
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Three-dimensional imaging of bacterial
microcolonies

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R
G

H

Alexander M

c
Vey

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

to the
University of Edinburgh

July 2015





Abstract

Previous research into microbial colonies and biofilms shows a significant gap in our

current understanding of how bacterial structures develop. Despite the huge body

of research undertaken into the formation, genetic makeup, composition, and optimal

growth conditions of colonies, no study has been successful in identifying all individual

bacteria in a colony in three-dimensions as a function of time. This lack of bacterial cell

lineage in such a simple class of organisms is conspicuous in the light of what is known

about other organisms, such as Caenorhabditis elegans [1]. In this thesis I show that

using laser scanning confocal microscopy in conjunction with developments in sample

preparation and post acquisition image analysis, it is possible to fully reconstruct

all individual bacteria within an Escherichia coli (E. coli) microcolony grown in

viscoelastic media. Additionally, I show that by further pushing the resolution of

confocal microscopes, commercial systems are capable of extracting three-dimensional

information on protein structures inside bacteria at early stages of growth.

This thesis is in three parts.

The first part shows that by pushing the resolution of a commercial laser scanning

confocal microscope system it is possible to achieve single cell resolution of a bacterial

colony growing in three dimensions in a viscoelastic medium (agarose) from a seed

bacterium. The growth of individual bacteria is examined as the concentration of

agarose in the media is altered. Results show there is a nonlinear dependence between

the rate of growth of a bacterium and the concentration of the agarose in the media

with a peak in growth rate at 3% (weight) concentrations of agarose in M9 media.

The second part of this work presents a study of how an initially two-dimensional

colony growing between a glass slide and agarose gel suddenly invades the third spatial

dimension by buckling. The results show that the cells within the centre of the colony

flex and buckle, due to confinement by their neighbours, creating additional layers.

Indeed, flexing is not limited to the buckling event but occurs throughout the early

i



growth cycle of a colony.

The final part of this thesis shows that by further pushing the resolution of confocal

microscopes, commercial systems are capable of extracting three-dimensional informa-

tion about the temporal evolution of the spatial distribution of the FtsZ septation ring

within the cell. As the bacterial colony grows from a seed bacterium to a microcolony,

the error in placing the division accurately at the cell centre is seen to increase as the

number of bacteria within the colony increases and spatial confinement occurs.
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Chapter 1

Introduction

Bacteria are the most prevalent organisms on Earth with a collective terrestrial

biomass considerably greater than that of plants and animals combined [2]. They

are constantly meeting new environmental conditions and consequently have evolved

highly sophisticated ways of adapting and changing. This results in bacteria exhibiting

a wide range of attributes, being capable of swimming [3] and collective motion [4],

as well as forming complex structures at interfaces [5], and surviving in exceptionally

hostile conditions [6–9]. Individual bacteria are also capable of communicating with

each other (a process known as quorum-sensing) in order to maximise their chance

of survival by collaborating to form more complex multi-cellular structures [10, 11].

Exhibiting such a diverse set of abilities means bacteria are exceptionally useful to

humans, in the fermentation of wine [12, 13], cheese [14] and yoghurt [15, 16] and

as pesticide [17]. Similarly, bacteria are vital in aiding digestion in the human gut,

particularly in releasing vitamins from food [18, 19]. Additionally, as a result of their

ability to utilise a wide-range of sources as food, bacteria have also been used to clear oil

spills [20] and clean toxic waste [21] as well as producing chemicals such as ethanol and

acetone [22] and have recently been found to boost crop production through conversion

of nitrogen in the air to a form suitable for rapid growth in trees [23].

Unfortunately, bacteria are also capable of causing great distress and harm to their

hosts and are the cause of many infections in plants [24], animals [25] and humans [26].

One of the main determinants of infectivity is their ability to adhere to surfaces, forming

colonies and biofilms, which o↵er increased resistance to drugs (antimicrobials) as a

result of the reduction in surface area and the excretion of extracellular polymeric

substance (EPS) [27, 28]. The rise in antimicrobial resistance (AMR) of bacteria is

increasingly a cause of concern, with the World Health Organisation (WHO) citing it

as a significant threat to modern medicine [29]. The report produced by the WHO
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Chapter 1. Introduction

into the scale of AMR across the 6 regions of the world shows that in many cases

common bacterial infections are resistant to at least one antimicrobial more than 50%

of the time. Many bacteria showing AMR form biofilms as one of their primary

methods of combatting antimicrobials, E. coli causing urinary tract infections, and

Staphylococcus pneumoniae causing pneumonia being two examples [30]. Therefore,

gaining an understanding of how colonies and biofilms form, their makeup, types of

structures, and EPS excretion, as well as the method of nutrient uptake is essential in

combatting AMR in bacteria.

The definitions of microcolony, colony and biofilm are somewhat muddled throughout

scientific literature. For the purposes of clarity, I will define what I mean when referring

to biofilm, colony and microcolony in this thesis. A colony is a single-species structure

growing on nutrient rich agarose. Colonies are larger than microcolonies, which refers

to the early stages of colony formation. Large colonies are visible by eye but in the

context of this thesis both colonies and microcolonies require a microscope in order to

visualise them. In contrast, a biofilm is a more complex structure consisting of bacterial

cells (often multiple species) as well as extracellular proteins and EPS. Experiments

in this thesis deal only with microcolony and very early colony formation to a point

beyond the development of secondary layers on the agarose surface.

Unsurprisingly, colonies and biofilms have been a focal point for microbiological research

for the last half century, with experiments aimed at probing all aspects of the systems.

A significant proportion of biofilm investigation has been centred around obtaining

an understanding of the genetic basis of biofilm formation [31], notably in major

biofilm models such as Pseudomonas aerouginosa [32] and in pathogenically important

strains such as E. coli [33]. In a similar vein, research has also been conducted into

understanding the role of di↵erent factors in the environment where biofilms exist.

For example, a study by Song et al. found that an increase in the concentration of

magnesium ions initially led to an increased abundance of bacteria cells attached to a

glass surface [34]. The study also found that as the biofilm matured the concentration

of magnesium ions did not influence the number of Pseudomonas fluorescen cells

present in the biofilm, leading Song et al. to conclude that magnesium is important

for the initial binding of bacteria to a surface but not in the formation of bonds

between bacterial cells [34]. Additionally, the mechanical properties of biofilms have

been probed by groups such as Hohne et al. who investigated the Young’s modulus

of both Staphylococcus epidermids and Klebsiella pneumoniae biofilms using a thin

poly (dimethyl) siloxane (PDMS) membrane sited above the sample to compress the

biofilm. They found the Young’s moduli of the biofilms to be 3.2 kPa and 1.1 kPa
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respectively [35].

In a concurrent strand of research, rather than focussing on the environment in

which biofilms exist, or their genetic makeup, there have been several studies into

the identification of the constituent parts of biofilms both spatially and temporally

using microscopy. Initially, three-dimensional spatial reconstruction was conducted

using electron microscopy (EM) [36]. However, the preparation of samples for EM

requires the sample to be fixed and dried either in ethanol for 72 hrs, or in bu↵er

for 2 hrs followed by air at room temperature for 120 hrs [37]. As biofilms are up to

97% water [38] this produced a very simplistic and unrealistic view of biofilm makeup

in early studies [39]. To image hydrated samples in a more realistic environment, it

was necessary for new methods to be applied, and with extensive application already

in biology, confocal microscopy was an obvious candidate. Lawrence et al. were

the first group to successfully image fully hydrated microbial biofilms using confocal

microscopy. They were able to resolve individual bacterial cells in the biofilm in three-

dimensions when the cells were well dispersed. But, as the density of the bacterial cells

increased, they were unable to resolve individuals successfully [40]. In their concluding

remarks Lawrence et al. state their belief that optical techniques such as confocal

microscopy will be of su�cient resolution to allow full “3D, and potentially 4D (time

course) reconstructions of biofilm characteristics” [40]. Unfortunately, despite more

than two decades passing since Lawrence et al. made this statement, the realisation of

this prediction has yet to occur [41–43]. Caldwell et al. attempted to further improve

this method, resolving individual cells, however, they were, like Lawrence, only able to

identify individual cells in the biofilm when they were well dispersed in the EPS [44].

In the study by Song et al. mentioned above [34], the group used confocal microscopy to

image the three-dimensional distribution of cells as the biofilm formed. Although their

confocal images successfully show dense collections of bacterial cells in the body of the

biofilm, they appeared unable to resolve individual bacteria at a su�cient resolution to

successfully track individuals in the biofilm as a function of time. Similarly, Lakins et

al. used multiphoton microscopy to identify areas of live and dead bacterial cells within

the biofilm but found that the intensities required to image at this level caused necrosis

to the bacteria cell [45]. However, they were able to selectively remove bacteria in the

biofilm by using the laser to ablate a section of the whole [45].

In two papers published at the beginning of this decade, a collaborative group

from Taiwan used phase contrast and laser scanning confocal microscopy to identify

individual bacteria grown on a viscoelastic surface. The studies, focussing on early
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Chapter 1. Introduction

colony formation [46] and larger colony growth [47], were able to successfully visualise

individual bacteria in densely formed colony structures but appeared unable to extract

quantitative information from these images, relying instead on arguments of total

colony expansion to determine growth models of these systems [46, 47]. Similarly,

last year, Grant et al. used confocal microscopy to image bacterial colonies grown

on viscoelastic media (agarose gels) around the point where they develop into three-

dimensional structures (with the generation of a second layer of bacteria) [48]. Again,

despite being able to identify individual bacteria in the images, the group relies on

colony area expansion as a whole rather than individual bacterial growth to show that

mechanical forces are the main driving force for developing a second layer [48].

Recently, Berk et al. successfully reconstructed biofilms in three spatial dimensions

as a function of time using laser scanning confocal fluorescence microscopy. They

used four di↵erent fluorescent markers to identify di↵erent constituent cells in biofilms,

identifying cell clusters and protein concentrations in the biofilm. The study showed

that rather than being individual cells surrounded by EPS in a biofilm, bacteria form

in dense, tight-knit clusters with constant widths of 2.2±0.3 µm and lengths from 2 µm
to 8 µm [49]. Berk et al. also found evidence that no bacterium in these clusters was

entirely surrounded by other bacteria, meaning that all bacteria were able to directly

absorb nutrients from the EPS and surroundings without nutrients needing to pass

across other bacteria. However, none of the studies discussed above have proved to be

capable of identifying individual bacteria in the biofilm environment, particularly when

the cells are densely packed together in clusters.

Stewart et al. successfully identified individual bacteria in a colony and used this to

track the growth of individual cells over time [50]. They showed a clear increase in

the growth rate over several generations for E. coli originating from the newly formed

pole (formed in the most recent septation) when compared to cells which originated

from an old pole (formed in an earlier division). However, despite being successful in

temporally tracking the bacteria over several generations, the group did not extract

spatial information on the colony formation and development [50].

When compared to other similar fields of research this deficiency is quite conspicuous.

In Caenorhabditis elegans, a small roundworm used as a model eukaryotic system, for

example, the location of all cells within the worm was identified as early as the 1980’s

culminating in Sulston et al. in 1983 successfully providing a full cell lineage of all

cells from embryonic state to fully hatched larva [1]. There are several factors that

have led to the inability to provide a cell lineage for bacterial colonies, one of which is
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the close proximity of the di↵raction limit to the physical size of individual bacteria,

particularly along the optical axis. In this thesis I show that, despite the dimensions of

bacteria being very close to the di↵raction limit of optical microscopes, using confocal

microscopy it is possible to successfully identify single bacteria (micron sized particles)

in a microcolony (densely packed system) in three spatial dimensions and discuss some

of the resulting information that can be obtained from tracking the growth of such

systems as they develop from disperse individuals to fully formed colonies. Additionally,

I show that by pushing the resolution of confocal microscopy further it is possible to

image structures within micron sized bacteria in three spatial dimensions as a function

of time.

The thesis structure is as follows:

Chapter 2 sketches the theory of confocal microscopy and its application to bacterial

imaging.

Chapter 3 outlines the specifics of sample preparation and confocal microscopy that

are used for experiments in this thesis.

Chapter 4 details the developments made to the confocal microscopy protocols and in

image acquisition and processing in order to achieve single bacterial resolution within

microcolonies in three-dimensions.

Chapter 5 describes results of experiments conducted to determine physical parame-

ters of the seed bacterium used to initiate colony growth for these experiments.

Chapter 6 evaluates the e↵ectiveness of confocal microscopy in the reconstruction of

bacterial colonies where central bacteria are confined in all directions by the coverslip,

agarose and adjacent bacteria.

Chapter 7 provides results of the development of confocal microscopy to image at

a sub cellular level, namely the FtsZ protein in a single bacterium, and in bacteria in

a microcolony.

The results I present have relevance to many disparate disciplines. The following

section is included here to seek to facilitate the reader in identifying those aspects

of most relevance to them. Microbiologists, for example, will be especially interested

in Chapters 5, 6 and 7 where I show that using confocal microscopy, a technique
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already widely used in the field, it is possible to obtain far more detailed information

from the technique than is extracted in current studies. The results, particularly

those in Chapter 5 and 6, show more complicated systems, such as multiphoton

microscopy [51], are not necessary in order to extract quantitative information on

the spatial and temporal properties of micron sized cells. Similarly, the microbiology

community interested in protein formations in bacterial cells, and who conduct single

cell measurements on bacteria, will be interested in the results showing that colony

growth changes the distribution of protein structures in individual bacteria. This is

of particular relevance since almost all microbiology groups focus on isolated bacteria,

not the predominant state for natural bacteria which prefer to collect together to form

colonies or biofilms.

The study of complex bacterial formations is also of particular interest to medical

biologists treating antimicrobial resistant bacteria, as many pathogens form colonies

and biofilms. Being capable of fully reconstructing the spatial and temporal properties

of cells within colonies and biofilms using confocal microscopy, (Chapter 6), will o↵er

increased insight into many pathogens which use these mechanisms as a way of resisting

treatment when inhabiting a host (patient).

Additionally, since equilibrium thermodynamic theory is now largely a complete body

of work [52,53], since the end of the 19th century e↵orts in thermodynamics have been

focussed on systems which are removed from equilibrium [54,55]. In condensed matter

physics there is therefore a requirement for model systems which are out of equilibrium

in order to test the resulting theories. A system is in thermodynamic equilibrium when

the free energy of the system is at a minimum. There are three ways in which systems

out of equilibrium can be produced. Firstly, a system in thermodynamic equilibrium

can be driven out of equilibrium from a single exertion of force and the relaxation of

the system back to equilibrium can be observed. Secondly, a system in thermodynamic

equilibrium can be continually driven away from equilibrium by an external force and

the adaptation of the system probed. Thirdly, a system which is intrinsically out of

equilibrium, through chemical reactions or the flux of energy or of matter, can be

observed directly. Bacteria, like most systems found in nature, are intrinsically out of

thermodynamic equilibrium and as such are an excellent model for studies of this sort.

Therefore, extracting spatial information from bacterial colonies as a function of time

is vital if bacteria are to be used to test non-equilibrium theory.
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Chapter 2

Three dimensional imaging

techniques

2.1 Introduction

There are several methods of generating three-dimensional (3D) images, many of which

have been used extensively in biological systems. Many, such as ultrasound [56, 57],

computerised tomography (CT) [58], magnetic resonance imaging (MRI) [59, 60] and

positron emission tomography (PET) [61–64] have found uses in clinical environments

[65]. However, the resolution of these techniques ranges from tens of microns to a

few millimetres [66–72] meaning that while they are suitable for organ and human

cell study they are not suitable for bacterial cellular studies. Two techniques that do

o↵er suitable resolution for imaging bacterial cells are atomic force microscopy (AFM)

and electron microscopy (EM). The improved resolution, both being of the order of

nanometers [73, 74], means the techniques can probe samples at the required length

scale for bacterial cultures but both methods are limited to surface (AFM) or near

surface (EM) investigations due to the short penetration depth obtainable from the

probes [65]. Additionally, as previously discussed, the protocol used for EM sample

preparation leads to oversimplified and unrealistic models of biological samples [39].

With developments in light microscopy, there are now many methods for achieving

optical resolution on the micrometre scale, and therefore of obtaining 3D information

from living biological samples (commonly known as sectioning) through optical

microscopes. These include confocal microscopy, and nonlinear microscopy methods

such as multi-photon fluorescence [51], second-harmonic generation [75] and coherent

anti-Stokes Raman scattering [51]. Nonlinear microscopy methods are so called because

in order to cause an excitation of the sample (and therefore induce a signal photon from
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Chapter 2. Three dimensional imaging techniques

the sample) two or more photons have to be incident on the sample at the same time

and spatial location, which means that nonlinear optical methods are inherently 3D.

Since the excitation of the sample can only occur at very high concentrations of input

photons (the photons must be incident on the sample within 10�18 seconds and within

. �

3 of each other [76]), in practice, the excitation is limited to a very tight focal

spot in the sample [77]. Unfortunately, the laser systems and optical setup required to

generate nonlinear signals are complex to construct, maintain and operate, especially

as there are very few examples of o↵-the-shelf commercial systems capable of producing

these signals. Additionally, as a result of needing two or more photons to be incident

on the sample in order to produce a signal, the peak power of light focussed on the

sample either needs to be relatively high (1020 � 1030 photons/cm2 for two-photon

microscopy [76]) when compared to linear microscopy methods, or the excitation must

occur over a longer period of time (i.e. the dwell time must be far longer). High laser

powers are unfavourable when imaging biological samples, as they lead to photodamage

and necrosis (death) of the sample. Similarly, reducing the peak power of the laser and

imaging the sample over extended periods of time in order to obtain a suitable signal

intensity, is inconvenient when examining live biological samples due to variations over

time, particularly in growth and division. This is especially evident when examining

bacterial samples, which in optimal growth conditions have a generation time of around

30min. Consequently, nonlinear optical microscopy techniques are still limited in their

application to biological samples, especially when high time resolution is desired.

In contrast, laser scanning confocal microscopy is a widely available commercial

microscope technique which o↵ers many of the advantages of nonlinear microscopy

techniques, such as three-dimensional capability, while reducing the complexity of the

system for the user. After an initial delay from when Marvin Minsky first showed

confocal microscopy was capable of sectioning a sample [78, 79], the technique has

become extensively used in the imaging of biological samples, particularly since the

combination of the technique with laser scanning technology in the late 1980’s [80,81].

In this chapter I outline the physical principles associated with laser scanning confocal

fluorescence microscopy.

2.2 Confocal fluorescence microscopy

2.2.1 Overview

Conventional microscopy techniques, such as brightfield, darkfield and phase-contrast

are powerful methods of imaging samples on the microscopic scale. In a traditional
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2.2. Confocal fluorescence microscopy

microscope the sample is placed on a translational stage and light is projected onto

it from a collimated beam; the sample being viewed through an objective placed on

the other side of the sample stage. In microscopy of this sort, the entire sample is

illuminated continuously during imaging meaning light from areas of the sample other

than the focal plane is also directed through the objective and viewed at the image

plane (Figure 2.1). Out of focus light (red and blue light rays in Figure 2.1) distorts

the image, reducing the quality, and means that brightfield microscope methods are

incapable of resolving objects in the third spatial dimension (along the optical axis).

Figure 2.1: Schematic of light rays from brightfield imaging incident on detector. Light from
planes not in the focal plane (red and blue) are incident on the detector as well as light from
the focal plane (green) causing noise and distorting the image.

Despite this, brightfield microscopy systems are capable of reaching the fundamental

di↵raction limit in the object plane

r

xy

= 0.61
�

NA
(2.1)

where � is the wavelength of the incident light and NA is the numerical aperture of the

objective, defined as

NA = n sin ✓ (2.2)

where n is the refractive index of the imaging media between the objective and the

sample (air, water or oil usually) and ✓ is half the angle of the cone of light that can

enter the objective.

The di↵raction limit, (Eq. 2.1), is a fundamental limit which determines how close

two objects can be to one another and still be resolvable. It cannot be improved upon

in conventional microscope techniques, such as brightfield. Two objects close to one
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Chapter 2. Three dimensional imaging techniques

Figure 2.2: Schematic of two point sources emitting di↵raction patterns (known as Airy
disks) with accompanying intensity profiles (bottom images). At distances far larger than
the di↵raction limit (r

xy

) the two objects are easily distinguishable from each other (A). As the
distance between objects approaches r

xy

(B) the distinction becomes more di�cult. (C) when
two objects are separated by a distance less than r

xy

the two di↵raction patterns interfere,
making separation of the two objects impossible (they are unresolvable). All axes are arbitrary
units

another in a sample can be viewed as independent point sources of light, which are

brought to a focus through the objective. Light from each of these point sources, when

passing through the objective, is di↵racted, creating a di↵raction pattern. For a point

source this takes the form of a collection of Airy rings (Figure 2.2). If the two point

sources are well separated in the sample it is still possible to identify (resolve) the two

individual objects (A). However, as the distance between the objects approaches r

xy

(B), the di↵raction patterns overlap, causing interference in the two patterns. When

objects are separated by a distance less than r

xy

(C), the objects are indistinguishable.

In confocal microscopy, like brightfield, the entire sample is illuminated by the incident

light source [80]. However, unlike brightfield microscopy, the incident light is focussed

through an objective onto the sample in a tight focal spot,1 e↵ectively illuminating the

sample from a point source rather than a collimated beam of light. This increases the

resolution in the focal plane (the lateral resolution) by a theoretical factor of 1.525, a

value obtained by dividing the constant in Eq. 2.1 with that in Eq. 2.3 [82]. The lateral

resolution of confocal microscopes (r
confocal

) is therefore

r

confocal

= 0.4
�

NA
(2.3)

1The focal spot and plane are in fact thin three-dimensional volumes of light limited by di↵raction.
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2.2. Confocal fluorescence microscopy

Figure 2.3: Schematic of light rays from confocal imaging. The introduction of a pinhole
means that light generated at the focal spot (green) is the only light able to pass through to
the detector. Light generated away from the di↵raction-limited focal spot (red and blue) is cut
o↵ by the pinhole.

However, as with brightfield, a relatively large volume is illuminated in the sample and is

incident on the detector. In order to reduce the noise from out of focus light, in confocal

microscopy a pinhole (of the correct diameter) is positioned between the objective and

the detector at the conjugate focal plane of the objective, stopping out of focus light

from entering the detector and limiting the light to a small optical section of the

focal volume (Figure 2.3), providing a point-like detection mechanism. Unsurprisingly,

the size of the optical volume incident on the detector is heavily dependent upon the

diameter of the pinhole [83]. The introduction of a point-like illumination and point-

like detection means that using this method it is possible to specifically select a small

three-dimensional plane in the sample for precise imaging. But, in order for confocal

microscopes to achieve improvements in the resolution limit it is necessary for the

incident light to be spatially coherent. One of the simplest methods of achieving this

is through the use of coherent light sources such as lasers.

2.2.2 Laser scanning confocal microscopy

Most confocal systems which are commercially available utilise laser radiation to excite

the sample due to laser radiation’s inherent spatial coherence and the ability to focus

easily to tight focal spots. Additionally, using raster scanning mirrors the beam can be

scanned quickly across the sample moving the focal spot around the focal (xy) plane

to illuminate di↵erent areas of the sample, therefore allowing the detector, usually a

photomultiplier tube (PMT), to build up an image of the sample one pixel at a time.

Similarly, by altering the distance between the sample stage and the objective, by

moving the objective (or the sample) up or down the optical axis (also known as the

11
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axial or z direction), it is possible to transfer the focal plane of the incident light through

the sample, providing the ability to optically section a sample in three-dimensions.

Figure 2.4 shows a schematic of the confocal microscope used for experiments conducted

as part of this thesis. Incident light (blue) from the laser source is brought to a focus

on the sample through the objective. Before being brought to a focus on the sample,

scanning mirrors allow rapid scanning of the focal spot in the xy plane. The emitted

Figure 2.4: Schematic of the confocal microscope setup used for three-dimensional optical
sectioning of bacteria and bacterial colonies as part of this thesis. Incident light (blue) of
specific wavelength is directed into the microscope body and brought to a focus on the sample
through an objective. Emitted light (green) from the sample is collected through the objective
and passes through the bandpass filter before being brought to a focus again on the conjugate
focal plane. A pinhole placed at the conjugate focal plane stops light not from the focal plane
from entering the PMT. A beamsplitter (BS) allows simultaneous acquisition of two di↵erent
wavelengths in two PMTs. Rapid scanning of the scanning mirrors (SM) translates the focal
spot across the xy plane allowing acquisition of an image by the PMT one pixel at a time.
The objective can be moved in the axial direction (z) in order to allow alteration of the focal
plane through the sample, providing the capability for optical sectioning of the sample. Specific
alterations to the setup are discussed in the relevant results chapters.

light is reflected back through the objective and directed through the pinhole onto a

PMT.

However, as Eq. 2.1 shows, the resolution of microscopes is of the order of hundreds

of nanometres (taking the wavelength of incident light, �, to be 500 nm (central in the
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visible spectrum) and with an NA of 1.4 the resolution in the focal plane is r

xy

'

220 nm). The resolution of optical microscopes being so close to the physical size of a

bacterium means resolving individuals in a densely packed population is a nontrivial

task, E. coli for example, have a diameter of 800 nm and range from 1.0 µm to 10.0 µm
in length.

2.2.3 Resolution of confocal microscopy

While the lateral resolution of brightfield microscopes is su�cient, given a high enough

magnification objective ( > 40⇥), to resolve individual cells the lack of axial resolution

means the technique is unsuitable for full 3D reconstruction. Given that the resolution

of optical microscopes is of the order of hundreds of nanometres, a full consideration of

the limits of resolution of a confocal microscope is necessary.

Lateral resolution

For incident light of wavelength 500 nm through an objective with NA = 1.4, the lateral

resolution of a confocal microscope is 145 nm. The improvement in resolution in the

focal plane, whilst only a small improvement over brightfield, is still advantageous as it

increases the di↵erence between the physical size of an E. coli bacterium and r

confocal

.

This improvement is not exclusive to confocal microscopy but is the result of using

point-like illumination [84]. Consequently, identifying individual cells in the focal plane

(2D) is also possible in a conventional microscope adapted for fluorescent imaging [85].

Despite the improvement in the lateral resolution, caused by focussing of the incident

light onto the sample, when objects are separated by a distance below the improved

resolution (i.e. smaller than 145 nm), it is still possible for them to be indistinguishable.

Figure 2.5 shows two fluorescent beads (Tetraspeck) with a diameter of 200 nm imaged

using a Zeiss Confocal LSM 700. As with brightfield imaging, when the two objects

(beads in this case) are separated by a distance well above the di↵raction limit,

145 nm, (A), they are clearly resolvable. However, as the distance between the objects

approaches 145 nm it becomes more di�cult to distinguish individual beads from one

another (B), until two beads separated by a distance below the di↵raction limit of

145 nm (C) are indistinguishable.

2.2.4 Axial resolution of confocal microscopes

The real advantage of confocal microscopy is the ability to resolve in the axial direction

(along the optical axis) through the positioning of a pinhole at the conjugate focal

plane, which allows only light from the focal plane to be directed onto the detector.
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Figure 2.5: Two Tetraspeck fluorescent beads of diameter 200 nm imaged using a Zeiss confocal
LSM 700. Beads well spatially separated within the sample are easily distinguishable (A).
However, as the separation between the two beads, l ! r

confocal

(B) it becomes more di�cult
to resolve the individual beads from one another until the beads are too close together (l <
r

rmconfocal

) and are no longer separable from one another (C). Scale bars are 500 nm

The axial resolution (�z

confocal

) is dependent upon the diameter of the pinhole, but

can be estimated as

�z

confocal

'

n�

2NA2

(2.4)

where n is the refractive index of the sample medium, � the incident wavelength and

NA the numerical aperture of the objective [86]. This is the theoretical maximum

axial resolution and assumes a pinhole with an infinitely small diameter, implying

an infinitely small number of photons pass through the pinhole onto the detector.

Consequently, the resolution of the microscope in the axial direction will not reach this

level of resolution. However, assuming incident light of wavelength 500 nm on a largely

aqueous sample (n ' 1.33) and imaging with an objective with a numerical aperture

of 1.4, the greatest possible resolution in the axial direction is �z

confocal

' 170 nm.

The resolution in the axial direction is therefore approximately 4 times smaller than

the minimum dimension of an E. coli bacterium (diameter ' 800 nm), meaning that,

while very close to the fundamental resolution of a confocal microscope, it is possible,

at least in principle, to resolve individual bacteria in the axial direction.

2.2.5 Pinhole

The diameter of the pinhole is critical in providing resolution along the optical

axis. If the diameter of the pinhole is very large a confocal microscope reverts to

a fluorescence microscope and axial resolution is lost. To achieve the theoretical

maximum improvement in resolution for confocal microscopy the pinhole must be

infinitely small, a physical impossibility. Since the pinhole limits the amount of light

that is incident on the detector by removing light from areas of the sample not in the

focal plane, an infinitely small diameter means the amount of light passing through
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the pinhole (and therefore the signal incident on the detector) is infinitely small.

Consequently, in practice a compromise is made between the diameter of the pinhole

and the amount of light incident on the detector with the pinhole being set to a finite

diameter which is typically equal to the size of the 1st order airy disk created by the

di↵raction of the system [87].

2.3 Maximising the resolution

A purely theoretical study of confocal microscopy suggests that the lateral and axial

resolution (Eqs. 2.3 and 2.4) is suitable for imaging micron sized bacterial cells in three-

dimensions. However, in reality the resolution achievable by confocal microscopes is

poorer than the theoretical limits, due to both the optical elements in the sample

and, more importantly, the media, (glass slide and the biological samples themselves)

through which imaging occurs. Theoretical models assume optical elements such as

lenses and mirrors are perfectly manufactured. In reality these elements introduce

aberrations to the image, which are the result the variation of a lenses refractive index

as a function of wavelength and the geometry of the optical element. The former is

negated by using a monochromatic light source (such as a laser beam), but aberrations

from the geometry of the optical element still occur. In the lateral direction these

aberrations can be corrected through careful alignment and precision engineering of the

optical elements (mirrors, filters and lenses) used in the construction of the microscope,

so that the microscope resolution reaches the fundamental limit of di↵raction. However,

in the axial direction in particular the resolution is heavily dependent upon the changes

in refractive index of the materials the light passes through.

Matching the refractive indices of materials through which the incident and emitted

light must travel in order to illuminate the sample and be collected by the detector limits

the e↵ect of reflection and refraction at surface interfaces. One of the simplest ways

of achieving this is through the use of oil, water or air specific microscope objectives,

selected depending upon the nature of the sample under investigation. Air, water and

oil have di↵erent refractive indices (1, 1.33 and approximately 1.4 respectively) and as

such provide a way to match the refractive index of the objective to the initial interface

in the sample, limiting the distortion of incident light by reflection or refraction at

the barrier between the two materials. For example, samples which are unsealed and

open to the environment are best viewed through an air objective in order to limit the

number of interfaces through which the incident light must travel. Similarly samples

which require an aqueous environment, in order to maintain hydration, for example,

are best viewed with a water immersion objective and samples which require sealing or
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imaging through a glass coverslip or slide are best viewed with an oil immersion lens,

with the refractive index of the oil selected in order to match the refractive index of

the objective or the initial glass interface of the sample. As well as limiting refraction

and reflection of incident light at the interface, index matching of the objective in oil

allows higher valued numerical apertures to be utilised (i.e. increasing the angle of the

light cone the objective can focus) providing increased magnification of the sample.

While it is possible to match the refractive indices from the objective to the sample

when imaging into living biological samples, in order for light to be brought to a

focus at a point within the sample (rather than at the sample surface), the incident

light must travel through part of the biological sample. Biological samples are highly

disperse (light scattering)2 and as a result the distance the incident light can travel

through the sample without scattering (known as the mean free path of the light)

is small. Consequently, imaging deep into biological samples (beyond the mean free

path length) means there is an increased probability the incident light will scatter

multiple times, reducing the light incident from the focal spot and increasing the

probability that light from out-of-focus planes can pass through the pinhole and onto

the detector. Figure 2.6 shows a schematic confocal set up where light from the focal

spot is scattered in such a way as to restrict it from passing through the pinhole onto the

detector (A). Similarly light from an out of focus plane in the sample can be directed

towards the pinhole as a result of scattering in the sample (B). Both these scattering

events mean there is a degradation in the quality of the image, which increases as the

amount of biological material through which light must pass increases [89, 90]. These

scattering events empirically decrease the resolution of confocal microscopes from the

theoretical maximum 170 nm to 320 nm for dispersive media such as biological samples.

Consequently, the distance between objects that the confocal microscope can resolve is

only twice as small as the diameter of a bacterial cell. Therefore, although theoretically

possible, in order to successfully perform optical sectioning of bacterial colonies in three-

dimensions at single cell resolution it is necessary to push the resolution of confocal

microscope systems to the limit.

2.4 Aim

The primary aim of this thesis is to develop the scope of confocal microscopy as

an imaging tool for microbial systems in three dimensions, which has been achieved

through a three-pronged approach (Table 2.1). Firstly, high-contrast 3D imaging

2Indeed an entire field of study utilises this phenomenon to its advantage (see [88] for a recent
review)
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Figure 2.6: Scattering events in a biological sample when imaging with a confocal microscope.
(A) Light (blue) from the focal plane of the sample is scattered within the sample and directed
away from the pinhole reducing the signal from the focal plane on the detector as a result.
(B) Light (red) from an out of focus plane within the sample is scattered in such a way as to
direct the light through the pinhole and onto the detector increasing the noise and distorting
the signal from the focal plane.

of single bacteria has been conducted in order to show the suitability of confocal

microscopy as a method of imaging bacteria at a single-bacterium (and indeed sub-

bacterium) resolution. Secondly, imaging of dense single layers of bacterial colonies

close to a surface has been undertaken and finally full reconstruction of 3D bacterial

colonies is achieved, showing the suitability of confocal microscopy to image densely

packed 3D structures with sub-micron resolution.

Approach Description Chapter

High-contrast
single-bacterium
imaging

Maximising resolution of confocal microscopy to
image bacterial colonies at single cell resolution
and protein superstructures in a bacterium when
in isolated and colony growth states

5 and 7

Single-layer dense
system imaging

Probing maximum resolution of confocal mi-
croscopy to resolve individual bacteria which are
in a tight packing formation (colony)

5 and 6

3D reconstruction Reconstruction of 3D systems when tightly packed 6

Table 2.1: Summary of approach used throughout thesis to develop confocal microscopy for
imaging of bacterial systems
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Chapter 3

Methods

3.1 Introduction

The study of bacterial colonies has previously been undertaken in our group and many

protocols for the preparation of bacteria for colony samples have already been developed

[91]. In order to allow comparison between studies the protocols used for experiments

in this thesis mirror those already established as much as possible, however, since the

theoretical limit of resolution of confocal microscopy is very close to the physical size

of single bacterial cells, it is imperative the protocols used to prepare bacterial colonies

and to image them are optimised. It has therefore been necessary to adapt some of the

current protocols used in the group. In this chapter I outline the general microbiology

protocols used for experiments in this thesis and describe the basic confocal microscope

set up.

3.2 Sample preparation

In order to obtain comparable data from the imaging of bacterial colonies it is vital

that the preparation of bacteria used to seed a colony grown in viscoelastic media is

reproducible. To achieve this, strict protocols must be followed, both on the initial

growth of bacteria on working plates (plates grown from frozen stock and containing

colonies of bacteria grown from a single cell and stored at 4 �C) and on the subsequent

growth of these colonies in bulk (liquid media) to bring them into the exponential

growth phase, in order to ensure the seed bacteria used to start the colony growth are

in the same phase of growth between experiments.
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3.2.1 Growth media

For all experiments, bacterial cultures were transferred from frozen stocks (stored at

�80 �C) and plated onto petri dishes containing Luria-Bertani (LB) agar, where they

were allowed to grow for a period of 16 hrs at 37 �C, resulting in visible, individual

colonies being present on the plate. These working plates were then stored in the

fridge (at 4 �C) and individual colonies removed and added to liquid media to grow

into the exponential growth phase. This is done by picking an individual colony from

the working plate and transferring it to a 10ml liquid growth media solution, which

is incubated overnight at 37 �C and shaken in order to allow thorough mixing of the

solution. Once the culture has reached the stationary growth phase, 100 µl of the liquid
culture is transferred into 10ml of fresh liquid media and incubated to allow the bacteria

in the sample to reach exponential phase.

Once the working plates have been prepared, in order to limit the degradation of the

chromosome, and protein structures in the bacteria, each plate is kept for periods not

exceeding 3weeks, as is standard in the biology laboratories in our group. It was seen

under the microscope that bacteria grown from plates kept beyond 3weeks exhibited

an increased tendency to form filamentous bacteria (where septation and division do

not correctly occur, resulting in extended bacteria filaments beyond the normal 10 µm
length).

For both liquid growth media and agarose pads1 used in the sample chamber (§3.2.3,

p. 26) a derivative of M9-glucose media was used. Both LB and M9 media provide

a suitable nutrient environment to allow normal colony growth, but the content of

LB media is poorly defined and varies across samples as a result of the extraction of

LB from bovine serum. In contrast M9 medium is very well defined and therefore is

far more reproducible than other media sources. M9 medium is prepared by adding

71.79ml of de-ionised & distilled (d.d.) water to 25ml of 4⇥ M9 Salts.2 The medium

is then autoclaved and placed in a warm water bath at 50 �C for 15min before 2ml of

20% glucose is added to the solution, along with 200 µl of 1M MgSO
4

and 10 µl of 1M
CaCl

2

. The medium was kept at 50 �C for this step to aid the mixing of CaCl
2

, which

forms a precipitate in the liquid when added at room temperature. For the production

1A layer of agarose situated on a microscope slide used to provide nutrients to growing bacteria
during experiments.

24⇥ M9 Salts are a concentrated stock solution containing 30 g Na2HPO4, 15 g KH2PO4, 2.5 g NaCl
and 5 g NH4Cl added to 750ml d.d.H2O. The pH of the solution is adjusted to 7.4 using 10mol NaOH
before topping the solution up to 1 l using d.d.H2O.
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of M9 agarose media, the required weight percent of UltraPure Agarose3 is added before

the solution is autoclaved. A detailed protocol for the production of M9-glucose media,

both liquid and agarose is given in Appendix B.

Aside from M9 medium being well defined, the primary reason it is used in this thesis

over other media is because it is a low-fluorescing media at 488 nm, the wavelength

required for excitation of green fluorescent protein (GFP) [92]. This provides an

increased contrast between the bacteria and the background signal. However, in order

to investigate the 3D position of bacteria relative to the agarose in which it is growing,

it is necessary to add external fluorophores to the agarose in order for the agarose to

be visible in a PMT channel. For experiments of this nature Rhodamine B and Nile

Blue fluorophores were selected, as both fluorophores can be excited using the confocal

microscope and their respective emission spectra are well separated from the fluorescent

signals of the GFP in the bacteria.

Fluorescent doping of agarose

For agarose doped with either Rhodamine B or Nile Blue the same protocol is followed

for preparation of the agarose. But, at the point of melting the agarose, before placing

on the microscope slide, concentrations of Rhodamine B or Nile Blue are added. In

order to produce an analogous signal between the GFP fluorescence in the bacteria and

the agarose media, and to allow imaging of both fluorophores simultaneously without

bleaching or damaging the sample in any way, the concentration of the fluorophore in

the agarose media must be carefully controlled. For Rhodamine B, a volume of 20 µl
stock solution4 of Rhodamine B is added to 2ml of M9 agarose, and for Nile Blue doped

agarose, 0.02 g of Nile Blue solid is added to 2ml of M9 agarose to obtain analogous

signals.

3.2.2 Bacterial cultures

All bacterial cultures used in this thesis are derivatives of E. coli K-12 which are

initially grown on working plates from stock cultures. A colony from the working plate

is then suspended in 10ml of media and grown overnight for 16±2 hrs at 37 �C before

being resuspended in 10ml of fresh medium, at a dilution of 1:100, and grown into

late exponential phase (Figure 3.1). Once the exponential phase has been reached the

cultures are spun down using a centrifuge, removed from the medium and resuspended

3Obtained from Invitrogen https://www.lifetechnologies.com/order/catalog/product/

16500500
4Stock solution of Rhodamine B was prepared by Dario Dell’Arciprete and Dr. Andrew Schofield

by adding 20mg of Rhodamine B to 100ml ddH2O giving a concentration of 0.02% (weight/volume)
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Chapter 3. Methods

in phosphate bu↵ered saline (PBS) to dilute the sample to concentrations of 107cells/ml.

The samples are then pipetted onto the agarose pads (§3.2.3).

The cultures used in this thesis for di↵erent experiments have slight genetic variances

between them, partly due to the need to include di↵erent fluorophores in the bacterial

samples in order to image them. For experiments on bacterial growth on agarose

surfaces, strains expressing green fluorescent protein (GFP) were used and two di↵erent

methods of including GFP in bacterial cultures were explored, one being the insertion

of GFP directly onto the chromosome of the bacterium and the other, the insertion

of a tetracycline (TET) resistant GFP-expressing plasmid into the bacterium. For

investigation of the division of bacteria on an agarose surface, a yellow fluorescent

protein (YFP) fluorophore co-expressed by a plasmid with FtsZ (a protein directly

associated with the septation (division) process of E. coli) was transformed in to

the bacterium. In order to provide uniformity across all experiments, and to allow

comparison, these variations have been limited as much as possible, however, the

di↵erences which exist are outlined below and summarised in Table 3.1 (p. 26).

E. coli K-12 MG1655 with GFP plasmid

E. coli K-12 MG1655 is a laboratory strain of E. coli closely related to wild-type

K-12 (only 2 mutations), but is without the dangerous lambda phage. It was the

first strain of E. coli selected by Blattner et al. for genome sequencing [93], the

result being MG1655 has become one of the favourite strains of E. coli for bacterial

studies. Our strain of MG1655 has the plasmid5 pHC60, a tetracycline (TET) resistant

plasmid which expresses green fluorescent protein (GFP), transformed (inserted) into

the bacterium [94].6 The copy number of pHC60 is large resulting in strong fluorescence

across the colony as bacteria divide. Since the plasmid is TET resistant, it is necessary

to include the antibiotic TET in the growth media, to ensure the bacteria include the

plasmid when dividing. TET, dissolved in ethanol (5 µgml�1), is used on the working

plates and in liquid cultures at the working concentration of 10 µl ml�1 specified in

Molecular Cloning - A Laboratory Manual [95].

Cultures of E. coli MG1655 with pHC60 are incubated overnight in 10ml M9(+TET)

5A plasmid is a loop of DNA independent of the chromosome. Plasmids have a small number of
genes (usually fewer than 30) and replicate independently of the chromosome. The number of plasmids
present in the bacterium is important in fluorescence imaging as the more there are within the bacterium
(known as the copy number) the greater the fluorescence signal from each bacterium. Plasmids cost
the bacterium additional energy to reproduce and consequently reduce the growth rate compared to
wild-type or otherwise identical strains.

6All transformation of plasmids used in this thesis was performed by Dr. Angela Dawson
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3.2. Sample preparation

for 16±2 hours at 37 �C to bring the bacterial culture into the stationary growth phase,

before a volume of 100 µl of the culture is transferred to 10ml M9(+TET) and incubated

until the culture reaches an optical density (OD) of between 0.3 and 0.4 when measured

at 600 nm, ensuring the culture is in the late exponential phase of growth (Figure 3.1).

Rather than the 1:100 dilution with which experimental cultures are seeded, the cultures

in Figure 3.1 were seeded with a 1:1000 concentration of the overnight culture to ensure

the contribution of the bacterial cultures to OD were below the detection limit of the

plate reader. Doing this means it is possible to normalise ODmeasurements, by allowing

Figure 3.1: Growth curves measured for E. coli K-12 MG1655 with the addition of the GFP
expressing pHC60 plasmid in LB (blue) and M9 (red) media. Growth curves were measured in
triplicate with an inoculum of 1:1000 from stationary phase in order to be initially below the
detection limit of the FLUOstar Optima plate reader. For experiments, cultures were removed
at OD’s between 0.3 and 0.4 (black arrow). This corresponds to 4 hrs (240min) for an inoculum
of 1:100.

the removal of the contribution provided by the growth media. However, a consequence

of this is that the time for the OD to reach the required level, between 0.3 and 0.4, is

extended in Figure 3.1 when compared to inocula of 1:100. In practice, cultures created

from an inoculum of 1:100 of the overnight culture, reach OD measurements between

0.3 and 0.4 (arrow) at 600 nm after approximately 4 hrs (240min).

E. coli K-12 MG1655 (+GFP)

E. coli strain K-12 MG1655 is again used in order to allow direct comparison between

the relative growth of the two strains and the e↵ect of chromosomal and plasmid GFP.
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Figure 3.2: Growth curves for E. coli K-12 MG1655 expressing GFP inserted onto the
chromosome in LB (blue) and M9 (black) media. Cultures were measured in triplicate for
inocula of 1:1000 in order to be below the detection limit of the FLUOstar Optima plate reader
to allow for removal of signal from the growth media. Cultures were removed upon reaching
OD’s of between 0.3 and 0.4 (black arrow) when measured at 600 nm. This corresponds to 4 hrs
(240min) for an inoculum of 1:100.

However, rather than inserted as a plasmid, the GFP is inserted onto the chromosome7

of the E. coli and as a result the intensity of the fluorescence is reduced relative to the

plasmid strain. As with the plasmid strain, the chromosonal strain is grown overnight

into the stationary phase in 10ml of M9 media for 16 ± 2 hrs at 37 �C before 100 µl
is transferred to 10ml of fresh M9 media and incubated at 37 �C into late-exponential

phase (Figure 3.2). Again, the plate reader was inoculated with 1:1000 concentrations

of stationary phase culture, meaning the initial measurements are below the detection

limit of the plate reader, in order to allow removal of signal from the growth media.

Experimental cultures were removed upon reaching OD’s of between 0.3 and 0.4 when

measured at 600 nm in order to ensure the bacteria were growing in late exponential

phase (arrow), which corresponds to 4 hrs (240min) for an inoculum of 1:100.

7The chromosome of E. coli is a double strand DNA loop containing all the genetic information
necessary for the replication of the bacterium. Inserting the GFP directly onto the chromosome means
that the bacterium will automatically copy the fluorescence when it divides without requiring additional
antibiotics in the media. The trade-o↵ for this is the reduction in signal relative to inserting GFP as
a plasmid. The need for no additional antibiotics to be included in the media to maintain the GFP
within the bacterium does mean that this strain is closer to the wild-type. The growth rate of the
chromosonal GFP is analogous to wild-type measurements.
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E. coli K-12 MG1655 with pLAU80

E. coli strain K-12 MG1655 is again used in order to allow direct comparison between

all experiments conducted in this thesis, however, for experiments into the location of

the septation (division) point of the bacteria the plasmid pLAU80 was transformed into

the bacteria. The plasmid pLAU80 contains an L-arabinose inducible promoter P
BAD

,

AmpR (ampicillin resistance) and FtsZ-yfp fusion, [96, 97] allowing specific expression

of yellow-fluorescent protein (YFP) where FtsZ (linked directly to the septation)

concentrates within a bacterium. The ampicillin resistance means that by including

ampicillin from stock solution (50mgml�1 in H
2

O) in working concentrations of 10 µl
in 10ml of the M9 growth media it is possible to maintain the plasmid in all bacteria

in the culture in a similar way to the inclusion of TET for pHC60 [95]. The pLAU80

plasmid works very di↵erently to the GFP expressing plasmid pHC60 described above

as the target fusion protein (YFP-FtsZ) is not constitutively expressed when the colony

grows, but is rather controlled by an inducible promotor, so that it is only activated by

the addition of arabinose to the growth media.8 A promotor is a region of DNA that

triggers the first stages of gene expression (known as transcription). When a promotor

is inducible, as in the case of the L-arabinose promotor (P
BAD

), the promotion of gene

expression is initiated (induced) by the presence or absence of a physical or chemical

factor. For P
BAD

, the gene expression is induced by the inclusion of arabinose in the

growth media.

Including arabinose in the growth media adds additional complications to sample

preparation of MG1655, as Schleif et al. have shown that E. coli MG1655 can utilise

arabinose through one of its metabolic pathways [98]. It is therefore necessary to include

a greater concentration of arabinose than that specified by Lau et al. (0.05% rather

than 0.01%) in order to ensure all the bacteria are exposed to arabinose at a su�ciently

high concentration to induce the expression of the YFP in pLAU80 [96]. Additionally,

glucose inhibits the uptake of arabinose in MG1655, since glucose is a preferential

metabolite to arabinose (a process known as carbon catabolic repression) [99], and, as

a result, it is necessary to exclude glucose from the growth media in order to successfully

induce pLAU80. Starvation of the bacteria for a prolonged period is sub-optimal, and is

known to lead to significant stress on the bacteria, causing them, amongst other things,

to fail to septate correctly. Instead they grow as long filamentous organisms [100].

Subsequently, it was determined experimentally that the best compromise was the

introduction of arabinose for the final 30min of the exponential growth phase in

8Arabinose is only the inducer in the case of this specific plasmid, although it can be used to induce
other plasmids as well. In general, inducible plasmids are activated by many varying promotors, both
chemical (such as arabinose) and physical (such as light induction).
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Strain Derivative Genotype Fluorescence

MG1655 (+GFP) K-12
F

�
�

� ilvG- rfb-
50 rph-1

GFP [102]

MG1655 (pHC60) K-12
F

�
�

� ilvG- rfb-
50 rph-1

GFP [102]

MG1655 (pLAU80) K-12
F

�
�

� ilvG- rfb-
50 rph-1

YFP [102]

YD133 (pLAU80) K-12
�FimA �FliC
�FlgE

YFP [101]

Table 3.1: E. coli K-12 derivative strains used for experiments within this thesis. Information
on the strain derivative, genotype (deletions) and fluorescence are included.

M9 growth media. To achieve this, the sample was spun down from the exponential

growth media (10ml of a standard M9+Glucose media) and resuspended in 10ml of

M9 growth media excluding glucose and with 0.05% (5 µl) arabinose added from stock

solution.9 Upon conclusion of this period the sample was again spun down and diluted

in PBS to ensure concentrations of 107 cells/ml, before being pipetted onto the agarose

pads.

E. coli K-12 YD133 with pLAU80

While MG1655 with pLAU80 is used in experiments conducted in this thesis (Chapter 7,

p. 97), in order to ensure that the metabolism of arabinose by MG1655 or the starvation

of the cultures in the growth phase were not significant in any phenomena observed, E.

coli YD133, a strain of E. coli not known to metabolise arabinose is used as control.

Our strain of E. coli K-12 YD133 is a K-12 derivative with deletions �FimA, �FliC

and �FlgE [101], transformed with the plasmid pLAU80 [96]. YD133 is a strain derived

from MG1655 and does not metabolise arabinose, allowing introduction of arabinose

into the growth medium without the need to starve the culture.

3.2.3 Sample chamber

In order to achieve 3D resolution suitable for the imaging of bacteria, a custom

made sample chamber is used [91]. A microscope slide is cleaned and a GeneFrame

(ThermoScientific)10 fixed to it. M9 media mixed with the required concentration

9Stock solutions of arabinose were obtained from the School of Biology media laboratories and are
20% arabinose (i.e. 10mg of arabinose for every 50ml of ddH2O). Consequently the addition of 0.05%
arabinose to 10ml media cultures, as is the case here, requires addition of 250 µl of the stock solution
(20% arabinose).

10Double-sided adhesive consumable initially designed for PCR analysis proved to be excellent struc-
tures for containing a shallow pad of agarose. www.thermoscientificbio.com/plastic-consumables/
gene-frame/
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of agarose is heated and a volume of 250 µl pipetted into the GeneFrame. An

additional microscope slide is placed over the GeneFrame to flatten the surface and

ensure sterile conditions are observed while the agarose cools, creating an agarose pad

(Figure 3.3). Upon solidification of the agarose, the top microscope slide is removed

and two channels cut across the short axis of the agarose pad, creating three smaller

pads of approximately identical size within the GeneFrame. These channels allow

the samples to be well oxygenated and provide three agarose pads on which to place

di↵erent concentrations of bacteria on the same microscope slide, ensuring a suitable

concentration (of the order of 107 cells/ml) of bacteria is present for imaging. The

samples (green) are pipetted onto or into the agarose pad depending on the experimental

conditions, left to dry and sealed with a coverslip. The entire sample is then inverted

and imaged using the confocal microscope.

Figure 3.3: Schematic of sample chamber used in experiments. Bacterial samples (green),
are pipetted onto three agarose pads (brown), held in place by a microscope slide (bottom),
GeneFrame, (sides), and sealed with a coverslip (top). The entire sample is then inverted and
imaged using the confocal microscope.

Depending upon the geometry of the system under investigation (i.e. whether the

colonies are to be close to the surface or spread throughout the agarose) the diluted

cultures are placed on the microscope slide in one of three ways. The first, the method

of sample preparation for the majority of experiments, examines bacterial colonies on

the surface of the agarose. The second is for bacterial colonies entirely surrounded

by agarose (within agarose) and the final method is for unsealed samples which are

exposed to the air (position on agarose).

Bacterial colonies on agarose surfaces

For the majority of experiments conducted in this thesis, bacterial colonies are pipetted

onto the surface of the agarose pad, which fills the entire GeneFrame, from the PBS

dilutions and the PBS is allowed to evaporate for 2min, leaving the bacterial culture on

the surface of the agarose. The sample chamber is then sealed using a coverslip on top

of the GeneFrame, which is necessary in order to get close to the sample and achieve

the axial resolution required for resolving individual bacteria in the colony. The sample

is then inverted and imaged using a Zeiss Confocal LSM 700.
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Bacterial colonies within agarose

Bacterial colonies buried in the agarose are prepared in a similar way to those on

the agarose surface, with some key alterations. Firstly, rather than filling the sample

chamber entirely with agarose, the sample chamber is only partially filled with a volume

of agarose calculated to leave approximately a 5 µm air gap from the surface of the

agarose to the maximum capacity of the frame. The bacteria are then pipetted into

the sample as before and the PBS allowed to evaporate before the remaining capacity

of the frame is filled with molten M9 agarose solution at a temperature of 50 �C and

sealed with a coverslip.

Bacteria position on agarose samples

Finally, to investigate the e↵ect of closing the sample with a coverslip it is necessary to

image the bacteria in an open system. This is achieved by fixing a GeneFrame directly

to a coverslip. As small a volume of agarose as possible is then pipetted onto the

coverslip in order to allow imaging of the bacterial colony through the coverslip (and

the agarose) from beneath and thus enable the sample to remain open to the air. The

coverslip is placed onto the confocal microscope stage and imaging is conducted as the

bacterial sample is pipetted onto the agarose surface. This allows real-time analysis of

the nature of the drying process conducted on the bench for the other two methods of

sample preparation.

3.3 Confocal fluorescence microscope

Confocal microscopy was performed using a Zeiss Confocal Laser Scanning Microscope

(LSM) 700. Images were acquired at a scan resolution of 1024⇥ 1024 pixels providing

a suitable pixel resolution below the di↵raction limit, in order to limit digital noise,

whilst maintaining a large enough image area to capture full colony growth over the

time course of the experiments. The Zeiss Confocal LSM is integrated into a standard

microscope, allowing initial positioning of samples on the stage through a traditional

brightfield set up. Additional to the brightfield illumination, the Zeiss Confocal

LSM 700 is equipped with four diode lasers of wavelength, 405 nm, 488 nm, 555 nm and

633 nm, with maximum output powers from the end of the fibre used to direct the beam

into the microscope body of 5mW, 10mW, 10mW and 5mW respectively. The four

laser wavelengths allow tuning of the incident light directly to the excitation peak of the

fluorophore used for the specific experiment (Table 3.2). For green-fluorescent protein

(GFP) and yellow-fluorescent protein (YFP) the laser excitation is performed using a

laser wavelength of 488 nm, while for Rhodamine B, the wavelength is 555 nm and for
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Fluorophore Excitation Peak (nm) Laser Wavelength (nm)
Green Fluorescent Pro-
tein (GFP)

475 488

Yellow Fluorescent Pro-
tein (YFP)

514 488

Rhodamine B 540 555
Nile Blue 635 633

Table 3.2: Excitation peaks and targeted laser excitation wavelengths of fluorophores used in
experiments within this thesis

Nile Blue, 633 nm. YFP excitation by a laser wavelength of 488 nm is well removed

from the maximum peak of excitation (514 nm), but due to the excitation spectrum

of the fluorophore, 488 nm still induces significant excitation of the fluorescent protein,

providing an output signal intensity suitable for analysis.

Signal acquisition from the LSM 700 is available in two photomultiplier tube (PMT)

channels simultaneously, or sequentially, in epi-detection mode, with an additional PMT

able to acquire signal from transmitted signals (T-PMT). The T-PMT collects signal

from part of the incident beam (i.e. the laser wavelength) which has passed through

the entire sample, providing a pseudo-brightfield image, which has no axial resolution

but a lateral resolution with a theoretical limit of 0.4 �

NA

(Eq. 2.3), allowing imaging of

the sample areas which are not tagged with fluorescent markers.

3.4 Deconvolution

As discussed in Chapter 2 (p. 8), brightfield light microscopy is limited initially by the

Rayleigh criterion, which can be reduced by using laser scanning microscopy methods

such as laser scanning confocal microscopy. Despite these improvements, when imaging

bacterial samples, the resolution of these systems, particularly in the axial direction,

is still very close to the physical size of the bacterium. As a result, as the packing

fraction of bacteria tends to 1 (as is the case for bacterial colonies) it becomes di�cult

to resolve individual cells in the collective sample. Therefore, for 3D reconstruction of

such samples the need to maximise the resolution in all three-dimensions (plus time) is

vital for correct identification of a specific bacterium in a colony. A way of improving

the resolution achievable from microscopes is to remove the distorting e↵ect the optical

elements (and indeed the media through which imaging is taking place) have on the

signal obtained from the sample. This process, known as deconvolution, is used for

experiments in this thesis and consequently, the methods of achieving this are described

here.
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3.4.1 Overview

When light passes through a lens, or is reflected from a mirror, blurring and noise

from the optical element are added to the incident light from the object. When passed

through a series of optical elements (as in the case of a microscope) this can cause serious

distortions, dramatically reducing the resolution. This is of particular importance when

attempting to view samples at, or below, the resolution of the microscope, since the size

of the objects being imaged is the same order of magnitude as the distortion. While

it is not possible to remove the blurring during image acquisition, deconvolution can

be used during image processing to reduce the distortions and restore the image to a

quality close to that predicted for an ideal imaging system (referred to as the ‘perfect

image’).

To deconvolve an image it is necessary to know the extent of the distortion generated

by the optical elements used. This is achieved by generating a point spread function

(PSF) of the microscope, which can then be removed from the images. The PSF is the

image of a point source, which in practice is usually a bead with a diameter that is

below the optical resolution of the microscope. PSFs can be theoretically calculated,

but it is generally best to directly acquire a PSF for the microscope and settings used

for sample measurements, especially since it is wavelength dependent. The acquisition

process required for PSFs for this thesis is outlined in the following section.

Mathematically, the image acquired by the PMT (I
i

(X,Y )) is the convolution of the

emitted light from the object (I
o

(x, y)) and the PSF (�(x, y)).

I

i

(X,Y ) = I

o

(x, y)⌦ �(x, y) (3.1)

To solve a convolution of this type and obtain I

o

(x, y), each element in Eq. 3.1 must

be Fourier transformed from the spatial domain (x, y) into the frequency domain (k)

using the convolution theorem

F{g} = F{f ⌦ h} = F{f} · F{h} (3.2)

where F denotes the Fourier transform of the respective function. Eq. 3.1 can therefore

be rewritten as

F{I

i

(X,Y )} = F{I

o

(x, y)} · F{�(x, y)} (3.3)

Performing this transformation means F{I

i

(x, y)} can be divided by F{�(x, y)} to

obtain F{I

o

(x, y)} and ultimately I

o

(x, y).
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3.4.2 Point spread function

PSFs used in bacterial colony experiments in this thesis were acquired using TetraSpeck

fluorescent microspheres of diameter 0.1 µm [103].11 The TetraSpeck microspheres

fluoresce with four di↵erent excitation peaks across the entire spectrum of emission

used in these experiments. The microsphere samples are sealed, making it impractical

to immerse them in agarose. However, since the primary constituent of M9 agarose is

water the PSF should be analogous, particularly very close to the coverslip. Samples

of Tetraspeck beads fixed to the coverslip and immersed in deionised water were

inverted and placed on the confocal microscope (§3.2.3 p. 27) and stacks taken through

the sample using identical settings to those used for bacterial sample acquisition.

The resulting stacks were processed using the inbuilt PSF analyser within Huygens

Deconvolution Software (SVI).12

Using the PSF obtained from measurements of Tetraspeck beads, it is possible to extract

the perfect image stack from the image stack recorded by the confocal microscope by

reversing the convolution process where the perfect image13 was combined with the

image created by the e↵ect of the optical microscope. However, improving the resolution

of the stacks of images is immaterial if it is impossible to successfully identify the

location of individual bacteria within the colony. There are numerous ways for doing

this, many of these with severe limitations, and these are discussed below, along with

the method selected for reconstruction of bacterial colonies in three dimensions as a

function of time.

3.5 Reconstruction

In order to successfully create a 3D sectioned micrograph of a bacterial colony at a point

in time, it is necessary to identify all the individuals within the sample. Commercially,

there are several packages capable of doing this, however, many are exclusively 2D

techniques, so that a third of the spatial information is lost.

11Life Technologies www.lifetechnologies.com
12Huygens Deconvolution Software is a commercially available deconvolution programme for

deconvolving stacks of images from confocal microscope acquisition. The software provides functions
for theoretically calculating a PSF from input parameters or of producing a PSF from input stack
images. Information on the software is available at www.svi.nl/HuygensEssential.

13Throughout this thesis, I use ‘perfect image’ to denote the theoretical image which faithfully
reproduces, in a one-to-one correspondence, the object being imaged without noise. Perfect image
corresponds directly to I

o

{x, y} in Eq. 3.1. The perfect image is only altered from the object by a
rotation or scalar transformation.
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3.5.1 Commercial 2D reconstruction software

It is relatively straightforward to reconstruct 2D systems with a high level of precision,

Narayan et al. achieved this for millimetre scale rice bails and cylindrical colloids,

with success rates above 97%, even at extremely dense packing fractions of particles

[104] using freeware readily available within the ImageJ community [105, 106]. These

processes would be easily transferable to micrometre level systems on the condition

that the resolution of the system is of a suitable level for separating closely packed

samples. Similar to Narayan, a package used extensively in our group is Schnitzcells,

a Matlab based package allowing quantitative analysis of time-lapse movies of living

cells [85]. Schnitzcells o↵ers excellent accuracy for quasi-2D systems but the degree of

user input necessary to achieve this is considerable.

3.5.2 3D location of objects at micrometre scale

The software packages above are not readily transferable to 3D structures, both the

ImageJ plugins and Schnitzcells search simultaneously in 2D for local maxima (i.e.

they locate and define a backbone corresponding to the central structure of the

bacterium/particles only in the plane of imaging). When a system is confined to a

quasi-2D state this is not necessarily an inherent problem, however, when wishing to

consider the true axial position and orientation of a particle or bacterium in a 3D

structure it is necessary to evaluate surrounding voxels in all three dimensions in order

to ensure vital information is not lost. The algorithms used in Schnitzcells are designed

for e�ciency in 2D analysis resulting in a non-trivial conversion to 3D reconstruction

as they are embedded within several steps of the program.

In ImageJ there are 3D visualisation tools which allow the user to view systems in three-

dimensions. Included amongst these are Volume Viewer, 3D viewer and BoneJ, all of

which allow the user to qualitatively view the system in a 3D rendering [107–109].14

From these 3D visualisers, the user can obtain some quantitative information from the

input 3D samples, unfortunately, the user input is labour intensive and, particularly in

the case of Volume Viewer, the output is error prone.

Consequently, with no commercial software, or freeware, capable of identifying

individual cells in a densely packed environment, and subsequently extracting spatial

information from the images I have collaborated with members of the colloidal physics

group in order to obtain quantitative information on cells in a microcolony.

14More detail of all of these plugins can be found in reference [110]
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3.5.3 3D reconstruction code

3D reconstruction of microcolonies is an analogous problem to identification of

individual rod-shaped colloids in rheo-imaging. Code developed by Thjis Besseling

and Michiel Hermes for the purpose of identifying individual particles in a sheared

sample of colloidal rods is capable of extracting spatial information on the location and

orientation of individual rods in both disperse systems and those which are approaching

close-packed volumes [111]. However, colloidal rods are a far simpler system to work

with than bacteria, being of approximately the same size, remaining rigidly straight (to

a first approximation) and neither altering their dimensions greatly nor dividing as a

function of time. Despite this, 3D reconstruction of bacterial microcolonies was achieved

using the code developed by Thjis Besseling and Michiel Hermes and the process in

which identification of individual cells is achieved is briefly described below [111].

3.5.4 Code processes

The Besseling and Hermes code reads an input ti↵ stack of grayscale images,

deconvolved using Huygens Essential, and locates the centre of mass of each bacterium

in three-dimensions. This is achieved by fitting backbones along pixels which exhibit an

increased intensity when compared in their locality after the image has been thresholded

and background noise removed. Spherocylinders (cylinders with two hemispherical

caps) are fitted to these backbones and filtered to ensure overlap, length and curvature

are within physical limits defined by the user for the bacteria. For the E. coli samples

used in these experiments, the parameters were chosen to ensure the bacterium had

length dimensions in the long axis of between 0.8 µm to 10 µm; short axis 0.4 µm to

1.0 µm and to ensure the ‘hard core’ (i.e. the incompressible part of the bacterium)

was limited to a size no smaller than 0.8 µm and 0.4 µm in the long and short axes

respectively. By experiment, the curvature variation allowed along the length of

the bacterium was set at 10% before the backbone was split, providing a degree of

flexibility for the bacteria but meaning the code was still successful in identification of

all individual cells in the colony. After filtering using these parameters, the 3D position,

orientation, length and diameter of the remaining spherocylinders is then output to a

text file for analysis.
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Chapter 4

Three-dimensional reconstruction

of bacterial microcolonies

4.1 Introduction

Advances in optical microscopy techniques have allowed increased study of samples of

bacteria at a single bacterial cell resolution [40,112–114]. The resolution of techniques,

such as phase-contrast microscopy, fluorescence microscopy and confocal microscopy,

has allowed detailed investigation of the properties of individual bacteria in 2D and

(in the latter case) 3D [115–117]. However, the resolution of these imaging systems

means that resolving densely packed micron sized particles (like bacteria in a colony)

is di�cult, even in static samples [104], and consequently, studies of bacterial colonies

tend to focus on properties of the colony as a whole rather than identifying single

bacteria within the colony [47–49, 91]. While investigations of colony development on

a global (multiple bacterial level) scale are important in the understanding of these

structures, it is also important that a better understanding is obtained of the role

which individuals in the colony play in the production of these global phenomena. In

order to achieve this, it is vital that experimentalists are able to extract spatial and

orientational information on each individual in the population and this is one of the

primary aims of experiments conducted as part of this thesis. In this chapter I outline

developments in conventional confocal microscopy, and in the post-processing of the

acquired images, that provide images of suitable quality for single bacterium resolution

of bacterial microcolonies.
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Figure 4.1: Three-dimensional reconstruction of early stage colony growth in three-dimensions.
[A] Confocal stack of single bacterium incident on 2% agarose surface. The bacterium is
surrounded on all but one side by low fluorescing M9 agarose media (the other being the
coverslip), resulting in dark pixels adjacent to the high intensity pixels defining the bacterium.
Slices are imaged in 0.1 µm steps. [B] Reconstruction of A. The backbone (yellow pixels) is
clearly identified along the major axis of the bacterium ensuring the subsequent spherocylinder
(purple outline) is fitted well to the dimensions of the bacterium. [C] Confocal stack of early
growth of a bacterial colony incident on 2% agarose surface. Slices are recorded at 0.1 µm
intervals. [D] Reconstruction of C. Despite the close proximity of the adjacent bacteria in the
xy plane of imaging the backbones are clearly identified and the subsequent spherocylinder fits
are a good representation of the position of each bacterium on the agarose surface. Scale bars
are 2.0 µm.

4.2 Reconstruction in 3D

From raw confocal microscopy stacks (taken directly from a Zeiss Confocal LSM 700)

of a seed bacterium on an agarose pad, Figure 4.1A, it is a relatively simple process

to identify and extract the position and orientation of the bacterium from the image.

Bacteria such as this, are clearly separated in the imaging plane, and as a result when

analysing the confocal stack with the code developed by Besseling and Hermes [111]
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Figure 4.2: 3D reconstruction of single layer colonies grown on a 2% agarose surface. [Left]
Confocal stack of a single layer colony grown on a 2% agarose surface. Slices are taken at 0.1 µm
intervals. [Right] Reconstruction of single layer colony in 3D. The code successfully determines
individual bacteria (green) entirely surrounded by adjacent bacteria within the colony by fitting
a spherocylinder (purple outline) to a line of backbone pixels (yellow) along the length of the
bacterium. Scale bar is 2.0 µm.

(§3.5.3, p. 33) the bacterium is correctly identified (B), with a clear backbone (yellow)

through the centre of the bacteria and a spherocylinder (purple) fitted along the entire

length of the bacterium. This is primarily because, in this case, a bacterium on

the agarose surface is surrounded by M9 agarose, which is a low fluorescing media,

and therefore the voxels surrounding those of the bacterium are generally dark in

comparison.

However, as the colony grows and expands on the agarose, it becomes harder to resolve

individual cells, as the seed bacterium now has other bacteria adjacent to it, which

result in neighbouring voxels, from independent bacteria, exhibiting similar intensity

to each other. For early stage colony development, where a bacterium is not entirely

confined by adjacent bacteria, retrieving location and orientation information for all

bacteria is still relatively straightforward (C and D). But, as the colony develops in a

single layer, the central bacteria are confined in 2D by adjacent bacteria, the agarose,

and the coverslip. This increases the complexity of the reconstruction, since the voxels

defining the bacteria in the centre of the colony are now surrounded closely by voxels of

similar intensity, (Figure 4.2). Due to the nature of confocal microscopy, the resolution

in the focal (lateral) plane (r
confocal

' 139 nm) is an order of magnitude smaller than

the size of a bacterium and, as a result, it is relatively simple to identify all individual

bacteria when the colony is constrained to a single plane.

However, the resolution of confocal microscopes in the axial direction is of the same
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Chapter 4. Three-dimensional reconstruction of bacterial microcolonies

Figure 4.3: Raw confocal stack of bacterial colony after additional layer generation. Images
are taken through the colony at 0.1 µm slices in the axial direction. Slices here are every 0.3 µm
and scale bar is 5.0 µm.

order of magnitude as the diameter of a bacterium, (§2.2.3, p. 13) and, consequently,

analysing microcolony images where the volume fraction of the microcolony is

approaching 1 and bacteria form additional layers to the colony (buckle into the agarose

surface), provides additional problems for reconstruction (Figure 4.3).

Firstly, the algorithm (§3.5.3, p. 33) used to determine the backbone of the bacterium

can inadvertently merge two bacteria into one. This is particularly evident where the

voxel size selected is at the limit of the resolution of the confocal microscope in the

focal plane, rather than below it (Figure 4.3), adding additional digital noise (created by

errors in the PMT acquisition rather than the optical setup of the confocal microscope)

to the optical image. Additionally, the increased physical size which corresponds to a

pixel of the PMT (around 140 nm compared to 70 nm) means there are fewer pixels of

bright intensity to which the code can fit a backbone. Consequently, when bacteria form

two layers the code struggles to distinguish the correct direction a backbone follows and

has a tendency to fit backbones across two bacteria sitting adjacent to one another in

the axial direction (Figure 4.4), due to the distance between pixels being approximately

equal in all three-dimensions (100 nm along the optical axis and 140 nm in the focal

plane). The code successfully reconstructs areas of the bacterial colony with only one

layer of bacteria but where the colony has buckled and generated a second layer, the
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Figure 4.4: Reconstruction of bacterial colony which has buckled and developed a second
layer above the primary layer. The reconstruction successfully identifies a bacterium within
the colony where there is only a single layer of bacteria present. However, where the colony
has buckled and an additional layer has been generated above the primary layer, the backbone
(yellow) and subsequent outline (purple) does not fit well to the visible bacteria (green) within
the colony. Scale bar is 5.0 µm.

resolution is not su�cient to distinguish the two layers. This leads to the backbones

(yellow/orange) and outlines (purple) generated by the code not fitting to the bacteria

(green) in Figure 4.4 . This is shown in more detail in Figure 4.5 which focuses on

the area of Figure 4.4 where the reconstruction code fails to correctly identify bacteria.

The raw image (green) and the fitted backbone (yellow/orange) and outline (purple)

are not well matched.

The failure of the code primarily arises from the proximity of the diameter of the

bacterium to the axial resolution of the confocal microscope and consequently, when

the code executes 3D blurring of the pixels, in order to successfully stitch local maxima

points together to form the backbone of the bacterium, the two layers are inadvertently

merged together. This results in the distortions in the axial direction seen here and the

failure to distinguish two layers in the colony. As a result of this the code overcounts

the number of bacteria in the colony, with the code recording 324 independent bacteria

compared to a manual count of 286 for the example shown in Figure 4.4.
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Figure 4.5: Area of Figure 4.4 focussing on the position where the colony has buckled and a
second layer of bacteria has formed above the primary layer. It is evident here that the code
fails to successfully locate all the bacteria (green) in this region and identifies incorrectly many
others, fitting inconsistent backbones (yellow/orange) and outlines (purple) to the image as
a result. The failure of the code primarily arises from the proximity of the diameter of the
bacterium to the axial resolution of the confocal microscope. Consequently, when the code
executes 3D blurring of the pixels, in order to successfully stitch local maxima points together
to form the backbone of the bacterium, the two layers are inadvertently merged together. This
results in distortions in the axial direction and failure to distinguish two layers within the colony.
Scale bar is 5.0 µm.

4.2.1 Deconvolution

It is clear from Figures 4.4 and 4.5 that in order to successfully reconstruct bacterial

microcolonies in 3D at a single bacterium resolution an improvement in the number

of pixels per bacterium (pixels per micron), or clearer distinction of the edges of the

bacteria as volume fraction tends to 1, must be achieved. The dimensions of a bacterium

are just above the resolution limit of the confocal microscope (particularly in the axial

direction) and while the confocal microscope has the capacity for increasing the pixels

per micron well below the resolution limit of the optics, there is little increase in the

information obtained in this way. It is therefore necessary to improve the distinction

between adjacent bacteria in the colony in order to identify all the bacteria. This can

be achieved by deconvolution of the raw confocal stacks.
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As discussed in §3.4 (p. 29), deconvolution is a process used to recover the perfect

image1 of the bacteria in the colony, from the image stack recorded by the PMT. A point

spread function (PSF), obtained through either a theoretical calculation dependent

upon, amongst other factors, the wavelengths of the incident and emitted light and

the refractive index of the media through which the light beams travel, or a direct

measurement of the optical system used for measurements, is removed from the raw

confocal image stack, allowing recovery of the perfect image.

In practice, theoretical PSFs prove problematic when evaluating experimental setups

and models of theoretical PSFs generally assume perfect lenses with no spherical

aberrations, as well as no distribution around the maximum excitation or emission of

the incident wavelength. In reality, these assumptions are not valid in almost all cases.

Specifically the latter, since emission of fluorescent proteins is a spectrum. While this

can, in principle, be resolved by taking true distributions for the emission fluorophore

and excitation wavelength, the result is a computationally heavy process. Shaevitz et al.

have also show that the PSF of a microscope changes as a function of depth through

the sample [118]. Additionally, while lens and mirror manufacturers are capable of

producing optical elements at extremely high precision, the introduction of even small

aberrations in a lens can have considerable cumulative results on the output signal. As

a result, in almost all situations, it is better to measure directly the PSF for the system

being used under identical conditions to those under which the measurement is being

performed.

Measurements of the PSF

To measure the PSF of the Zeiss confocal LSM 700 used for measurements of bacteria

in this thesis, commercially available Tetraspeck fluorescent microspheres of diameter

0.1 µm were used [103].2 In contrast to Shaevitz et al., a single PSF was used for

all deconvolution performed in this thesis because all measurements were performed

at, or close to, the coverslip of the microscope [118]. For imaging of colonies buried

in agarose, the use of a depth-varying PSF may significantly improve the image quality.

Samples were inverted and placed on the confocal microscope (§3.2.3, p. 27) so they were

being imaged through the coverslip and stacks were taken through the sample using the

63⇥ oil immersion lens and excited at 488 nm in order to directly mirror conditions used

1Throughout this thesis, I use ‘perfect image’ to denote the theoretical image which faithfully
reproduces, in a one-to-one correspondence, the object being imaged without noise. The perfect image
is only altered from the object by a rotation or scalar transformation.

2Obtained from Life Technologies www.lifetechnologies.com
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for the imaging of bacterial colonies. In order to ensure that the PSF was faithfully

recorded, and not recording digital noise generated by the acquisition of the signal in

the PMT channel, the pixel size was selected in all three dimensions to be well below the

optical resolution of a confocal microscope, resulting in voxel (volume pixel) dimensions

of 25 ⇥ 25⇥50 nm3 in x,y and z respectively. These dimensions were also below those

used for imaging of the bacterial microcolonies, ensuring that subsequent deconvolution

measurements were not compromised by reduced information in the PSF images. To

provide optimal results, stacks of fifteen 0.1 µm diameter beads were acquired, allowing

the PSF software to average out any noise within individual beads. The resulting stacks

were processed through Huygens Deconvolution Software (SVI) using the inbuilt PSF

analyser.3 The software distills spherical beads, of known diameter, into a PSF for

the system by subtracting the parameters of the spherical bead (i.e. the perfect image)

from the image recorded by the microscope, leaving only the noise generated by the

microscope.

Figure 4.6 shows the measured PSF imaged through the Zeiss LSM 700. In the xy

plane (A) the point source is well defined with a clear blur (D) equal in all directions.

This reflects the precision of the optical microscope and the clear resolution available

in the xy plane, but as expected the blur in the axial direction (B-C) is far larger

than that seen in the xy plane. Close inspection of the axial images also reveals a

slight asymmetry in the blur profile along the optical axis (left to right in B and top

to bottom in C), which can be attributed to slight misalignment of the optical system

and is a recurring phenomenon for all PSFs for this microscope. The asymmetry seen

in the PSF in the axial direction would not be included when considering a theoretical

PSF and serves to highlight the importance of ensuring a correct calculation of the PSF

for the system is obtained when using deconvolution to improve images.

The PSF shown in Figure 4.6, is for the photomultiplier tube (PMT) attached to

Channel 2 of the Zeiss Confocal LSM 700 when exciting the sample at 488 nm with

a 0.01mW intensity and recording only GFP emission signals. For other excitation

wavelengths, or indeed other fluorophores imaged in this channel, it is necessary to

measure a new PSF, since the parameters governing the PSF have changed. Indeed,

it was necessary to measure a separate PSF for the other PMT attached to Channel

1 in the confocal microscope. The two channels share identical optics until a final

3Huygens Deconvolution Software is a commercially available deconvolution programme for
deconvolving stacks of images from confocal microscope acquisition. The software provides functions
for theoretically calculating a PSF from input parameters or of producing a PSF from input stack
images. Information on the software is available at www.svi.nl/HuygensEssential.
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Figure 4.6: Measured point spread function (PSF) for Zeiss Confocal LSM 700. Tetraspeck
fluorescent microspheres of diameter 0.1 µm were imaged with the Zeiss Confocal LSM 700
through the 63⇥ oil immersion lens and excited at 488 nm in order to directly mirror conditions
used for the imaging of bacterial colonies. The resulting stacks were processed in Huygens
Essential (SVI). Orthogonal slices (B and C) through the PSF are shown with identical scale
as the xy plane (A) to show the level of enhancement possible by deconvolving acquired image
stacks on this scale. A slight asymmetry of the profile is seen in the orthogonal (axial) point
which would not have been included if a theoretical PSF had been used in place of the measured.
Scale bar is 500 nm. (D) the intensity profile through the centre of the bead in the lateral plane
(A) in arbitrary units.

beamsplitter placed directly in front of the two PMTs deflecting part of the signal into

Channel 1, but the di↵erence in optical elements from this point on is significant to the

PSF of the two channels. The filters used by Channel 1 to obtain the required signal

are short-pass filters and, as a result, there is the addition of a reflection image in the

acquired signal from the incident laser beam. Although this reflected image is usually

a much lower intensity than the fluorescence image, and can generally be ignored,

when dealing with biological samples, the intensity of light is low in order to limit

phototoxicity of the living sample, meaning the reflected image forms a substantial

part of the acquired signal. Consequently, the quality of the image is noticeably

reduced when compared directly to Channel 2. For this reason, experiments requiring

acquisition of a single emission spectrum are conducted exclusively in Channel 2.
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Figure 4.7: Bacterial colony grown on 2% M9 agarose, deconvolved using measured point
spread function (Figure 4.6). Individual bacteria are clearly distinguishable in the xy plane, as
in the case of the raw confocal stacks. The distinction between bacteria in the axial direction
is greatly enhanced. Despite some bacteria appearing to be merged together due to the
deconvolution, the points of local maxima (used to locate the backbone for the bacterium)
are more clearly separated than in the case of the raw confocal stack. Scale bar is 5.0 µm. A
3D rendering of this figure is available as Supplementary Movie A.1 (p. 130).

Deconvolving a stack taken through a bacterial colony grown in 2% M9 agarose with

the PSF measured in Figure 4.6 produces Figure 4.7. As is the case with the raw

confocal stacks (Figure 4.3 p. 38), individual bacteria are clearly visible in the xy

plane, separated from their adjacent neighbours. The separation of individual bacteria

is now more apparent. Similarly, the distinction between bacteria in the axial direction

is greatly enhanced when compared to the raw confocal stacks with clear separation

between the two layers of bacteria. In the orthogonal slices, some bacteria appear

to have been partially merged together between layers, with some blurring apparent,

which is particularly visible between the two layers in the yz orthogonal slice (righthand

of Figure 4.6), however, the local maxima of each bacterium, used by the code to

define the backbone across which the spherocylinder outline is fitted, are more clearly

separated than in the case of the raw confocal stack. As a result, reconstruction of

the colony by the code is far more successful than when directly performed on the
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raw confocal stacks. Figure 4.8 shows the successful identification, by the code, of two

layers of bacteria, the primary layer (seen in the top image alongside the accompanying

orthogonal profiles) is the layer growing closest to the coverslip through which imaging

occurs and a second layer (bottom image), where bacteria have buckled into the agarose.

Despite the apparent merging of bacteria seen in Figure 4.7, the local maxima are

distinct enough from each other in the stack to be separable by the code and therefore to

locate individual backbone structures (yellow) to which the code can fit a spherocylinder

outline (purple) with a 100% success rate.

4.2.2 Limitations of deconvolution

While deconvolution is a useful tool in the enhancement of densely packed structures

such as bacterial colonies, there are caveats that need to be considered when analysing

deconvolved images. As deconvolution is heavily dependent upon the PSF that is used,

the use of an incorrect PSF will result in mis-representation of the perfect image. For

instance, a PSF that is generated from a fluorescent bead with a diameter that is above

the resolution of the microscope will result in an overestimation of the aberrations of the

system. Consequently, when performing deconvolution on the acquired image stacks

the dimensions of the resulting structures in the stack will be smaller than they should

be, as the PSF will remove signal which represents the sample as well as that caused by

aberrations in the system. This is particularly important when attempting to resolve

structures that are very close to the resolution limit of the microscope, since the relative

sizes are of a similar order of magnitude. Consequently, care must be taken in ensuring

that the PSF is indeed a good representation of the system.

4.2.3 Optimisation of confocal microscopy for colony imaging

The quality of image in Figure 4.7 (p. 44) is reproducible across all images acquired as

part of these experiments. To achieve routine success requires optimisation of several

other factors. Firstly, in order to limit the e↵ect of digital noise, the pixel size of the

PMT used to acquire the signal must be smaller than the resolution of the confocal

microscope in the focal plane (i.e. better than 140 nm). In theory, reducing the pixel

size of the PMT below the resolution of the confocal provides no additional information

on the bacterium’s position, however, it does allow the deconvolution of the image to

render a better quality image. It is vital, though, when considering the pixel size of the

PMT that the e↵ect of photobleaching and phototoxicity to the sample is considered.

By reducing the pixel dimensions on the PMT, the scan area over which the beam

illuminates the sample is similarly reduced meaning the size of the image may need to

be increased in order to visualise the entire colony, causing the acquisition time (and
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Figure 4.8: Reconstruction output of a bacterial colony grown on 2% M9 agarose which
has been deconvolved using the measured PSF (Figure 4.6, p. 43). The code successfully
identifies two layers of bacteria, the primary layer (top) and a secondary layer (bottom image),
fitting backbones (yellow) to the local maxima within each bacteria (green) before fitting a
spherocylinder outline (purple) to each. Despite the apparent merging of bacteria (seen in
Figure 4.7, p. 44) the code successfully distinguishes all bacteria in recognisable form. Scale
bar is 5.0 µm. A 3D rendering of this Figure is available as Supplementary Movie A.2 (p. 130).
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therefore the length of time the sample is illuminated) to increase substantially. Being

probed by laser radiation for increased periods of time will not only result in samples

losing fluorescence, as a result of photobleaching, but will also, in many cases, result in

phototoxicity of the bacterial culture or, perhaps worse, disruption of the natural growth

mechanisms resulting in filamentous or unhealthy samples. Therefore, a compromise is

required in order to obtain a suitable resolution while not compromising the integrity of

the sample. Experimentation with the parameters of the confocal microscope suggests

that a pixel dimension in the focal plane of between 50 nm to 70 nm is suitable for

achieving high resolution images, while ensuring the sample remains viable.

Similarly, the pixel size in the axial direction must also be below the resolution

of the confocal in the axial direction (better than ' 300 nm) in order to achieve

the best possible results from deconvolution of the acquired image. The confocal

microscope takes sections through the sample by moving the sample stage in the axial

direction, changing the position of the focal plane in the sample and, as a result, when

imaging with an oil immersion lens, the oil between the objective and the coverslip

is squashed or stretched each time the relative distance between the objective and

sample is altered. This variation causes an increase in the drift associated with high

magnification oil immersion objectives leading to the focal plane of the sample drifting

out of the stack window. Additionally, reducing the step size between slices increases

the time the sample is illuminated, thus increasing the likelihood of photobleaching or

phototoxicity occurring. Consequently, it is important that, as in the lateral case, a

compromise is achieved. For experiments in this thesis into the growth of bacterial

colonies in viscoelastic media, altering the focal plane at 100 nm intervals was found

to provide su�cient improvement in the optical resolution after deconvolution without

compromising the viability of the sample. Selecting pixel dimensions of 50 nm to 70 nm

in the focal plane and 100 nm along the optical axis (or roughly 2-3 times smaller

than the resolution limit of the microscope) allows an improvement in image quality of

approximately 1.5⇥ the raw image.

4.2.4 Limitations of reconstruction

Single bacterial resolution reconstruction has been successful for bacterial colony

experiments conducted in this thesis. However, there are several limitations to the

information extractable from a reconstruction model which fits rigid rods to individual

bacteria, notably the lack of bending in the sample, length and diameter discrepancy

and loss of signal. These are discussed in the following section.
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Figure 4.9: Time-lapse confocal microscopy image of a bacterial colony grown on 3%
M9 agarose. Stacks are recorded every 5min (10min intervals shown here) showing 2D
growth of the colony. Study of the images reveals some bacteria exhibit deviation from the
normal spherocylinder geometry. Frames exhibiting large deviation of a bacterium from the
spherocylinder geometry are reproduced in Figure 4.10. Scale bar is 5.0 µm. A full collection
of this montage is available as Supplementary Movie A.3 (p. 131).

Bending

The first, and most stark of the limitations associated with the use of Besseling and

Hermes’ code [111] is the approximation of a spherocylinder for the shape of a E. coli

bacterium in the colony. To a first approximation, isolated E. coli bacteria do take the

form of a spherocylinder, particularly when growing in bulk solutions. However, when

growing on agarose the E. coli are seen to bend away from a straight spherocylindrical

shape. This bending occurs primarily as a bacterium negotiates obstacles in its path,

such as other bacteria, which restrict the growth. Figure 4.9 shows images recorded

from the confocal microscope stacks at 10min intervals as a bacterial colony grows on

a 3% M9 agarose surface. The majority of the bacteria exhibit normal spherocylinder
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4.2. Reconstruction in 3D

Figure 4.10: Time-lapse confocal microscopy of a bacterial colony grown on 3% M9 agarose
taken from Figure 4.9. Red arrows indicate bacteria which deviate from the spherocylinder
shape. Output from the code is shown to the right of each of the raw images. The code fits
straight spherocylinders to all bacteria resulting in curvature information being lost. For most
bacteria the loss of information is trivial, but some bacteria (red) clearly deviate from a straight
spherocylinder, a fact which is omitted by the reconstruction. Scale bar is 5.0 µm

geometry with the cylindrical body appearing straight, however, close study of the

images as a whole reveal several occasions when spherocylindrical geometry is lost and

the bacterium bends. Figure 4.10 shows four images from Figure 4.9, the top left image

showing spherocylindrical geometry of the bacteria, where both bacteria are straight

and the other three images show one bacterium in the colony that has deviated from

spherocylindrical geometry and is bending (red arrow). Despite some bacteria showing

clear evidence of deviation from the spherocylinder geometry, the reconstruction code

does not take this into account. In fact, the code utilises deviation from a straight rod

fit to distinguish between individual backbones fitted along a bacterium which are close

to each other spatially. Consequently, there is a loss of information, and the potential

for errors in the form of mistaken orientation information.

Figure 4.11 shows the corresponding stills from Figure 4.10 analysed through code

developed by Dario Miroli, which attempts to resolve this issue by adaptation of

algorithms used for fitting outlines in 3D to each of the bacteria in the colony. Rather

than fitting a backbone along a set of local maxima in a bacterium, the code fits

an outline to the bacterium through extensive thresholding and rethresholding of the

image. While results proved promising on this test data set, consistency across di↵erent

measurements proved problematic and subsequently work in this area is ongoing. One

major advantage of this code, apart from the rendering of the outline of the bacterium
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Figure 4.11: Code developed by Dario Miroli, fitting directly to the outline of the bacterium
rather than fitting a spherocylinder. The four stills from Figure 4.10 are reproduced for direct
comparison. The code successfully identifies the deviation from a straight line. Red lines show
the historical position of individual bacteria within the colony. Scale bar is 5.0 µm. Full 2D
(plus time) imaging of this Figure is available as Supplementary Movie A.4 (p. 131)

rather than fitting to a spherocylinder, is the integration of tracking code, developed

initially by Crocker and Grier [119], allowing tracking of bacteria as a function of time

as well as in three spatial dimensions. Future development in reconstruction code

should be focussed on these routines with the expectation that full reconstruction of

all bacteria in a microcolony, including the flexibility of the cell, will lead to a greater

understanding of the mechanisms which instigate the buckling event.

Length

Due to the nature of the reconstruction code there is a discrepancy between the physical

length of the bacteria and the measured length obtained by the code, which is dependent

upon input parameters defined by the user for the cut-o↵ intensity during the backbone

pixel allocation. The reconstruction code measures a length of the bacterium which

is defined as the length of the backbone. It is clear that this will underestimate the

bacterial length by twice the radius of the hemispherical cap fitted to the cylinder
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(Figure 4.8, p. 46). A simple correction is to add the radius of these hemispherical caps

to the outputted length of the bacterium, which is done for all measurements of length

in this thesis.

Diameter

Similarly, the reconstruction code is heavily constrained in the measurements of the

spherocylinder diameter, since for each stack analysed through the code, a global

diameter (assigned to all the bacteria in the stack) is selected by varying the parameter

from 400 nm to 1000 nm. All the diameters are therefore constrained to be identical at a

single time-point. Since one of the main parameters used to distinguish a true bacteria

from noise and distortions in the acquired image is this fixed diameter, reworking of the

code is required in order to produce similarly accurate results while extracting the true

diameter, and, although many interesting questions can be asked on the consistency

of the diameter of E. coli, this work is out of the scope of this thesis. However, other

studies have shown that the diameter is far less polydisperse than the length in E.

coli [120–122].

Loss of Signal

In a bacterial colony, the intensity of the GFP expressing plasmid varies considerably

due to heterogeneity of the plasmid copy in specific bacteria, meaning that each

bacterium contains a di↵erent number of GFP expressing plasmids. Reconstruction

overcomes this problem by defining a local maximum and locating the point where

the intensity drops below a fraction of this maxima to distinguish the bacterium.

However, imaging bacterial colonies over an extended period of time using fluorescence

microscopy, particularly laser scanning microscopy, can lead to phototoxicity and

photodamage to the bacteria. While photodamage is limited through the use of low

laser powers, over the course of an experiment (approximately a 24 hr timescale) the

fluorescent signal from each bacterium diminishes. Data sets exhibiting loss of signal

from a bacterium within the colony are discounted from analysis due to the significant

loss of information of the colony features.

Similarly, a reduction in the intensity of fluorescence of bacteria in the colony makes the

reconstruction of the colony far more complicated. Due to the decrease in local maxima,

relative to the maximum intensity measurable by the PMTs, the code becomes more

sensitive to input parameter settings, which can lead to interpretation of noise within

the PMT background as individual bacteria and population overcount. It is therefore

essential that care is taken in order to ensure this does not happen, particularly when
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Figure 4.12: A single E. coli MG1655 bacterial colony grown fully submerged within 2% M9
agarose gel. Individual bacteria are clearly distinguishable throughout the colony, even when
imaging through multiple layers of bacteria which are highly divergent media. Colonies such
as these have been successfully reconstructed using code, as with the surface bacterial colonies,
showing the possibility of the extension of the method to investigating fully 3D systems. Scale
bar is 5.0 µm. See Supplementary Movie A.5 (p. 132) for a 3D rendering of this figure.

automating analysis.

4.3 Applications of the reconstruction method

Despite these limitations, the reconstruction of bacterial colonies growing in viscoelastic

media has proved successful up to 5 layers of bacteria (Figure 4.12). As well as the

ability to successfully reconstruct bacterial colonies growing on an agarose gel surface

at single bacterial resolution, there is the possibility to extend this technique to the

investigation of bacterial colonies fully submerged in agarose gels.
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Figure 4.13 shows a confocal stack of fully submerged bacterial colonies in 2% M9

agarose. Bacteria on the surface of the agarose have grown in a chain fashion (seen in

Figure 4.13: E. coli MG1655 bacterial colonies grown fully submerged with 2% M9 agarose
gel. Individual bacteria present on the surface of the agarose are seen to grow in chains, whilst
those submerged in the agarose have formed spherical colonies. Individual bacteria are clearly
distinguishable within the colony. Scale bar is 10.0 µm. A 3D version of this figure is available
as Supplementary Movie A.6 (p. 133).

the xy plane), whilst those submerged have formed near spherical colonies and, in all

cases, individual bacteria are clearly visible within the colonies. Similarly, Figure 4.12

shows a single submerged bacterial colony in 2% M9 agarose and, as with Figure 4.13,

individual bacteria are clearly visible in the colony at a resolution suitable for image

analysis using reconstruction code. Reconstruction of one of these colonies is shown in

Figure 4.14 (p. 55), where the colony is seen to form a spherical ball of bacteria.

One of the primary motivations for investigations of fully submerged bacterial colonies

53



Chapter 4. Three-dimensional reconstruction of bacterial microcolonies

is the reduction in complexity of the models which can be used to predict such structures

due to two interlinked factors:

(i) the increased symmetry of the system

(ii) the ability to neglect boundary e↵ects due to the coverslip-bacteria and coverslip-

agarose interactions

The former means that, aside from a bias in the initial growth plane of the bacterium,

dictated by the initial orientation of the rod-shaped cell, the system is symmetric in

all directions. This allows, in theory, equal probability of the bacteria invading the

surrounding agarose in all directions. For the latter, not needing to consider the e↵ect

of the coverslip on the colony growth again significantly reduces the complexity for

modelling of these systems, particularly when wishing to consider bacterium-bacterium

interactions directly. Experiments have been conducted in this group by a masters

student, Michal Tomaszewski, working under the supervision of Bartloiej Waclaw,

on the imaging of fully submerged bacterial colonies but, as with those experiments

conducted on surface growing colonies, single bacterial resolution has proved di�cult

to obtain. It is hoped that through an extension of the work carried out here the ability

to fully reconstruct completely submerged bacterial colonies at the resolution of single

bacteria will be realised in the near future.

4.4 Discussion and conclusions

This chapter provides an outline of the processes necessary after image acquisition in

order to successfully reconstruct bacterial colonies in 3D and time at single bacterium

resolution. These methods are used throughout this thesis to obtain quantitative

information on the growth and development of bacteria on agarose, both individually

(Chapter 5 p. 57) and in a colony (Chapter 6, p. 75). The reconstruction has proved

more than suitable for successful identification of individual bacteria in dense structures

such as surface colonies, and this method has proved successful in reconstructing

bacterial colonies which are buried in agarose at a single bacterium level to high

precision.

Throughout the chapter, areas requiring additional research have been discussed, and

paths for the exploration of these areas have been provided, with perhaps the most

pressing one being the development of software to directly link and track bacterial

lineages through the colony. While the reconstruction software performs admirably

in the cases outlined above there are limitations to it, particularly in the loss of
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Figure 4.14: Reconstruction of fully submerged bacterial colony grown within 2% M9 agarose.
Stills are taken from visualisation software developed by Michiel Hermes to visualise the
output from the reconstruction code. Bacteria are clearly distinguishable on a single bacterial
resolution. The bacteria form a spherical colony and are seen to be submerged below the surface
of the agarose (identifiable by the linear bacteria structure visible in the frames). No clear bias
can be seen for the growth of the bacterial colony in any direction in this case. The full movie
of this reconstruction is available as Supplementary Movie A.7 (p. 134).

information regarding the curvature of the bacteria throughout the colony development.

Addressing this would provide considerably more information on the physical properties

governing the growth of bacteria as the colony becomes larger and spatial constraints

are increased.

In conclusion, confocal microscopy, with the enhancements in image acquisition and

post-acquisition processing outlined in this Chapter, provides a suitable imaging

platform for obtaining high-precision, single cell resolution images of densely packed

bacterial colonies. When these stacks of images are combined with deconvolution and

reconstruction software the extraction of physical, geometrical parameters of individual

bacteria in the colony is possible.
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Chapter 5

Initial growth

5.1 Overview

In the laboratory, bacterial colonies are generally grown on agar plates (a circular

petri dish holding a gel substance containing all of the nutrients necessary for bacterial

growth). This is the case for all experiments which have been conducted in this thesis.

While many references are made in literature to how colonies of bacteria grow on agar

(or indeed agarose)1, little is known about the precise position a bacterium has in

relation to the surface of the agar upon which it grows [123]. There are three potential

ways in which bacteria may be on the surface of an agar plate (Figure 5.1):

(A) The bacterium lies on top of the agarose layer with only the bottom surface of the

bacterium touching the agarose surface

(B) The bacterium is partially submerged into the agarose surface

(C) The bacterium is completely buried in the agarose with the top surface of the

bacterium parallel to and level with the surface of the agarose

Whether the bacteria sit on-top, are partially submerged or are fully submerged within

the agarose has significance when considering the physics involved in the growth and

division of the bacterium as it develops into a colony, particularly the force exerted by

the bacterium and by the agarose in confining the bacterium.

In order to answer this question it is necessary to be able to precisely locate the

bacterium as it is positioned on an agarose layer. To do this, samples of E.

1Agarose is one of the two principle components of agar (which also consists of agaropectin) and is
a linear polymer made up of a repeating monomer unit of agarobiose. The agarose used in this thesis
is Invitrogen Ultrapure Agarose obtained from LifeTechnologies https://www.lifetechnologies.com/
order/catalog/product/16500500
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Chapter 5. Initial growth

Figure 5.1: The potential positions of a bacterium on an agarose pad. (A) The bacterium sits
on top of the agarose surface with only the base of the bacterium adjacent to the surface. (B)
the bacterium is partially submerged within the surface. (C) The entire bacterium is immersed
(buried) within the agar with the top surface of the bacterium parallel to and level with the
agarose surface.

coli expressing the pcH60 plasmid, a tetracycline resistant plasmid containing green

fluorescent protein (GFP), were prepared and plated on M9 media with agarose weight

concentration of 2%. Since M9 is a low fluorescing media, in order to directly image

the agarose pad it was necessary to add a fluorescent marker to the agarose and

Rhodamine B (Rho. B) was selected due to overlap of the excitation spectra with GFP

(Figure 5.2A). In later experiments, Nile Blue was used as a complementary fluorescent

marker for the imaging of the agarose, due to the low cross-talk between Nile Blue and

GFP (Figure 5.2B), and the tendency of Rho. B to accumulate at the surface of bacteria,

inhibiting growth [124]. Using the laser scanning confocal microscope, excitation of the

GFP in the bacteria was performed using laser light of wavelength 488 nm and Nile

Blue excited with wavelength 639 nm, giving good fluorescence in both the GFP and

Nile Blue channels.

Figure 5.2: [A] Excitation and emission spectra of green fluorescent protein (GFP) and
Rhodamine B (Rho. B). Rho. B was selected due to the overlap of the excitation spectra
of GFP and Rho. B, so that excitation could be simultaneous without the need to introduce
additional laser light into the system.
[B] Excitation and emission spectra of GFP and Nile Blue. GFP and Nile Blue emission spectra
are removed enough from each other to reduce to a minimum the cross-talk associated with the
two fluorescent tags. Reproduced from [125].

The e↵ect of the coverslip on the position of the bacterium relative to the agarose

was investigated by preparing samples (§ 3.2.3, p. 27), with a thin layer (<10 µm) of

Rho. B doped agarose placed directly on a coverslip. The bacterial culture was then
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Figure 5.3: Confocal setup for simultaneous imaging of GFP (green) and Rho. B or Nile B
(red). The use of two PMTs within the confocal allowed rapid acquisition of both channels
simultaneously.

pipetted onto the surface of the agarose and imaged through the agarose layer from

below.

5.2 Imaging methods

Simultaneous acquisition of Rho. B and GFP or Nile B and GFP fluorescence was

made using the confocal microscope (§ 2.2.2, p. 11), with stacks being taken through

the sample with an axial separation of 0.05 µm. Figure 5.3 shows a schematic for the

experimental setup used to achieve this. Two PMTs in the confocal microscope were

utilised to allow rapid acquisition of the 3D structure of the agarose and E. coli, with

GFP signal obtained in Channel 1 and either Rho. B or Nile Blue in Channel 2.

59



Chapter 5. Initial growth

5.3 Position of a bacterium on an agarose plate

5.3.1 Open samples

Confocal imaging of the open sample through the thin agarose pad immediately after

the culture has been placed on the surface allows us to observe how the bacterial cell

sits on the agarose. By taking slices at 0.05 µm intervals through the sample, a 3D

picture of the position of the bacterium relative to the surface of the agarose can be

made (Figure 5.4).

Figure 5.4: Confocal image of bacteria (green) on M9 agarose (red) with a 2% (weight)
concentration immediately after pipetting onto the surface. The axial views clearly show the
bacterium is partially buried in the agarose, the surface of which shows up bright red due to
the increase in concentration of Rhodamine B at the air-agarose interface. Close inspection of
the sample reveals the bacteria are not completely submerged in the agarose but rather have
approximately one quarter of their volume above the surface. An outline of the bacterium is
included (green dotted line) in the orthogonal views as an approximate aid to the eye. Scale
bar is 2.0 µm. Orthogonal slices are taken every 0.05 µm through the sample.
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Figure 5.4 shows bacteria (green) approximately 10min after being pipetted onto

the agarose (red) surface, with the orthogonal view through the bacterium (position

denoted by the cross-hairs) indicating that rather than sitting directly on the agarose

surface, the bacterium is partially submerged (approximately three-quarters of the

volume) in the agarose. A green dotted line, indicating the outline of the bacterium, is

included in the orthogonal views of Figure 5.4 as an aid to the eye.

Imaging of the agarose and bacteria in this configuration was hampered by the

surfactant properties of Rho. B and its tendency to accumulate at the interface of

two surfaces [124]. This is particularly evident in Figure 5.4 where the intensity of the

Rho. B at the air/agarose interface is far greater than the intensity of the Rho. B in

bulk agarose and consequently, it is di�cult to distinguish the air and agarose bulk

relative to the surface. For the xz orthogonal (below the main figure) the air is above

the agarose (as imaged), for the yz orthogonal the air is to the right of the interface.

Additionally, there is cross-talk between GFP and Rho. B due to the close proximity

of their emission peaks (Figure 5.2A, p. 58), and the Rho. B channel dominates the

combined images. This is a result of the need to acquire the Rho. B signal at a far

higher gain setting than for the GFP, due to the di↵use nature of the Rho. B within

the agarose and consequently it is only possible to faintly resolve the bottom of the

bacterium, an area where only GFP emission is present. However, it is clear that the

bacterium does not sit directly on the top of the agarose.

Studying the surface signal of the agarose relative to the bacterium it is also evident

that the bacterium, is not entirely submerged in the agarose either, as seen by the

increased height of the bacterium relative to the surface of the agarose, a finding which

is confirmed when replacing Rho. B with Nile Blue as a fluorescence marker for the

agarose pad (Figure 5.5). Unlike Figure 5.4, Figure 5.5 has not been deconvolved and

the distortion in the axial direction is clearly evident, particularly due to the need to

image through the bacterium and agarose in order to identify the top surface of the

bacterium. As a result a clear tail is seen beyond the agarose-air interface for both

orthogonal images, but the interface is again clearly evident, with approximately three

quarters of the volume of the bacterium immersed below the agarose-air interface.

Time-dependence of position

The position of a bacterium relative to the surface of the coverslip is time-dependent

for the period immediately after the culture is pipetted onto the agarose pad. As the

bacterial culture is introduced to the agarose pad using a liquid culture, (phosphate
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Figure 5.5: GFP plasmid expressing MG1655 E. coli position on an open agarose pad tagged
with Nile Blue fluorescence. For the xz orthogonal (below the main figure) the air is above the
agarose (as imaged), for the yz orthogonal the air is to the right of the interface. The bacterium
does not sit directly on the surface but rather is partially submerged within the agarose layer.
Scale bar is 2.0 µm. Orthogonal slices are taken every 0.05 µm through the sample.

bu↵er saline (PBS)), at the point of contact with the agarose pad the bacterium must

be at rest on top of the agar (Figure 5.1A, p. 58). As the PBS solution evaporates the

bacterium gradually sinks into the agarose pad up to the point visible in Figure 5.4. At

this point the bacterium has approximately one quarter of its volume above the surface

of the agarose pad and more closely approximates the schematic shown in Figure 5.1B.

From this point, as time increases, the proportion of the bacterium immersed remains

constant, but unfortunately, in this case, due to the complexity of sample preparation,

direct comparison of samples as a function of time is not possible, as the time required

for acquisition of suitable quality images for analysis is of the order of the time frame
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Figure 5.6: Schematic showing the parameters for calculation of Young’s modulus of
agarose using continuum mechanics in both 3D (top) and 2D (bottom). A bacterium
can be approximated as a spherocylinder (a cylinder of length L with two hemispherical
caps of radius R) and lies on an agarose surface at the air/agarose interface. The
bacterium is seen to ‘sink’ into the agarose with a depth of penetration d resulting in
a contact radius a. The contact radius is the proportion of the radius of the cylinder
which is parallel to the surface of the agarose (i.e. when multiplied by the length of the
cylinder produces the e↵ective area which is pressing down on the agarose surface).

of the drying process. I believe the apparent ‘sinking’ of the bacterium into the agarose

pad is due primarily to surface tension changes as the PBS evaporates. Initially, the

agarose is covered either by PBS or by a bacterium. Since both PBS and bacteria

are predominately water the surface tension of bacterium-agarose and PBS-agarose

are approximately equal. However, as the PBS evaporates the PBS-agarose interface

changes to an air-agarose interface which leads to a change in the surface tension relative

to the bacterium-agarose interface and the subsequent sinking of the bacterium.

To verify this, the order of magnitude of the Young’s modulus of the agarose can

be calculated using continuum mechanics. By approximating the bacterium as a rigid

cylinder of length L and radius R (Figure 5.6) which sinks into the agarose surface to

a penetration depth of d, the bacterium has an e↵ective contact area on the agarose

surface of 2La, where a is the contact radius of the bacterium. Using these parameters,

the strain exerted on the agarose, ✏, can be approximated as

✏ ⇡

d

2a
(5.1)

leading to an order of magnitude estimation of the stress � as

� ⇡

Ed

2a
(5.2)
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where E is the Young’s modulus of the agarose. The force F exerted on the agarose by

the bacterium can therefore been written as

F =
⇡

4
E

⇤
Ld (5.3)

where E

⇤ is the reduced Young’s modulus and is defined by

E

⇤ =
E

1� ⌫

2

(5.4)

where ⌫ is the Poisson’s Ratio of the agarose.

Similarly the force can be written in terms of the surface tension � of the interface

between the air and agarose and the radius of the cylinder as

F =
�

R

2La (5.5)

where 2La is the e↵ective area of contact of the cylinder to the agarose.

Equating Eq. 5.3 and Eq. 5.5 and rearranging gives

E

⇤ =
8�

⇡d

a

R

(5.6)

which can be simplified in this case as the bacterium penetrates the agarose by

approximately three-quarters of the volume meaning a = R and

E

⇤ =
8�

⇡d

(5.7)

The surface tension of a water/air interface is approximately 70mNm�1 and the

penetration distance is 0.75⇥0.8 µm = 0.6 µm giving a value of E⇤
⇡ 300 kPa. There

are a limited number of studies measuring the elastic properties of agarose gels with

many interested in the properties on a macro scale taking a value ⌫ = 0.5. However,

Geissler et al. measure ⌫ = 0.32 [126] which when applied to Eq. 5.4 gives a value of

E = 270 kPa. Both E and E

⇤ are in close agreement with measurements of the Young’s

modulus of agarose gels made in the literature (Appendix D, p. 143) where values range

from a few kPa to MPa.

64



5.3. Position of a bacterium on an agarose plate

Figure 5.7: Two colour fluorescence confocal image of bacteria (green) on M9 agarose (red)
with a 2% (weight) concentration where the sample has been sealed with a coverslip. The
bacteria are seen to be fully submerged within the agarose and are completely confined to a 2D
layer by the coverslip. Scale bar is 2.0 µm. Orthogonal slices are taken every 0.05 µm through
the sample.

5.3.2 Quasi-2D growth

In order to simplify the imaging process, reduce the e↵ect of drying of the sample and

to allow significant improvement of the image quality, bacterial colony experiments

conducted in this group [91] (and also by Grant et al. [48]) are not exposed to the

air, as in the open configuration. Instead the sample is sealed with the addition of a

coverslip above the agarose surface. This is the geometry used for experiments in this

thesis (§3.2.3, p. 27) and has the e↵ect of restricting the growth of the bacterium to

a 2D layer, which can be confined to the focal plane of the microscope, thus allowing

the imaging of the sample using phase-contrast or brightfield microscopy, without the

need to consider multiple layers of bacteria and is a well established method in the

microbiology community [85].

However, it is unknown if the confinement is truly 2D, i.e. whether the coverslip is

flush to the agarose pad or rather rests on the top of the bacterium, which is partially

submerged in the agar. In order to resolve this confusion, confocal images were taken

at 0.05 µm slices through a sample prepared on a microscope slide, with a coverslip

sealing the agarose pad. From the resulting 3D stack (Figure 5.7) the bacteria (green)

are clearly seen to be submerged in the agarose (red). Analysis of the orthogonal

sections shows the top surface of the bacterium membrane is in line with the Rho. B
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Figure 5.8: Two colour fluorescence confocal images of bacteria (green) on M9 agarose (blue)
with (A) 1%, (B) 2%, (C) 3%, (D) 4% and (E) 5% (weight) concentration. The sample has
been sealed with a coverslip using the method described previously. Across all concentrations
the bacteria are seen completely confined to a 2D layer by the coverslip. Scale bar is 2.0 µm.
Orthogonal slices are taken every 0.05 µm through the sample.

doped agarose surface. Consequently it can be inferred that the coverslip is flush to

both the agarose pad and the bacterium. This means that the bacterium is compressed

into the agarose from the position seen in Figure 5.4 (p. 60).

When viewing the bacteria visible in Figure 5.7 in the axial direction there appears

to be a thin layer of agarose above each of the bacteria. This is not in fact agarose

but rather an accumulation of Rho. B at the surface of the bacterium and at the

coverslip interface, similar to the accumulation of Rho. B at the air/agarose interface

(Figure 5.4, p. 60) [124]. These results are confirmed when replacing Rho. B with Nile

Blue (Figure 5.8) which shows the bacteria fully submerged in the agarose and confined

by the coverslip as the concentration of agarose is increased from 1% to 5% (weight)

agarose concentrations.
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Figure 5.9: The growth of a single bacterium on M9 agarose at 3% (weight) concentration.
Stacks through the sample are acquired every 2min. The bacterium is seen to approximately
double in size from initial conditions until the point where the division occurs. Scale bar is
2.0 µm. A movie of this figure is available as Supplementary Movie A.8.

5.4 The first generation

Confining bacteria in this way limits their initial growth to a 2D plane parallel, and

just below, the coverslip. This provides a suitable environment in which to visualise

the development of the seed bacterium into a microcolony. Using confocal microscopy,

bacteria on the agarose surface were imaged at time intervals of 2min to 5min. From

the subsequent stacks information is extracted on the position, orientation and size of

the bacteria as a function of time allowing quantitative analysis of growth of individual

bacteria as the properties of the agarose surface are varied.

5.4.1 A single bacterium growing on an agarose surface

An E. coli bacterium in the closed configuration described in §5.3.2 (p. 65) grows in

an approximately linear direction from both poles. Whether the growth rate of an

individual bacterium is linear, exponential or some other nonlinear form is a current

unanswered research question. Laser scanning confocal microscopy allows many of

the physical properties of the bacterium to be determined at a superior resolution to
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Figure 5.10: Growth of a seed bacterium as a function of time. Measurements of the
length of the bacterium are made for each frame and normalised against their initial length
(L

0

). For all concentrations of agarose in the surrounding media the bacterium increases
in length. However, the growth rate varies with the concentration of agarose present in the
surrounding media. Exponential fits for the growth rate of 2% (10), 3% (21), 4% (11) and 5%
(16) concentrations of agarose are 0.005±0.001min�1, 0.008±0.002min�1, 0.004±0.002min�1

and 0.0001±0.0010min�1 respectively. Brackets indicate number of bacteria (N) over which
measurements are made.

conventional microscopy methods such as phase-contrast or brightfield. Consequently,

we can accurately test the growth rate of individual bacteria grown on agarose surfaces.

Figure 5.9 shows a time-lapse reconstruction of the growth rate of a single bacterium

from initial imaging to the point of division on 3% (weight) M9 agarose, with stacks

through the sample being acquired every 2min. The di↵erence in length between frames

is clear enough to be readily measured, after analysis by Besseling’s code [111], and

subsequently imaging bacteria growing from initial state to first division for di↵erent

concentrations of agarose allows a comparison of growth of a single bacterium as the

surrounding conditions are controlled.

5.4.2 Rate of growth

Figure 5.10 shows the normalised growth of the single bacterium for concentrations

of agarose of 2%, 3%, 4% and 5% in an M9 growth media. Measurements of the

length of the bacterium (L) for each frame are obtained from Besseling’s code [111] and

normalised against the initial length (L
0

) of the bacterium from the measurements. For

all data sets, the bacterium is seen to increase in length from the initial measurement

up to the point of division, however, the growth rate of the bacterium is dependent
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5.4. The first generation

Figure 5.11: Growth of a single bacterium for the first 30min after commencing imaging on
di↵erent agarose concentrations. No discernible di↵erence in the growth rate is evident when
the agarose concentration within the surrounding media is varied from 2% to 5%. N=10 (2%,
21 (3%, 11 (4%) and 16 (5%).

Agarose concentration (%) Rate of growth, ↵ (unitlength/min)
2.0 0.005± 0.001
3.0 0.008± 0.002
4.0 0.004± 0.002
5.0 0.0001± 0.001

Table 5.1: Rate of growth per minute of bacterium as agarose concentration is varied.

upon the concentration of the agarose within the surrounding media. This appears

contrary to previous studies by Tuson et al., which have found that for the first 30min

of growth of a bacterium on the surface of the agarose there is no variation in the

growth rate as the concentration of agarose is changed [127]. If only considering the

initial 30min of growth, the experiments do agree as no discernible di↵erence in the

growth of the bacterium across the four agarose concentrations investigated here is

evident (Figure 5.11).

After normalising L with L

0

it is possible to fit an exponential function of the form

L

L

0

= e

↵t (5.8)

where ↵ is the rate of growth of the bacterium as a function of time t. The rate of

growth (solid lines Figure 5.10) obtained by performing fits on the di↵erent agarose

concentrations are summarised in Table 5.1 and shown in Figure 5.12. The growth
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rate of a bacterium on any agarose surface is greatly reduced when compared to liquid

culture. All the growth rates in Table 5.1 are far longer than for liquid cultures. For

instance the growth rate for 3% equates to a doubling time of 90min compared to

20min for E. coli in liquid cultures at optimal growth conditions. Additionally, the

growth rate of the bacterium does not vary linearly with the concentration of agarose in

the surrounding media. Rather, there is a peak where the growth is maximum as the

agarose concentration is increased from 2% through 3% to 4%, with the maximum

being close to 3%. Although initially surprising, this non-monotonic variation in

growth rate as agarose concentration increases matches well with previous experiments

investigating the dynamic e↵ects of concentration of agarose on the structure and shape

of bacterial colonies [46–48]. Both Su et al. [47] and Grant et al. [48] see a peak in the

size of the colony grown on agarose before the generation of a second layer around this

point and this phenomenon will be discussed further in Chapter 6 (p. 75) where the

studies are directly relevant.

Beyond the peak at 3%, the rate of growth decreases with increasing agarose

concentration, becoming unmeasurable above 5%. This marked reduction in growth

rate of the bacterium suggests that the force exerted on the bacterium by the agarose is

approaching the maximum force which a bacterium can exert in order to add additional

matter to the cell wall and therefore grow. Rod-shaped bacteria (such as E. coli)

grow from both poles by inserting new rings of peptidoglycan (a polymer consisting

primarily of sugars and amino acids) into the cell wall randomly along the long axis of

the bacterium. In order to do so, the new peptidoglycan must apply a force to separate

existing peptidoglycan currently in the cell wall. If the force exerted externally by the

surrounding media is greater than the force which the new peptidoglycan can exert in

order to insert itself, then the growth of the bacterium will stall and it will remain at

a constant length.

The growth rate of a bacterium in 5% agarose is measured as 0.0001±0.0010min�1.

This rate of about 0.01% increase of unit length per minute is exceptionally slow,

particularly compared to growth rates at other concentrations (Figure 5.12) and is not

attributable to depletion of nutrients at the growth site of the bacterium for two reasons.

Firstly, the bacterium is surrounded by nutrients in the form of the M9 agarose with

glucose in which it is embedded and secondly, the di↵usion rate of glucose through agar

surfaces has been measured for several concentrations of agar weight to volume and at

temperatures from 18 �C to 37 �C. These di↵usion rates are of the order of hundreds of

square microns per second, considerably faster than any rate of growth observed of the

bacteria at any of the concentrations of agarose [128]. For these reasons we can safely
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5.4. The first generation

Figure 5.12: Rate of growth per minute of bacterium as the agarose concentration is varied from
2% to 5%. The change in growth rate is not linear as the agarose concentration is increased, but
rather there is a peak in growth rate at agarose concentrations of 3%, which matches well with
a peak in colony area before buckling seen in Chapter 6 and by experiments conducted by Su,
Grant and Lloyd respectively [46–48, 91]. The growth rate is also seen to reduce dramatically
at agarose concentrations of 5%, suggesting the force exerted on the bacterium by the agarose
is approaching the internal growth force of the bacterium. Errors are standard errors on the
fit.

assume that the slow growth observed is not attributable to any depletion of nutrients

and can infer that the growth is slowed by the force exerted externally on the bacteria

approaching the internal force of insertion of a protein into the membrane.

Atomic force microscopy

Identification of the slow growth rate of bacteria in 5% agarose allows us to qualitatively

say the external force exerted on the bacterium is of the same order of magnitude as

the growth force of the bacterium, but in order to quantify this the force exerted

on the bacterium by the agarose, (i.e. the elastic properties of the agarose), must be

measured. Literature values of the elastic modulus of agarose gels vary dramatically2

and are heavily dependent upon the measurement process and geometry at which they

are conducted [129, 130]. In order to gain a suitable value for our particular geometry

and set-up, it is necessary to perform our own calculations for deformation of agarose

gels at the micron scale (the spherical cap of the bacterium through which the growth

force of the bacterium is directed is of the order of 1 µm).

One method of achieving this is through atomic force microscopy (AFM). Measurements

2Ranging from a few kPa to hundreds of MPa. Literature values relevant to this thesis are
summarised in Appendix D
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of the elastic modulus of M9 agarose gels have been performed using an AFM pyramid

tip of 20 nm in collaboration with a group in the School of Engineering at The University

of Edinburgh. The resulting Young’s moduli extracted from the curves obtained

are high (5.7±1.2MPa for 5% M9 agarose gels) compared to literature and vary

considerably across a single sample depending on the location of the tip. It is believed

the large values and the wide distribution can be attributed to the small diameter of the

AFM probe tip meaning measurements are probing individual fibres (or fibre bundles)

of agarose on the surface of the sample. This will be verified if measurements are made

using spherical beads of 1 µm diameter attached to the cantilever providing the force,

allowing measurements to be made with a geometrically similar setup to a bacterium

extending its length by pushing a hemispherical cap into the agarose.

5.5 Future developments

The resolution of confocal microscopy has proved to be great enough to image single

bacteria through a coverslip over prolonged periods of time, however, the addition of

the coverslip to the system does add additional constraints to the bacterium which can

be di�cult to quantify in terms of the forces exerted between the glass coverslip and

the bacterium. Additionally, it has been shown in these experiments that the starting

position of the bacterium has been altered by addition of the coverslip to the system.

In this chapter I have shown it is possible to image a single bacterium on an agarose

surface by imaging through the agarose, rather than by adding a coverslip and inverting

the sample. Further development of this method would be particularly interesting as

it more closely resembles conditions seen in-vivo for bacteria growing on the surface of

food [131], in the human body [132,133] and other surfaces exposed to air [5,40,134,135].

To achieve this, a custom-built flow-chamber capable of housing a small layer of agarose

with the bacteria cultures would allow imaging through the agarose and the ability

to pass growth media over the top of the bacterial cultures, without compromising

the image integrity. Temperature regulation of the chamber would also allow precise

reconstruction of in-vivo conditions.

5.6 Conclusions

Through imaging of individual bacteria present on M9 agarose using confocal mi-

croscopy I have shown in this chapter that when exposed to the air (i.e. not sealed

by a coverslip), open bacterial cultures do not rest on the surface of the agarose but

are partially submerged in it. Initially the amount of the bacterium submerged in the
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agarose increases as a function of time, due to the evaporation of the fluid within which

the bacteria culture is introduced to the agarose, but this stabilises after a period of

approximately 10min whereupon approximately a quarter of the bacterium is above the

surface of the agarose with the rest submerged in the bulk. This stabilisation correlates

well with the time required for the PBS to evaporate entirely from the surface of the

agarose. Additionally, it is shown that bacteria grown on an agarose pad which has

been sealed by a coverslip are fully submerged in the agarose with the top surface of

the membrane of the bacterium being in-line with the surface of the agarose, e↵ectively

confining the bacteria to a 2D layer along the surface of the coverslip.

Variation of the concentration of agarose surrounding the bacterium a↵ects the growth,

with a peak in the rate of growth at weight concentrations of 3% agarose. It is

highly probable that this peak is linked to the increase in colony buckling areas seen

in previous studies by Su et al. [47] and Grant et al. [48] and also seen in further

experiments conducted as part of this thesis (Chapter 6, p. 75). Additionally, the

growth rate of the bacterium is seen to slow dramatically (by almost a factor of

100) as the agarose concentration is increased from 3% to 5%, 0.00770 ± 0.0003 and

0.00010 ± 0.00005 unit length per minute respectively. The increase in length of only

0.01% per minute at 5% agarose concentrations equates to a doubling time far longer

than that of the bacterium in bulk, suggesting the pressure exerted by the agarose

surrounding the bacterium is approaching the force required to insert a new ring of

protein into the bacterial cell wall.

By investigating the elastic properties of M9 agarose gels using AFM the Young’s

modulus of 5% agarose gels has been measured at 5.7±1.2MPa, which is at the upper

limit of literature values (Appendix D, p. 143). However, literature measurements

of the agarose sti↵ness properties are highly dependent upon the method employed

and the geometry used and repetition of these measurements with an AFM probe of

similar geometry to the hemispherical cap of the bacterium (i.e. a spherical bead of

approximate diameter 800 nm) would provide a more relevant comparison.
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Chapter 6

The first division and beyond

6.1 Introduction and previous work

Once a bacterium on an agarose surface has grown and divided, (Chapter 5), the

daughter bacteria (produced upon the division of the seed bacterium into two new

bacteria) will grow on the agarose surface and divide.1 As this process repeats and the

colony grows from two daughter bacteria to four, the bacterial colony will expand in a

2D layer along the surface of the agarose (Figure 6.1), initially forming a two-by-two

cell matrix (as seen by Su et al. [46]) where the daughter bacteria grow preferentially

from the new poles and therefore appear to slide alongside each other parallel to their

respective long axis. After the second division of the bacteria on the plate (giving

four bacteria in the colony), the process of growth and division will continue to iterate

and the colony will expand. For early generation growth, up to approximately the

seventh generation (six divisions) of bacteria, Stewart et al. showed that the division

of all bacteria in the colony is relatively synchronised, meaning two daughter bacteria

will grow for a similar period of time after they have been created from the same

parent bacterium, before dividing at approximately the same time (with the bacterium

produced from the newer pole always dividing first) [50]. This division will continue to

occur and the bacteria in the colony will replicate into a disc shaped colony.

At early generations, space is available for the growth and division of bacteria on the

agarose surface. However, as the local area fraction at the centre of the colony tends

to 1 there is no longer su�cient space for bacteria to grow, and as a result one of three

processes must occur:

1As discussed in Chapter 5 the bacteria are not entirely on the surface of the agarose but are rather
immersed in the agarose and flush to the coverslip. For the purposes of this chapter when referring to
‘on the surface’ of the agarose it is meant that the bacteria are confined in this way.
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Chapter 6. The first division and beyond

Figure 6.1: Stills from a phase-contrast video of a bacterial colony growing in two dimensions
on 3% (weight) M9 agarose at 37 �C. The colony expands in a plane. Scale bar is 25 µm.
Reproduced from [91]

1. The central bacteria stop growing and dividing, becoming dormant or die.

2. The bacteria push away neighbouring cells to provide space for themselves to

grow and divide

3. The bacteria find additional space in the third dimension.

Studies by Lloyd et al. ruled out the first process [91]. The confined bacteria are not

limited by nutrient uptake, since the nutrient is evenly dispersed beneath the bacteria

in the agarose [128] so that bacteria in the centre of the colony will continue to grow

and divide along with those on the edge of the colony. As is clear from Figure 6.1 (top

right panel), initially the colony grows in a 2D plane on the surface of the agarose,

despite the central bacteria being confined on all four sides. However, after a period of

time, growth is not restricted to this plane, rather bacteria, in approximately the centre

of the colony, invade into the underlying agarose in order to find additional space to

grow and divide [47].2

This invasion, known as a buckling event, has been further studied by Grant et al. [48],

who found that varying the agarose concentration from 1.5% to 4% produces di↵erent

2In the absence of a coverslip the confined bacteria will preferentially invade into the air above the
agarose.
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Figure 6.2: Colony growth on a square (A) and triangular (B) lattice. A spherical seed
bacterium (green) divides and places a daughter (yellow) onto an adjacent point on the lattice.
This process can iterate through a third (blue), fourth (orange) and fifth (black) generation
before the central bacteria are completely confined and unable to place their daughter bacteria
onto an adjacent point on the square lattice (red). Thus the central bacteria must push adjacent
bacteria away or find new space (the third dimension) in which to place their daughter bacteria.

sized colonies before the buckling event occurs. They observed an increase in the critical

buckling area, A
c

, as the agarose concentration is increased from 1.5% to 3%. However,

as the concentration is increased beyond 3% to 4%, A
c

reduces. Grant et al. propose

a model involving static frictional forces, which describes this non-monotonic trend,

and points to the importance of considering mechanical interactions when investigating

bacterial colonies growing on agarose [48]. This has been further verified by Lloyd, who

reproduces this nonlinear dependence of buckling colony size to agarose concentration

under slower growth conditions (doubling time ⇡ 60min) as well as at the original

growth conditions (doubling time ⇡ 20min) [91].

6.1.1 ‘Game of Life’ and buckling

The physical reason for buckling into the third dimension can be made clear by a ‘game

of life’ [136] on a 2D lattice, (Figure 6.2A), in which ‘cells’ are denoted by occupied

lattice sites, and each cell is allowed to ‘reproduce’ by making a ‘daughter cell’ on any

nearest-neighbour lattice site.3 We start with an initial ‘cell’ (= occupied lattice site).

It is clear that on a square lattice, the central cells no longer have empty sites in which

3Using a lattice to describe this concept was originally proposed by Alexander Morozov, with Wilson
Poon noticing the similarity to Conway’s famous game.
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Figure 6.3: A one-dimensional array of rod-shaped bacteria grown in a rigid, incompressible
tube open at one end and with diameter equal to the diameter of the bacteria. [A] The seed
bacterium is placed flush to the incompressible wall where it begins to grow along a single
axis [B]. [C] The bacterium divides producing another bacterium before continuing to grow,
pushing the daughter bacterium away as it does so. [D] As the system iterates, the growing
seed bacterium is forced to push more bacteria away from it in order to generate enough space
into which it is able to grow and divide. As this occurs, the seed bacterium is under increasing
stress (�) from external sources. [E] At a point this stress increase will be greater than the
force that the bacterium can exert through growth. At critical � (red) the seed bacterium will
be unable to grow any further in this direction, resulting in termination of the growth in the
one-dimensional array.

to reproduce after n = 5 divisions. The value of n depends weakly on the symmetry of

the lattice, Figure 6.2B, but is always ⇠ 5 in 2D. This is the fundamental reason for a

2D colony to invade into the third dimension, although in reality, the size of the colony

at which this will happen must depend on a host of other factors such as cell shape,

cell-cell interaction, and cell-substrate interaction.

6.1.2 Pressure build up and buckling

The ‘game of life’ model does not allow for cells pushing each other out of the way to

create ‘growth space’. Our E. coli cells clearly can do that, so that buckling can occur

later than ⇠ 5 generations. Such pushing, together with friction between cells and the

substrate, creates an increasing pressure towards the centre of the colony. This can be

seen in a 1D toy model, Figure 6.3, where a single bacterium is placed adjacent to the

wall of a tube diameter 0.8 µm (i.e. identical to the diameter of the bacterium) (A).

The tube consists of incompressible walls on three sides, but allows su�cient nutrient

for optimal growth. Growth and division of the bacterium (B-C) confines the seed

bacterium, producing an identical e↵ect to that seen at the centre of a bacterial chain

where central bacteria are confined by adjacent cells. Iteration of the process results

in an increase in the force required to displace adjacent bacteria, causing a rise in

the external stress, �, exerted on the bacterium by adjacent cells (D). After a finite

number of iterations � will equate to the growth force of the seed bacterium and the
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seed bacterium will reach a critical stress �

c

(red) and be unable to grow (E). For

simplicity of depicting this process schematically, the growth of daughter bacteria has

been neglected, however, the rate at which �

c

is reached is increased if all bacteria

continue to grow upon division. This setup has been experimentally realised by Mo�tt

et al. who created ridged agarose pads encouraging bacteria to grow in single chains

rather than 2D colonies while allowing small molecule nutrients to reach all bacteria in

the chain [137].

It is easy to calculate the e↵ect of pressure on this model by assuming an overdamped

system (i.e. one where friction is more important than viscosity) and that the friction

is proportional to the velocity (v) of the bacteria (Stokesian friction).4 The pressure

gradient dp

dx

in one dimension is therefore

�

dp

dx

= �v (6.1)

where � is the damping term.

If we assume the bacteria in Figure 6.3 are all growing at the same rate ( dv
dx

= ⇤),

Eq. 6.1 becomes
d

2

p

dx

2

= �⇤ (6.2)

which has a quadratic solution

p = p

0

+ 0.5�⇤(L2

� x

2) (6.3)

where p
0

is the pressure exerted on the system by the surrounding agarose and L is the

length of the chain (Figure 6.3E). Therefore the pressure increases quadratically to the

centre of the chain (or the wall in Figure 6.3).

Eq. 6.3 assumes ⇤ is uniform across this chain. This is not a realistic assumption,

rather ⇤ is a function of pressure with a maximum pressure (p
max

) at which growth

can occur. Thus

⇤(p) = ⇤
0

✓
1�

p

p

max

◆
(6.4)

meaning solutions to Eq. 6.2 take the form of cosh functions with a maximum pressure

p

max

rather than quadratics. While this model only considers a 1D chain of bacteria,

the argument is scalable to two-dimensions with L being the radius of the colony.

4The calculation for the pressure across the colony was originally performed by Matthew Blow
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6.1.3 Single bacterial resolution

The previous studies mentioned above by Su, Grant and Lloyd [47, 48, 91] all focus

primarily on colony scale interactions, investigating parameters such as the critical

buckling area, di↵erence in colony area between initial and buckled layer and rate of

colony area expansion as a function of time. While some investigations are conducted

by both Grant et al. [48] and Lloyd [91] on a single bacterial level, neither pursues this

to its logical conclusion, the production of a 3D micrograph of a bacterial colony as

a function of time. This can partly be attributed to the di�culty of obtaining high

enough resolution in 3D to successfully resolve individual bacteria in such a densely

packed system.

The study of microcolony and biofilm formation is more comprehensively addressed

in the literature, with numerous studies looking at the mechanisms and structure that

these systems take on [5, 40, 41, 44, 45]. But these studies tend to focus on the overall

structure of the biofilm, locating and distinguishing between the di↵erent constituent

parts of biofilms, the bacteria cells and other structures within the extra-cellular

matrix [49]. The location of individual cells within the biofilm, and 3D colonies in

general, has yet to be studied in detail. Locating and tracking all individual bacteria in

the colony should o↵er increased understanding of how and why colonies form as they

do. However, in order to do so it is necessary for 3D stacks of images to be produced

at a single-bacterial resolution in order to allow distinction between individual cells

in the microcolony, particularly as the volume fraction of the colony tends to 1 and

additional layers (above the initially formed layer) are created. Chapter 4 shows single

bacterial resolution is achievable and the remainder of this Chapter presents results of

single bacterial resolution experiments using these methods.

6.2 The first division

Resolving single bacteria in a confined 2D plane, (Figure 6.4), is relatively trivial to

achieve. Brightfield microscopy techniques are capable of distinguishing individual

bacteria in a two-dimensional plane provided the magnification of the objective lens is

high enough, (> 40⇥). Phase-contrast further enhances the ability to resolve individual

bacteria in this way by providing enhanced distinction between the edges of the bacteria,

so that confocal microscopy could be considered excessive for such simple structures.

However, confocal imaging is vital for studying the third dimension, and the third

dimension is vital to all higher organisms we know of today. This is clear from the

basic topology of all metazoans (higher animals), which is that of a doughnut: the

80



6.2. The first division

Figure 6.4: Bacterial colony growth from seed bacterium to first division (generation 2) on
2% M9 agarose gel. Stacks of images are recorded every 5min. The bacterium grows in the
long axis in a two-dimensional plane along the surface of the agarose before dividing to produce
two daughter bacteria. Scale bar is 2µm. A movie of this figure is included as Supplementary
Movie A.9 (p. 135).

‘hole’ in the middle is the alimentary track (mouth to anus). A 2D body plan of this

kind, Figure 6.5, does not work – a 2D metazoan simply falls apart. The ‘discovery

of the third dimension’ by a growing 2D bacterial colony was therefore a vital step in

evolution. On a more mundane level, such buckling of a 2D microcolony is a key step

in the life cycle of a 3D biofilm. Yet, this buckling event has been little studied in the

literature.

Obtaining 3D images is vital for such study, since projecting bacterial microcolonies

grown on agarose to a 2D plane, Figure 6.4, results in the loss of a third of the spatial

and orientational information. This is highlighted in Figure 6.6, showing a colony grown

on 2% M9 agarose media. Even when only containing as few as 16 bacteria, one of

the central, spatially confined, bacteria (red arrow) loses fluorescence in the imaging

plane. If only considering a 2D bacterial system it may be inferred that this reduction
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Figure 6.5: Cartoon of 2D organism. A: A 2D organism. B: Intake of nutrients requires a
separation in the organism. C: Excretion of waste also requires a separation of the organism.
D: Simultaneous nutrient uptake and waste excretion requires the organism to divide into two.

in fluorescence is the result of photobleaching, or the reduction in the copy number

of the plasmid containing the fluorescent protein as the bacterium grows, suggesting

the bacterium remains in the initial growth plane but with a loss of signal. However,

comparing this to the 3D stack of the same colony (right panel of Figure 6.7), the

bacteria can clearly be seen bending away from the 2D growth plane and beginning to

force its way into the third dimension.

By sectioning samples (Figure 6.7) in this way, 3D information is not lost. In Figure 6.7,

the 3D structure of the bottom two panels of Figure 6.6 shows both the fourth and

fifth generations of the bacterial colony are still growing in a single 2D plane but, in

generation 5 (right) there is clear evidence of a single central bacteria invading the

agarose and deviating from this plane (red arrow). In fact, this is already occurring in

generation 4 (left), with the bacterium being slightly raised relative to the rest of the

bacteria in the colony when viewed in the orthogonal plane (blue arrow), despite the

2D slice along the surface of the agarose showing no indication of invasion.

6.2.1 Three-dimensional orientation

To a first approximation, a bacterium on the surface of an agarose pad will initially

grow in a linear fashion, however, at the division (septation) the E. coli are seen to

‘kick’ away from each other, by some unknown process, as they divide, in order to

allow growth to occur at the newly formed poles (a process first described by Begg

and Donachie [112]). This event has been imaged in the xy plane using a plethora

of imaging techniques, and is visible in Figure 6.6, where the bacteria push past each
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Figure 6.6: Development of a bacterial colony from two-dimensional growth on the surface of
2% M9 agarose gel to three-dimensional growth. The bacteria grow and divide in a single plane
at the surface of the colony. However, in the final panel shown here (bottom right) a central,
spatially confined, bacterium in the colony is seen to bend away from the growth plane and
appear to be pushed into the third dimension (red arrow). Scale bar is 2 µm.

other from the top left panel to the top right panel to align themselves in parallel and

form a two-by-two matrix. While this has only been seen in the 2D plane it is also

possible that the ‘kick’ event will include an out-of-plane component.

Indeed, as the bacteria grows along the long axis of the cell it is likely that it will

experience an accumulation of pressure similar to that experienced by compressed

beams, forcing the centre of the bacterium to bend and the bacterium to bow in the

centre (Figure 6.8, p. 85). An order of magnitude calculation can be performed for the

Euler buckling force (F
c

) using

F

c

=
⇡

2

EI

l

2

(6.5)

where l is the length of the bacterium, E, the Young’s modulus and I the moment

of inertia. Assuming the bacterium is cylindrical, I = 0.5MR

2 where M is the mass

of the bacterium (1⇥ 10�12 g) and R the radius of the cylinder (400 nm). Using the

estimation of Young’s modulus (§ 5.3.1, p. 61), E = 300 kPa, we calculate F

c

= 15pN,

a force far smaller than that necessary to displace agarose through extension of the cap

of the bacterium (mN).

Immediately upon division of the seed bacterium into two daughter bacteria, one (or

both) of the bacteria must therefore not be parallel to the growth plane of the seed

bacterium, invading the agarose (C). As time increases from the septation (division) the

bacteria will align themselves parallel to the initial growth plane (due to the proximity
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Figure 6.7: 3D images of a bacterial colony grown on 2% M9 agarose. [Left] Colony having
reached generation 4 (3 divisions). The colony is still clearly in a 2D plane but with a single
bacterium (blue arrow) deviating from it. However, the overlying trend of the colony is still in
a 2D plane.
[Right] Colony having reached generation 5 (4 divisions). The colony is beginning to exhibit
3D structure beyond that intrinsic to the structure of a single bacterium. A central bacterium
(red arrow) is seen clearly to be bending into the agarose surface. Scale bar is 5.0 µm.

of the coverslip), where in the xy plane they will grow past each other to eventually

form a 2⇥ 2 matrix. I now give evidence that this conjectured sequence of events may

indeed occur in reality.

6.2.2 Early deviation into the third dimension

Achieving resolution of the colony growth at individual bacterial level allows investi-

gation into local deviations relative to the initial growth plane. Stacks of bacterial

colonies grown on M9 agarose were imaged at 5min intervals from inoculation of the

sample to beyond the point of buckling and the weight percent concentration of agarose

was varied from 1% to 5% (Chapter 5, p. 57). Using code developed by Besseling and

Hermes [111] the spatial location and orientation of spherocylindrical rods is fitted to

all bacteria. This allows extraction of the angle relative to the growth plane (✓) for the

spherocylinders which have been fitted to the bacteria (Figure 6.9, p. 86).

Figure 6.10 (p. 87) shows measurements of the mean angle of all bacteria (h✓i) relative

to the agarose surface (A), and maximum angle relative to the agarose surface, ✓
max

,

(B) for early growth of bacteria on agarose. Initially a single bacterium is aligned with

the agarose surface, before a sharp increase in h✓i as the bacterium divides (arrow).

h✓i then decreases rapidly, indicating the bacteria are relaxing to align parallel to the

agarose surface after division. After this initial relaxation, h✓i increases steadily to each

new division point with sharp rises in h✓i at each subsequent division. Unsurprisingly,

these sharp increases in angle relative to the agarose surface are accentuated when

analysing ✓

max

, with dramatic increases across the division points, indicating the ‘kick’

event occurs in all directions and one bacterium invades the agarose more than the
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Figure 6.8: Schematic showing the xy and xz projections of a bacterium as it grows from
seed (A) to first division. (B) As the bacterium grows it appears spherocylindrical in the
xy projection but bows (dotted black line) in the xz view. (C) At the point of division the
bacteria still appear to be aligned in the xy view but one (or both) are seen to invade the
agarose layer before relaxing (D) to lie parallel to one another. Measurements of the mean
angle of the bacteria in the colony relative to the initial growth plane (h✓i) indicate the extent
which bacteria are being forced into the third dimension.

other (top of bracket in Figure 6.8C). Noticeably, though, the fourth division does not

correspond to a sharp increase in ✓

max

. This is believed to be a result of the close

proximity of two divisions masking one another. The data in Figure 6.10 are consistent

with the scenario sketched out in Figure 6.8.

6.3 From two to many

After division of the seed bacterium into two daughters, of approximately equal length,

the colony continues to grow in a 2D plane (Figure 6.11, p. 88). The daughter bacteria

push past each other, providing space at the newly formed caps for growth. As the

second generation grows, the bacteria align parallel to each other, most probably in

order to reduce surface tension between themselves and the agarose, before dividing

again to form a two-by-two matrix as observed by Su et al. [46]. However, Figures 6.7

and 6.10 show the initial layer of bacteria is not flat. Moreover, as the number

of bacteria in the colony increases, the centre of the colony flexes into the agarose

(Figure 6.12, p. 89), with central bacteria deviating from the imaging plane through

the bacteria at the extremity of the colony. This flexing can be seen as an increase in

✓ across the colony.
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Figure 6.9: Schematic of parameters obtained from reconstruction code developed by Besseling
et al. [111] [Left] Projection of the bacterium onto the xy plane with the centre of mass
coordinates for x (x

c

) and y (y
c

) shown along with the angle the bacterium makes with the
x axis (�). [Right] Projection of the bacterium onto the xz plane with the centre of mass
coordinates for x (x

c

) and z (z
c

) shown along with the angle the bacterium makes with the
z axis (✓). The combination of these parameters, alongside the fitted length and diameter of
the bacteria allows for full spatial reconstruction of the location of the bacterium.

By measuring the variation of the mean angle relative to the initial growth plane (h✓i)

this process can be quantified (Figure 6.13, p. 90). While growth and division continues

in a 2D plane, Figure 6.6 (p. 83), as is the case for very early bacterial division, I

find that before buckling occurs h✓i increases as the number of bacteria increases (B).

This means that supposed sudden buckling events into the third dimension are not as

sudden as assumed by Su et al. [47] and Grant et al. [48], especially since measurements

of the the maximum angle ✓

max

tell us that the buckling transition occurs when ✓

max

approaches ⇡

2

, i.e. when cells begin to stand upright (anti-parallel to the growth plane).

Indeed, this scenario is consistent with the description given by Grant et al. who assume

a gradual accumulation of out-of-plane orientation in cells.

The large increase in ✓

max

across the division seen in very small colonies (Figure 6.10)

is not as defined as the number of bacteria increases, a result of divisions occurring

asynchronously to one another. The e↵ect of this could be reduced by tracking of

individual bacteria, allowing investigation of the change of angle on a local, rather than

global, scale.

6.4 The development of additional layers

Very early in their development, bacterial colonies show evidence of three-dimensionality,

however slight, and as the colony continues to expand, previous experiments conducted

by Grant et al. [48] and Lloyd [91], using phase contrast microscopy, report a darkening

of the central region of the colony, indicating an increase in the amount of high
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Figure 6.10: [A] Measurements of the mean angle of bacteria relative to the initial growth
plane (h✓i) as a function of time for initial measurements. Arrows indicate the first time an
increase in bacteria is recorded (i.e. the first frame after division). Initially the bacterium is
parallel to the surface, but at division (arrow), h✓i increases dramatically. After division h✓i

decreases dramatically before steadily rising to the second division, before which a sharp rise
is seen. h✓i continues to increase after division before a dramatic rise as the fourth bacteria is
created. [B] Measurements of the maximum angle of a bacterium ✓

max

relative to the initial
growth plane. As with h✓i a sharp increase in ✓

max

is seen as the bacterium divides, with the
event being clearer in the first three cases. The fourth division is masked partially by the close
proximity of two divisions at this point (390min and 402min) meaning a relaxation in ✓

max

is
not observed in this case.

refractive index medium through which the light is passing. This darkening is the

development of additional layers of bacteria, caused by central bacteria being unable to

displace surrounding bacteria, and therefore buckling into the agarose. However, these

studies have been unable to identify individual bacteria in the colony, relying instead

on measurements of the colony area.

Figure 6.15 (p. 92) shows a colony grown on 3% M9 agarose after 18 hrs of imaging.

Three layers of bacteria are clearly seen in the colony, the primary layer on the agarose

surface and two additional layers caused by invasion of bacteria into the agarose.

Individual bacteria are identifiable in the colony allowing extraction of the spatial
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Figure 6.11: Bacterial colony growth from first division (generation 2) to second division
(generation 3) on 2% (weight) M9 agarose. Stacks of images are recorded every 2min (4min
intervals shown here). The colony is seen to grow in a 2D plane on the surface of the agarose.
After the initial generation, the two bacteria are seen to push past each other to allow growth
from the newly formed caps in the centre. Similarly, as the third generation forms, the bacteria
push past each other to form a two-by-two matrix. Scale bar is 2.0 µm. This montage is a
smaller part of the Supplementary Movie A.10 (p. 135).

location, orientation and dimensions of each individual bacterium and investigation of

the buckling event at single bacterial resolution. Figure 6.16 (p. 93) shows the number

of bacteria (Num
bac

) in the colony at the point where the centre of mass of a single

bacterium is measured to be one diameter (0.8 µm) higher than the centre of mass of

the lowest bacterium. This di↵erence between the centre of masses of the highest and

lowest bacteria in the colony corresponds to the buckling event. The centre of mass of

the lowest bacterium is chosen as the reference point as it is not possible to identify

the location of the coverslip without the addition of another fluorophore. Similarly,

the relative position of the bacteria in the confocal stack varies considerably across

the experiment timeframe (of the order of 24 hrs) due to the movement of the sample

relative to the objective (this is unavoidable when wishing to generate single bacterial

resolution in 3D stacks due to the need to match the refractive indices of the glass and

the objective, Chapter 2, p. 15). It is assumed that the sample chamber, and therefore

the bacterial colony, is perpendicular to the imaging setup (to a first approximation),

and therefore that there is little variation in the axial position of the agarose surface
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Figure 6.12: [Top] Schematic of a single layer of bacteria where the centre of the colony has
deviated into the agarose. [Bottom] A single layer bacterial colony, which is undergoing this
flexing process. Dotted lines indicate the plane at the bottom of bacteria at the extremity of
the colony.

across the imaging area.

It is clear, from Figure 6.16 that Num
bac

is not monotonic with agarose concentration

as there is a clear peak at 3% concentrations. This is in good agreement with Grant

et al. and Lloyd, when considering the area of the primary layer of bacteria at the

point of buckling, who find peaks at 2.5% and 3% respectively [48, 91]. Additionally,

the peak seen in Figure 6.16 resembles the rate of growth variation seen in Figure 5.12

(p. 71), indicating rate of growth of the bacteria on agarose is important in determining

Num
bac

.
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Figure 6.13: [A] Growth of bacterial colony as a function of time. Exponential fit (blue) to the

data is 1.33e3.8 ⇥ 10

3
t. [B] Variation of mean angle relative to agarose surface (h✓i) as function

of time. h✓i increases as the number of bacteria increase indicating the buckling point is the
result of accumulation of pressure exerted in the initial growth layer. This shows the term
‘buckling point’ is misleading, since the buckling event is not a step change in h✓i. Instead,
a 2D layer of bacteria on agarose exhibits 3D structure very early in the colony formation,
and increases steadily throughout the colony development generating additional layers in the
process. [C] Variation of maximum angle ✓

max

as a function of time from initial measurement.
✓

max

increases in a similar fashion, tending towards 0.5⇡, where the buckling event occurs (red
arrow). [D] ✓

max

as a function of number of bacteria present in the colony. A sharp increase in
✓

max

is seen at each division (first indicated with dotted arrow). ✓
max

tends to 0.5⇡ where the
buckling event occurs (red arrow).

6.4.1 Buried bacteria colony structure

Although work in this thesis has concentrated on surface growing colonies, it is also

possible to analyse buried bacterial colonies (such as those in Figure 4.13, p. 53) in

a similar manner using Besselling’s code. The seven colonies imaged in Figure 4.13

were analysed using Besselling’s code and h✓i were measured (Figure 6.14). In

contrast to Figure 6.13, h✓i (A) remains approximately 0 as Num
bac

increases but

the standard deviation is large suggesting the distribution of ✓ is uniform across 180�.

This is confirmed by viewing boxplots showing the median, 25 and 75 percentiles and

maximal and minimal outliers (B). Although time-course information is unavailable for

these colonies, the seven colonies contain di↵erent numbers of bacteria, allowing some

temporal information to be extracted. This temporal information indicates that there

is no variation in h✓i as Num
bac

increases.
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6.4. The development of additional layers

Figure 6.14: [A] Variation of mean angle relative to the agarose surface for seven buried
bacterial colonies. h✓i remains approximately 0 as the number of bacteria present in the colony
increases. Error bars show the standard deviation and indicate that there is a large distribution
of ✓ throughout all the colonies. [B] Boxplot showing the median (red line), 25 and 75 percentiles
(box), 95% confidence in the median (notches) and maximal and minimal outliers (dotted lines).
The boxplots indicate the orientation of bacteria throughout the buried colonies is uniform
through 180�.

6.4.2 Comparison to previous studies

Further comparison between the surface colony study and previous studies performend

by Grantet al. [48] and Lloyd [91] is di�cult due to di↵ering methods of measuring

the colony at the point of buckling.5 But by approximating the dimensions of a

bacterium in colonies grown on agarose in both Grant and Lloyd’s experiments as

4.0⇥0.8 µm it is possible to extract an approximate value of Num
bac

in each case.

Figure 6.17 (p. 94) shows Num
bac

for colonies with approximate doubling times of

20min, 60min and 75min, with data for 20min and 60min doubling times being

adapted from measurements obtained by Diarmuid Lloyd in experiments conducted

5Both Grant and Lloyd use the colony area at the point of buckling to compare between agarose
concentrations rather than counting individual bacteria due to the reduced resolution available as a
result of their imaging methods.
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Chapter 6. The first division and beyond

Figure 6.15: Single bacterial resolution of 3D colony grown on 3% M9 agarose. Bacteria
can be seen growing in three distinct layers, the primary layer on the agarose surface and two
additional layers where invasion into the agarose has occurred. All bacteria can be distinguished
within the sample allowing information on the spatial location and orientation of all bacteria in
3D to be extracted for analysis. Scale bar is 5.0 µm. Supplementary Movie A.11 (p. 136) shows
the sectioning of this figure as a movie and Supp. Movie A.12 (p. 137) shows a 3D representation
of the colony.

as part of his postgraduate studies [91]. What is immediately clear is that there is an

increase in Num
bac

as the doubling time of the bacteria decreases.

Qualifications to comparisons between experiments

It it important to note that the conditions under which experiments in this thesis

are conducted are di↵erent to those of both Grant and Lloyd [48, 91]. Experiments

undertaken by both Grant and Lloyd were performed at 37 �C, with the di↵erence in

colony doubling time in Lloyd’s experiments achieved through variation of the nutrient

available to the bacteria [48, 91]. In contrast, experiments conducted in this thesis

were conducted at 22 �C, for simplification of the imaging process, and additionally,

the strains used for both Grant and Lloyd’s experiments, although also derivatives of

MG1655, are not identical to that used for my experiments. The strain used by Grant

et al. is an E. coli K-12 BW25113 derivative with the green-fluorescent protein (GFP)
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Figure 6.16: Number of bacteria within colony at the initial development of a second layer
of bacteria as the concentration of agarose is varied from 1% to 5%. The number of bacteria
present at the buckling point does not vary linearly with the agarose concentration. Rather a
clear peak is seen in the number of bacteria present for concentrations of 3% agarose relative
to the others. Error bars show the standard error on the mean.

expressing plasmid PKK PdnaA-GFP while Lloyd’s strain of MG1655 contains yellow-

fluorescent protein (YFP) bound to the chromosome. This is important as insertion

of a plasmid a↵ects the metabolism of the bacterium and therefore the growth rate,

which we have shown to be important in the development of colonies.

To ensure that a comparison can be made between the strain used in this thesis and that

used by Lloyd, I compared a strain of chromosomal fluorescing bacteria identical to that

used in Lloyd’s experiments, but expressing GFP, by imaging under identical conditions

to the plasmid strain used in this thesis (Chapter 3, p. 19). For colonies grown on 2%

M9 agarose at 22 �C I find that Num
bac

is the same as for other experiments conducted

at 22 �C (Figure 6.18, p. 95) confirming the reduction in Num
bac

is attributable to the

rate of growth of the bacteria in the colony, not an artefact of the strain.

6.5 Discussion and conclusions

The ability to resolve bacterial colonies at a single cellular resolution when densely

packed opens up many possible avenues of investigation into bacterial colony growth and

development. Extraction of the physical parameters of the bacteria in the microcolony

clears the way to producing a full 4D (three spatial dimensions plus time) sectioned

micrograph of a bacterial colony, from seed bacterium to death, analogous to the lineage

of other biological samples such as C. elegans [1]. Furthermore, understanding the
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Chapter 6. The first division and beyond

Figure 6.17: Comparison of number of bacteria present in the colony at the point of buckling
for bacteria growing with di↵erent doubling rates (shown in brackets). Data for doubling rates
60min and 20min are adapted from work carried out by Diarmuid Lloyd as part of work
undertaken in his postgraduate studies [91]. Errors are standard errors on the mean.

development of individual bacteria in the microcolony when compared to their isolated

state will increase understanding of how microcolonies and biofilms help to protect and

nurture the bacteria ensconced within them.

Throughout this chapter, I have highlighted areas where additional investigation would

provide insight into the development of buckling colonies, but perhaps the most

interesting of these is the ability to track the movement of individual bacteria in the

colony. This would prove useful in obtaining more information on the nature of the

growth of the secondary layers of bacteria in the colony, in order to determine whether

they grow as a result of new bacteria arriving from the primary layer or as a result of

division of bacteria already in the secondary layers. Additionally, being able to track

the location of bacteria in the colony will lead to an enhancement of the models used

to describe these structures, for instance, should the bacteria be seen to be moving

considerably along the surface of the agarose as bacteria divide, it will determine the

suitable models for investigation of the mechanical forces exerted on the bacteria in

the colony. Finally, extraction of curvature information from the bacteria (Chapter 4,

p. 48), both when isolated and in the microcolony, will produce information on the

structure of the bacterial cell membrane, the elastic properties of the bacteria when
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Figure 6.18: Number of bacteria present in the colony at buckling (Num
bac

) as a function
of the colony doubling rate. There is a clear decrease in Num

bac

as the doubling time of the
bacteria within the colony increases. Data from this thesis (red) is included here along with
data adapted from Grant et al.(black) [48] and Lloyd (blue) [91]. Error bars are standard error
on the mean.

in macrostructures such as colonies and the e↵ect neighbouring bacteria have on the

external stresses exerted on individuals when in closely packed structures.

In this chapter I have shown confocal microscopy is capable of resolving an individual

bacterium in bacterial colonies grown on agarose and that, even when the colony

is a single layer of bacteria growing on the surface, there is deviation of individual

bacteria in 3D. As the bacteria grow and extend on the surface they not only alter

their position in the xy plane but they invade the agarose pad, with an increase in

✓

max

immediately after division. Additionally, after this sharp increase at division ✓

max

decreases, indicating the bacteria relax to lie approximately parallel to the agarose

surface. The mean angle of the bacteria from the surface (h✓i) is seen to increase

as the number of bacteria increases, indicating the buckling event is not an isolated

occurrence but is the result of a continuous accumulation of pressure in the colony.

The term ‘buckling point’ is therefore misleading since the buckling event is not a step

transition where a 2D colony suddenly develops three-dimensionality. Instead, a 2D

layer of bacteria on agarose exhibits 3D structure very early in the colony formation,

and increases steadily throughout the colony development generating additional layers

of bacteria as part of this process.
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Similarly, as the colony develops on the surface, the bacteria at the centre of the colony

are confined on all sides by other bacteria and, as this happens, the central bacteria

are forced higher into the agarose in order to grow and divide. This results in the

creation of a secondary layer of bacteria above the primary layer and by resolving the

bacterial colony at an individual bacterial level, the development of the colony through

the buckling point can be probed on a single cell resolution, rather than relying on

population level interpretations (such as the area of the colony at the point of intrusion

into the agarose). The number of bacteria present at the buckling event (Num
bac

) is seen

to vary with agarose concentration, with a peak at 3% agarose (weight) concentrations.

This is in agreement with previous studies by Grant et al. [48] and Lloyd [91] who

found peaks at 2.5% and 3% agarose concentrations respectively. Additionally, the

growth rate of individual bacteria is also seen to peak at agarose concentrations of 3%

(Chapter 5, p. 57), suggesting that the rate of growth of a bacterium is a dominant

factor in the invasion of the bacterial colony into the agarose pad.

Finally, comparison of studies by Grant et al. [48] and Lloyd [91] indicates Num
bac

decreases as a function of doubling time, again suggesting that growth rate is important

in bacterial invasion into the agarose.
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Chapter 7

FtsZ and its role in the division

of a bacterium

7.1 Introduction

FtsZ is one of the key proteins associated with the division process of bacteria. In this

chapter, I report a study of FtsZ structures in a growing E. coli colony, and compare

my results with previous work on isolated cells.

FtsZ was first identified by Bi et al. in 1991 [138]. Since then there has been concerted

e↵ort to understand FtsZ and associated proteins, particularly the Min proteins, which

cooperate to produce septation [100, 139–142]. FtsZ is believed to be the only protein

that exerts an inward-directed force on the cell wall of between 20 pN/monomer and

30 pN/monomer, presumably causing septation [143]. As with other proteins in the

bacterium, it is believed that FtsZ transfers between sites helically along a cytoskeleton

on the cell membrane [144–146]. It is highly mobile, with a di↵usion coe�cient similar

to monomeric membrane proteins [142, 147]. Studies are conflicting on the nature of

FtsZ association with the cytoskeleton. Thanedar et al. suggested that the proteins

oscillate along the cytoskeleton before localising at the division site [145], while Peters

et al. found no evidence for such an oscillation in Bascillus subtilis [147]. Jennings et

al. found clear evidence that FtsZ forms a helix in Bascillus subtilis [148]; however

subsequent investigations of other cytoskeletal proteins have cast doubt. Ursell et al.

saw no evidence of helical arrangement of MreB, a protein closely identified with the

cytoskeleton [149]. The conflicting literature highlights the di�culty of visualising

subcellular structures in bacteria, due in part to limitations in imaging (Chapter 2,

p. 7), although these have been alleviated in recent years through the application

of advanced microscopy techniques such as nonlinear microscopy [51] and confocal
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microscopy (Chapter 4, p. 35).

Recently it has been suggested that the helical patterns observed in MreB are an

artefact of overexpression of the protein being imaged [150]. Swulius et al. used

electron cryotomography to show that adding the fluorescent protein YFP to MreB

caused it to form helical patterns in E. coli while untagged (native) MreB does not.

Overexpression arises from the need to obtain high signal from small relatively small

concentrations of fluorophores. In order to maximise the fluorescent signal obtained

from these concentrations, experimentalists cultivate samples in such a way as to

encourage greater concentrations of fluorescent protein in the sample. As fluorescent

tags are fused to the proteins being investigated this also increases the expression of the

protein under investigation resulting in more protein being present in the bacterium

than under normal conditions. Superresolution techniques such as STORM, PALM

and FPALM have been used recently to investigate this discovery as they are capable

of extracting information on individual proteins rather than larger structures [151,152].

These methods have shown that rather than a full helix throughout the length of the

bacterium, MreB forms discrete patches that move circumferentially around the cell,

questioning the idea of MreB cables forming an actin-like cytoskeleton [153].

Despite being smaller than the di↵raction limit, single molecules can be imaged as PSF-

sized spots in the detector. However, if the proteins assemble into superstructures, such

as rings or helices, with dimensions of the order of the resolution of confocal microscopy,

imaging is in principle more robust. Nevertheless, there are only a limited number of

studies of the structures formed by FtsZ, although several studies have claimed to

observe helices [144, 146]. Based on these studies, Andrews et al. propose a model

predicting that the FtsZ helix should form with an angle of ✓ = 81� to the long axis

of the bacterium [154]. In their model, the helix is a rigid structure in the bacterium,

displaying constant ✓ as the cell grows. This is surprising, as E. coli grows axially

by the insertion of peptidoglycan into the existing cell wall in a predominantly helical

pattern [155]. Thus, any helical structure already present in the bacterium should be

stretched. Fischer-Friedrich et al. propose a di↵erent model with several helices in

the bacterium, giving flexibility for the FtsZ to travel through the cell and therefore

varying the helical angle relative to the long axis [156].

To initiate division FtsZ proteins form a ring-like structure at the division site with

the help of a concentration gradient of MipZ and MinC [139], which act as negative

regulators for FtsZ, as does the nucleoid [157]. Upon formation of the ring, FtsZ attracts

other proteins to this site, which together generate septation [139]. As this occurs, the
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locally cylindrical wall of the centre of a rod-shaped bacterium starts to close in on

itself, separating the bacterium into two approximately equal-sized daughters. This

causes the oscillating Min proteins to start to concentrate at the new caps as well as

the poles of the original bacterium, gradually dislodging the FtsZ proteins from the

ring site. Consequently, as the septation process begins, the Z ring is slowly disbanded,

causing the FtsZ to return to a helical oscillation pattern. The whole process is then

repeated [142,146]. How the FtsZ converts from a helix to a ring to initiate the septation

process is not clearly understood. Theoretical studies suggest models for the di↵erent

patterns of FtsZ organisation (ring and helix), but the transition between them remains

undefined [154]. It is possible (and in fact common) for multiple Z rings to form in a

bacterium. Upon being dislodged from the Z ring, the FtsZ proteins are believed to

oscillate helically through the bacterium until they locate a low concentration of the

negative regulators (e.g. MinC or nucleoid) within the bacterium and establish another

ring site. As the division process is not instantaneous, the formation of this secondary

ring occurs while remnants of the primary ring still exist [142,158], a phenomenon that

is often observed in longer cells [159].

Much of the current literature on FtsZ and the Z ring has focussed on ways of inhibiting

Z ring formation to halt septation, either by deletion of proteins [160] or by introduction

of antigens [97]. However, there have also been attempts to quantify the location of

the division point. Trueba first did so using brightfield microscopy [161], and found

mid-point division in wild-type E. coli K-12 with a standard deviation of 2.5% of the

cell length at 37 �C. Guberman et al. used brightfield and fluorescence imaging [162],

and found for wild-type E. coli a standard deviation of 2.9% of the cell length from the

midpoint; deletion of the genes associated with MinC expression increases the deviation

to 11.5% of cell length, all at 37 �C. Yu et al. performed a similar study comparing wild-

type E. coli K-12 MG1655 with anucleate cells, and found the division to be ±2.6%

of the cell length for wild-type and ±12.4% for the anucleated cells [159]. They also

measured Z ring location at 28 �C finding no di↵erence in the distribution. However,

Gupta et al. found Z ring distribution increased to 7.8% when under oxidative stress

at 24 �C [163]. All of these studies were limited to measurements of isolated bacteria

on agarose.

Similar studies have been conducted with B. subtilis, Migocki et al. found the location

of the Z ring to be within ±6% of the middle in units of cell length for wild-type,

and ±6.7% for MinC� (bacteria without MinC proteins) and MinD� (without MinD)

cells, and ±8.4% for MinCD� cells [164]. The use of super-resolution systems has

provided some additional insight into the protein structure of bacteria, particularly in
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identifying helix structures, but these studies are limited by the relative expense and

the complexity of the systems necessary for image acquisition as well as the higher

powers required to generate enough signal [165,166].

A theoretical model by Tostevin et al. has shown that very high precision of location

can be achieved by proteins that evaluate a protein gradient for a minimum, as is the

case for FtsZ in Z ring formation, provided time-averaging occurs [167]. Similarly,

Howard et al. have shown that confinement of the Z ring to a central location can be

achieved if the number of MinD and MinE proteins totals 1500 each [168]. Obtaining

a better understanding of the concentration of both FtsZ and Min proteins within

E. coli is necessary to further develop models of this sort. Several studies have been

conducted with this goal. Pla et al. measured two strains of E. coli K-12, finding

that both MC1061 and W3110 contained approximately 5000 molecules of FtsZ per

cell [169], while Rueda et al. found similarly that E. coli K-12 B/rK strains contain an

average of 3200 molecules of FtsZ per cell [170]. In comparison, Lu et al. [171] calculate

there are 15000 molecules at a concentration of 400mgml�1 in E. coli BL21.1 In

contrast, determination of concentrations of Min proteins has proved di�cult, although

an early study by de Boer [172] found that E. coli UT481 contained approximately

3000molecules. Independent studies by Shih, Lutkenhaus and Ishihama [173–175] each

find similar but slightly smaller values of 2000 and 1320 molecules per cell respectively

for di↵erent strains of E. coli (Shih and Lutkenhaus MC1000 and Ishihama MC4100).

This apparent reduction most likely reflects the increased measurement accuracy.2

To the best of our knowledge, all previous experiments have studied isolated bacteria.

While this simplifies the measurement of the FtsZ ring, it leaves open the question of

whether growth in a colony is di↵erent in any way. In this chapter I present results of

experiments probing the FtsZ protein in growing bacteria in a 2D colony.

1Comparison of all of these strains using the E. coli Open-Wiki [102] suggests that W3110 is most
closely related to MG1655 sharing two deletions and having only six di↵erent deletions (both MG1655
and W3110 have three additional deletions all of which are di↵erent).

2Comparison to MG1655 has shown that the MC4100 and MG1655 strains are closely related [176]
and analysis of a derivative of MC4100 (BW2952) shows there are 15 variations between the two
strains [177]. MC1000 is even closer having only ten genetic variations between it and MG1655
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Figure 7.1: Excitation (dotted) and Emission (solid) spectra for yellow-fluorescent protein
(YFP). Excitation was performed using a laser wavelength of 488 nm, in order to limit cross-
talk between the excitation and emission wavelength.

7.2 Methods

7.2.1 Strains

Cytoskeletal Investigations

For experiments studying FtsZ when it is not in the ring state, E. coli K-12 MG1655

was transduced with pLAU80, a yellow-fluorescent protein (YFP) expressing plasmid

from the Sherrat laboratory [96].3 Figure 7.1 shows the excitation and emission spectra

of YFP. Excitation was performed on a Zeiss Confocal LSM 700 microscope at 488 nm

in order to limit cross-talk between incident and emitted light. Cells were grown to

exponential phase in M9 media at 37 �C (Chapter 3, p. 19), diluted to concentrations

of 107 cells/ml and placed on a rigid agarose surface of identical M9 media with 2%

(weight) agarose contained within a GeneFrame (Thermo Scientific) mounted on a

microscope slide. The chamber was sealed using a coverslip, which compresses the

bacteria into the surface of the agarose.

Z ring positioning

To investigate the location of the Z ring, E. coli K-12 YD133 with pLAU80 [96] is grown

to exponential phase in M9 minimal media with 2% glucose. Cultures are diluted to

concentrations of 107 cells/ml in PBS and placed on agarose with identical M9 media

3Transduction of pLAU80 into all E. coli strains was conducted by Dr. Angela Dawson.
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Chapter 7. FtsZ and its role in the division of a bacterium

Figure 7.2: Schematic of confocal setup for imaging of FtsZ ring within E. coli using
simultaneous YFP fluorescence (yellow) and transmitted incident (blue) laser light.

with 2% agarose contained within a GeneFrame (Thermo Scientific) mounted on a

microscope slide. As with the cytoskeletal investigations the sample is sealed using a

coverslip.

7.2.2 Imaging

Image slices are taken using a Zeiss Confocal LSM 700 at resolution �x = �y ' 30 nm,

�z = 100 nm. Three-dimensional stacks are acquired at intervals of 2min or 5min,

much faster than the doubling time of the bacterium. Simultaneous acquisition of YFP

fluorescence and part of the transmitted excitation laser light permit the location of the

FtsZ. The transmission image shows the outline of the bacterium and is used without

fluorescent tags associated with the cell membrane. The setup used to acquire the YFP

(yellow) and transmitted images (blue) is shown in Figure 7.2. The YFP fluorescence

was acquired by epi-detection in a PMT located in Channel 2 of the Zeiss Confocal

LSM 700 and image analysis was performed using ImageJ [106]. The pixel dimensions

were calibrated and images acquired from the two channels (transmitted and YFP)

were merged and rendered for measuring.
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7.3. FtsZ in the cytoskeleton

7.3 FtsZ in the cytoskeleton

YFP is arabinose induced in our cells. We therefore need to starve E. coli MG1655

of glucose, which inhibits the uptake of arabinose [98]. Prolonged starvation (⇠ 1hr)

gives rise to filamentous cells that fail to divide. Fluorescence imaging of FtsZ-yfp

Figure 7.3: [Top] YFP-fluorescence image (xy plane and accompanying orthogonal images)
of FtsZ cytoskeletal structure in E. coli MG1655 through prolonged removal of glucose from
M9 growth media (⇠1 hr) during exponential growth phase. Scale bar is 2.0 µm. [Bottom] 2D
projection of the 3D stack clearly showing the helical structure FtsZ utilises to travel through
the cell between Z ring formations. Scale bar is 2.0 µm.
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Figure 7.4: [Top] YFP-fluorescence image of FtsZ cytoskeletal structure in filamentous E. coli
MG1655 with accompanying orthogonal images. Scale bar is 2.0 µm. [Bottom] 2D projection of
the 3D stack through the bacterium produced in ImageJ by summing the pixel intensity across
the entire stack. The FtsZ proteins fail to successfully form a Z ring within the bacterium which
subsequently grow filamentous. A helical structure is seen as the proteins oscillate through the
bacterium. Scale bar is 2.0 µm.
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in the bacteria during this period allows investigation of how FtsZ moves through the

bacterium. Figure 7.3 shows structures formed by FtsZ immediately after cells are

placed on agarose. An apparent helical structure is seen spanning from one pole to

Figure 7.5: YFP-fluorescence (yellow) and brightfield (xy plane only) composite image of
formation of Z ring in filamentous E. coli MG1655. Clear evidence the FtsZ protein is now
forming rings is seen in the orthogonal slices through the bacterium. Despite growing to
rod-lengths far greater than unstarved bacteria these filamentous bacteria are still viable as
reproducing cells. Scale bar is 10.0 µm.

the other, particularly in the bottom image, which is a 2D projection of the three-

dimensional stack (top figure) and accompanying orthogonal slices.

Due to starvation conditions, over the prolonged imaging period (up to 2hrs) bacteria
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grow into filamentous states, Figure 7.4 (p. 104), with FtsZ helices. In these filamentous

cells, FtsZ is still capable of Z ring formation. Figure 7.5 (p. 105) shows the sudden

collapse of the type of structure shown in Figure 7.4 into multiple rings. This process

Figure 7.6: (A) Schematic detailing the 3D nature of the cytoskeleton (yellow) within an E.
coli. In the sample two focal planes (dotted lines) are specified. (1) Linear structures are
seen detailing part of the helical structure in apparent spirals when imaging at the ‘top’ of
the bacterium. (2) With a focal plane within the bacterial structure, points are seen on either
side wall of the bacterium which correspond to a half-period distance of the subsequent helical
structure. Period (P ) and half-period (P/2) measurements are shown in schematic 1 and 2
respectively. (B) YFP (yellow) image corresponding to focal plane (1). Green arrows indicate
the full period measurement made. Scale bar is 2.0 µm. (C) YFP (yellow) image corresponding
to focal plane (2). Red arrows indicate a half-period measurement. Scale bar is 2.0 µm.

was very rapid (<5min), below the time resolution of this experiment. What brings

about these two di↵erent states is unclear, but a disruption in the replication of the

nucleoid would lead to a spread of nucleoid material along the length of the bacterium,

inhibiting Z ring formation. This could be tested by the introduction of a fluorescent tag

to the nucleoid. Alternatively, disruption to the Min protein cycle may mean that FtsZ

cannot assemble at concentrations high enough to induce septation. This hypothesis

is similarly testable using a fluorescent tag. Likewise, a reduction in the production of

FtsZ could result in a similar phenomenon, where FtsZ is unable to assemble at high

enough concentrations to induce septation. With the exception of the final supposition,

which is unlikely when considering Figures 7.4 and 7.5 where the fluorescent intensity

remains constant beyond the doubling time, either of these factors may account for the

filamentous growth.
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7.3. FtsZ in the cytoskeleton

Figure 7.7: Histogram of cytoskeletal period of FtsZ protein. The broad peak of the distance
between fluorescent points (red) is closely correlated to the length of the bacteria (black)
suggesting that the helix expands as a function of the length of the bacterium. Measurements
were performed for 80 individual bacteria.

7.3.1 Determination of the helix angle

Using images such as Figure 7.3 (p. 103) it is possible to test the constant-helix-angle

theory of Andrews et al. [154] by measuring the distance between bright fluorescent

spots in the long axis of the bacterium. However, the use of confocal microscopy to

image these bacteria provided an unwelcome problem in the determination of the helical

structure of the cytoskeleton. Figure 7.6 shows the challenge of deducing quantitative

information on helically-organised FtsZ proteins inside a bacterium. What is seen in

a 2D slice critically depends on the position of the slice in the bacterium. A focal

plane near the top wall of the bacterium (1) means fluorescent spots are a full period

(P ) apart, whereas a focal plane in the centre of the bacterium (2) results in half

period spots. As distinction between the period and the half period is di�cult from

the images, measurements of the distance between all adjacent fluorescent spots were

made (Figure 7.6B-C), in order to determine the period of the cytoskeleton.

Figure 7.7 shows a wide distribution of distances between fluorescent points (red). This

broad peak is in close agreement with the distributions of the lengths of the bacteria

(black). A sharp peak distribution of the period of FtsZ only emerges if the period

of the helix is normalised by the length of the bacterium (Figure 7.8). Two peaks

are evident at 0.070⇥ and 0.145⇥ the length of the bacterium and correspond to the

half-period and period of the FtsZ helix respectively, suggesting the helix expands with

the bacterium. Thus, our observations contradict the assumptions made by Andrews

in his model.
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Figure 7.8: Histogram of cytoskeleton period and half-period distributions (left). Peaks are
seen at 0.070⇥ and 0.145⇥ the length of the bacterium, which we identify as the half-period
and full period of the cytoskeleton.Schematic of the expansion of the helical period (P

1

to P

2

)
as the bacterium grows (l

1

to l

2

). The change in the period is proportional to the length of the
bacterium, P1

l1
= P2

l2
. Measurements were made for 80 individual bacteria.

7.3.2 Rapid division of filamentous bacteria

Figure 7.9 (p. 109) shows a time-course of stacks taken at 5min intervals of a filamentous

bacterium that has formed Z ring structures along its length. The filamentous

bacterium divides rapidly into a chain of smaller bacteria with the time between division

at the first ring and subsequent rings being far shorter than the division time of bacteria

grown under typical growth conditions4 so that the bacterium is seen to progress

through approximately 3 generations in the time a single division would be expected.

In filamentous bacteria analysed in this study, the formation of more than one Z ring

is seen simultaneously (<5min) with these Z rings quickly developing into septation

points. Consequently, the cell divides far more quickly than the normal doubling time,

from one very long bacterium into a chain of E. coli of similar length to unstarved cells

on agarose. This transition from filamentous bacteria to a rapidly dividing chain is likely

to be caused by the change of nutrient availability to the bacterium. Since the bacteria

are starved in order to induce fluorescence, they will undergo stress. Starvation disrupts

the division site (namely FtsZ location) of a bacterium so that when the bacterium is

reintroduced to a nutrient rich environment it is unable to divide despite continuing

to grow. I speculate that as this occurs the internal structures of the bacterium (the

4For this strain grown on M9 agarose at room temperature (22 �C) the division time is of the order
of 60min.
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Figure 7.9: YFP-fluorescence (yellow) and brightfield composite image of a single filamentous
bacterium as it transitions through the division instigated by Z ring formation. The series runs
from left to right, top to bottom and each image is separated by 5min. The bacterium is seen
to divide (example divisions are indicated by a coloured arrow) into multiple smaller cells over
a period far less than a typical life-time of a bacterium grown under typical growth conditions
(approximately 60min). Scale bar is 10.0 µm.
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nucleoid in particular) continue to replicate as normal so that after a period of time

in a nutrient rich environment, defined by the time when FtsZ can organise into rings,

septation occurs rapidly. This leads to the rapid division of a filamentous bacterium

into a chain. This is one of the reasons why filamentous cells growing on chilled food

pose a serious health hazard when the food is warmed up.

Figure 7.10: Three-dimensional YFP-fluorescence (yellow) image of Z ring formation in second
(A) and third (B) generation bacteria on M9 agarose (2%). The YFP-fluorescence is overlaid in
the xy plane with a brightfield image generated by picking some of the transmitted laser beam
o↵ onto a photomultiplier tube (PMT) positioned for transmitted imaging. Image slices were
taken through the sample at 0.1 µm steps allowing clear determination of the protein structure
of the Z ring within the bacterium. Orthogonals are taken through the right hand of the bacteria
in second generation bottom right bacterium of third generation, both show the ring structure
of FtsZ. 3D reconstructions of these bacteria are available as Supplementary Movies A.13 (p.
137) and Supplementary Movie A.14, (p. 138). Scale bars are 2.0 µm.

7.4 FtsZ septation

7.4.1 Development of the FtsZ ring in time

Before septation, FtsZ is seen to collect in a ring approximately at midcell, but until

this study no clear optical sectioning of this structure has been successfully performed

for either single cells or cells in colony. Figure 7.10 shows the YFP-fluorescent protein

tagged to FtsZ in second (A) and third (B) generation bacteria on agarose. FtsZ is seen

to aggregate into rings in both bacteria, with the orthogonal image showing a bright

central ring structure formed in the right hand bacterium (A) and bottom right (B),

as seen in the xy plane projection. However, in the xy plane the central rings are seen

to not form singular rings, but rather appear to form a double ring or partial double
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7.4. FtsZ septation

Figure 7.11: Z ring formation and disruption in E. coli grown on 2% M9 agarose as a function
of time. Transmitted PMT (grey scale) images are overlaid with YFP signal (yellow) indicating
the location of concentrations of FtsZ protein. FtsZ rings are seen to form at approximately the
midcell of each bacterium (black arrow), then form a double ring structure (green arrow) where
one of the rings contracts as the septation process is initiated (red arrow). Upon initiation of the
septation process the ring disbands, forming at the midcell of the daughter bacteria (yellow).
Initially, this secondary ring is faint indicating the concentration of FtsZ proteins present is
small, but within 5min returns to a similar intensity to the original ring. Sequence of images
is left to right and top to bottom and scale bar is 2 µm. Supplementary Movie A.15, p. 138
provides a 2D rendering of this figure as a function of time.

rings. Viewing the 3D reconstructions of these images (Supplementary Movies A.13,

p. 137 and A.14, p. 138 in Appendix A), produced by loading confocal stacks of the

YFP-FtsZ into Vaa3D [178], these double ring structures develop from the Z ring after

the septation process has been instigated.

Using confocal microscopy we are able to image a single bacterial colony over several

generations (imaging of a single bacterium has been performed for up to approximately

3 hrs without loss of fluorescence). This makes it possible to visualise FtsZ as it forms

and disbands Z rings as the bacterium develops from a single isolated cell surrounded
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Figure 7.12: Three-dimensional YFP-fluorescence image of Z ring formation in an E. coli
bacterial colony. The YFP-fluorescence (yellow) image is overlaid in the x-y plane with a
brightfield image of the bacterial colony obtained from transmitted incident laser light used
to excite the fluorescent protein. Image slices were taken through the sample at 0.1 µm steps
allowing clear determination of the ring structure. Orthogonal images show FtsZ continues to
form a ring structure in the bacteria. Scale bar is 2.0 µm.

by agarose into a colony. Figure 7.11 (p. 111) shows the transmitted PMT signal (grey

scale) overlaid with the YFP signal (yellow) of a bacterial colony as the cells grow and

divide. FtsZ rings (bright yellow) are seen to form at approximately the midcell of

the bacterium (black arrow), then form a double ring structure (green) before one of

the rings contracts as the septation process is initiated (red). Upon initiation of the

septation process the ring begins to disband, forming at the midcell of the daughter

bacteria (yellow). Initially, this secondary ring is faint indicating the concentration

of FtsZ proteins present is small, but within 5min returns to a similar intensity to

the original ring. Imaging over 3 hrs results in a loss of fluorescence (Figure 7.12) due

to photodamage caused by the intensity of the incident laser beam on such a small

volume of sample, however, part of this reduction in intensity may be explained by
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Figure 7.13: Schematic of measurements made for Z ring location. For each bacterium the
linear distance between each pole and the YFP expressing Z ring (yellow) were made using
ImageJ [106] (l

1

and l

2

respectively). The di↵erence between these two measurements was then
taken and normalised by half the length of the bacterium, L as outlined in Eq. 7.1 (p. 113).
This allowed precise measurement of the deviation from the midpoint of the bacterium (black
dotted line).

physical factors, for example a depletion of the number of proteins, a concept discussed

in greater detail later in this chapter.

7.4.2 Distribution of Z ring position widens with generation

To obtain information on the position of the Z ring (P
z

) relative to the centre of the

bacterium, measurements of the distance between each pole and the YFP expressing

Z ring were made (Figure 7.13, l

1

and l

2

) by manually drawing lines between the

identified points in ImageJ. Manual measurements were made due to the need to

measure points across the two parts of the composite image (transmitted and YFP), and

due to the large variation in intensity associated with the YFP fluorophores, resulting

in di�culty in thresholding the image. The magnitude of the di↵erence between the

two distances was taken and normalised by twice the total length of the bacterium (L),

P

z

=
| l

1

� l

2

|

2L
(7.1)

where l

1

and l

2

are the distances between each pole and the FtsZ ring respectively

(Figure 7.13).

Separation of the bacteria into approximate generations from the seed bacterium

(generation 1) is made based upon the number of bacteria present in the colony at each

time point. This approximation is possible for relatively new colonies of bacteria as

the doubling time remains synchronised beyond the first five generations [50], however,
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Figure 7.14: Normalised distribution of Z ring location relative to the midcell of the bacterium
for di↵erent generations of bacteria on M9, 2% agarose pads. The position of the Z ring (P

z

)
is calculated using Equation 7.1 (p. 113). The distribution is seen to increase as the generation
increases from the seed bacterium (blue crosses) to fifth generation (pink *).

for a more thorough separation into bacterial generations, or if imaging was performed

over more generations, single bacterial tracking to determine the generation of each

individual in the population would be necessary.

The resulting distributions of Z ring position, Figure 7.14, resemble one-sided Gaussian

distributions and consequently, for each generation a half Gaussian distribution is

fitted to the data (solid lines). Since the di↵erence in Z ring distribution is small,

for clarification, Figure 7.14 is replotted with data excluded as Figure 7.15. It

is clear the distribution of the Z ring location increases as the generation increases

from the seed bacterium (blue) to generation 5 (pink) and from the fits performed for

each generation it is possible to obtain a value, �, for the distribution width from the

Gaussian distribution, P (x),

P (x) = e

�x

2

2�2 (7.2)

where x is the distance of the Z ring from the midcell of the bacterium and � is the

deviation from the midpoint.

Plotting log
10

P (x) against x2 (Figure 7.16) allows a determination of the distribution

width, � (Table 7.1), using

� =

r
1

2m
(7.3)
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Figure 7.15: Gaussian fits for FtsZ location relative to midcell for bacteria of di↵erent
generations. P

z

is calculated from Equation 7.1 (p. 113). Generation 1 (blue) is the seed
bacterium used to start the colony growth on the agarose pad. A clear trend is evident in the
broadening of the distribution from generation 1 to generation 5 (pink).

Figure 7.16: Fitting of log
10

P (x) in order to obtain the Gaussian width of distribution of
Z ring of each generation of bacteria. The calculated widths (�) are summarised in Table 7.1
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Figure 7.17: Distribution width (�) as a function of bacterial generation. � increases linearly
with generation. A weighted value (red circle) is provided for generation 1 and 2 due to the
close proximity of these distributions to the resolution of the confocal microscope.

where m is the gradient of the straight line obtained from linearising Eq. 7.2.

The width of the distribution increases with the generation from 0.50 ± 0.04 for

generation 1 to 0.50 ± 0.09 for generation 5 (Figure 7.17). The decrease in the

distribution width from generation 1 to 2 is not attributed to the reduced number

of measurements used (146) since generation 3 has a similar sized population but gives

a distribution width 1.5⇥ greater. Rather, the distribution widths of generations 1 and

Bacterial Generation Sigma Error on sigma Number of measurements
1 0.037 0.005 146
2 0.031 0.002 349
3 0.063 0.003 170
4 0.079 0.004 596
5 0.091 0.003 1174

Table 7.1: Calculations of � for Z ring distributions in di↵erent generations of bacteria grown
on M9 2% agarose. Values for � are obtained through fitting a Gaussian distribution to the
data set for each generation of bacteria and linearising using Eq. 7.3 (p. 114). The reduced
number of measurements obtained for generation 1 is not believed to account for the decrease
in distribution width seen between generation 1 and 2, but rather is an artefact of the proximity
of the di↵raction limit of confocal microscopy. The reduced number of measurements for
generation 3 is attributed to loss of fluorescence in this time region.

2 are at the di↵raction limit of confocal microscope; a bacterium of length 3 µm with

� = 0.037 means the ring is located ±120 nm from the midcell, (r
confocal

=139 nm (Eq.

2.3, p. 10)).
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Figure 7.17 shows a linear increase in the distribution width at a rate of 0.018± 0.008

per bacterial generation. The data for generation 1 and 2 are combined (red circle) since

both measurements are at the di↵raction limit of the confocal microscope. There are

three possible explanations for the widening in distribution of the Z ring location within

colonies; a reduction in the temperature during the experiment; the introduction of

external stresses on the bacterium created by the surrounding bacteria; or the relaxation

of negative regulators of Z ring formation. The next section of this Chapter examines

these possible explanations.

7.4.3 Explanations for widening distribution

(A) Temperature variation during experiment

Experiments probing the e↵ect of temperature on the location of the Z ring are

conflicting, Yu et al. measured � at 37 �C and 28 �C finding no di↵erence in the

distribution of the Z ring in their bacteria [159]. Gupta et al. found � increased

when the temperature was reduced from 37 �C to 24 �C [163] indicating a variation

in the temperature during the experiment could cause � to widen.5 While a relaxation

of temperature on the time-scale of the experiment (approximately 5 hrs) is unlikely,

cultures may retain heat from the growth phase during the initial measurements (i.e.

the first generations) before cooling as the generation increases. Agarose may retain

heat and slowly release this to the sample, or the E. coli may only react to the

temperature variation on a similar time-scale to the experiment. Incubating samples

at 37 �C between measurements allows this to be tested.

37 �C sample preparation

Five identical samples of E. coli YD133 were prepared (§3.2.3, p. 26) and placed in a

static incubator at 37 �C until required for measurement, when they were removed,

imaged and replaced in the incubator. For each measurement, samples were only

exposed to 22 �C for the period of the experiment (approximately 10min) before being

replaced in the incubator.

37 �C measurements

Due to the small scale of this experiment, the number of bacteria in each generation

was too small to compare generation directly (generation 1 contained only 39 bacteria)

and, consequently, generations were collated into two distinct groups, early generation

5Cultures are grown at 37 �C, while experiments are conducted at 22 �C.

117



Chapter 7. FtsZ and its role in the division of a bacterium

and colony bacteria, in order to perform statistical analysis on the population.

Early generation bacteria are generations 1 and 2 (seed and immediate daughters).

Combining these two generations is possible since the bacteria are not confined by

bacteria surrounding them. Additionally for experiments conducted at 22 �C both

distributions measured are at the resolution limit of the confocal microscope. In

contrast, colony bacteria are defined as bacteria which are in the third generation or

above (i.e. have undergone two or more divisions from the seed bacterium) and while

these bacteria exhibit varying Gaussian distributions in Figure 7.15 (p. 115), if we are

only interested in verifying that an increase in � is not an artefact of temperature

variation, we need only determine whether a similar phenomenon is observed at 37 �C

as at room temperature. Additionally, it can be presumed that the relative weighting

of the three distributions (generation 3, 4 and 5) will be similar for both temperatures.6

Figure 7.18: Distribution of Z ring location relative to the centre of the bacterium in both early
generation (blue crosses) and colony (red circles) at 37 �C. Although binning is more noisy, a
similar di↵erence in distribution is observed between early generation and colony growth, with
the early generation distribution being more tightly centred on the mid-cell of the bacterium.

Figure 7.18 shows that P
z

for bacteria in early generation (blue crosses) is far narrower

than bacteria in colony (red circles). To provide direct comparison Figure 7.19 shows a

6The assumption is valid since for each colony imaged the number of bacteria in generation 3 will
be 8, for generation 4, 16 and for generation 5, 32. These ratios will remain constant to each other so
long as all colonies being imaged are imaged over all three generations. While it should be noted that
the statistical drop in generation 3 experienced in the room temperature measurements (Table 7.1, p.
116) will not be evident in these experiments as a result of the decreased imaging time at each location
on the agarose, the skew of the statistics to generation 4 and 5 is small.
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37oC Room
Early Generation 0.50± 0.05 0.50± 0.06

Colony 0.50± 0.08 0.50± 0.09

Table 7.2: Z ring distribution from the mid-cell of the bacterium as calculated for di↵erent
growth temperatures. All units are normalised to the unit length of a bacterium.

similar distribution is observed when considering early generation and colony bacteria

at 22 �C. Calculating � (Equation 7.3, p. 114) for early generation and colony bacteria

Figure 7.19: Fitting of Gaussian distribution to early generation (blue crosses) and colony
(red circles) bacteria distributions. For both early generation and colony bacteria the gaussian
fit is very good. The inset shows the region over which the fit is performed.

produces 0.50± 0.05 and 0.50± 0.08 (Table 7.2) respectively. Similarly, for 22 �C � is

found to be 0.50 ± 0.06 and 0.50 ± 0.09 for early generation and colony respectively.

Comparing results for 37 �C with 22 �C (Figure 7.20, p. 120) there is little di↵erence

between � for both early generation (A) and colony (B) between the two temperatures,

confirming that the increase in � is not an artefact of temperature variation during the

experiment.

(B) External stress from surrounding bacteria

The increasing width of � may be the result of surrounding bacteria in a dense colony

exerting mechanical stress on each other. External stresses, causing deformations of

the cell wall, could result in a disruption of the Min oscillation. This can be tested

using time-lapse fluorescence microscopy of MinD to determine the location of MinD

as a function of time in isolated and colony bacteria [179]. Additionally, bending of
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Figure 7.20: Z ring distribution as a function of temperature for bacteria in (A) early
generation and (B) colony growth. Comparison between 37 �C (blue crosses) and room
temperature (red circles)(approximately 22 �C) show there is no discernible di↵erence between
the Z ring distribution as the temperature is varied. This confirms that the temperature is not
the cause of the di↵erence in distribution between early generation and colony growth.

bacteria in the colony may result in asymmetrical distribution of the nucleoid, which

leads to an increase in the distribution of the Z ring. A relatively simple test of this

would be an expansion of the experiment conducted by Fisher et al. [157], where they

fluorescently tagged the nucleoid of an isolated bacterium, to bacteria in a colony.

(C) Relaxation of negative regulators of Z ring formation

Alternatively, the increase in � as the generation increases could be attributed to a

depletion of Min proteins in the bacterium caused by an increased metabolic cost in

growth as spatial confinement increases. It is possible to estimate the number of MinD

proteins required to cause these measured values of � for the Z ring from Howard’s

model by assuming a one-to-one correlation between the measured values of � and

those predicted by Howard (Figure 7.21).

As expected the number of Min proteins decreases as the generation increases but
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Figure 7.21: Estimated number of Min proteins present in bacteria as the generation increases
from seed bacterium (generation 1) to full colonies (generation 5). A clear reduction in the
number of proteins present as the generation increases would explain the increase in �. Fitting
N = N

0

⇥ a

�(x�1) (solid line) provides coe�cients, N

0

= 1700 ± 400 and a = 1.7 ± 0.7
respectively. N

0

corresponds to the number of Min proteins present in an isolated bacterium,
while a defines the rate Min proteins are lost in each division. Dashed lines indicate 95%
confidence in fit.

the trend is not linear, as it is for � (Figure 7.17). If we assume the number of proteins

halves at each division the number of Min present as a function of generation (x) is

defined as

N = N

0

⇥ a

�(x�1) (7.4)

where N

0

is the number of proteins present at generation 1 and a is the rate at which

Min proteins are lost and should vary between 0 and 2. If no proteins are produced

while in colony a = 2.

Fitting the data to Eq. 7.4 (Figure 7.17 solid line) produces N

0

= 1700 ± 400 and

a = 1.7 ± 0.7. N

0

is smaller than literature values (between 2000 and 3000) but the

95% confidence in fit (dashed lines) fall within the lower limit of literature. Noticeably

a is not equal to 2, implying there is some production of Min while in colony but very

little.

While it is clear that there is a similar trend between the increasing � width and

the reduction in Min proteins, these two parameters do not have a direct one-to-

one correlation. Howard notes this and states additional factors are important in

determining �, particularly the nucleoid, which has already been shown to influence

the location of the Z ring [159, 163]. As such we are only able to suggest that there is
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a reduction in Min protein concentration as generation increases.

7.4.4 Consequences of depletion of Min proteins

However, if the increase in � with generation is at least partly caused by a reduction in

the number of proteins it is di�cult to see how this could be beneficial to the bacterium

as there will be an increase in the production of anucleated cells in the colony. But, since

the bacterium must displace the agarose media in order to grow, there is an external

stress exerted on the bacterium. Thus it is conceivable that there is a metabolic cost

to the bacterium causing a reduction in the growth rate, but also reducing its ability to

replenish internal proteins since additional energy must be diverted to growth. Since

Min proteins are not crucial to the division process of the bacterium they may be some

of the first to be limited.7 A simple way to test this hypothesis would be to label another

protein in the bacterium and measure the intensity of the expression through the growth

cycle, quantifying the number of proteins present. This is non-trivial experimentally as

other factors will play a part, such as fluorescent bleaching and counting of such small

proteins below di↵raction limit but several other studies have successfully measured the

number of proteins present in a bacterium using immunofluorescence [169–175,180,181].

7.5 Future work

From this study several properties of FtsZ have been identified that will require further

research.

7.5.1 How does FtsZ travel through the bacterium?

By maximising the resolution of a confocal microscope in all three spatial dimensions

while maintaining acquisition times short enough to provide time-course information

on the structures in a bacterium, the methods outlined above are capable of resolving

the true structure of FtsZ when not in a ring. It will therefore be possible to test

rigorously how FtsZ travels through the bacterium as well as acquiring time-averaged

images to visualise the entire structure of FtsZ outside of the Z ring.

7.5.2 Reduction of FtsZ to ring

Studying the 3D images of FtsZ several events in the life-cycle of the bacterium

have been identified including initial investigations into the transfer from travelling

7While the FtsZ protein is required for division of bacteria, Migocki et al. have shown that in
the absence of Min proteins in Bascillus subtilis the bacterium will still divide to produce two viable
daughter cells [164].
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structures to Z ring formation. It is already clear qualitatively that the ring is formed

by a condensing of a double ring, rather than forming independently, and that the

disruption of the Z ring is not instantaneous. However, in order to quantify the nature

of these processes and provide information suitable for rigorous model testing, such as

the model proposed by Andrews [154], a more comprehensive study must be undertaken.

7.5.3 Use of additional fluorescence to provide increased accuracy

To provide an additional check of the broadening of P
z

with generation increase, the

addition of a fluorescent protein that binds to the bacterial membrane of E. coli should

be undertaken. The increased localisation of the signal provided by a fluorescent tag

such as Wheat Germ Agglutinin8 when compared to the transmitted incident laser

beam will allow more precise positioning of the edge of the bacterium. Consequently

it should be far easier to resolve any di↵erences in P

z

as a function of generation.

7.5.4 Extension of the technique to other proteins

Throughout this chapter experiments have been focussed upon FtsZ in E. coli, through

which I have shown it is possible to achieve sub-cellular resolution of bacterial cells when

isolated and in colony on agarose. However, the technique is not limited to a single

protein and in principle any protein to which a fluorescent tag can be attached and

that aggregates in the bacterium can be visualised in this way. Of particular interest

to this study is investigation of the Min oscillating proteins as a function of generation

in order to determine whether variation of the oscillation pattern of these proteins is

the cause of the broadening of P
z

.

7.6 Discussion and conclusions

In this chapter I have shown confocal microscopy can achieve sub-cellular resolution of

bacterial cells in three spatial dimensions at acquisition rates well below the doubling

time. I have successfully imaged and reconstructed the 3D superstructure of FtsZ

throughout a bacterial lifecycle and have applied these methods to image protein

structures in both single-cell and colony regimes of the bacterium. I have shown the

period of the helix is a function of the length of the bacterium, in contrast to Andrews’

model [154] and the period has been measured as 0.145⇥ the length of the bacterium.

Furthermore, the distribution of the Z ring from midcell (P
z

) has been measured

8Commercially available from LifeTechnologies www.lifetechnologies.com/order/catalog/

product/W11262
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as a function of generation, with the distribution width (�) increasing linearly with

generation from ±0.04 (generation 1) to ±0.09 (generation 5). This increase in � is

not an artefact of temperature, but rather it is most probably caused by a combination

of two factors: external stresses exerted on the bacterium by surrounding bacteria

leading to an increased metabolic cost of growth and a relaxation of negative regulators

governing the location of the Z ring at midcell, through depletion of Min proteins. Using

a one-to-one model linking � directly to the number of Min proteins, the reduction in

Min after each division is found to be 1.7 ± 0.7⇥ per generation indicating there is

some production of Min during growth on agarose but an additional metabolic cost to

bacteria in colony stops full replenishment. The initial number of Min present in the

bacterium at generation 1 (1700±400) is slightly lower than literature values measured

by immunofluorescence [172,175] but is within 95% confidence levels.
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Concluding Remarks

In this thesis I have shown laser scanning confocal microscopy is capable of single-

cell resolution of densely packed micron-sized particles. In Chapter 4 I outlined

improvements made to sample preparation and image acquisition which make this

possible. By combining deconvolution processes with high resolution images of bacteria

growing on a viscoelastic (agarose) surface or submerged in the viscoelastic bulk, I

have shown the technique is a suitable imaging platform for obtaining high-precision

single-cell resolution of bacteria when in isolated and colony growth. Additionally,

through the use of reconstruction software [111], spatial and geometrical parameters

of all individuals in the colony can be extracted, thus making significant steps towards

the production of full cell lineages of bacterial colonies.

In Chapter 5 I have shown that bacteria growing at the air/agarose interface (i.e.

not sealed by a coverslip) are submerged in the agarose. By equating the force

exerted on a cylindrical body with that caused by surface tension, a value of E ⇡

300 kPa is calculated, in close agreement with literature (Appendix D, p. 143).

Additionally, precise measurement of the length of isolated bacteria on agarose shows

the concentration of agarose surrounding the bacterium a↵ects the rate of growth,

with peak growth at weight concentrations of 3% agarose of 0.00770 ± 0.00003 unit

length per minute. At agarose concentrations of 5% the growth rate of bacteria falls to

0.00010± 0.00005 unit length per minute, suggesting the force exerted by the agarose

on the bacterium is approaching that necessary for insertion of peptidoglycan into

the cell wall. Investigating the elastic properties of M9 agarose using atomic force

microscopy (AFM), the Young’s modulus of 5% (weight) agarose has been measured

as 5.7±1.2MPa using a pyramid tip. This is high compared to literature (Appendix D,

p. 143), however, AFM measurements are highly dependent upon the geometry of

the probe, and therefore measurements with a probe of similar geometry to the
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hemispherical cap of the bacterium (i.e. a spherical bead of diameter 800 nm) would

provide a more relevant comparison.

In Chapter 6 I have shown the mean angle of the bacteria relative to the initial growth

plane (h✓i) increases linearly with the generation of bacteria up to the buckling point.

This indicates the buckling point, where the colony develops additional layers of growth,

is not an isolated event, but is part of a continuous increase in pressure in the colony.

The maximum angle of bacteria relative to the initial growth plane (✓
max

) also increases

sharply at each division point, indicating one or both of the bacteria are not aligned with

the initial growth plane. After division ✓

max

initially decreases sharply as a function

of time, suggesting the bacterium returns to parallel alignment with the initial growth

phase, before increasing slowly towards the next division. ✓

max

also trends towards

0.5⇡, where the buckling point occurs.

The number of bacteria present at the buckling point varies nonlinearly with the

concentration of agarose, with a peak at 3%. This is in agreement with previous studies

by Grant et al. [48] and Lloyd [91] who found peaks at 2.5% and 3% respectively. This

peak in number of bacteria also correlates with the peak in growth rate of an individual

bacteria, (Chapter 5) suggesting the rate of growth of a bacterium is a dominant factor

in the invasion of the bacterial colony into the agarose.

Finally, by imaging the septation point of E. coli, in Chapter 7 I have shown

confocal microscopy can achieve sub-cellular resolution of bacterial cells in three spatial

dimensions well below the doubling time. I have successfully imaged and reconstructed

the 3D superstructure of FtsZ throughout a bacterial lifecycle and have applied these

methods to image FtsZ structures in both single-cell and colony growth regimes. I

have shown the FtsZ helix is a function of the length of the bacterium, in contrast to

Andrews’ model [154], and measured the period of the helix as 0.145⇥ the length of

the bacterium.

At the point of septation, FtsZ forms a ring at approximately the midcell of the

bacterium, and instigates septation by reducing in diameter before dispersing into the

new daughter bacteria. The distribution of the Z ring from the midcell (P
z

) has been

measured as a function of generation, with the distribution width (�) increasing linearly

with generation from ±0.04 (generation 1) to ±0.09 (generation 5). Increasing � is not

an artefact of temperature but is likely caused by an increase in external stress on the

bacterium with generation, resulting in increased energy cost for growth and a depletion

in the number of non-critical proteins produced during the lifecycle. Using a one-to-one
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model linking � directly to the number of Min proteins, the reduction in Min proteins

after each division is found to be 1.7 ± 0.7⇥ per generation indicating there is some

production of Min in each generation but not enough for complete replenishment. The

initial number present in the bacterium at generation 1 (1700 ± 400) is slightly lower

than literature values measured by immunofluorescence [172,175] but falls within 95%

confidence.

By showing that confocal microscopy is capable of resolving all individual bacteria in a

3D colony as a function of time, significant inroads have been made towards the goal of

producing a four-dimensional sectioned micrograph of a bacterial microcolony. These

advances open up many new avenues for investigation, notably providing information on

the advantages experienced by bacteria when in a biofilm or colony compared to isolated

growth. Additionally, by visualising protein structures contained in a bacterium, I have

shown confocal microscopy can be used to obtain quantitative information from any

structure which localises in a bacterium as a function of time. Consequently, as well

as extending the investigations into FtsZ superstructures in a bacterium, the possible

applications of confocal microscopy to the imaging of protein superstructures in the

bacterium (and the e↵ect colony growth has on them) is limited only by the number of

protein types present in the bacterium.
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Appendix A

Supplementary Movies

This appendix is a compendium of movie files to supplement the main body of this

thesis. Given the nature of the projects undertaken as part of this thesis, there is only

a finite amount of information that can be condensed from three or four dimensions

into 2D representation. As such, included below are movie files that will aid the

comprehension of the thesis, showing results of imaging and reconstruction in 3D and

in four.

The viewing of these files is possible directly from this document by clicking on

each of the images if using a version of Adobe Reader version 6 or later (available

here http://get.adobe.com/reader/). However, some pdf viewers (Apple Preview

for instance) do not support integrated video and consequently viewing of these files

directly via this document is not possible. A soft-copy of movie files can be obtained

by direct correspondence with the author of this thesis.1

1a.f.mcvey@ed.ac.uk
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Appendix A. Supplementary Movies

Figure A.1: Supplementary Movie for Figure 4.7 (p. 44). Bacterial colony grown on 2%
M9 agarose, deconvolved using measured point spread function (Figure 4.6, p. 43). Individual
bacteria are clearly distinguishable in the xy projection, as in the case of the raw confocal
stacks. The distinction between bacteria in the axial direction is greatly enhanced. Despite
some bacteria appearing to be merged together due to the deconvolution, the points of local
maxima (used to locate the backbone for the bacterium) are far more clearly separated than in
the case of the raw confocal stack. Scale bar is 5.0 µm.

Figure A.2: Supplementary Movie for Figure 4.8 (p. 46). Reconstruction output of a
bacterial colony grown on 2% M9 agarose which has been deconvolved using the measured
PSF (Figure 4.6, p. 43). The code successfully identifies two layers of bacteria fitting backbones
(yellow) to the local maxima within each bacteria (green) before fitting a spherocylinder outline
(purple) to each. Despite the apparent merging of bacteria (seen in Figure 4.7) the code
successfully distinguishes all bacteria in recognisable form. Scale bar is 5.0 µm.
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Figure A.3: Supplementary Movie for Figure 4.9 (p. 48). Time-lapse confocal microscopy
image of a bacterial colony grown on 3% M9 agarose. Stacks are recorded every 5min showing
2D growth of the colony. Study of the images reveals some bacteria exhibit deviation from the
normal spherocylinder geometry. Scale bar is 5.0 µm.

Figure A.4: Supplementary Movie for Figure 4.11 (p. 50). Code developed by Dario Miroli,
fitting directly to the outline of the bacterium rather than fitting a spherocylinder. The code
successfully identifies the deviation from a straight line. Red lines show the historical position
of individual bacteria within the colony. Scale bar is 5.0 µm.
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Figure A.5: Supplementary Movie for Figure 4.12 (p. 52). A single E. coli MG1655 bacterial
colony grown fully submerged within 2% M9 agarose gel. Individual bacteria are distinguishable
throughout the colony, even when imaging through multiple layers of bacteria, which are highly
divergent media. Colonies such as these have been successfully reconstructed using code [111]
(Supp. Movie A.7), as with the surface bacterial colonies showing the possibility of the extension
of the method to investigating fully 3D systems. Scale bar is 5.0 µm.
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Figure A.6: Supplementary Movie for Figure 4.13 (p. 53). E. coli MG1655 bacterial colonies
grown fully submerged in 2% M9 agarose gel. Individual bacteria present on the surface of the
agarose are seen to grow in chains, whilst those submerged in the agarose have formed spherical
colonies. Individual bacteria are distinguishable within each colony. Scale bar is 10.0 µm.
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Figure A.7: Supplementary Movie for Figure 4.14 (p. 55). Reconstruction of fully submerged
bacterial colony buried in 2% (weight) M9 agarose. The reconstruction is formed using software
developed by Michiel Hermes to visualise the output from his reconstruction code [111] used
within this thesis. Bacteria are clearly distinguishable on a single bacterial resolution. The
bacteria form a spherical colony and are seen to be submerged below the surface of the agarose
(identifiable by the linear bacteria structure visible in the frames). No clear bias can be seen
for the growth of the bacterial colony in any direction in this case.

Figure A.8: Supplementary Movie for Figure 5.9 (p. 67). The growth of a single bacterium
on M9 agarose at a weight concentration of 3%. Stacks through the sample are acquired every
2min. The bacterium is seen to approximately double in size from initial conditions until the
point where the division occurs. Scale bar is 2.0 µm.
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Figure A.9: Supplementary Movie for Figure 6.4 (p. 81). Bacterial colony growth from seed
bacterium to first division (generation 2) on 2% M9 agarose gel. Stacks of images are recorded
every 5min. The bacterium grows in the long axis in a 2D plane along the surface of the agarose
before dividing to produce two daughter bacteria. Scale is 2.0 µm

Figure A.10: Supplementary Movie for Figure 6.11 (p. 88). Bacterial growth of E. coli MG1655
with pcH60 GFP plasmid growing on 2% (weight) M9 agarose surface. Images are taken every
2min. The colony is seen to grow in a 2D plane along the surface of the agarose. After the
initial division, the two bacteria are seen to push past each other searching for space to grow
into from the newly formed poles in the centre. Similarly, as the third generation forms, the
bacteria push past each other to form a two-by-two matrix as observed by Su et al. [46]. Scale
bar is 2.0 µm.
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Figure A.11: Supplementary Movie for Figure 6.15 (p. 92). Raw confocal stack of an E. coli
MG1655 with pcH60 GFP bacterial colony grown on 3% (weight) M9 agarose after additional
layer generation. Images are taken through the colony at 0.1 µm slices in the axial direction.
Scale bar is 5.0 µm.
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Figure A.12: Supplementary Movie for Figure 6.15 (p. 92). 3D reconstruction of E. coli
MG1655 with pcH60 GFP plasmid bacterial colony grown on 3% M9 agarose surface at single
cell resolution after 24 hr. Additional to the initial growth layer, two distinct layers of bacteria
are seen submerged in the agarose, with all bacteria in the colony distinguishable. The darker
bacteria visible in the top left initially are the result of loss of fluorescence experienced over
24 hr imaging of the colony.

Figure A.13: 3D rendering of FtsZ rings in E. coli grown on M9 with 2% agarose
concentrations. The transmitted PMT image of the bacteria on the agarose surface is overlaid
on the YFP-fluorescence in the xy plane. The 3D stack of images showing the YFP-fluorescence
clearly shows two ring structures forming at the approximate midcell of both bacteria, with one
exhibiting a double ring and the other a part helix structure. 3D movies are produced by
loading confocal stacks of the YFP-FtsZ into Vaa3D [178]. Scale bar is 2.0 µm.
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Figure A.14: 3D rendering of FtsZ rings in a microcolony of E. coli grown on M9 with 2%
agarose concentrations. Transmitted PMT images of the bacteria (grey scale) are overlaid with
the YFP expression (yellow) showing clear ring structures forming at the midcell of the bacteria.
3D movies are produced by loading confocal stacks of the YFP-FtsZ into Vaa3D [178].

Figure A.15: FtsZ ring formation and disruption in E. coli grown on 2% (weight) M9 agarose.
Transmitted PMT (grey scale) images are overlaid with YFP (yellow) showing the position of
concentrations of FtsZ proteins within the bacteria. The ring is seen to form and instigate
septation in the bacterium before disbanding to create an apparent double ring or small helix,
before transferring to another site within both the daughter bacteria at approximately the
midcell. Stacks of images were recorded every 5min providing suitable time resolution to
resolve the process of disruption of the Z ring in the bacterium. Scale bar is 2.0 µm.
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M9 growth media protocol

M9 media is used in these experiments due to the low autofluorescence generated by

the constituents of the media. The media is nutrient rich and ensures the samples are

not limited by external food sources whilst experiments are undertaken.

Below is the protocol followed for preparation of both liquid and agarose M9 media

M9 liquid media protocol

Preparation of M9 media must be conducted in sterile conditions.

To make 100ml of M9 media

• Pour 71.79ml of de-ionised & distilled (d.d.) water into a sterile 250ml bottle

• Add 25ml of 4⇥ M9 Salts

• Autoclave sample at temperature greater than 100 �C for 15min1

• Place in warm water bath at 50 �C for 15min

• Add 200 µl of 1M MgSO
4

• Add 2ml of 20% glucose

• Add 10ml of 1M CaCl
2

(A precipitate may form but shake the bottle for this to

be dissolved in solution)

• Allow to cool and store at room temperature
1The entire autoclaving process takes longer than 15min. 15min refers to the time the samples must

spend at a temperature of 100 �C or greater. Remember to loosen lids of bottles to ensure pressure
equilibrium.
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M9 agarose media protocol

Preparation of M9 media must be conducted in sterile conditions.

To make 100ml of M9 media

• Pour 71.79ml of de-ionised & distilled (d.d.) water into a sterile 250ml bottle

• Add 25ml of 4⇥ M9 Salts

• Add agarose at the required weight percent concentration (for 2% agarose 2 g of

agarose is required)

• Autoclave sample at temperature greater than 100 �C for 15min

• Place in warm water bath at 50 �C for 15min

• Add 200 µl of 1M MgSO
4

• Add 2ml of 20% glucose

• Add 10 µl of 1M CaCl
2

(A precipitate may form but shake the bottle for this to

be dissolved in solution

• Decant the agarose in 2ml parts into falcon tubes for use in the experiments

The agarose must then be heated again to just above the melting point before being

placed onto the microscope slide.
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M9 media preparation for AFM

experiments

The protocol for preparation of agarose samples for atomic force microscopy (AFM)

experiments is outlined below.

Equipment

• M9 media made to correct agarose concentrations

• Waterbath

• 1000 µl Pipette

• 1000 µl Pipette Tips

• AFM Petri dishes

• Hotplate

• Tinfoil

Protocol

Preparation of agarose should be conducted as for all other experiments of colony

growth (Appendix B). After introduction of the glucose, CaCl
2

and MgSO
4

the agarose

media (bulk store) should be placed again into the water bath set to a temperature of

80 �C.

The hot plate should be switched on and heated to a temperature of 90 �C. A piece of
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Figure C.1: Schematic showing position of agarose (green) on the petri dish for AFM
measurements in xy (left) and xz (right) profile. The agarose should be positioned o↵ centre
on the petri dish in order to allow easy transfer between the agarose surface and the plastic
(used as a rigid calibration surface).

tinfoil should be placed onto the hot plate and onto this place the AFM petri dish for

the sample.

500 µl of M9 agarose at desired concentration should be removed from the bulk store

and pipetted into the petri dish. The agarose should then be spread around the petri

dish in order to produce a very thin layer of agarose in the centre of the petri dish. NB

the agarose layer should not cover the entire petri dish as a solid surface

is needed next to the sample in order to provide a calibration of the AFM

tip used. Best practice is to place the agarose o↵ centre in the petri dish

so that easy transfer between the agarose and the plastic surface can be

achieved (Figure C.1).

The petri dish should be removed from the hot plate and allowed to cool on the desk.

Once solidified, the pad must be covered with d.d.H
2

O in order to reduce the e↵ect of

surface tension between the AFM tip and the sample. It will also limit the e↵ect of

drying of the sample to the measurements. The sample is then ready for measurements

using AFM.
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Young’s modulus measurements

of agarose

Measurements of the Young’s modulus of agarose vary dramatically depending on the

method used for measurement and on the geometry of the mechanism used to measure

the sample. In this appendix I outline literature measurements of the Young’s modulus

for agarose gels.

D.1 Young’s modulus

Table D.1 outlines methods used to measure the Young’s modulus of agarose gels at

di↵erent concentrations.

Sample Conc
n

(%) Method Stress (kPa) Study

Agarose 1%

Microindentation (diameter

2mm)

13± 2 [182]

OCT-ball indentation (diame-

ter 1mm)

12± 1 [182]

Indentation (diameter 2mm) 13± 1 [183]

Indentation (diameter 4mm) 17± 0.25 [183]

Indentation (diameter 80 µm) 100± 10 [184]

Agarose 2%

Compression (0 days) 16± 1

[185]Compression (14 days) 8± 1

Compression (28 days) 14± 3

Microindentation (diameter

3mm)

48± 4 [182]
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Indentation (cylindrical

punch)

35� 54 [186]

Indentation (diameter 80 µm) 350± 50 [184]

Agarose 3% Indentation (cylindrical

punch)

52 [187]

Agarose 5%

Indentation (diameter 80 µm) 700± 100 [184]

Nanoindentation (tip 10 µm) 550± 75

[188]
Nanoindentation (tip 50 µm) 1050± 50

Nanoindentation (tip 100 µm) 825± 50

Nanoindentation (tip 800 µm) 875± 100

Table D.1: Young’s modulus measurements of agarose gels at concentrations from 1% to 5%

using di↵erent techniques. The measurements are very wide-ranging & dependent upon the

method used and the geometry of the probe.

The measurements of the Young’s modulus are very dependent upon the method

used as well as the geometry of the probe.

D.2 AFM measurements of Young’s modulus

Atomic force microscopy (AFM) measurements are similarly dependent upon the

geometry of the probe used to investigate the surface. Table D.2 summarises

measurements in literature of the Young’s modulus when using di↵erent probe

geometries and sizes.

Sample Conc
n

(%) Tip Size Stress (kPa) Study

PVA gel

1%

Sharp tip > 30

[189]

2 µm bead 3.1± 0.1

5 µm bead 3.7± 0.4

1.6%

Sharp tip 8.2± 1.3

2 µm bead 5.2± 0.8

5 µm bead 5.4± 0.9

1.9%

Sharp tip 24.9± 0.5

2 µm bead 9.4± 0.1

5 µm bead 8.8± 0.6

3.3%

Sharp tip 76.1± 3.7

2 µm bead 24.2± 2.0

5 µm bead 19.4± 3.1
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D.2. AFM measurements of Young’s modulus

Agarose

1% 2 µm sphere

979± 45

[190]936± 95

1315± 57

1.5%
Pyramid tip 9.8± 1.5

[191]
10 µm sphere 3.7± 1.8

2% 4 µm 52± 10 [192]

2.5%
Pyramid tip 22± 2

[193]
5 µm sphere 36± 5

3%
Pyramid tip 26.3± 4.2

[191]
10 µm sphere 28.1± 6.7

Table D.2: Young’s modulus measurements of agarose gels made using atomic force microscopy

(AFM). The measurements are heavily dependent upon the geometry of the sample.

Again the di↵erence between measurements is dramatic with values varying over

more than an order of magnitude.
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