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Abstract. 

Foliar analysis has demonstrated a definite improvement in 

Sitka spruce (Picea sitchensis (Bong.) Carr) foliar nitrogen 

status in the presence of larch (Larix spp. ), for stands 

growing on nitrogen deficient deep peats in the absence of 

nitrogen fertilizer. This improvement is reflected in increased 

height and diameter growth, while estimates of stand foliar 

nitrogen capital suggest a greater quantity of nitrogen in the 

mixture tree biomass. 

Larch litterfall is an obvious nitrogen source for spruce 

in mixed stands. While larch foliar nitrogen levels may be 

high (1.82%), up to 74% is withdrawn or leached prior to 

abscission resulting in litter nitrogen levels of around 1%. 

Nitrogen cannot readily be leached from fallen larch litter 

(only 3.5%), although greater amounts of phosphorus (47.2%) 

and potassium (70.7%) are potentially leachable. A relatively 

greater quantity of nitrogen can be leached from larch foliage 

at a less advanced stage of senescence (15.9%). Throughfall 

fluxes for the period of abscission support these findings; 

larch foliage actually removes nitrogen from rainfall during 

senescence and does not become more leaky for this nutrient 

relative to Sitka spruce. 

Despite these findings, larch litter appears to be a more 

available source of nitrogen for Sitka spruce seedlings than 

spruce litter. While incubation of 8 month old larch litter de-

monstrated considerable nitrification which was not apparent 

for equivalent spruce litter. However, the total nitrogen return 

in larch litter, 6.8 kgNhayr in a mixed stand seems quant-

itatively unimportant. 

Field and laboratory incubations of peat and litter from 

spruce and larch/spruce stands indicated an annual net mineral-

ization of 28 and 60 kgNha 1 yr 1  respectively. Differences do 

not relate to microclimate and are substantiated by estimates 

of nitrogen availability based on plant uptake and ion exchange 

resin bags. Differences in total soil nitrogen were not apparent 

while attempts to chemically fractionate organic nitrogen pools 

were inconclusive. Nitrogen fixation was not detected. 
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Findings suggest that the presence of larch enhances the 

mineralization of native organic nitrogen, perhaps through 

a stimulatory effect of larch litter and the associated micro-

flora or the mycorrhizosphere. - 
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INTRODUCTION 

This study is concerned with the investigation of the apparent 

improvement in the growth and nitrogen (N) status of Sitka 

spruce (Picea sitchensis (Bong.) Carr.) when grown in mixture 

with Japanese (Larix kaempferi (Lambert) Carr.) or hybrid 

larch (L. X eurolepis Henry) on deep oligotrophic peat. To 

place the work in context the growth of Sitka spruce in its 

natural range is briefly discussed followed by a consideration 

of its growth and requirements in the United Kingdom. Finally, 

a statement of the reasoning behind the approach adopted is 

presented so that results given in later sections may be related 

to the problem as a whole. 

1:1 The growth of Sitka spruce in North America 

Sitka spruce is the largest member of its genus and occupies 

a narrow coastal range along the Pacific coast of North America; 

the species extends from northwestern California to southern 

Alaska, a distance of some 2900km (Fowells, 1965). 

Climatically, the range is dominated by the Pacific Ocean; 

the area receives winter rainfall which extends down the west 

coast from British Columbia to southern California, but inland 

only as a narrow strip to the Cascades and Sierra Nevada. 

The amount of rainfall declines from north to south being 

1050mmyr 1  at Vancouver but only 259mmyr-1  at San Diego (Walter, 

1979). Rainfall is so high in the north that summer drought, 

if it developes, is short-lived. Further south the growth of 

hydrophilic species, such as Sitka spruce, occurs only because 

of a fog belt generated by cool ocean currents. Sitka spruce 

is adversely effected by high vapour pressure deficits and 

is therefore sensitive to atmospheric drought, exhibiting early 

stomatal closure in response to stress and reduced growth 

(Grace et al., 1975). In southern California Sitka spruce growth 

is restricted to within 1 or 2km of the coast, further north 
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in Oregon and Washington it occurs 50km inland, and in Alaska 

200km inland. Locally, greater spread into the drier interior 

is restricted to river valley bottoms, at the southern extreme 

of its range growth only occurs along rivers and at. river 

mouths. 

Because of its coastal range, the species is restricted to 

low elevations; in southern Alaska commercial stands spread 

from 0 - 300m, further south in Alaska it may grow at 900m 

but growth is shrublike. In British Columbia growth seldom 

occurs above 300m. 

Maximum stand development, is reached on the Olympic 

peninsula and Queen Charlotte islands, this is associated with 

superhumid conditions, high rainfall (2000 mmyr 1 ), 200 days 

cloud, and absence of extreme cold. Climatic variation over 

large parts of the range is slight due to the overriding in-

fluence of the Pacific. Best growth is associated with deep 

soils of moderate to high nutrient status, or sites continually 

flushed with nutrient rich water, which are always moist but 

well 	aerated. Both requirements are met by sites which are 

moderately well drained and receive inputs of 	aerated nutrient 

rich water, e.g. concave slopes. 

For much of its range Sitka spruce occurs with Western 

hemlock (isuga heterophylla (Rafin.) Sargent); on moist sites 

(as described) spruce tends to dominate with Western hemlock 

and Western red cedar (Thuja plicata Donn) being secondary; 

on well drained sites hemlock becomes dominant with poorer 

spruce and cedar; wet sites are dominated by cedar with 

spruce and hemlock as associates, while on stagnant sites 

spruce is absent and cedar and lodgepole pine (Pinus contorta 

Dougl.) dominate with poorly developed hemlock. Sitka spruce 

tends to give way to these species on less fertile sites. In 

Oregon, Washington and British Columbia the species associates 

with Pacific silver fir (Abies amabilis (Dougl. ) Forbes) on 

steep convex slopes at higher elevations. In Alaska Sitka 

spruce associates with mountain hemlock (Tsuga mertensiana 

(Bcng.) Carr.) on shallow soils. 

In its natural range Sitka spruce is therefore comparatively 

site intolerant giving way to more tolerant associated species 
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except on the better sites. 

1:2 The growth of Sitka spruce in the United Kingdom 

The United Kingdom occupies a similar latitude to the natural 

range of Sitka spruce; under British conditions the -species 

performs well, especially at low elevations in the moist oceanic 

climate of the west, growing less well in the drier east and 

at higher elevations. 

Early forest plantings this century, made use of a variety 

of coniferous species, with species requirements normally being 

matched to site conditions. However, the outstanding perform-

ance of Sitka spruce, and the developement of modern cultiva-

tion techniques, has led to this species being more widely 

planted than any other, over a wide range of site fertilities. 

While potentially high yielding, Sitka spruce is nutritionally 

demanding; the need to apply phosphorus (F) fertilizer on 

more infertile sites was identified in early trials (Mcintosh, 

1981). Later, as less fertile sites were afforested, and stands 

developed, the need for potassium (K) and N fertilizers became 

apparent (Zehetmayr, 1954). 

Research into nutrient cycling indicates that a marked 

growth response to fertilizer is only likely in stands which 

have yet to close canopy; after closure is achieved a closed 

nutrient cycle is able to meet most growth demands (Miller, 

1981) and economic rates of growth should be maintainable 

with less fertilizer input. 

Table 1:1 indicates that fertilization may not be required 

on the most fertile sites, where a General Yield Class (GYC), 

m 3 ha 1 , of 16 - 20 may be obtained; on less fertile sites up 

to 3 applications of P or PK may be needed to ensure that 

at least GYC 14 is achieved (McIntosh, 1981). Problems of N 

deficiency are most common on deep oligotrophic (unflushed) 

peats and heathiand podsols; on the former in particular, 

satisfactory growth is most unlikely in the absence of fertilizer. 

However, given the inputs listed in table 1:1 it is possible 

that GYC 16 - 20 can be achieved on these sites (McIntosh, 

1981). Deficiency conditions develop on these soils due to low 

levels of available N, although total N levels may be high. 

This is almost certainly a consequence of low mineralization 
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rates, due to physical and chemical constraints on microbial 

activity. 

TABLE 1:1 	 - 

Fertilizer prescriptions for Sitka spruce in upland Britain 

(Mcintosh, 1981). 

Year 

Soil type 	At 	 4 	6 	8 	9 
	

12 	15 
	

16 
planting 

Brown 

earth 

Ironpan 

podsol 

Heath land 

podsol 

Heather 

(P) 	control 	
(P) 

if 

required 

P 	 " 	 P 

P 	 " 	N(?) 	N NP 	N 

Deep unflushed P(K) 	U 	 PK 	N 	N 	N 	NPK 
peat 

() indicates possible benefit 

P at 50 kgha 1  element applied as ground mineral phosphate 

K at 100 kgha 1  element applied as potassium cholride 

N at 150 kgha 1  element applied as ammonium nitrate or urea 

A compounding factor which may affect any site, but which 

is normally restricted to the less fertile, is the presence of 

heather (Calluna vulgaris (L.) Hull). Where heather is a major 

component of the sward (50%) it has a deleterious influence 

on spruce growth and N status (Malcolm, 1975). There is 

evidence which suggests that the endophyte association of the 

heather root suppresses the ectotrophs of spruce, resulting 

in N deficiency and stunted growth (Handley, 1963; Robinson, 

1972). On poor sites growth check due to heather is likely 

to occur 4 - 6 years from planting (McIntosh, 1983), however, 

the problem can be controlled by the use of herbicides (Biggin 

and McCavish, 1980; Mackenzie et al., 1976). 
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Prior to the development of modern herbicides heather was 

controlled si] viculturally by the means of mixtures. Larch 

or pine (Pinus) species do not suffer from heather check and 

will suppress heather when planted either pure or in a mixture 

with Sitka spruce; once released from check, the greater 

growth potential of the spruce enables it to overtake the nurse 

species which is in turn suppressed leaving a pure spruce 

crop. On many sites, not ideally suited to the growth of spruce, 

this did not occur, requiring the nurse species to be selective-

ly removed, complicating stand management. Consequently 

the use of mixtures was more or less abandoned in favour 

of herbicide treatments. 

On the most deficient sites, even where heather is controlled 

or was not a problem, N deficiency is likely to develop after 

about 8 years. Deficiency does not develop immediately because 

tree demand is low, and because mineralization of native N 

appears to be stimulated by the application of P fertilizer, 

as ground mineral phosphate (Carey et al., 1981). With the 

onset of N deficiency there are 2 management options; 1) No 

treatment; where deficiency is not too severe, growth may be 

only slightly reduced and may be maintained at an acceptable 

level after canopy closure, but the rotation will be prolonged, 

2) N fertilizer: as stated, it may be possible to achieve high 

rates of growth on poor sites if fertilizer is used. Tree response 

to N fertilizer is short-lived, 3 - 4 years (Dickson and 
Saville, 1974), and repeated inputs are required to maintain 

growth through to canopy closure (Table 1:1). Such an app-

roach is expensive and N deficiency may return later in the 

rotation (Williams, 1983). 

At present, there are few available options to prevent the 

onset of N deficiency and the need for remedial fertilization.. 

Liming, to raise pH and improve conditions for mineralization, 

may be beneficial in the short-term only (Di.ckson and Saville, 

1974), and high rates are required (Mcintosh, 1983). Mixing 

of lime with the top layer of peat may prolong the response 

in some cases (Dickson, 1977), but practical problems exist. 

Both liming and fertilization increase nitrification (Mai and 

Fielder, 1978; Williams, 1972) which may lead to leaching 
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losses and associated environmental problems (Williams, 1983). 

Recent evidence suggests that high ammonium levels following 

fertilization may inhibit microbial enzyme systems and also 

increase the recalcitrance of organic N compounds (Berg et 

al., 1982a), reducing subsequent rates of N mineralization. 

Observations of Sitka spruce growth in mixture with larch 

or pine, planted originally to control heather on heathiand 

soils has indicated superior growth to that of pure spruce 

on the same sites (Weatherell, 1957; Zehetmayr, 1960). This 

effect appears to be separatefiom the suppression of heather 

and has been more recently noted on deep oligotrophic peat 

(O'Carroll, 1978), where it has been linked with the improved 

N status of spruce. it may be possible therefore to grow spruce 

on N deficient sites in the absence of N fertilizers, although 

P and K are still required. 

The mechanisms involved in this nursing effect are unknown; 

clearly, the use of larch or pine spruce mixtures would be 

very attractive if the need for N fertilizer was removed, 

coupled with the advantages of self-thinning on unstable sites 

and heather control. However, the mechanisms responsible for 

this apparent effect need to be fully investigated if the best 

choice of nurse and spatial arrangement of mixtures is to be 

determined. 

1:3 Research strategy and objectives 

The initial objective of this study was to conclusively demon-

strate improved growth and N status of Sitka spruce in mixture 

with larch, since many earlier observations do not adequately 

distinguish between a response due to the removal of heather 

check and the suggested secondary effect. This initial objective 

can be satisfied through foliar analysis of spruce in pure 

and mixed stands on peat sites where no N has been applied, 

and where heather was never a problem, or was controlled 

chemically soon after planting. 

Improved foliar N levels would indicate a positive effect 

in terms of spruce N status, however such data alone cannot 

distinguish between 2 groups of causal mechanisms. Thus, 

1) spruce foliar N levels may be higher but the N capital 

(kgha 1 ) contained in the tree biomass may not differ between 
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pure spruce and mixed stands; 2) greater foliar N concentra-

tions might be reflected in a greater N capital of the mixture 

tree biomass. To distinguish between these alternatives requires 

a strategy of biomass sampling. 

If Case 1 applies then N uptake and therefore N supply 

must be similar and improved spruce growth and N status may 

be at the expense of larch. This would suggest what might 

be termed competition related mechanisms, i.e. spruce is a 

better competitor for available N than larch therefore a greater 

proportion of the available N can be exploited by an individ-

ual spruce in a mixture compared with a spruce stand. This 

could result from mycorrhizal differences, or differences in 

rooting morphology, rooting intensity and phenology, and phen-

ological differences in N cycling and uptake. 

For Case 2 to apply larch must be able to obtain N when 

spruce cannot and some of this N must become available to 

the spruce. Two questions require an answer in this case, 

1) where and how does larch obtain N, and 2) how is N made 

available to the spruce?. These questions may or may not 

involve the same mechanism. 

For young aggrading stands, nutrient cycling is relatively 

unimportant and virtually all N requirement must be met by 

the soil, atmospheric inputs and N fixation. Atmospheric inputs 

are unlikely to differ significantly between pure and mixed 

stands while N fixation, in the absence of symbiotic associat-

ions, is not important in temperate coniferous forest. This 

leaves the soil as the main supplier of N; larch must therefore 

obtain soil N which is unavailable to spruce.- pruce Possible mechan-

isms may involve, 1) greater rooting volume (more soil ex-

ploited), 2) effects related to rooting intensity, the rhizosphere 

and mycorrhizas (i.e. greater mobilization of N), 3) non-root 
related mobilization of soil N due to microclimate or priming 

effects, as a consequence of larch litter or throughfall. 

N could be made available to spruce via root grafts, root 

exudates, mineralization of larch litter (root or leaf), through-

fall or direct competition with larch. Clearly both a greater 

availability of N and transfer to spruce may be explained 

by the same mechanism, e.g. the rhizosphere of larch may 
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mobilize N unavailable to spruce. spruce obtains N by direct 

competition at the larch root surface. Mechanisms could, how-

ever, differ; larch may obtain more N as described above but 

spruce obtains N from increased mineralization associated with 

larch litter. 

A subsidiary question which requires investigation is the 

duration of any positive effect. The actual mechanism may 

be transient but improved spruce growth maintained due to 

high N status, associated with rapid litter breakdown and 

N cycling. Alternatively, a mechanism may operate throughout 

the life of a mixture. 

Following an initial demonstration of a mixture effect it 

was proposed to investigate experimentally some of the possible 

mechanisms outlined above. Since all of the suggested mechan-

isms relate to some aspect of the N cycle a synopsis of current 

views and understanding of N cycling in forest systems is pre-

sented in Section 2. 
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Nitrogen cycling in forested ecosystems. 

2:1 Introduction 

N is an essential nutrient which is a primary constituent of 

protein and therefore the protoplasm of plants, animals and 

microbes (Mengel and Kirby, 1982). As such its availability 

is central to ecosystem productivity, which it frequently limits 

(e.g. Gosz, 1981; Wollum and Davey, 1975). 

The principal reservoir of potentially available N is the 

atmosphere. Geochemical theory (Stevenson, 1965) suggests that 

all atmospheric N was originally present as ammonium com-

pounds and nitrides in the earth's matrix. Due to heating, 

N was driven off into the atmosphere where it existed mainly 

as ammonia. Atmospheric oxygen enrichment as a result of photo-

synthesis caused this to be oxidised to elemental N. Nearly 

80% of atmospheric gas is N 2  , but this accounts for only 2% 

of the earth's total N, virtually all the remainder being 

present in rocks, where the concentration is so low that it 

plays no part in cycling processes. Organically bound N 

represents a tiny fraction of the total. 

Transfer of atmospheric N to living organisms is low, only 

a small quantity of the N used annually by undisturbed 

ecosystems comes directly from biological fixation or other 

atmospheric inputs (Melillo, 1981). Despite this, soils, in 

comparison with the original rocks, have been greatly enriched 

with N. 99% of this N is organically bound having accumulated 

as a result of fixation processes operating over long time scales. 

Thus N accumulation in a primary aggrading system depends 

• largely on inputs which are atmospheric in origin (Reiners, 

1981). As a succession develops the system's N capital in-

creases until atmospheric contributions become unimportant 

relative to biologically mediated cycling within the ecosystem. 



Plants obtain the bulk of their N from the soil solution, 

virtually all uptake being of inorganic N which may constitute 

less than 1% of the soil reserve. This available pool is main-

tained by the degradation of organic material by microbes, 

releasing N as exploitable inorganic forms. Inorganic N not 

utilized by plants or microbes is subject to leaching or gaseous 

loss, the latter returning N to the atmosphere and completing 

the cycle. 

Since N cycling is a biological process it is influenced 

by a range of environmental variab1esacd as a consequence con-

siderable differences exist between cycling in different 

ecosystems. 

Aspects of the N cycle are the subject of a multitude of 

research papers and numerous reviews, both general and 

specific, are available (e.g. Bartholomew and Clark, 1965; 
Clark and Rosswall, 1981; Nielsen and MacDonald, 1978: Svensson 

and Söderlund, 1976). 

2:2 	N distribution, uptake and use efficiency. 

2:2:1 N distribution 

An accounting approach which comuartrnent&ltses ecoSysPert N Cn 

be useful since it identifies the principal N pools. Pool size 

may not relate to rate of turnover or functional importance 

in the cycling process. 

Ecosystem productivity and nutrient accumulation have been 

the subject of numerous research papers and much of this 

material has been presented in a number of review articles: 

for evergreen conifers and deciduous broadleaves, Cole (1981), 
Cole and Rapp (1981), Keeney (1980), Heal et al. (1982), 
Larcher (1975), Rodin and Bazilevich (1967); for evergreen 

conifers, Fogel (1980), Gosz (1981); for deciduous broadleaves, 

Melillo (1981). 

Table 2:1 gives some general values for evergreen conifers 

and deciduous hardwoods. Despite considerable variation 

certain similarities are apparent. Most N is present in the 

soil, around 80%, while the tree biomass comprises approximately 

10%, as does the forest floor. The root system is clearly im-

portant and accounts for 15 to 30% of tree biomass (Fogel, 

1983; Persson, 1983), equal to 19 to 32% of tree N (Fogel, 1980: 
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Henderson and Harris, 1975; Wells and Jorgensen, 1975). My-
corrhizas may constitute 8% of tree biomass, mycorrhizal roots 

accounting for 25% of tree N and non-mycorrhizal roots 7% 
(Fogel, 1980). 

TABLE 2:1 

N values for compartments in coniferous and deciduous ecosystems 
-1 KgNha 

(From Cole and Rapp, 1981; Fogel, 1980; Melillo, 1981). 

Coniferous 1 Minimum Mean Maximum 

Foliage 51 120 228 
Branches 18 100 242 
Bole 47 176 584 
Total above ground 153 396 729 
Roots 12 101 422 
Total tree 165 470 900 
Forest floor 85 613 2260 
Soil 	(to rooting depth) 1753 4117 7100 

Deciduous 2 

Foliage 53 84 121 
Branches 20 165 666 
Bole 120 208 386 
Total above ground 240 497 1071 
Roots 57 169 434 
Total tree 389 688 1260 
Forest floor 44 399 1100 
Soil 	(to rooting depth) 1380 6142 13800 

1 Based on 21 sites. 

2 Based on 20 sites. 
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2:2:2 Form of uptake. 

This subject is dealt with extensively by Clarkson and Hanson 

(1980). Kirkby (1981), Mengel and Kirkby (1982), Novoa and 
Loomis (1981) and Nye and Tinker (1977). 

Under acid conditions where the conversion of ammonium 

to nitrate is low, e. g. mor-humus soils, ammonium is the 

dominant inorganic species available to plants. Ammonium- is 

normally present in the concentration range 0 to 5 ppm. (Bowen 

and Smith, 1981,) with solution concentrations up to 104 (Nye 

and Tinker, 1977). At concentrations LuM rather than mM) and 

the pH (less than 9.25) usually found in soil, ammonium uptake 

is carrier mediated (Jennings, 1976). Ammonium is subject to 

cation exchange which can reduce its mobility; transfer to 

the root surface is by diffusion which is the rate limiting 

step in ion uptake, the absorbing capacity of the root/rnycorr-

hizal complex only being a major determinant when ion transfer 

to the roots is rapid (Bowen, 1981). Consequently root abundance 

is of primary importance in uptake of ammonium, which is 

enhanced by the presence of ectomycorrhizas (Bledsoe and 
Zasoski, 1983; Bowen, 1981). 

For undisturbed forest, nitrate appears to be of minor 

importance with the ratio of ammonium: nitrate being of the 

order of 10:1 (Cole, 1981). Since nitrate is an anion it is 

poorly held by the soil and therefore highly mobile. At high 

concentrations transport to roots is largely by convection and 

root absorbing capacity may influence rate of uptake (Bowen, 

1981), under such conditions mycorrhizas have little effect 

on uptake. At low concentrations, however, diffusion becomes 

the major transport mechanism and under these conditions 

uptake is considerably enhanced by mycorrhizas (Bledsoe and 

Zasoski, 1983; Bowen, 1973). 

Many vascular plants can utilise both nitrate and ammonium 

although One or other may be preferentially absorbed (Ho and 

Trappe, 1980; Van den Driessche, 1978). Preferential absorption 

of ammonium from a solution containing both inorganic forms 

is exhibited by most microbes (Paul and Juma, 1981). Of 27 
ectomycorrhizal fungi studied by Lundberg (1970) most grew 

best with ammonium as their N source. Carrodus (1966) found 
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that excised beech mycorrhizas could utilise ammonium but not 

nitrate. More recent work has identified nitrate reductase activity 

in a range of mycorrhizas and forest tree roots (Bledsoe and 

Zasoski, 1983; Bowen, 1973; Buwalda et al., 1983; Ho and 
Trappe, 1980). 

Bledsoe (1976) indicates that species which have evolved 

in a high ammonium and low nitrate environment have de-

veloped an uptake selectivity for ammonium, and vice versa. 

Considering that many forest ecosystems are N limited (e.g. 

Gosz, 1981; Keeney, 1980) it is strange to find a discrimination 

between the two forms of N, particularly when nitrate can act 

as a carrier for cation uptake. The uptake of nitrate does 

involve a reduction step not required for ammonium (Mengel 

and Kirkbv, 1982) although it is unlikely that the energy 

demand of this reduction, 8 e per nitrate ion (Novoa and 

Loomis, 1981), would result in a selectivity for ammonium. 

That many forest trees and their mycorrhizas do have a 

capacity to utilise nitrate should not be surprising; even though 

nitrate levels are low in most forest systems. The ability to 

use nitrate would be an advantage where N is limiting growth, 

and in reducing loss from the system (Ho and Trappe, 1980). 
Even where a selectivity is shown, uptake systems can probably 

respond to the presence of nitrate since nitrate reductase is 

a substrate inducible enzyme (Adams and Attiwill, 1982). Under 

forest conditions trees can probably utilise whatever N is 

available (Wollum and Davey, 1975). 

Recent work (Alexander, 1982; Bowen, 1981; Bowen and Smith, 

1981) has demonstrated the ability of mycorrhizas to exploit 

soluble organic N compounds, the uptake of which may be 

important (Heal et al., 1982). 
2:2:3 Rates of N uptake. 

Rates of N uptake vary with site conditions, species, stage 

of stand development, and rate of growth (Cole, 1981; Cole 
and Rapp, 1981; Gosz, 1981; Heal et al., 1982; Keeney, 1980; 
Melillo, 1981), consequently values of uptake, alone, have 

little meaning (Miller, 1979). 

By comparison with intensively managed agricultural crops 

N uptake by forests seems minimal, being approximately one 
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half to two thirds of that required by a maize crop (Keeney, 

1980). Cole and Rapp (1981) found a mean N uptake of 55 

kgha 1yr 1  for 37 sites, ranging from 129 kghã 1  yr 1  for red 

alder to 2.6 kgha 1yr 1  for black spruce. Generally N uptake 

by forests follows the pattern temperate boreal, deciduous 

broadleaved > coniferous evergreen; with deciduous species 

taking up approximately twice as much N (Cole, 1981; Gosz, 

1981). This difference in uptake does not appear to result from 

differences in production which are broadly similar for both 

types (Gosz, 1981), but may be associated with greater rates 

of mineralization under deciduous species. While natural forests 

may have very low rates of uptake managed stands have higher 

uptake values; the annual N uptake required to support 

maximum growth rate of Corsican pine was 69 kgha 1 ; while 
Cole (1981) grew Douglas fir under conditions of theoretically 

unlimited N supply and obtained an uptake of 78 kgha -vr 1 , 

if ground flora were included total uptake was 215 kgha 1yf 1  

(a value approaching those of agricultural crops). 

N requirement differs from uptake, the latter (for a closed 

canopy system) being measured as N increment of woody com-

ponents plus N loss from litterfall, crown leaching and root 

exudation. The former, N increment of woody components plus 

N required for current foliage production. Due to the simul-

taneous recycling of N, and the small amounts immobilized 

in stem wood, requirement may be only 8 to 38% of uptake 

(Miller, 1979). However, data from Cole and Rapp (1981) in-

dicates that requirement can exceed 85% of uptake in temperate 

forests. 

Rates of forest production and N uptake are highly correlated 

(Cole and Rapp, 1981), both being influenced by N availablity 

(Cole, 1981). For optimal growth the concentration of a nutrient 

in the soil solution should be maintained above a certain 

critical level below which yield is impaired (Mengel and Kirkby, 

1982). This level is not fixed but is inversely related to the 

soils buffering capacity (Mengel and Busch, 1982). For ammonium 

this will depend on the soils cation exchange capacity and 

the rate of mineralization. Ingestad et al. (1981) have demon-

strated that relative growth rate depends upon the relative 
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addition rate of N; it being possible to achieve a high relative 

growth rate, plus a stable internal. N concentration, at low 

external N concentration, so long as the rate of addition is 

high (analagous to the buffering capacity mentioned above). 

The concept of a relative addition rate mimics the soil situation, 

where plant growth is initially exponential, being associated 

with an exponentially increasing N demand and N depletion 

at the root surface. Demand is partially satisfied by exponential 

exploitation of the soil by growing roots. Mineralization rate, 

relative root growth rate, root morphology and mycorrhizas 

all determine N status and growth by influencing the N flux 

available to the plant. 

2:2:4 N use strategies and efficiency. 

Differences in N uptake between coniferous evergreens and 

deciduous broadleaves can be partly explained by the former's 

longer foliage retention. Deciduous species adopt a stress avoid-

ance mechanism during adverse environmental conditions by 

shedding their leaves; coniferous evergreens invest in stress 

resistance and possess needles which are morphologically and 

physiologically adapted to withstand periods of seasonal stress. 

Perennial leaf duration coupled with a high rate of photo-

synthesis and N retranslocation maximizes photosynthetic 

efficiency per unit of foliar N. Thus photosynthetic efficiency 

per unit of leaf N, is directly proportional to leaf longevity 

and photosynthetic rate, but inversely proportional to N con-

centration (Shaver, 1981: Small, 1972a, 1972b; Vitousek, 1982). 

Conifers have lower foliar N concentrations than broadleaves 

(Gosz, 1981) although the amount of N per unit of leaf area 

is actually greater due to a higher specific leaf weight. 

Conifers therefore invest greater carbon and mineral mass per 

unit leaf area but obtain an overall advantage through ex-

tended retention (Gosz, 1981). Additionally, conifers can 

concentrate N into a small area of photosynthetically active 

foliage maximizing photosynthate production per unit N (Schles-

inger and Chabot, 1977). 

The importance of needle retention is underlined by the 

observation that retention is longest for species adapted to 

poor sites, and increases in a given species in response to 
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low N availability (Cole, 1981). For managed stands the onset 

of N deficiency is often associated with the sacrificial abscission 

of older needles, as N is withdrawn to satisfy current demands 

(Miller, 1981), i.e. foliage longevity is reduced. These ob-

servations are not incompatible; natural stands are subject 

to compar.atively stable levels of N availability, so growth 

rates and needle retention adjust accordingly. Also, the supply 

of other nutrients is likely to be in balance; managed stands 

are subject to greater fluctuations in N supply due to periodic 

fertilizer application, this may make it more difficult for 

relative growth rate to adjust to changes in N availability. 

In addition, other nutrients are commonly supplied as fertilizer 

in the absence of N, resulting in an imbalance of supply and 

the developement of N deficiency. This is associated with N 

withdrawal from older foliage with the resultant shedding of 

needles. Where a balanced nutrient supply is provided relative 

growth rate should respond to the rate of N supply and def-

iciency symptoms should not appear (1ngetad, 1982). 

These adptations enable conifers to produce 50% more dry 

matter per unit N for a given leaf area, or 100% per unit N 

for a given leaf weight, than deciduous species (Cole, 1981; 

Cole and Rapp, 1981; Gosz, 1981). 

Efficiency of N use appears to be inversely related to N 

circulation in the ecosystem. Vitousek (1982), reviewing much 

of the recent literature, found that the amount of N in litterfall 

and nutrient use efficiency (expressed as the ratio of litter 

dry weight: weight of N in litter) were inversely proportional 

to N availability. For sites where N availability was high 

efficiency of N use was low, and vice versa. This may be 

explained in terms of species changes; conifers are more efficient 

than broadleaves and tend to be associated with sites where 

rates of N mineralization are low; or phenotypic change within 

a species. Turner (1977) showed that Douglas fir could 

adjust the portion of its N requirement obtained from N with-

drawal from foliage, depending on soil N availability. However, 

Chapin (1980) found no evidence for increased N reabsorption 

on poor sites compared with good, while both absolute and 

relative N withdrawal may actually be greater in species with 
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high foliar N levels (Vitousek, 1982). This concurs with the 

findings of Cole and Rapp (1981) who found that N withdrawal 

was generally greater in broadleaves compared to conifers. 

It is probable that at least part of the increased use efficiency 

of N on poor sites results from greater reabsorption, which has 

been clearly demonstrated for some species (See Section 2:4:5). 
Where N availability is low, conifers seem likely to dominate 

due to their lower N requirement. A change in species, or a 

change within a species, in response to low N availability, 

which results in greater N use efficiency may lead to a re-

duction in litter quality. This will reduce rates of mineral-

ization, possibly resulting in a positive feedback which may 

maintain or even exacerbate N stress. 

2:2:5 Changes in N uptake during stand development. 

N uptake changes during ecosystem development (Attiwill, 1981: 
Kazimirov and Morozova, 1973; Miller, 1981; Turner, 1975). 
Initially, cycling is dominated by uptake which must continually 

increase to meet the demands of growth and development. At 

this stage leaf area and twig weight are continually increasing, 

• each year foliage weight exceeds that of the previous years 

(or year in the case of deciduous species). Consequently 

virtually none of a tree's N requirement can be met through 

retranslocation. 

The forest floor is just beginning to form, with annual 

release from litterfall being a function of tree size a year 

or more previously (Miller, 1981). Since crowns are still small. 

and do not fully occupy the site, capture of atmospheric inputs 

is minimal, while uptake by the tree biomass may be low due 

to limited root system development and a competing ground 

flora. Virtually all the trees uptake demand must be met by 

the soil. N concentration and replenishment of N in the soil 

solution is critical to stand development at this stage. 

Maximum leaf area/biomass is achieved just before canopy 

Closure 'dhe,'efter it declines slightly and then stabilizes to remain 

more or less constant (Bray and Gorham, 1964; Rodin and 
Bazilevich, 1967; Vitousek, 1982). Leaf litterfall also becomes 

constant (Gessel and Turner, 1976) and the forest floor may 

attain a steady state, depending on the rate of decomposition. 
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Uptake remains fairly constant, since only N immobilization 

in woody components continues to increase, where the con-

centration of N is very low (Vitousek, 1982). 

A large proportion of requirement can now be met by iaternal 

recycling, while increased capture of atmospheric sources can 

actually meet demand for certain nutrients, but not N or P. 

The soil is replaced by the forest floor as the main zone of 

uptake, associated with a shift in fine root abundance from 

the soil to the forest floor layers (Vogt et al., 1981). However, 

the soil must continue to supply some N (Miller, 1981). 

Where N is especially limiting the increase in use efficiency, 

and decline in decomposition rate can lead to an accumulation 

of the forest floor, associated with N immobilization. This can 

lead to N deficiency, and progressive deterioration in mature 

stands (Williams, 1983). 

N uptake will therefore increase progressively until canopy 

closure when it stabilizes slightly below its maximum value, 

as internal cycling mechanisms begin to operate. This situation 

may continue (Miller, 1981; Turner, 1975), or uptake may even-

tually decline as the stand becomes overmature (Grier et al.. 

1974; Gosz, 1981; Kazirnirov and Morozova, 1973). 
2:3 	External N inputs into forest systems 

2:3:1 Atmospheric N Additions 

The transport of atmospheric N to vegetation surfaces and the 

soil occurs as a result of two distinct processes; dry deposition 

and wet deposition. 

Wet deposition is mediated by precipitation, rain or snow, 

and measurements of N input by this mechanism exist for most 

geographical areas (Söderlund, 1981; Sôderlund and Svensson. 

1976). The quantity of N added by wet deposition depends on 

the amount of precipitation and the concentration of N compounds 

in the precipitation. Areas with low precipitation normally 

exhibit higher concentrations of N, although the total N added 

is lower than in high rainfall areas (Söderlund, 1981). In-

corporation of N compounds into rain occurs within clouds or 

during drop descent. For Europe wet deposition •returns 

1 - 6 kgha 1  nitrate and 1 - 5 kgha-1  ammonium annually 

(Böttger et al., 1978). Maximum nitrate values occur in or 
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near industrial areas associated with high N oxide levels 

Henderson and Harris, 1975: Melillo, 1981). while high ammonium 

levels are associated with agricultural activity and particularly 

large numbers of livestock (Söderlund and Svensson, 1976). 

Dry deposition is less clearly understood than wet depositipn, 

consequently measurements of N inputs by this mechanism are 

less well established. Both particulate matter and gases are 

subject to dry deposition processes, which comprise: gravitational 

settling; eddy transfers; molecular diffusion and impaction 

by inertia (Miller, 1979; Söderlund, 1981). 

Factors influencing rates of 	deposition. 	are; 1) Physical/ 

chemical nature of the surface. This influences surface resistance 

which in turn largely depends on aerodynamic roughness; it 

is influenced at one level by surface micro-properties, e.. 

cuticular waxes, stomatal pores and leaf hairs, and at another 

by gross canopy features such as height and foliage density 

(Gorham et al., 1979). The presence of a vegetation canopy 

normally increases dry deposition (Melillo, 1981) being greater 

for forests than other vegetation types or bare soil (Chamberlain, 

1975). 2) Particle size: N compounds occur as both small 

(< 2im) and large (> 2jm) particles, ammonium being more 

commonly associated with the smaller size (Brosset, 1978). For 

large particles deposition is largely a result of gravitational 

settling with surface factors being of little importance, re-

suspension can occur easily (decreasing net deposition). Fog 

and mist behave as large particles (S$derlund, 1981). Small 

particles depend largely' on surface criteria and eddy transfers 

(therefore windspeed): once impacted, resuspension is unlikely 

to occur due to strong electrostatic binding. 3) Solubility of 

gases: most N gases present in the atmosphere are highly 

soluble in water, solubility being reduced above pH 9 for 

certain compounds. Gases can therefore be rapidly absorbed 

onto wet surfaces, under such conditions surface resistance will 

be of little importance. Surface moisture may partially explain 

ammonia absorption by soils (Paul, 1976) and acid moss flora 

(Tamm, 1953). 4) Wind velocity: high wind velocities increase 

the probability of turbulent processes, these&r'e more efficient 

than molecular diffusion which occurs when air flow is laminar. 



5) Concentrations of N compounds in the atmosphere; deposition 

is normally expressed as a deposition velocity, which is pro-

portional to the compound's atmospheric concentration (Miller, 

1979). 

Of these variables N concentration in the atmosphere , is 

most rate determining, with windspeed being of secondary im-

portance, after which vegetation characteristics assume local 

significance (Melillo, 1981). As with wet deposition, inputs 

are greatest near industrial areas or where there is a high 

density of livestock. 

Amounts of N contributed by dry deposition are uncertain 

but are probably less than wet deposition, e.g. Mayer and 

Ulrich (1974) found an input of 5.8 kgNha 1yr 1  by dry deposition 

compared with 22.6 kgNhaT 1 yr 1  in bulk preci:pitation for beech 

forest. Nilhgard (1970) found 0.7 kgNhaT1  yr 1  compared to 8.2 
kgNha 1 yr 1 , again for beech. Bulk precipitation inputs for 

-1 -1 Europe range around 5 kgNha yr , e.g. Heal et al. (1982) 
6 kgNha 1 yr, Miller (1979) 5 kgNh 1  y 1  and Tamm (1982) 

-1 	- 4 kgNha -1 
 yr . For thirty-six I.B.P. sites the mean N input 

in bulk precipitation was 9.8 kgNha 1 y 1  , the range being 
-1 1 - 22.8 kgha-1 

 yr (Cole and Rapp. 1981). 

Evidence suggests that conifers are considerably more 

efficient than broadleaves at trapping aerosols. Conifers general-

ly have a greater leaf area resulting in greater interception, 

3 - 6 mm of rain being needed to wet conifer foliage compared 

with 0.5 - 2 mm for broadleaves Marcher, 1975). This high 

interception is accompanied by greater dry and wet deposition 

(Mayer and Ulrich, 1978; Schlesinger and Reiners, 1974). These 

factors, coupled with autumnal foliage loss by many broad-

leaves, may result in significantly greater atmospheric input 

into coniferous evergreen systems; an important consideration 

for poor sites (Gosz, 1981). 
2:3:2 Biological N fixation. 

Biological N fixation is another source of N input into forest 

systems. Development of the acetylene reduction assay, a rapid 

technique for assessing N fixation (e.g. Hardy et al., 1973; 
McNab and Geist, 1979), has led to considerable research 

interest in N fixation in a range of natural and managed 
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systems. For forests much of this material has been reviewed 

by Granhall (1981); Granhall and Lindberg (1978, 1980); Jones 

(1978) and Waughman et al. (1981). in addition, biochemical 

aspects of N fixation have been dealt with by Hardy and. Burns 

(1968); Hardy et al. (1973) and Stewart (1982), who also 

consider the biochemical basis of the acetylene reduction assay. 

Apart from certain symbiotic associations, e. g. legumes, 

casuarina, podocarpus and Alnus (Nutman, 1976; Smittle, 1979), 

where fixation may be high, over 200 kgNha 1 yf1  (Cole and 

Rapp, 1981), N fixation in forests is due largely to heterotrophic 

organisms and autotrophic blue-green algae (Granhall and 

Lindberg, 1978). The heterotrophs are free living and include 

actinomycetes, fungi and bacterial genera (both aerobic and 

anaerobic). Blue-green algae may be free living, e.g. crust 

forming species in some Swedish forests (Waughman et al., 

1981), associated with mosses (Granhall and Selander, 1973; 

Weber and Van Cleve, 1981) or in symbiotic associations with 

lichens (Alexander et al., 1978). Blue-green algae are important 

N fixers in tundra and boreal systems while heterotrophic 

fixation dominates in temperate forests (Granhall, 1981). 

A range of environmental factors influence free living N 

fixers. I) Oxygen. N fixation is a reductive process and the 

enzymes responsible are inhibited by high oxygen levels, how-

ever the influence of oxygen varies since many species possess 

effective enzyme protection systems. 2O Moisture. Fixation is 

stimulated by increasing soil moisture levels and inhibited 

by dry conditions (Jaeger and Werner, 1981).3)Temperature. 

Nitrogenase activity of heterotrophic microbes is highly temp-

erature sensitive (Waughman and Bellamy, 1980) with a Q 10  of 3--

6 (Stewart et al., 1978). Most N fixers are mesophiles with 

a temperature optimum around 30°C (Granhall, 1981), fixation 

being inhibited by very cold conditions (Jordan et al., 1978). 

!) Soil pH.. Up  to 34% of the variability in nitrogenase activity 

can be explained by pH (Waughrnan and Bellamy, 1980). Most 

N fixers have a pH optimum of around 7 but certain bacteria 

and blue-green algae -can fix down to pH 4 (Granhall and 

Lindburg, 1978; Granhall and Selander, 1973). Bulk pH measure-

ments may not reflect the importance of niicrosites.5)Inorganic 
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compounds. Witrogenase activity is correlated with calcium and 

potassium levels in peatland ecosystems (Waughnian and Bellamy. 

1980). molybdenum levels can be important as can concentrations 

of aluminium (Granhall and Lindberg, 1978). High ammonium 

levels are detrimental (Hardy et al. • 1973). )Energy. The avil-

ability of carbohydrate material is probably the main control 

on fixation in forest ecosystems (Granhall, 1981), an increase 

in fixation commonly occurring on the addition of available 

carbohydrate (Waughrnan et al., 1981). Mycorrhizas may depress 

fixation through competition (Gadgil and Gadgil, 1978). Rhizo-

sphere fixation may be a consequence of carbon rich exudates 

(Barber and Lynch, 1977). 

N fixation can be detected in most components of forest 

ecosystems (Melillo, 1981). Phyllosphere fixation has been detected 

by a number of workers (Jones, 1978; Richards and Voigt, 1965; 
Sucoff, 1979). Results obtained by Jones suggested important 

levels of canopy fixation but later revision of these estimates 

(Sucoff, 1979) and the findings of other researchers suggest 

that inputs are low (e.g. Granhall and Lindberg, 1978). For 

51 woody species the maximum level of canopy fixation was 

0.2 kgNhayr 1  (Sucoff, 1979), and it seems unlikely that values 

exceed the revised values of Jones (2.4 kgNhayr 1 ). 

Fixation is associated with living and dead woody material, 

particularly stems (e.g. Granhall and Lindberg, 1978; Spano 

et al., 1982; Waughman et al., 1981). Amounts are invariably 

low but may be important where woody litter constitutes the 

bulk of the forest floor (e.g. Graham and Cromack, 1982). 

Forest floor fixation is particularly associated with the F layer 

(Waughrnan et al., 1981) which, in relative terms, is an 

important site for N fixation (O'Connell et al., 1979) as is 

the surface soil (Jones, 1978). 

Stimulation of N fixation in the rhizosphere seems well 

known; Barber and Lynch (1977); Dobereiner (1974); Rambelli 

(1973); Richards (1973). Richards and Voigt (1964, 1965) suggest 

that N fixation associated with pine mycorrhizas is due to 

microbes present in the rhizosphere; Jurgensen and Davey (1971) 

give conflicting results but suggest that rhizosphere N fixation 

may occur only in the presence of fungal exudates. Silvester 
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and Bennet (1973) found nitrogenase activity on the short roots 

of native New Zealand conifers. 

Total quantities of N fixed by biological means vary but 

are probably in the range 1 - 12 (28) kgNha 1 yr 1 (Granhall, 

1981; Granhall and Lindberg, 1980; Jones, 1978). with many 

forest systems fixing less than 10 kgNha 1 yr 1  (Tamrn, 1982: 

%Vaughman et al., 1981). Though absolute amounts are small 

they can represent 5 - 10% of the N annually cycled through 

vegetation (Paul, 1978); even small additions will be significant 

for systems where N is limiting. 

The importance of biologically fixed N may outweigh the 

actual amounts, such N is released as diverse organic compounds 

which may stimulate other microbial processes. in particular. 

the decomposition of woody litter with very high C:N ratios 

is linked with N fixing bacteria which provide an N source 

for basidiomycetes attacking the N poor substrate (511 vester, 

et al., 1982; Spano et al., 1982; Sunderstrôm and Huss, 1975). 

2:3:3 Geological N inputs 

Weathering of primary geological deposits is unimportant as 

an N input to forest ecosystems, however, the weathering of 

certain organic rich secondary deposits can be important in 

a few restricted localities (Reiners, 1981; Woodmansee et al., 

1979). 

2:3:4 N losses and N budgets 

Mechanisms of N loss from forested ecosystems are discussed 

in Sections 2:5:3 and 2:5:6. For undisturbed systems losses 

are controlled by a number of self regulating mechanisms, 

perhaps the most important of which is plant uptake (Cronan, 

1980b; Vitousek et al., 1982). Additionally, the soil retains 

N in the form of ammonium ions, while high rates of nitrif-

ication are prevented in many forests. Significant N loss 

normally only occurs where nitrate levels are high in the 

absence of effective plant uptake (Bormann et al., 1974). 

Due to N conserving mechanisms, losses determined for a 

variety of forest ecosystems have been found to be low; Cronan 

(1980a); Feller (1977); Keeney (1980); Miller et al., (1979); 

Rapp et al., (1979); Sollins and McCorison (1981); Sollins et 

al., (1980). Reported values ranging from 0.1 to around 4 
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kgNha 1 yr 1  (Cole and Rapp, 1981; Gosz, 1.981), although higher 

values do occur (e.g. Melillo, 1981). A large number of budget-

ary studies indicate that N inputs exceed N losses, often by 

a factor of 2 (Gorham et al., 1979; Gosz, 1981; Melillo, 1981; 
Reiners, 1981; Tamm, 1982). For 36 I.B.P. sites (Cole and 
Rapp, 1981) the net balance of N was an increment of 4.5 

kgNhavr with only one stand showing an N deficit. 

2:4 	Internal N cycles. 

2:4:1 introduction 

External inputs and losses of N have already been considered, 

the internal cycling of N will be dealt with here. Within an 

ecosystem N moves between three compartments, the vegetation, 

the forest floor plus organic soil layers, and the sub-soil. 

Trees take up inorganic N from the forest floor and soil re- 

leasing N through litterfall, 	throughfall, root death and 

exudation. Release of organically bound N occurs 	via de- 

composition and mineralization in the forest floor. 

2:4:2 Throughfall 

Throughfall and stemflow are the subject of a comprehensive 

review by Parker (1983). 

As rain passes through a canopy its chemical nature is 

altered due to foliar leaching and adsorption (Feller, 1977; 
Olson et al., 1981; Tukey, 1970, 1980); enrichment from ac-

cumulated deposition including fog and cloud droplets (Parker, 

1983; Sderlund, 1981); cation exchange (Eaton et al., 1973); 
and nutrient uptake and release by epiphytes and the phyllo-

plane microflora (Lang et al., 1976; Parker, 1983; Ruinen, 
1974). Because of differences in these variables throughfall 

characteristics vary with season, quantity and nature of 

precipitation, foliar element concentrations and tree species 

(Miller. 1979). 

Work conducted by Carroll (1979) identified several factors 

influencing throughfall; 1) an increase in the cation con-

centration of incident precipitation increased nutrient adsorption 

(or decreased leaching); 2) leaching losses declined with in--

creasing exposure to rain, i.e. in autumn and winter; 3) high 
solution losses of N followed dry periods while high particulate 

losses followed wet periods; 4) leaching losses were greater 
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from older foliage than younger; 5) for an individual rain 

event there was an initial flux of N mainly as particulate 

matter which rapidly declined to remain at a low level. He 

concluded that for rain events of long duration canopies were 

ultimately N sinks. 

The cycling of N as throughfall seems relatively unimportant 

in terms of quantity, most studies indicate a decrease in the 

amount of N (as ammonium, nitrate, and total N) or a slight 

increase, relative to rainfall, (e.g. Luxmoore et al., 1981 
Olson et al., 1981; Ostman and Weaver, 1982; Ryan and Borrnann, 
1982; Zimka and Stachurski, 1979). However N concentrations 

increase due to evaporation (Parker, 1983). The quality of 

rain is markedly changed by contact with the canopy. Most 

obvious is the increase in organic N compounds (Nykvist, 1963; 
Olson et al.. 1981; Verry and Timmons, 1977) due to foliar 

leaching and exudates or decomposition products from epiphytic 

microbes (Mahendrappa and Ogden, 1973). The presence of 

organic N compounds may act as agrowth stimulus for sap-

rophytic organisms in the forest floor (Clarhoim and Rosswall. 

1980). 

A portion of the rain intercepted by a canopy may be direct-

ed towards the stem and become sternflow, amounts will clearly 

be influenced by crown structure and bark characteristics (Ford 

and Deans, 1978), being greater for smooth barked species 

(Parker, 1983). Stemfiow transports smaller amounts of material 

to the forest floor than throughfall, 1 - 20% (mean 12%) of 
the throughfall flux (Parker. 1983), with absolute amounts 
of N probably being less than in rainfall (Olson et al., 1981). 
However, element concentrations tend to exceed those of through-

fall by an order of magnitude while pH is invariably lower 

(Parker, 1983). Of potential importance is the redistribution 

of rainfall as throughfall and stemflow (Ford and Deans, 1978) 
which may lead to spatial differences in a number of forest 

floor, soil and plant growth processes. 

2:4:3 Root exudation 

Assessing the importance of root exudates in the cycling of 

N is extremely difficult, both composition and quantity are 

influenced by the age, nutritional status, light, temperature, 
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moisture and rhizosphere microbes (Bowen and Theodorou, 1973; 
Rambelli, 1973). In addition, the presence of mycorrhizas seems 

to increase root exudation (Reid et al., 1983). Exudates cannot 

be readily collected without altering the root environment and 

therefore exudation (e.g. Smith, 1970). consequently it is 

difficult to extrapolate such data to the field. 

Root exudates contain N mainly as amino acids (e.g. Smith, 

1976) and this may amount to 0.8 - 4 kgNha 1yr 1  (Harris et 

al., 1979; Smith, 1976). Although amounts are small such N 

is highly labile and the stimulating effect of specific amino 

acids on the rhizosphere or soil microflora may be important 

(Barber and Lynch, 1977). 

2:4:4 Litter inputs 

a. Introduction 

The formation of litter is a first step in the recycling of N 

to plants. In forests it is the dominant pathway for supplying 

carbon and N to the soil system. Reviews by Bray and Gorham 

(1964) and Rodin and Bazilevich (1967) cover most of the earlier 

literature while much of the recent material is included in 

a synopsis by Staaf and Berg (1981). In addition Cole and 

Rapp (1981) present a synthesis of I.B.P. data. 

b.Above ground inputs 

Input rates 

Rates of litter production and N return are broadly proportional 

to primary productivity (Bray and Gorham, 1964; Miller, 1979; 
Rodin and Bazilevich, 1967; Staaf and Berg, 1981) with leaf 

fall accounting for most of the N returned through litterfall 

(Gosz, 1981; Melillo, 1981). Up to 83% of the N returned annual-

ly to the forest floor is through litterfall (Cole and Rapp, 

1981). Primary production is similar for conifers and broad-

leaves with litterfall being slightly higher under the former, 

however N return is greater under deciduous broadleaves due 

to the higher N concentrations in the litter (Table 2:2). 
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TABLE 2:2 

Litterfall and litter 	N beneath coniferous and broadleaved 

forest (from Gosz, 1981). 

Coniferous 	 Broadleaved 

Total litterfall (t:ha 1yri 	 2-7 	 5-7 
Litterfall N (kgha 1yr 	 10-90 	< 	45-90 

Leaf litterfall (+haT 1yr ) 	 0.3-6 	 1-5 

Leaf litter N (%) 	 0.4-1.3 	< 	0.5-1.8 

For temperate deciduous broadleaves 60 kgNhaf1  is returned 

as litterfall while 36 kgNha 1yF1 is returned under temperate 

conifers (Cole and Rapp. 1981). 

Patterns of input. 

Deciduous species exhibit a marked temporal input prior to 

the onset of cold or dry seasonal conditions while evergreen 

conifers from temperate and boreal regions also exhibit seasonal 

variation of leaf litter input, with maximum amounts and lowest 

N concentrations before the start of adverse seasonal conditions 

(Bares and Wali, 1979; Lee and Correll. 1978). Reproductive 

structures also exhibit seasonality and may have high N con-

centrations (Melillo, 1981); the input of pollen in early summer 

when conditions are suitable for active decay may be a useful 

source of N in temperate coniferous forest (Stark, 1972). 

The input of large woody components does not follow a 

seasonal phenology, although the quantity and proportion of 

woody litter increases erratically throughout the life of a stand 

(Gessel and Turner, 1976), but relates to damaging events 

such as high wind or heavy snow (Stoaf and Berg, 1981). 

During periods when the proportion of woody litter is high 

total N returns are greater due to the larger mass, although 

the litter's mean N concentration is considerably reduced (Gessel 

and Turner, 1976). There is considerable spatial variation 

in the input of large woody components (Foster and Lang, 1982; 

Graham and Cromack. 1982). 
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ci3elow ground input rates. 

Early studies (such as those reviewed by Rodin and Bazilevch, 

1967) appear to have drastically underestimated the importance 

of belowground litter inputs. Fine root biomass ranges from 

1 to 12.6 	,ha 1  with turnover accounting for 63 to 77%, of 

primary production (Agren et al., 1980; Fogel, 1983;  Harris 

et al., 1979). Turnover of fine roots is frequently 90% of the 

standing crop (Fogel, 1980) resulting in an organic matter 

input of 2 to 5 times that from above ground litterfall (Fogel, 

1980; Persson, 1978), equivalent to an N return 2 times greater 

(Henderson and Harris, 1975; Wells and Jorgensen, 1975). 

Most research seems to indicate that fine root growth and death 

occurs independently of shoot growth, temporal variation being 

largely a result of environmental changes. Growth seems to 

take place where and when soil moisture and temperature 

conditions are favourable. Poor growth and death of fine roots 

are commonly associated with soil moisture stress and low 

temperatures (Deans, 1979; Nambiar, 1983; Persson, 1980). 

d.Short circuits. 

Primary consumption, particularly of foliage, can influence 

litter formation by altering the timing of input, influencing 

the general condition of the plant, and removing N to the 

primary consumer food chain (Staaf and Berg, 1981). 

Recently it has been suggested that the feeding activities of 

defoliating insects can have ecosystem level consequences as 

a factor regulating biogeochemistry in certain systems (Swank 

et al., 1981). Defoliation results in an input of frass and 

foliage debris, plus leaching of elements from the damaged 

canopy, which may stimulate decomposition processes and en-

hance nutrient availability (Kitchell et al., 1979; Mattson and 

Addy, 1975). in a system where litter inputs are low in N, 

and forest floor accumulation and nutrient immobilization occur 

(Williams, 1983), defoliation could stimulate turnover and pro-

duction. Swank et al. (1981) have reported increased nitrate 

loss from hardwood ecosystems suffering chronic defoliation 

associated with increased soil respiration, mineralization, and 

above ground net primary production. 



2:4:5 Cycles within the tree. 

In addition to cycling between plants and the soil, cycling 

also occurs between plant parts. This is best documented for 

foliage (Viro, 1955), involving the mobilization and translocation 

of N from older foliage to younger foliage, stem, branches 

and roots in the case of evergreen species; while deciduous 

trees can only translocate to perennial organs. Trees may also 

withdraw N from xylem during heartwood formation, preventing 

long term immobilization (Merril and Cowling, 1966; Miller, 

1981). 

Translocation of N from ageing or abscissing tissue gives 

the tree an energy advantage if the N withdrawn is stored 

in the organic form (Staaf and Berg, 1981), while reducing 

loss through leaching, volatilization or immobilization. Also, 

translocation conveys a level of nutritional independence from 

the soil when new growth commences in spring, at a time when 

mineralization and N availability may be low. N withdrawal 

is associated with the simultaneous translocation of carbohydrate 

and other elements (Chapin and (edrowski, 1983: Staaf and 

Berg, 1981). On breakdown the mobile fraction can be withdrawn 

and stored in perennial organs, in evergreen species the main 

site for storage is the foliage (Miller, 1981). 

Deciduous species translocate significant quantities of N 

prior to foliage abscission, e.g. 78% for chestnut oak (Ostman 

and Weaver, 1982), 90% for tamarack (Cole, 1981). 33 to 36% 
for northern hardwoods (Ryan and Bormann, 1982) and 70% 
for eastern deciduous forest (LuxnDore, et al., 1981). Coniferous 

evergreens also exhibit a marked withdrawal of N, e.g. 39% 

for loblolly pine (Switzer and Nelson, 1972), 76.6% for Scots 

pine (Stachurski and Zimka, 1975), 85% for Scots pine (Viro, 

1955). There is some evidence to suggest that conifers as a 

group translocate less N than deciduous species, which may 

depend more on internal cycling than conifers (Attiwill. 1981; 
Cole, 1981). Cole and Rapp (1981) indicate that some 30% of 

broadleaved N requirement is met by translocation from senescing 

leaves while there is little or no translocation for conifers, 

where uptake is generally equal to requirement. Luxmoore et 

al. (1981) found less translocation from conifer foliage, corn- 
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pared to hardwood, for the same site. These findings disagree 

with those presented above and with Miller (1981) who indicates 

that 50% of the N requirement of Corsican pine may be met 

by translocation. 

Differences may in part result from tree response to differing 

site conditions. There is evidence that translocation (i.e. cycle 

tightness) increases on poorer sites (Gosz, 1981; Vitousek, 1982). 
Stachurski and Zimka (1975) demonstrated that on an N rich 

older site oak and hornbeam trees withdrew only 14% of foliar 

N while 68% was withdrawn by the same species growing on 

a poorer site in association with pine. Lamb (1975) showed 

that N withdrawal from needles of Pinus radiata was more 

marked on poor than fertile sites. One would therefore expect 

low N concentrations in the litter of trees growing on infertile 

sites, which appears to be the case (Florence and Chuong, 

1974; Lamb and Florence, 1975; Mahendrappa and Weetman, 

1973; Miller and Miller, 1976). However, in a recent review 

of the available literature Chapin and Kedrowski (1983) found 

both an absolutely and a proportionally greater reabsorption 

of N in species with more N in foliage. They proposed that 

low N levels in the litter of species from poor sites merely 

reflects low foliar N concentrations, not greater withdrawal. 

In evergreen species most retranslocation is not associated 

with tissue death but represents N accumulation during dormant 

periods and susequent mobilization for use during active growth 

(Miller, 1979). N is stored mainly as protein which undergoes 

hydrolysis to amino acids which can be moved around the tree 

(Chapin and Kedrowski, 1983). Translocation between organs 

follows a seasonal pattern, which combined with uptake should 

normally meet tree N requirements. Should requirement exceed 

these first level sources (Miller et al., 1979), due to low soil 

availability or heavy demand, the tree can utilize N accumul-

ated from previous growing seasons. This mobilization from 

second level sources (Miller et al., 1979) is at the expense 

of proper functioning, or even existence, of organs. Second 

level sources represent N stored in excess of requirement. 



2:4:6 Internal cycling and ecosystem development 

Differences in internal cycling may have an important influence 

on the overall form of cycling within an ecosystem. Stachurski 

and Zimka (1981) identified two cycling extremes associated 

with poor and fertile sites, typified in their study by pine 

forest and mixed alder/deciduous forest. The alder site had 

a large N capital and high foliar N concentrations, virtually 

all N was recycled through litterfall with only 7% being re-
translocated. This resulted in litter with a high N concentration 

which supported considerable saprophytic activity, resulting 

in rapid decomposition and N release (half life for N release 

was 1 month). The N capital at the pine site was only half 

that of the alder, and foliar N levels were low. Up to 78% 
of this N was withdrawn before abscission giving litter with 

a very high C:N ratio, resulting in low saprophytic activity 

and slow N release (half life for N release was 2.5 years, 

30 times that at the alder site). 

The form of cycling described for the alder site tends to dom-

mate in rainforest on fertile soils, where foliar N concentrations 

are high and very little N is withdrawn (Nye, 1961). On poorer 

soils, however, rainforests translocate greater amounts of N 

(Grubb, 1977). Rainforest may be a special case with growth 

being more constant and less seasonal than in temperate 

latitudes. Conditions give rise to rapid rates of decomposition 

which exceed rates of input so that there is little litter accumu-

lation (Witkamp and Ausrnus, 1976). Leaching losses are minimized 

due to a well developed network of fine roots and mycorrhizas 

which make cycling unusually efficient (Stark, 1977; Stark 
and Jordan, 1978; Went and Stark, 1968). 

Data from Cole and Rapp (1981) suggests that many eco-

systems lie between the two extremes, depending on both with-

drawal and litterfall as a means of recycling N. Since 

individual species exhibit considerable plasticity in cycling 

as a response to N availability one cannot generalise about 

the form of cycling adopted by a species or species group. 

Individual species seem capable of responding to differing 

environmental conditions by modifying their use and cycling 

of N. This implies an ability to modify physiological processes 
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(Vitousek, 	1982) including polyphenol levels, N withdrawal, 

and foliage retention. A high internal redistribution of N on 

deficient sites would result in litter of high C:N ratios which 

would be slow to decompose (e.g. Alexander, 1977; Heal et 

al., 1982). An accumulation of N in slowly decomposing litter 

is an effective loss from the system, at least in the short term. 

Such accumulation can occur as a stand enters middle age, 

the formation of a mor humus layer commonly being associated 

with a progressive decline in tree growth following the onset 

of N deficiency (Miller. 1981; Ovington and Madgwick, 1959: 
Williams, 1972). 

Changes in N availability can cause alteration of tissue 

quality; most important is the production of polyphenols, which 

are commonly produced by plants subjected to environmental 

stress (Dell and McComb, 1978; Puritch, 1977). Plant polyphenols 

are complex organic molecules which can have a tanning effect 

on plant proteins and microbial enzymes, resulting in complexes 

highly resistant to microbial degredation. The degree of tanning 

undergone by leaf proteins during senescence determines their 

subsequent rate of decay (Davies et al., 1964). Polyphenols 

may act as precursors of aromatic and carboxylic components 

of humic and fulvic acids which are major constituents of humus 

(Davies, 1971). in living leaves polyphenols occur in vacuoles, 

separate from cytoplasmic protein with which they mix when 

autolysis occurs during senescence. 

Many workers (Coulson et al., 1960; Davies, 1971; Davies 

et al., 1964) have reported a greater quantity and diversity 

of polyphenolic substances in the leaves of species growing 

on nutrient deficient sites (associated with mor humus formation), 

compared with the same species on fertile sites. Davies (1971) 

found leaf polyhenol content to be inversely proportional to 

soil nutrient status, which for young soils closely reflects 

the nutrient status of the parent material. 

The level of available calcium has an important modifying 

effect on polyphenols, stimulating polymerization to a point 

at which they become insoluble (Davies, 1971; Coulsen et al., 

1960). Thus the absolute polyphenol level is less important 

than the extent of polyrrerizationnd consequently polyphenols 
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are more stable on acid sites where calcium levels are generally 

low. It is likely that certain species produce a high proportion 

of stable polyphenols which tends to encourage mor humus 

formation (Gosz, 1981). 

Fine roots are undoubtably important in humus formation, 

with several studies (e.g. Fogel, 1983; Kimmins and Hawks, 

1978; Vogt et al., 1981) indicating that fine root systems occur 

mainly in the humus layer on mor sites. Recent work indicates 

that the major litter input into forest systems may be from 

roots and mycorrhizal fungi (Fogel, 1983). Unfortunately no 

data exists on polyphenol levels in these organs, although 

they may be of dominant importance. 

The supply of N and species plasticity in cycling can lead 

to mor and mull humus formation under the same species. It 

also accounts for the reversability of the process following 

an increase in N availability, e. g. fertilization, or factors 

leading to increased rates of decomposition (Gosz, 1981). 

2:5 Ammonium and nitrate; dynamics and behaviour in the soil. 

2:5:1 Ammonium and the soil. 

Ammonium is a cation and as such can be adobed by the 

soil cation exchange complexes. The cation exchange capacity 

(c.e.c.) of most soils is large compared with their ability 

to adsorb anions, being 0.1 to 40 milliequivalents per 100 g. 

of soil. In general, c.e.c. increases with the clay and/or 

organic matter content of a soil, being low in sandy soils 

or soils with little organic matter. A portion of c.e.c. results 

from pH dependent charge on the soil colloids, increasing with 

a fall in pH due to dissociation of hydrogen from the hydroxyl 

groups of clay minerals or the functional groups of organic 

molecules. 

Exchangeable ammonium is freely available to plants and 

rapidly equilibriates with free ammonium in the soil solution, 

together these readily available forms comprise less that 2% 

of the total N in soils with only a little occurring in the ionic 

form in the soil solution (< 2 ppm (Cole, 1981)). See Brady 
(1974). Jenny (1980), Pritchett (1978) and Russell (1973). 

In addition, some non-exchangeable ammonium is present 

in most soils where it occurs in; 1, crystalline compounds 
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formed from constituents in the soil solution; 2, primary silicate 

minerals such as micas and feldspars, where it occupies sites 

normally occupied by potassium; 3, interlayer positions in 

minerals such as vermiculite and illite, which may also be 

occupied by potassium. For surface soils, non-exchangeable 

ammonium may represent 1 - 25% of the total soil N (Kudeyarov, 

1981). Of these non-exchangeable forms only the third is reason-

ably available to plants and microbes (Nômrnik, 1981); some 

30 - 60% of fixed ammonium can be exploited by the biota 

(Kudeyarov, 1981). 

Due to exchange and fixation processes ammonium mobility 

through the soil is an order of magnitude below that of nitrate 

(Bowen, 1973). In addition, ammonium is rapidly taken up 

by plants (Cronan, 1980b) and is central to the mineralization/ 

immobilization process (Jansson, 1958; Paul and Juma, 1981; 

Winsor, 1958). These factors combine to give low solution con-

centrations of the ion, with very low leaching losses from 

undisturbed ecosystems (e.g. Herbauts, 1980; Sollins and 

McCorison, 1981; Sollins et al., 1980). 

2-- 5:2  Ammonification 

This is the first, and often final, stage of mineralization in 

which organically bound N is transformed to the inorganic 

forms, ammonium then nitrate, by microbial action. Strictly, 

ammonification is the reduction of amino N to ammonium, the 

initial breakdown of organic material to yield amino N being 

proteolysis (Mengel and Kirkby, 1982). In both cases the 

reaction is carried out by heterotrophic microbes which derive 

energy from the transformations. 

A very wide range of heterotrophic microbes are involved 

in arnmonification, including both anaerobic and aerobic organ-

isms, possessing considerable biochemical diversity (Heal, 1979). 

It is this biochemical heterogeneity which determines the 

influence of environmental factors on ammonificatjon. Because 

of this diversity ammonification is never eliminated but the 

rate may be markedly affected by environment. In this respect 

it differs from nitrification which is mediated by a more re-

stricted group of organisms and is, as a result, readily 

influenced by changes in the environment. 
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The general relationships between environmental factors 

and ammonification have been known for a long time ( e.g. 

Harrnsen and Van Schreven, 1955; Waksman and Gerretsen, 1931 

Witkamp, 1966). Since ammonifying populations contain aerobes 

and anaerobes ammonification proceeds over a wide range of 

oxygen and moisture levels. Under anaerobic conditions more 

ammonium may accumulate since less is required for microbial 

growth (Williams et al., 1979), a fact exploited by anaerobic 

incubation techniques to assess potentially mineralizable N 

(Waring and Bremner, 1964). The transformation is inhibited 

by excessively dry conditions approaching wilting point (Alex-

ander, 1977; Hopmans et al.., 1980), although certain systems 

appear able to function under unusually dry conditions (Nagy 

and Macauley, 1982). Clarholm et al. (1981) found a positive 

relation between inorganic N levels and moisture content over 

the range 20 - 100% of the water holding capacity of a pine 

forest podsol. For a wide range of soils optimum moisture levels 

for ammonification are between 50 - 75% of the water holding 

capacity (Alexander, 1977). 

Ammonification is enhanced by cycles of drying and wetting 

(Birch, 1964), inorganic N release generally increasing with 

the duration of the dry phase (McColl, 1972; 1973). This 

response is in part a result of physical changes, due to organic 

material being made available for degradation which was pre-

viously inaccessible to microbial attack. The main explanation, 

however, is probably a partial sterilization effect on the 

biomass, killed cells undergoing lysis or rapid breakdown by 

the remaining biomass resulting in a carbon dioxide and 

nutrient flux. These fluxes have been shown to be proportional 

to the size of the initial biomass and the effect has been used 

to assess the size and nutrient content of the soil biomass 

pool (e.g. Anderson and Domsch, 1978; Brookes et al., 1982; 
jenkinson and Powlson, 1976). Similar fluxes occur after any 

soil disturbance which results in death of some fraction of 

the biomass e.g. freezing and thawing (Birch, 1964; Witkamp, 

1969) or grinding (Powlson, 1980). 

Temperature influences ammonification by acting on micro-

bial respiration and enzyme systems; respiration rate is directly 
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related to. mineralization of physiologically active plant nut-

rients (Witkamp, 1966; WolIum and Davey, 1975). Respiration 

increases with temperature, with maximum rates of ammonificatiori 

occurring between 40 - 60°C, thermophiles dominating at these 

temperatures. Many workers have demonstrated the importance 

of temperature (e.g. Buldgen, 1982; Kai et al., 1969) which 

can be the major limiting factor under cold conditions (e.g. 

Moore, 1981; Van Cleve et al., 1981). Temperature and moisture 

show considerable interaction in their influence on respiration 

and ammonification (e.g. Bunnell et al., 1977); thus respiration 

is maximal at high temperatures and high moisture levels, 

with the response to temperature declining at low moisture 

levels and vice versa. Meentemeyer (1978) demonstrates the 

importance of this interaction, showing that litter decomposition 

is highly correlated with actual evapotranspiration, on a macro-

climatic scale, which is effectively an index of energy (temp-

erature) and moisture. 

Ammonification is generally enhanced in neutral environments 

and depressed by acid conditions, being higher in soils with 

mull humus than those with moder, mor or peat (De Laune 

et al., 1981; Lodhi, 1982; Witkamp and Van der Drift, 1961). 

Many workers have indicated an increase in ammonification 

following the application of lime to acid soils, although this 

may be short-lived (e.g. Carey et al., 1981; Keeney, 1980; 

Nômmik, 1978; Robertson, 1982). 

The presence of inorganic and organic metabolites influences 

microbial growth and ammonification. Thus ammonification can 

be enhanced in the rhizosphere in the presence of plant/ 

microbial exudates (Rambelli, 1973). Clarholm and Rosswall 

(1980) found that spring and autumn peaks in the number of 

fungi and bacteria were associated with rainfall when moisture 

was non-limiting. They concluded that this was a result of 

inorganic and organic material 1) present in the rain, and 

2) leached from foliage. 

Resource quality is of major importance in influencing the 

rate and timing of ammonification, this will be discussed in 

Section 2:6 with reference to litter decomposition. 
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The af fore mentioned factors are variables of macroclimate 

expressed through microclimatic and soil conditions, as such 

one would expect considerale variability within and between 

ecosystems. 

2:5:3 Ammonia volatilization 	 - 

Apart from loss through leaching, negligible for animoniurii, 

ammonium can be subject to gaseous loss on conversion to 

ammonia, although this is unlikely to be a significant N loss 

mechanism in unfertilized forests (Keeney, 1980). 

Since ammonia is a as under normal environmental con-

ditions, and as the partial pressure in the atmosphere is low, 

it is readily volatilized under certain conditions, this being 

influenced by physical, chemical and biological factors (Freney 

et al., 1981). 

For volatilization to occur fkere rt+ be 	an ammonia source 

his can result from the decomposition of organic N in natural 

system. s,orfrom fertilizers applied to managed svstem (especially 

urea). Where large quantities of organic matter decompose local-

ised areas of high pH can occur (F'reney et al., 1981) which 

may act as sites for volatilization even when the bulk soil 

is acid. The decomposition process results in ammonium ions 

rather than ammonia, therefore conversion to ammonia controls 

the rate of loss. This depends to a large extent on pH with 

the ammonia: ammonium ratio increasing with PH; in poorly 

buffered soils the production of hydrogen ions on the conversion 

of ammonium to ammonia leads to acidification of the soil 

solution with a resultant decrease in ammonia loss. At high 

pH and high initial ammonium levels the main control on volat-

ilization is the soil buffering capacity (Freney et al., 1981). 

For a given pH volatilization is positively correlated with 

temperature, since more ammonium is converted to ammonia 

at high temperatures. Any factors leading to low ammonium-

levels will clearly reduce loss, such factors act in most un-

disturbed forest ecosystems (See previous sections). 

Thus while substantial loss may occur from urea treated 

soils (Keeney, 1930; Morrison and Foster, 1977; Wollum and 

Davey, 1975), volatilization is unlikely to be important in 

unfertilized forest or forest treated with acid forming fertilizer, 

37 



e.g. arn:cnim subhate. Loss from decomposing o c :a n i c  residue 

can occur but at the ph of most forest soils this will he low; 

at p!-1 6 and below only 0.1% of ammoniu + ammonia occurs 

in the ammonia form (Wollum and Davey, 1975). 

2:5:4 Nitrate and the soil 

'itrate is an anion and as such is highly mobile under most 

soil conditions, rendering it susceptible to both solution and 

gaseous loss. The anion adsorption ca?acity of most soils is 

low in comoarison with their cation exchange capacity (e.g. 

Brady, 1974). Certain minerals and amorphous soil colloids 

can adsorb anions very strongly, e. g. hydrous iron and 

aluminium oxides (particularly as surface deposits on other 

minerals ) , 1: 1 and 2:1 clay minerals, iron and aluminium organic 

complexes and calcium carbonate (e.g. jenny, 1980; Russell, 

1973). Two main forms of anion adsorption occur; ligand 

exchange (e.g. phosphorus with metallic hydrous oxides) and 

adsorption by protonated groups, the former being a chemically 

specific reaction while the latter is purely electrostatic and 

non specific in nature. Both forms of adsorption are pH depend-

ent and increase with increasing hydrogen ion concentrations. 

Anion adsorption is therefore highest in acid soils rich in 

iron and aluminium oxides and/or clay minerals. 

Nitrate does not undergo ligand exchange and is only weakly 

adsorbed, consequently it moves freely in the soil solution 

and is readily leached (Khanna, 1981). Once formed nitrate 

does not enter into the immobilization/mineralization process, 

except via plant uptake (heterotrophic microbes show a prefer-

ence for ammonium as an N source, Jones and Richards, 1977). 
Reduction to ammonium by contact with highly reducing soil 

conditions is unlikely. Loss of nitrate in downward percolating  

water is associated with the loss of balancing cations (Robertson, 

1982). 

2:5:5 Nitrification 

Extensive reviews have been published regarding nitrification, 

biochemical aspects (Focht and Verstrate, 1977), ecological 

aspects (Verstrate, 1981), microbial aspects (Alexander, 1977), 
and in forest ecosystems (Robertson, 1982). 
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The initial product of mineralization of organic N is ammonium. 

Depending on the environmental conditions this may be the 

end product, or it may be oxidised by microbes to produce 

nitrate. e.g. 	 - 

Non specific 	 Specific 	Specific 

heterotroph s 	autot rophs 	autotrophs 

Organic 	> Ammonium 	) Nitrite 	> Nitrate 
N 	

Slow 	 Fast 	 V. Fast 

1 	 2 

The initial step of ammonification is carried out by a vast 

range of heterotrophic microbes. Oxidation of ammonium and 

subsequent further oxidation to nitrate is mediated largely 

by obligately aerobic autotrophic bacteria. These can collective-

ly gain up to 440 KJ of energy per mole of ammonium oxidised 

when nitrate is the end product (Robertson, 1982). 

Step 1 is known to be carried out by the genera Nitro-

somanas, Nitrosococcus, Nitrospira and Nitrosolubus (Focht and 

Verstrate, 1977), while step 2 is carried out by the genus 

Nitrobacter (Alexander, 1977). Only Nitrosomanas and Nitrobacter 

occur commonly in soils. Since nitrite does not occur above 

trace levels in terrestrial ecosystems there is strong evidence 

that ammonium and nitrite oxidisers normally occur together. 

Certain methane oxidising bacteria have been associated with 

ammonium oxidation, these organisms can occur under more 

acid conditions than can be tolerated by the groups mentioned 

above, although their significance is uncertain (Verstrate, 

1981). A wide range of heterotrophic bacteria and actinomycetes 

can oxidise ammonium to nitrite, but only in trace amounts. 

Further, this normally occurs only in the presence of excess 

substrate and when active growth has ceased. At least two 

fungal genera have been shown to oxidise nitrite therefore 

an entirely heterotrophic pathway is possible in a mixed micro-

bial popu1ation (Alexander, 1977). 

Rates of nitrification can vary markedly between different 

ecosystems; for natural systems a low level of nitrification 

is central to N preservation (Likens et al., 1969; Vitousek 
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et al., 1979;  Vitousek et al., 1982). Where ammonium oxidation 

is low mineral \T  remains in the relatively immobile ammonium 

form (see Section 2:5:1). Where oxidation is rapid ammonium 

is rapidly converted to nitrate which is subject to loss (see 

Section 2:5:6). Hydrogen ion production during nitrification 

can exacerbate ion loss by increasing the level of base cations 

in solution as a result of cation exchange. 

Factors influencing nitrification in both undisturbed and 

disturbed systems have received considerable recent attention 

(e.g. Adams and Attiwill, 1982; Jones and Richard, 1977; 

Khanna, 1981; Lohdi and Killingbeck,1980.;Matson and Vitousfak 1981; 

Sollins and McCorison., 1981). Six major environmental factors 

have been identified as influencing autotrophic nitrification 

in well drained soils (nitrification will not occur in poorly 

aerated soils since the autotrophs responsible are obligate 

aerobes); temperature; moisture; pH, substrate availability; 

the supply of essential nutrients; alleochemicals (Robertson, 

1982). The size of the nitrifying population is commonly included 

in this list but is really an expression of the other factors. 

Increasing moisture and temperature stimulates nitrification 

to a point beyond which rates are reduced. Substrate avail-

ability is particularly important; in most forests, litters of 

high C:N ratio, coupled with readily oxidisable carbon and 

an active heterotrophic microflora, results in rapid ammonium 

immobilization, and therefore low levels of nitrification. Mycorr-

hizal fungi also compete very effectively for low levels of 

nutrients and may be able to suppress other microflora (Gadgil 

and Gadgil, 1978). Autotrophic nitrifiers are generally con-

sidered poor competitors for ammonium in the presence of 

heterotrophs (Jones and Richards, 1977). Several workers 

consider low ammonium availability (due to low levels of gross 

mineralization or rapid immobilization) to be dominant in the 

control of nitrification (e.g. Adams and Attiwill, 1982; Vitousek 

et al., 1982) which is in agreement with the classic work of 

Jansson (1958). 

Soil pH has long been considered the most important environ-

mental factor influencing nitrification (Alexander. 1977; Keeney, 

1980). Observations, largely the result of incubations and 
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laboratory studies, suggest that autotrophic nitrification is 

severely inhibited below pH 6. However, nitrate is commonly 

detected in systems of much lower pH, down to pH 4.5 (Robertson, 

1982). This could be a result of methylotrophic or hetero.troohic 

nitrification but there is little direct evidence to support this 

theory (Verstrate, 1981). Bulk pH measurements are probably 

inadequate and disregard the presence of microsites of higher 

pH which could act as centres for nitrification. Also, auto-

trophic nitrifiers exhibit considerably greater ecological 

flexibility and phenotypic diversity than previously supposed 

(Verstrate, 1981; Robertson, 1982). Thus nitrifiers exhibit widely 

differing K 5  values (200 X), tolerance to maximum substrate 

levels, tolerance to maximum levels of end product, inorganic 

salts, heavy metals and temperature. Robertson (1982) found 

little correlation between levels of relative nitrification 

([nitrate]: [ammonium]) and p1-I or C: Ii ratio, he concluded that 

nitrifiers can adapt to conditions in situ, so that the inability 

of a population from a neutral environment to nitrify under 

acid conditions may not reflect the ability of a population 

which has developed under acid conditions. Therefore in most 

forests, nitrification per se may be relatively unaffected by 

conditions e.g. pH. 

In agriculture, nitrification is commonly associated with 

general nutrient availability and levels of fertility. P seems 

to be of particular importance to autotrophic nitrifiers (Ver-

strate, 1981), as such, mycorrhizas with their pronounced 

affinity for phosphorus could exert further control on nitri-

fication. 

Alleopathic controls have been frequently suggested (Lodhi 

and Killingbeck, 1980; Rice and Pancholy, 1974) but doubt 

has been cast concerning many of the techniques used to 

demonstrate alleopathy, which possess fundamental flaws (Rob-

ertson, 1982). 

That nitrification is minimized in many forest systems is 

demonstrated by the low rates of loss measured by many workers 

(e.g. Feller, 1977; Sollins and McCorrison, 1981; Sollins et 

al., 1980). Where nitrification occurs readily losses can be 

high (Melillo et al., 1981). 
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2:5:6 Denitrification 

This has been the subject of several recent and comprehensive 

review articles; Focht and Verstrate (1977); Knowles (1981, 
1982). 

Denitrification is the dissimilatory reduction of one or both 

of the ionic N oxides (i.e. NO 3  -- nitrate and NO2 - nitrite) to 

gaseous N oxides (NO, nitric oxide and NO 2  , nitrous oxide) 

which in turn may undergo reduction to gaseous N 2  (Knowles, 

1982). All gaseous forms are subject to loss to the atmosphere. 

The denitrification reaction can be represented as; 

NR 1 	 NR2 	 NR3 	 NR 4  

NO 3 	 NO 2 	4 NO 	4 N 20 	) N 2  

solution 	solution 	gas 	 gas 	 gas 

each of the steps being catalysed by a different N oxide 

reductase (NR). A large range of microbes can carry out some 

part of the denitrifying reaction where N oxides act as a 

terminal electron acceptor in the absence of oxygen. The genera 

involved are biochemically and taxonomically diverse, all are 

bacteria of which most are heterotrophs and aerobic (Knowles, 

1981). 

Five environmental factors control denitrification, both in 

terms of rate and the proportion of products (due to the 

differential response of the four reductases). These factors 

are; oxygen, organic carbon, substrate level, pH and temp-

erature. N oxide reductases are depressed by oxygen consequent-

ly denitrification occurs only under anaerobic conditions, as 

a result it commonly occurs during periods of high soil 

moisture content. However, denitrification can occur in apparent-

ly aerobic soils following low levels of rainfall as a result 

of anaerobic microsites in soil aggregates (Smith, 1980). The 

most abundant denitrifiers are heterotrophic therefore denitrifica-

tion is well correlated with organic carbon levels, which are 

high in most forest soils (e.g. Cole and Rapp, 1981). Denitrifica-

tion is positively correlated with pH, being maximum at pH 

7 to 8, but still occurring with N 2 0 as the product at pH 4.0 

(Nmmik, 1956). Denitrification shows strong temperature depend-

ence in the range 10 - 35°C, being maximum at 60 - 75°C but 
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still detectable at 0 - 5°C (Focht and Verstrate, 1977). The 

presence of nitrate is essential as a substrate for denitrification, 

therefore where conditions result in low nitrate levels de-

nitrification will be insignificant or absent. 

One would expect rapid denitrification in anoxic, warm, 

neutral soils high in organic matter (Keeney, 1980). Little 

information exists on denitrification in forests but it is likely 

to occur, at least at low levels (Wollum and Davey, 1975). 

Forests could provide excellent conditions for denitrification 

due to the high levels of soluble organic matter in the forest 

floor. However, pH in most forests is well below the optimum 

while anaerobic conditions are unlikely to develop in the well 

aerated forest floor, although nitrate could be leached to 

anaerobic zones at greater depth. The low level of nitrate 

in most forest ecosystems should also restrict denitrification. 

Despite these factors several workers e.g. Melillo (1981) 

have detected significant levels of denitrification; Bormann 

and Likens (1979) found that 19% of N entering a northern 

hardwood forest was lost through denitrification; Melillo et 
-1 al. 	(1981) found that 27 kgNha-1yr underwent gaseous loss in 

a deciduous forest. 

2:6 Litter decomposition and N release 

N release from litter is a basic process in the cycling of N 

within an ecosystem. Litter quality, soil organisms and en-

vironment regulate decomposition and therefore nutrient release 

(Berg and Ekbohm, 1983; Berg and Staaf, 1980, 1981; Heal, 

1979; Heal et al., 1982; Staaf and Berg, 1981). 

The influence of specific environmental factors has already 

been discussed: litter quality refers to those physico-chemical 

characteristics which influence decomposition. These include 

the nature of the carbon source, nutrient sources, modifying 

compounds and physical properties. Litter quality varies between 

and within species, depending also on the site conditions (Berg 

and Ekbohm, 1983) and age (McGill et al., 1981), it also 

varies between components of the same plant (Heal, 1979). 
Physical properties which influence decomposition are surface 

toughness, particle size (surface area) and, in particular, 

moisture uptake. The latter is influenced by the degree of 
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physical contact with the soil and therefore particle size 

(KJrik, 1974). Conifer needles have a hydrophobic surface 

and small surface area, as a result they may be slow to take 

up moisture but are effective at retaining it. They retain their 

surface integrity for longer than broadleaved leaf litter, which 

is readily wetted but does not retain moisture to the same 

extent (Heal, 1979). 

A wide range of organic compounds act as carbon and 

energy sources for microbes, the ease with which a given sub-

strate can be decomposed depending heavily on the properties 

of its organic constituents (e.g. Minderman, 1968). Water and 

acetone soluble components such as sugars, amino acids, steryl 

esters and triglycerides decompose first, disappearing almost 

completely within the first year. These are followed by cell-

uloses and hemicelluloses then lignin (Berg, 1978; Berg and 

Staaf, 1981; Berg et al., l982a, 1982b; Reber and Schara, 

1971). Polyphenols and phenols may take even longer to de-

compose (Minderman, 1968; Reber and Schara, 1971) although 

polyphenol content may decrease during the first year with 

an initially rapid fall (Hayes, 1965). The recalcitrance of 

polyphenols may result from their apparent inhibition of fungal 

growth (Berg et al., 1982b, 1980). 

Although many substances are involved, the rate of de-

composition (assessed as CO 2  flux or weight loss) of carbon-

aceous material is strongly influenced by lignin (Aber and 

Melillo, 1980; Berg et al., 1982b; Fogel and Cromack, 1977; 

Meenteymeyer, 1978; Melillo et al., 1982; Parkinson, 1979) 

which decomposes 5 to 10 times slower than other more soluble 

compounds. Bunnell et al. (1977) accurately modelled weight 

loss from decomposing litter by use of a double exponential 

model to express both rapid and slow rates or decomposition, 

a similar approach being used to model weight loss by other 

workers (e.g. McGill et al., 1981). 

The reasons for lignins recalcitrance are discussed in detail 

in a review by Zeikus (1981). Since lignin is one of the last 

substances to start to decompose its concentration increases 

relative to those substances which exhibit rapid weight loss. 

For needle litters no lignin loss may occur until 40 to 45% 
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of initial needle weight has been lost, i.e. until the lignin 

concentration has reached around 30% (Fogel and Cromack, 

1977). Even after lignin has begun to decompose it does so 

more slowly than other organic fractions, consequently its con-

centration still continues to rise (Berg and Staaf, 1980, 1981; 

Berg et al., 1982b; Melillo et al., 1982). Lignin can also 

reduce the decomposition rates of more labile compounds which 

it may structurally enclose, rendering them resistant to micro-

bial attack (Nilsson, 1973; Zeikus, 1981). Because of its 

recalcitrance lignin decomposition is rate determining for the 

weight loss of a large fraction of litter (Berg et al., 1982b; 

Melillo et al., 1982; Parkinson, 1979). High lignin levels or 

lignin: N ratios being associated with low decomposition rates 

(Aber and Melillo, 1980). Highly lignified material such as 

bark and wood decomposes very slowly (Foster and Lang, 1982; 

Heal et al., 1982) therefore most soil organic matter reflects 

their unique isotopic carbon ratios (Waring, 1980). In vascular 

plants lignin may account for 25% of dry weight with lignaceous 

litterfall accounting for 80% of primary production in some 

forests (Zeikus, 1981). 

N levels have long been correlated with rates of decom-

position, weight loss occurring more rapidly for litters with 

a high N content (Berg and Staaf, 1981; Heal, 1979; Melin, 

1930; Witkamp, 1966). However other workers have found the 

lignin level to be more rate determining (Fogel and Cromack, 

1977; Melillo et al., 1982). Hermann et al. (1977) found that 

weight loss was more highly correlated with the lignin : carbo-

hydrate ratio than it was with the C:N ratio. Initial weight 

loss (up to 30% of initial weight) is strongly correlated with 

N (and other nutrient) concentrations, this is largely the de-

composition of soluble compounds, cellulose and hernicellulose. 

Once lignin starts to decompose the weight loss enhancing effect 

of N appears to be smothered by the slow decomposition of 

lignin. Recent work (Berg et al., 1982a) indicates that lignin 

decomposition is actually depressed in litters which had a 

high initial N concentration. There appears to be an inhibitory 

effect of ammonium on the ligninolytic enzyme systems of 

microbes (Keyser et al., 1978) with the rate of decomposition 
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being shown to decrease following ammonium application (Bengts-

man, 1936; Titus, personal communication). Lignaceous material 

can also fix ammonium leading to the formation of heterocyclic 

ring compounds which are highly resistant to microbial 

degradation. Such fixation is indicated by Berg and Staaf (1981) 

who found that the increase in litter N concentration during 

decomposition was linearly correlated with an increase in lignin 

N. Melillo et al. (1982) found that more N was immobilized, 

per unit of carbon respired, the higher the initial lignin con-

centration. Thus while initial weight loss may be well correlated 

with N level (Aber and Melillo, 1980), except where external 

N sources are high (Melillo et al., 1982), the situation becomes 

reversed once the decomposition of lignin has started. 

N release from decomposing 	litter is essentially regulated 

by the same factors as decomposition, but is modified by im-

mobilization process. The pattern of N release from litter follows 

three phases, although not all need occur under a given set 

of conditions (Berg and Staaf, 1981). Prior to and during litter-

fall epidermis integrity may be reduced by the phylloplane 

microflora, with very early weight loss and N release resulting 

from the physical leaching of soluble compounds (Nykvist, 1963). 
The quantity of leachable N appears to be 2 to 4% of the total 

N. irrespective of the amount (Berg and Staaf, 1981). Since 

this leachable fraction has a very rapid turnover (Berg, 1978) 
it is likely that some is decomposed within the litter, part-

icularly in the case of conifer needles (Nykvist, 1963). Early 

release of N as a consequence of leaching is normally associated 

with high N levels in the litter, however Berg and Staaf (1980) 
report leaching loss at a litter N concentration of 0.58%. 

Most litters undergo a phase of N accumulation (immobiliza-

tion) when N concentrations progressively increase. This is 

a well known phenomenom (Bocock, 1963; Gosz et al., 1973) 
which can occur whether there is a release of N or not (Berg 

and Staaf, 1981), and results from a loss of carbon through 

respiration while N is retained by microbes. Accumulation starts 

early during decomposition and tends to continue up to 

approximately 35% weight loss (Berg and Staaf, 1981; Howard 
and Howard, 1974). For Scots pine needles the period of N 



accumulation is associated with the invasion of fungal hyphae 

(Berg and Staaf, 1979). Under certain conditions an absolute 

increase in the quantity of N occurs, postulated sources for 

this N are, N fixation, absorption of atmospheric ammonia, 

throughfall, dust, insect frass, green litter and funga1 

translocation/jmmobjljzatjon (Howard and Howard, 1974; Melillo 

et al., 1982). While the N concentration and absolute N content 

of the substrate plus microbial biomass may increase the 

quantity of N in the substrate itself will decrease with time 

as it is immobilised into microbial N or secondary organic 

products (Heal et al., 1982; Swift et al., 1979). 

The initial N content of litter definitely influences whether 

immobilisation does or does not occur, however a critical N 

value above which accumulation does not occur (e.g. Mulder 

et al., 1969) does not seem generally applicable to the forest 

situation. The use of C:N ratios to predict patterns of immobil-

isation/mineralisation in agricultural soils appears to work 

well (Jansson, 1958; Paul and Juma, 1981), with mineralization 

occurring below C:N 25 and immobilization above C:N 35, being 

relatively unaffected by intermediate values (Heal et al., 1982). 
These patterns result from microbial demand for N during growth 

as carbon is used, the substrate provides N when the con--

centration is high, and N in excess of microbial requirements 

is released by deamination (more generally termed ammonifica-

tion). Immobilization occurs when the organic N of the substrate 

is low (Alexander, 1977). Material with C:N ratios above 35 
increase in N concentration until a critical value (C:N. 25-
35) is reached when N release occurs. This classical model 

does not adequately describe N behaviour in forests (Berg and 

Staaf, 1981; Heal et al., 1982) where accumulation occurs at 

initial N concentrations ranging from 0.3 to 1.4%. 1.4% appear-

ing to be an upper limit (Berg and Staaf, 1981). 

Accumulation is related to microbial processes and has been 

shown to be linearly correlated with weight loss (Berg and 

Staaf, 1981), i.e. microbial activity, additionally, accumulation 

increases at high lignin levels (Melillo et al., 1982). The 

influence of environment seems especially important; Anderson 

(1973) found that N accumulation in beech leaves incubated 
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on soil was twice that of those incubated in air; Dowding (1974) 
found that barley straw accumulated N up to 170 and. 230% 

of its original N content at two tundra sites while no ac-

cumulation occurred on a third; Berg and Ekbohm (1983), found 

that the C:N ratio above which net immobilization and below 

which net mineralization take place differed between a clear-

felled (C:N, 63) and forested (C:N, 109)  site. 

Accumulation is followed by N release, although N con-

centrations can continue to rise after a net release has 

occurred. The N level at which release occurs varies markedly 

between forest types but can occur at concentrations as low 

as 0.7 to 0.8% (Berg and Staaf, 1981). Once N release has 

started it is linearly correlated with weight loss. As with 

accumulation the critical level for N release depends on site, 

increasing with the rate of first year weight loss (Berg and 

Staaf, 1981). This is probably a conservation mechanism to 

prevent N loss on sites where decomposition is rapid. 

From what has been said it is clear that a high litter 

input, low in N but high in lignin, and containing a large 

proportion of wood, will give low rates of decomposition and 

N release. Under such conditions considerable litter accumulation 

may occur (Witkamp and Ausmus. 1976). The contribution of 

large woody components is often underestimated (Graham and 

Cromack, 1982; Richards, 1981) but their contribution in terms 

of biomass and N returned to the forest floor can be large, 

increasing as the stand matures (Gessel and Turner, 1976). 

Such woody materials may be exceptionally low in N, combined 

with organic recalcitrance, resulting in very low rates of 

decomposition and prolonged N immobilization (Vitousek, 1982). 

Fungi dominate in the decomposition of woody substrates, and 

all substrate N may have to be converted to mycelium before 

release can occur (Heal et al., 1982; Kârik, 1974; Richards, 

1981), a process which may take 20 years, during which time 

the material can act as a sink for mineralized N (Graham and 

Cromack, 1982). 

There is comparatively little information on the decomposition 

of fine roots, although it is assumed that this is controlled 

by the same factors influencing the decomposition of above 



ground litter (Gosz, 1981). N concentrations in fine roots and 

mycorrhizas have been reviewed by Fogel (1980) and Kimmins 

and Hawkes (1978), these range from 0.33 to 2.03%, thus one 

might expect rapid release or slow release of N deending 

where in this range a sample lay. It is not known whether 

fine roots undergo physiological changes associated with ab-

scission in an analagous manner to foliage (Fogel, 1983), if 

they do this would obviously influence their rate of decomposition. 

Ford and Deans (1977) report rapid disappearence of dead 

fine roots, while Popovi (1980) associates them with slow 

decomposition and N mineralization. Berg et al., (1982c) found 

first year weight loss of root litter to be very similar to leaf 

litter ( 32% ). Such differences probably reflect stand N status 

in much the same way that this influences leaf litter de-

composition. Decomposition of fine roots may account for 42% 

of carbon release being 2 to 2.8 times that released by above 

ground litter (Edwards and Harris, 1977). N release during 

the decomposition of fine roots may be 1.4 to 2 times that from 

above ground sources (Henderson and Harris, 1975; Wells and 

Jorgensen, 1975), while Fogel (1983) found mycorrhizas and 

fine roots accounted for 43% of N release in a Douglas fir 

stand. 

2:7 N mineralization, the importance of the microflora 

The importance of the microflora in the cycling of nutrients 

in soil systems has been comprehensively reviewed by Coleman 

et al. (1983). Measured rates of N mineralization in forest 

ecosystems range from 30 to 50 kgha 1 yr 1  for conifers and 

100-300 kgha 1 yr 1  for deciduous broadleaves (Gosz, 1981). Sites 

where temperature or moisture are limiting may have lower 

rates e.g. 3.9 to 1.6 kghayr 1  (Popovi, 1980) or 11.5 kgha 1yf 1  

(Rapp et al., 1979). Such values are based on incubation 

techniques which only measure net mineralization, N released 

in excess of microbial requirement, and do not account for 

turnover of N within the microbial biomass (Heal et al., 1982; 

Paul and Juma, 1981). 

N incorporated into the microbial biomass is temporarily 

immobilized, immobilization normally being associated with 

an actively increasing biomass (Clarholm et al., 1981). Fungal 
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tissue may be 2.2 - 19.6% N and can account for 160 - 1430 

kgha 1  of soil N (Bâàth and Soderstrm, 1979). Frequently. 

sequential measurements of the microbial standing crop show 

little change in pool size, however, tracer techniques. (Paul 

and Juma, 1981) and observation of respiration rates (Clarhoirn 

et al., 1981) indicate rapid turnover (Anderson et al., 1981). 

The reason for this rapid turnover is grazing by the soil fauna, 

thus the actively proliferating microflora is maintained as 

a relatively small standing crop with a very rapid turnover 

(Anderson and meson, 1982; Parkinson, 1979). The soil fauna 

excrete N rich substances and increase the homogeneity of 

decomposer distribution, thus maximising substrate utilization 

and increasing N availability (Anderson et al., 1981). 

N turnover between the substrate, microbial biomass and 

soil fauna considerably exceeds net mineralization e.g. estimates 

of gross mineralization may be as high has 591 kgha 1yE 1  (Heal et. 

al., 1982), far in excess of plant requirements (Cole and Rapp, 

1981). This N is potentially available to plants through 

competition with soil saprophytes. 

Fungi are nutritionally extremely diverse and dominate 

in acid forest situations (Bâth. and Soderstrm, 1982; Richards, 

1981). Many are able to decompose materials with extremely 

low N concentrations, perhaps by transferring N from N rich 

substrates (Berg and Staaf, 1981). N immobilized in fungal 

tissue is released by lysis and faunal grazing, causing 

the release of N even when C:N ratios are high C> C:N 35). 

Many fungi are able to utilize soluble organic N following 

the initial breakdown of large molecules, deamination then 

occurring within the mycelium. Thus N turnover can be 

accomplished without the need for an inorganic pool. Mycorr-

hizas can also utilize low molecular weight organic N (Alexander, 

1982; Bowen, 1981; Bowen and Smith, 1981) enabling plants 

to compete with saprophageous fungi for a soluble organic 

N pool. Recent work (Van Cleve and White, 1980) indicates 

that this pool may be appreciable, 40 kgha 1 , representing 

nearly 10% of total system N. Their work has indicated that 

much of this organic N does not pass through the inorganic 

pool, suggesting uptake of organic N by saprophytic and 



mycorrhizal fungi (Heal et al., 1982). 

It has been suggested that the rhizosphere of certain tree 

species can mineralize or somehow make available some fraction 

of soil organic N resistant to microbial breakdown, under 

previous vegetation. The magnitude of this rhizosphere effect 

varies with species, but seems most developed for pioneers 

such as larch and pine, and less developed for spruce (Fisher 

and Eastburn, 1974; Gosz, 1981; Jones and Richards, 1977, 
1978; Skinner and Attiwill, 1981; Stone and Fisher, 1969; Yeates 

et al., 1981). Since mycorrhizas can exploit very little humus 

bound N (Lundberg, 1970) it seems likely that rhizosphere 

microbes are primarily responsible for N mineralization. 

x 
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A Comparison of Sitka spruce foliar nutrient levels in 

pure and mixed stands 

3:1 Introduction 

As outlined in Section 1, an objective of this study was to 

determine conclusively whether the presence of larch species 

exerts a positive influence on the growth and nutrient status. 

particularly N, of Sitka spruce. 

Foliar analysis of Sitka spruce, in pure stands and in 

mixture with larch, was carried out at two Forestry Commission 

experiments (Mabie 7 and Inchnacardoch 164) to assess spruce 

nutrient status under the two regimes. The use of foliar analy-

sis in assessing tree nutrient status is widespread, being a 

useful means for comparing treatments or identifying deficien-

cies provided the limitations of the method are appreciated 

(McIntosh, 1983). 

Plant nutrient status is commonly determined by tissue 

analysis, results being expressed as a nutrient concentration 

for the entire plant or, as in the case of forest trees, some 

sampled component (recently Dighton and Harrison (1983) have 

drawn attention to an alternative method which does not depend 

on tissue analysis). Results from such analyses are frequently 

compared with values which are considered optimal for the 

growth of the species in question, these values are normally 

based on a large number of analyses for trees exhibiting a 

range of growth rates (Everard, 1973). The concept of an opti-

mal concentration for growth is attractive but its use is limited 

in practice; 1) optimal values are not fixed but vary with 

age and the developmental status of the stand (Miller, 1981; 
Miller et al., 1981), 2) the optimum depends on the growth 

parameter chosen (Miller et al., 1981), 3) optimum levels may 

never be achieved under field conditions. Consequently it is 

more useful to consider a critical level, below which growth 

is severely impaired and deficiency symptoms are manifested, 

when a response to fertilization would be expected. 
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For forest trees the organ most frequently sampled is the 

leaf, although other metabolically active tissue can also reflect 

nutritional status. e. p. twigs and roots (Van den Driessche 

and Weber, 1977) or inner bark (Olsson, 1978). Whatever the 

organ chosen it is essential that the temporal and spatial vri-

ations in its mineral content be appreciated. Seasonal variation 

in foliar nutrient levels is well documented (Chapin and 

Kedrowski, 1983; Maclean and Robertson, 1981; Ostman and 

Weaver, 1982; Schueller, 1978; Smith et al. , 1981). For both 

conifer and broadleaved species foliar N, P and K decline dur-

ing the growing season while calcium increases and rnagnesiurr 

fluctuates with no consistent trend. Concentrations stabilize 

during dormency in late autumn and early winter, which are 

generally considered the best times for sampling (Everard, 

1973; Maclean and Robertson, 1981). For deciduous species, 

sampling must obviously be undertaken prior to leaf abscission, 

although opinion varies as to precisely when. 

Spatial variation of foliar concentrations within the tree 

crown is also important. These generally decrease down the 

crown for N, P and K, although an increase can occur at the 

base of the live crown (Maclean and Robertson, 1981; White, 

1954). For conifers, sampling is normally restricted to the 

topmost whorl (Everard, 1973) which has the advantage of 

being a 'physiologically defineable position (Miller, 1982. Un-

published). 

Due to the translocation of nutrients within the tree to 

metabolically active areas (Fagerstr(5m and Lohm, 1977; Miller, 

1981) it can be argued that top whorl nutrient concentrations, 

maintained at the expense of older foliage, may not truly re-

flect tree nutrient status. Thus Smith et al. (1970) suggest 

that sampling should include older (more stressed) foliage, 

Stachurski and Zirnka, (1975) propose that nutrient levels 

in both old and new foliage should be determined to give a 

gradient over several age classes, an approach adopted by 

Maclean and Robertson (1981) and by Florence and Chuong 

(1974). Lamb (1975) has demonstrated that nutrient withdrawal 

from older needles is more marked on poorer sites. Because 

of this some workers (Lea and Ballard, 1982; Mahendrappa 
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and Weetman, 1973; Miller and Miller, 1976) have suggested 

the use of nutrient concentrations in needle litter as an indi-

cator of nutritional status. 

Once determined, nutrient concentrations are normally ex-

pressed on a percentage dry weight basis which, under certain 

circumstances, may be misleading since major changes in carbo-

hydrate (i.e. weight) content could confound interpretation. 

Smith et al. (1981) have shown variation in needle weights 

on a seasonal basis and for stands with different silvicultural 

treatments while Bradbury and Malcolm (1978) demonstrated 

an increase in the dry weight of Sitka spruce needles during 

the dormant season. These problems can be largely overcome 

if mineral concentrations are expressed on a weight per unit 

leaf area basis (Gholz, 1978; Smith et al., 1981; Stachurski 

and Zimka, 1975). 

In the present study top whorl material was taken for 

analysis and the concentrations expressed on a dry weight 

basis. This approach, the norm in the United Kingdom (Everard, 

1973), permitted comparison with the published values of other 

workers and with the critical nutrient levels accepted for Sitka 

spruce. 

3:2 	Site descriptions 

3:2:1 Experiment Mabie 7. 

The experiment is located in the Lochar Moss Section of Mabie 

Forest (Compartment S46), Dumfriesshire (National Grid Reference: 

NY 046686). Lochar Moss is an extensive raised bog of uni-

formly deep peat, at least 4m in depth overall (Malcolm, 1972), 

with a virtually level surface. Elevation is 13m a.s.l. with 

moderate exposure in all directions, the site receives 1016 mm 

of precipitation per year. The peat is oligotrophic in nature 

and fits grouping lOa, lowland sphagnum bog, in bog group 

D, oligotrophic basin or raised bog, of the Forestry Commiss-

ions peat classification (Pyatt et al., 1979). The underlying 

geology consists of permian sandstone. Prior to afforestation 

the area was sporadically used for extensive sheep grazing, 

the dominant vegetation including Tcichophorum caespitosum 

L. Hartman, heather, Eriophorum vaginatum L., and E. 

angustifolium Honck. together with sphagna, resulting in a 
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mainly fibrous peat structure. 

Cultivation and drainage were carried out in May 1966 by 

single mould board plough giving a mean furrow spacing of 

2m and a depth of 50-70 cm. Deep drains, im wide and 75cm 

deep, were ploughed at 10 furrow intervals. Planting was with 

Sitka spruce transplants (1+1) and hybrid larch seedlings (1+0) 

at a 1.4m spacing in February 1967. The mixture pattern being 

3:1, alternate triplets of Sitka spruce in alternate rows, i.e. 

25% Sitka spruce. Treatment plots are 0.09 ha with a 0.04 

ha assessment plot, the pure spruce plots being designated 

OW and the spruce-larch mixtures H. Each treatment has 3 

replicates arranged in a randomized block design. All treat-

ments received P at planting and a top dressing of K the 

following year, fertilizer inputs are displayed in Table 3:1. 

In addition, the OW treatments received a 2,4-D ester weed 

control in 1969 which completely eliminated heather. No weed 

control was undertaken in the H treatments. After afforestation 

heather can become a problem on peats of this group where 

it may become dominant and provide severe competition for 

the spruce (Handley 1963), this competition does not seem to 

influence the growth of pines or larch which eventually 

suppress heather growth completely. 

TABLE 3:1 

Fertilizer input and weed control for the Mabie 7 treatments 

(kgha 1  element). 

Treatment 1967 1968 1969 	1973 1980 

OW 27P 95K 2,4-D 	50P.95K 50P.95K 

H 27P 95K - 	 50P.95K 50P.95K 

P applied as ground mineral phosphate 

K applied as potassium chloride. 
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3:2:2 Experiment lnchnacardoch 164. 

The experiment is located in lnchnacardoch Forest (compartments 

499 and 508) near Fort Augustus, lnvernessshire (National Grid 

reference NH 332081). The experimental site lies on an extensive 

area of blanket bog with a variable small scale topography 

due to glacial drift deposits, resulting in peat of varying 

depth, 0.35 - 2.20m (mean 1.05rn). Elevation is 295m a.s.l. 

and the site receives 1270mm of precipitation annually. 

The peat is oligotrophic in nature and fits bog group C, 

oligotrophic slope bogs (hill peat), peat type 11 of the 

Forestry Commission's peat classification (Pyatt et al. , 1979). 

The underlying geology consists of Moine Schists and associated 

pre-Cambrian granites with surface deposits of glacial drift 

material. Prior to afforestation the area was managed as deer 

forest, the dominant vegetation including heather, t'.lolinia 

caerulea (L.) Moench, E. vaginatum, E. angustifolium and 

T. caespitosum. 

Cultivation and drainage were carried out in 1965 by single 

mould board plough giving a mean furrow spacing of 1.8m 

and a depth of 50-70 cm. Deep drains were ploughed across 

the experiment at irregular intervals. Planting was with Sitka 

spruce and Japanese larch transplants (1+1) at a 1.2m spacing. 

The mixture pattern is alternate triplets of spruce in alternate 

rows giving 25% Sitka spruce, the mixture treatment being 

designated JL/SS and the pure spruce treatment SS. The 

original treatment plots were split in 1973 and one half random-

ly assigned an N treatment giving plots with (+N) and without 

(-N) an N input. Treatment plots are 0.04 ha with a 0.02 ha 

assessment plot. Fertilizer inputs are displayed in Table 3:2 

(N.B. the SS-N treatment received 168 kgha 1  N element in 1967 

while the JL/SS-N treatment has received no N input). Heather 

has never been a problem on the site and no weed control 

has been considered necessary. Each treatment has 5 replicates 

in a randomized block design. 
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TABLE 3:2 

Fertilizer input for the lnchnacardoch 164 treatments 	a-17  

element) 
Treatment 

Application date 	SS-N 	SS+N 	JL/SS-N 	JL/SS+N 

1965 50P 50P 50? 50? 

1967 168N 168N - - 

1970 50P.100K 50P.100K 50P.100K 50?.100K 

1973 - 168N 168N 

1976 50? 50P.150N 50? 50P.150N 

1979 160N - 160N 

1980 lOOK lOOK lOOK lOOK 

P applied as ground mineral phosphate 

K applied as potassium chloride 

N applied as urea. 

3:3 	Methods 

3:3:1 Field sampling procedure 

Sampling was carried out at Mabie 7 during November 1980, 

20 spruce trees were randomly selected from each of the 3 

OW and H plots. At lnchnacardoch sampling was carried out 

in December 1980, with 10 spruce trees being randomly selected 

from each of the 5,  SS-N, SS+N, JL/SS-N, and JL/SS+N plots. 

For each tree a fully illuminated side shoot was removed 

from the topmost whorl for foliar analysis. Shoots were stored 

in polythene bags at 2-3°C for 18 hours prior to oven drying. 

3:3:2 Chemical analysis. 

Shoots were oven dried to a constant weight at 85°C after 

which needles were separated from the shoots and retained 

for analysis. For each shoot the weight of 50 needles was deter-

mined, needles were then ground in a ball mill to approxi-

mately 0.5mm mesh size. 

Total N, P and K contents of the needles were determined 

using a modified micro-kjeldahl digest (Allen et al., 1974). 

0.lg of sample was accurately weighed into a pyrex digest 

tube to which was added 2m1 of 36N H2SO4  and imI ( dropwise) 

of 30% (100 volumes) H2 0 2. Tubes were placed in a heating 

block at 340°C for 5 hours, after which all organic material 

had been destroyed and the solutions had cleared. Samples 
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were cooled, transferred to 50 ml volumetric flasks and made 

up to 50 ml with distilled water. Reagent blanks were run 

with each set of digested samples, 1 sample in 10 being dup-

licated to provide a check on reproduceability. 

Total N (as ammonium) was determined in solution using 

an automated colorimetric method employing the salicylate-

dichloroisocyanurate reaction in the presence of nitroprusside 

(Crooke and Simpson, 1971). Total P (as phosphate) was deter -

mined in solution using an automated colorimetric method emplo-

ying the molybate blue complex, ascorbic acid being used as 

the reducing agent in the molybdenum system (Murphy and 

Riley, 1962). Total K in the digested solution .'as determined 

directly by atomic emission using a Pye Unicrn Sp 9 atomic 

absorption/emission spectrophotometer. 

3:4 Results 

The randomized block designs of both experiments allowed 

results to be analysed by a 2-way analysis of variance (&.edecor aM 
Cccir'&n, 1967). Prior to statistical analysis all data were checked 

for normality while an F test was conducted to ensure that 

variances were equal. 

At Mabie 7 needle dry weights and concentrations of N, 

P and K are significantly greater in the H treatment (Table 

3:3): exceeding the OW treatment by 27%, 44%, 21% and 32% 
respectively. Expressing the results as a nutrient weight per 

50 needles accentuates treatment differences (Table 3:4). indicat-

ing that H treatment foliage contains 83% more N, 55% more 

P and 68% more K than that of the OW. 

At lnchnacardoch 164 needle dry weight, %N. %P and %K 

in the SS-N treatment are all significantly lower than the 

equivalent values in the SS+N, JL/SS-N and JL/SS+N treatments 

(Table 3:5 and 3:6). Values for the SS+N treatment do not 

differ significantly from those in the jL/SS-N treatment, except 

in the case of %K which is significantly lower in the former. 

SS+N values are all significantly lower than JL/SS+N values, 

the same holds for a comparison of the JL/SS+N and JL/SS-N 

treatments except for needle weights, which do not differ signi-

ficantly, and %K, which is significantly higher in the -N 

mixture. 



Using data for needle dry weight and nutrient concentra-

tions to give a nutrient content per 50 needles (Table 3:7) 

accentuates the differences between treatments indicating that 

JL/SS-N needles contain 246% more N, 253% more P and 2057- 

more K than the 55-N treatment. 

TABLE 3:3 

Needle weight (g) and nutrient concentrations for the OW and 

H treatments. Mean values (n=60) and 95% confidence limits 

Treatment 

OW H 	 Significance 

ODW 0.353(0.0232) 0.449(0.0222) 	** 

0.98 	(0.045) 1.41 	(0.038) 

%P 0.28 	(0.019) 0.34 	(0.017) 	 ** 

%K 1.04 	(0.055) 1.37 	(0.039) 

00W = Oven dry weight of 50 needles 
** = Means significantly different at P = 0.01 in a 2-way 

analysis of variance. Actual values of F are displayed 

in Appendix 1A. 

TABLE 3:4 

Nutrient content (mg) of 50 needles for the OW and H treatments. 

Treatment 

OW H 

N 	 3.46 6.33 

P 	 0.99 1.53 

K 	 3.67 6.15 
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TABLE 3:5 

Needle weight (g) and nutrient concentrations for the Inch- 

nacardoch 	164 treatments. 	Mean values (n=50) and 	95% 
confidence limits 

Treatment 

SS-N SS+N JL/SS-i' jL/SS+N 
00W 0.250 0.438 0.467 0.492 

(0.0244) (0.0235) (0.0286) (0.0292) 

%N 0.80 1.53 1.48 1.79 
(0.032) (0.089) (0.076) (0.063) 

%P 0.18 0.33 0.34 0.40 
(0.012) (0.023) (0.024) (0.027) 

%K 0.77 0.98 1.26 1.07 
(0.048) (0.075) (0.055) (0.055) 

ODW = Oven dry weight of 50 needles. 
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TABLE 3:6 

Significance 	of 	differences between 	lnchnacardoch treatment 

means in a 2-way analysis of variance. 

ODW 

SS-N SS+N 	 JL/SS--N 	JL/SS+N 

SS- N  

SS+N 	 - - 	 NS 	 ** 

JL/SS-N 	- - 	 - 	 NS 

JL/SS+N 	- -- 	 - 	 - 
/oI . J 

SS-N 	 - ** 

SS+N 	 - - 	 NS 

JL/SS-.N 	- - 	 - 
JL/SS+N 	- - 	 - 	 - 
/0
0/  

SS-N 	 - * * 	 * * 	 * 
SS+N 	 - - 	 NS 

JL/SS-N 	- - 	 - 
JL/SS+N 	- - 	 - 	 - 
0/ - 
/0 

SS-N * * 	 * * 	* 
SS+N  

L/SS-N 	- - 	 - 
jL/SS+N' 	- - 	 -. 	 - 

-ODW = Oven dry weight of 50 needles 

** = Means significantly different at P = 0.01 

NE = Means not significantly different at P = 0.05 

Actual values of F are displayed in Appendix lB. 
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TABLE 3:7 

Nutrient content (mg) of 50 needles for the Inchnacardoch 164 

treatments. 

Treatment N P K 

SS-N 2.00 0.45 1.93 

SS+N 6.70 1.45 4.29 

JL/SS-N 6.91 1.59 5.88 

JL/SS+N 8.81 1.97 5.26 

62 



3:5 	Discussion 

3:5:1 Experiment Mabie 7. 

In the absence of N fertilizer the presence of larch in the 

H treatment would appear to have resulted in a marked 

increase in spruce needle weight and foliar concentrations ,  of 
N, P and K, compared with spruce in the OW treatment. 

N concentrations in the OW spruce lie in the range (less 

than 1%) which is associated with deficiency symptoms and 

poor growth (Everard, 1973), this is consistent with visual 

observations of the foliage at the time of sampling which 

exhibited a general soft chlorosis. P and K concentrations, 

however, are at a level (above 0.18% and 0.5% respectively) 

sufficient for good growth in the absence of N deficiency. N 

concentrations in the H spruce fall in the upper part of the 

range 1-1.5% where growth may be marginal to good. They 

exceed the 1.2% quoted by McIntosh (1983) above which growth 

is seldom impaired and fertilizer treatment is normally un-

necessary. P and K concentrations are well above those re-

quired for good growth and are significantly greater than those 

in the OW treatment. 

On the basis of foliar analysis, the OW spruce are clearly 

N deficient and should respond to N fertilizer while no such 

response (or a very limited one) would be expected frcm the 

H treatment where N levels appear, adequate. 

It is interesting to note that the improvement in spruce 

foliar properties in the H treatment has occurred despite the 

continued presence of heather in the ground flora Heather 

was completely removed from the OW treatment in 1969 following 

the application of 2,4-D. Herbicide treatment should have 

benefited the OW treatment as a result of reduced competition, 

removal of the heather root/endophyte complex, and release 

of nutrients from killed vegetation. 

Data collected by the Forestry Commissions Research Branch 

is presented in Figures 3:1 - 3:4. These data have been 

collected periodically during the life of the experiment and 

permit growth differences to be followed from planting to the 

present. Foliar N levels were initially higher in the OW treat-

ment (Figure 3:1a) probably as a consequence of the 2,4-D 
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FIGURE 3:1. FOLIAR NUTRIENT CONCENTRATIONS IN OW AND H TREATMENTS 
FOR THE PERIOD 1970-1982. ARROWS INDICATE APPLICATION OF PK 
FERTILIZER. 
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1971 72 73 74 75 76 77 78 79 80 81 82 83 

FIGURE 3:2. CUMULATIVE HEIGHT GROWTH AND HEIGHT INCREMENT OF 
DOMINANT TREES IN THE OW AND H TREATMENTS FOR THE 
PERIOD 1971-1983. 
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application in 1969 and heather competition in the untreated 

H plots. However, OW N levels fall progressively until over-

taken by those in the H treatment in 1974 which have remained 

at a higher level since then. Peaks in foliar N levels may 

be a response to the application of PK fertilizer in 1973 and 

1980. It has been noted (Carey et al., 1981) that the applic-

ation of ground mineral phosphate enhances mineralization 

of native organic N. 

Foliar P levels exhibit the same trend for both treatments 

(Figure 3:1b) with a general increase since planting with 

concentrations peaking then declining following each P fertil-

ization. P concentrations in the H treatment have exceeded 

those in the OW since 1979. Foliar K levels show a similar 

response to fertilization but with a reduced amplitude (Figure 

3: 10, they have also been higher in the H treatment since 

1979. 

Height growth of the dominant trees is shown in figure 

3:2a, the H treatriient remaining below the OW until 1981 when 

it overtakes it. Height increment values (Figure 3:2b) are 

greater in the OW treatment until 1977 when they decline below 

increment in the H treatment. Height increment for the H spruce 

has increased consistently since planting, peaking after each 

P/K application. That in the OW spruce increased until 1973 

then declined (with similar peaking following P/K fertilization). 

This decline in height increment is associated with a general 

fall in foliar N concentrations (Figure 3:1a) however there 

is no clear correlation between the two. In conclusion, foliar nu-

trient levels and height increment were initially greater in 

the OW spruce, probably due to the benefits of weed control. 

However, this benefit has been short lived and the OW spruce 

have become N deficient with an associated decline in height 

increment. In contrast, the H spruce have increased then main-

tained their foliar N levels and consistently increased their 

height increment since measurement began in 1970. 

3:5:2 Experiment Inchnacardoch 164. 

Comparing the pure spruce and mixture treatments it appears 

that the presence of larch enhances spruce needle weight and 

foliar concentrations of N, P and K. In the absence of N (SS- 



N and JL/SS-N treatments) this difference is dramatic with 

needle weight increasing by 87%, N by 85%, P by 89% and 

K by 64%. Even with the application of N fertilizer (SS+N and 

•JL/SS+N treatments) the presence of larch seems to enhance 

spruce foliar quantities, with needle weight increasing by 12%, 

N by 17%, P by 21% and K by 9%. Clearly the effect of the 

presence of larch is depressed when N availability is increased. 

The SS-N treatment is N deficient with foliar N levels within 

the range (less than 1%) quoted by Everard (1973) as being 

characteristic of N deficiency. In fact, a level of 0.8% is in-

dicative of extreme N deficiency (McIntosh, 1983). Foliar P 

levels are in a range considered marginal for growth while 

foliar K is adequate. Consequently there is a marked response 

to N fertilization in the SS+N treatment with needle weight 

increasing by 75%, N by 91%, P by 83% and K by 27%. SS+N 
foliar values are all at a level which should support good 

growth. 

The JL/SS-N treatment is not N deficient with foliar N levels 

well above the 1.2% below which a response to N fertilizer 

might be expected (McIntosh, 1983). Foliar P and K are also 

in the range where growth should be good. That this treatment 

is not N deficient is underlined by the lack of response to 

N fertilizer in the JL/SS+N treatment where needle weight does 

riot increase significantly. However there is an increase in 

foliar N and P concentrations, but this is considerable less 

than that in the pure spruce treatment. 

It is interesting to note that in terms of foliar quantities 

the SS+N and JL/SS-N treatments are very similar. differences 

being non significant, except in the case of K. This suggests 

that the presence of larch primarily influences spruce. N status - 

ther than P or K, since all treatments received identical 

quantities of PK fertilizer. It is tempting to suggest that the 

larch nurse in the JL/SS-N treatment is equivalent to the 

646 kgha 1  N received by the SS+N treatment. However, it is 

invalid to do this on the basis of foliar nutrient concentrations 

alone since these give no indication of standing biomass. 

Data collected by the Forestry Commission's Research Branch 

is presented in Figures 3:3 and 3:4. For the first six years 
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of measurement height was similar for all treatments (Figure 

3:3a), subsequently the mixture and +N treatments have achiev -

ed considerably greater height growth than that in the SS-N. 

As in the case of foliar quantities the presence of larch has 

resulted in increased height growth both with and without N 

fertilizer. Height growth is similar in the SS+N and JL/SS-N 

treatments which further underlines the parity between these 

treatments. Height increment (Figure 3:3b) fell off early in 

the SS-N treatment and is consistent with the decline in foliar 

N (Figure 3:4). Increment in the JL/SS-N treatment was initial-

ly similar to that in the SS-N but instead of declining it in-

creased dramatically between 1972 and 1978 and has remained 

at a level comparable to the SS+N treatment. 

The presence of larch appears to enhance spruce nutrient 

status and height growth, and is similar to the response 

achieved in pure spruce following the application of N fertilizer. 

3:6 Conclusions 

At 2 experimental sites spruce, in the presence of larch, ex-

hibits markedly improved foliar nutrient levels and greater 

needle weight, these are associated with increased height 

growth. Results, particularly from the Inchnacardoch 164 ex-

periment, indicate that this response is the result of an 

improvement in spruce N status which can be reproduced in 

the absence of larch by the application of N fertilizer. 

As outlined in section 1:3, the improved N status of mixture 

spruce may or may not be associated with a greater N capital 

in the mixture tree biomass, relative to pure spruce. 
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A Comparison of basal area, derived values for foliage 

weight and the weight of foliar N (kgha t ) between 

pure and mixed stands. 

4:1 Introduction 

It has been demonstrated, Section 3. that Sit!-,;-; spruce in the 

presence of larch exhibits increased needle weight, foliar 

concentrations of N, P and K and increased height growth. 

On the basis of this information alone it cannot be assumed 

that the mixture treatments contain more N (kgha 1 ) since no 

account has been taken of N contained in the larch and there-

fore in the stand biomass. An expression was required for 

the above ground N capital in pure and mixture treatments. 

Usually such quantities are determined by a strategy of 

biomass sampling based on a regression technique such as 

that described by Young and Carpenter (1976). Such techniques 

exploit an allorrietric relationship between an easily measured 

independent variable, frequently diameter or basal area, and 

a dependent variable such as stern weight or foliage weight, 

which is less readily deterr;ined. 

A sample plot is laid out in the study area and a number 

of trees, selected randomly or systematically, are destructively 

sampled. The relationship between the quantities it is desired 

to determine (dependent variables) and one or more tree dimen-

sions (independent variables) is calculated. Knowing the relev-

ant linear dimensions of all trees within the sample plot the 

value of the dependent variables for each tree, and thus for 

the plot as a whole, can be readily determined. 

In this case due to constraints of time and the limited 

size of the experimental plots (destructive sampling of the 

intensity nequired would have significantly altered the ex-

periments) it was not possible to derive specific regression 

equations for the two experimental sites. in the absence of 

specific equations it was necessary to use pre-existing regress- 
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ions developed by other workers for the same species growing 

under similar conditions. This decision increases the error 

likely to be attached to any derived quantities but does 

permit the identification or probable differences between pure 

and mixed stands. 

4:2 Site description 

Work was carried out at the Mabie 7 and Inchnacardoch 164 

experiments, previously described in Section 3:2. 

4:3 Methods 

Methods were essentially identical for both experiments, all 

trees in the assessment plots being enumerated (assessment 

plots were 0.04 and 0.02 ha at Mabie and lnchnacardoch 

respectively). 

It was decided to use regression equations developed by 

Mitchell et al. (1981) since these have been derived for young S 

tands growing on sites with yield classes similar to those 

of the experiments. Unfortunately these regressions are based 

on trees with a breast height diameter of 5 cm, or greater, 

whereas many of those measured in this study were below this 

value.. For small trees (less than 5cm breast 'height diameter) 

it is better to use root collar diameter (e.g. Rutter, 1955), 

since this is a readily defineable position. However, very little 

published material exists for young stands where this has been 

carried out and so this approach was rejected. The use of 

a regression for trees outwith the range for which it was con- 

structed clearly will increase the uncertainty attached to the 

estimated dependent variable. 

Diameter measurements were made at breast height using 

a pair of external diameter calipers. Two measurements were 

taken for each tree, one along a north to south axis and the 

other along an east to west axis. All calculations involving 

tree diameter are based on the mean value obtained from each 

pair of measurements. 

Diameter values were used in conjunction with Mitchell et 
al ' s regressions (Table 4:1) to produce single tree estimates 

of foliage dry weight. Single tree values were summed to give 

a total for the assessment plot and extrapolated to a per 

hectare basis. 
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The weight of N contained in the foliage was derived by 

using estimated foliage dry weight and top whorl foliar N 

concentrations previously determined for Sitka spruce (Section 

3:4) and hybrid larch (Section 5:1:4). Foliar N concentrations 

were not determined for the Japanese larch at Inchnacardôch, 

so calculations are based on an assumed value of 1.5%. This 

value is in the lower end of the range found by Leyton (1956) 

for Japanese larch growing at differing rates, and within the 

marginal growth range quoted by Everard (1973). 

Applying top whorl foliar N concentrations to foliage for 

an entire tree will produce an overestimate of the amount of 

N contained in the crown, since concentrations normally decline 

down the crown (Maclean and Robertson, 1981). This over-

estimate may, or may not, be similar for larch and spruce 

depending on, 1) the sharpness of fall in concentration, and 

2) the distribution of foliage in the crown. 

Estimates of the N capital of the foliage are consequently 

based on a number of assumptions to which are attached cer-

tain errors. The results must therefore be regarded as highly 

approximate. It is hoped that the level of accuracey, achieved 

is sufficient to identify differences between treatments. 

TABLE 4:1 

Coefficients of regression of foliage dry weight (kg) against 

tree basal area (m 2 ). 

Species 	 a 	 b 

Sitka spruce 	 0.53 	430.14 

Hybrid larch 	 1.07 	241.79 

GYC 14, age 22. 

GYC 13, age 10. 
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4:4 	Results 

4:4:1 Experiment Mabie 7. 

Basal area and mean tree basal area are both greatest in 

the OW treatment, although the difference between treatments 

is small (Table 4:2). Mean tree. basal area for the spruce is 

43% greater in the H treatment with derived values for foliage 

dry weight (Table 4:4) being, again, slightly higher in the 

OW treatment. Mean tree foliage weight in the mixture spruce 

exceeds that of the pure spruce as does the weight of N contain-

ed in the foliage (83% greater). Derived values for the weight 

of N contained in the foliage of the whole stand are also 

markedly greater (61%) in the H treatment (Table 4:4). 

TABLE 4:2 

Basal areas for the Mabie 7 experiment 

Treatment 

OW H 

spruce 	larch 	total 

Stems ha 1 	2372 739 	1697 	2436 

Basal area 

(m2ha) 	9.4 4.2 	4.5 	8.7 

Mean tree basal 

area 	(cm 2) 	40 57 	27 	36 

4:4:2 Experiment 	lnchnacardoch 164. 
Basal 	area 	and 	the 	mean tree 	basal 	area 	are 	greatest in 	the 
JL/SS-N 	treatment, 	100% and 	153% 	greater, 	respectively (Table 
4:3). 	Mean 	tree 	basal area 	for 	the 	spruce 	is 	300% 	greater 	in 
the 	mixture 	treatment with 	derived 	values 	for 	stand folia2e 
dry 	weight 	also 	being greater 	(Table 	4:4). 	Mean 	tree foliage 
weight 	in 	the 	mixture spruce 	exceeds 	that 	of 	the 	pure spruce 
as does the weight of N contained in the foliage 	(400% greater). 
Derived 	values 	for 	the weight 	of 	N 	contained 	in 	the foliage 
of 	the 	whole 	stand 	are also 	substantially 	greater 	(167% great- 
er) 	in 	the 	JL/SS-N 	treatment. 	The 	weight 	of 	spruce 	foliar 	N 
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in the mixtures exceeds that in the SS-N treatment despite the 

large disparity in tree numbers (Table 4:4). 

TABLE 4:3 

Basal areas for the lnchnacardoch 164 experiment. 

SS-N 

Sterns ha -1 	2175 

Basal area 

(m 2 ha 1) 	3.8 

Mean tree basal 

area (cm 2) 17  

Treatment 

JL/SS-N 

spruce 	larch 	total 

615 	1160 	1775 

4.2 	3.4 	7.6 

68 	29 	43 

TABLE 4:4 

Derived 	foliage weight 	and weight 	of 	foliar nitrogen 	for 	the 
Mabie 7 and Inchnacardoch 164 experiments 	(kgha 1 ). 

Treatment Foliage dry 	weight Foliar nitrogen 

OW 5478 (2.3) 54(0.023) 

U Spruce 2223 (3.0) 31(0.042) 
Larch 3063 56 
Total 5286 87 

SS-N 3011 (1.4) 24(0.011) 

JL/SS-N Spruce 2164 (3.5) 34(0.055) 
Larch 2022 30 
Total 4186 64 

Bracketed values express data on a mean tree basis (kg tree 1). 
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4:5 Discussion 

Results from both experiments indicate a greater weight of 

foliar N in the mixture treatments, this being most marked 

at lnchnacardoch where it is accompanied by increased basal 

area and stand foliage weight. At Mabie the increase res'ults 

solely from a higher foliar N concentration in the mixture 

treatment. While size and N content of individual spruce is 

greater in the mixtures at both experiments an overall increase 

in stand basal area (and foliage biomass) is seen only at 
Inch nacardoch. 

An increase in the weight of foliar N contained in the 

mixtures is probably indicative of an overall increase in stand 

N capital. In young stands, in particular, a substantial por-

tion of N in the stand may be contained in the foliage. For 

a young Pinus radiata. D. Don. stand (basal area 
7.4m 2  h1 , 2347 stems ha 1) Madgwick et al. (1977) found that 
85% of the N contained in the aerial biomass was present in 
the foliage. 

In conclusion, mixture spruce are larger and contain more 
N than their equivalents in pure stands, while results suggest 

that the overall quantity of stand N is greater in the mix-
tures. A greater N capital in the mixture trees indicates a 
higher level of N uptake and availability. This suggests that 

larch can in some way exploit an N source which spruce can-

not, with some of this N becoming available to the spruce. 
Any future study should attempt to verify these findings by 
actual biomass sampling. 
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Larch litter influences on N availability and cycling. 

5:1 Nutrient withdrawal prior to abscission. 

5:1:1 introduction 

Larch species are commonly reported as having foliar N con-

centrations which are higher than other conifers, approaching 

levels associated with deciduous hardwoods. Ovington (1956) 
found, on 3 sites, that larch (L. decidua. Mill., L. kaempferi 

had the highest foliar N and P concentrations of a range of 
conifers, 1.24 to 2.32% and 0.18 to 0.22% respectively. Leyton 
(1956), examining the correlation of foliar nutrient levels with 

growth of L. kaempferi, found N concentrations of 1.13 to 
2.28% and P concentrations from 0.15 to 0.47%, for a series 
of fertilizer inputs. Usova (1977) found larch (L. Siberica 

Ledeb.) needles to be higher in P than spruce or pine on the 

same site, as did Pogrebriak (1960). 

Most deciduous species withdraw foliar nutrients before 

abscission; recent evidence suggests both a greater relative 

and absolute withdrawal at high foliar nutrient concentrations 

(Chapin and Kedrowski, 1983); therefore high foliar N levels 

may not be reflected by high N concentrations in litter. Tilton 
(1977) found that L. larcina (Du Roi) K. Koch had high N 

concentrations in its foliage (2.5%), but withdrew 64% during 
senescence; Chapin and Kedrowski (1983) demonstrated a 75% 
N withdrawal for this species. Schueller (1978) recorded a 
decline in N concentrations for L. decidua before needle fall. 

The extent of withdrawal is important since it influences 

litter quality, particularly the CA ratio, and consequently 

the pattern of decomposition and nutrient release. 

In the present study hybrid larch foliar nutrient levels 

were assessed at the Mabie 7 experiment and the changes prior 

to abscission followed by sequential sampling. A year previous-

ly an identical sampling scheme was carried out at another 

site where small plot size severely limited the sampling 
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intensity, so the data is not presented here. 

5:1:2 Site description 

Sampling was conducted at the Mabie 7 experiment which is 

fully described in Section 3:2:1. 

5:1:3 Methods 

5:1:3a Field Sampling Procedure 

Sampling was carried out from August through to November 

1981 at 21 day intervals. 5 trees were randomly selected from 

each of the 3 H plots at each sampling data. For each tree 

a fully illuminated side shoot was removed from the top whorl. 

Shoots were stored in polythene bags for a maximum of 18 hours 

at 2-3°C prior to oven drying. 

5:1:3b Chemical analysis 

Shoots were oven dried to a constant weight at 85°C. For each 

sample the oven dry weight of 50 needles was determined, sub-

sequent sample preparation and analysis for N, P and K was 

identical to that described in Section 3:3:2. 

5:1:4 Results 

Foliar concentrations of N, P and K were initially high, 1.82%, 

0.48% and 1.50% respectively (Figure 5:1 and Appendix 2A). 

Subsequently, concentrations of N and K show a marked decline 

falling to 37.4% and 73% of their initial value. P concent-

rations remain constant during senescence, while needle weight 

declines to 72% of its initial value. 

Expressing changes as a nutrient content per 100 needles 

(Figure 5:2, Appendix 2B) indicates a decline in all three 

elements prior to abscission; N, P and K falling to 26.6%, 

73.6% and 53.8% respectively of their initial content. 
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FIGURE 5:1. CHANGE IN LARCH FOLIAR NUTRIENT CONCENTRATIONS AND 
NEEDLE WEIGHT AT MABIE 7 DURING ABSCISSION. MEANS OF 15 
SAMPLES. ERROR BARS SHOW 95% CONFIDENCE LIMITS. 
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5:1:5 Discussion 

While foliar N concentrations were initially high, at a level 

associated with good growth for this species (Everard, 1973), 
marked reduction prior to abscission resulted in an a.bsolute 

and relative impoverishment of the litter. A similar, but less 

dramatic, withdrawal and/or leaching loss is exhibited by 

P and K. The marked increase in K amount and concentration 

at the third sampling was surprising, K is highly mobile and 

usually continues to decline until abscission. This pattern was 

observed the previous year at a different site. The increase 

could be genuine due to contamination, perhaps from the sea 

which is very close to the site, or a result of sampling bias 

since needle weight also increased slightly at this time (larger 

needles are frequently associated with high foliar nutrient 

contents). However, the reduction in K content of 47% is similar 

to that reported for other deciduous species (Ryan and Bor-

mann, 1982; Zimka and Stachurski, 1979). 
These findings are in general agreement with those for 

other larch species (Chapin and Kedrowski, 1983; Schueller, 
1978; Tilton, 1977). The process of N and P withdrawal has 

been studied in detail by Chapin and Kedrowski (1983); up 
to 92% of leaf N is present as proteins and nucleic acids, the 

levels of which decline in senescing leaves in association with 

increasing amino acid levels. At the same time protein and 

nucleic acid levels increase in sterns, until spring when a 

decline is seen at the onset of growth. Davtyan and Kazaryan 

(1980) found that the content of weakly bound chlorophyll in 

L. kaernpfer. i increased during the growth period, but fell 

rapidly in September, presumably as a result of hydrolysis 

and N withdrawal; chlorophyll has a high N content (Mengel 

and Kirkby, 1982). Most P is present in nucleic acids and 

lipids which decline in concentration during senescence, para-

lleled by an increase in the stem. Inorganic P in the foliage 

is initially low, but due to slow withdrawal its concentration 

increases to over 50% of total P at abscission. 

Rate of withdrawal may increase during the period of abs-

cission; Bares and Wali (1979) collected L. laricina litter 

sequentially and found a decline in N, P and K concentrations. 
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This may, of course, reflect differential abscission associated 

with foliage of different nutrient concentrations in the crown. 

A decline in the concentration and amount of a nutrient 

during senescence can result from withdrawal and/or leaching 

loss. The extent of these processes and the sinks for withdrawn 

N were investigated in 2 further experiments. 
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5:2 Nutrient redistribution during abscission. 

5:2:1 introduction 

Field sampling of larch foliage over the period of senescce 

has demonstrated a withdrawal (or loss) of N, P and K. The 

fate of these nutrients is clearly important to cycling within 

a larch, or larch/spruce, ecosystem. 

Many workers have indicated storage of withdrawn nutrients 

in twigs, roots and foliage (for evergreen species), e.g. 

Chapin and Kedrowskj (1983), Miller (1981). A change in the 

nutrient content of different tree components can be assessed 

by sequential biomass sampling, which may be tedious and 

time consuming for large trees. An alternative is to adopt a 

subsampling procedure (Comerford and Leaf, 1982a; 1982b), 

but this increases the variability attached to any estimate. 

In the present study sequential harvesting of potted larch 

plants was chosen, on the assumption that the withdrawal 

and redistribution patterns in such plants would reflect those 
in older trees. 

5:2:2 Experimental procedure 

60 1+1 hybrid larch transplants were obtained from the 

Forestry Commission in March 1982, these were potted into 15cm 

diameter polythene pots using a 50:50 peat: sand compost, with 

a high nutrient reserve of added fertilizer. Plants were placed 

in an uncovered cold frame where they remained throughout 
the experiment. 

Before the first sampling, plants were ranked according 
to height and the 10 largest and smallest plants rejected. 4 

samplings were carried out at approximately 30 day intervals, 

commencing on 22.9.82 and continuing until complete litterfall 

had occurred (24.12.82). At each sampling 10 trees were 

randomly selected for destructive harvesting. Trees were split 

into 6 component parts: foliage, twigs (including the leading 
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shoot), bark (removed from the main stem), wood (from the main 

stem), woody root (woody material greater than 0.5cm in 

diameter) and non-woody root (material less than 0.5cm in 

diameter). - 

Components were dried to a constant weight at 85°C, cooled 

in a desicator and weighed. In addition, the oven dry weight 

of 100 needles was determined, in order to follow any change 

in needle weight. Subsequent preparation and chemical analysis 

was as described in Section 3:3:2. 

5:2:3 Results 

Litterfall commenced between harvest 2 and 3, and was complete 

by harvest 4. Total tree dry weight (Table 5:1) declined 

during the experiment due to needle loss, while the combined 

weight of perennial components remained more or less constant. 

Considerable variation is attached to weight estimates, particul-

arly for certain components (Figure 5:4a, Appendix 3B). 

Consequently it is difficult to determine whether weight changes 

between harvests reflect genuine physiological change or result 

from variation in the sampled material. Needle weight declined 

by 29% between harvest 1 and 3 (Figure 5:4a, Table 5:2). 

Foliar N concentrations declined during the experiment, 

paralleled by an increase in the N concentrations of all other 

components (Figure 5:3a, Appendix 3A). The quantity of foliar 

N also declined; due to withdrawal between harvest 1 and 

2, and also leaf fall between harvests 2 and 3. This decline 

was associated with an increase in the N content of all other 

components (Figure 5:4b Appendix 3C), despite an overall dry 

weight decline in some cases. Expressed on the basis of needle 

nutrient content (Table 5:2), 82% of foliar N is removed, or 

lost, prior to abscission. Total tree N content was 58mg lower 

by the final harvest (Table 5:3). 

Foliar P concentrations also exhibit a decline during the 

experiment, but to a lesser extent than N (Figure 5:3b, 

Appendix 3A). This fall being associated with a small increase 

in twig, bark, wood and woody root concentrations, while 

a decline occurred in the non-woody root. The quantity of 

foliar P also fell, initially through withdrawal alone. Needle 

P content (Table 5:2) fell by 54%. The relatively small change 
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in P concentrations plus variability in component weights makes 

changes in P content difficult to follow: P content of bark, 

wood and woody root shows an increase while that of the non-

woody root falls, with twigs remaining constant (Figure 5:4c 

Appendix 3C). Total tree P content (Table 5:3) was 54mg lower 
at the final harvest. 

Foliar K concentrations exhibit a very slight decrease, 

twig concentrations remained constant while bark and woody 

root concentrations increased, and those in the non-woody root 
decreased (Figure 5:3c, Appendix 3A). Needle K contents show 

a decline, but the response of other components is more vari-

able. K content of the twigs fell, bark and wood contents in-

creased, while the root system maintained a more or less con-

stant K content (Figure 5:4d, Appendix 3C). Needle K content 

(Table 5:2) fell by 28%, total tree K content declined by 82rng 
(Table 5:3). 

TABLE 5:1 

Total tree dry weight (g) and weight of perennial components 

(total - needles). Mean values (n=lO) and (95% confidence 
limits). 

Harvest 1 Harvest 2 Harvest 3 Harvest 4 

Tree weight 	 38.31 	35.58 	30.67 	26.22 

	

(4.916) 	(4.079) 	(5.935) 	(2.204) 

Total - Needles 	27.35 	27.45 	27.77 	- 

	

(3.219) 	(3.554) 	(5.438) 	- 



TABLE 5:2 

Change in the weight (g) and nutrient content of 100 needles 

(mg). Mean values (n=10) and 95% confidence limits. 

Harvest 	1 Harvest 2 Harvest 3 

N mg 5.33 3.69 0.97 
(1.376) (1.241) (0.208) 

P mg 1.14 0.86 0.52 
(0.313) (0.313) (0.205) 

K mg 1.79 1.37 1.28 
(0.531) (0.666) (0.540) 

Oven dry 0.256 0.202 0.182 
Weight 	(g) (0.065) (0.051) (0.033) 

TABLE 5:3 

Total tree nutrient content (mg) and nutrient loss between 

harvests 1 and 4. Mean values (n=10) and 95% confidence limits. 

N P K 

Harvest 1 477.71 117.88 202.14 

(61.46) (15.29) (73.00) 
Harvest 2 443.33 86.24 163.02 

(74.23) (15.54) (30.71) 
Harvest 3 383.98 77.07 136.47 

(72.81) (19.36) (28.04) 
Harvest 4 419.27 63.81 119.44 

(97.23) (12.48) (23.64) 
Loss 58.44 54.07 82.70 

(104.33) (17.90) (45.46) 
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FIGURE 5:4d. CHANGE IN K CONTENT OF DIFFERENT COMPONENTS OF 3 YEAR 
OLD LARCH PLANTS DURING NEEDLE FALL. ERROR BARS SHOW 
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5:2:4 Discussion 

Needle and component concentration values suggest a with-

drawal and redistribution of foliar N, P and K during 

senescence. Changes in tree nutrient content give conflicting 

results: indicating a withdrawal and redistribution of N but 

not P or K. However, loss values, calculated on the basis 

of tree nutrient content at the initial and final harvests, are 

associated with large error terms which may obscure withdrawal 

in the case of P and K. 

If no withdrawal of N occurred a loss of 229mg (the initial 

quantity of foliar N) would be expected, however, the actual 

loss was only 58mg. This suggests an N withdrawal of 75% 

(171mg) which is close to the value predicted using needle 

data (82% or 188mg). This level of withdrawal agrees well 

with the 73% reduction found at Mabie 7. Unfortunately litter 

was not collected, which would have given a direct estimate 

of loss. 

Predicting withdrawal, or loss, using needle data alone 

may be inaccurate since it is assumed that a) all needles 

abscise at the same N concentration, and b) that all needles 

abscise after the same relative weight loss. These assumptions 

may not be valid; Tilton (1977) found that L. laricina litter 

N concentrations declined over the period of needle fall, suggest-

ing either a greater withdrawal towards the end of this period 

or that needles with a high N content abscise first. 

While needle P content and tree concentration data suggest 

a withdrawal or loss of P, tree content declines by 54mg. This 

value is similar to the initial P content of 48mg found in the 

foliage, suggesting that no P is withdrawn. P concentrations 

changed to a lesser extent than those for N, this, plus 

variablitity in component weights may have obscured a geniune 

P withdrawal. The level of P withdrawal predicted from the 

foliage values, 54%, is considerably greater than the 26% found 

at Mabie 7. The withdrawal and redistribution of N is normally 

associated with a simultaneous withdrawal of P and K (e.g. 

Luxmoore et al., 1981; Zimka and Stachurski, 1979), although 

this is not always the case (Tilton, 1977). 



The results for X follow a similar pattern, needle content 

and concentration data suggesting a withdrawal which is not 

reflected in tree K content, this declined by 86mg (similar 

to the initial foliar K content of 78mg). Again the- small 

change in component concentrations and the associated vari-

ability in component weight may obscure a real withdrawal. 

The decline in needle content of 28% is below the value of 
46% found at Mabie 7. 

Despite considerable variability, results suggest a marked 

withdrawal and redistribution of foliar N and a probable 

smaller withdrawal of P and K, although it is possible that 

P and K are lost through leaching. Findings are in general 

agreement with results obtained at Mabie 7 and by other 
workers (e.g. Chapin and Kedrowski, 1983). 

Budgets are based on the assumption that nutrient up-

take and plant growth did not occur during the experiment, 

which will not have been the case. A related error was 

that of regarding the root system as a perennial comp-

onent; while this is true for roots which have undergone 

secondary thickening fine root growth and death will have 

continued throughout the experiment, confounding attempts 

to follow changes in nutrient content. The usefulness 

of the approach adopted is limited since the changes 

which occur are small, relative to plantnutrient content, 

and obscured by high variability. 
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5:3 	The leaching of soluble N, P and K from larch foliage and 
litter. 

5:3:1 introduction 

Results presented in Sections 5:1 and 5:2 indicate a withdrawal 

or loss of nutrients from abscissing foliage, associated with 

the redistribution of a portion of these nutrients in the 

perennial organs of the tree. It is possible that a) leaching 

loss occurs from senescing foliage prior to abscission, and 

b) leaching loss may occur from litter immediately subsequent 

to litterfall. 

It is generally accepted that leaves are most susceptible 

to leaching of N, P and other nutrients during autumn 

senescence (Tukey, 1970). Normally N and P are not readily 

leached from foliage (Morton, 1977), N losses only being large 

when high concentrations of nitrate are present (Tukey, 1970). 
However, on an annual basis leaching of foliage can account 

for 5-10% of annual N and P return to the forest floor (Cole 

and Rapp, 1980; Ryan and Bormann, 1982; Van Cleve and 
Alexander, 1981). Recently reported leaching losses from the 

senescing foliage of 3 tree species gave values of less than 

0.61/0 for N and P; subsequent leachings gave little further 

loss (Chapin and Kedrowski, 1983). 

Several workers have shown that litter may undergo an 

initial leaching phase which is not associated with microbial 

activity (Berg and Staaf, 1981; Nykvist, 1963). Leaching loss 
of N ranges from 25% to less than 1% (Berg and Staaf, 1981), 
being greater for deciduous than coniferous species. Leaf 

structure has an important influence on leaching loss which 

increases by a factor of 10 if litter is ground (Nykvist, 1963). 
Loss of N does not seem to be correlated with total N content 

(Berg and Staaf, 1981). The amount of rainfall during the 

period of senescence is probably important (Berg and Staaf, 
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1981; Chapin and Kedrowski, 	1983), 	although Zimka and 

Sachurski (1979) found little effect of rainfall on the loss 

of N, P or K. 

Leachable compounds present in the foliage and litter 

during litterfall tend to be of low molecular weight and highly 

mobile e.g.amino acids and inorganic P compounds (Chapin 

and Kedrowski, 1983). Such compounds are readily exploited 

by the microflora and have a short turnover time (Berg, 1978). 

Much of the N leached tends to be organic, amino acids and 

amino sugars, and can be readily used by fungi and probably 

mycorrhizas (Alexander, 1982; Heal et al., 1982). An input of 

readily metabolizable compounds during senescence may have 

a stimulating influence on the microflora. 

5:3:2 Methods 

5:3:2aField sampling procedure 

Foliage was collected from a hybrid larch stand in a Forestry 

Commission species/fertilizer experiment located on an upland 

raised bog at Leadburn, 18km south of Edinburgh. The stand 

has received standard inputs of P and K fertilizer but no N. 

A full site description is given in section 5:4:2. 

At the time of collection, 24.10.80, litterfall had commenced. 

Needles were collected from the mid-crown position of four trees 

from which they were actively falling, and on which no green 

needles remained (i.e. all foliage was yellow and needles could 

be removed by gentle shaking of the parent branch). Needles 

were also taken from 4 trees which had just started to change 

colour, all foliage being predominantly green. Samples were 

stored in polythene bags at 3°C prior to analysis. 

5:3:2bChemical analysis 

Samples were bulked into the 2 classes (green and yellow 

needles) and thoroughly mixed, 6 subsamples were oven dried 

and subjected to chemical analysis as described in section 

3:3:2, to give initial N, P and K contents. 

Or g, oven dry weight equivalent, of fresh needle material 

was weighed into a 250ml plastic centrifuge bottle and 200m1 

of distilled H 2  0 added. 6 replicates were prepared for each 

colour class. Samples were gently shaken for 2 hours, left 

to soak for 20 hours then shaken for a further 2 hours. Needle 
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material was removed and the extract centrifuged at 2,500 r. p.m . 

for 20 minutes. 

A subsample of the supernatant was analysed directly to 

estimate ammonium, nitrate, phosphate and inorganic K. Nitrate 

(nitrate and nitrite) was analysed by an automated colorimeric 

procedure (Henriksen and Selmer-Olsen, 1970), determination 

of other nutrients followed the procedure described in Section 

3:3:2. A further subsample was digested before analysis to 

estimate total N, P and K, subtraction giving a value for the 

quantity of organically bound nutrient in the extract. 

For the digestion procedure; 50m1 of extract was transfer-

ed to a lOOml conical flask, to which was added 2m1 of 

36N H 2  SO  and lml of 30% (100 volumes) H 02 . Flasks were 

heated on a hot plate until all the extract had evaporated 

and the H2  SO4  started to fume, flasks were then covered with 

a watch glass and removed from the heat to cool. A further 

lrnl of H 2 02  was added and the flasks reheated until fuming 

occurred when they were again covered and cooled. Digests 

were carefully washed into 50m1 volumetric flasks and made 

up to volume using distilled H 2 0. Samples were then analysed 

for N, P and K. 

5:3:3 Results 

Concentrations of N, P and K were higher in the green needles 

(Table 5:4). On leaching very little N was lost from the 

yellow needles, only 3.5% (Table 5:5). All this N was organic 

in nature. In contrast 47% and 71% of the P and K were 

leached (Table 5:5) both elements being present solely as the 

inorganic form (Table 5:6 and 5:7). Green needles leached 

greater relative and absolute quantities of nutrients. 16% of 

the N was leached (Table 5:5) of which approximately 50% 

was organic (Table 5:7) and 50% inorganic (Table 5:6). All 

inorganic N was present as ammonium. 47% and 91% of P and 

K were leached, again only the inorganic form was detected. 



TABLE 5:4 

Needle nutrient concentrations (rngg 1 ). Mean values (n=6) and 

(95% confidence limits). 

N P K 

Yellow needles 	 8.57 1.81 4.05 

(0.719) (0.157) (0.264) 

Green needles 	 13.94 3.47 5.25 

(0.128) (0.118) (0.143) 

TABLE 5:5 

Quantity of inorganic and organic (Total) nutrient removed 

by water extraction,o.)mg andL)as a percentage of initial content. 

Mean values (n=6) and (95% confidence limits). 

N 	 P 	 K 

Yellow needles 	o 	0.30 	 0.85 	 2.86 
b') 	(0.000) 	(0.070) 	(0.080) 

Green needles o 2.22 1.62 4.80 

(0.321) (0.159) (0.381) 

As a Percentage of 	initial content. 

Yellow needles 00 3.50 46.96 70.62 
b (0.000) (3.995) (1.923) 

Green needles 00 15.93 46.69 91.43 
h (2.135) (4.254) (6.722) 



TABLE 5:6 

Quantity of 	ifDrganic 	nutrient 	removed by 	water 	extraction , 	 mc 
andbas 	a 	percentage of initial 	content. 	Mean values 	(n=6) 	and 
(95% confidence 	limits). 

Amionium Nitrate P K 
Yellow needles 	o 	0.00 0.00 0.85 2.86 

b) 	(0.000) (0.000) (0.00) (0.080) 

Green 	needles 	c 	1.18 0.00 1.62 4.80 
h) 	(0.272) (0.000) (0.159) (0.381) 

As a Percentage of initial conteil 

Yellow needles c 	0.00 

b) (0.000) 

Green needles 	a 8.46 

b) (1.805) 

0.00 46.96 70.62 

(0.000) (3.995) (1.923) 

0.00 469 91.43 

(0.000) (4.254) (6.722) 

TABLE 5:7 

Quantity of soluble organic nutrient removed by water extract-

ion, rrig and as a percentage of initial content. Mean values 

(n=6) and (95% confidence limits). 

N P K 

Yellow needles 0.30 0.00 0.00 

(0.000) (0.000) (0.000) 

Green needles 1.04 0.00 0.00 

(0.200) (0.000) (0.000) 

As a Percentage of 	initial conte-it 

Yellow needles 3.50 0.00 0.00 

(0.000) (0.000) (0.000) 

Green needles 7.46 0.00 0.00 

(1.435) (0.000) (0.000) 
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5:3:4 Discussion 

For both green and yellow needles very little N was leached 

in comparison with P and K. Greater relative and absolute 

amounts of all nutrients were leached from green needles indi-

cating that withdrawal was not yet complete. The presence 

of inorganic N in leachate from green needles may reflect N 

hydrolysis prior to withdrawal. Lack of inorganic N in yellow 

needle leachate may indicate that this has been withdrawn, 

or perhaps lost, by leaching in the field. The larger leaching 

losses for green needles indicates a potential leaching loss 

under field conditions. The presence of P in the inorganic 

form and N in the organic form agrees with the findings of 

Chapin and Kedrowski (1983). 
The N loss of 3.5% from yellow needles is within the range 

of values most commonly reported (Berg and Staaf, 1981). Larch 

litter is not, therefore, a source of readily leachable N, 

although some loss may occur before litterfail. Leaching losses 

of P and K may be of greater significance. 



5:4 	Nutrient flux in throughfall beneath a larch and spruce canopy. 

5:4:1 Introduction 

Laboratory leaching of larch litter removed considerable 

amounts of P and K but very little N, although somewhat more 

organically bound N could be removed from larch foliage in 

a less advanced stage of senescence. Due to the artificial 

nature of the laboratory leaching and because this gave no 

measure of nutrient flux it was decided to collect throughfall 

during the period of larch senescence. It was thought that 

if larch throughfall were to return greater quantities of N 

to the forest floor than spruce it would he at this time. Decid-

uous canopies do become most leaky at senescence (Chapin and 

Kedrowski, 1983; Tukey, 1970). 

Throughfall is not a simple measure of foliar leaching but 

reflects the interaction between the tree canopy and incoming 

precipitation. Once atmospheric inputs reach the canopy various 

structural characteristics will influence water storage and 

flow over canopy surfaces (Olson et al., 1981). Such character-

istics will include stand density, canopy density and height 

(Lawson, 1967). stand age, species and foliage morphology 

(Henderson et al., 1977; Nihlgard, 1970), and seasonal loss 

of foliage (Madgwick and Ovington, 1959). Stage of growth 

of foliage is also important, i.e. young leaves or senescing 

foliage (Chapin and Kedrowski, 1983). 

As water passe over a canopy its chemical nature will be 

altered by the processes of foliar leaching and absorption 

(Feller, 1977; Tukey, 1970), enrichment by impacted aerosols 

(Henderson et al.)977Likens et al., 1977) and fog or cloud drop-
lets (Falconer, 1979), cation exchange (Eaton et al., 1973), 
and nutrient uptake or release by epiphytic microflora. 



5:4:2 Site description 

Sampling was conducted in hybrid larch and Sitka spruce plots 

(0.01 ha) which comprise part of a Forestry Commission 

species/fertilizer interaction experiment. 

The experiment is located on an upland raised bogs at 

Leadburn, 18km south of Edinburgh, at an elevation of 285m. 

Annual precipitation is about 1000mm with a potential water 

deficit of less than 25mmy 1  (Malcolm and Cuttle, 1983). 

The bog falls into type lOB in the Forestry Commission 

classification (Pyatt et al., 1979), reaching a depth of 7m 

over boulder clay. Prior to afforestation the area supported 

extensive sheep grazing. The vegetation was dominated by 

C. vulgaris. E. vaginatum, and E. tetralix L., with an almost 

complete moss layer of mainly Sphagnum species. Other occasion-

al species included T. caespitosum, E. angustifol ium and 

Narthecium ossifragum Huds. 

Cultivation, drainage, and planting were carried out in 

1967, the area being established on single mould board plough-

ing at 1.8m spacing with 0.9m deep cross drains at 20m inter-

vals. Plots received P at planting with subsequent inputs of 

P and i( following normal Forestry Commission practice. There 

has been no input of N fertilizer. 

5:4:3 Experimental methods 

5:4:3ãField sampling procedure 

Sampling was conducted from 7.8.82 to 19.11.82 at approximate-

ly 14 day intervals. Both rain and throughfall were sampled 

using collectors consisting of 15cm internal diameter polythy-

lene funnels at 40cm above the forest floor. Samples were 

retained in 2 litre polyethylene bottles from which light was 

excluded by means of aluminium foil. Funnel placement was 

entirely random, with 10 funnels per plot. For rainfall, 4 

funnels were placed in an adjacent clearing. A glass wool 

plug was placed in each funnel to collect particulate material 

(Feller, 1977), plugs were replaced at each collection. 

On collection a sample volume was determined and a 200ml 

sub-sample retained for laboratory analysis. Samples were 

stored at 2-3°C for a maximum of 48 hours. 



5:4:3bChemjcal analysis 

Sample pH was determined potent iometrically. A sub-sample 

was then analysed for ammonium, nitrate, phosphate, and 

potassium as described in Secion 5:3:2 b. A second sub-sample 

was digested and analysed for total N, P and K according 

to Section 5:3:2b. Organic nutrient levels were determined by 

subtraction. 

5:4:4 Results 

Larch litterfall commenced between collections 4 and 5 and 

was complete by collection 7. 

Ammonium levels in spruce throughfall generally exceeded 

those in rainfall and larch throughfall; quantities in larch 

throughfall were consistently less than in the incident Drecip-. 

itation (Table 5:8, Figure 5:5), and declined to zero over 

the last 3 collections (a decline also exhibited by rainfall 

but not spruce throughfall). Quantities of nitrate in throughfall 

were strongly correlated with the amounts in rain (r=0.87 for 

spruce, r=0.94 for larch), although the actual amounts are 

reduced by approximately 41% after passage through the canop-

ies (Table 5:8. Figure 5:5). Larch throughfall contained more 

nitrate than that of spruce except for the last 2 collections 

when levels fell to zero; the quantities of nitrate returned 

in throughfall beneath the 2 canopies were identical (Table 

5:8). Nitrate levels in larch throughfall fall to zero over the 

final 3 collections, coincident with a decline in spruce through-

fall and rain. 

Organic N levels were highly variable in both rain and 

throughfall (Figure 5:5), amounts in throughfall normally 

exceeding those in rain. Organic N returns beneath the 2 

canopies were similar. Total N levels (organic and inorganic) 

in spruce throughfall usually exceeded those in rainfall and 

larch throughfall, amounts in larch throughfall were generally 

below those of the rain (Table 5:9. Figure 5:5). Total N in 

rain and larch throughfall decline over the last 3 collections, 

a pattern not exhibited by spruce throughfall. 

Inorganic P (phosphate) was not detected in rain, or was 

present as trace amounts (Table 5:8, Figure 5:6). Quantities 

in spruce throughfall generally exceeded those beneath larch, 

100 



although the situation is reversed for the last 2 collections. 

Over the collection period more inorganic P was collected under 

larch (Table 5:8). Organic P showed considerable variability 

(Figure 5:6) and was detected in rain on only 2 occasions. 

Initially, levels were greater beneath larch but then the 

situation became more erratic. For the collection period similar 

amounts of organic P were collected beneath both canopies. 

Total P levels (organic and inorganic) in throughfall always 

exceeded those of rain, while larch throughfall generally con-

tained more P than spruce (Table 5:9, Figure 5:6). 

Only inorganic K ( K) was detected and levels in through-

fall always exceeded those of rain, with greatest amounts being 

collected under larch (Table 5:9, Figure 5:6). 

A mean pH fall of 0.4 and 0.7 pH units was found for rain 

after passing through larch and spruce canopies respectively. 

Throughfall pH was always lower than that of rain except on 

one occasion (Figure 5:7), spruce throughfall always being 

slightly more acidic than larch. 

TABLE 5:8 

Inorganic N and P in rainfall and throughfall summed over 

the collection period (values in brackets show 95% confidence 

limits) kgha 1  

Rain 	Spruce throughfall Larch throughfall 

Ammonium 	1.20 	 1.52 	 0.57 
(0.134) 	 (0.388) 	 (0.200) 

Nitrate 	 0.78 	 0.46 	 0.46 

(0.129) 	 (0.082) 	 (0.082) 

P 	 0.00 	 0.87 	 0.97 
(0.000) 	 (0.377) 	 (0.291) 
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TABLE 5:9 

Total N, P and K in rainfall and throughfall summed over 

the collection period (values in brackets show 95% confidence 

limits) kgha 1  

Rain 
	

Spruce throughfall 	Larch throughfall 

K 

2.30 

(0.250) 

0.07 

(0.006) 

1.10 

(0.083) 

2.60 

(0.582) 

0.99 

(0.474) 

4.41 

(1.465) 

1.64 

(0-459) 

1.10 

(0.262) 

6.39 

(1.112) 
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FIGURE 5:6. PHOSPHORUS AND POTASSIUM FLUXES IN RAIN AND 
THROUGHFALL. VERTICAL LINES SHOW 95% CONFIDENCE LIMITS.. 
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FIGURE 5:7. 

pH OF RAIN AND THROUGHFALL. VERTICAL LINES SHOW 95% 
CONFIDENCE LIMITS. 
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5:4:5 Discussion 

The chemical constituents of throughfall are derived from 

several sources, these include bulk precipitation, impacted 

cloud or fog droplets, dry deposition, gaseous absorption by 

the canopy, and removal of chemicals from canopy tissues' by 

leaching or ionic exchange (Olson et al., 1981). 

Results follow the general trends found by other workers; 

a relative increase in organic N and P after rain has passed 

through the canopy (Verry and Timmons, 1977): high K levels 

in throughfall relative to rain (Feller, 1977); a general decline 

in throughfall pH relative to rain (Alcock and Morton, 1981): 
very low P levels in rainfall (Olson et al., 1981). 

Larch throughfall transferred less N to the forest floor 

than spruce throughfall indicating that larch canopies do not 

become relatively more leaky for this element during senescence. 

On the contrary rainfall was actually depleted of N after pass-

ing through the larch canopy. The linear relation between 

nitrate levels in rain and throughfall suggests that this ion 

is not produced within the canopy, the reduction in throughfall 

nitrate levels relative to rainfall may result from conversion 

to other N forms or uptake and ion exchange mechanisms. 

Larch foliage does appear to increase in leakiness for P, 

with levels in throughfall increasing over the last 3 collect-

ions, when values exceed those for spruce. Prior to this phase 

less P was present in larch throughfall, thus on an annual 

basis P input to the forest floor is probably lower under larch. 

K was readily leached from both canopies, greater amounts 

always being found under larch,, although there was no obvious 

increase in throughfall K content during senescence. It is 

likely that larch canopies return more K to the forest floor 

on an annual basis than spruce. 

These findings are in accord with those of the leaching 

experiment which indicated that while P and K could be 

leached quite readily from larch litter and foliage only small 

amounts of N were lost. Throughfall was only collected for 

3 months so it is possible that important relative differences 

occur outwith this period. However, leaching loss of elements 

from deciduous canopies is greatest during senescence (Chapin 
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and Kedrowski, 1983) so larch foliage is unlikely to contribute 

more N to throughfall at other times during the year. 

Clarholr,i and Rosswall (1980) found that throughfall stim-

ulated microbial activity, when moisture was non-limiting, 

due to the presence of soluble compounds. The greater input 

of K under larch, and the increased flux of P at the end of 

litterfall, may have a stimulating effect on microbial activity 

and decomposition. Additionally, soluble carbon levels may 

be important since the availability of carbon can limit micro-

bial activity (Barber and Lynch, 1977). In quantitative terms, 

nutrient return in throughfall is not sufficient to account for 

increased N availablity in larch/spruce mixtures. 
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5:5 	A comparison of Sitka spruce and hybrid larch litters as a 

source of N for Sitka spruce seedlings. 

5:5:1 Introduction 

Results presented in preceding sections indicate that larch 

withdraws N, P and K prior to leaf abscission; while P and 

K may be leached from senescing foliage the potential loss 

of N is low, these findings being substantiated by data for 

throughfall. Thus larch appears to be conservative in its use 

of N, nutrient withdrawal resulting in litter with a low N 
concentration. Chemical analyses alone do not indicate whether 

larch litter is a source of N potentially more available for 

Sitka spruce in mixture than is spruce litter. Since litter 

quality is dependent on many factors one might expect a dif-

ference in decomposition and N release between species growing 

on the same site. 

It has been suggested that larch litter decomposes readily, 

giving rise to a better developed microflora than other coni-

fers, resulting in rapid mineralization and nitrification 

(Lavrienko, 1965; Pogrebriak, 1960; Tikhonov, 1963). Ohta and 
Kumada (1978) indicate that mineralization rates of larch litter 

material were greater than other conifers and comparable to 

broadleaved species. However, Borne vie-Svendson and Gjerns 

(1957) state that larch litter is slow to decompose, this was 

also found by Wittich (1936) who considered that claims for 

the rapid decomposition of larch litter were site specific and 

exaggerated, and by Mikola (1954). 
Leyton and Weatherell (1959) found growth of Sitka spruce 

to be improved by litter amendments, height increment was 

positively correlated with the quantity of litter N added. They 

concluded that Japanese larch would be the best nurse species 

due to the high N concentration in its litter (1.7%) and a high 

annual litterfall. However, data presented in Section 5:1 
indicates much lower N concentrations in larch litter, while 



Bares and Wali (1979) and Tilton (1977) found litter N con-

centrations below 1% for L. laricina. 

In the present study larch and spruce litters were assessed 

as an N source for Sitka spruce seedlings in a Pot exoer-irnent. 

5:5:2 Methods 

5:5:2aLitter collection 

Hybrid larch and Sitka spruce litter were collected from a 

species/fertilizer interaction experiment, described in section 

5:4:2. Both species had received identical fertilizer inputs 

(P and K at standard Forestry Commission rates, but no N). 

Litter was collected in December 1980; for larch, freshly 

fallen material was readily identifiable by colour. For spruce, 

only surface material which was loose and not invaded by 

fungal hyphae was collected. Although Sitka spruce litterfall 

continues throughout the year it exhibits two seasonal peaks, 

in late autumn and early spring (Owen, 1954), therefore the 

bulk of material collected should have been freshly fallen. 

Since trees were only 13 years old litterfall was comprised 

almost entirely of needle litter. 

Litter was air dried and stored at 3°C, sub-samples were 

oven dried and analysed to determine the concentrations of 

N, P and K. Sample preparation and subsequent chemical 

analysis was as described in section 3:3:2. 

5:5:2b Experimental design 

The experiment was conducted in an unheated greenhouse in 

161cm 2  plastic pots.Twn treatments were adopted for each litter 

type; 1) air dry litter was ground (0.5mm mesh) and mixed 

with washed coarse sand, approximately 1:27 by weight 

(0.1 N 1-ICI extraction of washed sand removed only trace 

amounts of N, P and K, therefore the sand represented a zero 

nutrient input). Ground treatments were designated spruce/sand 

and larch/sand respectively. 2) unground air dry litter was 

placed directly in pots, with a 1cm deep mulch of quartz 

gravel. Unground treatments were designated spruce litter and 

larch litter respectively. 

Litter was added to give a rate equivalent to 300 kgNha in 

the case of ground litter, and 600 kg Nha 1  for unground litter 

(i.e. 0.48 and 0.96 g litter N per pot). Less litter was added 
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in the ground litter treatment as it was assumed that grinding 

would increase N availability. 

A control treatment was included which consisted of washed 

sand with no N input, for comparison an inorganic N t r.eatrrent 

(designated N. P. K. which received ammonium nitrate 

equivalent to 150 kgNhaT 1 (0.24g N per pot) was also included. 

All six treatments received P (as ground mineral phosphate) 

and K (as potassium chloride) at rates equivalent to 50 and 

100 kgha 1  , being applied in quantities to copy Forestry 

Commission rates. 

Pots were planted with single 1+0 Sitka spruce seedlings 

which had been graded to be 14-16cm in height. An initial 

sample of these seedlings (Table 5:10) indicated that vari-

ability in nutrient content was tow. 

Pots were placed on saucers to prevent loss of drainage 

water; however, drainage losses did occur from the unground 

litter treatment which required frequent soaking in warm weather. 

Additionally, algal growth was marked in many saucers. 

30 replicates were prepared for each treatment and placed 

in a randomized block design. The experiment ran from 17.3.81 

to 21.12.81. 

5:5:2cChemical analysis 

At harvesting, trees (shoots and roots) were removed from pots, 

oven dried and weighed: this was also carried out for residual 

litter in the unground treatments. Both trees and litter were 

subjected to chemical analysis as described in section 3:3:2. 

5:5:3 Results 

All seedlings developed acute N deficiency symptoms (general 

soft chlorosis and a purple tinge to the foliage) within 4 weeks 

of planting, except for those in the N. P. K. treatment which 

maintained a normal healthy appearance. Control seedlings 

and those in spruce litter remained deficient throughout the 

experiment, however, those in unground larch litter reverted 

to a normal healthy colour some 20 weeks into the experiment, 

while there was a lessening of deficiency symptoms in the 

ground larch litter treatment at this time. Loss of deficiency 

symptoms in the unground larch litter was associated with the 

appearance of fungal fruiting bodies of Thelephora terrestris 
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Ehrene. ex. Fr. and Inocybe sp. in 50% of pots. Both these 

species are mycorrhizal (Last et al., 1983). 

N, P and K contents of seedlings grown in the litter treat-

ments (Table 5:10) are significantly greater than the -control 

(Table 5:11). Seedling N and P contents in the unground litter 

treatments exceed the ground, with contents in the larch litter 

treatments (ground and unground) always exceeding those from 

spruce litter. The N contents of seedlings grown in larch litter 

are 110% (unground) and 22% (ground) greater than equivalent 

values for those grown in spruce litter. 

Grinding appears to depress N release from larch litter 

more than it does from spruce litter. Highest N and K contents 

were found in the N. P. K. treatment, however, the P content 

was significantly lower than the litter treatments, but greater 

than the control. The control shows an increase in P and K 

content over that of the initial seedlings, but no increase 

in N. 

Results for the change in unground litter N content (Table 

5:12) indicate a decline in total N, but an increase in N 
concentration. A greater quantity of N is lost from larch litter 
than spruce, 9. 5 and  4.9% of the total respectively. In both 
cases N loss from decomposing litter exceeds N recovered by 

the seedlings. Weight loss was greatest from larch litter, being 

14.5% compared with 11.4% for spruce material. Losses of P 

and K greatly exceed amounts taken up by seedlings, being smal--

lest for spruce litter. 
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TABLE 5:10 

N, P and K content (mg) of Sitka spruce seedlings grown in 

hybrid larch or Sitka spruce litter. Mean values (n=30) and 

(95% confidence limits). 

N P K 

Spruce 	litter 29.03 10.68 30.95 
(3.268) (1.026) (3.483) 

Larch 	litter 60.88 18.97 50.19 

(5.275) (1.374) (4.727) 

Spruce/sand 16.87 6.90 36.21 

(1.349) (0.578) (3.052) 

Larch/sand 20.54 11.31 36.75 
(1.866) (0.900) (2.868) 

N. 	P. 	K. 96.17 6.06 91.25 

(8.077) (0.529) (9.626) 

Control 12.81 2.35 26.71 

(1.341) (0.286). (3.428) 

Initial 11.65 1.94 8.33 
(0.82) (0.08) (0.55) 
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TABLE 5:11 

Significance of differences between treatment means in a T-test. 
* = significant at P = 0.05, ** = significant at P = 0.01, 
NS = not significant. 

Nmg 

Spruce litter 

Larch litter 

Spruce/sand 

Larch/sand 

N.P.K. 

Control 

Spruce 	Larch 
litter 	litter 

** 

Spruce 	Larch 
sand 	sand N.P.K. Control 

Pma 

Spruce litter 

Larch litter 

Spruce/sand 

Larch/sand 

N.P.K. 

Control 

Krng 

Spruce litter 

Larch litter 

Spruce/sand 

Larch/sand 

N.P.K. 

Control 

N. S. 	** 	** 

N. S. 

- 	 - 	

- 

 

N. S. 	** 	** 

** 	** 
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TABLE 5:12 

Litter weight, g pot 	nutrient content, mg por 1 . and (nutrient 

concentration, %), for initial littec and after incubation with 

Sitka spruce seedlings. Mean values (n=30) + 95% confidence 

limits. 

Spruce 
	

Weight 

initial 
	

101.00 

After 	89.48 

p4.333 

Larch 

Initial 	93.20 

After * 	79.67 

+5-715 

N 	 P 	 K 

	

959.5 + 73.73 	70.7 ± 11.11 	101.0 -4- 4.04 
(0.95 	+ 0.073) (0.07 -4- 0.011) (0.10 + 0.004) 

	

912.7 + 52.10 	89.5 ± 5.78 	80.5 + 6.72 
(1.02 	-4- 0.028) (0.10 + 0.003) (0.09 + 0.004) 

	

960.0 -4- 23.30 	111.8 -4- 5.59 	111.8 -4- 6.52 
(1.03 	.4- 0.025) (0.12 	-4- 0.006)(0.12 	-- 0.007) 

	

868.4 - 86.07 	71.7 	-- 6.61 	47.8 + 3.45 
(1.09 ± 0.040) (0.09 	4- 0.005)(0.06 + 0.004) 

* Includes residual fertilizer. 

Table 5:13 

Concentrations of N, P and K in spruce and larch litter prior 

to incubation with Sitka spruce seedlings. Mean values (n=5) 

and (95% confidence limits). 

/O
OI!N I 0/0 

fOr 0/ 
/0 

Spruce 	 0.95 0.07 0.10 

(0.073) (0.007) (0.004) 
Larch 	 1.03 0.12 0.12 

(0.025) (0.006) (0.007) 
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5:5:4 Discussion 

Larch litter appears to be a more readily available N source 

for spruce seedlings than Sitka spruce litter, for both ground 

and unground material. The greater release of N from- larch 

litter does not appear to result from a high initial N concentra-

tion, since this is similar for both litter types (Table 5:13). 

Grinding and mixing of litter with sand reduced seedling N 

uptake. Part of this depression may be a consequence of the 

smaller quantity of N added in the ground treatment. Grinding 

normally stimulates N release due to a flush of mineralization 

from killed organisms and from enhanced decomposition of non-

biomass sections of organic matter (Po\,lson, 1980). Why grind-

ing depressed N release from larch litter more than from spruce 

(relative to the unground treatment) is uncertain. However, 

grinding will remove many of the physical constraints on de-

composition which probably make spruce litter a more recalcit-

rant substrate than larch; resulting in a smaller difference 

in seedling N content between litter types in the ground treat- 
ments. 

Mycorrhizal fruiting bodies were not apparent in the sand 

treatments; it is possible that greater N uptake from the iii--

ground larch litter was partly a result of more active mycorr-

hizal associations. Fruiting bodies were found only in the 

unground larch treatment and their appearance was coincident 

with the loss of N deficiency symptoms. However, fruiting 

body production may only indicate that conditions were more 

suitable for the reproductive stage of the fungus, rather than 

reflecting a greater overall activity. In addition, the sand 

used in the ground litter treatments may have been too fine 

to permit adequate aeration, resulting in adverse physical 

conditions for decomposer activity and mycorrhizal growth. 

The apparent 20 week delay before N release occurred, when 

seedlings were N deficient, probably indicates an N accumulat-

ion phase prior to release. A period of both relative and 

absolute N accumulation is common in decomposing litter 

material (Berg and Staaf, 1981). 

Seedlings grown in larch litter (ground and unground) have 

approximately twice the P content of those grown in spruce 
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litter. This reflects the greater P content of larch litter, while 

previous experiments have indicated that P can be readily 

leached from larch litter. 

Nutrient amounts lost from the unground litters exceed 

uptake by the seedlings. This suggests that N, P and K were 

lost during the experiment; losses occurred due to overflow 

from saucers, algal growth in saucers, and fungal fruiting 

body production. These losses will have been minimal from 

the ground treatments which could be kept moist by the 

addition of water to the saucers, drainage losses were therefore 

zero. Nutrient loss values indicate substantially greater release 

of all 3 nutrients from larch litter, corroborating the results 

for seedling uptake. 
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5:6 	N release from different combinations of hybrid larch and Sitka 

spruce litter during incubation with periodic leaching. 

5:6:1 Introduction 

Larch litter has been demonstrated to be a more readily 

available source of N for Sitka spruce seedlings than spruce 

litter. Release of N does not occur immediately but is delayed 

for some 5 months under greenhouse conditions (Section 5:5:3) 

suggesting an initial accumulation phase as the C:N ratio falls 

(Berg and Staaf, 1981). In order to follow this release larch 

litter was collected in summer some 8 months after litterfall, 

together with Sitka spruce litter from the same site. The two 

litters were incubated under laboratory conditions to compare 

rates of N release. Additionally, litters were mixed in several 

combinations to examine the possibility of positive interaction: 

the admixture of larch litter with other types has been 

suggested as being beneficial in terms of N release (Lavrienko, 

1965). 

5:6:2 Methods 

5:6:2aField collection of litter 

Hybrid larch and Sitka spruce leaf litter were collected from 

the species/fertilizer interaction experiment described in Section 

5:4:2. 

Collection was carried out in July (1982), only surface  

material being taken. It is difficult to obtain comparable ages 

of larch and spruce litter without collecting material as it 

falls. Larch litter could be guaranteed as being approximately 

8 months old; spruce litter may have been younger since some 

litterfall occurs in early spring (Owen, 1954). Despite such 

possible differences, litters can be said to reflect forest floor 

conditions at the time of sampling. 

Litter was air dried and stored at 3°C prior to use. 
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5:6:2b Incubations 

Litters were combined on an air dry weight basis to give 6 

treatments, each with 4 replicates; L 0  S 10  (0.00g larch litter, 

10.00g spruce litter). L 2 S8 , L4 S 6 , L6 S 4 , L8  S2 and L 10 S0 . Litters 

differed slightly in moisture content so precise oven dry weight 

values are presented in Appendix 4A. Litters were placed in 

250ml Buchner funnels using glass wool as a filter, funnels 

were covered with 25.4u -in polyethylene film and incubated in 

the dark at 20°C. Initially funnels were flooded with distilled 

water and left for 24 hours to allow litter to hydrate, water 

was then removed under suction. Subsequently the incubations 

were leached with 200m1 of distilled water poured over the 

litter surface at 30 day intervals. The experiment ran for 180 

days. 

Leachates were collected using suction and the volumes 

determined, a subsample was retained for chemical analysis. 

5:6:2c Chemical analysis. 

Litter samples were analysed for N, P and K before and after 

incubation; weight loss over the incubation was also assessed. 

Sample preparation and chemical analyses were as described 

in Section 3:3:2. Initial litter material was extracted with distill-

ed water (2g air dry weight + 20ml water) for 5 hours and 

the extract pH determined potent iometrically. 

Leachates 	were analysed for ammonium, 	nitrate and 

phosphate as described in Section 5:3:2b, pH was also deter-

mined. 

5:6:3 Results 

Initial N, P and K concentrations were greatest in larch litter 

(Table 5:14), the N concentration being more than twice that 

of the spruce material. The value is also greater than that 

recorded for freshly fallen larch litter (Table 5:13),  although 

P and K concentrations are similar, pH  of litter extracts was 

also higher for larch litter. 

Treatment nutrient contents, showing the relative contri-

butions of larch and spruce litter, are displayed in Appendix 

4A. Due to the higher nutrient concentrations in larch litter, 

treatment nutrient contents increase with the proportion of 

larch material. 
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Total mineral N release (ammonium + nitrate) increased 

with the proDortion of larch litter, being maximum for L 10  S0 and 

minimum for L0510 (Figure 5:8c, Appendix LC). The larch litter 

content of treatments increases by equal increments from 

L0S10 to L 10  S0. However, the increase in N release becqmes 

greater as the proportion of larch material rises. This pattern 

is closely followed by ammonium (Fig 5:8a, Appendix L+C), 

although release increases more or less equally between the 

first 3 treatments, jumping dramatically in treatments 

L6S4 to L10S0. No nitrification occurred in the L0S10 treatment, 

ai'd W&5 OftEY detected in the presence of larch litter. Nitrificat-

ion also increases with the proportion of larch material (Fig 

5:8b, Appendix 4C), with treatments L 10  So and L8 S 2 being 

virtually identical. By the end of the incubation, nitrate is 

the dominant mineral N form in most treaments containing larch 

litter (Appendix 4C). Relative nitrification (nitrate: ammonium) 

increases with the quantity of larch litter from treatment 

L0 S 10  to L6 S4 , then declines (Table 5:16). Inorganic P re-

lease follows a similar pattern to inorganic N release (Fig 

5:8d, Appendix 4C). 

Expressing inorganic nutrient release as a percentage of 

the initial nutrient content (Table 5:15) shows that relative 

N release also increases with the proportion of larch litter. 

The same result is seen for P. except that greater relative 

amounts are released. 

Assuming no interaction between litters in the mixed treat-

ments, one can use results from the single litter incubations 

to predict nutrient release values for the litter mixtures. For 

both N and P (Table 5:17), predicted values for treatments 

L2S8 to L6S4 exceed the measured values, while the prediction 

for L8 S2  is less than the real result. Leachate p11 declines 

during the incubation in all cases (Fig 5:9, Appendix 4C): 

initially pH was highest in the 1,10 So treatment and lowest 

in the L0 S10 , however this situation is reversed by the end 

of the experiment. Analysis of residual litter after the incubat-

ion (Appendix 4B) shows that weight loss is negatively correlated 

with the proportion of larch litter. Total nutrient loss (initial 

content - final content) does not differ substantially between 
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treatments being approximately 53% for N and 67% for P. An 

attempt was made to separate residual material into larch and 

spruce components but this proved unsatisfactory due to a high 

proportion of amorphous material. - 

TABLE 5:lL 

Initial nutrient concentrations (%) and pH. Mean values (n=4) 

and (95% confidence limits). 

%N %P %K pH 

Sitka 	spruce 	0.81 0.09 0.07 3.68 

(0.03) (0.006) (0.008) (0.16) 

Hybrid larch 	1.72 0.13 0.10 3.90 

(0.10) (0.005) (0.005) (0.36) 

TABLE 5:15 

Inorganic nutrient release (mg) in leachate over the incubation 

period, and as a % of the initial nutrient content. Mean values 

(n=4) and (95% confidence limits). 

Treatment Ammonium + 	Nitrate P 

mg % rrg % 

L0 S 10  0.10 0.17 0.55 8.28 

(0.008) (0.013) (0.059) (0.889) 

L 2S 8  0.26 0.34 0.75 10.11 

(0.068) (0.090) (0.101) (1.361) 

L 4S 6  1.25 1.36 1.07 13.05 

(0.005) (0.005) (0.070) (0.854) 

L 65 4  3.82 3.55 1.55 17.26 

(0.218) (0.203) (0.026) (0.290) 

L8 S2 8.57 6.94 2.74 28.10 

(1.144) (0.927) (0.461) (4.728) 

L 1 0S0 9.59 6.88 3.16 30.01 

(0.853) (0.612) (0.024) (0.228) 
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TABLE 5:16 

Relative nitrification 

Mean values (n=4) 

Treatment 
	

Nitrate : Ammonium 

L 0 S 10 	 0.0 

L 2 S 8 	 0.2 

L 
	

2.4 

L 
	

5 .1 

L 8S 2 	 3.6 
L10 	 2.2 

TABLE 5:17 

Observed and (Predicted) mineralization values (mg) for N 

and P. Mean values (n=4). 

Treatment N P 

L 2 S 8  0.26 (2.00) 0.75 (1.07) 

L 4 S 6  1.25 (3.90) 1.07 (1.59) 

L 6 S 4  3.82 (5.79) 1.55 (2.12) 

L 8 S 2  8.57 (7.69) 2.74 (2.64) 
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5:6:4 Discussion 

8 month old larch litter had an N concentration 61% greater 

than fresh litter used in the pot experiment (although not from 

the same years litterfall) and released N readily when leached. 

Release (mineralization) is considerably greater ( 96 x) than 

the inorganic N released from Sitka spruce litter, which was 

collected at the same time. Differences must partially reflect 

the lower C:N ratio of larch litter (29:1 versus 61:1); ind-

icating a shorter accumulation phase for larch litter since 

N concentrations of the fresh litters are similar. This assumes 

that litters are of comparable age. The smaller weight loss 

of larch material compared with spruce suggests that rapid 

early weight loss may have already occurred in the former, 

together with the associated accumulation of N. 

Mineral N in leachates from spruce litter amounted to only 

0.1% of the initial N content, despite a weight loss of 68%. 
Total N loss was much higher (52%) and comparable with larch 

litter. Clearly, the leaching/incubation system differs from 

the natural situation, where N is retained by the microflora, 

by allowing the removal of organic N (as microbes, soluble 

material and fine particulate matter) which is then no longer 

available for later mineralization. However the method should 

be suitable for comparative purposes and has been used to 

assess potentially mineralizable N, with considerable success, 

by other workers (e.g. Stanford and Smith, 1976). 
Greater nitrification in the larch litter treatments probably 

reflects the higher level of mineralized 
., i.e. ammonium, 

competition for which is a major control on nitrifying popul-

ations. Relative nitrification increases with the proportion 

of larch litter up to L6 S4 , indicating that high ammonium 

levels alone do not explain the higher nitrifi er activity in 

the presence of larch material. It is possible that the greater 

mnera)ization of P in the presence of larch litter stimulates 

nitrification (Verstrate, 1981). The decline in relative nitrifi-
cation in treatment L8S 2  and L io S o , despite high ammonium 

and P levels, may be due to the low pH values recorded for 

these treatments. It is interesting to note that nitrification 

occurred at pH 3.8 which conflicts with older, but not recent 
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views on the subject (Robertson, 1982). 

Predicted values for the release of mineral N and P exceed-

ed the actual results for treatments L 2 S8  to L 6 S4  , suggesting 

a negative influence of spruce litter on N mineralization of 

larch material. However, for the L 8  S 2  treatment the reverse 

is true indicating a positive interaction between the litters. 

Whether these findings reflect the field situation, where litter 

will tend to be deposited in discrete layers, is uncertain. 

The difference between actual and predicted values declines 

as the proportion of larch litter increases, as the negative 

influence of spruce litter is reduced. 

These results agree well with those of the pot experiment 

(Section 5:5), indicating that larch litter is a more readily 

available source of mineral N than Sitka spruce litter under 

similar site conditions. The possible stimulatory effect on 

nitrification is of interest as other workers have noted this 

under field conditions (e.g. Lavrienko, 1965). 

The use of distilled water to leach funnels will not 

have removed all exchangeable ammonium, although most 

nitrate will have been removed. Leaching should have 

been carried out using potassium chloride to ensure 

complete removal of exchangeable ions. Mineral N rec-

overy does not therefore equate with mineralization which 

will have been underestimated. Accumulation of ammonium 

during the course of the incubation probably accounts 

for the high levels of nitrification detected in some 

treatments. 

The high litter weight loss recorded over the exper-

iment, plus the associated loss of total N, suggests that 

considerable quantities of particulate material were 

removed in leachate. Loss of such potentially mineral-

izable material will have influenced subsequent mineral-

ization. 
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5:7 	Larch litterfall in a mixed larch : spruce stand. 

5:7:1 Introduction 

Results presented in preceding 	sections indicate that larch 

withdraws N. P and K prior to leaf abscission; while P and 

K may be leached at this time the potential loss of N is low, 

these findings are substantiated by data for throughfall. Thus 

larch appears to be conservative in its use of N; however 

larch litter is a more readily available N source for seedlings 

than Sitka spruce litter, despite comparable N concentrations 

in the fresh material. It is necessary to quantify the larch 

litter input in mixed stands to assess its importance in N 

cycling, and as a potential source of N for Sitka spruce. 

5:7:2 Site description 

Larch litterfall was collected in the Mabie 7 experiment, de-

scribed in Section 3:2:1. 

5:7:3 Methods 

5:7:3a Field sampling procedure 

Larch litterfall was collected over the period of abscission 

(August - November 1981) in each of the three H treatments. 

10 plastic buckets (24cm internal diameter) were randomly 

placed on the flat plough position (undisturbed ground surface) 

in each stand. Buckets had drainage holes to prevent the 

accumulation of rain water. Collections were initially conducted 

at 30 day intervals, being reduced to 15 days over the period 

of peak litterfall. For each bucket, samples were oven dried 

and bulked over the collection period. 

5:7:3bChemical analysis 

Bulked oven dry samples were weighed to give the total weight 

of litterfall. Subsequent sample preparation and chemical 

analysis for N, P and K were identical to that described in 

Section 3:3:2. 
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5:7:4 Results 

Litterfall amount and nutrient content did not differ significant-

ly between the treatment plots, results were therefore combined 

to give a single set of values (Table 5:18). 

TABLE 5:18 

Weight 	(kgha -1), nutrient concentration (%) , and nutrient 

content (kgha') of larch litterfall in the Mabie 7 experiment. 
Mean values (n=30) and (95% confidence limits). 

Weight %N %P %K 

986.5 0.68 0.11 0.33 

(85.11) (0.036) (0.005) (O.00 

N 	P 	K 

6.75 	1.03 	1.33 

(0.659) 	(0.097) 	(0.114) 
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C;  :7:5 Discussion 

The quantity of larch litterfall and amounts of N, P and K 

returned to the forest floor are extremely low in comparison 

with data for other temperate forests (Bray & Gorham,, 1964; 
Rodin & Bazilevich, 1967). However canopy structure is still 

very open and full leaf area has yet to be attained. Addition-

ally larch occupies only 75% of the stand. 

Values are also low in comparison with the predicted foliar 

weight of 3063 kgha in Section 4 Assuming a weight loss 
of 28% prior to abscission (Section 5:1), predicts a litterfall 
of 2205 Kgha 1, considerably in excess of the measured value 

of 986.5 kgha. The discrepancy may be due in part to restrict-

ing collectors to the flat plough position only, which may 

inadequately reflect litterfall in the stands as a whole. 

The discrepancy does not influence the main result which 

is that larch litter contributes only small quantities of N, 

P and K to the forest floor. Of this total N only a small 

fraction will become available in the first year; applying the 

mineralization value of 6.88% obtained in Section 5:6 would 

give an N release of approximately 0.93 kghaT1  in the year 

following litterfall. it seems unlikely that the quantitative 

influence of larch litter, in terms of N release, can be an 

important factor for the N nutrition of Sitka spruce in mixed 

stands. 
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Net N mineralization in pure spruce stands and 

larch/spruce mixtures as measured by field 

and laboratory incubations. 

6:1 Introduction 

Annual net N mineralization is an important factor limiting 

production in non-fertilized forest ecosystems (Miller, 1981: 

Nadeihoffer et al., 1983: Williams, 1983). Factors influencing 

mineralization have been previously discussed; mixed and pure 

stands may differ in terms of substrate quality, decomposer 

organisms, and microenvironment. Consequently it seems reason-

able to suppose that differences may exist in the quantities 

of N made available annually by mineralization. 

Net N mineralization can be estimated by calculating the 

mean change over time in mineral N concentration (mgg 1 ) of 

replicate soil samples incubated in situ or laboratory conditions. 

Since root uptake and leaching losses are prevented, the 

change in mineral N concentration gives an estimate of mineral-

ization. 

Traditionally, estimates of potentially mineralizable N have 

been based on aerobic laboratory incubations, conducted in 

closed systems under constant moisture and temperature cond-

itions (Keeney, 1980). For agricultural soils, such methods 

have, in general, given results highly correlated with N 

uptake by plants grown in potted soils undergreenhouse cond-

itions. The highly refined incubation technique of Stanford 

et al. (1974) has shown extremely good correlation with crop 

growth. Cumulative N mineralization is proportional to the 

square root of incubation time (Stanford and Smith, 1972), 

consequently potentially mineralizable N can be estimated from 

incubation studies lasting only 3 to 4 weeks. Aerobic incub-

ation results from forest soils have been shown to correlate 
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with tree growth (Tamm and Petersen, 1969; Van den Driessche 

and Webber. 1977 : Van Praag and Weisseri. 1973). 

An alternative technique where samples are incubated under 

warm anaerobic conditions was derived by Waring and Bremner 

(1964). Results from such incubations have been correlated with 

tree growth in some cases (Shumway, 1978), although the suit-

ability of the technique seems to vary with different habitat 

types (McNabb et al., 1978). 

Since N mineralization is strongly influenced by moisture 

and temperature (Popovi6, 1980) more reliable estimates of 

field mineralization may be obtained from samples incubated 

under field conditions. Such studies normally involve composite, 

homogenised samples placed in containers which permit gas 

exchange but prevent loss of mineral N through leaching and 

plant uptake. The vast majority of these studies have used 

polyethylene bags, although Rapp et al. (1979) used perforated 

metal cans while Williams (1983) used plastic pots. In situ 

incubations havegained some popularity as a means of estimat-

ing rates of N mineralization and have been adopted by a 

number of workers; e.g. Ellenburg (1977); Glavac and Koenies 
(1978); Melillo (1981), Nadelhoffer et al. (1983); Pastor et 
al. (1984): Popovi 	(1980); Powers et al. (1978): Runge (1974); 
Van Pragg and Weissen (1973); Westerman and Crothers 	(1981); 
Williams (1983). 

Two approaches may be adopted in the use of field incub-

ations; 1) long term incubation of material from one collection 

date (Williams, 1983) with or without periodic subsampling 

to follow the pattern of mineralization; 2) sequential collection 

and incubation of material over a much shorter time interval 

(Popovi, 1980). The first approach has the advantage that 

the extended incubation period should yield results which are 

not influenced by the initial manipulation of the material; 

Popovi(1980) indicates that for soils low in N, or where fine 

root concentrations are high, a short incubation period (less 

than 6 weeks) may not be sufficient to reduce the impact of 

initial immobilization on the final result. However, the first 

approach does not permit the integration of changes in soil 

moisture (unless incubations are not fully enclosed) or sub- 

131 



strate quality and quantity (e.g. fine root turnover), a prob-

lem partially resolved by the sequential sampling approach. 

The exclusion of rainfall and throughfall from incubations 

may be an important artefact, even with the seqnential 

approach which permits broad changes in soil moisture levels 

to be followed. The microbial biomass, especially bacteria, 

are stimulated by rainfall even when moisture is non-limiting, 

due to mineral elements present in the rain (:'CarhoIm and 

Rosswall, 1980). Williams (1983) detected significant, but vari-

able, differences in N mineralization between field incubations 

left open to the rain and ones which were not. Additionally, 

short term wetting and drying cycles which stimulate mineral-

ization (Heal, 1979) are excluded from many incubation studies. 

Whether fine roots killed during sample collection should 

be removed or included in the incubation is uncertain. Fine 

root turnover can be large (Fogel, 1983) with rates of de-

composition being extremely rapid (Ford and Deans, 1977) or 

similar to above ground fine litter components (Berg et al., 

1982c). It is arguable that roots killed during sample preparat-

ion may be insignificant in terms of annual turnover; however 

artificially caused root death will not coincide with normal 

phenology and may provide a substrate dissimilar to roots 

whrch may have undergone natural mortality, perhaps with 

senescence. An additional artefact of both field and laboratory 

incubations is the absence of living roots and mycorrhizas. 

Gadgil and Gadgil (1975) have demonstrated antagonism between 

mycorrhizal symbionts and decomposer organisms, while a 

positive influence of the rhizosphere on decomposition and 

mineralization has been postulated for some time (Stone and 

Fisher, 1969). 

Normally mineral N concentrations in the soil are low (Cole. 

1981), in long term incubations concentrations rise to artifi-

cially high levels in the absence of plant uptake and leaching 

loss. Such high concentrations may have qualitative and 

quantitative effects on the microflora, influencing nitrification 

and subsequent mineralization. This problem should be avoided 

by sequential incubations. 

Incubation studies may be criticised for their severe 
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manipulation of the sample material (Van Praag and Weissen 

1973). Additionally, the need to prevent loss of mineralized 

N necessitates some degree of sample isolation from the ambient 

soil environment. Consequently, conditions in incubations are 

not comparable with those in undisturbed soil layers (Williams, 

1983); although in situ studies go some way to reconcile these 

problems. Sample manipulation can be reduced by the use of 

undisturbed samples (e.g. Rapp et al., 1979); since this pre-

cludes mixing of material to produce a uniform substrate 

variation may become a problem. Natural variation -in soil 

N and mineralization can be considerable (see Keeney, 1980). 

Carey et al. (1981) rejected the use of undisturbed individual 

samples because of high variation encountered during a pilot 

study. Since the act of sample collection, root severance, and 

isolation introduces many artefacts into the incubation system 

it may be arguable whether intact samples mimic the real 

system to a greater degree than those which have been homo-

genised. 

The present study makes use of both field and laboratory 

• incubation techniques to examine potential differences in N 

mineralization in pure spruce and larch/spruce mixtures. All 

incubations used homogenised composite material, but towards 

the end of the experiment some undisturbed samples were in-

cubated for comparative purposes. 

6:2 	Methods 

6:2:1 Field sampling procedure 

Sampling was conducted in the Mabie 7 and lnchnacardoch 

164 experiments described in Section 3:2. 

Mabie 7: for each of the 3 OW and H treatment plots, 

samples were taken from 10 randomly selected points on the 

ridge and flat plough positions respectively (Figure 6:1). 

Samples were collected to a depth of 9cm using a 6.6cm inter-

nal diameter corer; aluminium rings within the corer permitted 

the sample to be divided into 3 depth sections, 0-3, 3-6 and 

6-9cm. The surface sample included L.F.H. material while 

deeper samples were entirely of peat. For each treatment plot, 

samples from a given position (ridge or flat) and depth were 

bulked then homogenised. Any living plant material was removed 
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FIGURE 6:1. 

DIAGRAMATIC SECTION ACROSS PLOUGHING TO INDICATE 
SAMPLING POSITIONS FOR MATERIAL USED IN FIELD AND 
LABORATORY INCUBATIONS. 

RIDGE SAMPLING POSITION 

• 	 ::;. FLAT SAMPLING POSITION 

[FURROJ 
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(Mosses etc. ) along with larger roots, while an attempt was 

made to reduce the quantity of fine root material. On the last 

4 sampling occasions an extra 4 cores were taken from each 

treatment plot to allow the incubation of undisturbed material. 

At the start of the experiment an additional 30 cores were 

taken from the ridge and flat positions of both treatments for 

bulk density determinations. 

lnchnacardoch 164: Material from this experiment was used 

in a single laboratory incubation. For each of the 5 SS-N and 

JL/SS-N treatment plots 5 cores were taken from both the ridge 

and flat positions as described above. Collection was carried 

out in December 1982. 

6:2:2 Incubation 

For incubation under field conditions, bulked homogenised 

material from a given treatment, plough position, and depth, 

was repacked into an aluminium corer ring (103cm 3 ) to its 

original bulk density. Initially this was achieved by weighing 

core sections using a spring balance, until sufficient accuracy 

( + 15%) could be obtained by eye. Material was carefully 

removed from the ring and wrapped in 25.4im thick polyethy-

lene film (this may have been too thick to permit free move-

ment of oxygen and carbon dioxide, Bremner and Douglas 

1 1971). The incubation package was replaced within the treat-

ment of origin at the correct position and depth. Each incubation 

had 6 replicates. 

To examine the possible influence of microclimatic differences 

between plots on net mineralization (independent of substrate 

quality) material was exchanged between treatments. Thus OW 

samples were incubated in the H treatment and vice versa. 

Incubations were for 30 days, except for a 60 day incubation 

in winter (December - February 1983). On collection the sampling/ 

incubation procedure was repeated. 

For the last 4 incubations the 0 - 3cm sections of the 

additional cores were incubated intact, without root removal 

or homogenisation. 

Subsamples of fresh material were retained for laboratory 

determinations of initial mineral N, moisture content, and p1-i. 
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Incubations under laboratory conditions were run using 

material from both experiments. With Mabie material incubations 

were run concurrently with those in the field on 4 occasions. 

For each of the OW and H treatments material from the treat-

ment plots was bulked to give 1 composite sample for each 

plough position and depth. 20g portions of each sample were 

weighed into 250m1 conical flasks and incubated under moist 

aerobic conditions in the dark at 20°C. Flasks were stoppered 

with cotton wool and the moisture content maintained by the 

addition of water every 5 days. Samples were replicated 4 

times and the incubations run for 30 days. Procedure was 

identical for material from lnchnacardoch except that 40g 

samples were used and mineralization assessed after 30 and 

60 days. Subsamples of fresh material were retained for lab-

oratory analysis. 

6:2:3 Chemical analysis 

Mineral N (ammonium. nitrate and nitrite) was extracted by 

shaking samples (log fresh weight) for lhr with 200m1 IN KC1, 

extracts were stored at 3°C prior to analysis. Core samples 

were stored at this temperature for a maximum of 72hrs before 

extraction. Concentrations of ammonium and (nitrate + nitrite)-

N in extracts from fresh and incubated samples were determined 

by colorimetric methods adapted to a continuous flow system 

(Crooke and Simpson, 1971; Henriksen and Selmer-Olsen, 1970). 

Moisture contents of fresh and incubated samples were 

determined on subsampies dried to a constant weight at 85°C, 

while pH was recorded potentiornetrically, in distilled water 

at a solid : liquid ratio of 1 : 25, on bulked material. 

Soil bulk densities were used to convert mineral N concent-

rations in soil to real content values expressed on an area 

basis (Appendix 5A). 

6:3 	Results 

No nitrate was detected in either the soil exchangeable pool 

or incubated material throughout the course of the experiment: 

consequently references to mineralization or mineral N indicate 

ammonification or ammonium. 

Moisture contents of material placed in incubation packages 

showed little or no change compared with those measured for 
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fresh material at the start of the incubation. 

F-tests indicated that variances differed between means, 

therefore a variation of the normal T-test approximating the 

method of the Fisher-Behrens test was adopted (Snedecor and 

Cochran, 1967) in the analysis of results. 

6:3:1 Field incubation 

a) Comparison of net N mineralization in the OW and H treatments. 

Treatments and plough positions exhibited similar seasonal 

patterns of net mineralization, although quantities differed 

(Figures 6:2 and 6:3, Appendix 5B). Mineralization increases 

from low levels (or immobilization) from January to April, peak-

ing during May and June. Levels fall between June and July, 

increasing to a second, larger, peak during August and 

September. Levels then fall to their low winter values in 

November. This apparent seasonal pattern is only inferred since 

results were obtained over 3 years, data being incomplete for 

any given year. 

A common seasonal pattern is also exhibited by treatments 

and plough positions for changes in the soil ammonium pool 

(Figures 6:2 and 6:3, Appendix 5C), with maximum values 

occurring in March 1982. Soil ammonium levels do not exhibit 

consistent treatment differences, although OW values tend to 

be higher when levels peak. There is little correlation between 

changes in the soil ammonium pool and net mineralization, 

except for the period February to July 1982, when changes 

in soil ammonium between sampling dates broadly follow the 

pattern of mineralization. 

Marked treatment differences are apparent for both plough 

positions; ridge mineralization values in the H treatment exceed 

those in the OW on 10 of 13 occasions (9 of these significantly, 

Appendix 5B), and 11 of 13 occasions for the flat (9 significant-

ly ,  Appendix 5B). Summing monthly mineralization values to 

produce an annual estimate (Appendix 5A) produces a total 

of 28 (29) kgNha 1yr 1 for the OW treatment and 60 (65) kgNhaT 1y 1  

for the H treatment; depending whether the 1982 or (1983) Feb-

ruary to April values are chosen. 

Soil moisture content also varies seasonally (Figure 6:4), 
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driest values being recorded in summer and early autumn. 

Treatment differences are only significant for the ridge position 

(Table 6:1), with the N treatment being consistently drier. 

Moisture values for the flat position are very similar, differ-

ences being non-significant, although H values tend to be 

lower. Greatest between treatment differences occur during the 

dry period July to October 1981. Moisture contents show no 

correlation with net mineralization or soil ammonium. 

Soil pH does not differ significantly between treatments 

(Table 6:2), however H treatment values are consistently higher 

by approximately 0.05 units. 

TABLE 6:1 

Soil moisture content (% fresh weight). Mean values (n78) 

for the incubation period and (95% confidence limits). 

Ridge Flat 

0-3 cm 3-6 cm 6-9 cm 0-3 cm 3-6 cm 6-9 cm 

OW 	69.5 78.0 79.6 78.0 82.1 83.0 
(1.9) (1.4) (1.1) (1.7) (1.0) (1.0) 

H 	65.3 72.4 75.3 75.2 81.0 82.4 
(3.6) (3.0) (2.3) (3.4) (1.5) (1.3) 

* * * J5 NS NS 

Differences 	between treatment 	means are 	significant at 	P=0.05 
(*) 	or are not significant (NS) 	in 	a T-test. 
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TABLE 6:2 

Soil pH. Mean values (n=13) for the incubation period and 

(95% confidence limits). 

Ridge Flat 

0-3 cm 3-6 cm 6-9 cm 0-3 cm 3-6 cm 6-9 cm 

OW 	3.43 3.35 3.27 3.38 3.32 3.30 

(0.13) (0.14) (0.15) (0.16) (0.15) (0.14) 

H 	3.48 3.40 3.34 3.54 3.36 3.33 

(0.15) (0.14) (0.14) (0.17) (0.13) (0.14) 

NS NS NS NS NS NS 

Differences between treatment means are not significant at 

P=0.05 (NS) in a 1-test. 

b) Reciprocal incubation of H and OW material under both H 

and OW conditions. 

For sample material from either treatment, and both plough 

positions, the incubation site (i.e. an OW or H plot) has 

virtually no influence on net mineralization (Figures 6:5 and 

6:6, Appendix 5B). Taking OW ridge material, mineralization 

values for incubation under the two conditions differ significant-

ly on only 4 of the 13 occasions. For OW flat material sign-

ificant differences occur on only 5  occasions. A similar result 

is seen for H material, with significant differences occurring 

on only 3 occasions for the ridge and only 1 occasion for the 

flat (Appendix SB). For differences which do occur, the in-

fluence of site is not consistent. 

Summing monthly mineralization values (Appendix 5A) for 

an annual estimate gives 28 (29) kgNhayr 1  for OW material 

incubated under OW conditions compared with 27 (28) kgNh 1 yt 1  

for the same material incubated under H conditions. The pat-

tern is repeated for H material with 60 (65) kgNhayr 1  under 
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H conditions and 63 (67) kgNhã 1 yr 	under OW conditions, using 
February to April 1982 or (1983) values respectively. 

Comparison of ridge and flat plough positions 

Comparison of net N mineralization values for OW and H mte-

rial (Figures 6:2 and 6:3 , Appendix 5B) indicates relatively 

little difference between the ridge and flat positions for the 

OW treatment, however, a considerable difference is apparent 

for the H treatment. Mineralization differs significantly between 

ridge and flat on only 4 occasions for OW material but on 

9 occasions for H treatment (Appendix 5B). 

Summing values to give an annual estimate gives 27 (28) 
kgNha 1yr 1  for the ridge compared with 29 (29) kgNha'f1  for 
the flat in the OW treatment. In the H treatment these values 

are 44 (49) and 68 (74) kgNhayrrespectively. 

Soil moisture levels are considerably greater in the flat 

position of both treatments (at all depths), this difference 

being more marked in the H treatment (Table 6:1). Soil pH 
values do not differ between the two positions (Table 6:2). 

Variations with depth 

There is a tendency for most mineralization to occur in the 
0-3 cm layer of the H treatment, for both plough positions 

(Figure 6:7, Appendix 5D). This is most marked for the period 

July to November 1981, when a similar trend is observed in 
the OW treatment (Figure 6:8, Appendix 5D). Outwith this 

period mineralization at other depths assumes a greater imp-

ortance. Increased mineralization in the 0--3 cm layer occurs 

on fewer occasions in the OW treatment. Summing respective 
depth values (Table 6:3) indicates that 48-34% of OW mineral-
ization and 58-54% of H mineralization takes place in the upper 
layer. 

Moisture content increases with depth in all cases. while 

differences in moisture contents between treatments and plough 

positions are reduced (Table 6:1), pH declines with depth in 
all cases. 
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TABLE 6:3 

Net N mineralization at different depths*,  kgha 1 . 

Ridge 	 Flat 

0-3 cm 	3-6 cm 	6-9 cm 	0-3 cm 	3-6 cm 	6-9 cm 

OW 	13 	8 	6 	 10 	9 	10 

i-i 	 25 	9 	9 	36 	18 	13 

using February - April 1982 values. 

e) intact Cores 

Results for the incubation of intact cores (0-3 cm) were extreme-

ly variable (Appendix 5E) making interpretation and comparison 

with the main experiment difficult. Considering only results 

with 95% confidence limits less than the mean value shows no 

clear effect of sample mixing on mineralization. For both OW 

and H material 50% of intact cores gave mineralization values 

greater than equivalent mixed material and 50% mineralized 

less. 

Mineralization values of intact H cores exceed OW cores 

in virtually all cases. For the final incubation only, intact 

cores gave mineralization results which were very similar to 

those for mixed material (cf. Appendix 5E with Appendix SD). 
6:3:2 Laboratory incubations 

a) Comparison of N mineralization in pure spruce (OW, SS-N) 

and mixture (H, TL/SS-N) material. 

Marked treatment differences are apparent for both experimental 

sites. For Mabie 7, mineralization of H material significantly 

exceeds that of OW material for all 4 incubations, and both 

plough positions (Figure 6:9, Appendix 5F). Treatment differ-

ences are greatest for the flat plough position. Summing the 

4 incubations and extrapolating to an annual value gives 
-1 	 -1 110 kgNha-1 

 yr for the OW treatment and 179 kgNha-1 
 yr for the 

H. 

For lnchnacardoch 164; mineralization of JL/SS-N material 

significantly exceeds that of SS-N material for both plough 
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positions, after 60 days (Figure 6:10, Appendix 5G). After 

only 30 days the pattern is the same except for JL/SS-N ridge 

material which mineralized less than the SS-N. Summing values 

and extrapolating to 1 year gives 32 kgNha 1yr 1 for the SS-N 
and 109 kgNhá 1ytfor the JL/SS-N treatment. 

Comparison of ridge and flat plough positions. 

For Mabie; OW material shows little difference in mineralization 

between plough position (Figure 6:9; Appendix 5F). Summing 
values for the 4 incubations gives 39 kgNhã 1for the ridge and 
36 kgNhá 1  for the flat. Mineralization of H material shows a 

greater positional difference, summing values gives 49  kgNh 1  
for the ridge and 65 kgNhä 1for the flat. 

With material from lnchnacardoch the pattern is different, 

for both SS-IN and IL/SS-N incubations, mineralization of ridge 

material exceeds flat. Differences do not relate to pH or soil 

moisture (Appendix 5H). 

Changes with depth. 

For Mabie; OW and H material from both plough positions shows 

greatest mineralization in the 0-3 cm layer. The difference 

in surface mineralization accounts for 80% of the treatment 

difference for ridge material and 93% for flat material (Table 
6:4). Mineralization for the 3-6 and 6-9 cm deep layers is 

very similar for the 2 treatments, for both plough positions 

(Table 6:4, Appendix 51). 

lnchnacardoch flat material shows greatest mineralization 

in the surface layer for both treatments; for the ridge, however, 

mineralization at the other depths is more important (Table 

6:4, Appendix 5G). 

Comparison of the field and laboratory incubations. 

Summing field and laboratory incubation results for equivalent 

periods gives a field value of 22 kgNhaaand a laboratory value 

of 37 kgNha 1 for OW material. For the H treatment these values 
are 32 and 60 kgWha'respectjv eiy . Assuming a Q10 of 2 (Alex-
ander, 1977) and a mean field temperature of 10°C (Williams, 

1983) Ibo toe> V&Jues Cart- b t'educed by a half. Thus for OW 

material the value becomes 18.5 kgNha 1 , while that for 11 
material becomes 30 kgNhá 1  These values are 84% and 94% of 
the equivalent field results. 
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TABLE 6:4 

Net N mineralization at different depths for laboratory incu-

bated material (kgh 1 ). Mabie values are the sum of 4 incu-

bations, lnchnacardoch values after 60 days. 

Ridge 	 Flat 

0-3 cm 3-6 cm 	6-9 cm 	0-3 cm 	3-6 cm 	6-9 cm 

Ma b ie 

OW 	 22 8 9 14 10 	12 
H 	 30 9 10 41 12 	12 

lnchnacardoch 

SS-N 	2 2 3 2 1 	1 
JL/SS-N 	5 15 11 7 1 	4 
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6:4 Discussion 

Annual net mineralization in the field amounted to 28 kgNh 1yE1 un-
der pure spruce stands and60 kga 1y 1 under mixture stands; 

values which are comparable with those quoted for -natural 

coniferous forest, 30-50 kgNh 1yf1(Gosz, 1981). The values are 

low in comparison with those measured in temperate deciduous 

forest, which averages 110 kgNhaT 1yr 1  (Melillo, 1981). Mineral-

ization of 72 kgNha 1 yf1  was found by Glavac and Koenies 

(1978) from a spruce stand in Germany, while Williams (1983) 

obtained a field estimate of 67 kgNha 1  yf1  under fast growing 

(23M 3  ha-1  yr 1 ) Sitka spruce on a brown forest soil (inherently 

more fertile than the deep peat sites in this study). 

The annual N requirement of natural temperate coniferous 

forest averages 46 kgha 1  (Cole and Rapp, 1981); managed 

stands generally require more N to sustain higher rates of 

growth (Cole, 1981, Keeney, 1980). Miller et al. (1979) found 

that an annual N uptake of 69 kgh 1  was required to maintain 

maximum growth rate of Corsican pine (19.7mha 1 yr 1 ) on N 

deficient sand. This level of N supply and growth rate are 

very similar to the mineralization value and associated growth 

rate found by Williams (1983) for Sitka spruce. 

A mineralization rate of 28 kgNh 1yrwould seem insufficient 

to support a high rate of growth, while 60 kgNha 1yr 1  should 

be capable of sustaining a much increased growth rate. This 

is in agreement with findings for height growth, N status, 

and foliar N capital described in sections 3 and 4. It is note- 

worthy that the relative difference in N mineralization between 

treatments (2:1) and the difference in foliar N capitals (1.6:1) 

are very similar, while absolute levels of mineralization are 

more than adequate to account for the observed foliar N capitals. 

Clearly, conditions within the incubation packages will 

not truly reflect those in the adjacent soil and therefore it 

is uncertain the extent to which measured net N mineralization 

approaches the real value. However, laboratory incubation 

results mirror the treatment differences found in the field; 

while the adjusted laboratory totals (o) are virtually ident- 

ical to those in the field, for the equivalent period. Mani- 

pulation of material prior to incubation does not appear to 
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I ave an overriding effect upon the results; incubation of intact 

cores does not alter the observed treatment differences, and 

for one set of incubations results from mixed and intact mate-

rial were very similar. Agreement between the different 

methods suggests that the field incubation technique adopted 

in this study genuinely reflects treatment differences. 

Mineralization exhibits a similar seasonal pattern under 

spruce and mixture stands suggesting a common causative factor. 

Moisture and temperature are normally considered as having 

a major interactive effect on mineralization (PopoviE, 1980), 

although the former did not obviously influence the pattern 

of mineralization in this study. The only indication of a 

moisture related effect comes from mixture ridge material at 

Mabie, this mineralizes at a rate below that of the flat position. 

where moisture levels are higher. Such a difference is not 

apparent for pure spruce material, where ridge moisture levels 

exceed those in the mixture. 

Changes in the exchangeable ammonium pool follow virtually 

identical patterns in both treatments, which show no correlation 

with soil moisture and little correlation with net N mineral-

ization. it might be expected that changes in the soil ammonium 

pool would follow the pattern of mineralization, high exchange-

able levels being recorded after periods of active mineralization 

and vice versa. This pattern does exist for the period February 

to July 1982 but is not apparent at other dates. Such a pattern 

would not be expected in the presence of effective root (mycorr-

hizal) uptake of mineralized N which would damp fluctuations 

in the exchangeable pool. it is probable that mycorrhizas can 

respond extremely rapidly to periods of high N availability 

(ingestad, personal communication), preventing marked changes 

in the exchangeable pool except when mycorrhizal activity 

is low. The similarity of soil ammonium levels between treat-

ments merely reflects the ability of the mixture trees to 

effectively exploit the higher rate of mineral N production. 

Increased mineralization in the mixtures is not a result 

of moisture conditions, while the similarity of mineralization 

rates between reciprocal incubations suggests that temperature 

differences, if they occur, are not important. This indicates, 
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circumstantially, that differences are due to factors such as; 

substrate quality; decomposer community; N-fixation; or mycorr-

hizosphere influences on the decomposition of organic matter. 

Mineralization levels and differences between treatments, are 

greatest in the surface layer. This could indicate an - influnce 

of larch litter which appears to release N more readily than 

spruce litter (Section 5:5), although total amounts are small. 

No nitrate or nitrification were detected during the course 

of this study. This is not immediately surprising since low 

PH, low ammonium levels, and anaerobic conditions tend to 

suppress nitrification (Alexander, 1977). Nitrate levels in 
coniferous systems tend to be an order of magnitude below 

those of ammonium (Cole, 1981). which tends to dominate in 
these ecosystems (Borman and Likens, 1979; Reiners, 1981). 
Ellenbe.rg (1971) cites several studies in temperate forests 

which showed no nitrification, while Melillo (1977) and Pastor 
et al. (1984) have identified forest sites where mineralization 

may be high but no nitrification occurs. Recently nitrification 

has been shown to occur under what were previously considered 

adverse conditions (Robertson, 1982) and forest tree species 

have been shown to be able to exploit nitrate in some cases 
(Adams and Attiwill, 1982). Williams (1983) detected nitrification 

under Sitka spruce but on a more fertile site, additionally 

his incubation technique permitted the accumulation of arti-

ficially high ammonium levels which would have removed the 

competitive control on nitrifying organisms. Failure to detect 

nitrate in the soil solution was more surprising but nothing 

above 0.001 mgl 1  (the detection limit) was found. 
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N mineralization of forest floor and peat material from 

pure and mixed stands as estimated by plant 

uptake and long term laboratory incubation. 

7:1 	Introduction 

Laboratory and field incubation studies indicate that litter 

and peat from mixture stands supports greater mineralization 

than equivalent material taken from beneath pure spruce. Such 

studies estimate net mineralization and do not consider the 

ability of plants to compete for N as it is turned over within 

the microbial pool (Heal et al., 1982) or to exploit soluble 
organic N sources (Van Cleve and White, 1980). 

To assess whether plants would be able to obtain more 

N from incubating samples than indicated by net mineralization 

studies, pure spruce and mixture material were incubated in 

the presence of birch (Betula pendula Roth.) seedlings. The 

same material was incubated concurrently in the absence of 

plants to compare the N mineralization estimates obtained by 

the two methods. 

7:2 	Methods 

7:2:1 Field sampling 

Litter and peat were collected in September 1981 from the Mabie 
7 experiment described in Section 3:2:1. Samples were collected 

from the ridge and flat plough positions of the OW and H treat-

ments with the sectional corer used in the field incubation 

study. For both treatments, 30 samples were taken from each 

plough position and depth (0-3, 3-6 and 6-9 cm) the material 
was bulked, homogenised and roots removed. Samples were 

stored at 3°C before use, subsamples were retained for deter-

mination of moisture content, pH and initial mineral N status. 
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7:2:2 incubation 

For each sample, 50g fresh weight was weighed into a 7cm 

square plastic pot; pots were placed on saucers to prevent 

loss of drainage water. 10 replicates were prepared for each 

treatment. Pots were arranged in a randomized block design 

in a heated greenhouse (mean temperature 20-30°C) with 16 

hours artificial daylength. After 2 days, to permit settling 

of the peat material, each pot was planted with 1 newly ger-

minated birch seedling. The experiment was run for 120 days 

after which plants (shoots + roots) were harvested; plant oven 

dry weight (85°C) and nutrient content were determined. 

In addition, 30g fresh weight of each sample was weighed 

into a 250m1 conical flask; flasks were plugged with cotton 

wool and incubated in the dark at 20°C. Field moisture levels 

(60-82% fresh weight) were maintained by addition of water 

every 5 days. At 30 day intervals 5g of material was removed 

from each flask and analysed for mineral N. 4 replicates were 

prepared for each sample and the incubation run for a total 

of 120 days. 

7:2:3 Chemical analysis 

Mineral N was extracted by shaking 5g (fresh weight) of 

sample with lOOrnl iN KCI for 1 hour, extracts were filtered 

and analysed colorimetrically for ammonium and (nitrate + 

nitrite) - N (Section 5:3:2 ). Plant material was analysed for 

N, P and K as described in Section 3:3:2. Sample pH was deter-

mined potent iometrically in a water : sample suspension (2.5:1). 

7:3 	Results 

N mineralization was calculated from plant uptake (Table 7:1, 

Appendix 6A, Appendix 6B). Mineralization values were not 

derived for P and K since both treatments had received iden-

tical inputs of PK fertilizer at standard Forestry Commission 

rates (Section 3:2:1). 

N mineralization was greatest in H material (Figure 7:1, 

Table 7:1). Differences between treatments were most marked 

for 0-3 cm material, from both ridge and flat positions, al-

though a considerable treatment difference also exists for 

3-6 cm flat material. Absolute values and treatment differences 

decline with depth; greater mineralization occurs in flat 
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material, at all depths, for both treatments (this is most 

marked for H material). N mineralization in H samples exceeded 

the OW by a factor of 1.5 (Table 7:1). 

The patterns of P and K uptake (Figure 7:1, Appendix 6A) 

are essentially identical to those described for N mineralization, 

both being greatest in the H treatment. Nutrient uptake ratios 

(Table 7:2) are very similar for the two treatments. 

Laboratory 	incubation 	results 	(Figure 7:1, 	Table 7:1, 

Appendix 6C) are very similar to the mineralization values 

based on plant uptake. Greatest mineralization occurred in 

H material, while amounts and treatment differences decline 

with depth for both plough positions. Ridge and flat mineral-

ization values are very similar for OW material, while for 

H material mineralization is greatest for the flat. 

Nitrification was only apparent after 90 days (Appendix 

6C); nitrate levels were consistently higher in the H material, 

although absolute amounts were small. 

A reasonable relationship exists between mineralization 

estimates derived by the two methods (r=0.80), greatest differences 

occurred for flat material while ridge values were very similar 

(Table 7:1). Mineralization values based on plant uptake are 

generally higher than those from the laboratory incubation. 

TABLE 7:1 

N mineralization (kgha 1) assessed by plant uptake and laboratory 
incubation. 

Plant uptake Laboratory incubation 
Ridge 

OW 44.7 44.6 
H 59.1 49.9 

Flat 

OW 67.4 33.6 
H 106.5 73.7 

Total 

OW 59.8 37.3 
H 90.7 65.7 
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TABLE 7:2 

Nutrient uptake ratios. 

N:? 	 N:K 	- 

Ridge 

ow 	 6.4 	 1.1 
H 	 4.5 	 1.2 

Flat 

OW 	 5.9 	 1.2 
H 	 6.6 	 1.4 
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7:4 Discussion 

The results agree well with previous field and laboratory 

incubation studies (Section 6); indicating greater N mineralization 

in H material, with values being greatest in the 0-3cm - layers 

and flat position. Since, for the plant uptake experiment, other 

factors were equal, these differences must reflect differences 

in substrate quality. In contrast with previous incubations 

nitrification was detected, but only after 90 days. This was 

almost certainly due to the artificially high accumulation of 

ammonium towards the end of the incubation. 

N mineralization values based on plant uptake exceeded 

those from the normal incubation; this may reflect plant uptake 

of soluble organic N and possible competition for N being 

turned over in the microbial biomass; additionally, the pre-

sence of plant roots and a rhizosphere, with their combined 

exudates may have stimulated N mineralization Rambelli, 

1973). However, temperature. levels will have been greater for 

this incubation and fluctuations will have occurred, both of 

which are likely to have increased mineralization. Therefore 

it is possible that estimates of net annual mineralization in 

Section 6 may be rather lower than the amount of N which 

is actually exploitable by the trees. The ability of plants 

to use soluble organic N and to compete for gross mineral-

ization products has been indicated by several workers (Heal, 

et al., 1982; Van Cleve and White, 1980; Williams, 1983). 
Greater uptake of P and K from H material probably does 

not reflect greater availability since both treatments have 

received identical regular inputs of these elements as fertilizer. 

Rather greater N availability in the H material has resulted 

in greater relative growth rates, with balanced nutrient uptake 

resulting in increased uptake of P and K. This is supported 

by the nutrient uptake ratios. 
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Estimating differences in mineral N availability in 

pure spruce and mixture stands using 

ion exchange resin bags. 

8:1 Introduction 

Laboratory incubations to assess potentially mineralizable N 

can provide useful indices of substrate quality but do not 

integrate short and long term environmental changes. Also, 

single incubations do not reflect sesonal differences in sub-

strate quality and quantity. Field incubations go some way 

to overcoming these limitations but, in common with laboratory 

methods, involve considerable sample manipulation. Lysimetry 

is an alternative, however, results are not analgous to an 

incubation but reflect net mineralization and system retentivity 

against mass flow. Lysimeters may therefore identify relative 

differences in nutrient availability but do not accurately 

measure mineralization. Lysimetry also involves sample manipul-

ation and isolation; material within lysimeters may experience 

different temperature and moisture regimes compared with the 

surrounding soil mass. Additionally, considerable volumes of 

leachate require to be stored and analysed. 

Ion exchange resin bags can remove nutrients from mass 

flow and receive ions by diffusion. Their potential use in field 

and laboratory situations has been demonstrated (Binkley. 1982; 
Smith, 1979). Obvious advantages are that bags can be placed 

with minimal soil disturbance, no leachate need be collected 

and long time intervals can be allowed between col-lections. 

In addition, resins should be reuseable. Results obtained from 

resin bags are likely to equate with those from lysirnetry, 

perhaps being slightly higher due to the possibility of diffusion 

from the surrounding soil. The method will not therefore give 

a quantitative estimate of mineralization. Possible problems 

involve the best form of container, continuity of contact with 
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the soil to allow mass flow and diffusion, microbial growth, 

and resin durability. Since resins are only selective in terms 

of the normal exchange series sufficient resin must be allowed 

so that the system does not become saturated with ions. which 

are not of interest to the experimenter. 

Where resin bags are placed within or below living root 

systems results may only reflect changes in the soil solution 

integrated over the collection interval. 

Ion exchange resin bags were placed in the Mabie 7 ex-

periment, as an alternative to incubation techniques, to assess 

N availability. 

8:2 	Methods 

8:2:1 Resin bags 

20g (moist weight) of cation exchange resin, ( Amberlite 1R-

120) with hydrogen as the exchangeable ion, and 28g  of anion 

exchange resin (Amberlite 1RA-401) with hydroxyl ions as the 

exchangeable ion, were placed in nylon mesh bags prepared 

from stockings. The resin mixture gave approximately 50 milli 

equivalents (meq.) of cation exchange and 53 meq of anion 

exchange. 5% of the exchange capacity was saturated with 

mercuric chloride to prevent microbial growth. 

Bags were placed immediately beneath the litter layers 

in the OW and H treatments of the Mabie 7 experiment (Section 

3:2:1), at both ridge and flat plough positions. For the H 

treatment bags were further split between pure larch rows and 

the spruce triplets. Each position was replicated 18 times. 

Bags were also buried within polythene bags to check possible 

leakage of ions from the nylon. Bags were placed in February 

1983 with an initial collection of 6 bags per position in June 

(120 days) and a final collection in August (200 days). 

8:2:2 Chemical analysis 

Resin was removed from the bags, mixed, weighed, and half 

the resin extracted with 200 ml IN KCI in a shaker for 1 hour. 

Initial laboratory based tests indicated complete removal of 

ammonium, nitrate and phosphate by this method. Extracts 

were filtered and stored at 3°C prior to analysis. 

Samples were analysed for ammonium, nitrate and phosphate 

using automated colorimetric procedures previously described 
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(Section 5:3:2). The procedure failed to work for phosphate 

due to some form of interference. Results were calculated as 

mg bag-1  which is equivalent to kgha. 1  since bag surface 
area was approximately 100 cm'. 

8:3 Results 

Ammonium and nitrate levels tend to decline between the first 

and second collections (Table 8:1). Ammonium levels were highest 

in the H treatment for both the larch and spruce triplet posi-

tions, with no consistent differences between plough positions 

in either treatment. Nitrate values are greater in the H treat-

ment for the flat position, however differences for the ridge 

are more variable. Total mineral N amounts are always greater 

in the H treatment, although all values are very low. 

TABLE 8:1 

N flux (mg bag - ')* from resin bags. 

Initial collection (120 days). Mean values (n=6) and (95% 

confidence limits). 

Position 	Ammonium 	Nitrate 

Ridge 

H Larch 	0.26(0.11) 	0.033(0.007) 

H Spruce 	o-16(0.02) 	0.035(0.005) 

OW 	 0.14(0.01) 	0.040(0.017) 

Flat 

Ammonium + Nitrate 

0.29 (0.12) 

0.20 (0.02) 

0.18 (0.01) 

H Larch 
	

0.35(0.20) 
	

0.060(0.047) 
	

0.41 (0.25) 

H Spruce 	0.22(0.05) 
	

0.036(0.005) 
	

0.26 (0.05) 

[0Th 
	

0.16(0.02) 
	

0.023(0.009) 
	

0.18 (0.03) 

* Bag area 	100 cm -' . Therefore values may also be read as 

kg h a'. 
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Table 8:1 cont:- 

Final collection (200 days). Mean values (n=12) and (95% confid-

ence limits). 

Position 	Ammonium 	Nitrate 

Ridge 

I-! Larch 	0.18(0.05) 	0.033(0.010) 

H Spruce 	0.18(0.08) 	0.057(0.014) 

OW 	 0.11(0.04) 	0.035(0.015) 

Flat 

H Larch 	0.14(0.06) 	0.039(0.011) 

H Spruce 	0.16(0.04) 	0.056(0.013) 

OW 	 0.12(0.04) 	0.031(0.011) 

Ammonium + Nitrate 

0.21 (0.06) 

0.24 (0.09) 

0.15 (0.05) 

0.18 (0.07) 

0.22 (0.05) 

0.15 (0.05) 
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8:4 Discussion 

The decline in mineral N uptake between sampling dates could 

reflect sample variation; alternatively the decline could be 

real and result from the period of extremely dry weather 

between collection dates. Mass flow requires the movements of 

a wetting front while diffusion requires a short, continuous 

water phase between soil and resin; both are unlikely under 

dry conditions. Additionally resins do not function if allowed 

to dry out completely and will crack when re-wetted with a 

reduction in efficiency. All resin bags had become completely 

dry by the final collection. 

The quantities of mineral N collected were extremely low, 

this must result partially from the dry conditions. Since bags 

were placed beneath the litter layers where fine root concen-

trations were high it is probable that mineral N, made avail-

able by mineralization, was removed from solution before reach-

ing the bags. if this is the case, bags would reflect the 

normal solution concentration of mineral N which is known to 
be very low for the site (Section 6:3). 

Bags did detect the presence of low levels of nitrate, 

approximately an order of magnitude below ammonium. a normal 

situation for coniferous forest (Cole, 1981). This contrasts with 

incubation results and routine analysis of mineral N levels 

by KCI extraction, when no nitrate was detected. The nitrate 

was probably atmospheric in origin and did not result from 

nitrification. The results agree with previous findings by 

indicating greater N availability in the mixture treatment. 

The usefulness of resin bags for assessing nutrient avail-

ability in the field is uncertain, their use may by limited 

to situations where moisture levels remain sufficiently high 

to prevent drying out of the resin. 
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Assessing the presence or absence of N fixation 

in larch, spruce and mixture stands. 

9:1 	Introduction 

A possible explanation for improved spruce N status in mixed 

stands could be N fixation, although this is not normally an 

important component of the N cycle in temperate coniferous 

forest. Forest floor material from larch, spruce and mixture 

stands was assessed for N fixation using the acetylene reduction 

assay (Hardy et al., 1973). 

9:2 Methods 

9:2:1 Field sampling 

Samples were taken from the flat plough position of the forest 

floor with the soil corer used for the field incubation (Section 

6:2:1), only the 0-3 cm section being retained for analysis. 

Sampling was restricted to this position since it was there 

that greatest N mineralization had been monitored. Samples 

were taken from the Leadburn experiment (Section 5:4:2) and 

the Mabie 7 experiment (Section 3:2:1) in May 1983. For the 

former, 10 cores were taken from the Sitka spruce and hybrid 

larch stands respectively; for the latter, 20 cores were taken 

from the OW and H treatments respectively. Cores were stored 

in polyethylene bags at 3°C prior to analysis. 

9:2:2 Laboratory analysis 

Cores were left at 20°C overnight then placed in polyethylene 

bags with a 'suba seal' attachment. Bags were previously 

turned inside out and left for 12 hours, then reinverted to 

ensure no build up of ethylene. Half the cores of each treat-

ment were amended with 5 ml of 5% glucose solution to stimulate 

microbial activity. Acetylene, with ethylene as an internal 

standard, was added to each bag and a 0.5 ml sample taken 

after a few minutes. Cores were then incubated at 20°C for 
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5 hours and a second 0.5 ml sample taken. Gas samples were 

analysed using a Pye Unicam series 104 gas-liquid chromato-

graph. Comparison of results for the initial and final gas 

samples permitted acetylene reduction, and therefore N fixation, 

to be determined. 

9:3 Results 

No N fixation was detected in any of the sample material; 

under the conditions of measurement rates were therefore below 
-1 -1 1 kgha yr 

9:4 Discussion 

Failure to detect N fixation was not surprising since most 

published findings for temperate forest indicate low levels or 

no fixation (e. g. Sucoff, 1979). It is possible that fixation 

occurs on a strictly seasonal basis and was missed by the 

single sampling date, ideally a series of samples should be 

taken throughout the year. However, failure to obtain fixation 

even with a preincubation at 20°C and a glucose amendment 

suggests that N-fixing organisms are not present. 

Rhizosphere fixation was not assessed directly, however 

root material was present in the cores and should have remained 

viable since the assay was conducted within 24 hours of 

sampling. 
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The amount and distrjbufjon of mineral elements in 

forest floor and peat material beneath pure 

spruce and larch/spruce stands. 

10:1 Introduction 

Analysis of litter and peat material was carried out to charact-

erise possible site differences brought about by the different 

treatments and to provide background site information. Addition-

ally, sampling in the mixture stands was conducted so that 

within stand differences could be identified. 

10:2 Methods 

10:2: iField sampling 

Sampling was conducted in October 1982 at the Mabie 7 experi-

ment (Section 3:2:1). Samples were taken using the sectional 

corer already described; 30 cores were taken from the OW treat-

ment for the ridge and flat respectively, cores were subdivided 

into 0-3, 3-6 and 6--9 cm sections. The 0-3 cm section was 

further divided into litter and peat material. An identical 

sampling scheme was used in the H treatment, however pure larch 

rows and spruce triplets were sampled separately. 

10:2:2Laboratory analysis. 

Living vegetation (mosses etc.) and root material were removed 

from the samples which were then oven dried at 85°C before being 

weighed. 

Subsequent analysis for N, P and K was as described in 

Section 3:3:2. In addition, samples were analysed for calcium 

(Ca) by atomic absorption spectroscopy. 

10:3 Results. 

The amounts of N and P in the 0-9 cm layer are essentially 

identical for the different sampling sites (Table 10:1). K however 

is greater in the OW treatment, particularly for the ridge 

position; the reverse is seen for Ca which shows greater 

accumulation in the flat position of the H treatment. 
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N 	concentrations 	tend 	to be 	higher 	in larch and spruce 
litter 	from 	the 	H 	treatment; P 	concentrations are also highest 
in 	this 	treatment, 	but 	for larch 	material 	onl y  (Table 10:2). 
K 	concentrations 	are 	highest in 	OW 	material while Ca concen- 
trations 	are 	greatest 	in 	spruce 	and 	larch litter from the 	H 
treatment. 

TABLE 10:1 

Quantities and distribution of mineral elements in litter and 

peat material from pure spruce (OW) and mixture (H) treatments. 

Mean values (n=30) and (95% confidence limits). 

R = Ridge, F = Flat. 

1, 2 and 3 = 0-3, 3-6 and 6-9 cm depth sections. 

L and P = litter and peat for the 0-3 on section. 

Section 	 OW 	 H (Larch) 	H (Spruce) 

Ngrri2  

R 1 L 14.17 (2.18) 13.21 (2.06) 
R 1 P 37.47 (5.70) 38.71 (5.78) 

58.89 (6.13) 58.65 (7.01) 
R3  60.53 (5.20) 62.76 (5.05) 

F1   11.15 (2.26) 13.01 (1.57) 
F1  P. 39.88 (5.37) 40.66 (4.38) 

F9  59.58 (7.08) 47.28 (5.72) 
F3  54.26 (6.12) 58.98 (6.77) 

11.82 (1.42) 

40.63 (5.12) 

58.56 (5.78) 

61.87 (5.03) 

14.74 (1.81) 

38.16 (4.80) 

54.30 (5.43) 

64.04 (5.67) 
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Table 10:1 cont:-

P gm-2  

R 1 L 1.86 (0.60) 

1.68 (0.29) 

1.61 (0.38) 

R 3  1.66 (0.46) 

F1 L 1.19 (0.40) 

F1 P 2.03 (0.20) 

F2 2.73 (0.40) 

F3  1.92 (0.26) 

K gnr2  

R1 L 2.50 (0.89) 

R 1 ? 3.11 (0.89) 

R2  4.01 (1.10) 

R 3  3.38 (0.98) 

F 1 L 1.85 (0.82) 

F 1 P 3.27 (0.93) 

F2  3.09 (0.39) 

F3  2.32 (0.34) 

Ca gr 2  

R 1 L 5.98 (1.56) 

R 1 P 12.00 (2.51) 

R2  12.53 (2.65) 

R 3  7.68 (1.69) 

F1 L 2.34 (0.96) 

F 1 P 5.56 (1.41) 

F2  7.55 (1.74) 
F3  5.27 (1.09) 

1.94 (0.78) 

2.05 (0.52) 

1.30 (0.25) 

1.07 (0.16) 

1.62 (0.48) 

2.42 (0.41) 

1.75 (0.25) 

2.11 (0.29) 

0.82 (0.19) 

2.24 (0.50) 

2.12 (0.39) 

1.91 (0.36) 

1.18 (0.16) 

2.27 (0.25) 

2.58 (0.33) 

2.70 (0.37) 

6.92 (1.94) 

15.95 (3.68) 

12.13 (2.01) 

7.23 (1.16) 

6.07 (1.39) 

14.32 (2.85) 

12.89 (2.85) 

6.17 (1.08)  

1.60 (0.77) 

2.02 (0.77) 

1.25 (0.18) 

1.14 (0.20) 

1.41 (0.50) 

1.93 (0.24) 

2.30 (0.28) 

2.28 (0.22) 

0.77 0.08) 

2.36 (0.35) 

2.39 (0.42) 

1.92 (0.35) 

1.18 (0.19) 

2.27 (0.23) 

2.86 (0.24) 

2.88 (0.31) 

6.04 (2.22) 

15.25 (3.42) 

13.01 (2.12) 

8.49 (1.33) 

4.20 (1.28) 

8.75 (2.19) 

8.02 (1.63) 

5.35 (0.96) 
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TABLE 10:2 

Nutrient concentrations in litter material from pure spruce (OW) 

and mixture (H) treatments. Mean values (n=30) and (95% 

confidence limits). 

%N 	%P 	%K 

WO 

Ridge 	 1.28 0.18 0.21 0.56 

(0.04) (0.06) (0.06) (0.13) 

Flat 	 1.32 0.14 0.21 0.31 

(0.08) (0.03) (0.05) (0.08) 

H (Larch) 

Ridge 	 1.46 0.21 0.09 0.75 

(0.07) (0.08) (0.01) (0.17) 

Flat 	 1.37 0.18 0.13 0.65 

(0.08) (0.05) (0.02) (0.14) 

H (Spruce) 

Ridge 	 1.39 0.19 0.09 0.68 

(0.06) (0.07) (0.01) (0.22) 

Flat 	 1.44 0.14 0.12 0.44 

(0.08) (0.05) (0.02) (0.03) 
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10:4 Discussion 

Total quantities of N and P are essentially identical for H 

and OW treatments, while larch and spruce positions within 

the -i treatment are also very similar. A greater N concentration 

in i-I litter material is consistent with the greater N mineral-

ization found in this treatment; however, most mineralization 

occurred in the flat where OW and H (larch) litter N concen-

trations are least different. Greater amounts and concentrations 

of Ca in H litter may also have influenced N mineralization 

due to locally enhanced pH conditions. A difference in Ca, 

and K, levels may have resulted from, a) differences in uptake, 

b) differences in leaching loss to lower horizons, or c) transport 

from deeper in the profile by roots and subsequent deposition 

in litterfall. This latter explanation seems unlikely since 

rooting is probably restricted -by a high water table outwith 

the summer period. 
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Chemical estimates of N availability and organic N 

fractions under spruce and larch/spruce 

mixtures. 

ll;l Introduction 

A developing stand of trees does not possess a closed N cycle 

until after canopy closure; initially, nutrient demands for 

growth must be met by the soil and atmospheric inputs. The 

capture and retention of atmospheric nutrients is inefficient 

before canopy closure due to incomplete site occupancy, con-

sequently virtually all demand must be supplied from the soil. 

Rates of N mineralization and the tree's ability to exploit soil 

N sources will determine the rate of growth at this stage; the 

latter is influenced by the morphology and intensity of rooting 

and properties of the mycorrhizosphere. 

Certain coniferous species appear to possess a rhizosphere 

which can mineralize or otherwise render available a fraction 

of soil N (largely organic) resistant to microbial degradation 

under previous vegetation. Fisher and Eastburn (1974), Fisher 

and Stone (1969) and Stone and Fisher (1969) demonstrated 

greater availability of N and P in the root zone of larch, 

which extended beyond the canopy. There was little effect on 

total N or P. The effect was transient, lasting approximately 

30 years, this being consistent with the mineralization of a 

finite N pool. They observed a similar effect with pines but 

little or no effect with spruce. O'Carroll (1978) postulated 

that enhanced growth of Sitka spruce in mixture with Japanese 

larch was due to greater N mineralization. Growth of pine 

seedlings in soil which previously supported a pine crop was 

poorer than for soil from pasture or eucalypt forest (Skinner 

and Attiwill, 1981) which might suggest loss of a labile N 

source. Hewett (1966) found that Auracaria cunninghamii Ait. 

showed improved growth and N status when underplanted beneath 
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southern pines, suggesting this was a result of increased N 

availability or accretion. Bevege and Richards (1970) used 

a chemical fractionation method to demonstrate that more labile 

forms of organic N were reduced beneath pines, with slow 

replenishment from refractory sources, due to mineralization 

of the labile pool associated with greater N availability. This 

was associated with a decline in native organic matter but 

not total N, and improved growth of A. cunningharnii. Jones 

and Richards (1977) have demonstrated the same phenomena 

for pines but not eucalypts and attributed it to properties 

ji LIIt= pine L IILLOS[JfLCLe. 

Thus pioneer species such as larches and pines seem able 

to exploit organic N sources unavailable to previous vegetation 

(Gosz, 1981) • a characteristic poorly developed in late success-

ional species like spruces (Stone and Fisher, 1969). The effect 

is most likely to be -due to rhizosphere organisms, rather than 

mycorrhizas which cannot readily utilise humus bound N (Lund-

berg, 1970). 

No difference was found in total soil N levels between pure 

spruce and mixture stands (Section 10), however differences 

do exist in rates of mineralization and these may be expressed 

in the size of different N fractions. Extraction/fractionation 

techniques based on chemical methods are crude and cannot 

readily be related to organic N pools of biological significance 

(Paul and Juma, 1981). Most approaches give an estimate of 

the active organic phase and a more recalcitrant phase; recent 

work indicates that this is a gross simplification and that 

many different fractions are involved {Jansson, 1981). In 

addition chemical estimates of labile organic N often fail to 

correlate with estimates based on biological methods (Paul 

and Juma, 1981). However, Stone and Fisher (1969) and Jones 

and Richards (1977) obtained apparently useful information 

using chemical methods for comparative purposes. 

In this study 2 methods were adopted; 1) extraction using 

boiling water (Brönner and Bachler, 1980) which gives an 

index of readily hydrolysable N, probably of biomass origin 

and low molecular weight organic compounds; 2) 6 N HO ex-

traction (the method used by Jones and Richards, 1977), again 
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gives an estimate of hydrolysable N which probably includes 

more resistant material than the boiling water method. 

11:2 Methods 

Both extractions used material collected for the field incubation 

study which was in excess of actual requirement. 

11:2:1 Boiling water extraction 

2g of air dry, ground (0.5mm mesh), material was weighed 

into a 250m1 conical flask and lOOmi of distilled water added. 

The solution was boiled under reflux for 1 hour cooled, and 

the residue filtered. 50m1 of filtrate was digested using 2ml 

36N H2  SO4 and 2ml 100 volumes H 2  02, samples were made up 

to 50m1 with distilled water and analysed for ammonium using 

the automated colorimetric method previously described (Section 

3:3:2). 

11:2:26N HCI extraction 

The method is essentially that of Bremner (1965); lg of air 

dry, ground (0.5mm mesh), sample was weighed into a 250ml 

conical flask and 20nl 6N HC1 added. The solution was boiled 

under reflux for 12 hours, cooled and filtered. The filtrate 

was made up to lOOml with distilled water and a lOml subsample 

digested and analysed as described above. Total sample N 

content was determined by the usual acid digest procedure 

(Section 3:3:2). 

11:3 	Results 

Less N was extracted by the boiling water method compared 

with 6N HC1 (Table 11:1 and 11:2). Greater quantities of N 

were extracted with boiling water from H material, except for 

the 3-6 and 6-9 cm depths on the ridge (Table 11:1). 

Results for the HCI fractionation are inconsistent, with 

no clear treatment differences; extractable levels were highest 

for flat material and tended to decline with depth, being 

highly correlated with the total N level (r=0.90). 
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TABLE 11:1 

Boiling 	water extractable 	N (mgg 1 ). Mean 	values (n6) 	and 

(95% confidence limits). 

Ridge 	(cm) H Material OW Material F1  

0 - 3 5.00 	(0.70) 4.95 (0.46) 0.07 	N.S. 

3 - 6 3.40 	(0.56) 4.13 (0.79) 6.16 	* 

6 - 9 3.77 	(0.81) 4.41 (0.68) 2.21 	N.S. 

Flat 	(cm) 

0-3 
	

6.99 (0.53) 
	

6.31 (0.65) 
	

6.49 * 

3-6 
	

6.09 (0.25) 
	

5.98 (0.39) 
	

0.23 N.S. 

6-9 
	

6.49 (0.35) 
	

5.49 (0.14) 
	

87.77 	* 

F 1 Value :- 	= significant differeace between treatment means, 

N.S. = non-significant difference between treatment 

means at P = 0.05 for a 2-way anovar. 
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0 - 3 	12.50 (0.07) 

3 - 6 	11.70 (0.07) 

6 - 9 	11.80 (0.08) 

Flat (cm) 

0 - 3 	14.30 (0.09) 

3 	. 6 	13.00 (0.08) 

6 - 9 	14.00 (0.08) 

8.71 (0.49) 

7.41 (0.14) 

7.57 (0.58) 

9.71 (0.22) 

9.01 (1.03) 

10.14 (0.38) 

3.79 (0.49) 

4.29 (0.14) 

4.23 (0.59) 

4.59 (0.22) 

3.99 (1.03' 

3.85 (0.38) 

2.30 

1.73 

1.79 

2.12 

2.26 

2.63 

TABLE 11:2 

Total, hydrolysable and non-hydrolysable N (mgg 1 ) following 

extraction with 6N HCl. Mean values (n=6) and (95% confidence 

limits). 

H Material 

Total 

Ridge (cm) 	N 

o - 3 	13.30 (0.04) 

3 - 6 	11.00 (0.02) 

6 - 9 	10.90 (0.07) 

F1a (cm) 

0 - 3 	14.50 (0.08) 

3 - 6 	12.30 (0.07) 

6 - 9 	13.00 (0.07) 

Non- 	Hydrolysable: 

Hydrolysable hvdrolysable Non--hydrolysable 

N 	 N 	 N 

	

8.51 (0.64) 
	

4.79 (0.64) 
	

1.78 

	

7.10 (0.59) 
	

3.90 (0.57) 
	

1.82 

	

7.43 (0.55) 
	

3.47 (0.52) 
	

2.14 

	

9.82 (1.04) 
	

4.68 (1.04) 
	

2.10 

	

9.12 (0.29) 
	

3.18 (0.29) 
	

2.87 

	

8.21 (1.18) 
	

4.79 (1.18) 	1 
1  .7

/ 

OW Material 

Ridge (cr) 
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11:4 Discussion 

Boiling water extraction results suggest a greater availability 

of readily hydrolysable N in H material, however, the results 

correlate poorly (r=0.45) with mineralization results in the 

field for the same material (July - August 1981). This suggests 

that the method is not suitable for organic soils. 

The HCI fractionation gave no clear result; if it is assumed 

that larch can mineralize a mobile N pool unavailable to 

spruce one might expect, a) a decline in total native N, 

b) a decline in the hydrolysable fraction, c) a slower decline 

in the non-hydroly sable fraction to replenish the hydrolysable 

pool, d) a decrease in the ratio of hydrolysable: non-hydroly sable 

N. Beveage and Richards (1970) demonstrated (d) in the 

absence of (a), (b) or (c), while Jones and Richards (1977) 
demonstrated all the possibilities; in both cases for pines. 

Failure of the method to identify treatment differences in this 

case suggests either no differential rhizosphere effect, or un-

suitability of the extraction method to an organic soil. Both 

the cited studies dealt with mineral soils with low N contents, 

it is likely that peat contains too much N for a useful com-

parison to be made using chemical methods. 
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General discussion and conclusions. 

12:1 General discussion 

Foliar analysis has demonstrated a definite improvement in 

Sitka spruce foliar N status in the presence of larch, for stands 

growing on N deficient deep peats in the absence of N fertilizer. 

This improvement is reflected in increased height and diameter 

growth, while estimates of stand foliar N capital suggest a 

greater quantity of N in the mixture tree biomass. At both 

experimental sites where work was conducted, improvement in 

the growth and N status of mixture spruce does not become 

manifest until some 7-10 years from planting. 

During early growth pure spruce exhibits similar or rather 

better height increment and N status than mixture spruce. At 

i'viabie 7, better growth of the pure spruce in the years 

immediately subsequent to planting is the result of a 2.4-D 

weed control which was applied to this, but not the mixture, 

treatment. At lnchnacardoch 164, the early difference results 

from an input of N fertilizer in 1967 which was limited to the 

pure spruce treatment. While growth and N status of mixture 

spruce continued to improve, both declined in the pure stands 

7-10 years from planting. Such a decline is commonly observed 

for Sitka spruce on deep unflushed peats where acute N deficiency 

may develop some 8 years from planting (McIntosh, 1983). It 

is possible that where. silvicultural inputs are the same a 

mixture effect may be noticeable even earlier in the life of 

a stand. 

A mixture effect would not be expected in the first few 

years of stand development, since initially trees grow as 

individuals with no interaction between stand members. If 

greater N availability in mixtures was root related an effect 

would only be expected once trees had reached a size sufficient 

for contact to occur. Similarly, if litter played a part in the 
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mechanism time would be required for material to accumulate 

and N release to occur. There is no evidence from the data 

collected that indicates a sudden improvement in the growth 

and N status of mixture spruce, rather growth of the pure 

spruce suddenly declines while that of the mixture spiuce 

continues to improve. The relative difference in spruce growth 

therefore results from a limitation being imposed on the pure 

stands which does not appear to be imposed on the mixtures. 

This limitation appears to be a reduction in the availability 

of N which is maintained, and even increased, in the presence 

of larch. 

Thus initial N supply seems sufficient to meet early growth 

demands in both pure and mixed stands. In part this will 

be due to the low initial N requirement of the trees which 

can probably be met by temporarily improved rates of mineral-

ization following cultivation (Powlson, 1980). In addition, the 

application of ground mineral phosphate at planting can cause 

increased mineralization of native organic N (Carey et al., 

1981). However, early tree growth is exponential and is 

associated with an exponentially increasing demand for N 

(Ingestad, 1982). The sudden fall in spruce growth and N status 

7-10 years from planting is almost certainly the result of N 

supply becoming inadequate, perhaps with the exhaustion of 

a labile N pool released as a result of cultivation and fert-

ilization. Since both pure spruce treatments examined in this 

study had received a fertilizer input or weed control, not given 

to the mixtures, it is probable that if these inputs had not 

been given N supply would have become inadequate at an 

earlier date. The increase and maintenance of N status and 

growth in the mixture spruce indicates that N supplies have 

continued to remain at a satisfactory level. 

If stand N capital did not differ between pure and mixed 

stands the maintenance of N status and improved growth of the 

mixture spruce could be explained in terms of competitive 

ability; assuming spruce to be a better competitor for available 

N than larch would mean that a greater portion of stand N 

might be exploited by the spruce, delaying or preventing the 

onset of deficiency. However, this explanation is not consistent 
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with the greater estimated foliar N capital of the mixture 

stands. 

A greater estimated N capital in mixture tree biomass 

indicates greater N uptake which must be associated with 

greater N supply or availability. Thus larch makes N avaiIble 

to spruce, which is not available under pure spruce conditions; 

this indicates an ability of larch to mobilize or otherwise obtain 

N which spruce cannot, with some portion of this N becoming 

available to the spruce. Relatively poor performance of the 

larch at both experimental sites suggests that spruce may 

obtain N to the detriment of the larch. Unfortunately pure 

larch stands did not exist on these sites to allow a direct 

comparison. 

Enhanced N availability in the presence of larch must 

reflect an improvement in soil N availability since atmospheric 

inputs do not appear to differ significantly between pure and 

mixed stands, while biological N fixation was not detected. 

Increased availability could result from roots exploiting a 

greater soil volume in the mixtures, this seems unlikely since 

soil moisture values gave no indication of drier conditions 

at depth in the mixture stands. Assuming that the volumes 

of soil exploited by roots are similar for pure and mixed stands 

then larch must be able to mobilize N which cannot he mobilized 

by spruce. Some workers have suggested that pioneer species 

such as larch and pine can mineralize a fraction of soil 

organic N which was unavailable to previous vegetation, an 

ability not possessed by late successional forms like spruce 

(Bevege and Richards, 1970; Jones and Richards, 1977; Skinner 

and Attiwill, 1981), due to special attributes of their rhizo-

sphere microflora (Stone and Fisher, 1969). Chemical analysis 

of the peat and fractionation of the organic N did not identify 

any differences in total N, or the size of hydrolysable and 

non-hydrolysable pools, between mixed and pure stands. Some 

workers have noted a reduction in total native N and hydro-

lysable N under pioneer species due to greater mineralization 

associated with the rhizosphere (Jones and Richards, 1977, 

1978). 
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Rates of N mineralization, assessed by field and laboratory 

incubations, were significantly higher in mixed stands with 

most mineralization occurring in the upper 3 cm, although 

differences also occurred at depth. There appears to. be no 

significant influence of microclimate on mineralization rates 

between pure spruce and mixed stands. Differences must there-

fore relate to substrate quality. Higher mineralization in the 

surface layer will in part result from various physical cycles 

exhibiting greatest amplitude at the soil surface. However, 

it also infers an influence of surface, and probably below 

ground, litter. Larch litter is a secondary N source, consequent-

ly N released from litter alone could not lead to a greater 

mixture N capital, although it might be a supplier of N to 

the mixture spruce. Larch litter does appear to release N more 

rapidly than Sitka spruce litter, despite a marked withdrawal 

of nutrients during senescence and low levels of leachable 

N. 

N release from decomposing larch litter is preceded 	by 

a delay of some 5 months associated with a fall in the C:N 

ratio. It is probable that in the field larch litter does not 

release N until the year following litterfall. N release from 

larch litter will therefore be a function of cumulative litterfall 

over the life of the stand. The input of N measured in larch 

leaf litterfall was 6.8 kgNha representing the maximum input 

from litter up to the date of collection, with previous inputs 

being considerably lower. Thus the cumulative input of litter 

over the stands life will represent a small quantity of N, 

certainly insufficient to support a mineralization value of 60 

kgNha 1yr 1  as suggested by the field incubation. Root litter 

inputs were not assessed but most recent work (Fogel, 1983) 
suggests that below ground inputs are considerably greater 

than above ground. However, it is unlikely that even the 

cumulative combined litter input could supply sufficient N to 

explain the measured mineralization rate. 

A component of this mineralized N must therefore come from 

the mineralization of native organic N present in the peat, 

which appears enhanced in the presence of larch. Litter inputs 

under pure spruce were not measured but it is unlikely that 
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they represent a major cumulative input of N; trees in these 

plots exhibit needle retention of up to 7 years. However the 

measured mineralization rate of 28 kgNh 1 yr 1  probably requires 

less mineralization of native organic matter to support it. 

Greater mineralization of native N was not indicated by the 

chemical fractionation technique or by differences in total N 

levels. Since peat has a high N concentration relatively small 

changes in total N may not be detected, even though they may 

represent quite substantial amounts of N on an area basis. 

The presence of larch may stimulate N mineralization through 

below and/or above ground influences. The former might include 

effects due to the rhizosphere, mycorrhizas, and perhaps rooting 

intensity. The latter would have to involve a stimulatory 

influence on decomposition at the litter/peat interface, perhaps 

as a result of the microflora and fauna supported by larch 

litter. 

Attempts to assess the relative importance of root effects 

were largely inconclusive or unsuccessful. As previously 

described, attempts to identify a positive rhizosphere effect 

by chemical methods were inconclusive. Root exudates may be 

an important source of available carbon in forest ecosystem, 

additionally N may be exuded as amino acids and other highly 

available forms (Smith, 1976). An attempt was made to collect 

larch root exudates in plastic tubes filled with fine sand, 

but this proved unsuccessful. A further approach to isolate 

root related mechanisms involved an experiment where 1+1 trans-

plants of larch and spruce were planted pure and in mixture 

in horticultural peat. The peat was inoculated with a water/ 

soil suspension using material from pure or mixed stands. 

Litter was removed so that significant interactions would only 

occur between root systems. Unfortunately the experiment had 

to be abandoned due to almost complete destruction of the root 

systems by weevil larvae (Otiorrhynchus species). 

Current mineralization values in the mixture stands, 60 

kgNha 1yr should be sufficient to support good spruce growth. 

Williams (1983) estimated net N mineralization to be 67 kgNhayf 1  
-1 under a fast growing (23m 3  ha yr -1 

 ) Sitka spruce stand, while 

Miller et al. (1979) found that an annual N uptake of 69 kghã'f1  
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was required to maintain maximum growth rate of Corsican 

pine (19.7 m 3  ha 1 yr 1 ). Cole (1981) grew Douglas fir under 

conditions of theoretically unlimited N supply and obtained 

an uptake of 78 kghayr if groundflora were included total 

uptake was 215 kgha 1 yr 1. These values for tree uptake at 

high rates of growth are very similar, Cole's data indicate 

that N supply may have to be considerably in excess of tree 

requirement in the presence of a ground flora; trees cannot 

necessarily exploit 100% of estimated mineralization. Rates of 

mineralization associated with the pure spruce are clearly 

inadequate to support high rates of growth, consistent with 

results for foliar analysis, height increment, and stand 

appearance. 

Current differences in mineralization rates are more than 

adequate to account for differences in estimated foliar N capitals, 

even if these values are doubled to approximate total N 

capitals. However present rates of mineralization may not 

necessarily reflect previous rates, although relative differences 

may be similar. Major differences will not have existed before 

years 7-10 from planting, when a mixture effect first becomes 

apparent. Since trees respond to N supply by changing their 

relative growth rate (Ingestad, 1982) the progressive rise in 

mixture spruce height increment may well reflect a gradual 

increase in N mineralization. Consequently cumulative mineral-

ization over the life of the mixtures may be much lower than 

suggested by the present rate, and more in line with quantity 

of N estimated in the foliar biomass. 

Criticism of techniques adopted in this study have been 

largely dealt with in the relevant sections. Considering the 

overall approach, certain data could have been more useful 

and complementary if collected from the same site, e.g. through-

fall could have been collected at Mabie 7. Spruce litter inputs 

in pure and mixed stands were largely ignored, such inform-

ation would have been useful for comparative purposes. 

Experiments to assess rates of N release from litters should 

have been run in conjunction with field studies which followed 

the process of weight loss and nutrient release under field 

conditions, in both pure and mixed stands. Much of the reason- 
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ing in this investigation is based on the assumption that 

biomass N capital is greater in mixture stands, when this was 

only estimated in a rather crude manner. However, the study 

did not aim to quantify all the different pools and N. fluxes 

involved in the cycling of N in pure spruce and larch spruce 

systems; but to identify key points, or processes, in the cycle 

where differences could occur, which could explain the observed 

differences in spruce growth and N status. In this, the study 

has been largely successful. 

12:2 Conclusions 

Improved spruce growth and N status in association with larch 

appears to result from greater mineralization of native organic 

matter. Causal mechanisms are uncertain but microclimatic 

differences do not seem to be important; possible explanations 

probably pertain to the larch root/mycorrhizosphere complex 

and/or a stimulatory effect of larch litter and the associated 

decomposer community. Further work is required to a) corroborate 

the findings of this study, and b) to examine areas which 

have been neglected. 

12:3 Further research 

Basic information required as a foundation by any future study 

is an accurate determination of the N capital of pure and mixed 

stands. 

The area most neglected in this study has been a consider-

ation of below ground processes; there is a need to assess 

the contribution of fine root .turnover together with quantitative 

and qualitative differences in mycorrhizas; the suggestion that 

the larch rhizosphere can mineralize N fractions unavailable 

to spruce should be further investigated, perhaps using seedling 

mixtures; rooting morphology and intensity should also be 

investigated. 

N fixation has been largely discounted, but sequential 

measurements still require to be carried out on a seasonal 

basis. If possible, it might be revealing to follow the phenology 

of N uptake in pure and mixed stands, and to follow the 

mixture effect through an age sequence. 

Finally, there is an alternative view which may be taken 

regarding the enhanced growth and N status of spruce in larch 
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mixtures. Not that larch increases N availability but that Sitka 

spruce decreases it, conceivably this could result through 

mycorrhizal antagonism (Gadgil and Gadgil, 1975). 
12:4 Silvicultural implications 

The use of larch/spruce mixtures as a means of obtaining good 

Spruce growth on N deficient sites, without the need for N 

fertilizer, is clearly very attractive. Additional benefits include 

weed suppression by the larch and a probable self-thinning 

effect which could enhance stability on otherwise unstable sites. 

At present, however, it is not certain whether the effect will 

continue to meet spruce N requirements throughout the rotation, 

although it still appears to be in operation at lnchnacardoch 

18 years from planting. It is probable that once canopy closure 

is achieved on these sites N cycling should be able to maintain 

rates of growth. 

Both the experiments investigated in this study had mixtures 

which were 75% larch and 25% spruce, arranged as alternate 

triplets in alternate rows. It seems improbable that many of 

the larch present in pure larch rows have any effect on the 

growth of the triplet spruce. These will be most influenced 

by the adjacent larch triplets and larch immediately contiguous 

in the pure larch rows. Consequently the proportion of larch 

could probably be reduced, an obvious alternative being a 

50:50 mixture consisting of alternate pairs of larch and Sitka 

spruce. However if the stimulatory effect were in any way 

litter related the proportion of larch may be critical. 

Limited visual observations of mixtures planted on more 

fertile mineral soils, where N availability is unlikely to limit 

spruce growth, indicate no mixture effect with spruce growth 

rapidly suppressing the larch. 
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Appendix 1A. 

Values of F for the comparison of treatment Ft)  and block 

(F'b) means, using a 2-way analysis of variance, for. Mabie 

7 data. 

Ft, V1=l, V2=114; Fb, V1=2, V2=114 (V = degrees of freedom) 

FVFb 

ODW 35.64/1.18 

225.40/4.52 

%P 22.73/1.27 

%K 100.54/2.43 
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Appendix lB. 

Values of F for the comparison of treatment (F t ) and block 

(Fb) means, using a 2-way analysis of variance, for nchna-

cardoch 164 data. 

Ft 9 V 1  =1, V 2 =92; Fb, V1  =4, V2  =92 (V = degrees of freedom). 

Ft /r—b. 

ODVJ SS-IN 	SS+N JL/SS-N JL/SS+N 

SS-N - 	 144.90/3.94 149.16/4.31 167.82/2.35 

SS+N - 	
- 2.55/1.94 8.29/0.47 

JL/SS-N - 	 - 
- 1.53/1.32 

JL/SS+N - 	 - - - 

SS-N - 	 298.52/7.54 314.40/6.09 799.93/2.20 

SS +'I\ - 	
- 0.95/1.69 26.87/6.00 

JL/SS-N - 	 - 
- 48.98/6.40 

jL/SS+N -. 	 - - - 

SS-N' - 	 154.67/4.01 161.64/4.00 234.07/2.52 
SS+N - 	

- 0.44/3.31 14.31/1.17 

JL/SS-N - 	 - - 12.26/7.79 

JL/SS+N - 	 - -. - 

0/•• 
/0 L 

SS-N - 	 26.05/6.72 170.42/0.75 67.76/2.46 

SS+N - 	 - 35.99/1.38 4.04/4.01 

JL/SS-N - 	 - 
- 25.50/3.11 

JL/SS+N - 	 - - - 

214 



Appendix 2A. 

Change 	n foli.ar nutrient concentrations and the weight of 

100 needles (g) during senescence. Mean values (n=15) and 

(95% confidence limits). 

Sampling date %N %K Weight 

16.8.81 1.82 0.48 1.50 0.754 

(0.27) (0.03) (0.32) (0.068) 

6.9.81 1.66 0.47 1.15 0.656 

(0.29 (0.04) (0.31) (0.100) 

27.9.81 1.62 0.49 1.76 0.720 

(0.16) (0.01) (0.24) (0.050) 

19.10.81 1.43 0.49 1.40 0.59i 
(0.17) (0.01) (0.19) (0.060) 

9.11.81 0.68 0.49 1.10 0.546 

(0.16) (0.01 (0.24) (0.078) 
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.ppendix 2B. 

Change in the nutrient content of 100 needles (mg) during 

senescence. Mean values (n=15) and (95% confidence limits). 

Sampling date 
N P K 

16.8.81 13.82 3.64 11.26 

(2.66) (0.41) (2.54) 

6.9.81 11.16 3.34 7.22 

(2.93) (0.45) (2.13) 

27.9.81 11.66 3.50 12.78 

(1.42) (0.23) (2.17) 

19.10.81 8.54 2.92 8.42 

(1.50) (0.28) (1.54) 

9.11.81 3.68 2.68 6.06 

(0.98) (0.34) (1.54) 
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Appendix 3A. 

Change in component nutrient concentrations. Mean values 

(ri=10) and (95% confidence limits). 

fO
0/  KI

t'4 

Component Harvest 1 Harvest 2 Harvest 3 Harvest 4 

(22.9.82) (27.10.82) (22.11.82) (24.12.82) 

Needles 2.11 1.79 0.53 - 

(0.257) (0.193) (0.044) - 

Twigs 0.93 1.15 1.38 1.69 

(0.137) (0.130) (0.094) (0.208) 
Bark 0.93 1.43 1.77 2.12 

(0.107) (0.137) (0.188) (0.3130 
Wood 0.44 0.52 0.77 0.85 

(0.047) (0.085) (0.067.) (0.092) 
Woody Root 0.73 1.00 1.21 1.36 

(0.063) (0.108) (0.100) (0.231) 
Non-woody 1.49 1.55 1.57 1.91 

RoOt (0.154) (0.184) (0.176) (0.219) 

/0
0/  

Needles 0.46 0.42 0.33 - 

(0.056) (0.076) (0.065) - 

Twigs 0.19 0.20 0.23 0.25 

(0.024) (0.024) (0.025) (0.012) 
Bark 0.17 0.19 0.21 0.22 

(0.025) (0.021) (0.026) (0.020) 
Wood 0.11 0.10 0.17 0.17 

(0.013) (0.019) (0.016) (0.020) 
Woody Root 0.18 0.17 0.28 0.24 

(0.023) (0.020) (0.019) (0.020) 
Non-woody 0.61 0.32 0.41 0.30 

Root (0.084) (0.044) (0.034) (0.029) 
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Appendix 3A cont:- 

0/ 
/0 

Needles 0.71 0.68 0.66 - 

0.070) (0.125) (0.082) - 

Twigs 0.49 0.44 0.46 0.50 

(0.078) (0.060) (0.037) (0.056) 

Bark 0.49 0.52 0.70 0.76 

(0.063) (0.061) (0.059) (0.046) 

Wood 0.23 0.19 0.26 0.25 

(0.28) (0.20) (0.045) (0.021+ ) 

Woody Root 0.31 0.33 0.37 0.39 

(0.054) (0.030) (0.057) (0.042) 

Non-woody 0.71 0.57 0.48 0.46 

Root (0.101) (0.089) (0.032) (0.046) 
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Appendix 3B 

Change in component oven dry weight (g). Mean values (n=10) 

and (95% confidence limits). 

Component Harvest 	1 Harvest 2 Harvest 3 Harvest 4 

(22.9.82) (27.10.82) (22.11.82) (24.12.82) 

Needles 10.96 8.13 1.90 - 

(1.728) (1.080) (0.895) - 

Twigs 8.61 6.77 7.39 5.92 

(1.912) (1.442) (1.776) (0.959) 

Bark 3.93 3.88 3.80 3.32 

(0.507) (0.817) (1.141) (0.517) 

Wood 4.44 5.70 6.39 5.92 

(0.853) (0.777) (2.042) (1.266) 

Woody Root 5.00 4.76 4.74 4.26 

(0.978) (1.225) (1.141) (0.955) 

Non-woody 5.37 6.22 6.10 7.21 

Root (1.211) (1.513) (1.085) (1.011) 

Total weight 38.31 35.58 30.67 26.22 

(4.916) (4.079) (5.935) (2.204) 

Total weight 27.35 27.45 28.77 - 

(- 	needles) (3.219) (3.554) (5.438) - 

219 



Appendix 3C. 

Change in component nutrient content (mg). Mean values (n=10) 

and (95% confidence limits). 

t,J 

Component 	Harvest 1 	Harvest 2 	Harvest 3 	Harvest 4 
Needles 	229.68 	lLc.nq 	ir 69 -  

(37.05) (30.19) (2.45) - 

Twigs 78.51 73.48 102.84 101.91 

(12.21) (11.17) (16.75) (17.13) 
Bark 36.30 54.20 70.31 70.69 

(6.69) (12.09) (12.05) (16.48) 
Wood 19.15 30.43 49.80 51.15 

(3.00) (9.23) (18.17) (16.93) 
Woody Root 37.13 46.55 55.15 58.49 

(6.28) (10.97) (8.52) (17.34) 
Non-woody 76.94 93.58 95.19 137.03 

Root (13.61) (23.13) (16.13) (33.03) 
Total 477.71 443.33 383.98 419.27 

(61.46) (74.23) (72.81) (97.23) 
Total 248.03 298.24 373.29 - 

(- needles) (35.13) (43.70) (70.85) - 
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Appendix 3C cont:- 

P 

Component Harvest 1 Harvest 2 Harvest 3 Harvest 4 
Needles 48.80 34.30 5.90 - 

(8.91) (8.13) (2.92) - 

Twigs 16.60 12.81 14.97 14.56 

(2.82) (1.98) (3.25) (2.66) 

Bark 6.55 7.21 8.40 7.38 

(0.85) (1.76) (2.88) (2.02) 
Wood 4.59 5.48 10.89 9.96 

(0.72) (1.83) (2.29) (2.43) 
Woody Root 9.24 8.05 12.38 10.55 

(2.41) (2.74) (3.51) (4.17) 
Non-woody Root32.10 18.39 24.53 21.36 

(11.32) (5.64) (7.89) (5.04) 

Total 117.88 86.24 77.07 63.81 

(15.29) (15.54) (19.36) (12.48) 
Total 69.08 51.94 71.17 - 

(-Needles) (15.39) (9.76) (17.92) - 

K 

Needles 78.60 54.99 11.39 - 

(11.33) (9.52) (3.71) - 

Twigs 41.24 28.84 33.90 29.98 

(8.38) (7.07) (7.89) (6.70) 
Bark 19.24 20.00 27.50 25.36 

(3.56) (4.84) (8.15) (4.66) 
Wood 10.21 11.08 16.95 14.68 

(2.43) (2.81) (7.24) (4.73) 
Woody Root 16.09 15.51 17.34 16.48 

(5.50) (3.87) (4.81) (4.00) 
Non-woody Root 36.76 32.60 29.39 32.94 

(9.83) (5.97) (5.54) (5.82) 
Total 202.14 163.02 136.47 119.44 

(73.00) (30.71) (28.04) (23.64) 
Total 123.54 108.33 125.08 - 

(-Needles) (26.58) (15.07) (25.16) - 
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Appendix 4A. 

Initial oven dry weights (g) and nutrient contents (mg) of 

litter mixtures. 

Oven dry weight. g(% of total). 

Treatment Larch litter Spruce litter Total 

LOS 10 0.00 (0) 7.38 (100) 7.38 

L 2 S8  1.62 (22) 5.90 (78) 7.52 

L 4 S6  3.24 (42) 4.43 (58) 7.67 

L 6 S4  4.86 (62) 2.95  7.81 

L8  S2  6.48 (81) 1.48 (19) 7.96 

1,S 0  8.10 (100) 0.00 (0) 8.10 

N. 	mg 	(% of total) 

Lo S10  0.00 (0) 59.78 (100) 59.78 

L2S 27.86 (37) 47.79 (63) 75.65 

L4 S 6  55.73 (61) 35.88  91.61 

L6S4  83.59 (78) 23.90 (22) 107.49 

L8 S2 111.46 (90) 11.99 (10) 123.45 

4S0 139.32 (100) 0.00 (0) 139.32 

P. 	mg 	(% of total) 

Lo S10 0.00 (0) 6.64 (100) 6.64 

L2 S8 2.11 (28) 5.31 (72) 7.42 

L4S6 4.21 (51) 3.99 (49) 8.20 

L6S4 6.32 (70) 2.66 (30) 8.98 

L8S2 8.42 (86) 1.33 (14) 9.75 

1-S0 10.53 (100) 0.00 (0) 10.53 
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Appendix 4B. 

Final oven dry weights (g) and nutrient contents (mg) of litter 

mixtures. Mean values (n=4) + 95% confidence limits. 

Oven dry weights, g (% weight loss). 

Treatment Total 	(Larch + Spruce) 

L0 5 10  2.38 + 0.02 (68) 

L2 S 8  2.48 ± 0.39 (67) 

L4 S 6  3.11 	± 0.25 (59) 

L6 S 4  3.71 ± 0.09 (52) 

L 8 S 2  3.98 + 0.19 (50) 

L10  S0  4.40 + 0.01 (46) 

N mg (% loss) 

28.91 ± 	1.74 	(52) 

L2 5 8  33.43 ± 	10.38(56) 

L4 S6  45.96 + 5.60 	(50) 

L 6 S 4  55.98 ± 	3.17 	(48) 

L8 S2  56.21 ± 8.38 	(56) 

1 o5o  64.52 ± 	5.99 	(54) 

P mg /0/  loss) ' ,0 

L0 510  2.17 + 0.12 (67) 

L2 S 8  2.43 + 0.68 (67) 

L4 56  3.04 + 0.32 (63) 

L6  S4 3.12 + 0.24 (65) 

L8  S2  2.81 ± 0.84 (71) 

IS 3.02 + 0.20 (71) 
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Appendix 4C. 

Nutrient release (mg) and pH  of leachate over the incubation 

period. Mean values (n=4) and (95% confidence limits). 

Day 30 

Treatment Ammonium Nitrate Phosphate pH 

L0S 1 0 0.05(0.01) 0.00(0.00) 0.21(0.03) 5.92(0.03) 

L2S8 0.07(0.01) 0.00(0.00) 0.23(0.05) 6.15(0.28) 

L4S6 0.07(0.02) 0.00(0.00) 0.31(0.03) 6.06(0.26) 

L6S4 0.08(0.01) 0.00(0.00) 0.32(0.01) 6.30(0.18) 

L8S2 0.14(0.03) 0.01(0.01) 0.54(0.05) 6.38(0.17) 

LjS0 0.17(0.02) 0.03(0.01) 0.60(0.01) 6.44(0.19) 

Day 60 

L0S 1 0 0.03(0.00) 0.00(0.00) 0.07(0.00) 5.35(0.09) 

L 2S 8  0.06(0.00) 0.00(0.00) 0.10(0.00) 5.55(0.09) 

L 4 S 6  0.11(0.02) 0.01(0.00) 0.17(0.01) 5.40(0.18) 

L 6 S 4  0.14(0.03) 0.28(0.03) 0.23(0.00) 5.40(0.00) 

L 8S 2  0.39(0.08) 0.97(0.04) 0.52(0.02) 5.25(0.09) 

L 0  0.61(0.07) 0.92(0.03) 0.69(0.04) 5.20(0.00) 

Day 90 

L 0S10  0.00(0.00) 0.00(0.00) 0.03(0.01) 5.60(0.18) 

L2S8 0.05(0.00) 0.03(0.04) 0.07(0.00) 5.50(0.00) 

L 4S6  0.08(0.01) 0.10(0.04) 0.14(0.01) 5.25(0.28) 

L6S 4  0.07(0.01) 0.31(0.06) 0.19(0.02) 5.40(0.00) 

L8S2 0.16(0.00) 0.80(0.00) 0.37(0.07) 5.15(0.09) 

L0 0.30(0.05) 1.06(0.19) 0.40(0.04) 4.80(0.00) 

Day 120 

L 05 10  0.02(0.00) 0.00(0.00) 0.08(0.03) 5.35(0.09) 

L 2S8  0.02(0.00) 0.01(0.01) 0.12(0.02) 5.65(0.09) 

L4 S6  0.04(0.01) 0.13(0.02) 0.16(0.03) 5.10(1.72) 

L 6  S4  0.09(0.01) 0.46(0.05) 0.25(0.02) 5.20(0.18) 

L 8S2  0.40(0.13) 1.26(0.32) 0.45(0.07) 4.40(0.18) 

L 0  0.49(0.22) 1.65(0.49) 0.45(0.07) 4.05(0.09) 
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Day 150 

L 0S10  0.00(0.00) 0.00(0.00) 

L 2S 8  0.02(0.01) 0.00(0.00) 

L 4S6 0.03(0.01) 0.27(0.11) 

L6S 4  0.10(0.07) 1.01(0.13) 

L8S2 0.27(0.08) 1.85(0.60) 

L1 0 0.65(0.05) 1.28(0.17) 

0.07(0.01) 5.20(0.00) 

0.11(0.02) 5.40(0.00) 

0.13(0.01) 5.10(1.72) 

0.30(0.07) 4.95(0.09) 

0.45(0.13) 3.95(0.09) 

0.53(0.06) 4.00(0.00) 

Day 180 

L0S10  0.00(0.00) 0.00(0.00) 

L2S8 0.00(0.00) 0.00(0.00) 

L 4 S6 0.04(0.01) 0.37(0.11) 

L6S 4  0.15(0.09) 1.13(0.03) 

L8S2 0.50(0.15) 1.82(0.04) 

Lo 0 0.74(0.06) 1.69(0.25) 

0.09(0.02) 5.20(0.00) 

0.12(0.03) 5.25(0.09) 

0.16(0.01) 5.10(0.18) 

0.26(0.01) 5.10(0.18) 

0.41(0.12) 4.05(0.28) 

0.49(0.08) 3.80(0.00) 
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Appendix 5A. 

Treatment bulk densities and conversion of mineral N concent-

rations to kgha 1 . 

1. Bulk densities 

(a) Mabie 7: 

plough pc 

up of 10 

confidence 

-3 
(g cm 

based on 

)sitiOfl and 

individual 

limits). 

6 composite samples per treatment, 

depth. Each composite sample made 

samples. Mean values (n=6) and (95% 

Ridge Flat 

0-3 cm 3-6 cm 6-9 cm 0-3 cm 3-6 cm 6-9 cm 

OW 	0.14 0.15 0.16 0.10 0.14 0.15 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

H 	0.13 0.16 0.17 0.11 0.11+  0.16 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

OW/H 	0.14 0.16 0.17 0.11 0.14 0.16 

(n=12)(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

*T rea tmen t means were not significantly different therefore values 

were combined. 
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(b) lnchnacardoch 164: based on 5 composite samples per treat-

ment, plough position and depth. Each composite sample 

made up of 5 individual samples. Mean values (n=5) nd 

(95% confidence limits). 

Ridge Flat 

0-3 cm 3-6 cm 6-9 cm 0-3 cm 3-6 cm 6-9 cm 

SS-N 0.09 0.17 0.16 0.04 0.08 0.06 

(0.01) (0.02) (0.01) (0.01) (0.01) (0.01) 

JL/SS-N 0.10 0.17 0.16 0.04 0.08 0.07 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

jL/SS_ N  * 
. 009 0.17 0.16 0.04 0.08 0.07 

+SS-N 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

* Treatment means were not significantly different therefore 

values were combined. 

2. Conversion of mineral N concentrations to kgha 1 . 

Field incubations. 

Corer Ring Volume (CRy) = 103 cm". 

No Rings h&t  = 3.21 x 10 6  

Mineral N concentration (MNC) 	mgg 

CRV x bulk density = g sample Ring -1  (G) 

G x MNC = rrg Mineral N Ring-1  

rrg Mineral N Ring -1  x 3.21 = kg Mineral N ha. 

Laboratory incubations 

As (a) but first must determine the proportion of G represented 

by the lOg fresh weight sample. 

3. Summing monthly ridge and flat mineralization values to obtain 

an annual estimate. 

Assumptions, ridge position contributes 0.33 land surface, 

flat position contributes 0.67 land surface. 

(Mineral N Ridge x 0.33) + (Mineral N Flat x 0.67) = 

Mineral N Total kgha 1  
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Ridge 

OWOW HH 	OWH 

6.31 8.54 	6.E6 

(1.27) (0.33) 	(0.89) 
* NS 

NS * 

HOW OWOW 

	

7.97 	5.44 

	

(1.28) 	(0.77) 

	

NS 	* 

Flat 

HH 	OWH HOW 

15.31 	6.10 16.60 

(1.12) 	(0.42) (2.57) 

NS NS 

Appendix SB. 

Net 	N mineralization (kgha') for 	0-9 	cm 	depth. 	Mean 	values 
(n=6) and 	(95% confidence 	limits). 

OWOW OW material incubated under OW conditions. 
OWH = 	OW material incubated under H conditions. 
HH = 	i-I 	material incubated under H conditions. 
HOW = 	H 	material incubated under OW conditions. 

1. July - August 1981. 

Ridge 

OW HH 	OWH HOW 	OWOW 

6.14 7.79 	4.91 7.92 	5.06 
(0.44) (0.61) 	(0.67) (0.60) 	(0.39) 

*1 *2 NS 	*1 
*4 NS  

Flat 

HH 	OWU HOW 

12.34 	5.86 13.31 1 

(5.14) 	(0.92) (3.29) 

NS 2 NS  

2. August - September 1981. 

* means significantly different, NS not significantly different 

at P = 0.05 in Cochrane's approximation for a Fisher-Behrens 

test. 1 = OWOW vs. HH, 2 = OWOW vs. OWH, 3 = HH vs. HOW, 
4 = OWOW (ridge) vs. OWOW (flat). 5 = HH (ridge) vs. HH (flat). 
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Appendix 5B cont:- 

September - October 1981. 

Ridge Flat 

OWOW HH 	OWH HOW 	OWOW H 11 	OWH HOW 

3.79 7.73 	3.75 7.22 	3.89 11.83 	4.16 11.84 

(0.82) (1.20) 	(0.48) (0.64) 	(0.44) (1.13) 	(1.18) (2.79) 
* NS NS 	* NS NS 

NS * 

October - November 1981 

Ridge Flat 

OWOW HH 	OWH HOW 	OWOW HH 	OWH HOW 

0.85 3.03 	2.16 2.27 	0.87 4.30 	1.96 3.17 
(0.22) (0.23) 	(0.61) (0.67) 	(0.22) (0.79) 	(0.54) (0.85) 

* * * * NS 
NS * 

February - March 1982 

Ridge Flat 

OWOW HH 	OWH HOW OWOW HH 	OWH How 
3.67 3.92 	2.80 4.73 3.97 4.16 	3.59 5.15 

(1.03) (0.56) 	(0.32) (1.59) (0.63) (1.62) 	0.67) (1.10) 
NS NS NS NS NS NS 

NS NS 

6. March - April 1982 

Ridge 

OWOW HH 	OWH 

-2.69 -0.73 	-2.41 

0.74) (0.12) 	(0.58) 
* 

NS * 

Flat 

HOW 	OWOW 	HH 	OWH 	HOW 

-1.13 	-3.22 	1.72 	-2.02 	2.70 

	

(0.37) (0.86) 	(0.45) 	(0.31) 	(0.24) 
NS 	* 	 * 	* 
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Appendix 5B cont:- 

April - May 1982 

Ridge Flat 

OWOW HH 	OWH HOW OWOW HH OWH HOW 

3.98 5.12 	3.79 4.51 5.74 6.64 4.28 7.50 

(0.54) (0.99) 	(0.48) (0.27) (2.63) (0.66) (0.91) (2.18) 

NS NS NS NS NS 

NS * 

May - June 1982 

Ridge Flat 

OJW H-i 	0 W H HOW OW HI-i OWH HOW 

6.16 8.49 	6.53 7.85 8.15 11.60 8.60 13.06 

(1.38) (0.80) 	(1.86) (0.91) (1.88) (2.13) (1.20) (1.51) 
* NS NS * NS NS 

NS * 

June - July 1982 

Ridge Flat 

O WOW HH 	OWH HOW O)W 	HI-i 	OWH HOW 

-1.08 1.35 	-1.78 1.01 -1.47 	2.26 	-2.75 2.31 

(0.21) (0.79) 	(0.44) (0.66) (1.14) 	(0.85) 	(0.48) (1.33) 
* * NS * 	 * NS 

NS NS 

November - December 1982 

Ridge 

OWOW HR 	OW 	HOW O%JW 

0.05 0.02 	-0.32 	1.14 1.31 

(0.29) (0.12) 	(0.18) 	(0.28) (0.35) 

NS NS 	* * 
* * 

Flat 

HR OH HOW 

-0.37 -1.15 -0.20 

(0.31) (0.24) (0.39) 
* NS 
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December - February 1982/3 

Ridge Flat - 
O%.OW HH 	OWH HOW 	OVW Hi-i 	OW1! HOW 

0.28 -1.12 	-0.47 -0.78 	-0,87 -1.53 	-0.65 -1.82 

(0.09) (0.25) 	(0.32) (0.19) 	(0.19) (0.27) 	(0.18) (0.74) 

NS Ns 

February - March 1983 

Ridge Flat 

O\JW 1-111 	OH HOW 	OWJW HH 	OWH HOW 

0.65 3.60 	0.93 2.48 	0.04 3.09 	0.53 3.15 
(0.26) (0.84) 	(0.26) (0.81) 	(0.11) (0.71) 	(0.25) (0.54) 

* NS NS 	* * NS 
* NS 

March - April 1983 

Ridge Flat 

OW HH 	OH HOW 	OW 1-11-I 	OWH HOW 
1.08 4.4'6 	1.54 5.63 	1.00 8.16 	1.64 7.25 

(0.55) (0.92) 	(0.57) (1.87) 	(0.21) (2.68) 	(0.23) (2.46) 
* NS NS 	* NS NS 

NS * 
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Appendix 5C. 

Initial mineral N (kgha 1 ) in fresh samples for 0 - 9 cm depth. 

mean values (n=6) and (95% confidence limits). 	 - 

July 1981 

RIDGE 	 FLAT 

OW 	1.33 (0.01) 	 1.69 (0.27) 

H 	0.96 (0.24) 	 1.79 (0.22) 

August 1981 

OW 2.48 (0.08) 2.75 (0.16) 

H 1.74 (0.24) 2.99 (0.29) 

 September 1981 

OW 1.52 (0.13) 2.11 (0.22) 

H 1.34 (0.33) 1.89 (0.25) 

 October 1981 

OW 2.49 (0.76) 2.20 0.66) 

H 1.75 (0.62) 4.16 (0.74) 

 February 1982 

OW 1.04 (0.32) 1.77 (0.13) 

H 1.40 (0.19) 1.87 (0.38) 

 March 1982 

OW 6.60 (0.46) 7.51 (0.46) 

H 5.38 (2.10) 6.26 (2.38) 

 April 	1982 

OW 2.34 (0.50) 2.65 (1.09) 

H 2.45 (0.36) 3.60 (1.08) 

 May 1982 

OW 4.15 (0.17) 4.72 (0.74) 

i-i 3.43 (0.65) 5.31 (0.81 

 June 1982 

OW 5.21 (1.51) 5.98 (1.51) 

H 4.35 (1.20) 5.36 (1.35) 
 November 1982 

OW 2.70 (0.49) 3.51 (0.23) 
H 3.35 (0.26) 3.77 (0.21) 
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11. December 1982 

OW 3.90 (0.71) 4.91 (1.55) 

H 4.48 (0.78) 5.16 (1.56) 

February 	1983 

OW 2.00 (0.36) 2.21 (0.32) 

H 1.85 (0.20) 2.19 (0.42) 

March 1983 

OW 2.06 (0.36) 2.11 (0.05) 

H 1.63 (0.5) 1.99 (0.12) 
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Appendix 5D 

Net N mineralization (kgha 1 ) at different depths. Mean values 

(n=6) and (95% confidence limits). 

July - August 1981. 

RIDGE FLAT 

0-3 cm 3-6 cm 6-9 cm 0-3 cm 3-6 cm 6-9 cm 

OWOW 2.84 1.82 1.48 1.71 1.46 1.89 

(0.38) 0.50) (0.39) (0.67) (0.39) (0.49) 

HOW 3.96 2.07 1.89 6.70 3.89 2.72 

(0.95) (0.43) (0.44) (3.44) (0.42) (0.75) 

HH 3.90 1.80 2.09 7.43 3.23 1.68 

(0.60) (0.49) (0.11) (4.76) (0.60) (0.20) 

OWH 1.86 1.46 1.59 2.48 1.77 1.61 

(0.50) (0.44) (0.34) (0.80) (0.10) (0.23) 

August - September 1981. 

OWOW 3.06 2.11 1.14 2.13 1.84 1.47 

(0.70) (0.42) (0.20) (0.33) (0.12) (0.40) 

HOW 4.50 2.06 1.41 9.85 3.78 2.97 

(0.93) (0.31) (0.16) (2.62) (0.71) (0.22) 

HH 4.68 2.39 1.47 9.23 3.45 2.63 

(0.54) (0.21) (0.20) (1.15) (0.45) (0.29) 

OWH 3.39 1.80 1.47 2.75 1.80 1.55 

(0.79) (0.15) (0.19) (0.17) (0.37) (0.12) 
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3. September - October 1981. 

OWOW 2.80 0.67 0.32 1.76 1.03 1.10 

(0.58) (0.13) (0.06) (0.27) (0.66) - 	 (0.50) 

HOW 4.36 1.89 0.97 5.85 4.07 1.92 

(0.33) (0.45) (0.18) (1.43) (1.58) (0.98) 

4.99 1.49 1.25 6.89 3.86 1.08 

(1.05) (0.27) (0.38) (1.34) (1.42) (0.44) 

OWH 2.53 0.98 0.24 2.00 1.33 0.83 

(0.42) (0.06) (0.08) (0.40) (0.49) (0.29) 

October - November 1981 

OWOW 0.52 0.12 0.21 0.35 0.40 0.12 

(0.18) (0.05) (0.04) (0.11) (0.10) 0.03) 

HOW 1.70 0.19 0.38 2.59 0.46 0.12 

(0.76) (0.05) (0.16) (0.85) (0.05) (0.03) 

HH 2.56 0.12 0.35 3.34 0.82 0.14 

(0.36) (0.06) (0.13) (0.69) (0.28) (0.05) 

OWH 1.14 0.67 0.35 1.04 0.76 0.16 

(0.58) (0.29) (0.07) (0.65) (0.17) (0.04) 

February - March 1982. 

OWOW 1.11 1.39 1.17 1.04 1.39 1.54 

(0.32) (0.55) (0.31) (0.32) (0.32) (0.26) 

HOW 1.76 1.55 1.42 1.52 1.40 2.23 

(0.74) (0.31) (0.37) (0.45) (0.27) (0.62) 

UI-i 2.18 0.69 1.05 1.67 1.22 1.27 

(0.42) (0.05) (0.29) (0.53) (0.51) (0.63) 

OWH 0.69 1.04 1.07 0.83 1.19 1.57 

(0.08) (0.22) 0.33) (0.31) (0.29) (0.42) 
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March - April 1982 

OWOW -0.66 -0.87 - 1.16 -0.53 -1.39 -1.30 

(0.37) (0.11) (0.56) (0.18) (0.38) (0.4) 

HOW -0.30 -0.31 -0.52 1.44 1.09 0.17 

(0.05) (0.08) (0.13) (0.23) (0.16) (0.16) 

HH -0.13 -0.26 -0.34 •1.42 0.31 -0.01 

(0.04) (0.14) (0.13) (0.49) (0.07) (0.02) 

OWH -0.48 -0.86 -1.07 -0.25 -0.80 -0.97 
(0.10) (0.47) (0.26) (0.10) (0.29) (0.31) 

April - May 1982 

OWOW 1.07 1.52 1.39 1.39 2.00 2.35 
(0.31) (0.37) (0.25) (0.62) (0.79) (1.31) 

HOW 1.43 1.55 1.53 2.32 2.68 2.50 
(0.10) (0.30) (0.19) (0.81) (0.25) (1.53) 

HH 1.63 1.53 1.96 2.51 2.69 1.44 
(0.18) (0.17) (0.80) (0.47) (0.42) (0.38) 

OWH 1.25 1.28 1.26 1.08 1.36 1.84 
(0.44) (0.22) (0.42) (0.49) (0.24) 0.81) 

May - June 1982 

OWOW 1.67 2.08 2.41 1.36 3.17 3.62 
(0.40) (0.57) (0.65) (0.41) (1.04) (0.78) 

HOW 2.37 2.57 2.91 3.88 4.82 4.36 
(0.61) (0.58) (0.54) (0.43) (1.05) (0.78) 

HH 3.09 2.67 2.73 3.46 4.02 4.12 
(0.94) (0.55) (0.87) (0.40) (0.93) (0.96) 

OWH 2.00 2.07 2.46 1.44 3.06 4.10 
(0.37) (0.73) (0.92) (0.33) (0.68) (0.78) 
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9. June - July 1982 

OWOW 0.38 -0.61 -0.85 -0.03 -0.55 -0.89 

(0.06) (0.10) (0.15) (0.21) (0.69) (0.96) 

HOW 1.40 -0.28 -0.11 0.34 1.61 0.36 

(0.68) (0.06) (0.08) (0.24) (1.23) (0.51) 

HH 1.50 -0.12 -0.03 0.65 1.04 0.57 

(0.78) (0.09) (0.07) (0.45) (0.42) (0.72) 

OWH 0.07 -0.94 -0.91 -0.'33"  -1.30 

(0.04) (0.29) (0.31) (0.20) (0.41) (0.21) 

November - December 1982 

OWOW 0.33 -0.18 -0.20 0.81 0.46 0.04 

(0.11) (0.09) (0.10) (0.22) (0.12) (0.06) 

HOW 1.10 0.15 -0.11 0.36 -0.30 -0.26 

(0.18) (0.09) (0.07) (0.12) (0.13) (0.05) 

HH 0.75 -0.24 -0.49 0.48 -0.26 -0.59 

(0.19) (0.27) (0.11) (0.08) (0.16) (0.20) 

OWH -0.05 -0.12 -0.15 0.25 -0.53 -0.87 

(0.06) (0.11) (0.05) (0.07) (0.24) (0.18) 

December - February 1982/3 

OWOW 0.13 -0.15 0.30 0.22 -0.86 -0.23 

(0.07) (0.10) (0.11) (0.03) (0.18) (0.07) 

HOW 0.47 -0.59 -0.66 -0.47 -0.60 -0.75 

(0.07) (0.16) (0.11) (0.06) (0.26) (0.35) 

HH 0.09 -0.66 -0.55 -0.32 -0.67 -0.54 

(0.06) (0.12) (0.14) (0.04) (0.15) (0.18) 

OWH 0.22 -0.47 -0.22 0.26 -0.52 -0.39 

(0.15) (0.20) (0.11) (0.08) (0.06) (0.08) 
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12. February - March 1983 

OWOW 0.08 0.30 

(0.02) (0.16) 

HOW 1.87 0.50 

(0.84) (0.03) 

HH 1.44 0.88 

(0.79) (0.19) 

OWU 0.25 0.25 

(0.12) (0.22) 

13. 	March - April 1983 

OWOW 0.56 0.31 

(0.31) (0.18) 

HOW 2.68 1.32 

(1.04) (0.52) 

i-fl-i 1.61 1.26 

(0.35) (0.16) 

OWH 0.57 0.73 

(0.10) (0.27) 

0.27 0.04 -0.02 0.02 

(0.13) (0.04) (0.06) (0.03) 

0.11 2.53 0.33 - 	 0.29 

(0.14) (0.65) (0.16) (0.13) 

1.28 1.53 0.82 0.74 

(0.97) (0.47) (0.22) (0.28) 

0.43 0.39 0.09 0.05 

(0.16) (0.19) (0.74) (0.05) 

0.21 0.41 0.12 0.47 

(0.17) (0.11) (0.06) (0.09) 

1.63 2.24 2.86 2.15 

(0.58) (0.65) (1.00) (0.84) 

1.59 3.07 2.60 2.49 

(0.52) (0.75) (0.89) (1.14) 

0.24 0.57 0.50 0.57 

(0.27) (0.16) (0.21) (-0.18) 



Appendix 5E. 

Net N mineralization (kgha) for intact cores (0-3 cm depth). 

Mean values (n=6) and (95% confidence limits). 

November - December 1982 

Ridge Flat 

OWOW 0.14 0.39 

(0.45) (0.33) 

HOW 0.96 2.11 

(1.21) (2.91) 

1-11-1 0.05 2.43 

(0.79) (3.75) 

OWH -0.25 0.08 

(0.73) (0.28) 

December - February 1982/3 

OWOW 0.15 -0.12 

(0.19) (0.50) 

HOW 1.30 0.35 

(1.25) (0.92) 

H  0.83 0.80 

(0.53) (0.38) 

OWH 0.15 0.00 

(0.41) (0.48) 

February - March 1983 

OWOW 	 0.32 0.07 

(0.27) (0.31) 

HOW 	 0.38 0.33 

(0.31) (0.17) 

1-11-1 	 0.26 0.78 

(0.15) (1.00) 

OWH 	 0.49 0.27 

(0.45) (0.22) 
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4. March - April 1983 

OWOW 	 0.84 0.31 

(0.71) (0.47) 

HOW 	 2.71 1.93 

(1.44) (1.03) 

HH 	 2.31 2.79 

(1.78) (1.54) 

OWi-i 	 0.46 0.86 

(0.24) (0.50) 
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Appendix 5F. 

Net N mineralization (kgha 1 ) for 0-9 cm depth in OW and H 

treatment material incubated under laboratory conditions. Mean 

values (n=4)  and  (95% confidence limits). 

July - August 1981 

RIDGE FLAT 

OW 	 14.82 	* 11.36 

(0.36) (0.50) 
* 

H 	 19.61 23.02 

(0.33) (1.41) 

February - March 1982 

OW 9.09 NS 	9.61 

(0.20) (0.95) 

H 13.07 NS 	13.86 

(0.69) (0.67) 

April - May 1982 

OW 6.44 7.59 

(0.33) (0.29) 

H 7.31 * 	18.39 

(0.73) (0.53) 

May - June 1982 

OW 	 8.18 	* 	735 

	

(0.16) 	 (0.40) 
* 

H 	 9.11 	* 	9.89 

	

(0.39) 	 (0.38) 

* Means significantly different, NS not significantly different 

at P = 0.05 in Cochrane's approximation for a Fisher-Behrens 

test. 

241 



Appendix 5G. 

Cumulative N mineralization (kgha 1 ) at different depths, and 

summed for 0-9 cm after 30 and 60 days. Material from Inch-

nacardoch 161+ , incubated under laboratory conditions. Mean 

values (n=4) and (95% confidence limits). Material - colleted 

December 1982. 

30 days Ridge Flat 

0-3 cm 3-6 cm 6-9 cm 0-3 cm 3-6 cm 6-9 cm 

SS-N 	1.19 1.46 1.90 1.75 0.90 1.06 

(0.86) (0.11) (0.05) (0.11) (0.05) (0.02) 

•JL/SS-N 2.47 6.63 3.44 0.40 0.77 1.55 

(3.39) 0.90) (0.63) (0.32) (0.13) (0.12) 

60 days 

SS-N 	2.20 2.08 3.07 1.75 1.27 1.30 

(0.12) (0.17) (0.37) (0.21) (0.37) (0.21> 

JL/SS-N 4.79 14.84 10.95 6.76 1.22 3.59 

(2.26) (0.62) (0.74) (1.30) (0.63) (0.62) 

0 - 9 cm 

30 days Ridge Flat 

SS-N 455 * 3.71 

(0.50) (0.07) 
* NS 

JL/SS-N 12.54 * 2.72 

(2.06) (1.03) 

60 days 

SS-N 	 735 	* 	4.32 

	

(0.25) 	 (0.27) 

JL/SS-N 	 30.58 	* 	11.57 

	

(1.42) 	 (0.91) 

* Means significantly different, NS not significantly different 

at P = 0.05 in Ccxhrane's approximation for a Fisher-Behrens 

test. 
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Appendix 5H 

Initial moisture content (% Fresh weight) and pH of material 

used in the Inchnacardoch laboratory incubation. Mean values 

(n=4) and (95% confidence limits). 

Moisture content (% Fresh weight) 

Ridge Flat 

0-3 cm 3-6 cm 6-9 cm 0-3 cm 3-6 cm 6-9 cm 

SS-N 79.0 76.0 77.8 84.0 81.6 84.8 

(6.8) (6.4) (4.6) (7.7) (3.7) (4.6) 

JL/SS-N 77.0 70.9 76.4 85.0 83.6 87.6 

(6.0) (4.3) (4.0) (3.7) (7.3) (2.1) 

DH 

SS-N 3.87 3.73 3.67 4.17 3.83 3.62 

(0.04) (0.03) (0.02) (0.06) (0.06) (0.00) 

JL/SS-N 3.98 3.50 3.58 4.04 3.86 3.59 

(0.05) (0.05) (0.05) (0.11) (0.03) (0.04) 
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Appendix 51. 

Net N mineralization (kgha 1 ) at different depths in OW and 

H treatment material incubated under laboratory conditions 

Mean values (n=4) and (95% confidence limits). 

1. July-August 1981. 

RIDGE FLAT 

0-3cm 3-6cm 6-9cm 0-3cm 3-6cm 6-9cm 

OW 9.49 2.01 3.32 4.73 2.82 3.81 

(0.46) (0.32) (0.28) (0.84) (0.23) (0.05) 

H 14.67 1.96 2.98 15.86 4.30 2.86 

(0.46) (0.05) (0.34) (2.40) (0.42) (0.26) 

 February-March 1982. 

OW 5.60 1.75 1.74 4.11 2.22 3.28 

(0.19) (0.26) (0.11) (1.42) (0.83) (0.16) 

H 6.94 2.70 3.43 6.76 2.92 4.18 

(0.69) (0.74) (0.62) (1.02) (0.56) (0.11) 

 April-May 1982. 

OW 2.87 2.33 1.24 3.64 1.99 1.96 

(0.19) (0.42) (0.34) (0.04) (0.42) (0.26) 

H 4.35 2.17 0.79 15.02 1.57 1.80 

(1.25) (0.16) (0.00) (0.91) (0.00) (0.00) 

 May-June 1982. 

OW 4.03 1.90 2.25 1.67 3.19 2.49 

(0.19) (0.16) (0.11) (0.33) (0.28) (0.53) 

H 4.44 1.69 2.98 3.27 3.29 3.33 

(0.56) (0.32) (0.22) (0.22) (0.56) (0.26) 
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Appendix 6A 

Oven dry weight (g) and nutrient content (mg) of birch seed-

lings grown in Mabie 7 material. Mean values (n=10) and (95% 

confidence limits). 

Oven dry weight (g). 

Ridge Material 

OW H 

0-3cm 3-6cm 6-9cm 0-3cm 3-6cm 

0.355 0.170 0.119 0.584 0.152 

(0.110) (0.044) (0.046) (0.171) (0.031) 

Flat Material 

OW H 

0-3cm 3-6cm 6-9cm 0-3cm 3-6cm 

0.304 0.334 0.265 0.559 0.419 

(0.119) (0.070) (0.058) (0.133) 0.088) 

Ridge Material 

6-9cm 	0-3cm 

1.70 	 9.97 

(0.47) 	(2.50) 

Flat Material 

N content (mg). 

OW 

0-3cm 	3-6cm 

6.65 	2.47 

(1.89) 	(0.28) 

OW 

0-3cm 	3-6cm 

5.25 	4.34 

(1.77) 	(0.46) 

6-9cm 

3.30 

(0.46) 

0-3cm 

10.51 

(4.15) 

H 

3-6cm 

2.11 

(0.39) 

H 

3-6cm 

7.80 

(2.74) 

6-9cm 

0.231 

(0.037) 

6-9cm 

0.223 

(0.061) 

6-9cm 

2.98 

(0.19) 

6-9cm 

3.35 

(0.61) 
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Appendix 6A cont:- 

P 	content 	(mg). Ridge Material 

OW H 

0-3cm 3-6cm 6-9cm 0-3cm 3-6cm 6-9cm 

0.95 0.14 7 0.26 2.35 0.41 0.57 

(0.34) (0.08) (0.09) (0.77) (0.11) (0.08) 

Flat Material 

OW H 

0-3cm 3-6cm 6-9cm 0-3cm 3-6cm 6-9cm 

0.88 0.84 0.47 1.90 0.94 0.44 

(0.38) (0.18) (0.09) (0.48) (0-35):.,. (0.12) 

K content (mg). 

Ridge Material 

oi I-i 

0-3cm 3-6cm 6-9cm 0-3cm 3-6cm 6-9cm 

4.60 2.88 2.01 5.89 2.51 3.73 

(1.72) (0.66) (0.67) (1.50) (0.53) (0.42) 

Flat Material 

OW H 

0-3cm 3-6cm 6-9cm 0-3cm 3-6cm 6-9cm 

4.61 3.85 2.60 7.24 5.06 2.88 

(2.14) (3.85) (2.60) (7.24) (5.06) (2.88) 
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Appendix 6B. 

N mineralization (rngg 1) calculated from plant uptake. Mean 

values (n=10) and (95% confidence limits). 

Ridge Material 

OW H 

0-3cm 3-6cm 6-9cm 0-3cm 3-6cm 6-9cm 

0.46 0.24 0.19 0.72 0.18 0.29 

(0.13) (0.03) (0.05) (0.18) (0.03) (0.02) 

Flat Material 

OW H 

0-3cm 3-6cm 6-9cm 0-3cm 3-6cm 6-9cm 

0.54 0.54 0.43 1.04 0.98 0.44 

(0.18) (0.06) (0.06) (0.41) (0.34) (0.08) 
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Appendix EC. 

Cumulative net N mineralization (mgg 1 ) after 1.20 days. Mean 

values (n=4) and (95% confidence limits). 

Ammonium 

OW H 

Ridge 0-3cm 0.45 (0.09) 0.61 (0.09) 

3-6 0.21 (0.02) 0.15 (0.06) 

6-9 0.16 (0.04) 0.17 (0.02) 

Flat 0-3 0.43 (0.11) 1.05 (0.20) 

3-6 0.19 (0.11) 0.41 (0.14) 

6-9 0.11 (0.11) 0.22 (0.07) 

Nitrate 

Ridge 0-3cm 0.023 (0.009) 0.027 (0.005) 

3-6 0.021 (0.000) 0.024 (0.003) 

6-9 0.022 (0.003) 0.029 (0.006) 

Flat 0-3cm 0.022 (0.002) 0.031 (0.007) 

3-6 0.024 (0.011) 0.031 (0.010) 

6-9 0.028 (0.011) 0.035 (0.014) 

Nitrate + Ammonium 

Ridge 0-3cm 0.48 (0.08) 0.63 (0.08) 

3-6 0.23 (0.02) 0.18 (0.03) 

6-9 0.18 (0.04) 0.20 (0.02) 

Flat 0-3 0.45 (0.11) 1.08 (0.20) 

3-6 0.21 (0.10) 0.44 (0.14) 

6-9 0.14 (0.10) 0.26 (0.07) 
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