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Abstract 

Calorons, or periodic instantons, are anti-self-dual (ASD) connections on S 1  x J3,  and 

form an intermediate case between instantons (ASD connections on R 4  ) and monopoles 

(translation invariant instantons). Complete constructions of instantons and monopoles 

have been found: there is a complete construction of instantons from algebraic data, 

the ADHM construction due to Atiyah and others, while Nahm gave a construction of 

monopoles from solutions to a system of ODEs known as Nahm's equation. Both these 

constructions can be thought of as generalizations of a correspondence between ASD 

connections on the 4-torus, and ASD connections over the dual 4-torus, originally due to 

Mukai and Braam-van Baal. This correspondence, often called the Nahm transform', 

is invertible and the inverse of the transform is the transform itself up to sign. Given 

an ASD connection on the 4-torus it is defined in terms of the kernel of a family of 

Dirac operators parameterized by the dual torus. The aim of this thesis is to generalize 

the Nahm transform to the caloron case. In particular, our approach is via analysis of 

these families of Dirac operators rather than via twistor theory. 

We start by exploring topological aspects of calorons and boundary conditions. 

These are needed to ensure that the Dirac operators that define the Nahm transform 

are Fredhoim. Our main innovation is to regard R 3  as the interior of the closed 3-ball 

and to stipulate fixed behaviour on the boundary, rather than imposing asymptotic 

boundary conditions. The boundary conditions for calorons can be stated as follows: 

given a bundle on S 1  x B 3  we fix some gauge f on the boundary, and we require that 

in the gauge f, a U(m) caloron must resemble the pull-back of a U(n) monopole. There 

is a topological obstruction to extending f to the interior of S 1  x , which we call the 

'instanton charge' of the caloron. 

The Nahm transform of a caloron consists of a solution to Nahm's equation on S 1 , 

which we refer to as Nahm data. Many aspects of the 4-torus transform generalize 

readily to the caloron case, and the construction of calorons from Nahm data is very 

similar to the construction of monopoles. The main difficulty in the construction lies 

with recovering the boundary conditions for the caloron and calculating its instanton 

charge. The caloron constructed from a set of Nahm data is defined using a family of 

Dirac operators L(x) parameterized by x e 1 x II. Our approach is to deform (x) 

to some model (x) for which we can recover the boundary conditions and calculate 

the instanton charge. We then show that this deformation does not affect the behaviour 

on the boundary. Thus we prove that every set of Nahm data on 1  gives rise to a 

caloron via the Nahm transform. 



Going the other way, from the caloron to the Nahm data, we encounter two main 

problems: first, we must calculate the rank of the Nahm data, which can jump at 

isolated points on Si;  and secondly, we must show that the Nahm data has certain 

prescribed singularities at these points. The transform is defined in terms of a family of 

Dirac operators parameterized by S'. We show that the caloron boundary conditions 

ensure this family of Dirac operators is Fredhoim away from the prescribed points on 

S 1 . We also prove an index theorem for Dirac operators coupled to connections on 

5' x 1l that allows us to calculate the rank of the Nahm data. We obtain partial 

results concerning the behaviour of the Nahm data at singularities. These are based 

on Nakajima's method for recovering the singularities in Nahm data constructed from 

SU(2) monopoles. 
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Chapter 1 

Introduction 

Anti-self-dual (ASD) connections have been studied intensively by mathematicians over 

the last three decades, and have many remarkable properties and applications. One of 

the original problems in the area, the construction of finite-action ASD connections on 

was solved in 1978 by Atiyah and others [5, 4]. They gave a complete construction 

of all such connections—the celebrated ADHM construction of instantons—by means 

of twistor theory and algebraic geometry. For the purposes of this introduction we 

will call any anti-self-dual connection on R 4  an instanton. Instantons are of great 

interest to physicists, since they are solutions to the Yang-Mills equation in a gauge field 

theory, and so represent minimum-energy configurations. They have had an important 

impact on quantum chromodynamics (QCD), with applications to symmetry breaking, 

tunnelling, and confinement. 

In fact the ADHM construction can be regarded as a special case of a correspondence 

we will refer to as the Nahm transform. If A C iW is a sub-group of translations, and 

A* c (1R4)* is the dual of A (so that A*  consists of elements taking integer values on 

A), then the Nahm transform is a correspondence between ASD connections on 1R 4/A 

and ASD connections on (]R4)*/2irA*.  The details of the transform vary depending on 

the nature of A, and the existence and invertibility of the transform have been proved 

rigorously in several cases. For example, the case A = {O} corresponds to the ADHM 

construction, as presented by Donaldson and Kronheimer [12]. 

Another area of interest to mathematicians and physicists alike is that of monopoles, 

which are solutions to the Bogomolny equation on R 3 . The Bogomolny equation is 

a translation reduction of the ASD equation, and so monopoles can be thought of 

as translation-invariant instantons, or equivalently, ASD connections on ]R 4 /A where 

A = R. In this case, the Nahm transform is a correspondence between monopoles and 

objects defined on the 'dual torus' (1R4)*/2 7rA* = IR, which we will refer to as Nahm 

data. The construction of monopoles from Nahm data and the inverse correspondence 

has been described by Hitchin [17] (for SU(2) monopoles) and Hurtubise–Murray [20] 

(for arbitrary gauge group). 
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Periodic connections on R4  correspond to A = Z, and form an intermediate case 

between instantons and monopoles. A periodic anti-self-dual connection over R 4  is 

called a periodic instanton, or caloron. The aim of this thesis is to study the geometry 

of calorons and the Nahm transform. Since A = Z, the transform will be a correspon-

dence between calorons lying on 14/A = Si x R 3  and Nahm data on (R4)*/2 7rA* = Si. 

In some sense a caloron can be thought of as a hybrid between an instanton and a 

monopole. For example, a caloron has an 'instanton charge' (an invariant that depends 

on the 4-dimensional topology of the caloron) together with 'monopole charges' (which 

characterize the 3-dimensional topology). We will see this reflected in the Nahm trans-

form for calorons, as it shares features with both the ADHM construction of instantons 

and the construction of monopoles. Originally introduced by Nahm in [33], the trans-

form for calorons has been studied recently for calorons with unit instanton charge and 

zero monopole charges, in a series of papers [23, 24, 22] and [26]. 

Completeness of the ADHM construction of instantons and construction of mono-

poles was originally proved using twistor theory. In the case of monopoles, there is a 

correspondence between monopoles and certain algebraic curves in twistor space, called 

spectral curves, and this was used in [17] and [20] to go from monopoles to their Nahm 

data. The twistor picture for calorons was studied in [13], and there is a similar corre-

spondence between calorons and their spectral curves. While the twistor picture could 

be used to prove the existence of the Nahm transform for calorons, the approach in 

this thesis is via analysis of families of Dirac operators, regarding the caloron case as a 

generalization of the Nahm transform on the 4-torus. 

With the scene set, we go on to introduce anti-self-duality and the Nahm transform 

more formally in Section 1.1. In Section 1.2 we review existing work on calorons, before 

giving an overview of the aims and results of this thesis in Section 1.3. From the outset, 

we draw the reader's attention to the Glossary of Notation on page 138 in the hope it 

will make the thesis easier to read. 

1.1 Anti-self-dual connections and the Nahm transform 

1.1.1 The anti-self-duality equation on 

Let xo, X1, X2, x3  be the standard coordinates on R", and equip 11 with the standard 

Euclidean inner product. Fix an orientation by decreeing that the ordered basis of 

1-forms dx 0 ,dx 1 ,dx 2 ,dx 3  be positive. The space of p-forms on 1R 4  is denoted APR', 

and a p-form a will be represented by its skew-symmetric covariant tensor aa1,a2.....ap  

of components, defined by 

1 
a = 	 aai ,a2 .....ap ai  A ... A dX a  

a1 ap

p.  
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In general, the Hodge star operator is defined on any n-dimensional Riemannian man-

ifold M with volume form i. It is the linear map * : AM - AM defined pointwise 

by 

aj3)i = *a A)3 

where a,)3 E AM and a,,3) is the inner product between p-forms defined by the metric. 

Integrating over the manifold M gives an inner product on forms defined globally: 

*a A,3. 	 (1.1) 
M 	 M 

On iR 4  the Hodge star becomes 

* : A21R4 - A2114 

1 
(*a) ab  = E €abcdacd 

c,d 

for any 2-form a, where Eab,d  is the 4-dimensional alternating tensor with €0123 = 1. 

Since ** = 1, * has eigenspaces with eigenvalues ±1. A 2-form a is self-dual (SD) if 

= a and anti-self-dual (ASD) if *a = —a. In terms of components, a is anti-self-dual 

if 

a01+a23=O, a02+a3i=0, and  a03+a12=0. 	 (1.2) 

Given a connection A on a bundle E on ll, A is anti-self-dual, or satisfies the anti-self-

duality equation, if its curvature FA is anti-self-dual as an endomorphism-valued 2-form 

i.e. if 

*FA = — FA- 
	 (1.3) 

If we consider the action of a discrete sub-group A C 1R 4  of translations on 1R 4 , so 

that 1R 4 /A is 4-dimensional, the anti-self-duality condition makes sense on the quotient 

manifold 1R4 /A. The ASD 2-forms are those that satisfy (1.2) where x 0 ,x 1 ,x 2 ,x3  are 

the coordinates on 11 4 /A corresponding to the standard coordinates on R 4 . Note that 

throughout we will use the symbols E, A etc. to refer to vector bundles and connections 

over 4-manifolds and the corresponding symbols E, A etc. to refer to vector bundles 

and connections over 3-manifolds. 

An instanton is a unitary ASD connection A on 1W' whose action 

IIFAII2 =ftr *FAAFA 

is finite. Uhlenbeck [40] showed that any such connection extends smoothly to the 

compactification S4  of 1W', and that every ASD connection on S 4  arises in this way. 

Thus instantons really live on S 4  and are characterized by their second Chern class, 

which is often called the instanton number, or charge. 
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1.1.2 Translation reduction: the Bogomolny and Nahm equations 

Next, we define the Bogomolny equation and Nahm's equation, and show how these can 

be thought of as translation reductions of the anti-self-duality equation. The Bogomolny 

equation applies to connections over R 3 , and we need to fix the following conventions. 

Throughout, we will consider R 3  as a slice of R4  of the form xo = constant, oriented 

so that the ordered basis dx 1 , dx 2 , dx 3  is positive. The Hodge star operator is given in 

components by 

* : A 2  R  3 - A'1R 

(*)a  = 	abcbc 

where 1abc  is the 3-dimensional alternating tensor with E123 = 1. To distinguish between 

the star operators on il 3  and R4  we will sometimes write them as *3 and *4. 

Consider what happens to the anti-self-duality equation (1.3) if we decree that 

a connection A is translation invariant. Of course, this is equivalent to looking at 

connections on the'generalized torus' lI 4 /A with A = IR, that satisfy a symmetry 

reduction of the ASD condition. Let A0, Al, A2, A 3  be the matrices representing A in 

some global trivialisation of IE, and suppose that the matrices are independent of xo. 

Then, using (1.2) and (FA) jj  = aA - aA + [A, A], we see that FA is ASD if 

a2A3 - a3A + [A2 , A 31 = 01A0 + [A 1 ,Ao] 	 (1.4) 

holds, together with the two equations obtained by cyclic permutations in {1, 2, 3}. Let 

E be a unitary bundle over R 3  with some fixed trivialisation. From this point on we 

will restrict to unitary bundles for the rest of the thesis. Let A be the connection on E 

with components A l , A2, A 3  in this trivialisation and let be the endomorphism of E 

represented by A0. Then (1.4) and its cyclic permutations can be written as 

*FA = VA. 	 (1.5) 

This is the Bogomolny equation. Note that conversely, any solution to the Bogomolny 

equation can be used to construct a translation invariant ASD connection on R 4  via 

the same argument. The endomorphism 1 is called a Higgs field. 

A monopole is a unitary solution (A, ,b ) to the Bogomolny equation whose energy 

11  FA 11 2  + llVAll2 = 
JR3 

tr {*FA A FA + *VA A VA} 

is finite. The finite energy condition can be re-expressed in terms of the asymptotic 

behaviour of A and 4.  For SU(2) monopoles the asymptotic condition is that PH - 
as r -+ oo where r is the standard polar coordinate on JR 3 . (In fact there are additional 

conditions that will not concern us till later.) On the 2-sphere at infinity 'I therefore 
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has eigenvalues ±ii, defining two eigenbundles. We let ±k be the first Chern classes 

of these eigenbundles, and say that the monopole (A, 1) has charge k. Note that 

instantons cannot be translation invariant, since this would contradict the finite action 

condition. 

We can perform further translation reduction: consider an ASD connection A on 

JR4  whose components A0, A 1 , A2, A3 are independent of x 1 , X2, X3 in some trivialisation. 

The anti-self-duality equation becomes 

ô0A 1  + [Ao,A1] + [A2, A31 = 0 	 (1.6) 

plus cyclic permutations in {1, 2, 31. In a similar way to the reduction to the monopole 

case above, A determines a connection V and three endomorphisms T1, T2 , T3  on a 

vector bundle over R; from (1.6) we see that these satisfy 

VT2  + 	Cjk[Tj,Tk] = 0. 	 (1.7) 

This is Nahm's equation. Following the sketch of the Nahm transform at the start of 

the Chapter, we expect solutions to Nahm's equation to correspond to solutions of the 

Bogomolny equation under the transform. 

1.1.3 Gauge transformations 

Monopoles and instantons are studied modulo the action of the group of bundle auto-

morphisms preserving the base manifold. These automorphisms are referred to as gauge 

transformations. In particular, the Nahm transform is defined modulo this gauge ac-

tion. If local trivialisations are fixed, the action of a gauge transformation is the same 

as a change of trivialisation. We therefore sometimes refer to fixing a local trivialisation 

as 'fixing a gauge'. 

For an instanton A on a U(n) bundle JE -p IR, a gauge transformation g acts on 

sections of JE by s '- gs and on A by VA '- gVg -1 . In a local trivialisation over 

some open region U c lRz,  g becomes a map g : U -* U(n) and VA is represented by 

matrix-valued functions A0, A l , A2, A3 : U -p u(n). The action of g is given by 

Aa '-p gA ag - dgg 

Similarly, for a monopole (A, 4) on a U(n) bundle E - 1R3 , a gauge transformation g 

acts on sections of JE by s -* gs, on A by VA '-4 gVAg, and on by '- gg 1 . In 

a local trivialisation over some open region U C 1R3 , g becomes a map g : U - U(n), 

I becomes a map : U - u(n), and VA is represented by A 1 ,A2,A3 : U - u(n). The 

action of g on 4 is given by 
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and on A by 

A a  -' gAg 1  - dgg' 

Gauge transformations for bundles over the 4-torus and over S' x 1R 3  are defined in an 

analogous way. 

1.1.4 Spin structures and Dirac operators 

The Nahm transform is defined using Dirac operators on 1R 4/A. In this Section we fix 

our notation and conventions for such operators. We start, however, by recalling the 

definition of a spin structure on an arbitrary manifold. References [12], [39] and [14] 

provide more background material, and proofs of all the statements. 

Suppose M is an oriented smooth ri-dimensional Riemannian manifold. Let F be 

the principal SO(n) bundle of oriented orthogonal frames for the tangent bundle. A 

spin structure for M is a pair (F, a) where F is a principal Spin(n)-bundle over 

and a : F - F is a two-to-one covering such that the restriction to each fibre is the 

double covering Spin(n) -+ 50(m). The obstruction to the existence of a spin structure 

is the second Stiefel-Whitney class, which is contained in H2 (M, Z2) (see [12, Section 

1.1.4]), and the number of spin structures is counted by H 1  (M, Z2). If a spin structure 

exists then M is called a spin manifold. The spin bundle S -* M is defined to be the 

vector bundle associated to the Spin(n) principal bundle F via the spin representation. 

It comes equipped with a representation 'y of the Clifford algebra of the tangent space 

TM on the fibre S for each x E M, and this is used to define the Dirac operator. 

When M = R4 , it is easy to check that there is a unique spin structure. Since 

Spin(4) = SU(2) x SU(2) it follows that the spin bundle S decomposes into two SU(2) 

bundles S+, S—  with S = S 5 (see [12, Section 3.1.1]). The spin representa-

tion -y respects this decomposition in the following way. Given the orthonormal frame 

(9 )  9 1 , 3x2 0x3) the endomorphisms 'y(c9) : S - S decompose as 

(aj = 
(-Y"

0 	

) 

for a = 0, 1, 2, 3. Since -y  is a representation of the Clifford algebra these endomorphisms 

satisfy 

YYb + 'f 'ía 	28ab 	 (1.8) 

In particular, we can choose bases for S  and S in which the endomorphisms are 

given by matrices 

	

(1 O'\ 	Ii o\ 	(0 —'\) 

	

(0 i\ 
= 	i)' 	i = 	) , 	

2 = 	, 	= i 0) 	
(1.9) 
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Note that these satisfy 

= 	and 'fifj = —'fk, 	 (1.10) 

where {i, j, k} is a cyclic permutation of {1, 2, 31. Let V be the covariant differential 

operator on some bundle IE - 1R 4  associated to some unitary connection A, and let 

Vo , V1, V2, V3 be its components in the frame (Os , a 1 , Dm2 , 0x3 ). The Dirac operators 

F(S ® E) - F(S ® E) and D : F(S ® E) -  F(S ® E)  

are defined by 

3 

Ds = 	YaVaS 	 (1.12) 
a=O 

and 

3 

DA  s = 	yVaS, 	 (1.13) 
a=O 

and are called the Dirac operators coupled to the bundle E via the connection A. 

Next consider the two cases M = R4 /A where A = Z or Z 4  (i.e. M=S'  x ii 3  or 

M = T4 ). The spin bundle and spin representation 'y are invariant under the action of 

A, and so descend to the quotient. Thus in both cases M has a spin bundle S = 

together with Dirac operators defined by equations (1.11)—(1.13). 

The following Weitzenböck formula holds on M = 4 ,  51 x T1, and T4 : 

Lemma 1.14. Given any section s of S 0 E we have 

DDs= 	VaVaS 	fYb()ab 

where F is the self-dual part of the curvature FA of A. 

Proof: Using the relations (1.8) and definitions (1.12)—(1.13) we have 

	

DD = - 	YbVaVb 
a,b=O 

= —(y'yaVaVa) - (y'ybV aVb) 

a 	 ab 

	

- 	VaVa - >YYb(VaVb - VbVa). 

The last term can be rewritten as 

Y'Yb(FA) ab. 	 (1.15) 

a<b 
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A basis of anti-self-dual 2-forms is given by 

dx 0  A dx1 - dx 2  A dx3, dx 0  A dx2 - dx3 A dx 1 , dx0 A dx 3  - dx 1  A dx2. 

Substituting these forms into (1.15) and using (1.10), we see that the final term vanishes 

on the anti-self-dual part of FA,  establishing the lemma. 	 El 

Finally, consider M = JR3 . In this case the spin bundle is a Spin(3) = SU(2) 

bundle which we denote S( 3). We can find a trivialisation of 8(3 ) in which the spin 

representation y(Oj)  for j = 1,2,3 is given by Yj,  where the yj are defined by (1.9). 

Given a unitary bundle E over JR 3  and a unitary connection A on E, the Dirac operator 

coupled to A is defined by 

DA : F(S (3)  ® E) - IF (S(3) ® E) 

DA 

Note that we will often want to use identifications 

8 	ir"S 	S 	7r *S(3) 	 (1.16) 

where it is the projection ir : JR4 - R  or it : 8 1  x R  - JR3 . 

1.1.5 The Nahm transform on the 4-torus 

As described on page 4, the Nahm transform is a correspondence between ASD con-

nections on R4 /A and ASD connections on (1R4)*/27rA*,  where A C JR4  is a group of 

translations. The Nahm transform on the 4-torus (when A = Z 4 ) is in some ways the 

most natural version, and the other cases of the transform can be regarded as general-

izations of the 4-torus version. In this Section we present the Nahm transform on T4  

following Braam-van Baal [6] and Donaldson-Kronheimer [12, Section 3.21; later, we 

will use this as the framework into which the other cases fit, in particular the transform 

for calorons. 

Let A be a maximal lattice in R   and let T = R4 /A. As before, the dual lattice A* 

consists of elements of (JR4)*  taking integer values on A, and we define the dual torus 

to be T* = (JR4)*/2 7rA*. We equip T*  with the fiat Riemannian metric induced from 

(JR4)*, and denote the spin bundles Note that if A is generated by {[Loeo,... j 3 e3 } 

where /L a  e JR and eo,... , e3 is the standard basis of R   then T*  has periods 27t/Ii,, for 

a = 0,1,2,3. 

The dual torus T*  parameterizes fiat U(1) connections on T in the following way. 

Any 6 E (1R4 )* can be regarded as a 1-form with constant coefficients on T via 

>1 6adx a . The connection d - on the trivial line bundle C x T is fiat, and we denote 
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the line bundle with this connection by L. Two points 6, 6 e (R')' determine gauge 

equivalent connections if there is a well-defined gauge transformation g satisfying 

- 2) = dgg 1  

g(x)=expi( l - 2).x 	 (1.17) 

where x is the coordinate on R. The map g is a well-defined gauge transformation 

g : T - U(1) iff i - 2 E 27rA. Thus L 1  and L 2  are gauge equivalent iff 1 - 2  E 27rA*, 

and T*  parameterizes gauge equivalence classes of flat U(1) connections on T. 

Next, fix a unitary vector bundle JE over T with a unitary ASD connection A. We 

restrict to connections that are 'irreducible' in the following sense (the definition is 

taken directly from [121): 

Definition 1.18. The connection A is WFF (without fiat factors) if there is no splitting 

IE = E' L compatible with A for any fiat line bundle L. 

For each 	(1R 	we can consider the bundle JE = E ® L equipped with the 

induced connection A. Using some fixed trivialisation of IE, A is represented by 

A 0 1 - 1 0 i where (by abuse of notation) A is a matrix of 1-forms. It is easy to check 

that AE  is ASD for all . We can write down the Dirac operators on T coupled to 

via A, following definitions (1.1l)—(1.13): 

Dt 

where 

Dt=D—iy(), D=Dj+i
y *( c ), 	 (1.19) 

and 'y is the spin representation for JR 4 . Since AC  is ASD, applying Lemma 1.14 we have 

DD = VVA. 

Thus s E ker 	if IIVsII = 0, in which case s is a covariant constant section of 

IE 0 L, and, if non-trivial, yields a splitting JE = IF! G L. Since we are assuming that 

A is WFF it follows that Dt  is injective. 

Via standard results on elliptic operators, Dt  is Fredhoim for all 	T* and has 

constant L 2-index. Since Dt  is injective, using the Fredhoim alternative it follows that 

dim ker D = — index 	and this is independent of . Moreover, the fibres 	= 

coker D = ker define a vector bundle E over (]R4)*  which inherits an hermitian 

metric from the L 2  hertiiitian metric on F(S 0 IE). Let Ifr be the bundle over (JR4)* 

whose fibre at consists of L 2  sections of S ® IE 0 L so that IE is a sub-bundle of IF, 

and let P be the L 2  orthogonal projection onto ker D, . Let P be the map on F given 
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fibrewise by P. Using the standard covariant derivative d on the trivial bundle IF, we 

can define a unitary connection A on IE by 

VA=P . d. 	 (1.20) 

Finally, note that 

(exp ij x)D (exp -iij x) 

for all 77 e 27rA* so that (exp ii7 x) : T - U(1) is a gauge transformation identifying 

ker with ker Hence 27rA*  acts on IE -i (R4 )*, and the quotient is a bundle 

over T*,  which we also denote IE. The connection A respects this action and descends 

to a connection over T*  in the same way. 

Definition 1.21. If A is a unitary WFF ASD connection on a unitary bundle E -* T 

then (IE, A) is called the Nahm transform of (E, A), where E -* T* is given fibrewise by 

lk = coker and A is defined by (1.20). 

The transform is non-trivial, in that, when ci (IE) = 0, the rank and Chern classes 

of IE are given by: 

rank(t) = C2(E) 

c2(E) = rank(IE). 

(When ci (E) 	0 there is a very similar formula.) The relations are a direct result of 

the index theorem for families due to Atiyah-Singer, and a proof is given in [12, Section 

3.2.2]. 

The key point is the following: 

Proposition 1.22. The Nahm transform (IE, A) of (E, A) is ASD. 

Proof: The curvature FA  of A is given by 

FA = PdPdPP, 

where P is the L2-projection onto ker D, at each point e T*. Now 

= 1— DGD 

where 

= (D- D+) 

Substituting this into the expression for FA  we obtain 

FA = P(dDt)c(dD)P. 
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From (1.19), we have 

	

dD = —i 	-y,, d&, and dD = i 

Since 

	

( 	yad a) A ( 	7db) 

is ASD (which can be checked by substituting in the matrices Ya  from (1.9) and compar- 

ing with the anti-self-duality equation), it follows that A is ASD provided G commutes 

with Clifford multiplication for all . But Lemma 1.14 shows that 	= DD com- 

mutes with Clifford multiplication, so the Proposition follows. 	 0 

Another remarkable property of the Nahm transform is that—like the Fourier 

transform—it is invertible, and the inverse is the transform itself (up to factors of 

27r and sign). It turns out that given an ASD WFF connection (E, A), not only is A 
ASD, but it is also WFF, so the transform can be applied again to (2,A). The inverse 

transform is defined in the following way. 

Just as T*  parameterizes the fiat line bundles on T, the torus T parameterizes flat 

line bundles over T*  via the identification x '- d i E  x adea . We write L to denote 

the line bundle and flat connection corresponding to x E T, and, given a unitary bundle 

F and unitary connection B over T*,  let D1 be the Dirac operators coupled to F 0 L 

via B twisted by L: 

D :F(®F0 L x ) —+ F(®F®L). 

If B is WFF and ASD then the inverse Nahm transform, (l', l), is defined entirely 

analogously to the original transform, so that I' has fibre ker D; for each x E T. 

Theorem 1.23. If A is a WFF ASD unitary connection on E - T then A is WFF. 

Hence ( E, A) is well defined and there is a natural isomorphism w: E - E such that 

w*(A) = A. 

The analogy with the Fourier transform for functions on R n  is obvious—indeed 

Donaldson-Kronheimer call the Nahm transform the 'Fourier transform for ASD con-

nections'. 

There are two approaches to proving the Theorem, as described by Braam-van Baal 

[6] and Donaldson-Kronheimer [12] respectively. The first approaches uses relations 

between harmonic spinors on T and harmonic spinors on T*.  Given an ASD connection 

A and its transform A, there is an elegant relation between the Greens function O of 

D; D on T*  and solutions (x) to on T. The Greens function dx  is given very 

explicitly, and it follows quite readily that A is WFF. There is also a formula expressing 
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the solutions 	() to D; on T* in terms of the solutions (x) to D, . Using these 

two relations one constructs the desired isometry w : IE - E. The second approach to 

the Theorem is to convert the problem into an equivalent one in holomorphic geometry 

that can be solved using U-cohomology and spectral sequences. ASD connections on 

T are characterized by the following: a unitary connection A on a unitary bundle IE is 

ASD if and only if it defines a holomorphic structure on IE for each complex structure 

on T. There is also an identification between the spaces of forms 11°'° 0,2 and 

over T with the spin bundles S+, S. This characterization allows one to move 

between ASD connections on unitary bundles and 3-operators on holomorphic bundles. 

The holomorphic version of the transform was first given by Mukai [30]; Donaldson-

Kronheimer also give a proof of the holomorphic version together with the details of 

how to move between ASD connections and holomorphic bundles. 

Remarks 

In algebraic geometry the transform of Mukai between holomorphic bundles over 

complex tori has been generalized to give the 'Fourier-Mukai' transform—a transform 

between bundles over algebraic varieties (e.g. elliptic surfaces, K3 surfaces). This has 

been very successful in the study of moduli spaces of bundles over these surfaces. 

The Nahm transform is a hyperKähler isometry between the moduli spaces A4 (E) 

and M(t) of WFF ASD connections on IE and E. The moduli spaces are smooth 

manifolds away from the connections with fiat factors and are equipped with natural 

metrics, given by the L 2  metrics on 1-forms over T and T*. The ASD equation implies 

that these metrics are hyperKähler. Braam-van Baal [6] prove the Nahm transform on 

the 4-torus is a hyperKãhler isometry. It is conjectured that this holds for the transform 

for other cases of A, and this has been proved in certain cases. 

This concludes our description of the Nahm transform on V. Next we consider the 

transform when A is a general group of translations, reviewing the cases that have been 

studied in the literature. 

1.1.6 The Nahm transform on the generalized torus 

We want to consider the 'generalized torus' T = R4 /A where A = A 0  x Al  x A2 x A 3  

and A a  = { 0}, Z, or R for each a 0,... , 3. It can be thought of as the limit of 

the 4-torus with generators {iLoeo,... , jie} C R4 where some of the /L a  tend to zero 

or infinity. Recall that the dual torus has periods 27//L a , so 'shrinking' /a  to zero 

(i.e. taking Aa  = R) corresponds to 'stretching' a period on the dual torus (i.e. taking 

= {0} where A* = A x ... x A) and vice versa. Given some generalized torus, 

one can attempt to carry across all the theory in Section 1.1.5 to give a version of the 

Nahm transform in this new setting. Many aspects carry across readily, but two main 
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problems are encountered: 

In all cases other than the 4-torus we can assume T is non-compact (since if T 

is compact then T*  must be non-compact and we can swap the two around). It 

becomes necessary to impose boundary conditions at infinity on the connection 

A to ensure that 	is Fredholm—and even with these conditions Dt  may fail 

to be Fredholm for certain values of . The Nahm data will contain singularities 

at the points where 	is not Fredholm. In fact t will not in general be a single 

vector bundle, but may change rank at these singular points. This introduces a 

new element into the problem: one must give boundary conditions for A and A 
at infinity and singular points, and then show that these can be recovered from 

each direction of the transform. 

A related problem is that the index theorem for families relating the topology 

of IE and E does not hold on non-compact manifolds or for singular connections. 

Furthermore, while index theorems on non-compact manifolds do exist in the 

literature, they depend heavily on the precise nature of the geometry at infinity. 

It may therefore be necessary to prove a new index theorem depending on A and 

the nature of the boundary conditions being imposed, for each different case of 

the transform. 

Various cases of the transform on the generalized torus exist in the literature, and 

we review these next. We describe the constructions of instantons and monopoles in 

some detail, as these cases are directly relevant to the caloron case, but delay comment-

ing on the literature until Section 1.1.7. We let T denote the n-torus S 1  x ... x S'. 

The case T = lR, T* = {O}: the ADHM construction of instantons. A de-

scription of the ADHM construction as a generalization of the Nahm transform on the 

4-torus is given in [12, Chapter 31. We give a brief sketch of the construction, comparing 

with what you might expect naïvely from the 4-torus transform. 

Let (E,A) be an instanton with charge k (recall the definition in Section 1.1.1). 

There is a unique fiat line bundle over R4  and the dual torus T*  is a single point, so 

to perform the Nahm transform we consider only the Dirac operator D rather than 

the family of operators Dt.  The boundary condition on (E, A) (i.e. the assumption 

that the instanton extends to the compactification S 4 ) allows the Atiyah-Singer index 

theorem to be applied. This shows that D is Fredholm with index —k, so IE is just the 

k-dimensional vector space coker D. In analogy with the transform for T4 , we expect 

A to be an ASD connection over R4  invariant under any translation. This would be 

represented by skew-hermitian endomorphisms 

TaS = jP(XaS) 
	

(1.24) 
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for s E coker D, satisfying 

[To ,T1 ] + [T2, T31 = 0 	 (1.25) 

and cyclic permutations in 11, 2, 3} (the fully translation invariant ASD equation). In 

fact when we perform the transform, the RHS of equation (1.25) turns out to be non-

zero. This 'surprise' arises as a direct result of the non-compactness of li 1 . 

The correct dual picture is the following. Let 

(T. A,,

"=1: 	- ix.) 
y : 	® 	 ® 	 (1.26) 

where Ta  is a k x k skew-hermitian matrix and )a  a rank k row vector, for a = 0,... , 3. 

The map /.(x) is the analogue of the Dirac operator D. Under the assumptions 

A(x) is injective for all x, and 

*(x)(x) commutes with the -y matrices for all x, 	(1.27) 

coker z(x) defines an SU(2) bundle E over TR 4  as x varies. This has C2(E) = k, and an 

analogue of Proposition 1.22 shows that the induced connection A is ASD. Atiyah and 

others [5, 4] proved that every SU(2) instanton can be constructed in this way—this is 

the ADHM construction. Expanding (1.27) gives 

[TO, T11 + [T2, T31 = (AA1 - )\o) + 	- 

and cyclic permutations in {1, 2, 31; this is the correct version of equation (1.25). To 

obtain the ADHM data {Ta , A,, : a = 0,... ,3} from a given instanton (E, A) one must 

consider the Nahm transform less naïvely than we did above. Careful analysis of the 

asymptotic behaviour of the solutions in coker D can be used to obtain the A a . 

The case T = R3 , T* = R: the construction of monopoles. The following sketch 

of the Nahm transform for SU(2) monopoles as a generalization of the transform on 

the 4-torus follows Nakajima [34]. We comment on other approaches in the literature 

in Section 1.1.7. 

We have already seen how a translation invariant anti-self-dual connection A is 

equivalent to a solution (A, 1) of the Bogomolny equation. We can perform a similar 

reduction on the Dirac operator Dt. Using the identifications 1.16, Dt  reduces to 

	

= DA + - : F(S( 3) ® E) -* F(S( 3) ® E) 	 (1.28) 

where 	R is the coordinate on the dual torus. The rank of the Nahm transform is 

given by the dimension of the cokernel of D. 

An important role will be played in this thesis by Callias' index theorem [7], which 

gives a formula for the index of operators like DC  on odd dimensional manifolds. The 
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original version of the theorem applied to operators on bundles over M = R for odd m, 

but was generalized by Anghel [3] and Ràde [38] to apply more widely. The generalized 

version applies to operators of the form 

DA,IP = DA + 10 : C(M, S ® E) — C°°(M, S ® E) 

where M is a complete open odd-dimensional spin manifold with spin bundle S; E is 

a unitary vector bundle on M; DA is the Dirac-operator coupled to E via a unitary 

connection A; and 1? is a skew-adjoint endomorphism of E. The main condition required 

is that 1' should be invertible outside some compact set M0  C M and on the boundary 

0M0 (some mild additional conditions are also required). If this is the case, then 1 

decomposes EIOM0  as a direct sum EIoM0 = E+ E where E+  consists of eigenvectors 

of —iqD that have positive eigenvalue, and E consists of eigenvectors with negative 

eigenvalue. 

Theorem (Callias-Anghel-Râde). Under the assumptions above, DA, is Fredholrn 

with L 2 -index given by 

md DA, = — fa 
A(aM0) A ch(E) 	 (1.29) 

M0 

where ch denotes the Chern character of a bundle and A is the A-genus. (See [39, 

Chapter 2] for background on characteristic classes and genera.) 

Returning to the operator D defined by (1.28), we want to apply Callias' theorem 

to compute its index. Suppose that (A, ) satisfies the SU(2) monopole boundary 

condition, so that at infinity 1' has eigenvalues ±ip defining eigenbundles with Chern 

classes ±k. Since the A-genus of the two sphere is trivial, (1.29) gives 

md DC = —ci (E)[S] 

provided I'—i is invertible on SR2  for all sufficiently large R. Here E is the eigenbundle 

over SR2  on which —i( - i) is positive, cl denotes the first Chern class, and SR2  is the 

2-sphere with radius R. Since this result is independent of R we can take the limit as 

R — oo, and write md D = _ci (Ej[S,]. When > i, E is trivial so the index 

is zero; when < E+ is the whole vector bundle over SR , so the index is zero 

again; and when p. > > —p., E is the eigenbundle with Chern class k so the index is 

—k. A Weitzenböck formula like Lemma 1.14 shows that DC  is injective, so the Nahm 

transform of (A, (b) consists of a bundle E over the interval (—p., p.) C R with rank k. 

The analogue of ,& is a connection V and skew-adjoint endomorphisms T1 , T2, T3 on 

defined by 

Vs = P(as) 	 (1.30) 

T3 s=iP(x3 s), j=1,2,3 	 (1.31) 



for a family s() e coker D. These satisfy Nahm's equation (1.7). Near the singulari-

ties = ±y there is a parallel gauge in which the T3  have a simple pole: 

R 
T3  () = 	+ analytic function, 

and at each singularity the residues R define an irreducible representation of u(2) 

with dimension k. 

Conversely, given such a connection V and endomorphisms Tj on a rank k bundle 

the analogue of D is the operator 

(x) = V + 	- i 1: xj ®j : F(EØ) F(E®) 	(1.32) 

for x e iW 3 . Nahm's equation implies L is injective, and the singularity condition 

implies that L& has index —2, so coker z(x) is a rank 2 bundle over J3  We then define 

VAS = P(ds) 

= iP(s) 

where s(x) E coker z(x) for each x. An analogue of Proposition 1.22 shows (A, 4') satis-

fies the Bogomolny equation (1.5), and the monopole also satisfies the SU(2) monopole 

boundary condition with eigenvalues ±ii and charge k. 

The case T = T 1  x 1R3 , T* = T1 : calorons. Existing work on the transform for 

calorons is reviewed in Section 1.2. 

The case T = T 2  x 1R2 , T* = T2 . Jardim [21] has recently proved the existence and 

invertibility of the transform for this case. The transform takes instantons on T 2  x 

satisfying certain decay conditions to solutions of the so-called Hitchin equations on T2  

with point singularities. The proof has a strong algebro-geometric flavour by regarding 

T as a complex manifold T2  x C, and in broad terms follows the proof of the transform 

on T4  in [12, Chapter 31. 

The case T = T 3  x R, T*  =T 3.   Van Baal [41, 42] has studied instantons on T3  x IR 

and the Nahm transform, in particular with 'twisted boundary conditions' (conditions 

on every half period, as well as full periodicity). 

1.1.7 Notes on the literature for the Nahm transform 

In Section 1.1.6 we presented the constructions of iristantons and monopoles as gen-

eralizations of the Nahm transform on the 4-torus. Historically, this is not how these 

constructions arose in this Section we describe approaches to the Nahm transform for 

instantons and monopoles as they occurred in the literature. 
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SU(2) Monopole 

/\ 
Nahm data 	 Spectral curve 

Figure 1.1: Hitchin's circle of ideas 

The ADHM construction of instantons [5] arose from developments in twistor theory 

in the late 1970's. Ward [43] proved a correspondence between instantons on S4  and 

certain holomorphic bundles on the twistor space P 3 (C) of S4 . In turn, the ADHM 

construction [5] was a complete construction of these bundles, thereby giving a complete 

construction of instantons. 

In the early 1980's Nahm [32, 33] sketched the Nahm transform, showing how it 

encompassed the ADHM construction, and describing the transform for monopoles and 

calorons. It was apparent from this work, but not explicitly stated, that the transform 

would work on T4  and generalized tori. At roughly the same time Mukai [30] proved the 

existence and invertibility of the transform between holomorphic bundles over complex 

tori which we mentioned on page 15. Later, Corrigan-Goddard [9] provided some of 

the details missing from Nahm's original work on the transform for instantons and 

monopoles. 

Up to this point there was no rigorous proof of the transform for monopoles including 

the singularities in the Nahm data. Hitchin [17] proved the correspondence between 

SU(2) monopoles and Nahm data via spectral curves of monopoles. Using twistor 

theory he proved a correspondence between SU(2) monopoles and certain algebraic 

curves in the twistor space TP1 (C) of R 3  [16]. Instead of constructing the Nahm 

data directly from the cokernel of a Dirac operator coupled to a monopole, Hitchin [17] 

considered the spectral curve of the monopole and constructed a set of Nahm data from 

this. By going round the circle shown in Figure 1.1 and proving the monopole obtained 

is isomorphic to the monopole started from, Hitchin showed that the construction 

of SU(2) monopoles from Nahm data is complete. Hurtubise-Murray [20] adopted a 

similar approach to prove completeness of the Nahm transform for SU(n) monopoles. 

In 1989 Braam-van Baal [6] described the Nahm transform on T4  as we presented 

it in Section 1.1.5, in terms of ASD connections and Dirac operators, rather than the 

holomorphic approach of Mukai [30]. At a similar time, Nakajima [34] proved the exis-

tence and invertibility of the Nahm transform for SU(2) monopoles by 'direct' means 

(i.e. via analysis of the relevant Dirac operators obtained by dimensional reduction of 

the transform on T4 ), rather than by the spectral curve method. A direct proof for 
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SU(n) monopoles is yet to be given. 

1.1.8 Twistor theory and spectral curves for monopoles 

In this Section we expand on the twistor theory used to prove the existence of the Nahm 

transform for monopoles. The twistor space for iR 3  is the set of oriented geodesics in 1R 3 . 

This can be identified with the tangent space to the 2-sphere, TS 2  TP 1 (C). Hitchin 

[16] proved a correspondence between certain rank 2 holomorphic bundles over twistor 

space TP 1 (C), and SU(2) solutions (A, I) to the Bogomolny equation on a bundle 

E --4R3 .  Given a solution (A, ), the fibre E at z E TP 1 (C) of the corresponding 

bundle is given by 

= is E F(EI.,,) : (Vu - i(D)s = 01 

where Yz  is the oriented geodesic in R 3  corresponding to z, and U is the unit vector 

along -ye . Imposing the SU(2) boundary conditions on the monopole, some analysis 

reveals that there is a holomorphic rank 1 sub-bundle L+ of E, whose fibre at z is given 

by sections of E over 'yz  solving 

(Vu - i4)s = 0 
	

(1.33) 

that decay in the direction of the oriented geodesic -y,. Similarly there is a holomorphic 

rank 1 sub-bundle L whose fibre at z is given by solutions of (1.33) over that decay 

in the opposite direction. The spectral curve S C TP 1  (C) is then defined by 

S={zTP i (C):L=L} 

so S consists of geodesics over which there exist solutions to (1.33) which decay at both 

ends of the geodesic. The spectral curve is a compact algebraic curve, and from it one 

can reconstruct E and hence the original monopole. In other words, monopoles are 

uniquely determined by their spectral curves. Proofs for all these statements are given 

in [16]. As described in Section 1.1.7, the spectral curve is used to prove completeness 

of the construction of SU(2) monopoles from Nahm data in [17]. The Nahm data is 

given in terms of a flow on the Jacobian of the spectral curve. 

As we mentioned above, twistor theory and spectral curves have also been used to 

prove completeness of the Nahm transform for SU(n) monopoles. In [20] Hurtubise-

Murray describe spectral curves and Nahm data for SU(n) monopoles, and give a 

chain of constructions equivalent to those in Figure 1.1. The spectral curve of an 

SU(n) monopole has (n - 1) components in TP 1  (C) with some prescribed intersection 

relations. More relevant to us, however, is the Nahm picture for SU(n) monopoles. 

Given an SU(n) monopole (A, ) we assume that at infinity has eigenvalues 

iAn which define eigenbundles with Chern classes k 1 ,... , k,. (There are other 
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Terminating 	component: 
this piece of the Nahm data 

Rank 	 has a singularity exactly like 

Rank= k 1  + k2 	
that for SU(2) data. 

Continuing component: this 
piece of the Nahm data is 

Rank= 
	 continuous across the join. 

Rank=  k1 

/14 	 113 	 /12 	 /-1.1 

Figure 1.2: Typical U(4) monopole Nahm data illustrating gluing conditions at the 

singularities 

Rank 

Zero jump: the Nahm data 
has a prescribed discontinu-
ity across the join. 

k 2  = 0 

/14 	 /13 	 /12 	 /11 

Figure 1.3: Typical U(4) monopole Nahm data with a zero jump 
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boundary conditions which we ignore for the moment.) The 6aj are ordered so that 

<. Hurtubise-Murray [20] show that the Nahm picture for (A, 1) consists 

of (n — i) bundles X over the intervals [Iip+l,/.Lp],  p = 1,... ,n —1, such that 

rank X = k 1  + 	+ k. 	 (1.34) 

Each bundle is equipped with a connection V and endomorphisms T, j = 1,2,3, 

satisfying Nahm's equation. At each ftp  there is a gluing condition between the bundles 

X and X_1, which depends on the ranks of X, and X_,: see Figures 1.2 and 1.3. 

When k = 0, rank X, = rank X_1 and we call this a 'zero jump'. 

This form for the Nahm data is precisely what you expect if you consider the cokernel 

of D, the Dirac operator defined by equation (1.28). Applying Callias' index theorem 

in a similar way as that on page 18, D is Fredhoim except when {jt',... ,p}, and 

the dimension of the cokernel is given by 

f k 1  + ... + k 	when E (+i, p), 
dim coker D 

= 10 	when 	or > . 

This agrees with equation (1.34). 

1.2 Review of existing work on calorons 

Recent work on calorons consists of two main strands. First there is the work of 

Garland-Murray in which SU(n) calorons are regarded as monopoles whose structure 

group is the loop-group of SU(n). Secondly, Kraan and others have proved the existence 

of a version of the Nahm transform for a special kind of caloron, namely those with 

unit instanton charge and vanishing monopole charges. Before reviewing this work, 

however, we make some remarks on other places calorons appear in the literature. 

Calorons and their applications to QCD at finite temperature were first studied 

in the late 1970's: [10] contains a review of this work. In [15], Harrington-Shepard 

constructed an explicit SU(2) caloron by arranging a periodic array of charge-1 in-

stantons in 1l1.  Later, others showed how to take monopole and instanton limits of the 

Harrington-Shepard caloron (by letting the period tend to zero or infinity respectively). 

Other explicit solutions have been constructed by Chakrabarti using various ansätze, 

including calorons with non-trivial monopole charges: see [8] and the references therein. 

Calorons and the Nahm transform have an interpretation in string and brane theory: a 

caloron can be regarded as a periodic arrangement of strings and D-branes; the Nahm 

transform is a correspondence between different brane configurations, called 'T-duality'. 

In this thesis, however, we steer clear of these stringy issues. 
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1.2.1 The loop group point of view 

Garland and Murray [13] make the remarkable observation that SU(ri) periodic in-

stantons are the same as monopoles with the group LSU(n) as their structure group, 

where LSU(n) is the semi-direct product of the loop group LSU(n) and U(1). In other 

words, they show that the anti-self-duality equation (1.3) for a SU(m) connection on 

W' is equivalent to the Bogomolny equation (1.5) for a LSU(n) monopole. Garland 

and Murray go on to develop twistor theory and the spectral curve picture for periodic 

instantons, by regarding them as loop-valued monopoles, and extending known results 

for regular monopoles. In a similar vein, Norbury [35] has extended the rational map 

construction of SU(n) monopoles [11] to a construction of LSU(n) monopoles based 

on holomorphic maps from S 2  to a certain flag manifold. 

In general we will not make much use of the loop group approach in this thesis; 

on the other hand it often gives clues as to what one might expect for calorons, by 

extending existing results for monopoles. In this Section we prove the correspondence 

between calorons and loop-group monopoles, before sketching Garland and Murray's 

work [13] on the spectral curve of a caloron. Finally we describe the form we expect 

caloron Nahm data to take, as sketched by Garland and Murray [13, Section 8]. First, 

however, we make the following definitions. 

Let C be a Lie group and g its Lie algebra. The loop group LG of G is the group of 

smooth maps from S 1  to G with pointwise composition. Let Lg denote the Lie algebra 

of LG, that is Lg = Map(S', g). Define the Lie group LG to be the semi-direct product 

of LG and U(1): as a set 

LG = LG x U(1) 

and the composition is 

(g(0),eza1) o (9(0),e2) = (g'(e - cr2) 092(0), e i(al +Ce2) 

(Note that there is a choice as to how we let U(1) act on LG. We have taken the choice 

as above since, as we shall see, it gives an adjoint action corresponding to ordinary 

gauge transformation on 5' x 1R 3 .) The Lie algebra Lg is then 

Lg = LgiIl. 

The adjoint action of LG on L9 is given by 

Ad (g(0) , e ic )  ((0), i) = (g(e)(e) g ' () - 	(e)g ' (e), iA) 
90 	

(1.35) 

where e = 9 + c, and the Lie bracket is 

+ Aj a62  - 	0' 	(1.36) 
00 	a9' ).  
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Next we want to describe the correspondence between SU(n) calorons and LSU(n) 

monopoles. We will consider calorons with period 27r/o for some ao e R. These can 

be thought of as connections on bundles over S 1 	x JR3  where S 1 = R/(Z). 27r/to 	 27r/po 	J2O 

Given a connection A on a bundle E - S 110  x JR3  fix a global trivialisation of E, and 

define A and by 

VA = VA + dx o (ô 0  + 4) 	 (1.37) 

so that A is a loop of connections on a bundle E - JR3  and a loop of endomorphisms 

on E, parameterized by x 0  e S,,10 . We then define 

A = (A(0),O), and 1 = ((9),i,uo ) 	 (1.38) 

to be the LSU(n) monopole configuration on E corresponding to A, where 0 = jxo. 

Conversely, given an uiSU(n) monopole configuration of the form (1.38) on a bundle E, 

let E = p*E where p is the projection p: S çj  x R -  Ji 3 , and define A using (1.37). 

(Garland and Murray show that by gauge transforming, every finite energy LSU(n) 

monopole can be written in the form (1.38).) We want to show that this correspondence 

is gauge invariant. Let g : S 10  IR x -* SU(n) be a gauge transformation on E and 

let g(9) be the corresponding map JR 3  -* LSU(n). The LSU(n) gauge transformation 

corresponding to g is then 

= (g(0),O) : JR3 -p LSU(n). 

Under , A and transform as 

A '-f AdA - 	= (gAg' - dgg,O) 

-Ad=(gg 1  - iog-1 , ipo)  00 

using the adjoint action (1.35). Since y0 490 = a this is exactly the same as the action 

of g on A: 

A. '-4 gA ag' - 0agg 

Proposition (Garland and Murray [13]). Under the correspondence given above, 

A is ASD if and only if A,($ satisfy the Bogomolny equation. 

Proof: Fixing a global trivialisation of E, A is represented by a matrix of 1-forms 

dx0+Adx. 

The coordinate form of the anti-self-duality equation (1.2) then implies 

(FA) 23  ± (FA)ol = 0 

3A3 - D3A2 + [A2, A31 +,90A1 - 3I + [, A l l = 0 

OA - a3 A2 + [A2, A31± = Oi + [Al, ] - Lo 
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and cyclic permutations in {1, 2, 31. These equations can be written invariantly as 

*FA = VA - PO 
DA 
	 (1.39) ao 

On the other hand, the LSU(n) Bogomolny equation is 

*FA = VA 
	 (1.40) 

where FA  is the curvature of A. However FA = (FA (0), 0), while from the bracket (1.36) 

we have 

VAI = ((VA)(0) - ( 0 &9A)(e),0). 

Hence (1.39) and (1.40) are equivalent. 	 F. 

With the correspondence between SU(n) calorons and I1SU(ri) monopoles estab-

lished, Garland and Murray go on to consider the twistor theory and spectral curves of 

calorons. The twistor space of S 21 110  x II can be obtained by lifting the translation 

i-i x + 27r/to  on R to an action on the twistor space P 3 (C) \ P(C) of R, and 

quotienting by this action. (The twistor space TP 1  (C) of R3  can be obtained in a 

similar fashion.) The quotient is a bundle T° over TP 1 (C) with fibre CX = C \ {0}, 

and it can be embedded in a fibre bundle T - TP1(C) with fibre P 1 (C). Just like the 

monopole case, standard twistor theory methods show that a caloron (lE, A) determines 

a holomorphic bundle lE° over twistor space T°. Garland and Murray show that if the 

caloron satisfies certain boundary conditions, then IE° extends to the compactification 

to define a holomorphic bundle TE -p T. The bundle TE can then be used to define n 

spectral curves in TP 1 (C): a point z E TP1(C) lies in a given curve depending on the 

existence of certain sections of TE over the fibre of T -* TP 1  (C) above z. In particular, 

sections over a fibre P 1  (C) of T are characterized by how they extend from C   to zero 

and infinity. Garland and Murray then show how a caloron is determined by its spectral 

curves, constructing a caloron from a set of spectral data. 

Given the twistor picture for calorons, and arguing by analogy with the monopole 

case, one can predict what the Nahm picture for calorons should look like - this is 

sketched in [13, Section 81. First, however, we need to describe Garland and Murray's 

boundary conditions for calorons. They require that there is a gauge at infinity in which 

a I1SU(n) monopole (A, 1) of the form (1.38) agrees with a static (0-independent) 

SU(n) monopole configuration. Thus a caloron can be characterized asymptotically 

by the eigenvalues 4ti,... , ip of the Riggs field in this gauge, and the Chern classes 

k 1 ,... ,k (the monopole charges'). There is an additional topological characteristic, 

denoted k 0  and called the 'instanton charge', that is the obstruction up to deformation 

on the interior of R 3  to the entire configuration being 0-independent. In terms of an 
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Rank 

/cO + k 1  

k0 

— (izo+,1) 	1 — Lo 	— i 0 	Al 	110 — i 	go +/i1 

Figure 1.4: Typical SU(2) caloron Nahm data 

SU(n) periodic instanton (IE, A) the boundary condition requires that there is a gauge 

at infinity in which A 0  = 4 has eigenvalues ii,... , ia etc. 

We expect the Nahm data corresponding to such a caloron to consist of n bundles 

X,, p = 1,... , n, over the intervals 

I := [ILp+i,up] C I/oZ, p= 1,... ,n — 1, and In  : [Al —/,p] C R/itoZ. 
(1.41) 

Each bundle X, is equipped with a connection and endomorphisms satisfying Nahm's 

equation. Furthermore, we anticipate the rank of the data to be given by 

rank X=ko+ki+.+k. 	 (1.42) 

(Garland-Murray do not give this formula, but it is implicit from their work.) At each 

point we expect the Nahm data to satisfy conditions entirely similar to those 

for SU(ri) monopoles (recall Figures 1.2 and 1.3). A typical set of SU(2) caloron Nahm 

data is illustrated in Figure 1.4. 

1.2.2 Calorons with vanishing monopole charges 

The Nahm transform for calorons has been studied recently for SU(n) calorons with 

unit instanton charge and vanishing monopole charges in a series of papers [23, 24, 22] 

and [26]. In terms of the boundary conditions described in Section 1.2.1, these calorons 

have k0  = 1 and k3  = 0 for j = 1,... , n. In [23], [24], and [22], Kraan and others 

construct such calorons from infinite arrays of ordinary ADHM data, corresponding to 

an arrangement of instantons in 1R 4  repeated periodically, possibly with some topological 

'twist'. (This is, of course, a similar approach to the Harrington-Shepard construction, 

but more general.) The caloron is given by the cokernel of an infinite-dimensional matrix 

operator i(x), similar to the operator (1.26) for the regular ADHM construction, but 

constructed from this array of data. By regarding the algebraic equation L*(x)v = 0 

as a equation for the Fourier coefficients of a function on Si,  Kraan obtains the Nahm 
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The Nahm matrices have 	On the interior of each in- 
a prescribed discontinuity 	terval the Nahm matrices 
across each zero jump. 	are constant. 

—(/t0+a1) /1 — Lo 	—Li 0 	/Li 	/L0 — tL1 	IL0+1L1 

Figure 1.5: Typical SU(2) caloron Nahm data with vanishing monopole charges and 

unit instanton charge 

picture for calorons. This agrees exactly with the Nahm picture conjectured at the end 

of Section 1.2.1 and consists of bundles Xi,, p = 1,... , ri over the intervals (1.41), each 

equipped with a connection and skew-adjoint endomorphisms T1 ,T2,T3. The bundles 

all have rank 1, and so Nahm's equation reduces to 

VT=O, j=1,2,3, 

since the Tj commute. Working in a parallel gauge on each bundle, the matrices 

T1, T2, T3 are constant. At each point = ,u there is a 'zero jump' (i.e. rank 	= 

rank Xv), and the matrices have some prescribed discontinuity there. Kraan and van 

Baal [24] show that each discontinuity determines (and is determined by) a vector 

Yp e Jj3• Note that each block of data X is exactly the same as the Nahm data for a 

charge-1 SU(2) monopole, and so the caloron can be said to consist of n 'constituent 

monopoles'. Kraan and van Baal show that the constituent monopoles are located 

at the points Yp  E 	This interpretation does not hold for higher charge calorons: 

for example, consider a caloron with k0 = 2 and vanishing monopole charges. The 

Nahm data for the caloron should be discontinuous, but not singular, at each = 

while the data for a charge-2 SU(2) monopole has singularities at its endpoints. The 

caloron Nahm data therefore cannot be assembled from n sets of monopole Nahm data. 

Figure 1.5 illustrates Nahm data for Kraan's calorons. 

Since Nahm's equation can be solved completely in the case of unit instanton charge 

and vanishing monopole charges, the construction of calorons can be given very explic-

itly. Roughly speaking, the locations of the 'constituent monopoles' yi,••• , y and 

the values , ji determine the Nahm data completely: expressions for the corre-

sponding caloron are given in terms of these data in [24]. Kraan and van Baal go on to 

consider the moduli space of calorons, and argue completeness of their construction by 

counting parameters. They also take various limits for the SU(ri) caloron, obtaining 

monopole (to - oc) and instanton ( - 0) limits on the moduli space. Shrinking one 
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interval of the Nahm data gives a caloron with a 'massless' constituent monopole the 

Harrington-Shepard caloron can be obtained in this way. Independently of Kraan, Lee 

[26] has given a very similar construction of calorons from this kind of Nahm data. 

1.3 Overview of results 

The aim of this thesis is to prove the existence of a version of the Nahm transform 

for calorons as a generalization of the transform on the 4-torus. As indicated in Sec-

tion 1.1.6, many aspects of the Nahm transform on the 4-torus carry across directly to 

the caloron case, but we encounter the following difficulties: 

Boundary conditions. We need to specify boundary conditions on the caloron 

that are sufficiently strong for the transform from the caloron to the Nahm data 

to be possible, but sufficiently weak to be recovered for a caloron constructed 

from some set of Nahm data. The 'dual' problem—specifying conditions for the 

Nahm data at singularities—is much more straightforward as we take these to 

be exactly the same as the conditions for SU(n) monopoles. The main difficulty 

in the construction of calorons from Nahm data is proving the caloron obtained 

satisfies the boundary conditions; conversely, obtaining the singularity conditions 

for the Nahm data constructed from a caloron is also a difficult problem. 

The index formula. Given a caloron A we need a formula for the L 2-index of 

the Dirac operator D = A -  i in order to calculate the rank of the Nahm 

data obtained from the transform. 

Our approach to these problems and our main results can be summarized in the 

following way: 

Chapter 2: the topology of calorons. 

We define boundary conditions for calorons and explore topological aspects such as 

deformation of caloron configurations. The main innovation is that we work on closed 

manifolds with boundary rather than open manifolds with asymptotic boundary con-

ditions, and thus consider calorons on S 1  x 
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 where R3  is the interior of the closed 

ball B . This allows the boundary conditions to be stated very succinctly, but the 

drawback is that we have to do more work to recover them in the Nahm transform. A 

1 	 . . 	. 	. 	with 	. . 	. U(n) bundle IE - S x B is framed if it is equipped with a triviahsation f at infin-

ity. There is a topological obstruction, denoted c2(E, f), to extending this to a global 

trivialisation of E. Our boundary condition for a caloron A on IE is that it should 

resemble the pull-back of a U(n) monopole configuration in the trivialisation f. Thus 

calorons are characterized by the eigenvalues , ittn of the Higgs field at infinity, 

the Chern classes k1,... , k n  of the corresponding eigenbundles, the period 27r/jo, and 
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the invariant k0 = C2 (E, f) of the framed bundle. We go on to define a map between 

calorons in different topological classes which corresponds to a rotation of the Nahm 

data round S'. This 'rotation map' has been considered previously by Lee [26, 25] for 

calorons with vanishing monopole charges, but its relation with the Nahm transform 

has not been fully explored. It plays an important role in our construction of calorons 

from Nahm data. 

Chapter 3: the transform from Nahm data to calorons. 

Nahm data for calorons was described at the end of Section 1.2.1. Let .Af*(ko, , yo, 7) 

denote the collection (modulo gauge transformations) of Nahm data characterized by 

(k o , k, / 7), so that the data is singular at = ui,... , p,, and has rank given by (1.42). 

Here i = (k 1 ,... , k,) and similarly for /7, and we call (ko, k, p o , /7) a set of caloron 

boundary data. Let C*(ko,  , ic,1TZ)  be the collection of calorons (modulo gauge trans-

formations) with boundary conditions defined by (ko, , yo, /7). We prove the following 

in Chapter 3: 

Theorem (Nahm data - caloron). For each set of boundary data (ko , ) pol  /7), the 

Nahm transform is a well-defined map from .Af*(ko, , ,, /7) to C*(ko, ) ,uo,  /7). 

Showing that the connection constructed from the Nahm data is ASD, periodic, 

and SU(n), is relatively easy, and the main difficulty lies in recovering the boundary 

conditions. In the notation of Section 1.1.5, D is the Dirac operator whose cokernel 

gives the caloron. We define a model operator D—a deformation of Dr—and prove 

that the cokernel of D gives a periodic connection satisfying the desired boundary 

conditions, but not the ASD condition. We then prove that the boundary conditions 

are not affected by the deformation, and conclude that the cokernel of D therefore 

satisfies the desired boundary conditions. This approach was used by Hitchin [17] to 

recover the boundary conditions for an SU(2) monopole. We have extended it in three 

ways: firstly to deal with zero jumps (which cannot occur for an SU(2) monopole); 

secondly to work right up to the boundary of 	; and finally to model D on the 

interior as well as at infinity. This last point is necessary to recover k0 , which is the 

obstruction to extending the framing of the caloron to the interior, and so requires 

understanding of D (at least up to deformation) when x is in the interior of S' x 

Defining the model operator D requires some ingenuity, and recovering the boundary 

conditions occupies the majority of Chapter 3. 

Chapter 4: the transform from calorons to Nahm data. 

We aim to prove: 

Theorem (Caloron —f Nahm data). For each set of boundary data (ko , , jio, )!), 

the Nahm transform is a well-defined map from C*(ko, , tao, )!) to Ar*(k o , /) /.Lo, /7). 
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In particular, we have to prove that the rank of the Nahm data obtained is given 

by (1.42), and that the Nahm data obtained satisfies the desired singularity conditions. 

The rank condition follows from the following theorem: 

Theorem (The index theorem). Given a caloron A on a framed bundle (IE, f) which 

satisfies the boundary conditions specified by (ko, , ,z o , 7), D+ = D - i is Fredhoim 

with L 2 -index 

indD=—(ko+ki +...+kp ) 

when 	interior I and I, is defined by (1.41) for p = 1,... , n. 

The proof of the index theorem involves two main steps. The first is a calculation of 

the index when k0  = C2 (E, f) = 0, in which case the caloron can be deformed through 

the space of calorons satisfying the boundary conditions, until it is independent of xo. 

Callias' index theorem [7] is used to compute the index in this case. The second step 

uses an excision theorem of Gromov-Lawson [14] to reduce the problem to the case 

k 0  = 0. The theorem has been published, together with some material from Chapter 2, 

in [36], and a copy of this paper is attached to the thesis. 

The singularity conditions are recovered, in part at least, by generalizing Nakajima's 

analysis [34] of the singularities for SU(2) monopoles. We successfully recover the 

singularity conditions at points = ji,,  where k 0 under the assumption of two 

analytic conjectures given in Section 4.4.4. Note that we do not give a complete proof 

of the Theorem (Caloron - Nahm data): we do not recover the gluing conditions at 

zero jumps in the Nahm data, and we do not show that the Nahm data obtained gives 

rise to an injective operator D—a necessary condition for the Nahm data to lie inside 

J/*(ko, k, y o , IZ). 

1.4 Open problems 

Behaviour at the singular points. There are a few problems concerning the be-

haviour of the Nahm data constructed from a monopole or caloron which we do not 

resolve. These are explained in Section 4.4.4. 

Injectivity of the Nahm operator and invertibility of the transform. An ob-

vious 'next step' following this thesis is to prove that the transform from Nahm data to 

calorons and the transform from calorons to Nahm data described in Chapters 3 and 

4 are mutually inverse. One approach to proving invertibility is to adapt Donaldson 

and Kronheimer's method [12, Chapter 3] that uses holomorphic geometry and 0-
cohomology. Another approach, more in keeping with the rest of this thesis, is to adapt 

Nakajima's analytic proof that the Nahm transform for SU(2) monopoles is invertible 

[34, Sections 4 and 5]. We remarked above that our proof of the Theorem (Caloron - 

31 



Nahm data) is incomplete because we do not prove injectivity of the 'Nahm operator' 

D = L(x) constructed from the Nahm data in a similar way to (1.32). Without this 

established, it may not be possible to apply the inverse transform to go back to the 

caloron. This is not a serious problem: if we perform the transform on a caloron, and 

then form the Nahm operator i from the Nahm data obtained, it is easy to prove 

that 1(x) is injective away from a finite collection of points, so the inverse transform is 

defined almost everywhere. A first step towards proving invertibility is to express the 

Greens function of L*(x)/.(x)  in terms of smooth solutions 0 of D, 0 = (D +i)' = 0 

(see [6, Section 2.3] for the 4-torus calculation). This Greens function should have some 

canonical form in terms of the spinors . A proof by contradiction shows that L(x) 

is injective: if it is not then the spinors cannot be smooth. Braam-van Baal [6, 

Proposition 2.51 and Corrigan-Goddard [9, Section 3] use an argument like this for the 

4-torus and ADHM construction respectively. With this in place, adapting Nakajima's 

proof of invertibility should be quite straight-forward. 

The moduli space of calorons. There are many open problems concerning the 

moduli space of calorons, including fundamental problems such as proving existence 

and smoothness, calculating the dimension of the space, and proving the existence of a 

hyperKähler metric. These fundamental problems also apply to the space of Nahm data. 

With these problems solved, it might be possible to prove that the Nahm transform is a 

hyperKãhler isometry between the two spaces. One could then explore the moduli space 

of calorons by working on the space of Nahm data. Many of the problems investigated 

for monopoles, for example calculation of the metric for widely separated constituents 

or scattering for symmetric configurations, could be carried over to calorons. 

Monopole and instanton limits of calorons. One of the reasons for studying 

calorons is that they form an interpolating case between monopoles and instantons. 

An obvious question to ask is whether we can find families of calorons with a monopole 

or instanton limit. In terms of moduli spaces it might be possible to prove that mono-

poles and instantons form the boundary of the caloron moduli space in some sense. 

Kraan and van Baal [22, 24] have constructed such families for calorons with vanishing 

monopole charges and unit instanton charge. However, these involve taking the limit 

as one interval of the Nahm data is contracted to zero (taking the 'massless monopole 

limit' in physics language). This is the same as looking at monopoles and calorons with 

non-maximal symmetry breaking—opening up a wide range of problems. Throughout 

this thesis we will only consider calorons with maximal symmetry breaking. 
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Chapter 2 

The Topology of Calorons 

This Chapter is concerned with topological aspects of calorons, especially boundary 

conditions. Based on the boundary conditions used by Garland-Murray [13, Section 

31, in Section 2.1 we define a set of boundary conditions which are sufficiently strong 

for the Nahm transform from calorons to Nahm data to be possible, but which can 

be recovered for a caloron constructed from some set of Nahm data. We draw the 

reader's attention to definitions 2.6, 2.9, and 2.10—these are central to the rest of 

the thesis. In Section 2.2 we study 'large' gauge transformations (non-periodic gauge 

transformations that leave the caloron periodic) and a map between different calorons 

given by such a gauge transformation, that in some sense corresponds to rotation of 

the Nahm data round S'. Section 2.3 contains a slight digression in which the caloron 

boundary conditions are derived by regarding a SU(ri) caloron as a I1SU(n) monopole 

and imposing the monopole boundary conditions. 

2.1 Boundary conditions 

Boundary conditions for objects on open manifolds can be regarded from two points of 

view: 

one can specify a set of asymptotic conditions that control behaviour as 'infinity' 

is approached; 

alternatively, one can glue on a boundary to obtain a compact manifold with 

boundary, and demand that objects extend to the boundary and have fixed be-

haviour there. 

The second approach is motivated by the work of Melrose (see [27, 28]). It allows 

the boundary conditions to be stated more concisely, and is the approach we adopt 

to define the boundary conditions in Sections 2.1.1 and 2.1.3. I acknowledge the help 

of my supervisor, Michael Singer, with the definitions in this Section, many of which 

appeared in our joint publication [36]. 
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We compactify R 3  by identifying it with the interior of the closed 3-ball B 3 . As 

previously, we consider calorons with period 2ir/,ao, and let S2'/,LO 	R/(Z). Let 

X = S, 	x , denote the boundary by OX = 	x S, and let p: X - 
	

be 

the projection on to P3 . The interior X° = X \ OX can be identified with x 1R3 . 

Let xo,... , x 3  be the coordinates on X° corresponding to the standard coordinates on 

I1 1  under projection R 4  - X°, and orient X° so that dx0, dx 1 , dx2, dx 3  is positive. Let 

the metric g on S 1120  x 1R3  be the standard fiat product metric that gives the circle 

length 21r/o. Next we write down coordinates near the boundary of X and derive the 

form of the metric g in these coordinates. Let r, Yi, Y2 be polar coordinates on R 3 , so 

that r is the distance from the origin in R 3  and Yi, Y2 are some local angular coordinates 

on Si,. We suppose Yl  and Y2  are chosen so that g takes the form 

g = dr2  + r2  (hid Y2+  h2dy) + dxg, 

for some positive locally-defined functions h1 , h2 . Local coordinates near the boundary 

of X will be x = r1, yi, Y2 and x, so that x becomes a boundary defining function: 

x> 0 on X, with equality only at OX, and d 0 on OX. Writing g in terms of x, 

d 2  g=__+hi 4+h2 +dxo , 	 (2.1) 

so g is singular at the boundary. 

2.1.1 Boundary conditions for monopoles 

Let E - 	be the trivial U(n) vector bundle and let Ec0 = E1s2. Suppose A is 

a U(n) connection on E, I is a skew-adjoint endomorphism on E, and that the 

following conditions are satisfied: 

has n distinct constant eigenvalues, and 	 (2.2) 

A=13.d 
	

(2.3) 

where P3  is projection onto the j-th eigenbundle, and d is the covariant derivative on 

E. It follows that VAc,IOQ = 0. The condition that the eigenvalues are distinct is 

that of maximal symmetry breaking: although this is not required for many of our 

results, we only prove the existence of the Nahm transform for calorons with maximal 

symmetry breaking. We therefore assume maximal symmetry breaking from the outset. 

Note that we also assume n> 2 (since we are ultimately interested in the gauge group 

SU(n)). 

Definition 2.4. A U(n) monopole configuration framed by (A, 	is a unitary con- 

nection A on E and a skew-adjoint endomorphism 'I on E that satisfy 

A1s2 = A and Is = 
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We will also work with SU(n) monopole configurations, in which case we require 4) 

and 4 to be trace-free and A to be compatible with the volume form. Note that a 

monopole configuration is not required to satisfy the Bogomolny equation. The gauge 

transformations are the unitary bundle automorphisms of E that are the identity at 

infinity. 

Let 	, ip be the eigenvalues of 	and order them so that [L < /in-1 < 

< zi. Let k3  be the Chern class of the eigenbundle with eigenvalue ijj.  Thus we 

have £ = (k 1 ,... , k,) E Z 7  and /Z = (/1,... , 	E I1 satisfying: 

1. >k=0, 

2.<_i<•</i1. 

This choice of notation matches that in [13] and [20]. 

Definition 2.5. A pair (, /7) is a set of U(n) monopole boundary data if it satisfies 

these two conditions. It is a set of SU(n) monopole boundary data if in addition it 

satisfies aj  = 0. 

We have shown that on one hand a pair A, 4) satisfying the boundary conditions 

determines a set of boundary data; on the other hand note that a set of monopole 

boundary data (, /7) determines A, 4) uniquely up to isomorphism. 

2.1.2 Framed bundles 

Definition 2.6. A U(n) framed bundle over X consists of a pair (IE, f) where JE - X 

is a U(n) vector bundle and f : lEI8x , 	is a unitary bundle-isomorphism. 

There exists a topological obstruction to extending f to a global identification of E 

with p* E, and we use this to define an invariant C2 (E, f) of a framed bundle. Consider 

what happens when we try to extend f: for each s we can find an identification F(s ) 

- E that agrees with f(3) = fI0=8 on S2 . We can do this continuously, and 
00 

obtain a path of maps F(s ) for s in some interval I = (—e, 27//iO + e). Define 

C(S) = F(S+2 / Q )F( ' E Auto E 	 (2.7) 

where Auto  E is the group of unitary automorphisms of E that are the identity on S. 

Then c represents an element of 

7r0Aut0  E = 7roMap(S3 , U(n)) = 7r3 U(n) = Z 

which we call deg c. Note that deg c is independent of the choice of F, that the choice 

of F corresponds to a bundle automorphism of IE, and that F can be chosen so that c is 
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independent of s. If c is sufficiently smooth then there is the following integral formula 

for deg C: 

deg c 
= 13 

 tr (dcc 1 ) 3 . 	 (2.8) 
247r  

To establish this formula it is easier to work with a map c: S3 --4U(n) and prove that 

deg c is given by the same integral over S 3 . It is easy to check that the formula holds 

when c is the standard map with deg c = 1: 

c(x) = 	aXa  where lixil = 1. 

To prove that the integral depends only on the homotopy class of c, consider a family 

of maps ct defined for all t in some open interval in R. The form 

tr at(dctcT 1)3 

is exact, so 

Ot f tr (dct c 1 ) 3  = 0 

and it follows that the integral is homotopy invariant. Finally, given some c: S 3  - U(n) 

and some k E Z, a short calculation shows that 

tr [d(cc)c_] = ktr (dcc 1 ) + exact terms. 

This proves the integral formula for deg c for c e Map(S3 , U(n)). Identifying Auto E 

with Map(S3 , U(n)) then gives (2.8). 

Definition 2.9. Given a framed bundle (E, f) let CAE, f) = deg c. We may also write 

C2 (E, f)  [XI  . 

We can equally well work with gauge group SU(n), in which case the clutching map 

c takes values in SAut 0  E, the group of special unitary automorphisms of E that are 

the identity on the boundary. The same formula holds for deg c. 

2.1.3 Boundary conditions for calorons 

Let A, I be a U(n) connection and endomorphism on Eoc, satisfying (2.2) and (2.3). 

Definition 2.10. Let A be a unitary connection on a framed bundle (E, f). Then A 

is a U(n) caloron configuration framed by A, if 

A10x = p*A + p*dx 

where the framing f is being used to identify IEIx with p*E .  

36 



We can define SU(n) caloron configurations in a similar way by equipping 1E with 

a parallel volume form. Note that the gauge transformations are (strictly periodic) 

unitary bundle automorphisms of E. A gauge transformation g acts on the framing f 

by f '- fg', and acts on the connection in the usual way. 

Just as for monopoles, the boundary conditions for a caloron configuration deter-

mine (and are determined by) a set of boundary data (ko, i, rio, 1z). In particular the 

Higgs field at infinity, 4, determines a set of monopole boundary data (k, fl) and we 

assume that Yn < ... < ui. In addition the caloron configuration is characterized by 

[Lo and by 

k0 = c2(E,f). 

We require two further conditions: 

[L - ([Li - [La) > 0. 	 (2.11) 

and 

kj >0 for p=0,1,... ,n 	 (2.12) 

The first condition is equivalent to saying that, regarding the caloron as a loop-group 

monopole as in Section 1.2.1, the Higgs field at infinity lies in the positive Weyl chamber 

of the Lie algebra. Garland and Murray [13] discuss this condition in greater detail. 

The second condition ensures that each block of Nahm data has positive rank. It can 

be derived from the spectral curve picture see[13, Section 4]. 

Definition 2.13. A set of caloron boundary data is a set (ko , k, p, 7) where (, /7) is a 

set of monopole boundary data, and the two conditions (2.11) and (2.12) are satisfied. 

The boundary data is said to be principal if 

k>0forp=1,... ,n. 

The condition of being principal is important in the context of the rotation map 

which we discuss in Section 2.2, and is equivalent to saying that the lowest rank of any 

block of the Nahm data is k0 . 

For each set of caloron boundary data we need the following quantities. Let 

mp=>kj 	 (2.14) 

for p=1,... ,nand 

AP = [Lp - [Lp+i 	 (2.15) 

for  = 1,... ,n-1 and take ) = ([ LO+1.tn)[L1. In the physics literature m and ). are 

called the charges and masses of the 'constituent monopoles' of the caloron respectively. 

Note that (k o , i,jio ,)Z) is principal if mn  = min{m i ,... ,m}. 
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2.1.4 Framed quasi-periodic connections 

Let I = (—e, 21r/o + e) be some open neighbourhood of the interval [0, 2ir/to] with 

coordinate s. Let q be the projection q : I x B - and let Eq = q*E. There is 

an obvious correspondence between caloron configurations and connections on Eq  —we 

spell out the details in this Section. Let A, I'-- satisfy (2.2) and (2.3). 

Definition 2.16. A U(n) connection Aq on Thy' is quasi-periodic with clutching map c 

if 

A(2ir/io + s) = (c_l ) *A(s ) 

for some map 

c : (—e, c) -+ Auto E 

C(S) : 
	- 

 IEq  

We say that Aq clutches with clutching function c. The map c has a degree since it 

represents an element of no (Auto E). 

SU(n) quasi-periodic connections are defined in exactly the same way, except the 

clutching function c takes values in SAut0 E. 

Definition 2.17. A connection Aq on Eq  is framed by A, 	if 

A'11s2 = q*A + q*ds. 

There is a 1 - 1 correspondence between caloron configurations and quasi-periodic 

connections framed by A, 4 (up to bundle isomorphism). Given a caloron configu-

ration A on (JE, f), extend f by F (as in Section 2.1.2). Let Aq = (F_l)*A. Then Aq is 

a framed quasi-periodic connection with clutching function given by (2.7). Conversely, 

given a framed quasi-periodic connection A1 with clutching function c, quotienting by 

the action of c gives a framed caloron configuration A on a framed bundle (E, f) with 

C2 (E,  f) = deg c. The framing f is properly periodic on E because c = 1 on S2
0  . The 

correspondence is determined up to bundle automorphisms on 
Eq that are the iden-

tity on the boundary S, and periodic bundle automorphisms of E. Given a caloron 

configuration A, we call the corresponding framed quasi-periodic connection 
Aq the 

quasi-periodic pull-back of A. 

2.1.5 Calorons as loops of monopoles 

There is a correspondence between loops of monopoles 'with a twist' and caloron config- 

urations. Fix a set of monopole boundary data (is, fl) and let A, 4 be the connection 
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and Higgs field on S,2,. this determines. Let Mon(k, jZ) denote the set of all U(n)-

monopole configurations which are framed by A ,, ,(%,, (as defined by Definition 2.4). 

Mon(k, 7) is equipped with gauge group Auto E, and c E Auto E acts according to 

c(A) = cAc 1  — dcc 1 , c(1) = cIc 

Now iro (Auto E) = 73 (U(ri)) = Z. Moreover, Mori(k,Li) is an affine space, hence 

contractible, so iri(Mon(, 11)/Auto E) = iro (Auto E) = Z. Let £(ko, denote 

the smooth (free) loops in Mon(k, fZ)/Auto E with degree k0 and parameterized by 

s E {O, 2ir/ao]. Some care is needed to ensure loops are smooth across the ends of 

paths, so we note the following characterization of smooth loops. Suppose A(s), 4(s) 

is some path in Mon(k, 11) such that 

A(2r/ 1ao) = c(A(0)), 	(27r/ itto) = c(4(0)) 

for some c e Auto  E. The path defines a smooth loop in Mon(k, )1)/Auto E if and 

only if it can be extended to a path defined for s E (—€, 2ir/o + f), for some small i, 

such that 

A(27r/io + s) = c(A(s)), (27r/zo + s) = c((s)) 	 (2.18) 

for s E (_e, e). Note that c is independent of s. 

There is a correspondence up to isomorphism between caloron configurations with 

boundary data (k o , k,po, fl) and elements of £(ko, k, ,io,  7), which follows immediately 

using the quasi-periodic pull-back of a caloron configuration. A loop in Mon(k', j) 

whose ends are related by (2.18) determines a framed quasi-periodic connection via 

Aq = A + 4ds (2.19) 

and hence a caloron configuration with boundary data (ko, , uo, /1). On the other 

hand, given a framed caloron configuration consider its framed quasi-periodic pull-back 

Aq with clutching map c. As we have already seen, A'1 can be chosen so that c is 

independent of s. The splitting (2.19) then determines an element of (k o , /, o,  /1). 

Note that the correspondence does not restrict to a correspondence between loops of 

monopoles satisfying the Bogomolny equation and anti-self-dual calorons (compare the 

Bogomolny equation (1.5) with the equation for loop-group monopoles (1.39)). Also 

note the difference between the picture of a caloron as a twisted loop of framed monopole 

configurations (where the twisting occurs on the interior of 
3)  and the loop-group 

picture (where the twisting is at infinity). 

In the light of this correspondence, it is clear that a monopole configuration can be 
—3 

pulled-back from B 	i to 	x B to give a caloron configuration with k0 = 0. We 

will need the following converse: 
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Lemma 2.20. Let A be a framed U(n) caloron on a framed bundle with C2  (E, f)[XI = 

0. Then there is a deformation B of A (through framed U(n) caloron configurations), 

such that lB is the pull-back of a monopole. 

Proof: Let A'1  be a quasi-periodic pull-back of A. Then Al has clutching map c with 

deg c = 0. Let cext be any smooth unitary automorphism of jq satisfying 

	

(c ofl(— f ' 	+f)X 3 , 
P10 	

2 

cext=fl 

onlfxS 
LØ 

00 

1 on 
(_'E'  E) 

x 

Such an extension exists if and only if deg c = 0. Acting on Aq by cext, we reduce to 

the case c 1. If we define a connection and endomorphism (A, ) on E by 

A+ ds =A'1 (s = 0) 

then 

B( s) = A + 4ds 

is a framed quasi-periodic connection which is the pull-back of the monopole config- 

uration (A, (I). Moreover, A' can be deformed to Bq through framed quasi-periodic 

connections with c 1 via the obvious linear path. 

2.1.6 Smoothness at the boundary 

Up to this point we have been deliberately vague about the precise degree of smoothness 

up to the boundary that we are assuming (i.e. whether connections are continuous or 

smooth up to the boundary)—Definitions 2.4, 2.6, 2.9, 2.10, and 2.17 all make sense 

if we assume only continuity up to the boundary. In this Section we specify precise 

smoothness conditions for our objects. We also give a brief comparison of our boundary 

conditions with the asymptotic boundary conditions for calorons used by Garland and 

Murray [13] and others. 

We will need the following spaces of functions: 

Definition 2.21. C(X) is the space of functions f on X such that f is smooth on 

X°, and for all a, 0, and all I <k, 	 is continuous up to the boundary. 

Definition 2.22. A 1-form a on X is C" if the dX component is CO and the other 

components are C. 

Let A be a caloron configuration on a framed bundle (E, f) that is continuous up 

to the boundary, and framed by A, I. Then there exist local gauges on E defined 

for sufficiently small x> 0 and all x, in which 

A0 = diag(4t1,... 
	 (2.23) 
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and 

Ayj = diag((aei,ei),... 	 j = 1, 2, 	 (2.24) 

on S,, where Cl,... , e, is a local trivialisation of E respecting the decomposition 

into eigenbundles, and such that A 0 , A 1  , A 2  , A, are continuous up to the boundary. 

Here A 0 , 	AX  are the matrices representing A in the fixed gauge. Conversely, if 

such gauges exist for some connection A on E, then A is framed by A, 	and some 

map f : Elax + p*E. We restrict attention to caloron configurations for which there 

exist local gauges satisfying (2.23) and (2.24) in which A is C'1 . We call these C'1  

caloron configurations. 

In addition, we also require that, on the boundary, A x  is diagonal and independent 

of x o  in these gauges. We impose this condition to ensure that A 0  has the following 

asymptotic behaviour: 

A0 = diag(i i ,... , i1i,) - diag(iki,... , ik,) + higher order terms 	(2.25) 

when A is anti-self-dual. To obtain this, extend the framing f to a neighbourhood of the 

boundary, perform the "3 + 1" decomposition (1.37), and consider the dX component 

of the anti-self-duality equation (1.39): 

*3FA = VA'T? - 90A. 	 (2.26) 

Working in the gauges described above, on the boundary 49X the dx component of the 

LHS of (2.26) is —diag(ik i ,... ,ik), because A is the standard connection on each 

constituent line bundle of E. On the RHS of (2.26) the second term vanishes on the 

boundary, while the dx component of the first is 9A 0 . Equating the two sides of (2.26) 

shows that the O(x) term of A 0  is —diag(ik1,... ,ik), and so we obtain (2.25). We 

will need the expansion (2.25) in Chapter 4 when we construct Nahm data from a given 

caloron. 

Definition 2.27. Given a set of U(n) caloron boundary data, let C(k o , ,ito ,P) be 

the set of gauge equivalence classes of U(n)C'1  caloron configurations (E, A) sat-

isfying these smoothness conditions, whose boundary conditions are determined by 

(ko, , io, ). Let C (ko, , i-to, fl) denote the subset of anti-self-dual caloron configura-

tions modulo gauge. When the boundary data is SU(n) we restrict C and C to SU(n) 

configurations. 

It is convenient at this point to compare our boundary conditions for calorons with 

the 'BPS' decay conditions used in [13]. Given a framed bundle (E, f), we can extend f 

to a neighbourhood of the boundary DX, and perform the "3+ 1" decomposition (1.37) 

to define a loop of connections A on E over this neighbourhood, and a loop of endo-

morphisms I. Garland and Murray [13] impose the condition that A and 4 satisfy 
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the 'BPS' boundary conditions for monopoles uniformly in xo. (Various versions of the 

'BPS' monopole boundary conditions exist: see [31] and [16] for example.) For a 

framed caloron, V4 and a.,,Aj are O(x) as  x - 0, while V and axo A x  are 0(1). 

Using the form of the metric in equation (2.1) it follows that 

IIVAII = 0( 2 ) 	and IIa0AII = 

so 

IIVA - a 0 AII = 0(2) 	 (2.28) 

This is a gauge invariant quantity—it does not depend on the choice of framing f. Thus 

our boundary conditions imply the following: 

. there are local gauges in which 	= diag(4t1,... 	- diag(iki,... ,ik)+ 

higher order terms, 

• IIVAII = 

• 8IIdII = 
O( 2 ) for j = 1, 2, 

ayj 

and these estimates are uniform in xo.  But these conditions are just the BPS monopole 

boundary conditions described in [16]. 

2.1.7 Chern-Weil theory 

Given a caloron configuration A e C(ko, k , po , i) on a framed bundle E, we will need 

the 'Pontryagin integral' 

1' 
tr FA A FA, 	 (2.29) 

Isi 	XW 3
ch2(E,A)=_J

87r2 
2r/0 

which we calculate in this section. Here ch 2 (E, A) denotes the second order term of the 

Chern character of E (which also depends on the connection A since we are working on 

a manifold with boundary). The integral has been evaluated by different means in [10] 

and [13]. Pulling A back to a framed quasi-periodic connection Aq on E' gives: 

i 	 tr F A Fq 
7r2

f 	if
FA,, - 	 tr FA A FA 

= - Si 	:3 
	 8-7r2 'o 27r/pol X  p3 

27r/0 

Using the familiar trick of writing 

tr FA, AFq =dtr 

the integral becomes an integral over the boundary of the rectangle [0, 27r/jo] x 

i  
--- 	 tr FA, AFq 

87r 2 f =  
(O,2ir/jio] x 3  

tr IdAq A A + 	A Aq A A}. (2.30) 
- 8ir
if 
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Working on the boundary requires the smoothness assumptions made in Section 2.1.6. 

Regarding 4q as a path in Mon(k, Z)/Aut o  E, we obtain a path A(s), 4(s), whose ends 

are related by (2.18). Evaluating (2.30) on the component (a[0, 2ir/to]) x and using 

the clutching formula gives 

-tr  {dA A A +  A A A A A} = 
87r ja[O,2ir/ao])xB 	 3 

- 

	

f

1 ) 3 

 
tr (dcc 	+ 	jp3 

d tr {A(0)c'dc}. 

The first term is —deg c = — c2(E, f)[X], and the second can be re-expressed as an 

integral on S,2, which vanishes because c = 1 on S. On the other component of the 

boundary we obtain 

87r j 
	tr JdAq A Aq + 

2  Aq A  Aq A Aq 

	

27r/pol X S 	 3 

	

_-_4,27r/p oj 	
tr{2FAAds_dAAdS+A1\dAd5+asd5}. 

ir 	 xS 

The final term vanishes because EI8 A = 0 on S, and the sum of the middle two terms 

is exact, so does not contribute. Since the connection A is compatible with , the 

first term is given by 

--- 

 f 	tr 2FA Ads = 
8,7r 2 O,2ir/,io1XS 	 i 

where E,13  c E is the eigenbundle of (D c, with eigenvalue i. Putting the terms 

together, we arrive at the expression 

is 	
= — c2(E,f)[XI - 	 (2.31) 

Yo 	
00 

	

2r/0 	 1 

= —k0 - i(1i1k1 + ... + 	 (2.32) 
Po 

Just like regular instantons, calorons minimize the action within each topological 

class. Expanding IIFA + *FAII and using (1.1) gives 

action= IIFA112  =_IIFA+*FAII - Isi 	
tr FAAFA. 

2 	xR3  
2r/p0 

The second term is constant within each topological class, so the action is minimized 

when FA + *FA = 0 i.e. when A is ASD. A similar result is obtained by regarding a 

SU(n) caloron as a LSU(n) monopole, evaluating the energy IIFAII 2  + IIVAII2, and 

performing the 'Bogomolny trick' (re-arranging in terms of 11 *3 FA - VAll). 

2.2 The rotation map 

Up to this point we have considered two caloron configurations to be equivalent if 

related by a strictly periodic bundle isomorphism, or, in other words, we have taken 
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ma_i = k0 +... + k1 	mo = k0 

 

/n 	/ln l 	/Ln_2 	 /11 	/10+/1n /I0+/in_1 

Figure 2.1: Typical U(n) Nahm data 

gauge transformations to be strictly periodic. However, we can consider 'large' gauge 

transformations—transformations that are non-periodic but leave the caloron strictly 

periodic. In the quasi-periodic picture, these are equivalent to bundle automorphisms 

of Eq  that are not necessarily the identity at infinity, and such gauge transformations 

affect the framing (recall the final paragraph of Section 2.1.4). We therefore expect a 

large gauge transformation (if such an object exists) to be a map between calorons with 

different framings, and possibly with different boundary data. 

On the other hand, consider a caloron constructed from some set of Nahm data. (For 

the present we assume we have a construction like that conjectured in the Introduction.) 

The choice of origin on the circle Tt = S,' 0  = R/ o Z should have no effect on the caloron 

constructed from the Nahm data (as a connection over R 4) because the inner product 

defined on sections of the Nahm data is independent of the origin. However, changing 

the origin does change the values , ,u, and therefore the framing of the caloron 

obtained. The Nahm construction gives a connection over R 4  which we quotient by 

some action of Z to obtain a framed connection on S 1  x R3  and there is some 27r/yo 	,  

freedom as to how we take the quotient and make the framing. The choice of origin 

for the circle T* = S 0  corresponds in some sense to a choice of the quotient and 

framing. Furthermore, calorons obtained by different quotients are related by large 

gauge transformations. 

All this will be made rigorous later, but we can draw the following conclusion: given 

a caloron with boundary data B we expect that by applying a large gauge transfor-

mation we can obtain a caloron with boundary data B', where B and B' are related 

by shifting the origin on S110 = Il/jto7Z. We call this the 'rotation map' and prove its 

existence in this Section. We will explore its relation to the Nahm transform later. Lee 

[26] has described the rotation map for calorons with vanishing monopole charges, and 

explained it in representation theoretical terms [25]. 
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rnn_2 

A. 	An-1 	An-2 	/L,3... Al 	/LO+/Ln [LO +P'n-i 

Figure 2.2: The same U(n) Nahm data after rotation 

Fix a set of boundary data B = (ko , , po ,,Z) and consider the following map: 

ApHAp+i, mpF-  mp+i, for p=1,... ,ri-1, 

A. 1-4  Al, Mn'-p  m 1 , 

where m and Ap  are defined by (2.14) and (2.15). This map permutes—or rotates—

the 'constituent monopoles'. We have defined it so that it corresponds to a rotation 

of the Nahm data—the map can be obtained by comparing Figures 2.1 and 2.2. For 

example, the highest rank block has width A,_1 = An-1 - before rotation and width 

A.-2 = n-2 - n-i after rotation, SO An-1 = /n-i - = - n-1 = An-2- In 

terms of k and ,u, the map is given by: 

k0 i- 	= ko + k 1  [i 	is fixed, 

k 1 	k, = k2  p, 1- 	= j/ 	+ /L 

k_2 	= kn_i [Ln2 1- 	 1L/m + Ian—i 

k_ 1 	kn i = kn 12n1 1- 	-n-1 = /20/m + Pn 

kn 	kn  = k 1  Pn 	Pn = P1 - (n - 1) o/n. 	(2.33) 

It is easy to check that the result is a new set of boundary data (i.e. it satisfies the 

conditions of Definition 2.13), hence we have a map pa defined on sets of caloron 

boundary data. Note that (p)  is the identity and that the quantity 1i0k0 +. . . + jik 

remains constant under the action of the rotation. Each orbit under pa contains at 

least one set of principal boundary data, corresponding to Mn being the lowest rank 

(recall Definition 2.13 and the remarks following it). 

Our aim is to construct a map pc  on caloron configurations that changes the bound-

ary data in the same way as pa  In other words we want a map 

pc : C(B) - C(püB). 
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Fix a set of boundary data B and some framed caloron configuration (E, A) E C(B). 

Let A, I be the connection and Higgs field on S fixed by B. The map pa is a 

large gauge transformation on the quasi-periodic pull-back of the caloron configuration. 

Let (IE,A)  be the quasi-periodic pull-back of (E, A) in the sense of Section 2.1.4. 

Let c : (—€, €) - Auto  E be the clutching map. Start by defining a family of maps 

p(s) : E -* E for s E (—i, 27r/io  + ), by 

(s) — exp(it o s(n — 1)/n) on E, 1  (the eigenbundle of E with eigenvalue ij 1 ), 

	

lexp(—ipos/n) 	on the other eigenbundles. 

Hence p(s) E SU(n), and p(2n/p o ) = exp(-27ri/n)id = w. Note that w lies in the 

centre of SU(n) and acts trivially as a bundle automorphism. The rotation map can 

be thought of as an action of the centre of SU(n) (which is Z) on the space of SU(n) 

caloron configurations. Next we extend p arbitrarily (but smoothly) to the interior of 

to obtain a family of maps p(s) : E -* E. Now p defines a bundle automorphism of 

Eq_but it does not necessarily define a (periodic) automorphism of K 

Consider the action of p on Aq. Our claim is that p(A)  is the pull-back of an 

element of C(p3B): we have to show p(A)  is framed correctly and that it clutches 

correctly. Split Aq as A 1  = A+ ds using the framing at infinity; we know that on S.,  I 

A(s) = A and (s) = But p acts on 4 by 

= PP_1 - 
49P P_ 
498 

It is easy to check that p()Is2 is independent of s and has eigenvalues i,Ti 1 ,... , 

defined by (2.33). Moreover the eigenbundle with eigenvalue i has Chern class k, 

so p()  is framed in the desired manner. The map p preserves the eigenbundles of 

, and since A is compatible with the decomposition of E into eigenbundles, 

p(A)1s2 = A. Hence p(A) is also framed in the desired manner. It remains to show 

that p(A)  clutches correctly. Now 

= 

so p(A)  has clutching function 

cp = P(27r/ /io +s)CP(s  

However, c,, S2 = w so, as it stands, p(A)  does not clutch correctly (the clutching 

00  function should be 1 on S). But w acts trivially as a gauge transformation since it is 

in the centre of SU(n), so if we redefine 

cp 	W 1 P(2 r/JLo +s)CP ( 	 (2.34) 
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it becomes a well-defined clutching function. We want to show deg c p  = k0  + k 1  so that 

p has the correct action on k0 . We do this indirectly by considering the action of the 

caloron configurations. The map p is a bundle isomorphism on E" so it preserves the 

quantity 

i f  
trF q AFq. 

87r2 [O,2ir/jo] xB3  

Using (2.32) this implies that 

1to k0  + [L l k l  + 	+ Ankn = odeg c + Alkl + ... +  Ankn- 

Hence deg c = k0 + k1  = k0 , and this completes the proof of the claim. Note that 

the choice of extension of p corresponds to a bundle automorphism on E, so that pc  is 

really defined on isomorphism classes of connections. 

Having defined pc we will consider its relation to the Nahm transform in subsequent 

Chapters. My thanks go to Michael Murray for a useful exchange of emails about the 

definition of the rotation map pc. 

2.3 Boundary conditions from the loop group point of 
view 

The boundary condition for SU(n) monopoles (Definition 2.4) implies that there is a 

gauge at infinity in which the Higgs field, lies in some adjoint orbit of SU(rt). 

Let A, be a LSU(ri) monopole configuration on B . The corresponding boundary 

condition is that 

there exists a gauge at infinity in which I := 4J?1s2 lies in an adjoint 

orbit of LSU(n) on Lsu(n). (2.35) 

Our aim is to interpret this boundary condition in terms of the caloron A corresponding 

to A, and compare it with Definition 2.10. This attempt to 'justify' our boundary 

conditions is not used at any point later, and is simply intended as a comparison of the 

two view-points. 

The first problem is to identify the adjoint orbits of I1SU(n) on L5u(n). From (1.35), 

the adjoint action of LSU(n) is the action of LSU(n) followed by a rotation in 0. The 

following Proposition determines the orbits under the action of LSU(n). 

Proposition 2.36 (Pressley and Segal [371). Suppose C is a compact simply con-

nected Lie group with Lie algebra g. Let A E IR be some non-zero constant. Given 

(, iA) E Lg, solutions h : JR - C to 

5-0 
= —A', h(0) = 1 
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satisfy h(O + 27r) = h(0)M for some M E C called the holonomy of (,i\). The map 

AdLC(,iA) - AdM 

is an isomorphism between the adjoint orbits of LG on Lg and conjugacy classes in G. 

Fix a LSU(n) monopole configuration A = (A(9), O), 41 = ('I(0),4to ) on a bundle 

E - 1R 3  and let (IE, A) be the corresponding caloron configuration so that E = p*E and 

A is given by (1.37). The boundary condition ( 2.35) says that there is a trivialisation 

of E1s2 in which lies in an adjoint orbit of LSU(n). Since the adjoint action of 

LSU(n) is the action of LSU(n) followed by a rotation in 0, the orbits of the two 

groups are the same, because two elements of Lg related by a rotation in 0 have the 

same holonomy so lie in the same orbit of LG. For each y e S, the holonomy map 

defined in the Proposition takes 0(y) E ui5u(n) to M(y) E SU(n) so that M(y) lies 

in a fixed conjugacy class of SU(ri) as y varies. Thus 

M(y) = -y(y)It;r-y — '(y) 

for some fixed M which we can assume is diagonal, where -y : S -4  SU(n)/Stab M. 

Define th by 

- 	27ri 
M = exp ( - 

/10 

and let 

MM = y(y)fhy'(y). 

(Note Stab M = Stab ii because M and In  are diagonal.) Clearly m(y) lies in a fixed 

adjoint orbit of SU(n) as y varies. By construction, the constant loop (m(y), i/1 o ) E 

ui5u(n) and y) have the same holonomy for each y, and so lie in the same adjoint 

orbit of LSU(n). In other words, there is a gauge transformation g : S -p LSU(n) 

taking I to (m, i1z 0 ). Thus we have constructed a trivialisation of lEI ax  in which 

= m where m: S -p u(n) lies in a fixed adjoint orbit of SU(n) as y varies. 00 

Since a trivialisation at infinity is really a framing, the interpretation of (2.35) in 

terms of calorons can therefore be stated as follows: 

given a connection A on E there is a framing f : lEl ax  p*E  in which 

A = A(xo) + p*ocdxo 

where A(x o ) is a loop of connections on E and 	has eigenvalues indepen- 

dent of y E S. 

In other words, the dx0 component of A is framed at infinity. Comparing this with 

Definition 2.10, we have successfully derived a weak version of the caloron boundary 

conditions from (2.35). 



Chapter 3 

From Nahm Data to Calorons 

We present the construction of calorons from Nahm data. Section 3.1 contains material 

from [20] on the construction of SU(ri) monopoles from Nahm data, including the 

precise conditions imposed on the Nahm data at singularities, which we use in our 

definition of Nahm data for calorons. In Section 3.2 we prove that the connection 

constructed from our caloron Nahm data is periodic and ASD. As we explained in 

Section 1.3, the main difficulty in the construction of calorons lies in recovering the 

boundary conditions. This occupies Sections 3.3 to 3.6 and follows the deformation 

method outlined in Section 1.3. 

3.1 The Nahm transform for SU(n) monopoles 

3.1.1 Nahm data for SU(n) monopoles. 

Nahm data for SU(n) monopoles are defined in [20] and [19], and the following definition 

is taken almost directly from these papers. Given a set of boundary data (, fZ), define 

m=ki +.+kforp1,... ,n — landfixtheconventionsmomnO. A set of 

monopole Nahm data consists of the following: 

Bundles: hermitian vector bundles X, of rank rn on each interval I = [/Lp+i, jig,,] for 

p = 1,... ,n —1. We fix the conventions 10 = [ui ,oc),I = (—oo,p} and take 

X0, X to be rank zero bundles. Let be a coordinate on U I = R. 

Connections and endomorphisms: an analytic connection V, on I and analytic 

skew-hermitian endomorphisms T , j = 1, 2, 3, on the interior of I for each p = 

1,... , n - 1. Note that the connection V is defined on an open neighbourhood 

of the closed interval Ii,,. The connection and endomorphisms satisfy Nahm's 

equation on the interior of each interval: 

=0. 	 (3.1) 
j,k 

The bundles X,, come with a means of gluing them together at each 1i: 
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When m> mr_ i : an injection Xp_ilpp 

When m < mr_ i : an injection Xppp -- X_1. 

When m = mr_ i : an identification 	X_1. We call this a zero jump. 

Each map preserves the hermitian structure. At each boundary point p p  the data 

satisfy the following boundary conditions: 

When m> mr_ i : we require that for each j = 1, 2, 3, 

= urn 

exists and T_ 1  is analytic at pp . Fix a parallel unitary basis for X_ 1  in a neigh-

bourhood of ii,,,. Using the injection into X this determines a unitary parallel 

basis of a rank m_ 1  sub-bundle of X, in a neighbourhood of j, which we can 

extend to a unitary parallel basis of X i,. In this gauge there is a decomposition: 

MP-1 	k p 

T3 - ( 
T1 + 0(t) 0(t(cP_l)/2) 	m 

) 	

_ 1 

k, p - 0(t(kP_1)/2) R/t + 0(1) 

where the upper diagonal block corresponds to the image of X_ i  in X. The 

upper diagonal block is analytic in t = - jig ; the lower diagonal block is mero-

morphic in t; and the off-diagonal blocks are of the form x (analytic in t). 

The residues R, define an irreducible representation of zu(2): in particular the 

map 

p: A i -yl  + A2-y2 + A373 '-k —2(A 1 R + 	+ A 3 R) 	(3.2) 

is the unique irreducible representation $k_1  on homogeneous polynomials in 

(zo , z i ) of degree k - 1, where the 	are defined by (1.9). 

When m < mr_ i : the situation is just the previous case but with X, and Xp_i 

swapped round. 

When m = mr_ i : working in a gauge that is parallel either side of the join and 

continuous across the join, we require that limits T' of TPi and T,+  of T_ 1  
exist. Setting 

= (T' + iT') + (2iT') + (T' - 
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we require that for all E C 

A(() - A(() = (u - w )(w * + u*) 

for some mr-dimensional column vectors u, w. At the singularity we therefore 

have 

	

T —T = 	 = ao* - 

where ce is an element of C 2  ® Cmp formed from u and w. 

The gauge transformations on a set of Nahm data consist of bundle automorphisms 

on each of the bundles X, such that the automorphism on X is the identity at and 

'p+1 for all p. A gauge transformation gi,... , g acts on V by V '- gVg' and on 

T by T -i gTg' 

Definition 3.3. Let 	1Z) be the space of gauge equivalence classes of monopole 

Nahm data with boundary data (, fl). 

3.1.2 Definition of the Nahm operator L 

The next task is to show how to construct the analogue of the Dirac operator D from 

a set of monopole Nahm data. Consider adopting a naïve approach to generalizing the 

4-torus Nahm transform to the monopole case, as we did in Section 1.1.6. Dimensional 

reduction of the Dirac operator D by A* = R3  gives an operator 

V + 	j ® T - ix o  - i 	j ® x : 	+ (D X) . C°°(, 	® X) 	(3.4) 

where V is a connection on a bundle X —p 11k, and T1 , T2 , T3  are skew-adjoint endomor-

phisms of X, satisfying Nahm's equation. Of course, this picture is not quite correct, 

since the rank of the 'bundle' may jump, but using (3.4) and the definition of the Nahm 

data it is clear how to define D on the interior' of the intervals Ii,. We call the ana-

logue of D the Nahm operator, L(x). In fact, following conventions in the monopole 

literature, we introduce a factor of i and define L(x) to be the analogue of i x D. 

Some care is needed at the points = ,u7, in the definition of (x). In particular, we 

want to ensure that A(x) is Fredholm with index —n and is injective for all x E 1R4 , so 

that the cokernel of A(x) defines a rank n bundle over W. If we can construct L(x) 

with these properties then we can make the following definition: 

Definition 3.5. Suppose L(x) : W - V is a family of bounded linear maps between 

Hubert spaces W V, parameterized by x E R4 , such that L(x) is injective, Fredholm, 
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and has index —m for all x. Define Coker L to be the U(n) bundle over 1l' with fibre 

coker L(x), equipped with the connection 

FAMI 

where P is orthogonal projection from V onto coker z(x) for each x, and d is the 

standard covariant derivative on the trivial bundle V x 1W'. If vi,... , vn  is a local 

trivialisation of Coker L, then in this gauge the connection is represented by matrices 

(A a ) ij  = (Oavi,vj) 
	

(3.6) 

for a = 0, 1, 2, 3. 

To see that Coker A is a smooth bundle we find a trivialisation on a neighbourhood 

of the origin in 1W'. First note that coker z(x) = ker *(x)  for all x. Identifying 

ker *(0)  with Ctm, there is a decomposition 

= (Po , 0) : V'C - W 

where V = V' Ctm and Po is invertible. Relative to this decomposition of V we can 

write *(x) = (Pr , Q) where P is invertible for sufficiently small x. The null-space 

of *(x)  is a graph over 

*(x)(uv)O = 	u=—P'Qv. 

Thus the map 

V (—P'Qv,v) 

is a smooth isomorphism from Cn  to ker 	(x) for all sufficiently small x. The same 

argument gives a trivialisation round an arbitrary point, and the transition between 

different trivialisations is smooth. 

Working with some fixed set of U(n) monopole Nahm data, let X, p = 1,... ,n — i, 

be the corresponding vector bundles. Using the trivialisations of the spin spaces 

and 	fixed by (1.9) we identify S, S with C 2  throughout this Chapter. Let Y, = 

C2  ® X. Let W 1  be the Sobolev space of sections of Yp with I derivatives in L 2 , where 

the L 2  inner product (conjugate linear in the second entry) is defined by 

(V, W42 = 
fiP 

(v, w) d 

for v, w E W°. Also define L?(I)  to be the Sobolev space of functions on I with 1 

derivatives in L 2 . Often we will just write (,) where we mean the L 2  inner product or 

the pairing between elements in dual Sobolev spaces. 
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One has to be slightly careful when defining spaces of distributions on manifolds with 

boundary due to the different choices that can be made when taking completions. It will 

be more apparent why this concerns us when we consider dual spaces in Section 3.2.3. 

These subtleties are dealt with in Hörmander's book [18, Appendix 132], and we will 

adopt his notation. Let 

L?[a,bl L?(R)/ 

where 

fg.@,'(f—g,v)=O VveL 1 (II) such that Suppvc[a,b] 

and 

ii?[a,b] = {v E Li  (R) : Supp v C [a,b]}. 

It follows immediately that L[a, b] is the dual of L 2  1 [a, b], where the pairing is given 

by the L 2  inner product. We define W 1  to consist of L(I) sections of Y,,, and in what 

follows we will often just write L?  to mean on a manifold with boundary. Note that 

differentiation is a well-defined map 

dt L [a, b] - L?_1 [a, b] 

since if f - g then 

df dg 	 dv 

for all v e L 1 _ 1  (R ) supported on [a, b]. Also note that if f e L[a, b] then the values 

f(a) and 1(b) are well defined: by the Sobolev embedding theorem each representative 

of f is continuous, and any two representatives must agree on [a, b]. This ends the 

technical aside on the definition of the Sobolev spaces, and we return to the definition 

of the Nahm operator. 

We adopt the following terminology from [20]. Suppose m 	m 1 . At the bound- 

ary point tip  of [ii+i,ppl, Yp  decomposes as a direct sum 	= 

using the inclusion of X 1 (1i) into 	We call vectors in the first component 

'continuing', and vectors in the second component 'terminating'. If m 	mp_1 then 

all the vectors in Y() are continuing. We adopt similar terminology at the other end 

of the interval. See Figure 1.2 for an illustration. 

Let W 1, C W' be the subset of sections of Y whose terminating components vanish 

at both ends of the interval (this definition makes sense following the remark above 

about L functions). Define 

D(x):W—+W 

D(x) =iV+iT+x 
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where 

= 	j 

and 

X = xo  + 	® xi. 

Then D is well defined since the component of the section acted on by the singular 

part of T is zero: using the Cauchy Schwartz inequality one obtains 

- /ipY'fIIL2 <CIIIIIL2 

for any function f E L(I) vanishing at 

The zero jumps need special consideration. Let = q be a zero jump (i.e. suppose 

mq  = mq_i). The boundary condition on the Nahm data at a zero jump fixes a 1 

(complex-)dimensional subspace of 1'(/iq ), which we denote Jq  (the 'jumping space' at 

[Lq ). For each zero jump we fix an element q  of Jq  with norm 1, and let 

rrq (w) = (w(p q ), q ) 	 (3.7) 

for any continuous section w of Yq . Let J be the set of zero jumps 

= {q: mq  = mqi} 

and let Nzero  = IJI. 
We are now in a position to define the Nahm operator L(x) : W -* V. Let 

W= {(wi ,... ,iv_i) E 	 : w() = w_ 1 () for p = 2,... ,n - 11 
(3.8) 

and 

V=W 	. .. El?W°_ 1 EBC°. 	 (3.9) 

The Nahm operator A is the direct sum of the D operators, together with the projec-

tion at each zero jump: 

(x) : W - V, 

t(x)w = [D1 (x)w 1 ,... , D_ 1 (x)w_ 1 1 ED [irw]. 

The map 'ir : W - Cr0 has components lrq  for q e J. Note that we deal with 

the zero jumps slightly differently from Hurtubise and Murray. Instead of CN  their 

projection ir maps into Jq—we fix a basis for this space (the (q ), and work in this 

basis. At some stages we will need to deform the projections lrq ; with our set-up the 
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deformed operator will still be a map W -p V, whereas with Hurtubise and Murray's 

version, the spaces would change with the deformation, which would cause problems. 

We have to check that Coker L is independent of the choice of q : making a different 

choice for the çq is just equivalent to a unitary change of basis in C'°. Hence the 

choice of C, does not affect Coker A up to isomorphism. 

3.1.3 Results from Hurtubise and Murray 

Given a Nahm operator z(x) : W - V constructed from a set of U(n) monopole Nahm 

data, Hurtubise and Murray prove the following results in [20]: 

• 	(x) is injective and has index —n for all x i.e. Coker L is well-defined (recall 

Definition 3.5), 

• Nahm's equation implies that Coker A is anti-self-dual, 

. Coker A is a translation invariant U(n) bundle and connection, and 

. Coker A satisfies the monopole boundary conditions. 

In other words, they show that the Nahm transform takes a set of monopole Nahm 

data and produces a monopole. Since Hurtubise and Murray assume weaker boundary 

conditions for monopoles than we do, we cannot assume that the Nahm transform on 

an element of , /1) gives a monopole configuration as defined by Definition 2.4. 

Thus we must state precisely which results from [20] we are free to assume. We assume: 

Lemma 3.10. If (x) is the Nahm operator constructed from some set of U(n) mono-

pole Nahm data in 1TZ) then L(x) is injective and Fredhoim with index —n for 

all x E 

Lemma 3.11. Under the same assumptions as Lemma 3.10, 

f10,2-/yoJxR3 	 [L 

(This is just equation (2.32) except with k 0  = 0 since Coker L is a monopole configura-

tion.) 

Both Lemmas are implicit in [20]. 

Later on it will be useful to consider Nahm data that does not satisfy Nahm's 

equation. In addition, it is useful to drop the requirement that the Nahm data is 

discontinuous accross zero jumps. We therefore make the following definition: 

Definition 3.12. The space ./VM0fl (k, 1Z) consists of gauge equivalence classes of Nahm 

data with boundary data 
(, 

fl), such that the data does not necessarily satisfy Nahm's 

equation. Moreover, at a zero jump = p, either 
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the endomorphisms T', T 2 , T3  are discontinuous, as described previously, or 

the endomorphisms are continuous, but there is still a projection operator 'lrq  and 

some 1-dimensional subspace Jq  C j (/iq) associated to the zero jump. 

Some of the results of Hurtubise and Murray continue to hold for this wider class 

of data. In particular, it is easy to check that the proof of Lemma 3.10 still holds. We 

will also assume that Lemma 3.11 holds for data in JVM0n (k, 7): this does not follow 

from Hurtubise and Murray's results, but we will give a proof later. Since we will not 

require Nahm's equation to hold most of the time, we will refer to data from -WMon (k, 1Z) 

as 'monopole Nahm data' and point out where we use Nahm's equation specifically. 

3.2 The construction of calorons up to boundary condi-
tions 

3.2.1 Definition of caloron Nahm data 

A set of U(n) caloron Nahm data with boundary data (k o , , yo ,)!) consists of n bundles 

Xi ,... , X over the intervals I C S1. = R/ioZ defined by (1.41). The rank of X 
JU 

is m, where m is defined by (2.14). The bundles are equipped with exactly the 

same structures as monopole Nahm data, and glued together in the same way at each 

11p + poZ, p = 1,... , n. Note that X1 is glued to X,, at p l  + 1i0Z, and the data satisfy 

exactly the same gluing conditions there. The gauge transformations are also defined 

in an entirely analogous way. 

Next we have to build the Nahm operator L(x) : W -p V from this data. This is 

entirely analogous to the monopole case in Section 3.1.2. Define W, W, and D for 

p = 1,... , a in the same way as in Section 3.1.2. Label the zero jumps by q E J, and 

define Jq, q, ltq  and Nero  just as previously. Then 

and w 1 (i 1 ) = w(i1 - / io)}. (3.13) 

In other words, W consists of sections that are continuous around the circle. Let 

V = [Wf ED ... W,] [C°] 

and 

= [Di (x)w i ,... ,D(x)w] 	[7rw]. 	 (3.14) 

In the monopole case every Nahm operator A (x) built from Nahm data was injective: 

Hurtubise-Murray prove this by showing 

II(x)f 11 2 = II V,f 112 + positive terms. 
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Thus any element of the kernel of L(x) has to be constant, and the vanishing condition 

at the end points ui and ,a ensures that any such section is trivial. (In fact this is a 

slight over-simplification because zero jumps also have to be taken into account.) This 

proof does not carry over to the caloron case: there could exist covariantly constant 

sections of the bundles that remain in the continuing component at each p p . It is quite 

easy to construct examples of caloron Nahm data satisfying our definition that do not 

give rise to injective Nahm operators: for example take a set of U(n) monopole Nahm 

data and glue on a rank k 0  bundle over S equipped with the trivial connection and 

endomorphisms. This satifies the conditions to be a valid set of caloron Nahm data, 

but the Nahm operator is not injective for all x. Thus we restrict to sets of Nahm data 

that do give rise to injective operators: 

Definition 3.15. Let .Ar*(ko,  k" 0 ,jZ) be the set of gauge equivalence classes of U(n) 

caloron Nahm data satisfying Nahm's equation, and with boundary data (ko , k 1  yo  fl), 

such that the Nahm operator i(x) is injective for all x E ll. 

It is useful to also consider caloron Nahm data that does not satisfy Nahm's equa-

tion. We therefore define .iV(ko, , o, /Z) analogously to Definition 3.12. In general, we 

will refer to data in .iV(ko, 
, to, /Z) as 'caloron Nahm data' and point out where we 

specifically require Nahm's equation and discontinuities at zero jumps. 

We will sometimes use the following terminology: 

Definition 3.16. A set of caloron Nahm data is principal if it has principal boundary 

data (in the sense of Definition 2.13). 

3.2.2 The index of L 

Given a set of caloron Nahm data and the corresponding Nahm operator A (x) : W —* V, 

we want to show that Coker A is well-defined i.e. we want to show that i.(x) is Fredholm 

with index —n for all x. (Recall that z(x) is injective by definition.) The calculation 

of the index is an adaptation of the SU(n) monopole version [20, Section 41. 

To calculate the index of z(x) we want to identify the kernel and cokernel, and 

count dimensions. It is clear that the kernel of L(x) consists of (w i ,... ,w) E W 

satisfying 

• D(x)w = 0, and 

• at zero jumps w q (uq ) is in 

in addition to the constraints on W (i.e. that terminating components vanish at 

where k =A 0 and that continuing components are continuous at any 	To find the 
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cokernel we integrate by parts. Fix (w i ,... , w) e W and 

n 

v=(vi,... 	V=[W°][C"°]. 	 (3.17) P (D

P=1 

Then 

(v,(x)w) = 	(vP,DP(x) WP) L2 + 	(sqq ,wq ( q )) 	 (3.18) 
Pl 	 qEJ 

and v E coker L(x) if and only if this vanishes for all w. If we assume that w() = 0 

and w is smooth for all p, then integration by parts of the first sum makes sense, and 

we obtain 

	

(v,(x)w) = 	(D(X)VP ,WP )L2 

where 

D;(x) = iV - iT + x". 

(If we do not assume w() = 0 for all p then problems arise because v(i) may not 

be well-defined and the boundary contribution in the parts integration may not make 

sense.) Hence v must satisfy D(x)v = 0 for all p. It follows that v is smooth on 

the interior of I, and the continuing components of V are continuous up to the ends 

of the interval. Under these conditions integrating (3.18) by parts makes sense for all 

w, and we obtain 

n 	 TI 

' 	\ (V,(x)w) = 	(D;(X)VP ,WP)L2 + 	
cont i(V_i/Lp) - 

P=1 	 P=1  

	

+ 	(s q(q ,w q (/iq )) 

qEJ 

where v °' is the continuing component of V. Then 'v e coker L(x) if 

• D(x)v =0 on each intervalI for p= 1,... ,m, 

o the continuing components are continuous at each p p  where k =A 0, and 

• at zero jumps, Vq(/.Lq) - Vq_1(/Jq) = iS qq . 

To count the number of solutions in the kernel and cokernel we need some analysis 

of D(x) and D(x) close to the singular points = ji,,. This is taken more-or-less 

directly from Hitchin's paper on the construction of monopoles [17, Section'.)]. Start by 

considering the case kp  > 0, and recall the conditions imposed on the endomorphisms 



TJ at such a point. Let t = - 	be a coordinate in a neighbourhood of 1,1p . For 

t e (—e, 0) we have in some parallel gauge the block decomposition 

®T=( R/t)+B(t) 

where B(t) is analytic and bounded, and R = > -y 1 ®4. In terms of the representation 

p defined by (3.2), 

R = — yj®p(yj). 

It is possible to express R in terms of Casimir operators. If S is a representation of 

5u(2) then the Casimir operator is defined by C(S) = Ej p(y,) 2 . Now 

C(S 1  ® SkP_1) = 10 C(S"P 1 ) + 2 E -yj ® p(yj) + C(S') 0 1 

so 

R = _[C(S1  (g  5kp_1) - 1 ® C(SkP) - C(S') ® 1]. 

The Casimir operator on S"P is —k(k + 2) . id, and decomposing into irreducibles we 

have S1 ® 5k1 5k e  5k-2 Hence 

R = (k - 1) on Skp  c 	 (3.19) 

and 

R = — ( k+ 1) on 5k-2  cS' ®5k1 

Now let U,, be the 2m dimensional space of solutions to Dp  on I. Using the block 

decomposition of D and the calculation of R, we see that U, decomposes as Up = 

B G Gp  G C where 

• B is the k+1 dimensional space of solutions that are 0(t_(kv_1)/2)  corresponding 

to elements of 5k 

• G is the k - 1 dimensional space of solutions that are 0(t('+')/2)  corresponding 

to elements of 5k-2,  and 

• C is the 2m_ 1  dimensional space of solutions that are 0(t° ) corresponding to 

elements of the other diagonal block. 

The solutions in B do not have vanishing terminating component and are not L 2  

so cannot be elements of W 7,. (Here 'B' is for 'bad', 'G' is for 'good' and 'C' is for 

'continuing'. The 'bad' solutions are the ones that cannot be in ker (x).) 

Next consider the cases k <0 and k = 0: the same decomposition of U exists, but 

B and G are trivial because all solutions are in the continuing block. Alternatively, 
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one can decompose U, depending on the behaviour of solutions at the other end of the 

interval, and obtain U, = B C. If ki > 0 then B and G are trivial, but 

when k+i < 0 we have 

• E is the 1 - k+i dimensional space of solutions that are 	 corre- 

sponding to elements of 8Ik+i I ,  

• d, is the –1 - k+i dimensional space of solutions that are 	 corre- 

sponding to elements of 81kp+11-2,  and 

• O is the 2m+i  dimensional space of solutions that are 0(t° ) corresponding to 

elements of the other diagonal block. 

For these estimates we have taken t = - iip+i. For u E U let Bu, Gnu, Cu etc. 

denote the projections with respect to the decomposition. 

We can perform exactly the same kind of analysis for D. Let U be the 2m 

dimensional space of solutions to D (at the moment the '*' is just a label—but in fact 

U will turn out to be the dual of Un). We obtain decompositions U = B C 

and U = 	0. In particular when k > 0 we choose B to correspond to 

elements of Skp  so that it contains solutions that are 0(t(ICP1)/2),  and when kp+i < 0 

we choose 	to correspond to elements of S1'+11  so that it contains solutions that are 

0(t('P+ 1 )/ 2 ). When k <0 B is trivial, and similarly for 	when k 1  > 0. Now 

suppose u E U, w e U for some fixed p. Then (u, w) () is well defined for any in the 

interior of I because the elements of U and U are necessarily smooth on the interior. 

But because u and w are solutions to D and D, d (u, w) () = 0 so U really is the 

vector space dual of U, with the pairing 

(U,W)dual = (/-L - 1p+1) —1(u,w)L2 = (u,w)() for any in the interior of I. 

Moreover, because the solutions in B and B correspond to elements of 8kg,  B is the 

dual of B, and similarly for 	and C. Hence 

(u, W)dual = (Bu, B;w)dual + ( Gnu, C;W)dual + ( CPU, c;w)dual 	(3.20) 

where 

(Bpu,B;w)d ual = (Bu,Bw)() 

for any in the interior of I etc. Note that 

(CPU, C; W)d uaI = ( Cpu,C*w)(/1p) = (Cu,Cw)(u +i) 

because the values at the end-points are well defined. We obtain a similar expression 

to (3.20) using the decomposition of U at the other end of the interval, in terms of B, 

G, and O. 
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The boundary conditions for the kernel and cokernel can be stated in terms of 

these decompositions. Suppose u, E U, and u,_ 1  E Un_ i  satisfy the conditions to 

be in the kernel at ji,,,. This is equivalent to saying Bu = 0 = B_,,u_1  (so that 

the terminating components vanish), that Cu(t) = Op_ i up_ i(jip) (the continuing 

components are continuous), and at zero jumps Cquq (jiq) € J. Similarly, suppose 

and w,_ 1  E fJ_ satisfy the conditions to be in the cokernel at ji,,,. This 

is equivalent to saying G;w,,, = 0 = 6;_ 1 w_ 1  (so that w, and w,_ 1  are L 2 ), that at 

points ji,,, where k $ 0 we have Cw(ji) = 6_ 1 wp_1(jip) (the continuing components 

are continuous), and at zero jumps jiq, Cq*wq(jiq) - _iw q_i(iiq ) E Jq . 

To find the index of A(x) we introduce a map e between finite dimensional vector 

spaces whose index is easy to compute, but constructed so that ker L(x) = ker e 

and coker (x) = coker e. Let urhIs C U,,, x U,_ 1  be the set of pairs (u,,,, -i) 

satisfying the boundary conditions for the kernel of L(x) at ti p  for p = 2,... , m, and 

let Ulpairs c Ui x U in the same way. Consider the map 

E) : 	 . 

E) : (u i ,ü),(u2 ,üi ),... ,(u, 2i) -+ (u i  — 1 ),(u2  -u2),... ,(u _i). 

By construction, the kernel of e is the kernel of A (x). Also 

md e = 	dim ur" - 	dim U,,,. 

Checking each case (/c,,, > 0, k,,, = 0, and Ic,,, < 0) we have dim Ugahl.s = m + m_ 1  - 1 

while dim U,,, = 2m. Hence md e = — n. If we can show the annihilator of im e is 

coker (x) then we can conclude that md (x) = — n 

Fix 

n 

u= ((u1,fl),(u2,1),...  (U., 4,,-1)) e 
p=1 

and 

w=(wi ,... ,w)EU 

Then 

(eu,w)dual = >(Up - Up,Wp)dual 

= 	[(Cu, c;wp) dual + ( Cpu,,, )  C;wp)civai 

- 	c;wp)duaI - ( Cpu,,,, c;wp ) dualI 
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using (3.20) (plus its analogous version in terms of E, O, O) and the fact that Bu = 

0= Bp ap . Now 

(Cu, Cjwp)civai = (Cpup, c;W)(li), and (Op i2p , Oj wp) ci va i = (OpÜp , OW p)( lip+ l). 

This implies that 

(eu, W)dual = >[(Cpup, CpWp)  (lip) - (O_ iu_ i , C_ 1 w_i) (lip) 

+ 	 - 

for any 	I° and any 	I°_. But Cu(li) = Op_ iÜp_ 1(lip) because (up , iLp_1) 

satisfies the boundary conditions for ker L(x) at /1p, SO 

(eu,w)d ual = ERCpUp ,cw - 0_iwp_1)(lip) 

+ (Gu, G;)() - (Op_iiip_i, 6*  _ l wp_ i )(c)]. (3.21) 

The annihilator of im e consists of w E 	for which this vanishes for all u. Such w 

satisfy the following conditions. 

At points lip  that are not zero jumps Cw(li) - C _ iwp_i(iip) = 0. 

At zero jumps liv, Cq*wq(q) - 0_ 1 wq_1(/iq) E Jq , because Cqwq(liq)  E Jq'. 

We have seen that at any p  either G = 0 = G (when k 	0) or Opi = 0 = 

O; (when k > 0). In the latter case (3.21) gives (Gu, G;)() = 0 for all 

u and for all e I°_ so Cw has to vanish. Similarly, by considering the other 

case, w satisfies Gw = 0 = 	for each p. 

These are precisely the conditions that w E coker L(x) as stated on page 61, and this 

completes the proof of the following lemma. 

Lemma 3.22. If L(x) : W - V is the Nahm operator corresponding to some set of 

U(n) calorori Nahm data then (x) is Fredholm with index —n for all x. 

We also need to consider the index of deformations of A, for which the following 

definitions will be useful. 

Definition 3.23. A multiplicative operator W -* V is a map of the form 

(wi,...,w)W-(Aiwi,... ,Aw)(0)V 

where A is a smooth uniformly-bounded matrix-valued function on Y p  = C2  ® X 

over each interval I C S 0 . The second component is the zero vector in CN0.  The 

continuing components of the A matrices are continuous at each = lip, except at 

zero jumps where we allow A p (lip) and A_1 (lip)  to be different. 
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Definition 3.24. A deformation (x) : W --4 V  of A(s) is framed if, for sufficiently 

large r, A(s) - A(s) is a multiplicative operator that is independent of x. (Here r is 

the polar coordinate on R 3 .) 

Definition 3.25. Suppose A(s) : W - V is the Nahm operator corresponding to a set 

of U(n) caloron Nahm data, and A is defined by (3.14). A deformation (x) : W - V 

of A(s) is a controlled deformation if it is of the form 

A(x)w = [D i (s)wi + A 1 w 1 ,... , D(s)w + Aw] [iiw] + B(s)w 

where the following conditions hold: 

• For each p = 1,... , n, A is a smooth uniformly-bounded matrix-valued function 

on the interval I, C S,j0  that is independent of s, and with the same continuity 

conditions as in Definition 3.23. 

The projection ii: W - CNzero has components 

lrq W = (w(/t q ), Cq) 

for q E J. Here çq is some (possibly s-dependent) vector in Y(i q ), such that 

q (x) = q for all s outside some compact set. 

• For all x, B(s) is a compact operator W --4 V  and B has compact support i.e. 

B(s) = 0 for sufficiently large r. 

Note that any controlled deformation is also framed. Roughly speaking, the so-

lutions in the cokernel of a framed deformation i of A will be asymptotically close 

to solutions in the cokernel of A. The condition of being a controlled deformation is 

stronger, with implications on the interior as well as asymptotically: 

Corollary 3.26. Suppose A is a controlled deformation of A. The proof of Lemma 

3.2 applies to A, and so A(s) is Fredholm with index —n for all x. 

3.2.3 The adjoint of A(s) 

Given the Nahm operator A(s) : W - V, the 'Hubert space' adjoint A*(s) : V - W 

is difficult to compute, involving the Sobolev space inner product on L?.  Instead 

it is easy to consider the adjoint as a map into the dual space of W, where linear 

functionals consist of pairing the L 2  sections in W with sections in L 1 , because this 

can be computed by parts integration like that at the start of Section 3.2.2. Formally, 

therefore, the adjoint is the map A*(s) : V - W*, where  W*  is the dual space of W, 

defined by 

(v, A(x)w) = (A*(s)v, W)dual 
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for all v E V and w e W. The bracket (,)dual  denotes the evaluation of an element in 

W' on an element of W while the bracket on the LHS is just the inner product in V. 

It is useful to understand W*  as a sum of Sobolev spaces on the intervals I. First 

we claim that 

(L[a, b])* = L 1 [a,b] = Li[a,b] {Span öa } e {Span 5b} 	(3.27) 

where Sa , 6b are the evaluation functionals at a and b, which are certainly contained 

in ti2  1 [a, b]. The first equality is true from the definitions of L?  and L 2  on page 53. 

Consider the orthogonal complement U of {Span 50 {Span 6b   in L 2  [a, b], and 

fix some element f E U. Then the map taking f (as an element of L 2  (R)) to its 

equivalence class in L 1 [a, b} is an isomorphism U L 1 [a, b], establishing (3.27). It 

follows that 

(w)* = (w') (y()) * (y()) * 

Recall the definition (3.13) of W. Since W C ED Wy', 

W* = (W)*/Ann  W 

11 

=@ [(w1) (y())* ((ILp+l))*I/A1M1 W 

P=1  

where Ann W is the annihilator of W in ED W. Now, since W is the subset of W 

consisting of sections with vanishing terminating component which are also continuous 

across the pp , we obtain 

n 	 n 

	

w* = [ w1] 	[ 	
(ycont(1))] 

	

P=1 	 P=l 

where ycont(,ap)  is the space of continuing vectors at pp. 

We can now compute Lx" (x) in terms of this decomposition, i.e. as an operator 

n 	 n 	 n 

V = 	 WO ] e {C0] -4 	 W-'] [ 	
(ycont(/1 ))*] 

P=1 	 P=1 	 P=l 

If we restrict *(x)  to some domain A C V consisting of elements v E V with VP  smooth 

on the interior of 4, and continuous up to the ends of the interval, then A contains the 

cokernel, and integration by parts like that at the start of Section 3.2.2 gives 

cont( \ 	cont = (D(x)v i ,... , D(x)v7) 	[ 	(zv_ 1 	- iv 	([tp))*] 

PJ 

[ 	
(iv01i(pp) - iv n1t(pp) + sp(p)*] (3.28) 

pEJ 
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where y denotes the dual of a vector y E ycont() and v is given by (3.17). We will 

need this expansion in Section 3.2.4. 

Finally, we make a few remarks about the projection P = P onto coker L(x). 

Since L(x) is Fredhoim, it follows that its image is closed, so the projection P exists 

and coker A(x) = ker *(x).  In addition, L(x) is injective, so L(x) is surjective, and 

*(x)(x) is invertible. The projection P is given by 

P = 1 - 

3.2.4 Nahm's equation and anti-self-duality 

We want to show that when the Nahm data satisfies Nahm's equation, Coker L(x) is 

anti-self-dual. The index calculation shows that the connection A defined by Coker z(x) 

is a well-defined U(n) connection on 1R4 . Mimicking Proposition 1.22, the curvature is 

given by 

FA = Pdx (L*(x)L(x))_ldx *P, 	 (3.29) 

so anti-self-duality follows if L*(x)L(x) commutes with the yj matrices. In equa-

tion (3.29) the domain of (*(x)(x))_l  is restricted to the image of dx*P.  Using the 

conditions for sections to be in the cokernel of A(x) given at the start of Section 3.2.2, 

it follows that (*(x)(x))_l  is only passed elements 
n 	 fl 

U 	(Ui,... ,un)(yl,... ,y) e W* = [W'] 	{(ycont())*] 

P=1 	 P=l 

that have u smooth on the interior of I, for all p and such that the continuing compo-

nents of u are continuous up to the ends of the interval. Let A be the inverse image of 

this subspace of W*.  Since  (*(x)(x))_l  is smoothing, sections in A are even 'nicer', 

and on the domain A(x)A, /*( x ) is given by (3.28). It is therefore sufficient to prove 

that z.*(x)i(x)  commutes with the matrices on the domain A, for which we take 

*(x) to be given by (3.28). 

Fix w = (Wi,... ,w) e Ac W. Then 

= (D(x)Di (x)wi,... , D(x)D(x)w) 

[ 

(iV cont 	_iv 0t( /2p))*] 

pJ 

[ 	
(iV cont 

	- iv 011t( ILp ) + s)*] (3.30) 

P€J 

using equation (3.28), where VP  = D(x)w and s = irpwp ( ip). Expanding D;()D() 

on each interval gives 

D(x)D(x) = v;v + 	+ 2ixT - (T)2} - 	® VT + EijkYi ®TT]. 
j 	 i,j,k 

(3.31) 
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The T satisfy Nahm's equation (3.1) on the interior of each interval Ii,, so the term 

involving the yj matrices vanishes there. It remains to consider the components in 

ycont (la) First consider a point = ,a with k 0. At such a point the continuing 

components of T and w are continuous, so 

d cont iv(p) - iv 0nt(lip ) = — w_ 1  (lip ) + 	w ont( iip) . 	 ( 3.32) 

(The RHS exists since w E A.) If we replace w with j w, the RHS of equation (3.32) is 

multiplied by y3 , so this component of (*( x)(x))_l commutes with the yj matrices. 

At a zero jump the continuing component of T is discontinuous, and 

d 	 d cont 	- iv0nt(ii) = — wp_i(lip) + 	wp (1Lp ) 

- T_1(ii)w(a) + T(la)wp(lip). (3.33) 

The first two terms on the RHS commute with the yj matrices, just as for the k 0 

case. However, 

(T(1a) - Tp_l([zp))wp(lip) = 	x 71w( 1a) = —s pp  

and these terms cancel with the contribution from the s in (3.30). Substituting (3.32) 

and (3.33) into (3.30) gives 

= (D(x)D1 (x)w i ,... , D(x)D(x)w) 

	

[(d cont 	d cont 	* 
(lip)—w_i( 1ap)) 

p=1 

and this map commutes with the -yj  matrices. It follows that Coker A is ASD. 

3.2.5 Periodicity 

Before considering how to frame (E, A) = Coker A, it is useful to make some remarks 

about periodicity. In particular we will fix some notation required later, and explain 

how to quotient (E, A) to obtain a connection on x R 3 . As it stands, Coker A is 

a bundle and connection over R. Under translation in x 0 , A satisfies 

	

A(TX) = U,v/(x)U 	 (3.34) 

where 'r is the translation 

	

T : (xo,xl,x2,x3) I—+ (xo +5T ,x 1 ,x2,x3) 	 (3.35) 

and UT,W, LL,- , v are unitary maps, given by 

Ui-,w(w) = (expi8)w, 

U,-,v((v) 	(sq )) = ((expi8)v) G ((expi8 rq)sq ). 
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These maps are not well-defined for all 5,-: in general UT,w(w)  will not be periodic in 

so will fail to be an element of W. When 6, is a multiple of 27/LQ, however, the 

maps are well-defined, so fix 5,- = 27r/ro 1 and the corresponding maps U,-,w, U.,-,v. Of 

course, U,-,w, U.,-,v correspond to the gauge transformation (1.17) for the transform on 

the 4-torus. We will often just write UT  for U1.,v, so that 

UT((vp) 	(sq)) = ((exp2iri/iio )vp) 	((exp2irijtq //1o)s q ). 	(3.36) 

Now 

coker (rx) = U.,- coker (x) 

so UT  defines an action of Z on E. It is easy to check that 

	

A(Tx) = (U)*A(x) 	 (3.37) 

so the connection is compatible with this action. Quotienting by this action gives an 

hermitian bundle on S 11 ,0  x I1 with a compatible connection. 

Note that U.,-,w and UT,V are not determined uniquely: we can replace them with 

(expiA)U,w and (expiA)U,-,v for any A e R and (3.34) still holds. However, the 

choice (3.36) is the only choice that allows the caloron to be framed in the correct way. 

3.2.6 Remarks on the rotation map 

The definition of the Nahm data for a caloron implicitly involves a choice of origin 

for the circle S,'10 . Suppose L(x) : W —p V is the Nahm operator constructed from 

some element of M(B) for some set of boundary data B. The inner product on V is 

independent of the choice of origin on S,'10,  and so, as a bundle and connection over 

R4 , Coker A is also independent of this choice. Recall the rotation map Pa  defined 

by (2.33). Rotation of the Nahm data by io/n defines a map 

	

.iV(B) - .if(paB) 	 (3.38) 

but, as it stands, Coker L is insensitive to this action. However, the way we frame 

Coker A does depend on the choice of origin: if the Nahm data has boundary data B 

then we want the corresponding caloron to have boundary data B too. 

In fact, we only give a construction of calorons from Nahm data with principal 

boundary data—for technical reasons the construction is much harder if the data is 

'We can use U(n) Nahm data to construct a caloron with m times the expected period for m = 
1,2,3,... by taking 6,. to be m x 2ir/j.o. The point is, however, that while other periods are possible, 
the Nahm data does give rise to a caloron of the anticipated period. Changing the periodicity of the 
caloron in this way maps .ro '- o/m and ko i_+ mko because in the quasi-periodic picture the clutching 
function is composed with itself m times. This should correspond to some map between sets of U(n) 

Nahm data. Similarly, given a set of U(n) Nahm data, we can simply glue together m copies of it to 
obtain a set of U(nm) Nahm data with period m/o. This should correspond to some map between 
caloron configurations, probably embedding the U(n) caloron in times in U(nm). 



not principal, essentially because we can only recover k0 when it is the smallest rank 

of the bundles X 1 ,... , X,-. Given a set of Nahm data with boundary data B (not 

necessarily principal), we can rotate it until its boundary data B' is principal. Our 

construction will then give a framed caloron with boundary data B', but by applying 

the rotation map PC defined in Section 2.2 to the caloron, we can transform it into a 

caloron with boundary data B as desired. This method of defining the construction 

when B is non-principal ensures the following diagram commutes: 

. 	
Nahm 

AI(B) 	 C(B) 
construction 

PA(j 
	 t PC 

Nahm 
j\T(paB) ) C(paB) 

construction 

The diagram commutes by definition when there is only one principal rotation of the 

Nahm data. If there is more than one principal rotation, then without loss of generality 

we can assume B and pB are both principal (by replacing the rotation maps p, pc, PA( 

with pa , PC  , Pk for some k) The two calorons on the RHS of the diagram must be 

equivalent as quasi-periodic connections over 1R 4—in other words they are related by a 

large gauge transformation—since Coker A is insensitive to the action of ppj.  It is easy 

to see the large gauge transformation must be pc. 

3.3 The model operator L 

3.3.1 Strategy 

The aim of the remainder of this Chapter is to show that the bundle and connection 

Coker A extends to S, and is framed there. This will complete the proof that the Nahm 

construction on an element of J1*(ko, , zo, fl) produces an element of C*(ko,  k, i-to, 

The method adopted is to consider a deformation L L of L, and prove that Coker /. 

extends to 52  and is a framed bundle (IE, f) with invariant C2  (E, f) = k0. We then 
00 

prove that the framing and the invariant C2 are independent of the deformation, and so 

deduce that Coker / e C*(ko, , yo, /Z). The first task is to define the model operator 

A and prove that it is injective and Fredholm with index —ri, which forms Section 3.3. 

In Section 3.4 we prove that Coker L i is a framed caloron configuration, and in Sec-

tion 3.5 calculate C2 (2, f). This shows that Coker A is an element of C(ko, , yo, 

Finally, in Section 3.6, we prove that A can be deformed into A in such a way that the 

framing is independent of the deformation, and deduce that Coker A is an element of 

C (ko, k, ito, Z). This method is based on Hitchin's proof that a connection and Higgs 

field constructed from monopole Nahm data satisfy the monopole boundary conditions 

[17, Section 2]. 

From this point on fix the following notation. Fix a set of U(n) caloron Nahm data 

M. 



with principal boundary data (ko, k, yo, ,tTZ). If the boundary data is not principal then 

we apply the rotation map pjv-  to the Nahm data to obtain a set of principal Nahm 

data; we then apply the corresponding rotation map pc 1  to the caloron constructed to 

obtain the correct framing, just as we explained in Section 3.2.6. Let A,, be the 

connection and Higgs field at infinity determined by (, Ti). Let A (x) : W -* V be the 

Nahm operator. 

Any generic choice of model operator L will be injective (since the space of non-

injective operators is in some sense small). The problems encountered when defining 

are therefore to ensure Coker /. is framed and that c2(E, f) = k0. Much of the 

'engineering' we do is to make the proof that c2(IE, f) = ko straightforward. Note that 

throughout this Section we make no claims that the model operator L k is a deformation 

of ; often Li will be defined in terms of a deformation, but we delay the proof of the 

existence of a path joining the two until later. 

When defining the model operator Li it is easiest to consider two special cases 

first. The first is the case of vanishing monopole charges—the case that k = 0 for all 

p = 1,... , a but k0  =A 0. (Calorons of this type were introduced in Section 1.2.2.) The 

second case is the opposite of this: the case that there are no zero jumps in the lowest 

rank block (we will make this precise later). We call this the case of 'no zero jumps in 

the instanton block'. In the remaining cases, the model operator is very similar to that 

for no zero jumps in the instanton block, so the reader may prefer to concentrate on 

that case. 

3.3.2 Defining L: the case of vanishing monopole charges 

Suppose that k = 0 for all p = 1,... ,m but k0 $ 0 i.e. that every singularity P p  in 

the Nahm data is a zero jump. By gluing together the bundles X, a single continuous 

vector bundle U X over S11j0  with rank k0  is obtained. Similarly we can glue together 

the Y = C 2  ® X to obtain a vector bundle Y over S, 0 . Elements of W are sections 

of Y that are periodic, L, and continuous across the singularities jig . Let i,... ,ko 

be an orthonormal basis of sections of U X, that are periodic, smooth on each interval 

I, c S,, and continuous across each = . Let 

= () 0 i and ijL = 

	(?) 
0 ii 	 (3.39) 

Working in this gauge fix 

for each p = 1, . . . ,ri,where 

A= diag(i\ i ,... , iAko) 



for some pairwise distinct A l ,... ,A, E (0,2ir/io ), and x = iYaXa. Given L(x) 

W - V, consider the operator 

A(x) W - V 

L(x)w = ibi(x)wi,... ,13(x)w] ED [irw] 

where the projection ir is that determined by L, as in equation (3.14). 

We want z(x) to be injective for all x, so consider the conditions for w E W to 

lie in the kernel of A(x). We have (x)w = 0 if D(x)w = 0 and irpw() = 0 for 

all p, and if w is continuous and periodic. Parallel translation by the D round S, 0  

determines a holonomy 

Hol(x) = exp[(ix - 

Consider finding solutions to this parallel transport problem that are continuous and 

periodic in . Such solutions exist if and only if Hol(x) has eigenvalue 1 i.e. if [1—Hol(x)] 

is singular. This occurs if and only if 

x = (Al  + 27rm//io, 0,0,0) for some I E {1,... , ko} and any m E Z. 	(3.40) 

We call such points resonating points, and label them x for 1 = 1,... , ko and m E Z. Irn 

As it stands, (x) is therefore injective away from the resonating points. When x = 

there is a 2-dimensional space of solutions to the parallel transport problem that is 

spanned by 

	

71m := [exp(27rim/i o )]ij, 	 (3.41) 

	

1exp(2irim//io)Ii1'. 	 (3.42) 

To exclude the possibility that these could be solutions to (x), we adjust the projection 

ir to be non-zero on q1m , ,rIILm  by deforming the vectors c used to define ir in a small 

neighbourhood of each resonating point. (Recall the definition of the components of r, 

equation (3,7).) For p = 1,... ,n let 

-4 

and let 

= 

Let (x) : W -* C have components (x). Fix an open 4-ball Bi m  around each 

resonating point, sufficiently small that the balls do not overlap. We deform (p  only 

inside the union U Bi m : define 
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if X V IJ Bim . Then, for each 1, pick qi, q1 1  E {1,... , n} such that q 	q1J. Inside Bim 

arrange the so that near x = Im 

q1 (x) = lilm(i2qi), 	 (3.43) 

cLx) = 	and 	 (3.44) 

(q (x) = 0 if q V {qi, qjL}. 
	 (3.45) 

The third condition is not required for injectivity, but simplifies the calculation of k0 

for Coker z. Equations (3.43) and (3.44) imply that at a resonating point x, 

and irq .L cannot both be zero on non-trivial linear combinations of Tllm  and ijj. This 

ensures that 

= []3(x)w,... ,D(x)w] 	[iw] 

is injective for all x. We can arrange the deformation of the vectors so that P(TX) = 

((x) for all x and p, which ensures that A satisfies (3.34) under translation by 2ir/i o . 

Note that L is a controlled deformation of L (recall Definition 3.25). Corollary 3.26 

therefore implies that z(x) is Fredhoim with index -n for all x. As a final remark, 

note that, unlike A , L is continuous across the zero jumps: the discontinuity in L is 

required to ensure Coker L is anti-self-dual, but it is not required to ensure Coker A is 

framed. 

3.3.3 Defining : the case of no zero jumps in the instanton block 

Moving on to the second special case, we first explain what is meant by 'no zero jumps 

in the instanton block'. A zero jump in the instanton block is a point = ,u for 

which m = min{mi ,... , m,j which is also a zero jump (i.e. k = 0). The condition 

of no zero jumps in the instanton block is the opposite of the condition of vanishing 

monopole charges, for which every singularity was a zero jump in the instanton block. 

Figure 3.1 illustrates the situation, plotting the rank of the Nahm data versus T  for 

three examples. 

We assume, therefore, that the Nahm data has no zero jumps in the instanton block. 

We can split off a bundle over S of constant rank, and thereby decompose each bundle 
ILO 

Y into two sub-bundles, in the following way. Recall that we are assuming that the 

Nahm data is principal so that 

ko =min{rankXp : p=1,... ,n}. 

There exists a set {i,... ,N,} of sections of the bundles X 1 ,... , X n  that are defined 

over all of S,' j0 , that are periodic, smooth on each interval I, c S, 0 , continuous across 

each singularity = , orthogonal for each e I1, normalised with respect to the L 2  

inner product, and linearly independent. In other words, we can find a k0-dimensional 
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U(5) Nahm data with vanishing monopole charges 

115 	P4 	P3 	Y2 	[L 1 	[Lo+[15 [LQ+[L4 

U(5) Nahm data with no zero jumps in the instanton block 

/L4 	/L3 	P2 	[Li 	/LO+/L5 [10+[4 

U(5) Nahm data with one zero jump in the instanton block 

 

/L4 	[L3 	 [Li 	I10+[L5 /LO+/L4 

Figure 3.1: Examples of classification of caloron Nahm data. 
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sub-bundle X 1  of each X, such that the X PI  glue together to give a continuous bundle 

over S)0 . Note that this decomposition is not unique: if rank X, > ko then there is 

some choice for the 	over Ii,. Define ijj and ij -  by (3.39). We can choose the 	so 

that for all l=1,... ,ko  and qEj 

7rqr71 = 0 = irq?]. 	 (3.46) 

This is possible because each zero jump occurs in a block with rank greater than k0. 

Thus we have a decomposition of each block Yp  of Nahm data into a subspace Y' 

spanned by : 1 = 1,... , ko, e I} and the orthogonal complement M: 

The bundle formed by gluing together the YI is called the instanton block, and its 

orthogonal complement is called the monopole block. The spaces W and V decompose 

in a similar way: 

W=WIEWm, V=VIE9VM, 	 (3.47) 

where 

and 

VM 
= 	

Wo(Y 9M)} [C'°]. 

Here W ° (Y) denotes the Sobolev space of L 2  sections of Yj etc. Note that we impose 

the condition (3.46) to ensure that the jumping space Jq  spanned by q  at a zero jump 

/iq  is contained in the monopole block YqM(,uq),  so that there really are no zero jumps 

in the instanton block. 

Next we want to specify the model operator (x) : W - V which we construct 

using the decomposition into monopole and instanton blocks. Define 

W1 -* V1 	 (3.48) 

AI(X) = 	+ i(1 ® A) + x 	 (3.49) 

where A = diag(iA i ,... , i)'.j o ) for some pairwise distinct Al,... ,Ak, e  (0, 27r/ o ). Just 

as we saw for the case of vanishing monopole charges, Li(x) is injective, apart from at 

the resonating points defined by (3.40). 

Restriction of the caloron Nahm data to the monopole block determines a set of 

U(n) monopole data, i.e. an element of A/M on (k, ), and the associated Nahm operator 

73 



AM(x) : Wm —4 VM. (Note that this data does not necessarily satisfy Nahm's equa-

tion.) At a singularity = j, with k 0 the Nahm data determines a I k I-dimensional 

residue R. We deform AM(X) so that near such singularities it is given by 

.d 	iR 
+x 

d 	it 

on the terminating component and 

i+x 
	

(3.50) 

on the continuing component. Near zero jumps we deform so that z(x) is also given 

by (3.50). Thus AM(x) : Wm —4 Vj is given by 

AM(X)W = [(i + i 	 + x)w] [w] 	 (3.51) 

pJ - tip 

where 'bp  is a bump function equal to 1 on some neighbourhood of ji,,  and zero elsewhere. 

We interpret R as acting on each terminating component in the obvious way. Note 

that without condition (3.46), AM would not be a well-defined U(n) monopole Nahm 

operator, since it would be non-zero on the instanton block. Lemma 3.10 implies that 

Wm - VM defined in this way is injective and Fredholm with index —n for 

all x. 

Consider the operator 

Ai(X) 	0 
0 AMW ) 

It is injective away from the resonating points (3.40). We want to put something into 

the off-diagonal entries, supported near the resonating points, that will ensure the new 

operator is injective everywhere. We need the following: 

Lemma 3.52. Let AM be the Nahm operator for some set of U(n) (n > 2) Nahm data 

in J\fMon (k, Z), and let x e W'. Then we can find two non-trivial orthogonal continuous 

sections u, u1  of the bundle Coker AM defined on some open neighbourhood R of x, 

such that, for all y E R, u(y) and wL(y)  are continuous across each zero jump so have 

zero component in CN0 .  

	

Proof: For any set of U(n) monopole Nahm data the singularities 	and fl, cannot 

be zero jumps, so there are at most n - 2 zero jumps in the data. The restriction 

that solutions be continuous across the zero jumps therefore rules out at most n - 2 

dimensions, and so u(y) and u- 1-(y) can be chosen from a 2-dimensional subspace of 

coker AM (y). Moreover, this can be done smoothly on some neighbourhood R of x. 0 

Let çoj be a set of bump functions on R x 1R 3  that are equal to 1 on some 4-ball 

with centre x = x and zero outside some 4-ball with centre x = x. We can makeIM  
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the support of each bump function sufficiently small that they are disjoint, and arrange 

them so that col,m+l(rx) = col ,m (x). At x = x, Li(x)  has two solutions l7,?]jL 

defined by (3.41) and (3.42). Let aj and u1-1-  be the elements of coker M(x) fixed by 

Lemma 3.52 defined on some neighbourhood of I,M=O.  Adjust the bump functions 

so they are supported within these neighbourhoods, and extend u, u1 -  periodically by 

defining 

Ulm = [exp(27mi/ao)]ui, U = [exp(2mi/ao)]U. 

Define B(x) : WM - Vi by 

B(x)wM = 	ço m (x) [((wM, UIm(X))L 2 )lljrrz + ((wM, u(x))L2)'qj] 	(3.53) 

I,m 

and B*(x ):WI _VM  by 

B*( x )wi  = 	WI, (x) [((Wi, him) L2 )UI m (X) + ((WI, hj)L2)U(x)]. 	(3.54) 

I,m 

We chose ul and U1-1-  to have no component in the jumping spaces so that all inner 

products can be made inside L 2—this simplifies the definition of B. Define the model 

operator A by 

- (Al B 

AM 	
(3.55) 

Lemma 3.56. A(x) is injective for all x E JR 4 . 

Proof: We have already shown 3, (x) is injective outside U Supp ç°im,  so it remains to 

consider what happens near resonating points. 

First we show that there are no non-trivial solutions to 

A(X) WI  ) 
=0. 	 (3.57) 

We know AI (x)wI(x) = 0 has periodic solutions only when x = Xre, for some 1, m. At 
IM 

such a point, the solutions have the form 

WI = Cijim  + C1 7 

for some constants C, C -1- . Then B*wj = (CUL + C'U), which is zero if and only if 

c=C-L=0. 

Next, note that the image of B*(x)  is contained in coker Am (x) and so is orthogonal 

to the image of M(w). Hence, if 

(z j  B(
UI
wi) 

-
0  

\B* LM} M  
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then LM(x)wM(x) = 0, and so wM(x) = 0 because LM(x)  is injective. We conclude 

that L(x) is injective because there are no non-trivial solutions to (3.57). 	 U 

Consider the behaviour of L with respect to translation 'r by one period in x0 . 

Suppose x e Supp 	Then 

B (-rx)w = 1,m+1 (rx) [(w, (exp(27ri/o))ui m  (x))L2 Tlt,m+l 

+ (w, 

= 1,m (x){((exP(27'1/iio))w, u1m (x))L2(exP(27ri/[Lo))771, m  

+ ((exp (- 2iri/ uo))w, uj (x) ) V (exp(2i/o))ijj'm] 

= U,vB(x)Uw. 

B* satisfies a similar formula, and this ensures that L satisfies (3.34) under translation. 

By construction, L satisfies the conditions of Definition 3.25 so is a controlled 

deformation of L. Corollary 3.26 then implies that L is Fredhoim with index —n. 

Note that the model operator for a set of monopole Nahm data is implicitly dealt with 

by the case of no zero jumps in the instanton block—we simply take the instanton block 

to be trivial. 

3.3.4 Defining L: the remaining case 

We now generalize the model operator defined in Section 3.3.3 to deal with the remain-

ing case: that of zero jumps in the instanton block together with a non-trivial monopole 

block. The following classification of the singularities p p  is required. Recall that we are 

assuming that the Nahm data is principal and that J is the set of zero jumps. Define 

:= zero jumps in insjanton block 

= {p : m = mp_1 and m = ko }, 

JM := zero jumps in monopole block 

=J\JI, 

JO  := other singularities 

={1,... ,n}\J. 

Table 3.1 lists these sets for the examples shown in Figure 3.1. Let N1 = JiI and 

NM = IJMI. We assume that N1 n i.e. we are not dealing with the case of vanishing 

monopole charges so there is a non-trivial monopole block. It follows that n - N1 > 2, 

because we cannot have all but one ji,,, being zero jumps. 

Next pick a basis {7)i,ij 1-  : I = 1,... , ko } for the instanton block in the usual way, 

such that for each I = 1,... , k 0  condition (3.46) holds for each q E JM. (We cannot 

make (3.46) hold for every q E J when there are zero jumps in the instanton block.) 
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Data set Jj Ji Jo 
Vanishing monopole charges 11, 2, 3, 4, 5} {} {} 
No zero jumps in instanton block {} {2} 3, 4, 5) 
Zero jump in instanton block {1} {} 3, 4, 5) 

Table 3.1: Classification of the singularities for the example sets of Nahm data in 
Figure 3.1. 

This splits the data into instanton and monopole blocks as in equation (3.47) so that 

V1 = [ 	W ° (Y')] [CA'I] 	 (3.58) 

and 

VM = [W°(YM)] [C NM] . 	 (359) 

The projection 7r also decomposes: let 7r1 : W - CNI have components 1rq  for q E Ji 

and 7rm : W -f CNM have components lrq  for q E JM. We can then define 

zj(x) : WI - V1 

= [(i 	+ i(1 ® A) + x)w] e [1w]. 	 (3.60) 

Projection onto the monopole block determines a set of U(n - Ni) monopole Nahm 

data (recall n - N1 > 2 since the case of vanishing monopole charges is excluded). In 

particular, it determines a residue R for each p E Jo. Like the case of no zero jumps 

in the instanton block, define 

M(X):WM—+VM 

M(X)W = [(i 
d 
 + i 	 + x)w] [Mw] 	 (3.61) 

pEYo 

where R acts on the terminating component. Then Lemma 3.10 implies that A m is 

injective and Fredholm with index Nj—n. We impose condition (3.46) for every q E JM 

to ensure that these zero jumps really do occur in the monopole block, and that LM is 

the Nahm operator of some (deformed) U(n - Ni) Nahm data. 

Consider the operator 1 i(x) LM(x) : W —p V; it is injective away from the 

resonating points (3.40) and we want to use the tricks from Sections 3.3.2 and 3.3.3 

to make it injective at the resonating points. As in the case of no zero jumps in the 

instanton block, we add an off-diagonal term. Lemma 3.52 proves the existence of 

sections n, u-1- of Coker Am with zero component in CNM.  These can be used to define 

B and B*  as in equations (3.53) and (3.54). Defining z by equation (3.55), we see that 

A is injective by applying Lemma 3.56. 
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We added the off-diagonal term to prevent ql, andij being solutions at the 

resonating point x; in fact the projection 7rl may prevent them from being solutions to 

Li(x) at the resonating point, so adding the diagonal term may have been unnecessary. 

However, when we come to recover k0 for the model operator, it is convenient to assume 

that 771m  and ij are solutions to AI(x) at x. We can deform 7rJ to ensure this, rather 

like the deformation performed in the case of vanishing monopole charges. For each 

q E Ji replace c q  with an x-dependent vector (q  such that 

	

<(x) = 0 
	

(3.62) 

in some neighbourhood of Xr, containing Supp ç, and ç(x) = away from this IM 

neighbourhood. Changing the definition of L in this way does not affect the proof of 

injectivity. 

Finally, note that L is a controlled deformation of z, and so Corollary 3.26 proves 

L is Fredholm with index —m. We also obtain a formula like (3.34) for Z in exactly 

the same way as previously. 

3.3.5 The adjoint of the model operator 

We need to be able to identify the cokernel of the model operator (x). To do this it is 

easiest to write down the adjoint (x) on some domain A of suitably smooth elements 

of V which contains the cokernel, just as we did in Section 3.2.3 for z. *(x ) .  Since this 

is analogous to what we did in Section 3.2.3 we will not dwell on the details but just 

write down A*(x)  directly. 

The adjoint is given by 

- ( 	B) vi VM W7 W. 	 (3.63) 

In the case of vanishing monopole charges the monopole block is trivial and this reduces 

to A'' = L. The spaces V1 and VM are defined by (3.58) and (3.59), while 

n 	 n 

W7 = [ w'(Y')J 	[ 	
(yI,cont())*J 

P=1 	 p=1 

and 

n 	 n 

W7 = { W'(YM)J [ 	
(yTMcont(,L))*] 

p=1 	 p=1  

where Yic011t(p)  is the continuing component of YPI at pp  etc. The off-diagonal blocks 

B, B*  are defined by (3.53) and (3.54) (extended to zero on the CNM  and C'1  compo- 



nent of VM and Vi respectively). Given v = (vi,... ,v) s E V1 we have 

A * (x)v = (DX(x)vi,... , D* (x)v.) 	[ 	(iv(j) - iv 011t (it)) * J 
pJI 

\ 

[ 	(iv cont
_ 

/ 
jLp) - iv0nt(ap) + s((x))*} (3.64) 

pEJi 

where 

DA* (x) = 	+ i(1 ® A) + x : W ° (Y') W'(Y') 

Finally, given v = (vi,... , v,) ED s E VM we have 

A * (x)v = (1(x)vi,... , 	(x)v) 	[ 	(iv°±i(iip) - iVpcont 

PJM 

[ 	(iv°'(1i,) - iv onit(,ip ) + s)*] (3.65) 

PEJM 

where 

iR +x *  
- d 	ttp  

on the terminating component near = and 

7(x) =i+x 

elsewhere. 

3.4 Framing for A 

The aim of this Section is to show that the bundle and connection Coker 3, on R x 1l 

extend to R x77
3 and determine a quasi-periodic connection framed by A, . We 

do this by finding 'approximate solutions' to coker A, by which we mean sections of the 

trivial bundle V x R" that are asymptotically close to elements of coker x) as r - 00. 

Near infinity, the solutions of 3k* (x) correspond in some sense with the singularities j 

in the Nahm data. We construct an approximate solution for each singularity in the 

monopole block in Section 3.4.1. For singularities in the instanton block, we can in 

fact write down an exact solution, which we do in Section 3.4.2. In Section 3.4.3 we 

show the approximate solutions are exponentially close to exact solutions of At(x). 

In Section 3.4.4 we show that in the gauge determined by these exact solutions the 

matrices representing the connection A = Coker A extend to S,2,, and are framed there. 

This is based on Hitchin's proof that SU(2) monopoles constructed from Nahm data 

satisfy the BPS boundary conditions [17, Section 21. In particular the representation 

theory in Section 3.4.1 is taken directly from [17, Section 21. 
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3.4.1 Approximate solutions for L*  in the monopole block 

Fix a singularity /i  in the monopole block of the Nahm data (i.e. p E JM U Jo).  For 

large r, we construct an approximate solution to /.*(x)  supported near = pp  which 

is characterized by the sign of kr—we will deal with each case in turn. Let k = k, and 

let t = - 
The case k> 0: We continue the representation theory started in Section 3.2.2. 

Fix a unit vector E R 3 , and let u = 	x'y3 . Then u generates a circle in SU(2) and 

decomposes S1 ® Si 	 into weight spaces with weight k, k - 2,... , —( k - 

2), —k for 8k  and k - 2, k - 4,... , —(k - 4), —(k - 2) for Sk_2.  Recall that sk  is 

the representation of u(2) on homogeneous polynomials of degree k. If [o : i] are 

homogeneous coordinates on CP1 = S 2 , it is easy to check that the polynomial 

(oz0 + izi)k (3.66) 

is the highest weight vector when u = [o : i]. The action of 1 0 u commutes with the 

action of u 0 u so 1 0 u preserves the weight spaces with weights ±k since they occur 

with multiplicity one. Let v, v. be elements of 5C  with unit norm and weights +k, —k 

respectively. Now (1 0 u) 2  = —1, 50 (1 (9 u)v+  = ±iv and (1 0 u)v_ = ±iv_. In fact 

using the explicit form (3.66) of the highest weight vector, we have (1 (9 u)v+ = iv 

and (1 (9 u)v_ = —iv_. As u varies, v e Sk spans out a line bundle L over 82,  and 

using (3.66) it follows that L has Chern class k. The action of 80(3) on the direction 

vector i lifts to the adjoint action of SU(2) on u E zu(2). Hence, on a neighbourhood 

of R3 , we can choose the highest weight vector v according to 

v(g) = gv() 

where g e S0(3) acts by some unitary endomorphism on 

Next, we use v to write down an approximate solution to L*(x).  As previously, 

let R be the residue of E, -yj 0 T at j.  Near = pp , *(x) is given by 

13* = i - 	+xo—r(1®u) 
P 	dt 	t 

on the terminating component, where r is the usual polar coordinate on 	From (3.19) 

we have that Rv+ = 1  (k - 1)v+ and (1 (9 u)v+ = iv+ so a solution is given on some 

interval t e [-28, 0] by 

TLP 
= 	[exp (ixo(t + un))] [exp(rt)]v+ . 	 (3.67) 

Note that (t + i) in the expression above could be replaced by (t + a) for any a and 

u would still be a solution. We chose ü as above so that the result of translating by 

one period T is given by the action of U (where UT  is defined by (3.36)). This will 
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ensure that the quasi-periodic connection we eventually obtain has a clutch map that 

is the identity on the boundary. Also note that we could have used v_ to construct a 

solution. However, such a solution would blow up in the limit t -p 0, and so fails to be 

L 2 . 

We want our approximate solutions to be smooth and have compact support, so 

we multiply by a bump function (t) supported on t E [-26,0] that takes value 1 on 

[-6,0]. We also want the approximate solutions to have unit norm, so define 5 p , the 

approximate solution associated to , to be 

	

= C7 'çoü 
	

(3.68) 

where C = I 2pÜpI1L2. Consider the element of V which is i on the interval I and 

zero otherwise; abusing notation, let i5p  denote this element. 

It will be useful to obtain an estimate for C, = IIpÜpIIL2. Let 

0 

= 	
t  exp(2rt) dt 	 (3.69) 

f28 

	

IYpUpIIL2 = Ik-1I 	 (3.70) 

1 0 p0  

I I tcexp(2rt) dtl 	IkI 	I ,' 	tcexp(2rt) dtl. 	 (3.71) 
J-5 	 J-2 

Integrating by parts gives 

I
0 	 o 

_a Itk exp(2t/) dt = xk+1 exp(2t/X)Pk(t/X) 
a 

for some polynomial Pk  of degree k. Hence 

f
0 

t k  exp(2t/  dt = x k+l [Pk(0) - exp(-2a/X)Pk(—a/X)]. 

Then (3.71) implies that 

Jk = Cx' + smooth exponentially decreasing term in x 	(3.72) 

where C is some constant (used in the generic sense). Thus, using (3.70), we have an 

estimate C = IIpiipIIL2 = Cxk/ 2+ exponentially decaying term. 

The case k < 0: This is entirely analogous to the case k > 0. We can repeat the 

representation theory on Sjkj ® S 1  to obtain vectors v, v_ in the same way so that 

v has weight k, (1 (9 u)v_ = —iv_, and v_ determines a line bundle with Chern class 

k. Define the approximate solution to he i3,,, = Gpu where pp  is a bump function 

supported on 'p-i  and 

ftP 
= t ( I' 2 [expi(xo(t + 	[exp(—rt)]v_ 

so 

Now 
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Just as for the case k > 0, there is an analogous estimate on C = IkpüpIIL2. 

The case k = 0: Fix a unit vector i E R 3  and let u = 	fYj. Consider solutions 

to L(x)v = 0 where L4,1  is defined by (3.65). These must satisfy 

d 
(
i +xo—r(1(gu))vj  =0 
dt 

on I for j = p, p - 1. The general solutions are 

{expi(xo(t + 	[exp —i(rtu)]s_ on I 

and 

[expi(xo(t + p))][exp_i(rtu)]s+ on 'p-i 

for some vectors s_, s. We want the solutions to match the conditions to be in 

ker (x) i.e. we want a discontinuity at t = 0 such that the jump is a multiple of . 

Now, (1 ® u) has eigenvalues ±i and let 7r± denote projection onto these eigenspaces. 

Let 

ii P = [ exp i(xo(t + 	[exp _i(rtu)]ir+(p  = [exp i(xo(t + 	[exp(rt)]ir+ 
(3.73) 

on 4, and 

= —[expi(xo(t+ ))] [exp—i(rtu)]ir 	= _[expi(xo(t +))][exp(—rt)]ir(p  
(3.74) 

on Ip-1•  Then 

ü(t = 0) - ü(t = 0) = —[exp(ixop p)][7rs + ir—s] = —[exp(ixo pp )I(p E J. 

Finally we smooth off by bump functions, 	and normalize to define the approxi- 

mate solution i3,,, by 

p 
ppI 	I 	 I 

on interval 'p-i 	on interval 4, 	corresponding to c 

where 

Cp = (lIII 	+ II 	11L2 + 1) 1 /2  

and 

S P  = iexp(ixo iup). 

This completes the definition of the approximate solution i for p E Jo U JM. 
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3.4.2 Solutions for A in the instanton block 

For each p E Ji (i.e. for each zero jump in the instanton block) we can write down 

an exact solution to A*(x)  that lies wholly in the instanton block and is defined away 

from the resonating points. A solution v = (vi,... ,v) s e V1 to &* (x) must satisfy 

0, where A(x) is defined by (3.64). Hence 

(i+i(1®A)+ x *) vj  =0 	 (3.75) 

for all j, and v is continuous across the ,i3 , except at any zero jump /kj in the instanton 

block, at which v can jump by a multiple of j (x). (Recall that the vectors are 

deformed to give x-dependent vectors cj (x) in the definition of (x).) Solving (3.75) 

round S,',. gives a holonomy 

HoI(rr) = exp[(ix* - A)/2O]. 	 (3.76) 

We know that [1— Hol(x)] is invertible away from the resonating points (3.40), so define 

UP  = - [exp ((ix* - A)( - 	] [1 - Hol(x)] 1  [exp(ixo[Lp)] 	(3.77) 

for each p E Ji, and for j 	+ , trj. It is easy to check that this is a solution to 

*(x), jumping by [exp(ixo/1 p)]p at pp . Define the exact solution v E V by 

v, =C'(u)E(0,... ,0,iexp(ixo,u),O,... ,0) 	 (3.78) 

where i exp(ixopp) lies in the component of CNI  corresponding to the jump j, and C 

is a constant that normalizes vi,. Note that in the case of vanishing monopole charges, 

the v are well-defined solutions to A*(x)  on the complement of the resonating points. 

In the other cases, when the model operator has an off-diagonal block B, the v, are 

well-defined solutions to A*(x)  on the complement of Supp B. Also note that where 

some vector (,,, has been deformed to zero, v is just the corresponding vector in CN0. 

Although we have written down an exact solution to A*( x) corresponding to each 

singularity pp  with p E Ji, it is often more convenient to work with an approximate 

solution. Define 

,a+=- 	[exp(—At)] [exp (ixo(t + np))] [exp(—rt)]ir_ p 	(3.79) 

for some bump function p on (-E, 0], and 

	

iip  = Wp [exp(—At)] [exp (ixo(t + )')] [exp(rt)]ir+p 	(3.80) 

for some bump function 	on [0, c).  (Compare with (3.73) and (3.74).) We can then 

define an approximate solution 5 p  e V constructed from ü, ü so that the CNI  compo-

nent of i5p  matches the jump at pp . A short calculation shows that i is exponentially 

close to the exact solution v in the limit r —p oo. This is because in the limit the exact 

solution vi,, becomes more and more peaked about the discontinuity at j. 



3.4.3 How good is the approximation? 

We need to consider in what sense the set of approximate solutions i5 l ,... , v approx-

imate the cokernel of (x). Let P denote the orthogonal projection onto II1 = Coker A 

and consider iv- p (x) := t(x)5(x). Now 

1 =1—  A(A*A)A* 

so we need to calculate *(x)  in each of the cases k > 0, k, = 0, k <0. For example, 

in the case k > 0 we obtain 

= 
dt 

where dçop /dt is supported on some interval t E [-28, —8], and ü is defined by (3.67). 

Using integral estimates just like those on page 81, it follows that 

I6*(x) p II L2  <Cexp() 
X 

for some constant C. The norm of ( x)(*(x)A(x))_l is bounded as r - oc (we prove 

this later: see equation (3.113)) and so 

= Pf = i3 + (exponentially decreasing term). 

The other cases k <0 and k = 0 are entirely analogous, and so we obtain 

P = 1 + (exponentially small operator) 	 (3.81) 

as a map span {i3 i ,... , i 11 } -p E. 

We would like, however, to replace P with a unitary isomorphism between these 

spaces, so that the trivialisation tifl,... , 'th, is orthonormal. We know that the set 

i37  is orthonormal by definition (by making the supports of the bump functions 

disjoint), so replacing P with a unitary map will ensure we obtain a unitary basis of E. 

Recall the 'polar decomposition' of an invertible matrix M: let 

A = (MM*)1 2  and U = A'M. 

so that A is a positive-definite self-adjoint matrix and U is unitary, and these satisfy 

M = AU. Variational methods show that this decomposition minimizes IIM - U. 

Define 

PU = (P,5*) -1/2P 

so that Pu is a unitary map span{i3 1 ,... ,i} -i E. Equation (3.81) implies that 

Pu = 1 + (exponentially small operator), 



so if we define ii = Pu, then iD,, = + exponentially decreasing term. Hence the 

approximate solutions i31,... , Vn  are exponentially close to a unitary basis th1,... , 

of IE in the limit r - 00. Recall that the exact solutions corresponding to zero jumps in 

the instanton block are exponentially close to the corresponding approximate solutions. 

Hence for p e Ji we have 	= v+ exponentially decreasing term. 

3.4.4 Proof that L k is framed 

We want to show that (E, A) = Coker z extends to the boundary S.2  and is framed by 

A, J. The exact statement is as follows: 

Definition 3.82. Let IF', 18 be a U(n) bundle and connection on I x R 3  and let W' 

be some U(n) framed quasi-periodic connection on Eq. The pair (IF, 18) is the interior 

restriction of (Eq ,  18) if there is a unitary isomorphism F : IF' —p EqJI 
xR3 such that 

18 = 

Proposition 3.83. (2,,&) is the interior restriction of (Eu ,  A) where Aq is some U(n) 

quasi-periodic connection which is smooth up to the boundary and which is framed by 

Proof: First fix local trivialisations of E in the following way. Fix a direction vector 

E R 3 . Each approximate solution i is associated to a vector e that spans out a line 

bundle Lk over S. In the case /c > 0, e, is the highest weight vector v+;  for k < 0, 

e is the vector v_; and for k = 0, e is the constant vector E J. Since k,, = 0 

the vectors e1,... , e, form a local trivialisation of the trivial bundle E over S,2,. on 

some neighbourhood of By construction, there is a unitary action of 80(3) on the 

e such that 

ep (g) = gep() where g e 80(3). 	 (3.84) 

To prove the Proposition it is sufficient to show that in the local trivialisation 

'5 of TE, the matrices AX  I A 0 , 4 1  , A 2  representing A extend smoothly to the 

boundary 'E  x S, and are appropriately framed there. In particular, we claim that 

• A = 0 on I x S, 

• A 0 =diag(ip 1 ,... ,i 1u)onIxS, 

•AYj = diag((ayj 	on If  x S, for j = 1 )  2. 

These conditions are sufficient to deduce that A is the interior restriction of some 

connection Aq framed by A, . In addition, we also have to verify that there is 

some clutching map 

c(s) : 	—+ lEIxo =s+27r/, o  

MM 



such that 

A(xo  = s + 27r/po) = (c(s)1 )*A(xo = s) 

and that in the gauge tifl,... ,, c - 1 as r - 00. It follows that A is the interior 

restriction of a quasi-periodic connection Aq framed by A, 	. 

To prove the claim about the framing we have to calculate the matrices A, A 07  
A 1 , and A 2  using a formula like (3.6): 

(A a) ij  = (0a thi ,5j ). 

Since z = ,5j + exponentially decaying term, we have that 

(Aa)ij = (Oa'ii, j) + (smooth exponentially decaying term in x). 

Hence it is sufficient to consider the matrices (5ai-3i, j) for a = x x,  yi,  y. By mak-

ing the supports of the bump functions cop  used to define the approximate solutions 

sufficiently small, these matrices are diagonal, and since the approximate solutions are 

orthonormal, the diagonal entries in the matrices must be imaginary. Fix some p and 

consider the p'th diagonal element of each matrix. Let k = k and t = - lap . 

First consider A. When k > 0, 5p  is defined by (3.68), and 49x bp  is given by 

-( 	p )'5P + 
0,(Cp
c. 

Thus (A) = ((93 , p)L2 is a real integral, and so must vanish since it is also imagi-

nary. Hence p)L2 is smooth up to the boundary and vanishes there. The cases 

k = 0 and k < 0 are entirely similar. 

Next consider A 0 = diag((5 0 t7v, ?L')). We want to show that (DXO ', v) is smooth 

up to the boundary and has value i1i2 , when x = 0. The proof depends on whether 

k > 0, k = 0, or k <0; start by assuming k > 0 so that bP  is given by (3.67) and (3.68). 

Then Oxop = i(t + ° 

= (i(t + MP)  p,p)L2 = i1Llp  + i(tiip ,i p ) L2. 

This last term is independent of x, and because of the SO(3) invariance (3.84), inde-

pendent of Yl, y2; we want to show it is a smooth function of x and tends to zero as 

X — ° Now 

(t', p)L 2  = 

where 3k  is defined by (3.69). So (3.72) implies that 

(t, ip)L2 = C + smooth exponentially decreasing term, 



which completes the case k > 0. The cases k = 0 and k < 0 are dealt with via very 

similar estimates. 

Finally, consider A, for j = 1, 2. Fix j and let y = y3 . It is sufficient to show that 

D3 = (ôe, e) on S. As usual, we have to deal case-by-case with the sign 

of k. When k > 0 or k <0 this can be seen immediately from the definition of i3,,,. For 

example, when k> 0: 

= 	

1 	f[ tkP_1exp](5yep,ep) dt = (ae,e). 

For k = 0 and assuming the zero jump is in the monopole block, we have 

(8y 'i p ,i3p )L2 = C 1 [IIppu II2(0y(71+ep),7r+ep) + II(PpIIL2(aY(_eP) , _ep)]. 

But integral estimates show IIüIIL 2  = °(x) = IIcoüIIL2 as x - 0. Hence 

= °(x) as  x - 0. However, (ae,e) = 0 since k = 0, and so 

extends smoothly to OX where it equals (19e, er). When the zero jump is in the in-

stanton block the exact solution defined by (3.79) and (3.80) gives exactly the same 

result. This completes the proof of the claim about the framing. 

It remains to prove that A clutches correctly. The map U = U.,-,v defined by (3.36) 

gives a map from EIxs to  EIxo=s+27r/o  since A satisfies 

(rx) = UT,v(x)U. 

This implies that A satisfies 

A(rx) = (U)*A( x ) .  

In the gauge 	... 
, th of IE, U,- is given by the matrix 

(U,-?ij(x), i.j (rx)) = (UT ij (x), ii5j  (TX)) + exponentially decreasing term. 

By construction, however, UT '13j(x) = (rx), so 

UT  = 1 + smooth exponentially decaying term. 

This shows that A clutches correctly: A is the interior restriction of a framed quasi- 

periodic connection M with clutching function c, where c extends smoothly to infinity 

and is the identity there. 	 701 

3.5 Calculating k0 for L\ 

Proposition 3.83 shows that Coker L L determines an element of C(ko, k, jig,  Z) for some 

ko E Z. In this Section we prove that k0  = k0 , where (k o , i, yo , fl) is the boundary 

EYI 



data for the Nahm data fixed at the start of Section 3.3. We do this by calculating 

fch2 (E,A) and using (2.32). 

The calculation is slightly different in each of the cases, but uses the following 

scheme. The basic idea is to compare (E, A) = Coker & with a caloron configuration 

(IE o , AO ) which has the same framing f as (IE, A), but which has c2(IE0, f) = 0, and 

so is a deformation of a monopole. Regard (E, A) as a bundle and connection over 

I x 1R. Then (2,A) is the interior restriction of a framed quasi-periodic connection 

with boundary data (ko, k,/2 0)  fi), so 

4 1 27r/yo)xR3 
ch2 (E,A)=—ko--(Iikl+"+[L n kn ) 	 (3.85) 
 /20 

using (2.32). Suppose (Eo, A O ) is a bundle and connection on I x 1R3  such that 

fto, 27r/Ao] x R3 
ch2(Eo,Ao) 	

1 
= --(/ 2 i k i  + ... + /271 k). 	 (3.86) 

/10 

Moreover, suppose that on the complement RC of some closed region R C (0, 27r//1 O ) x R3  

there is a unitary isomorphism 

F : IEIRC —4 EOIRc 

such that 

A 	 *fA Rc 	I0Rc 

Using (3.85) and (3.86) we then have 

ko= JR f ch2  (Eo , Ao ) — ch2(IE,1)1. 

Suppose the isomorphism F is such that R is the disjoint union of some small closed 

balls B1  for I = 1,... , k o , with each ball containing one resonating point. For each 1 

construct a bundle and connection (F1, TB1) over S4  by gluing IEIB 1  and IE0 IB, at their 

boundaries via the isomorphism F. Then 

ko 

ko 	fS4 Ch2(IF1, BI) = 
ko 

=—>c2(Fi) 	 (3.87) 

where c2 (IF1) is the second Chern class, so if we can show C2(Fl) = —1 then k0  = k0 . 

This is done by calculating the transition function gI from EOIB 1  to EI, and using the 

relation 

1 fS3 
c2 (1F1) = 

	
tr (dgjgl') 3  = deg 91. 	 (3.88) 



The transition function gl is found by fixing gauges on IEO IB 1  and EIB 1 . The precise 

nature of these gauges differs for the different types of model operator L. In many 

ways, the case of no zero jumps in the instanton block is the most illustrative, and the 

reader may prefer to concentrate on that case first. 

The calculation of k0 for the model operator L suggests another way of thinking 

about the topology of caloron configurations, which we call the 'spotted dick' model. 

(The term 'spotted dick' refers to a type of pudding consisting of a cylinder of sponge 

containing currants, often served with custard.) The idea is that away from a small 

neighbourhood of each resonating point, Coker /. is isomorphic to a monopole con-

figuration. The obstruction to extending this to a global isomorphism comes at the 

resonating points. Near each resonating point Coker L resembles a charge-1 instanton. 

Thus, up to deformation, we can think of a caloron as the pull-back of a monopole 

Si 	 i to 2 , 0  x B with k0  charge-1 instantons embedded n it. This explains the name: 

the 'sponge' is a monopole configuration while the 'currants' are charge-1 instanton 

configurations. 

3.5.1 The case of no zero jumps in the instanton block 

The main idea here is that restricting to the monopole block gives a U(n) monopole 

Nahm operator Am, and we take (Eo, Ao) = Coker Am. This monopole configuration 

is framed in the same way as E, and so we can apply the scheme outlined above. 

Recall the definition of /. from Section 3.3.3: 

(B*
Lj B 
 LM 

and let (EM, AM) = Coker LM.  We showed in Section 3.3.3 that LM is injective and 

Fredhoim with index —n. Lemma 3.11 gives 

4 1 27r/po]  xR3 	 /20 

Next, recall the definition of *(x),  equation (3.63). Outside U Supp ço j  (i.e. away 

from the resonating points) 

- 	(i.(x) 	0 '\ 

0 M 	, 

so coker L(x) = coker LM(x)  for x outside USupp çoj , because L(x) has no so-

lutions. (From equation (3.64) we see that a solution to A(x) must be continuous 

across all the pp  and be in the kernel of D* (x). There are no such solutions away from 

the resonating points.) Setting E0 = EM and A0 = AM we can then use the scheme 

described at the start of Section 3.5: k0  is given by (3.87), and for each I = i,... ,ko  

we want to find the transition function gj from EMISUPP  w, to E5,1  w , where cot = 

and coim  are the bump functions used to define B. 
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We have to identify coker L(x) on Supp coi. Let 

{uj,i,... ,u1,_2} U {uj,uj} 	 (3.89) 

be an orthonormal basis of ker A* (x) over Supp wi, where ul, u are the monopole so-

lutions used to define B. Note that ui,i,... , Ul,n-2 are all solutions of z*(x)  on Supp 

because Bu1, = 0 for all j = 1,... , n - 2. We know coker A (x) is n-dimensional, so 

there are still 2 solutions to find. Suppose /.*(x )(vi  v) = 0 and decompose vM as 

vM(x) = CM(x)ul(x) + C(x)u(x) + v(x) 

where v ' (x) is perpendicular to uj(x) and uj-(x), and CM,  C are functions of x. Then 

for each x E Supp W i 

B(x)vM(x) = CM(x)O1(x)71 + Ck(x)l(x)i71 ' 1 

so A(x)vi(x) + B(x)vM(x) = 0 has solution 

vj(x) = Cj(x)iji + Ci'(x)771 L 	 (3.90) 

for C1  (x), C(x) satisfying 

\ 
(x* - A1) () + l (

CM 
C) 

=0. 	 (3.91) 

The condition B*(x)vi(x) + L*M (x)vM(x) = 0 implies that 

* -1 J 
vM = CMUI + Cj!u - jCI(A)'uj - co1Ci'(/M) u 1 . 	 (3.92) 

We want to extend the solutions u,i,... , U1, 	by two further solutions v, v 1  to 

give a gauge for ISlWID W , . Consider taking 

Al 
(CCMj) 	

A \ 

 
= L'(xw 

	A) 	
(3.93) 

where A and A- 1- are some constants, c = IIx - Aill and 'J' is a bump function: 

= [p when x - Al is small, and 	
(394) 

1 outside a small neighbourhood of x' - Al = 0. 

Then CM (x) and C  (x) are well defined everywhere on Supp for any choice of A, A-'- 

We define v and v 1  by taking 

( 

 A 
A') 

= (1
) and () = (),0 	Al 

and using (3.90), (3.91), and (3.92). Then 

U IV, v'} 



is a gauge for IEl supp  , which is unitary on the boundary of Supp ço, but not necessarily 

unitary on the interior. Equation (3.93) was constructed to ensure that the gauge was 

unitary on the boundary but well-defined on the interior of Supp W t . There is no ob-

struction to taking the unitarisation over Supp W1, without affecting the gauge near the 

boundary. Using (3.93) we can compare this trivialisation with the trivialisation (3.89), 

and see that the transition function g l  from EMIsupp  to 1EIs is 

/id ' _ 2 	o 

	

91 = ( 	 ) . 	 (3.95) 
 IIx—iII / 

Substituting this into (3.88) gives c 2 (IF' 1 ) = — 1, since with our definition of deg g, the 

map 

	

g: 	c R4 -  U(2) 

- 

(x) 	
AlA 

He -  A111 

has degree —1. Thus, using (3.87), we have shown that k0  = k0. 

3.5.2 The case of vanishing monopole charges 

Following the scheme outlined at the start of Section 3.5, we want to identify the bundle 

and connection (lEo,Ao). Since there is no monopole block, this is rather different to 

the case of no zero jumps in the instanton block, where E0 was the cokernel of the 

restriction of L(x) to the monopole block. Essentially, we calculate the transition 

functions 91  by taking a trivialisation consisting of the exact solutions v i , ... , Vn away 

from the resonating points, while at the resonating point x two of these solutions 

are replaced by Turn, ijj to give a local trivialisation. We take E 0  to be the trivial 

bundle C7  over 1 x 11. Let {Bim  : 1 = 1,... , kç and m E Z} be a collection of closed 

balls round the resonating points Xres  on which conditions (3.43)—(3.45) hold, and let 

B1 = B1,0. Let R = U° B1 and let RC  denote the complement. The exact solutions 

v1,... , v defined in Section 3.4.2 determine a bundle isomorphism 

F: EIRC .' IEOIRC. 

After applying the Gram-Schmidt algorithm to va,... , v, we obtain a unitary bundle 

isomorphism Fu in the same way. Define a connection A0 on lE o  by 

AoIRc = (Fu
-1 * 

) AIRC 

and continue A0 arbitrarily over R. It follows that A0 is the interior restriction of a 

framed quasi-periodic connection, and that (lE o , AO ) extends to the boundary in the 

same way as (2,A). If f denotes the framing at infinity, then since (lEo, AO) has van-

ishing monopole charges, equation (2.32) implies that 

4 ,21r/pol 	
ch2 (IEo,Ao) = 

 x 

91 



However, we claim that A0 has trivial clutching function, so that the RHS is zero. Now 

A0 = (F1j 1 )*A on  RC and A(rx) = (U)*A( x ) where r is translation by 2-7r//.Lo in xo, 

so 

Ao(Tx) = (F(Tx))*(U)*(F(x))*Ao(x) 

= [F(x)UF(rx)]*A o (x ) .  

However, the exact solutions v, satisfy 

v(rx) = U,vp (x) 	 (3.96) 

so 

F(x)U'F'(rx) 	1. 	 (3.97) 

The Cram-Schmidt process gives some GL(n, C) function e(x) such that 

F(x) = e(x)F(x) 

and equation (3.96) implies that e(-i-x) = e(x). Substituting this into (3.97) shows 

that A0 has trivial clutching function, so we have proved our claim, and shown that 

4 1 27r/pol  xR 3  

Next we want to find a trivialisation of EIB, for each I = 1,... , ko. Comparing this 

with the gauge v 1 ,... , vi-, on RC will give the transition function gi on aB1  between 

E0I2 and IEI B1 . Start by fixing some I E {1,... ,ko}. From the definition of the model 

operator in Section 3.3.2, there exist q, q, L  {1,... , n} satisfying conditions (3.43), 

(3.44), and (3.45). Condition (3.45) implies that for q 0 {q, qjL} the solution V q  is 

well-defined everywhere on B1, since V q  is just some vector in C"—.  The set {v q  : q 

{qj, qj 1-  } } can therefore be extended by two sections , £' 1J to give a trivialisation of E 

over B1. Consider 

(iqj  \ 	Xt - Al 

(VqIL)VqlVqjL 	IIx*_1II 	 (3.98) 

where x = > x,, -y,,. We want to show that ', and 	are well-defined at x = 

and that 

{v q  : q 	{qt, qjL}} U {q j , 'i:)qji } 	 (3.99) 

is a trivialisation of E on B1. This is clearly a trivialisation away from 	so we only 

have to understand what happens at the resonating point. 
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Recall the definition of the exact solution v, given by equations (3.77) and (3.78). 

Since (x) = 'qi(/.J q,) near the resonating point (condition (3.43)), and using (3.39), 

the exact solution V q1  is given by 

Vqj = _Cq ' [eXp(i(X* A)(_/jq1))][1_exp(j(x* A))]1 

x [exp(ixo/q)] 
() ® 
	(3.100) 

for 11q, 

	

	j2 1  + po . Note that all the terms in this expression commute. Hence 

V q1  = [1— exp (i(x* - Ai)o)]1C1fq1(x,) 
() 

®1, 

where 

fqj(x, ) = - [exp (i(x* 
- AI)( - ,LL q1 ))] [exp(ixo/1 q1 )] 

is defined for all x E B1 and /1qj 	1 1q1 + 	Similarly, for V q± 

V q  = [1— exp (i(x* - 
(0) 

and so 

	

Rq1\ 	- 	

(fql/Cql®l. 
	(3.101) 

	

VqjL 	-A1 	
exp (i(x* -Ai)1t0)]  

We want to estimate Cqj  (x) and Cq ± (x) near the resonating point. Let p = lIx* - Al 

Then Ill - expi(x* - Ai)p011 = 0(p) as p - 0, and (3.100) implies that 

Cq1  = 0(p') = C 	 (3.102) C"  

so that V q1  and V q± have unit norm. Next, consider (3.101) in the limit p —p 0. Equation 

(3.102) implies that 

1  
lim 	

fq1/Cq1

pO IIx* - AiII 	
(3.103) 

exists. Moreover, 

lim (x* - A1) [1 - exp (i(x* - Al)[Lo)] 
-1 	lim (x* - A1) [ - i(x* - A1 ) [Lo + 0(p2)] 

-1 

p-4O 	 p_4O 

1 = - 	 (3.104) 

Combining (3.103) and (3.104) shows that the right-hand side of (3.101) is well defined 

as p - 0. Thus -Dq,,  and are well-defined in the limit p - 0, and at x = are 

given by some multiples of ij, 7711- respectively. The set (3.99) is therefore a trivialisation 

of IE over B1. 
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We can now calculate the transition function gi.  Comparing the trivialisation (3.99) 

with the exact solutions {v p = 1,... , n}, we see that (up to some re-ordering) 

/id_2 	0 \ 
91  = 	

11x-AiIIJ 

The two trivialisations v1,... , v and (3.99) are not unitary, but applying the Gram 

Schmidt process is equivalent to replacing gi  with 

e(x)g 1 (x)e'(x) E U(n) 

where e : aB1  -p CL(rt, C). This does not affect the degree. Comparing gj with the 

calculation of ko in the case of vanishing monopole charges, we have deg gi = - 1 and 

SO C2(Fl) = -1. This completes the proof that k0 = k0 for vanishing monopole charges. 

3.5.3 The case l<Nj <n 

The calculation is very similar to that in Section 3.5.1. Recall the definition of the 

model operator in Section 3.3.4, the definition of the adjoint in Section 3.3.5, and the 

definition of the exact solutions v, p E Ji, given in Section 3.4.2. In Section 3.4.2 we 

showed that the v are well-defined solutions to *(x)  on the complement of Supp B, 

where B is the off-diagonal block of the model operator. In fact the 'v, are well-defined 

on Supp B, and are just vectors in CO3  because (x) = 0 on Supp B. It follows that 

B*( x ) v (x ) = 0 for each p e J1, and since the V solve A(x)V = 0 everywhere they 

are solutions of i (x) for all x. The v therefore define a rank N1 sub-bundle E1 of E, 

which is equipped with a connection AI given by projection from V onto IE1. The proof 

of Proposition 3.83 shows that (Ei, Ai) is the interior restriction of a framed U(Nj) 

quasi-periodic connection with vanishing monopole charges and clutching function cj. 

The v, give a global trivialisation of IE1 in which A1 is framed. Since vp (rx) = Uv(x), 

using the definition of the clutching function in Proposition 3.83 we have CI 1, and so 

c2(Il, f) = 0 where f is the framing determined by the exact solutions vi,. Moreover, 

since the span trivial line bundles in Eoc,, using (2.31) we have 

4 , 27r/yo] 	
ch2(Ej, Aj) = 0. 	 (3.105) 

 xlR 3  

Now /M(z)  is the Nahm operator of some U(ri - NJ) monopole Nahm data. Let 

(I14M, AM) = Coker LM.  Then Lemma 3.11 implies that 

- 

J,0,2-/po]xR3 
ch2 (EM, AM) =- 

1 	
> 

 

/Lo PEJOUJM 

=-1 (1k1+...+pk) 
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since k = 0 for all p Jo U  JM.  We can then define (Eo, Ao) = (EM Ej, AM ED Ai). 

On the complement of the region R = Supp B, 

- (i.(x) 	0 
0 	L(x) 

SO EIRc = Ej OEM and AIRc = A1 AM.  Since ch(Ei EM,  A1 AM) = ch(Ei, Aj) + 

ch(EM,AM), (Eo ,Ao) satisfies (3.86). 

It remains only to specify gauges on E0 and E near each resonating point and 

calculate the degree of the transition function. Let ul(x) and u(x) be the solutions of 

A* (x) used to define the off-diagonal blocks of ,&. Then, as in Section 3.5.1, let 

P = 1,... ,n —2-- Nj} {ui,u}EB {v : p E  Ji} 

be a gauge for EoIs 	where Uj,p  are solutions of A M* (x). Again, following Sec- 

tion 3.5.1 and reproducing equations (3.90) to (3.92), we construct v, v- in exactly the 

same way, so that 

{ui, p = 1,... ,n —2— Nj}{v,v 1 }e{v : p e J1} 

is a gauge for IEI sj , , and so that the transition function gj has deg gi = — 1. This 

completes the proof that k0 = k0 . 

3.6 Deforming L to L 

The last step of the construction of calorons is to prove that the Nahm operator A can 

be deformed into the model operator L in such a way that we can deduce that Coker L 

is a framed caloron configuration. In Section 3.6.1 we prove the existence of a path 

of injective Fredholm operators between L and , and in Section 3.6.2 we use this to 

deduce that Coker A is a framed caloron configuration. Finally, in Section 3.6.3, we use 

the boundary conditions and the anti-self-duality equation to prove that Coker L can 

be equipped with a compatible volume form. 

3.6.1 Existence of a path between A and L 

We want to show that we can deform L0 = A to A l = L L with a path L in the space 

of injective Fredhoim operators with index —n. Let F denote the space of Fredhoim 

operators from W to V with index —n, and let denote the subset of injective 

operators. Thus L0 and Li are maps from 1 x R3  to 

Proposition 3.106. If L = L is a controlled deformation of L0 = L (in the sense 

of Definition 8.25) then there is a path L in Map(I x R, .L) between the two, such 

that for all s E [0, 11, 

is a framed deformation of L, and 	 (3.107) 

L 3 (TX) = U7,v3(x)Uv, 	 (3.108) 
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where U,-,v,U,w  were defined in Section 3.2.5, and Definition 3.24 gave the notion of 

a framed deformation. 

In Section 3.6.2 we show that conditions (3.107) and (3.108) ensure that Coker & 

is a framed caloron configuration for each s. 

Proof: We first prove the existence of a path & satisfying (3.107) and (3.108) that lies 

in Map(IE  x and then perturb it so that it lies in Map(I x 1R 3 , J1,). Recall 

that 

L(x)w = {Di (x)w i ,... , D,(x)w] 	[irw] 

and 

1(x)w = [Di (x)w i  + A 1 w1,... , D,(x)w, + Aw] @ [w] + B(x)w 

for some A, , and B(x) satisfying the conditions of Definition 3.25. Let ñ denote a 

deformation of ir to given by deforming the vectors 	and let 

= [Di (x)w i  + sA 1 w 1 ,... , D,(x)w,, + sAw] [w] + sB(x)w. 

Then, for each s, L is a controlled deformation of L, so condition (3.107) is met 

(controlled implies framed) and Corollary 3.26 implies that z. lies in Map(16  x 1R3 , F 1 ) 

for each s. Since A and L k satisfy (3.108), if we make the deformation Th strictly periodic 

in 'o,  then i2 satisfies condition (3.108) for all s. 

Next we want to perturb this deformation so that it lies in Map(I f  x ]R3 , F). The 

deformation corresponds to a five (real) dimensional surface E lying in .'F which is 

the image of a map [0, 11 x I x R 3 -+ Note that J is not a smooth manifold, 

but is stratified, with the strata corresponding to the dimension of the kernel. Let 

• C F denote the subset of operators that are not injective. If the codimension of 

• is sufficiently large, then the surface E can be deformed into To perturb 

into J we require one dimension orthogonal to E and U at each point on E, i.e. we 

require the codimension of U to be at least six (real) dimensions. The codimension of 

U can be calculated in the following way. Fix a E U. Since a is not injective, it has 

a non-trivial kernel which is finite dimensional, so suppose {w i ,... , Wm} is a basis for 

the kernel, where m > 1. Since md a = —n, coker a is m + n dimensional, so fix a 

basis {vl,... , Vm} for the cokernel. Note that m + n > 3 because n> 2. The paths 

a on (ker a), 

for p=1,...,m-1, 

wm 4  tVm+i_1 

for i = 1, 2, 3 define a tangent plane to U at a, contained in F. The condition 

m + n > 3 implies that the three paths are well defined. Hence the (real) codimension 

of U is at least six, and so the deformation can be shifted into FL. 



A problem might arise: we do not want to perturb i when s = 0 or 1, because the 

perturbed path would no longer join i to L. Similarly, the other components of 0E 

might be affected. First consider what happens for large r. We want the path A, to 

consist of framed deformations of L, which is certainly true before we perturb E. For 

sufficiently large r 

= z(x) + sA 

where A is a multiplicative operator independent of x. Equation (3.31) implies that 

IiA(x)wII2 > CrIIwIIL2 

for large r and some constant C, because A is uniformly bounded. Hence for sufficiently 

large r 

Iks(x)wII = 0 	I1DIIL2 = 0 	11w11L2 = 0 

so z(x) is injective for sufficiently large r. Thus, combining the three boundary 

components, we only have to perturb L 3 (x) on some compact subset of Ii 3  to move 

into Finally consider DIE . If we perturb L into FL for xo E (—€, e) then 

the periodicity rule (3.108) fixes the perturbation for xo E (2n/io  — e, 27r/,iio  + e). 

Thus we have some fixed perturbation of E in some neighbourhood of the boundary of 

[0, 11 x I x iR 3 , and we want to extend this to a perturbation of the whole of E. The 

Proposition follows from the Lemma below. ci 

Lemma 3.109. Suppose E is the image of some map i : M = [0, 1] x I, x 

. r and A is a neighbourhood of the boundary of M. We know that while M is 

5-dimensional, the complement of the space of non-injective Fredholm operators has 

codimertsion 6. Then any deformation of a(A) into FL extends to a deformation of 

into J. 

Proof: Milnor [29, Theorem 1.35] proves an equivalent result for smooth manifolds 

which extends to spaces of Fredholm operators readily. 	 0 

3.6.2 Recovering the boundary conditions 

We have a deformation 3L of A together with bundles and connections 

(E, A) = Coker A and (E,A) = Coker L 

Given that A extends to S2  in the sense of Proposition 3.83, our aim is to prove that 
00 

A extends to S.2  and is framed there, by comparing the two connections and showing 

that A is asymptotically close to A. The precise statement is as follows: 
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Proposition 3.110. The bundle and connection (E, A) is the interior restriction of 

(Eq,  A) where Aq is some U(n) quasi-periodic connection which satisfies the smoothness 

conditions of Section 2.1.6 and which is framed by A, I. 

Proof: The aim is to construct a unitary isomorphism F and framed quasi-periodic 

connection A'1 such that F : E  -+EqJI, 
xR3 and A = We start by compar-

ing the projections P(x) and P(x) from V onto coker .(x) and coker (x) respectively, 

and show that 

(t(x) - P(x))I = O(x) 	 (3.111) 

as x - 0. It follows that for sufficiently small x, P is an isomorphism as a map from 

to E. We can then compare A with the pull-back of A under P. 

The proof of (3.111) is taken almost directly from [17, Section 21 and follows from es-

timates on the Green's function C(x) = (L*( x )L( x))L*( x ) of L(x). Equations (3.30) 

and (3.31) imply that 

C2  (*(x)(x)ww)dua1 > —
2 
 IIwII2 	 (3.112) 

- x 
for all w e W and for sufficiently small X . (Throughout, C is a constant used in the 

generic sense.) Since L(x)C(x) = 1 - P(x) it follows that 

C2  
IVIIL2 - IIP(x)vIl2 > —IIG(x)v 

2  
- 	

I1L2 

for all v e V, so that 

G(x)IIL2L2 < 	, and IIC*(x)II L 2 L 2 < 	. 	(3.113) 
 — C 

Strictly speaking, C is a map 	-+ L, so IICIIL2L2  is the norm of the composition 

of C with inclusion into L. Similarly, G*(x)  is a map L 1  - L, so IIG*(x)II L2_ *L2 is 

the norm of the restriction of G*  (x) to L 2 '-p L 1 . Fixing an element i3 of t, we have 

(P(x) - P(x))i3 = (1 - P(x))i3 

= G*(x )*(x ) 

= 

where 

A=L(x)—,&(x) 

is a multiplicative operator that is independent of x for sufficiently small X . Since A 

is uniformly bounded and smooth, A*  is L 2 , and together with estimate (3.113) this 

proves equation (3.111). 



The next step is to compare A and A. Equation (3.111) implies that P is an 

isomorphism as a map P : IE 4E for sufficiently small x  Let R C I x JR 3  be some 

region x < c on which P is an isomorphism. Consider the pull-back of AIR under P: 

the difference between the connections on EIR  is an endomorphism-valued 1-form a, 

given by 

a(s) = A(s) - P1 1 A(Ps) 

where P1 1  is the inverse of P as a map E 4E, so that P'P = P. Expanding a using 

A=P•d and A=P.dgives 

a(s) = —PdPs 

where s is a section of E. Using the identity PdPP = 0 and the fact that Ps = s, this 

gives 

a=P(dP—dP)P. 

Our aim is to prove that a is C" and that the dx 0 , dyi, dy2 components of a vanish 

at the boundary—this will imply that A and A are framed in the same way on S. 

Now, 

where p(x) = (i*(x)(x))_l and similarly for 3(x). Since L(x) = (x) + A on R, we 

have 

	

P - p = ( + A) p(* + A*) - 	A,A*. 	 (3.114) 

Hence 

	

P(dP - dP)P = P((dx + A)pA*  + Ap(dx*  + A*) 	+ A(dp)A*)P . 	(3.115) 

By making the region R sufficiently small, A is multiplicative and therefore smooth on 

each interval. Thus p is only passed L 2  sections in equation (3.115), so we regard p as 

being restricted to L 2  sections. A similar comment applies to the image of p, so p can 

be regarded as a map from L 2  sections to L 2  sections rather than L 1  - L. As such, 

equations (3.30) and (3.31) give 

	

PL2*L2(E) 
= X2 + O( 3 ). 	 (3.116) 

It follows from (3.115) that the dx0, dy i , and dy 2  components of a are O(x)  and 

similarly any derivative of these components of the form is O(x). Hence the 

dx0, dy 1 , and dy2  components of a are Co and vanish on the boundary. 

1] 



Next consider the dX component of a: using equation (3.116), it is given by 

+ A)pA*dX  + Ap(5;*X_2  + A*)dX  + A(ap)A*dx)P 

P(A*dx  + A td)P + O(x) 

where = xx is the unit vector in direction x. In the basis Z'i,... , 	of E, a is given 

by the matrix 

	

(atDj ,t j ), 	i,j = 1,... ,n. 

So, up to °(x) the dX component is given by 

((A* +Ai*),I3,i j ). 	 (3.117) 

In the limit x - 0 the '13j become 'square roots of 6-functions': integral estimates like 

those in Section 3.4.1 show that 

lo 	if ij 	
(3.118) 

x–+o 
lim(A,) 

= (A( p ) ep ,ep ) ifi=j=p 

for any multiplicative operator A that is independent of x where {e} is the gauge 

on E fixed in Proposition 3.83. Hence the limit of (3.117) exists as x -p which 

shows that the dX component of a is continuous up to the boundary. In fact it shows 

the dX component is diagonal on the boundary and independent of x 0—so the d 

component satisfies the conditions given in Section 2.1.6. Similarly, by considering 

derivatives in xo, Yi, and Y2,  it can be shown that the dX component of a is CO up to 

the boundary. The same method shows that the dx 0 , dyi, and dy2 components of a 

are C: differentiating (3.115) with respect to x, the coefficients of the dx0, dy 1 , and 

dy2  components are of the form 

multiplicative operator + O(x) 

O and so extend to the boundary. Thus a is C'1 . 

	

Let F be the isomorphism P :  IE - 	whose existence was proved in Propo- 

sition 3.83. Let F = FPJ 1 , so that F is an isomorphism IE -p Eq defined on R. We 

have shown that 

A 
	

(3.119) 

where A'1  is a C" connection on 	framed by A, 	. The isomorphism F can be 

extended to the interior of ii 3  so that (3.119) holds everywhere on I x R3.  (Given 

A, this determines Aq on the interior.) To complete the proof of the Proposition, it 

remains to be shown that Aq is quasi-periodic, and that F can be replaced with some 

unitary isomorphism. 
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Define 

c(s) = F(xo = s + 27r/tto)UF'(xo = s). 

Equation (3.37) implies that 

A(s + 27r/iio) 
= (c_l(s))*A(s) = cA'(s)c 1  - dcc' 	(3.120) 

on I x I. We want to show that c —p 1 as x - 0 and that c is C. In the gauge 

FPii1 ,... ,FP Th  on IEtlI J? , c is given by the matrix 

(F(s + 27r/,uo )UPiL'(s), F(s + 21r/uo )P?.Z'(s + 27r/,1o))L 2  = 

(P'UrP1ij (s),1Dj (s + 27r/uo))L2 (3.121) 

because F = FP1 ' and F is unitary. Now (3.111) implies that the RHS is given by 

(U'th, 'thy ) + O(x) = 	i3) + O(x) 

= 6ij + O(x) 

where i3j  is the approximate solution associated to the solution ii'j  of (x). Hence 

c -~ 1 as x - 0. Equation (3.120) implies that 

urn dc = 1im{cA'(s) - A'1 (s + 27r/jio)c} 
x_-*O 	x—O 

01 	 1 and since 	is C it follows that c is C,. 

The final step is to replace F with a unitary isomorphism and show that this does 

not affect the framing or clutching adversely. As in Section 3.4.3 we replace P with the 

unitary approximation Pu defined by 

Pu 
=  (PP.) —1/2p )  

and compare A with the pull-back of A under Pu.  A calculation similar to the com-

parison above shows that the difference of the two connections is given by 

au=A—Pi 'r (A) 

= P(dP - PjdPu)P. 

We can calculate Pu quite explicitly as follows. Equation (3.114) implies that 

(P(x) - P(x))I = ((x) + A)pA* = (x ) pA* + O(2) 

Hence 

P(x)IE = 1 - Z(x)pA* + 
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where (x)pA* = O(x) and 

pp*(x) = 1 - (/(x)pA* + ApL*(x))  + 

We can use a power series expansion for (PP*)_112 :  

(pp*)_112(x) = 1 + 	+ Ap*(x))  + 

Hence 

Pu(x) = (1+ 	(x ) pA* + Ap*(x)))P(x) + O( 2 ) 

and we have 

	

Pu(x) = 1 + O(x), PJ1 (x) = 1 + O(x). 	 (3.122) 

We can then calculate au: 

P 1 dPu = dP + d(/(x)pA*  + Ap/*(x))P  + O(x) 

7151 

P(PJ1 dPu)P = PdPP + Pd(L(x ) pA* + Api*(x))PP + O(x). 

The second term in this equation simplifies: 

Pd(A x ) pA* + A pL*( x ))PP = Pd(L(x ) pA* + Ap,~.*(x))P + O(x) 
= P(dxpA* + Apdx*)P  + O(x) 
= (dxX 2A* + A2 dx*)P  + O(x). 

This implies that 

au = a - P(dxx 2 A* + Ax2 dx*)P + O(x) 

and so 

a - au = (bounded multiplicative operator)dx + O(x). 

It is then easy to apply the arguments used to prove that a is C'1  to au,  and conclude 

that au is also C 11 . This shows that A is a C" connection. Moreover, it also follows 

that the dx component of au is diagonal and independent of xo on the boundary, so 

A satisfies the conditions defined in Section 2.1.6. 

The final check is to ensure that the clutching behaviour of Aq has not been dis-

turbed by the change to a unitary isomorphism. The equation for the matrix of c, 

equation (3.121), becomes 

(Pj1 UPuthj, Put-0j ) = (U5, 	+ °(x) 
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because of equation (3.122). But the RHS is Jij + O(x) so c - 1 as r - 00, and c is 

still C. 	 0 

It seems that the Proposition could be extended quite readily to show that A is the 

interior restriction of a framed quasi-periodic connection Aq that is smooth up to the 

boundary, rather than C". First we should indicate why this seems difficult initially. 

The difficulty comes when one considers x derivatives of 

(crth, 'th,) = (ai)i, i 1 ) + smooth exponentially small term. 	(3.123) 

To prove smoothness, all the x derivatives of (3.123) must extend continuously to x = 0. 

However, the x derivative of i3,, includes terms like '/x, and it is unclear how to make 

these terms cancel to obtain the desired smoothness result. However, the method used 

in the Proposition to show that the dX component of c is Co could be used to obtain 

smoothness in the following way. The proof of the Proposition included the calculation 

of the first few terms in the x power series expansion of c: the proof relied on the fact 

that the leading coefficients for dx0, dyi, dY2  vanished, and that the leading coefficient in 

dx was multiplicative. Equation (3.118) showed how this multiplicative term extended 

to the boundary—a more general operator would not have a limit like (3.118). However, 

all the coefficients in the power series expansion of c will be 'differential operators 

of negative degree', so should have limits like (3.118). Some careful analysis of the 

smoothing properties of the Green's function p could therefore lead to the stronger 

result. 

We can use the Proposition to prove Lemma 3.11 for Nahm data in NM 0fl (k, ). (Re-

call that we have not yet proved Lemma 3.11 for monopole Nahm data that does not 

satisfy Nahm's equation and that might be continuous accross zero jumps.) Suppose 

that Z is the Nahm operator associated to an element of .NM 0fl (k, Tz). Then Propo-

sition 3.110 implies that Coker L is the interior restriction of a U(n) quasi-periodic 

connection framed by A, DQ However, Coker A is translation invariant, and so must 

have k0  = 0. Applying (2.32) therefore gives 

ito, 	
ch Coker 	= — I(1k1+ ...

2r/jio]x1R3 	 liD 

and we have proved Lemma 3.11. 

Next we apply the Proposition to our deformation L 3 : 

Corollary 3.124. Consider the path A, defined by Proposition 3.106, and fix some 

s e [0, 11. The proof of Proposition 3.110 goes through if we replace (IE, A) by Coker L 5  

since it only relies on properties (3.107) and (3.108). Hence for each s there exists a 

quasi-periodic connection A on which is framed by A, and which is C", such 

that Coker 	is the interior restriction of (1E,  A). 
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Recall that A was constructed from a set of Nahm data with boundary data 

(k o , k", po ,  fl). Since A is framed by A, I for each s, it must have boundary data 

(K(s),k, yo, fl) where K(s) e Z for each s, and so equation (2.32) gives 

110 , 27r/~Lo] 	

ch2 (Coker z) = —K(s) — - (iiki + 	+ 	 (3.125) 
 x 1R3 	 Po 

But the LBS of this equation is continuous in s, and since ,io, fl, k are constant, K is 

constant. From Section 3.5 we know K(s = 1) = k0, so K(s = 0) = k0, and we have 

proved the following: 

Theorem (Nahm data - caloron, U(n) version). Suppose (k o , k, y o
, ) is a set of 

principal U(n) caloron boundary data. Given an element of J\f(k0, , 
jio, ) let 1(x) 

W - V be the corresponding Nahm operator. Then, up to gauge transformation, 

Coker L is the interior restriction of a U(n) framed quasi-periodic connection A1 on 

jq with boundary data (ko , i, po, ), i.e. an element of C(ko, k, io, fl). This construc- 

tion takes elements of .Ar*(k 0 , ) io, 	to anti-self-dual connections i.e. elements of 

C*(k o , k, 	Moreover, using the rotation maps pj.j and pc,  the construction ex- 

tends to non-principal boundary data as explained in Section 3.2.6. 

3.6.3 Volume forms 

A periodic volume form on IE, parallel with respect to A, corresponds to a volume form 
qq on E, parallel with respect to A,  and clutching according to the rule 

= s + 27r/to ),... , w,(xo = s + 27r/io )) = 

I'(c(s)w i (xo = s),... ,c(s)w(xo = s)). 

where Aq and c are defined by Proposition 3.110. Our aim is to prove that such a 

volume form exists when the boundary data (k o , , io, Q) is SU(n) and the caloron 

configuration Coker A is anti-self-dual. 

Let Fq denote the curvature of A;  a parallel volume form exists on Eq  if tr Fq = 0. 

If Aq is anti-self-dual, then tr Fq is the curvature of an anti-self-dual finite action 

abelian field on I x I1, and so vanishes. Hence Eq can indeed be equipped with a 

parallel volume form v. Since ji is parallel and Aq is compatible with the clutching map 

c, it follows that there exists a constant ) with J AI = 1 such that 

v(c(s)wl(xo = s),... ,c(s)w(xo = s)) = Av(w i (xo = s),... ,w(xo = s)) 	(3.126) 

for any sections Wi, - , m,- of Eq.  We want to show that A = 1, so that v corresponds 

to a periodic object on E. Since A is independent of x and all the objects are continuous 

up to the boundary, we can evaluate A by working on Si,. 
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Suppose that the sections wi,... , w are parallel in the xo direction i.e. satisfy 

t9x0 (VA q (Wj)) = 0 

for each j. Then 

v(wi(xO = s + 27r/izo),... ,w(xo = s + 27r/iio)) = 	= s),... ,w(xo = s)). 
(3.127) 

It is easy to construct parallel solutions on S: in the gauge el,...  ,e on S, the 

dx0 component of A  is A = diag(i i ,... Hence w3  = (exp —ixoli j )e, defines 

a linearly independent set of sections that are parallel in the xo direction. Substituting 

these sections into equation (3.127) gives 

e) = 1'( 0=2/,20 )((exp —27rili1/lio)e1,... , (exp —27rili/lio)e) 
n 

= (111 exp —27iliP/lio)v( 0=2/,20 )(e1 ) ... , e) 
1 

v(X0=2/0)(ei,... ,e), 
	 (3.128) 

since 	= 0. However, the clutching map c is the identity on the boundary, so 

equation (3.126) becomes 

1/( X0 =2,,LO )(e1,... ,e) = )v(X0 =o)(ei,... ,e). 	 (3.129) 

Together, equations (3.128) and (3.129) imply that A = 1, and so we have shown that 

the volume form corresponds to a periodic object on E. Hence we have established: 

Theorem (Nahm data - caloron, SU(n) version). Suppose (ko, , io, Z) is a set 

of SU(n) caloron boundary data. Given an element of J\/*(ko,  £, ,u, fl) let A (x) : W - 

V be the corresponding Nahm operator. Then Coker Z is the interior restriction of an 

SU(n) framed quasi-periodic connection Aq on Eq corresponding to some element of 

C*(k o , iZ). 
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Chapter 4 

From Calorons to Nahm Data 

We present the Nahm transform from calorons to Nahm data: our aim is to prove 

that the Nahm transform is a well-defined map from C*(ko,  k, ,io, i7) to .N*(ko, , i-so, /1). 

Throughout this Chapter we work with a fixed SU(n) anti-self-dual caloron configura-

tion, i.e. a bundle and connection (1E, A) in C*(ko, , o, i7), framed by the pair A, 4. 

4.1 Generalizing the 4-torus Nahm transform 

Many of the more formal aspects of the Nahm transform carry over directly from the 4-

torus case described in 1.1.5 to the caloron case. We cover these in this Section, delaying 

the real difficulties—the calculation of the index of the Dirac operators involved, and 

recovering the behaviour of the Nahm data at singularities—till later. 

4.1.1 Defining the transform 

Given the caloron (IE, A), recall the definitions (1.12) and (1.13) of the Dirac operators 

D on x JR3 . Following the ideas of Section 1.1.5, the transform from the caloron 

to its Nahm data involves the kernel of a family of Dirac operators parameterized by 

the dual torus S ' . For each E IR, let D denote the Dirac operators coupled to JE 

via the connection 

A - dx0, 

so that 

= D - i 

and 

= D + i. 

Note that, since 	= --y3 for j = 1,2,3, the two Dirac operators can be written as 

D± = ±(Vo - i) + DA 	 (4.1) 
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where DA is defined by 

	

DA = 	Vj 
	

(4.2) 

and Vo,Vi,V2,V3 are the components of A in the frame (8 0 , al, a2,a3). We use the 

same symbols D, D etc. to denote the extension of these operators to Sobolev 

spaces of sections: 

W'(S 10  x R3, S± ® E) - W °  (S 1, 0  x 1R3 , S ® IE) 

where W 1  is the space of sections with 1 derivatives in L 2 . 

Definition 4.3. The set of singular values, 6ing,  for D is defined by 

s i ng {/uj+Ntoj=1,..,n and NEZ}. 

Lemma 4.4. When A is anti-self-dual, D1  is injective provided 

Proof: Applying the Weitzenböck formula 1.14, we obtain 

DjD = —(V0 - i) 2  - 	 (4.5) 

Then 

3 
" 

DsII2 = II(Vo - i)sII2 + 	IVsii2 2 , 

j= 1  

and so D+ s = 0 implies that IIVjsIIL2 = 0 for j = 1, 2,3 and 11 ('70 - i0sIIL2 = 0. By 

definition, (E, A) is framed on OX and we can extend the framing to a neighbourhood 

U of OX, to give an identification of IEI u  with p*E.  In this identification we can write 

VA - idx0  = VA + dxo (ô 0  + 'I) - i) 	 (4.6) 

where (x) e End(E) for each x, and - I as r —poo.When 	sing there 

exists a compact subset of 1R 3  outside which 4 - i has distinct eigenvalues, none of 

which equals an integer multiple of i o . Thus, on the complement of this compact set, 

(i90 + - i) has no non-trivial periodic solutions, and so any solution to Ds = 0 

must have compact support. However, any solution s must also satisfy Vs = 0. This 

is a first order ODE, so if s has compact support, it must be identically zero. It follows 

that, provided 'sing, D is injective. 0 

Proposition. D is Fredholm iff 
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We prove this result in Section 4.2. 

From these two results it follows that coker 	= ker 	is finite dimensional 

and has rank independent of on each of the component intervals of R \ sing As 

varies, the vector spaces coker D define a vector bundle on each interval in R \ sing 

Let 'p°N  C R \ sing  be the interval (lip+i + NliO, pp  + NliO) for p = 1,... , m - 1 and 

N E Z, and let IO,,N= ( i + (N - l)iio,ii fl  + Njio). Let X,N denote the bundle 

coker D over the interval The bundles inherit an hermitian inner product from 

W°(S ® E). We define a connection and three endomorphisms on each bundle in the 

following way. Let 

Vp,NS = P(o3) 
	

(4.7) 

and 

TNS = P(ixjs) for j = 1, 2,3 	 (4.8) 

where s is asection of X,N and P is the projection P: W°(S - ®IE) -+ W ° (S®E) onto 

coker D. Here x3  denotes the j-th coordinate function of 1R 3 . Note that if s is L 2  then 

x3 s is not necessarily L 2  so these endomorphisms may not be well-defined. However, in 

Section 4.2.3 we prove that sections in coker are necessarily exponentially decaying, 

so this problem does not arise, and the endomorphisms T' N  are in fact well-defined. 

The connection and endomorphisms are skew-hermitian by definition. In Section 4.1.2 

we check that they satisfy Nahm's equation on the intervals 'p,N'  and we check that 

the transform gives periodic Nahm data in Section 4.1.3. 

4.1.2 Nahm's equation 

We want to show that the connection Vp,N and endomorphisms TN  satisfy Nah-

m's equation on the interval 'p°N  for each p, N. This is an adaptation of Proposi-

tion 1.22, and relies on the fact that DeDA  commutes with the Clifford matrices Ya, 

a = 0, 1, 2,3. For the present we assume that sections in coker D+,, are exponentially 

decaying so that the endomorphisms TN  are well-defined. 

For brevity we fix the notation D = D and D* 	in this Section. Note that 

if s is a section of Xp, N (i.e. if D* s  = 0) then 

D*(xjs ) = —ys. 

Since 

P =1— D(D*D)D* 

it follows that 

(Px3 P)s := P(xP(s)) = [x + D(D*D)_y]Ps. 



Taking the adjoint of this expression gives 

(PxP)s = 15 [x + y(D*D)_lD*]s. 

Using these formulae and definition (4.8), we can calculate the commutator [TN, TEN]: 

[TN,TN] = P(Pxk P)(PXjP)P - P(PxP)(PxkP)P 

= P{(xk + yk (D*D)_lD*)(x j  + D(D*D)_h1) 

- (x + yj(D*D)_lD*)(x + D(D*D)_)JP 

= P [7k(D*D)_1D*xj  + XkD(D D)'-y + yk(D*D)lyj 

- yj(D*D)_l D*xk - xD(D*D)_ 	- y(D*D)-1 Yk*J 1 

= P[ - 'Yk(DD) ' Yj 'Yk(DD)'Yj + 7k(D*D)lyj 

+ 7(D*D)_ + yj(D*D)_ - yj (D*D)_]P 

= P [(DD) 	- yk(DD)f]P. 

From (4.5), D*D commutes with yj for j = 1, 2,3, and since yj'y- 	= 

we have 

	

Cijk ITj,N I TNI = 2P [7(D*D)_h]  P. 	 (4.9) 
j,k 

Next, consider the left-hand side of Nahm's equation: 

	

V P,NT,N = 'P(OP)XP + iPx(OP)P. 	 (4.10) 

Now 

PaP = —Pa [D(D*D)_1D*] 

= _P(aD)(D*D)_lD* 

since PD = 0. But 0D = —i so 

PaP = iP(D*D)D* 

and 

(8P)16 = iD(D*D)_lP 

Substituting this back into (4.10) gives 

VP,NTJ,N = PX2D(D*D)_1P - P(D*D)_lD*x P 

= P(D*D)_lyP - Pyj (D*D)_lP 

= _2P(D*D)_lP.  

Comparing this with equation (4.9), we have Nahm's equation: 

V P,NTN + 	Eijk[TN,T,N] = 0. 
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4.1.3 Periodicity 

We have seen how to construct the Nahm data over the intervals 1po,NC  R. In this 

Section, we explain how to identify the fibre coker D with coker D+0,  so that 

the Nahm data is defined on S,j 0  = R/oZ. This is entirely analogous to Section 3.2.5, 

where we showed that Coker L is periodic for a given Nahm operator A. 

Define the translation 

+ 10 

and let 

= expi/ioxo. 

(Compare this with equation (3.36).) Then U is a unitary periodic bundle isomorphism 

of IE, and 

D = 

Note that just as in Section 3.2.5 there is some choice for the map U: it can be replaced 

with any map of the form exp i1io(xo + a). It follows that 

coker Dt = Ucoker A, 

for E JR \ sing, and 

PUPU' 

where P : W°(S (9 JE) - W ° (S (& E) is the projection onto coker 	for each . 

Substituting this back into definitions (4.7) and (4.8) gives 

V( + ,ao) = 

and 

T3 (+/Lo) = UT()U' j =1,2,3 

where we have dropped the subscript p, N on the Nahm data. Thus Uq defines an action 

of Z on the collection of bundles Xp,N,  and the connection and endomorphisms defined 

by (4.7) and (4.8) are compatible with this action. Quotienting by the action, the data 

reduces to a collection of hermit ian bundles X defined on the intervals I° C S1 , where 

(/+i,/2) + ILOZ for p = 1,... ,n —1, and (I' - /2o ,/1) + ILOZ. Since the 

connection and endomorphisms are compatible with this action, under the quotient 

they map to a connection V, and endomorphisms T, j = 1, 2,3, on each bundle X. 
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4.1.4 Further remarks on the rotation map 

In analogy with Section 3.2.6, we want the following diagram to commute: 

N 
C(B) 	

ahm 
 > N(B) 

transform 

PC 
	 t PAr 

C(PB) 
Nahm 
 N(p0B) 

transform 

where pc  and pa were defined in Section 2.2, and pJ.r  is defined by rotating the Nahm 

data by [to/fl as in equation (3.38). Given our caloron (IE, A), traversing the diagram 

round the top right (i.e. performing the Nahm transform followed by a rotation) is 

equivalent to performing the Nahm transform with the Dirac operator 

- LJlB, - 

rather than the Dirac operator D, where B = A + i( 1a0/n)dxo. By equivalent' we 

mean the two sets of Nahm data are isomorphic over S 1  with a fixed origin. In the 
flo 

quasi-periodic picture suppose that Aq ,  Bq are framed quasi-periodic connections on 
Eq 

corresponding to A and B. Then 

Bq = g(A'1 ) 

where g(s) = exp —i([tos/ri). If Aq has clutching function c, then so does 1B' since 

lB''(s + 27r/po) = wc (A( S )) = wc (lB 1 (8)), 

and w = g(27r/[to) = exp —27ri/n acts trivially as a gauge transformation. (Recall that 

clutching functions must be the identity at spatial infinity.) 

Conversely, traversing around the bottom left of the diagram is just the Nahm 

transform on pC(A). The quasi-periodic pull-back of pc(A) is p(A) where p is the 

bundle automorphism of Eq defined in Section 2.2. We know that e := gp 1  is a 

bundle automorphism of Eq taking p(A) to  TB.  If e descends to give a strictly periodic 

isomorphism identifying pc(A) with TB then the diagram commutes. A section 0 of Eq  

descends to a periodic section under the quotient by a clutching function c, if and only 

if it satisfies 

(s + 27r/iio) = c'(s). 

Now, p(A) has clutching function c,, given by (2.34), 	so consider a section of 	satis- 

fying 

(s + 27r/[to) = c(8). 
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Then under the action of e we have 

e4(s + 27r/jio) = g(s + 2r1[to)p'(s + 27r1io)c(s)iJ.'(s) 

= wg(s)p'(s + 21i0 )w 1 p(s + 21o)c(s)p 1 (s)(s) 

= ce(s) 

where c is the clutching function of jq,  and so E)o descends to a periodic section under 

the quotient by c. Thus e descends to a strictly periodic bundle isomorphism taking 

pc(A) to lB and we have shown that the diagram commutes. 

4.2 The Fredhoim condition 

We need to prove the Fredhoim condition stated in Section 4.1.1: 

Proposition 4.11. 	is Fredhoim iff 

This ensures that the bundles X,N are well-defined. We also need to calculate the 

rank of these bundles. Since DI is injective, the rank of Xp, N is given by minus the 

index of DI for any e 1p,N, and so the problem is equivalent to finding the index of 

which we calculate in Section 4.3. The proof of the Fredholm condition and the 

index calculation have been published jointly with my supervisor in [36]—the material 

in this Section and Section 4.3 is taken more-or-less directly from that paper. 

We give two proofs of Proposition 4.11: the first uses Anghel's criterion [2], while 

the second uses the machinery of pseudo-differential operators (WDO's) on manifolds 

with fibred boundary [27]. Using this machinery in Section 4.2.3 we prove that solutions 

in coker Dt  are exponentially decaying in r, so that (4.8) makes sense. 

4.2.1 Proof of the Fredhoim condition using Anghel's criterion 

Theorem 2.1 of [2] gives conditions for DA, := D 	D to be Fredholm: DA,6  is 

Fredholm if and only if there is a compact set K c X° and a constant C> 0 such that 

IDA,42 > CIIOIIL2, when 5 E W'(S®E) and Supp('45) C X°\K. 

Note that DA,6  is Fredholm if and only if 	is Fredholm. Now for I' E W 2 (S ® TE), 

IIDA,IIL2 = ((DDj) (DD), I))L2, 

since D is the adjoint of 	and vice versa. Using (4.1), we have 

D D = – ( Vo – i) 2 +[DA,Vo]+D. A, 	A, 

The third term here is clearly positive because DA is self-adjoint, and the boundary 

conditions allow us to estimate the other two as follows. 
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The first term. As in the proof of Lemma 4.4, extend the framing f to a neighbour-

hood of OX. In this identification we can define A, using (4.6). As the boundary OX 

is approached the eigenvalues of 1 converge to the eigenvalues of . Using spherical 

polar coordinates on 1R 3 , let iAj (r,yi,y2,xo) be the eigenvalues of 4, and ij be the 

eigenvalues of (j = 1,... , n) such that A -p as r - . Let A(r, yi, y2, xo) be 

the smallest element in {IA + NI-to 
- 

: j = 1,... ,n; N e 7Z} and i  be the smallest 

element of the set {j  + NI-to  — : j = 1,... , n; N E Z}. The condition ' sing 

implies that i > 0, so there exists a compact set K1 C X° such that A > /112 on 

X° \ K1. 

Suppose 0 E W 2 (S ® TE) and Supp 0 C X° \ K1. Using the isomorphism 8 

can be written as a Fourier series 

exp(iN1Loxo)N 

where ON  is a section of S( 3) ® E. Let 

(N) =  exp(iNio xo)w. 

Then 

(V0 - 	 = (iN/10 + - 

so 

(—(V0 
— )2(N)(N))> 	211(N)112, 	on X' \ K 

as a pointwise estimate. (Since (N)  e W 2 (S+ ® 1), N)  is actually continuous so 

both sides of the inequality exist.) Since the inequality is independent of N it holds for 

general 0 and we obtain 

Supp() C X° \ Ki 	(—(V0 
- ie)2)L2 ~!(4.12) 

The second term. We have 

[DA, Vo] = >yj[Vj, Vol = >yj{t(8j)(VA 4  — a., A) 

where t(0) denotes the interior product with a tangent vector 0, DA is defined by (4.2), 

and A is defined by (4.6). But, using (2.28), IIVA — OX O AII — 0 as r -* 00, so there 

exists a compact set K2 C X° such that 

Supp() C X°\K 	I([DA,Vo1)L2I 	 (4.13) 

Now let K be a compact set containing K1 and K2. Combining (4.12) and (4.13) 

we obtain 

Supp() C X° \ K ==> (DD,)L2 > _/12 
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A similar bound is obtained for 	and so we obtain the following bound for 

DA,: 

E W(S ®E), Supp() C X° \ K 	JIDA,IIL2 >
I 
 I-11101IL2. 

By density, the inequality in fact holds for i E W 1 (S ® IE). This completes the verifi- 

cation of Anghel's criterion and gives a proof of the 'if' part of the Proposition. When 

E 6ing it is possible to use Anghel's criterion and some analysis similar to that above 

to prove that D is not Fredholm, but we choose to omit this. In fact the converse 

statement follows much more easily if we use 111D0's, as we will see below. EJ 

4.2.2 Pseudo-differential operators on manifolds 
with fibred boundaries 

Mazzeo and Melrose [27] study pseudo-differential operators ('PDO's) on manifolds 

with fibred boundaries. These operators are particularly suitable for problems like our 

Fredholm condition and index theorem: [27, Proposition 9] contains a necessary and 

sufficient condition for a 'PDO on a manifold with boundary to be Fredholm, which we 

apply to our operator D. I am indebted to my supervisor for explaining WDO's on 

manifolds with boundary to me; the proof of the Fredholm condition using 'I'DO's is 

due to him. 

The general situation considered in [27] is a fibration of the boundary DX of X: 

P ) U —DX--Y 

where U is the fibre, and p is projection onto the base Y. In our example, 

DX = S2', 1 , 0  x S, U = S 	 - 10 , and Y - 

so the fibration is trivial. Mazzeo and Melrose assume X has a boundary defining 

function x i.e. a function x E C°°(X) such that x > 0, DX = { x = 0}, and d 0 on 

DX. They consider differential operators of the form 

P(x,y,u;x2 D,xD,D), 	 (4.14) 

near DX, where P is smooth in the first three variables and polynomial in the last three 

variables. Here y and u are coordinates on Y and U respectively. These operators form 

the algebra of -differential operators. (Note that this 1 has nothing to do with the 

drr0  component of A, but stands for 'fibred cusp' in [271.) In [27, Proposition 9] it is 

shown that such an operator is Fredholm in L 2  if and only if it is fully elliptic in the 

following sense. First, (4.14) must be elliptic in the usual sense over X°. This will 

always be the case for Dirac operators. Secondly, the associated indicial family must 

be invertible on every fibre p 1 (y) C DX. Given such a fibre, the indicial family on 
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P-1 (y) is defined by picking a real number and a real cotangent vector 71 E TY, and 

defining 

14' (p) (Y,"7,0 = P(O,y,u;i(,iii 3 O) 

as a differential operator on p (y). To say that the indicial family is invertible is to 

say that L(P)() is invertible (in any reasonable space of sections over p'(y)),  for 

each choice of (y, r, ) as above. 

For our example, we work with the boundary-adapted coordinates x, Yi, Y2, xo  and 

denote the components of VA in these coordinates by 

VX = + A, V = aY + A 3 , V0 = O + A 0 . 

Relative to a suitable choice of basis for the spin-bundles, we have then 

A, - V + -y1xV1  + 72XVy2  + 'Y3x2Vx - i. 	 (4.15) 

Strictly speaking, we are making a choice of normal coordinates here; otherwise there 

will be additional zero-order terms coming from connection coefficients. Hence is 

a 4-differential operator as defined by [27]. Following the recipe for the indicial family 

for D, we obtain 

I(P)(,77 , ( ) = (V0 - i) + i(711y1 + 72Y2 + 03) 

where 771,772  are real numbers. This operator in C00(S/120)p*S(3) ® E00 ) is a sum of 

two terms B + A, where A = i(jyyi + 12'y2 + 03) is self-adjoint, B = V0 - i is skew-

adjoint and [A, B] = 0. It follows by considering (A + B)* (A + B) that (A + B)u = 0 

if and only if Au = 0 and Bu = 0. Now B has a non-trivial null-space only if E es'ng. 

Hence under the assumption of the Proposition, A + B is injective. Similarly the 

adjoint (A + B)* = A - B is injective, so that ' 	sing implies that the indicial family 

is invertible, and so 	is Fredhoim in L 2 . Conversely, if E sing, then B is not 

invertible, and nor is B + A when qj  = 0 = . So in this case D is not fully elliptic 

and hence cannot be Fredhoim in L 2 . This completes the proof of Proposition 4.11 

using material from [27]. 

The result that a WDO P is Fredholm if and only if fully elliptic holds in a very 

strong sense. If P has degree m then P makes sense as an operator between Sobolev 

spaces of degree 1 and I - m for all 1 E Z. Mazzeo and Melrose prove that if P is fully 

elliptic it is Fredholm between any such spaces, and the index is independent of this 

choice. In fact, they show that if P is fully elliptic, if P = 0, and if for some real in, 

E L 2 (X), then 0 e CcO(X) and 0 vanishes to all orders in x  at 09X. There is a 

similar statement for the cokernel. In particular, it follows that D is Fredholm as an 

operator 

W'(S 10  x R3, S+ 0  E) -p W ° (S 110  x IRE, S- ® 
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(i.e. restricted to X°) if and only if it is Fredhoim as a 'I'DO on X. These strong decay 

conditions also imply the following: 

Lemma 4.16. Let A, B be two caloron configurations on (IE, f), framed by (A, 4). 

Then D is Fredhoim if and only if D is Fredhoim. When the two operators are 

Fredholm their L2 -indices coincide. 

Proof: That D is Fredhoim if and only if D is Fredholm follows directly from 

Proposition 4.11. It remains to prove that the operators have the same L 2-index. 

Consider the linear deformation of A into B. This clearly gives rise to a norm-continuous 

path of Dirac operators between Sobolev spaces 

W'(X, TE (9 S, d) - W ° (X, E ® S, d1i) 	 (4.17) 

where d1i is the volume form d,ii = h1 h2 dx 0 dy 1 dy2 in terms of the usual boundary- 

adapted coordinates. However, X is equipped with the volume form dx 0 dx 1 dx2dx3 = 

near x = 0, so it does not necessarily follow that the deformation is norm-

continuous between 

W1(X,IE (D  S, 4d) - W ° (X,E ® S, 4 d1i). 	 (4.18) 

However, the decay properties stated above imply that D is Fredholm as an operator 

between spaces (4.17) if and only if it is Fredholm as an operator between spaces (4.18), 

and the index is the same. Thus the deformation from A to B preserves the L 2-index. 

We can prove the Lemma without using [27, Proposition 9] in fact. Let A(s) 

(1 - s)A + sB be the linear path joining A and B. Then 

ID 	- 	ii < Isi - S21 [IIA.0 - IBX0 II L 2 + IIx(A1 - By1)11L2 + A(Si) 	A(s2) - 

IIx(A2 - By2)11L 2  + 11x2  (Ax - Bx)11L2] 

using an expansion like (4.15) and working in some fixed gauge. It follows that the 

path of operators D (5)  is continuous provided IIA0 - IB XO II L2, IIx(Ay - By)IIL2, and 

11x 2  (AX  —Bx)11L2 are bounded. Since the volume form near the boundary is 4 dii, this 

follows provided we have pointwise estimates IA 0  —B 0 I, Ix(Ay3  —B )I, Ix2 (A—B)I = 

as x - 0. However, this is true because A and B are framed in the same way 

(using the smoothness assumptions of Section 2.1.6). 

4.2.3 Decay properties of zero modes 

We want to show that the solutions to DI' = 0 are exponentially decaying as r -p oc 

so that the Nahm matrices Tpi j = 1,2,3 are well-defined by (4.8). Define w, by 

wA(r) 
= Jexp—Ar when r > 1, 	

(4.19) 
some smooth non-zero continuation on r < 1. 
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Lemma 4.20. Fix some 	,j,,, and define 

M 	min{ltj +Njo — :j = 1,... ,n and NE Z}= distance 

If  e L 2  -ker 	then w. 1 V) is L 2  for all A E R such that 0 < A < M. 

This Lemma is certainly sufficient to deduce that the Nahm matrices are well-

defined. To prove the Lemma we introduce the 'weighted' operators 

LA = wDw 1 , and 

LA = w 1 DjwA. 

It follows that 

E L-ker Lj = 	wb E L 2-ker D 	 (4.21) 

provided A > 0. Next we prove that the weighted operators are Fredhoim provided 

IAI <Me : 

Lemma 4.22. 	is Fredhoim iff JAI <Me. 

Proof: Using the ideas in Section 4.2.2 we prove that the indicial family is invertible 

if JAI < M, which is sufficient for the claim. Take P to be the -differential operator 

L. Constructing the indicial family I(P) as described in Section 4.2.2 gives 

4(P) = (V0 - i) + ) l'l + i?72'y2 + Z(73 + A73 

as an operator on C00(S/,0,p*S(3) ® E), in some suitable choice of basis for the 

spin-bundles. We can perform a Fourier decomposition in x 0 : 4(P) maps each Fourier 

mode to itself, and on the N'th mode is given by 

4(P)N = 'I + iNpo - i + iiiiyi + ir72y2 + iC7y3 + A73. 

Moreover, 4(P) is invertible if and only if 4(P)jv is invertible for all N E Z. Working 

on the eigenspace of cI  with eigenvalue ipj  for some j e {1,... ,n}, 4(P)N is given 

by 

ipj + iN10 - i + ir,iyy + i72y2 + içy3 + Ay3 = 

(i + iNu0 - - iii 	 - + iA 

)2+' 	i1z+iNio—i+iii 

This matrix has determinant 

[i(1i3  + N1i0 - ) - 1}[i(i + N0 - ) + 7111 - [(iA - ) - i21 [(iA - ) + ii] = 

- (j + N1i0 - )2 _,q2 77 2  - + A 2  + 2iA( - ( 2 (4.23) 
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Hence L is Fredhoim if and only if (4.23) is non-zero for all j = 1,... , n, N E Z, and 

for all 771, ij, . However, the real part of the terms (4.23) is strictly negative whenever 

A 2  < (j + Njo - 

for all j and N, i.e. whenever I Al <Me. Conversely, when I Al ~! M there exist 17i,?72,( 

that make the determinant (4.23) vanish for some values of j and N. Hence L(P) is 

invertible if and only if J AI < M, completing the proof of the Lemma. 	 0 

Fixing some A with 0 < A < M and 	sing, LA is Fredholm and has the same 

index as D+ , since 	: 0 < s < 11 is a continuous path of Fredholm operators. It 

follows that dim L2-ker L ~! dim L 2-ker D. Combining this with (4.21) completes 

the proof of Lemma 4.20. 

4.3 The index theorem 

We want to prove the following: 

Theorem 4.24. Suppose (E, A) is a U(n) caloron configuration framed by A, cI.  If 

is Fredhoim then the L 2 -index isgiven by 

md D1 = —c2(IE,f)[X] - 	 cl (E ) )[Sj 	 (4.25) 
N 

where for each N e Z, E )  is the sub-bundle of E on which N1i 0  - 	 is positive 

definite. 

The Theorem implies the following: 

Corollary 4.26. Suppose (E, A) is a framed U(n) caloron configuration with boundary 

data (ko , k,uo, /Z). When E 'p°,N the index of D 	is given by 

md D = —rn 	 (4.27) 

for  = 1,... ,n and N E Z, where m is defined by (2.14). Thus the bundles X, withfi- 

bre coker 	have the correct dimension to correspond to Nahm data inJ((k o , ,[to ,fZ). 

To see that Theorem 4.24 implies the Corollary, replace A in the Theorem with 

A - iedxo and D... 	4),,, - i. Then, when e 'p,N it follows that E )  is the 

direct sum of the eigenbundles with eigenvalues ittl,. 	ip, while E )  is trivial for all 

k =A N. Hence cl (E ) )[SJ = k 1  + ... + k, and (4.25) becomes 

indD=—(ko ±k1±±kp) 

—m 

which is (4.27). 
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The proof of the Theorem involves two main steps. The first is a calculation of 

the index in the case that there is a trivialisation of IE in which A is independent of 

x0 . By Fourier analysis in 10, the index problem reduces to a problem on I1 which 

can be dealt with using Callias' index theorem, which we introduced on page 17. By 

a deformation argument, this calculation gives the index for any caloron configuration 

when C2 (E, f) = 0, completing the first step. The precise statement of Callias' theorem 

we will use is: 

Theorem. Let (A, ) be a U(n) monopole configuration on 
p3

framed by (A, (b) 

in the sense of Definition 2.4, and let 

DA, = DA + 1 ® : W 1 (]R3 , S( 3) (a E) - W ° (R 3 , S( 3) 0 E) 	(4.28) 

where S( 3) is the spin bundle on JR3 . Then DA, is Fredholm if 'J is invertible, and 

the index is given by 

md DA, = —ci(E,)[S] 	 (4.29) 

where Etc,  is the sub-bundle of E on which —iI is positive-definite. 

This follows immediately from Râde's version of Callias' theorem [38]. 

The second step in the proof of Theorem 4.24 invokes an excision theorem for 

operators of Dirac type due to Anghel [2] and Cromov—Lawson [14]. In our case, 

this result gives md (Di ) - md (Di ) = C2 (E, f)[X] if I is any caloron configuration 

agreeing with A near 9X but living on a new framed bundle (F, f), with c2 (F, f) [X] = 0. 

Since we calculated md (D) in the first step, that completes the proof of Theorem 

4.24. 

4.3.1 Proof when c 2 (E, f)[X] =0 

In this case, by Lemmas 2.20 and 4.16 it is enough to compute the index when E = p*E 

and A = p*A + p*dxo  is the pull-back of a monopole. Then the coefficients of D are 

independent of xo and we can use Fourier analysis in xo to reduce the calculation of 

the index to that of a collection of operators of the form (4.28). 

Let 

ZN = { = exp(iNp o xo )q : 0 E W ° (1R 3 , S (3)  (9 E)} 	 (4.30) 

so that 

W ° (S ®E) = {> 	
(N) : (N) E ZN and E 1 1V) ,N) 11 2  < 

NEZ 	 NEZ 
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using identification (1.16). Since by assumption the coefficients are independent of x 0 , 

maps ZN fl W 1  into ZN and, using (4.1), its restriction to this subspace is equal to 

DN : W 1 (S( 3) (DE) -' W ° (S( 3) ®E) 

DN=DA+iNpo+l® 

where DA is the Dirac operator on 1R 3  coupled to E via A. Using the statement 

of Callias' index theorem on the previous page, and using Proposition 4.11, DN is 

Fredhoim for every N E Z if Dt  is Fredhoim. Equation (4.29) shows that: 

md DN = _cl (E ) )[S] 

where E )  is the subbundle of E,,. on which (Nio  - i 3O ) has positive eigenvalues. 

Since Z3  fl Zj = 0 if j k, the index of D is the sum of the indices of the DN, i.e. 

md D = ind DN = _cl (E ) )[S] 

This sum is finite because E )  is trivial when IINII is sufficiently large. That completes 

the proof of Theorem 4.24 when C2 (E, f)[XI = 0. 

4.3.2 Proof when c 2 (IE, f)[X] 0 

Anghel [2], generalizing work of Gromov and Lawson [14], has given an excision theorem 

which compares the L 2 -indices of a pair of Dirac operators over a complete manifold 

that agree near infinity. In our case this result yields the following statement. Let IE 

and IF be a pair of bundles over X° and let A and TB be unitary connections on IE and 

IF' respectively. Suppose that there is a bundle isometry 0 : IF-IX-\K -f  1F'Ixov which 

carries A to lB outside some compact set K C X°. Then 

md D - md D 
= 	

ch2(E) 
- f ch2(F). 	 (4.31) 

We will deduce Theorem 4.24 by taking for lB a connection which agrees with A near 

00, but which lives on a framed bundle (IF', f) with c2(IF, f) = 0. This will complete the 

proof in view of the results of Section 4.3.1. 

Let (IE, f) be a framed bundle and A a framed U(n) caloron configuration on E. 

Let Aq be a quasi-periodic pull-back of A (in the sense of Section 2.1.4) with clutching 

function c. Let U be a neighbourhood of S.2  so that U = B \ K where K is a compact 

set K c Let Cext be a bundle isomorphism of Eq  that satisfies 

(c on(—f+E)xU, 
/'O 	'iO 

Cext1 onIE xS 00 

I i on 
(_C, 6) X  p3 
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and which is arbitrary elsewhere (compare with the proof of Lemma 2.20). By gauge 

transforming by Cext we can assume that c 1 on U. Define IB" on Eq to agree with 

A" on U, but extended over I x K to define a smooth quasi-periodic connection on Eq 

with trivial clutching function, C13. Note that Aq and Bq  are framed in the same way. 

Let (l, IF) be the quotient of by c, so that B is a framed caloron configuration 

with C2  (IF,  f) = 0. 

Applying (4.31), 

md D - md DI 
= 	

ch2(E) - 
	

ch(IF). 
 Ix 0 

But 

fX 0 	 Po 1 

ch(E) = —c2 (E, f)[X] - 	jci(E)[S] 

from (2.31), and 

	

fX 
ch(F)

0 	 [Lo 1 

01 

md D = md D - C2 (E, f)[XI 

From Section 4.3.1 we know that md D+ -N  ci  (E )  ) [S Ø ] so we have proved that 

md Dt = —c2(E,f)[X] - 	cl (E ) )[S] 
N 

This completes the proof of Theorem 4.24. 

4.4 Extension to the singular points 

The final problem we consider is how to prove the Nahm data constructed from a caloron 

satisfies the correct gluing and singularity conditions at the points = 

These conditions were specified in Sections 3.1.1 and 3.2.1. Nakajima [34, Section 21 

showed how to obtain the singularity conditions for Nahm data constructed from an 

SU(2) monopole, and our approach will follow his quite closely. Nahm data correspond-

ing to an SU(2) monopole cannot contain zero jumps, and at the two singularities the 

continuing component is trivial. (Recall the definitions of the terminating and contin-

uing components on page 53.) While Nakajima's method therefore helps us to recover 

the behaviour for the terminating component, it does not provide much insight into the 

continuing component. Hurtubise and Murray's proof [20] that the Nahm data con-

structed from on SU(n) monopole satisfies the gluing and singularity conditions uses 

the spectral curve of the monopole. No 'direct proof' via analysis of Dirac operators 
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exists to date. Indeed, the proof for calorons would follow quite readily from a 'direct' 

proof for monopoles. We start, in Sections 4.4.1 and 4.4.2, by considering the termi-

nating component for U(n) monopoles, using Nakajima's method and filling in some of 

the details he misses. In Section 4.4.3 we show how to extend these results for calorons, 

while in Section 4.4.4 we consider the continuing component, giving only sketch results 

and conjectures. 

The main idea is that solutions to 	are characterized by their asymptotic be- 

haviour on S 110  x 1R3  close to each E sing Suppose that is close to j and let 

= - I.Lp (we will use this definition of t for the remainder of the Chapter). We saw in 

Section 4.2.3 that 0 E coker D decays at least as fast as exp(—rItI) as r - 0. We will 

show that solutions in the terminating component at t1, are of the form exp(—rItI)  x 

(non-L2  function), while the motivation behind our results for the continuing compo-

nent is that the corresponding solutions decay like exp(—rlt + al) for some a 0, and 

so continue across = as L 2  sections. 

4.4.1 The model operator for monopoles 

We need to recall the boundary conditions for U(n) monopoles from Chapter 2 and 

the definition of the Nahm transform for monopoles. Let (E, A) be a U(n) monopole 

framed by with boundary data (k,)7). Just as in Section 2.1.6, we need to 

assume some additional smoothness conditions near the boundary. We assume that 

there are local gauges on E, defined over some region 0 < x < 1/R in which 

• 1 = diag(ifLl,... 	- diag(ik i ,... ,ik)+ O( 2 ), 

• A yi _diag((Dy3 ep ,ep))+O(x 2), j1,2, 

• AX  is diagonal on S, and 

O • 	isC and AisC' 1 . 

These are entirely analogous to the smoothness conditions we assume for calorons in 

Section 2.1.6 (compare with equations (2.24) and (2.25)). Next recall the definition of 

the Nahm transform for monopoles given in Sections 1.1.6 and 1.1.8. The transform is 

given by the cokernel of D as defined by equation (1.28), and the Nahm data is defined 

by equations (1.30) and (1.31). 

Fix a singularity = ,a,, with k > 0, and let k = k and t = - p. Nakajima's 

method is similar to the way we recovered the boundary conditions in Chapter 3. We 

define a model operator D that approximates DC  and find k solutions to D/' = 0, 

defined on some neighbourhood t e (—E,0), for some € > ü. We then show that these 

solutions are arbitrarily close to solutions to D?/' = 0 in the limit t - 0_, thereby 

recovering the terminating component. 
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The definition of the model operator uses the following facts about Dirac operators 

on S, taken from [34]. The spin bundle S(2) of S.2,, decomposes into two line bundles 

) S and there are two Dirac operators S(2) = S  

C°°(S O ,S ) ) —4 

As previously, we can identify S,2,. P 1 (C). Then 

S )  A °" ® H' H and S )  A °'°  ® H' H 

where H is the hyperplane bundle on P, (C) and AM is the space of (p, q)-forms. There 

is an identification A °" H2  so A°" ® H' H2  ® H' = H. The Dirac operator 

D is then a multiple of the Cauchy-Riemann operator: 

D : S )  A° ' °  0 H— 1 - A° ' 1  ® H 	S. 	 (4.32) 

Similarly, we can consider the Dirac operators coupled to the line bundle Hk  via the 

homogeneous connection a k  on Hc,  which we denote 

C°°(S O ,S )  ®Hk) —+ COO(S O, S )  ®H). 

Equation (4.32) becomes 

	

D : S )  0 H  A ° '°  ® 
k 1 2 H - — A'01 

 ® H
k 1 	® Hk. 

ak 	 (2) 

so ker D = H°(Pi (C),O(k —1)). 

Next, consider M = (R, oo) x S.2  equipped with coordinates r, y,, y2 and the metric 

dr2  + r 2  (h i d y ?  + h2 dy) 

(compare with the notation at the start of Chapter 2), so that M is isometric to 

whereis the closed 3-ball with radius R. Let p be the projection g : M - S,. The 

spin-bundle of M is isomorphic to *S(2).  Under this identification the Dirac operator 

on M is given by 

— 

D 	
(i(,9,+1) 

M —  71  D+ i(ar  + )) 	
(4.33) 

in some suitable local gauges on Sm ) , where D±:  S )  __4 S are the Dirac operators 

on S. When we couple the Dirac operator on M to p*HIc  via the connection *ak , 

equation (4.33) becomes 

DM,Hk = (
io+) 	\ 	 (4.34) 

a 
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With this background material established we are in a position to define the model 

operator. Given E - S,2, we work on the pull-back 	Recall that 4 decom- 

poses E into eigenbundles, E = Lk 1  ED ..• 3 Lk. where Lk 3 	Hk and k 1 ,... , k 

are the monopole charges. For each p = 1,... , n define 

(DP)* F(M, 2*S(2)  (9 p*L) 
- r(M, Q*S ® * L) 

(DP)* = —i(t - - 	+ 
2r 

aj 
- 

	

I-Lp 

	

1 D 
7' 	

k2)) 	(4.35) 
Jç  - 

	

7' 	a, 

where DMHkP  is defined by (4.34). Using the decomposition of E into line bundles, 

we can define 

F(M, 0*  S(2)  (9 p*E) - r  Q*  S(2)  0 o*E) 

	

D = (]31)* 	.. . 	(D 	 (4.36) 

Fixing some identification of El m  with p*E  and working in the local gauges on E in 

which A and 4) satisfy the asymptotic conditions stated at the start of this Section, we 

have 

D=DA-(D+i 

= diag(Dkl ,... ,DMHk) +idiag( 	
k1 

- i + 	,... , - n + k ) + O(r 2 ) 

=D+O(r 2 ) 
	

(4.37) 

Since D is given so explicitly, we can write down solutions and these will be our 

approximate solutions to D. Working near the singularity = 	(with k 	k > 0), 

is given by 

r 

i ( ôr 

!D,-,k 

k-2) ) 	
(4.38) 

+t+  r ak 

on *Lk. Now ker D = H°  (Pi  (C), O(k - 1)), and every element f = f(yi, Y2) E ak 
ker D determines a solution of (4.38) of the form ak 

= ((exprt)r(k)/2f(yi,y2)) 	
(4.39) 

Note that these solutions are L 2  when t e (-c, 0) but fail to be L 2  when t e [0, ). Since 

H°  (Pi (C), O(k - 1)) is k-dimensional (when k > 0), taking an orthonormal basis gives 

k linearly independent orthogonal solutions to D/' = 0 of the form (4.39). Smoothing 

these off by a bump function 

	

O(r) ={1 
	

r>R+5 

0 r < R 
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and identifying E = ptE over r > R gives the approximate solutions 0 1,... , Ok 

associated to the terminating component at = j. Note that the approximate solu-

tions are orthogonal (because the basis of H°  (P 1 (C), O(k - 1)) is orthogonal), but not 

normal. 

We need some estimates as to how closely 'iIi,... , ~k approximate solutions to D. 

Now 

I 2 dr < IIjIl2 <cL(exp2rt)rk_2 r2  dr 

for some constant C (used throughout in the generic sense), where 6 was used to define 

the bump function 0 . These integrals are the same (up to a change of variable) as the 

integral Jk  defined by (3.69). We could estimate them using integration by parts, just 

as we did on page 81, but this time around it is easier to change variable to u = rt, 

giving 

00 	 k 	 00 	 k 

	

cI(R+ 6)t 
(exp2u) 	du < IljII2 ~ cJRt 

(exp2u)_ du. 	(4.40) 
 - 	tk+1 

	

Similarly, since 	= 0(r 2 ) x j,  we have 

	

 
k-4 	 - 	 k-4 

C (exp2u)— du IIDlI2 C 
 

	

du. 	(4.41) 

	

f(R+,5)t 	 JRt 
 

Together, equations (4.40) and (4.41) give 

IIDbjIIL2 < Ct2 IjjIIL2 

whenever k > 3, because the limits 

lim 
JR t

(exp 2u)uC_4 du and lim 
JRt

(exp 2u) uk du 
t—O_ 	 t40_  

both exist. However, this estimate does not hold in the cases k = 1, 2, 3 because the 

limit on the left does not exist—note that Nakajima does not point this out. For the 

cases k = 1,2,3 the estimates (4.40) and (4.41) give 

—1 

-

4 
IIDjIIL2/IIjIIL2 	t2(A+B 

[ 

u k 	du) 
1/2 
	 (4.42) 

J Rt 

for some constants A, B, where '-S-"  means that for sufficiently small t there exist A, B 

such that LHS>RHS and there exist A, B such that LHSRHS. Evaluating the integral 

in (4.42), the RHS becomes 

t 2 (A + BtIc_3)1/2 

when k = 1, 2, and 

t2 (A + B log t)" 2  
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for k = 3. Thus we obtain 

{ C I tl 	 when k=1 

when k = 2 	
(443) 

	

IID1jIiL2/Ih1'jiIL2 	Ct(log I 
ti)"2 	when k = 3 

Ct2 	 when k> 3. 

Note that, by very similar estimates, 

Ir'ljiiL2 = 11aV)iiL2 '- CItI'iII'jiIL2 	 (4.44) 

as t - 0_. At this stage it is convenient to normalise the approximate solutions 

p = 1,... , k, so that they are of the form 

C'(r) 
((exp rt)r(k_2)/2fp(y1, Y2)) 

where C, = 

4.4.2 The terminating component for monopoles 

We want to use the approximate solutions to recover the terminating component of 

the Nahm data. The method used is very similar to the proofs of Propositions 3.83 

and 3.110. First, however, we need the following results from [34]. 

Lemma 4.45 (Nakajima). For any w E L2 (1R 3 , S(3)  (9 E) we have 

D(DD)'wII L 2 < citi - ' IIWIIL2 

for some constant C and all t E (—e,0), where t = - 

Proof: Since D is injective and Fredhoim on t E (—e, 0) for some sufficiently small e, 

(DD) is invertible and 

:z= (DD'w 

exists. (Nakajima gives a rather more involved argument.) For sufficiently large R and 

small ItI, 

	

t 	<2(I - 

B 3 	° pointwise on R/I
C tI := 1R  

t 2 Ii 2  dV < CII( - iII 2. 
JrBcR1  

Using Holder's inequality and the Sobolev inequality, Nakajima obtains 

	

ti2 [ 	iI 2  dV 	CII VAlI2. 

MCI  



(Note that these inequalities hold for any .) Combining the inequalities gives 

kPiiL2 < Ct1 iiDiiL2 	 (4.46) 

since 

iD'iI2 = lIVAIl2 + iie' - i)II2. 

Substituting (4.46) into 

IIDiI2 = (DD(p,ço) 	IIc°Iiv X  iiw11L2 

gives 

DpI2 < CItI 1 IIwIIL2 

proving the Lemma. 

	

Corollary 4.47. When k> 3, the approximate solutions 'i,... , 	satisfy 

10 - 15)''A L2 < CIti L)jiiL2 

as t - O_, where P = Pe is the L2  projection onto ker D. We also have 

Iciti log It II)j II L 2 	when k = 3 
11 ( 1  - P)j 11L2 	

lCItI h/2  ijiiL2 	when k =2. 

Proof: Put w = D,*4'j in Lemma 4.45 and use (4.43). 

Note that (contrary to Nakajima) we do not obtain an estimate 11 (1 - P) iiL2 .- 0 

as t -p 0_ in the case k = 1. However, we expect the case k = 1 to be exceptional: 

when k = 1 the irreducible representation of zu(2) is trivial, so the Nahm data should 

be analytic (rather than meromorphic) in t near t = 0. We therefore have to deal with 

the case k = 1 separately—see the remarks in Section 4.4.4. 

Lemma 4.48 (Nakajima). Let R3  be the endomorphism of H°(P i (C),O(k— 1)) de-

fined by 

(Rfi,f2) 
= Ip 	

(ixf1,f2) 
j (C)  

for  = 1,2,3 where x3  is the standard cartesian coordinate on P1 (C) = S2  C 1R 3 . Then 

a non-zero constant multiple of the linear map 

	

A171 + A 2 72  + A 373  - A1R1 + A2R2 + A3R3 	 (4.49) 

defines an irreducible k-dimensional representation of zu(2). 

M 
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Proof: See the Appendix to [34]. 	 0 

We are now in a position to prove the following: 

Proposition 4.50. Given a Bogomolny monopole (A, 1) with boundary data (k, )!), 

then for any singularity = jLp  with k := k > 2 there is a parallel gauge defined on 

some neighbourhood t := ( - ) E (—c, 0) of the singularity in which the matrices TPI 

j = 1,2,3, defined by (1.31) decompose as 

m_ 1 	-i---- k, 

Ti — " 	
* 	 * 	 mr_ i  

p - 	
* 	R/t + B(t) ) 	k 

such that 

R, R, R P3  form an irreducible representation of su(2) following equation (3.2), 

and 

in the limit t - 0 we have 

B3(t){0(t0) 	when k> 3 (i.e. B3  is bounded) 

= O(t/2 ) when k = 2 or 3. 

We make no claims about the entries marked * at this stage. 

We deal with the top left block (the continuing component), and discuss the off-

diagonal blocks, the case k = 1, and analyticity in Section 4.4.4. Of course, to satisfy 

the conditions for Nahm data stated on page 50, B3 (t) must be analytic—so in the 

cases k = 2,3 it seems disturbing that we can only prove B3 (t) is 0(t 1 / 2 ). However, 

Nahm's equations impose additional strong conditions on B3 , which we will discuss 

in Section 4.4.4. Note that an entirely analogous statement to 4.50 holds for k < 0, 

essentially by replacing t with —tin the proof of the Proposition. 

Proof: The proof has two main steps. First we work in the 'approximate gauge' 

,'i/'k and evaluate the matrices 

(00a ,'çbb)L2 and (iXj/ a ,/'b)L2 for j = 1,2,3, 	 (4.51) 

where a, b E {1,... , k}. Then, using Corollary 4.47, we use the approximate matri-

ces (4.51) to deduce that the Nahm matrices decompose as described in the claim. 

First consider evaluating the matrix with entries ((Wa, bb) L2. Since 3 /a 

I)a is orthogonal to /b  when a b because ía  is orthogonal to fb,  and the matrix is 

diagonal. Moreover, because ',b1,... , bk is an orthonormal set, the diagonal entries are 
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imaginary. On the other hand, the integral (r'/ a , '/-'a)L2 is real, and so the matrix must 

be zero. Also 

f ° dr 02 (r)(exp2rt)r' fP(c)dA (ijfa,fb) — 
(Xja,b)L2 — 
	 fdr 02(r)(exp2rt) rk 

where 	= x3  /r is the j'th unit coordinate function on P i (C), and Ia, lb E H°(P i (C), 

O(k — 1)) were used to define the approximate solutions. Substituting u = rt into the 

integrals, we obtain 

JR
'OO 	2' ar q5  (r)(exp2rt)r 

= at-
fZ 

 
dr 02 (r)(exp 2rt) r c 

for some non-zero constant a. Defining the matrix R?,  by 

(R) ab=a f 	dA(j f a , fb) 
JP 1 (C)  

we have 

(R j ) ab 
(ZXjiI' a ,V'b)L2 = 	

t 	
(4.52) 

and Nakajima's Lemma 4.48 implies that some non-zero constant multiple of the 

map (4.49) (with R := R) is an irreducible k-dimensional representation of su(2). 

Corollary 4.47 shows that the projection P on to the cokernel of D6  satisfies P = 
(1 + decaying term) on the span of 'i,... , 'q.',. Just as we did in Proposition 3.110, we 

can replace P with its unitarization P,  so that 

Pu1+Q(t) 

on the span of 'i,...  ,bk, where 

= 
Q(t) 

{O (t) 	when k> 3, and 

 0(t'/2 ) when k = 2 or 3. 

We can in fact obtain a better estimate in the case k = 3, but the estimate above is 

sufficient for our purposes. Next define 

PUa. 
	 (4.53) 

It follows that 	, çbj is an orthonormal set of sections of the bundle X defined 

over some neighbourhood t E (—a, 0). The set can be extended by mr_ i  further sections 

to give a local trivialisation of the bundle X,. 

For the time being we will assume k > 3 and return to the cases k = 2,3 later. Now 

= (0u1Ja  + 5(',ba — b.), ,bb + (bb — Q) L2 

= ((a - ba), bb) L 2  + ( a — rna), (bb - b))L2 + (D a , (bb — b))L2, 
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because (Dba,bb)L2 = 0. The first term is bounded as t - 0_ because i/— = 0(t). 

Similarly, the second term is 0(t), and the third term is bounded by 

II0I'aIIL2 x 110b - bbIIL2 < Ct 1  x 0(t) 

using (4.44). Thus we obtain a bound 

I(00a,442I < C 	 (4.54) 

on t E (—€,0) for some fixed C. Note that this bound might fail to hold in the cases 

k = 2, 3 due to the weaker estimates. Let To be the matrix with entries (5 'a, 442 . 

Then the gauge transformation 

g(t) = expf T° (s) ds 

satisfies 

g(t) = 1 + 0(t) 
	

(4.55) 

because To  is bounded, and maps 'v'],... , Ok to a unitary parallel set of sections. We 

will apply the gauge transformation later. 

Next we consider the endomorphisms T, j = 1,2,3. Extend 0 1 , 	 ,"I'k by mr_i 

further sections to form a gauge for X on t E (—f, 0). In such a gauge the endomor-

phisms are given by 

(Tj ) ab = (jXjba ,'I)b) L 2 

= (j a  + ixj(I)a - Ia))I'b + ('b - Ib))L2  

- (R3p ) ab 
t 	

+ (ix, (bb - I)b))L 2  - ((Oa - a),XjPb)L2 	(4.56) 
-  

using equation (4.52). From (4.44), IIZX jaII L2 = 0(1t11) and so 

IIX jaII L 2 = Ijix(1 + 0(t))baIIL2 = 0 (1t1 1
) 

Thus, estimating the RHS of (4.56) gives 

(Tp3  ) ab _ 
- (R3p ) ab 

+ B(t) 	 (4.57) 

where B3  is bounded as t -* 0_. Moreover, gauge transforming by g(t) into a parallel 

gauge does not alter the form of (4.57) because g(t) has the form (4.55). Nahm's equa-

tion implies that multiplying the map (4.49) by —2 gives an irreducible k-dimensional 

representation of u(2), as in equation (3.2). This completes the proof when k >3. 

For the case k = 2 or 3 the analysis is very similar. Equation (4.54) becomes a 

bound l(8 I'a,I'b)L2I = 0(t 1/2 ), and the gauge transformation to the parallel gauge, 
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equation (4.55), becomes g(t) = 1 + 0(t'/2 ). Estimates on (4.56) give Tpj  of the form 

(4.57) but with B3 (t) = 0(t-112 ). Gauge transforming by g(t) does not alter the 

form of this expansion, and Nahm's equation fixes the constant for the irreducible 

representation. 

We leave monopoles at this point to prove an analogue of Proposition 4.50 for 

calorons. 

4.4.3 The terminating component for calorons 

We prove the following analogue of Proposition 4.50: 

Proposition 4.58. Given an anti-self-dual caloron (E, A) framed by (A, 'I) and 

with boundary data (ho, , uo, /1), then for any singularity 6 = I-tp  with k := k> 3 there 

is a parallel gauge for X, defined on some neighbourhood t := ( - ,a) E (-c, 0) of the 

singularity in which the matrices T, j = 1,2,3, defined by (4.8) decompose as 

m_ 1 	
•- k,, 

T3  _ ( 	
* 	 * 

	I mp-1 
p - 	

* 	R/t+B(t) ) 

such that 

R, R2 
7 
R form an irreducible representation of zu(2) following equation (3.2), 

and 

in the limit t -* 0_ we have 

B3(t){O(t0) 	when k> 3 (i.e. B 3  is bounded) 

= O(t'/2 ) when k = 2 or 3. 

This follows almost directly from Proposition 4.50 applied to the Fourier modes of 

because up to O(r 2 ) a caloron is the pull-back of a monopole configuration. We 

can extend the framing from the boundary to the whole of S 1110  x M, and apply the 

"3+ 1" decomposition (4.6) to define A, 4. However, up to 0 (r 2 ), A and 1 are exactly 

the same as a monopole configuration framed by A, I. Using (4.1) and (4.37) we 

have 

D=-& 0 +DA-+i 

= -Ox , + D + 0 (r_2) 

131 



where 	is the monopole model operator determined by A c,o , 	. Identifying the spin 

bundles S of S2', 110  x M with S(3)  and using the Fourier decomposition (4.30) gives 

DIZN = —iN ji + j3*  + O(r 2 ) 

We therefore take the model operator for 	to be —iN,0 + 	on the N'th Fourier 

mode. 

Working near the singularity = ,i the approximate solutions 'j, j = 1,... , k, 

defined in Section 4.4.1 pull-back to S2' 10  x M and satisfy = O(r_2 ) together 

with the analogue of the estimates (4.43). The proof of Lemma 4.45 goes through, 

replacing D with and taking w E L 2 (S 10  x 1R3 , S ® E), as does the proof of 

Corollary 4.47. The proof of Proposition 4.50 then gives 4.58 directly. 

4.4.4 The continuing component and decomposition for k 0 

We want to show that the continuing block of the Nahm data constructed from a 

caloron is continuous across singularities with k 	0, and obtain the full decomposition 

of the Nahm data at such a point, as described on page 50. While we also want to 

obtain the corresponding decomposition at zero jumps, this Section concentrates on 

the case k 	0 and we will only make some brief remarks about the zero jump case. 

At present, obtaining the decomposition of monopole Nahm data at singularities via 

analysis of the Dirac operator is an open problem (of course, Hurtubise-Murray obtained 

the decomposition via spectral curves). It should be clear that if we could obtain the 

decomposition of the Nahm data constructed from a U(n) monopole—defining the 

Nahm data via the coupled Dirac operator rather than via spectral curves—then the 

caloron case would be very similar. For the remainder of this Section we therefore 

concentrate on the simpler case of U(n) monopoles rather than calorons, although our 

conjectures and results will apply to calorons in an obvious way. Fix a U(n) Bogomolny 

monopole (A,) on a bundle E, framed by 	and with boundary data (,/7). 

Let De  be the coupled Dirac operator defined by (1.28) and let {X, V, T : p = 

1,... ,n —1, j = 1, 2,31 be the Nahm data defined in terms of D: X - ([Lp+1,Iip) is 

the bundle with fibre coker D while V and T, T, T are defined by (1.30) and (1.31). 

The full claim we want to prove is: 

Claim 4.59. Let 	be a singularity with k > 0 and let t = - ,a,. Then there is a 

parallel gauge on X,,_1  for some neighbourhood t e (0, e) in which the limits 

TJ ' j  = lim T_ 1 	 (4.60) 
t—*O+ 

exist for j = 1, 2, 3, and T_ 1 (t) is analytic. Similarly, there is a parallel gauge on X, 

for some neighbourhood t e (—e,  0) in which there is a decomposition 
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•— m 1 .- k, -- 

m_ 1 
Ti - ( T

7 'j + 0(t) 	0(t('P1)/2) ) 

	k, 
p - 	

0(t(kP_ 1 )/ 2 ) R/t + 0(1) 

The upper diagonal block is analytic in t = - ; the lower diagonal block is mero-

morphic in t; and the off-diagonal blocks are of the form t(1cp)/2  x (analytic in t). The 

residues R define an irreducible representation of zu(2). 

Working with the fixed monopole (A, 4), fix some p p  with k := k > 0 and let 

m := mp_1. It is easy to show that away from the singularities {i,... , solutions 

to D decay at least as fast as exp(—rItI) as r —p QQ by a calculation analogous to that 

in Section 4.2.3. On the other hand, the 'Nakajima solutions' ... , 4'j that determine 

the terminating component at I.Lp  are of the form exp(–rItI)  x (non-L 2  function). The 

following conjecture is based on the idea that solutions in the continuing component 

decay like exp(–rlt + cVI) across t = 0 for some c 	0, and are in some sense small 

in the eigenbundle with eigenvalue lip . Let 	,/'k be the exact solutions defined 

by (4.53) that determine the terminating component. 

Conjecture 1. There is an orthonormal set {'/-'k+1, 	, k+.} of maps 

(—e, €) - L 2 (R 3 , S( 2) 0 E) 

such that for allj = k+1,... ,k+m: 

0j (t) E coker D when t 0, 

(t) is continuous in t 

for all t e (—€,c), Oj (t) vanishes to all orders of r in the limit r - oc, and 

for all i = 1,... , k and t E (—e,0), 0i  ( t) is orthogonal to Oj  (t). 

If Conjecture 1 holds, then using Proposition 4.50 the following Conjecture imme-

diately holds: 

Conjecture 2. There is a parallel gauge on X,,_1 for some neighbourhood t E (0, e) 

in which the limits Tj defined by (4.60) exist. There is also a parallel gauge on X 

for some neighbourhood t E (—€, 0) in which the Tidecompose as in Proposition 4.50, 

except the top left-hand block has the form T ± 0(t). 

Proof: Condition 3 of Conjecture 1 ensures that (iXja, 442 exists for all t E (–e, e) 

and a, b E {k+1,... , k+m}, and is continuous in t. Moreover, transforming to a parallel 
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gauge cannot introduce any discontinuities, because (fixing To to be the matrix with 

entries (Oa, b)L 2 ) the gauge transformation exp f T° ds will always be continuous, 

even if To is discontinuous. 	 0 

We can provide some evidence to support Conjecture 1. Recall the model operator 

D defined by (4.36). If Conjecture 1 does not hold for D (in some sense) then we 

cannot reasonably expect it to hold for De,  so we should try to understand the behaviour 

of the solutions to near the singularity p p . First consider the component (D)*  of 

D defined by equation (4.35). Consider a separable solution of the form 

(f(r)u(y i , Y2)\ '1'(r,yl,y2) 
= g(r)v(y1,y2)) 

. 	 (4.61) 

This is a solution if 

((P+f)u + g(D;,v)'\ 
- 

f(Du) + (Pg)v) - 
ak 

where P = i(r0r  + rt + (k + 2)/2) and P = i(-r0 + rt + (k - 2)/2). We therefore 

have 

(0 D(u( 0(u 

ak 
0)v)O p)v 

for some constants A, [L, and 

7 o p-\ 	0 \ (f\ 
(4.62) 

P+ o) g) = 0 -) g) 

It follows that 

	

DDu = A1iu, 	 DDv = v, and 	(4.63) 

	

PPf = tf, 	 PPg = g. 	 (4.64) 

The values c = 	are fixed by the spectrum of the operator D;, D, which has a 
 ak 

complete set of orthogonal eigenvectors. Given any non-zero .\, ,a, equation (4.62) can 

be solved explicitly using Maple: the solutions are Whittaker functions with argument 

= 2rt (see [1, Section 131 for a description of Whittaker functions and their asymptotic 

expansions). In the limit r - 00 these have the form 

(exp(-rt)) x (1 + lower order terms) 

for t <0, and so are not normalizable. However, when A = = 0 the equations decouple 

and normalizable solutions for g exist—but these are just the Nakajima solutions. By 

completeness of the eigenfunctions in (4.63) and (4.64) we can assume that any solution 

to (b)* is a sum of terms of the form (4.61), and by orthogonality (D)* must kill 

each term in the sum. Thus we have shown that the only normalizable solutions to 
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(D)* on t e (—c, 0) are the Nakajima solutions. This analysis can be repeated for 

the other components (D)*  (q p) of D, and shows that their solutions decay like 

exp(—rI - /2q I) as r - oo. These solutions therefore form continuous families across 

t = 0 which satisfy the conditions of Conjecture 1. 

While this supports Conjecture 1, it certainly does not prove it. Given a family of 

solutions '(t) to that is continuous across t = 0, one might hope to use as an 

approximate solution, as we did for the terminating component, and show that = P 

is a continuous family of solutions to D. However, since '(t) decays like exp( —r t + I) 
for some /i 0 the estimates (4.43) do not hold, and we do not obtain (1 - - 0 

as t - 0. Nakajima's analysis is therefore insufficient to prove that the family P(t) is 

continuous across t = 0. In any case, there may be the wrong number of solutions to 

to match the expected rank of the continuing component. 

An obvious approach to proving Conjecture 1 is to use weighted operators, like 

those in Section 4.2.3, using the weighting to kill off the solutions corresponding to the 

terminating component. Consider the operators 

L = wADw' and  L,A = w 1 Dw,\ 

where w is defined by (4.19). If we take A to be some small positive constant then, 

given the Nakajima solutions 01,... , Ok of D, 	 ,wA "cbk are solutions to 

but are not L 2 . In other words, by weighting we have removed the Nakajima 

solutions from the L 2-kernel. If we could prove that L was Fredholm with L 2-index 

m for t E (—e, c), then a trivialization 0k+1 (t), , '"i+. (t) of the L 2  kernel of LA 

would give rise to a set of solutions to D satisfying the properties in Conjecture 1. 

Unfortunately, a calculation of the indicial family like that in Section 4.2.3 shows that 

LA is not Fredholm when t E (—A, A), and so the strategy fails to work. 

Obtaining the continuing component at a zero jump presents further difficulties, and 

we will not be so bold as to make a formal conjecture as we did for k 0. Given a zero 

jump tip , we would not expect to find families 1 (t),... , 0,(t) defined on t E (—e, e) 

satisfying conditions 1, 2, and 3 of the Conjecture, since the Nahm matrices would 

then be continuous across the zero jump. One possibility is that there are families 

1 (t),... ,bm (t) defined on t e (—e,e) satisfying conditions 1 and 2 but not 3. This 

would imply that the matrices (T) ab = ( Xj'Pa, b)L2 do not exist at t = 0 (because 

Xj,b a  might fail to be L 2 ), while the limits as t -p 0 from either side could exist but be 

different. Beyond this remark we will not consider zero jumps further. 

The final step is to go from Conjecture 1 and Proposition 4.50 to the full decompo-

sition 4.59. We make the following: 

Conjecture 3. Given that the data V, T, T, T satisfy Nahrn's equation on the 

interior of each interval I, we obtain the full decomposition 4.59 from Conjecture 2. 
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Conjecture 3 follows immediately from: 

Conjecture 4. Suppose we have a rank (m + k) solution V, T', T 2 , T3  to Nahm's 

equation on a bundle over the interval t E (0, e), where m, k > 0. In addition, suppose 

there is a parallel gauge in which the T decompose as 

in --- 	 k 

	

/ Si+o(t) 	* 	\ jm 
T3(t)=( 	 J + 

* 

 

Ai (t) 	I 	k 

where Siis some fixed skew-hermitian matrix and A 3  satisfies 

	

Ri/t + 0(1) 	when k > 3 

Ai(t) = Ri/t + 0(t-1 /2 ) 	when k = 2 or 3 

could be unbounded when k = 1 

as t -~ 0. Here R', R2 , R3  define an irreducible representation of zu(2) in the usual 

way. Under these assumptions it necessarily follows that 

the top left-hand block is analytic in t, even for k = 0, 

the off-diagonal blocks are of the form t(c_l)/2  x analytic function, and 

Ai (t) is meromorphic when k> 1 but holomorphic when k = 1. 

Conjecture 4 should be relatively easy to prove, and elements of a proof already exist 

in the literature: [19, Section 21 contains related results. The main assertion contained 

in the Conjecture is that when k = 2,3 and Ai (t) = Ri/t + 0(t— '/2 ), Nahm's equation 

forces A (t) to have the form Ri /t + 0(1). This is more straight-forward to prove when 

m = 0, according to the following outline. Suppose that the matrices T', T 2 , T3  have 

rank k = 2 or k = 3, solve Nahm's equation (with V = 8) on (0, €), and have the form 

R Qi 
T3 =— + — j + higher order terms. 

It follows that 

 - Q' + RQ 3  + Q2 R3  - R 3 Q2  - Q3R2  = 0 	 (4.65) 

and the two equations obtained from cyclic permutations of {1, 2, 3}. In the case k = 2 

we can express each Qi  as a sum >gQily1  and assume = —yj for j = 1,2,3. 

Substituting this into (4.65) and the other two equations, it is easy to show that Qil = 0 

for all j , 1. A similar proof using more sophisticated representation theory should work 

for the case m = 0, k = 3. However, when m > 0 the off-diagonal blocks make the 

Conjecture harder to prove. 
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To conclude this Section we return to calorons to give a precise statement of our 

results concerning the transform from calorons to Nahm data. Our aim was to prove 

that the Nahm transform is a well-defined map from C*(ko,  /c, jio , 7) to A1*(ko , /c, yo, [1). 

We have proved that the transform of an element of C*(ko,  i, uo,  j7) consists of a well-

defined connection and endomorphisms {V p , T7  ,TJ ,TJ } on bundles X, - ( ip+1, iap) C 

IR/ oZ for each p = 1,... ri; that the data satisfy Nahm's equation; and that the data 

has the correct rank to be an element of .N*(ko, , , 7). To complete the proof we must 

also obtain the decomposition of the Nahm data at each point = , and prove that 

the Nahm operator constructed from the Nahm data is injective (since .Nt(ko, , yo , fl) 
is by definition the set of caloron Nahm data that determine injective Nahm operators). 

We have not addressed the problem of injectivity, but made some remarks about this 

in Section 1.4. Although the Conjectures above are stated for U(m) monopoles they 

also apply to calorons in an obvious way, and assuming they hold, we have obtained 

the correct decomposition of the caloron Nahm data at singularities with k 0 0. We 

refer the reader back to Section 1.4 for remarks about the invertibility of the transform 

and problems that could be tackled with the Nahm transform in place. 
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Glossary of Notation 

xo, x 1 , x2 ,x3  standard coordinates on ii 5 
* Hodge star operator 6 
*3, *4 Hodge stars on R 3  and jj4 7 
(A, cI) monopole configuration 7 
S+, S-  spin bundles on I, Si  x Ii 3  or 4-torus 9 

spin matrices 9 
F(V) sections of a bundle V 10 
D, D Dirac operators coupled to connection A 10 
5(3 ) spin bundle on R 3 11 
T, T* the torus 1 4 /A and its dual 11 
S, S spin bundles on the dual torus 11 

coordinate on the dual torus 11 
WFF without fiat factors 12 
D, D Dirac operators coupled to the fiat line bundle param- 12 

eterized by 
P = orthogonal projection on ker 12 
(IE, A) Nahm transform of (JE, A) 13 
D, D; Dirac operators coupled to the fiat line bundle param- 14 

eterized by x 

(, A) inverse Nahm transform of (E, A) 14 
T n the n-dimensional torus Si  x 	x Si 16 
X vector bundle on which Nahm data is defined 23, 27, 49 
VP  connection on X, 23, 49 
T3 P  Nahm matrices on X 23, 49 
LC the group of smooth loops in a group C 24 
L2 the Lie algebra of LG 24 
LC semi-direct product of LC and U(1) 24 
AO 27r/io  is the period of the caloron 25, 34 
Cl 1 	.ic/(21r77\ 

'27r//o 	' 	1o" 

(A, 1) a LSU(n) monopole 25 
I, The interval 1ILp+1, PP I 27 

the closed 3-ball 29 
C2 (E, f), C2 (E, f)[X] obstruction to extending the framing f to the interior 29, 36 

of E (the instanton charge) 

X X=S 1 x 3  34 
X° interior of X 34 
DX boundary 51  x S 	of X 34 
S.2 boundary of7y

3 
34 

P projection S21,1. x M - M for some manifold M 34 
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r, y, Y2 polar coordinates on R3 34 

x boundary defining function on B 	x =r 34 

E trivial U(n) bundle on 34 
E. E=EIS 34 
(A OO 	) connection and Higgs field on E00  34 

ILl,... 	, eigenvalues of (I) 35 
k 1 ,... , kn Chern classes 	of eigenbundles of 	(monopole 35 

charges) 

(, 	Z) monopole boundary data 35 

115 the interval (—E, 21r/ILo + E)  35 

Auto E unitary automorphisms of E that are the identity at 35 
infinity 

deg c degree of a map c: S3 —i U(ri) 35 
SAut0  E trace-free elements of Auto E 36 
k0  the instanton charge c2(E, f) 37 

(ko , k, yo, 7) caloron boundary data 37 

MP  rank of X, m 	EP k3  for calorons 37 

q the projection q 	i x 	
—~ 38 

Eq the trivial bundle Eq = q*E 38 
Aq a quasi-periodic connection on E,  often the pull-back 38 

of A 
Mon (k, /Z) space of monopoles with boundary data (, i) 39 

L(ko, k , po , 7) space of loops of monopoles in Mort(k, fl) with period 39 
1,Lo and degree k0  

C(X) functions with k derivatives in x  that are smooth up 40 
to the boundary 
space of 1-forms such that the dx component is C, 40 
while the other components are 

C(ko, k , po, j7) space of framed caloron configurations with boundary 41 
data (ko ,k,1i0 ,)Z) 

C*(k o , k , 	o,  7) subspace of ASD calorons 41 
ch(E, A) Chern character of the bundle and connection (E, A) 42 

Cl (L) first Chern class of a bundle L 43 

Pa the rotation map on sets of boundary data 45 

Pc the rotation map on caloron configurations 45 

residue in the terminating component of the Nahm 50 
data at 	=  pp 

8k irreducible (k + 1)-dimensional representation of su(2) 50 
T, T limits of the continuing component of the Nahm ma- 51 

trices either side of a singularity 

.A/ 0 (k, JZ) the set of monopole Nahm data with boundary data 51 
(k, fl) 

W - V the Nahm operator 51 
Coker L the cokernel of A(x) regarded as a bundle over 52 
P = P projection onto coker A(x) 52 

52 
Sobolev space of sections of Y with 1 derivatives in L 2  52 

L?(I) Sobolev space of functions on I, with I derivatives in 52 
L 2  
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L?[a, b] space of restrictions to [a, b] of distributions in L?(lf) 53 
L[a, b] space of distributions in L(1R) supported on [a, b] 53 
Supp f support of a function f 53 

W elements of W' with vanishing terminating component 53 
D(x) the operator iVy, + iT + x on Yp  53 

T the sum 	y, ® T 54 
Jq  subspace of l'j(q)  corresponding to the zero jump at 54 

/J q  

a vector in Jq  54 
irq (w) inner product of a vector w with q 54 

J the set of zero jumps {q: mq  = m q_i} 54 

Nzero  the number of zero jumps, Nzero  = 1.11 54 

-WM on (k, Z) monopole Nahm data not necessarily satisfying Nah- 55 
m's equation 

p* (k0 i, jij, jTZ) space of caloron Nahm data with boundary data 57 
(ko ,kj o ,)t) 

J/(ko, 	, 	, 	) caloron Nahm data not necessarily satisfying Nahm's 57 
equation 

v'", vcont continuing component of a vector or vector space 58 

R thesum 	-yj®R 59 
U, space of solutions to D(x) 59 

space of solutions to D (x) 60 
the adjointofi(x) 63 

W' the dual space of W 63 

(,)dual pairing of an element of W and an element of W* 64 

U,V, U,-w action of translation x0 i- x0 + 27/fLo  on V W 66 
r translation by one period in the x0 direction 66 

U = U,v 67 
rotation of Nahm data by /10/n 67 

(x) the model operator 68 

771,771 L basis of sections of the instanton block 69 
Xres the resonating point (Al + 27m//1o, 0,0,0) 70 

711M, 77 70 

deformation of the vector 70 

inner product of w with 70 

Bi m  4-ball round resonating point xr,s 70 
yI yM instanton and monopole blocks of 1' 73 
W = W1 Wm decomposition of W into instanton and monopole 73 

blocks 
I(x), LM(X) 	components of the model operator on the instanton 73 

and monopole blocks 
B(x) the off-diagonal block of the model operator 75 

Ji, Jiví zero jumps in instanton and monopole blocks 76 

Jo singularities in the Nahm data that are not zero jumps 76 
NI, NM Ni=lJIl and NM=IJMI 76 
rn, rn decomposition of the projection in into instanton and 77 

monopole blocks 
adjoint of the model operator 78 

A*(x), L 4 (x) adjoints of Al, 79 
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D* (x) the adjoint of D(x) 79 
i3 approximate solutions to the model operator 81-83 

Jk 81 

Hol(x) holonomy of z(x) 83 

v, p e J1 exact solutions to 	*(X)  corresponding to zero jumps 83 
in the instanton block 

P projection onto the cokernel of the model operator 84 

PU unitary approximation of P 84 

ti, 	CVn solutions to 	*(x),  'thy  = Pu b 85 

en  local trivialization of E - 85 

k 0  instanton charge of Coker z 87 

(Iso, Ao) caloron configuration with zero instanton charge, used 88 
to calculate k0  

() space of all (injective) Fredholm operators W -p V 95 
with index —n 

Pu unitary approximation to the projection P 101 

ii volume form 104 
inner derivative of a vector field a with a form 3 105 

sing esing = {it. + N 1u0 : j = 1,... , n and N e Z} 107 

'p,N I0 N(/ip+1+NIL0,/lp+NIio) 108 

X,N the bundle with fibre coker D 	over 'p,N 108 

VP,N,TN Nahm data on X,N 108 

the translation 	: 	'-p 	+ po 110 

U action of the translation 	as a bundle isomorphism 110 
on  

i; 110 

'I'DO 's pseudo-differential operators 112 

4(P) the indicial family of a 'PDO P 115 
'weighted' Dirac operators 117 

Dirac operator coupled to a monopole 122 

model operator approximating D 122 

S(2), S )  spin bundles S( 2 ) = S ) ED  S 	on S 123 

H hyperplane bundle on S2 
00 

123 

D Dirac operators on S.2  coupled to H' 123 

M M=R \B 123 
projection p M - S.2 123 
Dirac operator on M coupled to the pull-back of H   123 

01, 	J)k  approximate solutions to 	that determine the ter- 125 
minating component 
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