
PERFORMANCE MEASUREMENT AND EVALUATION

OF TIME-SHARED OPERATING SYSTEMS

John Cohn Adams

Ph. D.

University of Edinburgh

1977

Page

Acknowledgements

Abstract

Chapter 1
	

1

Chapter 2
	

26

Chapter 3
	

66

Chapter 4
	

94

Chapter 5
	

114

Chapter 6
	

140

Chapter 7
	

168

Appendix
	 172

Bibliography 	 175

1

Acknowledgements

I would like to acknowledge the

contribution made to my understanding of this subject

by all the other workers in this field whom I have met

and discussed this topic with over the past six years,

unfortunately it would be impossible to name them all.

However, I would like to give special thanks to

Professor H. Whitfield for initially interesting me in

this area and to Professor S. Michaelson for his

continued encouragement throughout this work. I

should also like to thank all the people involved with

the EMAS project both in the Department of Computer

Science and the Edinburgh Regional Computing Centre,

especially Dr. G.J. Burns and Dr. A. McKendrick, of

the ERCC, whose enlightened approach to system

management allowed me to carry out the measurement

experiments; G.E. Millard, B.A.C. Gilmore and all the

ERCC staff involved in the definition of the

interactive benchmark and the construction of the

'stimulator', and P.D. Stephens of the ERCC for all his

help in topics concerning the EMAS resident supervisor.

Finally I would like to thank my supervisor Dr. D.J. Rees

without whose encouragement I should never have completed

this thesis, and my wife Judy who not only put up with

me, and my odd working hours, throughout this project

without complaint, but also made such an excellent

job of typing this thesis.

i:i

Abstract

Time-shared, virtual memory systems

are very complex and changes in their performance may

be caused by many factors - by variations in the

workload as well as changes in system configuration.

The evaluation of these systems can thus best be

carried out by linking results obtained from a

planned programme of measurements, taken on the

system, to some model of it. Such a programme of

measurements is best carried out under conditions in

which all the parameters likely to affect the system's

performance are reproducible, and under the control of

the experimenter. In order that this be possible the

workload used must be simulated and presented to the

target system through some form of automatic

workload driver.

A case study of such a methodology

is presented in which the system (in this. case the

Edinburgh Multi-Access System) is monitored during a

controlled experiment (designed and analysed using

standard techniques in common use in many other branches

of experimental science) and the results so obtained

used to calibrate and validate a simple simulation

model of the system. This model is then used in

further investigation of the effect of certain

system parameters upon the system performance. The

factors covered by this exercise include the effect

of varying: main memory size, process loading

algorithm and secondary memory characteristics.

I

CHAPTER 1

The class of computer systems addressed

in this thesis is that of general purpose, time-shared,

virtual memory systems. Within these, some form of

operating system controls the sharing of a set of

centralised computing resources - processors,

memories, file storage devices - amongst a large

community of users. Users interact with the system,

and their programmes running therein, via keyboard like

devices, rather than submitting their work on decks of

cards, or rolls of paper tape, to some job reception

desk whence they will receive their results sometime

later (as in a batch form of operation). These systems

also provide their users with some form of file

system in which programmes and data may be stored, a

large address space or virtual memory [Denning 19701

in which these programmes may be run and some

mechanism whereby any user's programmes and data may

be shared by, or protected from, other users. The range

of work the users may carry out on such systems will

not be restricted to any one particular language or

class of operation as is the case in certain special

purpose systems e.g. JOSS [Bryan 19671.

One of the major motivations for

introducing such a form of system in the early 1960's

- 	2

was a desire to make the use of computing more

convenient to the programmer. The best way of

achieving this would probably be to give each programmer

his own processor with a very large main memory,

however the cost of computer hardware at the time made

this impossible. The solution adopted was to share a

powerful mainframe with some form of virtual memory

amongst several users, and to divide the available

resources (CPU time, memory space, channel bandwidth)

in such a way as to give each user the illusion that

he had a whole, if less powerful, machine dedicated

only to him. Subsequent studies [Gold 1969] have

found that interactive use of computers is superior

to batch use in problem solving, and with the current

trend of dropping hardware costs relative to software

costs this more efficient use of programmers" time will

become more and more crucial.

The first time-sharing system, in which

each ready to run programme is allocated a small

quantum of CPU time in turn, was the Compatible Time

Sharing System [Corbato et al. 1962, Crisnian 19651

implemented at Massachusetts Institute of Technology

on an IBM 7094. This was also the first true general

purpose, multi-access system with users communicating

with the machine via keyboard terminals attached by

means of telegraph lines. A similar type of system -

3

the Cambridge Multiple-Access System [Wilkes 19731

was developed at Cambridge University on the TITAN

computer. These two previous systems did not however

provide virtual memory. The concept of virtual memory,

in which the address space used by the programmer is

split from that used by the hardware of the processor,.

also appeared in the early 1960's. This splitting of

the address spaces allows each programmer to use an

address space at least as large as, and often much

larger than, the one available in the physical main

memory of the machine. The two commonest mechanisms

employed in providing virtual memory, either

individually or together, are paging (introduced on

the ATLAS computer [Kilburn et al. 1962] at

Manchester University) and segmentation [Dennis 1965].

Systems which employ both time-sharing

and virtual memory include: The Michigan Terminal

System - MTS [Alexander 1972] produced at the

University of Michigan on an IBM 360/67;

the Multiplexed Information and Computing System -

MTJLTICS [Corbato and Vyssotsky 1965, Gla•er et al. 1965,

Vyssotsky et al. 1965, Daley and Neumann 1965,

Ossanna et al. 1965, Organick1972, Corbato et al. 1972]

developed at M.I.T. on a GEC 645; the TENEX system

[Bobrow et al. 1972, Murphy 19721 implemented by

BEN on a DEC PDP-10; CP/67 [Meyer and Seawright 1970,

4

IBM 19701 produced for the IBM 360/67 and VM/370

[IBM 19721 produced for the IBM 370 series, both at

the IBM Cambridge Scientific Centre.

The Edinburgh Multi-Access System

The system upon which most of the work

reported in this thesis is based is the Edinburgh

Multi-Access System - EMAS [Whitfield and Wight 1973 2

Rees 1975, Millard et al. 1975, Shelness et al. 1974,

Wight 19751. EMAS is amply described in the cited

references, but as it plays such a central role in the

succeeding work a brief description will be given here.

EMAS is a time-shared, virtual memory

operating system implemented at Edinburgh University

on an International Computers Ltd. System 4-75. The

ICL System 4-75 is a byte addressed, third generation

machine similar in structure and order code to the

IBM 360/67. It offers virtual memory by means of.

segmentation and paging, the address space being split

so as to present the programmer with 256 segments,

each of up to 16 pages, each page of 4096 bytes.

Figure 1.1 shows a typical EMAS hardware configuration

at the time of the work reported;

MAIN
MEMORY

IMMED IATI
STORE

ARCHIVE

COMMIJNIC.I
NETWORK

Figure 1 1

ACTIVE
STORE

ICL 4-75 CPU

< 1-M bytes (256
pages)

1-)'second core store

2 way interleaved

8 bytes access

1 or 2 drum channels
(860 K-bytes/sec)

3x2 M.byte drums
20 sec rotation
128 tracks
4 pages/track

75 M bytes
Replaceable
Disc Drives

2x350PtReplaceab le
Disc Drives
average arm movement
ô0msec
rotation 40 m sec
transfer rate 256
K-bytes/sec

2x1600 BPI tape drives
120 K bytes/sec

INTERACTIVE
COMMUNICATIONS
FRONT END PROCESSOR
(PDP 11/45)

TERMINAL
CONCENTRATORS
(PDP 11/10)

INTERACTIVE
USERS

TYPICAL EMAS HARDWARE CONFIGURATION

5

EMAS is written in the high level

language IMP [Stephens 19741 and provides a virtual

memory of 224 bytes for a number of simultaneous

processes (currently up to 63). The system maintains

an on-line storage hierarchy of three levels, pages

normally being held only at the outermost - immediate -

level (currently formed by a 700 M-byte disc .store)

and are moved to the inner levels - active memory

(currently formed from one or more two M-byte drum

stores) and main store (currently formed by up to one

M-byte of core storage) - as required. The user

programme has no direct access to any Input/Output

hardware, all management of the three tier storage

hierarchy being carried out by the system and all

unit record I/O being spooled. There is also an

automatic archiving system [Wight 1975] which allows

currently unused files to be removed from immediate

store to archive storage (magnetic tape) and restored

therefrom as required. A form of working set policy

[Denning 19681 is used in the management of main memory.

This is based on usage information obtained from

read/write markers associated with each physical core

page. Sharing is also supported at all levels of

the on-line storage hierarchy.

The operating system is itself

hierarchically ordered and message based. The logical

6

structure of the system is shown in Figure 1.2. All

communications between processes - both system and

user processes - take place via a central message

passing area. All supervisor processes (or services)

which have a message or request outstanding also have

an entry in one central queue - the MAIN-Q. One of the

major functions of the innermost level of the system -

the KERNEL is to remove entries from this queue and

call the appropriate service. When there are no

outstanding supervisor requests then the KERNEL will

load the currently selected user process to the CPU

where it will be allowed to remain for a maximum of a

time-slice (.100 milliseconds at present) at a time.

The other major function of the KERNEL is to field

inteji'upts and translate them into messages to the

appropriate handling service.

One level out from the KERNEL are the

supervisor services themselves. The services take

care of two major functions:

,
/

/

/

/

/
H >
H 0

H

H

USER

- 	1 - SUBj
Sys EM

- -. 	
IDIRJCTOR

UPERVISOR SERVICES

(deftice(

ha

KERNEL
(handling
\ / 	 terPupt

ndling

pervisor
rvice
spatching

RNT SUPERVISP/

\ 	(UNPAGED)

/ USER
7 PROCESSES

(PAGED.)

vi r tua\L
procesor

I suttoit

command
interpretation
file definition

interactive communications
file system maintenance

7

DEVICE HANDLING - The handling of all-paged.

I/O or interactive

• communications hardware

attached to the system,

scheduling transfer requests

and carrying out all

necessary. device control.

VIRTUAL PROCESSOR SUPPORT - The allocation

and management of the

available resources

(CPU time, main and active

storage space and channel

bandwidth) between competing

and the management

of process virtual memories.

The KERNEL and all supervisor services form the resident

supervisor which is always in main memory and runs

unpaged - using real addresses.

At the next level out run the user

processes. Each user process consists of two levels:

the paged supervisor, or DIRECTOR [Rees 19751, and

the normal user process. DIRECTOR takes up 31 segments

of the 255 segment virtual memory available to each user

process (segment 0 is never used because of a

8

peculiarity of the hardware). It handles all interactive

communications messages, maintains the file system

and takes care of the allocation of immediate

(tertiary) memory space. The resident supervisor

knows nothing of files but merely handles page

transfers. It is one of the functions of the

DIRECTOR to associate virtual memory addresses with

files resident in immediate memory when requested to

do so by a user (the files are not permanently

mapped into the virtual address space as is the case

in MULTICS). Most of the DIRECTOR code and data space

(interactive communications buffers and file indices)

is shared amongst all user processes. The only

unshared segment is the master segment which contains

all local variables and tables for that process, in

particular, one page of this segment - the master page -

holds various tables and variables used by the

resident supervisor and must always be in main memory

when the process is on the CPU. Those segments which

constitute DIRECTOR may not be accessed by normal user

programmes (though the DIRECTOR may access the full

virtual memory space) and those entries in the process'

segment table are masked out when normal user

programmes are running.

Running within the user level of the

process is the subsystem [Millard et al. 19751 which

9

takes care of user command interpretation., file

definition, linking and loading and logical I/O

mapping. At a level out from this run the users'

programmes. All commands on the system are merely

external routines which have an entry in one of the

user's libraries. A user may add new commands by

compiling new external routines and making an entry

in an appropriate library, or may call existing

commands as routines from within his programme.

Certain 	 processes' run at

the level of user processes and perform such functions

as I/O spooling, batch scheduling, archive storage

control' and the running of engineering test

programmes. Though these are essentially user

processes they have certain privileges and are

scheduled slightly differently by the supervisor.

Scheduling Within Resident Supervisor

The majority of the work presented later

will concentrate upon the workings of the resident

supervisor and the scheduling algorithms implemented

therein [Shelness et al. 1974. An overview of these

algorithms is now given.

All process scheduling within the system

10

As table driven from an entity known as the category

table. Each process known to the system has assigned

to it a category dependent upon the recent past

history of that process. Associated with each category

are the following attributes:

A set of resource constraints governing the

amount of CPU time, main memory and active

memory which each process of that category

may consume during a period of main memory

residency.

A priority level.

A time interval (known as the strobe time)

associated with calculation of the

wox!king set.

A set of transitions to other categories

dependent upon the actions of the process

during its next main memory residency.

During the period covered EMAS had 20 different

categories. The values contained in this category

table are shown in Table 1.1. All normal user

processes start in category 1 and thereafter use

categories 5-20. Categories 2-4 are reserved for the

NCY2 	NCY3 	NCY4

15 11 14

2 2 2

3 2 3

4 3 4

6. 5 5

7 6 5

7 8 .5

9 5 8

10 6 8

10 7 8

12 8 11

13 9 11

RESIDENCY STROBE
CPU INTERVAL
(SECS) (SECS)

1 0125

O5 0.5

1 1

2 05

05 05

4 1

10 1

11 05

10 1.

6 1

1 1

10 1

Table 1.1

EMAS Category Table (EMAS Version 802)

CAT PRIORITY CORE A.S. A.S. NCY1
ALLOWANCE MAX MIN
(PAGES) (PAGES) (PAGES)

1 1 50 80 50 17

2 1 20 80 50 3

3 1 30 80 50 4

.4 1 50 80 50 4

5 1 20 80 50 8

6 4 20 80 50 10

7 4 20 80 40 10

8 1 30 80 50 11

9 4 30 80 50 13

10 4 30. 80 45 13

11 2 40 80 50 14

12 4 40 80 50 16

(CONTINUED)

CAT PRIORITY CORE 	A.S. A.S. 	NCY1 NCY2 	NCY3 NCY4 RESIDENCY STROBE
ALLOWANCE MAX MIN CPU INTERVAL
(PAGES) 	(PAGES) (PAGES) (SECS) (SECS)

13 5 40 	80 50 	16 13 10 11 12 1

14 2 50 	80 50 	17 15 11 14 1 1

15 4 50 	80 50 	19 16 12 14 10 1

16 5 50 	80 50 	19 16 13 14 10 1

17 3 60 	128 64 	20 18 14 17 2 05

18 4 60 	128 64 	20 19 15 17 7 0 5

19 5 60 	128 64 	20 19 16 17 5 1

20 3 62 	128 64 	20 25

AS.

18 15 17 2 0-25- -

A.S. MAX Maximum Active Store Allowance

A.S. MIN Minimum Active Store Allowance

NCY1 Next Category if Process runs out of main memory

NCY2 Next Category if Process exceeds CPU time allowance

NCY3 As NCY2 but has used less than the next smallest main memory allowance

NCY4 Next Category if Process goes to sleep

Figure 1.3 shows the major states and

supervisor queues involved in the handling of processes

on the system. Each process known to the system exists

in one of three states:

ASLEEP 	. - awaiting user input or the

freeing of output buffer

space i.e. in terminal wait

AWAKE • 	- awaiting allocation of some

system resource

PROCESSING - on CPU

Each process will also be resident at up to a certain

level in the storage hierarchy: immediate, active

or central memory. Thus a process which wakes up

resident only in immediate memory is first queued in

the. Active Store Queue to await an allocation of

active storage. When an allocation of active store

has been given (which at this point involves no

identification of the particular physical active store

pages to be used) the process will be placed in one of

five core queues according to its current category's

priority. These core queues are currently serviced

EMAS PROCESS MANAGEMENT MODEL Figure 1.3

AWAITS AWAITS
USER SYSTEM
INPUT RESOURCE

PROCESSING

D
I
S
C

D
R
U
M

C
0
R
E

according to a priority scheme which assigns the

probability of being selected as 39/64, 17/64,

5/64, 1/32, 1/64 respectively to the five priority

levels. Once selected from its core queue the process

is then held until it can be given its full allocation

of main memory (again defined by its current category).

Only when its full allocation of main memory is

available may the process enter the multiprogramming

set, and the contents of its current working set

(which will always consist of at least the master

page) will then be transferred (preloaded) into main

memory. The system thus carries out a scheme of

working set replacement. When all of the process'

working set is resident in mainxnemory (and not

before) the process is placed on one of two run queues

to compete for allocation of the CPU. All processes

belonging to categories in the lower three priority

levels go onto run queue one, whilst all processes

in categories of the top two priority levels are

placed on run queue two. The run queues are

serviced according to an absolute priority scheme

in which run queue one is always serviced first, and

if any process from run queue two is holding the CPU

when a process arrives for run queue one, then the

arriving run queue one process will preempt the CPU

process, even if that process has not completed a

time-slice. Only processes which are ready to take

the process may page fault and add a page to its

working set from either immediate store, active store

or main memory. (for shared pages or new pages

'created' in main memory). The process may only, hold

the CPU for a maximum of a time-slice at a time.

Whenever a process has consumed a

full strobe interval of CPU time during any residency,

then its working set is recalculated and those pages

no longer used are released. A process will remain

resident in main memory until it goes to sleep or

overruns one of its category allowances. It will then

be rescheduled (perhaps into a new category) have its

working set recalculated and be removed from main

memory before being placed on an appropriate

scheduler queue if it is still awake. Whenever a

process is to be removed from active to immediate

store it is first queued in the active take queue

which essentially allocates channel capacity amongst

those processes wishing to take this route (which

involves pages being transferred first to main memory

from active memory, then from main memory to immediate

memory). A form of working set algorithm is also

applied to the management of a process active storage

allocation, the algorithm currently selects pages

dependent upon usage over the last four main memory

.. 14

residencies. There are four algorithms which may be

used, the choice being dependent upon the current

level of loading on the active store.

There are certain additions and

modifications to the basic scheme. Any process which

remains asleep for a long period of time

(eight minutes) is removed from active store. Any

process which remains awake for a certain interval

(two minutes of real time) without interacting with

the console is deemed no longer to be an interactive

process and is placed in the penalty box. This means

that when it comes to the front of a non empty core

queue it will be returned to the rear of that queue

several times (currently eight) before being removed.

Whenever the process interacts with the user its

penalty box status is removed. As it is extremely

improbable that all the members of the

multiprogramming set will be using their full main

memory allowance at any given instant, and to take

account of sharing, the main memory is over allocated

by a certain amount. Another modification concerns

preloading. If it is found that the next candidate for

entry to the multiprogramming set cannot be given its

full main memory allowance (even with the over

allocation scheme) but that there is adequate physical

space to allow that process working set to be

15

preloaded (and still leave some free space for use by

other members of the MPS) this 'partial' preload is

allowed to proceed. If the partial preload has

completed and pages still have not been released to

make up the process' full allocation, but its current

allocation is greater than its working set size and a

reasonable number of physical core pages are still

free, then this process is allowed to enter the run

queues, and acts as a normal MPS process which has a

small main memory allocation. However, if this

process' allocation is only equal to its working set

size, or the number of physical core pages free is

less than a safety limit, then it is suspended until

adequate pages are released to give it its full

allocation. There is, of course, a maximum of one

partially preloaded process in the MPS at any instant,

and this process has priority for the allocation of

any freed central memory space. If a process

overruns its current main memory allowance without

ever having been strobed (i.e. having its working set

recalculated) and, more than half its current pages

were brought in by preloading, then there is a chance

that the wrong pages were preloaded. To overcome

this an EXTRA-STROBE (working set recalculation) is

carried out. at this point and if sufficient pages are

removed, this process is allowed to continue.

io

To allow the available active storage

space to be used fully, one of the replaceable

disc drives is used as though it were a drum i.e.

its storage capacity space forms part of the active

storage. Allocation of active storage pages is

handled so that all the drums are considered as

though they formed a linear array of pages with

this replaceable disc (known as the pseudo-drum)

forming the higher addresses. The lowest free page

available is always allocated first, thus the drums

which correspond to the lowest active store addresses

are kept as fully used as possible.

The main memory management scheme only

allows a process to enter the MPS if it is estimated

that there is sufficient central memory available for

it to run efficiently. All decisions on the

management of that process' allocation are then

reached with consideration being taken only of that

process' behaviour, and any process which is found to

have working set larger than its current main memory

allocation is removed. This completely removes the

phenomenon of thrashing [Denning 19681 which is due

to an overcommitment of main memory. It also provides

for the time-sharing of main memory by placing limits

on the amount of time any process may remain in main

memory. The algorithms are designed to favour highly

17

interactive processes by time-sharing the main memory

and by the priority scheme which gives more residency

periods to processes which require smaller amounts of

main memory and very little CPU time.

Quantitative Evaluation Techniques

Performance evaluation is generally

carried out for three major reasons (Lucas 1971J:

The selection of a new system - choosing

from a set of possible alternatives which

system best meets a user's performance/cost

specifications.

The projection of the performance of a new

system - estimating the performance of an

as yet un-implemented system i.e. as an aid

in the system design process.

The forcasting of the impact of possible

changes in an existing system - changing

a hardware or software component or the

user load applied to the system i.e. system

tuning or balancing.

Quantitative evaluation has grown

18

increasingly more difficult with the evolution of

time-shared, virtual memory systems. The systems

themselves have grown more complex and the range of

programmes executed upon them has become wider and

more varied.

In the earliest days of computing a

simple figure of merit was considered adequate as a

means of judging the performance of any system.

In the case of 'scientific systems the figure of

merit would often be based on the raw power of the

central •processing unit. This number could be

obtained by calculating the execution time of a certain

instruction stream, the mix of various classes of

instruction included wouldrepresent a rough

characterisation of the anticipated workload, or be

drawn from some generally accepted mix [Gibson 19701.

Meanwhile for more 'commercially orientated' data

processing systems the figure of merit would be

based upon some measure of I/O throughput capacity.

As early operating systems were

introduced their batch type of operation was often

judged in terms of the time taken to process a chosen

collection of jobs or benchmark. The benchmark would

again form a characterisation of the expected workloads

in terms of the proportions of the types of jobs it

19

contained. Other simple one figure measures such as

job throughput rate or processor utilisation level

were also often used.

However, as the architecture of the

systems has become increasingly more complex it has

become clear that no single figure of merit, or even

any small number of figures of merit, will be adequate

to describe a system's performance [Grenader and

Tsao 1972], though several continue to be proposed

[Merill 1975,, Steven 19751.

Within an interactive system the only

pure performance metric which every user applies is

that of response time. Response time is loosely

defined as the time a user has to wait, from the

moment he gives a command to the system, until the

moment at which he receives an answer: The distribution

of these responses will be of interest rather than

simply the mean or median response. Studies

[Miller 19681 of human reactions in the

man-computer interaction cycle have shown that if a

response is greater than two seconds then the user

begins to lose concentration, and if a response is

greater than 15 seconds then the use of the computer

ceases to be interactive.

20

No performance measure upon such

systems is meaningful unless accompanied by some

measures of the outstanding load upon the system

e.g. processor utilisations, memory utilisations,

number of simultaneous users, mean working set sizes,

mean time between page faults, supervisor overheads.

The problem of evaluation is not just to attach some

figure of merit to a system or particular system

configuration, but to attribute the observed

performance to the various contributing factors and

identify those factors which are most significant.

Performance and load measures will vary from system

to system and will depend upon the problem being

addressed. Suitable metrics for time-shared virtual

memory systems will be introduced later.

The two major aids to evaluation are

modelling and measurement.

Modelling

Because of the inherent complexity of the

systems under consideration the technique of modelling

which produces a much simplified, abstract

representation of the system has an obvious appeal.

Indeed, no evaluation of a system could proceed

without at least the existence of some conceptual

21

model of how the system functions. Figure 1.3 could be

regarded as such a conceptual model of the working of

the EMAS process scheduling scheme. The value of a

model may not only lie in the quantitative results

it produces, but the actual formulation of the model

itself, involving as it necessarily does the stripping

away of a mass of detail, may reveal the major

components of the system-and their interrelationships.

Quantitative iriodelling techniques fall

under two headings:

Simulation models

Mathematical models.

Simulation models • [Leroudier and

Parent 19761 consist of computer programmes, often

written in a special purpose simulation language

[Dahl and Nygaard 19661, or using a simulation

package written in a high level language

[Dimsdale and Markowitz 1964]. The representation

of the system being modelled is embedded in the

simulation programme. Using this technique it is

possible to model all the major mechanisms involved

in computer systems e.g. parallelism, variance in user

programme characteristics, storage capacities, various

servicing disciplines and various service time

22

characteristics. However, simulation is often

criticised for being expensive and time consuming

in both development and run times. The. time and

expense involved in certain cases may, in fact,

make this approach impractical. However when this

is not the case simulation does provide the ability

to model whatever phenomenon may be considered

significant.

Mathematical modelling mainly centres

round probabilistic models and more particularly

queueing theory. There has been considerable work

in this area. The research has evolved from the

study of single queues [McKinney ioa, Chang 19701

to the study of various networks of queues

[Jackson 1963, Gordon and Newell 1967, Buzen 1973,

Gelenbe 1975, Baskett et al. 1975, Gelenbe 19761.

Following from the classic analysis of CTSS

(Scherr 19651 there have been attempts to apply such

models to the evaluation of time-shared, virtual

memory systems viz MTS [Moore 1971) and MULTICS

[Sekino 19721 but it is only recently that such models

have been put to practical use with the development

and extensive use of a model of IBM's VM/370 system

[Bard 1975, Bard 1976, Bard 19771. Queueing network

models still suffer from several limitations: there

is no direct way to model storage, service disciplines

23.

and service time distributions are still limited.

However, they may provide a useful means of studying

the gross performance characteristics of such systems.

Measurement

- The other major aid to evaluation is

that of measurement and experimentation on existing

systems i.e. the empirical approach. The only way

in which significant system phenomena may be identified

in the first instant is through a procedure of

empirical evaluation. Measurements from such a

process may then be used in the essential step of

validating current models and suggesting changes in

future models of the system.

Several drawbacks to such an approach

do exist. It is often difficult to obtain accurate

measurements of particular phenomena; of interest

due to inadequate system instrumentation, or due to

gross interference caused by the measurement

technique. The opposite extreme is also often a

problem - the sheer mass of data produced by some

measurement tools masking the trends the experimenter

is searching for. Measurements taken upon an

operational system will depend crucially upon the

characteristics of the workload existing at the time

24

the measurements were taken. These changes in user

workload which take place from day to day, or hour to

hour and minute to minute, often prevent the

acquisition of a consistent set of meas.irements, from

which changes in performance may be attributed to

specific system changes. A rigorous approach to

system measurement is one of the necessary paths to

be followed when attempting to discover just how

such systems do function.

The ideal approach to evaluation

is an iterative one with results from a controlled

set of experiments being used in a model which,

when validated and calibrated by this data, wIll

suggest new areas for experimentation.

The main aim of the .work carried out

in this thesis is to increase, in some way, the

understanding of the mechanisms at work in

time-shared, virtual memory systems, and to be able

to quantify the impact of any major component upon

the overall system performance. This is carried out

by the evaluation of the structure (and design) of

one particular system (EMAS). The evaluation is

thus empirically based and concentrates upon the

techniques and aids necessary in such an exercise.

The monitoring tools required are discussed first

(Chapter 2). Then the elements necessary to carry out

a programme of controlled experimentation on such

,systems are described and the execution of such an

experiment is reported (Chapter 3). The results from

this experiment are presented in detail

(Chapters 4 and 5) and used in the calibration and

validation of a simple simulation model. This model

is then used in the further investigation of

certain of the parameters affecting system performance

(Chapter 6). Considering the three main areas of

application of performance evaluation given at the

beginning of this section, the techniques used and

the approach taken fall under heading 3 - system

tuning and balancing. However the results obtained

and the techniques applied will also be of use in

the other two areas.

26

Chapter' 2

A comprehensive and effective set of

monitoring tools is an essential aid in any empirical

investigation of a system's performance. An ideal

monitoring aid would be flexible and have the ability

to obtain all required data (and only that data

required) with absolute accuracy. This ideal

monitor would not, of course, 'interfere with the

system in any way either by adding to the

supervisor overhead, or changing the behaviour of

user processes. Unfortunately, in the case of'

time-shared, virtual memory (T.S.V.M.) systems such

a monitor does not exist. In this chapter available

monitoring techniques are reviewed, and those

implemented in the EMAS resident supervisor are

described.

Before any measure is carried out a

clear view must exist of exactly what data is required

and what use this data is to be put. Any possible

interference caused by the method of measurement must

also be known and taken into account. Data may be

obtained upon the performance of the system itself or

the behaviour of the user processes running thereon,

i.e. the workload. The distinction between workload

and' pure performance measures is often blurred, and

27

the two are always related. Typical system performance

results are often presented on:-

Response time distributions.

Utilisation levels of major system

components (e.g. CPU's, memories, channels,

supervisor modules).

C) Distributions of queue lengths or wait times

for various system resources.

Typical measures of user process characteristics

include:- nclude:-

a) Distribution of the time the processes spend

in terminal wait state (e.g. think times).

Space requirements of processes at various

levels of storage hierarchy.

Patterns of access within virtual memories

(e.g. size distribution and contents of

working sets, distribution of times between

page faults).

28

Distribution of .resources required by each

interaction.

Distribution of interaction classes.

In the following, the terms "target system" or

"host system" will be used to mean the system being

measured or experimented with.

Monitoring Techniques

A comprehensive review of current

monitoring techniques exists in the literature

[Nutt 19751, so only a brief summary of the advantages

and disadvantages found in the major classes of

monitor is given here.

Three classes of monitor exist:-

Hardware Monitors

Software Monitors

Hybrid Monitors

29

1) Hardware Monitors

A Hardware Monitor consists of a

distinct electrical device (generally with-its own

clock and storage media) connected to the target

system's hardware by a set of one or more probes.

Signals received via these probes are interpreted

by the device and data is then analysed on line,

or logged (usually to magnetic tape) for later off

line analysis. The probes used are usually of such

a design that they cause no significant perturbations

in the circuitry to which they are attached. This

gives the hardware monitor its great advantage over

all other techniques: it is essentially

non-interfering, inducing no supervisor overhead

or change of user behaviour in the target system.

The accuracy obtained by this method is also usually-

dependent upon the precision of clock incorporated

in the monitor, and not upon the clock facilities in

the host mainframe.

The complexity of such devices varies

greatly from the extremely simple - monitoring the

existence of a single signal (e.g. a trace chart

recorder connected to a processor's idle light

[Stang 19691) - to the other end of the spectrum

where a fully interactive mini computer is

30

employed - with special computational as well as

interface hardware, capable of simultaneously

recording and analysing a very large number of

interrelated events [Aschenbrenner et al. 1971].

Such monitors have been found very

useful in obtaining summary data such as

utilisation levels and degree of overlap on certain

hardware components (e.g. CPU's and channels) or

execution counts on the instructions in the

mainframe's repettoire [Schreiber 19761. However,

it is often impossible to establish relationships

between the data obtained and the causes for such

levels of performance - user behaviour patterns and

software scheduling algorithms. On more complex

mainframes the correct placement of probes will

become more difficult, and skilled engineering

guidance will be required. The mainframe will also

probably have to be taken out of service for a time

whilst such a device is attached. With the

introduction of mainframes using more and more

Large Scale Integration. (i.e. machines such as the

Amdahl 470/V6) the placement of probes will become

more and more difficult, and certain data may no

longer be available for collection by this method.

The characteristics of hardware

31

monitors would seem to make them best suited as an

aid where the pure performance of the hardware only

is of interest e.g. counts of different types of

instructions, degree of overlap of certain: hardware

devices. In the case of T.S.V.M. systems, where

the complex characteristics of the user workload

must always be taken into account, the use of pure

hardware monitors alone is of limited value. They

have, however, been applied to some time-shared

systems such as CDC's Kronos system [Lindsay 19761.

The advantages of hardware monitors seem better

suited to special purpose systems where a regular,

well understood workload exists [Partridge and

Card 19761 in such an environment they may even be

used as an aid in programme optimisation

[Fryer 19731. Several types of hardware monitor

are now commercially available.

2) Software Monitors

Software monitors provide 'an extremely

flexible and popular method of obtaining performance

data. They will, however, always have the great

drawback that they necessarily interfere with the

target system. They form part of the system, occupy

memory space for code and data, consume processor power

in execution and often use channel capacity in storing

32

data. The accuracy of any software monitor will usually

be limited by the resolution of the hardware clock

available on the mainframe.

A great range of software monitors have

been implemented on various systems (indeed nearly every

system contains a software monitor in terms of the

accounting log). As a broad classification they can

be divided according to their recording discipline

into:

a) Sampling Monitors

and

Continuous-recording or event monitors

and, according to their storage discipline (i.e. the

way in which data is disposed of once it has been

collected), into:

Accumulating monitors

and

Tracing monitors.

a) Sampling Monitors

Sampling monitors are perhaps amongst

the simplest to implement, and should impose the least

33

overhead on the target system. As the name indicates,

the monitor is only activated at certain times, either

at regular intervals using some form of alarm clock

interupt, or by the occurrence, of some system event,

such as the idle process gaining the CPU. The metering

routine thus activated will then obtain the required

data and save it. This routine is normally distinct

from the rest of the target system and so has the

advantages of modularity (easy removal or modification).

Also, as they are not active all, the time they should

impose less of an overhead than other monitors. The

argument against using a sampling technique is that

the accuracy will depend upon the number of samples

and the randomness of the sample. Very few sampling

monitors obtain their samples at truly system

independent random intervals, so the result could be

affected by periodic or other phenomena within the

target system. This could have a very significant

effect upon the accuracy of the results obtained.

These monitors have been used in the investigation of

code utilisation by sampling the programme counter

[Waite 1973], and are often used to obtain approximate

distributions of system queue lengths [Jalics 1973,

Gonzales 19751.

Event monitors are usually formed by

a set of software probes scattered throughout the

operating system and activated for periods of time by

the setting of a group of trigger variables. These

probes are necessarily scattered throughout the system,

and thus not easily modified. Although data is only

gathered when a trigger is set and the flow of control

passes a probe, the trigger must be tested every time

the probe is encountered, which means there will be a

certain overhead even when no data is being collected.

Event monitors, however, do not suffer from any

suspicions about sampling accuracy, their accuracy

only being limited by the resolution of the clock and

the speed of the probe.

Storage Discipline

Monitors may be further classified

according to their actions on obtaining a particular

item of data. They may integrate this item into a

table in main memory holding a summary of the

performance data (accumulating monitors). This involves

carrying out a small amount of processing on each

item of data when it is collected. The accumulated

table is then output (perhaps involving further

35 .

processing) regularly after comparatively long periods

or on demand. The alternative is to do no on line

processing on collection of data, but to output each

item immediately, usually with some form of time stamp

(tracing monitors). The accumulating method will tend

to use more CPU time and code space - .though a tracing

monitor will use CPU in organising buffers and

transfers. The table space used by an accumulating

monitor tends to be a constant overhead, whilst

tracing monitors may claim buffers from a system

wide pool only for the duration of the measurements.

Tracing monitors will consume channel capacity, often

require exclusive use of a device (e.g. tape drive)

and frequently produce great volumes of output.

However, the data so produced allows greater

flexibility as it may be analysed in several different

ways to produce a variety of results.

Software monitoring is certainly the

most popular method of measurement. It involves no

acquisition of additional hardware, and can usually be

implemented easily by the system programmers. They

also have the advantage of being able to observe the

cause and effect of certain transient events which a

hardware monitor cannot. Software monitors are normally

highly system dependent, though the principles

involved may be transportable between different

36

operating systems, the monitor itself rarely can.

3) Hybrid Monitors

The logical merging of both hardware

and software monitoring techniques results in the most

recent monitoring method - that of the hybrid monitor.

In this method a complex hardware monitor, usually

consisting of a mini computer with associated probes,

is however also attached to the host system as a

normal device via some form of channel [Rudd 1972,

Aschenbrenner et al. 1971, Estrin et al. 1972,

Schwenuu 19721. This allows software monitoring aids

implemented within the system to communicate with the

mini computer. Thus whilst the majority of the data

may be obtained in a non interfering fashion by the

hardware monitor part, further information, allowing

this data to be associated with various phenomen

within the system, may be produced by the software

aids communicating via the channel. This method does,

of course, suffer from drawbacks of both hardware and

software monitors: engineering knowledge is required

for the correct placement of the probes; the host

system may have to be taken out of service for the

attachment of such a device; the software aids will

necessarily interfere with the system; much knowledge

of the software structure will be necessary for the

37

gathering of the correct data in the most efficient

fashion. However, hybrid monitoring should still

reduce overhead, and with many of the large mainframes

now being produced, such as the DEC KL 10 and KL20

systems [DEC 19771, containing mini computers with

access to most of the important registers and parts

of the memory (i.e. a possible built-in hybrid

monitor), it would seem to indicate that greater use

could be made of hybrid monitors in the future.

One class of system performance

measurement devices not covered here is that of the

remote terminal emulator. This will be considered in

the next chapter.

Virtual Memory System Monitors

The majority Of instrumentation

reported on these systems is carried out in software.

Very little use appears to have been made of hardware

monitors, almost certainly because of this difficulty

in establishing relationships between observed

performance and the factors which contribute to it.

One reported case of what may be classified as hybrid

monitoring does take place on MULTICS [Saltzer and

Gintell 19701 with a PDP-8 being used with special

access to the host systems tables and some registers.

38

However, as the data rate between the monitor and the

host system is very low (less than 60 words/second)

the full potential of this technique has probably not

been realised.

As the behaviour of user processes is

of such interest an ideal monitor would be one which

allows the collection of data on process behaviour as

well as the manner in which processes are handled by

the scheduling algorithms. An event trace monitor

which records an event each time a process moves

significantly either within its virtual memory or

within the system queues would appear to be one

solution. The Data Collection Facility

[Alexander 1975, Pinkerton 19691 on MTS is such a

monitor. Implemented within the code of the resident

supervisor the DCF allows the tracing of a set of

events of one or more specified processes. The type of

events which may be recorded allow data to be obtained

on:

i) The queueing and removal from queues of

processes-by the supervisor.

ii) The changing of status of monitored processes.

39

All aspects of page movement, in and out of

physical core, and the migration of pages

to the outer levels of the hierarchy.

The claiming and freeing of pages in

virtual memory.

All inteiupts generated on the system.

The opening of files by processes.

The starting and stopping of user tasks

on the system.

A very comprehensive set of possible data items. As

MTS is written in machine code some difficulty is

involved in adding new events [Alexander 19771. The

vast amounts of data collected during any run are

recorded on magnetic tape for off-line analysis. A

data reduction programme - the Data Analysis Programme -

is also available to aid the investigator in the

interpretation of the data. A very sophisticated

set of monitoring aids have been built into

IBM's VM/370 system •[Callaway 19751, allowing both

sampling and event trace monitoring at various levels

of detail in the system. This also has an associated

Statistics Generating Programme to aid analysis.

40

The VIM/370 performance monitor may be bought by

customers running VM/370 to assist in tuning and

balancing of their system.

MULTICS contains a variety of

monitoring facilities to aid in the measurement of

process characteristics [Saltzer and Gintell 19701.

Surprisingly, however, no generalised event trace

monitor has ever been implemented, although a comment

is passed in the Saltzer and Gintell paper that one

would have been useful. The monitoring aids which

have been implemented include:

A sampling monitor accumulating

distributions of the segments used.

A count which may be kept of all missing

pages and segments encountered whilst

executing a particular segment.

A missing-page trace of the last 256

page faults produced by the monitored

process (held in a ring buffer).

For the gathering of raw performance statistics on

the system (i.e. utilisation levels or queue length

distributions) MULTICS makes use of the Graphic

41

Display Monitor which is essentially a PDP-8 with

access to certain of the host mainframe's registers

and tables. This continuously displays all system

'queues and arrays, showing execution time profiles

for supervisor modules. A count and total CPU time

expanded in certain supervisor modules is also

accumulated.

A very sophisticated event monitor has

been implemented on the TENEX system [Gonzales 1975:1

for the gathering of system performance data. This

allows the definition of events to be monitored and

the switching off and on of data collection to be

carried out from a normal user process via a set of

special supervisor calls and a password scheme. The

probçs which collect the data and the tables in which

the data is initially accumulated are part of the

resident supervisor, though the data may be transferred

to the user proces' file when desired. This contrasts

with the considerably more rigid data storage regime

of the MTS-DCF which, though obtaining a more general

and more accurate range of data (1 millisecond clock

in the TENEX scheme to 'a 13 microsecond clock on MTS),

can only be controlled from the operators console,

and always outputs to a specified magnetic tape drive.

An event monitor which accumulates distributions of

various queues and timings has been implemented on the

42

TOPS-10 system [Jalics 19731. Both of these event

accumulating monitors are used more for obtaining

performance statistics on the system than on the

behaviour of the user processes.

Monitoring Aids on EMAS

The purpose of the monitoring aids

implemented in EMAS was to give performance data on

the system which would be of use in investigations of

the architecture and algorithms employed within the

system, as well as .being of use in tuning the system in

practical use. No hardware or hybrid monitoring aids

were available, and all monitoring has been carried out

by software techniques. The clock used throughout was

that provided on the ICL 4-75 mainframe with a precision

of 65 microseconds. As EMAS was designed as an

extensible system on which the user has the capability

of writing his own subsystem or even file system, all the

performance monitoring aids considered here were

implemented within the innermost level, i.e. that of

the resident supervisor. Various other monitoring aids

have, of course, been implemented at other levels

[Adams and Millard 1975]. The entire system is written

in the high level language IMP. The advantages

accrued from this fact cannot be over-emphasised.

Apart from allowing for the easy implementation of

43

software probes, the modularity of the system allows

great flexibility and ease of change, with only the

module which has actually been changed needing to be

recompiled. The compilation and linking of a

modified system, taking in the order of fifteen

minutes (real time), is extremely fast for a system of

this complexity and size.

CPU Time Utilisation

A profile of CPU time utilisation was

considered to be vital to such an investigation. The

vector of CPU time spent in major states (SUPERVISOR)

USER, IDLE) would, of course, be one of many important

parameters to be considered. Furthermore, as the

supervisor activity within this class of system is

inherently higher than that in some other forms of

systems, it would be of interest to know in which

modules of supervisor code most of the CPU time was

being spent.

The message based nature of communication

between EMAS supervisor services lends itself well to the

monitoring of these variables. A simple change in the.

kernel where requests are unstacked from the Main-Q

allows a count to be kept of the number of calls made

on each service, and the total CPU time expinded

44

between calling the service and returning from it. As

the services run uninterruptably this gives a very

precise account of where, within the resident supervisor,

time is being spent.

Whenever the supervisor finds that

there is no user process in central memory in a ready

to run state and no supervisor requests outstanding

which can be fulfilled i.e. that the system is idle,

then process = 0 - the idle process - is loaded onto

the CPU, and executes an idle loop until some form of

work arrives. This process is essentially handled

as a normal user process, and has the CPU time it

consumes recorded in its entry in the process list.

Thus an accurate measure is obtained of the time the

CPU is idle. A further split is made in the idle time

between time in which no user processes are active

(i.e. no useriprocess is awake - true idle time)

and time in which user processes are active, but for

some reason none could proceed - blocked time. The

CPU time not being used by the supervisor or the idle

process within an interval is that consumed by user

processes and unaccounted kernel time. In normal

analysis this time which is the time spent

translating intei'upts to requests on appropriate

service and on handling the MAIN-Q itself, is

attributed to user processes. The time consumed

The £m?rnjof he data arrays involved takes place at

systems close-down or on the setting of a system test

flag from the operators console. First in raw form

showing the total number of entries to each service,

the total time spent in that service (in seconds) and

the average time per call (in microseconds) [Table 2.11.

To minimise the insignificant entries nothing is

printed on services which use less than one second

during a session. The data is also processed on-line

to obtain the CPU breakdown between major states

(Supervisor, Idle, User) and the breakdown by

function within the supervisor [Table 2.21. A

machine readable form of this data exists in the,

system main log should further processing be required.

Interference caused by this measurement

consists of:

Two arrays of 256 bytes each to hold the data.

A small number of extra instructions in the

KERNEL to gather the data.

METERIN INFORMATION
. 	 . 	 . 	

. 	 fIDLE .TIME(SECS)
. 	. 	 . 	.

 . 56 .'

!'NO 	WORN AVAILABLE 	TIME(SECS)
.. 	•Table .2.i SERVICE COUNT TIME MUSECS

3 22 0 . 0
H . 186• 0 0

. 	 •. 	:. 6 54264 .• 	133
7

2450
1905 2 1049 SAMPLE OF RAW CPU

8
.

19145 30 1566
MONITOR DATA. 	. 	 9 1.3556 12 885

10 .16088 0 0
H 	ii .1658 0 0

14 262 0 0
26 131 0 0
27 131 	. 0 . 	0
28 1310 0 0
29 40145 179 4458
36. . 	 800 1 1250
38 ..
39 2 0 0
40 3 0 :0
41 14016 22 1569
42 79 o C)
50 75204 54 718
52 15 o o
54 8544 3 35
55. 9310 35 3759 57 63812 30 470
58 102497 79 770
59 49339 62 1257
63 6551 70 10685
64 47567 20 420
65 803 0 0
66 624 . 	1 1602
67 2065 0 0
62 7 0 0
69 1048 1 954
70 14938 13 870
73 272 0 0
77 256 2 7812
73 8282 6 724
79 279 0 0
80 14400 17 1130
81 103 0 C)
82 79 Q 0
84 262 7 26717
85 249 0 0
86 3606 3 331
88 2 0 C)
89 442 0 0
95 16 0 o
96 148 0 0
97 37 0 0

100 1 0 0
102 40 0 0
103 692 0 0
108 22 0 0
109 13567 7 515
110 9131 6 657
112 131 0 0
115 11 c 0
117 3729 2 536
119 9327 8 . 814
120 188 0 0
128 131 0 C)

. 	Table 	2.2 	•• 	..: 	 I . . 	-

SAMPLE OF PROCESSED CPU DATA

TOTAL........
TIME TIME

ITIME 	IN 	USER 	PROCESSES 1024 	. 54,3

;SUPERVISOR 	TIME 	CHARGED 740 39.25

svC ' S 	. 128 	. 6.79

PAGETURNS 612 . 	 32,46

UNCHARGED 	SUPERVISOR 	TIME 65 3.44

IDLE 	TIME 56 2,97

NO 	WORK 0 0,00

BLOCKED 56 2.97

TOTAL 	TIME 1885 100.00

ANALYSIS 	OF 	SUPERVIsOR' TIME

VIRTUAL 	MEMORY 	SUPPORT
DRUM 	TRANSFERS 	(6,29) 312 16.55

DISC 	TRANSFERS 	(7,3,32-41) . 55 2.91

CORE 	LOADING(S5-63-9,ó34) 266 14.11

DRUM 	LOADING 	(73-30) 	• 25 1.32

PROCESS 	CONTROL 	(70) 13 0.68

TIME 	SLICING 	(50) 54 2.86

FILE 	SySTE1 	(54,85-6) 6 0.31

SVC 	PARAMETER 	PASSING 	(57) 30 1.59

COMMUNICATIONS 	(9,100-19) 35 1,35

POLLING 	DEVS 	(14,27-8,69,72) 1 0.05

MAGTAPES 	. (5,15-23) 22 1.1ô

MISC, C, 0.00

46

Some code to printout the data,

approximately 1500 bytes to produce the raw

form, and a further 2000 bytes for on-line

processing. There is no reason why the second

routine should not be moved out of the resident

supervisor and modified slightly to analyse

the raw data from the main accounting log.

The CPU time consumed by this method will,

of course, vary depending upon the level of

supervisor activity, but has been measured to

be less than 5% of total time during normal

use. The time consumed in dumping the

accumulated data and the analysis is of the

order of half of a second.

This aid gives very accurate data on time

spent in supervisor services and idle state during any

interval.

Event Trace Monitor

Clear and accurate data was required on

the characteristics of running processes and the

manipulation of these processes by the system. The best

way of obtaining such information is an event trace

monitor along the lines of the MTS - DCF. The design

47

of such a facility is very straightforward. A set of

probes is incorporated in the resident supervisor

software. These probes 'are activated by the setting of

a system test flag and, when triggered, call a data

gathering routine which adds a time stamp and transfers

the data to a buffer. The data gathering routine also

organises the transfer of filled buffers to the backing

store used.

The placement of probes within the

software was relatively easy, aided by the modular

design of the system and the high level nature of the

language it was implemented in. A tracing scheme had

been incorporated during early system development to

aid system debugging, and several of the significant

events overlapped. The probes are implemented as a set

of calls on the data gethering routine, conditional

upon the setting of a particular flag. The parameters

of these calls contain the relevant data. Originally

it was planned to use magnetic tape as the storage

media, but it was discovered that the replaceable disc

unit, used in normal operation as the pseudo-drum, in

fact only used the first hundred cylinders on that pack

(the space available on a normal drum), leaving eight

hundred pages of storage space free. The event trace

monitor thus stores its data in this fixed area, though

it would be a simple change to make it dump the data

48

elsewhere (e.g. to magnetic tape).

The operational procedure involved in

using the event trace monitor is as follows:

The monitor is switched on from the operator's

console by setting a system test flag to a mask

value showing those events which are to be

monitored. If monitoring is required on only

one process, then the test flag must be set to

the process list index for that process

(after a prompt has been sent).

The monitor then claims some buffer space

(currently two pages), and activates the probes.

When the monitor has filled its data area

(currently 800 pages) or the system test flag is

reset, the monitor is switched off, the probes

de-activated, and the buffer space returned to

the system. The number of pages of data

accumulated and the number of gaps in the data

(caused by not having a buffer ready) are

printed in the main log.

The monitored data may then be transferred to a

normal EMAS file for analysis by making use of a

49

utility programme run in one of the privileged

EXECUTIVE processes. As the EMAS resident

supervisor has no knowledge of files, but only

manipulates pages in process virtual memories

between various levels in the storage hierarchy,

it would have added unnecessary complexity and

overhead to have data transferred directly from the

monitor to a normal EMAS file within a user process.

It would also have interfered with the operational

characteristics of that process whose file was

being used thus.

The data recorded whenever a probe is

triggered always has the following format:

Word 1 -. Consists of four byte fields:

The event identifier.

The length in words of this

data record.

The process to which this

event pertains.

The process holding the CPU.

Word 2 - Consists of the current value of the

4/75 clock register.

The model of the system used when

deciding which events were significant and should be

monitored was the Process Management Model. Where

the monitorable events in the standard version of the

monitor correspond to movements on the P.M.M. graph,

the event identifier is shown circled in Figure 2.1.

A list of events which may be monitored in the

standard version of the monitor is shown in Table 2.3.

These events fall under the following broad headings:

a) Paging Events

These events enable the collection of

data on the virtual addresses used by the process, the

distribution of working set sizes etc. as well as the

distribution of wait times caused by the various types

of paging going on within the system. Events may be

recorded whenever:

- A process is elected to the Multiprogramming

Set and begins a preload - the master page at

least is always preloaded (event 	3). The

number of pages preloaded and the number of

transfers required is recorded.

Figure 2.1 EMAS PROCESS MANAGEMENT MODEL

STARTS SHOWING TRACE MONITOR EVENTS

STOPS

20

SLEEP 2 	 (ACTIVEj

LDISC

13
13'

QUEUE

QUEUE

SLEEP CORE QUEUES

ciON 	 ii 41 	F5
DRUM L I

C
21

PRE-
LOADS

sus-
ENDED P

Nk
fin fu

12

P2-

IN
CORE

PAGE 	16

LJempSI, 12
XIT

CPU

Table 2 3

STANDARD EVENT TRACE MONITOR 	- 	LIST OF EVENTS

IDENTIFIER EVENT .

1 	. Process wakes up.

2 Process put onto scheduler queue.

3 	. Process enters Multiprogramming Set.

4 Process completes preload.

5 Process page faults - page on tertiary memory.

6 Process page faults - page in secondary memory.

7 Page faulted page arrives in main memory.

8 Process page faults - page in main memory.

9 Process overruns a category .resource limit.

10 Process completes strobe interval - WS recalculated.

11 Process goes to sleep.

12 Process removed from main memory.

13 Process has pages removed from secondary memory.

14 Process goes to sleep whilst holding a semaphore.

15 Process has its drum working set recalculated.

16 Process page removed during process removal.

17 Process page removed from its working set.

18 Process is created.

19 Process begins its log-out sequence.

20 All traces of a process are removed.

21 Process is suspended after a partial preload.

22 Process resumes after a suspension.

23 Process has a copy of all pages it has written
to backed up on the tertiary level.

24 Process undergoes an extra-strobe.

25 Virtual and physical addresses of a preloaded page.

26 Process issues a supervisor call.

27 Process has a page moved between secondary
memory states.

28 Exit from the supervisor state.

29 A page is written to secondary memory.

32 Current lengths of scheduler queues (every 10 secs).

33 Monitor starts or restarts after a gap.

34 Monitor closes down.

All events <32 may be selected via a mask set at start up.
All events >32 are always switched on.

51

- A process completes its •preioading sequence

and may become eligible for the CPU

(evént:;t 4). The number of pages preloaded

and the process status (which gives knowledge

of whether the preload was partial or not)

form the parameters.

- A process issues a page fault, the event

recorded will depend upon the level in the

storage hierarchy at which the page is to be

found - tertiary, secondary or primary memory

(events 	5, 6 and 8). The virtual address

of the page and the corresponding physical

core frame allocated to it are the parameters

here.

- A preload page has arrived in main memory

(event 	25). The parameters are the same as

above.

- A page faulted page eventually arrives in

primary memory and is ready for use by the

process (event 	7). There are no

parameters, a process may only have one page

fault outstanding at a time.

52

- A page is to be removed from primary memory

either during the recomputation of the

process' working set (event 	17) or when

the process is being removed from primary

memory (event t 16). The virtual address,

physical core frame and a bit mask showing

how this page first came to core (demand or

preload) and whether this page was read,

written or unused during this residency

are the parameters.

- A process has had all its primary memory

allocation removed and is no longer a member

of the MPS (event 	12). The process status

and the category to which the process is now

assigned are the parameters.

- All of a process' pages have been backed up to

the tertiary level in the hierarchy, perhaps

freeing pages at the secondary level

(event 	13). The secondary memory allocation

and the block page table allocation form the

parameters.

All of these eventsare non-paging

events depending on the characteristics of the process.

Such events may be recorded whenever:

- A process wakes up i.e. parameters arrive

from a terminal and that process becomes

active and competes for system resources

(event #:;e 1). The category to which this

process is currently assigned is the

parameter recorded here.

- A process goes to sleep i.e. the process

outputs to its console and becomes dormant

awaiting 	reply (event 	11).

- A process goes to sleep whilst holding a

semaphore (event 	14).

- A process is created (event t 18).

- A process begins its logout sequence

(event 	19) or finally has all traces

of its existence removed from the system

(event# 20).

- A process issues a supervisor call (event -%;t 26).

The parameters recorded are the identifier of

the SVC and the current level of the process

i.e. director or user.

- A process requests that a copy of the pages it

has recently changed now be copied back to the

disc (event # 23). This event may also be

issued at the behest of the scheduler, the

parameter identifies where the request

originated.

c) Scheduler Induced Phenomena

It could be argued that everything

happening within EMAS is in some way a scheduler

induced event, however events classified here are

non-paging events which are dependent upon the behaviour

of the system scheduling algorithms. Such events may

be recorded whenever:

- A process is placed on one of the scheduler

queues (event 	2). The queue involved is

the parameter. The process is considered to

remain resident on that queue until another

significant event takes place concerning

that process.

55

- Aprocess overruns one of its commodity limits

either a table allocation or the resource

limits imposed via the category table (event 	9).

The parameter specifies the commodity

involved.

- A process has overrun its core allowance

but has not yet been t*strobedtl (event 	24),

a recalculation of the working set is carried

out to see if the working set diminishes and

the process can be allowed to remain in

primary memory.

- A process has reached the end of a strobe

interval and an attempt is about to be made

to recompute its working set (event 	10).

The parameter in this case is the CPU time

still allowable to the process during this

residency in 4-75 clock ticks.

- A process which has just completed a

"Partial preload" is subsequently suspended

owing to insufficient core being available to

it (event 	21). The current core allowance

and current core used by this process are

recorded.

The drum working set for the process is to be

recalculated (event# 15). An identifier

associated with the algorithm to be used

(there are currently four), the secondary

memory allocation and block page table

allocation before this recalculation,

form the parameters.

- A page belonging to any process is moved

between drums (event 	27). This is done

to ensure all pages in the secondary level

are packed onto as few drums as possible -

hence denser packing, hence more prepaging

efficiency and automatic migration of

pages off the pseudo-drum as space becomes

available elsewhere. This is only done

when a page is moved into primary memory

during the normal activity of the process

and the secondary memory page indices involved

in the move are recorded.

57

- Exit from supervisor state-(event- 7!g 28).

A normal user process takes over the CPU at

the end of a burst of supervisor activity.

The current process level (user or DIRECTOR)

and the current values of COREF (physical

main memory pages still free) and COREL

(main memory still unallocated) are the

parameters recorded.

- A page is written back to immediate store

(event t 29). The parameter tells why this

page is being written e.g. page creation,

or all pages of a process being removed

from active store.

d) Monitor Events

These three events are always active

when the monitor is switched on i.e. they are not

affected by the setting of the event mask. They are

recorded whenever:

- The monitor, is switched on or restarted after

a gap caused by having run out of buffer space

(event = 33). The current value of the date

and time of day as held by the system are

recorded.

58

- The monitoris'switched off (event # 34).

- A ten second alarm clock interrupt is

received (event #;t 32). The current lengths

of the scheduler queues and the number of users

currently signed onto the system are the

parameters.

It must be noted that the set of events

contained in the standard monitor as described above

give adequate information to reconstruct queue length

distributions and wait time distributions for all the

nodes in the P.M.M. graph,. as well as information on

the access patterns within the virtual 'memory.

The possible range of data obtainable

on a system like EMAS is vast. This version of the

monitor was never intended to be a fixed, totally

general monitor obtaining every possible item of

performance data that might ever be of interest.

Instead the monitor provides the general mechanism

through which performance data may be syphoned. The

structure and comparative ease with which a new

supervisor may be remade allow this flexibility. All

the probes implemented in the standard monitor are

contained within one of the supervisor components.

However to prove the flexibility of this mechanism,

59

additional probes have been incorporated in at least

one other component for investigations into certain

specific areas [Adams et al. 1977] and a modified

set of probes were used in the EMAS Performance

Experiment (see next chapter).

Using the standard version all data

considered to .be of interest for this exercise may be

obtained. It may be noted that the monitor is not

symmetrical, especially in the paging events class,

i.e. the obvious construct of recording a "page-in

request" event and "page..here" event (on completion

of transfer) and similarly a "page-out request" event

I 	 •1 and ;. page-gone event is not used. Advantage is taken of

the fact that preloading and removal of pages from

core involve the process in a wait until the

transfer of several pages is complete. From the

system performance point of view only the length of

that wait and number of pages involved is of interest,

whilst from a process behaviour point of view the page

addresses involved will also be required. The approach

taken allows the greatest flexibility within the

standard version, minimising the number of individual

event types involved whilst giving the most flexible

sets of data available'. For instance, if only wait

times involved in paging are required then events 3 and 4

will give timings for preloadings: 5, 6, 7 and 8 will

virtual memory are required then events 5, 6, 8 and

25 give the times at which pages start being used in

primary memory; events 16 and 17 the times

(approximately) at which pages cease to be of use to

the process. In practice it was found (as had been

expected) that paging events (plus event /t 28) would

dominate the types of events which would be recorded.

The total number of paging events to be recorded

during any particular monitoring session had to be

kept as low, as possible - hence reducing overhead

caused by the monitor and lengthening the total length

of time for which the monitor would run before filling

its data space. In normal use the monitor in its

standard form monitoring all events (except event 25),

collects around 300,000 events in about twenty minutes.

Interference caused by this monitor

whilst in use is approximately a four percent addition

to the supervisor CPU time. The level of interference

will depend upon the number of events monitored. Whilst

in use the monitor claims two pages of buffer space,

thus reducing the available user core space by about

one percent on a one M-byte configuration. The

gathering routine adds approximately .2,300 bytes of.

61

code to the resident supervisor code, plus 3,200 bytes

for organising the switching on and off of probes.

The interference caused on the pseudo-drum channel is

minimal with less than one page of data per second

being transferred. It must be noted that none of the

monitoring aids implemented at this level cause any

direct interference with user processes characteristics

within the virtual machine of that process.

Sampling Monitor

A monitor was also constructed to give

summary information on how the system is performing by

sampling certain critical variables. This involves one

routine in the supervisor which is activated at regular

intervals to accumulate a total, maximum and minimum

observed value for each of the chosen parameters. The

contents of this table is dumped, and all the values

re-initialised either at regular intervals or by the

setting of a system test flag. A machine readable form

of this print out will exist in the main accounting log.

Table 2.4 gives an annotated example of a typical print

out from this monitor. The sampling interval is

currently ten seconds as there is a convenient system

"alarm clock" interrupt at this time. Ten seconds is of

a much larger time scale than most system phenomena

appearing at this level, and thus the data hopefully

Table 2.4

SAMPLE OF Q-SAMPLE DATA

JEMAS 	81EF3 DATE;08/09/75 	21.20,18

QUEUE 	SAMPLING INFORMATION

NO, 	OF 	TIMES OSAMPLE KICKED WAS 	188

ITEM TOTAL MAX MIN
RUNO1 76 4
RUNQ2 247 3 o
ACT 	STRQ 0 0 0
ACT 	TKEQ 23 4 0
CORE 	01 254 12 0
CORE 	02 294 9 0
CORE 03 111 4 0
CORE 	04 37 3 0
CORE 	05 442 8 0
CORE 4447 141 34
CORE 	F 10377 153 4
CORE 	S 4506 72 0
ASUNUSED 192261 72
AS

131 87?-
ASFREE 184387 1193 835
BPTUNUSD 48996 306 226

PTFREE 44661 281 198
PT 	FREE 8708 75 17
SAM 	FREE 22677 127 111
PARAMTAB 27943 158 121
USERS 5490 32 25

EMAS 	81E DATE;08/09/75 21.51.51

62

will not be too adversely affected by any periodicity

in the system. The data is dumped every 1000 samples

(approximately every three hours). The periods between

this regular dumping of accumulated data is controlled

by a system test flag. The sampling interval could be

varied, but this has not been considered necessary

and the monitor has-been of some use as a simple informal

aid in system tuning. Interference caused by this

monitor is an addition of approximately 1,000 bytes

in the space occupied by the resident supervisor

and a negligible addition to the supervisor CPU

overhead.

Category Table Transition Matrix

One of the central concepts in the

EMAS scheduling scheme is that of a process

category. As the transitions between categories

depend upon the behaviour of the process and the

categories themselves are a crude characterisation

of the processes, the transition matrix •of process

movement between categories will, provide a rough

characterisation of the current workload. The limits

involved in the category table will also have a

definite impact upon the system performance, and thus

transition matrix will be of considerable use in

tuning the category table. This monitor requires

63

800 bytes to hold the data, and a minimal amount of

code space and execution time to gather and dump it.

The dumping of the transition matrix to the line

printer and re-initialisation of the data space is

controlled by a system test flag. Table 2.5 shows the

transition matrix for a typical session. A machine

readable form of this data will appear in the main

accounting log.

Conclusions

The four monitoring aids described

which have been implemented within the EMAS resident

supervisor provide sufficient data of •a very accurate

form for the evaluation described in later chapters,

and hopefully for other research in this field. They

are very flexible, and must not be considered fixed.

This applies especially in the case of the event trace

monitor and the sampling monitor, which provide proven

data acquisitions routes, and new events may be added

to the monitoring, or some current items deleted, as

necessary, limited only by the researcher's knowledge

of where the item to be monitored resides. Although

care has been taken to ensure that the extra overhead

induced by these monitors is minimised, this has never

been taken to the extreme of hand coding the monitors,

and all the implementation took place in IMP in

Table 2 5 SAMPLE OF CATEGORY TRANSITION DATA

JEMAS . 	81E.0ATE:08/09/75 .?12Oi4 ..

CATEG0RY 	TABLE 	MOVEi.,IENT T 0

1 2 	3 4 	5 6 7 8 9

.1 37 0 	0 0 	0 0 0 0 0
2 0 43 	13 0 	0 0 0 0 0
3 0 13 	188 92 	0 0 0 0 0
4 0 0 	92 94 	d o. 0 0 0
5 00 0 0 	146 .0 0 580

.6 0 0 	0 0 	0. 0 0 0
7 0 0 	0 0 	0 0 0 0 0
8 0 0 	0 0 	70 0 01274 8
9 0 0 	0 0 	0 0 1 7 0

0 10 0 0 	0 0 	0 0 0 0 0
11 0 0 	0 0 	0 0 0 324 2
12 0 0 	0 0 	0 0 0 1 0
13 0 0 	0 0 	0 0 0 5 0
14 0 0 	0 0 	0 0 0 0 0
15 0 0 	0 0 	0 0 0 0 0
16 .0 0 	0 0 	0 0 0 0 0
17 0 0 	. 	0 0 	0 0 0 0 0
18 0 0 	0 0 	0 0 0 .0 0
1.9 0 . 	0 	0 0 	0 0 0 0 .0.
20 0 0 	0 0 	0 0 0 0 0'

TO

11 12. 13 14 15 16 . 	17 18 19 20

0 0 0 0 0 0 37 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 . 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

315 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 . 	0 0 0 0

0 0 5 0 0 0 0 0 0 0

428 1 0 263 0 0 0 0 0 0

0 	2 0 0 0 0 1 0 0 0 0

0 0 0 0 0 7 0 0 0 0

275 6 0 64 2 0 126 0 0 0

3 0 5 0 1 6 0 0 45 0

5 0 1 0 0 3 0 0 19 0

0 0 0 35 35 0 32 0 0 49

0 0 0 0 0 0 0 0 0 0

2 0 0 23 0 11 3 0 9 25

2 0 0 46 22 0 3 0 0 58

64

keeping with EMAS philosophy. Further in keeping with

the system structure, they only record data on events

and entities which exist at the level of the resident

supervisor, so no monitoring of file use etc. is

taken here. This information can be obtained by

monitoring at the level of DIRECTOR or subsystem.

None of the monitors interfere in any

way with the running of user processes within their

virtual memories other than adding a small amount to

the total wait time experienced by the process in

obtaining service from the supervisor. The level of

this interference will vary directly with the amount

of data being recorded, and care must be taken to

collect only necessary data when planning any

measurement experiment. On the issue of privacy of

users, the data obtained is purely of a performance

nature. The only information of interest about

processes is, generally speaking, its pattern of

reference within its virtual memory in terms of page

addresses, and only this data is gathered. No

information is gathered at this level on the contents

of those pages. It is hoped that such data gathering

is not considered to be a breach of privacy.

Utility programmes exist for the

transfer of event-trace data to a standard EMAS file

from the data collection area on the pseudo-drum, and

for the production of appropriate event mask to be

used during any monitoring session. A variety of

analysis programmes have been written for the

reduction of event-trace data. Though these

programmes share several common routines and a

common kernel in many cases, they have not been

brought together under one programme, such as the

Data Analysis Programme on MTS, or the Statistics

Generating Package on VM/370, but remain separate

entities, specific to the analysis required.

[

The need for rigour when taking

measurements Of systems has already been discussed.

This chapter covers in more detail a controlled

empirical approach to evaluation i.e. one of

observing systems under conditions in which all the

variables which might affect performance are

fixed, or under the control of the experimenter. A

measurement experiment carried out on the Edinburgh

Multi-Access System is also described in detail.

One of the great disadvantages in

attempting to make an evaluation of any system is. the

great number of possible factors which may make an

impact on the observed performance. Also, subtle

interactions between factors may themselves prove to

have a significant effect. With interactive systems

one of the most highly variable and significant factors

affecting the performance of the system is the user

workload. This makes any evaluation of the components

of the target system, based solely upon measurements

taken on the natural system (i.e. the system running

with real users during normal service periods) very

difficult, as it will be nearly impossible to attribute

changes in performance to individual system components

or to slight changes in the user workload between any

67

two observed periods.

An attempt to remove this factor was

made in studies of CP/67 [Bard 1973] in which an

evaluation of two paging algorithms was being carried

out. This approach consisted of incorporating the two

algorithms in the target system software and switching

between them on a very short time scale, thus hoping to

eliminate any differences due solely to the workload.-

Measurements can then be taken on the natural system

and an evaluation made of the two algorithms with

some confidence. However, this approach is naturally

limited in its application: it will be difficult

to evaluate hardware changes, or compare software

algorithms which cannot co-habit with the resident

supervisor without causing considerable overhead or

involving changes of such a nature that switching

between them may not be possible (e.g. they may

maintain differently ordered queues or paging table

formats).

Workload Drivers

The only factor beyond control in the

natural system is that of the user workload, as system

software and hardware components may be fixed. Thus if

experiments are to be carried out within a totally

controlled environment, some way must be found of

providing a standard workload during experimental runs.

A definition of a standard workload will be useful at

this point.

A standard workload in the case of

interactive systems is a total workload which may be

applied to the target system in which all of the

components of user characteristics are completely

defined, in terms of commands issued, files and

programmes used, think times between commands and

expected typing delays [Holdsworthet al. 1973].

Such a workload is usually defined in terms of a

fixed number of pseudo-users running from a set of

one or more scripts. Each script holds a

representation of an interactive conversation between

a pseudo-user and the target system. One or more

pseudo-users may be run from each script. Figure 3.1

shows an example of a possible script for an EMAS

pseudo-user. A standard workload is deemed to be

reproducible if each time it is applied to the target

system the activities of each of the pseudo-users

remains fixed i.e. the commands issued and the time

the system spends in "user wait" for that

pseudo-user do not vary from run to run. In the

context of the interactive conversation shown in

Figure 3.2 the part above line A - B will always be

EMAS)
)
	

0

1

)
ECSC12) 	LOG-ON SEQUENCE

)
1

)
PASS)•

THINK TIMES (IN SECONDS).

FLIST 	 ETWEEN COMPLETION OF

10 	 ONE COMMAND AND START OF

USERS NEXT

15

 IMP (FRED, FREDY, FREDLIST)

10

LIST (FREDLIST, LP)

10

LIST (FREDLIST, LP)

25

RUN (FREDY)

5

STOP

Figure 3.2

SCHEMATIC OF AN INTERACTIVE CONVERSATION

USER WAIT

OMMAND
T 	N+1

¶ USER THINK---------------
TIME

	

	 START. 	-

OF
I RESPONSE 	 TYPING

COMMAND 	 BEING
N I 	 TYPED

(A) (B) ---

END 	 BEGINNING END
OF 	 OF 	OF
TYPING-IN 	RESPONSE RESPONSE 	 END

OF

SYSTEM WAIT 	 SYSTEM WAIT

TIME

69

constant for that pseudo-user. During the running

of the standard workload the rates at which individual

pseudo-users complete their work relative to one another

may, of course, vary, according to the way the system

differentiates between different classes of work, but

within the context of each script the user

characteristics will remain fixed.

Providing a standard workload for an

interactive system by running a set of batch (non

interactive) jobs on the system will be unsatisfactory,

as.it will not incorporate any representation of user

think time and will not load the communication

facilities of the system in an appropriate manner.

Also, on many systems it is quite possible that the

full range of "interactive" commands may not be

available to batch jobs. Employing a large number

of humans to sit at terminals and type in commands

from a prepared script defining the interactive

conversation is a possibility, but it would be very

tedious for the copy typists involved, and humans do

make errors. It is unlikely that the workload so

induced will have an exact replication of the think

time and typing time distributions specified. The

only way of providing a totally reproducible user

workload is by a form of automatic Workload Driver (WD)

or stimulator, incorporated in some system module or

70

piece of hardware, which will feed specified commands

to the target system at the necessary times.

In the context of conversational

computing a WD and the standard workload it produces

should possess the following characteristics:

It should load the target system by feeding

specified lines of input to it, and on receiving a

response, wait for a specified time (to simulate user

thinking and typing) before passing in the next line

of input.

It must be capable of providing a relatively stable

load to the target system over the measured period.

It should be able to take human typing rates and

terminal speeds for each simulated terminal as parameters.

It should be reasonably robust and able to recover

from transient errors (e.g. occasional message

corruption).

It should interface easily to the target system

and appear as any normal user workload would (i.e. a

minimum of modification and interference to the target

system).

71

There are two approaches to the

implementation of WDs: internal and external. The

internal approach is so called because the WD is

incorporated within the software of the target system.

The external approach involves the workload being

provided from an external machine (usually a

mini-computer) connected to the communications

hardware of the target system.

Internal Workload Drivers

The major advantage of the internal

approach may be summed up in terms of cost - no extra

hardware need be provided (both methods require

software), also the possibility of transmission errors

causing trouble is eliminated. However, as the driver

is implemented within the target mainframe, it means

that it will necessarily interfere with it, consuming

memory space and possibly paged I/O capacity. The WD

could be implemented either as an additional user task,

or within the supervisor, interfacing with the module

which normally handles terminal I/O [Figure 3.3a].

This is the method adopted in the MTS - Terminal

Driver Monitor [Stasuik 1976, University of Michigan 19761.

This is incorporated in the system area of the tasks

virtual memory and it allows up to 20 simulated

terminals to run, off up to 9 scripts. The scripts

asauser
task

(B) External

Multiplexors

Target
Mainframe

I 	Connected via
.1 	Standard Terminal Lines.

Terminal
W.D. Mini-Computer,V 	Concentrator

Within
Communicat iOfl5
Network

Target
Mainframe

72

in this case specify command lines and think times

with typing delays being introduced as a simple

function of the number of characters input. An

internal WD is also reported to have been built for

IBM's TSS/360 [Abrams et al. 1976]. This is

incorporated entirely within the resident supervisor

and claims to allow any number of scripts with any

number of users running off each. The scripts are

read in, off the card reader and presumably remain

core resident throughout, which must impose some

restrictions on the size and number of scripts used.

Also there is no obvious way of representing user

think times as such, in this case.

External Workload Drivers

An external workload driver, or remote

terminal emulator (RTE), should not interfere with the

target system at all, and will be connected to it via

individual terminal lines, or may be attached (where

appropriate) as a terminal concentrator [Figure 3.3b].

The major drawback of this approach will be the cost of

the hardware in which to run the RTE. However, with the

proliferation of mini-computers and the relative decrease

in price of such equipment, this may not be as much of a

drawback as it may first appear. Using another

computer allows for much more scope in the facilities

Remote terminal emulators may themselves

be used as measurement devices [Abrams and Cotton 1975,

Abrams et al. 19761. Response time is the only pure

performance metric by which interactive systems are

judged by users. By recording and timing all messages

passing between it and the target, an RTE provides a

totally non interfering method of obtaining objective

response time measurements. Care, of course, will have

to be taken that the standard workload used whilst such

measurements are taken must be an accurate reflection

of the workload existing on the natural system

[Barber et al. 19751. During the development of a

new system, a facility which allows a workload to be

repeated time and time again may be of use in tracing

system errors [Lassettre and Scherr 1972, Schwemm 19721.

In this case an external WD will have obvious advantages

over attempting to implement a WD internal to a system

which is itself only being developed. For systems which

are in normal user service, RIEs may be used both as a

tuning aid - by enabling controlled experimentation with

scheduling parameters - and as a method of checking new

system releases - both for performance and possible

errors. By using a mini-computer and remaining

completely external to the target the size and range of

scripts and workloads which may be applied will be

limited only by the configuration used for, the RTE

and not by considerations of the interference caused

in the target. External workload drivers are also

more flexible than internal drivers in that they need

not necessarily be system dependent (though any

implementation of a standard workload will have to be)

and may be used in investigations of several target

systems. Several examples of remote terminal

emulators now exist [Watkins and Abrams 19771.

The "STIMULATOR' facility provided by

CDC on 'their KRONOS system [Lehmann and Gomma 19731

falls between being defined as external or internal in

that it runs in a Peripheral Processor (of which there

may be up to ten on the CDC 6400 series architecture)

and is thus internal in that it requires no additional

hardware and runs within the target mainframe, but

could be considered external in that the load is being

provided by a mini-computer (the PP). The "Stimulator"

allows for the running of several- users off any of a

number of scripts and has facilities for response time

measurement.

The earliest development of a true

external driver was produced at project MAC at M.I.T.

[Greenbaum 19691 for experimentation and testing of

target systems via standard terminal lines. It could

support a maximum of 12 simulated terminals running

from scripts which not only contained command lines and

think, times, but also "verifier lines" so that the

simulator can check that it is obtaining correct

replies. A language was also supplied in which

interactive conversations could be defined for

translation into scripts. I.B.M. are also reported to

have developed an external WD for testing and measuring

TSO/360 during its development [Làsettre and Scherr 19721.

Unlike the project MAC stimulator this required a

minimum configuration of' a 360/40 and was again

connected to the target mainframe by standard telephone

lines. A WD based upon PDP-11 hardware has been

developed by DEC '[Turner 19761, one version runs in a

PDP-11/20 connected to the target system via standard

terminal lines, whilst another version runs as part of a

terminal concentrator used on some of DEC's larger

mainframes. A language to aid the definition of scripts

and give some control over the parallelism of the

simulated users has also been provided [Turner 19761.

External WDs are now provided commercially for some

systems and may be bought or rented complete with a set

of standard loads [Wright and Burnette 1976].

There has been some reported use of

WDs in performance experiments. A set of experiments

were carried out at Imperial College on the CDC KRONOS

system using the CDC STIMULATOR facility [Lehman and

Gomma 1973]. This involved using eight distinct

scripts with up to 24 simulated users being run off

each script. No attempt was made to validate the

scripts, and no changes were made in the system

configuration. The series of experiments (each taking

more than one hour elapsed time) were run varying the

maximum number of simulated terminals from 96 to 192,

and all the performance data was obtained from the

accounting log. One of the major performance measures

taken was the time the whole standard workload requires

to complete. Despite the several limitations of the

experiments, considerable insight was considered to

have been gained into the performance of the system and

the identification of certain possible system

bottlenecks.

The MTS-TDM was used in obtaining

comparative data on running MTS on an IBM 370/168 and

an Amdahl 470 V/6 [Emery and Alexander 1975]. The set

of 45 minute long experiments was carried out using six

distinct scripts with 120 simulated terminals being run

77

off them. The simulated terminals were not

distributed evenly between the scripts, but heavily

biased to some which represented particularly

interactive work, e.g. editing sessions. A considerable

array of data was obtained using both the DCF (an event

trace monitor) and response time data from the TDM itself.

This revealed several differences between the systems

running on the two mainframes. During the experiments

there was 5% idle on the 370 v 10-40% idle on average

in the page wait state on the Amdahl, whilst though

more processes were on average in the page wait state

on the Amdahl, the overall paging rate was lower

(more processes completing before they "lost" pages which

had to be page faulted back in). Thus, though it was

thought both systems were memory bound (both had

2 M-bytes), the 370 had also very little CPU to spare,

whilst the Amdahl was thought to be paging bound.

Response times on the Amdahl were 99% lower on

average for a CPU which was estimated to be 50% faster.

The performance of the PDP-11/70

running DEC's resource sharing, time-sharing system

(RSTS) in a transaction processing environment has been

studied in great detail under simulated workload

provided from a PDP 11/20 connected to the target via

normal terminal lines [Kosko and Turner 19751. In an

experiment lasting nearly 12 hours, 27 simulated users

78

carried out over half a million transactions. As a

result of this experiment, the major bottleneck was

found to be in the terminal I/O hardware, and not in

the disc system throughput as had been suspected before

the experiment. Modifications based on this data were

implemented which resulted in a 20% improvement in

throughput [Turner and Kosko1976]. Such results would

not have been found from an experiment driven from an

internal WD. The same RTE was used in investigations

of DEC's Interactive Application System (lAS) running

on the FDP 11/70 [Turner and Levy 1976]. The load

consisted of a mixture of jobs classified as either

computational or interactive. There were up to 22

simultaneous pseudo-users during a set of 15 minute

experiments when loads consisting of different mixes

of these classes were run on a number of hardware

configurations. The response time data obtained from

the RTE was used to determine the suitability and

expected performance levels of the system for various

applications.

An extensive set of experiments were

carried out on the Murray Hill Time Sharing System

(MHTSS) at Bell Labs, using a commercially available RTE

[Wright and Burnette 19761. The interactive workload

simulated was evolved from system usage data gathered

on the natural system and an attempt was made to mirror

7..

the distribution of system commands issued as well as

think time and typing speeds. It is interesting to

note that the think time in this case was uniformly

distributed between 0 and 11 seconds compared with

Scherr's observation of an exponential distribution

with mean of 30 seconds of CTSS. Five distinct scripts

were constructed. The stimulator allowed verifier

lines to be inserted at various points in the scripts

and if any error was noted from this, then the test was

halted and re-run. Several simulated users were run

off each script. The load varied from 30 to 90, but

the ratio of the way users were apportioned between

scripts remained fixed. A validation exercise was

carried out running a 45 user version of the simulated

workload, and comparing it with the 45 user load on the

natural system. The validation was carried out at the

command distribution level as well as at the deeper level

of the internal supervisor queues. Minor variations

occurred in the target system configuration during the

time span of the experiments. A variety of monitoring

aids were used, and extensive data obtained using the

event trace monitor embedded in the system. The data

included processor, channel and various levels of memory

utilisations as well as supervisor overheads. The

researchers involved held this exercise to have been

very useful, and considerable insights to have been

gained from the set of hour long experiments.

80

During the development of IBM's Time

Sharing Option both a simple performance model and a

remote terminal emulator were used to check out the

system's performance [Lassettre and Scherr 1972].

The RTE consisted of an IBM 360/50 connected to the

target via individual terminal lines. The scripts used

by the pseudo-users were not deterministic as is

normally the case, but consisted of a set of

subsessions. Each time a pseudo-user completed a

subsession the decision as to which subsession is to

be executed next was taken at random, with .

weighting factor which determined the overall mix

of the total workload. Data collected included

both response time and target system measurements

from an event trace monitor embedded within TSO.

This data was used in the validation and

calibration of the simple performance model.

CP/40 (a predecessor of IBM's CP/67)

was used in interesting experimental investigation of

the influence on paging behaviour of four major

factors {Tsao et al. 1972, Tsao and Margolin 1972].

Load sequence of system subroutines.

Main memory size.

Problem programmes.

In this investigation a full factorial experiment of

81 separate runs was used. The load in this instance

consisted of .a set of three Fortran programmes which

were compiled but not executed. The data gathered, in

terms of usage information on individual pages and

paging events, was used in formulating empirical

models of the system. Though the system used was only a

üniprogramxning one and the load used was very restrictive

and did not use any form of WD, the methodology

adopted in this investigation is very interesting.

The EMAS Performance Experiment

The EMAS performance experiment was

devised to provide a consistent set of data in an

investigation of the effects of various system

components upon system performance. These measurements,

and two different paging algorithms, would provide the

basis for an empirical evaluation of the system, and

would also be used in validating and calibrating a

model of it.

The parameters which were varied in

this experiment were:

The amount of main store available to the system.

This is carried out easily owing to the highly

parameterised nature of the system, by setting an

appropriate system variable at Initial Programme

Load (IPL), which defines the amount of primary

memory the system may use i.e. no physical removal of

primary memory took place. Three different values of

main memory were used - 5/8 M-bytes, 3/4 M-bytes, and

7/8 M-bytes corresponding to 112, 144 and 176 pages

respectively available to user processes.

The number of channels available to the

secondary memory (drums) and hence :the paging I/O

capacity. This is effected by setting a hardware

switch before IPL. The system is to a certain extent

self configuring and automatically checks at IPL

which channels are available to it and acts

(c) The process scheduling algorithm, The two

variations on this were:

Using Working Set Replacement (WSR)

i.e. whenever a process is admitted to

the Multiprogramming Set, prepage in

its current working set, then demand

page, until the process is due for

removal. The normal category transitions

(Table 1.1) were used with this scheme.

Using Pure Demand Paging (PDP) i.e.

whenever a process is admitted to the MPS

then only the master page is prepaged

(it must be in main memory before the

process may be given the CPU). This

prepage transfer may itself be considered

as a demand page fault. When running in this

mode the category transitions carried out by

a process are changed, in that each time the

process goes to sleep then it is moved down a

category (to NCY 3 instead of NCY 4).

84

To investigate the effects of these three

factors a full factorial experimental design was

adopted [Mendenhall 1968] involving 3 x 2 x 2 = 12

experimental runs. Table 3.1 shows the experiments

conducted.

Fixed Parameters

All other factors which might affect

system performance were kept fixed. The hardware

used - CPU, channels, device controllers, disc files,

drums, communication devices - was always the same

(except those factors varied as part of the experiment).

The software (with the exception of the variations

in scheduling mentioned and one minor error corrected

in DIRECTOR after four runs) was always the same. The

user workload was also kept fixed using an RTE and a

standard workload derived from a detailed benchmark

defined by personnel of the Edinburgh Regional

Computing Centre [Adams and Millard 19751. The

suitability and reproducibility of this standard

workload is discussed in the next chapter. The hardware

used in the experiments is shown in Figure 3.4.

Measures

The measures whiáh would be of interest

A .7/8 2 : 	WSR.

7/8 2 PDP

C 	. 7/8 	. 1 WSR

D 	. 7/8 1. 	. PDP

E 3/4 2 WSR

F . 	3/4 2 PD?

G 3/4 1 WSR

H 3/4 1 PD?

I 5/8 2 WSR

J 5/8 2 PD?

K 	- 5/8 1 WSR

L 5/8 1 PDP

WSR - Using Working Set Replacement Policy

PDP - Using Pure Demand Paging scheme

All experiments were carried with a fixed

workload of 32 simulated users. Hardware consisted

of the ERCC ICL 4-75 (machine ?TB?t complex) with

3 drums + 1 pseudo drum. EMAS, version 814, was used

throughout, as were the executive processes -

Volumes version 834, Demons version 877. Runs A-D

used DIRECTOR 871, E-L used DIRECTOR 872 (a minor

error corrected).

August 1975

Figure 3.4

ICL 4-75 CPU

up to 7/8 M-bytes

1-)/"second core store

1 or 2 drum channels

3x2 M-byte drums

3x75 M-byte
Replaceable Disc Drives

2x350 M-byte
Non-Replaceable
Disc Drives

FRONT END COMMUNICATION
PROCESSOR
PD? 11/45

48 K baud synchronous
line

REMOTE TERMINAL
EMULATOR
PD? 11/4
28 K core
1x12 M-byte
Replaceable Disc Drive

HARDWARE USED IN THE EXPERIMENT

CPU utilisations.

Counts of various classes of paging and the

wait time spent in each.

Times spent in each of the scheduler queues.

Times spent in each of the major process

states.

Scheduling decisions taken.

Throughput rates.

These were obtained using the CPU time monitor and

event tracing facility. The version of the event trace

is a modification of the standard scheme. As the

access patterns within individual process working sets

are taken to be the same in each run no virtual memory

addresses were recorded. Similarly, rather than

recording an event each time a page is removed from

main memory, only one event is recorded each time

a process is strobed or removed from core showing

86

the number of pages involved and usage information.

The events used in this version of the event trace are

shown in Table 3.2. This cutting down on the number

of events monitored and the parameters recorded helps

to keep the overhead due to this monitor as low as

possible.

The queue sampling monitor and category

table trace were also used. These both induce very

little overhead and produce a set of easily interpreted

data which may throw further light upon the subject.

The total length of any run was not taken as a measure.

There are two major reasons for this. The original

version of the benchmark used took approximately two

hours to run on, a configuration consisting of

3/4 M-bytes of core, two drums and one drum channel.

To allow the experiment to run to completion would have

greatly lengthened the time taken for the experimental

runs. It is quite possible that a small number of jobs

may be discriminated against by the system, either by the

scheduling or by random placement of pages on rotating

devices. These may then take a long time to complete

and dominate any measure based only on total run times.

This view was reinforced by the experience of the ERCC

staff involved in the benchmarking exercise.

1 Process wakes, up.

2 Process put onto scheduler queue.

3 Process enters Multiprogramming Set.

4 Process completes preload.

5 Process page faults - page on tertiary memory.

6 Process page faults - page in secondary memory.

7 Page faulted page arrives in main memory.

8 Process page faults - page in main memory.

9 Process overruns a.category resource limit.

10 ' 	 Process completes strobe interval - WS recalculated.

11 , 	Process goes to sleep.

12 Process removed from main memory.

13 Process has pages removed from secondary memory.

14 Process goes to sleep whilst holding a semaphore.

15 Process has its drum working set recalculated.

16 Process begins removal from MPS.

17 Process has working set recalculated.

18 Process is created.

19 	' Process begins its log-out sequence.

20 All 'traces of a process are removed.

21 Process is suspended after .a partial preload.

22 Process resumes after a suspension.

23 Process has a copy of all pages it has written to
backed up on the tertiary level.

24 Process undergoes an extra-strobe.

27 Process has a page moved between secondary memory
states.

28 Exit from the supervisor state.

29 A page is written to secondary memory.

32 Current lengths of scheduler queues (every 10 secs.).

33 Monitor starts or restarts after a gap.

34 Monitor closes down.

All tracing is turned on automatically.

No addresses are recorded in events 5, 6, 8, 16 or 17.

The remote terminal emulator used was

implemented on a 28K PDP 11/45 by personnel of the

ERCC[Gilmore and McBride 1975, Gilmore 19761. Owing

to limitations in the hardware used, this could

maintain a maximum of 32 pseudo-users at any one time.

Each pseudo-user ran off its own private script.

Unfortunately there was no way of logging messages

between the RTE and the target, so this was only used

as a method of producing a reproducible standard

workload, and was not used as a measurement device.

Thus all measurements taken in the experiment took place

in the software of the target machine. The PDP 11/45

was originally connected to the original,...hardwired

communications multiplexor (MCCCU) via a 48 k-band

synchronous line, but was later connected via a

Front End Processor (formed by a PDP 11/45) which was

in turn connected to the 4-75. At all times the RTE

was connected as a terminal concentrator. An

alternative to this approach would have been to

implementa workload driver internal to EMAS itself.

This could possibly have been done by placing the. driver

in the resident supervisor module which handles the

interactive communications hardware. Owing to the

hierarchical design of EMAS this would probably have

meant that all the scripts would have had to be kept

88 	•. 	.

in main memory as it would have been extremely difficult

for the internal W.D. to access files. The interference

which such a driver would have caused was another factor

of concern, so this approach was not taken.

Experimental Runs.

Each run included in the experiment took

the following format (Figure 3.5). First EMAS was IPL'd

with an appropriate hardware configuration. The RTE was

then started and pseudo-users proceeded to log on. The

timing of the run started with the first pseudo-user

logging on. Eight minutes after the start the tables

for the CPU log queue sampling and category transition

trace were cleared and a 31 minute measurement window

began. The eight minutes was more than adequate time for

all users to log on and the system to achieve a form of

steady state. Two minutes after the start of the

measurement window the event trace monitor was turned

on and it continued to gather data until it had filled

its available data space (800 pages) and switched off.

At the end of the measurement window the CPU log queue

sampling and category transitions data were dumped.

This marked the end of the run and the RTE was closed

down. The event trace data was then retrieved and

stored in a standard EMAS file for later analysis.

EMAS was then closed down and re IPL'd for the next

Figure 3.5

A NORMAL EXPERIMENTAL RUN

Event trace
monitor fills
data space

CPU log cleared (800 pages)
Start start of monitored and closes Stop
stimulator J?eriod down timulator

(A) I 	(C) I 	 (E) :

(B) I IPL 4/75 First ' Event trace ' 	/ 	CPU log Copy event
with appropriate user monitor cleared trace data
hardware/ logs on starts end of to EMAS
software monitored file
configuration period

TIME

A-4B 	6 minutes

B—>C 	2 minutes

B 	31 minutes 	(monitored period)

The close of the event trace monitor (D) will normally take place before the end of the

monitored period (E) when the data space is filled. If not then the event trace monitor

is shut down at (E).

each run as the amounts of data obtained (the

interference being roughly proportional to the amount of

data taken) was the same in each case.

Exclusive use was required of the

mainframe during these experiment runs. During the

spring of 1975 a daily slot was provided by the ERCC

management in the early mornings in a period normally

taken up by system housekeeping functions

(archiving etc) for a series of runs. At this time

the PDF 11/45 was connected via the MCCCU. After a

number of runs had been completed a fault was found in

the EMAS software handling the buffering of messages to

and from the RTE. This fault was considered to have had

a drastic impact on the results obtained, so all that

data was abandoned. However, the experience gained in

running procedures and proving the software in the

RTE was very valuable.

During the summer vacation of 1975 the

ERCC allowed one 4/75 configuration to be taken out of

service at 8.00 p.m. on certain evenings, and given

over to the experiment. A total of 13 evenings were

dedicated to this with approximately three hours per

would run successfully, and that the level of loading

was adequate. There was still one process failure

during experiments A - D, approximately 15 minutes

into the monitored period. From these failures an

error was found and corrected in DIRECTOR. The effects

of this change on the system performance was not

considered significant (other than removing the

failure). Any experiment runs which suffered from

any major system failure, either in the target or

the RTE (there were hardware failures in both) were

discarded and re-run. An exception to this is Run 'F1

which suffered from a hardware failure after the end

of the measurement window. This meant the CPU log was

lost but the trace data was safe. A further run on

this configuration was planned, but could not be carried

out as the hardware for the RTE. was moved to a

different site.

Conclusions

The validity of the workload used in

the Performance Experiment is discussed in the next

chapter, and results obtained will also be given in

succeeding chapters. The conclusions drawn from the

The initial 'setting up of the framework

(i.e. debugging the WD-target system interface hardware

and software) in which such experiments may be run is

tedious and is fraught with a large number of possible

sources of error and frustration. Once such a

framework is proven, work can progress at a reasonable

rate (this would also appear to be the experience in

the M.H.T.S.S. evaluation).

The time required to run any extensive set of

experiments plus the initial setting up phase will be

quite long, though there are, of course, well proven

experiment designs which allow for a reduction in the

number of actual runs which need be carried out

[Cochran and Cox 1957] and one need not carry out a

full factorial experiment as was the case here. An

enlightened attitude will be required by the system

management to allow dedicated time required for such

an exercise. Once the initial troubles had been

ironed out it took almost exactly one hour per

successful experiment run.

(800 pages per run approximately) is taken, then a

non trivial data management problem results. A

reasonable procedure for handling this data

efficiently must be worked out in advance. During

the performance experiment the data from each night's

run was analysed as soon as possible during batch runs

that evening (using three EMAS processes), and

archived to magnetic tape immediately thereafter for

possible re-use at a later date.

(d) In terms of pragmatic approach to system evaluation

a development of this method must be seriously

considered as an essential route for further work, so that

some form of data base of empirical data on such

systems can be built up for reference. The standard

workload used here, and the stimulator used, were by

no means ideal examples of their kind, but the

modified interactive benchmark did provide what must

be considered as a very reasonable representation of

a natural workload for such a system (see next

chapter). Similarly the RTE presented this standard

workload to the target system in a realistic fashion.

It was considered best to use these tools which were

available and in which some experience had already

been gained rather than starting completely clean and

: 	• 	• 	 93 	• 	 • • •

repeating to a great extent the large amount of work

which had already gone into the benchmark definition

and stimulator construction. Based on the experience

gained from this work an improved RTE has been 	•

designed and implemented [Adams et al. 19771. The

area of workload definition and experimental

procedures is an area in which much further work

could still be invested.

In this chapter the workload applied

to-the system during the EMAS performance experiment is

examined in greater detail. Some measures of workload

at the level of the EMAS resident supervisor are given

and the reproducibility of the standard workload in

terms of these measures is discussed.

Benchmark Construction

The standard workload used in the

experiment was derived from an interactive benchmark

defined from measurements taken on EMAS at the level of

the standard subsystem {Millard et al. 1975, Adams and

Millard 1975]. This involved recording such items as the

distributions of: the types of commands issued, sizes

of files used, user think times, system resources used

by individual commands (page transfers and CPU times)

and the length of interactive sessions. A PDP-8

interposed between certain terminals and the normal

communications hardware was also used to monitor user

typing characteristics in greater detail. This

measurement of user behaviour was carried out over a

lengthy period, and the workload was found to be quite

stable in terms of the items monitored.

these two hour sessions, several pseudo-users in turn

made use of the pseudo-terminal. The scripts

interacted with a set of base files in the target

system. These files were never destroyed or

modified in any way, all use of them was carried out

in terms of operations (e.g. editing) from the base

file to some temporary file which was subsequently

destroyed. Though EMAS allows users to type ahead -

i.e. give input to the system before a request for

input is issued - no attempt to simulate this was

made in the RTE, each think time started from when

a reply was received by the RTE.

The benchmark was validated in terms of

supervisor activity by measuring the CPU utilisations

and induced paging rates over the two hour period and

checking this against measurements taken on the natural

system. The RTE used was validated in terms of

accuracy in reproducing the scripts by monitoring EMAS

again at the subsystem level whilst the benchmark

workload was being run. This measurement log was then

checked against the scripts used. All of the benchmark

definition and validation was carried out by ERCC

personnel for system acceptance trials.

96

It was decided to base the standard

workload used in the experiments on this benchmark

because so much work had already been invested in its

specification and validation, and it was considered to

give an acceptable representation of a realistic user

workload [Millard 1975]. The characteristics of the

workload at the level of the resident supervisor will

be of interest in the experiment. It would have been

possible to interpolate the workload at this level by

using a set of synthetic programmes rather than relying

on a benchmark which was defined at a higher level.

However, to obtain a workload which mirrored real user

behaviour in a realistic fashion would have involved

an effort at least as great as that put into the

benchmark construction. Not only is the distribution

of process working sets quite wide but EMAS processes

will make use of a variety of subsystem and DIRECTOR

facilities during their execution. Their working set

composifion and especially the level of sharing of

pages will reflect this. It may have been difficult

to obtain a reasonable distribution of such requests

and working set sizes in a small set of synthetic

programmes. Also, as is shown later, any workload

defined in terms of activity monitored at the level

of the resident supervisor will be in some ways

dependent upon the algorithms employed therein. If

such a workload is then to be used as a basis of

Modifications to the Benchmark

The standard workload used in the' EMAS

performance experiment was a modification of the

benchmark in the following ways:

- The length of run used was an eight minute

period (to allow all users to log on - a ten second

gap was required between pseudo-user log-ons to avoid

overloading the RTE -, and settle to a steady workload),

plus a 31 minute monitoring window (30 minutes was the

observed mean length of a user session). Thus only the

first 39 minutes of the benchmark was used. The

workload was considered to be spread evenly throughout

the two hour period [Millard 1975]. Also the base files

were never tampered with and the temporary files

always destroyed before being reused, so there should

be no interference from files being lost due to

cutting the benchmark short. By doing this, the time

taken for each experimental run was considerably

reduced and could each be carried out in

approximately one hour.

- The benchmark was defined and validated on an

EMAS configuration consisting of 3/4 M-bytes of core

store, two 2 M-byte drums and one drum channel. The

32 simultaneous users represented in the scripts

provided such a configuration with a reasonable

level of loading. However, as more powerful

configurations were to be used in the experiment,

a higher level of loading would be required if the

target was to be in a heavily loaded state over the.

observed period. Two ways of achieving this were

considered:

Increase the number 'of scripts and

simultaneous pseudo-users.

Decrease the think times in the current scripts.

The latter approach was adopted as limitations

within the RTE hardware made it impossible to

increase the number of simultaneous users

significantly, and it would have required a further

validitation process to check that the command

distribution presented by such a new benchmark did

not vary significantly from the original. The think

times specified in the original scripts were

modified in the RTE software according to the

formula:

This maintained the same distribution of user commands

issued, keeping the target system under a reasonably

heavy load throughout the monitored period, and

removing any periods of idle which had appeared on

larger configurations in which only one or two users

of the 32 were active at any time. This was

considered valid as the aim of the experiment was to

compare the effect of the three chosen factors upon

the performance of a heavily loaded system. The

effect of cutting the think times will be to keep

more processes in the active state (awake) at any

time, thus giving a similar effect to having a larger

number of users logged-on The characteristics of

processes in main memory will not be altered, the main

difference between this increased workload and a true

increase in the number of users will be in secondary

memory utilisation and distribution of files used over

the surface of the discs used for tertiary memory.

The files used by the benchmark were held on two

otherwise unused quarters of the disc file. To avoid

the possibility of bunching of files on any particular

area of the disc file, and thus in effect speeding up

the disc accesses, owing to a decrease in head movement,

a change was made in the DIRECTOR used in the experiments

to scatter newly created files over the cylinders of the

against in some way by the scheduling algorithms or by

the chance positioning of rotating' memory devices. The

actual workload being processed during the measurement

window will not always be absolutely identical.

However the total workload presented to the system will

always be the same so any effects of this nature are

part of the way in which the system reacts to the

workload. The measurement window is intended to be

sufficiently large and starts soon enough after the

start of the standard workload to minimise effects due

to this.

Workload Measures

In a system of this type, the workload,

as it may be observed at the level of the resident

supervisor, will be related to the system just as the

performance is related to the workload. The behaviour

of each process will be characterised in terms of

the reference patterns it produces i.e. the virtual

memory addresses it accesses and the CPU times it

expends on each page. The working set concept is a

representation of this. Unfortunately exact working

101

set behaviour is very difficult to measure. In the

following section measures whereby the workload

passing through the EMAS resident supervisor may be.

characterised and quantified are considered.

All process virtual memory scheduling

within the EMAS resident supervisor takes place local

to each process, and takes no account of the global

level of loading existing on the system. The behaviour

of a process whilst executing any particular interaction

will thus always be the same in terms of CPU usage and

paging behaviour (virtual memory accesses) and will be

exactly reproducible during any two successive runs of

that process. The only area in which the global system

load is taken into account is in the scheduling of

secondary memory space.

Within the scheduling of virtual memories

of main memory resident processes there is one possible

source of error. This involves shared pages. Usage

information upon which working set calculations are

based comes from markers associated with physical

core pages rather than the process paging tables.

The reading of this usage information and clearing of

these marker'sis a time consuming procedure (there are

eight markers per 4096 byte page on the ICL 4-75) and

therefore does not take place at the end of each process

102

interval on the CPU (which would give the same effect

as having marker associated with the process paging

tables), but only takes place after regular intervals

of process CPU time (a strobe interval) or when a

process is to be removed from main memory. Consider the

following scenario (Figure 4.1): Processes A and B

are sharing a particular page. Process A ceases using

the page early during its residency. It is strobed,

but as the page has been used during this residency it

remains in A's working set. The usage marker on the

shared page has now been cleared. Process B now uses

the page, but is suspended for some time (perhaps on a

page fault to a slow disc). Process A is now removed

from core 'and its working set recalculated. The

usage markers will show the shared page to have been

used and it will be included in A's working set. The

usage marker is cleared. Process B is given the CPU

again but is strobed before it can use the shared- page

again. The shared page will not be included in B's

working set. It is possible to obtain an estimate of

the level of this interference from usage information

associated with events 16 and 17 of the event trace

monitor. When running under a demand paging scheme

every page brought into main memory by a process will

be used. However, when they are removed from main

memory some pages are marked as never having been

accessed - due to this interference. Discounting

Figure 4.1

10 H

E

HARED
PAGE

C
PRO

P .
R' 000 0
C) 	2 0000 000000000

0 00000 00

5 .
4)000)000000c0300cXXO)00

5 0 0 	0 00

0 	00

0000 0000000000

P
R
 5 0000 0 00 	00000 0000000 	0 	0

a 0 00
3 0000cxD000D 0000000000000)0000)0000000000

s 2 0 ô 0 0 00 	00 (DJD 	COO
51•00

PU 	JA 	IB 	JA B 	 A C 	BC :ESS
A

0 = ACCESS TO A PAGE

I-k UL)L)C(J
	

R rmovecj 	b St10DG

REAL TIME

103

pages which have been removed by the normal strobing

procedure this interference would appear to be less

than between 7% and 35% of all pages brought into

main memory.

If the EMAS scheduling algorithms

remain constant and there is no contention for

secondary memory space, then the activity (paging

and CPU time) caused by a process during any

interaction will remain the same no matter what other

processes exist on the system. The scheduling

decisions taken by the .supervisor 	handling this

process whilst resident in main memory will also then

be fixed. In particular the number of residencies in

main memory. necessary to carry out any item of work will

be fixed, as will the categories used by that process.

Measures which may be used to quantify the workload

under these circumstances may then include:

Resources requested by each process

during a main memory residency.

Scheduling decisions taken about that

process during a residency.

a) The resources used by a process during any

residency have two major components:

Virtual Memory accesses.

CPU time.

i) Virtual Memory accesses may be roughly quantified

in terms of the number of pages requested or brought in

during any residency. Pages may be brought in either by

prepaging or demand paging'- the split between these

two forms of paging -in will depend upon the working

set calculation algorithm's estimation of the process

locality (an attribute of that process alone). Pages

may also be transferred in from any level in the storage

hierarchy. The ratio of-the numbers of pages coming

from each level will be dependent upon the global mix

of processes existing in main memory (reflected in the

number of pages found in main memory from sharing) and

the contention for secondary memory (reflected in the

number of pages moved back to the tertiary level by

the drum working set algorithms and hence the number

of pages brought back in from the tertiary level).

The fraction of pages brought into main memory which

are subsequently written back to secondary memory will

depend upon both the activity of that process (the

fraction of pages which it writes to) and the number of

pages brought in from the tertiary level (and need to be

ii) The total CPU time used by a process during each

residency will be a function of that process' activity

alone. Similarly the mean time between page faults

will be a function only of that process and not of the

global system load as is the case in most other systems

of this class [Sekino 19721.

b) The scheduling decisions taken in relation to any

process during any residency will always be the same.

In particular the reason for terminating each

residency - because the process has gone to sleep or

overrun a resource allocation (CPU time or main memory

allowance) will be' a function of that process' activity.

Hence the categories used by a process in carrying out

its work will also be fixed.

Reproducibility of Standard Workload

The ideal way of estimating the

reproducibility of the standard workload would be to run

it on two or more separate occasions into identical

hardware/software configurations, obtain a set of

measures and compare these to obtain bounds on likely

errors induced by variations in the standard workload

(caused by random positioning of rotating memory

106

devices at start up). Unfortunately though such a run

was planned there was not time to carry it out as the

hardware used for the RTE was only available for a

very limited period.

In the following the characteristics

of the workload are presented which show that the

standard workload was reproducible. This data is all

obtained from the event trace monitor. The user CPU

times obtained from this data (which are meant to be

used to compare different runs) will be an overestimate

owing to the supervisor using CPU time before the event

it recorded. The error is introduced because CPU time

used by the supervisor before the event is dumped

is accredited to the user process. This only happens

when inteupts - device interrupts, page faults or

supervisor calls - occur and a simple correction can

be made for this if the time used by the supervisor in

servicing these is known. Whether or not such a

correction has been made will always be specified when

CPU timings are presented. The runs are also split

into those using working set replacement (group one)

and those using demand paging (group two) as certain

of the measures given are dependent upon the

scheduling algorithms.

The first measure of workload considered

107

is that of resources used each time the process enters

the awake state (which is analogous to an interaction) -

Table 4.1. The runs in the two groups are very

consistent. One major difference between the two

stems from the fact that the runs involving demand

paging required an extra 06 residency on average per

awake. This may be due to the. different. category

scheduling used in the two groups (in group two

processes are placed in NCY3 rather than NCY4 when

they go to sleep). One criterion which may be used to

compare the activity of process between all runs is. the

amount of CPU time the process consumes during any

interaction i.e. how far the process moves in its

computation during each interaction. There is no

statistically significant difference in the corrected

CPU times shown. The frequency distributions of

paging requests and CPU times per interaction are

shown in Figures 4.2 and 4.3 respectively, note the

heavily skewed nature of the CPU distribution. The

resources used per residency (Table 4.2) further

show the stability of the workload.

The profile of work passing through each

category in terms of residency periods page-in requests

and CPU time is shown in Tables 4.3, 4.4 and 4.5

respectively. Not only do these figures show the

reproducibility of work passing through each category,

Table 4.1

Average Resource Requirements per interaction

MILLISECONDS

EXP 	(CORRECTED UNCORRECTED PAGE - IN MAIN MEMORY
RUN CPU TIME CPU TIME REQUESTS RESIDENCIES

A 331 354 50 15

C 338 421 53 15

E 328 392 52 15

G 345 388 53 15

I 324 395 52 15

K 322 - 	404 52 15

B 310 384 52 2-1

D 328 508 52 21

F 323 455 53 21

H 322 461 52 21

J 335 499 52 21

L 308 .577 51 21

6.

5.

3.

(I)

iz

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGE TRANSFERS X 10

0.
0.0

2.

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGE TRANSFERS X 10

0.
0.0

Figure 4.2 (a) 	 Figure 4.2 (b)

PAGE TRANSFERS PER INTERACTION 	 PAGE TRANSFERS PER INTERACTION

EXPERIMENT .A (WSR) 	 EXPERIMENT S (PDP)

Figure 4.3 (a)

CPU TIME USED PER INTERACTION

EXPERIMENT A (wSR)

(0

0.0 I 	I 	I•Vy ' 1''-"•'"' 	' 	"I 	'-' 	• -'I '•"'"
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

CPU TIME (UNCORRECTED) (1/10 SEC)

Figure 4.3 (b)

CPU TIME USED PER INTERACTION

EXPERIMENT B (PDP)

6 	 -

5.

C4 2 H

0.01 	 "1 	 .-U'j

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

CPU TIME (UNCORRECTED) (1/10 SEC)

Table 4 2

Average Resource Requirements per Main Memory Residency

MILLISECONDS

EXP CORRECTED
A

UNCORRECTED PAGE - IN WRITE-OUT
RUN CPU TIME CPU TIME REQUESTS REQUESTS

A 224. 281 35, 11

C 225 304 35 10

E 219 289 35 10

G 223 341 36 11

I 217 302 35 11

K 216 322 35 10

B 146 231 26 	 9

D 152 260 25 	 9

F 150 242 25 	 9

H 147 293 25 	 9

J 159 271 25 	 9

L 147 317 25 	 9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

o 0 0 . 0 . 0

0 1 1 1 1 1

5 5 8 55 5

4 3. 4 3 3 3

4 3 3 4 3 4

NU NU 0 NU NU NU

NU NU 0 0 0 0

37 37 35 36 38 38

o 0 0 0 0

0 0 0 0 0 0

23 24 22 21 23 22

0 0 0 0 0 0

0 0 0 0 0 0

11 11 10 11 .10 11

1 1 1 1 1 1

0 0 0 0 0 0

4 4 4 5 4 . 4

0 NU 0 NU NU 0

1 1 1 1 1 .1

2 2 2 3 2 2

0 0 0 0 0 0

3 2 3. 4 4 4

4 4 4 4 4 4

2 2 2 2 1 2

22 22 21 20 21 23

NU NU NU NU NU NU

NU NU NU NU NU NU

28. 28 29 29 29 28

0 0 0 NU 0 0

NU NU NU NU NU NU

18 17 17 18 17 15

0 0 0 NU 0 NU

NU NU NU NU 0 NU

10 10 8 9 9 9

0 0 0 0 0 0

0 0 0 NU 0 0

4 4 3 3 4. 4

1 0 1 1 1 0

0 0 0 0 0 0

3 3 3 4 4 3

.1

2

3

4

5

6

7

8

9

10

11

12

13

14-

15

16

17

18

19

20

1 1 1 1 1 1

1 0

5 5 7 '5 5 5

5 . 3 5 4 4 4

2 2 2 2 2 2

NU NU 0 NU NU NU

NU NU 0 0 0 0

29 29 28 28 30 30

0 0 0 0 0 .0

o o 0 0 0 0

25 26 24 23 25 25

0 0 0 0 0

0 '0 0 0 0 0

15 15 14 15 14 15

2 2 2 2 2 2

1 1 1 1 1 1

.8 8 8 9 9 8

NU NU 0 NU NU 1

3 4 4 4 3 3

3 3 3 4 3 3

1 	1 	1 	1 	1.1

2 2 3 3 4 3

4 4 4 4 4 5

2 2 3 2 2 3

15 16 15 14 15 16

NU NU NU NU NU NU

NU NU NU NU NU NU

26 26 27 27 27 27

0 0. 0 NU 0 0

NU NU NU NU NU NU

19 20 20 20 19 17

0 0 0 NU 0 NU

NU NU NU NU 0 NU

12 12 10 11 10 11

0 0 0 0 0

0 0 0 NU 0 0

7 7 6 6 6 7

2 2 2 3 2 2

1 2 2 1 1 .2

5 3 6 7 6 5

EXPERIMENT RUN

CATEGORY A C B G I K
	BD F H J L

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 0 0 0 0 0

0 0 0 0 0 0

O 0 1 0 0 0

1 0 1 1 0 1

O 0 0• 0 0 0

NU NU 0 NU NU NU

NU NU 0 .0 0 0

8 8 8 7 9 9

30 0 0 2 2

4 3 3 4 0 4

6 6 7 5 7 6

3 4 2. 8 6 4

3 2 2 1 2 3

4 4 4 4 4 4

28 27 26 24 25 20

5 9 6 10 10 8

11 12 14 12 13 14

NU NU 1 NU NU 1

10 11 11 11 8 10

5 5 6 6 6 5

0 0 0 0 0 0

O 0 0 0 0 0

1 0 1 1 1 1

O 0 0 0 0 1

2 2 2 2 2 3

NU NU NU NU NU NU

NU NU NU NU NU NU

7 7. 8 7 7 8

0 0 0 N 0 0

NU NU NU NU NU NU

6 6 6 6 6 5

0 1 0 NU 5 NU

NU NU NU NU 0 NU

4 4 4. 4 3 1 	5

6 1 5 2 2 4

1 5 0 NU 7 5

11 11 14 13 13 15

27 2323 31 22 24

.16 19 18 15 13 16

10 12 11 13 11 7

108

but also present in more detail the spectrum of

work existing on the system. Within each of the two

groups there is a very consistent profile with the

majority of residencies passing through the interactive

categories (5, 8, 11, 14, 17) - between 74% and 82%.

These categories also account for the vast majority of

all page-in requests - 77% - 81%. However, the CPU

time used by these categories is much less - between

28% and 34%. The reasons for terminating any

residency - process going to sleep or overrunning a

CPU limit - are shown in Tables 4.6 and 4.7 - all

other residencies are ended because of overrunning

main memory limit. Again, these show a great level

of consistency in all the heavier used categories.

It also shows that the CPU limit has very little impact

on the scheduling of processes and that when processes

are removed from main memory when they have not yet

completed their available work (i.e. have not gone to

sleep) this is most likely to be because of overrunning

a core limit. With respect to the classification of

processes by the system into categories, it may be

seen that this is at least partially successful in as

much as those categories which have higher CPU limits

are also those categories which show a higher percentage

of residencies ending because the CPU limit has been

reached, whereas those categories with. low CPU limits

very rarely, if at all, have processes rescheduled

EXPERIMENT RUN

CATEGORY C E G I K B D F H J L

1 0 00 0 0 0 0 0 0 0 0 0

2 86 77 67 74 72 73 29 30 36 43 43 44

3 65 65 69 71 65 65 52 45 54 .52 63 47

4 99 98 98 98 98 99 96 100 84 100 95 91

5 57 57 53 50 52 54 15 13 14 10 14 14

6 NU NU 0 NJ NU NU NJ NU NU NU NU NU

7 .Ntl NU 0 0 0 0 NU NU NJ NU NU NU

8 81 79 80 82 79 80 65 64 63 62 63 67

9 67 88 88 100 70 70 100 100 100 NU 67 100

10 0 0 0 0 0 0 NU NU NU NJ NU NU

11 62 63 60 57 62 60 52 54 56 54 57 55

12 2520 0 0 0 0 25 050 NU 0 NU

13 50 30 38 12 63 60 NU NU NU NU 100 NJ

14 67 65 67 62 65 65 58 53 60 59 58 54

15 6 8 9 3 5 6 25 020 0 033

16 14 32 25 12 11 13 100 50 100 NJ 60 67

17 45 45 45 49 49 48 58 61 37 51 45 53

18 NJ NJ 0 NJ NJ 0 . 	4 9 7 0 8 5

19 38 39 37 29 39 41 7 . 	4 5 9 6 6

20 32 38 33 34 34 40 43 38 43 36 42 49

OVERALL 68 67 67 65 67 67 	47 46 47 46 48 48

Table 4 7

PERCENTAGE OF RESIDENCIES ENDING BECAUSE PROCESS OVERRAN

1 0 0 0 0 0 0 0 0 0 0 0 0

2 .0 0 0 0 0 0 0 0 0 0 0 0

3 .0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

6 ND NJ 0 NJ ND ND ND ND ND ND ND NJ

7 ND ND 0 0 0 0 ND NJ ND MU ND NU

8 0 1 1 0 1 1 0 0 0 0 0 0

9 17 0 0 0 20 20 0 0 0 N 0 0

.10 57 50 57 44 0 44 NU 'NU ND ND MU NJ

11 0 0 0 0 0 0 0 0 0 0 1.0

12 50 60 67 86 67 100 0 0 0 NJ 25 ND

13 .17 0 0 0 0 10 ND ND NJ MU 0 ND

14 2 2 1 3 2 2 1 1 1 1 0 2

15 21 27 24 26 25 22 50 0 20 0 100 67

16 14 14 15 24 11 13 0 50 0 MU 40 33

17 19 19 19 16 19 17 13 11 20 24 16 16

18 ND ND 50 NO ND 50 48 43 37 35 42 45

19 14 14 16 18 14 19 67 65 65 55 69 72

20 16 17 15 14 15 19 17 16 17 15 14 12

OVERALL 3 3 3 3 3 3 	2 2 3 2 3 2

1•09

scheduling in group two was having a very significant

impact with a larger number of processes entering

main memory in a category with too small a main memory

limit and having to be rescheduled, removed and

brought in again before completing their work. It

also shows that the standard category scheduling scheme

(employed in group one), employing a set of four

transitions associated with each category, obtains a

better fit between process requirements and the

categories they use, than the modified scheme

(group 2) employing only three transitions.

The consistency of behaviour in the

categories between runs is further demonstrated in

Tables 4.8 and 4.9 showing the mean number of pages

brought into main memory and the mean CPU time obtained

per residency respectively. Again these figures

indicate that the classification mechanism into

categories is functioning in as much as those

categories with larger resource allowances do in

fact use more of those resources than categories which

EXPERIMENT RUN

CATEGORY A C E G I K
	

B D F H J L

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

49 .49 48 50 49 48

18 19 19 19 19 19

30 30 28 29 29 30

35' 33 35 '37 34 35

15 15 16 16 15 15

NU NU 20 NU NU NU

NU NJ 20 20 20 20

26 27 26 26 27 27

27 28 29 27 27 26

31 31 34 32 35 31

37 37 38 37 37 38

37 39 42 32 35 39

43 46. 38 43 44 44

46 45 45 45 45 45

54 54 53 .5554 52

63 62 54 57 61 65

60 59 59 60 61 61

NJ NU 60 NU NU 64

63 63 66 65 67 65

39 41 39 42 38 44

50 50 47 51 50 38

17 18 17 17 18 17

24 24 23 24 23 23

26 26 27 25 29 27

17 17 17 17 17 17

NJ NU NJ NJ NU NU

NJ NU NU NJ NU NU

23 22 23 23 22 23

27 27 27 NU 19 27

NU NJ NO NU NU NU

27 27 27 27 27 26

32 40 28 NJ 36 NU

NU NU NU NU 27 NU

29 27 29 28 29 28

29 36 40 36 31 35

36 41 41 NJ 48 51

41 38.40 35 37 37

61 53 5255 57 61

51 47 52 50 51 52

41 40 38 41 38 38

OVERALL 35 35 35 36 35 35 	26 25 25 25 25 25

CPU TIME PER MAIN MEMORY RESIDENCY (all CPU times are uncorrected and quoted in milliseconds)

CATEGORY A C E G I K B P F H J L

1 158 145 147 152 144 142 146 146 136 146 150 111

2 52 41 37 37 40 39 26 28 28 28 32 31

3 41 39 42 42 39 39 45 42 44 49. 46 45

4 77 57 72 88 68 73 76 66 74 66 92 73

5 17 26 31 27 30 28 22 24 26 21 26 26

6 N.U. N.U. 1432 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U.

7 N.U. N.U. 1933 1202 1267 1042 N.U. N.U.N.U. N.U. N.U. N.U.

8 60 59 64 62 64 64 53 53 56 51 55 57

9 	• 3617 555 1140 609 2087 2148 721 651 629 N.U. 624 429

10 4328 3875 4315 3625 1541 4041 N.U. N.U. N.U. N.U. N.U. N.U.

11 81 75 83 76 79 78 69 71 74 68 79 63

12 6120 8821 7467 9055 9247 10663 1362 4439 1671 N.U. 6905 N.U.

13 4061 2862 2959 1358 2480 2937 N.U. N.U. N.U. N.U. 234 U.

14 104 102 103 109 106 99 80 74 97 77 81 99

15 5241 5561 5607 5629 5309 4852 7783 4021 5010 6436 10499 7187

16 	• 4429 4122 3264 4996 5112 4809 2188 6413 2593 N.U. 7141 7887

17 691 700 756 666 728 777 653 584 833 773 729 697

18 N.U. N.U. 5275 N.U. N.U. 580 5184 5018 4083 4589 4471 4937

19 	• 1739 1594 1568 1878 1326 1522 5024 4218 4344 4114 4253 42.69

20 	• 494 610 572 592 583 613 616 725 611 588 564 449

OVERALL • 281 304 289 341 302 322 231 260 242 293 271 317

110

are allocated less. Further information on the activity

of the processes is given in Tables 4.10 and 4.11

showing the mean user CPU time between page faults, and

the fraction of pages brought into main memory by the•

working set replacement policy. This shows, as would

be expected, that group one processes do much more

computing between page faults than group two and, that

in those runs using the working set replacement policy,

those pages brought in by prepaging will outnumber

pages which are page faulted in, by a ratio of more

than two to one.

Some other characteristics of the load

placed on the system are summarised in Table 4.12.

This clearly shows that the level of page-in requests

involving transfers from tertiary memory is very low

(approximately 2% - all preloading transfers come from

the secondary memory). In fact of those transfers

involved in the actual running of user processes

(i.e. swapping in and out of main memory and page

faulting) there is a ratio of 50:1 in favour of

transfers involving secondary memory against those

involving tertiary memory. The level of sharing in

main memory is, as expected, seen to be dependent upon

the amount of main memory available (and hence the level

of multiprogramming). In the group one runs the requests

for pages which are already in main memory (i.e. shared

MEAN CPU TIME BETWEEN PAGE FAULTS (all CPU times are uncorrected and quoted in milliseconds)

CATEGORY A. C E 	G I K B D F H J L

1 3 2 3 3 3 2 2 2 ' 	2 2 3 2

2 38 12 12 9 12 13

'3 	. 5 4 5 5 4 4 1 1 1 2 2 2

4 , 8 6 6 8 7 7 2 2 2 2 3 2

.5 4 6. 6 6 6 6 1 1 1 1 1 1

,6 N.U. N.U. 477 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U.

7 N.U. N.U. 644 400 422 347 N.U. N.U.' N.U. N.U. N.U. N.U.

8 17 15 18 17 16 16 2 2 . 	2 2 2 2

9 	' 657 92 157 91 347 370 27 24 24 N.U. 34 16

10 , 504 376 299 362 102 343 N.U. N.U. N.U. N.U. N.U. N.U.

.11 6 5 61 5 5 5 2 2 2 2 3 2

12 	" 408 612 . 	640 960 660 947 43 113 61 N.U. 195 N.U.

13 259 125 , 182 77 128 161 N.U. N.U. N.U. N.U. 9 N.U.

14 7 7': 7 7 7 6 2 2 3 2 2 3

15 	' 298 .323 344 352 337 347 ' 	270 .113 127 183 349 211

16 229 199 247 287 256 218 61 159 64 N.U. 150 '157

17 27 30 34 27 31 33 13 13 19 18 17 16

'18 	. N.U. N.U. ' 351 N.U. N.U. 315 86 95 . 	76 84 79 82

19 ' 67 63 60 73 49 58 92 90 81 83 83 83

20 	' 15 17 17 18 19 16 14 17 15 14 14 10

OVERALL 26 25 24 27 25 24 7 8 8 7 8 8

L

1

2

3

4

5

6

7

8

9

10

11

12

13.

14

15

16

17

18

19

20

2 2 2 2 2 2

92 83 84 80 83 84

73 72 72 7271 71

74 72 70 71 73 72

75 75 71 72 70 73

NU NU 85 NO NU NO

NU NU 85 85 85 85

87 86 86 86 86 85

79. 78 75 75 78 78

72 67 63 68 57 63

65 64 6363 64 63

59 63 72 70 66 71

63 51 5859 56 58

69 68 68 67 68 68

67 68 69 71 71 73

69 66 75 69 67 66

54 60 62 59 62 62

NU NU 75 NU NU 72

60 61 61 62 61 60

17 17 18 24 22 19

2 2 2 1 2 2

5 5 5 5 5 5

4 4 4 4 4 4

3 3 3. .3 3 3

5 5 5 5 5 5

NJ NJ NJ NJ NJ NJ

NJ NJ NJ NJ NJ NJ

4 4 4 4 4 4

3 3 3 NJ 5 3

NJ NJ NJ NJ NJ NJ

3 3 3 3 3 3

3 2 3 NJ 2 NJ

NJ NJ NO NJ 3 NJ

3 3 3 3 3 3

3 2 2 2 3 2

2 2 2 NJ 2 1

2 2 2 2 2 2

1 1 11 1 1

1 2 1 1 1 1

2 2 2 2 2 2

OVERALL 70 69 69 69 70 69
	

3 3 3 3 3 4

Table 4.12

FURTHER PAGING CHARACTERISTICS

(all figures are presented as percentages of all page-in requests)

PAGE FAULTS

EXP PRELOADING 1OVERALL PAGE FOUND PAGE FOUND PAGE FOUND WRITES TO SHARED
RUN TRANSFERS IN MAIN IN IN TERTIARY SECONDARY (I.E. NO

MEMORY SECONDARY MEMORY MEMORY TRANSFER)
MEMORY

A 48 30 10 18 2 33 33

C 45 30 12 17 1 33 36

E 49 30 10 19 2 33 30

G 48 31 10 19 2 33 32

I 53 30 8 20 1 33 26

K 52 30 	- 9 20 1 33 27

B 4 96 32 62 2 36 32

D 4 96 34 - 61 2 37 34

F 4 96 30 64 2 37 30

H 4 96 30 64 2 37 30

J 4 96 26 69 2 37 26

L 4 96 26 69 2 37 26

creations (two percent of all page-in requests) which

appear as page, faults for a page which is already

in main memory (i.e. a shared page). 	. .

The level of loading on the secondary

memory is shown in Table 4.13. These figures,

obtained from the Q-sampling monitor, reveal that there

was always, a substantial amount of secondary memory

unallocated and available (one and a half M-bytes of.

real drum space). Hence no use was made of the

pseudo-drum space during these runs.

The influence of 'working set

recalculations within any residency is shown in

Table 4.14. This shows that very few pages are

actually removed by this mechanism and that a large

number of working set recalculations in fact remove

no pages at all i.e. have no influence on the working

set size. The higher percentage of pages removed by

this mechanism seen in group one is caused by unwanted

pages being preloaded. This preloading wastage

i.e. pages which are preloaded but subsequently

never used, ran consistently at 25% of all pages

Table 4.13

UNALLOCATED SECONDARY MEMORY DURING EXPERIMENT RUNS

EXP MEAN MINIMUM
RUN

A 980 835

C 954 798

E 966 817

G 951 822

I 937 813

K 874 684

B 946 822

D 937 764

F NOT AVAILABLE

H 954 765

J 930 790

L 947 793

All figures presented in terms of unallocated secondary

memory pages. Any use made of the pseudo drum would be

indicated by an item dropping below 500.

Table 4.14

STROBING AND PARTIAL PRELOAD BEHAVIOUR

NORMAL STROBES EXTRA-STROBES PROCESS LOADING

EXP (%OF EXTRA -.'\ % OF (OFPAI~'
RUN STROBES : STROBES NOT RESIDENCIES STROBES NOT PAGE-IN RESIDENCIES PRELOADS

RESIDENCIES REMOVING CONTAINING REMOVING REQUESTS STARTING SUSPENDED
* ANY PAGES AN EXTRA- ANY PAGES REMOVED BY 	WITH

STROBE STROBING PARTIAL
PRELOADS

A 22 : 	100 40 25 5 9 29 20

C 23 100 39 27 5 10 26 16

E 23 100 39 25 5 9 26 26

G 26 100 39 26 5 9 24 26

I 23 100 40 26 4 9 22 45

K 22 : 	100 39 26 4 10 22 42

B 22 : 	100 49 4 100 1 71 27

D 22 : 	100 50 5 100 1 71 22

F 23 100 54 5 100 1 75 28

H 26 100 51 5 100 1 73 25

J 23 100 52 4 100 1 73 36

L 21 : 	100 51 4 100 1 72 33

* This is not necessarily the same as the percentage of residencies containing a normal.

strobe as it is likely that certain residencies will contain several strobes

112

which are preloaded. The advantages of the

EXTRA-STROBE mechanism are shown in the group one runs

where 95% of all EXTRA-STROBES do remove pages

(unwanted preload pages). As would be expected, none

of the EXTRA-STROBES in the group two runs remove any

pages. The percentage of residencies which started

with a partial preload is also shown, as is the

percentage of those partial preloads which are

subsequently suspended because the process tried to

use more than the partial main memory allowance. The

percentage of suspensions shows a tendency to increase

as the main memory available decreases.

Conclusion

It is hoped that the reproducibility

of the standard workload at the level of the resident

supervisor has been shown and that the workload

existing during the. experiment adequately quantified.

The processes involved may be noted to have quite large

working sets (mean of 25 pages) and use little CPU

time during any residency. Studies of the level of

sharing on the main memory of EMAS have shown that

virtually no sharing of user programmes or data takes

place at this level, but that all sharing comes from

DIRECTOR and subsystem code and common tables (file

indices). Both DIRECTOR and subsystem will also

require further space for private data and working

variables. This indicates that a high proportion of

the contents of the working sets is made up of pages

which are essentially system components so this large

working set size is to a certain extent a consequence

of the system structure

The difference in the category

scheduling between the two different algorithms

would also appear to have a distinct effect on the

number of residencies required by a process in

carrying out any piece of work. The algorithm, not

employing working set replacement, requires a

greater number of residencies per interaction, so

the differences in performance observed between the

two algorithms is not due solely to the paging-in

mechanism.

CPU Time Utilisation

The CPU time spent in each of the major

states during the experiment runs is presented in

Table 5.1. Rather than attempt adjustment to the

3 x 2 x c factorial analysis to compensate for the loss

of data incurred by the system crash at the end of

run 'F', this data is considered as though from a

2 x 2 x 2 factorial experiment (ignoring runs E, F, G

and H - i.e. those with main memory at a level of

3/4 M-bytes). This data is analysed using the standard

analysisof variance technique (Anova) for such experiments

(cf. Appendix) [Cochran and Cox 1975, Johnstone and

Leone 1964] calculated using Yates Algorithm

[Yates 19371. This identifies the effect each of the

main factors has upon the system performance and this

Table 5.1

PERCENTAGE CPU TIME SPENT IN EACH OF THE MAJOR STATES

RUN USER SUPERVISOR IDLE

A 543 427 30

B 51 463 27

C 529 383 88

D 464 39.5 141

-B 523 417 5.9

F NOT AVAILABLE

G 519 358 12-3

H 417 37.7 206

I 493 390 117

J 418 405 176

K 44'1 337 223

L 375 34.3 283 	 •

115

effect is quantified for each in terms of the

expected change in the performance caused when that

factor is present at level two compared with the

performance when the factor was at level one. As no

replication of experiment' runs took place an estimate

must be obtained of the experimental error present in

the results. This estimate is based upon the effect

attributed to the higher order factors [Mendenhall 1968,

Johnstone and Leone 19641, these higher order effects

represent the interactions between major factors. The

ratio of the mean squares of each factor and the error

estimate is used in a simple F-test {Johnstone and Leone

19641 to test the significance of the average effect due

to the major factors upon the overall system performance.

The percentage of the CPU time obtained

by user processes is considered in Table 5.2. This shows

the greatest contributing factor to be the change in

the level of main memory - a change of 1/4 M-byte of

memory causing eight percent more time to be spent in

user state - followed by the software algorithm - a

change of six percent - and the least influence to have

been caused by the number of drum channels - a difference

of four percent. The size of main memory is also the

major contributing factor in reducing the amount of

time absorbed by the idle state (Table 5.3) - nearly

1.376 of CPU time being added to the idle time by

SOURCE AVERAGE SUM OF DEGREES MEAN MEAN SQUARE
• EFFECT SQUARES OF SQUARE RATIO

• FREEDOM

MAIN -800. 12784 1 12784 7864
MEMORY

DRUM -389 3019 1 3019 1857 **
CHANNELS

SOFTWARE -597 7116 1 7116 4378
ALGORITHM

2nd ORDER EFFECTS

MEMORY X -091 164 1)
CHANNEL)

MEMORY X -104 214 1)
ALGORITHM

CHANNEL -058 066 1
ALGORITHM) 4 163

3rd ORDER EFFECT
)
)

MEMORY X 102 2-06
)

1)
CHANNEL X)
ALGORITHM)

TOTAL 23568 7

FACTOR 	 LEVEL 1 	LEVEL 2

MAIN MEMORY 	 7/8 M 	518Th
DRUM CHANNELS 	2 	 1

SOFTWARE ALGORITHM 	WSR 	 PDP

** 	SIGNIFICANT AT 975% level (by F - test)

SIGNIFICANT AT 99 	% level (by F - test)

SIGNIFICANT AT 99.9% level (by F - test)

Table 5.3

ANOVA Table for the Percentage of Time Spent in the Idle State

(Mean 13.56)

SOURCE 	AVERAGE SUM OF DEGREES MEAN MEAN SQUARE
EFFECT SQUARES OF SQUARE RATIO

FREEDOM

MAIN 	-1283 32896 1 32896 8453
MEMORY

DRUM 	- 961 184-70 1 18470 4746 ***
CHANNELS

SOFTWARE 	4'23 3579 1 3579 920 *
ALGORITHM

2nd ORDER EFFECTS

MEMORY X 	099 194 1)
CHANNELS)

MEMORY X 	1q71 581 1
ALGORITHM

CHANNELS X 	1,141 398 1)
ALGORITHM) 4

)

1557

3rd ORDER EFFECT)

MEMORY X 	- 139 384 1)
CHANNEL X)
ALGORITHM)

TOTAL 56502 7

FACTOR 	 LEVEL 1 	LEVEL 2

MAIN MEMORY 	 7/8 M 	5/3 M

DRUM CHANNELS 	 2 	 1

SOFTWARE ALGORITHM 	WSR 	 PDP

SIGNIFICANT AT 99.9576 level (by F - test)

SIGNIFICANT AT 99 	% level (by F - test)

* 	SIGNIFICANT AT 95 	% level (by F 	-. test)

would result in just over four percent of the total

CPU time being wasted in idle time.

One of the very striking features of

the CPU utilisation data is the very large amount of

CPU time being taken up by the system itself. EMAS

would not appear to be unique in this respect

[Sekino 1972, Bard 1971], in fact its supervisor

overhead, would appear to be lower than most systems

of this class [Lynch 19751, though results on

overhead of this nature are, perhaps understandably,

not given great publicity. Of the factors covered by

the experiment the removal of one of the two drum

channels caused a drop in overhead of 577o (Table 5.4) -

slightly more than the drop in user state CPU of just

under four percent. Moving down a level in main

memory causes a drop of just under five percent of the

total time being spent in supervisor time, with a change

in user state .of eight percent. Meanwhile, using

software algorithm at level two (PDP) causes 17%

more of the time to go into the supervisor with a loss

of user state of just under six percent, so the

algorithm with WSR gives less time in supervisor and

Table 5.4 .• .

ANOVA Table for the Percentage of Time Spent in the

Supervisor State

(Mean 39-27) 	.

SOURCE. 	AVERAGE SUM OF DEGREES 	MEAN MEAN SQUARE
EFFECT SQUARES OF SQUARE RATIO

FREEDOM

MAIN 	. -485 4700 1 4700 7131
MEMORY 	..

DRUM 	-57O 6492 1 6492 9851 	**
CHANNELS

SOFTWARE 	171 587 1 587 8•90 *
ALGORITHM

2nd ORDER EFFECTS .

MEMORY X 	010 002 1)
CHANNELS .)

MEMORY X 	-065 084 1)

ALGORITHM 4

CHANNEL X -0'86 1-47)
ALGORITHM)

3rd ORDER EFFECT .
)
)

MEMORY X 	039 031 1
)
)

CHANNEL X)
ALGORITHM

TOTAL 12041 7

FACTOR . LEVEL 1 LEVEL 2

MAIN MEMORY 7/8 M 5/. 	M

DRUM CHANNELS 2 1

SOFTWARE ALGORITHM

SIGNIFICANT AT 99.9% level (by F - test)

SIGNIFICANT AT 99 	% level (by F - test)

* 	SIGNIFICANT AT 95 	% level (by F - test)

absorb this large amount of CPU time are shown in

Table 5.5. It can easily be seen that the major

contributor to the supervisor time is the organising

of drum transfers i.e. the queueing of requests in the

sector queues; removing requests from these queues and

constructing channel command chains; fielding interl'upts

at the completion of chains or after the completion

of a demand page read (a programme controlled

inte1upt - PCI) and the sending of replies to the

appropriate supervisor processes. Splitting this time

into two major components - fielding requests and

fielding interupts (Table 5.6) it may be seen that the

size of memory has very little effect, and that the

effect of going from two drum channels to one is to

lower the amount of time spent in fielding requests by

about 35%, but to increase the time spent fielding

interupts by about two percent. This is probably due

to the fact that in the two channel version channel -

chains are started more often on the arrival of

requests (i.e. the requests find a channel free), whilst

in the one channel case the lengths of channel chains

are longer (Table 5.7) and channel chains are more

likely to be started at the end of a previous channel

chain i.e. when a channel chain completes it is more

Table 5.5

Percentage of Supervisor CPU Time Taken up by Major Functions

EXP DRUM DISC CORE DRUM CONTEXT PROCESS SVC COMMUNI- DEVICE MAG
RUN TRANSFERS TRANSFERS LOADING LOADING SWITCHING CONTROL PARAMETER CATIONS POLLING TAPES

PASSING

A 39-1 68 330 31 67 16 3.7 .4.4 01 27

C 376 69 331 3.3 66 17 3.9 48 01 28

E 394 64 324 31 6-7 17 38 4.5 0-1 2-5

G 378 71. 326 3.3 6.8 • 16 3.7 4-6 01 2-8

I 	• 39-5 61 	• 324 30 67 15 3.7 4-6 0-3 25

K 39-0 6-2 322 30 6-8 1-6 36 4.9 03 25

B 421 54 336 24 72 13 29 36 01 22

D 400 55 349 26 71 14 30 38 01 22

.F NO 	T ••• 	AV.A 1 	L A 	BL E

• 	

. 	 H. : 404 	• 	• 52 34.5 24 7.3 1-3 3-0 37 0-3 2-0

J 429 50 336 2-4 6-8 12 • 28 3.4 0-3 20

L. 412 47 344 2-2 7.3 1-2 28 3.7 03 17

Table 5.6

Percentage of Supervisor Time Absorbed by Drum Transfers

ANOVA Table Fielding Transfer Requests Mean 21-94

SOURCE 	AVERAGE SUM OF 	DEGREES MEAN MEAN SQUARE
EFFECT SQUARES 	OF SQUARE 	RATIO

FREEDOM

MAIN 073 105 1 105 2-67
MEMORY

DRUM 348 2415 1 2415 6134
CHANNELS

SOFTWARE 158 4-96 1 496 1260 **
ALGORITHM

MEMORY X 008 001 1)
CHANNELS)
MEMORY X 003 0.001 1
ALGORITHM

CHANNELS X-088 153 1) 4 046
ALGORITHM)
MEMORY X -013 003 .)
cI.s x
ALGORITHM

TOTAL 3174 7

 Fielding Channel Interupts Mean 1816

MAIN 028 015 1 015 2-37
MEMORY

DRUM 2-18 946 1 946 14841 ****
CHANNELS

SOFTWARE 1-28 325 1 325 5100
ALGOR I THM

MEMORY X 0-13 013 1)
CHANNELS)
MEMORY X 003 0.001 1)
ALGORITHM

CHANNELS X 033 021 1) 4 014
ALGORITHM)
MEMORY X 008 0.01 1)
CHANNEL X)
ALGORITHM

TOTAL 1312 7

SIGNIFICANT AT 999575 level
SIGNIFICANT AT 99 	% level

** 	SIGNIFICANT AT 975% level

C 	35 	 390)
)

G 	32 	 376) 	1 CHANNEL + WSR

)
K 	31 	 364)

B 	16 	 627)
)

F 	NOT AVAILABLE) 2 CHANNELS + PDP
)

J 	15 	 55.7)

D 	20 	 466)'
)

H 	19 	 456) 	1 CHANNEL + PDP

)
L 	1•7 	 436)

shorter channel claims and more interupts (as there is

an interupt at the end of each demand page read).

Indeed, if the throughput achieved on the drum is

considered (Table 5.8), it can be seen that the WSR

software algorithm has an average transfer rate of

some ten pages per second more than the PDP algorithm

for a lower overhead. Having more drum channels or

main memory also show increases in throughput of

around 9 and 8 pages per second respectively.

The other supervisor function which

absorbs a considerable amount of CPU time is that of

main memory loading. The subfunctions involved in

this are:-

Electing processes to the multiprogramming set

and organising preloading transfers.

Handling page faults.

Recalculating working sets, removing processes

from memory and organising transfers out.

SOFTWARE -995 	19800
ALGORITHM

2-FACTOR INTERACTIONS

MEMORY X -0-55 	061
CHANNELS

MEMORY X -115 	2-65
ALGORITHM

CHANNELS X-03 	018
ALGORITHM

3-FACTOR INTERACTION

MEMORY X +05 	05
CHANNEL X
ALGORITHM

1 	19800 201-52 ****

ANOVA Table

Mean Drum Transfer Rate per Second

Mean = 689 transfers/second

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MAIN -820 134a48 1 13448 13687
MEMORY

DRUM 	-915 	16744 	1 	16744 170-42 ****
CHANNELS

TOTAL 	 50386

FACTOR 	 LEVEL 1 	LEVEL 2

MAIN MEMORY 	 7/8 M-bytes 510 M-bytes
DRUM CHANNELS 	 2 	 1

SOFTWARE ALGORITHM 	WSR 	 PDP

SIGNIFICANT AT 999% level (F - test)

shows that the WSR algorithm spends much less time in

handling page faults (Table 5.9) but more time in

subfunction (a) - caused by organising preloading

transfers - and more time.in subfunction (b) organising

page removals from core (a consequence of loading more

pages). The average effect due to the software

algorithm is an order of magnitude greater than that

due to the two other factors. The effect of main

memory size is the next significant factor in the

first three subfunctions, with subfunction (c)

appearing to be the most sensitive to this factor.

Indeed, subfunction (c) is the only one in which the

effect of the number of channels has any significant

effect. The percentage of supervisor time in handling

replies to transfer requests does not show any

significant variation (above 90%) with any of the

major factors - it will, however, vary in terms of the

percentage of total CPU time in just the same way as

the mean transfer rate through the drum.

The other two functions absorbing a

reasonable amount of the time (Table 5.10) are context

switching and disc transfer organisation. Context

Table 5.9

Subfunctions of Main Memory Loading as a Percentage of
Total Supervisor Time

MAJOR FACTORS - AVERAGE EFFECTS

SUB FUNCTION' MEAN 	MEMORY 	CHANNELS ALGORITHM

MPS 	241% 	-018 + 	-013 	-348 **
ELECTION

PAGE 	11-65% 	-041 * 	025 	7-85 ****
FAULTS

PAGE 	7'34% 	-038 	0-18 ** 	-2-63 ****
REMOVAL

TRANSFER 12•00% 	0.3 	-015 	-03
REPLIES

**** 	SIGNIFICANT AT 999% level
** 	SIGNIFICANT AT 975% level
* 	SIGNIFICANT AT 95 % level

+ 	SIGNIFICANT AT 90 % level

Table 5.10

Significant Factors in Other Supervisor Functions

(Judged as Percentage of Total Supervisor Time)

MAJOR FACTORS - AVERAGE EFFECTS

FUNCTION 	MEAN 	MEMORY • CHANNELS ALGORITHM

Context 	69% 	-01 	-01 	-0-4 *
Switching

Disc 	583 	-065 	-0.1 	365
Transfers

not found in main memory, and there are 	fewer

page faults under the WSR scheme. The percentage of

supervisor time involved in organising disc transfers

under the WSR scheme is larger than under the PDP

algorithm. This is probably due to the fact that

processes are getting through more work under the

WSR scheme and hence require more disc transfers,

caused by accessing more files (which will be page

faulted-in from disc) and pages which lie unused on

drum being moved back to disc by the drum working set

algorithms.

If one was to try to identify why

time-shared, virtual memory systems did not live up to

the original hopes of their constructors, that is, hopes

of several hundred terminals simultaneously active, it

was probably caused by the size of the working sets being

much larger than anticipated - it had been originally

conjectured that EMAS processes would have working

sets of around eight pages [Whitfield 19721, whereas

thirty two pages has become the norm. This results

in lower multiprogramming levels and many more transfers

per process residency than intended. Combined with

the unsuitability of the IBM-360 type of channel

this resulted in the very high percentage of time the

expensive CPU is required to spend in supervisor

state, thus lowering its availability to user

processes. Any designer producing a powerful central

processor intended to be used in a t'ime shared, virtual

memory environment would be well advised to consider

ways of distributing the supervisor functions to less

powerful special purpose processors (perhaps with

order •codes enabling fast table searching, which

constitutes so much of supervisor work),, and leave the

main processor free only to do context switches and

execute user programmes.

The mean levels of multiprogramming

observed on the various experiment runs are shown in

Table 5.11A. Processes are considered to be in the

multiprogramming set from when they are first given

a main memory allocation (and begin to preload at

least their master page) until all pages belonging to

that process have been removed from main memory. As

these results (and most of the subsequent results in

this chapter) are derived from the event trace data,

the data is analysed as though for a 3 x 2 x 2

factorial experiment, again using a standard ANOVA

technique and an algorithm suggested by Yates

[Yates 19371. As would be expected, the greatest effect

(B).ANOVA Table for Mean Multiprogramming Level (Mean = 43)

SOURCE 	AVERAGE SUM OF DEGREES. MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MEMORY
7/8 	3/4 	-085)
3/4 	5/8 	-077) 1•75 2 087 	50405
7/8 	5/8 	-162)

CHANNELS 	054 030 1 030

ALGORITHM 	012 001 1 0.01 	809 **

HIGH ORDER 001 7 0002
FACTORS
(ERROR ESTIMATE)

TOTAL 2•06 11

SIGNIFICANT AT 999% level (F - test)

** 	SIGNIFICANT AT 975% level (F - test)

the definition of when a process is in the

multiprogramming set. The time it takes to remove a

process will be longer in the one channel case (results

given later). Whilst this removal is taking place, a

further process may be added to the MPS using pages

freed by the process being removed but not requiring

transfer out (about 2/3 of the removed process'

working set). The overlap of these two processes will

be longer in the single channel case due to longer

transfer times, and the mean multiprogramming level

will show this increase. The PDP algorithm also shows

a higher multiprogramming level than the WSR algorithm

due to the higher proportion of smaller memory

categories observed in that algorithm's workload.

Response Times

The performance of the system as observed

by the user i.e. the response time, is now considered

(Table 5.12A). The response time is defined as the

time the process spends in the awake state and this

is derived from the event trace data. The factor

having the greatest influence upon the mean response

EXPERIMENT RUN B D F H J L

RESPONSE TINE 1174 175 1863 1865 2201 2416

(B) ANOVA Table for Response Times (Mean = 14.29)

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MEMORY
7/8 3/4 305
3/4 	5/8 	357) 29•34 2 1467 	1864
7/8 	5/8 	663)

CHANNELS 	236 5•56 1 5•56 	7•07 *

ALGORITHM 899 8087 1 8087 	10273

HIGH ORDER 551 7 079
FACTORS
(ERROR ESTIMATE)

TOTAL 12128 11

SIGNIFICANT AT 999% level (F - test)

SIGNIFICANT AT 99 	% level (F - test)

* 	SIGNIFICANT AT 95 	% level (F - test)

size, with some three seconds being added to the

response time when moving from 7/8 M-bytes to

3/4 M-bytes, and some 35 seconds when moving from

3/4 to 5/8 M-bytes. The lowest contribution to the

response time seems to come from the number of drum

channels, the removal of one of the two channels causing

an increase in response time of just under 25 seconds.

The contributing factors to these

response times are shown in Table 5.13 and 5.14 in

terms of the expected wait time per entry to each

significant station in the Process Management Model,

and the expected number of times per interaction that

a process would enter any of these stations. These

figures are shown again in Table 5.15 normalised with

respect to the CPU times. These stretch factors show

the expected wait times encountered in obtaining a

unit quantity of CPU time, and the major areas from

which this wait time arises: the RUN queues

(awaiting allocation of CPU), the CORE queues

(awaiting allocation of main memory), paging into main

memory (preloading and page faulting) and paging out

of memory (writing back to the drum). As with the

Table 5.13

Expected Wait Time per Entry in Each Major Station (in milliseconds)

EXP ASQ CQ1 CQ2 CQ3 CQ4 CQ5 PREL SUSP RQ1 RQ2 CPU PFLT PTAKE ATQ
RUN

192 3058

437 3715

199 3041

399 3643

198 2900

388 2765

A 2 1405 3013 4326 6310 42788 202 018 21 105 160 38

C 2 1238 3431 4619 5194 51745 381 013 20 82 17•3 5

E 2 2156 4517 6621 9166 49625 212 0-16 18 63 15-6 36

G 3 1704 3907 5495 7726 64665 364 016 15 56 15-9 49

I 2 2578 6611 8101 9273 81625 218 016 12 29 156 35

K 2 .2960 8607 10934 13233 129409 366 000 11 24 16-1 47

B .2 2355 3662 15060 6888 69848 65 000 13 42

2 3687 5882 18031 9135 30608 122 0-15 13 32

F 2 4481 6877 24840 6703 33855 66 o-18 11 26

H 2 3566 5614 39119 11218 32187 113 0-18 10 21

j 1 6057 8628 26136 7022 28442 67 0-16 9 13

L. 2 5851 9385 41715 9835 38197 114 0-18 6 11

57 27 118 2598

65 44 214 2522

61 30 115 2801

6-1 42 200 2992

64 27 112 2372

62 39 184 2242

Table 5.14

Mean Number of Entries to Each Station per Interaction

EX 	ASO Col CO2 CO3 C04 CQ5 PREL SUSP RQ1 RQ2 CPU PFLT PTAKE ATQ
RUN

A 009 080 051 011 003 004 15 009 123 84 207 151 15

C 0'09 078, 054 011 003 004 15 007 125 70 19•5 161 1•5

B 009 082 049 011 003 004 15 011 132 78 210 158 15

G 010 082 051 013 003 005 15 010 136 81 217 167 15

I 009 081 051 011 003 004 15 015 137 71 208 156 15

K 009 082 051 011 003 004 15 014 137 63 200 157 15

B 011 132 061 016 003 002 2.1 0•4 37•3 171 544 524 21

D 011 132 062 019 003 003 21 04 368 139. 507 522 21

F 010 137 059 017 003 003 21 05 385 147 532 526 21

H 010 136 063 019 003 003 21 04 397 126 523 539 21

J 010134057018003003 21 06 39912552451521

L 009 137 054 018 003 002 21 05 393 105 498 506 21

009

009

009

0•11

0•10

009

0•11

0•11

0•11

011

0•10

0•10

Table 5.15

Stretch Factors

EXP OVERALL DUE TO DUE TO DUE TO DUE TO
RUN STRETCH RUN CORE PAGING PAGING

FACTOR QUEUES QUEUES IN OUT

A 16•99 3•46 1004 264 086

C 25-89 2-47 17-01 4-47 194

E 2763 2-27 2173 272 091

G 29-57 193 2174 411 1-79

I 3548 1-19 30-68 2-70 091

K 48-96 097 42•18 402 179

B 4081 387 3113 500 081

D 51-64 283 3952 789 140

F 56-19 260 4754 528 077

H 6397 212 5270 7.79 136

J 62-34 1-57 5538 458 071

L 7949 126 6983 7-15 125

the size of main memory, and least influence caused by

the number of drum channels.

The time spent in the Run Queues

(Table 5.17) is influenced most by the size of main

memory, as would be expected, the larger main memory

sizes (with larger multiprogramming levels) cause a

large proportion of wait time to be spent in the

Run Queues. Next in order of influence is the

number of channels available, with more time being spent

in the Run Queues in the two channel case (despite the

fact that the one channel case gives a higher level

of multiprogramming) - due to the fact that those

processes in the multiprogramming set are spending

less of their time in the page wait state. The least

influence is exerted by the algorithm, with the PDP

algorithm delayed more in the Run Queues - probably

caused by the higher level of multiprogramming seen

in that case.

The component with the greatest

influence, by almost an order of magnitude, upon the

Stretch Factor is the time spent in the Core Queues

(Table 5.18). This is most heavily influenced by the

algorithm used, with the FDP algorithm spending much

Table 5.16

ANOVA Table - Stretch Factors 	(Mean .= 44.91)

SOURCE 	AVERAGE SUM OF DEGREES MEAN MEAN SQUARE
EFFECT SQUARES OF SQUARE RATIO

FREEDOM

MEMORY
7/8 	3/4 	+10-51)
3/4 	5/8 	+1223) 34525 2 17263 4022
7/8 	5/8 	+22•73)
CHANNELS 	1001 10027 1 10027 2336

ALGORITHM 28•32 802•02 1 80202 18686

HIGH ORDER 30-05 7 429
FACTORS
(ERROR ESTIMATE)

TOTAL 1277-57. 11

Table 5.17

ANOVA Table - Run Queue Component of Stretch Factor (Mean = 221)

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MEMORY
7/8 3/4 -093)
3/4 5/8 -098) 243 	2 	122 	.75-67
7/8 5/8 -191)

CHANNELS -0-56 032 	1 	032 	1965

ALGORITHM 033 0•11 	1 	011 	672

HIGH ORDER 	011 	7 	0016
FACTORS 	 .
(ERROR ESTIMATE)

TOTAL 	 297 	11

SIGNIFICANT AT 999% level (F - test)

SIGNIFICANT AT 99 % level (F - test)

* 	SIGNIFICANT AT 95 % level (F - test)

Table 5.18

ANOVA Table - Core Queue Component Of Stretch Factor

(Mean = 3662)

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MEMORY
7/8 3/4 1150
3/4 	5/8 	1359) 42060 2 21030 	5149
7/8 	5/8 	2509)

CHANNELS 	775 59.99 1 599-85 	1469

ALGORITHM 2545 64780 1 64780 	15861

HIGH ORDER 2859 7 408
FACTORS
(ERROR ESTIMATE)

TOTAL 115697 11

Table 519

ANOVA Table - To Main Memory Paging Component of Stretch Factor

(Mean = 486.)

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MEMORY
7/8 3/4 -002)
3/4 5/8 -036)
7/8 5/8 -038)

CHANNELS 208

ALGORITHM 284

HIGH ORDER
FACTORS
(ERROR ESTIMATE)

TOTAL

012 2 06

434 1 4•34

8O7 1 284

043 7 -06

1297 	11

1•00

7023 ****

13041 ****

SIGNIFICANT AT 999% level (F - test)
*** 	SIGNIFICANT AT 99 	% level (F - test)

that required by the WSR algorithm. Next most

influential is the size of main memory, with small

memory sizes spending more time in the Core Queues.

Least influence is again exerted by the number of

drum channels, with the single channel case spending

more time in the Core Queues than the two channel one.

After the time spent in the Core Queues

the next most influential component is the time spent

in paging-in to core (Table 5.19). Again, the greatest

influence on this component is the algorithm used, with

the PD? algorithm (caused by its different paging-in

discipline and the extra 05 residencies per
\

interaction) spending much more time paging-in than

the WSR algorithm. The number of channels available

is next most influential, with less time being spent in

paging-in when two channels are available. The size

of main memory does not, however, appear to have any

significant effect on the time spent on paging-in to

main memory.

The least influential component of

the Stretch Factor is the time spent paging out of

126

main memory (Table 5.20). Again, the size of main

memory is found to have no significant effect, whilst

the most influence seems to be exerted by the number

of channels with greater delay times being incurred

by single channel configurations. The effect of

algorithm shows that less time is spent in paging out

by the PDP algorithms than the WSR, despite the fact

that more pages are written back per interaction.

Paging Behaviour

The mean effective page wait times in

each type of paging is shown in Table 5.21. This

shows the expected delay time incurred by a process

from the time a request is issued on its behalf to

have a page transferred, to when that page arrives in

main memory, and the process is notified that the page

is ready for it to use.

In the case of group one experiment runs

(WSR algorithm) it can be observed that the mean

delay time for the two classes of paging which involve

bulk transfers (i.e. several -transfer requests for a

process being fired off at the same time) - preloading

and write back - are both much shorter than page faults

coming from the drum, the delay time for a preloading

page transfer being about 1/3 of the demand page fault

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MEMORY
7/8 3/4 -005
3/4 	5/8 	-004) 0005 2 0003 	043
7/8 	5/8 	-009)

CHANNELS 	076 0.10 1 O•lO 	10038

ALGORITHM -032 0•58 1 058 	1759

HIGH ORDER 004 7 0006
FACTORS
(ERROR ESTIMATE)

TOTAL 	 073 	11

SIGNIFICANT AT THE 999% level (F - test)

SIGNIFICANT AT THE 99 	% level (F - test)

PAGE FAULT
(ON DISC)

263

238

216

193

19

199

PAGE FAULT
(IN CORE)

2

5

3

5

3

5

WRITE
TRANSFERS

18

41

19

37

18

37

ALL
PAGE FAULTS

38

58

36

49 	-

35

47

Table 5. 21

Mean Delay Time per Page TransfeN'ed 	(in milliseconds)

EXP PRELOADING PAGE FAULT
RUN TRANSFERS (ON DRUM)

A 12 37

C 23 78

E 12 37

G. 21 62

'I. 11 . 35

20 54

B 65 36

D 	. 121 64

F 65 36

113 .58

J 67 33

L 113 . 	50 '

194 1 12 27

206 1 23 44

302 1 12 30

164 1 21 42

172 . 	 1 12 27

160 2 20 39

127

time, and write backs about 1/2 of the time for the

demand page. This is despite the fact that drum

transfer requests are ordered in the four sector

queues in such a way that demand paging reads always

have priority over prepaging reads, which in turn

always have priority over writes (there is also a

further priority ordering in terms of the physical

drum which the request is destined for). Demand

paging reads present in a channel chain containing

other transfers after it will also cause a PCI to

be generated when they complete, and thus the

process will be notified of the page's arrival

earlier than if it had to wait for the whole channel

chain to complete (as is the case with prepaging and

write back transfers). The effect of this priority

scheme can be seen in the case of preloading

transfers (for the master page) under the PD?

algorithm. The delay time observed in the case of

page faults for a page which is already in main memory

is caused by pages which are owned by another process,

and have a page frame allocated, but are still being

transferred. Thus the page faulting process has to

wait until this transfer completes.

This advantage of 'bulk transfers'

over single transfers in terms of delay time per page

is caused by the characteristics of the secondary

memory device -,the drum, through which the

overwhelming majority of the paging traffic passes.

There is no position sensing on the drums used on the

configurations measured. There will always, then, be a

latency delay at the start of any drum channel chain

with a mean of half a drum revolution (10 milliseconds)

confirmed by measurements taken on these devices

[Adams, Gelenbe and Vicard 19771. After the latency

the channel chain will be executed transferring a page

each time there is a request in the chain corresponding

to the drum sector under the read heads on the device -

i.e. a request corresponding to the current sector

window. There were up to eight sector windows covered

by any drum channel chain during the experiment

i.e. when a chain was being constructed the top request

was removed from each sector queue in turn, twice

(Figure 5.1). When a bulk transfer takes place the

sector queues will be longer when the channel chain is

constructed and there will be more transfers in each

chain (Table 5.7) fewer sector windows will be 'lost'

by having no transfer request corresponding to them

and more transfers will take place for each latency

delay.

READ/WRITE
HEADS

A B C D
SECTOR QUEUES

X 	demand page reads

+ 	prepage reads

o 	write backs

CHANNEL CHAIN EXECUTION

LATENCY DELAY 	[A I B I c 1 D I A I B I c I D I

SECTOR WINDOWS

PAGE TRANSFERRED ON THAT SECTOR
IF REQUEST EXISTS IN CHAIN

TIME

129

Bulk Transfer Times

The ANOVA table for the mean effective

page wait in transferring a preloaded page reveals that

this delay time is not significantly influenced by the

size of main memory (Table 5.22) but is very sensitive

to the algorithm used - this is to be expected as

preloading transfers do not, in fact, involve bulk

transfers in the case of the PDP algorithms, where only

a single page (the master page) is requested at a time.

The number of channels also has an impact, the addition

of a second channel causing a reduction of nearly

30 milliseconds per page. The Other form of paging

involving bulk transfers is that of page writes back to

the drum when a process is being removed from main

memory (an insignificant number of transfers are

generated by strobing). Unlike preloading transfers

writes back to drum take place as bulk transfers under

both algorithms. The greatest impact upon this delay

time is caused' by the number of channels available

with the removal of a channel adding an average of

14•5 milliseconds to the expected wait time per page

(Table 5.23). The PDP algorithm is also found .to have

an expected delay time some 115 seconds lower than

the WSR algorithm. The main cause of this is probably

not so much the fact that fewer pages per residency

are written back by this algorithm, but the fact that

MEMORY
7/8 	3/4 	-25)
3/4 	5/8 	0) 5 2 28 	005
7/8 	3/4 	-25)
CHANNELS 	298 8900 1 8900 	14-9 **

ALGORITHM 742 55007 1 55007 	921 ****

HIGH ORDER 4183 7 598
FACTORS
(ERROR ESTIMATE)

TOTAL 6814-3 11

Table 5.23

ANOVA Table for Mean Effective Page Wait Time (in milliseconds)

per Write Transfer (Mean = 22.5)

SOURCE 	AVERAGE SUM OF DEGREES MEAN MEAN SQUARE
EFFECT SQUARES OF SQUARE RATIO

FREEDOM

MEMORY
7/8 	3/4 	- 13)
3/4 	5/8 	- 05) 22 2 11 0-2
7/8 	3/4 	- 18)

CHANNELS 	147 215-1 1 2151 476

ALGORITHM -11•7 1361 1 1361 301

HIGH ORDER 316 7 45
FACTORS
(ERROR ESTIMATE)

TOTAL
	

3850 	11

SIGNIFICANT AT THE 999% level (F - test)

SIGNIFICANT AT THE 99 	% level (F - test)

130

there are not so many preloading transfers. When the

system is working under the WSR algorithm and a process

is removed from main memory, then the pages that this

process owns, which do not require writing back, are

released atonce (2/3 of the working set) and the

write-back requests issued for those which do. It is.

quite possible that the pages released immediately are

adequate to allow another process to enter the MPS

and a set of preload reads will be issued (within about

10 milliseconds of the set of write requests). These

preload requests will arrive whilst some, if not all, of

the write requests are still in the sector queues, and

will take precedence over them, thus increasing the

average write-back time. Under the PDP algorithm

when a process is removed from main memory a similar

thing will happen, and some pages will be released

whilst a set of write requests will be fired off.

Any process entering.the MPS at that time will issue

a single preloading request (for the master page) which

will still take precedence over the writes.. The

interference caused to the leaving process, to the

loading process will thus be much less. It may also

be noted from Table 5.21 that the mean delay time for.

writes back under the PDP algorithm correspond very

closely to the mean delay time for preloads under the

WSR algorithm.

The delay time incurred in page faulting

a page in from the drum is found to be sensitive to the

size of main memory (Table 5.24) which may be explained

by the fact that the larger memory sizes (which have

longer delay times) also have higher drum transfer

rates and as is seen later the drum page fault time is

very sensitive to the paging rate. This page faulting

time is, however, not significantly influenced by the

algorithm (perhaps proving the worth of the priority

given . to demanded pages in the sector queues), but is

greatly influenced by the number of channels available

with a lengthening of the wait time of around 25

inillisecondsbeing experienced when one of the two

channels is removed. The time spent awaiting page

faults which have to be transferred from the disc does

not seem to be consistently influenced by any of the

major factors included in the experiment in any

significant way (Table 5.25). The small amount of time

spent awaiting page faults to 'pages in main memory'

is not significantly influenced by the size of main

memory (Table 5.26) but is most sensitive to the

algorithm used, with the PDP algorithm causing a delay

of 2•8 milliseconds less than the WSR, due probably

to the fact that under that algorithm the shared page

which is being transferred-in is one of a set of

MEMORY
7/8 3/4 - 5.5
3/4 	5/8 	- 53) 77-1 2 38-5 	40 +
7/8 	5/8 	-108)

CHANNELS 	253 6418 1 6418 	668

ALGORITHM - 43 188 1 188 	20

HIGH ORDER 67•3 7 96
FACTORS
(ERROR ESTIMATE)

TOTAL 804-9 11

Table 5.25

ANOVA Table for Mean Effective Page Wait Time (in milliseconds)

per Page, Page Faulted from Disc 	(Mean = 210-5)

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MEMORY
7/8 3/4 - 65
3/4 	5/8 	-31-3) 1086-2 2 543-1 1-1
7/8 	5/8 	-37-8)

CHANNELS 	-343 1178-8 1 11788 2-311

ALGORITHM -217 4694 1 4694 09

HIGH ORDER 3569-9
0

5100
FACTORS
(ERROR ESTIMATE)

TOTAL 6304-1 11

SIGNIFICANT AT THE 99975 level (F - test)

+ 	SIGNIFICANT AT THE 90 	% level (F - test)

Table 5.26

ANOVA Table for Mean Effective Page Wait Time (in milliseconds)

per Page, Page Faulted in Core 	(Mean = 25)

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MEMORY
7/8 3/4 03
3/4 	5/8 	03) 02 2 01 	05
7/8 	5/8 	05)

CHANNELS 	13 1-8 1 18 	97 **

ALGORITHM -27 71 1 71 	390

HIGH ORDER 13 7 0-2
FACTORS
(ERROR ESTIMATE)

TOTAL 103 11

Table 5.28

ANOVA Table for the Average Throughput - Interactions

Completing per Second 	(Mean = 1.23)

SOURCE 	AVERAGE SUM OF. DEGREES MEAN 	MEAN SQUARE
EFFECT SQUARES OF 	SQUARE RATIO

FREEDOM

MEMORY
7/8 3/4 -014
3/4 	5/8 	-008) 0034 2 0017 495 ****
7/8 	5/8 	-022)

CHANNELS 	-0152 0023 1 0023 672

ALGORITHM -0335 0-112 1 0112 327-7 ****

HIGH ORDER 0-002 7 00003
FACTORS
(ERROR ESTIMATE)

TOTAL 017 11

SIGNIFICANT AT THE 99976 level (F - test)

** 	SIGNIFICANT AT THE 975975 level (F - test)

immediately it arrives in main memory as is the case with

demand page reads. The addition of a second channel

also causes this delay time to be reduced by just over

a millisecond as is to be expected as the two channel

configurations consistently transfer pages quicker than

the single channel case.

Influence of Paging Rate Upon Paging Delays

The major factor in the paging delays

accrued by processes on EMAS is that of transfers

involving the secondary memory - or drum. To observe

how the drum paging characteristics vary with the

drum paging rate, the event trace data in each of the

experiment runs was partitioned into intervals of two

seconds (of real time) and the numbers of page transfers

in each type of drum paging as well as the mean delay

time for each was calculated. Two seconds was chosen

as being large enough to eliminate most end-effects

(being a factor of five larger than the largest mean

delay time - total time in write-back) and yet small

enough to still show differences between paging rates.

This data is presented in terms of a set of graphs

133

The relationship between the average number of

drum page faults and the drum paging rate.

The relationship between the expected effective

page wait.time per page for preload reads and

the drum paging rates.

The relationship between the number of preloading

transfers and the drum paging rate.

The relationship between the expected effective page

wait time for drum writes and the drum paging rate.

The relationship between the number of write

transfers and the drum paging rate.

The frequency distribution of the paging rates.

It may be observed from these graphs

that the effect of main memory is merely to increase

the spread of paging rates with higher paging rates

Table 3.1

THE EXPERIMENTAL RUNS

EXPERIMENT PRIMARY CHANNELS TO SCHEDULING
NUMBER MEMORY SECONDARY ALGORITHM

(M-BYTES). MEMORY

7/8 2 WSR

B 7/8 2 PDP

C 7/8 1 WSR

D 7/8 1. PDP

B 3/4 2 WSR

F 3/4 2 PDP

G 3/4 1 WSR

H 3/4 1 PDP

I 5/8 2 WSR

J 5/8 2 PDP

K 5/8 1 WSR

L 5/8 1- PDP

WSR - Using Working Set Replacement Policy
PDF - Using Pure Demand Paging scheme

All experiments were carried with a fixed

workload of 32 simulated users. Hardware consisted

of the ERCC ICL 4-75 (machine tTBtt complex) with

3 drums + 1 pseudo drum. EMAS, 'version 814, was used

throughout, as were the executive processes -

Volumes version 834, Demons version 877. Runs A-D

used DIRECTOR 871, E-L used DIRECTOR 872 (a minor

error corrected).

August 1975

Figure 5.2 (a)

EXPERIMENT A

8."

7.

1Akj & }4v
V

1.0

o.o
0.0 	2.5 	5.0 	75 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC x1Q1

out

2.5

1.5

•

0.5--

i 	

r 	 I 	'I

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE SEC xl1

Figure 5.2 (b)

EXPERIMENT A

3.5

Figure 5.2 (c)

EXPERIMENT A

20."

15.

17,

N

12.5

o
10.0

0
0

7.5

5.0
(I)

2.5

I 	 I 	I 	I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 . 22.5

PAGING PATE /SEC xl 1

Figure 5.2 (d)

EXPERIMENT A

10.

9.

8.

7.

6.

S.

0 . 4.

U,

ci)

2.
z

1.
U)

0.
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xlQ

2.

2.

Figure 5.2 (f)

EXPERIMENT A

7.

6.

5.

4.

3.

0
1

Figure 5.2 (e)

EXPERIMENT A

(I) z
0.5

H

H

0.0 	 I 	I 	 I 	 I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ

0.01 	 I 	I 	I 	 II
0.0 	2.5 	5.0 	7.5 	10.0 	12.S 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xlQ 1

Figure 5.3 (a)

EXPERIMENT B

8"

7

rl

U)

Figure 5.2 (g)

EXPERIMENT A

22.5--

20.0--

17.5- -

0

2.5

20.0

17.5

0
'-I

15.0--

12. 5

5.0

12.5

ii

ce

0.0 1

U) 10.0

I I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ

2.0- .0

0.0

	

0.0-1-- 	 I

	

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xlQ I

9.

8.

7.

6.

5• i

4.

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlO 1

0.c
0.0

IVA

10.

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22

PAGING RATE /SEC xlQ 1

0.
0.0

Figure 5.3 (b) 	 Figure 5.3 (c)

EXPERIMENT B 	 . 	 . 	 EXPERIMENT B

Figure 5.3 (e)

EXPERIMENT B

I? -.

Figure 5.3 (d)

EXPERIMENT B

6

5.

4

3

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22;5

PAGING RATE /SEC xlO 1

15.

12.

tO.

U

(n

0
o 7.

ç5.1 -

U)
z

2

E1

Ix

0.1
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17..5 	20.0 	22

PAGING RATE /SEC xlO

Figure 5.3 (g)

EXPERIMENT B

3.5

3.0

0 o 2.5

2.0

U)

H 11 	~ 0.5
U)

ILU~ I q
0
a

0.Of 	 I 	 I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING PATE /SEC x1 1

0.0
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING PATE /SEC xlO

Figure 5.3 (f)

EXPERIMENT B

7.

3.

0

X

Figure 5.4 (b)
$

EXPERIMENT C
/

3,

2.

2.

1 .Qj
I 	 If 	I

0.5

0
0.0 I 	I 	 I

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0

PAGING RATE /SEC xlO

f

Figure 5.4 (a)

EXPERIMENT C

20.0j

17.5

U

(I)

o 12.5

cd

I0.0 1
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xl 1

Figure 5.4 (c)

EXPERIMENT C

Uu
(1)1.0 z
H

Figure 5.4 (d)

2.0-- .0

(ID U) z
'4
H 	1.0

1 0.0 I 	 1 	 I

EXPERIMENT C

7.

6.

5.

4.

3,

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5
	 0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xlO
	

PAGING RATE /SEC xlO

9

Figure 5.4 ()

EXPERIMENT C

5.,'

4.

4.

3.

3,

2.

2.

0
I.

(I)

(4
I.

U)

0.
(1)

0.
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0

PAGING RATE /SEC xlQ

Figure 5.4 (e)

EXPERIMENT C

7.0

6.0

5.0

4.0 	

d
.U')

I::

(4

I 	 I 	I 	I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xl 1

Figure 5.4 (g)

EXPERIMENT C

2.

x 2.

I :

ce

VA

0.0! 	i 	iI
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlO

Figure 5.5 (a)

EXPERIMENT D

2.O
fr.
U)
0

1.0

0.01 	I 	 I 	I

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ 1

3.0

0

x
2.0

1.0

	

0.01' 	 Ii 	i 	I

	

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlO 1

Figure 5.5 (b)

EXPERIMENT D

5.(

4.0

Figure 5.5 (c)

EXPERIMENT D

22.

20.

17.

15.

12.
U

0
o 10.

'-4

7.

5.0
z

H
2.5

. 0.
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0

PAGING RATE /.SEC x 1

Figure 5.5 (d)

EXPERIMENT D

6.

5.

4.

3.

OA

Figure 5.5 (e)

EXPERIMENT D

4."

3.

3.

2.

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlO

0.
0.0 0.0

	
2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xjQ I

4.

3.

2

Figure 5.5 (f)

EXPERIMENT 0

Figure 5.5 (g).

EXPERIMENT 0

4.

4.

2.0

4.0

0.5--

0.0.,I 	I 	 I 	H

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ
1

4-4

0.

1;.

0
0.0 	2.5 	5.0 	7.5 	40.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xl1

Figure 5.6 (a)

EXPERIMENT E

8."

7'

6.

0
) 5.

0
0.0

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ 1

Figure 5.6 (b)

EXPERIMENT E

3

2

0 	 JI 	I
'-4 	 1111 	It

L. 	

U
(I)

x 	
I

I 	III 	I 	I

I

D.0
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE SEC xlO

Figure 5.6 (c)

EXPERIMENT E

20."

17.

0
2.5

-

0.01

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ

Figure 5.6 (d)

EXPERIMENT E

12.)

11.0

10.0

q.o

0 	 •

I

2.0--

	

0.0 	 I 	I 	 I 	I

	

.00 	2.0 	5.0 	7.5. 	10.0 	12.5 	15.0 	17.5 	10.0 	22.5

PAGING RRTE SEC /10

0.0 2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlO

Figure 5.6 (e)

EXPERIMENT E

3.

2.

2.

Figure 5.6 (f)

EXPERIMENT E

6.'

5.

4.

3,

0
- 2.

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PACING RATE /SEC xlQ 1

0.
0.0

Figure 5.6 (g)

EXPERIMENT E

22.

20.

0

o 3.
0

2.

2.

EXPERIMENT F

5.

4.

4.

Figure 5.7 (a)

I

0.0
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xl 1

l.0•

D.5

0
).0 I 	I

0.0 	2.5 	5.0 	7.5. 	10.0 	12.5 	15.0 	17.5 	20.0 	22.E

PAGING RATE /SEC xlO I

8

7.

6.

S.

4.

12.

10,

0
co

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ

0.
0.0

Figure 5.7 (b) 	 Figure 5.7 (c)

EXPERIMENT F 	 • 	 EXPERIMENT F

0.0
	

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xl1

Figure 5.7 (d)

EXPERIMENT F

7

6.

5.

4.

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING PATE /SEC x10 1

	

"*,-- 	

I

I 	 ~, I

I

y

I U U It 	11

0

Li

5.0--

U) z

2.5

0.0--
0.0

	

.0 -
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xlQ

Figure 5.7 (e)

EXPERIMENT F

17.

15.

12.

Figure 5.7 (g)

EXPERIMENT F

6.

5.

>< 4.

Figure 5.7 (f)

EXPERIMENT F

5

• L
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlO'

0.01 	I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RTE /SEC xl'

Figure 5.8 (b)

EXPERIMENT G

3."

2.'

2.

Figure 5.8 (a)

EXPERIMENT G

12.

11.

10.

9.

0 8.

7.

U)
0
0 .-1

6.

5.

4.

3.

2.

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ

0.0
	

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22

PAGING RATE /SEC xlQ

0.
0.0

Figure 5.8 (c)

EXPERIMENT G

25.

22

20

17

15.0

U) 12.5

j ::

I ::L
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xl 1

Figure 5.8 (d)

EXPERIMENT G

7.0

6.1

5.1

4.

3.
0

x
ci,
Ix

0.
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	2

PAGING RATE /SEC xl1

Figure 5.8 (e)

EXPERIMENT G

5.0

4.5

4.0

1:: 	fti

15

1.0
z

! :: 	 I 	I 	 I 	 I 	I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGLNG PATE /SEC xjQ 1

Figure 5.8 (f)

EXPERIMENT (3

4.

4.

8.

3.

2.

2.

0
,- 	I.

0.
0.0 	25 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22

PAGING RATE /SEC xl1

0.0 2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22

PAGING RATE /SEC xlO 1

Figure 5.8 (g)

EXPERIMENT G

2.

5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC x1O

0.
0.0 	2.5

Figure 5.9 (a)

EXPERIMENT H

9.

8.

FA

4.

3.

Figure 5.9 (b)

EXPERIMENT H

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ

Figure 5.9 (c)

EXPERIMENT H

20.

17.

Is.

0.
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0

PAGING RATE /SEC,x101

Figure 5.9 (d)

EXPERIMENT H

6.'

5.

4.

3.

20 	

1LJAJJUU

uiIL.J 	 I' 	

I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RTE /SEC xlQ

Figure 5.9 (e)

EXPERIMENT H

4.

3.

3.

0
0

1.0

U) z

-4 0.5--

0
0.0 	2.5 	5.0 	7.5 	.10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xlQ

Figure 5.9 (f)

EXPERIMENT H

4.

3.

3.

2.

0.01 	I 	I 	I 	I 	I 	I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ

Figure 5.9 (g)

EXPERIMENT H

3.

3'

0
o 2.
'-4

X

0.01 	. 	 i 	i 	I 	I 	I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xl1

Figure 5.10 (a)

EXPERIMENT I

5.0--

4.0--

3.0--

U)

.0

4.0

1.0

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xl 1

Figure 5.10 (b)

EXPERIMENT I

3.5

3,0

2.5

2.0

1.5

1.0

0.5

0.0
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.

PAGING RATE /SEC xlO'

Figure 5.10 (c) 	
Figure 5.10 (d)

EXPERIMENT I
EXPERIMENT I

17.

15.

12.

10.0-- 	 U 	fl F y 	 1, U

	

7.5. 	U

5.0
L)

z
H

2.5

IX
0.

	

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ 1

1 . 0+ 1y•uI

0.

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0

PAGING RATE /SEC xl'

Figure 5.10 (e)
Figure 5.10 (f)

EXPERIMENT I

5.0

4.5--

4.0--

3.5- -

3.0--

2.5- -

.5

4.0

3.5

3.0

2.5

0.0 0.0+-
0.0 0.0 2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xjQ

EXPERIMENT I

6.

5.

4

3.

U)

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22

PAGING RATE /SEC xlO

22.

20.

17.

0
15.

12.

Figure 5.10 (g)
	 Figure 5.11 (a)

EXPERIMENT I
	 EXPERIMENT J

I ::t ' 	 I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xl 1

5. ,'

4.

.4.

- 3.
U
C))

0
o 3,

I
2.

1.

X 0.
0
0

0.
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	2

PAGING RATE /SEC xlQ

Figure 5.11 (b)

EXPERIMENT J

g.e

8.1

7.'

6.

5.

4.

0

3.

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING PATE /SEC x.10

Figure 5.11 (c)

EXPERIMENT J

11.

10.

9.

8.

7.
U

11)

6.

5.

H 4.

3.

(I) z
N
H 2.
0

N

0.
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0

PAGING RATE /SEC xlO

Figure 5.11 (e)

EXPERIMENT J

15.

12.

10.

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22

PAGING RATE /SEC xlQ'

0.
0.0

Figure 5.11 (d)

EXPERIMENT J

7.

6.

4.

3.

2.

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC x10 1

0.
0.0

6.

5.

4.

3.

0
2.

3

wj

o 2
0
'-4

2.
z

Figure 5.11 (fl 	 Figure 5.11 (g)

EXPERIMENT J 	 EXPERIMENT J

0.0! 	i 	i 	 I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ

z 	I

0 LfJ\]yVjVIII
III II 	

'VlkI\I_:i
I 	I 	I 	I

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC x 10

15.0

12. .5

U
10.0

0
0

7.5

Figure 5.12 (a)

EXPERIMENT K

ol

rx

0.0 1

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xl 1

Figure 5.12 (b)

EXPERIMENT K

3.

FPM

PA

	

0.01' 	i 	I 	I 	I 	'I 	I 	I

	

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xlQ

Figure 5.12 (c)

EXPERIMENT K

3

3

2

1.0
U) r.
(1) z

0.5
0

U)

0.0
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlO

Figure 5.12 (d)

EXPERIMENT K

6."

5.

4.

3.

0 'f

0.0
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE/SEC xlQ

EXPERIMENT K

6.

61

4.

EXPERIMENT K

4.

3.

2.

2.

0
1-4

Figure 5.12 (e) 	 Figure 5.12 (f)

0.01 	' 	I 	 I 	I 	'I 	I 	I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ I

	

0.01 I 	
i 	

i 	
i 	 II 	iI

	

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE. /SEC xlQ

703

0
0
'-I

7."

6.'

M.

0 0.

Figure 5.12 (g) 	
Figure 5.13 (a)

EXPERIMENT L
EXPERIMENT K

cx

::

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xl 1

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	21

PAGING RATE /SEC xl1

15.

12.

Figure 5.13 (b)
	 Figure 5.13 (c)

EXPERIMENT L
	 EXPERIMENT L

(I)

< 1.0

0

0.5

0.0 	I 	I 	I 	I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlO I

0•
0

.5 7.5--

(J) U) z

2.5

0.01 	i 	Ii 	I 	'I 	I 	I
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xlO

Figure 5.13 (d)

EXPERIMENT L

H:

04

I.0 	 -

(I) z

0.5--

0.0
0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xlQ I

Figure 5.13 (e)

EXPERIMENT L

3.5

3.0

2.5

2.0

U

o LC
0

14

0.
- 0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22

PAGING RATE /SEC xlO 1

Figure 5.13 (f)

EXPERIMENT L

4.

3.

3.

2.

2.

2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.5

PAGING RATE /SEC xjQ I

Figure 5.13 (g)

EXPERIMENT L

4.0

3.5

0 3.0
0
H

2.5

z
U)

2.0

(I)

1.5 I
1.0

H

0.5

0.0

0.0 2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 	22.

PAGING RATE /SEC xlO

only one channel is in use the paging delay time is

more sensitive to the paging rate existing at the time

the request is issued. It also may be noted that the

average delay for write transfers is very insensitive

to the paging rate showing very little increase as

the paging rate increases. Similarly, :in the WSR runs

the average wait time per preloaded page lengthens very

little with the increase in paging rate. However, in

all the runs the mean wait time for a page fault on

the drum shows a very steady and much steeper increase

as the paging rate goes up.

Considering the types of transfers which

are making up the paging rate it may be seen that as

the paging rate goes up, the number of page faults

shows a distinct tendency to level off, however the

number of write and preloading transfers continue to

rise. This shows two things:

(1) The success of the main memory control algorithm

in lim'iting the rate of page faults and hence

completely eliminating any form of thrashing

phenomena.

number of preloading transfers are considered.

In the case of the PDP algorithms this is

equivalent to the number of process swap-ins.

Also as the effective delay times for preloading

and write transfers. are not so very sensitive to

the paging rate the times for process swapping

under the WSR algorithm will not rise very much

as the paging rate increases. This will be very

critical when a substantial number of processes

do very little work when they arrive in main

memory (in terms of CPU use) but still have to

pay the price of loading a large working set

before any work may be performed.

Throughput

The throughput observed on EMAS during

the experiment runs is shown in Table 5.27. The

throughput is defined as the number of interactions

completing in unit time. This is also proportional

to the number of main memory residencies completing in

unit time, the ratio being determined by the scheduling

algorithm as seen earlier (Table 4.1). The factor most

influencing the throughput is seen to be the algorithm

A 	 160. 236 15

C . 	144 217 1•5

E 	 150 225 15

G 	 125 1-94 16

I 	 136 2-03 15

K 	 121 1-80 1•5

B 	 123 2-60 2-1

D 	 112 242 2-2

F 	 1.10. 233 2-1

H 	 097 2-12 2•2

J 	 1-02 2-15 2-1

L 	 091 1-91 2-1

136

Both' of these major factors - algorithm and main memory

size - also had very significant effects upon the

response times, but the effect of the number of channels

upon the response times was much less than these two.

However, in the case of a throughput measure, the effect

of having two channels rather than one is much more

significant.

Conclusion

The effect upon system performance of

the three factors chosen for the experiment has been

quantified in terms of three common performance

measures, and the system phenomena contributing to

these performance levels investigated. The manner in

which the system functions can be summed up in terms of

the simple model shown in Figure 5.14. When processes

wake up, they enter the core queues and are held there

until allowed into main memory by the control valve (C).

The main characteristic used to discriminate between

processes is their estimated main memory requirement.

The rate at which the control (C) allows processes to

enter main memory is determined by the rate at which

CORE
QUEUES

CONTROL
VALVE

MAIN
MEMORY

1 	

U2

T
E
R
M
I
N
A
L
S

ASLEEP
	

AWAKE

therefore influenced by main memory size rather than

the number of channels available, and least by the

algorithm used (Table 5.29). The rate at which

processes leave main memory will not be dependent upon

the total number of processes in the core queues

(though it will be affected by the ratio of the

numbers in the different core queues and hence the

balance of the workload between various classes of

work). When the system reaches a state such that

there is always at least one process on each core

queue, then the throughput of the system may be

considered to be totally independent of the number

of processes active on it. The interference of

processes with each other.in such a state will be

reflected in the core queue wait times which will

dominate the response times.

When processes leave main memory they

either go back to sleep, or re-enter the core queues

to await a further quantum of time in main memory.

If the balance in the workload is assumed fixed, then

the ratio number of processes following each path

(d1 : d2) is determined by the category table

scheduling. If the category limits are never reached

and each member of the multiprogramming set is

Table 5 29

ANOVA Table for the Average Main Memory Throughput -

Residency Terminations per Second (Mean = 2-17)

SOURCE AVERAGE SUM OF DEGREES MEAN MEAN SQUARE
EFFECT SQUARES OF SQUARE RATIO

FREEDOM

MEMORY
7/8 	3/4 -023)
3/4 	5/8 -019) 0115 2 058 776
7/8 	5/8 -041)

CHANNELS -0227 051 1 051 692

ALGORITHM 0163 0027 1 0-027 360 ****

HIGH ORDER 	 004 	7 	00003
FACTORS
(ERROR ESTIMATE)

TOTAL 	 020 	11

SIGNIFICANT AT THE 999% level (F - test)

PDP - 248 milliseconds + page faulting time) so

though time-sharing would be expected to lower

response time, when it has passed a certain point

it will have a detrimental effect on the response,

as seen in the comparison between the WSR and PDP

algorithms. Other ways of improving the response

time are to reduce the time spent in page wait

(either by adding channels or possibly by preloading)

and increasing the level of overlap of processes by

increasing the multiprogramming level by increasing

main memory size. There are two main differences

between the two algorithms employed in the experiment:

The placement of processes in categories which

will influence the ratio d1 	: d2 and also the

mean time a process is allowed to spend in the

MPS.

The paging delay times and hence again the time

any process spends in the MPS.

139

In this chapter some of the factors which

influence the system's performance are investigated

further by means of a simple simulation model. The

results from the EMAS performance experiment are

used to calibrate and validate this model, thus

gaining some confidence in the predictions obtained

from it.

Structure of Model

The model used is a simple discrete event

simulation [Leroudier and Parent 19763 written in

IMP [Stephens 19743. As is the case with all models

it is an abstraction and a simplification of the real

system. In this case only the main-secondary memory

subsystemismodelled in any detail (Figure 6.1),

this subsystem having been identified in the previous

chapter as being crucial to the performance of the

system as a whole.

The choice of using simulation rather

than a variation on the queuing network models often

used in evaluations of this type of system was based

on a desire to reflect accurately the working of the

subsystem modelled. This implies that the model would

sus
:OCESS
s To

EEP

Variability in user process behaviour.

The effects of bulk and single transfer requests

to the secondary memory. 	•

The existence of blocking phenomen?.

Though some of these phenomena have been included in

various mathematical queuing theory models EBaskett

et al. 1975; Baudet et al. 1975, Potier 1977] no

technique yet exists which allows for the inclusion

of all of them in a single model. However, every

attempt has been made to keep the simulation itself

simple and hence tractable. It is also hoped that

the model will be extendable and be of use in the

evaluation of aspects of the system's behaviour not

covered here.

The model consists of three logical

units:

1) Simulation support.

142

This component takes care of all the

facilities, associated with the simultaneity of

process activity and timing of events, normally

provided by special purpose simulation languages

or packages [Dahl and Nygaard 1966, Dimsdale and

Markowitz 164]. All the synchronisation and timing

of events in the simulation is controlled by a central

time queue which holds all events which are known to

be due, ordered in ascending time of occurrence.

Primitives are provided by this component to take care

of the placing of events on the queue and removing

events from the top of it when they are about to

happen?. This component also manipulates the two

simulation timers. One of these is the simulation

clock holding the current value of simulated time, and

the other is the simulation alarm clock holding the

time at which the first event in the time queue is

due to occur. The simulation clock used

throughout had a precision of one millisecond,

though no assumptions are made in any part of the

module.

Simulation of Resident Supervisor Algorithms

This component mimics certain of the

activities of the EMAS supervisor and consists of a

kernel and a set of supervisor services. The services

control the operation of simulated hardware devices

and the allocation of a set of simulated resources.

Supervisor Kernel

As in the real system the kernel takes

care of dispatching supervisor services and fielding

'external' inteupts by translating these into

requests on services. All communication between

services takes place via a central parameter passing

area and all supervisor services which have outstanding

requests awaiting them also have an entry in the

kernel's MAIN-Queue.

The kernel itself consists of an endless

loop (Figure 6.2) which continually checks whether an

interupt is currently pending by comparing the values

UpV. YES CALL
WORK ON W APPROPRIATE
MAIN-Q SERVICE

NO

ADVANCE CLOCK YES 	IDLE TO NEXT PROCESS ON EXTERNAL CPU EVENT

NO

ACCOUNT XTERNA CPU TIME EVENT BEFORE TO PROCESS

-STROBE
LIMIT

NO

IDENTIFY
	

ACCOUNT
INTERNAL
	

CPU TIME
EVENT
	

TO PROCESS

SIMULATED KERNEL - FLOW DIAGRAM

services. This check for inte'r'rupts takes place after

each service call, thus mimicking the behaviour of the

real system in which supervisor services run

unintei'uptably with inte)yupts only being taken between

calls on services. When there are no outstanding

external events the kernel main queue is inspected to

see if there are any current requests for supervisor

activity. If so, the first service in the queue is

called, and a check for interupts again made. When

all supervisor work is complete for the present, then

a check is made to see if the current CPU process is

the idle process. If it is, then the simulation

clock is advanced to the time of the next event, and

the next external inteupt is serviced. If a normal

user process holds the CPU then a check is made to

see it is not overrunning any of its category CPU

limits. If so, a request is placed for an

appropriate service. If not, then a check is made

to find out if the CPU-process can advance the

simulation clock as far as its next process defined

event (pagefault,SVC, sleep or end of time slice -

'internal interupts'), if this is possible then the

clock is moved to this point and an appropriate

supervisor request issued. If an external intetupt.

is due before the next user process generated event

Supervisor Services

All process scheduling on the simulated

system is based upon a category table similar in

format to that used in the real system but making no

reference to secondary memory allowances (Table 6.1)

as secondary memory capacities are not included in

this simulation. Each process has an associated entry

in the process list. This entry holds such items as

the process' current category, working set size, main

memory allocation, CPU time obtained and process status.

The processes are moved between scheduler queues by the

supervisor services mimicking the algorithms used in

the real system (Figure 6.3) and handling such

functions as:

a) Entry to the MPS - selection of processes

from the core queues as memory becomes

available and organising requests for

process loading transfers.

Table 6 1

SIMULATION CATEGORY TABLE VALUES

CAT PRIORITY 	MAIN MEMORY RESIDENCY STROBE
ALLOWANCE CPU TIME INTERVAL
(PAGES) (SECONDS) (SECONDS)

1 1 50 	. 10 0125

2 	. 1 . 	. 	 20 05 . 	05

3 . 1 30 10 10

4 . 	1 50 20 05

5 1 20 05 05

6 4 20 40 10

4 20 100 10

8 1 30 10 05

9 4 30 100 10

10 4. 30 	. 60 10

11 2 40 10 10

12 4 40 100 10

13 5 . 	 40 120 10

14 2 50 10 10

15 4 50 	. 100 10

16 5 50 100 10

17 3. 60 20 05

18 4 60 70 05

19 5 60 50 10

20 3 62 20 025

Figure 6.3a CORE I

Q's

ORE Select process
• GIVE from CORE-Q

{a] load into main
DRUM . memory when
HANDLER adequate space

PAGE 	. Put process on
RUN-Q when all

HERE transfers-in
V {bI complete

PAGE
ON ' RUN
DRUM . I Q's . .

PAGE
• 1,' I d]

• DISC V 	

•

CPU
Choose process

V from RUN-Q
• HANDL R 	 • 	- GIVE 	V

• load to cpu
PAGE TIME

. ON PAGE • SLICING
• V

DISC PAGE 	FAULT
FAULT CPU

•
IC PU LIMIT
' 	CORE OVERRUN

LIMIT V

OVERRUN PROCE S

• [e]
CONTR L 	OCESS

O.K.

Calculate page
V

. CORE requiring
TAKE writing back

f]
DRUM
HANDLER

PAGE 	 transfers

When all

GONE complete put
back on Core-

SIMULATION MODEL - SUPERVISOR SIMULATION

Figure 6.3b,

DRUM Put in sector-queue
REQUE T according to priority

[,]
demand > preload >
Write. .

. 	• 	
• .. SECTO •

• QUEUE

TRY Construct channel
START chain. 	Place

- CHAI completion interupts
•

• JJ
inTime-Q

T
1

' M CHANNEL HAIN
E

• 	

— DRUM Identify processes
INTERU T
IIIIIII

having transfers in
chain and notify
them

SIMULATION MODEL -DRUM HANDLER

• 	c) Handling page faults and organising any

transfer requests which may arise.

Allocation of the CPU, - choosing a user

process from the run queues or selecting

the idle process if no such user process

is available.

Enforcing the category table resource limits

and selecting a new category when a process

is being removed from main memory.

Removal of a process' pages from main memory

during strobing or process removal from

main memory.

Fielding replies from page-out requests and

placing the process back into the scheduler

queues when all such requests have completed.

The only hardware devices currently

simulated are the drum (secondary memory) and disc

(tertiary memory). The disc is not itself modelled in

more critical, is modelled in greater detail with

three separate services which take care of:

The handling of drum transfer requests -

putting them into sector queues according

to an appropriate priority scheme.

The starting of channel chains, composed of

requests removed from the sector queues, when

the channel is found to be free, and placing

interupts in the time queue signifying the

termination of demand page reads and

channel chains.

The fielding of interupts and firing off

replies to the page here (b) and page

gone (g) services as necessary.

Each time a supervisor service is called

it advances the simulation clock by an amount

corresponding to the overhead imposed by that service.

The overhead times consist of a constant, plus in some

addition to this, at the end of each burst of

supervisor activity (i.e. just before mounting a

user process or idle process to the CPU), a further

supervisor overhead proportional to the preceding

supervisor burst is added to represent supervisor

time spent servicing items such as communications,

secondary memory capacity allocation, supervisor

calls etc. which are not explicitly included in this

simulation. Each of the services has embodied in it,

calls on an event trace monitor mirroring the calls

made in the real system. It would be possible to

use such data to obtain performance measures on the

simulation, however this has only been used to check

the correct working of the supervisor algorithms

implemented in the simulation. In that area this

feature has proved invaluable.

Process/Device Behaviour Definition

The third logical unit in the

simulation consists of a set of functions which are

called from various points in the supervisor

simulation and define the characteristics of hardware

devices and user processes existing in the simulation.

The behaviour of hardware devices

consists of a set of functions which handle:

The prediction of the completion time of a

demand read from disc. The result is drawn

from a random number function with an

- appropriate distribution, the mean of which

is currently taken as 210 milliseconds

(the average of all disc page faults over all

the experimental runs).

The sector corresponding to any particular

drum request. The result here is drawn

from a random number function evenly

distributed in the interval [1, maximum

number of sectors] so there is an equal

chance of each request going to any sector.

The latency time before the first drum

transfer in any drum channel chain. This

is drawn from a random number function

evenly distributed over the interval

[0, maximum latency time].

150

Process Characteristics

The behaviour of a process is defined by

a set of functions which predict the type and timing

of internal events and the behaviour of process

working sets. These functions take care of:

Predicting the next significant internal

event which will occur for this process.

Currently, internal (process defined)

interupts may be either pagefaults or sleeps.

The event is chosen from a table containing

the event types in the correct proportions

with a separate table being held for each

category.

Whenever a pagefault occurs, the type of fault

(disc, drum or in main memory) is determined

from a table, holding the three fault types

in appropriate proportions.

151

3) The user CPU time which will pass before

the next internal event. This is determined

from a lifetime function for each category.

The lifetime function relates the expected

CPU time until next event to the number of

pages currently used by the process

(i.e. any wasted preloaded pages are not

taken into account). The functions used

(Figure 6.4) are extracted from the event

trace data and reflect the average effect of

all the processes running in each category.

This differs from the original lifetime

function [Belady and Keuhner 1969] (used

in many mathematical models of this class of

system) which relates the mean time between

pagefaults to the number of pages owned by

a programme. A system observes and reacts to

the behaviour of a process which is a collection

of co-operating programmes. The approach

taken here though necessarily crude is,

however, more realistic than using a simple

(monotonic) lifetime function. The

variance within the lifetime functions is

represented by means of random number

function which defines the variance to be

added to or subtracted from the lifetime

function value as a fraction of the

iuuuamu•uuuuuum•u•uuu••u•uuuuuu••u•• IIRlBUU••U•UUUUU• UU•••UUUUURUUIU••

.u•..•u•mi iu.uuuumuu.uauaa..
iu•u•••••u

..u••L &m..••.........•••...•m••••u•.•••u• i....u.•u.a.
isu..u...•
i.•u....u.ai
iu.....i..i
i•auui•uu

......................uuu.u.•um.iiii.u..............uua a...N.U..IR.U.U................U.••.UIIIIU....lU.U.U..U..• IUlU•UU7iUUU
i.....u.,wi..0
u......*l...
i.......i...

am.uum••.a..u.....................uuiii.uu•u•maauu..u.uui
MEMOS I•••UI!i•N I•UUB•LI•UI

i••uu•au.0 u.•a•i•.mu..u.....mm..msuiiiuuu.u.m•au.u.m.u..
u....u..... I•UU•U••U••R•••••URU•UU••U••UIHI•I •••UU•••••U••U•••••
.maNa....umaiu..u.......a.u..............iu..0 ..uu u.......i....
i.....uuru.a .•...u.uiuu•m••ai.u•uuauuuu•••.•uiiuuu...m a•u••.•....•.0
i.ma.u..ti..m i.......ti..iu.a..u..........u.u........sa.iiii.i

....um...•m.•amuuu...uu.uu.....•..i.ii.u....uu......u•a..0
a......u..aa....s

.u..a..riu..au.0•..............
iu.mu.i.miu.......................u.....u.u..i ..u.uiu..uu........ i.......ti..i ...u.a................uuu...........i....iui......u.....m.
uuamuuupuri IUURUUICà4
....u..... i.......i..0
.i.........

.•uum...i•mauauuaauamusuuuu•..uu..uiiu.ii•...i...•u.........

..umu.uuuuuuauu.umsuuuauuu..u...uiui.uiiiu..iiuu......•.....
a.u........ I.......rA_I... iR•RUUUN*
iva..u..u..au..uuuuuus..ul•amuuaau•u•uiuui•uij.uuujiuu......•..•au
i..........a

to] •..•samui.•.uu.uau.uu.uam..u•.u.i.ui..ii..w•iiiu..i....u...0
i.........u.IuuI.uu..,hlIl....u.......•.
.u..u.u.iu..•.u.....R.....u....u.I.ulIu.u..uI............al

u..........i u••••u•uuuuuuu••••••u••uu••u•u•ua•uuuiiii•vgaiiiuuumuuuu••u
i..•u•.uauu
u..........iu........•.............ua.u•uuaiaiuuuwsuiiiu.uu....•...

uauuau•ui.•u..aa..a..uu.............•..i.u..uiuiuu.u.uuma.
.m......

I•••••••I•RU
i••u•au••s*u u•U•••U•U•u•UUUUUU•U•uURUNU•U•UII•IflIURIuIIII•U••UU••UUU
i.......i
i..u•mam.u..i su..u.uuiuuu.uuu..m•uuu•uu.u.u.•.u.•ini.uiiu.I........u.uu
..m.......iu.•ai iiiiiiiiiiu•uuuuu•uu.u.
i•u•muaai
Imlau.......
i.u..•u..u..
iu•uuau•uu•
l•••u!Ruua

................u............muuiiiiu.muiiruiuiiiuii...•.........

.....uuu.u....uu.uu..u......i.u•,iii.•..w..ii..ii..i......•.u..
i.u•auwu•i
IUlR•i!!i
i.......i.... u......•...u.u.....u......•u...iiiva.......i..ii..u.u.aau..... lIUIIIUII••R••UU•URUU

uuu•uui••u..•ii•ii.iii..i......•u••.
i.•..•..•u•u ..i..uuuuau..•.

•••••••••••a•••
••ug1••l

i.uus.ii.•.i ••••••••••••• ..•uuuuu...... i....mu...i MMMMMMIAWAM no
IRRUUNurJU.•I lomwiMMENUMVI rim
i......wi.ui
i..ua......

SENSE El
MEMIS

SEEM

iu•.iuu...ui .u.a..uu.

,M.......l.a.

"Is MEN R.la.a
iUUUUUli1•U
.....wi.•u
••immsrnai•
u•u•••abI•••
.s....uwiam uu.uuuuuuiuu...u.......u.u.u...iuua.ama..suu..
••UuRuR$i

UUklUU•

asuumu•uuuuuuu•i•m•uu•u•u•••••••tuu••uum•uu••u
uuu...,oi...
.u.u.uu.0
.......rim..
i.......ii.m.
......uiiii..0 ...uu..iii...
iuuuuu• •••••••u••••••••••••••••••••••••••••u••••••••••••u•••u• i.......i...iiss.piu...
I•••••••b••au..................u..a.••.amu....u.....
u.a....uuu
,u.......aa
i.........•

uuu••rwusuIU...U.U.•eU.EUUUUUU......
Iuuu•uuuIL!
i.......i....
i.......i...
I•URR••••$U
i..u...uu.
....a.....
.......p.aa.

v.. ma ma.
aaau..a.......a.ma.aa................u..mmmu..m..u.......

am....muu N.au..maa...a..a...
....m..iiam.mu......aa.ua.amamammuunauumu.•i....u.•u.•
aau...u..0 amama•mmaamuumaum•auamuu•ma•u•••am••maammu•auum•auuumumam

umm••mauumaaa•uumum•a•muaauuuuamumummaaummmamm•m•um•••u u
aumuum•muumauauaaaummaam•umum•••ua••mm•amuuamaamau

i.......i.... I...U......................U.UNUU•U.UNUUN•...........U.
i...u...rim... IUUUUUUURI•UU••UUU•U•••U•U••••U••••U•DU•U•U•UUNSUSU••U
u.......a...a..u.....u...au..am.ma.•u.M.....u.............

am 	a. 	am .a 	••u••a ...0 i.amm•mu
u...........

mmu..uu..............
.......m......................a...amu.aa.aam.r.......•m.u.0

imauaam••mam•aaa•muam•mu•m•••maa•u••a••••••a•a••••au•aamaaam•mmaamm•mau
imaaa..am..•a...u...aaaaa•maumaamaumamauu•uuma•uu•mau.a...•m..a...ua.•uau
i.au.u•umauaauuu.aa.um.a•...uuaa.m.u....•....a....auuamaasaamaa.m.....

aU•UUmUUUaa••.aUURRUUU•U.UmaU•ama•••UPaUm••m•UmU•aUaNaaaU
I.UURa.aUaR.U•I.U..a..RU•U.•U....... Ia aNUU...••.
i.a........0 aumu•aaa•m•auua•uaaaamuuaamm•am•u••amm•••uaaau.uaamma
i.aa•amuaum•muu.u.•amaa.u..uu.•aua..•...a•mama•ammuuu•uammmu.aa..
uaaua•m••aau
u....•.•.maa

aa•m•ammauum•a••mmaau•amaumauamamapmuamu•umaumamaaummmmau
mu.a......•......ua...............amaama.aama.........

i.....aa.au. .a..u..a...u.u.a..u.........ua.aaaaamamam.aua....a.....a
uum•aamaiam•aauu•aaaa•msaauamaaamaa•amaauuua•amuuIkgmmaa•mummalaaaau•uuua
iauuauaiaaauum

MIKE

aaaammaa•mm•aauamma•a••••ma•mummuma••m•aaaamaaa••••mu
i•m•am•mmaaaaammmmamumua••mauuaaa•ammaammmm•m•mnmmunmm••mmuaaamaaa•mmmma

0
uaammmma•a•aummmmmuammmuuammammumaaua•ummama•mua••mmmmaamaa•a•mmu
immmmumuumamaamam•maammamama• amsuaumumsuu•mmmmmmam•uaa
uauam•u•m•maaumm•ma•mumumm•mmaamrNaaumuamauumaaaau•mp4laaaauu•mma
i........u.u.

iaaa.mmammaaumumuummamaauuumn.mmu•amaaaaaaaumuaimma.aa.aaaam•a
aa.au•aammmama••m•amammumaaaamamammamma••mmaaaaaaammtaimvivaaam...mammma
.amaaa...... m•mummmm•mm•m•umL•auaamaammm••m•a•mutl&we1aaamaaa.ummmi
ma•auummamuaaum•mmamm•m•manmmaaummmummmaamaviuMau1IiImmm•amaa•umu

uauL2atauam*1aEaam•muuI
a...
Imammaammamuaamuamaam•aa•maaammaauamamum!Am

losommom

EEM

PS 	MINES] MR.
______ _______

!i00
imammammu•auuuauauaa•uaa•maaaaaaaaaaama•amuuamum•aa••ua•mamaaamm•muumumu
umamaaumam•au•aaamamumsuaaamaaamaaummm•mmu•m••am•mamamauumaaamamm•um•mu
ISO m•auumuuma•muaau•muaraau •aaamuuuauaaaauuumu
ivaaauamaaa•auuaamaammam•ma•aaammaaaaummmmamammumaaaumaaaummmamaumaaaum
m•...aa.ua....muuaum.a.mm•aaaa..aaamumm•ua•mamaa•uuuuua•auimumaa...a
imaaaaa..aamau.a•a....aamsmmmaamuuua..........uuaau.....amm.m.....aumu•a
ua•mma•mm•a•amaamammamam•auaa•m•amauumaam•amaaaaaaamauaaamummammu
um•um•muu•a•u•auaummumamm•aam•amaamauaauaaa•aam•aaaauuauauuuRu....
i•uu..uu.ataa.ua m•ia.•.aaaammmmmaaaa•aaauau.aaumaummmmau
ia.ma...u..iu..• aum..u......aa.a.auaa•maammmuumaa•a.u•a

i•....•..auaauumaaaaaamam.r.u.ma......u.aauua.•uamumu•ma•mmmaamauaaummi
ivaaaummaaaa.a..aua..a.....aa.a...aamuaumaa.uaua....ammu•.mua..mam••.•a.

mmummmmmaumammaaaaama•maaammmaumamum•••umuam•aaaumum•uuuuaaa

...........uuu......
i.uuua•..uu....mmui

uuu...•uuuua.m..uu

I•I•U•U••UR*•••I
.um...uum•uRuu[iumu.
u...••..u......umauu
lUU•UUNUUUUUL!RU•U

..m........wia....

........u.u...;.....
m...................

iu•m•u•m.uu•uumu
i........u.u.uuuuuu.u.

mmmmm.um.mmmmmmum..uu..
IRUUm•mRR•UUUUUUU•UUUR•ma•m

a..

um..um•ua.•a.uu MENEM

i•mmmuummmummmmmmr±aummu•aammamam•mmmummm•mmmuammmmmmmmmuamaaamummmm

e.u....N.. wmm..u.•a•u..••••

.uRm.a...... i. Irs •II•ua••••

I•N•••R•R•UU••UUU•U•UUU•U••UU••U•••UUU••UUU•UU

mm•amuaummmammumammmu•ummmummmuumauuumuu.uummaaamm
mama.. 	UmUm 	mama

mm 	mm... 	U. 	mm
mm 	a 	a.....

mm..m.uum ilmuam

SEMEN
MENEM

i..a....mm.......a.... a•uumuumaammmmm•mmmmmmmuumummmmmmmmaummaumuu•mmm
i.....................
iamm.•...u..m.m..au...

umm••muummammmm•mmmmmmmumummaammmmmmmammmmmm
.......u.ua.u.ummaam........u.m.mmmmmmammu.mm

ma•••
••••m

aa••mmm•Ummm•••••U•UUmm*RammRUU•m•mmUU••UmUIUUUmU
imm•m•mmmamm•mmm m. um.m mm mama... mm 	a a mm..mmaamui..mmm

i..mmmmmuammmmmmmmma mum.uau.m.uu•.u..mmmm.maaammmuamammmum.u....m
mmau...m....u.maam.m..a..UU..m.Umm.U.UMR...U.U•......IIU.IImmaU
i.......u.a.......u..i ..a.m.....u........ammmu.m..m....m..ui..a..
im.......a.......a.... mmm•mmummmmmmmmuum•mmammmumm•maumumuuuuuumiimmmma
umma.......mmm.mrncaammm m...................mmmmmmammm..m...m...m•iu.ii..amm
u...mm..mam..m........
i.um.........m.m.mmam.

mam.ummmmmammm.mmm...ma.....m..mmmmm.mammuu.ii.mm.•
imummammummmmmm•mmuaaamamammamum•ammaummmmm•m•m•amauauaaammmmmuiimuimmum•

m•...........mu.m.ummmummmmu......m.....iu..im.ama
....................a.•.mm.aaamaa.......a.ii.iimmmma

umam..mm.aa.amua.aammm mauama.ma..m.m...m............m..u...mwaiou.uum..m.
u.....m..mm........... m...m.m...m.mmmmmmuummmmmmmum.........•umtiumuimmmma
imam...m.mmma.mm..a.mmm mumummammmmmmmmmamm•mmamumuummm•ammmamiitimiiiumui•mua
um........a........... mmm•mmmmmmmmumumaammam•m•mmmm••aammummuiiimmsiimuimmmma
mmmmmmmmm.maum..am..m m.m.maam.•amm.mm..m.•..........mammumm.iiimuii..nm...a
im.mmmmuu..m.m.m.u.•..m.mm.mm..mumammmammm.m.m.....mu.mmiirmuiiumuia....
i.u......m.mm.mmmmammmm mummmmmm.mam....m....mmmmam•mmmmmammmmiiuuitim....mma
um...mm.mm...mm..mm.mm mu•mmmummmua•mamumamamammmmmm••uummmmiiiuiauauiam•ma
i..m....m....m..a....m
umammmmmamm.mmmm...m

mmammummummmam•mammummammmmaauaammmmmiimuiiimn•mmmm
ma..m.mm.mauammmmaaammm.mm........m.mtiuuiumusmm.m.

ummmummmamm•mmma•mmmmamuamammmmm•m•ma•mmumuaumummmmummmmmumiimuiiiimiuuummm
umam.umumummammmummmm.•m...m•m.mmammmmmmmaumuuu.mu..•m•umiimiiaimuiuiuii•..mm
Iu•mmam•mmm•mmmaa!•mm•m•ummmammmuammm•uuauummmmuaamuummiii!l•uulIlmlImmmmm
im•mmm•mmmmmmmmmmammmama•mmmmaamamammmsamuaammmmmmm••amumraaumiuuuuiiiammmm
imuaummuummmammmajmmmmmaammammm•mmmamaaauum•mmuu•uaamuumaamrimiunutaiiammm•
im•mmmmmmmmmmmmmammmmuaummamummaaaammtaammammma•ma••ma•suuiuiiuimiimmmma
iaaaummuam.a.mm.a....mma..am.m.a.m..rummaammmaamuiuuum'imm•.miiiiiimuimmmmm
i.......m...m.maammm.mm mammmmma.mmmamammmmmumm.....iug.mm•aiiii.imi..mm.m
mua•aummmmmmmmaaimmmumm...mm...m..mu..amm..m.uim utarammaaaaiuuamiiam•mm

muamammmmmumaammmuumammuuumrlatlrummmamuulum!1a•m
mama•mmmmmum•aammmmam••mamma•m•a•mumu•aaaaumaaaiiuirnuaammmumuiummiimmmmm
uau.amu..m.ma.m...mm.m m•mmmmmmmmuaaauummauu•.mmm..iimiiiiaaammaamiuiia.iimmmmm
imamamm.m.m....m..m.. mm•mmumm•pvammamampum•mmmariuiiiia•mmmmamiuiuu.uamamm
iama•m••m•m•mmmaammmma•ammmmmmmtum•m•marumwummaummsiia•mmmmma•iuiuiiiummmmm

ma•mmmmmarnuaama•hImtamuar••aIuIammmmaaumuII•IlImmmmm IMMEMMEMEMEMMEMElue
im.m.m.mmmm...m.ammm..m mummmmam•niuua••arInwua•mIaarI!IummmmmamuIlIauI••am••
i..m.mm•..mma.amaaammm m..am..miimamauamiiuiium..v.iaummmmmauuiii.a.mam.m

im.a.mum•amammmawiammim mmmmmmmmuiiumamamii iaiiamammamaumiuuamama
muaummmauiiu•mmpiiiirinriwzaiiiaririvammmamaiiiiamaa•mam

ia..mummummmmmmammuu.m
ama.amm.........i..mmm
i.m.m.....aamm...mmm
ia......m.amaam.v.a.m. waffifaffif
........................
a. .m....umuu...au..m.
im•.m.mm..m...mm.mu.mm uuauuuaauuu••m.—..aa••.----.•

MOMI 	 IN
I Us !Jmmmmmoj

iammmmmaamaaauaauuuu•amauuuammaumm•amaam•mma•m•ammaaaammaammmuuum•um•
ma..amua....m..m.a..u........u•.. mmamumammuau....aaaamu...m.mm...
immmammamamu•ammmaaamamma•mmama•umamuummumau•uummmaaamaam•m•m

tasisim•amaaamm•mmamm•um•mamm
imma•muaaamaa•a•ua••mummuuauummauammaaammua•ma•mmm•auaaa•ama•aauammmiaa
i•ium.a.uu.auamuaaaamumauuuum.au...mm•m•imamma.mmaumauammmauuaa.m..m•ma
a.mammammamamum..am...uu.m.......mmmam..uuuammuuu...mmmmm...ammmmmm•m
ummam••ammmammamaaaumaaamammuauauaa•aammamumam••mmammmmaaaumaua
aimm•mammuaa•maumaaua iw.jwimumm•mmamaum•uma•mmmaua••m••••u
a•mmaaamaamamaa•maaawummumuuIamaksmaa••mmaammuam•mmmaauamamam•a
aim...amum.uuumaamua& uimrn•.a•mm•u.a.auam•aam.mmaiaaaaaauamm
mimu...uumu.maum.auiiav mmiimu.•mm.mammmummua.ammaammmmama.aua

Immmmaammmammaua•aaama !Nivmauuaauaama•mmmum•m•RamRmmumaamu
u.m.mm.•amma•mmaau.•awmamamm•ammwm•uaumaumaummmammamamm•aammmmmu.mama
iammmammmmmuammmammaaammmmummmmmmmmammummamm•mmamammummmmaum•ma•m•mmm•

mmamm•mmmmaamaamaaamummaummuuaamummmummmmmmmua•auuaammaummmmauamaua

152

current value i.e.

CPU to event = f (CAT, PAGES) + x* I (CAT, PAGES)

where x is the random number function (mean = 0)

representing variance in the CPU times.

The other functions in this component

represent movements within a process working set.

These define:

4) The core set size when the process enters

main memory. This is defined as the number

of pages which will be prepaged and used.

This will always be equal to one when WSR

is not being used. The result is chosen

from a random number function with an

appropriate mean (different for each

category).

5) The number of pages which are preloaded and

not subsequently used. This is calculated

from a random number function which

represents the number of wasted preloaded

pages as a fraction of the number of

usefully preloaded pages.

153

6) The number of pages discarded at each strobe

carried out on a process. For the first

strobe in amain memory residency this will

always be the number of wasted preloaded

pages (if WSR is being used) or zero

(if PDP is being used). For subsequent

strobings during the residency this number

is a simple function of the number of pages

held by the process i.e.

Pages discarded during strobe i of residency =

(0 	 if i=1 and PDP employed
(Wasted Preloads if 11 and WSR employed

PAGES II 16 	if, i>l

.7) The number of pages which are preloaded but

require no transfers (i.e. shared pages).

This is obtained from a random number function

giving the fraction of pages about to be

preloaded for this process which will be

shared.

8) The number of pages written to during any

residency and now requiring writing back to

the secondary memory. This is determined

using a random number function

representing the fraction of useful pages

held by the process which will require

154 	 :

writing out.

Pages requiring writing out =

(x) * (number of useful pages held by process).

Using the Model

In this investigation the workloads used

in the simulation runs consisted of a set of 50

processes which were each permanently assigned to

certain categories (Table 6.2). That each process

remained in its chosen category throughout the

simulation was achieved by making all the category

transitions held in the category table point to the

process current category. This maintains a fixed

balance within the available workload, in an attempt

to make the balance of categories passing through main

memory reflect these proportions only one core queue was

used. This avoids the priority scheme-which normally

operates when choosing which process should be next to

enter the multiprogramming set. During the simulation

the system is studied in a saturated state i.e. each

of the core queues which would have been used with the

priority scheme to always have at least one process on

them when inspected. This means the balance of category

priorities passing through main memory would always be

in the fixed ratio of the relative rates at which the

Table 6.2

PROCESS ASSIGNMENTS TO CATEGORIES IN SIMULATION

PROCESSES IN THIS CATEGORY

CATEGORY 	 WORKLOAD 1 	 WORKLOAD 2

1 0 0

2 1 0

3 2 2

4 	S 1 1

5 2 8

6 0 0

7 0 0

8 22 12

9 0 0

10 0 0

11 .11 	• 10

12 0 0

13 0 a

14 6 10

15 1 0

16 0 0

17 3 4

18 0 1

19 0 0

20 1 2

TOTAL 	 50 	 1 50

155

priority queues were serviced. This does not reflect

the real system in which the balance of the load will

vary over time causing some queues to be empty when

due to be serviced and thus disturbing the priority

balance. The single core queue solution was

considered to be the simplest and best way of

attempting to keep the balance of categories fixed -

a modified priority scheme was attempted but did not

prove as successful asthe single queue version.

The balance of categories used in the workloads was

based on observations made in the experiment runs

(Tables 4.3, 4.4, 4.5) slightly modified during the

calibration process. Two workloads are used:

Workload 1 uses the lifetime functions obtained

from group 1 experiment runs.

Workload 2 uses the lifetime functions obtained

from group 2 experiment runs.

As part of the policy of keeping the

simulation simple, no attempt was made to mirror

exactly the often complex distributions found on the

system. All the distributions used in the random

number functions (except where a uniform distribution

was being used) were modified normal distributions.

This modification consists of removing the tails of

156

the distribution beyond one standard deviation from

the mean, and piling up this part of the distribution

at the two cut-off points (Figure 6.5).

In the area of secondary storage all

requests to the drum were ordered in the sector queues

according to a priority scheme which gave demand page

reads priority over prepage reads, which in turn had

priority over writes. However no attempt was made to

model secondary storage capacity (i.e. contention for

drum space) or the fact that the secondary memory

consisted of several drums with a priority scheme

between them. The secondary memory may be thought of

as one large drum. This causes writes to take slightly

longer and the other two forms of transfer to pass

through slightly quicker. It would have been possible

to have modelled the priority scheme differentiating

between physical drums, using a probability function

which would have associated a probability for each

request with each of the separate devices. However,

in an attempt to keep the model simple, and because of

the lack of data in this area, this was not done.

It would also have been possible to have modelled twin

channel operation by defining a probability function

which would have decided when overlapping double channel

transfers were possible, but similarly this was not

done. The only transfers involving the disc storage

Figure 6.5

H:,'

MODIFIED NORMAL DISTRIBUTION ADOPTED

IN THE SIMULATION

157

are for demand page reads, no disc writes are

simulated.

No virtual memory addresses are

simulated in any way. A process working set is

represented merely by the number of pages in it.

The time until the next addition to working set being

defined by the lifetime function.

Performance Metrics

The performance metrics chosen for this

study are:

Mean CPU utilisations.

Mean Drum transfer rates.

No response times were applicable as no user sleep

state is modelled. The model was calibrated for the

two workloads using the data from experiment runs

K and L. The workload was adjusted to make the mean

CPU time per residency, mean number of pages per

residency and percentage of pages preloaded, as well

as the main performance metrics, as near as possible

to the observed values. The supervisor overheads

used for the various services was taken from an

158

average over those two runs rather than taking

different CPU overheads for each workload. So,

the only differences between the two workloads were

those factors which defined user process behaviour.

In running the model a period

equivalent to 100 residencies was allowed to remove

start up effects. The model was then run for a

period of 1000 process residencies and the

performance metrics taken from an average over that

period. This long period was necessary because of

the highly non-homogeneous behaviour of user processes.

Tests running the model over longer periods have shown

that it has reached stability by this time i.e. no

change in the observed metrics resulted from longer

runs.

The confidence intervals in the

simulation were obtained by a method suggested by

Conway [Leroudier and Parent 1976, Badel and

Zonzon 1976] in which the simulation run is divided

into equal size blocks and the mean of each metric

calculated over these blocks. These means are then used

to estimate the variance of each metric, measured

over the whole simulation run.

The model was used to investigate the

effect of main memory available to user processes upon

the chosen performance metrics. All other components

which might affect the performance - workload,

scheduling algorithms, secondary memory. - remained

fixed. The validity of the model may also be judged

by comparing the observed values with those predicted

by it.

The predicted values of the CPU time

obtained by user processes (Figure 6.6a) always lie

within 65% of the values seen during the performance

experiment, though the model does tend to underestimate

this metric in the higher memory size. This

underestimation may be due to the mix of categories in

the workload and the fact that the model contains no

representation of time spent in the kernel state

(this time is accredited to user processes in the

empirical measurements). Workload 1 (using Working

Set Replacement) is found to reach saturation at around

240 user pages with very little seeming to be gained

(in terms of this metric) by increasing the memory size

beyond this whilst keeping all other elements in the

system constant. Workload 2 (using Pure Demand Paging)

does not reach its saturation point so quickly and,

N.. u.....u.u.m u••u U.N......

I•••NNU••UUUUNNNN•UNNNUUUNUU••NBUUNNUUNUUNUU•NUUUUlURNUUUUU

iUUUUUUUUUUNUUU•NUUUUUUUUUUUIUlSUUUU•U•NUUUN•NUU•NUUUUUlUUlNlUN•U

I...u.....UU.U..................UUu..U...UU................U.uNU.U..

I••U•U•UUUU••••••••UUUUUUUUU•••U••UUUUUUUU••U•IUU1UU•U•U• IU••UU•U•••U•NU••••U•UU•U•NU••UUU••••UUIUI?I1UUUUNUUUI

EMIKEEMEMEM IMENSMENNINIM I•UUUNNNNUNUNUU••NUU•UUUUUUUUU•NUNNUNUUNUUUN•NUU••NU•UUNUN1UUUUUU

.UUNNuNNNUNUUU..U.U.N.UNNUUNUNaUUUUU.UU..NNUNNNNu•UUrurur•NUNUUU. Eamon

INNUUUUU•UU•••U••UUUUU•UUUUNUUUUUUIU••••UU•N•UUUU•••1UL!JNUUUtP•U IUU.N..N..NUUUUUUSUUUUU.U..•U.UNU!IUUUUUU.UUUUUUUUIbJUUUNUINN

UNUU•UU•U•U•U•UUUUURU•NUNUU•••U••U•I•UI1UUUUU••••••UkUUIIUNIU•U•UUUNU

IUUNUUNUUUUNNUUUUUUUUUUUUUUUUNUUUUI1NUNIIUNUUUUUNUUNUUUNUUNNUNUUUUU IUUUUUUUUUNUUUUUUUUUUUNUNUUUUIIUUIIUUUUUUUUUUUUNNUNUUUUNUUUUUU
I.....U.UU......U..U.U...UN.UUUU•Ur...I1U.U.U.UU...UNNNUUUUUU.N1N.0
I.....•.UUU..U.UU..UUNNNUNNUUNUUUU.kUUNNNUUUU•UUUUUUUUUUf1UUIlNUU IUR•UU.Ua...RU.u.u........UU......m..i.•U..UuUU..Uu...raI.R!1...
UUU•U•U••UU••UUNUUUUIU•N•••U•••••UIIN*UEUUU•U••UU•UU•UU••••UU••
I•R•••U•U•U•U••UU•NU•UUUU•URU•••U•UI1•NUU1U•UUUUUMUN•U•UN•••••••UUU••• I•U•U•UUUUU•••••U•••NI••NU•UUNUUUUUt•NUUUUU••••UNU•URUU•UUUUUW1UU I.U...N.U..U.UNNUUuUUUuUNau..uUa,.u1I.m..NNUNUUNu.•.UU.NNR1... IU•UUU•NUUUU•U••U•U••UUUUNUU•NUURUU*U••INU•IUNRUNU•U•U••1UUU IMERIESSIM

IUUNURRUNUNUUNNUUUU•NNUUUUUUNU•UU•*NNUNNUUNNUNUNUUNNUUNUIUU•UNu1UUU

IU•UUUUUU•U•U•••U••••NUU••NUI••••UVUIIUNMUUUU•••UUUU•UU•UN•UUU

IUUUUUUUUU•UNUUU•U•UU•UNUUUUNUNUUUUUUUUUNNUUUNUNUNUNUUUUUURUUU IUUUNI•NN•II•NNUUm•NN•UU•UU•UUU•UI•k.UUUUUi,WUNUUUU•UUNUU•NNN.

I••••UUUU••U•UUU•UUUU•UUUU•U•••••U•U•••URNURUU••U•UUU•UUU INUUUUUNUUUUUUUUNUUUUUUNUNRUNUNUUUUUNUUUUNUNUNNNNUU•UUUUNUNUUl IU..U.UUNU.NUNUUUU.RUUUURU•NUUUU.UUNNUNNUUU.NNUUUNUUNUNN•NU. IUNNNNNNUUUNNUUUNNUNUNNUUNUUUNN•NUUUUNUUUNUUUUUNNUUUUNRUNUNI .. 	•UUNU
Ed 	MEMO OMEN

UUU.mUUUUNUUUUNUNUUUNUUUUUNUSUUUUUUUUUUURUUURUUNUUUUUUUUUUUUU IUUUUNUUUU••U•UIUU : 	I 	•.
NUS$USUNUUUURUUUUR**UU!UNU•UUUUN••UUI

IUN•••UUU•UNUN•U••U•UU••UN••UUNUUUN••••U•UNUNUUUUUUNUU•U•IUUUNUUUU

IUUUNNUUUUUUUNNUUNUUUNNNUUUUNUUUUUUUUUUUUUUUNNUNUUUUUUUUUUUUUNN.UUU IUUUUU••UUUUUU•••UU•UUUUUU••••UUNUUU••UUUUU•U•UUUUNU•UUR•UU•UUUU•

160

though the gap between the two workloads diminishes

as the main memory size increases, workload 2 always

seems to give less time in user state than workload 1.

The values produced by the model for

the time in supervisor state (Figure 6.6b) always

lie within 10% of the observed values. The workload 1

results being a constant underestimation and not as

good a fit as those obtained for workload 2 (the same

is true for the user CPU time). This may be partially

due to the fact that the overhead times associated

with each supervisor function were averaged across the

two workloads and that this procedure has favoured

workload 2. In both cases the supervisor CPU time

shows a steady monotonic increase as the memory size

goes up.

The throughput on the secondary memory

as predicted by the model always lies within 12% of the

observed values for workload 1 (a consistent

overestimation) but is within 4% for workload 2. As

the main memory size goes up, the difference between

the workloads i ricreases, with workload 1 (using WSR)

constantly achi ving a higher throughput than workload 2.

(Figure 6.6c).

U•R•••U•
ommm
ommmmmmmmmmmmumm
mmmmmmmmmmmmmmwzmmmmmEMEMOMMMMMMMMMMOMMMMMMmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

••U••••••
ommm

...a.uau....uaaau..u...ua....au.....a...a..a..u.a...a.uaua.0
ommmommmmmmammmmmmmmmmmmmmmmmmm

....aa...
.ia...............U.a..a.aa.a.auUa..Ua.aU.uuu..u.uaaaaaaaaaaU ••••aa•••

ommm
U....U........aa.U..............R.....UU.......I.......0

.........u.a.....a..........ua..a........u.........aaa.uaaa.I
•••••••••
...ua...

.u..aaa....ua...........auaaauu.ua.au•a•..u.a.aaa..uaau..aaau.ua..

UaaaUa•UaUUaa••Ua•aUaaUaURRUNUaa•aU•aaUaaaUN•aaaUaaU•a•UUU.....Ua.
i............•.....•e.....................uua..u.a. aa•aaa•u
....u....uu.g..........uu•au................UUaau..uaauaal •••••••••
.u.....m..auaaaaa.a......a.aaa.uaau..a.a.....uUu.a.a..UU uaau••uau
ommmMEMERMOMMMMMMMMMMM
ommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmMMMMMMMMMMMMMMMMMMAMMMmwmmmmmmmmmmm
u••auaaaua•auauaaaaaauauuuuaa•aaaaaa•auuuuma•ra
au•aaaa•a•aauuuauuuauaaaaauua•••aauuaaaauuaaaa••aaaamaa•ii.i

aauiaaaa
aRa.UUU.

Emomommmwonmmb-limmmmmmmmmm
ommztmp_mmmmmmmmmommm
EmmMMMMMMMMMMMML"ampmwcmmmmmmmmmm
ommMMMMMMMMMMMM"Ilmivmblmmmmmmmmmm

aaauauu•.a..........•.u..auuuaau...•.....•uaaaaaaauaaiwu
ommmmmmmmmmmmmmmmmmmmmmommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmvmcnm2mmmmmmmmmm

....a....
MMMMMMMMM
aaa..u..0

ommkmmmmmmmmmmmmmmm
auua.......au....a•aaaaa..a...u.uaaaaa..aauau.....uaa.auuuaamu.aauaaa
mmmMMMMMEMMMENIMMMMMMMMM

omm .ri.a....
........
.ri.a•..a

nommmmmmmmmmmmmmmmmmmmommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmrazamwmmmmmmmmm
ivaaaaau...a..a.•aaaaasauu..a•au.aaaaaaaaaaaaaaaauaia.iiaiaauuu.a....

.....•u..

.....u..uaaa.a.....a......i..aaaaaaaaiiauauaua.au.....iiai

ommMMMMMMMMMMMMMMEEMMENmralmmmmm
ommmmmmmmmmmmmmmmmmmmmmmmmmmammmmmmmmmmammmmmmmmmmmmmomr.macuKmmr.tummommn

rwiiu.
u..rni...i

ommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwmmmmmmmmmmmmmmmmmmmmmmmmmommmmo
ommmmmmmmmmmmmmmmmmmmmmmmmmiimmmmmmmmmammmmmmmmmmmmmmmmmmilmllmmmmnvmmmm
mmmmmmmmmmmmmommmmmmmmmmmmmmmmammmmmmmmmmlimmmmmmmmmmmmimmmmmmummmM=MMME
ommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmimmMMMMMMMMMMMMMM-EMEMMMMmmaimmmn
aaaua..u..........a..uu.•aaaaa&uauaa•u.ruau.•.a..aaaaaaaaaaaa .

r
u.a....

.u..a.
iriuiau..

ommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommmmmmmmmummmmmmmmmmmmmmmmmmmmmmmmmo ••.....a.aa.aasuaaaaaaaaaaauuaa.iauu......ii.a.a.aaaaaaaauau•.uu aauauau
.aaamaaauu..a.a.uu.........aa..ii..•.a.aauuauau...a...•.a...aa..aaaa•

ommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmummmmmmmmmmmmmmmmmmmmmmmmmmmmmMMMEWMMME
.•..aaaaaamaauauuaua.uaaauuaa..iuu.......ra.....aaaa.au......u...aa...
uuaa...u.....a....•.u•ua•aaaau'ia•aaau,aaaaau...aaaaaaaa uuauaau

iritaaau OMMMMESSIMMMMMMMMMMMMMMMM
ommmr,qm .mmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmaimmmmmmmmammmmmmmmmmmmmmmmmmmmmmalmmmo

u......

uaua•uaau•uu..aaaua.aaaa•aaaua•aaaawaaauuai•uuauaa.uaauu•a
i...aa.au
U•U•7UU•I
uri..a.

. asa

auuaraaau
aua...uuaa.•ua.aaau...........aa...u..&u....aaia.aa•.aaaaaaIa•aaiuua

.rcu.u...0 uua•auauauaau..a.uaaaauuaua...•uuuuuuauaiuuaua•wu.a•au...a.
a...a.a....ivauaua......•..auaaau.......a.aau...aamuauaaaaua.a

a!1Ruau

aauua..0
....aa..

...a....a...a......a...a......a.....aaaa...aRau....k1aa.auu.... .auu....

au......a
a..u.aa..

..aaauua...u...a..uasaauuu...aaua•ua..u..u.asauuuuuu....a lea......
ujuaua

MEMEMEMOMEMEREME ONES=
MWOMMEMMOMMEMEME

I V -Al 	=9 MID .19 MMEEMENME~m
.a....•aa....aaaa.a.ua.•..e.eaaaaaamuu..aeasaaa....•a.uuau.a.a...auua

ML
SEEM

.maaa•..a.aaaa...ea..u..u..aauaeauaaaa..u.eaa•..auaaaa.a...uu.ua.uauu
.a....a.a......eaa.a...•aa..u....u.a.....a..a..ea..a..a....aa.a..a......

The effect of the process loading

algorithm upon the system under the two workloads was

investigated next. For workload 1, this meant running

the system under a pure demand paging scheme and using

working set replacement with workload 2. Certain

adjustments had to be made to accommodate this. Under

both, the ratio of page faults to sleeps in the NEXT

PROCESS EVENT function was modified to count all

useful preloading transfers as pagefaults - involving

increasing the relative number of pagefaults when

adjusting from WSR to PD?. Similarly the ratios of

different types of pagefaults had to be adjusted.

In both cases the fraction of pagefaults involving

pages which were already in main memory ('shared'

pagefaults) was always kept the same, and the relative

numbers of drum and disc faults modified to count all

useful preloading transfers as drum pagefaults.

Suitable functions were constructed for workload 2 to

make the percentage of preloaded pages the same as that

observed under WSR on workload 1 (69%, including a

preloading wastage set at 25%).

In terms of user CPU (Figure 6.7a) it

is noticeable that WSR always gives significantly better

performance in lower memory configurations, but that the

.•U.UN..UN.UUR.NN.UU.....U....U.RNU...UU.IU..IUUURRU•UUU•NUUU•RUU

.N.mmuuR.mu.ae.mu..u.u.......umauu.•.uI.uu.uUUlu..uuUU

u.u..u. UR....UUW.......U..UU..IIU..NUUUIUU.U..UaUU.•I ••••••••U
NUNUU•UU U•U•U•U• U•UUR* U•••RU•
..u..uu

au..u•l....u•.....u....ass..UUUaUUaURaNUUU..URRUUUUNU...UUI ••••••u••
..a.....
•••••••••
.....••.. U•••••••
.....•m..

..u............u...........m.......................u.u.muuuuI ••••••••• •••U••• UUN••••••
.........
••••u•••.
•••••••a•
.....u..

.uu...•....u...u.•u.....uu..u....••...U...UUUUUU.U..UUUUl •••••••
•••......

.............a.........•......u..............u.uu..........ui u•mu•uu
um•......

N..m......u...................m.......RN................... .uu....
u.....N..

roiaumuumu
ruuu•um.
....u••• ..u..............mu......u. ua... pri.
u••u••••

U us 	u• mu
.u..uuuu.

.uu.u......uu.u.uuuuu.u.........uuIluu.uIu..........u.RuR..,1.7au...uu•uu
.uuu.u.. ••uu•uuuuuu••uuuu••uu•uuumuus•uuIIuuulIumuuu.uu•uuu••uuuu•.Nuui M rONSOON

uuu....
uu•uusu•uu•u•uuu••u•uuuu.u.....wi.uiiummaum.uu...u.u..u* iui uuuun•uuu

.?uuuu
. •i U•U•TUUU

uiuuuu. 	. .. mu
..uu..mua..u...............u..u......rn•....uuumuu•.i.....t?luki .u•..0
uumuum...........u.u..u..uu•m..u.....Lummuuu.u.m..flu.u.Itu1Iu*UUra••UU

........mu.m.u.u..........u...uu...u..!........muu..a....u.riIumumcu...
..uuumuu.uu...m.........•um•mmum•uu.u.u...••mmuuuuuu..u.•uri1muuuuU.

••••uuu•u•umum•uuuuumumuuuuuuuu•••uuimuiu••u•••uuuuuuuu•uuu•a••.•u
msu•u.uu•..............u.uuuuuu.u...miuu.u•uuuuu..u.•.•uuuuu ummurouuu

....r..u. •••uuu•u••uuuuuuuuuuuumuu•umuu••uuu•LI•U••Uuu•UUuu•••Uu•mmilW4

••uuuuuuuuumuuumumuuuum••u••uu•uumau•utuu••uuuuuu•uuuu•u•u•uuum rI1.uu..
uiuuuu.•....•...u....•..muuuu.uu.u.iui•uu.uuuauuu....uuuuuu ri.uu.u.

•••u•uuuu•u•uuuuuum•u••••uu•uu•uu•uii••uu•u•uuuuuuu•u•u•uu iu..su...
....r...

..........u..u.uaummuuuu.•........uuu•...u......uuuu....... ••••••••
uUm•UUuUUu•••uUuUuu•uu•UUUUUUUUU•U•UUUk1URU•UUUUUU•UUUUUUUUi u••imuu
u••••u•••••••••uuuuuuuumuuuu••u•••uum&mu•uu••uu•u•mU•Uuui

uumuuu•.u•........u......uuummuuu..u...uxauuuuuuuuu.•...uuu...I u...u...0
...m.uu..u........uu..uu...u.u...u.u....uiuuu...umu........u...
u....•u...u..m.•....umu...u.umu.um...u...auu•mumuu..•.muuuuu• ULJUU• ••uuuuuumuuuuuu•u•uuuuu•••u•uumuumumuuu•uuuu••uuu••m•uuuuuu
uuuuuuuuuu•uuu•uuumumuuu•u••u•um•uuuu•uuuuuuu•uuu.uumumuuu i!1RU UUU
uuuum•uuuu•u•l•u•uu••UU••U•••Uu•••uULiUU•••RUUUU•••RU•U UUUU UUU

u...uuu.u.uuuu•.u•m••m•muuu•uuu•uu•u•.umuuuu•u.mummuuuuuu ..u.muu..
muuu•uuuuu•uu•uu•u•mu••u•uu•uuu••uuu•u•muikIwuuuuu••uui•uuuu u..uii...

.•ULiUUU MINES
uuumuuuuuuu•uu••umummu••••u•••u••uuuuuusuu••uuuum••••uuu

....u.u......u...........u..................im.......uuu.u.....
•••uuu••.•..uusuum•u•uuu••uuu••a•u•uu•u•uum•muu•uu•u.u•um.•u•uuriuuu

...iuu.
u.u•••uuu•.........muuuu.......•u.....muuuu...u..•mu.•mu WUuF4•UU

••u•m•uuuu•uuuuuuuuuuummu••uuu•u•uu•uu•umuu•u•umu•uuuuumuu•..
son

NERO Emu
Iu
u

uu
uuu•uuuum•.mmuu..uu.uu•uu..u•uuuuumu•umu.umu•imuuu..uu

•••••u•u•uuuuuuuuu••uuuuumuu••u••u••••umuumuuubuu•m•uuum•u
mmuu•uuuu•u..u.....u.u.•u••.m•uuumumuuumuu...m..•..uu•uuu...mi

iu..ri..0
....u.
.•u.l••.•

...u.m.u.....•...............muuumu.muauu..uum.m•..uuuuuu..uuu .u.u....
uuuuuumuuuuu•....u•..mumumu.............umuu..uuuum•..uuu...• ...auuuu
uu•uuuuuuuuu•m•..u..uuum•uuu•u••uuuu..uu.auuu•i.uu•uu•uu ..uu•...
.............u...........................mu........u..uuu...
uuu•.uu••umuuuuumuuuuuuuuuuuuumuuuuuuuuum, .uu.0

uu.m....
umuuu.0 ••

no
uuuuuuuumuuu•uuuu••••uu•u.u.u....•iuu••u•u•uuuuuu•miuuuuuu•••u•uu Ell IMMOMMISIMME
.......uumuuu.mu.....u..u...u..uu.uuuuRuuu.u...u.uuuuuuuUu..u.uu....

uuuu...............uuu•umsumu........•.u.•mu•uuu..•.uuuu..uusu.u•uuuu
..uu•u••muuuu•uuu...•uuuuu..uu.uuu•••muum•u•uuuuuuuuuumu•.uu•uu•u••
uuummmuuuu••uuu•muuumummu••u••u•u•••u•u•••u••m•uummuu•muau••••••u•uu

162

gap, between the two narrows as the memory size increases.

In. the case of workload 2 WSR always gives a better

performance, however, for workload 1 WSR gives better

performance up to a memory size of 240 pages, then the

PDP,algorithm appears to'do better. The reason for the

relatively better performance of PDP in the higher

memory sizes may be due to the fact that in these

configurations there are larger numbers of processes in

main memory, and the number of transfers available when

a channel chain is started will also be larger (hence

larger channel chains, making more efficient use of the

secondary, memory). However, for WSR runs on higher memory.

configurations, with more process swapping being carried

out, more and more transfers will be wasted through

preloading wastage. The difference between the two

workloads (workload 1 processes carry out more work -

use more CPU - per residency) tend to indicate that WSR

will be more of an advantage when processes use less

CPU per entry to main memory and hence cause a higher

swap rate. The throughput rate on the drum is always

higher under WSR (Figure 6.7b).

Preloading Wastage

The effect of preloading wastage upon the

overall system performance is demonstrated by varying

this parameter on a model of a configuration providing

U••••••UU
••a....u....u.......M.u.uam.uu..uu.u.aaul..u......mum•ml.... u•muuaa

••••••u••
U•••U•••

....................... •••• •••••uu•

.....u..........................U...U.........UU.....u.U... uuu•
mu.•.uau

...U.U...UUU..U.
.....•...

....u.....u...uu.....u.u..u.uu..a....•a.....u.....u...a.....0 .u.......
••••••a••
U•U•••U
...u....

u•uuu•u•••uUU••muu•u••aUus••U•uuUUm•••u••uuUU••uU•••. ••.•••.••
•••••••• uu........u...........u...u....uu...u...•........u....u•iu•••

U•UU••UUMUUUU••U•U••••U*•*••UUUUUUUU••UU••••UU•U••UUUU.UUu...
.........u...u..........u...............m......u.u.us u•au...

•••••••••
.•uu•a••. •••.•.......•.•..................................•.•.....

URUUU•UUUUUUaUUUUUUUUU•UUUURUUU•UUUUUUUUUUUUUUUUU•U• UUUUUUUU

uuu..a......uu........u.......uu•m.•.i•..•.........•....
UURU•UU•U
••.•.••.•
••UUU•••U
....••..

...................u......R..................u.......U..............0
••••••••
.••••a••
u••u•
...U....
U.....U.
U......0

U..U.......I.U.UUU.U.UUU..UUUN.I..UUUU....UU.......I.U...PIUII. UUUUUUUUU
UU•UUU
.....•...
....mi...
....ri...
U...,I...

......................................UU....II.....I.....U..•I
UUL1•U
.r.rii...
_.Ii1U••

1•U1••U
UUUUUUUSUUUUUU•UUUUUIUUU•URil•U•U•U•UUUUU•UUUL1UU•UUUUUUUt!1U!I i.ru..

....U..UU
UU.U..UU.UUU.URUUUUUUIU.UNUU$UU.U.U.....UU.UU.IU.U.U.UUU.1.0 UUUNfUUU
••UU••U•UUUUUUUU•UUUUUU•UUUUIUUUSUUUU•UUUUU••R•••••••••R1•If1...

UlI1UU
.......

I'D
MEN

UUU••U•UUU•U••••U•U••U••UU•IIU••UU•••UU••UU•UI1UUUI•U•••LIUI UUUN!IUU
...........................U...u..............uU............I

UUUUUUU
UURt1U•U

..a..m.a.
UURUUUU•UIUUUUUU•UUUUUUUUUUUU•UU••••U•UUUII•U•UUUNULUUE

.U..Wi..
U.,$1..0
IRt!IUU•

.......U.........................1....U....U.....a............•
IUUUUUUUUUUUU•UUUUU•U•UUUUUUU•UU•U•UU•••UU•U•1U•UUR•UUUU UUUUU
UU•••••••U••U•U•UUU••U••UUL1U•UUUU•UUUUNUUIU•U••••UU•U0
I...............U....U............I...............I1.I.U........U..
•••U••U•uaUaUuaUUU.UU.UUIaUU•UUUUu•U•••••R•U••rUauUU.•aaaUU
...•....a....m..u.••.••.u••.......•.•....9,a.•....u..

UU•UURUUUU•U•U•U••••U•UU•UUUU•tU•••UUUUU•U••UUMUR•UU•UUU••• .U...F1...
UUR1•U
UUIkJUU•
IU•UN!UU
IUUU•U
iw.u•u
EUURU

SEE
.............U.....................................IuU...••..

ME
._..U..
U•U1UU
.......

.....U.0
iUUuUUUa.......U.........•sUU...••UUkUUUuUUUU•rn.....U.

........
MERNME
.....

sommom
UUUUUUUU
••••

RUU...UUU..UUU..U•UU....•UUUIU.•.UUUUUU.•R.I..UU...UUUU. UU•U•

UUU UEi1UR•UU
ONE UU11UUUUU

163

112 pages to the user processes and using workload 1.

The lifetime functions, and all the other process

behaviour definition routines, do not take wasted

preloaded pages into account, and thus the process

behaviour will remain fixed. However, the wasted

transfers induced by these pages will interfere with

all other processes on the system by soaking up

secondary memory bandwidth which may have been put to

better use. It may be seen (Figure 6.8a) that even

when the wastage reaches 50% the user CPU time is still

much greater than that seen with a FDP algorithm. The

drum throughput shows a dramatic rise as the wastage

falls below 1076 - fewer wasted transfers causing a

higher swapping rate - and a slight rise when the

wastage rises above 30976 - with the swapping rate

remaining relatively stable but more wasted transfers

causing the throughput to rise. (Figure 6.8b).

Secondary Memory Characteristics

The effects of changing certain of the

major secondary memory characteristics are next studied

using a simulated system of 112 user pages and both

workloads - workload 1 using WSR, workload 2 using PDP.

The effect of changing the drum latency time - whilst

holding the transfer time per page, and all other

factors concerning the drum, constant (i.e. 4 sectors) -

LI

.....u...
.....u..N.••.................u.a...u.u........m...R........•••
au..........uua...uRuuu•u•.uu......•.umsN.Ru...u.uuuuaua uuua•uu..
u•••••••••••••••••••••••••u•••••••••••••••••••u••••••a•••••••• ••••••••••
u........uuu..aus•.•uu....•u•.•u.uuaa.uuuu...u•..uia.u..i •••••••••

••uuu.•..u•u.uuu.•uuuiuumuuuuss•uuu.uuusu•uuumu..uuuuu•uu•.
........u.u.0
.....•....

.sia•.....u........u.........s...u...•..u.u......uu...u.m .u.uu..
..a.m..m
uu..r...
a••••P!a•••
.....ri...

••aau....u•u•i..u........uu.au.su...u.i•u.uu•u.uuuui....nj...
ONE u..i•.

......u.........•u...•.•u•.u..u........uu.•a.u.m..u.....0 •••••U•
uu...u..uumu.suuu.um•...u•.....u.......•..u......m..i.....0 u•••....

i...ua...
usaamaumuuuu.....u.....u...s....••.m.u.....uua.uu•.iiuu.•u

u..u..•..
....m.a.•.

•••••••••••••••••••••a•u•u•••••••••••••••••••••••u•••.•••••• U...,1U.. NEE
u.•uii•u.

••U••R•••UN$UUUU•U•UIUUU•••UUU••••UU•UU•••UUUUUUUR•UU•UUIPtI...
.....uu•.................u................•.u.m••.uumuu

MEN
u•mu..u.

MEMEEMEMEMN
auaauu•...u......u.......u...•.u.aauuuauuuama.uu.u..m.0

uuu•uiuuu.
••uuuus....•........u........uu.•muuuuu.umu.u..uu u•••u •uu

...........•uuuuu•uuusu.muu....•......................i.....i
••••
....rn.a. ••••••••

...uiu...
•••••

..•.......uuauu...u.u.u.........•uu•.uauuauu•uumumuuuiuuma ISMU•U•
•••••uui•...u.u.•.....•uuuums•u.•.••..iu.....i....iu...•i .u..ri...
u..u...uuuuu..................u...uu••uuuuuuuuauiu•umua uuuruuu

....uu..0
••••••••......u...M••...u..............................u...
umu••uuu•••••uu•u•uuuuumuuaumu•••••••u••••••uu•••ut••u•
uu•u••uumu...•....•......u.•.msu• uuuuuuuv.u•

.u..iiu.ti..0 ••••••••
NRU•1•••
••••Iia...

u••••••••••••••••••••••u•ua••••••••••••••••••••••••••••IlRm auu•u..
........a..............a.......u....... ..u......u..rni..
••m••...s.............l....••...I.a.......I.....m.uu...N....II.. UWEI•••

....a...

.•iur1..
UUNRU*U•I
.u.ttu..

I.•aEz•a•
u••u.uu.mu••u••u••u••u•••••u•uuuuu••u••u••u•uuu•vii .r,..iu.

IRUUU
RRUMURUU

..u.u.0

.uauu.au

.u.au.•uuuiuum..••u•um.au......ua.u•... u•...m ...U...R ••••••••••
I•URU

a•uuu•uuuumuu•uuuRumuukui.m-. Umu.m
MEMMEMEMEME no

MEMEMSEEMS
.mu..uuu
.uuumuu

164

is shown first. It may be seen that the user CPU time

increases as the latency time decreases (Figure 6.9a)

and that the difference between the two workloads increases•

as the. latency increases, the larger latency time

affecting the workload with PDP more than that with

WSR. Similarly with the drum throughput figures -

workload 1 showing a higher drum utilisation than

workload 2, even more so with longer latency times. (Fig 6.9b).

The effect of-changing the drum transfer

time per page (whilst holding all other factors

constant) is investigated next. It may be seen that the

effect of this upon the two performance metrics is

quite dramatic (Figures 6.10a and 6.10b) though the

difference between the two workloads remains constant.

This indicates that the difference between using a

process loading algorithm which involves bulk transfers

(e.g. .WSR) and one which spaces out these requests

through time (as does PDP) will be more dependent upon

the secondary memory latency time than the transfer time.

The effect of speeding up the drum (by

increasing its rotational speed and assuming that all

other elements in the system connected with this -

channel-memory bandwidth - will be adequate to cope with

this) is studied next. In this, the ratio of transfer

time per page to average latency time is held constant

MENEEMEEMMMMMMMMMMEMEMMMEMMMMMMMEMMEMMEMENEmmmmmmmmmmmmmimis

uuuu
..U..U.*E •••••••••au mu u...uuuu..uu..uuuuuu....u.u.......u..uu...u.uai uuuuuumau. u•usuuu•uuguauuu••uu•uu••uuuuu•uuuu•u••uuuuuu•uu•i•u•uuuuuui .uu..uua. uu•uuuuuu•uuuuu•uauuu•uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu.uuuu ••u••u•u••
...•....0 uuuu......uuuu...u.au..uu.•uuuumu...uuu.uuu....i...uuu..u• ••....umu..u.....u.......u.u.....•.........u.......uauuuuuu.uu. .muu...uuuauuu.uuuuuuuuuuuuusuu.uuu••uuuuuuuu.......u....uu u•uuu•uu.. .u...uuu ••• uuu••••••• uuau••uuu••u•u•uuuuu•uuuuuuuu•uuuu•uuuu•uu•uu•uuu.uuu•uuuuu.i uuuu•uuu•u .uu.......uu.uu....u.uuuu..........i.u...u..............uu•• uuauu....i uuu•uuuuu•u••uuu••uuuuuuusuuuu••u•uuuuuuuuuuuuuuuu•uuuuuuu•u .u•.uuua. uu•muauuuu•uuuuuu•uuuuuuuu•uuuuu•uumu••••uuuu•uuuu•uu..0 .u.u......uuuu.u.uuumuu.ua...u.uu.uu...u.uuu........u....... .uuuuuu.. uuu•uuuuuu•uuuuu••uuuuu••uuuuuuuuu••u•u••uu•uu•uuuuuuu•uu.u•uu •••••u••••u.uau u.u.u..........uuuuuumuuuuu...........ue.uu.u...............i uuuuumuuuumuuauu....u...u.uuuuuuuuu.u..u.u..umuuuumuuui au.a.uu... uuuu••••••uu•uuu••uuuuuuuuuuuuuuuuuuuuuauuuuuuu..uu.uu..u.uui uu••uua•uuuuuuuu•u••uuuuwu•uu•uu•u••uuuu•u••uuauuuuuu•uuu •••u•••••u u••••••••• u..u....u..u.uuu.u..u.uu......u....u...u....uu.u..u.u.u.uuuu....

•••.uu•uu•uuuuuu..u....u•uuuuuu.u.u...•.u...u..•.uuuuuuuamuuuaumuuuuuu uuuu•uu•uuu•uuuuuuuuuu•uuuuuuuuuuuuu.auuuuu..•...u.u.uu• u...u.u....uu.u.....u..u.u........•.....uu...u.uuauuuu.uuu.i0 u..uu.... u•uuumuuuumuuuuuuuuuu•uuuuuuuuuuuuuuuu•uuuuuuuuuuuuuuuuuuuui •••••u•••• uu.uuu... u......uu.uumu..u.uuuu.u......u..............u.u...u•amui
u•u••uuuuuuuuuuuuuuuuuu•uuuuuu•u••uuuuuu•uu•uuuu•u•uuuuum•u uuuuuauu.. uuuuuu•u•••u•uuuuuuuuuuuuuuuuuuuuuuuuuuu•uuu•umuuu•••m••uu•ui •••••••••u u•uuuuuuuuuuuuuuumuuuu•u•uuuu•uu•••uuuuuu•uu•••uuuuuuuuuuuu••••u••u•u.u...•uuu•uuumuumuuuuu.uu..•uuuuuuu•.u.......u.......i u•••••••u
u.uuu..•a.uuauuuus.uuuuuuuumuuumauuuuuuuuuu.u..u..u..u.u•i uu.••uuuu uuuuuu•uu•uuuuuu•u•u••uuuuuuuu•uuuuuuuu•uuuuuuuuuuuuuuu•uu•i uu...u.u. .u...uu.u...uu.u...•uuu..uu....u.......uuuuu...u....u.u..uu ••••u••••• .u....u.uu.uuuuuu.•.uu..uuuu•uuumusuuuuuuuuuuuuuu..u...u..i uuau•uuuuuuuu•uu••uuu•uu••uu••••u•uu•u•uuuuuuuuuuuuuuuuuuuuuuuuuuuu••uui

...u.uuua .uu..uuuu..uuuuuu.uu.uu..uuuuuuuuuuuuuuuuuauusu.•......uu.. uuuuuuuuuuu•uuu••u•uuuu•uu••uuu•uuuuuu•u•uu•uuuuuuuuuuauu•uuuu r..u.uuu. ...uuuuuuauuuu.u.uu....uu.s.uuuuuuuuuauau..u......u..u..0 u....u..0 ..u..u..•.....u....u.....u.................u.uuuauu..u...i ••uuauauuauuuuuuu•uuuuu.uuuumuuauuuuuuu•uu•u...u.......u.u.•u uu..•...uu .u.uu.uu. ..•..........u.....uu.....u..........u.m.u...u.u••uuuu.u.u... uu..u..u. .uuu..u.....u...uu.u.uuuuuu.uu..................u....u..u.0 uu.aa.uu•.u.....m.....uu.......au..u•....u........u.u.auuuuauuuu uuu.uuu..u.au....uuuuu.u.uu.a..uuu.......u.u...........u.u..0 u.u.wrv... uu.u....0 ...uu.uu...•....u...u.....uu.....u..uuuuu.•uauuuuuiuuuuuu..0ia.u. u.uuuuuu.u..u.uuu..uuuu..u..uu.u.u.....u.uu......u......u..i u•wuuu ...uu.u...u.....u....u.......u..u.....uuuuumu........u.. iw.uu.0
i.tj.uuu ••uuuuuuuu•uuuuuuuuu•u•uu•u••u•uuuuuuuuuuuuiiuuuuuuu•u•i••u u..uu••uuu.u.u•.u.uu.uuuuuuuuuu•uu.uu........urrn••uuuuuuwau•u uwiu'uu•

u..u.......u.u.......uuuusuuuuu.•u..........u...a.uuuuuuawauu•. ..u..u..u.u.....u..u.....u...............uu..r•uuuu...w....0 uuuu•uuuuu•u••••uuu••uuuuuu•uuuuu•••••u•u•u•urauuuuauuiuu••u u•tiuuau
uuu•uuuuuuuuuuuuuu•uuu•uuuuuuuuuu•uuuuuuuu•iuuu.....au.uuu ..siivaa... ••uuu..........au....uuuuuuuu•u.......•••.uuuuuuuuur..u.. •••u•••

•••uu•uuuu•uuu••uuuu•u••uuuuuu•u•uuu•u•••uuri•uu•uivaruuu•u u•u••uuu•uuu•uuuuuuuuu•uuuuuuuuuuuu•uuu•uuviuuu•uuu••iuuuuuupivau•••u ca.ru..0 uuuu•uuuu•u•••u•uuuuuamuuuuuuuuuuau•uu•u••••uw•uuu••uuuiuuuuu•u uuuuuuuuuuuuuuuuuu•uuu•uuuuuuuuuuuuuuu•uuujuuuuuuiuv•u•..uuu uuuuuuuuu•uuu•uuuuauuauuu•uuuuu•uuuuuuus•uuauuuu••uiuuuuuuuiuuri•u••u ..u.....
uuuuuuu•uuauuusuuauuau•u•u•uu•uuuuuuu•uuuu•v4uuuuuuuuru•uuuuuau uuuauuuuuuuuuuuuuauuuu•u•uuuu••uuuuuuuuuuurauuuuuuuwauuuuuuu• .mt!iaiu...
uuu•uu•••au•uuu.u.uuuuuu•uuuuuuuuuuuuuuuuriuuuu.uuuv•uuuumuu•muu••u

uuuumuuu•u•u..••uu.iuuuuuauu.u.uumuuuuuuu•rn•uuu•uuti• uuuuuuuuuuuuuuuuuuuuauuuuu•uuuiu•u•uuuwa•u•uuvaauuumriusuii•u•u•
LilNU•i uu•uuu•uuuu•uu•uuuuuuuu•auuu•uuuuuuuuuu•uuuuuuuriuuuumuriu•uiu••u ..mi.iu... uua.u.u...u........uuumuu•uuuuu...u.ru.u....iuu.uu.usu uuuuu.... E.!auuu •••u••uuu•uu••uuuu•Iuuu•uuuuuu•ruuu•••uuP•uuuuuuRu UULI•RR•U u•••muuuuuuuuuuuuuu•u•••u•a•uuwauu•uu'uuuuuu•uiu ..Li.au..

u.......u.uuuu•uuuuuiuu....•uuuuuwi.uuu.uwuuuuu•u.....uuuitmuuuu

0 MEN

uuuuuu•uuuuuuuuuuuuuuuuu••u•uuu.u..•muuuuuumu•uuuu•uuuuu mu.u.u.m.u..u.u..uuu..m.uuuu.u.uuu...—...uumau .u.......
uuuuuuuuuuuuuu••uu••uuuu•uuuum•uuu••uuuuuuuuuriuuuuuuuurauuusuuu

09SISOMMIUMIEW151 0%, uuuuuuuuuuuuuu•u•uuuuuuauuuauu..u..uuuuuuuaRuumuauuuuuuu.auuuuuu Ot 0,

uu.u.........uau.u....•uumuu••.uuu.....u.uuuu•.....uu....u...uu•uuuu .uuuuu•u•uuuu•u•uuuuuuu••u••auu.uu.uuu•uuuuuu•uuu•u•u•uu•u•uuu•uuuuuuuuau.uuu••uu...uu.......auuuuuuuuu.......uuuuu•u..uaua•uu.uu•.u. u•auuuuuu•uuu••uuu•uuu•u•u•uuuuuuuu•uuuuumuuuuuuuuu•uu•uuuuuuuuuuuu

lmmm
lmmmummmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommmmmmmmmmmmmmmmmmmmmmmommmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmommmmmmmmoommmmmmmmmommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmaammmmmmmmmmmmmmmmmmmmmimmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmummummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommmmmmmmmommmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmummmmmmmmmmmmmmmmmmmmommommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmMEMEEMMMMMMMMMMMMMMMMMmmmmmmmmmmmmmmmmmm
i•••iu•uu•u•uu•••uum••au
I.....au.........u.u...u.u•Eri1
lmmmmmmmmmmummmmmmmmmmmmmmmmmmmumommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmawmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmummmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmommmmmommummmmmmmmmmmmmmmmmmmommmmmmmm
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmrmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
I••UUN•U•UN•U••UNI•NUU•U••••••U

i.......u..u..m.u.u•.i.......u.0
i.u•uauu......••uuuuui.u.....
iuu•.........uaa....u...mauaiuu

uuua•ua••uu••uauu••ua•auuuau

u.........u...uuau....u.........u.

....U..U............R.U.........U.RU.l

riuuaa•a•u••u•u•s••••u•a••••uuuu
..iuuuum•u..u..•...u..•....••uu•u

ME
moommonammommom

I•••••••••••••u••••••••asaN•a••••I UU••UUR••I?UUNU••U•U••UUU••UU•••iU
I•••••R•uuauamu•••u•uu•u•m•auu
I.....NUm..........•..U••••••••I ••••••NUUUUEUU•••••U••••RUI•U•••UU
uu•..u.u.ua.•uu•uuu•u.i••tiu•••
I.u.•.u.............••R•••,i•u••I

u..u.u.•..uuuu•u•u•.u.......0 I......u...aN..........••••tnl••••m
iu•u.•..........um..•.rn...i
I•ummu•aa•.uu••uuuuu)usa

••U••••U•IUUUUUURUN•U••UU••UUUUI
i••uu.....u•.u.•...•...uuu••u

.......•uimasaua.•.uu.•uuu•u•... iu.uu••....•.•u.•u•.uauuuu....•
u.........•....u.....u.........
u.........................u...
i........................u.J..... iuu•uu•u•uuau••iu••••muauamu

IR•••••••••••••.u••au••••••••.••

sui•u•u•uuiusuumsa.•uu•..u... u•uuuuu•uua••u•••u•iuu•muaum•u•u•
1.....•.••.R.......•..••a.m•l••u• I•••••••••u•••••••••••••Rhu•U••••U•a
............uu............•ua.
i•mi.••••.•..uu•amuumausuuuauu..

uuu•u••u•••uu•uuuuuu•.u..•uuu
uusu..u..u•uu......u............

I•U•NUU•U•U•••••U•U•UU•RU••••UUUURU ••••••••••••••••••••••••••••••••••
U•UUUU•••••UU•UU••R•••U•R••Rl u•••uuu•uuuum••i•u•u.u.•uuuuuu

.Um..u.aUUa..UR._.UR_UUU••
MOINININ

u..'...u...............u............................uu.....l.M•.

MEMENSIRMISSIMMEM
u'....R........u...........'.......m..Mu..u.....u...u.....m...

MEMEME

165

at one to two. As the drum speed increases, the user

CPU time continues to rise (Figure 6.11a), until the

transfer speed is around one millisecond per page,

when this improvement in performance appears to tail

off. This is probably because the effect of

supervisor overheads begin to dominate at this point

(Figure 6.11b) as the drum transfer rate will continue

to rise as the drum speed increases (Figure 6.11c).

It may also be noted that the supervisor overhead

incurred by workload 2 increases much more than that

of workload 1 as the drum speed increases.

Intelligent Secondary Memory Channels

The final feature investigated here by

the model is that of reducing supervisor overheads in

the CPU by putting more processing power into the

secondary memory channels. Such an intelligent

channel will take care of all sector queuing, the

starting of channel chains and the fielding of all

interrUpts. It would take requests direct from the

pagefault handler and the services handling process

loading to and unloading from main memory, and send

replies to the page-gone and page-here services. The

amount of CPU normally accredited to these drum

handling services, both from the simulation and

observations, is shown in Figure 6.12, and it may be

••••••••••••••••••••••• I....U...U............Iuu..u....u......uauauauumuu.uu........uui
...u.•............auau
ia..•.....u..u...m.um.m
u.u...u...muu.....•i
i•..u•.u•.•.....ammu.um

uu•ii••••u•uiaiuu••••••u•u•uuu•u•u••uu•uuau
Na.................................u.uu.....•a••l
...u•uu.............u...•..••••••••uNu•u••u••••

i..................c uam•••uuu••uu••uuuuuuu•u
u.u•umiuuuuu..........uu•um••••uuauuuauu•uuuuuuu i..uuu................0

iu•uas..ma•u...ua•uuuu
i.............u.......
i...u...u..............0
IUUUMUUU.U.U..•.UUU.

u..u.......u.•.......a
i...u........u.u......
u•uuuuu..........u.••.
i........u....aa......m ma•u•umaaauu•••••••iu•u•••ua••mamuumauauii
i.•.m...uu......ri..... IUUUUUUUU•••••I!IU•••

•• •••••••••••u
mmmml

...•uau•ua•u•usu.u..u.......
i...rn.............•uu•...... u•uuu•uuu

IU•••••••u•••••u•L1•••U•I••u•••U .•.u.•...••.••.•••.•.•••••••..••..•.
.......msuus•ua.uuu.....0 U••••••••••••••••UUUUU•••••••I ••••••••••••••••r2••••• uUU•.U..Ui

,................•...••. .U••U•UURUUUUUU•IU.•..........•UUUUUUUUU.UUI
i.........u..aa..ri..u..
i.......•.....•....... ••.•..••.••..•.••..•••....•...•••.•.u..u•••••

UUUUUUUIUUUUUUkUUURUUUUURU•U••U•UUUU••UUUMUN•I
uu•..•maa•.uu.uu•uu.

I•••U••UU•U••UU•lEI•••UU i•••••••••••••••••••
i........•.....a...... ••••••••••••••••••.• •••••••••••U•••••••U u.us•uiiei••..u....i.........0
uuuuu•••UNUUUU••IiiI•m••UUU•••u•••u••••••••I UUUUUURkUUUUUUUUNUIUUUUUUUU•I I•UUUUUUUUUU•U•UPJ•UUUU I•••••U•U•••••••••UI I•UUU•UUUU•UUUUUU!iU•UUU UU•UU•U••U••U••••••i •••••••••U••U•UU•U••••••U••I IUUIU•UUUUUUUUU•U2U•UU •••••••••••••••••••I

••••••••m••••..••.•u U•••••••UU•••••U•••••I••UUI i...uu•••.u•uuuru...0 IUUUUNUUUU•U•UUUIiIUPPU ••••••••U•••••••••UM
iuu•u•u•..•..•••riva

IUUUUUU•••UUUUlMUU•UU •••••••••••U••••••••
IUUU UU UUUUUU•U•• i••••••••••••••••• iI......U..U•L4UUUUUUUi rEI
••uu•u••uu••••u••røa

mossommomi k-11 Worelivi-olltim =1

MEMEMEMOMMENNEI
IUUUUUUUUUUUWUUUUUUU•UUUUUUU•UUIUUlUUUURUIUUUUUUUUI
IUUU•WUU••UIU•UU•UUUI••UU••RU•UURUU••••U•UU•••IU•UUUU*UUU•••NI
I•UUU••IUUUU•.••••UUU•UUUIUUUUU..UR.UUU.•••I•U•U•UU.UUU•UU•.U•I•U•I

mommommol
MEMEMEMEMI I•U•.•••••••U••••.•••••I••••••.••.••••••.••.••••ll•U•.••••••••••••••U••••'

U .mmm UUUUUUUU U U. UUUUU 	UU 	U 	NU UIUUU
uuuuuumuUuUUuuuUUmmaaUUuUUamuuuuuuuuUauUuU.u..UI IUuuUUuUuuuuUu•uUUuUuuUmUUUu•uuUUUmUUUuUUU.UuuRuUUUUaUmI ..a..u.u.....U.U.u.....UU..UUuu.U.uUUUUa.aUu.uauUUUamUUI u.....mum...umu..u.....u..m.ammU.u....u.auU.UUUUUUuuUUI mu ma... m.uuu Umu 	. mu. 	uuu 	.uu 	a lu I.u..u.uum...U....U.....UUU.UUmUUUUUmuU.uuU.UuUmddUUI l..u.m.........U.U.Uu.U..u...UUU..UU..u.UU.UUUU.mumuUUauuuUUUUUUUl

lUU•UUU•UU.UUUU•.UUU iuuuuu•muuuauuummmmmmuma....u..........muam....u.u..um.amuuu ...UU..............m..U.....UUU.UUUUUUU....UUU..RUuUuuUUUmuUUuUuU iuuuuum•uu•maummamuu• iuuuuumuuuuuu•uuuuuuuuuu....uu.uu•um.uuuu....uuumuuum.uuuuuui iumuuuuuumuuuuummauumuU....UUU............U.UU.i u.....mmmu.uaumum.um.m...ummmumuu...mu..m.uu iuuuuauuuuummumuaauuu ..umu......u..u.u..uauu.m.u..u....auumu...uuuI
IUu•UUUuUUU•UUUUUuUUI UUUUUUUUUUUUUUUUUUUUUUUUUUUUU•UUUU•UU•UUU•UUI iuuuuum•uuumm..umuuiu..u.•uumu.uum.muuuuu..uuu.ua..uuuui iuuuuu•uuuummumuau.. iuuuuumumuuuuuuuuummuu uuuuuuu•umuauuuuuu•umuauma.u.uuuuUuuuumuauu muu•uu•uumumuamuuuUuu umum..um.....uum.mu.mu....umumuamum•m.u•.uuuuui iuuuaauu••uuuuuuuu•umuuu uuuamuuuuuuuuuu••uu•uuuuuuuumu•uuuumummumuuuu iuuuuuuu•uuummuum...uu UUUUUNUUUUUUNUUU•U•UUUUUUUUUUUUUU*U•UU•U•UUI uuuuuuuuuuuu•uuuuaumuuu••uuuuuuuuuuum•muum•u iuui•umuuuuuuuuuu.uau... i.um......uam.mu....muum IUUUUUUUmuUUUUuuuuUmuuUuUUUuUUuUUuU•UUUUUUUUUuUUUUUUUUUUUUUUUUUUI IU•••u•UU•UUu•U•UUUUuU•U•u•UUUUUU•uUuUUUUUUUUuuUUUUuU•UUU•UU•..I

um.u..u...u...a•mmuumuuuuummumu.u•u.mm....m•u.

IUUU•••U••UUUUU•UU UU•UkU•U•UI••U•UUUUUU•U•UUUUU•UU••U•••U•U••I
IuUUUUUUUUUUUUUUUU UUUUULUUU•••UU•UUUUUUUUUU•UU••UU•UUU•UI iuuuuuuuuuuu•aumuuuuu UUUUaakUUuUuuUUuUuuUUUU•uUUUUUUUUUUUUUUUUU.I m..u.u.u.........u.....uuu.........•umm..amm• immuuuuuuuuumuuum•uu•ua iu•uuuuuu•uuummuuumuuuuu uuUuuUuIImUauumuuuuuamuammaUUuUUuUaUUmumUu.UuI iuuuuuuumumuuuuuaauumuu u...u...i.....mmuu.u..uu..u.au....u.u.....u..uu uamuaam.uuuamU...Uu.u.auamUu.u1UU.U.uUUumUuUUuUuUuaummUUUUUuUuuUUUI ...u.uuUuu...u.UuUu.UuU...u.m..Iu.UUUUu...U..u..umu.UU..U.umuu.mam.uI u..u.u.uuu.u..•.uuu.
iuuuuuuuuauuuuauumumuuum uuuuu•••uuiuuaumu.uu........u.mmmm..u.uuua..i luuumUuuuumumummuuuuuuumuumLumuUUaUuuuumuuumuUUUUUUuU.uuuuumUuUUUUUI iuuuummmuuu•uuuuummuu mm...imm.uumuuuum•u.u..u...muuaaua.u.....uuau I..uu..u.....uu..u.....0 I..uu..u..uu..u.........u.u.u.mJ..u.uk1.U.U...U.U.U.ma.m.u.U.U.UUUuUI i..u.ua.mu.mm.u..u.m.uam ImmUuUuuUuuUUUummuUuuUmumaumuUuuaUUUIUmuuuUumuumamUumuU.umuUuUuUuaI iUuuamauumuuUuUu•uuUmmmmu••uuuuuuuuuaam1umUUUUUuUmuu•uuUuuUUuUUUuUuuUI ImuuuUuuUuUumUaUuUuUuwuUUummUmukmUuuUUkUUmUUUUuaUaUUuUuUUuUUUaUUuuUuI iuuuummamuu•uuuumma i...u..um..mm.u..u..... UUuuuuuuuUUU•UUI'UISUUUuUUUUUUUUUUU•UUUUuUI u•aumu•uuukmuUuULUuUuaUmuumuuuUUUuUUUUUuU•i
IUUUUUUUUUU•uUUUUUUUUU uuuumuuu•uUUUuU&UU•UUUU•UURUuUUU•UuUUuUURl
I...u..........U.m..... I..uu................uI iu......u...u.sauiiuu.u. I....UU.....u..u..1....0
IUUUU•UUUU•U•RU•UUU
IUUUU•UUUUUUUUuUaU•UIuUu•UUUUUuUUUUUI1UUUaUUU•••IUuUUUUuUUUuuUuUUuuI
a.u......u...•..u.maumuu....u..uu..u...iuuamauu..uuu.aummuumuu.uu.ui i.ua•muauau•.uu...r....m uaummmuummmumuuuuu•u•uumau•uuuuuauauuuuui
iumm.u•.Uuu..u..u....m i..u.uuu.....uu.uu..u.. u••uummuammumuuuuuummmumauuumiuuuuumuuuumui m•.•.u.uu...mmuu•uuumuumuauuumiuuU....u.uu.u. ua..u.......u..U.iu...0 uu...mu.uu....a..u.uu...uu.uamm..u..mu.•mmu.• luuumamamauaUuuuuU. umummuummmmuuuuuuumuuuuuuuuuuuuiumuumaumuu i..u.u...uu...u.....a.. UuUUUUUUuUuUuUUUauUuUUUUUUUUUUUUUUuuUuUUUUI i.u..uuu.u...uu.uu,..u.. IUUUU•U•UUUUUUUUUUUUU I..u...u............... uuuUmmuaUUuuuuuuuuamumummUUuuuuuUuUUUE'IUu•UUi ima.u....u.........aamm m.ma.ma...u.......mmumumuu..iuuuu•u.mu.u...i imuuumuUum.......u.... uu•ummuummuuuuuuu•uu•uuuauuUuu••uuaU.U.uu.u. IU•UuU.a.I•umUUUUU•UUU I......U.........._..u. i..m...uu...u........0 .uuuuuuu.uumummuuuuuuuuuuuumuuuuuuumuuumuuui IUu..muuuUUu.uUUUuuu?A iamuamuuuuuuuuuuumuuuuuauum•uuuuuuu•uuu•m•i
IUUUUUUUU•UUUUUUUU UUUUUuUUUuUuUuuUUUUUUUUUUUUUUUUUUUUU•UI u....u......m.u..uu.... iaaumuuuuuu.uuuuumuummuuuu•uuuumuuuu•uuUuUu iu•uuuuUuuuuuuuuuuuuauum IU•UU•UU•UUUUUUU•UUUUU•U••UUUUU•UUU••UUUJ
I•UUUUUU•UUUUUUUUUUUU IUu...uu.uauu...u.u..mI.m.Umu..u....m.uuu.umUUm..uuuu.uuu.u.u.UmUuu.I .UmUu...u.u...u..uu uummuuuauumu..uuuuuuu..i .UuuaumUummum-gwUmmup•.•uUmmal ••UUUU•UUUUUUU•UU1!I
IumUuUUU•UUU••UmUuUU•••Uu••••LIJUUuUUIUUUUU•UUImuULL!àI!IU•I
IUU•UUURU•NUUUUUUU•UU••UUUUUUUUUUUUUUURUU•UUU SiU: UUUUUUU..UUU....UUI IWII1ISft1li I...........u...u..u..u..u....umuu.umu..Uu.muuuu..u.a..u..u.uUUUIU I•UUUUUUUUU•U•U•UU•UUUUU•UU•UU•uU•UI•IU•UNU••UUUUU••UUU•UU•UUI•I
IuuuuuuuuuauUmuuuuUUum•uU•aUuuUuuuuuuuuumuuuumum•uUuuumm•uaUuUUuuUml 'uu.U....mum.uuuU.uuu..u.mm......u.mUu....uu.u.u.uu..ummu.m IuuuuUuuuumaumU•uuumamu•aumuuuuUUuUuUUU•uuU•UuuumUURU•UUUUUUU••UUUI
iuuuuuuuuuuuuuumamuuuummumuuumuuuumumuuuuu•uumummuuummum•uumm I•U•UUUU•UUUUUUUUUUUIUUIU•UUUUUUUUU•UUUUU.U.U•URUU.•I.UUUUI I.uumu.mumuuum.u..uuUUUUU.uu.uu.umumamumuumuuummUumu.uu.uUUU.uu.uaarn IUUU•UUUU••UU•UUUUUU•U•IUUUUUUUU••UUUUUUUUU•UUUUUUUU••UUUI•UUUUU IUUUU•U•UUUU•I•UUUUUUU••RUUUU•uUUUUUU•U•UUUUUUUUU•UUUUUUUU•I IuuU•uumaumumuuuuuuuuUumuumummauuuUuUUmmuuuUmuuUUUuuuUuaUuUulmmumuuu IUUUUUUU•UuuuuuuuuuuU•uuuuuuuauumUUUUUuaUUUU•uuUUUUUuUUUUUUUUUumuUI

i*•u• uu Mill
••••••R•••••••a••••••OMEN onimmosommin
mmoommom

,oil 	ENO 1111i amli nuoun ONE MENEM
u•v••••••a aL
in

iLauRu

111131111 MENEM
MMMmMMMMMM SEEN OMEN

No MUCH moommonso

1111i 	13:11 Mill 110111111 No mono
ill ...umom..................u.u................u.uu•ui

I NONE mom 0a.•ma.u......uaum...........................0
i...uuu•u•...•m......u. MENE
i.•v•••u....uu•R.... NONE 0
i••••••auuuu•uu••u

MEMO
i•.uu.u•..•.....uuum •••uu•••••••••••uu....u.....u.......
Im••••••••N•uu•a••••u•• UUUUUU•U•UURRU

••••••••••••••••• or
u•uuuumaI•Nauu•uuuu•uuumuI

1110111110
iu.....•u.u.........•..

In •••••••••••••••u•
uuiu••••u•••••u•a•uME

mm Mom Emismommi 0 111111111 so ME MEN
u..•.u..uu.....rw......

aiuuuuu
ME

uu•uuuiauu•suuu.u....0
...u..a......u....u.........u.0

LZRIll
Momu..u............ru......r....... i••u•r•u•uuumuaamusm•uumauuui

i................uuu... u•u•i••uui••.•• i
ONEEMENNNOMMUM ua•rnuu•uuauaa•uuumuua•ausuu

•••••u
u

i.......u......a•.....
i....u.uu.....u.ri.u...
I••IUU•U•••U••••N••RUUNN

Emmilluillilillillinluilil i.u..•uuuu.•iur.uu...
iuuuuu........a•.aum

11111111 m
!uamlu

11111111 	
Mom

uuu••uu•••rn•••u•uu•••rnu•••u••••••••um•••urni
iuuuurnrn••u••rnu••rn•au
u...........uurnr.u...i

rnurnrnrnurnu•uupaurnrnurnrn•rnugurnrnurnurn•uuuurnuurnu•rn•uuui
uu..........ra.........un..............rn••urni

iurn•uurn•urn.•.u.ia..urn.i .urnu...urn.uirnuuurnurnuuurn.rnu..rn.u...rn....rnrn...uuuurni
iu SEE ••rn•urn••uuu'auuu•uu

0 nammmmo .uu.uu.urnrn.rnurnrnrn.u..rn
uuu.....u.a•uuu.......

No M so
rnu....u..mrnu.............u....u.u.....••...urni

i.rnrnrnuurnrnrnuuurnrn.ni...rn.. au...rnurrnMuuuuurnrnuurn.urnrnrnuuuu•uuuuu.urnrnmurnuu•..l
iuurnrn.rn.rnu.rn•...iauu•rnrnrn uuu.urn..rn.rn.rn.rnrnrn..•..u.••.••.•..•.rn•.•.•...u...
I....UuUNUuU..........•

0.11-1
r.uuuuurnuurnuuuuuuuurnurnu•uuiuuuuuuuu••uurnrnu....

iurnuu•rn•uu•mruupuu ill
i...uuurnrnrn.urn..u..&arn u••rrnrnrnuurnurnrnrnsuuuuuuuuurnau•uu•rnuurnrn•uuuu••uu•u
.u.uusu........iurnm ImurAuu•rnurn••uuuuuu•uurnurnuuurnuuuuuuuuurnurnurnrnuuurnuu
rn•u.u•uuurnu.•u...... •
iuuuuu..........i.rnuurnu iva.u......u...u.urn....u..urn.....u.uu.uuurn...rnu
u..u..u.urnrnrnurnuuu..rn• i
uurn.rnuu••rn•u•rnriuurnurnu urnuu•rn•u•uuurnuurnrnuu•urnuu•uu•uuu .u..u.u.......ui 1111111milillulu.....rn

r.... rnuu•rnu••rnuurnrnrnuurn•rnu•urnu••u••i•urnurnirn•uurn•u•..
••uu••urnriusuurnuu............u..0

........urn..uu.i.rnp,u. uu•rnrnurnrnu•um•u•••••urn•rnuuu•uurnaurnurn•rn•rnurn••••••i
iu..u.....rnu.rn..rurni -aurn.........u..
i.....u........ni...... •
i..rn.u....u...ui...uu •
i•••urnuu•uurn••rn•rii•••••rn p urnrnrn..uurn.rn - uurnumurn rnø*uumu.rniuu..............

-1liL1!.rnIu.rnu•urnuuurnrnu.l
iuu.urnu.....u.....u.rnuuu
rnuuuu........u.uurnua.
iu...uuurnrnrn........rn.uu

omm

INS urnumom rnu•urnurnuuuu•sh,
sirn•rnurn•rn•uurnuuuurnrn•rnuurn••u•wauurn.u.•u..••rnu..

iurnuurn•
lmumom

•rnrnrnurnrnm
OMEN

upjuu
IMMENSE 	mommummommom

M1
on

iurnrnrnu••uu••••••••uuurnrnrnrnrn•••••rnuurnurnu•rnuuu•urnurn

0

rnuuuuurnsuuu•iurn•uurnrnrnuu
i•rnuuu••muurn••urn•u•rnurnrnurnuuiurnu•u•rnurnrnurnuu =MONSOON rnrnrnurnurnuuuauarni
i•rnrn•uu•urnrnu•rn•uuuusrnrn•rnurniuuuuurnuuurnu••rnuurnumrna••rn•u••urnrnu•uu•i
iu•urnrnuuuu•u•urnrn•rn••rn••.rn•uuu•u..uu.rnu..u.•u.uurnu•uuurnuuu••uurnrnuuu
irn•rnrnurn••uuuuurnuu•rnu•rnuuNo
Iuurnuuu•u...uuuuu.uurnuurnrnu•.•urnurn•urnuuuuuuurnrn•urn•..............u.u.rni

rn•rn•rn•rn••rn•u•••••rnu••uurnrnu•rnuuuuuu•rnrn••rnu
u•rnrnrnuuurnurn••...uu.....uu......u..rnurnu...m....0

i.rnuuu...rn..•.u.uurnurnu urnurnuuuuuurnu.••......rn•urnu.......u•uurnu•auurnrn.
i..i•.rnrnrnuurni•uu.•urnu•u i.........rn.u..uuuurn..u.•.....u.u...rn......uu
irnrnrnrnuuuurnuurnurnurnu• ...u.r..urnu..................uu.urn..i
i..rn..•uauu....•rnuurnrnuu u..u..u.....u.u.....rn....mu.......i HHHE i......uurnuuu.....u....0 uu•...........uarnrnrn.urn...urnuuuu..u..i
irnuu••rnu••rn•irnurnrnurnrnrnrnu uurnrnu.u..u...rnurnuu...........rnu
irnu•u.rnum••rn•i.urnrnuuuuuu

..rn.rn........10
000

rnu.urn.u..u..u.u.......u.u...u...u......0
irn•irnuu • rn••uuurnuu•u•rnuuu•rnrnurnrn•urnurnurnurnuuurnurnrni
irnuarnrnrn•••rnu•rnurnuuurnrnrnu urnu••rnrn•rnurnuurnu•rnuuurnrnurnurnuu••u•uu••rn•uuw
irnurnuurnuu...u..urnu•uuuij•urn•..urnrnuuuuurnurnrnurnrn•uurnuu....urn••u.rnu.uuu

mom
K"" iurnu•u.urn••u•uurnuurnrnurnrnrnu.rnrn•urnumrnuum.u.u...u•rnuuuumi

uaurnu..rnuurnu.u..•uu•..uu..i i.u.rn...•.urn.....uuurnrnrn.uuu•u•i
Is
iu•uu.rnuurn•u•u•uurnuu.u.uu•rnurnuuuurn.uuui•uu.••uuurn.u..urnrn•iurnuuuurnrnrni
iuuauu..rnuu•.•a..uurnurnu..u.....•murnurnrna.....u.urnuu...uurnrnuuurnrnuuurnaui
i••u••••urnuu•urnuuu•rnuu••urn•rnuurn••••uuuuurnuu•u•rnu•••uu••uu•uu•u•rnu•urnu.0

166

noted that the simulation always lies within 75% of

the observed values. The delay times involved in

handling these requests in the intelligent channels

are held at the same values as were used for the

supervisor overheads in the original model, only these

operations can now proceed in parallel with other

operations on the CPU.. The effects of adopting such

a scheme show a substantial increase in user CPU time

(Figure 6.13a) with the difference between the two

workloads again narrowing as the main memory size

increases. Similarly the drum throughput is

increased (though no changes have been made in the

speeds of the drum) and the difference between the

drum throughput rates of the standard and intelligent

channels increases as the main memory size increases

(Figure 6..13b). The rate of increase in supervisor

overhead as memory size increases is much less

however under the intelligent channel scheme than

under the standard one. (Figure 6.13c).

Conclusion

The model presented in this chapter has

been used to quantify the effect on overall system

performance of changing certain factors which were not,

or could not, be included in the EMAS performance

experiment. A certain degree of confidence in the

Id

iL

ILL IHH:H±LH

ip rErJ

III

L

ftftHThJR1HLL#rt

1t

:H:I1

H±±HL

I 	II 	I 	I

LL 	L

ThJITPThJTI±J

L.LL.4J4jI

I

rF1

-LL
II

I

H±L
I

t l i

ji frp
jI 	I 	1

± 	LL.L

+L 	HL+d±HL

IHi.IF

-

ft

fJ[TEfjTj

f

::LL4i
.J_iLIL.L..L__LJL.:JLL.LLL±.LLL

TfTj HTLF
t±t±±H.:

I±Lft:

Ui
H±+ 	iftLJ1L

L4:

W:z

t-It±H LttWI IJ L 1 T ±

:H:: ttEH::f
U

:ft -:H*t±H
4ii I

i1tI:I
EII

-- - t -- *T
II I.ITIII r IIjIII.II IILIIfII jIll

9L L. I

tLU:

Wi W L WHIH:1 I I fi \ H\ L LJJJ '[LL 	I ± L 	ILHIJ

LH:H4i
LL 	------------------

H

H - -
HtruJ hr ThrEf* H 1

Th di fLitL
9H

LL 	tEJ

L±
ILI L It±±± LJz LW Lt 	1 	iLLJ L1H

I
d tflHftj

'I±Et
FU L:
LI L:H

i±LJ \ EThi iIi WL±IWI
ibH-I-

II 	r LL
H

'JL - 4 L Lii
FIII

L I I I I 	flj 	I -L 	JI l ii I UL

LHrltfH
H-WHH LJjir ;

[

LLLtH_LIT llju LOHULUtujQLIiLHLLH
H

-L 1 _L .1r111J1f14L
LLj4

LL
1LI

1IIJIItITFJ_LW LLLiLflJ
WH

SSSO.d
HjL±t

LLJ+i
LHWJ

LLLLLULJ
J

iri1lfiivINf -m
H±H H-H-H H

I F LL 	j4H _'LLI
H ___ LLiTT7ThI

±I±LLH iLLHI±H±LftLELH-H
-i LL dILI I - LH-±H±J

iH HLWd-HWL±FELiI! ----

ILLL14±4
FJEHLH±H

uUUNU . U
IUUUUUUUU•U•UUUU•UUUUU•U•UUUU U•PI.U••I

,uUuUU.....•UUuUUmUuUuu..UUuUUuUuUuU.•..U•UuUUU.uUUUUUlUUiUU••i
IUUU•UUUUUi•SUU•U•UUUUUUUUUUUUUUUUUUUUUUUUUUUNUUUUUNUUUUUUUL•UU•UUUi

UUUPUUUUU•.Ui
I.......u...m. ..U UU..
..•ua•ua.uu..•••iuuuu....u....•uu••u•uu•uuu••...i

u..uci.a.msu.0
••.LIIUUU••UUI I•UU•UUUUUUUU•U•U•UU•UUNU•U•U•UUUUUUU••UUUUNUUUU

uu•.........u.u.uu•...u•mu•uuu.•uuuu....•....u...
I••UdUUUU••I

UU•U•UUUi
I•••••••UUUUUUUU••U••UUUUUUUUU*U•UU•••••••UU••UUUUUUU
iu•ua•u•u•uu•uuuumu•••u•iu•••••uu••isu•uuu•uu••uu••..s

....II....URU.i
uum•u••••••mui
UUU•tIUUUURU•I
....rimuuu.ui
lUUIUUUUUUUUi U•••UU•U•••••UUUUUU•U•U•U••U••UUUUUUU•UUUUUUUUU

•••U•U•UUUUUUUUUUUUUUUUUNUUUU•U••UUUUUUl•U••U•UUUUUU ••••mIR••u••••u
•••••••••U••••UU•UUUUUU•••U•U•••UUUUU••U••U•UUUUUUUULIu......i

rI•rn!I•u••••uI UUUUUUUUU•UU•UUU•U•UUUUUUUUUU•••U••SUUUUUUU•UU•UUU•UU•I
••U•••U••••••UUU•UUUU•UU•••U•U•••••••UUUUUU•UU•UU•UUUUUU.• UIU1U•UU•i

IUUU•NIUUUUUUU...U•UUUUUUUUUUUUUUU•U••UU•IUUUUUUUV
IU•U•U•UUUUUUUUUUUUUUUU•UUUUUU•U•••••UUUUUUUUUU••U
IU•U••••UUUUUU•UUUUUUUUU•UUUUUUUUUUUUU•••UUUUUUEdUUU

.FI•.UR.....U.I
i•UI1•UUUUUUi

U••U•U••PUUUU••U••UUUU•WUUUUUUUUU•U•UUUUUU
IUUUUUU•UUU&gUUUUUUU•UUUURUIU•..•UUUU•UU••UU••UU1UU

UU.•U....U.UI
UUU!IUUUUU.I

IUUUUU•U•UU•U&UUUU•UU•U•UUU••••UUU•RUUUU•U•••UUWi1U•
UUUUE•••••UUU
l..U.U.......0

I•UUUUUU••UUUULUUUUUU••••IUU•I••UUUUU•U••••USI••UUI1UU UUUUUU•U•UUUi
lFIU.UU.U.....I

I•••U••U••U•UUUUU•UUUU•URRUU•UU•UU•••UU•U•U•UIU•UU?U
I••UUUUUUUUUUUU•UUUUUU•UUURUUU•L1•U•UU•UUUUUU••UUUUU?••

I•U••UUUUUUUUUUIPIUU•UIUN*UUUUUSUUI••U•UUU•UUUUUUU U
•irumiRUuu•Ui

UUUmIU••UUUUUi
isuie••u•u••i

IUU••UUUUUUUUUU•UUI•UUUUUUUUUUUUM••U•UUUUU•UUUUUU•UU•NIUU
IUUU•UUUU•UUUUUU•UNUUNUUUUUUUU•U$•UI•••UUUUUUUU••UUfl•UIUUIUIUU•UUUUI

.•..miumu..ui
U...rnilUUU.U.I IU••UUUUUUUUUUUU•U•••U•UUU•UUUU1UU*UU••UU•UU••U•UUUUcU1UU

IUUUU•UUUI••UUUUUURUUUUUUUUUU•UUU•••UUUUUUUUUUUIU1UU ••••r!I••••••l•I
IUUUUUUUUU•UUUUU•U••EI•IUU•UUU•UUUflNUUUUU•U•UUUURU.NUUNUUUU
I•UU•UUUU•UUUUUUUMU•UU•••UUI'UUUUUUU•UUU•I•••UUMUPIUU

rIUIWUSUUUURI
Ur2•m••mu••I

IUUUUUUUURUUUUUUUNUIUUUUUUUUU1••••U••UU•UUU•U•L1R Irur.?JUUuUUUI
I•U•U•••UIUU•UUUI•U••I1BUUUUU•UUUUUUU•U•UUUUUUUUUUUESUN ••••tIUUUUU•••I

U•••1•UUUUUJ IUUUUUUUUUUU•UUUUU•••R•UUUIUU•U•••I••UUU•••••UU••UUUUUU
U•UU•UU•UUUUIUUUUUU•UL1UU•UUUUUUU•••UUUU•••••U•UUUUU UUU••UU•I••UUI
UUUU•U•UUUUUUUUU•U•URUIU••••U••••IUIUUU•UU•U••.URUUUUUU

IUU•U•UU•UUUUUUUSUUUUUUIUUUUUUUUUU•U•••UUU•UUUUU•RUUUUU
IUUUUUUUUU•UU••UU•••IU•UU••IUUIU•UN1UUU••••••••UUUUUUUUU

U•UMI1UUS•UUUUI
IUI•r!1..•U.U•l

IUUUUUUUI
mmmmmoroummomm NONE

U
•

IrI.l1UUU••I
liUPIUUUUU.•

IUU.•UU•U.UUUUUUUUUUUU•••U•UUU•••U••U•IIU•UUUUUU•UUU•U•UU

IU••UIU•••I•••••UUUUUUUS•UIIUNUUUUUUU•IU•••U•SUUU•UUU
IUUUIIURUUUUUI
UUUUII!JUUUUUI

I.........U..................Nm.••U•UU••• ..••riuuuu..
IU•UUUUUU•UU•UUUUUIUUUUU•UUUUUU••UU•U••RU•UUUURUUUUUIUUUI1UUUUUUUI
I••IUIUUUUU•UU••UUUUlU•UU••NUUUIUUUUUUMU1U••UUUUUUUUU IURUIUUUUUUUI
IUU••UUUN••I••UUUU•UUUUUUUUUUk'UUUUU••I•UUUU•UUUUUUUUUUUI UUUUUUUIUI

UI1IUUUUUUI I••••I••UUUUU••IUUU••U••U••N•UU•UUUUUUkIUU••UUU•UUUUUU
IU••UUUUUUU•UUUUIUU•UUU••Uk•UUUUUUUUUIUU••RUUUUU•UU

•
UI1UU•UUUI

IU••UU••••••UUUUUUUUUUUUUUUUUUUUU•U•UUUIUUUUUU•UU•U•
IU•UUUUUUIUU•UUUUUUUUU•UUU•RUUUUURUUUUUUU•IUUUUUIIU•UU

IUliIU•UUUUUI
UI•UP2UUUU•UUI

IUU••UUUUUU•U••IUUUIUUUUUUU•U•U•IUUUUUUUUUL1•UUUUUUUUU••
U•U•URa•UuUU•U••U•U•U•U••••uSUUUUUUUUI'U•U•UU••U

IUU••UUUU••UUUUUUUUUUU•UU•U••UU••UUNUUVMRUUUU•••
U
I...r'I......UI
IUU.IUUUU.U•

UUUUUU•••UUUUSUUUUUUUU••UUU•I•IUUUUUUIURUUkU•UUU••UUU
......U...U.U...ma...u.....U..k.......U..u.....U.m

U• IUUUI!IUSUNUII
U••Ul!lUUUUU•••I
lUUUf1•UURUUUII

RUUUUU•IUUUUUUUUUU•UUU••UUU•U•U•UUIUUUUUUkU•UUU•UU• UUUUUUUUUUUUI
IU•UUU•UUUUUUURU••UUUUUUUUUUUUUUUUU•U••UUUUUUUUUUUUU
IUUUU•U•UU•UU•UUUUUUUUUUUUU•UU•UIUUUUUUUUUUI1UU*UUUU••

II.II.U..U..UI
IUI1•UUUUUUI

IUUUUUUU•UUUUUUUUUUUU•UU•UUUUUUU•••UUUUUUURUUUUU•U•
IU•UUUUUUUUUUUUUUU•U•UUUUUUUUUUU•UUIUNUU•R•UUUUUURU

UUUUUUIUUUUI
IUUUI!UUUUUUUI

I•••U•••U•••••U••I•UUUUUU••UUU•UUUUUUUUUUU•UUU••UUUU•
IUUUU•U•UUUUUUUUUUUUUUUUUU•UUUU•••U•kUUURUUNMIUUUNUUUI!!IUURUUUUI

UUUUUUUUUUUUUlUlUIUUUUUUUUUIUUUUUUUURUUUUUUUUUUL1UUUUUUIUUUPIUUUlUURI

UU•IUUUUUUURU•UU•I•UUUUUU•U••U•UU•UUUUUUUUUIUUU
IUUUUUUU•U••••••UIUUUUUUUU•UUU•UUUU•UU•UUSU•UUUUUUIUUUUWUURI

U.U.UU...UUU.U1
IU•UUUSU•UUUUUN•UUUUUU•URUUU•UUUUUU•UUUI•U•UL1U•UUU
IUUUUUUUU••••U••UU•IUUUUU•UUUURUUUUUU•UUU•UUU••UUUUUU*

UUUUU••UUUI
IrWUUUU•UUUE
UIU•U.RU•.0 IuUU•uU•uuUURUU••UuUauRuUUmRRUuIuUuUUa$UUUwuU1U

IUU••UUUU.m.m.UaUUUUUU..UR..UUUUU......mU.UUh1aUURUUUUUUUUUUI
IU••UUUI•UUUUR.rUU..UUU.U•U.U.UrUUUUUUUf1UU••URU•r.lURUUUUU•UUI

UUUUUU•UUUUIUUUUUUUUUUI•UUU•U•U•UUU•UUU••UUUUUUIUUUU
I.U.UUUUUUU....U.U.UU.UUUU.U....UUIUUU.UR.UU......U.•m..UUUUUUU1
IUUUUU•lUU•UUUUUU•UUUlUU•l••••UUUUUUUUUUUUUUURIUUUUUURUUU•UUIUUI
IUUUUUUUIIRUUUUU•IUUUUUU•U••IUU•I•UU•UUU•••U•UUI•URUUUUUURU••U•U•UUUUI
IU•UUIUUU•I•R•UUUIUUUUUUSU•UU•UUUU•••UUUUSU•UUUUUUUUUUUUU•UUUUUUI
IU.....a.............ua.U.U....U..m.......U...U.UU.UUUUUUUURUI
I•U•UIUUU•••••UU•UUuUUm•••U•••UUU•U•••Uu•••U•UUU..UUUUU•UUE
IUIIUIUUU•••UUU•UUUUURUUUUUUUUUUUUU•U••UUUUUUUUU•U•UUU••••UUUR••UUUI
I..UUUU•U••UU•UUUU.•mU.uU..UU.URI•UmUUIUUUUU•UUUUU.UUUUUUU•UUI
I•UUUU•U•U•U••U•UI•UU••UUUU•U••UUU•UUUUU•U•UIUUUUUUUUU•URUUU•••UI
IUUU•UUU••UUU•U•UU••UU•UUUUUUUUUUUUUUUUUUUUUUUUUUMUUUUUUU*UUU••UUI
IUUUUUUUUUUUUUUUUUUUU••UUUUUUUR•UUUU•UUU•UUUUUUU•UUUUUUUUUUUIUUI

lllMlMMMMl
IUUUUUUIUUUU••U•uuUu•UIUUIURUUU••••UUUIURUUUUU•UUUUUUIU..IffiUU••
IUUUU•UUUUUUUUURUUUU•UUUUU••UU•U••I•UU•SUUUUU•U•UUUUUURURU••U•UUUUUI

mUUUommm

167

model's predictions has been gained through comparing

them with empirical observations. The model may be

used in yet further investigations of this nature,

but it would be better if it were used in

conjunction with a further series of empirical

experiments (the nature of these experiments may be

dictated by results obtained from the model) so that

yet more confidence may be gained in the working of

the model and its predictions.

The approach adopted' in this work has

been to combine the two main techniques available to

aid the. evaluation of time-shared, virtual memory

systems - measurement and modelling. Either of these

techniques used singly is subject to certain

limitations and it is only by attacking this problem

by using the complementary advantages of both

techniques that any real progress may be made in this

area. -

Measurement alone is always limited to

the evaluation of existing, functioning systems. In

the past this technique has been criticised for

producing too much data thus obscuring the

relationship between changes in performance and their

causes. It is also possible in many cases that the

high variability in user workload between two

measured intervals may make it impossible to draw any

conclusions about the relationships between changes in

system structure and system performance. The approach

taken here attempts to eliminate this variance in

workload by using a remote terminal emulator, and studies

the system using a proven experimental design and

analysis methods frequently adopted in other branches

of experimental science.

169

The trend towards incorporating mini-

computers in the mainframe of the time-shared

central processors, with access to most registers and

system tables, to handle such tasks as initial

programme loading and diagnostics, opens the way to

the possibility of using these to monitor system

behaviour using hybrid methods -. thus hopefully

reducing the overhead induced by the measurement

process. Similarly the widespread use of

mini-computers in the communication networks which

service large scale multi-access systems should

facilitate the greater use of remote terminal

emulation in future measurement experiments.

Modelling is, of course, not

restricted to producing results on existing systems

but may predict results for any proposed configuration.

However, these models will only be of use if they are

an accurate reflection of the way in' which the system

functions. The inability of some modelling

techniques to handle' real systems has in fact been a

matter of some controversy in the literature

[Saltzer 1976, Chattergy 1976, Denning 1976]. Where

possible a model should be calibrated and validated

using measurements taken on a real system. For this

to be possible, and for models formulated using a

variety of modelling techniques to be tested, a

170

consistent body of measurement data must be available.

For this body of data to be consistent it must be

obtained under controlled conditions i.e. all

parameters (workload as well as system configuration)

must be known and able to be reproduced. The

empirical techniques presented here provide a method

whereby such a body of data may be accumulated.

Not all factors which may impact on

the system performance have been covered here -

there are too many to enumerate and quantify in such

a short time. The effect of varying the number and

type of users active on the system is, perhaps, the

most notable oinmission (though the result of

effectively varying the process characteristics is

included at two levels). However, there is no reason

why this factor should not be studied using the same

methodology, and the simulation model modified and

extended to include this factor. It must also be

noted that the standard workload, used as input to

the system during experiments, is itself a model of

user behaviour and should ideally be validated

against measurements of real user behaviour before

being put to such a use.

The ideal way therefore for any

process of system evaluation on an existing system

171

to proceed is for a model of system behaviour to be

initially derived from, and to be validated with,

measurements from a set of controlled experiments

(Figure 7.1). Results from .this.model may then be

used to suggest new areas for experimentation and

the model may be further validated by results

produced by these. It is only by carrying out such

an exercise that any confidence can be gained in a

modelling technique and its applicability to complex

systems. These proven modelling techniques may then

be used with slightly more confidence in predicting

the behaviour of completely new systems and will

hopefully be validated by a similar empirical

experimental programme when such systems are built.

CARRY
OUT
EXPERIMENT

'1 FORMULATE
NEW
MODEL /

CALIBRATE
AND
VALIDATE
MODEL

MODEL USED
FOR
PREDICTION

PREDICTIONS
SUGGEST NEW
AREAS FOR
EXPER IMENTAT I

172

Appendix

Analysis of. Variance

The experimental design adopted in the

EMAS performance experiment is a full 3 x 2 x 2

factorial experiment [Cochran and Cox 1957] in which

the following factors are varied:

FACTOR
	

NUMBER OF LEVELS

A - Main Memory Size 	 3

B.- Secondary Memory Channels 	2

C -.Scheduling Algorithm
	 2

The results from each run in this experiment are

considered to be in the form

Y = M + 	2aX3 X4,)

MAIN EFFECTS

+ X5ab + X6a2b + X7ac + X8a2c + X9bcj

SECOND ORDER EFFECTS

+ 	 + E

THIRD ORDER EFFECTS

M - the overall mean - all factors present

at level 1.

E - an error term due to random experimental

errors (and sometimes environmental effects -

assumed to have been eliminated in this

experiment).

X coefficients - variance around the mean due to

the factors included in the experiment and

interactions between those factors (second

and third order effects).

a,b,c - experiment run having the main factors

(A, B or C respectively) present at level 2

(rather than level 1).

a2 - experiment run having the main factor A

present at level 3.

The analysis of variance (ANOVA)

technique [Yates 1937, Johnstone and Leone 1964,

Mendenhall 19681 merely determines the values of the

X coefficients and thus quantifies the effect of each

of the factors and their interactions. It is normal

174

to deduce the error term from duplication of certain

or all of the runs. However since it was not possible

to carry out any duplication the approach adopted

[Mendenhall 19681 was to assume that the higher order

effects are negligible and that the effect attributed

to these may be used as an estimate of the

experimental error. The ratio of the sum of squares

of each main effect to the sum of squares of this error

term is then used in conjunction with an F -. test to

decide whether or not the effect of each factor is

statistically significant, and if so then to what

degree.

175

Bibliography •

List of abbreviations: 	 •

ACM 	- Association for Computing Machinery

AFIPS 	- American Federation of Information
Processing Societies

CACM 	- Communications of the ACM

CMG 	- Computer Measurement Group

ERCC 	- Edinburgh Regional Computing Centre

FJCC 	- Fall Joint Computer Centre

IBM 	- International Business Machines

ICS 	- International Computing Symposium

IRE Institute of Radio Engineers

IRIA 	- Institut de Recherche d'Informatique et
d'Automatique

IUCC 	- Inter Universities Computer Conference

JACM 	- Journal of the ACM

MIT Massachusetts Institute of Technology

NCC 	- National Computer Conference

PER 	- Performance Evaluation Review

SIGOPS 	- ACM Special Interest Group on Operating Systems

SJCC 	- Spring Joint Computer Conference

US-NBS 	- United States of America National Bureau of
• Standards

176

Abrams, M.D. and Cotton, I.W.
The Service Concept Applied to Computer Networks
US-NBS technical note 880. 1975.

Abrams, M.D., Treu, S. and Blanc, R.P.
Measurement of Computer Communications Networks
US-NBS technical note 908. 1976.

Adams, J.C., Gelenbe, B. and Vicard, J.
An Experimentally Validated Model of the Paging Drum
Proc. Sigmetrics - CMG VIII, Washington. Nov. 1977.

Adams, J.C. and Millard, G.E.
Performance Measurements •on the Edinburgh Multi-Access
System
Proc. ICS - 75, Antibes, France. 1975.

Adams, J.C., Currie, W.S. and Gilmore, B.A.C.
The Structure and Uses of the Edinburgh Remote
Terminal Emulator
Presented at IUCC 1977 (at University of East Anglia).
University of Edinburgh, Department of Computer Science
Internal Report CSR-12-77.

Alexander, M.T.
Organisation and Features of the Michigan Terminal
System
AFIPS, FJCC vol. 41. 1972.

Alexander, M.T.
The MTS Data Collection Facility
University of Michigan Computing Centre Memo M294.
April 1975.

Aschenbrenner, R.A., Annist, L. and Natarjan, N.K.
The Neutron Monitor System
AFIPS, FJCC vol. 39. 1971.

Badel, M. and Zonzon, M.
I. Validation d'un Modele a Processus de Diffusion IO

un Reseau de Files d'Attente General: Application
a Cyclades
IRIA research report 209. Dec. 1976.

Barber, B., Asphyell, A. and Dispen, A.
Benchmark Construction
Sigmetrics PER vol. 4 no. 4. 1975

Bard, Y.
An Analytical Model of CP-67 and VM/370
in Computer Architecture and Networks, Gelenbe and
Mahi, R. Editors. 1975.

177

Bard, Y.
•A Characterisation of VM/370 Workloads
in Modelling and Performance Evaluation of Computer
Systems, Beilner, H. and Gelenbe, E. Editors. 1977.

Bard, Y.
Conversations with the author. April 1977.

Bard, Y.
Experimental Evaluation of System Performance
IBM Systems Journal vol. 12 no. 3. 1973.

Bard, Y.
Performance Criteria and Measurement for .a
Time-Sharing System
IBM Systems Journal vol. 10 no. 3. 1971.

Baskett, F., Chandy, M., Muntz, R. and Palacious, J.
Open, Closed and Mixed Networks of Queues with
Different Clàssês of Customers
JACM vol. 22. 1975.

Baudet, G., Boulender,J. and Ferrie, J.
Analysis of a Drum with .Bulk Arrivals
Proc. ICS 1975, Antibes, France.

Belady, L.A. and Keuhner, C.J.
Dynamic Space Sharing in Computer Systems
CACM vol. 12 no. 5. 1969.

Bobrow, Burchfiel, Murphy and Tomlinson
Tenex - A Paged, Time Sharing System for the PDP-10
CACM vol. 15 no. 3. 1972.

Boehm, B.W., Seven, M.J. and Watson, R.A.
Interactive Problem Solving - An Experimental Study
of Lockout Effects
AFIPS SJCC. 1971.

Bryan, G.E.
Joss 20,000 Hours at a Console, a Statistical Summary
AFIPS, FJCC vol. 31. 1967.

Buchanan, I. and Duce, D.A.
An Interactive Benchmark for a Multi-Use:
Mini-computer System
ACM Sigmetrics PER vol. 5 no. 4. 1976.

Buzen, J. P.
Computational Algorithms for Closed Queuing Networks
with Exponential Servers
CACM vol. 16. 1973.

Chang, W.
Single Server Queuing Processes in Computing Systems
IBM Systems Journal vol. 9 no. 1. 1970.

Chattergy, R.
Memory Management Modelling
CACM Forum vol. 19 no. 8. 1976.

Cochran, W.G. and Cox, G.M.
Experimental Designs
Pub. Wiley. 1957.

Corbato, F.J., Merwin-Dogget, M. and Daley, R.C.
An Experimental Time Sharing System
AFIPS, SJCC vol. 21. 1962.

Corbato, F.J., Saltzer, J.H. and Clingen, C.T.
MtJLTICS - the First Seven Years
AFIPS, SJCC vol. 40. 1972.

Corbato, F.J. and Vyssotsky, J.A.
Introduction and Overview of the MULTICS System
AFIPS, FJCC vol. 27. 1965.

Crissman, P.A.
The Compatible Time Sharing System: A Programmes Guide
MIT press. 1965.

Dahl', O.J. and Nygaard, K.
Simula - an Algol Based Simulation Language
CACM vol. 9 no. 9. 1966.

Daley, R.C. and Neumann, P.G.
A general Purpose File System for Secondary Storage
AFIPS, FJCC vol. 27. 1965.

David, E.E. and Fano, R.M.
Some Thoughts about the Social
Accessible Computing
AFIPS, FJCC vol. 27. 1965.

Denning, P.J.
Memory Management Modelling
CACM Forum vol. 19 no. 8. 1976.

lications of

Denning, P.J.
The Working Set Model for Program Behaviour
CACM vol. 11 no. 5. 1968.

179

Denning, P.J.
Thrashing: Its Causes and Prevention
AFIPS, FJCC vol. 33. 1968.

Denning, P.J.
Virtual Memory
Computing Surveys vol. 12 no. 3. 1970.

Dennis, J.B.
Segmentation and the Design of Multiprogrammed Computer
Systems
JACM vol. 12 no. 4. 1965.

Digital Equipment Corporation
DEC System 10 Reference Manual
DEC - lO - HGAD - D. 1972.

Digital Equipment Corporation
Large Computer News vol. 1 no. 8. 1977.
Pub. by Digital Equipment Corporation.

Dimsdale, B. and Markowitz, H.M.
A Description of the .Simscript Language
IBM Systems Journal vol. 3 no. 1. 1964.

Emery, A.R. and Alexander, M.T.
A Performance Comparison of the Amdahl 470 V/6
and the IBM 370/168
University of Michigan Computing Centre. 1975.

Estrin, G., Muntz, R.R. and Uzgalis, R.C.
Modeling, Measurement and Computer Power
AFIPS, SJCC vol. 40. 1972.

Fryer, R.E.
The Memory Bus Monitor - A New Device for Developing
Real Time Systems
Proc. NCC vol. 42. 1973.

Gelenbe, E.
On Approximate Computer System Models
JACM vol. 22. 1975.

Gelenbe, E. and Muntz, R.R.
Probabilistic Models of Computer Systems - Part 1
Acta Informatica vol. 7. 1976.

Gibson, J.C.
The Gibson Mix
IBM internal publication TR 00 2043. 1970.

Glasser, E.L., Couleur, J.F. and Oliver, G.A.
System Design of a Computer for Time-Sharing
Applications
AFIPS, FJCC vol. 27. 1965.

Gold, M.M.
Time Sharing and Batch Processing: An Experimental
Comparison of Their Values in a Problem Solving
Situation
CACM vol. 12 no. 5. 1969.

Gonzales, C.M.
Performance Measurements of the Scheduler in the
PDP-10 TENEX Operating System
Case Western Reserve University, Ph.D. Thesis.
Jan. 1975.

Gordon, W.J. and Newell, G.F.
Closed Queuing Systems with Exponential Servers
Operational Research vol. 15 no. 2. 1967.

Greenbaum, H.J.
A simulator of Multiple Interactive Users to Drive
a Time Shared Computer System
Thesis MIT project MAC 1969 MAC-TR-54.

Grenader, U. and Tsao, R.F.
Quantitative Methods for Evaluating Computer System
Performance: A Review and Proposals
Statistical Computer Performance Evaluation. Academic
Press, Freiberger, W. Editor. 1972.

Holdsworth, D., Robinson, G.W. and Wells, M.
A Multi Terminal Benchmark
Software Practice and Experience vol. 3 no. 1. 1973.

IBM Data Processing Division
CP-67/CMS Version 3 System Description Manual
IBM, White Plains, N.Y., Form GH20-0802-1. 1970.

IBM Data Processing Division
IBM Virtual Machine Facility/370
IBM, White. Plains, N.Y., Form GC20-1800. 1972.

Jackson, J.R.
Jobshop-like Queuing Systems
Management Science vol. 10. 1963.

Jalics, P.J.
Measurements of the PDP-10 TOPS-10 Operating System
Case Western Reserve University, Ph.D. Thesis.
Jan. 1973.

Johnston, N.L. and Leone, F.C. 	 -
Statistics and Experimental Design in Engineering
and Physical Sciences. Volumes I and II

Pub. Wiley. 1964.

Kilburn, T., Edwards, D.B.G., Lanigan, M.J. and
Sumner, F.H.

One-Level Storage System
IRE transactions on electronic computers, EC-11 no.2.
1962.

Kosko, D. and Turner, R.
A Report on a Data Transaction Processing Experiment
DEC internal report, 75 DK 378-440. Nov. 1975.

Lassettre, E.R. and Scherr, A.L.
Modelling the Performance of the OS/360 Time Shari
Option
in Statistical Computer Performance Evaluation,
Academic Press, Freiberger, W. Editor. 1972.

Lehmann, M.M. and Goinnia, H.
Interactive System Performance in a Simulated
Environment
Imperial College London, Department of Computing and

-. 	Control Research, report 73/9. 1973.

Leruodier, J. and Parent, •M.
Discrete Event Simulation Modelling of 'Computer
Systems for Performance Evaluation
IRIA research report no. 177. 1976.

Lindsay, D.S.
A Hardware Monitor Study of a CDC KRONOS System
Proc. International Symposium on Computer Performance,
Modelling, Measurement and Evaluation, Harvard. 1976.

Lucas, H.C.
Performance Evaluation and Monitoring
Computing Surveys vol. 3 no. 3. 1971.

Lynch, W.
Letter to the Author. 1975.

McKinney, J.M.
A Survey of Analytical Time Sharing Models
Computing Surveys vol. 1 no. 2. 1969.

Merrill, H.W.B.
Further Comments on Comparative Evaluation of Kiviat

rics PER vol. 4 no. 1. 1975.

Meyer, R.A. and Seawright, L.H.
A virtual Machine Time Sharing System
IBM Systems Journal vol. 9 no. 3. 1970.

Millard, G.E.
Conversations with the author. 1975.

Millard, G.E., Rees, D.J. and Whitfield, H.
The Standard EMAS Subsystem
Computer Journal vol. 18 no. 3. 1975.

Miller, R.B.
Response Time in Man-Computer Conversational
Transactions
AFIPS, FJCC vol. 33. .1968.

Moore, C.G.
Network Models for Large Scale Time-Sharing Systems
University of Michigan, Ann Arbor. Ph.D. Thesis. 1971.

Murphy
Storage Organisation and Management in TENEX
AFIPS, FJCC vol. 41. 1972.

Nutt, G.J.
Tutorial: Computer System Monitors
Computer. Nov. 1975.

Organic, E.I.
The MULTICS System: An Examination of its Structure
MIT Press. 1972.

Ossanna, J.F., Mikus, L.E. and Dunten, S.D.
Communication and Input/Output Switching in a
Multiplexed Computing System
AFIPS, FJCC vol. 27. 1965.

Partridge, D.R. and Card, R.E.
Hardware Monitoring of Real Time Aerospace Computer
Systems
Proc. International Symposium on Computer Performance,
Modelling, Measurement and Evaluation, Harvard. 1976.

183

Pinkerton, T.B.
Performance Measurement in a Time Sharing System
CACM vol. 12 no. 11. 1969.

Potier, D.
An Analysis of Prepaging Policies
Proc. ACM SIGOPS Conference, Purdue. 1977.

Rees, D.J.
The EMAS Director
Computer Journal vol. 18 no. 2. 1975.

Ruud, R.J.
The CPM-X Systems Approach to Performance Measurement
AFIPS, FJCC vol. 41 Pt. II. 1972.

Saltzer, J.H.
On the Modelling of Paging Algorithms
CACM Forum vol. 19 no. 5. 1976.

Saltzer, J.H. and Gintell, W.
The Instrumentation of MULTICS
CACM vol. 13 no. 8. 1970.

Scherr, A.L.
An Analysis of Time-Shared Computer Systems
Project MAC, MIT Ph.D. Thesis, MAC TR-18. 1965.

Schreiber, H.
Hardware Measurement of CPU Activities
Modelling and Performance Evaluation of Computer
Systems, Beilner, H. and Gelenbe, B. Editors. 1977.

Schroeder, M.D.
Performance of the GE-645 Associated Memory While
MULTICS is in Operation
Proc. Symposium on System Performance Evaluation,
Harvard. 1971.

Schweinm, R.E.
Experience Gained in the D2velopment and Use of
TSS
AFIPS, SJCC vol. 40. 1972.

Sekino, A.
Performance Evaluation of Multiprogrammed -Time-Shared
Computer Systems
Project MAC, MIT Ph.D. Thesis, MAC TR-103. 1972.

Shelness, N.H., Stephens, P.D. and Whitfield, H.
The Edinburgh Multi Access System, Scheduling and
Allocation Procedures in the Resident Supervisor
Springer Verlag lecture notes in Computer Science
no. 19. 1974.

184

Stang, H. and Southgate, P.
Performance Evaluation of 3rd Generation Computing

. 	Systems
Datamation vol. 15... 1969. 	 .

Stasuik, J.
Terminal Driver Monitor
University of Michigan, Ann Arbor Computing Centre.
1976.

Stephens, P.D.
The IMP Language and Compiler.-
Computer Journal vol. 17 no. 3. 1974.

Stevens, B.A.
A Note on Figure of Merit
Sigmetrics PER vol. 4no. 1. 1975.

Tesdata 1976
Load Generator System Users? Manual
Tesdata System Corp. McLean, Virginia. 1976.

Turner, R.
Functional Specification for Script-II
Digital Equipment Corporation internal report. 1976.

Turner, R. 	 ..
Test Definition Language
Digital Equipment corporation internal report. 1976.

Turner, R. and Kosco, D.
Some Observations from a Throughput Experiment on
the 11/70 	 -
Digital Equipment Corporation internal report
130-171-012-00. Jan. 1976.

Turner, R. and Levy, H.
Performance Evaluation of lAS on the PDP-11/70
Proc. International Symposium on Computer Performance,
Modelling, Measurement and Evaluation, Harvard. 1976.

University of Michigan Ann Arbor Computing Centre 1976
Specification for a Terminal Simulator DSR

Vyssotsky, V.A., Corbato, F.J. and Graham, R.M.
Structure of the MULTICS Supervisor
AFIPS, FJCC vol. 27. 1965.

Waite, W.M.
A Sampling Monitor for Applications Programs
Software Practice and Experience vol. 3. 1973.

185

Wight, A.S.
The EMAS Archiving Program
Computer Journal vol. 18 no. 2. 1975.

Wilkes, M.V.
The Cambridge Multiple Access System in Retrospect
Software Practice and Experience vol. 3 no. 4. 1973.

Wright, L. and Burnette, W.A.
An Approach to Evaluatin Time Sharing Systems:
MH - TSS a Case Study
Sigmetrics PER vol. 5 no. 1. 1976.

Yates, F.
The Design and Analysis of Factorial Experiments
Commonwealth Bureau of Soils, technical communication
no. 35. 1937.

