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Abstract

Parton distribution functions (PDFs) provide a description of the quark and gluon

content of the proton. They are important input into theoretical calculations of

hadronic observables, and are obtained by fitting to a wide range of experimental data.

The NNPDF approach to fitting PDFs provides a robust and reliable determination of

their central values and uncertainties. The PDFs are modelled using neural networks,

while the uncertainties are generated through the use of Monte Carlo replica datasets.

In this thesis I provide an in depth description of development of the latest NNPDF

determination: NNPDF3.0. A number of novel adaptations to the genetic algorithm

and network structure are outlined and the results of tests as to their effectiveness are

shown. Centrally, the use of closure tests, where artificial data is generated according

to a known theory and used to perform a fit, has been instrumental in both the

development and validation of the NNPDF3.0 approach. The results of these tests,

which demonstrate the ability of our methodology to reproduce a known underlying

law, are investigated in detail.

Finally, results from the NNPDF3.0 PDF sets are presented. The parton

distributions obtained are compared with results from other PDF collaborations, and

PDFs fit to limited datasets are also discussed. Physical observables relevant for future

collider runs are presented and compared to other determinations.
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Lay Summary

The Large Hadron Collider (LHC) experiment is an international effort to under-

stand the fundamental building blocks of the universe. By colliding subatomic particles

called protons together at extremely high energies we can learn more about physics at

both scales much smaller than an atom and much larger than the galaxy.

Protons are composite particles, made up of smaller still partons: the quarks and

gluons. When two protons collide, it is in fact these partons that actually interact.

The behaviour of the quarks and gluons in such high energy collisions can be predicted

using the theoretical calculations, however we cannot calculate the amount of the proton

which is made up of each type.

Parton distribution functions (PDFs) are a method to characterise the internal

structure of the proton, in terms of how much of it is made up of each type of parton.

As they cannot be calculated, they are instead determined from the results of previous

particle physics experiments. This work is vital in order to fully understand what we

see at the LHC.

My work, presented in this thesis, was to determine these parton distributions

functions. Working with an international collaboration, I developed a novel method

of doing so, fitting the PDFs to experimental data using neural networks, a form of

artificial intelligence based on the structure of the brain. Our results have already

been used for several LHC measurements, and will play an important role in future

experimental studies.
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Chapter 1

Introduction

Over the past hundred years, the study of elementary particles and their interactions

has become an important and highly active area of physics research. Through high-

energy experiments, like the currently running Large Hadron Collider, we obtain an

increasing amount of information on particle physics, which informs developments in

our theoretical understanding of the topic. The data from these collider experiments—

and data from other sources, astronomical data for example—is currently best described

by the Standard Model of particle physics, replete with the recently observed Higgs

Boson [1, 2]. This theory is not a complete description, however, and since May of

this year the LHC is being operated at a new higher energy, testing the limits of our

understanding and searching for clues of a more fundamental description.

In order to make use of the data collected at the LHC, we need a framework

through which to interpret them. As the particles used in the collisions are protons, this

framework is provided by Quantum Chromodynamics (QCD), a quantum gauge theory

which describes the strong force. Protons are composite particles, and are composed of

fundamental particles, quarks, bound together by gluons, the force carriers of QCD. A

calculation of a typical LHC process will typically involve two parts: the high energy

(or “hard”) central collision between individual quarks or gluons, and the lower energy

(“soft”) interactions within the proton. Much like in Quantum Electrodynamics, the

quantum field theory describing the electromagnetic force, many predictions can be

made with QCD by using a perturbative expansion in the coupling constant. However,

one important property of QCD is asymptotic freedom, the phenomenon that the

strength of an interaction is inversely related to the energy at which it occurs. At high

energies, like those at the LHC, the coupling constant is small and so the perturbative

description is accurate. On the other hand, for interactions at low energy, including

those between the quarks inside the proton, the coupling constant is larger than one

so the standard method to perform the calculation fails. To generate theoretical
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predictions of LHC processes we therefore need to use a different approach to handle

the soft effects. This approach is the use of parton distributions.

Parton distributions functions, or PDFs, characterise the internal structure of the

proton. There is a distribution function for each flavour of quark, and for the gluon

itself, and each describes, broadly speaking, how likely it is to find a particular type of

quark or gluon with a specific fraction of the proton’s total momentum. To perform a

calculation of an LHC cross-section, these PDFs must be convoluted with the separate

calculations for the hard sub-processes and summed over all flavours. As the PDFs

are related to low energy dynamics, they cannot be calculated from perturbative QCD,

and must instead be determined from experimental data. Fortunately, the parton

distributions are universal, and are the same for different experiments and process.

This means that PDFs determined using data from one set of experiments can be then

used in calculations for different experiments.

Early approaches to PDF determination were fairly rudimentary, based partly on

theoretical models and on experimental data limited in both quality and amount.

With the increasing demands placed on PDFs for precision hadronic physics, and

the increasing amount of data available, PDF fitting has become a very sophisticated

exercise. It is no longer sufficient to determine the best fit central values alone, and

for modern applications it is necessary to also provide an accurate estimation of the

uncertainties on the PDFs. The NNPDF approach seeks to determine PDFs and

their associated uncertainties in a way which is accurate and unbiased. The parton

distributions are parameterised by neural networks, while uncertainties are obtained by

generating a Monte Carlo ensemble. This novel approach has been used to perform a

number of successful determinations over the past decade [3–5], which have been widely

used to perform many theoretical calculations.

In this thesis I will detail the work done in producing a new NNPDF parton

distributions determination, NNPDF3.0 [6]. This involved the development of a

new fitting code with a substantially updated and validated methodology, and the

implementation of many new experimental datasets from the LHC and from the HERA

electron-proton collider. Given the importance of PDFs to understanding the results

from experiment, NNPDF3.0 also involves a comprehensive statistical study of the

effectiveness and accuracy of our methodology. This was performed using the closure

test framework, where fits are performed using artificial data, allowing us to compare

our results directly to a known correct answer. Alongside validating our approach, this

tool has also proven very useful in a number of other ways, from evaluating the impact

of different methodological improvements to disentangling the components of the PDF

uncertainties from different sources.

Chapter 2 provides a brief overview of some of the theory underlying PDFs and their
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determination, particularly the role of factorisation. Chapter 3 then builds on these

ideas to look at PDF fitting, first in general, and then in detail for the NNPDF approach.

Results from the NNPDF2.3 fit are also presented. The remainder of the thesis describes

the NNPDF3.0 analysis. Chapter 4 gives information about the data included in the

fit, with additional detail for the new datasets not previously used in NNPDF fits.

Details about the way the data is implemented, including the theoretical tools used

and the treatment of systematic uncertainties, are also provided here. Chapter 5 looks

at the methodology of NNPDF3.0, describing a large number of variations to the fitting

algorithm and the tests used to determine their effectiveness. While the closure testing

framework is introduced in Chapter 5, Chapter 6 looks at the implementation and

results of the NNPDF closure tests in much more detail, and provides evidence that

the tests demonstrate the validity of our approach. Finally, Chapter 7 provides results

of the NNPDF3.0 fits, looking at the PDFs themselves and the quality of fit to the

experimental data. Results for fits with reduced datasets are also given, showing the

impact of the new data and exploring the possibility of PDFs based on maximally

consistent datasets. In addition, a brief study of NNPDF3.0 prediction of standard

LHC observables and of select BSM processes is included here.
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Chapter 2

The parton model and

factorisation

In this chapter I will provide a brief overview of some of the key theoretical concepts

related to parton distributions, specifically factorisation and the DGLAP evolution

equations. It is not intended to be a thorough or extensive description of these issues

(which can instead be found in any of the many good textbooks on the topic, [7] for

example), only to give context for the rest of the thesis. I will start by describing the

parton model and define the parton distributions themselves.

2.1 The parton model

That the proton was a composite particle, instead of an elementary one, was proposed

in 1964 independently by Gell-Mann [8] and Zweig [9] based on the Eightfold Way

interpretation of hadrons. Both suggested that the proton was composed of quarks

(or aces) with spin 1
2 and fractional charge. This picture was validated in 1968 by

deep inelastic scattering experiments at SLAC. The experiment collided electrons with

proton targets, and found that the inelastic cross-section had very weak dependance on

the momentum-transfer (Q2) of the interaction [10]. This scale independence, known

as Bjorken scaling [11], demonstrated that the proton was composed of point-like (or

almost point-like) constituents, as we expect the cross-section to depend on the ratio

of the scale of the interaction to the scale of the proton’s internal structure. These

constituents, initially disassociated with the quark model, were named partons by

Feynman [12].

This discovery gave rise to the parton model description of the proton, where

scattering at high energies is described by virtual photons scattering incoherently off

of one of the constituent partons. This is essentially moving from a picture shown by
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Figure 2.1: Diagrams of DIS scattering between an electron and proton, represented as
interaction with the proton (left) and with a single quark in the parton model (right).

the diagram in the left side of Figure 2.1, where the proton interacts directly with the

virtual photon by some effective interaction, to the right hand side where the photon

interacts with an individual quark. In the parton model the quarks are characterised

by distribution functions, which describe the likelihood of encountering each flavour of

parton in a collision. More precisely, we define functions fi(x,Q
2) which give (at LO

in QCD) the probability of finding a parton of flavour i with fraction x of the proton’s

total momentum. x can also be defined in terms of the DIS variables as

x =
Q2

2MP (Ee − E′e)
, (2.1)

where MP is the mass of the proton and Ee and E′e are the energies of the incoming and

outgoing electron respectively, in the rest frame of the proton. DIS structure functions

can then be written in terms of these functions, for example

FEM2 = x

(
4

9
(fu + fū + fc + fc̄) +

1

9
(fd + fd̄ + fs + fs̄)

)
. (2.2)

In addition to the quark distributions, there is also a distribution function for the

gluon. The gluon was not discovered in the same DIS experiments as the rest of the

partons, and was instead seen for the first time in the PLUTO experiment at the

DORIS electron collider at DESY [13]. As they have no electric charge, gluons are

hard to see directly in collisions between protons and electrons, with the main effects

of the gluon distribution in the proton coming from violations of the Bjorken scaling

due to QCD interactions between the partons. The gluon distribution is however much

more important in hadron scattering experiments like the Tevatron and the LHC, where

quark-gluon and gluon-gluon scattering events are frequent.
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The parton distributions are subject to a number of sum rules. From the definition,

the total momentum carried by the partons cannot exceed that of the proton itself,

giving the momentum sum rule

∑
i

∫ 1

0
dx x fi(x) = 1. (2.3)

There are also three (or more fully, six, including sum rules for charm, bottom and top)

valence sum rules which reflect the quark content of the proton, which are∫ 1

0
dx (u(x)− ū(x)) = 2;

∫ 1

0
dx
(
d(x)− d̄(x)

)
= 1;∫ 1

0
dx (s(x)− s̄(x)) = 0. (2.4)

2.2 Factorisation

In any collision involving one or more hadrons, the are multiple scales involved, from

the (generally) ‘hard’ scale of the central interaction to the ‘soft’ scale of the QCD

interactions holding the hadron together. This might appear to make calculations

of such collisions impossible due to the failure of perturbative QCD at low energies,

resulting in divergences in the theory. However, it is possible to separate the long

and short distance behaviour by a process called factorisation. The soft parts of the

interaction are subsumed into the parton distributions functions, leaving only the hard,

calculable part. This allows the cross-sections for DIS processes to be written as a

convolution between a hard scattering kernel C and the factorised parton distributions,

i.e.

σ(x,Q2) =
∑
i

∫ 1

x

dξ

ξ
Ci

(
x

ξ
, αS

(
Q2
))

fi(ξ,Q
2). (2.5)

The parton distributions themselves are now defined in terms of bare distribution

functions f0
i and QCD splitting functions, Pij , at a chosen factorisation scale µF , i.e.

fi(x, µ
2
F ) = f0

i (x) +
αS
2π

∑
j

∫ 1

x

dξ

ξ
f0
j (ξ)

(
Cij

(
x

ξ

)
+ Pij

(
x

ξ

)
ln
µ2
F

κ2

)
+ . . . (2.6)

where κ is a small cut-off regulating the singularities (dimensional regularisation could

instead be used here) and Cij are finite contributions which are to some extend

arbitrary, and for which different choices define different ‘factorisation schemes’. The

factorisation scale µF is an unphysical parameter which defines the boundary between

what is considered hard and soft in the theory. Partons with a transverse momentum
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smaller than µF are considered long-distance and factorised into the hadron’s structure.

Similarly factorisation in DIS has been rigorously proved to all orders in perturbation

theory [14].

One of the consequences of separating the soft and hard parts of interactions

through factorisation is that the soft description (i.e. the parton distributions) are

universal, and are the same independent of the details of the hard interaction. The same

parton distribution functions described above can therefore be used also for hadronic

process. Here, there is an equivalent expression to Eq. 2.5, now involving two parton

distributions, one for each of the incident hadrons

σ =
∑
ij

∫
dx1dx2 fi(x1, Q

2)fj(x2, Q
2) σ̂ij . (2.7)

Unlike in the DIS case, there is currently no full proof that factorisation holds in

hadronic processes, largely due to the introduction of possible colour correlations across

the two incident hadrons. It has however, been proven for a number of inclusive

processes, and the impact is expected to decrease at higher energies [7].

2.3 DGLAP evolution equations

The factorised parton distributions in Eq. 2.6 cannot be calculated perturbatively, as

they depend on the long-distance interactions within the proton. Their dependance

on the factorisation scale µF , however, can be calculated. The evolution of the

parton distribution functions with the scale is given by the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equation [15–17]

µ2
F

∂

∂µ2
F

f(x, µ2
F ) =

αS
(
µ2
F

)
2π

∫ 1

x
P

(
x

ξ
, αS(µ2

F )

)
f(x, µF ). (2.8)

More precisely, as the quarks and gluon distributions are connected by the splitting

functions, the DGLAP equations take the form of a system of 2nf + 1 differential

equations

µ2
F

∂

∂µ2
F

fi(x, µ
2
F ) =

αS
(
µ2
F

)
2π

∑
j

∫ 1

x
Pij

(
x

ξ
, αS(µ2

F )

)
fj(x, µF ) . (2.9)

Fortunately, SU(nf ) flavour symmetry and charge conjugation mean that this set of

equations can be greatly simplified. In fact for particular combinations of the quarks

the evolution equation can be written in a separated form like Eq. 2.8, specifically the
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2.3. DGLAP evolution equations

non-singlet valence and triplet combinations

V =
∑
i

q−i

V3 = u− − d−

V8 = u− + d− − 2s−

V15 = u− + d− + s− − 3c−

V24 = u− + d− + s− + c− − 4b−

V35 = u− + d− + s− + c− + b− − 5t−

T3 = u+ − d+

T8 = u+ + d+ − 2s+

T15 = u+ + d+ + s+ − 3c+

T24 = u+ + d+ + s+ + c+ − 4b+

T35 = u+ + d+ + s+ + c+ + b+ − 5t+ , (2.10)

where the quark plus and minus distributions are given by

q±i = qi ± q̄i . (2.11)

For the gluon distribution and the remaining quark combination, the singlet

Σ =
∑
i

q+
i , (2.12)

evolution is still given by a pair of coupled equations, as in Eq. 2.9.

The DGLAP equations can be directly solved in x-space using numerical methods.

This is the approach used many QCD tools, such as HOPPET [18] and APFEL [19],

generally with some form of interpolation to improve the speed of the calculation.

Another way to obtain a solution is to perform a Mellin transformation

M [f ][N ] =

∫ 1

0
dy yN−1f(y) (2.13)

of the equations, which reduces the convolutions in Eqs. 2.8 and 2.9 to multiplications.

This is the approach used to produce evolution kernels in NNPDF fits, as described

in [4, 20].
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Chapter 3

PDF Determination

The ideas discussed in the previous chapter provide an approach we can follow to obtain

parton distributions: take data from a large number of experiments, making use of

universality, and use factorised theoretical calculations to fit the distributions. We can

look at each each element of this in turn. The need for good quality, high precision data

covering a wide kinematic range is central to the determination of PDFs. Traditionally,

DIS data has formed the core of the dataset used, from experiments like SLAC and

CERN SPS, and, in more recent determinations, data from the HERA experiments.

However, there is now a large amount of relevant data from hadronic colliders, with

data from the Tevatron and new sets released every year from the LHC.

One constraint on the data that can be included is the need to have a theoretical

description of the data in order to fit it. DIS data is straightforward in this respect,

but for hadronic data there are still a number of processes without a full description at

NNLO, or for which there is a description but it is not implemented in a fast enough

format to be used in PDF fits. A substantial amount of recent progress has been made

in this respect, with a large number of new calculations and tools having been released

in the last few years. Further work has been made in improving the quality of the

theoretical calculations, with fits using NNLO theory being the current standard, and

the possibility of N3LO fits already being discussed.

With the data and the theory, the next step is to actually fit the parton distributions.

This takes the form of a standard fitting exercise, where the parameterised PDFs are

modified, usually in a directed way, comparing the theoretical value to the data until

the best set of parameters is obtained. Modern PDF sets include uncertainties, which

are generally calculated according to the Hessian or Monte Carlo approaches, both

detailed later in this chapter. The full PDF set, with uncertainties, is then provided in

the common LHAPDF format [21], so that they can be easily used with the variety of

particle physics codes and tools.
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In this chapter I will describe the fitting procedures of general global PDF fits and

the innovations used in the NNPDF approach. I will finish by describing the NNPDF2.3

fit, the first global PDF analysis to use LHC data.

3.1 Global QCD Fits: MMHT and CTEQ-TEA

With the importance of a thorough understanding of PDFs for modern collider

experiments, it is unsurprising that there are a large number of different groups, each

using different approaches and datasets to obtain their distributions. For instance, there

are recent updates of the HERAPDF group [22], which performs PDF determinations

using only data from the HERA experiments in order to ensure a fully consistent and

under-control control dataset, and from ABM [23], who aim to provide as complete

and transparent a theoretical treatment as possible for factors like higher-twist effects

and nuclear corrections. Additionally, there are a large number of determinations of

other aspects of proton structure: nuclear PDFs with extra parameters for the A and

Z of the nucleus; polarised PDFs which include information on parton spin; transverse

momentum PDFs which constrain also parton transversity and correlations; generalised

PDFs which combine PDFs with electric form factors; double PDFs useful for multiple

hadron scattering events at the LHC.

In this section I will focus on two other major series of global PDF fits produced

by the MSTW/MMHT and CTEQ collaborations. Both groups have very recently

released new PDF sets, MMHT2014 [24] and CT14 [25]. The MMHT PDFs are the

latest update of the widely used MSTW2008 PDF sets [26], which in turn follow on

from MRST and MRS PDF sets going back over 25 years [27–29]. The CT14 PDFs

also derive from a long ancestry, with multiple sets of CTEQ PDF released since the

CTEQ1 in 1993 [30,31].

The MMHT and CTEQ methodologies are broadly similar. Both use essentially the

same dataset, and, as I will describe over the next few subsections, perform Hessian fits

using fixed functional forms. The fact that, despite the similarity of their approaches,

there was some disagreement between the results they obtained was one of the pushes

towards the development of the substantially different NNPDF methodology, discussed

later in this chapter. However, thanks to a number of benchmarking exercises between

the different sets over the last few years [32, 33], and changes to the methodologies

and theory treatments as a result of these, the MMHT, CT and NNPDF PDF sets

are in increasingly good agreement. This has recently culminated in efforts to produce

combined PDF sets, integrating the results from the different groups in a statistically

correct way [34,35].
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3.1.1 Functional Forms

A full PDF determination involves fitting each of the thirteen independent parton

distributions, corresponding to the six quark and anti-quark flavours and the gluon.

However, as the charm, bottom and top masses are usually larger than the scale

at which perturbative QCD gives a good description of the interactions within the

proton, the usual approach of generating the c, b and t distributions radiatively from the

other quark distributions is generally sufficient, and they do not need to be separately

parameterised. There is possibly a small non-perturbative “intrinsic” component of the

charm PDF, and this is a subject of previous [36] and ongoing work [37–39]. There

have also been a number of determinations of the photon PDF of the proton [40,41].

The seven remaining flavours are generally not parameterised directly (except at

LO), and instead for technical reasons combinations of the quark PDFs, often close

to the parton evolution basis, are determined. As the PDFs at different scales are

related by the DGLAP evolution equations (Eqs. 2.9) only the x dependence needs to

be parameterised.

The standard form of parameterisation, used by the majority of approaches, for

parton distribution fi is

fi(x,Q
2
0) = xαi(1− x)βiPi(x) (3.1)

where αi and βi are parameters and Pi(x) are functions which depend on x and typically

other parameters. The terms proportional to x and (1 − x) are motivated by Regge

theory and quark counting rules, and constrain the behaviour of the parton distributions

as x → 0 and x → 1 respectively. In the past, a common choice for the form of the

Pi(x) were polynomials, often mixed with half-integer powers or exponentials. The

latest MMHT and CTEQ-TEA releases, however, use more complicated forms for Pi(x):

linear combinations of Chebyshev polynomials for most partons in MMHT2014, and

of Bernstein polynomials in CT14. The introduction of these more flexible approaches

avoid problems seen with the more fixed parameterisations, such as the need to add

extra parameters to get a good fit to new data and an increase in the PDF uncertainties

when the new parameters are used [42].

3.1.2 PDF uncertainties: The Hessian approach

In both the MMHT2014 and CT14 PDF sets, PDF uncertainties are represented using

the Hessian approach. The approach is based on the assumption that the probability

distribution for each of the PDFs is given by a multi-Gaussian distribution in the space

of the parameters. This assumption is probably sound, at least in the region well
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constrained by data, both for the usual Central-Limit-Theorem-esqe rationalisations

and also because the experimental uncertainties are themselves generally taken to be

Gaussian, though factors like positivity and sum rules may disrupt this.

The Hessian method proceeds by first obtaining the best fit PDF, for instance

by finding the set of parameters which minimises a χ2 function to the data. The

relationship between the χ2 and the probability distribution of the parameters can

then be used to define confidence intervals (or here volumes) in parameter space by

expanding around the minimum value of the χ2. In the case of Gaussian uncertainties,

the 68% confidence interval will be given by volume defined by χ2 = χ2
min + 1, the 90%

interval by χ2 = χ2
min +2.69 etc. This can be found by looking at the covariance matrix

for the parameters in parameter space, which is equivalent to the inverse of the Hessian

matrix

Hij =
1

2

∂2χ2

∂ai∂aj

∣∣∣∣
min

(3.2)

where i and j run over the parameters ai, and the derivatives are evaluated at the

location in parameter space which gives the minimum χ2. This gives a convenient

representation for the uncertainties which can be provided for use: the eigenvectors of

the Hessian. By providing these—or at least the subset of eigenvectors sensitive to the

data—the uncertainty in the PDFs and in any observable dependant on the PDF can

be calculated in a straightforward manner.

In global fits, it was found [43] that this standard criteria for determining the

confidence intervals was inadequate, as the obtained limits were incompatible with

the results of fits to each of individual datasets. The reasons for the discrepancy

are still not fully understood, but are suspected to be partly due to inconsistencies

between datasets, within datasets (i.e. incorrectly estimated systematics) and also from

parameterisation bias. The problem was alleviated in the MSTW and CTEQ fits by

introducing a tolerance factor T so that instead of a deviation of one from the minimum

χ2, the 68% confidence interval was defined as χ2 = χ2
min + T . This tolerance factor

is determined so that the spread of best fit to each experiment is compatible with the

uncertainties of the global fit, and this is done dynamically in more recent analyses [26,

44]. The uncertainties obtained by the Hessian method in the CT14 fit are also checked

using a separate method of determining the PDF uncertainties, the Lagrange multiplier

method [25].

The PDF uncertainties calculated using the Hessian method, and using the Monte

Carlo method in NNPDF fits, refers to only the propagation of the experimental

uncertainties and uncertainties related to the fit (e.g. interpolation and extrapolation

uncertainties). There are also a number of theoretical uncertainties which are relevant

for PDF fits. These include uncertainties relating to nuclear corrections, higher twist
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effects, higher order corrections, and the treatment and precise value of heavy quark

masses. For the most part these are dealt with by removing data for which they

are particularly relevant, and by performing additional fits with various models of

corrections to determine the size of the effects. The impact of several of these factors

on the NNPDF3.0 is investigated in Chapter 7.

3.2 The NNPDF Approach

The NNPDF approach takes the same general shape as that used by the MMHT

and CTEQ collaborations, with parameterised PDFs determined by comparing to

experimental data. However, there are several key differences between the approaches.

Centrally, the fixed functional forms used to parameterise the PDFs in other deter-

minations are replaced by neural networks, which are considerably more flexible. The

use of neural networks then prompts the adoption of a number of other methodological

features, due to the large number of parameters, including the use of a genetic algorithm

to perform the minimisation, and the generation of Monte Carlo replica PDFs to encode

the PDF uncertainties. Together, this results in a consistent and successful approach

which has been used to produce several PDF sets, including the first global PDF set to

include LHC data in the determination, NNPDF2.3, which was released in 2012 [45].

In the remainder of this chapter I will discuss the main methodological features of the

NNPDF approach and describe some of the results from the NNPDF2.3 analysis.

3.2.1 Neural Network Parameterisation

Neural Networks are processing systems with a particular structure which is based on

observations of the brain. They were originally suggested as a way to mathematically

model biological neural systems [46], however it is in machine learning and signal pro-

cesses that neural networks have found their most important applications. One specific

type, feed-forward neural networks (also sometimes called multi-layer perceptrons), are

in particular very useful for modelling and pattern recognition.

A general neural network consists of a set of nodes and the connections between

the nodes. The state of each node is described by a number called the activation,

which is determined by the activations of the surrounding nodes. In feed-forward

neural networks the nodes are arranged into layers, and the activation of each node

only depends on state of the nodes in the previous layers. The nodes of the first layer

of the network are used to provide inputs to the network (the input layer), while the

activations in the final layer provide the outputs (the output layer). The other layers in

the network are called hidden layers. An example of a network with two hidden layers
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Input Layer

{
Hidden Layers Output Layer

Figure 3.1: Diagram of a neural network with two nodes in the input layer, one node in the
output layer, and two hidden layers with five and three nodes.

is shown in Fig. 3.1. In this way feed-forward neural networks can be used to model

functions, and it has been shown that a network with a single sufficiently large hidden

layer can approximate any continuous function [47].

Despite the degree of complexity they give rise to, the rules for calculating the

activation of nodes in a feed-forward neural network are actually quite simple. Consider

the ith node in the lth layer of the network. Its activation ξ
(l)
i is given by

ξ
(l)
i = f

τ (l)
i +

∑
j

w
(l)
ij ξ

(l−1)
j

 , (3.3)

where τ
(l)
i is a threshold term belonging to the node, w

(l)
ij are the weights of the

connections between the nodes in the (l−1)th and lth layers, and f(x) is the activation

function. There are several suitable choices for the activation function including

threshold (i.e. f(x) = 1 if x > 0 and 0 otherwise), logistic (f(x) = 1/(1 + e−x)) and

linear. Note that the τ
(l)
i term in Eq. 3.3 can be absorbed into the sum by considering

it as the weight w
(l)
i0 between the node and an otherwise disconnected node with a

constant activation of one. It is also possible to extend Eq. 3.3 to include connections

from a node to other nodes two or more layer back, instead of just those in the previous

layer, though in applications presented here this option is not used.

As Eq. 3.3 shows, the output of a feed-forward neural network depends on both
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the input parameters and the weights w
(l)
ij . By changing these weights, the function

modelled by the neural network can be modified. In this way feed-forward neural

networks can provide a flexible parametrisation for fitting, with the weights acting as

parameters.

Neural networks are widely used across physics, including for many applications in

particle physics. They were used extensively in Tevatron analyses, including for Higgs

searches [48], for signal-background discrimination in single top production [49], and

for τ and jet identification in BSM searches [50]. Neural networks were also heavily

used for b-jet tagging at the Tevatron [51, 52], and continue to be used in this way at

the LHC [1].

In the NNPDF analyses, we use a separate neural network to parametrise each

independent PDF flavour combination at the initial fitting scale. We use deep feed-

forward neural networks each with identical structure of 2-5-3-1, i.e. with two hidden

layers containing five and three nodes, and for a total of 37 parameters per PDF. Fig. 3.1

shows a 2-5-3-1 network. The two input nodes are used to input x and additionally

ln(x), where the latter of these is included to reduce the time required to train the

networks. A logistic function (shown above) is used for the activation function in

order to encourage a smooth output. The suitability of these choices for NNPDF fits,

including that the structure is sufficient to model the PDFs, has been investigated in

the past [3], and I will also present some results on this topic from closure tests in

Section 5.4.3.

For the NNPDF2.3 analysis, seven independent PDFs were parameterised:

• Gluon g(x),

• Singlet Σ(x) = u(x) + ū(x) + d(x) + d̄(x) + s(x) + s̄(x),

• Valence V (x) = u(x)− ū(x) + d(x)− d̄(x) + s(x)− s̄(x),

• Triplet T3(x) = u(x) + ū(x)− d(x)− d̄(x),

• Sea Asymmetry ∆S(x) = ū(x)− d̄(x),

• Strange sea s+(x) = s(x) + s̄(x),

• Strange valence s−(x) = s(x)− s̄(x).

This choice of basis was made in order to have a basis which was close to the full

evolution basis, in order to optimise the rotation of the initial scale PDFs for evolution,

but also to use combinations with some physical interpretation. However, given the

flexibility of the neural network parameterisation, which specific PDF combinations

are used should not affect the results of the fit.
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In order to reduce the time required for the neural networks to model the data, we

additionally use preprocessing terms in the definition of the PDFs. The initial scale

PDFs are therefore given by

f0
i (x) = Ai x

−αi(1− x)βiNNi(x), (3.4)

with the extra parameters Ai, αi and βi. These are not treated as full parameters

in the fit, and instead the Ai are used to impose the PDF sum rules, while the αi

and βi are constants. The x and 1 − x terms serve broadly the same role here as

the equivalent terms in the MSTW parameterisation given previously, ensuring that

the theoretical requirements on the large- and small-x behaviour of the PDFs are

automatically satisfied. The preprocessing terms also speed up training, as the neural

networks only need to model the deviations from this underlying form. However, in

order to avoid biasing the fit the value of the preprocessing exponents αi and βi are

randomly selected at the start of the fit from a pre-specified range. This range is chosen

so that it is large enough not to bias the fit, but not so large that unphysical values or

values which lead to a very poor fit can be selected.

While the preprocessing exponents remain constant during the fit, this is not case

for several of the overall normalisations (Ai in Eq 3.4). Four of these, Ag, AV , A∆S

and As− are instead set in order to explicitly impose PDF sum rules. The four sum

rules imposed are the total momentum sum rule∫ 1

0
dx x (Σ(x) + g(x)) = 1 (3.5)

and the valence sum rules (in the NNPDF2.3 basis)∫ 1

0
dx V (x) = 3, (3.6)∫ 1

0
dx (T3(x)− 2∆S(x)) = 1, (3.7)∫ 1

0
dx s−(x) = 0. (3.8)

The remaining PDF normalisations AΣ, AT3 and As+ are simply set to one.

3.2.2 Genetic Algorithm

Neural networks provide a flexible, unbiased parametrisation in NNPDF analyses,

however this flexibility comes at the cost of having a large number of parameters.

As a result, our fitting methodology needs to be able to search through a very large
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parameter space. In order to do this efficiently, we use a genetic algorithm to perform

the minimisation.

The basic principles of our genetic algorithm are straightforward. Each generation

a large number of copies of the current best fit PDFs are generated. Each copy is then

mutated by changing the parameters, to create a set of mutant PDF sets. The quality

of fit to the data of each mutant is then calculated, according to some figure of merit

generally based on comparison to the experimental data, and the best mutant is taken

forward as the parent for the next generation. This process is then iterated until the

stopping condition is satisfied or a maximum number of generations is reached.

There are many different methods which can be used to mutate the PDFs. The

NNPDF methodology uses a relatively simple approach, where a small number of

randomly selected parameters are changed by an amount given by

w → w + η
r1

N r2
ite

, (3.9)

where w is the parameter being mutated, Nite is the number of generations which

have elapsed, r1 is a uniform random number between −1 and 1, r2 is a second random

number between 0 and 1, and η is a parameter which controls the size of the mutations.

I will present tests of more complicated mutation strategies in Section 5.3.

Essentially, at each step the genetic algorithm takes a random sample from the

parameter space around the current best fit, and if a better place is found the fit moves

there. The η parameter in Eq. 3.9 is therefore very important as this controls the

overall size of the mutations, and so the average size of the step in parameter space

each generation. Large mutations allow the algorithm to quickly move through the

parameter space, while small mutations allow the fit to finely manoeuvre close to the

global minimum. For this reason, we use a value of η which depends inversely on

the number of generations reached so far in the fit, which means that the size of the

mutations decreases as the fit progresses.

The figure of merit used in the NNPDF fits is a χ2 function of the differences between

the theoretical predictions ti(f) of the data points and the experimental values di, i.e.

χ2 (d, t(f)) =
1

Ndat

∑
i,j

(di − ti(f))C−1
ij (dj − tj(f)) (3.10)

where C−1
ij is the inverse of the covariance matrix of the data.

Because neural networks are very flexible, using them to fit functions introduces

a significant risk of over-learning (or over-fitting). This is where the neural network

starts to model the statistical fluctuations in the data, instead of just the underlying
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pattern. This results in a biased fit and a reduction in predictive power. In order to

control over-learning we use cross-validation to impose a stopping condition on the fit.

The dataset is split into two halves, and one half is used to train the networks (the

training set), while the other is used to look for over-fitting (the validation set). If

the χ2 to the unseen validation set increases, this indicates that the fit has begun to

over-learn, and the fit is stopped. In NNPDF fits, the training and validation sets are

constructed using half of each dataset, randomly chosen, so each data point has a 50%

chance of being in each set.

3.2.3 t0 approach to normalisation uncertainties

One issue with the definition of the χ2 (Eq. 3.10 above) used in the fit is the

treatment of multiplicative uncertainties. These uncertainties, of which normalisation

uncertainties—like the uncertainty on collider luminosity—are a particular type, are

not simply a fixed value but depend on the central value obtained. One common

example is the uncertainty on collider cross-sections coming from the measurement of

luminosity.

In most applications, the distinction between additive and multiplicative uncertain-

ties is unimportant and they can be treated in the same way. However, when fitting

a function, multiplicative uncertainties can introduce a d’Agostini bias [53]. Since the

absolute size of the uncertainty depends on the central value of the data point, the

error on points with a downward statistical fluctuation is smaller than that on the data

points with an upward fluctuation. The fit will therefore develop a downwards bias.

There are several different methods to remove this bias, with most involving the

use of a modified error function during the fit. For the NNPDF fits, we solve the

d’Agostini bias by using a modified covariance matrix in the χ2. Instead of calculating

the absolute value of the multiplicative uncertainties using the central experimental

value, we instead use the central theory value from a previous fit. The resulting

covariance matrix is called the t0 covariance matrix. We then iterate, performing

multiple fits, each using a covariance matrix based on the results from the last, until

the PDFs converge. Fortunately this process generally only requires a small number

of generations to complete. Using the theory value rather than the experimental value

smooths out the fluctuations in the data, removing the bias, and has been demonstrated

to be effective even in complicated situations involving multiple correlated datasets [54].

3.2.4 PDF uncertainties: the Monte Carlo approach

As I previously mentioned, it is important for modern PDF determinations to obtain

accurate PDF uncertainties. In order to determine the uncertainties in NNPDF fits,
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Figure 3.2: Replicas of the NNPDF2.3 NNLO gluon. Each green line shows the gluon of one
replica PDF set at the initial (fitting) scale Q2 = 2GeV 2. Also shown are the mean (red dashed
line) and the one-sigma (blue lines) and 68% confidence (black lines) intervals.

we produce sets of Monte Carlo replica PDFs. First, replica datasets are generated

by randomly fluctuating the experimental data according to its uncertainties. A

separate fit is then performed to each replica dataset, and the resulting set of PDF

determinations are collected as a single Monte Carlo PDF set. The idea is that this

creates a sample of the probability distribution of the PDFs in function space. This

sample can then be used to calculate expected values, standard deviations, correlations

and any other statistical estimator is the usual way for any probabilistic sample. Unlike

with the Hessian approach, described previously in this chapter, this approach can

describe non-gaussian uncertainties.

An example of the resulting PDF determination is shown in Fig. 3.2, where the

gluon from each of the 100 replica from the NNPDF2.3 NNLO PDF set are plotted.

Each green line is the result of a separate Monte Carlo replica fit, and taken together

they build up a single PDF fit with a central value given by the mean, shown by the red

dashed line, and uncertainty given by the one-sigma band in blue. The replica PDFs

are clustered close together at large and medium x, where the gluon is well determined,

and diverge rapidly at small x. Note that while the individual replicas often have

quite complicated shapes, the resulting central value is a smooth function. A set of
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lines showing the central 68% of replicas (i.e. the seventeenth replica from the top and

bottom in this case) are also shown in black. In general, the one-sigma band and this

68% confidence interval agree well indicating that the uncertainties on this PDF are

likely close to Gaussian.

Each replica data point is produced according to

drep
i =

Nmult∏
j

(
1 + rmult

j σmult
i,j

)(dexp
i +

Nadd∑
k

radd
k σadd

i,j + rstat
i σstat

i

)
, (3.11)

where σmult
i,j are the Nmult correlated multiplicative uncertainties for this data point,

σadd
i,j the Nadd correlated additive uncertainties, and σstat

i is the (additive) statistical

uncertainty. rmult
j and radd

k are unit variance Gaussian random numbers, which are

shared across data-points for which each particular uncertainty is correlated, while rstat
i

is another Gaussian random number which is unique for each point. If a new replica

data point generated according to Eq. 3.11 is negative, which can occur for points

which have particularly large uncertainties, it is discarded and regenerated until a non-

negative value is obtained. This results in data which essentially have a second level

of fluctuations added to it, on top of the usual fluctuations between the experimental

measurement and the true value.

The use of replica fits is also convenient for reducing the possibility of bias from

other parts of the methodology. Along with different replica data, each replica fit is

performed with different values for the preprocessing exponents and different starting

values for the parameters of the neural networks. Which data are included in the

training and validation sets is also varied for each replica, so rather than half of the

data being completely discarded, all of it is used in at least some of the replicas.

As this method produces a probabilistic sample of the PDFs, it is important that

the number of replicas used is sufficiently high. However, a large number of replicas

takes a substantial amount of time to generate and, more significantly, it will also take

longer to produce any theoretical calculation using the resulting set. For this reason, the

majority of NNPDF sets contain 100 replicas, which balances precision with usability.

A small number of 1000 replica sets are also produced, as these can be useful for some

purposes (e.g. reweighting).

3.2.5 FastKernel

One of the most important technical features of the NNPDF methodology is the use of

FastKernel (FK) tables. These combine the convolutions with both DGLAP evolution

kernels and with hard scattering coefficient functions into a single calculation. This
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calculation can then be reduced to the product of a vector containing the initial scale

PDFs at different x values and a matrix of precomputed coefficients (known as FK

tables), which can be optimised within the NNPDF fitting code. This results in

substantially faster fits, which allows for a more in depth scan of the parameter space

(by increasing the number of generations, number of mutants per generation etc.) and

also for easier testing of new features within the code.

The first step in the FastKernel approach is to combine the evolution and scattering

coefficients convolutions. The standard form for an observable σI from initial scale

PDFs f0
i , using evolution kernels Γij and scattering coefficients CIi , is

σI(x,Q2) =

Npdf∑
j=1

CIj (Q2)⊗

Npdf∑
k=1

Γjk(Q
2, Q2

0)⊗ f0
k (x,Q0)

 . (3.12)

While this is strictly correct only for DIS observables, a similar expression can be

obtained for hadronic observables by considering products of PDFs and summing to

N2
pdf . Using the associative and distributive properties of the convolution, we can

rearrange this to get

σI(x,Q2) =

Npdf∑
k=1

Npdf∑
j=1

CIj (Q2)⊗ Γjk(Q
2, Q2

0)

⊗ f0
k (x,Q0) (3.13)

=

Npdf∑
k=1

KI
k(Q2, Q2

0)⊗ f0
k (x,Q0) (3.14)

with the new coefficients KI
i . This approach saves time during the fit as the inner

convolution can be performed beforehand and the results saved, rather than performing

it every time an observable is calculated.

The next step is to avoid performing this, still fairly costly, single convolution

during fits, and instead reduce it to a scalar product which can be calculated very

efficiently. This is achieved by approximating the initial scale PDFs with a suitable set

of interpolating functions, i.e. by defining Nx functions I(α)
i and setting

f0
i (x) =

Nx∑
α=1

f0
iαI

(α)
i (x) (3.15)

where f0
iα are the values of the initial scale PDFs at Nx chosen x values. In the NNPDF

methodology we use Hermite polynomials on a grid of 50 points in x, which has been

shown to be appropriate to reproduce the full calculation with sufficient accuracy for
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PDF fits [4]. With these interpolating functions we can rewrite Eq 3.14 as

σI(x,Q2) =

Npdf∑
k=1

Nx∑
α=1

∫ 1

y

dy

y
KI
k(
x

y
,Q2, Q2

0)I(α)
k (y)f0

kα (3.16)

=

Npdf∑
k=1

Nx∑
α=1

KIkα(Q2, Q2
0)f0

kα. (3.17)

These arrays KIkα, known as FK tables, can be computed for each data point once, and

then stored for use in any number of fits. Different theory settings require different KI
k

however, so different FK tables need to be generated for different pertubative orders,

values of αS(MZ), choice of initial scale etc. In practice, many of the entries in each

KIkα are zero, so further improvements in performance can be obtained by performing

the sums in Eq. 3.17 only over the non-zero terms. Again, a similar approach is taken

for hadronic data, to produce tables KHjkαβ which are used to calculate observables

according to

σH(x,Q2) =

Npdf∑
j=1

Npdf∑
k=1

Nx∑
α=1

Nx∑
β=1

KHjkαβ(Q2, Q2
0)f0

jαf
0
kβ. (3.18)

More information about the NNPDF FastKernel implementation can be found in [4]

and [45].

3.2.6 Positivity

In the naive parton model, the parton distributions can be directly identified as

probability distributions for the quarks and gluon. Moving to the QCD-improved

quark model, this stops being the case above lowest order [55]. The result is that

while at LO the PDFs themselves are positive (semi-)definite, for NLO and above it is

only required that all cross-sections are non-negative. Here, ‘all’ means quantities that

could in principle be measured, not just those which we are actually capable of obtaining

from experiments. Non-negative observables can of course be obtained by forcing the

PDFs to be positive, and this approach is taken in several other determinations, often

by using a positive-definite functional form. However, this could potentially bias the

PDFs away from forms which are negative but still physical, and in particular result in

a artificially smaller uncertainty.

In the NNPDF analyses, we instead impose positivity during the fit by penalising

PDF values which produces negative values for a number of additional observables

included in the fit. This is done by including an extra term in the figure of merit which

is non-zero when an observable is negative. The error function which is used to rank
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Dataset Ref. Ndat [ηmin, ηmax] 〈σstat〉 (%) 〈σsys〉 (%)

CMS W electron asy 840 pb−1 [57] 11 [0, 2.4] 2.1 4.7
ATLAS W & Z 36 pb−1 [58] 30 [0, 3.2] 1.8 3.8

LHCb W 36 pb−1 [59] 10 [2, 4.5] 4.1 10.1
ATLAS Inclusive Jets 36 pb−1 [60] 90 [0, 4.5] 10.2 23.7

Table 3.1: Details of the LHC datasets included in the NNPDF2.3 fits.

the mutants in the genetic algorithm is then

E(d, f) = χ2(d, f) + λpos

Npos∑
i=1

H (−Oi(f)) |Oi(f)|, (3.19)

where Oi are the Npos positivity observables, H is a unit step function, and λpos is a

Lagrange multiplier. Note that the amount added to the figure of merit if an observable

is negative is proportional to the size of the deviation. The extra parameter λpos is set

outside of the fit, and needs to be large enough to properly enforce positivity without

drowning out improvements in the fit to the data with slight reductions in negativity.

For NNPDF2.3, we have included positivity observables for three processes: FL,

which constrains the small-x gluon, F c2 , which constrains the large-x gluon, and the

dimuon differential cross-section d2σν,c/dxdy, which constrains the strangeness. These

are only applied at the initial parameterisation scale, as for higher scales DGLAP

evolution will maintain positivity if it is present at a lower scale.

3.2.7 NNPDF2.3

NNPDF2.3 is a full PDF determination at NLO and NNLO based on a global dataset

and the methodology described above. It builds on the previous NNPDF2.0 and

NNPDF2.1 analyses [4, 56] but with the inclusion of several early LHC datasets from

ATLAS, CMS and LHCb. It also features several methodological improvements over

the previous determinations, made possible by the performance increases from wider

use of the FastKernel method. Since the release of the original paper [45], a additional

NNPDF2.3 LO determination has been performed, and an extension of the NLO set to

include QED corrections with a determination of the photon PDF has been released [40].

Features

The main feature of NNPDF2.3 is the inclusion of data from the LHC. In total four

LHC datasets were added: ATLAS inclusive jet cross-sections [60] and W and Z lepton

rapidity distributions [58], CMS W electron asymmetry [57], and LHCb W lepton

asymmetry [59]. All of the new measurements are based on the 2010 7TeV run which

saw an integrated luminosity of 36pb−1, except for the CMS dataset which was based on
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the more substantial 2011 840pb−1 run. Details of the number of data points, kinematic

coverage and average statistical and systematic uncertainties are given in Table 3.1. A

total of 141 LHC data points were included in the NNPDF2.3 fits. While there were

several other LHC results sensitive to PDFs which had been released at the time that

the NNPDF2.3 analysis was performed (including some I will discuss in Chapter 4,

included in the NNPDF3.0 dataset), only these four were available with full covariance

matrix.

These new data were added to the existing dataset used in the NNPDF2.1

analysis [56]: fixed-target DIS data from NMC [61, 62], BCDMS [63, 64] and

SLAC [65]; the combined HERA-I DIS dataset [66], HERA FL [67] and the separated

ZEUS and H1 F c2 structure function data [68–74], some ZEUS HERA-II DIS cross-

sections [75,76]; CHORUS inclusive neutrino DIS [77], and NuTeV dimuon production

data [78,79]; fixed-target E605 [80] and E866 [81–83] Drell-Yan production data; CDF

W asymmetry [84] and CDF [85] and D0 [86] Z rapidity distributions; CDF [87] and

D0 [88] Run-II one-jet inclusive cross-sections.

In addition to the new data, NNPDF2.3 boasted several methodological improve-

ments over the NNPDF2.1 analysis. The FastKernel method (described in Section 3.2.5,

above) was introduced for hadronic processes in addition to DIS, which resulted in a

substantial reduction in the time required to perform a PDF fit. This was especially

important given that all of the new LHC data was for hadronic processes. This

performance upgrade was traded against improvements in the effectiveness of the

genetic algorithm minimisation. The parameters of the NLO fit were modified in line

with the NNLO fit in order to search the parameter space more effectively, providing a

larger number of mutants and mutations each generation. The length of the fits were

also increased from 30000 to 50000 generations, providing the genetic algorithm with

more time to find the global minimum. This increase in length was combined with

a more stringent cross-validation stopping condition, in order to prevent the fit from

stopping prematurely. We additionally added a post-fit check of the quality of fit to

ensure that outlying replicas, possibly caused by poor starting conditions or fluctuations

in validation χ2, are not included in the final set. If the final χ2 of a replica is more

than four sigma higher than the average χ2 it is replaced.

Results

Table 3.2.7 shows the χ2 obtained for each of the different datasets used in the

NNPDF2.3 fits for the NLO and NNLO sets of NNPDF2.1 and multiple NNPDF2.3

analyses. The first NNPDF2.3 column (‘Global’) provides the results for the central

determinations using the full global dataset, while the second column (‘noLHC’) gives
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NNPDF2.1 NNPDF2.3
Global Global noLHC Collider

Experiment Ndat NLO NNLO NLO NNLO NLO NNLO NLO NNLO
Total 3482(3501) 1.145 1.167 1.121 1.153 1.101 1.147 1.018 1.034

NMC-pd 132 0.97 0.93 0.93 0.94 0.93 0.94 [4.72] [5.03]
NMC 224 1.68 1.58 1.61 1.57 1.59 1.56 [1.86] [1.87]
SLAC 74 1.34 1.04 1.26 1.02 1.28 1.04 [1.80] [1.48]

BCDMS 581 1.21 1.29 1.19 1.29 1.20 1.28 [1.81] [2.08]
CHORUS 862 1.10 1.08 1.10 1.06 1.09 1.07 [1.93] [1.81]
NTVDMN 79 0.70 0.50 0.45 0.55 0.42 0.48 [28.51] [22.61]
HERAI-AV 592 1.04 1.04 1.00 1.01 1.01 1.03 0.97 0.98

FLH108 8 1.34 1.23 1.28 1.20 1.29 1.21 1.33 1.25
ZEUS-H2 127 1.21 1.21 1.20 1.22 1.20 1.22 1.30 1.32
ZEUS F c

2 50(62) 0.75 0.81 0.82 0.90 0.81 0.86 0.73 0.77
H1 F c

2 38(45) 1.50 1.44 1.58 1.52 1.58 1.49 1.34 1.30
DYE605 119 0.94 1.09 0.88 1.02 0.85 1.07 [11.12] [4.56]
DYE886 199 1.42 1.76 1.28 1.62 1.24 1.61 [4.44] [4.63]

CDF W asy 13 1.87 1.63 1.54 1.70 1.45 1.66 1.17 1.16
CDF Z rap 29 1.77 2.42 1.79 2.12 1.77 2.15 1.49 1.49
D0 Z rap 28 0.57 0.68 0.57 0.63 0.57 0.64 0.57 0.61

ATLAS W,Z 30 [1.58] [2.22] 1.27 1.46 [1.37] [1.94] 1.08 1.08
CMS W e asy 11 [2.26] [1.45] 1.04 0.96 [1.50] [1.37] 0.96 0.96

LHCb W,Z 10 [1.34] [1.42] 1.21 1.22 [1.24] [1.33] 1.22 1.29
CDF RII kT 76 0.68 0.65 0.61 0.67 0.60 0.67 0.57 0.59
D0 RII cone 110 0.90 0.98 0.84 0.93 0.84 0.94 0.83 0.93
ATLAS jets 90 [1.65] [1.48] 1.55 1.42 [1.57] [1.45] 1.46 1.41

Table 3.2: χ2 values for the different datasets included in the NNPDF2.3 analysis. The results
are given for central NLO and NNLO NNPDF2.1 and 2.3 determinations, and for fits to a pair
of reduced dataset. Where Ndat is different at NNLO it is shown in brackets.

values for a fit without the new LHC data and the third (‘Collider’) values for a fit

only including data from colliders (i.e. data from HERA, the Tevatron and the LHC).

Where a fit does not include a particular dataset the χ2 is provided in brackets.

Some interesting results are immediately visible just looking at the χ2 in Table 3.2.7

alone. Comparing the columns for the NNPDF2.1 and NNPDF2.3 noLHC sets tests

the impact of the improved methodology, as both of these fits were performed using the

same dataset. The newer methodology obtains a better total χ2 and also significantly

improved χ2 for several individual datasets. The noLHC fit obtains a reasonably good

description of the LHC data, indicating that there is little evidence of tension between

the new LHC data and the existing dataset, though the Global fit description is still

slightly better as would be expected. On the other hand, in the Collider-only fit,

several of the excluded datasets are very poorly described, indicating that these datasets

contain information which is lost by excluding them in the fit.

In general we find that the new LHC data have a small but noticeable impact on

several PDFs. Fig. 3.3 compares several PDFs from the central NNPDF2.3 set with

their counterparts from the noLHC fit. This shows the impact of including the new

LHC datasets on these PDFs (in green) compared to leaving them out (in red). For

the Singlet distribution (top left), there is an upward shift at small x of about 0.5σ
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Figure 3.3: Comparison of the Singlet, gluon, sea asymmetry and strangeness PDFs from
the central and noLHC NNLO NNPDF2.3 sets at the initial fitting scale (Q2 = 1GeV 2). The
shaded area displays the one-sigma contour.

due to these data, while the gluon is largely unaffected. There are also effects in the

quark sea sector, with a matching upward shift in the strangeness and a reduction of

uncertainties in the sea asymmetry, again at small x.

Fig. 3.4 presents a similar comparison for the NNLO collider-only NNPDF2.3 fit.

The difference between this fit and the global fit is again the absence of datasets from

the fit, in this case all of the fixed target data leaving just the data from colliders.

The singlet, gluon, valence and sea asymmetry are shown for both this reduced dataset

fit and the global fit. The singlet and gluon are reasonably well constrained by the

collider data, though there are some significant deviations at medium x from the global

fit results. On the other hand, for the valence and sea asymmetry the collider-only

description is markedly poorer, resulting in a much larger uncertainty for the large

x valence and an essentially featureless ∆S . This demonstrates that a collider only

dataset is not yet sufficient to properly constrain all PDFs, though as more LHC data

is collected this may change.
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Chapter 4

NNPDF3.0 dataset

In this section I will look at the dataset used for the NNPDF3.0 fits [6], focusing

particularly on the changes from that used in the NNPDF2.3 analysis. I will first

discuss in detail each of the new experimental datasets included in the fit. I will

also cover several issues of the theoretical treatment of data: the computational tools

used to implement perturbative corrections, NNLO QCD corrections to jet production,

electroweak corrections, and the treatment of heavy quark mass effects. Finally, I will

look at details of the implementation of systematic experimental uncertainties in the

fit.

4.1 Experimental data

In addition to the datasets included in the NNPDF2.3 fits, described in Section 3.2.7,

a large amount of new experimental data has been added to the NNPDF3.0 fits. In

this section I will describe in detail the new datasets; information about the previously

included dataset can be found in the NNPDF papers [3, 4, 45].

Details of the datasets included in the NNPDF3.0 fit are provided in Table 4.1. For

each dataset I have provided the corresponding published reference, the availability

and treatment of systematics (further discussed in Section 4.3.2 below), the number

of data points before and after cuts at NLO and NNLO (again discussed later in this

chapter), and the kinematic coverage of each dataset. Information on sets removed

from NNPDF3.0 is also given in Table 4.2.

The kinematical coverage of the NNPDF3.0 dataset in the
(
x,Q2

)
plane is shown

in the scatter plot Fig. 4.1 (note that for hadronic data, leading-order kinematics have

been assumed for illustrative purposes, as discussed in [4]).

In NNPDF3.0 we have supplemented the combined HERA-I dataset with the

inclusion of all the relevant HERA-II inclusive cross-sections measurements from H1
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Experiment Dataset Ref. Sys. Unc. Ndat (cut) Kinematics

NMC
NMC d/p [61] add 289 (132)

3.5× 10−3 ≤ x ≤ 0.47
0.8 ≤ Q2 ≤ 61.2 GeV2

NMC σNC,p [62] add 211 (224)
1.5× 10−3 ≤ x ≤ 0.68
0.2 ≤ Q2 ≤ 99 GeV2

SLAC
SLAC p [65] add a 191 (37)

0.07 ≤ x ≤ 0.85
0.58 ≤ Q2 ≤ 29.2 GeV2

SLAC d [65] add a 191 (37)
0.07 ≤ x ≤ 0.85

0.58 ≤ Q2 ≤ 29.1 GeV2

BCDMS
BCDMS p [63] add b 351 (333)

0.07 ≤ x ≤ 0.75
7.5 ≤ Q2 ≤ 230 GeV2

BCDMS d [64] add b 254 (248)
0.07 ≤ x ≤ 0.75

8.8 ≤ Q2 ≤ 230 GeV2

CHORUS
CHORUS ν [77] add c 572 (431)

0.02 ≤ x ≤ 0.65
0.3 ≤ Q2 ≤ 95.2 GeV2

CHORUS ν̄ [77] add c 572 (431)
0.02 ≤ x ≤ 0.65

0.3 ≤ Q2 ≤ 95.2 GeV2

NuTeV
NuTeV ν [78, 79] add 45 (41)

0.027 ≤ x ≤ 0.36
1.1 ≤ Q2 ≤ 116.5 GeV2

NuTeV ν̄ [78, 79] add 44 (38)
0.021 ≤ x ≤ 0.25

0.8 ≤ Q2 ≤ 68.3 GeV2

HERA-I

NC e+ [66] mult d 434 (379)
6.2× 10−7 ≤ x ≤ 0.65

0.045 ≤ Q2 ≤ 3× 104 GeV2

NC e− [66] mult d 145 (145)
1.3× 10−3 ≤ x ≤ 0.65

90 ≤ Q2 ≤ 3× 104 GeV2

CC e+ [66] mult d 34 (34)
8× 10−3 ≤ x ≤ 0.40

300 ≤ Q2 ≤ 1.5× 104 GeV2

CC e− [66] mult d 34 (34)
0.013 ≤ x ≤ 0.40

300 ≤ Q2 ≤ 3× 104 GeV2

HERA-II ZEUS

NC e− [75] mult e 90 (90)
5× 10−3 ≤ x ≤ 0.65

200 ≤ Q2 ≤ 3× 104 GeV2

CC e− [76] mult e 37 (37)
0.015 ≤ x ≤ 0.65

280 ≤ Q2 ≤ 3× 104 GeV2

NC e+ [89] mult f 90 (90)
5× 10−3 ≤ x ≤ 0.40

200 ≤ Q2 ≤ 3× 104 GeV2

CC e+ [90] mult f 35 (35)
7.8× 10−3 ≤ x ≤ 0.42

280 ≤ Q2 ≤ 3× 104 GeV2

HERA-II H1

NC e− [91] mult g 139 (139)
2× 10−3 ≤ x ≤ 0.65

120 ≤ Q2 ≤ 4× 104 GeV2

NC e+ [91] mult g 138 (138)
2× 10−3 ≤ x ≤ 0.65

120 ≤ Q2 ≤ 4× 104 GeV2

CC e− [91] mult g 29 (29)
8× 10−3 ≤ x ≤ 0.40

300 ≤ Q2 ≤ 3× 104 GeV2

CC e+ [91] mult g 29 (29)
8× 10−3 ≤ x ≤ 0.40

300 ≤ Q2 ≤ 3× 104 GeV2

low Q2 [92] mult 136 (124)
2.8× 10−5 ≤ x ≤ 0.015

1.5 ≤ Q2 ≤ 90 GeV2

high y [92] mult 55 (52)
2.9× 10−5 ≤ x ≤ 5× 10−3

2.5 ≤ Q2 ≤ 90 GeV2

HERA σc
NC σc

NC [93] mult 52 (47)
3× 10−5 ≤ x ≤ 0.05

2.5 ≤ Q2 ≤ 2× 103 GeV2
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Experiment Dataset Ref. Sys. Unc. Ndat (cuts) Kinematics

E866
DY d/p [83] mult 15 (15)

0.017 ≤ x ≤ 0.87
19.8 ≤ Q2 ≤ 251 GeV2

DY p [81, 82] mult 184 (184)
0.025 ≤ x ≤ 0.56

21.2 ≤ Q2 ≤ 166 GeV2

E605 DY [80] mult 119 (119)
0.14 ≤ x ≤ 0.65

50.5 ≤ Q2 ≤ 286 GeV2

CDF
Z rapidity [85] mult h 29 (29)

2.9× 10−3 ≤ x ≤ 0.80
M2 = 8315 GeV2

Run-II kt jets [94] mult h 76 (76/52)
4.6× 10−3 ≤ x ≤ 0.90

3364 ≤ p2
T ≤ 3.7× 105 GeV2

D0 Z rapidity [86] mult 28 (28)
2.9× 10−3 ≤ x ≤ 0.72
M2 = 8315 GeV2

ATLAS

W,Z 2010 [58] mult i 30 (30)
0 ≤ |ηl| ≤ 2.5

M2 = 6464, 8315 GeV2

7 TeV jets 2010 [60] mult i,j 90 (90/9)
0 ≤ |y| ≤ 4.4

400 ≤ p2
T ≤ 2.3× 106 GeV2

2.76 TeV jets [95] mult j 59 (59/3)
0 ≤ |ηjet| ≤ 4.4

400 ≤ p2
T ≤ 4× 104 GeV2

high-mass DY [96] mult 11 (5) 116 ≤Mll ≤ 1500 GeV

W pT [97] mult 11 (9/0) 0 ≤ pWT ≤ 300 GeV

σ(tt̄)
[98, 99]

mult 3 (3)
[100]

CMS

W e asym. [57] mult 11 (11) 0 ≤ |ηl| ≤ 2.4

W µ asym. [101] mult 11 (11) 0 ≤ |ηl| ≤ 2.4

7 TeV jets 2011 [102] mult 133 (133/83)
0 ≤ |η| ≤ 2.5

114 ≤ pjet
T ≤ 2116 GeV

W + c total [103] mult 5 (5) 0 ≤ |ηl| ≤ 2.1

W + c ratio [103] mult 5 (5) 0 ≤ |ηl| ≤ 2.1

2D DY 2011 [104] mult 124 (88/110)
20 ≤Mll ≤ 1200 GeV

0 ≤ |ηll| ≤ 2.4

σ(tt̄)
[105,106]

mult 3 (3)
[107]

LHCb
W rapidity [59] mult 10 (10) 2.0 ≤ ηl ≤ 4.5

Z rapidity [108] mult 9 (9) 2.0 ≤ ηl ≤ 4.5

Table 4.1: Experimental data included in the NNPDF3.0 global fits. The data is separated by
experiment and dataset as they are in the code, with DIS data on the first page and hadronic
data here. For each dataset the table also gives: a reference; whether the systematics are treated
multiplicatively or additively; which sets it is cross-correlated with; how many datapoints it
contains before and after cuts (at NLO/NNLO); and details of its kinematic coverage.
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Experiment Dataset Ref. Ndat Details

H1
F c

2 2001 [72] 12
Superseded by combinationF c

2 2009 [73] 6
F c

2 2010 [74] 26

ZEUS

F c
2 1999 [68] 21

Superseded by combination
F c

2 2003 [69] 31
F c

2 2008 [70] 9
F c

2 2009 [71] 8

CDF W asymmetry [84] 13 Lepton-level data available from LHC

D0 Run II cone jets [88] 110 Infrared unsafe at NNLO

Table 4.2: Experiments that were present in NNPDF2.3 but that have been excluded from
NNPDF3.0. The last column provides a brief description of why each set was removed; consult
the text for more information.

and ZEUS [89–92]. These data provide an improvement in the statistical and systematic

precision at medium- and high-Q2 over the HERA-I data, and thus provide valuable

information on the quarks at medium and large x. We have also included low-Q2 data

from H1 that provides additional information on the small-x gluon.

From the H1 experiment, we have included the new high-Q2 data from the HERA-

II run [91], which covers the large Q2 region 60 ≤ Q2 ≤ 5 104 GeV2, and which has

improved statistical and systematic precision in comparison to Run-I. These data, taken

at the default proton beam energy of Ep = 920 GeV used in most of the HERA-II

run, have been supplemented with inclusive cross-section measurements performed at

lower centre-of-mass energies [92], obtained with proton beam energies of Ep = 575

GeV and Ep = 460 GeV. These lower-energy measurements are the same ones used

to determine the longitudinal structure function FL in a dataset we had previously

included in our fits. Therefore, we exclude the FL [67] dataset from the present fit to

avoid any double counting, and for the same reason we have not included any of the

updated FL extractions from HERA [109,110]. For completeness, in NNPDF3.0 we also

include the high-inelasticity data that H1 extracted from their Run II measurements

[92].

From the ZEUS experiment, in NNPDF2.3 we already included some of their

HERA-II data for neutral- and charged-current DIS with an electron beam [75, 76].

In NNPDF3.0, we now also include neutral- and charged-current cross-sections with a

positron beam [90,111], which have since been published. As in the case of H1, ZEUS

Run II inclusive cross-sections exhibit reduced statistical and systematic uncertainties

in the medium- and large-Q2 region, when compared to Run I data. For both H1 and

ZEUS, we use the data averaged over lepton beam polarizations.

It is worth noting that the separate H1 and ZEUS inclusive measurements included

in NNPDF3.0 have recently been supplanted by the final combined HERA dataset [112].

This set will be included in future NNPDF releases, however we expect this replacement
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Figure 4.1: The kinematical coverage in the
(
x,Q2

)
plane of the NNPDF3.0 dataset. For

hadronic data, leading-order kinematics have been assumed for illustrative purposes. The
green stars mark the data already included in NNPDF2.3, while the different coloured circles
correspond to experiments that are new in NNPDF3.0.

to have a small impact on the PDFs, as the neural network fit effectively performs a

dataset combination itself, something which we was partially demonstrated for the

combined HERA-I dataset in the NNPDF2.0 analysis [4].

Turning to semi-inclusive measurements, in NNPDF3.0 we have replaced the

separate charm structure function data F c2 from the H1 and ZEUS experiments [68–74]

with the combined HERA charm production dataset [93], which provides data for

the reduced cross-section (rather than structure function), and is based on a more

extensive dataset. Furthermore, cross-calibration between common systematics means

that the combined data is more accurate that the separate inclusion of the individual

measurements. The combined HERA charm production cross-sections offer a handle

on the small-x gluon [113], provide a unique testing ground for different treatments

of heavy quark mass effects, and allow one to extract the running charm quark mass

mc(mc) with competitive uncertainties [114,115].

Turning now to the new LHC data, we have added a large amount of new LHC

vector boson production data, supplementing the existing vector boson data included in
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NNPDF2.3. From the ATLAS experiment, we include high-mass Drell-Yan production

data from the 2011 run [96], based on an integrated luminosity of 4.9 fb−1. These

data are presented in terms of the invariant mass of the electron pairs produced at an

invariant mass larger than the Z peak, extending to Mll = 1.5 TeV, and can be used to

constrain the large-x antiquarks. In addition, it was shown in Ref. [40] that high-mass

Drell-Yan at the LHC provides an important constraint on the photon PDFs of the

proton, and was indeed there used in the construction of the NNPDF2.3QED PDF set.

We now also include the ATLAS measurement of the W boson transverse momentum

distribution from the 2010 run of the LHC at
√
s =7 TeV [97], corresponding to an

integrated luminosity of 31 pb−1. This data has the potential to constrain the gluon

and the light quark distributions in the medium-x region [116]. There is also a 7 TeV

ATLAS measurement of the Z boson transverse momentum distribution [117], however

this data is not provided with all information on correlated uncertainties and so is not

included in our fit.

From the CMS experiment, we include the W muon asymmetry data based on the

full statistics (5 fb−1) of the 7 TeV run [101], and the double-differential distributions

for Drell-Yan production for dilepton masses in the range 20 ≤ Mll ≤ 1500 GeV, in

bins of the dilepton invariant mass and rapidity, from the full 2011 dataset [104]. For

the first time, we include CMS data for the production of charm quarks associated

to W bosons [103], which provides important information on strangeness [118, 119].

The measurement is included as both absolute cross-sections, differential on the

lepton rapidity from the W decay ηl, and as cross-section ratios W+/W−, also

binned in ηl. The former constrains the shape and overall normalisation of the

total strangeness s + s̄ at Q ∼ MW and the latter offer some handle on the

strangeness asymmetry in the proton, s − s̄. Data for the same process are available

from the ATLAS Collaboration [120], but are given at the hadron level and thus

cannot be directly included in our fit. It is possible that this data will be included

in future fits by for example estimating a hadron-to-parton correction factor using

MadGraph5 aMC@NLO.

We also include the LHCb Z → ee rapidity distributions from the 2011 dataset [108],

which are more precise than the previous data from the 2010 run. The forward

kinematics of this data provide constraints on PDFs at both smaller and larger values

of x than the ATLAS and CMS vector boson data. Further LHCb data from the 2011

run for Z boson rapidity distributions in the µµ channel [121] and for low mass Drell-

Yan production [122] were unavailable for NNPDF3.0 but will likely feature in future

determinations.

Concerning inclusive jet production from ATLAS and CMS, we include the CMS

inclusive jet production measurement at 7 TeV from the full 5 fb−1 dataset [102], which
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is provided with the full experimental covariance matrix, and which supersedes previous

inclusive jet measurements from CMS [123]. This data has a large kinematical coverage,

extending for instance in the central rapidity region up to jet transverse momenta of

more than 2 TeV, and thus constraining the large-x quark and gluon PDFs [124, 125].

From ATLAS, we include the new inclusive cross-section measurement at
√
s = 2.76

TeV [95], which is provided with the full correlation matrix and with correlations to

the corresponding
√
s = 7 TeV measurement. Including correlated measurements of jet

cross-sections at two different centre of mass energies in this way enhances the impact

of the data on PDFs as the experimental (particularly jet energy scale) systematic

uncertainties are effectively reduced [126]. On the other hand, no LHC dijet data

are included [127], since it is at present very difficult to achieve a good theoretical

description of these measurements [124].

Finally, we include six independent measurements of the total top quark pair

production cross-section from ATLAS and CMS, both at 7 TeV and at 8 TeV. These

data provide information on the large-x gluon PDF, complementary to that provided

by inclusive jet production. At 7 TeV we include the measurements in the dilepton

channel, based on 0.70 fb−1 integrated luminosity from ATLAS [98] and on 2.3 fb−1

from CMS [105], and also the measurements performed using lepton+jets events

from ATLAS [99] and CMS [106]. At 8 TeV we have included the dilepton channel

measurement corresponding to an integrated luminosity of 2.4 fb−1 by CMS [128] and

the ATLAS analysis of the lepton+jets final state in a dataset corresponding to an

integrated luminosity of 5.8 fb−1 [100]. In the future top quark rapidity distribution

data will also be included, but the theory for the this process was not available in a

fast enough format for the release of NNPDF3.0.

In comparison to the NNPDF2.3 dataset, we have removed the Tevatron D0

Run II inclusive jet cross-section measurements [88], which were obtained with the

infrared unsafe [129] midpoint algorithm and therefore are incompatible with NNLO

calculations. On the other hand, the equivalent CDF set are retained in NNPDF3.0,

as these are based on the kt algorithm. We have also removed the CDF Tevatron W

asymmetry data [84], since we now include cleaner and more precise data from the

LHC (based on leptons rather than on the reconstructed W ) which more than covers

the same region in x, and since updated Tevatron W asymmetry data has recently been

released [130,131], which again will be included in future NNPDF fits.

The NNPDF3.0 dataset is therefore composed of essentially all of the relevant,

high-quality data which was available at the time of the fits with full information on

systematic correlations. There are a number of important datasets which have been

released since, for instance the HERA combined data [112] and Tevatron legacy vector

boson measurements mentioned above, as well as a large amount of remaining LHC
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run-I data. These sets will likely be included in an updated NNPDF analysis in the

near future.

4.2 Theoretical treatment

As in previous determinations, the NNPDF3.0 PDFs are provided at LO, NLO and

NNLO corresponding to fits performed using theoretical calculations at these orders

of perturbative QCD. While for most of the observables included in the fit NNLO

QCD corrections are known, some observables are known only up to NLO, while for

others only partial contributions to the full NNLO corrections have been calculated.

Specifically, NNLO corrections are totally unavailable for two processes included in

the NNPDF3.0 fits: the vector boson transverse momentum distribution and the

W + c rapidity distribution. For the jet inclusive cross-section, only the gg-channel

is fully available at NNLO, having been recently computed [132, 133], while for the

full cross-section there is only an approximate NNLO prediction based on threshold

resummation [134, 135]. For all other observables included in the fit the cross-sections

are known up to NNLO.

The theoretical predictions for DIS observables have been implemented in the

FastKernel framework and thoroughly benchmarked [5,19]. Drell-Yan cross-sections,

both for fixed target and for collider experiments, are computed at NNLO during the fit

using special local C-factors computed according to the procedure described in Ref. [5],

defined at the ratio of NNLO to NLO calculations but using fixed NNLO PDFs, that

is

Cnnlo ≡ σ̂nnlo ⊗ Lnnlo

σ̂nlo ⊗ Lnnlo
, (4.1)

where σ̂ is the partonic cross-section computed at either NNLO or NLO accuracy, and

Lnnlo is the corresponding parton luminosity computed with a reference set of NNLO

parton distributions.

Given that electroweak corrections can be relevant in the large invariant mass region

covered by some of the experimental data included in our fit [136] we provide EW

corrections for all LHC vector boson production data. To include these corrections

in our NLO and NNLO calculation, we compute additional factors, Cew, defined

analogously to Eq. (4.1), with the NNLO computation substituted by the NLO+EW

one, and using NLO parton luminosities on both numerator and denominator; details

on their computation and implementation are provided in Section 4.2.2.

For NNPDF3.0 effects of all-order perturbative resummation of QCD corrections are

not included. These will be the object of a future separate study, likely leading to the

construction of dedicated resummed sets. We do not include nuclear corrections, which
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are relevant for fixed-target deuterium DIS data, neutrino DIS data, and fixed-target

Drell-Yan data. We will briefly assess the impact of this omission in Section 7.1.4.

4.2.1 Computational tools

The inclusion of hadronic processes in our PDF fits requires fast computation of the

relevant theoretical cross-sections. Several fast interfaces have been developed to this

purpose, including APPLgrid [137], which in turn provides an interface to MCFM [138,

139] and NLOjet++ [140], and FastNLO [141, 142], which can also be interfaced to

NLOjet++. The MCgrid [143] package connects the Rivet [144] analysis package to

APPLgrid, making use of the BlackHat/Sherpa [145] prescription for NLO reweighting.

Recently, a new fast interface has become available, namely aMCfast [146], which

is interfaced to MadGraph5 aMC@NLO [147], allowing matching to parton shower

simulations.

Such tools have been used extensively in the present analysis. For the 7 TeV CMS

jet data, we have used the FastNLO calculation with central scales µF = µR = pjet
T ,

while for the 2.76 ATLAS jet data, we have instead used an APPLgrid calculation. For

consistency, we use exactly the same settings for the calculations, including the central

scales, that were used for the corresponding ATLAS 7 TeV inclusive jet analysis. The

CDF Run II kt jets have also been computed using the FastNLO calculation again with

compatible settings.

For all of the electroweak vector boson production data we have used the APPLgrid

code interfaced to MCFM6.6, with a consistent choice of electroweak parameters. We

use the Gµ scheme, with MZ = 91.1876 GeV, MW = 80.398 GeV and GF = 1.16637 ·
10−5 GeV−2 as input parameters and with αe, sin θW derived from those, and the

Narrow-Width approximation turned off. For all rapidity distributions, we set µF =

µR = MV , with V = W,Z. For the W pT distribution we set µF = µR = MW ,

while in the case of CMS double-differential distribution we set the scales to the central

value of the invariant mass bin. The MCFM6.6 calculations have been cross-checked

with independent calculations of DYNNLO [148–151] and FEWZ3.1 [152,153] at NLO

finding perfect agreement in all cases.

In the NNLO fits, the NNLO C−factors defined in Eq. (4.1) have been computed

with FEWZ3.1 and cross-checked against DYNNLO1.3. In order to achieve negligible

integration errors in all data bins it was necessary to perform very high statistics runs.

The C-factors were then smoothed with a high-degree polynomial interpolation, making

sure that the difference between smoothed and original NNLO predictions was always

within the Monte Carlo uncertainty of the code used to compute it. The NNLO QCD

corrections are in several cases quite sizeable, especially for small invariant masses of
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Figure 4.2: The NLO, NNLO and NLO+EW predictions compared to the ATLAS high-mass
Drell-Yan distribution data as a function of the invariant mass of the dilepton system Mll (left)
and the CMS double-differential Drell-Yan distribution as a function of the rapidity of the lepton
pair in the lowest invariant mass bin, with 20 ≤ Mll ≤ 30 GeV. The three curves displayed
have been computed with FEWZ3.1 with the same input PDF set, namely NNPDF2.3 with
nf = 5 and αs(MZ) = 0.118.

the produced lepton pairs. This can be seen from the right-hand plot in Fig. 4.2, where

the NNLO C-factor for the CMS double-differential Drell-Yan data at low Mll is around

10%, independent of the dilepton rapidity. NNLO corrections are also important for

the ATLAS high-mass Drell-Yan data, again reaching almost 10% around Mll ∼ 1 TeV,

as the left plot of Fig. 4.2 shows.

As previously mentioned, NNLO corrections to jet production in the gg-channel

have become recently become available. [132, 133]. While the calculation of the full

correction has yet to be obtained, this incomplete result can be used to gauge the

accuracy of the approximate NNLO prediction based on threshold resummation which

was presented in [134]. This was done recently in a systematic study [154], which found

reasonable agreement between the two calculations in the high-pT and central-y regions,

with greater discrepancies going to large rapidities and small transverse momentum.

In NNPDF3.0, we follow the strategy of Ref. [154] and compute approximate NNLO

40



4.2. Theoretical treatment

C-factors, Eq. (4.1), using the threshold calculation, while restricting the fitted dataset

to the region where we know the approximation to be reliable. This leads to the set of

cuts outlined below in Section 4.3.

For the computation of top quark pair production data at NLO, we again used

APPLgrid interfaced to MCFM6.6. The NNLO C−factors have been computed using

the NNLO calculation of Ref. [155], as implemented in the top++ code [156]. Finally,

we have used aMCfast interfaced to MadGraph5 aMC@NLO to compute the Higgs

rapidity distributions in gluon fusion at NLO with an unphysical boson of mass mh =√
5 GeV. As explained in Section 5.6, this unphysical obsevable has been used to enforce

the positivity of cross-sections that depend on the small-x gluon.

4.2.2 Electroweak corrections

Electroweak corrections, though generally small, may become large at high scales Q2 �
M2
V . While this will certainly be an issue for future LHC data at higher centre of mass

energy, already for some high-mass data included in NNPDF3.0 the high accuracy of

the experimental measurements may require theoretical predictions at the percent level

of precision, and so the size of the EW corrections here also needs to be carefully

assessed.

The NLO EW one-loop corrections are known [157–162] and have been imple-

mented in several public codes such as HORACE [157] and ZGRAD2 [161, 162].

In FEWZ3.1 [152, 153] the NLO EW corrections are combined to the NNLO QCD

corrections using the complex mass scheme. This code allows the user to separate

a gauge–invariant QED subset of the corrections from the full EW result, including

initial–state QED radiation, final–state QED radiation (FSR) and the initial–final

interference terms. Within the current uncertainties that affect the photon PDF,

as determined in the NNPDF2.3QED analysis [40], initial–state QED corrections are

compatible with zero for most of the data included in our fit, and we exclude the data

from the fit for which they may be sizeable. For the final state radiation, we use data

from which it has already subtracted where available, including all of the ATLAS and

CMS vector boson production data.

We may thus consistently isolate and compute the weak component of the FEWZ

EW corrections, and include it in our calculation via the computation of additional

C−factors for all the electroweak gauge boson production. The size of the corrections

for the ATLAS high-mass Drell-Yan and CMS double-differential Drell-Yan is displayed

in Fig. 4.2. We find that the effect of the these corrections is negligible for most of the

data in the Zpeak region, of the order 1% or below. For the CMS double differential

distributions, in the smallest invariant mass bin, we find that the EW corrections
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are small, much smaller than the NNLO QCD corrections. At large invariant masses

the EW corrections are rather large and negative, as expected from the results of

Ref. [163]. This can be clearly seen from the ATLAS results in Fig. 4.2, where the EW

corrections reach ∼ 7% in the last bin of the distribution. Although the ATLAS high

mass distribution is the only measurement for which we find that EW corrections are

required, for consistency we include the corrections for all the Z/γ∗ production data.

4.2.3 Treatment of heavy quarks

In NNPDF3.0, as in previous NNPDF analysis since NNPDF2.1, heavy quark structure

functions have been computed using the FONLL general-mass variable-flavour-number

(GM-VFN) scheme [164]. In this scheme, the massive fixed-order calculation (in which

the heavy quark is only counted in the final state) and resummed calculation (in which

the heavy quark is treated as a massless parton) are consistently matched order by

order. There is some latitude in deciding at which order the fixed-order massive result

is included, compared to the perturbative order at which parton evolution is treated.

Specifically, in an NLO computation one may decide to include massive contributions

to structure functions up to O (αs), (on the grounds that this is the order at which the

massless structure functions are computed) or up to O
(
α2
s

)
, (on the grounds that the

massive structure function starts at O (αs)). These approaches are called the FONLL-

A and FONLL-B schemes respectively [164]. At NNLO, while in principle a similar

ambiguity would exist, in practice the massive coefficient function can only be included

up to O
(
α2
s

)
because the O

(
α3
s

)
massive result is not currently known (though there

is progress in this direction, for instance in [165]). In analogy to the NLO schemes, this

is called the FONLL-C scheme.

While the FONLL-A scheme was used for the NNPDF2.1 and NNPDF2.3 NLO PDF

sets, we now adopt the FONLL-B scheme for NNPDF3.0, with FONLL-C (as before)

used at NNLO. While this scheme is less systematic, in that when going to NLO to

NNLO the massless computation goes up one order but the massive one does not, it

has the advantage that massive terms at NLO are more accurate, thereby allowing for

the inclusion of a somewhat wider set of data, as small-x and Q2 charm production

data are affected by large O
(
α2
s

)
corrections, and cannot be described accurately in the

FONLL-A scheme. For the same reason, using FONLL-B allows for a more accurate

description of the HERA inclusive cross-section data at small-x.

Heavy quark structure functions are computed using the expression which corre-

sponds to the pole mass definition. In this paper, we use for the heavy quark pole
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masses,

mc = 1.275 GeV , mb = 4.18 GeV , mt = 173.07 GeV , (4.2)

which correspond to the current PDG values for the MS masses. Note that these values

differ from the ones used in NNPDF2.3, which are mc =
√

2 GeV, mb = 4.75 GeV and

mt = 175 GeV. A brief analysis of the effect of these changes is given in Section 7.1.4;

a full investigation of heavy quark mass dependence will likely be the subject of future

NNPDF work.

In NNPDF3.0 we use for our central sets the nf = 5 scheme, in which the number

of active flavours never exceeds nf = 5 (i.e. in the fit the top quark is always treated

as massive, never as a parton), though fits using nf = 3, nf = 4 and nf = 6 schemes

are also available. This is another difference from NNPDF2.3, which used the nf = 6

as default. In previous determinations the distinction between nf = 5 and nf = 6 was

relevant only for delivery, as no data used was above the top threshold, now several jet

data (especially the 2011 CMS inclusive jets) are above top threshold, so the decision of

which to use becomes more important. Close to top threshold use of an nf = 5 scheme

is advantageous because the top mass is treated exactly, while the loss of accuracy due

to the fact that the nf = 5 running of αs differs from the exact nf = 6 running [166] is

a comparatively smaller effect, only being visible for processes which start at high order

in αs [167]. Furthermore, most of the codes which we used for NNLO computations

(specifically NLOjet++ and FEWZ) use an nf = 5 scheme, and the same is true for

many of the codes and interfaces used in the computation of LHC processes. With an

ever increasing set of LHC data, the use of an nf = 5 both in fitting, and as a default

for PDF delivery appear to be the better choice.

4.3 Construction of the dataset

4.3.1 Kinematic cuts

As in previous NNPDF fits, we apply a cut in Q2 and W 2 to fixed-target DIS data,

in order to avoid including data that is subject to large higher-twist corrections. The

cuts used in all of the NNPDF3.0 fits are

Q2 ≥ 3.5 GeV2, W 2 ≥ 12.5 GeV2 . (4.3)

The stability of the fit with respect to these choices (and in particular the explicit check

that they eliminate the need for higher twists) was studied in detail in Ref. [168]. With

the introduction of new HERA and LHC data, Low-scale DIS data carry less weight
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Experiment N cut
dat Inclusion regions in the (y, pT ) plane

CDF Run-II kt jets [94] 52 1.1 < |y| < 1.6 224 ≤ pT ≤ 298 GeV
ATLAS 2.76 TeV jets [95] 3 |y| < 0.3 pT ≥ 260 GeV

ATLAS 7 TeV jets 2010 [60] 9
|y| < 0.3 pT ≥ 400 GeV

0.3 < |y| < 0.8 pT ≥ 800 GeV
CMS jets 2011 [102] 83 1.0 < |y| < 1.5 pT ≥ 272 GeV

Table 4.3: Summary of the inclusion regions in jet transverse momentum pT and rapidity |y|
used in the NNPDF3.0 NNLO fits for the inclusive jet production measurements. As explained
in the text, these inclusion regions are determined from a cut-off in the relative difference
between the exact and approximate threshold C-factors in the gluon-gluon channel [154]. Ndat

in the second column is the number of experimental data points for these jet datasets that pass
the selection cuts in the NNLO fits.

in our current fit than they did previously, so we expect that the impact of the precise

value of the cuts is smaller than in this previous study. Note that all NNPDF fits

include target-mass corrections, following the method of Ref. [3].

As discussed in Section 4.2 above, NNLO corrections are not available for the W pT

distribution or for W + c production. Because of this, ATLAS W pT distribution data

are included only in the LO and NLO fits and are excluded from the NNLO fits. The

CMS W + c distribution data, on the other hand, is included in the NNLO dataset,

with matrix elements computed up to NLO only (but αs running at NNLO), in order

to include the important constraints on the strange PDFs that these data provide.

For inclusive jet production, we include all available data in the NLO fit, while in

the NNLO fit we include only the data points such that the relative difference between

the exact and the approximate gg-channel NNLO C-factors differ by less than 10%, as

described in the previous section. In Table 4.3 we summarise the resulting inclusion

regions in the (pT , y) plane and the number of data points points Ndat within the regions

which survive the cut for each experiment.

For the ATLAS measurement of the W transverse momentum distribution, we

include only those data points with pWT > 25 GeV. This cut excludes the first two

bins in pT , and is motivated by the observation that at small pT the perturbative

series is not well-behaved and all-order resummation is needed (either analytically or

by matching the fixed order calculation to a parton shower).

For the neutral-current Drell-Yan measurements from ATLAS and CMS, we include

only data for which the dilepton invariant mass satisfies Mll < 200 GeV. This excludes

the last six bins of the ATLAS DY invariant mass distribution, and the 12 points in the

rapidity distribution corresponding to the last bin of invariant mass, Mll ∈ [200, 1500]

GeV, for the CMS measurement. The reason behind this cut is that in these regions the

photon-initiated contribution to the cross-section can be come sizeable (up to 20%), and

this contribution is not included in the electroweak correction used in our fits. Including
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the photon–initiated contributions in the dilepton cross-section would require an initial

photon PDF γ(x,Q2), which is not fitted in this analysis.

One final cut is imposed, in the NLO fit only, to the lowest invariant-mass bin of the

CMS Drell-Yan double differential distributions. As can be seen from Fig. 4.2 (right

plot), for the bin with invariant mass 20 ≤ Mll ≤ 30 GeV, the NNLO C–factors are

large, around 10%, while experimental uncertainties are a few percent. It is clear that

because of this it would be difficult to obtain a reasonable NLO fit to these data points,

and therefore the 24 points of the 20 ≤Mll ≤ 30 GeV bin are excluded from the NLO

analysis.

The number of data points before and after cuts, both in the NLO and NNLO

fit, are summarised for each dataset in Table 4.1. Collectively these cuts reduce the

unaltered dataset of 5179 points to 4276 at NLO and 4078 at NNLO. At LO we use the

same cuts as in the NLO fit, as we expect the theory uncertainties at LO to be much

larger than the experimental uncertainties, so it does not make much sense to attempt

to devise a set of optimised kinematical cuts specifically for the LO fits.

4.3.2 Treatment of correlated systematic uncertainties

The majority of experimental datasets included in the NNPDF3.0 fits are included

with correlated systematic uncertainties. This is generally provided either as an overall

covariance matrix, or as a set of nuisance parameters with the corresponding point-by-

point correlations. The only exceptions to this are the SLAC, NuTeV and fixed target

Drell-Yan datasets, and the top pair production total cross-sections, where only a total

uncorrelated systematic uncertainty is used.

In previous NNPDF fits, systematics have been separated into two categories,

general uncertainties and normalisation uncertainties, with the latter being treated

differently in the fit. The normalisation uncertainties were treated “multiplicatively”,

i.e. they were taken to be proportional to the theoretical value of the observable in

question. This poses particular problems when including them in a fit, as mentioned

in Section 3.2.3, because their naive inclusion in the covariance matrix would lead

to a systematically biased result [53]. In hadron collider experiments, it is not only

normalisation uncertainties but most, or perhaps all, of the correlated sources of

uncertainty that are multiplicative. After checking with the respective experimental

collaborations, we have thus concluded that the most accurate treatment of correlated

systematics is obtained by treating all systematics as multiplicative. For deep-inelastic

experiments, we treat all the correlated systematics of the HERA data as multiplicative,

while for fixed-target experiments the systematics are treated as before, with only the

normalisation uncertainties taken as multiplicative. This information is summarised
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in the fourth column of Table 4.1 (page 33); normalisation uncertainties are treated

multiplicatively for all experiments (even those labeled “add”). In Chapter 7 I will

study the effects of a changing this treatment of systematics, and find that it is small

though perhaps not completely negligible, particularly for the large-x gluon.

In order to generate Monte Carlo replica datasets, as described in Section 3.2.4, we

require a breakdown of the systematics into individual sources of independent correlated

uncertainty. However for some LHC experiments—both LHCb sets and all of the CMS

data except the jets—this breakup is not provided and only the experimental covariance

matrix is available. In those cases, we create a set of artificial systematics which are

consistent with the covariance matrix. To do this, first note that the covariance matrix

Cij can be obtained (ignoring statistical and other uncorrelated uncertainties) from the

Nsys individual systematics vki using

Cij =

Nsys∑
k

vki v
k
j (4.4)

= VikVkj =
(
V V T

)
ij

(4.5)

where in the second line we have defined a matrix V whose columns are the systematics.

Based on this, in order to generate artificial systematics from a given C, we need to

find a matrix V which satisfies Eq. 4.5. One possibility for this, which we use for the

NNPDF3.0 data, is to perform a spectral decomposition of C, to obtain

Cij = UikΛklU
T
lj =

(
UΛ

1
2

)
ik

(
UΛ

1
2

)T
kj

(4.6)

=⇒ V = UΛ
1
2 (4.7)

where U is the matrix of eigenvectors of C and Λ is a diagonal matrix of the

eigenvalues. This then provides a set of Ndat artificial systematics which can be

used to generate replica datasets in the same way as if we had the full breakup of

systematics uncertainties, according to the multivariate Gaussian distribution implied

by the experimental covariance matrix, and which recombine correctly to give the

original covariance matrix.
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Chapter 5

Study of methodology for

NNPDF3.0

5.1 Introduction

For the NNPDF3.0 analysis we have performed a complete overhaul of the NNPDF

fitting methodology. Many outdated elements in the code have been removed and

replaced by new features empirically shown to improve the quality of the results.

In this section I will provide an overview of this work, describing the improvements

to our approach and showing the results of tests we performed to demonstrate their

effectiveness.

There are several reasons why the lead up to NNPDF3.0 was an ideal time for this

renovation. The ability to perform closure tests (described briefly in Section 5.2 and at

length in Section 6) provide an ideal environment for testing new minimisation features.

Also, with the increasing precision of experimental measurements it is important that

we can ensure that our analysis is as good as possible. The chief reason, however, was

that the work could be included as part of a previously planned complete rewrite of

fitting code.

The old fitting code, used for all previous central NNPDF analyses, was written

in Fortran 77 and designed for the specifications of the NNPDF1.0 analysis [3] with

a limited range of observables and simple minimisation strategy. Since then, a

huge amount of new data has been added to the fit, including a large number of

computationally intensive hadronic datasets, as well as many improvements to the

methodology. This has led to performance issues as the structure of the code is not

suited to the new tasks it has to perform. For instance, theoretical calculations were

performed in several different ways depending on the process, which made the code

confusing to work with and difficult to optimise. There was also the fear that the
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adjustments to the code may have introduced so far undiscovered bugs.

The new code, written in C++, has been written completely from scratch and

extensively tested to reduce the chance of bugs. The modular structure of C++ has

been exploited to completely separate the parts of the code which deal with data, theory

and fitting methodology, which makes it easy to make changes to one aspect without

disrupting the others. The calculation of theoretical observables has been standardised,

with all processes now using FKtables, described in Section 3.2.5. This has allowed for

huge performance improvements by optimising the simple vector products required to

use the FKtables. Another source of optimisation has come from changing the genetic

algorithm to check the χ2 of mutants between each dataset and immediately reject

any mutant which is already worse than the previous generation’s best. If the datasets

are sensibly organised, with hadronic processes calculated last, this results in another

large increase in speed while obtaining precisely the same results. Overall, with these

optimisations, as well as the changes to its structure, the new code is about 5 or 6 times

faster that the old version.

This section will describe the many methodological improvements tested and used

in the NNPDF3.0 global fits. First I will introduce the closure testing approach which

is used for all of the tests presented in this section, while the remainder of the section is

split into three main subsections, corresponding to different aspects of the minimisation,

and presented in roughly the order in which the features were implemented and tested.

Results for all of the new techniques which were included in final NNPDF3.0 will

be shown, along with a subset of the other unsuccessful features and changes we

investigated.

5.2 Closure Testing

In the past, development of the NNPDF fitting methodology has been performed using

standard PDF fits to real experimental data. We would often then judge a new feature

to be an improvement over the existing setup if it improved the quality of fit to the

experimental data. However, in doing this we run the risk of tuning the parameters

of the minimisation to the specific dataset used in the fit, effectively overfitting at the

level of the methodology, with negative consequences for the predictive validity of the

resulting determination. In general, it is difficult to determine that a decrease in the

χ2 actually represents an improved methodology, and that the results obtained using a

methodology which includes the new features are a better description of the information

in the data.

These problems can be avoided by instead using closure tests to evaluate the

methodology. In closure tests, instead of using the real experimental data, PDFs are
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determined from pseudo-data generated using a known theory. There are several key

benefits to this. Centrally, because the underlying theory in the pseudo-data is known,

we can directly assess the effectiveness of our determination by comparing the PDFs

from the fit to the generating PDFs. This allows us to investigate a range of statistical

features of our fits, from testing the validity of the PDF uncertainties, to determining

which fractions of the uncertainty are from functional, extrapolation and data sources.

These issues will be studied in detail in Section 6.

Closure tests also provide the perfect environment for testing new methodological

features. Again, the presence of a known ‘right answer’ is very important, and provides

new ways to assess improvements beyond just looking at the value of the χ2. However,

with closure tests we also have the ability to generate as many different sets of pseudo-

data as we want, each with unique statistical fluctuations generated using different

random seeds. This allows us to confirm that a new feature provides a genuine

improvement in the methodology over multiple datasets, rather than just improving

the ability of fitting algorithm to model one specific set of data. As well as this ability

to generate different statistical fluctuations, we also have the option to generate data

where this noise is absent. Together with the additional fluctuations in the data which

can be introduced during replica generation at the beginning of the fit, this gives three

different types of closure test fit which can be performed, corresponding to different

levels of noise in the data:

• Level 0 With this setting data is generated without any stochastic noise from

either the closure test data generation or replica generation steps. The pseudo-

data used in each replica fit is therefore precisely the central theory values

obtained from the generating PDF set. Fitting at level 0 tests of the ability

of the minimisation algorithm to fit the underlying PDFs directly in the absence

of noise, with the advantage that in this situation over-learning is not an issue.

In our level 0 fits, the definition of the χ2 minimised in the fit and shown in

the results uses the same experimental (or more precisely, t0) covariance matrix

used in level 1 and level 2 fits. In principle, since the level 0 data is noiseless,

a different normalisation for the figure of merit could be used. However, using

the experimental covariance matrix means that the χ2 have the same correlations

and relative weights between data points as in other fits. In any case, as the data

is noiseless, the ideal χ2 we want to obtain from a fit is zero.

• Level 1 Here, data is generated with statistical noise given by the experimental

uncertainties, but replicas during the fit are not varied and instead all replicas

use the same (noisy) data. It is also possible to perform a slightly different type
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of level 1 fit by using only the fluctuations from replica generation, which is

effectively the same as each replica being a separate level 1 fit.

• Level 2 This is the full closure test, with statistical fluctuations introduced

both during pseudo-data generations and during replica generation. This creates

a situation which is equivalent to real fits, and so is useful for both tests of

methods for controlling over-learning and to evaluate the statistical validity of

our methodology as a whole. The ideal χ2 to the replica data is the same as in

fits to the real experimental data, i.e. values of about two.

In this section we will look at results from level 0 and level 2 closure tests, as these

are both useful for testing different aspects of the minimisation. The absence of over-

learning in level 0 closure tests make them ideal to test improvements to the genetic

algorithm, since a lower χ2 unambiguously indicates a better fit. On the other hand,

level 2 tests are necessary to look at the impact of changes in the methodology on

the PDF uncertainties, as well as improvements in approaches to control overfitting.

Together, these two types of closure test provide a way to objectively test all aspects

of the NNPDF fitting methodology. NNPDF3.0 is in fact the first PDF determination

for which the complete fitting methodology has been thoroughly tested and tuned

in closure tests based on pseudo-data that have the same kinematical coverage and

statistical properties as the experimental data included in the fit. The idea of using

perfect pseudo-data to validate some specific aspects of a PDF fitting methodology has

been previously explored in Ref. [169].

Another difference between closure test fits and fits to real data is that, because the

pseudo-data is generated using the same theoretical calculations eventually used in the

fit, the theory and data are always perfectly consistent. This is actually somewhat

of a disadvantage, as at the end of the day we want to fit PDFs using the real

data, inconsistencies and all. In the future we plan investigate introducing artificial

inconsistencies into the closure test data in a controlled way, in order to study how the

fit behaves. However, for testing the methodology the consistency of data and theory is

advantageous, as it removes another confounding factor in analysing the results and also

means that the details of the theory used in the fit are largely irrelevant. For simplicity,

the closure tests presented here and in the next section use the NLO fktables, and the

same theory settings (cuts to the data, coupling values etc.) used in the NLO fits to

real data. To generate the pseudo-data, for the closure tests in this section we used the

MSTW2008 NLO PDF set. This choice was made for several reasons. Firstly, although

in principle any functions could be used for the closure tests 1, it makes sense to use a set

1At least, any functions which satisfy the various theoretical constraints directly imposed in the fit,
e.g. sum rules, large and small-x behaviour.
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of at least PDF-like functions. Secondly, we decided to use an MSTW PDF set rather

than an NNPDF set to remove the possibility of bias from the methodology fitting

a shape it is predisposed to produce. Closure tests using other PDF determinations,

and also using more unorthodox sets, were also performed and will be presented in

Section 6.

One issue which came up when performing closure tests was the issue of the PDF

positivity. Initially, the closure tests were performed using the NNPDF3.0 positivity

constraints. However, it was discovered that a small number of positivity points,

corresponding to regions with little constraint from data, are violated by the MSTW

central values. This potentially leads to a situation where the PDF uncertainty in

the extrapolation region is not consistent with the generating PDF. For this reason,

the majority of the closure test presented here were therefore performed without the

positivity constraints. The only exceptions are some of the level 0 closure tests of

different genetic algorithm features, where we are generally only interested in the central

values of the PDFs in the data region, so the impact from this issue is negligible.

5.3 Tests of the Genetic Algorithm

While many aspects of the NNPDF methodology have evolved since the release of the

first NNPDF set, the underlying genetic algorithm has remained largely unchanged.

The development of the new C++ code and the introduction of closure tests provide

an opportunity to completely reevaluate the genetic algorithm and to test a number

of variations on the original format. By improving the genetic algorithm, we have the

potential to both obtain a better result at the end of the fit and to do so in a shorter

amount of time.

In order to develop a new minimisation algorithm we decided to start from a

pared down version of the genetic algorithm from NNPDF2.3, without targeted weight

training or different training phases, or (for the moment) cross validation. New features

were then introduced one at a time, so that the differences in the fit results when using

them could be clearly attributed to each feature individually. This has the disadvantage

of missing possible improvements from specific combinations of feature and parameters,

however given the huge numbers of each it is not clear how a systematic check of

combinations could be performed.

To look at changes to the genetic algorithm, we evaluated each feature on the basis of

results from level 0 closure tests. For each feature or setting we performed a 100 replica,

20000 generation fit. To determine whether a feature improved the methodology, it

was sufficient in most cases just to look at the average χ2 of the replicas,
〈
χ2

rep

〉
, which

describes how good each individual replica fit was, and the central χ2 of the ensemble,
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χ2
cent, which shows the quality of the full set. The closure test fits were performed

using pseudo-data based on the NNPDF2.3 dataset, with the addition of the ATLAS

2.76 TeV jet data. As the study of the fitting methodology was performed early in the

development of NNPDF3.0, many of the other sets included in the final analysis had not

yet been implemented, resulting in this reduced dataset. The choice of datasets should

have minimal impact on the conclusions drawn here, and final closure tests performed

later with the full dataset demonstrated that this was the case.

5.3.1 Nodal Mutations

Genetic algorithms have been widely used over the last few decades, and so there

exist a large number of potential features which it is possible to include in any

particular implementation. The majority of these are very general, applicable to most

situations involving genetic algorithms, and the majority of the genetic algorithm

features studied in this section fall into this category. However, the use of nodal

mutations is an innovation specifically in the use of genetic algorithms to train neural

networks. The general idea is to exploit the structure of the networks to mutate sets

of related parameters at the same time, leading on average to more successful mutants

and improved training. Results for the use of nodal mutations were presented in a

contribution to the proceedings of a conference in artificial intelligence [170], which

studied a range of methods for fitting neural networks with genetic algorithms. In the

example they use, they found a slight advantage in performance over a more standard

mutation strategy. Here I will present results for fits using nodal mutations in the

NNPDF methodology.

As mentioned in Section 3.2.1, the activation of a node is calculated using the

activations of nodes in the previous layer and weights for the connections between the

nodes. With nodal mutations, instead of mutating each of the weights independently,

all of the weights used in the calculation of the activation of a node are mutated at

the same time. Each node has a fixed chance of receiving one of these multi-mutations

each generation, and the size and direction of mutation is calculated independently for

each weight according to Eq. 3.9 as before. For initial tests of nodal mutations, the

probability of mutation was chosen as 10% uniformly for all nodes and PDFs. This

results in about a 60% chance for at least one mutation in each network, and a total

of about 6 node mutations on average for the whole mutant.

The first part of Table 5.1 shows the central and average replica χ2 for a fit using

nodal mutations and a fit with the standard mutation strategy and otherwise identical

settings. Both fits achieve low values, close to the ideal of zero, but the fit with

nodal mutations is significantly better. The individual replicas are twice as good on
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Description 〈χ2
rep〉 χ2

cent

Standard Mutations 0.070(5) 0.0279
Nodal Mutations 0.035(3) 0.0077

Nodal Mutations (different seed) 0.029(2) 0.0076
Stochastic number of mutations 0.056(4) 0.0228

Table 5.1: Average and central χ2s for different genetic algorithm mutation strategies. All
numbers are based on single 100 replica, 20000 generation fits to a common level 0 closure
test dataset. The uncertainty on the average χ2s are also given. The different strategies are
described in the text.

average, while the central χ2 is over 3 times better. The uncertainty on the average

χ2, given by the standard deviation across the replicas divided by the square root of

the number of replicas and shown in parentheses, suggest that this different is unlikely

to be due to chance. Also shown in Table 5.1 are the χ2s for another nodal mutations

fit performed using a different random seed. This gives some idea of the variability

in the central χ2, information which will be useful when evaluating fits with different

mutation parameters.

This comparison between the standard and nodal mutations strategies is slightly

flawed, as along with the change in the type of mutation we have also switched from

using a fixed number of mutations, as used in NNPDF2.3, to a fixed probability for

each element (node or weight) to be mutated. In Table 5.1, the central and average χ2

are also shown for a fit which mutates each weight individually, as in the old strategy,

but now assigns an independent probability of each weight to be mutated. The χ2 show

that this strategy of using stochastic number of mutations leads to an improvement in

the fit quality, however the results are not as good as for the fits which additionally use

nodal mutations.

In the fit with nodal mutations described above, the parameters controlling the size

and frequency of mutations were somewhat arbitrarily chosen. Since these parameters

were unlikely to be optimal, we decided to perform a study of the parameter space of

these two mutation parameters to look for a better set. The approach we took to do

this was to first perform separate one dimensional scans in each parameter, and then

perform a final combined two dimensional scan looking at the most promising region.

The results for the mutation probability tests are shown in Table 5.2. We can see that

the smaller values for the probability give better χ2, although there is some noise in the

central χ2 with the value for the 0.05 fit being anomalously large. The corresponding

results for the scan of mutation size are shown in Table 5.3. Here, larger values are

preferred, with the best fit using η = 15. Finally, Table 5.4 shows results from fits

using probabilities of 2% and 5%, and mutation sizes of 15 and 20, with the single

best set of parameters based on this study being 5% and η = 15. We can also see
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Mutation Probability Mutation Size 〈χ2
rep〉 χ2

cent

0.02 10 0.026(3) 0.0051
0.05 10 0.027(2) 0.0064
0.07 10 0.031(3) 0.0058
0.1 10 0.035(3) 0.0077
0.2 10 0.056(4) 0.0151

Table 5.2: Same as Table 5.1, but now for variations of the mutation probability in fits
with nodal mutations. The fits were performed with otherwise identical settings and identical
datasets.

Mutation Probability Mutation Size 〈χ2
rep〉 χ2

cent

0.1 2 0.054(4) 0.0207
0.1 10 0.035(3) 0.0077
0.1 15 0.029(2) 0.0054
0.1 20 0.041(3) 0.0068
0.1 30 0.070(6) 0.0122

Table 5.3: Same as Tables 5.1 and 5.2, but now for variations of the mutation size parameter
(η) in fits with nodal mutations. The fits were performed with otherwise identical settings and
identical datasets.

that the differences between the fits are relatively small, which is fairly encouraging as

it suggests that the dependance of the fit on the precise values of these parameters is

small, on the order of the dependance of the random seed.

From these results we can conclude that nodal mutations are a fairly substantial

improvement over the NNPDF2.3 algorithm. On this basis, nodal mutations form a

central part of the NNPDF3.0 genetic algorithm, and will be used as the default setting

for the rest of the studies in this chapter.

5.3.2 Other Mutation strategies

Crossover

Another idea commonly used in genetic algorithms is gene crossover. This is where

the new mutants in each generation are constructed using parts of multiple parents.

Whereas mutation searches the parameter space, crossover looks to combine the best

elements from the existing mutant population. Crossover is generally performed

alongside standard mutations, and there are several different forms of crossover which

can be implemented in a particular algorithm. Here we will look at implementations of

uniform crossover with two parents, where elements of each mutant are selected with

equal probability from each parent.

In order to investigate the impact of including crossover techniques in the NNPDF

genetic algorithm, I performed several level 0 closure test fits with different crossover
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Mutation Probability Mutation Size 〈χ2
rep〉 χ2

cent

0.02 15 0.044(5) 0.0065
0.02 20 0.032(3) 0.0053
0.05 15 0.024(2) 0.0043
0.05 20 0.029(2) 0.0041

Table 5.4: Same as Tables 5.1-5.3, but now for further variations of both the mutation
probability and mutation size in fits with nodal mutations. The fits were performed with
otherwise identical settings and identical datasets.

implementations. Each fit was run using the same settings as discussed above and with

nodal mutations. At the end of each generation the best two mutants were identified

and carried over to the next generation, instead of just one as used normally. Then,

the crossover step was used to generate new mutants in four different ways:

• Weight crossover: Every weight in the mutant is set as the equivalent (i.e. same

position in the network of the same PDF) weight from one of the parents, chosen

with equal probability and independently for each weight. This is the most basic

form of uniform crossover, however also has the possibility to be very destructive

unless the two parent are very similar.

• Node crossover: Same as above, but instead of selecting each weight indepen-

dently, the weights in a node are all taken from the same parent. This has the

potential to be more effective in our fits than weight crossover, especially given

the good results obtained using node based mutations.

• PDF crossover: The complete network for each PDF is randomly selected from

one of the two parents. This has the advantage of avoiding crossover within the

neural networks, though there are potential problems from some of the positivity

constraints which depend on combinations of the PDFs.

• No crossover (two parents): Each mutant is set initially as one of the two

parents, randomly chosen with equal probability, before being mutated. This

could alternatively be viewed as crossover of the entire PDF set. While this is

not truly an implementation of crossover, it still has the potential to improve

performance on the basis that the algorithm can to some extent explore the

parameter space in two directions at once (albeit half as quickly).

After the crossover step was used to initialise the mutants, they were mutated in the

standard (nodal) way.

The results from the crossover closure test fits are shown in Table 5.5. The most

effective strategy using crossover is either the PDF or no crossover options, however
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Description 〈χ2
rep〉 χ2

cent

Standard approach 0.024(2) 0.0043

Weight crossover 0.059(6) 0.0115
Node crossover 0.034(4) 0.0073
PDF crossover 0.028(2) 0.0054
Two parents 0.030(3) 0.0053

Fitness Proportional Selection 0.103(9) 0.0232

Nite mutation scaling with γ = 0.8 0.028(2) 0.0053
Nite mutation scaling with γ = 0.9 0.035(4) 0.0054
Nite mutation scaling with γ = 1.2 0.028(3) 0.0052
Nite mutation scaling with γ = 1.5 0.031(3) 0.0053

Table 5.5: Average and central χ2s for implementations of various different features in the
generic algorithm. All numbers are based on single 100 replica, 20000 generation fits to a
common Level 0 closure test dataset and using nodal mutations. The uncertainty on the
average χ2 is also given. The specifics of the different fits are described in the text.

neither are better than the standard approach. Node crossover is only slightly worse

than these two options, while using weight crossover yields considerably poorer results.

While it is perhaps possible that better results could be obtained by tuning the genetic

algorithm parameters for crossover, as was done for nodal mutations, we ultimately

opted instead to not include crossover in the NNPDF3.0 methodology.

There is reason to suspect that crossover would be somewhat incompatible with

neural networks, given their high degree of both interconnectedness, which would be

disrupted by crossover, and degeneracy, which means that individual weights within the

structure do not necessarily play the same role even within networks which produce

similar functions. Crossover is most effective in situations where the ‘chromosome’ of

parameters is made up of largely independent pieces which can be readily swapped,

which is not the case here even at the PDF level.

Fitness Proportionate Selection

In the standard NNPDF minimisation, the mutant selected to be carried forward from

one generation to the next is always the best out of the current set of mutants (including

the parent used to generate them). One common technique in genetic algorithms is to

choose stochastically which mutant to keep instead. Fitness proportionate selection

(or roulette wheel selection) does this by allocating a probability of selection to each

mutant based on the fitness of the mutant relative to the others. The idea is that by

allowing the training to occasionally choose a mutant with a larger error function, we

can potentially prevent the fit from getting stuck in a local minimum.

Defining the ‘fitness’ of a mutant as the inverse of its χ2, so that better fitting
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mutants have a larger fitness, we can define the probability that a mutant is selected

in any given generations by

Pi =
fi

Nmut∑
i
fi

=

1
χ2
i

Nmut∑
i

1
χ2
i

, (5.1)

where i runs over the Nmut mutants in that generation. With this implementation I

performed a level 0 closure test fit using the same settings outlined above, and the

average and total χ2 from this fit are shown in Table 5.5. It is clear that the fit with

fitness proportionate selection was substantially worse that the standard approach,

and that any advantage in avoiding local minima is outweighed by the poorer overall

performance. Again, it is possible that turning the fit parameters or using a different

definition for the fitness f than in Eq. 5.1 above could improve these results. For

the moment, however, fitness proportionate selection will not be used in the NNDPF

methodology.

Mutation scaling

The formula for the mutations applied in the genetic algorithm is (repeated from

Section 3.2.2)

w → w + η
r1

N r2
ite

. (5.2)

The only nontrivial part of this equation is the factor of N−r2ite , which reduces the

average size of mutations as the fit goes on. This feature was originally introduced

for NNPDF1.0 with a fixed exponent of 1/3, and was updated to its current form

with a random exponent in the NNPDF2.0 analysis. In this section I will look at the

impact of extending this feature by introducing a new parameter γ to modify the scaling

exponent, i.e. by mutating according to

w → w + η
r1

Nγr2
ite

. (5.3)

As r2 is a uniform random number between 0 and 1, this essentially changes the range

of r2 to being between 0 and γ. Through this, we can control how rapidly the mutation

size is reduced relative to the generation number.

The results for fits with γ = 0.8, 0.9, 1.2 and 1.5 are shown in Table 5.5. The value

of γ has little impact on the performance of the genetic algorithm, and the effect due

to it appears to be smaller than the noise in the results. No value performs better than

the standard methodology however, so for the NNPDF3.0 fits we use γ = 1, as used in
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Effectiveness of Genetic Algorithm in Level 0 Closure Tests

Figure 5.1: Central χ2 calculated along the length of 100 replica level 0 closure test fits. The
values for a fit using the NNPDF2.3 setting is shown in red, while those for a fit with the final
nodal mutation settings is are shown in green. Both axes use a log scale.

the previous NNPDF fits.

5.3.3 Final genetic algorithm settings

Of all the features tested in this section, only nodal mutations demonstrated any

significant improvement over the old algorithm. Therefore, the final genetic algorithm,

which will be used for the rest of the studies in this chapter and for the final NNPDF3.0

fits, is given by the simple settings described at the start of this subsection combined

with the nodal mutation approach using the mutation parameters we found to give

the best results. Table 5.6 describes the new mutation settings and compares them to

the settings used for NNPDF2.3. Fig. 5.1 compares the central χ2 at different points

in a long fit for the final genetic algorithm to the same quantity in a fit using the

NNPDF2.3-like genetic algorithm. We can see that the new algorithm is better early

on in the fit and continues to outperform the old approach in the later stages of the fit,

widening the relative gap in χ2.
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NNPDF2.3

Single Parameter Mutation

PDF Nmut η

Σ(x) 2 10, 1
g(x) 3 10, 3, 0.4
T3(x) 2 1, 0.1
V (x) 3 8, 1, 0.1

∆S(x) 3 5, 1, 0.1
s+(x) 2 5, 0.5
s−(x) 2 1, 0.1

NNPDF3.0

Nodal Mutation

PDF Pmut η

Σ(x) 5% per node 15
g(x) 5% per node 15
V (x) 5% per node 15
V3(x) 5% per node 15
V8(x) 5% per node 15
T3(x) 5% per node 15
T8(x) 5% per node 15

Table 5.6: Comparison of genetic algorithm parameters between the NNPDF2.3 and
NNPDF3.0 fits. The mutation parameters are shown for the two determinations in terms
of their respective fitting bases. For the NNPDF3.0 fit the mutation probability is now set at
5% per network node, and the mutation size is set to a consistent η = 15, while in NNPDF2.3
there were a fixed number of mutations for each PDF each generation, with different sizes.

5.4 Parameterisation and Neural Network Structure

5.4.1 Variations of network design

Another underlying issue in the NNPDF methodology is the structure of neural network

used in the fit. This is related to the genetic algorithm, in that a better performing

algorithm can capitalise on a more complicated parameterisation. However, it is also

connected to the issue of overfitting, as this becomes a greater danger as the size of

the networks increase. In this section I will present some results of tests of the neural

network size and structure in closure tests.

Size

Neural networks are widely used because of their characteristics as flexible unbiased

interpolators, capable of modelling any continuous function given an infinite number

of nodes [47]. However, since an infinite sized neural networks is impractical, we must

make do with a finite sized neural network which is large enough for what we need to

model. The typical way to ensure that the networks used are sufficiently large is to look

at networks which are larger or smaller than your chosen size and examine the effects

of using them in fits. For a reasonably sized network, the results should be largely

independent of small changes in size.

This test has been performed for the NNPDF methodology in the past, as work

leading to NNPDF1.0 [3]. However, the dataset used in the fit has greatly increased

since then, in particular with the inclusion of hadronic data, so it is not clear whether

these previous results will still hold. In addition, the previous test only looked at
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Figure 5.2: Distances between PDF central values and uncertainties of level 2 NNPDF3.0
closure tests using 2-5-3-1 and 2-20-15-1 neural networks. The distances are shown for the
evolution basis PDFs in both log and linear scales for x, and for the fitting scale of Q2 = 1GeV2.
The definition of PDF distances is given in Appendix A.

results for a smaller network than used in the main fits, and only one node smaller

(2-4-3-1, compared to the usual 2-5-3-1, which has 6 fewer parameters). Also, this test

was performed with the real experimental data, rather than with closure test pseudo-

data as we use here, so it will suffer from some of the problems associated with this

mentioned previously.

In order to look at the dependence of the NNPDF3.0 fits on the size of neural

network used, we performed a level 2 closure test fit with the final NNPDF3.0 dataset

and settings (including parametrisation and stopping settings discussed later in this

section), and with an extremely large neural network. Instead of the standard 2-5-3-1

structure, the PDFs were parametrised using 2-20-15-1 networks, which have over ten

times the number of parameters. The distances (see Appendix A) between this fit and

a fit using the standard sized neural networks are shown in Fig. 5.2. The distances

are reasonably small, below 5 at all values of x for most PDFs, which is only slightly

higher than the general standard for the same fit performed with two different seeds.

The largest discrepancy is for the large-x gluon, where the central values have a distance

of about 6 between x = 0.6 and 0.7. The gluons for the two fits over this region are

60



5.4. Parameterisation and Neural Network Structure

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

)2xg(x,Q

ClosureTest_MSTW_lvl2_hugenet

ClosureTest_MSTW_lvl2

MSTW2008nlo68cl

)2xg(x,Q

x
-510 -410 -310 -210 -110 1

0

1

2

3

4

5

6

7
)2(x,QΣx

ClosureTest_MSTW_lvl2_hugenet

ClosureTest_MSTW_lvl2

MSTW2008nlo68cl

)2(x,QΣx

Figure 5.3: Comparison of gluon and singlet PDFs for level 2 NNPDF3.0 closure test fits
using 2-5-3-1 (red) and 2-20-15-1 (green) neural networks. The central value for each PDF
are shown by the dotted lines, while the bands give the 68% confidence intervals. The central
values of MSTW2008 NLO, the PDF set used to generate the closure test data used in the fits,
is included with the black curve. The gluon PDFs are plotted with a linear scale in x in order
to highlight the differences at large x, while the singlets are shown on a log scale.

pictured in the left hand plot of Fig. 5.3. While we can see that the central value of the

gluon from the huge network fit (dotted green line) is somewhat far from that of the

standard network fit (in red), it is further away from the ‘correct’ result of the MSTW

PDF (in black). This may indicate that the discrepancy is caused by overfitting, with

the increased flexibility of the network allowing for better fit to the data but a poorer

description of the underlying theory. The singlet PDFs for the two fits are also shown

in Fig. 5.3, but here the two fits more or less agree, as indicated by the distances plot.

These results show that the fit, while there are some slightly significant differences

from hugely increasing the complexity of the neural networks, the results are largely

consistent and even possibly slightly worse. This demonstrates that the current 2-5-3-1

network structure is sufficient to successfully model the data, and justifies using this

structure in the NNPDF3.0 analysis.

Structure

In addition to the size of the neural networks, another property which may have an effect

on our fits is the structure of the networks, in particular the number of hidden layers.

NNPDF analyses in the past have used networks with two hidden layers between the

input and output layers. Neural networks with a single hidden layer were more common

in the past, but multi–hidden layer or deep networks have recently seen an increase in

popularity [171].

Fig. 5.4 shows the distances between a level 0 closure test fit performed using

the standard two hidden layer networks and another using instead only one hidden

layer. The neural networks with one hidden layer used the structure 2-9-1 in order to
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Figure 5.4: Same as Fig. 5.2, but for level 0 closure test fits with one and two hidden layers
in the neural networks.

maintain the same total number of parameters (37) as the standard 2-5-3-1 networks.

The distances in the central values are small for all PDFs, essentially consistent with

statistical fluctuations, from which we conclude that number of nodes has a very minor

impact on PDF fitting.

5.4.2 Input normalization

When using neural networks it is common to normalise the input values provided to the

first layer of the network. This preconditioning can result in improved training, though

it is not strictly necessary as the neural network should be able to adjust automatically

to the scale of the input. A typical approach is to rescale the inputs so that they are

all within one or two of zero, for instance by subtracting the average and dividing by

the standard deviation.

The neural networks used in the NNPDF methodology contain two input nodes,

one for x and another for ln(x). The x input takes values between 10−7 and 1, which

means that the ln(x) input receives values in the range −7 to 0. In previous NNPDF

fits, input normalisation was applied to both inputs, so the actual values provided to
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Figure 5.5: Same as Fig. 5.2, but for level 0 closure test fits with and without input
normalisation.

the neural networks were

ξ1 = 0.8
x− δ
1− δ

+ 0.1 (5.4)

ξ2 = 0.8
ln(x)− ln(δ)

−ln(δ)
+ 0.1 (5.5)

(5.6)

where δ is a small constant set to 0.001 for all PDFs. This normalising function leaves

the x input mostly unchanged, but rescales the ln(x) input to the range [−1, 0.9]. This

potentially decreases the training time required by reducing scale disparity between the

two inputs.

With the development of the new NNPDF3.0 genetic algorithm, we decided to

investigate what impact including this input normalisation has and whether it is

necessary with the updated approach. We performed a set of level 0 closure test fits,

one with the input normalisation and another without, where x and ln(x) are given

directly to the networks. We can see from the PDF distances in Fig. 5.5 that the

normalisation only has a small impact for most PDFs, with a larger effect in the singlet

and especially the gluon.
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Figure 5.6: Difference in closure test distance between fits with and without input
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the closure test data changed due to removing input normalisation. The values were calculated
at the initial fitting scale. The definition of closure test distance (which is slightly different
from the distance shown in Fig 5.5 etc.) is given in Appendix A.

The distances show the magnitude of the difference between the two fits, but not

its direction, i.e. whether removing input normalisation results in a fit closer or further

away to the underlying MSTW PDFs. In order to look at this we can compare the

distances of each fit to the MSTW PDFs (which must be defined in a slightly different

way, see Appendix A. Fig. 5.6 shows the change in the distance to the MSTW PDFs

from turning off input normalisation. A negative value indicated that the PDF fit

without input normalisation is closer to the MSTW PDF, while positive values show it

is further away. The values are generally negative, especially in the data region, which

indicates that the fit without input normalisation is closer to the ideal value.

We can also study the PDFs from the two fits more directly. Fig. 5.7 shows ratio
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Figure 5.7: Ratios of the gluon and singlet PDFs for level 0 closure test fits with (red) and
without (green) input normalisation to the central values of MSTW2008. The ratios were
calculated at the initial fitting scale of Q2 = 1GeV2.
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plots for the gluon and singlet of the fits, in the region around 10−2 and 10−1 where

the differences are large. The PDFs are plotted as a ratio to the MSTW2008 set used

to generate the closure test data, so the underlying theory that the fit is trying to

reproduce is given by the line at one. We can see for the gluon that the fit with input

normalisation (shown in red) oscillates considerably around the ideal value, while the

central value for the fit without (the dotted green line) is more consistantly closer to

the theory. These plots also show that the standard deviation for the fit without input

normalisation, given by the green band, is much less smooth than the red band of the fit

with input normalisation. This indicates that the input normalisation does help with

the network training, as without it there are still a significant number of undertrained

replicas which pull the standard deviation away from the average, creating the large

bumps. This is is alleviated by increasing the training length, and the PDFs produced

using the final NNPDF3.0 are much smoother.

Overall, input normalisation mostly has a small impact on the fit, and while slight

improvement can been seen in terms of having fewer outliers, it appear to introduce a

bias in the determination of the central values for the gluon and more generally gives

a worse reconstruction of the underlying law. On this basis, we have removed input

normalisation from the NNPDF methodology.

5.4.3 PDF basis

As previously mentioned in Section 3.2.1, all of the previous NNPDF fits have been

performed using a modified PDF evolution basis with explicit parametrisation of the

up-down quark sea asymmetry ∆S instead of the valence triplet V3. However, we now

realise that the combination of this basis and our treatment of PDF sum rules imposes

an unphysical restriction on the range of preprocessing values which can be used for

the ∆S and T3 distributions. In the NNPDF2.3 basis, the second valence sum rule

is imposed during the fit by setting the overall normalisation of ∆S according to the

integral of a combination of T3 and ∆S (see Eq 3.7). In order for this give sensible results

the integral must converge, however in practice the only way to achieve integrability for

the combination is to have integrability of both ∆S and T3 separately. In particular,

we need a good chance of the PDFs to be integrable even for a neural network with

random parameters in order to find a reasonable starting point for the fit. So, to get

around this we must limit the range of preprocessing exponents we assign to these T3

and ∆S to only those which are finite when integrated down to x = 0.

For the NNPDF3.0 fits, we have solved this problem by making two main changes.

Instead of using the PDF basis utilised in previous fits, we have moved to using the

evolution basis as the standard parameterisation basis in all fits. The second valence
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Figure 5.8: T3 and ∆S PDFs for NNPDF2.3 (red) and NNPDF3.0 (green) showing the impact
of the extended preprocessing ranges. The dotted line shows the central value, while the band
gives the 68% confidence interval. The PDFs are plotted at the initial fitting scale Q2 = 1GeV2.

sum rule is now imposed as a condition on the normalisation of the V3 distribution,

according to ∫ 1

0
dx V3 = 1, (5.7)

with the preprocessing exponent for V3 chosen in order to impose integrability, as in

the other valence distributions. Using the evolution basis also means we now model

the V8 and T8 distributions directly instead of s+ and s−. Secondly, we have decoupled

the neural network and preprocessing bases, with the later always being applied in the

evolution basis. For the evolution basis, nothing changes, but in any other bases the

neural network bases are rotated before preprocessing. This allows us to the use the

NNPDF2.3 basis or any other basis without worrying about integrability, which is useful

to test that the results are independent of this choice. This also has the advantage that

we do not need to redetermine preprocessing exponents when changing bases.

The impact of the new small-x preprocessing ranges for T3 and ∆S can be seen in

Fig. 5.8, where the two PDFs are shown from fits using the NNPDF2.3 and NNPDF3.0

settings. The uncertainties on the PDFs now blow up after about x = 10−2 as the

replicas are no longer forced to go to zero for small x. The new preprocessing range

has also removed the odd bump seen in ∆S at around x = 0.05.

One unexpected side effect of preprocessing in evolution basis was that the method

we used in the past to ensure PDF positivity at LO no longer worked. At LO, the flavour

basis PDFs themselves are positive definite, instead of just physical observables. In

the past we have imposed this exact positivity by performing the fit in the flavour

basis squaring the output of the networks before the preprocessing stage. As the

preprocessing term can only change the overall sign of the PDF (and the data will

constrain at least some of each flavour to be positive), this guaranteed that the
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resulting PDF was non-negative. However, if we perform the preprocessing in a different

basis from the networks, squaring the network outputs will no longer be sufficient

to ensure positivity. This is because the actual flavour basis PDFs are defined in

terms of the preprocessed evolution basis PDFs, while the neural networks only set the

unpreprocessed evolutions basis PDFs. This means that in general the final flavour

basis PDFs cannot be written as some function times a single neural network, and are

instead combinations of multiple neural networks. Depending on the relative sizes of

the different neural networks this can lead particular PDFs to become negative. For

the NNPDF3.0 LO fits, instead of squaring the network outputs we impose positivity

using the same positive observables used in the NLO and NNLO fits, though with a

much larger Lagrange multiplier in order to generate a stricter constraint.

In addition to these changes to the application of the valence and total momentum

sum rules to our fits, we have also added new checks on a number of related PDFs

sums. The up, down and strange total momentum fractions, defined by

Fu =

∫ 1

0
dx x (u(x) + ū(x)) (5.8)

Fd =

∫ 1

0
dx x (d(x) + d̄(x)) (5.9)

Fs =

∫ 1

0
dx x (s(x) + s̄(x)), (5.10)

do not have an associated sum rule, in the sense that their values are not constrained

by theory and are instead they are determined by the fit. However, we do know that

they must be integrable and so in NNPDF3.0 we enforce this as a condition during the

fit, and reject any mutant for which the above integrals to not converge.

The changes to the parametrisation basis described above could potentially affect

the results of the fit. Given the flexibility of the neural networks used in NNPDF

fits, we do not expect this effect to be large. Fig 5.9 shows the distances between a

pair of level 2 closure test fits using the evolution and NNPDF2.3 bases for the neural

networks, with preprocessed in the evolution basis in both cases. The distances for

the central values are all below 4, indicating a high level of consistency. The largest

distances are seen in the strange and anti-strange distributions, which is unsurprising

as here the basis has changed from modelling s± to V8 and T8.

5.4.4 Preprocessing

Apart from the changes to the basis described above, the preprocessing in NNPDF3.0

fits is done in much the same was as in previous NNPDF fits, using the same form for

the prefactor given in Eq. 3.4 with randomised exponents for each PDF. As mentioned
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Figure 5.9: PDF distances between level 2 closure test fits using the evolution and NNPDF2.3
bases for the neural networks.

in Section 3.2.1, the range these exponents are chosen from must be selected in order

to speed up the fits without biasing the results. Unlike in earlier NNPDF fits, where

this range was determined based on a stability analysis of the results of multiple fits,

we now generate the range using an automatic self-consistency procedure.

The new procedure works iteratively, generating the range for each fit based on an

earlier fit with the same settings. First, we calculate effective asymptotic exponents for

the initial scale PDFs of the first fit using

αeff,i(x) =
ln fi(x)

ln 1/x
(5.11)

βeff,i(x) =
ln fi(x)

ln(1− x)
. (5.12)

Other definitions for the effective exponents would be possible, such as

αeff,i(x) =
d ln fi(x)

d ln 1/x
βeff,i(x) =

d ln fi(x)

d ln(1− x)
, (5.13)

and give quantitively similar results. The effective exponents are calculated for each

PDF of each replica at a number of points in x: x = 0.65 and 0.95 for all of the
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NLO NNLO
PDF [αmin, αmax] [βmin, βmax] [αmin, αmax] [βmin, βmax]

Σ [1.06, 1.22] [1.31, 2.68] [1.02, 1.33] [1.31, 2.74]

g [0.96, 1.37] [0.28, 5.45] [1.05, 1.53] [0.85, 5.20]

V [0.54, 0.70] [1.20, 2.91] [0.54, 0.70] [1.18, 2.80]

V3 [0.29, 0.58] [1.31, 3.42] [0.29, 0.61] [1.36, 3.73]

V8 [0.54, 0.73] [0.80, 3.09] [0.55, 0.72] [1.06, 3.07]

T3 [-0.17, 1.36] [1.58, 3.14] [-0.25, 1.41] [1.64, 3.20]

T8 [0.54, 1.25] [1.30, 3.42] [0.54, 1.27] [1.33, 3.23]

Table 5.7: Ranges from which the small- and large-x preprocessing exponents in Eq. 3.4 are
randomly chosen for each PDF. For each replica, a value is chosen from these ranges assuming
a flat probability distribution. Shown are the values used for the global NLO and NNLO
NNPDF3.0 fits. The two sets of ranges, obtained at each perturbative order, are determined
independently using an iterative procedure, as explained in the text.

large-x β exponents; x = 10−6 and 10−3 for the small-x α exponents, except for αΣ

and αg where only the first value is used due to their increased structure at x values

around the second. The new preprocessing ranges are then defined for each exponent

as the envelope of twice the 68% confidence interval for each x value, where by “twice

the 68% confidence interval” we mean a value twice as far above or below the mean

value than the upper and lower limit. This condition provides a range which is large

enough to easily cover the range of variation seen in the replicas, ensuring that the

preprocessing exponents are not drawn from too narrow a range. The second points

in x, at 10−3 and 0.65, help convergence of the criterion by considering the exponents

in the non-asymptotic region where the existing preprocessing has less impact. The

process is iterated until the new range matches or lies within the old one. Reassuringly,

convergence is typically very fast, with generally only one iteration needed to achieve

stability in most cases.

This procedure was used to generate the preprocessing exponent ranges for all

NNPDF3.0 fits, and so there is no single set of ranges for the analysis as a whole.

Instead, each individual fit has a different set of ranges, with for example fits to reduced

datasets requiring considerably wider ranges than the standard dataset fits due to the

reduced constraint from the experimental data. Table 5.7 shows the range for each

exponent of the final central NLO and NNLO NNPDF3.0 fits, while Fig 5.10 shows the

preprocessing range and the calculated effective exponents for the gluon and singlet

from the 100 and 1000 replica global NNPDF3.0 NLO fit. The dashed lines show the

double 68% confidence envelope used to generate the preprocessing ranges.

This procedure has also been used in the generation of a set of polarized neural

network PDFs [172,173]).
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Figure 5.10: The small-x and large-x effective asymptotic exponents, αeff , Eq. 5.11 (left)
and βeff , Eq. (5.12) (right), for the gluon (top) and singlet (bottom) in the global NNPDF3.0
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exponents used in the fit.

5.5 Controlling Overfitting

As mentioned in Section 3.2.2, the flexibility of neural networks introduces a significant

possibility of overfitting, which is where the fitted functions model not just the

underlying law but also the statistical noise in the data. With the improvement to

the genetic algorithm described above, it is important that we also investigate ways of

improving the methodology for preventing overfitting. In this section I will describe

three different methods to deal with the problem of over-learning, look-back cross-

validation, weight penalty training and weight decay. The first is a variation on the

cross-validation technique used in previous NNPDF fits, while the other two work by

a very different principle.

As in Section 5.3 we will again look at results of various closure test fits, but now

because we want to look at overfitting we will always use level 2 closure tests. The

fits described in this section were performed using all of the new features described
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Figure 5.11: Validation χ2 against generation for individual replicas from a level 2 closure test
fit. The red line indicates the point at which the look-back cross-validation method chooses
to ‘stop’ the fit. The plot is based on values taken every ten generations, so in both cases the
green points do not display the lowest value itself.

previously in this section, with pseudo-data generated using MSTW2008 NLO PDF

set and based on the final NNPDF3.0 dataset. Here we will focus specifically on the

impact of introducing the various techniques for controlling overfitting; a more general

analysis of the validity of the PDF uncertainties themselves is presented in Section 6.

5.5.1 Look-back cross-validation

The general idea of cross-validation is described at the end of Section 3.2.2. In short,

the data is split into two subsets and the networks are trained using only one, while

the other subset is used to detect overfitting. During correct training, the quality of

fit to both the training and validation datasets decreases. When the quality of fit to

the validation set increases, this indicates that over-learning is occurring and the fit is

stopped.

While the method itself is quite simple, complications arise from the fact that the

quality of fit to the validation set is often noisy from generation to generation. This

means that an unsophisticated stopping condition, based solely on the validation χ2

in one generation being higher than that of the previous generations, will stop the fit

while authentic training is occurring. What we want to look instead is the general

trend of the quality of fit to the validation set. In previous NNPDF fits, this method

used to do this was to average the χ2 over several hundred generations, smearing out

the noise in the figure, and to tolerate small increases in the figure of merit. However,

this introduced a number of extra fitting parameters which needed to be tuned in order

to obtain a balance between stopping too early and too soon.

For NNPDF3.0, we have taken a different approach to cross-validation. We have
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discarded the concept of stopping the fit, and instead let every replica run until some

pre-specified long cutoff. We then select at the end of the fit the generation where the

validation χ2 was lowest. The idea is that, instead of trying to determine whether the

validation χ2 is increasing, it is better to retrospectively identify the global minimum.

The final PDFs will therefore be the best fit to the unseen dataset that was obtained

during the fit. The two plots in Fig. 5.11 show the new method in action. In each plot

the validation χ2 for each generation is shown in green, while the red line shows the

point in the fit chosen by look-back cross-validation. In some cases the point chosen

can be quite early in the fit, as is the case on the left, while in other is can be much

later on or even right at the end.

The obvious disadvantage of this approach is that all of the fits need to be run for a

long time, rather than stopping early. The whole process of generating a complete set

of replicas will therefore require appreciably larger computer time. However, because

we perform many Monte Carlo replica fits for individual PDF determination, and under

the old stopping criterion some replicas failed to stop, the real world time required to

perform a full fit is largely unchanged.

Results

Look-back cross-validation was tested using level 2 closure test fits to data generated

using the MSTW 2008 NLO PDF set with the settings of the final NNPDF3.0 fits.

Fig. 5.12 shows the PDF distances between a fit using the new cross-validation method

and a separate fit using the same random seed without cross-validation or the training-

validation split of the dataset. Cross-validation has only a minor effect on the fit, and

for both the central values and uncertainties the distances are mostly below 3, with a

small number of spikes to at most a distance of 6.

Fig. 5.13 shows the change in distance to the MSTW PDFs caused by introducing

look-back cross-validation compared to the fixed length fit. For the V8 and large-x

valence PDFs cross-validation improves the closure test fit, while for the others the

results are mixed. The only major change is in the gluon at about 0.05, where there is

a relatively large spike. Comparing to the distances in Fig. 5.12, it is not immediately

obvious where this seemingly large discrepancy comes from. It turns out that this is

at a point where the gluon for this particular closure test is far from the MSTW PDF,

and the small increase in uncertainty in the gluon in this region, shown by a tiny bump

on the distance plot, is enough to cause the large difference in closure test distance.

In general though, these results tell us that that the introduction of look-back cross-

validation has a very small impact on the fit. This indicates that whatever overfitting

is present in the NNPDF fits is small, possibly because of we use a large dataset with
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Figure 5.12: PDF distances between level 2 closure test with and without look-back cross-
validation. The fit without cross-validation was performed without training-validation splitting,
i.e. using 100% of the data.

a high level of redundancy. However, there are still several reasons to include cross-

validation in the final NNPDF3.0 settings. It is possible that the tests we have used are

not precise or comprehensive enough to detect all over-learning, and some could remain

in the fit. It is also useful to be able to produce fits to radically different datasets with

as close to the same methodology as possible, including fits to reduced datasets. For

instance, in the case of fits to a HERA-only dataset the level of redundancy in the

dataset is greatly reduced, so overfitting becomes a much bigger concern. Considering

these issues, and the fact that the overall impact in most fits will be very small, we

incorporated look-back cross-validation in the standard NNPDF3.0 methodology.

Dependance on maximum number of generations

One of the advantages of look-back cross-validation over the stopping-oriented cross-

validation used in previous NNPDF fits is that it has much fewer fitting parameters.

The only parameter it uses is the maximum number of generations, Ngen, i.e. the

number of iterations that the fit is performed for and so that the global minimum is

determined from. Provided that the maximum number of genetic algorithm generations
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Figure 5.13: Difference in closure test distance between a fixed length fit and a fit with look-
back cross-validation. The value indicates how much the distance changed in the cross-validated
fit compared to the distance for the fixed length fit. The distances in both cases are to the
MSTW2008 NLO PDFs which were used to generate the closure test data, and were calculated
at the initial fitting scale. The definition of closure test distance (which is slightly different
from the distance shown in Fig 5.12 etc.) is given in Appendix A.

is large enough, we expect results based on the look-back method to be independent of

its precise value. For this to be the case, Ngen needs to be large enough that the fit has

passed its global minimum value of the validation χ2, or is sufficiently close to it that

running for more generations would not greatly change the final PDFs.

For the fits described above, Ngen was set to 30000 generations. To verify that this

is sufficiently large, a second level 2 closure test fit with look-back cross-validation was

performed using the same settings and random seed, but with an increased maximum

length of 80000 generations. From the distances shown in Fig. 5.14, it can be seen

that both the central values and uncertainties for all PDFs are unchanged by running

for a longer time. We can therefore rule out any sizeable dependence on the total

training length in our current results, and we can stick to a baseline maximum number

of generations of 30000 for the fits to real data.

Fig. 5.15 shows the distribution of stopping points for the 100 replicas in the 30000

and 80000 generation closure test fits. In both cases the stopping points are fairly

evenly spread about the fit, but with a build-up towards the end, which indicates that

many replicas do actually improve during the longer fitting length, though from the

distances in Fig. 5.14 we know it is not by much. On the other hand, the spike at the

beginning of the 80000 generation plot contains roughly the same number of replicas

as are in the equivalent span in the 30000 generation plot, indicating that these twenty

or so replicas have properly stopped, and likely have χ2 profiles similar to the left-hand

plot in Fig. 5.11.
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Figure 5.14: Distances between central values and uncertainties of two level 2 closure test
fits with maximum numbers of generations set to 30k and 80k, with all other fit and dataset
settings identical.
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Figure 5.15: Distribution of the final generation chosen by look-back cross-validation for 30k
and 80k generation 100 replica level 2 closure test fits. Note that the number of bins is the
same in each plot, but the 80k generation fit has a much larger range, so in the right plot each
bin covers more generations.
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Figure 5.16: Same as Fig. 5.14 for the level 2 closure fits based on training fractions of 25%
and 50%.

Dependence on the training fraction

As mentioned previously, cross-validation requires us to separate the fitted dataset into

two disjoint subsets: the training set and the validation set. In the fits shown so far

the fraction of data in the training and validation sets was set to one half of the total.

Obviously by only training half the data we lose information in each replica fit, so it’s

possible that our results might change if this fraction is varied from 50%. In particular,

it is important to check both that the 50% training fraction is enough to retain all the

relevant information contained in the original dataset, and that using a smaller value

will negatively impact the fit.

In order to study the impact on the fitted PDFs of the use of a different training

fraction, I have produced a pair of level 2 closure fits with identical settings to the

standard 50% fit except for the size of the training fraction: one with a smaller fraction

of 25% and another with a larger fraction of 75%. The distances comparing these fits

with alternative values of the training fraction to the standard fit are shown in Figs. 5.16

and 5.18. The first set of distances indicate that when the training fraction is reduced

to 25% the central values of the PDFs are more or less the same, while the uncertainties

on the fitted PDFs slightly increase. This suggests that, for the NNPDF3.0 dataset,
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some of the data removed when using the smaller training fraction is not redundant,

and information is lost. The effect of the reduced training fraction can be identified

more directly by looking at the PDFs in the two fits, shown in Fig. 5.17, where the

increase in the PDF uncertainties is clear.

On the other hand, as can be seen from the distances in Fig. 5.18, the fits with

training fractions of 50% and 75% are much more alike, and are effectively statistically

indistinguishable. We can thus conclude that the loss of information due to the splitting

of the dataset required by the cross-validation procedure is small provided the training

fraction is above 50%, but using smaller training fractions has a larger impact.

5.5.2 Weight Penalty

Cross-validation is a common and straightforward approach to controlling overfitting

in neural network training, however it is not the only approach, nor is it always the

most effective. A number of others exist, many of which avoid the major problem

of only being able to fit part of dataset. In this section I will describe a technique

called Weight Penalty training2, which aims to prevent overfitting during the training

by penalising networks which model more complicated functions. This is essentially

the same as setting a prior distribution for the probability of the parameters of the

network, and so the method works in a similar way as Bayesian model selection.

2This approach is more usually called Weight Decay in much of the machine learning literature.
Confusingly, however, the method I will describe after this (in Section 5.5.3) is also often described as
Weight Decay, so here I will use Weight Penalty instead.
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Figure 5.18: Same as Fig. 5.16 but training fractions of 50% and 75%.

Theory

The general idea of the weight penalty method is to include an extra term in the

goodness of fit function minimised during the training which depends on the size of

the neural network weights. Instead of evaluating the mutants in the genetic algorithm

according to just the χ2, we instead use

Etr(d, t(w)) = χ2(d, t(w)) + α∆(w), (5.14)

where d are the data points, t are the theoretical predictions, w are the network

parameters they depend on, α is an external parameter which controls the strength of

the penalty and ∆(w) is a selected function of the neural network weights (see below).

Including this extra term encourages the training to eliminate weights in the network

not being used to fit the data, which reduces the effective number of parameters and the

complexity of the produced function. This results in a trade-off during the fit between

the closeness of predictions to the data-points and the smoothness of the functions, and

so can prevent overfitting.

There are multiple reasonable choices for the penalty function ∆(w) used in the fit.

One very common one, which we will use here, is based on the idea of a Gaussian prior
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distribution for the weights:

∆(w) =

Nw∑
i

w2
i , (5.15)

where Nw is the total number of weights. The penalty term in Eq. 5.14 also includes

an overall size α, which must be chosen in order to achieve a balance between reducing

complexity and fitting the data. In many implementations this tuning is done by hand

in an ad hoc way; we will instead follow the Bayesian Regulation approach outlined

in [174], where α is automatically determined based on the results of previous fits.

The idea of the automated process is that the most probable value for α can be

found by taking the derivative of the probability distribution of α given the data, i.e.

by setting
∂

∂α
P (α|d) = 0. (5.16)

Using Bayes’ theorem we can then write P (α|d) as

P (α|d) = P (d|α)
P (α)

P (d)
. (5.17)

If we assume that the prior probabilities for α and the data are uniform—so that P (α)

and P (d) are constant—then P (α|d) is proportional to P (d|α), and the condition for

the most probable α with P (α|d) in Eq. 5.16 applies equally well with P (d|α).

We can expand P (d|α) as

P (d|α) =

∫
dNww P (d|wα) P (w|α). (5.18)

From this we can identify P (d|wα) as the probability of the data given the parameters

and α, which can be written as

P (d|wα) ≡ P (d|w) = ZD e−
1
2
χ2(d,w), (5.19)

where we have used the fact that the probability is independent of α. The normalisation

ZD is given by

Z−1
D =

∫
Dd e−

1
2
χ2(d,w), (5.20)

which we cannot evaluate in the general case, but we can see is independent of α.

Likewise, P (w|α) is just the prior probability of the weights for a given value of α, and

can be written as

P (w|α) = Zw e
− 1

2
α∆(w) (5.21)
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where this time the normalisation Zw can be evaluated using Eq. 5.15 to give

Zw =

∫
dNww e

− 1
2
α

Nw∑
i
w2

i
=

(∫
dw e−

1
2
αw2

)Nw

=
( α

2π

)Nw
2
. (5.22)

Taking these definitions together with Eqs. 5.16 and 5.18 we can see that for the most

probable value of α

∂

∂α
P (d|α) =

∫
dNww P (d|wα)

∂

∂α
P (w|α) = 0 (5.23)

=⇒
∫
dNww P (d|wα)

(
Nw

2α
− 1

2
∆(w)

)
P (w|α) = 0 (5.24)

=⇒ Nw

2α
P (d|α) =

1

2

∫
dNww ∆(w) P (d|wα) P (w|α) (5.25)

=⇒ αbest =
Nw

〈∆(w)〉
, (5.26)

where we used Bayes’ theorem again between the third and fourth lines. Here

〈X〉 means the expected value of X for the given distribution of weights, i.e.

〈X〉 =
∫
dNwwXP (w|dα), which for our PDF fits is represented by averaging over

X calculated for each replica. Since the expected value depends on the value of α

itself, we will need to iterate until the value calculated using the replica PDFs at the

end of the fit matches the starting α. Note that this condition is the same as saying

that at the end of the fit we want the numerical contribution of the penalty term to

the error function to be equal to the number of parameters in the fit.

In the literature on this method, it is suggested that different values of alphas are

used for the separate layers of the network, and for weights on the connections from

each input node [175]. We follow that approach in our implementation, in addition

to using separate α values for each PDF. The actual error function minimised during

neural network training is therefore

Etr(d,w) = χ2(d,w) +

Npdf∑
i

Ncat∑
j

(
αij

Nw∑
k

w2
(ij)k

)
, (5.27)

where Ncat is the number of different categories of weights, which for our networks is

four.

Results

With this setup, we performed a number of level 2 closure test fits using a weight

penalty in the error function. Each fit was performed using the final NNPDF3.0 settings
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Figure 5.19: PDF distances for central values and uncertainties between the final and
penultimate weight penalty iterations. Each fit was a level 2 closure test fit to data generated
using MSTW PDFs. The distances were calculated at the initial fitting scale of Q2 = 1 GeV2.

(without cross-validation), with a maximum length of 30000 generations. As mentioned

above, the values of αij used in the fits needed to be iterated, with each final fit shown

here using values calculated from the results of a chain of previous fits.

The first thing it was necessary to establish was that the αij would actually converge,

and how rapidly this would occur. Starting from values calculated from a fit with the

penalties set to 0, i.e. without the penalty, fits were performed sequentially. We found

that convergence was initially very fast, but slowed as the values approached their fixed

point. Fortunately, we also discovered that the fit is largely insensitive to the precise

value of αij , and that similar results are obtained for values within about a factor of

two. For this reason we choose our condition for determining convergence to be quite

broad, allowing for a change of at most 40% in the αij values between generations,

as long as differences between the PDFs themselves were also small. The distances

between fits with the final and penultimate αij settings are shown in Fig. 5.19. For

both uncertainties and central values the distances are uniformly below 2, indicating

that the fits are statistically equivalent with differences about the size we would expect

from changing genetic algorithm random seed. The final values for αij are shown in

Table 5.8, along with the average size of weight for each PDF and category. The
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Input (x) Input (ln(x)) Hidden Output Total

PDF α |w| α |w| α |w| α |w| |w|
g 0.045 3.39 0.102 2.28 0.054 2.99 0.042 3.27 2.98
Σ 0.083 2.60 0.893 0.84 0.121 2.05 0.057 3.10 2.08
V 0.079 2.75 0.282 1.51 0.114 2.14 0.050 2.83 2.22
V3 0.148 2.01 0.629 1.04 0.148 1.88 0.088 2.51 1.85
V8 0.132 2.13 0.833 0.90 0.199 1.63 0.088 2.53 1.70
T3 0.065 2.96 0.435 1.23 0.159 1.76 0.065 2.85 1.97
T8 0.121 2.14 0.354 1.35 0.106 2.19 0.045 3.34 2.20

Table 5.8: Final values for penalty strength α used in last iteration of weight penalty closure
test fits to level 2 data generated using MSTW PDFs. Values are shown by PDF and weight
category. The average weight magnitude (i.e. ignoring the sign) |w| is also shown in each case,
as well as for each PDF in total.

gluon has the largest weights and smallest αij , which is unsurprising given that it has

somewhat more structure than the other PDFs.

Having obtained the final α settings, we can then look at the overall effect of

including the penalty term in closure test fits. Fig. 5.20 shows the distances between a

fit with weight penalty and a fixed length fit without it but otherwise using equivalent

settings. We can see that the distances in the central value are mostly below about 6,

showing that the weight penalty fit is largely consistent with the fixed length fit, though

with some significant discrepancies for instance in the V3 distribution at medium-x and

V8 at small-x. This reaffirms the conclusion that we drew from the results on cross-

validated fits, that there is only minimal over-learning during the fit. Compared to

the equivalent plot for look-back cross-valdiation (Fig. 5.12) we can see that the weight

penalty method has a much larger impact on the uncertainties of the fit, with distances

of over five in places. Looking further into the results it becomes clear that the weight

penalty uncertainties are generally smaller that the fixed length determination. We can

understand this by interpreting the weight penalty as an additional constraint that the

PDFs should be smooth, which provides additional information to the fit about the

PDFs. Fig. 5.21 shows the two of the PDFs themselves for the closure tests fits with

and without weight penalty. The reduction in uncertainties suggested by the distance

plots can be seen by comparing the size of the red and green bands.

We can also look at the difference in distances to the underlying MSTW PDFs

used to generate the closure test data, as we did for the cross-validated fit. These

are shown for the weight penalty fit in Fig. 5.22. Compared to the equivalent plot

for look-back cross-validation in Fig. 5.13, weight penalty has a considerably larger

impact on the quality of the prediction. In some places it provides an improvement,

especially at large x, but there are also regions where the weight penalty fit reproduces
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Figure 5.20: Same as Fig. 5.19 but between the final weight penalty iteration and a fixed
length fit (i.e. a fit without weight penalty) with otherwise identical settings.
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Figure 5.22: Same as Fig. 5.13 for fit with weight penalty.

the generating PDFs much more poorly than the fixed length fit.

We can also directly compare the PDFs from the weight penalty fit to their

counterparts from the fit with look-back cross-validation. From Fig. 5.23 we can

see that while the results of using a weight penalty are somewhat different to those

obtained through cross-validation, they are closer to this fit than to the fit without any

mechanism to stop over-learning (Fig. 5.20). This indicates that, while weight penalty

and cross-validation work by very different principles, they have the same effect of

controlling the small amount of overfitting present in the fit. However, the weight

penalty method does not outperform cross-validation, and given the fact that it is the

more complicated and ambiguous of the two methods we opted to use cross-validation

in the final NNPDF3.0 fits.

5.5.3 Weight Decay

There are other methods which can be employed to obtain the same effect as the weight

penalty approach outlined above. One such method, which I will describe as Weight

Decay (see footnote on pg. 77), involves periodically shrinking all of the network weights

by a small amount. The idea is that weights which are necessary to describe the data

will be restored to their previous value by the minimisation, while weights which are

superfluous will be naturally eliminated. If successful, this will therefore obtain the

same effect as using a weight penalty, but without the need to perform multiple fits in

order to iterate the α parameters. However, modifying the neural network parameters

indiscriminately can easily disrupt the fit if the weights are decayed to greatly or too

often.

Weight decay is straightforward to implement. It simply requires a step in the

genetic algorithm after selection where all of the parameters are universally multiplied
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Figure 5.23: Same as Fig. 5.19 but between the final weight penalty iteration fit and a fit
using cross-validation.

by a number slightly less than one. There are two main parameters in the approach:

the frequency of decay and its strength. Early tests demonstrated that decaying the

weights every generation give very poor results, even if the size of the decay is set to be

relatively small. Instead, a more reasonable approach is to decay much less often but

by a sizeable amount. Here I will present results using a decay of 2% (i.e. multiplying

the weights by 0.98) every 100 generations. This corresponds to a reduction of the

weights by more than 95% over 15000 generations, if mutations are ignored. In order

to prevent unwanted bias from the final results, weight decay will not be used during

the last 2000 generations.

In order to test the weight decay method, as for previous features I performed a

level 2 closure test fit with pseudo-data generated using the MSTW2008 NLO PDF set.

Fig. 5.24 shows the distances between the weight decay fit and a standard-settings fit

without decay. We can see that the introduction of weight decay has a relatively small,

though not negligible, impact on the fit results, with all distances below 5. However,

looking at Fig. 5.25, which shows the change in distance to the MSTW PDFs from

introducing the method, it is clear that weight decay does not improve accuracy of

the prediction of the underlying distributions at large-x, and substantially worsens
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Figure 5.24: Same as Fig. 5.20 but for a fit using weight decay.
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Figure 5.25: Same as Fig. 5.22 but for a fit using weight decay.
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it across almost all PDFs at small-x. On this basis, weight decay can only provide

another check that overfitting is small and that the results obtained are relatively

robust against changes in methodology, but is inappropriate to use as part of the central

fitting methodology. It is possible that tuning the size and frequency of the decay could

improve the quality of the results, however it is not clear that this is case, and working

on this would take time away from investigating more promising approaches.

5.6 Positivity constraints

As described in Section 3.2.6, in previous NNPDF fits we enforced PDF positivity

by imposing constraints on the deep-inelastic structure functions FL, F c2 and of the

neutrino charm production (“dimuon”) cross-section. However, while these conditions

were sufficient to guarantee the positivity of most physical observables, in order to

ensure positivity of all observables for NNPDF3.0 we have increased the number and

kinematic coverage of positivity constraints used in the fit. In particular, we have

chosen to impose positivity of some pseudo-observables which must respect positivity

for reasons of principle, but which are not measurable in practice. We choose the three

tagged deep-inelastic structure functions F u2 , F d2 and F s2 and the three flavour Drell-

Yan rapidity distributions, dσDY
uū /dy , dσDY

dd̄
/dy and dσDY

ss̄ /dy, to enforce generalised

positivity of the quark and anti-quark distributions, and the light contribution to the

longitudinal stucture function, F lL supplemented with the rapidity distribution dσHgg/dy

for the production in gluon-gluon fusion of a Higgs-like scalar with mass m2
H = 5

GeV2 to constrain the gluon. All these positivity constraints are imposed at Q2
pos = 2

GeV2, and for x ∈ [10−7, 1], which, because of the structure of QCD evolution, ensures

positivity at all higher scales. In practice we computed the observables at 20 points in

the given x range, equally spaced on a log scale for x < 0.1 (ten points) and on a linear

scale for x ≥ 0.1.

As well as imposing the positivity constraints during the minimisation by means of a

Lagrange multiplier, we have introduced a further constraint that the final fit result is

negative in any pseudo-observable by at most 25% of an absolute value calculated

using a fixed reference set, discarding any replica for which this is not the case.

This condition is necessary for cross-sections which are very close to zero (e.g. close

to kinematic boundaries, like the rapidity tails of Drell-Yan distributions) where the

Lagrange multiplier strategy is not effective.

This strategy is used in both the NLO and NNLO fits, with the NNLO fits using also

the NLO pseudo-observables, since at the low Q2 values at which the positivity pseudo-

observables are computed large unresummed NNLO corrections lead to perturbatively

unstable predictions at large and small x. There is also some evidence that the
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resummed result is closer to NLO than to NNLO, see for example Ref. [176] for the case

of deep inelastic structure functions. As described in Section 5.4.3, in the LO fits, where

PDFs are strictly positive-definite, we use the same strategy with pseudo-observables

now computed at LO and with a larger Lagrange multiplier. We have verified this

is sufficient to ensure positive-definite PDFs, and also use a flag in the LHAPDF6

NNPDF3.0LO grids to force a positive-definite output.

The impact of the positivity constraints on the final PDFs is looked at in

Section 7.3.2 where I compare two NNPDF3.0 NLO fits with and without the positivity

constraints, and discuss further a posteriori checks of the implementation of the

positivity conditions. I will also explore the impact of the improved positivity

constraints on searches for high-mass new physics.
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Chapter 6

Closure testing the NNPDF3.0

methodology

The previous chapter looked at studies of various new features in the NNPDF

methodology using the closure testing technique. In this chapter I will subsequently

focus on tests of the statistical properties of the final methodology, and how well

generally our approach satisfies the closure test. Benchmarking the methodology is

especially important now due to the substantial increase in experimental data included

in NNPDF3.0, and the increased precision of the resulting PDFs. As data become more

precise and their kinematic coverage increases, it becomes more and more important

to eliminate as far as possible methodological uncertainties, and to verify that our

results are statistically valid. As discussed in Section 5.2 NNPDF3.0 is the first PDF

determination performed using a methodology based on closure tests, and here we will

further look at using closure tests to study the statistical properties of the resulting

PDFs.

The basic idea of the closure test, described briefly in Section 5.2, is simple [177,178]:

we take a given assumed form for the PDFs (for example MSTW2008), a given

theoretical model (for example NLO pQCD), and with them generate a set of global

pseudo-data with known but realistic statistical properties (by using the covariance

matrices of the real datasets that together make up, for example, the NNPDF3.0

dataset). These pseudo-data are then ‘perfect’, in the sense that they have known

statistical properties, no internal inconsistencies, and are also entirely consistent

with the theoretical model used to produce them. Thus if we then use our fitting

methodology to perform a fit to these pseudo-data, we should reproduce the central

value of the assumed underlying PDF, within correctly determined uncertainties.

First I will introduce notations for the various closure test quantities which will be

used in this section, and look at the different options for pseudo-data production which
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are available. I will next study the efficacy of the final training methodology by looking

at level 0 closure test fits. This will be followed by a study of PDF uncertainties,

and at ways of investigating the validity of the obtained values and at contributions

from different sources (data, functional and extrapolation). I will then look at the

results from a full closure test—level 2 data fit with the final NNPDF3.0 methodology—

specifically in terms of how well it reproduces the underlying law. All of the closure

test fits in the previous chapter, and the majority in this chapter, have been performed

using pseudo-data generated with the MSTW2008 PDFs, so in the final section of this

chapter I will show results from closure tests using a range of different PDF sets.

6.1 NNPDF closure testing

The new framework used in NNPDF3.0 for the computation of observables provides us

with the ideal tool to successfully implement closure tests. In particular, the clean

separation between theoretical assumptions and input PDFs allows us to generate

pseudo-data using a given set of PDFs and the experimental covariance matrix as

an input, and to perform a fit to this pseudo-data using exactly the same theoretical

settings (encoded in the FK tables) that were used for generating them.

Throughout this chapter I shall refer to the parton distributions used to generate

the pseudo-data as the input PDFs, and denote them by fin. Any PDF set available

through the LHAPDF interface [179] can be used as an input set to generate the pseudo-

data. Most of the closure tests described here will be performed using MSTW2008 NLO

PDFs, though I will present some results from test with other input PDFs at the end

of the chapter. We denote the set of pseudo-data by D = {di}; the dependence of the

pseudo-data on the input PDFs fin and experimental covariance matrix will be left

implicit.

The outcome of the closure test fits is then a set of fitted PDFs ffit, which we

will compare to the input PDFs in order to study the statistical precision and possible

systematic biases in the fitting methodology. For any PDF set f , whether input or

fitted, the FastKernel framework delivers a set of theoretical predictions, T (f) =

{ti(f)}, based on a particular theoretical model. As in the previous chapter we will in

general use NLO perturbative QCD, precisely as implemented in the NNPDF3.0 fits

to real data, with the same parameter choices (e.g. quark masses, αS) and so on. Also,

we will continue to omit the positivity constraints for the reasons outlined previously.

In terms of these definitions, this χ2 minimised during the fit can be written as

χ2[T (f),D] =
1

ND

∑
i,j

(ti(f)− di)C−1
ij (tj(f)− dj) . (6.1)
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6.1. NNPDF closure testing

In this expression, Cij is the (t0) covariance matrix of the data and ND is the total

number of data points of the dataset. Note that when fitting the pseudo-data we use

exactly the same procedure (with exactly the same code) as for fits to real data, with

the only difference being the values of the data points. Since in the closure test fits the

‘correct’ solution is known—and are the PDFs fin used as input—the result ffit of the

fit should ideally reproduce the input PDFs within the statistical uncertainties of ffit

as determined by the fit.

As mentioned in the previous chapter, we can introduce three distinct categories

of closure tests depending on the amount of stochastic noise added to the pseudo-

data points generated from the initial PDFs. In order to make these tests as realistic

as possible, this stochastic noise is generated using the complete information in the

experimental covariance matrix, so the fluctuations and correlations of the pseudo-data

reproduce precisely those of the real experimental data. For the closure tests presented

in this section, the pseudo-data is in one-to-one correspondence with the experimental

data used in the global fit, i.e. we have generated pseudo-data for every point in the

NNPDF3.0 global dataset described in Table 4.1.

The three levels of closure test that we will study, which we call level 0, level 1 and

level 2 are set up as follows:

• Level 0. Pseudo-data D0 = {d0
i } are generated without adding any stochastic

noise. We then perform Nrep fits, each to exactly the same set of pseudo-data

(i.e. without generating replica datasets), but using different random seeds for

the initialisation of the random numbers used in the minimisation. This yields

an ensemble of PDF replicas {fkfit}, where k = 1, . . . , Nrep.

Note that the error function which we minimise (given by Eq. 6.1) is still computed

using the covariance matrix of the data, even though the level 0 pseudo-data are

precisely the theory value and so have no uncertainty. While this will effect

the way the parameter space is seen by the genetic algorithm, as it essentially

gives the data points different weights, the minimum will be unchanged (as it is

at χ2 = 0), and including the experimental correlations means that the level 0

pseudo-dataset contains the same total amount of independent information as at

other levels and with real data.

It should be clear from its definition that in Level 0 closure tests, the fit

quality can be arbitrarily good, provided we use a sufficiently flexible PDF

parametrisation and a sufficiently efficient minimisation algorithm. Indeed, since

by construction the pseudo-data does not have any stochastic noise, and there

are no inconsistencies, there exist perfect fits to the Level 0 pseudo-data that

have a vanishing χ2. Note that the best fit is not unique, and there will be an
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infinity of fits which lead to vanishing χ2 by going through all data points, but

differ in the way they interpolate between data points. These optimal solutions to

the minimisation problem reproduce precisely the predictions of the set of PDFs

used as input in the generation of the pseudo-data at each of the experimental

data points. With our genetic algorithm, however, we are unlikely to generate

a perfect solution exactly. Instead we expect that as the fit proceeds, the best

fit PDFs should approach the ideal solution, and the value of the error function

should approach zero.

• Level 1. Here we add one set of stochastic fluctuations on top of the level 0

pseudo-data, similarly to how replica datasets are generated at the beginning of

normal fits (Eq. 3.11):

d1
i =

Nmult∏
j

(
1 + rmult

j σmult
i,j

)(d0
i +

Nadd∑
k

radd
k σadd

i,j + rstat
i σstat

i

)
, (6.2)

where again σadd
i,j , σmult

i,j and σstat
i are the additive and multiplicative systematic,

and statistical uncertainties for each data point, and the random numbers radd
i,j ,

rmult
i,j and rstat

i are generated according to unit variance normal distributions.

These shifted data points represent the measured values of hypothetical experi-

ments with the same statistical and systematic uncertainties as the real data.

From its definition, with one level of stochastic fluctuation, we expect that in

level 1 closure tests the error function (which as at Level 0 coincides with the t0

χ2 per degree of freedom, i.e. χ2[T (f),D1]) of the best fit will be around one.

There is also an ‘ideal’ value that we want to obtain from a level 1 fit, which is

the value of the error function calculated with the input PDFs. In practice the

fitted PDFs will have a slightly lower value than the input PDFs as, depending

on the random seed, it is likely that there will exist functions which are more

likely given that particular set of pseudo-data.

Adding the single layer of stochastic fluctuations to the pseudo-data can be

performed at two stages in the fit: the pseudo-data generation and the artificial

replica dataset generation. In the first case, a single set of level 1 data is generated

and used (as in level 0 fits) for all replicas, whereas in the second each replica is run

with a different level 1 dataset. The former type of level 1 closure test is useful for

looking at the error propagation, as the difference between this level and level 2

fits is that the experimental uncertainties are not propagated through to the PDF

uncertainties. In these tests we therefore expect that the PDF uncertainties will

be underestimated, and can be compared to the uncertainties obtained in level 2
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6.2. Validation of the training efficiency: Level 0 closure tests

fits. The other level 1 case is also useful for a particular estimator of uncertainties,

as it can be used to approximate a set of central values of level 2 fits, as will be

described later.

• Level 2.

At this level stochastic fluctuations are added both during pseudo-data and replica

generation, i.e. starting from the shifted pseudo-data in Eq. 6.2, we generate Nrep

Monte Carlo replicas datasets Dl2 = {d2,l
i } with

d2,l
i =

Nmult∏
j

(
1 + rmult,l

j σmult
i,j

)(d1
i +

Nadd∑
k

radd,l
k σadd

i,j + rstat
i σstat,l

i

)
, (6.3)

for l = 1, . . . , Nrep, with different random numbers for each replica. From the

practical point of view, once we have generated a set of level 1 pseudo-data

Eq. 6.2, the level 2 Nrep Monte Carlo pseudo-data replicas Eq. 6.3 are obtained

using exactly replica generation process as is used for the fits to real data.

In level 2 fits, each Monte Carlo replica represents a fluctuation around the level 1

pseudo-data, and the procedure should correctly propagate the fluctuations in the

pseudo-data, due to the experimental statistical and systematic uncertainties, into

the fitted PDFs. The fit to each data replica yields a PDF replica f lfit, and the

ensemble of PDF replicas then contains all the information on PDF uncertainties

and correlations. We expect the final error function of a Level 2 fit to be two, since

each replica dataset has been fluctuated twice, while the χ2 per degree of freedom

of the replica PDFs to the original pseudo-data (i.e. χ2[T [f lfit],D1]) will be close

to one. Again the actual ‘ideal’ value will not be precisely these values due to

random fluctuations, and will be given by the error function for the input PDFs

to the pseudo-data. Moreover, for a correctly determined set of fitted PDFs, we

expect the input PDFs fin to lie within the one-sigma band of the fitted PDFs

with a probability of 68%.

6.2 Validation of the training efficiency: Level 0 closure

tests

Here I will present the results of a number of level 0 closure tests using the final

methodology settings given in Chapter 5, and use them to assess the training efficiency

of the NNPDF3.0 minimisation. In level 0 fits there exists a number of optimal solutions

for the minimisation where the error function to the pseudo-data is reduced to zero.

With level 0 closure tests we can therefore perform tests of different approaches to the
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Figure 6.1: The normalised central χ2 of level 0 closure tests, Eq. 6.1, for the old and new
genetic algorithms as a function of the length of the genetic algorithms minimisation (repeated
from Fig. 5.1).

minimisation, as in the previous chapter, and investigate the power of the final settings,

as we will do here.

The two main ingredients of our fitting methodology that can be tested in level 0

closure tests are the adequacy of the neural network architecture and the efficiency

of the genetic algorithm minimization. Since at level 0 no stochastic fluctuations are

added in the generation of the pseudo-data, the ideal χ2 is zero, and as the length

of the training is increased we expect the fitted PDFs to get closer and closer to the

input ones. In order to verify that this is the case, we have performed a number of

fixed length fits to the full dataset, and studied the dependence on the training length

of the χ2 calculated over the ensamble, i.e. χ2[〈T [ffit]〉 ,D0] where the theory values

are averaged over the replicas. These fits were performed with identical settings apart

from the training length, which was varied between 1000 and 100000 genetic algorithm

generations. As the fits used level 0 pseudodata, no cross-validation was used.

The dependence of the χ2 on the training length for these level 0 closure tests

is plotted in Fig. 5.1 from the previous chapter and repeated here in Fig. 6.1. In

Section 5.3.3 we used this plot to compare the updated genetic algorithm used in

NNPDF3.0 with the genetic algorithm used in the NNPDF2.3 fit, demonstrating that
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the newer methodology was a significant improvement over the previous approach.

Here, I want to highlight the fact that from the figure we can see that the χ2 of the fit

decreases as the fit length is increased, with a behaviour that is approximately described

by a power law with a power of about −1.1. We can herefore see that given enough

time, the genetic algorithm can obtain results arbitrarily close to ideal, though as we

approach the minimum an increasing amount of time is required for improvement1.

Given that the χ2 is tending towards zero, we expect almost perfect agreement

between the fitted and input PDFs. We can look at this by looking at the resulting

PDFs from the fits themselves, as shown in Figs. 6.2 and 6.3. In these plots we show

compare the PDFs obtained from the level 0 fit with the longest training length (100k

generations) to the MSTW input PDFs. The central values of our fitted PDFs, shown

on the figures by the dotted green lines, are computed as the average over replicas in

the usual way:

〈ffit〉 =
1

Nrep

Nrep∑
k=1

fkfit , (6.4)

the angled brackets denoting the average over replicas, and the band on the plots is

here the one-sigma uncertainty2 given by:

σfit =
√
〈(f2

fit − 〈ffit〉)2〉 =

 1

Nrep

Nrep∑
k=1

(
fkfit − 〈ffit〉

)2

 1
2

. (6.5)

It is clear from the plots that the input PDFs are reproduced to a very high standard.

It is interesting to observe that PDFs for which there is a large amount of experimental

information, such as for example the up quark in the valence region, are perfectly

reproduced with essentially no uncertainty. PDFs for which information is more sparse

or indirect, such as for example the gluon, have an uncertainty even when the χ2

at the data points is essentially zero. This is likely due to both a larger amount of

freedom in interpolating between data points for these regions and PDFs, and also that

they have a smaller relative weight in the figure of merit, so are less well trained. On

this basis, if we look at the combination of the PDFs which corresponds directly to

a experimental measurement, it should have smaller uncertainties than the individual

PDFs. For instance, the bottom row of plots in Fig. 6.3 show the PDF dependence of

1This is a well known behaviour of genetic algorithms. In this particular case, once we are close
enough to the absolute minimum it might be more useful to switch to other strategies like steepest
descent. However, in actual fits the issue of over-learning mean that the actual minimum of the training
χ2 is not necessarily the best fit, so this is unnecessary in practice

2This one of the two ways to generate an uncertainty from a Monte Carlo replica set, with the
other being to calculate the central 68% confidence interval, i.e. the interval which contains 68% of the
replicas, with 16% above and below.
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the leading-order expression of the structure function F p2 , namely 4
9 (u+ ū+ c+ c̄) +

1
9

(
d+ d̄+ s+ s̄

)
, which is directly probed by the HERA data, the uncertainty on it at

small x in the HERA data region 10−4 < x < 10−3 is significantly smaller.

This effect on the PDF uncertainties is however not necessarily the case in

the extrapolation regions, where we expect large PDF uncertainties, and moreover

uncertainties which are essentially independent of the training length. This is due to

the fact that, as by definition there is little data in these regions, the functional forms

taken by the neural networks can vary substantially without changing the fitted figure

of merit, χ2[T [ffit],D0]. These two phenomena, very small PDF uncertainties in the

data region, and large PDF uncertainties in the extrapolation regions, in particular at

small and large x are clearly visible in the plots in Fig. 6.2, even at the end of the

100k-generation training. These results provide a way of quantifying the extrapolation

uncertainty on the PDFs, caused by the lack of direct constraints in these regions. This

is a source of PDF uncertainty that can only be reduced if new data is provided, and

that accounts for the majority of the PDF uncertainties in the extrapolation regions.

The extrapolation uncertainty will be studied in more detail in Section 6.3.

Additional interesting information can be extracted from the set of level 0 fits

by looking at the PDF uncertainties of the resulting fits, computed as the standard

deviation over the sample of Nrep = 100 fitted replicas either at the level of parton

distributions or at the level of physical observables. Given that the level 0 input pseudo-

data do not fluctuate, and that only difference between replicas at this closure test level

is the random seed for the minimisation, we expect that the cross-sections computed

from the fitted PDFs should converge to the input values for each replica as the training

length is increased; i.e. that the uncertainty on the predicted value for all the observables

included in the fit must go to zero.

To verify this expectation, we can use the ϕχ2 estimator defined in Appendix B.

In Fig. 6.4 we show ϕχ2 for the level 0 fits as a function of the length of the genetic

algorithms minimisation (the equivalent for ϕχ2 of Fig. 6.1). We can see that as we

increase the training length the spread of the theoretical predictions at the data points

for different replicas decreases monotonically. Again, here we can also observe the

improvement from the more efficient minimisation strategy in NNPDF3.0.

6.3 PDF uncertainties: data, functional and extrapola-

tion components

In the previous section we looked at some results from level 0 closure tests, in which

the fit quality can become arbitrarily good and the PDF uncertainties arise largely due
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Figure 6.2: Comparison between the results of the level 0 closure fit with 100k GA generations
and the corresponding input PDF set, the central value of MSTW2008 NLO PDF set. The
green band shows the one-sigma interval computed over the sample of Nrep = 100 replicas, with
the green dotted line showing the mean value. The plots show the gluon, u, ū and d PDFs on
both linear (right hand side) and logarithmic (left) scales in x, at the scale Q2 = 1 GeV2 where
the PDFs are parametrized.
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Figure 6.3: Same as Fig. 6.2 for the d̄, s and s̄ PDFs, and for the combination of PDFs which
corresponds to the leading-order expression of F p2 .
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algorithms minimisation. The results for both the NNPDF3.0 and NNPDF2.3 GAs are shown,
with the actual closure test results marked by crosses.

to the fact that the experimental data used in the fit has finite kinematical coverage.

Now I will turn to level 1 and level 2 closure tests in order to shed some light, in

the cleanly controlled environment of closure testing, on the various contributions to

PDF uncertainties, specifically those due to the uncertainty of the experimental data,

to the choice of functional form, and to the (previously mentioned) interpolation and

extrapolation uncertainties due to the finite coverage of the data.

A sophisticated understanding of the various sources that form the total PDF

uncertainties can be obtained in the context of closure tests by comparing level 0, level 1,

and level 2 fits. This is because in each of these different levels the PDF uncertainty

band has different components. In level 0 fits, the only significant component is

the interpolation and extrapolation uncertainty (which I will collectively refer to as

extrapolation uncertainty for short); in level 1 fits, fluctuations in the data mean it is

now possible to overfit, so here we also have uncertainty due to the selection of a specific

function for the PDF; and in level 2 finally one also adds the uncertainties propagated

from the experimental data. Therefore, by comparing the results obtained in level 0,

level 1 and level 2 closure fits we can analyse how much of the total PDF uncertainties

is from the data, functional and extrapolation uncertainties.
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Chapter 6. Closure testing the NNPDF3.0 methodology

Let us begin with the extrapolation uncertainty. As discussed in the previous

section, in a level 0 closure test, the genetic algorithm error function should go to zero

for all replicas as the training length is increased. This implies that PDF uncertainties

should also decrease monotonically as a function of the training length wherever data

are available. However, in between data (interpolation) and outside the data region

(extrapolation) PDFs can fluctuate, as these regions are not directly constrained by

the error function. We refer to this residual uncertainty, which would remain even with

infinite training length, as the extrapolation uncertainty. Note that, given the highly

non-trivial dependence of PDFs on the measured cross-sections—including that these

cross-sections typically depend on multiple PDFs—and the wide range of observables

included in the fit, it is very difficult to determine precisely how this extrapolation region

is defined in our fits. While a non-negligible extrapolation component is expected for all

PDFs at small enough and large enough values of x, it is also possible, though perhaps

unlikely, that significant uncertainties due to interpolation could also be present at

intermediate x. Also, it is worth noting that for finite length fits there will be a

spurious component of the uncertainty at level 0 due to the non-convergence of the fit.

In a level 1 fit, the central values of the data have been fluctuated around the

theoretical prediction, and therefore ffit = fin no longer provides an absolute minimum

for the χ2, and instead gives a value of χ2[T [ffit],D1] ≈ 1. However, instead of a single

best fit, because of this there will be a number of possible functions with roughly the

same goodness of fit, corresponding to equally likely possibilities for the underlying law

which cannot be distinguished on the basis of just this data. Therefore, in Level 1

closure fits, on top of the extrapolation component, the total PDF uncertainty will

include a new component which we refer to as functional uncertainty.

This functional uncertainty is a consequence of the fact that the optimal χ2 in the

presence of data fluctuations is not the absolute minimum of the χ2. Indeed, provided

the PDF parameterisation is flexible enough, it will be possible to find functional forms

with a χ2 much smaller than one, but which will not be optimal as they will provide

poor predictions of future data. In a closure test, the optimal result corresponds to

the true underlying functional form, and thus the optimal χ2 is the one of the level 1

pseudo-data, whose value is approximately one, depending on the fluctuations in the

data. For an infinite-dimensional space of functions, this χ2 value can be obtained

in an infinite number of different ways, and the spread of these possibilities provides

the functional uncertainty. This source of uncertainty is in many ways similar to the

extrapolation uncertainty, but whereas the latter is due to the finite range of the data

points, the functional uncertainty is caused by the loss of information about the exact

values of the data points due to the fluctuations.

In level 2 fits, the starting point is again the level 1 pseudo-data generated by adding
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6.3. PDF uncertainties: data, functional and extrapolation components

a Gaussian fluctuation over the predictions obtained from the input PDFs based on

the quoted experimental uncertainties. However, now there is a second step, where an

additional set of fluctuations are applied separately to each replica dataset. This yields

an ensemble of fitted PDFs {fkfit} with statistical properties which faithful propagate

the uncertainties of the underlying dataset. The increase in the uncertainty from level 1

to level 2 fits is the data uncertainty. It is worth noting that this uncertainty is separate

from the functional uncertainty in the PDFs which are due to the actual fluctuations in

the level 1 dataset. Indeed, it is possible to perform a closure test fit with the standard

data fluctuations but much larger or smaller uncertainties, which produces PDFs which

then have the same size functional uncertainty but larger or smaller data uncertainty.

Figs. 6.5 and 6.6 shows the size of the uncertainties in comparable level 0, level 1

and level 2 closure test fits as a ratio of the central value in each case. Each fit was

performed using the MSTW2008 NLO set as input PDFs fin, and a maximum (or total,

in the level 0 fit) training length of 30k generations. The level 1 and level 2 fits were

performed with look-back cross-validation, and the level 0 fit was performed without a

training-validation split. Results are provided for the PDFs in the flavour basis at the

input parameterisation scale of Q2 = 1 GeV2.

From the descriptions above, it is possible to understand the features that we can

observe in Fig. 6.5 and 6.6. Firstly, we see that level 0 uncertainties (the blue bands)

are generally smaller than the level 1, and in turn these are generally smaller than

those at level 2. This confirms the expectation that at each level we are adding

a new component of the total PDF uncertainty, extrapolation, functional and data

components, respectively.

We also observe that in the small-x and large-x regions it is the extrapolation

uncertainty that dominates, given that the level 2 PDF uncertainties are already

reasonably reproduced by those of level 0 closure fits. However, we can see that the

level 0 uncertainty is also not negligible in some medium x regions where there is more

constraint from experimental data. This could be due to valid sources of uncertainty

such as interpolation or degeneracies, or simply due to the failure of some replicas to

converge.

By comparing the level 1 results to the level 0, we see that the functional uncertainty

(shown by the difference between the red and blue bands) is generally sizeable, and is

the dominant component for several PDFs at large x on the boundary between the data

and extrapolation regions, for example d̄ and ū at x = 0.3. The data uncertainty, shown

by the difference between the level 2 uncertainties in green and the level 1 uncertainties

in red, is also significant in the data region and less so outside this, as we would expect.

Interestingly, in regions where we have a rather reasonable coverage from available

data, the three components on the uncertainty are roughly of similar size. Take for
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Figure 6.5: Comparison of relative PDF uncertainties obtained from level 0 (red), level 1
(blue) and level 2 (green) closure test fits with MSTW2008 NLO as input set. The PDFs are
shown as a ratio to their own central value. Results for the gluon, u, ū and d PDFs are shown
on this page, and for d̄, s and s̄ PDFs on the next page. All ratios are plotted at the input
parameterisation scale of Q2 = 1 GeV2, both in logarithmic (left) and in linear (right) scales.
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Figure 6.6: Continued from Fig. 6.5, relative uncertainties in level 0, 1 and 2 closure test fits for
the d̄, s and s̄ PDFs, and for the combination of PDFs which corresponds to the leading-order
expression of F p2 .
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example the gluon around x ∼ 10−3, which is well constrained by the high-precision

HERA measurements, or the PDF component of leading order expression of F p2 . We see

that the functional and data uncertainties are of similar size to the level 0 uncertainty.

This also applies for other PDF flavours, such as for example strangeness for x <∼
0.01 (with abundant constraints from neutrino DIS and LHC data) or the up and

down quarks at medium and large-x (with many DIS and LHC datasets providing

information).

This provides an important general conclusion that the data uncertainties are not

dominant, and including the extrapolation and functional components is important to

correctly estimate the overall PDF uncertainty. This conclusion is consistent with that

of previous, less sophisticated, NNPDF work on this topic, such as that in [180]. It also

is natural to conjecture that the tolerance method [181] which is used in Hessian fits,

provides an effective way of supplementing the data uncertainty obtained through the

Hessian method with these extra necessary components of the uncertainty.

We can also get a more quantitative assessment of the contributions to PDF

uncertainties by means of the estimator ϕχ2 introduced in the previous section and

described in Appendix B. This provides a measure of the average size of the PDF

uncertainties on the data points, in units of the experimental uncertainties. Note that

as ϕχ2 is calculated exclusively at the data points it cannot show the extrapolation

uncertainties, as these are only present away from the data points. For the three levels

of closure test fit, we obtain

ϕlvl0
χ2 = 0.095 , ϕlvl1

χ2 = 0.173 , ϕlvl2
χ2 = 0.254 . (6.6)

If we assume that the functional and data uncertainties are added in quadrature, we

can calculate from these values the fraction of the total uncertainty from these sources.

Doing this we obtain

ϕfunc
χ2 = 0.145 , ϕdata

χ2 = 0.186 . (6.7)

This suggests that the functional and data uncertainties are roughly equally sized,

confirming what we see in Fig. 6.5 and 6.6, though the data uncertainty makes up a

larger proportion of the total uncertainty: 53%, compared to 33%. As the extrapolation

uncertainty is not captured by this measure, ϕlvl0
χ2 should be zero, however our level 0

fit still has a non-zero value, suggesting that while smaller than the functional and

data uncertainties is still a substantial fraction of the total (14%). This is likely due to

replicas failing to converge to the global minimum during training, and we can see from

Fig. 6.4 that the value of ϕlvl0
χ2 falls as the training length is increased. This indicates
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6.4. Validation of the closure test fits

that the improved fitting methodology is still quite far from ideal, and so is something

which could be improved further in future work.

6.4 Validation of the closure test fits

So far, I have used closure tests to study the effectiveness of new methodological features

and to investigate contributions to the PDF uncertainties. However, I have not looked

at the main use of closure tests: to statically validate the results of our fits. In this

section I will demonstrate that our methodology can successfully reproduce the input

PDFs in closure test fits, and has a number of other important statistical features. First,

I show how similar the PDFs and χ2 values from the input and fitted sets are, both

for the total dataset and for individual experiments. Then I will discuss a quantitative

validation of the PDF uncertainties obtained in the closure tests, using the estimators

defined in Appendix B. Finally I will look at closure test fits using different input

PDFs, including to NNPDF3.0 (giving a ‘true’ closure test) and to a set of PDFs with

an unrealistic degree of complexity and structure.

6.4.1 Central values

To evaluate the effectiveness of our methodology in reproducing the underlying law,

we performed a level 2 closure test fit with the final NNPDF3.0 setting, and a pseudo-

dataset based on the final NNPDF3.0 dataset and generated using the MSTW2008

NLO PDFs. The results shown here are based on a single 100 replica PDF set, but we

also performed multiple equivalent with different seeds—one of which is looked at in

Section 6.4.3—to verify that the chosen set is representative.

One indicator of the quality of a closure test fit is provided by the values of the

central χ2 to the pseudo-data, calculated using the average value of the observables over

the replicas. If the test is successful, this should reproduce the central χ2 obtained using

the generating PDFs. We can look at this directly by considering the ∆χ2 estimator

defined in Appendix B. For our level 2 closure test we obtain

∆χ2 = −0.011 , (6.8)

which shows that the fitted PDF set reproduces the χ2 of the input PDF set at the 1%

level.

This level of agreement is achieved not only for the total χ2, but also for the central

χ2 for the individual experimental datasets included in the fit. This is important

to demonstrate, since it provides a more fine-grained test that the fitted PDFs are

reproducing the underlying law across all kinematic regions and PDFs. Fig. 6.7 shows
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Figure 6.7: Comparison of the central χ2 to the closure test data obtained with the input (red)
and with the fitted (green) PDFs, for a level 2 closure test fit based on MSTW2008 pseudo-data,
for individual datasets included in the fit. The horizontal bars show the total central χ2 for the
two PDF sets. The datasets shown are the same used in the baseline NNPDF3.0 global fit, see
Tables 4.1 in Section 4.

the central χ2 for the closure test fit to the pseudo-data generated for each individual

experiment, compared to the corresponding values for the input PDFs. The horizontal

lines show the total central χ2s for the two PDF sets, which are effectively averages

of the individual experiment values weighted by the number of points in each dataset.

Note that the χ2s obtained for each dataset can be quite different from one, as they

depend on the specific fluctuations added to the pseudo-data. We can see from this

figure that the NNPDF methodology successfully reproduces the χ2 of the input PDFs

not only for the total dataset but also experiment by experiment, and does so even

when the target χ2 is far from one. Fig. 6.7 therefore provides strong evidence that, at

least at the level of central values, the level 2 closure test is successful.

We can also look at the agreement in the PDFs themselves by plotting the distance

between the fitted PDFs and the input MSTW2008 PDFs in units of the standard

deviation of the fit PDFs, as defined in Appendix A. These are shown in Fig. 6.8. The

plots show that the fitted and input PDFs are in good agreement, generally at the level

of one sigma or better, and with deviations to about two sigma in some places for some

PDFs as one would expect if the underlying distribution was roughly Gaussian. In

the extrapolation regions, at small and large x, the distances between input and fitted
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PDFs become smaller because of the large extrapolation uncertainties in these regions.

From the distances in Fig. 6.8 we can see that at the qualitative level the closure

test is successful, since the fitted PDFs fluctuate around the truth by an amount which

is compatible with statistical expectations. More insight on this comparison is provided

by plotting the ratio between the fitted and input PDFs, ffit/fin, for all PDF flavours.

This comparison is shown in Fig. 6.9 and 6.10 on both linear and logarithmic scales in

x. It is clear from these plots that the NNPDF methodology reproduces successfully

the input PDFs, with deviations from the input functions by two standard deviations

at most. This comparison provides initial evidence that PDF uncertainties are properly

estimated in Level 2 closure tests, in that the deviations of central value of the fitted

PDFs from the truth are consistent with the size of the PDF errors.

While the deviations of two sigma we can see in Fig. 6.9 and 6.10—for example in the

gluon at x=10−3 and d̄ at x=10−2—can be explained by the statistical fluctuations in

the pseudo-data, it is still slightly off-putting, and it is possible that they are evidence

of a bias. Fortunately, with closure tests it is easy to test whether this is the case:

we simply need to perform a second closure test with the same settings but using a

different random seed to generate the pseudo-data. If the two-sigma differences are

just fluctuations, they should not appear in the results of the second fit. Fig. 6.11

superimposes the ratios for the gluon and d̄ PDFs from a fit with a different set of

psuedo-data, over the previous results from Fig. 6.9 and 6.10. We can see that the

disagreements in the first fit are not present in the second, indicating that the differences

between the fitted PDFs and the input PDFs were indeed just due to the particular

set of pseudo-data used, not due to the methodology.
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Figure 6.9: Ratio of the PDFs obtained from a level 2 closure test which uses MSTW2008
PDFs as input, with respect to the input MSTW2008 PDFs themselves. The green band shows
the one-sigma interval of the fitted PDFs, while the green dotted line is the corresponding mean.
The plots for the gluon, u, ū and d PDFs, on both linear (right hand side) and logarithmic
(left) scales in x, are shown here, and the equivalent plots for the d̄, s and s̄ PDFs are on the
next page. The comparison is performed at the fitting scale of Q2 = 1 GeV2.
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Figure 6.10: Continued from Fig. 6.9, ratio of fitted and input PDFs for d̄, s and s̄ PDFs.
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Figure 6.11: Same as Fig. 6.9 but with the ratios for a different set of psuedo-data (in blue)
superimposed over the original results.
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Chapter 6. Closure testing the NNPDF3.0 methodology

6.4.2 PDF uncertainties

While it is straightforward, as the previous section showed, to use closure tests to

validate the central values obtained from our PDF fits, it is less clear how they can be

used to demonstrate that the PDF uncertainties are also valid. With the central values

we can compare directly to the ideal results, the input PDFs, while the uncertainties

are not related to the input set so we do not have a ‘correct’ answer to compare with.

However, there are a number of techniques we can use to obtain information about the

validity of our uncertainties from closure tests. We have already seen some evidence

from Fig. 6.9 and 6.10 that the uncertainties obtained are consistent with the size of

deviations from the theory values, which suggests that the uncertainties are reasonably

sized. In this section I will discuss a way of more quantitively demonstrating that the

PDF uncertainties we obtain are valid.

PDF uncertainties, by definition, should give the probability that the true value for

the theory is some particular value, given the data used in the fit. In particular, the

theory value should have a 68% chance of lying within one sigma of the PDF central

value (assuming Gaussianity). In principle this is something which could be tested using

closure test fits, however generating a large number of PDF theory values according to a

particular distribution is very complicated. Instead, we can invert this relationship and

test the number of times the theory value is within one sigma (say) of the central value

of a large number of closure test fits each performed using a statistically different set of

pseudo-data. This is the idea behind the ξσ estimator described in detail in Appendix B.

Essentially we generate a large number of closure test fit central values with different

pseudo-data and perform the check described above averaging over multiple different

PDFs and points in x, using uncertainties from a full closure test fit. For the level 2

closure test described above, we obtain

ξ(l2)
σ = 0.699 , ξ

(l2)
2σ = 0.948 , (6.9)

to be compared with the theoretical expectations of 0.683 and 0.955. This excellent

agreement confirms that the PDF replicas obtained by our fitting methodology provide

a faithful representation of the probability distribution for the PDFs given the data

used in the fit.

To verify that this agreement is not accidental, or a fluke of the definition of the

estimator ξσ, but rather a robust feature of our analysis, we can compute again the ξσ

estimators but instead using the uncertainties from a level 1 closure test fit. While the

central values are the same, we know that in level 1 closure tests PDF uncertainties are

underestimated, as they lack the component of uncertainty coming from the data as

described in Section 6.3, and therefore there will be inconsistency between the spread of
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Figure 6.12: Histograms for the difference between the input PDF and multiple fitted PDF
central values obtained from different sets of closure test pseudo data, in units of the standard
deviation of separate level 1 (left) and level 2 (right) closure test fits. An appropriately scaled
Gaussian distribution is shown for comparison.

central values and the uncertainties. Based on this, in level 1 closure tests we expect the

ξσ estimators to be somewhat smaller than the theoretical expectations above. Indeed,

computing ξσ and ξ2σ at level 1 this is precisely what we find:

ξ(l1)
σ = 0.512 , ξ

(l1)
2σ = 0.836 , (6.10)

which shows that indeed the level 1 closure tests fail, in the sense that level 1 fits

underestimate the PDF uncertainties, and strengthens the results we obtained from

the level 2 fits.

We can look at this statistic in more detail by looking at the distribution of the

multiple PDF central values that we generated to calculate the ξσ estimators above.

This tests not only the one- and two-sigma confidence intervals, but the shape of the

whole distribution of deviations between the prediction and the truth. Fig. 6.12 shows

the histograms of the differences between 〈ffit〉 obtained using different closure test

datasets (that is, pseudo-data generated with different random seeds) and the central

value fin of the MSTW input PDFs, in units of the standard deviation of the fitted

PDFs. The distribution for the level 1 closure test is shown on the left and for the

level 2 fits on the right. The histogram is generated using the values at x = 0.05, 0.1

and 0.2 for each PDF, as a representative sampling. The resulting distribution is close

to a Gaussian distribution with a standard deviation of one when using the level 2

uncertainties, but is considerably wider using the level 1 uncertainties as we would

expect from the values of ξσ above. In both cases, however, the distribution appears

to be offset from zero; it’s not clear what the cause of this is and it may be worth

investigating in future closure test work.
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Figure 6.13: Distances (same as Fig. 6.8) between the central values of the fitted PDFs and
the input CT10 PDFs for a level 2 closure test, in units of the standard deviation of the fitted
PDFs.

6.4.3 Tests with different input PDFs

So far in this chapter we have looked only at the results of closure test fits using pseudo-

data generated using MSTW2008 input PDFs. However, it is important to verify that

there is nothing special in using this particular input set, and that our methodology is

flexible enough so that similarly successful results are obtained using other PDF sets

as input. In particular, we want to explicitly verify that ‘true’ closure test is successful,

i.e. that we can correctly reproduce NNPDF3.0, a PDF set generated using the same

methodology and dataset, in closure test fits. I will also demonstrate that the closure

test is successful even when using a comparatively more complicated set of PDFs than

the relatively simple form used for the MSTW2008 parametrisation.

Input set χ2
input χ2

fit ∆χ2

MSTW2008 1.013 1.002 -0.011
MSTW2008 (seed 2) 0.956 0.947 -0.010
CT10 1.036 1.028 -0.007
NNPDF3.0 0.976 0.976 0.0007
NNPDF3.0 (w/ positivity) 0.976 0.976 -0.0001
NNPDF3.0, replica 22 1.055 1.056 0.002

Table 6.1: χ2s to the closure test pseudo-data for the input and fitted PDFs in fits in cases
with different input PDFs. The ∆χ2 statistic described in Appendix B is also shown.

Fig. 6.13 shows the distances between the fitted and the input PDFs for the closure

test fit which uses the CT10 NLO PDF set to generate the data. These are the

equivalent of the corresponding results obtained using MSTW08 as input shown in

Fig. 6.8. We observe that, just as we found for MSTW2008, the fitted PDFs are in
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Figure 6.14: Same as Fig. 6.13 for a closure test based on NNPDF3.0 as input PDFs, without
positivity constraints.
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good agreement with the input mostly at the one-sigma level and with a few larger

deviations. In this respect, the closure test based on CT10 is as successful as that

based on MSTW08. We calculated ∆χ2 with the CT10 pseudo-data, and this is shown

in Table 6.1. It is very close to zero, in fact slightly closer than the equivalent figure

for MSTW, indicating that the central values of the data points are reproduced to a

very high standard.

The distances for a closure test using the NNPDF3.0 NLO PDFs are shown in

Fig. 6.14. Again, the agreement is as good as that obtained using other PDFs. Perhaps

because this is a self-closure test, the ∆χ2 for this test, also shown in Table 6.1, is an

order of magnitude smaller than was found for MSTW and CT10 closure tests.

For a closure test to NNPDF3.0 PDFs we can also look at how well LHC observables

are reproduced in closure tests. This is not possible for the other sets due to the

difference treatment of PDF evolution, heavy quark masses etc. used by the other

PDF collaborations, which introduce deviation between the input and closure results.
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Figure 6.16: Same as Fig. 6.14 for a NNPDF3.0 level 2 closure test including positivity
constraints during the minimisation. See text for more details.

Fig. 6.15 shows calculations of a variety of LHC observables using a closure test

fit based on NNPDF3.0-derived pseudo-data, compared to similar values calculated

with the NNPDF3.0 PDFs themselves. The left-hand plot compares inclusive cross-

sections for vector-boson production (computed with Vrap [182]), top pair production

(top++ [156]), and Higgs production by gluon-gluon fusion (ggHiggs [183]), while the

right-hand plot shows the differential cross-section for W+ + c̄ production. Here we

can again see the good reproduction of the input PDFs, with the closure test results

generally being consistent with the NNPDF3.0 values at the one-sigma level. The

largest difference is seen for the ggH cross-section, where the closure test is about two

standard deviations from the NNPDF3.0 value, though this is perfectly consistent with

a statistical fluctuation.

All of the closure test fits shown so far have been performed without the positivity

constraints used in the fits to real data, described in Section 3.2.6. The motivation for

this is that some of the input PDFs used in the closure tests, in particular MSTW08,

do not satisfied all of the constraints, and therefore including them would potentially

introduce tension between the generated pseudo-data and the positivity constraints

during the minimisation. However, as the NNPDF3.0 PDFs are produced with the

constraints, they satisfy them by construction (this is also verified in Section 7.3.2).

Therefore if we use NNPDF3.0 as input PDF we can include positivity in the closure test

and expect it to have no effect on the results. Fig. 6.16 shows the distances for another

closure test using the NNPDF3.0 NLO PDFs, now with the positivity constraints

imposed during the closure test fit. We indeed find that the level of agreement is

similar to the first NNPDF3.0 closure test, and this is confirmed by the very essentially

identical χ2 shown in Table 6.1.

Finally, Fig. 6.17 shows the distances for a closure test in an extreme case, where
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Figure 6.17: Distances (same as Fig. 6.13) between the fitted and input PDFs for a closure
test fit to pseudo-data generated using replica 22 of the NNPDF3.0 NLO PDF set.
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the left, while the s− distributions is plotted with a logarithmic scale on the right.

a single replica from the NNPDF3.0 NLO set to generate the pseudo-data. While

the central value of NNPDF sets are roughly as smooth as MSTW and CT PDFs,

the individual replicas are in general fluctuate a lot more. As the distances show, even

with these irregular PDFs our methodology can successfully reproduce the input PDFs,

especially at medium x. The large distances at very small and large x are due to the

unpredictable behaviour of the input PDFs in the extrapolation region where there is

little data. Fig. 6.18 compares the fitted PDF to the central value of the input replica

PDFs for the large-x T3 and small x s− distributions, showing both the erratic shape

of the input PDFs and the excellent closure test reproduction.
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6.5 Conclusions

In this chapter, I have demonstrated that the updated NNPDF methodology passes the

closure test, i.e. that it is capable of successfully reproducing a known correct result

to a very high standard. I have also provided evidence that the PDF uncertainties

we obtain through our Monte Carlo approach have the many of the statistical features

that they are required to have. We can therefore have a great deal of confidence in our

fits applying the same methodology to the real experimental data. In the next chapter

I will present results for the final NNPDF3.0 PDF sets.
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Chapter 7

NNPDF3.0 Results

In this chapter I will present results from the NNPDF3.0 LO, NLO and NNLO global

fits. First, I will discuss quality of fit to the experimental data and the dependence

of the χ2 on its exact definition, and on details of the treatment of systematic and

normalisation uncertainties. This will be followed by results for PDFs themselves,

where I will compare the new sets with previous NNPDF2.3 results and with other

existing PDF sets.

In the second section I will explore the dependence of the NNPDF3.0 PDFs on the

choice of experimental dataset. I will study a wide range of variations of the fitted

dataset, including fits without LHC data, fits without jet data, and fits using only

HERA and LHC data. Fits to reduced datasets will also be used to study the impact

of jet data on the global fit, and to look at the strangeness of the proton, something

which has been the object of various recent studies. I will also present a conservative

PDF set, based on a dataset defined by an assessment of the consistency of an individual

dataset with the global fit.

I then turn to an assessment of the stability of the NNPDF3.0 results upon variations

in the fitting methodology. I will repeat some of the tests in Chapter 5 with fits to

the real experimental data, and also look at other aspects which couldn’t be studied

in closure tests. I will first look at NNPDF3.0 fits based on the NNPDF2.3 dataset,

which provide a way of disentangling the data and methodology changes in NNPDF3.0.

I will then look at a range of issues including the impact of positivity constraints, the

stability upon change of fitting basis, and the dependence on whether the systematic

experimental uncertainties are treated as additive or multiplicative.

Finally, I will study the implications of NNPDF3.0 for LHC phenomenology,

including for PDF luminosities, standard model and Higgs cross-sections, and searches

for massive BSM particles.
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7.1 The NNPDF3.0 set of parton distributions

7.1.1 Fit quality

Table 7.1 shows the results for the fit quality of the global LO, NLO and NNLO

NNPDF3.0 sets. The values shown are calculated for a common value of αs(MZ) =

0.118. Both the central t0 and experimental χ2 per data point are given for all sets,

along with the number of data points used in the fit. Note that the precise definition

of the t0 χ
2 varies with the perturbative order, as it depends on the theoretical values

of the cross-sections included in the fit.

As mentioned in Section 3.2.3, the t0 χ2 is used during the minimisation as it

corresponds to an unbiased maximum-likelihood estimator even in the presence of

multiplicative uncertainties. The experimental χ2, on the other hand, is based on

the experimental covariance matrix released by the experimental collaborations, and

while it cannot be used for minimisation, it is best suited for benchmarking as it only

depends on publicly available results (the final PDFs and the experimental covariance

matrix).

The overall fit quality in the NLO and NNLO fits is good, with a central

experimental χ2 of 1.23 at NLO and 1.29 at NNLO. The LO fit in contrast has a

much poorer fit quality, as we would expect due to the missing and relatively large

NLO corrections. Exploring further into the table, while for some experiments like

CHORUS, SLAC, ATLAS high-mass Drell-Yan, the W lepton asymmetry or top quark

pair production, the χ2 improves when going from NLO to NNLO, for most of the

experiments it remains either very similar or gets slightly worse. This is also the case

for the new HERA-II datasets. For the jet data the fit quality is quite similar at NLO

and NNLO using the t0 definition, but note that the kinematical cuts in the two cases

are often very different (see Section 4.3.1). This is also the case for the CMS double

differential Drell-Yan data: the χ2 is slightly worse at NNLO but this is because at

NLO we impose kinematical cuts that remove the region with large NNLO corrections.

Without such cuts, the χ2 at NLO is substantially poorer.

Another interesting feature that one can observe from Table 7.1 is that the numerical

differences between the two definitions of the χ2 can be substantial. This effect

is particularly acute for experiments where multiplicative systematic uncertainties

dominate, as we would expect, and emphasises the crucial role of careful estimation of

systematic errors in PDF fitting. One such example is provided by the CMS inclusive

jet data, where for the NNLO fit the central χ2 is 1.90 for the experimental definition

and 1.07 for the t0. These large differences may at first glance appear quite alarming,

however I will show in Section 7.3.4 that these differences in the value of the χ2 do
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LO NLO NNLO

Ndat χ2
exp χ2

t0 Ndat χ2
exp χ2

t0 Ndat χ2
exp χ2

t0

Total 4258 2.42 2.17 4276 1.23 1.25 4078 1.29 1.27

NMC d/p 132 1.41 1.09 132 0.92 0.92 132 0.93 0.93
NMC 224 2.83 3.3 224 1.63 1.66 224 1.52 1.55
SLAC 74 3.29 2.96 74 1.59 1.62 74 1.13 1.17

BCDMS 581 1.78 1.78 581 1.22 1.27 581 1.29 1.35
CHORUS 862 1.55 1.16 862 1.11 1.15 862 1.09 1.13

NuTeV 79 0.97 1.03 79 0.70 0.66 79 0.86 0.81
HERA-I 592 1.75 1.51 592 1.05 1.16 592 1.04 1.12

ZEUS HERA-II 252 1.94 1.44 252 1.40 1.49 252 1.48 1.52
H1 HERA-II 511 3.28 2.09 511 1.65 1.65 511 1.79 1.76
HERA σc

NC 38 1.80 2.69 47 1.27 1.12 47 1.28 1.20

E886 d/p 15 2.04 1.10 15 0.53 0.54 15 0.48 0.48
E886 p 184 0.98 1.64 184 1.19 1.11 184 1.55 1.17
E605 119 0.67 1.07 119 0.78 0.79 119 0.90 0.72

CDF Z rapidity 29 2.02 3.88 29 1.33 1.55 29 1.53 1.62
CDF Run-II kt jets 76 1.51 2.12 76 0.96 1.05 52 1.80 1.20

D0 Z rapidity 28 1.35 2.48 28 0.57 0.68 28 0.61 0.65

ATLAS W,Z 2010 30 5.94 3.20 30 1.19 1.25 30 1.23 1.18
ATLAS 7 TeV jets 2010 90 2.31 0.62 90 1.07 0.52 9 1.36 0.85
ATLAS 2.76 TeV jets 59 3.88 0.61 59 1.29 0.65 3 0.33 0.33
ATLAS high-mass DY 5 13.0 15.6 5 2.06 2.84 5 1.45 1.81

ATLAS W pT - - - 9 1.13 1.28 - - -
CMS W electron asy 11 10.9 0.95 11 0.87 0.79 11 0.73 0.70
CMS W muon asy 11 76.8 2.25 11 1.81 1.80 11 1.72 1.72

CMS jets 2011 133 1.83 1.74 133 0.96 0.91 83 1.9 1.07
CMS W + c total 5 11.2 25.8 5 0.96 1.30 5 0.84 1.11
CMS W + c ratio 5 2.04 2.17 5 2.02 2.02 5 1.77 1.77
CMS 2D DY 2011 88 4.11 12.8 88 1.23 1.56 110 1.36 1.59
LHCb W rapidity 10 3.17 4.01 10 0.71 0.69 10 0.72 0.63
LHCb Z rapidity 9 5.14 6.17 9 1.10 1.34 9 1.59 1.80

σ(tt̄) 6 42.1 115 6 1.43 1.68 6 0.66 0.61

Table 7.1: The values of the χ2 per data point for the LO, NLO and NNLO central fits of
the NNPDF3.0 family with αs(MZ) = 0.118, obtained using both the experimental and the t0
definitions.
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not convert into a large impact on the PDFs, which are rather stable upon changes of

the χ2 definition. The dependence of the χ2 on its definition is weaker for fixed target

experiments and DIS data, for which statistical uncertainties are dominant.

7.1.2 Parton distributions

Fig. 7.1 shows the distances (see Appendix A) between the parton distributions of the

NNPDF3.0 and NNPDF2.3 sets for each of the three perturbative orders, LO, NLO and

NNLO. As mentioned in Appendix A, when comparing two sets of 100 replicas, d < 2

means that the two sets are statistically indistinguishable (they have differences on the

level of two different sets of replicas extracted from the same underlying probability

distribution), while d ∼ 10 means that the sets correspond to PDFs that disagree at

the one-sigma level. The distances shown here, and in the rest of this chapter, are

computed at a scale of Q2 = 2 GeV2, and are produced using the αs(MZ) = 0.118 sets.

For the LO plot, the αs(MZ) = 0.119 NNPDF2.3 is used instead, as αs(MZ) = 0.118

is not available for NNPDF2.3 LO. This has a minor effect on the comparison.

As Fig. 7.1 demonstrates, the size and character of the differences between the

NNPDF3.0 and 2.3 PDFs vary significantly with the perturbative order. At LO,

the gluon is in very good agreement between the two sets for x <∼ 0.01. This

suggests that Monte Carlo tunes, which strongly depend on the small-x gluon, based

on NNPDF2.3LO—such as the Monash 2013 tune of Pythia8 [184]—should also work

reasonably well with NNPDF3.0LO. On the other hand, larger differences, going up to

about two sigma, are found for both the quarks and the gluon at medium and large x.

It is worth noting that at LO theory uncertainties dominate over PDF uncertainties,

so the actual impact of these differences will likely be quite small.

At NLO and NNLO, NNPDF2.3 and NNPDF3.0 are typically in agreement at

the one-sigma level, with occasionally somewhat larger distances of order 1.5–sigma.

In particular, while the total quark singlet PDF is relatively stable, there are larger

differences for individual quark flavours, especially at medium and large-x. Significant

differences can also been seen for the gluon PDF, especially at NLO, though here it

should be noted that NNPDF2.3 used the FONLL-A treatment of heavy quarks, while

NNPDF3.0 uses FONLL-B (see Section 4.2.3). This comparison also shows that PDF

uncertainties change at the level of one sigma: this is to be expected, as a consequence

of the constraints coming from new data, and the improved fitting methodology.

A direct comparison of NNPDF2.3 and NNPDF3.0 NLO PDFs can be seen in

Fig. 7.2, where the gluon, singlet PDF, isospin triplet and total valence PDFs from

the two sets are plotted, again with αs(MZ) = 0.118 at Q2 = 2 GeV2. We can see

that in the NNPDF3.0 NLO set the central value of the gluon remains positive, even
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Figure 7.1: Distances between NNPDF2.3 and NNPDF3.0 at LO (top), NLO (center) and
NNLO (bottom) PDFs, computed between sets of Nrep = 100 replicas at Q2 = 2GeV2. All
PDFs use αs(MZ) = 0.118, except the LO NNPDF2.3 set which has αs(MZ) = 0.119.
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Figure 7.2: Comparison of NNPDF2.3 and NNPDF3.0 NLO PDFs at Q2 = 2 GeV2 with
αs(MZ) = 0.118. From top to bottom and from left to right the gluon, singlet, isospin triplet
and total valence are shown.
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Figure 7.3: Same as Fig. 7.2 but at NNLO.

at small-x. It is flat down to x ∼ 10−4 and then it begins to grow, within its large

uncertainty, always remaining above its NNPDF2.3 counterpart. This difference can

be understood, as mentioned before, to be a consequence of moving to the FONLL-B

heavy quark scheme, and also due to the more stringent positivity constraints that are

imposed in the new set. For the total quark singlet on the other hand there is good

agreement between 2.3 and 3.0. For the quark triplet we see two interesting features:

the larger uncertainty at small x, due to the changes to the preprocessing and sum

rules described in Section 5.4.3, and also a difference at large x, where the 3.0 result is

larger than from 2.3, especially in the region where the PDF peaks.

The same comparison are shown for the NNLO sets in Fig. 7.3. In this case, we can

observe good consistency for the gluon PDF, with a reduction in the PDF uncertainties

at small-x. Note that unlike at NLO, here both the 3.0 and 2.3 fits use the same FONLL-

C GM-VFN scheme. For the quark singlet and triple PDFs the situation at NNLO is

much the same as it was at NLO, with broad agreement for the singlet and the specific

differences mentioned for the triplet.

It is interesting to also perform a comparison of the NNPDF2.3 and 3.0 sets at the

higher scale of Q2 = 104 GeV2, typical of LHC processes. Results for this comparison
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Figure 7.4: Same as Fig. 7.3, but at Q2 = 104 GeV2, and with results shown as ratios to the
NNPDF3.0 central value.

at NNLO are shown Fig. 7.4, in this case as ratios to the NNPDF3.0 central value. We

see that the two PDF sets agree typically at the one-sigma level or better, with a small

number of exceptions. The NNPDF3.0 gluon is somewhat softer than in NNPDF2.3, in

particular in the region around x ∼ 0.01 which is important for the Higgs gluon fusion

cross-section. There is very good agreement in the quark singlet, as we would expect

from the low scale results above. For the triplet there is good agreement, except near

x ∼ 0.3 where the NNPDF2.3 and 3.0 fits disagree at about the two-sigma level, and

again at x ∼ 0.02 where there is about a one sigma difference. For the total valence

PDF there is a reasonable agreement at large x, with disagreement going to smaller

values of x, growing to a maximum of about 1.5 sigma at x ∼ 10−2.

Another set of comparisons useful for evaluating the phenomenological impact of

these changes is the parton luminosities. Following Ref. [185], we define the parton

luminosity for the ij initial state as

Φij

(
M2
X

)
=

1

s

∫ 1

τ

dx1

x1
fi
(
x1,M

2
X

)
fj
(
τ/x1,M

2
X

)
, (7.1)

where fi(x,M
2
X) is the PDF for the ith parton, τ ≡ M2

X/s and MX is the invariant
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Figure 7.5: Parton luminosities, Eq. 7.1 computed using NNPDF2.3 and NNPDF3.0 NLO
PDFs with αs(MZ) = 0.118, as a function of the invariant mass of the final state MX . Results
are shown as ratios to NNPDF3.0. From top to bottom and from left to right the qq̄, qq, qq
and qg luminosities are shown.

mass of the final state.

Figs. 7.5 and 7.6 compare the gg, qq, qq̄ and qg luminosities obtained using

NNPDF2.3 and 3.0 PDF sets for
√
s=13 TeV and αs(MZ) = 0.118 (where for quarks

a sum over light flavours is understood). The NLO comparisons are shown in Figs. 7.5

and NNLO in 7.6. At NLO, we generally find agreement at the one-sigma level or

below in all cases, with slightly more disagreement below about MX ∼ 40 GeV and

in the qg channel above 1 TeV, where the luminosity is rather larger in NNPDF3.0

than in NNPDF2.3. Note that in the gg channel in the region around 100-200 GeV

the NNPDF3.0 luminosity is somewhat softer than in NNPDF2.3, though always in

agreement within PDF uncertainties.

At NNLO, in the qq and qq̄ channels there is generally good agreement, with

differences within one sigma. For qq̄, the NNPDF3.0 luminosity is slightly larger at

high invariant masses, while for qq around 500 GeV NNPDF3.0 is somewhat lower.

More significant differences are found in the gg and qg channels, where in both cases the

luminosity at medium invariant masses is smaller by more than one sigma in NNPDF3.0
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Figure 7.6: Same as Fig. 7.5 at NNLO.

than in NNPDF2.3. In particular, for 30 GeV ≤ MX ≤ 300 GeV, the gg one-sigma

bands barely overlap. This has important consequences for gluon-initiated processes

such as inclusive Higgs production, as will be shown in Section 7.4.3 below. As discussed

in Section 7.1.2, these differences stem from a combination of the improved fitting

methodology and the new constraints from HERA and LHC data.

7.1.3 Perturbative stability

In the NNPDF approach the same methodology is used at all orders, with only the

underlying QCD theory (and to a small extent the dataset) changing from one order

to the next. Comparing the results at different orders is therefore a meaningful

comparison. Fig. 7.7 shows the distances between the NNPDF3.0 pairs of fits at

consecutive orders: LO vs. NLO and NLO vs. NNLO. In the former case, the main

variation is as would be expected seen in the gluon PDF, which is very different at

LO. There are also significant differences in the large-x quarks. As mentioned in

the previous section, at LO theory uncertainties completely dominate over the PDF

uncertainty, which depends on the data and is roughly the same at all orders, as the

right hand plots in these comparisons show.
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Figure 7.7: Same as Fig. 7.1, but now comparing NNPDF3.0 LO vs NLO (top) and NLO vs.
NNLO (bottom).

Distances are generally smaller when comparing NLO to NNLO (note the difference

in the y-axis scale). For central values, the main differences are seen in the gluon PDF,

both at small x and at large x, and in the medium- and large-x quarks, in particular the

total quark singlet. Uncertainties are again quite stable, with the exception on the large-

x gluon, where the PDF uncertainties are larger at NNLO because of the additional

cuts applied to the jet data for this order (see Section 4.3.1). These differences in the

details of the jet dataset used in the fit also impact the central values of the two fits.

Next, Fig. 7.8 compares directly the LO, NLO and NNLO NNPDF3.0 parton

distributions at Q2 = 2 GeV2. The large shift in the gluon between LO and NLO

described above, and its subsequent stability at NNLO, is clearly seen. Specifically,

the LO gluon is very large, compensating for missing NLO terms in the DIS splitting

functions and anomalous dimensions. At NLO, the small-x gluon is rather flatter

than the NNLO one, which goes almost negative at small-x. This relatively unstable

perturbative behaviour of the small-x gluon might be related to unresummed small-x
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Figure 7.8: Same as Fig. 7.2, but now comparing NNPDF3.0 LO, NLO and NNLO PDFs.

perturbative corrections [186]. Quark PDFs are generally quite stable, with NNLO and

NLO mostly in agreement at the one-sigma level, though sizeable shifts are seen in the

singlet in the region around x ∼ 0.1 when going from LO to NLO and NLO to NNLO.

7.1.4 Model uncertainties

While uncertainties related to higher order corrections are perhaps the largest source of

uncertainty not included in the standard PDF uncertainty, there are a few more sources

of uncertainty which are also not part of the current PDF uncertainty, and which might

become relevant as the precision of the data increases. One source is to do with further

approximations which are made in the theoretical description of the data, which here I

will refer to as “model” uncertainties. This section will discuss some, likely dominant,

sources of model uncertainties, namely those related to deuteron nuclear corrections

and those related to the treatment of heavy quarks.

Several fixed-target data included in the NNPDF3.0 PDF determination are

based on scattering on nuclear targets. This includes all of the neutrino deep-

inelastic scattering data (CHORUS, NuTeV), the data for charged-lepton deep-inelastic

scattering from deuteron targets (NMC, BCDMS, SLAC), and the data for Drell-Yan
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Figure 7.9: Same as Fig. 7.1, but now comparing the NNPDF3.0 NLO PDFs with and without
deuteron nuclear corrections.
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Figure 7.10: Same as Fig. 7.4, but now comparing the NNPDF3.0 NLO fit with and without
deuterium nuclear corrections. From left to right the up and down quark PDFs are shown.

production on a deuterium target in the DY E866 dataset. The impact of nuclear

corrections on the NNPDF2.3 PDF determination has previously been discussed in

Ref. [168]. There, the NNPDF2.3 fit was repeated introducing deuteron nuclear

corrections according to a number of models, and found non-negligible (up to about

one and a half sigma) but very localized, impact on the down distribution at large x.

To look at the impact of deuteron corrections on the NNPDF3.0 PDF determination,

we have again repeated the fit, but now including deuterium corrections according to

the recent model of Ref. [24], which supersedes the previous treatment of higher twist

corrections of Ref. [187], considered in Ref. [168]. The distances between resulting PDFs

with deuteron corrections and the standard PDFs are shown in Fig. 7.9. The pattern

of deviations here is very similar to that seen Ref. [168], but with a somewhat more

moderate impact, as one might expect given the larger dataset used in NNPDF3.0.
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Essentially only the up and down quark distributions are affected, and by comparing

the PDFs in Fig. 7.10 it is apparent that the effect is always below one sigma. In view of

the theoretical uncertainty involved in the modeling of these corrections, we prefer not

to include them in the fit, as it is unclear that the uncertainty on them is significantly

smaller than their actual size. Nuclear corrections to neutrino data are likely to be yet

smaller, with the possible exception of the strange distribution [24].

Another important potential source of theoretical uncertainty is related to the

treatment of heavy quarks. As discussed in Section 4.2.3, we use a computational

scheme, the FONLL scheme, which ensures that all available perturbative information

is included. However, there are also aspects that go beyond perturbation theory. In

particular, the dependence on the quark mass itself, and the possible presence of an

intrinsic heavy quark component [188].

The dependence of PDFs on the values of the heavy quark masses was previously

studied in Ref. [56] within the context of the NNPDF2.1 PDF determination, where

the values of mc and mb were varied, in the absence of intrinsic heavy quark PDFs.

The main result of this study was that in such a case the value of the heavy quark mass

mostly affects the threshold for generating the heavy quark by perturbative evolution,

with a lower mass value corresponding to a larger PDF at a given scale, due to a longer

evolution. However this also suggests that, while for the b quark this dependence on

the quark mass value is likely to be physical, for charm, which is at the boundary

of the perturbative region and might have a non-negligible intrinsic component, the

dependence on the mass is unphysical, and would be reabsorbed by an intrinsic PDF.

As mentioned in Section 4.2.3, Eq. 4.2, the heavy quark mass values used in the

current NNPDF3.0 PDF determination differ from the values previously used in the

NNPDF 2.3 determination, as we now use the MS PDG mass values, while the previous

values were essentially the pole mass values. This shift is larger than the current

uncertainty on MS masses. In order to assess the impact of this change, and thus

also of the dependence on heavy quark masses, we have repeated the NNPDF3.0 PDF

NLO determination using the same heavy quark mass values that were used for the

NNPDF2.3 set. Fig. 7.11 compares the parton luminosities at Q2 = 104 GeV2 for the

two sets of masses. Results are in agreement with the findings of Ref. [56], where a

similar effect due to changes of the charm mass was found. The effect is not entirely

negligible, however, as mentioned, it is likely that most of this dependence would be

absorbed into an intrinsic charm PDF. At NLO, MS and pole mass-scheme expressions

coincide, with a small correction at NNLO, hence it seems more appropriate to use

the more accurate MS mass value. The shifts seen in Fig. 7.11 should be taken as

an upper bound to the size of the uncertainty related to the charm mass value, the

exact assessment of which will only be possible once an intrinsic charm component is
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Figure 7.11: Dependence on the value of the heavy quark masses of parton luminosities
Eq. 7.1 computed using NNPDF3.0 NLO PDFs with αs(MZ) = 0.118. Results are shown
as ratios to the default set. The up-antiup, down-antidown and gluon-gluon luminosities are
shown.

introduced in our PDF fits.

Finally, it is also worth mentioning that further model uncertainties are expected

to come from the treatment of electroweak interactions, both from the choice

of parameters, and from the treatment of higher order terms (including mixed

strong-electroweak corrections [189]). Though these are generally smaller than the

uncertainties discussed here, they could become significant in particular kinematic

regions or for specific processes, such as for instance high-mass production of W pairs.

7.2 Dependence on the dataset

7.2.1 Conservative PDFs from a consistent dataset

Inconsistencies between data which enter a global PDF determination can distort the

statistical interpretation of PDF uncertainties. Inconsistency of any individual dataset

with the bulk of the global fit may suggest that our understanding of it, either from the

theoretical or experimental point of view, is not complete, and in these cases exclusion
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from the fit might be advantageous, despite the loss of information from doing so. In

order to minimise such inconsistencies, “conservative” PDFs have been suggested, for

example by introducing restrictive kinematic cuts which remove potentially dangerous

regions [190], or by picking data which one might expect to be more reliable. One

example of the latter are collider-only fits, for instance the NNPDF2.3 collider-only

fit [45], which are based on the expectation that collider data, because of their higher

energy, should be more reliable than fixed-target data.

For NNPDF3.0 we developed a new objective definition of a conservative dataset

based on a measure of consistency between datasets introduced in Ref. [191, 192].

This idea is based on observing that lack of compatibility can always be viewed as

an underestimate of the covariance matrix: if the covariance matrix is inflated by

a factor α2, then compatibility can always be attained if α2 if large enough (crudely

speaking, if uncertainties are all multiplied by a factor α). It is then possible to measure

compatibility by assuming that the prior knowledge is given by all experiments in the

global dataset but the given one, and using Bayes’ theorem to study how this prior

is modified when the excluded experiment is added. One can then compute the a

posteriori probability P (α) that the covariance matrix of the given experiment should

be rescaled by a factor α. Compatibility corresponds to the case in which P (α) peaks

around α ∼ 1, while if the most likely value is at α0 > 1, this means that compatibility

is only achieved when uncertainties are inflated by α0. The probability distribution

P (α) is calculated based on the weight penalty method described in Ref. [191, 192].

The t0 definition of the χ2, which is used for minimisation (see Section 7.1.1), is also

used in the determination of P (α).

To generate the “conservative” dataset, we first computed the probability dis-

tribution of the rescaling variable α, P (α), for each dataset included in the global

fit. In practice, for simplicity we compute the probability P (α) without excluding

the given experiment from the global fit. This provides a conservative estimate

of the compatibility (which is clearly increased by including the experiment under

investigation in the prior) without requiring us to construct a new set of replicas for

each experiment. We then exclude from the conservative fit all experiments for which

at least two of the P (α) mean, median and mode are above a chosen threshold value,

denoted by αmax. We discard all datasets for which the criterion fails either at NLO

or at NNLO (or both), which corresponds to the most conservative choice of only

retaining experiments which are well described at all perturbative orders, and has the

obvious advantage that the resulting “conservative” dataset does not depend on the

perturbative order. Because of this choice, we also exclude the ATLAS W pT data,

for which no NNLO prediction is available. The values of the mean, median and mode

computed for all the experiments in the NNPDF3.0 global fits at NLO and NNLO are
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7.2. Dependence on the dataset

NLO global fit NNLO global fit

Experiment mean mode median mean mode median

NMC d/p 1.04 1.01 1.03 1.04 1.01 1.03
NMC σNC,p 1.32 1.31 1.27 1.27 1.26 1.27

SLAC 1.31 1.27 1.30 1.13 1.09 1.12
BCDMS 1.17 1.16 1.17 1.20 1.19 1.20

CHORUS 1.11 1.10 1.11 1.10 1.09 1.09
NuTeV 1.04 0.90 0.98 1.06 0.92 1.00
HERA-I 1.09 1.09 1.10 1.10 1.09 1.09

ZEUS HERA-II 1.23 1.22 1.23 1.25 1.24 1.25
H1 HERA-II 1.30 1.3 1.31 1.35 1.34 1.34
HERA σc

NC 1.10 1.06 1.09 1.14 1.11 1.13

E886 d/p 1.00 0.88 0.96 1.01 0.88 0.96
E886 p 1.13 1.11 1.12 1.15 1.14 1.15
E605 0.97 0.94 0.96 0.94 0.91 0.93

CDF Z rapidity 1.34 1.28 1.32 1.39 1.32 1.36
CDF Run-II kt jets 1.09 1.06 1.08 1.15 1.12 1.14

D0 Z rapidity 1.34 1.28 1.32 0.86 0.82 0.85

ATLAS W,Z 2010 1.20 1.15 1.18 1.17 1.12 1.15
ATLAS 7 TeV jets 2010 0.76 0.74 0.75 1.09 0.92 1.02
ATLAS 2.76 TeV jets 0.86 0.83 0.85 1.07 0.57 0.83
ATLAS high-mass DY 2.22 1.68 2.03 1.82 1.34 1.63
CMS W electron asy 1.05 0.91 0.99 1.00 0.87 0.95
CMS W muon asy 1.62 1.42 1.54 1.60 1.40 1.53

CMS jets 2011 1.01 0.97 0.99 1.09 1.07 1.08
CMS W+c total 1.60 1.17 1.42 1.50 1.09 1.33
CMS W+c ratio 1.93 1.43 1.74 1.88 1.39 1.69

CMS 2D DY 2011 1.27 1.25 1.27 1.28 1.27 1.28
LHCb W,Z rapidity 1.10 1.02 1.07 1.20 1.12 1.17

σ(tt̄) 1.65 1.24 1.49 1.09 0.75 0.95

Table 7.2: The mean, mode and median of the P (α) distributions [191, 192] (see text) for all
the experiments in the NNPDF3.0 global fits, both at NLO (left) and at NNLO (right).

collected in Table 7.2.

Here results for “conservative” patrons obtained with values of αmax = 1.1, 1.2 and

1.3 will be presented. Table 7.3 gives the χ2 (for ease of comparison we show results

obtained using the experimental definition, see Section 7.1.1) for the PDF fits to these

datasets. To facilitate the comparison with the global fit, we also provide its χ2 values

in the same table, taken from Table 7.1.

The improvement in global fit quality as αmax is lowered is apparent, though perhaps

unsurprising, with the most conservative option leading to an essentially perfect χ2 of

order one. It is interesting to observe that NMC proton data, which are known to have

internal inconsistencies [193], as well as other datasets such as the H1 HERA-II data,

the ATLAS high-mass Drell-Yan data, and the CMS W+c data are excluded even from

the least conservative set. On the other hand, the CMS inclusive jet data is included

for all values of αmax (note that for this dataset, and for several of the jet datasets,
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αmax = 1.1 αmax = 1.2 αmax = 1.3 Global fit
χ2

nlo χ2
nnlo χ2

nlo χ2
nnlo χ2

nlo χ2
nnlo χ2

nlo χ2
nnlo

Total 0.96 1.01 1.06 1.10 1.12 1.16 1.23 1.29

NMC d/p 0.91 0.91 0.89 0.89 0.88 0.89 0.92 0.93
NMC σNC,p - - - - - - 1.63 1.52

SLAC - - - - 1.77 1.19 1.59 1.13
BCDMS - - 1.11 1.15 1.12 1.16 1.22 1.29

CHORUS - - 1.06 1.02 1.09 1.07 1.11 1.09
NuTeV 0.35 0.34 0.62 0.64 0.70 0.70 0.70 0.86
HERA-I 0.97 0.98 1.02 1.00 1.02 0.99 1.05 1.04

ZEUS HERA-II - - - - 1.41 1.48 1.40 1.48
H1 HERA-II - - - - - - 1.65 1.79
HERA σc

NC - - 1.21 1.32 1.20 1.31 1.27 1.28

E886 d/p 0.30 0.30 0.43 0.40 0.44 0.46 0.53 0.48
E886 p - - 1.18 1.40 1.27 1.53 1.19 1.55
E605 1.04 1.10 0.74 0.83 0.75 0.88 0.78 0.90

CDF Z rapidity - - - - - - 1.33 1.53
CDF Run-II kt jets - - 1.01 2.01 1.04 1.84 0.96 1.80

D0 Z rapidity 0.56 0.61 0.62 0.71 0.60 0.69 0.57 0.61

ATLAS W,Z 2010 - - 1.19 1.13 1.19 1.17 1.19 1.23
ATLAS 7 TeV jets 2010 0.96 1.65 1.08 1.58 1.10 1.54 1.07 1.36
ATLAS 2.76 TeV jets 1.03 0.38 1.38 0.36 1.35 0.35 1.29 0.33
ATLAS high-mass DY - - - - - - 2.06 1.45

ATLAS W pT - - - - - - 1.13 -
CMS W electron asy 0.98 0.84 0.82 0.72 0.85 0.73 0.87 0.73
CMS W muon asy - - - - - - 1.81 1.72

CMS jets 2011 0.90 2.09 0.96 2.09 0.99 2.10 0.96 1.90
CMS W + c total - - - - - - 0.96 0.84
CMS W + c ratio - - - - - - 2.02 1.77
CMS 2D DY 2011 - - - - 1.20 1.30 1.23 1.36
LHCb W rapidity - - 0.69 0.65 0.74 0.69 0.71 0.72
LHCb Z rapidity - - 1.23 1.78 1.11 1.58 1.10 1.59

σ(tt̄) - - - - - - 1.43 0.66

Table 7.3: The experimental χ2 values at NLO and NNLO for NNPDF3.0 fits using
conservative datasets with three different values of the threshold αmax (see text). In each
case, the χ2 is shown for the datasets which pass the conservative cut. The values for the global
fit (same as in Table 7.1) are also shown for ease of comparison.
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NNLO global fit NNLO cons. fit αmax = 1.1

Experiment mean mode median mean mode median

NMC σNC,p 1.27 1.26 1.27 1.50 1.45 1.48
SLAC 1.13 1.09 1.12 1.61 1.37 1.48

BCDMS 1.20 1.19 1.20 2.02 1.86 1.92
CHORUS 1.10 1.09 1.09 2.55 1.69 2.32

ZEUS HERA-II 1.25 1.24 1.25 1.38 1.33 1.36
H1 HERA-II 1.35 1.34 1.34 1.51 1.47 1.49
HERA σc

NC 1.14 1.11 1.13 1.13 1.09 1.12

E886 p 1.15 1.14 1.15 2.18 1.62 2.03
CDF Z rapidity 1.39 1.32 1.36 1.56 1.40 1.50

CDF Run-II kt jets 1.15 1.12 1.14 1.25 1.18 1.22

ATLAS W,Z 2010 1.17 1.12 1.15 1.38 1.25 1.32
ATLAS high-mass DY 1.00 1.34 1.63 1.63 1.19 1.45

CMS W muon asy 1.60 1.40 1.53 2.90 2.48 2.81
CMS W+c total 1.50 1.09 1.33 1.85 1.37 1.67
CMS W+c ratio 2.00 1.39 1.69 2.12 1.58 1.94

CMS 2D DY 2011 1.28 1.27 1.28 1.29 1.28 1.29
LHCb 1.20 1.12 1.17 1.58 1.22 1.48

Table 7.4: The mean, mode and median of the P (α) distributions at NNLO for the experiments
excluded from the conservative fit with αmax = 1.1, either when the prior is the global fit (same
as Table 7.2) or when using as prior the conservative set itself.

the experimental χ2 shown in Table 7.3 is significantly worse than the t0 value used

for the actual determination of P (α)). The maximally consistent dataset, found with

αmax = 1.1, includes the NMC d/p data, the NuTeV and HERA-I DIS data, the Drell-

Yan data from E866 and E605, the D0 Z rapidity, the ATLAS and CMS inclusive jets

and the CMS W electron asymmetry.

In Table 7.4, we furthermore compare the mean, mode and median of the P (α)

distributions for the experiments excluded from the NNLO conservative fit with αmax =

1.1 when the global fit is used as prior (i.e. the same numbers for the corresponding

entries in Table 7.2), to the same quantities computed using as a prior the conservative

fit itself. All the peak values of P (α) deteriorate when using the conservative set as

a prior, as we would expect. Clearly, this deterioration will be maximal for datasets

which are internally consistent, but inconsistent with the rest, and more moderate

for experiments which are affected by internal inconsistencies, so that a rescaling of

uncertainties is needed in order to describe them regardless of what one takes as a

prior. This is the case for instance for the NMC σNC,p which are affected by internal

inconsistencies as already mentioned.

The distances between the conservative sets and the baseline NNPDF3.0 NNLO

global fit are show in Fig. 7.12, while the PDFs are compared directly in Fig. 7.13, where

the NNLO conservative fits with αmax = 1.1 and 1.2 and the reference fit are shown. All

of the conservative sets are consistent with the global fit, with PDFs that differ at most
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Figure 7.12: Same as Fig. 7.1, but now comparing the baseline NNPDF3.0 global fit to the
conservative fits obtained using three difference values of αmax: αmax = 1.1 (top), αmax = 1.2
(center), αmax = 1.3 (bottom).
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Figure 7.13: Same as Fig. 7.8, but now comparing the default global NNLO fit to the two
conservative fits with αmax = 1.1 and αmax = 1.2.

at the one-sigma level, thereby confirming the consistency of the procedure, though

of course PDF uncertainties are larger in the conservative fits due to their reduced

datasets. At small-x, the gluon is similar in all cases as it is driven by the HERA-I

data, while there is more dependence on the choice of αmax at medium and large x.

Interestingly, in the region relevant for Higgs production in gluon fusion the gluon is

significantly affected by the choice of αmax, though not beyond the one-sigma level.

The quarks are in good agreement, with the main differences seen at medium x.

One use for these conservative parton sets is studies aimed at assessing how

individual datasets affect LHC observables by looking at their effect on a maximally

self-consistent dataset, such as was performed in Ref. [194]. In the future, as more and

more data will become available, this approach could also be used in determining an

optimal dataset on which a global fit should be based.

7.2.2 Impact of the new HERA and LHC data

In this section I will examine in detail the impact of the new HERA and LHC data

in the NNPDF3.0 fits. This will be done first both by looking at their impact in the

global fit, and also in fits with substantially reduced datasets. While the former is more
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Figure 7.14: Same as Fig. 7.1, but now comparing the default NNLO set to a set obtained
using the same methodology but an NNPDF2.3-like dataset.

realistic, the latter allow for an assessment of the specific impact of individual datasets

(though of course will over-estimate their impact in a realistic setting). The impact

of jet data will be specifically discussed in Section 7.2.3. In all these fits, precisely

the same theory and methodology of the standard NNPDF3.0 fit will be used, with

only the dataset changing, so that the impact of the dataset can be isolated. This

will eventually allow us to provide a quantitative assessment of the dependence of our

results on the dataset.

In order to obtain a first overall assessment of the impact of the new data, we

have produced a variant of the NNPDF3.0 fit using the same methodology, but using

a dataset very similar to that used in NNPDF2.3. We excluded all datasets which

were not used in NNPDF2.3, however the resulting set is not quite identical to the

NNPDF2.3 dataset, as we use slightly different cuts to the data in NNPDF3.0, and

also because a small number of sets from NNPDF2.3 were not included in NNPDF3.0

(H1 and ZEUS uncombined F c2 , CDF W asymmetry and D0 jet data).

The distances between PDFs from this fit and their NNPDF3.0 counterparts are

shown in Fig. 7.14, while the PDF ratios, for Q2 = 104 GeV2, are compared in Fig. 7.15.

Is clear that the addition of the new data affects moderately all PDFs, with central

values varying by at most half a sigma in terms of the PDF uncertainties. This is

unsurprising, as the NNPDF2.3 PDFs already described the new experimental data

rather well, so the main impact of the new data is to reduce the uncertainties. Indeed,

the PDF comparison shows that the change in uncertainties, seen in the distance plot

again at a half-sigma level, generally corresponds to a reduction in uncertainty. This

demonstrates the conclusion stated in Section 7.1.2, that the increase in uncertainty

seen when comparing the NNPDF3.0 and 2.3 PDF sets is due to the changes to the
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Figure 7.15: Comparison of NNPDF3.0 NNLO PDFs at Q2 = 104 GeV2 to PDFs obtained
using an NNPDF2.3-like dataset. Results are shown as ratio to the default set. From top to
bottom and from left to right the gluon, anti-up, anti-down quarks and total strangeness are
shown.

methodology, as here we can see when using a consistent methodology the new data

acts to reduce the overall PDF uncertainties.

Looking at the impact in more detail, the largest effect on central values is seen

for the large- and medium-x quarks, followed by the gluon in the same region. The

small-x gluons and quarks are quite stable since there is no new data that affects

them in this region. Uncertainties mostly decrease for the gluon PDF, both at large x

due to the new LHC jet and top quark data, and at medium and small x due to the

new HERA-II data. The new data appear to favour a rather softer gluon at large x

in comparison to the NNPDF2.3-like dataset, though the differences here are always

within the PDF uncertainties. For the antiquark sea there is a visible improvement,

especially at medium x, where the bulk of the new LHC electroweak vector boson

production data is. Finally, there are some improvements in strangeness; the role of

the LHC data in pinning down s(x,Q) will be discussed in more detail in Section 7.2.4.

Focusing specifically on the new LHC data included in the NNPDF3.0 analysis,

we produced a fit excluding all the LHC data from the dataset, and keeping all the
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Figure 7.16: Same as Fig. 7.1, but now comparing the default NNLO set to PDFs obtained
with all LHC data excluded.
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Figure 7.17: Same as Fig. 7.15 but now comparing the default NNLO set to PDFs obtained
with all LHC data excluded.
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Figure 7.18: Same as Fig. 7.13 but now comparing the default NNLO set to PDFs obtained
using only HERA data.

other data. By comparing this reduced dataset fit with the standard NNPDF3.0 fit

including the LHC data we can evaluate the effect of their inclusion in the global

dataset. Distances between this and the standard fit including LHC data are shown

in Fig. 7.16, while PDF ratios are shown in Fig. 7.17. The impact of including the

LHC data is seen to be moderate, at a half-sigma level, both for central values and for

uncertainties, but always leads to a reduction in PDF uncertainties. The central values

for the quarks at medium and large x are most affected, with a smaller effect for the

gluon.

Reassuringly, PDFs without LHC data are always within the one-sigma uncertainty

bands of the global fit PDFs, demonstrating the consistency of the results from fits

with and without the LHC data. The gluon at medium and small x is already well

constrained by HERA and Tevatron data, but the LHC improves uncertainties for

x ≥ 0.02, largely due to (as mentioned in the previous section) the ATLAS and CMS

inclusive jet data and top quark production data. The down quark and strange PDFs

are also affected, especially in the small-x region, but also at medium x.

The previous tests looked at the impact of adding the datasets of interest to a

large global dataset. We can also perform the same test but instead using as a base
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Figure 7.19: Same as Fig. 7.15 but now comparing HERA-only and HERA-I-only PDFs (see
text).

a substantially restricted dataset. While the tests with the global dataset provide the

best estimate of the role of the new data in the NNPDF3.0 fits, the tests I will show

here have the advantage that it will be easier to assess the overall constraint of the data

on PDFs.

To begin with, Fig. 7.18 shows the PDFs obtained from a fit using only the HERA

data. These results will then provide a baseline to compare to fits including further

data. Clearly, most of the PDFs, except perhaps the small-x gluon, have much larger

uncertainties than in the global fit. Specifically, the quark flavour separation and the

large-x gluon are very poorly constrained in the HERA-only fit, demonstrating that

this is not competitive with a global fit for phenomenology applications.

However, the HERA dataset has widened considerably with the addition of the

complete HERA-II inclusive data from H1 and ZEUS and combined HERA charm

production data. In order to study the impact of this new data, we have also produced

a version of the HERA-only fit in which we have kept only the combined HERA-I data,

i.e. a HERA-I-only fit. The NNLO PDF ratios of the HERA-only and HERA-I-only

fits are compared at Q2 = 104 GeV2 in Fig. 7.19. The additional information provided

by HERA-II has a moderate impact: the gluon is mostly unchanged, while the PDF
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Figure 7.20: Same as Fig. 7.1, but now comparing the NNLO HERA-only fit to the
HERA+ATLAS (top) and HERA+CMS (bottom) fits.

uncertainties on the medium- and large-x up antiquarks and (to a lesser extent) on the

down antiquarks are moderately reduced. We conclude that, while certainly beneficial,

the new HERA-II data does not change substantially the known fact that HERA-only

fits obtain large PDF uncertainties.

Having looked at the HERA-only fit itself, we can now study the response of HERA-

only fit to the addition of various other datasets. In particular, we have produced two

fits: one which adds all of the ATLAS data included in the NNPDF3.0 global fit, and

another which adds all of the CMS data. Specifically, in the HERA+CMS fit the

HERA data is supplemented with data on jet production, W asymmetries, Drell-Yan

differential distributions, W+c production and top quark total cross-sections, while in

the HERA+ATLAS fit, the HERA measurements are supplemented with W,Z rapidity

distributions from the 2010 dataset, inclusive jet data at 7 TeV and 2.76 TeV, and high-

mass Drell-Yan production.

The distances between the HERA-only fit and the HERA+ATLAS and HERA+CMS
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Figure 7.21: Comparison of the gluon and antidown NNLO PDF at Q2 = 104 GeV2 of the
HERA-only and HERA+ATLAS sets (top) or the HERA-only and HERA+CMS sets (bottom),
shown as rations to the HERA-only PDFs. For reference, the PDFs from the default NNPDF3.0
global set are also shown.

fits are shown in Fig. 7.20, while the gluon and d̄ PDFs are shown in each case in

Fig. 7.21, along with the global fit result. The impact of the LHC data is apparent,

in particular for PDF combinations which are poorly constrained in the HERA-only

fit, like the valence and triplet distributions. Note that the CMS data provides

more stringent constraints on the gluon at large x since it uses the 2011 inclusive

jet data, which for ATLAS is still not available. ATLAS and CMS have a similar

constraining power for the medium and large-x quarks, with CMS slightly superior for

the strangeness PDFs thanks to the availability of the W+c measurements, and also for

flavour separation (and thus for d̄) due to the fact that the CMS electroweak dataset is

somewhat more extensive. On the other hand, the comparison to the global fit shows

that neither the HERA+ATLAS nor the HERA+CMS fits are currently competitive.

In Table 7.5 we show ϕχ2 for the global NNPDF3.0 NLO and NNLO fits, as well

as for the fits based on reduced datasets described above. As described in Appendix B

this provides a measure of the size of the PDF uncertainties in terms of the average

experimental uncertainty, i.e. how much the overall uncertainty on each data point is

144



7.2. Dependence on the dataset

Dataset ϕχ2 LO ϕχ2 NLO ϕχ2 NNLO

Global 0.512 0.291 0.302

HERA-I - 0.453 0.439
HERA - 0.375 0.343
HERA+ATLAS - 0.391 0.318
HERA+CMS - 0.315 0.345
Conservative - 0.422 0.478
no LHC - 0.312 0.316

Table 7.5: The value of the fractional uncertainty ϕχ2 (defined in App. B) for the default
NNPDF3.0 NLO and NNLO fits compared to that obtained in various fits to reduced datasets.
At LO, only the value for the global fit is available as the reduced dataset fits were not performed
at this order. The result for the conservative set refers to the fit with αmax = 1.1.

reduced by fitting the combined dataset. In general we expect this to fall as more data

is included in the fit, unless the data is inconsistent. The result for the conservative set

refers to the fit with threshold αmax = 1.1.

For the global fits, we find ϕχ2 = 0.291 and 0.302 for the NLO and NNLO sets

respectively, to be compared with the corresponding value at LO, ϕχ2 = 0.512. The

improvement between LO and NLO, almost by a factor of two in terms of the reduction

of the PDF uncertainties on the fitted data points, is clear evidence of the better

consistency of the NLO fit in comparison to the LO one. On the other hand, the NNLO

fit is very similar to the NLO one in this respect (perhaps marginally worse), consistent

with the observation that the quality of the NNLO fit is not significantly better than

that of the NLO fit, which is also reflected by the values of the χ2, see Table 7.1. The

decreasing trend seen in the values of ϕχ2 for the fits to reduced datasets, from HERA-I

to HERA-all, to HERA+ATLAS or HERA+CMS, to the global fit, shows the expected

uncertainty reduction as more data are combined.

7.2.3 Impact of jet data on the global fit

In this section I will explore the impact of jet data in the NLO and NNLO NNPDF3.0

fits, with the motivation of investigating the possible bias which could result from

theoretical limitations in the description of jet data, in particular the current lack of

full knowledge of NNLO corrections.

In order to study this, we produced an NNPDF3.0 PDF fit in which all jet data are

removed from the global dataset, the gluon from which is compared to that from the

default global fit in Fig. 7.22. It is clear that removing jet data from the global fit leads

to a substantial increase of the PDF uncertainties on the gluon at medium and large x,

both at NLO and NNLO. Also, note that, when jet data are included, the uncertainties

are very similar at NLO and NNLO, which is reassuring as it is consistent with the
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Figure 7.22: Comparison of the gluon in a fits using a datasets with and without jet data at
NLO (top) and NNLO (bottom), plotted at Q2 = 2 GeV2 vs. x on a logarithmic (left) and
linear (right) scale.

expectation that no instabilities are introduced by jet data in the NNLO fit despite

potentially large perturbative corrections. Other PDFs are essentially unchanged upon

removing jet data.

Further evidence for the lack of inconsistency in the NNLO jet data can be seen by

looking at the χ2 given in table Table 7.6. Here I compare the χ2 to the collider jet

data at NLO and NNLO, both for the reference NNPDF3.0 fit and in the fit without jet

data. The description of jet data turns out to be reasonably good even when they are

not included in the fit. Also shown is the value of the χ2 for top pair production, which

is sensitive to the gluon. The fact that this value changes very little upon inclusion of

jet data is also evidence for general consistency.

From this we can conclude that not including jet data (or not including them at

NNLO) would not lead to a significant change of the central value of the extracted

gluon distribution but it would lead to a deterioration of its uncertainty. Given our

conservative treatment of NNLO perturbative corrections, described in Section 4.2.1,

and in the absence of indications of instability or inconsistency, we believe that the

determination of the gluon is most reliable when jet data are kept in the dataset, as we
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NLO

Exp χ2 t0 χ
2

Dataset Global No Jets Global No Jets

CDF Run II 0.95 1.51 1.05 1.62
ATLAS 7 TeV + 2.76 TeV 1.58 1.88 0.86 0.96

CMS 7 TeV 2011 0.96 1.32 0.90 1.17

Top quark pair-production 1.43 1.26 1.67 1.49

NNLO

Exp χ2 t0 χ
2

Dataset Global No Jets Global No Jets

CDF Run II 1.84 1.85 1.20 1.58
ATLAS 7 TeV + 2.76 TeV 1.17 1.00 0.72 0.65

CMS 7 TeV 2011 1.91 2.23 1.07 1.37

Top quark pair-production 0.73 0.43 0.61 0.42

Table 7.6: The χ2 to jet data, computed using the default NNPDF3.0 PDFs and PDFs from
a fit to a dataset without jet data. Values in italics correspond to data which have not been
included in a particular fit. χ2 calculated using both the experimental and t0 definition are
provided (see Section 7.1.1). The value for top data (included in all fits) is also shown.

do for our default fit.

7.2.4 Nucleon strangeness

Recently the size of the strange distribution has been the object of experimental and

phenomenological debate. In global fits, the strange PDF is mostly constrained by

the neutrino-induced deep-inelastic scattering data, such as CHORUS, NuTeV and

NOMAD [78, 79, 195, 196]. While inclusive data is also sensitive to strangeness, the

strongest constraint has come from the so-called dimuon process: charm production

in charged-current DIS. However, the theoretical treatment of this data is affected

by various sources of theoretical uncertainty, such as the need to model charm

fragmentation, the treatment of charm quark mass effects at low scales, and effects

related to the use of nuclear targets. Recently, LHC data which constrain the strange

PDF have become available: on top of inclusive W and Z production, W production

in association with charm quarks which directly probes strangeness at leading order.

In PDF global fits, with the strange PDF largely determined from neutrino data,

the strange sea is typically smaller than the up and down quark sea by a factor of order

∼ 1
2 . In 2012, a QCD analysis of the ATLAS data on W and Z rapidity distributions

at 7 TeV [197] suggested that the size of the strange sea was comparable to that

of the other light quarks, at least for x ∼ 0.01. This analysis was revisited in the

NNPDF2.3 framework [45], with the conclusion that while the ATLAS data in isolation
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Figure 7.23: The strangeness ratio rs (given by Eq. 7.2) in NNPDF3.0 NNLO fits to sets
which alternately include and exclude the neutrino and W+c datasets included in the global
NNPDF3.0 dataset. rs is shown for αS(MZ) = 0.118 and at Q2 = 2 GeV2 (left) and Q2 = 104

GeV2

do favour a central value of s(x,Q2) similar in size to ūS(x,Q2) and d̄S(x,Q2), the

uncertainties involved are so large that it was difficult to make a clear-cut statement,

and in particular the central value of the strangeness fraction in the global NNPDF2.3

fit was compatible with that of a HERA+ATLAS fit at the one-sigma level. Also, it

was found that including the ATLAS data in the global fit would have little impact on

this, and strangeness would still be suppressed.

In NNPDF3.0 we have also included CMS data for W+c [103], which directly

constrain the strange distribution. This dataset has recently been used in a QCD

analysis [101], together with HERA data, to show that the strange PDF s(x,Q2) from

collider-only data can be determined with a precision comparable to that of global

fits which include neutrino data. The CMS data favours a suppressed strangeness,

consistent with the indications from the neutrino data. ATLAS W+c data (which is

not included in NNPDF3.0 because the data are only available at the hadron level)

appear instead to favour an enhanced strangeness [120]. Fits including LHC W,Z and

W+c data together with fixed target deep-inelastic scattering and Drell-Yan data have

also been studied in Ref. [119], with the conclusion that a good fit to all these datasets

can be obtained, and again finding suppressed strangeness.

We can study this issue in the NNPDF3.0 global PDF determination by constructing

PDF sets fit to datasets which include or exclude in turn various pieces of experimental

information which are sensitive to strangeness. Specifically we have produced PDF sets

based on reduced datasets: a fit excluding all neutrino data (CHORUS and NuTeV; a

fit excluding all CMS W+c data (but including the neutrino data); and a fit in which

both the neutrino and W+c data are excluded.

Of particular interest in the comparison of these sets is the strangeness fraction rs,
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χ2
exp

Global No neutrino No W+c No neutrino/W+c

CHORUS 1.13 3.87 1.09 3.45
NuTeV 0.62 4.31 0.66 6.45

ATLAS W,Z 2010 1.21 1.05 1.24 1.08
CMS W+c 2011 0.86 0.50 0.90 0.61

Table 7.7: Values of the χ2 (using the experimental definition) to different datasets sensitive
to strangeness, using as input PDFs obtained from fits in which these data are included or
excluded in turn. Values in italics denotes cases in which the particular data was not included
in the particular fit.

defined as

rs =
s+ s̄

ū+ d̄
. (7.2)

In Fig. 7.23 rs is shown for the default NNPDF3.0 fit and the three fits described above,

all plotted as a function of x, and for both Q2 = 2 GeV2 and Q2 = 104 GeV2.

First, we observe the remarkable compatibility of the various fits (with, as usual,

smaller uncertainty at a higher scale due to asymptotic freedom), and for all fits and

all x the one-sigma PDF uncertainty bands overlap. The global fit in general has the

smallest uncertainties, though at very low x <∼ 10−3 the global fit uncertainty is the

largest, likely just due to statistical fluctuations. While removing neutrino data results

in a dramatic increase in the uncertainty, removing the W+c data has very little impact,

with only a moderate uncertainty reduction for x ≥ 0.05 when it is included with the

neutrino data. The fits without neutrino data also have a higher central value of rs in

the region of x ∼ 0.01, though with the larger uncertainties in these fits this is only a

one-sigma deviation, consistent with statistical fluctuations.

The χ2 for the relevant experiments in these various fits are collected in Table 7.7,

allowing us to compare how well each experiment is described by fits with include or

exclude it. We see that W+c data are well described regardless of whether they are

included in the fit or not, while the neutrino data are very poorly described if they

are excluded from the fit. This agrees with the results in Fig. 7.23, and reinforces the

conclusion that the impact of the W+c is moderate.

From these results we conclude that the W+c data alone are not yet competitive

with the neutrino data for determining strangeness, and that their inclusion does not

significantly modify the assessment of the size of the nucleon strangeness in previous

global fits, a suppression of strangeness at low scales by a factor of between two and

three compared to the light quarks.
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7.3 Stability

In this section I will study the dependence and stability of our results upon our

variations of our methodology. Some of these issues have previously been investigated

in Chapter 5 in the context of closure tests, but here I will look at their impact in fits

to the real experimental data; others, for instance the impact of extended positivity,

can only be studied using the real data.

Specifically, I will look at the impact on the NNPDF3.0 results of the new

minimization and stopping methodology discussed in Sections 5.3 and 5.5 in comparison

to that previously used in NNPDF2.3; the impact of the improved treatment of

positivity discussed in Section 5.6; the differences in one-sigma and 68% confidence

interval definitions of PDF uncertainty; the impact of a multiplicative vs. additive

treatment of systematic uncertainties (see Section 4.3.2); and finally reassess the

independence of results on the choice of fitting basis.

7.3.1 Impact of the NNPDF3.0 methodology

In Section 7.2.2 I introduced an NNPDF3.0 fit performed using only the data included

in the NNPDF2.3 analysis. There I used it to look at the impact of the new data by

comparing it to the global NNPDF3.0 fit, but it can also be used to quantify the impact

of the new NNPDF3.0 methodology and theory settings by comparing it instead to the

NNPDF2.3 global fit. With this comparison we can fully disentangle the effects of the

new experimental data in NNPDF3.0 from that of the improved fitting methodology

and the new theoretical settings.

The distances between the original NNPDF2.3 PDFs of Ref. [45] and the NNPDF3.0

fit with NNPDF2.3 data are shown in Fig. 7.24 both at NLO and NNLO, while the

NNLO PDFs are compared in Fig. 7.25. In the NLO fit the new methodology and

theory settings have an impact on the small-x gluon and large-x quarks at the one and

a half–sigma level. The differences in the gluon can be understood as a consequence

of having switched from the FONLL-A heavy quark scheme used in NNPDF2.3 to the

more accurate FONLL-B adopted in NNPDF3.0, while the differences seen for quarks

are necessarily a consequence of the more efficient methodology and extended positivity

constraints (see Section 7.3.2 below). At NNLO the non-insignificant differences seen

in all PDFs reflect the improved methodology and positivity, there were no significant

changes in the NNLO theory between 2.3 and 3.0. At high scale the most noticeable

difference is the softening of the small-x gluon seen in Fig. 7.25.

Another way to compare NNPDF2.3 and 3.0 is in terms of quality of fit to their

common datasets. Table 7.8 shows the χ2s for the global NNPDF2.3 NNLO fit (taken

from the original paper [45]), and for the NNPDF3.0 NNLO fits to the full dataset and

150



7.3. Stability

x
­5

10 ­410
­3

10 ­210 ­110

d
[x

,Q
]

0

5

10

15

20
Central Value

g
Σ

V
3T
s∆

+
s

­s

Central Value

x
­5

10 ­410
­3

10 ­210 ­110

d
[x

,Q
]

0

5

10

15

20
Uncertainty

g
Σ

V
3T
s∆

+
s

­s

Uncertainty

NNPDF3.0(NNPDF2.3 dataset) NLO vs NNPDF2.3 NLO

x
-510 -410 -310 -210 -110

d[
x,

Q
]

0

5

10

15

20
Central Value

g
Σ
V

3T
s∆
+s
-s

Central Value

x
-510 -410 -310 -210 -110

d[
x,

Q
]

0

5

10

15

20
Uncertainty

g
Σ
V

3T
s∆
+s
-s

Uncertainty

NNPDF3.0(NNPDF2.3 dataset) NNLO vs NNPDF2.3 NNLO

Figure 7.24: Same as Fig. 7.14, but now comparing the PDFs obtained from an NNPDF2.3-like
dataset with NNPDF3.0 methodology and theory to the published NNPDF2.3 sets at NLO(top)
and NNLO (bottom) [45].
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Figure 7.25: Same as Fig. 7.15, but now comparing the PDFs obtained from an NNPDF2.3-like
dataset with NNLO NNPDF3.0 methodology and theory to the published NNPDF2.3 NNLO
set.

to the reduced NNPDF2.3-like dataset. The changes in the treatment of the theory and

uncertainties, described in Chapter 4, mean that for many datasets the NNPDF2.3 and

3.0 χ2s are not directly comparable. For this reason, the χ2 in the fit to the NNPDF2.3-

like dataset are for some datasets very different to the original NNPDF2.3 values. This

is particularly true for hadronic data, especially the jet data, where we now treat the

majority of systematic uncertainties as multiplicative. Comparing the χ2s for the two

NNPDF3.0 fits, the values in the global fit are in general slightly worse, suggesting

either that the global fit to these data is sub-optimal, or possibly that there is some

tension between these data and the new datasets.

The main conclusion of this comparison is that a significant part of the difference

between the final NNPDF2.3 and NNPDF3.0 sets, as seen specifically at high scale in

Fig. 7.4 and at low scale in Fig. 7.3, are due to the improved methodology (minimisation

and generalised positivity), or possibly due to changes in the treatment of data. This is

consistent with the conclusion of Section 7.2.2 (see in particular Figs. 7.14-7.15), that

the new data added in NNPDF3.0 generally have only a moderate impact.
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NNPDF2.3
NNLO

NNPDF3.0 NNLO
NN23 data Global fit

Dataset χ2
exp χ2

exp χ2
exp

NMC d/p 0.95 0.9 0.93
NMC 1.59 1.53 1.52
SLAC 1.00 1.21 1.13

BCDMS 1.28 1.26 1.29
CHORUS 1.07 1.07 1.09

NuTeV 0.56 0.75 0.86
HERA-I 1.01 0.99 1.04

E886 1.04 0.89 0.9
E605 1.58 1.42 1.47

CDF Z rapidity 2.03 1.5 1.53
CDF Run-II kt jets 0.68 1.82 1.8

D0 Z rapidity 0.61 0.61 0.61

ATLAS W,Z 2010 1.43 1.15 1.23
ATLAS 7 TeV jets 2010 0.94 1.47 1.36

CMS W electron asy 0.81 0.72 0.73
LHCb W rapidity 0.83 0.7 0.72

Table 7.8: The values of the experimental χ2 per data point for the NNPDF2.3 NNLO central
fit and the NNPDF3.0 NNLO fits to the global dataset and an NNPDF2.3-like dataset. Due to
changes in the treatment of the data, the NN2.3 and NN3.0 values are not directly comparable.

7.3.2 Constraints from positivity

As explained in Section 5.6, in NNPDF3.0 we adopt a more extensive set of positivity

constraints, in order to ensure not only positivity of the observables used in PDF fitting,

but also of potential new observables such as cross-sections for new physics processes

used in searches. In order to quantify the impact of these positivity constraint, we

have produced a variant of the NNPDF3.0 NNLO in which positivity constraints are

removed. The distances between the default fit and the fit without positivity are shown

in Fig. 7.26, while some of the PDFs where the effect is largest are compared in Fig. 7.27.

The impact of positivity is relatively mild apart from for the small-x gluon and the

large-x strangeness, for which there is little direct experimental information. For all

other PDFs and x ranges the impact of positivity is below the one-sigma level. Note

that even so, strict positivity is often necessary if one wishes to obtain meaningful

predictions, e.g. in new physics searches. For the gluon, the effects of the positivity

can be noticed already at x <∼ 10−3, while at even smaller x the gluon would become

much more negative if positivity were not imposed. For the strangeness asymmetry,

interestingly, the dip-bump structure seen in the global fit is seen to be a consequence

of positivity.

As a test of the efficiency of the Lagrange multiplier method we use to impose

positivity, we have explicitly checked a posteriori that physical cross-sections at NLO
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Figure 7.26: Same as Fig. 7.14, but now comparing fits with and without generalised positivity
constraints.

       x  
­5

10 ­410
­3

10 ­210 ­110

)
2

x
 g

 (
 x

, 
Q

­1

0

1

2

3

4

5

2 = 2 GeV2 = 0.118, QSαNNLO, 

With positivity

No positivity

2 = 2 GeV2 = 0.118, QSαNNLO, 

       x  
­5

10 ­410
­3

10 ­210 ­110

)
2

 (
 x

, 
Q

­
x
 s

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05

2 = 2 GeV2 = 0.118, QSαNNLO, 

With positivity

No positivity

2 = 2 GeV2 = 0.118, QSαNNLO, 

Figure 7.27: Comparison of the default NNPDF3.0 NNLO PDFs at Q2 = 2 GeV2 with
αs(MZ) = 0.118 to their counterpart obtained without imposing positivity. The gluon (left)
and strangeness asymmetry (right) are shown.

and NNLO are indeed non-negative. This is illustrated in Fig. 7.28, where we plot

two of the pseudo-observables used in the fits, namely the light component of FL,

and the ss̄ Drell-Yan rapidity distribution. Individual replicas are shown in green

dashed curves compared to the central values for the reference set used in the positivity

implementation (see Section 5.6). The effectiveness of positivity is clearly seen,

especially for the Drell-Yan distribution.

7.3.3 Definition of PDF uncertainties

As we generate a set of Monte Carlo replicas in our determination, it is possible to define

several different measures of the PDF uncertainties. One can, as normal, calculate them

using the standard deviation of the sample PDFs, however this will ignore any non-
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Figure 7.28: The light quark contribution to FL (left), and the ss̄ Drell-Yan rapidity
distribution (right) plotted in arbitrary units at Q2 = 5 GeV2 for individual replicas in
the NNPDF3.0 NLO set (dashed green lines). The reference set used in the positivity
implementation (see Section 5.6) is also shown (red line).

Gaussianity, due to for instance positivity, in the distribution of replicas. A different

approach is to take the central 68% of the replicas at every point (i.e. by dropping the

top and bottom 16%), which provides by definition a 68% confidence interval. This

gives a better description of the distribution in places where it deviates from normal,

but is more dependant on the particular sample.

Fig. 7.29 compares these measures for the global NNPDF3.0 NLO fit with Nrep =

1000 replicas. It is clear that apart from at small x (below about 10−3), the standard

deviation agrees with the central 68% range, suggesting that the distribution of

replicas is largely Gaussian here. On the other hand, as we move to smaller x,

there are significant difference in many of the PDFs, with the one-sigma contour

being substantially larger. There are a few reasons for this. This difference in the

extrapolation region is largely caused by individual replicas which become very large

(positive or negative) in this region, as there is no direct experimental constraints on

them here.

7.3.4 Additive versus multiplicative systematics

As discussed in Section 4.3.2, there is a certain ambiguity in the treatment of

correlated systematics, in particular whether each one should be treated additively

or multiplicatively. In order to test the impact of the additive vs. multiplicative

treatment of systematics, we have produced two modified version of the NNPDF3.0

fit, which only differ in the treatment of the systematics. In the first one we treat

all systematics (except for normalisation uncertainties) as additive, and in the second

the setting for each systematic (again except for normalisation) is randomised, treated
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Figure 7.29: Comparison of one-sigma uncertainty bands and central 68% range for the
NNPDF3.0 NLO set with αs(Mz) = 0.119 at Q2 = 2 GeV2. The set with Nrep = 1000
replicas has been used. From top to bottom and from left to right the gluon, singlet, isospin
triplet and total valence are shown.

as either additive or multiplicative at random for each replica. The default treatment

(multiplicative or additive) of systematics is given in Table 4.1 (fourth column).

The distances between these two fits and the default are shown in Fig. 7.30, while

the gluon and singlet, for which the effect of the change is most noticeable, are shown

in Fig. 7.31. The impact of the treatment of systematics turns out to be essentially

indistinguishable from statistical fluctuations for all PDFs except the large-x gluon, for

which it has an effect of at most one-sigma. This can be understood as a consequence

of the fact that the gluon depends strongly on jet data, which are affected by large,

multiplicative systematics. The location of the largest difference, above x = 0.1 also

supports the conclusion that it is largely due to the jet data. The impact on the gluon

is explicitly shown in Fig. 7.31. The singlet is also shown: in this case, the change in

uncertainty at small x is compatible with a statistical fluctuation. When systematics are

randomised the effect is diluted and the changes are always compatible with statistical

fluctuations.

We conclude that the treatment of systematics, while an issue in principle, in
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Figure 7.30: Same as Fig. 7.14, but now comparing the default set to its counterpart in which
all systematics (except normalisation) are treated as additive (top) or in which the treatment
of each systematic (again except normalisation) is randomised (bottom).

practice has an effect which is of comparable size as statistical fluctuations. Even

when all systematics are treated as additive, which is certainly an extreme case, only

the gluon changes significantly, where the effect is largely caused by the jet data for

which there is less ambiguity in the treatment of systematics [198, 199]. The default

treatment of systematics in the NNPDF3.0 fit thus appears to be both reliable and

robust.

7.3.5 Independence of the PDF fitting basis

In Section 5.4.3 I looked at the impact of changing the PDF fitting basis has on the fit

results. Fig. 7.32 shows the distances for a similar test now using the real experimental

data. Distances are shown between the default NNPDF3.0 NNLO PDFs and the same

fit but using the NNPDF2.3 fitting basis instead of the default NNPDF3.0 basis (see

Section 5.4.3 for details) for the parametrisation of input PDFs. Results are consistent
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Figure 7.31: Comparison of the NNLO gluon (left) and singlet (right) for a fit in which
all systematic uncertainties except normalisation are treated as additive, and for the baseline
NNPDF3.0 fit, where systematic uncertainties are treated as specified in Table 4.1. The PDFs
are plotted at Q2 = 2 GeV2 with a linear scale in order to highlight the large-x region.
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Figure 7.32: Same as Fig. 5.9, comparing fits using the NNPDF2.3 and NNPDF3.0 PDF fitting
bases, but now in fits to real data.

to what was found in the closure test, with distances which are mostly compatible with

statistical equivalence, and only strangeness at the valence peak deviating at the half-

sigma level (slightly above the threshold of statistical indistinguishability). Note that

the dip-bump structure in s− seen in Fig. 7.27 (and related to positivity) is perfectly

reproduced in NNPDF2.3 basis fit, where s− is parameterised directly.

7.4 Implications for LHC phenomenology

In the final section of this chapter, I will provide a brief investigation of the impact

of the changes in NNPDF3.0 on LHC phenomenology. I will start by comparing the

parton luminosities shown in Section 7.1.2 to the same quantities calculated with the
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Figure 7.33: Same as Fig. 7.6 but now comparing NNPDF3.0, MMHT14 and CT10 NNLO
(all with αs(MZ) = 0.118). Results are shown as ratios to the NNPDF3.0 values.

CT10 and MMHT14 PDFs. I will then present predictions for a variety of LHC cross-

sections at 13 TeV, specifically vector boson, top production and Higgs production, and

compare results obtained using NNPDF3.0 PDFs to those of the previous NNPDF2.3

set. I will also spend some time discussing the implications of NNPDF3.0 PDFs for

the dominant Higgs production channel at the LHC, gluon-fusion, including a study on

the dependence of results on the datasets used in the PDF determination. Finally, I

will look at the production of high-mass states, close to the LHC kinematic threshold,

relevant for searches for massive New Physics at the energy frontier.

7.4.1 PDF luminosities

Fig. 7.33 compares the PDF luminosities obtained using the NNPDF3.0 set, previously

discussed in Section 7.1.2 to the luminosities from the CT10 and MMHT14 sets.

The three sets agree very well within their uncertainties, especially for the gg and

gq cases. For the gg luminosity in the region relevant for Higgs production, the

agreement between the three sets has substantially improved in comparison to the

previous benchmarks using NNPDF2.3 [33]. Note that this comparison does not use
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the imminent CT14 PDFs; preliminary results with this set indicate that agreement

will further improve with this new set.

7.4.2 Implications for
√
s=13 TeV LHC processes

In this section I will look at calculations of several LHC processes using the NNPDF3.0

PDFs. Unless otherwise stated, the results use the NLO sets with αs = 0.118,

in the Nf = 5 variable-flavour-number scheme with massless bottom quarks, and

computed using the MadGraph5 aMC@NLO program [147], version 2.1.2, interfaced

to LHAPDF6. The NLO results are sufficient to assess the PDF dependence of these

observables, as typically the NNLO/NLO K–factors have only a weak dependence on

the PDFs. In addition to results with the NNPDF3.0 global fit, I also look at predictions

with the conservative parton set with αmax = 1.1 as an illustration of results found using

a maximally consistent dataset (see [200]).

The cross-sections presented here have been computed at the fiducial level, including

resonance decays for several processes, and using realistic generation cuts. Jets are

reconstructed with the anti-kT algorithm [201] with radius R = 0.5, and the following

cuts are applied to all jets in the final state:

|ηjet| ≤ 4.5 , pT,jet ≥ 25 GeV . (7.3)

For final-state leptons, the following cuts are applied:

|ηl| ≤ 2.5 , pT,l ≥ 25 GeV , ml+l− ≥ 30 GeV . (7.4)

Finally, for photons we impose

|ηγ | ≤ 2.5 , pT,γ ≥ 25 GeV , (7.5)

and use the Frixione isolation criterion [202] with εγ = 1.0 and n = 1 and an isolation

cone radius R0 = 0.4. No further analysis cuts are applied. Renormalisation and

factorisation scales are set dynamically on an event by event basis to µf = µr = HT /2,

where HT is the scalar sum of the transverse energies of all the final-state particles.

Within each run, PDF and scale uncertainties in MadGraph5 aMC@NLO are obtained

at no extra cost using the reweighting technique introduced in Ref. [203].

Results for NNPDF2.3, and NNPDF3.0 global and conservative sets are collected

in Table 7.9, where the processes are grouped into three subsets: processes which are

sensitive to quark and antiquarks, processes which are sensitive to the gluon PDF,

and Higgs production processes. Gluon fusion is not included as it is discussed in the
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Process NNPDF2.3 NNPDF3.0 RelDiff αmax = 1.1

pp→ e+e− 1.403 nb (±1.5%) 1.404 nb (±2.0%) +0.1% 1.450 nb (±2.0%)
pp→ e+νe 10.30 nb (±1.3%) 10.21 nb (±1.9%) -0.9% 10.29 nb (±2.3%)
pp→ e−ν̄e 7.67 nb (±1.3%) 7.75 nb (±1.9%) +1.1% 7.96 nb (±1.9%)
pp→W−c̄ 2.665 nb (±3.5%) 2.680 nb (±4.2%) +0.56% 2.807 nb (±8.8%)

pp→ tt̄ 678 pb (±1.7%) 672 pb (±1.6%) -0.9% 655 pb (±3.3%)
pp→ γ + jet 62.24 nb (±1.2%) 63.85 nb (±1.8%) +2.6% 61.51 nb (±1.9%)
pp→ e+ve + jet 2.353 nb (±1.2%) 2.332 nb (±1.5%) -0.9% 2.325 nb (±1.6%)

pp→ He+νe 0.134 pb (±1.6%) 0.131 pb (±1.6%) -2.2% 0.137 pb (±2.6%)
pp→ He+e− 26.48 fb (±1.4%) 26.58 fb (±1.5%) +0.4% 27.07 fb (±2.3%)
pp→ Htt̄ 0.458 pb (±2.2%) 0.460 pb (±1.7%) +0.6% 0.459 pb (±4.0%)

Table 7.9: Cross-sections for LHC at 13 TeV, computed at NLO using Mad-
Graph5 aMC@NLO with the NNPDF2.3 and NNPDF3.0 NLO PDFs, and with Nf = 5
and αs(MZ) = 0.118. In each case, central values and the one-sigma PDF uncertainty (in
parenthesis) are given. We also show the percentage difference between the central values using
the two PDF sets relative to the NNPDF2.3 values, and the prediction using the conservative
PDF with αmax = 1.1 (see Section 7.2.1).

next section. The results of Table 7.9 are also shown in Fig. 7.34, normalised to the

NNPDF2.3 values.

For all of the shown cross-sections we observe stability between the NNPDF2.3 and

NNPDF3.0 values, with all results varying by no more that the size of the corresponding

PDF uncertainty. For top-quark pair production, going from NNPDF2.3 to NNPDF3.0

the cross-section decreases by about 1%, about half the PDF uncertainty. This can

be understood recalling that the NNPDF3.0 gg luminosity is slightly softer than is

NNPDF2.3 counterpart for MX ∼ 400 GeV. Note that NNPDF2.3 already gave a

very good description of all available ATLAS and CMS 7 TeV and 8 TeV production

data [204], though they were not included in that fit. For W production in association

with charm quarks, we use a NF = 3 scheme in order to retain the full charm mass

dependence. Again, for this observable results are very stable when moving from

NNPDF2.3 to NNPDF3.0.

Looking now at the Higgs production observables, for ttH the NNPDF3.0 result is

about 1% larger than the NNPDF2.3 prediction, consistent with the expectation from

the gg luminosity comparisons in Fig. 7.5 for MX ∼ 500 = 700 GeV. For the associated

production channels, HW and HZ, driven by the qq̄ luminosities, differences are well

within one sigma, as would be expected from the luminosities in Fig. 7.5.

The results for the conservative PDF set included in the last column of Table 7.9

show that prediction obtained using this fit are generally consistent at the one-sigma

level with the global results, with occasional differences up to around the two-sigma

level, such as for example in He+νe. The predictions from conservative set are, of

course, generally affected by larger PDF uncertainties due to the smaller dataset used,
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Figure 7.34: Graphical comparison the results of Tab 7.9. Results are shown normalised to
the NNPDF2.3 central value.

though in several cases they are only slightly less precise that the global fit results,

for example in inclusive W and Z production. On the other hand, for processes that

depend on strangeness (like W+c) or that are gluon-driven (like tt̄ and tt̄H) the PDF

uncertainties are substantially larger for the conservative PDFs than for the global fit.

7.4.3 Higgs production in gluon fusion

Following the general overview of LHC observables in the previous section, I will

now focus specifically on Higgs production in gluon fusion, which is the dominant

channel at the LHC and for which theoretical uncertainties are a limiting factor

in the determination of Higgs properties. I will present predictions for the total

cross-section at NLO and NNLO for the LHC at 13 TeV, comparing the default

NNPDF3.0 set to NNPDF2.3 and to the various sets based on alternative datasets

described in Section 7.2. The uncertainties shown are purely the PDF uncertainties

with αs(MZ) = 0.118, i.e. the αs uncertainty is not included. The inclusive cross-

sections are computed using iHixs 1.3.3, with mh = 125 GeV, with renormalisation

and factorisation scales set to µr = µf = mh and with the infinite top mass (effective

theory) approach. The predictions here are therefore not meant to be realistic, however
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σggh (pb) NLO Pull σggh (pb) NNLO Pull

NNPDF2.3 34.72 ± 0.33 - 46.39 ± 0.46 -

NNPDF3.0 with 2.3 data 34.06 ± 0.57 1.0 45.14 ± 0.74 1.4
NNPDF3.0 global 33.96 ± 0.61 1.1 45.01 ± 0.72 1.6

NN3.0 conservative αmax = 1.1 33.31 ± 0.54 2.2 43.70 ± 1.12 2.2
NNPDF3.0 no Jets 34.56 ± 1.04 0.2 45.32 ± 0.92 1.0
NNPDF3.0 noLHC 34.12 ± 0.80 0.7 45.10 ± 0.91 1.3

NNPDF3.0 HERA-only 31.96 ± 3.03 0.9 43.02 ± 2.21 1.5

Table 7.10: The total cross-section for Higgs production in gluon fusion at the LHC 13 TeV at
NLO (left) and NNLO (right) for αs(Mz) = 0.118. Values are shown for the central NNPDF2.3
fits, and for NNPDF3.0 fits using different datasets (see Section 7.2). The pull P , defined in
Eq. 7.6, is also given.

( 
g

g
 >

 H
 )

 [
p

b
]

σ

31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

=0.118
S

αNNPDF3.0 NLO, LHC 13 TeV iHixs1.3.3,   

NNPDF2.3

2.3data

Global

Conservative

noJets

noLHC

HERAonly

=0.118
S

αNNPDF3.0 NLO, LHC 13 TeV iHixs1.3.3,   

Figure 7.35: Graphical representation of the NLO results of Table 7.10.

many of the effects which are not included (such as electroweak corrections, or finite

top, bottom and charm mass contributions) have a negligible PDF dependence, while

αs uncertainties are generally considered to be completely independent of the PDF

uncertainty, given that the PDF and αs uncertainties combine in quadrature even

when correlated [205]. Hence the results here do provide an accurate assessment of the

PDF dependence of the cross-section and its uncertainty.

The values of the Higgs gluon fusion cross-section are shown in Table 7.10 at NLO

and NNLO for a variety of sets, and the results are also summarised graphically

in Figs. 7.35 and 7.36. In Table 7.10 the pull of each prediction compared to the
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Figure 7.36: Graphical representation of the NNLO results of Table 7.10.

NNPDF2.3 result is also given, and is defined as

P ≡
σggh(2.3)− σggh(3.0)√

∆σ2
ggh(2.3) + ∆σ2

ggh(3.0)
, (7.6)

where ∆σggh is the one-sigma PDF uncertainty. This is similar to the concept of the

distance used for PDFs, but here for a physical observable.

As expected from the comparison of the gluon-gluon luminosities in Fig. 7.6,

the NNLO cross-section decreases by about two-sigma (in terms of the single set

uncertainty) when going from NNPDF2.3 to NNPDF3.0, while the PDF uncertainty

increases substantially. At NLO the effect is less marked, with the NNPDF2.3 and

NNPDF3.0 in agreement at almost the one-sigma level. The results for the NNPDF3.0

PDFs based on a 2.3-like dataset are very similar to that of the global fit, so we must

conclude that this change is largely due to methodological improvements (validated by

the closure tests in Chapter 6), rather than the inclusion of new data.

The results for sets based on alternative datasets are generally consistent with each

other and with the global fit at the one-sigma level, with the conservative PDFs leading

to a lower result and the fit with no jet data to a slightly higher one. Uncertainties

are of course larger for the sets, with statistical fluctuations, for instance for the NLO

conservative set. The lowest central value is found for the HERA-only set, which is

however affected by a PDF uncertainty which is a factor of two to three larger than

the others. The pulls for these sets tell the same story, being of similar size in general,

between 0.7 and 1.1 at NLO and between 1.3 and 1.6 at NNLO, with the fit without
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jet data giving better agreement with NNPDF2.3 and the conservative set giving worse

agreement. On the whole there is little evidence of tension between datasets, and the

differences seen are broadly consistent with statistical fluctuations.

7.4.4 New Physics particle production at high masses

New heavy particles at the TeV scale are a busy area of study as they are included

in a wide variety of BSM scenarios and may be within the reach of the upgraded

LHC. Production of such very massive particles probes PDFs at large x, where they

are currently poorly known due to the lack of direct experimental information, and

so the corresponding predictions for these particles are affected by substantial PDF

uncertainties (see for example Refs. [206, 207]). Consequently, PDFs can be a limiting

factor in the determination of exclusion regions for heavy particles, and so an accurate

assessment of the PDFs uncertainties is therefore crucial for these searches. The

NNPDF approach is advantageous in this respect in that it leads to uncertainty

estimates which are not biased by assumptions on the functional form of PDFs. The

only significant constraint on PDFs close to threshold comes from positivity, which is

now implemented in an improved way, as discussed in Section. 5.6.

As an example, I will show here results for high-mass dilepton production and the

pair production of supersymmetric particles. The first of these, high-mass dilepton

production, is frequently used to search for new physics that couples to the electroweak

sector, and thus it is important to provide precise predictions for the SM production

mechanisms. We have computed the dilepton invariant mass distribution in pp →
γ∗/Z → l+l− events at the LHC at 14 TeV with NNPDF3.0 using FEWZ. Recall from

Section 5.6 that positivity is always imposed at NLO, so it is not entirely trivial that

it will also be fully constrained at NNLO. Results are shown in Fig. 7.37, in different

Mll bins, with each of the Nrep = 100 Monte Carlo replicas given by a separate green

dashed line, together with the resulting central values and one-sigma intervals. Both

at NLO and NNLO all of the replicas are positive even in the highest invariant mass

bins.

Predictions for the pair production of supersymmetric particles at the LHC 14 TeV

are shown in Fig. 7.38. The computation has been performed using Prospino [208,209]

with the NNPDF3.0 and NNPDF2.3 NLO global fits, and using settings as close as

possible to those of Refs. [206, 207], though the only relevant physical input for this

illustrative study are the sparticle masses. For these processes NNLO calculations

are not available. We have produced results for gluino-gluino and squark-antisquark

production, for three different values of the sparticle masses: 1, 2 and 3 TeV. This

figure again shows the predictions for the Nrep = 100 Monte Carlo replicas, this time
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Figure 7.37: The dilepton invariant mass distribution in pp → γ∗/Z → l+l− at the LHC 14
TeV with NNPDF3.0 at NLO (left) and NNLO (right) using FEWZ. Each green dashed line
is the result for a single Monte Carlo replica PDF set, while the solid red line is the resulting
average and the solid blue lines are the 68% confidence interval. Both the absolute result (top)
and the ratio to the central value (bottom) are shown.

shown as dots with the central values and 68% confidence intervals given by lines.

In the case of gluino-gluino production, all replicas are strictly positive for mg̃ < 3

TeV. At 3 TeV, some replicas do lead to slightly negative cross-sections, though the

number has improved in the new set: 15 in NNPDF2.3, and only 3 in NNPDF3.0. The

small number of negative replicas means that they can be set to zero without impacting

the central value or uncertainty of the distribution.

The squark-antisquark case is similar, with again all replicas giving positive values

for the cross-section with mq̃ < 3 TeV, with negative values appearing for mq̃ = 3

TeV. For NNPDF2.3, a large number of replicas gave negative values, resulting in a

central value which itself was negative. With the improved positivity prescription used

in NNPDF3.0, the central value is now positive and only a small part of the 68%

confidence level range is in the negative region. Some replicas are still negative, though

this is to be expected, partly because positivity is imposed with a Lagrange multiplier

which carries a large but finite penalty, but also because it is only imposed for a finite
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Figure 7.38: Cross-sections for NLO gluino-gluino (left) and squark-antisquark (right) pair
production at the 14 TeV LHC with NNPDF3.0 (green) and NNPDF2.3 (red), for sparticle
masses of 1 TeV (top), 2 TeV (middle) and 3 TeV (bottom). In each case, we show the
predictions for the Nrep = 100 Monte Carlo replicas as well as the average result and the 68%
confidence interval.

number of standard model processes, and not for all possible processes. Note however

the very large PDF uncertainties at the largest masses, which is around +200%,-100%

for squark-antisquark production with mq̃ = 3 TeV.

From these results we conclude that the new implementation of positivity used in

NNPDF3.0 provides significant improvement over NNPDF2.3, giving results that are

generally positive even in the case of very heavy BSM particles.
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Chapter 8

Conclusions and Outlook

In this thesis, I have stressed the importance of the precise and accurate determination

of PDFs in order to understand the results of high energy particle physics experiments.

The NNPDF methodology provides an effective way to fit PDFs, and with the

NNPDF3.0 analysis we introduce new data and methodological features, to produce

an updated set of PDFs suitable for use in future analyses. We have also for the first

time demonstrated the validity of our methodology using closure tests.

The NNPDF3.0 analysis is in many ways a significant step up over the previous

NNPDF sets. In addition to the new data described in Chapter 4, the methodology

has been upgraded, and I have shown the extent of the testing we performed in order

to determine the optimal genetic algorithm settings. The new features we developed

have resulted in both an improvement in fitting speed and in fit quality, and so give

a better overall PDF determination. I also demonstrated that a large number of

methodological settings—like the fitting basis, the structure of the neural networks,

or the presence of cross-validation—have only a minor impact on the fit, providing

confidence in the stability of our results. Alongside the actual gains in the fit, Chapter 5

also highlights the power of the closure test framework in evaluating changes to the

methodology, by providing simple, unbiased estimators of quality. The methodological

development made for NNPDF3.0 will also have a substantial impact on our future

work. The improved fitting speed makes it significantly easier both to perform large

fits, of thousands of replicas or more, and also to perform many different fits, to test

different features or to study combinations of datasets for example.

The closure test technique itself has provided interesting results. In Chapter 6

I demonstrated that the PDFs our approach generates match the correct answer to

the degree we would expect. This is shown to be true both looking at agreement

at the level of the central value of observables and PDFs, and also in measures of

the PDF uncertainties. In the future it may be possible to develop more advanced
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and comprehensive measures of agreement, to further show the effectiveness of our

methodology. There are also a large number of other tests which could be performed,

for instance fits to inconsistent pseudo-data, or closure tests using a fixed functional

form.

For the central NNPDF3.0 PDF sets, we found good quality of fit to the

experimental data. The new PDFs are broadly consistent with the previous NNPDF2.3

PDFs, with some changes in the central values of the gluon and individual quark flavours

of between 1 and 1.5 sigma. A separate series of reduced dataset fits demonstrate that

a substantial fraction of this deviation is due to the improved methodology, though the

introduction of the new LHC and HERA data do have an impact in shifting the central

values and reducing the PDF uncertainties. Other tests demonstrate the stability of our

results on changes of the treatment of systematic uncertainties, the fitting basis and the

inclusion of nuclear corrections, while fits using a maximally consistent dataset indicate

that data inconsistency should only have a minor effect on the fit. Comparisons at the

level of LHC observables show a similar level of agreement with NNPDF2.3 as seen in

the PDFs, with some more significant differences in, for example, the Higgs production

cross-section.

Looking towards future NNPDF releases, there will likely be an updated set using

the same methodology but including a number of important datasets published since

NNPDF3.0. There is large amount of LHC run-I data which has not yet been included,

and further in the future the first 13 TeV sets will be released. There are also a number

of new releases from previous colliders, including the Tevatron legacy muon and electron

asymmetry and the final combined HERA dataset, which have the potential to provide

significant constraint on PDFs. With advances in theory, we can also start to include

data from new processes like top quark differential distributions and prompt photon

production. We are also currently working on a number of theoretical developments in

parallel. Providing a direct determination of the charm quark, with an intrinsic non-

zero component below threshold, has been a long term goal, and with the release of

NNPDF3.0 has become more of a priority. Members of the collaboration have also very

recently released a preliminary analysis of the first global PDF set to include large-x

resummation effects, at NLO+NLL and NNLO+NNLL. In both cases the work is being

done using largely the same NNPDF3.0 methodology described here.

NNPDF3.0 is a marked improvement over NNPDF2.3, both in terms of the amount

of data included and the sophistication and reliability of the methodology used. Since

its release NNPDF3.0 has already been used in a number of analyses, and with data

collection already begun for the LHC run-II, it is likely that NNPDF3.0 PDFs will

also be widely used there for both comparison of data to theory and for Monte Carlo

simulations used to estimate uncertainties. The work presented here will therefore have
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a substantial impact on this next stage of high energy physics research.
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Appendix A

Distances

We define the distance between the central values of two PDFs by

dCV[f1, f2](x) =
√
Nrep

|f1(x)− f2(x)|√
σ2

1(x) + σ2
2(x)

, (A.1)

where fi(x) is the central value of each PDF at the point x, and σi(x) is the

corresponding uncertainty. This gives the absolute difference between the central values

in units of the combined PDF uncertainty on the mean. Note that as it is the mean of

the distribution that is being compared, it is the uncertainty on the mean, not on the

distribution itself, which is used, signified by the factor of
√
Nrep at the front.

Similarly we define the distance between the uncertainties of the two PDFs by

dSD[σ1, σ2](x) =
|σ1(x)− σ2(x)|√
s2
σ,1(x) + s2

σ,2(x)
, (A.2)

where sσ(x) is the uncertainty on the uncertainty, given by

sσ(x) =

√
1

Nrep

(
m4(x)− Nrep − 3

Nrep − 1
σ4(x)

)
(A.3)

where m4(x) is the fourth central moment of the PDFs. As for the central value

distance, this distance provides a measure of the difference between the uncertainties

of the two PDFs, in meaningful units.

Fig. A.1 provides an example of a plot of distances between two PDF sets, here for

the NNPDF2.3 and 3.0 NNLO fits. In order to evaluate a plot like this, it is important

to understand what our expectation of the distances are. For a single point, we expect

the mean to vary statistically according to a gaussian distribution, and so the distance

to be below one 68% of the time etc. From PDF fits using identical settings and data,
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Figure A.1: Distances between NNPDF2.3 and NNPDF3.0 NNLO PDFs. Same as bottom of
Fig. 7.1.

but with different random seed, we observe that distances are generally below three or

four. This therefore provide our criteria for a significant difference between two PDF

sets.

For distances between the central values of closure test PDFs and the input PDF,

we use a slightly modified version of Eq. A.1,

dCV[fc, ft](x) =
|fc(x)− ft(x)|

σc(x)
, (A.4)

as the uncertainty of the input PDF is irrelevant for this purpose. Note that the factor

of
√
Nrep has also been dropped; this is mostly an aesthetic choice, based on the idea

that here we are not looking at whether the central values themselves are compatible,

but rather that the fit PDF is consistent within uncertainties with the input values.
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Closure test estimators

In this appendix I will give details of various indicators and estimators used in

Chapters 5 and 6. These include the different ways of defining the central χ2 of a

set of replicas as well as indicators of how successful the closure test fit is.

As mentioned in the main text, there are multiple different ways to define an

‘average’ χ2 for a set of replicas, based on which level the average is taken at. Note

that in general by χ2 I will refer to what is actually the χ2 per degree of data point.

First, we can take the mean of the χ2s calculated for the individual replicas PDFs fk,

i.e.

〈χ2
rep〉 =

1

Nrep

∑
k

 1

Ndat

∑
i,j

(di − ti[fk])C−1
ij (dj − tj [fk])

 , (B.1)

where di is the ith data point, ti[fk] is the corresponding theory prediction calculated

with replica k, and Cij is the covariance matrix of the experimental data.

The average replica χ2 given above describes how well on average the minimisation

can fit the replica datasets. On the other hand, the central χ2 provides a measure of

how well the whole ensemble of replicas fits the data. There are two ways to define a

central χ2. Here, by central χ2 I will always mean the χ2 calculated using the average

value of each observable

χ2
cent =

1

Ndat

∑
i,j

(di − 〈ti〉)C−1
ij (dj − 〈tj〉) , (B.2)

where 〈X〉 is the average over the replicas, as above. This way of calculating the χ2

uses the central values of each observable based on our full PDF set. We can also define

another central χ2 as the χ2 to the average PDF f0 = 〈fk〉, which I will denote χ2
0

χ2
0 =

1

Ndat

∑
i,j

(di − ti(f0))C−1
ij (dj − tj(f0)) . (B.3)

175



Appendix A. Closure test estimators

For the majority of our fits, χ2
cent and χ2

0 are very similar, while 〈χ2
rep〉 is generally

slightly larger.

There are a number of additional ways we can use the χ2 definitions provide a

better best estimation of successfulness in a closure test. In Level 1 and Level 2 closure

fits, we expect that the χ2
cent of the fitted PDFs should, if the closure test is successful,

reproduce the one computed using the input PDFs, i.e χ2
cent[ffit,D1] ≈ χ2

cent[fin,D1],

where as in Chapter 6 by D1 we indicate that that we use the Level 1 pseudo-data. We

can test whether this is the case for a particular fit by formally defining the statistical

estimator

∆χ2 =
χ2

cent[ffit,D1]− χ2
cent[fin,D1]

χ2
cent[fin,D1]

, (B.4)

that is, the difference between the χ2
cent of the closure test fit and the χ2

cent of the input

PDF set, both computed with respect to the same closure test dataset. This estimator

is therefore a measure of how close the closure test fit reproduces the theoretical

predictions of the input PDF. In particular, ∆χ2 > 0 corresponds to underlearning

(the optimal χ2 has not been reached yet) and ∆χ2 = 0 corresponds to perfect learning

of the underlying law. ∆χ2 < 0 can be connected to overlearning, though in practice

a value slightly smaller than zero is acceptable, as for a particular set of pseudo-data

there may be a set of PDFs which is more probably than the underlying law.

It is also convenient to use the χ2 to define an indicator which measures the standard

deviation over the replica sample in units of the data uncertainty. This can be defined

as

ϕχ2 ≡
√
〈χ2

rep〉 − χ2
cent . (B.5)

To see that this does what we want, we can multiply out the definition of the 〈χ2
rep〉

given in Eq. B.1, we find that

Ndat 〈χ2
rep〉 =

∑
i,j

〈
ti[fk]C

−1
ij tj [fk]

〉
−
∑
i,j

〈ti[fk]〉C−1
ij dj −

∑
i,j

diC
−1
ij 〈tj [fk]〉

+
∑
i,j

diC
−1
ij dj . (B.6)

Likewise

Ndat χ
2
cent =

∑
i,j

〈ti[fk]〉C−1
ij 〈tj [fk]〉 −

∑
i,j

〈ti[fk]〉C−1
ij dj −

∑
i,j

diC
−1
ij 〈tj [fk]〉

+
∑
i,j

diC
−1
ij dj . (B.7)
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Taking the two expressions together

〈χ2
rep〉 − χ2

cent =
1

Ndat

∑
i,j

(
〈ti[fk]C−1

ij tj [fk]〉 − 〈ti[fk]〉C
−1
ij 〈tj [fk]〉

)
. (B.8)

Thus in terms of the covariance matrix of the theoretical predictions, defined as

tij ≡ 〈ti[fk]tj [fk]〉 − 〈ti[fk]〉〈tj [fk]〉, (B.9)

we have

ϕ2
χ2 ≡

1

Ndat

∑
i,j

C−1
ij tij , (B.10)

i.e. the average over all the data points of the uncertainties and correlations of the

theoretical predictions, tij , normalised according to the corresponding uncertainties

and correlations of the data as expressed through the covariance matrix Cij . If the

covariance matrix was diagonal, i.e. in the absence of correlations, this would just be

the variance of the predictions divided by the experimental variance averaged over data

points. ϕ2
χ2 is therefore the generalisation of this idea to the case with correlations.

Note that this estimator can be calculated for any Monte Carlo PDF fit, not just closure

test fits.

The final closure test estimator I will introduce here is ξσ, which describes the

fraction of possible PDFs central values within one standard deviation of the theory

value. Unlike the estimators described above, ξσ is calculated at the level of the

PDFs rather than the level of the data. The central idea here is that, for a correctly

determined PDF set, the PDF uncertainties should describe the probability that the

true theory value for the PDFs can take a particular value, and that there should be

a 68% probability that the theory lies within one sigma of the central value (assuming

that the uncertainties are Gaussian). We can turn this around, and say that a given

input PDF should be within the one-sigma band of 68% of fits to pseudo-data generated

from that input. On this basis we can define

ξσ =
1

Nfits

Nfits∑
l=1

I[−σl
fit,σ

l
fit]

(
〈f lfit〉 − fin

)
, (B.11)

where ffit, fin and 〈X〉 are defined as above, σfit is the standard deviation over the

replicas of the fitted PDF, l runs over theNfits closure test fits making up the sample,

each with different pseudo-datasets. IA(x) denotes the indicator function of the interval

A, that is, it is only non-zero if its argument lies in the interval A, and one otherwise.

In practice we make a few modifications to the way ξσ is defined, in order to generate
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a large enough sample. Firstly, we average ξσ over the PDFs, and over several points

in x for each distribution. The values quoted in Section 6.4.2 are generated using a

sample of the PDFs at 20 points in x between 10−5 and 1, half of them log spaced

below 0.1 and the rest linearly spaced. This means that the actual definition of ξσ I

use in this thesis is given (generalising to n standard deviations) by

ξnσ =
1

NPDF

1

Nx

1

Nfits

NPDF∑
i=1

Nx∑
j=1

Nfits∑
l=1

I
[−nσi(l)

fit (xj),nσ
i(l)
fit (xj)]

(
〈f i(l)fit (xj)〉 − f iin(xj)

)
. (B.12)

The estimators ξ1σ, ξ2σ, . . . provide the fraction of those fits for which the input PDF

falls within one sigma, two sigma, etc. of the central PDF f̄
i(l)
fit , averaged over PDF

flavours and values of x. In a successful closure test we must thus have that ξ1σ ≈ 0.68,

ξ2σ ≈ 0.95, etc.

The second modification is that in practice, instead of generating a large number of

closure test fits—something which would take a huge amount of time and resourses—

we can instead approximate the mean PDFs of each fit, 〈f i(l)fit 〉, by fitting a single replica

to each set of closure test data at Level 1, i.e. without additional replica fluctuations.

We can then replace the individual values of σi(l) in Eq. B.12 with the corresponding

values from a single 100 replica fit, making use of the fact that the variation in the

PDF uncertainties between different closure test fits is small.
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