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ABSTRACT 

This thesis is concerned with some problems in three areas 

of Banach algebra theory. These are dealt with separately in 

Chapters 2, 3 and I. 

Chapter 2 is concerned with certain automatic continuity 

problems for homomorphisms and derivations on Banach algebras. 

The main result is that if there exists a discontinuous 

homomorphism from aBanach algebra onto a semi-prime Banach 

algebra, or a discontinuous derivation on a semi-prime Banach 

algebra, then there exists a topologically simple radical 

Banach algebra. 

The main result of Chapter 3 is that there are no Jordan 

derivations which are not also associative derivations on any 

semi-prime algebra over a field not of characteristic 2. It 

follows from this that every Jordan derivation on a semi-simple 

Banach algebra is a derivation, and therefore continuous. 

The background to Chapter k is a theorem which states that 

if A is a C*_algebra  with identity, acted on by a group G 

of isometric automorphisms in such a way that A is G-abelian, 

then the set of G-invariant states of A is a simplex. This 

was proved by Lanford and Puelle in connection with the 

C*_algebra approach to - statistical mechanics. Methods are 

developed to provide an alternative proof of this result and to 

investigate the possibility of similar results holding in 

special cases when A is not a C*_algebra. 



PREFACE 

The material presented in this thesis is claimed as 

original, with the exception of those sections and parts of 

sections where specific mention is made to the contrary. 
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INTRODUCTION 

This thesis is a presentation of some problems and results 

in three distinct areas of Banach algebra theory, each of which 

is concerned in some way with homomorphisms, with derivations, 

or with both. There are four chapters. Chapter 1 consists 

almost entirely of standard algebra and Banach algebra theory 

and Chapters 2,3 and k each deal with one of the three sets of 

problems. Chapters 2,3 and tf are independent of each other. 

Chapter 2 is concerned with what are often called 

'automatic continuity problems'. Let A and B be algebras 

over the same field. Then a linear mapping h from A into B 

is a homomorphism if 

h(ab) =h(a)h(b) 	(a,b E A). 

A typical automatic continuity result for homomorphisms states 

sufficient conditions on Banach algebras .A and B for all 

homomorphisms from A into B, or from A onto B, to be 

continuous. The conditions are ideally of a purely algebraic 

nature, but they may be partly algebraic and partly 

topological. Alternatively, A or B may be a specified Banach 

algebra. 

By a derivation on an algebra A, we shall always •mean a 

linear mapping D of A into itself such that 

D(ab) = aDb + (Da)b 	(a,b € A). 

As in the case of homomorphisms, an automatic continuity result 

for derivations typically states the continuity of all 

derivations on any Banach algebra satisfying certain conditions. 

The history of automatic continuity problems in Banach 
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algebra theory is well illustrated by the 'uniqueness of norm 

problem'. A Banach algebra A is said to have .a unique 

complete norm topology if all the complete algebra norms on A 

are equivalent. If p and q are complete algebra norms on 

A, then the identity mapping on A is continuous, as a 

homomorphism from the Banach algebra A with the norm p onto 

the Banach algebra A with the norm q, if and only if p and 

q are equivalent. Thus the problem of whether or not a Banach 

algebra A has a unique complete norm topology - the 

uniqueness of norm problem for A - is a special case of the 

problem of whether or not every homomorphism from an arbitrary 

Banach algebra onto A is continuous. 

One of the earliest uniqueness of norm results is that if 

X is a Banach space, then the Banach algebra BL(X) of all 

bounded linear operators on X has a unique complete norm 

topology. This was proved by Eidelheit in 1940 [23]. At about 

the same time, Gelfand proved that every homomorphism from a 

commutative Banach algebra into a commutative semi-simple 

Banach algebra is continuous and that every commutative 

semi-simple Banach algebra therefore has a unique complete norm 

topology. About 1948 9  Rickart raised the problem of whether or 

not every non-commutative semi-simple Banach algebra has a 

unique complete norm topology. Although unable to solve this 

problem, he did show, for example, that every primitive Banach 

algebra with minimal idempotents has a unique complete norm 

topology, and that a homomorphism from a Banach algebra onto a 

semi-simple Banach algebra with a unique complete norm topology 

is automatically continuous [67, 68]. The uniqueness of the 

complete norm topology for non-commutative semi-simple Banach 

2 



algebras was eventually proved by Johnson in 1967 [46], and 

this is still the most important result of this type. Between 

1965 and 1974, the uniqueness of the complete norm topology was 

proved for Arens-Hoffman extensions of commutative semi-simple 

Banach algebras [10, 5719  Banach algebras of formal power 

series [61], and the radical convolution algebra L ' (O,l) 

[4 5]. 

The study of automatic continuity problems for derivations 

began somewhat later. In 1960, Sakai proved that a derivation 

on a C*_algebra  is automatically continuous and, in 1967, 

Johnson and Sinclair extended this result to all semi-simple 

Banach algebras [71,  511. Since then, similar results have been 

obtained for Banach algebras of formal power series [60], 

Arens-Hoffman extensions of certain Banach algebras [61] and 

L'(O,l) [45].  More recently, there has been some interest in 

automatic continuity problems for derivations into modules 

[s, 69 LfLf]. 

The most obvious example of a Banach algebra with non-

equivalent complete algebra norms and discontinuous derivations 

is an infinite-dimensional Banach space with the zero product 

[68]. Such an algebra is nilpotent and therefore equal to its 

prime radical (see Section 3). An example due to Feldman shows 

that a Banach algebra with a 1-dimensional prime radical can 

also have a non-unique complete norm topology ['+, 623. One way 

to exclude both these examples is to consider only semi-prime 

Banach algebras [16, 491, and one of the main results of 

Chapter 2 is that if a semi-prime Banach algebra has two non-

equivalent complete algebra norms, or a discontinuous 

derivation, then it also has a closed 2-sided ideal which is a 



topologically simple radical Banach algebra (see Section 10). 

As observed in [9], it is not known whether or not there are 

any such algebras. Thus, although this result does not prove 

that every semi-prime Banach algebra has a unique complete norm 

topology and automatically continuous derivations, it does 

indicate the kind of difficulties that would be involved in 

constructing a counter-example. 

A long standing conjecture concerning derivations is that 

if D is a derivation on a commutative Banach algebra A, then 

the range of D is contained in the Jacobson radical of A. 

Singer and Wermer proved that this is true if A is complex 

and D is continuous 1801. This result also follows from a 

theorem in [75], which states that if D is a continuous 

derivation on a Banach algebra A, and P is a primitive ideal 

of A, then D(P) is contained in P. In section 12 of Chapter 

2, we show that if there is a (discontinuous) derivation D on 

a Banach algebra A, and a primitive ideal P of A such that 

D(P) is not contained in P, then we may again conclude that 

there must be a topologically simple radical Banach algebra 

associated with A in a certain way. It follows from this that 

if the conjecture concerning the range of a derivation on a 

commutative Banach algebra is false, then there is.a 

commutative topologically simple radical Banach algebra. 

Most of the interest in automatic continuity problems for 

homomorphisms which are not onto has centred on the case when 

the domain algebra is a C* algebra. This is a natural priority 

in view of the fact that, of all classes of Banach algebras, 

the C*_algebras are in many ways the best understood. For many 

years the major problem in this field was to determine whether 
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or not there exists a discontinuous homomorphism from any 

C* algebra  into a Banach algebra. Dales [13] and Esterle [2k] 

have, recently proved that, assuming the continuum hypothesis, 

there is a discontinuous homomorphism from any infinite-

dimensional commutative C*_algebra  into a Banach algebra. On 

the other hand, it was shown in [47], that if A is a (non-

commutative) unital C*_algebra,  with no proper closed 2-sided 

ideals of finite codimension, then every homomorphism from A 

into a Banach algebra is continuous. Two of the remaining 

problems are to determine whether or not there exists a 

discontinuous homomorphism from a non-commutative C*_ algebra 

onto a dense subalgebra of a semi-simple Banach algebra 

and to find further necessary and sufficient conditions for a 

non-commutative C*-algebra to have a discontinuous homomorphism 

into any Banach algebra. Results in [78], show that the 

existence of discontinuous homomorphisms from a unital 

commutative C*_algebra A is equivalent to the existence of 

discontinuous homomorphisms with prime kernels from maximal 

ideals of A. In Section 9 of Chapter 2, we show that similar 

results hold in the non-commutative case.. For example, we show 

that if a non-commutative C*_algebra A has a discontinuous 

homomorphism into a Banach algebra, then it has a closed 

2-sided ideal N such that 

N has finite codimension 

There exists a discontinuous homomorphismfrom N into a 

Banach algebra such that the kernel of k is a prime ideal of 

M . 

It would be totally misleading to give the impression that 

there are large numbers of examples of homomorphisms and 

5 



derivations which are not either obviously continuous or 

obviously discontinuous, but for which this may be decided by 

applying automatic continuity results. In fact, most naturally 

occurring homomorphisms and derivations are continuous, and can 

be proved to be so by elementary arguments. The role of 

automatic continuity results is not, therefore, to establish 

the continuity of specific homomorphisms or derivations, but 

rather to explain why it is so hard, and in many cases 

impossible, to construct discontinuous homomorphisms and 

derivations. It may be that the value of this admittedly rather 

esoteric exercise lies more in the stimulus it gives to the 

general development of Banach algebra theory, than in the 

results themselves. 

To introduce the subject of Chapter 3, let A be any 

algebra or ring, and consider the operation e defined on A by 

aob=ab+ba 	(a,bE A). 

This operation is called the Jordan product on A and is 

commutative, but not in general associative. Chapter 3 is 

concerned with one aspect of the relationship between the 

Jordan product on A and the associative product from which it 

is derived. This relationship has been studied by several 

authors, but most extensively by Herstein in a series of papers 

[31, 32 9  33, 349  351, most of the results of which are 

reproduced in [36]. Two of the subjects considered by Herstein 

in this connection are Jordan homomorphisms and Jordan 

derivations. 

A Jordan homomorphism on a ring (or algebra) A is an 

additive (or linear) mapping of A into another ring (or 

algebra) such that 
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h(ao b) = h(a) c h(b) 	(a, b e A). 

similarly, a Jordan derivation on A is an additive (or 

linear) mapping D of A into itself such that 

D(a 0 b) = a 0Db + (Da) 0 b 	(a, b C A). 

It is obvious that a homomorphism is a Jordan homomorphism 

and that a derivation is a Jordan derivation. It is also clear 

that an anti-homomorphism (h(ab) = h(b)h(a)) isa Jordali 

homomorphism, and that there is therefore a natural class of 

Jordan homomorphisms which are not homomorphisms. 

There are, however, very few examples of Jordan 

derivations which are not derivations, and the main problem in 

this area has always been to explain this scarcity by showing 

that, on large classes of rings and algebras, Jordan derivations 

which are not derivations definitely do not exist. Probably the 

first result of this kind was proved by Jacobson and Pickart in 

[43]. They showed that if A is a ring with identity such that 

every Jordan homomorphism on A is the sum of a homomorphism 

and an anti-homomorphism, then every Jordan derivation on A 

is a derivation. In [34], Herstein showed that every Jordan 

derivation on a prime ring in which 2x = 0 implies x = 0 9  is 

a derivation. In [76] 9  Sinclair used this result to prove that 

every continuous Jordan derivation on a semi-simple Banach 

algebra is a derivation and also asked the following question 

'Is every Jordan derivation on a semi-simple Banach 

algebra continuous?' 

The main purpose of Chapter 3 is to answer this question. 

Since it is known that every derivation on a semi-simple Banach 

algebra is continuous, one way of doing this is to prove that 

every Jordan derivation on a semi-simple Banach algebra is a 
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derivation. This is the approach adopted in Chapter 3. In fact, 

the only properties of semi-simple Banach algebras used in the 

proof are shared by any semi-prime algebra over a field of 

characteristic different from 2. We therefore conclude that 

there are no Jordan derivations which are not derivations on 

any algebra of this kind. 

Essentially the results of Chapter 3, but in the 

terminology of rings rather than algebras, have been published 

in [12].  This paper also contains some simple examples of 

Jordan derivations which are not derivations. 

Banach algebra theory cannot be expected to survive 

indefinitely unless it produces solutions to at least some 

problems which are not, like the problems considered in 

Chapters 2 and 3, generated entirely within the theory itself. 

One of the most successful parts of Banach algebra theory, from 

this point of view, is the theory of C*_algebras.  Chapter 1+  is 

concerned, although only rather indirectly, with one area in 

which C*_algebras  have been used in the last decade (1966 - 

1976). This is in the so-called 'algebraic approach' to 

statistical mechanics. 

The use of C*_algebras  in physics was pioneered by.Segal 

[73, 741 and, later, by Haag and Kastler [30],  mainly in 

connection with quantum field theory. The developments with 

which Chapter k is concerned are contained in a series of 

papers [17,  18,  19,  20,  53, 551, which appeared in the years 

1966 to 1969.  These papers describe properties of triples of 

the form (A,G,T), where A is a unital C*_algebra,  G is a 

group and T is a (group) homomorphism of G into the group 

ofstar-automorphisms of A. The basic idea of the algebraic 



approach to statistical mechanics is to impose extra conditions 

and structure on triples of this form so as to produce useful 

mathematical models of physical systems such as gases and 

magnetic materials, which are traditionally studied by the 

methods of classical or quantum statistical physics. In such a 

model, the 'observables' of the system are represented.by  

certain elements of the algebra A, the group G represents 

certain physical symmetries of the system, and the equilibrium 

states of the system are represented by the G-invariant states 

of A. A state on A is a continuous linear functional f on 

A such that Uf II = I and 

f(a*a)>,O 	(aA), 

and f is G-invariant if 

f(T(g)a) = f(a) 	(a k A, g E G). 

In the simplest cases, the group G is an abelian group 

of space translations, for example, 1R' for 'continuous models' 

of gases, or 7t' for 'lattice models' of magnetic systems (v 

1,2,3). In these cases A typically has a 'quasi-local 

structure' consisting of a set 	A : S E K 	of closed star- 

subalgebras such that the following conditions are satisfied 

If G = R', then K is the set of all bounded Lebesgue 

measurable subsets of IR" , and if G = 7C, then K is the set 

of all finite subsets of 7L" 

If S is contained in S', then A s  is contained in A 5', 

 T(g)AS  = As (S € 	K, 	g ( 

(k) If 	S and S' are disjoint, then 	ab= ba 	for all 	a 	in 

A and b 	in 	As', 

(5) The union of the subalgebras A 	is a dense star- 

subalgebra of A. 



In models of this kind, the observables of that part of 

the system in the region S are identified with all or some of 

the self-adjoint elements of the subalgebra As. Conditions (2) 

and (3) may be interpreted as meaning that, if a is an 

observable in the region S, then a is also an observable in 

any region containing S, and for each g in G, T(g)a is 

the corresponding observable in the region S + g. In classical 

models, the algebra A is chosen to be commutative, and in 

this case condition (tf) is redundant. In quantum models the 

algebras As  are not commutative. This reflects the fact that 

the order in which two observations are made may affect the 

results obtained. On the other hand, observations made far 

enough apart from each other may be expected not to interact, 

and this is reflected in condition (k). It may easily be shown 

that a triple (A,G,T) with a quasi-local structure satisfying 

conditions (1) to (5) is asymptotically abelian in the sense 

that, for all a and b in A, 

a(T(g)b) - (T(g)b)a1 —>O as g—'c'o. 

The relationship between the C*_al gebra  approach to 

statistical mechanics and more obviously statistical methods 

can be established by a detailed description of the C-invariant 

states of triples (A,G,T) associated with specific models of 

physical systems [69]. On the other hand, some results which 

may be of physical significance can be more easily studied in a 

more abstract setting. The problems considered in Chapter 4-

were suggested by a result of this kind due to Lanford and 

Ruelle, which states that if (A,G,T) is G-abelian, then the set 

of all C-invariant states is a simplex [55]. 

The term 'G-abelian' refers to a condition which is 

10 



satisfied by all asymptotically abelian triples (A,G,T), and 

is related to the 'nOn-interaction of observables at a 

distance'. The precise definition is given in Section 17. 

Let D(A,G) denote the set of all G-invariant states of a 

triple (A,G,T). Then D(A,G) is a weak*  compact convex subset 

of the dual space A' of A, and an element f of D(A,G) is 

said to be a G-ergodic state if it is an extreme point of 

D(A,G), that is, if it cannot be expressed in the form 

f = tf1  + (1 - t)f1 , 

with O<t<1, f and f in D(A,G) and f, not equal to f. 

It follows from the general theory of compact convex sets that 

each G-invariant state f has an integral representation of 

the form 

f(a) =  Sx(a) d~(x) 	(a € A), 

where 	is a positive boundary measure on D(A,G). 

D(A,G) is said to be asimplex if, for each f, this 

representation is unique (see Section 19). If A is separable, 

then D(A,G) is metrizable, and a po.sitive Baire measure on 

D(A,G) is a boundary measure if and only if it is supported 

on the set of G-ergodic states. Claims for the physical 

significance of the result that, if (A,G,T) is G-abelian, 

then D(A,G) is a simplex, are based on this fact, and on the 

following two arguments, which we illustrate in terms of a 

system consisting entirely of water molecules [691. 

A G-invariant state representing an equilibrium state of 

the system, represents a pure thermodynamic phase (i.e. ice, 

water or steam) if and only if it is G-ergodic. 

On physical grounds, a G-invariant state f representing 
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a mixture (of ice and water, for example) should therefore have 

a unique decomposition into G-ergodic states. This 'unique 

ergodic decomposition' is provided by the unique boundary 

measure representing f on the simplex D(A,G). 

The preceeding remarks do not do justice to the subtlety 

and complexity of the algebraic approach to equilibrium 

statistical mechanics, and we have mentioned only one of many 

interesting results in C*_ algebra  theory which have been proved 

in this connection. However, there are clearly grounds for 

doubt that such an abstract approach can be of much use in 

physics. That these doubts exist is confirmed by the following 

statement made by a leading exponent of the algebraic approach, 

'It is a fact that people who know something about statistical 

mechanics do not usually know much about C*_algeb ras and vice 

versa; this situation has led to a certain amount of skepticism 

on one side and to unjustified claims of the solution of big 

problems on the other side' (Puelle DOD. 
The purpose of Chapter k is not, however, to make any 

contribution to statistical mechanics, but rather to 

investigate the extent to which C*_algebras  can be replaced by 

Banach algebras which are not C*_al ge bras , while still 

retaining some form of 'asymptotic abelianness' and the 

possibility that the set of G-invariant states (suitably 

redefined) is a simplex. 

The first stage is to extend the terminology to cover 

triples of the form (A,G,T), where A is a complex unital 

Banach algebra, and T is a homomorphism of G into the group 

of isometric automorphisms of A. By a state on A, we shall 
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mean, as in numerical range theory, a continuous linear 

functional f on A such that 

As before, a state f is G-invariant if 

f(T(g)a) = f(a) 	(a E A, g C 

and the set D(A,G) of G-invariant states is a convex we ak* .  

compact subset ofthe dual space At of A. It therefore makes 

sense to ask whether or not D(A,G) is a simplex. 

Now assume that the group G is amenable, and let M be 

a 2-sided and inversion invariant mean on f° ( G) (see Section 

16). The triple (A,G,T) is N-asymptotically abelian if, for 

all f in D(A,G) and a and b in A, 

M(w) = 0, where w(g) = f(aT(g)b - (T(g)b)a) 	(g C G). 

If A is a C*_algebra,  then (A,G,T) is N-asymptotically 

abelian if and only if it is G-abelian (see Section 18). 

If A is commutative and T(g) = 1 for all g in G, 

then (A,G,T) is clearly M-asymptotically abelian, and the 

G-invariant state space D(A,G) coincides with the set D(A) 

of all the states of A. Since there do exist commutative 

Banach algebras A, such that D(A) is not a simplex, we 

conclude immediately that the theorem of Lanford and Ruelle 

does not extend to the case when A is not a C*_algebra.  When 

A is a unital C*_algebra, D(A) is a simplex if and only if 

A is commutative. However, when A is not a C*_algbera  very 

little is known about what kind of algebraic properties A 

satisfies if D(A) is a simplex. There is therefore little 

hope of finding necessary conditions for D(A,G) to be a 

simplex, and we therefore concentrate on sufficient conditions. 

The main result is that there is a unital Banach algebra B 
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associated with (A,G,T) and N such that 

If B is commutative, then (A,G,T) is M-asymptotically 

abelian 

If the state space D(B) of B is a simplex, then the 

G-invariant state space D(A,G) is a simplex 

If A is a C*_algebra,  then B is a C*_algebra,  and B 

is commutative if and only if (A,G,T) is G-abelian. 

These results imply that if B is a commutative C*- algebra, 

then (A,G,T) is M-asymptotically abelian and D(A,G) is a 

simplex. They also provide an alternative proof of the known 

result that if A is a C*_algebra,  G is amenable, and 

(A,G,T) is G-abelian, then D(A,G) is a simplex. 

The final part of Section 19 of Chapter k is an attempt 

to establish how far the scope of these results extends beyond 

the case when A is a C*_algebra. 

Let H(A) = a E A : f(a) is real for all f in D(A). Then, 

by the Vidav-Palmer theorem (see Section 19), A is a 

C*. algebra  if and only if A = H(A) + iH(A). 

Now let H(A,G) = a E A : f(a) is real for all f in 

D(A,G)?. We show that, at least when A is Arens regular, a 

necessary and sufficient condition on A for B to be a 

C*.algebra is A = H(A,G) + IH(A,G). 

Since H(A) is contained in H(A,G), this condition is 

satisfied when A is a C*_algebra,  but may also be satisfied, 

as may be confirmed by trivial examples, when A is not a 

C*_algebra. However, the main conclusion to be drawn from these 

results is that if (A,G,T) is N-asymptotically abelian, but 

A is not a C*_algebra,  then it is in general difficult to 

determine whether or not D(A,G) is a simplex, but unlikely 
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that it is so. It is to be hoped that the methods used to-reach 

this rather negative conclusion may at least be of some 

interest. 

Most of the new results are in Sections 8 to 13 of Chapter 

2, Section 15 of Chapter 3 and Sections 18 and 19 of Chapter 4. 

No new results are proved in Sections 1, 2 9  3, 5 1  6 9  14 9  16 and 

17. 

Knowledge of basic functional analysis is assumed 

throughout and, in Section 9 and in Chapter 4, some more 

specialised results concerning C*_al gebras  are quoted without 

proof. Lomonosov's theorem concerning the existence of 

invariant subspaces for compact operators is used in Section 10 

and, in Section 19,  parts of the theory of compact convex sets 

and boundary measures play a major role. Section 19 also uses a 

certain amount of numerical range theory, including the Vidav-

Palmer theorem. 

I should like to express my warmest thanks to A.M. 

Sinclair for many helpful suggestions and for constant 

encouragement. I also wish to acknowledge the support of the 

Science Research Council. 
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Chapter One 

THE JACOBSON AND PRIME RADICALS OF A BANACH ALGEBRA 

1. Introduction. 

The purpose of Chapter 1 is to provide an introduction to 

that part of the ideal theory of non-commutative algebras and 

Banach algebras which will be used in Chapters 2 and 3. Section 

2 is concerned principally with primitive ideals and the 

Jacobson radical, and Section 3 with prime ideals and the prime 

radical. Some examples of Banach algebras, and of continuous 

derivations and homomorphisms on Banach algebras, are described 

in Section 1. 

Familiarity with the basic definitions of Banach algebra 

theory is assumed and, in particular, free use is made of 

concepts related to the Gelfand representation theory for 

commutative Banach algebras, and of the Gelfand-Mazur theorem 

on complex normed division algebras, and its real analogue 

(lemma 2.23). 

With the possible exceptions of Example 11.14 and Example 

11.17, nothing in Chapter 1 is original, but specific references 

are given only for some of the more recent results. The 

principal sources for Sections 2 and 3 are the books, 'Banach 

algebras', by C.E. flickart, [68] 9  'Complete normed algebras', 

by F.F. Bonsall and J. Duncan, [9], and 'The theory of rings', 

by N.H. McCoy, [63]. 

The main purpose of the rest of this section is to 

summarise some basic terminology and notation. 
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1.1 Algebras and algebra norms. 

An algebra over a field F is a linear space A over F, 

with a specified associative bilinear product. If F is the 

field R1 of real numbers, or the field C of complex numbers, 

then F is called the scalar field of A. 

A is a real algebra if F = IR, and a complex algebra if 

F =C. 

An algebra norm is a norm I 	on a real or complex 

algebra A such that 

tiabil 4 	1jaillibil 	(a,b e A). 

A real or complex algebra A with a specified algebra norm 

liii 	is called a normed algebra, and may be written (A,JtH) 

when more than one algebra norm on A is under consideration. 

A normed algebra is a Banach algebra if it is complete, in the 

sense that every Cauchy sequence converges. A complete algebra 

norm is an algebra norm liii 	o± a real or complex algebra A, 

such that (A,b't) is a Banach algebra. 

A normed algebra A is unital if it has an identity 

element 1 9  such that lull = 1. 

The following notation will be used for sums and. products 

of subsets X and Y of an algebra A 

X + Y = a + b : a € X, b € Y 

XY = jab : a € X, b € Y. 

For any subset X of A, or of any linear space, span(X) 

will denote the linear span of X. 

1.2 Homomorphisms and derivations, 	 a 

Let A and B be algebras over a field F. A linear 

mapping h from A into B is a homomorphism if, 
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h(ab) = h(a)h(b) 	(a,b 	A). 

A homomorphism from A into B is a monomorphism if it 

is. 1:1, and an epimorphism if it is onto. 

An automorphism of A is a 1:1 homomorphism of A onto 

itself. 

A derivation on A is a linear mapping D of A into 

itself such that 

D(ab) = aDb + (Da)b 	(a,b Cz A). 

This condition is an abstraction from the product rule for 'the 

differentiation of the product of two differentiable functions. 

A derivation D on A also satisfies the Leibnitz identity : 

D(ab) = 	((Da)(b) 	(a,b 6 A. n = 1,2,.....). 

This is easily proved by induction on n. 

1.3 Ideals and quotient algebras. 

Let J be a linear subspace of an algebra A. Then, J is 

a left ideal if AJJ, a right ideal if JAJ, and a 2-sided 

ideal if AJ + JAJ. 

Let A,'J denote the difference space-of A modulo J. 

and let Q denote the natural mapping 

a — a+J 	(a€A), 

of A onto A,'J. If I is any subspace of A containing 

J, then I/J will denote the subspace QI of A/J. 

Now suppose that J is a 2-sided ideal of A. Then A/J 

is an algebra, the quotient algebra of A modulo J, with 

respect to the product defined by 

(a + J)(b + J) = (ab + J) 	(a,b E A). 

If I is a left (right) ideal of A, containing J, then I,-'J 



is a left (right) ideal of A/ J. 

If A is a Banach algebra, and J is a closed 2-sided 

ideal of A, then A/J is a Banach algebra, with respect to. 

the quotient norm defined by 

Ia + Jil = infjljbl( : b - a € J 	(a E A). 

In this case, if I is a closed subspace of A containing J. 

then I.-'J is a closed subspace of A,'J. 

1.4 Modules. 

Let A be an algebra over a field F. 

A left A-module is a linear space X over F, with a 

specified bilinear mapping (a,x)-1a.x : AxX —X such 

that 

a.(b.x) = (ab).x 	(a, b E  A. x € X). 

Similarly, a right A-module is a linear space X over F, with 

a specified bilinear mapping (x,a)—x.a : XXA—X such 

that 

(x.b).a = x.(ba) 	(a, b C A. x € X). 

If A is a Banach algebra, then a Banach left A-module 

is a left A-module X, which is also a Banach space, and which 

satisfies the condition 

fla.xIf < MIaI1xIj 	(a€ A. x 	X), 

for some constant M > 0. 

A linear mapping T from a left A-module X into a left 

A-module Y is an A-module homomorphism if 

T(a.x) = a.Tx 	(a C A. x € X). 

X and Y are algebraically equivalent if there exists a 

1:1 A-module homomorphism from X onto Y. 

If J is a left ideal of A, then A,'J is a left 
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A-module, with respect to the module operation defined by 

a.(b + J) = ab + J 	(a,b C A). 

If A is a Banach algebra, and J is a closed left ideal, 

then A/J is a Banach left A-module and 

a. (b + J)It .( la)JIjb + J 	(a,b € A). 

An A-submodule of a left A-module X is a linear subspace 

Y of X such that 

a.yE Y 	(aLA, y( Y). 

• Similarly, if X is a right A-module, then a subspace Y 

of X is an A-submodule if 

y.a ( Y 	(a E A, y  C Y). 
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2. The Jacobson radical. 

In this Section we describe those properties of the 

irreducible modules, primitive ideals and Jacobson radical of a 

Banach algebra which will be used in Sections 9 to 13 of 

Chapter 2. Most of the definitions and results are independent 

of any topology and were originally developed in the more 

general setting of ring theory [42], although their application 

to Banach algebras is well known [9, 68]. Of the results 

specific to Banach algebras, one of the most fundamental is the 

fact that every primitive ideal in a Banach algebra is closed. 

This makes the primitive ideals and Jacobson radical of a 

Banach algebra considerably easier to deal with than the prime 

ideals and prime radical considered in Section 3. 

There are several possible approaches to the definition of 

the Jacobson radical and related concepts. Wherever possible, 

the concept of an irreducible left A-module is treated as basic, 

and results concerning irreducible right A-modules, modular 

ideals, quasi-invertible elements and quasi-nilpotent elements 

are included only as necessary or convenient. 

Throughout this Section, A will denote an algebra over a 

field F. 

2.1 Definition. A left (right) A-module X is irreducible if 

A.X 	(X.A 	and 	and X are the only 

A-6ubmodules of X. 

A 2-sided ideal P of A is left primitive if there 

exists an irreducible left A-module X such that 

P = a G A : a.X = 

and right primitive if there exists an irreducible right 
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A-module X such that 

P = a (. A : X.a = 

P is primitive if it is either left primitive or right 

primitive. 

As an example of an irreducible left A-module, let X be 

a Banach space, let A be the algebra BL(X) of all bounded 

linear operators on X. and define the module operation on X by 

T.x = T(x) 	(T (BL(X), x E x). 

In this case, the corresponding primitive ideal is the zero 

ideal (0) of A. 

An algebra (such as BL(X)) in which the zero ideal is a 

primitive ideal is called a primitive algebra. 

If X is an irreducible left A-module, then the set 

Z = x E X : A.x = jOij is an A-submodule. Thus Z = JOJ and 

so A.x = X for all non-zero x in X. 

2.2 Definition. A left ideal I of A is a modular left 

ideal if there exists an element e of A such that ae - a 

is in I for all a in A. Any such element e is called a 

right modular unit for I. 

A left ideal I of A is a maximal left ideal if I is 

not equal to A. and A and I are the only left ideals of A 

which contain I. A maximal modular left ideal is a modular 

left ideal which is also a maximal left ideal. 

2.3 Lemma. Every proper modular left ideal is contained in a 

maximal modular left ideal. 

Proof. This is a straightforward application of Zorn's lemma 

(see, for example, [9, Proposition 9.2]). 
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- 	I, 	T.... 

Let N be a maximal modular left ideal of A. Then the 

left A-module A,'M is irreducible. 

If X is an irreducible left A-module, then there exists a 

maximal modular left ideal N 'of A such that AM is 

algebraically equivalent to X. 

Proof. To prove (1), let e be a right modular unit for the 

maximal modular left ideal N and let a be an element of A 

not in N. Then ae - aEM implies ae.M, and therefore 

A.(A/M) 	Since the A-submodules of A,'M are clearly in 

1:1 correspondence with the left ideals of A containing M, 

it follows that A/N is an irreducible left A-module. 

Now let X be an irreducible left A-module, let x be 

any non-zero element of X, and let N = a E A : a.x = O. 

Then M is a left ideal and the mapping T of A/N into X 

defined by 

T(a + N) = a.x 	(aEA), 

is a well-defined 1:1 module homomorphism of A/N onto X. 

Let e be any element of A such that e.x = x. Then ae - a 

is in N for all a in A, and N is therefore a modular 

left ideal. If I is any left ideal of A containing N, 

then T(I) is an A-submodule of X. Thus I = N or I = A, 

and N is therefore a maximal left ideal. This completes the 

proof of (2). 

2.5 Definition. The Jacobson radical P of A is the 

intersection of all the primitive ideals of A. If R = A 

(i.e. if A has no primitive ideals), then A is a radical 

algebra. 
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A is semi-simple if P = (0). Every primitive algebra is 

therefore semi-simple. 

Although the definition of the Jacobson radical in terms 

of primitive ideals is the most suitable definition for the 

purposes of Chapter 2 9  the concept of quasi-invertibility is a 

useful tool for the proof of some of the results of this 

section. A complete characterisation of the Jacobson radical in 

terms of quasi-invertibility is given in [9, p.124. 

An element a of A is quasi-invertible if there is an 

element b of A such that a + b - ab = 0 = a + b - ba, 

2.6 Lemma. Let J be the intersection of all the left 

primitive ideals of A. Then every element of J is quasi-

invertible. 

Proof. Let e be any element of J and let 

I = be - b : b £ AI. Suppose there is no element b of A 

such that e + b - be = 0. Then e is not an element of I, 

and I is therefore a proper modular left ideal. By lemma 2.3, 

I is contained in some maximal modular left ideal M. 

Let P = a E A : aA is contained in M. Then, by 

lemma 2.4 (1), P is a left primitive ideal. Thus e is in P. 

and e = (e - e) + e 	is therefore in M. Since e is a 

right modular unit for M, this is impossible. This 

contradiction proves that there must be an element b of A, 

such that e + b - be = 0. To prove that e is quasi-

invertible, it is sufficient to show that e + b - eb = 0. To 

do this, note that b = be - e is in J. Thus, by repeating 

the argument above with b instead of e, we obtain an element 

c of A such that b + c - cb = 0. But then, c = cb - b = 
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cbe - ce - be + e = (cb - c - b)e + e = e, and this completes 

the proof. 

2.7 Corollary. The Jacobson radical P of A is equal to the 

intersection of all the left primitive ideals of A. 

Proof. As in lemma 2.6, let 3 be the intersection of all the 

left primitive ideals of A. Then R is contained in J. 

Suppose P is not equal to J and let a be any element of 

J which is not in P. Then there exists an irreducible right 

A-module X such that X.a 	Let x be any element of X 

such that x.a f 0. Then X = x.aA, and so there is an element 

d of A such that x = x.ad. Let e = ad. Then e is in J, 

and, by lemma 2.6, there is an element b of A such that 

e + b - eb = 0. But then, x = x.e = x.(eb - b) = 0, which is a 

contradiction proving that J = R as required. 

2.8 Corollary. Let R be the Jacobson radical of A, and let 

a in A and b in P satisfy ab = a. Then a = 0. 

Proof. By lemma 2.6, there is an element c of A such that 

b + c - bc = 0. Therefore, a = a + ac - ac = ab + ac - abc = 0. 

2.9 Lemma. Let I and P be 2-sided ideals of A such that 

I is contained in P. Then P/I is a left primitive ideal of 

A/I if and only if P is a left primitive ideal of A. 

Proof. Suppose that P/I is a left primitive ideal of AX I, 

and let X be an irreducible left (A/I)-module such that 

P/I = b C A/I : b.X = jO. Then X may be regarded as an 

irreducible left A-module by means of the definition 

a.x = (a + I).x 	(a E A, x C X), 
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and so P = 	€ A : a.X 	is a left primitive ideal of 

A. Conversely, if X is an irreducible left A-module such that 

P = 	€ A : a.X = '0 , then X may be regarded as an 

irreducible left A/I-module by means of the definition 

(a + I).x = a.x 	(a 	A, x 	X), 

and P,.-'I is therefore a left primitive ideal of A/I. 

2.10 Corollary. If I is a 2-sided ideal of A contained in 

the Jacobson radical R of A, then the Jacobson radical of 

A/I is 11/I. In particular, the Jacobson radical of A/R 

is (0) and A/P is therefore semi-simple. 

Proof. This follows immediately from Corollary 2.7 and lemma 

2.9. 

2.11 Corollary. Every right primitive ideal of A is an 

intersection of left primitive ideals. 

Proof. Let P be a right primitive ideal of A. Then the 

Jacobson radical of A/P is (0). By Corollary 2.7, P is 

equal to an intersection of ideals J of A such that J 

contains P and J,'P is a left primitive ideals of A/ P. By 

lemma 2.9, the ideals J are all left primitive ideals of A. 

2.12 Lemma. Let I be a 2-sided ideal of A and let R be the 

Jacobson radical of A. Then In P is the Jacobson radical of 

I . 

Proof. Let R(i) be the Jacobson radical of I, let P be a 

left primitive ideal of A, and let X be an irreducible left 

A-module such that P = {a c A : a.X = . Then either I is 

contained in P, or X is an irreducible left I-module. In 
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either case, (I) is contained in Pn I. This proves that RM 

is contained in R( I. Now let a be any element of PrI 

and let Y be an irreducible left I-module. Suppose a.Y . 

N. Then there exist elements c of I and y of Y such 

that ca.y = y 	0. Let e 	ca. Then e is in R, and so, by 

lemma 2.6, there is an element b of A such that 

e + b - be = 0. But then, y = e.y = (be - b).y = 0 9  which is a 

contradiction. This proves that a.Y 	and that a is 

therefore in P(I) as required. 

The following lemma indicates how the theory of this 

Section applies when A is commutative. 

2.13 Lemma. If A is commutative and P is any ideal of A, 

then the following are equivalent : 

p is primitive 

P is maximal modular 

A/P is a field. 

Proof. If P is primitive, then, by lemma 2.4, there is a 

maximal modular ideal M such that P = a € A : aAcN. But 

then McPA and so P = N. The implications (2) implies (3) 

and (3) implies (1) are obvious. 

2.14 Definition. Let X be an irreducible left 

L(X) denote the algebra of all linear operators 

D = T € L(X) : T(a.x) = a.Tx 	(x e X, a 

Then D is called the centralizer of A on X 

a subalgebra of L(X). 

Let T be a non-zero element of D. Then 

A-module, let 

on X, and let 

A). 

and is clearly 

the range and 
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kernel of T are A-submodules of X, and T is therefore 

invertible. Let S be the inverse of T. Then 

a.Sx = ST(a.Sx) = S(a.(TSx)) = S(a.x) 	(ac A, x 

and S is therefore in D. This proves that D is a division 

algebra. 

Let x 0 , ....., X. be any n + I elements of X. Then 	x0  

is said to be a linear combination over D of x,, ....., x,, 

if there exist T,, ....., T 	in D such that 

X0  = T 1. x %  + ..... + 

A non-empty set E of X is linearly independent over D 

if for all x,, •...., X. in E and T,, •...., T, in D, 

T,x 1  + ..... + 	 0 implies T 1  = T1  = ..... = T N 	00 

The terms 'n-dimensional over D', 'finite-dimensional 

over D' and 'infinite-dimensional over D', refering to 

subspaces Y of X such that DY is contained in Y, should 

be interpreted exactly as they would be if D were a field and 

X a linear space over D. 

2.15 Lemma. Let X be an irreducible left A-module, let D be 

the centralizer of A on X, and let x and y be elements 

of X linearly independent over D. Then there exists a in 

A such that a.x = 0 and a.y J 0. 

Proof. Suppose that ax = 0 implies a.y = 0. Then we may 

define a linear mapping T from X = A.x onto X = A.y by 

T(a.x) = a.y 	(a C A). 

Simple calculations show that T is in D and that Tx = y. 

This contradicts the linear independence of x and y over D. 

There must therefore be an element a of A with the required 

property. 
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2.16 Lemma. Let X be an irreducible left A-module and let D 

be the centralizer of A on X. Then, for all n greater than orcq wzL 

6 2 and elements X 1 9 ....., X. of X linearly independent 

over D, there is an element a of A such that 

a.x 1  = •.,. = a.x, = 0 and a.x 1 0. 

Proof. The proof is by induction on n, and the case n = 2 is 

lemma 2.15. Assume that the result holds for some n,> 2, and 

let x,, ....., 	be linearly independent over D. 

Let I 	ta e A : a.x, = ..... = a.x 1  = O. Then, by the 

inductive hypothesis, there exists b in I such that 

b.x., 	0. Since I is a left ideal, we have X = I.x. Now 

suppose that a.x,= ..... a.x,, = 0 implies a.x 4 , 	0. Then 

we may define an element T of D by 

T(a.x) = a.x 	(a 	I), 

and for all a in I, we then have a,(Tx,, - x 31 ) = 0. 

Suppose x,,, ....., x 1 , Tx - x, 4, are linearly independent 

over D. Then, by the inductive hypothesis, there is an element 

a of I such that a.(Tx - x +,) j 0. This shows that x,, 

..., x,, Tx,. - x, 41  are not linearly independent over D, and 

therefore contradicts the linear independence over D of x1 , 

....., x. This proves that the statement holds for n + 1, 

and so completes the proof of the lemma. 

2.17 Theorem (Jacobson's density theorem). 

Let X be an irreducible left A-module, let D be the 

centralizer of A on X, and let x,, ....., x,. and Y,, 0000  

•, y 	be elements of X. Then, if X 1 9 ....., x 	are linearly 

independent over D. there is an element a of A such that 

a.x = y 	(I = 1, ....., n). 
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Proof. By lemma 2.16 9  there are elements b,, •...., b 	of A 

such that bj-XL & 0 and 

b i  xi = 0 	(j 	i). 

For each i, Ab .x, = X, and there is therefore an element c 

of A such that c j bj.xj = y1 . The element a = c 1 b, of 

A has the required property. 

The following Corollary is an immediate consequence of the 

Wedderburn structure theorem for finite-dimensional semi-simple 

algebras, which follows easily from Jacobson's density theorem 

(see, for example, [9, p. 1 34]). 

2.18 Corollary. Let J be a finite-dimensional semi-simple 

subalgebra of A. Then J has an identity element e. If J 

is a 2-sided ideal, then J = Ae and e commutes with every 

element of A. 

We now specialise to the case when A is a Banach algebra. 

2.19 Lemma. If A is a Banach algebra and M is a maximal 

modular left ideal of A, then M is closed. 

Proof. Let e be a right modular unit for M and let 

U = {a C A : Ile - all < 1. 

Suppose MU is not empty, let a be any element of MA U, 

and let b = z (e - a) ' . Then b - b(e - a) = e - a and so 

e = a + ba + b - be is in M. This is impossible, since 	M 

A implies e4M.  Thus MrU must be empty, and, since U is 

an open set of A. it follows that e is not in the closure M 
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of M. But ii is then a proper left ideal of A containing M 

and is therefore equal to N. Thus N is closed. 

2.20 Corollary. Let P be a left primitive ideal of A. Then 

there exists an irreducible Banach left A-module X such that 

P = a E A : a.X = ioli and ILa.xll ( 1j aillixil (a 6 A, x 6 x). 

Proof. By lemma 2.4, there is a maximal modular left ideal M 

such that P = [a€ A : a .AC Mi.Since N is closed, A/N is 

a Banach left A-module with the required property. 

2.21 Corollary. Every primitive ideal of a Banach algebra is 

closed. 

Proof. By Corollary 2.11, it is sufficient to show that every 

left primitive ideal is closed. This follows immediately from 

Corollary 2.20. 

2.22 Corollary. The Jacobson radical of a Banach algebra is 

closed. 

The proof of the following result is based on certain 

elementary properties of the spectrum of an element of a normed 

algebra. Since this spectral theory is not used (explicitly) 

anywhere else, the proof of the lemma is omitted. It may be 

found in 199 P. 71 - 743. 

2.23 Lemma. Let D be a real or complex normed division 

algebra. Then D is isomorphic to d , if it is complex, and to 

C or W4.  if it is real, where h-i is the real quaternion 

algebra. In particular, D is finite-dimensional over its 
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scalar field. 

2.24 Lemma. Let A be a Banach algebra, let X be an 

irreducible left A-module and let D be the centralizer of 

A on X. Then D is isomorphic to R , C or H. 

Proof. By lemma 2.4, we can assume that X = A/M, for some 

maximal modular left ideal M of A. By lemma 2.23, it is 

sufficient to prove that D is contained in the algebra 

BL(A/M) of bounded linear operators on A/M, since it is 

then a normed division algbera. To do this, let T be in D, 

let e be a right modular unit for M and let a be any 

element of A. If b is in A and a - b is in M. then 

a - be = b - be -4- a - b is in M, and therefore UT(a + 	= 

T(be + 	= 1T(b.(e + 	= b.T(e + MAt e, UbT(e + 

Thus ltT(a + M)11 	ta + MUjT(e + N)U , and T is therefore 

continuous. 

The final lemma of this section is used in Section k to 

aid the recognition of radical Banach algebras. 

An element a of a Banach algebra is quasi-nilpotent if 
-I- 

a' st"—) 0 as n—ao. 

2.25 Lemma. Let A be a Banach algebra and let J be a left 

ideal of A such that every element of J is quasi-nilpotent. 

Then J is contained in the Jacobson radical R of A. 

Proof. Suppose J is not contained in R. Then, by Corollary 

2.20, there is an irreducible Banach left A-module X such 

that J.X 	and j1a.xj1Kjja111jx11 j  for all a in A and x in 

X. Let x be any element of X such.that J.x 4 jO. Then, 
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since J is a left ideal, J.x = X and there is therefore an 

element e of J such that e.x = x 	0. But then e".x = x, 
I 

for all n, and so 1xU" (Ile" t"Itx1r— 0, which is a 

contradiction. Thus J must be contained in R. 

It is also true that every element of the Jacobson radical 

of a Banach algebra is quasi-nilpotent. A proof of this well-

known result (using spectral theory) may be found in [9, p.126] 
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3. The prime radical. 

This Section contains the definitions and elementary 

properties of the prime radical of an algebra and related 

concepts, and has applications in Chapter 2 and Chapter 3. As 

in the previous Section, most of the theory is purely 

algebraic. However, this Section differs from the last in that 

most of the results specific to Banach algebras were first 

proved fairly recently. Of these, the most important is the 

theorem of Grabiner which states that a nil Banach algebra is 

nilpotent. 

As in Section 2, A will denote an algebra over a field P. 

3.1 Definition. Let P be a 2-sided ideal of A. Then P is 

a prime ideal if 

aAbç P implies a E P or b 	P 	(a,b€ A), 

and a semi-prime ideal if 

aAacP implies a C P 	(a€ A). 

Note that a prime ideal is also semi-prime. 

A is a prime algebra if (0) is a prime ideal, and a semi-

prime algebra if (0) is a semi-prime ideal. 

If A is commutative then an ideal P of A is prime if 

and only if 

ab rk P implies a ( P or b 6 P 	(a,bA), 

and semi-prime if and only if 

a2 	P implies a€ P 	(aeA). 

A commutative prime algebra is usually referred to as an 

integral domain. 

3.2 Lemma. Let h be a homomorphism of A onto an algebra B. 
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If P is a prime (semi-prime) ideal of B, then h7 (P) is a 

prime (semi-prime) ideal of A. Conversely, if N is a prime 

(semi-prime) ideal of A containing the kernel of h, then 

h(N) is a prime (semi-prime) ideal of B. 

Proof. This follows immediately from the definitiona. 

3.3 Corollary. Let P be a 2-sided ideal of A. Then P is a 

prime (semi-prime) ideal if and only if A/P is a prime (semi-

prime) algebra. 

3.4 Definition. An element a of A is nilpotent if a 1  = 0 

for some n. 

A subset E of A is nil if all its elements are 

nilpotent, and nilpotent if there is a natural number N such 

that E'4  = ( 0), where EH = 	 a1, ....., a N € Ej. 

Note that a nilpotent ideal (for example) is a nil ideal, 

but that in general a nil ideal is not nilpotent. 

3.5 Lemma. The following are equivalent : 

A is semi-prime 

A has no non-zero nilpotent left ideals 

A has no non-zero nilpotent right ideals 

(k) A has no non-zero- nilpotent 2-sided ideals. 

Proof. Suppose A is semi-prime and let I be a nilpotent 

left ideal or a nilpotent right ideal. Suppose I is not the 

zero ideal, let n be the least natural number such that I - 

(0), and let a be any non-zero element of it Then aAa ç 

I'AI ci "  .= ( 0), and therefore a = 0, which contradicts the 

choice of a. Thus I must be the zero ideal. 
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Since the implications (2) implies (k) and (3) implies (k) 

are obvious, it remains to prove that (1+) implies (1). 

Let N 	A : aA = (o). Then N is a 2-sided ideal, 

and NcNA= (0). Suppose A has no non-zero nilpotent 

2-sided ideals. Then N = (0), and •a similar argument shows 

that if Aá = (0), then a = 0. To show that A is semi-prime, 

we must prove that if aAa = (0), then a = 0. Let a be any 

element of A and let I be the 2-sided ideal of A spanned 

by the set AaA. If aAa = (0), then I = (0) and so baA = 

(0) for all b in A. But then, Aa = (0) and therefore 

a = 0. This completes the proof. 

3.6 Definition. The prime radical L of A is the 

intersection of all the prime ideals of A. 

3.7 Lemma. Let L be the prime radical of A. Then A/L is 

semi-prime. 

Proof. Let a be any element of A such that aAa is 

contained in L. Then a is in each prime ideal of A, and 

therefore in L. Thus L is a semi-prime ideal, and by 

Corollary 3.3, A/L i s therefore a semi-prime algebra. 

In Proposition 3.9 9  we prove that A is semi-prime if 

and only if its prime radical is the zero ideal. This requires 

the following lemma, which is also used in the proofs of lemmas 

3.11 and 3.12. 

.8 Lemma. Let M be a non-empty subset of A such that 

(1) 0 is not in M 
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(2) For all a and b in N, there is an element x of A. 

such that axb is in M. 

Then there is a prime ideal P of A .  such that the 

intersection of P with N is empty. 

Proof. Let X be the set of all 2-sided ideals P of A 

such that PAM is empty. By condition (1), X is non-empty, 

and, if X is partially ordered by inclusion, then it clearly 

satisfies the conditions of 	lemma and so has a maximal 

element P. We show that P is prime. Suppose not, and let a 

and b be elements of A\P such that aAb is contained in 

P. Let (a) = Fa + Aa + aA + span(AaA) and 

(b) = Fb + Ab + bA + span(AbA). Then P + (a) and P + (b) 

are 2-sided ideals, and , by the maximality of P, there exist 

elements c in (P + (a))rM and d in (P + (b))AM. Let 

x be an element of A such that cxd is in N. Then cxd 

(P + (a))A(P + (b))çP, and so M,-P is not empty. This is a 

contradiction, proving that P must be a prime ideal. 

3.9 Proposition. Let L be the prime radical of A. Then 

A is semi-prime if and only if L = (0). 

Proof. If L = (0), then A is semi-prime, by lemma 3.7. 

To prove the converse, suppose that A is. semi-prime, and 

let a be any non-zero element of A. To show that a is not 

in L it is sufficient to prove that there is a prime ideal P 

of A such that a is not in P. 

Let a 1  = a, and choose a2. , a.., ..... inductively so 

that a 41 aAa,\ (0). This can be done, since a 4 0 implies 

aAa,, J (0). Let M = tan : n = 1 9 2 9  ..... A simple inductive 

argument shows that if n is less than or equal to m, then 
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E a,4 Aa c a,Aar aAa. Thus M satisfies the conditions of 

lemma 3.8, and there is therefore a prime ideal P such that 

MrP is empty. Since a is in M, this completes the proof. 

3.10 Corollary. A 2-sided ideal of A is a semi-prime ideal 

if and only if it is an intersection of prime ideals. 

3.11 Lemma. The prime radical of A is a nil ideal of A 

containing all the nilpotent ideals of A. 

Proof. Let a be a non-nilpotent element of A and let 

M = ia" : n = 1, 2 9  ••••• 1)p •  

Then N satisfies the conditions of lemma 3.8, and there is 

therefore a prime ideal P of A such that a is not in P. 

Thus every element of the prime radical L is nilpotent and 

L is therefore a nil ideal. 

Let N be a left or right nilpotent ideal of A. Then 

(N + L)/L is a nilpotent ideal of A/L and, by lemmas 3.7 

and 3.59 N is therefore contained in L. 

If A is commutative, and a is a nilpotent element of 

A, then the ideal aA is nilpotent. Thus a is in the prime 

radical L. It follows that L is simply the set of all 

nilpotent. elements of A. 

When A is not commutative, L may not even contain all 

the nil ideals of A, and is certainly not in general equal to 

the set of all nilpotent elements. 

3.12 Lemma. Let I be a 2-sided ideal of A and let L be 

the prime radical of A. Then InL is the prime radical of I. 
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Proof. Let P be a prime idea]. of A and let a and b be 

elements of I such that aIbcPr I. Then aAIbcP,and so 

either aP or IbP. If IbP, then IAbcP, and so icP 

or b E P. In either case we have a C Pr I or b 4 PrN I and 

PrI is therefore a prime ideal of I. It follows that the 

prime radical L(I) of I is contained in In L. Now let a 

be any element of I not in L(I), and let N be a prime 

ideal of I such that a is not in N. Then M = I'-.N 

satisfies the conditions of lemma 3.8, and there is therefore a 

prime ideal P of A such that MrP is empty. In 

particular, a is not in LrI. This completes the proof. 

3.13 Definition. Let I be a 2-sided ideal of A and let P 

be a prime ideal of A containing I. Then P is a minimal 

prime ideal over I if, whenever N is a prime ideal of A 
W V I or 

such that IçNP, then N = P. If I = (0), then P is 

referred to simply as a minimal prime ideal. Note that a prime 

ideal P containing I is minimal over I If and only if 

P,'I is a minimal prime ideal of A/I. 

The existence of minimal prime ideals is guaranteed by the 

following lemma, the proof of which is a simple application of 

Zorn's lemma. 

3.14 Lemma. Let I be a 2-sided ideal of A and let P be 

a prime ideal containing I. Then there exists a prime ideal 

N of A such that N is contained in P and N is minimal 

over I. 

3.15 Corollary. The prime radical of A is equal to the 

intersection of all the minimal prime ideals of A. 

39 



1Je.now briefly consider the relationship between the prime 

radical and the Jacobson radical. 

3.16 Lemma. Let. P be a primitive ideal of A. Then P is a 

prime ideal. 

Proof. Suppose that P is a left primitive ideal, and let X 

be an irreducible left A-module such that P 	: a.X = 

Let a and b be elements of A such that aAb is contained 

in P and b is not in P. Then, Ab.X = X, and therefore 

a.X = aAb.X = 	which proves that a is in P. Thus P is 

a prime ideal. A similar argument shows that a right primitive 

ideal is a prime ideal. 

3.17 Corollary. The prime radical of A is contained in the 

Jacobson radical of A. 

3.18 Lemma. If A is finite-dimensional, then every proper 

prime ideal of A is primitive. 

Proof. We may assume without loss of generality that P = (0) 

and that A 4 (0). Since A cannot have a strictly descending 

sequence of subspaces, it must have a minimal left ideal, that 

is, a non-zero left ideal X which does not properly contain 

any non-zero left ideal. X may be regarded as a left A-module 

in the obvious way, and is clearly irreducible. Since (0) is a 

prime ideal, a.X = (0) if and only if a = 0. Thus (0) is a 

left primitive ideal. 

3.19 Corollary. The Jacobson radical of a finite-dimensional 

algebra is equal to its prime radical and is nilpotent. 
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The following lemma was first proved by Nagata and Higman 

[61+, 381, and is the essential tool for investigating the 

special algebraic properties of the prime radical of a Banach 

algebra. Before stating it, we define the algebra obtained from 

A by adjoining an identity element. This is the algebra B of 

all ordered pairs (a,$) such that a is in A and s is in 

F. with the operations defined by 

(a,$) + (b,t) = (a + b,s + t) 

t(a,$) = (ta,ts) 

(a,$)(b,t) = Cab + sb + ta,st), 

for all a and b in A and s and t in F. The element (0 9 1) of 

B is written I and is an identity element for B, The map 

a-3 (a,0) is a monomorphism of A into B, and A may 

therefore be identified with the subalgebra 	(a,0) : a( Ai of 

B. We then have (a,$) = a + si = a + s, for all a in A and 

s in F. 

3.20 Lemma (Nagata-Higman). If a' = 0, for all a in A, and 

the characteristic of F is 0, then A is nilpotent, and 

= (0). 

Proof. The following proof appears in [1+2], where it is 

attributed to P.J. Higgins. 

The result is clearly true for n = 1. Suppose that it 

holds for some n greater than or equal to 1, and that 

a' 	= 0, for all a in A. Let B be the algebra obtained 

from A by adjoining an identity element, and for all b in 

B, let b° = 1. Let t0, ....., t.1 	be distinct non-zero 

elements of F. Then the Vandermonde matrix V 1  in which the 

(i,j)th entry is 	, is invertible (see, for example 
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41, p.115 ). 

For any a and b in A, and non-zero t in F, we have 

o = t 1  (a + tb '4 	P1  (a,b) + tP(a,b) + ..... + t" '  P,.(a,b), 

where P 1 (a 9 b) 9  ....., P,.(a,b) are elements of A independent 

of t. By the invertibility of the matrix V. it follows that 

P 1  (a,b) = ..... = P,(a,b) = 0 9  and that, in particular, 

	

P 1  (a,b) = 	aL b' = 0 	(a, b E A). 

Let a, b and c be any elements of A. Then, 

(n +1)acb4  = 	 = 	 = 

( 	
aL c1 a' ')i ' 	= 0, and therefore 91'cb" = 0. 

Let I be the 2-sided ideal of A generated by the set 

J aP : a C A. Then IAI = (0), and for all x in A,/I 9  x = 

0. By the inductive hypothesis applied to A/I, we have A 

I, where M = 2"  - 1. Thus A 1  = (0), and A is nilpotent 

as required. 

3.21 Theorem (Grabiner [271). A nil Banach algebra is 

nilpotent. 

Proof. Let A be a nil Banach algebra over F (= R or C ). 

For each natural number n, let X(n) = '[a E A : a1' = 0?ç . Then 

each X(n) is closed, and A = U X(n) : n = 1 1  2 9  ...... By 

the Baire Category Theorem, there isa natural number n such 

that X(n) has an interior point. Let b be any interior point 

of X(n), and let a be any element of A. Then there exists 

a positive real number t, such that, if s is in F and 

s( ( t, then (b + sa)m  = 0. But then 	= 0, and the result 

therefore follows from lemma 3.20. 
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The following lemma is used by .Grabiner in [29]. 

3.22 Lemma. Let A be a Banach algebra, and let a be any 

element of A. Then the ideals Aa and aA are nil if and 

only if they are nilpotent. 

Proof. We may assume without loss of generality that the norm 

of a is less than 1. We show that if Aa is nil, then it is 

nilpotent. A similar argument works for the right ideal aA, and 

the converse is obvious. 

Assume that Aa is nil, and define a norm fl ft on Aa 

by Lxfl '  = inf I(bIl : ba = x. To see that 	ft-tI 	is a complete 

norm on Aa, note that if T is the bounded linear operator 

on A defined by Tb = ba, then A/Ker(T) is isometrically 

isomorphic to (Aa,tt-H ' ). Now let x and y be elements of 

Aa, with x = ba and y = Ca. Then () xyft 	ftbacJl ~ '  ILblicft, and 

li-Il' is therefore an algebra norm. Thus (Aa, li-fl ' ) is a nil 

Banach algebra and, by Theorem 3.21 9  Aa is therefore 

nilpotent. 

3.23 Theorem (Grabiner [29 9  Dixon [161). Every left or right 

nil ideal of a Banach algebra is contained in a sum of 

nilpotent 2-sided ideals. 

Proof. The following proof is due to Grabiner. 

Let A be a Banach algebra, and let B be the algebra 

obtained from A by adjoining an identity element. Define a 

norm on B by 

Il a + sit = flalt + 1st 	(a E A, s 	F). 

Then B is a Banach algebra. Let I be a left nil ideal of A 

and let a be in I. Then Ba is contained in I, and is 
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therefore nil. By lemma 3.22, applied with B = A, Ba must be 

nilpotent. Suppose (Ba) 	(0). •Then, (BaB)"  ç(Ba)" B= (0). 

Thus span(BaB) is a 2-sided nilpotent ideal of A. It follows 

that I is equal to the sum (and the union) of the set 

span(BaB) : a ( 	of 2-sided nilpotent ideals. A similar 

argument shows that any right nil ideal is a sum of nilpotent 

2-sided ideals. 

3.24 Corollary (Dixon [16]). The prime radical of a Banach 

algebra is the sum of its 2-sided nilpotent ideals and 

contains all the 2-sided nil ideals. 

If the prime radical L of a Banach algebra is closed, 

then, by Theorem 3.21, it is nilpotent. Conversely, if L is 

nilpotent, then there is a natural number n such that L is 

contained in X(n) = Ia E A : a = O. Since X(n) is closed, 

the closure of L is contained in X(n) and, by lemma 3 1 20 9  

is therefore nilpotent. It follows that L is closed if and 

only if it is nilpotent. 
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k. Examples. 

This Section contains a few examples of semi-prime Banach 

algebras, and of continuous derivations and automorphisms. An 

extensive list of examples of Banach algebras is given in the 

Appendix of [68], and a large proportion of these are semi-

simple, and therefore also semi-prime. However, there are 

rather few published examples of semi-prime Banach algebras 

which are not semi-simple. By lemma 3.12 and Corollary 2.22, 

the Jacobson radical of a semi-prime Banach algebra is also a 

semi-prime Banach algebra. There is therefore no serious loss 

of generality involved in restricting attention to radical 

semi-prime Banach algebras. Most, if not all, of the known 

examples of Banach algebras of this type are convolution 

algebras of some kind, but it is not at all clear whether this 

reflects some theoretical restriction on the structure of such 

algebras, or merely a lack of ingenuity in constructing 

examples. However, convolution Banach algebras usually have 

large numbers of closed ideals, and it is not obvious that this 

is a necessary feature of semi-prime radical Banach algebras in 

general (see Section 10). 

Let A be a Banach algebra, and let b be an. element of 

A which does not commute: with every element of A. Then the 

map a—ab - ba on A is a non-zero derivation, usually 

referred to as an inner derivation. Every non-commutative 

Banach algebra therefore has continuous non-zero derivations. 

However, this is certainly not true for commutative Banach 

algebras. In fact, .a commutative semi-simple Banach algebra has 

no non-zero derivations (see Section 12), and an example of 

Newman shows that radical Banach algebras may also have no non- 
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zero derivations [65] (see also [9, p.97:1). 

Examples of continuous homomorphisms are much more 

abundant. In this section, we concentrate on isometric 

automorphisms. In. particular, we show how semi-groups of 

isometric automorphisms may be used to construct a class of 

convolution Banach algebras which includes some non-commutative 

radical semi-prime Banach algebras. 

The section ends with an example of a completely regular 

semi-simple commutative Banach algebra with non-maximal closed 

prime ideals. This is of interest, because in a large class of 

such algebras, all the proper closed prime ideals are maximal. 

This last example, and Example 4.14, are the only examples in 

this section which may be original. 

We begin by defining what is usually meant by a Banach 

algebra of formal power series. 

4.1 Definition. Let C[[tfl denote the algebra of all formal 

power series in the indeterminate t, with complex 

coefficients, and with the algebra operations defined by 

Co 	 0 

+ 	b, tA 

	

= 	+ 

	

= 	(za 1)t" 

i a,\ t \ 	br%
=  

A= 6 	 ) (Z 6 	 n=& M=O 

where, for all n, a, and b,_ are complex numbers. 

CL[tfl is a commutative algebra with identity and is an 

integral domain. 

Let A be a subálgebra of C[[tfl, and let UII be a 
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complete algebra norm on A. Then (A,fltI) is a Banach algebra 

of formal power series if 

t is in A, and A is generated by t, or by t and 1 

For each m, the co-ordinate functional 

(A,ft.tt) — C, is continuous. 

We now describe one of the earliest examples of a radical 

semi-prime Banach algebra. It is in fact isometrically 

isomorphic to a Banach algebra of formal power series (see, for 

example, [28)), and is therefore an integral domain. 

4.2 Example [39, 68 9  2810 

Let 2-1 = z ( (: tzt 	and let A(L)  be the Banach 

	

space of all continuous functions on L 	which are analytic 

on the interior of L , and with the norm 

IfL= sup ~ j f (z)l z C A j 	(f C A(s)). 
With the ordinary pointwise product, A( s)  is a semi-simple 

commutative Banach algebra, usually referred to as the disc 

algebra. 

A different product 4 can be defined on A() by 

(fg)(z) = f(w)g(z - w)dw 	(z 	, f,g 	A()), 

where [O,z] is the line segment from 0 to z. 

The Banach algebra so obtained is radical, and is called 

the disc algebra with convolution. Now define D on A(A) by 

Df(z) = zf(z) 	(z c A , f 

Then D is clearly a bounded linear operator of norm I and, 

with respect to the convolution product, is a derivation, since 

for all f and g in A(A) and z in A , 
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D(fg)(z) = z(fg)(z) = zf(w)g(z - w)dw 

= ,çwf(w)s(z - w)dw +3f(w)(z - w)g(z - w)dw 

= (Dfg)(z) + (f Dg) (z). 

A full account of Banach algebras of formal power series, 

including a description of their derivations and automorphisrns, 

is given in [281. 

A well-known example of a commutative radical convolution 

algebra which is not semi-prime, is the Banach algebra L (0 9 1) 

of all (equivalence classes of) complex-valued Lebesgue 

integrable functions on (0,1), with the norm 

Ii f= 	

If( 

x) I dx 

CO, 13 

(f E L ' (O,l)) 

and the product 

(f*g)(x) =f(y)g(x - y)dy 	(f,g C L (0,1), x E  
jo  

A full description of the derivations and automorphisms of 

L(0,1) is given in [52]. 

Let A be an algebra with identity, and let a be an 

invertible element of A. Then the map 

b—> ába 	(b C A) 

is an automorphism of A, called an inner automorphism. A non-

commutative Banach algebra always has non-trivial inner 

automorphisms (see [99 p.873). 

Semi-simple commutative Banach algebras generally have 

many automorphisms induced by homeomorphisms of their carrier 

spaces, as in the following example. 



.5 Example. • Let A() be the disc algebra with the 

pointwise product and let t be any real number. Then the 

operator h1  on A(A) defined by 

h(f)(z) = f(etz) 	(f £ A(L), z 

is an isometric automorphism. 

Examples of non-trivial automorphisms on commutative 

radical Banach algebras are harder to find. The following well 

known result indicates one source of such examples, and is one 

of the reasons for the interest in derivations. 

Lfk Lemma. Let D be a continuous derivation on a Banach 

algebra A. Then exp(D) is a continuous automorphism on A. 

Proof. See, for example, [9, p.873. 

4.5 Example. Let D be the derivation on the disc algebra 

with convolution described in Example 4,2. Then 

exp(D)(f)(z) = exp(z)f(z) 	(z C LX , f € A(L)). 

4.6 Definition. Let A be a Banach algebra and let S be a 

semi-group. Then, by a representation of S on A by 

isometric automorphisms, we shall mean a semi-group 

homomorphism T of S into the group of isometric 

automorphisms of A. 

When there is no risk of confusion, the notation 

t.a = T(t)(a) 	(a E A, t € S) 

will be used. In terms of this notation, the definition 

requires that the following conditions be satisfied : 

(1) t,ab = (t.a)(t.b) 	(t E S. a, b 	A) 
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t.(a + zb) = t.a + z(t.b) 	(t C S, a,b 6 A, z 6 F) 

ts.a 	t.(s.a) 	(t,s G S, a C A) 

(k) llt.aII = flail 	(t 	S, a 6.A). 

If S is written additively, then condition (3)should be 

written (t + s).a = t.(s.a). 

4.7 Example. Let A be the disc algebra (with pointwise 

product), let S be any sub-semi-group of the additive group 

of the real numbers, and define T by 

T(t) = hb 	(t 

where h 1  is as defined in Example 4.3. 

.8 Example. Let A be any Banach algebra and let h be any 

isometric automorphism of A. Then, if S is either IN (the 

natural numbers) or 7L (the non-negative integers), and 

T(n) = h' 	(n € 

then T is a representation of S on A by isometric 

automorphisms. 

Further examples, with S a group, are given in Chapter 

1 

We now describe a class of convolution algebras, which 

might be called 'weighted cross products'. The aim is to 

construct examples of non-commutative radical semi-prime Banach 

algebras. 

4.9 Definition. Let A be a Banach algebra, let S be a 

semi-group, and let w be a real-valued function on S such 

that the following conditions are satisfied : 
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w(s) >0 	(6 € S) 

w(st) < w(s)w(t) 	(s, t 	s). 

We will denote by l ' (S,A,w) the Banach space of all 

functions f from S into A such that 

Ufil 

SGS 

It is well known that l (S,A,w) is a Banach algebra with 

respect to the convolution product 3< defined by 

(fg)(s) = 	f(t)g(u) 	(s 	S, f,g 	11 (S,A,w)). 

Now let T be a representation of S on A by isometric 

automorphisms (see Definition 4.6), and for all f and g in 

1 1 (S,A,w), let 

(fg)(s)f(t)t.g(u) 	Cs Es), 

where, as before, t.a = T(t)(a). Then, 

( fig 	 11f (t)11 g(u)11w(t)w(u) 	llfU(gf(, 
c€c bs 

and )<-- is clearly bilinear. 

To show that T  is associative, let f, g and h be any 

elements of l t (S,A,w). Then, for all z in S, 

(fg)h(z) = I(I f(t)t.5(u)')x.h() = 
i:z- 	-c 

f(t)(t:g(u))(tu.h(y)) 	f(t)(t.g(u))(tu.h(y)) = 

f(t)t.((u)u.h(Y)) = f(gh)(z). 

Thus l (S,A,w) with the product (-- is also a Banach 

algebra, which we will denote by 11 (S,A,w,T). 

We will write w = 1 9  if w(s) = 1 for all s in S, and 

T = 1 9  if T(s) = I for all s in S. For all a in A and 
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s in S, k(s,á) will denote the element of 1 (S,A,w) 

	

defined by k(s,aX)=a, 	s = t 

	

) o, 	st. 

Note that 

k(s,a)c1.k(u,b) = k(su,a(s.b)) 	(a,b E A, s,u e 5). 

We will denote the nth power of an element f of l (S,A,w,T) 
ft 

by f , to avoid any confusion with pointwise products. 

Hirschfeld and Rolewicz used the crossed product XT 

(with w = 1 9  S = 7i-P and T as in Example 4.8) to construct 

an example of a non-commutative Banach algebra with no non-zero 

zero divisors [kO]. The construction has also been used 

extensively (with w = 1) in the case when A is a C*_algebra  

and S is a group [82]. Note that 1 (S,C,w,1) is the 

ordinary weighted semi-group algebra (see, for example, 

[9, p.8]). The proof of the following lemma is straightforward 

and is therefore omitted. 

4.10 Lemma. The linear span of the set k(s,a) : 	a EA, 	SE S 

is a dense subalgebra of 1 	(S,A,w,T). 

The following Proposition shows that restrictions on w 

(and by implication on S) are sufficient to ensure that 

l ' (S,A,w,T) is a radical algebra. In particular, there is no 

reason why A should be chosen to be non-unital. 

4.11 Proposition. Let w satisfy the following two conditions 

(in addition to conditions (1) and (2) of Definition 4.10) : 

(3) w(st) - w(to) 	(t, s € C) W(  
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I 
(k) w(s")' —>0 as n —> 	(8 € s). 

Then i ' (S,A,w,T) is a radical algebra. 

Proof. Let R denote the Jacobson radical of i (S,A,w,T). By 

Corollary 2.22 and lemma +.10, it is sufficient to prove that 

k(u,a) is in R, for all u in S and a in A. 

A simple inductive argument shows that 

= k(u", a(u.a)(u.a).....(u'.a)) 	(n 	2). 

Thus flk(u,a)'I < UaW'w(u'), and so k(u,a) is quasi-nilpotent 

by condition (k). However, since i (S,A,w,T) may be non-

commutative, this is not enough to prove that k(u,a) 	is in 

R. By lemma 2.25, it. is sufficient to prove that ftTk(u,a) is 

quasi-nilpotent for all f in 1 (S,A,w,T). To do this, let 

g = fTk(u,a). Then 

9 ' 4 (s) = 	g(x)(x,.g(x)).....(x 1 .....xr,_ 1 .g(x)) (s€S,n2) 

..... 	S 

and 	 g(x) = 	f(y)(y.a) 	(x € 5), 

and therefore, 	 It g= 	flgt"(s)flw(s) 

(

11 f (y, )1111 all) 	
( 	

w(s)). 

By conditions (2) and (3), we have w(s) 	w(ur) w ( y1 ) ... w ( y,), 

when y, u.....yu = s. Thus, 

Ii 	a (L& w ( u )( V f(y )IIw(y) ..... Uf(y)w(y 
stS 

a1"(IfIl"w(u). Since w(u"Y'—r0, this shows that g is 

quasi-nilpotent and so completes the proof. 

It is easy to check that, when A is unital, l (S,A,w,T) 
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is non-commutative if S is non-commutative or T 	1. 

4.12 Example [21]. 

Let FS(2) be the free semi-group on '2 generators u,v, 

and for each 'word' s of FS(2), let n(s) denote the 

number of letters in 5 (for example, n(uv'Suvuv) = 241). 

Let w(s) = (n(s)! ) 	(s € FS(2)). 

Then w satisfies conditions (1) and (2) of Definition 

4.9 and (3) and (4) of Proposition 4.11. Thus 1
1
(FS(2),C,w,1) 

is a non-commutative radical Banach algebra. 

It is easy to check that 1(FS(2),(,w,1) has no 

non-zero zero divisors. In particular, it is prime, and 

therefore semi-prime. 

In both of the next two examples, we take S =IN, and 

w(n) = (nI 	 C, 
 ) 

They are both non-commutative radical Banach algebras. 

4.13 Example. This is essentially the example of Hirschfeld 

and Rolewicz [koTj, except that, in their example, w = 1 and 

s = V. 
Let A be any commutative unital Banach algebra which is 

also an integral domain, and let h be a non-trivial isometric 

automorphism on A (for example, let A = A(L) and h = h1, 

as in Example 4.3). As in Example 4.8 9  let T(n) = h
II. 
• Let f 

and g be any non-zero elements of il (IN,A,w,T) and let n 

and rn be the least natural numbers such that f(n)*f 0 and 

g(m) 	0 respectively. Then, 

(fc,.g)(n + zn) = f(n)n.g(m) 4 0. 
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Thus 1 (i.j,A,w,T) has no non-zero zero divisors. 

The final example of this type exhibits more typical 

behaviour for non-commutative semi-prime algebras, since it 

does have non-zero nilpotent elements. 

4.14 Example. Let A be the algebra c[-i,iJ of all 

continuous complex-valued functions on the interval [-1 9 1] 9  

and define T on IN by 

T(n)a(x) = a((-1)x) 	(n EN, a E C[-i,1], x C E-i,il). 

Let a be a non-zero element of c[-i,i ] such that 

a(x)a(-x) = 0 	(x E [- 1 , 1]). 

Then, k(1,a)' = k(2,a(1.a)) = 0, and k(1 9 a) is therefore a 

non-zero nilpotent element. 

Let f be in l (N,CE-1,1),w,T) and suppose 

= 0 	(g C 1'  (1W,C[-1, 1 ],w,T)). 

If f 0, then there is a least natural number n such that 

f(n) 	0. But then, 

(f* Tk(m,l)*Tf)(2n + m) = f(n)((n + m).f(n)) = 0 9  

and therefore, whether n is odd or even, f(n) =0 and so 

f(n) = 0. This contradiction proves that 1 '  (N,CE-1,1),w,T) is 

semi-prime. 

The section ends with an example of a completely regular 

unital commutative semi-simple Banach algebra with non-maximal 

proper closed prime ideals. 

Let (C09 1) denote the algebra of all infinitely 

differentiable complex-valued functions on [0,1], and for all 

continuous complex-valued functions f on [0 1 1] let 
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Of 11,0  = supIf(x)I : x C [0,13. 

Let 	: n = 0, 1, 2 9  ..... 	be any sequence of strictly 

positive real numbers such that M. = 1 and 

) ('v) M g-M 4 .. r 	(0.(rn). 

Then D(M 1 ) will denote the Banach algebra of all f in 

C [0 9 1] such that 

Of 11 = 	I}fIL < 	• 
r%o 	 - 

These Banach algebras were described by Lorch in 1944, and are 

semi-simple C591• 

Let P = f C D(M,) : f" (0) = 0, n = 0 9  1,2 9  ....). 

Then P is a closed prime ideal of infinite co-dimension and 

is therefore non-maximal. In fact, P is the kernel of the 

homomorphism 

> 	
fCfl) (0)tr 

of D(M) into the integral domain cC[t)) (see Definition 

k,i). The aim is to show that 	can be chosen so that 

D(M,.) is completely regular. This then provides the required 

example. 

D(M) is natural if the carrier space of D(M) is 

[o,i]. Dales and Davie, in [14], state, but do not prove, that 

a sufficient condition for D(M,) to be natural is 

Mr 
n-I 
c-  Irt\ 0 as n - - 
L..\ri 	fr\, 	 - 
r 

For the sake of completeness, we include a proof of a weaker 

version of this result (lemma 4,16). 
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4.15 Lemma. The following are equivalent : 

D(M 11) is natural 

If f is in D(M), and If(x)I >/ 1, for all x in 

[0,1],.then f 	is in D(M,). 

Proof. This is easily proved by routine arguments (see [14]). 

4.16 Lemma. If 	
( 	() 	

<-0 , then D(M,) is 
h 

natural. 

Proof. Let f in D(M,) satisfy If(x)I >, 1, for all x in 

[0,1], and let g = f . Then, for n greater than 1, 

ri 

0 = (fg)"(x) = 	(I ) 
 g 
	x.,i. 

4, cr—r 
'Cx) 	(x E [o,i), 

and therefore, 

	

go ,  (X) (x)1 	-g' (x)f'°(x) 	( ft ) 	(x C [o,fl). 

Dividing by M, and using the fact that IIgIL 	1, we get 
' 	 \ Mr  K. r __ ( r' IL0 	(n ' 2). 

Now choose N such that 

	

' 	 ,. N4 r_r 

r )
(2AfIIY' 	(n ~ N), 

and a real number M such that I) ffl 	2 M and 

	

fr•L(g(ri\ 
< M 	(0,< r ,< N). 

Suppose that M 1 ' 	.< M, for 0 <r_< n, where n N. Then, 

ni fl g"' "H< Hf fl + M (2 Of 10- ' It f It . M, 

and so, by induction, M)g(1 	is less than or equal to M 

for all n. But then, °O 	t-% 

I\ 11r-r"  11  _ 	 H 	
( T_ r 	

) 

<00, 
L 

- 	
r% = 2. 	r= 
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and therefore g is in D(M). By lemma 4.15, this proves that 

D(M) is natural. 

4.17 Example. For all real numbers a such that 0<a-<1, 

define the functions f L  and g 	on [091]  by 

f(x) 	exp(-(a - x) '  ) 	(0xa) 

0 	 (a_<x_,-1), 

and 	g(x) = f(1 - x) 	(0xç1). 

Let F =tfo, g : 0<a 1 . Then F is contained in 

and for any closed set E of [0,1] and x in 

[o,1]\E, there is an element f of F such that 

f(E) = 	and f(x) 4 0. 

We prove the following statements. 

k,, = sup {I1f"IL0  : I is in F 	 (n = 0 9  1 9  2 9  ....) 

For any sequence 	of positive real numbers, 1M. 	can 

be chosen so that D(N n) is natural and 

-M, 

It then follows that im,,i can be chosen so that D(M) 

is natural and contains F. By [9, Corollary 23.9, p.1183 9  

D(M,.) is then completely regular as required. 

Proof of (1). Differentiating f, n times (n1), we get 

2r 

(x) = 	exp(-(a - x)
-1 
 ) 	 - x) 	(0x<a) C. 

0 	 (ax1), 

(where the numbers d(n,i) do not depend on a), and therefore, 

_1 
exp(-(a - x) )(a - x) nc, 	(0x<a(1)9 

where c = maxjd(n,i): i = n+1, ....., 2n. But exp(-t)t 

is less than or equal to (2n) exp(-2n) for all t greater 



than 1, and therefore, 

ItfL 	(2n) exp(-2n)nc,, 	(0<a1, n = 1 9  2 9  .....). 

This proves (1), since 

I   it 
	

- 

	

it c I 'and Ilg" t o t 	- 	(Oai, nO). 

	

&I 	I 	
(II 

Proof of (2). Without loss of generality, we can assume that 

k 	is greater than 2, for all n. Let 	be the sequence 

defined by M 0  = M) 	I and 

rcZ 1. 

= 2 	(r'\MrM 	+ k 	 n2). 

r 

Then, 

M, >, 	 MM,. 	(Orn), 

00 

and( 
	

2 
r '- 

D(M,) is therefore natural, by. lemma 4.16. Finally, 

L 
"2. 

This completes the proof. 



Chapter Two 

AUTOMATIC CONTINUITY OF HOMOMORPHISMS AND DERIVATIONS 

5. Introduction. 

One of the properties of Banach algebras which makes 

automatic continuity results possible is their completeness, 

and the usual way in which completeness is brought to bear is 

through the closed graph theorem. 

Let S be a linear mapping from a Banach space X into a 

Banach space Y. Then the separating space of S is the set 

G(S) = y E Y : there exist x—'O in X with Sx,-3"y in 

and the closed graph theorem is equivalent to the statement 

that S is continuous if and only if c.(s) = 
Almost all the results of Chapter 2 are based on lemma 

6.4, which states that if {T, 	and 	are sequences in 

BL(X) and BL(Y) respectively, such that ST - RS is 

continuous for all n, then there exists a natural number N 

such that 

(R I  .....R,c(S)) 	= (R I  .....R(S)) 	(nN). 

This lemma has already been applied successfully to 

several automatic continuity problems, and has especially 

strong implications for the automatic continuity of 

epimorphisms and derivations. This was first demonstrated by 

Sinclair and Jewell in the following result which appears as 

Theorem 2 in 1453. 

5.1 Theorem E453. Let A be a Banach algebra with the 
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property that for each infinite dimensional closed (two-sided) 

ideal J in A there is a sequence b 1  , b, .... in A such 

that 	 (Jb,, f 1  .....b 1  ) 	for all positive integers 

n. If A contains no non-zero finite-dimensional nilpotent 

ideal, then a homomorphism from a Banach algebra onto A, and 

a derivation on A are continuous. 

The essential point in the proof of this theorem is that 

the separating space of a derivation on A, or of an 

epimorphism from a Banach algebra onto A, is a closed 2-sided 

ideal J which, by lemma 6.1+, has the property that, for every 

sequence {b, 	in A, there exists a natural number N such 

that 	(Jb,.....b 1 ) =( Jb00000b1) , for all n>, N. 

To avoid tedious repetition, any closed 2-sided ideal J 

with this, property will be referred to as a separating ideal, 

whether or not it is the separating space of an epimorphism or 

a derivation. 

Theorem 5.1 is still the best starting point from which to 

prove the automatic continuity of epimorphisms and derivations 

on specific Banach algebras. It applies to . a. wide range of 

Banach algebras, including semi-simple Banach algebras, L'(0 9 1) 

and Banach algebras of formal power series (see Definition 

Chapter 2 is concerned mainly with the structure of 

separating ideals in general, and with the automatic continuity 

results which can be deduced from knowledge of this structure. 

For the most part, we consider only problems concerning non-

nilpotent separating ideals, although with the underlying 

objective of showing that many (possibly all) Banach algebras 
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do not have non-zero radical separating ideals which are not 

nilpotent. In fact, Theorem 5.1, and its application to non 

semi-prime Banach algebras such as L ' (O,l), suggest that it 

may be the absence of non-zero finite.-dimensional - nilpotent 

ideals which is crucial for automatic continuity results, 

rather than the absence of non-zero nilpotent ideals in 

general. This possibility suggests the problem of determining 

whether or not a non-zero nilpotent separating ideal 

necessarily contains a non-zero finite-dimensional ideal, but 

we do not consider this problem further. 

We now describe briefly the contents of each of the 

sections 6 to 13 of Chapter 2. 

Section 6 is concerned with properties of separating 

spaces of linear mappings in general, and includes a proof of 

the fundamental lemma 6.4. 

In Section 7, the term 'separating ideal' is generalised 

to 'B-separating ideal', so as to include the separating space 

of any homomorphism from a Banach algebra onto a dense 

subalgebra B of a Banach algebra A (Definition 7.1). 

The main technical results are proved in Section 8. Of 

these, one of the most important is that if J is a 

B-separating ideal, and L is the prime radical of JnB, 

then L =1n B. In particular, if A = B (so that J is a 

separating ideal in the original sense), then the prime radical 

of J is a closed ideal, and therefore nilpotent. 

In Section 9, the results of Section 8 are used to prove 

results concerning discontinuous homomorphisms from Banach 

algebras onto dense subalgebras of Banach algebras, with the 

emphasis on the case when the domain algebra is a 

62 



non-commutative C*_algebra. 

Sections 10 9  11, 12 and 13 are concerned with derivations, 

epimorphisms and the uniqueness of norm problem. We show that 

if there is a separating ideal with non-nilpotent Jacobson 

radical, then there is a topologically simple radical Banach 

algebra (see Definition 10.+).From this it follows that there 

is a topologically simple radical Banach algebra if any one of 

the following propositions fails to be true 

Every epimorphism from a Banach algebra onto a Banach 

algebra has a nilpotent separating space. 

Every epimorphism from a Banach algebra onto a semi-prime 

Banach algebra is continuous. 

Every semi-prime Banach algebra has a unique complete norm 

topology. 

(1+) Every derivation on a Banach algebra has a 	-nilpotent 

separating space. 

Every derivation on a semi-prime Banach algebra is 

continuous. 

Every derivation on a commutative Banach algebra maps the 

algebra into its Jacobson radical.. 

Every derivation on a Banach algebra A maps each 

primitive ideal of A into itself. 

We also show that (1) and (2) are equivalent, and that, if 

(k) is true, then so are (5), (6) and (7). 
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6. The separating space. 

Let X and Y be Banach spaces, and let S be a linear 

mapping from X into Y. Then the separating space of S is 

the set 

S) =y c Y : there exist x,—> 0 in X with Sx.—vy in Y. 

This section is concerned with some elementary properties 

of separating spaces which are used in the rest of the Chapter. 

Proofs of lemmas 6.1 to 6.3 are given in [79, Section i]. 

6.1 Lemma. c(S) is a closed linear subspace of Y, and S 

is continuous if and only if 	(S) 

6.2 Lemma. Let X,Y and Z be Banach spaces, let S be a 

linear mapping from X into Y, and let R be a continuous 

linear mapping from Y into Z. Then 

PS is continuous if and only if R(S) = 

( R O(S)Y-  = 

6.3 Lemma. Let S bea linear mapping from a Banach space 

X into a Banach space Y, and let X. and Y. be closed 

linear subspaces of X and Y respectively, such that 

SX 0  is contained in Y0 . If S0  : XVX, — Y,/Y, is defined by 

	

S0 (x+X0 )=SX+Y, 	(xEX), 

then S. is continuous if and only if s(S) is contained in 

Ye . 

6.4 Lemma. Let X and Y be Banach spaces, let S be a 

linear mapping from X into Y, and let 	and 	be 

sequences of bounded linear operators on X and Y 
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respectively, such that ST, - R,,S is continuous for all n. 

Then there is a natural number N such that 

=(R I  .....RGj(S)) 	(n 	N) 

Proof. Let Vk 	R 1 .....R,S - 	 Then. V, 	is 

continuous, and \, 	 - 	 - n 41 s), so that 

by induction, V, 1  is continuous for all n. It.follows that 

= (-,(ST, .....T,), and therefore, by lemma 6.2, 

that (R, .....R,.,((S)) = 	(ST, .....T4 ), for all no 

Let y be in 	 and let 	be a sequence 

in X such that Xm >O and ST, 	 Then 

0, and y is therefore in cs(ST1  .....Tr.). This 

proves that 	 is contained in d(ST, 00000T, 1 ), 

for all n. Suppose there is no number N with the required 

property. Then we may suppose without loss of generality that 

ç(sT, .....T.+,) ç 	(ST, .....T4 ) 	 ( n = i t  2 9  .....). 
We may also assume that the norm of 	T, 	is less than or 

equal to 1 9  for all n. We obtain •a contradiction by 

constructing an element' z of X such that, for all n, 

ftSztI >, n. 

Let Q m  denote the natural mapping of Y onto the Banach 

space Y,'(ST 1  . .... T,). Then Q,,(ST 1  .....T,) = JOJ and 

therefore, by lemma 6.2 9  Q,1.ST, .....T, is continuous. On the 

other hand, 	1(Q,1+1 ST1  ....T4 ) = ( Q.,1(ST 1  0 0 0 0 . T,) 	JOJ and 

so Q,, 1 ST .....Tr1  is discontinuous. Using this information, 

we may inductively choose a sequence 	x, : n = 1 9  29 .....\ 
in X such that, for all n, 	2, and 

fl Q 1 ST, 0..0T,1 xtI 	n + INn#1 ST, 	
+ 

IlQ+ 1 S 	T1  .. ..T xl). 

CIO 

Let z = 	T1  

JI 	 ' 



Then 	ftSzIL 	flQ, SzII 

IIQMt I ST, . . . .Tx4 - tIQnSL T,  

llQ+1 ST 1  •...T 1 (x +, + 	 x )) 

)n. 

This completes the proof. 

A weaker version of lemma 6.4, in which ST, - P 4S is 

required to be zero, is given as lemma 1.6 in [79. The version 

given here appears in [45) and a stronger version in [56]. 



7. Separating ideals. 

This section starts with a formal definition of the term 

'B-separating ideal'. 

7.1 Definition. Let B be a dense subalgebra of a Banach 

algebra A. Then a subset J of A is a B-separating ideal of 

A, if it is a closed 2-sided ideal of A with the property 

that, for every sequence 	in B, there exists a natural 

number N (depending on b) such that 

) = (Jb.....b 1  ) 	 ( n 	N). 

When B = A, we shall refer to J simply as a separating 

ideal. 

Note that any finite-dimensional ideal of a Banach algebra 

is a separating ideal, and that any closed 2-sided ideal in a 

nilpotent Banach algebra is a separating ideal. 

7.2 Proposition. Let S be a linear mapping from a Banach 

space X into a Banach algebra A and let B be a dense 

subalgebra of A. Suppose that there exist continuous linear 

operators T6 and U6  on X, for all b in B. such that 

the maps 

x - STbx - (Sx)b and x -SU6x - b(Sx) 

from X into A are continuous. Then the separating space 

(S) of S is a B-separating ideal of A. 

Proof. By lemma 6.1, 	(S). is a closed linear subspace of A. 

Let a be any element of 	(S), andlet jx,j be 'a sequence 

in X such that x, / 0 and Sic,-'a. Then, for all b in B. 

STbxfl - (Sx,)b—'O and SUhx,. - bSx-7O. 

Thus, ab = lim STbx,\  and ba = urn SU6x and therefore, ba 
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and ab are in O(S). This proves that s(S) is a 2-sided 

ideal, since B is dense in A. 

Now let 	be any sequence in B, and let 

R,a =ab4 	and T, = T 	(a ( A, n = 1 9  2, .....). 

By lemma 6.'+, there exists a natural number N such that 

(p 1 	G(s)) 	(P 1  .....pcj(s)) 	(n 	N). 

Since P 1 	= G(S)b.....bI , this completes the 

proof. 

7.3 Corollary. Let h be a homomorphism from a Banach algebra 

C onto a dense subalgebra 3 of a Banach algebra A. Then the 

separating space 	(h) of h is a B-separating ideal of A. 

Proof. For b in B, let 

TO = xc and UbX =cx 	(xC), 

where c is some element of C such that h(c) = b. Now apply 

Proposition 7.2 1  with X = C and h=S. 

7.4 Corollary. Let D be a derivation on a Banach algebra A. 

Then the separating space (D) of D is a separating ideal 

of A. 

Proof. In this case, we have X = A = B, D = S. and for all 

b and x in A. TO = xb and Uhx = bx. 

Thus, by the defining condition for a derivation, 

D(Tbx) - (Dx)b = TDbx and D(U6x) - bDx = Uobx 	(x,b € A). 

Since T 	and UQb  are continuous, the conditions of 

Proposition 7.2 are satisfied. 	(D) is therefore a separating 

ideal of A. 



As observed in Section 5, Corollary 7.3 (with A = B) and 

Corollary 7.4 are contained in [45:1 (although not using this 

terminology). Considerable use is made of lemma 6.+ in the 

study of discontinuous homomorphisms with dense range (Corollary 

73 with A 	B) in [78, 791. 

7.5 Proposition. Let B be a dense subalgebra of a Banach 

algebra A, and let J be a closed 2-sided ideal of A. Then 

the following are equivalent : 

J is a B-separating ideal of A 

For every non-empty subset E of B such that JE 	(0) 9  

there exists an element z of E such that Jz 	(0), and 

for each element b of B with bz in E, either Jbz = (0) 

or (Jbz) = (Jz) 

Proof. Suppose that J is a B-separating ideal and that E 

is a non-empty subset of B such that JE j (0). Let b, be 

any element of E such that Jb 1 	(0). If there is no element 

z of E with the required property, then there exists b .,_ in 

B such that bb, is in E and (0) (Jbb, ) C  (Jb ). 

Continuing in this way, we obtain a sequence 	in B 

such that, for all n, 	(Jb, %  ...,.b1  ) 	 ( Jb......b 1  ) • This 

proves that (1) implies (2). 

	

Now let J satisfy condition (2) and let {bT 	be any 

sequence in B. Let E = 	 : n ONJ • If 

= (0) for some N, then clearly 	 (Jb.....b 1 ) 

= (0), for all n > N. Thus we may suppose that Jz f (0) 

for all z in E. But then there exists z = bN.....b 	in E 

such that (JbbN .....b t )= (Jb.....b 1 ) = ( Jz), whenever b 

is in B and bbN .....b I 	is in E. In particular, 
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(Jb ...... b 1 ) 	= ( Jb lj 	(n >> N), 

and so J is a B-separating ideal of A. 

Proposition 7.5 is related to Corollary 1.7 of [79]. 

If, in the following lemma, J is the separating space of a 

homomorphism from a Banach algebra onto B, then the conclusion 

of the lemma follows immediately from lemma 6.2 and Corollary 

7.3. 

7.6 Lemma. Let B be a dense subalgebra of a Banach algebra 

A, and let J be a B-separating ideal of A. If Q is the 

natral mapping of A onto A/ M. where N is a closed 

2-sided ideal of A, then QJ is a QB-separating ideal of 

A /M. 

Proof. Clearly, QB is a dense subalgebra of A./M, and QJ 

is a closed 2-sided ideal. Let tb,3 be any sequence in 

B and choose N such that 

(Jb .....b 1  ) 

Then, for all n N, 

= (Q((Jb.....b 1 )))' 

in QB is of the form 

QB-separating ideal of 

(Jb.....b) 	(n >,N). 

(JQbf\ .....Qb 1  ) 	 ( Q((Jb ...... b 1  ) ) Y 

(Qb .... .Qb 1  ). Since every sequence 

it follows that QJ is a 

A/ N. 

In the. proof of lemma 7.6, we have used the fact that if 

S is a subspace of a Banach algebra A and a is in A. 

then (Sa) = (a) . Identities of this kind are used 

throughout the Chapter. 

The term 'separating ideal' was first used by Rickart to 

describe the ideal 
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= {a C. A : there exist am  in A with t1aII I  —.---O and 

- afl1 -7  O, where 8 II 
	

and 11UL are complete algebra 

norms on A [67] . Since 
	is then the separating space of 

the identity mapping on A, regarded as a homomorphism from 

(A, II D) onto (A, II It 2), it is also a separating ideal in the 

sense of Definition 7.1. 

71 



8. The prime radical of a separating ideal. 

This section is concerned with the relationship between a 

B-separating ideal J of a Banach algebra A and the prime 

ideals of the dense subalgebra B. The starting point is the 

purely algebraic fact that if b is any non-nilpotent element 

of JrB, or more generally, any element of JB not in the 

prime radical of B, then there is a minimal prime ideal P of 

B such that b is not in P. If 	is the closure of P in 

A, then P is clearly contained in PrB. We show in Corollary 

8.3, that P is in fact equal to 	B. It follows that if 

L is the prime radical of JB then LrB = L (Theorem 

8.5), and that, if Q is the natural mapping of A onto 

AZT, then QJrQB is semi.prime*(Theorem 8.7). By lemma 7.6. 

QJ is a QB-separating ideal of A,/E. For many purposes, 

including Theorem 8.8, we can therefore assume without too much 

loss of generality that Jr-AB is already semi-prime. Note that 

if JrB is not commutative and not closed, then it may 

conceivably be both semi-prime and nil. 

Throughout this section, B will denote a dense subalgebra 

of a Banach algebra A, and for any subset E of B (or A), 

the closure of E in A will be denoted by E. Most of the 

implications of the results of this section for the case B = 

A are left until Section 10. 

* If I is a 2-sided ideal of an algebra, then by the prime 

radical L of I, we shall always mean the prime radical of I as 

an algebra in its own right. The statement 'I is semi-prime' 

will mean that I is a semi-prime algebra (i.e. L = (0)), not 

that I is a semi-prime ideal (see Definition 3.1). 
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8.1 Lemma. Let J be a B-separating ideal of A and let P 

be a prime ideal of B such that Jr'BP. Then there exist 

elements z of B.NP and y of B such that the following 

conditions are satisfied 

If b E B and bz 	P, then (Jbz) = (Jz) 

Jzy j (0) 

If b . B, then (Jzbzy) = (Jzy) 	or Jzbzy = (0) 

(k) ((JrB)z) = (Jz). 

Proof. Let E = BNP. Then E contains JrBNP and is 

therefore non-empty. If b ( B and Jb = (0), then (JrB)BbC& 

c P, and b is therefore in P. Thus Jb 	(0) for every 

element b of E. By Proposition 7.59 there is therefore an 

element z of E such that, for all b 	B, bz G E implies 

(Jbz) = (Jz) . Let z be any such element. Then z satisfies 

condition (1). 

Now let F = zB. Then F is non-empty, and (Jr'B)zBP 

implies JF 	(0). Applying Proposition 7.5 again, we obtain an 

element w of F such that Jw j (0) and, for each element 

b of B with bw G F, either Jbw = (0) or (Jbw) = (Jw). 

Let y be any element of B such that w = zy. Then z 

and y'  satisfy condition (2). They also satisfy condition (3), 

since, if b C B, then zbw = zbzy € F, and therefore, (Jzbzy) 

= (Jzy) 	or Jzbzy = (0). 

To prove that z also satisfies condition (k), let b be 

any element of Jr-\B. such that bz 	P. By condition (1), 

(Jbz 	= (JzY . But (JrB)-  is a closed 2-sided ideal of A, 

and therefore, (Jz) = (Jbz)ç ((J-B)z) = ((J - B)z) c(Jz) 

Thus (Jz) = ((JrB)z), and this completes the proof of the 

lemma. 
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Jr-\ B is a 2-sided ideal of B. By lemma 3.12 and 

Definition 3.6 9 .the prime radical L of JfB is therefore 

equal to the intersection of. JrB with all the prime ideals 

of B. It follows that if J11  is contained in every prime 

ideal of B. then Jr'B is equal to L and, by lemma 3.11, 

therefore contains no non-nilpotent elements. 

8.2 Theorem. Let J be a B-separating ideal of A and let 

P be a prime ideal of B such that JrBP. Then there 

exists a closed 2-sided ideal N of A such that Nn 	is a 

prime ideal of B contained in P. 

Proof. Let z in B\P and y in B satisfy conditions (1) 

to (1+) of lemma 8.1 9  and let N = a € A : JzAaJzy = (0). Then 

N is clearly a closed 2-sided ideal. of A. Let b be any 

element of B\ N. Then, since B is dense in A and (JrB)z 

is dense in Jz, there exist elements c of B and d of 

J(\B such that Jzcbdzy 	(0). But then, by condition ( 3) of' 

lemma 8.1 9  (JzyY = (Jzcbdzy) ç (JzAbJzy) ç (Jzy) • This proves 
sA 6e B, Ek  

that ,Ab  is in BNN if and only if (Jzy) = (JzAbJzy). 

To prove that NrB is a prime ideal of B, let a and 

b be elements of B such that aBbcNr\B and b C B',N. Then 

(JzAaJzyY = (JzAa(JzAbJzyYT= (JzAa(Jz)BbJzy) . By 

condition (k) of lemma 8.1, we have (Jz) = ((Jc\B)z). Thus 

(JzAaJzy) = (JzAa((JrB)zibJzy) 	(JzAa(Jr\B)zBbJzy) 

(JzAaBbJzy) = (0), and a is therefore in Nr\B. 

Now let b be any element of NrB. If b is not in P 

then zBb(JrB)ZP, and there are therefore elements c of B 

and d of J(B such that zcbdz 4 P. But then, by condition 

(1) of lemma 8.1 9  (Jzy) = (Jzcbdzy) c(JzAbJzy) .= (0), 
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contradicting condition (2) of lemma 8.1. This proves that 

N,-B is contained in P and so completes the proof of the 

Theorem. 

Recall that P is a minimal prime ideal if it does not 

strictly contain any other prime ideal, and that, by lemma 

3.14, every prime ideal contains a minimal prime ideal. 

8.3 Corollary. Let P be a minimal prime ideal of B such 

that JrBP. Then P 

Proof. Let P be a minimal prime ideal of B such that JrtB 

P. Then, by Theorem 8.2, there exists a closed 2-sided ideal 

N of A such that Nr-B is a prime ideal of B and N'-B ç 

P,. But then, NrB = P, and therefore PcPEBçNrB = P. 

8.4 Corollary. If J is a separating ideal of A (i.e. A = 

B), and P is a minimal prime ideal of A such that J4 P, 

then P is automatically closed. 

8.5 Theorem. Let J be a B-separating ideal of A and let 

L be the prime radical of JB. Then LC\B = L. 

Proof. Let K = ñ JrP : P is a prime ideal of B. Then L 

is contained in Kr\B and K is closed. If b C KAB\L, then 

there is a prime ideal N of B such that b 4 N, and 

therefore a minimal prime ideal P of B such that b £ 

J(\B'\P. By Corollary 8.3, Kr\BçJ(\PrB = Jr -\P, and therefore 

b is in P. This contradiction proves that Kr\B = L. It 

follows that Lr\BcKr'B = LçLrB, and that L is therefore 

equal to Lr B. 
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The commutative case of Theorem 8.5 is essentially 

contained in Corollary 11.6 of [793. Note that since L is a 

2-sided ideal of B, its closure L is a 2-sided ideal of A. 

8.6 Corollary. The prime radical of a separating ideal is a 

closed 2-sided nilpotent ideal. 

Proof. In this case, B = A and so L =L. By lemma 3.11, L 

is nil. By Theorem 3.21, it is therefore nilpotent. 

8.7 Theorem. Let J be a B-separating ideal of A, let L 

be the prime radical of .Br J, and let Q be the natural 

homomorphism of A onto AL. Then QJ is a QB-separating 

ideal of A/L, and QBIQJ is isomorphic to B'J/L and is 

therefore semi-prime. 

Proof. Since LJ, QJ is closed, and, by lemma 7.6, is 

therefore a QB-separating ideal of A/ L. Define T : BrJ/L 

- QBrSQJ by 

T(b + L) = Qb 	(b C BrJ). 

Then T is well-defined, since LC-1, and is a homomorphism. 

It is also onto since QBr'QJ = Q((B + L)r)(J. + L)) 

Q((B + L)CJ) = Q(BrJ). If b G Bt J, and T(b + L) = 0, then 

b C B('L = L, by Theorem 8.5. Thus T is a monomorphism and 

QB\QJ is therefore isomorphic to BrJ/L. By lemma 3.7. 

Br\J/L is semi-prime, and QB(\QJ is therefore semi-prime. 

8.8 Theorem. Let J be a B-separating ideal of A such that 

JrB is semi-prime, and let P be a minimal prime ideal of B 

such that JrBP. Then there exists a unique closed 2-sided 

ideal I of A satisfying the following conditions 
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I is contained in J 

(In BT = I 	(0) 

If K is any closed 2-sided ideal of A such that K is 

contained in I, then either KrB = (0) or K = I. 

(k) P = ib £ B : bI = (o). 

Conversely, if I is any closed 2-sided ideal of A 

satisfying conditions (1) to (3), then the ideal P defined by 

condition (k) is a minimal prime ideal of B with JrBP. 

Proof. The main statement of the Theorem is that each minimal 

prime ideal P of B with JrBP is the intersection with 

B of the left annihilator of a closed 2-sided ideal of A 

satisfying conditions (1) to (3). The rest of the Theorem 

follows from this alone, by routine arguments similar to some 

of the arguments used in t811. 

Let P be a minimal prime ideal of B such that Jr B 

P. Then it follows from the proofs of Theorem 8.2 and Corollary 

8.3 (with NE\B = P), that there exist elements z of B\P 

and y of B satisfying conditions (1) to (k) of lemma 8.1, 

and such that 

P = b € B : JzAbJzy = (0)\ = b € B : (JzAbJzyi 	(Jzy) 

Let I = (span(JzyJ)). Then I is a closed 2-sided ideal 

of A contained in J. 

To prove that I satisfies condition (2), note that 

(Ir\B)7 is in any case a closed 2-sided ideal of A, and that 

(JrB)zy is a non-zero, and therefore non-nilpotent, left 

ideal of Jr%B. 

Thus IrB(JrB)zy(JtB)zy # (0), and therefore, 

((J#mB)zy(Jr\B)zy) = (Jzy(JrB)zy) = (Jzy), by (3) and (k) 

of lemma8.1. But then, (IrB) 2 ((IBYJ 	((JzyJ) = 
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(JzyJ), and therefore I = (In BT and I j (0), as required. 

To prove that 	b C B : bI = (0) 	is contained in P, let 

b be any element of B not in P. Then (JzAbI) 2 (JzAbJzyJ) 

= (JzyJ) 	(0), and therefore, bI 	(0). Now let b be in P. 

Then (0) = JzAbJzy = JzAbJzyJ2(JzyJ)b(JzyJ), and therefore 

IbI = (0). But then, b(IEB) is a nilpotent right ideal of 

JrB, and therefore bI = (b(IrB)) = (0), by lemma 3.5. This 

proves that P = b 	B : bI = (0). 

To prove that I satisfies condition (3), let K be a 

closed 2-sided ideal of A such that KrB 	(0) and KI. 

Then, since KrB is not nilpotent, there exists an element b 

of K,B such that b(Kr'iB) 	(0). But then, bl.P,  and 

therefore, K2((JzAbJzy)1) = ((Jzy)Jr = (JzyJ)Th and so K = 

I . 

To prove the uniqueness of I, let It be any other 

closed 2-sided ideal of A satisfying conditions (1) to (1). 

Suppose (I'B)(Ir\B) = (0). Then I'(\BcP, and therefore 

(I'rB) = (0). But then, I',-. B is a non-zero nilpotent 

2-sided ideal of Bt'J, which, by lemma 3.5, is impossible. We 

therefore have (I'I)cB2(I'rB)(Ic\B) 	(0), and therefore, 

by condition (3) 9  I = (span(I'I)) = I'. 

Finally, let I be a closed 2-sided ideal of A 

satisfying conditions (1) to (3), and let 

P = b E B : bI = ( o)1. Then, since IrB is not contained in 

P, in 	is not contained in P. Let b be in B\P. Then 

(b(IB)) 	(0), and therefore, Bb(IrB) f (0). By condition 

(3) 9  I is then equal to (span(BbI)) , and if a is in B, 

and aBbcP, then aBbIçPI = (0), and therefore al = (0) and 

•
a is in P. This proves that P is a prime ideal of B. If N 



is any prime ideal of B contained in P, then P(IrB)cPI 

(0)cN, and therefore PN or IçBrN. If IçB -N, then 

(IrB)' NIcPI = (0), which is impossible. Thus PN and 

therefore P = N. This proves that P is a minimal prime ideal 

of B. and so completes the proof of the Theorem. 

Theorem 8.8 establishes a 1:1 correspondence between the 

set x(J) of all minimal prime ideals P of B such that 

JrB is not contained in P. and the set Y(J) of all the 

closed 2-sided ideals I of A satisfying conditions (1) to 

(3). If (0) is a prime ideal of B, then X(J) clearly 

contains only one element. In Section 10, we show that, if 

B is equal to A, then the sets x(J) and Y(J) are 

necessarily finite. It is not clear whether or not this is true 

in general, when B is not equal to A (see Theorem 9.9). 
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9. Applications to homomorphisms with dense range. 

Let h be a homomorphism from a Banach algebra C into a 

Banach algebra A. By replacing A with the closure of the 

range of h, if necessary, we may assume that B = h(C) is a 

dense subalgebra of A and, by Corollary 7.3, that the 

separating space E(h) of h is therefore a B-separating 

ideal of A. The results of the previous section may therefore 

be applied to obtain information about discontinuous 

homomorphisms, although they are too weak, by themselves, to 

yield any new automatic continuity results, except for 

epimorphis ms, which are considered in Section 11. 

As stated in the Introduction, most of the interest in 

discontinuous homomorphisms which are not onto has centred on 

the case when the domain algebra C is a C*_a].gebra. 

A C*_algebra is a complex Banach algebra C with an 

involution * such that the following conditions are 

satisfied : 

(a + b)* = a* + b* 	(a, b E. C) 

(za) = a* 	(z€C, a € C) 

(ab) = b*a* 	(a, b € C) 

(k) (as) = a 	(a 	C) 

2. 
(5) ha *  at = 114(a C C). 

A commutative C*_algebra C is isometrically isomorphic 

to the Banach algebra C. (X) of all continuous complex-valued 

functions vanishing at infinity on some locally compact 

Hausdorff space X, with the norm 

IIfL = sup I If (x) : x C X 1 	(f € C 0 (X)) 

and the involution 

f*( x ) = f(x) 	(x € X, f € C0(X)). 



X is compact if and only if C has an identity element, in 

which - case c0 (x) is equal to the algebra CCX) of all 

continuous complex-valued functions on X [9, p.189]. 

The main purpose of this section is to.extend to the non-

commutative case some results which are proved in the 

commutative case in [78] (see also [79]).. We begin by stating, 

for purposes of comparison, some known results concerning 

discontinuous homomorphisms from commutative C*-algebras 

(Theorems 9.1 and 9.2). 

9.1 Theorem [78, Theorem 4.2, p.172]. 

Let X be a compact Hausdorff space and suppose that 

there is a discontinuous homomorphism h from c(x) onto a 

dense subalgebra of a Banach algebra A. Then there is a closed 

ideal M in A such that k : C(X) —>A/M, defined by k(f) 

= h(f) + M, is a discontinuous homomorphism whose kernel is a 

prime ideal in CM. 

9.2 Theorem [78 9  Theorem 4.3 (iii), p.1733. 

Let Y be a locally compact Hausdorff space. If h is a 

discontinuous homomorphism from c 0 (Y) onto a dense subalgebra 

of a radical Banach algebra A, then for each c in c(Y) 

with h(c) j& 0 there is a d in c0(Y) such that Qh is a 

discontinuous homomorphism whose kernel is a prime ideal in 

c0(Y), and Qh(c) j 0, where Q is the natural quotient 

map from A onto A/J and J = a € A : ah(d)A = (0). 

Theorems 9.1 and 9.2 are proved in [78] by combining 

information obtained from lemma 6.4 about discontinuous 



homomorphisms from arbitrary Banach algebras with more precise 

information available from other sources about discontinuous 

homomorphisms from C*_algebras.  This is also the procedure 

adopted here. The following four results have been extracted, 

for ease of reference, from fairly extensive studies of the 

properties of discontinuous homomorphisms from C-algebras, 

made in the commutative case by Bade and Curtis [kJ, and in the 

non-commutative case by Johnson [k?) and Sinclair [77] (see 

also 

9.3 Proposition [77, Theorem k.i, p.448]. 

Let h be a discontinuous homomorphism from a C*_al gebra 

C onto a dense subalgebra B of a Banach algebra A. Then 

there exists a closed 2-sided ideal M of C, and a 

discontinuous homomorphism h, from M into A such that 

M has finite co-dimension in C and does not contain the 

identity element, if any, of C 

h0 (M) is a dense subalgebra of the separating space 	(h) 

of h, and 	(h) = 	(h 0 ) 

The Jacobson radical of A is contained in 	(h). 

9.4 Corollary [79, Corollary 12.4 9  p.691. 

If a unital C*_algebra  C has no proper closed 2-sided 

ideals of finite co-dimension, then every homomorphism from 

C into a Banach algebra is continuous. 

9.5 Proposition [78, Lemma 4.1, p.172]. 

Let h be a homomorphism from a C*_ algebra C into a 

Banach algebra, and let c be any hermitian element of C. 



Then either h(c) = 0 or h(c) is non-nilpotent. (c is 

hermitian if and only if c = c*). 

9.6 Corollary. Let h be a homomorphism from a C*.algebra  C 

into a Banach algebra A. Then h(C) is a semi-prime algebra, 

or equivalently, the kernel of h is a semi-prime ideal of C. 

Proof. Let I be a nil left ideal of h(C) and let c be 

any element of C such that h(c) is in I. Then h(c*c) = 

h(c*)h(c)C I, and so h(c*c)  is nilpotent. Since cc is 

hermitian, Proposition 9.5 implies that h(c*c) = 0. Let let 

(c*c) . By the general polar decomposition for C*al gebras 

[ii], there is an element u of C such that c = 

Since IcI 	is hermitian, and h(Ic) = h(c*c) = 0 9  it 

follows that h(1c11) = 0, and therefore that h(c) = h(utcl 2 ) 

= 0. Thus. I = (0) and, by lemma 3.59 h(C) is semi-prime. 

9.7 Theorem. Let h be a discontinuous homomorphism from a 

Banach algebra C onto a dense subalgebra B of a Banach 

algebra A, and let c be in C. If h(c) is in the 

separating space 	(h) of h, but not in the prime radical of 

(h)rB, then there exists a discontinuous homomorphism k 

from C into a Banach algebra such that the kernel of k is a 

prime ideal of C. and k(c) f 0. 

Proof. Let P be a minimal prime ideal of B such that h(c) 

is not in P. Then P is a closed 2-sided ideal of A and, by 

Corollary 8.3 9  P = Pr B. In particular, h(c) is not in P. Let 

Q be the natural quotient mapping of A onto AZ T, and let 

k = Qh. Then k(c) = Qh(c) f 0 and, by lemma 6.2, g(k) = 

(Q 0(h))7  j (0). By lemma 6.1, k is therefore discontinuous. 
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To complete the proof, note that Ker(k) = id E C : h(d) . 

= h 1 (BrP) = 

 

h- 
13  (P), which is a prime ideal of C. by lemma 

3.2. 

Theorem 9.7 applies in particular when h(c) is 'a non-

nilpotent element of ((h), and in this case is the exact non-

commutative analogue of 78, Theorem 3.3, p.170]. An 

alternative proof may be obtained by defining k : C —'A/N 

by k(d) = h(d) + N, where in the notation of Theorem 8.2, 

N = a £ A : c(h)zAa (h)zy = (o). The kernel Ii- 	of k 

is again a prime ideal of C not containing c. 

We now apply Theorem 9.7 to the case when C is a Cm-. 

algebra. For the commutative case, see Theorem 9.1. 

9.8 Theorem. Let C be a C*_algebra, and suppose there exists 

a discontinuous homomorphism from C into a Banach algebra. 

Then there exists a closed 2-sided ideal M of C and a prime 

ideal P of M, such that 

M is of finite co-dimension in C 

P is the kernel of .a discontinuous homomorphism k from 

N -into a Banach algebra. 

Proof. By Proposition 9.39 there exists a closed 2-sided ideal 

N of finite co-dimension in C, and a discontinuous 

homomorphism h0  from M into a Banach algebra A such that 

A = 	(h0 ) = B, where B = h 0 (C). By Corollary 9.6, B is semi- 

prime. Thus, by Proposition 3.9 9  the prime radical of c(hb)r' 

B, which is just the prime radical of B, is the zero ideal. 

Since h0  is discontinuous, there must be elements c of M 

such that h,jc) J 0. By Theorem 9.79 there is therefore a 



discontinuous homomorphism k from N into a Banach algebra 

such that the kernel of k is a prime ideal of M. This 

completes the proof of the Theorem. 

The following Theorem is obtained directly from Theorem - 

8.8. Note that it applies in its entirety to the discontinuous 

homomorphism h 0  of Proposition 9.3 and the proof of 

Proposition 9.8. 

9.9 Theorem. Let h be a discontinuous homomorphism from a 

Banach algebra C onto a dense subalgebra B of a Banach 

algebra A, and suppose that B is semi-prime and that 	(h) 

= A. 

Let X(h) be the set of all prime ideals P of C such 

that P is minimal over the kernel of h (see Definition 

3.13), and let Y(h) be the set of all closed 2-sided ideals 

I of A such that 

(BrI) = I 	(0) 

If K is any closed 2-sided ideal of A such that K is 

contained in I, then either KrB = (0) or K = I. 

For each I in Y(h), let 

P(i) = c E C : h(c)I = (o). 

Then P(i) is in X(h), and the map I --), P(I)  is a bijection 

of Y(h) onto X(h). For each I in Y(h), let 

J(i) = a E. A : al = (0), 

and let Q(I) denote the natural mapping of A onto A/J(I). 

Then Q(I)h is a discontinuous homomorphism with kernel P(i). 

Proof. Let P be any element of X(h). Then, since B is 

isomorphic to C/Ker(h) and is semi-prime and non-zero, h(P) 



is a minimal prime ideal of B such that 	(h)rB = BOh(P), 

Conversely, if N is any minimal prime ideal of B, then there 

is a unique element P of X(h) such that h(P) = N. - All of 

the statements of the Theorem, other than the discontinuity of 

the homomorphisms Q(I)h
, 
 therefore follow directly from 

Theorem 8.8 9  on taking J 	(h) = A. 

Now let I be in Y(h). To prove that Q(I)h is 

discontinuous, note that since B is semi-prime and IB ~ 

(0), we have 	i(h)I 2(IrBf j (0). Thus, 	(h) %J(I), and, by 

lemma 6.2, 	(Q(I)h) = (Q(I)(h)) 4 (0), and Q(I)h is 

therefore discontinuous. 

Note that by Theorem 8.7, if B is not semi-prime and is 

not equal to its prime radical L, and if 	(h) = A, then 

Theorem 9.9 may be applied to the homomorphism Qh , where Q 

is the natural mapping of A onto A/L. In this case, Ker(Qh) 

is the intersection of all the prime ideals of C containing 

Ker(h). 

It appears to be still an open question, even when C is 

a commutative C*_algebra  (without identity) and A is radical, 

whether or not the sets X(h) and Y(h) are always finite 

(see [79, Theorem 11 .71). 

The following Theorem is an immediate consequence of 

Theorem 9.9 and Proposition 9.3, and is a non-commutative 

version of Theorem 9.2. 

9.10 Theorem. Let C be a C*_algebra  without identity. If h 

is a discontinuous homomorphism from C onto a dense subalgebra 

B of a radical Banach algebra A, then for each c in C 



with h(c) 	0, there exists a closed 2-sided ideal I of A 

such that Qh is a discontinuous homomorphism whose kernel is 

a, prime ideal in C, and Qh(c) 	0, where Q is the natural 

quotient map from A onto A/J and J = a r= A : aI,= (o). 

Proof. By Proposition 9.3 (3) 9 	(h) is equal to A. By 

Corollary 9.6, h(C) = B is semi-prime. Thus, if c is in C 

and h(c) # 0, then there is a prime ideal P of C minimal 

over the kernel of h such that c 	P. Apply Theorem 9.9. 

It appears to be still an open question whether or not 

there exists a discontinuous homomorphism from a C*_algebra, or 

any other Banach algebra, onto a dense subalgebra of a semi-

simple Banach algebra. The final Proposition of this section is 

only intended to show that in this case the construction of 

discontinuous homomorphisms with prime kernels is very much 

more straightforward, and probably therefore less significant. 

9.11 Proposition. Let A be 'a semi-simple Banach algebra', and 

let h be a discontinuous homomorphism from a Banach algebra 

C onto a dense subalgebra B of A. Then there exists a 

primitive ideal P of A such that if Q is the natural 

map of A onto the Banach algebra A/ P, then Qh is a 

discontinuous homomorphism with prime kernel. 

Proof. Let P be any primitive ideal of A such that 	(h) 

is not contained in P, and let Q be the natural map of A 

onto A/P. By lemma 6.2, 	(Qh) 	(0), and Qh is therefore 

discontinuous. By lemma 3.16 and Corollary 2.21, p is a closed 

prime ideal of A. and BP is therefore a'prime ideal of B. 

But then, Ker(Qh) = h7 (P) is a prime ideal of C. 



10. The structure of non-nilpotent separating ideals. 

The. remaining sections of this chapter are concerned 

entirely with separating ideals of a Banach algebra A (i.e. 

with the case A = B of Definition 7.1). This section begins 

with a lemma concerning sequences of mutually orthogonal 

elements of a separating-ideal. This is used in Theorem 10.3 to 

strengthen the information available from Section 8. In the 

simplest case, when A is semi-prime, we show that if J is a 

non-zero separating ideal of A. then it contains minimal-

closed 2-sided ideals MI, ....., M rV  of - A such that if 

P1  = a C A : aML = (o), for i = i, ....., n, then P , ...., 

P,L are minimal prime ideals of A such that . P 1  

= (0). For each i, ML is either finite-dimensional, in which 

case PL. is primitive, or M, is a topologically simple 

radical Banach algebra, in which case P is not primitive 

(Theorem 10.9). Using the fact that the prime radical of a 

separating ideal is closed, the structure of non-nilpotent 

separating ideals in general can be described in similar terms. 

10.1 Lemma. Let J be a separating ideal of a Banach algebra 

A, and let tb,\ be a sequence in J such that b,b,= 0 

when n I  m. Then there exists a natural number N such that 

b 	= 0 for all n ) N. 

Proof. By replacing b 	by 211b11b 	when b, 	0, we may 

assume that 11b,11,< 2 ' , and may therefore define a,. in J by 

00 

a =b 	(n = 1 9  2 9  ..... 

We show by induction that 



a.....a, =b 	(n = 1 9  2 9  ..... ) 	 (1). 

This is clearly true for n = 1. If it is true for some n1, 

then 

= 	 = 	(!bkb = 
	, 

4.,. 	 444% 

since bb 	is only non-zero when k = J. Thus (I) is true for 

all n o  Since J is a separating ideal, there is a natural 

number N such that 

(Jan.....a) =(JaN.....a,) 	(n>,N). 

Let n>/ N. Then b,aN .....a % b4  = b4(b7b. = b,7, and 

a,%4  •....ab., = 	b 	b, = 0. But then, b 	= 	 E 

(Ja 1 .....a 1 )b,, = (Ja, +1 	 = ( 0). This completes the 

proof of the lemma. 

The important point in the conclusion of lemma 10.1 is 

that b is nilpotent for sufficiently large n o  

10.2 Definition. Let I be .a closed 2-sided ideal of a Banach 

algebra A. Then I is a minimal-closed 2-sided ideal of A 

if it does not properly contain any non-zero-closed 2-sided 

ideal of A. 

If, in Theorem 8.8 9  A = B, then the closed 2-sided ideals 

I of A satisfying conditions (1) to (3) are precisely the non-zero 

minimal-closed 2-sided ideals of A contained in J. This fact 

is used in the following theorem. 
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10.3 Theorem. Let J be a non-nilpotent separating ideal ofa 

Banach algebra A, and let L be the prime radical of A. Then 

LnJ is the prime radical of J and is a closed nilpotent 

ideal. There exist closed prime ideals P,, ...., P. of A 

and closed 2-sided ideals M 1 , ....., M, of A such that the 

following conditions are satisfied 

LrJN.cJ 	(i = 1 1  ....•., n) 

M/LrJ is a non-nilpotent minimal-closed 2-sided ideal 

of A/LrJ 	(j = 1 ....., n) 

MMCLrJ 	(i, j = 1, ....., n, 1 = j) 

(Lf) PL is a minimal prime ideal of A and JP 	(j = 1 

....., n) 

PL 

	

	 A : aMCLr- J 	and 	= L\ML = LrJ 

....., n) 

If P is any prime ideal of A, then either JP or 

P for some i 

JCP1 r .....rP = LrJ 

If K is any closed 2-sided ideal of A such that Lr'J 

KJ, then MLK  for some i. 

M, is a separating ideal of A 	(i = 1 ....., ii). 

Proof. By lemma 3.12, LrJ is the prime radical of J. By 

Corollary 8.6, LrJ is therefore a closed nilpotent ideal of 

A. Since J is not nilpotent, Lr\J is not equal to J. By 

Theorem 8.7, JZLrJ is therefore a non-zero separating ideal 

of A/L(\J and is a semi-prime algebra. By Theorem 8.8, the 

set Y of all non-zero minimal-closed 2-sided ideals I of 

A/L(\J such that IçJ/LrJ is not empty, and, by lemma 

3.5, every element of Y is non-nilpotent. Suppose Y is not 

finite, and let 	be a sequence of distinct elements of Y. 



If 'A'm 	(0), then I n  = ( span(i1,i,r,)Y = Im and therefore n 

= m. Thus if. 	is any sequence in J/LrJ such that b, 

is in I,, for all n, then b 1.,b 1  = 0 for n f m. It follows 

from lemma 10.1 that I n  must be nil for sufficiently large 

n. But, for each n, I n  is not nilpotent and, by Theorem 3.21 9  

is therefore not nil. Y must therefore be finite. 

Let 1 1 9 ....., I, be the distinct elements of Y and 

let 

Mi = a E A : a + LrJ € I 	(i = 1 ....., n). 

Then each M1 is a closed 2-sided ideal of A and conditions 

(1) to (3) are clearly satisfied. 

For each i, let Ni= b € A/LrJ : blj. = (0). By 

Theorem 8.8, each Nj is a minimal prime ideal of A/LrJ 

such that J/LrJ N1. Let 

= aA : a + LrJ.Nj= 'ae A : aMCLrJ 	(i 	1 

., n). Then, for each i, J 	and, by lemma 3.2, Pi is a 

minimal prime ideal over • LrJ. But LfJ is: contained in 

every prime idea]. of A, and 	is therefore a minimal prime 

ideal of A. 

To prove that Mf\P = L r\ Mi = LrJ, it is sufficient to 

prove that M,f%PLcL(\J, since the inclusions LrJcLrM ç 

MP are obvious. If a is in M(\P, then 

and therefore a is in LrJ. This proves that condition (5) 

is satisfied. 

To prove that condition (6) is satisfied, let P be any 

prime ideal of A such that J4 P, and let N be a minimal 

prime ideal of A such that NP. Then N/LrtJ is a minimal 

prime ideal of ALrJ such that JZLCJN,"Lf\J, and, by 

Theorem 8.8, is therefore equal to NL for some i. N is 
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therefore equal to P 1  for some J. 

Condition (7) follows immediately from condition (6). 

Let K be any closed 2-sided ideal of A such that Lr'bj 

Then K is not contained in P 1  for all i, and 

therefore (K/LrJ)Ij / (0) for some i. But then IL= 

(span((K/Lt\J)I))ç K/L(J, and M is therefore contained 

in K. This proves that condition (8) is satisfied. 

To prove that M is a separating ideal, note that Mi= 

(span(MJ)). Thus, if 	is any sequence in A, and 

(nN), 

then (Mg.....a 1 ) c(span(M(Ja.....a 1 ) )) = 

(span(M 1 (Ja,......a 1 ) )) 	 for 

all n > N, and therefore 

= 	 (n >,,N). 

This completes the proof of the Theorem. 

10. Definition. A Banach algebra A is topologically simple 

2 
if A 	(0) and A is a minimal-closed 2-sided ideal of 

itself. 

If A is a minimal-closed 2-sided ideal of itself and A2  

=(o), thenevery closed linear subspace of A is a 2-sided 

ideal. Thus A = (0) or A is 1-dimensional, and the 

condition A 	(0) therefore only excludes these trivial 

cases. 

10.5 Lemma. Let A be a topologically simple Banach algebra. 

Then A is a prime algebra, and is either primitive or 

radical. 

Proof. Let N = ta £ A : Aa = (0). Then N is a closed 
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2-sided ideal of A and therefore N = (0). Let a and b be 

any elements of A such that aAb = (0), and let K = Ic EA : 

cAb = (0)j. Then K is a closed 2-sided ideal of A, and a is 

in K. If a ' f 0 9  then K = A and therefore Ab = (span(A))Th 

= (span(KAb)) = (0), and so' b = 0. This proves that A is a 

prime algebra. 

Now suppose A has a primitive ideal P. Then P is a 

proper closed 2-sided ideal of A and so P 	(0) and A is 

therefore primitive. On the other hand, if A. has no primitive 

ideals then it is equal to its Jacobson radical. 

Let I be a non-nilpotent minimal-closed 2-sided ideal of 

a Banach algebra A and let N = a € I : lal = (o)j. Then N 

is a closed 2-sided ideal of A, and therefore N = (0). It 

follows that if K is any non-zero closed 2-sided ideal of I. 

then IKI # (0), and therefore I = (span(IKI)) = K. This 

proves that 'I is a topologically simple Banach algebra. The 

ideals M 1 /L(\J, •...., M,/LAJ in Theorem 10.3 are 

therefore topologically simple Banach algebras. In Theorem 10.9 

we show that each MC7LAJ is either finite-dimensional or 

radical. The proof of this result requires two lemmas, the 

first of which is taken from [51. 

10.6 Lemma [511. Let A be a Banach algebra and let X be an 

irreducible left Banach A-module. Let D be the centrizer of 

A on X and let x, x 1  , •.... in X be linearly 

independent over D. Then there exist s an element c of A 

such that c.x0  = 0 and c.x 1 , c.x, 	are linearly 

independent over D. 
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Proof, Using lemma 2.15, choose b 1  in A such that b1  .x, = 

0 9  b 1  ,x 1  f 0 and t(b,tj 	-. Then, using Theorem 2.16, choose 

b, b39  ..... in A so that for all I > 2 9  

bz x0  = b .x 1  = ..... = b • x_, = 0 

bC.xC is not a linear combination over D of c.x 1 , .... 

., 	
where c L  = b 1  + ..... + 

11 bJ1 ~ 2. 

Let c 	b L e Then c.x0  = 0 9  
fl: 

c.x = 	+ bixz 	1 9  2 9  .....), 

and, for 0<j<i, c.x = c.xj . Suppose c.x, c.x, 0*000 

are not linearly independent over D. Then there exists N and 

elements T 1  , •...., T,, of D such that c.x+ = T )  (c.x,) + 

+ T,,1 (c.x) = T 1  (cN4I  •x 1 ) + ..... + T.4 (cN 4 ( .x). But 

bN+I • x, 	is then a linear combination over D of c, .x 1  , 

•..., c,j .x, , contrary to the choice of b+1 • Thus cox,, 

CO X29 00000 
are linearly independent over D, and the proof is 

complete. 

10.7 Corollary. Let 

infinite-dimensional 

there exists an elem' 

infinite-dimensional 

Proof. This follows 

that, by lemma 2.24 9  

field of A. so that 

A be a Banach algebra and let X be an 

irreducible left Banach A-module. Then 

nt a of A such that a.X is 

over the centralizer D of A on X. 

immediately from lemma 10.6, and the fact 

D is finite-dimensional over the scalar 

X is also infinite-dimensional over D. 

10.8 Lemma. Let J be a separating ideal in a Banach algebra 

and let X be an irreducible Banach left J-module. Then X is 
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finite-dimensional. 

Proof. Suppose X is infinite-dimensional, and let E be the 

set of all a in J such that a.X is infinite-dimensional 

over the centralizer D of 	on X. By Corollary 10.7,  E is 

not empty, and for all a in E. a.X 4 W. and therefore 
Ja 	(0). By Proposition 7.59 there is therefore an element z 

of E such that for all a in J. az E E implies (Jaz) = 

(Jz) 	(0). Since z.X is infinite-dimensional over D, there 

exist x0 , x 1 , ..... in X such that z.x 0 , z.x 1  , •.... are 

linearly independent over D. By lemma 10.6, there is an 

element a of J such that az.x 1  , az.x2 , ..... are linearly 

independent over D and az.x0  = 0. But then az is in E, 

and therefore J.(z.x0 ) c(Jz).x0  = (Jaz).x0  = 	Since X 

is irreducible, this implies that z.x 0  = 0, which contradicts 

the linear independence over D of z.x0 , z.x 1 , ..... . X 

must therefore be finite-dimensional. 

The proof given above of lemma 10.8 differs only in detail 

from the first stage of the proof of Corollary 9 of [ksJ, in 

which it is shown that if J is a closed 2-sided ideal in a 

semi-simple Banach algebra A and J.X 10 for some 

infinite-dimensional irreducible left A-module, then there 

exists a sequence 	in A such that (Ja, 41  ..,..a 1 ) c 

(Ja.,.. ... a ) 	for all n. 

In the statement and proof of the following Theorem and 

its Corollaries, we use the notation of Theorem 1 0.3. 

10.9 Theorem. For each i = 19 •...., n, the following are 

equivalent : 
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M/LfJ is a primitive Banach algebra 

M/LrJ is finite-dimensional 

A/Pc is finite-dimensional 

(k) P, is a primitive ideal of A. 

If, for some i, these conditions are not satisfied, then 

is a topologically simple radical Banach algebra. 

Proof. Only the proof of the implication (1) implies (2) uses 

the fact that J is a separating ideal. The rest of the proof 

consists of entirely routine arguments. 

Suppose ML/L1 J is a primitive algebra, and let X be 

an irreducible left (M,'LrJ)-module such that (0) ={b 

M/Lc'J : b.X = 	By Corollary 2.20, we can assume that 

X is a Banach (M/Lr °J)-module. By Theorem 10.3 (9) and 

lemma 7.6 9  M/L(\J isa separating ideal of AL(\J. By 

lemma 10.8, X is therefore finite-dimensional. Since MC/LrJ 

is isomorphic to a subalgebra of BL(X), it follows that 

M/LrJ is finite-dimensional. 

Now suppose that M/L'J is finite-dimensional, and 

define S : A—BL(M/'Lt'J) by 

S(a)(b + LrJ) = ab + LrJ 	(a 6 A,b EM ). 

Then Ker(S) = {aC A : aM:CLr%Jt = P, and A/Pt is 

therefore isomorphic to a subspace of BL(M/L(\J) and so is 

finite-dimensional. 

The implication (3) implies (k) follows immediately from 

lemma 3.18. 

To prove the implication (k) implies (1), suppose P 	is 

a primitive ideal of A. Then (M + Pc)/ P is a non-zero 

2-sided ideal of the primitive algebra A/PC, and is therefore 

a primitive algebra. Since (M + 	 is isomorphic to 



M/PñM which, by Theorem 10.3 (5), is equal to M/L\J, 

this proves that MC/LrJ  is a primitive algebra. 

The final statement of the Theorem follows from lemma 

1 0.5. 

10.10 Corollary. Let J be a separating ideal of a semi-

simple Banach algebra. Then J is finite-dimensional. 

Proof. In this case, we have L = (0). If J 	(0), then J 

is non-nilpotent and, by lemma 2.12, each of the ideals 

..., 	is a semi-simple algebra and, by lemma 10.5,  is 

therefore primitive. By Theorem 10.9,  the direct sum K of 

M1 9 ....., M 	is therefore finite-dimensional. By Corollary 

2.18, K has an identity element e and e commutes with 

every element of A. Let a be any element of J. Then, for 

each i, (a - ea)N = (a - ea)eM = (0). Thus a - ea is in 

PV\ ..... (\PrJ =L\J 	(0), and therefore J = eJçK. It 

follows that J = K is finite-dimensional. 

In the proof of Corollary 9 of [ksj, it is shown that if 

J is an infinite-dimensional closed 2-sided ideal in a semi-

simple Banach algebra, then there is a sequence 	in A 

such that (Ja.1  .....ai(Ja.....a 1  ) for all n. This is 

equivalent to Corollary 10.10, which is not therefore a new 

result. The proof of Corollary 9 of [453 uses lemma 10.6, as 

described in the remark following lemma 10.8, and lemma 3.2 

of [51] which states that if X0 , X 1 9 XL, ..... are non- 

equivalent finite-dimensional irreducible left A-modules, then 

there is an element c of A such that c.X 0  = 	and c.X1 

= X1 , c,X1  = X, ..... . Use of this second lemma has been 
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avoided in this section, by using lemma 10.1. 

10.11 Corollary. Let P be the Jacobson radical of a Banach 

algebra A and let J be a separating ideal of A. Then Jr'.R 

is the Jacobson radical of J and J/JrR is finite-

dimensional. 

Proof. By lemma 2.12, JrR is the Jacobson radical of J. and 

by Corollary 2.10, A/P is semi-simple. By lemma 7.6, 

((J + R)/ P) 	is a separating ideal of A/'R. By Corollary 

10.10 9  it is therefore finite-dimensional. But J/Jri P is 

isomorphic to (J + R)/ R, and J/Jr\R is therefore 

finite-dimensional. 

10.12 Corollary. Let A be a Banach algebra. Then the 

following statements are equivalent : 

A contains a separating ideal with non-nilpotent Jacobson 

radical 

A contains a non-nilpotent radical separating ideal N 

and a non-primitive closed prime ideal P such that N(\P 

is the prime radical of N and N/ MAP is a topologically 

simple radical Banach algebra. 

The term 'radical separating ideal' should be interpreted 

as meaning a separating ideal contained in the Jacobson 

radical. 

Proof. Let J be a separating ideal with non-nilpotent 

Jacobson radical. Then LrJ-Pf\J, where R is the Jacobson 

radical of A. If all the prime ideals P,, ....., P, are 

p±'imitive, then 	tçP 1 r • .... t O P ,(\J = LAJ. Thus for some 

i, PL  is not primitive. Let N = M 	and P = P. Then, by 



Theorem 10.9 9  M/MrP = M/LrJ is a topologically simple 

radical Banach algebra. By Corollary 2.10, the Jacobson radical 

of A/LriJ is R/LAJ. Thus M/L(\JcP/Lr\J, and therefore 

MR. By Theorem 10.3 (9) 9  M is therefore a radical separating 

ideal of A. By Theorem 10.3 (5) 9  Mr',P = MAL, which is the 

prime radical of M, by lemma 3.12. 

The implication (2) implies (1) is obvious. 

10.13 Corollary . Let A be a Banach algebra in which every 

closed proper prime ideal is primitive. Then every separating 

ideal of A has - nilpotent Jacobson radical. 

10.14 Corollary. There exists a commutative Banach algebra 

with a non-nilpotent radical separating ideal if and only if 

there exists a commutative topologically simple radical.Banach 

algebra. 

Proof. If A is a commutative topologically simple radical 

Banach algebra, then (Aa) = A for all non-zero elements a 

of A. Thus A is a separating ideal of itself. 

Corollary 10.12 shows that there exists a separating ideal 

with non-nilpotent Jacobson radical if and only if there exists 

a topologically simple radical Banach algebra which is a 

separating ideal of itself. A non-commutative topologically 

simple radical Banach algebra may or may not be a separating 

ideal of itself. It is therefore possible that there exist no 

separating ideals with non-nilpotent Jacobson radicals even if 

there does exist a non-commutative topologically simple radical 

Banach algebra. 



Let A be a commutative Banach algebra and let T be the 

regular representation. of A on itself, which is the 

homomorphism of A into BL(A) defined by 

T(a)x = ax 	(a, x 6 A). 

A is singly generated if there is an element u of A 

such that A is the only closed subalgebra of A containing 

u. In this case, the closed ideals of A are precisely the 

closed invariant subspaces of the operator T(u). It follows 

that if A is a singly generated topologically simple radical 

Banach algebra, then the operator T(u) has no non-trivial 

closed invariant subspaces. It is an open question (the 

'invariant subspace problem') whether or not there exists a 

bounded operator on any infinite-dimensional Banach space with 

no non-trivial closed subspaces [663. 

If S is any bounded operator on a Banach space X, then 

a closed subspace Y of X is hyperinvariant for S if UYC 

Y for all U in BL(X) commuting with S. 

If A is any topologically simple commutative radical 

Banach algebra, and u is any non-zero element of A, then 

T(u) cannot have a non-trivial closed hyperinvariant subspace 

Y, since Y would then be a proper non-zero closed ideal of A. 

In [58, Lomonosov proved that every-non-zero compact 

operator on an infinite-dimensional Banach space has a non-

trivial closed hyperinvariant subspace. 

The following Definition was introduced by Alexander 

10.15 Definition. A compact Banach algebra is a Banach algebra 

A such that for each t in A, the mapping a—>tat  is a 

compact linear operator on A. 
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The Banach.algebra of all compact linear operators on a 

Banach space is a compact Banach algebra, and the disc algebra 

with convolution (see Example 4.2) is a commutative radical 

compact Banach algebra..Any closed subalgebra of a compact 

Banach algebra is a compact Banach algebra, and any quotient of 

a compact Banach algebra by a closed 2-sided ideal is a compact 

Banach algebra [ii. 

If A is a commutative topologically simple radical 

Banach algebra and t is any non-zero element of A, then the 

mapping a—>tat = ta is non-zero. By 	 theorem, 

quoted above, it is therefore non-compact. We therefore have 

the following results. 

10.16 Lemma, Let A be a commutative compact radical Banach 

algebra. Then A is not topologically simple. 

10.17 Theorem. Let A be a commutative Banach algebra such 

that the Jacobson radical P of A is a compact Banach 

algebra. Then every separating ideal of A has nilpotent 

Jacobson radical. 

Proof. Suppose A has a separating ideal J with non-

nilpotent Jacobson radical. Then, by Corollary 10.12, there 

exists a closed prime ideal P of A and a closed 2-sided 

ideal M of A such that MCR and M/Pr\M is a 

topologically simple radical Banach algebra. Since M/PrM 

is a compact Banach algebra, this contradicts lemma 10.16. 
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11. Applications to epimorphisms and the uniqueness of norm 

problem. 

This section begins with •a proof of the uniqueness, of. the 

complete norm topology of a semi-simple Banach algebra which 

shows that this result follows directly from lemma 6.14 without 

any need for lemma 10.1 or lemma 10.6. 

11,1Theorem (Johnson c46:1)'. 

Let A be a semi-simple Banach algebra. Then A has a 

unique complete norm topology. 

Proof. We may assume without loss of generality that A is 

left primitive and that there is therefore an irreducible left 

Banach A-module X such.that a.X = t0j if and only if a = 0 

(see [68 9  p.714)). 

Suppose A does not have a unique complete norm topology, 

and let 11 -11, be a complete algebra norm on A not equivalent 

to the given norm , • Let J = a A : there exist a r, in 

A with I1 anI11—'  0 and )la,, - all .-70\. Then J is a non-

zero separating ideal of A. By Proposition 705 9  or by a direct 

application of lemma 6.14, there is an element z of A such 

that 	Jz 	(0) and for all a in A, either Jaz = (0) or 

(Jaz) = (Jz) . Suppose z.X is not 1-dimensional over the 

centralizer D of A on X, and let x and y be elements 

of X such that z.x and z.y are linearly independent over 

D. By lemma 2.159  there is an element a of A such that 

az.x = 0 and az.y 	0. But az.y / 0 implies Jaz j (0), and 

therefore, J.(z.x) (Jz) • x = (Jaz).x = f0j. It follows that 

z.x = 0, which contradicts the linear independence over D of 

z.x and z.y. 
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z.X must therefore be 1-dimensional over D. Let x be 

any - element of X such that z.x 0. Then A.(z.x) = X and 

there is therefore an element a of A such that az.x = x. 

Let e = az. Then e.x = x and there is a linear mapping T 

from X into D such that 

e.y = T(y)x 	(y E: X). 

For all y in X, (e - e).y = e.(T(y)x) - T(y)x = 0. Thus e 

is a non-zero idempotent. Let h be the mapping from eAe 

into D defined by 

h(eae) = T(a.x) 	(a E A). 

It is easy to check that h is a well-defined 1:1 anti-

homomorphism of eAe onto D and that eAe is therefore a 

division algebra (i.e. e is a minimal idempotent). By lemma 

2.23, eAe is therefore finite-dimensional. The restrictions of 

Ii II, and ft I to eAe are therefore equivalent. Let a be in 

J. and let ja 	be any sequence in A such that 

and Ita.., - all —> 0. Then ea,e.—'70 in both norms, and 

therefore eae =0. But J is a 2-sided ideal of A. and 

therefore eAJAe = (0). Since A is a prime algebra, this 

implies that' e = 0 or J = (0). This is a contradiction, 

proving that A must have a unique complete norm topology. 

The fact that a primitive Banach algebra with minimal 

idempotents has a unique complete norm topology was proved by 

Rickart [68, p.731. 

The following lemma is well-known. 

11.2 Lemma. Let h be anepimorphism from a Banach algebra 

C onto a semi-simple algebra A. Then the kernel of h is 
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closed. 

Proof. The kernel of h is equal to the intersection of all 

the ideals Ii-_  (P) such that P is a left primitive ideal of 

A. Let P be any left primitive ideal of A and let X be an 

irreducible left A-module such that P = a C A : a.X = tofl. 
Then X may be regarded as a C-module by means of the 

definition 

c.x = h(c).x 	(c (-C, x 	X). 
- i 

X is then an irreducible C-module and h (P) = c 6 C : c.X 

= 	is therefore a primitive ideal of C. By Corollary 2.21 9  

h 1 (P) is closed. The kernel of h is therefore closed. 

Alternative proofs of lemma 11.2 using different 

characterisations of semi-simplicity are given in [68, p.741 

and [9, p.1311. The following Corollary of Theorem 11.1 and 

lemma 11.2 is also well-known. 

11.3 Corollary. Let h be an epimorphism from a Banach algebra 

C onto a Banach algebra A. Then the separating space of h is 

contained in the Jacobson radical of A. 

Proof. Let R be the Jacobson radical of A and let Q 

denote the natural mapping of A onto A/R. By lemma 11.2, 

the kernel of Qh is closed, and we may therefore define a 

complete algebra norm 	on A/P by 

IQhc 	= flc + Ker(Qh)I 	Cc € C). 

By Theorem 11.1 9  there is a constant M)O such that 

IIQhcfl ( MflQhc1 1 	MllctI 	(c € C). 

Qh is therefore continuous, and, by lemma 6.2 9  the separating 

space of h is therefore contained in R. 
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Let A be a Banach algebra and let h be an epimorphism 

from a Banach algebra onto A. By Corollary 7.3 (with A = B), 

the separating space. (h) of h is a separating ideal of 

A. By Corollary 11.3, 	(h) is contained in the Jacobson 

radical of A. Suppose 	(h) is not nilpotent. By the results 

of the previous section, there is then a closed non-primitive 

prime ideal P of A and a closed 2-sided ideal M of A 

such that 	(h).P and M./PrM is a topologically simple 

radical Banach algebra. Let Q denote the natural homomorphism 

of A onto the prime Bànach algebra A/P. Then Qh is 

discontinuous. It follows that there is an epimorphism h 

from a Banach algebra onto a Banach algebra such that (S'(h) 

is not nilpotent if and only if there is a discontinuous 

epimorphism from a Banach algebra onto a prime Banach algebra. 

The following Theorem follows immediately from Corollary 

10.12. 

1 1 .4 Theorem. Let A be a semi-prime Banach algebra 

satisfying either of the following conditions : 

A has no non-zero radical minimal-closed 2-sided ideals 

Every proper closed prime ideal of A is primitive. 

Then every epimorphism from a Banach algebra onto A is 

continuous and A has a unique complete norm topology. 

The open questions suggested by the results so far may be 

formulated as follows : 

Is the separating space of an epimorphism from one Banach 

algebra onto another always a nilpotent ideal? 

Is every epimorphism from a Banach algebra onto a semi- 
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prime Banach algebra continuous? 

Is every epimorphism from a Banach algebra onto a prime 

Banach algebra continuous? 

(k) Does every semi-prime Banach algebra have a unique complete 

norm topology? 

Is every epimorphism from a Banach algebra onto a semi-

prime Banach algebra with a unique complete norm topology 

continuous? 

Is the kernel of an epimorphism from a Banach algebra onto 

a semi-prime Banach algebra always closed? 

If the answer to any of these questions is 'no', then we 

may conclude that there exists a topologically simple radical 

Banach algebra. As has already been observed, questions (1), (2) 

and (3) are equivalent. If the answer to (6)is 'yes', then 

the argument used in the proof of Corollary 11.3 shows that 

the answer to (5) is then 'yes', and that (2) and (k) are then. 

equivalent. 

Another possibility suggested by these results is that there 

is a semi-prime Banach algebra with a non-unique complete norm 

topology if and only if there is a topologically simple radical 

Banach algebra with the same property. The following Theorem 

is a weaker result than this. 

11.5 Theorem. The following statements are equivalent. 

There exists a semi-prime Banach algebra with two non-

equivalent complete algebra norms 

There exists a prime algebra with two non-equivalent complete 

algebra norms and a non-zero 2-sided ideal I such that the 
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closures of I in both norms are topologically simple radical 

Banach algebras. 

Proof. Let A be a semi-prime algebra with two non-equivalent 

complete algebra norms fl 	and II. U, and let J be the 

separating space of the identity mapping on A regerded as an 

epitnorphism from (A,IItI,) onto (A, tin). By Theorem 1 0.3, 

with L = (0), there exists a non-zero minimal-closed 2-sided 

ideal M of (A, PtI L) and a prime ideal P of A such that 

MçJ and P = a E. A : aM = (o). P is clearly closed in 

both norms, and since J. P, the quotient norms induced by 

• ) 	and 11-11 2  on the prime algebra A/P are non-equivalent 

complete algebra norms. We may therefore assume that A is 

already a prime algebra. By Corollary 11.3, M is a radical 

ideal. Repeating the above argument with the norms interchanged 

gives a non-zero radical minimal-closed 2-sided ideal. N of 

(A l  II fl). Let I = NAM. Then (0) # NM ci, and I is therefore 

• 	 dense in N and 	UtI-dense  in M as required. 

The implication (2) implies (1) is obvious, since a prime 

algebra is also semi-prime. 

If, in the notation of the proof of Theorem 11.5,  N = 

then I is a topologically simple Banach,with a non-unique 

complete norm topology. 
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12. Applications to derivations. 

This section concentrates On the following questions : 

(i) Is the separating space of a derivation on a Banach algebra 

always a nilpotent ideal? 

(2) Does a derivation D on a Banach algebra A always 

satisfy the condition D(P)çP, for every primitive ideal P 

of A? 

For the sake of completeness, proofs are included of 

several known results. 

The first lemma applies to a derivation on an algebra over 

an arbitrary field. 

12.1 Lemma. Let D be a derivation on an algebra A and let 

I be a 2-sided ideal of A. Then, for any n elements a 1  , .. 

..., a of I, D ' (a 1 .....a,) - n!(Da 1 ) ... ..( Da,1 ) is in I. 

Proof. We first show that if n>,2 and O(j<n, then 

D (a 1  .....a) € I 	(a1  , ....., a r%  6 I), 

where D°x = x, for all x in A. 

This is clearly true for n = 2, since 

D(a 1 a) = aDa + (Da, )a € I 	(a 1  , a E I). 

Suppose that it is true for some n)2. Then, for any n + I 

elements a 1 , ....., a,+, 	of I. and for O(j<n + 1 9  

Leibnitz's formula gives D(a 1 ....a441  ) = D 	 )) 

= I (t) t 4
(a,,,,,,a,4.1). By the inductive hypothesis, 

D 	(a1 .....a. 41  ) is in I for I < i $j.  This proves that 

D (a, .....a 41  ) is in I. 

We now prove the statement of the lemma by induction on n. 

It is obviously true for n = 1. Suppose that it is true for 
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some n>,1,  and let a1, ....., a,+, be any n + 1 elements 

of I. Then 

IA+t fl 
D 	(a1.....an+ 	

n 

	

i)= Li)DL(a.....a)D 	L(an+I), 

and the only term of the right hand side which is not in I is 

fr4.i' t• 	 ft 
ID (a 	 ) = (n + 1)D 

By the inductive hypothesis, D't (a 1 .....a.) - 

is in I, and so, D 
4-1I

(a 1  •....a 41  ) - ( n + 1)! (Da, )....(Da n11  ) 

= D 	 ) - (n + 1)D' (a 1 	 ) + 

(n + 1)(D"(a, •....a,) - n'(Da 1 ).....(Da,,))Da. +., 	is in I. 

This completes the proof. 

The special case of this lemma, in which a= •.... = a,, 

is proved in [75J, and the proof given above involves no new 

ideas. 

12.2 Theorem (Sinclair [75]). 

Let D be a continuous derivation on a Banach algebra 

and let P be a primitive ideal of A. Then D(P) is 

contained in P. 

Proof. By Corollary 2.11, every right primitive ideal of A is 

an intersection of left primitive ideals. We can therefore 

assume without loss of generality that P is left primitive 

and, by Corollary 2.20 9  that there is an irreducible Banach 

left A-module X such that P = 	A : a.X = JOI J 	and 
11 a. x 	11 all )x, for all a in A and x in X. 

Suppose D(P) is not contained in P, and let a be any 

element of P such that Da is not in P. Then there is a 
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non-zero element y of X such that Da.y 0. But then 

ADa.y = X. and there is therefore an element b of A such 

that bDa.y = y. Since D(ba) = bDa + (Db)a and a is in P, 
1 

it follows that (D(ba)) .y = Y. for all n. Since ba is in 

P, lemma 12.1 implies that D ((ba)") - n 1 (D(ba))4  is in P, 

for all xi. But then, 

I = IIylI '  Ij(D(ba)).yH 
= 

ityA 	lliD((ba)).yll 	IjDlHIbaIt 

which is impossible, since (nt) ItDUJIbaI('— 0 as n—>°<>. 

12.3 Corollary (Singer and Weriner [801). 

Let A be a commutative Banach algebra and let D be a 

continuous derivation on A. Then D(A) is contained in the 

Jacobson radical of A. If A is semi-simple, then D = 0. 

Proof. This is the proof given in [75]. 

Let M be a maximal modular (= primitive) ideal of A. 

Then A/M is isomorphic to R or to C . By Theorem 12.2 9  

D(M) is contained in M. We may therefore define a (real 

linear) derivation Do on AM by 

D0(a+M)=Da+M 	(aEA). 

It is therefore sufficient to prove that there are no non-zero 

real linear derivations on R or on C , and this is obvious.. 

12.4 Lemma. Let D be a derivation on an algebra A and let 

I be a nilpotent left ideal of A such that I '  = (0). Then 

nD(I) is contained in the prime radical L of A. 

Proof. Let a be in I, and let r 1  , ....., r 	be any n 

elements of A. By lemma 3.11, I is contained in L and, by 
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lemma 12.1, D' (r 1 a.....ra) 

in L. But, r 1 a.....ra = 0 9  

in L. n 1 (r,Da).....(rDa) 

any prime ideal of A. Then '  

is in P. Since L is equal 

n!Dr1a).....Drna 	is therefore 

and, for all i, D(rLa) - rDa is 

is therefore in L. Let P be 

(AnlDa c P, and therefore, nDa 
to the intersection of all the 

prime ideals of A, it follows that nDa is in L. 

12.5 Proposition. Let D be a derivation on a Banach algebra 

A and let L be the prime radical of A. Then D(L) is 

contained in L. 

Proof. Let I be any 2-sided nilpotent ideal. By lemma 12.4, 

D(I) is contained in L. By Corollary 3.24 9  L is equal to 

the sum of all the 2-sided nilpotent ideals. D(L) is therefore 

contained in L. 

By Corollary 7.4, the separating space of a derivation on 

a Banach algebra is a separating ideal. We may therefore apply 

the results of Section 10. 

12.6 Lemma. Let D be a derivation on a Banach algebra A. If 

the Jacobson radical of the separating space J of D is 

nilpotent, then J is nilpotent. 

Proof. Let R be the Jacobson radical of A. By Corollary' 

10.11, Rf\J is the Jacobson radical of J and J/RCJ is 

finite-dimensional. Let Q be the natural mapping of A onto 

A/RrJ, and suppose J is not nilpotent. Then J 4 R(\J, and 

QJ is therefore non-zero. - By lemma 2.18 9  there is an element 

e of J such that Qe is an identity element for QJ. Let 

e 1 , •...., e,. be elements of J. such that Qe 1  , ....., Qerl 
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is a basis of QJ. Then there exist continuous linear 

functionals fit •,•••, f 	on QJ such that 

rX 
Qa = 	f(Qa)Qe 	(a C J). 

In particular, 

ea - 	f(Qea)e E RJCL 	(a EA). 

Let 	be a sequence in A such that 	 and 

Da,—>e. Then 

D(e) _ 	ç.(Qea)D(e) E D(L)L 	(m = 1 9  2 9  ..), 

by Proposition 12.5. For i = 1 9  ....., n,. f 1 (Qea,,)—>O. Since 

D(ear ) = eDa,11  + ( De)a.' -5e', it follows t :hat e 	is in the 

closure of L. By lemma 3.17,  L is contained in R, and 

therefore Qe = (Qe)2  = Qe = 0, which is a contradiction. 

12.7 Corollary. Let D be a derivation on a Banach algebra A 

such that the separating space J of D is not nilpotent. 

Then there is a closed non-primitive prime ideal P of A 

and a closed 2-sided ideal M of A such that M/P(M is a 

topologically simple radical Banach algebra. 

Proof. Suppose J is not nilpotent. Then, by lemma 12.6, the 

Jacobson radical of J is not nilpotent. Since J is a 

separating ideal of A, the required result therefore follows 

immediately from Corollary 10.12. 

12.8 Corollary. Let A be a semi-prime Banach algebra 

satisfying either of the following conditions 

(1) A has no non-zero radical minimal-closed 2-sided ideals 
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(2) Every proper closed prime ideal of A is primitive. 

Then every derivation on A is continuous. 

12.9 Corollary (Johnson and Sinclair [51),. see also 

Every derivation on a semi-simple Banach algebra is 

continuous. 

12.10 Theorem. Let D be a derivation on a Banach algebra A 

such that the separating space J of D is nilpotent. Then 

D(P) is contained in P. for all primitive ideals P of A. 

Proof. Let L be the prime radical of A and let Q be the 

natural mapping of A onto A/ T. Since J is nilpotent, it 

is contained in L. By lemma 6.2, QD is therefore continuous. 

By Proposi tion 12.5, (QD)(L) = (0). By the continuity of QD, 

QD(L) = (0), and D(L) is therefore contained in L. We may 

therefore define a derivation D 0  on A/ L by 

Dja+L) =Da+L 	(aA). 

By lemma 6.3, D0  is continuous. Let P be a left primitive 

ideal of A. Then, by lemma 3.17 9  L is contained in P and, 

by lemma 2.9 1  P/L is therefore a left primitive ideal of 

A/ L. By Theorem 12.2 9  D.(P/L) is contained in P,'L, and 

D(P) is therefore contained in P. By Corollary 2.11, every 

right primitive ideal is an intersection of left primitive ideals. 

It therefore follows that D(P) is contained in P for all 

the primitive ideals P of A. 

12.11 Corollary. If there is a derivation D on a Banach 

algebra A, and a primitive idea]. P of A such that D(P) 

is not contained in P, then there is a topologically simple 
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radical Banach algebra. 

12.12 Corollary. Let D be a derivation on a commutative 

Banach algebra A such that the separating space J of D 

is nilpotent. Then D(A) is contained in the Jacobson radical 

R of A. 

Proof. Let N be a maximal modular (= primitive) ideal of 

A. Then, by Theorem 12.10 9  D(M) is contained in M. It follows 

that D(R) is contained in R. We may therefore define a 

derivation D 0  on A/R by 

D 0 (a + n) = Da + P 	(a E A) . 

Since J is contained in P, D 0  is continuous. By Corollary 

12.3 9  D0  = 0, and D(A) is therefore contained in R. 

12.13 Corollary. If there is a derivation D on a commutative 

Banach algebra A such that D(A) is not contained in the 

Jacobson radical of A, then there is a commutative 

topologically simple radical Banach algebra. 
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13. Arens-Hoffman extensions. 

It is known that every Arens-Hoffman extension of a 

commutative semi-simple Banach algebra with identity has a 

unique complete norm topology (Lindberg [571). The main purpose 

of this section is to give an easy proof of this result, using 

the theory of separating ideals, and to extend it to cover 

Arens-Hoffman extensions of a wider range of Banach algebras. 

We begin by describing what is meant by an Arens-Hoffman 

extension of a Banach algebra. 

Let A be a commutative algebra with identity, and let 

A[t3 denote the algebra of all polynomials in the 

indeterminate t with coefficients in A. Let b(t) = t + 

b, 1  t 	+ ..... + b, t + b0  C A[t] be a monic polynomial of 

degree n) 2, and let B. = A[tl/(b(t)), where (b(t)) = 

A[t]b(t) is the principal ideal of ALt]  generated by b(t). 

Then B is a commutative algebra with identity, and the map 

from A into B defined by 

i(a) = a + (b(t)) 	(a E A) 

is an algebra monomorphism. The important feature of B is that 

it contains 'a solution of the polynomial equation b(t) = 0. 

However, for the purposes of this section, it is only the 

A-bimodule structure of B which is important. 

An A-bimodule is a left A-module X which.is  also a 

right A-module in such a way that the right and left module 

operations satisfy the consistency condition 

a.(x.b) = (a.x).b 	(a, b 	A, x € X). 

A. linear mapping T from an A-bimodule X into an A-bimodule 

Y is an A-bimodule homomorphism if 

T(a.x) = a.Tx and T(x.a) = (Tx).a 	(a E. A, x E X). 
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B = A[t3/(b(t)) is clearly an A-bimodule, with the module 

operations defined by 

a.x = i(a)x = x.a 	(x E B. a C A). 

For any algebra A, the notation A(n) will be used for 

the linear space direct sum of n copies of A, regarded as 

an A-bimodule by means of the definitions 

(a 1 ,....,a,).a =(a 1 a,.....,a,%a) 	(a, a 1 , ...., aEA). 

13.1 Lemma, Define T : A(n)—)'B = A[t3/'(b(t)) by 

T((a 1  ,.....,a,)) = a 1  + a 2,t + ..... + a,t" 	(a1  ,.....a€A), 

where t = t + (b(t)). Then T is a 1:1 A-bimodule 

homomorphism from A(n) onto B. 

Proof. It is obvious from the definitions that T is an 

A-bimodule homomorphism, and from the identity t= -(b 0  + b 1  t 

+ ..... + b 	t 	), that T is onto. If T((a ,.....,a)) = 0 9  

then there exists an element c(t). of A[tj  such that 

a 1  + a2t + ..... a,t'' = c(t)b(t). Since b(t) is monic and 

of degree n, it follows that c(t) = 0. But then, a 1 = ..... = 

a, = 0. T is therefore 1:1. 

The module structure of B is the essential feature used 

in the construction of the Arens-Hoffman norms which are 

described in the following lemma. Proofs of the various 

statements made in the lemma can be found in [3]. 

13.2 Lemma, Let A be a commutative unital Banach algebra. 

Then there exist real numbers s)O such that 

ftbII + Ilb 1 U6 + ..... + IIb,II s' 	< s". For any such s, define 
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tLI 	on B = At/(b(t)) by 

Ha + a 1 t + ..... + at 	us 	
:11aii s 
	

(a1  ,...,. a € 

Then 11-11 S  is a complete algebra norm on B and the 

monomorphism a—,a + (b(t)) from A into B is an 

isometry. 

The Banach algebras (B,11-11 5 ) are called Arens-Hoffman 

extensions of A. 

The module structure of B is used in [613 to prove that 

if every derivation on a Banach algebra A is continuous, 

then every derivation on any Arens-Hoffman extension of A is 

continuous. 

In the following Theorem and its Corollaries, we consider 

Banach algebras satisfying the following two conditions 

A has no non-zero finite-dimensional nilpotent ideals 

A has no infinite-dimensional separating ideals. 

These are precisely the conditions of Theorem 2 of [451 

(see Section 5, Theorem 5.1). As shown in [453, they imply 

that every separating ideal J of A contains an idempotent 

e such that J = Ae. To prove this, note that, by lemma 2.12 
(4- .  

and Corollary 3.10, the Jacobson radical of J is,nilpotent 

ideal of A. By condition (1), - J is therefore semi-simple. By 

Corollary 2.18, it therefore contains an identity element e. 

Conditions (1) and (2) are satisfied by semi-simple Banach 

algebras, semi-prime Banach algebras with no radical minimal-

closed ideals, semi-prime Banach algebras with no non-primitive 

proper closed prime ideals, L 1 (0,1)and.Banach algebras of 

formal power series. 
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13.3 Theorem. Let A be a Banach algebra with no non-zero 

finite-dimensional nilpotent ideals and no infinite-dimensional 

separating ideals. Let 11- 11 be any complete norm on A(n) 

such that, for all• a in A, the module operations 

x—a.x and x—x,a 	(x E. A(n)) 

are continuous. Then 11 -11 is equivalent to the norm 11 

defined on A(n) by 

II(a, , 	 = max 'tja,, •...., IIaJl 	(a 1 , •..., a,., e A). 

Proof. For each i, define PL : A(n)—'A by 

, ....., a,.)) = a 	(a 1 , ....., a, C A). 

Then each pj  is a continuous A-bimodule homomorphism from 

(A(n),flU.0) onto A. Let S denote the identity map from 

(A(n),II•Jt) to (A(n) 9 1I.IL,) and suppose that S is not 

continuous. Then p(J(S) j (0) for some i. 

For each b in A, let T and U6 denote right and 

left module multiplication by b on (A(n),111I). Then T 

and Ul are continuous and, for all b in A, 

(pS)(Tx) = (pSx)b and (pS)(Ux) = b(pSx) 	(x EA(n)). 

By Proposition 7.2, the separating space f(pS) of P I S is 

a separating ideal of A. Because of the conditions on A, 

Q4 (pS) is therefore finite-dimensional and contains an 

idempotent ec such that Ae j  = 	(pS). 

Let X j  = ( a 1  ,.....,a) E A(n) : a 	eA, j = 1 9 000 9  n. 

Then X 	is finite-dimensional, and the restrictions of 11 U 

and ?-L to X are therefore equivalent. Let txt be a 

sequence in A(n) such that 	 0 and pSx,,.—ie in 

A. Then e.x,,  is in X q  for all m, and 	 therefore 

converges to 0 in both norms. But then, e = e = 

urn e((pS)(x)) = urn (pS)(e.x,) = 0, and so 	(pS) 
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o}. By lemma 6.29 (PL Q;(S)) = 	(pS) = (0), which is a 

contradiction. S must therefore be continuous and, by Banach's 

isomorphism theorem, 11- 11 and 11 -11, are therefore equivalent. 

13. 4  Corollary. Let A be a commutative unital Banach algebra 

with no non-zero finite-dimensional nilpotent ideals and no 

infinite-dimensional separating ideals. Then every Arens-

Hoffman extension of A has a unique complete norm topology. 

Proof. Let II' I!
/ 
 be any complete algebra norm on B = 

A[t]/(b(t)), where b(t) is of degree n. Define 11 H on 

A(n) by 

11(a 1  ,.....,a,)l = [a 1  + a.1 + ..... + afl 1' 	(a,,...,a,1  E A). 

By lemma 13.1  and Theorem 13.3,  it is sufficient to prove that 

for each a in A, the map a—a.x on (A(n),H() is 

continuous. To do this, let a and a1 , ....., a, be any 

elements of A. Then 

tIa.(a ,.....,a)l\ = 	(a + (b(t)))(4 1  4- ..... + at ' I 
a + (b(t))j Ua 1  + ..... + 

1k + ( b(t))11 ' 11 (a 1  ,.....,a)1I. This completes the proof. 

13.5 Corollary (Brown [10, Lindberg [57]). 

Let A be a commutative semi-simple Banach algebra with 

identity. Then every Arens-Hoffman extension of A has a 

unique complete norm topology. 
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Chapter Three 

JORDAN DERIVATIONS 

14. Introduction. 

Throughout this chapter, A will denote an algebra over a 

field F, such that the characteristic of F is not 2. 

The Jordan product e on A is defined by 

aobab+ba 	(a,beA), 

and a linear mapping D of A into itself is a Jordan 

derivation if 

D(ao b) = aoDb + (Da)° b 	(a, b € A). 

The main result of this chapter (Theorem 15.9)  is that if 

L is the prime radical of A, and D is a Jordan derivation 

on A, then 

D(ab) - aDb - (Da)b € L 	(a, b € A). 

It follows immediately from this that if A is semi-prime 

(i.e. L = (0)), then D is a derivation. In particular, every 

Jordan derivation on a semi-simple Banach algebra is a 

derivation, and therefore continuous, by Corollary 1 2.9. 

The restriction on the characteristic of F is necessary 

to avoid the case when A is commutative and satisfies the 

condition 2a = 0 for all a in A. In this case the Jordan 

product ao b = 2ab is zero, and all linear maps of A into 

itself are therefore Jordan derivations, but may not all be 

derivations. 
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15. Jordan derivations and the prime radical. 

Throughout this section, D will denote a Jordan 

derivation on A and L will denote the prime radical of A. 

The following notation will be used in order to simplify the 

algebraic computations which make up most of 'the proofs. 

d(a,b) = D(ab) - aDb - (Da)b 	(a, b € A) 

[a,b] = ab - ba 	 -(a, b E A) 

[a,b,c] = abc + óba 	 (a, b, c E A). 

D - is a derivation if and only if d(a,b) = 0 for all a 

and b in A. Recall that L is equal to the intrsection of 

all' the prime ideals of A. Let P be a prime ideal of A. We 

show that d(a,b) is in P for all a and b in A. The proof 

divides into two cases depending on whether or not [a,b] is in 

P. The first case ([a,b] C P) includes the case when A/P is 

commutative. 

The first two lemmas were proved (for rings) by Herstein, 

and are the starting point. for his proof that every Jordan 

derivation on a prime ring in which 2x = 0 implies x= 0 

is a derivation. 

15.1 Lemma (Herstein, [34). For all a, b and c in A, 

Da= aDa + (Da)a 

D(aba) = (Da)ba + a(Db)a + abDa 

D([a,b,c]) = [Da,b,c + [a,Db,c] + [a,b,Dc]. 

Proof. In the proof of (1) and (2) we use the fact that, 

ecause of the restriction on the characteristic of F, 2a = 0 

implies a = 0. 

For all a in A, 
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2Da2  = D(aoa) = aoDa + (Da)oa = 2(aDa + (Da)a). This proves 

(1). To prove (2), first note the identity 

xo(xOy) = xo(xy + yx) = x2 oy + 2xyx 	(x, y E A). 

From this we obtain 

2D(aba) = D(ao (aob)) - D(ao b) 

= a a D(a b) + (Da) o  (a a  b) - a2  o  Db - D o b 

= a2  o Db + 2a(Db)a + a(Da)b + abDa + (Da)ba + b(Da)a + 

(Da)ab + (Da)ba + abDa + baDa - a o Db - a(Da)b - 

baDa - (Da)ab - b(Da)a 

= 2(Da)ba + 2a(Db)a + 2abDa. 

To prove (3), replace a by a + c in (2). This gives 

D((a + c)b(a + c)) = (D(a + c))b(a + c) + (a + c)(Db)(a + c) + 

(a + c)bD(a + c) = D(aba) + [Da,b,cJ + [a,Db,c] + [a,b,Dc] + 

D(cbc). (3) follows on subtracting D(aba + cbc) from each 

side. 

Before stating the next lemma we introduce another 

notational device. This is the reversed product • on A 

defined by 

a.b = ba 	(a, b & A). 

The algebra obtained from A by reversing the product in 

this way will be denoted by rev(A) [9]. Since the Jordan 

products on A and rev(A) coincide, D is also a Jordan 

derivation on rev(A), 

15.2 Lemma (Herstein). For all a and b in A. 

d(a,b)ta,b = 0 

[a,bd(a,b) = 0. 

Proof. By (3) of lemma 15.1, 
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D([a,b,ab)) 	[Da,b,ab] + [a,Db,ab] + [a,b,D(ab. 

But [a,b,ab = (ab)t + aba, and therefore, by (1) and 

(2) of lemma 15.1, 

D([a,b,ab1) = abD(ab) + D(ab)ab + (Da)ba + a(Db)a + ab 2 Da 

= abD(ab) + D(ab)ab + (Da)bLa + ab(Db)a + a(Db)ba + abDa. 

By comparing the two expressions for D([a,b,abj), we get 

o = ( D(ab) 	(Da)b - aDb)ab - (D(ab) - aDb - (Da)b)ba 

d(a,b)[a,b]. 

(2) now follows from (1) by reversing the product. Thus, 

o = (D(b.a) - (Db).a - b.Da).(b.a - a.b) = [a,b]d(a,b). 

15.3 Corollary (Herstein). For all a, b and c in A. 

[c,bd(a,b) + [a,b]d(c,b) = 0 

[c,aJd(a,b) + [a,bJd(c,a) = 0. 

Proof. By (2) of lemma 15.2, 

[a + c,bd(a + c,b) = 0. But [a + c,b] = [a,bTj + [c,b] and 

d(a + c,b) = d(a,b) + d(c,b). Thus, since [a,bjd(a,b) = 0 

[c,bjd(c,b), we have [c,b]d(a,b) + [a,b]d(c,b) = 0, as 

required. 

Now i..terchange a and b in (1). This gives 

[c,a3d(b,a) + [b,ald(c,a) = 0. But d(a,b) + d(b,a) = D(aob) - 

ao Db - Da- b = 0, and therefore d(b,a) = -d(a,b). Since 

[b,a] = [-a,b], this proves (2). 

15.4 Lemma. Let P be a prime ideal of A and let a and b 

be elements of A such that 

[a,cb € P 	(c E A). 

Then b is in P, or Ca,c 	is in P for all c in A. 

Proof. Suppose [a,c] 4 P for some element c of A, and let 
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x be any element of A. Then, [a,cxb = (acx - cxa)b + c(xa - 

ax)b = [a,cxb + c [x,o,]b E P. Thus [a,cAb 9 P and therefore 

b is in P. 

15.5 Lemma. Let P be a prime ideal of A. If [a,bJ is in 

P, then d(a,b) is in P. 

Proof. We first consider the case when A,'P is non- 

commutative. 

Suppose that [a,b] is in P. Then, by Corollary 15.39 

[c,b]d(a,b) (. P and [c9a3d(a,b) E P 	(c E A). 

It follows from lemma 15.4, that if there is an element c of 

A 	such that [c,a] .P or Lc,b1 P, then d(a,b) € P. 

Now suppose that Eg,a and [c,b\ are in P for all c 

in A, and let c and e be any elements of A such that 

Lc,eJ 4 P. Then, [e,bT and [a + e,bj are in P and [c,e 

and [c,a + e are not in P. It follows that d(e,b) and 

d(a + e,b) are in P, and that d(a,b) = d(a + e,b) - d(e,b) 

is therefore in P. 

Now suppose that A/P is commutative. By lemma 15.2 9  

we have [a,bjod(a,b) = 0 and therefore, since D is a 

Jordan derivation, 0 = [a,bod(a,b) + D([a,b])° d(a,b). Since 

AZP is a commutative integral domain, this implies that 

D([a,b])d(a,b) is in P. and that, therefore, d(a,b) is in 

P or D([a,b1) is in P. But, 

2d(a,b) = D(ab + ba) + D(ab - ba) - 2(aDb + (Da)b) 

D( Ea, b3) + (aoDb - 2(Da)b) + ((Da)°b - 2(Da)b) € P, 

if D([a,bTI) is in P. Thus in either case, d(a l b) E P and the 

proof is complete. 
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The final three lemmas are concerned with the case 

[a,b] 	P. Lemma 15.6 is simply part of the Oalculation needed 

to prove lemma 15.7. 

15.6 Lemma. For all a, b and x in A, 

D([a,b]x) = (D(ab) - bDa - (Db)a)x + [a,b]Dx + xd(a,b) 

D(x[a,b]) = x(D(ab) - bDa - (Db)a) + Dx[a,b] + d(a,b)x. 

Proof. Note that [a,b]x = [t,b,x - xoba. Thus, by (3) of 

lemma 15.1, D([a,b]x) = D([a,b,x]) - D(xba) 

= [Da,b,x) + [a,Db,x + [a,b,Dx] - xD(ba) - D(ba)x - (Dx)ba - 

baDx 

= x(bDa + (Db)a - D(ba)) + ((Da)b + aDb - D(ba))x - (Dx)ba - 

baDx + abDx + (Dx)ba. 

Since D is a Jordan derivation, we have (Da)b + aDb - 

D(ba) = D(ab) - (Db)a - bDa and bDa + (Db)a - D(ba) = d(a,b), 

and therefore D([a,b]x) = xd(a,b) + (D(ab) - bDa - (Db)a)x + 

[a,b]Dx, as required. 

(2) may be proved by a similar argument, or by reversing 

the product. 

15.7 Lemma. For all a, b and c in A, 

[[a,b],c,d(a,b)] = 0. 

Proof. The idea of the proof is to evaluate D([a,b]c[a,b]) in 

two different ways and then obtain the required result from 

lemma 15.2 and the resulting identity. 

Firstly, by replacing x by [a,bc in (2) of lemma 15.6 

we get D([a,b)c(a,b) = d(a,b)Ea,b]c + D(a,b]c)[a,b]+ 

[a,bc(D(ab) - bDa - (Db)a) = Ea,biDcEa,b1 + 

LD(ab)-bDa-(Db)a,c,Ea, 1 1, by lemma 15.2  and lemma 15.6 (i). 
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We now observe that D([a,b]) = (D(ab)-bDa-(Db)a) + d(a,b). 

Thus, D([a9b3cEa9b]) = [a,bJDc[a 9 b3 + D([a,b3)c[a,b] + 

[a,bcD([a,b3) - [d(a,b),c,,b]] 

= D([a,bca,b3) - [d(a,b),c, Ca,Q , by lemma 15.1 (2). 

The result now followson subtracting D(Ua,bc[a,bJ) from 

each side. 

The final lemma is similar to [36 9  lemma 3,10]. 

15.8 Lemma. Let P be a prime ideal of A. Then [a,c,b] = 0 

for all c in A implies a C P or b C P. 

Proof. Let h and k be arbitrary elements of A. Then 

ahakb + bhaka = 0. 

But akb = -bka and bha = -ahb, and therefore 2ahbka = 0. 

Thus aAbAa CP and so a P or b E P. 

15.9 Theorem. Let D be a Jordan derivation on an algebra A 

over a field F, such that the characteristic of F is not 2, 

and let L be the prime radical of A. Then D(ab) - aDb - 

(Da)b is in L. for all a and b in A. 

Proof. Let a and b be any elements of A and let P be 

any prime ideal of A. By lemma 15.7 9  [[a,b],c,d(a,b) = 0 9  

for all c in A. By lemma 15.8, either [a,b3 C P or d(a,b) 

C P. But, by lemma 15.5, [a,b'i C P implies d(a,b)EP. Thus, 

in either case, d(a,b)CP. Since L is the intersection of all 

theprime ideals of A, this completes the proof. 

15.10 Corollary. If A is semi-prime, then D is a 

derivation. 

Proof. By Proposition 3.9, A is semi-prime if and only if L 
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= 	(0). If L = 	(0), 	then D(ab) - aDb - (Da)b =0, for all 

a 	and b in A,. and so D 	is a derivation. 

1 5.11 Theorem. Let D be a Jordan derivation on a semi-simple 

Banach algebra. Then D is a continuous derivation. 

Proof. This follows immediately from Corollary 15.10, 

Corollary 12.8, and the fact that any semi-simple algebra is 

semi-prime. 
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Chapter Four 

INVARIANT STATES ON BANACH ALGEBRAS 

16. Introduction. 

Let A be a complex unital Banach algebra, let G be a 

group and let T be a representation of G on A by isometric 

automorphisms (see Definition 4.6). This chapter is concerned 

with the relationship between two conditions which the triple 

(A,G,T) may satisfy, both of which are expressed in terms of 

the G-invariant states of A. 

Let At denote the dual space of A. An element f of 

A' is a state if IIffl = I = f(i), and the state space of A 

is the set D(A) of all states of A, with the weak*  topology. 

D(A) is non-empty, convex and compact (see [7, p.15]). 

16.1 Definition. A linear functional f on A is G-invariant 

if 	 f(g.a) = f(a) 	(a € A, g E G), 

where, as in Section li, 

g.a = T(g)(a) 	(a € A, g € G). 

The set of G-invariant continuous linear functionals on 

A will be denoted by A'(G), and the set of G-invariant 

states by D(A,G). 

It is clear that AI(G) is a weak*  closed subspace of A' 

and that D(A,G) is a compact convex subset of D(A), 

although it may be empty (see Example 16.3), 

The two conditions on (A,G,T), with which this chapter is 
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concerned are defined in Section 18 ((A,G,T) is 

M-asymptoticallY abelian) and Section 19 (D(A,G) is a 

simplex). The rest of this section consists of three examples, 

all of which, as will become apparent later, satisfy both of 

the conditions. The first example also serves to introduce the 

terminology of amenable groups. 

16.2 Definition. Let G be a group and let f°(G) denote the 

C*_algebra of all bounded complex-valued functions on G. A 

state M on f°( G) is a 2-sided invariant mean if, for all 1' 

in f°( G), M(5f) = M(f) = }'l(f), where 3f and f 	are the 

left and right translates of f, defined by 

	

3f(x) = f(gx) and f(x) = f(xg) 	(x C G). 

If G is a finite group with n elements, then 

clearly has a 2-sided invariant mean defined by 

M(f) = L f(g) 	(f 

On the other hand, there do exist groups G such that fA(G) 

does not have a 2-sided invariant mean. One such example is the 

free group on 2 generators (see, for example, [37, p.236]). 

A group G such that 1o(G) does have a 2-sided 

invariant mean is said to be amenable. All abelian groups are 

amenable [37, p.2313. 

A state M on l°° (G) is inversion invariant if 

M(f) = M(f) 	(f C f°( G)), 

where ' (g) = f(9 1 ) 	(g C G). If G is amenable, then it 

has a 2-sided and inversion invariant mean [37). 

16.3 Example. Let H be any group and let G = HXH. Define 
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T:G --> BL(f°(H)) by 

T((h,k))(f)(x) = f(h xk) 	(h, k, x E H, f E f°( H)). 

Then T is a representation of G on f(H) by 

isometric automorphisms and the G-invariant states. of l °°(H) 

are precisely the 2-sided invariant means on f °(H). If H is 

any non-amenable group, then the set D(f°( H),G)of G-invariant 

states is empty. 

The next example is a simplified version of a mathematical 

structure used in the C*_algebra approach to statistical 

mechanics. For further details and more elaborate examples, see 

[69, Chapter  7:1. 
Recall that an automorphism h on a unita]. C*_algebra is 

isometric if and only if it is a star-automorphism (i.e. h(a) 

= (h(a)) 	for all a in A) [15. 

16 •  Example : Quantum lattice systems [691. 

Let G = 7L", where v = 1 9  2 or 3 9  and for each x in 

7C, let H,,.,_ be a 2-dimensional Hilbert space. Let K denote 

the set of all finite subsets of 1 , and, for each non-empty 

S in K. let Hs  be the Hubert space tensor product of the 

Hilbert spaces H: x E S. Thus, 

H= 

Let H6 = SLO'. Note that if S contains n points, then H 5  

is 2"-dimensional. 

For all S and S' in K, with S_CS', define i(S,S') : 

BL(HS) —7BL(H 5') by 	i(S,S')(a)(x®y) = a(x)y, where 

x E H S  and y 6 	 . This makes sense because of the natural 
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isometric isomorphism between H5' and H 	 . The maps 

i(S,S') satisfy the following conditions 

j(S,S') is an isometric, star-monomorphism of BL(HS)  into 

BL(H 5") 	(S, S' 	K, sçs' ) 

If S c  Sic S'', then i(S,S'') = i(S',S'')i(S,S') 

If  SIN S' is empty, then every element of i(S,SuS')(BL(S)) 

commutes with every element of i(S',SUS')(BL(S'). 

Using these conditions it is easy to construct a unital 

C*_algebra A, with a family of closed star-subalgebras 

~ A S : S E K and maps 	j 5  : S C K, such that 

(k) j 5  is an isometric star-monombrphism of BL(H5) onto 

A5 

If scS', then A5 c A6 ' and the following diagram commutes 

BL(H) 	-3 BL (Hs,) 

A 	 A 
inclusion 	S 

If SrS' is empty, then every element of A S  commutes 

with every-element of A 5 ' 

UA5  : SC K is a dense star-subalgebra of A. 

We now construct a representation of Z on A by 

isometric automorphisms. 

For each x in 7L', let V0 (x) be a unitary mapping of 

H. onto H. The transformations' V0(x) may be chosen 

arbitrarily subject only to the restriction v0 (0) = 1. Let 

 

-j- 

V(y) = V. (x + y)V0 (x) 

Then V(y) is a unitary mapping of H onto 	and- 

V(y + z) = V 4 (z)V(y) 	(x, y, z Cr). 

For each S in K and y in 7V , let 
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Vs  (Y) ®V(y). 

Then V5 (y) is a unitary map of Hs  onto 	Finally, 

for S in K, a. in As,  and y in 7L", let 

T(y)a = 

Then T(y)A 5  is an isometric star-monomorphism of AS  onto 

• Using conditions (1) to (8), it is easy to check that 

T(y) extends to an isometric automorphisin of A (also denoted 

by T(y)) and that 

T(y + z) =T(y)T(z) 	(y, z C 7L"). 

Thus T is a representation of 7i2' on A by isometric 

automorphisms. (A,G,T) has a quasi-local structure, as 

described on pages 9 and 10 of the Introduction, and is 

therefore asymptotically abelian. Triples (A,G,T) such that 

A is not a C'-algebra can be obtained in a similar way by 

starting with finite-dimensional Banach spaces which are not 

Hubert spaces. 

16.5 Example. Let A 	be the disc algebra, let 	G = R, and, 

as in Example 4.8 9  define T by 

T(t)(f)(z) = f( e t 

Then T is a representation 

automorphisms and it is easy 

IR-invariant state of A(LX) 

f —>f (0) 

of 

to 

is 

(f 

(z CA, f C A(A), t cJR). 

0k on A(A) by isometric 

check that the only 

the character 

E A(A)). 
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17. G-abelian C*_algebras. 

None of the results in this section are original,and its 

main purpose is to demonstrate some of the basic techniques 

used in the study of triples (A,G,T) such that A is a 

C*_algebra. 

Throughout this section A will denote a unital C*_algebra, 

G a group, and T a representation of G on A by isometric 

autornorphisms. As in the previous section, let 

D(A) = f C  As : 11fli= I = 

and 	D(A,G) = if €. D(A) : f(g.a) = f(a) (aCA, gC G). 

Recall that a linear functional f on A is positive if 

f(a* a) >, 0 	(a 	A). 

It is well-known that if f is in A', then f is in D(A) 

if and only if f is positive and of norm I [15]. 

We begin by describing the well-known Gelfand-Naimark-

Segal construction. A unitary representation of G on a 

Hubert space H is a <group) homomorphism of G into the 

group of unitary operators on H. 

17.1 The Gelfand-Naimark-Segal construction (see, for example, 

[ 72]. 

Let f be a G-invariant state on A and let 

Ls = a E A : f(a*a) = O. 

Then L& is a closed left ideal of A invariant under T(g) 

for all g in G. For all a and b in A, let 

(a + Lç,b + Lc)& = f(b*a). 

Then (, ) 	is an inner product on A,-,'L. Let (Hs,(  ,) 

be the Hubert space completion of AL %  and let x = I + L 

H. For all a in A, let 
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h(a)(b + Lç) = ab + Lç 	(b C A). 

Then hç(a) extends to a bounded linear operator on H1, also 

denoted by h(a), such that 

hç is a star-homomorphism of A into BL(H) 

(h ç (A)x ) 

f(a) = (h ç (a)x,x ( ) 	(a CA). 

For all g in G, let 

Uç(g)(a + L) = g.a + Lç 	(a € A). 

Then U1(g) extends to a unitary operator on H1, also denoted 

by U.(g) such that 

(k) US is a unitary representation of G on H. 

U(g)hç(a) = h(g.a)U ç (g) 	(g € G. a € A) 

U ç (g)x ç  = x4 	(g 	G). 

The notation of 17.1 will be used throughout this section. 

In addition, let K t  = ' y ,,  H : TJç(g)y = y (g€ G),, and 

let Pc. be the orthogonal projection of H 	onto K1. Note 

that Xc is a unit vector in Kç. 

17.2 Definition (Lanford and Ruelle [551). 

(A,G,T) is G-abelian if [PS  h(a) ,P1 h(b)r]= 0 

for all f in D(A,G) and a and b in A. 

For confirmation that the triples (A,G,T) used in the 

C*_algebra approach to statistical mechanics (and including 

Example 16.4) are G-abelian, see Chapters 7 and 8 of [69). 

Definition 17.1 does not generalise very easily to the 

case when A is not a C*_algebra. In Theorem 17.5 we show 

that it is equivalent to a condition which, at least when G 

is an amenable group, can be generalised. The statement and 

proof of Theorem 17.5 require the following information 

1 34 



concerning positive definite functions. 

17.3 Definition. A positive definite function on G is an 

element f of ] °(G) such that 

rX 

O, 

=1 

for all n),1, g 1 , ....., gn G and z , ....., z,.cC. 

Equivalently, f C 1°(G) is positive definite if and only if 

there exists a unitary representation U of G on a Hubert 

space H. and an element x of H such that 

f(g) = (U(g)x,x) 	(g C G). 

Let V(G) denote the linear span in 	 of the positive 

definite functions. Then V(G) is equal to the set of all f 

in 170(G) (G) such that 

f(g) = (U(g)x,y) 	(g C G), 

for some unitary representation U of G on some Hubert 

space H, and some x and y in H. It is also closed under 

translations (i.e. f C V(G) implies 	f and fC V(G), for 

all g in G). 

The following result is due to Godemont (see also 1191). 

17.4 Theorem (Godemont [26]). 

V(G) is a star-subalgebra of 1
"0 

 (G) containing the 

identity element I and closed under translations. There 

exists a unique state M on V(G) such that 

M(f) = M(f) = M(f) 	(f CV(G), g 	G) 

If U is a unitary representation of G on a Hubert 

space H, x and y are in H, and f(g) = (U(g)x,y), then 

M(f) = (Px,y), where P is the projection of H onto K = 
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C H : U(g)z = 24. Similarly, if f(g) = (x,U(g)y), then M(f) 
= (x,Py). 

If G is amenable, then the restriction to V(G) of 

every 2-sided invariant mean on ] °(G) is equal to M. 

M is determined uniquely by condition (1) and is referred 

to in [19] as the Godemont mean. For the proof of (3), see [19]. 

17.5 Theorem [20. 

For all f in D(A,G) and a and b in A, define 

w(f,a,b) E  1° ( G) by 

w(f,a,b)(g) = f(a(g.b) - (g.b)a). 	(g C G). 

Then w(f,a,b) C V(G), and the following statements are 

equivalent : 

(A,G,T) is G-abelian 

M(w(f,a,b)) = 0 	(f 6 D(A,G), a,b C A), 

where M is the Godemont mean, as in Theorem 17.4. 

Proof. For f in D(A,G) and for each unit vector y of 

Kp let 

f(c) = (h(c)y,y) 	Cc LA). 

Then 	is in D(A,G) and, for all a and b in A. 

w(f,a,b)(g) = (U(g)hç(b)y,hç(a*)y) - (U (gI)h.(a)y,h,(b*)y), 

w(f,a,b) is therefore in V(G), and 

M(w(f,a,b)) = (P s h(b)y,h(a*)y) c  _(Ph(a)y,h ç (b*)y) ç  

= ([Ph(a)P ,Ph(b)Pjy,y). 

In particular, taking y = x, we have w(f,a,b) £ V(G), 

and, if (A,G,T) is G-abelian, M(w(f,a,b)) = 0. 

Conversely, if condition (2) is satisfied, then 

M(w(f,a,b)) = 0 for all y  in  KS.,  and hence [Ph(a)P , 

Phç(b)PT1 = 0 for all a, b £ A and f C D(A,G). 
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18. M-asymptotic abelianness. 

The major obstacle to the generalisation of the term 

'G-abelian' to cover triples (A,G,T) such that A is not a 

C*-algebra is the absence, in- general, of the representations 

of A provided by the Gelfand-Naimark-Segal construótion. 

There is also no reason, when A is not a C*-algebra, to 

expect that the functions w(f,a,b) of Theorem 17.5  are in the 

domain of definition of the Godemont mean. Thus neither 

Definition 17.2 nor the equivalent definition given by Theorem 

17.5 is meaning ful when A is not a C*_algebra.  We avoid these 

problems by assuming that G is an amenable group, and 

replacing the Godemont mean by an invariant mean defined on the 

whole of f°( G). 	 - 

Throughout this this section and the next, (A,G,T) will be 

a fixed triple consisting of a complex unital Banach algebra, A, 

an amenable group G and a representation T of G on A by 

isometric automorphisins. M will denote a fixed 2-sided and 

invariant mean on  

The following notation will be used : 

A(G) = a E. A : g.a = . a 	(g E G) 

AI(G) = f E A' : f(g.a) = f(a) 	(a C A l  g E G) 

D(A) = f € A' : iffl = I 

D(A,G) = A'(G)(\D(A).. 

For reasons which will soon become apparent, it will be 

convenient to use the following integral type notation for N 

M(f) 	f(g)dM(g) 	(f 

The line through the integral sign indicates that, unless G 

is finite, N cannot be represented by a countably additive 
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measure on G, so that M(f) is not a genuine integral. 

In terms of this notation, the most important properties 

of M for the purposes of this section and the next may be 

expressed as follows : 

18.1 

(1)f(h.a)dM() = If(g.a)dM(g) 
	

(f € A', h E. G, a E A) 

if (gh.a)dM(g) = Sf( 
I 
 g.a)dM(g) 
	

(f E A', h E G, a 6 A) 

I ff (g.a)dM(g) 	llfIl(aII 	(f €A'(G), a EA) 
(k) 	k((g.a)b)dM(g) = if (a(g.b))dM(g) 	(f ( A'(G),a,bEA). 

(1+) is a consequence of the inversion invariance of M. 

Note that if f is a boumded complex-valued function on 

GXG, then the 'double integrals' 

and 

make sense, but are not in general equal. 

The following Proposition demonstrates that the 

restriction to amenable groups guarantees the existence of 

G-.invariant states. 

18.2 Proposition. For all f in A', let 

(Ef)(a) = f(g.a)dM(g) 	(a E A). 

Then E is  continuous projection of A onto AI(G) such 
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that liEU = I and E(D(A)) = D(A,G). 

Proof. The C*_algebra  case is contained in lemma 2.3 of [18] 9  

and essentially the following argument is used in the proof of 

Proposition 6.2.13 of [691. 

Let f be any element of A'. Then .Ef is in A', IjEfIJ 

lifli 	and 

(Ef)(h.a) = k (gh.a)dM(g) = if (g.a)dM(g) = Ef(a) (a CA, heG). 
E is therefore a norm reducing linear mapping of A' into 

A'(G).Now let f be any element of A'(G). Then 

(Ef)(a) = f(.a)dM(g) = f(a)dM(g) = f(a)M(1) = f(a) 	(a & A). 

This proves that E(Al) = AI(G) and that E = E. Finally, if 

f is a state, then 

(Ef)(1) = f(g.1)dM(g) = M(I) = 1 9  

and therefore IlEti = I and E(D(A)) = D(A,G). 

It is well known that A' is equal to the linear span 

of the state space D(A). In fact, given f in A', there 
,10r 

exist f , ....., f 	in D(A) and pocitivc real numbers s , 

	

.0 *0 9  s 	such that f = s f, - sf + i(sf3  - sf,) and 

+ s + s + S' 	eJhf i [8, p.106]. Now suppose that f is 

in A'(G). Then Ef = f = s 1  Ef, - sEf2  + i(sEf3  - s4  Ef,' 	and 

Ef 1  , ....., Ef 	are in D(A,G). This proves the following 

result. 

18.3 Corollary. Let f bean element of A'(G). Then there 

exist f,, ...., f 	in D(A,G) and positive real numbers 

139 

/l 



s 2 9  S-39 s 	such that f = s f 1  - s2 f2  + i(s3f3 
- 	

and 

+ 8 + 63  + 6(• 	Je)(uII. 

It is not clear whether or not AI(G) is always equal to 

the linear span of D(A,G) when G is not amenable. 

18.4 Definition. (A,G!T)  is N-asymptotically abelian if 

~f(a(g.b) - (g.b)a)M(g) = 0 	(f € D(A,G) a, b € A). 

Note that if A is commutative, then (A,G,T) is 

automatically N-asymptotically abelian. 

In the case when A is a C*_algebra,  this definition was 

used in [18].  In fact, when A is a C-algebra, (A,G,T) is 

N-asymptotically abelian if and only if it is G-abelian. This 

follows immediately from the fact that the restriction of M 

to V(G) is the Godemont mean (see Theorem 17,4 (3) and 

Theorem 17.5). 

The rest of this section is the result of an attempt to 

characterise N-asymptotically abelian triples in terms of a 

Banach algebra B associated with A in a certain way. The 

Banach algebra B is described in Theorem 18.5 and a simple 

calculation shows that if B is commutative, then (A,G,T) is 

N-asymptotically abelian. I. do not know if B is necessarily 

commutative when (A,G,T) is M-asymptotically abelian. 

However, this is true when G is finite or A is Arens 

regular. 

Notation. It will be convenient to regard At  as an 

A-bimodule, with the module operations, defined by 
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(a.f)(x) = f(xa) and (f.a)(x) = f(ax) 	(a, x C A, f 6 A'). 

1.8.5 Theorem. Let E be the projection of A' onto AI(G) 

defined, as in Proposition 18.2, by 

(Ef)(a) = çf (g.a)dM(g) 	(f C A!, a £ A). 

For all a in A, define Pa E BL(A'(G)) by 

(Pa)(f) = E(a.f) 	(f C A'(G)), 

and let B be the closed subalgebra of BL(A'(G)) generated 

by the set JPa : a C A. Then B is a unital Banach algebra 

and P is a continuous linear mapping of A into B. Define 

Q : A'(G)—B'  by 

(Qf)(U) = (uf)(1) 	(f E A'(G), U € B). 

Then the following conditions are satisfied : 

III'II = I 	and P(i) = I 

P(h.a) = Pa 	(a ( A, h 6 G) 

P(ab) = (Pa)(Pb) and P(ba) = (Pb)(Pa) 	(a E A(G), b C  A) 

(k) P'Q = I (where P' is the adjoint of P) 

(5) Q is linear and IlQf II = Ilfit for all f in A'(G). 

Proof. Note that 

(Pa)(f)(b) = Sf((g.b)a)dM(g) 	(a, b £ A, f € AIM). 

Let f be any element of A'(G). Then 

1Pa(f)Il < 11a.f il < Ijallhtfil 	(a E A) 

and so IIP1I < 1. Also, 

P(i)(f) = El = f 	(I 6 A'(G)), 

and, therefore, B is unital, P(1) = I and IIPII = 1. 

Now let a be in A and h be in G. Then, 
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P(h.a)(f)(b)= f((g.b)(h.a)dM(g) = f((h_ 1 g .b) a )dM( g ) 

f((g.b)a)dM(g) = (a)(f)(b) 	(f E A'(G), b € A)., 

which proves (2). To prove (3), note that 

a.f E At (G) (f E A'(G), a.0 A(G)). 

Thus, if 	b 	is any element of A and 	a is 	in 	A(G), then 

P(ab)(f)(x) = f((g.x)ab)dM(g) = Sf ((g.xa)b)dM(g) . = (Pb(f))(xa) 

= (a.Pb(f))(x) = E(a.Pb(f))(x) = (PaPb)(f)(x) 	(f EA'(G), xA). 

A similar argument shows that 

P(ba) = PbPa 	(a C A(G), b C A). 

To prove (k), let 1' be in AI(G) and a be in A. Then, 

(P'Q)(f)(a) = Qf(Pa) = Pa(f)(1) = Sf ((g.l)a)dM(g) = 
and therefore P'Q = 1. 

Finally, .IQf(U)1 	11 UQffl  for all f in A' (G) and U 

in B, and therefore ltQfll,<fIl, and IIQfll ) sup jQf(Pa)I : a€A, 

flat < 1i= sup {fa)I : a C A, all 	= fI(, so that Q is 

isometric, as required. 

The notation of Theorem 18.5 will be used throughout the 

rest of the Chapter. Note that (k) is equivalent to 

Pa(f)(1) = f(a) 	(a € A,f G A'(G)). 

18.6 Proposition. If B is commutative, then (A,G,T) is 

M-asymptotically abelian, 

Proof. Suppose that B is commutative. Then, for all f in 

D(A,G) and a and b in A. 
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~f(a(g.b) - (g.b)a)dM(g) = 	g.a)b)dM(g) - çf((g.b)a)dM(g) 

1. 
= (Pb(f))(a) - (Pa(f))(b) = [Pa,Pb](f)(a) = 0. 

(A,G,T) is therefore N-asymptotically abelian. 

For all f in AI(G) and a, x and b in A, the 

function (g,h)— f((g.a)x(h.b)) is a bounded function on 

GKG. The following lemma suggests that the converse of 

Proposition 18.6 may fail because of the non-reversibility of 

the order of'integration' in the expression 

(f((.a)x(h.b)dM(h)') dM(g). 

18.7 Lemma. If (A,G,T) is N-asymptotically abelian, then 

(f((.a)x(h.b))dM(h))dM() - (f((.a)x(h.b))dM()')dM(h) 

= (PaPb - PbPa)(f)(x) 	(f E A'(G), a, b, x E A). 

Proof. First note that, by Corollary 18.3 and Definition 18,4, 

we have 

f(a(g.b) - (g.b)a)dM(g) 	0 	(1 C A'(G), a,b C A). 

Let £ be in A'(G), and let a, b and x be any elements of 

A. Then, using 18.1 (3), 

(PaPb)(f)(x) =Pb(f)((g.x)a)d1(g) = ~Pb(f)(a.(g.x))M(g) 

= 	Pb(f)((g.a)x)dM(g) = 	f(h.((.a)x)b)dN(h))dM() 

= 	f((.a)x(h.b))dM(h))dM(). 

Similarly, 
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(PbPa)(f)(x) = Ya(f)((h.x)b)dM(h) = Pa(f)(x(.h.b))dM(h) = 

(f(g.(x(h.b))a)dM(5))dM(h) 'f(ag.(x(h.b))dM(g)')dM(h) 

= 

 

(~Mg.a)x(h.b) 
. 

)dM(g )) dM(h). 

We now describe the Arens products on the second dual 

All of A, and define the term 'Arens regular'. j will denote 

the natural embedding of A into A''. 

18.8 Definition (see, for example, [9, p.50). 

For all 	S in All and 	f in A', define 	S.f 	and 

S0 f in A' by 

(S.f)(a) = S(f,a) and S0f(a) = S(a.f) 	(a E A). 

The Arens products • and o on All are defined by 

(R.S)(f) = P(S.f) and (RS)(f) = R(Sf) 	(f CA', R,S £ A''). 

For both these products, All is a Banach algebra and j is a 

monomorphism of A into A''. 

A is Arens regular if 

p.s = s 0 i 	(s, R € A''). 

18.9 Theorem. If A is Arens regular, then (A,G,T) is 

M-asymptotically abelian if and only if B is commutative. 

Proof. By Proposition 18.6 9  it is sufficient to prove that if 

A is Arens regular and (A,G,T) is M-asymptotically abelian, 

then B is commutative. 

Let f be in A'(G), let a, b and x be any elements 

of A, and define I and I by 
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I i  =  ~ (ff((g.a) . x(h.b))dM(h))dM(g) 

1 2.  = f(f((g.a)x ( h.b)  . ) dM( g )) dM (h) 

By lemma 18.79 it is sufficient to prove that if A is Arens 

regular, then I t  = 12. Let E' denote the adjoint of the 

operator E on A' defined in Proposition 18.2. We show that 

Ii = (E'ja).(jx).(E'jb) 

I = (E'jb) 0 (jx) 0(E'ja), 

from which the required result follows immediately, using 

Definition 18.8. 

In the following calculations, we use the identities 

((jy).S)(k) = S(k.y) 

((jy) 0 S)(k) = S(y.k) 

(E'jy)(k) = fk(.Y)dM() 

where kA', yA and SEA''. 

Applying Definition 18.8, we get 

(E'ja).(jx).(E'jb) = E'ja((jx.E'jb).f) = 

((jx.E'jb).f)(g.a)dM(g) = ç(ix.Ehib)(f.(.a))dM() 

= 

 

çE 1 jb((f.( g .a)).x)d.M( g ) = (f.(g.a)x)(h.b)dN(h))dM() = I, 

Similarly, (E'jb) 0 (jx) 0 (E'ja) = E'jb((jx0E'ja) 0 f) = 

jx0E'ja) 0 f)(h.b)dM(h) = S(
jx 0E'ja)((h.b).f)dM(h) 

= 
i
E'ja(x(h.b).f)dM(h) = ((x(h.b).f)(.a)dM() = I. 
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18.10 Corollary. If A is a C*_algebra,  then (A,G,T) is 

G-abelian if and only if B is commutative. 

Proof. By, for example, [7, p. 1 09- 1 103, every C-algebra is 

Arens regular. The Corollary therefore follows immediately 

from the Theorem and the fact that (A,G,T) is G-abelian if 

and only if it is M-asymptotically abelian. 
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19. Uniqueness of ergodic decomposition. 

One of the best known results concerning triples (A,G,T) 

such that A is a unital C*_algebra,  is that if (A,G,T) is 

G-abelian, then the G-invariant state space D(A,G) is a 

simplex (Lanford and Ruelle [55], see also [69] and [72]).  The 

purpose of this section is to explore the rather limited 

possibilities for proving results of this kind when A is not 

a C*_algebra. 

The section begins with a brief account of the theory of 

boundary measures on compact convex sets, leading to the 

definition of the term 'simplex', and based largely on the book 

'Compact convex sets and boundary integrals', by E.M. Alfsen [2 

(see also [69)9 p.206 ). 

The natural setting for the theory of compact convex sets 

is an arbitrary locally convex real vector space. However, for 

ease of application, we consider only weak*  compact convex sets 

in the dual space of a complex Banach space. 

19.1 Boundary measures. Let X be a complex Banach space, and 

let K be a weak*  compact convex subset of the dual space X' 

of X. 

A real-valued function a on K is convex if 

a(tf + (1 '- t)g) , ta(f) + (1 - t)a(g) 	(f, g E K, 0t(.1) 9  

and affine if 

a(tf + (1 - t)g) = ta(f) + (1 - t)a(g) 	(f, g E K, 0t1). 

Let C(K) denote the C*_al gebra of all weak*  continuous 

complex-valued functions on K, and let 

C(K,) 	f E C(K) : f is real-valued 

Conv(K) 	tf E C(K,) : f is convex\ 
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Aff(K) = 	. C(K,(R) : f is affine\. 

Also, let M(K) denote the dual space of C(K), which can and 

will be identified with the space of all Baire measures on K 

(see [2 9  p.9]), and let. 

M(K,\) 	C M(K) : m is real-valued5 

= [in ( M(K,lIk) : in 	0 

M+ W = m E M 4 (K) : gm II = 1 	( = D(C(K)) ). 

Define the binary relation < on M(K,) by 

n 	m(a) 	n(a) 	(a C Conv(K)). 

Then < 	is clearly reflexive and transitive. Suppose that 

in < n ( in. Then m(a) = n(a) 	(a C Conv(K)). 

By E2, Proposition 1.1.11, the linear span of Conv(K) is 

uniformly dense in C(K). Thus, in = n and < is therefore 

a partial ordering on 

m ( M(K,) is a boundary measure if Iml is maximal in 

M+(K) with respect to the ordering -< 

The extreme boundary of K is the set Ext(K) of all 

extreme points of K. The following Proposition is relevant to 

the interpretation of the results of this section, although not 

to their proof. 

19.2 Proposition. Let in be any element of M(K,UO. If m i5 

a boundary measure, •then m(S) = 0 for all Baire sets S of 

K such that SrExt(K) is empty. If K is metrizable, then 

Ext(K) is a Baire set, and in is a boundary measure if and 

only if Irnt(K\Ext(K)) = 0. 

For .a discussion and proof of the various parts of this 

Proposition, see [2 9  P. 31 - 
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The basic result on the existence of boundary measures is 

the following. For the proof, which is a straightforward 

application of Zorn's lemma, see [2, p.361. 

19.3 Lemma. For every in in M(K), there exists a positive 

boundary measure n such that m < n. 

19.4 Definition [2, p.221. Let f be any element of K. Then 

in in M4(K) represents f if 

a(f) = m(a) 	(a C Aff(K)). 

For all f in K. let w(a) = a(f) 	(a 6 CM). Then w& 

is -'in M4 (K) and represents f. 

19.5 Theorem (Choquet-Bishop-de Leeuw) [2, p.361. 

Every point f of K can be represented by a positive 

boundary measure. 

Proof. By lemma 19.3 9  there exists a positive boundary 

measure m such that 	w < in. If a € Aff(K), then a E. 

Conv(K) and -a 6 Conv(K). Thus, a(f) = w.(a) 	m(a) < w&(a) 

a(f). in therefore represents f. 

19.6 Definition. K is a simplex if every point of K is 

represented by a unique positive boundary measure. 

It follows easily from the Riesz representation theorem 

that the state space of a commutative C*_algebra with identity 

is a simplex. For an example of a commutative itnital Banach 

algebra A such that the state space D(A) of A is not a 

simplex, see [25]. 

There are many equivalent definitions of the term 
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simplex'. The most useful of these for the purposes of this 

section is stated in Theorem 19.10.  The proof of 19.10  requires 

the following three lemmas, all of which are well-known. 

19.7 Lemma [2, Propositionl.2.3j. 

Let m in M(K) represent the point f of K, let 

a be in C(K,R), and let t > 0. Then there exist f,, ....., 

in K and positive real numbers t,, ....., tn such that 

n 	 4 	 6 

= 	t f , 	t = I and 	m(a) - ( 	w )(a)1 < 
Lg 

19.8 Lemma[2 9  p. 2511. 
Let f be in K and m in M(K). Then 	m if and 

only if m represents f. 

For x in X. define 	on X' by 

	

'.c\ pj'...\ 	 f.g 	p 

	

- .L.A.J 	 i. 	.A is 

Note that, for each x in X, the real and imaginary parts 

re(cIK) and im(cIK) of 	)K are in Aff(K). 

19.9 Lemma. Suppose that there is an element e in K such 

that f(e) = I (f C  K). Then m in M+(K) represents f in 

K if and only if f(x) = m(IK) (x e x). 

Proof. Suppose m represents f. Then m(clK) = m(re(cjK)) + 

im(im(c(K)) = re(K)(f) + iim(IK)(f) = f(x), for all x in 

X. Conversely, suppose f(x) = m(c(K), for all x in X. Then 

m(re(K)) = ref(x) = re(K)(f), for all x in X. It is 

therefore sufficient to prove that the set 	re(tK) : x ( X 

is uniformly dense in Aff(K). This follows from 12, 1.1.5]. 
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A mapping S from K into a linear space is affine if 

S(tf + (1 - t)g) = tS(f)+ 0 - t)S(g) 	(f,g E K, 0t1). 

19.10 Theorem [54 9  p.203, Ex.81. 

Suppose, as in lemma 19.9, that there is an element e 

in X such that f(e) = 1 (f K). Then the following are 

equivalent : 

K is a simplex 

There is an affine mapping f — m of K into 

M(K) such that m(cIK) = f(x) 	(f E K, x e X). 

Proof. Let K be a simplex, and for all f in K, let 

m be the unique boundary measure representing f. Then, for 

all f and g in K and 0 t,<1, tm + (1 - t)m is a 

boundary measure representing tf + (1 - t)g. The map f—>  mS-

is therefore af fine, 

Conversely, suppose condition (2) is satisfied and let n 

be any measure in M4(K) such that m5 .< n. Then, by lemma 

19.8, w,—e,  m%  -( n, and so n represents f. To prove that 

in is the unique boundary measure representing f, it is 

therefore sufficient to prove that if n in M+(K)  represents 

f, then n<  m. 

Let n represent f, let a be in Conv(K) and let E> O. 

By lemma 19.79 there exist fl , ....., f 	in K and positive 

real numbers t 1  , •...., t,.\  such that 

V.' 

f = 	tf 1' , 	 = 1 and 	n(a) - ( 	t.w.)(a))< € . By 

lemma 19.8, wç. -< m 	for each i. Thus 

n(a) 	t w. (a) < 	t mS  (a) = m(a). Since E 0 and 
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a in Conv(K) are arbitrary, this proves that n ( m, as 

required. 

We now return to the study of the triple (A,G,T) as in 

	

Section 18. Recall that G is amenable and that M 	is a 

2-sided and inversion invariant mean on fc(G).  By Proposition. 

18.2, the G-invariant state space D(A,G) is non-empty. 

A G-invariant state is G-ergodic if it is an extreme point 

of D(A,G). Let m be a positive boundary measure on D(A,G) 

representing a G-invariant state f. If A is separable, then 

D(A,G) is metrizable and, by Theorem 19.2,  m is supported on 

the set Ext(D(A,G)) of G-ergodic states. Thus m may be 

regarded as an lergodic decomposition' of f, and D(A,G) is 

a simplex if and only if each f has a unique ergodic 

decomposition. If D(A,G) is not metrizable, then, because of 

the way in which the term 'boundary measure' has been defined, 

it still makes sense to ask whether or not D(A,G) is a 

simplex. 

Let B be the subalgebra of BL(A'(G)) desqbed in 

Theorem 18.5. We first establish sufficient conditions on 

B for D(A,G) to be a simplex. We use the notation of 

Section 18. 

19.11 Lemma. 

(1)Q(D(A,G)) c D(B) 
(2) P'(D(B)) = D(A,G). 

Proof. Let f be in D(A,G). Then (IQfH = Off = I = f(l) = 

Qf(1), and Qf is therefore in D(B). 

	

To prove (2), let f be in D(B). Then I1P'fII 	fIJ = I = 
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f(1) = f(Pi) = (P'f)(i) and 

(P'f)(g.a) = f(P(g.a)) = f(Pa) = (P'f)(a) 	(a E. A, g 6 G). 

P'f is therefore a G-invariant state. Since P'Q = 1, we have 

D(A,G) = P'Q(D(A,G))cP'D(B)D(A,G), and therefore D(A,G) = 

P'D(B). 

In applying Theorem 19.10 to K = D(B) and K = D(A,G) in 

the proof of the following result, we take e = 1. 

19.12 Theorem. If the state space D(B) of B is a simplex, 

then the G-invariant state space D(A,G) of A is a simplex. 

Proof. Suppose that D(B) is a simplex. By  Theorem 19.10, it 

is sufficient to construct an affine mapping f—im of 

D(A,G) into M(D(A,G)) such that 

m(D(A,G)) = f(a) 	(a C A, f C D(A,G)). 

Let I be in D(A,G). Then, by lemma 19.11, Qf is in D(B). 

Let mQ  be the unique positive boundary measure on D(B) 

representing Qf. Then the mapping I -7 mQ  is af fine and 

mQ (IajD(B)) = Qf(Pa) = f(a) 	(a C A, f 	D(A,G)). 

Now define h : C(D(A,G))--'C(D(B)) by 

h(c)(f) = c(P'f) 	(c C c(D(A,G), I C D(B)). 

This definition makes sense because P' is weak* continuous 

and, by lemma 19.1, P'D(B) = D(A,G). Note that 'h is a 

linear isometry and that 

h('tD(A,G)) = 'aID(B) 	(a € A). 

Let h/ denote the adjoint of h and let 

= hl(m0 ) 	 ( I C D(A,G)). 

Then I—' m is an af fine mapping of D(A,G) into 

M(D(A,G)) and in(tD(A,G)) = rnQ  (h(t(D(A,G)) = m(aD(B)) 
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= f(a) 	(a E A, f € D(A,G)). This completes the proof. 

19.13 Corollary. If B is a commutative C*_algebra , then 

D(A,G) is a simplex and (A,G,T) is M-asymptotically abelian. 

Proof. This follows immediately from the theorem and 

Proposition 18.6. 

As would be expected, B is always a C*_algebra  if A is 

a C*_algebra and (A,G,T) is G-abelian. (see Theorem 19.23). 

Thus Corollary 19.13 includes, for the case of amenable groups, 

the theorem of Lanford and Ruelle mentioned at the beginning 

of this section. 

Now consider the triple (A(A),IR,T) of Example 16.5. In 

this case, A(L)'(1R), and therefore B, is 1-dimensional. Thus 

the conditions of Corollary 19.13 are satisfied. It is however 

quite obvious that D(A(A),IK) is a simplex, since it has 

only one element. 

The rest of this section is the result of an attempt, using 

numerical range theory, to find necessary and sufficient 

conditions on (A,G,T) for B to be a C*_algebra. The hope 

is that, in the absence of convincing examples, such conditions 

will give some idea of the scope of Corollary 19.13. 

19.14 Definition [7,81. 

Let A be any complex unital Banach algebra. Then the 

numerical range of the element a of A is the set 

V(A,a) = .tf(a) : f C D(A). 

An element a of A is hermitian if V(A,a) is contained in 

,. Let H(A) denote the set of all hermitian elements of A. 
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If A is a C*_algebra, then •H(A) = a 	A : a = a*, and 

therefore A = H(A) + iH(A). One of the most iseful results in 

numerical range theory is that this condition in fact 

characterises unital C*_algebras. T iis is the Vi day -Palmer 

theorem which we now state. For the proof see [9]-or [7. 

19.15 Theorem (Vidav-Palmer). Let A be a complex unital 

Banach algebra. Then A is a C*_algebra if and only if 

A = H(A) + IH(A). 

The statement fA is a C*.algebrat should be interpreted as 

meaning A has an involution with respect to which it is a 

C*-algebra. 

The following Corollary of Theorem 19.15 will be used in 

the proof of Theorem 19.23. 

19.16 Corollary. Let B be a closed subalgebra of a complex 

unital Banach algebra A such that B contains the identity 

element of A and the following conditions are satisfied 

H(B) generates B as a Banach algebra 

B has a set of generators B 0  such that for all n 1 

and b, •...., b, in B0 , b 1 .....b,, is an element of 

H(A) + WA). 

Then B is a C*_algebra. 

Proof. Let J(B) = H(B) + iH(B) and J(A) = H(A) + WA). 

Then, by [?, lemma 5.8] 9  J(B) and J(A) are closed. It is 

sufficient to prove that J(B) is an algebra, since in that 

case s 	J(B).= B and, by Theorem 19.15 9  B is then a C*_algebra. 

We shall use the following two facts which are proved in 
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[7, p.59 - 601. 

If h€H(B) implies 	(H(B), then J(B) is an algebra 

If hH(A) and h2 J(A), then I? H(A). 

We first note that, by condition (2) 9  B is contained 

in J(A). Also, by lemma 5.2 of [7, H(B) = H(A)rB. Now 

let h be in H(B). Then IjC 	and 50 by (b), hH(B). 

By (a), J(B) is an algebra, and this completes the proof. 

The following lemma will be used in the proof of lemma 

19.21 to determine the numerical range of certain operators 

on A'(G). For any subset S of the complex numbers, 6(S) 

denotes the smallest convex closed set containing S. 

19.17 Lemma [7 1  Theorem 9.51. 

Let X be a complex Banach space and let U be any 

element of BL(X'). Then V(BL(X'),U) = 74Uf(x) : f C X', 

x £ X and flfIJ = lix II = f(x) = 1 • . 

Let H(A,G) = ta £ A : f(a) is real for all f in 

D(A,G)\. Then H(A) is contained in H(A,G) and, if A is a 

C*_algebra, then A = H(A,G) + IH(A,G). We first show that this 

4lSo 

condition is,% satisfied when B is a C*_algebra. We then 

show that if A is Arens regular, then A= H(A,G) + iH(A,G). 

if and only if B is a C*_algebra. As in section 18 9  the 

Arens regularity of A is needed only to justify reversing 

the order of 'integration' in expressions of the form 

Mf((g.a)x(h.b))dM(h )) dM(g). 
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19.18 Lemma. Let a be any element of A. Then a is in 

H(A,G) if and only if Pa is in H(B)O 

Proof. This follows immediately from (2) of lemma 19.11. 

19.19 Corollary. 

If B is a C*_algebra and P(A) is self-adjoint, then 

A = H(A,G) + iH(A,G). 

If A = H(A,G) + iH(A,G), then B is generated by H(B). 

Proof. Suppose that B is a Calgebra such that P(A) = 

P(A)* and let a be in A. Then there exist elements b and 

c of H(A,G) such that Pa = Pb + iPc. Let f be in D(A,G). 

Then f(a - (b + ic)) = Qf(Pa - (Pb + iPc)) = 0, and therefore 

a - (b + Ic) is in H(A,G). Since H(A,G) is a real linear 

subspace of A. this proves that A = H(A,G) + iH(A,G). 

Now suppose that A = H(A,G) + iH(A,G). Then B is 

generated by the subset P(H(A)) of H(B). This proves (2). 

Note that if P is onto, then it follows immediately 

that B is a C*a1gebra if and only if A = H(A,G) + iH(A,G). 

19.20 Theorem. If B is a C*_algebra, then A = H(A,G) + 

iH(A,G). 

Proof. We first show that P(A) is isometrically isomorphic 

to A/Ker(P) and therefore closed. Since P is norm 

decreasing, it is sufficient to prove that 	Pall ~ 1ta + Ker(P)11 

for all a in A..Let a be in A. Then, by the Hahn-Banach 

theorem, there exists a continuous linear functional I on 

A/Ker(P) such that QIH = I and f(a + Ker(P)) = ha + Ker(P)II. 

Define f C At by 1(x) = f(x + Ker(P)). Then I is 
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G-invariant, since g.x - x E Ker(P) for all x in A and 

g in G. Thus ljPaII ) IQf(Pa)I = 1(a)I = 1k + Ker(P)Jl. 

Now suppose that B is a C*_algebra. By Corollary 19.19, 

At is sufficient to prove that P(A) is self-adjoint. To do 

this we will use certain properties of the hermitian 

functionals on B. A continuous linear functional f on B is 

hermitian if f = f*, where f *( x) = f(x*) 	(x C B). Let 

H(BI) denote the set of all hermitian functionals on B. Then 

1-I(B',)riH(B') 	and B' = H(B') + iH(B'). Also, f in B' 

is hermitian if and only if f = t,f - t1f 	for some f 1  and 

f. in D(B) and positive real numbers t, and t 2 . Suppose 

that P(A) is not self-adjoint, and let a be an element of 

A such that (Pa)*  is not in P(A). Since P(A) is closed, 

there is an element f of B' such that f(P(A)) = o3 and 
f((Pa)*) j 0. Let f and f,_ be hermitian functionals on 

B such that f = f 1  + if 1 . Then P'f = 0 and therefore P'f 1  

= -iP'f1 . Let H(A',G) = IRtD(A,G) - flD(A,G). Then, by lemma 

19.11 (2), and the characterisation of hermitian functionals 

quoted above, we have P'f 1 	H(A',G)(\iH(A',G). By lemma 

19.1 1 (1)9 this implies that Q(P'f ) 	H(B')riH(B') = 

Since Q is 1:1 9  this gives P'f, = P'f1  = 0. But then 

f((Pa)*) = f*(Pa) = (f, - if)(Pa) = (P'f)(a) - i(P'f 1 )(a) = 

0, which is a contradiction. This completes the proof of the 

Theorem. 

To prove that the converse of Theorem 19.20 is true when 

A is Arens regular, we require the following two lemmas. 

19.21Lemma. Let U be a bounded linear operator on AI(G) 
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such that Uf(x) is real for all f in AI(G) and x in A 

such that E(f.x) is in D(A,G). Then' U is hermiti'an. 

Proof. Let L be the closed linear span of the set 

g.a : a E A, g 6 G\. Then AI(G) = f C At : f(L) = 

Let q be the natural mapping of A onto A/L. Then the 

adjoint q' of q is an isometric isomorphism of (A/L)' 

onto A'(G). Let S = (q') -t Uq'. Then V(BL(A'(G),U) = 

V(BL((A/L)',S) and therefore, by lemma 19.17, V(BL(A'(G)),U) 

= FO [(Sf)(qx) : f C (A/L)', x 	A, and tjqxfl = 	= f(qx) = I 

= oUf)(x) : f C A'(G), x ( A and RfH 	11qxII = f  

Let f in AI(G) and x in A satisfy Jfjk 	iIqxI = f(x) = 

1. To complete the proof of the lemma, it is sufficient to 

prove' that E(f.x) is in D(A,G). Let x' be any element of 

A such that x - x' is in L. Then, for all a in A, 

E(f.x')(a) = 'f(x'(g.a))dM(g) = If((5.x?)a)dM() = E(a.f)(x') = 

E(a.f)(x) = E(f.x)(a). Thus E(f.x) = E(f.x') and therefore 

< I(x'J(. This proves that IIE(f.x)I1 . jjqxjj= 1. 

Finally, E(f.x)(1) = ff(x.(g.1))dM(g) = f(x) = 1, and 

therefore E(f.x) is in D(A,G). 

19.22 Lemma. If A is Arens regular, then (Pa...Pa,)(f)(x) = 

.E(f.x)(a 	 ....)dN(S i ) I  

for all f in A'(G), n.2 and a 1 , •..., a,, x in A. 

Proof. Suppose that A is Arens regular. Then, as in the proof 

of Theorem 18.9 9  we have, for all f in D(A,G) and ax b in A, 
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kf((.a)x(h.b))dM(h))dM() = qf((g.a)x(h.b))dM(g))dM(h). 

We prove the lemma by induction on n, beginning with the case 

n = 2, and making repeated use of (3) of 18.1. Let a1 , a2  A. 

Then (Pa 1 )(Pa)(f)(x) =(Pa)(f))((g.x)a 1 )dM(g) 

= 	f(g.((g.x)a )a,.)dM(g 2. 
 

= 
 . 
%f((g.x)a,(g...a,))dM(g. )) dM(g) 

= 

~qf (xg.(a 
I 
 (g,-.a..)))dM(g)) dM(g 

((f.x)(.(a I  (c l.aL)))dM())dM() 

= E(f.x)(a(g.a))dM(g 2 ). 

Now suppose that the result is true for some n>,'2 and let 

a 1 , ....., a, 41 	and x be in A. Then 

(Pa 1 	 )(f)(x) = (Pa1 	 )(f)(x) 

f.x)(a 1 (g.a ).....(g.a))dM(g 	.... dM(g1). 

Let g 1 , ....., g 	be in G. Then, as in the proof of the case 

n = 2, E((Pa, +1 f).x)(a 1 (g.a ).....(g,,.a,)) = 

ç(Pa 1  f)((g.x)a 1 (g.a1).....(g.a))dM(g) 
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This completes the proof of the lemma. 

19.23 Theorem, If A is Arens regular, then B is a 

C*_algebra if and only if A = H(A,G) + IH(A,G). 

Proof. By Theorem 19.20, Corollary 19.16 and Corollary 19.19 

(2), we have only to prove that if A = H(A,G) + ±H(A,G) and 

A is Arens regular, then Pa 1 .....Pa,., is in H(BL(A'(G)) + 

iH(BL(A'(G)) for all n >,1 and a , ....., a 1. in A. The 

case n = I follows immediately from lemma 19;18. 

Let n >2 9  let a 	•...., a, be in A, and suppose that 

A = H(A,G) + iH(A,G). Then there exist functions x 1  and x 

from 	into H(A,G) such that 

=x 1 (g1 ,.....,g,.) +ix,(g 2,.....,g,), 

for all g, ....., g 1.. in G. Let f be in D(A,G). Then 

f(x,(g,.....,g f,)) = re(f(a 1 (g.a ).....(g,,.a.)) and 

im(f(a 1 (g.a 	 Thus, for 

i = I and 2 and all g 2 ,....., g,. in G, 

Now let 1' be in A'(G). 

By Corollary 18.3, there exist f, ,..., f 4.  in D(A,G) and 

positive real numbers t 1 ,..., t such that f = tf 1 	tf 1  

+ i(t.f - tfL, ) and t 1  + t + t_5+ t_< JdfII. Thus, 

for i = I and 2 9 	 J2eflflltafl....t1a,fl9 

for all g. l 0000 t  g, in G. We may therefore define 

continuous linear functionals S 	and S. on AI(G) by 

S:Lf = i'(.O..(if(XL(92.V*OOOO9gn ))dM(g,)) ... O )dM(g2.) Cf 

and bounded linear operators U1 and U on At(G) by 

(ULf)(x) = S(E(f.x)) 	(f £ A'(G), x E A). By lemma 

19.22 9  (Pat  .....Par.)(f)(x) = 
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J '( .... (JE(f.x)(al(gea,)oo,,(g,,,a,,)dM(g 	 . .. 

(--.aE(f.x)(x (gjq*o*qg,) + 

= (S1  + 1S2 )(E(f.x)) =(u 1  + iU)(f)(x). 

Thus 	 = U 1  + iU2 0 

Now let f in AI(G) and x in A satisfy the condition 

E(f.x) ( D(A,G). Then, for i = I and 2, 

(Uf)(x) =1(. -qE ( f e X) (x L  (g 2.9  o a o o 9  g r% ) dM Q r%  ) .... )dm(g7,), 

which is real, since E(f.x)(x(g,.....,g)) is real for all 

g1 , ....., g 	in G. By lemma 19.21, U1  and U- are 

therefore in H(BL(A'(G)). This completes the proof of the 

Theorem. 

19.24 Theorem, If A is Arens regular, A = A(A,G) + iH(A,G) 

and (A,G,T) is M-asymptotically abelian, then the G-invariant 

state space D(A,G) is a simplex. 

Proof. This follows immediately from Corollary 19.13,  Theorem 

19.23 and Theorem 1 8.9. 

I do not know if Theorem 19.24 is true when A is not 

Arens regular. However, if A is a C*_algebra,  then A is 

Arens regular and H(A)CH(A,G). The following 

result therefore follows immediately from Theorem 19.24. 

19.25 Corollary (Lanford and Ruelle). If A is a C*_algebr a , 

G is amenable and (A,G,T) is G-abelian, then D(A,G) is a 

simplex. 

162 



By replacing the invariant mean M by the Godemont mean 

and slightly modifying the definition of E, P, Q and B. 

Corollary 19.25 may be proved by these methods for non-

amenable groups. 

The conditions of Theorem 19.24 are satisfied by the triple 

(A,G,T) of Example 16.5, in which A is not a C*_algebra . 

Further examples of this kind can be constructed using simple 

direct sum arguments. The fact that H(A) is in general 

strictly contained in H(A,G) suggests that less trivial 

examples probably do exist. 
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