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Abstract

Markov chains offer a rigorous mathematical framework to describe systems that ex-

hibit stochastic behaviour, as they are supported by a plethora of methodologies to

analyse their properties. Stochastic process algebras are high-level formalisms, where

systems are represented as collections of interacting components. This compositional

approach to modelling allows us to describe complex Markov chains using a compact

high-level specification.

There is an increasing need to investigate the properties of complex systems, not

only in the field of computer science, but also in computational biology. To explore

the stochastic properties of large Markov chains is a demanding task in terms of com-

putational resources. Approximating the stochastic properties can be an effective way

to deal with the complexity of large models. In this thesis, we investigate methodolo-

gies to approximate the stochastic behaviour of Markovian process algebra models.

The discussion revolves around two main topics: approximate state-space aggregation

and stochastic simulation. Although these topics are different in nature, they are both

motivated by the need to efficiently handle complex systems.

Approximate Markov chain aggregation constitutes the formulation of a smaller

Markov chain that approximates the behaviour of the original model. The principal

hypothesis is that states that can be characterised as equivalent can be adequately rep-

resented as a single state. We discuss different notions of approximate state equiv-

alence, and how each of these can be used as a criterion to partition the state-space

accordingly. Nevertheless, approximate aggregation methods typically require an ex-

plicit representation of the transition matrix, a fact that renders them impractical for

large models. We propose a compositional approach to aggregation, as a means to

efficiently approximate complex Markov models that are defined in a process algebra

specification, PEPA in particular.

Regarding our contributions to Markov chain simulation, we propose an accel-

erated method that can be characterised as almost exact, in the sense that it can be

arbitrarily precise. We discuss how it is possible to sample from the trajectory space

rather than the transition space. This approach requires fewer random samples than a

typical simulation algorithm. Most importantly, our approach does not rely on partic-

ular assumptions with respect to the model properties, in contrast to otherwise more

efficient approaches.
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Lay Summary

A model is a partial representation of a system created in order to better understand it.

Modelling provides an important intellectual tool for understanding complex systems.

For example, modelling can give us useful insights into computer systems, such as

identifying critical parts or investigating the effect of design choices.

Some systems exhibit different behaviour every time that we observe them. Sys-

tems which exhibit a degree of random behaviour are called “stochastic”, meaning that

there are several possible outcomes for system changes or system events. It is im-

portant to create models that capture this kind of randomness in order to be able to

anticipate these different outcomes.

Stochastic process algebras are a family of modelling approaches that incorporate

random behaviour. Process algebras offer a compact way to model complex systems

where systems are described as collections of interacting components. A process al-

gebra model can be translated into a Markov chain, a mathematical construct that de-

scribes all the possible interactions regarding the components involved. The behaviour

of the Markov chain can be mathematically analysed in numerous ways.

This work is motivated by the need to model and explore the behaviour of complex

systems. Modern computer systems typically involve many users and components,

as the result of the use of new technologies such as cloud computing. Such systems

give rise to very large Markov chains which require significant computing resources in

order to be able to analyse their behaviour. In this thesis we present methodologies to

approximate the random behaviour of complex process algebra models. The discussion

revolves around two main topics: approximate aggregation and stochastic simulation.

Approximate aggregation implies that we reduce the size of the model. We discuss

approaches to aggregate Markov chains, and we explain how these can be applied at

the component level. The reduced model is expected to be analysed with less effort,

while the results obtained will approximate the true behaviour, which otherwise would

remain unknown.

Stochastic simulation is the process of producing one of the many possible tra-

jectories through a Markov chain. Producing multiple trajectories can provide insight

into the behaviour of a Markov chain. Our contribution constitutes an approach that

accelerates the simulation process.
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Chapter 1

Introduction

In the field of computer science, stochastic modelling has been a traditional approach to

study the behaviour of systems that involve uncertainty [61]. Markov chains in particu-

lar have been extensively used for performance analysis of computer systems [89, 74].

The task of performance evaluation remains vitally important as computer infrastruc-

tures continue to expand and informational systems are integral to many aspects of life.

The rise of the cloud computing industry means that the structure of systems is often

extremely complex. Moreover, the massive numbers of people and devices connected

to the web, for example in terms of social networks or peer-to-peer networks, not only

affect the scale of the system, but also the impact of design decisions.

Markovian modelling offers a rigorous framework to investigate performance is-

sues. A system is characterised by a set of possible states and a set of transitions each

of which is associated with a probability. Staring from some initial state, the system

performs a random walk over the state-space which is governed by the transition proba-

bilities. Exploring the stochastic properties of Markovian systems involves calculating

how the state probabilities change over the course of time.

The manual identification of the system state-space and the corresponding transi-

tions can easily become a tedious task. Stochastic process algebras [44, 48] provide

a neat and compact way to formally describe dynamic systems that exhibit stochas-

tic behaviour, as they provide a high-level description which is amenable to rigorous

mathematical analysis. Compared to other modelling formalisms, such as stochastic

Petri nets [76] or queueing networks [57, 89, 74], they offer a powerful compositional

framework to describe complex Markov models; systems are described as collections

of interacting components, which are subsequently used to generate an underlying

Markov chain. A common issue however is that sometimes even an apparently simple
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2 Chapter 1. Introduction

model specification may result in an extremely large Markov chain, a problem known

as state-space explosion.

Applications of stochastic modelling and process algebras are not limited to com-

puter science only. During the last fifteen years, there has been increasing interest in

exploring the stochastic properties of biological systems [68, 52, 56]. Biochemical

models have been traditionally treated as deterministic systems, in terms of ordinary

differential equations (ODEs). The corresponding stochastic models have been known

long ago [40], but more recently the systems biology community has shown increased

interest in models that incorporate randomness. This randomness has been found to ad-

equately capture the uncertainty observed in some intracellular biochemical processes,

such as DNA transcription or protein synthesis in cells. Process algebras have been

recently extended for modelling biological systems [11, 59, 23]. The use of such a

formal specification for biological systems provides a unifying view of the different

modelling methods available, including Markov chains and ODEs. This has the bene-

fit that the modeller can abstract away from the technicalities associated with a certain

approach, and focus on the structure of the system.

The need to deal with complex Markov chains to model computer and biological

systems, and the high computational complexity of estimating the state-space proba-

bilities has been the main motivation of this research. The current thesis is concerned

with methodologies to efficiently approximate the behaviour of large Markovian mod-

els which are assumed to have been derived by a process algebra specification, more

specifically PEPA [48] and Bio-PEPA [23]. Throughout the thesis, the discussion re-

volves around two main topics: approximate state-space aggregation and stochastic

simulation.

Regarding approximate Markov chain aggregation, the elementary hypothesis is

that certain sets of states can be successfully represented as a single state. It should

be possible to construct a smaller Markov chain that exhibits behaviour similar to the

original model, assuming that the state-space is partitioned accordingly. In the liter-

ature, Markov chain partitioning has been traditionally approached as decomposition

into strongly coupled parts [27, 71, 31], which can be an appropriate criterion for state

similarity in many cases. It is our thesis however that a concept of behavioural sim-

ilarity, in the style of lumpability, should be able to capture a wider range of state

equivalences. The following three points constitute our main contributions with re-

spect to Markov chain aggregation: the exploration of state similarity concepts, the
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development of partitioning strategies, and finally the construction of an aggregated

model.

The Markov chain partitioning approaches that we discuss later in this thesis in-

tend to discover patterns in the model structure that reveal state similarities. For that

purpose, we employ unsupervised machine learning algorithms, which are intrinsi-

cally computationally expensive and therefore often impractical to apply. In order to

deal with the complexity of these approaches, we propose a compositional approach

to aggregation, which is strongly connected with the compositional model representa-

tion that is inherent in a process algebra specification. By exploiting the component

structure of PEPA models, it is possible to obtain significant state-space reduction at

minimal computational overhead.

Simulation as a means of approximating stochastic properties of Markov chains

is the second major topic of this work. A simulation algorithm does not require an

explicit representation of the state-space. Instead, it performs a random walk and pro-

duces trajectories, which are then used to estimate the state-space probabilities or other

measures. One very desirable aspect of stochastic simulation, being a Monte Carlo

method, is that it converges to the true solution. That means the more sample trajecto-

ries are generated, the more accurate any estimate will be.

However, simulation can still be computationally expensive, as many simulation

runs are typically required to obtain an accurate estimation of the transient behaviour

of a system. In recent years, there has been increased research activity in improving

the efficiency of Markov chain simulation [39, 41, 10, 7]. One particularly effective

strategy to accelerate Markov chain simulation is to skip some of the simulation events

[41, 10, 1]. Simulation algorithms of this type have been characterised as approx-

imate, since they do not produce exact realisations of the Markov chain in question.

The effectiveness and accuracy of approximate methods depends on whether the model

complies with certain assumptions with respect to its structure. Our objective is to pro-

pose an accelerated simulation algorithm whose applicability is not dependent on the

properties of the model. Instead of skipping simulation events, we focus on producing

them more efficiently by reducing the amount of random numbers generated.

The topics investigated in this work are essentially of different nature, although

both are motivated by the need to explore the stochastic properties of large Markov

models. Compositional approximate aggregation is a method for reducing the size of



4 Chapter 1. Introduction

the model at the cost of loss of accuracy. The approximation of the stochastic proper-

ties of Markovian systems comes in two steps: model reduction first, and solution for

the state-space probabilities second. The second step may involve any of the known

methods for steady-state or transient measures. In contrast, simulation directly approx-

imates this stochastic behaviour. Minimising random number generation is a step to

make the simulation process more efficient, which can be used in combination with

other exact accelerated methods.

At this point, we have to emphasise that we are interested in approximating the

complete stochastic behaviour of a Markov chain. In other words, our objective is to

efficiently obtain approximations for the state probabilities, as opposed to other ap-

proaches such as fluid flow approximation with ODEs [49]. As a matter of fact, fluid

flow approximation offers a very efficient way to have a deep insight into the system’s

behaviour not only with respect to the stationary measures, bur also the transient ones.

However, by approximating a Markov chain with a system of ODEs, what we get is

an approximation of how the mean value of several measures changes over time. Of

course, such a system is inherently deterministic, implying that there is no informa-

tion about stochastic properties other than the mean value [82]. Information about

higher-order moments can be extracted by higher-order fluid flow methods [47], which

are considerably more expensive. A deeper exploration of the stochastic behaviour

requires a more traditional approach to Markov chain analysis, which can be either

solving for the state-space probabilities or performing simulation.

Thesis Outline In the chapter that follows we discuss the background material and

state of the art regarding state-space aggregation and stochastic simulation. The focus

of Chapter 3 is the problem of approximate aggregation of unstructured Markov chains.

In Chapter 4 we discuss how the structure of PEPA models can be exploited so as to

efficiently apply approximate aggregation in a compositional manner. In Chapter 5

we present our accelerated stochastic simulation approach, which relies on reducing

the amount of random numbers generated. In Chapter 6 we present a case study on

cloud computing. More specifically, we make use of the methodologies proposed in

this thesis to explore scalability issues for different routing policies in cloud services.

Finally, Chapter 7 contains the concluding remarks of this work.



Chapter 2

Background

In this chapter, we discuss the background material and we establish most of the con-

cepts and the conventions used later in the thesis. The first section is a brief introduc-

tion to the fundamental concepts of Markov chains. Section 2.2 introduces stochas-

tic process algebras, in particular PEPA and Bio-PEPA, which are the modelling for-

malisms used throughout the thesis. The last two sections introduce the two approaches

considered in this work to approximate the stochastic behaviour of Markovian process

algebras. The first is state-space aggregation discussed in Section 2.3, which is a means

to reduce the complexity of large Markov chains. The second is stochastic simulation

discussed in Section 2.4, which can produce estimates for the state probabilities with

no explicit representation of the Markov chain state-space. References to the related

literature are given, while the works that are closely related to this thesis are discussed

in more detail in the corresponding chapters.

2.1 Markov Chains

A stochastic process {Xt} is a collection of random variables indexed by time. We

can think of it as the stochastic analogue of a function of time. In the deterministic

world, a function of time describes the evolution of some variable whose value is fixed

for a given time. In the same sense, {Xt} records the evolution of a random variable,

whose value is uncertain, yet it is associated with a probability distribution over a set

of possible values.

Stochastic processes are appropriate for describing the dynamic properties of sys-

tems that exhibit stochastic behaviour. Markov chains are among the most popular

stochastic processes for this task, as they are supported by a plethora of techniques to

5



6 Chapter 2. Background

obtain the probability distributions that describe their behaviour.

A Markov chain is characterised by the following two properties, which have im-

plications which are very convenient for modelling:

• The state-space is discrete, although it does not have to be finite.

• The state probabilities are conditionally independent of the previous states given

the current state. This is also known as the Markov property.

In order to model a system with a Markov chain, we have to define a discrete set of

states and a set of probability distributions over the state-space, one for each state.

Those will be the conditional state probabilities given some state, or equivalently tran-

sition probabilities for some state. The Markov property assures us that the transition

probabilities depend solely on the current state.

This discussion actually refers to time-homogeneous Markov chains, for which the

conditional state distribution is independent of the time that we observe some state.

Time can also be part of the equation for time-inhomogeneous systems, although these

will not be considered here. All of the Markov chains discussed in this thesis are

assumed to be time-homogeneous.

2.1.1 Discrete Time

Although we are mostly interested in systems where the time index is continuous,

some concepts can be more intuitively introduced for discrete-time processes. Those

concepts will be later expanded to the continuous-time case.

In discrete-time systems, the notion of time is defined in terms of steps; that implies

that any change of state will happen at regular intervals. Time information is recorded

as number of steps n, which refers to the number of transitions that have happened

since the beginning of the process. For Markov chains in a discrete-time setting we

have the following definition:

Definition 1. A finite Discrete-Time Markov Chain (DTMC) is a triple (S,P,πππ(0)),

where S is a finite set of states, P is a |S|× |S| stochastic matrix, and πππ(0) is an initial

probability distribution vector over S.

The P matrix was said to be stochastic, meaning that its row entries are non-

negative and sum up to 1. The rows of P are actually the conditional state distributions

that correspond to the set of states S. Therefore, the entry Pi j defines the transition
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probability from state i to j, where i, j ∈ S. The P matrix will be referred to as the

transition probability matrix.

We have defined the set of states S to be finite, but it does not have to be so in

the general case. The DTMC definition can be easily expanded to non-finite systems

by considering a countable (and not necessarily finite) state-space and a function that

maps a pair of states to some transition probability. A finite state-space however is

associated with a finite transition probability matrix. Some of the results of this thesis

rely on the properties of finite stochastic matrices and unless stated otherwise, the

state-space S of some Markov chain shall be considered to be finite.

Alternatively, we can define a DTMC as a discrete state stochastic process {Xn}
that takes values on S with initial probabilities X0 = πππ(0). In order to be a Markov

process, {Xn} has to satisfy the following condition:

Pr(Xn+1 = sn+1 | X0 = s0, . . .Xn = sn) = Pr(Xn+1 = sn+1 | Xn = sn) (2.1)

where n ∈ N0 is the time index, and sn ∈ S denotes the state at time n. Equation

(2.1) formally describes the Markov property for DTMCs. Time corresponds to the

number of steps or transitions which have occurred. Therefore, the random variable Xn

corresponds to the state probability distribution after n transitions.

Given some state-space and the corresponding transition probabilities, we can per-

form a random walk, starting from some initial distribution πππ(0). In order to describe

all the possible paths in the random walk, we have to calculate the unconditional state

probabilities at different times. Our objective is to estimate the distribution of the

Xn random variables at different times n, when we know the conditional probabilities

Pr(Xn+1 | Xn). Recall that for a time-homogeneous process, these conditional proba-

bilities do not depend on time, hence we have: Pr(Xn+1 = j | Xn = i) = Pi j.

2.1.2 Continuous Time

In a DTMC, the time of the next transition is actually deterministic, as we have exactly

one transition per time-step. In many occasions we want to model systems where

discrete changes of state may happen at random times that can be any non-negative

real number. Each transition is associated with a non-negative real-valued random

variable that represents its duration.
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2.1.2.1 Implications of the Markov Property

The duration of each transition in a continuous time setting is known to be exponen-

tially distributed. As we shall see next, this is a direct consequence of the Markov

property. Let us consider a discrete state stochastic process {Xt} that takes values on S,

where t ≥ 0 is a continuous-time index. Then {Xt} will be a Continuous-Time Markov

Chain (CTMC) if it satisfies the Markov property, which is captured by the following

equation for any h≥ 0:

Pr(Xt+h = j | Xt = i,{Xτ : 0≤ τ≤ t}) = Pr(Xt+h = j | Xt = i) (2.2)

According to Equation (2.2), the probability of moving from state i ∈ S to state j ∈ S

after time h, is independent of any previously visited states. In the continuous-time

case, there is no notion of next time-step, so the Markov property has to be defined for

an arbitrary time interval h.

However, there is the notion of next transition. Recall that the state-space is dis-

crete, so the value of {Xt} remains constant between the transition times. If we have k

transitions in {Xt}, then there is a sequence 0 < t1 < t2 · · ·< tk that represents the times

when these transitions occur. Because the Markov property as expressed in Equation

(2.2) holds for arbitrary h, for the transition at time tk+1 we have:

Pr(Xtk+1 = sk+1 | Xt1 = s1, . . .Xtk = sk) = Pr(Xtk+1 = sk+1 | Xtk = sk) (2.3)

where sk ∈ S denotes the state after k transitions. Equation (2.3) states that the next step

probabilities at time tk+1 depend solely on the state at tk. If we ignore the transition

times what we have is a discrete-time process, which is essentially a DTMC. This is

called the jump process or embedded Markov chain that defines the transition prob-

abilities for a CTMC. Since the CTMC considered is time-homogeneous, so will the

corresponding jump process be, meaning that the next step probabilities do not depend

on the time tk.

The jump process however does not fully describe the behaviour of some CTMC.

We have to somehow model the fact that the transitions occur at random moments.

Consider the sequence of continuous random variables T1,T2, . . . ,Tk that denote the

times at which k transitions happen. The sequence of random variables L1,L2, . . . ,Lk

will represent the times between transitions, i.e. L1 = T1,L2 = T2− T1 and so forth.

These times are called holding or sojourn times. The distribution of these random

variables has to be such that the Markov property is satisfied.
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At the times when the transitions occur, we have seen that the Markov property

holds if we consider a discrete-time jump process that is a DTMC. What about the

time intervals in between the transitions? Given some state i at time t, let us consider

the probability that no transition happens within an interval u+ v, where u > 0 and

v > 0. We then break this probability down by applying Bayes rule:

Pr(L > u+ v | Xt = i) = Pr(L > u,L > u+ v | Xt = i)

= Pr(L > u+ v | L > u,Xt = i) ·Pr(L > u | Xt = i)
(2.4)

If we consider a time-homogeneous system, we can set u = 0 for the first term of the

product above. In this way, the condition L > 0 can be ignored, as it is one the initial

assumptions. Then we have:

Pr(L > u+ v | Xt = i) = Pr(L > v | Xt = i) ·Pr(L > u | Xt = i) (2.5)

Equation (2.5) implies that the distribution of the L random variable has to be mem-

oryless. The only continuous memoryless distribution is the exponential distribution.

Indeed, considering L ∼ Exp(λi) with P(L ≤ t) = 1− e−λit or P(L > t) = e−λit , it is

easy to verify that e−λi(u+v) = e−λiue−λiv. The rate λi of the exponential distribution

that governs the sojourn time depends only on the current state i, as can be seen in

Equation (2.5).

2.1.2.2 Continuous-Time Markov Chains

To summarise, a CTMC is fully characterised in terms of a jump process and a col-

lection of exponentially distributed holding times. Since we are interested in time-

homogeneous systems only, the holding times depend solely on the state. Below we

present an alternative and more convenient definition for CTMCs that is equivalent.

Definition 2. A Continuous-Time Markov Chain (CTMC) is a triple (S,Q,πππ0), where S

is a finite set of states, Q is a |S|×|S| generator matrix, and πππ0 is the initial probability

distribution over S.

A matrix Q is called a generator matrix if its entries Qi j for any i, j ∈ S satisfy the

following properties :

(i) Qi j ≥ 0, i 6= j

(ii) Qii =−∑ j∈S,i6= j Qi j
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A non-diagonal entry Qi j denotes the transition rate from state i to state j. This rate

can be interpreted as the parameter of an exponential random variable Li j ∼ Exp(Qi j)

that determines the time of transitioning from i to j. In this representation, each state

is associated with several exponential random variables.

When two or more transitions are possible, then there is a race condition between

them. In such a case, the transition that will trigger first will be the only one to update

the system state. Therefore the sojourn time is the minimum of |S| − 1 exponential

random variables Li =min({Li j : j∈ S, j 6= i}), which is known to be also exponentially

distributed with parameter Qi = ∑ j∈S,i 6= j Qi j.

The jump process is DTMC with probability matrix P with entries:

Pi j =

Qi j/Qi, i 6= j and Qi 6= 0

0, otherwise
, where Qi = ∑

j 6=i
Qi j (2.6)

Hence, the next transition probabilities given some state i are encoded in the i-th row

P, while the time of this next transition follows exponential distribution with rate Qi.

2.1.3 Transient Behaviour

In this section we briefly discuss how the stochastic behaviour of Markov chains is

calculated. We have described Markov chains in terms of their transition probabil-

ities in the discrete-time case, or their transition rates for continuous-time systems.

We want to calculate the distributions of the random variables that constitute some

Markovian stochastic process {Xt}. We focus on methods that calculate the exact state

distributions, as their high computational complexity motivated the development of

approximation approaches.

The state distribution of a Markov chain at different times is referred to as transient

behaviour, as the distribution over the state-space changes as time proceeds. We shall

introduce some concepts for the discrete-time case, before we deal with CTMCs.

2.1.3.1 Transient Probabilities for DTMCs

Let {Xn} ≡ (S,P,πππ(0)) be some finite DTMC. We know that X0 follows a categorical

distribution with parameters contained in the probability vector πππ(0). In a finite-state

system, the change on the state distribution can be written in terms of the transition

probability matrix using linear algebra. According to the definition of DTMCs, the

next random variable X1 is also categorical with parameters contained in πππ(1) = πππ(0)P.
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In the general case, the n-th step probabilities for {Xn} are given by the n-th power of

P as follows:

πππ
(n) = πππ

(0)Pn (2.7)

Equation (2.7) offers a way to calculate exactly the probabilities at any stage of the

lifetime of the stochastic process. The disadvantage however is that the calculation

involves raising a matrix to a power, which is a problem of high complexity, unless the

matrix has some special structure (i.e. diagonalisable).

Instead, we can take advantage of the Markov property and time-homogeneity.

That is, given some current state, the transition probabilities are independent of the

time this state is observed. So for any state distribution πππ(n), the next step probabilities

are given as following:

πππ
(n+1) = πππ

(n)P (2.8)

In this way, we can recursively calculate the state probabilities at any time n, starting

from the initial distribution vector.

2.1.3.2 Transient Probabilities for CTMCs

In order to calculate the transient state probabilities in the continuous-time case, we

need to express the transition probabilities in terms of time. According to [79], the

transition probabilities of a CTMC after time t are given by the following function:

P(t) = etQ (2.9)

where Q is the corresponding generator matrix. In fact, P(t) is the continuous analogue

of the Pn matrix, which denotes the transition probabilities after n steps in a DTMC.

Given an initial state distribution vector πππ0, the distribution vector of the CTMC at

time t will be:

πππt = πππ0P(t) (2.10)

P(t) can be calculated as a weighted sum of different powers of the probability matrix

P of the underlying jump process. The state distribution at t can then be rewritten as

follows:

πππt = πππ0

∞

∑
k=0

Pk×Pr(k steps until t) (2.11)

The equation above is problematic though, as it involves an infinite sum which, itself

contains several powers of P. Moreover, the probability of making k transitions until

time t is in general difficult to estimate.
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One way to reduce the cost of (2.11) is to employ the technique of uniformisation

[54]. If {Xt} ≡ (S,Q,πππ(0)) is some finite CTMC, let λ be such that:

λ = sup
i∈S

∑
j 6=i

Qi j (2.12)

This λ will be called uniformisation rate. We can then construct a DTMC with the

following probability matrix:

P′ = I +
1
λ

Q (2.13)

This will be an embedded Markov chain that is however different from P as defined in

Equation (2.6). Recall that the duration of k transitions is determined by a collection of

exponential random variables L1,L2, . . . ,Lk, the rate of each of which depends on the

current state. Uniformisation modifies the jump process to P′ in such a way that the

random variables L′1,L
′
2, . . . ,L

′
k follow an exponential distribution with the same rate

λ. This has the consequence that the number of jumps at different times is governed by

a Poisson process. Therefore the number k of transitions until time t follows a Poisson

distribution with parameter λt. So we have:

Pr(k steps until t) = e−λt (λt)k

k!
(2.14)

We can rewrite Equation (2.11) using P′ as the jump process and Equation (2.14) to

calculate the step probabilities. We can also replace πππ0P′k with πππ(k):

πππt = πππ0

∞

∑
k=0

P′k× e−λt (λt)k

k!
=

∞

∑
k=0

πππ
(k)× e−λt (λt)k

k!
(2.15)

The vectors πππ(k) represent the state probabilities at different stages of the embedded

Markov chain that is produced after uniformisation. To estimate the state probabilities

of a CTMC at any time t we have to calculate πππ(k) for several values of k. These can

be calculated recursively as done in the discrete-time case, and for sparse matrices πππ(k)

can be calculated efficiently.

Note that the infinite sum is still present in Equation (2.15). The approach is only

exact if we consider an infinite number of jumps. Normally we truncate the summa-

tion to K terms that will result in an approximate probability vector π̃ππt , however the

method can be made arbitrarily precise by choosing a K large enough. In this the-

sis, uniformisation is used as a baseline to evaluate the accuracy with respect to the

transient behaviour of some of the approaches proposed.
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2.1.4 Steady-state Behaviour

The long-term properties of Markov chains are of particular interest. If certain con-

ditions hold, the state-space probabilities in the long run converge to a unique steady-

state distribution. In the case of DTMCs, a stationary probability vector πππ satisfies the

following property:

πππP = πππ (2.16)

This means that if the state distribution at any step is πππ, this will never alter. The exis-

tence of one or more stationary distributions depends on the properties of the Markov

chain.

Irreducibility We say that a state j can be reached from a state i, if there non-zero

probability of moving from i to j in a random walk. A state i is said to communicate

with j, if j can be reached from i and vice versa. The state-space S of a Markov chain

can be partitioned into communicating classes. A communicating class is a set of states

C ⊆ S such that any pair i, j ∈C communicates with each other, while no state i ∈C

communicates with any state j /∈ C. If the state-space S is a single communicating

class, then the Markov chain is called irreducible. For an irreducible Markov chain,

there exists at most one stationary distribution [55, 79, 45].

Aperiodicity Given A Markov chain {Xn}, a state i is said to be aperiodic if and

only if the set {n : Pr(Xn = i | X0 = i) > 0} has no common divisor other than 1 [79].

Intuitively, this means that a random walk can return to state i at irregular times. A

Markov chain is called aperiodic, if all of its states are aperiodic. For an aperiodic

Markov chain, there exists at least one stationary distribution [55, 79, 45].

Ergodicity A Markov chain is said to be ergodic if it is aperiodic and irreducible [55,

79, 45]. It follows that an ergodic chain has exactly one stationary probability vector.

The calculation of the steady-state probabilities for ergodic chains is well established.

For DTMCs, the steady-state distribution vector is the eigenvector of the transition

probability matrix that corresponds to the eigenvalue λ = 1, as we can see in Equation

(2.16). For a CTMC with generator matrix Q, the stationary vector πππ satisfies the

global balance equation:

πππQ = 0 (2.17)
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What we have is a system of equations where the πππ vector is the unknown. This system

can be solved by considering the following additional condition that stems from the fact

that πππ is a probability vector:

∑
i∈S

πππi = 1 (2.18)

There are many approaches to efficiently calculate the steady-state probabilities of

ergodic Markov chains. In the general case however, a Markov chain might not be

ergodic, meaning that it might have more than one stationary behaviour. Steady-state

analysis does not produce any information with respect to what happens until some

equilibrium is reached. Such information is only accessible through transient analysis,

which is typically much more computationally expensive, as the solution involves sev-

eral random variables. The stochastic behaviour that we seek to approximate in terms

of this thesis refers to both transient and steady-state properties. The high computa-

tional complexity of the approaches to exactly calculate the state probabilities moti-

vated the use of state-space aggregation and efficient stochastic simulation as tools to

approximate the state distribution in a more efficient way.

2.1.5 Reversibility

In this section, we introduce some notions regarding time reversal of Markov chains,

which will be discussed later in this thesis. An irreducible Markov chain with tran-

sition probability matrix P, state-space S, and steady-state distribution πππ is said to be

reversible if the detailed balance equation holds:

πiPi j = π jPji, ∀i, j ∈ S (2.19)

Intuitively, this means that when in steady-state, the probability of each possible tran-

sition is equal to the probability of the reversed transition. Reversibility is related to a

class of approximate aggregation methodologies discussed in Chapter 3, which exploit

the symmetric property of the detailed balance equation in (2.19).

For any Markov chain, it is possible to define its time-reversal, which is also a

Markov chain with transition probability matrix P̄, whose elements are defined as fol-

lows:

P̄i j = Pji
π j

πi
(2.20)

It can be easily shown that a Markov chain and its time-reversal have the same steady-

state distribution [55, 79]. In the reversible case, we have P = P̄.
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2.2 Stochastic Process Algebras

Process algebras are languages that describe systems as collections of interacting enti-

ties called agents. Each agent may perform a number of actions, which can be carried

out independently or in collaboration with other agents. Process algebras were orig-

inally used for modelling concurrency in systems that did not exhibit any stochastic

behaviour. The stochastic extensions in process algebras are achieved by associating

each action with a random variable that corresponds to its duration [44, 48]. If these

random variables are chosen to be exponentially distributed, then the process algebra

is essentially Markovian, meaning that it can be mapped to a CTMC. The next two

subsections briefly introduce the Markovian process algebras considered in this thesis.

2.2.1 PEPA

PEPA [48] is among the first process algebras that made use of exponentially delayed

actions. Its acronym stands for Performance Evaluation Process Algebra, which ex-

presses the intention to capture quantitative properties of systems, including perfor-

mance measures such as utilisation or throughput. PEPA models are collections of

components; the modeller has to specify the components and the way these compo-

nents interact with each other. The combination of the components can be mapped

to a CTMC that can be solved for the transient and the steady-state behaviour of the

system. More formally, the grammar for the PEPA language is the following:

S ::= (α,r).S | S+S

P ::= P BC
L

P | P/L | S

where S denotes a sequential component, while P denotes a parallel component which

is defined as a composition of sequential components. Below we explain the meaning

of the operators and the notation used.

Prefix (.) The prefix operator describes a sequential action that a component may

perform. For example, a component (α,r).P carries out an action and subsequently

behaves as P. The pair (α,r) is called an activity, where α is the action type and r

is the rate of the activity. The duration of the activity is governed by an exponential

distribution with mean 1/r. The set of activities that a component P is capable of is

denoted as Act(P).
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Choice (+) This operator denotes a choice between two different sequential be-

haviours. A component P + Q can evolve either to P or Q. Whenever there is a

choice between two or more activities, the exponentially distributed transition times

imply that there is a race condition between them. For instance, the component P def
=

(α1,r1).P1+(α2,r2).P2, will either perform α1 with probability r1/(r1+r2) or α2 with

probability r2/(r1 + r2), while the time of exiting state P will follow an exponential

distribution with rate r1 + r2.

Cooperation ( BC
L

) This operator denotes a parallel composition of interacting com-

ponents. A cooperation is defined over a set of actions L , which is called the cooper-

ation set. The actions in this set are also called shared actions, and they require that

the components involved carry out the activity simultaneously. Components may carry

out individually any activity whose action type is not in the cooperation set. A cooper-

ation can also be defined on an empty set of actions, meaning that the components are

independent.

Empty Cooperation (||) This operator is a shorthand for BC
/0

, where the cooperation

set is empty.

Aggregation ([N]) The notation S[N] denotes a collection of identical sequential

components that act in parallel with no interaction among them. Alternatively, we

could write S||S|| . . .S where S occurs N times.

Hiding (/) Hiding P/L renders the actions in the set L private for the component

P. This means that no cooperation can be defined for the actions contained in L .

The components are forced to carry out their private activities independently. As the

grammar notation implies, P might be either sequential or parallel.

Unspecified Rates The rate of an activity can be unspecified, denoted by>, meaning

that the activity is passive. A passive activity can only be carried out in collaboration

with another component, otherwise the activity is just disabled.

Although the rate of passive activities is unspecified, they can also be associated

with a probability. This is required if more than one passive activities of the same

action type are enabled. Then an unspecified activity rate > may be assigned a weight

w ∈ N which represents the relative probability of that particular activity. The absence
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of a weight simply implies that w = 1. For example, the component P def
= (α1,w1×

>).P1 +(α2,w2×>).P2, will perform α1 with probability w1/(w1 +w2) or α2 with

probability w2/(w1 +w2). The time of exiting state P remains unspecified.

2.2.1.1 The Derivation Graph

The Markovian interpretation of a PEPA model relies on the semantics of the PEPA

language [48] summarised in Figure 2.1, which are defined in the style of Plotkin’s

structured operational semantics [80]. For a component P, the PEPA semantics in-

duces the set of states reachable from P, which is called the derivative set, denoted as

ds(P). The derivative set along with the activities involved define the derivation graph.

This is actually a labelled multi-transition system with states in ds(P) and transitions

in ds(P)×Act(P)×ds(P). If the derivation graph contains no unspecified rates, then

we can construct a CTMC (ds(P),Q,πππ0), where πππ0 is some initial distribution over

ds(P), while Q is a generator matrix whose entries capture the transition rates of the

derivation graph.

In the first level of syntax, the modeller defines one or more sequential components.

The second level of syntax is the system equation, which specifies which components

participate in the system and what are the interactions among them. The local states

of the components formulate the global state of the system. Any change in the local

states will also have an effect on the system state. In the case of individually performed

actions, the transitions are associated with an exponential distribution as described ear-

lier. For a shared action however, the components involved have to perform this action

at the same time. The duration of a synchronised transition will follow an exponential

distribution that is determined by the activity with the smallest rate. In order to see

how, we have to explain the notion of apparent rate introduced in [48]:

Definition 3 (Apparent Rate). The apparent rate of an action α in a component P,

which is denoted as rα(P), is the sum of all rates of all activities of type α in Act(P).

As with activity rates, an apparent rate can be either a positive real number, or

unspecified > with weight equal to the sum of the weights of the activities included.

Note however that the apparent rate rα(P) can only be defined if the activities of type α

for P are either all active or all passive, since the addition of an active rate r ∈ R+ with

an unspecified rate> is not defined as an operation in [48]. Components for which any

action of type α involves both active and passive activities are considered invalid. This
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Prefix

(α,r).E
(α,r)
−−−→ E

Cooperation

E
(α,r)
−−−→ E ′

E BC
L

F
(α,r)
−−−→ E ′BC

L
F

(α /∈ L)
F

(α,r)
−−−→ F ′

E BC
L

F
(α,r)
−−−→ E BC

L
F ′

(α /∈ L)

E
(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E BC
L

F
(α,R)
−−−→ E ′BC

L
F ′

(α ∈ L) where R =
r1

rα(E)
r2

rα(F)
min(rα(E),rα(F))

Choice

E
(α,r)
−−−→ E ′

E +F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E +F
(α,r)
−−−→ F ′

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)
E

(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A def
= E)

Figure 2.1: Structured operational semantics for PEPA

requirement has some interesting implications in an approximate aggregation setting,

which we explore later in Section 4.3.3.

The concept of apparent rate refers to the rate of any currently enabled activity of

a given action type. The rate of a synchronised activity will be the minimum of the

two apparent rates involved, weighted by the individual activity probabilities. More

specifically, the rate of the synchronised activities P def
= (α,r1).P′ and Q def

= (α,r2).Q′

will be

r =
r1

rα(P)
r2

rα(Q)
min(rα(P),rα(Q)) (2.21)

In the special case where there is one or more passive actions, the unspecified rate >
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is evaluated in terms of the minimum function as follows:

min(w1×>,r) =

r, r ∈ R+

min(w1,w2)×>, r = w2×>
(2.22)

where w1,w2 ∈ N.

The use of the minimum rate in (2.21) captures the fact that a coordinated activity

is essentially determined by the slowest component. A classical approach to determine

the duration of a synchronised transition based on the slowest component, would be to

consider the maximum of the durations for the activities involved in the cooperation.

However, the maximum of two exponentially distributed random variables does not

follow an exponential distribution in the general case. In the PEPA language, maxi-

mum duration is approximated by an exponential distribution whose rate is given by

(2.21). This approximation is a major assumption of the language, as defined in [48].

2.2.2 Bio-PEPA

Recently, there has been significant interest in using process algebras for modelling

biological systems [11, 23]. Bio-PEPA [23] is a variation of PEPA, where processes

are defined in a manner that is more convenient for the description of systems such as

chemical reaction networks. In order to better understand the challenges of this kind

of modelling, we have to introduce some fundamental concepts.

In the relevant literature [92], a biological system is usually described as a network

of coupled chemical reactions that have an effect on a number of species. Species are

the different kinds of molecular populations existing in a system. A generic form of a

reaction network consisting of N ∈ N species Sn, with 1≤ n≤ N, and M ∈ N reaction

channels Rm, with 1≤ m≤M, is the following:

r(m)
1 S1 + r(m)

2 S2 + · · ·+ r(m)
N SN −→ p(m)

1 S1 + p(m)
2 S2 + · · ·+ p(m)

N SN (2.23)

The species appearing on the left hand side of the reaction above are called reactants.

These are accompanied by coefficients r(m)
n called stoichiometries, which denote the

number of Sn molecules consumed by a single reaction Rm. The right hand side species

are the products of the reaction, and equivalently, the stoichiometries p(m)
n denote the

number of Sn molecules produced by a single reaction Rm. Of course, if a stoichiom-

etry r(m)
n or p(m)

n is constantly zero, there is no need for the n-th species to be present

in the definition of the m-th reaction, either as reactant or as product correspondingly.
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Furthermore, each reaction has one more parameter that has not appeared in Equation

(2.23). That is a rate, or more accurately, a propensity function am(X ,cm), which is

dependent on the current species populations, denoted by X = {X1, . . . ,XN}, and a rate

constant cm. These rates are actually the inverse means of exponential distributions un-

derlying the stochastic kinetics of the system. Thus, the time that any reaction happens

is governed by a exponential distribution with rate:

a(X ,c) =
M

∑
m=1

am(X ,cm) (2.24)

It is noted that a common assumption in the field is that the system is well stirred

and in thermal equilibrium. This means that molecules interact at a constant tempera-

ture, and are homogeneously distributed in some fixed volume. Therefore, the reaction

rates depend solely on the populations and not on the relative position of the molecules.

A biological system described in these terms can be mapped to a time-homogeneous

CTMC whose state-space is all the different molecular populations possible for the

species considered. The transitions between states are associated with exponentially

distributed delays that depend on the current state. Bio-PEPA is a reagent-centric ap-

proach to modelling biological systems, where systems are described in terms of their

components.

Early attempts to model biological systems using PEPA were impeded, since there

is no mechanism in PEPA to describe notions such as stoichiometry or propensity

functions. Components in Bio-PEPA do not involve transitions between user-defined

states, in contrast with PEPA. Instead, a component corresponds to the population

levels of a certain species. A Bio-PEPA model consists of a collection of species, as

well as a collection of reactions that modify the species populations. The Bio-PEPA

language is formally defined by the following grammar:

S ::= (α,κ)opS | S+S

P ::= P BC
L

P | S(N)

where S denotes a sequential or species component. The way that the population of

some species S may be modified by a certain reaction is specified in the term (α,κ)op,

where α denotes the reaction type and κ represents the stoichiometry. The role of the

species S in some particular reaction is described by the prefix combinator “op” which

can be any of the following:

Reactant (↓) The reaction α will decrease the species population by the number

denoted by the stoichiometry κ.
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Product (↑) The reaction α will increase the species population by the number de-

noted by the stoichiometry κ.

Activator (⊕) The species activates the reaction α, but the species population is not

affected.

Inhibitor (	) The species inhibits the reaction α, but the species population is not

affected.

Generic modifier (�) The species has some unspecified effect on the rate of the

reaction α, but the species population is not affected.

The model component P is a parallel composition of species components by the BC
L

operator. The cooperation set L is a set of reaction types over which a cooperation is

defined. As in PEPA, collaborating components have to perform simultaneously any

action that is in the cooperation set, whereas they can perform the rest of the actions

independently. The global state of the system is a vector X = {X1, . . . ,XN} that contains

the populations of all the species involved in the model. According to the grammar

definition, a species component may participate in one or more reactions that possibly

affect its population and the global state as a result. The sequential components are

initialised according to the term S(N), where N denotes the initial population for the

species S.

As discussed in the context of chemical reaction systems, each reaction is associ-

ated with a propensity function am(X ,cm). This is evaluated to a rate corresponding to

an exponential random variable that determines the amount of time until the firing of

that reaction. The propensity functions typically depend on the reactants, the modifiers

(activators, inhibitors or generic modifiers) and a rate constant cm. In the general case

however, they can be arbitrary functions of the current state.

The Markovian interpretation of a Bio-PEPA model relies on the semantics of the

language, which induces a labelled transition system from which a CTMC is derived.

The structured operational semantics of Bio-PEPA can be found in [23].
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2.3 State-space Aggregation

The Markovian process algebras discussed in the previous section can be powerful

tools to describe complicated CTMCs using a minimal high-level specification. It

is definitely desirable to describe complicated systems, this however will naturally

increase the demand for computational resources.

State-space aggregation can be an effective way to reduce the complexity of large

Markov models. Aggregated models feature a reduced number of states, a fact that can

accelerate transient and steady-state analysis techniques. Aggregation can be either

exact or approximate. Exact aggregation of a Markov chain involves constructing a

model with a smaller number of states that exhibits behaviour identical to that of the

original system. If the original model is lumpable, then the resulting aggregated model

will be a Markov chain as well. In the case of non-lumpable models, we use a reduced

Markov model that approximates the behaviour of the original system. In this way, the

model can be solved efficiently at the cost of loss of accuracy.

2.3.1 State Equivalence

In order to aggregate a Markov chain with N states, its state-space has to be partitioned

into K classes, where ideally K � N. Given a Markov chain with state-space S, we

shall say that ∆ = {A1, . . . ,AK} is a partition on S with K classes, where A1, . . . ,AK are

mutually disjoint subsets of S. More formally, for any Ak,Al ∈ ∆ with k 6= l we have

Ak,Al ⊆ S, Ak∩Al = /0, and A1∪A2∪ . . .AK = S.

The states that belong to the same class have to be equivalent in some sense. In this

section, we review some notions of exact and approximate state equivalence in Markov

chains. A large part of the discussion in this thesis relies on the concepts that follow.

2.3.1.1 Lumpability

In terms of Markov chains, equivalence is formally described by the notion of lumpa-

bility [55]. Given a partition of the state-space, lumpability implies that states that

belong to the same class have identical transition probabilities to each of the partitions.

This concept is formally described by the following definition:

Definition 4 (Lumpability). A Markov chain with probability matrix P is lumpable

w.r.t. a partition ∆ = {A1, . . . ,AK}, if for any two classes Ak,Al ∈ ∆, and for any two
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states i, j ∈ Ak:

∑
m∈Al

Pim = ∑
m∈Al

Pjm (2.25)

As can be seen in [6], given a lumpable Markov chain we can obtain a lumped

model which is also a Markov chain. Given a stochastic matrix P ∈ RN×N that is

lumpable to ∆ = {A1, . . . ,AK}, we define the corresponding lumped matrix P̃ ∈ RK×K

with entries:

P̃kl = ∑
j∈Al

Pi j, ∀i ∈ Ak (2.26)

Lumpability dictates that the sums above are constant for all the states in the same

class. Therefore, when calculating the transition probability from Ak to Al , it does not

really matter in which state of Ak the system is in. That is a direct consequence of

the fact that the behaviour of the states in Ak is exactly equivalent with respect to ∆.

The lumped matrix P̃ has transient and steady-state behaviour that is identical to the

behaviour of P. The theorem that follows captures how the next step probabilities of P̃

and P are equivalent.

Theorem 1 (Buchholz 1994). Consider a Markov chain with transition matrix P ∈
RN×N that is lumpable to ∆ = {A1, . . . ,AK}, and whose n-step state distribution is

denoted by πππ(n) ∈ RN . Let P̃ ∈ RK×K be a lumped matrix with entries as specified in

Equation (2.26), whose n-step distribution is π̃ππ
(n) ∈ RK . Then if π̃

(0)
l = ∑ j∈Al

π
(0)
j , we

have:

π̃
(n)
l = ∑

j∈Al

π
(n)
j , n > 0 (2.27)

Note that we refer to the behaviour on the aggregated state-space {A1, . . . ,AK}.
Information about the state probabilities within the classes is no longer accessible in

the lumped model. That is acceptable though, as this kind of information was chosen

to be ignored once the state-space was aggregated.

The concept of lumpability can be easily extended to CTMCs by considering the

infinitesimal generator matrix Q instead of the probability matrix P. It is also well

known that if a CTMC is lumpable to some partition ∆, the discrete-time Markov

chain obtained via uniformisation is also lumpable to ∆. Lumpability is equivalent to

the notion of probabilistic bisimulation [60] for CTMCs, as can be seen in [48].

State-space aggregation techniques that rely on this concept typically exploit the

structure of some high-level description of the model. For example in [42], a lumpable

partition is obtained by identifying isomorphic components of a PEPA model.
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2.3.1.2 Quasi-Lumpability

In the general case, a lumpable partition might not exist. Quasi-lumpability, which

was introduced in [34], captures approximate behaviour for Markov models. In order

to describe states that exhibit approximately the same rather than identical behaviour,

we have to relax the conditions in Equation (2.25).

Definition 5 (Quasi-Lumpability). A Markov Chain with probability matrix P will be

quasi-lumpable w.r.t. a partition ∆= {A1, . . . ,AK} and a bound ε, if for any two classes

Ak,Al ∈ ∆, and for any two states i, j ∈ Ak:∣∣∣∣∣ ∑
m∈Al

Pim− ∑
m∈Al

Pjm

∣∣∣∣∣≤ ε, ε≥ 0 (2.28)

The term near-lumpability has been used to describe the same notion in [6], how-

ever we shall use the term “quasi-lumpability” for the rest of this thesis. Most of the

research in the field so far aims at computing bounds for the state probabilities of quasi-

lumpable Markov chains, assuming some partition of the state-space [34, 35, 8]. The

computation of bounds of compositions of Markov chains has also been investigated

in the context of Markov reward models [28] and PEPA [91].

2.3.1.3 Near Complete Decomposability

An alternative notion of approximate equivalence of states relies on the notion of Near

Complete Decomposability (NCD) [27]. In a nearly completely decomposable Markov

chain, we have highly coupled classes, while there is a relatively small probability of

leaving the class. This means that a random walk will only rarely transition from one

class to another. States that belong to such classes are considered to be equivalent, and

this has been used in the literature as a criterion to aggregate the state-space.

In order to put this discussion in a more formal context, let us consider a Markov

chain {Xn} and a partition ∆ = {A1, . . . ,AK} on its state-space. Given Markov chain

state X with successor state X ′, we define the probability of the system moving from

Ak to Al in a single step as Pr(X ′ ∈ Al | X ∈ Ak). For a completely decomposable model

we have:

Pr(X ′ ∈ Ak | X ∈ Ak) = 1

Pr(X ′ ∈ Al | X ∈ Ak) = 0, ∀k 6= l
(2.29)

This means that if the system is within a class Ak, it will never transition out of Ak.

This condition is relaxed for nearly completely decomposable systems, where there is
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only a small probability of transitioning between parts of the system. More formally,

the states that belong in some class Ak are approximately equivalent if:

Pr(X ′ ∈ Ak | X ∈ Ak)≈ 1

Pr(X ′ ∈ Al | X ∈ Ak)≈ 0, ∀k 6= l
(2.30)

2.3.1.4 A Note on the Notions of Equivalence Considered

An aggregation based on a quasi-lumpable partition ∆ = {A1, . . . ,AK} implies that any

information regarding the initial state probabilities is not accessible in the approxi-

mately lumped model. The only information retained is regarding the class proba-

bilities, which are assumed to be useful enough to provide an insight into the model

behaviour.

In contrast, this kind of information is not lost if the original model is nearly com-

pletely decomposable. Similarly to the quasi-lumpability case, we can calculate ap-

proximations for the class probabilities. On top of that, we can also consider the inter-

actions within the classes in isolation [26]. That is, each class can be considered as a

Markov chain that can be solved independently, and therefore we can obtain informa-

tion about the original state-space probabilities.

Considering what has been stated so far, NCD is definitely more desirable as a

property of the model in question. However, our objective is to employ an algorithm

that blindly searches for equivalences in the state-space. The question is, which of

the two properties is more likely to be found in an arbitrary Markov chain. Quasi-

lumpability dictates that state-to-class probabilities for states that belong to the same

class are almost the same. Under this perspective, NCD can be thought of as a special

case of quasi-lumpability, since for all the states that belong to the same class, the prob-

ability of remaining in the class approaches 1, while the probabilities of transitioning

to other classes approach 0. The contrary does not hold however; that is that a quasi-

lumpable (or even lumpable) model does not have necessarily to be nearly-completely

decomposable.

It is our opinion that quasi-lumpability covers a wider range of state equivalences,

and therefore it should be more appropriate as a criterion to aggregate a Markov chain,

whose properties are otherwise unknown. This opinion is evaluated experimentally

later in this thesis, more specifically in Chapters 3, 4 and 6.
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2.3.2 Approximate Aggregation Approaches

In this work, we discriminate the approximate aggregation approaches depending on

the notion of equivalence that they rely on, which can be either quasi-lumpability or

NCD. In this section we briefly outline such approaches in the literature, while a deeper

presentation of the related theory is part of the discussion in Chapter 3.

Many existing approximate Markov chain aggregation techniques, such as [88,

30], rely on the notion of NCD. Methodologies that optimise the partitioning of a

Markov chain with respect to this criterion typically make use of the eigen-properties

of the transition probability matrix. In short, the eigenvectors that correspond to the

largest eigenvalues of a stochastic matrix convey information on which of the states

are strongly connected. The relation between the spectral properties of probability ma-

trices and NCD has been investigated in a number of works [71, 81, 46]. The first

fully developed approach for NCD identification can be attributed to [31], where the

structure of the eigenvectors has been used to partition the state-space of reversible

Markov chains, in a way that minimises the probability of transitioning between par-

titions. In a more recent work [30, 29], a similar approach for partitioning Markov

models has been presented which is based on information theory. These techniques

require that the Markov chain in question is reversible, as they exploit the symme-

try imposed by the detailed balance equation. The identification of nearly-completely

decomposable partitions has been extended to non-reversible models in a number of

works [36, 88, 53], which make use of appropriate reversible models to approximate a

non-reversible Markov chain.

It is in general more difficult to optimise the state-space partition with respect to

a quasi-lumpability related metric. To the best of our knowledge, the only relevant

approach in the literature has appeared in [3], where an abstract framework for this kind

of optimisation is established. An algorithmic identification of lumpability is examined

in [53], however aggregation of non-lumpable partitions has not been discussed.

2.4 Markov Chain Simulation

Stochastic simulation is a traditional approach for exploring the transient and steady-

state properties of massive CTMCs. It simply realises a random walk over the Markov

chain state-space. The output of a simulation algorithm is a trajectory, which involves

a sequence of states, together with information on the time at which each transition
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happens. A collection of trajectories is then used to estimate the state probabilities at

different time-points. Stochastic simulation to a random process is the equivalent of

sampling to a random variable. The larger the number of the trajectories generated, the

more accurate the probability estimates will be. The size of the state-space is irrelevant

to the applicability of the approach, as no explicit representation of the state-space is

required.

Simulation can be particularly effective for certain tasks. For example, a single

(possibly long) simulation run may be sufficient to produce an estimate for the steady-

state probabilities of an ergodic Markov chain, as its steady-state distribution is known

to be unique. Not all the models of interest are ergodic however, neither are stationary

measures always of interest. In order to obtain insights on the transient behaviour of

a system with high confidence, a great number of simulation runs is typically required

in the general case. There are models, especially in the context of chemical reaction

networks, whose complexity renders simulation computationally expensive.

In recent years, there has been an increased interest on exploring the stochastic

behaviour of biological systems via CTMC simulation. The high complexity of bio-

logical systems motivated several approaches oriented towards improving efficiency.

These can be roughly divided into exact and approximate methods. The former are

guaranteed to converge to the true distribution of the stochastic process, while the lat-

ter typically rely on assumptions that if they are not satisfied, a certain amount of error

is introduced. In the following subsections, we review some of the approaches of each

category.

2.4.1 Exact Methods

The exact simulation approaches produce trajectories that involve every single tran-

sition happening, which is the source of their high compositional cost in the case of

complex models. The standard simulation method in the biological domain for CTMCs

is known as the Gillespie algorithm or the Direct Method (DM) [40]. Gibson & Bruck

[38, 39] proposed the Next Reaction Method as an efficient alternative to the DM, es-

pecially in the case of a large number of species and reaction channels.

Most of the exact simulation approaches in the literature typically involve opti-

misations over the DM. The optimised direct method was introduced in [18], where

the reactions that happen most frequently are placed in the beginning of the reaction

search order. A possible drawback though, is that the identification of frequent reac-
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tions requires a number of pre-simulation runs. This idea has been further developed

by McCollum et al. [69], where the reaction sorting is dynamically changed throughout

the simulation. Li & Petzold [64] proposed the use of an index for the reactions that

permits accessing reactions in logarithmic time. Their method is called the logarithmic

direct method.

More recent approaches stray from the path of DM optimisation. For example ER-

leap [75] samples a number of events from a multinomial distribution whose duration is

determined by a Gamma distribution. This is related to the R-leap algorithm discussed

in the next section, which is essentially approximate. However, rejection sampling is

used to correct the erroneous distribution. In another work [84], the notion of partial

propensity function is introduced to efficiently simulate heavily coupled systems.

An approach of particular interest for this work is the K-skip method I [9]. This

method aims at reducing the number of random samples generated, which is related to

some of the contribution of this thesis. A more detailed discussion on K-skip method I

can be found in Chapter 5.

2.4.2 Approximate Simulation

By definition, exact simulation algorithms require the generation of every single event

happening. If those events are too many, there is a limit on how efficient an exact

algorithm can be. In contrast, approximate approaches skip some simulation events,

and eventually simulate a different stochastic process, which approximates the original

one. This results in a significant improvement in efficiency when compared to exact

methods, at the cost of an approximate solution.

One significant issue of the approximate simulation approaches is that they rely

on certain assumptions that may be related to the properties of the system simulated.

That means that most of the approximate methods are particularly efficient and even

accurate for certain types of systems, while typically they cannot be generalised for

arbitrary systems. Depending on the type of the assumptions that approximate methods

depend on, we can discriminate between the two categories discussed in the rest of this

section.

2.4.2.1 Time Leaping Methods

One of the first approximate simulation methods was τ-leaping, introduced in [41].

The τ-leaping method takes advantage of the fact that a single transition usually causes
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only small changes to the system. This assumption is reasonable for many biolog-

ical systems, where we might not care about every single change in the molecular

populations. So the system is advanced by a pre-selected time τ, during which many

transitions may occur. The state of the system will be updated by taking into account

all of the transitions that has happened in each leap. The value of τ should be small

enough to ensure that the propensity functions do not change, and large enough at the

same time, so as to result in a decent speed-up. Some of the related work involves

dealing with practical considerations, such as choosing the leap size [14] and avoiding

negative values for τ [15]. An alternative approach that focuses on these problems is

[22], where a binomial distribution based τ-leap is employed.

The method described above however, also referred to as “explicit” τ-leaping, fails

to efficiently simulate stiff systems. Stiffness in chemical reaction networks refers to

the existence of multiple time-scales, meaning that some reactions occur significantly

more frequently than others. In such cases, the τ-leap has to be set too small, in or-

der to ensure that propensity functions do not change dramatically. In the case of a

large step, the method would be unstable. The implicit τ-leaping method [86] deals

with the stability problem of large step sizes. Despite being stable for fast components

though, it fails to capture the variability of these components. Additional implicit

leaps have to be inserted to restore the damped fluctuations. Another modification,

trapezoidal τ-leaping [19], is claimed to exhibit better accuracy than the explicit and

implicit methods, while it does not suffer from the damping of fast components prob-

lem. Adaptive explicit-implicit τ-leaping [17] switches between explicit and implicit

method throughout the simulation, depending on the stiffness of the system.

In other approaches, such as R-leaping [1] and K-leap [10], stochastic simulation

advances by a certain number of events. The number of events included in such a leap

controls the quality of the approximation that the algorithm provides. These works

are mostly different with respect to the mechanisms used for deciding the number of

events to be skipped.

2.4.2.2 Time-Scale Separation Methods

The problem of stiffness, which means that the system evolves in different time-scales,

motivated the development of time-scale separation methods. The approximation pro-

posed in [85] intended to reduce the model complexity by eliminating the fast dy-

namics that contribute to high computational costs. This was achieved by the quasi-

steady-state assumption, which implies that a subset of species is approximately in
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steady-state with respect to another time-scale.

Time-scale separation has been also exploited in the maximal time step method

[83]. More specifically, an exact method was used for updating species with low levels

of molecules, while the updates for the rest of the species were made by an approximate

τ-leaping method. This procedure demanded partitioning the system into fast and slow

reactions. The approach proposed in [7] expanded these ideas to multiple scales, by

using a combination of the direct method, τ-leaping and solving stochastic differential

equations to simulate reactions in three reaction subsets: slow, intermediate and fast.

The slow-scale stochastic simulation method [16, 13] is based on similar princi-

ples. Concisely, the reactions are identified as slow or fast, depending on their propen-

sity functions. In the same way, the species that are affected by any fast reaction are

also identified as fast species. Thus, the system is partitioned into two processes, fast

and slow, which are definitely not Markovian, as they are dependent on each other. A

Markovian virtual fast process is then introduced, which approximates the real fast one.

On top of that, slow scale propensity functions are defined as the average of the regular

ones over the fast variables. In this context, the fast variables are treated as though

they were in equilibrium. This is the stochastic generalisation of the partial equilib-

rium approximation [87]. Eventually, the evolution of this slow-scale approximation

is simulated. As noted in [12], the more the fast and the slow times are separated, the

more accurate and efficient the algorithm will be. If this is not the case, the system will

be not stiff and the slow-scale simulation should not be applied.

Cao & Petzold claim in [21] that slow-scale simulation has been shown to be ad-

vantageous over other methods such as adaptive τ-leaping, especially when species

with small population are involved in fast reactions. Nevertheless, slow-scale’s inabil-

ity to cope with multiple different time scales is also identified, so they proposed a

combination of the slow-scale and τ-leaping methods. According to the authors, work

is still pending with respect to implementation details and theoretical issues.
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Approximate Markov Chain

Aggregation

In a Markovian process algebra, a system is described as a collection of interacting

components, whose combined state-space can be mapped to a continuous-time Markov

chain. Although it is a powerful approach to construct sophisticated models using such

a high-level representation, it can often result in state-space explosion. That means that

the state-space of the underlying CTMC could be too large to be analysed efficiently,

even if it consists of relatively simple components. In the chapter that follows the

current one, we investigate the effect that component aggregation has on the global

state-space. As we shall see, these components are essentially labelled CTMCs, whose

state transitions are assumed not to follow any obvious pattern that can be exploited.

The concept is to use a machine learning approach to detect patterns in the state-space

of components. This is related to the more generic problem of Markov chain aggrega-

tion.

In this chapter, we deal with the problem of aggregating an unstructured Markov

chain, intending to apply these findings to PEPA components later. Markov chain ag-

gregation implies that the state-space is partitioned into disjoint sets of states. Ideally,

this would result in a model whose transient and steady-state properties are identical

to that of the original. This kind of aggregation is exact, however the resulting model

will be a Markov chain only if the original model is lumpable. If the original model is

not lumpable, then it is only possible to produce a Markov chain that approximates the

true behaviour.

The task of approximate aggregation consists of partitioning the state-space in a

way such that the approximation error is minimised, which is essentially an optimisa-

31
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tion problem. Intuitively, we need to aggregate states that are equivalent. The notion of

lumpability adequately captures state equivalence in Markov chains, as we have seen

in Definition 4. Lumpability is not appropriate in an approximate aggregation context

however, as a Markov chain will either be lumpable to a partition of its state-space

or not. The objective is to define a computational process that converges to a parti-

tion of the state-space that is optimum with respect to some notion of approximate

state equivalence. We investigate two different such notions, namely near complete

decomposability [27] and quasi-lumpability [34], each of which is used to define an

approximate aggregation approach.

One interesting consideration is regarding the appropriate value for the number of

classes K into which a Markov chain will be partitioned. Any Markov chain with N

states is trivially lumpable to a partition with K = N classes that maps each state to its

own class, or to a partition that maps the entire state-space to a single class. Evidently,

neither of these two extremes is useful for Markov chain aggregation. The size for

the aggregated model will have to be somewhere between these two extremes; it has

to be significantly smaller than the original, yet informative enough to produce useful

information. The selection of an appropriate size is a difficult problem that possibly

requires experimentation with several values for K, guided by the experience of the

modeller. Throughout this work, it is assumed that the number of classes is predeter-

mined by the user, in a way that reflects their expectations regarding the possibility of

aggregation. Given a specified number of classes, our objective is to find a partition

that best approximates the original state-space.

Section 3.1 describes a partition optimisation approach that relies on the concept

of near complete decomposability. An alternative partitioning approach is presented

in Section 3.2, where a partition is optimised with respect to a measure that is related

to quasi-lumpability. In Section 3.3, we discuss the effects of state-space aggregation,

and we clarify the assumptions under which an approximately aggregated model is a

Markov chain. Finally, the two aggregation approaches are experimentally evaluated

in Section 3.4. We note that in most cases we make use of the embedded discrete-time

Markov chain that is obtained after uniformisation [54].
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3.1 Near-Complete Decomposability and Spectral Seg-

mentation

We will use the term spectral segmentation of Markov chains to refer to a family of

methods that make use of the eigenvectors of the transition probability matrix, in order

to produce a partitioning of the state-space. As we shall see later in the section, such

a partitioning relies on the assumption that the Markov chain is nearly completely

decomposable.

Near-Complete Decomposability (NCD) is a traditional approach to define approx-

imate state equivalence of Markov chains. To paraphrase Courtois in [26], Markov

chain aggregation can be achieved if the state-space can be partitioned into classes

such that:

• interactions within a class can be studied in isolation with respect to the rest of

the system.

• interactions among classes can be analysed without referring to the interactions

within the classes.

The first statement is true if the system is completely decomposable. This is a trivial

case where parts of the system are independent. If we assume that there are only weak

interactions among the classes, then the system will be nearly completely decompos-

able. The second statement describes a desirable aspect of such systems, which is that

they can be reduced to a smaller system that involves classes and transitions among the

classes only.

Definition 6 (Nearly-Completely Decomposable Stochastic Matrix). A stochastic ma-

trix P will be nearly completely decomposable w.r.t. a partition ∆ = {A1, . . . ,AK} and

a bound ε, if it can be written as a sum of matrices:

P = P−+Pε

where P− is completely decomposable into K stochastic matrices P−1 , . . . ,P−K , or equiv-

alently, P− can be written in block diagonal form (assuming an appropriate ordering

of states):

P− =


P−1

P−2
· · ·

P−K

 (3.1)
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and Pε contains relatively small elements whose entries have absolute values bounded

by ε. Moreover, for P to be stochastic, the row sums of Pε have to be equal to zero,

while the entries away from the block diagonal have to be non-negative:

Pε
i j ≥ 0, ∀i ∈ Ak, j ∈ Al : k 6= l (3.2)

We can now consider a Markov chain with transition probability matrix P that is

nearly completely decomposable with respect to a partition ∆ = {A1, . . . ,AK}. Accord-

ing to Definition 6, it is implied that if a random walk is within a class Ak, then it tends

to stay in Ak. In other words, the probability of transitioning between classes is small,

while there is high probability of performing transitions within a class. More formally,

given Markov chain state X with successor state X ′ we have:

Pr(X ′ ∈ Ak | X ∈ Ak)≈ 1

Pr(X ′ ∈ Al | X ∈ Ak)≈ 0, ∀k 6= l
(3.3)

where Pr(X ′ ∈ Al | X ∈ Ak) is the transition probability from Ak to Al; we will use

Pr(Al | Ak) as a shorthand. Note that this probability is not the same for all i ∈ Ak, as

this will be:

Pr(X ′ ∈ Al | X = i) = ∑
j∈Al

Pi j (3.4)

Given that πππ > 0 is the steady-state distribution of P, we can define the transition

probability from Ak to Al with respect to πππ, which will denote the one-step probability

in the long run:

Pr(Al | Ak) =
∑i∈Ak, j∈Al

πiPi j

∑i∈Ak
πi

(3.5)

Using the notion of NCD, we shall say that two or more states are approximately

equivalent if they belong to a class Ak such that there is very small probability of

transitioning out of the class in the long run. Therefore, we have to formulate an

optimisation problem that selects a partition of the state-space such that the class-to-

class transition probabilities as calculated by (3.5) approximate the values specified

in Equation (3.3). In this section we present an approach that we call NCD-based

aggregation.

3.1.1 Related Work on NCD Identification

The spectral properties of probability matrices is a subject well studied in the literature

[27, 71, 81, 46]. The eigenstructure of a probability matrix contains information about
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which parts of the Markov chain are almost invariant. As can be seen in [31], a proba-

bility matrix P with K invariant subsets of states will have K eigenvalues that are equal

to 1. It has been shown that states that belong to the same invariant set Ai have the

same sign-structure when mapped onto the eigenvector that corresponds to eigenvalue

λ = 1. Perturbation analysis that was performed in [31] shows that this property is

mostly preserved for the largest K eigenvectors for a nearly completely decomposable

system as well. The sign-structure of the corresponding eigenvectors has been used to

identify almost invariant subsets in terms of a graph colouring algorithm.

Deng et al [30, 29] exploit almost invariant states in order to perform state-space

aggregation. They proposed a recursive bi-partitioning strategy that relies on the sign-

structure of the eigenvector of the probability matrix that corresponds to the second

largest eigenvalue.

One important assumption of the theory developed in [31] is that the Markov chain

in question has to be reversible. Non-reversible models are handled in [36], where

the reversible matrix P̂ = (P+ P̄)/2 is constructed, given a stochastic matrix P and

its time-reversal P̄. Invariant sets of states are then identified by applying a fuzzy

c-means clustering algorithm [4] on the eigenvectors of P̂. A similar approach ap-

peared in [88], where a so-called multiplicative reversibilisation has been applied

instead. More specifically, they apply the graph-colouring algorithm of [31] on the

constructed reversible matrix P̂ = PP̄. In a more recent work, Jacobi [53] relies on

the spectral properties of a transformation of the original stochastic matrix in order to

identify nearly-completely decomposable partitions. The transformed matrix is chosen

to be self-adjoint, meaning that eigenvector calculations are robust for non-reversible

Markov chains. Most of the discussion that follows assumes reversible Markov chains,

while we deal with non-reversible models in a way similar to [36].

We shall see that an approach that relies on the concept of NCD is strongly related

to the fundamental aspects of spectral clustering. Our goal is to use some results and

methodologies that are well established in the field of spectral clustering, in order to

apply them for Markov chain segmentation.

Regarding the methods discussed above, only Runolfsson & Ma [88], Deng et al

[30, 29] and Jacobi [53] perform state-space aggregation, i.e. they replace a Markov

chain with a smaller model that has approximately similar behaviour. In the current

section, we are only concerned about identification of nearly-completely decompos-

able partitions. The discussion regarding the construction of an aggregated model is

continued in Section 3.3.
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3.1.2 Implications of Spectral Clustering on NCD

In short, the goal of a clustering algorithm is to identify clusters of “similar” instances

in some input data. This data, also called the dataset, is often expressed as a set

of points in RN , and similarity is subsequently defined as a function of a distance

metric between instances. Although the definition of similarity is not trivial [65], it

is not relevant to our discussion. Using an appropriate notion of similarity, a dataset

is associated with a weighted undirected graph G = (V,E) that is called the similarity

graph. The set of vertices V corresponds to the dataset instances, while the weighted

edges in E capture the pairwise similarities between those instances. Alternatively,

the similarity graph is more conveniently summarised by an affinity matrix S, whose

entries Si j > 0 denote the pairwise similarities between the i-th and the j-th instances.

Spectral clustering involves identifying clusters in a given dataset by partitioning

the underlying similarity graph. Let us consider a subset of the graph nodes A⊆V and

its complement Ā, meaning that A∪ Ā = V and A∩ Ā = /0. In graph theory [32], the

degree of dissimilarity of any such two sets is called the cut, and is equal to the total

weight of the edges between the parts:

cut(A, Ā) = ∑
i∈A, j∈Ā

Si j (3.6)

A way to partition the similarity graph is to choose a segmentation that minimises the

normalised cut criterion [66].

Ncut(A, Ā) =
∑i∈A, j∈Ā Si j

∑i∈A di
+

∑i∈Ā, j∈A Si j

∑i∈Ā di
(3.7)

where di = ∑ j∈V Si j. Intuitively, Equation (3.7) implies that the partition must be such

that the edges between parts of the graph are minimised and the nodes within the same

clusters have a high degree of connectivity. It has been shown in [66] that the discrete

solution of the graph partitioning problem above can be approximated by the solution

of the following generalised eigensystem:

Lxxx = λDxxx (3.8)

where D is a diagonal matrix with entries Dii = ∑ j∈V Si j, and L = D− S is the graph

Laplacian. More specifically, partitioning the graph according to the eigenvectors of

(3.8) that correspond to the smallest eigenvalues approximates the minimisation of

normalised cut.
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3.1.2.1 The Normalised Cut Criterion for Reversible Markov Chains

Meilă & Shi [70] provide a random walks interpretation of the normalised cut criterion,

which is essentially related to NCD. Given an affinity matrix S, the following stochastic

matrix can be obtained:

P = D−1S (3.9)

where D is a diagonal matrix with entries Dii = ∑ j∈V Si j = di. Then, we have the

following eigensystem:

Pxxx = λxxx (3.10)

As Meilă & Shi also noticed in their work, if λ, x is an eigenvalue-eigenvector pair of

the generalised eigensystem in (3.8), then (1−λ), x are solutions of (3.10). Hence, the

probability matrix P will have the same eigenvectors as the generalised graph Lapla-

cian. This implies that the minimisation of normalised cut is approximated by the

eigenvectors that correspond to the largest eigenvalues of P.

It appears that the spectral properties of probability matrices contain information

that is important for clustering. This information however is also related to the notion

of NCD. Using the probability matrix in (3.9), we can plug Si j = diPi j into Equation

(3.7) in order to obtain the following expression for the normalised cut:

Ncut(A, Ā) =
∑i∈A, j∈Ā diPi j

∑i∈A di
+

∑i∈Ā, j∈A diPi j

∑i∈Ā di
(3.11)

Moreover, since S is symmetric, it follows that:

diPi j = d jPji (3.12)

Now consider that P is the transition probability matrix of a Markov chain with

steady-state probability vector πππ. By setting the vector ddd = πππ, we can always construct

a symmetric matrix S with entries Si j = πiPi j, and Equation (3.12) tells us that P is

reversible. Therefore, the entire discussion on the normalised cut is directly related to

the family of reversible Markov chains. More specifically, we can rewrite (3.11) as

follows:

Ncut(A, Ā) = Pr(A | Ā)+Pr(Ā | A) (3.13)

Meilă & Shi used Equation (3.13) to provide an insight on spectral clustering that relies

on the random walk over the nodes of the similarity graph with affinity matrix S. That

is, the minimisation of normalised cut implies minimising the probability of moving

across parts of the graph in a random walk.
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From a Markov chain aggregation perspective, a small value for the normalised

cut between parts of the state-space implies that the probability of transitioning among

parts as defined in (3.3) is small. We can see that the rationale behind spectral cluster-

ing is absolutely compatible with other Markov chain aggregation approaches that ex-

ploit the spectral properties of P. Therefore, given some reversible Markov chain with

transition probability matrix P, it is possible to adapt a spectral clustering approach

to obtain a partitioning of the state-space that can be considered nearly-completely

decomposable.

3.1.2.2 The Non-Reversible Case

One key assumption made in the previous section is that the Markov chain is reversible.

In the general case however, Equation (3.12) may not hold, which implies that the

Markov chain is non-reversible and there is no symmetric matrix S associated with it.

The normalised cut interpretation is no longer valid in this context.

In order to handle non-reversible models, we could construct a reversible one

that shares some properties of the original non-reversible Markov chain and its time-

reversal. Given some Markov process with probability matrix P and steady-state prob-

ability vector πππ, its time-reversal will have transition probability matrix P̄ with ele-

ments:

P̄i j = Pji
π j

πi

In this work, we adopt the approach of [36]; we approximate P with the following

probability matrix:

P̂ =
P+ P̄

2
(3.14)

In the equation above, P̂ can be thought of as the average process of the two. It is easy

to show that P̂ is reversible with steady-state distribution πππ:

πiP̂i j = πi(Pi j +Pjiπ j/πi)/2

= (πiPi j +Pjiπ j)/2

= π j(Pji +Pi jπi/π j)/2

= π jP̂ji

Assuming that we have an algorithm to identify a nearly-completely decomposable

partition on P̂, it can be easily seen that the existence of NCD in P̂ also implies NCD

in P. More formally, let Pr(Al | Ak; P) denote the long term transition probability from
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a class Ak to Al for a stochastic matrix P. Then we have:

Pr(Al | Ak; P̂) =
∑i∈Ak ∑ j∈Al

πi
Pi j+P̄i j

2

∑i∈Ak
πi

= 0.5
∑i∈Ak ∑ j∈Al

πiPi j

∑i∈Ak
πi

+ 0.5
∑i∈Ak ∑ j∈Al

πiP̄i j

∑i∈Ak
πi

= 0.5 Pr(Al | Ak; P) + 0.5 Pr(Al | Ak; P̄)

It is evident that ∀k 6= l, if Pr(Ak |Al; P̂)≈ 0 then both Pr(Ak |Al; P) and Pr(Al |Ak; P̄)

should approach zero. Therefore, every partition for which the constructed reversible

process P̂ is nearly-completely decomposable, also implies NCD for P. Unfortunately

though, this does not work both ways, as the inclusion of the reversed process P̄ may

prevent the detection of a nearly decomposable class on P.

3.1.3 NCD-based Aggregation

So far, we have seen how spectral graph segmentation is related to the notion of NCD.

It is now fairly simple to adapt a spectral clustering approach, so as to define a Markov

chain partitioning strategy that relies on NCD. The clustering algorithm of our choice

is the one proposed by Ng et al in [78], for reasons that will be made clear later in

this section. Recall that in spectral clustering the data is partitioned according to the

eigenvectors of the Laplacian matrix. In [78], the following symmetric version of the

Laplacian matrix is used:

Lsym = D−1/2SD−1/2 (3.15)

By simple linear algebra manipulations, it can be easily shown that P and Lsym are

related as follows:

Lsym = D1/2PD−1/2 (3.16)

In fact Lsym and P are similar, which means that they have the same eigenvalues. It can

also be seen that their eigenvectors are also related; if xxx is an eigenvector of P, then

D1/2xxx will be an eigenvector of Lsym. The Markov chain adaptation of the Ng et al

method is summarised in the steps of Algorithm 1.

The final step of Algorithm 1 clusters the data according to their affinities when

mapped onto the space spanned by the K largest eigenvectors of the Laplacian Lsym.

This process of clustering is described in a rather abstract way as the output of a K-

means clustering approach. This step requires further explanation, as K-means cannot
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Algorithm 1 NCD-based Markov Chain Aggregation

1: Consider a Markov chain with transition matrix P ∈ RN×N

2: Given P̄, which is the time-reversal of P, construct the reversible Markov chain

with transition probability matrix:

P̂ =
P+ P̄

2

3: Construct the diagonal matrix D with entries Dii = πi, where πππ is the steady-state

probability vector of P̂

4: Construct the symmetric Laplacian:

Lsym = D1/2P̂D−1/2

5: Find the eigenvectors that correspond to the K largest eigenvalues of Lsym and form

the matrix:

X = [xxx111xxx222 . . .xxxKKK] ∈ RN×K

6: Normalise each row of X so as it has unit length:

Yi j =
Xi j√

∑
K
j=1 X2

i j

7: Given that each row of Y is a data-point in RK , perform a K-means clustering

guarantee a globally optimal partition. In most implementations, it starts from a ran-

dom initial solution and performs a number of iterations until it converges to a local

optimum [93]. In practice, multiple runs are required to obtain a globally optimal

solution.

The cost of performing K-means has been significantly reduced in terms of the Ng

et al method [78] using an appropriate initialisation. Note that a normalised version of

the eigenvectors is used, which are stored as columns in the Y matrix. In the ideal case,

that is when the Markov chain is completely decomposable, the points Yi ∈RK have the

form (0, . . . ,0,1,0, . . . ,0) where the position of the “1” indicates the connected com-

ponent this point belongs to. Notice that instances that belong to different clusters are

orthogonal to each other. Perturbation analysis that was performed in [78] shows that
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this property is mostly preserved for the largest K eigenvectors for a nearly completely

decomposable system as well. The idea is to select an initial solution in the form of K

centroids, where each centroid is a row of Y . Starting from any row of Y , we repeatedly

choose the next row that is closer to being perpendicular to all the centroids chosen so

far. The angle between different rows of Y can be trivially measured by means of the

inner product; obviously we need to select such a row of Y that the inner product with

the rest of the centroids is as close to zero as possible.

It is claimed in [78] that the subspace spanned by the first K eigenvectors of Lsym

will be stable to small changes of Lsym, if and only if the eigengap δ = |λK − λK+1|
is large. Ideally, for a matrix that is nearly-completely decomposable to K classes,

the first K eigenvalues should be close to 1, while the rest of the eigenvalues should

be bounded away from 1. If the data is not well separated in this way, that simply

means that the Markov chain is not really nearly decomposable into any partition of K

classes. The resulting partition in that case would be one that just approaches NCD,

without really meaning that NCD is achieved, as this would only be true if the K largest

eigenvalues are close to 1.

One limitation of NCD-based aggregation is that it requires knowledge of the

steady-state distribution vector πππ, at the third step of Algorithm 1. In practice, its

calculation negates any requirement to aggregate the model, unless we are interested

in the transient behaviour only. Nevertheless, we shall see in Chapter 4 that this is a

small price to pay if the aggregation is applied in a compositional setting.

3.2 The Quasi-lumpability Approach

One of the main contributions of this thesis is to propose a partitioning strategy for

Markov chains which complies with a notion of approximate state equivalence. We

have seen that most existing approximate aggregation approaches implicitly rely on

the notion of NCD, however we think that quasi-lumpability covers a wider range of

approximate equivalences. In this section, we investigate the possibility of defining

Markov chain partitioning as an optimisation task that relies on the concept of quasi-

lumpability. We introduce a measure that is related to quasi-lumpability and we discuss

how this measure can be used in terms of a partitioning strategy. The method that we

propose involves formulating Markov chain partitioning as a clustering problem.
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3.2.1 A Pseudo-metric related to Quasi-Lumpability

As we have seen in Definition 5, considering a Markov chain with probability matrix

P that is quasi-lumpable w.r.t. ∆ = {A1, . . . ,AK}, then for any two classes Ak,Al ∈ ∆

and for any two states i, j ∈ Ak we have:∣∣∣∣∣ ∑
m∈Al

Pim− ∑
m∈Al

Pjm

∣∣∣∣∣≤ ε, ε≥ 0

The equation above has simply resulted from relaxing the conditions imposed for

lumpable Markov chains in Definition 4. The quantity ε in the equation above cor-

responds to the maximum difference between elements that are assigned to the same

class. If we consider the transition probability matrix P of a quasi-lumpable model,

this can be represented as P = P−+Pε, where P− is a lumpable Markov chain and Pε

is a matrix whose entries have absolute values bounded by the ε quantity of Equation

(2.28). In general, most of the values of Pε should be zero, while the non-zero elements

should be small. As noted in [6], if ε is sufficiently small, the lumpable model with

transition matrix P− approximates the behaviour of the quasi-lumpable one.

Using Equation (2.28), we can define a pseudo-metric that captures a similarity

distance between states. If we consider all classes A1, . . . ,AK , we define the following

quantity for any two states i, j that belong to the same class:

Ei, j =
K

∑
l=1

∣∣∣∣∣ ∑
m∈Al

Pim−Pjm

∣∣∣∣∣ (3.17)

In the equation above, Ei, j will be equal to zero, iff the Markov chain is lumpable with

respect to the partition ∆ = {A1, . . . ,AK}. Since it is possible that Ei, j = 0 when i 6= j,

Ei, j is characterised as a pseudo-metric, rather than as a metric.

Hence, the optimal quasi-lumpable partition will be the one that minimises the

quantity Ei, j for any two states in the same class. However, the value of Ei, j depends

not only on the transition probabilities of states i and j, but also on the way that the

states are distributed across the classes. In other words, a different partitioning of the

state-space will result in a completely different Ei, j quantity for the very same i and j

states. Thus, it is very difficult to design an algorithm that minimises Ei, j with respect

to the partitioning.

3.2.2 Formulation as a Clustering Problem

According to Definition 5, we can think of approximate state-space aggregation as a

problem of minimising the ε quantities with respect to the partition selected. Since
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this is a problem of clustering states with respect to a measure, it is rather intuitive to

turn towards clustering algorithms [93]. By definition, algorithms of this kind produce

clusters of the input data, such that the distance between objects that belong in the

same cluster is minimised.

The pseudo-metric Ei, j that measures dissimilarity between states is not appropriate

to be directly used by a clustering algorithm. The Ei, j values are not constant for each

pair of states, as they depend on the partition. Instead, we show that the pseudo-metric

Ei, j is bounded by a proper distance metric that is independent of the partitioning, and

clustering can be therefore applied in this context.

Starting from Equation (3.17), if we pull the inner sum out of the absolute value,

we will have a larger value according to the triangle inequality:

Ei, j ≤
K

∑
l=1

∑
m∈Al

∣∣Pim−Pjm
∣∣ (3.18)

It is evident that the sums in the inequality above cover the entire state-space of the

original Markov model. Thus, given that the initial model has N states, the right-hand

side of the inequality above can be written as:

Di, j =
N

∑
n=1

∣∣Pin−Pjn
∣∣ (3.19)

which is actually the Manhattan distance in the RN space defined by the transition

probabilities. To put it differently, we consider the states as N-valued vectors, where

each one of the values is a transition probability to another state.

This shows that Di, j ≥ Ei, j. It is relatively straightforward to apply a clustering

algorithm in order to identify K clusters such that the Manhattan distance Di, j is min-

imised for instances that belong to the same cluster. The minimisation of Di, j will

result in small values for Ei, j, and hence for the ε quantity in the quasi-lumpability

definition as well.

3.2.2.1 The Clustering Algorithm

In order to obtain a partitioning of the state-space that minimises the Manhattan dis-

tance for states in the same cluster, we have to apply a clustering algorithm. Typi-

cal clustering techniques, such as K-means or Expectation-Maximisation [5, 93], start

from a randomly-picked initial solution and they perform a number of iterations until

they converge to some optimum. Typically, multiple runs are required, as the solution

obtained at each run is dependent on the initial randomly-picked solution.
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In contrast, spectral clustering [66, 78, 65] implies that a dataset is partitioned

depending on the eigenvectors of the Laplacian matrix, rather than on the local prox-

imities of data-points. Concisely, the K eigenvectors that correspond to the largest K

eigenvalues of the Laplacian are selected. The data is mapped to the rows of the N×K

matrix formed by stacking these eigenvectors as columns. The clusters of data are

well separated in this RK space, meaning that it should be easy to identify a globally

optimal clustering, in contrast to “conventional” clustering techniques whose solutions

are only locally optimal. As different authors use different versions of the Laplacian

matrix, there are several different interpretations of why this approach is successful

[66, 78, 77].

Our approach for Markov Chain Aggregation based on quasi-lumpability makes

use of the algorithm proposed by Ng et al in [78]. Although that is the same algorithm

that we have used for NCD-based aggregation in Section 3.1.3, the effect is different,

as the states are partitioned with respect to their pairwise Manhattan distances, rather

than the transition matrix P. Other than that, the algorithm is identical to Algorithm 1,

including the K-means step, which clusters the data according to their affinities when

mapped onto the space spanned by the normalised eigenvectors of Lsym.

Step 2 of Algorithm 2 involves the computation of a similarity measure between

two states given their distance. As we can see, the definition of similarity depends

on the parameter σ2, which controls how quickly the affinity Si j degrades. In fact, σ2

affects how wide a cluster can be, i.e. large values for σ2 favour wide clusters. As

noted in [65], spectral clustering algorithms do not make strong assumptions on the

form of the clusters. A too large value for σ2 could lead to cluster shapes that are

not meaningful in terms of quasi-lumpability, where we would only want to minimise

the Manhattan distance between each pair of states in the same cluster. Therefore, we

need a value for σ2 that imposes “tight” clusters. Since we use stochastic matrices

only (the generator matrices of CTMCs are uniformised), we know that the maximum

Manhattan distance between any two rows is 2. In Figure 3.1 we can see the effect

of different σ2 values on the similarity function. An appropriate value to enforce tight

clusters is 0.1, which has been used in the experiments later in this thesis.

3.2.3 Spectral Properties and Quasi-Lumpability

We conclude this section by making some comments on how spectral properties of

Markov chains contain information about lumpable partitions. A vector xxx is defined to
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Algorithm 2 The Quasi-Lumpability Approach

1: Consider a Markov chain with transition matrix P ∈ RN×N

2: Compute the affinity matrix S ∈ RN×N with entries:

Si j = exp
(
−∑

N
n=1 |Pin−Pjn|

2σ2

)

3: Construct the diagonal matrix D with entries Dii = ∑
N
j=1 Si j

4: Construct the symmetric Laplacian:

Lsym = D−1/2SD−1/2

5: Find the eigenvectors that correspond to the K largest eigenvalues of Lsym and form

the matrix:

X = [xxx111xxx222 . . .xxxKKK] ∈ RN×K

6: Normalise each row of X so as it has unit length:

Yi j =
Xi j√

∑
K
j=1 X2

i j

7: Given that each row of Y is a data-point in RK , perform a K-means clustering
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be piecewise constant w.r.t. a partition ∆= {A1, . . . ,AK}, if xi = x j for i, j indices in the

same class Ak ∈ ∆. The following proposition, found in [70], relates some properties
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of the eigenvectors of P with lumpability.

Proposition 1 (Meilă & Shi 2001). Let P be the transition probability matrix of a

Markov chain. Let ∆ = {A1, . . . ,AK} be a partition of the state-space. Then, P has K

eigenvectors that are piecewise constant w.r.t. ∆ and correspond to non-zero eigenval-

ues of P, iff the sums P̃il = ∑ j∈Al
Pi j are constant ∀ i ∈ AK and all k, l = 1, . . .K and the

matrix P̃ as defined in Equation (2.26) is non-singular.

The proposition above implies that given a probability matrix P, there are K inde-

pendent eigenvectors of P that are piecewise constant w.r.t. a partition ∆, if and only

if the corresponding Markov chain is lumpable with respect to the partition ∆ and the

lumped P̃ is not singular. Therefore, for the lumpable case we know that at most K

eigenvectors are piecewise constant with respect to the lumpable partition, hence they

contain information about how the states of a Markov chain can be aggregated to form

a lumped model.

If we now relax this definition to allow almost piecewise constant eigenvectors, we

can obtain a quasi-lumpable model. However, we have no information about which

K of the eigenvectors have the property of being piecewise constant. If we just select

the eigenvectors of P that correspond to the largest eigenvalues, we only minimise the

normalised cut. As we have seen in the previous subsection, this implies NCD rather

than quasi-lumpability.

The biggest issue of any effort to infer a lumpable partition from the eigenvectors is

that there is no way to decide which of the eigenvectors contain the information that is

most useful for identifying a lumpable or a quasi-lumpable partition. We think however

that any attempt to distinguish systematically the appropriate eigenvectors could be an

interesting direction for future research.

3.3 Constructing the Aggregated Model

We have discussed so far how to obtain a partitioning of the state-space that is nearly

optimal with respect to a notion of equivalence of states. The next step is to redeem

such a partition in order to construct a Markov chain that approximates the original

model. In this section, we devise an approximate lumping strategy, and we show that

the aggregated models lie within the bounds calculated by stochastic comparison of

Markov chains.
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3.3.1 Approximate Lumping

We shall now assume a Markov chain with transition matrix P that is not lumpable to

∆ = {A1, . . . ,AK}. Given Markov chain state X with successor state X ′, the probability

of transitioning from state i to a class Al will be:

Pr(X ′ ∈ Al | X = i) = ∑
j∈Al

Pi j (3.20)

Since P is not lumpable, then Pr(X ′ ∈ Al | X = i) will not be the same for different

i ∈ Ak. Thus we cannot simply summarise the transition probability from Ak to Al with

a single number as done in Equation (2.26). The Ak class is supposed to form a single

state in the lumped process, which is essentially non-Markovian because the transition

probabilities depend on factors other than the current state alone.

3.3.1.1 Weighted Lumping

In order to produce a lumped Markov chain that approximates the behaviour of the

original model, we need a way to summarise these transitions in a meaningful way. The

only requirement is that each class-to-class transition should be represented by a single

probability. Considering a probability vector www ∈RN , we can define an approximately

lumped matrix P̃ with entries:

P̃kl =
∑i∈Ak ∑ j∈Al

wiPi j

∑i∈Ak
wi

(3.21)

Using the vector www in (3.21), we calculate the weighted average for different state-to-

class probabilities, for states that belong in the same class. We shall refer to this kind

of aggregation as weighted lumping.

In the lumpable case, the result of (3.21) does not really depend on the weighting

vector. For a non-lumpable model though, we have to choose such a www vector that

the aggregated matrix P̃ best approximates the original Markov chain P. The theorem

that follows will give rise to a very interesting argument with respect to what can be

considered as an optimal choice for www.

Theorem 2. Consider a Markov chain with transition matrix P ∈RN×N , whose n-step

state distribution is denoted by πππ(n) ∈ RN . Given a partition ∆ = {A1, . . . ,AK} on P,

let P̃ ∈ RK×K be a lumped matrix with entries as specified in Equation (3.21), whose

n-step distribution is π̃ππ
(n) ∈ RK . If the current step probabilities π̃ππ

(n) are exact, then

π̃ππ
(n+1) will also be exact if www = πππ(n).
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Proof. We assume that the current step probabilities are exact:

π̃
(n)
l = ∑

j∈Al

π
(n)
j

We want to see under which conditions the next step probabilities will be also exact, if

we produce an aggregated matrix P̃ using Equation (3.21). The next step probabilities

for P̃ will be:

π̃
(n+1)
l =

K

∑
k=1

π̃
(n)
k P̃kl

=
K

∑
k=1

π̃
(n)
k

∑i∈Ak ∑ j∈Al
wiPi j

∑i∈Ak
wi

=
K

∑
k=1

∑
i∈Ak

(
π
(n)
i

)
∑i∈Ak ∑ j∈Al

wiPi j

∑i∈Ak
wi

If we want π̃ππ
(n+1) to be exact, it is necessary that we select www such that it is equal to

the true aggregated probabilities ∑i∈Ak
π
(n)
i = ∑i∈Ak

wi. Then we will have:

π̃
(n+1)
l =

K

∑
k=1

∑
i∈Ak

∑
j∈Al

wiPi j

The last equation implies that π̃ππ
(n+1) will be exact if www = πππ(n), as we will have:

π̃
(n+1)
l =

K

∑
k=1

∑
i∈Ak

∑
j∈Al

π
(n)
i Pi j

=
N

∑
i=1

∑
j∈Al

π
(n)
i Pi j

= ∑
j∈Al

N

∑
i=1

π
(n)
i Pi j

= ∑
j∈Al

π
(n+1)
j

In fact, the next step probabilities can be accurately calculated for P̃ if the current

state distribution of P is known. There are two problems with this statement: the first

is that we have to know πππ, rather than the aggregated probabilities π̃ππ, and the second

problem is that P̃ has to be recalculated for every different weighting vector to get

the correct result. The main point of Theorem 2 is that there is no weighting vector

www which can capture the exact distribution of P at any step. It is possible that there

might exist some other www that results in a better approximation for the majority of the

distributions, which however cannot be obtained unless P is extensively solved for its

transient and steady-state probabilities.
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3.3.1.2 Ideal Aggregate

We shall comment on a special case of weighted lumping, where the weighting vector

is chosen to be the steady-state distribution πππ of the original transition matrix P. In the

literature we can find examples where this πππ-weighted lumping has been used [3, 30,

88, 53]. This kind of lumped matrix was identified as ideal aggregate in [6].

P̃kl =
∑i∈Ak ∑ j∈Al

πiPi j

∑i∈Ak
πi

(3.22)

Ideal aggregation captures the fact that in the long run certain states are more prob-

able than others in the same class, and the class-to-class transition probabilities are

modified accordingly. This kind of adjustment results in the approximately lumped

matrix P̃ produced by Equation (3.22), whose steady-state probabilities π̃ππ are exact,

that is:

π̃l = ∑
j∈Al

π j (3.23)

The proof of this statement simply follows from Theorem 2, if we consider πππ(n) = πππ.

Nevertheless, this property is not particularly useful, since the steady-state vector πππ is

pre-calculated for the P matrix. Moreover, we think that this kind of aggregation is

not appropriate for approximating the transient behaviour, as a strong bias towards the

steady state behaviour is inherently introduced.

3.3.1.3 Uniform Lumping

Considering this discussion on weighting vectors, we think that it is most appropriate

that www is uniformly distributed, meaning there is no bias among the states in the same

class. As a matter of fact, a uniform www captures our ignorance about the state distri-

bution. The entries of the approximately lumped matrix P̃ can then be more simply

calculated as follows:

P̃kl =
∑i∈Ak ∑ j∈Al

Pi j

|Ak|
(3.24)

where |Ak| denotes the number of states included in class Ak. In the case of quasi-

lumpable models in particular, the Pr(Al | i) probabilities will be approximately the

same for i ∈ Ak. The mean value is a reasonable approximator for populations charac-

terised by almost the same value. The quality of the approximation is solely dependent

on the partition. It is evident that in the lumpable case, Equation (3.24) degrades to

Equation (2.26), as it would for any weighting vector.
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As we show next, one important aspect of this uniform lumping strategy is that it

produces aggregated Markov chains whose behaviour lie within the stochastic bounds

that can be obtained for the original model. This is more extensively discussed in

the section that follows, where we also introduce some concepts regarding stochastic

comparison of Markov chains.

3.3.2 Stochastic Bounds

We know that the behaviour of an approximately lumped matrix P̃ produced by Equa-

tion (3.24) is definitely not equivalent to the original Markov chain P, unless P is

lumpable to the partition ∆. In a different case, the calculated transient and steady-

state probabilities will only approximate the probabilities in the true model. Such ap-

proximate methods are typically more useful if they can guarantee that the estimated

measure is within certain bounds.

Stochastic comparison of Markov chains provides bounds for both transient and

stationary measures. Knowing that P is not lumpable to ∆, the idea is to produce

stochastic matrices L and U that will serve as lower and upper bound for P corre-

spondingly. If both L and U are lumpable to ∆, then we can accurately use their lumped

versions to obtain the desired bounds.

3.3.2.1 Stochastic Comparison of Random variables

To further explain stochastic comparison, we have to introduce some definitions.

Definition 7 (Stochastic Order). If X and Y are random variables that take values on

an ordered state-space S, then X is said to be less than Y in the strong stochastic sense,

that is X <st Y , iff for all k ∈ S:

Pr(X > k) ≤ Pr(Y > k) (3.25)

A stochastic order describes the concept of a random variable Y taking values that

are most probably higher than the values of a random variable X . Following Definition

7, we can obtain an upper bound for the cumulative probability distribution of X . Thus,

if X <st Y we have:

Pr(X ≤ k) ≥ Pr(Y ≤ k) (3.26)

Assuming that we need to approximate a random variable X , we have to define random

variables Y,Z such that Z <st X <st Y , so as to produce bounds for the cumulative
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probabilities of X :

Pr(Y ≤ k) ≤ Pr(X ≤ k) ≤ Pr(Z ≤ k) (3.27)

Finally, using Equation (3.27) we can obtain bounds for the probability values. A lower

bound for the value of Pr(X = k) will be:

Pr(X = k)≥ Pr(Y ≤ k)−Pr(X < k) (3.28)

≥ Pr(Y ≤ k)−Pr(Z < k) (3.29)

since Pr(X < k) cannot be larger than Pr(Z < k) according to (3.27). In the same way,

an upper bound for the probability Pr(X = k) will be:

Pr(X = k)≤ Pr(Z ≤ k)−Pr(X < k) (3.30)

≤ Pr(Z ≤ k)−Pr(Y < k) (3.31)

since Pr(X < k) is bounded by Pr(Y < k).

3.3.2.2 Stochastic Comparison of Markov Chains

In practice we have a Markov process {Xt}, and we want to obtain two lumpable

Markov processes {Yt} and {Zt} such that {Zt} <st {Xt} <st {Yt}. That is the state

distribution of Xt should be bounded by Yt and Zt for any t ≥ 0. For simplicity, we

shall only discuss the case of DTMCs, as the same results apply for CTMCs after

uniformisation is performed. In the current section, we briefly describe the approach

used in [33] to produce lumpable bounds on Markov chains, which we shall use in the

experiments of Section 3.4. The method relies on Theorem 3, which itself makes use

of the notions of comparability and monotonicity for stochastic matrices defined below.

Note that in the definition of comparability, the “<st” operator has been overloaded to

also cover stochastic comparison between stochastic matrices.

Definition 8 (Comparability). If P and P′ are stochastic matrices, then we shall say

that P <st P′ iff for all i, we have Pi∗ <st P′i∗ (we consider the rows of P and P′ as

vectors).

Definition 9 (Monotonicity). Let P be a stochastic matrix, then P is st-monotone iff

for any of the probability vectors x,y, if x <st y then xP <st yP.

Comparability enables us to perform stochastic comparison of Markov chains by

simply comparing their transition probability matrices. Knowing however that P is less
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than P′ in the strong stochastic sense is not adequate to assume the same for their corre-

sponding Markov chains. It is also requires that either P or P′ is monotone, according

to the theorem below, whose proof can be found in [33].

Theorem 3. Let {Xn} and {Yn} be DTMCs with transition probability matrices P and

P′ correspondingly. Then {Xn}<st {Yn} if:

• X0 <st Y0,

• P <st P′,

• either P or P′ is st-monotone.

Thus following Theorem 3, in order to bound the behaviour of a non-lumpable

matrix P, we have to construct stochastic matrices L and U such that L <st P <st U

where both L and U are chosen to be monotone. If both L and U are lumpable to ∆,

then we can accurately use their lumped versions L̃ and Ũ , which will serve as lower

and upper bound for P correspondingly.

3.3.2.3 Bounds for Approximately Lumped Markov Chains

We shall see that the approximately lumped matrix P̃ whose entries are given by Equa-

tion (3.24) is related to the stochastic bounds. In fact, if P is bounded by L and U ,

then P̃ is also bounded by the lumped versions of those matrices, as captured in the

following proposition.

Proposition 2. Consider stochastic matrices P, L and U such that L <st P <st U. Let

∆ = {A1, . . . ,AK} be a partition that is lumpable for L and U but not for P. If L̃ and

Ũ are the lumped versions of L and U correspondingly, and P̃ is the approximately

lumped version of P w.r.t. ∆, then L̃ <st P̃ <st Ũ .

Proof. We shall prove the proposition for the upper and the lower bound indepen-

dently. Since P <st U , for each row we have Pi∗ <st Ui∗, which implies that ∀α ∈
{1, . . . ,N} we have:

N

∑
j=α

Pi j ≤
N

∑
j=α

Ui j

α

∑
j=1

Pi j ≥
α

∑
j=1

Ui j
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Let β be a class index such that a ∈ Aβ. We can then break the summation over j into

two summations: over classes of ∆ and over instances within the classes:

β

∑
l=1

∑
j∈Al

Pi j ≥
β

∑
l=1

∑
j∈Al

Ui j

The inequality above is true for any row. We can rewrite the inequality by considering

the lumped version of U :

β

∑
l=1

∑
j∈Al

Pi j ≥
β

∑
l=1

Ũkl, ∀i ∈ Ak

We can sum both parts over i ∈ Ak. Note that ∑
β

l=1Ũkl is independent of i ∈ Ak, so we

simply multiply by the class size |Ak|:

β

∑
l=1

∑
i∈Ak

∑
j∈Al

Pi j ≥ |Ak|
β

∑
l=1

Ũkl

We can divide both parts by the size of the Ak class. Then P can be replaced by the

approximately lumped version given by Equation (3.24). Hence, we have:

β

∑
l=1

P̃kl ≥
β

∑
l=1

Ũkl

which implies that P̃k∗ <st Ũk∗, and therefore P̃ <st Ũ .

Regarding the lower bound, starting from Li∗ <st Pi∗ we can use exactly the same

steps to show that L̃ <st P̃.

In the experiment of Section 3.4.2 we demonstrate an example of how the be-

haviour of a uniformly lumped model is contained within the stochastic bounds. The

bounding algorithm used is LIMSUB [33], whose acronym stands for lumpable irre-

ducible monotone stochastic upper bounding. We note however that the implication of

Proposition 2 is that any uniformly lumped Markov chain will be bounded, regardless

of the bounding algorithm.

Nevertheless, that does not automatically imply that we have a good approxima-

tion. Even a poor approximation will still be within the bounds obtained by stochastic

comparison of Markov chains, but that is because these bounds are simply too wide

to provide useful information. In fact, approximation quality depends on the partition.

A good partition provides an accurate approximation which is ideally accompanied by

tight bounds.
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3.4 Experiments and Discussion

In this final section, we perform a series of experiments in order to see how approxi-

mate aggregation behaves. The main task is to evaluate and compare the approximation

quality of the two approaches that we discuss in this chapter: NCD-based aggregation

(Algorithm 1) and quasi-lumpability-based aggregation (Algorithm 2). Moreover, we

also investigate the effects that these approaches have on the calculation of lumpable

stochastic bounds.

3.4.1 Comparison of Aggregation Approaches

In order to evaluate approximation quality, we have to compare the behaviour of an

approximately aggregated Markov chain with the behaviour of the true model. This

can be achieved by comparing the steady-state and the transient distributions between

the original and the reduced model.

The K-L divergence is a very popular measure for comparing probability distribu-

tions. For two probability vectors ppp and qqq, it is defined as:

KL(ppp||qqq) = ∑
i

pi log
pi

qi
(3.32)

Given a partition of the state-space with K classes, we define ppp as a K-valued vector

containing the aggregated probabilities of the original system according to the partition

of the state-space used. Then, qqq will be a K-valued vector containing the probabilities

of the corresponding reduced model, which is produced by either the quasi-lumpability

or the NCD-based approach.

It is known that KL(ppp||qqq)≥ 0, where the equality holds if, and only if, ppp = qqq. For

a good approximation, the K-L divergence from the original state distribution should

approach zero. However, that should not be used as an absolute measure of quality, as

it depends on the distributions that are compared. Given that any comparison is made

with respect to the same original state distribution ppp, we can produce comparative

results; that is to see which one of the approximation methods results in the lowest

K-L divergence from ppp.

Figure 3.2 summarises the results for a number of experiments. Each experiment

involves a randomly generated DTMC featuring 400 states, whose state-space is par-

titioned using either the NCD-based or the quasi-lumpability approach. The model

is then approximately lumped to 100 states according to Equation (3.24). The values

plotted are the K-L divergences at different stages of the generated Markov processes,
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until the steady-state is reached. The number of steps until the steady-state behaviour

is reached has been estimated through experimentation. Since only DTMCs are con-

sidered for simplicity, the probability distribution at different steps has been calculated

using simple linear algebra. The results are presented in a logarithmic scale to max-

imise visibility.

-16

-14

-12

-10

-8

-6

-4

-2

 1  2  3  4  5  6  7  8  9  10  11

K
-L

 D
iv

e
rg

e
n

c
e

 (
L

o
g

)

Time (steps)

Quasi-Lumpability
NCD

(a) Unstructured DTMCs

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0  2  4  6  8  10  12  14  16  18

K
-L

 D
iv

e
rg

e
n

c
e

 (
L

o
g

)

Time (steps)

Quasi-Lumpability
NCD

(b) Quasi-lumpable DTMCs

-40

-35

-30

-25

-20

-15

-10

-5

 1000  2000  3000  4000

K
-L

 D
iv

e
rg

e
n

c
e

 (
L

o
g

)

Time (steps)

Quasi-Lumpability
NCD

(c) Nearly completely decomposable DTMCs

Figure 3.2: For a number of randomly generated DTMCs, we have calculated the K-L

divergences (in logarithmic scale) between the true and the approximate state-space

distribution at different times, for the two aggregation approaches: NCD-based and

quasi-lumpability. Three different classes of DTMCs have been considered: unstruc-

tured, quasi-lumpable and nearly-completely decomposable.

We have considered three different classes of randomly generated models. The first

class involves models that feature no particular structure. For each DTMC, the entries

of the transition probability matrix were set to be non-zero with probability 0.1. The

non-zero entries were drawn from a continuous uniform distribution and subsequently

normalised. Figure 3.2(a) depicts the results of 10 unstructured DTMCs. It appears
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that there is a small tendency for the quasi-lumpability approach to produce smaller

values for the K-L divergence. We would expect that an approach that relies on quasi-

lumpability would be more accurate, as quasi-lumpability represents a more generic

family of approximate equivalences. We have to note however that the approach as

described in Algorithm 2 is only sub-optimal. Recall that only an upper bound on a

metric related to quasi-lumpability is minimised, rather than the metric itself. Given

the current state of Algorithm 2, our suspicion is that models should favour one or the

other approach, depending on structural properties.

The next two classes of models include DTMCs that have been chosen to be either

lumpable or nearly-completely decomposable with respect to some random partition.

In this way, we know that there is a behavioural pattern to be discovered. In particu-

lar, the second class involves quasi-lumpable models. For each DTMC, we have first

generated a lumped version of 100 states in the same way as the unstructured models.

Then, a random mapping from 400 states to 100 has been produced, and each transition

in the aggregated state-space has been randomly distributed to the states of the corre-

sponding class. Eventually, noise was introduced to those lumpable models, ensuring

that they are quasi-lumpable. Figure 3.2(b) depicts the results of 10 quasi-lumpable

DTMCs. It appears that the quasi-lumpability approach has a stronger tendency to

produce accurate results this time, compared to the NCD-based approach.

The last class involves nearly-completely decomposable models. For each DTMC,

100 strongly connected components have been randomly generated, while weak tran-

sitions have been added between components. Figure 3.2(c) depicts the results of 10

nearly-completely decomposable DTMCs. The two aggregation approaches seem to

be quite similar in terms of accuracy for many instances. There are some instances

however for which the quasi-lumpability approach fails to identify a good partitioning,

in contrast with the NCD-based approach which appears to be more robust. As a final

comment on the experimental results presented, we think that the applicability of each

aggregation approach depends on the properties of the model in question.

3.4.2 Effect on Stochastic Bounds

We have seen that both aggregation approaches that we consider in this chapter pro-

duce reasonable approximations for some initial Markov chain, despite the fact that

they cannot produce any guarantees for the calculated probabilities in the form of prob-

ability bounds. Nevertheless, such probability bounds can be easily obtained by using
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any relevant method in the literature. As a matter of fact, approximate aggregation as

discussed in this thesis results results in a partition of the state-space, which can be

used to obtain lumpable stochastic bounds for the original Markov chain.

What we hope is that an appropriate partition would probably produce tight bounds.

Unfortunately, that does not seem to be the case as we shall see by a counter-example.

We consider one of the unstructured randomly generated models of the experiment in

Figure 3.2(a). The model in question features 400 states and it has been reduced to

100 states, just as in the experiments in the previous section. We plot the CDFs of

an aggregated model P̃ against the CDFs of the initial Markov chain, as long as the

upper and lower bounds obtained by the LIMSUB algorithm [33]. Each diagram in the

figures that follow depicts these CDFs at a different time. Note that the probabilities

presented are in the aggregated state-space.
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Figure 3.3: CDF approximation at different times for the NCD-based approach. A ran-

domly generated DTMC has been considered.

In Figure 3.3 we present the results for a partition obtained using the NCD-based

aggregation approach. Although the CDF approximation appears to be quite accurate,
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the bounds are not tight enough to provide us any useful information. It appears that

there is little if no relation between the approximation quality and the quality of the

bounds.
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Figure 3.4: CDF approximation at different times for the quasi-lumpability approach. A

randomly generated DTMC has been considered.

The first result was rather discouraging, but we shall also examine the effect of

a partition given by the quasi-lumpability approach in Figure 3.4. Despite the accu-

rate approximation result, just as happen with the NCD-based approach, the stochastic

bounds do not appear to be informative either.

These empirical results only verify that bounding the stochastic behaviour of an

aggregated Markov chain is a great challenge. Maybe the biggest issue with stochastic

comparison is that it is required that at least one of the two matrices is monotone. The

need to make the bounding chain monotone destroys the similarity with the original

Markov chain. The closer to monotone the original matrix is, the fewer manipulations

will be required to obtain an upper bound. In that case, stochastic bounds could be

tight enough to produce useful results.
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Nevertheless, our example has shown that even in cases where stochastic compar-

ison of Markov chains cannot produce bounds that are tight enough to be informative,

approximate aggregation may still be able to produce estimates of the state probabili-

ties that are accurate enough.

3.5 Summary

The problem of Markov chain aggregation has been traditionally treated in terms of the

notion of NCD. We have reviewed several approaches that rely on the spectral prop-

erties of transition probability matrices to identify nearly-completely decomposable

parts of the state-space. We have seen that spectral segmentation of Markov chains is

associated with the fundamental aspects of spectral clustering, and we have adapted a

spectral clustering algorithm to perform Markov chain aggregation.

We have also defined an alternative strategy of state-space partitioning that relies

on the concept of quasi-lumpability. More specifically, quasi-lumpability has been

associated with the minimisation of the Ei, j measure between states in the same class.

We have shown that a simple clustering algorithm can be used to obtain an upper bound

for this measure. Intuitively, the quasi-lumpability approach should be superior, since

a nearly completely decomposable system is essentially quasi-lumpable, but not vice-

versa. Experimental results do not support this hypothesis though. In fact, it appears

that some models favour the quasi-lumpability approach, while others the NCD-based

approach. This can be attributed to the fact that the quasi-lumpability method is sub-

optimal, since it minimises only an upper bound for Ei, j. A direct optimisation of

Ei, j is challenging, since the Ei, j measure between states i and j will be different for

different partitions of the state-space, we think however it is an interesting subject for

future research.

Given a state-space partition by any of the two aforementioned partitioning ap-

proaches, we have discussed how an approximation of the original Markov chain can

be constructed. The transition probabilities in the aggregated state-space have been

summarised by the average transition probabilities from one class to another. We have

commented on the use of a weighting scheme, and we have shown that a uniform

weighting vector is the only reasonable choice in the general case. Moreover, we have

shown that the behaviour of a uniformly lumped Markov chain lies within the lumpable

stochastic bounds that can be obtained for a given partition.





Chapter 4

Compositional Aggregation

So far we have considered approximate aggregation for unstructured Markov chains.

These methodologies do not rely on particular properties that the modeller must be

aware of. The idea was to employ an unsupervised machine learning algorithm that is

able to detect behavioural patterns in the state-space that might not be visible from a

high-level perspective.

Although aggregation strategies free of assumptions related to structure are def-

initely desirable, they typically come at a high computational cost. The process of

aggregating the Markov chain using such means is easily more expensive than solving

it directly. The NCD-based approach is a characteristic example, as it requires the cal-

culation of several of the eigenvectors of the transition probability matrix, whereas only

the first eigenvector is required for solving for the steady-state behaviour. Similarly, the

quasi-lumpability approach involves the use of a spectral clustering algorithm, which

also requires several eigenvectors.

Completely unstructured Markov chains are almost never assumed in modelling.

Markov chains are typically generated by formalisms such as queueing networks [57,

89, 74], Petri nets [76], or stochastic process algebras. Such modelling languages pro-

vide a high-level representation for a Markovian system. In the case of PEPA in par-

ticular, models are described as combinations of components that interact with each

other. Although no particular structure is assumed for the components themselves, the

existence of components provides a structure that we can rely on to efficiently aggre-

gate the model. A component state-space is significantly smaller than the state-space

of the whole system, which is bounded above by the product of all the components

involved. An approximation on the component level can be very efficient and it can

also result in a considerable reduction of the global state-space.

61
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In this chapter we discuss how approximate aggregation can be applied in a com-

positional way for PEPA models. PEPA components can be mapped to labelled tran-

sition systems, whose transitions feature exponentially distributed delays. In other

words, PEPA components are essentially labelled CTMCs, a fact that makes all of the

discussions on approximate CTMC aggregation relevant.

In Section 4.1 we establish the conventions followed throughout this chapter. In

Section 4.2 we develop an appropriate notion of approximate component equivalence.

The issues related to approximate component aggregation are described in Section

4.3. Section 4.4 investigates composition for aggregated components. We follow two

distinct approaches to this problem. The first solution involves a Kronecker represen-

tation, which is a refinement of the method we have used in [72]. In order to deal

with some limitations of the Kronecker representation, we alternatively propose a new

structured operational semantics for the PEPA language that takes into account the ag-

gregated component state-space. Finally, examples of the compositional aggregation

approaches are given in Section 4.5.

4.1 Terminology and Conventions

In the PEPA language, a component name C is bound to a process definition. Accord-

ing to the semantics of the language, the derivative set of C, denoted as ds(C), along

with the activities involved define a labelled transition system. In terms of the current

chapter, a component C will actually refer to the labelled transition system with state-

space ds(C), and transitions which are specified by the semantics of Figure 2.1. In

other words, our use of the term “component” involves the set of process definitions

for which the semantics induce a directed graph with one connected component.

According to standard PEPA notation [48], the set of actions of which a component

C is capable is denoted by A(C). Since we are interested in the labelled transition

system induced by C, we shall make use of the complete set of actions of a component

C, which is defined as follows:

~A(C) =
⋃

C′∈ds(C)

A(C′) (4.1)

Assuming an ordering of states in the derivative set ds(C), we shall describe the

behaviour of components in terms of matrices, whose entries contain the rates of each

individual activity. Given the complete set of actions of C, we have an action rate
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matrix Ra for every action a ∈ ~A(C). The entries of each Ra matrix are determined by

the language semantics:

• An entry Ra,i j > 0 will denote the rate of the activities of type a from the i-th

state to the j-th state of C.

• A value 0 for Ra,i j simply means that there is no activity of type a from the i-th

to the j-th state of C.

• An unspecified rate w×> for Ra,i j implies that the activities of type a from the

i-th to the j-th state of C are passive, having weight w ∈ N.

If we ignore the action labels, we can simply calculate the sum R = ∑a∈~A(C)
Ra,i j,

which is the transition rate matrix of the underlying CTMC. A partition on the state-

space of C can be obtained if we apply any of the partitioning approaches discussed in

Chapter 3; these are the NCD-based approach in Section 3.1, and the quasi-lumpability

approach of Section 3.2. In fact, R cannot be calculated at all times, as some of the ac-

tivities are shared, meaning that the corresponding rates depend on other components.

In the section that follows we explain which of the action rate matrices are used as

input for the partitioning process.

Any connected component prior to the application of the cooperation operator con-

stitutes the labelled transition system of a sequential component. By the term “parallel

component” we refer to the connected labelled transition system that is derived by the

application of the cooperation operator for any two connected components. Parallel

and sequential components are not substantially different; as it has been shown in [24]

for every parallel component there exists a sequential one that is isomorphic. In the

experiments of Section 4.5, we apply the approximate reduction algorithms to popu-

lations of identical components. For the sake of simplicity however, in most of the

discussion in this chapter we consider small sequential components.

4.2 On Equivalence of PEPA Components

Compositional approximation requires that we replace C with a component C̃ that is

approximately equivalent, where C̃ results from aggregating C. Equivalence of Markov

chains of different size is adequately captured by the notion of lumpability. By relax-

ing the conditions imposed by lumpability, it was possible to define an approximate
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version called “quasi-lumpability”. We intend to apply a similar approach for the state-

space of PEPA components. In this section, we investigate different notions of PEPA

component equivalence and we discuss how these can be applied in an approximate

setting.

4.2.1 Strongly Equivalent Components

In the original work on PEPA [48], several equivalences for PEPA components have

been introduced, including isomorphism, weak isomorphism, strong bisimilarity and

strong equivalence. Isomorphism is not really suitable for our purposes here, as the

components involved are required to have state-spaces of the same size. Weak isomor-

phism and strong bisimilarity allow components of different size, however they do not

induce lumpability for the underlying CTMCs.

Strong equivalence combines the two desirable features needed to define approx-

imate component equivalence in the style of quasi-lumpability. It has been shown

in [48] that if two components C and C̃ are strongly equivalent then their underlying

CTMCs will be lumpably equivalent. Moreover, the compositions C BC
L

C′ and C̃ BC
L

C′

will be also strongly equivalent for any C′.

In the context of state-space aggregation, a component C̃, which is strongly equiva-

lent to C, results from aggregation given some partition on the state-space of C. Strong

equivalence can then be defined in terms of the action rate matrices and a partition ∆

on the state-space of C.

Definition 10 (Strong Equivalence). Let C be a PEPA component with transition rate

matrices Ra, ∀a ∈ ~A(C). A partition ∆ = {A1, . . . ,AK} on ds(C) induces a strongly

equivalent aggregated component, if for any two classes Ak,Al ∈ ∆, and for any two

states i, j ∈ Ak:

∑
m∈Al

Ra,im = ∑
m∈Al

Ra, jm, ∀a ∈ ~A(C) (4.2)

Although strong equivalence for any PEPA component induces a lumpable partition

for the underlying Markov chain, we can achieve the same result using some weaker

notion of equivalence. In fact, we can easily see that strong equivalence as defined in

[48] is too strict, especially in an approximate setting. For example, let us consider the

following component definition:

P1
def
= (a,r).P2 +(a,r).P3

P2
def
= (b,r).P1 +(b,r).P3

P3
def
= (c,rc).P1
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(a,r)

(b,r)

(b,r)

(a,r) (c,rc)

P2

P3

P1

Figure 4.1: Derivation graph for P1

By applying the PEPA operational semantics, we can obtain the derivation graph of

Figure 4.1, which is characterised by the following rate matrices:

Ra =


0 r r

0 0 0

0 0 0

 , Rb =


0 0 0

r 0 r

0 0 0

 , Rc =


0 0 0

0 0 0

rc 0 0


The underlying CTMC is lumpable to the partition ∆ = {{P1,P2},{P3}}. Lumpability

follows from the fact that both P1 and P2 may perform a transition to P3 at the same

rate, as we can see in the transition rate matrix R = Ra +Rb +Rc:

R =


0 r r

r 0 r

rc 0 0


Nevertheless, P1 and P2 are not strongly equivalent, since P3 is reached by activities

of different action type in each case. If there is no synchronisation on either action a or

b, we could treat them as a single action type and therefore obtain a lumpable partition.

This is an example of strong equivalence being too strict, as there would be no problem

to characterise {P1,P2} as a set of equivalent components.

In an approximate aggregation setting, strong equivalence might also be problem-

atic for one more reason. In Chapter 3 we have discussed some approaches to find a

nearly optimal partition for a Markov chain. A key characteristic of these approaches

is that they rely heavily on data. Strong equivalence is judged by several transition
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rate matrices, one for each action. In contrast, lumpability is judged by a single matrix

which holds the sums of the individual activity rates. Lumpability depends on a struc-

ture that is typically more dense. We need a form of equivalence that imposes identical

behaviour for shared actions, while the individual component actions are treated as a

single action type, just as in the case of lumpability.

4.2.2 Modified Strong Equivalence

A weaker form of strong equivalence has been defined for stochastic automata in [2],

which has been used in terms of an approximate aggregation process in [3]. In order

to adopt this definition in the context of PEPA models, it is helpful to consider the

following lemma:

Lemma 1. Let C be a PEPA component with ~A−(C) set of individual actions and
~A+(C) set of shared actions, where ~A−(C)∪~A+(C) =~A(C) and ~A−(C)∩~A+(C) = /0.

We shall say that the individual behaviour of C is characterised by the individual rate

matrix:

R− = ∑
a∈~A−(C)

Ra (4.3)

while the shared behaviour of C is characterised by the rate matrices: Ra, ∀a∈ ~A+(C).

A useful observation regarding Lemma 1 is that we can summarise the individual

behaviour of any component in a single rate matrix. We shall now define modified

strong equivalence for a component C in terms of a partition on its state-space:

Definition 11 (Modified Strong Equivalence). Let C be a PEPA component with tran-

sition rate matrices Ra, ∀a ∈ ~A(C). A partition ∆ = {A1, . . . ,AK} on ds(C) induces

an equivalent aggregated component in the sense of modified strong equivalence, if for

any two classes Ak,Al ∈ ∆, and for any two states i, j ∈ Ak:

∑
m∈Al

Ra,im = ∑
m∈Al

Ra, jm, ∀a ∈ ~A+(C) (4.4)

and

∑
m∈Al

R−im = ∑
m∈Al

R−jm (4.5)

In the case of modified strong equivalence, two components are considered to be

equivalent if they agree on the shared actions and on the total of individual actions
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only. As long as an activity is local, we do not really care what the action type is in

the context of modified strong equivalence. For the shared actions however, there is no

legitimate way to produce a meaningful summary in a single matrix. Recall that the

rates of these actions are not fully determined in isolation, as they depend on the global

state. More specifically, the PEPA semantics impose that the rate of a shared activity

is the minimum of the apparent rates of the components involved. This minimum also

depends on the state of the other cooperating component, so it cannot be determined a

priori i.e. without deriving the global state-space.

By relaxing the conditions of modified strong equivalence in a way similar to quasi-

lumpability, we obtain the following approximate notion of equivalence for PEPA com-

ponents:

Definition 12 (Modified Quasi-Strong Equivalence). Let C be a PEPA component with

transition rate matrices Ra, ∀a∈~A(C). A partition ∆= {A1, . . . ,AK} on ds(C) induces

an approximately equivalent aggregated component in the sense of modified quasi-

strong equivalence, if for any two classes Ak,Al ∈ ∆, and for any two states i, j ∈ Ak:∣∣∣∣∣ ∑
m∈Al

Ra,im− ∑
m∈Al

Ra, jm

∣∣∣∣∣≤ ε, ε≥ 0, ∀a ∈ ~A+(C) (4.6)

and ∣∣∣∣∣ ∑
m∈Al

R−im− ∑
m∈Al

R−jm

∣∣∣∣∣≤ ε, ε≥ 0 (4.7)

According to the PEPA semantics, the individual activities of a component C in-

duce a CTMC, whose generator matrix can be directly derived by appropriately modi-

fying the diagonal entries of the individual rate matrix R−. Note that this CTMC does

not accurately capture the behaviour of C, as the shared actions have been ignored.

However, if the set of shared actions is relatively small, we can expect that R− will

be much more dense than the total of Ra, ∀a ∈ ~A+(C). If this condition holds and

R− captures a significant part of the component behaviour, it should be reasonable to

apply an approximate aggregation algorithm to R−, in order to obtain a nearly optimal

partition ∆ with respect to the individual behaviour of C.

4.2.2.1 Dealing with Deadlocks

Finally, we discuss a practical issue with respect to the use of the individual rate ma-

trix R− as input to the partitioning approaches of Chapter 3. In practice, ignoring a

shared activity in a particular component may introduce deadlocks in its behaviour.
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For example, consider a component C with a shared action type a and the following

rate matrices:

R− =



0 0 0 0 2

3 0 6 0 0

0 3 0 0 4

0 0 0 0 0

0 0 0 5 0


Ra =



0 0 3 0 0

0 0 0 0 0

0 0 0 1 0

0 3 0 6 0

0 0 2 0 0


In the example above, R− contains a deadlock at the fourth state, meaning that there is

no non-trivial steady-state distribution over R− in isolation, hence no way to compute

the reversible process needed to apply the NCD-based approach, as described in Sect.

3.1.2.2. To solve this problem, we use the R̂− matrix instead, which is constructed as

in the following example:

R̂− =



0 0 ε 0 2

3 0 6 0 0

0 3 0 ε 4

0 ε 0 ε 0

0 0 ε 5 0


where ε > 0 is a small rate added to some transition for each shared activity. Hence,

if the original PEPA model contains no deadlocks, we can be sure that R̂− will have

no deadlocks either. By doing so, we obtain a partition of the component’s state-space

by using only a part of its behaviour. The ε rates added are equally distributed and

therefore imply ignorance about the shared activity rates.

4.3 Approximate Aggregation of Components

We assume some component C and a partition ∆ over its state-space, which has been

produced after applying a partitioning strategy to the corresponding individual rate

matrix R−. The next step is to derive the activities of the aggregated C̃ component,

whose states are labelled by the instances of ∆.

4.3.1 Real Rate Matrices

The transitions of any component C can be described by a set of rate matrices {Ra : a∈
~A(C)}, which correspond to the action types that C is capable of. Let us first consider

the case where no passive activities are involved, so for any action type a we have Ra ∈
RN×N , where N is the number of states in ds(C). In Equation (3.24) of Section 3.3,
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we have defined uniform lumping as the process of constructing a reduced matrix by

averaging the transitions to the other classes. We can apply a similar lumping process

to each one of the rate matrices individually. More formally, given a component C

and a partition ∆ = {A1, . . . ,AK} on ds(C) with K classes, then for each instance of

{R̃a : a ∈ ~A(C)} we have the following K×K rate matrix:

R̃a,i j =
∑k∈Ai ∑l∈A j Ra,kl

|Ai|
(4.8)

where |Ai| denotes the number of states included in class Ai.

A PEPA component is approximately aggregated by aggregating all of its rate ma-

trices according to Equation (4.8), in the style of uniform lumping of Markov chains

in Chapter 3. The newly produced collection {R̃a : a ∈ ~A(C)} fully describes the be-

haviour of the aggregated component C̃, whose state-space is marked by ∆. It can be

easily shown that the sum of the aggregated action matrices ∑a∈~A(C)
R̃a is equal to the

aggregation of the sum of the original rate matrices, since the order of summation does

not matter.

The possibility of weighted lumping with respect to a vector www has already been

investigated for probability matrices in Section 3.3.1. According to Theorem 2, the op-

timal choice for www depends of the current state probabilities. Assuming that a Markov

chain is not in steady-state, its state probabilities change over time, and therefore there

is no globally optimal choice for www. We think that uniform lumping is appropriate, as

it captures our uncertainty regarding the state distribution. This result can be easily

extended for rate matrices via uniformisation.

4.3.2 Rate Matrices with Unspecified Rates

In this section, we consider the case where a rate matrix describes passive activities.

More specifically, we assume that the entries of a rate matrix are exclusively either

unspecified or zeros, that is Ra ∈ {0,>}N×N . It is possible to apply (4.8) in order to

get an approximately lumped version of it.

Recall that an activity with rate > may be assigned a weight w ∈ N, which deter-

mines the relative probability of that particular activity, while the absence of a weight

simply implies that w = 1. An unspecified rate > should not be interpreted as “in-

finity”, as it is important to keep track of its probability. Therefore, the process of

aggregating a rate matrix Ra ∈ {0,>}N×N is similar to the process of aggregating a

probability matrix, as seen in Chapter 3. The effect of approximate aggregation will

be on the weights that are associated with any passive rate >, rather than on > itself.
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Approximate aggregation as formulated in Equation (4.8) involves two summa-

tions: given a state indexed by k we calculate the total rate of transitioning to a class

A j, and we average these total rates for every k ∈ Ai. The addition of two unspecified

rates w1×> and w2×> is defined in [48] as follows:

w1×>+w2×>= (w1 +w2)×> ∀w1,w2 ∈ N (4.9)

However, in (4.8) we also have to divide the sum of the rates by the size of the outgoing

class. Although division of an unspecified rate with a real number is not originally

defined in [48], there is no reason why we cannot have such an operation. In fact,

Smith [90] has defined multiplication of > by a real number c. Following Smith, we

can more conveniently write:
w×>

c
=

w
c
×> (4.10)

If weights can be written as fractions as in (4.10), then the weight of an aggregated

component could be a real rather than a natural number as required in [48]. Neverthe-

less, there should be no technical problem with considering weights that are positive

real numbers. Regarding the behaviour of > in the context of the minimum operator,

that will remain unchanged:

min(w1×>,r) =

r, r ∈ R+

min(w1,w2)×>, r = w2×>
(4.11)

where w1,w2 ∈ R+.

In an approximate aggregation context, we allow w to be any positive real number.

It can be easily seen that w will never be negative or zero; Equation (4.8) dictates that

a weight w for an aggregated component will be the average of a set of values which

are assumed to be positive.

4.3.3 Rate Matrices with both Active and Passive Activities

In this section, we demonstrate that rate matrices that contain a mixture of real-valued

and unspecified rates are problematic. However, it is possible to avoid such an occur-

rence, if we impose certain restrictions on the model definition.

According the original work on PEPA [48], a component C is not allowed to have

an action type a that involves both active and passive activities. This requirement

follows directly from the fact that the apparent rate ra(C) cannot be defined, since

the addition of an active rate r ∈ R+ with an unspecified rate > is not defined as an
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operation in [48]. Recall that the apparent rate ra(C) is the sum of all of the rates

of the activities of type a in Act(C). Therefore, it is important to impose that all of

the activities of type a are consistently active or passive for the same C component.

Note that the term “component” in the language definition refers to a state rather than

a labelled transition system.

The following is an example of a valid PEPA component, i.e. an apparent rate can

be defined for each one of its states.

C def
= (a,r1).C1 +(a,r2).C2

C1
def
= (b,r3).C

C2
def
= (b,>).C

In the context of aggregation however, C can be problematic, as it might give rise

to an invalid aggregated component. For C we have actions a and b, each of which

corresponds to a rate matrix:

Ra =


0 r1 r2

0 0 0

0 0 0

 , Rb =


0 0 0

r3 0 0

> 0 0


Assuming a partition of the state-space ∆ = {{C},{C1,C2}}, we can aggregate both

matrices using Equation (4.8) to obtain:

R̃a =

[
0 r1 + r2

0 0

]
, R̃b =

[
0 0

0.5× r3 +0.5×> 0

]

The aggregated rate matrix R̃b is not valid, as there is no way to calculate the sum of the

real rate 0.5× r3 with the unspecified rate 0.5×>. For the same reason, the apparent

rate for action b cannot be defined. Therefore, the aggregated component is not a valid

PEPA component, according to the original work on PEPA [48].

In order to overcome this problem, we have to impose an additional restriction.

That is that for any PEPA component C, it should not allowed to have action types that

involve both active and passive activities for the derivative set ds(C). The C component

of the previous example is not valid according to this specification. We can however

rename the different occurrences of the b action type in such a way that we obtain the

following valid component definitions:

C def
= (a,r1).C1 +(a,r2).C2

C1
def
= (b1,r3).C

C2
def
= (b2,>).C
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In the new version of C, there is consistency of active and passive actions over all of

the states of the transition system. This is reflected in the following rate matrices that

correspond to the actions that C, C1 and C2 are able to perform:

Ra =


0 r1 r2

0 0 0

0 0 0

 , Rb1 =


0 0 0

r3 0 0

0 0 0

 , Rb2 =


0 0 0

0 0 0

> 0 0


Given a partition ∆ = {{C},{C1,C2}}, we can aggregate all three matrices using (4.8)

to obtain:

R̃a =

[
0 r1 + r2

0 0

]
, R̃b1 =

[
0 0

0.5× r3 0

]
, R̃b2 =

[
0 0

0.5×> 0

]

To conclude, the rate matrix of a valid component C for some action a can be either

Ra ∈ RN×N or Ra ∈ {0,>}N×N . In both cases, Equation (4.8) will be used to produce

the aggregated form for the transitions of type a.

4.4 Semantics for Aggregated PEPA models

Our objective is to aggregate PEPA components individually and reflect this reduction

on the underlying CTMC. Therefore, we need a compositional representation of the

corresponding generator matrix. In [72], we have used a Kronecker representation of

PEPA models, where the “global” generator matrix is expressed in terms of “partial”

generator matrices combined via Kronecker algebra. We have successfully produced

reduced versions of such partial generator matrices, which were then combined to

obtain an approximately aggregated state-space for the entire model.

In this section, we discuss this Kronecker algebra approach in more detail, and we

explore certain aspects that have not been investigated in [72]. As we shall see, one

limitation is the fact that the generator matrix produced might include states that are

not reachable in the derivation graph. In order to overcome this issue, we addition-

ally define a structured operational semantics characterisation of the cooperation of

approximately aggregated components.

4.4.1 The Kronecker Algebra Approach

Kronecker representation for PEPA models has been originally proposed in [50]. In

this section, we propose an alternative representation based on Kronecker algebra that
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is more appropriate for approximate aggregation of PEPA components. The following

Kronecker operators are used by both approaches:

Definition 13 (Kronecker Product). Given a m×n matrix A and p×q matrix B, their

Kronecker product C = A⊗B is a mp×nq matrix with elements:

Cab = Ai jBkl

where a = p(i−1)+ k and b = q( j−1)+ l
(4.12)

Definition 14 (Kronecker Sum). Given a n× n matrix A and m×m matrix B, their

Kronecker sum is defined as follows:

A⊕B = A⊗ Im + In⊗B (4.13)

where In is the n×n identity matrix, and Im is the m×m identity matrix.

As shown in [50], the generator matrix Q that corresponds to a PEPA model can be

represented as a Kronecker product of terms in the following way:

Q =
N⊕

i=1

Ri + ∑
a∈A

ra×

(
N⊗

i=1

Pi,a−
N⊗

i=1

P̄i,a

)
(4.14)

where

• N is the number of components that appear in the system equation. The subscript

i corresponds to a particular component Ci.

• A is the set of shared actions.

• Ri is the rate matrix of i-th component based on its individual actions:

Ri = ∑
a∈~A(Ci)\A

Ri,a (4.15)

• ra is the minimum functional rate of the shared action a over all components.

The term “functional rate” implies that the rate of an action depends on the state

of one or more components. Equivalently, there is a single rate function ra(C)

that describes the apparent rate of action a for each state of component C. The

minimum of the functional rates over all components Ci, i = 1 . . .N is defined as

follows:

ra = min(ra(C1),ra(C2), . . .ra(CN)) (4.16)
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• Pi,a is the probability matrix of the i-th component for the shared action a. P̄i,a is

a diagonal matrix that ensures that the row sums of the corresponding probability

matrix are zero, i.e. it is a valid generator matrix.

Note that A denotes the set of all shared actions over all components in the model. If

some particular component Ci does not perform some action of type a, then this will be

reflected on the Pi,a matrix, which will essentially be the identity matrix. This implies

that the state of Ci is unaffected by action a.

If we observe the summation term in Equation (4.14), we see that ra, which is the

minimum of the functional rates for some action a, is multiplied by the Kronecker

product of the Pi,a matrices. However, if we aggregate the Ri and Pi,a matrices for

some component, it is not so clear how the functional rates should be multiplied with

the aggregated versions of Pi,a. It appears that we have to apply the same kind of

reduction to the functional rates of individual components, and then combine these

functional rates in a way that resembles the Kronecker operators. In order to make this

effect on the functional rates explicit, we introduce a new Kronecker representation of

PEPA models that is more appropriate for compositional aggregation.

4.4.1.1 Kronecker Representation for Aggregated Components

In order to introduce our Kronecker form of PEPA models, we have to redefine some

concepts used in the original approach of Hillston & Kloul [50]. More specifically,

Hillston & Kloul have defined a functional rate ra(Ci) for some action a, as a function

from the space of PEPA process definitions to R+∪>. The value of ra(Ci) denotes the

apparent rate of the process Ci for the action of type a. We shall express the concept of

functional rates of components in a vector form instead.

Definition 15 (Apparent Rate Matrix). Let Ci be a PEPA component whose state-space

is indexed by ds(Ci). Let Di,a be a diagonal matrix, also indexed by ds(Ci), whose main

diagonal contains the apparent rates of the states of Ci for action a. We define Di,a to

be the apparent rate matrix of Ci for action a.

There is one-to-one correspondence between the rows of Di,a and the rows of the

probability matrix Pi,a. We can now express the multiplication with the functional

rates purely in terms of linear algebra. The rate matrix of some Ci component for some

action a can be written as the following:

Ri,a = Di,aPi,a (4.17)
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It can be easily seen that Ri,a is exactly the same rate matrix that we would get by

multiplying the functional rates ra(Ci) with Pi,a. However, we cannot just take the

Kronecker product of such rate matrices, as that would not be compatible with the

PEPA semantics, which require us to calculate the minimum rather than the product of

component rates. In order to combine two rate vectors in a way that is meaningful to

these semantics, we have to define a new kind of Kronecker operator.

Definition 16 (Kronecker Minimum). Given a m×n matrix A and p×q matrix B, we

define their Kronecker minimum C = A ©min B to be a mp×nq matrix with elements:

Cab = min(Ai j,Bkl)

where a = p(i−1)+ k and b = q( j−1)+ l
(4.18)

We have defined Kronecker minimum in terms of matrices, in the style of the Kro-

necker product definition. It is now straightforward to construct a diagonal matrix

Dii′,a = Di,a ©min Di′,a. Therefore, we can reform the Kronecker representation of PEPA

in a way that it is purely expressed in terms of linear and Kronecker algebra in the

following way:

Q =
N⊕

i=1

Ri + ∑
a∈A

N

©min

i=1
Di,a ·

(
N⊗

i=1

Pi,a−
N⊗

i=1

P̄i,a

)
(4.19)

To summarise, each component Ci is fully characterised by a collection of matrices:

Ri which contains the rates of its individual actions, and for each shared action a we

have a probability matrix Pi,a and a diagonal matrix Di,a which contains the apparent

rates that correspond to the rows of Pi,a.

One issue that we also have to consider is the case of passive actions, whose rates

are set to be >. Equation (4.11) defines the behaviour of > in the context of the

minimum operator. Therefore, the behaviour of > is also well-defined in terms of

the Kronecker minimum. The Kronecker minimum of two or more matrices will only

involve a > if all of the components cooperate on some action, while all of them are

passive at the same time. In such a case, the model definition is problematic as it

contains a deadlock. Since deadlocks can be identified at the syntax level, it is fair to

assume that the model is free of them.

4.4.1.2 Aggregating Kronecker Terms

In the Kronecker representation of Equation (4.19), all the component terms are written

as matrices. In short, we have to apply the same partition to all the rate and probability
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matrices that characterise a component; these are the individual rate matrix Ri, and

for each shared action a, the probability matrix Pi,a and the apparent rate matrix Di,a.

More specifically, for any component Ci to be aggregated by a partition ∆i, we have to

apply the following steps:

1. Aggregate Ri to R̃i, according to Equation (4.8).

2. For each shared action a ∈ A :

(a) Calculate Ri,a = Di,aPi,a.

(b) Aggregate Ri,a to R̃i,a, according to (4.8).

(c) Aggregate Di,a to D̃i,a, according to (4.8). It is trivial to show that the

diagonal matrix D̃i,a has entries which are the row sums of R̃i,a.

(d) Calculate P̃i,a = D̃−1
i,a R̃i,a

There are two possibilities for Ri,a and Di,a: their entries will be either all positive

real numbers, meaning that the associated activities are active, or unspecified if the

activities are passive. In both cases there should be no problem with using (4.8) to

produce the aggregated versions R̃i,a and D̃i,a. Regarding Step 2d, it is a simple nor-

malisation of the rate matrix R̃i,a. Note that if R̃i,a and D̃i,a contain unspecified rates,

the matrix inversion D̃−1
i,a is not normally defined. By convention, we simply replace

any unspecified rate > with “1” in both matrices, but we keep their weights, as they

represent the relative probabilities for the corresponding activities. In this way, we pro-

duce a real-valued matrix P̃i,a that captures the activity probabilities for the aggregated

component.

The computation of P̃i,a, which is the aggregated probability matrix of the i-th

component for action a, might seem to be more complicated than it is required to be.

One could argue that we could directly aggregate Pi,a to P̃i,a, using Equation (4.8). This

approach would be problematic however, since any rate information is removed from

Pi,a, so the probability mass is not distributed in the same manner as it would be in the

case of the rate matrix Ri,a. Thus, the normalisation and the subsequent aggregation of

Ri,a is necessary to describe the correct aggregated behaviour.

4.4.1.3 Limitations of Kronecker Representation

In this section, we highlight an intrinsic limitation of the Kronecker representation of

PEPA models, in that unreachable states might be included in the resulting generator
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matrix. In the general case, the state-space of any parallel composition of components

is bounded by the Cartesian product of the individual state-spaces involved. That is

the state-space of such a composition cannot be larger than the total of the tuples that

denote the possible state combinations for the components in the model. For example,

an empty cooperation of two components implies that any of the two may perform any

transition independently, therefore any ordered pair that characterises the combined

state is reachable in the derivation graph.

Many times however, the state-space of a PEPA cooperation component is only a

subset of the Cartesian product, as some of the states in the Cartesian product space are

not reachable in the derivation graph produced by the language semantics (Figure 2.1).

For example, let us consider the composition P1 BC{a,b}Q1 of the following components:

P1
def
= (c,r).P2 +(a,>).P3

P2
def
= (c,r).P1

P3
def
= (c,r).P4

P4
def
= (c,r).P3 +(b,>).P2;

Q1
def
= (a,ra).Q2

Q2
def
= (b,rb).Q1

(c,r) (c,r)

(a,ra)

(c,r) (c,r)

(b,rb)
P2 BC{a,b}Q1

P1 BC{a,b}Q1 P3 BC{a,b}Q2

P4 BC{a,b}Q2

Figure 4.2: Derivation graph for P1 BC{a,b}Q1

Figure 4.2 depicts the state-space of this composition, where we see that not all

of the state combinations are part of the derivation graph. Synchronisation on certain

action types implies that certain activities may or may not be enabled depending on the

state of the cooperating components.

However, the state-space of the Kronecker representation of a PEPA model is not

equal to the size of the derivation graph. Since the cooperation operator of the PEPA
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language is expressed in terms of Kronecker operations, we know that the dimension

of the resulting rate and probability matrices will be ∏
N
i=1 |Ci|×∏

N
i=1 |Ci|, where |Ci|

denotes the size of the Ci component. In practice, that would mean that the compo-

sition P1 BC{a,b}Q1 of our example would involve 4× 2 = 8 states. This is actually an

intrinsic limitation of the Kronecker representation which might also affect approx-

imate aggregation. The effects of approximate aggregation might be nullified if the

derivation graph is significantly smaller than the full Cartesian product space.

4.4.1.4 A Worked Example

We shall now illustrate the concepts discussed in this section with an example. Con-

sider the composition P1 BC{a,b}Q1 whose state-space is illustrated in Figure 4.2. We

assume a partition ∆ = {{P1,P2},{P3,P4}} on the state-space of P1.

Step 1: Aggregate Components For the P1 component, we have the following rate

matrices that describe its behaviour:
0 0 > 0

0 0 0 0

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

action a


0 0 0 0

0 0 0 0

0 0 0 0

0 > 0 0


︸ ︷︷ ︸

action b


0 r 0 0

r 0 0 0

0 0 0 r

0 0 r 0


︸ ︷︷ ︸

action c

Given the partition ∆ = {{P1,P2},{P3,P4}} on the state-space of P1, we can construct

the following aggregated rate matrices for each action, using (4.8):[
0 0.5×>
0 0

]
︸ ︷︷ ︸

action a

[
0 0

0.5×> 0

]
︸ ︷︷ ︸

action b

[
r 0

0 r

]
︸ ︷︷ ︸
action c

The matrices above cannot be used in the Kronecker representation directly however.

The action types a and b are shared, so the corresponding rate matrices have to be

broken down to apparent rate and probability matrices. The apparent rate matrix can

be easily derived by constructing a diagonal matrix whose entries are the row sums of
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the corresponding rate matrix.

[
0 0.5×>
0 0

]
︸ ︷︷ ︸

rate matrix

row sums−−−−→

[
0.5×> 0

0 0

]
︸ ︷︷ ︸

apparent rate matrix︸ ︷︷ ︸
action a

[
0 0

0.5×> 0

]
︸ ︷︷ ︸

rate matrix

row sums−−−−→

[
0 0

0 0.5×>

]
︸ ︷︷ ︸

apparent rate matrix︸ ︷︷ ︸
action b

Using the aggregated matrices above, we can produce the aggregated versions for the

probability matrices for the shared actions a and b. The apparent rate matrices have to

be inverted and subsequently multiplied by the corresponding transition rate matrices.

Note that we have only kept the weights of the unspecified rates, otherwise the matrix

inversion cannot be defined. For the same reason, we have added “ones” at the zero

entries of the diagonal in the apparent rate matrices.

[
0.5 0

0 1

]−1

︸ ︷︷ ︸
apparent rate matrix

×

[
0 0.5

0 0

]
︸ ︷︷ ︸
rate matrix

=

[
0 0.25

0 0

]
︸ ︷︷ ︸

probability matrix

normalise−−−−−→

[
0 1

0 0

]
︸ ︷︷ ︸

probability matrix︸ ︷︷ ︸
action a

[
1 0

0 0.5

]−1

︸ ︷︷ ︸
apparent rate matrix

×

[
0 0

0.5 0

]
︸ ︷︷ ︸
rate matrix

=

[
0 0

0.25 0

]
︸ ︷︷ ︸

probability matrix

normalise−−−−−→

[
0 0

1 0

]
︸ ︷︷ ︸

probability matrix︸ ︷︷ ︸
action b

Step 2: Apply Kronecker Operators The aggregated version of component P1, let

that be P12, is described by the following matrices:

[
0.5×> 0

0 0

]
︸ ︷︷ ︸

apparent rate matrix

[
0 1

0 0

]
︸ ︷︷ ︸

probability matrix︸ ︷︷ ︸
action a

[
0 0

0 0.5×>

]
︸ ︷︷ ︸

apparent rate matrix

[
0 0

1 0

]
︸ ︷︷ ︸

probability matrix︸ ︷︷ ︸
action b

[
r 0

0 r

]
︸ ︷︷ ︸
action c

For the Q1 component we have no local activities, meaning that the individual rate

matrix will be the null matrix. For the shared actions a and b, we have the following
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matrices:

[
ra 0

0 0

]
︸ ︷︷ ︸

apparent rate matrix

[
0 1

0 0

]
︸ ︷︷ ︸

probability matrix︸ ︷︷ ︸
action a

[
0 0

0 rb

]
︸ ︷︷ ︸

apparent rate matrix

[
0 0

1 0

]
︸ ︷︷ ︸

probability matrix︸ ︷︷ ︸
action b

We can then apply Equation (4.19) in order to produce the generator matrix of the

composition P12 BC{a,b}Q1. For convenience, we shall construct the transition rate matrix

rather than the generator matrix, so as not to have to worry about the row sums being

zero. By summing over all actions, we have the following transition rate matrix R:

R =

[
r 0

0 r

]
︸ ︷︷ ︸

P12 component

⊕

[
0 0

0 0

]
︸ ︷︷ ︸

Q1 component︸ ︷︷ ︸
individual rate matrices

+


[

0.5×> 0

0 0

]
︸ ︷︷ ︸

P12 component

©min

[
ra 0

0 0

]
︸ ︷︷ ︸

Q1 component


︸ ︷︷ ︸

apparent rate matrices

×


[

0 1

0 0

]
︸ ︷︷ ︸

P12 component

⊗

[
0 1

0 0

]
︸ ︷︷ ︸

Q1 component


︸ ︷︷ ︸

probability matrices︸ ︷︷ ︸
action a

+


[

0 0

0 0.5×>

]
︸ ︷︷ ︸

P12 component

©min

[
0 0

0 rb

]
︸ ︷︷ ︸

Q1 component


︸ ︷︷ ︸

apparent rate matrices

×


[

0 0

1 0

]
︸ ︷︷ ︸

P12 component

⊗

[
0 0

1 0

]
︸ ︷︷ ︸

Q1 component


︸ ︷︷ ︸

probability matrices︸ ︷︷ ︸
action b

For each action we have a matrix multiplication of the Kronecker minimum for the

apparent rate matrices, and the Kronecker product of the corresponding action prob-

ability matrices. Note that the unspecified rates > are now specified because of the

effect of the Kronecker minimum as in Definition 16, and the minimum operator in
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Equation (4.11). If we calculate those, we obtain:

R =


r 0 0 0

0 r 0 0

0 0 r 0

0 0 0 r


︸ ︷︷ ︸

individual rate matrix

+


ra 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


︸ ︷︷ ︸
apparent rate matrix

×


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


︸ ︷︷ ︸
probability matrix︸ ︷︷ ︸

action a

+


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 rb


︸ ︷︷ ︸
apparent rate matrix

×


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0


︸ ︷︷ ︸
probability matrix︸ ︷︷ ︸

action b

=


r 0 0 ra

0 r 0 0

0 0 r 0

rb 0 0 r



The resulting matrix highlights the issue discussed in the previous section. If we

examine R more carefully, we observe that it consists of three communicating classes:

the first class involves the first and the fourth state, while the other two classes involve

the second and the third state correspondingly. The inclusion of unreachable states

has caused R to be a 4× 4 matrix, whose size is equal to the original non-aggregated

state-space in Figure 4.2. Nevertheless, the Kronecker representation can be useful

if the reachable state-space approaches than the Cartesian product of the components

involved.

4.4.2 A Structured Operational Semantics Characterisation

In this section we discuss an alternative approach to produce compositions of aggre-

gated components. Our objective is to overcome the limitations of the Kronecker rep-

resentation discussed in the previous section, and apply compositional aggregation to

a wider family of models. Since the actual state-space for any cooperation is given by

the operational semantics of the language outlined in Figure 2.1, it is a reasonable idea

to investigate how component aggregation and cooperation of aggregated components

can be defined in terms of the original PEPA semantics.

4.4.2.1 Activity Aggregation

We shall formally describe the aggregated component in terms of the initial one; this

will allow us to manipulate the operational semantics of PEPA in order to produce
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compositions of such components. We know that the labelled transition system of

some component P corresponds to a collection of rate matrices for the different actions

of P. In Section 4.3, we have discussed how we can aggregate these matrices given

some partition of the state-space. Next we shall look into the interpretation of these

new states and new transitions that have been produced.

States that belong to the same class will collapse into a single state. If ∆P is a

partition on P, then state aggregation can be formally described by the following rule:

A ∈ ∆P P ∈ A
PA ≡ P

Informally, the rule says that if A is a class in ∆P, then there is a state PA in the ag-

gregated model which is interpreted as being in any of the states in the class. The

aggregate state has been conveniently labelled with the class, however the interpre-

tation would be no different with a different label. The important thing is that we

miss the initial fine-grained information about the individual states in A. It is therefore

inevitable to assume that all of the included states are equally probable.

The next step is to investigate how the activities are affected in the aggregated

state-space. First, we consider the case of transitioning from an aggregated to a single

state:

P
(α,r)
−−−→ P′

PA
(α,r/|A|)
−−−→ P′

(P ∈ A)

Intuitively, the rule states that PA is able to perform any of the activities of the com-

ponents included in A. The rate however of each one of those activities is a fraction

of their original rate. In fact, since we cannot discriminate between the states in A, all

we know about PA is that it is interpreted as P with probability 1/|A|. Thus, whenever

there is a rate r from P ∈ A to P′, the corresponding rate for PA has to be adjusted

accordingly.

Another rather simple case is when transitioning from a single state to an aggre-

gated state. The rule that follows describes how an activity of a component P is dis-

tributed to a class A′ ∈ ∆P.

P
(α,r)
−−−→ P′

P
(α,r)
−−−→ PA′

(P′ ∈ A′)

According to the rule above, P is still able to perform the same activity at the same

rate. The information about the exact target state may have been lost as we only know

the target class, but this does not affect the rate of the activity.
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Finally, the two cases above considered individually can be summarised in the

following rule:

P
(α,r)
−−−→ P′

PA
(α,r/|A|)
−−−→ PA′

(P ∈ A,P′ ∈ A′) (4.20)

If we apply the rule in (4.20) for every P ∈ A and every P′ ∈ A′, we essentially have

multiple occurrences of the same activity, probably with different rates. This is totally

acceptable as on the basis of the operational semantics PEPA models can be defined

as multi-transition systems. It is reasonable however to collapse all of these activity

instances into a single activity. Then the total rate from PA to PA′ for action type α will

be:

q(PA,PA′,α) =
∑P∈A ∑P′∈A′ q(P,P′,α)

|A|
(4.21)

where q(P,P′,α) is the rate of the activity of type α from P to P′. The rate expression

above is equivalent to Equation (4.8) used in the matrix-based aggregation of PEPA

components in Section 4.3.

Regarding passive activities, these will be handled as discussed in Section 4.3.

More specifically, we assume that any unspecified rate is associated with a weight

w > 0. Moreover, approximate aggregation will have effect on the weights, rather than

on the corresponding unspecified rates. Finally, it is required that a certain action type

is either globally active or globally passive for the derivative set of a given component.

4.4.2.2 The Aggregated Derivation Graph

So far, we have characterised component aggregation by a structured operational se-

mantics approach. In this section, we investigate the effects that aggregation has on the

PEPA semantics. We derive the aggregated semantics for each of the PEPA operators

introduced in [48]. More specifically, we rewrite the operational semantics rules of

Figure 2.1 in the style that we have defined activities for aggregated components in

(4.20). Eventually, we shall see that the aggregated semantics proposed are equivalent

to the combined effect of the rule in (4.20) with the original PEPA semantics.

Prefix According to the original specification of the prefix operator, whenever a com-

ponent (α,r).P carries out an activity (α,r), it subsequently behaves as P. If now the

target component is a class A ∈ ∆P, then the rate r should be distributed to the class:

(α,r).P
(α,r)
−−−→ P

(α,r).PA
(α,r)
−−−→ PA

(P ∈ A) (4.22)
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The rule above describes the combined effect of Equation (4.20) and the prefix rule in

the original PEPA semantics.

Choice The choice operator implies that a component P+Q will behave either as P

or Q. Let us first consider the case where there is an activity from P to P′, assuming

a partition ∆P such that A,A′ ∈ ∆P. Since the Q component is not selected, it does not

matter whether it is aggregated or not. Regarding the P component, the activity in the

aggregated state-space will be formed in a way similar to the rule in Equation (4.20):

P
(α,r)
−−−→ P′

PA +Q
(α,r/|A|)
−−−→ PA′

(P ∈ A,P′ ∈ A′) (4.23)

Similarly, whenever there is an activity from Q to Q′, assuming a partition ∆Q such

that B,B′ ∈ ∆Q, we have the following rule:

Q
(α,r)
−−−→ Q′

P+QB
(α,r/|B|)
−−−→ QB′

(Q ∈ B,Q′ ∈ B′) (4.24)

Unsynchronised Cooperation An unsynchronised cooperation is defined over an

action type a which does not belong in the cooperation set L . Any component, either

aggregated or not, may simply carry out any activity without affecting the state of other

components. Therefore, starting from the rule in (4.20), we can consider the following

rules for unsynchronised parallel composition:

P
(α,r)
−−−→ P′

PA BCL Q
(α,r)
−−−→ PA′ BCL Q

(α /∈ L,P ∈ A,P′ ∈ A′) (4.25)

Q
(α,r)
−−−→ Q′

P BC
L

QB
(α,r)
−−−→ P BC

L
QB′

(α /∈ L,Q ∈ B,Q′ ∈ B′) (4.26)

Synchronised Cooperation Starting from the synchronised cooperation rule of Fig-

ure 2.1, we shall modify it so as to admit aggregated components. Let ∆P be a partition

on P, where A,A′ ∈ ∆P, and similarly ∆Q be a partition on the state-space of Q, where

B,B′ ∈ ∆Q. We also assume that P ∈ A and P′ ∈ A′, while in the same way Q ∈ B and

Q′ ∈ B′. Thus whenever there is a synchronised activity from P to P′ and from Q to Q′,
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for the corresponding aggregated states the activity will be defined as follows:

P
(α,r1)
−−−→ P′ Q

(α,r2)
−−−→ Q′

PA BCL QB
(α,R)
−−−→ PA′ BCL QB′

(α ∈ L,P ∈ A,P′ ∈ A′,Q ∈ B,Q′ ∈ B′) (4.27)

where

R =
r1

|A|× rα(PA)

r2

|B|× rα(QB)
min(rα(PA),rα(QB)) (4.28)

According to (4.20), we know that the rate of this particular activity for PA will be

r1/|A|, while for QB it will be r2/|B|. The rate expression above is identical to the

original in Figure 2.1, aside from the fact that we have modified the rates according

to the aggregation rule in (4.20). The apparent rates can be easily derived; given an

aggregated component PA for some action type α, the apparent rate will be:

rα(PA) = ∑
A′∈∆P

q(PA,PA′,α) (4.29)

We have already stated that an action type will be consistently active or passive for

the entire derivative set of any component. The resulting apparent rate will be either a

positive real number or unspecified, just as happens for non-aggregated components.

One last thing to consider is that the rule in (4.27) will be applied for every pos-

sible combination of states P, P′, Q and Q′ that belong to the classes A, A′, B and B′

correspondingly. The total rate of transitioning from PA BCL QB to PA′ BCL QB′ will be:

q(PA BCL QB,PA′ BCL QB′,α) =

∑P∈A ∑P′∈A′ q(P,P′,α)
|A|× rα(PA)

× ∑Q∈B ∑Q′∈B′ q(Q,Q′,α)
|B|× rα(QB)

×min(rα(PA),rα(QB))

Regarding the equation above, we observe that the first two terms aside from the ap-

parent rates are equal to the collapsed activity rates for the aggregated components PA

and QA, as given by Equation (4.21). So the total rate of a synchronised transition can

be further simplified as follows:

q(PA BCL QB,PA′ BCL QB′ ,α) = (4.30)

q(PA,PA′,α)

rα(PA)
× q(QB,QB′,α)

rα(QB)
×min(rα(PA),rα(QB))

The rate expression for aggregated components in (4.30) is essentially identical to the

expression used for non-aggregated synchronised activities. Therefore, activity aggre-

gation as defined in Section 4.4.2.1 allows us to employ the operational semantics in

Figure 2.1 to construct the derivation graph for any composition of aggregated compo-

nents.
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Hiding Recall that a component P/L behaves as P, except that any activity of any

action type in L will be hidden, meaning that it will be considered as a local activity.

Combining the semantics of rules for the hiding operator in Figure 2.1 with the rule in

Equation (4.20), we obtain the following operators that describe the combined effect:

P
(α,r)
−−−→ P′

PA/L
(α,r/|A|)
−−−→ PA′/L

(α /∈ L,P ∈ A,P′ ∈ A′) (4.31)

P
(α,r)
−−−→ P′

PA/L
(τ,r/|A|)
−−−→ PA′/L

(α ∈ L,P ∈ A,P′ ∈ A′) (4.32)

4.4.2.3 A Worked Example

We shall now revisit the example of Section 4.4.1.4, in order to demonstrate how the

operational semantics approach responds to models whose reachable state-space is

smaller than the Cartesian product. Recall that the P1 has to be aggregated with re-

spect to a partition ∆ = {{P1,P2},{P3,P4}}. Applying the standard PEPA semantics,

for the P1 component only, will result in the graph of Figure 4.3.

(c,r) (c,r)

(a,>)

(b,>)

(c,r)(c,r)

P2

P3P1

P4

Figure 4.3: Derivation graph for P1

It is preferable to aggregate the state-space of P1 first, and then apply the rules for

the composition with the Q1 component. In this way, we avoid unnecessarily large

intermediate components. According to ∆, the states P1 and P2 are collapsed into a

single state; let that be P12. Similarly, P3 and P4 are collapsed into P34.

The next step will be to apply the rule in (4.20) for states P1 and P2, and their

amalgamation P12. This will add three activities in the aggregated derivation graph:
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(c,r/2).P12, (c,r/2).P12 and (a,>/2).P34. Similarly, applying rule (4.20) on P3 and

P4 will add the activities: (c,r/2).P34, (c,r/2).P34 and (b,>/2).P12. The aggregated

derivation graph for the component is pictured in Figure 4.4. Activities of the same

type having the same source and target states can be collapsed into a single activity

whose rate is the sum of the corresponding activity rates.

(c,r/2)

(c,r/2)

(b,>/2)

(a,>/2)

(c,r/2)

(c,r/2)

P12 P34

Figure 4.4: Derivation graph for P12

Finally, using the standard operational semantics of PEPA, we can create the state-

space for the composition P1 BC{a,b}Q1 as depicted in Figure 4.5. It is easy to see that the

same graph would have been produced if we first derive the full graph for P1 BC{a,b}Q1,

and subsequently apply the aggregated operational semantics of Section 4.4.2.2.

(c,r)

(b,rb)

(a,ra)

(c,r)

P12 BC{a,b}Q1 P34 BC{a,b}Q2

Figure 4.5: Derivation graph for P12 BC{a,b}Q1
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4.5 Experimentation on Multi-Scale Systems

In this section, we demonstrate the potential of the compositional approximate ag-

gregation through an example. We shall consider models featuring high-population

components, as even simple model descriptions can lead to very large state-spaces. In

particular, multi-scale models are of interest since more efficient approaches such as

fluid flow approximation [49] are not as readily applicable, because they make an as-

sumption of continuity which is strained at low population numbers. So we consider a

peer-to-peer system that involves large numbers of peers that communicate with each

other with the help of an indexing server, as described in the following PEPA model:

PeerA def
= (localActionA,rlocalA).PeerAlocal

+ (lookupB,>).PeerAlookup

PeerAlocal
def
= (finishA,rfinishA).PeerA

PeerAlookup
def
= (cacheA,rcacheA).PeerAlocal

+ (exchange,rexchangeA).PeerA

PeerB def
= (localActionB,rlocalB).PeerBlocal

+ (lookupA,>).PeerBlookup

PeerBlocal
def
= (finishB,rfinishB).PeerB

PeerBlookup
def
= (cacheB,rcacheB).PeerBlocal

+ (exchange,rexchangeB).PeerB

Our system involves two classes of peers which exchange data pairwise. Both types

of peers have some local functionality and a shared activity called exchange. Moreover,

a peer will have to look up other peers in an indexing server before proceeding to any

data exchange.
Index def

= (lookupA,rlookupA).IndexbusyA

+ (lookupB,rlookupB).IndexbusyB

+ (fail,rfail).Indexbroken

IndexbusyA
def
= (refresh,rrefresh).Index

+ (fail,rfail).Indexbroken

IndexbusyB
def
= (refresh,rrefresh).Index

+ (fail,rfail).Indexbroken

Indexbroken
def
= (repair,rrepair).Index

In Chapter 3, we have defined two different approaches for approximate Markov

chain aggregation, which we shall now compare in a compositional setting. The quasi-

lumpability approach described in Sect. 3.2 involves applying a clustering algorithm
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Table 4.1: The rate values used in the examples

Variable Name Value Variable Name Value Variable Name Value

rlocalA 5 rlocalB 2 rlookupA 10

rfinishA 4 rfinishB 3 rlookupB 10

rcacheA 1 rcacheB 2 rfail 0.02

rexchangeA 1 rexchangeB 0.5 rrefresh 10

rrepair 0.5

on the row entries of the transition probability matrix of a Markov chain. The NCD

based approach discussed in Sect. 3.1 partitions the Markov chain according to the

eigenvectors that correspond to the top eigenvalues of the probability matrix. For each

one of the examples that follow, we explicitly note which components have been ap-

proximated and what compression ratio has been used. By the term “compression

ratio”, we refer to the ratio of the size of an aggregated component to its original size.

Once a nearly optimal partition of the state-space of a particular component is

obtained using either of the two methods, that component is then approximately ag-

gregated as described in Sect. 4.3. The final aggregated CTMC is produced after com-

bining all of the components involved in the model. We have presented two distinct

methods to combine aggregated components: a Kronecker representation approach in

Section 4.4.1, and a structured operational semantics approach in Section 4.4.2. Both

representations have been used to produce the experimental results that follow.

Eventually, we compare the transient and the steady-state behaviour of the initial

model with those of the approximately aggregated models. The PRISM model checker

[58], its sparse engine in particular, has been used for that purpose. The Gauss-Seidel

method has been applied for computing the steady-state distribution, and the uniformi-

sation method for the transient probabilities. The experiments have been performed in

an Intel R© XeonTM E5410 @ 2.33GHz PC running Scientific Linux 6.

4.5.1 Compositional vs Global Aggregation

In this experiment we define a system small enough to compare the compositional

approximate aggregation with a globally applied approach. The first system’s structure

is summarised in the following system equation, with cooperation sets L = {exchange}
and K = {lookupA, lookupB}.

System5:5:1
def
= PeerA[5]BC

L
PeerB[5]BC

K
Index
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Table 4.2: Running times for System5:5:1

Original
Quasi-Lumpability

(Compositional)

NCD

(Compositional)

Quasi-Lumpability

(Global)

NCD

(Global)

Approximation - 0.002 sec 0.002 sec 40 sec 40 sec

PRISM Loading 1.2 sec 0.25 sec 0.25 sec 0.4 sec 0.5 sec

Transient Solutiona 1.7 sec 0.4 sec 0.4 sec 0.8 sec 0.8 sec

Steady-State Solution 0.1 sec 0.025 sec 0.025 sec 0.05 sec 0.05 sec

Total Time 3.0 sec 0.677 sec 0.677 sec 41.35 sec 41.35 sec

Number of States 1764 400 400 400 400

a 100 points: 0≤ t ≤ 2

If we apply exact aggregation as described in [42], the number of states for the PeerA[5]

and PeerB[5] components will be 21 (these would be 243 for each with no aggregation).

Therefore, we distinguish the following cases:

i. PeerA[5] and PeerB[5] components are further reduced independently. The com-

pression ratio used is 0.5 for both, resulting in a reduced chain of 400 states.

ii. Approximate aggregation is applied on the entire system’s generator matrix. The

compression ratio used was such that it results in a reduced chain of 400 states.

The quasi-lumpability and the NCD-based approaches have been applied in both

a compositional and a global setting. Thus, we essentially have four approximate ag-

gregation methods to compare, which are applied over two representations, based on

either Kronecker algebra or structured operational semantics. For the model consid-

ered, the state-space reduction has been the same for the two representations. Table

4.2 summarises the running times for aggregating and solving the model. The solution

time refers to the amount of time required by PRISM; this is broken down to the time

needed to load the model, calculate the transient probabilities for 100 time-points,

and calculate the steady-state probabilities. As expected, compositional aggregation

requires a very small initial cost to reduce the model, in contrast to the global case.

As in Section 3.4.1, K-L divergence has been used to measure approximation qual-

ity. We shall first comment on the results of the Kronecker representation. Figure

4.6(a) summarises the K-L divergences at different times t, for the four approximate

aggregation methods. Judging by the K-L divergences, global aggregation does not

appear to be far superior to the compositional approaches. Although we do not claim

that this statement generalises to every possible model, it seems reasonable to use com-
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positional aggregation in order to produce a reasonable approximation of the original

stochastic process. This argument is supported by the running times in Table 4.2.
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Figure 4.6: K-L divergences between the true and the approximate state-space distri-

bution at different times, for various aggregation methods (Kronecker representation)

It is also interesting to compare how the quasi-lumpability and the NCD-based

approaches behave. For System5:5:1 in 4.6(a), both the global and the compositional

setting appear to favour the quasi-lumpability approach. It is not safe to generalise

this result for arbitrary models however. In fact, the results are rather contradictory for

Figure 4.6(b), which depicts the K-L divergences for System10:20:2 of the next section.

For this larger model, the compositionally applied quasi-lumpability approach per-

forms better than the NCD approach in the early stages of the stochastic process, but

it becomes less accurate as steady-state behaviour is approached. In the general case,

we cannot say that either the quasi-lumpability or the NCD-based approach provides

significantly better approximation quality.

Regarding the structured operational semantics representation, the K-L divergence

results are outlined in Figure 4.7, which are almost identical to the results for the Kro-

necker representation in Figure 4.6. As a matter of fact, both representations are just

different interpretations of the same mechanism which involves PEPA semantics and

approximate component aggregation. The structured operational semantics approach

is more appropriate in a general context however, as no unreachable states are included

in the generator matrix of the resulting CTMC.
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Figure 4.7: K-L divergences between the true and the approximate state-space distri-

bution at different times, for various aggregation methods (Structured operational se-

mantics representation)

4.5.2 Component Behaviour

This second example provides a more detailed view of component behaviour. The

following system equation is considered, with cooperation sets L = {exchange} and

K = {lookupA, lookupB}.

System10:20:2
def
= PeerA[10]BC

L
PeerB[20]BC

K
Index[2]

We report the results for the structured operational semantics representation only. The

Kronecker representation results are practically identical, as can be seen by comparing

the K-L divergences in Figures 4.6(b) and 4.7(b).

If we apply exact aggregation as described in [42], the PeerA[10] component will

have 66 states, while PeerB[20] will have 231 states (these would be 59,049 and

3,486,784,401 states with no aggregation). Although neither of the components is

particularly large, their combination produces a large state-space. However, it is rela-

tively easy to further reduce PeerA[10] and PeerB[20] independently. The compression

ratio used is 0.5 for both components.

This approximation of individual components results in significant reduction of the

total state-space. As can be seen in Table 4.3, this reduction required only a small

initial cost, while it resulted in a considerable decrease of the analysis time. A global

reduction of the state-space would be practically infeasible for a model of such size.

Figure 4.8 depicts the evolution of the average populations of the model components

that have been reduced. Those figures seem to be reasonable approximations of the
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Table 4.3: Running times for System10:20:2

Original
Quasi-Lumpability

(Compositional)

NCD

(Compositional)

Approximation - 1 sec 1 sec

PRISM Loading 320 sec 70 sec 70 sec

Transient Solutionb 300 sec 75 sec 75 sec

Steady-State Solution 20 sec 4 sec 4 sec

Total Time 640 sec 150 sec 150 sec

Number of States 152460 37950 37950

b 100 points: 0≤ t ≤ 2

original model’s average behaviour. It would also be interesting though to look at the

behaviour of the components that have not been approximated. Figure 4.9 depicts the

evolution of the average Index populations. Both quasi-lumpability and NCD-based

approach result in approximations very close to the original solution.
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Figure 4.9: Evolution of the average Index populations for System10:20:2

4.5.3 Experimentation with the System Size

By imposing a certain compression ratio, we essentially decide the size of the aggre-

gated component, and subsequently the size of the entire aggregated model. In this

experiment, we explore how approximation quality is affected by different compres-

sion ratios for the models considered in this chapter. Moreover, we examine whether

the effect of a particular compression ratio is different when aggregation is applied to

systems of different size.

We consider the systems System5:5:1 and System10:20:2, which have been used in

the previous sections. This time, we look into the relative errors regarding the average

component populations at steady-state. The relative error is calculated as follows:

η =
|v− vapprox|

v
(4.33)

where v is the true value for the component population, and vapprox is the corresponding
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approximate value. The values that we report are the averages of the relative errors for

all the PEPA components involved in System5:5:1 and System10:20:2.

Table 4.4(a) outlines the experimentation results for System5:5:1. In the first column,

we can see the compression ratios used for component aggregation. The second col-

umn shows the total state-space size of the aggregated Markov chain. The components

that have been aggregated are PeerA[5] and PeerB[5] with ratio that varies between 0.3

and 0.7. For each aggregation case, we report the average relative errors for the quasi-

lumpability and the NCD-based approach. In the general case, one would expect that

the more the size of the model is reduced, the less accurate the results will be. For the

model considered, we can see that we have higher error values as we decrease the size

of the aggregated model, regardless of the aggregation approach used in each case.

Table 4.4: Experimentation with different compression ratios

(a) System5:5:1

Component

Compression Ratioc

Average Relative Error at Steady-State

Number of Statesd Quasi-Lumpability NCD

0.7 784 0.115 0.055

0.5 400 0.125 0.099

0.3 144 0.151 0.144

c Aggregation has been applied to PeerA[5] and PeerB[5] independently
d The original model has 1764 states

(b) System10:20:2

Component

Compression Ratioe

Average Relative Error at Steady-State

Number of Statesf Quasi-Lumpability NCD

0.7 74060 0.057 0.021

0.5 37950 0.078 0.044

0.3 13110 0.108 0.094

e Aggregation has been applied to PeerA[10] and PeerB[20] independently
f The original model has 152460 states

The same set of compression ratios is used for the System10:20:2, whose results

are outlined in Table 4.4(b). Again, we observe that the errors tend to be larger as

the size of the approximate model is decreased. Another interesting observation is

that the relative errors in Table 4.4(b) are significantly smaller than the corresponding

values for the smaller system in Table 4.4(a). Although we have experimented with the

same compression ratios for both models, approximation quality has been better for the
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larger model. Apparently, a larger model is more likely to be amenable to approximate

state-space aggregation.

As a final remark, it appears there is a trade-off between approximation quality and

state-space reduction. Nevertheless, this result should not be generalised for arbitrary

models. Sometimes it should be possible to achieve a state-space reduction that is more

accurate than other configurations that involve more states. A characteristic example

is the case where the model in question is lumpable; there would be no approximation

error, as the aggregation would be exact.

4.6 Summary

Although approximate Markov chain aggregation is not a new concept, it has not been

particularly popular in the field of Markovian modelling, since an explicit representa-

tion of the transition matrix is typically required. Using approximate Markov chain

aggregation as discussed in Chapter 3, we were able to reduce the local state-space of

the labelled CTMCs that correspond to PEPA components.

Component aggregation has to rely on some notion of equivalence between com-

ponents. We have developed a modified version of strong equivalence as appeared in

[48]. Our version has been defined over the set of transition matrices that characterise

a component’s behaviour as a labelled transition system. Given a partition on a com-

ponent state-space, the individual rate matrix as well as the rate matrices for all shared

actions have to be lumpable. We have suggested that the partitioning approaches of

Chapter 3 can be applied to the individual rate matrix, in order to obtain a partition

on the component state-space. Regarding the applicability of such an approach, it is

noted that the approximated components are required to have a set of shared actions

that is relatively small when compared to their set of individual actions. That would

mean that the individual rate matrix is dense enough to apply a partitioning algorithm

on it. Therefore, our approach is mostly applicable to models that can be decomposed

to weakly dependent components.

In order to combine aggregated PEPA components in a way compatible to the orig-

inal PEPA semantics, we have resorted to two alternatives. First, we have explored in

more detail the Kronecker representation that we have proposed in [72], and we have

highlighted a limitation, according to which, unreachable states may be involved in the

generator matrix. An new approach to produce compositions of aggregated compo-

nents has been also proposed, which involves the definition of appropriate structured
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operational semantics to produce an aggregated derivation graph.

Our multi-scale example demonstrated the potential of compositional approximate

aggregation, as it produced reasonable approximations of the models considered. Most

importantly, compositional aggregation resulted in a great reduction of the state-space

size with a small initial cost for aggregating the PEPA components, in contrast with

aggregating the entire Markov chain.





Chapter 5

Stochastic Simulation via Trajectory

Sampling

The use of Markovian process algebras in biochemical modelling provides a formal

context for representing biological systems with stochastic behaviour. A formal spec-

ification often provides a deep insight into critical aspects of the modelling process.

For example, Clark et al. [25] applied a static analysis on Bio-PEPA components that

helped identifying flaws in the model description, based on the notion of conservation

of mass.

Nevertheless, in a biochemical context it is very difficult to apply many of the anal-

ysis methods that are available for a process algebra such as PEPA. Remember that

PEPA models are collections of components with finite state space. On the other hand,

a Bio-PEPA component represents population counts for a chemical species. Molec-

ular populations are often unbounded, thus Bio-PEPA components do not necessarily

take values in a finite set. This often results in Markov chains whose state-space is

unbounded or just too large to produce an explicit representation. Even a composi-

tional approach to construct the state-space, in the style of Kronecker representation

for PEPA, would not be particularly useful, as Bio-PEPA components tend to be highly

coupled. The transitions are dictated by reactions, whose rates are determined by the

global state of the system rather than the local state of the component.

Stochastic simulation is still a relevant approach to explore the properties of chem-

ical reaction systems described by Bio-PEPA models, as no explicit representation of

the entire Markov chain is required. An introduction to Markov chain simulation can

be found in Section 2.4. In short, simulating a stochastic process produces trajectories,

which are realisations of the stochastic process, a concept similar to sampling from

99
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random variables. Generating a large number of such realisations allows us to produce

estimates for the state probabilities at different times. In particular, a Markov chain

trajectory is a sequence of states and transitions that realises a random walk over the

state-space.

In the lifetime of a typical biochemical system, a huge number of reactions need

to be simulated. Therefore, the generation of a single trajectory typically involves

generating a large number of stochastic events, a fact that motivated research towards

accelerated stochastic simulation approaches that are either exact or approximate. Ex-

act approaches simulate every single reaction occurring in a system, but also make

use of appropriate data structures in order to generate the simulation events efficiently.

An approximate simulation method skips some of the simulation events, resulting in a

significantly faster process when compared to exact methods. A review on simulation

approaches can be found in Section 2.4.

In this chapter, we present an accelerated simulation algorithm that can be char-

acterised as almost exact, in the sense that it produces all of the transitions involved

in the realisation of a stochastic process. We call our method Trajectory Sampling

Simulation (TSS) as it samples from the distribution of state sequences and the dis-

tribution of time given some particular sequence. Sampling from the trajectory space

rather than the transition space means that we need to generate fewer random numbers,

which is an operation that is typically computationally expensive. Sampling from the

time distribution involves approximating the exponential distributions that govern the

sojourn times with a geometric distribution. A proper selection for the approximation

parameters can ensure that the stochastic process simulated is almost identical to the

simulation of the original Markov chain. Our approach does not rely on certain prop-

erties of the model and it can be used as an alternative to more efficient approaches

when those are not applicable.

In Section 5.1, we focus on simulation approaches in the literature that are most

closely related to our work. Section 5.2 discusses theoretical details and implementa-

tion issues regarding the TSS algorithm. Our simulation algorithms is experimentally

evaluated in Section 5.3.

5.1 Related Work

Our simulation algorithm is a modification of the direct method (DM) [40]. The DM

has been originally described in terms of systems of chemical reactions, which per-
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fectly fit the context of a typical Bio-PEPA model. We present a generic description

of the DM in Algorithm 3, in order to cast light on some important aspects of CTMC

simulation.

Algorithm 3 The Direct Method
1: Initialise system state

2: while t < t f inal do
3: Given that M transitions are currently possible, calculate the transition rates λm,

∀m ∈ {1,2, . . . ,M}
4: Calculate λ = ∑

M
m=1 λm, which is the rate of leaving the current state

5: Draw sample τ from Exp(λ)

6: Select next transition with probability: pm = λm
λ

7: Update time: t← t + τ

8: Update state with effect of transition m

9: end while

The main source of inefficiency for the DM is the fact that the steps above have

to be repeated many times. In terms of chemical reaction systems, each iteration of

Algorithm 3 corresponds to a singe reaction that involves the molecules prescribed by

the system specification. Typically, millions of reactions have to be simulated in order

to generate a single trajectory. Moreover, a large number of trajectories is needed to

have a sufficiently accurate approximation of the system properties.

Approximate simulation methods skip some of the iterations, and therefore do not

monitor every single change in the system. This can be appropriate for many biological

systems, where the state stands for molecular populations of the different chemical

species. If the populations are high enough, then small variations will not particularly

affect the reaction rates. It is therefore assumed that the reaction rates remain constant

for a certain amount of time, and the state is updated according to the combined result

of a number of reactions. For example, τ-leaping [41] advances time by a time interval

τ, while the number of firings for each reaction is determined by a Poisson random

variable. A similar approach is K-leap [10], however, the number of reaction firings is

fixed to k. Instead, the time interval τ is determined by a Gamma distributed random

variable which represents the total duration of k exponential events at the same rate.

Such practices result in a significantly accelerated simulation process, however, they

are only accurate if the reaction rates remain practically constant during τ. In fact, the

applicability of such approaches depends on the properties of the model. Systems that
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involve low population components are liable to give erroneous results.

In this work, we are interested in developing an accelerated simulation algorithm

whose performance and accuracy are independent of the model in question. If we want

to position our approach against the literature, it can be characterised as exact, as no

transitions are skipped. The applicability of exact methods does not rely on the model

properties, because simulation is typically accelerated by appropriate data structures.

For example, the optimised DM (ODM) [18] makes use of a dependency graph, in

order to keep track of the reaction rates that have been actually affected by the last

change of state, and thus unnecessary recalculations are avoided. In our approach,

the source of optimisation is the reduction of the total number of random numbers

generated. This practice does not prohibit the use of other exact simulation approaches

in combination with trajectory sampling. As a matter of fact, our implementation is

based on the ODM, which is used as a baseline for efficiency comparisons.

The concept of minimising random number generation has also appeared in the

K-skip method I in [9], or simply K-skip. While their strategy for sampling from

the state sequence distribution is similar, their approach for sampling from the time

distribution is different. In order to reduce the random samples that determine the

sojourn times, they approximate the sum of k exponential random variables with a

Gamma distribution, assuming that the exit rates are similar for subsequent states, in a

similar way to the K-leap method which is approximate. This assumption is reasonable

for many bio-chemical systems, however it may introduce errors for some models as

we demonstrate in the experiments section, while our approach can be generalised

for arbitrary models. We have implemented K-skip following its description in the

original paper, in order to produce some comparative results. We also highlight some

computational issues not considered in [9] that arise from the fact that one random

number is used to produce an entire trajectory.

5.2 Trajectory Sampling Simulation

As a simulation approach, trajectory sampling can be characterised as almost exact,

in the sense that it can be arbitrarily precise; accuracy is controlled by a user-defined

parameter. In the case of the DM, each step requires sampling from two distributions:

the state distribution and the time distribution, both conditioned on the current state.

In a similar way, TSS involves sampling from the distribution of state sequences. This

reduces the number of random samples generated, a fact that implies a faster simula-



5.2. Trajectory Sampling Simulation 103

tion algorithm. The algorithm is still exact, since no transitions are skipped. The same

approach is extended to sample from the time distribution given some particular se-

quence. That is achieved by approximating the exponentially distributed sojourn times

with a discrete random variable. Time discretisation allows us to consider the time

distribution as a discrete state Markov chain, and therefore employ the TSS technique.

This modification essentially renders our approach approximate, as part of the stochas-

tic behaviour of the CTMC is suppressed. However, we have shown that our method

in the limit converges to the solution of the original process, a fact that explains our

use of the term “almost exact”. We show that an appropriate selection of the approxi-

mation parameters can result in a behaviour very close to the original CTMC, and in a

reasonable speed-up at the same time.

5.2.1 Random Variables: Transition vs Trajectory Point of View

We have seen that a CTMC (Definition 2) can be represented as a triple (S,Q,πππ0),

where S is a set of states. In order to facilitate discussion, we consider S to be finite,

although it does not have to be so in the general case. Then Q ∈R|S|×|S| will be a finite

generator matrix, and πππ0 ∈ R|S| is the initial probability vector.

A transition in a CTMC is associated with two random variables that depend on the

current state s ∈ S; those are Xs that determines the next state, and Ls that determines

the amount of time spent in s. The DM involves sampling from Xs and Ls to generate

the next event. The Xs random variable follows a categorical distribution conditional on

s, and its probability mass function is given by row s of the jump matrix P. We assume

an ordering of states such as s < s′, if s corresponds to a row of the transition matrix

with a smaller index than s′. If sk−1 is the state of the system after k− 1 transitions,

sampling from Xsk−1 involves using a uniform sample U ∼ U(0,1) and selecting the

next state sk with probability:

Pr(Xsk−1 = sk) = Pr(ask <U ≤ bsk) (5.1)

where bsk is the cumulative probability of state sk given sk−1, while ask is the cumula-

tive probability of the state that precedes sk in the ordering:

ask = ∑
sk
′<sk

Psk−1sk
′ and bsk = ∑

sk
′≤sk

Psk−1sk
′ (5.2)

In order to sample from Lsk−1 , we have to draw a new uniform sample U ∼U(0,1) and
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calculate the time tsk−1 spent in sk−1 as follows:

tsk−1 =−
ln(1−U)

λsk−1

(5.3)

From a trajectory point of view, the random variables are different. A CTMC tra-

jectory involves a sequence of states and a sequence of positive numbers that represent

the amount of time spent in each state. Let Sk be a collection that stands for the family

of state sequences of length k. Therefore, we define XSk as the variable that represents

the k-length sequence distribution. Given some particular sequence of states, namely

s0:k, its duration is represented by the Ls0:k random variable. Ideally, we would like

to directly sample from XSk and Ls0:k to determine the state history and the time of

the system after k transitions. Exact stochastic simulation algorithms actually sample

from those distributions implicitly by advancing by one state at each event. In the sec-

tions that follow, we discuss how we can directly sample from the trajectory-related

distributions, XSk and Ls0:k .

5.2.2 Sampling from the State Sequence Distribution

The sampling from the state sequence distribution discussed in this section can be

applied to both discrete and continuous time processes. Without loss of generality, we

can assume that there is one initial state in some Markov chain. This will be the root of

a tree whose paths represent all the possible state sequences. Each path of a tree with k

levels corresponds to a sequence of k+1 states or k transitions. Then, the probability

of a path can be defined as the product of the transitions involved:

Pr(XSk = s0:k) =
k

∏
n=1

Psn−1sn (5.4)

In fact, XSk follows a categorical distribution with |Sk| parameters. Sampling from

the sequence distribution requires us to compute its cumulative distribution function,

which means that we have to define an ordering of the possible sequences.

Definition 17 (Lexicographical Ordering of Sequences). Given an ordering of states,

we define an ordering of sequences such as s0:k < s0:k
′ if one of the following holds:

i. s0:k−1 < s0:k−1
′ or

ii. s0:k−1 = s0:k−1
′ and sk < sk

′
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Therefore, we can calculate the cumulative probabilities for the sequences. Given

a uniform random variable U ∼U(0,1), we can choose directly a sample from the se-

quence space. The relationship between U and XSk is shown in the following equation:

Pr(XSk = s0:k) = Pr(as0:k <U ≤ bs0:k) (5.5)

The term bs0:k is defined as the cumulative probability of the s0:k sequence. In the

same way, as0:k will be the cumulative probability of the sequence that precedes s0:k

according to the ordering. More formally:

as0:k = ∑
s0:k
′<s0:k

Pr(s0:k
′)

bs0:k = ∑
s0:k
′≤s0:k

Pr(s0:k
′) = as0:k +Pr(s0:k)

(5.6)

Although sampling from the sequence distribution is well-defined, it cannot be

practically applied in its current form. The number of possible sequences grows expo-

nentially as k increases, a fact that renders Equations (5.4) and (5.6) computationally

expensive. However, we shall show next that it is possible to draw a sample from

U ∼ U(0,1) that determines the sequence, and recursively generate the transitions

involved. A recursive definition for the cumulative sequence probabilities would be

useful for this task. Using Definition 17, the cumulative probability of the sequence

that precedes s0:k can also be written recursively as follows:

as0:k = Pr(s0:k−1) ∑
sk
′<sk

Psk−1sk
′+as0:k−1 (5.7)

Since the uniformly distributed sample U determines the entire k-length sequence,

it follows that it also determines all of the k transitions involved. In the DM however,

the sequence of the transitions would have been determined by a sequence of uniform

samples U1, . . . ,Uk, where Un ∼U(0,1) for 1≤ n≤ k. Thus, the sequence U1, . . . ,Uk

is equivalent to the sample U used for the state sequence distribution. We shall next

define the last sample Uk in terms of U , which gives rise to the following theorem:

Theorem 4. If U ∼ U(0,1) is used to draw a state sequence sample s0:k, then sk is

determined by:

Uk =
U−as0:k−1

bs0:k−1−as0:k−1

(5.8)
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Proof. We have to show that ask <Uk ≤ bsk , which means that Uk will select the state

sk, according to Equation (5.1). Since s0:k was selected, Equation (5.5) implies:

as0:k <U ≤ bs0:k ⇔

U > Pr(s0:k−1) ∑
sk
′<sk

Psk−1sk
′+as0:k−1

and U ≤ Pr(s0:k−1) ∑
sk
′<sk

Psk−1sk
′+as0:k−1 +Pr(s0:k)

We subtract as0:k−1 from all terms, and divide everything by Pr(s0:k−1):

Pr(s0:k−1) ∑
sk
′<sk

Psk−1sk
′ <U−as0:k−1 ≤ Pr(s0:k−1) ∑

sk
′<sk

Psk−1sk
′+Pr(s0:k)

∑
sk
′<sk

Psk−1sk
′ <

U−as0:k−1

Pr(s0:k−1)
≤ ∑

sk
′<sk

Psk−1sk
′+

Pr(s0:k)

Pr(s0:k−1)

We substitute Pr(s0:k)
Pr(s0:k−1)

with Psk−1sk and Pr(s0:k−1) with bs0:k−1−as0:k−1:

∑
sk
′<sk

Psk−1sk
′ <

U−as0:k−1

bs0:k−1−as0:k−1

≤ ∑
sk
′<sk

Psk−1sk
′+Psk−1sk

∑
sk
′<sk

Psk−1sk
′ <

U−as0:k−1

bs0:k−1−as0:k−1

≤ ∑
sk
′≤sk

Psk−1sk
′

which yields:

ask <Uk ≤ bsk

Theorem 4 can be used to calculate any of the Un samples that determine the tran-

sitions by simply considering k = n, with n > 1. For the special case where k = 1, the

sequence probabilities will be equal to the transition probabilities of the first step. We

could then calculate the uniform sample Uk+1 needed for the next step and recursively

update as0:k+1 and bs0:k+1 to get the new cumulative sequence probabilities using Equa-

tion (5.7). This strategy might not be optimal though, as it requires keeping track of

two cumulative probabilities. A cleaner and more efficient solution would be to write

Uk in terms of the previous uniform sample Uk−1.

Theorem 5. Assume that Uk and Uk−1 are related to U ∼U(0,1) as in Equation (5.8).

If Uk−1 is used to draw a state sample sk−1, then sk is determined by

Uk =
Uk−1−ask−1

bsk−1−ask−1

(5.9)
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Proof. Given a uniform sample U that determines the sequence, the samples Uk and

Uk−1 can be written as specified in (5.8). If we solve w.r.t. U in both cases, we obtain

the following equality:

UkPr(s0:k−1)+as0:k−1 =Uk−1Pr(s0:k−2)+as0:k−2

which yields:

Uk =
Uk−1Pr(s0:k−2)

Pr(s0:k−1)
−

as0:k−1−as0:k−2

Pr(s0:k−1)
(5.10)

Using (5.7), the numerator of the second fraction above can be written as:

as0:k−1−as0:k−2 = Pr(s0:k−2)ask−1 +as0:k−2−Pr(s0:k−3)ask−2−as0:k−3

We also know that as0:k−2 = Pr(s0:k−3)ask−2 +as0:k−3 because of (5.7), so we can rewrite

(5.10) as:

Uk =
Uk−1Pr(s0:k−2)

Pr(s0:k−1)
−

ask−1Pr(s0:k−2)

Pr(s0:k−1)

According to the definition of sequence probabilities in (5.4), we have Pr(s0:k−1) =

Pr(s0:k−2)Psk−2sk−1 , which implies:

Uk =
Uk−1−ask−1

Psk−2sk−1

Finally, we can write Psk−2sk−1 as a difference of cumulative probabilities to obtain

Equation (5.9).

Starting from some initial transition, we can recursively generate an entire se-

quence of random samples that are uniformly distributed between 0 and 1. If the

previous step utilised a sample Uk−1 ∼U(0,1), we know that ak−1 <Uk−1 ≤ bk−1. If

we define Uk according to (5.9), it is easy to show that 0 <Uk ≤ 1, which means that

Uk ∼ U(0,1). Although this sequence is produced deterministically, we have shown

that it corresponds to the uniform sample needed to sample from the sequence distri-

bution.

Thus, assuming that the quantities ask−1 and bsk−1 − ask−1 have to be calculated

anyway, generating a sample at each step requires a subtraction followed by a division,

as Equation (5.9) implies. This procedure is more efficient than most of the random

generator algorithms, in particular the ones that produce high quality random numbers.
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5.2.3 Sampling from the Time Distribution

5.2.3.1 Time Discretisation

If we select some particular sequence s0:k, the duration of the total of the transitions

involved is represented by a Ls0:k random variable. In the case of CTMCs this will be

the sum of k exponentially distributed independent random variables that determine

the duration of each transition, or more formally:

Ls0:k =
k

∑
i=0

Lsi (5.11)

where Lsi ∼ Exp(λsi). Therefore, Ls0:k will follow hypo-exponential distribution with

k parameters, or equivalently Ls0:k ∼ Hypo(λs0, . . . ,λsk). To sample directly from Ls0:k

is only feasible for special cases such as the Erlang distribution, which is a hypo-

exponential with k similar parameters. It is possible to transform Ls0:k to an Erlang

distributed variable by applying uniformisation [54]. This approach is problematic

though, as the probability matrix of the embedded DTMC will contain self-loops, in

contrast to the original jump chain as defined in (2.6). This means that the uniformised

CTMC will involve a larger number of events, a fact that could actually slow the sim-

ulation down.

Our attempt of sampling from the hypo-exponential Ls0:k efficiently will focus on

approximating the exponentially distributed sojourn times with a discrete random vari-

able. The use of a discrete distribution implies that we divide time into intervals, since

it involves discrete time-steps rather than continuous. Thus, while a continuous distri-

bution indicates the probability of a transition happening up to a time t, a discrete one

indicates the transition probability up to the n-th interval.

The geometric distribution is the most appropriate choice for the task, since it is

the discrete analogue of the exponential. Given some exponential random variable

L ∼ Exp(λ), this can be approximated by a geometrically distributed Y ∼ G(p) that

denotes the number of Bernoulli trials needed to fire a transition with probability p.

The geometric distribution is supported in N excluding zero. Given the length of in-

tervals l, we can map a geometric random variable to R+ by considering that it is

supported in {1l,2l, . . .}. Since Y is geometric, its expected value will be 1/p inter-

vals, or l/p in terms of time units. If we make L and Y correspond to the same expected

value, that is 1/λ = l/p, it is easy to show that the interval length will be:

l =
p
λ

(5.12)
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Therefore, to determine the amount of time spent in state sk will involve two steps:

1. Sample from Ysk ∼ G(p). Using a uniform sample U ∼ U(0,1), we choose a

n ∈ N∗ with probability:

Pr(Ysk = n) = Pr(aYsk
<U ≤ bYsk

) (5.13)

where bYsk
= Pr(Ysk ≤ n) and aYsk

= Pr(Ysk ≤ n−1).

2. Calculate the time spent in state sk:

tsk = nlsk = n
p

λsk

(5.14)

The advantage of time discretisation is that we can use the sequence sampling tech-

nique presented in Section 5.2.2, and therefore reduce the random samples generated.

To illustrate how this is possible, let us consider the stochastic process {Ysk,k} that

denotes the collection of geometrically distributed random variables used to approx-

imate the sojourn times in some CTMC. The time index k is discrete, as it denotes

the number of jumps in the corresponding CTMC. If we set the same parameter p for

those random variables, then they will be independent and identically distributed. We

can easily verify that {Ysk,k} is essentially a DTMC, which means that it is possible to

generate an entire state sequence using a single uniform sample, as demonstrated in

the previous section. The time discretisation was necessary, otherwise it would not be

possible to define the discrete-state Markov process {Ysk,k}, and therefore employ the

trajectory sampling technique.

One desirable property of our approach is that it gives an estimation for the du-

ration of all of the transitions involved in a trajectory. On the contrary, the Gamma

sampling used in K-skip only produces the total duration of k transitions. While both

approaches use a single random number to determine the duration of trajectories, K-

skip is expected to be superior from a performance point of view. However, our method

produces trajectories that are as detailed as the ones of the original Markov chain.

One other strength of our approach is that its applicability does not rely on partic-

ular model properties. The Gamma sampling used in K-skip assumes that exit rates do

not change much during the k steps. This assumption, which is similar to the leap con-

dition in τ-leaping methods, may not hold for some models meaning that it could be an

extra source of error. Our method is not exact however, due to the time discretisation

employed. The quality of this approximation is discussed in the rest of this section.
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5.2.3.2 Quality of Approximation

Since the interval length l is dependent on the parameter p of the Geometric distribu-

tion, it is rather intuitive that smaller values for p result in better approximation, as l

also tends to get smaller. We are going to characterise the quality of this approximation

in a rigorous manner.

Theorem 6. Let us consider a stochastic process that approximates some CTMC fea-

turing the same state-space S, the same transition probability matrix P, and the same

initial distribution πππ0. The approximate process is only different in the sense that the

sojourn times are determined by Ysk ∼ G(p), as described in (5.13) and (5.14). Then,

the approximate process converges to the corresponding CTMC, as p→ 0.

Proof. Let us define P(t) as the transition probability matrix of a CTMC after time

t. Given an initial state distribution vector πππ0, the distribution vector of the CTMC at

time t will be:

πππt = πππ0P(t) (5.15)

P(t) can be calculated as a weighted sum of different powers of the probability matrix

P of the underlying jump chain. The state distribution at t can then be rewritten as

follows:

πππt = πππ0

∞

∑
k=0

Pk×Pr(k steps until t) (5.16)

The modified stochastic process that resulted from this geometric approximation will

have the same underlying jump chain as the original CTMC. The only term in (5.16)

that is different in those two kinds of processes is the probability of k transitions hap-

pening until time t. This probability can be expressed as a sum of the probabilities of

all sequences with duration less than or equal to t, weighted by the sequence probabil-

ities:

Pr(k steps until t) = ∑
s0:k∈Sk

Pr(Ls0:k ≤ t)Pr(s0:k) (5.17)

In order to show that the behaviour of some CTMC as given in (5.16) tends to

be more accurately approximated by the modified process as p→ 0, it is sufficient

(although not necessary) to show that Pr(k steps until t) tends to be the same for the

two kinds of processes as p → 0. The modified process will have same sequence

probabilities as its corresponding CTMC, since the jump process is the same. Thus,

two corresponding processes are only different w.r.t the distribution of Ls0:k . Therefore,

it is sufficient (although not necessary again) to show that the cumulative distribution
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functions for the sojourn times tend to be the same as p→ 0. Since the true sojourn

time Lsk is approximated by lYsk , we have to calculate the following limit:

lim
p→0

Pr(lYsk ≤ t) = lim
p→0

Pr(Ysk ≤ t/l)

= lim
p→0

1− (1− p)t/l

We can substitute the interval length l on the exponent according to (5.12).

lim
p→0

Pr(lYsk ≤ t) = lim
p→0

1− (1− p)λt/p

= 1− ( lim
p→0

(1− p)1/p)λt

= 1− e−λt = Pr(Lsk ≤ t)

The p parameter is a probability, so we have 0 < p≤ 1. Theorem 6 implies that the

smaller the value of p is, the better the approximation will be. However, a value for p

that is too small can make the geometric sampling described by (5.13) inefficient, as the

cumulative probabilities of the form Pr(Ysk ≤ n) will involve too many terms. Hence,

we need a trade-off between approximation quality and efficiency. In the experiments

that follow, we use two different values: p = 1 that implies deterministic time-steps

that depend on the current state only, and p = 0.1 which we think that it is a more

appropriate choice, judging by the experimental results of Section 5.3.

5.2.4 Implementation Issues

Although sampling from the sequence distribution as discussed in Section 5.2.2 is theo-

retically correct, it gives rise to some computational issues. In most computer systems,

the mantissa for the double-precision floating-point format contains 53 bits. That is

why most random generators produce doubles of the form: m× 2−53, where m is a

uniformly distributed integer. In other words, a random generator is capable of pro-

ducing 253 different values. The TSS algorithm will have 253 different inputs resulting

in 253 different trajectories at most. The number of the possible trajectories can easily

exceed this value even for not so long simulation runs, since it grows exponentially

with the number of simulation events. Therefore, it is inevitable that we will miss a

significant number of possible state sequences.

This effect can be eliminated if we sample trajectories of some particular length k,

such that the number of possible sequences are significantly smaller than the number
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of uniformly distributed doubles. A value k = 10 is a reasonable choice that suits most

of the models that we have encountered in practice. Given 53-bits of precision for

the mantissa, we have 253 ≈ 9×1015 different possible random numbers. The largest

model that we have tested is LacY [56] involving 21 bio-chemical reactions, which

means that the maximum number of transitions available is also 21. If we set k = 10,

we have 21k ≈ 1.66×1013� 253.

Each step in TSS consists of two actions: state sequence sampling as described

in Section 5.2.2, and time sampling using geometric approximation. These concepts

are summarised in Algorithm 4, which involves two parameters: p that controls the

granularity of the geometric distribution and the length k of the trajectories to sample.

In our implementation the probabilities of the geometric distribution have been pre-

calculated for efficiency.

Algorithm 4 Trajectory Sampling Simulation
1: Initialise system state and set 0 < p≤ 1 and k ≥ 1

2: Draw samples UL ∼U(0,1) and UX ∼U(0,1)

3: while t < t f inal do
4: Given that M transitions are currently possible, calculate the transition rates λm,

∀m ∈ {1,2, . . . ,M}
5: Calculate λ = ∑

M
m=1 λm, which is the rate of leaving the current state

6: Using sample UL, draw n from the geometric distribution G(p)

7: Using sample UX , pick transition m with probability λm/λ

8: Update time: t← t +np/λ

9: Update state with effect of transition m

10: if iteration mod k 6= 0 then
11: Update UL and UX according to Equation (5.9)

12: else
13: Draw samples UL ∼U(0,1) and UX ∼U(0,1)

14: end if
15: end while

5.3 Experiments

In this section, we present a series of experiments to evaluate the efficiency and the

accuracy of our method. We want to investigate whether TSS delivers improved per-



5.3. Experiments 113

formance with respect to the DM. Two different parameter values are used for the

geometric approximation in TSS: p = 1 and p = 0.1.

Moreover, we also compare our approach with the K-skip method [9], which also

relies on minimising random number generation. The differentiation however is on

that the sojourn times are determined by a Gamma distribution with shape parameter

k, which approximates the sum of k exponential random variables. The value of k is

determined automatically, depending on a user defined error parameter. The error pa-

rameter that we have used for K-skip is 0.01, which is the smallest value used in the

original work. The assumption is that the exit rates for subsequent states are similar,

which is a concept used in many approximate simulation methods, including τ-leaping

[41] and K-leap [10]. K-skip is expected to be normally more efficient, because of

the use of a Gamma distribution. However, we think that the absence of similar as-

sumptions for TSS implies that it can be effective for arbitrary models, in contrast with

K-skip.

We have applied our approach to simulate three different models of bio-chemical

reaction networks. The first one is the Schlögl model as appeared in [20]. It is a rela-

tively small model featuring 4 reactions and 3 species, it is interesting however because

of its bistable distribution. The second model is LacY, which involves 21 reactions and

22 species, as appeared in [56]. The third example is Goldbeter’s oscillatory model

[43] as presented in [23], which involves 7 reactions and 6 species. A Bio-PEPA spec-

ification of the aforementioned models can be found in Appendix A. Both models

have been simulated using the ODM, K-skip, and TSS. The implementation of both

K-skip and TSS is based on the ODM, hence any efficiency comparisons have ODM

as a baseline.

5.3.1 Evaluation of Efficiency

The efficiency of our algorithm stems from the fact that it generates fewer random

numbers. Our intention is to demonstrate that minimising the random numbers gen-

erated results in improved performance, no matter how efficient the implementation

is. One of the most popular random generators in the literature is Mersenne Twister

(MT) [67]. It produces high quality random numbers while it exhibits performance

comparable to the most efficient algorithms of its kind, as can be seen in [62]. We have

developed our algorithm in Java using a number of open-source libraries that contain

implementations of MT, namely Apache Commons, CERN Colt, JAMES II [51] and
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SSJ [63]. The implementations used produce doubles whose mantissa precision is 53

bits.

Table 5.1: Running times in seconds for 105 simulation runs

(a) Schlögl model, t f inal = 4

TSS

ODM K-skip p = 1 p = 0.1

Apache Commons 407 458 307 333

CERN Colt 391 484 308 302

JAMES II 393 483 309 318

SSJ 445 555 303 329

(b) LacY model, t f inal = 1000

TSS

ODM K-skip p = 1 p = 0.1

Apache Commons 8759 5588 6930 6951

CERN Colt 9043 5568 6974 6915

JAMES II 9684 5490 7043 6944

SSJ 10452 5562 7248 7322

(c) Goldbeter’s model, t f inal = 10

TSS

ODM K-skip p = 1 p = 0.1

Apache Commons 12264 9354 10678 10615

CERN Colt 12685 9514 10662 10658

JAMES II 13531 9857 10598 10596

SSJ 14636 9269 10719 10734

Table 5.1 contains the running times for different random generators. The exper-

iments have been performed in an Intel R© XeonTM E5410 @ 2.33GHz PC running

Scientific Linux 6. The results imply that TSS is about 15 ∼ 20% faster than the

ODM. A second observation is that using p = 1 is not significantly faster than TSS

using p = 0.1 for the geometric distribution. This means that there is no need to use



5.3. Experiments 115

a value for p greater than 0.1, as this would not result in a significant improvement in

efficiency.

Comparing running times for K-skip and TSS, the results are mixed. K-skip out-

performs TSS for the LacY model in Table 5.1(b), and the Goldbeter’s model in Table

5.1(c). These results are not surprising, since K-skip determines the total duration of

k events by sampling from a Gamma distribution, while our approach determines the

duration of every single event happening. We note that the speed-ups observed for K-

skip are smaller than the values reported in [9]. This is due to the MT random number

generator, which is more efficient than the ran2 algorithm used in Cai & Wen paper,

as pointed out in [62]. Because we are using a more efficient random generator there

is less scope to deliver speed-ups over the ODM. If we consider this difference, the

results we have found for K-skip seem to comply with the ones reported in the original

work.

Regarding the Schlögl model in Table 5.1(a), K-skip appears to be less efficient

than both TSS and the baseline approach. The effectiveness of K-skip is strongly

related to the value of the shape parameter k for the Gamma distribution. At each

simulation step, a different k value is selected, which depends on the current simula-

tion state. In order to understand the source of inefficiency, we have to monitor the k

values selected by the algorithm. The log-scaled histograms of Figure 5.1 capture the

distribution of k for the three models considered. The histograms are presented in a

logarithmic scale in order to maximise visibility, as the distribution of k is heavy-tailed.

We can see that k typically takes large values for both the LacY model in Figure

5.1(b) and the Goldbeter’s model in Figure 5.1(c). However, the selected k values for

the Schlögl model in Figure 5.1(a) are very small, while the majority of the obser-

vations are k = 1. Hence, the computational overhead of selecting k outweighs any

efficiency improvement that comes with K-skip. Those differences in the selected k

values can be attributed to the fact that the Schlögl model does not comply with the

assumptions that K-skip relies on. The K-skip method responded by selecting small

values for k, a fact that had a detrimental effect on performance. In contrast, since

TSS does not rely on similar assumptions, it has been consistently efficient for all the

models tested.
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(c) Goldbeter’s model

Figure 5.1: Distribution of the logarithm of k values used in 10 simulation runs of the

K-skip method

5.3.2 Evaluation of Accuracy

A second issue that has to be explored is whether the stochastic process described by

Algorithm 4 is equivalent to the original Markov chain. The convergence is ensured

as p→ 0 when k = 1. The simulation will be still exact even if k > 1 as implied by

Theorems 4 and 5. However, the use of the geometric approximation means that we

have a slightly altered process that approximates the original. To assess the quality

of this approximation we construct the histograms for various rewards (i.e. species

populations) in the models used, as it would have been impractical to compare the

entire state-space distribution for models of that size. We then calculate the histogram

distance [20], which is the euclidean distance between the histograms of the true and

the approximate distribution.

It is important to note that the histogram distance will always be larger than zero,
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even if the simulation is exact, since the empirical distributions which result from

simulation are always going to be different. In order to determine whether the distance

calculated is significant, it has to be compared with the corresponding self-distance.

The histogram self-distance depends on the number of samples drawn and the number

of histogram intervals used. A value for the histogram distance that is smaller than the

self-distance implies that the two distributions are practically identical for the given

number of samples. According to [20], an upper bound for the average histogram self-

distance given N samples is independent from the distribution and it can be calculated

using
√

(4K)/(πN), where K is the number of intervals in the histogram. For the

examples that follow, we have considered K = 50.

Table 5.2 summarises the histogram distances for several species populations and

time-points in the models considered. For TSS with p = 1, some of the distances are

slightly larger than the self-distance (the values written in italics). This implies that we

have a reasonably good approximation but the error introduced by using fixed times is

observable for the number of samples considered. However, the approximation quality

is better when using TSS with p = 0.1, as it was expected. The histogram distance

from the true distribution is at the same level or smaller than the self-distance estimated

almost in all cases. This means that the error observed is within the limits of the error

inherently introduced by the simulation process. Those findings support the claim

that TSS with parameter p = 0.1 for the geometric approximation is an accelerated

simulation approach that is almost exact.

While K-skip has been more efficient than our approach for the LacY and Gold-

beter models, Table 5.2 suggests that it is not as accurate in some cases. Most of the

histogram distances for the Schlögl and the LacY model are greater than either the

self-distance or the corresponding distances calculated for both versions of TSS. It

seems that the assumption that the rates of subsequent states are similar might intro-

duce some errors, a fact that renders K-skip less appropriate for some models. Our

approach generalises to systems where this assumption is not valid. Moreover, our use

of the geometric approximation specifies the duration of every single event happening,

which can be important for some systems.



118 Chapter 5. Stochastic Simulation via Trajectory Sampling

Table 5.2: Histogram distances for 106 simulation runs (self-distance: 0.0080)

(a) Schlögl model

K-skip TSS (p = 1) TSS (p = 0.1)

Time X B1 B2 X B1 B2 X B1 B2

1 0.0082 0.0047 0.0060 0.0061 0.0054 0.0060 0.0052 0.0068 0.0052

2 0.0172 0.0079 0.0052 0.0058 0.0073 0.0062 0.0060 0.0058 0.0050

3 0.0156 0.0059 0.0059 0.0072 0.0046 0.0067 0.0075 0.0062 0.0056

4 0.0122 0.0066 0.0074 0.0070 0.0056 0.0065 0.0054 0.0049 0.0052

(b) LacY model

K-skip TSS (p = 1) TSS (p = 0.1)

Time lactose PLac product lactose PLac product lactose PLac product

250 0.0070 0.0090 0.0064 0.0062 0.0005 0.0071 0.0045 0.0011 0.0054

500 0.0040 0.0074 0.0087 0.0042 0.0011 0.0083 0.0030 0.0004 0.0071

750 0.0041 0.0077 0.0074 0.0034 0.0004 0.0086 0.0050 0.0001 0.0076

1000 0.0044 0.0086 0.0081 0.0040 0.0004 0.0087 0.0032 0.0002 0.0079

(c) Goldbeter’s model

K-skip TSS (p = 1) TSS (p = 0.1)

Time active M active X C active M active X C active M active X C

2.5 0.0065 0.0068 0.0074 0.0071 0.0039 0.0039 0.0048 0.0040 0.0036

5.0 0.0067 0.0059 0.0055 0.0067 0.0066 0.0054 0.0066 0.0053 0.0052

7.5 0.0070 0.0088 0.0037 0.0068 0.0082 0.0054 0.0080 0.0079 0.0060

10.0 0.0071 0.0063 0.0067 0.0055 0.0048 0.0081 0.0041 0.0061 0.0062

5.4 Summary

Trajectory sampling simulation requires fewer random samples to generate Markov

chain trajectories. This is achieved by using a single random number to determine an

entire sequence of transitions. We have proven that the random number required to

select the next transition can be written in terms of the random number that selected

the previous transition. This leads to a recursive update of a single random number that
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determines an entire state sequence. In the case of CTMCs a second random number

is used to determine the length of this sequence. The same concept has been used by

approximating the exponentially distributed times with a geometric distribution with

parameter p that controls the quality of this approximation.

We have simulated three biochemical models of different nature to assess the ef-

ficiency and the accuracy of the our method. The experimental results show that our

approach is about 15∼ 20% faster than the ODM, while the errors observed were found

to be negligible. K-skip method I, which is a similar approach, was found to be more

efficient but less accurate in most of the cases. Moreover, we have seen that K-skip

relies on certain assumptions with respect to the model; if the model in question is not

compatible with those assumptions, then K-skip can be problematic. Thus, TSS can

be thought of as an alternative to K-skip in cases where this is possibly inappropriate.

There are also some practical considerations with respect to the length k for the

trajectories to be sampled. A too large value for k might result in missing possible state

sequences, while a value too small will degenerate trajectory sampling simulation to

the ODM. We have used k = 10 for the experiments produced, but in the case of larger

models we would have to set a smaller value for k. We think that k = 5 is appropriate

even for very large models. For example, given a model with 500 reactions we have:

500k ≈ 3.125×1013� 253.





Chapter 6

Case Study on Cloud Computing

In this chapter, we provide a unifying view of the concepts that we have introduced

in this thesis. We devise a case study in order to further discuss the methodologies

proposed over a realistic problem. The area of interest is cloud computing services,

which provide many challenges from an engineering point of view, as systems and

infrastructures have to be able to scale in order to support increasing demand.

Cloud systems typically consist of many inhomogeneous components, whose in-

teractions define a complex behaviour. Performance modelling can be an effective

way to derive expectations for such systems. The PEPA language in particular offers

a framework to represent parts of a system in isolation, while larger components are

formed as compositions of simpler building blocks. It is our position that this system-

atic approach to modelling simplifies and rationalises the modelling process. However,

increased complexity often renders analysis difficult, which makes it an ideal example

to demonstrate the potential of approximation techniques.

The problem under investigation is the scalability of different routing policies in

a Platform as a Service (PaaS) system. In short, a routing algorithm is responsible

for directing the workload to a number of leased servers. Quantitative modelling and

analysis can provide valuable insights into the effect of different routing policies. This

process essentially involves experimentation with different workloads for different sys-

tem sizes. An approximate method allow us to efficiently deal with complex systems,

but it naturally distorts part of the original behaviour. The objective of this case study is

to demonstrate what kind of questions can be answered when applying our approaches,

and most importantly, how the approximate results obtained may affect the conclusions

that can be drawn.

In Section 6.1, we give a small introduction to cloud services, and PaaS in partic-
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ular. Moreover, we discuss the routing issue that has been raised for the Heroku PaaS

provider, which has been the inspiration for our case study. In Section 6.2, we dis-

cuss two models for routing policies for Heroku. Comparative results for the policies

considered are presented in Section 6.3.

6.1 Cloud Services

Cloud computing is a term that describes the access to distributed hardware or software

resources that are available as a service on demand, typically over the Internet. Cloud

solutions provided typically follow one of the fundamental service models [37]:

Infrastructure as a Service (IaaS) refers to access to computing resources, including

actual hardware or virtualised computers, storage, bandwidth or other resources.

For example, that could involve renting machines to run specialised jobs or some

particular applications.

Platform as a Service (PaaS) builds upon IaaS and further provides the clients with

a customised solution stack. This includes operating systems, programming lan-

guages, libraries, web servers, databases and software tools that developers can

make use of to create services.

Software as a Service (SaaS) depends on both IaaS and PaaS, as shown in Figure

6.1, and provides access to remote software applications in a manner completely

transparent to the end user.

Figure 6.1: Service models of cloud computing

The term “cloud computing” characterises the business model under which such

services are made available, rather than the technologies that make it happen, including
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the web or the grid. What the end users normally think of as the cloud is described

by SaaS, as they only interact with software applications without knowledge or direct

interference with the computer resources involved. PaaS and IaaS describe the cloud

from a developer’s point of view. PaaS in particular, includes all the necessary tools

and equipment to deliver web and cloud services.

The traditional way of developing and deploying a remote application involves a

dedicated team of developers that make use of frameworks such as J2EE and .NET,

in order to configure network, database and hardware resources. This means that a

significant part of the workforce is allocated to simply maintaining the platform they

are working on. From that respect, PaaS tends to change the way on-demand appli-

cations are delivered. Having the entire solution stack provided as a service can have

significant benefits to web service and SaaS providers, as they can focus on the de-

velopment of services, rather than on the underlying infrastructure. In this way, they

seamlessly use a constantly updating platform which has been tailored to their needs.

The maintenance effort is moved towards the PaaS provider, who is responsible for

issues regarding scalability and fault tolerance, enabling companies to focus on the

business logic of their applications.

In order to make our discussion on PaaS less abstract, we shall focus on a particular

example in the rest of this section, so as to highlight possible issues, and illustrate how

performance modelling may contribute in identifying such issues and support design

decisions.

6.1.1 The Heroku Case

Heroku as a PaaS provider offers an integrated framework that enables developers

to deploy and support web-based applications. Several programming languages are

supported, including Ruby, Node.js, Clojure, Java, Python, and Scala. Clients are sup-

posed to upload the source code for their application, together with a file that describes

the software dependencies. The Heroku platform will then be able to build the appli-

cation, which will be executed on one or more virtualised machines, which are known

as dynos.

According to the on-line Heroku specification documents1, a dyno is a lightweight

environment running a single command at a time. This functionality is implemented

by an isolated virtualised server running Ubuntu 10.04 or Debian Lenny 5.0. Dynos

1https://devcenter.heroku.com/
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are claimed to provide a secure and performance-consistent environment to run an

application. There are two kinds of dynos available: web dynos which respond to

HTTP requests, and worker dynos which execute background jobs. Commands are not

supposed to be interrupted, thus concurrency is achieved by employing more than one

dynos. Increasing the number of web dynos will increase the concurrency of HTTP

requests, while more worker dynos provide more capacity for processes running in the

background. Therefore, all the client has to do is to upload the source code of the

application and scale it to a number of dynos. The idea is that once a service request

appears, Heroku will be responsible for assigning that request to one of the dynos that

have been leased by the client, by following a routing policy as outlined in Figure 6.2.

The routing policy is the key component that we shall investigate in this case study.

We list below two routing policies that have historically been used by Heroku:

Random Routing implies that a new request is directed to a randomly-selected web

dyno. The premise of random routing is that the load is balanced across the

dynos in the long term.

Smart Routing involves tracking the availability of each dyno and the load is directed

accordingly, thus minimising the number of dynos that remain idle.

Although explicit information on the implementation of these policies is not available,

it is straightforward to model the desired behaviour for each policy at a high-level.

The next important business choice for the client is to determine how many dynos

should be leased. Of course, this depends on the workload. Naturally, the heavier the

workload is, the more dynos will be needed. In the ideal case, every service should

be tailed to the needs of the corresponding client. Typically, clients may have a rough

idea of the expected workload. However, they might find it very difficult to accurately

estimate the number of the machines needed, as this is also dependent on the inter-

nal architecture of the PaaS system, which is supposed to be transparent. This kind

of information has to be provided by the PaaS provider, among other tools (such as

monitoring tools) that can contribute to business decisions for the client.

Performance modelling is a natural way to produce such estimates in a rigorous

manner. Despite the fact that modelling relies on rather strong assumptions, if done

appropriately it can provide us with a very useful insight into some even not so apparent

aspects of a system. A failure to produce expectations about a system’s performance

may result in unexpected delays that will inevitably affect the quality of service for the
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Figure 6.2: The basic structure of Heroku

client. Such an outcome is not improbable at all; in fact, we shall report a particular

incident which has inspired the current case study.

Rap Genius2 is a website that aims to provide a critical and artistic insight into the

lyrics of rap songs. The cultural contribution of Rap Genius is remarkable, however, in

terms of the current poetically sterile thesis, we shall focus on some technical aspects

only. The website users have access to content via HTTP requests, and they are able to

add annotations to content. Rap Genius makes this service available via the cloud, and

Heroku in particular.

In the beginning of 2013, Rap Genius reported unusually long average response

times, despite the large number of dynos leased by the website3. The average response

time reported by the Heroku platform was as low as 40 ms, while the response time

experienced by the users has been 6330 ms. This difference has been attributed to the

fact that the requests are waiting in the local queues of the dynos. Therefore, given that

the actual service has not been any slower than usual, this could suggest that the system

has simply been overloaded. Nevertheless, according to Rap genius, there has not been

2http://rapgenius.com/
3http://rapgenius.com/James-somers-herokus-ugly-secret-lyrics
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any significant change in the workload, which has been as high as 9000 requests per

minute. Eventually, this considerable increase in the response time has been attributed

to the fact that the Heroku routing policy has been changed from smart to random.

Our objective is not to assess the quality of service provided by Heroku, or recreate

absolutely realistic expectations of the response time for Rap Genius. Instead, we want

to demonstrate how modelling with Markov chains may capture the effect of different

routing policies, and most importantly, whether the approximation methods that we

propose throughout this thesis produce adequately accurate results to allow modellers

to reach the same conclusions in a more efficient way.

6.2 Modelling Heroku Routing with PEPA

Before modelling the routing policies, we shall describe the basic components and the

interactions among them in an abstract way. As shown in Figure 6.3, the model we

consider involves two classes of dynos, web and worker, and a router component.

A Poisson process governs the arrivals of web requests, which are initially directed

to the router. The router component is responsible for forwarding a request to a web

dyno. When a web dyno receives a request, there are two possibilities: it can either

service the request or create a new request that can be serviced by a worker dyno. In

that case, the current job will simply migrate from a web to a worker dyno, and the

router is still responsible for redirecting the request accordingly. It is assumed that a

small fraction of the requests are migrated; more specifically, we consider a migration

probability equal to 1/9. This does not imply however that we split the Poisson arrivals

into two Poisson processes, as the job is supposed to spend some time in the web dyno

before migrating. This is the only way a worker dyno may be accessed, as the users are

assumed to produce HTTP requests only. The generation of a worker request captures

the possibility that a job may require some background computation process.

We shall identify some activity types that need to be present in our model, re-

gardless of the routing policy. These activities will be associated with exponentially

distributed durations. Table 6.1 summarises the rates of the events considered. The

number of requests will be governed by a Poison process with rate rrequest. The request

arrival rate rrequest will control the assumed workload in the system. It is actually the

variable we are going to experiment with, so it will take values within a range from 40

to 150 sec−1, which corresponds to 9000 requests per minute.

Regarding the service rate, this is going to be dependent on the type of dyno. In
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Figure 6.3: The Heroku configuration considered

Table 6.1: The rate values used in the examples

Variable Name Value (sec−1)

rrequest [40, 60, 150]

rweb 8

rmigrate 1

rworker 4

rresponse 20

rassign 500

both cases, we assume that service is broken down in two parts: the actual service and

the response. The actual service part covers the amount of work that a dyno needs to

produce a result. The service time depends on the type of the job. While both types of

dynos are identical with respect to their computational capabilities, the worker dynos

deal with more demanding tasks, which is reflected in a lower service rate. Therefore

the average web service time is 1/rweb = 0.125 sec, while for the worker dyno services

we have an average time of 1/rworker = 0.25 sec. The response part represents the time

needed by a dyno to transmit the results to the user. It is considered to be identical

in both cases, as it only depends on the network. Moreover, response takes place at a

considerably higher rate than the actual service, so it has rate rresponse = 20.
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As we shall see in the PEPA models in the rest of this section, it is assumed that

there is a race condition between migration and web service. Thus, the rate of migra-

tion will control the migration probability. By considering rmigrate = 1 and given that

we have rweb = 8, we essentially impose a migration probability equal to 1/9.

Finally, it is assumed that assignment happens almost instantaneously, as it is an

activity that depends on the resources allocated to the routing component only. Given

the current state of the system, it is fair to expect that any decision will take place very

quickly. This is reflected by the significantly high rate rassign = 500, or 0.002 seconds

average duration.

In the rest of this section, we present two PEPA models that implement the routing

policies in question. We assume that each dyno has its own queue, thus we are inter-

ested in observing how the local dyno queues are affected by each policy. We note

that a formalism such as queueing networks is also appropriate to investigate such is-

sues. However, the compositional structure of PEPA models allow for efficient model

reduction, as discussed in Chapter 4.

6.2.1 Random Routing Policy

A dyno can be anything between idle, occupied or having one or more requests in

its local queue. According to the random routing policy, a router is supposed to ran-

domly assign jobs to dynos, regardless of their state. In terms of PEPA models, and

subsequently CTMCs, it is very simple to represent such a probabilistic behaviour.

Web dynos are represented by components WebDynoi, where the subscript i de-

notes the number of requests in the local dyno queue. For WebDynoi, three activities

are possible; service realises the main web service part, whose completion proceeds

to the response stage, carried out by WebDynoia. It is assumed that a response cannot

be interrupted, thus no new job can be assigned or enqueued at this point. Given that

the response rate is significantly higher than the web service rate (see Table 6.1), this

should not affect the availability of the dyno. The migrate activity generates a mi-

gration request and decreases the queue length. Finally, the assignweb activity adds a

request to the queue.

WebDyno def
= (assignweb,>).WebDyno0

WebDynoi
def
= (service,rweb).WebDynoia

+ (migrate,rmigrate).WebDynoi−1

+ (assignweb,>).WebDynoi+1

WebDynoia
def
= (response,rresponse).WebDynoi−1
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The components WebDynoi and WebDynoia represent the two stages of a web service.

In both cases, the web dyno is considered to be occupied. The idle state is denoted by

WebDyno, which only performs an assignweb activity.

Regarding the worker dynos, they have a similar but simpler structure, as there is

no job migration option in this case. Other than that, assignment has been labelled by

a distinct activity assignworker, in order to distinguish between the two possible types

of assignments.

WorkerDyno def
= (assignworker,>).WorkerDyno0

WorkerDynoi
def
= (service,rworker).WorkerDynoia

+ (assignworker,>).WorkerDynoi+1

WorkerDynoia
def
= (response,rresponse).WorkerDynoi−1

The routing component is characterised by a set of states that denote the number

of requests in the router queue. At any state, the router should be able to accept a web

request or a migration request, either of which will be added in the router queue. Re-

member that web requests are modelled by a Poisson process, thus the request activity

has a constant rate for any state of the router component. When a new job arrives, the

router will attempt to direct it to any of the web or worker dynos, depending on the

type of the request. It is more convenient to model the router as two queues, one for

each type of dyno. So for the web requests we have:

WebRouter0
def
= (request,rrequest).WebRouter1

WebRouteri
def
= (request,rrequest).WebRouteri+1

+ (assignweb,rassign).WebRouteri−1

WebRoutern
def
= (request,rrequest).WebRoutern

+ (assignweb,rassign).WebRoutern−1

where n denotes the maximum size for the corresponding queue. If the maximum size

is reached, it is assumed that any new request will be discarded until the queue is not

full. In the same way, for migration requests we have:

WorkerRouter0
def
= (migrate,>).WorkerRouter1

WorkerRouteri
def
= (migrate,>).WorkerRouteri+1

+ (assignworker,rassign).WorkerRouteri−1

WorkerRoutern
def
= (migrate,>).WorkerRoutern

+ (assignworker,rassign).WorkerRoutern−1

Finally, the router will be the parallel composition of the components above.

Figure 6.4 outlines the complete model of the random routing policy. Note that the

model imposes a maximum dyno queue length equal to 1. The main reason behind
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this modelling choice is to keep the component state-space at relatively low levels, in

order to avoid excessive state-space explosion. As we shall see later in Section 6.3,

this model is adequate to observe the qualitative difference between a random and a

smart routing policy.

WebDyno def
= (assignweb,>).WebDyno0

WebDyno0
def
= (service,rweb).WebDyno0a +(migrate,rmigrate).WebDyno

+ (assignweb,>).WebDyno1

WebDyno0a
def
= (response,rresponse).WebDyno

WebDyno1
def
= (service,rweb).WebDyno1a +(migrate,rmigrate).WebDyno0

WebDyno1a
def
= (response,rresponse).WebDyno0

WorkerDyno def
= (assignworker,>).WorkerDyno0

WorkerDyno0
def
= (service,rworker).WorkerDyno0a +(assignworker,>).WorkerDyno1

WorkerDyno0a
def
= (response,rresponse).WorkerDyno

WorkerDyno1
def
= (service,rworker).WorkerDyno1a

WorkerDyno1a
def
= (response,rresponse).WorkerDyno0

WebRouter0
def
= (request,rrequest).WebRouter1

WebRouter1
def
= (request,rrequest).WebRouter2 +(assignweb,rassign).WebRouter0

WebRouter2
def
= (request,rrequest).WebRouter3 +(assignweb,rassign).WebRouter1

WebRouter3
def
= (request,rrequest).WebRouter3 +(assignweb,rassign).WebRouter2

WorkerRouter0
def
= (migrate,>).WorkerRouter1

WorkerRouter1
def
= (migrate,>).WorkerRouter2 +(assignworker,rassign).WorkerRouter0

WorkerRouter2
def
= (migrate,>).WorkerRouter3 +(assignworker,rassign).WorkerRouter1

WorkerRouter3
def
= (migrate,>).WorkerRouter3 +(assignworker,rassign).WorkerRouter2

RandomN:M
def
= WebDyno[N] ‖WorkerDyno[M] BC

Lrandom
(WebRouter0||WorkerRouter0)

where Lrandom = {assignweb,assignworker,migrate}

Figure 6.4: PEPA model for random Heroku routing
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6.2.2 Smart Routing Policy

The modelling of the dyno components is not substantially different from that of the

random routing case, as both web and worker dynos are characterised by the same

states and the same rates. The only difference is that we now have two distinct action

types for assigning a job to a dyno. We want to capture the fact that a job may be either

assigned to an idle dyno, or enqueued to an occupied dyno. Regarding the web dynos,

only a WebDyno component will now be able to perform an assignweb activity, as it

denotes that the dyno is idle. For a WebDynoi component, which denotes an occupied

web dyno with i requests in its local queue, jobs can only be enqueued as follows:

WebDyno def
= (assignweb,>).WebDyno0

WebDynoi
def
= (service,rweb).WebDynoia

+ (migrate,rmigrate).WebDynoi−1

+ (enqueueweb,>).WebDynoi+1

Similarly, an assignworker activity can only be performed by WorkerDyno, while for

the WorkerDynoi component we have:

WorkerDyno def
= (assignworker,>).WorkerDyno0

WorkerDynoi
def
= (service,rworker).WorkerDynoia

+ (enqueueworker,>).WorkerDynoi+1

The choice between assignment or placement in the local queue is a responsibility of

the routing policy.

The smart routing policy consists of simply directing a request to a dyno that is

available. If more than one dyno is available, then the router will randomly select a

dyno. If there are no dynos available at a certain moment, then the request will be

randomly enqueued to any dyno. The routing algorithm involves a deterministic step,

which is the dyno availability check. Such a deterministic behaviour cannot be directly

modelled according to the standard definition of PEPA. What we can do instead is to

probabilistically favour assigning jobs to free dynos rather than placing then in queues.

The idea is that the router will delay directing a request until a dyno is available. This

delay should not be infinite however; if too many requests arrive, then the router will

decrease its queue length by directing the requests to random dynos.

Regarding the WebRouter component, let n be the maximum queue length. Then

for any queue length i < n, the requests will be assigned to web dynos that can perform
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an assignweb activity; that means that the dyno in question is idle.

WebRouter0
def
= (request,rrequest).WebRouter1

WebRouteri
def
= (request,rrequest).WebRouteri+1

+ (assignweb,rassign).WebRouteri−1

If the queue length reaches its maximum size n, that probably means that no dyno has

been available for a long time; it is then acceptable to send the request to the queue of

any dyno. Let WebRoutern represent the state at which the corresponding router queue

is full. Then WebRoutern will either assign or enqueue a request.

WebRoutern
def
= (request,rrequest).WebRoutern

+ (assignweb,rassign×0.5).WebRoutern−1

+ (enqueueweb,rassign×0.5).WebRoutern−1

By using similar reasoning, the migration queue on the router side will be modified

as follows:

WorkerRouter0
def
= (migrate,>).WorkerRouter1

WorkerRouteri
def
= (migrate,>).WorkerRouteri+1

+ (assignworker,rassign).WorkerRouteri−1

WorkerRoutern
def
= (migrate,>).WorkerRoutern

+ (assignworker,rassign×0.5).WorkerRoutern−1

+ (enqueueworker,rassign×0.5).WorkerRoutern−1

where n denotes the maximum queue length, and i < n.

To summarise, when the queue on the router part is not full, then the router works

according to its “smart” mode of operation; it directs any requests to idle dynos only.

Any new requests will have to wait in the router queue before being assigned. However,

if the router queue reaches maximum capacity, this is an indication that the system is

congested, suggesting that there are no idle dynos available. The router will then enter

its “random” mode of operation, as it will decrease its queue by randomly directing

requests to any dyno. That is captured by the fact that enqueueweb and enqueueworker

can only be performed if the corresponding router queue is full. The complete model

for the smart routing policy is shown in Figure 6.5.
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WebDyno def
= (assignweb,>).WebDyno0

WebDyno0
def
= (service,rweb).WebDyno0a +(migrate,rmigrate).WebDyno

+ (enqueueweb,>).WebDyno1

WebDyno0a
def
= (response,rresponse).WebDyno

WebDyno1
def
= (service,rweb).WebDyno1a +(migrate,rmigrate).WebDyno0

WebDyno1a
def
= (response,rresponse).WebDyno0

WorkerDyno def
= (assignworker,>).WorkerDyno0

WorkerDyno0
def
= (service,rworker).WorkerDyno0a +(enqueueworker,>).WorkerDyno1

WorkerDyno0a
def
= (response,rresponse).WorkerDyno

WorkerDyno1
def
= (service,rworker).WorkerDyno1a

WorkerDyno1a
def
= (response,rresponse).WorkerDyno0

WebRouter0
def
= (request,rrequest).WebRouter1

WebRouter1
def
= (request,rrequest).WebRouter2 +(assignweb,rassign).WebRouter0

WebRouter2
def
= (request,rrequest).WebRouter3 +(assignweb,rassign).WebRouter1

WebRouter3
def
= (request,rrequest).WebRouter3

+ (assignweb,rassign×0.5).WebRouter2

+ (enqueueweb,rassign×0.5).WebRouter2

WorkerRouter0
def
= (migrate,>).WorkerRouter1

WorkerRouter1
def
= (migrate,>).WorkerRouter2 +(assignworker,rassign).WorkerRouter0

WorkerRouter2
def
= (migrate,>).WorkerRouter3 +(assignworker,rassign).WorkerRouter1

WorkerRouter3
def
= (migrate,>).WorkerRouter3

+ (assignworker,rassign×0.5).WorkerRouter2

+ (enqueueworker,rassign×0.5).WorkerRouter2

SmartN:M
def
= WebDyno[N] ‖WorkerDyno[M] BC

Lsmart
(WebRouter0||WorkerRouter0)

Lsmart = {assignweb,enqueueweb,assignworker,enqueueworker,migrate}

Figure 6.5: PEPA model for smart Heroku routing
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6.3 Evaluation of Routing Policies

In this section, we present some experimental results in order to compare the two rout-

ing policies, and demonstrate how our approaches are affected as the scale of the model

is increased. Medium sized models featuring a few millions of states can be success-

fully aggregated approximately in a compositional way. One limitation of approximate

aggregation however, is that it is not as readily applicable if the scale of the model is

just too large. In that case, reducing the state-space to a manageable size would mean

that components are simply aggregated too much, therefore introducing erroneous be-

haviour in the model. However, simulation can still be an effective way to explore

the stochastic properties of the system, and the trajectory sampling technique that we

propose can deliver a reasonable speed-up in the analysis time.

6.3.1 Experimentation with the Workload

In this section, we experimentally evaluate how the routing policies considered respond

to different workloads. We consider a medium-sized system, whose components are

appropriate for compositional aggregation, and we evaluate the effect of aggregation

approaches on the system behaviour.

More specifically, we consider a system featuring 8 web dynos and 8 worker dynos.

We have two models that implement the two routing policies; these are Random8:8 and

Smart8:8. By approximately reducing the components WebDyno[8] and WorkerDyno[8]

to 60% of their original size each, the global state-space is effectively reduced to 36%.

The original and the aggregated versions of the models have been solved for their tran-

sient and steady-state behaviour via the sparse engine of the PRISM model checker

[58]. The steady-state distribution has been calculated using the Gauss-Seidel method.

The transient probabilities have been calculated via the uniformisation method. The

experiments have been performed in an Intel R© XeonTM E5430 @ 2.66GHz PC run-

ning Ubuntu Linux.

The running times for Random8:8 and Smart8:8 are summarised in Tables 6.2 and

6.3 correspondingly. According to these tables, the state-space reduction resulted in

the expected reduction in the analysis time, for both approximate aggregation meth-

ods, based on NCD and quasi-lumpability correspondingly. The most interesting thing

regarding the running times is that the time needed to approximate the state-space is

trivial compared to the time saved.

The next thing to see is whether the approximate results obtained provide us with
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Table 6.2: Running Times for Random8:8

Original
Quasi-Lumpability

(Compositional)

NCD

(Compositional)

Approximation - 3 sec 3 sec

PRISM Loading 10000 sec 4000 sec 5000 sec

Transient Solutiona 29000 sec 13000 sec 16000 sec

Steady-State solution 250 sec 200 sec 200 sec

Total Time 39250 sec 17200 sec 21200 sec

Number of states 3920400 1411344 1411344

a 50 points: 0≤ t ≤ 4

Table 6.3: Running Times for Smart8:8

Original
Quasi-Lumpability

(Compositional)

NCD

(Compositional)

Approximation - 3 sec 3 sec

PRISM Loading 11000 sec 5000 sec 5000 sec

Transient Solutionb 32000 sec 14000 sec 15000 sec

Steady-State solution 370 sec 230 sec 300 sec

Total Time 43370 sec 19230 sec 20300 sec

Number of states 3849444 1401852 1394760

b 50 points: 0≤ t ≤ 4

reliable information regarding the properties of the routing policies. In terms of the

current section, we have experimented with two different values for the request rate 40

and 60, in order to observe how the two routing policies respond to different workloads.

The effects of each policy should be reflected in the average dyno queue length and in

the number of dynos that remain idle. As a general remark on the results that follow,

the quasi-lumpability approach provides much more accurate results compared to the

NCD-based method.

Figure 6.6 outlines the transient behaviour for request arrival rate equal to 40 sec−1,

or 2400 requests per minute. The data plotted depicts how the average population of

idle dynos and average local queue lengths change during the first four seconds of the

system being online. We can see that after these four seconds, the system appears to be

in steady state. The left column of plots presents results for the random routing policy,

while the plots on the right column correspond to smart routing.
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Judging by the first two plots in Figures 6.6(a) and 6.6(b), which show the results of

the original model, part of the system is underused for both smart and random routing,

as we have a significant number of idle dynos in both cases. However, the average

dyno queue lengths are considerably higher for random routing. This means that some

requests might have to wait in the queue, while there are dynos available. That is not

the case for smart routing however, where the dyno queues are almost empty. In other

words, the smart routing fully exploits the capacity of the Heroku configuration, in

contrast with the random routing policy.

Regarding the results of the quasi-lumpability method in Figures 6.6(c) and 6.6(d),

they seem to qualitatively agree with the true results, although the numerical values for

the average idle dynos do not exactly match. Nevertheless, the qualitative difference

between random and smart routing with respect to the average dyno queue length is

adequately captured. We think that the modest reduction in accuracy was a worthwhile

price to pay, especially given the substantial reduction in analysis time (Tables 6.2

and 6.3). The same can be said to a lesser extent for the NCD-based approach in

Figures 6.6(e) and 6.6(f), where a greater amount of error is introduced in this example.

However, the qualitative difference with respect to the queue lengths is still evident.

In the experiment summarised in Figure 6.7, we investigate how the routing policies

are affected by a higher workload, by increasing the request arrival rate to 60 sec−1,

or 3600 requests per minute. According to Figures 6.7(a) and 6.7(b), which depict

the behaviour of the unreduced models, the system usage is similar for both random

and smart routing, as can see by the numbers of idle web and worker dynos. For the

smart system, the dyno queues have significantly shorter length when compared to the

random routing policy, implying that the requests wait less time until they are serviced.

As a final comment, we can say that a request arrival rate to 40 is probably the most that

the smart routing policy can effectively handle for the number of dynos considered.

The results of the quasi-lumpability approach in Figures 6.7(c) and 6.7(d) give a

similar picture. The relation between idle dynos and the corresponding average queue

lengths has been portrayed accurately enough to show the different behaviour of the

two routing policies. Regarding the NCD-based approach however in Figures 6.7(e)

and 6.7(f), the results are less accurate as the queue lengths are apparently underesti-

mated for both routing policies. Moreover, it seems that the approximated systems via

the NCD approach do not capture the transient dynamics of the system at all. We think

that this is a clear indication that this particular system should not be characterised as

nearly-completely decomposable.
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(c) Random routing (Quasi-lumpability)
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(f) Smart routing (NCD)

Figure 6.6: Random8:8 and Smart8:8 results for rrequest = 40

To summarise, the smart routing policy results in better utilisation of the system

resources compared to random routing, judging by the number of requests that remain

in the queues at the dyno level. Smart routing results in a significantly shorter average

queue length, regardless of the workload.

Applying compositional aggregation, and the quasi-lumpability approach in partic-
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(e) Random routing (NCD)
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Figure 6.7: Random8:8 and Smart8:8 results for rrequest = 60

ular, has led us to the same conclusion at a significantly lower cost. However, the NCD-

based approach has been considerably less accurate compared to the quasi-lumpability

approach for the Heroku example. In fact, both approaches rely on assumptions that

may or may not hold for a specific model. One assumption is that there is a partition of

the state-space with respect to which the model is either quasi-lumpable or nearly com-
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pletely decomposable. Our position is that quasi-lumpability should be able to capture

a wider range of approximate equivalences, simply because any nearly completely de-

composable model is essentially quasi-lumpable as well. That does not mean however

that the quasi-lumpability approach as defined in this thesis should always give better

results, as it is sub-optimal. We have extensively discussed that the partition provided is

only an approximation to what could be an optimum partition from a quasi-lumpability

point of view.

As a final remark, there is a question that has not been still answered yet. That is

how many dynos are needed to service 9000 requests per minute. Scaling the model

further will result in excessive explosion of the state-space, therefore further reduction

is required to keep the state-space manageable. The applicability of approximate ag-

gregation is limited by the properties of the model. Although the quasi-lumpability

approach captured the qualities of the two routing policies in question, the numerical

diversities compared to the original model have not been insignificant. Therefore, it is

uncertain how the quasi-lumpability approach would respond to a greater reduction of

the state-space. Nevertheless, increasing the scale of the system offers a great opportu-

nity to apply a stochastic simulation approach, trajectory sampling in particular, which

is discussed in the next section.

6.3.2 Experimentation with the System Size

The medium-sized system that we have examined in the previous section has shown

that there is a significant difference in terms of performance between the two routing

policies considered. Our objective now is to investigate how many dynos are required

to service 9000 requests per minute, translated into a request arrival rate equal to 150

sec−1, which is the reported workload for Rap Genius.

In this experiment, we consider a fixed arrival rate equal to 150, while we perform

experimentation with the size of the system, so as to determine how many dynos have

to be leased, so that both the number of idle dynos and the queue length in the dyno

level are minimised. We have to scale the service to a larger number of dynos than

we have considered so far. We use the models of Figures 6.4 and 6.5 to study the

random and the smart routing policies correspondingly. This time however, rather

than solving for the transient probabilities after applying compositional aggregation,

we shall simply simulate the system. We shall apply trajectory sampling simulation

(TSS), with parameter p = 0.1 for the geometric approximation, which has been the
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value of choice in Section 5.3.

Figure 6.8 outlines the transient behaviour for 20 web dynos and 20 worker dynos.

Each sub-figure describes how the average population of idle dynos and the average

queue lengths at the dyno-level change through time. More specifically, in Figure

6.8(d) we see that we have only a small number of idle dynos, while the number of

jobs queued at the dyno-level remains small. Therefore, the system of this size has

been found to be adequate to service 9000 requests per minute by using the smart

routing policy. According to Figure 6.8(c) however, the queue lengths are considerably

larger for the random policy. Simply, more dynos are needed to decrease the number

of requests waiting in the dyno queues.
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(c) Random routing (Trajectory Sampling)

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
o

p
u

la
ti
o

n

Time (sec)

Web dynos idle
Worker dynos idle

Web queue
Worker queue
Router queue

(d) Smart routing (Trajectory Sampling)

Figure 6.8: Random20:20 and Smart20:20 results for rrequest = 150 (105 simulation runs)

We have also considered a system with 60 web dynos and 60 worker dynos, whose

results are summarised in Figure 6.9. For the random routing policy in Figure 6.9(c),

we have relatively small but non-zero number of requests in the dyno queues. It ap-

pears that a random routing policy has a negative impact on the request waiting time,
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regardless of the size of the system. The picture is quite different for the smart policy

in Figure 6.9(d), where the almost no request is waiting. In both cases though, a large

part of the system remains idle, meaning that the use of 60 dynos of each kind is simply

a waste of resources considering the given workload.

Apparently, a system of 20 web and 20 worker dynos featuring a smart routing

policy should be enough to service the typical workload of a website such as Rap

Genius. Replacing smart with a random policy will only increase the number of dynos

required to service the same workload at the same rate, and therefore diminish the

quality of service provided to the clients.
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Figure 6.9: Random60:60 and Smart60:60 results for rrequest = 150 (105 simulation runs)

Regarding the approximation quality of our trajectory sampling algorithm, its re-

sults are practically identical to the output of the direct method. In fact, this outcome

was anticipated, as it is compliant with the conclusions of Chapter 5. We have char-

acterised trajectory sampling simulation as an almost exact method, in the sense that

it can be arbitrarily precise. We have seen experimentally observed in Section 5.3 that
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Table 6.4: Running times in seconds for 105 simulation runs

ODM Trajectory Sampling

Random20:20 360 293

Random60:60 360 300

Smart20:20 310 268

Smart60:60 315 250

TSS with parameter p = 0.1 for the geometric approximation produces very accurate

results, a fact that is also reflected in the current section.

Finally, Table 6.4 compares the running times for 105 simulation runs between the

optimised direct method (ODM) and TSS. The experiments have been performed in

an Intel R© XeonTM E5410 @ 2.33GHz PC running Scientific Linux 6. For all of the

models considered, TSS results in an improvement around 15∼ 20% with respect the

total running time, in agreement with the conclusions of Chapter 5.

6.4 Summary

In this chapter, we have demonstrated how the approximation methodologies discussed

in this thesis can be useful tools to investigate problems of the real world. The problem

under consideration has been to evaluate routing policies for the Heroku PaaS provider.

The example used has been motivated by a particular incident involving the Rap Ge-

nius website, where a change in the routing policy has been reported to negatively

affect the quality of service. It has to be emphasised that any conclusions regarding

the routing policies for Heroku and Rap Genius are liable to any assumptions made,

including the exponentially distributed events and the rates used. Although our model

does not aspire to be an accurate representation of Rap Genius, we think that it is

realistic representation of a system of that scale.

It has been observed that a smart routing policy results in a significantly smaller

number of requests waiting to be serviced, compared to a random policy. Regarding

approximation quality, the results obtained by the approaches proposed in this thesis,

namely compositional approximate aggregation and trajectory sampling simulation,

have been accurate enough to support valid conclusions in most cases.

On compositional aggregation, we have to comment that approximation quality for

the Heroku example has not been the same for the two aggregation approaches consid-
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ered. More specifically, the NCD-based approach has found to be significantly less ac-

curate than the quasi-lumpability approach. This is a clue that quasi-lumpability should

be able to describe a wider family of approximate state equivalences that can be ex-

ploited in terms of aggregation. However, it is not suggested that the quasi-lumpability

approach should be more or less accurate than the NCD-based method in the general

case. The suitability of either method depends on the properties of the given model,

and whether the underlying CTMC is close to being either quasi-lumpable or nearly

completely decomposable. This is in fact an inherent limitation of any approximate

state-space aggregation method, for which the existence of an appropriate partition has

been a key assumption. Any attempt to approximate a state-space for which there not

a partition good enough is susceptible to errors.

Increasing the scale of the system too much has made the state-space unmanage-

able even for a compositional aggregation approach. We have resorted to simulation

to explore the stochastic properties of very large systems, since no explicit state-space

representation is required. Our trajectory sampling approach (TSS) has found to be

remarkably accurate compared to exact simulation. This can be attributed to the fact

that TSS produces very detailed simulation trajectories, which involve all of the events

that take place during the life-time of the stochastic process. The efficiency improve-

ment has found to be less impressive, which is essentially a limitation of any method

that aspires to be exact. Nevertheless, we think that even the smallest efficiency gain

is important, especially when the price to pay in terms of accuracy is virtually zero, as

in the case of TSS.





Chapter 7

Conclusions

Markov chains have been used for many years for exploring the dynamic properties of

systems that exhibit stochastic behaviour. Modelling formalisms that generate Markov

chains given a high-level specification exist in abundance, including Petri nets, queue-

ing networks or stochastic automata networks. In this thesis, we have focused on

stochastic process algebras, PEPA and Bio-PEPA in particular, which offer a composi-

tional framework to Markovian modelling.

Compositionality is the most important quality of stochastic process algebras com-

pared to other modelling paradigms. The ability to describe systems as collections of

interacting components provides an effective way to describe complex systems using a

minimal specification. For that reason, Markovian process algebras have proven to be

valuable tools for performance modelling. They are however prone to the problem of

state-space explosion, meaning that even apparently simple models may generate very

large Markov chains.

The main contribution of this thesis is to investigate approximation methods that

preserve the stochastic properties of Markovian process algebra models. We have dis-

cussed two main subjects: compositional state-space aggregation and stochastic simu-

lation via trajectory sampling.

7.1 Contributions on Approximate Aggregation

The problem of Markov chain aggregation has been defined as a problem of parti-

tioning the state-space in such a way that similar states are grouped together. The

fundamental assumption is that similar states could be sufficiently represented as a

whole by an aggregated state. The set of aggregated states will form the state-space

145
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of a reduced model, whose behaviour is assumed to approximate the original Markov

chain. To summarise our contributions, we have investigated approximate aggregation

methodologies for Markov chains, and we have proposed compositional state-space

aggregation as a means of efficient model reduction.

7.1.1 Approximate Aggregation Methodologies

The notion of NCD has been traditionally used to describe state similarity in Markov

chains. A Markov chain is said to consist of nearly-completely decomposable sets of

states, or classes, if there are strong interactions within those classes, and weak inter-

actions among the classes. It is hoped that the interactions within the classes can be

abstracted away, resulting in a reduced model which will be approximate if it has to

be a Markov chain. The identification of nearly-completely decomposable sets can be

achieved by exploiting the spectral properties of transition probability matrices. We

have shown that the notion of NCD is strongly related to the principles that spec-

tral clustering relies on. Thus, we have been able to adopt some well-known results

and methodologies from the field of spectral clustering, in order to identify nearly-

completely decomposable partitions for Markov chains.

We have argued that there should be a more appropriate measure than NCD to

define approximate state similarity in a Markov chain. The concept of lumpability

has been the starting point of our discussion, as it captures state equivalence in a

way similar to probabilistic bisimulation. The idea is that equivalent states should

have similar behaviour with respect to a partition of the state-space, in contrast to be-

ing tightly coupled as NCD implies. An approximate version of lumpability, namely

quasi-lumpability, has also been known in the literature. Our contribution consists of

a strategy to discover state-space partitions that are close to being quasi-lumpable. We

have defined a measure to express the degree of state similarity that is compatible with

the notion of quasi-lumpability. The biggest challenge for our measure has been that

it is not constant for each pair of states, as it depends on the partition. We have shown

that an appropriate adaptation of a clustering algorithm will essentially minimise an

upper bound of this quasi-lumpability measure for states that are assigned to same par-

tition. The use of such an upper bound has made the problem manageable, but it has

also rendered our approach sub-optimal, meaning that the most appropriate partition

may not always be discovered.

Provided that an appropriate state-space partition has been obtained by any of the
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two aforementioned partitioning approaches, the final step is to summarise the transi-

tion probabilities from each class to another. The objective is to construct a Markov

chain of reduced size that approximates the original model. Our suggestion is that

the class-to-class transition probabilities should be calculated as the average transition

probabilities with respect to the states of each class. We have proven that such an ap-

proximately aggregated Markov chain will be within the bounds obtained by stochastic

comparison of Markov chains.

Regarding the experimental results, we could not conclude which of the two par-

titioning approaches is superior. We have observed that different models favour one

or the other approach. Regarding the upper and lower bounds obtained by stochastic

comparison, we have seen that a good partition, that is one that results in a low approx-

imation error, does not necessarily result in tight bounds. The tightness of the bounds

is susceptible to the bounding algorithm.

7.1.2 Compositional Aggregation

Compositional aggregation as presented is strongly connected with the process algebra

modelling paradigm assumed. We have treated PEPA components as labelled CTMCs,

and we have identified an approximate notion of state equivalence for components

that is desirable for state-space aggregation. We have called this “modified quasi-

strong equivalence”, which is assumed to be approximated by quasi-lumpability, if the

component in question has a large amount of individual activities.

In order to describe systems that consist of approximately aggregated components,

we have proposed two alternative approaches. The first approach is an adaptation of

the Kronecker representation proposed by Hillston & Kloul [50]. We have also dis-

cussed an issue of such an approach based on Kronecker algebra, which is the inclu-

sion of unreachable states in the final generator matrix. Even if those states do not

affect the behaviour of the constructed model, they do have an effect on the size of the

state-space produced. To overcome this issue, we have also produced explicit struc-

tured operational semantics for approximately aggregated components. In this way, we

could construct an aggregated version of the derivation graph for a PEPA model, and

therefore avoid unreachable states in the generator matrix.

By applying approximate aggregation compositionally, it was possible to produce

reasonable approximations for a class of multi-scale models. The approximation qual-

ity for the compositional aggregation has not been inferior to globally applied aggre-
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gation. We do not expect that this finding generalises for arbitrary models however;

the models assumed feature components that have a significant amount of individual

actions. Therefore, there has been enough data for the partitioning approaches to work

with. The most important thing however is that the computational overhead of compo-

sitional approximation has been only a fraction of the total analysis time. In contrast,

the overhead of globally applied aggregation renders such an approach unreasonable,

due to the inherently high complexity of the partitioning strategies discussed.

Despite the potential of compositional aggregation, we have acknowledged that it

is associated with certain limitations. First of all, the components to be approximated

are assumed to exhibit a sufficient amount of individual behaviour. Secondly, mod-

els featuring unbounded state-spaces, which is typical case for Bio-PEPA models for

example, are unlikely to be approximated by a model reduction approach.

7.2 Contributions on Simulation

Simulation is always a relevant approach to study the stochastic properties of systems,

regardless of their size, since an explicit state-space representation is not required. We

have explored the possibility of accelerating the stochastic simulation process by re-

ducing the amount of random numbers generated. The trajectory sampling simulation

approach that we have proposed, as its name implies, samples from the trajectory rather

than the transition space. We have shown that it is possible to use a single random num-

ber to determine an entire sequence of transitions. Regarding the exponential delays

associated with the CTMC transitions, these have been approximated by a sequence of

geometric random variables. This time discretisation allowed us to employ the trajec-

tory sampling technique to determine the duration for a sequence of transitions using

a single random sample.

We have characterised our simulation method as almost exact, since it has been

shown to be arbitrarily precise. The only source of approximation is the use of geo-

metric distributions to determine time; we have shown that approximation quality is

controlled by the time-discretisation parameter, which is determined by the user. The

most important quality of our method is that its performance and accuracy are indepen-

dent of the model. In contrast, approximate simulation approaches skip some of the

simulation events by exploiting certain model properties. Such methods are inherently

more efficient, however TSS can be thought of as an alternative to those in cases where

the assumptions that they rely on are incompatible with the model in question. The
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experimental results have shown TSS to be consistently efficient and accurate for all

of the models tested.

7.3 Future Work

In this section, we outline directions of future research, which can potentially establish

compositional aggregation as a generic framework for efficient model reduction.

Tool Support

We have assumed that decisions regarding component aggregation are made by the

modeller, a fact that essentially renders compositional aggregation a human-driven

process. Such decisions involve the selection of the components to be approximated,

and the number of classes to which each component will be reduced. Tool support is

necessary for the modeller to rationalise any choices concerning aggregation.

For example, the modeller can be guided by a user interface through the different

possibilities of aggregation and the effect that these will have in the modelling. Given a

particular setting, the user should be presented with information regarding the expected

state-space reduction and the expected time required to approximate the correspond-

ing components. The modeller would then be able to judge whether aggregating a

collection of components is a practical strategy to look into the behaviour of a system.

As with any approximation methodology, approximate aggregation is prone to er-

rors, unless the system under consideration has a very strong behavioural pattern that

can be discovered. The current state of our work does not involve any strategy to assess

the approximation quality of a partition a priori i.e. before solving the model. Such a

partition characterisation is a great challenge, however we think that it can create many

possibilities that will extend the impact of this research. For example, the ability to

evaluate partitions can be used as a guide by the modeller to determine the appropriate

number of classes for a component, by means of experimentation. Another possibility

is to produce error expectations, a fact that will significantly increase the confidence in

the results given by aggregated models.

Improving Partitioning of PEPA Components

One limitation of the current approach for compositional aggregation is that PEPA

components are partitioned by taking into account their individual activities only, while
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their shared behaviour is ignored. This convention imposed a requirement for the com-

ponents to be approximated: it is assumed that their behaviour is dominated by their

individual activities. The issue with the shared activities is that their rates depend on

the global state of the system. If we could formulate expectations for those rates, then

it would be possible to include shared activities in the partitioning process as well.

This could improve approximation quality, but most importantly, it would render our

method applicable to a larger family of PEPA models.

Improving Quasi-Lumpability Aggregation

We think that approximation quality can be further improved by the refinement of our

partitioning approach that relies on the concept of quasi-lumpability. It is our posi-

tion that quasi-lumpability is more appropriate as a measure of behavioural similarity

between states in a Markov chain. The fact that we could define a sub-optimal quasi-

lumpability aggregation approach which performs just as well as the NCD-based ap-

proach, if not better in some cases, is a strong indication that quasi-lumpability is an

appropriate criterion for Markov chain aggregation.



Appendix A

Bio-PEPA Models of Chapter 5

A.1 The Schlögl Model

Kinetic Parameters:

c1 = 3×10−7/2

c2 = 10−4/6

c3 = 10−3

c4 = 3.5

Initial Populations:

x0 = 250

n1 = 100000

n2 = 200000

Functional Rates:

r1 : c1×B1×X× (X−1)

r2 : c2×X× (X−1)× (X−2)

r3 : c3×B2

r4 : c4×X
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Species Components:

X def
= r1 ↑ + r2 ↓ + r3 ↑ + r4 ↓

B1
def
= r1 ↓ + r2 ↑

B2
def
= r3 ↓ + r4 ↑

Model Component:

X [x0]BC{∗} B1[n1]BC{∗} B2[n2]

A.2 The LacY Model

Initial Populations:

PLac0 = 1

RNAP0 = 3

PLacRNAP0 = 0

TrLacZ10 = 0

RbsLacZ0 = 0

TrLacZ20 = 0

TrLacY10 = 0

RbsLacY0 = 0

TrLacY20 = 0

Ribosome0 = 30

RbsRibosomeLacZ0 = 0

RbsRibosomeLacY0 = 0

TrRbsLacZ0 = 0

TrRbsLacY0 = 0

LacZ0 = 0

LacY0 = 0

dgrLacZ0 = 0

dgrLacY0 = 0

dgrRbsLacZ0 = 0
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dgrRbsLacY0 = 0

lactose0 = 0

product0 = 0

Functional Rates:

r1 : 0.17× (PLac×RNAP)

r2 : 10×PLacRNAP

r3 : 1×PLacRNAP

r4 : 1×TrLacZ1

r5 : 0.015×TrLacZ2

r6 : 1×TrLacY1

r7 : 0.36×TrLacY2

r8 : 0.17× (Ribosome×RbsLacZ)

r9 : 0.17× (Ribosome×RbsLacY)

r10 : 0.45×RbsRibosomeLacZ

r11 : 0.45×RbsRibosomeLacY

r12 : 0.4×RbsRibosomeLacZ

r13 : 0.4×RbsRibosomeLacY

r14 : 0.015×TrRbsLacZ

r15 : 0.036×TrRbsLacY

r16 : 6.42×10−5×LacZ

r17 : 6.42×10−5×LacY

r18 : 0.3×RbsLacZ

r19 : 0.3×RbsLacY

r20 : 0.0005731× (LacZ× lactose)

r21 : 14×LacY

Species Components:

PLac def
= r1 ↓ + r2 ↑ + r4 ↑

RNAP def
= r1 ↓ + r2 ↑ + r7 ↑

PLacRNAP def
= r1 ↑ + r2 ↓ + r3 ↓

TrLacZ1 def
= r3 ↑ + r4 ↓
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RbsLacZ def
= r4 ↑ + r8 ↓ + r10 ↑ + r12 ↑ + r18 ↓

TrLacZ2 def
= r4 ↑ + r5 ↓

TrLacY1 def
= r5 ↑ + r6 ↓

RbsLacY def
= r6 ↑ + r9 ↓ + r11 ↑ + r13 ↑ + r19 ↓

TrLacY2 def
= r6 ↑ + r7 ↓

Ribosome def
= r8 ↓ + r9 ↓ + r10 ↑ + r11 ↑

RbsRibosomeLacZ def
= r8 ↑ + r10 ↓ + r12 ↓

RbsRibosomeLacY def
= r9 ↑ + r11 ↓ + r13 ↓

TrRbsLacZ def
= r12 ↑ + r14 ↓

TrRbsLacY def
= r13 ↑ + r15 ↓

LacZ def
= r14 ↑ + r16 ↓ + r20�

LacY def
= r15 ↑ + r17 ↓ + r21�

dgrLacZ def
= r16 ↑

dgrLacY def
= r17 ↑

dgrRbsLacZ def
= r18 ↑

dgrRbsLacY def
= r19 ↑

lactose def
= r20 ↓ + r21 ↑

product def
= r20 ↑

Model Component:

PLac[PLac0]BC{∗} RNAP[RNAP0]BC{∗} PLacRNAP[PLacRNAP0]

BC
{∗}

TrLacZ1[TrLacZ10]BC{∗} RbsLacZ[RbsLacZ0]BC{∗} TrLacZ2[TrLacZ20]

BC
{∗}

TrLacY1[TrLacY10]BC{∗} RbsLacY[RbsLacY0]BC{∗} TrLacY2[TrLacY20]

BC
{∗}

Ribosome[Ribosome0]BC{∗} RbsRibosomeLacZ[RbsRibosomeLacZ0]

BC
{∗}

RbsRibosomeLacY[RbsRibosomeLacY0]BC{∗} TrRbsLacZ[TrRbsLacZ0]

BC
{∗}

TrRbsLacY[TrRbsLacY0]BC{∗} LacZ[LacZ0]BC{∗} LacY[LacY0]

BC
{∗}

dgrLacZ[dgrLacZ0]BC{∗} dgrLacY[dgrLacY0]

BC
{∗}

dgrRbsLacZ[dgrRbsLacZ0]BC{∗} dgrRbsLacY[dgrRbsLacY0]

BC
{∗}

lactose[lactose0]BC{∗} product[product0]
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A.3 The Goldbeter’s Model

Kinetic Parameters:

Ω = 6022

vi = 0.025×Ω

kd = 0.01

kc = 0.5×Ω

v1 = 12×Ω

v2 = 1.5

v3 = 12

v4 = 2

k1 = 0.02×Ω

k2 = 0.02×Ω

k3 = 0.02×Ω

k4 = 0.02×Ω

vd2 = 0.0625

kd2 = 0.02×Ω

Functional Rates:

a1 : vi

a2 : kd×C

a3 :
v1×C
kc+C

× inactive M
k1 + inactive M

a4 :
v2×active M× enzyme

k2 +active M

a5 :
v3× inactive X×active M

k3 + inactive X

a6 :
v4×active X× enzyme

k4 +active X

a7 :
C× vd2×active X

C+ kd2
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Species Components:

C def
= a1 ↑C + a2 ↓C + a7 ↓C + a3⊕C

inactive M def
= a4 ↑ inactive M + a3 ↓ inactive M

active M def
= a3 ↑ active M + a4 ↓ active M + a5⊕active M

inactive X def
= a6 ↑ inactive X + a5 ↓ inactive X

active X def
= a5 ↑ active X + a6 ↓ active X + a7⊕active X

enzyme def
= a4⊕ enzyme + a6⊕ enzyme

Model Component:

C[60]BC
{∗}

active M[60]BC
{∗}

inactive M[5962]

BC
{∗}

active X[60]BC
{∗}

inactive X[5962]BC
{∗}

enzyme[6022]
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[8] A. Bušić and J. Fourneau. Bounds based on lumpable matrices for partially or-

dered state space. In ICST Workshop on Tools for Solving Markov Chains. ACM,

2006.

157



158 Bibliography

[9] X. Cai and J. Wen. Efficient exact and K-skip methods for stochastic simulation

of coupled chemical reactions. The Journal of Chemical Physics, 131(6):064108,

2009.

[10] X. Cai and Z. Xu. K-leap method for accelerating stochastic simulation of cou-

pled chemical reactions. The Journal of Chemical Physics, 126(7):074102, 2007.

[11] M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of RKIP on the

ERK signalling pathway using the stochastic process algebra PEPA. In Transac-

tions on Computational Systems Biology VII, LNCS 4230, pages 1–23. Springer

Berlin Heidelberg, 2006.

[12] Y. Cao, D. T. Gillespie, and L. Petzold. Accelerated stochastic simulation

of the stiff enzyme-substrate reaction. The Journal of Chemical Physics,

123(14):144917–12, 2005.

[13] Y. Cao, D. T. Gillespie, and L. Petzold. Multiscale stochastic simulation al-

gorithm with stochastic partial equilibrium assumption for chemically reacting

systems. Journal of Computational Physics, 206(2):395–411, 2005.

[14] Y. Cao, D. T. Gillespie, and L. Petzold. Efficient step size selection for the tau-

leaping simulation method. The Journal of Chemical Physics, 124(4):044109,

2006.

[15] Y. Cao, D. T. Gillespie, and L. R. Petzold. Avoiding negative populations in

explicit Poisson tau-leaping. The Journal of Chemical Physics, 123(5):054104,

2005.

[16] Y. Cao, D. T. Gillespie, and L. R. Petzold. The slow-scale stochastic simulation

algorithm. The Journal of Chemical Physics, 122(1):14116, 2005.

[17] Y. Cao, D. T. Gillespie, and L. R. Petzold. Adaptive explicit-implicit tau-

leaping method with automatic tau selection. The Journal of Chemical Physics,

126(22):224101, 2007.

[18] Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic simulation

algorithm for chemically reacting systems. The Journal of Chemical Physics,

121(9):4059–4067, 2004.



Bibliography 159

[19] Y. Cao and L. Petzold. Trapezoidal tau-leaping formula for the stochastic simula-

tion of biochemical systems. In Foundations of Systems Biology in Engineering,

pages 149–152, 2005.

[20] Y. Cao and L. Petzold. Accuracy limitations and the measurement of errors in the

stochastic simulation of chemically reacting systems. Journal of Computational

Physics, 212(1):6–24, 2006.

[21] Y. Cao and L. Petzold. Slow Scale Tau-leaping Method. Computer Methods in

Applied Mechanics and Engineering, 197(43-44):3472–3479, 2008.

[22] A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis. Binomial distribution based

tau-leap accelerated stochastic simulation. The Journal of Chemical Physics,

122(2):024112, 2005.

[23] F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the modelling and

analysis of biological systems. Theoretical Computer Science, 410(33-34):3065–

3084, 2009.

[24] A. Clark, A. Duguid, S. Gilmore, and M. Tribastone. Partial evaluation of

PEPA models for fluid-flow analysis. In Computer Performance Engineering

(EPEW’08), LNCS 5261, volume 5261, pages 2–16. Springer, 2008.

[25] A. Clark, S. Gilmore, M. Guerriero, and J. Hillston. Conservation of mass anal-

ysis for Bio-PEPA. In Practical Applications of Stochastic Modelling, ENTCS

296, pages 107–126, 2013.

[26] P. Courtois. Decomposability, instabilities, and saturation in multiprogramming

systems. Communications of the ACM, 18(7):371–377, 1975.

[27] P. Courtois. Error analysis in nearly-completely decomposable stochastic sys-

tems. Econometrica: Journal of the Econometric Society, 43(4):691–709, 1975.

[28] D. Daly, P. Buchholz, and W. H. Sanders. Bound-preserving composition for

Markov reward models. In Quantitative Evaluation of Systems, pages 243–252.

IEEE Computer Society, 2006.

[29] K. Deng, P. Mehta, and S. Meyn. Optimal Kullback-Leibler aggregation via

spectral theory of Markov chains. IEEE Transactions on Automatic Control,

56(12):2793–2808, 2011.



160 Bibliography

[30] K. Deng, Y. Sun, P. Mehta, and S. Meyn. An information-theoretic framework

to aggregate a Markov chain. In American Control Conference, pages 731–736.

IEEE Press, 2009.

[31] P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte. Identification of almost in-
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