PERFORMANCE MEASUREMENT AND EVALUATION

OF TIME-SHARED OPERATING SYSTEMS

John Colin Adams

Ph.D.
University of Edinburgh

1977

CONTENTS

Page
Acknowledgements , i
Abstract ' , ‘_ ii
Chapter ; | ' 1
Chapter 2 ' | 26
Chapter 3 66
-Chapter 4 94
Chapter 5 114
éhapter 6) 140
Chapter 7 ’ 168
Appendi;: ' 172

Bibliography 175

Acknowledgements

I would like to acknowledge the
contribution made to my understanding of this subject
by all the other workers.in this field whom I have met
and discussed this topic with over the past six years,
unfortunately it would be impossible to name them ali.
However, I would like to give special thanks to
Professor H. Whitfield for initially interesting me in
this area and to Professor S. Michaelson for his
continued encouragement throughout this work. I
should also like to thank all the péople involved wifh
the EMAS project both in the Department of Computer
Science and the Edinbufgh Regional Computing Centre,
especially Dr. G.J. Burns and Dr. A. McKendrick, of
the ERCC, whose enlightenéd appioach to system
‘management allowed me to carry out the measurement
experiments; G.E. Millard, B.A.C. Gilmore and all the
ERCC staff involved in the definition of the
interactive benéhmark and the construction of the
'stimulator'; and P.b. Stephens of the ERCC for all his

help in tdpics concerning the EMAS resident supervisor.
Finally I would like to thank my supervisor Dr. D.J. Rees

without whose encouragement I should never have completed
this thesis, and my wife Jﬁdy who not only put up with
me, and my odd working hours, throughout this project
without complaint, but also made such an excellent

job of typing this thesis.

ii
Abstract

Time-shared, virtual meméry systems
are very complex and changes in their performance may
be caused by many factors - by variations in the
workload as well as changes in system configﬁration.
The evaluation of these systems can thus‘best be
cafried out by linking results obtained from a
plaﬁnea programme of measurements, taken on the
system, to some model of it. Such a programme of
measurements is best carried out under conditions in
which all the parameters likely to affect the system's
perxformance are reproducible, and under the control of
thebexperimenter. In order that fhis be possible the
‘workload used must be simulated and presented to the
taiget system through some form of automatic

workload driver.

A case study of such a methodology
is presehted in which the system (in this case the
Edinburgh Multi-Access System) is monitored during‘a
controlled exberiment (designed and analysed using
standard techniques in common use in many other branches
of experimental scienCe) and the results so 6btained
used to calibrate and validate a simple simulation
model of the system. This model is then used in

further investigation of the effect of certain

iii

system parameters upon the system performance. The
factors covered by this exercise include the effect
of vafying: main memory size, piocess loading

algorithm and secondary memory characteristics.

CHAPTER 1

Thé class of cbmputei systems addressed
~in this thesis is that of general purpoée, time-shared,
virtual memory systems. Within these, sdme form of
operating systeﬁ controlé the shéring of a set of
centralised computing’reéources - processors,
memories,.file sforage deQices - améngst a large
community of users. Users interact with the system,
and their programmes running therein,'via‘keyboard like
devices, rather than submitting their wofk on decks of
cards?‘or rolls of paper_tapé, to some job reception

- desk whence they will receive their results sometime
later (as in a batch form of operation). These systems
also provide their users with some form of file |
éystem in which programmes and data may be stored; a
large address space or virtual memory [Denning 1970]

in which these programmes may be run and some

mechanism whereby any user's programmes and data may

be sha;ed by, or protected.from,_other users. The range
of work the users may carry out on such systems will

not be resfricted to any one particulaf language or
class of operation as is the case in certain special

purpose systems e.g. JOSS [Bryan 1967].

One of the major motivations for

introducing such a form of system in the early 1960's

was a desire to make the use of computing‘moxe
cthenient to the.programmer. The best way of
achieving this would probably be to give each programmer
his own processor with a Qery,iarge main memory,
however the cost of computer hardware at the time made
this impossible. The solution adopted was to share a
powerful mainframe with some form of virtual memory
amongst several useré, and to divide the available
resources (CPU time, memory space, channel bandwidth)
in‘such a way as to give each user the illusion that

he had a whole, if less powerful, machine dedicated
only to him. Subsequent studies [Gold 1969] have
found that interactive use of compete;s is superior"
to batch use in problem solving, and with the current -
trend of dropping hardware costs relative to software
costs this more efficient use of programmers' time will

become more and more crucial.

The first time-sharing system, in which
each ready to run programme 1is allocated a small
quantum of CPU time in turn, wae the Compatible Time -
Sharing System [Corbato et al. 1962, Cri.siman 1965]
implemented at Massachusetts Institute of Technology
on an IBM 7094. This was also the first true geheral
purpose, multi-access system with users communicating
with the machine viaikeyboard terminals attached by

means of telegraph lines. A similar type of system -

the_CambridQe Multiple-Aecess_Sysfem [Wilkes 1973]
.was.developed af Cambridge University on the TITAN
‘compﬁter. Tﬁese two previous systems did not however
provide virtual memory. - The concept 6f virtual memory,
in which the address spaee used by the pregrammer‘is
split from that used by the hardware of the processor,.
also appeared in the early 1060's. This splitfing of
the address spaces allows eech programmer to use an
address space at least as large as, and often much
larger than, the one available in the physical main
memory of the machine. The two cqmmonest‘mechanisms
employed in providing virtual memory, either
individually or together, are paging (introduced on
the ATLAS computer [Kilburn et al. 1962] at

Manchester University) and segmentation [Dennis 1965].

Systems which employ both time-sharing
and virtual memory include: The Michigan Terminal
System - MIS [Alexander 1972] produced at the
University of Michigan on an IBM 360/67;
the Multiplexed Informatien and Computing System -
MULTICS [Corbato and Vyssotsky 1965, GlaZyer et al. 1965,
Vyssotsky et al. 1965,.Da1ey and Neumann 1965, |
Ossanna et al. 1965, Organick1972, Corbato et al. 1972]
developed at M.I.T. on a GEC 645; the TENEX system
[Bobrow et al. 1972, Murphy 1972] implemented by

BBN on a DEC PDP-10; CP/67 [Meyer and Seawright 1970,

IBM 1970] produced for the IBM 360/67 and VM/370
[IBM 1972] prodﬁced for the IBM 370 series, both at

the IBM Cambridge Scientific Centre.

The Edinburgh Multi-Access System

Thevsystem upon which most of the work
'reported in this thesié is based is the Edinburgh
Multi-Access System - EMAS [Whitfield and Wight 1973,
Rees 1975, Millard et al. 1975, Shelness et al. 1974,
Wight 1975]. EMAS is amply described in the cited
references, but as it plays‘such a central role in the .

succeeding work a brief description will be given here.

EMAS.is a time-shared, virtual memory
Qpe;ating system implemented at Edinburgh University
on aﬁ International Computers Ltd. System 4-75. The
ICL System 4-75 is a byte addressed, third generation
machine similar in strubture and order code to the
IBM 360/67. It offers virtual memory by means of
segmentation and paging, the address space being split
so as to present the programmer with 256 segments,
each of up to 16 pages, each page of 4096 bytes.
Figure 1.1 shows a typical EMAS hardware configuration

at the time of the work reported.

Figure 1.1
. . ICL 4-75 CPU

, _ < 1-M bytes (256
MAIN ' pages)

MEMORY 1- réecond core store

2 way interleaved

8 bytes access

1 or 2 drum channels
(860 K-bytes/sec)

3%x2 M byte drums
20m sec rotation
128 tracks

4 pages/track .

ACTIVE
STORE

75 M bytes
Replaceable
Disc Drives

2x350N5tennReplaceable
Disc Drives

average arm movement
60 m sec :
rotation 40 m sec
transfer rate 256
ARCHIVE STORE | ' K-bytes/sec

2x1600 BPI tape drives
120 K bytes/sec

IMMEDIATE
STORE

I

]

L]
]

INTERACTIVE

COMMUNICATICNS COMMUNICATIONS
NETWORK FRONT END PROCESSOR
(PDP 11/45)

TERMINAL
CONCENTRATORS
(PDP 11/10)

INTERACTIVE

g | | | ‘ | | USERS

TYPICAL EMAS HARDWARE CONFIGURATION *

EMAS is written in the high-levél
language IMP.[Stéphens'1974] and provides a virtual -
memory of 224 byfes for a numbervof simultaneoué
processes (currenflylup to 63). The system maintains
an on-line storage hierarchy of three levels, pages
nofmally being held‘ohly at the outermost - immediatel—
level (currently formed by a 700'M¥byté disc store)
and are moved fo‘the iﬁner'levels - active memory
(curreﬁfly formed from one or more two M-byte drum
stores) and main store (currehtly formed by up to one
M-byte of core storage) - as required. The user
programme has no direct access fo any Input/Output
hardware,.all management of the three tier storage
hierarchy being carried out by the syétem and all
unit record I/0 being spooled. There is also an
automatic archiving system [Wight 1975)] which allows
currently unused files to be removed from immediate
store to archive storage (magnetic tape) and restored
therefrom as required. A form of working set policy
[Denning 1968] is used in the management of main memory.
This is based on usage information obtained from |
read/write markers associéted,with each physical core
page. Sharing is also supported at all levels of

the on-line storage hierarchy.

The operating system is itself

hierarchically ordered and message based. The logical

structure of the system is shéwn ianigure 1.2. All
cbmmuﬁications between processes - both system and
user processes - take place via a central message
péssing area. All supervisor processes (oxr services)
which have a message or request outstanding also have
aﬁ entxy in one céntral quehe - the MAIN-Q. One of the
hajor functions of thebinﬁermost level of the system -
the KERNEL is to remove entries from this queue and
call the appropr;ate service. When there are‘no
outstanding'superVisor requests then the KERNEL will
load the currently selected user process td the CPU
where it will be allowed to remain for a maximum of a
time-slice (IOO.milliseconds at present) at a time.
The other major function of the KERNEL is to field

inteﬁupts and translate them into messages to the

Appropriate handling service.

One level out from the KERNEL are the
supervisor services themselves. The services take

care of two major functions:

Figure 1.2

EMAS LOGICAL STRUCTURE

/
/
/
/‘3/
=
/ 2
&
l
Z |
I
‘ |
command
interpretation

file definition

~N

PRIVILEGED

USER
PROGRAMMES

[SUB
EM

USER

DIRECTOR PROCESSES

(PAGED)

UPERVISOR SERVICES

defice

KERNEL
handling

inteftupt -
handling .

virtua
procegsor
suppont

- supervisor
‘service
dispatching

(UNPAGED)

interactive communications
file system maintenance

DEVICE HANDLING - The handiing of all paged .
- .I/O or interactive
'communications hardware
attached.to the system,
scheduling tiansfer requests
and carrying out ali

necessary. device control.

VIRTUAL PROCESSOR SUPPORT - The allocation
| ‘and management of the
available resouxces
(CPU time, main and active
storage'space and channel
bandwidth) between competing
:E’P&Eére,s.f&es:‘?:f and the management

of process virtual memories.

The KERNEL and all supervisor services form the resident
supervisor which is always in main memory and runs

unpaged - using real addresses.

At the next level out run the user
processes. Each user process consists of two levels:
the paged gupervisor, or DIRECTOR tRees 1975],_and
the normal user process. DIRECTOR takes up 31 segmenfs
of the 255 segment virtual memory available to each user

process (segment O is never used because of a

pecﬁliAIity'of,the hardWare).‘ It handles.ali interactive
éommunications messages, maintains the file system
and‘takes care of fhe allocation of immediate
(tertiary) memory spacé. .The_resideht supervisor

knows nothing of fileé but merely handles page
transfers. It is one of the fﬁnétions of the"'
‘DIRECTOR to associate virtual memory addrésses with
files resident in,immédiate.memory when requestedvto
do so by a u;ef (the files are.not permanently

mapped into'the.virtual address space as is thé-case
in MULTICS). Most of thé DIRECTOR code and data space
(interactive communicatiéns buffers ahd file indices)
is shared‘amongst'all user processes. The only
unshared segment is the master segment thch contains
all local variables and tables for that process, in |
particular, one page of this segment - the master page -
holds various tables and variables used by the

resident supervisor and must always be in main memory
when‘the process is on the CPU. Those segments which
constitute DIRECTOR may not be accessed by normal user
programmes (though the DIRECTOR may access thé full
virtual memory space) and those entries in the process!
segment table are masked out when normal user

programmes are running.

Running within the user level of the

process is the subsystem [Millard et al. 1975] which

'take%.care of user command interprététibn, file
definition,‘linking and loading and logical 1/0
vmapping. At a level out frombthis'run the users!
nrogramnes; All cbmmands on the system are merely
external‘routineé which have an entry in one of the
user's librarieéf A user nay add new comménd§ by
‘compiling new external routines and making an entry
in an~appropriéte library, orx may call existing

commands as routines from within his programme.

Certain téxecutive processes' run at
the level of user processes and perform such functions
as 1/0 spdoiing; bafch scheduling, archive storage
control and the running of engineering'test
programmes. Though thése are essentially user
" processes they have certain privileges and are

scheduled slightly differently by the supervisor.

Scheduling Within Resident Supervisor

The majority of the work presented later
will concentrate upon the workings of fhe resident
supervisor and the scheduling élgorithms implemented
therein [Shelness et al. 1974]. An overview of these

algorithms is now given.

All process scheduling within the system

10

is téblevdriVen fro@ an‘entity_knqwn as the category
téblé. 'Each.pi0cess knoWn'fo‘the system haé assigned
té it a category dependent upon the recent past

history of that process. vAssociated with each category

are the following attributes:

1) A set of resource constraints governing the
amount'of-CPU time,bmain memory and active
memor&'which each process of that categofy
may consume during a period of main memory

residency.
2) A priority level.

3) A time interval (known as the strobe time)
associated with calculation of the

working set.

4) A set of transitions to other categories
dependent upon the actions of the process

during its next main memory residency.

During the period covered EMAS had 20 different
categories. The values contained in this category
table are shown in Table 1.1. All normal user
processes start in category 1 and thereafter use

-

categories 5-20. Categories 2-4 are reserved for the

Table 1.1

EMAS Category Table (EMAS Version 802)
CAT PRIORITY CORE A.s. A.s. NCY1 NCY2 NCY3 NCY4 RESIbENCY'STﬁOBE
ALLOWANCE MAX - MIN | | CPU INTERVAL
(PAGES) (PAGES) (PAGES) ~ (SECS) (SECS)
1 1 50 - 80 50 17 15 11 - 1a | 1 0-125
> 1 20 80 50 3 2 2 2 05 0-5
3 1 30 : 80 50 4 .3. , 2 7 3 1 1
4 1 50 . Aao 50 4 4 3 4 2 0-5
5 1 20 . 80 - 50 8 6 5 5 0-5 0-5
6 4 20 80 50 10 7 6 5 4 1
7 4 20 80 40 10 7 8 5 10 1
8 1 30 80 50 11 9 5 8 1 05
9 4 30 80 50 13 10 6 8 10 1
10 4 30 . 80 45 13 10 7 8 . 6 1
11 2 40 80 50 14 12 8 11 1 1
12 4 40 80 50 16 13 9 11 10 1

(CONTINUED)

13
14
15
16
17
18
19

20

NCY2

NCY3

NCY4

PRIORITY CORE A.S. A.S. NCY1 NCY2 NCY3 NCY4 ~ RESIDENCY STROBE

ALLOWANCE MAX MIN | CPU . INTERVAL
(PAGES) (PAGES) (PAGES) . . (SBCS) (SBCS)
5 - 40 80 50 16 13 10 11 12 1
2 50 80 50 17 15 11 14 1 1
4 50 - 80 50 19 16 12 14 10 1
5 50 80 50 . 19 16 13 14 10 -1
3 60 128 64 20 18 14 172 05
4 60 128 64 20 19 15 .>17 7 05
5 60 128 64 20 19 16 17 s o1
3 62 128 64 20 18 15 17 2 o0-25-
MAX | Maximum Active Sfore Allowance

MIN Minimum Active Store Allowance
Next Categdry if Process runs out of main memory
Next Category if Précess exceeds CPU time allowance
As NCY2Z2 but has usea less than the next smallest main memory allowance

Next Category if Process goes to sleep

11
‘executive processes.

Figure 1.3 shows the major states and
supervisor queues involved in the handling of processes
on the‘system. Each process known to the system exists

in one of three states:

a) ASLEEP ' = awaiting user input or the
freeing of output buffer

space i.e. in terminal wait

b) AWAKE - awaiting allocation of some

system Iesoﬁrce
c) 'PROCESSING - on CPU

Eachlprocesé will also be resident at up to a certain
level in the storage hierarchy: immédiate, active‘ |
or central memory. Thus a process which wakes up‘
resident only in immediate memory is first queued in
the. Active Stofe Queue to await an allocation of
active storage. When an allocation of active store
has been given (which at this poinf involves nb |
identification of the'pafticulax phyéical active store
pages to be used) the process will be placed in one of
five core queues according to its current category's

priority. These core queues are currently serviced

~ Figure 1.3

'EMAS PROCESS MANAGEMENT MODEL
STARTS
STOPS
74 b
ASLEEP ACTIVE é
ON = STORE °
DISC . QUEUE
ACTIVE .
TAKE <3 2% <]
QUEUEY (D
. ' . R
ASLEEP . - CORE QUEUES B ﬁ'
ON =1 1] [2] [3] &l Ls] <
DRUM [.
B
PRE -
LOADS
SUS -
PENDED|
T 1
0 V 0
: c
o)
: R
RUN QUEUES E
ASLEEP _
IN CPU
CORE 0
I PAGE
' WAIT
< ~WS o~
— EXIT =
AWAITS AWAITS PROCESS ING
USER SYSTEM
INPUT RESOURCE

12

r.aécording to a priofity scheme whiéh assigns the
,pfobability of'beiﬁg selected as 39/64, 17/64,
5/64,‘1/32; 1/64 reépeétivély to the five priority
levels. Once‘seleCted from its Coré queue the process
is then held until it can be given its full allocation
~of main memory‘(again defined by its current category);
Only when its full_allocation of main memory is
available may the pfocess enter the multiprégramming
set, and the contents of its current working set
(which will always consist of at least the master
page) will then be transferred (preloaded) into,maiﬁ
memoxy. The systém thus carries out -a scheme of
working set replacement. When all of the process!
working set is residenf in main memory (and not
- before) thé proéess is placed on one of two run queues
to compefe‘for allocation of the CPU. All processes
. belonging to categories in the lower three priority
levels go onto run queue one, whilst all processes
in categories of the top two priority levels are
placed on run queue two. The run queues are
serviced aécording to an abgélute priority scheme
in which run queue one is always serviced first, and
if any process from run queue‘two is holding the CPU
when a process arrives for run queue one, then the
arriving run queué one process will preempt the CPU
process, even if that process has not completed a

time-slice. Only processes which are ready to take

13

the CPU are held in the run queues. Once on the CPU
the procéss may page fault'and add a page to its
working set from eitheftimmediafe store, active store
or maiﬁ'ﬁemory;(for shared pages or new pagés
tcreated' in ﬁain memoxry). The process may only hold

the CPU for a maximum of a time-slice at a time.

Whenever a proceés has consumed a
full strobe iﬁterval of CPU time during any residency,
then its working set is recalculated and those pages
no longer used are released. A process will remain
»Iesident in main memory until it goes to sleep or
overruns'one of its éategory allowances. It will then
be rescheduled (pérhapé into a new category) have its
WOrking set reca;culated ané be removed from main
memory before being placed on an appropriate
schedulerx queuevif_it ié still awake. Whenever a
process is to be removea from active to immediate
store.it is first queued in the active take queue4
which essentially allocates channel éapacity amongst
those processes wishing to take this route (which
involves pages béing transferred first to main memory
from active memory, then from main memory to immediate
memory). A form of working set algorithm is also
applied to the management of a process active storage
allocation, the algorithm currently selects pages

dependent upon usage over the last four main memory

14

'reSidehcies,: There are four algorithms which-may'be
used, the choice being dependent upon the current

level of loading on the active store.

There are certain additions and
modifications to the basic scheme. Any process which
remains'asleep for a long'period of time
(éight minutes) is removéd frdm_acti&e store. Any
‘process which remains awake for a‘certain intérval
- (two minutes of real time) without interactiné with
fhe console is deemed no longer to be an interactiﬁe
proceés and is placed in the penalty qu. This means
that when if comes to the front of a non empty core
queue it will be returnedvto thé rear 6f that queue
several times'(currenfly eight) before being removed.
Whenever the process interacts with the user its
penalty box status is removed. As it is extremely
-improbable that all the members of the |
multiprogramming set will be using their full main
memory allowance at any given instant, and to take
account of Sharing,.the main memory is over allocated
by a certaiﬁ amount. Another modification concerns
preloading. If it is found that the next candidate for
entry to the multiprogramming set cannot be given ifs
full main mémory allowance (eﬁen with the over
allocation scheme) but that there is adequate physical

space to allow that process working set to be

15

preloaded'(and étiillleaVe some free space for use_By
other membefs.of the MPS) this'iparfiali preload is
allowed to procéed. . If the partial preload has
completed and pages still have not been released to
make up the process! full allocation, but its current
allocation is greater thah its working set size and a
reasonéblé number of physicai core pages are still

- free, thgn this process is allowed to enter the run
queues, and acts as ainormal MPS.process which has.a
small main memoxry allocation. However, if this
process! allocation is ohly equal to its working set
size, or the number of physical core pages free is
less than a safety limit, then it is suspended until
adequate pages ére released to give it its full
allocation. There is, of course;‘a maximum of one
partially preloaded process in the MPS at any instant,
and this process has priority for the allocation of
an& freed central memory space. If a process
overruns its current main memory allowance without
ever having been strobed (i.e..having its working set
recalculated) and, more than half its current pages

were brought in by preloading, then there is a chance
that the wrong pages were preloaded. To ovexcome

this an EXTRA-STROBE (working set recalculation) is
carried out-at this point and if sufficient pages are

removed, this process is allowed to continue.

16

'To a11ow_the availaﬁie active storage
space to be used fully, one of the replaceable
disc drives is used as though it were.a drum i.e.
ité storage capacity space forms part of the active
storége. Ailoéation of active stofage pages is
handled so that all the drums are cgnsidered as
though they formed anlinear array of pages with
this replaceable disc (known as the pseudo-drum)
formingAfhe‘higher addresses. The lowest free page
available is always allocated first, thﬁs the drums
which correspond to the lowest active store addresses

are képt as fully used as possible.

The main memory management scheme only
allows a process to enter the MPS if it is estimated
that there is sufficient central memory availabie for
it to run efficiently. All decisions on the
management of that process! ailocation are then
reached with consideration being taken only of that
process! behaviour, and any process which is found to
have a working set larger than its currént main memory
allocation is removed. This completely removes the

phenomenon of thrashing [Denning 1968] which is due

to an overcommitment of main memory. It also provides
for the time-sharing of main memory by placing limits
on the amount of time any process may remain in main

memory. The algorithms are designed to favour highly

17

ihteractivevprocesses by fimé-sharihg the main memory
and by the priority scheme which gives more iesidency
periods to processes which require smaller amounts of

main memory and very little CPU time.

Quantitative Evaluation Techniques

Performance evaluation is generally
carried out for three major reasons [Lucas 1971]:
1) The selection of a new system - choosing
from a set of possible alternatives which
system best meets a user's performance/cost

specifications.

2) The projection of the performance of a new
system - estimating the performance of an
as yet un-implemented system i.e. as an aid

in the system design process.

3) The forcasting of the impact of possible
changes-in an existing system - changing
a hardware or software component oxr the
user load‘applied_to the system i.e. system

tuning or balancing.

Quantitative evaluation has grown

18

increasingly méré difficult'with the évolution of
tiqé-shared,ivirtﬁalvﬁemory éystems. The systeﬁs
themsélves have grown more complex and‘the’range‘of
progiammés exeéuted ﬁpon them has become wider and

.more varied.

-In‘the earliest days of computing a
'Simple figure of merit was considered adequate as a
means of'judging the pérformance Qf’any system.
In the case of *scientific systemé' the figure of
-merit would often be based 6n the raw power of the
-central'processing unit. This number céuld be
obtained by calculating the execution time of a certain
instruction stream, the mixvof variogs classes of
instruction iﬁcluded would represent a rough
characterisation of the anticipated workload, or be
drawn‘ffom some generally accepted mix [Gibson 1970].
Meanwhile for more 'commercially orientated' data |
processing systems the figure of merit would be

based upon some measure of I/0 throughput capacity.

‘As early 0peratihg‘systems were
introduced their Batch type of operation was éften
judged in terms of the time taken to process a chosen
collection of jobs or benchmark. The benchmark would
again form a characterisation of the expected workloads

in terms of the proportions of the types of jobs it

19

contained. OtherISimplé Oné figuré measures such:as
job thfoughput iate or brocessot utilisation level
were‘also oftén used. .

However, as the architecture of the
systems has becomé,ihéreasingly more complex it has
become clear that ho single figure of merit, ér evén
any small number of figures ofAmerit, wili‘be adequate
to'describe a system's performahce [Grenader and
Ts#o 1972], though several continue to bé proposed

[Merill 1975, Steven 1975].

Within an interactive system the only
pure performance metric which every user applies is
that of response time. Response time is loosely
‘defined as.the time.a user has to wait,.frqm the
moment he gives a commanq td'the system, until the
moment at which he receives an answer. The disfribution
of these responses will be of interest rather than
simply the meah or median response. Studies
[Millef 1968] of human reactions in the
mén—computer interaction cycle have shown that if a
response is greater'than two seconds then the user
begins to lose concentration, and if a response is
greater than 15~secqnds then the use of the computer

ceases to be interactive.

.20

No performance measure upén‘such
systems is meaningfui unless accompanied by some
measufés‘of the dutstanding load upon the'syétem
e.g. proceésot utilisations, mémory utilisations,
numbexr of simulténeous users, mean working set sizes,
mean time bétween‘page faults, supervisor overheads.
The problem of eﬁaluation is not just to attach some
figure ofnmérit to a system or particular system
configuration, bnt to attribute the observed
performance to the various contributing factors and
identify those factors which are most Significant.
Performance and load measures will vary from system
to system and will depend.upon tne problem being
‘addressed. Suitable metrics for time-shared virtual

memory systems will be introduced later.

. The two major aids to evaluation are

modelling and measurement.
Modelling

Because of the inhe;ent complexity of the
systems under consideration the technique of modelling
which produces a much simplified, abstract
representation of the system has an obvious appeal.
Indeed, no evaluation of a system could proceed

without at least the existence of some conceptual

..21‘

.model of how the sysfem fﬁnétions.‘ ﬁigure 1.3'¢ou1d be
regarded as such a conéeptuél'model of the working of_
the EMAS process scheduling scheme. The value of a
model may.not-only lie in'thé quantitativé resulfs'

it produces, but'the.actual formulation of the model
itself, inVolving as it neceSsarily does the stripping
away of a mass of detail, may reveal the major

components of the system and their interrelationships.

Quantitative modelling techniques fall

under two headings:

Simulation models

Mathematical models.

Simuiation models [Leroudier and
Parent 1976] consist of computer programmes, often
written in a special purpose simulation language
[Dahl and Nygaard 1966], or‘using a simulation
package written in a high level language
[Dimsdale and Markowitz 1964]):. The represenfation
of the system being modelled is embeddgd in the
simulation programme. Using this technique it is
possible to model all the major mechanisms involved
in computer s&stems e.g. parallelism, variance in user
programme characteristics, storage capacities, various

servicing disciplines and various service time

'i22 .

'chafécte:iéficéi.1Howevéi, simulatién(is often
ériticiéédifoi béihg ekpenéive Andvtime édnsuﬁing
in both develop@eht_aﬁd run times. The time and
ekpense involved in certain cases may, in fact,
make this approach imﬁractical; However when this
is not the case simulation does pIovidé the ability
to model whatever'phenomenon may be considered'

significant.

Mathematical modelling mainly centres
round probabilistic models and‘more‘particulaply
queueing theory. ihere has been considerable work
in this area. The research has erlved from the
_study of single queues [McKinney 1968, Chang 1950]
to the study of various networks of queues |
[Jéckson 1963, Gordon and Newell 1967, Buzen 1973,
Gelenbé 1975, Baskett et al. 1975, Gelenbe 1976].
Fbllowing from the classic analysis ofVCISS
[Scherrv1965] there have been attempts to apply such
models to the evaluation of time-shared, virtual
memory systems‘viz MTS [Moore 1971)] and MULTICS
[Sekino 1972) but it is only recentl? that such models
have been put to practical use with the development
and extensive use of a model of IBM's VM/370 system
[Baxrd 1975, Bard 1976, Bard 1977]. Queueing network
models still suffer fro@ several limitations: there

is no direct way to model storage, service disciplines

'and'éervice time_distfibutions are still limited.
Howevér,vthey may pIOVide a useful meahs of studying

the gross performance characteristics of such systems.

Measurement

The othér major aid td évaludtion ié
that of méasuremeht and experimeﬁtation‘on existing
systems'i.e. thevempirical approach. The only way
in which significant system phenomena 4 may be identified
. in the first instant is through a procedure of
empirical evaluation. Measurements from such a
‘process may then be used in the essential step of
vaiidating current models and suggestiqg éhanges in

future models of the system.

. ' - Several drawbacks to such an'approaéh
do exist. It is often difficult.to thain ;ccurate
measurement? of particular phenomen?%’of interest
due to inadequate system instrumentation, or due to
gross interference caused by the measurement
technique. The opposite extremé is also often a
problem - fhe sheer mass of data produced by some
méasurement tools masking the trends the experimenter
is searching>for. Measurements taken upon an
~operational system will depend crucially upon the

characteristics of the workload existing at the time

24

-the mé$suréments‘were taken. These chahges.in user
workload which take place'from day to déy, or hour.fo
hour and minute to minute;-often prevent the
acﬁuisition of.é;consistent set'éf meashrements, from
which changes in performance may bé attributed tg
specific system changes. A rigorous approachAto
system measurement is oné of the necessary paths to

be followed when attempting to discover just how

such systems do function.

The ideal approach to evaluation
is an iterative one with results from a controlled
set of experiments being uséd ih a model which,
when validated and calibrated by this data, will

suggest new areas for experimentation.

The main aim of the work carried out
in this thesis is to increase, invsome way, the
understanding of the mechanisms at work ‘in
time-shared, virtual memory systems, and to be able
to quantify the impact of any major component upon
the overall system performance. This is carried out
by the evaluatiqn of the étructure (and design) of
one particular system (EMAS). The evaluation is
thus empirically based and concentrates upon the
techniques and aids necessary in such an exercise.

The monitoring tools required are discussed first

25

_(Cﬁabfer 2). Théh the eleﬁents neceséary to carry out
é'programme of'coﬁfrdliedvéxperimentation on such
-rsystems.§re desgriﬁed and the execution of such ah
experiment is repo#ted (Chapterx 3).' The results from
ithis éxperiment_are presentéd in detail

(Chapters 4 and 5) and used in the calibration and
validation of a simple simulatﬁm*model. This model

is then'used in thé further investigation of

certain of the parameters affecting system perférmance
(Chapter 6). Considering the three main areas of
application of performance evaluation given at the
Beginning of this section, the techniques used and
the approach taken fall under heading 3 - systen
tuning and balancing. However the results obtained
and the techniques applied will also be of use in

the other two areas.

26

ChaEter'Z

A cémprehensive andveffective set of
monitoring tools is an essential aid in any empirical
investigation of a system's performance. An ideal
monitoring aid would be flexible and have the ability
to obtain all required data (and oﬂly-that data
required) with absolute accuracy. This ideal
ﬁonitor would not, of éourse;‘interfeié with the
system in any way either by édding to the
supervisor overhead, or changing the behaviour of
user processes. Unfortunately, in {hé'case of
.time—shared, virtual memory (T.S.V.M.) systems such
a monitor does not exist. In this chapter available
monitoring techniques are‘reviewed, and those
implemented in the EMAS reSident supervisor are

describedf

Before any measure is carried out a
clear view must exist of exactly what data is required
and what use this data is to be put. Any possible
interference caused by the method of measurement must
also be known and taken into account. Data may be
obtained upon the performance of the system.itself or
the behaviour of the user processes running thereon,
i.e. the workload. The distinction between workload

and pure performance measures is often blurred, and

27

the two are always related. Typical system performance

results are often presented on:-
a) Response time distributions.

b) Utilisation levels of major system
. components (e.g. CPU's, memories, channels,

supervisor modules).

c) Distributions of queue lengths or wait times

for various system resources.

Typical measures of user process characteristics

include:-

a) Distribution of the time the processes spend

in terminal wait state (e.g. think times).

b) Space requirements of processes at various

. levels of storage hierarchy.

c) Patterns of access within virtual memories
(e.g. size distribution and contents of

working sets, distribution of times between

page faults).

28

d) Distribution of resources required by each

interaction. -
_e)‘ Distribution of interaction classes.
In the following, the terms "target system" or

"host system" will be used to mean the system being

measured or experimented with.

Monitoring Techniques

A comprehensive review of current
monitoring techniques exists in the literature
[Nutt 1975], so only a brief summary of the advantages
and disadvantages found in the majox classes of

monitor is given here.
Three classes of monitor exist:-

1) Hardware Monitors

2) Software Monitors

3) Hybrid Monitors

29

1) Harxdware Monitors

A Hardware Monitor consists of a
distinét electrical device (generallvaith.its own
clock and storage media) connected to the target
system's'hardwére by a set of one or more probes.
‘Signals received via these probes'afe interpreted
by the device and data is then analysed on line,
or logged (usualif to magnetic tape) for later off
line analysis. .The probes uséd are usually of such
a design that they cause no significant perthrbations
in the'circuitry to which they are attached. ' This
gives the hardWére monitor its great advantage over
'all other techniques: it is esseﬁfially
non—interfering, inducing no supervisor overhead
or change of user behaviour in the target system.
The accuracy obtained‘by this method is also usually-
dependent upon the precision of clock incorporated
in the monitor, and not upon the clock facilities in

the host mainframe.

The complexity of such devices varies
greatly from the extremely simple - monitoring the
existence of a single signal (e.g. a trace chart
recorder connected to a processor's idle light
[Stang 1969]) - to the other end of the spectrum

where a fully interactive mini computer is

30

employed - with special computational as well as
‘interface hardware, capable of simultaneously
recording and analysing a very 1aige number of

interrelated events [Aschenbrenner et al. 1971].

Such monitors haye been found very
useful in obtainingAsummary data such as
utilisation levels and degree of overlap on certain
hardware compoﬁents (e.g. CPU's and channels) orx
execution counts on the instructions in the
mainfraﬁe's repefloire [Schreiber 1976]. However,
it is often impossible to establish reiationships
between the data obtained and-the causes for such
levels of performance - user behaviour patterns and
software‘scheduling algorithms. - On more complex
mainframes the correct placement of probes will
- become more difficult, and skilled engineering
guidance will be required. The mainframe will also
probably have to be taken out of service for a time
whilst such a device is attached. With the
~introduction of mainframes using more and more
Large Scale integration‘(i.e.‘machines such as the
Amdahl 470/V6) the placement of probes Qill become
more and more difficult, and certain data may no

longer be available for collection by this method.

The characteristics of hardware

31

‘monitors would seem to maké.them best suited as an
aid where the pure perforﬁance of fhe hardware only
is of interest e.g. couhté of different types of
inétructiohs,‘deéree of overlép of cértaihiﬁardware
deQices. fInIthe case of I.S.V.M;_systemé, where |
the éomplex'charécteristics of the user wérkload
vmust alwaYs bevtaken into account,‘thé use of pure
hardware monitors aione is of limited value. They
have, however, been applied to»some time-shared
systems such as CDC's Kronos system [Lindsay 1976].
The advantages of hardware monitors seem bettex
suited to special purpose systems where a regular,l
well understood workload exists [Partridge and
card 1976] in such an environment tﬁéy may even be
used as an aid in programme optimisation

[Fryer 1973]. Several types of hardware monitor

are now commercially available.

2) Software Monitors

Software monitors provide an extremely
flexible and popular method of obtaining performance
data. They will, however, always have the great
drawback that they necessarily interfere with the
térget system. They form part of the system, occupy
memoxy space for code and data, consume processor power

in execution and often use channel capacity in storing

32

data. The accuracy ofvahy softwate monitor will usually
be limited by the resolution of the hardware clock

available on the mainframe.

~ A great range of soffwaxe monitors have
been implemented on various systemS'(indeed nearly every
system contains a softwaré @onitor.in termé of the
accounting log). As a broad classification they can
be divided according to their recording discipline

into:

a) Sampling Monitors
and

b) Continuous-recording or event monitors

' and, according to their storage discipline (i.e. the
way in which data is disposed of once it has been

collected), into:

c) Accumulating monitors
and

d) Tracing monitors.

a) Sampling Monitors

Sampling monitors are perhaps amongst

the simplest to implement, and should impose the least

33

overhead on the taréetvsystemg As fhe.neme indicatee,

- the monitor is only éctivated at certain times, either
at regular intervals using some form of alarm cloek
interupt, or by the occu:rence_of some system event,
such as the idle process gaining the CPU._ The metering
routine thus activated will then obtain the required
data and save it. This routine is normally distinct
from the rest of the farget syetem and so has the
advantages of modularity (easy renoval or modification).
»Also; as they are not active all. the time they should
impose less of an overhead than other monitors. The
argument against using a sampling technique is that
the aecuracy will depend upon the number of samples
and the randomness of the sample. Very few. sampling
mqnitors obtain their samples at truly system
independent random intervals, so the result could be
affected by periodic or other phenomenaynwithin the
target system. This could haQe 5 Qefy eignifieant
effect upon the accuracy of the resulte obtained.
Theee monitors have been used in the.investigation of
code utilisation by sampling the programme countex
[Waite 1973], and are often used to obtain approximate
distributions of eystem queue lengths [Jalics 1973,

Gonzales 1975].

b) Event Monitors

. Event ﬁonitors‘a;e usﬁally'formed by
a set of software probeé scattered throughout the
operating system and activated for periods of time by
the setting of a group of trigger variablés; These
probes are necessarily séattefed thfoughout the system;
and thus not easily modified. Although‘dafa is only
gathered when a triggef is set and the flow of control
passes a probe; the trigger must be tested every timé
the probe is encountéred, which means there will be a
certain overhead even when no data is being collected.
Event monitors, however; do not suffer from any |
suspicions about sampling accuracy, their accuracy
only being 1iﬁited by the resolution of the éloék and

the speed of the probe.

-Storage Discipline

Monitors may be further classified
according to their actions on obtaining a particular
item of d?ta. They may infegrate this item into a
table in main memory holding a summary of the
performance data (accumulating monitors). This involves
carrying out a small amount of processing on each
item of data when itbis collected. The accumulated

- table is then output (perhaps involving further

35

piocessing) regularly aftér comparativeiy long periods
or on demand. The alternativé is to do no on.line
processing on collection of.dafa,'but to output each
item immediately, usually with some form of time stamp
(tracing monitors). The accumulating method will tend
to use more CPU time and édde'space - .though a tracing
monitor will use CPU in orgénising buffers and
transfers. The fable space used by an accumulating
monitor tends to be a constaht overhead, whilst
tracing monitors may claim buffers from a system

wide pool only for the duration of the measurements.
Tracihg monitors will consume channel capacity, often
require exclusive usé of a device (e;g. tape drive)
and fréquently pioduce'great volumes of output.
Hdweve:, the data so produced allows greater
flexibility as it may be analysed in several different

ways to produce a variety of results.

Software monitoring is certainly the
most popular method of measurement. It involves no
acquisition of additional hardware, and can uéually be
implemented easily by the.system programmers. They
also have the advantage of being able to observe the
cause énd efféct of certain transieﬁt events which a
hardware monitor cannot. Software monitors are normally
highly system dependent, though the principles

involved may be transportable between different

36

fopérating systems, the monitor itself rarely can.

3) Hybrid Monitors

The iogical merging of both hardﬁare
and SOftWare monitoring techniques results in the most
' recent monitoring methéd - that of thé hybrid monifor.
Ih_this method a éomplex hafdware monitor, usuaily
conéisting of a mini computer with associated probes,
is however also attached to the host system.as a
normal device via some form of channel [Rudd 1972,
Aschenbrenner et al. 1971, Estrin et al. 1972,

Schwemm 1972]. This allows software ﬁonitoring aids
implemented within the system to communicate with the
mini computer. Thﬁs whilst the majority of the data
may be obtained in a nén interfering fashion by the
hardware monitor part, further information, allowing
this data to be associated with various phenomenasy
within the system, may be produced by the'software
aids communicating via the channel. This method does,
of course, suffer from drawbacks of_bpth hardware and
software monitors: engineering knowledge is required
for the correct placement of the probes; the host
system may have to be taken out of service for the
atfachment of such a device; the software aids will
necessarily interfere with the system; much knowledge

of the software structure will be necessary for the

37

gatheringvof fhe correét‘dafa in the most efficienf.
fashion. However, hybrid monitoring should still
reduce overheéd, and»with many of the large mainframes
now being produced; sucﬁ as fhe DEC KL 10 and KL20
systems [DEC‘1977], cdntainiﬁg mini computers with
access to mosf of the important iegisters and parts

of the memory (i.e. a:possible built-in hybrid
monitor), it would seem fo‘indicate that greater use

could be made of hybrid monitors in the future.

One class of system performance
measurement devices not covered here is that of the
remote terminal emulator. This will be considered in

the next chapter.

Virtual Memory System Monitors

The majority of instrumentation
réported on these systems is carried out in software.
Very little use appears to.have been made of hardware
monitors; almost certainly because of this difficulty
in establishing relationships between observed
performance and the factors which contribute to it.
One reported case of what may be classified as hybrid
monitoring does take placé on MULTICS [Saltzer and
Gintell 1970) with a PDP-8 being used with special

access to the host systems tables and some registers.

38

However, as the data rate between the monitor and the
host system is very low (less than 60 words/second)
the full potential of this technique has probably not

been realised.

As the behaviour of user processes is
of such intefest>an ideal monitor would be one which]
'aliows the gollection of data on précess behaviour as
well as the manner in which processes are handled by
the scheduling algorithms. An event trace monitor
which records an event each time a process moves
significantly either within its virtual memory or
within the system queues would appear to be one
solution. The Data Collection Facility
[Alexander 1975, Pinkerton 1969] on MTS is such.a
monitor. Implemented within the code of the resident
supervisor the DCF allows the tracing of a set of
.eVents of one or more specified processes. The type of
events which may be recorded allow data to be obtained

on:

i) The queueing and removal from queues of

processes by the supervisor.

ii) The changing of status of monitored processes.

39

iii) All aspects of page movement in and out of
physrcal core, and the mlgratlon of pages

to the outer levels of the hlerarchy.

iv) The claiming and freeing of pages in

virtual memory.
v) All interjupts generated on the system.
vi) The opening of files by processes.

vii) The starting and stopping of user tasks

on the systemn.

A very comprehensive set of possible data items. As
MTS is written in machine code some dlfflculty is
involved in adding new events [Alexander 1977]1. The
vast amounts of data collected during any run are
recorded on magnetic tape for off-line analysis. A
data reduction programme - the Data,Analysis Programme -
is also available to aid the investigator in the
interpretation of the data. A very sophisticated

set of monitoring aids have been built into

IBM's VM/370 system {Callaway 1975], allowing both
sampling and event trace monitoring at various levels
of detail in the system. This alse has an associated

Statistics Generating Programme to aid analysis.

40

The VM/370 pé:formancevmonitorvmay be bought by
_customers'running VM/370 to assist in funing and

balancing of their system.

MULTICS c0ntéins a variety of
monitoring facilities to aid in the measurement of
. process characteristics [Saltzer and Gintell 1970].
Surprisingly,_howéver, no generalised event trace
monitor has ever been implemented, although a comment
is passed in the Saltzer and Gintell.paper that oné
would have been useful. The monitoring aids which

have been implemented include:

i)' A sampling monitor accumulating

distributions of the segments used.

ii) A count which may be kept of all missing
pages and segments encountered whilst

executing a particular segment.

iii) A missing—page trace of the last 256
page faults produced by the monitored

process (held in a ring buffer).

For the gathering of raw performance statistics on
the system (i.e. utilisation levels or queue length

distributions) MULTICS makes use of the Graphic

a1

”Display Moniféfvwhiéh1i§'essenfially a PDPASiwith
aécéés to cértéin 6f thé host méinframé's registérs
and tableé. vihis ¢ontinuousiy displays all system
“Queﬁes and aiféyé, Showing e#ecutionltimé profiies
for supe:visoi modules. A count and thai CPﬁ time
expéhded in certain supervisor modules is also

accumﬁlated.

A very sophisticated event monito; has
been implemented on the TENEX system [Gonzales 1975]
for the géthering of system performance datai This
‘allows the definition of events to be monitored and
the switching off and on of data coilection to be
carried out from a normal u§ef procéss via a set of
special supervisor calls and a password scheme.‘ The
fprobes which ¢ollect the data and the tables.in which
the data is iﬁitially accﬁmulated ére part of the
resident supervisoi, though the data may be tréﬁsferred
to the user process' file when desired. This contrasts
with the considerably more rigid data storage regime
of the MTS-DCF whiﬁh, though obtaining a more general
and more accurate range of data (1 millisecond clock
in the iENEX scheme to’'a 13 microsecond clock on MIS),
can only be controlled from:the operators console,
and always outputs to a specified magnetic tape drive.
Aﬁ event ﬂonitor which accumulates distributions of

various queues and timings has been implemented on the

TOPS-10 system [Jalics 1973]. Both of these event
accumulating monitors are used more for obtaihing
performance statistics on the system than on the

.

behaviour of the user processes.

Monitoring Aids on EMAS

Thé purbose of the monitoiing aids

implehented in EMAS was to give performance data on

the system which would be of use in investigations of
the architectgrévand algorithms employed within the
system, as well as_beihg of use in tuning the system in
practical use. No hardware or hybrid monitoring aids
-were available; and all monitoring has been carried out
by software techniques. The clock used throughout was
that provided on the ICL 4-75 mainframe with a piecision
of 65 microseconds. As EMAS was designed as an
exténsible system 6n which the usei'has the capability
of writing his own subsystem or even file system, all the
performanbe monitoring aids considered here were
implemented wifhiﬁ the innermost level, i.e. that of

the resident supervisor. Various other monitoring aids
have, of course, been implemented at other levels

[Adams and Millard 1975]. The entire system is written
in the ﬁigh level language IMP. The advantages

accrued from this fact cannot be over-emphasised.

Apart from allowing for the easy implementation of

43 .

fébftwére"probes,.fhe ﬁodﬁlarity‘of the éystem allows
gfeat'flexiﬁility and easé‘of‘changé,.with only the
module Which ﬁas actually beenichanged needing to be
recompiled. Thé compilatipn and_linking of a’

modified systém, taking in the order of fiffeen
'miﬁutes (;eaiytime), is extremely fast for a system of

this complexity and size.

CPU Time Utilisation

A profile of CPU time‘utilisétion was
considered fo be vital to such an investiéatidn. The
vector of CPU time spent in major states (SUPERVISOR)
USER, IbLE) would, of course, be one of many important
parameters to be considered. Furthermore, as the
supervisor-activify within this class of system is
inherently higher than that in some other forms:of
systems, it would be of interest to know in which
modules. of supervisér code most of the CPU time was

being spent.

The méssage based nature of communication
between EMAS supervisor services lends itself well to the
monitoring of these variables. A simple change in the.
kernel where requests are unstacked from the Main-Q
allows a éount to be kepf of the number of calls made

on each service, and the total CPU time expemded

gk 44.*1

betwéén calling’thevse:viée and'retuxning from it. As
the servicés run uninterruptably this gives a very
precise account of where, within the resident supervisor,

time is being spent.

Whenever the supervisor finds that
there is no user prdCess in central memory in a ready
to run stéte and no_supervisor requests outstanding
which can be fulfilled i.e. that the system is idle,
~then process Z£ O - the idlenpiocess - is loaded onto
the CPU, and executes an idle loop until some form of
work arrives. This process is essentially handled
Z3 as a normal user process, and has the CPU time it
consumes recorded in its entry in the process list.
vThus aﬁ'accurate measure is obtained of‘the_tiﬁe the
CPU is idle. A further split is made in the idle time
between time in which no user processes are active
(i.e. no user;process is awake - true idle time)
and time in which user processes are active, but for
some reason none could proceed - blocked time. The
CPU time not being used by the‘supervisor or the idle
process within én interval is that consumed by user
- processes and unaccounted kernel time. 1In normal
analysis this time which is the time spent
translating intefrupts to requests on appropriate
service and on handling the MAIN-Q itself, is

attributed to user processes. The time consumed

4
in this will be further discussed in‘Chapter 4.

. T%e&mpgéfﬁhe data arrays inyolved takes place at
s&stems close-down or on the setting of a syStem test
flag from the operators console. First in raw form
showing the fotal number of entries to each service,
“the total time spent in that service (in seeonds) and
the average time‘per call (in microeeconds) [Table 2.1].
To hinimise the insignificaﬁt entries nothing 1is
printed on services which use :less than one second
during a session. The data is also processed on-line
to obtain the CPU breakdown between major stateé
(Supervisor, Idle, User) and the breakdown by
function within the supervisor [Table 2.2]. A
machine readable form of this data exiéts in the.

system main log should:further processing be required.

Interference caused by this measurement

consists of:

a) Two arrays of 256 bytes each to hold the data.

b) A small number of extra instructions in the

KERNEL to gather the data.

- Table.2.1 -

' SAMPLE OF RAW CPU
MONITOR DATA

- yIDLE TIME(SECS)= .56 :
.+ [NO WORK AVAILABLE TIME(SECS)= 0
.. TISERVICE COUNT TIME MUSECS
E 3 22 . o .0
4 186 - 0 0
6 54264 133 2450
? 1905 2 1049
8 19145 - 30 1566
g 9 13556 12 885
Ll 10 16088 0 0
. 1" 1658 0 0
I ¥ 262 0 0
§ 26 . 131 0 0
/ 27 131 0 0
28 1310 0 0
; 29 40145 179 4458
: 36 800 1 1250
; 38 5 0 0
: 39 2 0 -0
, 40 3 ¢ S0
e 41 14016 22 - 1569
42 79 0 0
50 75204 54 718
52 ' 15 0 0
54 8544 3 351
: 55. 9310 35 3759
| 57 63312 30 470
! 58 102497 79 770
; 59 49309 62 1257
| 63 6551 70 10685
64 47567 20 420
65 803 0 0
66 624 1 1602
67 2065 9 0
68 -7 0 0
69 1048 1 954
70 14938 13 870
73 272 0 g
77 256 2 7812
73 8282 6 724
79 279 0 0
80 14400 17 1180
81 103 ¢ G
82 79 C
84 262 7 26717
85 249 0 0
86 3606 3 831
8% 2 0 0
89 442 0 0
95 16 0 0
96 148 0 0
97 37 0 0
100 1 0 i)
102 49 0 ¢
103 692 0 0
108 22 0 0
109 13567 7 515
110 9131 6 657
112 131 ¢ 0
115 11 o 0
117 3729 2 5346
119 9827 3 814
120 188 0 0
128 131

~ IMETERING TNFORMATION

&
[

. Téble 2}2:;

SAMPLE OF PROCESSED CPU DATA

TIME IN USER PROCESSES
@_ 4 . _
'SUPERVISOR TIME CHARGED

B A

SVC'S
PAGETURNS
;UNCHARGEQ SUPERVISOR TIME
IDLE TIMg
| | NO WORK
BLOCKED
CTOTAL TIE
ANALYSIS OF SUPERVISOR TIME

VIRTUAL MEMORY SUPPORT
DRUM TRANSFERS (6,29)

DISC TRANSFERS (7,8,32=41)

CORE LOADING(55-6~3-9,63=4)
DRUM LOADING (73-230)
PROCESS CONTROL (70)

TIME SLICING (50)

FILE SYSTEM (54,35=6)
SVC PARAMETER PASSING (57)
COMMUNTICATIONS (9,160=19)
POLLING DEVS (14,27-8,69,72)
MAGTAPES (5,15=23)

© MISC,

TIME

1024
740
128
612

65

312

30

35

22

[

46

“c) Sohe cédé télprinf‘out the data,
approximately 1500 bytes to_produce the raw
form, and a further 2000 bytes for on-line
processing. There is no reason why tﬁe second
‘routine shbuld not be moved out of the resident
supervisor énd‘modifiéd slightly to analyse

the'raw‘data'from the main accounting log.

d) The CPU time consumed by this method will,
of course,.vary depending upon the level of
supervisor activity, but has.been measured to
be less than +*5% of total time during normal
use. The time consumed in dumping the
accumulated data and the analysis is of the

order of half of a second.
This aid gives very accurate data on time
spent in supervisor services and idle state during any

interval.

Event Trace Monitor

Clear and accurate data was required on
the characteristics of running processes and the
manipulation of these processes by the systeﬁ. The best
way of obtaining such information is an event trace

monitor along the lines of the MIS - DCF. The design -

- 47

]'Qf;sﬁch‘a'facility.is ve:y‘étraighfforward._"Avset of
probeélié”incorporafea in thé feéidenf supeivisor -
software. These pfobes are aétivated by the setting of
a sysfem test fiag and; when triggered, call a data‘
'gathéring routine whichvéddsla time stamp and transfers
the data td a buffér. The datévgathering ibﬁtine alsb
organises the transfer of filled buffers to the backing

store used.

The placemenf of probes within the
software was relatively easy, aided by the moaular
design of the system and the high level nature of the
language it was implemenfed in. 'A tracing scheme had
been incorporated during early system development to
aid syétém débugging, and sevéral of the significént
events overlapped. The probes are implemented as a set
of calls on the data gethering routine, conditional
upon the setting of a particulai flag; The parameters
of these callé céntain the relevant data. Originally
it was planned to use magnetic tape as the storage
media, but it was discovered that the replaceable disc
unit, used.in normal operation as the pseudo-drum, in
fact only used the first hundred cylinders on that pack
(the space avéilable on a normal drum), leaving eight
hundred pages of storage space free; The event trace
monitor thus stores its data in this fixed area, though

it would be a simple change to make it dump the data

48

elsewhere (e.g. to magnetic tape).

The operafionai procedure involved in

using the event trace monitor is as follows:

1)

2)

3)

4)

The monitor is switched on from the operatorfs’
console by sefting'a system test flag to a mésk
value showing fhose events which are td be
monitored. If monitoring is required dn only

one process, then the test flag must be set to

the process list index for that process.

(after a prompt has been sent).

The monitor then claims some buffer spéce

(currently two pages), and activates the probes.

When the monitor has filled itsidata area
(currently 800 pages) or the system test flag is
reset, the monitor is switched off, the probes
de-activated; and the buffer space returned to

the system. The number of pages of data

~accumulated and the number of gaps in the data

(caused by not having a buffer ready) are

printed in the main log.

The monitored data may then be transferred to a

normal EMAS file for analysis by making use of a

49

‘utility prégramme ruh'in'one‘ofithe pxivileged
'EXECUTIVE processes. As the EMAS resident
supervisor has no knowiedge of files, but only
méniﬁulétes~pages in process virtual memories
bétweeﬁ variou; levels in the stqrage hierarchy,

it would‘have added unnecessary complexity and
overhéad to have data tranéferred directly from the
monitor to a normal EMAS file within a user process.
It would also have interfered with the operational
characteristics of that proéess whose file was

being used thus.

The data recorded whenever a probe is

triggered always has the following format:

Word 1 - Consists of four byte fields:
i) The event idehtifier.
ii) The length in words of this
vdata record.
iii) The process to which this
event pertains.

i&) The process holding the CPU.

Word 2 - Consists of the current value of the

4/75 clock register.

50

“Words 3 + - Hold the data parameters for this

event up to 253 data words per record.

The model of the system uséd when
deciding‘which events were significant and should be
monitored was the Prdcéss Management Model. Where
the moniforable eveﬁts in the standard version bf the
monitor cortespdnd to movements on the PfM.M. graph,
the event identifier is shown circled in.Figure 2.1.
A list of events which may be monitored in the
standard version of.thg monitor is showh in Table 2.3.

These events fail under the following broad headings:

a) Paging Events

These events enable the collection of
data on the virfual addresses used by the process, the
distribution of working set sizes etc. as well as fhe
distribution of wait tiﬁes caused by the various types
of pagihg éoing on within the system. 'Events may be

recorded whenever:

- A process is elected to thevMultiprogramming
Set and begihs a preload - the master page at
least is always preloaded (event £ 3). The
number of pages preloaded and the number of

transfers required is recorded.

Figure 2.1 -

|STARTS
|sTops

DN

'~ 'EMAS PROCESS MANAGEMENT MODEL

. SHOWING TRACE MONITOR EVENTS

@)

ASLEEP<:> ACTIVE
ON > STORE
DISC '3, QUEUE
' ACTIVE(?) P
TAKE <— <
QUEUE
i CORE QUEUES
ASLEEP - Q z
ON > L] 2] [3] le] [51F
DRUM | ’ |
. PRE -
51) |LOADS
N &
= ©
PENDED
ASLEEP
"IN CPU
CORE
N PAGE 16
WAIT
TAON
< EXIT >

" Tablée 2.3

All events <32 may
All events >32 are

. STANDARD EVENT TRACE MONITOR - LIST OF EVENTS |
 IDENTIFIER BVENT . o
S Process wakes up. .
2 Process put onto scheduler queue.
3 'Piocess“enters Multiprogxamming Set.
4 Process_completes preload. ’
5 " Process bagé faults - page on tertiary memory. .
6 Process page faults - page in secondary memory..
7 Page faulted page arrives in main memory.
8 Process page faults - page in main memory.
9 Process overruns a category:resource limit.
10 Process completes'strobe interval - WS recalculated.
11 Process goes to sleep.
12 Process removed from main memory.
13 Process has pages removed from secondary memory.
14 Process goes to sleep whilst holding a semaphore.
15 Process has its drum working set recalculated.
16 Process page removed during process removal.
17 Process page removed from its Wo;king set.
18 Process is created. '
19 Process begins its log-out sequence.
20 All traces of a process are removed.
21 " Process is suspended after a partial preload.
22 Process resumes after a suspension.
23 Process has a copy of all pages it has written
to backed up on the tertiary level. ~
24 Process undergoes an extra-strobe.
25 Virtual and physical addresses of a preloaded page.
26 - Process issues a supervisor call. ‘
27 Process has a page moved between secondary
memory states.
28 Exit from the supervisor state.
29 A page is written to secondary memory.
32 Current lengths of scheduler queues (every 10 secs).
33 Monitor starts or restarts after a gap.
34 Monitor closes down.

be selected via a mask set at start up.
always switched on.

© 51

A process completes its preloadlng sequence

and may become ellglble for the CPU

(event:ii 4). The number of pages preloaded

and the process status (which gives knowledge

of whether the preload was partial or not)

form the parameters.

A process issues a page fault, the event
recorded will depend upon the level in the

storage hierarchy at which the page is to be

~found - tertiary, secondary or primary memoxry

(events Z££ 5, 6 and'8). The virtual address -

- of the page and the corresponding physical

core frame allocated to it are the parameters

here.

A preload page has arrived in main memory
(event £ 25).’ The parameters are the same as

above.

A page faulted page eventually arrives in
primary memory and is ready for use by the
process (event ZZ 7).‘ There are no |
parameters, a process may only have one page

fault outstanding at a time.

52

- A page ié_to be removedvfroﬁ‘primary memory‘

| either during the-recomputéfion-of_the
pibéess' working set (eveﬁt;ii 17) or when
the proceés is being removed from primary
memory (event #Z 16). The virtual address,
-physical core frame and a bit‘mask shdwing
how this page'first caﬁe to core (demand or
preload) and whether this page was read,
written or unused during this residency

are the parameters.

- A process has.had all its.primary memory
allqcation removed and is no longer a member
of the MPS (event:## 12). The process statﬁs
ahd the catégory to which the process.is now

assigned are the parameters.

All of a proceéS' pages have been backed up to
the tertiary level in the hierarchy, perhaps
. freeing pages at the secondary level
(event ## 13). The secondary memory allocation
and the block page table allocation form the

parameters.

. 53

b) Asychronous Pfocess:Phenomeﬂa:'

All of these events are non-paging

events depending on the characteristics of the process.

Such events may be recorded whenever:

- A process wakes up i.e. parameters arrive

from a terminal and that process becomes

active and competes for system resources
(event Z£ 1). The category to which this

process is currently assigned is the

‘'parameter recorded here.

A process goes to sleep i.e. the process
outputs to its console and becomes dormant

awaiting a reply (event FZZ 11).

A process goeé to sleep whilst holding a

semaphore (event FZZ 14).
A process is created (event ££ 18).

A process begins its logout sequence
(event ZZZ 19) or finally has all traces
of its existence removed from the system

(event FZZ 20).

.54

- A process issues a supervisor call (event ZZ£ 26).
The parameters recorded are the identifier of
the SVC and the current level of the process

i.e. director or user.

- A process>requésts that a.copy of the pages it
has'recenfly changed now be Cépied back to the
disc (event‘¢¢:23).. This évent may also be’
issued at the behest of the scheduler, the
parameter identifies where the request

originated.

c) Scheduler Induced Phenomena

It could be argued that everything
happening within EMAS is in some way a scheduler

induced event, however events classified here are
non-paging events which are dependent upon the behaviour
of the system scheduling algorithms. Such events may

be recorded whenever:

- A process is plaéed on one of the scheduler
queues (event ZZ 2). The queue involved is
the parameter. The process is considered to
remain resident on that queue until another
significant event takes place concerning

that process.

. - A process overruns one of its commodity limits

either a table allocation or the resource
limits imposed via the category table (event Z# 9).
The‘paiameter specifies the commodity:

involved.

- A proéess-has overruﬁ its core allowance
but has not yetvﬁeen "strobedﬂ (event ZZ 24);
a IecaICulafion of the working set 1is carried
out to see if the working set diminishes and
the‘process can be allowed to remain in

~ primary memory.

- A process has reached the end of a strobe
interval and an attempt is about to be made
tQ recompute its working set (event £ 10). .
The paraméter in this case is the CPU-time‘
still allowable to the process during this

residency in 4-75 clock ticks.

- A process which has just completed a
"partial preload" is subséquently suspended
oWing to insufficient core being av#ilable to
it (event 3%Z 21). The current core allowance
‘and current core used by this process are

recorded.

f:56.”

- A ptbéeés_which has been suspended is
subsequehtly released .«+i to re-enter the

run Q's (eventv# 22).

- The drum working set for the process is to be
recalculated (event ## 15). An identifier.'
éssociated with the algorithm to be.used |
(théré aie currently four); the secondary
memory allocation and‘bléck page table
allocation before this recalculation,

form the parameters.

- A page belongiﬁg to ahy process is moved
‘between drums (event Z£ 27). This is done
to ensure all pages in the secondary level
are packed onto as few drums as pdssiblé -
hence denser packing, hence more prepaging -
efficiency and automatic migrétion of
pages off the pseudo-drum as space becomes -
available elsewhere. This is only done
when a page is moved into primary memory
during the normal activity of the process
And.fhe secondary memory page indices involved

in the move are recorded.

57

- Exit from-éupervisor étatél(eVehtfii 28).
A normal user process takes over the CPU at
the end of a burst of superviéor activity.
The current process level (user or.DIRECTOR)
and the current valﬁe$=of COREF (physical
main memory pages.still free) and COREL
 (main memory still unallocated) ére the

parameters recoxded.

- A page is written back to immediate store
(event £ 29). The parameter tells why this
page is being written e.g. page éreatioh,'
or all pages of a process being removed

from active store.

d) Monitor Events

These three events are always active
when the monitor is switched on i.e. they are not
affected by the setting of the event mask. They are

recorded whenever:

-~ The monitor,is”switched on or restarted after
a gap caused by having run out of buffer space
(event ££ 33). The current value of the date
and time of day as held by the system are

recorded.

58 . o
- The monitor is switched off (event ZZ 34).

- A ten sécond alarm clock interrupt is
‘lreceived_(éVehtfii'BZ). The current lengths
of the séheduler queuesAand_the number of users
currently éigned_ohtd fhe system are the

parameters.

It must be noted that the set of events
contained in the standard monitor as described above
- give adequate information to reconstruct queue length
distributions and wait time distributions for all the
nodes in the P.M.M. graph, as well as information on

the access patterns within the virtual memory.

The possible range of data obtainable
on a system like EMAS is vast. . This version of the
monitor was never iﬁtended to be a fixed, totally
general monitor obtaining every possible item of
performance data that might ever be4of interest.
Instead the monitor provides the general mechénism
through which performance data may be syphoned. The
structure and comparative ease with which a new
supervisor may be remade allow this>flexibility. All
the probes implemented in the standard monitor are
contained within one of the supervisor components.

However to prove the flexibility of this mechanism,

 ”édditional'p£obes hévg been inqorpdrgtéd in ét leaét
" one other‘éomponent‘fér inveStigatibns iﬁto certain
specific areas [Adéms et al. 1977] aﬁd.a mbdified
.sétAof'probeé wefe used in the EMAS Perforhance

Experiment (see next chapter).

Using the sténdard vefsion all data
‘coﬁsidered td be of interest for this exercise may be
obtained. It may be notédvthat the monitor is ﬁot
symmetriéal, especially in the paging events class,
i.e. the'obvious.COnstiuct of recording a '"'page-in
request'" event and "page—hére"levent (on completion
of tfansfer) and similarly a ""page-out request" event
énd”page—goné’event is not used. Advantage is taken of
thé fact that preloading and removal of pages from
core involve the pfocess in a wait until the |
transfer of seveial pages is complete. From the
system performance point of view only the length of
that wait and number of pages involved is of interest,
whilst from a process behaviour point of view the page
addresses involved will also be required. The approach
taken allows the gieatest flexibility within the
standard version; minimising the number of individual
event types involved whilst giving the most flexible
sets of data available. For instance, if only wait
times involved in paging are required then events 3 and 4

will give timings for preloadings: 5, 6, 7 and 8 will

60

give timings.for allldemgnd'paéihgj veveﬁtsvé,‘ib, 11
and 12 will give fiﬁings‘for the bulk moVé involved ét
,thé end.of‘a‘Co;e;#esidency. 'vause‘patterns within
vvirtﬁal memory'are”required théﬁ‘events 5, 6, 8 And

25 give the‘times af whichApages start beiﬁg used in
primary memory; events 16 and 17 fhe times
(apﬁroximately).at'which pages cease to be of use to
the:prbcess. In practiée it was found (as had been
expected) that paging events (plué event ZZ 28) would
dominate the types of events which woﬁld be recorded.
The total number of paging events to be recorded
dufing ahy particulér monitoring session had to be
kept as-low as possible - hence reducing overhead
causedAby the monitor and lengthening the total length
of time for which the monitor would run before filling
its dﬁta space. In normal use the monitor in its
standard form monitoring all events (ekcept event 25),

collects around 300,000 events in about twenty minutes.

Interference caused by this monitor
whilst in use is approximately a four percent addition
to the supervisor>CPU time. The level of interference
will depend upon the number 6f events monitéfed. Whilst
in use the monitor claims two pages of buffer space,
thus reducing the available user core space by about
one percent on a one M-byte configuration. The

gathering routine adds approximately 2,300 bytes of

61

code té the resident supérvisor code, plusw3,200 bytes
for organising the switching on and off of pxobes,*1,
The interference caused on the pseudo-drum channel is
mihimal with less than one page of data per second
being transférred. It must be noted that none of the
monitoring aids implemented at‘this level-caﬁse any
direct interference with user processes chafacteristics

within the virtual machine of that process.

Sampling Monitor

A monitor waé also constructed to give
sﬁmmary information 6n how the system is performing by
.Sampling certain critical variables. This involves one
routine in the supervisor which is activated at regular
intgrvals to accumulate a total, maximum and minimum
observed value for each §f the chosen parameters. The
contents of this table is dumped, and all the values
re~-initialised either at regular intervals or by the
setting of a system test flag. A machine readable form
of this print out will exist in the ﬁain accounting log.
Table 2.4 gives an annotated example of a typical print
out from fhis monitor. The sampling interval is
currently ten seconds as there is a convenient éystem
"alarm clock" interrupt at this time. Ten seconds is of
a much larger time scale than most system phenomena

appearing at this level, and thus the data hopefully

':-:'Tabiev214
" SAMPLE OF Q-SAMPLE DATA

¢

[EMAS B1EB DATE:08/09/75 21.20.18
[|
|QUEUE SAMPLING INFORMATION

'NO. OF TIMES QSAMPLE KICKED WAS

ITEM : TOTAL

| MA X MIH
"RUNG1 76 4 0
'RUNG2 247 3 0
ACT STRQ 0 0)
ACT TKEQ - 23 4)
CORE Q1 254 12 0
CORE Q2 294 9 0
. CORE Q3 : 111 4 n
"CORE Q4 37 3 0
CORE @5 442 8 0
CORE . L IRV 141 -34
CORE F 10377 153 A
CORE S 4506 72 0
ASUNUSED 192261 1231 872
AS FREE 184387 1193 835
BPTUNUSD 48996 306 226
BPTFREE Lh661 281 193
PT FREE 8708 75 17
SAM FREE 22677 127 111
PARAMTABR 27943 158 121
© USERS 5490 32 25

CEMAS 81EB DATE:08/09/75 21.51.51

62

will not be foo‘advéféely.affécted by any pefiodicity
ih the sysfém. The data ié dumped every_lOOO“saﬁples
(approximately every three hours). The periods between
this regular dumping of accumulated data is controllea
by a system test flag. The sampling interval could be
varied, but this hé; not been considered necessary

and the monitor has~beenvof éome use as a simple informal
aid in system tuning. Interference caused by this
monitof is an addition of appfOximately 1,000 bytes

in the space occupied by the resident supervisor

and a negligible addition to the supervisor CPU

overhead.

Category Table Transition Matrix

One of the central conéepts in the
EMAS scheduling scheme is that of a process
category. As the transitions between categories
depend upoh the behaviour of the process énd the
categories themselves are a_crude characterisation
of the processes, the transition matrix of process
movement betwéen categories Will,provide a rough
characterisation of tﬁe current workload. The limits
involved in the category table will also have a
definite impact upon the system performance, and thus
transition matrix will be of considerable use‘in

tuning the category table. This monitor requires

63

800 bytes to hold the data, and a minimal améunt.éf
code space and execution timé to gathér and dump.it;
The dumping of the transition matrix to the line
printer and re-initialisation of the data space is
controlled by a system test flag. Table 2.5 shows the
~ transition matrix for a typical seésion. A machine
’readable‘form of this dafa will appear iﬁ the main

‘accounting log.

Conclusions

The four monitoring aids described

‘which have been implemented within the EMAS residentv
supervisor provide'sufficient data of a very accurate
form for the evaluation described in later chapters,
‘and hopefully for other reseérch in this field. They
are very flexibie; and must not be considered fixed.
This applies espécially in the case of the event trace
monitor and the sampling monitor, which pfovide proven
data acquisitions routes, and new_évents may be added
to the monitoring, or some current items deleted, as
nec?ssary, limited only by the researcher's knowledge
of where the item to be monitored resides. Although
care has been taken to ensure that the extra overhead
induced by these monitors is minimised, this has never
been taken to the extreme of hand coding the monitors,

and all the implementation took place in IMP in

 SAMPLE OF CATEGORY TRANSITION DATA

S1e8 DATEI08/09/75 21220074

|CATEGORY TABLE MOVEHENT

3
i
i
1.

' Table 2.5
TEMAS -

10

oe)

N

— M TINONO O
’ ~

COTOCOUOT T TOMTr OO0 OOOO
B
COCCOODWODONOCOOC DI OCOOO

00008.004704150000000
. [7a) ~ Ny i
aY} M

-

O OO OO O rOO OO DOO
S C OOV OO0 OO O -

) SO OoOVCCLOOC OO OO C

3 N~

-

CONTODOCODODOAODIODODLSTODODO |

oo

OMONODOOCC OO OOCLO OO
—

OMMCC OO OO0 |

~ v

7
0
0
0
0
J
0
0
C
0
0
0
0
)
f
0
U
0
0
¢

12
13
14
15
16
17
18
19
20

11

“Wou

fx,

12 13 14 15. 16 . 17 18 19 20

11

e

OO0 COCOCOOT OO NOODOO

70000000000006002033
M : ~N Y
—

OO0 OCORCOODS MO OMO O« O
-

COCCOOODDOMNMNDOTDO
0 O
(AN]

wo MmO
(9] [aUN 2
CODOOOOOCODONINCOONT OOOCO

OO OO0 COCOrm TRV OCOoOC

OO OOOCOONOOCUNCINMNOONN

«— (aV] ~
N ~¥ ~N
WO3Yd 4

64

-keeping with EMAS philosophy. Further in keeping with
the system structure; they oniy récofd daté on events
and enfities which exiét At the level of the fesident
supervisdr,.so no monitoring of file use etc. is

taken here. This inforﬁation can be obtained by

monitoring at the level of DIRECTOR or subsystem.

None of the monitors interfere in.any
way with the running of user processes within their‘\
virtual memories other than adding a small amount to
the total wait time experienced by the process in
obtaining service from the supervisor. The level of
"this interference will vary directly with the amount
of data being recorded, and care must be faken to
collect only necessary'data when planning any
measurement experiment. On the issue of privacy of
users, the data obtained is purely of a performance
nature. The only information of intérest about
processes is; generally'speaking, its pattern:of
reference within its virtual memory in terms.of page
addresses, and only this data is gafhered. No
information is'gathered at this level on the contents

of those pages. It is hoped that such data gathering

is not considered to be a breach of privacy.

Utility programmes exist for the

transfer of event-trace data to a standard EMAS file

: "‘65” e

vfromufhe data“édliécfion_area 6h the pséudo#drﬁm, and
.for the-pfodﬁctiOn of appropriAte event mask to be
vused during any monitoring session. A variety of
_analysis prograﬁmes haQe been written for the
reduction of évenfétrace‘data. Théugh these
p:ogrammés'share several common routines and a

common kernel in many cases, they have not.béen
bfought together‘under one programme, suChIas the
Data Anaiysis Programme on MTS, or the Statistics
Generating Package on VM/370, but remain separate

entities, specific to the analysis required.

~j'66 _
ChaEter‘3

‘The'need for rigouf when taking.
.measurements of syétems has élready'been discussed.’
This chapfer covers in more detail a controlled
empirical approaéh to eYaluation i.e; oné of
observing systems under cbnditions in Whiéh all the
variables which might affecf performance are
fixed, or under the control of the experimenter. A
measufement experiment carried out on the Edinburgh
Multi-Access System is also described in detail.

One of the greAt disadvantages in
attempting to make an evaluation of any system is. the
great number of possible factors which may make an
'impact on the‘observed perfoimance. Also, subtle
interactions between factors may themselves prove to
have a significant effect. With interactive systems
one of the most highly variable and significant factors
affecting the performance of the system is the user
workload. This makes any evaluation of the components
of the target system, based solely upon measurements
taken on the natural system (i.e. the system rﬁnniﬁg
with real users duriné normal service periods) very
difficult; aé it will be nearly impossible to attribute
changes in performance to“individual system components

or to slight changes in the user workload between any

67

‘ twolobsérved peiiods.

_ An attempt to remove this factor was
made in studies of CP/67 [Bard.1973] ininhich an
evaiuation bf_two paging algorithms was_being carried
out. Tnis approach consisted of incorporating tne two

ialgorithms in the target systém software and switching
between them on a very_short time sgale, thusvhoping to
eliminate any differences due solely to the workload.
Measurements can then be taken on the natural system
and an evaluation maae of the two algorithms with
some confidence}‘ However, this apprdach is naturally
limited in its application:i it will be difficult
to evaluate hardware changes, or compare éoftnare
algorithms which cannot co-habit with the resident
supervisor without causing considerable overhead or
involving changes of such a nature that switching
between them may not be possible (e;g. they may
.maintain differently ordered queues or paging table .

formats).

Workload Drivers

The only factor beyond control in the
natural system is that of the user workload, as system
software and hardware components may be fixed. Thus if

experiments are to be carried out within a totally

- 68

. controlled environment, some way must be found of
providing a standérd workload during experimental runs.
A definition of a standard workload will be useful at

this point.

" A standard workload in the case of
inferactive syStems is.a total workload which may be
applied to the target system in which all of the
components of user characteristics are completely
defined, in terms of commands issued; files and
progfammes‘used, think times between comménds and
expected typing délays [Holdsworth et al. 1973].

Such a workloéd is usuaily defined in terms of a
‘fixed number of péeudo—users funning from a sét of
one or more scriptéﬁ Each script hélds a
representation of an interactive conversation between
a pseudo-user and the targetisystem. One or more
pseudo-users may be run from each script. Figure 3.1
shows an ekample of a possible script for an EMAS
pseudo-user. A standard workload is deemed to be
reproducible if each time it is applied fo the target
system the activities of each of the pseudo-users
remains fixed i.e. the qommands issued and the time
the system spends in 'user wait" for that

pseudo-user do not vary from run to run. 1In the
context of the interactive conversation shown in

Figure 3.2 the part above line A - B will always be

‘ Figure 3;1';: :

EXAMPLE OF A POSSIBLE EMAS USER SCRIPT

LOG-ON SEQUENCE

w
[y
N
Nt S vt ot ot vt st st st it i

THINK TIMES (IN SECONDS)

ETWEEN COMPLETION OF
- ONE COMMAND AND START OF

NEXT

15
IMP (FRED, FREDY, FREDLIST)
10

LIST (FREDLIST, LP)

10

LIST (FREDLIST, LP)

25

RUN (FREDY)

5

STOP

Figure 3.2

' SCHEMATIC OF AN INTERACTIVE CONVERSATION

USER THINK = Yeoommommooee .
TIME START.
S OF
RESPONSE TYPING
BEING
TYPED ,
--- (B)
END | BEGINNING END N G
OF | OF » OF END
TYPING-IN RESPONSE RESPONSE o
—————— TYPING -
SYSTEM WAIT SYSTEM WAIT
TIME

USER WAIT

N\

COMMAND

Constaﬁf‘for:fhat pseﬁdo§pser. ”bﬁrihg the'ruﬁﬁing

'.of the sfandard'workload the ratés at which'indiVidual
 §seudo-users cdmpléte their work relative té one another
may, of course,'ﬁary; according to‘the way the system'
diffe:entiates between different classes of work, but
 withih the context of each scripf the user |

- characteristics will remain fixed.

Providing a standard workload for an
interactive syétem by running a set of batéh (non
interactive) jobs on the system willrbe unsatisfactéry,
as it will not incorpofate any representation of user
think time and will not load the communication
facilities of the system in an appropriate manner.
Also, on many systems it is quite possible that the
full-range ofl"interactive" commands may nét be
available to batch jobs. Emp}oying a large number
of humans to sit at terminals and type in commands
from a prepared script defining the interactive
.conversation is a possibility, but it would be very
tedious for the copy typists involved, and humans do
make errors. ItAis,unlikely that the workload so
induced Qill have an exact replication of the think
time and typing time distributions specified. The
only way of providing a totally reproducible user
workload is by a form of automatic Workload Driver (WD)

or stimulator, incorporated in some system module or

70

piece of hardware, which will feed specified commands

to the target system at the necessary times.

In the context of conversational
cbmputing a WD and the standard workload it produces -

should possess the following characteristics:

(a) . It should load the target system by feeding
specified lines of input to it, and on receiving a
iesponse,.wait for a specified time (to simulate user
thinking and typing) before passing in the next line

of input.

(b) It must be capable of providing a relatively stable

load to the target system over the measured period.

(c) It should be able to take human typing rates and

terminal speeds for each simulated terminal as parameters.

(d) It should be reasonably robust and able to recover

from transient errors (e.g. occasional message

corruption).

(e) It should interface easily to the target system
and appear as any normal user workload would (i.e. a
minimum of modification and interference to the target

system).

”_i:£71faf vf:

'Q,' Thgre”a£e £wQ apprba¢hes to the
implementatidﬁvdf Wbs:.vinféfnél ahd ékfernal. The
..inte:nal approach ié‘sd callea.bécause the WD is
incorporated_within thé'softwaré of the target system. .
The external appioach invblves thelwo;kload being
proviaed from an external machine (usually a
mini-computer) cohnecied to thé communications

hardware of the target system.

Internal Workload Drivers

The majér advantage of the internai
approach may be summed up in terms of cost - no extra
hardware need be provided (both methods require
software), also the possibility of transmission errors
causing trouble is eliminated. However, as the driver
is implemented within the target mainframe, it means
that it will neéeésarily interfere with it, consuming
memory space and possibly paged 1/0 capacity. The WD
could be implemented eithér as an additional user task,
or within the supervisor, interfacing with the module
which normally handles terminal I/0 [Figure 3.3a].

This is the method adopted in the MTIS - Terminal -

Driver Monitor [Stasuik 1976, University of Michigan 1976].
This is incorporated in the éystem area of the tasks
virtual memory and it allows up to 200 simulated

terminals to run, off up to 9 scripts. The scripts

Resident

(A) Internal - .
—_— Supervisor

within
resident
supervisor

as a user
task

(B) External

Multiplexors -

Target
Mainframe

 J

Connected via S
Standard Terminal Lines.

Terminal
Mini-Computer Concentrator
Within :
Communications %
Network W.D
S
-
Target

Mainframe

“in’fhié case éPe¢ify c§ﬁﬁand'lihes‘éﬁd.think timés
Wifh:typing delaysjbéing introduéed aélé éimple
lfﬁnc£idn of the ngmbervof.chéracfexg input; ‘An‘
internal WD is’éiéo réporfed‘fo have been built for
‘IBM's TSS/360 [Abtams etbal; 1976]. This is
'ihcorporaﬁed entirely Witﬁin fhe resident supervisoi
and claims to allqw anyinumbei ofbscribté with ény
number'of users running off each. The scripts'are
read in, off the card reader and ptesumably remain
~core resident throughout, wﬁich must impose some

- restrictions on the size and number of scripts used.
‘.Also the:e is no obvious way of representing user

think times as such, in this case.

External Workload Drivers

An exteinal workload driver, ox remdte
terminal emulator (RTE), should hot interfere with the
target system at all, and wiil be connected to it via
individual terminal lines, or may be attached (where
appropriate) as a terminal concentiator'[Figure 3.3b].
The major drawback of this approach will be the cost of
the hardware in which to run the RTE. However, with the
proliferation of mini-computers and the relative decrease
in price of such equipment, this may not be as much of a |
drawback as it may first appear. Using another

computer allows for much more scope in the facilities

73

prbvided in the WD, and may also extend the range of.

its useful tasks.

Remote términalvemuiatdrs may themselves
be ﬁsed as measurement de§ices [Abrams.and Cotton 1975,
Abrams et al. 1976]. Response time is.the only pure
peiformanée metric by'whichiihteQagtive systems are
judged.by users. By fecording and timing all messages
passing between it and the target, an RTE provides a
totally non interfering method of obfaining‘objective
response time measurements. Care, of course, will have
to be taken that the standard‘wdrkload used whilst such
measurements are takeﬁ must be an accurate reflection
of the workload existing on the natural system
fBarber et al. 1975]. During‘the development of a
new system, a facility‘which allows a workload to be
repeated time and time again may be of use in tracing
system errors [Lassettre and Scherr 1972, Schwemm 1972].
In this case an external WD will have.obvious'advantages
over attempting to iﬁplement a WD internal to a system
which is itself only being developed. For systems which
are in normal user service, RTEs may‘be used both as a
tuning aid - by enabling controlled experimentation with
scheduling parameters - and as a method of checking new
system releases - both for performance and bossible
errors. By using a miniécomputer and remaining

completely external to the target the size and range of

: :eeripts and'workldadsdwnich ney bedepplied will be
limited‘only_bQ'the.configuration used‘for:the RTE
and not'by'eonsiderations of the interference caused
in the target. External workload-drive;s are alsd
'more flexible than internal drivers in that they need
not necessarily be Sysfem dependent (though any
implementation of a standard werkload wiil have to be)
and mayvbe used in inVestigations of several target
systems. Several examples of remote terminal

emulators now exist [Watkins and Abrams 1977].

The "STIMULATOR'" facility provided by
CDC on their KRONOS system [Lehmann and Gomma 1973]
falls between being defined ae extefnal or internal in
that it runs in a Peripneral Processor (of which there
may be up to ten on the CDC 6400 series architecture)
and is thus internal in that it requires no additional
hardware and runs within the targef mainframe, but
could be considered‘external in that the load is being
provided by a mini-computer (the PP). The "Stimulatoxr"
allows for the running of several users off any of a
number of scripts and has facilities for response time

measurement.

The earliest development of a true
external driver was produced at project MAC at M.I.T.

[Greenbaum 1969] for experimentation and testing of

" CISS and MULTICS. This RTE was based on a small

 (8K of'store core) PDP;B which was cbnnéctedAto‘the
taxrget systemé via standard terminal linesﬁ It could
”sﬁpporan maximum of 12 simuléted terminals running
from‘sciipts which notvonlyléontained éomménd lines and
 _think.timé§, but also ﬁve#ifief lines™ so'that the
;imulator can check that it is obtaining correct
repliés. A languége was also supplied in which
intétactive»conQersations could be defined for
translation into scripts. I.B.M. ére also reported to
havé developed an external WD for testing and measuring
TSO/360 during its developmént [Lasettre and Scherr 1972].
‘Unlike the project MAC stimulator this required é
minimum configuration of a 360/40 and was again
éqnnected.to the farget mainframe by stahdard telephone
lines. A WD based upon PDP-11 hardware has been
developed by DEC [Turner 1976], one version runs in a
PDP-11/20 connected to the target system via standard
terminal lines, whilst another version runs aé part of a
terminal concentrator used on some of DEC's larger
mainframes. A ianguage to éid.the definition of scripts
and give éome control over the parallelism of the
simulated users has also been provided [Turner 1976].
External WDs are now provided commercially for some
systems and may be bought or rented complete with a set

of standard loads [Wright and Burnette 1976].

.76

_ Evaluation Ekpériments

vThére‘has been some reported use of
WDs ih’performahce éxperimenté.' A set of experiments
were carriéd out at Imperial College on the CDC KRONOS
system using the CDC STIMULATOR facility [Lehman and
Gomma 1973). This involved using eight distinct
scripfleifh up fo 24 simulated users being run off
each script. No aftempt was made to validate tﬁe
scripts, and‘no changes Qére made in the system
configuration. The.series of experiments (each taking
.more than one hour elapsed time) were run varying the
maximum number of simulated terminals from 96 to 192,
and all the‘performance‘data was obtainéd from the

: : s

accounting log. One of the major performance measures
taken was the time the whole standard workload requires
to coﬁplete. Despite the several limitations of the
exﬁeriﬁents? considerable insight was considered to
have been gained into the performancé éf the system and>

the identification of certain possible system

bottlenecks.

The MTS-TIDM was used in obtaining
comparative data on running MTS on an IBM 370/168 and
an Amdahl 470 V/6 [Emery and Alexander 1975]. ‘The set
of 45 minute long experiments was carried out using six

distinct scripts with 120 simulated terminals being run

77

offuthem;. The simﬁlated'térhihéls-wére‘not
distributed eveniy‘betweén’fhé scripts, but heavily
biased to some which rep;esented particularly
interactive work, é.g; editihg sessions. A considerable
array of data was obtained using both the'DCF'(an event
trace monitor)‘and respdnseltime data f:om.the'TDM}itself.
This revealed seVéral diffefences betWeen the systems
running on the fwo mainf:ames. Durihg the ekperiments
there was 5% idle oﬁ the 370 v 10-40% idle on éverage

in the page wait state on the Amdahl, whilst fhough

.more proce;ses were on éverage‘in the page wait state

on the Amdahl, the overall paging rate was lower

(more processés completihg'béfore they "lost" pages which
had to be page faulted back in).. Thus, though it was
thought both systems were memory bound (both had

2 M-bytes), the 370 had also very little CPU to spare,
whilst the Amdahl was thought to be paging bound.
Response times on the Amdahl were 9°:9% lower on

average for a CPU which was estimated to be 50% faster.

Thé performance of the PDP-11/70
running DEC's resource sharing, time-sharing system

(RSTS) in a transaction processing environment has been

studied in great detail under simulated workload
provided from a PDP 11/20 connected to the target via
normal terminal lines [Kosko and Turner 1975]. 1In an

experiment lasting nearly 12 hours, 27 simulated users

78

‘carried out.err hélf a million transactions. As a
-result of this‘eﬁpe;iment, the major.bottleneck>was
Afbﬁnd to be in the terminal 1I/0 hardware; and not in
the:disc-System throughput as héd been.suspected.béfore
thé_experiment.‘ Modifications based on this data were
implemented.whichvresﬁlted.in a 20% improvement in
.throughput [Turnef'and Koskol976]. Such results would
not have been found frdm an experiment driven from an
infernal WD. The same RTE was used in investigations
of DEC's Interactive Application System (IAS) running
on the PDP 11/70 [Turner and Levy 1976)]. The load
consisted of a mixfure of jobs classified as either
computational oi interactive. There were up to 22
simultaneous pseudo-users during a set of 15 minute
experiments when loads consisting of différent mixes
of these classes'were‘run on a number of hardware
configurationsf ‘The response time data obtained from
the RTE was used to determine the suitability and
expected performance levels of the system for various

applications.

An extensive set of experiments were
carried out on the Murray Hili Time Sharing Systeh
(MHTSS) at Bell Labs, using a commercially available RTE
[Wright and Burnette 1976]. The interactive workload
simulated was evolved from system usage data gafhered

on the natural system and an attempt was made to mirror

79

.the.diétributioh of_sysfem éqmmandé issuéd as well és
think time and typing $peeds.' It is inferéétiﬁg‘to’
'.note'thatnthe think time in this case was‘uniformly
distributed between O and 11 seconds cdmpared with
Scherr's observation of an exponential distribution
"with mean of 30 secoﬁds Of‘CTSS. Five distinct scripts
‘were constructed. ThéﬂstimuiAtor allowed verifier
lines to be inserted at various points in the scripts
and if any error was noted from this, then fhe test was
halted and re-run. SeveralAsimulated users were run
off.each'Scriptl The load varied from 30 to 90, but
the.ratio of the wayAusers were apportioned between
scripts remained fixed. A validation exercise was
carried out running a 45 user version of.the simulated
workload, and comparing it with the 45 user load on the
natural System. The validation was carried out at the
command distribution level as well as at thé deeper level
of the internal supervisor queues. Minor variations
ocburred in the target system configuration during the
time span of the experiments. A variety of monitoring
aids were used, and extensive data obtained using the
event trace monitor embedded in the system. The data
included processor, chaﬁnel and various levels of memory
utilisations as well as supervisor overheads. " The
researchers involved held this exercise to have been
very useful, and considerable insights to have been

gained from the set of hour long experiments.

’f-However, cons1derable effort was requlred, and some
187 hours ‘of stand alone tlme was used to run the
-experlments, one third of whlch were consumed in

debugging orsfalled runs.

-During the development of IBM's Time
vSharing Optionnboth a'simple‘performance model and a
remote terminal emulator were used to check out the
system's performance [Lassettre and Scherr 1972].
» The RTE cons1sted of an IBM 360/50 connected to the
target via individual termlnal llnes The scrlpts used
by the pseudo-users were not deterministic as is
normally the case, but consisted of a set of
subsessions. Each time a pseudo-user completed a
subsession the decision as to which subsession-is to
be executed next was taken at random, with a
weighting factor which determined the overall mix
of the total workload. Data collected included
both response time and target system measurements
from an event trace monitor embedded within TSO.
This data was used in the validation and

calibration of the simple performance model.

CP/40 (a predecessor of IBM's CP/67)
was used in interesting eiperimental investigation of
the influence on paging behaviour of four major

factors [Tsao et al. 1972, Tsao and Margolin 1972].

1 Thésévfécﬁbf§ Wéie:
a) 'Replacémént g;gofitﬁms.
b) Load sequence of‘systém éubfoutines.
c) Main mgmpry»size;
d) Problem prqgrapmes.

In this-investiéétion‘avfull factorial experiment of

81 sebarate runs was used. The load in this instance
consisted of a set of three Fortrah programmes which’
weré‘compiled but'not executed. The data gathe;ed; in
‘termé of usage information on individual pages And

pagihg eVeﬁts, WAs used in formulating enipirical

models of the system. Though the sysfem used w;s only a
uniprogramming one and the load used was‘very restrictive

and did not use any form of WD, the methodology

adopted in this investigation is very interesting.

The EMAS Performance Experiment

The EMAS performance experiment was
devised to provide a consistent set of data in an
investigation of the effects of various system

components upon system performance. These measurements,

g2

-takén on EMAS, running in as near nbiﬁél‘cohditibps as
vpossibie, usingva vaiiet? of hardware qonfigufations
and tWo differeptvpaging algorithms, would piovide the
‘basis for an empirical evalﬁation of the-system; and
would also be used in v;lidating‘ana palibrating‘a‘

' model of it.

The parameters which were varied in

this experiment were:

(a) The amount of main store available to the system.
This is cérried out easily owing to the highly
parameterised nature of the system, by-setting’an
appropriate system variable at Initial Programme

Load (IPL), which defines the amount of primary
memory phe system may use i.e. no physical removal of‘
primary memory took place. Three different values of
maiﬁ memory were uéed - 5/8 M-bytes, 3/4 M-bytes, and
7/8 M-bytes corresponding to 112,-144 and 176 pages

respectively available to user processes.

(b) The number of channels available to the
.secondary memory (drums) and hence the paging I/O
capacity. This is effected by setting a hardwafe
switch before IPL. The system is to a certain extent
self configuring and automatically checks at IPL

which channels are available to it and acts

: .\7‘83 .

"acédidingly;‘iEither:dne or two channels could be

used.

(c)' The process scheduling algorithm, The two

variations on this were:

(1)

(i1)

Using Working Set Replacément (WSR)

‘i.e. whenever a process is admitted to

the Multiprogramming Set, prepage in
its current working set, then demand
page, until the process is due for

removal. The normal category transitions

(Table 1.1) were used with this scheme.

Using Pure Demand Paging (PDP) i.e.
whenever a process is admitted to the MPS
then only the master page is prepaged

(it must be in main memory before the

process may be given the CPU). This

prepage transfér mAy itself be considered

as a demand page fault. When running in this
mode the category transiti&ns carried out by

a process are changed, in that each time the

process goes to sleep then it is moved down a

category (to NCY 3 instead of NCY 4).

To:inQestigafé'the effécts of these three:
f#ctors a full'factorial‘expérimenfal‘désign was
adopted [Méndenhall 1968] involving 3x2x2 =12
'experiméntal runs. Table 3.1 shows the experimenté

conducted.

Fixed Parameters

Ail other factors which might affect
system berformance were kept fixed. The hardWare
used -~ CPU, channels, device controllers, disc files,.
drums, éommunicatiqn devices - was always the same
(except those factors véried as part of the experiment).
- The software (with the exception of the variations
in scheduling mentioned and one minor error corrected
in DIRECTOR éfter foﬁr runs) was always the same. The

user workload was also kept fixed using an RTE and a

standard workload derived from a detailed benchmark
defined by personnel of the Edinburgh Regional
Computing Centre [Adams and Millard 1975]. The
suitability and reproducibility of this standard
workload is discussed in the next chapter. The hardware

used in the experiments is shown in Figure 3.4.
Measures

The measures which would be of interest

" THE EXPERIMENTAL RUNS

" EXPERIMENT = PRIMARY CHANNELS TO SCHEDULING

T o0 W W U 0w

" NUMBER MEMORY ~ SECONDARY = ALGORITHM
» © (M-BYIES) - . MEMORY S

7/8 | 2 WSR
7/8 2 | PDP

7/8 1 WsSR
‘a8 R T PDP
3/4 2 ' WSR
3/4 2 PDP
3/4 1 WSR
3/4 1 | PDP
5/8 : 2 WSR
J '5/8 | 2 PDP
K 5/8 1 ~ WSR
L 5/8‘ 1 : :PDP

WSR - Using Working Set Replacement Policy

PDP - Using Pure Demand Paging scheme

Alivexperiments were carried with a fixed
workioad Qf 32 simulated users. Hardware consistea
of the ERCC ICL 4-75 (machine "B'" complex) with
3 drﬁms +V1 pseudo drum. EMAS, version 814, was used
throughout, as were the executive processes -

Volumes version 834, Demons version 877. Runs A-D
.used DIRECTOR 871, E-L used DIRECTOR 872 (a minor

error corrected).

August 1975

‘Figure 3.4

L
]

L
111

/
7

HARDWARE USED IN THE EXPERIMENT

ICL 4-75 CPU

up to 7/8 M-bytes

1-fAsecond core store

1l or 2 drum channels

3x2 M-byte drums

3x7°5 M-byte

Replaceable Disc Drives

2x350 M-byte
Non-Replaceable
Disc Drives

FRONT END COMMUNICATION
PROCESSOR
PDP 11/45

4-8 K baud synchronous
line

REMOTE TERMINAL
EMULATOR _

 PDP 11/4%

28 K corxe
1x1-2 M-byte
Replaceable Disc Drive

.85

ih‘fhis investigation were obtained using the EMAS
" measurement facilities described in the previous

chapter. These included:
1) CPU utilisations.

2) Counts of various classes of paging and the

wait time spent in éach.
3) Times spent in each of the scheduler queues.

4) Times spent in each of the niajor process

states.
5) Scheduling decisions taken.
6) Throughput rates.

These were obtained using the CPU time monitor and
event tracing facility. The version of the event trace
is a modification of the standard scheme. As the
access patterns Within individual process working sets.
are taken to be the same in each run no virtual memory
addresses were recorded. Similarly, rather than
recording an event each time a page is removed from
main memory, only one event is recorded each time

a process is strobed or removed from core showing

86 .

_ theHngﬁbé; 6f pagéé.inQGIQéd §hd usééé information. -
F’ThefeQeﬁté ﬁseaiin thié versionlbf‘fhé éVent trace aie
bsho&n in Table‘3.2.':ihis‘cu£ting down on the number
‘of éVehté monitored andbthe parameters recorded helps
‘fo'keep the overhéad due fo this monitor as low as

‘possible.

The queue sampling monitor and category
.table trace were also uéed. These both indﬁce very
little overhead and produée a sét.of easily'interpreted
data which may th;owaurther light upon the subject.
The fotal length of any run was not.takén as a measure.
There‘are two major reasons for this. The original
version of the benchﬁark used took approximately two
hours to run on a éonfiguration consisting of
3/4 M-bytes of core,‘two drums and one drum channel.
To 3110w the experimeht to run to completion would have
greatly lengthened the time taken for the experimental
runs. It is Quite possible that a small number.of jdbs.
may be discriminated against by the system, either by the
scheduling or by raﬁdom placement of pages oﬁ rotating
devices. These ﬁay then take a long time to complete
and dominate any measure based only on total run times.
This view was reinforced by the experience of the ERCC

staff involved in the benchmarking exercise.

Table 3 2

TRACE MONITOR EVENTS USED IN EXPERIMENT

IDENTIFIER
1

\O_m\IO_U'Ith\)l\)

DS IE ST S I o T R ol T R
WO P O VW oo NG u A WP O

24
27

28
29
32
33
34

EVENT

- Process wakes up

Process‘put onto scheduler queue
Process enters Multiprogramming Set.
Process completes preload. '

Process page faults - page on tertiary memory.

- Process page faults - page in secondary memory.

Page faulted page arrives in main memory.
Process page faults - page in main memory.

Process overruns a category resource limit.

Process completes strobe interval - WS recalculated.

Process goes to sleep.

Process removed from main memory. _

Process has pages removed from secondary memory.
Process goes to sleep whilst holding a semaphore.
Process has its drum working set recalculated.
Process begins removal from MPS.

Process has working set recalculated.

" Process is created.

Process begins its log-out sequence.

All traces of a process are removed.

Process is suspended after a partial preload.
Process resumes after a suspension.

Process has a copy of all pages it has written to
backed up on the tertiary level. :

Process undergoes an extra-strobe.

Process has a page moved between secondary memory
states.

Exit from the supervisor state.

A page is written to secondary memoryQ

Current lengths of scheduler queues (every 10 secs.
Monitor starts or restarts after a gap.

Monitor closes down.

All tracing is turned on automatically.

No addresses are recorded in events 5, 6, 8, 16 or 17.

Woikioad Driver -

, 'Thesrémoté ferminal emulator uéed was
implemeﬁted on a.28K PDP 11/45 by personnélvof the
ERCC [Gi1m§re and McBride 1975, Gilmore 1976]. Owing

to limitations‘in the hardware used, this could
maint#in a makimum of 32 pseudo—ﬁéers at any one time.
Each_pseudo-ﬁser ran off its own private script.
Unfortunately there was no’way of logging messages
between the RTE and the térget, so this was only used
as a method of producing a reproduciﬁle standard
workload, and was hot used as a measurement device.
Thus all measuremenfs taken in the experimept took place
in the software of the target machine. The PDP 11/45
was originally connected to the original,. hardwired
communications multiplexor (MCCCU) via a 4-8 k-band
synchronéus line, but Was later connected via a

Front End Processor (formed by a PDP 11/45) which was
in turn connected to the 4-75. At all times the RIE
was connected as a terminal concentrator. An
alternative to this épproach would have beén to
implement a workioad driver internalito'EMAS itself.
This could possibly have been done by placing the. driver
in the resident supervisor module which handles the
interactive coﬁmunications hardware. Owing to the
hierarchical design of EMAS this would probably have

meant that all the scripts would have had to be kept

in main memory as it would have been extremely difficult
for the internal W.D. to access files. The interference
~which such a driver would have caused was another factor

of concern, so this approach was not taken.

Ekperimental Runs -

Each run included in fhe:experimenf took
‘the following format (Figure 3.5). First EMAS.waé IPL'd
with an appropriate hardware configuration.. The RTE was
then started and pseudo-users proceeded to log on. The
timing of the run started with the first pseﬁdo-user
logging on. Eight minutes after the start the tables
fof the CPU log queue sampling and category transition
‘trace were cleared and a 31 minute measurement window
began. .The'eight minutes was more than adequate time for
all users'to log on and the system to achieve a form of
steédy state. . Two minutes after the start of the
measurement window the event trace monitor ﬁas'furned
on and it continued to gather data until it had filled
its available data space (800 pages) and switched off.
At tﬁe endvof the measurement window the CPU log queué
sampling and category transitions data were dumped.
This marked the end of the run and the RTE was closed
down. The event trace data was‘then retrieved and
stored in a standard EMAS file for later analysis.

EMAS was then closed down and re IPL'd for the next

Figure 3.5

A NORMAL EXPERIMENTAL RUN

CPU 1log cleared

Event traceA
monitor fills
data space

A‘(800 pages)

Stop

- Start start of monitored and closes R
dimulator period down ' timulator -
' (A) (C) : (B)
! ' N
IPL 4/75 . First (B) Event trace (D) CPU lol Copy event
“with appropriate _user monitox cleared trace data
hardware/ - ' logs on starts end of to EMAS
software ‘monitored file
configuration period ‘
~
V
TIME
. A—>B 6 minutes
B—>C 2 minutes
B—>E 31 minutes (monitored period)

The close of the event trace monitor (D) will normally take place before the end of the

monitored period (E) when the data space is filled. If not then the event trace monitor

is shut down at (E).

.89

xrun;u‘Ali‘fhe sWi£¢hing off‘and ¢ﬁ:of'mohit6Iing
faéilitié§ fbok plaée aufomaficaily;“Any'inteiference
caused by‘thé monitofihg shduld be nearly identical for
each run as the améﬁhts of dafa obtained (thé'
‘interference being‘roughly proportional to the amount of

data taken) was the same in each case.

Exclusive‘use was requifed of the
mﬁinframe during these experimént runs. During the
spring of‘1975 a daily slot was provided by the ERCC
management in the early mornings in a period normally
taken up by system housekeeping functions

‘(archiving etc.) for a series of runs. At this time

the PDP 11/45 was connected via the MCCCU. After a

number 6f runs had been completed a fault was found in
the EMAS software handling the buffering of mességes to
- and from the RTE. This fault was considered to have had
a drastic impact onlthe results obtained, so all that
data was abandoned. However, the experience gained in
running procedures and proving the software in the

RTE was very valuable.

During the summer vacation of 1975 thé
ERCC allowed one 4/75 configurafion to be taken-out of
service at 8.00 p.m. on certain evenings, and given
over to the experiment. A total'of.13 evenings were

dedicated to this with approximately three hours per

90

.eveﬁihg'béihgravéilabie{ The fiiét éixie?enihgé were
’fakéh‘up checkiﬁg that everything worked‘acéording to
plan‘i.e; that the RTE worked, that all the scripts
woﬁld run suécessfuliy; and that the leyel of'loadingr
'Waé”édequate; Therebwas sti11 one process failure
during expé;iments'A - D, approximétely 15 minutes
intd;the mqnitoréd‘pétiodﬁv Fromzthese failures an
efror'was found And_coiiected in DIRECTOR. Theveffects
ofvthis change on the éystém performance was not |
considered signifiéant (éther than removing the
failure). .Any experiment runs which suffered from

any major system failure, either in‘the target or

thé RTE (there were hardwére failures in both) were
'disca;ded and re-run. An exception‘to this is Run 'F!
which sufféred-from a hardware‘failure.after the end

of the measurement window. This meant the CPU log was
lost but the trace data was safe. A further run on
this configur;tion was planned, but could not be carried
out as the hardware for the RTE‘waé moved to a

different site.

Conclusions

The validity of the workload used in
the Performance Experiment is discussed in the next
chapter, and results obtained will also be given in

succeeding chapters. The conclusions drawn from the

91
experience of carrying out such an exercise and the

‘feasibility of adbptihg such an approach are:

(a) The initial --sevttinc_.‘-; up of the framework

(i.e. debugging the WD—térget,system interface hardwére
and soffware) in which such e#periments may be run is
tedibus‘ana is fiaught with a large number of possible
sources of error and frustrafion. Once such a
framework is proven, work can progress at a reasonable
rate (this would also appear to be the'expeiieﬁce in

the M.H.T.S.S. evaluation).

(b) The time required to run any extensive set of
experiments plus the initial setting up phase will be

quite long, though there are, of course, welllproven
experiment designs whicﬁ allow for a reduction in the
number of actual runs which need be carried out
[Cochran and.Cox 1957] and one need not carry out a
full factorial experiment as was the case here. An
enlightened attitude will be required by the‘system
management to allow dedicated time required for such
an exercise. Once the initial troubles had beén
ironed out it took almost exactly one hour per

successful experiment run.

92

(g)"If a gimilarzapﬁibgch‘to that éar;iéd out heré
.- ‘is édoptéd; and an extensive sét of evénf trace data
(800 pages per run approximately) is taken, then a
non trivial data management préblemvresults. A
'reésénable procedure for handling thié data
. efficiently mﬁst be worked out in advance. During |
'theAperformAnce éxperimént the data/from each night's
‘run was analysed és soon as possible during batch runs
thaf evening (usiﬁg three EMAS proéesses), and
archived to magnetic tape immediately thereafter for

possible re-use at a later date.

(d) In terms of pragmatic approach to system evaluation
a developmeﬁt Qf_fhis method must be seriously. |
considered as ah esséntial route for further work, so fhat
some form of data base of‘empirical data on such

systems can be built up for reference. The standard
workload used here,.and the stimulator used, were by

no means ideal examples of their kind, but the

modified interactive benchmark did provide what must

be considered as a very reasonable representation of
a natural workload for such a system (see next
chapter). Similarly the RTE presented this standard
workload to the target system in a realistic fashion.
It was considered best to use these tools which were
available and in which some experience had already

been gained rather than starting completely clean and

93

iepeating'to.a'great extent the 1érgé amount of work
which had 31ready gone into the benchmark definition
and stimulator construction. Based on fhe;ekperienCe
-gainéd ffom this Work an improved RTE has been |
designed and implemented [Adams et al. 1977]. The
area of workload definition and experimental
procedufes is.an_areauin'which much further work

could still be invested.

| o ChéEtér 4.

In thisvchapfervthe workioad applied
vtohthé‘systéﬁ duriﬁg‘the EMAS pérforman¢e ekperimentvis
| ekamined in greater detail. Soﬁe measures of workload
at the level of the EMAS reéidént'supé#vis§r are givén»
and the réproducibility of the standard workload in

terms of these measures is discussed.

Benchmark Construction

'The standard workload used in the
:experiment‘was'derivéd from an interéétive benchmark
defined.from meaéurements taken on EMAS at the level of
the standard subsystem [Millard et al. 1975, Adams and
Millard 1975]. This involved recording such items as the
‘disfributions of: the types of commands issued, sizes_A
of files used, user think times, system resources used
by individual commands (page transfers and CPU times)
and the length of interactive sessions. A PDP-8

interposed between certain terminals and the normal

communications hardware was also used to monitor user
typing characferistics in greater detail. This .
measureménf of user behﬁviour was carried out over a
lengthy period; and the wdrkload was found to be quite

stable in terms of the items monitored.

95

vijAvbenéhﬁark‘wasvthen'defined in‘térms
 §£.32'distinCt scripts, each scfipt deséribingva two
houf‘seésion”at a pseudo-terminal. During each of
these fWo hour.sessions, sevéral pseudo-users iﬁ tﬁrn
made use'of the péeudo~tefminal;"The scripts |
 interacted with a set of base files in the target
yéystem. These files were never dééfréyed or - |
modified in any way, all ﬁse of them was cafried out
in férms of operatioﬁs (e.g. editing) from the base
file to séme temporary file which was subsequently

- destroyed. Thbugh EMAS alléws users to type ahead =
i.e. givelinput to the system before a request for
input is issued - no attempt to simulate this was

. made in the RTE; each thihk time startea from when

‘a reply was received by the RIE.

‘The benchmark was validated in terms of
supervisor éctivity by measuring the CPU utilisations
and induced paging rates over the two hour period and
checkihg this against measurements taken on the natural
system. The RTE used was validated in terms of
accuracy in Iéproducing‘the scfipts by monitoring EMAS
again at the subsystem levelywhilst the benchmark
workload was being run. This measurement log was then
checked against the scripts used. All of the benchmark
definition and validation was carried out by ERCC

personnel for system acceptance trials.

It WAé'decidéd fb'bése'fhé standard
workioad'used in'the’exﬁeriments.oh this benchm#rk
becéuée sb much work had already béeniinvested in its
specificétion and Qalidation, and it ﬁas considered to
give an acceptable representation of a realistic user
workload [Miilard 1975];>'Thé characteristics of the
workload at fhe level of the resident supefvisor will
be of interest in the experimént. It would have been
‘poésible‘to interpdlate the workload at this level by
using a set of synthetic prégrammes rather than relying
on a benchmark which was defined at a higher level.
However, to obtain a woikload which mirrored real userx
"behaviour in a”iealistic fashionlwould have involved
an effort at least as éreat'as that put into the
benchmark construction. ‘Not only is the distribution
of process workiné sets quite wide but EMAS processes
will maké use of a variety of subsystem and DIRECTOR
facilitiés durihg their exécution. Their working set
composition and especially the level of sharihg of

"pages will reflect this. It may have been difficult
to obtain a reasonable distribution of such requests

and working set sizes in a small set of synthetic
programmes. iAlso, as is shown later, any workload
defined in terms of activity monitored at the level
of the resident supervisor will be in some ways
dependént upon the algorithms employed therein. If

such a workload is then to be used as a basis of

97

 "cbmpérison for two algorithms employed at this level,
' great care would have to be taken that the parameters
chosen to define the workload were in no way

influenced by these algorithms.

Modifications t6 fhe Benchmark

The standard workload used in the EMAS
performance experiment was a modification of the

benchmark in the following ways:

- The iength of run used was én eight minute
peribd (to allow all users to log 6n - a ten second
gap was required between pseudo-user log-ons to avoid
overloadihg the RTE - and settle to a éteady workload),
plus a 31 minute monitoxing window (30 minutes was the
obse;ved mean length of a user Qession). Thus only the
first 39 minutes of the benchmark was used. The
workload was consideréd to be spread evenly throughout
the two hour period [Millard 1975]. Also the base files
were never tampered with and the,tempérary files
aiways destroyed before being reused, so there should
be no interference from files being lost due to
cutting the benchmark shorf. By doing this, the time
taken for each experimental run was considerably
reduced and could each be carried out in

approximately one hour.

- The Béhcﬁmafk was defined-and vélidated on an
-EMAS éonfigurétionVCOﬁsiéting off3/4:M-Bytes of core
.sto;e, two 2 M-byte drums and one drum channel. The
‘32 é%multaneous usérs represented in the sé;ipté
providedbsuch'a configuration with a reasonable
_1eve1 of ldading. However, as more‘p6Werfu1
'configuratiohé wére to be uSed in the experiment,

a highervlével §f lo§ding would be required if the
térget was:to bé in a heavily loadéd state over the
obserﬁed period. Ade ways of achieving this were

considered:

'a) Increase the number -of scripts and

simultaneous pseudo-users.

b) Decrease the think times in the current scripts.

The latter approach was adopted as limitations
within the RTE hardware made it impossible to
increase the number of simultaneous users
significantly, and it would have required a further
validitation process‘to check that the command
distribution presented by such.a new benchmark did
not vary significantly from the original. The think
times épecified in the original scripts were
modified in the RTE software according to the

formula:

et

THINK TIMEUSED=max1mum (0, 'SCR'IP:VT?I,NK'?IME)_'S‘econvds"

’This'méihtaihed the sameldistributioh of QSer éommands
issﬁéd,.keeping the farget éystém undei a reasoﬁab1y

" heavy léad throughout the monitored period, and
‘removing ahy peiiods of idle which had appeared on

'-'largéx configurations in which only one or twovuseis.
_6f the 32 were active at any time. This was

éonsidered validlas the aim of the experiment was to

compare the effeet of the three chosen factors upon

the befformanée ofba heavily loaded system. The

effect of cutting the think times will be to keep

more processes iﬁ‘the active state (awake) ét any

fime, thus giving a similarx effect to having a larger

humbernof users 1ogged-on. " The characteristics of

processes in main memory will.not be altered, the main

difference between this iﬁcréaséd workload and a true

increase‘in thé number of users will be in secondary

memory utilisation and distribution of fileé used over

the surface of the discs used for tertiary memory.

The files used by the benchmark were held on two

otherwisé unused quarters of the disc file. To avoid

the possibility of bunching of files on any particular

area of the disc file, and thus in effect speeding up

the disc accesses, owing to a decrease in head movement,

a change was made in the DIRECTOk used in the experiments

to scatter newly created files over the cylinders of the

‘100
~ disc.

Whilst any experimenfal run is in
progress éerfaih classés of woik may be diécriﬁinéted
' against'in some'wayvby the écheduling algoiithmsfor by
" the chance posifipning‘of fbtatingcmemory dévices. The
actualvworkldad being piocessed during the measurement
windéw'will nbtAalw;ys.be absolutely identical. |
However thé fotél workload presented to the system will
alWays be the same sonany éffects of this nature are
part of the way in which the system réacts to the
workioad. The measuiement window is intended to be
sufficiently laxée_and'sfarts soon enough affer the
start of‘the standard workload to minimise effects due

to this.

Workload Measures

In a system of this type, the workload,
as it may be observed at the level of the resident |
- supervisor, will be related to the system just as thé
performance is related to the workload. The béhaviour
of each process will be éharacfeiised‘in terms of
the reference patterns it produces i.e. the virtual
memory addiesses it accesses and the CPU times it
expends on each page. The working set concept is a

representation of this. Unfdrtunately exact working

101

set behaviour is very. difficult to measure. In the
following section measures whereby the workload
passing through the EMAS resident supervisor may be.

characterised and quantified are considered..

All proCess virtual memoryvscheduling‘
within the EMAS resident superviso; takes place local
to each piocess, and takes no account of_the global
level of loadiﬂg existing on the system. The behaviour
of a process whilst executing any particular interaction
Will thus always be the same in terms of CPU usage and
paging behaviour (virtual memory accesses) and will be
exactly reproducible during any'two successive runs of
that process. The only area‘in which the global system
load is taken into account is in the scheduling of

‘secondary memory space.

Within the‘scheduling of virtual memories
of main memory resident processes there is one possiBle
source éf error. This involves shared pages. Usage
information upon which working set calculations are
based comes from maikers.associated with physical
core pages rather than the process paging tables.

The reading of this usage information and clearing of
these markersis a time consuming procedure (there are
eight markers per 4096 byte page on the iCL 4-75) and

therefore does not take place at the end of each process

102
iﬁterVal on fhe,CPU (which would give the same effect
- as having marker associated with the process paging
tables), but only takes place after regular intervals
of process CPU time (a strobe interval) or when a
process is to be removed from main.memory. Consider‘the
following scenario (Figure 4.1): ‘Processes A and B
are sharing a particular page. Process A ceases using
the page early during its residency. It is strobed,
but as the page has been used during this residency it
remains in A's working set. The usage marker on the
shared page has now been cleared. Process B now uses
the page, but is suspendea for some time (perhaps on a
page fault to>a slow disc). Process'A is now removed
from core ‘and its Working'éet recélculated. The
usage markers will show the shared page to have been
used and it will be inciuded in Afs working set. The
usage marker is cleared. Process B is given the CPU
again but is strobed before it can use the shared page
again. The shared page will not be included in B's
working set. It is possible to obtain an estimate.of
the level of this interference from usage information
associated with events 16 and 17 of the event trace
monitor. When runniné under a demand paging scheme
every pége brought into main memory by a process will
be used. However, when they are removed from main
memory some pages are marked as never having been

accessed - due to this interference. Discounting

Figure 4.1

@« @ o
a8 87 Qs CER
G0 L2 &0 32
= Ay, fx, = wn Ay e
P, | ‘
ro | 000 o
o 2 pooo 000000000
| g 3 o I 00000 oXo)
g 4 | - loooo 001001000000 0¢0008 000
‘51 o 0 o 00
B 6 O 00 .0
HARED-7& R | ,
pacE ‘& | 0000 0000000 000
~R5 |0000 © 00 000 00 0000000 0 ©
A C 4 | o , o 00
=5 3 |ooooooooc "0 000000000000 {00000000000000000000 |
‘s 2 |o 060 o0 00 00 wm» 000
s | |oo
»Pﬁgggss A B JA 1B A C B IC
- ‘ A strobed A removed B strobed
’ REAL TIME

'O = ACCESS TO A PAGE

103 .

pages which have been removed by the normal strobing
prbcedure this interference would appear to be less
than between 7% and 3-5% of all pages brought into

main memory.

If the EMAS scheduling algorithms
remAin constant and there is no contention for
secondary memory space, then the activity (baging,
and CPU time) éaused by a proceés during ény
interaction wiil remain the same no matter what other
processes exist on the system. The scheduling
decisibns taken by the.supeIQisor in handling this
process whilst resident in main memory will also then
be fixed. In particular the number'of residencies in
main memory necessary to carry out any item of work will
be fixed, as will the categories used by that process.
Measures whichvmay be used to quantify the workload

under these circumstances may then include:

a) Resources requested by each process

during a main memory residency.

b) Scheduling decisions taken about that

' process during a residency.

a) The resources used by a process during any

._A104

.residency hgve two méjor components:
i) Virtual Memory accesses.
ii) CPU time.

i) Virtual Memorybaccesses may be roughly quantified

in terms of the number‘of pages requested or brought in
during any residency.A Pages may be brought in either by
prepaging or demand paging - the split between thése

two forms of paging in will depend upon the working

set calcuiation algorithm's estimation of the process
locality (an'attributé of that process alone). Pages
may also be transferred in from any level in the storage
hierarchy. .The ratio of ‘the numbers of pages coming
from each level will be dependent upon the global mix
of processes existing in main memory (reflected in the
number of pages found in main memory from sharing) and
the contention for secondary memory (reflected in the
number of pages moved back to the tertiary level by

the drum working set algorithms and hence the number

of pages brought.back in from the tertiary level)r

The fraction of pages brought into main memory which
;re subsequently writfen back to secondary memory will

" depend upon both the activity of that proéeés (the
fraction of pages which it writes to) ahd the number of

‘pages brought in from the tertiary level (and need to be

- .105.
copied to secondary memory).

‘ii), The tptal CPU tiﬁe‘ﬁsed‘by # prdéess during each
iesidéncy wili be.a fﬁnctiénquAthat pfocéss' activity
- aloné. Similarly the mean time between page faults
Wiil be é fﬁnction only of that process and not of the
Qlobdl system load ééiis the case iﬁ most other systems

.of this class [Sekino 1972].

b) The scheduling decisions taken in relation to any
process during any residency will always be fhe same.

In partichlar‘the reason for terminating each

residency - because the process has gone to sleep or
overrun a resource allocation (CPU'time or main memory
allowance) will bé a function of that process' acfiVity.
Hence the categories used by‘a process in carrying out

its work will also be fixed.

Reproducibility of Standard Workload

The ideal'way of estimating the
reproducibility of the standard workload would be to run
it on two or more separate occasions into identical
hardware/software configurations, obtain a set of
measures and compare these to obtain bounds on likely
errors induced by variations in the standard workload

(caused by random positioning of rotating memory

106

devices at start up). Unfortunately though such a run
was planned there was not time to'carry it out as the
hardware used for the RTE was only available for a

very limited period.

‘In>the_foilowing the characteristics
of the Woxkloéd are presented which show fhat the
standardeoikload:was feproducible. This data.is all
oBtained from the event trace ﬁonitbr. The‘user CPU
timéévobtained from this data (which are meant to be
uéed to compare différent runs) will be an overestimate
owing té the supervisor ﬁsing CPU time before the event
it recorded. The error is introduced because CPU time
uéed by the supervisor before the évent.is dumped
is éccredited to the user‘process. This only happens
when intefrupts - device inté#upts, page faults or
supervisor calls - occur and a simple correction can
be made for this if the time used by the supervisor in
servicihg these is known. Whether or ndt such a
~correction has been made will always be specified when
CPU timings are presented. The runs are also split
into those using working set replacement (group one)
and those using demand paging (group two) as certain
of the measures given are dependent upon the
scheduling algorithms.

~

The first measure of workload considered

107

'is that of réSoﬁrces'ﬁééd each timé the procéssxehteﬁs'
the aWake'state (which ié ahalogous t¢ an interactibh) -
Table 4.1. The runs in the‘two groups are very
Coﬁsisfent. ‘One major,differehce between the two

stems from the féct»that the runs involving demand
paging required an eftra.O;é residency on average'per
awake. This may be due to the<different,category
scheduliné used in the two groupsr(in group two
procesées are.piaced in NCY3 rafher thaﬁ NCY4 when

they go to sleep);. One criterion which may be used to
compare the activity.of process between all‘runs is.fhe
amount of CPU time the process consumes during any
interaction i.e. how far the process moves in its
computatioﬁ during each interaction. Thére is no.
statistically significant difference in the corrected
CPU times shown. The frequency distributions of
paging requests and CPU times per interaction are

shown 1in Figures'4;2 and 4.3 respectively, note the
heavily skewed nature of the CPU distribution. The

- resources used per residency (Table 4.2) further

show the stability of the workload.

The profile of work passing through each
category in terms of residency periods page-in requests
and CPU time is shown in Tables 4.3, 4.4 and 4.5 |
respectively. Not only do these figures show the

reproducibility of work passing through each category,

 Table 4.1

Average Resource Requirements per Interaction

| '_‘ MILLISECONDS - - |
'EXP /g;;;;Z;;E//\\EEE;;;;;;;B\PAGE4IN ' MAIN MEMORY
RUN CPU TIME CPU TIME REQUESTS RESIDENCIES
A’ 331 | - 354 50 : 15
c 338 421 53 1-5
E 328 i 302 52 1-5
G 345 388 53 ~ 1-5
I 324 | 395 52 1-5
X 322 404 52 1
B 310 384 52 2-1
D 328 508 52 2-1
F 323 455 53 21
H. 322 461 52 21
J ‘335 499 52 2-1

L 308 . 577 51 2-1

FREQUENCY DISTRIBUTION AS PERCENTAGE

[

7.0

Figure 4.2 (a)

PAGE TRANSFERS PER INTERACTION
EXPERIMENT ‘A (WSR)

6.0+

5.0+

3.0¢+

AM’MMAMA I\AM A.AAI'\:AAM A4
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

PAGE TRANSFERS X 10

!
1

22.5

FREQUENCY DISTRIBUTION AS PERCENTAGE

Figure 4.2 (b)

PAGE TRANSFERS PER INTERACTION

EXPERIMENT B (PDP)

1.51

0.51

0.0

T I i b

0.0

2.5 5.0 7.5

" PAGE TRANSFERS X 10

10.0

12.5

. 15.0

17.5

20.0

22.5

FREQUENCY DISTRIBUTION AS 'PERCENTAGE

0.0

S 9.0

7.01

Figure 4.3 (a)

CPU TIME USED. PER INTERACTION

EXPERIMENT A (WSR)

8.01

6.0HII

5.0+

4.0+

3.0+

0.0

% N N S Al "
T Ll L] T T L Ll T L
2.5 5.0 7.5

10.0 12.5 15.0 17.5 20.0 22.5

CPU TIME (UNCORRECTED) (1/10 SEC)

FREQUENCY DISTRIBUTION AS PERCENTAGE

Figure 4.3 (b)

CPU TIME USED PER INTERACTION

EXPERIMENT B (PDP)

6.0 -

5.0+

R
.
o
A
T

w

o
Iy
==}

N
o
1

1.0+
0.0 o LanghAbaaoy paso—Oatasancly i
15.0 17.5 20.0 22.5

0.0 2.5 5.0 7.5 - 10.0 12.5

CPU TIME (UNCORRECTED) (1/10 SEC)

Table 4.2

 Average Resource Requirements per Main Memory Residency

A - MILLISECONDS j " -
EXP /Eg;;;gggg—/A\;;;;;;;;;;B\PAGE—IN | wRiTE-OUI
RUN CPU TIME CPU TIME REQUESTS REQUESTS
A 224.. j 281 .35 11
c. ‘ 225 304 | 35 ‘_ 10
E 219 . 289 . 35 10
G 223 341 ' 36 11
1 217 302 35 11
K 216 . 322 | 35 10
B 146 ' 231 | 26 9
D 152 260 25 9
F 150 242 25 9
H . 147 293 25 9
J - - 159 271 25 9

L . 147 317 25 9

.~ Table 4.3

. CATEGORY PROFILE - AS PERCENTAGE OF ALL MAIN MEMORY RESIDENCIES

EXPERIMENT RUN

 CATEGORY A ¢ E 6 I K B D F H J L
1 0O 0 "0 0 0 © ‘0o 0o 0 o0 0 O
2 o 1 1 1 1 1 3 2 3 -4 4 4
3 5 5 8 5 5 5 4 4 4 4 4 4
4 4 3. 4 3 3 3 2 2 2 2 1 2
5 4 3 | 3 4 3 4 22 22 21 20 21 23
6 NU NU O NU NU NU NU NU NU NU NU NU
7 NU NU O O O O NU NU NU NU NU NU
8 37 37 35 36 38 38 28 28 29 29 29 28
9 0O o0 0 0O 0 © 0O 0O O N O O
10 o 0 0 o o0 O NU NU NU NU NU NU
11 ° 23 24 22 21 23 22 18 17 17 18 17 15
12 0O o 0 0O 0 © O O O NU O NU
13 o o o o o0 o© NU NU NU NU O NU
14 11 '11 10 11 10 11 10 10 8 9 9 9
15 1 1 1 1 1 1 0O o 0 O 0 O
16 o 0o 0 0 0 O 0o O O N O ©
17 4 4 4 5 4 4 4 4 3 3 4 4
18 O NU O NU NU O 1 o 1 1 1 o©
19 1 1 1 1 1 1 0O o 0o o0 o0 O
3 3 4 4 3

Table 4.4

CATEGORY PROFILE AS PERCENTAGE OF ALL PAGE-IN REQUESTS

o A

~

10

11

12

13

14

15
16
17
18
19

20

& o

&
&

\V)

&

O O N wuw
o &

o

28

o

24

14

A O ® B
.n.pg'

W

EXPERIMENT RUN

(8

S

© O

23

O

I

N

30

W

- K

LY

\V]

o

30

&

o

N v & O O

&

S &

&

&

o

(X TN S N

&

o

10

v o O O

- Table 4.5

CATEGORY PROFILE' AS PERCENTAGE OF ALL USER CPU

CATEGORY A

\S}

W

10

11

12

13

14
15
16
17
18
19

20

©O ® N o W

w & &8 o w
.hw..howooo{é%oooo'o

(V]

28

11

10

© O O

LW L O A

27

12

11

=

W

26

14

11

EXPERIMENT RUN

© ® o o ©o

AU VI CEEEN

G

=

o & o

.nwo\)o.mxooéoooo"O'

A R ® U A O N

24

10

12

11

o O O

25

10

13

K

o o o

=

20

-hwrho\:lkt\J\O‘OéO

o

péoo‘%o.\lé%w

o

=

11
27
16

10

o o o o

N

L é R o g o N é %
L g o o E O. 400 % é
v n & 8 o & B

n

11

23 -

19

12

@]

(@)

N

(9

E

14

23

18

11

@]

qééfo'o

~ & @

s w3 3 w3 o o & F

31
15

13

% O v O

w o wu o

(\V

13

22

13

11

W

(9

15

24

16

108

,but'élsé prégehtvih'mbte_detail the specfrum of‘

work ékisting oh fhe sysfem. .within each 6f fhe two
groups there is a vefyACOﬁsistent profile with the
vméjqrity.ofvresidencies passing through fhe‘interactive
| catégories’(s, 8, il, 14, 17) - between 74% and'82%.
These categoriés also account for the vast_majority of
all page;in reéﬁesté - 77% - 81%. However; the CPU
time used by these categories is much less - between
28% and 34%. The reasons for términating any
Tresidency -‘ﬁrocess géing to sleep OI'overrunning a
CPU 1limit - are shown in Tables 4.6 and 4.7 - all

other residencies are ended because of overrunning
main memory limit. Again, these show a great level

of .consistency in all the heavier used catééories.

It also shows that the CPU limit has very.little impact -
on the scheduling of processes and that when processes
are removed from main memory when they haQe not yet
coﬁpleted their available work (i.e. have not gone to
sleep) this is most likely to be bécapse of overrunning
a core limit. With respect to the classification of
processes by the system into categories, it may be
'seen that this is at least partially successful in as
‘much as those.categories which have higher CPU limits
are also those categories which show a higher percentage
of residencies ending because the CPU limit has been
reached; whereas those categories with.low CPU limits

very rarely, if at all, have procesées rescheduled

' Table 4.6

PERCENTAGE OF RESIDENCIES ENDING BECAUSE PROCESS WENT TO SLEEP

'EXPERIMENT RUN

CATEGORY A C E G I K B b F H J L
1 o 0 0o o0 0 o o 0 0 o0 0 O
2 86 77 67 74 72 73 20 30 36 43 43 44
3 65 65 69 71 65 65 52 45 54 52 63 47
4 99 o8 o8 98 98 99 96 100 84 100 95 91
5 57 57 53 50 52 54 15 13 14 10 14 14
6 NU NU O NU NU NU NU NU NU NU NU NU
7 NU NU O O 0 O NU NU NU NU NU NU
8 8L 79 80 82 79 80 65 64 63 62 63 67
9 67 88 88 100 70 70 100 100 100 NU 67 100

10 ©O 0 0 0 0O 0 NU NY NU NU NU NU
11 62 63 60 57 62 60 52 54 56 54 57 55
12 25 20 O O O O 25 0 50 NU O NU
13 ° 50 30 38 72 63 60 NU NU NU NU 100 NU
14 67 65 67 62 65 65 58 53 60 59 58 54
15 6 8 9 3 5 6 25 0 20 O O 33
16 14 32 25 12 11 13 ~ 100 50 100 NU 60 67
17 45 45 45 49 49 48 58 61 37 51 45 53
18 NU NU O NU N O . 4 9 7 0O 8 5
19 38 39 37 20 39 41 7 4 5 9 6 6

20 32 38 33 34 34 40 43 38 43 36 42 49

OVERALL 68 67 67 65 67 67 47 46 47 46 48 48

- Table 4.7

" PERCENTAGE OF RESIDENCIES ENDING BECAUSE PROCESS OVER RAN

CPU LIMIT

CATEGORY A

Q 0w oA W W

O 0 .

10

11

12

13

14

15

16
17
18 -
19

20

OVERALL

5 % 7

oy
=

50

17

21

14

19

14

16

3

© o o o o

(@

27

14

19

14

17

& @ o o o o o

57

67

24
15

19
50
16

15

©O O O O O O O

EXPERIMENT RUN -

26

- 24

16

18

14

ooogo'ooo'_o

I

o_g © 0O o o o

20

25

11

19

14

15

K

100

10

22

13

17

50

19

19

oy

48
67

17

gooéo'oégooo‘o"o

2 o o Z
2 o o Z

oy

oo_gg.o'oooo

oy

o © g'é.oooo.o

~EEo%Zo0f%oocoo o

& o

&

100
40
16
42
69

14

OO%%OOOOO

oy

g'ooooo

(@

72

12

109

”*oecause of CPU limits :“AvdiStinctioifferenCe‘is also
shown between groups one and two 1n the percentage of
re51denc1es ended because'of reaching a main memory.
limit w1th many fewer terminations taking place
because of this in group one (297'— 32% v 49% - 52%).
This‘indicates that theveffect of the category |
schednling in group:tWo nas having a very significant
impact with a larger number of processes entering
main memory in a category with too small a main memoxry
'limit and having to be rescheduled, removed and |
brought in again before completing their work. It
also shows.that the standard category scheduling scheme
(empioyed in group one), employing a set of four
transitions associated with each category, obtains a
better fit between process requirements and the
categories they use, tnan the modified scheme -

(group 2) employing only three transitions.

The consistency'of behaviour in the
categories between runs is further demonstrated in
Tables 4.8 and 4.9 showing the mean number of pages-
brought into main memory and the mean CPU time obtained
.per residency respectively. Again these figures
indicate that the classification mechanism into
categories is functioning in as much as those
categories with larger resource allowances do in

fact use more of those resources than categories which

Table 4.8

' MEAN PAGE-IN REQUESTSJPER'RESIDENCY IN MAIN MEMORY

EXPERIMENT RUN

CATEGORY A C E G I K

7, B O TR

o

10
11
12
13
14
15
16

17
18
19

20

49

18

30

35

.
&

&
E

27

31

37

37

43
46

54

- 63

60

63

39

OVERALL 35

.49

19

30

33

28
31
37

39

46 .

45
54
62

59

63

41

35

48

19

28

35
16
20

20

26

29
34
38
42
38
45
53
54
59
60
66

39

35

50

19

29

© 37

16

20

26

27

32

37

32

43
45

55,

57
60

65

42

36

49
10
29
34

15

20

27

27

35
37
35
44
a5
54
61

61

67

38

35

48
19
30
35
15
NU
20
27
26
31
38
39
44
45
52
65
61
64
65

44

35

50

24

26

&
&

¥

27

27

32

29

29

36

41

61

51

41

26

50

18

24

26

&
&
&
&

27

27

40

27

36

41

38 .

53
47

40

25

47

17

23

27

2
2
:

27

27

28

29

40
41

40

52

52

38

25

51

17

24

25

&

&

&

&

36

35

55

50

41

25

50
18
23

29

19

27
36
27
29
31
48
37
57
51

38

25

38
17
23

27

&

35

51

37

61

52

38

25

CPU TIME PER MAIN MEMORY RESIDENCY (all CPU times are uncorrected and quoted in milliseconds)

CATEGORY A c E G I K . B D F H J L
1 158 145 147 152 144 142 146 146 136 146 150 111
2 52 41 37 37 40 39 26 28 28 28 32 31
3 41 39 42 42 39 39 45 42 44 49 46 45
4 77 ° 57 72 88 68 73 76 66 74 66 92 73
5 17 26° 31 27 30 28 22 24 26 21 26 - 26
6 N.U. - N.U. 1432 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U.
7 N.U. N.U. 1933 1202 1267 1042 N.U. N.U. N.U. N.U. N.U. N.U.

'8 60~ 59 64 62 64 64 53 53 56 51 55 57
9 3617 555 1140 609 2087 2148 721 651 629 N.U. 624 429

10 4328 3875 4315 3625 1541 4041 'N.U. N.U. N.U. N.U. N.U. N.U.

11 8. 75 83 76 79 78 69 71 74 68 79 63

12 6120 8821 7467 9055 9247 10663 1362 4439 1671 N.U. 6905 N.U.

13 4061 2862 2959 1358 2480 2937 N.U. N.U. N.U. N.U. 234 N.U.

14 104 102 103 109 106 99 80 74 97 77 81 99

15 5241 5561 5607 5629 5309 4852 7783 4021 5010 6436 10499 7187

16 4429 4122 3264 4996 5112 4809 2188 6413 - 2593 N.U. 7141 7887

17 691 700 756 666 728 . 777 653 584 833 773 729 697

18 N.U. . N.U. 5275 N.U. N.U. 5680 5184 5018 4083 4589 4471 4937

19 1739 1594 1568 1878 1326 1522 - 5024 4218 4344 4114 4253 4269
20 494 610 572 592 583 613 616 725 611 588 564 449

- OVERALL . 281 304 289 341 302 322 231 260 242 293 271 317

110

| _are allocatedvless.h Fnither infdrmation on'the aetivity
-, of the processes is given in Tables 4.10 and 4.11
‘show1ng the mean user CPU time between page faults, and
the fractlon of pages brought into main memory by the
working set replacement policy. This shows, as would
be'expected,’that group gne processes do much more
compnting.betWeen page faults than group two and, that
in those runs using the working set-teplacement peolicy,
those pages brought invby’prepaging will outnumber
pages which are page faulted in, by a ratio of more

than two to one.

Some other characteristics of the load
'placed on the system are summarised in Table 4.12.
This clearly shows that the level of page-in requests
involving transfers from tertiary memory is very low
(approximately 2% - all preloadinghtransfers come from
the secondary memory). In fact of those transfers
involved in the actual running of user processes
(i.e. swapping in and out ef main memory and page
faulting) there is a ratio of 50:1 in favour of
transfets involving secondary memoxry against those
involving tertiary memory. The level of sharing in
main memory is, as expected, seen to be dependent upon
the amount of main memory available (and hence the level
of multiprogramming). In the group one runs the requests

for pages which are already in main memory (i.e. shared

e T Bl e Nt -

MEAN CPU‘TIME BETWEEN PAGE FAULTS

© -~ CATEGORY A

1

0 W N WA W

‘10
o
12
13
14
16
17
18
19"
20

OVERALL

3
38
5
8

4

N.U.

'N.U.

17
657
504

408

259

208
229
27

- N.U.

67

15

26

C
2
12

4

6

6.

N.U.
N.U.

15

92

- 376

612

125

199

30

N.U.

63
17

25

323

"3
12
5

6

6
477
644

18
157

E

299

640
. 182

344

. 247

34
351
60
17

24

O 0o 1 O LW M

N.U.
400
17
01
362

960
77

352

287
27
'N.U.
73

18 .

27

N.U.
422
16
' 347
102

660
128

337

- 256

31
N.U.
49
19

25

K
2

13-

4
7

6
N.U.
347
16
370
343

947
161

347
218
33
315
58
16

:24

= N PN W

- N.U.

N.U.

27
N.U.

43

- N.U.

270
61
13
86
92

14

N.U.

113
N.U.

0113

- 159

13
95

90

17

H N B = N

N.U.
N.U.

24
N.U.

61
N.U.

127
64
19
76
81
15

N.U.
N.U.

N.U.
N.U.

N.U.
N.U.

183
N.U.
18
84
83
14

o SII VI V-

[l CV I \C R o S U\ B O

 N.U.

N.U.

34
N.U.

195

349
150
17
79
83
14

(all CPU times are uncorrected and quoted in milliseconds)

SR OO S VR o

N.U.
N.U.

16
N.U.

N.U.
N.U.

211
157
16 -
82
83
10

 Table 4.11

. PERCENTAGE OF ALL PAGE-IN REQUESTS WHICH ARE PRELOADS

CATEGORY A

N

AW

10

11

12

13

14

15
16
17
18
19

20

0 N o Wn

92

- 73

74

&

E

79.

72

65

59

63

69

67

69
54

60

17

OVERALL 70

C

83

72

72

&

&

78

67

64

63

51
68

68

66

60

61

17

69

E

84

72

20

71

85

85

86

75

.63

63

72

58 -

68
69
75.
62

75

61 .

18

69

EXPERIMENT RUN

80
72
71

72

85

86

75

68

63

70
59
67

71

69

59

62

24

69

83

71

73

70

85"

86
78
57
64
66
56
68
71

67
62

61

22

70

84
71

72

73

85

85

78

63

63
71
58
68
73
66
62
72
60

19

69

v wdoeasd i
o oo Z

&
&

v & v w & 8

N N W (8V)

I NIV IR

» & B
~ & B

W

HoND DD D W

NN

(¥ T O ST S O

(¥, TN TORPI U, B N

W

&
w B B

LB * N S L * I W W

[y

N

T T T =

n

» & &

¥ I R T S O

Ln'.hgg

&

z %

oD W W W

L C R

w.

s & & u

(V]

%

N OHODD W

-

Table 4.12

FURTHER PAGING CHARACTERISTICS

(all figures are presentéd as percentages of all page-in réqueéts)

PAGE FAULTS

EXP PRELOAD ING OVERALL PAGE FOUND PAGE FOUND PAGE FOUND WRITES TO SHARED, ;

RUN TRANSFERS : IN MAIN IN IN TERTIARY SECONDARY (I.E. NO o
‘ MEMORY . SECONDARY MEMORY MEMORY TRANSFER)
MEMORY o : | e

A 48 30 10 18 Yy 33 g 33

c a5 30 12 - 17 ! 33 36

E 49 © 30 10 19 ‘ 2 . 33 ;_ 3QA

G 48 31 10 | 19 2 33 a3

I 53 30 8 : A20 1 | 33 26

K 52 30 9 | 20 , 1 33 | 27

B 4 %6 32 62 | 2 3 32

D 4 96 - 34 - 61 2 37 - 34

F 4 96 30 64 2 37 30

H 4 926 30 64 2 37' - 30

J 4 96 26 69 2 37 26

L 4 96 26 69 2 37 _. 26

, BT e |

t"‘v-"-v"pages) 1sleven1y dlstrlbuted between preloadlng and
'-demand pag1ng requests | The sllght b1as towards a
';hlgher level of sharlng in demand paglng requests in
'those runs is accounted for by new file page

creatlons (two percent of a11 page-ln requests) which

appear as page, faults for a page whlch 1s already

in main memory (1.e. a shared page).

The level of loading on the secondary
memory is shown in Table 4.13. These figures,
obtained from the Q-sampling monitor, reveal that there
was always a substantial amount of secondary memory
unallocated and.available (one and a half M-bytes of
real drum space). Hence no use was made of the

pseudo-drum space during these runs.

The influence of working set

recalculations within any residency is shown in

Table 4.14. This shows that very few pages are
actually removed by this mechanism and that a large
.number of working set recalculations in fact remove
no pages at all i.e. have no influence on the working
set size. The higher percentage of pages.removed by
this mechanism seen in group one is caused by unwanted
pages being preloaded. This preloading wastage

i.e. pages which are preloaded but subsequently

never used, ran consistently at 25% of all pages

'-UNALLOCATEE‘SECONDARYvMEMORY'DURING EXPERIMENT RUNS

EXP MEAN . MINIMUM
RUN | | T

A 980 835
¢ 954 } . _E 708
E 966 - | 817
G 951 . a2z
I 937 . 813

K 874 684

B §46 | 822
D . | 937 764
F | NOT AVAILABLE
H 954 _ | 765
J 930 _796

L 947 793

All figures presented in terms of unallocated secondary
memory pages. Any use made of the pseudo drum would be

indicated by an item dropping below 500.

Table 4.14

STROBING AND PARTIAL PRELOAD BEHAVIOUR

/

NORMAL STROBES EXTRA-STROBES PROCESS LOADING.

EXP {RATIO % OF % OF % OF EXTRA-\% OF % % OF PARTIAL)
RUN STROBES : STROBES NOT RESIDENCIES STROBES NOT PAGE-IN RESIDENCIES PRELOADS -
RESIDENCIES REMOVING CONTAINING REMOVING REQUESTS STARTING SUSPENDED .
* ANY PAGES AN EXTRA- ANY PAGES REMOVED BY WITH o
4 * STROBE - STROBING PARTIAL
PRELOADS
A 22 : 100 40 25 5 o 20 20
c 23 : 100. 39 27 5 10 26 16
E 23 : 100 39 25 5 9 26 26
G 26 : 100 39 26 5 9 24 26
I 23 : 100 40 26 4 9 22 45
K 22 : 100 39 26 4 10 22~ . 42
B 22 : 100 49 4 100 1 o 27
D 22 : 100 50 5 100 1 71 22
F 23 : 100 54 5 100 1 75 28
H 26 : 100 51 5 100 1 73 25
J 23 : 100 52 4 100 1 ' 73 ‘36
L 21 : 100 51 4 100 1 72 33 -

* This is not necessarily the same as the percentage of residencies containing a normal .

strobe as it is likely that certain residencies will contain several strobes.

_whicﬁ are pfeioaded} ;The édvantaéés of the
EXTRA—STROEE mechaﬁism are showﬁ in the grdup Qhe runs
where.95%.of all EXTRA-STROBES do remove page§
.(unwantédvprelbad péges). As would bevexﬁected, none
of the EXTRA-SIROBES in the group two tuns remove any
 pagés.‘ The percenfage of residencies which started
with a pa:tial preload is also shown, as is the |
vpércentage of_those partial pfeloads which are
Subsgquently suspehded because the process tried to
.ﬁse more than the partial main memory allowanCe. The
'percentagé of suspensions shéws a tendency to increase

as the main memory available decreases.

.Conclusion

It is hoped that the reproducibility
of the standard wdrkload af the level of the resident
supervisor has been shown and that the workload
existing during the experiment adequately quantified.
The processes'involved may be noted to have quite large
working sets (mean of 25 pages) and use little CPU
time during any residency; Studies of the level of
sharing on the main memory of EMAS have shown that
virtually no shafing of’user programmes or data takes
place at this level, but that all sharing cbmes from
DIRECiOR and-subsystem code and common tables (file

indices). Both DIRECTOR and subsystem will also

O S

teqﬁiré furthériéﬁéée for pfivate data:and working'
variabies. vThis:indiéates‘that a high piopbitién of
the contents of the woiking sets is ﬁade‘up of_pages
which are éssentiaily system components so this large
working set size is to a certain extent a consequencé

- of the system structuie

The difference in the category
scheduling between the two different algorithms
would also appear to have a distinct effect dn the
number of residencies‘required by a process in
carrying out any piecevof work. ‘The algorithm, not
employing working set replacement, requires a
greater number of residencies per‘interaction, SO
the differences in performance observed between the
two algorithms is not due soleiy to the paging-in

mechanism.

.. Chapter 5

' Ih,this chapter the performance
measurements obtained durihg'the performance éXperiment'
'are examined. The system is judged in terms of CPU
utilisations, response times and throughput rates,
with the major contributing factors to each of these
beihg identified. The effect upon paging delay times
of using a working set replacement policyvis also

investigated.

CPU Time Utilisation

The CPU time spent in each of the major
states dﬁrihg the experiment runs is presented in
Table 5.1. Réther than attempt adjustment tb the
3x 2 x'@kfactorial anaiysis to compensafe for the loss
of data incurred by the system crash at the end of
run 'F', this d;ta is considered as though from a
2 x 2 x 2 factorial experiment (ignoring runs E, F, G
and H --i.e..those>with main memory at a level of
- 3/4 M-bytes). This daté is analysed using the standard
analysis*of variance technique (Anova) for such experiments
(cf. Appendix) [Cochran and Cox 1975; Johnstone and
Leone 1964} calculated using Yatés Algorithm

[Yates 1937]. This identifies the effect each of the

main factors has upon the system performance and this

‘Table 5.1

0 " W U 0w »

[

S

USER

54-3

51

. 52-9

46 -4

52-3

N O

51-9

41-7

49-3

41 -8

44 -1

37+5

A

'PERCENTAGE CPU TIME SPENT IN EACH OF THE MAJOR STATES

 SUPERVISOR IDLE

\%

42-7 3.0
46+3 2.7
38-3 8.8
395 14-1
41+7 5.9
A I L ABTULE
358 12+3
377 - 20°6
39-0 11-7
40-5 17-6
33-7 22-3
343 28+3

mieffect is quantlfled for each in ‘terms of the -
-expected change 1n the performance caused when that
'factor is present at level two compared with the
_performance when the factor was at level one. As no
replication of experlment'runs took place an estimate
must be obtained of the experimental error presenf'in
the.results. This esfinate is based“upon'the effect
attributed to the higher order factors [Mendenhall 1968,
Johnstone and Leone 1964], rhese higher order effects
represent the interactions between major factors. The
ratio of the mean squares of each factor and the error
estimate is used in a slmple F-test [Johnstone and Leone
1964].to test the significance of the average effect due

to the major factors'upon the'overall system performance.

The percentage of the CPU time obtained
by user processes is considered in Table 5.2. This shows
the‘greatest contrihuting factor to be the change in ﬁ
the level of main memory - a change of 1/4 M-byte of
memory causing eight percent nore time to be spent in
user state - followed by the software algorithm'- a
change of six percent - and the least influence to have
been caused by the number of drum channels - a difference
of four percent. The size of main memory is also the
major contributing factor in reducing the amount of
time absorbed by the idle state (Table 5.3) - nearly

13% of CPU time being added to the idle time by

S Tables.z

ANOVA Table for the Percentage of Time Spent in User State

(Mean 47-16)

' SOURCE AVERAGE - SUM OF DEGREES MEAN MEAN SQUARE

| ~ BEFFECT SQUARES OF SQUARE RATIO
P FREEDOM |

MAIN = =-8:00 127-84 1 127:84 7864 *¥xx%
MEMORY | -

DRUM - -3:89 30-19 1 © '30+19 18-57 **
CHANNELS | o -

SOFTWARE -5°:97 71+16 1 7116 43-78 **¥
ALGORITHM

2nd ORDER EFFECTS

MEMORY X -0-91 1-64 1

)
CHANNEL)
MEMORY X -1-04 - 2-14 1)
ALGORITHM ;
CHANNEL X -0-58 0-66 1)
ALGORITHM o) 4 1-63
| .)
3rd ORDER EFFECT)
, :)
MEMORY X 1-02 2:06 1)
CHANNEL X)
ALGORITHM)
TOTAL 235-68 7
FACTOR - LEVEL 1 LEVEL 2
 MAIN MEMORY 7/8 M 5/8' M
DRUM CHANNELS | 2 1

SOFTWARE ALGORITHM WSR PDP

% SIGNIFICANT AT 97°5% level (by F - test)
¥%% SIGNIFICANT AT 99 % level (by F - test)

#%%% SIGNIFICANT AT 99.9% level (by F - test)

" ‘Table 5.3

' ANOVA Table for the'Percehtagelbf Time Spentfih the'Idle State

(Mean 13-56) . |

SOURCE

. | EFFECT

MAIN - -12-83

MEMORY B
- DRUM - 9+61"

CHANNELS

SOFTWARE - 4°23

" ALGORITHM -

2nd ORDER EFFECTS

0-99

MEMORY X
CHANNELS

MEMORY X 1-71
ALGORITHM
CHANNELS X 1-41
ALGORITHM

3rd ORDER EFFECT

MEMORY X
CHANNEL X
ALGORITHM

- 1-39

TOTAL

FACTOR

MAIN MEMORY
DRUM CHANNELS

SOFTWARE ALGORITHM

F XWX

¥ SIGNIFICANT AT 99 % level (by F

* SIGNIFICANT AT 95 % level (by F

'~ AVERAGE

SIGNIFICANT AT 99.9% level (by F

" DEGREES MEAN

SUM OF
SQUARES OF SQUARE
o FREEDOM
 328:96 1 32896
184-70 1 184+70
35+79 1 3579
1-94 1)
)
5.81 1)
)
:)
3-98 1) :
) 4 15-57
)
)|
)
3-84 1)
)
)
565+02 7
LEVEL 1 LEVEL 2
7/8 M 5/8 M
2 1
WSR . PDP

MEAN SQUARE
RATIO

84 +53 ¥¥*k¥%
47.46 LA

9-20 *

test)
test)

test)

e

u*;remouing 1/4 M- pytesAof main nenory;”whilst‘the
f_removal of one of the two drum channels would account
_ffor 9+6% moxe of the total CPU time being spent in
tthe idle state,_and changing the software algorithm‘
‘.would result in just over four percent of the total

CPU time being wasted in idle time.

One of the very striking features of
‘the CPU utilisation data is the very large amount of
CPU time being taken up by the system itself. EMAS
would not appear to be uniQue in this respect

tSekino 1972, Bard 1971],_in fact its supervisor
overhead would appear to be lower than most systems

of this class tLynch 19751, tnough'results on

Qverhead of this nature are, perhaps understandably,
not given oreat publicity. Of the factors covered by
the experiment the removal of one of the two drum
channels caused a drop in overhead of 5:7% (Table 5.4)
slightly more than the drop in user state CPU of just
‘under four percent Moving down a level in main
memory causes a drop of Just under five percent of the
total time being spent in supervisor time, with a change
in user state.of-eight percent. Meanwhile, using
software algorithm atvlevel two (PDP) causes 1°7%
more of the tine to go into the supervisor with a loss
of user state of just under six percent, so the

algorithm with WSR gives less time in supervisor and

';_TAbleVS.4
" ANOVA Table for the Percentage of Time Spent in the
T A ‘Supervisor State

(Mean 39-27)

~ SOURCE . AVERAGE SUM OF DEGREES MEAN vMEAN SQUARE

EFFECT . SQUARES OF SQUARE RATIO
o FREEDOM , o
MAIN ~ -4:85 47.00 . 1 47-00 7131 #%%
MEMORY S - o : S
DRUM -5-70 = 64°92 ' 1 = 64°:92 9851 *¥*x*
CHANNELS : . ,
- SOFTWARE 1-71 ' 5.87 1 5+87 8:90 *
ALGORITHM ' o

2nd ORDER EFFECTS

MEMORY X 0:10 0-02 1)
CHANNELS ')
MEMORY X =-0:65 - 0-84 1 ;
ALGORITHM y 4
CHANNEL X -0-86 1-47)
ALGORITHM)
)

3rd ORDER EFFECT)

')
MEMORY X 0-39 0-31 1)
CHANNEL X)
ALGORITHM)
TOTAL - 120-41 7
FACTOR 'LEVEL 1 LEVEL 2
MAIN MEMORY 7/8 M 5/8 M

DRUM CHANNELS 2 1
SOFTWARE ALGORITHM '

*k¥ SIGNIFICANT AT 99.9% level (by F - test)
*a SIGNIFICANT AT 99 % level (by F - test)
* SIGNIFICANT AT 95 % level (by F - test)

- more time in user processes than the PDP algorithm.

The.majoiisupervisor,funéfipns which
7.abso;b this large amount of CPU time ére'showﬁ in
Table 5.5. It can.easily be seen that thé major
contributor to the supervisor.tiﬁe is the §rgahising \
of drum't#anSfers i.e. the queueing of reqﬁesfs in the
éeétqr queues; removing requests from these queues and
conétructing channel command chains; fielding inteﬁupts
at the completion of chains or after the completion

of a demand page read (a programme controlled
inte@ﬁpt'— PCI) and the sending of replies to the
appropriaté‘supervisor processes. Splitting tﬁis'time
into two major components - fielding requests and
fielding interupts (Table 5.6) if may be seen that the
size of memory has very little effect, and that the
effect of going from two drum channels to one is to
lower fhe amount of time spent in fieldihg requests by
about 3:5%, but to incfeaée the time spent fielding
interupts'by(about two percent. This is probably due
to the fact that in the two channel version channel
chains are startéd more often on the arrival of
requests (i.e. the requesfs find a channel free), whilst
ih the one channel case the lengths of channel chains
are longer (Table 5.7) and channél’chains are more
likely to be started at the end of é previous channel

chain i.e. when a channel chain completes it is more

"Table 5.5

Percentage of Supervisor CPU Time Taken up by Major Functions

EXP DRUM - DISC CORE DRUM CONTEXT PROCESS SVC COMMUNI- DEVICE MAG

' 'RUN TRANSFERS TRANSFERS LOADING LOADING SWITCHING CONTROL PARAMETER CATIONS POLLING TAPES
o | PASSING

‘A['-39-1 . 6°8 | 33-0 3-1 67 1-6 37 4-4 0-1 27
¢ 376 69 331 3-3 6+6 1.7 349 4-8 0-1 2-8
B 30-4 6°4 324 3-1 67 1.7 3-8 4+5 0-1 2-5
G 378 7-1 326 3:3 6-8 - 16 3.7 46 0:1 2-8
1;;_39-5 61 324 30 6°7 1-5 3-7 4-6 0-3 2-5
39-0 1 6-2 ‘32.2 3-0 68 146 3:6 49 0-3 2-5

" 42-1 5.4 336 @ 2-4 C 72 1-3 2.9 3.6 01 =~ 2-2

-[;4050 © 5e5. 34-9 26 71 1-4 30 3-8 0.1 -2-é
‘N o T AV A I L A B L E

404 . 5.2 34-5 2.4 7°3 1-3 3-0 3.7 0-3 2:0
429 5.0 33.6 - 24 6-8 1.2 2-8 34 0-3 2+0

a2 4-7 344 2.2 7+3 1-2 2-8 3.7 0-3 17

¢ oW oxm o oW

Table 5.6
Percentage of Supervisor Time Absorbéd by Drum Transfers
(A)' ANOVA Table Fielding Tréhsfer.Requests Mean 21-94

 SOURCE AVERAGE SUM OF DEGREES MEAN MEAN SQUARE

EFFECT SQUARES OF SQUARE RATIO
| V : | : : FREEDOM I
MAIN 073 '1+05 1 1-05 . 2-67
MEMORY : I - |
DRUM - -3-48 24-15 . 1 24-15 6134 *xx
'CHANNELS e o j g
SOFIWARE 1-58 S 4:-96 1 4-906 12:60 **
ALGORITHM , S _'
MEMORY X = 0-08 - 0-01 - 1)
CHANNELS : o)
MEMORY X 0-03 0-001 - 1 g
ALGORITHM)
CHANNELS X-0-88 153 1) 4 0-46 :
ALGORITHM B)
MEMORY X -0-13 003 - 1)
CHANNELS X : .)
ALGORITHM ,)
TOTAL 31-74 7
(B) , Fielding Channel Interupts Mean 18°16
MAIN 0-28 0-15 1 - 0-15 2-37
MEMORY _ |
DRUM 2-18 9+46 1 . 9+46 14841 *¥%x
'CHANNELS .
SOFTWARE 1-28 3-25 1 3-25 5100 *%%
ALGORITHM
MEMORY X 0-13 0-13 - 1)
CHANNELS :)
MEMORY X 0-03 0-001 1 g
ALGORITHM -)
CHANNELS X 0-+33 0-21 1)4 0-14
ALGORITHM)
MEMORY X 0-08 0-01 1)
CHANNEL X)
ALGORITHM)
TOTAL 13-12 7

XXX SIGNIFICANT AT 99°9% level
xxXx SIGNIFICANT AT 99 % level
*% SIGNIFICANT AT 97°5% level

_Table 5.7

Mean Length of Drum Channel Chains

. EXP
RUN
Av

E

MEAN CHAIN
LENGTH -

28

L 2.8

- 2-8

- 46°6

43-5

T AVAI

37-6

INTERUPTS/SECOND

471

2 CHANNELS + WSR

. .

39-0

1 CHANNEL + WSR

Nat” Naat” Saast” anst” s’

36¢4A

627
LABLE 2 CHANNELS + PDP

557

N Cas? o Nt N

N
(o))

N

n
(o)) (o)} (o))
(N NN

1 CHANNEL + PDP

(N
W

1ikély to fiﬁd’£éq§é§t§_WAiting:iﬁ the éeétpf‘queueé
thé\ﬁ in the 4twc'>"chah1.1é-1 case. ’I‘héPDP algo‘rvi:thmv
con51stently requlres ‘a higher éercentage of
superv1sor t1me in both drum,servicés caused by
‘shorter channel claims and more'inteiupts (As there is
~an interupt at»thé end of each demand page~réad).
Indeed, if the throughput achieved on the drum is
consideréd (Table 5.8), it can be séen that thé WSR
software algorlthm has an average transfer rate of
some ten pages per second more than the PDP algorlthm
for a lower overhead.' Having more drum channels or
main memory alsb show increases in throughput of

around 9 and 8 pages'per second respectively;

The other supervisor function which
absorbs a considerable amount of CPU time is that of
main memory loading. The subfunctions involved in

4this are: -

(a) 'Electing processes to the multiprogramming set

and organising preloading transfers.
(b) Handling page faults.

(c) Recalculating working sets, removing processes

from memory and organising transfers out.

: @iéble‘S;Bv

' ANOVA Table

" 'Mean Drum Transfer Rate per Second
Mean = 68-9 transfers/second

SOURCE AVERAGE SUM OF DEGREES MEAN . MEAN SQUARE

EFFECT SQUARES OF . SQUARE RATIO
: FREEDOM
MAIN -8:20 134-48 1 13448 13687 *¥¥%
- MEMORY o B : . .

DRUM -9-15 167-44 ‘1 167-44 170-42 *%%%
CHANNELS : :

SOFTWARE -9-95 19800 1 108:00 201-52 *%¥*
ALGORITHM . ,

2-FACTOR INTERACTIONS

MEMORY X -0-+55 0-61 1
. CHANNELS ' :

MEMORY X =-1-15 2:65 1
-ALGORITHM ’ :

CHANNELS X-0-3 0-18 1
ALGORITHM

3-FACTOR INTERACTION

'p .
(@]
.
O
(00

MEMORY X +0-+5 0-5 1

CHANNEL X

ALGORITHM

TOTAL 50386

FACTOR _ LEVEL 1 - LEVEL 2
MAIN MEMORY 7/8 M-bytes 5/§3M-bytes
DRUM CHANNELS _ 2_ 1

 SOFTWARE ALGORITHM WSR PDP

| oEREX SIGNIFICANT AT 99-9% level (F - test)

'“f}(d)v>Fie1ding.replies'frdm'transfer_requests;: :

,'the facfor haQiﬁéifhe greatest éffebf-on'the first

ithreé subfﬁnéfioﬂs is thedsoftWAre algprithm. Thié

. shows that the‘WSR algorithm spends much less time in
‘{.handling.pége fauité (Iablé.5.9).but more'fimeAin |
sgbfuncfion (a) - ééﬁéedAby organiéing preloading
trénéfer§ - and more time.in subfuﬂétibn'(b) organising
page reﬁovals from core (a consequence of loading more
pages). The average effect due to the software
algorithm is an oxrder bf mégnitude greater than that
due to the two othér factors. The_effecf‘of main
memory size is the next significant factor in the
first three subfunctions, with subfunction (c)
appearing to be the most sensitive to this factor.
Indeed,-subfunctiOn (c) is the only one in which the
effect of the numbér of channels has any significant
effect. The percentage of~superyisor time in handling
replies to‘transfer requests does not show any
significant variation (above 90%) with any of the
major factors - it will, however, vary in terms of the
percentage of total CPU time in‘just'the same way as

the mean transfer rate through the drum.

The other two functions absorbing a
reasonable amount of the time (Table 5.10) are context

switching and disc transfer organisation. Context

. Table 5.9

-:Subfunétiohs of Main Memory Loadlng as a Percentage of '

SUB FUNCTION ' MEAN

(a) MPS . 2-41%
~ ELECTION |
(b) PAGE - 11-65%
. FAULTS :
(c) PAGE 7°34%

" REMOVAL

(d) TRANSFER 12-00%

REPLIES

Total Superv1sor Time

'MAJOR FACTORS - AVERAGE EFFECTS

:MEMORY " CHANNELS ALGORITHM
-0°18 + ~0-13 —3-48 **x%
-0-41 * 0-25 7-85 *uxx

-0'38 *ERR (Q-18 *%* -2-63 N

~ 0-3 .0-15 -0-3

#%%¥% SIGNIFICANT AT 99°9% level

*% SIGNIFICANT AT 97°5% level
* - SIGNIFICANT AT 95 % level
+ SIGNIFICANT AT 90 % level
Table 5.10

Significant Factors in Other Supervisor Functions

(Judged as Percentage of Total Supervisor Time)

FUNCTION - MEAN
Context 6°9%
Switching

Disc ’ 583

Transfexrs

MAJOR FACTORS - AVERAGE EFFECTS

MEMORY CHANNELS ALGORITHM
-0-1 - -0-1 -0-4 *
~0°*65 **¥%x% Q-1 365 *KKK*

Swiféhiﬁé 6Vé¥hé;d?is highér;ﬁhder_théf@bﬁ%alébfifhm, 'f
oWing f07£heff5§t.that a confext éwitchiwili be |
nécessaiy aftéi eééh pagé faﬁlt,'fo£ a page’&hich is
vnbt found in.mAin memer, and there aresmgq?éfewer
page faults ﬁﬁder the'wsﬁ scheme. The percentage of
supérvisor‘time’involved in organiSing disc transfers
under fhéAWSﬁ scheme is larger than under thé PDP
algorithm. This is probably due to the facf.thatA
proéesses are getting through moré work under the

WSR scheme and hence réquire‘more disé transfers,
caused by accessing more files (which will be page
faulted-in from disc) and pages which 1lie unused on

drum being moved back to disc by the drum working set

-

algorithms.

If one was to try to identify why
time-shared, Qirfual memory-systems did not live up to
the original hopes of their constructors, that is, hopes
of several hundred terminals siﬁultanéously active, it
‘'was probably caused by the size of the working sets being
- much larger than antiéipated - it had been originally
conjectured that EMAS processes w0uid‘have working
sets of around eight pages [Whitfield 1972], whereas
thirty two pages has become the norm. This results
in lower multiprogrammihg levels and many more transfers
per process residency than intended. Combined with

the unsuitability of the IBM-360 type of channel

o121

aIChitéétufe tdﬂfhé fyﬁe'éf ffansfer rateé required,
this résuited in the very high pefceﬂtagé'of time the
}expensi?e CPU'iS'réqﬁiredvto Spend in supervisdr
state, thus lowefiﬁg its availability to user
,brocesseSQ Any désigner producing a powerful central
'piocessor intended t§ be used in a'fime“shared, virtual
memory énvironﬁent woﬁld.be'wéli adviséd to consider
ways of dist:ibuting the supervisor functions to less
powerful spécial purpose processors (perhaps with"
order codes énabling fast table sea:ching, which
 constitutes 50 much of supervisor work), and leave the
main processor free only to do context switches and

.execute user programmes.

The mean levels of multiprogramming
observed on the various experiment runs are shown in
Table»S.ilA. Processes are considered to be in the
multiprogramming set from when they are first given
a main mémory allocation (and begin to_preload‘at
least their master page) until all pages belonging to

that process have been removed from main memory. As
these results (and most of the subséquent results in
this chapter) are derivéd‘from the event trace data,
the data is analysed as though for a 3 x 2 x 2
factorial experiment, again using a standard ANOVA
technique and an algorithm suggested by Yates

[Yates 1937]. As would be expected, the greatest effect

‘fablé-s,ii

(A) Mean‘Multiprogrammiﬁg LeVéls on the Experiment Runs

- EXPERIMENT ' o ' '
RUN A C E G I K = B D F H J L
MMPL 4+7 54 3°9 4+4 31 3-7 '4'8 5-5 4'1 46 3+4 37

- (B) ANOVA Table for Mean Multiprogramming Level (Mean = 4°¢3)

SOURCE AVERAGE SUM OF DEGREES . MEAN MEAN SQUARE

EFFECT SQUARES OF - - SQUARE - RATIO
| FREEDOM |

MEMORY |
7/8 3/4 -0-85 | ' -
3/4 5/8 -0-77) 1-75 2 087 50405 ®¥xx
7/8 5/8 -1-62) -
CHANNELS 0-54 0:30 1 030 16730 *%¥x
ALGORITHM ©0+12 - 0-01 1 0-01 8-09 **
HIGH ORDER 0-01 7 0-002
FACTORS

(ERROR ESTIMATE)

TOTAL 206 11

***% . SIGNIFICANT AT 99-9% level (F - test)

** SIGNIFICANT AT 97-5% level (F - test)

'“fjnpon nnltrprogrammlngvlevel'cones from the size of-maln‘
emory, followed by the number of channels avallable -
ew1th a hlgher multlprogrammlng level belng_seen 1n4-
the runs with a single cnannel. This is explained by
the deflnltlon of when a process is in the
multlprogrammlng set. The tlme<1t takes to remove a
e,process will be longer in the one channel case (results
,glven.later). Whllst.thrs removal rs taking place, a
further process may be aoded to.the MPS using pages‘
'freed’by the process being removed but not.requiring
transfer out (about 2/3 of the removed process'
working set). .The oyerlap of these two processes will
be longer in the single channel'case due to longer
transfer times, and the me;n multiorogramming level
will show this increase. The PDP algorithm also shows
a hlgher multiprogramming leQel than the WSR algorithm
due to the higher proportion of smaller memory

categories observed in that algorithm's workload.

Response Times

,rhe;performance of the system as observed
by the user i;e. the response time, is now considered
(Table 5.12A). . The response time is defined as the
time the process spends in the awake state and this
is derived from the event trace data. The factor

having the greatest influence upon the mean response

*]jiablé.5.12.5"

'~(A) Mean Response Tlmes (1n seconds) Observed in

EXPERIMENT RUN A

RESPONSE TIME

' EXPERIMENT RUN B

'RESPONSE.T

- (B) ANOVA Table for Response Times

SOURCE

MEMORY

7/8 3/4
3/4 5/8
7/8 5/8

CHANNELS
ALGORITHM

HIGH ORDER
FACTORS

IME

AVERAGE
EFFECT

3+05
3-57
6-63

2-36

8-99

(ERROR ESTIMATE)

 TOTAL

C E

640 8+60

D - F -

11-74 17-5.

9-11

H

Experlment

G

10+ 06

18:63 18-65

(Mean =

SUM OF DEGREES MEAN

SQUARES OF

FREEDOM

29-34 2
5+56 1
8087
551 7
121-28 11

SQUARE

Runs'
o K

10-75 1382

22.01 24-16

14-29)

MEAN SQUARE
RATIO
18.64 * X%

7:07 *

10273 **x*

*XEX SIGNIFICANT AT 99-9% level (F - test)

* X% SIGNIFICANT AT 99 % level (F - test)

* SIGNIFICANT AT 95 % level (F - test)

© 123

' fiﬁe i§ f;§h6.¥; 5é'£he'§§ftﬁafe“aigorifhﬁ.with‘thé
' WSR»aiQofifhm bfoduéing avrésponse timé on aVeraée
,bsoméininé‘seédhdé leés thah»the PDP élgOrithm. The
hext mosf inf1ﬁentié1'factor is that of'main-mémory
size;‘ﬁifﬁ some‘three seconds being added to the.
'response'timé when‘moving from 7/8’M—bytes to1

;3/4 Mebytés,‘aﬁd some;3;5 seconds ﬁhén moving f;qm
3/4 fos5/8 M-bytes. The lbwesf.cohtribﬁtion to thé
reéponse time seems fb come.from.the,number of arum
channels, the removal of one of the two ¢hénnéls caﬁsing

an increase in response time of just under 2°5 seconds.

:The éontributing factors to these
response £imes‘aré éhown in Table 5;13 ahd 5.14 in
terms of the-expectéd wait time'per entry to each
significant station in the Process ManagementvModel,"
and the expected numbér‘of times per‘interaction‘that
a process would enter any of these sfations. These
figures are shown again iﬁ Table 5;15 normalised with
respect to the‘CPU times; _These stretch factors show
the expected wait timés enéountered in obtaining a
unit quantity of CPU time, ahd thevﬁajqr'areas'from
which this wait timé arises: the RUN queues
(awaiting allocation of CPU), the CORE queues
(awaiting allocation of main‘memory), paging into main
meméry (preloading and page faulting) and paging out

of memory (writing back to the drum). As with the

Table 5.13

Expected Wait Time per Entry in Each Major Station (in milliseconds)

" EXP
RUN

A

=

ST T - R T

c
E .
G

ASQ

N

MO D

cQl

1405

1238

2156

1704

2578

. 2060

2355

3687

4481

3566 .
. 6057

5851

cQ2

3013

3431

4517

3907

6611

8607

3662
5882

6877

5614

8628

9385

cQ3 -

4326

4619

16621

5495

8101

- 10934

15060

18031

24840
39119

26136

41715

CcQ4

6310

5194

9166
7726
9273

13233

6888
9135
6703
11218

7022

9835

cQ5

42788
51745
49625
64665
81625

129409

69848
30608
33855
32187

28442

38197

202

381

212

364

218

366

65
122

66
113
67

114

0-18

‘0.13

0°16

0-16
0-16

0-00

000
-0-15
0-18

'0-18

1 0°16

0-18

PREL SUSP RQ1

21

20

18

15

12

11

13

13

11

10

RQ2

105
82
63
56
29

24

42

32
26
21
13

11

CPU

16°0

173

15-6

15-9

156

- 16°1

PFLT

38
58

36

49

35

47

27

44

30
42
27

39

PTAKE ATQ
192 3058
437 3715
109 3041
399 3643
198 2900
388 2765
118 2598
214 2522
115 Vzéoi
200 2992
112 2372
184 2242

' Table 5.14

Mean Number

EXP
RUN

. ‘A‘

C
E
G

A

NIV -T T - I

ASQ

0-09

0:09

- 0°09 .

0-10

0-09

0-09

0-11

0-11

0-10
0-10

0-10

- 0-09

of Entries

cQl

0-80

0-78.

0-82
0-82
0-81

0-82

cR2

0-51
0-54
0-49
0-51
0-51

0:51

0-61

0-62

0:59 °
0:63
- 0-57

 0-54

Q3

0-11

0-11
0-11
0-13
0-11

0-11

0:16

019

0-17

0-19

0-18

0-18

- CcR4

0-03

0-03

0-03

0-03

0-03

0-03

0-03
0-03
0-03
0-03
0-03

0-03

cQ5

0-04

0-04

0-04

0-05

0-04

0-04 .

0-02
0-03
0-03

0-03

0-03

0-02

to Each Station per Interaction

PREL SUSP RQl RQ2

0-09
0-07
0-11

0-10

- 0-15

0-14

12-3
12-5
i3'2
13-6
13-7

13-7

37°3

36-8

38-5

39-7

- 39-9

39-3

17-1

13-9.

14-7

126

12-5

lO'S

CPU

207
19-5
21-0
21-7
208

20°0

54-4
50-7
53-2

523

. 52+4

49-8

PFLT

15-1
16°1
15-8
16-7
15-6

15-7

52-4

. 52-2

52-6

53-9

51-5

50-6

PTAKE ATQ
15 0-09
15 0-09.
15 0-09
1-5 0-11
15 0-10
15 0-09
2.1 0-11
2:1 0-11
21 0-11
2:1 0-11
21 0-10
2.1 0-10

o .Table 5.15 .

' 1 ‘Si:_réfch "F'a;é‘tdrs o

EXP
RUN

OVERALL

STRETCH

- FACTOR

16-99

25+89

. 27+63

29+57

' 35.48

48-96

40-81

51-64
56-19

6397

62-34

79+49

DUE TO

RUN

QUEUES

" "DUE TO
" CORE
QUEUES

10-04

17-01

21+73
21-74

30-68

42-18

31-13
39+52
47?54
52-70
5538

6983

DUE TO

- PAGING

IN

DUE TO
PAGING
- OuT

:1 ;;ésp6nse'fime;'fhé greateét'influence upon_the_Sfietch"
Factor (Table 5.16) is the algorithm used, followed by
the size of main memory, and least influence caused by

the number 6f‘drum channels.

Thé time spent in the Run‘Quéues,
v{:(faﬁlé‘5.17) is influenced most by»the size of main
'..mémof&, as would be'expe¢ted,‘the larger main memory
'.siées'(with large: ﬁultipxogramming levéis) cause a
large proportion ofvwaif time to be spenf ih:fhe
Run:Queues. ‘Ne#t in order of influence is the

”numbér of channels aQailable,.withlmore time being spent
in fhe‘Run Queues in the two channel case (despite the
‘féct that the one channel caée.gives a higher level

of multipfogramming) - dﬁe to the fact that those:
processes‘in the multiprogramming set are'spending'
less of fheir.time in the page wait state. The least
influehce ié exerted by the algorithm, with the PDP
algorithm delayed'more in the Run Queues - probably
caused by the highei level of multiprogramming seen

in that case;

The component with the greatest
influence,.by almost an order of magnitude, upon the
Stretch Factor is the time spent in the Core Queues
(Table 5.18). This is most heavily influenced by the

algorithm uséd, with the PDP algorithm spending much

Table 5.16

ANOVA Iéble - Stretch Factors v(Mean = 44-91)
SOURCE AVERAGE SUM OF DEGREES MEAN MEAN SQUARE
EFFECT SQUARES OF SQUARE RATIO .
| | FREEDOM :
MEMORY |
- 7/8 3/4 +10-51)
3/4 5/8 +12-23) 345°+25 2 172-63 40°22 *%¥¥%
7/8 5/8 +22-73) ‘ '
CHANNELS 10-01 100-27 1 100-27 23-36 *x*
ALGORITHM 28-32 . 80202 1 - 802-02 18686 **¥*
HIGH ORDER 30-05 7 429
FACTORS '
" (ERROR ESTIMATE)
TOTAL 1277-57. 11
Table 5.17

" ANOVA Table - Run Queue Component of Stretch Factor (Mean = 2-21)'

SOURCE AVERAGE SUM OF DEGREES MEAN MEAN SQUARE
- BFFECT SQUARES OF SQUARE RATIO

| « FREEDOM

MEMORY '

7/8 3/4 -0:93)

3/4 5/8 -0-98) 2-43 2 1-22 75+67 *EE%
7/8 5/8 -1-91) :

CHANNELS -0-56 0-32 1 0-32 19:65 *%*
ALGORITHM O-33 0-11 1 0-11 6+72
HIGH ORDER , 0-11 7 0-016

FACTORS :

(ERROR ESTIMATE)

TOTAL 297 11

*%%¥% SIGNIFICANT AT 99-9% level (F - test)

*ek SIGNIFICANT AT 99 % level (F - test)

* SIGNIFICANT AT 95 % level (F - test)

' Table 5.18

ANOVA Table - Core Queue Component of Stretch Factor

(Mean = 36:62)

SOURCE AVERAGE SUM OF DEGREES MEAN

EFFECT SQUARES OF SQUARE

o . FREEDOM

MEMORY
- 7/8 3/4 11+50)

3/4 '5/8 '13:59) 420+60 2 210+30
7/8 5/8 25-09) S :
CHANNELS 7+75 59-99 1 599-85
ALGORITHM 25°+45 64780 1 647+80
HIGH ORDER 28+59 7 4-08
FACTORS. .

(ERROR ESTIMATE)

TOTAL _ 1156-97 11

Table 5.19

ANOVA Table - To Main Memory Paging Component
(Mean = 4-86)

SOURCE AVERAGE SUM OF DEGREES MEAN

EFFECT SQUARES OF SQUARE
FREEDOM

MEMORY
7/8 3/4 -0-02)
3/4 5/8 -0-36) 0-12 2 <06
7/8 5/8 -0-38)
CHANNELS 2-08 4+34 1 4-34
ALGORITHM . 2-84 8:07 1 2.84
HIGH ORDER - 0-43 7 <06
FACTORS :

(ERROR ESTIMATE)

TOTAL -12-97 11

%%%* . SIGNIFICANT AT 99°9% level (F - test)

* % SIGNIFICANT AT 99 % level (F - test)

MEAN SQUARE
RATIO

1469 *%%

15861 *%*x

of Stretch Factorx

MEAN SQUARE
RATIO

1-00

70°+23 *¥%*
13041 *¥%%x

' mere tlme 1n £hé eore éueuee e caused by the fact that
‘the PDP algorlthm requlres an extra 0 5 re51dency, on
average, per 1nteract10n Whlch w111 result 1n an
extra O- 5 entrles to a core queue ‘pex 1nteract10n over
| that required by the WSR algorithm. Next most
influenfial-ie the'siée of main memory, with small
memoxry si:es sﬁeﬁding'more time in the Core Queues.
'Least influence rsvagainbexerted by the number of
dxrum chanhels, with rhe’eingle channel caee spending

more time in the Core Queues than the two channel one.

After the time spent in the Core Queues

the next most influential component‘is the time spent
in paging-in to core (Table 5.19). Again, the greatest
influence onvthis‘cempoﬁent is the algorithm used, with
the PDP algorithm (caused by its different paging-in
d%scipline and the extra 0-5 residencies per
interaetion) spending much more time paging—in,than

the WSR algorithm. The number of chanuels available

is next most influential, with less time being spent in
paging-in when two channels are auailable. The size

of ﬁainememory does nof, however, appear to have any‘
significant effect on the time spent on paging-in to

main memory.

The least influential component of

the Stretch Factor is the time spent paging out of

126

" main meméfykaable 5;20);.‘Again, fhe_éize of main
mémory is found to have‘no.significant efféct, whilgt
‘the'mosf influence seems fo bé exerfed by the number
of channels wifh greAter delay tiﬁes being incurred
by single channel configurations.‘ The effect of
‘algorlthm shows that less time is spent in paglng out
J'by the PDP algorlthms than the WSR, desplte the fact

that more pages are written back per interaction.

Paging Behaviour

The mean effectivevpage wait times in
each type of paging is shown in Table 5.21. This
shows the expected delay time incurredbby'a process
from fhe time a request is issued oﬁ its behalf to
_'have a page transferred, to when that page ‘arrives in
main memory, and the proceSé is notified that the page

is ready for it to use.

In the case of group one experiment runs
(WSR algorithm) it can be observed that the mean
delay time for the two classes of paging whiéh involve
bulk transfers (i.e. several ‘transfer requests fér a
process being fired off at the same time) - preloading
and write back - are bbth much shorter than page faults
coming from the drum, the delay time for a preloading

page transfer being about 1/3 of the demand page fault

Table 5.20

ANOVA Table - From Main Memory Paging Component of Stratch

Factor

" (Mean = 1-:21)
SOURCE AVERAGE SUM OF DEGREES MEAN MEAN SQUARE
-~ " EFFECT SQUARES OF SQUARE RATIO
FREEDOM

MEMORY -

7/8 3/4 -0°05) |

3/4 5/8 -0:04) 0-005 2 0+003 0:43

7/8 5/8 -0-09)

CHANNELS 0-76 0-10 -~ 1 0:10 10038 **%%
ALGORITHM -0-32 058 1 0-58 17+59 **%
' HIGH ORDER 004 7 0+006

FACTORS

(ERROR ESTIMATE)

TOTAL 0:73 11

THXX SIGNIFICANT AT THE 99°9% level (F - test)

**%* SIGNIFICANT AT THE 99 % level (F - test)

Table 5.21

Mean Delay Time per Page Transferred (in milliseconds)
EXP PRELOADING PAGE FAULT PAGE FAULT PAGE FAULT WRITE ALL
RUN TRANSFERS (ON DRUM) (ON DISC) (IN CORE) TRANSFERS PAGE FAULTS
A 12 L 37 | 263 2 18 38
C | 23 78 . 238 | 5 41 58
B 12 .,‘ 37 - 216 3 19 36
G 21 62 193 5 37 | 49
»1, 11 35 - 219 3 18 35
K 20 54 199 o 5 37 47
B 65 . 36 194 1 ‘12 27
b 121 _; 64 . 206 1 | 23 44
F- 65 . 36 302 | 1 12 30
'H 113 . .58 164 1 21 | 42
- 67 33 172 | 1 12 27
s /
L

113 » 50 160 2 , 20 , 39

127

”tiﬁeg.éhd‘wrife‘bécké abéut 1/2_of tﬁé‘time-for-fhe
- dehand pagé. ‘This is despite the faéf that druﬁ |
trahéfervreéﬁeéts.a#e ordered-in thevfour sectdr
‘queueé in such a way that demand paging reads always
have priority»oﬁer'prepaging reads, which in turn
alwayé have priority over writes (there is also a
fﬁrthei pri&rity ordering ih férms of the physical
_drum which the réquest is destined for). Demand
paging reads present in a channel chain containing
other transfers after it will also cause a PCI to
be generated when.they complete, and thus the
process will be notified of the page's arrival
'earlier than if it had to wait for the whole channel
chain to complete (as is the case with prepaging and
write back transfers). lThé effect of this priority
scheme/éan be seen in the case of preloading
transfers (fo;'the>master page) under the PDP
algorithm. The delay time observed in the case of
page faults for a page which is already in main memory
is caused by pages which are owned by apothe; prdcess,
ahd have a page frame allocated, but are still being
tfansferred. Thus the page faulting process has to

wait until this transfer completes.

This advantage of 'bulk transfers'
over single transfers in terms of delay time per page

is caused by the characteristics of the secondary

128

ﬁémof& dévice:-itﬁe drﬁﬁ,;thréﬁéh which.the
overwheiﬁihg mgjofity Sf the péging traffic pésses..
‘There is‘no ?Qsition séﬁsing on the drums used on the
configurétiohs'measured. There will always; then, be a
1atéh¢y delay At the.start of any drum channei chain
with a mean of half a drum revolution (10 milliseconds)
confirmed‘byimeasurementé taken én théée devices |

' [Adams, Gelenbe and Vicard 1977]. After the latency
the channel chain will be executed transferring a page
each timé there is-a.iequest‘in the chain corresponding
to the drum sector ﬁnder'the read heads on the device -
i.e. é request corresponding io the current sector’
window. There were up to eight sector windows covered
by any'drum channél chain during the experiment

.i.e. when a;chain was being constructed the top request
was'removed from each sector queue in turn, twice
(Figure 5.1). When a bulk transfer takes place the
sector queues will be longer when the channel chain is
cqnstructed'and there will be more transfers in each
chain (Table 5.7) fewer sector windows will be 'lost!
by having no transfer request corresponding to them
and more transfers will take place for each latency

delay.

S0 Figure 5.1 o
. .. sEctoR > sECTOR
 OPERATION OF DRUM . | A L//’—\\\' B
T L R SECTOR . \g_/// SECTOR

D

READ/WRITE
HEADS

SECTOR QUEUES

DR+ O

aékx >
PPb |+ 1

X demand page reads

+ . 'prepage reads

o write backs

CHANNEL CHAIN EXECUTION

LATENCY DELAY | A |B |cCc |D |A| B | C | D

SECTOR WINDOWS

PAGE TRANSFERRED ON THAT SECTOR
IF REQUEST EXISTS IN CHAIN

£

TIME

© “Bulk TranSfef'Timés -

Thé”ANOVA table for the mean effective
“page wait iﬁ“t:ansferrihg a preloaded page reveals that
fhis delay time is‘nof significantly.influénced by the
size of main memo:yl(Table 5.22) but is very sensitive
‘to thé algorithm used‘evthis‘is to be expeétéd as |
preloading transfers do not, in fact, involve bulk
transfers in the caée of the PDP algorithms, where oniy
a single page (the master page) is requested‘at a time.
The number of channels also has an impaét, the addition
of a second channel causiné a reduétion of neérly
30 milliseconds per page. The other fofm of paging
involving bulk transfers is that of page writes back to
the drum when a process is being removed from main
memdiy (an insignificant number of transfers are
generated by strobing). Unlike preloading transfers
writés.back to drum take place as bulk traﬁsfers under
both algorithms. The greatest impact upon this delay
time is caused-by the number of channels available
with the removal of a channel adding an average of
14-5 milliseconds to the expected wait time per page
(Table_5;23). The PDP algorithm is also found to have
an expected delay time some 11;5 seconds 1§wer than
 the WSR algorithm. The main cause of this is probably
not so much the fact that fewer pages per residency

are written back by this algorithm; but the fact that

 Table 5.22 .

~ 'ANOVA Table'f§f Méan Effective Page Wait_Time (in milliseconds)

" per Preloaded Page Transfer

SOURCE -
EFFECT

MEMORY

7/8 3/4 -2-5)
3/4 5/8 0)
- 7/8 3/4 -2'5)
CHANNELS 29-8
ALGORITHM 74-°2
HIGH ORDER
FACTORS

(ERROR ESTIMATE)
TOTAL |
Table 5.23

AVERAGE

- 6814-3

SUM OF DEGREES
"SQUARES OF

FREEDOM
5+6 2
890+0
55007 1
418-3
11

" (Mean =53°6)

- MEAN

SQUARE

'2-8

890-0

55007
59-8

MEAN SQUARE

 RATIO

0-05

14-9 *x
Q2.1 *¥¥¥

ANOVA Table for Mean Effective Page Wait Time (in milliseconds)

per Write Transfer

SOURCE AVERAGE
EFFECT
MEMORY =
7/8 3/4 - 1-3)
3/4 5/8 - 0:5)
7/8 3/4 - 1-8)
CHANNELS 14-7
ALGORITHM -11:7
HIGH ORDER
FACTORS .
(ERROR ESTIMATE)
TOTAL
% ¥ ¥ ¥
9% 36 %

(Mean = 22-5)
SUM OF DEGREES
SQUARES OF

FREEDOM
22 2
215-1 1
136-1
316 7
385-0 11

MEAN
. SQUARE

215-1
136-1
4-5

MEAN SQUARE
RATIO

0-2

476 *Ex%
301 **%X*

SIGNIFICANT AT THE 99°9% level (F - test)

. SIGNIFICANT AT THE 99 % level (F - test)

130

1fhe£éjéré_ﬁd£“sa ﬁany.prélbéding‘frangfe:sﬁ' wheﬁvthe
fsysféh i§:w¢rkingluﬁder_thé.WSR élgorithm énd anprocess
.‘is rémOQed from ﬁain memofy? then theipages that this
proceés'owns, which do'nof_réqﬁire writing back, are
iéleased_at’once (2/3 6f thé working éet) and the
 writé-back requesté issued for_fhose which do.. It is
'quite poséible that the pageslréleased immediafely are
adequate to‘a110ﬁ>anothe; process to enter the MPS

and a set‘of preloadvreads will bé issued (within about
10 milliseconds of the set of write requests). These
preload requests will arrive whil;t some, if nof all, of
the write requésts'are still in the sector Queues, and
will take prgcedencé_ovér them, thus incredsing the
average write-back.time. Undex the PDP algorithm
when a précess is removed from main memory a similar
thing will héppen, and some pages will be released
whilst a set of write requests will be fired off.

Any process entering the MPS at that time will issue

a single preloading reﬁuest (for the mastexr pagé) which
will still take precedence over the writes. The
interference caused to fhe'leaving process, to the
loading pfocess will thus be much less. It may also
be noted from Table 5.21 that the mean delay time for.
writes 5ack under the PDP algorithm correspond very
closely to the mean delay time for preloads under the

WSR algorithm.

_'Page Faulting Deléys.'

The delay time incurred in page‘faulting'
.a'page in from the drﬁm is found to be sensitive to the
size of main memory (Table 5.24) Wﬁiéh may bé explained
'by‘fhe fact'that the largér memory sizes (which have
longerx delay'timés) aiso have higher drum franéfer'
rates and';s is seen later the druﬁ page fault time is
very sensitive to the p?ging»iate. "This page faulting
time is, howevef, not significantly influenced by the
algorithm (perhaps proving fhe worth of thé pfiority
given to demanded pages in the secfor queues), but is
greatly influenged by the humber_of'channels availéble
with a-lengtheninglof the wait time of aroﬁnd 25
milliseconds being experienced when one of the two
-channels is removed; The time spent awaiting page
faults which have to be transferred from the disc does
not seem to be consistently influenced by any of the
major factors included in the experimenf in any
significant way (Table 5.25).. The small amount of time
spent awaiting page faults to 'pagés in main memory'

is not Sighificantly influenced by fhe size of main
memory (Table 5.26) but is most sensitive to the
algorithm used, with the PDP aigo;ithm causing a delay
of 2-8 milliéeconds less than the WSR, due probably

to the fact that under that algoritﬁm the shared page

which is being transferred-in is one of a set of

Table 524

1 'ANOVAﬂTablévfdi_Mean Effeétive Page4Wait”Iimé (in milliseconds)

_per’Pagé, Page Faulted from Drum (Mean = 48°3)
 SOURCE - AVERAGE SUM OF DEGREES MEAN ~ MEAN SQUARE’
'~ EFFECT SQUARES OF SQUARE RATIO

: ~ FREEDOM
MEMORY '
7/8 3/4 - 55) o : : ‘
3/4 5/8 - 53) 77:1 2 38+5 . 4-0 +
7/8 5/8 . -10-8) . o
CHANNELS 25-3 6418 1 641°8 66°8 ¥¥¥x
ALGORITHM - 4-3 18-8 1 188 20
HIGH ORDER . 6743 7 . 9+6
FACTORS
(ERROR ESTIMATE)
TOTAL | 804+9 11

Table 5.25

ANOVA Table for Mean Effective Page Wait Time (in milliseconds)

per Page, Page Faulted from Disc (Mean = 210-5)

SOURCE AVERAGE SUM OF‘ DEGREES MEAN MEAN SQUARE
EFFECT SQUARES OF SQUARE RATIO

| FREEDOM

MEMORY |

7/8 3/4 - 6-5) :

3/4 5/8 -31-3) 1086-2 2 543-1 1-1

7/8 5/8 -37-8) |

'CHANNELS -34-3 1178-8 1 1178-8 2-311

ALGORITHM -21-7 469-4 1 4694 0-9

HIGH ORDER 35699 7 510+0

FACTORS '

(ERROR ESTIMATE)

TOTAL ' 6304-°1 11

*h%R - SIGNIFICANT AT THE 99-9% level (F - test)

+ SIGNIFICANT AT THE 90 % level (F - test)

" ‘Table 5.26

'ANOVA Table for Mean Effective Page Wait Time (in millisééonds)

- per Page, Page*Faulted in Core '(Meén = 2-5)
SOURCE AVERAGE ™ SUM OF DEGREES MEAN MEAN SQUARE
‘ EFFECT SQUARES OF . SQUARE RATIO
FREEDOM '
MEMORY .
7/8 3/4 0-3) : ' e
3/4 5/8 @ 0-3) 0-2 2. 0-1 0-5
7/8 5/8 0:5)
CHANNELS 1-3 - 1-8 _ 1 1-8 ‘ Q-7 %%
ALGORITHM -2-7 71 1 71 390 **¥%¥
HIGH ORDER - 1-3 7 0-2
FACTORS :
(ERROR ESTIMATE)

TOTAL © 10-3 11

Table 5.28

ANOVA Table for the Average Throughput - Interactions

Completing per Second (Mean = 1-23)

SOURCE AVERAGE SUM OF = DEGREES MEAN MEAN SQUARE
EFFECT SQUARES OF SQUARE RATIO

FREEDOM

MEMORY

7/8 3/4 -0-14) : - ,

3/4 5/8 -0-08) 0-034 2 0°017 495 **x*x

7/8 5/8 -0-22) -

CHANNELS -0-152 0-023 1 0023 672 *x%%

ALGORITHM -0-335 0-112 1 0-112 3277 *Ex%

HIGH ORDER 0+002 7 0+0003

FACTORS

(ERROR ESTIMATE)

TOTAL ’ 0-17 11

*HHH SIGNIFICANT AT THE 99°9% level (F - test)

*% SIGNIFICANT AT THE 97:5% level (F - test)

.ffpreloads (tw1ce as probable as-the‘case when the shared
.fpage is another page faulted page) The arr1va1 of the
'f:_preloaded page will not be not1f1ed to its owners unt11

the end of the-cnanneluchain containing it rather than
'immediately it arrives in-main memory as 'is the case with
demand page reads. The addltlon of a. second channel
*also causes this delay t1me to be reduced by Just over
a millisecond as is to be expected as:the two channel
configurations consistently transfer pages quicker than

"the single channel case.

‘Influence of Paging Rate Upon Paging Delays

The maﬁor factor in the paging delays
accrued by processes on EMAS is that of transfers
involying the secondary memoxry - or drum. To observe
how the drum paging characteristics vary with the
drum paging rate, the event trace data in each of the
experinent runs was partitioned into intexrvals of two
seconds (of real time) and the numbers of page transfers
in each type of drum'paging as Well as the nean delay
time for each was calculated; Two seconds was chosen
as being large‘enough to eliminatevmost end -effects

" (being a factor of five larger than the largest mean
delay time - total time in write-back) and yet small
enough to still show differences between paging rates.

This data is presented in terms of a set of graphs

(a)

(b)

(d)

(e)

(£)

(9)

"(Figﬁres'B;Z - 5.13) which show:-

The relationship between expected effective page
wait time per demand page read (from the drum)

and the drum pagingvrate.

The rélationéhip'between the average number of

drum page faulfs_and the drum paging rate.
The relatiohship between the ekpected effective
page wait. time per page for preload reads and

the drum paging rates.

The relationship between the number of preloading

transfers and the drum paging rate.

The relationship between the expected effective page

wait time for drum writes and the drum paging rate.

The relationship between the number of write

transfers and the drum paging rate.
The frequency distribution of the paging rates.

It may be observed from these graphs

that the effect of main memory is merely to increase

the spread of paging rates with higher paging rates

Table 3.1

THE EXPERIMENTAL RUNS

EXPERIMENT = PRIMARY CHANNELS TO SCHEDULING

NUMBER = MEMORY SECONDARY ALGORITHM
* (M-BYTES) - MEMORY

| A 7/8 - 2 WsR
B 7/8 2 | PDP
C ..7/8 . 1 ~ WSR
D 78 1 pop
E 3/4 : 2 WSR
F 3/4 | 2 : PD#
G 3/a | 1 WSR
H 3/4 . 1 : .'PDP.
I 5/8 2 wSR
J 5/8 o 2 | PDP
K 5/8 1 | WSR
L '5/8 1 - | " PDP

WSR - Using Working Set Replacement Policy

PDP - Using Pure Demand Paging scheme

Allvexperiﬁents were carried witﬁ a'fixed
workload of 32 simulated users. Ha;dware consisted
of the ERCC ICL 4—%5 (machine "B" complex) with
3 drums + 1 péeudo drum. EMAS,‘vefsionv814, was used
throughout, as were the executive procesées -
Volumes version 834, Demons version 877. Runs A-D
used DIRECTOR 871, E-L used DIRECTOR 872 (a minor

error corrected).

}
i

August 1975

Figure 5.2 (a) Figuré 5.2 (b)

EXPERIMENT A o : _ EXPERIMENT A
8.0+ : s ' , : 3.57
7.0+

3.01

it A

2.0~M Vv

1.0+ o : o.s--/h v |
0.0 - : —y ; : : : 4 0.0 + — : : . ;

T e e ———

r——
e ——
. —

1.0+

DRUM PAGEFAULT TRANSFER IIME (1/100 SEC)"

DRUM PAGEFAULTS X 10

-

0.0 25 S0 75 10.0 2.5 150 7.5 20.0 22.5 ‘ ’ 0.0 25 5.0 7.5 . 10.0 125 15.0 17.5 20.0 22.¢

PAGING RATE /SEC x10 ' o | PAGING RATE SEC x10 '

o EXPERIMENT A

PRELOAD TRANSFER TIME (1/100 SEC)

17,54

Figure 5.2 (c)

20.07

-15.01

0.0+

7.51

5.0t

2.5+

0.0

NITYLY | LTINS BeRwae Ty e
: : : : i -

- 0.0

2.5

5.0 7.5 10.0 12.5 15.0 17.5

20.0

PAGING RATE /SEC x10

22.5

PRELOAD TRANSFERS X 10

Figure 5.2 (d)

10.0+
|

8.0+

8.01

7.07
6.0+
5.0t
4.0+
30t

2,01

0.0

EXPERIMENT A

ey
=

=
= _

0.0

2.5

5.0

7.5 10.0 12.5 15.0 17.5 20.0

PAGING RATE /SEC x10'!

22.

WRITE TRANSFER TIME (1/100 SEC)

Figure 5.2 (e) . " Figure 5.2 (f)

EXPERIMENT A ' . EXPERIMENT A
R N E - : o : _ » e
6.0+

2.51

\Ji fJ 3.0+ :
. ° _
1.0+ . ~
: * 2.0t
0
. [+
&3]
fx,
2
0.5+ <
& 1.0
@
(=
=l
ol
g .
0.0 1 ¥ T — T t T T 1) 0.0 +- + } 4 4 ¢ f ;]
0.0 2.5 .50 7.5 10.0 12.5 15.0 17.5 20.0 22.5 © 0.0 25 50 7.5 10.0 12,5 15.0 17.5 20.0 22.

PAGING RATE /SEC x10' : PAGING RATE /SEC x10

Figure 5.3 (a)

Figure 5.2 (g)

EXPERIMENT B

" EXPERIMENT A

[¢ '
° < o. ° S S &3 >
(2FS 00T/T) AWIL MFASNVIL 1INV4EOVd WNAd
= { F ¥ _ e—_— |
o o ~ w o = ~ w o o~ o
o~ o~ — L - - 2.

OT X FOVINEDNEd SV NOIINGINISIA ADNINTIAA)

22.5

45,0

2.5 ° 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
PAGING RATE /SEC x10Q !

0.0

20.0

17.5

12.5

5.0 7.5 10.0
PAGING RATE /SEC x10°

2.5 .

o
o

- 5.0

DRUM PAGEFAULTS X 10

- Figure 5.3 (b) : Figure 5.3 (c)
EXPERIMENT B . :) , : EXPERIMENT B
9.0t - ' ' : ' - 12.57 »
S 8.0+ - _) :
,‘ ' . _ . 10.04
. 7.0-— . P ’ . ' \
. » , .
6.0"‘ (A/A/V (\/\J V\. .
i : .)

7.5+

e ——

i

%)
m
1]
o
[}
S
~N
~
< sof / _
g ,
3.01. H
’ 24
m
=,
2.04 2
g 257
“
a
1.0+ §
m
o v &
0.0 : ; ; ; ; ; , . . . 0.04—— ; ‘ . . ; ; ;
0.0 25 50 7.5 10.0 12.5 15.0 17.5 20.0 22.5 .0 25 50 75 10.0 125 15.0 7.5 20.0 22

PAGING RATE /SEC x10 ! - | " PAGING RATE /SEC x10Q

PRELOAD TRANSFERS

Figure 5.3 (d) . Figure 5.3 (e)

* : EXPERIMENT B EXPERIMENT B

7.017 ‘ - _ 7 ~ 17,57 - T
6.0+ : B R - 15,04 ‘r
5.0+ 12.5 ﬂ M[‘f‘
i vl
‘ o ' ﬂ’ N ‘nfv‘f\/\i |
4.0+ 19,0+ ;A M 7
Z)‘ 1 'W ’V |
m .
(@]
3.07 © 7.5+ | v g :
' ~N
2 .
2.0 g S.07
29
m
-
1]
Z
.ot TE 2.5
M
=
=
o~
0
0.0 } } } { } ; — 0.0 t + + t - + 4 t
0.0 . 2.5 5.0 7.5 10.0 2.5 45.0 17.5 20.0 22:5 . 0.0 2.5 5.0 7.5 10,0 12,5 5.0 - 17.5 20.0 22

" PAGING RATE /SEC x10' | PAGING RATE /SEC x10Q'!

WRITE TRANSFERS X 10

Figure 5.3 (f) Figure 5.3 (g)

EXPERIMENT B - EXPERIMENT B

707 ' _ ‘ : 3.57 T T
6.0+ 3.0+
5.0"" ‘8(2.54_
<
| :
4,01 g 2.0t
m
§) .
&
3.0+ 2 1.5¢ .
. - m |
O
=
g } | |
0 !
2.04 SIRROE S i
£ | |
N
0
(=]
>
1.0+ g 0.54 , A
23] : .
j=)
N |
& Ly
fr,
0.0 ¢ ; ; ' . , , 0.0 : - . 4 ; : i ; i
0.0° 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0 22.5 0.0 2.5 5.0 7.5 10.0 12,5 15.0 " 17.5 20.0 22

P

PAGING RATE /SEC x10' - | PAGING RATE /SEC x10'

DRUM PAGEFAULT TRANSFER TIME (1/100 SEC)

Figure 5.4 (a) Figure 5.4 (b')

EXPERIMENT C © EXPERIMENT C

20.0-; 7 .‘ _ A_-.‘._ P 7 ‘ S 3-0'}’
17.5+
2.5+
15.07
. . . 2.0+
12.5+4 » : |
- - }‘Ll'ragu
: ' Cb A e i
10.04 . 7 ‘ V / . 15t | '\ t'\‘;\’j\W\";\ \U
A ' 210 i '
, 9 i
: & T |
| J\W EOS-—
i : J
. .. N %
: _ : ' -
0.0 ; t f I e : ; | 0.0 ' ' ' ' . ' ,
0.0 2.5 5.0 7.5 10.0 125 15.0 . 17.5 20.0 22.5 - 9.0 . 2.5 5.0 7.5 10.0. 125 150 17.5 20.0 2

PRAGING RRTE /SEC x10'! . : o PAGING RATE /SEC x10

PRELOAD TRANSFER TIME (1/100 SEC) i

Figure 5.4 (c)

EXPERIMENT C

4.0

3.5+ .
3.0+ \/
1

2.51

NI
i MWM

PAGING RATE /SEC x1

1.04

0.5+

0-0 T T T T T T T T 1

© 0.0 25 50 7.5 10,0 125 150 17.5 20.0 22.5
O 1

PRELOAD TRANSFERS X 10

6.0+

3.04

5.0¢4°

4.0+

2.0r

0.0

Figure 5.4 (d)

EXPERIMENT C

0.0

2.5

5.0 7.5 10.0 12.5 15.0 17.5

" PAGING RATE /SEC x10

20.9

22.

| WRITE TRANSFER TIME (1/100 SEC)

Figure 5.4 (e) Figure 5.4 (f)

EXPERIMENT C - EXPERIMENT C

7.0% T T s . , 507 L ,
4.5+
6.01

| . , : 3.01 . '

e A

EN
o

= ___

T

—

—_—

3.0 JL : To2.01 J
| |
' ‘ : T 1.5+ e
2.0 \/ o .ox _ \
: ' ' : S 2 :
»J ' o & 1.07
A . _ 0
z,
ol : |
< o.51 FV‘
4}
=
=]
m .
0.0 } —+ ¢ ¢ t ; ;] . % 0.0 t ¢ —t
0.0 2.5 5.0 7.5 10.0 12,5 45.0 17.5 . 20.0 22.5 0.0 25 50 7.5 10.0 125 5.0 17.5 20.0

PAGING RRTE /SEC x10' | . | PRAGING RATE /SEC x10'!

Figure 5.5 (a)

Figure 5.4 (g)

" EXPERIMENT D

. EXPERIMENT C

10.07
8.0+
8.0+

i 1
T T
[en] (o]
~ [+ wn

(08S COT/T) EWIL dHASNVAL ITINVAEOVd WNAd

I
T
o
(o]

3.0
2.5t
1.5+

3 1
T T
(] w
. "
-— o

0.0

00T X HOVINEO¥Ed SV NOIINAIYISIA ADNINDTYUS,

" " t “ "

o o o (=] (o) o
g . .
-] -

10.0 12.5 15.0 17.5 20.0 22.5

~PAGING RATE /SEC x10 "

7.5

o
(o]

15.0 17.5 20.0 22.5
PAGING RATE /SEC x10

12.5

©10.0

2.5 S.0 7.5

0.0

.Figure 5.5 (b) Figure 5.5 (c)

EXPERIMENT D EXPERIMENT D

6.0+ n h K ’ . . ‘ 22.5T

20.0+

DRUM PAGEFAULTS X 10

.04 ' NI o | 15.04 \
: ' . 12,54 - }* I
| N . b{ |
253 .
9]
8 10.04
3 !
g 7.5t |
-
“ .
21
B 5.0+
& s,
4
<
<]
~
g 2.5
8
o
_ . , . , ‘ , , ‘ _ LB 0.0 : | : + | : e "
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 22.5 : 0.0 .25 50 75 0.0 125 45.0 475 2.0

PAGING RATE /SEC x10° R PAGING RATE /SEC x10'

PRELOAD TRANSFERS

Figure 5.5 (d) : Figure 5.5 (e)

EXPERIMENT D ' ’ * EXPERIMENT D
6.07 : : . s - 4.01
. 3.5+
5.0+
3.0t
4.0 : -
~ | ' ! .
| ' g ; ”L"“‘il‘»;"j. /]
a0y Ml 5 20l L
o 8
N 1
~ WH q !
d < sl |
2.0 g \,
“
B 1.0 i
(e
2
1.04 E ,
| “ sl |
H
a
24
=
0.0 T 3 t t T 1 t T | .) 0.0 + t t t + t - + + {
0.0 2.5 5.0 7.5 10.0 12.5 15,0 17.5 20.0 22.5 0.0 2.5 5.0 7.5 10.0 2.5 15.0 17.5 20.0 22.5

PAGING RATE /SEC x10' . - PAGING RATE /SEC x10'

WRITE TRANSFERS X 10

‘Figure 5.5 (£f)

EXPERIMENT D

4.51j

4,04

3.0t

2.57

0.5t

3 1 Il s

et

; }
T T T T T T

" ,.5 10.0 12,5 15.0 17.5 20.0

PAGING RATE /SEC x10'

1

22.5

FREQUENCY DISTRIBUTION AS PERCENTAGE X 100

Figure 5.5 (9)

EXPERIMENT D

4.57

3.07

2.5

2.01

3 I i 1 I

T T T T T

7.5 10.0 12.5 15.0 17.5

PAGING RATE /SEC x10

4
T

20.0

{
1

22.

Figure 5.6 (a) Figure 5.6 (b) .

EXPERIMENT E EXPERIMENT E

8.0 : ' _ ~ : B 3.57 S T

7.0+ 3,04

T
1

DRUM PAGEFAULT TRANSFER TIME (1/100 SEC)

’|v /
|
N
I
|

o

~

x |

cor o (i M

g A

< ,

fx, |

§ 2.5+
1.04 =

=

=)

<4

(=}
O._O T t T 1 1 1 1 T 1 -0 i T ¥ T + $ e)
0.0 2.5 5.0 7.5 .10.0 12.5 15.0 17.5 20.0 22.5 0.0 25 50 75 . 10.0 125 15.0 17.5 20.0 92.5

PAGING RATE /SEC x10 | PAGING RATE SEC x1Q'

Figure 5.6 (c) ‘ _ Figure 5.6 (d)

EXPERIMENT E EXPERIMENT E
20.07 ‘ ' ' ’ 12.07

1.0+ , o
17.51

10.0+

15.0+

”\”Jv L R . WV\

~
w0
1
s

PRELOAD TRANSFERS X 10

' PRELOAD TRANSFER TIME (1/100 SEC)

) 'V’
5.0+ 3.0 v
i
2.0 .
2.5+ - :
1 1.0+
00 T T Ll T T T T T 1 s 0-0 T IL T - T t } |
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 0.0 7.5 10.0 12,5 15.0 12,5 20.0 22.5

PAGING RATE /SEC x10 | PAGING RATE SEC /10

WRITE TRANSFER TIME (1/100 SEC)

. 2.0+

Figure 5.6 (e)

"3.07

2.5

0.5+

0.0

. EXPERIMENT E

0.0

2.5

5.0

7.5

10.0

12,5

1S.0

17.5

20.0

PAGING RATE /SEC x10

22.5

WRITE TRANSFERS X 10

(=]

Figure 5.6 (f)

EXPERIMENT E

6.07

5.0t

4.0+

3.9+

. <o
:
Y

o
o o
O

2.5

5.0 .

7.5 10.0 12.5 15.0 17.5

PAGING RATE /SEC x10

'20.0

22.°¢

Figure 5.7 (a)

Figure 5.6 (g)

EXPERIMENT F

- EXPERIMENT E

———re—
o]
-
.iIIﬂHLMMMWL.:)
M
. o .
!n"'w .
xiPﬁMNWlltsv
1A4I.W\L»
——
—~
=
) S o " S " S " o - n S
w <« < © e} N N - S - o -
(08S 00T/1) SWIL ¥FASNVIL I1NV4IOVd WNId
~
T
S
B ——
T —e—
b “ M
n o n o w o *H & §s Py
8 & w~ £ o 2 NS o S

01 X EOVINIO¥Ed SV NOIINAIJYISIA ADNIANTAAA
—

10.0 12.5 15.0 17.5 20.0 22.5

7.5

PAGING RATE /SEC x10'

5.0

2.5

0.0

22.5

20.0

15.0
PRAGING RATE /SEC x10'

fe.5

10.0

2.5 5.0 7.5

0.0

8.0+

DRUM PAGEFAULTS X 10

" Figure 5.7 (b)

EXPERIMENT F

9.07

7.0+

T
] Nw b

4.0+
3.01

2.01

0-0 L)] - L}] T T T] |
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

PAGING RATE /SEC x10

10.0+

PRELOAD TRANSFER TIME (1/100 SEC)

Figure 5.7 (c) .

EXPERIMENT F

15,0

12.51

7.5¢

5.0

2.51

0.0

0.0

2.5

5.0

7.9 10.0 12.5 15.0 17.5

PAGING RATE /SEC x10"

—
T

20.0

22.5

Figure 5.7 (d) o) . Figure 5.7 (e)

EXPERIMENT F : : ‘ ' EXPERI’MENT F
B0 . » o - ' 17,57
[- |
70r | ' 15,04
. 12.5+ M A {l[\ ‘ML{. A /&
. ' ;) . . . il Hi
o e i ,w i |
5.0+ } = ‘ 1 v . [
' M } : , . 10.0+ \ I v
4.0+ - @ _ ' s
. !; e 8 . . |
3.0+
. | .
0 ' E
& o 50
&)
%2.0 %)
& z
a ® 2.5
§1.0-- g :
2 g
3-0 4 4 . R 0.0 1 N T L) L T T ¥ L) R
2.5 5.0 7.5 10.0 12.5 15.0 7.5 20:0 — 0.0 2.5 5.0 7.5 10.0 12,5 150 17.5 20.0 . 22,

22.5 .

PAGING RATE /SEC <10 4 | 'PAGING RATE /SEC x10 ™

. o
o

Figure 5.7 (f)

EXPERIMENT F

. b’.U"I [P __ A

WRITE TRANSFERS X 10

5.0+ .

4.0+

0.0 — + } ¢ :

0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5

PAGING RATE /SEC x10 !

20,0

i
~

22.5

FREQUENCY. DISTRIBUTION AS PERCENTAGE X 100

Figﬁre15.7 (9)

. EXPERIMENT F

6.0

4.0

3.01

I 4 :

0.0 2.5

i :
=T ¥ U T T

7.5, 10.0 12.5 15.0 17.5

PAGING RATE /SEC x10 '

I
1

20.0

{
1

22.5

Figure 5.8 (a)
EXPERIMENT G

12,01
1.0+
10.0+

8.0+

7.0+

€.0+

1.0+

DRUM PAGEFAULT TRANSFER TIME (1/100 SEC)

I

] 4 Il } I

- 0.0 2.5

5.0

T T T T T

7.5 10.0 12.5 15.0 17.5

20.0

PAGING RATE /SEC x10'

22.5 7

'Figure 5.8 (b)
EXPERIMENT G

3.0T1

2.0t

o
4
¥

i } I ! 3 I

DRUM PAGEFAULTS X 10
: -
il

. O
o ©
o

2.5

5.0

T T T T T T

7.5 10.0 - 12.5 5.0 17.5 20.0 22.

PAGING RATE /SEC =10

Figure 5.8 (c) Figure 5.8 (d)

, EXPERIMENT G EXPERIMENT G

T 7.07
22.5+
6.0+
20.0+
17.5¢ 5.0+
15.0+
4.0F |
12.5¢ ‘

PRELOAD TRANSFER TIME (1/100 SEC)

O .
-
* |
7.5+ 4
4 2.04
1))
Z
5.0+ E
2 t.04
2.5+ g
4
- .
"9
0.0 ; } " : " : " : 4 0.0 ; } , : , : : :

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22

“PAGING RATE /SEC x10' | ~ RAGING RATE /SEC x10'

Figure 5.8 (e)

EXPERIMENT G

‘3.51

2.54

2.0

. 0.5+

WRITE TRANSFER TIME (1/100 SEC)

S5.07

4.0+

1.51

0.0 foem

L
U

It

-

0.0 2.5

5.0

)
T

7.5

10.0

12.5

15.0

T

17.5

20.0

PAGING RATE /SEC x10

22.5

WRITE TRANSFERS X 10

Figure 5.8 (f)

EXPERIMENT G

gEm

I

7.5

10.0

12.5

PAGING RATE /SEC x10

Figure 5.8 (g) . : v . ~Figure 5.9 (a)

FREQUENCY DISTRIBUTION AS PERCENTAGE X 1QO

EXPERIMENT G : : . . ' ' EXPERIMENT H
3.0+ AA . ' 10.0T
3.0+
2.51
B.0+ "
7.0 [\\/\ J
2.0 ~ v
@ [\
I [))
o 6.0+ ,/
& .
L)
~ .
— .
1.5+ ~ 5.0+ \J
2 f
1S .
24 4.0"‘
)
[
[}
Z
g 3.0+
—
| |
[
l 5
_ 2 2,07
fx,
8
¢
U 81,04
2
(48
a
0.0 } + } } + + } — i \ 0.0 t t t t t t t t
0.0 2.5 5.0 7.5 10.0 12.5 15.0 . 17.5 20.0 22.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5- 20.0 22

\

bﬂGING RATE /SEC %10 PAGING RATE /SEC x10'

Figure 5.9 (b)
Figure 5.9 (c)

. EXPERIMENT H
: ‘ EXPERIMENT H

.>8.01;

o ' wat 1 W\/L»/V |

7.51

5.0t

1

2.51

PRELOAD TRANSFER TIME (1/100 SEC)

DRUM PAGEFAULTS X 10
o

0.0 —t et f } } } —
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

PRGING RATE /SEC x107

0.0 . . . ' ' " " }
0.0 2.5 5.0 7.5 10.0 12.5 5.0 17.5 20.0 2

PAGING RATE /SEC x10'

3.0

PRELOAD TRANSFERS

. 401

Figure 5.9 (d)

EXPERIMENT H

6.01

5.0+

2.0+

0.0

S 0.0 . 2.5

5.0

7.5 10.0 12.5 15.0 17.5

PAGING RATE /SEC x10 !

20.0

-22.5

WRITE TRANSFER TIME (1/100 SEC)

Figure 5.9 (e)

EXPERIMENT H

3.5¢
3.0t

2.54

1

1

0‘0 L)
0.0 2.5

5.0 7.5 10.0 12.5 15.0 17.5

PAGING RATE /SEC x10'

20.0

22.

Figure 5.9 (f) : ' : Figure 5.9 (g)

WRITE TRANSFERS X 10

EXPERIMENT H ' - o _ ' EXPERIMENT H
407 3.57
3.5+ 3v0_L
3.0+ o
O 2.5+
i
> .
2.5 fﬂi ' 8 [
. P i
_ \v | g 2.0+ | {
I)
/. 1
2.04 o
: u A »
| @ 4.5t
.54+ § h
]
o)
- 8
‘ Ho1.0t
1.0+ | o
U 2
[a]
_ ‘ .
0.54 z 0.5+ f
.]
Q
&
.,
0.0 } t t } } + t } { 0.0+— t t t : 1 t t ——t {
0.0 2.5 5.0 7.5 10.0 12,5 15,0 17.5 20.0 22.5 0.0° 2.5 5.0- 7.5 1.0 12,5 15.0 17.5 20.0 22.'

PAGING RATE /SEC x10° | -_ PAGING RATE /SEC x10

Figure 5.10 (a) Figure 5.10 (b)

EXPERIMENT I EXPERIMENT I

DRUM PAGEFAULT TRANSFER TIME (1/100 SEC)

o o o s -
. 6.0+ ' A _ v ' 3.01
5.0+ _ E {\’ ,4\ 2.5+
| |
.54 il
o .
[a]
ks
o 1.0+
jan
|
o]
<<
& o
o
1.0+ £ 0.57
=
o]
21
a
0.0 + n T t T t + —i 0.0 T T t T 1 t T t
0.0 25 5.0 7.5 10.0 12,5 15.0 17.5 20.0 22.5 = 0.9 2.5 5.0 7.5 10,0 12.5 5.0 17.5 20.

PAGING RATE /SEC x10 PAGING RATE /SEC x10

Figure 5.10 (c)
~ Figure 5.10 (d)

EXPERIMENT I

EXPERIMENT I

17.571

9.4

Wy

| ‘ j ' WVNWl ; [| ﬁﬁ»A.

~ 10.0+

8.

()]

(@]

Q

- . N

~N - 7.5+ j\

-

~— - 4‘0_-

g g

& »

x S5.0F o307

[4d] [+

2 i

‘E % 2.0
AR &

g a

C .04

o 3

5]

. By [+ 4

0.0 T T 1 1 1 t T 1 1) A 0.0 T
T 2.5 5.0 7.5 10,0 12,5 15.0 17.5 20,0 22.5 0.0 2.5

(=)
i [=)

PAGING RATE /SEC x10

5.0

7.5 10.0 {2.5 15.0 17.5 20.0

PAGING RATE /SEC x10'

WRITE TRANSFER TIME (1/100 SEC)

Figuie 5.10 (e)

EXPERIMENT I

s.oT :

4.5

4.0+

3.5+ .

3.07
2.5+

2.0t

0.54

\‘\ MWWWW ‘ :

0.0
0.0

2.5

5.0 7.5 10.0 12.5 15.0 17.5

PAGING RATE /SEC x10

20.0

-22.5

WRITE TRANSFERS X 10

-B.OT

EXPERIMENT I

5.0+

4.0+

3.0+

2.01

' Figure 5.10 (f)

0.0

0.0 Im t

2.5

5.0

7.5 10.9 12.5 15.0 17.5 20.0

PAGING RATE /SEC x10'

22

Figure 5.11 (a)

Figure 5.10 (g)

EXPERIMENT J

* EXPERIMENT I

=
e —
IMWWWMW
E——
—
==l
[
————
+ T i = t + $—
o w (@) w o wn o w o w o
w < < ™ ™ «~ o - - o pa
AUMW.OOH\ﬁV TWIL VFASNVIL LIOVIFOVd KWNad
o e ———
PO UV oy -
e T
llﬂl‘l«L\'h "~
| VYV
I——
I ¥ " 1 ¥ F e + 4
w o w o n o n o) w0 [
8 & = 47 d° ¢ w~ &b & 9

OT X TOVINEO¥Ed SV NOIINIIVISIA ADNANTIAA

12.5 15.0 17.5 20.0 22

10.0

7.5

PAGING RATE /SEC x10'

5.0

2.5

0.0

2.5 S.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
PAGING RATE /SEC x10'

0.0

Figure 5.11 (b) . T ‘ Figure 5.11 (c)

. EXPERIMENT J , v : : EXPERIMENT J

. gv_o.r . . | v . .- 7 2.0~
11.01

8.01
10.0+

oo A
A R T

DRUM. PAGEFAULTS X 10

o
&3]
07]
Q
. o]
: ’ N
4.0+ \ A
,\/\, 2 sl
3.07 = 4.0
(a4
[44]
§ 3.0+
2.0+ e
= 2.0+
a
1.0+ §
: - m 1.0
v &
0.0 i a } : } " " " " — 0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0. 17.5 20.0 22.5 0.0 ‘2.5 i 5.0 7.5 10.0 12.5 5.0 7.5 20.0)

" PAGING RATE /SEC x10! - PRGING RATE /SEC x10 '

Figure 5.11 (d) .
o Figure 5.11 (e)

EXPERIMENT J ;
EXPERIMENT J

700 . S o : 5.07

8.0+ :
12.5T

T
T T—

7.5T1

-

5.0+

2.5T

1 + + t t + i 0.0 t t t + t —— -+ t 1
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 . 0.0 2.5 S.0 7.5 10.0 12.5 15.0 17.5 20.0 22.

PAGING RATE /SEC x10' - PAGING RATE /SEC x10

o
[«

PRELOAD TRANSFERS

.o po

2 <
i .
WRITE TRANSFER TIME (1/100 SEC)

o
.
. o

WRITE TRANSFERS X 10

Figure 5.11 (f)

EXPERIMENT J

6.07.

5.01

3.0+

0.0

0.0 2.5

S.0

3 I X 4
U T T U

7.5 10.0 12.S 15.0 17.

PAGING RATE /SEC x

n
T

S 20.0

10"

4
1

22.5

FREQUENCY DISTRIBUTION AS PERCENTAGE X 100

Figure 5.11 (g)

EXPERIMENT J

3.57 T }

3.0+

2.57

2.0+

1.5+ ivf

1.0 ‘ J

T

0.0 : : . t : : ¢ : {
0.0 25 5.0 7.5 10.0 125 15.0 7.5 20.0

PAGING RATE /SEC x10'

22.

Figure 5.12 (b)

. Figure 5.12 (a)

" EXPERIMENT K

EXPERIMENT K

i
o
N
(=]
2
2 -~
)
wn -~
NooX
)
S wl
2wm
N
ooow
t«i‘.‘“\wﬁt - X ﬁn
T T T . a
e S
P =
= JECH
e M
T S
—— o
— o
. o
'orf'u'ln
\Ill).l\l‘luﬂll
— .
e |
ﬂllllllllll(llllu (]
\l\l‘ll‘\u
4 ' : \ N ’ (=]
o w o n) " o o
@ o o - K e S
0T X SIINVAIOVd Wnada
=—
S —g .
D
=
\ . . , | Y
o n o w o w o
(085 00T/T) EWIL ¥FASNVAEL 110VAAOVd WNAQ

17.5

'PAGING RATE /SEC x10

22.5

20.0

12.5 15.0

10.0

5.0 7.5

- 2.5

Figure 5.12 (d)
. Figurxe 5.12 (c)

EXPERIMENT K EXPERIMENT K

3.57) - : : oy T
3.0+ | | ol |
- I D 1
b ' ' . . 4.0+ _ N' l|
2.0+ J\/ \/ :
2 { A ‘ _ _
o A “W\‘V ' .) 3.0+ ,
(e} . , ‘
= T i |
2 V) v‘
£ , L 207
H .
v 1.0F 2
& m
x,) .
5 : f
g £ 1.0 |
™ o.54 &
g 5 |
a 3 ,
= %00 : ' ' e : - . |
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 = 20.0 2o.c 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

PAGING RATE /SEC x10' | : PAGING RATE. /SEC x10!

Figure 5.12 (e)’ ' : ' Figure 5.12 (f)

EXPERIMENT K » i ' EXPERIMENT K
" 607 : ' ' o N
3.5+
S.0+ . .
ﬁ 3.0 LJ
: |
fi
504 | ‘#lj

‘WRITE TRANSFER TIME (1/100 SEC)

o
) —
v2.0-' ! >
’]
3 |
w 1.0 (
)
N : |
1.0+ , &
‘(ﬂ 0.5+
I
[ad
' e
0.0 + + + - + t t 4 l ! . 0.0 + t t $ ¢ + t t {
) 0.0 2.5 S.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5- 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.

PAGING RATE /SEC x10 - - PAGING RATE /SEC x10

Figure 5.12 (g)

Figure 5.13 (a)

EXPERIMENT L

EXPERIMENT K

—
.}..'Iv
T
=
IIlﬂﬂ”WWWMWWWWWHHHUUIIl
e
_ | | “J |
o o o o o = =] C o
~ © w T) o~ < =]
(DS 00T/1) AWIL YHASNVII IT1Av4dOvd WNad
b t — 1 S ——— =S
-0 o o - - S S.

00T X gOVINEO¥Ed SV NOIILNdI¥ISIdA >UZNDGM&W

12.5 15.0 17.5 2

5.0 7.5 10.0
PAGING RATE /SEC x10'

2.5

0.0

5.0 7.5 10.0 2.5 15.0 17.5 20.0 22,5
PAGING RATE /SEC x10Q'!

2.5

0.0

/

: . o Figure 5.13 (c)
Figure 5.13 (b) : 7)

- EXPERIMENT L
EXPERIMENT L

DRUM PAGEFAULTS X 10

S.0T 17.57
4,51
15.0
4.0t :
12,5+ H iR ‘h
3.5¢ \
. | \
3.0+ ‘ [
! —~10.0+ i \
' 2
@ BR
so2.5¢4 - H
O,
) -
S 7.5+
2.0+ <
g
=
| =
31 x 5.0+
ja)
' 0
zZ
1.0+ E::
. e ‘9.5t
. g :
0.5+ g
&
.) A .
0.0 f S + . —_— : ; v 0.0 t 1 t 1 + t t f !

0.0 2.5 50 7.5 10.0 12.5 15.0 17.5 20.0 22.5 0.0 25 50 75 10.0 125 5.0 175 20.0 22.°

PAGING RATE /SEC x10' | PAGING RATE /SEC x10

Figure 5.13 (4) © Figure 5.13 (e)

PRELOAD TRANSFERS

EXPERIMENT L V_ ») . EXPI‘ZRIMENT' L
35T T T T ' 3.57 h
3.0+ 3.0+ ,
. I
2.5+ : ' : . 2.5+
2.0t ‘ FH L | 2.0t ' }P
— 1‘|
| 8 i
w o
1.5+ g .57
N
2
1.0+ ._J % 1.0+
. =4
m
e
2
0.5+ g 0.5t
I
53]
“
-
. <3 N N 4 1 s $
0.0 + t } I 1 ! , N , = 0,0 ¢ + T T T T T 200 22
’ ' ' e ' o -) 10.0 12.5 15.0 17.5 .
0.0 2.5 5.0 7.5 10.0 12,5 45,0 17.5 20.0 22.5 0.0 2.5 >.0 7+5 0

PAGING RQTE /SEC x10' ~ PAGING RATE /SEC x10

Figure 5.13 (f) 13 (o)
Figure 5.13 (g) -

EXPERIMENT L
' EXPERIMENT L

" WRITE TRANSFERS X 10

4.0 ' . ' o : 40
3.5¢ 3.5+
3.0+ ' , : o 3.0¢
. . . . O
i
=
2.5+ 4 2.5t
) &
: &
! Z
i i
o3
2.0t a4 201
0
. <
8
S .5
[
]
2.
=]
&
" 1.01
@
a
5
4
% O'S"W
a
[s4
fz,
$ } 1 + t } — . »'0.0 + + f t t t - $
7.5 10.0 12.5 15.0 17.5 20.0 22.5 . 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

PAGING RATE V/S_EC x10 | | - PAGING RATE /SEC x10

134,

',foﬁnd iﬁ“the lérger ﬁain.ﬁeﬁéryIC6ﬁfi§u£ationé;v‘Thé_
'effecf‘éf tﬁévéhanheis is for‘thé.delay times to show
steeperx siopes in the single chaﬁnél case ife, when
oniy:one chanhel is in use'the paging delay time is
Emore sensitive_to théApagingvrate exisfing at the time
- the ;eqﬁést is issued. It also may be noted that the .
avéxage'délay for write transfers is veryuinsensitive'
to the paging.rafe showing véry little increase as

- the paging rate inéreases. Similarly,.in the WéR runs
the average wait time per preloaded page lengthens very
little with the increase in paging rate. Hoﬁever, in
all the runs the mean wait time for a page fault on
thg drum shows a very steady and much steeper increase

as the paging rate goes'up.

Considering the types of transfers whibh
are makiﬁg up the paging rate it may be seen that as
the paging rate goes up, the number of page faults
shows a distinct tendency to level off, however the
number of write and preloading transfers cqntinue to

rise. This shows two things:

(1) The success of the main memory control algorithm
in limiting the rate of page faults and hence
completely eliminating any form of thrashing

phenomena.

'“p(z);tngherhpaglno rates are.due to process swapplng
;- ,;rather than page faultlng.~ Thls is further
eilllustrated in the PDP. algorlthm runs when the -
‘number of preloadlng transfers are considered.
In the case of the PDP algorithms this is
_equiyalent to-the number of process swapéins.
Also'as.the effective oeiay times for'preloading
and write transfers are not so very sensitive to
the paglng rate the times for process swapping
,_under the WSR algorithm will not rise very much
as the paging rate increases. This ‘will be very
critical when a substantial number of processes
do very little work when they arrive in main
memory (in terms of CPU use) but still have to
pay the price of loading a large working set

before any work may be performed.

Throughput

'The throughput observed on EMAS during
the experiment runs is shown in Table 5.27. The
throughput is defined as the number of interactions
completing in unit time. This is also proportional
to the number of main menory residencies completing in
unit time, the ratio being determined by the scheduling
algorithmbas seen earlier (Table 4.1). The factor most

influencing the throughput is seen to be the algorithm

. Table 5.27 .

"Throughpﬁt'Ratés"

" ESP INTERACTION ' RESIDENCY RATIO
RUN COMPLETION RATE COMPLETION RATE RESIDENCY/INTERACTION

A 1-60 2-36 1-5
C 1-44 2-17 1-5
E 1-50 .2;25 1.5
G 1-25 1-94 1-6
I 1+36 2-03 1-5
K 1-21 1f80 1-5
B 1-23 2-60 21
D 1-12 242 2.2
F 1-10 " 2+33 2-1
H 0-97 2-12 22
J 1-02 2-15 2-1

C136

'uséd;(iaﬁie 5228) wifh éhé:WSR.algdrifhm’gibiﬁg a
;v: Eett§f'£hi6ﬁghpﬁt than the PDP algorithm by about 1/3
6f aﬁ inteféCtién é Secohd. 'Simi1Ar1y fhe giéatér. |
.thé'maiﬁ‘memory size the gréAter the tﬁroughpuf.

Both'of these major factoré - élgorithm and main memofy-
'sizeif alsb had very significant'effects updn‘the

- response times, but the effect of the number of channels
upon the reéponée timeé was much less than these two.
However,_in‘the case of a throughput measure, the effect
of having two channels rather than one is much more

significant.

Conclusion

The effect upon system performance of
the three factors‘chosen for thé ekperiment has been
quantified in terms of three common performance
measures,'and thg system phenomena contributing to
these performance levels investigated. The manner in
which the system functions can be summed up in terms of
the simple model'shéwn ianigure 5.14.V When processes
wake up, they enter the core queues and are held there
until allowed into main memory by the control valve (C).
The main characteristic used to discriminate between
processes is their estimated main memory requirement.

The rate at which the control (C) allows processes to

enter main memory is determined by the rate at which

VP20

Figure 5.14

v

CORE
QUEUES

K]-“:

<> "~ CONTROL
. VALVE

MAIN
MEMORY

ASLEEP - ' AWAKE

137

‘3processes 1eave ma1n memory (1f it is assumed that‘
work always exists in the core queues) Thls rate 1s: -
’therefore 1nf1uenced by maln memory 81ze rather than |
the number of channels avallable, and least by the
algorlthm used (Table 5.29). The rate at which
processes leave main memory will not be dependent upon
the totalAnumber of processes in the core queues
(though it will be affected by the ratio of the
numbers in the different core queues and hence the
halance of the workload between various classes of
.work).' When the system reaches a state such that
there 1is always'at least one process on each core
queue,vthen.the throughput of the system may be
considered to be‘totally-independent of the‘number

of processes active on it. vThe interference of
processes with each other.in such a state will be
reflected in the core queue wait times which will

dominate the response times.

When processes leave main memory they
either go back to sleep, or re-enter the core queues
to await a further quantum of time in main memory.

If the halance in the workload is assumed fixed, then
the ratio number of processes following each path

(d1 : d2) is determined by the category table
-scheduling. If the category limits are never reached

and each member of the multiprogramming set is

' Table 5.20

ANOVA Table'fbilthé:Average,Méin‘Memorvahroughput -

" -Residency Teiminations per Second

SOURCE

MEMORY

7/8 3/4
3/4 5/8
7/8 5/8

CHANNELS

AVERAGE

EFFECT

-0:23)
-0-19)
-0-41)

=0-:227

ALGORITHM 0°-163

HIGH ORDER

FACTORS

(ERROR ESTIMATE) -

TOTAL

SQUARES OF

- FREEDOM

0-115 2
0-51 1
0+027 1

- 004 7
0:20 11

(Mean

SUM OF - DEGREES MEAN
SQUARE

0-027

0-0003

2-17)

. MEAN SQUARE

RATIO

T7e6 HERKE

692 *k%X*

360 ***%

 #%%% SIGNIFICANT AT THE 99-9% level (F - test)

138

' §3a11owed to run to completlon (d O),'then'fhe system

essentlally runs in batch mode. Ihe more the é;tegdry
 11m1ts are.enfor¢ed.(1.e1 dl‘lncreases) then the
greaterlthé.level of timé—shaiing of fhe.main memory
reséuicé ‘However, each process gwap has a large

]paglng overhead assoc1ated with it (WSR - 593 mllllseconds,‘

v -PDP - 248 mllllseconds + page faultlng time) so

though time-sharing would be expected to lqwe:
'response time;.when‘it has.passéd a'certain_boint

it will have a detrimental effect on the-response,

as seen in the comparison between the WSR and ?DP
aigorithms;v Other wayé of improving the reépohse
time are to reduce thé time spent in page wait
(either By adding channels or possibly by preloading)
an& increésing the level of oyerlap of processes by
‘iﬁcreasing the multiprqgramming level by increasing
main memory sizg. There are two main differences

between the two algorithms employed in the experiment: -

(1) The placement of processes in categories which
 will influence the ratio d1 : d2 and also the
mean time a process is allowed to spend in the-

MPS .

(2) The‘paging delay times and hence again the time

any process spends in the MPS.

c139
‘_These‘differenceé.betWeén fhejaigorifhms and certain
other factors which mightvinfluehce the syétem
performance are further invéstigated in the next‘

chapter by means of a simulation model.

140
' Chapter 6 -

'In this chapter”éome of the factors which
influehcé the system's performance are-invéstigated
'fu?ther by means of a éihple.simulétion model. The
resuits from the EMAS peifqrmance experiment are
used to calibrate andiﬁalidaté thisvmodel?'fhus
gaining some confidence in.the predictions obtained

from it.

Structure of Model

The modei used is a.simple discrete event

simulation [Leroudier and Parent 1976] written in

IMP [Stéphensv1974]. As is the case with all models

it is an abstraction and a simplificatién of the real
system. In thié case;only fhe main-secondary mémory
subsystem is modelled in ény detail (Figure 6.1),

this subsystem having been identified in the previous
chapter as being crucial to the performance of the

'systemvas a whole.

- The choice of using simulation rather
than a variation 6n the queuing network models often
used in evaluations of this type of system was based
on a desire to reflect accurately the working of the.

Subsystem modelled. This implies that the model would

' SUBSYSTEM MODELLED

~* CORE

'QUEUES

'SUSPENDED

PRELO;

\DING

CATEGORY

OVERRUN

RUN

QUEUES

PAGE .

FAULTS

N <U

kq[al-vRw

W oo

'PROCESS -
REMOVAL

LIMIT

_X |

PROCESS
GOES TO
SLEEP

.. “have to include a representation of: -
Supervisor overhead.
Variability in user process behaviour.

'The effects of bulk and single transfer requests

to the secondary memory.
The existenée of blocking phenomenas3.

Though some of these phenomena have been included in
various mathematical queuing theory models [Baskett
et al.'1975; Baudet ef al. 1975, Potiexr 1977] no
technique yet exists which allows for the inclusion
of all of them in a single model. However, every
attempt has been made to keep the simulation itself
simple and hence tractable. It is also hoped that
the model will be extendable and be of use in the
evaluation of aspects of the system's behaviour not

covered here.

The model consists of three logical

units:

1) Simulation support.

iam
' '2) ‘Simulation of resident supervisor algorithms.

3) vPredictiQn‘bf hardware device and user

process characteristics.

vi) Similation Support

This'compénent takes care of all’fhe
facilities, associated with the simultaneity of
pfécess aétivity and timing of events, normally
provided by special purpose simulation languages
or packages [Dahl and Nygaard 1966, Dimsdale énd
Markowitz 1964]. All the synchronisation and timing
of evenfs in the simulation is controlled by a central
'time.queue which holds all events which are known to
be due, ordered in ascending time of oécurrence.
Primitives are provided by this component to take care

of the placing'ofrevents on the queue and removing

events from the top of it when they are about to
'happen'._,Thié component also manipulates the two
simulation‘timers. One of these is the simulation
clock holding the current~vaiue of simulated time, and
tﬁe other is the simulation alarm clock holding the
time at which the first event in the fime queue is

dﬁe toioccur. The simulation clock used

throughout had a preciéion of one miilisecond,

though no assumptions are made in any part of the

'"Qj;i43; a

IsimulatiOn about any'specific graﬁu1arity.of time.
MOnitoring of significant simulation variables and
the outputting of results is also handled in this

modﬁle. o

Simulation of Resident Supexvisor'Algorithms

This.component mimics certain of the
acti?ities of £he_EMAS supervisor and consists of a
kernel and a setAof'supervisor serviées. The services
control the operation of simulated hardware devices

and the allocation of a set of simulated resources.

Supervisor Kernel

As in the‘real system the kernel takes
care of dispafching supervisor services and fielding
'external! intefhupts by translating these into
requests on se;vices. All communication between
services takes place via a central parameter passing
area and all supervisdr services which have outstanding
requests awaiting them glso have an entry in the

kernelt's MAIN-Queue.

The kernel itself consists of an endless
loop (Figure 6.2) which continually checks whether an

.interupt is currently pending by comparing the values

,ﬁpigﬁfé?6;2_ 3f;;;

“[\

2

' 'NO

SUPV.
WORK ON
MAIN-Q

ADVANCE CLOCK
TO NEXT
EXTERNAL
EVENT

-

YES IDLE

CPU -
?

N

 NO

ACCOUNT
CPU TIME
TO PROCESS

XTERNA

NTERVA

SIMULATED KERNEL - FLOW DIAGRAM

. NO

STROBE
LIMIT
REACHE

NO

TERNAD

EVENT DUE

v

GET
EXTERNAL
' EVENT -

vV

ES

PROCESS ON

EVENT BEFORE

IDENTIFY
INTERNAL
EVENT

b

\ YES

V

CALL ,
- APPROPRIATE
SERVICE :

'ACCOUNT
CPU TIME
TO PROCESS

 of théwabuéimdlatidanimeis.‘ Aﬁy.outSfandiné inte@hpfs
found are tranéiéted:intbﬂreqﬁests'upén Approbriatev
services.-vThis cheék for inte&upts takes blace after
each sérVice ¢aii, thﬁsvmimicking the behaviour of the
‘real system in which supervisor services run
uninte&ﬁptably wifh intejfupts only being‘taken betweeh
calls on servi¢es; Whénkthexe are no outstanding
‘external‘events théAkernel main queue is iﬁspectedAto_
see if there are any cur;ent requests for supervisor
activity. If so, the.first service in the queue is
called, and a check for intefrupts again made. When
all sﬁpervisor work is complete for the present, then
a check is made to see if the current CPU process is
the idle process. If it is, then the simulation
clock is ;dvanced to the time of the next event, and"
. the next external interfupt is serviced. If a normal
user process hélds the CPU then a check‘is made to

see it is not Bverrunning any of its category CPU
iimits. If so, a request is placed for an

appropriate service. If not, then a cheék is made
.tovfind out if the CPU-process can advance the
simulation clock as far as ifs next process defined
event (pagefault, SVC, sleep or end of time slice -
tinternal inteﬁupts'); if this is possiblé then the
clock is moved to thié point and an appropriate

_ supervisor request iésued. If an external interfupt.

is due before the next user process generated event

. 7f*i145;ug.i 'f

' then the external inte&hptIWill‘téke'précedenCé, the
 user process advances the simulation clock as far as
'the»external event time, is credited with using that

_'CPU‘time, and thé”external‘inte@upt is serviced.

Supervisor Services

All process schedﬁliﬁg oﬁ.tﬁe simulated
system is based upon a category fable similar in
format to that used ih the real system but making. no
' reference to secondary memory allowances (Table 6.1)
as §econdafy memory.capacities are not included in
this simﬁlation. Each process has an associated entiy
in_the.process list. This entry holds such itemé.as.
the process'! currént category, working set size, main
memory allocation, CPU time obtained and proceés status.
The processes are'moved between schedulei queues by the
supervisor services mimickingvthe algorithms used in
the real system (Figure 6.3) and handling such

functions as:

a) Entry to the MPS - selection of processes
from the core queues as memory becomes
available and organising requests for

process loading transfers.

. .rable 6.1

' SIMULATION CATEGORY TABLE VALUES

'CAT = PRIORITY MAIN MEMORY RESIDENCY STROBE
, . - ALLOWANCE CPU TIME ~ INTERVAL
(PAGES) ~ (SECONDS) - (SECONDS)

E R S 50 .. 1.0 0-125

\Y)
[

20 05 _ 0-5

1 30 1-0 1.0

AW
[y

50 2.0 0-5
20 " 0-5 0-5
20 4-0 1.0
20 10:0 1-0

0 N o U
L N

Y

30 | 1-0 - 0°5
30 10-0 1-0
10 30 6:0 10
11 a0 - 10 1-0
12 40 100 1-0

13 40 12-0 - 1-0

T N T NN

14 50 1-0 1-0

15 50 " 100 : 1-0

NN

16

(8

50 10-0 1-0
17 60 2:0 0-5
18 60 7.0 0-5

19 60 | 5-0 1.0

W un W

20 62 2.0 0-25

DRUM -
HANDLER'

) bl
PAGE | = s : | -
ON - : A RUN '
DRUM\ g Jlas =
. : 7/
.7 PAGE V :
d ' . ’ T
[/s . COi' Ad] -
7/ N
- a ; 1*11\/11#A
" PAGE \\\ : , [’-
. ON N pace Y SLICING
' DISC /PAGE \FAULT :
< FAULT <3
[d ' ~CPU LIMIT
'CORE &\ Y _OVERRUN
: | LIMIT /Do N :
OVERRUN { L ONTRGL — PROCESS
- (4 0.K
V
= f]
DRUM -
HANDLER _
AL
PAGE ~
GONE =

q]

SIMULATION MODEL - SUPERVISOR SIMULATION

. .Select process
- . from CORE-Q

load into main
memory when

. adequate space

Put process on
RUN-Q when all

_transfers-in

complete

Choose process
from RUN-Q -
load to CPU

Calculate page
requiring

~writing back

When all
transfers
complete put
back on Core-@

Figure 6.35

[R

Put in sector-queue

< \REQUEYT according to priority
AN : . demand > preload >

write =

Construct channel
chain. Place
completion interupts
in Time-Q '

~~ _ / DRUM Identify processes

INTERUPT having transfers in
:] chain and notify
K them :

SIMULATION MODEL - DRUM HANDLER

146

'Lﬂ,b) Fielding replies to page-in requests and
placing the process in its run queue when it

 has completed all of its transfers.

' ¢) Handling page faults and organising ahy

transfer requests which may arise.

d) Allocation of the CPU_-‘choosing_a user
process from the run'queues or selecting
the idle process if no such user process:

is available.

e) Enforcing the category table resource limits
and selecting a new category when a process

is being removed from main memory.

f) Removal of a process'! pages from main memory
during strobing or process removal from

main memory.

g) Fielding replies from page-out requests and
placing the process back into the scheduler

queues when all such requests have completed.

The only hardware devices currently
simulated are the drum (secondary memory) and disc

(tertiary memory). The disc is not itself modelled in

°7fbany detall but is only represented by a delay Wlth

u‘_1ts handler (h) merely p1a01ng a page 1n reply in the

51mu1at10n tlme queue for the page here serv1ce (b)

'However,

the drum, wh1ch has been found to carry

con51derab1y more trafflc, and is held to be much

‘more critical, is.modelled in‘greater deta11 w1th

_three separate services which take care of:

._i)

3)

k)

The handling of drum transfer requests -
putting them into sector queues according

to an appropriate priority scheme.

The starting of channel chains, composea of
requests removed from the sector queues, when
the channel is found to be free, and p1a01ng
1nterupts in the tlme queue 51gn1fy1ng the

termination of demand page reads and

channel chains.

The fielding of interupts and firing off

-replies to the page here (b) and page

gone (g) services as necessary.

Each time a supervisor service is called

it advances the simulation clock by an amount

corresponding to the overhead imposed by that sexvice.

The overhead times consist of a constant, plus in some

cases an.anount wh1ch depends upon the nunber of pages
being processed (for drum requests, drum 1nteﬁhpts,
process entry to ‘and exit from main memory). In
addltlon to'this, at-the end of each burst of .
'superv1sor act1v1ty (i.e. Just before mountlng a
user process or 1d1e process to the CPU), a further
superv1sor overhead proportlonal to the precedlng
supervisor burst is added to represent supervisor
time spent,servicing items.such as communications,
secondary menory Capacity allocation, supervisor
calls etc. which are not explicitly included in this
simuiation. Each of the seruices hasvembodied‘in it,
calls on an event trace monitor mirroring the calls
made in the real system. It would be possible to
use such data to obtain performance measures on the
simulation, however this has only been used to check
thepcorrect Working of the supervisor algorithms
implemented in the simulation. In that area this

feature has proved invaluable.

Process/Device Behaviour Definition

'The third logical unit in the
simulation consists of a set of functions which are
called from various points in the supervisor
simulation and define the characteristics of hardware

devices and user processes existing in the simulation.

. ‘Hardware Devices

The behaviour of hardware devices

consists of a set of functions which handle:

1) Thelprediction of the completion time of a

| .demand.réad from disc. The fesulf is drawn
from a random number function with an
.appropfiate distributidn, the mean of which
is currently taken as 210 milliseconds
(the average of all disc page faults over all

the experimeﬁtal runs).

2) The sector correspohding to any particular
drum request.. The result here is dréwn
from a random number function evenly
distributed iﬁ the interval [1, maximum
number of sectors] so there is an equal

chance of each request going to any sector.

3) The latency time before the first drum
transfer in any drum éhannel chain. This
is drawn from a random number function
evenly distributed over the interval

[0, maximum latency time].

.'7”4)' The transfer tlme of any drum page

Th1s is currently a constant

Thé above totally define the characteristics of the

hardware‘devices,simulated.

Process Characteristics

‘The behav1our of a process is defined by
a set of functlons which predlct the type and timing
of internal events and the behaviour of process

working sets. These functions take care of:

1) Predicting the next significant internal
event which will occur for this process.
Currently, internal (process defined)
interupté may be éifher pagefaults or sleeps.
The event is chosen from a table containing
the event types in the correct proporfions
with a separate'table being neld for éach

category.

2) Whenever a pagefault occurs, the type of fault
(disc, drum or in main memory) is determined
from a table, holding the three fault types

in appropriate proportions.

s

_ThefusefHCPﬂltimeSWhiCh will pass before
 the next internal event. This is determined

-from'a lifetime'function for each category.

The llfetlme functlon relates the expéctedv

CPU tlme untll next event to the -number of

'pages currently used by the process

(i.e. any wasted preloadedbpages are not

' taken into account). The functions used

(Figure 6.4) are extracted from the event
trace dataiand-reflect the averagé.effect of
all the piocesses running.in each category.
This differs from the original lifetime
function [Belady and Keuhner 1969] (used

in many mathematical models of this class of
system) which relates'the.mean time between
pagefaults to the number of pages owned by

a programme. A system observes and reacts to
the. behaviour of a process which is a_collectlon
of co-operating programmes. The approach
taken here though necessarily crude is,
however, mére realistic than using a simple
(monotonic) lifetime function. The

variance within the lifetime functions is
fepresented by means of random number
function which defines the variance to be
added to or subtracted from the lifetime

function value as a fraction of the

©
O
3]
>
=] L
= ——
-
Lt
L
sy L
= = L8]
~4
et ol
=t T —
-]
) A ;
3/
dd
4 £ N
N ...#‘J rlm |me
M N B
T e s,
a. w..k e o
N =] [(ad
I WPPLY — II T
S = 5 o ~
b - Y ¥ i)
: T
A V. S
i mBN i 7
{ - 8 “ H
o =4 = f)
ol dod- - i g - £ Ial
|he A\ AL W
A1 o s q. 4 cY
T —— '~ e R
Mr .
(= =L, 1<
b WP
(Gale
ORI
3
P (IR EAY
N y
= B = & = D & 1
b | -4 A4 -y -y W’
O t Y A t =
{ COIN At L R - N
{TSANG DT I TAHLIIHIIOIN c 1Y%

Lo 11 9]
- PP
.\\\\h
Cand y, lll.l.llll.llll”
™ ST N
1 - Il\.\
<t - A
(@) G A
]
e ~
N
{1 r
L == =
th
Q>) ¢
O
[7; 7 Pt
N W N ..I(
L b)
b vK/ [O)
b &
2 e 2
: == N
e 0 =
: O .
VRN ~{.]
M H . L
13 (1} 1] () o b
(] Y /)
Ll = Y = M
e Coe. [
+t - 2 P oo
) ™)
A U
() (2}
Lae
P A} \ N
)
<G
i
4 —
RVIEPY
RN
D O O
) N =
focas { P SHIOA JIINOG L HNIL Od 1 HHSO I NYHIW

3
23

FH°
WAL
5
|
3] la)
3¢)
N |\\¥u.
S am
e T
W
e+] il Sy
V e -
.. o AT S
e <
jonn = 4 I ~
.
p\..
=K
TOEA
o [(»]
0.0
) f [&
08 @)
. a4
B
" i
R H
el 51 op)
N S % i) b
TS deed 107 [
1, = (W e ;
4 T TN .]
~ B <L v ~J
| R - ToWIn
1 2 n@ eH_|em
. = | O
i <L 4 |4
») " e L
= Q.lC
[BIL
(2} (my §x
N
Lt
JId1S
PR
T
AV © E
. G K N
¢) T T
P PR R N9]
-3¢ PHSTAF NN 1€ i C

O
in
— =
N
=
s ol .UT
o]
l[VI N
aN
\ —
P! e e L D)
P! R il
.z Sk
- %\\\(A
I.I\..\II = S
o -\..\%\V .ll\ll“v -4
-+ T 1emos,
, I A SEE N rammE s
- e T =<1 u
TH — B NN I W
- : a Ir..w =]
) = BN ~
[CHERRE L& Iy il
1 = SN
B . - N
- ollleleRs)
rm- & LEVEGED)!
]
SIS WZ
< W 1 e (OO W
J ol O
HEVEIVEN
HENEN{E)
1N
|_ -
ra . N
\ DIC] O AN 1T SNTIL NHD MES Facl

are oy

leh

o

=~ |

Y

T
I
3
17

(
Y

IRV AT I

:_,g);’, AR

R 4
5 ¢"’
F

QC
Tt AT

L m’
N

Y
X

3\

¥
8
17

N

AR

PR
AmYe)

g

71'
G 1 S
TEGORY

A AL AT AT Y

=
C
GATEGOR

ps)&
1C
....{.-
.~*-
—o—

P
2]
[¢3]
[
A" HE
™
29
-
H
15l
=9
Lai

gl

Hk

T
\¢3)

~

./

PN
J
O
0 2%
P
l\\l
X
i ll‘
\l‘\l\\l
’.]....l.f.-.’t\.i.
el
Bt nt P , | e
- 8¢
he o f =T .~ N T
IENW P O e o i MRy
iy =y b el —
. s PR
» SEENN Y =
LLLLL - E=HH3 14+ 1717 P
¥ =1
T S sy =P Sap g "N = .
o I O O A O e o e e | et
T T T T T T T Tttt 4+ + L L - - ood b T
4 el e == T ooy N
R T o T T e e T e e I S A 6 e o A O, LR B PN
——— O
]
A iy N
e o |
5= o §
ot
<
- ok 4 o
TR
-4
4
Y
r
‘Illl‘ "~
mm o 3% e o e n
4 - SRS - e g Y N Y A Y O
= R 2 0o)
= ;.
+ n_]
T J
Pi 10
E AN
= oY BN =9
Zh) at
N ISP P4~k A N o
= N
4||$ == 1
. .” Ty -~ —
£ J P Iy L - N
N N ” "
= I oN
)) h| =4
Y 4
. W £ | o~ N
J
aa { Il Y St by
D o -
& Smmis. 5
i It] f A = o
) & > Sy
A Bl _ln
s =S4
=)y —f(r}—-fx}
54
et N
3 L. \ﬂ
N A4
IT *
H i
8 o O O & D 5 & NS
O ila O N h g i —
o 1.0 Fo) A\ :
: } N N 4 {

P
]
.
L
Ly
W

-
&
ha
ol
4
ibd
Y]
2
i o
X
hd
X
-
p<
1)
-
-
»)
1)
i
-
)
)
23]

()]

=

152

current value i.e.

CPU to event = f(CAT, PAGES) + x* f(CAT, PAGES)

where x is the random number function (mean

‘representing variance in the CPU times.

The other functions in this component

‘represent movements within a process working set.

These define:

4)

5)

The core set size when the process enters

~main memory. This is defined as the number

of pages which will be prepaged and used.
This will always be equal to one when WSR
is not being used. The result is chosen

from a random number function with an

 appropriaté‘mean (different for each

‘category).

The number of pages which are‘preléaded and
not subsequéntly used. This is calcuiated
from a random number function which
represents the number of wasted preloaded
pages as a fraction of the number of

usefully preloaded pages.

0)

6)

7)

8)

153

The number of pages discarded at each strobe
cariied out on a process. For the'first
strobe in a?main memory residency this will
always be the number of wasted preloaded

pages (if WSR is being used) or zero

. (if PDP is being used). For subsequent

strobings during the residency this number
is a simple function of the number of pages

held by the process i.e.

Pages discarded during strobe i of residency =

(O - if i=1 and PDP employed
(Wasted Preloads if i=1 and WSR employed
(PAGES // 16 if i>1

The,number‘of'pages which are preloaded but
require no transfers (i.e. shared pages).

This is‘obfained from a random number function
giving the fraction of pages about to be

preloaded for this process which will be

shared.

The number of pages written to during any
residency and now requiring writing back to
the secondary memory. This is:determined
using a random number function

representing the fraction of useful pages

held by the process which will require

154
writing out.

Pages requiring writing out =

(x) * (number of useful pages held by process).

Using the Model

.In this investigation the workloads‘used
in the simulation runs consisted of a set of 50
' processeé which weré each.permanently assigned to
‘certain categories (Table 6.2). That each process
remained in'its chosen cétegory throughout the
-simulation was achieved by making all the category
transitions held in the' category table point to the
process current catégory. This-haintains a fixed
balance within the availabie‘workload, in an attempt
to make the balance of categories passing through main
memory reflect these proportions only.one cOore queue was
used.’ This avoids the priority scﬁeme;wﬂich normally
‘operates when choosing which process should be next to
enter the mulfiprogrammihg set. During the-simulation
the system is studied in a saturated state i.e. each
of the core queues which would have been used with the
priority scheme to aiways have at least one process on
them wheﬁ inspected; This means the bélance of category
priorities passing through main memory would always be

in the fixed ratio of the relative rates at which the

Table 6.2

PROCESS ASSIGNMENTS TO CATEGORIES IN SIMULATION

PROCESSES IN THIS CATEGORY

CATEGORY - WORKLOAD 1 " WORKLOAD 2
1 0 0
2 1 0
3 2 2
4 1 1
5 2 8
6 0 0
7 0 0
8 22 12
9 0 0

10 | 0 | 0

11 11 , 10

12 0 0

13 0 0

14 6 10

15 1 o]

16 0 0

17 3 4

18 0 1

19 0 0

[y
\V]

20

TOTAL 50 . 50

155

piiority queues'Were serviéed; This does not'reflect
the real system in which the balance of the load will
vary ovei timévcausing some que@es to be empty when.
dﬁe to bé serviced and thus disturbing the prioiity
balance. The single cére queue séiﬁtion was
considerédfto be the simplesf and best way of
attempting to keep the balance of categories fixed -
a modified priority scheme was attemﬁted'but did not
'prove as succéssful as the single queue version.

The balance of categoiies used in the.workloads was
based on observations hade in the experiment runs
(Tables 4.3, 4.4, 4.55 slightly modified»during the

calibration process. Two workloads are used:

- Workload 1 uses the lifetime functions obtained

from group 1 experiment runs.

Workload 2 uses the lifetime functions obtained

from group 2 experiment runs.

As part of the policy of keeping the
simulation simple, no attempt was made to mirror -
. exactly the often complex distributions found on the
system. All the distributions used in the random
'number functions (except where a uniform distribution
was being used)Awere modified normal distributions.

This modification consists of removing the tails of

156

‘the distribution beyond~one'standardldeviatiOn from
the mean, and piling up this part of the distribution

at the two cut-off points'(Figure 6.5).

In the area of secondary storage all
requésts‘fo the drum Were ordered in the sector queues
accordiﬁg td a priorify scheme which gévé demand page
reads priority ovér prepége.reads, which in turn had
priority over writes. However no éttempt was méde to
model secondary storage éapacity (i.e. contention for
drum space) or the fact that the Secondary memory
consistedvéf several drums with a priority scheme
. between them. The secondary memory méy be thought of
as one lérge arum. This causes writes to take slightly
longer and the other two forms of transfer to pass
through slightly quicker. It would have been possiblé_
to have modelled the prioiity scheme differentiating
between physical drums using a probability function
which would have associated a probability for each
request with each of the separatebdeviCes. However,
in an'attempt to keep fhe model simple, and because of
the léck'of_data in thié area, this was not done.

It would also have been possible to have modelled twin
channél operation by defining a probability function
which would have decided when overlapping double channel
transfers were possible, but similarly this was not

done. The only transfers involving the disc storage

Figure 6.5

MODIFIED NORMAL DISTRIBUTION ADOPTED

IN THE SIMULATION

. are for demand page reads, no disc writes are

simulated}

No Vixfual“memo;y addresses are
‘simulated in any way. A process working set is
represented merely By fhg number of pages.in it..
The time until the neXtAaddifion.to workiﬁg set being

défined by the lifetime function.

Performance Metrics

The performance metrics chosen for this

study are:
1) Mean CPU utilisations.
2) Mean Drum transfer rates.

No response times were applicable as no user sleep
state is modelled. The model was calibrated for the
two workloads using the data from experiment runs

K and L. ‘The workloéd was adjusted to make the mean
CPU time per residency,vmeah number of pagesrper
residency and percentage of pages preloaded, as well
as the main performance metrics, as near as possible
to the observed valués. The‘supervisor overheads

used for the various services was taken from an

' 158 .

“average over'those'fwb runs rather than taking |
different CPU overheads for each workload. So,
. the only differences between the two workloads were

those factors which defined user process behaviour.

Ih running the'model a period
equivalent to 100 :esidéhcieé'was allowed to remove
sfartAQp effeéts; Tﬁe moael was then run fof a
period of 1000 process residencies and the
performance metricé taken from an average ovér that
period. Ihis lbng pefiéd was necessary because of
the highly noﬁ-homogeneous behaviour of user processes.
Tests running the model over longer periods have shown
thét it haé.reached stability by this time i.e. no
change in the observed metrics resulted from longer

runs.

The confidence intervals in the

simulation were bbfained by a method suggested by

Conway [Leroudier and Parent 1976, Badel and

Zonzon 1976)] in which the simulation run is divided

info equal size blocks and the mean of each metric
calculated over these blocks. These means are then used
to estimate the variance of each metric, measured

over the whole simulation run.

159

Effect of Main Memory Size

The model was used to investigate the
'effect'of main memory available to‘user procesées upon
the chosen performance metrics. All other components
which_might affect the performance - workload,
'scheduling algorithms; secondary memory. - remained
fixed. The validity of the modei-may also be judged
.by‘ceﬁparing the observed values with those predicted

by it.

The predicted values of the CPU time
bbtained.by user processes (Figure 6.6a) always lie
within 6-+5% of the values seen‘during*the/petformance
experiment, though the model does tend to underestimate
this metric in the higher'memory size. This
»underestimation may be due to the ﬁix of categories in
the workload and the fact that the model contains no
representation of time spent in the kernel state
(this time is accredited to user proeesses in the
empirical measurements). Workload 1 (using Working
Set Replacement) is found to reach éaturation at around
240 user pages with very little seeming to be gained
(in terms of this.metric) by increasing the memory size
beyond this whilst keeping all other elements in the
system constant. Workload 2 (using Pure Demand Paging)

does not reach its saturation point so quickly and,

)

Q
on

Q
fann}
fa\l

fal]
Q.
o}
A

o)
O
oo |
(0]
feN]

il

(7
A

()

o

ﬁlm

()t

Q0 10 10

[alilm.

(X}

N

D

Fatn

=

NHDd Hdl

N

A

H.

Lld D

R

HJ

B

HS11

q

.0

SHSSHODdEL

160

" though the gap between the two workloads diminishes
as the main memory size increases, workload 2 always

seems to give less time in user state than workload 1.

The valﬁes produced by the model for
'tﬁeAtime in suﬁervisor state (Figure 6.6b) always

lie within 10% of the observed values. The workload 1
results being a constant underestimation and not'as.
good a fit as those obtained for workload 2 (the same
is true for the user CPU time); This may be partially

due to the fact that the overhead times associated

with each sﬁpervisor function were averaged across the
two Workloadsband that this.procedure has favoured
workload 2. 1In both cases the supervisor CPU time
shows a steady monétonic increase‘és the memory size

goes up.

The throughput on the secondary memoxry
as predicted by the model always lies within 12% of the
observed values for workload 1 (a consistent
overestimation) but is within 4% for workload 2. As
the main memory size goes up, the difference between
the workloads increases, with workload 1 (using WSR)
constantly achievingva higher throughput than workload 2.

(Figure 6.6cC).

40

o]
o)
n\|

fal

=N\
0

/|

0

.

NID3dd

DY

”

1

-
<7

ol

)

HNI

AL

ns.
H1D

STAdHEd

2254

S HD!

6b

3

6

2

QulLY

9

B3

=

J!

fo 0]

|
-
L.

i
a\l

fan)
=

o]
Q
W

Calmer]
N
oyl oY

i

//—-—"\\
OO
{hd
laa
NN
Q. Olw

Je=t O e

“'
QOO
ﬁ’

o)

6c
OC

6.
D

<

QUL «

T

B

(©]
e
M
foe!

N
NIVIE—NERT

Sy

i
NI YT AT

T

Fon Y
N d

VT

A= (bl a (e b d (Re Ra

ZENT
BAM

P
N

161

" WSR v PDP
\" ‘ _ ‘

The effect of the prbcess loading
algorithm upoh the éystem-under the two wofklbads'was
.investigated next. For workload 1, this meant runniﬁg
the system ﬁnder a pure demand paging scheme and using
working éet replAcemenf with workload 2. Certain
adjustments héd to be made to accommodate this. Underx
both, the ratio of page féults to sleeps in the NEXT
PROCESS EVENT function was modified to count all
useful preioading transfers as pagefaults - involving
increasing the relative number of pagefaults when
adjusting from WSR to PDP. Similarly the ratios of
different types of pagefaults had to be adjusted.

In bqfh cases the fraction of pagefaults ihvolving
pages which were alréady in main memory ('shared!
pagefaﬁlts) was always kept the same, and the relative
numbers of drum and disc faults modified to count all
useful preloading transfers*as drum pagefaults.
Suitabie functions were conéfruéted for workload 2 to
‘make the percentage of preloéded pages the same-as that
observed under WSR on workload 1 (69%, inclﬁdihg a .

preloading wastage set at 25%).

In terms of user CPU (Figure 6.7a) it
is noticeable that WSR always gives significantly better

performance in lower memory configurations, but that the

I3

i)

St
o

-4

L

<*
NG

o
m

4

7,
O

D
o |
- |

)
1+

. 2

1]

\

A1AY

\WA

"

Y

¥ e

b

M

162

gap between the two‘narrows.as the:meMOry'size-increasesf
In the case of workload 2 WSR always glves a betterx

: performance, however, for workload 1 WSR glves better
'performance up to a memory size of 240 pages, then the‘
_PDP,algorlthm appears to 'do better. The reason for the
relatively better performance’of PDP in the higher
memory_sizes may be due fo the fact that inntnese
configurations there are larger numbers of processes in
main'memory, and‘the number of transfers available when

a channel chain is started will also ‘be larger (hence
larger channel chains, maklng more eff1c1ent use of the
secondary‘memory). However, for_WSR runs on higher memory-
configurations, with more process swapping being carried
~out, more and more transfers will be wasted through
preloading wastage. The difference between the two
workloads (workload 1 processes carry out nore work -
use more CPU - per residency) tend to indicate that WSR
will be more of an advantage when processes use less

CPU per entry to main memory and hence cause.a higher
swap rate. The throughput rate on the drum is always

higher under WSR (Figure 6.7b).

Preloading Wastage

The effect of preloading wastage upon the
overall system performance ‘is demonstrated by varying

this parameter on a model of a configuration providing

<

<

1

=t O

O
|
Lt
15}
b

,"7

N

la)

=N

N

D

[+

i\

=d

UL

o s

: '_1.63'

112‘pages to the uSerfbrodesses énd:ﬁsing”workloadvl.'
“Thé_lifetimé fﬁnctions, aﬁd all fhe other process
behaviour definition'routines; dd not take wésted
‘preloaded pages iﬁto account, and thus’the process
behaviour will reﬁain fixed. HoWevei,bthe wasted
transfers induéed by these pages wi;l interfere with.
allléther proéesses on the system by ébaking up |
secondary.meméry-bandwidth which may have been put to

‘better use. It may be seen (Figure 6.8a) that even

when the wastage reaches 50% the user CPU time is still
much greater than that seen with a PDP algorithm; The
drum throughput shows a dramatic rise as the wastage
falls below 10% - fewer wasted transfers causing a
higher swapping rate - and a slight rise when the
wastage’risesvabove 30% - withvthe swapping rate
remaining relatively stable but more wasted transfers

causing the throughput to rise. (Figure 6.8b).

Secondary Memory Characteristics

The effects of changing certain of the
major secondary memory characteristics are next studied

using a simulated system of 112 user pages and both

workloads - workload 1 using WSR, workload 2 using PDP.
The effect of changing the drum latency time - whilst
holding the transfer time pei page, and all other

factors concerning the drﬁm, constant (i.e. 4 sectors) -

i

L_u
<X

.

74

amy
o

[

N

6]

(1))

gia!

n-f

=¥

0
2a]
24
Jia]

N

i

<

/

Ly

N

<t

el

uy

7

N

<

-8

é

@

Far kil od
e - o

r\

e
e}
Nt
Id o)
m
—

PN

oy

<

=
{r
("
{x

~Ln)

(!
la

{x
(r
{r

HOAC

<

<
Sh

R

e

"y
N

G

(INODH

S164

i$ shown'first., I£ ﬁay£bé seen fhaf the user CPU fime
increasés as the 1atén¢y time decreases (Figuie 6.9a)

'and that - the differenée between the two workloads increases;
as &he.laténcy incfeases,.thé 1a:§er 1atency fime |
affecfing the workload with PDP more than that with

- WSR. 'Similariy.wifh the arum throughput figures -
workload 1 showing a higher drum utilisation than

workload 2; even more so with longer latency times. (Fig 6.9b).

The effect of .changing the drum tr;nsfer
time per page (whilst holding all other factors
constant) is inVestigated next. It may be seen that the
effect of this upon the'two performance metrics is
quite dramatic (Figures 6.10a.and'6.10b) though the
difference between»the two workloads remains constant.

- This indicates that the difference between using a
process loading algorithm which involves bulk transfers
(e.g. -WSR) and one which spaces out these requests
through time (as does PDP) will be more dependent upon

the secbndary memory latency time than the transfer time.

The effect of speeding up the drum (by
increasing its rotational speed and assuming that all
other elements in the system connected with this -
channel-memory bandwidth - will be adequate to cbpe with
this) is studied next. In this, the ratio of transfer

time per page to average latency time is held constant

I¥a
I7a
S

(y’
[da

n
().
beed
=
N

=
am)
Y]
o

7
<

flal

=)

un

o)

OLO
2=

N0

qH

<

DL

o

b=
X,
A
7

—

P

Q

()

m

Mo

e
S
e ot

A
[hal

=~

b

[31)]

(= QN

=

W
oW

L

U1

' I§TTa A

Lo Tah 7

"

/.‘

Pl Zoy B, T £ 120
AA DI

~

)}

[¢ Ra

N}LT

Tt

V4

Vas 4 W\ 7' W ¥
UNTVHD

O

/

Q

n S

1y

LOELUUNDS)

.
7))
(o)
=
4
(D,
m
D |
[RN
P A ®)
o A
d pd () L |
MI
= U)_I>~ 1l
> s
¢ 1()
et
)
1 S »
— A
A y
e p
-~ L
T
1p) N
[y2] o)
T N E : D
T4 S 7 (DAL

nxie Bl T0a

“o-

NDS[)

an)
w
4]
' -)
»
e
= | D =
= | 5
-
B e q
o) [m]
X,
(N |[~~]
< [0 2]
7 4 >
A
g
SANES
m (1) =
L ™~
et
1.
Tl
N
\W 4 4 v 2
4 4 +
© G D
OV [o ¢ N lu
- . X
24
) J\Jmn
"~ L
a4
[{
c3
\ 1
[)
i

- 165

at.one to two. Aé_the.drum.speed increases, the user
CPU'tiﬁe confiﬁues:tb iise (Figu£e‘6.11a), until fhe
transfer speed.is around one millisecond'pér page,
wheh this improvement iﬁ'perfofmance.appears to tail
_off; This is probably because the effect of
‘supervisor.qverheads bégiﬁ'to‘dominate at this point
(Fiéure 6,11b) as the drum fransfer rate will continue
"to rise és the drum spéed increases (Figure 6.1lc).
It may also be”noted that the supervisor overhead
incurred.by.workload 2 increases much more'than that

of workload 1 as the drum speed'increASes.

Intelligent Secondary Memory Channels

i
The final feature investigated here by
the model is that of redﬁcing supervisor overheads in
the CPU by putting more processing power into the
secondary memory channels.t Such an intelligent
channel will take care of all sector queuing, the
starting of channel chgins and'the fielding of all
inteﬁupts. - It would take requests difect from the
pagefault handler and the services hahdling process
loading to‘and unloading from main memory, and send
replies to the page-gone and page-here services. The
amount of CPU normally acéredited to theée drum
handling services, both from the simulation and

observations, is shown in Figure 6.12, and it may be

)
y

i
o)
£h
]) =
L} T—H
M
+) ¢t
+ o
! {xi
- \\ 1,
- P
g
A
7
1]
a }
g =
, n —~
g {x {:
oy i
>
P
] b
D A
LA
o 0
1 @)
—— D \ d
pa . 7
P JTARI I D o 3
ol
) (In YA - D
r <
i Ol O 3 N
X
N X ol
(h 4
L QL O I
Pt LA 3 2
A ~ o “'
T) P-4
(2
\3\ 2 A
o
. . A
4 N \2& I
N
T D
"..ﬁ O i A =
V qi N N

7

NDS!)

oy
: 3)
& 4
© } ﬁ &.nl* - u
1. L1/ H
h 4 =
.))
-4 7 4 —
Pt /
A =
£
"] \\ ~~
'n}
r -
A ~ =
7 E
4
g
(1,
a b
P!
P {J Au
. o 5 — [«
1Y p . / T._
o X
A (Ll (< [§
» = e WL
\\ "
— 54 S
W [C O
=4 > 4
A f e
A 53]
- R T F =
V. M P
4)| TE)
. [A A s
' ; % ¥
\ M)
N y
D
& &> O 4 -
in N L fL b L
LB C i T Y [t N
P~ 3 Ja Ye r ¥t k' byt gt 1 roh |- LI 2 22 G Py
e Cy TSI 'S & 1 IR Ty AN P Y

)

11E

P

|9

HGC

1@

0.

I

d /
y
\\ Ar w
P A
4 .
o
o
4
J
A
3 ALY " hd - >
TR T]
RPN
1§ ¥ o
\
p
— b
T o
=
-y Y
7 =
S .V\.. i
s e’ Y > N
-
W ~ o i £
- =~ \
W = w
A :
N
- ran
P

s

DK

* N\

&

s

*1 PDPR

7
oy
A\

\J

-
A\

30

20

P g i g ¢ By

{1
ik

~ '_‘»r
gure Oiis
|
Rt
e 1P /,
10
[d ,,/
P]
®
s
(da >
+ / . rg
S /] -] *
= -1l oo : P
b i A
(1 ,//
A
[
(l‘
. 3
= 1 ya
= 3/ ‘ '/
] /
L /|
/V
A r
_ A1
R
b= B4
=] pd
=] al .~
1>
=
{ A
(l
"
E
—p p
i (A
(2. ' X, - £
7 s WORT I WORKLOAD T TTOBSERVY
FDP JRKITOAT T2 T TOBSERVED
l LIQT LI O 1 TMNILL N
-JZ—V\\. | WRIN L ' 5 4 IO 1
\ |
o N W K A J\ §
LA
i 1 BYe 150 ke 7a Hod
LY A ' g s (b Lo g e o A3 A",
s
!
=
MAIN IMEMORY [PAGES [AVA
R J-Eooﬁ‘é

166

noted that the simulation always lies within 7-5% of .
the ébseived valueé..>Ihe delay times inVolvéd in:

' handiihg these:réQuests in”the intelligent*cﬁanneis
a;e‘Held at the same vaiueé as were used for the
sﬁpervisor.overheads.in thé original model, only these
operatidns'can now pfoceed in parallel with other
operations on the1CPU,: The effects of adOpfing.SuCh
a scheme show a substantial increase in user CPU time
(Figure 6.;3a)-with the différence between the two
workloads again narrowing as the hain mémory size
increases. Similarly the drum throughput is
increased_(though no changes have been made in tﬁe
speeds of the drum) ﬁnd the.difference between the
drum throughput rates of the standard and intelligenf
channels increases as the main memory size increases
(Figure 6.13b). The rate of increase in superviéor
overhead as memory size increases is much less

however under the intelligent channel scheme than

under the standard one. (Figure 6.13c).

Conclusion

The model presented in this chapter has
been used to quantify the effect on overall system
performanée of changing certain factors which were not,
or could not, be included in the EMAS performance.

experiment. A certain degree of confidence in the

. V - ! A.
I T T T T T T
i | JE S 0 LT S O |
i A [_ Lt
; ; \ : i ot 5 ! - !
e) o m T
L _ 1 m i ! :
ra— Tt 1 i ;
M | -— ! i H :
]] T i
1 [i
NN RN
T s] !
4 Ty 3T Y it ~L dado LT ; [
f i et 14 AGONHN-NT YN ! _ I
NS W AR EERRRE T T T ! N
i { i _ “ _Omwhx_ i | _ T
T - ; i i
“ j Llﬁww it LI
T . | EaNENE T
: i i L [-y
—_ H ! M T L
; : L D7 e SR N T A]
1 ; _ ! | ! e i TNW i
1 i | N } |
] : ! P L I 0 T
: N KCE O : 1
i L] - W ; 4
; AN 4l] |
2 Ne!
SR 1 I 4 WO I N O T :
| v /] =
: { bt ol [N
: L ! ! 7 . i] B3 T T
! i ; i i ; o v i 02 _
\ ;) t i > \&/ . | ! [! ! i
-3 i i) i I i i | g - led
: ; i ! i I Pt e i]
I] _ i _ “ B A1 P 6 i
i] i T ¥ “ i i
: - N s “ TTH |
¢ 7] : Pl | = !
St : +— : v i A 1 ! !
i - e i i) T - _
: : ! ! ST 1 [i
- e $ } i "] 1 | v !
: g - b L m CTTT T
09 -1 I “ i ! _ B - b
p— | . H B e
A ' m = .) i i
" | A '
O _ i
U] w et m
: bl : i i T
: 1 : 1
By =N ! TR [i
fx] ﬂ Tl e _
| [;
h ! ! —
! _ | i OL
! |
-ty Vit y
—i . - i j i
M “ Ly _ . :
: L4 1 : [_ 1 i :
‘ _ | 1 i M N
N . N RSN NN T : R .
. - L A i : T ! : T T : “ et :
: - | S I N) I 7 i ; 1] b
: : - “ L il , —i T+ 7
| 4_,~ i - | i
! i : “ _ ~
o d !
! N .
H [)
} HIR R i i i .
U IR i | “ “ w
P H “ts\|.n.| w 1 u i i m ! : “ “ : : “ “ | U
. 3 - _ . ! LI tod i 1 I R o I i H i 1 H H T

()
b
{)
L)
D
(1A
0
fl
ed

41
o
]

s e

[{D]
D

m

2=
b

et
HH

o

(@]

N\

NAC

Av2S

I~

urle 6.1

Ii]

3
el

e\ |3l

m

0
Q)

e
Bt
)
18
o 3]
e

A £ ~
Q4 08¢~ d d
. - -1
I E
. S
2 oM |-
¢
v (o
LAV
N
o
o
= H
+
Vo |
(¥
S
=
5 - LX 7
\Pr -
! & gz
4’
ny 1
'’
” e
T
f

167

model's predictions has been gained through éompaiing
fhem‘with_empifical observations. The model may be
used_in yet further investigations of this nature,
but it would be better if it were used in
conjunction with a further series of empirical
experiments (the nature of these experiments may be -
dictated by results obtained from the model) so that
yet more confidence may be gained in the working of

the model and its predictions.

168
' Chapter 7

The approach adopted in this work has
been to combine the two main techniques.avaiiable to
aid the. evaluation 6f time-shared, virtual memory
aystéms - measurement and modellingt Either of these
techniéues-used'singly is sdbject to certain
limitations and it is only by attacking this problem
by using the complementary advantages of both
techniques that any real progress may be made in this

area..

Measurement alone is always limited to
the evaluation of existing,:functioning systems. 1In
the past this technique has beeﬁ criticised for
producing too much data thus obscuring the
relationship between changes in performance and their
causes. It is also possible in many cases that the
high variability in user workload between two
measured intervals may make it impossible to draw any
conclusions about the relationships between changes in
system structure and system performance._ The'approach
taken here attempts to eliminate this vaiiance in
workload by using a remote terminal emulator, and studies
the system using a proven experimental design and
analysis methods frequently adopted in other branches

of experimental science.

169

The trend towards incofporating mini-
computers in the mainframe of the time-shared
central processors, with access to most registers and
‘system tables, to handle such taéké as initial »
'programme loading and diagnostics, opens the way to
the possibility of using these to monitor System
behaviour using hybrid methods ;‘thus hopefully
reducing the Qverhead induced by the measurement
process. Similarly the widespread use of
mini-computers in the communication networks which
service iarge‘scale multi-access systems should
.facilitate.the greater use of remote terminal

emulation in future measurement experiments.

Modelling is, of course, not
restricted to producing results on existing systems
but may predict results for any proposed configuxation.
Hdwever, these models will oﬁly be Qf;use if they are
an accurate iefléction of the way in which the system
functions. The inability of some mbdelling_
techniques to handle real systems has in fact beén a
matter of somé controversy in the literéture
[Saltzér 1976, Chattergy 1976, Denning 1976].- Where
possible a model should be calibrated and validated
using measurements taken on a real system. Eor this
to be possible, and for models forﬁulafed using a

variety of modelling techniques to be tested, a

170

‘consistent body'of'meaSurement data must be aQailable;
For this‘bodyvof data to be consistent it must be
obtained undér éontrolled conditions i.e. all
vparameteis (worklo#d as weli as system configuration)
must be known and able to be reproduced. The
empirical techniques présented here provide a method

whereby such a body of data may be accumulated.

Not all factors which may impaét on
the system performance have been covered here -
there are too many to enumerate and quantify in such
a short time. The effect of varying the number and
type of users active on fhe syétem is, perhaps, the
most notable ommission (though the result of
effectivély varying the process characteristics is
inclﬁded at two levels). However,.there is no reason
why this factor should not be studied using the same
méthbdology,‘and the simulation model modified and
extended to include this factor. It must also be
noted‘that the standard workload, used as input to
the system during experiments, is itself a model of
user behaviour and should ideally be validated
against measurements of real user behaviour before

being put to such a use.

The ideal way therefore for any

process of system evaluation on an existing system

171

to brdcéed is for a,hodé1 of éysteh behavibur to be
inifially.derived from, énd to be validated with,
1measﬁrements from a set of controlledvekperiments
(Figure‘7.1).> Results frbm_this model may then be
qsed to suggest.new areas for experimentation and
thé model may be fﬁrthe; validated by résuits

. produced byvthese.. It is only by carrying out such
an exercise that any confidence can be gained in a
modelling technique and its applicability to §omp1ex
systems. These proven modelling techniques may then
be used with slightly more confidence in predicting
the behaviour of completely new systems and will
hopefully be validated by a similar empirical

experimentai programme when such systems are built.

Figure 7.1

PLAN
EMPIRICAL
EXPERIMENT

CARRY
ouT

EXPERIMENT"

CALIBRATE
AND
VALIDATE
MODEL

V

MODEL USED
FOR
PREDICTION

PREDICTIONS

| SUGGEST NEW

AREAS FOR

EXPERIMENTATIC

FORMULATE
NEW

MODEL

Y

N

172
~ Appendix

Analysis of Variance

The experimental design adopted in the
 EMAS pexformance experiment is a full 3 x 2 x 2
factorial experiment'[Cochran and Cox 1957] in which

' the following factors are varied:

FACTOR NUMBER OF LEVELS
A - Main Memory Size , | 3
B - Secondary Memory Channels 2
C - Scheduling Algorithm | 2

The results from each run in this experiment are

considered to be.in the form

y =M+ Xla + X2a2 + X3b + X4c

MAIN EFFECTS

4 X5ab + X6a2b + X7ac + X8a2c + ngc

SECOND ORDER EFFECTS

+ Xloabc + Xlla2bc + E

THIRD ORDER EFFECTS

173
Wherei

M - the overall mean - all factors present

at level.l.

E - an error term due to random experimental
errors (and sometimes environmental effects -
assumed to have been eliminated in this

vexperiment).

X coefficients - variance around the mean due to
the factors included in the experiment and
interactions between those factors (second

and third order effects).

a,b,c - experiment run having the main factors
(A, B or C respectively) present at level 2

(rather than level 1).

a?2 - experiment run having the main factor A

present at level 3.

The analysis of variance‘(ANOVA)'
technique [Yates 1937, Johnstone and Leone 1964,
Mendenhall 1968)] merely determines the valﬁes of the
X coefficients and thus quéntifies the effect of each

of the factors and their interactions. It is normal

174

‘to deduce the e£rof term from duplicétionbof certain
or all of the runs. However Since it was not possiblé
‘to7carry out any duplication the approach AdOpted
[Mendenhall 1968)] was to assﬁme that the higher order
effects are negligible and that the effect attribufed
to these may be used as an eétimate of the
experimentél errdr}, Theviatio.offthe sum of sqﬁaresA
of each main effect to the sum of squares of this error
term is then used in conjunction with an F - test to
decide whether or not the effect of each factor is
statistically significant, and if so then to what

degree.

175

US-NBS

:Biblidgrephy.‘

'tiet of abbrevietiensé

| ACM Association for Computihg Machinery
AFIPS American.federation of Infermation
S Processing Societies

CACM Communications ef the ACM

- CMG Computer Measurement Group

ERCC 'Edlnburgh Reglonal Computing Centre
FJCC Fall Joint Computer Centre.
IBM International Business Machines
1Ccs International Computing Symposium
IRE Institute'of Radio Engineers
IRIA Instltut de Recherche d'Informathue et

d'Automatique

IUCC Inter Universities Computer Conference
JACM Journal of the'ACM

MIT Massachusetts Institute of Technology
NCC National Compﬁter Conference

PER Performance Evaluation Review

SIGOPS ACM Special Interest Group on Operating Systems
sJcc Spring Joint Computer Conference

Un;ted States of America National Bureau of

Standards

176

.'Abrams, M. D and Cotton, I W ‘
' The Service Concept Applied to Computer Networks
US—NBS techn1ca1 note 880. 1975

Abrams, M.D. , Treu, S. and Blanc, R. P.
- Measurement of Computer Communications Networks
US-NBS technical note 908. 1976.

- Adams, J.C., Gelenbe, E. and Vlcard J.
' ' An Experimentally Validated Model of the Paging Drum
Proc. Slgmetrlcs - CMG VIII Washlngton Nov. 1977.

Adams, J.C. and Mlllard G.E.
Performance Measurements on the Edlnburgh Multl-Access
System
Proc. ICS - 75, Antibes, France. 1975.

Adams, J.C., Currie, W.S. and Gllmore, B.A.C.
The Structure and Uses of the Edlnburgh Remote
Terminal Emulator
Presented at IUCC 1977 (at University of East Anglla)
University of Edinburgh, Department of Computer Science
Internal Report CSR-12-77. '

'Alexander, M.T.
~ Organisation and Features of the Mlchlgan Terminal
‘System
AF1PS, FJCC vol. 41. 1972.

Alexander, M T.
‘The MTS Data Collection Fac111ty
Unlverslty of Mlchlgan Computing Centre Memo M294.
April 1975.

Aschenbrenner, R.A., Annist, L. and Natarjan, N.K.
The Neutron Monitor System
AFIPS, FJCC vol. 39. 1971.

Badel M. and Zonzon, M.
.Valldatlon d'un Modele a Processus de Diffusion pour
un Reseau de Files d'Attente General: Application
a. Cyclades
- IRIA research report 209. Dec. 1976.

Barber, E., Asphyell, A. and Dispen, A.
Benchmark Construction
Sigmetrics PER vol. 4 no. 4. 1975

Bard, Y.
An Analytical Model of CP-67 and VM/370
in Computer Architecture and Networks, Gelenbe and
Mahl, R. Editors. 1975.

. 177

Bard Y. : B '

. A Characterisation of VM/370 Workloads

in Modelling and Performance Evaluation of Computer
Systems, Beilner, H. and Gelenbe, E. Editors. 1977.

Bard, Y.
Conversatlons with the author. April 1977.

Bard Y.
Experimental Evaluatlon of System Performance
IBM Systems Journal vol. 12 no. 3. 1973.

Bard Y.
Performance Criteria and Measurement for a
Time-Sharing System
IBM Systems Journal vol. 10 no. 3. 1971.

Baskett, F., Chandy, M., Muntz, R. and Palacious, J.
Open, Closed and Mixed Networks of Queues with
Different Classes of Customers
JACM vol. 22. '1975.

Baudet, G., Boulender,.J. and Ferrie, J.
Analysis of a Drum with .Bulk Arrivals
Proc. ICS 1975, Antibes, France.

‘Belady, L.A. and Keuhner, C.J.
Dynamic ‘Space Sharing in Computer Systems
CACM vol. 12 no. 5. 1969.

Bobrow, Burchfiel, Murphy and Tomlinson
Tenex - A Paged Time Sharing System for the PDP- 10
CACM vol. 15 no. 3. 1972.

Boehm, B.W., Seven, M.J. and Watson, R.A.
Interactive Problem Solving - An Experimental Study
of Lockout Effects
AFIPS SJCC. 1971.

Bryan, G.E. _ :
Joss 20,000 Hours at a console, a Statistical Summary
" AFIPS, FJCC,vol 31. 1967.

Buchanan, I. and Duce, D.A.
' An Interactive Benchmark for a Multi-User
Mini-computer System
ACM Sigmetrics PER vol. 5 no. 4. 1976.

Buzen, J.P.
Computational Algorithms for Closed Queuing Netwo ks
with Exponential Servers
CACM vol. 16. 1973.

178

S‘Callaway, P.H. .
. Performance Measurement Tools for VM/370
IBM Systems Journal vol. 14 no. 2. 1975.

. Chang, W. :
Single Server Queuing Processes in Computing Systems
IBM Systems Journal vol. 9 no. 1. 1970.

Chattergy, R. -
‘Memory Management Modelllng
'CACM Forum vol. 19 no. 8. 1976.

Cochran,; W.G. and'Cox; G.M.
Experimental Designs -
Pub. Wiley' 1957.

Corbato, F.J., Merwin-Dogget, M. and Daley, R.C.
An Experimental Time Sharing System
AFIPS, SJCC vol. 21. 1962.

Corbato, F.J., Saltzer, J.H. and Clingen, C.T.
MULTICS - the First Seven Years
AAFIPS; SJCC vol. 40. 1972.

Corbato, F. J. and Vyssotsky, J.A.
Introductlon and Overview of the MULTICS System
AFIPS, FJCC vol. 27. 1965.

Cr1ssman, P.A.
The Compatible Time Sharlng System: A Programmes Guide
MIT press. 1965.

pDahl, O.J. and Nygaard, K.
Simula - an Algol Based Slmulatlon Language
CACM vol. 9 no. 9. 1966

Daley; R.C. and Neumann, P.G.
A general Purpose File System for Secondary Storage
AFIPS, FJCC vol. 27. 1965.

David, E.E. and Fano, R.M.
Some Thoughts about the Social Impllcatlons of
Accessible Computing
AFIPS, FJCC vol. 27. 1965.

Denning, P.J.
Memory Management Modelling
CACM Forum vol. 19 no. 8. 1976.

Denning, P.J.)
The Working Set Model for Program Behaviour
CACM vol. 11 no. 5. 1968.

179

.Dennihg, P.J. . : .
Thrashing:; Its Causes and Prevention
AFIPS, FJCC vol. 33. 1968.

Denning, P.J.
Virtual Memory ' :
Computing Surveys vol. 12 no. 3. 1970.

,Dennls, J.B.

Segmentatlon and the De31gn of Multlprogrammed Computer
- Systems
"~ JACM vol. 12 no. 4. 1965.

Digital Equipment Corporation
DEC System 10 Reference Manual
DEC - 10 - HGAD - D. 1972.

- Digital Equipment Corporation
Large Computer News vol. 1 no. 8. 1977.
Pub. by Digital Equipment Corporation.

Dimsdale, B. and Markowitz, H.M.
A Description of the Simscript Language
- IBM Systems Journal vol. 3 no. 1. 1964.

Emery, A.R. and Alexander, M.T.
A Performance Comparison of the Amdahl 470 V/6
and the IBM 370/168
University of Michigan Computing Centre. 1975.

Estrin, G., Muntz, R.R. and Uzgalis, R. C.
‘Modeling, Measurement and Computer Power
‘AFIPS, SJccC vol 40. 1972.

Fryex, R.E.
The Memory Bus Monitor - A New Device for Developing
Real Time Systems
Proc. NCC vol. 42. 1973.

Gelenbe, E.
On Approximate Computer System Models
JACM vol. 22. 1975.

Gelenbe, E. and Muntz, R.R. ‘
Probabilistic Models of Computer Systems - Part 1
Acta Informatica vol. 7. 1976.

Gibson, J.C.
The Gibson Mix
IBM internal publication TR 00 2043. 1970.

;Giimore;'B.'and McBride, B.
Stimulator Documentation
ERCC 1975

Glasser, E.L., Couleur, J.F. and Oliver, G.A.
-System Design of a Computer for Tlme-Sharlng
Applications :
~AFIPS, FJCC vol. 27. 1965.

-Gold M.M.
Time Sharing and Batch Proce551ng. An Experimental
Comparison of Their Values in a Problem Solv1ng '
Situation
CACM vol. 12 no. 5. 1969. .

Gonzales, C M. '
Performance Measurements of the Scheduler in the
PDP-10 TENEX Operating System
Case Western Reserve University, Ph.D. Thesis.
Jan. 1975. -

Gordon, W.J. and Newell,'G.F.
Closed Queuing Systems with Exponential Servers
Operational Research vol. 15 no. 2. 1967.

Greenbaum, H.J.
A simulator of Multiple Interactive Users to Drive
a Time Shared Computer System
Thesis MIT project MAC 1969 MAC-TR-54.

Grenader, U. and Tsao, R.F.
Quantitative Methods for Evaluating Computer System
Performance: A Review and Proposals
Statistical Computer Performance Evaluation. Academic
Press, Freiberger, W. Editor. 1972.

Holdsworth, D., Robinson, G.W. and Wells, M.
A Multi Terminal Benchmark _
Sof tware Practice and Experience vol. 3 no. 1. 1973.

IBM Data Processing Division
CP-67/CMS Version 3 System Descrlptlon Manual
IBM, White Plains, N.Y., Form GH20-0802-1. 1970.

IBM Data Processing Division
IBM Virtual Machine Facility/370
IBM, White Plains, N.Y., Form GC20-1800. 1972.

Jackson, J.R.
Jobshop-like Queuing Systems
Management Science vol. 10. 1963.

Jallcs, P.J.. ' ‘ : ' -
_Measurements of the PDP-lO TOPS 10 Operatlng System
‘Case Western Resexrve Unlvers1ty, Ph.D. Thesis.

. Jan. 1973. ' S ' :

Johnston, N.L. and Leone, F.C.
Statistics and Experimental Des1gn in Englneerlng
and Physical Sciences. Volumes I and II

Pub. Wiley. 1964.

Kilburn, T., Edwards, D.B.G., Lanigan, M.J. and

Sumner, F.H. ' . ‘
One-Level Storage System ° :
"IRE transactions on electronlc computers, EC-11 no.2.
1962.

Kosko, D. and Turner, R. :
. A Report on a Data Transaction Processing Eerrlment
" DEC internal report, 75 DK 378-440. Nov. 1975.

Lassettre, E R. and Scherxr, A.L.
Modelling the Performance of the OS/360 Time Sharing
'OEtlon
- in Statistical Computer Performance Evaluation,
Academlc Press, Frelberger, W. Editor. 1972.

Lehmann, M.M. and Gomma, H.
Interactive System Performance in a Simulated :
Environment
Imperial College London, Department of Computing and
Control Research, report 73/9. 1973.

Leruodier, J. and Parent, ‘M.
‘Discrete Event Simulation Modelling of Computer
Systems for Performance Evaluatlon
IRIA research report no. 177. 1976.

Lindsay, D.S.
A Hardware Monitor Study of a CDC KRONOS System
Proc. International Symposium on Computer Performance,
'Modelling, Measurement and Evaluation, Harvaxrd. 1976.

Lucas, H.C.
Pexformance Evaluation and Monitoring
Computing Surveys vol. 3 no. 3. 1971.

Lynch, W.
Letter to the Authoxr. 1975.

McKinney, J.M.
A Survey of Analytical Time Sharing Models
Computing Surveys vol. 1 no. 2. 1969.

182

Mendenhall W, ~ v
The De51gn and Ana1y31s of Experlments
Pub Wadsworth. 1968.-

Merrlll H. W B. -
Further Comments on Comparatlve Evaluatlon of Kiviat

Graphs
Sigmetrics PER vol. 4 no. 1. 1975.

Meyer, R.A. and Seawright, L.H.
, ‘A virtual Machine Time Sharing System
IBM Systems Journal vol. 9 no. 3. 1970.

Millard, G.E.
Conversations with the author. 1975.

Millard, G.E., Rees, D.J. and Whitfield, H.
The Standard EMAS Subsystem
Computer Journal vol. 18 no. 3. 1975.

Millexr, R.B.
Response Time in Man-Computer Conversat10na1
Transactions
AFIPS, FJCC vol. 33. .1968.

Moore, C.G.
Network Models for Large Scale Time-Sharing Systems
University of Michigan, Ann Arbor. Ph.D. Thesis. 1971.

Murphy ,
Storage Organisation and Management in TENEX

AFIPS, FJCC vol. 41. 1972.

Nutt, G.J.
Tutorial: Computer System Monitors
Computer. Nov. 1975.

Organic, E.I. , _
- The MULTICS System: An Examination of its Structure
MIT Press. 1972.

Ossanna, J.F., Mikus, L.E. and Dunten, S.D.
Communication and Input/Output Switching in a
Multiplexed Computing System
AFIPS, FJCC vol. 27. 1965.

Partridge, D.R. and Card, R.E.
Hardware Monitoring of Real Time Aerospace Computer
Systems)
Proc. International Symposium on Computer Performance,
Modelling, Measurement and Evaluation, Harvard. 1976.

183

f'Plnkerton, T.B. :
. Performance Measurement in a Time Sharlng System
- CACM vol. 12 no. 11. 1969.

/

Potler, D.
- An Analysis of Prepaglng Policies
Proc. ACM SIGOPS Conference, Purdue. 1977.

" Rees, D J. ’
The EMAS. Dlrector : _
- Computer Journal vol. 18 no. 2. 1975.

Ruud, R J.
" The CPM-X Systems Approach to Performance Measurement

AFIPS, FJCC vol. 41 pt. II. 1972.

Saltzer, J.H.
On _the Modelling of Paglng Algorlthms
CACM Forum vol. 19 no. 5. 1976.

Saltzer, J.H. and Gintell, W.
The Instrumentation of MULTICS*
CACM vol. 13 no. 8. 1970.

Scherr, A.L.
An Analysis of Tlme—Shared Computer Systems
: Progect_MAC MIT Ph.D. Thesis, MAC TR-18. 1965.

Schreiber, H. :
Hardware Measurement of CPU Activities
Modelling and Performance Evaluation of Computer.
Systems, Beilnexr, H. and Gelenbe, E. Editors. 1977.

Schroeder, M.D.
Performance of the GE 645 Assoc1ated Memory While
MULTICS is in Operation
Proc. Symposium on System Performance Evaluation,
Harvard. 1971.

Schwemm, R.E.
'~ Experience Gained in the Davelopment and Use of
TSS
AFIPS, SJCC vol. 40. 1972.

Sekino, A.
Performance Evaluatlon of Multiprogrammed Time-Shared
Computer Systems
Project MAC, MIT Ph.D. Thesis, MAC TR-103. 1972.

Shelness, N.H., Stephens, P.D. and Whitfield, H.
The Edinburgh Multi Access System, Scheduling and
Allocation Procedures in the Resident Supervisor
Springer Verlag lecture notes 1n Computer Sclence
no. 19. 1974.

184

:Stang, H and Southgate, P.
Performance Evaluation: of 3rd Generatlon Computlng

sttems
Datamation vol. 15. 1969.

Stasuik, J.
Terminal Driver Monitor '
University of Mlchlgan, Ann Arbor COmputlng Centre
1976. :

Stephens, P.D. :
The IMP Language and Compller
Computer Journal vol. 17 no. 3. 1974.

Stevens, B.A.
A Note on Figure of Merit
Sigmetrics PER vol. 4 no. 1. 1975.

Tesdata 1976
Load Generator System Users'! Manual
Tesdata System Corp McLean, Virginia. 1976.

Turner, R.
' Functional Spec1f1catlon for Script-II
Digital Equipment Corporation internal report. 1976.

Turner, R.)
Test Definition Language
Digital Equipment Corporation internal report. 1976.

Turner, R. and Kosco, D.
-.Some Observations from a Throughput Experiment on
the 11/70
Digital Equipment Corporatlon internal report
- 130-171-012-00. Jan. 1976.

Turner, R. and Levy, H.
Performance Evaluatlon of IAS on the PDP-11/70
Proc. International Symposium on Computer Performance,
Modelling, Measurement and Evaluation, Harvard. 1976.

University of Michigan Ann Arbor Computing Centre 1976
Specification for a Terminal Simulator DSR

Vyssotsky, V.A., Corbato, F.J. and Graham, R.M.
Structure of the MULTICS Supervisor
AFIPS, FJCC vol. 27. 1965.

Waite, W.M.
A Sampling Monitor for Applications Programs
Software Practice and Experience vol. 3. 1973.

) ‘1‘85: »,

 f'Watk1ns, S W and Abrams M. D. ‘
© 7 Survey of Remote Terminal Emulators' '
US-NBS specral publlcatlon 500-4. 1977.

i

Whltfleld H » '
Conversatlons w1th the author. - 1972.

Whltfleld H. and nght A.S.
' EMAS - The Edinburgh Multi-Access System
Computer Journal vol. 16 no. 4. 1973.

: nght A.s.
- The EMAS Archiving Program = S
Computer Journal vol. 18 no. 2. 1975.

Wilkes, M.V.
The Cambridge Multiple Access System in Retrospect
Software Practice and Experience vol. 3 no. 4. 1973.

Wright, L. and Burnette, W.A.
An Approach to Evaluating Time Sharing Systems.
MH - TSS a Case Study ,
Sigmetrics PER voel. 5 no. 1. 1976.

Yates, F.
The Design and Ana1y51s of Factorial Experiments
Commonwealth Bureau of Soils, technical communication
no. 35. 1937.

