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ABSTRACT

This thesis is concerned with some problémslin'three areas
of Banach algebra theory. These are dealt with separétely in
Chapters 2, 3 and L,

Chapter 2 is concerned with certain automatic continuity
problems for homomorphisms and derivations on Banach algebras.
The main result is that if there exists a discontinuous
homomorphism from a Banach algebra onto a semi-prime Banach
algebra, or a discontinuous derivation on a semi-prime Banach
algebra, then there exists a topologically simple radical
Banach algebra.

The main result of Chapter 3 is that there are no Jordan
derivations which are not also associative derivationé on any
semi-prime algebra over a field not of characteristic 2., It
follows from this that every Jordan derivafion on a semi-simple
Banach algebra is a derivation, and therefore continuous.

The background to Chapter 4 is a theorem which states that
if A is a C*-algebra with identity, acted on by a group G
of isomeﬁric automorphisms in such a way that A is G-abelian,
then the set of G-invariant states of A ié a simplex. This
was proved by Lanford and Ruelle in connectiog with the
C*-algebra approach to statistical mechanics. Metﬁods are
developed to provide an alternative proof of this result and to
investigate the possibility of similar results holding in

special cases when A 1is not a C*-algebra,.



PREFACE

The material présented in this thesis is claimed as
original, with the exception of those sections and parts of

sections where specific mention is made to the contrary,
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INTRODUCTION

This thesis is a ﬁresentation of some problems and results
in three distinct areas of Banach algebra fheory, each of which
is concerned in some way with homomorphisms, with derivations,
or with both. There are four chapters. Chapter 1 consists
almostwentirely of standard algebra and Banach algebra theory
and Chapters 2,3 and 4 each deal with one of the three sets of
probléms. Chapters 2,3 and 4 are indepeﬁdent of each other.

Chapter 2 is concerned with what are often called
'automatic continuity problems'. Let A and B be algebras

over the same field. Then a linear mapping h from A into B

is a homomorphism if

h(ab) = h(a)h(b) (a,b € A). ,
A typical automatic continuity result for homomorphisms states
sufficient conditions on Banach algebras A and B for all
homomorphisms from A into B, or from A onto B, to be
continuous. The conditions are ideally of a purely algebraic
nature, but they may be paftly algebraic and partly
topological. Alternatively, A or B may be a specified Banach
algebra,

By a derivation on an algebra A, we shall always mean a

linear mapping D of A into itself such that

D(ab) = aDb + (Da)bdb (a,b € A).
As in the case of homomorphisms, an automatic continuity result
for derivations typically states the continuity of all

derivations on any Banach algebra satisfying certain conditions.

The history of automatic continuity problems in Banach



algebra theory is Qell illustrated by the 'uniqueness of norm
problem', A Banach algebra A 1is said to have a unique
complete norm t0pologylif-all the complete algebra norms on A -
are equivalenf. If p and q are complete algebra norms on
A, then the identity mapping on A 1is continuous, as a
homomorphism from the Baﬁach algebra A with the norm b onto -
the Banach algebra A with the norm q, if and only if p and
q are equivaleﬁt. Thus the problem of whether or not a Banach
algebra A has a unique complete norm topology - the
uniqueness of norm problem for A - is a special case of the
problem of whether or not every homomorphism from an arbitrary
Banach algébra onto A is continuous.

One of the earliest uniqueness of norm results is that if
X 1is a Banach space, then the Banach algebra BL(X) of all
bounded linear operators on X has a unique complete norm
topology. This was proved by Eidelheit in 1940 [23]. At about
the same time, Gelfand proved that every homomorphism from a
commutative Banach algebra into a commutative semi-simple
Banach algebra is continuous and that every commutative
semi-simple Banach algebra therefore has a unique complete norm
topology. About 1948, Rickart raised the problem of whether or
not every non-commutative semi-simple Banach algebra has a
unique complete norm topoiogy. Although unable to solve this
problem, he did show, for example, that every primitive Banach
algebra with minimal idempotents has a unique complete norm
topology, and that a homomorphism from a Banach algebra onto a
semi-simple Banach algebra with a unique complete norm topology
is automatically continuous [67, 68]. The uniqueness of the

complete norm topology for non-commutative semi-simple Banach



alpgebras was eventually proved by Johnson in 1967 [#6], and
this is still the most important result of this type. Between
1965 and 1974, the uniqueness of the complete norm topology was
proved for Arens-Hoffman extensions of commutative semi-simple
Banach algebras [10, 57], Banach algebras of formal power

series [61], and the radical convolution algebra L‘(0,1)

[us].
' The study of automatic continuify problems for derivations
began somewhat later. In ﬁ960, Sakai proved that a derivation
on a C*-algebra is automatically cohtinuous and, in 1967,
Johnson and Sinclair extended this result to all semi-simple
Banach algebras [71, Sﬁ]. Since then, similar results have been
obtained for Banach'algebras of formal power series [60],
Arens-Hoffman extensions of certain Banach algébras [6f] and

: L'(O,1) [45]. More recently, there has been some interest in
automatic continuity problems for derivations into modules

[5, 6, u4].

The most obvious example of a Banach algebra with non-
equivalent complete algebra norms and discontinuous derivations
is an infinite-dimensional Banach space with the zero product
[68]. Such an algebra is nilpotent and therefore equal to its
prime radical (see Section 3). An example due to Feldman shows
that a Banach algebra with a 1-dimensional prime radical can
also have a non-unique complete norm topology [4, 62}. One way
to exclude both these examples is to consider only semi-prime
Banach algebras [16, h9], and one of the main results of
Chapter 2 is that if a semi-prime Banach algebra has two non-
equivalent complete algebra norms, or a discontinuous

derivation, then it also has a closed 2-sided ideal which is a



topologiéally-simple rgdical Banach algebra (sée Section 10).
As observed in [9], it is not known whether or not there are
any such algebfas. Thus, although this result does not prove
thaf‘every semi-prime Banach algebra has ‘a unique complete norm
topology and automatically continuous derivations, it does
indicate the kind of difficulties that would be involved in
constructing a counter-example.

A long standing conjecture concerning derivations is that
if D is a derivation on a commutative Banach algebra A, then
the range of D is contained in the Jacobson radical of A.
Singer and Wermer proved that this is true if A 1is complex
and D 1is continuous [80]. This result also follows from a
theorem in [75], which states that if D is a continuous
derivation on a Banach algebra A, and P is a primitive ideal
of A, then D(P) is contained in P. In section 12 of Chapter
2, we show that if there is a (discontinuous) derivation D on
a Banach algebra A, and a primitive ideal- P of A such that
D(P) 4is not contained in P, then we may again conclude that
there must be a topologically simple radical Banach algebra
associated with A in a certain way. It follows from this that
if the conjecture concerning the range of a derivatién on a
commutative Banach algebra is false, then there is.a
commutative topologically simple radical Banach algebra.

Most of the interest in automatic continuity probiems for
homomorphisms which are not onto has centred on the case when
the domain algebra is a C*-algebra. This is a natural priority
in view of the fact that, of all classes of Banach algebras,
the C*-algebras are in many ways the best understood. For many

years the major problem in this field was to determine whether



or not there exists a @iscontinuous homomorphism from any
C*-algebra into a Banach algebra. Dales [ﬁ}] and Esterle [24]
have. recently proved that,vassuming the continuum hypothesis,
.there-is a discontinuous hombmorphism from any infinite-
dimensional commutative C*-algebra into a Banach algebra. On
the other hand, it was shown in [47], that if A is a (non-
commutafive) unital C*-algebra, with no proper closed 2-sided
ideals of finite codimension, then every homoﬁorphism from A
info a Banach algebra is continuous. Two of the remaining
problems are to determine whether or not there exists a
discontinuous homomorphism from a non-commutative C*-algebra
onto a dense subalgebra of a semi-simple Banach algebra [77],
and to find further necessary and sufficient conditions for a
non-coﬁmutative C*-algebra to have a discontinuous homomorphism
into any Banach algebra. Results in [78], show that the
existence of discontinuous homomorphisms from a unital
commutative C*-algebra A 1is equivalent to the existence of
discontinuous homomorphisms with prime kernels from maximal
ideals of A. In Section 9 of Chapter 2, we show that similar
results hold in the non-commutative case. For example, we show
that if a non—commutative‘C*-algebra A has a discontinuous
homomorphism into a Banach algebra, then it has a closed
2-sided ideal M such that
(1) M has finite codimension <
(2) There exists a discontinuous homomorphism from M into a
Banach algebra such that the kernel of k is a prime ideal of
M.

It would be totally misleading to give the iﬁpression that

there are large numbers of examples of homomorphisms and



 deri§ations which are not either obviously continuous or
obviously discontinuous, but for which this may be decided by
applyihg automatic continuity results. In_facf, most naturally
occurring homomorphisms and derivations are continuous, and can
be proved to be so by elementary arguments. The role of
autométic continuity results is not, ﬁherefore, to establish
the continuity of specific homomorphisms or derivationé, but
rather to explain why it is so hard, and in many cases
impossible, to construct discontinuous homomorphishs and
derivations. It may be that the value of this admittedly rather
esoteric exercise_liés more in the stimulus it gives to the |
general development of Banach algebra theory, than in the
results themselves.

To introduce the subject of Chapter 3, let A be any
algebra or ring, and consider the operation o defined on A by

aob = ab + ba (a,b € A).

This operation is called the Jordan product on A and is
commutative, but not in general associative. Cﬁapter 3 is
concerned with one aspect of the relationship between the
Jordan p?oduct on A and the associative product from which it
is derived. This relationship has been studiéd by several
authors, but most extensively by Herstein in ; series of papers
[31, 32, 33, 34, 35], most of the results of whichAare
reproduced in [36]. Two of the subjects coﬁsidéred by Herstein
in this connection are Jordan homomorphisms and Jordan
derivations.

A Jordan homomorphism on a ring (or algebra) A 1is an
additive (or linear) mapping of A into another ring (or

algebra) such that



h(ae b) = h(a)e h(b) (a, b e A).
Similarly, a Jordan derivation on A is an additive (or
1inear)4mapping D of A into itself such that
| D(aeb) = aoDb + (Da)o b (a, b € A),

It is obvious that a homomorphism is a Jordan homomorphism
and that a derivation is a Jordan derivation, It is also clear
that an anti-homomorphism (h(ab) = h(b)h(a)) is a Jordah
homomorphism, and that there is therefore a naturél class of
Jordan'homomorphisms which are not homomorphisms,

There are, however, very few exampies of Jdrdan
derivations which are not derivations, and the main problem in
this area has always been to explain this scarcity by showing
that, on large classes of rings and algebras, Jordan derivations
which are not derivations definitely do not exist. Probably the
first result of this kind was proved by Jacobson and Rickart in
[43]. They showed that if A is a ring with identity such that
every Jordan homomorphism on A is the sum of a homomorphism
and an anti;homomorphism, then every Jordan derivation on A
is a derivation. In [3¢], Herstein showed that every Jordan
derivation on a prime ring in which 2x = O .implies x = O, is
é derivation. In [76]}, Sinclair used this result to prove that
every continuous Jordan derivation on a semi-simple Banach
glgebré is a derivation and also asked the following question :

'Is every Jordan derivation on a semi-simple Banach |
algebra continuous?;

The main purpose of Chaptér 3 is to answer this question,
Since it is known that every derivation on a semi-simple Banach
algebra is continuous, one way of.doing this is to prove that

every Jordan derivation on a semi-simple Banach algebra is a




" derivation. This'is the approach adopted in Chapter 3. In fact,'
the dnly properties of semi-simple Banach algebras used in the
proof are shared by any semi—pyime algebra over a field of
chéracteristic different from 2. We therefore conclude that
there are no Jordan -derivations which are not derivations on
any algebra of this kind.

.Essentially the results of Chapter 3, but in the
terminology of rings rather than algebras,'have been published
in EﬁZ}. This paper also céntains some simple examples of
Jordan derivations which are not derivations.

Banach algebra.theory cannot be expected to survive
indefinitely unless it produces solutions to at least some
problems which are not, like the problems considered in
Chapters 2 and 3, generated entirely within the theory itself,
One of the most successful parts of Banach algebra theory,‘from
this point of view, is the theory of C*-algebras. Chapter 4 is
concerned, although only rather indirectly, with one area in
which C*-algebras have been used in the last decade (1966 -
1976). This is in the so-cailed ‘algebraic approach' to
statisﬁical mechanics,

The.use of C*-algebras in physics was pioneered by .Segal
[73, ?4] and, later, by Haag and Kastler [30], mainly in
?onnection with quantum field theory. The developments with
which Chapter 4 is concerned are contained in a series éf
papers [17, 18, 19, 20, 53, 55], which appeared in the years
1966 to 1969, These papers describe properties of triples of
the form (A,G,T), where A 1is a unital C*-algebra, G 1is a
group and T is a (group) homomorphism of G into the group

of ‘star-automorphisms of A. The basic idea of the algebraic



.approach to sfatistical mechanics is to impose extra conditions
and structure on_triples of this form so as to produce useful
mathematical models of physical systems such as gases and
magnetic materials, which are traditionally studied by the
methods of classical or quantum statistical physics. In such a
model, the 'obéervables' of the system are repfesentedAby
certain elements of the algebra A, the group G represents
certain physical symmetries of the system, and the equilibrium
states of the system are represented by the G-invariant states
of A. A state on A is a continuous linear functional f on
A such that Hfll = 1 and

f(a*a)y 0 (ae€n),

and f is G-invariant if

f(T(gla) = f(a) (a € A, g € G).

In the simplest cases, the group G 1is an abelian group
of space translations, for example,le for 'continuous models'
of gases, or 7Z. for 'lattice models' of magnetic systems (v =
1,2,3). In these cases A typically has a 'quasi-local
- structure' consisting of a set z Ag + S ¢ K% of closed star-
subalgebras such that the following conditions are satisfied :
(1) If G = RY, then K is the set of all bounded LeBesgue
measurable subsets of RY , and if G = ZY, then K is‘the set
of all finite subsets of /L ,

(2) If S is contained in S', then Ag 1is contained in Ady
(3) T(glAg = AS*3 (5 € K, g ¢ G),
(4) If S and S' are disjoint, then ab = ba for all a in

A and b in A/,

S

(5) The union of the subalgebras Ag is a dense star-

subalgebra of A.



In models of this kind, the observables of that part of
the system in the region S are identified with all or some of
" the self-adjoint elements of the subalgebra Ag. Conditions (2)
and (3) may be interpreted as.meaning that, if a 1is an
observable in the region S, then a 1is also an observable in
.any region containing S, and for each g in G, T(gla is
the corrésponding observable in the region S + g. In classical
models, the algebra A 1is chosen to be commuta&ive, and in
this case condition (4) is redundant. In quantum models-the'
algebras Aq are not commutative., This refleéts the fact that
the order in which two observations are made may affect the
results obtained. On the other hand, observations made faf
enough apart from each other may be expected not to interact,
and this is reflected in condition (4). It may easily be shown
that a triple (A,G,T) with a quasi-local structure satisfying

conditions (1) to (5) is asymptotically abelian in the sense

that, for all a and b in A,
Na(T(g)b) - (T(g)b)all >0 as g—-o.

The relationship between the C*-algebra approach to
statistical mechanics and more obviously statistical methods
can be established by a detailed description of the G-invariant
states of triples (A,G,T) associated with specific models of
physical systems [59]. On the-other hand, some results which
ﬁay be of physical significance can be more easily studied in a
more abstract setting. The problems considered in Chapter 4
were suggested by a result of this kind due to Lanford and
Ruelle, which states that if (A,G,T) is G-abelian, then the set
of all G-invariant states is a simplex [55].

The term 'G-abelian' refers to a condition which is

10



satisfied bj all'asymptotically abelian triples (A,G,T), and
is related to the 'non-interaction of observables at a
distance'. The preéise definition is given in Section 17;

Let D(A,G) denote the set of all G-invariant states of a
triple (A,G,T). Then' D(A,G) is a weak* compact convex subset
of the dual space A' of A, and an element f of D(A,G) is

said to be a G-ergodic state if it is an extreme point of

D(A,G), that is, if it cannot be expressed in the form

f=1¢tf + (1 - t)f,,
with O<t<1, f, and £, in D(A,G) and £, not equal to f.
It follows from the general theory of compact convex sets that
each G-invariant state f has an integral representation of

the form

f(a) = &x(a)dtk(x) (a € 4),

where P is a positive boundary measure on D(A,G).

D(A,G) is said to be a simplex if, for each f, this
representation is unique (see Section 19). If A 1is separable,
then D(A,G) is metrizable, and a positive Baire measure on
D(A,G) is a boundary measure if and only if it is supported
on the set of G-ergodic states. Claims for the physical :
significance of the result that, if (A,G,T) is G-abelian,
then D(A,G) is a simplex, are based on this fact, and on the
following two arguments, which we illustrate in terms of a.
system consisting entirely of water molecules [69].

(1) A G-invariant state representing an equilibrium state of
the system, represents a pure thermodynamic phase (i.e. ice,
water or steam) if and only if it is G-ergodic.

(2) On physical grounds, a G-invariant state f représenting

11



a mixture (of ice and water, for example) should therefore have
a unique decomposition into G-ergodic states., This 'unique
ergodic decomposition' is provided by the unique boundary
measure representing f on the éimplex D(A,G). |

The preceeding remarks do not do justice to the subtlety
and complexity of the aléebraic approach to equilibrium
statistical mechanics, and we have mentioned only one of many
interesting results in C*—algebra.theory which ha;e been proved
in this‘connection. However, there are clearly grounds for
doubt that such an‘abstract approach can be of mﬁch use in
physicse Tﬁat these doubts exist is confirmed by the following
statement made by a leading exponent of the algebraié approach,
'It is a fact that people who know something about statistical
mechanics do not usually know much about C*-algebras and vice
versa; this situation has led to a certain amount of skepticism
on one side and to unjustified claims of the solution of big
problems on the other side' (Ruelle [70]).

The purpose of Chapter 4 is nqt, however, to make.any
contribution to statistical mechanics, but rather to
investigate the extent to which C*-algebras can be replaced by
Bapach algebras which are not C*-algebras, while still
retaining some form of 'asymptotic abelianness! and the
possibility that the set of G-invariant states (suitably
fedéfined) is a4 simplex.

The first stage is to extend the terminology to cover
triples of the form (A,G,T), where A is a complex unital
Banach algebra, and T is a homomorphism of G into the group

of isometric automorphisms of A, By a state on A, we shall

12




mean, as in numerical range theory, a continuous linear
functional f on A such that
Wel = £(1) = 1.

As before; a state f is G-invariant if

f(T(g)a) = f(a) (a € A, g € G),
and the set D(A,q) 'of G-invariant states is a convex weak*
compact subset of,the dual space A' of A. It therefore makes
sense to ask whether or not D(A,G) is a simplex.
Now assume that the group G . is amenable, and let M be
a 2-sided and inversion invariant mean on 1 (G) (see Section

16). The triple (A,G,T) is M-asymptotically abelian if, for

all £ in D(A,G) and a and b in A,

M(w) = O, where w(g) = f(aT(g)b - (T(g)b)a) (ge G).
If A is a C*-algebra, then (A,G,T) is M-asymptotically
abelian if and only if it is G-abelian (see Section 18).

If A is commutative and T(g) = 1 for all g in G,
then (A,G,T) is clearly M-asymptotically abelian, and the
G-invariant state space D(A,G) coincides with the set D(A)
of all the states of A. Since there do exist commutative |
Banach algebras A, sucﬁ that D(A) is not a simplex, Qe
conclude immediately that the theorem of Lanford and Ruelle'
does not extend to the case when A is not a C*-algebra. Wh;n
A is a unital C*-algebra, D(A) is a simplex if and only if
A is commutative, However, when A is not a C*-algbera Very-
little is known about what kind of algebraic properties A
‘satisfies if D(A) 1is a simplex. There is therefore little
hope of finding necessary conditions for D(A,G) to be a

simplex, and we therefore concentrate on sufficient conditions.

The main result is that there is a unital Banach algebra B

13'



- associated with (A,G,T) and M such that

(1) If B is commutative, then (A,G,T) is M-asymptotically.
abelién

(2) If the state space D(B) of B. is a simplex, then the
G-invariant state space D(A,G) is a simplex |

(3) If A is a C*-algebra, then B 1is a C*-algebra, and B
is commutative'if and'only if (A,G,T) is G-abelian,

vThese results imply that if B is a commutativé C*-algebra,
then (A,G,T) is M-asymptotically abelian and D(A,G) is a
simplex. They also provide an alternative broof of fhe known
result that if A is a C*-algebra, G is amenable, and
(A,G,T) is G-abelian, then D(A,G) is a simplex,

The final part of Section 19 éf Chapter 4 is an attempt
to establish how far the scope of these results extends beyond
the case when A 1is a C*-algebra,

Let H(A) = {a € A : f(a) is real for all f in D(A)%. Then,
by the Vidav-Palmer theorem (see Section 19), A is a
C*-algebra if and only if A = H(A) + iH(A).

Now let H(A,G) = {a€e A : f(a) is real for all f in
D(A,G)%. We show that, at least when A 1is Arens regular, a
necessary and sufficient condition on A for B to be a
C*-algebra is A = H(A,G) + iH(A,G).

Since H(A) 1is contained in ‘H(A,G), this condition is
safisfied when A 1is a C*-algebra, but may also be satisfied,
as may be confirmed by trivial examples, when A is not a
C*-algebra, However, the main conclusion to be drawn from these
results is that if (A,G,T) is M-asymptotically abelian, but
A is not a C*-algebra, then it is in general difficult to

determine whether or not D(A,G) is a simplex, but unlikely
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that it is so. It is to‘be hoped that the methods used to reach
this rather negative conclusion méy at least be of some
interest,

Most of the new results are in Sections 8 to 13 of Chapter
2, Section 15 of Chapter 3 and Sections 18 and 19 of Chapter 4,
No new results are proved in Sections 1, 2, 3, 5, 6, 14, 16 and
17.

Knowledge of basic functional analysis is assumed
throughoﬁt'and, in Section 9 and in Chapter L4, some more
specialised resul@s concerning C*-algebras are quoted without
" proof, Lomonosov's theorem concerning the existence of
invariant subspaces for compact operators is used in Section 10
and, in Section 19, parts of the theory of combact convex sets
and boundary measures play a major role. Section 19 also uses a
certéin amount of numerical range theory, including the Vidav-
Palmer theorem.‘
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Sinclair for many helpful suggestions and for constant
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Science Research Council,
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Chapter One

THE JACOBSON AND PRIME RADICALS OF A BANACH ALGEBRA

T. Introduction,

“ The purpose of Chapfer 1 is to provide an introduction to
that part of the ideal theory of non-commutative algebraé and
Banach algebrés which will be used in Chapters 2 and 3, Section
2 is concerned principally with primitive ideals and the
Jacobson radical,-and Section 3 with prime ideals and the prime
radical, Some examples of Banach algebras, and of continuous
derivations and homomorphisms on Banach algebras, are described
in Section &4,

Familiarity with the basic definitions of Banach algebra
theory is assumed and, in particular, free use is made of
concepts related to the Gelfand representation theory for
commutative Banach algebras, and of the Gelfand-Mazur theorem
on complex normed division algebras, and its real analogue
(lemma 2.23).

Wifh the possible exceptions of Example 4,14 and Example
4,17, nothing in Chapter 1 is original, biut specific references
are given only for some of the more recent results., The
principal.sources for Sections 2 and 3 are the books, 'Banach
algebras'!, by C.E. Rickart, [68], 'Complete normed algebras',
by F.F., Bonsall and J. Duncan, [9], and 'The theory of rings?,
by N.H. McCoy, [63].

The main purpose of the rest of this section is to

summarise some basic terminology and notation,

16




1.1 Algebrés and algebra norms.

An algebra over a field F is a linear space A over F,
with a specified associative bilinear product. If F is the
field R of real numbers, or the field C of complex‘numBers,

then F is called the scalar field of A.

A is a real algebra if F =R, and a éomplex algebra if

F=(o

An algebra norm is a norm | on a real or complex

algebra A such that
llabli ¢ Halii bl (a,b € A).
A real or complex algebra A with a specified algebra norm

h-l is called a normed algebra, and may be writtem (A,N-N)

when more than one algebra norm on A 1is under consideration.

A normed algebra is a Banach algebra if it is complete, in the

sense that every Cauchy sequence converges. A complete algebra

norm is an algebra norm -l ol a real or complex algebra A,
such that (A, Il-il) is a Banach algesra.

A normed algebra A is unital if it has an identity
element 1, such that W1l = 1,

The following notation will be used for sums and products
of subsets X and Y of an algebra A :

X +Y

il

{a + b aeX, be Y%'

XY

fab :a € X, b e Yg.
For any subset X of A, or of any linear space, span(X)

will denote the linear span of X.

1,2 Homomorphisms and derivations, s

Let A and B be algebras over a field F. A linear

mapping h from A into B 1is a homomorphism if,

17



h(ab) = h(a)h(b) (a,b € A).

A-homomorphism from A into B 1is a monomorphism if it

is. 1:1, and an epimorphism if it is onto.

An automorphism of A is a 1:1 homomorphism of A onto

itself.
A derivation on A is a linear mapping D of A into
itself such fhat
D(ab) = aDb + (Da)b (a,b € A).
This condition is an abstraction from the product rule for -the
differentiation of the product of two differentiable functions.

A derivation D on A also satisfies the Leibnitz identity :

D" (ab) = ji(?)(Dia)(ﬁpib) (a,b € Ay n =\1,2,.....).

t=o

This is easily proved by induction on n.

1.3 Ideals and quotient algebras.

Let J be a linear subspace of an algebra A. Then, J is

a left ideal if AJCJ, a right ideal if JACJ, and a 2-sided
ideal if AJ + JACJ.

et A.~J denote the difference space of A modulo J,
and let Q denote the natural mapping

a—> a+Jd (a € 4),

of A onto AJ. If I‘ is any subspace of A containing
J, then I./J will denote the subspace QI of A/J.

Now suppose that J is a 2-sided ideal of A. Then A/J

is an algebra, the guotient algebra of A modulo J, with

respect to the product defined by

(a + J)(b + J) = (ab + J) (a,b € A).

If I is a left (right) ideal of A, containing J, then I7J
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is a left (right) ideal of A/J.
If A 4is a Banach algebra, and J 1is a closed 2-sided
ideal of A, then A/J is a Banach algebra, with.respéct to

the quotient norm defined by

fa + Ji = inf{foll : b - a € J3 (a € A).
In this case, if I 1is a closed subspace of A containing J,

then I.J 1is a closed subspace of A J.

1.4 Modules.

Let A be an algebra over a field F.

A left A-module is a linear space X over F, with a

specified bilinear mapping (a,x)—7a.x : Ax X —>X such
that
a.(bex) = (ab)ex (a, b € A, x € XD,

Similarly, a right A-module is a linear space X over F, with

a specified bilinear mapping (x,a) —> x.a : XX A~>X such
that
(xob)oa = X.(ba) ' (a9 b € A’ X € X)o

If A is a Banach algebra, then a Banach left A-module

is a left Aémodule X, which is also a Bénach space, and which
satisfies the condition
la.xll ¢ Mijallix| (a € A, x € X),
for some constant M ) O.
A linear mapping T from a left A-module X into é left

A-module Y is an A-module homomorphism if

T(a.x) = a.Tx - (a € Ay, x € X).

X and Y are algebraically equivalent if there exists a

1:1 A-module homomorphism from X onto Y.

If J 1is a left ideal of A, then AJ is a left
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A-module; wifh respect to the module operation defined by-
a.(b +J) = ab + J - (a,b e A).
If A is a Banach algebra, and J is a closed left ideal,
then A/J is a Banach left A-module and
Na.(v + D¢ Halllb + I (a,b € A).
An A-subﬁodule of a ieft A-module X is a linear subspace
Y of X such that
a.y € Y (ach, ye Y).
Similarly, if X is a right A-module, then a subspacé Y
of X 1is an A-submodule if

yea € Y (a € A, ye Y).
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2. The Jacobson radical.

In this Section we describe those properties of the
irreducible modules, primitive ideals and Jacobson radical of a
‘Banach algebra which will be used in Sections 9 to 13 of
Chapter 2. Most of the definitions and results are independent
of any topology and were originally developed in the more
generallsetting of ring theory [hz], although their application
to Banach algebras is well known L9, 68]. Oof fhe results
spécific to Banach algebras, one of the most fundamental is the
fact that every primitive ideal in a Banach élgebra is closed.
This mékes the primitive ideals and Jacobson radical of a
Banach algebra considerably easier to deal with than the prime
ideals and prime radical coﬂsidered in Section 3.

There are several possible approaches to the definition ?f
the Jacobson radical and related conéepts. Wherever possible,
the concept of an irreducible left A-module is treated as basic,
and results concerning irreducible right A-modules, modular
ideals, quasi-invertible elemepts and quasi-nilpotent elements
are included only as necessary or convenient.

Throughout this Section, A will denote an algebra over a

field F.

2.1 Definition. A left (right) A-module X is irreducible if

A.X # $0} (X.A # {0}), and {0} and X are the only
A-submodules of X.

A 2-sided ideal P of A is left primitive if there

exists an irreducible left A-module X such that
P:iaEA:a.X:iO“,

and right primitive if there exists an irreducible right
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A-module X suﬁh that
P=fach: Xea= {0},
P is primitive if it is either left primitive or right‘
primifive. .
As an example of an irreducible left A-module, let X be
a Banach space, iet A be the algebra BL(X) of all bounded
linear operators on X, and define the module operation on X by
Tex = T(x) (T € BL(X), x € X).
In this case, the corresponding primitive ideal is the zero
ideal (0) of A.
An algebra (such as BL(X)) in which the zero ideal is a

primitive ideal is called a primitive algebra.

If X is an irreducible left A-module, then the set
72 = zx € X ¢ A.x = ioii is an A-submodule, Thus 2 = ioﬁ and

s0 A,x = X for all non-zero x in X,

2.2 Definition, A left ideal I of A 1is a modular left

ideal if there exists an element - e of A such that ae - a
isin I for all a in A. Any such element e is called a

right modular unit for I.

A left ideal I of A 1is a maximal left ideal if I 1is

not equal to A, and A and I are the only left ideals of A

which contain I. A maximal modular left ideal is a modular

left ideal which is also a maximal left ideal,

2.3 Lemma. Every proper modular left ideal is contained in a
maximal modular left ideal,
Proof., This is a straightforward application of Zorn's lemma

(see, for example, [9, Proposition 9.2]).
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2.4 Lemma,
(1) Let M be a maximal modular left ideal of A. Then the
left A—module A-M 1is irreducible.
(2) If ‘X 4is an irreducible left A-ﬁodule, then there exists a
maximal modular-left ideal M of A such that A/M is
algebraically equivalent to X. |
Proof. To prové (1, iet e be a right modular unit for the
maximal modular left ideal M and let a be an elemént of A
not in M..Then ae - ae¢M implies ae¢ M, and therefore
A.(A M) # {0}. Since the A-submodules of AM aré clearly in
1:1 correspondénce Qith the left ideals of A containing M,
it follows that A/M 1is an irreducible left A-module.

Now let X be an irreducible ieft A-module, let x be
any non-zero element of X, and let M‘z {a € A : a.x = O%.
Then M is a left ideal and the mapping T of AM into X
defined by

T(a + M) = a.x (aen),

is a wéll-defined 1:1 module homomorphism of AM onto X.
Let e be any element éf A such that e.x = x. Then ae - a
is in M for all a in A, and M is therefore a modular
left ideal., If I is any left ideal of A containing M,
then T(I) is an,A-submoduie of X. Thus I =M or I = A,
and .M is therefore a maximalhleft.ideal. This completes the

proof of (2).

2.5 Definition., The Jacobson radical R of A is the

intersection of all the primitive ideals of A. If R = A

(i.e. if A has no primitive ideals), then A is a radical

algebra.
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A is semi-simple if R = (0). Every primitive .algebra is

tﬁerefore semi~-simple,

Although the definition of the Jacobson radical in tefms
of primitive ideals is ﬁhe most suitable definition for the . .
purposes of Chapter 2, the concept of quasi-invertibility is a
useful tool for the proof of some of the results of this
section. A complete characterisation of the Jacobson radical in
terms of quasi-invertibility is given in [9, p.1241.

An element a of A is quasi-invertible if there is an

element b of A such that a + b - ab =0 =a + b - ba,

2.6 Lemma, ILet J Dbe the intersection of all the left
primitive ideals of A. Then every element of J 1is quasi-
invertible,.
Proof. .Let e be any elemént of J and let
I-= zbe -b:b € Aﬁ. Suppose there is no element b of A
such that e + b - be = O, Then e is not an element of I,
and I is therefore a prdper modular left ideal, By lemma 2.3,
I is contained in some maximal modular left ideal M.

Let P = ia € A : aA is contained in M%. Then, by_
lemma 2.4 (1), P is a left primitive ideal. Thus e 1is in P,
and e = (e - e€*) + € is therefore in M., Since e is a
right modular unit for M, this is impossible. This
contradiction proves that there must be an element b 6f A,
such that e + b - be = 0, To prove that e is quasi-
invertible, it is sufficient to show that e ; b - eb = 0, To
do this, note that b = be =« e is in J. Thus, by repeating
the argument above with b instead of e, we obtain an element

¢ of A such that b‘+ ¢ -cb = 0, But then, ¢ = ¢cb = b =
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cbe - ce - be + e = (cb - ¢c - b)e + e = e, and this completes

the proof,

2.7 Corollary. The Jacobson radical R of A 1is equal to the

intersection of all the left primitive ideals of A.

Proof, As in lemma 2.6, let 'J be the intersection of all the
left primitive ideéls of A, Then R 1is contained in J.
Suppose R 1is not equal to J apd let a be any'element'of

J which‘is not in R. Then there exists an irreducible right
A-module X such that X.a $ 201. Let x be an& element of X
such that -x.a $# O, Then X = x.,aA, and so there is an element
d of A such that x = x,ad, Let e = ad. Then e is in J,
and, by lemma 2.6, there is an element b of A such that

e +b - eb = O, But then, x = x.e = x.(eb - b) = O, which is a

contradiction proving that J = R as required,

2.8 Corollary. Let R be the Jacobson radical of A, and let

a in A and b in R satisfy ab = a., Then a = O,
Proof. By lemma 2.6, there is an element ¢ of A such that

b +c¢c - bec = 0., Therefore, a = a + ac - ac = ab + ac - abc = O,

2.9 Lemma, Let I and P be 2-sided ideals of A such that
I is contained in P. Then P/’i is a left primitive ideal of
.A/’i if and only if P is a left primitive ideal of A,
Proof, Suppose that P/ I is a left primitivé ideal of A/ T,
and let X be an irreducible left (A/I)-module such that
P/I ={b€ A/T : b.X = {01§. Then X may be regarded as an
irreducible left A-module by means of the definition

a.x = (a + I).x (a € A, x€ X),
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and so P =§a € A : a.X = ioii is a left primitive ideal of
A. Conversely, if X 1is an irreducible left A-module such that
P = %a € A : a.X = 303‘, then X may be regarded as an
.irreducible left A/ I-module by means of thé definition

(a + I)ox = a.x (a ¢ A, x€ X),

and P I is therefore a left primitive ideal of A/ I.

2.10 Corollary., If I is_a 2-sided ideal of -A contained in
the Jacobson radical R of A, then the Jacobson radical of -
AT is R/’If In particular, the Jacobson fadical of A/R
is (0) and A/R is therefore semi-simple.

Proof. This follows immediately from Corollary 2.7 and lemma

2090

2.11 Corollary. Every right primitive ideal of A 1is an

intersection of left primitive ideals.

Proof. Let P be a right primitive ideal of A. Then the
Jacobson radical of A/P is (0). By Corollary 2.7, P is
equal to an intersection of ideals J of A such that J
contains P and J-P is a left primitive ideals of A//P. By

lemma 2.9, the ideals J are all left primitive ideals of A,

2,12 Lemma, Let I be.a 2-sided ideal of A and let R be the
‘Jacobson rédical of A. Then INnR 1is the Jacobson radical of

I.

Proof. Let R(I) be the Jacobson radical of I, let P be a
left primitive ideal of A, and let X be an irreducible left
A-module such that P = §fa ¢ A : a.X = {0}{. Then either I is

contained in P, or X 1is an irreducible left I-module., In
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either casé, R(i) is contained in Pn I. This proves that R(I)
is contained in RNI. Now let a be any element of RAnI
and let Y Dbe an-irredﬁcible left I-module. Suppose a;Y #.
{oil. Then there exist elements ¢ of I and y of Y such
that ca.y =y # O. Let e = ca. Then e 1is in R, and so, by
lemma 2.6, there is an element b of A such that

e + b - be = O, But then, y = e.y = (be - b).y = 0, which is a
contradiction. This proves that a.Y = {0} and that a is

therefore in R(I) as required.

The following lemma indicates how the theory of this

Section applies wvhen A 1is commutative.

2.13 Lemma. If A is commutative and P is any ideal of A,
then the following are equivalent :

(1) P is primitive

(2) P is maximal modular

(3) AP is a field.

Proof. If P is primitive, then, by lemma 2.4, there is a
maximal modular ideal M such that P = ia € A : aAﬁ;Mi. But
then P4gI’§A and so P = M. The implications (2) impi%es (3)

and (3) implies (1) are obvious.

2.1% Definition, Let X be an irreducible left A-modﬁle, let

L(X) denote the algebra of all linear operators on X, and let

D = ET € L(X) : T(a.x) = a.Tx (x € X, a € A)S.

Then D is called the centralizer of A on X and is clearly
a subalgebra of L(X).

Let T be a non-zero element of D. Then the range and
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kernel of T are A-submodules of X, and T is therefore
invertible. Let S be the inverse of T. Then

a.5x = ST(a.S8x) = S(a.,(TSx)) = S(a.x) (ae A, x €X),
and S is therefore in D. This proves that D 1is a division
algebra.

Let Xoy oceccey Xn be any n + 1 elements of X. Then Xo

is said to be a linear combination over D of X, cceeey X,

if there exist T,, ecceey Tn in D such that
xo = Tix‘ + eevee + Tkxﬂ.

- A non-empty set E of X is linearly independent over D

if for éll x., cecvsoy xn in E and T|, esceoy T in D,

n
TyX, + eceee + TaX, = O implies T, =T, = sc.ee = T, = 0.

The terms 'n-dimensional over D', 'finite-dimensional

over D' and 'infinite-dimensional over D', refering to

subspaces Y of X such that DY is contained in Y, should
be interpreted exactly as they would be if D were a field and

X a linear space over D.

2.15 Lemma., Let X be an irreducible left A-module, let D be

the centralizer of A on X, and let x and y be elements

. of X 1linearly independent over D. Then there exists a in

A such that a.x = O and a.y # O.

Proof. Suppose that ax =0 ‘implies a.y = O, Then we may

aefine a linear mapping T from X = A.x onto X = A.y by
T(aex) = aey (a € A).

Simple calculations show that T is in D and that Tx = y.

This contradicts the linear independence of x and y over D.

There must therefore be an element a of A with the required

property.
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2.16 Lemma. Let X be an irreducible left A-module and let D

be the centralizer of A on X. Then, for all n greater than O*fqyi
2 and elements X;, eescey X, of X 1linearly independent
over D, there is an element a of A such that

aox' = eeeove — a-xn_' = O and acx“ * O.

Proof. The proof is by induction on n, and the case n = 2 is

lemma 2.15. Assume that the result holds for some nj

> 2, and

let X,y eeceey X5, Dbe linearly indepeqdent over D,

let I ='{a €E A 2 AQeX) = eeeee = AeXp = O%. Then, by the
inductive hypothesis, the;e exists b in I such thaf
b.x, # O. Since 'I is a left ideal, we have X = I.x,. Now
suppose that a.X,;= eeeee aeX, = O implies a.x,,, = O. Then
we may define an element T of D by:

T(a.X,) = a.x (a € 1),

and for all a in I, we then have é.(Txh - Xn,,) = O.
SUDPPOSE X,y esssey Xo,9 TXq - X,, are linearly independent
6ver D. Then, by the inductive hypothesis, there is an element
a of I such that a.(Tx, - x,,) # O. This shows that x,, ..
eeey Xpnyy TXn - X,,, are not linearly independent over D, and
therefore contradicts the linear independence over D of x,,
eeecsey Xny o This proves that the statement holds for n + 1,

and so completes the proof of the lemma.

2.17 Theorem (Jacobson's density theorem).

Let X be an irreducible left A-module, let D be the
centralizer of A on X, and let X,y eccecey Xn and Y, eeece

ey Yo be elements of X. Then, if X, .ceeey Xn are linearly

-independent over D, there is an element a of A such that

L =yi (i=19 seevey n)o
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Proof. By lemma 2.16, there are elements b,y eceeey by of A

such tha# b;.x; # O and

‘biex; =0 (3 £ 1).
For each 'iy Abi.x( = X, and there is therefore an element ¢
[5)
of A such that cibé.xi = Y e The element a = §:cib£ of
' t=

A has the required property.

The following Corollary is an immediate consequence of the
Wedderburn structure theorem for finite-dimensional semi-simple
algebras, which follows easily from Jacobson's density theorem

(see, for example, [9, p.134]).

2.18 Corollary. Let J be a finite-dimensional semi-simple

subalgebra of A. Then J has an identity element e. If J
is a 2-sided ideal, then J = Ae and e commutes with every

element of A.
We now specialise to the case when A is a Banach algebra.

2.19 Lemma. If A 1is a Banach algebré and M is a maximal

modular left ideal of A, then M is closed,

Proof, Let e be a right modular unit for M and let
U=fa€Ah:le-al( 1%.

Suppose Ma U is not empty, let a be any element of Mn T,

o0
n
and let b = 2: (e - a) . Then b - b(e - a) = e - a and so
n=\

e =a+ba+b-be is in M. This is impossible, since M ¢
A implies e ¢ M, Thus Mn U must be empty, and, since U is

an open set of ‘A, it follows that e is not in the closure M
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of M. But M is then a proper left ideal of A containing M

and is therefore equal to M. Thus M 1is closed,

2.20 Corollary. Let P be a left primitive ideal of A. Then

there exists an irreducible Banach left A-module X such that
P = {ae A: a.X = %Oi% and lla.xll € Haliixy (a € A, x € X).
Proof. By lemma 2.4, there is a maximal modular left ideal M
such that P = {ae A e aAgM%. Since M is closed, A/ M ‘is

a Banach left A-module with the required property.

2.21 Corollary. Every primitive ideal of a Banach algebra is

closed,
Proof, By Corollary 2.11, it is sufficient to show that every
left primitive ideal is closed. This follows immediately from

Corollary 2.20.

2.22 Corollary. The Jaéobson radical of a Banach algebfa is

closed,.

The proof of the following result is based on certain
elementary properties of the spectrum of an element of a normed
algebra. Since this spectral theory is not used (explicitly)
anywhere else, the proof of the lemma is omitted. It may be

found in [9, pe 71 - 74).

2.23 Lemma. Let D be a real or complex normed division
algebra. Then D is isomorphic to € , if it is complex, and to
Ry € or H, if it is real, where IH is the real quaternion

AIgebra. In particular, D is finite-dimensional over its
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scalar field.

2.24 Lemma., Let A be a Banach algebra, let X be‘an
irreducible left A-module and let D be'the centralizer of
A on X. Then D is isomorphic to R, € or H.

Proof., By lemma 2.4, we can assume that X = A/M, for some
maximal modular left idea; M of A. By lemma 2.23, it is
sufficient to prove that D is contained iﬁ the algebra
BL(A/ M) of bounded 1inear operatorslon' A/M, since it is
then a normed division algbera. To do this, let T be in- D,
let e be a right modular unit for M and let a be any
"element of A. If b isin A and a - b is in M, then
a-be=b-be+a-b is in M, and therefore WT(a + M)l =
iT(be + M = IT(b.(e + M = Wb.T(e + MY < IbiiT(e + M.
Thus NT(a + M)¢ \\é + MIT(e + M)}, and T 4is therefore

continuous.

The final lemma of this section is used in Section &4 tb
aid the recognition of radical Banach algebras.

An element a of a Banach algebra is quasi-nilpotent if

L
far "> 0 as n-yeo.

2.25 Lemma., Let A be a Banach algebra and let J--be a left
ideal of A such that every element of J 1is quasi-nilpotent.
Then J is contained in the Jacobson radical R of A.

Proof, Suppose J is not contained in R. Then, by Corollary
2.20, there is an irreducible Banach left A-module X such
that J.X # §0} and Va.xli¢lalixll, for all a in A and x in

X. Let x be any element of X such that J.x # {0}. Then,
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since J 1is a left ideal, J.x = X and there is therefore an
‘element e of J such that e.x = x # O. But then éy.x = X,

1 L y ’
for all n, and so NxI" ¢ le?"§x "= 0, which is a

contradiction., Thus J "must be contained ih R.
It is also true that every element of the Jacobson radical

of a Banach algebra is quasi-nilpotent. A prodf of this well-

known result (using spectral theory) may be found in [9, p.12é].
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3. The prime radical.

This Section contéins the definitions and elementary
properties of the prime radical of an aléebra and related
concepts, and has applicatioﬁs in Chapter 2 and Chapter 3. As
in the previous Section, most of the theory is purely
algebraic., However, this Section differs from the last in that
most of the results specific to Banach algebras were first
proved fairly recently. Of thesé, the most important is the
theorem of Grabiner which states that a nil Banach algebra is
niipotent.

As in Section 2, A will denote an algebra over a field F.

23,1 Definition, Let P be a 2-sided ideal of A. Then P is

a prime ideal if

aAbC P implies a € P or be P (a,b€A),

and a semi-prime ideal if

aha € P implies a € P (a€ ).
Note that a prime ideal is also sémi-prime.

A is a prime algebra if (0) is a prime ideal, and a semi-

prime algebra if (0) is a semi-prime ideal.

If A is commutative then an ideal P of A is prime if
andvonly if
ab € P implies a é‘P or be P (a,ben),
and semi~prime if and only if
a* e P implies ae P (ae ).
A commutative prime algebra is usually referred to as an

integral domain.

3,2 Lemma, Let h be a homomorphism of A onto an algebré B.
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If P is a prime (semi-prime) ideal of B, then hf'(P) is a
prime,(semi—prime) ideal of A. Conversely,‘if N 1is a prime
(semi-prime) ideallofv.A containing the kernel of h, then
h(N) is a prime (semi-prime) ideal of B.

Proof. This follows immediately from the definitions.

3.3 Corollary. Let P be a 2-sided ideal of A. Then P is a

prime (semi-prime) ideal if and only if A/ P 1is a prime (semi-

prime) algebra.

3.4 Definition, An element a of A is nilpotent if & =0

for some n,

A subset E of A is nil if all its elements are
nilpotent, and nilpotent if there is a natural number N such
that B = (0), where Y - {a,...'..aN DBy eeeeey AyE E%.

Note that a nilpotent ideal (for example) is a nil ideal,

but that in general a nil ideal is not nilpotent.

3.5 Lemma, The following are equivalent :

(1) A is semi-prime

(2) A has no non-zero nilpotent left ideals

(3) A has no non-zero nilpotent right ideals

(4) A has no non-zero nilpotent 2-sided ideals.

Proof. Suppose A is éemi-prime and let I be a nilpotent
left ideal or a nilpotent right ideal. Suppose I is not the
zZero ideal; let n be the least natural number such that T =
(0), and let a be any non-zero element of f"'. Then alAa €
T'AT ¢1” = (0), and therefore a = O, which contradicts the

choice of a. Thus I must be the zero ideal.
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- Since the implications (2) implies (4) and (3) implies (4)

are obvious, it remains to prove that (4) implies (1),

Let N ='ia'€ A : aA = (O)%. Then N is a 2-sided ideal,
and NQXENA'z (0). Suppose A has no non-zero nilpotent
2-s5ided ideals. Then N = (0), and a similar argument shows

that if Aa = (0), then a = O, To show that A is semi-prime,
we must prove that if aAa = (0), then a = O, Let a be any
element of A and let I be the 2-sided ideal of A sp;nned
by the set AaA., If ala = (0), then I = (0) and so baA =
(0) for all b in A. But then, Aa = (0) and £herefore

a = 0, This completes the proof,

3,6 Definition. The prime radical L of A is the

intersection of all the prime ideals of A.

3,7 Lemma, Let L Dbe the prime radical of A, fhen A/L is
semi-prime,

Proof. Let a be any element of A such that alAa is
contained in L, Then a is in each prime ideal of A, and

therefore in L. Thus L is a semi-prime ideal, and by

Corollary 3.3, A/ L is therefore a semi-prime algebra,

In Proposition 3.9, we prove that A is semi-prime if
and only if its prime radical is the zero ideal, This requires
the following lemma, which is also used in the proofs of lemmas

3.11 and 3%.12.

2;8 Lemma, Let M be a non-empty subset of A such that

(1) 0 is not in M
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(2) For all a and 5 iﬂ M, there is an element x of A.
such that axb is in M. |

Then there is a prime ideal P of A such that the
intersection of P with M is empty.
Proof. Let X be the set of all 2-sided ideals P of A
such that Pa M is empty. By condition (1), X is non-empty,
and, if X 1is partially ordered by inclusion, then it clearly
éatisfies the conditions of Zorn's lemma and so has a maximal
element P. We show that P is prime, Suppose not, and let a
and b be elements of ANP such that aAb is contained in
P. Let (a) = Fa + Aa + aA + span(AaA) and
(b) = Fb + Ab + bA + span(AbA). Then P + (a) and P + (b)
are 2-sided ideals, and , by the maximality of P, there exist
elements ¢ in (P + (a))aM and 4 in (P + (b))N M. Let
x be an element of A such that c¢xd is in M. Then c¢xd €
(P + (a))A(P + (b))CP, and so MAP is not empty. This is a

contradiction, proving that P must be a prime ideal.

3,9 Proposition. Let L be the prime radical of A, Theén
A is semi-prime if and only if L = (O).
Proof. If L = (0), then A is semi-prime, by lemma 3.7.

' To prove the converse, suppose that A is semi-prime, and
let a be any non-zero element of A, To show that a is not
in L it is sufficient to prove that there is a prime ideal P
of A such that a is not in P,

Let a, = a, and choose a,, 8y, «esse inductively so
‘that a,,, € ajAa,\ (0). This can be done, since a, # O implies
anha, £ (0). Let M = zan :n = 1,2, ....%. A simple inductive

argument shows that if n is less than or equal to m, then
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Ami €-anAa"g'amAanr\a“Aam. Thus M satisfies the conditions of
lemma 3.8, and there is therefore a prime ideal P such that

MAP is empty. Since a is in M, this completes the proof,

3,10 Corollary. A 2-sided ideal of 'A is a semi-prime ideal

if and only if it is an intersection of prime ideals.

3,11 Lemma. The prime radical of A 1is a pil ideal of A
containing all the nilpotent ideals of A,
Proof., Let a be a non-nilpotent element of A and let
M = {d‘ :tn =1, 2, .....3.

Then M satisfies the conditions of lemma 3.8, and there is
therefore a prime ideal P of A such that a is not in P.
Thus every element of the prime radical L is nilpotent and
L is therefore a nil ideal.

Let N be a left or right nilpotent ideal of A. Then
(N + L)L is a nilpotent ideal of A/L and, by lemmas 3.7

and 3.5, N is therefore contained in L.

If A is commutative, and a is a nilpotent element of
A, then the ideal aA is nilpotent. Thus a is in the prime
radical L. It follows that L is simply the set of all
nilpotent elements of A. |

Wheﬁ A is not commutative, L may not even contain all
thevnil ideals of A, and is certainly not in general equal to

the set of all nilpotent elements.

3.52 Lemma. Let I be a 2-sided ideal of A and let L be

~the prime radical of A. Then IAnL is the prime radical of 1I.
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Proof. Let P be a prime ideal of A and let a and b be
elements of .I such that aIb€ Pn I. Then aAIb< P, and so
either ae¢P or IbcP, If IBQ_P, then IAbCP, and so ICP
or beP, In eithex; case we have a€PAI or b¢PAI and
PAI 1is therefore a prime idgal of I. It follows that the
prime radical L(I) of I is contained in InL. Now let a

be any element of I not in L(I), and let N be a prime
ideal of I such that a d4is not in N., Then M = INN
satisfies the conditions of lemma 3,8, and there is therefore a
prime ideal P of A such that MAP is empty. In

i
particular, a is not in LAI. This completes the proof,
' |

3,13 Definitions Let I be a 2-sided ideal of A and let P

be a prime ideal of A containing I. Then P 1is a minimal

prime ideal over I if, whenever N is a prime ideal of A
Nz T or

such that IE¢NgEP, then N =P. If I = (0), then P is

referred to simply as a minimal prime. ideal. Note that a prime

ideal P containing I is minimal over I if and only if
P-1I is a minimal prime ideal of A/TI.

The existence of minimal prime ideals is guaranteed by the
following lemma, the proof of which is a simple application of

Zorn's lemma,

3,14 Lemma. Let I be a 2-sided ideal of A and let P be
a prime ideal containing 1I. Then there exists a prime ideal

N of A such that N is contained in P and N is minimal
over I,

3,15 Corollary. The prime radical of A 1is equal to the

intersection of all the minimal prime ideals of A.

39



e .now briefly consider the relationship between the prime

radical and the Jacobson-radical.

3,16 Lemma., Let P 'Be a primitive ideal of A. Then P is a
prime ideal. |

22222.» Suppose that P is a left primitive ideal, and let X
be an irreducible left A-modulé such that P = iae‘A ! a.X = iOf}.
Let a and b be elements of A such that aAb is containéd
in P and b is ﬁot in P. Then, Ab.X = X, and therefore

a.X = aAb.X = {0}, which proves that a 1is in P. Thus P is

a prime ideal, A similér argument shows that a right primitive

ideal is a prime ideal.

3.17 Corollary. The prime radical of A is contained in the

Jacobson radical of A.:

3.18 Lemma. If A 1is finite-dimensional, then every proper
prime ideal of A is primitive.

Proof. We may assume without loss of generality that P = (0)
and that A 4 (0). Since A cannot have a strictly descending
sequence of sqbspaces, it must have a minimal left ideal, that
is, a noh-zero left ideal X which does not properly contain
any non-zero left ideal. X may be regarded-as a left A-module
in the obvious Qay, and is clearly irreducible., Since (0) is a
prime ideal, a.X = (0) if and only if a = O, Thus (0) is a

left primitive ideal,

3.19 Corollary. The Jacobson radical of a finite-dimensional

algebra is equal to its prime radical and is nilpotent.
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The following lemma was first proved by Nagata and Higman
Ceu, 38}, and is the essential tool for investigating the
special algebraic properties of the prime radical of a Banach

algebra. Before stating it, we define the algebra obtained from

A by adjoining an identity element. This is the algebra B of

all ordered pairs (a,s) such that a is in A and s is in
F, with the operations defined by
(a,s) + (byt) = (a + bys + t)

t(a,s)

]

(ta,ts)

(a,s8)(b,t) (ab + éb + ta,st),

for all a and b in A and s and t in F. The element (0,1) of
B is writfen 1 and is an identity element for B, The map
a-> (a,0) is a monomorphism of A into B, and A may
therefore be identified with the subalgebra %(a,o) £51€A§ of

B. We then have (ays8) = a + s1 = a + s, for all a in A and

s in F.

3,20 Lemma (Nagata-Higman). If a = 0, for all a in A, and

the characteristic of F is O, then A is nilpotent, and
A2 (o).
Proof. The following proof appears in [42], where it is
attributed to P.J. Higgins,.

The result is clearly true for n = 1. Suppose that it
holds for some n greater than or equal to 1, and that
a™ -0, for all a in A. Let B be the algebra obtained
from A by adjoining an identity element, and for all b in
B, let b = 1. Let to, eeeseey taa be distinct non-zero
elements of F. Then the Vandermonde matrix V, in which the

L Rd ]

(i,j)th entry is t. , is invertible (see, for example
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41, p.115 ).

For any a and b in A, and non-zero t in F, we have
0=t"(a+tod" = P (a,b) + tP,(ayb) + eeees + £ P, (a,b),
where Pl(a,B), ceesoy Pn(a,b) are elements of A independent
of t. By the invertibility of the matrix V, it follows that
P, (ayb) = ceeee = ngﬁ,b) = 0, and that, in particular, |

| P (a,b) = Y &b =0 (a, b € ).

Led - )
Let a, b and c¢ be any elements of A. Then,-

a NN
. n’- . . -:' . -.
(n + 1)a cb' =ac >_._be° = Zatci_b‘l a 'ty =
L=e S:A

n n =0

z( Z a' ct a"'”.)l';w = 0, and therefore & 'cb' = O,

J=o tTo
Let I be the 2-sided ideal of A generated by the set

id‘ : ac¢€ Ai. Then IAI = (O), and for all x in A//I,'xq =

M

O. By the inductive hypothesis applied to A/I, we have A &
n 2 -1 s i

I, where M = 2 - 1., Thus A = (0), and A is nilpotent

as required.

3,21 Theorem (Grabiner [27]). A nil Banach algebra is

nilpotent,

Proof. Let A be a nil Banach algebra over F (= Ror €).

For each natural number n, let X(n) = ia € A: a" = Oi. Then
each X(n) is closed, and A =U %X(n) tn=1, 2, .....}. By
the Baire Category Theorem, there is a natural number n such
that X(n) has an interior point. Let b be any interior point
of X(n), and let a be any element of A. Then there exists

a positive.real'number t, such that, if s is in F and

|s| < t, then (b + sa) = O. But then &' = O, and the result

therefore follows from lemma 3,20,
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The following lemma is used by .Grabiner in [?9].'

3.22 Lemma, Le£ A be a Banach algebra, and let a Be any
element of A. Then the ideals Aa and aA are nil if and
only if they are nilpotent.
Proof, We may assume without loss of generality that the norﬁ
of a is less than 1., We show that if Aa is nil, then it is
nilpotent. A similar argument works for the right ideal aA, and
the converse is obvious,

Assume that Aa is nil, and define a norm Il-h, on Aa
by HXIV = inf ﬂbﬂ : ba = x%. To see that MW is a complete
norm on Aa, note that if T 1is the bounded linear opefator
on A defined by Tb = ba, then A/Ker(T) is isometricallj
isomorphic to (Aa,“-“l). Now let x and y Dbe elements of
Aa, with x = ba and y = ca., Then | xyH;rl\bacﬂ{ [|pfitclly, ana
ﬂ.ul is therefore an algebra norm. Thus (Aa, h-4") ‘is a nil
VBanach algebra and, by Theorem 3.21, Aa 1is therefore

nilpotent,

2.23 Theorem (Grabiner [29], Dixon [j6]). Every left or right

nil ideal of a Banach algebra is contained in a sum of
nilpotent 2-sided ideals.
Proof. The following proof is due to Grabiner.

Let A be a Banach'algebia; and let B Dbe the algebra
obtained from A by adjoining an identity element. Define a
norm on B by

la + sll = Hlali + Is} (a€ A, s € F).
Then B is a Banach algebra. Let I be a left nil ideal of A

and let a be in I. Then Ba is contained in I, and is
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therefore nil. By lemma 3,22, applied with ﬁ = A; Ba must be
nilpotent., Suppose (Ba)'J = (0). Then, (BaB)” Q(BafJB'z (0).
Thus span(BaB) is a 2-sided nilpotent ideal of A, It follows
that 'I is equal to the sum (and the union) of the set
gspan(BaB) : a ¢ I} of 2-sided nilpotent ideals. A similar
argument shows that any right nil ideal is a sum of nilpotent

2-sided ideals,

3,24 Corollary (Dixon [16]). The priﬁe'rédical of a Banach
algebra is the sum of its 2-sided nilpotent ideals and

pontains all the 2-sided nil ideals.,

if the prime radical L of a Banach algebra is closed,
then, by Theorem 3.21, it is nilpotent., Conversely, if L is
nilpotent, then there is a natural number n such that L is
contained in X(n) = {a €A:a = O%. Since X(n) 1is closed,
the closure of L is contained in X(n) and, by lemma 3,20,

is therefore nilpotent. It follows that L 1is closed if and

only if it is nilpotent.
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L4, Examples.

This Section contains a few examples of semi-prime Banach
algebras, and of continuous derivations and automorphismé. An
extensive 1ist of examples of Banach algebraé is given in the
Appendix of [68], and a large proportion of these are semi-
simple, and therefore also semi-prime. However, there a?e
rather few published examples of semi-prime Banach algebras
which are not semi-simple, Byllemma 3.12 and Cofollary 2.22,4
the Jacobson radical of a semi-prime Banach algebra is also a
semi-prime Banach aigebra. There is therefore no serious loss
of generality involved in restricting attention to radical
semi-prime Banach algebras., Most, if not all, of the known
examples of:Banach algebras of this type are convolution
algebras of some kind, butlit is not at all clear whether this
reflects some theoretical restriction on the structure of such
algebras, or merely a lack of ingenuity in constructing
examples. However, convolution Banach algebras usually have
large numbers of closed ideals, and it is not obvious that this
is a necessary feature of semi-prime radical Banach algebras in
general (see Section 10).

Let A be a Banach algebra, and let b be an.element of
A which does not commute: with every element of A. Then the
map a—yab - ba on A 1is a non-zero derivation, usually

referred to as an inner derivation. Every non-commutative

Banach algebra therefore has continuous non-zero derivations.
However, this is certainly not true for commutative Banach
algebras, In fact, a commutative semi-simple Banach algebra has
no non-zero derivations (see Section 12), and an example of

Newman shows that radical Banach algebras may also have no non-
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zero derivations [65]‘(see also [9, P.971).

Examples of continuéus homomorphisms are much more
abundant., In.this.section, we concentrate on isometric
automorphisms, In_parficular, we show how sehi-groups of
isometric automorphisms may be used to construct a class of
convolﬁtion Banach algebras which includes some non-commutative
radical semi-prime Banaéh algeﬁras.

The section ends with an example of a completely regular-
semi-simple commutafive Banach algebra with non-maximal closed
prime ideals, This is of intergst§ because in a largé class 6f
such algebras, all the-proper closea prime ideals are maximal,
This last example, and Example 4,14, are the only examples in
this section which may be original,

We begin by defining what is usually meant by a Banach

algebra of formal power series,

4,1 Definition. Let C[[t]l]l denote the algebra of all formal

power series in the indeterminate t, with complex

coefficients, and with the algebra operations defined by

o o O ‘

n n n

Eaﬂt + Zb,\t = Z(a,\ + bt
N=y¢ nz=o Nz o
oD oD

~ N\
NG
P
M8 5l
g
]
N i
N~
- ~
3:; t
\./
N =
m
3

whére, for all n, a.  and by are complex numbers,
(:E[t]] is a commutative algebra with identity and is an
integral domain.,

Let A be a subalgebra of C[{t]], and let -1l bve a

Lo



complete algebra norm on A. Then (A,ll-ll) is a Banach algebra

of formal power series if

(1) t is in A, and A is generated by t, or by t and 1

(2) For each m, the co-ordinate functional

O |

ji a"€\~47 am ¢ (A0 W)—7@, is continuous.

n=90

We now describe one of the earliest examples of a radical
semi-prime Banach algebra; It is in fact isometrically
isomorphic to a Banach algebra of formal power series (see, for

example, [28]),'and is therefore an integral domain.

4.2 Example [39, 68, 28].

Let A = {z € C: 1z ¢ 1%, and let - A(A) be the Banach
space of all continuous functions on /A which are analytic
on the interior of AA , and with the norm

hell = sup(zlf(z)l Pz € AZS (f € A(A)).
With the ordinary pointwise product, A(A) 1is a semi-simple
commutati%e Banach algebra, usually referred to as the disc-

algebra.
A different product % can be defined on A(A) by

(fxg)(z) = \f(weglz - w)dw (z e A, f,g8 € A(A)),
Le2]

where l:O,z] is the line segment from O to =z.
The Banach algebra so obtained is radical, and is called

the disc algebra with convolution. Now define D on ACA) by

Df(z) = zf(z) (ze A, £fe ACA)).
Then D is clearly a bounded linear operator of norm 1 and,
with respect to the convolution product, is a derivation, since

for all f and g in A(A) and 2z in A ,
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D(fx% g)(z) = 2(fx g)(z) = \zf(w)g(z - w)dw
: . [Lo.1] -

SWf(W)g(Z - w)dw +‘§f(w)(z - wg(z - w)dw

Lo,z Co,xz] :

(DE % g)(z) + (£%Dg)(z).

A full account of Banach aigebras of formal power series,
including a description of their derivations and automorphisms,
is given in [28].

A well-known example of a commutative radical convolution
algébra which is not semi-prime, is the Banach algebra L‘(0,1)
of all (equivalence classes of) complex-valued Lebesgue

integrable functions on (0,1), with the norm

el = \l£Gol ax (£ € L' (0,1))
Co,1]
and the product
o
(f¥g)(x) = (f(y)g(x - y)dy (f,8 € T (0,1, x € (0,1)).

o

A full description of the derivations and automorphisms of
L'(O,1) is given in [52].
Let A be an algebra with idéntity, and let a be an
invertible element of A. Then the map
| b—> &'ba (b € A)

is an automorphism of A, called an inner automorphism. A non-

commutative Banach algebra alwayé has non-trivial inner
automorphisms (see [ 9, p.871).

Semi-simple commutative Banach algebras generally have
many automorphisms induced by homeomorphisms of their carrier

spaces, as in the following example.

48



4,3 Example, ‘Let A(A) be the disc algebra with the

pointwise product and let t be any real number, Then the
operator h on A(A) defined by _
h (£)(2) = £(ett2) (£ € a(A), z€A),

is an isometric automorphism,

Examples of non-trivial automorphisms on commutatife
radical Banach algebras are harder to find, The following well
known result indicates one source of such examples, and is one

of the reasons for the interest in derivations,
4, L Lemma., Let D bYe a continuous derivation on a Banach
algebra A. Then exp(D) is a continuous automorphism on A,

Proof. See, for example, [9, p.87].

4,5 Example. Let D be the derivation on the disc algebra

with convolution described in Example 4,2. Then

exp(D)(£)(2z) = exp(z)f(z) - (zeA , £ €Aa(A)).

L,6 Definition. Let A be a Banach algebra and let S be a

semi-group. Then, by a representation of S on A by

isometric automorphisms, we shall mean a semi~group

homomorphism T of S into the group of isometric
automofphisms of A.
When there is no risk of confusion, the notation
tea = T(t)(a) (a € A, t € 8)
will be used., In terms of this notation, the definition
fequires that the following conditions be satisfied :

(1) £.ab = (t.a)(t.b) (t € S, a, b € A)
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(2) t.(a + zb) = tea + z(t.b) (te S, a,bpc A, z € F)

(3) tg.a = t.(5.2) (tys € S, a € A)

) fteall = flal (b €8, aen). & aTba ol fEe ®)
| If S is written additively, then condition (3)should be

written (t + 8).a = t.(s.a).

4,7 Example. Let A be the disc algebra (with pointwisé
Aproduct), let S be any sub-semi-group of‘the additive grouﬁ
of the real numbers, and define T by

™(t) = h,  (t €8),

where ht is as defined in Example 4.3.

4,8 Example. Let A Dbe ény Banach algebra and let h be any

isometric automorphism of A. Then, if S is either IN (the

natural numbers) or 7Z' (the non-negative integers), and
T(n) = b (n € S),

then T is a representation of S on A by isometric

automorphisms,
Further examples, with S a group, are given in Chapter
We now describe a class of convolution algebras, which
might be called 'weighted cross products'. The aim is to

construct examples of non-commutative radical semi-prime Banach

algebrase.

4,9 Definition. Let A be a Banach algebra, let S be a

semi-group, and let w be a real-valued function on S such

tﬁat the following conditions are satisfied :
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(1) w(s) >0 (s € 8)
(2) w(st) € w(s)w(t) (s, t € 8).
] .
We will denote by 1 (S,A,w) the Banach space of all

functions f from S into A such that

(el = Z lt(e)w(s) c =0 .
se€§
It is well known that 1‘(S,A,w) is a Banach algebra with

respect to the convolution product X defined by

(£xg)(s) = ) (t)g(u) (8€ S, f,8 €1 (5,A,w).

Now let T be a repreéentation of S on A by isometric
automorphisms (see Definition L,6), and for all f and g in
1‘(S,A,w), let

(Fxg) ()= ) f0)tgw) (s €5,

tu=s

where, as before, t.a = T(t)(a). Then,

lex gl € Z 2 ) glw(t)wlu) £ Tflilslfy
s€Q buss

and Xy is clearly bilinear.
To show that Xy is associative, let f, g and h be any

elements of 1'(S,A,w). Then, for all =z in 8,

(£ g)%yh(z) = Z(Z f(t)t.g(u)}x.h(y) =

&3:2__ =
Zf(t)Z(t.g(u))(tu.h(y)) -

Y 25 (bag(w)) (tueh(3))

l:u3=7_ Ex=z kn:—i ’
z f(t)t.(Zg(u)u.h(y)\ = f*r(g!Th)(z).
Exez l(\s-_-‘&. .

Thus 1' (S,A,w) with the product X is also a Banach
1
algebra, which we will denote by 1 (S,A,w,T).
We will write w = 1, if w(s) = 1 for all s in S, and

T=-1, if T(s) =1 for all s in S. For all a in A and




s in S, k(s,a) will denote the element of 1'(S,A,w)
defined by k(s,aXt= - a, s = t

| % 0, 54+ t.
Nofe that

k(s,a)¥;k(u,b) = k(su,a(s.b)) (a,b € A,.s,u € S).
We Qill denote the nth power of an element f of ll(S,A,w,T)

n : ,
by > , to avoid any confusion with pointwise products.

Hirschfeldvand Rolewicz used the crossed product X
(with w=1, S =72 and T as in Example 4.8)'to constfuct
an example of a non;commutative Banach algebra with no hon—zero
zero divisors [4d]. The construction has also been used
extensively (with w = 1) in the case when A is a C*-algebra
and S is a group [82]. Note that 1' (S,€,w,1) is the
ordinary weighted“semi-group algebra (see, for example,

[9, p.8]). The proof of the following lemma is straightforward

‘and is therefore omitted,

4,10 Lemma., The linear span of the set ik(s,a) : a€hA, 5¢€ S%

is a dense subalgebra of 1'(S,A,w,T).

The following Proposition shows that restrictions on w
(and by implication on S) are sufficient to ensure that
1'(S,A,w,T) is a radical algebra. In particular, there is no

reason why A should be chosen to be non-unital,

4,11 Proposition. Let w satisfy the following two conditions

(in addition to conditions (1) and (2) of Definition 4,10) :

(B wletr—wlte) o€ WS )= Wl -5))  (ees)
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(4) w(s“);L‘ —> 0 as n —>©°0 (s € 8).
Then 1'(S,A,w,T) is a radical algebra.
Proof., Let R denote the Jacobson radical of l‘(S,A,w,T). By
- Corollary 2.,22 and lemma 4;10, it is sufficient to prove that
k(u,a) is in R, for all u in S8 and a in A,
A simple inductive argument shows that
K(u,a)® = k(u™, a(uea)(@*ea)eeeen(@'2a))  (ny 2).
Thus Nk(u,a)* Il € lali®w(u"), and so k(u,aj is quasi-nilpotent
by condition (4). However, since ll(S,A,w,T) may be non-
commutative, this is not enough to prove that k(u,a) is in
Re B& lemma 2,25, it is sufficient to prove that fx;k(u,a) is
quasi-nilpotent for all f in 1'(S,A,w,T). To do this, let

g = fx;k(u,a). Then

g (8) = ) () (X, e8(x3))ernea (X, euenaXny +8(x,)) (5€5,032)

x,..... Xn= §
and g(x) = }i f(y)(ye.a) (x ¢ 8),
gu:x
and therefore, “g*n“ = Elng*“(s)ﬂw(s) <
SES
Z—< Z < Z “f(y' )l“lau)ooocc (Z “f(yn)n“a” W(S) .
seg Y¥ars G Ui = X,

By conditions (2)-and (3), we have w(s) ¢ w(u“)w(y‘)...w(yn),

when y| u.....y,\u = Be Thus’

N &<l € Uall"w(u")Z( Z Uz (y, )||w(y,).....ﬂf(y,\_)ﬂw(y,\)>
se§ td,u.,.‘sﬁ“.sl

< Tah™ s Mw(a™. Since w(u")  —> 0, this shows that g is

- quasi-nilpotent and so completes the proof.
' !
It is easy to check that, when A is unital, 1 (S,A,w,T)
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is non-commutative if S is non-commutative or T £ 1.

L,12 Example [Zﬂ].

Let FS(2) be the free semi-group on 2 generators u,v,
and for each 'word' s of FS(2), let n(s) denote the
number of letters in s (for example, n(uviu’**vuv) = 241).

Let w(s) = (n(s)!)" (s € FS(2)).

Then w satisfies conditions (1) and (2) of Definition
4.9 and (3) and (4) of Proposition 4.711. Thus 1'(FS(2),L,w,1)
is a non-commutative radical Banach algebrae.

It is easy to check that 1'(FS(2),L,w,1) has no
non-zero zero divisors., In particular, it is prime, and

therefore éemi-prime.
In both of the next two examples, we take S =IN, and
-1
w(n) = (a!) (neS).

They are both non-commutative radical Banach algebras.

4,13 Example. This is essentially the example of Hirschfeld

and Rolewicz [hd], except that, in their example, w = 1 aﬁd
s = 1,

Let A be any commutative unital Banach algebra which is
also an integral domain, and let h be a non-trivial isometric
automorphism on A (for example, let A = A(AD) and h = h,
as in Example 4,3). As in Example 4,8, let T(n) = h'. Let f
and g be any non-zero elements of 1‘(W,A,w,T) and let n
and m be the least natural numbers such that f£(n) # O and
g(m) # O respectively. Then,

(fxg)(n + m) = f(n)n.g(m) # O.
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| o
Thus 1 (N,A,w,T) has no non-zero zero divisors,

The final example of this type exhibits more typical
behaviour for non-commutative semi-primé algebras, since it

does have non-zero nilpotent elements.

4,14 Example. Let A be the algebra C[-1,1] of all

continuous complex-valued functions on the interval [-1,5],
and define T .on Hﬂv by

T(n)a(x) = a((=1) x) . (newn, a€ c[-1,1], x e t-1,11)-
Let a be a non-iero element of AC[-1,1] such that

a(x)a(-x) = O (x e [-1,1]).

Then, k(1,a)*1 = k(2,a(1.a)) = O, and k(1,a) is therefore a
non-zero nilpotent element.

Let f be in: 1 (N,C[-1,11,w,T) and suppose

fxgwf =0 (g ¢ T (N,C[-1,1],w,T)).

If f # O, then there is a least natural number n such that
f(n) # O. But then,

(£f%k(m,1)%£)(2n + m) = f(n)((n + m).£f(n))

0,

2
and therefore, whether n is odd or even, f(n) 0. and so

'
f(n) = O. This contradiction proves that 1 (N,C[-1,1],w,T) 1is

semi-prime,

Tﬁe section ends with an example of a completely regular
unital commutative semi-simple Banach algebra with non-maximal
proper closed prime ideals.

Let 50[0,1] denote the algebra of all infinitely
differentiable complex-valued functions on [0,1], and for all

continuous complex-valued functions £ on [0,1] 1let
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M, = sup{l£C] ¢ x ¢ [0,1]8.
Tet {Mn: n=0, 1, 2, .....2 be any sequence of strictly

positive real numbers such that M, = 1 and

n
Ma 2 (r) M.er\-t' (Og¢rgn).
Then D(M,) will denote the Banach algebra of all f in
¢°[0,1] such that

N 1
el = ) — el < .

n:o "
These Banach algebras were described by Lorch in 194k, and are
semi-simple [59] .
Let P = {f € D(M,) : £%0) =0, n=o0, 1, 2, 75
Then P is a closed priﬁe ideal of infinite co-dimension and

is therefore non-maximal, In fact, P is the kernel of the

homomorphism

]
£ Z—}\-‘ £ (o)t
n=9o )

of D(M,) into the integral domain CL[t]] (see Definition
4L,1). The aim is to show thgt ZMni can be chosen so that
D(M,) is completely regular. This then provides the required
example,

D(M,) is natural if the carrier space of D(M,) is
‘[0,1]. Dales and Davie, in [14], state, but do not prove, that

a sufficient condition for D(Mq) to be natural is

n-f

z (ﬂ\M’M“"’ —> O as n-»=o.
r M.

r=|

For the sake of completeness, we include a proof of a weaker

version of this result (lemma 4.16).
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~L,15 Lemma. The following 'are equivalent :

(1) D(Mgy) is natural

(2) 1f £ is in D(Mn), and |I£f(x)l » 1, for all x in
‘[0,1], then £~' is in D(Ma).

Proof. This is easily proved by routine arguments (see [14]).

4,16 Lemma. If i ("Z"(,::) —’\éﬂ::)<ao, then D(M,) is

n=y =) M
natural.

Proof. Let f in D(M,) satisfy |f(x)l » 1, for all x in

\

{0,1], and let g = f . Then, for n greater than 1,

- 2™ = ) () £ (x ¢ [o,7),

r=0

and therefore,

n-|

e (0] € |-g™ (G0 < Z (Ve el e €00, 1D,

f=o
Dividing by M,, and using the fact that |gl| < 1, we get

14" ¢ 0 3‘“'u@ he MrMn- 19" o
Mn + & \2—‘ Mn Mr | (1’1}/2)0

Now choose N such that

n-1
Y ) ¢ ey m,

r=z\

-1
and a real number M such that [ fll €2 M and
4 -1 )
Mylle" ll ¢ ¥ (0Ogr¢N).

Suppose that M,." g, £ My for Osrgn, where n » N, Then,

Moy, NE M€ UE mc2Usl)™ el < m,

[G))

and so, by induction, M;‘ lle is less than or equal to M

.o

for all n., But then,

S ‘L“K‘:_“f < Mg+ ngn MZ( \““"‘“") =y

n=2 =,
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and therefore g is in D(Mp). By lemma 4.15, this proves that

D(M,) is natural.

4,17 Example. For all real numbers a such that O<ag1,

define the functions f, and g, on f0,1] by

£.(x) = ) exp(=(a - ') (0O¢x<a)
% 0 (agx ¢1),
and g;(x) = £,(1 - x) - (0gx <1).

Let F = {fq, Ba ° O<ag¢ 1%. Then F 1is contained in
c"°[o,1], a-nd for any closed set E of {0, and x in
[0,11\\E, there is an element f of F such that

£(E) = {0} ana £(x) 4 O.

We prove the following statements.

(1) ko = sup{lt™li, : £ isin rl< o (n =0, 1, 2y eees)
(2) For any sequence {k,,zgv of positive real numbers, {M.}  can

be chosen so that D(M,) is natural and

Ka
w < 0.

0

hro

It then follows that {M.] can be chosen so that D(M,)
is natural and contains F. By [9, Corolléry 23.9, p.118],
D(M,) is then completely regular as required.

Proof of (1). Differentiating £, , n times (n ¥1), we get

0 b (agxg 1),

PAAN .

o } -1 -t ’ ’
f‘c\(x) = % exp(-(a - x) ) Ed(n,i)(a - x) (0g x<a)
(where the numbers d(n,i) do not depend on a), and therefore,

(n -1 b .
| £20(x)| ¢ exp(-(a - x) )(a - x) nc, (O¢xca<1),

n
where ¢, = maxid(n,i): i=n+ 1, coeeey 2n)§. But exp(-'l:)wt:z

PAaN
is less than or equal to (2n) exp(-2n) for all t greater
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than 1, and therefore,
{(ny n
‘lfknﬂ,g (2n) exp(-2n)nc, (0O0<a g1y N =1y 2y coecee)e
This proves (1), since
7 . " n ’
£, “., ¢ 1 -and || g;‘“.o = £l (0<cag1, n>20).

Proof of (2). Without loss of generality, we can assume that

kn 1is greater than 2“, for all n, Let iMhﬁ be the sequence

defined by M, = M, = 1 and

n

-1
n |
M, =2 -(?\MrM,‘_, v ko (ny2).
r=| )
Then, ‘
an(ﬂM,Mw (0Ogrgn),.

-
=

o A =
and ;_L( rz (t\%‘)é Z_ "< oo .
nz9

D(M,) is therefore natural, by lemma 4.16. Finally,

D 0 <0
E-" < -—ki\- < z 2N o
M" . kS n=A

This completes the proof,
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Chapter Two

AUTOMATIC CONTINUITY OF HOMOMORPHISMS AND DERIVATIONS

5 Introduction.

One of the properties of Banach algebras which makes

automatic continuity results possible is their completeness,

and the usual way in which completeness is brought to bear is

through the closed graph theorem,

Let S be a linear mapping from a Banach space X into a

Banach space Y. Then the separating space of S is the set

G(8) = {y € Y : there exist x,— O in X with Sxmwafy in Y%,

and the closed graph theorem is equivalent to the statement

that S is continuous if and only if @(8) = god.

Almost all the results of'Chapter 2 are based on lemma

6.4, which states that if iTni and iRni are sequences
BL(X) and BL(Y) respectively, such that ST, - RS is
continuous for all n, then there exists a natural number
such that A

(R, eeeeoRn @(S)) = (R eennaRy G(8)) (n > N).

This lemma has already been applied successfully to

several automatic continuity problems, and has especially

strong implications for the automatic continuity of
epimorphisms and derivations., This was first demonstrated
Sinclair and Jewell in the following result which appears

Theorem 2 in [45].

5.1 Theorem [45]. Let A be a Banach algebra with the

in

by

as

60



property that for eacﬁ infinite dimensional closed (two-sided)
ideal J in A there is a sequence b;, b,y esee in A" such
that '(Jbu.....b,f_g (Jb“*,.....b,fi for all positive integers
n. If A contains no non-zero finite-dimensional nilpotent
ideal, then a homomorphism from a Banach algebra onto A, and

‘a derivation on A are continuous,

The essential point in the proof of this theqrem is that
the éeparating space of a deriQation on A, or of an
epimorphism from a Banach algebra onto A, is a closed 2-sided
ideal J which; by 1emwa 6.4, has the property that, for every
sequence {bnﬁ in A, there exists a natural number N such
that  (Jbyessaeb,) ='(JbN..;..b,i', for all n ) N.

To'avoid tedious repetition, any closed 2-sided ideal J

with this property will be referred to as a separating ideal,

whether or not it is the separating space of an epimorphism or
a derivation.

Theorem 5.1 is still the best starting point from which to
prove the automatic continuity éf epimbrphisms and derivations
on specific Banach algebras. It applies to a wide range of
Banach algebras, including semi-simple Banach algebras, L'(O,1)
and Banach algebras of formal power series (see Definition
4.1)}
| Chapter 2 is concerned mainly with the structure of
separating ideals in general, and with the automatic continuity
results which can be deduced from knowledge of this structure.
For the most part, we consider only problems concerning non-
nilpotent separating ideals, although with the underlying

objective of showing that many (possibly all) Banach algebras
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do not have non-zero radical separating ideals which are not
nilpotent. In fact, Theorem 5.1, and its application fo non
semi;prime Banach algebras such as L'(O,15, suggest that it
may be the absence of non-zero finite-dimensional‘hilpotent
ideals which is crucial for automatic continuity results,
rather than the absence of non-zero'nilpotent ideals in
general, This possibility suggests the problem of deferminihg
whether or not a non-zero nilpotent separating ideal
necessarily contains a non-zero finite-dimensioﬁal ideal, but
we do not consider this problem further,

We now describe briefly the contents of each of the
sections 6 to 13 of Chapter 2.

Section 6 is concerned with properties of separating
spaces of linear mappings in general, and includes a proof of
the fundamental lemma 6,4,

In Section 7, the term 'separating ideal' is generalised
to 'B-separating ideal', so as to include the separating épace
of any homdmorphism'from a Banach algebra onto a dense
subalgebra B of a Banach algebra A (Definition 7.1).

The main technical results are proved in Section 8. Of
these, one of the most important is that if J is a
B-separating ideal, and L 1is the prime radical of Jn B,
then L = LaB. In particular, if A = B (so that J is a
separating ideal in the original sense),ltheﬁ the prime radical
of J 1is a closed ideal, and therefore nilpotent.

In Section 9, the results of Section 8 are used to prove
results concerning discontinuous homomorphisms from Banach
algebras onto dense subalgebras of Banach algebras, with the

emphasis on the case when the domain algebra is a
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non—commﬁtati;e C*~algebra.

Sections 10, 11, 12 and 13 are concerned with derivations,
epimorphisms and the uniqueness of norm problem, We show that
if there is a separating ideal with non-nilpotent Jacobson
radical, then there is a topologically simple radical Banach
algebra (see Definition 10.4).From this it follows that there
ié a toﬁologically simple radical Banach algebra if any one of
the following propositions fails to be frue :

(1) Every epimorphism from a Banach algebra onto a Banach
algebra has a nilpotent separéting spéce.

(2) Every epimorphism from a Banach algebra onto a semi-prime
Banach algebra is continuous,

(3) Every semi-prime Banach algebra has a unique complete norm
topology.

(4) Every derivation on a Banach algebra has a mea-nilpotent
_ separating space.

(5) Every derivation on a semi-prime Banach algebra is
continuous.

(6) Every derivation on a commutative Banach algebra maps the
algebra into its Jacobson radical..

(7) Every derivation on a Banach algebra A maps each
primitive ideal of A into itself.

Ve also show that (1) and (2) are equivalent, and that, if

(4) is true, then so are (5), (6) and (7).
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6. The separating space.

Let X and Y be‘Banach spaces, and -let S be a linear

mapping from X into Y. Then the separating space of . 8 .is
the set .
G(s) =§y € Y : there exist x,-» O in X with Sx.-»y in Y%.

This section is concerned with some elementary-properties
of separating spaces which are used in the rest of the Chapter,

Proofs of lemmas 6.1 to 6,3 are given in [79, Section 1].

6.1 Lemma., ((8) 1is a closed linear subspace of Y, and §

is continuous if and only if G(S) = {Oi.

6.2 Lemma. Let X,Y and 2 be Banach spaces, let S be a
linear mapping from X into Y, and let R be a continuous
linear mapping from Y into Z. Then

(1) RS is continuous if and only if R®(8) = {0i.

(2) (RQ(8)) &(RS).

6.3 Lemma. Let S be a linear mapping from a Banach space

X into a Banach space Y, and let X, and Y, be closed

linear subspaces of X and Y respectively, such that

SX, is contained in Y,. If So @ XX =2 Y/ Y, is defined by
S, (x + X,) = Sx + Y, (x € X),

then S, is continuous if and only if (&(8) is contaiﬁed in

‘Yo.

6.4 Lemma. Let X and Y be Banach spaces, let S be a

linear mapping from X " into Y, and let {Tnf and iRng be

sequences of bounded linear operators on X and Y
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r-espeétively, such that ST, - R.5 is continuous for all n.
Then there is a ﬁatﬁral number N such that

(B oeeeeRA@(8)) = (ReeeesRy&(S))  (n2 M)

Proof. Let Vo = R essseRyS = STy eee..Ty. Then V, is
continuous, and V,, = V. T, - R, ee...R,.(ST.,, - R.,S), so that,
by indﬁction, V, 1is continuous for all n. It.follows that
(R, ees.eR,S8) = (yJ‘(ST| eeeeeT,), and therefore, by. lemma 6.2,
that (R, eee..Ro G(S)) = &(ST, eee.eT,), for all n.

Let y be in (ST, .....T), and let §x,} be a sequence
in X such that X,—>0 and ST, eeeseTayXn—yy. Then
Toy Xm —> O, and y 1is therefore in G (STy eeeeeTn)e This
proves that (F(ST, eeveeTny) is contained in  G(ST eeeseTh),
for all n. Suppose there is no number N with the required -
property. Then we may suppose without loss ovf generalify that

(ST, easeeTay) g(é(ST. cesesTy) (= 1y 2y eeceede
We may also assume that the norm of Tn is less than or
equal to 1, for all n. Ve obtain a contradiction by
constructing an element 2z of X such that, for all n,
fIszll > n.

Let Qn denote the natural mapping of Y onto the Banach
space Y., (ST, ees..T,). Then Qn G(ST, .....T,\) = iOi and
therefore, by lemma 6.2, QnST| eeeeeTh is cont.inuous. On the
other hand, (G(QnySTjeseesTn) = (Qn“(‘j’(ST| ......T,\).).;é §0} ana
50 Qny ST, eeeeeTy is discontinuous. Using this.information,
we may inductively choose a sequence ix,\ tn =1, 2, .....ls

in X such that, for all n, |Ix.|| < 2_"'L , and
n-1
I Qaes STy soseTaXall ¥ n + UQuu STy ceceTanll + IIQM.SZT, eoeeT] x‘i".
O - §=1
Let =z = z T'....zjs.
' 3=\
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Then NSzl y UQn Szl

n-|

>/ "QM|ST| ""Tnxn“ - “Qnﬂs ZT' ""Tj x‘“ -
. e

JPN .
"Q’\*lSTl o.ooT,\‘,. (an,‘ + z Tﬂll.....TJ x"' )“

J=ns2
> n.

This completes the proof,
A weaker version of lemma 6.4, in which ST, = R,S is

required to be zero, is given as lemma 1.6 in [79]. The version

given here appears in [45] and a stronger version in [56].
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7. Separating ideals.-

This section starts with a formal definition of the term

'B-separatingvideél'.

7.1 Definition. Let B be a dense subalgebra of a Banach

algebra A. Then a subset J of A is a B-separating ideal of

A, if it is a closed 2-gided ideal of A with the property
that, for every sequence anﬂ in B, there exists a natural
number N (depending on $bad) such that

(be\‘ooooobl) = (anocooob‘)_ (n ;N)o
When B = A, we shall refer to J simply as a separating

ideal.

Note that any finite-dimensional ideal of a Banach algebra
is a separating ideal, and that any closed 2-sided ideal in a

nilpotent Banach algebra is a separating ideal.

7e2 Pfoposition. Let S be a linear mapping from a Banach

space X into.a Banach algebra A and let B be a dense
subalgebra of A. Suppose that there exist continuous linear
operators T, and U, on X, for all b in B, such that
the maps
x =y STyx - (Sx)b  and x ->5Upx - b(Sx)
from X into A are continuous., Then the separating space
G(S) of S is a B-separating ideal of A.
Proof. By lemma 6.1, &(S). is a closed linear subspace of A,
Let a be any element of (J(S), and.let §{xn} be a sequence
in X such that x,-> 0 and SX¥.—ra. Then, for all b in B,
~STbin - (8%,)b—> 0 and SU,x, - bSx,—> 0.

Thus, ab = lim ST, X, and ba = lim SU, X, and therefore, ba
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and ab are in E;(S). This proves that (S) is a é-sided
ideal, since B 1is dense in A; |
Now let {b.} be any sequence in B, and let
Rha = abqa and Ty= Ty (a € Ay n = 1y 2 coeeele
By lemma 6,4, there exists a natural number N such that
(R eeeeeRn G(S)) = (Rieeee Ry @(8)) (n > N).
Since Rjee...RaG(8) = G(8)b,.....b,, this completes the

proof,

7.3 Corollary. Let h be a homomorphism from a Banach algebra

C onto a dense subalgebra B of a Banach algebra A. Then the
separating space (&(h) of h is a B;separating ideal of A.
Proof. For b in B, let

T,x = x¢ ~and Uyx = cx (x € C),
where ¢ is some element of C such that h(e) = b, Now apply

Proposition 7.2, with X =C and h = S,

7.4 Corollary. Let D be a derivation on a Banach algebra A,

Then the separating space &(D) of D is a separating ideal
of A, |
Proof. In this case, we have X = A =B, D =S, and for:all
b and x in A, Tpx = xb and Upx = bx.

Thus, by the defiping condition for a derivation,
D(T,x) = (Dx)b = Ty, x and D(U,x) - bDx = Ug,x  (x,b € A);
Since T, and U, are continuous, the conditions of
Proposition 7;2 are satisfied, (D) 'is therefore a separating

ideal of A.
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As observed in-Section S, Corqllary 73 (with A = B) and
Corollafy 7.4 are contained in [45] (although not using this
terminology). Considerable.use is made of lemma 6.4 in the
study of discohtinuous homomorphisms with dense range (Corollary

7.3 with A # B) in [78, 79].

7.5 Proposition. Let B be a dense subalgebra of a Banach

algebra A, and iet J be a closed 2-sided ideal of A. Then
the followihg'are equivalent :
(1) J is a B-separating ideal of A
(2) For every non-empty subset E of B such that JE £ (0),
there exists an element 2z of E such that Jz 4 (0), and
for each element b of B with bz in E, either Jbz = (0)
or (Jbz) = (Jz) .
Proof. Suppose that J is a B-separating ideal and that E
is a non-empty subset of B such that JE # (0). Let b, be
any element of E such that Jb. # (0). If there is no element
z of E wifh the required propérty, then there exists b, in
B such that b,b, is in E and (0) §(Jb,b ) & (JIb, ) .
Continuing in this way, we obtain a sequence {bnﬁ in B
such that, for all ny (Jbay eeseeb ) § (Ibrececedy) o This
proves that (1) implies (2).

Now let J satisfy condition (2) and let {bnﬁ be any

sequence in B, Let E = ib“.....b‘ :tn éﬁﬂi. If Jbyeeeseb

(0) for some N, then clearly (Jbnesessb,) = (Jbyeecceod,)

(0), for all n » N. Thus we may suppose that Jz % (o)
for all z in E. But then there exists 2z = byeee..b, in E
such that (Jbbyeeeecsb,) = (Jbeeeesb,) = (Jz) , whenever b

is in B and .bbiee...b, is in E. In particular,
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(Jbr\.oaoob')_ = (Jbuooooob.) (n >/N)’

and so J is a B~separating ideal of A,

Proposition 7.5 is related to Corollary 1.7 of [79].
If, in the following lemma, J is the separating space of a
homomorphism from a Banach algebra onto B, then the conclusion

of the iemma follows immediately from lemma 6.2 and Corollary

7e3e

7.6 Lemma., Let B be a dense subalgebra of a Banach algebra
A, and let J be a B-separating ideal of A. If Q 1is the
natural mapping of A onto A/M, where M 1is a closed
2-sided ideal of A, then Q& is a QB~separating ideal of
A/ M.
Proof, Clearly, QB 1is a dense subalgebra of AM, and 6&
is a closed 2-sided ideal. Let zbni be any sequence in
B and choose N such that

(Jbneeeeed,) = (Ibyeeaasdy ) (n > N).
Then, for all n » N, '(Qﬁan.....lef- = (Q((an.....b‘y.)f_
= (QU(Ibyessesd ) )) = (QﬁQbN.....Qb‘f—. Since every segquence
in QB is of the form inAX it follows that 63 is a

QB-separating ideal of A/ M.

In fhe.proof of lemma 7.6, we have used the fact that if
S is a subspace of a Banach algebra A and a is in A,
then (Sa) = (8a) . Identities of this kind are used
throughout the Chapter.

The term 'separating ideal' was first used by Rickart to

describe the ideal
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G; = {a € A : there exist a, in A with Ha.lj—>0 and
lan - 3“14—9“0§’ where [ -l and U-Il,, are complete algebra
norms oh A [5{]. Since C5 is then the separéfing space of
the identity mapping on A, regarded as a homomorphisﬁ from
(A, §-1)) onto (A, ) -l1)), it is also a separating ideal in the

sense of Definition 7.1.
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8. The prime radical of a separating ideal.

This section is concerned with the relationship between a
B-separating ideal J of a Banach algebra A and the prime
ideals of the denée subalgebra B. The starting point is the
purely algebraic fact that if b is any non-nilpotent element
of Jn B, or more generally,Aany element of JA B not in thé
prime radical of B, then there is a minimal prime ideal P of
B ‘such that b is not in P. If P is the closure of P in
A, then P 1is clearly contained in PAB. We show in Corollary
8.3, that P is in fact equal to PnB. It follows that if
L is the prime radical of JAB* then LAB = L (Theorem
8.5), and that, if Q is the natural mapping of A onto
AL, then QJNQB is semi—prime‘(Theorem 8+7). By lemma 7.6,
QJ 1is a QB-separating ideal of A /L. For many purposes,
including Theorem.8.8, we can therefore assume without too much
loss of generality that J~B 1is already semi~prime. Note that
if JAB 1is not commutative and not closed, then it may
conceivably be both semi-prime and nil.

Throughout this section, B will denote a dense subalgebra
of a Banach algebra A, and for any subset E of B (or A),
the closure of E in A will be denoted by E. Most of the
implications of the results of this section for the case B =

A are left until Section 10.

*If I is a 2-sided ideal of an algebra, then by the prime
radical L of I, we shall always mean the prime radical of I as
an algebra in its own right. The statement 'I is semi-prime’
will mean that I is a semi-primelalgebra (i.e. L = (0)), Eﬂi

that I is a semi-prime ideal (see Definition 3.1).
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8.1 Lemma. Let J be a B-separating ideal of A and let P

be a prime ideal of B such that Jr\B¢P. Then there exist

elements 2z of BNP and y of B such that the following

" conditions are satisfied :

in

(1) If be B and bz ¢ P, then (Jbz) = (Jz)
(2) Jzy ¢ (0) |
(3) If b €& B, then (Jzbzy) = (Jzy) or Jzbzy = (0)

(4) ((JAB)z)

1]

(Jz) . ‘ R

Proof. Let E 'B\\P. Then E contains JnBN\P and is

1]

therefore non-empty. If b € B and Jb = (0), then (JAB)Bb€ )
P, and b is therefore in P. Thus Jb # (0) for every

element b of E. By Proposition 7.5, there is therefore an
element.'z of E such that, for all b & B, bz € E implies
(Jbz) = (Jz) . Let 2z be any such element. Then 2z satisfies
condition (7).

Now let F = zB. Then F is non-empty,‘and (JAB)zB¢P
implies JF #£ (0). Applying Proposition 7;5 again, we obtain an
element w of F such that Jw # (0) and; for each element
b of B with bw € F, either Jbw = (0) or (Jbw) = (Ju) .

Let y be any element of B such that w = zy. Then =z
and y safisfy condition (2). They also satisfy condifiop (3,
since, if b € B, then 2zbw = zbzy € F, and therefore, (Jzbzy)
= (Jzy) or Jzbzy = (0).

To pfové that 2z also satisfies condition (4), let b be

any element of JnB. such that bz ¢ P. By condition (1),

(Jbz) = (Jz) . But (JAB) is a closed 2-sided ideal of A,

and therefore, (Jz) = (Jbz) € ((JAB) z) = ((JAB)z) <(Jz) .

Thus (Jz) = ((JAB)z) , and this completes the proof of the

lemma.
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JAB is a 2-sided ideal of B.'By' lemma 3.12 and
Definition 3.6, .the prime radical L of JAB is therefore
equal to the intersection of JBB with all the prime ideals
of B. It follows that if JNB is. con{:ained in every prime
ideél of B, them JNB is e-qual to L and, by lemma 3,11,

therefore contains no non-nilpotent elements,

8.2 Theorem, Let J be a B-separating ideal of A and let
P be a prime ideal of B such that .Jr\B¢P. Then there
exists a closed 2~sided ideal N of A such thgt NNnB 1is a
prime ideal of B contained in P,
Proof. Let 2z in B\P and y in B satisfy conditions (1)
to (4) of lemma 8.1, and let N = fa € A : JzAadzy = (0)}. Then
N is clearly a closed 2-sided ideal of A. Let b be any
element of B\ N. Then, since B is dense in A and (JNB)z
is dense in Jz, there exist elements ¢ of B and 4 of
JAB such that Jzcbdzy # (0). But then, by condition (3) of’
lemma 8.1, (Jzy) = (Jzcbdzy) € (JzAbJdzy) ¢ (Jzy) o This proves
i§ be B.then o _
that,, b is in BN\N if and only if (Jzy) = (JzAbdzy) .

To prove that NAB is a prime ideal of B, let a and
b be elements of B such that aBb¢ NNB and b &€ B\N, Then
(JzAadzy) = (JzAa(JzAbJzy) ) = (JzAa(Jz)—.‘}-Sszy)_. By
condition (%) of lemma 8.1, we have (Jz) = ((JNB)z) . Thus
(Jzhadzy) = (JzAa((JNB)z) EBJzy.)— = {(JzAa(JN B)zBbJzy) &
(JzAaBb‘Jzy)_ = (0), and a is therefore in NNB.

Now let b be ‘any element of NAB, If b is not in P
then zBb(JNB)z ¢P, and there are therefore elements ¢ of B
and d of JNB such that zcbdz ¢ P. But then, ‘by condition

(1) of lemma 8.1, (Jzy) = (chbdzy)— C(JzAbdzy) = (0),
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contradicting condition (2) of lemma 8.1. This proves that
NAB is contained in P and so completes the proof of the

Theorem,
Recall that P is a minimal prime ideal if it does not
strictly contain any other prime ideal, and that, by lemma

3.14, every prime ideal contains a minimal prime ideal.

8.3 Corollary. Let P be a minimal prime ideal of B such

that JNB¢P. Then P = PAB,

Proof. Let P be a minimal prime ideal of B such that JnB
¢ P. Then, by Theorem 8,2, there exists a closed 2-sided ideal
N of A such that NAB is a prime ideal of B and N~NnB &

P. But then, NNnB = P, and therefore P<PABcNAB = P,

8.4 Corollary. If J 1is a separating ideal of A (i.e. A =

B), and P is a minimal prime ideal of A such that J¢P,

then P is automatically closed,

- 8.5 Theorem. Let J be a B-separating ideal of A -and let

L. be the prime radical of Jn B. Then 1AB = L.

Proof. Let K =n{JAP : P is a prime ideal of B}. Then L
is contained in KAB and K is closed. If b € KNAB\L, then
there is a prime ideal N of B such that b ¢’N, and |
therefore a minimal prime ideal P of B such that b &
JAB\P. By Corollary 8.3, KNB ¢IJNPAB = Jf"\P‘, and therefore
b is in P. This contradiction proves that KMB = L. It
follows that LNABCKAB = LCLNB, and that L is therefore

equal to LA B.
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The commutative case of Theorem 8.5 is essentially
contained in-Corollary 1.6 of[?gl. Note that since L is a

2~sided ideal of B, its closure T is a 2-sided ideal of A.

8.6 Corollary. The prime radical of a separating ideal is a

closed 2-sided nilpotent ideal,
Proof. In this case, B = A and so L = L. By lemma 3.11, L

is nil. By Theorem 3%.21, it is therefore nilpotenf.

8.7 Theorem. Let J be a B-separating ideal of A, let L
be the prihe radical of .BNnJ, and let Q be the natural
homomorphism of A onto A/ 1. Then QJ 1is a QB-separéting
ideal of A/ L, and QBN QJ is isomorphic to Br\J,/L and is
therefore semi-prime,

Proof. Since 1L¢J, QJ is closed, and, by lemma 7.6, is
-therefore a QB-separating ideal of A/ T. Define T : BrﬂJ/’L
—> QBNQJ by

T(b + L) = Qb (b€ BnJ).

Then T 1is well-defined, since I,QZ, and is a homomorphism,
It is also onto since QBNQJ = Q((B + L)N(J + L)) =

Q((B + L)NJ) = Q(BNJ). If b € BnJ, and (b + L) = O, then
b€ BNL = L, by Theorem 8.5. Thus T is a monomorphism and
QBN QJ is therefore isomorphic to BNJ/L. By lemma 3.7,

.Bf\J/’L is semi-prime, and QBN QJ is therefore semi-prime,

8.8 Theorem. Let J be a B-separating ideal of A such that

JNB is semi-prime, and let P be a minimal prime ideal of B
such that Jr\B¢P. Then there exists a unique closed 2-sided

ideal I of A satisfying the following conditions :
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(1) I is contained in '&

(2) (InB) = I # (0)

(3) If K is any closed 2-sided ideal of A such that K is
contained in I, then either KnB = (0) or K = I.

(3) P = fbe B : bI = (0.

Conversely, if I is any closed 2-sided ideal of A
satisfying conditions (1) to (3); then the ideal P defined by
condition (4) is a minimal prime ideal of B with JNB¢P.
Proof. The main statement of the Theorem is thaf each minimal
prime ideal P of B with JAB¢P is the intersection with
B of the left annihilator of a closed 2—§ided ideal of A
satisfying conditions (1) to (3). The rest of the Theorem
follows from this alone, by routine arguments similar to some
of the arguments used inl[81].

Let P be a minimal prime ideal of B such that JnB ¢
P. Then it follows from the proofs of Theorem 8.2 and Corollary
8.3 (with NAB = P), that there exist elements 2z of B\P
and y of B satisfying conditions (1) to (5) of lemma 8.1,
and such that |
P = ib € B : JzAbdzy = (0)15 = ib € B : (JzAbJzy) +# (Jzy)_%.

Let I = (épan(JzyJ)f_. Then I is a closed 2-sided ideal
of A contained.in Je |

To prove that IA satisfies condition (2), note that
(InB) is in'anj case a closed 2-sided ideal of A, and that
(JAB)zy is a non-zero, and therefore non-nilpotent, left
ideal of JNB.

Thus INB2(IJAB)zy(JAB)zy # (0), and therefore,
((JAB)2zy(J AB)zy) = (Jzy(JNB)zy) = (Jzy) , by (3) and (4)

of lemma.8.1. But then, (IAB) 2 ((INB)Y J) 2 ((Jzy) J) =
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4(JzyJ)—, and therefore I = (InB) and I # (0), as required.

To prove that §b € B : bI = (0)} is contained in P, let
b be any element of B not in P, Then (JzAbI) 2 (JzAbJzyJ)
= (Jzyd) # (0), and therefore, bI # (0). Now let b be in P.
Then (0) = JzAbJzy = JzAbJzyJ 2(JzyJ)b(JzyJ), and therefore
IbI = (0). But then, b(INB) is a nilpotent right ideal of
Jr\-B,'andA therefore bI = (b(INB)) = (0), by lemma 3.5. This
proves that P = {be B : bI = (0)3. '

To prove that I satisfies condition (3), let K be a
closed 2-sided ideal of A such that KAB # (0) and KCI.
Then, since KnNB is not nilpotent, there exists an element Db
of KAB such that b(KnB) # (0). But then, b¢ P, and
therefore, K 2 ((JzAbJzy)J) = ((Jzy) J) = (JzyJ) , and so K =
I.

To prove the uniqueness of I, let 1I' ©be any other
closed 2-sided ideal of A satisfying conditions (1) to (4).
Suppose (I'nB)(IAB) = (0). Then I'ABCP, and therefore
(I'r\B)L = (0). But then, I'A B is a non-zero nilpotent
2-sided ideal of B~AJ, which, by lemma 3.5, is impossible. We
therefore have (I'I)AB22(I'AB)(IAB) # (0), and therefore,
by condition (3), I = (span(I'I)) = I'.

Finally, let I be a closed 2-sided ideal of A
satisfying conditions (1) to (3), and let
P=1¢%beB: bl = (O)%. Then, since INB 1is not contained in
P, JAB is not contained in P. Let b be in BN\P. Then
(b(I'r\B))_l ;é (0), and therefore, Bb(InB) # (0). By condition
(3), I is then equal to (span(BbI))., and if a is in B,
and aBbcP, then aBbIc PI = (0), and therefore aI = (0) and

a is in P. This proves that P is a prime ideal of B. If N
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is any prime ideal of B contained in P, then P(INB)SPI =
(0)S N, and therefore PCN or I¢BAN. If ICBAN, then
(Ir\ia)lg NI ¢PI = (0), which is impossible. Thus PSN and
therefore P = N. This proves that P is a minimai prime ideal

of B, and so completes the proof of the Theorem,

Theorem 8.8 establishes a 1:1 correspondence befween the
set X(J) of all minimal prime ideals P of B such that
JNAB is not contained in P, and the set Y(J) of all the
closed 2-sided ideals I of A satisfying conditions (1) to
(3). If (0) 4is a prime ideal of B, then X(J) clearly
contains only one element. In Section 10, we show that, if
B is equal to A, then the sets X(J) and Y(J) are
necessarily finite. It is not clear whether or not fhis is trué

in general, when B is not equal to A (see Theorem 9.9).
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9, Applications to‘homomorphisms with dense rangee.

Let h .be a homomorphism from a Banach algebra C into a
Bénach algebra A. By replacing A with the closure of the
range of h, if necessary, ve may assume that B = h(C) is a
dense subalgebra of A and, by Corollary 7.3, that the
separating space (§(h)A of h is therefore a B-separating
ideal of A; The fesults of the previous section may therefore
be applied to obtain information about discontinubus
homomorphisms, although they are too weak, by themselves, to
yield any new automatic continuity results, excépt for
epimorphiéms, which are considered in Section 11,

As stated in the Introduction, most of the interest in
discontinuous homomorphisms which are not onto has centred on
the case when the domain algebra C 1is a C*-algebra.

A C*-algebra is a complex Banach algebra C with an
jnvolution * such that the following conditions are

satisfied :

(1) (a + b)* = a* + b* V(a,‘be.C)
(2) (za)* = za* (ze C, a€C)'
(3) (ab)* = b*a* (ay b €C)

(_Lr) (a*)* = a (a € C)

(5) la*al=lal* (a < C).

" A commutative C*-algebra C is isometrically isomorphic
to'the Banach algebra Co(X) of all continuous complex-valued
functions vanishing at infinity on some locally compact
Hausdorff space X, with the norm

I£l, = sup §I£CO) = x € x3§ (f € C (X))
and the involution

£*(x) = £(x) (x €X, £ € Co(X))e

80



X- is compact if andlonly if C has an identity element, in
which case Co(X) is equal to the algebra C(X) of all
continuous complex-valued functions on X A[9, p.18§].

The main purpose of this section is to_extena to the non-
commutative case some results which are proved in the
coﬁmutative case in [78] (see also [79])..We begin by stating,
for purposes of comparison, some known results concérning '
discontinuous homomorphisms from commutative C*-algebras

(Theorems 9.1 and 9.2).

9.1 Theorem [78, Theorem 4.2, p.17é].

Let X be a compact Hausdorff space and suppose that
there is a discontinuous homomorphism h from C(X) onto a
dense subalgebra of a Banach algebra A. Then theré is a closed
ideal M in A such that k : C(X)—>A/M, defined by k(f)
= h(f) + M, is a discontinuous homomorphism whose kernel is a

‘prime ideal in C(X).

9,2 Theorem [78, Theorem 4.3 (iii), p.17j].

Let Y be a locally compact Hausdorff space. If h 1is a
discontinuous homomorphism from Ce(Y) 6nto a dense subalgebra
of a radical Banach algebra A, then for éach ¢ in Cc(Y)
with h(c) £ O there is a d in Co(Y)' suchAthat Qh is a
discontinuous homomorphism whose kernel is é prime ideal in
Co(Y), and Qh(c) # O, where Q is the natural quotient

map from A onto A/J and J = {a € A : ah(d)A = (o))g.

Theorems 9.1 and 9.2 are proved in [78] by combining

information obtained from lemma 6.4 about discontinuous
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homomorphisms from arbitrary Banach algebras with more precise
information availéble from other sources about diséontinuous
homomorﬁhisms-from C*-algebras, This is also the procedure
adopted here, The following four results have been extracted,
for ease of reference, from fairly extensive studies of the
.properties of discontinuous hohomorphisms from C*-algebras,
made in the commufative-case by Bade and Curtis [41, and in the

non-commutative case by Johnson [477) and Sinclair [77] (see

also [79]).

9,3 Proposition {77, Theorem 4,1, p.hhS].

Let h be a discontinuous homomorphism from a C*-algebré
C onto a dense subalgebra B of a Banach algebra A, Then
there exists a closed 2-sided ideal M of C, and a
discontinuous homomorphism hg from M into A such that
(1) M has finite co-dimension in C and does not contain the
identity element, if any, of C '
(2) ho(M) 1is a dense subalgebra of the separating space ©(h)
of h, and G(h) = G(h,)

(3) The Jacobson radical of A is contained in G(n).

9.4 Corollary [79, Corollary 12.4, p.69].
If a unital C*-algebra C has no proper closed 2-sided
ideals of finite co-dimension, then every homomorphism from

C into a Banach algebra is continuous.

9.5 Proposition [78, Lemma 4.1, p.172].

Let h be a homomorphism from a C*-algebra C into a

Banach algebra, and let ¢ be any hermitian element of C.
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Then either h(e) = O or h(c) is non-nilpotent. (c . is

hermitian if and only if ¢ = c*).

.9.6 Corollary. Let h be a homomorphism from a C*-algebra C

intova Banach algebrg A. Then h(C) is a semi-prime algebra,
or equivalently, the kernel of h is a semi-prime ideal of -C.
Proof.. Let I be a nil left ideal of h(C) énd let c¢ be
any element of C such that h(c) 4is in I. Then h(c*c) =
h(c*)h(c)'é I, and so h(c*c) is nilpotent. Since c*c is
hermitian, Proposition 9.5 implies that h(c*c) = O. Let |c| =

_‘—'
(c*c)' . By the general polar decomposition for C*-algebras

L
ulcl*e.

[11], there is an element u of C such that ¢

L L
Since |c|* is hermitian, and h(Ic]*)w = h(c*c)

follows that h(lcli) = 0, and therefore that h(e) = h(u\cli)

= 0. Thus. I = (0) and, by lemma 3.5, h(C) is semi-prime.

9.7 Theorem. Let h be a discontinuous homomorphism from a

Banach algebra C onto a dense subalgebra B of a Banach
algebra A, and let c be in C. If h(c) is in the
separating space G(h) of h, but not in the prime radical of
(3(h)N B, then there exists a discontinuous homomorphism k
from C into a Banach algebra such that the kernel of k 1is a
prime ideal of C, and k(c) # O.

Proof. Let P be a minimal prime ideal of B such that h(é)
is not in P. Then P 1is a closed 2-sided ideal of A and, by
Corollary 8.3, P = PAB. In particular, h(c) is not in P. Let
Q be the natural quotient mapping of A onto A/’?, and let

k = Qh. Then k(c) = Qh(c) # O and, by lemma 6.2, (k) =

(QG&(h)) # (0). By lemma 6.1, k is therefore discontinuous.
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To complete the proof, note that Ker(k) = Zd € C : h(d) e’ﬁi
-1 _ B | . . . .
= h "(BAP) = h" (P), which is a prime ideal of C, by lemma

-

3.2

‘Theorem 9.7 applies in particular when h(c) is a non-
nilpotent element of @(h), and in this case is the éxact ﬁon-
commutative analogue of [78, Theorem 3.3, p.17d]. An
alternativg proof may be ob£ained by defining k : C —>A/N

by k(d)

h(d) + N, where in the notation of Theorem 8.2,
N=7%faea: G(h)zha G(h)zy = (0)} . The kernel BT (N) of k
is again a prime ideal of C not containing c. |

We now apply Theorem 9.7 to the case when C is a C*-

algebra. For the commutative case, see Theorem 9.1,

9,8 Theorem. Let C be a C*-algebra, and suppose there exists

a discontinuous homomorphism from C into a Banach algebra;
Then there exists a closed 2-sided ideal M of C and a prime
ideal P of M, such that

(1) M is of finite co-dimension in C

(2) P is the kernel of a discontinuous homomorphism k .from

M :into a Banach algebra,

Proof, By Proposition 9.3, there exists a closed 2-sided ideal
M of finite co-dimension in C, and a discontinuous
homomorphism he from M into a Banach algebra A such that
A = (h,) = B, where B = ho(C). By Corollary 9.6, B is semi-
prime. Thus, by Proposition 3.9, the prime radical of Gy )N
B, which is just the prime radical of B, is the zero ideal,
Since h, is discontinuous, there must be elements ¢ of M

such that h{c) # O. By Theorem 9.7, there is therefore a
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discontinuous homomorphism k from M into a Banach algebra
such that the kernel of k is a prime ideal of M. This

N

completes the proof of the Theorem,

The following Theorem is obtained directly from Theorem
8.8. Note that it applies in its entirety to the discontinuous
homomorphism h, of Proposition 9.3 and the proof of

Proposition 9.8,

9.9 Theorem, Let h be a discontinuous homomorphism from a

Banach algebra C onto a dense subalgebra B of a Banach
algebra A, and suppose that B is semi-prime and that G(h)
= A.

Let X(h) be the set of all prime ideals P of C such
that P is minimal over the kernel of h (see Definition
3.13), and let ¥(h) be the set of all closed 2-sided ideals
I of A such that
(1) (BAIY =1 4 (0)

(2) If K 1is any closed 2-sided ideal of A such that X is
contained in I, then either KA B = (0) ér K = I.
For each I in Y(h), let

P(1) = fee C : h(e)T = (0)}.
.Then P(I) is in X(h), and the map I —» P(I) 1is a bijection
of Y(h) onto X(h). For each I in ¥(h), let

J(I) = Jae A : al = (0},
and let Q(I) denote the natural mapping of A onto A/I(I).
Then Q(I)h is a discontinuous homomorphism with kernel P(I).
Proof. Let P be any element of X(h). Then, since B is

isomorphic to C/Ker(h) and is semi-prime and non-zero, h(P)
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is a minimal prime ideal of B such that &(h)AB = B¢ h(P).
Conversely, if N 1is any miﬁimal prime ideal of B, then there
is a unique eleménf P of X(h) such that h(P) = N, All of
the sfatements of the Theorem, other than the diécontinuity of
the homomorphisms Q(I)h, therefore follow directly from
Theorem 8.8, on taking J = @G(h) = A.

Now let I be in Y(h). To pfove that Q(I)h is
discontinuous, note that since B 1is semi-prime and INB #
(0), we have @(h)I Q(ir\B)’. # (0). Thus, @&(h)¢J(1), and, by
lemma 6.2, G(Q(I)h) = (QUI)GF(R)) # (0), and Q(I)h is

therefore discontinuous,

Note that by Theorem 8.7, if B is not semi-prime and is
not equal to its prime radical L, and if ®&(h) = A, then
Theorem 9.9 may be applied to the homomorphism Qh , where Q
is the natural mapping of A onto A/ L. In this case, Ker(Qh)
is the intersection of all the prime ideals of C ~containing
Ker(h).

It appears to be still an open question, even when C is
a commutative C*-algebra (without identity) and A is radical,
whether or not the sets X(h) and Y(h) are always finite
(see [79, Theorem 11.7]).

The following Theorem is an immediate consequence of
Theorem 9.9 anvaroposition 9.3, and is a non~commutative

version of Theorem 9.2.

9.10 Theorem. Let C be a C*-algebra without identity. If h
is a discéntinuous homomorphism from C onto a dense subalgebra

B of a radical Banach algebra A, then for each ¢ in C
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with h(c) fAO, there exists a closed 2-sided ideal I of A
such that Qh is a diécontinuous homomorphism whose kernel is
a prime ideal in C,'and Qh(c) # O, where Q is the natural
quotient map from A onto A/J and J =fac A :al.= (0)}.
Proof. By Proposition 9.3 (3), &(h) is equal to A. By
Corollary 9.6; h(C) = B is semi-prime. Thus, if ¢ is in C
and h(c) # O, then there is a prime ideal P of C minimal

over the kernel of h such that ¢ ¢ P. Apply Theorem 9.9,

It appears to be still an open question whether or not
there exists a discontinuous homomorphism from a C*-algebra, or
any other Banach algebra, onto a dense subalgebra of a semi-
simple Banach algebra, The final Proposition of this section is
only intended to show that invthis case the construction of
discontinuous homomorphisms with prime kernels is very much

more straightforward, and probably therefore less significant,

9.11 Proposition, Let A be a semi-simple Banach algebra, and

let h be a discontinuous homomorphism from a Banach algebra

C onto a dense éubalgebra B of A. Then there exists a
primitive ideal P of A such that if Q is the nétural

map of A onto the Banach algebra A/ P, then Qh i.s a
discontinuous homomorphism with prime kernel, '

Proof. Let P be any primitive ideal of A such that @(n)
is not contained in P, and let Q be the natural map of A
onto A/P. By lemma 6.2, &(Qh) # (0), and Qh is therefore
discontinuous. By lemma 3.16 and Corollary 2.21, P is a closed
prime ideal of A, and BNP is therefore a prime ideal of B,

- § .
But then, Ker(Qh) = h~ (P) is a prime ideal of C.
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10, The structure of non-nilpotént separating ideals,

The. remaining sections of this'chapter are concerned
entirely with separating-ideals of a Banach algebra A (i.e,
with the case A = B of Definition 7.1). This section begins
with a lemma concerning sequences of mutually orthogonal
elements of a sepérating~ideal. This is used in‘Theorem 10,3 to
strengthen the information availabie from-Section 8. In the
simplest case, when A is semi-prime, we show that if J is a
- non-zero separating ideal of .A, then it contains minimal-
closed 2-sided ideals My, ceceey Mn of'.A such that if
P, =f{a€h:aM = (0}, for i=1, ceeeeyn, then By eeuny
P, are minimal prime ideals of A such that -P,f\...q.l\Ph/\J
= (0). For each i, M, is either finite-dimensional, in which
case P is.primitive, or M; 1is a topologically simple
radical Banach algebra, in which case P; is not primitive
(Theorem 10.,9). Using the fact that the prime radical of a
separating ideal is closed, the structure of non-nilpotent

séparating ideals in general can be described in similar terms.

10.1 Lemma. Let J be a separating ideal of a Banach algebra
A, and let {b.} be a sequence in J such that babm = O
when n # m. Then there exists a natural number N such that
N+2
ba =0 for all n ¥ N,

. . _ 1
Proof., By replacing ba by 2 n'Hb,\ﬂ b, when b, # 0, we may

assume that an” £ 24\, and may therefore define a, in J by
: o0

an = Zb‘ (n = 1, 2, ceocee )o

4= N

We show by induction that
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o> .
af\oooo..aq = zb: (n = 1, 2, sccee ) (1)0
i=n '

This is clearly true for n = 1, If it is true for some n2>1,

then
O (o) [ =0 ‘
fn
8.,1“ a,\.-oooa| = Zanf‘b‘i = 2(2 be:\) = Zb‘?" [
i=n J!r\ Kenel| d=nt

since bkb3 is only non-zero when k = j. Thus (1) is true for
all ne Since J is a separating ideal, there is a natural

number N such that

(Jan.....a\y. = (JaN.....a.f. (n > N).
oD
. N} N+2
Let nyN. Then b, aueeesed b, = bﬂ(ij)b'\ = b, , and
i

nel

o0
. N2
a'\4| .....a\b'\ = Z b;‘ b'\ = O. But then’ b'\ = bna”.....a|b'\ E'

J:n¢|
(Jawoooooa')‘-b'\ = (Ja'\*‘ ..o..a‘)—b'\ = (O)o This Completes the

proof of the lemma.

The important point in the conclusion of lemma 10.1 is

that b, is nilpotent for sufficiently large n.

10.2 Definition. Let I be a closed 2-sided ideal of a Banach

algebra A. Then I is a minimal-closed 2~-gided jideal of A

if it does not properly contain any non-zero closed 2-sided
ideal of A.
If, in Theorem 8.8, A = B, then the closed 2-sided ideals
I of A satisfying conditions (1) to (3) are precisely the neon-zero
minimal-closed 2-sided ideals of A contained in J. This fact

is used in the following theorem,
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10.3 Theorem. Let J be a non-nilpotent separating ideal of a

Banach algebra A, and let L be the prime radical of A. Then
LnJ is the primeAradicai of J and is a closed nilpotéht
ideal. There exist closed prime ;deals Pyy eecesy Pn of A
and closed 2-sided ideals M, .;..., Ma of A such that the
following conditiéns are satisfied :

(1) LAIGM; €J (i =1y eeeeey n)

(2) Mi/LAJ 1is a non-nilpotent minimal-closed 2-sided ideal

of A/LAJ (i =1y sesesy 1)
(3) MiMngr\J (i, j = 1, eccsey Iy i= j)
(4) P; is a minimal prime ideal of A and J¢Pi (i = 1,

cocoey I)

(5) Py = {a€e A :aM;CLAJ] and MNP = LAM; = LNJ

(i =1y eoceey 1)

(6) If P is any prime ideal of A, then either JCP or P C
P for some i .

(7) JAP, N seeesNPy = LNAJ

(8) If K is any closed 2-sided ideal of A such that LNJ g
K<J, then M{CK for some i

(9) M; is a separating ideal of A (i =1, eeeeey N)&
Proof. By lemma 3.12, LNJ is the prime radical of J.‘By
Corollary 8.6, LAJ is therefore a closed nilpotent ideai of
A. Since J 1is not nilpotent, LNJ is not equal to Jf By
Theorem 8.7, J/LNJ is therefore a non-zero separating ideal
of A/LNJ and is a semi-prime algebra. By Theorem 8.8, the
set Y of all non-zero minimal-closed 2-sided ideals I of
A/LNJ such that I€J/LNJ is not empty, and, by lemma
3.5, every element of Y is non-nilpotent. Suppose Y is not

finite, and let {IAX be a sequence of distinct elements of Y,
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If InI. # (6), fhen I, = (span(InIh)f— = In, and therefore 'n
= m. Thus if . {bnﬁ is any sequence in J/LNnJ such that bn
is in I. for all n, then b.b, = 0 for n # m. It follows
from lemma 10.1 that I, must be nil for sufficiently large
n. But, for each n, In is not nilpotent and, by Theorem 3.21,
is therefore not ﬂil. Y must therefore be finite.

Let I,y eeeeey In be the distinct elements of Y and
let »

M =fae A :a+Lng eI (1 =1y eeeesy n)
Then each M; is a closed 2~sided ideal of A and conditions
(1) to (3) are clearly satisfied.

For each i, let N; = Zb € A/LNJ : bIy = (O)%. By
Theorem 8.8, each N{ is a minimal prime ideal of A/LANJ
such that J/LNJ ¢N;. Let
P =iaeA :a+-LﬁJ€Nd =§aéA :aMggLﬁJg (i =1, ceee
ey n). Then, for each i, .J¢It and, by lemma 3.2, P; is a
minimal prime ideal over LAJ., But L~NJ is contained in
every prime ideal of A, and P, 1is therefore a minimal prime
ideal of A.

To prove that M;f\Pé = LAM, = LnJ, it is sufficient to
prove that M;AP,¢LNJ, since the inclusions LNJ QLf\Mi c
M;AP: are obvious, If a is in M{NP;, then aM;(er\J,
and therefore a is in LN J. This proves that conditiqn (5)
is satisfied.

To prove that condition (6) is satisfied, let P be any
prime ideal of A such that -J#I% and let N be a minimal
prime ideal of A such that NCP. Then N/LNnJ is a minimal
prime ideal of A/LAJ such that J/LNJ ¢N/Lf\J, and, by

Theorem 8.8, is therefore equal to N; for some i. N is
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‘therefore equal té P, for some i,
Condition (7) follows immediately from condition (6).
Let K be any closed 2-sidgd ideal of A such that L~J
. %J{QJ} Then K is not contained in P; for all i, and
therefore (K/LNJ)I; # (0) for some i, But then I =
(span((K/ LNJ)I;)) € K/LNJ, and M; is therefore contained
in K. This ﬁroves that condition (8) is satisfied,
To prove that M; is a separating jdeal, note that M, =
(span(MiJ)f-. Thus, if iaag is any sequence in A, and
(Janeeeeea,) = (Jageeesea)) (a2 M),
then (MFN.....a'Y_5.(Span(MgJaN.....a‘)‘)j— =
(span(M;(Ja,eeceea )7 D) C(Mia eeessa,) €(Mayeeesea,) for
all n 2 N, and therefore '
| (Maneeenea,) = (ageeeeoa ) (n %N,

This completes the proof of the Theorem.

40.4 Definition. A Banach algebra A 1is topologically simple

if A% 4 (0) and A is a minimal-closed 2-sided ideal of
itself.

If A is a minimal-closed 2-sided ideal of itself and AL
=.(0), then every closed linear subspace of A 1is a 2-sided
ideale Thus A = (0) or A is 1-dimensional, and the
condition A # (0) therefore only excludes these trivial

casese

10.5 Lemma. Let A be a topologically simple Banach algebra,
Then A is a prime algebra, and is either primitive or
radical,

Proof. ILet N =f{a¢ A : Aa = (0)}. Then N is a closed
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2-sided ideal of A and therefore N = (0). Let a and b be
any elements of A such that aAb = (0), and let K = fc €A
cAb = (0)3. Then K is a closed 2-sided ideal of A, and a is
in K. If a # O, then K = A and therefore Ab = (span(A*)) b
= (span(KAb)5~ = (0), and so’ b = O, This proves that A is a
prime algebra. |
Now suppose A has a primitive ideal P, Then P is a

proper closed 2-sided ideal of A and so P = (0) and A is

therefore primitive., On the other hand, if A has no primitive

ideals then it is edual to its Jacobson radical,

Let I be a non-nilpotent minimal-closed 2-sided ideal of
a Banach algebra A and let N = {a € I : Ial = (0)}. Then N
is a closed 2-sided ideal of A, and therefore N = (0). It
follows that if K is any non;zero closed 2-sided ideal of I,
then IKI # (0), and therefore I = (span(IKI)) = K. This
proves that ‘IA is a topologically simple Bénach algedbra, The
ideals M,/’L/\J, ceeeey MaLNJ in Theorem 10.3 are
therefore topologically simple Banach algebras. In Theorem 10,9
we show that each M;/LnJ is either finite-dimensional of
radical. The proof of this result requires two lemmas, the

first of which is taken from [51].

10,6 Lemma [51]. Let A be a Banach algebra and let X be an
irreducible left Banach A-module, Let D be the centé@izer of
A on X and let Xgy X; 4 eccee in X Dbe linearly
independent over D. Then there exists an element ¢ of A
such that CeXo = O and CeX;y CeXyy eseeee are linearly

independent over D.
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Proof, Using lemma 2,15, choose b, in A such that b, .x, =

Oy b ox, # O and |b,ll ¢ %. Then, using Theorem 2.16, choose

\
Das byy eeess in A so that for all i » 2,

(1) b( Xy, = chx| = ee0ee = b‘ o X =0

(2) bex; is not a linear combination over D of CieX,y ccee

ey C;oX; where ¢; =Db + ceeee + by_y-

(3) vl ¢ Z“L.

o0
Let ¢ = Ei-bm. Then c.%x, = O,

ey
CQXi_ = c‘:.xc + bl'x(‘- (i = 1, 2’ .o...)'

and, for 0<j<i, c.xﬁ = CleXje Suppose CeX;49 CeXyy seecee

are not linearly independent over D. Then there exists N and

elements T' 9 ®seceny TN of D SuCh that C.XN+| = T' (C.x‘) +
oo 000 + TN(C.XN) = Tl (c"+l .xl) + ececee + TN(CN‘,‘ .x“)- But
bust eXy, 15 then a linear combination over D of cuyw oXiy o

eecey Chu oXysy 9 contrary to the choice of bu“‘. Thus ce.X,,
CeX3y9 seese are linearly independent over D, and the proof is

complete,

10,7 Corollary. Let A be a Banach algebra and let X be an

infinite~dimensional irreducible left Banach A-module, Then
there exists an element a of A such that a.X is
infinite-dimensional over the centralizer D of A omn X.
Proof. Tﬁis follows immediately from lemma 10,6, and the fact
that, by lemma 2.24%, D is finite-dimensional over the scalar

field of A, so that X is also infinite-dimensional over D.

10.8 Lemma. Let J be a separating ideal in a Banach algebra

and let X be an irreduciblg Banach left J-module, Then X is
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finite-dimensional.

Proof, Suppose X is infinite-dimensional, and let E be the
set of all a in J such that a.X is infinite-dimensional
.,over.the centralizer D Of-'ir on X. By Corollary 10.7, E is
not empty, and for all a  in E, a.X # §0}, and therefore

Ja % (0). By Proposition 7.5, there is therefore an element =z
of E such that for all a in J, az € E implies (Jaz)” =
(J2) # (0). Since z.,X is infinite-dimensional over D, there
eiist Xo9 Xy ecece in X such that 2.Xg, ZeX;y cceee are
linearly independent over D. By lemma 10.6, there is an
elemehtv a of J such that az.x , az.X;, eseee are linearly
independent over D and az.Xy, = O. But then az is in E,
and therefore J.(z.%X,) €(Jz) .x, = (Jaz)—.x°.= tol. Since X
is irreducible, this implies that =z.%x, = O, which contradicts
the linear independence over D of 2.Xy, ZeX|y eecsse o X

must therefore be finite-dimensional,

The proof given above of lemma 10,8 differs only in detail
from the first stage of the proof of Corollary 9 éf t#S], in
which it is shown that if J 1is a closed 2-sided ideal in a
semi-simple Banach algebra A and J.X # ioS for some
infinite-dimensional irreducible left A-module, then there
exists a sequence ia{{ ih A such that (Janﬂ .....a‘f g
(Janeeoeea, ) for all n.

In the statement and proof of the following Theorem and

its Corollaries, we use the notation of Theorem 10.3.

10,9 Theorem, For each i = 1, eeeeey N, the following are

equivalent :
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(5) M; /LNJ is a primitive Banach algebra
(2) 'Mg/’Lr\J is finite-~-dimensional

(3) A/P; is finite-dimensional

(4) P, is a primitive jdeal of A.

if, for some i, these conditions are not satisfied, then
M¢sLNJd is a topologically simple radical Banach algebra,.
23222' Oniy the proof of the implication (1) implies (2) uses

the fact that J 1is a separating ideal. The rest of the proof
¢onsists of entirely routine arguments.

Suppose M; /LNJ is a primitive élgebra, and let X be
an.irreducible left (M;., LN J)-module such that (O) ={b €
M;/LAJ : b.X = {0} . By Corollary 2.20, we can assume that
X is a Banach (Mc/’Lr{J)-module. By Theorem 10.3 (9) and
lemma 7.6, M; /LNAJ is a separating ideal of A LANJ. By
lemma 10.8, X is therefore finite-dimensional. Since Mg /LnNJ
is isomorphic to a subalgebra of BL(X), it follows that
M; /7LNnJd is finite~dimensional,

Now suppose that AM;/fL/NJ is finite-dimensional, and
define S : A—>BL(M;/LNJ) Dby

S(a)(b + LNJ) = ab + LNJd (a €A €M )e
Then Ker(S) = fa€ A : aM;cLNJ} =Py, and AP, 1is
therefore isomorphic to a subspace of ﬁL(MC//Lr\J) and so is
finite-dimensional,

The implication (3) implies (4) follows immediately from
lemma 3.18.

To prove the implication (4) implies (1), suppose P; is
a primitive ideal of A. Then (M{ + P;)/ P, 1is a non-zero
2-sided ideal of the primitive algebra A//PC, and is therefore

a primitive algebra, Since (M + P.)/ P, 1is isomorphic to
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M; /P AM; which, by Theorem 10.3 (5), is equal to M;/LANJ,
this proves that M /LNJ is a primitive algebra,
The final statement of the Theorem follows from lemma

10.5.

10,10 Corollary. Let J be a separating ideal of a semi-

simple Banach algebra. Then 'J is finite-dimensional.

Proof. In this case, we have L = (0). If J # (0), then J

is non-nilpotent and, byvlemma 2.12, each of the ideals MI’ 0o
eeey Mp 1is a semi-simple algebra aqd, by lemma 10.5, is
therefore primitive. By Theérem 10,9, the direct sum K of

My eeecey Mn 1is therefore finite-dimensional, By Corollary
2.18, K has an identity element e and e commutes with
every element of A. Let a be any element of J. Then, for
each i, (a - ea)M; = (a - ea)eM; = (0). Thus a - ea is in
PN\ seseenNPAaNJI = LNJ = (0), and therefore J = eJCK. It

follows that J = K is finite-dimensional.

In the proof of Corollary 9 of [45], it is shown that if
J is an infinite-dimensional closed 2-sided ideal in a semi-
simple Banach algeb;a, then. there is a sequence iaﬂs in A
such that (Jan*l.....a|f'$(Ja“,....a‘f- for all n, This is
equivalent to Corollary 10.10, which is not therefore a new
result. The proof ofACorollary 9 of [45] uses lemma 10,6, as
described in the remark following lemma 10,8, and lemma 3,2
of [5{].which states that if Xo9 X{y X249 eceee are non-
equivalent'finite-dimensional irreducible left A-modules, then
there is an element ¢ of A such that c.Xy = {Qi and c.X,

= X|y CeXy = X3y ecees o Use of this second lemma has been
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avoided in this section, by using lemma 10.1.

10,11 Corollary. Let R be the Jacobson radical of a Banach

algebra A -and 1ét J be a separating ideal of A. Then JaAR
is the Jacobson radical of J and J/JAR is finite-
diﬁensional.

Proof. By lemma 2.f2, JF\R is the Jacobson radical of J, and
by Corollary 2.10, A/R 1is semi-simple. By lemma 7.6, '

((J + R)/R) is a separating ideal of A/ R. By Corollary
10.10, it is therefore finite-dimensional. But J/’JF\R .is
isomorphic to (J ; R)/ R, and J/JNR 1is therefore

finite-dimensionale.

10,12 Corollary. Let A be a Banach algebra. Then the

following statgments.are equivalent :

(1) A contains a separating ideal with non-nilpotent Jacobson
~radical

(2) A contains a non-nilpotent radical separating ideal M
and a non-primitive closed prime ideal P such that MNP

is the prime radical of M and M/MAP is a topologically
simple radical Banach algebra.

The term 'radical separating ideal' should be interpreted
as meaning a separating ideal contained in the Jacobson
radical;

Proof., Let J be a separating ideal with non-nilpotent
Jacobson radical. Then LNJ JTRANJ, where R is the Jacobson
radical of A. If all the prime ideals P, , eeceeey Pn are
primitive, then RAJCP/A eeeeeNBiNJ = LAJ, Thus for some
i, P; 1is not primitive, Let M = M; and P = P;. Then, by

t
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Theorem 10.9, M/MNP = M/LAJ is a topologically simple
radical Banach algebra. By Corollary 2.10, the Jaéobson radical
" of A/LAJ is R/LAJ. Thus M/LAJCR/LNJ, and therefore
-Mg;R. By Theorem 10.3 (9), M is therefore a radical sefarating
jdeal of A. By Theorem 10.3 (5), MAP = MAL, which is the
prime radical of M, by lemma 3.12.

The implication (2) implies (1) is obvious.

10,13 Corollary. Let A be a Banach algebra in which every

closed proper prime jdeal is primitive. Then every separating

jdeal of A has nilpotent Jacobson radical.

10.14 Corollary. There exists a commutative Banach algebra

with a non-nilpotent radical separating ideal if and only if
there exists a commutative topologically simple radical. Banach
algebra.

Proof. If A is a commutative topologically simple radical
Banach algebra, then - (Aa) = A for all non-zero elements a

of A. Thus A is a separating ideal of itself,

Corollary 10.12 shows that there exists a separating ideal
with non-nilpotent Jacobson radical if and only if there exists
a topologically simple radical Banach algebra which is a
separating ideal of itself. A non-commutative topologically
simple radical Bénach algebra may or may not be a separating
ideal of itself. It is therefore possible that there exist no
separating ideals with non-nilpotent Jacobson rédicals even if
there does exist a non-commutative topologically simple radical

Banach algebra.
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Let A bé a commutative Banach algebra énd let T be the

regular representation. of A on itself, which is the

homomorphism of A into BL(A) defined by
T(a)x = ax (ay, x € A),

A 1is singly generated if there is an element u of A

such that A is the only closea subalgebra of A containingl
ue. In this case, the closed ideals of A are précisely.the
closed invariant subspaces of the operator T(u). It follows
that if A 1is a singly generated topologicaily simple radical
Banacﬁ algebra, then the opefator T(u)’ has no non-trivial
closed invariant subspaces. It is an open question (the
‘invariant subspace problem') whether or not there exists a
bounded operator on any infinite-dimensional Banach space with
no non-trivial closed subspaces [66].

If S is any bounded operator on a Banach space X, then

a closed subspace Y of X is hyperinvariant for S if UYC

Y for all U in BL(X) commuting with 8.
if A 1is any topologically simple commutative radical
Banach algebra, and u is any non-zero element of A, then
T(u) cannot have a non-trivial closedlhyperinvariant subspace
Y, since Y would then be a proper non-zero closed ideal -of A,
In [58], Lomonosov proved that every.non-zero compact
operator on an infinite-dimensional Banach space has a non-
trivial closed hyperinvariant subspaée.

The following Definition was introduced by Alexander [1].

10,15 Definition, A compact Banach algebra is a Banach algebra

A such that for each t in A, the mapping a—tat is a

compact linear operator on A.
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The Banach.algebra of all compact linear operators on a
Banach space is a compact Banach'algebra, and the disc algebra
with convolution (seé Example L,2) is a commutative radical
compact Banach algebra.. Any closed subalgebra of a cbmpact
Banach algebra is a compact Banach algebra, and any quotient of
a compact Banaéh algebra by a closed 2-sided ideal is a compact
Banach algebra [1].

If A is a commutative topologically simple radical
Banach algebra and t is ény non-zero element of A, then the
mapping a-~—tat = t*a is non-zero. By Lomonosov's theorem,
quoted above, it is therefore hon-compact. We therefore have

the following resultse.

10,16 Lemma., Let A be a commutative compact radical Banach

algebra, Then A is not topologically simple.

10,17 Theorem., Let A be a commutative Banach algebra such

" that the Jacobson radical R of A is a compact Banach
algebra. Then every separating ideal of A has nilpotent
Jacobson radical.

Proof. Suppose A has a separating ideal J with non-
nilpotent Jacobson radical, Then, by Corollary 10,12, there
"exists a closed prime ideal P of A and a closed 2-sided
jdeal M of A such that MCR and M/PAM is a
topologically simple radical Banach algebra. Since M/ PNM

is a compéct Banach algebra, this contradicts lemma 10,16,
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11. Applications to epimorphisms and the uniqueness of norm

problem,

This section begins with a proof of the uniquéhess_of_the
cbmplete norm topology of a semi-simple Banach algebra_which
shows that this result follows directly from lemma 6.4 without

any need for lemma 10,1 or lemma 10.6.

11.1Theorem (Johnson [46]).

Let A be a semi-simple Banach algebra, Then A hés a
unique complete norm topology.
Proof. We may assume without loss of generality that A is
left primitive and that there is therefore an irreducible left
Banach A-module X such that a.X = {0} if and only if a =0
(see [58, p.?“])- |

Suppose A does not have a unique complete norm topology,
and let ll:-ll; be a complete algebra norm on A not equivalent
to the given norm -l , Let J = ia € A : there exist a, in
A with la.l,—> 0 and Ja; - a“-J?'Oi. Then J is a non-
zero separating ideal of A. By Proposition 7.5, or.by a direct
application of lemma 6.4, there is an element 2z of A such
that Jz # (0) and for all a in A, either Jai = (0) or
(Jaz) = (Jz) . Suppose z.X is not 1-dimensional over the
centralizer D of A on X, and let x and Yy be eleﬁents
of X such that z.x and z.y are linearly ihdépeﬁdent over
D. By lemma 2.15, there is an element a of A such that
az.x = O and az.y # O. But az.y # O implies Jaz 4 (0), and
therefore, J.(z.x) C(Jz) ox = (Jaz) .x = ioi. It follows that
z.x = O, which contradicts the linear independence over D of

Z.X and z.ye.
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z.X must therefore be 1~dimensional over D, Let x be'
any element of X such.thét Zex # Oe Then A.(z.x) = X and
there is therefore an element a of A"such that az.x = x,
Let e = az, Then e,x = x and there is a_lineér mapping T
from X into D such that
| | e.y = T(y)x (y € X)o .

For all y in X, (&~ - e)ey = e (T(y)x) - T(y)x = O, Thus e
is a non-zero idempotent. Let h be the mapping from eAe
into D defined by

h(eae) = T(a.x) . (a € A).
It is easy to check that h is a well-defined 1:1 anti-
homomorphism of eAe onto D and that eAe is therefore a

division algebra (i.e. e is a minimal idempotent). By lemma

2.23, eAe is therefore finite-dimensional. The festrictions of
B-lh and -] to eAe are therefore equivalent, Let a be in
J, and let {aﬁﬁ be any sequence in A such that ﬂanu'——$>0
and |{a, - all => 0. Then ea;e—>0 in both norms, and
therefore eae =0, But J dis a 2-sided ideal of A; and
theréfore' eAJAe = (0). Since A is a prime algebra, this
impiies that' e = 0 or J = (0). This is a contradiction,

proving that A must have a unique complete norm topology.

The fact that a primitive Banach algebra with minimal
idempotents has a unique complete norm tdpology was proved by

Rickart [58, p.731.

. The following lemma is well-known.

11,2 Lemma, Let h be an.epimonphism from a Banach algebra

C onto a semi-simple algebra A. Then the kernel of h is
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closed.
Proof. The kernel of h is equal to‘the intersection of all
the ideals H_l(P) such thét P is a left primitive ideal of
A. Let P be any left primitive ideal of A and let X be an
irreducible left A-module such that P ={a € A : a.Xx = {o}}.
Then X may be regérded as a C-module by means of the
definition | |

cex = h(c)ex (c €eC, x € X).
X  is then an irreducible C-module and h'i(P) = §c € C : cu.X
= io}i is therefore a primitive ideal of C. By Corollary 2.21,

-1 ’
h™ (P) 1is closed. The kernel of h is therefore closed.

Alternative proofs of lemma 11.2 using different
characterisations of semi-simplicity are given in [68, p.741
and [9, p.13i]. The following Corollary of Theorem 11.1 and

lemma 11.2 is also well-known.

11,3 Corollary. Let h be an epimorphism from a Banach algebra

C onto - a Banach algebra A. Then the separating space of h is
contained in the Jacobson ;adical of A.
Proof. Let R be the Jacobson radical of A and let Q
denote the natural mapﬁing of A onto A/ R. By lemma 11.2,
the kernel of Qh is closed, and we may therefore definelé |
complete algebra norm H-“' on AR by
l\thlh = llc + Ker(Qn)l| (c €C).

By Theorem 11.1; there is a constant M) O such that

fiQnell ¢ MliQnel, < Mlcll.  (c €0C).
Qh is therefore co#tinuous, and, by lemma 6.2, thg sepérating

space of h is therefore contained in R.
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Let A be a Banach algebra and let h be an epimorphism
from a Banach algebra onto A. By Corollary 7.3 (with A = B),
the separating séace G(h) of h is a separating ideal of
A; By'Corollary 1143, Cé(h) is contained in the Jacobson
radical of A, Suppose (3(h) is not nilpotent. By the results
of the pfevious section, there is then a closed non-primitive
prime ideal P of A and-a cloéed 2~sided ideal M of A
such that (J(h)¢ P and M PAM is a topologically simple
radical Banach algebré. Let Q denote the natural homomorphism
of A onto the prime Banach algebra AP, Then Qh is
discontinuous. It followé that there is an epimorphism ﬁ
from a Banach algebra onto a Banach algebra such that &(h)
is not nilpotent if and only if there is a discontinuous
epimorphism from a Banach algebra onto a prime Banach algebra,

The following Theorem follows immediately from Corollary
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11.4 Theorems Let A be a semi-prime Banach algebra

satisfying either of the following conditions 3
(1) A has no non-zero radical minimal-closed 2-sided ideals
(2) Every proper closed prime ideal of A is primitive,

Then e&ery epimo?phism from a Banach algebra onto A 1is

continuous and A has a unique complete norm topology.

The open questions suggested by the results so far may be
formulated as follows ¢
(1) Is the separating space of an epimorphism from one Banach
algebra'onto another always a nilpotent ideal?

(2) Is every epimorphism from a Banach algebra onto a semi-
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prime Banach algebra continuous?

(3) Is every epimorphism from a Banach'algebra onto a prime
Banach algebra continuous?

(4) Does evéry semi-prime Banach algebra havé a unique complete
norm topology?

(5) Is every epimorphism from a Banach aigebra onto a sémi;
prime Banach algebra with a unique complete norm topology
continuous? .

(6) Is the kernel of an epimorphism from a Banach algebra onto

a semi-prime Banach algebra always closed?

If the answer to any of these quesfions is 'no', then we
may conclude that there exists a topologically simple radical
Banach algebra. As has already been observed, questions (1), (2)
and (3) are equivalent. If the answer to (6) is 'yes', then
the argument used in the proof of Corollary 11.3 shows that
the answer to (5) is then 'yes', and that (2) and (4) are then .
equivalent,

'Another possibility suggested by these results is tﬁat there
is a semi-prime Banach algebra with a non-unique complete norm
topology if and only if there is a topologically simple radical
Banach algebra with the same property. The-following Theorem

is a weaker result than this,

11.5 Theorem. The following statements are equivalent,

(1) There exists a semi-prime Banach algebra with two non-
equivalent complete algebra norms
(2) There exists a prime algebra with two non-equivalent complete

algebra norms and a non-zero 2-sided ideal I such that the
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closures of .I in both norms are tdpoloéically simple radical
Banach algebrase
Proof. Let A be a semi-prime algebra with two non-equivalent
complete algebra norms |-, and l-{l,, and let J be the
separating space of the identity mapping on- A regerded as an
epimorphism from (a,l-) onto (A, 8-I). By Theorem 10,3,
with L = (0), there exists a non-zero minimal-closed 2-sided
ideal M of (A, l-l,) and a prime ideal P of A such that
MCJ and P = {a €A :aM= (Oj%. P is clearly ciosed in
both norms, and since «J¢Iu the quotient norms induced by
f-N, and ll-ll; on the prime algebra A/P are non-equivalent
complete algebra norms. We may therefore assume that A is
already a prime algebra., By Corollary 1{.3, M is a radical
ideal., Repeating the above argument with the norms interchanged
gives a non-zero radical minimal-closed 2-sided ideal: N of
(A, li-N)e Let I =NAM, Then (O) § NM¢I, and I is therefore
H-lh-dense in N and U-H{dense in M as required.

The implication (2) implies (1) is obvious, since a prime

algebra is also semi-prime,

If, in the notation of the proof of Theorem 11,5, N = M,
: alschro.
then I 1is a topologically simple BanachAwith a non-unique

complete norm topologye.
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12. Applications to derivations.

This section concentrates on the’following questions :
(1) Is the separating space of a defivation,on a Banach algebra
always a nilpotenf ideal?
(2) Does a derivation D on a Banach algebra A always
satisfy the condition D(P)éﬂP, for evefy primitive ideal P
of A?

' For the sake of completeness, proofs are included of

several known results.

The first lemma applies to a derivation on an algebra over

an arbitrary field,

12,1 Lemma. Let D be a derivation on an algebra A and let
I be a 2-sided ideal of A. Then, for any n elements a;,, ..
coey 8q Of I, D'(a,ese.ea,) -~ n!(Da,)eee.s(Da,) is in I.
Proof, We first show that if n22 and Og¢ j<n, then

D&(a'.....ag) €I (al, ceceey 8, € I),
where D°x = x, for all x in A.

This is clearly true for n = 2, since

D(a,a,) = a,Da, + (Da, )a, € I (a,y a, € I).
Suppose that it is true for some n »2. Then, for any n + 1
elements a;, eeeeey 854y oO0f I, and for Ogj<n + 1,

P .
Leibnitz's formula gives D (& eeseelny) = D’(a,(al.....an“))

i\ i-i |
= E: ({)DL(a‘)D (al.....an+|). By the inductive hypothesis,

i*o
DJ-‘(ai.....an4.) is in . I for 1¢ig<j. This proves that
DJ (a| oooo.an+') is in I.

We now prove the statement of the lemma by induction on n.

It is obviously true for n = 1. Suppose that it is true for
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some n>1, and let a,, ccecey 844 Dbe any n + 1 élemehts

of I, Then
N+ . .
N4 v NN L nbi-t
D (a'.o'oo.an¢|) = 2( 'L )D (a|.....a,\)DA (an+‘)'
t=o

and the only term of the right hand side which is not in I is

. ('\:')Dr\(a\ ooooOav\)D(a'\+l) = (n + 1)D'\ (a\.....an)D(an‘|).

By the inductive hypothesis, Dﬂ(al.....an) - nl(Da').....(Dam)

n4+\
is in I, and 80, D (&, ecseetns, ) - (n + 1D (D2, )eee.(Dany )

= ‘Dh+|(al .-on.an*' ) -A(n + 1)Dr\(a‘ .ooooa,\)D(a'\f.‘) +
(n + 1)(D"(a‘ oooooa,\) - n!(Da,).....(Da,\))DanH is in I.

This completes the proof.
The special case of this lemma, in which &;= seeee = 8,
is proved in [?5], and the proof given above involves no new

ideas,

12,2 Theorem (Sinclair [75]).

Let D be a continuous derivation on a Banach algebra
and let P be a primitive ideal of A. Then D(P) is
contained in P,
Proof. By Corollary 2.11, every right primitive ideal of A is
an intersection of left primitive ideals, We can therefore
assume without loss of generality that P is left primitivé
and, by Corollary 2.20, that there is an irreducible Banach
left A-module X such that P = fae A :a.x = {o}§ and
I} a.xl & faljjxll, for all a in A and x in X.
Suppose .D(P) is not contained in P, and let a be any

element of P such that Da 4is not in P, Then there is a
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non-zero element y of X such that ba.y.¥ O. But then
ADa,y = X, and there is therefore an element b  of A such
that bDa.y = y. Since D(ba) = bDa + (Dbda and a is in P,
it follows that (D(ba))n.y = y, for all n, Since ba is in
P, lemma 12.1 implies that D ((ba)") - n!(D(ba))l1 is in P,

for all n. But then,
-1 n <11 n n | | n a
1 = iyl J@a) eyl = lyl™ 5D ((ba) ).yl — ol fieall,

- '
which is impossible, since (n!) JlD“”lbaH“—Jy O as n—>eco,

12.3 Corollary (Singer and Wermer [80]).

Let A be a commutative Banach algebra' and let D be a
continuous derivation on A. Then D(A) is contained in the
Jacobson radical of A. If A is(semi-simple, then D = O,
Proof. This is the proof given in [75].

_ Let M be a maximal modular (= primitive) ideal of A.
_Thgn A/M 1is isomorphic to R or to € . By Theorem 12.2,
D(M) is coﬁtained in M. We may therefore define a (real
linear) derivation Do on A/M by |

Do(a + M) = Da + M (a € A).
It is therefore sufficient to prove that there are no non-zero

real linear derivations on IR or on € , and this is obvious.-

12.4 Lemma. Let D be a derivation on an algebra A and 1et
I be a nilpotent left ideal of A such that 1" = (0). Then
n!D(I) is contained in the prime radical L of A.

Proof. Let a be in I, and let Iy ecceey Ty be any n

elements of A. By lemma 3.11, I is contained in 1L and, by
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lemma 12.1, Dn(r,a.....n,a) - n!D(r,aj.....D(rha) is therefore
in L. But, rla.....rAa = 0, and, for all i, D(r;a) - r;Da is
in L. n!(r|Da).....(rnDa) is therefore in L. Let P be
any prime ideal of A, Then‘ (An!Daf‘Q P, and therefore, n!Da

is in P. Since L is equal to the intersection of all the

prime ideals of A, it follows that n!Da is in L.

12.5 Proposition. Let D be a derivation on a Banach algebra

A and let L be the prime radical of A. Then D(L) is
cdntained in L.

Proof. Let I be any 2-sided nilpotent ideal. By lemma 12,4,
D(I) is contained in L. By Corollary 3.24, L is equal to

the sum of all the 2-sided nilpotent ideals. D(L) is therefore

contained in L.

By Corollary 7.4, the separating space of a derivation on
a Banaech algebra is a separating ideal. We may therefore apply

the results of Section 10,

12,6 Lemma, Let D be a derivation on a'Banach algebra A. If
the Jacobson radical of the separating space J of D is
nilpotent, fhen. J 1is nilpotent,

Proof. Let R be the Jacobson radical of A, By Corollary"
10.11, RNJ is the Jacobson radical of J and J/RNJ is’
finite~dimensional. Let Q be the natural mapping of A onto
A/RAJ, and suppose J is not nilpotent. Then J # RNJ, and
QJ is therefore non-zero. By lemma 2.18, there is an element

e of J such that Qe 1is aﬁ identity element for QJ. Let

€1y eevesy €n be elements of J. such that Qe |, ceecey Qen

111



-is a basis of QJ. Then there exist continuous linear

functionals fl’ eevesy £ on QJ such that

. . n
Qa= Z £, (Qa)Qe; (a € 3).

t=y

In particular,
. | n
ea - th-(Qea)e;‘ € RNJICL (a €A).

Ct‘
Let gami be a sequence in A such that a, —>0 and

Da,,—> e, Then

n

D(eam) ~- 2: ﬂ;(Qeag)D(ei) € D(L)CL (m =1, 2, «o),

=1

by Proposition 12.5. For i= 1, escocey Iy fi(Qeam)'—y 0. Since
D(eam) = eDa, + (De)a,-%>el, it follows that e* is in the

closure of L. By lemma 3.17, L is contained in R, and

therefore Qe* = (Qe):L = Qe = 0, which is a contradiction,

i2.7 Corollary. Let D be a derivation on a Banach algebra A

such that the separating space J of D is not nilpotent.
Then there is a closed non-primitive prime ideal P of A

and a closed 2-sided ideal M of A such that M/PAM is a
topologically simple radical Banach algebra.

Proof. Suppose J is not nilpotent. Then, by lemma 12.6, the

‘Jacobson radical of J is not nilpotent. Since J is a

separating ideal of A, the required result therefore follows

immediately from Corollary 10.12.

12,8 Corollary. Let A be a semi-prime Banach algebra

- satisfying either of the following conditions :

(1) A has no non-zero radical minimal-closed 2-sided ideals
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(2) Every proper closed prime ideal of A 1is primitive.

" Then every derivation on A is continuous.

12.9 Corollary (Johnson and Sinclair [51],. see also [45]).

Every derivation on a semi-simple Banach algebra is

continuous.

12.10 Theorem. Let D be a derivation on a Banach algebra A

such that the separating space J of D is hilpotent. Then
D(P) is contained in P, for all primitive ideals P of A.
Proof. Let L be the prime radical of A and let Q ﬁe the
natural mapping of A onto A/ L. Since J is nilpotent, it
is contained in L. By lemma 6.2, QD is therefore continuous,
By Proposi tion 12.5, (QD)(L) = (O). By the continuity of QD,
QD(L) = (0), and D(L) is therefore contained in L. Ve may
therefore define a derivation Do on A/ﬁi by

De(a + L) = Da + L (a €4).
By lemma'6.3, Do  is continuous. Let P be a left primitive
idegl of A. Then, by lemma 3.17, 1 is contained in P and,
by lemma 2.9, P/ 1 is therefore a left primitive ideal of
A/ 1. By Theorem 12.2, De(P/ L) is contained in P~/ I, and
D(P) is therefore contained in P. By quollary 2,11, every
right primitive ideal is an intersectipn of ieft primitive ideals.

It therefore follows that D(P) is cbntained in P for all

the primitive ideals P of A.

12.11 Corollary. If there is a derivation D on a Banach

algebra A, and a primitive ideal P of A such that D(P)

is not contained in P, then there is a topologically simple
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radical Banach algebra.

12,12 Corollary. Let D be a derivation on a commutative

Banach algebra A such that the separating space J of D
is nilpotent. Then D(A)‘ is contained in the Jacobson rédiﬁal
R of A.
Proof. Let M be a maximal modular (= primitive) ideal of
A. Then, by Theorem 12.10, D(M) is qontained in M. It follows
that D(R) is contained in R. We may therefore define a
derivation D¢ on A/R by

D,(a + R) = Da + R (a € 4.
Since J is contained in R, Do is continuous. By Corollary.

2.3, Dp = O, and D(A) is therefore contained in R.

12.13 Corollary. If there is a derivation D on a commutative

Banach algebra A such that D(A) is not contained in the
"Jacobson radical of A, then there is a commutative

topologiéally simple radical Banach algebra.
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13, Arens-Hoffman extensions,.

It is known that every Arens-Hoffman extension of a
commutative semi-simple Banach algebra with identity has a
unique complete norm topology (Lindberg [57]). The main purpose
of this section is to give an easy proof of this result, using |
the theory of separating ideals, and to eitend it tovcover
Arens-Hoffman extensions of a wider range of Banach algebras.

We begin Sy describing what is meant by an Arens-Hoffman
extension of a Banach algebfaa

Let A Be a commutative algebra with identity, and let
A[t] denote the algebra of all polynomiais in the
indeterminate t with coefficients in A. Let b(t) = 'l:'L +
ba-y £ 4 eeeee + b,t + by € A[t] be a monic polynomial of
degree n3¥ 2, and let B = A[t1/(b(t)), where (b(t)) =
A[tIb(t) is the principal ideal of A[t] generated by b(t).
Then B is a commutative algebra with identitj, and the map i
A from A into B defined by

i(a) = a + (b(t)) (a € A)
is an algebra monomorphism. The imporfént feature of B 1is that
it contains a solution of the polynomial equétion b(t) = O.
However, for the purposes .of this section, it is only the
A-bimodule structure of B which is important,

An A-bimodule is a left A-module X which is also a
right A-module in such a way that the right and left module
operations satisfy the consistency condition

8.(Xeb) = (2eX)eb (a, b € A, x € X).
A linear mapping T from an A-bimodule X into an A-bimodule

Y is an A-bimodule homomorphism if

T(a.x) = a.,Tx and T(x.a) = (Tx).a (a € A, x€ X).
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B = Alt) ~(b(t)) is éleafly an A-bimodule, with the module-.
operations defined by
a.x = i(a)x = X.a (x e B, a €4).
For any aléebra~ A, the notation A(n) will be used for
the linear space direct sum of n copies of A, regarded as
an A-bimodule by means ofvthe definitions

ao(a| 9ooooo,ar_\) = (aa‘ ,.....,aa,\)

1]

(a‘ ,oooo,a,\)oa '(a|a90.ooo’ana) (a, a‘, ceveey 8,€ A)o

1%.1 Lemma. Define T : A(n) —>B = A[t].~(b(t)) by

£t + ec0ee + a,\t:-

T((al ,ooooo’a")) = a‘ + al_

() yeeeeemyeh),
where t = t + (b(t)). Then T is a 1:1 A-bimodule
homomorphism from A(n) onto B.

Proof. It is obvious from the definitions that T is an
A-bimodule homomorphism, and from the identity E? = =(b, + b‘§
+ eeese + by, t7" ), that T is onto, If T((a|,.....,an)) = 0,
then there exists an element c(t) of A[t] such that

a +'a2t + ceecee anf“‘ = ¢(t)b(t). Since b(t) is monic and

{
of degree n, it follows that c(t) = O, But then, &= cecee =

an = 0. T is therefore 1:1.

The module structure of B is the essential feature used
in the construction of the Arens-Hoffman norms which are
described in the following lemma. Proofs of the various

statements made in the lemma can be found in [3].
13,2 Lemma, Let A be a commutative unital Banach algebra.
Then there exist real numbers s>0O such that

Bbl + bl + eeees + lbayll 8™ ¢ s". For any such s, define
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W-lle on B =alt]/(b(t)) by
_ n~ ‘
la, + a,t + covee + ant Ny = Zﬂaw” s' (8, yeeey. 8, € Ao
e : : :

Thén l-llg is a complete algebra norm on B and the
monomorphism a —a + (b(t)) from A into B is an
isometry.

The Banach algebras (B,U:llj) are called Arens-Hoffman

extensions of A.

The module structure of B is used in £61] to prove that
if every derivation on a Banach algebra A is continuous,
then every derivation on any Arens-Hoffman extension of A is
continuous.

In the following Theorem and its Corollaries, we consider
Banach algebras satisfying the following tWo conditions
(1) A has no non-zero finite-dimensional nilpotent ideals
(2) A has no infinite-dimensional separating ideals.,

These are preciéely the conditions of Theorem 2 of [ﬁB]
(see Section 5, Theorem 5.1). As shown in [45), they imply
that every separating ideal J of A contains an idempotent
e such that J = Ae. To prove this, note that, by iemma 2.12

a
and Corollary 3.10, the Jacobson radical of J is,nilpotent

A
ideal of A. By condition (1), J is therefore semi-simple. By
Corollary 2.18, it therefore contains an identity éleﬁent . e
| Conditions (1) and (2) are satisfied by semi-simple Banach
algebras, semi-prime Banach algebras with no radical minimal-
closed ideals, semi-prime Banach algebras with no non-primitive

proper closed prime ideals, L‘(O,1))and.Banaéh algebras of

. formal power series.
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1303 Theorems Let A Dbe a Banach algebra with no non-zero

finite-dimensional4nilpotént ideals and no infinite-dimensional
separating ideals, Let fl< | be any completé norm bn A(n)
such that, for all - a in A, tﬁe module operations

X —>a.x and x—>x.a (x € A(n))
are continuous, Then ll-JJ is equivalent to the norm n'“qg
defined on A(n) by
,"(a|, ....,a,\)",,Q = max%ma!i, cocoey "aaﬂg (2, eeeey a, € A).
Proof, For each i, define th : A(n)—>A by

P ((ay ceneey a,)) = alﬁ (a,, ....;, a, € A),
Then each p; is a continuous A-bimodule homomorphism from
(A(n),l-ll) onto A. Let S denote the identity map from
(A() 1) to (A(n),ll-ly) and suppose that S is not
continuous, Then p;(3(S) # (0) for some i.

For each b in A, let TL and U, denote right and
left module multiplication by b on (A(n),l-fl). Then Ty
and Uy, are continuous and, for all b in A,
(p.S)(Tyx) = (p;SxX)b and (p.S)(Uyx) = b(p;Sx) (x € A(n)).
By Proposition 7.2, the separating space (§(pis) ‘of p;S is
a separating ideal of A. Because of the conditions on A,
(j(pis) is therefore finite-dimensional and contains an
jdempotent e; such that Ae, = G(p;S).

Let X; = z(a,,.....,a.,) €A(n) 2 a; € eAy J = Tyeeey ni.'
Then X; is finite~dimensional, and the restrictions of Il
and [-ll, to X! are therefore equivalent. Let {xm} be a
sequence in A(n) such that I x.l—= 0 and P;SXm —7 €; in

A, Then eu X, is in X;, for all m, and zg;.xhﬁ therefore

P

converges to O in both norms. But then, e; = es =

) {

lim e; ((p¢S)(%m)) = lim (p;S)(e;sxn) = O, and so (H(p;S) =
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$0}. By lemma 6.2, (p, G(8)) = F(p;S) = (0), which is a
contradiction. S must therefore be continuous and, by Banach's

isomorphism theorem, Il - il and Il «ll,, are therefore equivalent,

13.4 Corollary. Let A be a commutative unital Banach algebra

with no non-zero finite-dimensional nilpotent ideals and no
infinite-dimensional separating ideals, Then every Arens-
ﬁoffman extension of A has a unique complete norm topology.
Proof. Let h-1" ve any complete algebra norm on B =

Al (v(t)), where ©b(t) is of'degree n. Define -l on

A(n) vy

N(a, seesosgam)ll = la, + ast + cecen + a,lfd“/ (ageeeya, € A
By lemma 13.1 and Theorem 13,3, it is sufficient to prove that
for each a in A, the map a—~—>a.x on (A(n),l-lI|) is
continuous., To do this, let a and &, eeeeey an be any
elements of A, Then

la.(a, yeooeosa )l = fl(a + (b(£)))(a; + ceees + a l]’

< Na+ GEINa, + eeees + anf‘"']/ =

= |la + (b(t))“,"(a‘,.....,aﬂ)“. This completes the proof,

13,5 Corollary (Brown [10], Lindberg [57)).

Let A Dbe a commutative semi-simple Banach algebra with
identity. Then every Arens-Hoffman extension of A has a

unique complete norm topologye.
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Chapter Three

JORDAN DERIVATIONS

14, Introduction.

Throughout this chapter, A will denote an algebra over a
field F, such that the characteristic of F is not 2.

The Jordan product © on A is defined by

acb = ab + ba (a, b € A),
and a linear mapping D of A into itself is a Jordan
derivation if

D(ao b) = aeDb + (Da)e b (a, b € A).

The main result of this chapter (Theorem 15.,9) is that if
L is the prime radical of A, and D 1is a Jordan derivation
on A, then

D(ab) - aDb - (Da)b € L (a2, b € 4).

It follows immediately from this that if A is semi-prime
(i.e« L = (0)), then D is a derivation. In particular, every
Jordan derivation on a semi-simple Banach algebra is a
derivation, and therefore continuous, by Corollary 12;9.

The restriction on the characteristic of F is necesséry

to avoid the case when A is commutative and satisfies the

condition 2a O for all a in A. In this case the Jordan

product ao b 2ab is zero, and all linear maps of A into

i}

jtself are therefore Jordan derivations, but may not all be

derivations.
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15, Jordan derivations and the prime radical.,

Throughout this section, D will denote a Jordan

derivation on A and L will denote the prime radical of A,

The following notation will be used in order to simplify the

algebraic computations which make up most of the proofs,

d(a,b) = D(ab) - aDb - (Da)b (ay, b € A)
[a,b] = ab - ba (a, b € A)
[asbyc] = abc + cba (ay, by ¢ € A).

D is a derivation if and only if d(a,b)

O for all a

and b in A, Recall that L 1is equal to the intgrsection of

all the prime ideals of A. Let P be a prime ideal of A,

We

show that d(a,b) is in P for all a and b in A. The proof

divides into two cases depending on whether or not [a,b]

is in

P. The first case (fa,b] € P) includes the case when A/P is

commutative,

The first two lemmas were proved (for rings) by Herstein,

and are the starting point. for his proof that every Jordan
derivation on a prime ring in which 2x = O implies x =0

is a derivation,

15.1 Lemma (Herstein, [34]). For all a, b and ¢ in A,
(1) Da* = aDa + (Da)a

(2) D(aba) = (Da)ba + a(Dbla + abDa

(3) D([a,b,c]) = [Da,b,c] + fa,Db,c] + [a,b,Dc].

Proof. In the proof of (1) and (2) we use the fact that,
-Secause of the restriction on the characteristic of F, 2a
implies a = O,

For all a 1in A,
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2Da* = D(ac a) = aoDa + (Da)o a = 2(aDa + (Da)a). This proves
(1). To prove (2), first note the identity
xo(xoy) = xXo(xy + yx) = X" oy + 2xyx (x, y € A).

' From this we obtain

" 2D(aba) = D(ac (aeb)) - D(a* o b)
= aeD(aeb) + (Da) e (aeb) -~ a*e Db - D& o b
= a> o Db + 2a(Db)a + a(Da)b + abDa + (Da)ba + b(Da)a +
(Da)ab + (Dé)ba + abDa + baDa - & o Db - a(Da)b =
baDa - (Da)ab - b(Da)a
- 2(Da)ba + 2a(Db)a + 2abDa.
To prove (3), replace a by a + ¢ in (2). This gives
D((a + ¢)b(a + ¢)) = (D(a + ¢))bl(a + ¢) + (a + c)(Db)(a + ¢c) +
(a + c¢)bD(a + c¢) = D(aba) + [Da,b,c] + [a,0b,c] + [a,b,Dc} + -
D(cbec)e (3) follows on subtracting D(aba + cbec) from each

side,

Before stating the next lemma we introduce another
notational device. This is the reversed product ., on A
defined by

asb = ba (a, b € 4).

The algebra obtained from A by reversing the product in
this way will be denoted by rev(A) [9]. Since the Jordan
products on A and rev(4) coincide, D is also a Jordan

derivation on rev(A).

15,2 Lemma (Herstein). For all a and b in A,
(1) aCa,b)[a,b]}
(2) [a,b]d(a,b)

0]

O.

Proof. By (3) of lemma 15.1,
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p([a,b,ab}) = [Da,b,ab] + [a,Db,ab] + [a,b,D(ab)].
But [a,b,ab] = (ab)" + ab a, and therefore, by (1) and
(2) of lemma 15.1, A |

D([a,b,ab]) = abD(ab) + D(ab)ab + (Da)b a + a(Db*)a + ab’Da

abD(ab) + D(ablab + (Da)b}a + ab(Db)a + a(Db)ba + ab Da.

By comparing the two expressions for D([h,b,aﬁ]), we get-

0 = (D(ab) = (Da)b - aDb)ab - (D(ab) ~ aDb - (Da)b)ba
- aa,p)[a,b]. |
(2) now follows from (1) by reversing the product. Thus,
0 = (D(besa) =~ (Db)ea ~ beDa)e(b.a - a.b) = [a,b}d(a,b).

15.3 Corollary (Herstein). For all a, b and ¢ in A,

(1) [c,bld(a,b) + [a,bld(c,b) = O
(2) [c,a]d(a,b) + [a,bld(c,a)

Proof. By (2) of lemma 15.2,

0.

[a + c,bld(a + c4b) = 0. But [a + c,b] = [é,ﬁl + [c,b] and
d(a + ¢,b) = d(a,b) + d(c,b). Thus, since [a,bjd(a,b) = O =
[c,bld(c,b), we have [c,bld(a,b) + [a,b}d(c,b) = O, as
required,

Now iaterchange a and b in (1). This gives
[c,ald(b,a) + [b,ald(c,a) = O. But d(a,b) + d(b,a) = D(ae b) -
ao Db - Dae b = O, and therefore d(b,a) = -d(a,b). Since

[b,a] = [-a,b], this proves (2).

15.4 Lemma., Let P be a prime ideél of A and let a and b
be elements of A such that

(a,c]b € P (c € A).
Then b is in P, or (a,¢] is in P for all ¢ in A,

Proof. Suppose [a,c] ¢ P for some element ¢ of A, and let
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x be any element of A. Then, [a,clxb = (acx - cxa)b + c(xa‘—
ax)b = [a,cilb + c[x,a]b € P. Thus (ayc]Ab ¢P and therefore

b is in Pe.

15.5 Lemma. Let "P be a prime ideal of A. If [a,b] is in
P, then d(a,b) is in P.

Eiﬂﬂi' We first consider the case when AP is non=-
commutative, '

Suppose that [a,b] is in P. Then, by Corollary 15.3,

[c,b]d(a,b) € P and [c,a)d(a,b) € P (c € A).
it follows from lemma 15.4, that if there is an element c¢ of
A such that [c,a)} ¢ P or [c,b]¢ P, then d(a,b) € P.

Now suppose thatltg,d] and [c,b} are in P for all c
in A, and let ¢ and e be any elements of A such thét
[cyel ¢ P. Then, [e,b] and [2 + e,b] are in P and [p,é]
and [c,a + é] are not in P. It follows that d(e,b) and
d(a + e,b) are in P, and that d(a,b) = d(a + e,b) - d(e,b)
is therefore in P.

Now suppose that AP is commutative, By lemma 15.2,
we have [g,ﬁ]c;d(a,b) = 0 and therefore, since D is é
Jordan derivation, O = [a,ﬁ]o d(a,b) + D([a,bl)e d(a,b). Since
AP is a commutative integral domain, this implies that
pD([a,b])d(a,b) 1is in P, and that, therefore, d(a,b) is in
P or D([a,b}) is in P. But,

2d(a,b) = D(ab + ba) + D(ab - ba) - é(an + (Da)b)

D([a,b}) + (aoDb - 2(Da)b) + ((Da)°b - 2(ba)b) € P,
if D([a,b]) 4is in P, Thus in either case, d(a,b) € P and the

proof is complete,
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The final three lemmas are concerned with the case
[a,b] ¢ P. Lemma 15.6 is simply part of the calculation needed

to prove lemma 15.7.

15,6 Lemma, For all a, b and x in A,
(1) D(fa,b]x)

(2) D(x[a,b]) = x(D(ab) - bDa - (Dbla) + Dx[a,b] + d(a,b)x,

(D(ab) - bDa - (Dbla)x + [a,b]Dx + xd(a,b)

Proof. Note that [a,b]x = [;a,b,.x] - x o ba. Thus, by (3) of
lemma 15.1, D([a,b]x) = D([a,b,x]) - D(xc ba)

[Dé,b,x] +'[?,Db,x] + [a,b,Dx] - xD(ba) - D(ba)x - (Dx)ba -

baDx

x(bDa + (Db)a - D(va)) + ((Da)b + aDb - D(ba))x - (Dx)ba -

baDx + abDx + (Dx)bda,

Since D is a Jordan derivation, we have (Da)b + aDb =
D(ba) = D(ab) - (Db)a - bDa and bDa + (Db)a - D(ba) = d(a,b),
and therefore D([a,b]x) = xd(a,b) + (D(ab) - bDa - (Dbla)x +
[a,b]Dx, as required,

(2) may be proved by a similar argument, or by reversing

the producte.

15.7 Lemma. For all a, b and ¢ in A,
[[a,b],c,d(a,b)] = O.

Proof. The idea of the proof is to evaluate D([a,blc[a,b]) in
two different ways and then obtain the reduired result from
lemma 15.2 and the resulting identity.

Firstly, by replacing x by [a,blc in (2) of lemma 15.6l
we get D([a,blc(a,b]) = d(a,b)[a,blc + D([a,b]c)a,b]+
[a,5]c(D(ab) - bDa - (Db)a) =' [a,b]Dc[a,b] +

[D(ab)-bDa-(Db)a,c,[},tﬂ] » by lemma 15,2 and lemma 15.6 (1),
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We now observe that D([a,b]) = (D(ab)-bDa-(Db)a) + d(a,b).
Thus, D([a,blc[a,b]) = [a,b]Dc[a,b] + D([a,b))c[a,b] +
[a,51eD([a,b]) - [a(a,b),c, [ayb]]

= D([a,b)c [2,81) - [d(a,b),c, (&,51], by lemma 15.1 (2).
The result now followson subtracting D([a,b]c [a,b]) from

each side,

The final lemma is similar to [56, lemma 3,1Q],
15,8 Lemma., Let P be a prime ideal of A. Then [a,c,b] = O
for all ¢ in A "implies a €P or b€ P, |
Proof. Let h and k ©be arbitrary elements of A. Then
ahakb + bhaka = O. :
But akb = -bka and bha = -ahb, and therefore éahbka = O.

Thus aAbAa CP and so a €P or b €P,

15,9 Theorem, Let D be a Jordan derivation on an algebra A

over a field F, such that the characteristic of F 1is not 2,
and let L be the prime radical of A. Then D(ab) - aDb -
-(Da)b is in L, for all a and 5 in A,

Proof. Let a and b be any elements of A and let P be
any prime ideal of A, By lemma 15,7, [[a,ﬁ],c,d(a,b)] = 0,
for all ¢ in A. By lemma 15,8, either [a,bl € P or d(a,b)
€ P. But, by lemma 15.5, [a,b] € P implies d(a,b)€ P, Thus,
in either case, d(a,b)eEP. Since L 1is the intersection of all

the .prime ideals of A, this completes the proof,

15,10 Corollary. If A is semi-prime, them D 1is a

derivation,

Proof. By Proposition 3.9; A is semi-prime if and only if L
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= (0). If L = (0), then D(ab) - abb - (Da)b =0, for all

a and b in A, and so D is a derivation.

15,11 Theorem. Let D be a Jordan derivation on a semi-simple

Banach algebra. Then D is a continuous derivation,
Proof. This follows immediately from Corollary 15,10,
Corollary 12.8, and the fact that any semi-simple algebra is

semi-prime,
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Chapter Four

INVARIANT STATES ON BANACH ALGEBRAS

16. Introduction.

Let A be a complex unital Banach algebra, let G be a
group and let T ‘be a representatién of G on A by isometric
automorphisms (see Definition 4,6). This chapter is concerned
with thé relatiénship between two conditions which the.triple
(A,G,T) may satisfy, both of which are expressed in terms of
.the G-invariant states of A,

Let A' denote the dual space of A. An element £ of

A' is a state if |fJl = 1 = £(1), and the state space of A

is the set D(A) of all states of A, with the weak* topology.

D(A) is non-empty, convex and compact (see [7, p.15]).

16.1 Definition. A linear functional f on A is G-invariant

if f(ge.a) = f(a) (a € A, g € @),
where, as in Section 4, |
g.a = T(g)(a) (a € A, g € Q).

The set of G-invariant continuous linear functionals on
A will be denoted by A'(G), and the set of G-invariant
states by D(A,G).

It is clear that A'(G) is a weak* closed subspace of A!
and that D(A,G) is a compact convex subset of D(A),
although it may be empty (see Example 16.3).

The two conditions on (A,G,T), with which this chapter is
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concerned are defined inlsection 18 ((A,G,T) is
M-asymptotically abelian) and Sectién 19 (p(A,G) is a
simplex). The rest of_this‘éection consists of three examples,
all of which, as will become apparent later, satisfy both of
the conditions. The first example also serves to introduce the

terminology of amenable groups.

16,2 Definition. Let G be a group and let 1°(G) denote the

C*-algebra of all bounded complex-valued functions on G. A

state M on 1°(G) is a 2-sided invariant mean if, for all f

in T2(G), M(qf) = M(f4) = M(£), where f and fq are the
left and right translates of f, defined by

§F(0) = £(gx) and f4(x) = £(xg) (x € 0.

If G is a finite group with n elements, then fo(G)
clearly has a 2-sided invariant mean defined by

mee) =LY @) (£ € %),

L W A
9¢ &
oad
On the other hand, there do exist groups -G such that 1 (G)
does not have a 2-sided invariant mean. One such example is the
free group on 2 generators (see, for example, 137, p.236]).
A group G such that IT(G) does have a 2-sided

invariant mean is said to be amenable. All abelian groups are

amenable [37, p.231).

A state M on fw(G), is inversion invariant if

M(£) = M(F) (f € 7(a)),
where f(g) = f(g1) (g € G)o If G is amenable, then it

has a 2-sided and inversion invariant mean [37].

16,3 Example. Let H be any group and let G = HxH, Define
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T:6 ~> BL(I(H)) by
T((h,k)) (£)(x) = £(5" xk) (h, k, x € H, £ € 17(H)).

Then T is a representation of G on ‘fo(ﬁ) by .
jsometric automorphisms and the G-invariant states.ofb fc(H)
are precisely the 2-sided invariant means on 17(H). If H is
any non-amenable group, then the set D(fo(H),G)-of G-invariant

states is emptye.

The next example is a simplified version of a mafhematical
structure used-in the C*-algebra approach to statistical
mechanics. For further details and more eiaborate examplés, see
[69, chapter 7].

Recall that an automorphism h on a unital C*-algebra is
isometric if and only if it is a star-automorphism (i.e; h(a*)

= (n(a))* for all a in A) [15].

16,4 Example : Quantum lattice systems [Eéj.

Let G = 7, where v = 1, 2 or 3, and for each x in
Y/ lef H,ﬁ be a 2-dimensional Hilbert space. Let K denote
the set of all finite subsets of Zy , and, for each non-empty
S in K, let Hg be the Hilbert space tensor broduct of the
Hilberf spaces sz; X € Si. Thus,

Ho = ® H,.
*€9

Let H¢ = iOi. Note that if S contains n points, then HS
is 2 -dimensional.

For all S and S' in K, with S¢S', define i(S,S') @
BL(Hy) —»BL(Hg4s) by i(s,s")(a)(x®y) = a(x)®y, where

x € Hg and Yy € Hsf . This makes sense because of the natural
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isometric isomorphism between Hg’ and 'Hs ® H\o o Th.e maps
i(s,8') satisfy the following conditions
(1) i(s,S') is an isometric staf-monomorphism of BL(H'S) into
BL(H /) (s, S'¢ K, S5 ) |
(2) If ScS'c S'', then i(S,S'') = i(s',8'')i(5,s") |
(3) If SnS' 1is empty, ‘then every element of 1(s,5u S')(BL(S))
commutes with every element of i(S',Su S*)(BL(S').

Using these conditions it is easy to construct a unital
C*-algebra A, with a famil& of clos'eld star-subalgebras
A, : 5 € X} and maps fi, = s € K{, such that
(4+)

As

js is an isometric star-monom'orphiém of BL(HS) or_1to
(5) If ScsS', then Agg Ag/ and the following diagram commutes
BL(Hg) —> BL(H{)

Lt(s.87)D
l,js l’jg

" . A 7
S inclusion S

(6) If Sné‘ is empty, then every element of A, commutes
with every~¢1ement of Ag”
(7)) Ugag ¢ se K} is a dense star-subalgebra of A.

We now construct a represéntation of Z\. on A by
isometric automorphisms.

For eacl'm x in 2%, let Vo(x) be a unitary mapping of
Ho onto Hx. The transformati;)ns' Vo(x) may be chosen
arbitrarily subject only to the restriction Vg(0) = 1, Let

Ve (y) = Volx + y)Vo(x)-l .

Then V,(y) is a unitary mapping of H, onto Haﬂ, and.
(8) Voly + 2) = V,_MS(Z)V,‘(y) (x, vy 2 €2").

For each S in K and y in 1, 1let
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Ve(y) = ® Valy).
xe$§

Then V¢ (y) is a unitary map of Hg onto Hgyye Finally,
for S in K, a.  in AS’ and y in Z~, let

T(y)a = j“n(vs(y)(j;‘ a)Vs,:S(-y))._
Then T(y)]AS is an isometric star-monomorphism of Ag onto
‘Agwy « Using conditions (1) to (8), it is easy to check that
T(y) extends to an isometric automorphism of A (also denoted
by T(y)) and that |

T(y + 2) = T(y)T(2) (y, z € 1Y),

Thus T is a representétion of 7Y on A by isometric
automorphisms. (A,G,T) has a quasi-local structure, as
described on pages 9 and 10 of the Introduction, and is
therefore asymptoticall& abelian, Triples (A,G,T) such that
A is not a C*-algebra can be obtained in a similar way by
starting with finite-dimensional Banach spaces which are not

Hilbert spaces.

16,5 Example. Let A be the disc algebra, let G =R, and,

as in Example 4,8, define T by

() (£)(2) = £ z) (2 €A, £ €A(A), teR).
Then T 1is a“representatiqn of R on A(A) by isometric
automorphisms_and i£ is easy to check that the only
R-invariant étaté of A(A) is the character

£ —5£(0) (f € A(A)).
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17. G-abelian C*-algebras.

None of the results in this section are original, and its
main purpose is to demonstrate some of the basic techniques
used in the study of triples (A,G,T) such that A is a
C*-algebra,

Throughout this section A Qill denote a unital C*-algebra,
G a grbup, and T a representation of G on A by isometric
automorphisms, As in the previous section, lef

D(A) = {£ e Ar ¢ £l = 1 = £(1D]}
and D(A,G) = {£ € D(A) : £(g.a) = £(a) (ach, ge @i
Recall that a linear functional f on A is positive if
fla*a) > 0  (a €4). '
It is well-known that if f’ is in A', then f is in D(A)
if and only if f is positive and of norm 1 [15].
We begin by describing the well-~known Gelfand-Naimark-

Segal construction. A unitary representation of G on a

Hilbert space H is a {group) homomorphism of G into the

group of unitary operators on H.

17.1 The Gelfand-Naimark-Segal construction (see, for example,

[72].

Let f be a G-invariant state on A and let

Ly fae A : f(a*a) = Oi.'
Then LS is a closed left ideal of A invariant under T(g)
for all g in G, For all a and b in A, let

(a + Lgyb ; L), = f(b*a).

Then (., )

, 1is an inner product on AL. Let (HS'( ,)g)

be the Hilbert space completion of A//Ls and let X = 1+ Ly

€ Hj. For all a in A, let
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h(a)(b + L) = ab + Ly (b € A).
Then h((a) extends to a bounded linear operator on Hy, also
denoted by hg(a), such that
(1) h¢ is a star-homomorphism of A into Bﬁ(HS)
(2) (he(A)x,) = H
(3) £(a) = (h(a)x,x¢) (a €4).
For éll g in G, let
| U;(é)(a + Lg) = gea + L (a € A).
Then Us(g) extends to a unitary operator on H¢, also denoted
by U}(gj sucﬁ that
(4) U¢ is a unitary representation of G on Hg
(5) Ug(g)h¢(a) = hy(g.a)U(g) (g € G, a € A)
(6) U (@)%, = xq (ge G
The notation of 17.1 will be used throughout this section, -
In addition, let K¢ = §ye¢ H : U(g)y =y (ge¢ G)3, and
let P¢ be the orthogonal projection of H¢; onto K;. Note

that X¢ is a unit vector in KS'

17.2 Definition (Lanford and Ruelle [55]).

(A,G,T) is G-abelian if [P h((a)F ,B hy (bjg] =0
for all f in D(A,G) and a and b in A,

For confirmation that the triples (A,G,T) used in the
C*-algebra approach to statistical mechanics (and including
Example 16.,4) are G-abelian, see Chapters 7 and 8 of [69].

Definition 17.3 does not generalise very easily to the
case when A is not a C*-algebra, In Theorem 17.5 we show
that it is equivalent to a condition which, at least when G
is an amenable group, can be generalised. The statement and

proof of Theorem 17.5 require the following information
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concerning positive definite functions,

173 Definition. A positive defihite function on G is an

element f of fo(G)' such that

mn
z E( zsf(g{‘ 83 ) >0,
(.,:‘=|

for all n %1, 8,y ecceey B € G and Z,4 eeceecey zn€ Co

Equivalently, f € 1°(G) is positive definite if and only if

there exists a unifary representation U of .G on a Hilbert
spacé H, and an element x of H such that

f(g) = (U(g)x,x) (g € G).
Let V(G) denote the linear span in 1°(G) of the pésitive
definite functions. Then V(G) is equal to the set of all f
in 1™(G) such that

f(g) = (U(g)x,y) (g € @),
for some unitary representation U of G on some Hilbert
space H, and some x and y in H. It is also closed under
translations (i.e, £ € V(G) implies Sf' and fq € v(G), for
all g in @G).

The following result is due to Godemont (see also [ﬁ9]).

17.4 Theorem (Godemont [26]).

V(G) is a star-subalgebra of 17(G) containing the
jdentity element 1 and closed under translations. There
exists a unique state M on V(G) such that
(1) M(jf) = M(fs) = M(£) (f €vV(G), g € G)

(2) If U is a unitary representation of G on a Hilbert
space H, x and y are in H, and f£(g) = (U(g)x,y), then.

M(f) = (Px,y), where P is the projection of H onto K = iz
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€ H: Ug)z = 2{. Similarly, if f£(g) = (x,U(g)y), then M(£)
= (x,Py)e.
(3) 1f G 1is aﬁenable; then the restriction to V(G) ‘of
everj 2-sided invariant mean on fo(G) is equal to M, -
M 1is determined uniqgely by condition (1) and is referred

to in [19] as the Godemont mean. For the proof of (3), see [ﬁ9].

17.5 Theorem [20].
" For all f in D(A,G) and a and b in A, define
w(f,a,b) € T°(G) by
w(f,a,b)(g) = f(a(g.b) - (g.bla) (g € G).
Then w(f,a,b) € V(G), and the following statements are
equivalent :
(1) (A,G,T) is G-abelian
(2) M(w(f,a,b)) =0 (f € D(A,G), a,b € A),
where M is the Godemont mean, as in Theorem 17,4, -
Proof. For f in D(A,G) and for each unit vector y of
K¢ o let
fy(e) = (hy(edy,y) (c €4).

Then £, 1is in D(A,G) and, for all a and b in A,
w(fy,a,0)(g) = (Ug(g)h(b)y,he(a*)y) - (U (gHhe(a)y,ho(b*)y) .

w(fb,a,b) is therefore in V(G), and
M(w(fy ,a,b)) = (Pehg(bly,h (a*)y) - (P h(a)y,ho(b*)y)
= ([Pgh((a)B P, h(D)P]y,¥y) . -

In particular, taking y = x(, we have w(f,a,b) € V(G),‘
and, if (A,G,T) is G-abelian, M(w(f,a,b)) = O.

Conversely, if condition (2) is satisfied, then
M(w(fj,a,b)) = 0 for all § in K¢, and hence [(Pihi(a)p ,

P,h((b)P ] = 0 for all a, b € A and £ € D(A,G).
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18, M-asymptotic abelianness.

The major obstacle to the generaiisation of the term
'G-abelian' to cover tripléé (A,G,T) such that A is not a
C*-algebra is the absence, in-genefal, of the representations

‘of A provided by the Gelfand-Naimark-Segal construcétion.

There is also no reéson, when A 1is not a C*-algebra, to

expect that the funﬁtions w(f,a,b) §f The&rem 17.5 are in the
domain of definition of the Godemont mean., Thus neither
Definition 17.2 nor thé equivaleﬁt definition given by Theorem
17.5 is meaning ful when A is not a C*-algebra. We avoid these
problems by assuming thaf -G is an émenable group, and
replacing the Godemont mean by an invariant mean defined on the
whole of 1 (G). |

Throughout this this section aﬁd the next, (A,G,T) will be
a fixed triple consisting of a complex unital Banach algebra. A,.
an amenable group G and a representation T of G on A by
isometric automorphisms. M will denote a fixed 2-sided and
invariant mean on I (G).

The following notation will be used :

A(G) = ia € A:ga=a (g€ G)g

f(a) (a €A,g€G)§
£y

A'(@) = §f € A ¢ f(g.a)

D(A) = §f € A' ¢ Ifl) = 1
D(4,G) = A'(GIND(A).
For reasons which will soon become apparent, it will be

convenient to use the following integral type notation for M :
M(£) = £;(g)dM(g) (f € 1°(@)).

The line through thé integral sign indicates that, unless G

is finite, M cannot be represented by a countably additive
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measure on G, so that M(f) is not a genuine integral.
In terms of this notation, the most important properties
of M for the purposes of this section and the next may be

expressed as follows @

18,1

(1) gf(hg.a)dM(g) = §f(g.a)dM(g) (f €EA', he G, a €A4)
(2) - gf(gh.a)dM(g) = §f(g.a)dM(g) (f € A',‘ h € G, a € A)
(3) gf(g.a)dM(g) < Ithgal) (f € A'(G), a € A)

(%) 5f((g.a)b)dM(g) = ff(a(g.b))dM(g) (f € A'(G),a,bEA).

(4) is a consequence of the inversion invariance of M.
Note that if £ 4is a boumded complex-valued function on

G XG, then the 'double integrals'

SGf(g,h)dM(g)) dM(h) and f(ff(g,h)dM(h)vdM(g-)

make sense, but are not in general equal.
The following Proposition demonstrates that the
restriction to amenable groups guarantees the existence of

G-invariant states.

18.2 Proposition. For all f in A', let

(Ef)(a) = S;(g.a)dM(g) (a € A).

Then E is a continuous projection of A onto A'(G) such
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vthat lEll = 1 and E(D(A)) = D(A,G).

Proof. The C*-algebra case is contained in lemma 2.3 of [18],
‘and essentially the following argumenf.is,used in the proof of
Proposition 6.21% of [69]. |

Let f be any element of A', Then .Ef is in A', [Efl] <~

| l£l] and
(Ef)(h.a) = gf(gh.a)dM(g) = £f(g.a)dM(g) = Ef(a) (a€A, he Q).

E is therefore a norm reducing linear mapping of A' into

A'(G).Now let £ be any element of A'(G), Then
(Ef)(a) = Sf(g.a)dM(g) = Sf(a)dM(g) = f(a)M(1) = f(a) (a € A).

This proves that E(A') = A'(G) and that E- = E. Finally, if

f is a state, then
(E£)(1) = gf(g.‘l)dm(g) = M(1) = 1,

and therefore |E} = 1 and E(D(A)) = D(A,G).

It is well known that A' is equal to the linear span

of the state space D(A). In fact, given f in A', there
non -neqabve
exist £, ceeeey fy in D(A) and gegi%éve real numbers s,

ceeeey 5 such that f = s f - 515 + i(sgfy - 5, f,) and
B, + By + 85y + 5 eJ2Ifl| [8, p.106]. Now suppose that f is
in A'(G), Then Ef = f = s Ef - 5,Ef, + i(syEfy - 5 Ef ) and

Ef|y eeeeey Ef, are in D(A,G). This proves the following

o

result,

18.3 Corollary. Let f be.any element of A'(G). Then there

exist £ 4 eeeey fI+ in D(A,G) and positive real numbers s,
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8,1 85y 5, such that f = 5 f - 5,f, + i(s;f; - s5,f,) and

B, + By + By + B < J2elifll.

"It is not clear whether or not A'(G) is always equal to

the linear span of D(A,G) when G is not amenable.

18,4 Definition., (A,G,T) is M-asymptotically abelian if

§f(a(g.b) - (g.b)a)aM(g) = O (f € D(A,G), a, b € A).

Note that if A is commutative, then (A,G,T) is
automatically M-asymptotically agelian.

In the case when A 1is a C*-algebra, this definition was
used in [18]. Invfact, when A is a C*-algebra, (A,G,T) is
M-asymptotically abelian if and only if it is Geabelian. This
follows immediately from the fact that the restriction of M
to V(G) is the Godemont mean (see Theorem 17.4 (3) and
Theorem 17.5).

The rest of this section is the result of_an aftempt to
characterise M-asymptotically abelian triples in-terms of a
Banach algebra B associated with ‘A in a certain way. The
Banach algebra ﬁ is described in Theorem 18.5 aﬁd a simple
calculation'showé that if B is commutative, then (A,G,T) is
M-asymptotically abelian. I do not know if B is necessarily
commutative when (A,G,T) is M-asymptotically abelian,
However, this is true when G 1is finite or A 1is Arens

regular,

Notation. It will be convenient to regard A' as an

A-bimodule, with the module operations. defined by
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" (a.f)(x) = f(xa) and (f.a)(x) = f(ax) (ay x € A, £ € AY),

18,5 Theorem. Let E be the projection of A' onto A'(G)

defined, as in Proposition 18,2, by
(Ef)(a) = S}(g;a)dm(g) (f € A', a € A).

For éll a. in A, define Pa € BL(A'(G)) by

(Pa)(f) = E(a.f) (£ € A'(@)),
.and let B be the closed subalgebra of BL(A'(G)) generated
by the set .zPa : a € Ag. Then B is a ﬁnital Banach algebra
and. P is a continuous linear mapping of A into B. Define
Q: a'(6)—y B by

(Qf) (U) = (U£)(1) (£ € A'(G), U € B).

Then the following conditions are satisfied
(1) Pl = 1 and P(1) = 1
(2) P(h.a) = Pa (a € A, h € G)
(3) P(ab) = (Pa)(Pb) and P(ba) = (Pb)(Pa) (a € A(G), b € A)
(4) P'Q = 1 (where P' is the adjoint of P)
(5) Q@ is linear and NQfll = £l for all £ in A'(G).

Proof. Note that
(Pa) (£)(b) = Sf((g.b)a)dM(g) (a, b €A, £ € A'(G)).

Let f be any element of A'(G). Then
hpa(ll € Naofll < Halli£ll (a € A)
and so ||Pll] € 1. Also,
P(1)(f) = Ef = £ (f € A'(G)),
and, therefore, B is unital, P(1) = 1 and IPlIl = 1.

Now let a be in A and h be in G, Then,
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P(h.a) (£f)(b) = gf((g.b)(h.a)dM(g) = §f'((h‘1g.b)a)dm(g) =

:gf((g.b)a)dM(g) = (Pa)(f)(b)  (fena(a), b € 1),

which proves (2). To prove (3), note that
a.f € A'(G) (f € A'(G), a .€ A(@)).

Thus, if b is any element of A and a is in A(G), then

P(ab)(£f)(x) = §f((g.x)ab)dM(g) SE((g.xa)b)dM(g),= (Pb(£))(xa)

= (a.Pb(f))(x) = E(a.Pv(f))(x)

(PaPb) (£)(x) (fear(a), xean).
A similar argumenf shows that
P(ba) = PbPa (a € A(G), b € 4).

To prove (4), let f be in A'(G) and a be in A, Then,
(P1Q)(£)(a) = Qf(Pa) = Pa(£)(1) = Sf(<g.1)a>am(g> - £(a),

and therefore P'Q = 1,

Finally, 1Qf(U0)| < Hullifll for all f in A'(G) and U
in B, and therefore |Qf]¢<htll, ana lqfll > sup {le(Pa)l : acCA,
Nall ¢ 1} = sup{l(a)l: ac A, lalls 1] = £, so that Q is

isometric, as required,

The notation of Theorem 18,5 will be used throughout the
rest of the Chapter. Note that (4) 1is equivalent to

Pa(£)(1) = f£(a) (a € A, £ € A'(G)).

18,6 Propositione If B is commutative, then (A,G,T) is

M-asymptotically abelian,
Proof. Suppose that B is commutative. Then, for all f in

D(A,G) and a and b in A,
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{

gf(a(g.b) - (gebla)dM(g) = J;((g.a)b)dM(g) - g;((g.b)a)dM(g)
o 1
= (Pb(f))(a) - (Pa(f))(b) = [Pa,Pb](f)(a) = 0,

(A,G,T) is therefore M-asymptotically'abelian.

For all f in A'(G) and a, x and b in A, the -
function (g,h)-—ﬁ-f((g.an(h.b)) is a bounded function on
G X G. The following lemma suggests that the converse of .
Proposition 18;6 may fail because of the non-reversibility of

the order of 'integration' in the expression
j(g:f( (g.a)x(h.b)dM(h)) am(g).

18,7 Lemma. If (A,G,T) is M-asymptotically abelian, then

S(&f((g.a)x(h.b))dM(h))dM(g) - {(ﬁf((g.a)x(h.b))dM(gi)dM(h)

= (PaPb -~ PbPa)(f)(x) (f € A*'(G), a, b, X € A),
Proof, First note tﬂat, by Corollary 18.3 and Definition 18,4,
we have

.Sf(a(g.b) - (geb)al)aM(g) = O (f € A (G), a,b € A).
Let f be in A'(G), and let a, b and x be any elements of

A. Then, using 18.1 (3),

(PaPb) (£) (x) =:§Pb(f)((g.x)a)dM(g) = gfb(f)(a.(g.x))dM(g)
= &Pb(f)((g.a)x)dM(g) = g(gf(h.((g.a)x)b)dM(h))dM(g)

Similarly,
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- (PbPa) (£)(x) = S;a(f)((h.x)b)dM(h) =.§;a(f)(X(h.b))dM(h) =

\S({f(g.(x(h.b))a)dM(g))dM(h) = S(S;(ag.(x(h.b))dM(g;)dM(h)

We now describe the Arens products on the second dual
A'' of A, and define the term 'Arens regular'. j will denote

the natural embedding of A into A'?',

18,8 Definition (see, for example, [9, p.Sd}).

For all S iﬁ A'Y and f in A', define S.f and
Sef in A' by

(S.f)(a) = 8S(f.a) and Sgf(a) = S(a.f) (a € 4).

The Arens products , and o on A'' are defined.by

(R.S)(f) = R(S.f) and (RaS)(f) = R(S,f) (f ¢A'y R,S € A'Y),
For both these products, A'' is a Banach algebra and J is a
monomorphism of A into A''.

A is Arens regular if

R.S = SoR (S, R € A'"Y),

18.9 Theorem. If A is Arens regular, then (A4,G,T) is

M-asymptotically abelian if and only if B is commutative,
Proof. By Proposition 18.6, it is sufficient to prove that if
A is Arens regular and (A,G,T) is M-asymptotically abelian,
then B is commutative.

Let f be in A'(G), let a, b and x be any elements

~of A, and define I, and I, by
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]
1

i g(ff((g.a)x(h.b))dM(h))dM(s)

I, g(if((g.a)x(h.b))dM(g))dM(h)

By lemma 18,7, it is sufficient to prove that if A is Arens
regular, then I} = I,. Let E' denote the adjoint of the
operator E on A' defined in Proposition 18.2. We show that

I; = (E'ja)e(Jx).(E'jb)

I, = (E'jb)o(jx)o(E'ja),

from which the required result follows immediately, using
Definition 18.8.
In the following calculations, we use the identities
((3y)eS) (k)
((§y)oS) (k)

S(k.y)

S(y.k)

where k €A', y€A and SE€A'',
Applying Definition 18,8, we get

(E'ja)« (jx)«(E'jb) = E'ja((jx.E'jb).f) =

g((jx.E'jb).f)(g.a)dM(g) = S}jx.E'jb)(f.(g.a))dM(g)

= gE'jb((f.(gca)).X)dM(g) = S(g(fo(goa)x)(hob)dM(h))dM(g) = I'-
similarly, (E'jb)o (jx) o (E'ja) = E'jb((jxcE'ja)ef) =

jﬁ(jon'ja)of)(h.b)dM(h) = jijoE'ja)((h.b).f)dM(h)

= ‘§E'ja(x(h.b).f)dM(h) = S({(x(h.b).f)(g.a)dM(g) = Iy
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18,10 Corollary. If A is a C*-algebra, then (A,G,T) is

G-abélian if and only if B is commutative, -

Proof. By, for example, [ 7, p.109-110], every C*-algebra is
Arens regular. The Corollary therefore follows iémediately
from the Theorem and the fact that (A,G,T) is G-abelian if

and only if it is M~-asymptotically abelian,
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19, Uniqueness of ergodic decompositione

One of the best known results concerning triples (A,G,T)
such that A is a unital C*-algebra, is that if (A,G,T) is
G-abelian, then the G-invariant state space D(A,G) 1is a
simplex (Lanford and Ruelle [55], see also ([69] and [72]). The
purpose of this section is to éxplore the rather limited
possibilities for proving results of this kind when A is not
a C*-algeb?a. ‘

The section begins with a brief account of the theory of
boundary measﬁres on éompact convex sets, leading to the
definition of the term 'simplex'!, and based largely on the book
'Compact convex sets and boundary integrals', by E.M. Alfsen [2]
(see also CGQL P.206 ).

The natural setting for fhe theory of compact convex sets
is an arbitrary locally convex real vector space. However, for
ease of application, we consider only weak* compact convex sets

in the dual space of a complex Banach space,

19,1 Boundary measures. Let X be a complex Banach space, and

let K Dbe a weak* compact convex subset of the dual space X!
of X.

A real-valued function a on K is convex if
a(tf + (1 = t)g) £ ta(f) + (1 - t)alg) (f, g € K, 0Ktg 1),
and affine if
a(tf + (1 - t)g) = ta(f) + (1 - t)a(g) (f, g€ K, 0Ogtg1).
Let C(K) denote the C*-algebra of all weak* continuous
complex-valued functions on K, and let
C(K,R) = §£ € C(K) : £ is real-valued$

Conv(K) =} £ € C(K,R) : £ is convex%
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ATE(K) = {f € C(K,R) = £ ‘is'affinek.
Also, let M(K) denote the dual space of C(K), which can and
will be identified with the space of all Baire measures on K
(see (2, pe9]), and let
M(K,R) = {m € M(X) : m is real-valuedg
MY (K) = {m ¢ M(K,R) : m ) O}
wHk) = fme M*(K) : imll = 1] (= D(C(K)) ).
Define the binary relation < on M(X,R) by

m<n & m(a) § n(a) (a € Conv(K)).'

Then < is clearly reflexive and transitive. Suppose that
m< n < m Then m(a) = n(a) . (a € Conv(K)).

By [2, Proposition'I.1.1], the linear span of Conv(K) is
uniformly dense in C(K). Thus, m = n and < is therefore

a partial ordering on M(K,R).

m € M(K,R) is a boundary measure if |m| is maximal in
Mt (X) with respect to the ordering < .

The extreme boundary of K is the set Ext(K) of all

extreme points of K. The following Proposition is relevant to
the interpretation of the results of this section, although not

to their proof,

19.2 Proposition. Let m be any element of M(K,R). If m is
"a boundary measure, then ‘ﬁ\(s) = 0 for all Baire sets S of
K such that Sn Ext(K) is empty. If K is metrizable, then
Ext(K) is a Baire set, and m is a boundary measure if and

only if |m|(X\ Ext(X)) = O.

For a discussion and proof of the various parts of this

Proposition, see .[2, Pe 31 ~ 441,
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The basic result on the existence of boundary measures is
the following; For the prqof, which is a straightforward

‘appiication of Zorn's lemma, see [2, p.36].

19,3 Lemma. For every m in Mf(K), there exists a positive

boundary measure n such that m < n,

19,4 Definition [2, p.22]. Let f be any element of K. Then

m in M*(K) represents f if
a(f) = m(a) (a € AfF(K)).
For all f in K, let wg(a) = a(f) (a € C(K)). Then wg

is'in MY(X) and represents f.

19.5 Theoreﬁ (Choqugt-Bishop-de Leeuw) [2, p.36].

Every point f of K can be represented by a positive
boundary measure.
Proof., By lemma 19,3, there exists a positive boundary
measure m such that w < m. If .a € Aff(K), then a €
Conv(K) and -a € Conv(K). Thus, a(f) = w,(a) ¢ m(a) g w(a) =

a(f). m therefore represents f,

19,6 Definitions K is a simplex if every point of K is
rgpresenfed by a unique positive boundary measure.

>It follows easily from the Riesz representation theorem
that the state space of a commutative C*-algebra with identity
is a simplex. For an example of a commutative unital Banach
algebra A such that the state space D(A) of A is not a
simplex, see [25].

There are many equivalent definitions of the term
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'simplex'. The most useful of these for the purposes of this
section is stated in Theorem 19,10, The proof of 19,10 requires

the following three lemmas, all of which are well-known,

19,7 Lemma [2, PropositionI.2.3].
Let m in Mf(K) represent the point £ of K, let
a be in C(X,R), and let € » O, Then there exist fi9 coceey

f, in K and positive real numbers t;, ceeeey tn sBUCh that

n a n
f = Et‘-fi , Zt‘ =1 and “m(a) - (Xtiwgi)(a)\< T .
o=y L= L=y

19.8 Lemma [2, p.25).
Let £ bein K and m in M+(K). Then ws-( m if and

only if m represents f.

%>

For x in X, define on X' by

ey o o) (e r v
\4i/ 1 \AY \d & A" Je

Note that, for each x in X, the real and imaginary parts

re(X}K) and im(%|K) of X|K are in Aff(K).

19,9 Lemma, Suppose that there is an element e in X such
that f(e) =1 (£ € K)o Then m in MY(K) represents £ in
K if and only if f£(x) = m(%|K) (x € X).

Proof. Suppose m represents f. Then m(%|K) = m(re(%/K)) +
im(im(%1K)) = re(%{K)(£f) + iim(X]|K)(£f) = £(x), for all x in
X. Conversely, suppose f(x) = m(x%{K), for all x in X. Then
m(re(X}K)) = ref(x) = re(X|K)(£), for all x in X. It is
therefore sufficient to prove that the set zre(ﬁlK) : x € XS

is uniformly dense in Aff(K). This follows from [2,.[.1.5].
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A mapping S from K into a linear space is affine if

S(tf + (1 - t)g) = tS(£) + (1 - t)s(g) (f,g € K, OCteg1).,

19,10 Theorem [ﬁ#, P.203, Ex.S].

Suppose, as in lemma 19,9, that there is an element e
in X such that f(e) =1 (f € K). Then the following are
equivalent ¢
(1) K is a sim.plex
(é) There is an affine mapping £ — m¢ of K into
MT(K)' such that ms(ilK) = f£(x) (f e K, x € X). |
Proof. Let K be a simplex, and for all f in K, let
m be the unique boundary measure representing f. Then, for
all f and g in K and 0< t<€1, tm¢ + (1 = t)mﬂ is a
boundary measure representing tf + (1 - t)g. The map f —> m
is therefore affine,

Conversely, suppose condition (2) is satisfied and let n
‘be any measure in M*(K) such that m¢ < n. Then, by lemma
_19.8, we < My < n, and so n represents £, To prove that
m is the unique boundary measure representing f, it is
therefore sufficient to prove that if =n inv MY (X) represents
fy, then n< me .

Let n represent f, let a be in Conv(K) and let ©> 0,
By lemma 19.7, there exist f|, eeeeey £ in K and positive

real numbers t;, esceestn such that

<£¢By

f = it;f;, it; = 1 and \n(a) - (Zt«'“£c)(a)

lemma 19.8, wg. < mg. for each i. Thus
~n n
n(a) - &€ < Zt(ws. (a) $Z t,m. (a) = ms_(a). Since €0 and
L (8

=y C:(
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a in Conv(K) are arbitrary, this proves that n-( me, as

required.

We now return to the study of the triple (A,G,T) as in
Section 18. Recall that G is amenable and that M is a
2-sided and inversionAihvariant mean on 1 (G). By Proposition.
18.2, the G-invariant state space D(A,G) is non-empty.

A G-invariant state is G-ergodic if it is an extreme point
of D(A,G). Let m be a positive boundary measure on D(A,G)
representing a G-invariant state f., If A is separable, then
D(A,G) is metrizable and, by Theorem 19.2, m is supported on
the set Ext(D(A,G)) of Ge-ergodic states. Thus m may be
regarded as an ‘'ergodic decomposition' of f, and D(A,G) is
a simplex if and only if each f has a unique ergodic
decomposition. If D(A,G) is not metrizable, then, because of
the way in which the term 'boundary measure' has been defined,
it still makes sense to ask whether or not D(A,G) -is a
simplex,

Let B be the subalgebra of BL(A'(G)) desé%bed in
Theorem 18.5. We first estéblish sufficient conditions on
B for D(A,G) to be a simplex., We use the notation of

Section 18,

19,11 Lemma.

(1) Q(p(A,G)) € D(B)

(2) P'(D(B)) = D(A,G).

Proof, Let f be in D(A,G). Then [l@fll = leh = 1 = £(1) =
Qf(1), and Qf is therefore in D(B).

To prove (2), let f be in D(B). Then Iprell < Mgl =1 =
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£(1) = £(P1) = (P'£)(1) and |

(P'f)(ge.a) = £(P(g.a)) = f(Pa) = (P'f)(a)A (a € A, g € G),
Pif is therefore a G-invariant state. Since P'Q = 1, we have
D(A,G) = P'Q(D(A,G)) C P'D(B) € D(A,G), and therefore D(A,G) =

P'D(B).

In applying Theorem 19.10 to K = D(B) and K = D(A,G) in

the proof of the following result, we take e = 1.

19,12 Theorem. If the state space D(B) of B is a simplex,

then the G-invariant state space D(A,G) of A is a simplex,
Proof. Suppose that D(B) is a simplex, By Theorem 19,10, it
is sufficient to construct an affine mapping f-—J?m& of
D(A,G) into M}(D(A,G)) such that

m (8|D(4,6)) = £(a) (a €A, £ € D(A,3)).
Let f be in D(A,G). Then, by lemma 19,11, Qf is in D(B).
Let mg, be the unique positive boundary measure on D(B)
representing Qf. Then the mapping f —%rmas is affine and

mQ&(I/’z\alD(B)) = Qf(Pa) = f(a) (ac A, £ € D(A,G)).
Now define h : C(D(4,G)) —>C(D(B)) by

h(c)(f) = c(P'f) (c € c(D(A,G), £ € D(B)).
This definition makes sense because P' is weak* continuous
and, by lemma 19.13, P'D(B) = D(A,G). Note that 'h is a
linear isometry and that

h(za| p(4,8)) = $a|D(B) (a € A).
Let 1 denote the adjoint of h and let

m¢ = h'(mg) (£ € D(A,6)).

Then f—» m is an affine mapping of D(A,G) into

M‘\‘(D(A,Gi) and n};('élD(A,G)) = mos(h(’élD(A,G))_= mq(ﬁ‘a\D(B))
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= f(a) (a € A, £ € D(A,G)). This completes the proof,

19,13 Corollary. If B is a commutative C*-algebra , then

D(A,G) is a simplex and (A,G,T) is M-asymptotically abelian,
Proof., This follows immediately from the theorem and

Proposition 18.6.

As would be expected, B is always a C*-algebra if A is
a C*-algebra and (A,G,T) is G-abelian. (see Theorem 19.23).
Thus Corollary 19,13 includes, for the case of amenable groups,
the theorem of Lanford and Ruelle mentioned at the beginning
of this section,

Now consider the triple (A(A),R,T) of Example 16,5. In
this case, A(A)'(R), and therefore B, is 1-dimensional. Thus
the conditions of Corollary 19,13 are satisfied. It is however
quite obvious that D(A(A),R) ig & simplex, since it has
only one element, |

The rest of this section is the result of an attempt, using
numerical range theory, to find necessary and sufficient
conditions on (A,G,T) for B to be a C*-algebra. The hope
is that, in the absence of convincing examples, such conditions

will give some idea of the scope of Corollary 19,13,

19,14 Definition [7,8].

Let A be any complex unital Banach algebra. Then the

numerical range of the element a of A 1is the set

v(a,a) = {£(a) : £ € D(AN.
An element a of A is hermitian if V(A,a) is contained in

R. Let H(A) denote the set of all hermitian elements of A.
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If A is a C*-algebra, then "H(A) = Za € A : a'= a*%, and
therefore A = H(A) + iH(A). One of the most useful results in
numerical range theory is.that this condition in fact
characterises unital C*-algebras; This is the Vidav-Palmer

theorem which we now state. For the proof see £9]-or [?].

19,15 Theorem (Vidav-Palmer). Let A be a complex unital

Banach algebra. Then A is a C*-algebra if and only if

A = H(A) + iH(A).

The statement fA is a C*-algebra' should be interpreted as
meaning A has an involution with respect to which it is a
C*-algebra,

The following Corollary of Tﬁeorem 1915 will be used in

the proof of Theorem 19.23.

19,16 Corollary. Let B ©be a closed subalgebra of a complex

unital Banach algebra A such that B contains the identity
element of A and the following conditions are satisfied :
(1) H(B) generates B as a Banach algebra
(2) B has a set of genefators B, such that for all n 21
and byy eeeeey b in Bo, bieeeeeby 1is an element of
H(A) + iH(A).

Then B 1is' a C*-élgeﬁra.
Proof. Let J(B) = H(B) + iH(B) and J(A) = H(A) + iH(A).
Then, by [7, lemma 5;3], J(B) and J(A) are closed, It is
sufficient to prove that J(B) is an algebra, since in that
case, J(B). = B and, by Theorem 19,15, B is then a C*-algebra.

We shall use the following two facts which are proved in
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[7, p.59 - 60]. |
(a) If heH(B) implies’ h € H(B), then J(B) 1is an algebra
(b) If h €H(A) and h®*€ J(A), then K € H(A).
We first note that, by condition (2), B is contained
in J(A). Also, by lemma 5,2 of [73, H(B) = H(A)N\ B. Now
let h be in H(B). Then h®€ J(A) and so by (b), h'¢H(B). .

By (a), J(B) is an algebra, and this completes the proof,

The following lemma will be used in the proof of lemma
19,21 to determine the numerical range of certain operators
on A'(G). For any subset S of the complex numbers, co(s)

denotes the smallest convex closed set containing S.

19,17 Lemma [?, Theorem 9.5].

Let X be a complex Banach space and let U be any
element of BL(X'). Then V(BL(X'),U) = So{Uf(x) : £ € X',

x €X and Nfl =fixil = £(x) = 1%.

‘Let H(A,G) =f{a€ A : £(a) is real for all £ in
D(A,GR} . Then H(A) is contained in H(A,G) and, if A is a
C*-algebra, then A = H(A,G) + iH(A,G). We first show that this
conéition igizgtisfied when B is a C*-algebra. We then .
show that if A is Arens regular, then A = H(A,G) + iH(A,G)
if and only if B is a C*-algebra. As in section 18, the |

Arens regularity of A is needed only to justify reversing

the order of 'integration' in expressions of the form

g(&f( (g.a)x(h.b) )dM(h)) amM(g).
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19,18 Lemma., Let a be any element of A. Then a is in

H(A,G) 4if and only if Pa is in H(B).

Proof. This follows immediately from (2) of lemma 19.11,

19,19 Corollarye.

(1) If B is a C*-algebra and P(A) is self-adjoint, then

A = H(A,G) + 1H(A,G).

(2) 1f A = H(A,G) + iH(A,G), then B _is generated by H(B).
Proof. Suppose that B is a C*-algebra such that P(A) =
P(A)* and let a be in A. Then thefe exist elements b and
-c of H(A,G) such that Pa = Pb + iPc. Let f be in D(A,G).
Then f(a - (b + ic)) = Qf(Pa - (Pb + iPc)) = O, and therefore
a - (b + ic) is in ﬁ(A,G). Since H(A,G) is a real linear
subspace of A, this proves that A = H(A,G) + iH(A,G).

Now suppose that A = H(A,G) + iH(A,G). Then B is

generated by the subset P(H(A)) of H(B). This proves (2).

Note that if P is onto, then it follows immediately

that B 1is a C*-algebra if and only if A = H(A,G) + iH(A,G).

19,20 Theorem. If B is a C*-algebra, then A = H(A,G) +

iH(A,G).

Proof. We first show that P(A) is isometrically isomorphic

to A/ Ker(P) and therefore closed. Since P is norm
decreasing, it is sufficient to prove that irall >fa + Ker(P)|
for-all a in A..Let a be in A. Then, by the Hahn-Banach
theorem, there exists a continuous lineaf functional f on
A/Ker(P) such that Jfl = 1 and £(a + Ker(P)) = la + Ker(P)].

Define f € A' by £f(x) = £f(x + Ker(P)). Then T is
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G-invariant, since é.x - X € Ker(P) - for all x in A and
g in G. Thus ([Pall ) |Qf(Pa)| = |£(a)] =lla + ker(P).

Now suppose that B 1is a C*-glgebra. By Corollary 19.19,
it is sufficient to prove that P(A) is self-adjoint, To do
this we will use certain properties of the hermitian
functionals on B. A continuous linear functional f on B is
hermitian if £ = f*, where f£*(x) = £(x*) (x € B). Let
H(B') denote the set of all hermitian functiohals on B, Then
H(B')AiH(B') = {0} anda B! - H(B') + iH(B'). Also, f in B'.
is hermitian if and only if f = t f - t,f, for some f, and
f, in D(B) and positive real numbers t, and t,. Suppose
that P(A) is not self-adjoint, and let a be an element §f
A such that (Pa)* is not in P(A). Since P(A) is closed,
there is an element f of B' such that f£(P(A)) = {03 and
f((Pa)*) # O. Let f; and f, be hermitian functionals on
B such that f = f; + if,, Then P'f = O and therefore P'f,

= -iP'f,. Let H(A',G) = R'D(4,G) - R'D(A,G). Then, by lemma

19,11 (2), and the characterisation of hermitian functionals

quoted above, we have P'f, € H(A',G)N\iH(A',G). By lemma
19.11(1), this implies that Q(P'f ) ¢ H(B')NiH(B') = {o}.

Since Q is 1:1, this gives P'fy = P'f, = O, But then

£f((Pa)*) = £*(Pa) = (f, - ify)(Pa) = (P'f )(a) - i(P'f,)(a) =
O, which is a contradiction, This completes the proof of the

Theorem,

To prove that the converse of Theorem 19.20 is true when

A is Arens regular, we require the following two lemmas,

19,21 Lemma., Let U be a bounded linear operator on A'(G)
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such that Uf(x) is real for all f in Af(G) 'and x in ‘A
such that E(f.x) is in D(A,G). Then' U is hermitian,
Proof, Let L ©be the closed linear span of the set

ta ~g.a :t a €A, g € Gi. Then A'(G) = zf € A' ¢ £(L) = iO?%.
Let q be the natural mapping of A onto A/L. Then the
adjoint q' of q is an isometric isomorphism of (A7)
onto A'(G). Let S = (qv)"Uq'. Then V(BL(A'(G),U) =
V(BL((A/’L)',S) and thérefore, by lemma 19,17, V(BL(A'(G)),U)
- o{(st)(ax) : £ € (A1), x € A, and Naxll = ligh = £(qx) = 1]
- SofUn)(x) : £ €A'(@), x €A and Rfl = faxll = £(x) = 1.
Let f in A'(G) and x in A satisfy [fll = flaxll = £(x) =
1. To complete the proof of the lemma, it is éufficient to
prove that E(f.x) is in D(A,G). Let x' be any element of

A such that x - x' is in L., Then, for all a in A,
E(f.x')(a) = g;(x'(g.a))dM(g) = 5;((g.x')a)dM(g) = E(a.f)(x') =

E(a.f)(x) = E(f.x)(a). Thus E(f.x) = E(f.x') and therefore

ﬂE(f,x)“ € l[x'le This proves that HE(f.x)“ < faxil = 1.
Finally, E(f.x)(1) = i;(x.(g.1))dM(g) = f(x) =1, and

therefore E(f.x) is in D(A,G).

19,22 Lemma. If A is Arens regular, then (Pa‘...PaA)(f)(x) =

{(.....G'E(f.x)(a‘ (gl.a,_)....(g,‘.a,\)dM(g,\)> ....)dM(gl),

for all £ in A'(G), n»2 and a4 eeeey 8y X in A,

Proof., Suppose that A is Arens regular. Then, as in the proof

of Theorem 18,9, we have, for all f in D(A,G) and a, x, b in A,
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ng((g.a)x(h.b))dM(h))dMg) = ng((g.a)X(l}.b))dM(g))dM(h).

We prove the lemma by induction on n, beg-inning with the case

n = 2, and making repeated use of (3) of 18,1. Let 8,4 8,€ Ae

Then (Pa,)(Pa,)(f)(x) = {((P:all)(f))((g.x)&ll )aM(g)

= ng(gl.((g.x)a‘ )az)dM(gl)) aM(g)

g(&ﬂ (gex)a,(g,.a,) )dM(g,_)) amM(g)

|
|

g(g(f.x)(g.(al (gl.az_)))dM(g))dM(gl)

= &E(f.x)(al(gl.az_))dM(gz)-

f( ('g.X)a\ (8ye2,) )dM(g)) dM(g.)

s

f(xge (a‘ (gz.al)))dM(g))dM(gz)

o

Now suppose that the result is true for some n2»2 and let
81y eeesey AAny and x be in A, Then

(Pal ooooopar\+‘)(f)(x) = (Pa‘ .....Pa,\)(Pa,wl )(f)(X)

= g(oooo(gE(Pan‘,( fox)(al (glna )uoooo(gnoan))dM(g’\)\) ....\)dM(gl).

Let g1 eeeces Bn be in G, Then, as in the proof of the case

n= 2, E((Pan*lf)ox)(a‘(gloa ).oooo(g,‘.af\)) =

{(Pan¢| f)((gox)a‘ (gkoa;l) .....(g,‘.a,\) )dM(g)

= EE(f.x)(a((gloa,_).....(gnﬂ LX-T ¥ ))dM(gnf( )'
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This -completes the proof of the lemma,

19,23 Theorém.- If A 1is Arens regular, then B is a
C*-algebra if and only if A = H(A,G) + iH(A,G).
Proof. By Theorem 19,20, Corollary 19.16 and Corollary 19.19
(2); we have only to prove that if A = H(A,G) + iH(A,G) and
A is Arens regular,-then fa‘.....Pan is in H(BL(A'(G)) +
iH(BL(A'(@)) for all ny1 and a , sessey 2n in A. The
case n = 1‘foliows immediately from lemma 19;18.

Lef ny2, let 8y eceeey 8n be in A, and suppose'that
A = H(A,G) + iH(A,Gj. Then there exist functions x;, and x,_
from G"' into H(A,G) such that
a|(g,.az).....(gn.a,\) = x‘(gl,.....,gr\) + ix,(g 1000e0e9B,) s
for all g,y eceeey 8, in G. Let £ Dbe in D(A,G). Then
£(x, (8, 90000098,)) = re(f(a (g,0a Jeeeoo(g 0a,)) and

im(f(a, (g0 )eeese(g, ea))e Thus, for

f(xl(gl,.....,g,\))

i = 1 and 2 and all gL,.ooo., g,\ in G, '
f(x&(glgoooocgg"))'g “a‘“.....'a,‘“. NO}W let f be in A'(G).

By Corollary 18.3, there exist f, yeeey f in D(A,G) and

positive real numbers t, ..., t“_such that f = t,f - t,f,

+ i(tyfy = £,5,) and &, + ty + ty + t, < J2ebfll, Thus,

for i = 1 and 2,. \f(x‘:(g)_ ,0-.009g,\))\\< \Ee“f"ﬁa‘“....“an“,
for all g 10000y g, in G. We may therefore define

continuous linear functionals S, and S, on A'(G) by

Bif = & ....(gf(xi(gz,.....,gn))dM(gm;\....\dM(gl) (£ €a'(@)),

and bounded linear operators U; and U, on A'(G) by
(U;£)(x) = S (E(f.x)) (£ € AT(G), x € A). By lemma

$19.22, (Pa, +e...Pan)(£)(x) =
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5(0... o(gE(fox)(a‘ (g,_.a,_).... (g,\.a,\)dM(g,\)). eee o)dM(g.L)

j(...GE(f.x)(x,(g,_,.._.,gn) 4+ ix, (g, 9000 ,g,\))dM(gnﬁ...\dM(gl)

(8 + i8;)(E(£fex)) =(U} + iU,)(£)(x).

Thus Pa‘.....Pa" = U| + iUz.
Now let f in A'(G) and x in A satisfy the condition

E(f.x) € D(A,G). Then, for i = 1 and 2,

(Ulf)(x) = {(....GE(fox)(X((gL,.a.o,g,\)dM(g,\)\ oooo\dM(g'z) )

which is real, since E(fe¢x)(x(gy4ee0e048,)) is real for all
819 scesey gh in G. By lemma 19021’ U' and U'z are
therefore in H(BL(A'(G)). This completes the proof of the

Theorem,

19.24 Theorem. If A is Arens regular, A = A(A,G) + iH(A,G)

and (A,G,T) is M-asymptotically abelian, then the G-invariant
state space D(A,G) is a simplex,
Proof. This follows immediately from Corollary 19,13, Theorem

19,23 and Theorem 18.9.

I do not know if Theorem 19,24 is true when A is not
Arens regular, However, if A is a C*-algebra, then A 1is
Arens regular and H(A)CH(A,G)., The following

result therefore follows immediately from Theorem 19,24,

19,25 Corollary (Lanford and Ruelle). If A is a C*-algebra,

G is amenable and (A,G,T) is Geabelian, then D(A,G) 1is a

simplex,
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By replacing the invariant mean M by fhe éodemont mean
and slightly modifying the definition of E, P, Q and B,
Corollary 19.25 may be proved by these methods for non-
amenable groupse.

The conditions of Theorem 19.24 are satisfied by the triple
(A,G,T) of Example 16,5, in which A 1is not a C;-algebra.
Further examples of this kind can be constructed using simple
direct sum arguments, The fact that H(A) 1is in general
strictly contained in H(A,G) suggests that less trivial

examples probébly do éxist.
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