
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Software Testing - Test Suite Compilation and

Execution Optimizations

Panagiotis Stratis
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2020



Abstract

The requirements and responsibilities assumed by software have increasingly rendered

it to be large and complex. Testing to ensure that software meets all its requirements

and is free from failures is a difficult and time-consuming task that necessitates the use

of large test suites, containing many test cases.

Time needed to compile and execute large test suites has become prohibitive. Cur-

rent optimization techniques aim to reduce the test suite size by removing redundant

test cases. However, as systems become larger, the number of essential test cases is

still very large and affects the software life-cycle.

In this thesis, we explore techniques for reducing the compilation and the execution

time of test suites without removing any test cases or changing computing infrastruc-

ture. All of our proposed techniques can be used in conjunction with existing test suite

optimisations.

1. For test suite compilation, we propose a data transformation that reduces the

number of instructions in the test code, which in turn reduces compilation time.

Using two well known compilers, GCC and Clang, we conduct empirical evalua-

tions using subject programs from industry standard benchmarks and an industry

provided program. We evaluate compilation speedup, execution time, scalability

and correctness of the proposed test code transformation.

2. For test suite execution, we propose a novel approach to improve instruction

locality across test case executions. Our approach measures the distance be-

tween test case executions (number of different instructions). We then schedule

the test cases for execution so that the distance between neighboring test cases

is minimised. We empirically evaluate our approach with 20 subject programs

and test suites from the SIR repository, EEMBC suite and LLVM Symbolizer

to compare execution times and cache misses with test case orderings using our

approach versus a traditional ordering maximising coverage and random per-

mutations. We also assess overhead of algorithms in generating orderings that

optimise instruction cache locality.

3. In our final contribution, we target execution time of heterogeneous test suites

and assess the effect of device-based test case scheduling. We propose a test

case scheduling algorithm which improves the load balancing between multi-

ple devices of a heterogeneous system in an attempt to reduce the overall test

i



suite execution time. We conduct empirical evaluation on a large-scaled, indus-

trial test suite targeting implementations of the SYCL standard which has been

developed by Codeplay Software.

The outcome of our research can be summarized as follows:

1. Our data transformation approach resulted in significant compilation speedups in

the range of 1.3× to 69×. Our experiments show that the gains in compilation

time allow significantly more test cases to be included in test suites, improving

scalability of test code compilation.

2. Our instruction-based test case scheduling algorithms were able to achieve a

maximum execution speedup of 29.48%. Performance gains were considerable

for programs and test suites where the average number of different instructions

executed between test cases was high.

3. Finally, we found that a maximum of 25.42% speed-up is achieved by our device-

based test scheduling algorithm when compared to parallel test case execution

of a heterogeneous test suite without test scheduling.

Our proposed techniques are able to significantly reduce the compilation as well as

the execution time of test suites without eliminating any test cases or upgrading com-

puting infrastructure. Our data transformation results in faster test code compilation

while our test case scheduling algorithms achieve significant speed-ups for programs

executing on single-CPU, multi-CPU as well as heterogeneous architectures.

As systems get more complex, they require frequent and extensive testing. Our

techniques provide safe and efficient means of compiling and executing test suites

which, in combination with existing test suite optimisations, can significantly reduce

the cost of software testing.

ii



Lay Summary

Software testing is the process of ensuring that a given software works as expected.

Software engineers are testing their software by developing scenarios in which they ex-

ecute the software under specific conditions and then verify that the outcome matches

their expectations. As software systems become more complex, the number of scenar-

ios needed for testing all aspects of a system becomes very large and the time it takes

for these scenarios to run makes testing infeasible.

Until now, the software community has been addressing this problem by removing

scenarios that are considered obsolete. However, the number of essential scenarios for

testing a complex system is still very large and prohibits frequent testing. In this work,

we follow a different approach and instead of removing scenarios, we reduce the time

of testing by transforming these scenarios into a form that is faster to be processed by

the computer as well as by running these scenarios in specific orders which efficiently

utilize the underlying computer hardware. Our research complements the approaches

proposed by industry and academia in an attempt to improve the feasibility of software

testing.

iii



Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Dr. Ajitha Rajan.

She supported me in every way possible. Her endless energy and positivity helped me

keep going in difficult periods. She is also very patient with unorganised people who

are always late (or not showing up at all) in meetings like me. Without her, this thesis

would be impossible.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Björn Franke and Prof. Michael Rovatsos for their insightful commends which helped

me transforming the publications into a (hopefully) readable thesis.

I would also like to thank Codeplay Software for accepting me in their family and

allowing me to contribute to the SYCL standard as well as to experiment with industrial

software. A special thanks to Gordon Brown - the C++ template guru and an awesome

manager. I still remember the legendary lunchtime board games.

A huge thank you my fellow colleagues: Vanya Yaneva and Chao Peng. Vanya

for being the organized one when analysing the results, for being there for me when I

wanted somebody to talk to and for reminding me that I behave like a child when I am

arguing (true story). Chao for being the coolest guy in the forum and for always being

willing to help (remember that night with the float bug in our LLVM pass?).

Last but not least, I would like to thank my dad Dimitris, my sister Dina and my

wife-to-be Martina for being in my life.

iv



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Panagiotis Stratis)

v



To my Mother.

I miss her a lot.

vi



Table of Contents

1 Introduction 1
1.1 Feasibility of Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Test Suite Execution Process . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Objective and Contributions . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8
2.1 The Anatomy of a Test Suite . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Software Under Test . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Software Specification . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Software Test Suite . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Test Suite Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Statement Coverage . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Branch Coverage . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Test Suite Minimization . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Test Case Selection . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.6 Test Case Prioritization . . . . . . . . . . . . . . . . . . . . . 17

2.2.7 Test Case Reduction . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Compiler Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Data Transformations . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Cache Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Cache Locality . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Heterogeneous Computing . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 The Anatomy of a Heterogeneous Application . . . . . . . . 21

vii



2.5.2 Testing Heterogeneous Software . . . . . . . . . . . . . . . . 23

3 Related Work 26
3.1 Reducing Compilation Time . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Data Transformations and Parameterized Unit Tests . . . . . . . . . . 28

3.3 Testability Transformation . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Improving Cache Locality . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Selecting Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Prioritizing Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Executing Test Cases in Parallel . . . . . . . . . . . . . . . . . . . . 34

3.8 Scheduling Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Data Transformation for Reducing Test Suite Compilation Time 37
4.1 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Transformation Algorithm . . . . . . . . . . . . . . . . . . . 40

4.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Subject Programs . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Q1. Compilation . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Q2. Execution . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3 Q3. Correctness . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.4 Q4. Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Impact on Developer Feedback . . . . . . . . . . . . . . . . . 57

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Test Case Scheduling for Improving Instruction Cache Locality 59
5.1 Instruction-Based Test Case Scheduling . . . . . . . . . . . . . . . . 61

5.1.1 Approximate Test Case Scheduling . . . . . . . . . . . . . . 63

5.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Subject Programs . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



5.3 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 SIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.2 EEMBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.3 LLVM Symbolizer . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Conformance with Cache Miss Rate . . . . . . . . . . . . . . 73

5.3.5 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Overhead Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 SIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 EEMBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.3 LLVM Symbolizer . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.4 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.2 Effect on Fault Finding Capability . . . . . . . . . . . . . . . 81

5.5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Device-Based Test Case Scheduling for Heterogeneous Test Suites 85
6.1 SYCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.1 HammerSYCL . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Device-Agnostic Test Case Scheduling . . . . . . . . . . . . . . . . . 88

6.3 Device-Based Test Case Scheduling . . . . . . . . . . . . . . . . . . 88

6.3.1 Test Case Scheduling Algorithm . . . . . . . . . . . . . . . . 93

6.4 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.1 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.2 Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . 98

6.5.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ix



7 Conclusion 101
7.1 Putting Everything Together . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 107

x



List of Figures

1.1 Test Workflow Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Granular Test Suite Execution Process . . . . . . . . . . . . . . . . . 5

1.3 Thesis Main Contributions . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Two-Dimensional to One-Dimensional Data Transformation of an Array 19

2.2 CPU Instruction Cache . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Bubble Sort Implementation Control Flow Graph . . . . . . . . . . . 25

4.1 Chapter Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Original Test Code with N FUT Calls (left) Transformed to an Equiv-

alent Test Code Containing a Single FUT Call within a Loop (right)

Using our Transformation . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Data Transformation Example . . . . . . . . . . . . . . . . . . . . . 42

4.4 Speedup in Compilation Time for EEMBC when Compared to the

Original Code for Different Test Suite Sizes . . . . . . . . . . . . . . 46

4.5 Speedup in Compilation Time for SPEC when Compared to the Origi-

nal Code for Different Test Suite Sizes. . . . . . . . . . . . . . . . . 48

4.6 Speedup in Compilation Time for ComputeCpp™ when Compared to

the Original Code for Different Test Suite Sizes . . . . . . . . . . . . 48

5.1 Chapter Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Our Contribution vs Existing Work . . . . . . . . . . . . . . . . . . . 60

5.3 Test Case Instruction Traces . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Instruction-Based Test Scheduling . . . . . . . . . . . . . . . . . . . 66

5.5 Comparison of Execution Times for Approx, BC for 8 EEMBC Pro-

grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Histogram Frequencies of Execution Time for Opt, Approx, BC, Random

Test Suites for LLVM Symbolizer . . . . . . . . . . . . . . . . . . . 74

xi



5.7 Overhead for Generating Opt, ApproxOrderings for Increasing Num-

ber of Tests for LLVM Symbolizer . . . . . . . . . . . . . . . . . . . 79

5.8 Test Case Distance vs Time Improvement for Approx Ordering over BC 80

6.1 Chapter Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Sequential Test Case Scheduling . . . . . . . . . . . . . . . . . . . . 89

6.3 Device-Agnostic Test Case Scheduling . . . . . . . . . . . . . . . . . 90

6.4 Device-Based Test Scheduling . . . . . . . . . . . . . . . . . . . . . 92

6.5 HammerSYCL Execution Time with Device-Agnostic and Device-Based

Parallel Test Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 HammerSYCL Execution Speed-Up of Parallel Test Schedulings over

Sequential Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7 HammerSYCL Execution Time for Various Test Distributions Across

Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Data Transformation Combined with Instruction Cache Locality Test

Case Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Data Transformation Combined with Device-Based Test Case Scheduling105

xii



List of Tables

3.1 Test Case Selection Studies Grouped by Technique Type . . . . . . . 32

3.2 Test Case Prioritization Studies Grouped by Technique Type . . . . . 33

4.1 Subject Programs Used in our Experiment . . . . . . . . . . . . . . . 43

4.2 Compilation Times for ComputeCpp™ Test Codes . . . . . . . . . . 54

4.3 Execution Times for ComputeCpp™ Test Codes . . . . . . . . . . . . 55

5.1 Subject Programs Used in our Experiment . . . . . . . . . . . . . . . 69

5.2 Histogram Frequencies of Execution Time for Opt, Approx, BC, Random

Test Suites for 11 SIR Programs . . . . . . . . . . . . . . . . . . . . 70

5.3 Overhead for Generating Opt, ApproxOrderings for Increasing Num-

ber of Tests over 11 SIR Programs . . . . . . . . . . . . . . . . . . . 76

5.4 Overhead for Generating Opt, ApproxOrderings for Increasing Num-

ber of Tests over 8 EEMBC Programs . . . . . . . . . . . . . . . . . 78

xiii



Chapter 1

Introduction

Software is an intrinsic part of our everyday lives with worldwide spending currently

at 314 billion USD1. Testing to ensure that the software meets its requirements is a

notoriously hard and time consuming process, often representing 50% of the cost of

software development [67].

On a high level, the testing process, or test workflow, consists of four main artifacts:

the software under test, which can vary from a complex application to a single function,

the software specification that defines its intended behaviour, a set of test inputs each

of which is passed to the software under test to initiate a test case execution and a test

oracle which observes the test case execution and decides whether it is successful (i.e.

the software abides by its specification) or failed. The test oracle itself is derived from

the software specification. A test case is composed of a test input and the test oracle.

Finally, a collection of test cases is defined as a test suite and the process of executing

them as test suite execution. Figure 1.1 illustrates the test workflow artifacts.

Research in the software testing community has primarily focused on the automatic

generation of test inputs as well as test oracles. For test inputs, the research effort has

resulted in the creation and evaluation of test adequacy criteria and the development

of automatic test input generation tools. When it comes to test oracles, researchers

have focused on ways of automatically generating models which are able to map a test

input to an expected output given a software specification artifact. An area, however,

that has not been given enough attention is the process of test suite execution and,

more specifically, its efficiency - an important aspect given the complexity of modern

software and the difficulty in testing it.

1http://www.statista.com/statistics/203428/total-enterprise-software-revenue-forecast/

1



Chapter 1. Introduction 2

Test Suite Execution Process

Software 
Under Test

Software 
Specification

Test 
Oracle

Test Inputs Test Outputs

Pass/Fail

Test Workflow 
Artifacts

Figure 1.1: Test Workflow Artifacts

1.1 Feasibility of Testing

As the scale and complexity of software increases, the number of tests needed for

effective validation becomes extremely large, slowing down development, hindering

programmer productivity, and ultimately making development costly [165, 164]. The

need for large numbers of tests is magnified in agile software development practices,

like Continuous Integration (CI) and Test-Driven Development (TDD), that require

extensive testing to be performed [11, 84, 52].

Software companies are able to confirm this observation. Google, who use CI de-

velopment for their products, report a need for running more than 100 million tests

per day [111]. Microsoft report that testing code changes is time consuming and

annual cost of regression testing exceeds tens of millions of dollars [74]. Codeplay

Software [166], who develop specialised tools, including compilers, runtimes and de-

buggers for heterogenous systems, use CI for their development, which necessitates

frequent compilation and running of large numbers of tests, taking huge amounts of



Chapter 1. Introduction 3

time.

Over the last decades, the research community has focused on discovering ways

for reducing test workflow time. Code coverage metrics are being used by industry

and academia to describe the degree to which a program is tested by a test suite. The

main idea behind existing optimization techniques is to achieve high coverage with

as few test cases as possible. However, reducing the size or selecting a subset of test

cases from a test suite has been shown to also reduce its fault-finding capability [70].

In addition, as systems become larger and more complex, the number of test cases

needed for achieving acceptable levels of coverage is still very large [122].

1.2 The Test Suite Execution Process

Current test suite optimization techniques attempt to reduce test suite execution time

by reducing the number of test cases. What are, however, the actual bottlenecks of

the test suite execution process given a large number of test cases? The test suite

execution process is being treated by academia and industry as an abstract artifact

where test cases are being added or removed in order for certain criteria to be satisfied.

If we want to explore alternative ways of reducing test time, rather than just remove

test cases, we first need to understand the steps involved in the test suite execution

process. As shown in figure 1.2, the test suite execution process is more complex than

the simplistic model of just executing the software under test with different test inputs

and observing its behaviour. The test suite execution process consists of three phases:

• Test suite compilation - This is the phase where a test suite is compiled into an

executable program. It is a phase that exists solely for languages that include the

concept of compilation in some form (e.g. C++ and JAVA).

• Test case scheduling - During this phase, the execution order of the test cases is

determined. The form of the execution order depends on whether test cases can

be executed in parallel.

• Test case execution - This phase entails the actual execution of the test cases

which is setting up the environment, executing the software under test with the

test input, observing the test output and comparing it to the expected behaviour.



Chapter 1. Introduction 4

1.3 Problem Statement

Increasing numbers of test cases present a challenge for all the phases of test suite

execution process and make up a large fraction of the overall testing cost [218]:

• Test suite compilation - The size of the test code (i.e. the test suite) is propor-

tional to the number of test cases. Compiling large pieces of test code can be

excessively time consuming especially when the compiler is configured to apply

its full set of optimizations, something which is almost always the case.

• Test case scheduling - The complexity of non-trivial test case scheduling algo-

rithms is proportional to the number of test cases. As this number increases, test

case scheduling can dramatically increase the test workflow time. For a test suite

with N test cases, the asymptotic complexity of a test scheduling algorithm is at

least O(N) in order for all test cases to be considered.

• Test case execution - Every test case execution entails at least one execution of

the software under test. Therefore, the more test cases are to be executed, the

more executions of the software under test will occur and the more this phase

will last. The impact on the overall test workflow time is proportional to the

number of test cases as well as to the average execution time of each test case.

1.4 Objective and Contributions

The research objective of this thesis is to reduce the test workflow time without elimi-

nating any test cases or changing computing machine. To that end, this thesis focuses

on the test suite execution process of test workflow and answers the following question:

Given a test suite, is it possible to reduce the time of the test suite execution
process without any loss of information or a change on the underlying
infrastructure?

The answer to the above question is yes and we achieve it in two ways:

• By applying a data transformation to the test inputs and test oracle data of test

suites in order to reduce the test suite compilation time without altering its se-

mantics.

• By applying test case scheduling algorithms that reduce the overall test case

execution time.



Chapter 1. Introduction 5

Test Suite Execution Process

Software 
Under Test

Software 
Specification

Test Oracle

Test Inputs

Test Outputs

Pass/Fail

Test Workflow 
Artifacts Test Oracle 

Generation

Test Input 
Generation

Testing Research 
Focus

Test Suite 
Compilation

Test Case 
Scheduling

Thesis Focus

Test Case 
Execution

Figure 1.2: Granular Test Suite Execution Process

The main contributions of this thesis are:

• C1: Data Transformation for Reducing Test Suite Compilation Time - We

propose a data transformation which is able to reduce the compilation time of

test suites. We evaluate our approach on two popular compilers (GCC [55] and

Clang [114]) compiling test suites from industry standard benchmarks as well as

an industrial application developed by Codeplay Software [166]. The compila-

tion speedup achieved ranges from 1.3x to 69x.

• C2: Test Case Scheduling Algorithms for Improving Instruction Cache Lo-
cality - We propose a series of test case scheduling algorithms for the single-

CPU and multi-CPU architectures that enhance instruction cache locality across
test case executions. We assess the effectiveness of these algorithms on vari-



Chapter 1. Introduction 6

ous industry standard benchmarks as well as on a module of the LLVM [115]

tool-chain. The highest speedup achieved is 29.48%.

• C3: Device-Based Test Case Scheduling for Heterogeneous Test Suites -
We propose a minimal-overhead test case scheduling algorithm for heteroge-

neous test suites which reduces the overall test suite execution time by achieving

load balancing between the devices of the heterogeneous system the test suite

executes on. This work was conducted in collaboration with Codeplay Soft-

ware [166] for reducing the execution time of a large-scale industrial test suite

targeting ComputeCPP™, Codeplay’s in-house implementation of the SYCL

standard [57]. The speedup achieved is 25.42%.

Figure 1.3 illustrates the thesis main contributions mapped to the test suite exe-

cution process. Contribution C1 is applied just before the test suite compilation and

results in time reduction for that phase. Contributions C2 and C3 however are applied

during test case scheduling but result in time reduction for the next phase, the test case

execution.

Test Inputs / Software Under 
Test

Test Suite 
Compilation

C1:  Data Transformation for 
Reducing Test Suite 
Compilation Time.

Test Case Scheduling

C2:  Test Case Scheduling 
Algorithms for Improving 

Instruction Cache Locality.
C3:  Device-Based Test Case 

Scheduling for Heterogeneous 
Test Suites.

Test Case Execution

Time Reduction

Time Reduction

Figure 1.3: Thesis Main Contributions

1.5 Publications

• Test case permutation to improve execution time [188].

• Improving test execution time with improved cache locality [186].

• Reordering tests for faster test suite execution [189].

• Assessing the Effect of Device-Based Test Scheduling on Heterogeneous Test

Suite Execution [187].



Chapter 1. Introduction 7

• Speeding up test execution with increased cache locality [190].

• Assessing the effect of data transformations on test suite compilation [191].

1.6 Organization

The rest of the thesis is organized as follows: Chapter 2 provides background on test

suites and their optimizations as well as on the fundamental concepts on which the

contributions of this thesis are based. In Chapter 3 we explore the related work for

every main contribution of this thesis. Reducing test suite compilation time via data

transformations is illustrated in Chapter 4. Our work on reducing test suite execution

time with improved instruction cache locality is presented in Chapter 5. Chapter 6

addresses the problem of effective test case scheduling for heterogeneous software.

Finally, this thesis concludes in Chapter 7.



Chapter 2

Background

In this chapter we provide the necessary background on the heterogeneous aspects

and concepts of computer science that we utilise in this thesis for reducing test time.

Sections 2.1 and 2.2 illustrate the foundations of test suites and their optimisations

and relate to all three contributions of this thesis. In section 2.3 we present the con-

cepts of compiler optimisation as well as data transformation that form the basis of

our contribution C1 which reduces test suite compilation time. We continue in section

2.4 by describing the notions of cache miss and cache locality which are essential for

our test scheduling algorithms in contribution C2. Finally, in section 2.5 we give an

overview of what heterogeneous computing is and how its different from sequential

and multi-threaded computing when it comes to testing. The last section is related to

our contribution C3 where a test scheduling algorithm for heterogeneous applications

is proposed.

2.1 The Anatomy of a Test Suite

As illustrated in the previous chapter, the software test workflow consists of four main

artifacts: the software under test, its specification, the test inputs and the test oracle.

But in which way are these artifacts reflected on actual code? How does an actual test

suite looks like? In this section, we provide concrete examples for every test workflow

artifact in the form of executable code in the C++ programming language [192] and

the GoogleTest testing framework [175].

8



Chapter 2. Background 9

2.1.1 Software Under Test

The software under test can vary from a simple function to a complex application. In

this chapter, our software under test will be a sorting algorithm: Listing 2.1 contains a

sample implementation of the Bubble Sort algorithm [8]. The Bubble Sort algorithm is

a well-studied sorting algorithm for single dimensional arrays. It works by repeatedly

swapping the adjacent elements if they are in wrong order. In every iteration, the al-

gorithm surfaces the maximum (or minimum - depending on the desired sorting order)

element and then repeats the process for the remaining of the array. The software un-

der test consists of two functions, the bubbleSort function which contains the sorting

logic and the swap function that performs the swapping of two elements. In addition,

our implementation contains a small optimization: if the algorithm does not swap any

elements during an iteration, it automatically exits as this is an indication that the rest

of the array is already sorted.

1 # i n c l u d e <v e c t o r>

2

3 vo id swap ( i n t *xp , i n t *yp )

4 {
5 i n t temp = *xp ;

6 *xp = *yp ;

7 *yp = temp ;

8 }
9

10 / / An o p t i m i z e d v e r s i o n o f t h e Bubble S o r t A lgo r i t hm .

11 s t d : : v e c t o r<i n t > b u b b l e S o r t ( i n t a r r [ ] , i n t n ) {
12 i n t i , j ;

13 boo l swapped ;

14

15 i f ( n < 0) {
16 r e t u r n s t d : : v e c t o r<i n t >() ;

17 }
18

19 f o r ( i = 0 ; i < n−1; i ++)

20 {
21 swapped = f a l s e ;

22 f o r ( j = 0 ; j < n−i −1; j ++)

23 {
24 i f ( a r r [ j ] > a r r [ j + 1 ] )

25 {



Chapter 2. Background 10

26 swap(& a r r [ j ] , &a r r [ j + 1 ] ) ;

27 swapped = t r u e ;

28 }
29 }
30

31 / / IF no two e l e m e n t s were swapped by i n n e r loop , t h e n b r e a k

32 i f ( swapped == f a l s e )

33 b r e a k ;

34 }
35

36 r e t u r n s t d : : v e c t o r<i n t >( a r r , a r r + n ) ;

37 }

Listing 2.1: Bubble Sort Algorithm Implementation in C++

2.1.2 Software Specification

The software specification is a description of the software’s intended behaviour and the

basis of the test oracle. Despite the existence of international standards [174] which

provide well-defined templates for expressing software requirements, the structure of

this artifact can vary a lot across projects. There is a plethora of techniques and pro-

cesses around software specification which cover all aspects of its life-cycle: from

initial requirement gathering to validation and formatting [207]. The specification for

our bubbleSort implementation is the following:

1. Should accept as inputs an array of integer values and the number of elements to

be sorted.

2. Should return a vector of the sorted elements in ascending order.

3. If the given number of elements is a negative number, an empty vector should be

returned.

2.1.3 Software Test Suite

Listing 2.2 contains a test suite for our bubbleSort implementation which is developed

on top of the GoogleTest framework. It contains 8 test cases each of which is speci-

fied by the TEST keyword. Inside each test case, the bubbleSort function is executed,

with a different test input every time, and the result its being passed into an assertion



Chapter 2. Background 11

function (ASSERT THAT) which compares it against the expected value. Finally, on

line 56, RUN ALL TESTS is responsible for scheduling the test cases for execution,

executing them and returning the value 0 if every test case is successful (otherwise the

value 1 is returned).

1 # i n c l u d e ” b u b b l e S o r t . h ”

2 # i n c l u d e <g t e s t / g t e s t . h>

3 # i n c l u d e <gmock / gmock . h>

4 / *
5 TEST ( arg1 , a rg2 ) r e p r e s e n t s a s i n g l e TEST CASE .

6 a rg1 : The t e s t s u i t e i t b e l o n g s i n .

7 a rg2 : The name of t h e TEST CASE .

8 * /

9 TEST ( b u b b l e S o r t T e s t S u i t e , S o r t s C o r r e c t l y P o s i t i v e V a l u e s ) {
10 i n t i n p u t A r r a y [ ] = {90 , 64 , 34 , 25 , 22 , 12 , 11} ; / / A TEST INPUT .

11 / *
12 ASSERT THAT( arg1 , a rg2 ) r e p r e s e n t s an a s s e r t i o n by t h e TEST

ORACLE.

13 a rg1 : An a c t u a l v a l u e o b t a i n e d from t h e EXECUTION of PROGRAM

UNDER TEST wi th t h e s e TEST INPUTS .

14 a rg2 : The e x p e c t e d v a l u e as d e f i n e d by t h e TEST ORACLE.

15 * /

16 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , 7 / *A second TEST INPUT . * / ) ,

17 : : t e s t i n g : : E lementsAre ( 1 1 , 12 , 22 , 25 , 34 , 64 , 90) ) ;

18 }
19 TEST ( b u b b l e S o r t T e s t S u i t e , S o r t s C o r r e c t l y N e g a t i v e V a l u e s ) {
20 i n t i n p u t A r r a y [ ] = {−34 , −22, −100 , −201 , −3, −1, −2909 , −512};

21 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , 8 ) ,

22 : : t e s t i n g : : E lementsAre (−2909 , −512 , −201 , −100 , −34,

−22, −3, −1) ) ;

23 }
24 TEST ( b u b b l e S o r t T e s t S u i t e , S o r t s C o r r e c t l y M i x e d V a l u e s ) {
25 i n t i n p u t A r r a y [ ] = {−200 , 432 , −43, 2 , 0 , −200 , 0 , 2} ;

26 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , 8 ) ,

27 : : t e s t i n g : : E lementsAre (−200 , −200 , −43, 0 , 0 , 2 , 2 ,

432) ) ;

28 }
29 TEST ( b u b b l e S o r t T e s t S u i t e , S o r t s C o r r e c t l y P a r t i a l A r r a y ) {
30 i n t i n p u t A r r a y [ ] = {64 , 34 , 25 , 12 , 0 , 11 , 90 , −20, 1000 , −21};

31 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , 5 ) ,

32 : : t e s t i n g : : E lementsAre ( 0 , 12 , 25 , 34 , 64) ) ;



Chapter 2. Background 12

33 }
34 TEST ( b u b b l e S o r t T e s t S u i t e , EmptyArray ) {
35 i n t i n p u t A r r a y [ ] = {} ;

36 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , 0 ) ,

37 : : t e s t i n g : : E lementsAre ( ) ) ;

38 }
39 TEST ( b u b b l e S o r t T e s t S u i t e , S i n g l e E l e m e n t A r r a y ) {
40 i n t i n p u t A r r a y [ ] = {43} ;

41 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , 1 ) ,

42 : : t e s t i n g : : E lementsAre ( 4 3 ) ) ;

43 }
44 TEST ( b u b b l e S o r t T e s t S u i t e , A l r e a d y S o r t e d A r r a y ) {
45 i n t i n p u t A r r a y [ ] = {1 , 34 , 56 , 67 , 89 , 123 , 456 , 981 , 2024} ;

46 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , 9 ) ,

47 : : t e s t i n g : : E lementsAre ( 1 , 34 , 56 , 67 , 89 , 123 , 456 ,

981 , 2024) ) ;

48 }
49 TEST ( b u b b l e S o r t T e s t S u i t e , Negat iveElementNumber ) {
50 i n t i n p u t A r r a y [ ] = {64 , 34 , 25 , 12 , 0 , 11 , 90 , −20, 1000 , −21};

51 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , −5) ,

52 : : t e s t i n g : : E lementsAre ( ) ) ;

53 }
54 i n t main ( i n t a rgc , c h a r ** a rgv ) {
55 : : t e s t i n g : : I n i t G o o g l e T e s t (& argc , a rgv ) ;

56 r e t u r n RUN ALL TESTS ( ) ; / / TEST CASE SCHEDULING and EXECUTION .

57 }

Listing 2.2: Bubble Sort Test Suite in C++ and Google Test

2.1.3.1 Test Inputs

Every test case in the test suite of listing Listing 2.2 contains a test input which is

passed to the bubbleSort function. The software specification of our implementation

requires that the bubbleSort function accepts an array of integer as well as the number

of elements of that array which should be sorted. Therefore, the test input of each test

case consists of an array of integer values as well as an integer scalar. In every test case

the input array is being stored to a separate variable every time (inputArray) while the

integer scalar is being passed directly to the bubbleSort function (second argument).

All the test inputs of the bubbleSort test suite have been manually implemented by

the developer. In the last decades, there has been a lot of attention by the scientific



Chapter 2. Background 13

community on automated test input generation [6] based on the software specification

as well as the application program interface (API).

A careful reader would notice that some of the test inputs differ quite significantly

across test cases. For example the test case of line 9 contains an inputArray with only

positive values while the inputArray in line 19 contains only negative values. This is

because our test suite attempts to verify that bubbleSort would behave in accordance

to its specification for a variety of scenarios. The test cases in lines 9, 18 and 24 verify

that bubbleSort can sort arrays with elements of any sign. The test case in line 29

tests that bubbleSort is able to sort only a part of the input array as defined in the first

specification. The test case in line 49 tests the third specification which dictates that

bubbleSort should return an empty vector if the number of elements to be sorted is a

negative number. Finally, the test cases of lines 34, 39 and 44 test some edge cases

(empty array, single-element array and already sorted array).

2.1.3.2 Test Oracle

In every test case of our test suite, ASSERT THAT accepts two arguments: The first

is the actual return value of bubbleSort for the specific test input. The second is the

expected return value of bubbleSort given this test input. This value is defined by the

test oracle. In our case, the test oracle is the developer who manually implemented

these tests by consulting the software specification. In other words, the test oracle is

hard-coded in the test code itself. Automatically generating the test oracle from the

software specification is a field of active research in recent years [176]. Finally, in our

test suite, the test oracle observes only the return value of the bubbleSort function.

This kind of testing is defined as black-box testing [12] because we are only interested

in the output of the software under test for a given test input. In white-box testing

[154], the test oracle can also observe the internals of the software execution.

2.1.3.3 Test Case Scheduling

Test case scheduling is the phase where the testing framework produces the test case

execution order. The execution order type can vary depending on the underlying ma-

chine architecture. For example, in single-CPU systems the execution order can only

be sequential while in multi-CPU it could also be expressed in terms of test case clus-

ters that should execute in parallel. In our test suite, the test case scheduling happens

in line 56: the first step of RUN ALL TESTS is to produce the execution order of



Chapter 2. Background 14

the test cases before it proceeds to the actual test case execution and, subsequently, to

the result report. By default, RUN ALL TESTS produces only sequential execution

orders - however the GoogleTest framework can be customized to allow parallel test

case execution.

2.2 Test Suite Optimizations

Over the last decades, the research community has focused on discovering ways for

reducing the number of test cases. Code coverage metrics are being used by indus-

try and academia to describe the degree to which a program is tested by a test suite.

These criteria are frequently encountered in regression [169] and black-box [12] test-

ing where the number of test cases can become intractable for non-trivial software.

Numerous optimisation techniques have been proposed which, based on coverage cri-

teria, attempt to reduce the number or the size of the test cases. We start this section

with an introduction to the foundation of coverage analysis, the control flow graph.

We continue by providing the definitions of the statement as well as branch coverage

metrics. Finally, we explore the main test suite optimisation techniques for reducing

the effort every time a test suite is executed.

2.2.1 Control Flow Graph

In control flow analysis [4], the subject program is expressed as a directed graph (the

Control Flow Graph - CFG) with the nodes representing the programs basic blocks

and the edges representing the control flow paths. A basic block is defined as a linear

instruction sequence with a single entry point (the first executed instruction) and a

single exit point (the last executed instruction). From the moment the first instruction

of a basic block is executed, it is guaranteed that all the other instructions of that basic

block will be executed as well (i.e. the control flow does not diverge while inside a

basic block). CFG’s are being used extensively in compiler engineering as well as in

coverage analysis: Expressing a program as a graph, enables the application of graph

theory concepts, such as reachability and domination relationships, directly onto the

program instructions. In fact, many compiler optimizations are based on graph theory

concepts [3]. Furthermore, as illustrated in the next sections, most coverage metrics

are defined on top of the CFG.

Figure 2.3 contains the CFG for our bubbleSort function. Our function entry point



Chapter 2. Background 15

is BBL 1 and it is the only basic block that does not have a predecessor. Similarly, the

bubbleSort function contains two exit points which are represented by two terminating

basic blocks with no successors - BBL 2 and BBL 4. The diamond shapes represent

decision statements (or decision points). Every decision point consists of the begin-

ning of two branches corresponding to the two possible decision outcomes: true and

false. Finally, its worth noting that although the individual program instructions can

be easily mapped to the program’s original source code, other language constructs like

loops and switch statements are expressed in an indirect way via branches and decision

statements.

2.2.2 Statement Coverage

Statement coverage of software P against a test suite T is defined as the number of

software instructions of P which have been executed at least once during the execution

of the test suite T divided by the total number of instructions of program P:

Statement Coverage(P,T ) =
#instructions of P executed

#total instructions of P
(2.1)

Statement coverage can also be equivalently expressed in terms of visited basic blocks.

In fact, most program analysis and optimization algorithms usually work with basic

blocks rather than instructions for scalability reasons.

Statement Coverage(P,T ) =
#basic blocks of P visited
#total basic blocks of P

(2.2)

Starting from an empty test suite, if we add the test case in line 49 of listing 2.2 (Nega-

tiveElementNumber) we achieve 18.18% statement coverage: this is because we have

visited only the BBL 1 and BBL 2 basic blocks (2 out of the 11). If we then continue

by adding the test case in line 34 (EmptyArray) to our new test suite we immediately

double our statement coverage (4 out of the 11 or 36.36%) because BBL 3 and BBL 4
will be visited as well. Having the test case in line 24 (SortsCorrectlyMixedValues) as

our third test case helps us achieve full statement coverage as every basic block will be

visited at least once during the execution of our new test suite.

2.2.3 Branch Coverage

Branch coverage aims to ensure that every possible branch from every decision point

in the software under test has been executed at least once during the execution of a

test suite. Branch coverage is defined as the number of decision outcomes which have



Chapter 2. Background 16

occurred at least once during the execution of a test suite divided by the total number

of the programs decision outcomes:

Branch Coverage(P,T ) =
#decision outcomes of P occurred

#total decision outcomes of P
(2.3)

Starting again from an empty test suite, if we add the test cases of lines 49 and 34

of listing 2.2 (NegativeElementNumber and EmptyArray) we achieve 30% of branch

coverage because the B1, B2 and B4 branches have been taken at least once (3 out of

10). In other words, with these two test cases, both the decisions outcomes of the first

decision point (n< 0) and the negative outcome of the second decision point (i< n−1)

have occurred. By adding the test case in line 9 (SortsCorrectlyPositiveValues) our

branch coverage scales to 80%: the positive outcome of the second decision point

occurs (B3), both outcomes of the j < n− i−1 decision point occur (B5 and B6), the

positive outcome of the arr[ j]> arr[ j+1] decision point occur as well as the negative

outcome of the swapped == f alse decision point. For achieving full branch coverage

we need a test case in which the arr[ j] > arr[ j+ 1] decision point would evaluate to

false (B10). We also need a test case where our algorithm optimisation as described

in section 2.1.1 (line 34 of listing 2.1) is triggered (B7). The AlreadySortedArray test

case (line 44 in listing 2.2) satisfies both these criteria because it guarantees that no

element swapping will take place: branch B10 will be taken in every iteration of the

inner loop and branch B7 will be taken after the first iteration of the outer loop.

2.2.4 Test Suite Minimization

Test suite minimisation [215] refers to the systematic removal of test cases while en-

suring that the test suite satisfies a set of requirements. If the requirement is full

branch coverage, test suite minimization algorithms will keep in the test suite the

minimum number of test cases that achieve 100% branch coverage and remove the

rest. In the previous section, we identified that 4 test cases from listing 2.2 achieve

full branch coverage (NegativeElementNumber, EmptyArray, SortsCorrectlyPositive-

Values and AlreadySortedArray). Most test suite minimisation algorithms would be in

a position to identify that the EmptyArray test case is actually redundant and can be re-

moved without impacting our test suite’s branch coverage. Therefore a potential form

of our minimised test suite would be the following 3 test cases: NegativeElementNum-

ber, SortsCorrectlyPositiveValues and AlreadySortedArray. All other test cases would

have been removed and never executed.



Chapter 2. Background 17

2.2.5 Test Case Selection

Test case selection [152] is less aggressive than test suite minimization of section 2.2.4.

Instead of removing test cases, it selects a subset of them for execution according to

a criterion of interest. The set of selected test cases might be different every time the

test suite is executed. For example, in a system comprising of multiple sources files, a

common test case selection criterion is to select for execution only the test cases which

exercise code from sources files that have been modified since the last time the test

suite was executed. If a test case itself has been modified then its selected for execution

regardless. By this way, we avoid executing test cases for which we are certain that

their outcome will not change when compared to their last execution because their

code as well as the code which they verify has not changed.

2.2.6 Test Case Prioritization

Once the test cases that need to be executed have been selected (see section 2.2.5),

test case prioritization [42] will rank them based on how much they contribute towards

achieving a certain criterion, such as branch coverage. Subsequently, these test cases

will be ordered for execution according to their rank: the test case with the highest

rank will be executed first, the test case with the second highest rank will follow etc.

Continuing our example from section 2.2.4, the 3 test cases achieving full branch cov-

erage would get a higher rank than the other test cases and would be executed first

every time the full test suite is executed. The main idea behind test case prioritization

is that the subset of test cases satisfying a set of requirements (in our example branch

coverage) is executed first in order for these requirements to be satisfied as soon as

possible during the execution of a test suite.

2.2.7 Test Case Reduction

Test case reduction [95] examines each test case in isolation and attempts to remove

redundant behaviour (i.e. preserve the semantics of the test without performing any

additional tasks). Listing 2.3 contains an example of test case reduction: From a branch

coverage point of view, AlreadySortedArray and AlreadySortedArrayReducted visit the

exact same branches, therefore using the reducted version is preferred as it executes

faster than the original version (in this case because of fewer algorithm iterations as

the input array is smaller in size).



Chapter 2. Background 18

1 / / O r i g i n a l T e s t Case

2 TEST ( b u b b l e S o r t T e s t S u i t e , A l r e a d y S o r t e d A r r a y ) {
3 i n t i n p u t A r r a y [ ] = {1 , 34 , 56 , 67 , 89 , 123 , 456 , 981 , 2024} ;

4 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , 9 ) ,

5 : : t e s t i n g : : E lementsAre ( 1 , 34 , 56 , 67 , 89 , 123 , 456 ,

981 , 2024) ) ;

6 }
7 / / Reduc ted T e s t Case

8 TEST ( b u b b l e S o r t T e s t S u i t e , A l r e a d y S o r t e d A r r a y R e d u c t e d ) {
9 i n t i n p u t A r r a y [ ] = {1 , 3 4} ;

10 ASSERT THAT( b u b b l e S o r t ( i n p u t A r r a y , 2 ) ,

11 : : t e s t i n g : : E lementsAre ( 1 , 34) ) ;

12 }

Listing 2.3: Test Case Reduction

2.3 Compiler Optimizations

In contribution C1 we reduce the compilation time of test suites by applying data trans-

formations. More specifically, our proposed data transformation speeds-up various

optimizations being performed by the compiler resulting in an overall time reduction

of test suite compilations. In this section, we provide the necessary background on

compiler optimizations as well as data transformations.

Compiler optimizations [3] consist of transformation algorithms that produce a se-

mantically equivalent version of a given program, optimized in certain ways – typically

to reduce execution time and/or memory operations. In the present thesis, we use C-

language family compilers which implement the following optimization options:

• -O0 Optimizations are disabled.

• -O1 Moderate optimization. Compilation takes more time for large functions.

• -O2 High optimisation. All supported optimizations that do not involve a space-

speed trade off are performed. Compilation time significantly increases.

• -O3 Full optimisation. All possible optimisations are performed. Compilation

time rapidly increased.



Chapter 2. Background 19

2.3.1 Data Transformations

Data transformations are amongst the most common optimizing transformations that

compilers utilize in order to optimise. Data transformations are defined by Boyle et

al. [156] as “those transformations concerned with the layout, storage and access of

array data, rather than reordering the program control flow”. Figure 2.1 illustrates

an array data transformation: Before the transformation, the data is stored in a two-

dimensional array and every value needs two indexes in order to be retrieved (for

example, the value 7 can be retrieved by indexing the table with the indexes 0 and

2). After the transformation, the data layout has been changed into a one-dimensional

array and every value needs just one index in order to be retrieved (for our previous

example, number 7 now can be retrieved with the index 6). Note that there is no data

loss during the transformation! Only the layout has changed.

0 1 2
0 1 2 3
1 4 5 6
2 7 8 9

0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9

Figure 2.1: Two-Dimensional to One-Dimensional Data Transformation of an Array

2.4 Cache Memory

In contribution C2 we achieve a reduction in test suite execution time by improving

the instruction cache locality via test case scheduling. Increased cache locality leads

to a decrease of cache misses which, in turn, leads to a reduction of the overall test

suite execution time. In this section we illustrate the concepts of cache memory, cache

misses as well as cache locality.

Present day modern applications require a vast amount of memory in order to meet

their data requirements. Additionally, processor speeds have become much faster than

memory speeds. As a result, execution times of many applications are memory speed,

rather than processor speed bounded [58]. To help bridge the speed gap, memory sys-

tems are organized as a hierarchy with multiple layers of fast cache memory. CPU

caches comprise of an instruction cache to speed up executable instruction fetch and

a data cache to speed up data fetch and store. Caches play a key role in minimizing



Chapter 2. Background 20

the access latency and main memory bandwidth demand. Caches operate by retaining

the most recently used data. If the processor reuses the data quickly, cache hits occur.

Conversely, if it reuses the data after a long time, intervening data can evict the data

from the cache, resulting in a cache miss. Instruction cache misses and hits are illus-

trated in Figure 2.2. Cache misses cause the CPU to stall and in many applications

result in significant penalty in execution time [199, 203].

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

.

.

.

.

RAM

CPU
Instruction

Cache

CPU

100 ns

20 ns100 ns

Cache hit

Cache miss

Data cached

Figure 2.2: CPU Instruction Cache

2.4.1 Cache Locality

Cache misses have been shown to be inversely proportional to the locality of memory

references during program execution [53]. Temporal locality is achieved by minimiz-

ing the time between references of the same memory address, i.e. the reuse of the same

data within a small time frame. Spatial locality, on the other hand, is achieved when

memory accesses which are close in time are also close in physical storage location.

In terms of cache memory design, fetching large blocks of data (cache lines) when a

cache miss occurs has the potential to increase spatial locality. However, this approach

may have a negative effect on temporal locality since there is no guarantee that the ad-

ditional data of the fetched cache line will be useful. Predictors and pre-fetch buffers

have been proposed by the research community in a attempt to improve spatial locality

without compromising temporal locality [120].



Chapter 2. Background 21

2.5 Heterogeneous Computing

In contribution C3 we propose a test case scheduling algorithm for heterogeneous ap-

plications which reduces the overall execution time of test suites by achieving load

balancing between the devices of the heterogeneous system. In this section we pro-

vide an introduction to heterogeneous computing and the challenges around testing

heterogeneous applications.

Current semiconductor trends show a major shift in computer system architectures

towards heterogeneous systems. Such systems combine a CPU with other proces-

sors such as GPUs, DSPs and FPGAs to work together, performing different tasks in

parallel. This shift has brought a dramatic change in programming paradigms and lan-

guages. That has resulted in not only changes in the way that applications need to be

structured, but also in the methods and requirements for testing them.

The main motivation for heterogeneous computing is the observation that certain

processor types are better suited for certain types of computational tasks. For example,

CPUs are great for performing very complex calculations but they cannot offer task

parallelization on a massive scale. On the other hand, GPUs can execute a massive

number of computational tasks in parallel, the complexity of these tasks however is

limited. Over the last decades, heterogeneous computing has been of great importance

for multimedia and gaming applications as well as 3D modelling and simulation soft-

ware. Additionally, in recent years, heterogeneous systems are used extensively for

accelerating deep learning applications [1] and provide the cornerstone of self-driving

cars [94].

2.5.1 The Anatomy of a Heterogeneous Application

A heterogeneous application can be divided in two main parts - the code executing on

host and the code executing on device. In most heterogeneous programming models,

the host refers to the CPU and the memory of the machine the application is executing

on while device refers to the heterogeneous devices that are available to the system

(GPUs, other CPUs, FPGAs, DSPs etc). The host code can manage the host memory

as well as the memory of all the available devices. For executing computational tasks,

the host submits to the devices functions to be executed (aka kernels) along with data

and then proceeds with other computations while the devices are executing the kernels

(i.e. asynchronous programming).

Listing 2.4 includes a sample heterogeneous application developed by Codeplay



Chapter 2. Background 22

Software ltd. [166] in C++ and the SYCL [57] platform. The purpose of this appli-

cation is to add, in parallel, the elements of 2 vectors. simple vadd accepts 3 vectors

as arguments: 2 of them represent the vectors to be added and the third vector is used

for storing the result. simple vadd starts by defining a queue (the mechanism for sub-

mitting kernels to be executed by the devices) and also defines a series of buffers for

making available the vector data to the device. Lines 39 to 51 contain the device code:

The device uses the buffers to access the vector data and on line 49 the parallel addition

of the vector elements occurs.

1 / *
2 *
3 * C o p y r i g h t (C) 2016 Codeplay S o f t w a r e L i m i t e d

4 * L i c e n s e d under t h e Apache License , V e r s i o n 2 . 0 ( t h e ” L i c e n s e ” ) ;

5 * you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .

6 * You may o b t a i n a copy of t h e L i c e n s e a t

7 *
8 * h t t p : / / www. apache . o rg / l i c e n s e s / LICENSE−2.0

9 *
10 * Codeplay ’ s ComputeCpp SDK

11 *
12 * s imple−v e c t o r−add . cpp

13 *
14 * D e s c r i p t i o n :

15 * Example o f a v e c t o r a d d i t i o n i n SYCL .

16 *
17 * /

18 # i n c l u d e <CL / s y c l . hpp>

19 # i n c l u d e <a r r a y>

20 # i n c l u d e <i o s t r e a m>

21

22 c o n s t e x p r c l : : s y c l : : a c c e s s : : mode s y c l r e a d = c l : : s y c l : : a c c e s s : : mode

: : r e a d ;

23 c o n s t e x p r c l : : s y c l : : a c c e s s : : mode s y c l w r i t e = c l : : s y c l : : a c c e s s : : mode

: : w r i t e ;

24

25 t e m p l a t e <typename T>

26 c l a s s SimpleVadd ;

27

28 t e m p l a t e <typename T , s i z e t N>

29 vo id s i m p l e v a d d ( c o n s t s t d : : a r r a y<T , N>& VA,

30 c o n s t s t d : : a r r a y<T , N>& VB,



Chapter 2. Background 23

31 s t d : : a r r a y<T , N>& VC) {
32 c l : : s y c l : : queue dev iceQueue ;

33 c l : : s y c l : : range<1> numOfItems{N} ;

34 c l : : s y c l : : b u f f e r <T , 1> b u f f e r A (VA. d a t a ( ) , numOfItems ) ;

35 c l : : s y c l : : b u f f e r <T , 1> b u f f e r B (VB. d a t a ( ) , numOfItems ) ;

36 c l : : s y c l : : b u f f e r <T , 1> b u f f e r C (VC. d a t a ( ) , numOfItems ) ;

37

38 dev iceQueue . s u b m i t ( [ & ] ( c l : : s y c l : : h a n d l e r& cgh ) { / / DEVICE CODE.

39 / / A c c e s s i n g t h e i n p u t a r r a y s from t h e DEVICE .

40 a u t o a c c e s s o r A = b u f f e r A . t e m p l a t e g e t a c c e s s <s y c l r e a d >( cgh ) ;

41 a u t o a c c e s s o r B = b u f f e r B . t e m p l a t e g e t a c c e s s <s y c l r e a d >( cgh ) ;

42 a u t o a c c e s s o r C = b u f f e r C . t e m p l a t e g e t a c c e s s <s y c l w r i t e >( cgh ) ;

43

44 a u t o k e rn = [ = ] ( c l : : s y c l : : id<1> wiID ) {
45 a c c e s s o r C [ wiID ] = a c c e s s o r A [ wiID ] + a c c e s s o r B [ wiID ] ;

46 } ;

47 / / P a r a l l e l a d d i t i o n o f v e c t o r e l e m e n t s .

48 cgh . p a r a l l e l f o r <c l a s s SimpleVadd<T>>(numOfItems , ke rn ) ;

49 } ) ;

50 }
51

52 i n t main ( ) {
53 c o n s t s i z e t a r r a y s i z e = 4 ;

54 s t d : : a r r a y<c l : : s y c l : : c l i n t , a r r a y s i z e > A = {{1 , 2 , 3 , 4}} , B =

{{1 , 2 , 3 , 4}} , C ; / / Sample V e c t o r s t o be added .

55 s i m p l e v a d d (A, B , C) ; / / P a r a l l e l v e c t o r a d d i t i o n .

56 r e t u r n 0 ;

57 }

Listing 2.4: Heterogeneous Implementation of Parallel Vector Addition

2.5.2 Testing Heterogeneous Software

One of the major complications when testing a heterogeneous system is that much con-

sideration should be put on the hardware on which the tests are executed. In a typical

business case scenario, it is crucial for a heterogeneous system test suite to be able to

verify that the system works as expected when executed against a variety of devices.

Given this requirement, the problem of executing N tests on a sequential or multi-core

system is expanded to the execution of N * M tests for a heterogeneous system, with

M being the number of devices for the heterogeneous system to be verified against.



Chapter 2. Background 24

The rational behind this expansion is the fact that the device code of a heterogeneous

application needs to be executed on every target device before it is considered fully

tested and ready for release.



Chapter 2. Background 25

int arr[] = (arg);
int n = (arg);

int i = 0;
int j;

bool swapped;

n < 0 return std::vector<int>();

i < n-1 return std::vector<int>(arr, arr + n);

swapped = false;
j = 0;

j < n-i-1

arr[j] > arr[j+1]

swapped == false

i++;

j++;

swap(&arr[j], &arr[j+1]);
swapped = true;

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

BBL1

BBL2

BBL3 BBL4

BBL5

BBL6
BBL7

BBL8

BBL9

BBL10

BBL11

Basic Blocks

True Branch

False Branch

Figure 2.3: Bubble Sort Implementation Control Flow Graph



Chapter 3

Related Work

This Chapter includes the related work for every contribution of this thesis. We begin

with the state of the art on compilation time reduction techniques (section 3.1) and

then we continue by presenting the foundations as well as applications of data trans-

formations and parameterised unit tests in section 3.2. Section 3.3 includes the related

work on Testability Transformation as well as its key differences when compared to the

data transformation we propose in contribution C1. In section 3.4 we present the re-

lated work on improving cache locality and how it can be used in conjunction with our

work in contribution C2. Test Case Selection techniques are presented in section 3.5.

We proceed by illustrating the related work on Test Case Prioritization and the subtle

differences of traditional TCP techniques when compared to our C2 and C3 contribu-

tions. Work on executing test cases in parallel is considered in section 3.7. Finally,

section 3.8 includes the existing work on system-on-a-chip test scheduling and its lim-

itations when it comes to heterogeneous applications - something which we address in

contribution C3.

3.1 Reducing Compilation Time

For trivial programs, compilation time is insignificant, but quickly increases as pro-

grams become more complex. Performing multiple compiler optimisations adds sig-

nificant overhead to compilation time. Reducing compilation time is an important

problem that has been addressed in several ways,

• The C++ programming language has introduced the zero overhead principle which

dictates that no overhead, both during compilation and execution, should occur for

26



Chapter 3. Related Work 27

features of the language that are not being used [192]. Furthermore, the GNU com-

piler collection [184] has introduced in its C/C++ compilers the -O1 optimization

level which includes only lightweight optimizations that do not result in long com-

pilation times.

• Krintz et al. [107] propose an annotation framework for Java programs which col-

lects off-line analysis information and embeds it, in the form of annotations, into Java

programs in order to guide the optimization process of dynamic compilers, reducing

compilation overhead. In [108] Krintz et al. present the concept of lazy compila-

tion in which a method is compiled just before its first invocation and then augment

this concept by exploiting profiling information to ensure that performance critical

methods are invoked using optimized code.

• When compiling for FPGAs, Lavin et al. [116] propose the use of pre-compiled

circuit blocks, known as hard macros, as a way to speed up the compilation process.

Chan et al. [23] present a compilation time reduction scheme which is based on SAT

engine partitioning in order to reduce the compilation time of the FPGA-based SAT

solver presented in [225].

• Machine learning techniques have also been proposed for reducing compilation time.

Cavazos and O’Boyle [19] propose the use of logistic regression for building a prob-

abilistic model in order to select the best optimizations per method in Java programs

while Leather et al. [117] introduce a mechanism to automatically identify the im-

portant features of programs that can be used by machine learning heuristics.

• Iterative compilation, which is proposed by Kisuki et al. in [104] and evaluated

by Fursin et al. in [49], is a method in which successive source-to-source trans-

formations are applied to a program. Their impact is determined by compiling and

executing the code. This results in multiple versions of the program with the best

version being picked based on criteria of compile and/or execution time.

Our approach in contribution C1 reduces compilation time of test code by applying

source-to-source transformation before compilation takes place. It is similar to itera-

tive compilation methodologies in that it includes source-to-source transformations as

a pre-compilation step. The main drawback of iterative compilation is its feasibility,

as even with a small set of possible code transformations, the resulting optimization

space is very large. This is addressed in the works of Fursin et. al. [49],Bodin et. al.

[15] and Triantafyllis et. al. [200] which propose ways to reduce the search space by



Chapter 3. Related Work 28

utilizing heuristics. In contrast, our approach focuses on exploiting a common pattern

for calling test functions and is able to use a single source-to-source transformation in

order to reduce compilation time in test code.

3.2 Data Transformations and Parameterized Unit Tests

In contribution C1, we apply a data transformation to achieve reduction in test code

compilation time. In [156], Boyle et al. define and validate an algebraic framework

for data transformations in which an array transformation consists of a change in the

way it is stored and accessed. Data transformations have been subsequently explored

for various purposes. Kandemir et. al. in [99] and [98] as well as Rivera et. al. in

[167] utilize data transformations in order to improve cache memory locality. In [89],

data transformations are used for reducing the number of false sharing misses in a

shared memory multiprocessing system and in [87], they are used for enabling loop

vectorization on data parallel architectures. To the best of our knowledge, there has

been no prior work exploring data transformations to reduce compilation time of test

code. In our approach, we apply data transformations that target test code compilation.

Our data transformation is applied to parameterised unit tests (PUTs), introduced

by Tillman and Schulte in [198] and also used in commercial test frameworks like

Google Test [175]. PUT extends conventional unit tests by allowing the user to param-

eterize them and generate multiple traditional unit tests from a single PUT. In this way,

PUTs are used for test generation. The approach employs symbolic execution for sys-

tematically producing a minimal set of parameters which results in the generation of a

set of concrete tests that execute a finite number of paths in the system under test. Our

proposed transformation is applicable on the concrete tests that have been generated

from PUTs for reducing their compilation time.

3.3 Testability Transformation

Testability transformation is a source-to-source transformation of programs that en-

ables test generation methods to produce more effective test data for the original (pre-

transformed) program. After the test data has been generated, the transformed program

is discarded. A testability transformation does not guarantee functional equivalence: it

only preserves the test adequacy of test input data sets. For example, if a test data set



Chapter 3. Related Work 29

achieves 100% branch coverage in program P, it is guaranteed that the same test data

set will achieve the same level of branch coverage for the transformed program P´.

• Harmal et. al. introduce the theoretical framework of testability transformation

in [66] and propose a testability transformation algorithm that replaces boolean

flags with comparison expressions for improving the effectiveness of evolution-

ary test data generation in [10]. An improvement of the flag removal algorithm

along with a tool is presented in [14].

• Evolutionary test data generation is also considered in [136] where the authors

empirically evaluate a transformation algorithm that removes nested decision

statements.

• The relationship of refactoring methods to testability transformation is explored

by Harmal et. al in [65].

• Hierons et. al. propose a testability transformation aimed at unstructured pro-

grams that removes multiple exit statements inside for loops while preserving

branch coverage [77].

• In [97] Kalaji et. al. classify program functions depending on their relationship

to global state variables (affect or affected-by) and propose a testability transfor-

mation which surfaces the conditions of these global variables that need to hold

in order for specific parts of the program to be executed.

• Korel et. al. propose in [105] a testability transformation which is based on

data dependence analysis and preserves only the statements that contribute to

the calculation of the test case generation fitness function.

• Using testability transformations for generating pseudo-oracles is considered by

McMinn in [135]. In his work, McMinn alters specific aspects of programs (one

transformation per aspect) and then uses search based testing in order to identify

test cases where the output of the transformed versions is different to the one of

the original program. This methodology differs from traditional testability trans-

formations in that it is important that the transformed programs are functionally

equivalent to the original version.

• Li and Fraser propose in [123] another testability transformation that preserves

the semantics of the original program. They target the boolean flag problem



Chapter 3. Related Work 30

([10], [14]) and apply their transformation to Java bytecode. The main idea of

the transformation algorithm is to replace all boolean variables with integers that

preserve branch distance information.

Our data transformation in Chapter 4 differs from testability transformation techniques

in the fact that it operates on the test suite rather than the software under test. Further-

more, the transformed test suite is not discarded and it actually replaces the original.

Finally, our data transformation preserves the semantics of the original test suite, some-

thing which is not the case with the majority of testability transformations.

3.4 Improving Cache Locality

Improving data locality is a problem which has received great attention by the compiler

community in the last decades. Compiler researchers have proposed the use of reuse

distance as a metric to approximate cache misses [13, 162]. Beyls et al. state reuse

distance of a memory access as “the number of accesses to unique addresses made

since the last reference to the requested data”. In a fully associative cache with n lines,

a reference with reuse distance d < n will hit, and with d ≥ n will miss. The concept

of cache re-use has primarily been used in the context of data locality.

In the early 1990s, compiler optimisations were proposed to improve the cost of

executing loops [208, 17]. These optimisations improve locality of data references in

loops through:

• Loop permutations - If possible, change the sequence of loop iterations so that

the iteration which enhances data reuse is placed innermost [134].

• Loop tiling - Iterations are reordered so that outer loop iterations are executed

without waiting for the iterations of inner loops to complete execution. By this

way, the distance reuse of data associated with the outer loops is decreased.

• Loop fusion - Multiple loops are merged under one.

• Loop distribution - Independent statements inside a single loop are separated

into multiple, single-statement loops.

• Variable padding - Inter-variable padding refers to adjusting variable base ad-

dresses while intra-variable padding refers to modifying the size of data arrays.



Chapter 3. Related Work 31

Both techniques are used heavily in compilers and have been identified to be

effective in minimizing conflict misses in loops [134].

Procedure re-ordering and code layout optimisations are available in the literature

for improving instruction spatial locality. Chang et al. [24] use dynamic profiling in

conjunction with function inlining in an attempt to position instructions in such a way

that spatial instruction locality is maximised. Chen et al. [26] propose a co-location

technique for functions and basic blocks which are visited sequentially for achieving

greater spatial locality.

Temporal locality of instructions has not been considered before, especially since

existing optimisations are over a single execution of the program with little chance

of repeated instruction sequences1. Temporal locality across multiple executions is

proposed, for the first time, in contribution C2. Our approach presented in chapter 5 is

not meant to compete with the existing work on compiler or code layout optimisation.

Instead, it is best if they are used together since we aim to improve temporal locality of

instructions across several executions, while existing work improves temporal/spatial

locality of data and spatial locality of instructions within a single execution.

3.5 Selecting Test Cases

Test case selection is a test suite optimization that reduces the number of executed

tests cases during a test suite execution by selecting a subset of them based on some

criterion. It was first proposed by Fischer et. al. in [48] and it is closely related to

regression testing since it determines which test cases have to be executed during the

execution of a test suite. Test case selection strives to achieve a trade-off between the

cost of executing all the test cases and the probability of not executing a test case that

would uncover a bug in the software.

Effective test case selection can reduce the cost of testing without sacrificing the

fault-finding capability of test suite executions and has been the center of attention by

industry and academia for over four decades. Table 3.1 includes the (broad) technique

types that test case selection studies have been based on.

Our proposed methodologies in Chapters 5 and 6 do not entail any test case se-

lection techniques. However, both our contributions can be used in conjunction with

test case selection: Once the subset of test cases has been chosen to execute (based
1Unless the instructions occur within a for loop, in which case existing loop transformations help

improve locality.



Chapter 3. Related Work 32

on some criterion) then our test scheduling algorithms can speed-up the test case ex-

ecution for CPU-based (contribution C2) as well as heterogeneous (contribution C3)

architectures.

Technique Type Studies

Test Coverage [210], [204], [79], [69], [68], [47], [28], [2],

[201], [34]

Control Flow Graph [206], [168], [40], [121]

Program Slicing [59], [29], [195], [212]

Machine Learning [25], [219], [158]

Test Oracle [220]

Genetic Algorithms [71], [78], [113]

GUI [139], [140], [141]

Multi-Objective Optimizations [215], [144], [159]

Model-Based [196], [211], [72], [73], [85], [131]

Binary Code Changes [80]

Dynamic Non-Code Changes [54], [151]

Specification-Based [27]

Meta-Heuristics [150]

Fuzzy Reasoning [213], [214], [112]

Component-Based [132], [157], [172]

Table 3.1: Test Case Selection Studies Grouped by Technique Type

3.6 Prioritizing Test Cases

Test case prioritization is a test suite optimization that creates test case execution or-

derings based on some objective function. Once the test cases to be executed have been

selected (see section 3.5) test case prioritization will order them according to their im-

portance defined by the objective function. The core idea of test case prioritization is

that the most important test cases are executed first so that a specific criterion is met

as soon as possible. This is particularly important for large and time consuming test

suites where the full completion of a test suite might not be feasible or guaranteed.

Similarly to test case selection, test case prioritization is closely related to regression

testing and it was first proposed by W. Eric Wong et. al. in [209]. Table 3.2 includes



Chapter 3. Related Work 33

the main technique types that test case prioritization studies have been based on over

the last decades.

Technique Type Studies

Test Coverage [170], [33], [34], [64], [63], [223], [142], [45],

[16], [95], [119], [109], [93], [88]

Search-Based [124], [125], [118], [91], [39]

Genetic Algorithms [130], [127], [222], [18], [101], [96], [171],

[31], [37], [178], [50], [155]

Requirement-Based [180], [149], [129], [7], [75], [217], [181]

History-Based [155], [179], [126], [133], [102], [103], [83]

Risk-Based [75], [217], [76], [216], [182], [46]

Bayesian Networks [202], [224], [145], [146]

Multi-Objective Optimizations [173], [193]

Model-Based [197], [106]

Cost-Effective [43]

Workflow [138]

Similarity-Based [44]

Scope-Based [143]

Fault-Based [194], [5], [137], [205], [163], [92], [221], [36],

[41]

Table 3.2: Test Case Prioritization Studies Grouped by Technique Type

The methodologies presented in Chapters 5 and 6 can be considered as test case prior-

itization methods since they entail prioritization: Our cache-based test case scheduling

(contribution C2) will prioritize the next test case that is closer to the one executing

in terms of visited basic blocks while our device-based test case scheduling (contri-

bution C3) will prioritize test cases based on how many tests are executing against

each device. However, there are subtle differences when comparing our approaches to

traditional test case prioritization techniques:

1. Objective - In traditional test case prioritisation techniques the objective is to in-

crease the rate of fault detection as well as code coverage. The objective of both

our related contributions is to reduce the overall execution time of test suites, an

objective that has not been considered before by a test case prioritization method.



Chapter 3. Related Work 34

2. Optimization Timing - Traditional test case prioritization methodologies attempt

to satisfy a certain criterion as early as possible during the execution of a test

suite. Once the criterion is satisfied, the order of the remaining test cases is of

little significance. In our proposed methodologies, however, the optimization

happens throughout the execution of the test suite as there is not a cutoff point

(e.g. 100% code coverage) in our criterion of choice (i.e. the test suite execution

time).

3. Scope of Ranking - Traditional test case prioritization techniques rank the test

cases against the collection of test cases executed before them. For example, in

coverage-based prioritization a test case will be ranked depending on how much

it contributes to the overall coverage achieved so far by the collection of test

cases executed before it. In our proposed contributions, the scope of ranking is

narrower as it only takes into consideration the test cases which are executing at

the time of ranking and not the ones who have finished execution. In contribution

C2 we rank the remaining test cases depending on how similar they are to the test

case which is executing at the time or ranking. Similarly, contribution C3 will

rank the remaining test cases depending on how many test cases are executing

against each device at the time of ranking.

3.7 Executing Test Cases in Parallel

Once the test cases have been selected and prioritized (see sections 3.5 and 3.6), test

case parallelization attempts to execute them in parallel in order to reduce the overall

testing time. Parallel test case execution is different from simple task parallelization

in that the same program is executed in parallel as opposed to the parallel execution

of different and independent programs. Executing the same program in parallel might

lead to specific system resources being overloaded as well as to certain test dependen-

cies acting as a speedup bottleneck.

• Gupta et. al. propose in [60] a physical (as well as virtual) machine configuration

for speeding-up parallel test case execution.

• Haftmann et. al. define in [62] two strategies for executing test cases in parallel

on systems powered by databases: The first strategy replicates the database for

every test case executing in parallel while the second uses the same database



Chapter 3. Related Work 35

instance for all concurrent test cases by performing database operation analysis

and preventing race conditions.

• Zhengrong Ji et. al. propose in [90] a framework for optimizing the paral-

lel execution of wireless network simulations by reducing the communication,

synchronization and scheduling overhead of network operations across multiple

processes. Their work is able to speedup significantly the parallel execution of

test suites that require simulating network operations.

• The researchers in [51] propose the usage of a functional dependency graph for

partitioning a web application test suite into test sets and then distribute these

test sets for execution on multiple machines.

• Sasa Misailovic et. al. utilize in [147] the Korat constraint-based algorithm for

efficiently generate and execute test cases in parallel. The execution of a test case

happens immediately after its generation and a significant speedup is achieved

by not storing the test inputs on disk.

• Finally, Sebastian Kappler in [100] models the data dependencies between test

cases as a directed acyclic graph (DAG) and incrementally violates these depen-

dencies while checking the test execution result. If the result remains unchanged,

the dependency (which is represented by an edge in the DAG) is removed. The

result is a test suite with fewer data dependencies between its tests which can

benefit more from test case parallelization.

3.8 Scheduling Test Cases

Test case scheduling has received a lot of attention by the research community over the

last decades, especially in multi-core system-on-a-chip (SOC) test automation. In [20]

the researchers define the test case scheduling problem to be ”the problem of deter-

mining start times for the tasks such that the total test application time is minimized”.

The authors in [21] show that, from a theoretical perspective, the test case schedul-

ing problem is equivalent to the open-shop scheduling problem which is known to be

NP-complete and propose the use of mixed-integer linear programming as a method-

ology which can produce optimal results for small-scaled systems. In [86] and [22]

the researchers present a constraint-driven preemptive test scheduling algorithm which



Chapter 3. Related Work 36

attempts to minimize SOC testing time while considering resource conflicts and prece-

dence constraints. Finally, in [81] [82] and [226] Yu Huang Et al. formulate the test

scheduling problem for core-based SOC as the well-known bin-packing problem and

propose a series of heuristic algorithms for achieving acceptable approximations.

The existing literature focuses on test case scheduling on a single chip. In het-

erogeneous application testing, however, we have multiple devices for the test cases

to execute against. In Chapter 6 (contribution C3), we explore scheduling test cases

depending on their target device in an attempt to reduce the execution time of het-

erogeneous test suites. We empirically evaluate the practical usefulness of a minimal-

overhead test scheduling algorithm when applied to a large-scaled industrial test suite.



Chapter 4

Data Transformation for Reducing Test

Suite Compilation Time

Test Suite Execution Process

Software 
Under Test

Test Inputs

Test Outputs

Test Suite 
Compilation

Test Case 
Scheduling

Test Case 
Execution

Chapter Contribution

Figure 4.1: Chapter Contribution

Large test suites are difficult to maintain and require frequent compilation. Com-

piling large pieces of test code is extremely time consuming and severely hinders pro-

ductivity, as the programmer needs to wait each time he/she wishes to compile and test.

Codeplay Software confirm this observation with their testers facing long wait times

for test code compilation. In general, it is highly recommended that build or compila-

tion times should be short enough to keep developers focused on the current task, so

as to prevent context switching. This is especially important in CI development where

tests are compiled and run many times a day, so that even small periods of waiting

can add up to significant disruption. This issue is further pronounced in languages like

C++ which is known for its long compilation times [110]. However, there has been no

37



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 38

existing work that addresses the problem of prolonged compilation times for large test

code. Existing work on compiler optimisation focuses on generating efficient machine

level instructions from program source code for fast execution. These optimisations

can also be applied to test code for fast execution, but not for fast compilation. In fact,

these optimisations incur further overhead in compilation times. We target the problem

of long compilation times associated with large test codes and aim to achieve signifi-

cant speedups in compilation, with optimisations that specifically target structure and

input data in test code.

In this chapter, we present a novel approach to speedup compilation of test code

(see figure 4.1) and empirically assess its benefits. We propose a transformation that

restructures test inputs and reduces the number of calls to the software under test

in the test code. The number of instructions in test code reduces significantly with

this transformation. We empirically evaluate the effect of the proposed data trans-

formation on test code compilation using two popular C compilers - GCC [55] and

Clang [114], enabling all their optimisations. We use industry standard benchmarks

– applications from the automotive and telecom domains of the EEMBC benchmark

suite [161] for embedded systems, and compute intensive performance benchmarks

from SPEC [35]. We also use an industrial application developed by Codeplay Soft-

ware – ComputeCpp™ [30] which enables acceleration of C++ applications on het-

erogeneous compute systems using the SYCL [57] open standard. Tests for this appli-

cation were developed by Codeplay developers as part of test driven development. We

evaluate compilation speedup, execution time, correctness and scalability after apply-

ing the proposed data transformation on these benchmarks.

Our approach resulted in significant compilation speedups in the range of 1.3×
to 69×. Statistical analysis of the results revealed that our transformation resulted

in compilation speedups with both GCC and Clang over all subject programs at 5%

significance level. Speeding up the compilation time with the proposed transformation

did not negatively impact the execution time of test code. Execution for the Codeplay

application is, in fact, faster than the original test code compiled with fully enabled

optimisations. We also confirmed that the transformation maintained correctness with

respect to results of the test executions, and enabled compilation of large test suites (>

1 million tests) that would otherwise not have been possible.

The rest of this chapter is organized as follows. Section 4.1 presents our approach

for reducing compilation time of test code. Our experimental methodology is described

in Section 4.2. Section 4.3 presents the results from our experiments. Section 4.4



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 39

discusses the threats to validity in our experiment and finally, Section 4.5 concludes.

4.1 Data Transformation

A typical test in a test code, as described in Section 4, comprises of four steps: a set

up call, test function invocation with a set of inputs, verification that the outputs match

expectations, and a clean up of state and resources used by the test. Listing 4.1 shows

a test code sample from Google Test [175], a popular C++ framework for test code

development and execution. There are two test groups in listing 4.1, also referred to

as parameterized test suites in Google Test. Each contains multiple tests of the respec-

tive function under test (FUT) – IsPrime() and GetNextPrime(). In both groups, each

test uses a separate invocation of the FUT over a specific test input, and compares the

output to the expected output. Test code in this form has a large number of function

invocations and memory operations, which in turn creates significant overhead during

compilation. The larger the number of test cases, the longer the compilation time,

which in turn has negative impact on productivity.

1 TEST P ( Pr imeTableTes tSmpl7 , R e t u r n s T r u e F o r P r i m e s ) {
2 EXPECT TRUE( t a b l e −>I s P r i m e ( 2 ) ) ;

3 EXPECT TRUE( t a b l e −>I s P r i m e ( 3 ) ) ;

4 EXPECT TRUE( t a b l e −>I s P r i m e ( 5 ) ) ;

5 EXPECT TRUE( t a b l e −>I s P r i m e ( 7 ) ) ;

6 EXPECT TRUE( t a b l e −>I s P r i m e ( 1 1 ) ) ;

7 EXPECT TRUE( t a b l e −>I s P r i m e ( 1 3 1 ) ) ;

8 }
9

10 TEST P ( Pr imeTableTes tSmpl7 , CanGetNextPrime ) {
11 EXPECT EQ ( 2 , t a b l e −>GetNextPr ime ( 0 ) ) ;

12 EXPECT EQ ( 3 , t a b l e −>GetNextPr ime ( 2 ) ) ;

13 EXPECT EQ ( 5 , t a b l e −>GetNextPr ime ( 3 ) ) ;

14 EXPECT EQ ( 7 , t a b l e −>GetNextPr ime ( 5 ) ) ;

15 EXPECT EQ ( 1 1 , t a b l e −>GetNextPr ime ( 7 ) ) ;

16 EXPECT EQ( 1 3 1 , t a b l e −>GetNextPr ime ( 1 2 8 ) ) ;

17 }

Listing 4.1: Google Test Sample Code

Our approach operates on the test code, rather than program source code and trans-

forms the way in which FUTs are invoked and test input data is distributed within test



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 40

foo

Input_1

Output

N 
Tests

foo

Input_1
[ i ]

Input_2
[ i ]

Output
[ i ]

N 
Tests

Input_1
[ N ]

Input_2  
[ N ]

Output 
[N]

Input_2 . . .

. . . 

. . .

Figure 4.2: Original Test Code with N FUT Calls (left) Transformed to an Equivalent

Test Code Containing a Single FUT Call within a Loop (right) Using our Transformation

groups. This is illustrated in Figure 4.2 – we combine test inputs into central data

structures and then embed the call to the FUT within a loop in which each iteration

represents a single test. This transformation reduces the number of distinct FUT invo-

cations and the number of data structures, on which the compiler operates.

4.1.1 Transformation Algorithm

Algorithm 1 illustrates the steps in our transformation. It takes two inputs – the test

code (TC) and the name of the program function (PF) being tested. Output is the

transformed test code (TTC). First, the TC is searched to identify all calls to the PF

along with their input arguments. Next, input test data of the same type across the PF

calls are combined into centralized data structures (DS) accessible by every test. In

the next step, DS are inserted in the TTC. Then, the PF calls are updated in the TTC

to accept the correct data slice from DS. The final step combines the PF calls into a

single call inside a loop. As part of the final step, for each test, the input data from DS

is indexed using the appropriate loop iteration number.

Figure 4.3 shows an example of the test code transformation. In the original

test code before transformation, there is a separate call to the foo function in ev-



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 41

ery test. Inputs to foo are a one-dimensional integer array, inputArray[], and an

integer, inputScalar. After the code transformation, the one-dimensional input

array passed to each of the tests is replaced by a single two-dimensional array,

inputArray[NUM TESTS][], and the input integer is replaced by a single one-

dimensional integer array, inputScalar[NUM TESTS]. Further, multiple calls to the

foo function are replaced by a single call embedded within a loop, where each iteration

represents a test. The iteration index is used to access the correct slice of input data

from the merged data structures for each test.

4.1.2 Implementation

The approach is implemented using Python scripts, which take the FUT calls and data

structures within the parametrized test suite as inputs. The scripts produce valid C/C++

code in which data structures of the same type are combined into centralised data

structures and multiple test function calls are replaced by a single test function call

bound within a loop. The scripts also add the index to the correct data slice from the

centralised data structure which is passed into the FUT called in each loop iteration.

Input: TC test code, PF program function

Output: T TC transformed test code

1: Create a copy of TC, call it T TC.

2: Search T TC for parameterized test suites, and record all

calls of PF , its input arguments and the test oracle data.

3: Merge the input data of the same type from all the tests

into centralized data structures ID DS.

4: Merge the test oracle data of the same type from all the tests

into centralized data structures TOD DS.

5: Merge the multiple PF calls into a single PF call embedded

in a loop with as many iterations as there are tests in the parameterized test suite.

6: Update the PF call within the loop so that it accepts the

correct slice of data from ID DS.

7: Update the test oracle assertions within the loop so that they accept the

correct slice of data from TOD DS.

8: Return T TC.

Algorithm 1: Data Transformation



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 42

Figure 4.3: Data Transformation Example

4.2 Experiment

We evaluate the effectiveness of the transformation proposed in Section 4.1 using pro-

grams from industry standard benchmark families and an industrial application from

Codeplay. We seek to investigate the following questions regarding performance and

correctness:

Q1. Compilation Speedup: Does the proposed transformation, relative to existing

compiler optimisations, speedup test code compilation? To answer this ques-

tion, we used test suites of varying sizes, from 10 to 10K tests, for each subject

program and measured the compilation times before and after the transforma-

tion, enabling all existing compiler optimisations.

Q2. Execution: Does the transformation slow down execution of the test code? To

examine this question, for each program and associated test suite, we compare

running times of the original and transformed versions of the test code.

Q3. Correctness: Does the transformation preserve correctness of test executions?

For each benchmark and associated test suite, we compared values of internal

states and outputs, obtained during execution of each of the tests in the suite

with the original and transformed test code.

Q4. Scalability Does the transformation enable the compilation of larger test suites?

To answer this question, we evaluated feasibility of compiling the test code with

an increasing number of tests, with and without our transformation.



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 43

Subject Domain Description #Tests

a2time01 EEMBC - Automotive Angle-to-time conversion 10K

aifftr01 EEMBC - Automotive Fast Fourier transforms 10K

aifirf01 EEMBC - Automotive Finite Impulse Response filter 10K

aiifft01 EEMBC - Automotive Inverse Fast Fourier transforms 10K

rspeed01 EEMBC - Automotive Road speed calculation 10K

autcor00 EEMBC - Telecom Cross correlation of signals 10K

conven00 EEMBC - Telecom Convolutional encoding 10K

fbital00 EEMBC - Telecom Bit allocation 10K

fft00 EEMBC - Telecom Fast Fourier transforms 10K

viterb00 EEMBC - Telecom Viterbi decoding 10K

401.bzip2 SPEC - Integer Compression 10K

462.libquantum SPEC - Integer Quantum computing 10K

444.namd SPEC - Floating Point Molecular dynamics simulation 10K

470.lbm SPEC - Floating Point Computational fluid dynamics 10K

999.specrand SPEC - Floating Point Pseudo-random number generation 10K

bufferTS ComputeCpp™ Arithmetic operations on the cl::sycl::buffer class 10K

imageTS ComputeCpp™ Arithmetic operations on the cl::sycl::image class 10K

Table 4.1: Subject Programs Used in our Experiment

4.2.1 Subject Programs

In this Section, we describe the programs and associated tests used in our experiment.

We used 15 subject programs from 2 industry standard benchmark suites, EEMBC and

SPEC, that cover a wide range of applications. We also evaluate our approach using an

industry provided program, ComputeCpp™, developed at Codeplay Software. Subject

programs in EEMBC and SPEC benchmarks were accompanied by a small number

of tests. In order to evaluate our approach with large test suites, we randomly gener-

ated up to 10K tests for each of the programs in EEMBC and SPEC, using python’s

random library. Tests for ComputeCpp™ were written by developers at Codeplay Soft-

ware. The programs and their descriptions along with number of tests are provided in

Table 4.1.

EEMBC - We used 10 subject programs from the Embedded Microprocessor Bench-

mark Consortium (EEMBC) [161] that provides a diverse suite of benchmarks

organised into categories that span numerous real-world applications. EEMBC

benchmarks are not just processor-based. They focus heavily on embedded



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 44

software running on smartphone, tablets, and other embedded systems. We

use 5 benchmarks from the automotive domain (AutoBench) and 5 from the

Telecommunications domain (TeleBench) of EEMBC. Benchmarks from Auto-

Bench used in our experiment include a Fast Fourier transformation program, an

angle-to-time converter, an inverse Fast Fourier transformation program, a Fi-

nite Impulse Response filter and a road speed calculator. The other 5 EEMBC

benchmarks come from the telecommunications domain and comprise a convo-

lutional encoder, a bit allocator, a viterbi decoder, a signal correlation program

and another Fast Fourier transformer. For each of the 10 EEMBC programs, we

randomly generated 10K tests. Test suite sizes of thousands of test cases are not

uncommon in embedded software. They typically tend to have more test cases

than other forms because of their complexity [38]. Tests for EEMBC programs

in our experiment are large input arrays.

SPEC - In addition to the EEMBC benchmarks, we used another 5 benchmarks from

the Standard Performance Evaluation Corporation (SPEC) [35] CPU2006 - a

benchmark family designed for comparing the performance of different com-

puter systems against compute-intensive workloads. 2 of the SPEC benchmarks,

a file compression program and a library for the simulation of a quantum com-

puter, come from the CINT2006 suite which evaluates compute-intensive in-

teger performance. The other 3 benchmarks are part of the CFP2006 suite

(compute-intensive floating point performance evaluation) and consist of a bio-

molecular systems simulator, an incompressible fluids simulator and a pseudo-

random number generator. We randomly generated 10K tests for each of the 5

programs.

ComputeCpp™ - We also applied our approach on an industrial application - Com-

puteCpp™ is Codeplay Software’s implementation of the SYCL [57] standard.

SYCL is a single-source C++ programming model for OpenCL [185] that pro-

vides a high level abstraction over OpenCL, involving data dependency handling

and task scheduling. SYCL is comprised of a C++ template library and a device

compiler. In order to provide this higher level of abstraction, the features of

SYCL involve a very high amount of complexity in their implementation and

a combinatorial explosion of potential use cases in their API. ComputeCpp™

enables integration of parallel computing into applications and accelerates code

across OpenCL devices such as GPUs. As part of their Test-Driven Development

process [11], Codeplay Software has produced a large number of test suites for



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 45

ComputeCpp™ with the number of tests in each test suite ranging from hun-

dreds to millions. The compilation time of the test suites for the ComputeCpp™

project has an impact on the software life-cycle because of continuous integra-

tion: before each commit gets accepted, all test suites have to be compiled and

executed. For ComputeCpp™, the compilation time of its test suites is com-

parable to their execution time. We applied our approach to two test suites for

ComputeCpp™, one for testing the SYCL buffer class and one for testing the

SYCL image class. Each test suite contains 10K tests written by Codeplay Soft-

ware developers.

4.2.2 Measurement

We run our experiments using a desktop computer powered by an Intel Core 2 Duo

E8400 processor at 3 GHz, 32KB of Instruction Cache, and 32 KB of L1 Data Cache.

The machine runs Ubuntu Server 14.04 with Linux kernel 3.16.0.33. For increased

accuracy, we disable any non-critical services on the Ubuntu server while benchmark-

ing. For ComputeCpp™, a desktop computer powered by an Intel Quad Core 6700

processor at 3.4 GHZ with 128KB of Instruction Cache and 128KB of L1 data cache

was used. The system also included an AMD Radeon GPU 5450 series with 80 stream

processors. We measure compilation and execution time using the Unix time com-

mand. The results we report consist of the running time on the CPU (user statistic). In

our experiments, we used two well known C compilers, GCC 7.2.0 [184] and Clang

5.0 [114], for EEMBC and SPEC programs. For ComputeCpp™, the developers use

Codeplay’s in-house compiler built on Clang. All subject programs were compiled

with the highest level of optimisation (-O3).

4.3 Results and Analysis

For each of the subject programs presented in Section 4.2, we compare compilation

times, execution times and correctness before and after transformation. We collected

10 measurements for compilation and execution times, and report their medians for

comparison. We do not report the standard deviation as it was less than 1% for every

measurement.



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 46

101 102 103 104

Number of tests

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: Automotive compiled with Clang
aifftr01

aiifft01

rspeed01

aifirf01

a2time01

101 102 103 104

Number of tests

1.0

1.1

1.2

1.3

1.4

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: Automotive compiled with GCC
aifftr01

rspeed01

aiifft01

a2time01

aifirf01

101 102 103 104

Number of tests

1.0

1.1

1.2

1.3

1.4

1.5

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: Telecom compiled with Clang
fbital00

viterb00

conven00

fft00

autcor00

101 102 103 104

Number of tests

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: Telecom compiled with GCC
fbital00

viterb00

conven00

fft00

autcor00

Figure 4.4: Speedup in Compilation Time for EEMBC when Compared to the Original

Code for Different Test Suite Sizes



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 47

4.3.1 Q1. Compilation

Figures 4.4 and 4.5 show the speedup gained in compilation time with EEMBC and

SPEC programs for test suite sizes ranging from 10 to 10K tests, separately for Clang

and GCC. Figure 4.6 shows the compilation speedup for two test suites of Com-

puteCpp™, compiled with Codeplay’s in-house compiler. SYCL, being an abstraction

layer, allows the host and kernel code of a heterogeneous application to be contained

in the same source file. As a result, we present two different plots for compilation

speedup: one for the host test code, and the other for the kernel test code. In the

following sections, we present speedup results for each of the benchmark families.

4.3.1.1 EEMBC: Automotive and Telecom

The results for EEMBC programs in Figure 4.4 are shown separately for programs

from the automotive domain and those from telecom domain to ease illustration. We

find that compilation speedup increases with increasing numbers of tests, for all pro-

grams in both domains, using both GCC and Clang. Speedup is observed for test suite

sizes greater than 100 tests. Maximum speedup for all benchmarks is achieved at the

largest test suite size of 10K tests. Original compilation times for 10K tests are of the

order of 7 to 10 seconds with Clang, and 10 to 33 seconds with GCC.

For automotive programs, maximum speedup achieved with the Clang compiler

is 1.3× for the aifftr01 benchmark (9 secs to 6.5 secs), and 1.4× with GCC for the

same benchmark (11secs to 7.7 secs). The average speedup for 10K tests across all

benchmarks is 1.3× for both Clang and GCC.

For the telecom benchmarks, maximum speedup achieved with Clang is 1.5×, and

1.8×with GCC for the fbital00 benchmark (6.2 secs to 3.5 secs). The average speedup

for 10K tests across all telecom benchmarks is 1.3× for Clang and 1.4× for GCC.

4.3.1.2 SPEC

Figure 4.5 shows the speedups achieved for the SPEC benchmarks. Similar to EEMBC,

the speedups are higher for larger test suites and maximum speedup is achieved for 10K

tests. We start to observe speedup when number of tests exceeds 100 and the increase

is sharp when number of tests rises over 1000. This is because with larger numbers of

tests, significantly more number of instructions are reduced with our transformation.

This is explained in more detail in Section 4.3.1.5

Original compilation times for SPEC are in the range of 1 to 12 seconds. Unlike



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 48

EEMBC, there is a wide range in the maximum speedup achieved over the different

programs with both Clang and GCC. With Clang, the maximum speedup achieved is

15× for 470.lbm, but only 1.5× for 401.bzip2. With GCC, the maximum speedup

is higher - 20.2× for 999.specrand versus 3.2× for 401.bizp2. Average speedup for

10K tests across all programs is 7.9× for Clang and 12.1× for GCC. High disparity

in maximum speedup achieved across programs is due to the number of compilation

units associated with each program, and is discussed in depth in Section 4.3.1.5.

101 102 103 104

Number of tests

2

4

6

8

10

12

14

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: SPEC compiled with Clang
470.lbm

462.libquantum

999.specrand

444.namd

401.bzip2

101 102 103 104

Number of tests

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: SPEC compiled with GCC
999.specrand

462.libquantum

470.lbm

444.namd

401.bzip2

Figure 4.5: Speedup in Compilation Time for SPEC when Compared to the Original

Code for Different Test Suite Sizes.

101 102 103 104

Number of tests

2

4

6

8

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: ComputeCPP compiled on device
bufferTS

imageTS

101 102 103 104

Number of tests

0

10

20

30

40

50

60

70

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: ComputeCPP compiled on host
bufferTS

imageTS

Figure 4.6: Speedup in Compilation Time for ComputeCpp™ when Compared to the

Original Code for Different Test Suite Sizes

4.3.1.3 ComputeCpp™

Figure 4.6 shows the compilation speedup achieved for the two ComputeCpp™ test

suites – bufferTS and imageTS. Original compilation times are shown in Table 4.2. As

observed with EEMBC and SPEC, speedups are proportional to the number of tests

being compiled - starts at 100 tests and increases sharply beyond 1000 tests. For de-

vice compilation, bufferTS and imageTS start with negligible speedups for 10 tests



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 49

and reach a maximum of 9.2× and 2×, respectively, for 10K tests. For host compila-

tion, we observe significantly higher speedups. For 10K tests, bufferTS shows a large

speedup of 69.5× while imageTS achieves a speedup of 15×. The average values

across both test suites are 42.2× for host compilation and 5.6× for device compila-

tion. The reason for the difference between host and device compilation speedups has

to do with the fact that the device code, for both test suites, remains unchanged after

the application of our transformation. We discuss this further in next Section 4.3.1.4.

4.3.1.4 Common Trends

Across all benchmarks, we start to observe speedup for test suites that have more than

100 tests. In addition, speedup increases with the size of the test suite. These results

indicate that our approach is particularly beneficial for programs with large test suites.

Large test suites with thousands of tests are not uncommon, given the rate at which

software has been growing in size and complexity. The largest speedup values are

achieved for the largest test suite size of 10K tests across all programs, maximum

being,

• 1.5X for EEMBC, compiled with Clang

• 1.8X for EEMBC, compiled with GCC

• 15X for SPEC, compiled with Clang

• 20.2X for SPEC, compiled with GCC

• 9.2X for ComputeCpp™, device compilation

• 69.5X for ComputeCpp™, host compilation

4.3.1.4.1 GCC vs Clang For all EEMBC and SPEC benchmarks, there is a differ-

ence in the speedup achieved by the Clang and GCC compilers, with GCC achieving

better maximum speedup than Clang for EEMBC (1.8× vs 1.5×) and SPEC (20.2×
vs 15×) benchmarks. Our experimental data reveals that GCC takes longer to compile

the original version of the code, compared to Clang. However, with the transformed

version, the differences between the two compilers are much smaller. Differences in

compilation time between compilers is not surprising, since they use different algo-

rithms and optimisations. Comparing compilers is not the focus of this paper. It is,



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 50

however, worth noting that our transformations achieve faster compilation for both
compilers, with GCC benefiting more than Clang in our experiments.

4.3.1.5 Analysis

To understand the reason for the speedup observed over all benchmarks, we inspected

the output generated by the -ftime-report flag in the Clang compiler, which outputs

detailed timing data for each compiler pass. It showed that for the largest test suite

size, the most time-consuming compiler passes are:

1. Instruction Selection: choose machine instructions for each instruction in the

intermediate representation.

2. Function Inlining: analyse function calls to check if they should be replaced

with the body of the function.

3. Combine Redundant Instructions: analyse instructions to check if they can be

combined into fewer simpler instructions.

The time consumed by the above three passes constitutes an average of 47% of the

total time. In comparison, using the transformed test code, the same passes are orders

of magnitude faster. This is because the passes operate on fewer instructions using the

transformed code, when compared to the original test code.

To confirm this, we inspected the assembly code generated for the transformed and

original test code. We observed that in the original version, the compiler emits separate

calls to the test function for each test. As more tests are added to the test suite, more

function calls are emitted, leading to much longer times for instruction selection and

function inlining. In contrast, by embedding the test function call in a loop, as shown

in Figure 4.3, the need to compile separate function calls for each test is removed

and the number of instructions generated by the compiler is reduced, leading to faster

compilation times.

For ComputeCpp™, we observe different speedups for host and device compila-

tions (42.2× vs 5.6× average values). The reason for this speedup is in the structure of

the host and kernel code. Both bufferTS and imageTS contain a single kernel, within a

host function that is called once for every test in the test suite. Our transformation al-

ters the number of calls to the host function being tested, but not the kernel embedded

within it. In other words, our transformation only targets host code, not device code.

Given that the device code remains unchanged, it is surprising that we observe speedup



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 51

during device compilation. Upon consulting developers at Codeplay who fully under-

stand ComputeCpp™and its test suites, we learned that the device compiler parses

the entire test code (including the host code) to create the AST which is then used

to identify the kernel code for further compilation. With our transformation, the size

of test code is reduced. As a result, the parser for the device compiler operates on a

much smaller total code base, resulting in compilation speedup even when device code

remains unchanged.

4.3.1.5.1 Speedup and the Amdahl’s Law. The proposed data transformation does

not only optimise the three compilation passes mentioned in section 4.3.1.5 (instruction

selection, function inlining and redundant instruction combination). We can prove this

by applying the Amdahl’s law [61] which is formulated as follows:

Slatency(s) =
1

(1− p)+ p
s

(4.1)

where:

• Slatency is the theoretical speedup of the whole task−→ in our case the theoretical

speedup of the test suite compilation.

• s is the speedup of the part of the task that is optimised −→ in our case the

speedup of the compilation passes which are optimised by the data transforma-

tion.

• p is the proportion of the execution time that the optimised part originally occu-

pied −→ in our case the proportion of the total test suite compilation time that

the optimised compilation passes occupied before the data transformation.

Let us suppose that our data transformation optimises only these three Clang com-

pilation passes:

1. We know that, on average, these three passes constitute the 47% of the test suite

compilation time (when compiled with the Clang compiler which applies its

optimization passes sequentially [114]) before the data transformation, therefore

the p value of the equation 4.1 is 0.47 in this case.

2. Let us now suppose that the speedup achieved in those compilation passes be-

cause of the data transformation (s value of the equation 4.1) is so big that their



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 52

new execution time is zero. We can model this by taking the limit of the function

Slatency as s approaches infinity:

lim
s→∞

Slatency(s) =
1

1− p
(4.2)

3. Using the equation 4.2 with p = 0.47 (see step 1) we get a theoretical speedup of

1.8868×. According to Amdahl’s law, if the only compilation passes optimised

by the proposed data transformation are the three mentioned in section 4.3.1.5,

the maximum speedup we can achieve is 1.8868× even if we assume that the

execution time of the optimised compilation passes is zero (see step 2). However,

in our Clang experiments, we achieved an average speedup much greater than

this threshold (3.5× across all benchmarks compiled with Clang). By proof of

contradiction, we proved that the proposed data transformation optimises more

compilation passes.

Finally, by using again the equation 4.2 with Slatency(s) = 3.5 (average speedup

achieved for Clang compilations) we get p = 0.714. This means that our data transfor-

mation optimises, on average, compilation passes that constitute at least 71.4% of the

original test suite compilation time.

4.3.1.5.2 Speedup Variation Across Subject Programs. Maximum speedup

varies greatly across the benchmarks. With three of the SPEC benchmarks (470.lbm,

462.libquantum and 999.specrand) and ComputeCpp™, our approach achieves signif-

icant speedup in the range of 10× to 69×. However, with the EEMBC benchmarks

and two of the SPEC benchmarks, our approach achieves very low speedup (less than

2×). To understand this, we use the data supplied by the -ftime-report flag in

the Clang compiler, which gives us the time spent compiling each individual file in

the benchmark program. This measurement showed us that for each benchmark, our

optimisation improves the compilation time of the file with the test code, but it does

not affect the compilation time of any other source files used by the program. Thus,

when compiling the test code, if the time taken to compile tests is much greater than

the time needed to compile libraries and other included files in the test code, then our

approach is capable of producing significant speedup.

To better understand this effect, we measured the compilation time for the individ-

ual test code files as percentage of the total compilation time for all SPEC and EEMBC

programs (for test suites of 10K tests, with Clang). For 3 of the SPEC programs that



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 53

gave high speedup–470.lbm, 462.libquantum and 999.specrand– majority of the com-

pilation time (> 97%) is spent on the test code. Closer examination revealed that the

test code is a single file that links to external pre-compiled libraries. On the other

hand, for the other 2 SPEC programs with low speedup– 444.namd and 401.bzip2–

and all EEMBC programs, compiling the test code takes less than a third of the to-

tal time. The test code for these applications included several files (up to 10), all of

which were compiled together with the test code and take much longer than the test

code to compile. Consequently, our transformation speeding up the test code has little

effect, only making up a small fraction of the total compilation time. To help gain

more speedup for such test codes that include large libraries and other files, we recom-

mend pre-compiling these external files/libraries (as is the case for the other 3 SPEC

programs) before applying our transformation.

4.3.1.5.3 Speedup Dip on EEMBC Automotive Programs. On two automotive

EEMBC programs (aifftr01 and aifirf01) we record a small dip in compilation speedup

from 103 to 104 test cases. The dip occurs only when compiling with the GCC com-

piler. Furthermore, we observe a similar behaviour (although we do not record a dip)

with the aiifft01 and a2time01 programs (both belong to the same benchmark family)

when compiled again with GCC: at 102 test cases aiifft01 shows a 1.3× speedup while

the other 4 programs of the same family record a speedup around 1.05×. However, as

the number of test cases increases, aiifft01 shows minimal speedup increase with its

highest speedup at 104 test cases being just over 1.3×. Finally, a2time01 speedup

increases linearly until 103 test cases but its increase at 104 test cases is again minimal.

These trends only occur when compiling the EEMBC programs of the automotive

domain with GCC. Even when compiling EEMBC programs of the telecom domain

(same benchmark family - different domain) with GCC or even the EEMBC automo-

tive programs with Clang, we do not record any dips or minimal speedup increases

as the number of tests cases increases above 102. Given all this, we hypothesize that

our transformation algorithm might not be as effective for certain types of programs

compiled with GCC as the number of test cases increases.

4.3.1.6 Statistical Analysis

We analyse the results presented in Figures 4.4, 4.5, 4.6 and determine if the following

hypotheses are supported,



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 54

H1: Transformed test code, using the GCC compiler, compiles faster than the original

test code.

H2: Transformed test code, using the Clang compiler, compiles faster than the origi-

nal test code.

We are aware that the number of samples used in our experiment is rather small,

and would therefore be unreasonable to fit the data to a theoretical probability distri-

bution. We test the hypotheses by not assuming any particular distribution. To do this,

we use the Mann-Whitney-Wilcoxon test, a non-parametric test with no distributional

assumptions. We use the results for compilation time observed with 10K tests over

all subject programs, with and without our transformation. ComputeCpp™compiler,

based on Clang, is included in the analysis for results using the Clang compiler.

The p-values using Mann-Whitney-Wilcoxon test were 0.028 for GCC and 0.036

for Clang rejecting the corresponding null hypotheses for H1 and H2 at 0.05 signif-

icance level. Thus, for the case studies in our experiment, the hypothesis that our

transformation results in faster compilation of test code, using both GCC and Clang, is

supported at 5% statistical significance.

ComputeCpp™ Test Code # Tests Compiler Orig. time (secs) New time (secs)

bufferTS 10K
host compilation 257 3.7

device compilation 28.2 3

imageTS 10K
host compilation 433.8 29

device compilation 46.2 22.4

Table 4.2: Compilation Times for ComputeCpp™ Test Codes

4.3.1.6.1 Summary. The speedup gained with our approach depends on the num-

ber of tests and also on the proportion of test code size with respect to overall code

size being compiled. We find that across all programs in our experiment, the larger

the number of tests in the test code, the larger the compilation speedup from our ap-

proach. This is mainly attributed to the reduced number of function calls, and as a

result, fewer instructions that need to be compiled. For our industrial case study, Com-

puteCpp™, we observed significant speedups (up to 69X), much larger than the perfor-

mance benchmarks, EEMBC and SPEC, in our experiment. This is primarily because

the industrial case study is much larger than the SPEC and EEMBC programs, and

the reduction in function calls has a larger effect on compilation time. This effect is



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 55

also observed when comparing SPEC and EEMBC. SPEC programs are larger than

EEMBC programs, and we find higher average speedup with our approach for SPEC

(12X for GCC) than EEMBC (1.4X). The results in our experiment lead us to believe

that the proposed transformation will be particularly valuable for large case studies

with large numbers of tests, as is the case for ComputeCpp™.

4.3.2 Q2. Execution

For all subject programs, we measured the running times of the original and trans-

formed versions of the test code, after being compiled in fully optimised mode (-O3

for GCC and Clang) for an increasing number of test cases. We collected 10 measure-

ments per experiment. For all EEMBC and SPEC programs, we find that the execution

of the transformed test code is as fast as the original code. Their differences in median

and standard deviation was <0.82%. For ComputeCpp™, the transformed test code

executed faster than the original version as shown in table 4.3:

ComputeCpp™ Test Code # Tests Orig. time (secs) New time (secs)

bufferTS

10 0.20 0.20

100 0.35 0.30

1000 2.20 1.30

10000 17.28 12.11

imageTS

10 0.30 0.20

100 0.70 0.50

1000 5.10 3.80

10000 55.42 41.07

Table 4.3: Execution Times for ComputeCpp™ Test Codes

For the programs in our experiment, the results categorically show that our trans-

formation does not slow down the execution of the test code.

4.3.3 Q3. Correctness

For each subject program, we collected outputs and values of internal variables from

executions of each of the tests in the test suites, using both the original and transformed

test code. We found that for all subject programs, with 10K tests each, the test outputs

and values of internal program states between the two versions of the code are an exact



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 56

match. We can safely conclude that our framework for transforming test code preserves

correctness of test execution for all 17 benchmarks and test suites in our experiment.

4.3.4 Q4. Scalability

For each of the EEMBC and SPEC programs, we generated test suites with increasing

numbers of tests (powers of 10), and attempted to compile them using the -03 optimi-

sation flag (aggressive optimisation). We did not use the ComputeCpp™ benchmark

since we could not generate tests and alter the size of the test suite created by Codeplay

developers. We hypothesize that our transformation will make it feasible to compile

and optimise much larger test suite sizes than would, otherwise, be possible. When

number of tests in the test code reached 1 million, the original version of the test code

for all benchmarks, with both Clang and GCC, crashed during compilation. However,

our transformation allowed test code with more than 10 million tests to be compiled

successfully with fully enabled optimisations. This demonstrates that our transforma-

tion not only leads to faster compilation of test code, but also makes it feasible to

compile very large test suites while enabling all optimisations.

4.4 Discussion

4.4.1 Threats to Validity

We see three threats to the external validity of our experiment based on the selection

of programs and choice of test suites:

• We chose programs and test suites in our study that did not include template

arguments in the test function call. Our approach is not applicable when tests

are parameterised with data that needs to be evaluated at compile time, which is

the case for template instantiations. Our transformation causes the input for each

test to be evaluated at run-time, using the index of the outer loop responsible

for repeatedly calling the test function with different inputs at each iteration.

Consequently, in its current form, our transformation is not applicable to test

inputs that need to be evaluated at compile time. As a result, our results may

only generalize to programs and test suites satisfying this constraint.

• Another threat to external validity has to do with the fact that we chose programs

that exhibit common assertion logic across all tests of the test suite. In addition



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 57

to test input data, our transformation algorithm operates (in the exact same way)

on the test oracle data in order to reduce the overall test code size. For test suites

where the assertion logic is different (i.e. different assertions) between tests, the

transformation algorithm won’t be able to optimise the assertion logic and thus

it would be less effective.

• The final threat to external validity relates to the test suites used in our study.

We used developer created test suites for ComputeCpp™ and randomly gener-

ated test suites that are controlled for test suite size for the EEMBC and SPEC

programs. We cannot claim that the test suites we used are necessarily repre-

sentative of all possible test suites. Additional research is needed to assess the

performance of the proposed transformation with different test generation frame-

works.

4.4.2 Impact on Developer Feedback

In the transformed test code every iteration of the loop represents a test. This has a

negative impact on developer feedback when a test fails during execution since the

tests do not have a distinct name or a distinct location in the code base. The tests are

evaluated at run time (as opposed to compile time for conventional test suites) and the

only thing that separates them is the iteration index. When a test fails during the ex-

ecution of a transformed test suite, the developer would see messages describing the

failed assertions but there will be no correlation to a failed test. Of course, the devel-

oper could use debug tools, such as the GDB [183], in order to capture the iteration

index and then reverse engineer (or reconstruct) the test by examining the centralized

data structures in order to identify the test input and test oracle data that caused the

assertion failure(s). However this work requires significant effort and its infeasible for

the developer to repeat it every time a test fails.

Some potential approaches for automating the developer feedback loop are:

• Associate the iteration indexes to the original test names. The transformation

algorithm could extract the test names from the original test suite and create a

one-to-one mapping between the iteration indexes and test names. Every time a

test fails then the test framework could utilise this mapping to display the actual

test name.

• Display the test input and test oracle data automatically. Every time a test



Chapter 4. Data Transformation for Reducing Test Suite Compilation Time 58

fails, the test framework could look-up, using the iteration index, the test input

and test oracle data that caused the assertion failure(s) and display them auto-

matically to the developer in a structured way.

4.5 Summary

We have presented a novel approach that allows test code for programs to be compiled

efficiently. Our approach restructures the test inputs and reduces the number of calls

placed by tests to the function being tested. We evaluated the transformation proposed

by our approach using automotive and telecom programs from the EEMBC benchmark

suite, programs from the SPEC benchmark suite, and 1 industry provided program and

test code, ComputeCpp™. We find that our approach results in compilation speedups

of up to 69× for ComputeCpp™, up to 20× for SPEC, and up to 1.8× for EEMBC

programs. Variation in speedup is attributed to size of the program, and also proportion

of test code over total code size being compiled. Speedups also differed based on the

compiler that was used; with gcc benefiting more than clang in our experiments. Fur-

ther, we found that number of tests being transformed directly affected the speedup.

For all subject programs in our experiment, the larger the number of tests, the larger the

speedup gained from our approach. We also observed that execution of the test code

after transformation is as fast or faster than the original test code. Thus, our trans-

formation for compilation time is not detrimental to execution time. Our experiment

results also confirmed that the transformation maintained correctness of test execution

results across all subject programs and test suite sizes.

Time consumed for test code compilation is bound to get worse in the future with

more complex systems and larger numbers of tests. Our approach provides a safe and

efficient means for tackling this problem. In this chapter, we have sampled programs

from embedded systems, performance benchmarks, and an industrial application.



Chapter 5

Test Case Scheduling for Improving

Instruction Cache Locality

Test Suite Execution Process

Software 
Under Test

Test Inputs

Test Outputs

Test Suite 
Compilation

Test Case 
Scheduling

Test Case 
Execution

Chapter Contribution

Figure 5.1: Chapter Contribution

The number of test cases needed to effectively test any non-trivial software is ex-

tremely large. With the prevalence of software in today’s world and the growing com-

plexity of systems, this number is rapidly becoming intractable. Much of the research

in software testing over the last few decades has focused on test suite reduction tech-

niques and criteria (such as coverage) that help in identifying the effective test cases to

retain. This trend is particularly seen in regression testing and black-box testing where

numerous optimization techniques (see section 2.2) have been proposed to reduce test-

ing time. Even after using these test suite optimisation techniques, test suites continue

to be very large and their execution is typically very time consuming.

Execution time for present day programs is primarily memory speed rather than

59



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 60

processor speed bounded. Cache misses are a significant consideration for memory

speed [199, 203]. It is common knowledge that powerful cache optimizations are cru-

cial to improving the cache behavior and increasing the execution speed of these pro-

grams. This observation, however, has surprisingly never been applied to the context

of the test suite execution process. In this chapter, we target the test case scheduling

step of the test suite execution process (see figure 5.1) and propose a series of test case

scheduling algorithms which reduce the number of instruction cache misses and, as a

result, the execution time of test suites.

Cache misses are reduced by increasing the locality of memory references [32], for

both data and instructions. Existing literature has only considered improving data/in-

struction locality over single program runs. Enhancing instruction cache locality across
program execution has previously not been considered and is an entirely novel con-

tribution. The motivation for considering this optimisation is based on the observation

that in program testing, we execute the same program several times (albeit with a differ-

ent test input) increasing the chances of encountering repeated instruction sequences.

Therefore, the knowledge of common instruction sequences between test cases can be

used to help improve the performance of the instruction cache and reduce the over-

all test suite execution time. Figure 5.2 illustrates the contribution of this chapter for

improving instruction cache locality.

Multiple program executionsSingle program execution

Figure 5.2: Our Contribution vs Existing Work

The chapter is organised as follows. Section 5.1 presents the algorithms and im-

plementations of our approach. Our experimental setup and subject programs are de-

scribed in Section 5.2. Performance gains with respect to execution time for the differ-

ent test suite orderings are presented in Section 5.3. Overhead of approximation and



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 61

original ordering algorithms is analysed in Section 5.4. We present a further analysis

and guideline to using our approach in Section 5.5.

5.1 Instruction-Based Test Case Scheduling

During test suite execution, every test case produces an instruction trace that includes

the instructions of the software under test which were executed as part of that test case.

This instruction trace is dynamic in nature and can change as the software under test

and/or the test case code evolves. Figure 5.3 includes three test cases for a toy program

that compares integers. During T1 execution the equality condition line 6 executes,

succeeds and allows the control flow to enter inside the if clause where the return

statement on line 7 executes and T1 is completed. The instruction trace for T1 is,

therefore, [6, 7]. For T2 the line 6 equality condition fails and the control flow moves

to the equality condition on line 9 which is successful and allows the execution of the

line 9 return statement which completes T2 with the following instruction trace: [6, 9,

10]. T3 produces an instruction trace similar to T2 ([6, 9, 12]) with the only difference

being that the equality condition on line 9 fails, something which leads to the execution

of the return statement on line 12.

T1 Executed 
Instruction Trace

6

7

T2 Executed 
Instruction Trace

6

9

10

T3 Executed 
Instruction Trace

6

9

12

Figure 5.3: Test Case Instruction Traces

To maximise temporal re-use of instructions across several executions of the pro-

gram (or test case executions), we need to determine an order of test case executions

such that distance between consecutive test case executions in the order is minimized

while also minimizing the total distance of the order. Note that it is important to min-



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 62

imise the total distance additionally, since that helps pick the best among all orders

that have minimal distance between consecutive test case executions, each of which

is produced by a different starting vertex or test case execution in our case. This is

similar to the problem of least cost Hamiltonian Path which is known to be NP-hard.

In our approach, we use the nearest neighbour and the approximate nearest neigh-

bour algorithms as approximate solutions since they effectively solve the sub-problem

of minimising distance between consecutive test case executions that is important for

leveraging immediate temporal locality. Distance between two test cases, Ti and Tj, is

defined as:

D(Ti,Tj) = #instructions different between Ti and Tj (5.1)

The rationale for this definition of distance is that instruction locality between test runs

is greater when there are more common instructions between them (or fewer different

instructions). In the example of figure 5.3, the distance (according to equation 5.1)

between T1 and T2 is three since there is a single instruction (line 7) which has been

executed by T1 and not T2 and two instructions (lines 9 and 10) that have been executed

by T2 and not T1. T1 and T3 have the same distance (three) between them, however T2

and T3 have a smaller distance (two) between them since the only instructions executed

by one test and not the other are the ones in line 10 (executed by T2 but not T3) and

line 12 (executed by T3 but not T2). In such a scenario, we improve the chances of

re-visiting the same instructions between two test suite runs if we place T2 next to T3,

rather than T1, in the order of test case execution.

To enable scalability, we use basic blocks instead of instructions to compute dis-

tance in Equation 5.1. D(Ti, Tj) is the symmetric difference between the set of basic

blocks visited by Ti and Tj. Note that, D(Ti, Tj) = D(Tj, Ti) in our definition. In our im-

plementation we express the distance as a fraction of the total number of basic blocks

visited by all test cases1, i.e

D(Ti,Tj) =
#basic-blocks different between Ti and Tj

Total #basic-blocks visited by all tests
(5.2)

As stated earlier, our approach to solve the distance minimisation problem is based on

the nearest neighbour algorithm. For a sequence with N test case runs and Tp being

a test case run at position p, our approach re-orders (or permutes) the sequence such

that,

D(Ti,Ti+1)<= D(Ti,Tj), where j > i+1 and i ∈ 1, ...,(N−2) (5.3)

1This is done so that distances can be compared against a threshold defined subsequently.



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 63

The condition in Equation 5.3 states that for a test case execution at position i, Ti, the

next test case execution in the permuted sequence, Ti+1, should be the one that has the

least distance to Ti among the test case executions that have not yet been visited (or

permuted).

Algorithm 2 illustrates our optimisation approach. We provide as inputs N test

cases in some given sequence with Ti being test case at position i. We also provide

an input threshold distance, Thr, so that test case executions which are within Thr

distance of each other will be considered neighbours and used in the nearest neighbour

computation. Test cases whose distance exceeds Thr are not considered neighbours

and will be examined for ordering only after all the neighbours are visited. Thr is a

function of cache size and program size and is used as an indicator of the distance limit

beyond which immediate temporal locality between test cases cannot be improved

by ordering2. This in turn helps save computation effort and time by not having to

consider test cases that exceed Thr in the nearest neighbour computation.

Steps 1 to 3 of algorithm 2 dynamically analyse test case executions and compute

the distance matrix. The heuristic we use to pick the starting test case run in our

execution order is the one with most unvisited neighbours. We set this to current test

case and mark it with a visited flag. We then check if the current test case has unvisited

neighbours and pick the one that is closest. This becomes the new visited current and

the process is repeated with neighbours. If there are no unvisited neighbours, and we

still have test cases that are not visited, we pick a new current test case in the same

way as we picked the starting test case in the beginning and repeat the process with

neighbours.

5.1.1 Approximate Test Case Scheduling

Algorithm 2 is exponential with respect to number of test cases. The main computa-

tional bottleneck is the calculation of the distance matrix which has N2

2 complexity for

a test suite with N test cases. We found in our evaluation in Section 5.4 that algorithm 2

is unable to scale beyond 14K test cases.

In order for our approach to be scalable, we implemented an approximate near-

est neighbour algorithm which builds a multi-probe locality-sensitive hashing (LSH)

index [177] instead of calculating the full distance matrix. LSH is a technique for

grouping points in multi-dimensional space into buckets based on some distance met-

2Thr=1 - (Average #instructions across test runs / Cache size in instructions) if (program size <
cache size). Else, Thr is median of minimum and maximum distance observed in the distance matrix.



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 64

Input: N test cases, P program, T hr defining cutoff distance between test cases to be

considered neighbours

Output: List R with the permuted sequence of the N test cases

1: For 1≤ i≤ N run each test case Ti on P and record the set of visited basic blocks

for each {BTi} as well as the set of basic blocks visited cumulatively by the test

suite {BT S}.
2: For 1≤ i≤ N combine each {BTi} with {BT S} in order to create a binary vector

{BVi} of equal length for each test case with each bit representing a basic block.

3: ∀i, j ∈ {1,N} build a N×N distance matrix of Ti to Tj such that D(Ti,Tj) is the

hamming distance of {BVi} and {BVj}.
4: From the distance matrix, select a starting test case T as the one that is not visited

and has the most unvisited neighbours (i.e. D(Ti,Tj)< T hr).

5: Set this to currentT, mark it as visited, and insert it into the end of list R.

6: If currentT has no unvisited neighbours, go to Step 9.

7: Pick the neighbour that is not visited and has the least distance from currentT.

8: Go to step 5.

9: If there are unvisited test case runs in distance matrix go to step 4.

10: Output R as the permuted sequence of test cases.
Algorithm 2: Optimized Order - Nearest Neighbour Analysis



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 65

ric (in our case the hamming distance). Points that are close to each other under the

chosen metric are mapped to the same bucket with high probability. Our approximation

solution is illustrated in algorithm 3. Steps 1 and 2 are identical to our optimisation

algorithm but instead of computing the distance matrix, we construct a multi-probe

Locality-Sensitive Hashing (LSH) index. We pick a starting test case at random and

build an order using approximate nearest neighbour queried from LSH index until the

index is empty. The approximation algorithm has O(N) complexity for a test suite with

N test cases.

Input: N test cases, P program

Output: List R with the permuted sequence of the N test cases

1: For 1≤ i≤ N run each test case Ti on P and record the set of visited basic blocks

for each {BTi} as well as the set of basic blocks visited cumulatively by the test

suite {BT S}.
2: For 1≤ i≤ N combine each {BTi} with {BT S} in order to create a binary vector

{BVi} of equal length for each test case with each bit representing a basic block.

3: Construct a multi-probe locality-sensitive hashing index {LSH} from the set of

data points {BVi}, i ∈ 1,N.

4: Select a random starting T from the {LSH} index.

5: Set this to currentT, remove it from {LSH}, and insert it into the end of list R.

6: If {LSH} empty, go to step 9.

7: Query the {LSH} in order to get the approximate nearest neighbour of currentT.

8: Go to step 5.

9: Output R as the permuted sequence of test cases.
Algorithm 3: Approximated Order - Approximate Nearest Neighbour Analysis

5.1.2 Implementation

We implemented our approach in C++11. Our implementation follows from Algo-

rithms 2, 3 and is illustrated in Figure 5.4.

5.1.2.1 Test Case Analysis

For mapping each test case to the set of its visited basic blocks we used Intel’s Pin

tool [128]. Pin is an instrumentation-based dynamic analysis framework which allows

the development of customized dynamic program analysis tools (a.k.a Pintools). We



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 66

Dynamic 
Analysis

Nearest 
Neighbour 
Analysis

Test 1

Test 2

Test 3

Test 4

Test 2

Test 4

Test 1

Test 3

 

 

 

 

Distance
Matrix

Computation

Intel Pin Tool

Our Optimization Tool in C++11

Approximate 
Nearest 

Neighbour 
Analysis 

(LSH)

Test 2

Test 4

Test 3

Test 1

Our Approximation Tool in C++11/FLANN

Set of visited 
basic blocks 
for each test 

case

Figure 5.4: Instruction-Based Test Scheduling

developed a Pintool that records visited basic blocks for a program execution. Given a

C/C++ program and its corresponding test cases, our implementation will execute each

test case independently and dynamically analyse it with our Pintool. To increase the

accuracy of our analysis, each subject program is compiled without any optimisations.

5.1.2.2 Test Case Distance Calculation

In our initial implementation, we used the standard C++ library function

std::set symmetric difference for computing the distance between two test cases.

However, upon profiling, we found that this function does not scale adequately with

respect to the size of visited basic blocks sets. We, therefore, decided to replace

the set symmetric difference operation with hamming distance between std::bitsets,

which is semantically equivalent in our context and has been shown to be very fast in

C++ [160]. With this improved implementation using std::bitsets, the overhead of our

original optimisation algorithm was significantly lower.



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 67

5.1.2.3 Approximate Nearest Neighbour.

For locality sensitive hashing we used the C++ implementation of FLANN [148], a li-

brary for performing fast approximate nearest neighbour searches in high dimensional

spaces. In our configurations we had 12 hash tables and the length of the key in these

tables was 20.

5.2 Experiment

We conduct our experiments over large sets of programs from different application

domains to assess the following,

1. Performance - Execution time of Test Suite. We use four different types of

test suites in our evaluation for performance:

• Opt- Test suite ordered according to our original optimisation, Algorithm 2

from [188].

• Approx - Test suite ordered according to our approximation, Algorithm 3.

• BC - Test suite ordered greedily by an existing test adequacy measure. We use

branch coverage in our evaluation since it is a widely used structural coverage

metric [9].

• Random - We randomly permute the test cases in the test suite. We generate

2000 such random permutations. This is done for programs in the SIR bench-

mark and LLVM Symbolizer. We do not generate random permutations for pro-

grams in EEMBC benchmark since the size of test suites are large, 70K tests.

Execution time for large number of random permutations becomes impractical

for such large test suites.

We also check if the number of cache misses have reduced as a result of our optimisa-

tions.

2. Overhead of Optimisation. We assess the overhead for computing the opti-

mised and approximated permutations with respect to increasing number of test cases

in the test suite.

5.2.1 Subject Programs

We assess performance and overhead over the following programs:

SIR - We use 11 programs from the SIR repository for our experiment. Programs

include lexical analysers, priority schedulers, a search utility, stream text edi-



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 68

tor, a statistics program, and an aircraft collision avoidance system. Most SIR

programs are accompanied by 100 to 5500 test cases. Space is the only subject

program in SIR with a moderately large test suite - 13585 test cases. We ran the

existing test suite associated with each of the SIR programs for our experiment.

EEMBC - In addition to the SIR repository, we used the Embedded Microproces-

sor Benchmark Consortium (EEMBC) that provides a diverse suite of bench-

marks for microprocessors, micro-controllers and embedded devices. We use

8 EEMBC benchmarks – 3 from the automotive domain (AutoBench) and 5

from the Telecommunications domain (TeleBench) of EEMBC. AutoBench is

a benchmark collection for evaluating the performance of microprocessors and

microcontrollers in automotive applications and programs used in our experi-

ment include an angle-to-time converter, a pulse-width modulator and a road

speed calculator. The other 5 EEMBC benchmarks come from the telecommu-

nications domain consist of a convolutional encoder, a bit allocator, a viterbi

decoder, a signal correlation program and another Fast Fourier transformer. For

each of the 8 EEMBC programs, we randomly generated 70000 test cases.

LLVM Symbolizer - Finally, we conducted our experiment on an LLVM tool, the

llvm-symbolizer which takes as input arbitrary object files along with ad-

dresses and returns the corresponding source code locations. This tool utilizes

debug info sessions and the symbol table of the input object file. We generated

432 test cases which are a combination of object files from well known programs

(including SIR and EEMBC) along with a set of randomly generated addresses.

5.2.2 Measurement

We run our experiments using a desktop computer powered by an Intel Core 2 Duo

E8400 processor at 3 GHz, 32KB of Instruction Cache, and 32 KB of L1 Data Cache.

The machine runs Ubuntu Server 14.04 with Linux kernel 3.16.0.33. For increased ac-

curacy, we disable any non-critical services on the Ubuntu server while benchmarking.

We measure the execution time of our algorithms and program test case runs using

the Unix time command. The results we report consist of the time the under-profiling

program was running on the CPU (user statistic).



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 69

Subject Description Size (Avg. Exec. Instrucs.) #Test Cases Repository

concordance Utility for word indicies 3.6e+06 744 SIR

grep Search utility 2.57e+06 470 SIR

printtokens Lexical analyser 6.27e+03 4130 SIR

printtokens2 Lexical analyser 9.08e+03 4115 SIR

replace Pattern matching and substitution 1.28e+04 5542 SIR

schedule Priority scheduler 5.64e+03 2642 SIR

schedule2 Priority scheduler 1.49e+04 2710 SIR

sed Stream text editor 5.36e+06 358 SIR

space Interpreter for ADL 6.16e+04 13585 SIR

tcas Aircraft collision avoidance system 2.23e+02 1608 SIR

totinfo Statistics computation 1.89e+04 1052 SIR

autcor00 Cross correlation of signals 6.25e+04 70000 EEMBC

conven00 Convolutional encoding 5.99e+04 70000 EEMBC

fft00 Fast Fourier transforms 2.97e+05 70000 EEMBC

fbital00 Bit allocation 7.74e+04 70000 EEMBC

viterb00 Viterbi decoding 5.19e+05 70000 EEMBC

a2time01 Angle-to-time conversion 5.92e+03 70000 EEMBC

puwmod01 Pulse-width modulation 1.33e+06 70000 EEMBC

rspeed01 Road speed calculation 2.18e+07 70000 EEMBC

llvm-symbolizer Address to source code conversion 1.70e+06 432 LLVM

Table 5.1: Subject Programs Used in our Experiment

5.3 Performance Results

For each of the different benchmarks – SIR, EEMBC and LLVM Symbolizer, we report

the performance of the different test suites mentioned in Section 5.2 – Opt, Approx,

and BC. For SIR programs and the LLVM Symbolizer, owing to the smaller size of

their test suites, we also report the performance of 2000 random permutations of test

suites (Random).

5.3.1 SIR

Comparison of the four different types of test suites – Opt, Approx, BC, and Random,

for the 11 programs in the SIR benchmark is shown in Table 5.2. The histogram

frequencies for the 2000 random permutations, and 100 runs of each of Opt, Approx

and BC are shown. The vertical dashed line shows the median execution time over the

distribution for each of the four different types of test suite. We do not show standard

deviation, since we found that the execution times for all subject programs over the



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 70

Table 5.2: Histogram Frequencies of Execution Time for Opt, Approx, BC, Random

Test Suites for 11 SIR Programs



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 71

random test permutations were not normally distributed. We confirmed this by running

chi-squared goodness of fit test, and the p-values for all programs were 0 (rejecting the

null hypothesis that they are normally distributed at 5% significance level).

5.3.1.1 Observations on Random

It can be seen from the plots in Tables 5.2 that execution times clearly vary across

random test permutations. The extent to which execution times vary is different for

each program and associated random tests. The differences between the best and worst

permutation execution times ranged from 8.53% to 29.38%. The differences observed

over random permutations can be attributed to test case distances being distributed over

a wide range for these programs. Test suites for these programs were such that there

were clusters of test cases with low distances between them, i.e. they execute similar

control flow paths. Distances between test cases across clusters were high. As a result,

random permutations that change the ordering of test cases within a cluster will have

little effect on the instruction locality. and those that changed the order across clusters

will have a negative effect on instruction locality. The size and number of clusters will

determine the magnitude of this effect.

5.3.1.2 Comparison Across Test Suites

It is evident that for all programs, median performance of Opt does better than the

majority of the random permutations and is very close to the best performing random

permutation (left extreme of the blue curve). For 8 of the 11 programs, Opt does better

than 90% of the random permutations. For 2 other programs, Opt outperforms 83%

of the random permutations. As observed earlier, test suites for these programs have

clusters of test cases with low distances within, and high distances across clusters. Our

approach for permutation ensures that test cases within clusters are executed in close

succession, effectively leveraging the instruction locality between them. We believe

this is the primary reason for outperforming a large majority of random permutations.

We find that median Opt outperformed the median Random performance by 1.13% to

7.99%. Approx also performs comparably to Opt on all programs, differences between

their medians is between 0.48% to 2.10%. Among the test suite orderings, BC typically

tends to be worst performing, achieving lesser than the median Random performance

across all SIR programs. We believe this can be attributed to the insensitivity of the BC

ordering to instruction similarity between test cases and as a result, incurs an increased



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 72

Figure 5.5: Comparison of Execution Times for Approx, BC for 8 EEMBC Programs

number of instruction cache misses. We confirm this with the results from cache misses

discussed in Section 5.3.4.

For concordance, although median BC is worst performing, all 4 different test

suite orderings are very close in the performance achieved. This is because number of

instructions executed per test case for concordance exceeds cache size. As a result,

it is not possible to achieve improved instruction locality across test cases with our

approach for concordance.

5.3.2 EEMBC

Each of the subject programs in the EEMBC benchmark were accompanied by 70K

randomly generated test cases. Each test suite execution took more than 6.5 hours to

execute. In the interest of keeping execution times practical, we did not run 2000 ran-

dom permutations (Random) of each test suite. Additionally, we find that the overhead

incurred with our naı̈ve approach to generate the Opt ordering was prohibitive for test

suites with 70K test cases. Overhead of our algorithms is discussed in Section 5.4. As

a result, we restrict the performance discussion for EEMBC programs (with 70K tests

each) to comparison of orderings generated by Approx and BC, as shown in Figure 5.5.



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 73

5.3.2.1 Approx versus BC

As can be seen in Figure 5.5, Approx and BC are comparable in performance, with

Approx only slightly outperforming BC. Differences in performance are in the range

of 0.50% to 2.94% across all 8 EEMBC programs. This may seem surprising after

the results observed over SIR programs. However, on further investigation, we find

that these results are to be expected. The difference in executed instructions between

test cases in the suite is negligible over all programs, implying similar visited basic

blocks. We measured the distances among test cases in the suite to confirm this and we

found the average test case distance (as a percentage of the total number of executed

instructions by the full test suite) was in the range of 0.84% to 3.35% across EEMBC

programs. In comparison, average test case distance for SIR programs was in the range

of 7.97% to 38.62% As a result, test case ordering will have no meaningful effect on

instruction locality, and therefore execution time.

5.3.3 LLVM Symbolizer

For LLVM Symbolizer, as with SIR, we generated all four different types of test suites

– Opt, Approx, BC, Random. Figure 5.6 depicts the histogram frequencies for 2000

Random permutations and 100 runs of each of Opt, Approx and BC. LLVM Sym-

bolizer showed significant improvements in execution time with both Opt (16.74%)

and Approx (13.06%) relative to BC. Furthermore, Opt outperformed 97.75% of the

Random permutations, while Approx outperformed 87.6%. Median Opt performance

was better than median Approx by 4.23%.

Performance gains observed over LLVM Symbolizer is highest across all bench-

marks in our experiment. The superior gains was a result of high test case distance

between tests in the test suite. This is further discussed in Section 5.5.

5.3.4 Conformance with Cache Miss Rate

The premise in our orderings (Opt and Approx) is that they will reduce the number

of instruction cache misses by increasing cache locality. This in turn will translate to

faster, or reduced, execution time. We checked this premise for both Opt and Approx

orderings. Cache miss rate was measured by running Cachegrind that is part of Val-

grind [153] on the subject programs. We find that the reduction in execution times

closely follows reduction in cache misses, for our orderings, relative to BC, over the



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 74

Figure 5.6: Histogram Frequencies of Execution Time for Opt, Approx, BC, Random

Test Suites for LLVM Symbolizer



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 75

subject programs. For instance, for replace in the SIR benchmark, with the Opt or-

dering, cache miss rate reduction was 15.98% compared to BC, and execution time

was faster by 10.39%. With the Approx ordering, cache miss rate reduced by 11.75%

with respect to BC, and execution time was 8.47% faster. For fbital00 in EEMBC,

cache miss rate reduced by 0.9% and execution time by 0.5% using the Approx order-

ing, when compared to BC. LLVM Symbolizer acheived 14.84% and 12.03% reduction

in cache misses, with Opt and Approx orderings respectively. Corresponding speedup

in execution was 16.74% and 13.06% with both orderings.

5.3.5 Synopsis

It is clear from the performance results for programs in SIR, EEMBC and LLVM

Symboliser that the order in which test cases are executed affects execution time. The

nature of programs and test cases, in terms of range of distances between test cases,

determine the magnitude of the effect. The differences between worst and best ran-

dom permutation ranged between 8.53% to 29.48% over SIR programs and 27.12%

over LLVM symbolizer. Approx ordering gave comparable performance to Opt or-

dering over all benchmarks. Maximum performance gains were observed with LLVM

Symbolizer and least with programs in EEMBC benchmark. Average test case dis-

tance between tests is high for LLVM Symbolizer. EEMBC program executions are

compute-intensive with limited variation in control-flow (largely sequential). As a re-

sult, distance between test cases and scope for improvement is low. We confirmed that

our orderings, Opt and Approx, reduced instruction cache miss rates and the magni-

tude of the gains followed execution time improvements. Opt ordering gives the best

performance over random ordering and BC. However, it does not scale to large test suite

sizes as discussed in Section 5.4.

5.4 Overhead Results

In this Section, we discuss overhead incurred in executing our algorithms for Opt

and Approx orderings. For Opt ordering, we use the efficient implementation using

std::bitsets mentioned in Section 5.1, rather than the implementation in [188]. We

compare overhead (time taken) for the two orderings relative to increasing number of

test cases until maximum test suite size is reached.



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 76

5.4.1 SIR

Table 5.3: Overhead for Generating Opt, Approx Orderings for Increasing Number of

Tests over 11 SIR Programs

It is clear from Table 5.3 that overhead of our algorithm to generate Opt ordering

increases exponentially with the number of tests over all SIR programs. We limited our

analysis to the maximum number of test cases available in the repository for each pro-

gram. For the replace program, for instance, overhead for Opt starts at 0.44 seconds

for 554 tests and increases exponentially to 84.55 seconds for 10 times more tests.

Overhead of Approx on the other hand, increases linearly with the number of tests.

This is observed uniformly over all SIR programs. For replace, Approx overhead

starts at 0.07 seconds for 554 tests and increases linearly to 3.30 seconds for 10 times

more tests. Comparing the overhead of the two orderings we find overhead of Opt is

significantly larger than that of Approx when the number of tests is large. Considering

the full test suite for all programs, Opt overhead is greater than Approx overhead by



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 77

28% (for sed) to 2462% (for replace). For subject programs, grep, sed, absolute

value of Opt overhead is very small (< 0.25 secs) since the maximum number of test

cases executed with these programs is small (less than 500). At such sizes, Opt over-

head is 28% (sed) and 53% (grep) more than Approx, which is better than for other

programs with larger numbers of tests.

5.4.1.1 Smaller Overhead with Approx

Using Approx, rather than Opt, results in considerable overhead reductions across all

programs. Overhead of executing the Approx algorithm when compared to test suite

execution time is negligible for 4 of the 10 SIR programs with small test suite sizes.

Overhead is 0.4 to 1.8 times test suite execution time for all other programs, except

space where it is 7 times as much. space has the largest test suite with 13.5K tests,

however the average executed instructions and total test suite execution time is small.

As a result, the impact of Approx overhead is more significant. Overhead with large

test suites for programs and test suites with significantly longer execution times is

discussed in the following Section.

5.4.2 EEMBC

Overhead of Opt and Approx for EEMBC benchmarks is shown in Table 5.4 for an

increasing number of tests cases, upto 70K tests. We found that the Opt algorithm does

not scale beyond 14K tests (runs out of memory). The Approx algorithm, on the other

hand, does scale to the maximum test suite size of 70K tests, for all 10 programs. The

average Approx overhead, across programs, as a fraction of the total execution time

for 70K tests is 22.6%. Overhead of our ordering algorithm can be further reduced

by running it on GPUs. We found a reduction of over 5 times in the overhead when

running the Approx algorithm for autcor00 with 70K tests on a NVIDIA GeForce

GTX 660M with 384 CUDA cores.

5.4.3 LLVM Symbolizer

The overhead of the LLVM Symbolizer is illustrated in Figure 5.7. For Opt, the over-

head ranged from 0.0004 seconds (43 test cases) to 0.17 seconds (432 test cases) which

represents 3.7% of the full test suite execution time. For Approx, overhead was in the

range of 0.001 seconds to 0.28 seconds (5.8% of execution time). Overhead for Approx



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 78

Table 5.4: Overhead for Generating Opt, Approx Orderings for Increasing Number of

Tests over 8 EEMBC Programs

is higher than Opt when the number of test cases is small. The time taken to build LSH

index in Approx is more significant with small test suites. It is, however, worth noting

that overhead of Approx increases at a slower rate than Opt as test suite sizes get larger

(owing to lower algorithmic complexity). Opt overhead can become prohibitive for

large test suites, as observed over EEMBC programs.

5.4.3.1 Overhead - Offline and Amortised

The ordering algorithms, whether it be Approx or Opt, can be performed offline (be-

fore a test suite is deployed), avoiding costly overhead during test execution phase.

Additionally, the ordering, once generated, can be re-used for future test suite runs.

It is common practice in embedded devices to periodically run in-situ test suites and

this is further emphasized by practices like test-driven development [38]. For newer

releases on evolving software, overhead can be amortised by executing the ordering al-

gorithm only on new test cases and existing test cases affected by updates. To identify

the existing test cases that need to be re-ordered, we will use the information on mod-

ified code and determine the test cases that execute modified basic blocks and those

reachable from them. This overhead incurred for evolving software is similar to the



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 79

Figure 5.7: Overhead for Generating Opt, Approx Orderings for Increasing Number

of Tests for LLVM Symbolizer

overhead incurred in regression test selection or prioritisation techniques.

5.4.4 Synopsis

The overhead of Opt is exponential in size of test suite and does not scale beyond 14K

tests for EEMBC programs. When test suite sizes are small (< 500 tests), overhead

of Opt is acceptably small as seen with LLVM Symbolizer. The overhead of Approx

is tractable and scales well to large test suites (70K tests for EEMBC). We found that

the overhead could be further reduced with the use of GPUs. Additionally, ordering

algorithms can be performed offline and overhead need not be incurred during actual

test suite execution.

5.5 Discussion

Our results in Sections 5.3 and 5.4 indicate that Opt and Approx orderings targeting

cache locality result in faster execution times over a conventional ordering like BC, but

with varying magnitudes for the different subject programs. In this Section, we analyse

reasons for this and present a metric that can be used to help predict gains from our

approach and to make informed decisions on whether or not to apply our proposed



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 80

EEMBC

SIR

LLVM

Figure 5.8: Test Case Distance vs Time Improvement for Approx Ordering over BC

orderings.

Figure 5.8 shows average Test Case Distance (TCD), and execution time improve-

ments of Approx over BC with full test suites for each subject program. Recall that

Opt ordering does not scale for EEMBC programs with large test suites, so we only

analyse the results for Approx. TCD between two test cases is computed as a fraction

using Equation 5.2, number of different basic blocks between the two tests over total

executed basic blocks by a test suite. For a test suite of size N, the distance matrix

between test cases is a square matrix (Ti j is symmetric to Tji) with diagonal entries

being 0. The number of test case distances that are computed in such a matrix is

N2/2−N. For each subject program, we average over all such test case distances to

get the Y-axis in Figure 5.8.

We find that average TCD is positively correlated with Approx execution time im-

provement, r = 0.76. We do not include the concordance program in this computation

since a single test execution exceeds cache size and our approach is not relevant for

such executions. Applying our approach for program executions that exceed cache size

is discussed in future work.

Average TCD is a good indicator of performance improvements that can be achieved

with Approx ordering when test executions fit in the cache. A higher average TCD in-

dicates the differences in instructions executed by test cases in the test suite is higher.



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 81

Ordering for instruction cache locality has a higher impact on performance gains for

such test suites since it ensures that tests with high TCD between them are not ex-

ecuted in succession, avoiding cache misses that result from the difference. LLVM

Symbolizer has the highest average TCD among subject programs of 42.18% and also

the highest performance improvement with Approx of 13.06%. Test suites with low

average TCD contain tests that execute largely the same set of instructions (similar

control flow). This is often seen in programs, such as those in the EEMBC suite, that

are largely sequential in their control flow with only a few control flow statements. As

a result, any order will have high instruction locality. Opt and Approx orderings will

not result in any significant improvements for such programs and test suites. For our

subject programs, we found that when average TCD was low (< 2%), execution time

improvement was correspondingly low (< 2%).

5.5.1 Recommendations

Based on the results over our subject programs, we recommend the Approx ordering of

test cases in a test suite since it achieves (1) Comparable execution time improvements

to Opt, and (2) Scales well to large numbers of tests, as opposed to Opt. Overhead

of Approx is less than that of Opt for large test suites and can be further reduced by

running the algorithm on GPUs. For subject programs whose executions fit in the

cache, we found average TCD serves as a good guide for determining whether Approx

ordering will result in reasonable performance improvements.

5.5.2 Effect on Fault Finding Capability

While our proposed test orderings reduce the overall test suite execution time, they

have a negative effect on the progressive fault finding capability of the test suite (i.e. the

ability of the test suite to uncover a bug quickly during execution). The test coverage in

our proposed orderings increases very slowly since every subsequent test case executes

as similar code (of the software under test) as possible with its previous one. Therefore,

a bug that is uncovered by a test case that differs significantly (according to the 5.2

equation) from the first test case (in our ordering), would be identified at the later stages

of the test suite execution. The exact opposite is true for a BC test ordering since every

subsequent test case would be executing as different code as possible compared to its

previous one. However, as seen in section 5.3, BC test orderings tend to be significantly

slower.



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 82

The overall fault-finding capability is not affected by our proposed orderings since

the test cases themselves are not altered. Once the test suite has finished, the fault

finding capability would be the same as a BC or any other test case ordering. Therefore

we recommend using our orderings in cases where the completion of the test suite

execution is feasible in order to benefit from time reduction without sacrificing fault

finding capability. In cases where its infeasible to execute all the test cases of a test

suite every time, we recommend the following approach:

1. Optimise for test coverage (e.g. BC).

2. Identify the first X test cases from the ordering of step 1 which are feasible to

execute every time.

3. Apply our proposed orderings to the identified set of X test cases.

5.5.3 Future Work

The effectiveness of proposed orderings, as with compiler optimisation techniques,

depends on the characteristics of the program and test cases. Size of the program,

distances between test case runs, number of test cases, cache size, will all have a sig-

nificant effect on the performance gained from our approach. For programs whose

executions exceed cache size, ordering of tests will have little effect since mutliple ex-

ecutions do not fit in the cache. We discuss this challenge and a potential solution that

we plan to pursue in our future work. We also discuss our approach in a parallel test

execution setting.

5.5.3.1 Scaling with Size of Program

As program execution size increases, instruction locality across test runs becomes a

challenge since the cache may not accommodate all the instructions from a single pro-

gram run resulting in capacity misses. To tackle this challenge, we plan to explore

splitting programs into segments that fit in the cache. For instance, let’s say we split

a program P into four segments, S1, S2, S3, and S4, such that each segment fits in

the cache. We run all test cases on segment S1 storing the results, and then we run

all test cases on segment S2 using the results from S1 and so forth. Storing and read-

ing intermediate results from the segment run of a test case in order to execute the

successor segment can be overlapped with the execution of other test cases on that

segment, reducing the potential bottleneck it may cause. This is a classic pipelining



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 83

problem which has a well known solution with respect to instructions. We plan to suit-

ably adapt existing ideas for instructions to segments. Running permuted test cases on

the segments rather than the whole program may help leverage instruction locality for

large programs. We will explore the merits of this approach in our future work.

5.5.3.2 Running Tests in Parallel

It is often the case that test suites with large numbers of test cases are not run se-

quentially on a single processor, and are, instead, launched simultaneously on multiple

processors. To achieve this, the test suite is split into groups (or collections) and each

group of tests is executed on a different processor. Our algorithm for permuting test

cases works by creating groups of tests with low distances within them. Every time

we pick a new starting test case (Step 4 in Opt and Approx algorithms), we start a new

group. We could, therefore, easily use our approach to create and launch groups of

tests, with potentially higher instruction locality, on multiple processors. We believe

our approach holds promise of time savings for executions on multiple processors; we

will evaluate this hypothesis in our future work.

5.6 Summary

We presented an approach for ordering test cases to increase cache locality across test

executions. We conducted empirical evaluations to assess execution time savings using

the original approach and approximation when compared to random orderings and an

ordering maximising branch coverage for programs from SIR, EEMBC benchmarks

and an LLVM Symboliser.

Our evaluations revealed that ordering test executions to maximise instruction lo-

cality improves execution time. The nature of programs and test cases, in terms of

range of distances between test case executions, determine the magnitude of the effect.

The differences between worst and best random permutations ranged between 8.53%

to 29.48% over SIR programs and 27.12% for LLVM Symbolizer providing evidence

that order matters for test executions. Among the different orderings, Opt was best

performing but could not scale beyond 14K tests for EEMBC programs. Approx was

able to scale to large numbers of tests and perform comparably to Opt. Performance

improvement with Approx over BC was a maximum of 9.3% for SIR programs, 2.94%

over EEMBC and 13.06% over LLVM Symbolizer. Based on our results, it is clear



Chapter 5. Test Case Scheduling for Improving Instruction Cache Locality 84

that reducing cache misses with Approx ordering can result in substantial performance

gains. Average test case distance can be used as a guide for determining whether

Approx ordering will result in reasonable performance improvements.



Chapter 6

Device-Based Test Case Scheduling

for Heterogeneous Test Suites

Test Suite Execution Process

Software 
Under Test

Test Inputs

Test Outputs

Test Suite 
Compilation

Test Case 
Scheduling

Test Case 
Execution

Chapter Contribution

Figure 6.1: Chapter Contribution

In this chapter we target again the test case scheduling step (see figure 6.1) and ex-

plore, for the first time, device-based test scheduling for reducing the execution time of

heterogeneous test suites. We propose and assess a minimal-overhead test scheduling

algorithm which schedules the test case executions depending on their target device.

The goal is to identify whether load balancing between the devices of a heterogeneous

system can reduce the overall execution time of a heterogeneous test suite. We per-

form our assessment on an large-scaled test suite being developed by Codeplay, in

tandem with ComputeCPP™, which validates implementations of the SYCL standard.

We found that our scheduling algorithm can offer a maximum of 25.42% improve-

ment in the execution time of a heterogeneous test suite when compared to parallel test

85



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 86

scheduling which does not consider the target device of test cases.

In the previous chapter we presented a series of test scheduling algorithms that re-

duce the overall execution time of test suites by improving instruction cache locality.

That approach is applicable on single-core and multi-core architectures. It is not ap-

plicable, however, on heterogeneous architectures due to the fact that heterogeneous

applications are massively data driven (e.g. graphics rendering) with some widely used

devices like GPUs not having a cache memory at all. Moreover, as stated in section

2.5.2, the problem of executing N test cases is expanded in the heterogeneous domain

into executing N * M cases with M being the number of devices we wish to verify our

application against. In heterogeneous test suites every test case execution is associated

with a target device.

SYCL [57] is an open standard which is based on top of OpenCL [185] and defines

a high-level C++ programming model for programming heterogeneous architectures.

Codeplay has developed an implementation of the SYCL standard, ComputeCPP™,

which comprises of both a runtime library and a compiler. ComputeCPP™ covers a

wide range of features and hardware capabilities for effectively utilizing system re-

sources. Testing such a complex system, however, requires a very large number of test

cases for achieving high levels of test coverage. This, in turn, has led to lengthy test

suite executions for ComputeCPP™ which have a negative impact on its life-cycle.

The rest of the chapter is organized as follows: Section 6.1 provides a background

on the SYCL standard as well as the test suite used for the assessment. In section

6.2 we illustrate our initial device-agnostic test scheduling methodologies that form

the baseline of this experiment. Section 6.3 presents our device-based test scheduling

algorithm. Our experimental methodology and results are described in section 6.4.

Finally, section 6.5 discusses threads to validity, limitations as well as future work and

section 6.6 concludes.

6.1 SYCL

SYCL is a royalty-free open standard which defines a high-level single source C++

programming for programming heterogeneous architectures such as GPUs, FPGAs,

DSPs and other kinds of accelerators, that is produced by the Khronos Group [56].

The latest version of this standard is SYCL 1.2.1 and was released in December 2017.

SYCL is based on top of OpenCL, another standard from the Khronos Group which

defines a low-level C API and C based kernel language for writing heterogeneous



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 87

applications. SYCL provides the same performance portability and access to OpenCL

hardware as with traditional OpenCL however, it also provides a high-level interface

which removes much of the boilerplate code typical to OpenCL, but also provides

many additional features such as data dependency analysis and task scheduling.

SYCL is single source, which means that rather than having the host side code and

the kernel code (code which is compiled for the heterogeneous architecture) defined

separately as is the case with OpenCL, both the host code and kernel code exist in

the same C++ source file. This opens up users to a range of benefits such as stronger

type safety between host and device and the ability to create templated kernel code.

The ability to create template kernel code allows users to create generic library code

as well as to create compile-time DSELs where an expression can be composed to-

gether into a single type. This technique can be used to fuse multiple kernel functions

together removing the overhead of invoking kernel functions and moving data that can

dramatically improve the performance of applications.

Finally, SYCL provides some high-level mechanisms which make programming

applications for heterogeneous architectures much more accessible. Data dependency

analysis takes the data requirements provided in an application and implicitly detects

which tasks are dependent on other tasks. A runtime scheduler then enqueues tasks

efficiently depending on the data dependency analysis. Finally, a fallback mechanism

is provided which can allow an application to recover from failures and continue exe-

cuting.

6.1.1 HammerSYCL

To compliment their implementation of the SYCL standard, Codeplay are developing

HammerSYCL, a robust and extensive test suite whose aim is to test implementations

of the SYCL standard far beyond from what is covered by the Conformance Test Suite

provided by the Khronos group, which is limited in what it can cover. HammerSYCL

tests not only the validity of the SYCL interface but also the C++11 and kernel lan-

guage features, passing of kernel arguments, asynchronous execution, error handling

and interoperability with other frameworks. It also provides both negative and positive

testing, tests for extended functionality and extensive combination testing of the vari-

ous features of SYCL in order to stress test the system. The test suite developed is used

to evaluate ComputeCPP™ as it currently is, and all future versions as they develop.

HammerSYCL tests SYCL implementations in two ways: Firstly, with a large col-



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 88

lection of tests that cover all elements of the SYCL specification and secondly, by gen-

erating pseudo-random tests based on a heuristic model of the SYCL runtime; specifi-

cally the memory and execution model, that stress test various combinations of SYCL

features which can be used together to produce a desired result. The number of test

cases HammerSYCL is able to generate increases rapidly as its automatic test case

generation functionality gets enhanced. This has a positive impact on its fault-finding

capability but it results in test suites with long execution time.

6.2 Device-Agnostic Test Case Scheduling

At the early stages of our test suite development, performance was not an issue since

the number of test cases was relatively low. We, therefore, opted for sequential test

case scheduling (see figure 6.2) where every test case would be executed against all

devices in a sequential fashion before the framework would move on to the next test

case.

The sequential approach of figure 6.2 soon became a bottleneck to our continuous

integration pipeline as the number and complexity of tests increased. We, therefore,

opted for a coarse device-agnostic model for test parallelization where a single test

execution was equivalent to the execution of a test against all target devices. In other

words, when a test was chosen to execute inside a thread provided by the testing frame-

work, it meant that the test would execute against all target devices sequentially inside

that thread. Parallelization was achieved by having multiple threads executing differ-

ent tests in parallel. Our coarse device-agnostic test scheduling is illustrated in figure

6.3: In a testing framework with 8 threads available, we would have 8 tests (one per

thread) executing in parallel and inside each thread, the corresponding test would be

executing against all devices sequentially.

6.3 Device-Based Test Case Scheduling

Having to execute a test against multiple targets (devices) for ensuring that a hetero-

geneous application is able to support them leads to a big increase in the execution

time of a heterogeneous test suite every time a new test is being added. In an envi-

ronment with M devices, every new test developed results in M new test executions.

The device-agnostic test scheduling presented in section 6.2 was sufficient until we

introduced automatic test generators in our testing framework, a feature that increased



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 89

Device 1 
(D1)

Device 2 
(D2)

... Device M 
(DM)

Test 1 (T1) T1 on D1 T1 on D2 ... T1 on DM

Test 2 (T2) T2 on D1 T2 on D2 ... T2 on DM

... ... ... ... ...

Test N (TN) TN on D1 TN on D2 ... TN on DM

T1 on D1

T1 on D2

...

T1 on DN

T2 on D1

...

...

TN on DM

Sequential 
Execution

Sequential
Test Scheduler

Figure 6.2: Sequential Test Case Scheduling



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 90

Device 1 
(D1)

Device 2 
(D2)

... Device M 
(DM)

Test 1 (T1) T1 on D1 T1 on D2 ... T1 on DM

Test 2 (T2) T2 on D1 T2 on D2 ... T2 on DM

... ... ... ... ...

Test N (TN) TN on D1 TN on D2 ... TN on DM

Device-Agnostic 
Test Scheduler

Parallel Execution

Sequential 
Execution

Sequential 
Execution

Sequential 
Execution

T1 on D1

T1 on D2

...

T1 on DM

T2 on D1

T2 on D2

...

T2 on DM

TN on D1

TN on D2

...

TN on DM

...

Figure 6.3: Device-Agnostic Test Case Scheduling



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 91

the number of tests in the test suite exponentially. This rapid increase of tests started

having a negative impact to our product life-cycle.

To make the use of our test suite inside our continuous integration pipeline feasi-

ble again, we extended our testing framework and implemented a more granular test

scheduler which takes into consideration the target device of each test. Given a set

of (test, target) pairs, the new device-based test scheduler is responsible for schedul-

ing their execution. This extension allowed us to explore the degree to which test

scheduling based on the target device is able to reduce the overall execution time of a

heterogeneous test suite.

The device-based test scheduler uses a minimal-overhead algorithm which ensures

that each device has a specific number of tests executing in parallel against it through-
out the test suite execution. This number can be different for each device and depends

on the throughput capability of the device, the limitations of the device driver as well as

the maximum numbers of tests that the testing framework allows to execute in parallel.

Our approach is illustrated in figure 6.4: Given N tests that need to be executed

against M devices, our test scheduler ensures that, at any given time during the test

suite execution, there will be (for example) 3 tests executing against device D1, 2 tests

executing against device D2, 2 tests executing against device DM etc. The number of

tests associated with each device (3, 2 and 2 in our example) is passed as input to the

test scheduling algorithm and their sum must not exceed the maximum number of tests

that the testing framework is allowed to execute in parallel.

The core idea behind this device-based test scheduling is that, at any point during

the execution of a heterogeneous test suite, each device will be accepting computa-

tional payloads from a specific number of tests. This parallel test execution model

reduces significantly the imbalance between the processing units of a heterogeneous

system during the execution of a test suite, something which has the potential to reduce

its overall execution time. For example, in the scenario where, at a certain point during

test suite execution, the vast majority of the executing tests target the CPU of the sys-

tem, the GPU will be nearly idle while the CPU overloaded with computational tasks.

In a situation like this, having less tests executing against the CPU would allow it to

process the remaining tests faster and, at the same time, having more tests executing

against the GPU would offer additional speed-up in the overall test suite execution.



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 92

Device 1 
(D1)

Device 2 
(D2)

... Device M 
(DM)

Test 1 (T1) T1 on D1 T1 on D2 ... T1 on DM

Test 2 (T2) T2 on D1 T2 on D2 ... T2 on DM

... ... ... ... ...

Test N (TN) TN on D1 TN on D2 ... TN on DM

...

T5 T2 TN

D1 D2 DM

T7T2 T3 T3

Device-Based 
Test Scheduler

Parallel Execution

Figure 6.4: Device-Based Test Scheduling



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 93

6.3.1 Test Case Scheduling Algorithm

Algorithm 4 illustrates our device-based test scheduling: Given a heterogeneous sys-

tem with M devices, N tests to execute, PT tests that the testing framework will be

executing in parallel as well as the number of tests associated with each device, our al-

gorithm first ensures that the sum of tests to be run in parallel for each device is less or

equal to the total number of tests that the framework will be executing in parallel (line

1). If this condition is false (i.e. ∑
M
i=1 DTi > PT), it means that the testing framework

does not provide enough threads. Then, for each device i, we create a set containing

all N tests (TCSi on line 4) and we initiate DTi test executor threads which start to

execute (in parallel) the tests in TCSi against device i. As shown in algorithm 5, each

test executor will keep executing tests against device i (and removing them from TCSi)

until there are no more tests in TCSi.

In a scenario where we have N = 10 tests to be executed against M = 2 devices,

a testing framework that will be executing PT = 5 tests in parallel (in total - indepen-

dently of the target device), 3 tests associated with device 1 (DT1) and 2 tests associated

with device 2 (DT2), algorithm 4 will first ensure that DT1+DT2 ≤ PT (i.e. 3 + 2≤ 5).

Then, for device 1, a test case set will be created (TCS1 = {1,2,3,4,5,6,7,8,9,10})
and DT1 = 3 test executor threads will be launched each of which will be executing

tests in parallel from TCS1 until TCS1 is empty. At this point, its important to em-

phasize that all 3 test executor threads will be accessing the same set TCS1 (i.e. they

won’t be operating on copies). Finally, the same procedure will be repeated for device

2 but this time only DT2 = 2 test executor threads will be launched.

6.4 Experiment and Results

We execute HammerSYCL and measure its overall execution time for the following

test schedulers:

• Sequential Test Scheduler - see figure 6.2.

• Device-Agnostic Test Scheduler - see figure 6.3.

• Device-Based Test Scheduler - see figure 6.4.

We repeat our experiment for a different number of threads that the testing framework

will be executing in parallel (PT input in algorithm 4). This number defines how many

tests will be executing in parallel independently of their target device. Due to technical



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 94

Input: N test cases, M devices, PT the number of tests that the testing framework

will be executing in parallel, DTi∀i ∈ {1,M} the number of tests associated with

each device.

Output: Test suite completed.

1: If ∑
M
i=1 DTi≤ PT, go to step 3.

2: Insufficient framework threads. Inform the user and EXIT.

3: for all i ∈ {1...M} do
4: TCSi = {1...N}. // N test set for device i.

5: for all j ∈ DTi do
6: T ETj = create a test executor thread for device i.

7: T ETj.run(i, TCSi). // See algorithm 5 - TCSi passed by reference.

8: end for
9: end for

10: Await all PT test executor threads to finish.

11: EXIT.
Algorithm 4: Device-Based Test Scheduling Algorithm

Input: i the device to execute the tests against, RTC (synchronized access)

remaining test cases.

Output: Test cases for device i completed.

1: while RTC is not empty do
2: j = pop the first element from RTC.

3: Execute test case j against device i.

4: end while
5: EXIT.

Algorithm 5: Test Executor Algorithm



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 95

restrictions of the device drivers, the upper limit of threads that our testing framework

is allowed to have is 64.

6.4.1 Measurement

We run our experiments using a desktop computer powered by an Intel Quad Core

6700 processor at 3.4 GHZ with 128KB of Instruction Cache and 128KB of L1 data

cache. The system also included an AMD Radeon GPU 5450 series with 80 stream

processors. The machine runs Ubuntu 14.04 with Linux kernel 3.16.0.33. We measure

the execution time of the whole test suite execution using python’s time.time() com-

mand. We repeated each measurement 10 times and report the average value. We do

not report the standard deviation as it was less than 0.4% for every measurement.

6.4.2 Results

Figure 6.5 contains the execution time of the HammerSYCL test suite with device-

agnostic and device-based parallel test scheduling for an increasing number of threads

available to the testing framework. Figure 6.6 illustrates the speed-up achieved when

comparing device-agnostic and device-based parallel test scheduling against sequen-

tial test scheduling (see figure 6.2). It is clear that device-based test scheduling can

significantly reduce the execution time of heterogeneous test suites. By applying the

device-agnostic test scheduling we were able to achieve an execution speed-up in the

range of 17% to 36% when compared to sequential test scheduling with the highest

speedup being achieved when having 64 threads available in the testing framework.

After implementing our device-based test scheduler we were in a position to achieve

speed-up ranging from 30% to 47% with the 47% being achieved with the framework

having 64 threads at its disposal. For the 64 thread case, we experience an average

of 20.3% improvement in the execution time of HammerSYCL when we apply our

device-based scheduling algorithm. Finally, it is worth noting that the device-based

scheduling outperforms the device-agnostic scheduling across all our experiments.

For obtaining the results presented in figures 6.5 and 6.6 we assigned the same num-

ber of tests to each one of our available devices (an Intel CPU and an AMD GPU). This

means that in the case where we achieved maximum speed-up (64 threads available to

the testing framework) there were 32 tests executing in parallel against the CPU and

32 tests executing in parallel against the GPU at any point in time during the execution

of the test suite. This brings the question of whether we could have achieved even



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 96

Device-Agnostic Test Scheduling
Device-Based Test Scheduling

Figure 6.5: HammerSYCL Execution Time with Device-Agnostic and Device-Based

Parallel Test Scheduling

Device-Agnostic Test Scheduling
Device-Based Test Scheduling

Figure 6.6: HammerSYCL Execution Speed-Up of Parallel Test Schedulings over Se-

quential Scheduling



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 97

Figure 6.7: HammerSYCL Execution Time for Various Test Distributions Across Devices

better speed-up by distributing the 64 framework threads in a different way between

the devices. Figure 6.7 contains the execution time of HammerSYCL when executed

in a framework with 64 available threads but with various distributions of these threads

between the devices. Having 24 tests executing in parallel against the CPU and 40

tests executing in parallel against the GPU throughout the execution of the test suite

achieves the best speed-up which is translated to a 25.42% improvement when com-

pared to parallel test execution without scheduling. This can be explained from the fact

that, in our experimental setting, the CPU of the system executes also the host code

of the tests therefore having less tests executing their device code against it in parallel

actually improves its throughput.

6.5 Discussion

6.5.1 Overhead

The overhead of our test scheduling is minimal because the scheduling algorithm does

not depend on the number of the test cases in the test suite. Our algorithm does de-

pend, however, on the number of devices of the heterogeneous system under test for

initiating the executor threads assigned to each device. The asymptotic complexity of

our proposed test scheduling is O(M) with M being the number of system devices.



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 98

6.5.2 Algorithm Parameters

Our algorithm accepts as parameters the N test cases to execute, the M devices to exe-

cute the tests against, the number of threads the testing framework will be executing in

parallel (PT ) as well as the number of tests that should be executing in parallel against

each device (DTi for device i). Defining the first three parameters of the algorithm

is straightforward: N represents the tests we want to execute, M represents the target

devices we want to execute the tests against while PT reflects the number of tests we

want to execute in parallel. On the other hand, associating a test case number to each

device is non-trivial since the factors that influence how many tests each device should

be executing in parallel are related to the device capabilities as well as its driver lim-

itations. As illustrated in figure 6.7, the DTi algorithm parameters have a big impact

on the execution time of a heterogeneous test suite. Therefore, we recommend an ex-

perimentation process which involves executing the test suite on the same system but

with different DTi parameters in order to identify the set of parameters that achieve the

highest speedup. This experimentation process needs to be done once for a given sys-

tem: after we obtain the ideal set of DTi parameters we can re-use them in subsequent

test suite executions. For systems with many devices, we recommend assigning each

device the same number of tests as an approximation.

6.5.3 Threats to Validity

We identify one threat to external validity of our assessment based on the test suite

selection. We use for our experiment a developer created test suite for an industrial

project. Despite the fact that it is an extensive test suite for testing a combination of a

compiler and a runtime, we cannot claim that it is necessarily representative of all pos-

sible heterogeneous test suites. In fact, the additional speed-up of our test prioritization

depends highly on the proportion and complexity of device code as opposed to host

code of the tests. The overhead of host code execution is unavoidable when executing

multiple heterogeneous tests in parallel. Therefore, test suites that have computation-

ally expensive host code and trivial device code will show minimal additional speed-up

by using our proposed execution model. The opposite is true for test suites with mini-

mal host code and computationally expensive device code.



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 99

6.5.4 Limitations

We also identify a limitation that is related to the framework we use for executing the

test cases. By being able to specify the target device for a test we achieve, on the one

hand, high levels of rigorousness (because the device code of every test is executed on

every device we wish to test) but, on the other hand, we do not test certain features of

the SYCL runtime. More specifically, the SYCL runtime includes a scheduler which

enqueues computational tasks efficiently depending on data dependency analysis and

is responsible not only for the order of the task execution but also for the choice of

device that each task should execute on. By specifying the target device for each

test we do not provide the SYCL runtime with the freedom of device choice and,

consequently, its task scheduling functionality is not verified. It is, therefore, essential

for the testing framework to provide an additional test execution mode where multiple

devices would be available to the SYCL runtime during test execution. However, when

the SYCL runtime has the ability to chose where to execute the device code of a test,

our device-based test scheduling approach is not applicable.

6.5.5 Future Work

As described in section 6.3, our current test scheduling algorithm is based entirely on

the target device of each test. However, in our current test execution setting, we have

a collection of (N * M) (test, device) pairs (N being the number of tests, M the num-

ber of target devices) to execute as independent processes. This brings the question of

whether our algorithm can improve by taking into consideration additional information

about the tests during scheduling. This information could be static and/or dynamic and

can be obtained by previous executions of the test suite. Our early thoughts regarding

this include the characterization of each (test, device) pair depending on how compu-

tational intensive it is (i.e. an indication of how much a test stresses a specific device).

This can be obtained by recording the execution time of the test against that device

during a previous test suite run. Given this complexity information, our scheduling

algorithm could potentially ensure that a device would never execute multiple compu-

tational intensive tests in parallel, thus avoiding contention. For example, by using a

hypothetical scale from 0 to 10 for characterizing the complexity of a test executed on

a device (10 being the most computational intensive), our algorithm could attempt to

schedule the tests in such a way that it is never the case (during the test suite execution)

for a device to be executing tests of combined complexity greater than 15 in parallel.



Chapter 6. Device-Based Test Case Scheduling for Heterogeneous Test Suites 100

At the same time though, this approach will have a negative impact on the overhead

of test scheduling since the algorithm will depend additionally on the number of test

cases in the test suite.

6.6 Summary

We have presented a novel approach for scheduling heterogeneous system tests de-

pending on their target device. Our approach increases the load balance between the

devices of a heterogeneous system during test suite execution leading to improved

execution time. We evaluated our test scheduling algorithm on HammerSYCL, an ex-

tensive test suite developed by Codeplay Software that tests implementations of the

SYCL standard. Our device-based test scheduling methodology achieved an average

of 25.42% speed-up when compared to the device-agnostic approach we were using

before for executing the HammerSYCL tests. Finally, the overhead of our test schedul-

ing algorithm is insignificant.

As we move from the multi-core to heterogeneous computing, there is a grow-

ing need for adapting our current testing frameworks and methodologies. Our future

work in Codeplay includes not only the enhancement of our current test scheduling

algorithm but the implementation of a unified testing framework for heterogeneous ap-

plications that make use of open standards like OpenCL and SYCL. We plan to tackle

the challenges of heterogeneous test generation, compilation, execution and reporting

and include our approaches in a modular heterogeneous testing framework.



Chapter 7

Conclusion

In this thesis, we proposed a series of techniques that achieve significant time reduction

for test workflows without the need to remove any test cases or to upgrade computing

infrastructure. Our motivation was the fact that modern software systems are so large

and complex that the number of non-redundant test cases needed for effective valida-

tion is extremely large and has a negative impact on development productivity. Our

proposed techniques can be divided into a data transformation which improves test

suite compilation time and a series of test case scheduling algorithms that produce

time efficient test case execution orders.

Test suites are being treated by industry and academia as abstract artifacts in which

test cases are added or removed in order for a balance between test feasibility and ef-

fectiveness to be achieved. This thesis followed a different approach and explored, for

the first time, ways of reducing test workflow time without any loss of information (i.e.

without removing or redacting test cases) or an infrastructure change. We started by

acknowledging the fact that the test suite execution process entails three major phases

(test suite compilation, test case scheduling and test case execution) and continued by

presenting the challenges for these steps as the test case number increases. We then

proposed three techniques which result in significant time reduction of the test suite

compilation and test case execution phases.

For the test suite compilation phase, we proposed a test code transformation, as a

pre-compilation step, that significantly reduces the compilation time and also enables

the inclusion of more test cases in a test suite. Our approach restructures the test inputs

as well as the calls to the software under test and provides a semantically equivalent test

suite which can be compiled up to 69 times faster and is able to include 10 times more

test cases. We evaluated the transformation against two widely used compilers (GCC

101



Chapter 7. Conclusion 102

and Clang) and a variety of benchmarks including an industrial application developed

by Codeplay Software.

We then targeted the test case scheduling phase and proposed a series of test case

scheduling algorithms for the single-CPU and multi-CPU architectures which produce

execution orders that maximise instruction cache locality across test case executions.

The scheduling algorithms perform nearest neighbour analysis on the test cases, which

are represented by their executed instructions, and produce execution orders where test

cases that execute similar instructions are executed consecutively. Increased instruc-

tion cache locality leads to fewer instruction cache misses which, in turn, leads to a

faster test case execution phase. We evaluated our algorithms on 20 benchmarks in-

cluding an LLVM tool. Our results suggest that the effect on the test case execution

time depends highly on the nature of the software under test as well as the test cases

with speed-ups ranging from 0.48% to 29.48%.

In our final contribution we targeted again the test case scheduling phase and pro-

posed, for the first time, a test case scheduling algorithm for heterogeneous architec-

tures. Device load balancing during the test case execution phase was achieved by

scheduling test cases depending on their target device. Ensuring that each device will

be accepting computational payloads from a specific number of tests during the exe-

cution of a test suite minimizes device idle time as well as device overloading. This

work was conducted in collaboration with Codeplay Software for reducing the test

case execution phase of a large-scaled, industrial test suite targeting Codeplay’s in-

house implementation of the SYCL standard. The maximum speed-up achieved is

25.42% (average 20.3%) while the test scheduling overhead was insignificant.

7.1 Putting Everything Together

Our contributions optimize two phases of the test suite execution process as defined in

chapter 1: contribution C1 optimizes the test suite compilation phase and contributions

C2 and C3 optimize the test case execution phase (both by operating on the previous

phase - the test case scheduling). We, therefore, identify two potential approaches

that can be explored in future work which are based on the idea of combining the

optimisations presented in this thesis for improving both the test suite compilation and

test suite execution time:

• Combination 1 - Combine our data transformation (contribution C1) with in-

struction cache locality test case scheduling (contribution C2) for CPU-based



Chapter 7. Conclusion 103

architectures. After the application of our data transformation proposed in chap-

ter 4, every test case in our test suite is represented by a loop iteration. The order,

however, of the test cases remains intact. We could then apply our instruction

cache locality test case scheduling (see chapter 5) in order to optimize the execu-

tion time of the loop. Figure 7.1 presents the combined approach: The optimized

test case scheduling is represented in lines 10 to 14 in the form of a one-to-one

mapping of the loop iteration to the test case that needs to be executed next. In

this particular example, the test case schedule that optimises instruction cache

locality is: {1, 2, 0}. The test case loop in lines 20 to 24 remains largely intact

except from the array indexing: instead of passing the iteration index i directly to

the centralised data structures created as part of the data transformation (in order

to execute test case i), we pass the map of the iteration index which defines the

test case that needs to be executed next according to the test schedule optimizing

instruction cache locality.

• Combination 2 - Combine our data transformation (contribution C1) with device-

based test case scheduling (contribution C3) for heterogeneous architectures. As

presented in chapter 4, our data transformation is applicable also to heteroge-

neous applications. The result of this transformation is identical to the one of

CPU-based programs (i.e. a loop where each iteration represents a test case).

We could then apply a simplified version of our device-based test scheduling

(see chapter 6) in order to achieve device load balancing and thus optimize both

test suite compilation and execution time. We cannot apply the full version of

our device-based test scheduling because of the state our data transformation

leaves the test code: all test cases are combined into a loop which means the test

cases are executed inside a single process where we can specify only one target

device. Figure 7.2 illustrates the simplified device-based test scheduling: The

data transformation combines the N test cases into a combined test suite CTS

which is then executed against every device in parallel. Under this model, each

device would be executing a single test case at any given point in time during

the execution of the test suite because CTS is effectively a sequential loop that

executes one test case at a time. We could potentially instruct our data transfor-

mation to break the CTS in chunks (e.g. 2 chunks of N
2 test cases each). By this

way we would be able to execute more than one test case in parallel against each

device of the system. However, this approach would have a negative impact on



Chapter 7. Conclusion 104

Order 
Optimizing 
Instruction 

Cache Locality

Execute the 
Tests in 

Optimised 
Order

Figure 7.1: Data Transformation Combined with Instruction Cache Locality Test Case

Scheduling

the compilation speedup since the resulting test code would be larger. Exploring

this trade-off between our data transformation and device-based test scheduling

(i.e. a trade-off between test suite compilation and execution speedup) should

be part of the research on this combination.

7.2 Final Remarks

The research question we attempted to answer in this thesis, as defined in chapter 1, is

the following:

Given a test suite, is it possible to reduce the time of the test suite execution
process without any loss of information or a change on the underlying
infrastructure?



Chapter 7. Conclusion 105

Device 1 
(D1)

Device 2 
(D2)

... Device M 
(DM)

Test 1 (T1) T1 on D1 T1 on D2 ... T1 on DM

Test 2 (T2) T2 on D1 T2 on D2 ... T2 on DM

... ... ... ... ...

Test N (TN) TN on D1 TN on D2 ... TN on DM

...

CTS

D1 D2 DM

Device-Based 
Test Scheduler

Parallel Execution

Data Transformation

Device 1 
(D1)

Device 2 
(D2)

... Device M 
(DM)

Combined Test 
Suite (CTS)

CTS on 
D1

CTS on 
D2

... CTS on 
DM

CTS CTS

Figure 7.2: Data Transformation Combined with Device-Based Test Case Scheduling



Chapter 7. Conclusion 106

Given the three contributions of this thesis, our answer to the above question is yes -

it is possible to reduce the time of the test suite execution process without losing any

information or having to change computing infrastructure. In all three contributions

we were able to reduce the time of test workflows by utilizing low-level interactions

of test suites. In our first contribution we optimised the process of transforming a

test suite into optimised machine code while in the second contribution we utilised

the instruction cache memory of CPU efficiently. Finally, in our third contribution we

achieved load balance between the physical heterogeneous devices. Considering how

we were able to optimise test workflows in this thesis, we conclude the following:

Unique patterns of test suite low-level interactions can also be exploited
for test workflow speedup.

With the growing complexity and responsibility of software, the number of test cases

needed for effective validation becomes intractable. Even after the application of tradi-

tional test suite optimization techniques, real-world test suites are extremely large and

their frequent execution becomes infeasible. The techniques proposed in this thesis

can be effectively combined with existing test suite optimizations in order to further

reduce software testing cost. We believe that the architectural patterns of test suites

should be utilized even more by the software testing community in the quest to make

testing feasible.



Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning

on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London. Incremental re-

gression testing. In 1993 Conference on Software Maintenance, pages 348–357.

IEEE, 1993.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and

tools, volume 2. Addison-wesley Reading, 2007.

[4] F. E. Allen. Control flow analysis. In ACM SIGPLAN Notices, volume 5, pages

1–19. ACM, 1970.

[5] E. L. Alves, P. D. Machado, T. Massoni, and M. Kim. Prioritizing test cases for

early detection of refactoring faults. Software Testing, Verification and Reliabil-

ity, 26(5):402–426, 2016.

[6] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,

M. Harman, M. J. Harrold, P. Mcminn, A. Bertolino, et al. An orchestrated

survey of methodologies for automated software test case generation. Journal

of Systems and Software, 86(8):1978–2001, 2013.

[7] M. J. Arafeen and H. Do. Test case prioritization using requirements-based

clustering. In 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation, pages 312–321. IEEE, 2013.

[8] O. Astrachan. Bubble sort: an archaeological algorithmic analysis. In ACM

SIGCSE Bulletin, volume 35, pages 1–5. ACM, 2003.

107



Bibliography 108

[9] M. Baluda, G. Denaro, and M. Pezze. Bidirectional symbolic analysis for ef-

fective branch testing. IEEE Transactions on Software Engineering, 42(5):403–

426, 2016.

[10] A. Baresel, D. Binkley, M. Harman, and B. Korel. Evolutionary testing in the

presence of loop-assigned flags: A testability transformation approach. ACM

SIGSOFT software engineering notes, 29(4):108–118, 2004.

[11] K. Beck. Test-driven development: by example. Addison-Wesley Professional,

2003.

[12] B. Beizer. Black-box testing: techniques for functional testing of software and

systems. John Wiley & Sons, Inc., 1995.

[13] K. Beyls and E. D’Hollander. Reuse distance as a metric for cache behavior. In

Proceedings of the IASTED Conference on Parallel and Distributed Computing

and systems, volume 14, pages 350–360, 2001.

[14] D. W. Binkley, M. Harman, and K. Lakhotia. Flagremover: A testability trans-

formation for transforming loop-assigned flags. ACM Transactions on Software

Engineering and Methodology (TOSEM), 20(3):1–33, 2011.

[15] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou. Iterative compi-

lation in a non-linear optimisation space. In Workshop on Profile and Feedback-

Directed Compilation, 1998.

[16] R. C. Bryce, S. Sampath, J. B. Pedersen, and S. Manchester. Test suite prioriti-

zation by cost-based combinatorial interaction coverage. International Journal

of System Assurance Engineering and Management, 2(2):126–134, 2011.

[17] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations for improv-

ing data locality, volume 28. ACM, 1994.

[18] C. Catal. On the application of genetic algorithms for test case prioritization: a

systematic literature review. In Proceedings of the 2nd international workshop

on Evidential assessment of software technologies, pages 9–14, 2012.

[19] J. Cavazos and M. F. O’Boyle. Method-specific dynamic compilation using

logistic regression. ACM SIGPLAN Notices, 41(10):229–240, 2006.



Bibliography 109

[20] K. Chakrabarty. Test scheduling for core-based systems. In Proceedings of

the 1999 IEEE/ACM international conference on Computer-aided design, pages

391–394. IEEE Press, 1999.

[21] K. Chakrabarty. Test scheduling for core-based systems using mixed-integer

linear programming. IEEE Transactions on computer-aided design of integrated

circuits and systems, 19(10):1163–1174, 2000.

[22] K. Chakrabarty, E. Marinissen, et al. Test access mechanism optimization, test

scheduling, and tester data volume reduction for system-on-chip. IEEE Trans-

actions on Computers, 52(12):1619–1632, 2003.

[23] P. K. Chan, M. J. Boyd, S. Goren, K. Klenk, V. Kodavati, R. Kundu, M. Mar-

golese, J. Sun, K. Suzuki, E. Thorne, et al. Reducing compilation time of

zhong’s FPGA-based SAT solver. In Field-Programmable Custom Computing

Machines, 1999. FCCM’99. Proceedings. Seventh Annual IEEE Symposium on,

pages 308–309. IEEE, 1999.

[24] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W.-M. W. Hwu. Profile-guided

automatic inline expansion for C programs. Software: Practice and Experience,

22(5):349–369, 1992.

[25] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng. Using semi-supervised clus-

tering to improve regression test selection techniques. In 2011 Fourth IEEE In-

ternational Conference on Software Testing, Verification and Validation, pages

1–10. IEEE, 2011.

[26] Y. Chen and J. M. Patel. Efficient evaluation of all-nearest-neighbor queries. In

Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on,

pages 1056–1065. IEEE, 2007.

[27] Y. Chen, R. L. Probert, and D. P. Sims. Specification-based regression test

selection with risk analysis. In Proceedings of the 2002 conference of the Centre

for Advanced Studies on Collaborative research, page 1. IBM Press, 2002.

[28] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. Testtube: A system for selective

regression testing. In Proceedings of 16th International Conference on Software

Engineering, pages 211–220. IEEE, 1994.



Bibliography 110

[29] Z. Chen, Y. Duan, Z. Zhao, B. Xu, and J. Qian. Using program slicing to

improve the efficiency and effectiveness of cluster test selection. International

Journal of Software Engineering and Knowledge Engineering, 21(06):759–777,

2011.

[30] ComputeCpp. Computecpp – accelerate complex C++ applications

on heterogeneous compute systems using open standards., 2017.

”https://www.codeplay.com/products/computesuite/computecpp”.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-

tive genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computa-

tion, 6(2):182–197, 2002.

[32] P. J. Denning. The locality principle. Communications of the ACM, 48(7):19–

24, 2005.

[33] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche. Coverage-based test

case prioritisation: An industrial case study. In 2013 IEEE Sixth International

Conference on Software Testing, Verification and Validation, pages 302–311.

IEEE, 2013.

[34] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche. Coverage-based re-

gression test case selection, minimization and prioritization: A case study on an

industrial system. Software Testing, Verification and Reliability, 25(4):371–396,

2015.

[35] K. M. Dixit. The SPEC benchmarks. Parallel computing, 17(10-11):1195–

1209, 1991.

[36] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. The effects of time con-

straints on test case prioritization: A series of controlled experiments. IEEE

Transactions on Software Engineering, 36(5):593–617, 2010.

[37] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments

of test case prioritization techniques. IEEE Transactions on Software Engineer-

ing, 32(9):733–752, 2006.

[38] C. Ebert and C. Jones. Embedded software: Facts, figures, and future. Com-

puter, 42(4), 2009.



Bibliography 111

[39] S. Eghbali and L. Tahvildari. Test case prioritization using lexicographical or-

dering. IEEE Transactions on Software Engineering, 42(12):1178–1195, 2016.

[40] W. S. A. El-Hamid, S. S. El-etriby, and M. M. Hadhoud. Regression test selec-

tion technique for multi-programming language. In 2010 The 7th International

Conference on Informatics and Systems (INFOS), pages 1–5. IEEE, 2010.

[41] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying test costs

and fault severities into test case prioritization. In Proceedings of the 23rd In-

ternational Conference on Software Engineering. ICSE 2001, pages 329–338,

2001.

[42] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization:

A family of empirical studies. IEEE transactions on software engineering,

28(2):159–182, 2002.

[43] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky. Selecting

a cost-effective test case prioritization technique. Software Quality Journal,

12(3):185–210, 2004.

[44] C. Fang, Z. Chen, K. Wu, and Z. Zhao. Similarity-based test case prioritiza-

tion using ordered sequences of program entities. Software Quality Journal,

22(2):335–361, 2014.

[45] C. Fang, Z. Chen, and B. Xu. Comparing logic coverage criteria on test case

prioritization. Science China Information Sciences, 55(12):2826–2840, 2012.

[46] M. Felderer and I. Schieferdecker. A taxonomy of risk-based testing, 2014.

[47] K. Fischer, F. Raji, and A. Chruscicki. A methodology for retesting modified

software. In Proceedings of the National Telecommunications Conference B-6-

3, pages 1–6, 1981.

[48] K. F. Fischer and F. KF. A test case selection method for the validation of

software maintenance modifications. 1977.

[49] G. Fursin, M. F. O’Boyle, and P. M. Knijnenburg. Evaluating iterative com-

pilation. In International Workshop on Languages and Compilers for Parallel

Computing, pages 362–376. Springer, 2002.



Bibliography 112

[50] D. Gao, X. Guo, and L. Zhao. Test case prioritization for regression testing

based on ant colony optimization. In 2015 6th IEEE International Conference

on Software Engineering and Service Science (ICSESS), pages 275–279. IEEE,

2015.

[51] D. Garg and A. Datta. Parallel execution of prioritized test cases for regression

testing of web applications. In Proceedings of the Thirty-Sixth Australasian

Computer Science Conference-Volume 135, pages 61–68, 2013.

[52] G. Gay, A. Rajan, M. Staats, M. Whalen, and M. P. Heimdahl. The effect of

program and model structure on the effectiveness of mc/dc test adequacy cover-

age. ACM Transactions on Software Engineering and Methodology (TOSEM),

25(3):25, 2016.

[53] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: An analytical

representation of cache misses. In Proceedings of the 11th international confer-

ence on Supercomputing, pages 317–324. ACM, 1997.

[54] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test selection with

dynamic file dependencies. In Proceedings of the 2015 International Sympo-

sium on Software Testing and Analysis, pages 211–222, 2015.

[55] B. Gough and R. M. Stallman. An introduction to gcc for the gnu compilers gcc

and g++. Network Theory Ltd, pages 35–46, 2004.

[56] K. GROUP et al. Khronos: Open standards for media authoring and accelera-

tion, 2009.

[57] K. O. W. Group et al. Sycl: C++ single-source heterogeneous programming for

OpenCL, 2015.

[58] P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at memory

access speeds. In INFOCOM’98. Seventeenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, volume 3,

pages 1240–1247. IEEE, 1998.

[59] R. Gupta, M. J. Harrold, and M. L. Soffa. Program slicing-based regression

testing techniques. Software Testing, Verification and Reliability, 6(2):83–111,

1996.



Bibliography 113

[60] R. K. Gupta, S. K. Janumahanthi, M. Nagesh, V. R. Somisetty, P. Thota, and

V. K. Vb. End to end testing automation and parallel test execution, May 12

2015. US Patent 9,032,373.

[61] J. L. Gustafson. Reevaluating amdahl’s law. Communications of the ACM,

31(5):532–533, 1988.

[62] F. Haftmann, D. Kossmann, and E. Lo. Parallel execution of test runs for

database application systems. In Proceedings of the 31st international con-

ference on Very large data bases, pages 589–600, 2005.

[63] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie. To be optimal or

not in test-case prioritization. IEEE Transactions on Software Engineering,

42(5):490–505, 2015.

[64] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei. A unified test case pri-

oritization approach. ACM Transactions on Software Engineering and Method-

ology (TOSEM), 24(2):1–31, 2014.

[65] M. Harman. Refactoring as testability transformation. In 2011 IEEE Fourth In-

ternational Conference on Software Testing, Verification and Validation Work-

shops, pages 414–421. IEEE, 2011.

[66] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and

M. Roper. Testability transformation. IEEE Transactions on Software Engi-

neering, 30(1):3–16, 2004.

[67] M. J. Harrold. Testing: a roadmap. In Proceedings of the Conference on the

Future of Software Engineering. ACM, 2000.

[68] M. J. Harrold and M. Souffa. An incremental approach to unit testing dur-

ing maintenance. In Proceedings. Conference on Software Maintenance, 1988.,

pages 362–367. IEEE, 1988.

[69] J. Hartmann and D. J. Robson. Techniques for selective revalidation. IEEE

Software, 7(1):31–36, 1990.

[70] M. P. Heimdahl and D. George. Test-suite reduction for model based tests:

Effects on test quality and implications for testing. In Proceedings of the 19th

IEEE international conference on Automated software engineering, pages 176–

185. IEEE Computer Society, 2004.



Bibliography 114

[71] H. Hemmati, A. Arcuri, and L. Briand. Reducing the cost of model-based test-

ing through test case diversity. In IFIP International Conference on Testing

Software and Systems, pages 63–78. Springer, 2010.

[72] H. Hemmati and L. Briand. An industrial investigation of similarity measures

for model-based test case selection. In 2010 IEEE 21st International Symposium

on Software Reliability Engineering, pages 141–150. IEEE, 2010.

[73] H. Hemmati, L. Briand, A. Arcuri, and S. Ali. An enhanced test case selection

approach for model-based testing: an industrial case study. In Proceedings of the

eighteenth ACM SIGSOFT international symposium on Foundations of software

engineering, pages 267–276, 2010.

[74] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of testing less

without sacrificing quality. In Proceedings of the 37th ICSE, pages 483–493.

IEEE Press, 2015.

[75] C. Hettiarachchi, H. Do, and B. Choi. Effective regression testing using require-

ments and risks. In 2014 Eighth International Conference on Software Security

and Reliability (SERE), pages 157–166, 2014.

[76] C. Hettiarachchi, H. Do, and B. Choi. Risk-based test case prioritization using

a fuzzy expert system. Information and Software Technology, 69:1–15, 2016.

[77] R. M. Hierons, M. Harman, and C. Fox. Branch-coverage testability transforma-

tion for unstructured programs. The Computer Journal, 48(4):421–436, 2005.

[78] K. H. S. Hla, Y. Choi, and J. S. Park. Applying particle swarm optimization

to prioritizing test cases for embedded real time software retesting. In 2008

IEEE 8th International Conference on Computer and Information Technology

Workshops, pages 527–532. IEEE, 2008.

[79] P. Hsia, X. Li, D. Chenho Kung, C.-T. Hsu, L. Li, Y. Toyoshima, and C. Chen.

A technique for the selective revalidation of oo software. Journal of Software

Maintenance: Research and Practice, 9(4):217–233, 1997.

[80] S. Huang, Y. Chen, J. Zhu, Z. J. Li, and H. F. Tan. An optimized change-driven

regression testing selection strategy for binary java applications. In Proceedings

of the 2009 ACM symposium on Applied Computing, pages 558–565, 2009.



Bibliography 115

[81] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan, and

S. M. Reddy. Resource allocation and test scheduling for concurrent test of core-

based soc design. In Test Symposium, 2001. Proceedings. 10th Asian, pages

265–270. IEEE, 2001.

[82] Y. Huang, S. M. Reddy, W.-T. Cheng, P. Reuter, N. Mukherjee, C.-C. Tsai,

O. Samman, and Y. Zaidan. Optimal core wrapper width selection and SOC

test scheduling based on 3-d bin packing algorithm. In Test Conference, 2002.

Proceedings. International, pages 74–82. IEEE, 2002.

[83] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang. A history-based cost-cognizant

test case prioritization technique in regression testing. Journal of Systems and

Software, 85(3):626–637, 2012.

[84] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Pearson Education, 2010.

[85] M. Z. Z. Iqbal, Z. I. Malik, M. Riebisch, et al. A model-based regression testing

approach for evolving software systems with flexible tool support. In 2010 17th

IEEE International Conference and Workshops on Engineering of Computer

Based Systems, pages 41–49. IEEE, 2010.

[86] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. Wrapper/tam co-optimization,

constraint-driven test scheduling, and tester data volume reduction for socs.

In Design Automation Conference, 2002. Proceedings. 39th, pages 685–690.

IEEE, 2002.

[87] B. Jang, P. Mistry, D. Schaa, R. Dominguez, and D. Kaeli. Data transformations

enabling loop vectorization on multithreaded data parallel architectures. In ACM

SIGPLAN Notices, volume 45, pages 353–354. ACM, 2010.

[88] D. Jeffrey and N. Gupta. Test case prioritization using relevant slices. In 30th

Annual International Computer Software and Applications Conference (COMP-

SAC’06), volume 1, pages 411–420, 2006.

[89] T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on shared memory

multiprocessors through compile time data transformations, volume 30. ACM,

1995.



Bibliography 116

[90] Z. Ji, J. Zhou, M. Takai, J. Martin, and R. Bagrodia. Optimizing parallel execu-

tion of detailed wireless network simulation. In Proceedings of the eighteenth

workshop on Parallel and distributed simulation, pages 162–169, 2004.

[91] B. Jiang and W. K. Chan. Input-based adaptive randomized test case prior-

itization: A local beam search approach. Journal of Systems and Software,

105:91–106, 2015.

[92] B. Jiang, Z. Zhang, W. K. Chan, T. Tse, and T. Y. Chen. How well does test

case prioritization integrate with statistical fault localization? Information and

Software Technology, 54(7):739–758, 2012.

[93] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. Adaptive random test case prior-

itization. In 2009 IEEE/ACM International Conference on Automated Software

Engineering, pages 233–244, 2009.

[94] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo. Development of autonomous

car—part i: Distributed system architecture and development process. IEEE

Transactions on Industrial Electronics, 61(12):7131–7140, 2014.

[95] J. A. Jones and M. J. Harrold. Test-suite reduction and prioritization for modi-

fied condition/decision coverage. IEEE Transactions on software Engineering,

29(3):195–209, 2003.

[96] W. Jun, Z. Yan, and J. Chen. Test case prioritization technique based on ge-

netic algorithm. In 2011 International Conference on Internet Computing and

Information Services, pages 173–175. IEEE, 2011.

[97] A. Kalaji, R. M. Hierons, and S. Swift. A testability transformation approach

for state-based programs. In 2009 1st International Symposium on Search Based

Software Engineering, pages 85–88. IEEE, 2009.

[98] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Improving local-

ity using loop and data transformations in an integrated framework. In Proceed-

ings of the 31st annual ACM/IEEE international symposium on Microarchitec-

ture, pages 285–297. IEEE Computer Society Press, 1998.

[99] M. Kandemir, J. Ramanujam, and A. Choudhary. Improving cache locality by a

combination of loop and data transformations. IEEE Transactions on Comput-

ers, 48(2):159–167, 1999.



Bibliography 117

[100] S. Kappler. Finding and breaking test dependencies to speed up test execution.

In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 1136–1138, 2016.

[101] A. Kaur and S. Goyal. A genetic algorithm for fault based regression test

case prioritization. International Journal of Computer Applications, 32(8):975–

8887, 2011.

[102] A. Khalilian, M. A. Azgomi, and Y. Fazlalizadeh. An improved method for

test case prioritization by incorporating historical test case data. Science of

Computer Programming, 78(1):93–116, 2012.

[103] J.-M. Kim and A. Porter. A history-based test prioritization technique for re-

gression testing in resource constrained environments. In Proceedings of the

24th international conference on software engineering, pages 119–129, 2002.

[104] T. Kisuki, P. M. Knijnenburg, M. F. O’Boyle, F. Bodin, and H. A. Wijshoff. A

feasibility study in iterative compilation. In International Symposium on High

Performance Computing, pages 121–132. Springer, 1999.

[105] B. Korel, M. Harman, S. Chung, P. Apirukvorapinit, R. Gupta, and Q. Zhang.

Data dependence based testability transformation in automated test generation.

In 16th IEEE International Symposium on Software Reliability Engineering (IS-

SRE’05), pages 10–pp. IEEE, 2005.

[106] B. Korel, G. Koutsogiannakis, and L. H. Tahat. Model-based test prioritization

heuristic methods and their evaluation. In Proceedings of the 3rd international

workshop on Advances in model-based testing, pages 34–43, 2007.

[107] C. Krintz and B. Calder. Using annotations to reduce dynamic optimization

time. ACM SIGPLAN Notices, 36(5):156–167, 2001.

[108] C. J. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the overhead of dy-

namic compilation. Software: Practice and Experience, 31(8):717–738, 2001.

[109] R. Krishnamoorthi and S. S. A. Mary. Factor oriented requirement coverage

based system test case prioritization of new and regression test cases. Informa-

tion and Software Technology, 51(4):799–808, 2009.



Bibliography 118

[110] P. Kukol. System and methods for optimizing object-oriented compilations,

Jan. 2 1996. US Patent 5,481,708.

[111] A. Kumar. Development at the speed and scale of Google. QCon San Francisco,

2010.

[112] M. Kumar, A. Sharma, and R. Kumar. Fuzzy entropy-based framework for

multi-faceted test case classification and selection: an empirical study. IET

software, 8(3):103–112, 2013.

[113] M. Kumar, A. Sharma, and R. Kumar. An empirical evaluation of a three-tier

conduit framework for multifaceted test case classification and selection using

fuzzy-ant colony optimisation approach. Software: Practice and Experience,

45(7):949–971, 2015.

[114] C. Lattner. LLVM and Clang: Next generation compiler technology. In The

BSD Conference, pages 1–2, 2008.

[115] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Code Generation and Optimization, 2004. CGO

2004. International Symposium on, pages 75–86. IEEE, 2004.

[116] C. Lavin, M. Padilla, S. Ghosh, B. Nelson, B. Hutchings, and M. Wirthlin.

Using hard macros to reduce FPGA compilation time. In Field Programmable

Logic and Applications (FPL), 2010 International Conference on, pages 438–

441. IEEE, 2010.

[117] H. Leather, E. Bonilla, and M. O’Boyle. Automatic feature generation for ma-

chine learning based optimizing compilation. In Code Generation and Opti-

mization, 2009. CGO 2009. International Symposium on, pages 81–91. IEEE,

2009.

[118] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran. Prioritizing test cases with

string distances. Automated Software Engineering, 19(1):65–95, 2012.

[119] D. Leon and A. Podgurski. A comparison of coverage-based and distribution-

based techniques for filtering and prioritizing test cases. In 14th International

Symposium on Software Reliability Engineering, 2003. ISSRE 2003., pages

442–453, 2003.



Bibliography 119

[120] W. K. Lewchuk. Prefetching data using profile of cache misses from earlier

code executions, Apr. 4 2000. US Patent 6,047,363.

[121] B. Li, D. Qiu, H. Leung, and D. Wang. Automatic test case selection for regres-

sion testing of composite service based on extensible bpel flow graph. Journal

of Systems and Software, 85(6):1300–1324, 2012.

[122] N. Li, U. Praphamontripong, and J. Offutt. An experimental comparison of

four unit test criteria: Mutation, edge-pair, all-uses and prime path coverage.

In Software Testing, Verification and Validation Workshops, 2009. ICSTW’09.

International Conference on, pages 220–229. IEEE, 2009.

[123] Y. Li and G. Fraser. Bytecode testability transformation. In International Sym-

posium on Search Based Software Engineering, pages 237–251. Springer, 2011.

[124] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression test

case prioritization. IEEE Transactions on Software Engineering, 33(4):225–

237, 2007.

[125] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression test

case prioritization. IEEE Transactions on software engineering, 33(4):225–237,

2007.

[126] C. Lin, C. Chen, C. Tsai, and G. M. Kapfhammer. History-based test case priori-

tization with software version awareness. In 2013 18th International Conference

on Engineering of Complex Computer Systems, pages 171–172, 2013.

[127] Y. Lou, D. Hao, and L. Zhang. Mutation-based test-case prioritization in soft-

ware evolution. In 2015 IEEE 26th International Symposium on Software Reli-

ability Engineering (ISSRE), pages 46–57. IEEE, 2015.

[128] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: building customized program analysis tools

with dynamic instrumentation. In ACM SIGPLAN notices, volume 40, pages

190–200. ACM, 2005.

[129] T. Ma, H. Zeng, and X. Wang. Test case prioritization based on requirement

correlations. In 2016 17th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Com-

puting (SNPD), pages 419–424, 2016.



Bibliography 120

[130] R. U. Maheswari and D. J. Mala. Combined genetic and simulated annealingap-

proach for test case prioritization. Indian Journal of Science and Technology,

8(35):1, 2015.

[131] N. Mansour, H. Takkoush, and A. Nehme. Uml-based regression testing for

oo software. Journal of Software Maintenance and Evolution: Research and

Practice, 23(1):51–68, 2011.

[132] C. Mao and Y. Lu. Regression testing for component-based software systems

by enhancing change information. In 12th Asia-Pacific Software Engineering

Conference (APSEC’05), pages 8–pp. IEEE, 2005.

[133] D. Marijan, A. Gotlieb, and S. Sen. Test case prioritization for continuous re-

gression testing: An industrial case study. In 2013 IEEE International Confer-

ence on Software Maintenance, pages 540–543. IEEE, 2013.

[134] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop

transformations. ACM Transactions on Programming Languages and Systems

(TOPLAS), 18(4):424–453, 1996.

[135] P. McMinn. Search-based failure discovery using testability transformations

to generate pseudo-oracles. In Proceedings of the 11th Annual conference on

Genetic and evolutionary computation, pages 1689–1696, 2009.

[136] P. McMinn, D. Binkley, and M. Harman. Empirical evaluation of a nesting

testability transformation for evolutionary testing. ACM Transactions on Soft-

ware Engineering and Methodology (TOSEM), 18(3):1–27, 2009.

[137] L. Mei, Y. Cai, C. Jia, B. Jiang, W. K. Chan, Z. Zhang, and T. H. Tse. A

subsumption hierarchy of test case prioritization for composite services. IEEE

Transactions on Services Computing, 8(5):658–673, 2015.

[138] L. Mei, W. K. Chan, T. Tse, B. Jiang, and K. Zhai. Preemptive regression testin-

gof workflow-based web services. IEEE Transactions on Services Computing,

8(5):740–754, 2014.

[139] A. Memon, A. Nagarajan, and Q. Xie. Automating regression testing for evolv-

ing gui software. Journal of Software Maintenance and Evolution: Research

and Practice, 17(1):27–64, 2005.



Bibliography 121

[140] A. M. Memon. Automatically repairing event sequence-based gui test suites for

regression testing. ACM Transactions on Software Engineering and Methodol-

ogy (TOSEM), 18(2):1–36, 2008.

[141] A. M. Memon and M. L. Soffa. Regression testing of guis. ACM SIGSOFT

Software Engineering Notes, 28(5):118–127, 2003.

[142] T. Miller et al. Using dependency structures for prioritization of functional test

suites. IEEE transactions on software engineering, 39(2):258–275, 2013.

[143] B. Miranda and A. Bertolino. Scope-aided test prioritization, selection and min-

imization for software reuse. Journal of Systems and Software, 131:528–549,

2017.

[144] S. Mirarab, S. Akhlaghi, and L. Tahvildari. Size-constrained regression test

case selection using multicriteria optimization. IEEE transactions on Software

Engineering, 38(4):936–956, 2011.

[145] S. Mirarab and L. Tahvildari. A prioritization approach for software test cases

based on bayesian networks. In International Conference on Fundamental Ap-

proaches to Software Engineering, pages 276–290. Springer, 2007.

[146] S. Mirarab and L. Tahvildari. An empirical study on bayesian network-based

approach for test case prioritization. In 2008 1st International Conference on

Software Testing, Verification, and Validation, pages 278–287. IEEE, 2008.

[147] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and D. Marinov. Parallel

test generation and execution with korat. In Proceedings of the the 6th joint

meeting of the European software engineering conference and the ACM SIG-

SOFT symposium on The foundations of software engineering, pages 135–144,

2007.

[148] M. Muja and D. G. Lowe. Fast matching of binary features. In Computer and

Robot Vision (CRV), 2012 Ninth Conference on, pages 404–410. IEEE, 2012.

[149] T. Muthusamy and K. Seetharaman. A new effective test case prioritiza-

tion for regression testing based on prioritization algorithm. Int. J. Appl. Inf.

Syst.(IJAIS), 6(7):21–26, 2014.



Bibliography 122

[150] R. Nagar, A. Kumar, S. Kumar, and A. S. Baghel. Implementing test case selec-

tion and reduction techniques using meta-heuristics. In 2014 5th International

Conference-Confluence The Next Generation Information Technology Summit

(Confluence), pages 837–842. IEEE, 2014.

[151] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso. Regression testing

in the presence of non-code changes. In 2011 Fourth IEEE International Con-

ference on Software Testing, Verification and Validation, pages 21–30. IEEE,

2011.

[152] E. N. Narciso, M. E. Delamaro, and F. D. L. D. S. Nunes. Test case selection: A

systematic literature review. International Journal of Software Engineering and

Knowledge Engineering, 24(04):653–676, 2014.

[153] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic

binary instrumentation. In ACM SIGPLAN notices, volume 42, pages 89–100.

ACM, 2007.

[154] S. Nidhra and J. Dondeti. Black box and white box testing techniques-a lit-

erature review. International Journal of Embedded Systems and Applications

(IJESA), 2(2):29–50, 2012.

[155] T. Noguchi, H. Washizaki, Y. Fukazawa, A. Sato, and K. Ota. History-based

test case prioritization for black box testing using ant colony optimization. In

2015 IEEE 8th International Conference on Software Testing, Verification and

Validation (ICST), pages 1–2. IEEE, 2015.

[156] M. F. O’Boyle and P. M. Knijnenburg. Nonsingular data transformations: Def-

inition, validity, and applications. International Journal of Parallel Program-

ming, 27(3):131–159, 1999.

[157] A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel, M. L. Soffa, and H. Do.

Using component metacontent to support the regression testing of component-

based software. In Proceedings IEEE International Conference on Software

Maintenance. ICSM 2001, pages 716–725. IEEE, 2001.

[158] Y. Pang, X. Xue, and A. S. Namin. Identifying effective test cases through k-

means clustering for enhancing regression testing. In 2013 12th International



Bibliography 123

Conference on Machine Learning and Applications, volume 2, pages 78–83.

IEEE, 2013.

[159] A. Panichella, R. Oliveto, M. Di Penta, and A. De Lucia. Improving multi-

objective test case selection by injecting diversity in genetic algorithms. IEEE

Transactions on Software Engineering, 41(4):358–383, 2014.

[160] V. Pieterse, D. G. Kourie, L. Cleophas, and B. W. Watson. Performance of C++

bit-vector implementations. In Proceedings of the 2010 Annual Research Con-

ference of the South African Institute of Computer Scientists and Information

Technologists, pages 242–250. ACM, 2010.

[161] J. Poovey, M. Levy, S. Gal-On, and T. Conte. A benchmark characterization of

the eembc benchmark suite. Micro, IEEE, PP(99):1–1, 2009.

[162] C. Pyo, K.-W. Lee, H.-K. Han, and G. Lee. Reference distance as a metric for

data locality. In High Performance Computing on the Information Superhigh-

way, 1997. HPC Asia’97, pages 151–156. IEEE, 1997.

[163] Y. Qi, X. Mao, and Y. Lei. Efficient automated program repair through fault-

recorded testing prioritization. In 2013 IEEE International Conference on Soft-

ware Maintenance, pages 180–189, 2013.

[164] A. Rajan. Coverage metrics for requirements-based testing. PhD thesis, Uni-

versity of Minnesota, 2009.

[165] A. Rajan, S. Sharma, P. Schrammel, and D. Kroening. Accelerated test execu-

tion using GPUs. In Proceedings of the 29th ACM/IEEE international confer-

ence on Automated software engineering, pages 97–102. ACM, 2014.

[166] A. Richards. Codeplay software ltd., 2002. ”https://www.codeplay.com/”.

[167] G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict

misses. In ACM SIGPLAN Notices, volume 33, pages 38–49. ACM, 1998.

[168] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection tech-

nique. ACM Transactions on Software Engineering and Methodology (TOSEM),

6(2):173–210, 1997.

[169] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test selection for C++

software. Software Testing Verification and Reliability, 10(2):77–109, 2000.



Bibliography 124

[170] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. Test case priori-

tization: an empirical study. In Proceedings IEEE International Conference on

Software Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business

Change’ (Cat. No.99CB36360), pages 179–188, 1999.

[171] S. Sabharwal, R. Sibal, and C. Sharma. Prioritization of test case scenarios

derived from activity diagram using genetic algorithm. In 2010 International

Conference on Computer and Communication Technology (ICCCT), pages 481–

485, 2010.

[172] A. Sajeev and B. Wibowo. Regression test selection based on version changes

of components. In Tenth Asia-Pacific Software Engineering Conference, 2003.,

pages 78–85. IEEE, 2003.

[173] S. Sampath, R. Bryce, and A. M. Memon. A uniform representation of hy-

brid criteria for regression testing. IEEE Transactions on Software Engineering,

39(10):1326–1344, 2013.

[174] F. Schneider and B. Berenbach. A literature survey on international standards

for systems requirements engineering. Procedia Computer Science, 16:796–

805, 2013.

[175] A. Sen. A quick introduction to the Google C++ testing framework. IBM De-

veloperWorks, page 20, 2010.

[176] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-Hashim. A comparative

study on automated software test oracle methods. In 2009 Fourth International

Conference on Software Engineering Advances, pages 140–145. IEEE, 2009.

[177] M. Slaney and M. Casey. Locality-sensitive hashing for finding nearest neigh-

bors [lecture notes]. IEEE Signal Processing Magazine, 25(2):128–131, 2008.

[178] K. Solanki, Y. Singh, S. Dalal, and P. R. Srivastava. Test case prioritization:

An approach based on modified ant colony optimization. In Emerging Research

in Computing, Information, Communication and Applications, pages 213–223.

Springer, 2016.

[179] H. Srikanth, M. Cashman, and M. B. Cohen. Test case prioritization of build

acceptance tests for an enterprise cloud application: An industrial case study.

Journal of Systems and Software, 119:122–135, 2016.



Bibliography 125

[180] H. Srikanth, C. Hettiarachchi, and H. Do. Requirements based test prioritization

using risk factors: An industrial study. Information and Software Technology,

69:71–83, 2016.

[181] H. Srikanth, L. Williams, and J. Osborne. System test case prioritization of

new and regression test cases. In 2005 International Symposium on Empirical

Software Engineering, 2005., pages 10 pp.–, 2005.

[182] H. Stallbaum, A. Metzger, and K. Pohl. An automated technique for risk-based

test case generation and prioritization. In Proceedings of the 3rd international

workshop on Automation of software test, pages 67–70, 2008.

[183] R. Stallman, R. Pesch, S. Shebs, et al. Debugging with gdb. Free Software

Foundation, 51:02110–1301, 2002.

[184] R. M. Stallman et al. Using and porting the GNU compiler collection, vol-

ume 86. Free Software Foundation, 1999.

[185] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard

for heterogeneous computing systems. Computing in science & engineering,

12(3):66–73, 2010.

[186] P. Stratis. Improving test execution time with improved cache locality. In 2017

IEEE/ACM 39th International Conference on Software Engineering Companion

(ICSE-C), pages 82–84. IEEE, 2017.

[187] P. Stratis and G. Brown. Assessing the effect of device-based test scheduling

on heterogeneous test suite execution. In Proceedings of the 22nd International

Conference on Evaluation and Assessment in Software Engineering 2018, pages

193–198, 2018.

[188] P. Stratis and A. Rajan. Test case permutation to improve execution time. In Au-

tomated Software Engineering (ASE), 2016 31st IEEE/ACM International Con-

ference on, pages 45–50. IEEE, 2016.

[189] P. Stratis and A. Rajan. Reordering tests for faster test suite execution. In Pro-

ceedings of the 40th International Conference on Software Engineering: Com-

panion Proceeedings, pages 442–443, 2018.



Bibliography 126

[190] P. Stratis and A. Rajan. Speeding up test execution with increased cache locality.

Software Testing, Verification and Reliability, 28(5):e1671, 2018.

[191] P. Stratis, V. Yaneva, and A. Rajan. Assessing the effect of data transformations

on test suite compilation. In Proceedings of the 12th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, pages 1–10,

2018.

[192] B. Stroustrup. The design of C++ 0x. C/C++ Users Journal, 23(5):7, 2005.

[193] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés. A comparison of test case prior-

itization criteria for software product lines. In 2014 IEEE Seventh International

Conference on Software Testing, Verification and Validation, pages 41–50, 2014.

[194] S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin, D. Sundmark, and S. Larsson.

Towards earlier fault detection by value-driven prioritization of test cases using

fuzzy topsis. In Information Technology: New Generations, pages 745–759.

Springer, 2016.

[195] C. Tao, B. Li, X. Sun, and C. Zhang. An approach to regression test selection

based on hierarchical slicing technique. In 2010 IEEE 34th Annual Computer

Software and Applications Conference Workshops, pages 347–352. IEEE, 2010.

[196] C. Tao, B. Li, X. Sun, and Y. Zhou. A hierarchical model for regression test

selection and cost analysis of java programs. In 2010 Asia Pacific Software

Engineering Conference, pages 290–299. IEEE, 2010.

[197] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein. Static test case

prioritization using topic models. Empirical Software Engineering, 19(1):182–

212, 2014.

[198] N. Tillmann and W. Schulte. Parameterized unit tests. In ACM SIGSOFT Soft-

ware Engineering Notes, volume 30, pages 253–262. ACM, 2005.

[199] V. Tiwari, S. Malik, A. Wolfe, and M.-C. Lee. Instruction level power analy-

sis and optimization of software. In VLSI Design, 1996. Proceedings., Ninth

International Conference on, pages 326–328, Jan 1996.

[200] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August. Compiler

optimization-space exploration. In Code Generation and Optimization, 2003.

CGO 2003. International Symposium on, pages 204–215. IEEE, 2003.



Bibliography 127

[201] W.-T. Tsai, X. Zhou, R. A. Paul, Y. Chen, and X. Bai. A coverage relationship

model for test case selection and ranking for multi-version software. In High

Assurance Services Computing, pages 285–311. Springer, 2009.

[202] E. Ufuktepe and T. Tuglular. Automation architecture for bayesian network

based test case prioritization and execution. In 2016 IEEE 40th Annual Com-

puter Software and Applications Conference (COMPSAC), volume 2, pages 52–

57. IEEE, 2016.

[203] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye. Energy-driven

integrated hardware-software optimizations using simplepower. In Computer

Architecture, 2000. Proceedings of the 27th International Symposium on, pages

95–106, June 2000.

[204] F. I. Vokolos and P. G. Frankl. Pythia: a regression test selection tool based

on textual differencing. In Reliability, quality and safety of software-intensive

systems, pages 3–21. Springer, 1997.

[205] Y. Wang, X. Zhao, and X. Ding. An effective test case prioritization method

based on fault severity. In 2015 6th IEEE International Conference on Software

Engineering and Service Science (ICSESS), pages 737–741. IEEE, 2015.

[206] L. J. White and H. K. Leung. A firewall concept for both control-flow and data-

flow in regression integration testing. In Proceedings Conference on Software

Maintenance 1992, pages 262–271. IEEE, 1992.

[207] R. Wieringa. A survey of structured and object-oriented software specification

methods and techniques. ACM Computing Surveys (CSUR), 30(4):459–527,

1998.

[208] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In ACM

SIGPLAN Notices, volume 26, pages 30–44. ACM, 1991.

[209] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of effec-

tive regression testing in practice. In PROCEEDINGS The Eighth International

Symposium On Software Reliability Engineering, pages 264–274. IEEE, 1997.

[210] Y. Wu, M.-H. Chen, and H. M. Kao. Regression testing on object-oriented

programs. In Proceedings 10th International Symposium on Software Reliability

Engineering (Cat. No. PR00443), pages 270–279. IEEE, 1999.



Bibliography 128

[211] G. Xu and A. Rountev. Regression test selection for aspectj software. In 29th

International Conference on Software Engineering (ICSE’07), pages 65–74.

IEEE, 2007.

[212] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen. Regression testing for web appli-

cations based on slicing. In Proceedings 27th Annual International Computer

Software and Applications Conference. COMPAC 2003, pages 652–656. IEEE,

2003.

[213] Z. Xu, K. Gao, T. M. Khoshgoftaar, and N. Seliya. System regression test

planning with a fuzzy expert system. Information Sciences, 259:532–543, 2014.

[214] Z. Xu, Y. Liu, and K. Gao. A novel fuzzy classification to enhance software

regression testing. In 2013 IEEE Symposium on Computational Intelligence

and Data Mining (CIDM), pages 53–58. IEEE, 2013.

[215] S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In

Proceedings of the 2007 international symposium on Software testing and anal-

ysis, pages 140–150. ACM, 2007.

[216] H. Yoon and B. Choi. A test case prioritization based on degree of risk expo-

sure and its empirical study. International Journal of Software Engineering and

Knowledge Engineering, 21(02):191–209, 2011.

[217] M. Yoon, E. Lee, M. Song, B. Choi, et al. A test case prioritization through

correlation of requirement and risk. Journal of Software Engineering and Ap-

plications, 5(10):823, 2012.

[218] M. Young. Software testing and analysis: process, principles, and techniques.

John Wiley & Sons, 2008.

[219] L. Yu, L. Xu, and W.-T. Tsai. Time-constrained test selection for regression test-

ing. In International Conference on Advanced Data Mining and Applications,

pages 221–232. Springer, 2010.

[220] T. Yu, X. Qu, M. Acharya, and G. Rothermel. Oracle-based regression test

selection. In 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation, pages 292–301. IEEE, 2013.



Bibliography 129

[221] Y. T. Yu and M. F. Lau. Fault-based test suite prioritization for specification-

based testing. Information and Software Technology, 54(2):179–202, 2012.

[222] F. Yuan, Y. Bian, Z. Li, and R. Zhao. Epistatic genetic algorithm for test case

prioritization. In International Symposium on Search Based Software Engineer-

ing, pages 109–124. Springer, 2015.

[223] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei. Bridging the gap be-

tween the total and additional test-case prioritization strategies. In 2013 35th In-

ternational Conference on Software Engineering (ICSE), pages 192–201. IEEE,

2013.

[224] X. Zhao, Z. Wang, X. Fan, and Z. Wang. A clustering-bayesian network based

approach for test case prioritization. In 2015 IEEE 39th Annual Computer Soft-

ware and Applications Conference, volume 3, pages 542–547. IEEE, 2015.

[225] P. Zhong, M. Martonosi, P. Ashar, and S. Malik. Accelerating boolean satisfia-

bility with configurable hardware. In FPGAs for Custom Computing Machines,

1998. Proceedings. IEEE Symposium on, pages 186–195. IEEE, 1998.

[226] W. Zou, S. M. Reddy, I. Pomeranz, and Y. Huang. SOC test scheduling using

simulated annealing. In VLSI Test Symposium, 2003. Proceedings, pages 325–

330. IEEE, 2003.


