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Abstract 

Time-shared, virtual memory systems 

are very complex and changes in their performance may 

be caused by many factors - by variations in the 

workload as well as changes in system configuration. 

The evaluation of these systems can thus best be 

carried out by linking results obtained from a 

planned programme of measurements, taken on the 

system, to some model of it. Such a programme of 

measurements is best carried out under conditions in 

which all the parameters likely to affect the system's 

performance are reproducible, and under the control of 

the experimenter. In order that this be possible the 

workload used must be simulated and presented to the 

target system through some form of automatic 

workload driver. 

A case study of such a methodology 

is presented in which the system (in this. case the 

Edinburgh Multi-Access System) is monitored during a 

controlled experiment (designed and analysed using 

standard techniques in common use in many other branches 

of experimental science) and the results so obtained 

used to calibrate and validate a simple simulation 

model of the system. This model is then used in 

further investigation of the effect of certain 



system parameters upon the system performance. The 

factors covered by this exercise include the effect 

of varying: main memory size, process loading 

algorithm and secondary memory characteristics. 
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CHAPTER 1 

The class of computer systems addressed 

in this thesis is that of general purpose, time-shared, 

virtual memory systems. Within these, some form of 

operating system controls the sharing of a set of 

centralised computing resources - processors, 

memories, file storage devices - amongst a large 

community of users. Users interact with the system, 

and their programmes running therein, via keyboard like 

devices, rather than submitting their work on decks of 

cards, or rolls of paper tape, to some job reception 

desk whence they will receive their results sometime 

later (as in a batch form of operation). These systems 

also provide their users with some form of file 

system in which programmes and data may be stored, a 

large address space or virtual memory [Denning 19701 

in which these programmes may be run and some 

mechanism whereby any user's programmes and data may 

be shared by, or protected from, other users. The range 

of work the users may carry out on such systems will 

not be restricted to any one particular language or 

class of operation as is the case in certain special 

purpose systems e.g. JOSS [Bryan 19671. 

One of the major motivations for 

introducing such a form of system in the early 1960's 
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was a desire to make the use of computing more 

convenient to the programmer. The best way of 

achieving this would probably be to give each programmer 

his own processor with a very large main memory, 

however the cost of computer hardware at the time made 

this impossible. The solution adopted was to share a 

powerful mainframe with some form of virtual memory 

amongst several users, and to divide the available 

resources (CPU time, memory space, channel bandwidth) 

in such a way as to give each user the illusion that 

he had a whole, if less powerful, machine dedicated 

only to him. Subsequent studies [Gold 1969] have 

found that interactive use of computers is superior 

to batch use in problem solving, and with the current 

trend of dropping hardware costs relative to software 

costs this more efficient use of programmers" time will 

become more and more crucial. 

The first time-sharing system, in which 

each ready to run programme is allocated a small 

quantum of CPU time in turn, was the Compatible Time 

Sharing System [Corbato et al. 1962, Crisnian 19651 

implemented at Massachusetts Institute of Technology 

on an IBM 7094. This was also the first true general 

purpose, multi-access system with users communicating 

with the machine via keyboard terminals attached by 

means of telegraph lines. A similar type of system - 
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the Cambridge Multiple-Access System [Wilkes 19731 

was developed at Cambridge University on the TITAN 

computer. These two previous systems did not however 

provide virtual memory. The concept of virtual memory, 

in which the address space used by the programmer is 

split from that used by the hardware of the processor,. 

also appeared in the early 1960's. This splitting of 

the address spaces allows each programmer to use an 

address space at least as large as, and often much 

larger than, the one available in the physical main 

memory of the machine. The two commonest mechanisms 

employed in providing virtual memory, either 

individually or together, are paging (introduced on 

the ATLAS computer [Kilburn et al. 1962] at 

Manchester University) and segmentation [Dennis 1965]. 

Systems which employ both time-sharing 

and virtual memory include: The Michigan Terminal 

System - MTS [Alexander 1972] produced at the 

University of Michigan on an IBM 360/67; 

the Multiplexed Information and Computing System - 

MTJLTICS [Corbato and Vyssotsky 1965, Gla•er et al. 1965, 

Vyssotsky et al. 1965, Daley and Neumann 1965, 

Ossanna et al. 1965, Organick1972, Corbato et al. 1972] 

developed at M.I.T. on a GEC 645; the TENEX system 

[Bobrow et al. 1972, Murphy 19721 implemented by 

BEN on a DEC PDP-10; CP/67 [Meyer and Seawright 1970, 



4 

IBM 19701 produced for the IBM 360/67 and VM/370 

[IBM 19721 produced for the IBM 370 series, both at 

the IBM Cambridge Scientific Centre. 

The Edinburgh Multi-Access System 

The system upon which most of the work 

reported in this thesis is based is the Edinburgh 

Multi-Access System - EMAS [Whitfield and Wight 1973 2  

Rees 1975, Millard et al. 1975, Shelness et al. 1974, 

Wight 19751. EMAS is amply described in the cited 

references, but as it plays such a central role in the 

succeeding work a brief description will be given here. 

EMAS is a time-shared, virtual memory 

operating system implemented at Edinburgh University 

on an International Computers Ltd. System 4-75. The 

ICL System 4-75 is a byte addressed, third generation 

machine similar in structure and order code to the 

IBM 360/67. It offers virtual memory by means of. 

segmentation and paging, the address space being split 

so as to present the programmer with 256 segments, 

each of up to 16 pages, each page of 4096 bytes. 

Figure 1.1 shows a typical EMAS hardware configuration 

at the time of the work reported; 
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EMAS is written in the high level 

language IMP [Stephens 19741 and provides a virtual 

memory of 224 bytes for a number of simultaneous 

processes (currently up to 63). The system maintains 

an on-line storage hierarchy of three levels, pages 

normally being held only at the outermost - immediate - 

level (currently formed by a 700 M-byte disc .store) 

and are moved to the inner levels - active memory 

(currently formed from one or more two M-byte drum 

stores) and main store (currently formed by up to one 

M-byte of core storage) - as required. The user 

programme has no direct access to any Input/Output 

hardware, all management of the three tier storage 

hierarchy being carried out by the system and all 

unit record I/O being spooled. There is also an 

automatic archiving system [Wight 1975] which allows 

currently unused files to be removed from immediate 

store to archive storage (magnetic tape) and restored 

therefrom as required. A form of working set policy 

[Denning 19681 is used in the management of main memory. 

This is based on usage information obtained from 

read/write markers associated with each physical core 

page. Sharing is also supported at all levels of 

the on-line storage hierarchy. 

The operating system is itself 

hierarchically ordered and message based. The logical 
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structure of the system is shown in Figure 1.2. All 

communications between processes - both system and 

user processes - take place via a central message 

passing area. All supervisor processes (or services) 

which have a message or request outstanding also have 

an entry in one central queue - the MAIN-Q. One of the 

major functions of the innermost level of the system - 

the KERNEL is to remove entries from this queue and 

call the appropriate service. When there are no 

outstanding supervisor requests then the KERNEL will 

load the currently selected user process to the CPU 

where it will be allowed to remain for a maximum of a 

time-slice (.100 milliseconds at present) at a time. 

The other major function of the KERNEL is to field 

inteji'upts and translate them into messages to the 

appropriate handling service. 

One level out from the KERNEL are the 

supervisor services themselves. The services take 

care of two major functions: 
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DEVICE HANDLING - The handling of all-paged.  

I/O or interactive 

• communications hardware 

attached to the system, 

scheduling transfer requests 

and carrying out all 

necessary. device control. 

VIRTUAL PROCESSOR SUPPORT - The allocation 

and management of the 

available resources 

(CPU time, main and active 

storage space and channel 

bandwidth) between competing 

and the management 

of process virtual memories. 

The KERNEL and all supervisor services form the resident 

supervisor which is always in main memory and runs 

unpaged - using real addresses. 

At the next level out run the user 

processes. Each user process consists of two levels: 

the paged supervisor, or DIRECTOR [Rees 19751, and 

the normal user process. DIRECTOR takes up 31 segments 

of the 255 segment virtual memory available to each user 

process (segment 0 is never used because of a 
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peculiarity of the hardware). It handles all interactive 

communications messages, maintains the file system 

and takes care of the allocation of immediate 

(tertiary) memory space. The resident supervisor 

knows nothing of files but merely handles page 

transfers. It is one of the functions of the 

DIRECTOR to associate virtual memory addresses with 

files resident in immediate memory when requested to 

do so by a user (the files are not permanently 

mapped into the virtual address space as is the case 

in MULTICS). Most of the DIRECTOR code and data space 

(interactive communications buffers and file indices) 

is shared amongst all user processes. The only 

unshared segment is the master segment which contains 

all local variables and tables for that process, in 

particular, one page of this segment - the master page - 

holds various tables and variables used by the 

resident supervisor and must always be in main memory 

when the process is on the CPU. Those segments which 

constitute DIRECTOR may not be accessed by normal user 

programmes (though the DIRECTOR may access the full 

virtual memory space) and those entries in the process' 

segment table are masked out when normal user 

programmes are running. 

Running within the user level of the 

process is the subsystem [Millard et al. 19751 which 
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takes care of user command interpretation., file 

definition, linking and loading and logical I/O 

mapping. At a level out from this run the users' 

programmes. All commands on the system are merely 

external routines which have an entry in one of the 

user's libraries. A user may add new commands by 

compiling new external routines and making an entry 

in an appropriate library, or may call existing 

commands as routines from within his programme. 

Certain 	 processes' run at 

the level of user processes and perform such functions 

as I/O spooling, batch scheduling, archive storage 

control' and the running of engineering test 

programmes. Though these are essentially user 

processes they have certain privileges and are 

scheduled slightly differently by the supervisor. 

Scheduling Within Resident Supervisor 

The majority of the work presented later 

will concentrate upon the workings of the resident 

supervisor and the scheduling algorithms implemented 

therein [Shelness et al. 1974. An overview of these 

algorithms is now given. 

All process scheduling within the system 
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As table driven from an entity known as the category 

table. Each process known to the system has assigned 

to it a category dependent upon the recent past 

history of that process. Associated with each category 

are the following attributes: 

A set of resource constraints governing the 

amount of CPU time, main memory and active 

memory which each process of that category 

may consume during a period of main memory 

residency. 

A priority level. 

A time interval (known as the strobe time) 

associated with calculation of the 

wox!king set. 

A set of transitions to other categories 

dependent upon the actions of the process 

during its next main memory residency. 

During the period covered EMAS had 20 different 

categories. The values contained in this category 

table are shown in Table 1.1. All normal user 

processes start in category 1 and thereafter use 

categories 5-20. Categories 2-4 are reserved for the 



NCY2 	NCY3 	NCY4 

15 11 14 

2 2 2 

3 2 3 

4 3 4 

6. 5 5 

7 6 5 

7 8 .5 

9 5 8 

10 6 8 

10 7 8 

12 8 11 

13 9 11 

RESIDENCY STROBE 
CPU INTERVAL 
(SECS) (SECS) 

1 0125 

O5 0.5 

1 1 

2 05 

05 05 

4 1 

10 1 

11 05 

10 1. 

6 1 

1 1 

10 1 

Table 1.1 

EMAS Category Table (EMAS Version 802) 

CAT PRIORITY CORE A.S. A.S. NCY1 
ALLOWANCE MAX MIN 
(PAGES) (PAGES) (PAGES) 

1 1 50 80 50 17 

2 1 20 80 50 3 

3 1 30 80 50 4 

.4 1 50 80 50 4 

5 1 20 80 50 8 

6 4 20 80 50 10 

7 4 20 80 40 10 

8 1 30 80 50 11 

9 4 30 80 50 13 

10 4 30. 80 45 13 

11 2 40 80 50 14 

12 4 40 80 50 16 

(CONTINUED) 



CAT PRIORITY CORE 	A.S. A.S. 	NCY1 NCY2 	NCY3 NCY4 RESIDENCY STROBE 
ALLOWANCE MAX MIN CPU INTERVAL 
(PAGES) 	(PAGES) (PAGES) (SECS) (SECS) 

13 5 40 	80 50 	16 13 10 11 12 1 

14 2 50 	80 50 	17 15 11 14 1 1 

15 4 50 	80 50 	19 16 12 14 10 1 

16 5 50 	80 50 	19 16 13 14 10 1 

17 3 60 	128 64 	20 18 14 17 2 05 

18 4 60 	128 64 	20 19 15 17 7 0 5 

19 5 60 	128 64 	20 19 16 17 5 1 

20 3 62 	128 64 	20 25

AS. 

18 15 17 2 0-25- - 

A.S. MAX Maximum Active Store Allowance 

A.S. MIN Minimum Active Store Allowance 

NCY1 Next Category if Process runs out of main memory 

NCY2 Next Category if Process exceeds CPU time allowance 

NCY3 As NCY2 but has used less than the next smallest main memory allowance 

NCY4 Next Category if Process goes to sleep 



Figure 1.3 shows the major states and 

supervisor queues involved in the handling of processes 

on the system. Each process known to the system exists 

in one of three states: 

ASLEEP 	. - awaiting user input or the 

freeing of output buffer 

space i.e. in terminal wait 

AWAKE • 	- awaiting allocation of some 

system resource 

PROCESSING - on CPU 

Each process will also be resident at up to a certain 

level in the storage hierarchy: immediate, active 

or central memory. Thus a process which wakes up 

resident only in immediate memory is first queued in 

the. Active Store Queue to await an allocation of 

active storage. When an allocation of active store 

has been given (which at this point involves no 

identification of the particular physical active store 

pages to be used) the process will be placed in one of 

five core queues according to its current category's 

priority. These core queues are currently serviced 
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according to a priority scheme which assigns the 

probability of being selected as 39/64, 17/64, 

5/64, 1/32, 1/64 respectively to the five priority 

levels. Once selected from its core queue the process 

is then held until it can be given its full allocation 

of main memory (again defined by its current category). 

Only when its full allocation of main memory is 

available may the process enter the multiprogramming 

set, and the contents of its current working set 

(which will always consist of at least the master 

page) will then be transferred (preloaded) into main 

memory. The system thus carries out a scheme of 

working set replacement. When all of the process' 

working set is resident in mainxnemory (and not 

before) the process is placed on one of two run queues 

to compete for allocation of the CPU. All processes 

belonging to categories in the lower three priority 

levels go onto run queue one, whilst all processes 

in categories of the top two priority levels are 

placed on run queue two. The run queues are 

serviced according to an absolute priority scheme 

in which run queue one is always serviced first, and 

if any process from run queue two is holding the CPU 

when a process arrives for run queue one, then the 

arriving run queue one process will preempt the CPU 

process, even if that process has not completed a 

time-slice. Only processes which are ready to take 



the process may page fault and add a page to its 

working set from either immediate store, active store 

or main memory. (for shared pages or new pages 

'created' in main memory). The process may only, hold 

the CPU for a maximum of a time-slice at a time. 

Whenever a process has consumed a 

full strobe interval of CPU time during any residency, 

then its working set is recalculated and those pages 

no longer used are released. A process will remain 

resident in main memory until it goes to sleep or 

overruns one of its category allowances. It will then 

be rescheduled (perhaps into a new category) have its 

working set recalculated and be removed from main 

memory before being placed on an appropriate 

scheduler queue if it is still awake. Whenever a 

process is to be removed from active to immediate 

store it is first queued in the active take queue 

which essentially allocates channel capacity amongst 

those processes wishing to take this route (which 

involves pages being transferred first to main memory 

from active memory, then from main memory to immediate 

memory). A form of working set algorithm is also 

applied to the management of a process active storage 

allocation, the algorithm currently selects pages 

dependent upon usage over the last four main memory 
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residencies. There are four algorithms which may be 

used, the choice being dependent upon the current 

level of loading on the active store. 

There are certain additions and 

modifications to the basic scheme. Any process which 

remains asleep for a long period of time 

(eight minutes) is removed from active store. Any 

process which remains awake for a certain interval 

(two minutes of real time) without interacting with 

the console is deemed no longer to be an interactive 

process and is placed in the penalty box. This means 

that when it comes to the front of a non empty core 

queue it will be returned to the rear of that queue 

several times (currently eight) before being removed. 

Whenever the process interacts with the user its 

penalty box status is removed. As it is extremely 

improbable that all the members of the 

multiprogramming set will be using their full main 

memory allowance at any given instant, and to take 

account of sharing, the main memory is over allocated 

by a certain amount. Another modification concerns 

preloading. If it is found that the next candidate for 

entry to the multiprogramming set cannot be given its 

full main memory allowance (even with the over 

allocation scheme) but that there is adequate physical 

space to allow that process working set to be 
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preloaded (and still leave some free space for use by 

other members of the MPS) this 'partial' preload is 

allowed to proceed. If the partial preload has 

completed and pages still have not been released to 

make up the process' full allocation, but its current 

allocation is greater than its working set size and a 

reasonable number of physical core pages are still 

free, then this process is allowed to enter the run 

queues, and acts as a normal MPS process which has a 

small main memory allocation. However, if this 

process' allocation is only equal to its working set 

size, or the number of physical core pages free is 

less than a safety limit, then it is suspended until 

adequate pages are released to give it its full 

allocation. There is, of course, a maximum of one 

partially preloaded process in the MPS at any instant, 

and this process has priority for the allocation of 

any freed central memory space. If a process 

overruns its current main memory allowance without 

ever having been strobed (i.e. having its working set 

recalculated) and, more than half its current pages 

were brought in by preloading, then there is a chance 

that the wrong pages were preloaded. To overcome 

this an EXTRA-STROBE (working set recalculation) is 

carried out. at this point and if sufficient pages are 

removed, this process is allowed to continue. 
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To allow the available active storage 

space to be used fully, one of the replaceable 

disc drives is used as though it were a drum i.e. 

its storage capacity space forms part of the active 

storage. Allocation of active storage pages is 

handled so that all the drums are considered as 

though they formed a linear array of pages with 

this replaceable disc (known as the pseudo-drum) 

forming the higher addresses. The lowest free page 

available is always allocated first, thus the drums 

which correspond to the lowest active store addresses 

are kept as fully used as possible. 

The main memory management scheme only 

allows a process to enter the MPS if it is estimated 

that there is sufficient central memory available for 

it to run efficiently. All decisions on the 

management of that process' allocation are then 

reached with consideration being taken only of that 

process' behaviour, and any process which is found to 

have  working set larger than its current main memory 

allocation is removed. This completely removes the 

phenomenon of thrashing [Denning 19681 which is due 

to an overcommitment of main memory. It also provides 

for the time-sharing of main memory by placing limits 

on the amount of time any process may remain in main 

memory. The algorithms are designed to favour highly 



17 

interactive processes by time-sharing the main memory 

and by the priority scheme which gives more residency 

periods to processes which require smaller amounts of 

main memory and very little CPU time. 

Quantitative Evaluation Techniques 

Performance evaluation is generally 

carried out for three major reasons (Lucas 1971J: 

The selection of a new system - choosing 

from a set of possible alternatives which 

system best meets a user's performance/cost 

specifications. 

The projection of the performance of a new 

system - estimating the performance of an 

as yet un-implemented system i.e. as an aid 

in the system design process. 

The forcasting of the impact of possible 

changes in an existing system - changing 

a hardware or software component or the 

user load applied to the system i.e. system 

tuning or balancing. 

Quantitative evaluation has grown 
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increasingly more difficult with the evolution of 

time-shared, virtual memory systems. The systems 

themselves have grown more complex and the range of 

programmes executed upon them has become wider and 

more varied. 

In the earliest days of computing a 

simple figure of merit was considered adequate as a 

means of judging the performance of any system. 

In the case of 'scientific systems  the figure of 

merit would often be based on the raw power of the 

central •processing unit. This number could be 

obtained by calculating the execution time of a certain 

instruction stream, the mix of various classes of 

instruction included wouldrepresent a rough 

characterisation of the anticipated workload, or be 

drawn from some generally accepted mix [Gibson 19701. 

Meanwhile for more 'commercially orientated' data 

processing systems the figure of merit would be 

based upon some measure of I/O throughput capacity. 

As early operating systems were 

introduced their batch type of operation was often 

judged in terms of the time taken to process a chosen 

collection of jobs or benchmark. The benchmark would 

again form a characterisation of the expected workloads 

in terms of the proportions of the types of jobs it 
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contained. Other simple one figure measures such as 

job throughput rate or processor utilisation level 

were also often used. 

However, as the architecture of the 

systems has become increasingly more complex it has 

become clear that no single figure of merit, or even 

any small number of figures of merit, will be adequate 

to describe a system's performance [Grenader and 

Tsao 1972], though several continue to be proposed 

[Merill 1975,, Steven 19751. 

Within an interactive system the only 

pure performance metric which every user applies is 

that of response time. Response time is loosely 

defined as the time a user has to wait, from the 

moment he gives a command to the system, until the 

moment at which he receives an answer: The distribution 

of these responses will be of interest rather than 

simply the mean or median response. Studies 

[Miller 19681 of human reactions in the 

man-computer interaction cycle have shown that if a 

response is greater than two seconds then the user 

begins to lose concentration, and if a response is 

greater than 15 seconds then the use of the computer 

ceases to be interactive. 
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No performance measure upon such 

systems is meaningful unless accompanied by some 

measures of the outstanding load upon the system 

e.g. processor utilisations, memory utilisations, 

number of simultaneous users, mean working set sizes, 

mean time between page faults, supervisor overheads. 

The problem of evaluation is not just to attach some 

figure of merit to a system or particular system 

configuration, but to attribute the observed 

performance to the various contributing factors and 

identify those factors which are most significant. 

Performance and load measures will vary from system 

to system and will depend upon the problem being 

addressed. Suitable metrics for time-shared virtual 

memory systems will be introduced later. 

The two major aids to evaluation are 

modelling and measurement. 

Modelling 

Because of the inherent complexity of the 

systems under consideration the technique of modelling 

which produces a much simplified, abstract 

representation of the system has an obvious appeal. 

Indeed, no evaluation of a system could proceed 

without at least the existence of some conceptual 
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model of how the system functions. Figure 1.3 could be 

regarded as such a conceptual model of the working of 

the EMAS process scheduling scheme. The value of a 

model may not only lie in the quantitative results 

it produces, but the actual formulation of the model 

itself, involving as it necessarily does the stripping 

away of a mass of detail, may reveal the major 

components of the system-and their interrelationships. 

Quantitative iriodelling techniques fall 

under two headings: 

Simulation models 

Mathematical models. 

Simulation models •  [Leroudier and 

Parent 19761 consist of computer programmes, often 

written in a special purpose simulation language 

[Dahl and Nygaard 19661, or using a simulation 

package written in a high level language 

[Dimsdale and Markowitz 1964]. The representation 

of the system being modelled is embedded in the 

simulation programme. Using this technique it is 

possible to model all the major mechanisms involved 

in computer systems e.g. parallelism, variance in user 

programme characteristics, storage capacities, various 

servicing disciplines and various service time 
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characteristics. However, simulation is often 

criticised for being expensive and time consuming 

in both development and run times. The. time and 

expense involved in certain cases may, in fact, 

make this approach impractical. However when this 

is not the case simulation does provide the ability 

to model whatever phenomenon may be considered 

significant. 

Mathematical modelling mainly centres 

round probabilistic models and more particularly 

queueing theory. There has been considerable work 

in this area. The research has evolved from the 

study of single queues [McKinney ioa, Chang 19701 

to the study of various networks of queues 

[Jackson 1963, Gordon and Newell 1967, Buzen 1973, 

Gelenbe 1975, Baskett et al. 1975, Gelenbe 19761. 

Following from the classic analysis of CTSS 

(Scherr 19651 there have been attempts to apply such 

models to the evaluation of time-shared, virtual 

memory systems viz MTS [Moore 1971) and MULTICS 

[Sekino 19721 but it is only recently that such models 

have been put to practical use with the development 

and extensive use of a model of IBM's VM/370 system 

[Bard 1975, Bard 1976, Bard 19771. Queueing network 

models still suffer from several limitations: there 

is no direct way to model storage, service disciplines 
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and service time distributions are still limited. 

However, they may provide a useful means of studying 

the gross performance characteristics of such systems. 

Measurement 

- The other major aid to evaluation is 

that of measurement and experimentation on existing 

systems i.e. the empirical approach. The only way 

in which significant system phenomena may be identified 

in the first instant is through a procedure of 

empirical evaluation. Measurements from such a 

process may then be used in the essential step of 

validating current models and suggesting changes in 

future models of the system. 

Several drawbacks to such an approach 

do exist. It is often difficult to obtain accurate 

measurements of particular phenomena; of interest 

due to inadequate system instrumentation, or due to 

gross interference caused by the measurement 

technique. The opposite extreme is also often a 

problem - the sheer mass of data produced by some 

measurement tools masking the trends the experimenter 

is searching for. Measurements taken upon an 

operational system will depend crucially upon the 

characteristics of the workload existing at the time 
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the measurements were taken. These changes in user 

workload which take place from day to day, or hour to 

hour and minute to minute, often prevent the 

acquisition of a consistent set of meas.irements, from 

which changes in performance may be attributed to 

specific system changes. A rigorous approach to 

system measurement is one of the necessary paths to 

be followed when attempting to discover just how 

such systems do function. 

The ideal approach to evaluation 

is an iterative one with results from a controlled 

set of experiments being used in a model which, 

when validated and calibrated by this data, wIll 

suggest new areas for experimentation. 

The main aim of the .work carried out 

in this thesis is to increase, in some way, the 

understanding of the mechanisms at work in 

time-shared, virtual memory systems, and to be able 

to quantify the impact of any major component upon 

the overall system performance. This is carried out 

by the evaluation of the structure (and design) of 

one particular system (EMAS). The evaluation is 

thus empirically based and concentrates upon the 

techniques and aids necessary in such an exercise. 

The monitoring tools required are discussed first 



(Chapter 2). Then the elements necessary to carry out 

a programme of controlled experimentation on such 

,systems are described and the execution of such an 

experiment is reported (Chapter 3). The results from 

this experiment are presented in detail 

(Chapters 4 and 5) and used in the calibration and 

validation of a simple simulation model. This model 

is then used in the further investigation of 

certain of the parameters affecting system performance 

(Chapter 6). Considering the three main areas of 

application of performance evaluation given at the 

beginning of this section, the techniques used and 

the approach taken fall under heading 3 - system 

tuning and balancing. However the results obtained 

and the techniques applied will also be of use in 

the other two areas. 
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Chapter' 2 

A comprehensive and effective set of 

monitoring tools is an essential aid in any empirical 

investigation of a system's performance. An ideal 

monitoring aid would be flexible and have the ability 

to obtain all required data (and only that data 

required) with absolute accuracy. This ideal 

monitor would not, of course, 'interfere with the 

system in any way either by adding to the 

supervisor overhead, or changing the behaviour of 

user processes. Unfortunately, in the case of' 

time-shared, virtual memory (T.S.V.M.) systems such 

a monitor does not exist. In this chapter available 

monitoring techniques are reviewed, and those 

implemented in the EMAS resident supervisor are 

described. 

Before any measure is carried out a 

clear view must exist of exactly what data is required 

and what use this data is to be put. Any possible 

interference caused by the method of measurement must 

also be known and taken into account. Data may be 

obtained upon the performance of the system itself or 

the behaviour of the user processes running thereon, 

i.e. the workload. The distinction between workload 

and' pure performance measures is often blurred, and 
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the two are always related. Typical system performance 

results are often presented on:- 

Response time distributions. 

Utilisation levels of major system 

components (e.g. CPU's, memories, channels, 

supervisor modules). 

C) Distributions of queue lengths or wait times 

for various system resources. 

Typical measures of user process characteristics 

include:- nclude:- 

a) Distribution of the time the processes spend 

in terminal wait state (e.g. think times). 

Space requirements of processes at various 

levels of storage hierarchy. 

Patterns of access within virtual memories 

(e.g. size distribution and contents of 

working sets, distribution of times between 

page faults). 
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Distribution of .resources required by each 

interaction. 

Distribution of interaction classes. 

In the following, the terms "target system" or 

"host system" will be used to mean the system being 

measured or experimented with. 

Monitoring Techniques 

A comprehensive review of current 

monitoring techniques exists in the literature 

[Nutt 19751, so only a brief summary of the advantages 

and disadvantages found in the major classes of 

monitor is given here. 

Three classes of monitor exist:- 

Hardware Monitors 

Software Monitors 

Hybrid Monitors 
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1) Hardware Monitors 

A Hardware Monitor consists of a 

distinct electrical device (generally with-its own 

clock and storage media) connected to the target 

system's hardware by a set of one or more probes. 

Signals received via these probes are interpreted 

by the device and data is then analysed on line, 

or logged (usually to magnetic tape) for later off 

line analysis. The probes used are usually of such 

a design that they cause no significant perturbations 

in the circuitry to which they are attached. This 

gives the hardware monitor its great advantage over 

all other techniques: it is essentially 

non-interfering, inducing no supervisor overhead 

or change of user behaviour in the target system. 

The accuracy obtained by this method is also usually-

dependent upon the precision of clock incorporated 

in the monitor, and not upon the clock facilities in 

the host mainframe. 

The complexity of such devices varies 

greatly from the extremely simple - monitoring the 

existence of a single signal (e.g. a trace chart 

recorder connected to a processor's idle light 

[Stang 19691) - to the other end of the spectrum 

where a fully interactive mini computer is 
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employed - with special computational as well as 

interface hardware, capable of simultaneously 

recording and analysing a very large number of 

interrelated events [Aschenbrenner et al. 1971]. 

Such monitors have been found very 

useful in obtaining summary data such as 

utilisation levels and degree of overlap on certain 

hardware components (e.g. CPU's and channels) or 

execution counts on the instructions in the 

mainframe's repettoire [Schreiber 19761. However, 

it is often impossible to establish relationships 

between the data obtained and the causes for such 

levels of performance - user behaviour patterns and 

software scheduling algorithms. On more complex 

mainframes the correct placement of probes will 

become more difficult, and skilled engineering 

guidance will be required. The mainframe will also 

probably have to be taken out of service for a time 

whilst such a device is attached. With the 

introduction of mainframes using more and more 

Large Scale Integration. (i.e. machines such as the 

Amdahl 470/V6) the placement of probes will become 

more and more difficult, and certain data may no 

longer be available for collection by this method. 

The characteristics of hardware 
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monitors would seem to make them best suited as an 

aid where the pure performance of the hardware only 

is of interest e.g. counts of different types of 

instructions, degree of overlap of certain: hardware 

devices. In the case of T.S.V.M. systems, where 

the complex characteristics of the user workload 

must always be taken into account, the use of pure 

hardware monitors alone is of limited value. They 

have, however, been applied to some time-shared 

systems such as CDC's Kronos system [Lindsay 19761. 

The advantages of hardware monitors seem better 

suited to special purpose systems where a regular, 

well understood workload exists [Partridge and 

Card 19761 in such an environment they may even be 

used as an aid in programme optimisation 

[Fryer 19731. Several types of hardware monitor 

are now commercially available. 

2) Software Monitors 

Software monitors provide 'an extremely 

flexible and popular method of obtaining performance 

data. They will, however, always have the great 

drawback that they necessarily interfere with the 

target system. They form part of the system, occupy 

memory space for code and data, consume processor power 

in execution and often use channel capacity in storing 
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data. The accuracy of any software monitor will usually 

be limited by the resolution of the hardware clock 

available on the mainframe. 

A great range of software monitors have 

been implemented on various systems (indeed nearly every 

system contains a software monitor in terms of the 

accounting log). As a broad classification they can 

be divided according to their recording discipline 

into: 

a) Sampling Monitors 

and 

Continuous-recording or event monitors 

and, according to their storage discipline (i.e. the 

way in which data is disposed of once it has been 

collected), into: 

Accumulating monitors 

and 

Tracing monitors. 

a) Sampling Monitors 

Sampling monitors are perhaps amongst 

the simplest to implement, and should impose the least 
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overhead on the target system. As the name indicates, 

the monitor is only activated at certain times, either 

at regular intervals using some form of alarm clock 

interupt, or by the occurrence, of some system event, 

such as the idle process gaining the CPU. The metering 

routine thus activated will then obtain the required 

data and save it. This routine is normally distinct 

from the rest of the target system and so has the 

advantages of modularity (easy removal or modification). 

Also, as they are not active all, the time they should 

impose less of an overhead than other monitors. The 

argument against using a sampling technique is that 

the accuracy will depend upon the number of samples 

and the randomness of the sample. Very few sampling 

monitors obtain their samples at truly system 

independent random intervals, so the result could be 

affected by periodic or other phenomena within the 

target system. This could have a very significant 

effect upon the accuracy of the results obtained. 

These monitors have been used in the investigation of 

code utilisation by sampling the programme counter 

[Waite 1973], and are often used to obtain approximate 

distributions of system queue lengths [Jalics 1973, 

Gonzales 19751. 



Event monitors are usually formed by 

a set of software probes scattered throughout the 

operating system and activated for periods of time by 

the setting of a group of trigger variables. These 

probes are necessarily scattered throughout the system, 

and thus not easily modified. Although data is only 

gathered when a trigger is set and the flow of control 

passes a probe, the trigger must be tested every time 

the probe is encountered, which means there will be a 

certain overhead even when no data is being collected. 

Event monitors, however, do not suffer from any 

suspicions about sampling accuracy, their accuracy 

only being limited by the resolution of the clock and 

the speed of the probe. 

Storage Discipline 

Monitors may be further classified 

according to their actions on obtaining a particular 

item of data. They may integrate this item into a 

table in main memory holding a summary of the 

performance data (accumulating monitors). This involves 

carrying out a small amount of processing on each 

item of data when it is collected. The accumulated 

table is then output (perhaps involving further 
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processing) regularly after comparatively long periods 

or on demand. The alternative is to do no on line 

processing on collection of data, but to output each 

item immediately, usually with some form of time stamp 

(tracing monitors). The accumulating method will tend 

to use more CPU time and code space - .though a tracing 

monitor will use CPU in organising buffers and 

transfers. The table space used by an accumulating 

monitor tends to be a constant overhead, whilst 

tracing monitors may claim buffers from a system 

wide pool only for the duration of the measurements. 

Tracing monitors will consume channel capacity, often 

require exclusive use of a device (e.g. tape drive) 

and frequently produce great volumes of output. 

However, the data so produced allows greater 

flexibility as it may be analysed in several different 

ways to produce a variety of results. 

Software monitoring is certainly the 

most popular method of measurement. It involves no 

acquisition of additional hardware, and can usually be 

implemented easily by the system programmers. They 

also have the advantage of being able to observe the 

cause and effect of certain transient events which a 

hardware monitor cannot. Software monitors are normally 

highly system dependent, though the principles 

involved may be transportable between different 
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operating systems, the monitor itself rarely can. 

3) Hybrid Monitors 

The logical merging of both hardware 

and software monitoring techniques results in the most 

recent monitoring method - that of the hybrid monitor. 

In this method a complex hardware monitor, usually 

consisting of a mini computer with associated probes, 

is however also attached to the host system as a 

normal device via some form of channel [Rudd 1972, 

Aschenbrenner et al. 1971, Estrin et al. 1972, 

Schwenuu 19721. This allows software monitoring aids 

implemented within the system to communicate with the 

mini computer. Thus whilst the majority of the data 

may be obtained in a non interfering fashion by the 

hardware monitor part, further information, allowing 

this data to be associated with various phenomen 

within the system, may be produced by the software 

aids communicating via the channel. This method does, 

of course, suffer from drawbacks of both hardware and 

software monitors: engineering knowledge is required 

for the correct placement of the probes; the host 

system may have to be taken out of service for the 

attachment of such a device; the software aids will 

necessarily interfere with the system; much knowledge 

of the software structure will be necessary for the 
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gathering of the correct data in the most efficient 

fashion. However, hybrid monitoring should still 

reduce overhead, and with many of the large mainframes 

now being produced, such as the DEC KL 10 and KL20 

systems [DEC 19771, containing mini computers with 

access to most of the important registers and parts 

of the memory (i.e. a possible built-in hybrid 

monitor), it would seem to indicate that greater use 

could be made of hybrid monitors in the future. 

One class of system performance 

measurement devices not covered here is that of the 

remote terminal emulator. This will be considered in 

the next chapter. 

Virtual Memory System Monitors 

The majority Of instrumentation 

reported on these systems is carried out in software. 

Very little use appears to have been made of hardware 

monitors, almost certainly because of this difficulty 

in establishing relationships between observed 

performance and the factors which contribute to it. 

One reported case of what may be classified as hybrid 

monitoring does take place on MULTICS [Saltzer and 

Gintell 19701 with a PDP-8 being used with special 

access to the host systems tables and some registers. 
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However, as the data rate between the monitor and the 

host system is very low (less than 60 words/second) 

the full potential of this technique has probably not 

been realised. 

As the behaviour of user processes is 

of such interest an ideal monitor would be one which 

allows the collection of data on process behaviour as 

well as the manner in which processes are handled by 

the scheduling algorithms. An event trace monitor 

which records an event each time a process moves 

significantly either within its virtual memory or 

within the system queues would appear to be one 

solution. The Data Collection Facility 

[Alexander 1975, Pinkerton 19691 on MTS is such a 

monitor. Implemented within the code of the resident 

supervisor the DCF allows the tracing of a set of 

events of one or more specified processes. The type of 

events which may be recorded allow data to be obtained 

on: 

i) The queueing and removal from queues of 

processes-by the supervisor. 

ii) The changing of status of monitored processes. 
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All aspects of page movement, in and out of 

physical core, and the migration of pages 

to the outer levels of the hierarchy. 

The claiming and freeing of pages in 

virtual memory. 

All inteiupts generated on the system. 

The opening of files by processes. 

The starting and stopping of user tasks 

on the system. 

A very comprehensive set of possible data items. As 

MTS is written in machine code some difficulty is 

involved in adding new events [Alexander 19771. The 

vast amounts of data collected during any run are 

recorded on magnetic tape for off-line analysis. A 

data reduction programme - the Data Analysis Programme - 

is also available to aid the investigator in the 

interpretation of the data. A very sophisticated 

set of monitoring aids have been built into 

IBM's VM/370 system •[Callaway 19751, allowing both 

sampling and event trace monitoring at various levels 

of detail in the system. This also has an associated 

Statistics Generating Programme to aid analysis. 
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The VIM/370 performance monitor may be bought by 

customers running VM/370 to assist in tuning and 

balancing of their system. 

MULTICS contains a variety of 

monitoring facilities to aid in the measurement of 

process characteristics [Saltzer and Gintell 19701. 

Surprisingly, however, no generalised event trace 

monitor has ever been implemented, although a comment 

is passed in the Saltzer and Gintell paper that one 

would have been useful. The monitoring aids which 

have been implemented include: 

A sampling monitor accumulating 

distributions of the segments used. 

A count which may be kept of all missing 

pages and segments encountered whilst 

executing a particular segment. 

A missing-page trace of the last 256 

page faults produced by the monitored 

process (held in a ring buffer). 

For the gathering of raw performance statistics on 

the system (i.e. utilisation levels or queue length 

distributions) MULTICS makes use of the Graphic 
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Display Monitor which is essentially a PDP-8 with 

access to certain of the host mainframe's registers 

and tables. This continuously displays all system 

'queues and arrays, showing execution time profiles 

for supervisor modules. A count and total CPU time 

expanded in certain supervisor modules is also 

accumulated. 

A very sophisticated event monitor has 

been implemented on the TENEX system [Gonzales 1975:1 

for the gathering of system performance data. This 

allows the definition of events to be monitored and 

the switching off and on of data collection to be 

carried out from a normal user process via a set of 

special supervisor calls and a password scheme. The 

probçs which collect the data and the tables in which 

the data is initially accumulated are part of the 

resident supervisor, though the data may be transferred 

to the user proces' file when desired. This contrasts 

with the considerably more rigid data storage regime 

of the MTS-DCF which, though obtaining a more general 

and more accurate range of data (1 millisecond clock 

in the TENEX scheme to 'a 13 microsecond clock on MTS), 

can only be controlled from the operators console, 

and always outputs to a specified magnetic tape drive. 

An event monitor which accumulates distributions of 

various queues and timings has been implemented on the 
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TOPS-10 system [Jalics 19731. Both of these event 

accumulating monitors are used more for obtaining 

performance statistics on the system than on the 

behaviour of the user processes. 

Monitoring Aids on EMAS 

The purpose of the monitoring aids 

implemented in EMAS was to give performance data on 

the system which would be of use in investigations of 

the architecture and algorithms employed within the 

system, as well as .being of use in tuning the system in 

practical use. No hardware or hybrid monitoring aids 

were available, and all monitoring has been carried out 

by software techniques. The clock used throughout was 

that provided on the ICL 4-75 mainframe with a precision 

of 65 microseconds. As EMAS was designed as an 

extensible system on which the user has the capability 

of writing his own subsystem or even file system, all the 

performance monitoring aids considered here were 

implemented within the innermost level, i.e. that of 

the resident supervisor. Various other monitoring aids 

have, of course, been implemented at other levels 

[Adams and Millard 1975]. The entire system is written 

in the high level language IMP. The advantages 

accrued from this fact cannot be over-emphasised. 

Apart from allowing for the easy implementation of 
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software probes, the modularity of the system allows 

great flexibility and ease of change, with only the 

module which has actually been changed needing to be 

recompiled. The compilation and linking of a 

modified system, taking in the order of fifteen 

minutes (real time), is extremely fast for a system of 

this complexity and size. 

CPU Time Utilisation 

A profile of CPU time utilisation was 

considered to be vital to such an investigation. The 

vector of CPU time spent in major states (SUPERVISOR) 

USER, IDLE) would, of course, be one of many important 

parameters to be considered. Furthermore, as the 

supervisor activity within this class of system is 

inherently higher than that in some other forms of 

systems, it would be of interest to know in which 

modules of supervisor code most of the CPU time was 

being spent. 

The message based nature of communication 

between EMAS supervisor services lends itself well to the 

monitoring of these variables. A simple change in the. 

kernel where requests are unstacked from the Main-Q 

allows a count to be kept of the number of calls made 

on each service, and the total CPU time expinded 
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between calling the service and returning from it. As 

the services run uninterruptably this gives a very 

precise account of where, within the resident supervisor, 

time is being spent. 

Whenever the supervisor finds that 

there is no user process in central memory in a ready 

to run state and no supervisor requests outstanding 

which can be fulfilled i.e. that the system is idle, 

then process = 0 - the idle process - is loaded onto 

the CPU, and executes an idle loop until some form of 

work arrives. This process is essentially handled 

as a normal user process, and has the CPU time it 

consumes recorded in its entry in the process list. 

Thus an accurate measure is obtained of the time the 

CPU is idle. A further split is made in the idle time 

between time in which no user processes are active 

(i.e. no useriprocess is awake - true idle time) 

and time in which user processes are active, but for 

some reason none could proceed - blocked time. The 

CPU time not being used by the supervisor or the idle 

process within an interval is that consumed by user 

processes and unaccounted kernel time. In normal 

analysis this time which is the time spent 

translating intei'upts to requests on appropriate 

service and on handling the MAIN-Q itself, is 

attributed to user processes. The time consumed 



The £m?rnjof he data arrays involved takes place at 

systems close-down or on the setting of a system test 

flag from the operators console. First in raw form 

showing the total number of entries to each service, 

the total time spent in that service (in seconds) and 

the average time per call (in microseconds) [Table 2.11. 

To minimise the insignificant entries nothing is 

printed on services which use less than one second 

during a session. The data is also processed on-line 

to obtain the CPU breakdown between major states 

(Supervisor, Idle, User) and the breakdown by 

function within the supervisor [Table 2.21. A 

machine readable form of this data exists in the, 

system main log should further processing be required. 

Interference caused by this measurement 

consists of: 

Two arrays of 256 bytes each to hold the data. 

A small number of extra instructions in the 

KERNEL to gather the data. 
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. 	Table 	2.2 	•• 	..: 	 I .  . 	- 

SAMPLE OF PROCESSED CPU DATA 

TOTAL........  
TIME TIME 

ITIME 	IN 	USER 	PROCESSES 1024 	. 54,3 

;SUPERVISOR 	TIME 	CHARGED 740 39.25 

svC ' S 	. 128 	. 6.79 

PAGETURNS 612 . 	 32,46 

UNCHARGED 	SUPERVISOR 	TIME 65 3.44 

IDLE 	TIME 56 2,97 

NO 	WORK 0 0,00 

BLOCKED 56 2.97 

TOTAL 	TIME 1885 100.00 

ANALYSIS 	OF 	SUPERVIsOR' TIME 

VIRTUAL 	MEMORY 	SUPPORT 
DRUM 	TRANSFERS 	(6,29) 312 16.55 

DISC 	TRANSFERS 	(7,3,32-41) . 55 2.91 

CORE 	LOADING(S5-63-9,ó34) 266 14.11 

DRUM 	LOADING 	(73-30) 	• 25 1.32 

PROCESS 	CONTROL 	(70) 13 0.68 

TIME 	SLICING 	(50) 54 2.86 

FILE 	SySTE1 	(54,85-6) 6 0.31 

SVC 	PARAMETER 	PASSING 	(57) 30 1.59 

COMMUNICATIONS 	(9,100-19) 35 1,35 

POLLING 	DEVS 	(14,27-8,69,72) 1 0.05 

MAGTAPES 	. (5,15-23) 22 1.1ô 

MISC, C, 0.00 
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Some code to printout the data, 

approximately 1500 bytes to produce the raw 

form, and a further 2000 bytes for on-line 

processing. There is no reason why the second 

routine should not be moved out of the resident 

supervisor and modified slightly to analyse 

the raw data from the main accounting log. 

The CPU time consumed by this method will, 

of course, vary depending upon the level of 

supervisor activity, but has been measured to 

be less than 5% of total time during normal 

use. The time consumed in dumping the 

accumulated data and the analysis is of the 

order of half of a second. 

This aid gives very accurate data on time 

spent in supervisor services and idle state during any 

interval. 

Event Trace Monitor 

Clear and accurate data was required on 

the characteristics of running processes and the 

manipulation of these processes by the system. The best 

way of obtaining such information is an event trace 

monitor along the lines of the MTS - DCF. The design 
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of such a facility is very straightforward. A set of 

probes is incorporated in the resident supervisor 

software. These probes 'are activated by the setting of 

a system test flag and, when triggered, call a data 

gathering routine which adds a time stamp and transfers 

the data to a buffer. The data gathering routine also 

organises the transfer of filled buffers to the backing 

store used. 

The placement of probes within the 

software was relatively easy, aided by the modular 

design of the system and the high level nature of the 

language it was implemented in. A tracing scheme had 

been incorporated during early system development to 

aid system debugging, and several of the significant 

events overlapped. The probes are implemented as a set 

of calls on the data gethering routine, conditional 

upon the setting of a particular flag. The parameters 

of these calls contain the relevant data. Originally 

it was planned to use magnetic tape as the storage 

media, but it was discovered that the replaceable disc 

unit, used in normal operation as the pseudo-drum, in 

fact only used the first hundred cylinders on that pack 

(the space available on a normal drum), leaving eight 

hundred pages of storage space free. The event trace 

monitor thus stores its data in this fixed area, though 

it would be a simple change to make it dump the data 
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elsewhere (e.g. to magnetic tape). 

The operational procedure involved in 

using the event trace monitor is as follows: 

The monitor is switched on from the operator's 

console by setting a system test flag to a mask 

value showing those events which are to be 

monitored. If monitoring is required on only 

one process, then the test flag must be set to 

the process list index for that process 

(after a prompt has been sent). 

The monitor then claims some buffer space 

(currently two pages), and activates the probes. 

When the monitor has filled its data area 

(currently 800 pages) or the system test flag is 

reset, the monitor is switched off, the probes 

de-activated, and the buffer space returned to 

the system. The number of pages of data 

accumulated and the number of gaps in the data 

(caused by not having a buffer ready) are 

printed in the main log. 

The monitored data may then be transferred to a 

normal EMAS file for analysis by making use of a 
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utility programme run in one of the privileged 

EXECUTIVE processes. As the EMAS resident 

supervisor has no knowledge of files, but only 

manipulates pages in process virtual memories 

between various levels in the storage hierarchy, 

it would have added unnecessary complexity and 

overhead to have data transferred directly from the 

monitor to a normal EMAS file within a user process. 

It would also have interfered with the operational 

characteristics of that process whose file was 

being used thus. 

The data recorded whenever a probe is 

triggered always has the following format: 

Word 1 -. Consists of four byte fields: 

The event identifier. 

The length in words of this 

data record. 

The process to which this 

event pertains. 

The process holding the CPU. 

Word 2 - Consists of the current value of the 

4/75 clock register. 



The model of the system used when 

deciding which events were significant and should be 

monitored was the Process Management Model. Where 

the monitorable events in the standard version of the 

monitor correspond to movements on the P.M.M. graph, 

the event identifier is shown circled in Figure 2.1. 

A list of events which may be monitored in the 

standard version of the monitor is shown in Table 2.3. 

These events fall under the following broad headings: 

a) Paging Events 

These events enable the collection of 

data on the virtual addresses used by the process, the 

distribution of working set sizes etc. as well as the 

distribution of wait times caused by the various types 

of paging going on within the system. Events may be 

recorded whenever: 

- A process is elected to the Multiprogramming 

Set and begins a preload - the master page at 

least is always preloaded (event 	3). The 

number of pages preloaded and the number of 

transfers required is recorded. 
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Table 2 3 

STANDARD EVENT TRACE MONITOR 	- 	LIST OF EVENTS 

IDENTIFIER EVENT . 

1 	. Process wakes up. 

2 Process put onto scheduler queue. 

3 	. Process enters Multiprogramming Set. 

4 Process completes preload. 

5 Process page faults - page on tertiary memory. 

6 Process page faults - page in secondary memory. 

7 Page faulted page arrives in main memory. 

8 Process page faults - page in main memory. 

9 Process overruns a category .resource limit. 

10 Process completes strobe interval - WS recalculated. 

11 Process goes to sleep. 

12 Process removed from main memory. 

13 Process has pages removed from secondary memory. 

14 Process goes to sleep whilst holding a semaphore. 

15 Process has its drum working set recalculated. 

16 Process page removed during process removal. 

17 Process page removed from its working set. 

18 Process is created. 

19 Process begins its log-out sequence. 

20 All traces of a process are removed. 

21 Process is suspended after a partial preload. 

22 Process resumes after a suspension. 

23 Process has a copy of all pages it has written 
to backed up on the tertiary level. 

24 Process undergoes an extra-strobe. 

25 Virtual and physical addresses of a preloaded page. 

26 Process issues a supervisor call. 

27 Process has a page moved between secondary 
memory states. 

28 Exit from the supervisor state. 

29 A page is written to secondary memory. 

32 Current lengths of scheduler queues (every 10 secs). 

33 Monitor starts or restarts after a gap. 

34 Monitor closes down. 

All events <32 may be selected via a mask set at start up. 
All events >32 are always switched on. 
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- A process completes its •preioading sequence 

and may become eligible for the CPU 

(evént:;t 4). The number of pages preloaded 

and the process status (which gives knowledge 

of whether the preload was partial or not) 

form the parameters. 

- A process issues a page fault, the event 

recorded will depend upon the level in the 

storage hierarchy at which the page is to be 

found - tertiary, secondary or primary memory 

(events 	5, 6 and 8). The virtual address 

of the page and the corresponding physical 

core frame allocated to it are the parameters 

here. 

- A preload page has arrived in main memory 

(event 	25). The parameters are the same as 

above. 

- A page faulted page eventually arrives in 

primary memory and is ready for use by the 

process (event 	7). There are no 

parameters, a process may only have one page 

fault outstanding at a time. 
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- A page is to be removed from primary memory 

either during the recomputation of the 

process' working set (event 	17) or when 

the process is being removed from primary 

memory (event t 16). The virtual address, 

physical core frame and a bit mask showing 

how this page first came to core (demand or 

preload) and whether this page was read, 

written or unused during this residency 

are the parameters. 

- A process has had all its primary memory 

allocation removed and is no longer a member 

of the MPS (event 	12). The process status 

and the category to which the process is now 

assigned are the parameters. 

- All of a process' pages have been backed up to 

the tertiary level in the hierarchy, perhaps 

freeing pages at the secondary level 

(event 	13). The secondary memory allocation 

and the block page table allocation form the 

parameters. 



All of these eventsare non-paging 

events depending on the characteristics of the process. 

Such events may be recorded whenever: 

- A process wakes up i.e. parameters arrive 

from a terminal and that process becomes 

active and competes for system resources 

(event #:;e 1). The category to which this 

process is currently assigned is the 

parameter recorded here. 

- A process goes to sleep i.e. the process 

outputs to its console and becomes dormant 

awaiting 	reply (event 	11). 

- A process goes to sleep whilst holding a 

semaphore (event 	14). 

- A process is created (event t 18). 

- A process begins its logout sequence 

(event 	19) or finally has all traces 

of its existence removed from the system 

(event# 20). 



- A process issues a supervisor call (event -%;t 26). 

The parameters recorded are the identifier of 

the SVC and the current level of the process 

i.e. director or user. 

- A process requests that a copy of the pages it 

has recently changed now be copied back to the 

disc (event # 23). This event may also be 

issued at the behest of the scheduler, the 

parameter identifies where the request 

originated. 

c) Scheduler Induced Phenomena 

It could be argued that everything 

happening within EMAS is in some way a scheduler 

induced event, however events classified here are 

non-paging events which are dependent upon the behaviour 

of the system scheduling algorithms. Such events may 

be recorded whenever: 

- A process is placed on one of the scheduler 

queues (event 	2). The queue involved is 

the parameter. The process is considered to 

remain resident on that queue until another 

significant event takes place concerning 

that process. 
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- Aprocess overruns one of its commodity limits 

either a table allocation or the resource 

limits imposed via the category table (event 	9). 

The parameter specifies the commodity 

involved. 

- A process has overrun its core allowance 

but has not yet been t*strobedtl  (event 	24), 

a recalculation of the working set is carried 

out to see if the working set diminishes and 

the process can be allowed to remain in 

primary memory. 

- A process has reached the end of a strobe 

interval and an attempt is about to be made 

to recompute its working set (event 	10). 

The parameter in this case is the CPU time 

still allowable to the process during this 

residency in 4-75 clock ticks. 

- A process which has just completed a 

"Partial preload" is subsequently suspended 

owing to insufficient core being available to 

it (event 	21). The current core allowance 

and current core used by this process are 

recorded. 



The drum working set for the process is to be 

recalculated (event# 15). An identifier 

associated with the algorithm to be used 

(there are currently four), the secondary 

memory allocation and block page table 

allocation before this recalculation, 

form the parameters. 

- A page belonging to any process is moved 

between drums (event 	27). This is done 

to ensure all pages in the secondary level 

are packed onto as few drums as possible - 

hence denser packing, hence more prepaging 

efficiency and automatic migration of 

pages off the pseudo-drum as space becomes 

available elsewhere. This is only done 

when a page is moved into primary memory 

during the normal activity of the process 

and the secondary memory page indices involved 

in the move are recorded. 
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- Exit from supervisor state-(event- 7!g 28). 

A normal user process takes over the CPU at 

the end of a burst of supervisor activity. 

The current process level (user or DIRECTOR) 

and the current values of COREF (physical 

main memory pages still free) and COREL 

(main memory still unallocated) are the 

parameters recorded. 

- A page is written back to immediate store 

(event t 29). The parameter tells why this 

page is being written e.g. page creation, 

or all pages of a process being removed 

from active store. 

d) Monitor Events 

These three events are always active 

when the monitor is switched on i.e. they are not 

affected by the setting of the event mask. They are 

recorded whenever: 

- The monitor, is switched on or restarted after 

a gap caused by having run out of buffer space 

(event = 33). The current value of the date 

and time of day as held by the system are 

recorded. 
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- The monitoris'switched off (event # 34). 

- A ten second alarm clock interrupt is 

received (event #;t 32). The current lengths 

of the scheduler queues and the number of users 

currently signed onto the system are the 

parameters. 

It must be noted that the set of events 

contained in the standard monitor as described above 

give adequate information to reconstruct queue length 

distributions and wait time distributions for all the 

nodes in the P.M.M. graph,. as well as information on 

the access patterns within the virtual 'memory. 

The possible range of data obtainable 

on a system like EMAS is vast. This version of the 

monitor was never intended to be a fixed, totally 

general monitor obtaining every possible item of 

performance data that might ever be of interest. 

Instead the monitor provides the general mechanism 

through which performance data may be syphoned. The 

structure and comparative ease with which a new 

supervisor may be remade allow this flexibility. All 

the probes implemented in the standard monitor are 

contained within one of the supervisor components. 

However to prove the flexibility of this mechanism, 
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additional probes have been incorporated in at least 

one other component for investigations into certain 

specific areas [Adams et al. 1977] and a modified 

set of probes were used in the EMAS Performance 

Experiment (see next chapter). 

Using the standard version all data 

considered to .be of interest for this exercise may be 

obtained. It may be noted that the monitor is not 

symmetrical, especially in the paging events class, 

i.e. the obvious construct of recording a "page-in 

request" event and "page..here" event (on completion 

of transfer) and similarly a "page-out request" event 

I 	 •1 and ;.  page-gone event is not used. Advantage is taken of 

the fact that preloading and removal of pages from 

core involve the process in a wait until the 

transfer of several pages is complete. From the 

system performance point of view only the length of 

that wait and number of pages involved is of interest, 

whilst from a process behaviour point of view the page 

addresses involved will also be required. The approach 

taken allows the greatest flexibility within the 

standard version, minimising the number of individual 

event types involved whilst giving the most flexible 

sets of data available'. For instance, if only wait 

times involved in paging are required then events 3 and 4 

will give timings for preloadings: 5, 6, 7 and 8 will 



virtual memory are required then events 5, 6, 8 and 

25 give the times at which pages start being used in 

primary memory; events 16 and 17 the times 

(approximately) at which pages cease to be of use to 

the process. In practice it was found (as had been 

expected) that paging events (plus event /t 28) would 

dominate the types of events which would be recorded. 

The total number of paging events to be recorded 

during any particular monitoring session had to be 

kept as low, as possible - hence reducing overhead 

caused by the monitor and lengthening the total length 

of time for which the monitor would run before filling 

its data space. In normal use the monitor in its 

standard form monitoring all events (except event 25), 

collects around 300,000 events in about twenty minutes. 

Interference caused by this monitor 

whilst in use is approximately a four percent addition 

to the supervisor CPU time. The level of interference 

will depend upon the number of events monitored. Whilst 

in use the monitor claims two pages of buffer space, 

thus reducing the available user core space by about 

one percent on a one M-byte configuration. The 

gathering routine adds approximately .2,300 bytes of. 
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code to the resident supervisor code, plus 3,200 bytes 

for organising the switching on and off of probes. 

The interference caused on the pseudo-drum channel is 

minimal with less than one page of data per second 

being transferred. It must be noted that none of the 

monitoring aids implemented at this level cause any 

direct interference with user processes characteristics 

within the virtual machine of that process. 

Sampling Monitor 

A monitor was also constructed to give 

summary information on how the system is performing by 

sampling certain critical variables. This involves one 

routine in the supervisor which is activated at regular 

intervals to accumulate a total, maximum and minimum 

observed value for each of the chosen parameters. The 

contents of this table is dumped, and all the values 

re-initialised either at regular intervals or by the 

setting of a system test flag. A machine readable form 

of this print out will exist in the main accounting log. 

Table 2.4 gives an annotated example of a typical print 

out from this monitor. The sampling interval is 

currently ten seconds as there is a convenient system 

"alarm clock" interrupt at this time. Ten seconds is of 

a much larger time scale than most system phenomena 

appearing at this level, and thus the data hopefully 



Table 2.4 

SAMPLE OF Q-SAMPLE DATA 

JEMAS 	81EF3 DATE;08/09/75 	21.20,18 

QUEUE 	SAMPLING INFORMATION 

NO, 	OF 	TIMES OSAMPLE KICKED WAS 	188 

ITEM TOTAL MAX MIN 
RUNO1 76 4 
RUNQ2 247 3 o 
ACT 	STRQ 0 0 0 
ACT 	TKEQ 23 4 0 
CORE 	01 254 12 0 
CORE 	02 294 9 0 
CORE 03 111 4 0 
CORE 	04 37 3 0 
CORE 	05 442 8 0 
CORE  4447 141 34 
CORE 	F 10377 153 4 
CORE 	S 4506 72 0 
ASUNUSED 192261 72
AS 

131 87?- 
ASFREE 184387 1193 835 
BPTUNUSD 48996 306 226 

PTFREE 44661 281 198 
PT 	FREE 8708 75 17 
SAM 	FREE 22677 127 111 
PARAMTAB 27943 158 121 
USERS 5490 32 25 

EMAS 	81E DATE;08/09/75 21.51.51 
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will not be too adversely affected by any periodicity 

in the system. The data is dumped every 1000 samples 

(approximately every three hours). The periods between 

this regular dumping of accumulated data is controlled 

by a system test flag. The sampling interval could be 

varied, but this has not been considered necessary 

and the monitor has-been of some use as a simple informal 

aid in system tuning. Interference caused by this 

monitor is an addition of approximately 1,000 bytes 

in the space occupied by the resident supervisor 

and a negligible addition to the supervisor CPU 

overhead. 

Category Table Transition Matrix 

One of the central concepts in the 

EMAS scheduling scheme is that of a process 

category. As the transitions between categories 

depend upon the behaviour of the process and the 

categories themselves are a crude characterisation 

of the processes, the transition matrix •of process 

movement between categories will, provide a rough 

characterisation of the current workload. The limits 

involved in the category table will also have a 

definite impact upon the system performance, and thus 

transition matrix will be of considerable use in 

tuning the category table. This monitor requires 
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800 bytes to hold the data, and a minimal amount of 

code space and execution time to gather and dump it. 

The dumping of the transition matrix to the line 

printer and re-initialisation of the data space is 

controlled by a system test flag. Table 2.5 shows the 

transition matrix for a typical session. A machine 

readable form of this data will appear in the main 

accounting log. 

Conclusions 

The four monitoring aids described 

which have been implemented within the EMAS resident 

supervisor provide sufficient data of •a very accurate 

form for the evaluation described in later chapters, 

and hopefully for other research in this field. They 

are very flexible, and must not be considered fixed. 

This applies especially in the case of the event trace 

monitor and the sampling monitor, which provide proven 

data acquisitions routes, and new events may be added 

to the monitoring, or some current items deleted, as 

necessary, limited only by the researcher's knowledge 

of where the item to be monitored resides. Although 

care has been taken to ensure that the extra overhead 

induced by these monitors is minimised, this has never 

been taken to the extreme of hand coding the monitors, 

and all the implementation took place in IMP in 



Table 2 5 SAMPLE OF CATEGORY TRANSITION DATA 

JEMAS . 	81E.0ATE:08/09/75 .?12Oi4 .......................................... 

CATEG0RY 	TABLE 	MOVEi.,IENT T 0 

1 2 	3 4 	5 6 7 8 9 

.1 37 0 	0 0 	0 0 0 0 0 
2 0 43 	13 0 	0 0 0 0 0 
3 0 13 	188 92 	0 0 0 0 0 
4 0 0 	92 94 	d o. 0 0 0 
5 00 0 0 	146 .0 0 580 

.6 0 0 	0 0 	0. 0 0 0 
7 0 0 	0 0 	0 0 0 0 0 
8 0 0 	0 0 	70 0 01274 8 
9 0 0 	0 0 	0 0 1 7 0 

0 10 0 0 	0 0 	0 0 0 0 0 
11 0 0 	0 0 	0 0 0 324 2 
12 0 0 	0 0 	0 0 0 1 0 
13 0 0 	0 0 	0 0 0 5 0 
14 0 0 	0 0 	0 0 0 0 0 
15 0 0 	0 0 	0 0 0 0 0 
16 .0 0 	0 0 	0 0 0 0 0 
17 0 0 	. 	0 0 	0 0 0 0 0 
18 0 0 	0 0 	0 0 0 .0 0 
1.9 0 . 	0 	0 0 	0 0 0 0 .0. 
20 0 0 	0 0 	0 0 0 0 0' 

TO 

11 12. 13 14 15 16 . 	17 18 19 20 

0 0 0 0 0 0 37 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 .  0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

315 0 0 0 0 0 0 0 0 0 

0 0 2 0 0 0 . 	0 0 0 0 

0 0 5 0 0 0 0 0 0 0 

428 1 0 263 0 0 0 0 0 0 

0 	2 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 7 0 0 0 0 

275 6 0 64 2 0 126 0 0 0 

3 0 5 0 1 6 0 0 45 0 

5 0 1 0 0 3 0 0 19 0 

0 0 0 35 35 0 32 0 0 49 

0 0 0 0 0 0 0 0 0 0 

2 0 0 23 0 11 3 0 9 25 

2 0 0 46 22 0 3 0 0 58 
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keeping with EMAS philosophy. Further in keeping with 

the system structure, they only record data on events 

and entities which exist at the level of the resident 

supervisor, so no monitoring of file use etc. is 

taken here. This information can be obtained by 

monitoring at the level of DIRECTOR or subsystem. 

None of the monitors interfere in any 

way with the running of user processes within their 

virtual memories other than adding a small amount to 

the total wait time experienced by the process in 

obtaining service from the supervisor. The level of 

this interference will vary directly with the amount 

of data being recorded, and care must be taken to 

collect only necessary data when planning any 

measurement experiment. On the issue of privacy of 

users, the data obtained is purely of a performance 

nature. The only information of interest about 

processes is, generally speaking, its pattern of 

reference within its virtual memory in terms of page 

addresses, and only this data is gathered. No 

information is gathered at this level on the contents 

of those pages. It is hoped that such data gathering 

is not considered to be a breach of privacy. 

Utility programmes exist for the 

transfer of event-trace data to a standard EMAS file 



from the data collection area on the pseudo-drum, and 

for the production of appropriate event mask to be 

used during any monitoring session. A variety of 

analysis programmes have been written for the 

reduction of event-trace data. Though these 

programmes share several common routines and a 

common kernel in many cases, they have not been 

brought together under one programme, such as the 

Data Analysis Programme on MTS, or the Statistics 

Generating Package on VM/370, but remain separate 

entities, specific to the analysis required. 

[ 



The need for rigour when taking 

measurements Of systems has already been discussed. 

This chapter covers in more detail a controlled 

empirical approach to evaluation i.e. one of 

observing systems under conditions in which all the 

variables which might affect performance are 

fixed, or under the control of the experimenter. A 

measurement experiment carried out on the Edinburgh 

Multi-Access System is also described in detail. 

One of the great disadvantages in 

attempting to make an evaluation of any system is. the 

great number of possible factors which may make an 

impact on the observed performance. Also, subtle 

interactions between factors may themselves prove to 

have a significant effect. With interactive systems 

one of the most highly variable and significant factors 

affecting the performance of the system is the user 

workload. This makes any evaluation of the components 

of the target system, based solely upon measurements 

taken on the natural system (i.e. the system running 

with real users during normal service periods) very 

difficult, as it will be nearly impossible to attribute 

changes in performance to individual system components 

or to slight changes in the user workload between any 
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two observed periods. 

An attempt to remove this factor was 

made in studies of CP/67 [Bard 1973] in which an 

evaluation of two paging algorithms was being carried 

out. This approach consisted of incorporating the two 

algorithms in the target system software and switching 

between them on a very short time scale, thus hoping to 

eliminate any differences due solely to the workload.-

Measurements can then be taken on the natural system 

and an evaluation made of the two algorithms with 

some confidence. However, this approach is naturally 

limited in its application: it will be difficult 

to evaluate hardware changes, or compare software 

algorithms which cannot co-habit with the resident 

supervisor without causing considerable overhead or 

involving changes of such a nature that switching 

between them may not be possible (e.g. they may 

maintain differently ordered queues or paging table 

formats). 

Workload Drivers 

The only factor beyond control in the 

natural system is that of the user workload, as system 

software and hardware components may be fixed. Thus if 

experiments are to be carried out within a totally 



controlled environment, some way must be found of 

providing a standard workload during experimental runs. 

A definition of a standard workload will be useful at 

this point. 

A standard workload in the case of 

interactive systems is a total workload which may be 

applied to the target system in which all of the 

components of user characteristics are completely 

defined, in terms of commands issued, files and 

programmes used, think times between commands and 

expected typing delays [Holdsworthet al. 1973]. 

Such a workload is usually defined in terms of a 

fixed number of pseudo-users running from a set of 

one or more scripts. Each script holds a 

representation of an interactive conversation between 

a pseudo-user and the target system. One or more 

pseudo-users may be run from each script. Figure 3.1 

shows an example of a possible script for an EMAS 

pseudo-user. A standard workload is deemed to be 

reproducible if each time it is applied to the target 

system the activities of each of the pseudo-users 

remains fixed i.e. the commands issued and the time 

the system spends in "user wait"  for that 

pseudo-user do not vary from run to run. In the 

context of the interactive conversation shown in 

Figure 3.2 the part above line A - B will always be 
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Figure 3.2 

SCHEMATIC OF AN INTERACTIVE CONVERSATION 
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constant for that pseudo-user. During the running 

of the standard workload the rates at which individual 

pseudo-users complete their work relative to one another 

may, of course, vary, according to the way the system 

differentiates between different classes of work, but 

within the context of each script the user 

characteristics will remain fixed. 

Providing a standard workload for an 

interactive system by running a set of batch (non 

interactive) jobs on the system will be unsatisfactory, 

as.it  will not incorporate any representation of user 

think time and will not load the communication 

facilities of the system in an appropriate manner. 

Also, on many systems it is quite possible that the 

full range of "interactive" commands may not be 

available to batch jobs. Employing a large number 

of humans to sit at terminals and type in commands 

from a prepared script defining the interactive 

conversation is a possibility, but it would be very 

tedious for the copy typists involved, and humans do 

make errors. It is unlikely that the workload so 

induced will have an exact replication of the think 

time and typing time distributions specified. The 

only way of providing a totally reproducible user 

workload is by a form of automatic Workload Driver (WD) 

or stimulator, incorporated in some system module or 
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piece of hardware, which will feed specified commands 

to the target system at the necessary times. 

In the context of conversational 

computing a WD and the standard workload it produces 

should possess the following characteristics: 

It should load the target system by feeding 

specified lines of input to it, and on receiving a 

response, wait for a specified time (to simulate user 

thinking and typing) before passing in the next line 

of input. 

It must be capable of providing a relatively stable 

load to the target system over the measured period. 

It should be able to take human typing rates and 

terminal speeds for each simulated terminal as parameters. 

It should be reasonably robust and able to recover 

from transient errors (e.g. occasional message 

corruption). 

It should interface easily to the target system 

and appear as any normal user workload would (i.e. a 

minimum of modification and interference to the target 

system). 
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There are two approaches to the 

implementation of WDs: internal and external. The 

internal approach is so called because the WD is 

incorporated within the software of the target system. 

The external approach involves the workload being 

provided from an external machine (usually a 

mini-computer) connected to the communications 

hardware of the target system. 

Internal Workload Drivers 

The major advantage of the internal 

approach may be summed up in terms of cost - no extra 

hardware need be provided (both methods require 

software), also the possibility of transmission errors 

causing trouble is eliminated. However, as the driver 

is implemented within the target mainframe, it means 

that it will necessarily interfere with it, consuming 

memory space and possibly paged I/O capacity. The WD 

could be implemented either as an additional user task, 

or within the supervisor, interfacing with the module 

which normally handles terminal I/O [Figure 3.3a]. 

This is the method adopted in the MTS - Terminal 

Driver Monitor [Stasuik 1976, University of Michigan 19761. 

This is incorporated in the system area of the tasks 

virtual memory and it allows up to 20 simulated 

terminals to run, off up to 9 scripts. The scripts 
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in this case specify command lines and think times 

with typing delays being introduced as a simple 

function of the number of characters input. An 

internal WD is also reported to have been built for 

IBM's TSS/360 [Abrams et al. 1976]. This is 

incorporated entirely within the resident supervisor 

and claims to allow any number of scripts with any 

number of users running off each. The scripts are 

read in, off the card reader and presumably remain 

core resident throughout, which must impose some 

restrictions on the size and number of scripts used. 

Also there is no obvious way of representing user 

think times as such, in this case. 

External Workload Drivers 

An external workload driver, or remote 

terminal emulator (RTE), should not interfere with the 

target system at all, and will be connected to it via 

individual terminal lines, or may be attached (where 

appropriate) as a terminal concentrator [Figure 3.3b]. 

The major drawback of this approach will be the cost of 

the hardware in which to run the RTE. However, with the 

proliferation of mini-computers and the relative decrease 

in price of such equipment, this may not be as much of a 

drawback as it may first appear. Using another 

computer allows for much more scope in the facilities 



Remote terminal emulators may themselves 

be used as measurement devices [Abrams and Cotton 1975, 

Abrams et al. 19761. Response time is the only pure 

performance metric by which interactive systems are 

judged by users. By recording and timing all messages 

passing between it and the target, an RTE provides a 

totally non interfering method of obtaining objective 

response time measurements. Care, of course, will have 

to be taken that the standard workload used whilst such 

measurements are taken must be an accurate reflection 

of the workload existing on the natural system 

[Barber et al. 19751. During the development of a 

new system, a facility which allows a workload to be 

repeated time and time again may be of use in tracing 

system errors [Lassettre and Scherr 1972, Schwemm 19721. 

In this case an external WD will have obvious advantages 

over attempting to implement a WD internal to a system 

which is itself only being developed. For systems which 

are in normal user service, RIEs may be used both as a 

tuning aid - by enabling controlled experimentation with 

scheduling parameters - and as a method of checking new 

system releases - both for performance and possible 

errors. By using a mini-computer and remaining 

completely external to the target the size and range of 



scripts and workloads which may be applied will be 

limited only by the configuration used for, the RTE 

and not by considerations of the interference caused 

in the target. External workload drivers are also 

more flexible than internal drivers in that they need 

not necessarily be system dependent (though any 

implementation of a standard workload will have to be) 

and may be used in investigations of several target 

systems. Several examples of remote terminal 

emulators now exist [Watkins and Abrams 19771. 

The "STIMULATOR' facility provided by 

CDC on 'their KRONOS system [Lehmann and Gomma 19731 

falls between being defined as external or internal in 

that it runs in a Peripheral Processor (of which there 

may be up to ten on the CDC 6400 series architecture) 

and is thus internal in that it requires no additional 

hardware and runs within the target mainframe, but 

could be considered external in that the load is being 

provided by a mini-computer (the PP). The "Stimulator" 

allows for the running of several- users off any of a 

number of scripts and has facilities for response time 

measurement. 

The earliest development of a true 

external driver was produced at project MAC at M.I.T. 

[Greenbaum 19691 for experimentation and testing of 



target systems via standard terminal lines. It could 

support a maximum of 12 simulated terminals running 

from scripts which not only contained command lines and 

think, times, but also "verifier lines" so that the 

simulator can check that it is obtaining correct 

replies. A language was also supplied in which 

interactive conversations could be defined for 

translation into scripts. I.B.M. are also reported to 

have developed an external WD for testing and measuring 

TSO/360 during its development [Làsettre and Scherr 19721. 

Unlike the project MAC stimulator this required a 

minimum configuration of' a 360/40 and was again 

connected to the target mainframe by standard telephone 

lines. A WD based upon PDP-11 hardware has been 

developed by DEC '[Turner 19761, one version runs in a 

PDP-11/20 connected to the target system via standard 

terminal lines, whilst another version runs as part of a 

terminal concentrator used on some of DEC's larger 

mainframes. A language to aid the definition of scripts 

and give some control over the parallelism of the 

simulated users has also been provided [Turner 19761. 

External WDs are now provided commercially for some 

systems and may be bought or rented complete with a set 

of standard loads [Wright and Burnette 1976]. 



There has been some reported use of 

WDs in performance experiments. A set of experiments 

were carried out at Imperial College on the CDC KRONOS 

system using the CDC STIMULATOR facility [Lehman and 

Gomma 1973]. This involved using eight distinct 

scripts with up to 24 simulated users being run off 

each script. No attempt was made to validate the 

scripts, and no changes were made in the system 

configuration. The series of experiments (each taking 

more than one hour elapsed time) were run varying the 

maximum number of simulated terminals from 96 to 192, 

and all the performance data was obtained from the 

accounting log. One of the major performance measures 

taken was the time the whole standard workload requires 

to complete. Despite the several limitations of the 

experiments, considerable insight was considered to 

have been gained into the performance of the system and 

the identification of certain possible system 

bottlenecks. 

The MTS-TDM was used in obtaining 

comparative data on running MTS on an IBM 370/168 and 

an Amdahl 470 V/6 [Emery and Alexander 1975]. The set 

of 45 minute long experiments was carried out using six 

distinct scripts with 120 simulated terminals being run 
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off them. The simulated terminals were not 

distributed evenly between the scripts, but heavily 

biased to some which represented particularly 

interactive work, e.g. editing sessions. A considerable 

array of data was obtained using both the DCF (an event 

trace monitor) and response time data from the TDM itself. 

This revealed several differences between the systems 

running on the two mainframes. During the experiments 

there was 5% idle on the 370 v 10-40% idle on average 

in the page wait state on the Amdahl, whilst though 

more processes were on average in the page wait state 

on the Amdahl, the overall paging rate was lower 

(more processes completing before they "lost" pages which 

had to be page faulted back in). Thus, though it was 

thought both systems were memory bound (both had 

2 M-bytes), the 370 had also very little CPU to spare, 

whilst the Amdahl was thought to be paging bound. 

Response times on the Amdahl were 99% lower on 

average for a CPU which was estimated to be 50% faster. 

The performance of the PDP-11/70 

running DEC's resource sharing, time-sharing system 

(RSTS) in a transaction processing environment has been 

studied in great detail under simulated workload 

provided from a PDP 11/20 connected to the target via 

normal terminal lines [Kosko and Turner 19751. In an 

experiment lasting nearly 12 hours, 27 simulated users 
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carried out over half a million transactions. As a 

result of this experiment, the major bottleneck was 

found to be in the terminal I/O hardware, and not in 

the disc system throughput as had been suspected before 

the experiment. Modifications based on this data were 

implemented which resulted in a 20% improvement in 

throughput [Turner and Kosko1976]. Such results would 

not have been found from an experiment driven from an 

internal WD. The same RTE was used in investigations 

of DEC's Interactive Application System (lAS) running 

on the FDP 11/70 [Turner and Levy 1976]. The load 

consisted of a mixture of jobs classified as either 

computational or interactive. There were up to 22 

simultaneous pseudo-users during a set of 15 minute 

experiments when loads consisting of different mixes 

of these classes were run on a number of hardware 

configurations. The response time data obtained from 

the RTE was used to determine the suitability and 

expected performance levels of the system for various 

applications. 

An extensive set of experiments were 

carried out on the Murray Hill Time Sharing System 

(MHTSS) at Bell Labs, using a commercially available RTE 

[Wright and Burnette 19761. The interactive workload 

simulated was evolved from system usage data gathered 

on the natural system and an attempt was made to mirror 
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the distribution of system commands issued as well as 

think time and typing speeds. It is interesting to 

note that the think time in this case was uniformly 

distributed between 0 and 11 seconds compared with 

Scherr's observation of an exponential distribution 

with mean of 30 seconds of CTSS. Five distinct scripts 

were constructed. The stimulator allowed verifier 

lines to be inserted at various points in the scripts 

and if any error was noted from this, then the test was 

halted and re-run. Several simulated users were run 

off each script. The load varied from 30 to 90, but 

the ratio of the way users were apportioned between 

scripts remained fixed. A validation exercise was 

carried out running a 45 user version of the simulated 

workload, and comparing it with the 45 user load on the 

natural system. The validation was carried out at the 

command distribution level as well as at the deeper level 

of the internal supervisor queues. Minor variations 

occurred in the target system configuration during the 

time span of the experiments. A variety of monitoring 

aids were used, and extensive data obtained using the 

event trace monitor embedded in the system. The data 

included processor, channel and various levels of memory 

utilisations as well as supervisor overheads. The 

researchers involved held this exercise to have been 

very useful, and considerable insights to have been 

gained from the set of hour long experiments. 
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During the development of IBM's Time 

Sharing Option both a simple performance model and a 

remote terminal emulator were used to check out the 

system's performance [Lassettre and Scherr 1972]. 

The RTE consisted of an IBM 360/50 connected to the 

target via individual terminal lines. The scripts used 

by the pseudo-users were not deterministic as is 

normally the case, but consisted of a set of 

subsessions. Each time a pseudo-user completed a 

subsession the decision as to which subsession is to 

be executed next was taken at random, with . 

weighting factor which determined the overall mix 

of the total workload. Data collected included 

both response time and target system measurements 

from an event trace monitor embedded within TSO. 

This data was used in the validation and 

calibration of the simple performance model. 

CP/40 (a predecessor of IBM's CP/67) 

was used in interesting experimental investigation of 

the influence on paging behaviour of four major 

factors {Tsao et al. 1972, Tsao and Margolin 1972]. 



Load sequence of system subroutines. 

Main memory size. 

Problem programmes. 

In this investigation a full factorial experiment of 

81 separate runs was used. The load in this instance 

consisted of .a set of three Fortran programmes which 

were compiled but not executed. The data gathered, in 

terms of usage information on individual pages and 

paging events, was used in formulating empirical 

models of the system. Though the system used was only a 

üniprogramxning one and the load used was very restrictive 

and did not use any form of WD, the methodology 

adopted in this investigation is very interesting. 

The EMAS Performance Experiment 

The EMAS performance experiment was 

devised to provide a consistent set of data in an 

investigation of the effects of various system 

components upon system performance. These measurements, 



and two different paging algorithms, would provide the 

basis for an empirical evaluation of the system, and 

would also be used in validating and calibrating a 

model of it. 

The parameters which were varied in 

this experiment were: 

The amount of main store available to the system. 

This is carried out easily owing to the highly 

parameterised nature of the system, by setting an 

appropriate system variable at Initial Programme 

Load (IPL), which defines the amount of primary 

memory the system may use i.e. no physical removal of 

primary memory took place. Three different values of 

main memory were used - 5/8 M-bytes, 3/4 M-bytes, and 

7/8 M-bytes corresponding to 112, 144 and 176 pages 

respectively available to user processes. 

The number of channels available to the 

secondary memory (drums) and hence :the paging I/O 

capacity. This is effected by setting a hardware 

switch before IPL. The system is to a certain extent 

self configuring and automatically checks at IPL 

which channels are available to it and acts 



(c) The process scheduling algorithm, The two 

variations on this were: 

Using Working Set Replacement (WSR) 

i.e. whenever a process is admitted to 

the Multiprogramming Set, prepage in 

its current working set, then demand 

page, until the process is due for 

removal. The normal category transitions 

(Table 1.1) were used with this scheme. 

Using Pure Demand Paging (PDP) i.e. 

whenever a process is admitted to the MPS 

then only the master page is prepaged 

(it must be in main memory before the 

process may be given the CPU). This 

prepage transfer may itself be considered 

as a demand page fault. When running in this 

mode the category transitions carried out by 

a process are changed, in that each time the 

process goes to sleep then it is moved down a 

category (to NCY 3 instead of NCY 4). 
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To investigate the effects of these three 

factors a full factorial experimental design was 

adopted [Mendenhall 1968] involving 3 x 2 x 2 = 12 

experimental runs. Table 3.1 shows the experiments 

conducted. 

Fixed Parameters 

All other factors which might affect 

system performance were kept fixed. The hardware 

used - CPU, channels, device controllers, disc files, 

drums, communication devices - was always the same 

(except those factors varied as part of the experiment). 

The software (with the exception of the variations 

in scheduling mentioned and one minor error corrected 

in DIRECTOR after four runs) was always the same. The 

user workload was also kept fixed using an RTE and a 

standard workload derived from a detailed benchmark 

defined by personnel of the Edinburgh Regional 

Computing Centre [Adams and Millard 19751. The 

suitability and reproducibility of this standard 

workload is discussed in the next chapter. The hardware 

used in the experiments is shown in Figure 3.4. 

Measures 

The measures whiáh would be of interest 



A .7/8 2 : 	WSR. 

7/8 2 PDP 

C 	. 7/8 	. 1 WSR 

D 	. 7/8 1. 	. PDP 

E 3/4 2 WSR 

F . 	3/4 2 PD? 

G 3/4 1 WSR 

H 3/4 1 PD? 

I 5/8 2 WSR 

J 5/8 2 PD? 

K 	- 5/8 1 WSR 

L 5/8 1 PDP 

WSR - Using Working Set Replacement Policy 

PDP - Using Pure Demand Paging scheme 

All experiments were carried with a fixed 

workload of 32 simulated users. Hardware consisted 

of the ERCC ICL 4-75 (machine ?TB?t  complex) with 

3 drums + 1 pseudo drum. EMAS, version 814, was used 

throughout, as were the executive processes - 

Volumes version 834, Demons version 877. Runs A-D 

used DIRECTOR 871, E-L used DIRECTOR 872 ( a minor 

error corrected). 

August 1975 



Figure 3.4 

ICL 4-75 CPU 

up to 7/8 M-bytes 

1-)/"second core store 

1 or 2 drum channels 

3x2 M-byte drums 

3x75 M-byte 
Replaceable Disc Drives 

2x350 M-byte 
Non-Replaceable 
Disc Drives 

FRONT END COMMUNICATION 
PROCESSOR 
PD? 11/45 

48 K baud synchronous 
line 

REMOTE TERMINAL 
EMULATOR 
PD? 11/4 
28 K core 
1x12 M-byte 
Replaceable Disc Drive 

HARDWARE USED IN THE EXPERIMENT 



CPU utilisations. 

Counts of various classes of paging and the 

wait time spent in each. 

Times spent in each of the scheduler queues. 

Times spent in each of the major process 

states. 

Scheduling decisions taken. 

Throughput rates. 

These were obtained using the CPU time monitor and 

event tracing facility. The version of the event trace 

is a modification of the standard scheme. As the 

access patterns within individual process working sets 

are taken to be the same in each run no virtual memory 

addresses were recorded. Similarly, rather than 

recording an event each time a page is removed from 

main memory, only one event is recorded each time 

a process is strobed or removed from core showing 
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the number of pages involved and usage information. 

The events used in this version of the event trace are 

shown in Table 3.2. This cutting down on the number 

of events monitored and the parameters recorded helps 

to keep the overhead due to this monitor as low as 

possible. 

The queue sampling monitor and category 

table trace were also used. These both induce very 

little overhead and produce a set of easily interpreted 

data which may throw further light upon the subject. 

The total length of any run was not taken as a measure. 

There are two major reasons for this. The original 

version of the benchmark used took approximately two 

hours to run on, a configuration consisting of 

3/4 M-bytes of core, two drums and one drum channel. 

To allow the experiment to run to completion would have 

greatly lengthened the time taken for the experimental 

runs. It is quite possible that a small number of jobs 

may be discriminated against by the system, either by the 

scheduling or by random placement of pages on rotating 

devices. These may then take a long time to complete 

and dominate any measure based only on total run times. 

This view was reinforced by the experience of the ERCC 

staff involved in the benchmarking exercise. 



1 Process wakes, up. 

2 Process put onto scheduler queue. 

3 Process enters Multiprogramming Set. 

4 Process completes preload. 

5 Process page faults - page on tertiary memory. 

6 Process page faults - page in secondary memory. 

7 Page faulted page arrives in main memory. 

8 Process page faults - page in main memory. 

9 Process overruns a.category resource limit. 

10 ' 	 Process completes strobe interval - WS recalculated. 

11 , 	Process goes to sleep. 

12 Process removed from main memory. 

13 Process has pages removed from secondary memory. 

14 Process goes to sleep whilst holding a semaphore. 

15 Process has its drum working set recalculated. 

16 Process begins removal from MPS. 

17 Process has working set recalculated. 

18 Process is created. 

19 	' Process begins its log-out sequence. 

20 All 'traces of a process are removed. 

21 Process is suspended after .a partial preload. 

22 Process resumes after a suspension. 

23 Process has a copy of all pages it has written to 
backed up on the tertiary level. 

24 Process undergoes an extra-strobe. 

27 Process has a page moved between secondary memory 
states. 

28 Exit from the supervisor state. 

29 A page is written to secondary memory. 

32 Current lengths of scheduler queues (every 10 secs.). 

33 Monitor starts or restarts after a gap. 

34 Monitor closes down. 

All tracing is turned on automatically. 

No addresses are recorded in events 5, 6, 8, 16 or 17. 



The remote terminal emulator used was 

implemented on a 28K PDP 11/45 by personnel of the 

ERCC[Gilmore and McBride 1975, Gilmore 19761. Owing 

to limitations in the hardware used, this could 

maintain a maximum of 32 pseudo-users at any one time. 

Each pseudo-user ran off its own private script. 

Unfortunately there was no way of logging messages 

between the RTE and the target, so this was only used 

as a method of producing a reproducible standard 

workload, and was not used as a measurement device. 

Thus all measurements taken in the experiment took place 

in the software of the target machine. The PDP 11/45 

was originally connected to the original,...hardwired 

communications multiplexor (MCCCU) via a 48 k-band 

synchronous line, but was later connected via a 

Front End Processor (formed by a PDP 11/45) which was 

in turn connected to the 4-75. At all times the RTE 

was connected as a terminal concentrator. An 

alternative to this approach would have been to 

implementa workload driver internal to EMAS itself. 

This could possibly have been done by placing the. driver 

in the resident supervisor module which handles the 

interactive communications hardware. Owing to the 

hierarchical design of EMAS this would probably have 

meant that all the scripts would have had to be kept 
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in main memory as it would have been extremely difficult 

for the internal W.D. to access files. The interference 

which such a driver would have caused was another factor 

of concern, so this approach was not taken. 

Experimental Runs. 

Each run included in the experiment took 

the following format (Figure 3.5). First EMAS was IPL'd 

with an appropriate hardware configuration. The RTE was 

then started and pseudo-users proceeded to log on. The 

timing of the run started with the first pseudo-user 

logging on. Eight minutes after the start the tables 

for the CPU log queue sampling and category transition 

trace were cleared and a 31 minute measurement window 

began. The eight minutes was more than adequate time for 

all users to log on and the system to achieve a form of 

steady state. Two minutes after the start of the 

measurement window the event trace monitor was turned 

on and it continued to gather data until it had filled 

its available data space (800 pages) and switched off. 

At the end of the measurement window the CPU log queue 

sampling and category transitions data were dumped. 

This marked the end of the run and the RTE was closed 

down. The event trace data was then retrieved and 

stored in a standard EMAS file for later analysis. 

EMAS was then closed down and re IPL'd for the next 



Figure 3.5 

A NORMAL EXPERIMENTAL RUN 

Event trace 
monitor fills 
data space 

CPU log cleared (800 pages) 
Start start of monitored and closes Stop 
stimulator J?eriod down timulator 

(A) I 	(C) I 	 (E) : 

(B) I IPL 4/75 First ' Event trace ' 	/ 	CPU log Copy event 
with appropriate user monitor cleared trace data 
hardware/ logs on starts end of to EMAS 
software monitored file 
configuration period 

TIME 

A-4B 	6 minutes 

B—>C 	2 minutes 

B 	31 minutes 	(monitored period) 

The close of the event trace monitor (D) will normally take place before the end of the 

monitored period (E) when the data space is filled. If not then the event trace monitor 

is shut down at (E). 



each run as the amounts of data obtained (the 

interference being roughly proportional to the amount of 

data taken) was the same in each case. 

Exclusive use was required of the 

mainframe during these experiment runs. During the 

spring of 1975 a daily slot was provided by the ERCC 

management in the early mornings in a period normally 

taken up by system housekeeping functions 

(archiving etc) for a series of runs. At this time 

the PDF 11/45 was connected via the MCCCU. After a 

number of runs had been completed a fault was found in 

the EMAS software handling the buffering of messages to 

and from the RTE. This fault was considered to have had 

a drastic impact on the results obtained, so all that 

data was abandoned. However, the experience gained in 

running procedures and proving the software in the 

RTE was very valuable. 

During the summer vacation of 1975 the 

ERCC allowed one 4/75 configuration to be taken out of 

service at 8.00 p.m. on certain evenings, and given 

over to the experiment. A total of 13 evenings were 

dedicated to this with approximately three hours per 



would run successfully, and that the level of loading 

was adequate. There was still one process failure 

during experiments A - D, approximately 15 minutes 

into the monitored period. From these failures an 

error was found and corrected in DIRECTOR. The effects 

of this change on the system performance was not 

considered significant (other than removing the 

failure). Any experiment runs which suffered from 

any major system failure, either in the target or 

the RTE (there were hardware failures in both) were 

discarded and re-run. An exception to this is Run 'F1  

which suffered from a hardware failure after the end 

of the measurement window. This meant the CPU log was 

lost but the trace data was safe. A further run on 

this configuration was planned, but could not be carried 

out as the hardware for the RTE. was moved to a 

different site. 

Conclusions 

The validity of the workload used in 

the Performance Experiment is discussed in the next 

chapter, and results obtained will also be given in 

succeeding chapters. The conclusions drawn from the 



The initial 'setting up of the framework 

(i.e. debugging the WD-target system interface hardware 

and software) in which such experiments may be run is 

tedious and is fraught with a large number of possible 

sources of error and frustration. Once such a 

framework is proven, work can progress at a reasonable 

rate ( this would also appear to be the experience in 

the M.H.T.S.S. evaluation). 

The time required to run any extensive set of 

experiments plus the initial setting up phase will be 

quite long, though there are, of course, well proven 

experiment designs which allow for a reduction in the 

number of actual runs which need be carried out 

[Cochran and Cox 1957] and one need not carry out a 

full factorial experiment as was the case here. An 

enlightened attitude will be required by the system 

management to allow dedicated time required for such 

an exercise. Once the initial troubles had been 

ironed out it took almost exactly one hour per 

successful experiment run. 



(800 pages per run approximately) is taken, then a 

non trivial data management problem results. A 

reasonable procedure for handling this data 

efficiently must be worked out in advance. During 

the performance experiment the data from each night's 

run was analysed as soon as possible during batch runs 

that evening (using three EMAS processes), and 

archived to magnetic tape immediately thereafter for 

possible re-use at a later date. 

(d) In terms of pragmatic approach to system evaluation 

a development of this method must be seriously 

considered as an essential route for further work, so that 

some form of data base of empirical data on such 

systems can be built up for reference. The standard 

workload used here, and the stimulator used, were by 

no means ideal examples of their kind, but the 

modified interactive benchmark did provide what must 

be considered as a very reasonable representation of 

a natural workload for such a system (see next 

chapter). Similarly the RTE presented this standard 

workload to the target system in a realistic fashion. 

It was considered best to use these tools which were 

available and in which some experience had already 

been gained rather than starting completely clean and 
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repeating to a great extent the large amount of work 

which had already gone into the benchmark definition 

and stimulator construction. Based on the experience 

gained from this work an improved RTE has been 	• 

designed and implemented [Adams et al. 19771. The 

area of workload definition and experimental 

procedures is an area in which much further work 

could still be invested. 



In this chapter the workload applied 

to-the system during the EMAS performance experiment is 

examined in greater detail. Some measures of workload 

at the level of the EMAS resident supervisor are given 

and the reproducibility of the standard workload in 

terms of these measures is discussed. 

Benchmark Construction 

The standard workload used in the 

experiment was derived from an interactive benchmark 

defined from measurements taken on EMAS at the level of 

the standard subsystem {Millard et al. 1975, Adams and 

Millard 1975]. This involved recording such items as the 

distributions of: the types of commands issued, sizes 

of files used, user think times, system resources used 

by individual commands (page transfers and CPU times) 

and the length of interactive sessions. A PDP-8 

interposed between certain terminals and the normal 

communications hardware was also used to monitor user 

typing characteristics in greater detail. This 

measurement of user behaviour was carried out over a 

lengthy period, and the workload was found to be quite 

stable in terms of the items monitored. 



these two hour sessions, several pseudo-users in turn 

made use of the pseudo-terminal. The scripts 

interacted with a set of base files in the target 

system. These files were never destroyed or 

modified in any way, all use of them was carried out 

in terms of operations (e.g. editing) from the base 

file to some temporary file which was subsequently 

destroyed. Though EMAS allows users to type ahead - 

i.e. give input to the system before a request for 

input is issued - no attempt to simulate this was 

made in the RTE, each think time started from when 

a reply was received by the RTE. 

The benchmark was validated in terms of 

supervisor activity by measuring the CPU utilisations 

and induced paging rates over the two hour period and 

checking this against measurements taken on the natural 

system. The RTE used was validated in terms of 

accuracy in reproducing the scripts by monitoring EMAS 

again at the subsystem level whilst the benchmark 

workload was being run. This measurement log was then 

checked against the scripts used. All of the benchmark 

definition and validation was carried out by ERCC 

personnel for system acceptance trials. 
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It was decided to base the standard 

workload used in the experiments on this benchmark 

because so much work had already been invested in its 

specification and validation, and it was considered to 

give an acceptable representation of a realistic user 

workload [Millard 1975]. The characteristics of the 

workload at the level of the resident supervisor will 

be of interest in the experiment. It would have been 

possible to interpolate the workload at this level by 

using a set of synthetic programmes rather than relying 

on a benchmark which was defined at a higher level. 

However, to obtain a workload which mirrored real user 

behaviour in a realistic fashion would have involved 

an effort at least as great as that put into the 

benchmark construction. Not only is the distribution 

of process working sets quite wide but EMAS processes 

will make use of a variety of subsystem and DIRECTOR 

facilities during their execution. Their working set 

composifion and especially the level of sharing of 

pages will reflect this. It may have been difficult 

to obtain a reasonable distribution of such requests 

and working set sizes in a small set of synthetic 

programmes. Also, as is shown later, any workload 

defined in terms of activity monitored at the level 

of the resident supervisor will be in some ways 

dependent upon the algorithms employed therein. If 

such a workload is then to be used as a basis of 



Modifications to the Benchmark 

The standard workload used in the' EMAS 

performance experiment was a modification of the 

benchmark in the following ways: 

- The length of run used was an eight minute 

period (to allow all users to log on - a ten second 

gap was required between pseudo-user log-ons to avoid 

overloading the RTE -, and settle to a steady workload), 

plus a 31 minute monitoring window (30 minutes was the 

observed mean length of a user session). Thus only the 

first 39 minutes of the benchmark was used. The 

workload was considered to be spread evenly throughout 

the two hour period [Millard 1975]. Also the base files 

were never tampered with and the temporary files 

always destroyed before being reused, so there should 

be no interference from files being lost due to 

cutting the benchmark short. By doing this, the time 

taken for each experimental run was considerably 

reduced and could each be carried out in 

approximately one hour. 



- The benchmark was defined and validated on an 

EMAS configuration consisting of 3/4 M-bytes of core 

store, two 2 M-byte drums and one drum channel. The 

32 simultaneous users represented in the scripts 

provided such a configuration with a reasonable 

level of loading. However, as more powerful 

configurations were to be used in the experiment, 

a higher level of loading would be required if the 

target was to be in a heavily loaded state over the. 

observed period. Two ways of achieving this were 

considered: 

Increase the number 'of scripts and 

simultaneous pseudo-users. 

Decrease the think times in the current scripts. 

The latter approach was adopted as limitations 

within the RTE hardware made it impossible to 

increase the number of simultaneous users 

significantly, and it would have required a further 

validitation process to check that the command 

distribution presented by such a new benchmark did 

not vary significantly from the original. The think 

times specified in the original scripts were 

modified in the RTE software according to the 

formula: 



This maintained the same distribution of user commands 

issued, keeping the target system under a reasonably 

heavy load throughout the monitored period, and 

removing any periods of idle which had appeared on 

larger configurations in which only one or two users 

of the 32 were active at any time. This was 

considered valid as the aim of the experiment was to 

compare the effect of the three chosen factors upon 

the performance of a heavily loaded system. The 

effect of cutting the think times will be to keep 

more processes in the active state (awake) at any 

time, thus giving a similar effect to having a larger 

number of users logged-on The characteristics of 

processes in main memory will not be altered, the main 

difference between this increased workload and a true 

increase in the number of users will be in secondary 

memory utilisation and distribution of files used over 

the surface of the discs used for tertiary memory. 

The files used by the benchmark were held on two 

otherwise unused quarters of the disc file. To avoid 

the possibility of bunching of files on any particular 

area of the disc file, and thus in effect speeding up 

the disc accesses, owing to a decrease in head movement, 

a change was made in the DIRECTOR used in the experiments 

to scatter newly created files over the cylinders of the 



against in some way by the scheduling algorithms or by 

the chance positioning of rotating' memory devices. The 

actual workload being processed during the measurement 

window will not always be absolutely identical. 

However the total workload presented to the system will 

always be the same so any effects of this nature are 

part of the way in which the system reacts to the 

workload. The measurement window is intended to be 

sufficiently large and starts soon enough after the 

start of the standard workload to minimise effects due 

to this. 

Workload Measures 

In a system of this type, the workload, 

as it may be observed at the level of the resident 

supervisor, will be related to the system just as the 

performance is related to the workload. The behaviour 

of each process will be characterised in terms of 

the reference patterns it produces i.e. the virtual 

memory addresses it accesses and the CPU times it 

expends on each page. The working set concept is a 

representation of this. Unfortunately exact working 
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set behaviour is very difficult to measure. In the 

following section measures whereby the workload 

passing through the EMAS resident supervisor may be. 

characterised and quantified are considered. 

All process virtual memory scheduling 

within the EMAS resident supervisor takes place local 

to each process, and takes no account of the global 

level of loading existing on the system. The behaviour 

of a process whilst executing any particular interaction 

will thus always be the same in terms of CPU usage and 

paging behaviour (virtual memory accesses) and will be 

exactly reproducible during any two successive runs of 

that process. The only area in which the global system 

load is taken into account is in the scheduling of 

secondary memory space. 

Within the scheduling of virtual memories 

of main memory resident processes there is one possible 

source of error. This involves shared pages. Usage 

information upon which working set calculations are 

based comes from markers associated with physical 

core pages rather than the process paging tables. 

The reading of this usage information and clearing of 

these marker'sis a time consuming procedure (there are 

eight markers per 4096 byte page on the ICL 4-75) and 

therefore does not take place at the end of each process 
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interval on the CPU (which would give the same effect 

as having marker associated with the process paging 

tables), but only takes place after regular intervals 

of process CPU time (a strobe interval) or when a 

process is to be removed from main memory. Consider the 

following scenario (Figure 4.1): Processes A and B 

are sharing a particular page. Process A ceases using 

the page early during its residency. It is strobed, 

but as the page has been used during this residency it 

remains in A's working set. The usage marker on the 

shared page has now been cleared. Process B now uses 

the page, but is suspended for some time (perhaps on a 

page fault to a slow disc). Process A is now removed 

from core 'and its working set recalculated. The 

usage markers will show the shared page to have been 

used and it will be included in A's working set. The 

usage marker is cleared. Process B is given the CPU 

again but is strobed before it can use the shared- page 

again. The shared page will not be included in B's 

working set. It is possible to obtain an estimate of 

the level of this interference from usage information 

associated with events 16 and 17 of the event trace 

monitor. When running under a demand paging scheme 

every page brought into main memory by a process will 

be used. However, when they are removed from main 

memory some pages are marked as never having been 

accessed - due to this interference. Discounting 
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pages which have been removed by the normal strobing 

procedure this interference would appear to be less 

than between 7% and 35% of all pages brought into 

main memory. 

If the EMAS scheduling algorithms 

remain constant and there is no contention for 

secondary memory space, then the activity (paging 

and CPU time) caused by a process during any 

interaction will remain the same no matter what other 

processes exist on the system. The scheduling 

decisions taken by the .supervisor 	handling this 

process whilst resident in main memory will also then 

be fixed. In particular the number of residencies in 

main memory. necessary to carry out any item of work will 

be fixed, as will the categories used by that process. 

Measures which may be used to quantify the workload 

under these circumstances may then include: 

Resources requested by each process 

during a main memory residency. 

Scheduling decisions taken about that 

process during a residency. 

a) The resources used by a process during any 



residency have two major components: 

Virtual Memory accesses. 

CPU time. 

i) Virtual Memory accesses may be roughly quantified 

in terms of the number of pages requested or brought in 

during any residency. Pages may be brought in either by 

prepaging or demand paging'-  the split between these 

two forms of paging -in will depend upon the working 

set calculation algorithm's estimation of the process 

locality (an attribute of that process alone). Pages 

may also be transferred in from any level in the storage 

hierarchy. The ratio of-the numbers of pages coming 

from each level will be dependent upon the global mix 

of processes existing in main memory (reflected in the 

number of pages found in main memory from sharing) and 

the contention for secondary memory (reflected in the 

number of pages moved back to the tertiary level by 

the drum working set algorithms and hence the number 

of pages brought back in from the tertiary level). 

The fraction of pages brought into main memory which 

are subsequently written back to secondary memory will 

depend upon both the activity of that process (the 

fraction of pages which it writes to) and the number of 

pages brought in from the tertiary level (and need to be 



ii) The total CPU time used by a process during each 

residency will be a function of that process' activity 

alone. Similarly the mean time between page faults 

will be a function only of that process and not of the 

global system load as is the case in most other systems 

of this class [Sekino 19721. 

b) The scheduling decisions taken in relation to any 

process during any residency will always be the same. 

In particular the reason for terminating each 

residency - because the process has gone to sleep or 

overrun a resource allocation (CPU time or main memory 

allowance) will be' a function of that process' activity. 

Hence the categories used by a process in carrying out 

its work will also be fixed. 

Reproducibility of Standard Workload 

The ideal way of estimating the 

reproducibility of the standard workload would be to run 

it on two or more separate occasions into identical 

hardware/software configurations, obtain a set of 

measures and compare these to obtain bounds on likely 

errors induced by variations in the standard workload 

(caused by random positioning of rotating memory 
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devices at start up). Unfortunately though such a run 

was planned there was not time to carry it out as the 

hardware used for the RTE was only available for a 

very limited period. 

In the following the characteristics 

of the workload are presented which show that the 

standard workload was reproducible. This data is all 

obtained from the event trace monitor. The user CPU 

times obtained from this data (which are meant to be 

used to compare different runs) will be an overestimate 

owing to the supervisor using CPU time before the event 

it recorded. The error is introduced because CPU time 

used by the supervisor before the event is dumped 

is accredited to the user process. This only happens 

when inteupts - device interrupts, page faults or 

supervisor calls - occur and a simple correction can 

be made for this if the time used by the supervisor in 

servicing these is known. Whether or not such a 

correction has been made will always be specified when 

CPU timings are presented. The runs are also split 

into those using working set replacement (group one) 

and those using demand paging (group two) as certain 

of the measures given are dependent upon the 

scheduling algorithms. 

The first measure of workload considered 
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is that of resources used each time the process enters 

the awake state (which is analogous to an interaction) - 

Table 4.1. The runs in the two groups are very 

consistent. One major difference between the two 

stems from the fact that the runs involving demand 

paging required an extra 06 residency on average per 

awake. This may be due to the. different. category 

scheduling used in the two groups (in group two 

processes are placed in NCY3 rather than NCY4 when 

they go to sleep). One criterion which may be used to 

compare the activity of process between all runs is. the 

amount of CPU time the process consumes during any 

interaction i.e. how far the process moves in its 

computation during each interaction. There is no 

statistically significant difference in the corrected 

CPU times shown. The frequency distributions of 

paging requests and CPU times per interaction are 

shown in Figures 4.2 and 4.3 respectively, note the 

heavily skewed nature of the CPU distribution. The 

resources used per residency (Table 4.2) further 

show the stability of the workload. 

The profile of work passing through each 

category in terms of residency periods page-in requests 

and CPU time is shown in Tables 4.3, 4.4 and 4.5 

respectively. Not only do these figures show the 

reproducibility of work passing through each category, 



Table 4.1 

Average Resource Requirements per interaction 

MILLISECONDS 

EXP 	(CORRECTED UNCORRECTED PAGE - IN MAIN MEMORY 
RUN CPU TIME CPU TIME REQUESTS RESIDENCIES 

A 331 354 50 15 

C 338 421 53 15 

E 328 392 52 15 

G 345 388 53 15 

I 324 395 52 15 

K 322 - 	404 52 15 

B 310 384 52 2-1 

D 328 508 52 21 

F 323 455 53 21 

H 322 461 52 21 

J 335 499 52 21 

L 308 .577 51 21 
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Figure 4.3 (a) 
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Table 4 2 

Average Resource Requirements per Main Memory Residency 

MILLISECONDS 

EXP CORRECTED 
A 

UNCORRECTED PAGE - IN WRITE-OUT 
RUN CPU TIME CPU TIME REQUESTS REQUESTS 

A 224. 281 35, 11 

C 225 304 35 10 

E 219 289 35 10 

G 223 341 36 11 

I 217 302 35 11 

K 216 322 35 10 

B 146 231 26 	 9 

D 152 260 25 	 9 

F 150 242 25 	 9 

H 147 293 25 	 9 

J 159 271 25 	 9 

L 147 317 25 	 9 
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but also present in more detail the spectrum of 

work existing on the system. Within each of the two 

groups there is a very consistent profile with the 

majority of residencies passing through the interactive 

categories (5, 8, 11, 14, 17) - between 74% and 82%. 

These categories also account for the vast majority of 

all page-in requests - 77% - 81%. However, the CPU 

time used by these categories is much less - between 

28% and 34%. The reasons for terminating any 

residency - process going to sleep or overrunning a 

CPU limit - are shown in Tables 4.6 and 4.7 - all 

other residencies are ended because of overrunning 

main memory limit. Again, these show a great level 

of consistency in all the heavier used categories. 

It also shows that the CPU limit has very little impact 

on the scheduling of processes and that when processes 

are removed from main memory when they have not yet 

completed their available work (i.e. have not gone to 

sleep) this is most likely to be because of overrunning 

a core limit. With respect to the classification of 

processes by the system into categories, it may be 

seen that this is at least partially successful in as 

much as those categories which have higher CPU limits 

are also those categories which show a higher percentage 

of residencies ending because the CPU limit has been 

reached, whereas those categories with. low CPU limits 

very rarely, if at all, have processes rescheduled 



EXPERIMENT RUN 

CATEGORY  C E G I K B D F H J L 

1 0 00 0 0 0 0 0 0 0 0 0 

2 86 77 67 74 72 73 29 30 36 43 43 44 

3 65 65 69 71 65 65 52 45 54 .52 63 47 

4 99 98 98 98 98 99 96 100 84 100 95 91 

5 57 57 53 50 52 54 15 13 14 10 14 14 

6 NU NU 0 NJ NU NU NJ NU NU NU NU NU 

7 .Ntl NU 0 0 0 0 NU NU NJ NU NU NU 

8 81 79 80 82 79 80 65 64 63 62 63 67 

9 67 88 88 100 70 70 100 100 100 NU 67 100 

10 0 0 0 0 0 0 NU NU NU NJ NU NU 

11 62 63 60 57 62 60 52 54 56 54 57 55 

12 2520 0 0 0 0 25 050 NU 0 NU 

13 50 30 38 12 63 60 NU NU NU NU 100 NJ 

14 67 65 67 62 65 65 58 53 60 59 58 54 

15 6 8 9 3 5 6 25 020 0 033 

16 14 32 25 12 11 13 100 50 100 NJ 60 67 

17 45 45 45 49 49 48 58 61 37 51 45 53 

18 NJ NJ 0 NJ NJ 0 . 	4 9 7 0 8 5 

19 38 39 37 29 39 41 7 . 	4 5 9 6 6 

20 32 38 33 34 34 40 43 38 43 36 42 49 

OVERALL 68 67 67 65 67 67 	47 46 47 46 48 48 



Table 4 7 

PERCENTAGE OF RESIDENCIES ENDING BECAUSE PROCESS OVERRAN 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 .0 0 0 0 0 0 0 0 0 0 0 0 

3 .0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 ND NJ 0 NJ ND ND ND ND ND ND ND NJ 

7 ND ND 0 0 0 0 ND NJ ND MU ND NU 

8 0 1 1 0 1 1 0 0 0 0 0 0 

9 17 0 0 0 20 20 0 0 0 N 0 0 

.10 57 50 57 44 0 44 NU 'NU ND ND MU NJ 

11 0 0 0 0 0 0 0 0 0 0 1.0 

12 50 60 67 86 67 100 0 0 0 NJ 25 ND 

13 .17 0 0 0 0 10 ND ND NJ MU 0 ND 

14 2 2 1 3 2 2 1 1 1 1 0 2 

15 21 27 24 26 25 22 50 0 20 0 100 67 

16 14 14 15 24 11 13 0 50 0 MU 40 33 

17 19 19 19 16 19 17 13 11 20 24 16 16 

18 ND ND 50 NO ND 50 48 43 37 35 42 45 

19 14 14 16 18 14 19 67 65 65 55 69 72 

20 16 17 15 14 15 19 17 16 17 15 14 12 

OVERALL 3 3 3 3 3 3 	2 2 3 2 3 2 
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scheduling in group two was having a very significant 

impact with a larger number of processes entering 

main memory in a category with too small a main memory 

limit and having to be rescheduled, removed and 

brought in again before completing their work. It 

also shows that the standard category scheduling scheme 

(employed in group one), employing a set of four 

transitions associated with each category, obtains a 

better fit between process requirements and the 

categories they use, than the modified scheme 

(group 2) employing only three transitions. 

The consistency of behaviour in the 

categories between runs is further demonstrated in 

Tables 4.8 and 4.9 showing the mean number of pages 

brought into main memory and the mean CPU time obtained 

per residency respectively. Again these figures 

indicate that the classification mechanism into 

categories is functioning in as much as those 

categories with larger resource allowances do in 

fact use more of those resources than categories which 



EXPERIMENT RUN 

CATEGORY A C E G I K 
	

B D F H J L 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

49 .49 48 50 49 48 

18 19 19 19 19 19 

30 30 28 29 29 30 

35' 33 35 '37 34 35 

15 15 16 16 15 15 

NU NU 20 NU NU NU 

NU NJ 20 20 20 20 

26 27 26 26 27 27 

27 28 29 27 27 26 

31 31 34 32 35 31 

37 37 38 37 37 38 

37 39 42 32 35 39 

43 46. 38 43 44 44 

46 45 45 45 45 45 

54 54 53 .5554 52 

63 62 54 57 61 65 

60 59 59 60 61 61 

NJ NU 60 NU NU 64 

63 63 66 65 67 65 

39 41 39 42 38 44 

50 50 47 51 50 38 

17 18 17 17 18 17 

24 24 23 24 23 23 

26 26 27 25 29 27 

17 17 17 17 17 17 

NJ NU NJ NJ NU NU 

NJ NU NU NJ NU NU 

23 22 23 23 22 23 

27 27 27 NU 19 27 

NU NJ NO NU NU NU 

27 27 27 27 27 26 

32 40 28 NJ 36 NU 

NU NU NU NU 27 NU 

29 27 29 28 29 28 

29 36 40 36 31 35 

36 41 41 NJ 48 51 

41 38.40 35 37 37 

61 53 5255 57 61 

51 47 52 50 51 52 

41 40 38 41 38 38 

OVERALL 35 35 35 36 35 35 	26 25 25 25 25 25 



CPU TIME PER MAIN MEMORY RESIDENCY (all CPU times are uncorrected and quoted in milliseconds) 

CATEGORY A C E G I K B P F H J L 

1 158 145 147 152 144 142 146 146 136 146 150 111 

2 52 41 37 37 40 39 26 28 28 28 32 31 

3 41 39 42 42 39 39 45 42 44 49. 46 45 

4 77 57 72 88 68 73 76 66 74 66 92 73 

5 17 26 31 27 30 28 22 24 26 21 26 26 

6 N.U. N.U. 1432 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. 

7 N.U. N.U. 1933 1202 1267 1042 N.U. N.U.N.U. N.U. N.U. N.U. 

8 60 59 64 62 64 64 53 53 56 51 55 57 

9 	• 3617 555 1140 609 2087 2148 721 651 629 N.U. 624 429 

10 4328 3875 4315 3625 1541 4041 N.U. N.U. N.U. N.U. N.U. N.U. 

11 81 75 83 76 79 78 69 71 74 68 79 63 

12 6120 8821 7467 9055 9247 10663 1362 4439 1671 N.U. 6905 N.U.  

13 4061 2862 2959 1358 2480 2937 N.U. N.U. N.U. N.U. 234 U. 

14 104 102 103 109 106 99 80 74 97 77 81 99 

15 5241 5561 5607 5629 5309 4852 7783 4021 5010 6436 10499 7187 

16 	• 4429 4122 3264 4996 5112 4809 2188 6413 2593 N.U. 7141 7887 

17 691 700 756 666 728 777 653 584 833 773 729 697 

18 N.U. N.U. 5275 N.U. N.U. 580 5184 5018 4083 4589 4471 4937 

19 	• 1739 1594 1568 1878 1326 1522 5024 4218 4344 4114 4253 42.69 

20 	• 494 610 572 592 583 613 616 725 611 588 564 449 

OVERALL • 281 304 289 341 302 322 231 260 242 293 271 317 
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are allocated less. Further information on the activity 

of the processes is given in Tables 4.10 and 4.11 

showing the mean user CPU time between page faults, and 

the fraction of pages brought into main memory by the• 

working set replacement policy. This shows, as would 

be expected, that group one processes do much more 

computing between page faults than group two and, that 

in those runs using the working set replacement policy, 

those pages brought in by prepaging will outnumber 

pages which are page faulted in, by a ratio of more 

than two to one. 

Some other characteristics of the load 

placed on the system are summarised in Table 4.12. 

This clearly shows that the level of page-in requests 

involving transfers from tertiary memory is very low 

(approximately 2% - all preloading transfers come from 

the secondary memory). In fact of those transfers 

involved in the actual running of user processes 

(i.e. swapping in and out of main memory and page 

faulting) there is a ratio of 50:1 in favour of 

transfers involving secondary memory against those 

involving tertiary memory. The level of sharing in 

main memory is, as expected, seen to be dependent upon 

the amount of main memory available (and hence the level 

of multiprogramming). In the group one runs the requests 

for pages which are already in main memory (i.e. shared 



MEAN CPU TIME BETWEEN PAGE FAULTS (all CPU times are uncorrected and quoted in milliseconds) 

CATEGORY A. C E 	G I K B D F H J L 

1 3 2 3 3 3 2 2 2 ' 	2 2 3 2 

2 38 12 12 9 12 13  

'3 	. 5 4 5 5 4 4 1 1 1 2 2 2 

4 ,  8 6 6 8 7 7 2 2 2 2 3 2 

.5 4 6. 6 6 6 6 1 1 1 1 1 1 

,6 N.U. N.U. 477 N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. N.U. 

7 N.U. N.U. 644 400 422 347 N.U. N.U.' N.U. N.U. N.U. N.U. 

8 17 15 18 17 16 16 2 2 . 	2 2 2 2 

9 	' 657 92 157 91 347 370 27 24 24 N.U. 34 16 

10 , 504 376 299 362 102 343 N.U. N.U. N.U. N.U. N.U. N.U. 

.11 6 5 61 5 5 5 2 2 2 2 3 2 

12 	" 408 612 . 	640 960 660 947 43 113 61 N.U. 195 N.U. 

13 259 125 , 182 77 128 161 N.U. N.U. N.U. N.U. 9 N.U. 

14 7 7': 7 7 7 6 2 2 3 2 2 3 

15 	' 298 .323 344 352 337 347 ' 	270 .113 127 183 349 211 

16 229 199 247 287 256 218 61 159 64 N.U. 150 '157 

17 27 30 34 27 31 33 13 13 19 18 17 16 

'18 	. N.U. N.U. ' 351 N.U. N.U. 315 86 95 . 	76 84 79 82 

19 ' 67 63 60 73 49 58 92 90 81 83 83 83 

20 	' 15 17 17 18 19 16 14 17 15 14 14 10 

OVERALL 26 25 24 27 25 24 7 8 8 7 8 8 



L 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13. 

14 

15 

16 

17 

18 

19 

20 

2 2 2 2 2 2 

92 83 84 80 83 84 

73 72 72 7271 71 

74 72 70 71 73 72 

75 75 71 72 70 73 

NU NU 85 NO NU NO 

NU NU 85 85 85 85 

87 86 86 86 86 85 

79. 78 75 75 78 78 

72 67 63 68 57 63 

65 64 6363 64 63 

59 63 72 70 66 71 

63 51 5859 56 58 

69 68 68 67 68 68 

67 68 69 71 71 73 

69 66 75 69 67 66 

54 60 62 59 62 62 

NU NU 75 NU NU 72 

60 61 61 62 61 60 

17 17 18 24 22 19 

2 2 2 1 2 2 

5 5 5 5 5 5 

4 4 4 4 4 4 

3 3 3. .3 3 3 

5 5 5 5 5 5 

NJ NJ NJ NJ NJ NJ 

NJ NJ NJ NJ NJ NJ 

4 4 4 4 4 4 

3 3 3 NJ 5 3 

NJ NJ NJ NJ NJ NJ 

3 3 3 3 3 3 

3 2 3 NJ 2 NJ 

NJ NJ NO NJ 3 NJ 

3 3 3 3 3 3 

3 2 2 2 3 2 

2 2 2 NJ 2 1 

2 2 2 2 2 2 

1 1 11 1 1 

1 2 1 1 1 1 

2 2 2 2 2 2 

OVERALL 70 69 69 69 70 69 
	

3 3 3 3 3 4 



Table 4.12 

FURTHER PAGING CHARACTERISTICS 

(all figures are presented as percentages of all page-in requests) 

PAGE FAULTS 

EXP PRELOADING 1OVERALL PAGE FOUND PAGE FOUND PAGE FOUND WRITES TO SHARED 
RUN TRANSFERS IN MAIN IN IN TERTIARY SECONDARY (I.E. NO 

MEMORY SECONDARY MEMORY MEMORY TRANSFER) 
MEMORY 

A 48 30 10 18 2 33 33 

C 45 30 12 17 1 33 36 

E 49 30 10 19 2 33 30 

G 48 31 10 19 2 33 32 

I 53 30 8 20 1 33 26 

K 52 30 	- 9 20 1 33 27 

B 4 96 32 62 2 36 32 

D 4 96 34 - 61 2 37 34 

F 4 96 30 64 2 37 30 

H 4 96 30 64 2 37 30 

J 4 96 26 69 2 37 26 

L 4 96 26 69 2 37 26 



creations (two percent of all page-in requests) which 

appear as page, faults for a page which is already 

in main memory (i.e. a shared page). 	. . 

The level of loading on the secondary 

memory is shown in Table 4.13. These figures, 

obtained from the Q-sampling monitor, reveal that there 

was always, a substantial amount of secondary memory 

unallocated and available (one and a half M-bytes of. 

real drum space). Hence no use was made of the 

pseudo-drum space during these runs. 

The influence of 'working set 

recalculations within any residency is shown in 

Table 4.14. This shows that very few pages are 

actually removed by this mechanism and that a large 

number of working set recalculations in fact remove 

no pages at all i.e. have no influence on the working 

set size. The higher percentage of pages removed by 

this mechanism seen in group one is caused by unwanted 

pages being preloaded. This preloading wastage 

i.e. pages which are preloaded but subsequently 

never used, ran consistently at 25% of all pages 



Table 4.13 

UNALLOCATED SECONDARY MEMORY DURING EXPERIMENT RUNS 

EXP MEAN MINIMUM 
RUN 

A 980 835 

C 954 798 

E 966 817 

G 951 822 

I 937 813 

K 874 684 

B 946 822 

D 937 764 

F NOT AVAILABLE 

H 954 765 

J 930 790 

L 947 793 

All figures presented in terms of unallocated secondary 

memory pages. Any use made of the pseudo drum would be 

indicated by an item dropping below 500. 



Table 4.14 

STROBING AND PARTIAL PRELOAD BEHAVIOUR 

NORMAL STROBES EXTRA-STROBES PROCESS LOADING 

EXP ( %OF EXTRA -.'\ % OF (OFPAI~' 
RUN STROBES : STROBES NOT RESIDENCIES STROBES NOT PAGE-IN RESIDENCIES PRELOADS 

RESIDENCIES REMOVING CONTAINING REMOVING REQUESTS STARTING SUSPENDED 
* ANY PAGES AN EXTRA- ANY PAGES REMOVED BY 	WITH 

STROBE STROBING PARTIAL 
PRELOADS 

A 22 : 	100 40 25 5 9 29 20 

C 23 100 39 27 5 10 26 16 

E 23 100 39 25 5 9 26 26 

G 26 100 39 26 5 9 24 26 

I 23 100 40 26 4 9 22 45 

K 22 : 	100 39 26 4 10 22 42 

B 22 : 	100 49 4 100 1 71 27 

D 22 : 	100 50 5 100 1 71 22 

F 23 100 54 5 100 1 75 28 

H 26 100 51 5 100 1 73 25 

J 23 100 52 4 100 1 73 36 

L 21 : 	100 51 4 100 1 72 33 

* This is not necessarily the same as the percentage of residencies containing a normal. 

strobe as it is likely that certain residencies will contain several strobes 



112 

which are preloaded. The advantages of the 

EXTRA-STROBE mechanism are shown in the group one runs 

where 95% of all EXTRA-STROBES do remove pages 

(unwanted preload pages). As would be expected, none 

of the EXTRA-STROBES in the group two runs remove any 

pages. The percentage of residencies which started 

with a partial preload is also shown, as is the 

percentage of those partial preloads which are 

subsequently suspended because the process tried to 

use more than the partial main memory allowance. The 

percentage of suspensions shows a tendency to increase 

as the main memory available decreases. 

Conclusion 

It is hoped that the reproducibility 

of the standard workload at the level of the resident 

supervisor has been shown and that the workload 

existing during the. experiment adequately quantified. 

The processes involved may be noted to have quite large 

working sets (mean of 25 pages) and use little CPU 

time during any residency. Studies of the level of 

sharing on the main memory of EMAS have shown that 

virtually no sharing of user programmes or data takes 

place at this level, but that all sharing comes from 

DIRECTOR and subsystem code and common tables (file 

indices). Both DIRECTOR and subsystem will also 



require further space for private data and working 

variables. This indicates that a high proportion of 

the contents of the working sets is made up of pages 

which are essentially system components so this large 

working set size is to a certain extent a consequence 

of the system structure 

The difference in the category 

scheduling between the two different algorithms 

would also appear to have a distinct effect on the 

number of residencies required by a process in 

carrying out any piece of work. The algorithm, not 

employing working set replacement, requires a 

greater number of residencies per interaction, so 

the differences in performance observed between the 

two algorithms is not due solely to the paging-in 

mechanism. 



CPU Time Utilisation 

The CPU time spent in each of the major 

states during the experiment runs is presented in 

Table 5.1. Rather than attempt adjustment to the 

3 x 2 x c factorial analysis to compensate for the loss 

of data incurred by the system crash at the end of 

run 'F', this data is considered as though from a 

2 x 2 x 2 factorial experiment (ignoring runs E, F, G 

and H - i.e. those with main memory at a level of 

3/4 M-bytes). This data is analysed using the standard 

analysisof variance technique (Anova) for such experiments 

(cf. Appendix) [Cochran and Cox 1975, Johnstone and 

Leone 1964] calculated using Yates Algorithm 

[Yates 19371. This identifies the effect each of the 

main factors has upon the system performance and this 



Table 5.1 

PERCENTAGE CPU TIME SPENT IN EACH OF THE MAJOR STATES 

RUN USER SUPERVISOR IDLE 

A 543 427 30 

B 51 463 27 

C 529 383 88 

D 464 39.5 141 

-B 523 417 5.9 

F NOT AVAILABLE 

G 519 358 12-3 

H 417 37.7 206 

I 493 390 117 

J 418 405 176 

K 44'1 337 223 

L 375 34.3 283 	 • 
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effect is quantified for each in terms of the 

expected change in the performance caused when that 

factor is present at level two compared with the 

performance when the factor was at level one. As no 

replication of experiment' runs took place an estimate 

must be obtained of the experimental error present in 

the results. This estimate is based upon the effect 

attributed to the higher order factors [Mendenhall 1968, 

Johnstone and Leone 19641, these higher order effects 

represent the interactions between major factors. The 

ratio of the mean squares of each factor and the error 

estimate is used in a simple F-test {Johnstone and Leone 

19641 to test the significance of the average effect due 

to the major factors upon the overall system performance. 

The percentage of the CPU time obtained 

by user processes is considered in Table 5.2. This shows 

the greatest contributing factor to be the change in 

the level of main memory - a change of 1/4 M-byte of 

memory causing eight percent more time to be spent in 

user state - followed by the software algorithm - a 

change of six percent - and the least influence to have 

been caused by the number of drum channels - a difference 

of four percent. The size of main memory is also the 

major contributing factor in reducing the amount of 

time absorbed by the idle state (Table 5.3) - nearly 

1.376 of CPU time being added to the idle time by 



SOURCE AVERAGE SUM OF DEGREES MEAN MEAN SQUARE 
• EFFECT SQUARES OF SQUARE RATIO 

• FREEDOM 

MAIN -800. 12784 1 12784 7864 
MEMORY 

DRUM -389 3019 1 3019 1857 ** 
CHANNELS 

SOFTWARE -597 7116 1 7116 4378 
ALGORITHM 

2nd ORDER EFFECTS 

MEMORY X -091 164 1 	) 
CHANNEL ) 

MEMORY X -104 214 1 	) 
ALGORITHM 

CHANNEL  -058 066 1 
ALGORITHM ) 4 163 

3rd ORDER EFFECT 
) 
) 

MEMORY X 102 2-06 
) 

1 	) 
CHANNEL X ) 
ALGORITHM ) 

TOTAL 23568 7 

FACTOR 	 LEVEL 1 	LEVEL 2 

MAIN MEMORY 	 7/8 M 	518Th 
DRUM CHANNELS 	2 	 1 

SOFTWARE ALGORITHM 	WSR 	 PDP 

** 	SIGNIFICANT AT 975% level (by F - test) 

SIGNIFICANT AT 99 	% level (by F - test) 

SIGNIFICANT AT 99.9% level (by F - test) 



Table 5.3 

ANOVA Table for the Percentage of Time Spent in the Idle State 

(Mean 13.56) 

SOURCE 	AVERAGE SUM OF DEGREES MEAN MEAN SQUARE 
EFFECT SQUARES OF SQUARE RATIO 

FREEDOM 

MAIN 	-1283 32896 1 32896 8453 
MEMORY 

DRUM 	- 961 184-70 1 18470 4746 *** 
CHANNELS 

SOFTWARE 	4'23 3579 1 3579 920 * 
ALGORITHM 

2nd ORDER EFFECTS 

MEMORY X 	099 194 1 	) 
CHANNELS ) 

MEMORY X 	1q71 581 1 
ALGORITHM 

CHANNELS X 	1,141 398 1 	) 
ALGORITHM ) 4 

) 

1557 

3rd ORDER EFFECT ) 

MEMORY X 	- 139 384 1 	) 
CHANNEL X ) 
ALGORITHM ) 

TOTAL 56502 7 

FACTOR 	 LEVEL 1 	LEVEL 2 

MAIN MEMORY 	 7/8 M 	5/3 M 

DRUM CHANNELS 	 2 	 1 

SOFTWARE ALGORITHM 	WSR 	 PDP 

SIGNIFICANT AT 99.9576 level (by F - test) 

SIGNIFICANT AT 99 	% level (by F - test) 

* 	SIGNIFICANT AT 95 	% level (by F 	-. test) 



would result in just over four percent of the total 

CPU time being wasted in idle time. 

One of the very striking features of 

the CPU utilisation data is the very large amount of 

CPU time being taken up by the system itself. EMAS 

would not appear to be unique in this respect 

[Sekino 1972, Bard 1971], in fact its supervisor 

overhead, would appear to be lower than most systems 

of this class [Lynch 19751, though results on 

overhead of this nature are, perhaps understandably, 

not given great publicity. Of the factors covered by 

the experiment the removal of one of the two drum 

channels caused a drop in overhead of 577o (Table 5.4) - 

slightly more than the drop in user state CPU of just 

under four percent. Moving down a level in main 

memory causes a drop of just under five percent of the 

total time being spent in supervisor time, with a change 

in user state .of eight percent. Meanwhile, using 

software algorithm at level two (PDP) causes 17% 

more of the time to go into the supervisor with a loss 

of user state of just under six percent, so the 

algorithm with WSR gives less time in supervisor and 



Table 5.4 .• . 

ANOVA Table for the Percentage of Time Spent in the 

Supervisor State 

(Mean 39-27) 	. 

SOURCE. 	AVERAGE SUM OF DEGREES 	MEAN MEAN SQUARE 
EFFECT SQUARES OF SQUARE RATIO 

FREEDOM 

MAIN 	. -485 4700 1 4700 7131 
MEMORY 	.. 

DRUM 	-57O 6492 1 6492 9851 	** 
CHANNELS 

SOFTWARE 	171 587 1 587 8•90 * 
ALGORITHM 

2nd ORDER EFFECTS . 

MEMORY X 	010 002 1 ) 
CHANNELS . ) 

MEMORY X 	-065 084 1 ) 

ALGORITHM 4 

CHANNEL X -0'86 1-47 ) 
ALGORITHM ) 

3rd ORDER EFFECT . 
) 
) 

MEMORY X 	039 031 1 
) 
) 

CHANNEL X ) 
ALGORITHM 

TOTAL 12041 7 

FACTOR . LEVEL 1 LEVEL 2 

MAIN MEMORY 7/8 M 5/. 	M 

DRUM CHANNELS 2 1 

SOFTWARE ALGORITHM 

SIGNIFICANT AT 99.9% level (by F - test) 

SIGNIFICANT AT 99 	% level (by F - test) 

* 	SIGNIFICANT AT 95 	% level (by F - test) 



absorb this large amount of CPU time are shown in 

Table 5.5. It can easily be seen that the major 

contributor to the supervisor time is the organising 

of drum transfers i.e. the queueing of requests in the 

sector queues; removing requests from these queues and 

constructing channel command chains; fielding interl'upts 

at the completion of chains or after the completion 

of a demand page read (a programme controlled 

inte1upt - PCI) and the sending of replies to the 

appropriate supervisor processes. Splitting this time 

into two major components - fielding requests and 

fielding interupts (Table 5.6) it may be seen that the 

size of memory has very little effect, and that the 

effect of going from two drum channels to one is to 

lower the amount of time spent in fielding requests by 

about 35%, but to increase the time spent fielding 

interupts by about two percent. This is probably due 

to the fact that in the two channel version channel - 

chains are started more often on the arrival of 

requests (i.e. the requests find a channel free), whilst 

in the one channel case the lengths of channel chains 

are longer (Table 5.7) and channel chains are more 

likely to be started at the end of a previous channel 

chain i.e. when a channel chain completes it is more 



Table 5.5 

Percentage of Supervisor CPU Time Taken up by Major Functions 

EXP DRUM DISC CORE DRUM CONTEXT PROCESS SVC COMMUNI- DEVICE MAG 
RUN TRANSFERS TRANSFERS LOADING LOADING SWITCHING CONTROL PARAMETER CATIONS POLLING TAPES 

PASSING 

A 39-1 68 330 31 67 16 3.7 .4.4 01 27 

C 376 69 331 3.3 66 17 3.9 48 01 28 

E 394 64 324 31 6-7 17 38 4.5 0-1 2-5 

G 378 71. 326 3.3 6.8 •  16 3.7 4-6 01 2-8 

I 	• 39-5 61 	• 324 30 67 15 3.7 4-6 0-3 25 

K 39-0 6-2 322 30 6-8 1-6 36 4.9 03 25 

B 421 54 336 24 72 13 29 36 01 22 

D 400 55 349 26 71 14 30 38 01 22 

.F NO 	T ••• 	AV.A 1 	L A 	BL E . . .. 

• 	

. 	 H. : 404 	• 	• 52 34.5 24 7.3 1-3 3-0 37 0-3 2-0 

J 429 50 336 2-4 6-8 12 • 28 3.4 0-3 20 

L. 412 47 344 2-2 7.3 1-2 28 3.7 03 17 



Table 5.6 

Percentage of Supervisor Time Absorbed by Drum Transfers 

ANOVA Table Fielding Transfer Requests Mean 21-94 

SOURCE 	AVERAGE SUM OF 	DEGREES MEAN MEAN SQUARE 
EFFECT SQUARES 	OF SQUARE 	RATIO 

FREEDOM 

MAIN 073 105 1 105 2-67 
MEMORY 

DRUM 348 2415 1 2415 6134 
CHANNELS 

SOFTWARE 158 4-96 1 496 1260 ** 
ALGORITHM 

MEMORY X 008 001 1 	) 
CHANNELS ) 
MEMORY X 003 0.001 1 
ALGORITHM 

CHANNELS X-088 153 1 	) 4 046 
ALGORITHM ) 
MEMORY X -013 003 . 	) 
cI.s x 
ALGORITHM 

TOTAL 3174 7 

 Fielding Channel Interupts Mean 1816 

MAIN 028 015 1 015 2-37 
MEMORY 

DRUM 2-18 946 1 946 14841 **** 
CHANNELS 

SOFTWARE 1-28 325 1 325 5100 
ALGOR I THM 

MEMORY X 0-13 013 1 	) 
CHANNELS ) 
MEMORY X 003 0.001 1 	) 
ALGORITHM 

CHANNELS X 033 021 1 	) 4 014 
ALGORITHM ) 
MEMORY X 008 0.01 1 	) 
CHANNEL X ) 
ALGORITHM 

TOTAL 1312 7 

SIGNIFICANT AT 999575 level 
SIGNIFICANT AT 99 	% level 

** 	SIGNIFICANT AT 975% level 



C 	35 	 390 ) 
) 

G 	32 	 376 ) 	1 CHANNEL + WSR 

) 
K 	31 	 364 ) 

B 	16 	 627 	) 
) 

F 	NOT AVAILABLE) 2 CHANNELS + PDP 
) 

J 	15 	 55.7 	) 

D 	20 	 466 )' 
) 

H 	19 	 456 ) 	1 CHANNEL + PDP 

) 
L 	1•7 	 436 ) 



shorter channel claims and more interupts (as there is 

an interupt at the end of each demand page read). 

Indeed, if the throughput achieved on the drum is 

considered (Table 5.8), it can be seen that the WSR 

software algorithm has an average transfer rate of 

some ten pages per second more than the PDP algorithm 

for a lower overhead. Having more drum channels or 

main memory also show increases in throughput of 

around 9 and 8 pages per second respectively. 

The other supervisor function which 

absorbs a considerable amount of CPU time is that of 

main memory loading. The subfunctions involved in 

this are:- 

Electing processes to the multiprogramming set 

and organising preloading transfers. 

Handling page faults. 

Recalculating working sets, removing processes 

from memory and organising transfers out. 



SOFTWARE -995 	19800 
ALGORITHM 

2-FACTOR INTERACTIONS 

MEMORY X -0-55 	061 
CHANNELS 

MEMORY X -115 	2-65 
ALGORITHM 

CHANNELS X-03 	018 
ALGORITHM 

3-FACTOR INTERACTION 

MEMORY X +05 	05 
CHANNEL X 
ALGORITHM 

1 	19800 201-52 **** 

ANOVA Table 

Mean Drum Transfer Rate per Second 

Mean = 689 transfers/second 

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MAIN -820 134a48 1 13448 13687 
MEMORY 

DRUM 	-915 	16744 	1 	16744 170-42 **** 
CHANNELS 

TOTAL 	 50386 

FACTOR 	 LEVEL 1 	LEVEL 2 

MAIN MEMORY 	 7/8 M-bytes 510 M-bytes 
DRUM CHANNELS 	 2 	 1 

SOFTWARE ALGORITHM 	WSR 	 PDP 

SIGNIFICANT AT 999% level (F - test) 



shows that the WSR algorithm spends much less time in 

handling page faults (Table 5.9) but more time in 

subfunction (a) - caused by organising preloading 

transfers - and more time.in  subfunction (b) organising 

page removals from core (a consequence of loading more 

pages). The average effect due to the software 

algorithm is an order of magnitude greater than that 

due to the two other factors. The effect of main 

memory size is the next significant factor in the 

first three subfunctions, with subfunction (c) 

appearing to be the most sensitive to this factor. 

Indeed, subfunction (c) is the only one in which the 

effect of the number of channels has any significant 

effect. The percentage of supervisor time in handling 

replies to transfer requests does not show any 

significant variation (above 90%) with any of the 

major factors - it will, however, vary in terms of the 

percentage of total CPU time in just the same way as 

the mean transfer rate through the drum. 

The other two functions absorbing a 

reasonable amount of the time (Table 5.10) are context 

switching and disc transfer organisation. Context 



Table 5.9 

Subfunctions of Main Memory Loading as a Percentage of 
Total Supervisor Time 

MAJOR FACTORS - AVERAGE EFFECTS 

SUB FUNCTION' MEAN 	MEMORY 	CHANNELS ALGORITHM 

MPS 	241% 	-018 + 	-013 	-348 ** 
ELECTION 

PAGE 	11-65% 	-041 * 	025 	7-85 **** 
FAULTS 

PAGE 	7'34% 	-038 	0-18 ** 	-2-63 **** 
REMOVAL 

TRANSFER 12•00% 	0.3 	-015 	-03 
REPLIES 

**** 	SIGNIFICANT AT 999% level 
** 	SIGNIFICANT AT 975% level 
* 	SIGNIFICANT AT 95 % level 

+ 	SIGNIFICANT AT 90 % level 

Table 5.10 

Significant Factors in Other Supervisor Functions 

(Judged as Percentage of Total Supervisor Time) 

MAJOR FACTORS - AVERAGE EFFECTS 

FUNCTION 	MEAN 	MEMORY • CHANNELS ALGORITHM 

Context 	69% 	-01 	-01 	-0-4 * 
Switching 

Disc 	583 	-065 	-0.1 	365 
Transfers 



not found in main memory, and there are 	fewer 

page faults under the WSR scheme. The percentage of 

supervisor time involved in organising disc transfers 

under the WSR scheme is larger than under the PDP 

algorithm. This is probably due to the fact that 

processes are getting through more work under the 

WSR scheme and hence require more disc transfers, 

caused by accessing more files (which will be page 

faulted-in from disc) and pages which lie unused on 

drum being moved back to disc by the drum working set 

algorithms. 

If one was to try to identify why 

time-shared, virtual memory systems did not live up to 

the original hopes of their constructors, that is, hopes 

of several hundred terminals simultaneously active, it 

was probably caused by the size of the working sets being 

much larger than anticipated - it had been originally 

conjectured that EMAS processes would have working 

sets of around eight pages [Whitfield 19721, whereas 

thirty two pages has become the norm. This results 

in lower multiprogramming levels and many more transfers 

per process residency than intended. Combined with 

the unsuitability of the IBM-360 type of channel 



this resulted in the very high percentage of time the 

expensive CPU is required to spend in supervisor 

state, thus lowering its availability to user 

processes. Any designer producing a powerful central 

processor intended to be used in a t'ime shared, virtual 

memory environment would be well advised to consider 

ways of distributing the supervisor functions to less 

powerful special purpose processors (perhaps with 

order •codes enabling fast table searching, which 

constitutes so much of supervisor work),, and leave the 

main processor free only to do context switches and 

execute user programmes. 

The mean levels of multiprogramming 

observed on the various experiment runs are shown in 

Table 5.11A. Processes are considered to be in the 

multiprogramming set from when they are first given 

a main memory allocation (and begin to preload at 

least their master page) until all pages belonging to 

that process have been removed from main memory. As 

these results (and most of the subsequent results in 

this chapter) are derived from the event trace data, 

the data is analysed as though for a 3 x 2 x 2 

factorial experiment, again using a standard ANOVA 

technique and an algorithm suggested by Yates 

[Yates 19371. As would be expected, the greatest effect 



(B).ANOVA Table for Mean Multiprogramming Level (Mean = 43) 

SOURCE 	AVERAGE SUM OF DEGREES. MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 	3/4 	-085 ) 
3/4 	5/8 	-077 ) 1•75 2 087 	50405 
7/8 	5/8 	-162 ) 

CHANNELS 	054 030 1 030 

ALGORITHM 	012 001 1 0.01 	809 ** 

HIGH ORDER 001 7 0002 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 2•06 11 

SIGNIFICANT AT 999% level (F - test) 

** 	SIGNIFICANT AT 975% level (F - test) 



the definition of when a process is in the 

multiprogramming set. The time it takes to remove a 

process will be longer in the one channel case (results 

given later). Whilst this removal is taking place, a 

further process may be added to the MPS using pages 

freed by the process being removed but not requiring 

transfer out (about 2/3 of the removed process' 

working set). The overlap of these two processes will 

be longer in the single channel case due to longer 

transfer times, and the mean multiprogramming level 

will show this increase. The PDP algorithm also shows 

a higher multiprogramming level than the WSR algorithm 

due to the higher proportion of smaller memory 

categories observed in that algorithm's workload. 

Response Times 

The performance of the system as observed 

by the user i.e. the response time, is now considered 

(Table 5.12A). The response time is defined as the 

time the process spends in the awake state and this 

is derived from the event trace data. The factor 

having the greatest influence upon the mean response 



EXPERIMENT RUN B D F H J L 

RESPONSE TINE 1174 175 1863 1865 2201 2416 

(B) ANOVA Table for Response Times (Mean = 14.29) 

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 3/4 305 
3/4 	5/8 	357 ) 29•34 2 1467 	1864 
7/8 	5/8 	663 ) 

CHANNELS 	236 5•56 1 5•56 	7•07 * 

ALGORITHM 899 8087 1 8087 	10273 

HIGH ORDER 551 7 079 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 12128 11 

SIGNIFICANT AT 999% level (F - test) 

SIGNIFICANT AT 99 	% level (F - test) 

* 	SIGNIFICANT AT 95 	% level (F - test) 



size, with some three seconds being added to the 

response time when moving from 7/8 M-bytes to 

3/4 M-bytes, and some 35 seconds when moving from 

3/4 to 5/8 M-bytes. The lowest contribution to the 

response time seems to come from the number of drum 

channels, the removal of one of the two channels causing 

an increase in response time of just under 25 seconds. 

The contributing factors to these 

response times are shown in Table 5.13 and 5.14 in 

terms of the expected wait time per entry to each 

significant station in the Process Management Model, 

and the expected number of times per interaction that 

a process would enter any of these stations. These 

figures are shown again in Table 5.15 normalised with 

respect to the CPU times. These stretch factors show 

the expected wait times encountered in obtaining a 

unit quantity of CPU time, and the major areas from 

which this wait time arises: the RUN queues 

(awaiting allocation of CPU), the CORE queues 

(awaiting allocation of main memory), paging into main 

memory (preloading and page faulting) and paging out 

of memory (writing back to the drum). As with the 



Table 5.13 

Expected Wait Time per Entry in Each Major Station (in milliseconds) 

EXP ASQ CQ1 CQ2 CQ3 CQ4 CQ5 PREL SUSP RQ1 RQ2 CPU PFLT PTAKE ATQ 
RUN 

192 3058 

437 3715 

199 3041 

399 3643 

198 2900 

388 2765 

A 2 1405 3013 4326 6310 42788 202 018 21 105 160 38 

C 2 1238 3431 4619 5194 51745 381 013 20 82 17•3 5 

E 2 2156 4517 6621 9166 49625 212 0-16 18 63 15-6 36 

G 3 1704 3907 5495 7726 64665 364 016 15 56 15-9 49 

I 2 2578 6611 8101 9273 81625 218 016 12 29 156 35 

K 2 .2960 8607 10934 13233 129409 366 000 11 24 16-1 47 

B .2 2355 3662 15060 6888 69848 65 000 13 42 

2 3687 5882 18031 9135 30608 122 0-15 13 32 

F 2 4481 6877 24840 6703 33855 66 o-18 11 26 

H 2 3566 5614 39119 11218 32187 113 0-18 10 21 

j 1 6057 8628 26136 7022 28442 67 0-16 9 13 

L. 2 5851 9385 41715 9835 38197 114 0-18 6 11 

57 27 118 2598 

65 44 214 2522 

61 30 115 2801 

6-1 42 200 2992 

64 27 112 2372 

62 39 184 2242 



Table 5.14 

Mean Number of Entries to Each Station per Interaction 

EX 	ASO Col CO2 CO3 C04 CQ5 PREL SUSP RQ1 RQ2 CPU PFLT PTAKE ATQ 
RUN 

A 009 080 051 011 003 004 15 009 123 84 207 151 15 

C 0'09 078, 054 011 003 004 15 007 125 70 19•5 161 1•5 

B 009 082 049 011 003 004 15 011 132 78 210 158 15 

G 010 082 051 013 003 005 15 010 136 81 217 167 15 

I 009 081 051 011 003 004 15 015 137 71 208 156 15 

K 009 082 051 011 003 004 15 014 137 63 200 157 15 

B 011 132 061 016 003 002 2.1 0•4 37•3 171 544 524 21 

D 011 132 062 019 003 003 21 04 368 139. 507 522 21 

F 010 137 059 017 003 003 21 05 385 147 532 526 21 

H 010 136 063 019 003 003 21 04 397 126 523 539 21 

J 010134057018003003 21  06 39912552451521 

L 009 137 054 018 003 002 21 05 393 105 498 506 21 

009 

009 

009 

0•11 

0•10 

009 

0•11 

0•11 

0•11 

011 

0•10 

0•10 



Table 5.15 

Stretch Factors 

EXP OVERALL DUE TO DUE TO DUE TO DUE TO 
RUN STRETCH RUN CORE PAGING PAGING 

FACTOR QUEUES QUEUES IN OUT 

A 16•99 3•46 1004 264 086 

C 25-89 2-47 17-01 4-47 194 

E 2763 2-27 2173 272 091 

G 29-57 193 2174 411 1-79 

I 3548 1-19 30-68 2-70 091 

K 48-96 097 42•18 402 179 

B 4081 387 3113 500 081 

D 51-64 283 3952 789 140 

F 56-19 260 4754 528 077 

H 6397 212 5270 7.79 136 

J 62-34 1-57 5538 458 071 

L 7949 126 6983 7-15 125 



the size of main memory, and least influence caused by 

the number of drum channels. 

The time spent in the Run Queues 

(Table 5.17) is influenced most by the size of main 

memory, as would be expected, the larger main memory 

sizes (with larger multiprogramming levels) cause a 

large proportion of wait time to be spent in the 

Run Queues. Next in order of influence is the 

number of channels available, with more time being spent 

in the Run Queues in the two channel case (despite the 

fact that the one channel case gives a higher level 

of multiprogramming) - due to the fact that those 

processes in the multiprogramming set are spending 

less of their time in the page wait state. The least 

influence is exerted by the algorithm, with the PDP 

algorithm delayed more in the Run Queues - probably 

caused by the higher level of multiprogramming seen 

in that case. 

The component with the greatest 

influence, by almost an order of magnitude, upon the 

Stretch Factor is the time spent in the Core Queues 

(Table 5.18). This is most heavily influenced by the 

algorithm used, with the FDP algorithm spending much 



Table 5.16 

ANOVA Table - Stretch Factors 	(Mean .= 44.91) 

SOURCE 	AVERAGE SUM OF DEGREES MEAN MEAN SQUARE 
EFFECT SQUARES OF SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 	3/4 	+10-51 ) 
3/4 	5/8 	+1223 ) 34525 2 17263 4022 
7/8 	5/8 	+22•73 ) 
CHANNELS 	1001 10027 1 10027 2336 

ALGORITHM 28•32 802•02 1 80202 18686 

HIGH ORDER 30-05 7 429 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 1277-57. 11 

Table 5.17 

ANOVA Table - Run Queue Component of Stretch Factor (Mean = 221) 

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 3/4 -093 ) 
3/4 5/8 -098 ) 243 	2 	122 	.75-67 
7/8 5/8 -191 ) 

CHANNELS -0-56 032 	1 	032 	1965 

ALGORITHM 033 0•11 	1 	011 	672 

HIGH ORDER 	011 	7 	0016 
FACTORS 	 . 
(ERROR ESTIMATE) 

TOTAL 	 297 	11 

SIGNIFICANT AT 999% level (F - test) 

SIGNIFICANT AT 99 % level (F - test) 

* 	SIGNIFICANT AT 95 % level (F - test) 



Table 5.18 

ANOVA Table - Core Queue Component Of Stretch Factor 

(Mean = 3662) 

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 3/4 1150 
3/4 	5/8 	1359 ) 42060 2 21030 	5149 
7/8 	5/8 	2509 ) 

CHANNELS 	775 59.99 1 599-85 	1469 

ALGORITHM 2545 64780 1 64780 	15861 

HIGH ORDER 2859 7 408 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 115697 11 

Table 519 

ANOVA Table - To Main  Memory Paging Component of Stretch Factor 

(Mean = 486.) 

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 3/4 -002 ) 
3/4 5/8 -036 ) 
7/8 5/8 -038 ) 

CHANNELS 208 

ALGORITHM 284 

HIGH ORDER 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 

012 2 06 

434 1 4•34 

8O7 1 284 

043 7 -06 

1297 	11 

1•00 

7023 **** 

13041 **** 

SIGNIFICANT AT 999% level (F - test) 
*** 	SIGNIFICANT AT 99 	% level (F - test) 



that required by the WSR algorithm. Next most 

influential is the size of main memory, with small 

memory sizes spending more time in the Core Queues. 

Least influence is again exerted by the number of 

drum channels, with the single channel case spending 

more time in the Core Queues than the two channel one. 

After the time spent in the Core Queues 

the next most influential component is the time spent 

in paging-in to core (Table 5.19). Again, the greatest 

influence on this component is the algorithm used, with 

the PD? algorithm (caused by its different paging-in 

discipline and the extra 05 residencies per 
\ 

interaction) spending much more time paging-in than 

the WSR algorithm. The number of channels available 

is next most influential, with less time being spent in 

paging-in when two channels are available. The size 

of main memory does not, however, appear to have any 

significant effect on the time spent on paging-in to 

main memory. 

The least influential component of 

the Stretch Factor is the time spent paging out of 
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main memory (Table 5.20). Again, the size of main 

memory is found to have no significant effect, whilst 

the most influence seems to be exerted by the number 

of channels with greater delay times being incurred 

by single channel configurations. The effect of 

algorithm shows that less time is spent in paging out 

by the PDP algorithms than the WSR, despite the fact 

that more pages are written back per interaction. 

Paging Behaviour 

The mean effective page wait times in 

each type of paging is shown in Table 5.21. This 

shows the expected delay time incurred by a process 

from the time a request is issued on its behalf to 

have a page transferred, to when that page arrives in 

main memory, and the process is notified that the page 

is ready for it to use. 

In the case of group one experiment runs 

(WSR algorithm) it can be observed that the mean 

delay time for the two classes of paging which involve 

bulk transfers (i.e. several -transfer requests for a 

process being fired off at the same time) - preloading 

and write back - are both much shorter than page faults 

coming from the drum, the delay time for a preloading 

page transfer being about 1/3 of the demand page fault 



SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 3/4 -005 
3/4 	5/8 	-004 ) 0005 2 0003 	043 
7/8 	5/8 	-009 ) 

CHANNELS 	076 0.10 1 O•lO 	10038 

ALGORITHM -032 0•58 1 058 	1759 

HIGH ORDER 004 7 0006 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 	 073 	11 

SIGNIFICANT AT THE 999% level (F - test) 

SIGNIFICANT AT THE 99 	% level (F - test) 



PAGE FAULT 
(ON DISC) 

263 

238 

216 

193 

19 

199 

PAGE FAULT 
(IN CORE) 

2 

5 

3 

5 

3 

5 

WRITE 
TRANSFERS 

18 

41 

19 

37 

18 

37 

ALL 
PAGE FAULTS 

38 

58 

36 

49 	- 

35 

47 

Table 5. 21 

Mean Delay Time per Page TransfeN'ed 	(in milliseconds) 

EXP PRELOADING PAGE FAULT 
RUN TRANSFERS (ON DRUM) 

A 12 37 

C 23 78 

E 12 37 

G. 21 62 

'I. 11 . 35 

20 54 

B 65 36 

D 	. 121 64 

F 65 36 

113 .58 

J 67 33 

L 113 . 	50 '  

194 1 12 27 

206 1 23 44 

302 1 12 30 

164 1 21 42 

172 . 	 1 12 27 

160 2 20 39 
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time, and write backs about 1/2 of the time for the 

demand page. This is despite the fact that drum 

transfer requests are ordered in the four sector 

queues in such a way that demand paging reads always 

have priority over prepaging reads, which in turn 

always have priority over writes (there is also a 

further priority ordering in terms of the physical 

drum which the request is destined for). Demand 

paging reads present in a channel chain containing 

other transfers after it will also cause a PCI to 

be generated when they complete, and thus the 

process will be notified of the page's arrival 

earlier than if it had to wait for the whole channel 

chain to complete (as is the case with prepaging and 

write back transfers). The effect of this priority 

scheme can be seen in the case of preloading 

transfers (for the master page) under the PD? 

algorithm. The delay time observed in the case of 

page faults for a page which is already in main memory 

is caused by pages which are owned by another process, 

and have a page frame allocated, but are still being 

transferred. Thus the page faulting process has to 

wait until this transfer completes. 

This advantage of 'bulk transfers' 

over single transfers in terms of delay time per page 

is caused by the characteristics of the secondary 



memory device -,the drum, through which the 

overwhelming majority of the paging traffic passes. 

There is no position sensing on the drums used on the 

configurations measured. There will always, then, be a 

latency delay at the start of any drum channel chain 

with a mean of half a drum revolution (10 milliseconds) 

confirmed by measurements taken on these devices 

[Adams, Gelenbe and Vicard 19771. After the latency 

the channel chain will be executed transferring a page 

each time there is a request in the chain corresponding 

to the drum sector under the read heads on the device - 

i.e. a request corresponding to the current sector 

window. There were up to eight sector windows covered 

by any drum channel chain during the experiment 

i.e. when a chain was being constructed the top request 

was removed from each sector queue in turn, twice 

(Figure 5.1). When a bulk transfer takes place the 

sector queues will be longer when the channel chain is 

constructed and there will be more transfers in each 

chain (Table 5.7) fewer sector windows will be 'lost' 

by having no transfer request corresponding to them 

and more transfers will take place for each latency 

delay. 



READ/WRITE 
HEADS 

A B C D 
SECTOR QUEUES 

X 	demand page reads 

+ 	prepage reads 

o 	write backs 

CHANNEL CHAIN EXECUTION 

LATENCY DELAY 	[ A I B I c 1 D I A I B I c I D I 

SECTOR WINDOWS 

PAGE TRANSFERRED ON THAT SECTOR 
IF REQUEST EXISTS IN CHAIN 

TIME 
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Bulk Transfer Times 

The ANOVA table for the mean effective 

page wait in transferring a preloaded page reveals that 

this delay time is not significantly influenced by the 

size of main memory (Table 5.22) but is very sensitive 

to the algorithm used - this is to be expected as 

preloading transfers do not, in fact, involve bulk 

transfers in the case of the PDP algorithms, where only 

a single page (the master page) is requested at a time. 

The number of channels also has an impact, the addition 

of a second channel causing a reduction of nearly 

30 milliseconds per page. The Other form of paging 

involving bulk transfers is that of page writes back to 

the drum when a process is being removed from main 

memory (an insignificant number of transfers are 

generated by strobing). Unlike preloading transfers 

writes back to drum take place as bulk transfers under 

both algorithms. The greatest impact upon this delay 

time is caused' by the number of channels available 

with the removal of a channel adding an average of 

14•5 milliseconds to the expected wait time per page 

(Table 5.23). The PDP algorithm is also found .to have 

an expected delay time some 115 seconds lower than 

the WSR algorithm. The main cause of this is probably 

not so much the fact that fewer pages per residency 

are written back by this algorithm, but the fact that 



MEMORY 
7/8 	3/4 	-25 ) 
3/4 	5/8 	0 	) 5 2 28 	005 
7/8 	3/4 	-25 ) 
CHANNELS 	298 8900 1 8900 	14-9 ** 

ALGORITHM 742 55007 1 55007 	921 **** 

HIGH ORDER 4183 7 598 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 6814-3 11 

Table 5.23 

ANOVA Table for Mean Effective Page Wait Time (in milliseconds) 

per Write Transfer (Mean = 22.5) 

SOURCE 	AVERAGE SUM OF DEGREES MEAN MEAN SQUARE 
EFFECT SQUARES OF SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 	3/4 	- 13 ) 
3/4 	5/8 	- 05 ) 22 2 11 0-2 
7/8 	3/4 	- 18 ) 

CHANNELS 	147 215-1 1 2151 476 

ALGORITHM -11•7 1361 1 1361 301 

HIGH ORDER 316 7 45 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 
	

3850 	11 

SIGNIFICANT AT THE 999% level (F - test) 

SIGNIFICANT AT THE 99 	% level (F - test) 
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there are not so many preloading transfers. When the 

system is working under the WSR algorithm and a process 

is removed from main memory, then the pages that this 

process owns, which do not require writing back, are 

released atonce (2/3 of the working set) and the 

write-back requests issued for those which do. It is.  

quite possible that the pages released immediately are 

adequate to allow another process to enter the MPS 

and a set of preload reads will be issued (within about 

10 milliseconds of the set of write requests). These 

preload requests will arrive whilst some, if not all, of 

the write requests are still in the sector queues, and 

will take precedence over them, thus increasing the 

average write-back time. Under the PDP algorithm 

when a process is removed from main memory a similar 

thing will happen, and some pages will be released 

whilst a set of write requests will be fired off. 

Any process entering.the MPS at that time will issue 

a single preloading request (for the master page) which 

will still take precedence over the writes.. The 

interference caused to the leaving process, to the 

loading process will thus be much less. It may also 

be noted from Table 5.21 that the mean delay time for. 

writes back under the PDP algorithm correspond very 

closely to the mean delay time for preloads under the 

WSR algorithm. 



The delay time incurred in page faulting 

a page in from the drum is found to be sensitive to the 

size of main memory (Table 5.24) which may be explained 

by the fact that the larger memory sizes (which have 

longer delay times) also have higher drum transfer 

rates and as is seen later the drum page fault time is 

very sensitive to the paging rate. This page faulting 

time is, however, not significantly influenced by the 

algorithm (perhaps proving the worth of the priority 

given . to demanded pages in the sector queues), but is 

greatly influenced by the number of channels available 

with a lengthening of the wait time of around 25 

inillisecondsbeing experienced when one of the two 

channels is removed. The time spent awaiting page 

faults which have to be transferred from the disc does 

not seem to be consistently influenced by any of the 

major factors included in the experiment in any 

significant way (Table 5.25). The small amount of time 

spent awaiting page faults to 'pages in main memory' 

is not significantly influenced by the size of main 

memory (Table 5.26) but is most sensitive to the 

algorithm used, with the PDP algorithm causing a delay 

of 2•8 milliseconds less than the WSR, due probably 

to the fact that under that algorithm the shared page 

which is being transferred-in is one of a set of 



MEMORY 
7/8 3/4 - 5.5 
3/4 	5/8 	- 53 ) 77-1 2 38-5 	40 + 
7/8 	5/8 	-108 ) 

CHANNELS 	253 6418 1 6418 	668 

ALGORITHM - 43 188 1 188 	20 

HIGH ORDER 67•3 7 96 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 804-9 11 

Table 5.25 

ANOVA Table for Mean Effective Page Wait Time (in milliseconds) 

per Page, Page Faulted from Disc 	(Mean = 210-5) 

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 3/4 - 65 
3/4 	5/8 	-31-3 ) 1086-2 2 543-1 1-1 
7/8 	5/8 	-37-8 ) 

CHANNELS 	-343 1178-8 1 11788 2-311 

ALGORITHM -217 4694 1 4694 09 

HIGH ORDER 3569-9 
0  

5100 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 6304-1 11 

SIGNIFICANT AT THE 99975 level (F - test) 

+ 	SIGNIFICANT AT THE 90 	% level (F - test) 



Table 5.26 

ANOVA Table for Mean Effective Page Wait Time (in milliseconds) 

per Page, Page Faulted in Core 	(Mean = 25) 

SOURCE 	AVERAGE SUM OF DEGREES MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 3/4 03 
3/4 	5/8 	03 ) 02 2 01 	05 
7/8 	5/8 	05 ) 

CHANNELS 	13 1-8 1 18 	97 ** 

ALGORITHM -27 71 1 71 	390 

HIGH ORDER 13 7 0-2 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 103 11 

Table 5.28 

ANOVA Table for the Average Throughput - Interactions 

Completing per Second 	(Mean = 1.23) 

SOURCE 	AVERAGE SUM OF. DEGREES MEAN 	MEAN SQUARE 
EFFECT SQUARES OF 	SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 3/4 -014 
3/4 	5/8 	-008 ) 0034 2 0017 495 **** 
7/8 	5/8 	-022 ) 

CHANNELS 	-0152 0023 1 0023 672 

ALGORITHM -0335 0-112 1 0112 327-7 **** 

HIGH ORDER 0-002 7 00003 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 017 11 

SIGNIFICANT AT THE 99976 level (F - test) 

** 	SIGNIFICANT AT THE 975975 level (F - test) 



immediately it arrives in main memory as is the case with 

demand page reads. The addition of a second channel 

also causes this delay time to be reduced by just over 

a millisecond as is to be expected as the two channel 

configurations consistently transfer pages quicker than 

the single channel case. 

Influence of Paging Rate Upon Paging Delays 

The major factor in the paging delays 

accrued by processes on EMAS is that of transfers 

involving the secondary memory - or drum. To observe 

how the drum paging characteristics vary with the 

drum paging rate, the event trace data in each of the 

experiment runs was partitioned  into intervals of two 

seconds (of real time) and the numbers of page transfers 

in each type of drum paging as well as the mean delay 

time for each was calculated. Two seconds was chosen 

as being large enough to eliminate most end-effects 

(being a factor of five larger than the largest mean 

delay time - total time in write-back) and yet small 

enough to still show differences between paging rates. 

This data is presented in terms of a set of graphs 
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The relationship between the average number of 

drum page faults and the drum paging rate. 

The relationship between the expected effective 

page wait.time per page for preload reads and 

the drum paging rates. 

The relationship between the number of preloading 

transfers and the drum paging rate. 

The relationship between the expected effective page 

wait time for drum writes and the drum paging rate. 

The relationship between the number of write 

transfers and the drum paging rate. 

The frequency distribution of the paging rates. 

It may be observed from these graphs 

that the effect of main memory is merely to increase 

the spread of paging rates with higher paging rates 



Table 3.1 

THE EXPERIMENTAL RUNS 

EXPERIMENT PRIMARY CHANNELS TO SCHEDULING 
NUMBER MEMORY SECONDARY ALGORITHM 

(M-BYTES). MEMORY 

7/8 2 WSR 

B 7/8 2 PDP 

C 7/8 1 WSR 

D 7/8 1. PDP 

B 3/4 2 WSR 

F 3/4 2 PDP 

G 3/4 1 WSR 

H 3/4 1 PDP 

I 5/8 2 WSR 

J 5/8 2 PDP 

K 5/8 1 WSR 

L 5/8 1- PDP 

WSR - Using Working Set Replacement Policy 
PDF - Using Pure Demand Paging scheme 

All experiments were carried with a fixed 

workload of 32 simulated users. Hardware consisted 

of the ERCC ICL 4-75 (machine tTBtt  complex) with 

3 drums + 1 pseudo drum. EMAS, 'version 814, was used 

throughout, as were the executive processes - 

Volumes version 834, Demons version 877. Runs A-D 

used DIRECTOR 871, E-L used DIRECTOR 872 ( a minor 

error corrected). 

August 1975 
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only one channel is in use the paging delay time is 

more sensitive to the paging rate existing at the time 

the request is issued. It also may be noted that the 

average delay for write transfers is very insensitive 

to the paging rate showing very little increase as 

the paging rate increases. Similarly, :in the WSR runs 

the average wait time per preloaded page lengthens very 

little with the increase in paging rate. However, in 

all the runs the mean wait time for a page fault on 

the drum shows a very steady and much steeper increase 

as the paging rate goes up. 

Considering the types of transfers which 

are making up the paging rate it may be seen that as 

the paging rate goes up, the number of page faults 

shows a distinct tendency to level off, however the 

number of write and preloading transfers continue to 

rise. This shows two things: 

(1) The success of the main memory control algorithm 

in lim'iting the rate of page faults and hence 

completely eliminating any form of thrashing 

phenomena. 



number of preloading transfers are considered. 

In the case of the PDP algorithms this is 

equivalent to the number of process swap-ins. 

Also as the effective delay times for preloading 

and write transfers. are not so very sensitive to 

the paging rate the times for process swapping 

under the WSR algorithm will not rise very much 

as the paging rate increases. This will be very 

critical when a substantial number of processes 

do very little work when they arrive in main 

memory (in terms of CPU use) but still have to 

pay the price of loading a large working set 

before any work may be performed. 

Throughput 

The throughput observed on EMAS during 

the experiment runs is shown in Table 5.27. The 

throughput is defined as the number of interactions 

completing in unit time. This is also proportional 

to the number of main memory residencies completing in 

unit time, the ratio being determined by the scheduling 

algorithm as seen earlier (Table 4.1). The factor most 

influencing the throughput is seen to be the algorithm 



A 	 160. 236 15 

C . 	144 217 1•5 

E 	 150 225 15 

G 	 125 1-94 16 

I 	 136 2-03 15 

K 	 121 1-80 1•5 

B 	 123 2-60 2-1 

D 	 112 242 2-2 

F 	 1.10.  233 2-1 

H 	 097 2-12 2•2 

J 	 1-02 2-15 2-1 

L 	 091 1-91 2-1 
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Both' of these major factors - algorithm and main memory 

size - also had very significant effects upon the 

response times, but the effect of the number of channels 

upon the response times was much less than these two. 

However, in the case of a throughput measure, the effect 

of having two channels rather than one is much more 

significant. 

Conclusion 

The effect upon system performance of 

the three factors chosen for the experiment has been 

quantified in terms of three common performance 

measures, and the system phenomena contributing to 

these performance levels investigated. The manner in 

which the system functions can be summed up in terms of 

the simple model shown in Figure 5.14. When processes 

wake up, they enter the core queues and are held there 

until allowed into main memory by the control valve (C). 

The main characteristic used to discriminate between 

processes is their estimated main memory requirement. 

The rate at which the control (C) allows processes to 

enter main memory is determined by the rate at which 
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therefore influenced by main memory size rather than 

the number of channels available, and least by the 

algorithm used (Table 5.29). The rate at which 

processes leave main memory will not be dependent upon 

the total number of processes in the core queues 

(though it will be affected by the ratio of the 

numbers in the different core queues and hence the 

balance of the workload between various classes of 

work). When the system reaches a state such that 

there is always at least one process on each core 

queue, then the throughput of the system may be 

considered to be totally independent of the number 

of processes active on it. The interference of 

processes with each other.in  such a state will be 

reflected in the core queue wait times which will 

dominate the response times. 

When processes leave main memory they 

either go back to sleep, or re-enter the core queues 

to await a further quantum of time in main memory. 

If the balance in the workload is assumed fixed, then 

the ratio number of processes following each path 

(d1  : d2) is determined by the category table 

scheduling. If the category limits are never reached 

and each member of the multiprogramming set is 



Table 5 29 

ANOVA Table for the Average Main Memory Throughput - 

Residency Terminations per Second (Mean = 2-17) 

SOURCE AVERAGE SUM OF DEGREES MEAN MEAN SQUARE 
EFFECT SQUARES OF SQUARE RATIO 

FREEDOM 

MEMORY 
7/8 	3/4 -023 ) 
3/4 	5/8 -019 ) 0115 2 058 776 
7/8 	5/8 -041 	) 

CHANNELS -0227 051 1 051 692 

ALGORITHM 0163 0027 1 0-027 360 **** 

HIGH ORDER 	 004 	7 	00003 
FACTORS 
(ERROR ESTIMATE) 

TOTAL 	 020 	11 

SIGNIFICANT AT THE 999% level (F - test) 



PDP - 248 milliseconds + page faulting time) so 

though time-sharing would be expected to lower 

response time, when it has passed a certain point 

it will have a detrimental effect on the response, 

as seen in the comparison between the WSR and PDP 

algorithms. Other ways of improving the response 

time are to reduce the time spent in page wait 

(either by adding channels or possibly by preloading) 

and increasing the level of overlap of processes by 

increasing the multiprogramming level by increasing 

main memory size. There are two main differences 

between the two algorithms employed in the experiment: 

The placement of processes in categories which 

will influence the ratio d1 	: d2  and also the 

mean time a process is allowed to spend in the 

MPS. 

The paging delay times and hence again the time 

any process spends in the MPS. 
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In this chapter some of the factors which 

influence the system's performance are investigated 

further by means of a simple simulation model. The 

results from the EMAS performance experiment are 

used to calibrate and validate this model, thus 

gaining some confidence in the predictions obtained 

from it. 

Structure of Model 

The model used is a simple discrete event 

simulation [Leroudier and Parent 19763 written in 

IMP [Stephens 19743. As is the case with all models 

it is an abstraction and a simplification of the real 

system. In this case only the main-secondary memory 

subsystemismodelled in any detail (Figure 6.1), 

this subsystem having been identified in the previous 

chapter as being crucial to the performance of the 

system as a whole. 

The choice of using simulation rather 

than a variation on the queuing network models often 

used in evaluations of this type of system was based 

on a desire to reflect accurately the working of the 

subsystem modelled. This implies that the model would 
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Variability in user process behaviour. 

The effects of bulk and single transfer requests 

to the secondary memory. 	• 

The existence of blocking phenomen?. 

Though some of these phenomena have been included in 

various mathematical queuing theory models EBaskett 

et al. 1975; Baudet et al. 1975, Potier 1977] no 

technique yet exists which allows for the inclusion 

of all of them in a single model. However, every 

attempt has been made to keep the simulation itself 

simple and hence tractable. It is also hoped that 

the model will be extendable and be of use in the 

evaluation of aspects of the system's behaviour not 

covered here. 

The model consists of three logical 

units: 

1) Simulation support. 
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This component takes care of all the 

facilities, associated with the simultaneity of 

process activity and timing of events, normally 

provided by special purpose simulation languages 

or packages [Dahl and Nygaard 1966, Dimsdale and 

Markowitz 164].  All the synchronisation and timing 

of events in the simulation is controlled by a central 

time queue which holds all events which are known to 

be due, ordered in ascending time of occurrence. 

Primitives are provided by this component to take care 

of the placing of events on the queue and removing 

events from the top of it when they are about to 

happen?. This component also manipulates the two 

simulation timers. One of these is the simulation 

clock holding the current value of simulated time, and 

the other is the simulation alarm clock holding the 

time at which the first event in the time queue is 

due to occur. The simulation clock used 

throughout had a precision of one millisecond, 

though no assumptions are made in any part of the 



module. 

Simulation of Resident Supervisor Algorithms 

This component mimics certain of the 

activities of the EMAS supervisor and consists of a 

kernel and a set of supervisor services. The services 

control the operation of simulated hardware devices 

and the allocation of a set of simulated resources. 

Supervisor Kernel 

As in the real system the kernel takes 

care of dispatching supervisor services and fielding 

'external' inteupts by translating these into 

requests on services. All communication between 

services takes place via a central parameter passing 

area and all supervisor services which have outstanding 

requests awaiting them also have an entry in the 

kernel's MAIN-Queue. 

The kernel itself consists of an endless 

loop (Figure 6.2) which continually checks whether an 

interupt is currently pending by comparing the values 
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services. This check for inte'r'rupts takes place after 

each service call, thus mimicking the behaviour of the 

real system in which supervisor services run 

unintei'uptably with inte)yupts only being taken between 

calls on services. When there are no outstanding 

external events the kernel main queue is inspected to 

see if there are any current requests for supervisor 

activity. If so, the first service in the queue is 

called, and a check for interupts again made. When 

all supervisor work is complete for the present, then 

a check is made to see if the current CPU process is 

the idle process. If it is, then the simulation 

clock is advanced to the time of the next event, and 

the next external inteupt is serviced. If a normal 

user process holds the CPU then a check is made to 

see it is not overrunning any of its category CPU 

limits. If so, a request is placed for an 

appropriate service. If not, then a check is made 

to find out if the CPU-process can advance the 

simulation clock as far as its next process defined 

event (pagefault,SVC, sleep or end of time slice - 

'internal interupts'), if this is possible then the 

clock is moved to this point and an appropriate 

supervisor request issued. If an external intetupt. 

is due before the next user process generated event 



Supervisor Services 

All process scheduling on the simulated 

system is based upon a category table similar in 

format to that used in the real system but making no 

reference to secondary memory allowances (Table 6.1) 

as secondary memory capacities are not included in 

this simulation. Each process has an associated entry 

in the process list. This entry holds such items as 

the process' current category, working set size, main 

memory allocation, CPU time obtained and process status. 

The processes are moved between scheduler queues by the 

supervisor services mimicking the algorithms used in 

the real system (Figure 6.3) and handling such 

functions as: 

a) Entry to the MPS - selection of processes 

from the core queues as memory becomes 

available and organising requests for 

process loading transfers. 



Table 6 1 

SIMULATION CATEGORY TABLE VALUES . . 	.. 

CAT PRIORITY 	MAIN MEMORY RESIDENCY STROBE 
ALLOWANCE CPU TIME INTERVAL 
(PAGES) (SECONDS) (SECONDS) 

1 1 50 	. 10 0125 

2 	. 1 . 	. 	 20 05 . 	05 

3 .  1 30 10 10 

4 . 	1 50 20 05 

5 1 20 05 05 

6 4 20 40 10 

4 20 100 10 

8 1 30 10 05 

9 4 30 100 10 

10 4. 30 	. 60 10 

11 2 40 10 10 

12 4 40 100 10 

13 5 . 	 40 120 10 

14 2 50 10 10 

15 4 50 	. 100 10 

16 5 50 100 10 

17 3. 60 20 05 

18 4 60 70 05 

19 5 60 50 10 

20 3 62 20 025 



Figure 6.3a CORE I  

Q's 

ORE Select process 
• GIVE from CORE-Q 

{a] load into main 
DRUM . memory when 
HANDLER . 	 . 	.. . . adequate space 

PAGE 	. Put process on 
RUN-Q when all 

HERE transfers-in 
V {bI complete 

PAGE 
ON ' RUN 
DRUM . I Q's . . 

PAGE 
• 1,' I  d] 

• DISC V 	

• 

CPU 
Choose process 

V  from RUN-Q 
• HANDL R 	 • 	- GIVE 	V 

• load to cpu 
PAGE TIME 

. ON PAGE • SLICING 
• V 

DISC PAGE 	FAULT 
FAULT CPU 

• 
IC  PU LIMIT 
' 	CORE OVERRUN 

LIMIT V 

OVERRUN PROCE S 

• [e] 
CONTR L 	OCESS 

O.K. 

Calculate page 
V 

. CORE requiring 
TAKE writing back 

f] 
DRUM 
HANDLER 

PAGE 	 transfers 

When all 

GONE  complete put 
back on Core- 

SIMULATION MODEL - SUPERVISOR SIMULATION 



Figure 6.3b,  
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• 	c) Handling page faults and organising any 

transfer requests which may arise. 

Allocation of the CPU, -  choosing a user 

process from the run queues or selecting 

the idle process if no such user process 

is available. 

Enforcing the category table resource limits 

and selecting a new category when a process 

is being removed from main memory. 

Removal of a process' pages from main memory 

during strobing or process removal from 

main memory. 

Fielding replies from page-out requests and 

placing the process back into the scheduler 

queues when all such requests have completed. 

The only hardware devices currently 

simulated are the drum (secondary memory) and disc 

(tertiary memory). The disc is not itself modelled in 



more critical, is modelled in greater detail with 

three separate services which take care of: 

The handling of drum transfer requests - 

putting them into sector queues according 

to an appropriate priority scheme. 

The starting of channel chains, composed of 

requests removed from the sector queues, when 

the channel is found to be free, and placing 

interupts in the time queue signifying the 

termination of demand page reads and 

channel chains. 

The fielding of interupts and firing off 

replies to the page here (b) and page 

gone (g) services as necessary. 

Each time a supervisor service is called 

it advances the simulation clock by an amount 

corresponding to the overhead imposed by that service. 

The overhead times consist of a constant, plus in some 



addition to this, at the end of each burst of 

supervisor activity (i.e. just before mounting a 

user process or idle process to the CPU), a further 

supervisor overhead proportional to the preceding 

supervisor burst is added to represent supervisor 

time spent servicing items such as communications, 

secondary memory capacity allocation, supervisor 

calls etc. which are not explicitly included in this 

simulation. Each of the services has embodied in it, 

calls on an event trace monitor mirroring the calls 

made in the real system. It would be possible to 

use such data to obtain performance measures on the 

simulation, however this has only been used to check 

the correct working of the supervisor algorithms 

implemented in the simulation. In that area this 

feature has proved invaluable. 

Process/Device Behaviour Definition 

The third logical unit in the 

simulation consists of a set of functions which are 

called from various points in the supervisor 

simulation and define the characteristics of hardware 

devices and user processes existing in the simulation. 



The behaviour of hardware devices 

consists of a set of functions which handle: 

The prediction of the completion time of a 

demand read from disc. The result is drawn 

from a random number function with an 

- appropriate distribution, the mean of which 

is currently taken as 210 milliseconds 

(the average of all disc page faults over all 

the experimental runs). 

The sector corresponding to any particular 

drum request. The result here is drawn 

from a random number function evenly 

distributed in the interval [1, maximum 

number of sectors] so there is an equal 

chance of each request going to any sector. 

The latency time before the first drum 

transfer in any drum channel chain. This 

is drawn from a random number function 

evenly distributed over the interval 

[0, maximum latency time]. 
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Process Characteristics 

The behaviour of a process is defined by 

a set of functions which predict the type and timing 

of internal events and the behaviour of process 

working sets. These functions take care of: 

Predicting the next significant internal 

event which will occur for this process. 

Currently, internal (process defined) 

interupts may be either pagefaults or sleeps. 

The event is chosen from a table containing 

the event types in the correct proportions 

with a separate table being held for each 

category. 

Whenever a pagefault occurs, the type of fault 

(disc, drum or in main memory) is determined 

from a table, holding the three fault types 

in appropriate proportions. 
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3) The user CPU time which will pass before 

the next internal event. This is determined 

from a lifetime function for each category. 

The lifetime function relates the expected 

CPU time until next event to the number of 

pages currently used by the process 

(i.e. any wasted preloaded pages are not 

taken into account). The functions used 

(Figure 6.4) are extracted from the event 

trace data and reflect the average effect of 

all the processes running in each category. 

This differs from the original lifetime 

function [Belady and Keuhner 1969] (used 

in many mathematical models of this class of 

system) which relates the mean time between 

pagefaults to the number of pages owned by 

a programme. A system observes and reacts to 

the behaviour of a process which is a collection 

of co-operating programmes. The approach 

taken here though necessarily crude is, 

however, more realistic than using a simple 

(monotonic) lifetime function. The 

variance within the lifetime functions is 

represented by means of random number 

function which defines the variance to be 

added to or subtracted from the lifetime 

function value as a fraction of the 
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current value i.e. 

CPU to event = f (CAT, PAGES) + x* I (CAT, PAGES) 

where x is the random number function (mean = 0) 

representing variance in the CPU times. 

The other functions in this component 

represent movements within a process working set. 

These define: 

4) The core set size when the process enters 

main memory. This is defined as the number 

of pages which will be prepaged and used. 

This will always be equal to one when WSR 

is not being used. The result is chosen 

from a random number function with an 

appropriate mean (different for each 

category). 

5) The number of pages which are preloaded and 

not subsequently used. This is calculated 

from a random number function which 

represents the number of wasted preloaded 

pages as a fraction of the number of 

usefully preloaded pages. 
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6) The number of pages discarded at each strobe 

carried out on a process. For the first 

strobe in amain memory residency this will 

always be the number of wasted preloaded 

pages (if WSR is being used) or zero 

(if PDP is being used). For subsequent 

strobings during the residency this number 

is a simple function of the number of pages 

held by the process i.e. 

Pages discarded during strobe i of residency = 

( 0 	 if i=1 and PDP employed 
( Wasted Preloads if 11 and WSR employed 

PAGES II 16 	if, i>l 

.7) The number of pages which are preloaded but 

require no transfers (i.e. shared pages). 

This is obtained from a random number function 

giving the fraction of pages about to be 

preloaded for this process which will be 

shared. 

8) The number of pages written to during any 

residency and now requiring writing back to 

the secondary memory. This is determined 

using a random number function 

representing the fraction of useful pages 

held by the process which will require 
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writing out. 

Pages requiring writing out = 

(x) * (number of useful pages held by process). 

Using the Model 

In this investigation the workloads used 

in the simulation runs consisted of a set of 50 

processes which were each permanently assigned to 

certain categories (Table 6.2). That each process 

remained in its chosen category throughout the 

simulation was achieved by making all the category 

transitions held in the category table point to the 

process current category. This maintains a fixed 

balance within the available workload, in an attempt 

to make the balance of categories passing through main 

memory reflect these proportions only one core queue was 

used. This avoids the priority scheme-which normally 

operates when choosing which process should be next to 

enter the multiprogramming set. During the simulation 

the system is studied in a saturated state i.e. each 

of the core queues which would have been used with the 

priority scheme to always have at least one process on 

them when inspected. This means the balance of category 

priorities passing through main memory would always be 

in the fixed ratio of the relative rates at which the 



Table 6.2 

PROCESS ASSIGNMENTS TO CATEGORIES IN SIMULATION 

PROCESSES IN THIS CATEGORY 

CATEGORY 	 WORKLOAD 1 	 WORKLOAD 2 

1 0 0 

2 1 0 

3 2 2 

4 	S  1 1 

5 2 8 

6 0 0 

7 0 0 

8 22 12 

9 0 0 

10 0 0 

11 .11 	• 10 

12 0 0 

13 0 a 

14 6 10 

15 1 0 

16 0 0 

17 3 4 

18 0 1 

19 0 0 

20 1 2 

TOTAL 	 50 	 1 50 
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priority queues were serviced. This does not reflect 

the real system in which the balance of the load will 

vary over time causing some queues to be empty when 

due to be serviced and thus disturbing the priority 

balance. The single core queue solution was 

considered to be the simplest and best way of 

attempting to keep the balance of categories fixed - 

a modified priority scheme was attempted but did not 

prove as successful asthe single queue version. 

The balance of categories used in the workloads was 

based on observations made in the experiment runs 

(Tables 4.3, 4.4, 4.5) slightly modified during the 

calibration process. Two workloads are used: 

Workload 1 uses the lifetime functions obtained 

from group 1 experiment runs. 

Workload 2 uses the lifetime functions obtained 

from group 2 experiment runs. 

As part of the policy of keeping the 

simulation simple, no attempt was made to mirror 

exactly the often complex distributions found on the 

system. All the distributions used in the random 

number functions (except where a uniform distribution 

was being used) were modified normal distributions. 

This modification consists of removing the tails of 
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the distribution beyond one standard deviation from 

the mean, and piling up this part of the distribution 

at the two cut-off points (Figure 6.5). 

In the area of secondary storage all 

requests to the drum were ordered in the sector queues 

according to a priority scheme which gave demand page 

reads priority over prepage reads, which in turn had 

priority over writes. However no attempt was made to 

model secondary storage capacity (i.e. contention for 

drum space) or the fact that the secondary memory 

consisted of several drums with a priority scheme 

between them. The secondary memory may be thought of 

as one large drum. This causes writes to take slightly 

longer and the other two forms of transfer to pass 

through slightly quicker. It would have been possible 

to have modelled the priority scheme differentiating 

between physical drums, using a probability function 

which would have associated a probability for each 

request with each of the separate devices. However, 

in an attempt to keep the model simple, and because of 

the lack of data in this area, this was not done. 

It would also have been possible to have modelled twin 

channel operation by defining a probability function 

which would have decided when overlapping double channel 

transfers were possible, but similarly this was not 

done. The only transfers involving the disc storage 



Figure 6.5 

H:,' 

MODIFIED NORMAL DISTRIBUTION ADOPTED 

IN THE SIMULATION 
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are for demand page reads, no disc writes are 

simulated. 

No virtual memory addresses are 

simulated in any way. A process working set is 

represented merely by the number of pages in it. 

The time until the next addition to working set being 

defined by the lifetime function. 

Performance Metrics 

The performance metrics chosen for this 

study are: 

Mean CPU utilisations. 

Mean Drum transfer rates. 

No response times were applicable as no user sleep 

state is modelled. The model was calibrated for the 

two workloads using the data from experiment runs 

K and L. The workload was adjusted to make the mean 

CPU time per residency, mean number of pages per 

residency and percentage of pages preloaded, as well 

as the main performance metrics, as near as possible 

to the observed values. The supervisor overheads 

used for the various services was taken from an 
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average over those two runs rather than taking 

different CPU overheads for each workload. So, 

the only differences between the two workloads were 

those factors which defined user process behaviour. 

In running the model a period 

equivalent to 100 residencies was allowed to remove 

start up effects. The model was then run for a 

period of 1000 process residencies and the 

performance metrics taken from an average over that 

period. This long period was necessary because of 

the highly non-homogeneous behaviour of user processes. 

Tests running the model over longer periods have shown 

that it has reached stability by this time i.e. no 

change in the observed metrics resulted from longer 

runs. 

The confidence intervals in the 

simulation were obtained by a method suggested by 

Conway [Leroudier and Parent 1976, Badel and 

Zonzon 1976] in which the simulation run is divided 

into equal size blocks and the mean of each metric 

calculated over these blocks. These means are then used 

to estimate the variance of each metric, measured 

over the whole simulation run. 



The model was used to investigate the 

effect of main memory available to user processes upon 

the chosen performance metrics. All other components 

which might affect the performance - workload, 

scheduling algorithms, secondary memory. -  remained 

fixed. The validity of the model may also be judged 

by comparing the observed values with those predicted 

by it. 

The predicted values of the CPU time 

obtained by user processes (Figure 6.6a) always lie 

within 65% of the values seen during the performance 

experiment, though the model does tend to underestimate 

this metric in the higher memory size. This 

underestimation may be due to the mix of categories in 

the workload and the fact that the model contains no 

representation of time spent in the kernel state 

(this time is accredited to user processes in the 

empirical measurements). Workload 1 (using Working 

Set Replacement) is found to reach saturation at around 

240 user pages with very little seeming to be gained 

(in terms of this metric) by increasing the memory size 

beyond this whilst keeping all other elements in the 

system constant. Workload 2 (using Pure Demand Paging) 

does not reach its saturation point so quickly and, 
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though the gap between the two workloads diminishes 

as the main memory size increases, workload 2 always 

seems to give less time in user state than workload 1. 

The values produced by the model for 

the time in supervisor state (Figure 6.6b) always 

lie within 10% of the observed values. The workload 1 

results being a constant underestimation and not as 

good a fit as those obtained for workload 2 (the same 

is true for the user CPU time). This may be partially 

due to the fact that the overhead times associated 

with each supervisor function were averaged across the 

two workloads and that this procedure has favoured 

workload 2. In both cases the supervisor CPU time 

shows a steady monotonic increase as the memory size 

goes up. 

The throughput on the secondary memory 

as predicted by the model always lies within 12% of the 

observed values for workload 1 (a consistent 

overestimation) but is within 4% for workload 2. As 

the main memory size goes up, the difference between 

the workloads i ricreases, with workload 1 (using WSR) 

constantly achi ving a higher throughput than workload 2. 

(Figure 6.6c). 
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The effect of the process loading 

algorithm upon the system under the two workloads was 

investigated next. For workload 1, this meant running 

the system under a pure demand paging scheme and using 

working set replacement with workload 2. Certain 

adjustments had to be made to accommodate this. Under 

both, the ratio of page faults to sleeps in the NEXT 

PROCESS EVENT function was modified to count all 

useful preloading transfers as pagefaults - involving 

increasing the relative number of pagefaults when 

adjusting from WSR to PD?. Similarly the ratios of 

different types of pagefaults had to be adjusted. 

In both cases the fraction of pagefaults involving 

pages which were already in main memory ('shared' 

pagefaults) was always kept the same, and the relative 

numbers of drum and disc faults modified to count all 

useful preloading transfers as drum pagefaults. 

Suitable functions were constructed for workload 2 to 

make the percentage of preloaded pages the same as that 

observed under WSR on workload 1 (69%, including a 

preloading wastage set at 25%). 

In terms of user CPU (Figure 6.7a) it 

is noticeable that WSR always gives significantly better 

performance in lower memory configurations, but that the 
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gap, between the two narrows as the memory size increases. 

In. the case of workload 2 WSR always gives a better 

performance, however, for workload 1 WSR gives better 

performance up to a memory size of 240 pages, then the 

PDP,algorithm appears to'do better. The reason for the 

relatively better performance of PDP in the higher 

memory sizes may be due to the fact that in these 

configurations there are larger numbers of processes in 

main memory, and the number of transfers available when 

a channel chain is started will also be larger (hence 

larger channel chains, making more efficient use of the 

secondary,  memory). However, for WSR runs on higher memory. 

configurations, with more process swapping being carried 

out, more and more transfers will be wasted through 

preloading wastage. The difference between the two 

workloads (workload 1 processes carry out more work - 

use more CPU - per residency) tend to indicate that WSR 

will be more of an advantage when processes use less 

CPU per entry to main memory and hence cause a higher 

swap rate. The throughput rate on the drum is always 

higher under WSR (Figure 6.7b). 

Preloading Wastage 

The effect of preloading wastage upon the 

overall system performance is demonstrated by varying 

this parameter on a model of a configuration providing 
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112 pages to the user processes and using workload 1. 

The lifetime functions, and all the other process 

behaviour definition routines, do not take wasted 

preloaded pages into account, and thus the process 

behaviour will remain fixed. However, the wasted 

transfers induced by these pages will interfere with 

all other processes on the system by soaking up 

secondary memory bandwidth which may have been put to 

better use. It may be seen (Figure 6.8a) that even 

when the wastage reaches 50% the user CPU time is still 

much greater than that seen with a FDP algorithm. The 

drum throughput shows a dramatic rise as the wastage 

falls below 1076 - fewer wasted transfers causing a 

higher swapping rate - and a slight rise when the 

wastage rises above 30976 - with the swapping rate 

remaining relatively stable but more wasted transfers 

causing the throughput to rise. (Figure 6.8b). 

Secondary Memory Characteristics 

The effects of changing certain of the 

major secondary memory characteristics are next studied 

using a simulated system of 112 user pages and both 

workloads - workload 1 using WSR, workload 2 using PDP. 

The effect of changing the drum latency time - whilst 

holding the transfer time per page, and all other 

factors concerning the drum, constant (i.e. 4 sectors) - 
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is shown first. It may be seen that the user CPU time 

increases as the latency time decreases (Figure 6.9a) 

and that the difference between the two workloads increases• 

as the. latency increases, the larger latency time 

affecting the workload with PDP more than that with 

WSR. Similarly with the drum throughput figures - 

workload 1 showing a higher drum utilisation than 

workload 2, even more so with longer latency times. (Fig 6.9b). 

The effect of-changing the drum transfer 

time per page (whilst holding all other factors 

constant) is investigated next. It may be seen that the 

effect of this upon the two performance metrics is 

quite dramatic (Figures 6.10a and 6.10b) though the 

difference between the two workloads remains constant. 

This indicates that the difference between using a 

process loading algorithm which involves bulk transfers 

(e.g. .WSR) and one which spaces out these requests 

through time (as does PDP) will be more dependent upon 

the secondary memory latency time than the transfer time. 

The effect of speeding up the drum (by 

increasing its rotational speed and assuming that all 

other elements in the system connected with this - 

channel-memory bandwidth - will be adequate to cope with 

this) is studied next. In this, the ratio of transfer 

time per page to average latency time is held constant 
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at one to two. As the drum speed increases, the user 

CPU time continues to rise (Figure 6.11a), until the 

transfer speed is around one millisecond per page, 

when this improvement in performance appears to tail 

off. This is probably because the effect of 

supervisor overheads begin to dominate at this point 

(Figure 6.11b) as the drum transfer rate will continue 

to rise as the drum speed increases (Figure 6.11c). 

It may also be noted that the supervisor overhead 

incurred by workload 2 increases much more than that 

of workload 1 as the drum speed increases. 

Intelligent Secondary Memory Channels 

The final feature investigated here by 

the model is that of reducing supervisor overheads in 

the CPU by putting more processing power into the 

secondary memory channels. Such an intelligent 

channel will take care of all sector queuing, the 

starting of channel chains and the fielding of all 

interrUpts. It would take requests direct from the 

pagefault handler and the services handling process 

loading to and unloading from main memory, and send 

replies to the page-gone and page-here services. The 

amount of CPU normally accredited to these drum 

handling services, both from the simulation and 

observations, is shown in Figure 6.12, and it may be 
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noted that the simulation always lies within 75% of 

the observed values. The delay times involved in 

handling these requests in the intelligent channels 

are held at the same values as were used for the 

supervisor overheads in the original model, only these 

operations can now proceed in parallel with other 

operations on the CPU.. The effects of adopting such 

a scheme show a substantial increase in user CPU time 

(Figure 6.13a) with the difference between the two 

workloads again narrowing as the main memory size 

increases. Similarly the drum throughput is 

increased (though no changes have been made in the 

speeds of the drum) and the difference between the 

drum throughput rates of the standard and intelligent 

channels increases as the main memory size increases 

(Figure 6..13b). The rate of increase in supervisor 

overhead as memory size increases is much less 

however under the intelligent channel scheme than 

under the standard one. (Figure 6.13c). 

Conclusion 

The model presented in this chapter has 

been used to quantify the effect on overall system 

performance of changing certain factors which were not, 

or could not, be included in the EMAS performance 

experiment. A certain degree of confidence in the 
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model's predictions has been gained through comparing 

them with empirical observations. The model may be 

used in yet further investigations of this nature, 

but it would be better if it were used in 

conjunction with a further series of empirical 

experiments (the nature of these experiments may be 

dictated by results obtained from the model) so that 

yet more confidence may be gained in the working of 

the model and its predictions. 



The approach adopted'  in this work has 

been to combine the two main techniques available to 

aid the. evaluation of time-shared, virtual memory 

systems - measurement and modelling. Either of these 

techniques used singly is subject to certain 

limitations and it is only by attacking this problem 

by using the complementary advantages of both 

techniques that any real progress may be made in this 

area. - 

Measurement alone is always limited to 

the evaluation of existing, functioning systems. In 

the past this technique has been criticised for 

producing too much data thus obscuring the 

relationship between changes in performance and their 

causes. It is also possible in many cases that the 

high variability in user workload between two 

measured intervals may make it impossible to draw any 

conclusions about the relationships between changes in 

system structure and system performance. The approach 

taken here attempts to eliminate this variance in 

workload by using a remote terminal emulator, and studies 

the system using a proven experimental design and 

analysis methods frequently adopted in other branches 

of experimental science. 
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The trend towards incorporating mini-

computers in the mainframe of the time-shared 

central processors, with access to most registers and 

system tables, to handle such tasks as initial 

programme loading and diagnostics, opens the way to 

the possibility of using these to monitor system 

behaviour using hybrid methods -. thus hopefully 

reducing the overhead induced by the measurement 

process. Similarly the widespread use of 

mini-computers in the communication networks which 

service large scale multi-access systems should 

facilitate the greater use of remote terminal 

emulation in future measurement experiments. 

Modelling is, of course, not 

restricted to producing results on existing systems 

but may predict results for any proposed configuration. 

However, these models will only be of use if they are 

an accurate reflection of the way in' which the system 

functions. The inability of some modelling 

techniques to handle' real systems has in fact been a 

matter of some controversy in the literature 

[Saltzer 1976, Chattergy 1976, Denning 1976]. Where 

possible a model should be calibrated and validated 

using measurements taken on a real system. For this 

to be possible, and for models formulated using a 

variety of modelling techniques to be tested, a 
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consistent body of measurement data must be available. 

For this body of data to be consistent it must be 

obtained under controlled conditions i.e. all 

parameters (workload as well as system configuration) 

must be known and able to be reproduced. The 

empirical techniques presented here provide a method 

whereby such a body of data may be accumulated. 

Not all factors which may impact on 

the system performance have been covered here - 

there are too many to enumerate and quantify in such 

a short time. The effect of varying the number and 

type of users active on the system is, perhaps, the 

most notable oinmission (though the result of 

effectively varying the process characteristics is 

included at two levels). However, there is no reason 

why this factor should not be studied using the same 

methodology, and the simulation model modified and 

extended to include this factor. It must also be 

noted that the standard workload, used as input to 

the system during experiments, is itself a model of 

user behaviour and should ideally be validated 

against measurements of real user behaviour before 

being put to such a use. 

The ideal way therefore for any 

process of system evaluation on an existing system 
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to proceed is for a model of system behaviour to be 

initially derived from, and to be validated with, 

measurements from a set of controlled experiments 

(Figure 7.1). Results from .this.model may then be 

used to suggest new areas for experimentation and 

the model may be further validated by results 

produced by these. It is only by carrying out such 

an exercise that any confidence can be gained in a 

modelling technique and its applicability to complex 

systems. These proven modelling techniques may then 

be used with slightly more confidence in predicting 

the behaviour of completely new systems and will 

hopefully be validated by a similar empirical 

experimental programme when such systems are built. 
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Appendix 

Analysis of. Variance 

The experimental design adopted in the 

EMAS performance experiment is a full 3 x 2 x 2 

factorial experiment [Cochran and Cox 1957] in which 

the following factors are varied: 

FACTOR 
	

NUMBER OF LEVELS 

A - Main Memory Size 	 3 

B.-  Secondary Memory Channels 	2 

C -.Scheduling Algorithm 
	 2 

The results from each run in this experiment are 

considered to be in the form 

Y = M + 	2aX3 X4,)  

MAIN EFFECTS 

+ X5ab + X6a2b + X7ac + X8a2c + X9bcj 

SECOND ORDER EFFECTS 

+ 	 + E 

THIRD ORDER EFFECTS 



M - the overall mean - all factors present 

at level 1. 

E - an error term due to random experimental 

errors (and sometimes environmental effects - 

assumed to have been eliminated in this 

experiment). 

X coefficients - variance around the mean due to 

the factors included in the experiment and 

interactions between those factors (second 

and third order effects). 

a,b,c - experiment run having the main factors 

(A, B or C respectively) present at level 2 

(rather than level 1). 

a2 - experiment run having the main factor A 

present at level 3. 

The analysis of variance (ANOVA) 

technique [Yates 1937, Johnstone and Leone 1964, 

Mendenhall 19681 merely determines the values of the 

X coefficients and thus quantifies the effect of each 

of the factors and their interactions. It is normal 
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to deduce the error term from duplication of certain 

or all of the runs. However since it was not possible 

to carry out any duplication the approach adopted 

[Mendenhall 19681 was to assume that the higher order 

effects are negligible and that the effect attributed 

to these may  be used as an estimate of the 

experimental error. The ratio of the sum of squares 

of each main effect to the sum of squares of this error 

term is then used in conjunction with an F -. test to 

decide whether or not the effect of each factor is 

statistically significant, and if so then to what 

degree. 
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