PROOF.

Trivial, since, whenever T |= <j>, then T |= $ —► <f>, for any finite set of formulae $.

(-)
Given the standard syntactic representation for the above formulae,

n

f\4>i D 4>, ->(/) 1 D </), ..., -><t>n D 4>
1 = 1

it follows that

T |= |^/\4 D 4>) A (-10! D <f>) A • • • A (-><£„ D
which can be simplified to

W=i

T h V V ) A (^1 V <f>) A • • • A (<f>n V <£)
T \= <t>

f=l

Lemma E.2.2 Let T be a first-order theory. Then T (= T U {-><£} —> <f> if and only if
1- r - o.

PROOF. Let r = {7i, • • .,7„}. The sequent ru {-><£} —*■</> corresponds to the formula
(7j A • • • A 7„ A ->d>) D 0, from which the following list of logically equivalent formulae
can be derived.

—>7! V • • • V -17„ V 4> V d>
->7! v • • • V ~>7n V 4>
(71 A • • • A 7„) D

Since the last formula above corresponds to the sequent T —► <£, it follows that, for any
theory T, T \= T U {-.0} - © iff T \= T — d. I
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E.3 Chapter 4

Conjecture E.3.1 The class of terms Z. recursively defined as

i. Any atomic term, of C is an element of Z

ii. If t G Z and S G Symc. then S(t,...,t) G Z. provided that S(t,...,t) is a well-
formed term of T

iii. Only the terms defined above are elements of Z

cannot be generated by a context-free grammar.

EVIDENCE. Assume otherwise that there is a context-free grammar that generates
the above mentioned class. Then there must be a production of the form

exp := S(atmx,..., atmn)

where variables atml5..., atmn denote atomic terms of C. Given that, for each expres¬
sion of Z. if it is dominated by S. then each of its arguments is syntactically identical
to the other arguments, it is necessary to guarantee that (i) a single variable atm has
n occurrences in the scope of S in the above production (otherwise terms in the scope
of 5 would belong to distinct subclasses and. as a result, would be syntactically dis¬
tinct) and (ii) the set of expressions generated by the productions associated with atm
is unitary (otherwise atm would denote more than a particular term, and the above
production would generate 5-dominated terms with syntactically distinct arguments).
Hence, it would be necessary to have productions of the form

atm1 := tx

atm"1 := tm

where t\,..., tm,... are atomic terms of C. Since C has infinite many atomic terms,
there would be infinite many of such productions, thus contradicting definition C.2.2,
which states that the number of rules of a grammar is finite. Therefore Z cannot be
defined by a context-free grammar.

E.4 Chapter 6

Lemma E.4.1 Let R. S(vj,. .., vp) => b be a total remove rule and let m denote the
length of the longest symbolic chain of 6. Then, for any substitution a, the maximum
difference between the longest symbolic chain of aS(vi,..., vp) and crS is m — 2.
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PROOF. Let a = {ei/vi,... ,er/vp} be a substitution such that e, has the longest
symbolic chain, lor all i.1 <i<p. Let n denote the length of the longest symbolic
chain of e,-. If v{ has an innermost occurrence1 in b, then the longest symbolic chain
of ab has length m + n — 1 (since an occurrence of vt is deleted before e,- is introduced
in its place). Otherwise the longest symbolic chain has length at least equal to m

(since variable instantiation does not reduce chain length), and less than m + n— 1.
Considering that the length of the longest chain of S(ex,..., ep) is n + 1, the difference
between the lengths of the longest chains of 5(ei,..., ep) and ab has a maximum value
of (m + n — 1) — (n, + 1) = (m — 2). I

Lemma E.4.2 Let $ be a formula that has n occurrences of a symbol S, and let
R. S(vi,... ,vp) =>• b be a total remove rule such that the longest symbolic chain of b
has length m. Iff is obtained from cf> after the exhaustive application of R, then the dif¬
ference between the longest symbolic chains of f and 6 is not greater than n x (m — 2).

PROOF. (By induction on the number of occurrences of S)

Base case. If S has a single occurrence in <f>. let 5(ei,...,ep) be the 5-dominated
subexpression of cf>. According to lemma E.4.1, the maximum difference between
the longest symbolic chains of S(ei,..., ep) and b(ei/vi,..., tp/vp) is m - 2. Hence,
if S(ei,..., ep) has an innermost occurrence in <f>, the replacement of S(e\,..., ep) with
b(ei/vi,.. .,Cp/vp) causes an increase in the length of the longest chain of the rewritten
formula f of m — 2 as well. Otherwise, the variation in the length of the longest chain
of f w.r.t. <j) lies between 0 and m - 2.

Step case. Assume that, for any formula that has n occurrences of S, the max¬
imum expansion of the longest symbolic chain, after the exhaustive application of
R, is n x (m — 2). Let <b then be a formula where 5 has n + 1 occurrences, and let e
be a 5-domina.ted subexpression of d> where S occurs only once. If e has the form
S(eep). then b(fl/vi,..., fp/vp) has no occurrences of S.
As a result, the replacement of e with b(€l/vi,..., Cp/vp) in cf) reduces the number of
occurrences of S in the rewritten formula f to n. Also, the length of the longest chain
of f suffers a maximum expansion of m — 2 w.r.t. <f>. Since <f>' has n occurrences of 5,
according to the induction hypothesis, the exhaustive removal of 5 causes an maximum
expansion of the rewritten formula of n x (rn - 2) w.r.t. f, or (n + 1) x (m - 2) w.r.t.
<f>. I

Lemma E.4.3 If TZ is a normalised, set of total remove rules. TZ is locally confluent.

1 A symbol S lias ail innermost occurrence in an expression e iff S occurs in the lowest layer of
e. Clearly, the only symbols that can have innermost occurrences in a well-formed expression are
variables, individual constants and propositional constants. An expression e' has an innermost
occurrence in e iff the dominant symbol of c has an innermost occurrence in e.
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PROOF. Let 1Z be a set of normalised total remove rules that includes the rules

Rj Sj ( V\ ,..., vn f) i,..., vn i}
Rj Sj (U\,..., un .) =$> Sj {iL\,..., un ■}

where ,Ui, 1 < k <nt, 1 < / < n3, are variables. All critical pairs have the form

(Si |v1?.. ,,vk,si(Ul'---'Un^/vk+1,.. ,Si (vi,.. .,vk,6^Ul'---'Un^/vk+1,..
The first element of the pair can be rewritten to

{ '^1 * • • • t Vk j {^1 •, • • • ? ^rij } i • • ■ ? ^n, }

by the application of Rj to its subexpression Sj(v,i,..., un ). The second element of
the pair can be transformed into the same expression bv an application of 7?,-. Since
this result applies to all possible critical pairs for 1Z, 1Z is locally confluent. I

E.5 Chapter 9

Lemma E.5.1 Let

i. e0 be an expression whose longest S-chain has length m.

ii. 7Z be a set of remove rules for S.

Hi. the rewriting sequence

Ft I i?2 Fin
€q e j er

be such that no S-chain of length m, or fragment of such chain, occurs in the
scope of the subexpression to which Ri is applied, where R., 6 LZ, 1 < i < n.

iv. e\ be the expression in which the longest S-chain has maximum length m — 1
generated from eit 1 < i < n, as follows: if S(ux,... ,un) is the terminal expression
of a S-chain of length rn in ei; it is replaced with an expression e" which is free
from occurrences of S.

Then

I R? Ft* i=£>...=? en
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PROOF. (By strong induction on the length of the rewriting sequence)

R R RAssume by hypothesis that, for any rewriting sequence of length n, e0 o =#...=?£„,
it follows that

/ R\ / i?2 Rn / / \

e0 => £i =»...=? en (*)

Let

R, R2 fi„ fi„ + i
e (- j ... =? en =4" cn+i

be a rewriting sequence for e0 with length n. + 1, and let en be the subexpression of en
to which Rn+1 is applied. According to the lemma's hypothesis, i2„+i is not appbed
to a subexpression of en that contains either a 5-chain of length m, or a fragment of
such chain: en cannot therefore contain any terminal subexpression 5(u1,.. of a
5-chain of length m. Also. 1n cannot be a proper subexpression of S(ul5..., un), since
i?n+i is a remove rule for 5 and each u, is free from occurrences of 5. Therefore, en
must also occur in e'n, and, as a result, Rn+\ is applicable to e'n as well.

Let c denote the expression that results from e'n after the application of Rn+\. Consid¬
ering that

i. e'n is obtained from en by the replacement of terminal subexpressions of 5-chains
of length n with a 5-free subexpression.

ii. ebj is obtained from en by the application of Rn + j, which generates en+l, followed
by the operation of replacement of terminal subexpression of 5-chains of length
n.

iii. The application of Rn+1 and the above operation of terminal subexpression re¬
placement target distint non-overlapping subexpressions of e'n, being therefore
interchangeable.

it follows that e = e'n+l. Therefore

can be appended to sequence (*), thus generating

,/ A R-2
e => e, =>

fin / fin + 1 ,
■ =£ e' => €.n+ l

Lemma E.5.2 Let T be an undecidable and recursively axiomatisable theory in C. Let
II be the set of sentences of C which are undecidable in T. and E be a decidable subclass
for T. Then
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i. rIT is not recursive

a. snn ^ n

Hi. If T is negation complete w.r.t. E (i.e. if the sentences t and -it belong to E,
then t £ T or ->t £ T), and E' is a recursive extension of E such that

S' = {t' £ Stnc | (3r)(r £ S k T |= t' = r)}

then S' n II = 0

Proof.

i. Assume otherwise that rhP is recursive. Then there is a recursive function /n
such that

J 0 if r £ nn ^ 1 otherwise

Also, rStnc — II"1 must be recursive, and T must be negation complete w.r.t.
this class (otherwise there would be an undecidable sentence in Stnc — II). Since
T is recursively axiomatisable, according to theorem B.3.1, there is a recursive
function gT that recursively enumerates all its elements. Given r £ Stnc, a
decision procedure for T could then be built as follows.

(a) if fn(T) = 1 (he. r £ If), then r ^ T.
(b) if /n(r) = 0, then r £ Stnc — II. As a result, there is n £ N such that

gT(n) = rr"1 or grin) = r-iT~h In the first case, it follows that r £ T, and
in the second one, that r ^ T.

Hence T would be decidable, in contradiction with the hypothesis.

ii. Since n is the set of all T-undecidable sentences of C. and n C E, then any
sentence r that does not belong to E is T-decidable. i.e. either r £ T or -■r £ T.
Given the recursive axiomatisability of T and the recursiveness of E, for any sen¬
tence r £ Stnc■ it is always possible to determine whether r £ S or
r £ St.nc — E. In the second case, since T is negation complete w.r.t. this subclass,
there is an effective mechanism that establishes, for any sentence r £ Stnc — E,
whether it is a T-theorem or not, based on the recursive enumeration of all for¬
mulae of T until either r or its negation is obtained. As a result, T would be
decidable in both E and Stnc — E. i.e. T would be a decidable theory.

iii. If r' £ £' n H, then, according to the definition of E', there is a sentence t £ E
such that T \= (r' = t). Clearly, neither r nor -it can be an element of T, for
otherwise either t' or -it' would be a T-theorem as well, in conflict with the
undecidability of the elements of II. Hence T is not negation complete w.r.t. S.

I
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Lemma E.5.3 Let E be the class of all formulae of CpA of the form t\ — 0 V t2 = 1
which can be rewritten into a formula of CSMa by the strict application of the rules

Ra V\ + v2 = 0 => V\ — 0 A v2 = 0
Rb V] + v2 = 1 {v\ = 1 A v2 = 0) V (tq = 0 A v2 = 1)

Then tx and t2 must be members of the class of terms 0 defined as

pol := sum\pol + pol
sum := 0\l\var\sum x sum

var := xx\yx\zx\x2\ ...

PROOF. (Bv induction on the length of the rewriting sequence)

Base case. If <f' belongs to csma (empty rewriting sequence), it already satisfies the
conditions of the definition of E. As a result, tx and t2 are terms of jCsma and, there¬
fore, belong to 0, since TrmCsMA C 0.

Step case. Assume that, for every formula (tx = 0 V t2 — 1) in CpA, if there is a
rewriting sequence of the form

(tx = 0 V t2 = 1) ^ V

where if is a formula of Csma and R; £ {Ra,Rh}, then tx and t2 belong to 0. Let
(t[ = 0 V t'2 — 1) be a formula for which there is a rewriting sequence of length n + 1,

(t'j = o vf2 = i) ^ if' if" (*)

such that if" is a formula of Csma and Rf € {Ra,Rb}- Then if' does not belong to
Csma , f°r otherwise the above sequence could be reduced to length n. Two cases must
be taken into account.

Ft
If if' =$■ if", there must be an occurrence of an atom of the form ux + u2 — 0 in
if' such that ux.u2 are terms of CSma■ Given that, for any element of the sequence

(*), all the atoms have the form t — 0 or t = 1, where t is a summand contained in
either t\ or t'2, ux + u2 must be a subexpression of either t\ or t'2.

Without loss of generality, let ux + u2 be a summand of t\. Let a new rewriting
sequence be built from (*) by the replacement of the chosen occurrence of ux + u2 in
t\ with a term u of Csma■ The resulting sequence,

(t'i|["/(»i + «2)1 = ovi'2 = i)l...^ iff7(«i + «2)S
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has length n and a formula of jCsma as final expression. According to the induction
hypothesis, tjjp'/P'i +u2)J and t'2 belong to 0. Since u is a summand of fj[[w/(«i + «2)J,
t\ is also an element of 0.

A similar proof applies to the case where ip' =^> if". I

Lemma E.5.4 Let C be a first-order language, and C be one of its sublanguages. Let
TZ be a set of non-conditional remove rules for the deviant symbols of C w.r.t. CJ, such
that the Ihs expressions of all its rules are either terms or atomic formulae, and S be
the TZ-extension of C. Iff) is a formula of C, then

f> 6 S iff j>N € S

where f>N is the prenex disjunctive normal form of <f).

PROOF. Let $ be the set of atomic subformulae of f>. Since the rules of TZ are

applicable only to atoms or terms, f> is 7v-reducible to C iff each of the elements of $
is also 7^-reducible to C. Given that the process of prenex disjunctive normal forming
does not alter any of the atomic components of a formula, $ is also the set of atomic
components of f>N. As a result. <b is 7^-reducible to C iff f>N is 7^-reducible to C. I

E.6 Chapter 10

Lemma E.6.1 Let V>i and if? respectively be the formulae

(A"=i numberp(vi)) J <f>(vu ..., vn)
(A"=i numberp(vi)) D <t>*{vx,..., v„)

where d>* is the complement off). If f>\ is LA-valid., then if? is LA-invalid.

PROOF. Since the antecedent of is LA-satisfiable, there is an assignment a such
that A"=i numberp(vi)[a] is valid in LA. If \ is LA-valid, then f> is LA-valid for the
same assingment. f>* then is LA-invalid for a and, V2M is invalid in LA as a result.
Therefore if2's LA-invalid. I
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Appendix F

Some General Purpose Plans

Decidel/1 is a general-purpose proof plan that incorporates the strategy for the exten¬
sion of decidable sublanguages described in the main text. Whenever more than one
decidable sublanguage is known, the function mc is called to organise them into decreas¬
ing order of preference. The subplan red^dec_cla/'2 then tries to perform the reduction.
If it succeeds, the rewritten conjecture is eventually supplied to the corresponding
decision procedure. Additional subplans are responsible for calling the function md
and ordering deviant symbols with respect to the chosen sublanguage. The subplans
rem-devsym/3-5 in particular control the removal of symbols and the elimination of
disagreements, employing for this purpose the rule generation mechanism.

Decide2/1 has the same search control as decidel/I for the selection of decidable sub¬
languages, the hierarchisatiori of the deviant symbols and the choice of remove rules.
It is however interfaced to a stronger version of RGM that explores conjecture subex¬
pressions other than the particular one directly involved in semantic matching.

Simplify/1 explores the fact that, even if a. formula is not reducible to a decidable
sublanguage, the rewriting process simplifies it, in the sense that the number of occur¬
rences of deviant symbols usually decreases. When the reduction fails, the output of
simplify/1 consists of the initial formula and one simplified formula for each sublan¬
guage, corresponding to the failed reduction attempts. Since these expressions are all
equivalent to each other, they can be supplied to an alternative proving strategy, e.g.
induction.

An implementation for all three plans and their component subplans follows.
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/*
* Plan decidel/1
*/

plan(decidel(Thr),
if_then_else[mem_dec_cla(DecCla,Thr),

dec_pro(DecCla,Thr),
if_then[(dec_cla_lst(DecClaLst,Thr),

ord_dec_cla(DrdDecClaLst,DecClaLst,Thr)),
red_dec_cla(OrdDecClaLst,Thr)
then dec_pro(DecCla,Thr)]]).

plan(red_dec_cla(OrdDecClaLst,Thr),
if_then_else[OrdDecClaLst == [] ,

fail,
if_then[([DecClalDecClaLst] = OrdDecClaLst,

psb_ord_dev_sym(PsbOrdDevSymPaiLst,DecCla,Thr)),
red_dec_cla(DecCIa,Thr.PsbOrdDevSymPaiLst)
or red_dec_cla(DecClaLst,Thr)]]).

plan(red_dec_cla(DecCla,Thr.PsbOrdDevSymPaiLst),
if_then_else[PsbOrdDevSymPaiLst == [] ,

fail,
if_then[[OrdDevSymPaiIOrdDevSymPaiLst] = PsbOrdDevSymPaiLst,

rem_dev_sym(OrdDevSymPai,DecCla,Thr)
or red_dec_cla(DecCla,Thr,OrdDevSymPaiLst)]]).

plan(rem_dev_sym(OrdDevSymPai,DecCla,Thr),
if_then_else[OrdDevSymPai == [] ,

idmethod,
if_then[([ [DevSym,Ari]IDevSymPaiLst] = OrdDevSymPai,

pos_sym_exp(DevSym,Ari.PosDevSym),
ord_rem_rul(DevSym,Ari,PosDevSym,DecCla,

Thr,RemRulLst)),
rem_dev_sym(DevSym,Ari,PosDevSym,RemRulLst,Thr)
then

if_then_else[mem_dec_cla(DecCla,Thr),
dec_pro(DecCla,Thr),
if_then_else[

pos_sym_exp(DevSym,Ari,_),
rem_dev_sym(OrdDevSymPai,DecCla,Thr)
rem_dev_sym(DevSymPaiLst,

DecCla.Thr)]]]]).
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plan(rem_dev_sym(DevSym,Ari,PosDevSym,RemRulLst,Thr),
if_then_else[RemRulLst == [] ,

fail,
if_then[[RemRul|RulLst] = RemRulLst,

partial_remove(PosDevSym,RemRul) orelse
(gen_rem_rul(RemRul,DevSym,Ari,PosDevSym)
orelse rem_dev_sym(DevSym,Ari.PosDevSym,

RulLst,Thr))]]).

plan(gen_rem_rul(RemRul.DevSym,Ari.PosDevSym),
if_then[spc_trv_mat_cbl_rul(DevSym,Ari,PosDevSym,RemRul,NewRemRul),

partial_remove(PosDevSym,NewRemRul)]).

/*
* Plan decide2/l
*/

plan(decide2(Thr) ,

if_then_else[mem_dec_cla(DecCla,Thr),
dec_pro(DecCla.Thr),
if_then [(dec_cla_lst(DecClaLst,Thr),

ord_dec_cla(OrdDecClaLst,DecClaLst,Thr)),
red_dec_cla2(0rdDecClaLst,Thr)
then dec_pro(DecCla,Thr)]]).

plan(red_dec_cla2(0rdDecClaLst,Thr),
if_then_else [(OrdDecClaLst == [] ),

fail,
if_then[([DecClaIDecClaLst] = OrdDecClaLst,

psb_ord_dev_sym(PsbOrdDevSymPaiLst,DecCla.Thr)),
red_dec_cla2(DecCla,Thr.PsbOrdDevSymPaiLst)
or red_dec_cla2(DecClaLst,Thr)]]).

pian(red_dec_cla2(DecCla,Thr.PsbOrdDevSymPaiLst),
if_then_else [(PsbOrdDevSymPaiLst == [] ),

fail,

if_then[[OrdDevSymPaiIOrdDevSymPaiLst] = PsbOrdDevSymPaiLst,
rem_dev_sym2(OrdDevSymPai,DecCla,Thr)
or red_dec_cla2(DecCla,Thr.OrdDevSymPaiLst)]] ).
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plan(rem_dev_sym2(0rdDevSymPai,DecCla,Thr),
if_then_else[(OrdDevSymPai == []),

idmethod,

if_then[([[DevSym,Ari]|DevSymPaiLst] = OrdDevSymPai,
pos_sym_exp(DevSym,Ari,PosDevSym),
ord_rem_rul(DevSym,Ari,PosDevSym,DecCla,

Thr,RemRulLst)),
rem_dev_sym2(DevSym,Ari,PosDevSym,RemRulLst,Thr)
then

if_then_else[mem_dec_cla(DecCla,Thr),
dec_pro(DecCla,Thr),
if_then_else [

pos_sym_exp(DevSym,Ari,_),
rem_dev_sym2(OrdDevSymPai,DecCla,Thr),
rem_dev_sym2(DevSymPaiLst,

DecCla,Thr)]]]]).

plan(rem_dev_sym2(DevSym,Ari,PosDevSym,RemRulLst,Thr),
if_then_else[(RemRulLst == []),

fail,
if_then[[RemRul|RulLst] = RemRulLst,

partial.remove(PosDevSym,RemRul) orelse
(if_then[can_sub_exp_lst2(RemRul.PosDevSym,

OrdPosSubExpLst),
gen_rem_rul2(RemRul,PosDevSym,OrdPosSubExpLst)
orelse rem_dev_sym2(DevSym,Ari.PosDevSym,

RulLst,Thr)])]]).

plan (gen_rem_rul2(RemRul.PosDevSym,OrdPosSubExpLst),
if_then_else[(OrdPosSubExpLst == [] ) ,

fail,

if_then[[[PosSubExp,_]IPosSubExpLst] = OrdPosSubExpLst,
if_then_else[trv_mat_cbl_rul2(PosSubExp.RemRul,

NewRemRul),
partial_remove(PosDevSym,NewRemRul),
gen_rem_rul2(RemRul.PosDevSym,

PosSubExpLst)]]]).

454



/*
* Plan simplify/1
*/

plan(simplify(Thr),
if[mem_dec_cla_lst(_,DecCla,Thr),

dec_pro(Pos,DecCla,Thr),
if [(dec_cla_lst(DecClaLst,Thr),

ord_dec_cla_lst(_,OrdDecClaLst,DecClaLst,Thr)),
simplifyl(OrdDecClaLst,Thr)
thn (if[mem_dec_cla_lst(_,DecCla,Thr),

dec_pro(Pos,DecCla,Thr),
simplify2(0rdDecClaLst,Thr)
thn (if[mem_dec_cla_lst(_,DecCla,Thr),

dec_pro(Pos,DecCla,Thr),
idmthlst])])]]).

plan(simplifyl(OrdDecClaLst,Thr),
if [OrdDecClaLst == [],

synsmp,
if[([DecCla|DecClaLst] = OrdDecClaLst,

dec_cla(DecCla,Thr.DevSymLst),
ord_exp_lst_cla(DecCla,Thr,[PosI_])),
duplicate(Pos)
thn (((rpeat random_remove2(Pos,DevSymLst,Thr))

orels idmthlst)
thn (if[mem_dec_cla_lst(Pos,DecCla,Thr),

synsmp,

simplifyl(DecClaLst,Thr)]))]]).

plan(simplify2(0rdDecClaLst,Thr),
synsmp
thn (if[OrdDecClaLst == [],

idmthlst,
if[mem_dec_cla_lst(_,DecCla,Thr),

idmthlst,
if[([DecClal_] = OrdDecClaLst,

ord_exp_1st_cla(DecCla,Thr,[PosI_])),
duplicate(Pos)

thn spf_dec_cla(Pos,OrdDecClaLst,Thr)]]] )).

plan(spf_dec_cla(Pos,OrdDecClaLst,Thr),
if[([DecCla|DecClaLst] = OrdDecClaLst,

dec_cla(DecCla,Thr,DevSymLst)),
spf_dec_cla(Pos,DecCla,Thr.DevSymLst)
thn simplify2(DecClaLst,Thr)] ).
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plan(spf_dec_cla(Pos,DecCla,Thr.DevSymLst),
if[DevSymLst == [] ,

idmthlst,
if[(DevSymLst = [[DevSym,Ari]ISymLst],

occ_sym_exp_lst(Pos,DevSym,Ari,[PosDevSyml_])),
(rem_dev_sym(Pos,DevSym,Ari,PosDevSym,DecCla,Thr)
thn (if[mem_dec_cla_lst(Pos, _,Thr),

idmthlst,
spf.dec.cla(Pos.DecCla,Thr.DevSymLst)
orels spf_dec_cla(Pos,DecCla,Thr,SymLst)] ))

orels idmthlst,

if[DevSymLst = [_|SymLst],
spf_dec_cla(Pos, DecCla,Thr.SymLst)]]]).

plan(rem_dev_sym(Pos.DevSym,Ari,PosDevSym,DecCla,Thr),
if[ord_rem_rul_lst(Pos,DevSym,Ari,PosDevSym,DecCla,Thr,RemRulLst),

rem_dev_sym2(Pos,DevSym,Ari,PosDevSym,RemRulLst,Thr)]).

plan(rem_dev_sym2(Pos,DevSym,Ari,PosDevSym,RemRulLst,Thr),
if[RemRulLst == [],
faillst,
if[[RemRul|RulLst] = RemRulLst,

prt.remove(Pos,PosDevSym,RemRul)
orels (gen_rem_rul_lst(Pos,RemRul.DevSym,Ari,PosDevSym)

orels rem_dev_sym2(Pos,DevSym,Ari.PosDevSym,RulLst,Thr))]]).

plan(gen_rem_rul_lst(Pos.RemRul.DevSym,Ari.PosDevSym),
if [trv_mat_cbl_rul_lst(Pos.DevSym,Ari,PosDevSym,RemRul.NewRemRul),

prt.remove(Pos.PosDevSym,NewRemRul)]).

plan(random_remove2(Pos,[[Sym.Ari]ISymLst] ,Thr),
if[(cjt.lst(CjtLst),

mem.at(Cjt,CjtLst,Pos),
occ_sym_exp(Cjt,Sym.Ari,[_!_])),
remove.(Pos,Sym,Ari,Thr)
orels random_remove2(Pos,SymLst,Thr),
random_remove2(Pos.SymLst,Thr)] ).
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Appendix G

Arithmetical Conjectures

Four main experiments have been conducted in the course of the development and
testing of the general-purpose plans described in chapter 9. Section G.l lists the con¬

jectures employed in the measurement of the effect on efficiency of several control
features available in proof plans such as decide/1. Section G.2 presents the complete
set of arithmetical lemmas described as representative of the domain of verification
conditions by Bover and Moore. Section G.3 has some of the randomly generated con¬

jectures used to assess the performance of the proof plans for simplification in subsets
of formulae of various degrees of syntactic complexity. Finally, section G.4 presents
the complete set of quantifier-free formulae employed in the comparative assessment
of the performances of Nqthrrds simplifier, simplify/I and weaksimplify/1.

G.l Development Sample

The formulae listed in table G.l have been supplied to the general-purpose proof plans
and the rewriters described in chapter 9 with the purpose of comparing their perform¬
ances. All formulae belong to the language

{0. l,s,+, X,exp. <, <}

Natural numbers (other than 0 and 1) are employed in the mentioned table as abbrevi¬
ations. The sample has been partitioned in three groups: series 100 contains conditional
equations, series '200. conditional inequalities, and series 300, conditional systems of
equations and/or inequalities. In the first series, formula <£102 has been derived from a
problem proposed bv Bover and Moore1. Formulae d>109 and <f>n4 are variations of this
problem, obtained by the application of the associativity of multiplication.

Experimental results concerning the rewriters and decide/1 are shown in tables G.2, G.3, G.4
and G.5. Additional results for the deciders and simplifiers are presented in tables G.6, G.7
and G.8.

1 See [Boyer fe Moore 88], p. 102.
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No. Conjecture
0101 (a; 2/ (z:)(x / 0Ds;x(i/|z) = i)
0102 (x 2/ (s; / 0 D r X + "2x2 X y = x2)
0103 (x 2/ (z)(tn)(x / 0Dix(ixi/Xz) + xx (w2 x y2 X x2) = x)
0104 (x y (i / 0 D i2 = i x 1 ■)■ 1 x x + j x x)
0105 (x y (z)(x / 0Dzji0DxXi/Xj(Xz|iXi/Xz = zXi)
0106 (x y (z)(w)(s(x) xy = xxy-j-zxzxxv)
0107 (x y (x/0DiJ + 2x2 x y = x2)
0108 (x y (z)(xu)(x + i/<1Azx® = 0Dx2 + i/2 + z2 + m)2 = 1)
0109 (x y (x 72 0 D x4 + 2x2 X y — x2)
0110 (x y (z)(x ^ 0 D (y ^ 0) D (x x y) X (x + y) + (x x y) X (y + z) = x x y)
0111 (x y (x ^ 0 D x2 X x2 + x2 x y = x2)
0112 (x y (z)(x / 0Dz/0DiXi/Xt/Xz|xxj/Xz=xXz)
0113 (x y (z)(w)(x + y < 1 A z X w = x2 3 x2 + j/2 + z2 + ro2 = 1)
0114 (x y (x 0 D x x (x2 x x) + "2x2 x y = x2)
0115 (x y (z)(x / 0Di/^0DxXj/Xi/|xxt/Xz = xXj/)
0116 (y y / 0 D f + 3 = 3 ■)• 2t/)
0117 (x y (z)(w)(x ^0Dy^0Dz^0Dyxz + yxzxz = yx(zx(w + x)))
0118 (x y (z)(w)(y 0 D x + y2 X xu — y2 X z + x)
0119 (x y (z)(y / ()Di + r = r + x)
0120 (x y (z)(x / 03jf/0Dxxj(X|/ + xxzxi/ = xxy)
0121 (x 2 (z)(w)(x / ODxxi/ + xxiB = xxzi x2)
0122 (x z (x ^ 0 D z / 0 D i2 | (1 | z) = a: X (x + 1))
0123 (x y (i 7^ 0 D x2 = (x + x) + ?/x x)
0124 (x y (z)(-u;)(x / 03xx(ixi/xz) + xx (w2 xyxyxxxx) = x)
0125 (x y (x 0 D x"' = (x x 1 T x x 1) + y x x)
0126 (x y (z)(x / 0Dxx(i/x(x| a/)) + x x (z2 X (x -f 2/)) = ®)
0127 (x y (z)(x / 0Dj/0Dxx(j|z)xj = xXi/)
0128 (x y (z)(ui)(z / 0 D z2 + (j X x2 + z X x2) = x2 X (y + z) + w X z)
0201 (x y (z)(x ± 0 D (x + y) 7^ 0 D x X (y X (x + y)) + x X (z2 x (x + y)) < x X (x + y))
0202 (x y (z)(x+y < x)
0203 (x y (x/0Dxx (x2 X x) + 2x2 x y < x2)
0204 (x y (z)((i/0)d(xx/+2i = x))
0205 (x y (w)(w / 0 3 Xs X IB = 1 X Iff)
0301 (x y (z)(w)(i/ / 03z/0D(x = 2y A y2 + 3 = 3 -f '2?/ A z < 1 + 2xv) D

D (2x + 3y = z A z3 < z2))
0302 (x y (z)((x t2 0) D (y ^ 0) 3 (x X (y + z) = x X y A y2 X xv - z3))
0303 (x y {z)((x t2 0) D (x x (y + z) = x X y A y + xv = 3z))
0304 (x y (z)(0 = x A y2 + z x xv2 = x)
0305 (x y (z)(x = 0 A y2 + z = x)

Series 100 - (Conditional) equations
Series '200 - (Conditional) inequalities
Series 300 - (Conditional) systems of equations

and/or inequalities

Table G.l: Arithmetical conjectures - Development stage
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Conjecture Execution Time (in s)
rewrite 1/4 rewrite'2/5 rewrite3/5 rewrite4/5 rewrite5/5 rewrite6/5 decidel/1

0ioi 2.5 2.5 •2.5 2.5 2.5 2.5 77.1

0102 □ 728.3 7,764.0 5,645.8 652.9 684.6 425.6

0103 □ 883.0 4.322.8 3,598.7 406.7 426.0 288.1

0104 □ 1,271.4 358.6 280.5 827.3 873.9 472.8

0105 □ 3.514.4 1,323.8 961.5 2,113.4 2,201.5 1,218.3
0106 □ 969.2 1.234.0 1,822.9 1,131.1 565.2 38.0

0107 5.7 5.7 5.7 5.7 5.7 5.7 10.6

0108 45.1 45.1 45.1 45.1 45.1 45.1 90.9

0109 ■ □ 747.9 7,916.5 5,788.9 656.4 681.2 430.6

0110 □ 1,168.0 426.7 305.2 1,562.9 1,624.1 506.4

0111 □ 1,162.9 6,284.3 4,661.2 812.0 844.9 819.9

0112 □ 3,560.3 1,318.2 959.9 •2,129.3 2,205.7 1,186.1
0113 46.0 46.0 46.0 46.0 46.0 46.0 90.3

0114 □ 753.8 11,762.7 8,428.7 671.0 700.9 428.8

0115 □ 956.5 310.3 •259.4 578.9 598.8 527.3

0116 □ 2,547.1 1,477.9 1,399.6 1,401.9 1,461.9 117.7

0117 □ 6,793.1 2,575.7 2,026.7 3,496.3 3,630.8 1,259.8
0118 □ 989.7 672.6 585.2 522.3 539.3 16.8

0119 □ 796.6 296.0 234.5 424.8 436.9 14.4

0120 □ 3,117.5 1,013.7 724.8 1,628.9 1,688.0 775.6

0121 □ 2,403.3 704.3 619.5 1,876.5 1,957.5 1,113.8
0122 □ •2,969.3 1,447.0 1,254.3 1,253.2 1,302.9 1,059.5
0123 □ 1,236.4 358.1 277.1 816.7 859.6 481.7

0124 □ 878.3 3,959.0 3,253.7 410.9 429.3 270.4

0125 □ 1,273.2 353.6 276.6 831.4 861.8 471.2

0126 □ 761.9 9,264.2 4,801.6 1,450.7 1,509.3 527.0

0127 □ '2,848.4 988.5 728.2 2,141.9 '2,232.8 1,210.4
0128 □ 8,313.9 5,879.7 5,796.7 7,687.1 8,019.4 1,820.3
0201 □ 605.7 5,801.4 3,833.0 213.7 222.8 77.0

0202 0.4 0.4 0.4 0.4 0.4 0.4 0.8

0203 □ 3,576.0 262,849.3 190,698.7 1,569.4 1,634.7 612.2

0204 15.2 15.2 15.2 15.2 15.2 15.2 306.6

0205 □ 1,801.4 177.9 615.2 155.3 161.2 89.0

0301 □ 22,186.3 9,731.3 18,231.6 18,206.1 18,965.3 521.9

0302 11.2 11.2 11.2 11.2 11.2 11.2 345.3

0303 5.1 5.1 5.1 5.1 5.1 5.1 9.7

0304 □ □ □ □ □ □ □

0305 □ □ □ □ □ □ □

Series 100 (Conditional) equations
Series 200 (Conditional) inequalities
Series 300 (Conditional) systems of equations

and/or inequalities

□ failure

Table G.2: Time Performances - Rewriters & decidel/1
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Time Performance (sample size - 38)
rewrite 1 /4 rewrite-2/5 rewrite3/5 rewrite4/5 rewrit,e5/5 rewrite6/5 decidel/1

MT (s) 16.4 2,192.9 9.741.7 7,450.0 1,548.9 1,596.0 492.0
SD (s) 18.9 3,889.4 43.515.7 31,608.6 3,176.7 3,313.4 456.3

SR (%) •21.1 94.7 94.7 94.7 94.7 94.7 94.7

BP (%) •21.1 21.1 21.1 47.4 23.7 21.1 44.7

SP (%) 0.0 2.6 21.1 10.5 26.3 2.6 31.6
WP (%) 0.0 44.7 23.7 2.6 0.0 2.6 0.0

MT mean time

SD sample standard deviation
SR success rate

BP best time performance
SP second best time performance
WP worst time performance

Table G.3: Success Rates - Rewriters & decidel/1

From To Sample Time Variation (% of sample)
Size Reduction Increase Unchanged

rewrite2/5 rewrite3/5 36 50.0 27.8 22.2

rewrite2/5 rewrited / 5 36 50.0 27.8 22.2

rewrite2/5 rewrite5/5 36 69.4 8.3 22.2

rewrite2/5 rewrite6/5 36 72.2 5.6 •22.2

rewrite'2/5 decidel/5 36 77.8 22.2 0.0

rewrite3/5 rewrite4/5 36 69.4 8.3 .22.2

rewrite3/5 rewrite5/5 36 38.9 38.9 22.2

rewrite-3/5 rewrite6/5 36 38.9 38.9 22.2

rewrite3/5 decidel/5 36 58.3 41.7 0.0

rewrite4/5 rewrite5/5 36 38.9 .38.9 22.2

rewrite4/5 rewrite6/5 36 33.3 44.4 22.2

rewrite4/5 decidel/1 36 50.0 50.0 0.0

rewrite5/5 rewrite6/5 36 2.8 75.0 22.2

rewrite5/5 decidel/1 36 75.0 25.0 0.0

rewrite6/5 decidel /1 36 77.8 22.2 0.0

Table G.4: Cumulative Effect - R.ewriters & decidel/1
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Conjecture Time Conjecture Tim
Fraction (%) Fraction (%)

4*102 65.2 4*122 84.5

©103 70.8 4*124 65.8

©106 6.7 4>126 69.2

©109 65.6 4* 128 31.4

©114 63.9 4*201 36.0

©116 8.4 4*203 39.0

©117 62.2 4*205 57.3

©118 3.2 4>301 5.4

©119 6.1

Time fraction = time consumed by decidel/1 X 100%
time consumed by the 2nd fastest system

The above conjectures are ali those for which decidel/1 exhibited the best time
performance. The percentages indicate the fraction of the running time consumed
by the second fastest system (which may vary from one conjecture to another)
that was required by decidel/1. The average fraction for this subsample (43.6%)
shows that, the decider provided a substantial time reduction in the average.

Table G.5: Decidel/1 x Second best performance
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Conjecture Execution Time (in s)
decidel/1 decide2/l simplify/1 weak_

simplify/1
0101 77.1 222.2 3.1 3.1

0102 425.6 1,482.4 435.5 334.1

0103 288.1 14,372.5 298.1 63.7
0104 472.8 2,851.2 487.1 □

0105 1,218.3 4,464.4 1,180.4 □

0106 38.0 36.6 21.2 20.6

0107 10.6 10.9 3.1 3.1

0108 90.9 88.0 20.7 21.5

0109 430.6 1,272.0 432.2 340.7

0110 506.4 1,912.2 478.9 292.3

0111 819.9 16,930.8 816.1 345.1

0112 1,186.1 4,482.3 1,190.9 □

0113 90.3 91.8 21.9 22.3

0114 428.8 1,320.3 444.7 350.0

0115 527.3 1,808.0 535.8 292.9

0116 117.7 363.0 121.8 □

0117 1,259.8 13,596.2 1,273.6 □

0118 16.8 18.2 23.1 22.2

0119 14.4 14.8 19.0 19.0

0120 775.6 2,535.0 785.4 532.1

0121 1.113.8 21,078.9 1,120.8 513.6

0122 1,059.5 10,502.3 1,077.0 □

0123 481.7 2,841.7 485.7 □

0124 270.4 7,917.6 275.7 64.2

0125 471.2 2,897.5 490.7 □

0126 527.0 4,316.6 535.0 348.4

0127 1,210.4 8,346.0 1,210.3 661.6

0128 1,820.3 21,651.2 1,830.8 870.4

0201 77.0 113.1 80.4 73.4

0202 0.8 0.8 0.7 0.7

0203 612.2 1,856.6 576.7 466.7

0204 306.6 854.7 21.7 22.3

0205 89.0 568.2 57.7 50.4

0301 521.9 2,156.5 272.1 □

<?302 345.3 2,277.3 19.5 18.7

0303 9.7 9.8 2.8 2.8

0304 □ 1,173.5 □ □

0305 □ 3,352.6 □ □

Series 100 - (Conditional) equations
Series 200 - (Conditional) inequalities
Series 300 - (Conditional) systems of equations

and/or inequalities
□ - failure

Table G.6: Time Performances - Deciders & Simplifiers
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Time Performance (sample size - 38)
decidel/5 decide2/5 simplify/1 weak,

simplify/1
MT (s) 492.0 4,204.9 456.5 213.2

SD (s) 456.3 5,907.5 463.9 241.3

SR (%) 94.7 100.0 94.7 71.1

BP (%) 23.7 5.3 23.7 57.9

SP (%) 44.7 7.9 36.8 7.9

WP (%) 5.3 81.6 5.3 2.6

MT mean time

SD sample standard deviation
SR success rate

BP best time performance
SP second best time performance
WP worst time performance

Table G.7: Success Rates - Deciders & Simplifiers

From To Sample Time Variation (% of sample)
Size Reduction Increase Unchanged

decidel/5 decide2/5 36 5.6 91.7 2.8

decidel/5 simplify/1 36 44.4 55.6 0.0

decidel/5 weak_simplifv/l 27 92.6 7.4 0.0

decide2/5 simplify/1 36 94.4 5.6 0.0

decide2/5 weak_simplify/l 27 92.6 7.4 0.0

simplify/1 weak_simplify/l 27 70.4 11.1 18.5

Table G.8: Cumulative Effect - Deciders & Simplifiers
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G.2 Verification Conditions

The arithmetical lemmas listed in tables G.9 and G.10 have been taken from appendix
A of [Boyer & Moore 79]. Their original enumeration has been preserved in the above
mentioned tables. Lemmas 317 and .368 have been broken into respectively two and
three new lemmas, due to the fact that they were originally conjunctions of formulae2.
Table G.ll describes the role of each of the two main modules of Nqthm in the process
of proving these lemmas. Tables G.12 and G.13 describe the time performances of the
plan weak.simplify/1 and the subplan simplify1 /2 for the above set of lemmas.

G.3 Randomly Generated Conjectures

One randomly generated formula for each of the depths examined in the experiment
has been included in tables G.15 and G.16. All formulae belong to the first-order
language described in section G.l. and have been represented according to the syntax
detailed in table G.14. The experiments have been conducted with the general-purpose
proof plan simplify/1. In the entry for each depth, Cjt indicates the randomly gener¬
ated conjecture, whereas RewCjt is the resulting simplified formula. Strict_sum and
strict .multiplication respectively denote the decidable sublanguages CprA' and
Csma• Each new remove rule generated in the process is represented as a list of three
elements, the lhs expression, the rhs expression and a condition. The results for the
whole random sample are described in tables G.17 and G.18.

G.4 Quantifier-free Conjectures

Ten quantifier-free conjectures for each depth ranging from 3 to 10 have been randomly
generated and supplied to Nqthm and to two proof plans for simplification. They belong
to the same first-order language defined in section G.l. as it can be observed below.

Depth 3

qtf0301 #6 < 1 A .cci < 0
qtf0302 (xg < 1 = 0 < Xe)
qtf0303 (®3 < 1 = £5 < 0)
qtf0304 0 <1D1
qtf0305 1 < 1 V 1 < £g

qtf0306 £5 < 0 V 1 < 1
qtf0307 1 < 1 D 1
qtf0308 £« < £- D JL
qtf0309 1 exp 1 < xs

qtf0310 (£9 < 0 = 1 < £5)

2 It has to be taken into account that

T |= (t>\ A <t>2 iff T \= <t>\ and T |= <t>2
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No. Theorem

37 i^0DI-1<I
100 even(double(x))
102 half(double(x)) = x
103 even(x) D double(half(x)) = x
109 xy+z = xy x x'

110 Xyxz _ (xyy
113 (x < y) V (y < x)
120 half(x) < x
168 x < V 3 y — s(x) < y — x
169 (x - y < a:) = (x 0 A y ^ 0)
170 x^OAy^ODx — y<x
179 x it {x ~y)
180 rmdr(y, 1) = 0
182 (rmdr(x, y) < y) = (y ± 0)
183 (y i. x) D x - y = 0
184 rmdr(x, x) = 0
185 y / 0 D rmdr(a;, y) + (t/x (x/y)) = x
186 {x + y = 0) = (x = 0 A y = 0)
187 (x + y = x) = (y = 0)
188 z^0Ay^t0Dx<z + (yxx)
189 (x/y < x) = (x ^ 0 A {y = 0 V y / 1))
190 (rmdrfi, y) < x) = (x 0 A y 0 A x it y)
191 xylOAy^OAy^l 3 x/y < x
197 y < x D ->(x < y)
198 gcd(x, y) = gcd(y,x)
202 y zfz 0 A y < x D rmdr(i, y) < x
208 (x + y) - x - y
209 (x + y) - (x + z) = y - z
210 (y x x) — (w x x) = (x x (y — w))
212 rmdr(i xz,;) = 0
213 (y+(x + z))-x = (y + z)
215 s(y + z) - z = s(y)
216 y ± 0 A y zjz 1 3 rmdr(s(x x y), y) ^ 0
217 rmdr(r, z) = 0 A rrndr(j/, z) = 0 D rmdr(x + y, z) = 0
218 rmdr(x, z) = 0 A rmdr(y, z) ^ 0 D rmdr(x + y, z) 0
219 rmdr(x. :) = 0D (rmdr(x + y, z) = 0) = (rmdr(y, z) = 0)
220 nndr(x, :) = 0 D (rmdr(y 4- x, z) = 0) = (rmdr(y, z) — 0)
221 (x - y = 0) = (y it x)
222 x < y D (x + (y - x) = y)
225 rrndr(x, z) = 0 D (rmdr(j/ — x, z) = 0) = (x < y D rmdr(y, z) = 0)
226 B X U A X n III o > B A 2^
227 gcd (a; x z, y x z) = z x gcd(x, y)
228 (rrridr(x, gcd(x, y)) = 0) = (rmdr(t/, gcd(x, y)) = 0)

Table G.9: Arithmetical lemmas proved by Nqthm (I)
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No. Theorem

'229 (i/0Ay/0A z|x A z\y) D (z < gcd(x, y))
237 (x ^ 0 A y ^ 0 A z ^ 0) D (y < (x x y) + (x x z))
279 (y < x A ->prime1(x, y)Ax^0Ax^lAy^0)D (gfc(x, y) < a;)
280 (y < x A -iprime^x, y) A x ^ 0 A x / 1 A y ^ 0) 0

D (rmdr(x, gfc(x, y)) = 0)
283 (gfc(x,y) = 0) = ((y = 0 V y = 1) A x = 0)
284 (gfc (x,y) = 1) = (x = 1)
292 («/0A x\y) D (x x (y/x) = y)
'293 {x ± 0 A x < y) D (y/x ± 0)
299 (rmdr(s(x), :) = 0A:/ s(x) A -iprimej(s(x), (x — z) + z)) D

D (-iprime1(s(x), x))
300 (z 1 A 2 ^ s(x) A rmdr(s(x), z) = 0) D (->prime1(s(x). z + w))
301 (: 1 A ; / x A z|x) D (-iprime^x, pr(x)))
302 (gcd(z, x) = y) D (rmdr(z,y) = 0)
303 (rmdr(z, x) ^ 0) D (gcd(z, x) ± x)
304 (x = z x y) D (rmdr(x,z) - 0)
305 y=lDx=xxy
306 (y = z x x) D (gcd(y, w x x) = x x gcd(w, z))
307 (x /;(/ A j/ = gcd(x x y,z x y)) J (w x x ^ z x x)
308 (x Jfy A primej (x, pr(x))) D (gcd(y,x) = 1)
309 (prime(x) Ax |zAx /y) D (x x w ^ y x z)
310 (x x y/x ^ y) D (rmdr(y, x) / 0)
311 (prime(x) Ajf^lAx^t/jD (rmdr(x, y) ^ 0)
314 rmdr(y x x, y) = 0
317a (y = 0) D ((y x x)/y = 0)
3176 (y # 0) D ((y x x)/y = x)
318 (x/OA x|u>) D (y x tu/x = (y x w)/x)
321 (z 0 A z /x) D (z x y ^ x)
323 (x / 0 A x x z = y) D (z = y/x)
324 (x x y = 1) = (x ^ 0 A y ^ 0 A pr(x) = 0 A pr(y) = 0)
345 y + z {. pr(z)
368a ((x = 0) D (x + (y - pr(x)) = y))
3686 ((x / 0 A y < pr(x)) D (x + (y - pr(x)) = x))
368c ((x ^ 0 A y it pr(x)) D (x + (y - pr(x)) = s(y)))
372 (x < y) D (pr(y) ^ x)
375 (((y = 0 Ax = 0) O (: / 0)) A((y^ 0) D (pr(y) < z))) =

= (pr(y + x) < X + z)
397 (x < y) D (x — y = 0)
398 (pr(pr(x)) < x) = (x ^ 0)
400 (Pi"(Pr(y)) <z + i/) = (z/0Vy^0)
401 (((x < .y) D (pr(z) < x)) A((x ^ y A z = 0) D (x ^ 0))A

((x ^ y A z ^ 0) D (y ■£ z))) = (pr(z + (x - y)) < x)
402 x + y ^ pr(x)
403 (i / i/Ax / y) D (pr(x) ^ y)

Table G.10: Arithmetical lemmas proved by Nqthm (II)
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Lemma Simplifier IP Lemma Simplifier IP
core LP core LP

37 o 229 o

100 o 237 o

102 o 279 o

103 o 280 o

113 o 283 o

120 o 284 o

168 o 292 o

169 o 293 o

170 o 299 o

179 o 300 o

180 o 301 o

182 o 302 o

183 o 303 o

184 o 304 o

185 o 305 o

186 o 306 o

187 o 307 o

188 o 308 o

189 o 309 o

190 o 310 o

191 o 311 o

197 o 314 o

198 o 317a o

202 o 3176 o

208 o 318 o

209 o 321 o

210 o 323 o

212 o 324 o

213 o 345 o

215 o 368a o

216 o 3686 o

217 o 368c o

218 o 372 o

219 0 375 o

220 o 397 o

221 o 398 o

222 o 400 o

225 o 401 o

226 o 402 o

227 o 403 o

228 o

IP inductive prover
LP linear arithmetic procedure

Table G.ll: Arithmetical lemmas - Nqthm's performance
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Lemma simplify1/2 weak_simplify/\
Time (s) Sublanguage Time (s) Sublanguage

47 0.7 CprA' 2.1 ~k

100 0.3 CprA• 0.4 *

102 0.5 UprA* 0.7 *

103 0.7 CprA' 1.0 *

113 0.5 UprA' 0.8 *

120 0.7 UprA* 1.0 *

168 3.9 C-PrA" 4.5 ~k

169 0.8 UprA* 1.3 ~k

170 1.2 UprA* 1.7 ★

179 0.6 C-PvA' 0.9 *

180 1.8 UprA* 2.1 ~k

182 5.6 □ 138.5 □

183 0.9 CprA' 1.4 ~k

184 4.3 £sma 4.6 •k

185 3.5 □ 478.1 □

186* 0.0 CprA' 0.0 ■k

187* 0.0 C-PrA' 0.0 •k

oooo 3.0 □ 14.1 C-PrA'
189 10.7 □ 271.8 □

190 6.8 □ 146.0 □

191 11.4 □ 272.2 □

197 0.5 £-PrA' 0.8 ~k

198 29.2 □ 513.0 £>sma
202 6.1 □ 142.3 □

208 0.7 CprA' 1.1 *

209 4.1 Hi'rA * 4.9 *

210 16.1 □ 420.1 □

212 4.7 £sma 2.9 -A-

213 0.9 UprA* 1.5 ~k

215 0.8 CprA• 1.3 *

216 10.4 □ 317.3 □

217 22.0 □ 396.3 □

218 22.0 □ 392.9 □

219 21.7 □ 391.6 □

220 21.5 □ 391.5 □

221 0.7 CprA• 1.2 •k

222 1.2 £,prA' 1.6 k

225 53.9 □ 339.2 □

226 2.3 □ 25.8 C-PrA'
227 31.1 □ 13,039.4 C-SMA

t member of decidable
sublanguage

★ same sublanguage
as for simplify1/2

□ failure

Table G.12: Time Performances - Simplifiers (I)
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Lemma simplify1/2 weak-simplify/I
time (s) sublanguage time (s) sublanguage

228 76.7 □ 512.4 12SMA
•229 6.5 □ 72.0 □

237 8.6 □ 149.0 □

279 14.8 □ •267.8 □

•280 61.7 □ 508.5 □

283 11.7 □ 146.4 □

284 10.8 □ 147.2 □

292 3.5 □ 88.3 □

•293 0.7 12prA* 1.1 A"

•299 75.2 □ 669.6 □

300 24.2 □ 195.9 □

301 25.6 □ 149.9 □

302 13.3 £sma 8.3 *

303 14.5 c-sma 5.9 •k

304 5.2 c-sma 3.9 *

-1054 0.0 12sMA 0.0 *

306 32.9 □ 12,455.4 12SMA
307 4.1 □ 16.7 12SMA
308 44.0 □ 295.2 □

309 6.1 12SM A 2.7 Ar

310 18.5 □ 322.8 □

311 9.2 12SMA 6.3 7*r

314 4.7 12SMA 2.8 *

317a 1.2 12prA* 2.2 *

3176 9.0 □ •24.7 12prA*
318 13.7 □ 106.4 □

321 2.8 12SMa 1.3 •k

323 2.5 □ 92.4 □

324 4.3 (2prA* 5.0 -A-

345 0.7 Cp,a' 0.9 -*•

368a. 3.5 12prA* 4.2 *

3686 5.5 CprA* 6.3 *

368c 5.8 12prA* 6.6 ~k

372 1.0 Cp,a' 1.4 *

375 4.1 CprA' 5.2 ■A*

397 0.8 12prA* 1.2 ★

CO OO 2.6 12prA* 3.0 Ar

400 2.9 12PrA* 4.5 Ar

401 12.2 UprA' 12.8 A-

402 0.7 UprA' 0.9 Ar

403 1.3 12Pra* 1.8 Ar

t member of decidable
sublanguage

* same sublanguage
as for simplify1/2

□ failure

fable G.13: Time Performances - Simplifiers (II)
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Symbol Meaning
# conjunction
\ disjunction
=> conditional
<=> biconditional
void contradiction

_:pnat=>_ universal quantifier (in N)
_:pnat#_ existential quantifier (in N)

_ = _ in pnat equality (in N)
< less than relation
= < less than or equal to relation

* multiplication
exponentiation

s successor

+ sum

Table G.14: Object-level syntax

Depth 4

qtf0401 (0 < 0 V 0 < l)AO<ODl
qtf0402 (xq <0j1 = 1 = 1A0< x$)
qtfD403 1 -f- 1 <C sO -f- xio
qtf0404 ((1 < Xf, = 0 < xs) D _L)
qtf0405 (a;3 < 1 A (0 < i3 E 0 < 1))
qtfD406 ((0 < X4 = 1 < 1) D x9 < x5 D x2 = x\)
qtf0407 (x2 <0=1<0D1<1)
qtfD408 0 + x4 = 1 A ®io =isAl <0
qtf0409 ((1 < 0 = 0 < x5) D 0 < 1 D 1)
qtf0410 1 x (1 x 0) < 0

Depth 5

(1 < xU) D (1 < a:io = 1 < 1)) V (0 < 0 D x2 < 1) V xjo = 0 A 1 = 1)
((0 <0Dl<l)V0 = j)6Al<l)D {X\ <0Di = O<lD 1))
(x2 < 1 v 0 = 0) D 1 = (0 < Xg D X3 < 0) V 1 < 0 D 1)
x x-j x I < 0 + 1 exp lA0xl = s0Al<i6 3i7<0
(0<0Dl<l)Vi4<X5 exp 1) A si = 0x lAigX 1 = 0 + 0
£3 exp 0) exp( 1 + 0)<0A(xio< 1 Vim < 0) d 1
X3 exp 0) exp( 1 + 0) < 0 A (x'io < 1 V xio < 0) D -L
(1 < 0 V x5 < 1) D i = 1 < x6 D (1 < 1 = 1 < 0))
(x2 < 0 3 15 < X5) V xg < 1 D -L) D -L
(x2 < 0 D x5 < x5) Vx9 < 1 D 1) D 1
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Depth of conjecture. 3
Cjt. 0=0~xl0 in pnat
********** Successfully reduced to strict.sum
RewCjt. 0=0 in pnat#xl0=0 in pnat=>void
New remove rules.

[0=vl~v2 in pnat,vl=0 in pnat#v2=0 in pnat=>void,void=>void]
Time = 13650

Depth of conjecture. 4
Cjt. 0=<xl* (l+x4)
********** Successfully reduced to strict.multiplication
RewCjt. ((xl*l=0 in pnat#xl*x4=0 in pnat)=>void)\xl*l=0 in
pnat#xl*x4=0 in pnat
New remove rules.

[v4* (v5+v3)=0 in pnat,v4*v5=0 in pnat#v4*v3=0 in pnat,void=>void]
[0=v4* (v5+v3)in pnat,v4*v5=0 in pnat#v4*v3=0 in pnat,void=>void]

Time = 69033

Depth of conjecture. 5
Cjt. s (x8*x7)+l~l*x8=<l
********** Successfully reduced to strict.multiplication
RewCjt. ((x8*x7=0 in pnat#l=0 in pnat)#l*x8=0 in pnat)\ (((x8*x7=l in
pnat#l=0 in pnat)\x8*x7=0 in pnat#l=l in pnat)#l*x8=0 in pnat)\
(x8*x7=0 in pnat#l=0 in pnat)#l*x8=l in pnat
Time = 4250

Depth of conjecture. 6
Cjt. s (x4+l~0)+x4* (0+l)*x7=0 in pnat
********** Successfully reduced to strict.multiplication
RewCjt. ((x4=0 in pnat#l=0 in pnat)#1=0 in pnat)#x4*l*x7=0 in pnat
Time = 2117

Depth of conjecture. 7
Cjt. ((xl~l*l~xl0=< (x6~0)~s 0# (0=1 in pnat#l=0 in pnat)\0=0~xl0 in
pnat)\x5:pnat=>x3=l~x4 in pnat=>0+x8=<x2)=>void
********** Successfully reduced to strict.sum
RewCjt. (((xl<l\xl=l in pnat)# (0=1 in pnat#l=0 in pnat)\0=0 in
pnat#xl0=0 in pnat=>void)\x5:pnat=>x3=l in pnat=>x8<x2\x8=x2 in
pnat)=>void
New remove rules.

[0=vl~v2 in pnat,vl=0 in pnat#v2=0 in pnat=>void,void=>void]
Time = 12233

Table G.15: Sample of Randomly generated formulae (I)
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Depth of conjecture. 8
Cjt. ((x3:pnat=>xlO:pnat#1~l=<x9)#x6* (l+x7)=<s (0*l)=>void<=>0~ (1+
(1+0+0))=1 in pnat)=>x8:pnat#s x7~0=l in pnat
********** Successfully reduced to strict.multiplication
RewCjt. ((x3:pnat=>xl0:pnat# ((x9=0 in pnat=>void)#x9=l in
pnat=>void)\l=x9 in pnat)# ((x6*l=0 in pnat#x6*x7=0 in pnat)\ (x6*l=l
in pnat#x6*x7=0 in pnat)\x6*l=0 in pnat#x6*x7=l in pnat)=>void<=>0=l
in pnat\l=0 in pnat# (1=0 in pnat#0=0 in pnat)#0=0 in pnat)=>x8:pnat#
((x7=l in pnat#l=0 in pnat)\x7=0 in pnat#l=l in pnat)\0=0 in pnat
New remove rules.

[v4* (v5+v3)<1,v4*v5=0 in pnat#v4*v3=0 in pnat,void=>void]
[v4* (v5+v3)=l in pnat,(v4*v5=l in pnat#v4*v3=0 in pnat)\v4*v5=0 in
pnat#v4*v3=l in pnat,void=>void]

Time = 107667

Depth of conjecture. 9
Cjt. x2:pnat=>x7:pnat#0=<xl* (1~ (x4~x6)*l+ (s (x4+l)+0))
********** Successfully reduced to strict.multiplication
RewCjt. x2:pnat=>x7:pnat# ((xl* (1*1)=0 in pnat# (xl*x4=0 in
pnat#xl*l=0 in pnat)#xl*l=0 in pnat)=>void)\xl* (1*1)=0 in pnat#
(xl*x4=0 in pnat#xl*l=0 in pnat)#xl*l=0 in pnat
New remove rules.

[0=v4* (v5+v3)in pnat,v4*v5=0 in pnat#v4*v3=0 in pnat,void=>void]
[v4* (v5+v3)=0 in pnat,v4*v5=0 in pnat#v4*v3=0 in pnat,void=>void]

Time = 162967

Depth of conjecture. 10
Cjt. ((x2:pnat=>0=l in pnat=>void)=>void)\ ((((0=0 in pnat#x3=xl in
pnat=>l<0<=>x9:pnat=>l=<x4=>void)=> (x9*l<l+x9<=>xl=<x3=>0=<l)=>void)\
(0=0+ (l+x7)in pnat=>x9~l<l*x4)\ (x2<s (0~0)<=>l=x6 in pnat))# (s
0*l=l*x5 in pnat=> (x6:pnat=>0=x6 in pnat=>l=<l)=>void<=>
(x4:pnat#l=<0<=> (0~1+1)~1=1 in pnat))<=>0=<0*0" (s x8*l"0))
********** Successfully reduced to strict.sum
RewCjt. ((x2:pnat=>0=l in pnat=>void)=>void)\ ((((0=0 in pnat#x3=xl
in pnat=>l<0<=>x9:pnat=> (Kx4\l=x4 in pnat)=>void)=> (x9<l+x9<=>
(xl<x3\xl=x3 in pnat)=>0<l\0=l in pnat)=>void)\ (0=0+ (l+x7)in
pnat=>x9<x4)\ (x2<s 1<=>1=x6 in pnat))# (s 0=x5 in pnat=>
(x6:pnat=>0=x6 in pnat=>l<l\l=l in pnat)=>void<=> (x4:pnat#l<0\l=0 in
pnat<=>0+l=l in pnat\l=0 in pnat))<=>0<0\0=0 in pnat)
Time = 35900

Table G.16: Sample of Randomly generated formulae (II)



Formula

Depth
Sample

Size
Distribution (%)

CprA' &SMA V
PrA*

V
SMA UF

3 300 44 2 50 2 1
4 300 33 0 57 5 5
5 300 12 0 73 3 12

6 300 7 0 70 5 18
7 300 1 0 64 3 32
8 300 4 0 59 3 34
9 300 0 0 45 7 48
10 300 0 0 33 0 67

TiPrA. extension of CprA*
£sma extension of jCsma
£PrA* £PtA* ^PrA*
^sma £sma ~ £-sma
UF undecided formulae

Table G.17: Distribution - Randomly generated formulae

Formula

Depth
Sample

Size
Subclass

£PrA — £prA* £SMA ~ C-SMA Undecided Formulae
Mean (s) Deviation (s) Mean (s) Deviation (s) Mean (s) Deviation (s)

3 300 0.5 1.6 0.3 0.0 78.9 26.6
4 300 1.9 12.1 5.6 18.3 84.9 35.3
5 300 0.9 1.0 14.2 23.1 118.3 132.5
6 300 4.1 12.7 21.2 41.3 118.3 146.0
7 300 7.5 12.5 42.7 42.8 148.0 103.3
8 300 9.1 10.8 53.7 52.8 375.3 458.6
9 300 12.3 18.5 1,441.7 2,071.8 229.0 160.8
10 300 14.9 20.4 — — 381.2 273.1

Y,prA' extension of CprA-
£sma extension of Csma

Table G.18: Time Performance - Randomly generated formulae
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Depth 6

qtf0601 (sx? + (z8 + 0) + 0 < (a;2 + 0) exp(0 + 0) = (2:3 < sxg D
D 1 < 0 V 1 < 1) V si < 0 D (1 < 0 = x7 = 1))

qtf0602 (1 exp 1 < sO D (2:3 < xq D 0 = aqo) V si < 1 exp 0 =
= 0 < (2:5 + 0) exp(l + 0) + x7)

qtf0603 (((a:6 < 1 V x7 < 1) D 1 = (z9 < 0 D
D 0 < 0) V x7 < xg V 0 < 1) D s(s(0 + 1)) = 1 exp 1)

qtf0604 0 xi3 = 0x(0 + 0x 213) J 1 < 1 D xg < sxg exp si
qtf0605 ((((1 <lDii<l)V0<lD0< aq0)V D X)V

v((l < 0 V 0 < I8) D i = (0 < 1 D no < x3) V 0 < 2:3 D 1 < 0))
qtf0606 (((a;! < si D 1 < 2;2 D i) Vi5 < 1) A((0 < i3 VO < 1) 3 1 e

= sO x (arjo + 0) < s(ai4 exp 0)))
qtf0607 (are x x10 exp 1 < 1 x (0 x x4) D 0 = si) V (0 x x10 <03

30 = 0A2;6<0) (0<0V0 = 2:10) D X
qtf0608 1 x ((z8 +l+i7x0)x0)=i6
qtf0609 ((1 + (1 + 1) < 1 3 i2 < si exp 1) V ((0 < 1 V 0 < 0) D X =

= (x2 < x6 V 1 < 0) 3 X))
qtf0610 0 x (xq exp 1 + 2:10) + 0 < 1 + s(s2;g + x4 exp 0)

Depth 7

qtf0701 ((((2:10 < 0 3 1 < 2:7) V 1 < i9 + 0) 3 1 = ((aq < 0 3 0 < a:8)V
VI < 0) 3 1) 3 X)

qtf0702 (((1 < 0 exp 1 3 1 < 11 3 1 < 1) VI exp 0 < 1 exp(a;6 exp 1)) D X)V
VO x s(a:7 x 2:9) = 1 exp(;E3 exp 0 + sx3)

qtf0703 ((s(0 x 1) < 0 3 1 + (2:9 + X6) < 2^10) V 0 < 1 x X? x 1 + 0 x (0 + 0)) 3 X
qtf0704 0 < s(0 x 1 exp 2:9) exp((0 exp(0 + a;2)) exp s(l exp 1)) A ((sx5 < 0 exp 0 D

J x9 = x7 /\ x3 = xio) V 1 = 1 exp(0 x a:4)) D X
qtf0705 (((0 < sx2 x x2 exp 0 3 2:3 = 1 A 0 < 1 V 1 < x4) V ((1 < x4 V 1 < x5) 3 X =

= 0 exp 2:9 < 0 x i7 3 1 = x3 A a;7 < 2:5)) 30x(0x0)<l + ar7)
qtf0706 x5 = (1 exp(a:2 x 0 + si)) exp(l x (1 x a;8exp x2)) + (s0exp(a:3 + sO) + 2:3)
qtf0707 si x 0 < s(0 exp s((l exp 0) exp sO))
qtf0708 x 1 exp saqo + 1 exp(a;7exp(l + 0)) + s(l exp 1 x (1 x x6) + 0) < x7
qtf0709 (0 = s(0 + x4 + sx5) A 19 < i3 exp ti x i7 3 (0 < aqo V 1 < 0) 3 X =

= (s(sx7) < 2:3 3 1 < 1 exp I3i6< 2;io 3 0 < 1) V ((0 < 1 3 1 < 1) V si < 1) 3
qtfD710 ((sz4 = 0 A aq < (0 + z4) exp(2;7 + 0) D s(saq0) = 0 x x8) V (((0 < 0 3 0 < 1)V

V(0 <Iioe1<2:i))3Xe sa;5 + 1 = 1+ i6A(1<13Xe1<is3 X)))
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Depth 8

qtf0801 ((s(s(l x 2:7)) + s(0 x (1 + 1))) exp(0 exp(l + (1 + 0 + 0)))) exp 1 =
= (($2:7 exp 0) exp 1) exp 2:7

qtf0802 (((1 x OexpO <0d(j:i<X4D1 = 0x1 = a?6))V
Vsx7 x xg < (sO + 1) x 1) D _L = (((1 + 0)exp(l + 1) < X7 D
D (1 < 0 V 1 < x3) D i) V x8 < 0) D 1)

qtf0803 ((0 x (1 x (1 + 2:3)) exp(s2;s + 214) < 0 D 1 + 0 < 0 exp s(sl exp 1))V
V(1 <1x1 exp 1 x (xi + 1) D 52:4 < s(sO))V
VI < (2:1 exp x\ + (1 + 0)) exp(0 x 1 x si) D ((2:9 < 0 V 0 = 2:4) D -L =
= SX7 x sxio < 52:5))

qtf0804 ((((si < 2:7 3 x7 < ii D 0 < 0) V (2:3 < 1 D 1 =
= 1 < 0 D 1)) D ± = (1 + 1 x 1) exp s(l + 0) < 1 D 1 < 0) D J.)

qtf0805 0 < s(((0 x xg) exp 2:5) exp 0 + 1) x 0
qtf0806 (0 < 0 V (1 x 0 + (1 + 0 + 2:3 exp 2:4) < s(l x 0 x 80) D ((1 < 17 V 1 < 0) D 1 =

= (2:9 < 1 V 0 < 2? 1) D -L)) V ((2:4 exp X6 < 1 D
D i4 = 1 A i4 < 0) V (0 < 1 V 1 < 0) D 1) D 1)

qtf0807 0 < 2:5 exp 1 x (1 exp 0 + (1 + 2;9 exp 2:9)) x (0 x (1 x si) + 0 + 0)
qtf0808 ((2^ = Oexp 1 A 2?io x s(s(Oexp 0)) < s(2;2 x (1 x (2:3 x 2i2))))V

V((a:2 x 0 + 1 exp X2) x x4 < 0 D ((0 < 0 D 1 < a:8)V
V2r3 < 0 V 0 < 0) D -L) V (((1 <ODO<1)VO<1D1)D_L =
= ((1 < 1 V 0 < 0) D 1 e 1 x x2 < si x 0 exp 2:4)))

qtf0809 s(l x 0) + 0 = 1 + s(s((0 x X7) exp 0)) + 2:4
qtf0810 ((X5 = 0A(0< 1 D2:i exp 0 + 0 < 1) V (2:3 < xi + 1 3 1 = 1 A 1 < 0)V

Vs2;io < 1) V ((2:7 < 0 3 (1 < 1 3 1 = ^9 < Xi VX3 = ^3))^
Vl<0 3 0x(0+l)<sx7xl)3l)

Depth 9

qtf0901 Xq exp 1 < 1 + 2+ x 0 x (1 + 0) A 2:9 + s((l exp 0) exp(2;g x 2:3)) + s(s(sl)) < sx;4 D
3) sO = s(2q x s(0 x l)expa:io)

qtf0902 ((((1 < (2+ x 1) exp(x5 exp 0) 3 (1 < 1 3 1 < 1)V
V2;8 < 2;8) V s(2;8 x 2:7) + 1 exp 1 x x8 < 1) 3 i = ((2+ < 0 exp(2;6 + 0) D
3i5 = 0+ lA0x0< 2:9) V 0 < 1 exp 0 + sO D {xq <03l = l = lA0< X5)) 3 1) D 1)

qtf0903 ((((1 < s2;5 3(0<x5Vx3<1)D1)V((0<i3V0<1)3 1 =
= (0 + X4) x (0 + 1) < si x (2:9 + 2:5))) D 1. = SX2 = sx\ A x2 x 0 = 2:iA
Al = 0 x sO A 1 x 1 = 2:4 A 0 + 2:4 = 1) 3 -L)

qtf0904 s(2;io + 2r8 + (0 + 1) exp sO) + 0 exp 0+1 = 0+1+ 2:7 D J_
qtf0905 (sO = ii30<i5xl3(0 + s(sl) <(lxl) exp 0 + 0 D

3 2:6 + sO < 1 x 1 exp X10 D (1 < 2:10 D-L=1<1V0< 0))V
V(2;2 exp 1) exp 2q < 2:10 + (0 + si) exp 1)

qtf0906 (((0 < 0 3 si < 1 x s(0 x x§) + (si + 1) exp s(l exp 0)) V 0 + 2+ x 1 = 0 x 1A
A(((Z2 <130 = 0)VO<x9VX3<0)31E((1<03 1<0)V
Va:i exp 2:5 <1)3 J-)) Di7 = 2:5)

qtf0907 ((si +X7 x 1) x (O + sl exp(l + 1)) x x2 < (0 + s((l exp 0) exp(2;2 x 2^)) + sx7) x (0 x 0)A
A(0 < sO 3 (((1 < 1 3 X4 < 15) V 0 < 1 3 1) 3 1 E
A(1 < x8exp 1 3 (0 < x4 = 2:3 < 0)) V (0 < 0 V 2110 < 1) D J-)) V xw < 0)

qtf0908 0 x ((2:2 + s(x2 exp 1)) x (s(0 + 1) + (x5 + (xio + ^4)))) +i6 + 0<x2x(0x 2+)
qtf0909 (2:5 < ((1 exp(l exp x6 x (1 x 216))) exp(l exp si + si)) exp((l x 0) exp(0 x (s2;2 + 0 x 1))) 3)

33 X5 = s(2?6 + 19 x 1 + 2:5) A X7 = 1 exp Ox 1Ax7+x8 + 0 + 0= (a;2 + 0) exp(0 + 0) =
= (2:3 < sxg 3 (1 + sO < 13 3 1 x 1 < SX2 30 = i7exp 1)V
VO < X7 exp 1) V (1 exp 1 < sO D (52:3 <X6x03l<lVO<xs)VO + (l + 0)<x7)Vl<0)

qtf0910 ((2:7 <s(lxl)3xg<03 (((0 < 0 3 x7 < x8) V sO < 1 exp 0) 3) -L =
= s(0 x 1 + 1 exp 1) < 0 x 2:3 x (0 x 0) x (0 x 2:3))) V 1 < 1 3) x6 < sx8 exp si)
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Depth 10

qtflOOl ((((1 < s(sl + s(ai8 exp £1)) D ((0 < si D (0 < aiio =
= 1 < 0)) V (0 < x8 D 0 < 1) V Zio < x3 D 1) D _L)V
VO < Z3exp((sl + sO) x (0 x (x\ x 1))) D ((si < x2 + 1 D
D 1 = 1 A 0 < x3) V (0 < 1 V 0 < zio D 1) D 1) D -L)V
V(((sz4 < 0 x (sx8 + x10 exp 1) D sO x x4 = 0 A si < sl)V
Vs(0 exp iio) x 0 x si < 0 exp s((0 + 0) x sO)) D X = 0 = OA
A((0 x 0 + 1 < (0 x j;10) exp si D (0 < 1 V x7 < 0) D X) V x$ < xs) D -L))

qtfl002 (1 + (1 + 1) exp xi + x4 + s(sl x 1) = s(l + x4 + 0) A 0 < 1 x 0 =
= 0 < sOexps(l x (s(x2 exp £6 + x2) x (Oexp 1 x 0))))

qtfl003 0 x (s(x9 + 1) exp a?io + 0) + (1 + s(s(s(ai9 x x4) + (0 + x$) x 0 exp x2) + £10)) <
< 0 exp((a:io + (1 + (sx7 exp 1) exp 1 x (2:9 exp sO + (zi x 0) exp 1))) exp
exp(s((0 exp(x8 x 1) + 0) exp(0 + (1 exp 1) exp(0 exp 1))) exp 0))

qtfl004 (xi = 0 A (1 < 1 D 1 exp 0 < 1 exp(((x6 x 1) exp sO) exp s(x7 x a;g)))V
VI < 2:3 exp 0 + sx3) V ((s((0exp l)expO x s(l + xg)) < s(s(s:c6)) + xio D
D 0 < 1 x x7 x 1 x (0 x (0 + 0)) + s0) V s(0 x (1 exp £9) exp(0 exp 0)) = x2A
A(1 x 1) exp 1 < Oexp s(s(a;5 + 0))) J X

qtfl005 x2 exp(xg + X7) < 0 exp s(x3 + kio x (1 x 1 exp(sO x X4 exp 0)))
qtflOOG xio < s(x2 exp((a:2 x s(0 x 2+)) exp 2:3) x 1) x (0 + (sO + 1))
qtfl007 ((((s((0 + X-?) x (1 + x3)) < 0 D X7 + x5 + OexpO + 0 < 1 +' X7)V

V((1 + j;2 < sO D 1 < 1 D 0 < x3) V x3 = 1 exp 0 A 0 exp 1=0 exp 0) D -L) D _L =
= x\ exp sx10 + 1 exp(»7exp(sl + (0 + 1))) + (1 + 1 x xq) < 0) A 0 = sO exp 0 A 15 < 0)

qtfl008 ((((ei < x7 D ((0 < no D 1 < 0) V x7 < x3 V 1 < 1) D X)V
V(z6 x (no x 0) < 1 D (0 < 1 V 1 < 1) D 1) V s(s 1) < 1) D 1 =
= xg < sx4) A (a?i < ((0 x x4) exp(a;7 + 0) x xg + s(»io x (0 x «s))) exp 0 D
D ((0 x (0 x 0) < 12 D 1 = s(0 exp 2:5)) V xio exp si = + 1 + ^5 x lA
Al < x6) J X) V ((((1 x 1) exp xg < sx8 D xe x (1 + x7) — s(0 x 1))V
A0exp(l + (1+0))<0)D1 = ((sx7 exp 0) exp 1) exp x7 = 1 exp(l x (1 + 0))))

qtfl009 (((1 x 0 exp((0 + 0) exp(0 + x4)) < s(x1 exp(x4 x 0)) exp 1 D
D (sx7 x Xg < (0 + 1) x 1 D (1 < 0 V 1 < x7) D X)V
V((1<0D1< 23) V x8 < 0) D -L) V 0 < x4 exp 0 + 1 D
D 0 exp(l exp 1 x (Oxii))+l O5X (Ox(l x 1) exp x3)) D -L =
= s(a;8 x 24) < 0)

qtflOlO s(sl exp 1) < 0 exp 1 + lxl exp(s(sl) exp(a:i + 1)) x x4 D
D s(sO) x (1 x (x\ exp x\ + (si + 0 x 0)) exp 1 + s(s(sl))) =
= s(l x s(s(((x9 x 0) exp 0) exp 1)))

The performance of Nqthm for this sample is described in table G.19. The results for
the simplifiers follow in table G.'20.
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Nqthm

Formula Sample Success rate (%) Role of LP (%)
Depth Size Original Extended Original Extended

sample sample sample sample
3 10 40 40 20 20

4 10 30 50 10 20

5 10 10 80 0 40

6 10 20 30 20 20

7 10 20 50 10 20

8 10 20 40 10 20

9 10 20 20 0 0

10 10 10 40 0 10

Average results 21.3 43.8 8.8 18.8

Nqthm with arithmetical lemmas

Formula Sample Success rate (%) Role of LP (%)
Depth Size Original Extended Original Extended

sample sample sample sample
3 10 40 40 20 20

4 10 30 50 10 20

5 10 10 80 0 40

6 10 20 30 20 20

7 10 20 60 10 20

8 10 30 50 10 10

9 10 20 30 10 10

10 10 10 40 0 10

Average results 22.5 47.5 10.0 18.8

LP linear arithmetic procedure

Table G.19: Success Rates - Randomly generated quantifier-free formulae (I)
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Weaksimplify/1

Formula Sample Distribution (%)
Depth Size c-PrA' &SMA vpra- V

sma UF

3 10 0 0 100 0 0

4 10 10 0 90 0 0

5 10 0 0 100 0 0

6 10 0 0 70 0 30

7 10 0 0 50 20 30
8 10 0 0 40 0 60

9 10 0 0 30 0 70

10 10 0 0 10 0 90

Simplify/I

Formula

Depth
Sample
Size

Distribution (%)
£pra* c-sma ŷ

pra'
V̂
sma UF

3 10 0 0 100 0 0

4 10 10 0 90 0 0

5 10 0 0 100 0 0

6 10 0 0 70 0 30

7 10 0 0 60 10 30

8 10 0 0 40 0 60

9 10 0 0 30 0 70

10 10 0 0 10 0 90

^Pryl" — £prA'
^SMA — £SMA
extension of LPti4.
extension of £sma
undecided formulae

Table G.'20: Success Rates - Randomly generated quantifier-free formulae (II)

V'
^pra'
V
^SMA
V
<->Pta'

^SMA
UF
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Appendix H

Arithmetical Remove Rules

The arithmetical rule base 1ZPA• contains remove rules for all the symbols of PA*
that are deviant with respect to £PrA• and/or CSMA. Table H.l and H.2 respectively
have the total rules and the rule schemes, all of which derived from the definitions
of the corresponding symbols. Partial rules are distributed amongst three tables, H.3
(quantifier-free rules), H.4 (rules applicable to terms) and H.5 (quantifier-introducing
rules). A last table, H.6, exhibits the elements of the arithmetical equality base £P/,
which provides equations for the elimination of disagreements.
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Symbol Rules

> Vi > v2 V2 < Vi
< Vi < v2 (v1 < v2) V (ui = v2)
> V\ > v2 => (v2 < Vi) V (ui = v2)

even even(u) => LLI II +

prime prime(+i) (u2)(v2|vi D (v2 = 1 V v2 = Uj))
prin^ prime1(t?1, v2) => v2 ± 0 A (u3)((w3|ui A 1 < v3) D (v2 < v3))

s s(v) =>• v + 1
double double(u) V + V

Sumn Sum„(ui,..., vn) = vn+1 =t> vn+ l = vi + h vn

| Vi \v2 => I'l / OA (3u3)(u1 X v3 = v2)
pr pr(u) => v — 1

Intermediate Sublanguage

£ = {0,1,+, X,exp, —, half, / , gfc, rmdr, gcd, min, max, <}
n n

Table H.l: Total remove rules

Symbol Rules
- <t>[vl - v2\ => (3v3)(((v2 < Ui A vi - v3 + v2) V (v2 / A »3 = 0)) A

A <t>[v3l(v1 - u2)])

half </>[half(u!)] => {3v2)((v1 = v2 + v2 V Vi = v2 + v2 + 1) A
A (/[VhalfOj)])

Table H.2: Remove rules schemes
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Symbol Rules

< 0 < 0 ±

< 0 < v v ^ 0
< 1 < V => (v 7^ 0) A (v 7^ 1)

+ V\ + V2 < 0 1

+ + V2 = 0 (vi = 0 A v2 = 0)
+ Vi +V2 < 1 => (vi = 0 A v2 = 0)
+ Vi +V2 — I => (vi = 1 A v2 = 0) V (vi = 0 A v2 = 1)
+ V\ + V2 = Vi => v2 = 0
+ Vl + V2 = Vi + V3 => v2 = v3

+ V\ < 1 + v2 => vi = v2 V vi < v2

X v\ x v2 = 0 (vi = 0 V v2 = 0)
X Dl X V2 = 1 => (vi = 1 A v2 = 1)
X Hi x 1)2 = Vl vi = 0 V v2 = 1
X #1 X t)2 = «1 X v3 vi = 0 V v2 = v3

X Vl X V2 = V3 X v2 v2 = 0 V Vi = v3
X #1 X »2 < Vl vi 7^ 0 A v2 = 0
X Vl X V2 < V3 X v2 => v2 0 A vi < v3
X Vl X V2 -f 1 = V3 X v2 => v2 = 1 A Vi + 1 = v3

X Vl < v2 x Vl + v3 => (vi = 0 A v3 7^ 0) V
V (vi ^ 0 A (vi < v3 V (1 < v2 + v3 A v2 7^ 0)))

X vi < v2 x (vi -f v3) => (vi < v2 A Vi + v3 7^ 0) V
V (vi = v2 A vi 7^ 0 A 1 < vi + v3) V
V (v2 < vi A (v2 = 1 A (v3 ^ 0 V 1 < v2)))

exp v\2 = 0 => vi = 0 A v2 7^ 0
exp v?2 = 1 vi = 1 V v2 = 0
exp Vj2 = Vl Vi = 1 V v2 = 1 V (vi = 0 A v2 7^ 0 A v2 7^ 1)
exp

V o

Vj- = v2 Vi = 1 A v2 = 1
exp Vj2 < Vl => v2 = 0 A vi 7^ 0 A Vi 1
exp Vl < Vl2 (vi = 0AV2=0)V(vi T^OAVI 7^ 1 A V2 7^ 0 A V2 7^ 1)
exp Vj2 < v2 => (vi = 0 A v2 7^ 0) V (vi = 1 Av2 ^ 0 Av2 7^ 1)
exp

, Vo

v2 < Vj v2 = 0 V (vi 7^ 0 A vi 7^ 1)

-

ccIICN
1 => (v2 < vi A vi = v2 + v3) V (v2 it. vi A v3 = 0)

- Vl - V2 < v3 => (v2 < vi A vi < v2 + v3) V (v2 it v 1 A v3 ^ 0)
- Vl < v2 - v3 => v3 < v2 A vi + v3 < v2
- Vl + (v2 - v3) < v4 => (v3 < v2 A vi + v2 < v3 + v4) V (v3 ft v2 Avi < v4)
- Vl < V2 + (v3 - v4) (v4 < v3 A vi + v4 < v2 + v3) V (v4 it v3 A Vi < v2)
- Vl + (v2 - v3) = v4 (v3 < v2 A Vi + v2 = v3 + v4) V (v3 it v2 A Vi = v4)
- Vl = V2 + (v3 - v4) => (v4 < v3 A vi + v4 = v2 -f v3) V (v4 it v3 A vi = v2)
- Vl = (v2 - v3) + v4 (v3 < v2 A vi + v3 = v2 + v4) V (v3 it v2 A Vi = v4)

/ vi/v2 = 0 v2 = 0 V Vi < v2

half half(vi) + half(vi) = v2 (v2 = vi + vi) V (v2 = s(vi) + s(vi))

Table H.3: Partial quantifier-free remove rules for atoms
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Symbol Rules

s s(0) => 1
+ v + 0 v

+ 0 + v => v

X v x 0 => 0
X lxi) =>• V

X »xl => V

X 0 x v => 0
X »x0 => 0

exp 1" => 1

exp v° => 1

exp V1 => V

- v — v => 0

Table H.4: Partial remove rules for terms

Symbol Rules

min„ min„(vi,...,t;„) = u„+i => A"=i(u» ^ v"+i) A Vj'=i(vn+i = vj)
max„ maxn (l>i, . . . , Un) — 1 —^ ^ ^n+ 1) A \/ j — 1 (^n+ 1 — Vj )
/ v\/v2 = v3 => ((w2 = 0 V vi < u2) A «3 = 0) V (v2 ^ 0 A ui ^ V2A

A(3w4)(t;4 < V2 A v3 x v2 + v4 = vi))
/ v4/v2 < v3 => ((v2 = 0 V v\ < v2) A 0 < V3) V (n2 7^ 0 A v\ v2A

A(3v4)(3t)5)(t;4 < »2 A 1)5 x t)2 + i4 = «! A »5 < v3))

gfc gfc(vi,v2) = v3 => ((1 tq V prime(ui)) A v3 = tq)V
V(v3|tq A (i>4)((v4|t>i A v2 v4) D v3 •£ v4))

gfc gfc(t)i, v2) < v3 => (3u4)(d4 < v3 A (1 ^ Vi V prime(t)i)) A v4 — i>i)V
V(v4|ui A (t)5)((n5|Di A v2 ■£ v5) D v4 <fi v5))

half half(n) — u =>■ ti = w + uV« = u + ii+l
half half(v) < u => v < u + u

rmdr rmdr(vi, v2) = v3 => (v2 = 0 A v3 = v1)V
V(v2 ^ 0 A (3t)4)(vi = v4 x v2 + v3 A v3 < v2))

rmdr rmdr(i>i, v2) < v3 => (v2 = 0 A < v3) V (i>2 ^ OA
A(3v4)(3n5)(r;i = v4 x v2 + v5 A v5 < v2 A v5 < u3))

gcd gcd(iq, v2) = v3 => v3|vi Au3|v2 A (v4)((t;4|vi A u4|u2) D v4|t>3)
gcd gcd(vi, v2) < v3 => (3v4)(v4 < v3 A v4\v4 A v4\v2 A (v5)((v5|t)i A v3\v2) D v5\v4))

Table H.5: Partial quantified remove rules for atoms
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Equation Condition

V\ V2 — V2 T V\ -

(ui + Vn) + V3 = V\ + (u2 + l>3) -

vx x (v2 x v3) = (v: x v2) x v3 -

Vi X V2 = v2 X Vi -

v x 1 = v -

v° = 1 -

v1 = V -

v1 x (v2 + u3) = (vi X u2) + (?q X v3) -

(tq + v2) x v3 = (uj x v3) + (v2 x v3) -

Vi X (v2 - V3) = (tq X v2) - (tq X v3) -

(iq - V2) X V3 = (tq X v3) - (v2 X v3) -

tq x gcd(v2,v3) = gcd(tq X u2,tq X v3) -

gcd(tq, v2) x v3 = gcd(tq x v3, v2 x v3) -

(tq x v2)V3 = v\3 x v23 -

tq = v2 = v2 = tq

tq + V2 = tq = v2 = 0
tq + v2 — tq + v3 ----- v2 = u3 -

tq x V2 = Vi = v2 = 1 vi ± 0
q X »2 < JJJ = u2 < 1 vi # 0

»i X B2 = »i X »3 = u2 = u3 vi ± 0
tq X V2 — V3 X v2 = tq = v3 ®2 / 0

Table H.6: Elimination equations
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