
Dynamic instruction scheduling and
data forwarding in asynchronous

superscalar processors

Robert D. Mullins

Doctor of Philosophy
University of Edinburgh

2001

Abstract

Improvements in semiconductor technology have supported an exponential

growth in microprocessor performance for many years. The ability to continue on

this trend throughout the current decade poses serious challenges as feature sizes

enter the deep sub-micron range. Problems due to increasing power consump-

tion, clock distribution and the growing complexity of both design and verifica-

tion, may soon limit the extent to which the underlying technological advances

may be exploited. One approach which may ease these problems is the adoption

of an asynchronous design style - one in which the global clock signal is omit-

ted. Commonly-cited advantages include: the ability to exploit local variations in

processing speed, the absence of a clock signal and its distribution network, and

the ease of reuse and composability provided through the use of delay-insensitive

module interfaces. While the techniques to design such circuits have matured over

the past decade, studies of the impact of asynchrony on processor architectures

have been less common. One challenge in particular is to develop multiple-issue

architectures that are able to fully exploit asynchronous operation. Multiple-issue

architectures have traditionally exploited the determinism and predictability en-

sured by synchronous operation. Unfortunately, this limits the effectiveness of the

architecture when the clock is removed. The work presented in this dissertation

describes in detail the problems of exploiting asynchrony in the design of super -

scalar processors. A number of techniques are presented for implementing both

data forwarding and dynamic scheduling mechanisms, techniques that are cen-

tral to exploiting instruction-level parallelism and achieving high-performance.

A technique called instruction compounding is introduced, which appends de-

pendency information to instructions during compilation, which can be exploited

at run-time. This simplifies the implementation of both the dynamic scheduling

and data-forwarding mechanisms. The performance characteristics of the different

techniques are compared through simulation. Results show that an asynchronous

version of a generic synchronous superscalar processor can provide similar perfor-

mances. Although the performances of instruction compounded and queue-based

asynchronous implementations are lower, their designs are far less complex, with

scope for better performance with improved compiler support.

Acknowledgements

I would like to thank Damal Arvind for his support and guidance throughout

my PhD. I would also like to thank everyone in the department who offered advice,

encouragement and friendship, especially Christos, Dominic, John, Lawrence and

Salvador. I would also like to thank George, Paul, Peter, and Simon, at Cam-

bridge for their support and advice during the last twelve months. Many special

thanks to Arvind, George, Simon and Tania for spending time proofreading the

dissertation and providing invaluable feedback. Finally, I would like to thank

Tania, Mum and Dad, for their continual support and patience!

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

Some of the work presented in this thesis has already been published in:

ARVIND, D. K., AND MULLINS, R. D. Instruction issue and data forward-

ing mechanisms for asynchronous superscalar processors. In Proceedings of the

Workshop on Complexity-Effective Design (WCED'OO, held in conjuction with

ISCA-27) (Vancouver, B.C., June 2000).

ARVIND, D. K., AND MuLLINS, R. D. A fully asynchronous superscalar

processor. In International Conference on Parallel Architectures and Compilation

Techniques, Newport Beach, California, October 1999.

ARVIND, D. K., AND MULLINS, R. D. Static and Dynamic Instruction

Compounding in an Asynchronous Superscalar Architecture. In Proceedings of

the 6th UK Asynchronous Forum (Manchester, UK, July 1999).

ARVIND, D. K., AND MuLLINS, R. D. Redefining the SW/HW boundary

in Asynchronous ILP Architectures In Proceedings of the 3rd UK Asynchronous

Forum (Edinburgh, Scotland, Dec. 1997).

ARVIND, D. K., AND MULLINS, R. D. Instruction compounding. In Pro-

ceedings of the 1st UK Asynchronous Forum (Edinburgh, Scotland, Dec. 1996).

(Robert Mullins)

Table of Contents

Chapter 1 Introduction 	 7

	

1.1 	A clock-free design approach9

	

1.2 	Aims of the thesis11

	

1.3 	Thesis Outline11

Chapter 2 Background 13

2.1 Introduction 13

2.2 The Timing Regime 13

2.3 Synchronous Design 13

2.4 Asynchronous Design 15

2.4.1 	Asynchronous circuits 16

2.4.2 	Communication and delay-insensitive signalling 17

2.4.3 	Control circuit architecture 20

2.4.4 	Mixing Synchronous and Asynchronous Techniques 	 23

2.5 The impact of process scaling 24

2.5.1 	Summary 30

2.6 Asynchronous Processor Architecture 30

2.6.1 	A synchronous instruction pipeline 30

2.6.2 	An asynchronous instruction pipeline 32

2.6.3 	Amulet Processors 34

2.6.4 	Micronet Processors 38

2.6.5 	M1niMIPS processor 39

2.6.6 	Hades Architecture 40

2.6.7 	Alternative Pipeline Organisations 42

2.6.8 	Counterfiow pipeline architecture 44

2.6.9 	The non-stalling Circular counterfiow architecture 44

2.6.10 	Rotary pipeline processor 45

2.6.11 	Alternative Instruction Set Architectures 47

2.6.12 SCALP: A Superscalar Low-Power Processor 47

3

2.6.13 	Other Asynchronous Processors 49

2.6.14 	Performance limitations of existing approaches 49

2.7 	ILP Architectures 51

2.8 	Superscalar Processors 53

2.8.1 	Precise Interrupts 53

2.8.2 	Register Renaming 56

2.8.3 	Speculative Execution 58

2.8.4 	Dynamic Scheduling 59

2.8.5 	Data Memory Accesses 63

2.9 	Summary 65

Chapter 3 	Towards Asynchronous Superscalar Processors 67

3.1 Introduction 67

3.2 A Generic Superscalar Processor 68

3.3 An asynchronous dispatch buffer 71

3.3.1 	Communicating with the dispatch buffer 72

3.3.2 	Selecting ready instructions for dispatch 75

3.3.3 	Summary 79

3.4 Data Forwarding 80

3.4.1 	Data forwarding with locally in-order dispatch 81

3.4.2 	A simple write-back scheme 86

3.4.3 	Data forwarding with out-of-order dispatch 87

3.5 Alternative approaches 91

3.5.1 	Counterfiow-pipeline based dispatch buffer 91

3.5.2 	The FRED architecture 93

3.6 Summary 95

Chapter 4 	Compounded Instruction Architectures 97

4.1 Introduction 97

4.2 Instruction Compounds 98

4.3 Exploiting Compounds at Run-Time 100

4.3.1 	Overview of a compounding architecture 101

4.3.2 	Out-of-order dispatch 102

4.3.3 	Data forwarding 107

4.3.4 	An example 109

4.3.5 	Load and Store Operations 115

4.4 Dynamic Compounding 118

4.5 Summary 119

4

Chapter 5 	Results 121

5.1 	Introduction 121

5.2 	Experimental Setup 121

5.2.1 	Modeling techniques 122

5.2.2 	Benchmarks 125

5.2.3 	The models 126

5.3 	Synchronous Processor 129

5.3.1 	Queue-based Asynchronous Processor 133

5.3.2 	An asynchronous processor with out-of-order dispatch . 137

5.3.3 	An asynchronous compounded instruction processor . . 142

5.3.4 	Performance and complexity comparisons 148

Chapter 6 Conclusions and Future Work 151

6.1 	Summary 151

6.2 	Future Work 153

6.3 	Discussion 154

6.4 	Conclusions 156

Appendix A Published Papers 	 157

A.1 A Fully Asynchronous Superscalar

Architecture157

A.2 Instruction Issue and Data Forwarding

Mechanisms for Asynchronous Superscalar

Processors163

Bibliography 	 177

5

Chapter 1

Introduction

Advances in semiconductor fabrication, processor architecture, and compiler tech-

nology have enabled an exponential growth in microprocessor performance since

the early 1970s. The ability to sustain such rates of growth in this century de-

pends upon both the continued scaling of CMOS processes and the existence of

architectures and design techniques which are able to exploit them. Studies sug-

gest that improvements in process technologies will continue for at least another

ten years [1]. However, the designers of high-performance processors already face

serious problems in fully exploiting deep sub-micron technologies.

Higher performance has historically been achieved through a combination of

increased levels of instruction-level parallelism (ILP) and higher clock frequen-

cies. The introduction of deeper pipelines and advances in circuit design tech-

niques have allowed clock frequencies to increase faster than that made possible

by reductions in gate delay alone. The ability to maintain die sizes while re-

ducing feature sizes has also provided large increases in transistor budgets. This

has allowed ILP to be boosted through scope for greater speculation, dynamic

scheduling, and the duplication of functional units. Architecturally speaking,

general purpose high-performance processor design has converged, with the vast

majority of implementations adopting a superscalar RISC organisation to achieve

both a high clock frequency and to efficiently exploit the available ILP.

However increases in complexity and transistor counts cannot be achieved

without additional costs. Increases in clock frequencies and ILP, and greater

transistor counts have resulted in a sharp growth in power consumption. Tech-

niques for reducing and managing power have become important factors in the

design of all high-performance VLSI systems due to the problems of both supply-

ing power and the costs associated with cooling. Many of the current low-power

techniques are focussed on reducing the power dissipated when transistors switch

(dynamic power); these include: clock and signal gating, the use of multiple on-

7

8 	 Chapter 1 - Introduction

chip supply voltages, the dynamic scaling of supply voltage, and more recently

dynamic reconfiguration of components to minimise load capacitances [13, 25, 43].

Additional techniques will also be required to handle the predicted increases in

power due to leakage currents (static power), which are increasing by around a

factor of five per process generation [19]. Techniques proposed to combat static

power usage include: support for multiple threshold voltages, minimising the use

of wide transistors, and the use of power gating. Projected increases in both static

and dynamic power suggest that designs will be increasingly influenced by power

considerations. In architectural terms, designs will become increasingly irregular

in order to fully realise potential power savings. Limited power budgets will see

the creation of designs which carefully allocate the number of components run-

ning at the highest frequency and supply voltage. One vision of such a processor,

describes a high frequency core supported by lower frequency "helper engines".

In the initial design process functionality that may be implemented at a low fre-

quency, for example as a result of the availability of higher levels of parallelism,

is displaced to the helper engines to minimise overall power consumption [128].

A second technology trend is the increased cost of communication. While

local interconnect delays almost scale with gate delays, global interconnect does

not. This has led to an increasing proportion of the clock period being consumed

by interconnect delay. In the past, significant communication latencies have only

been encountered when communicating off-chip or at the board level. Future chip

designers will need to operate in an environment where a communication span-

ning the width of the chip will take many clock cycles. This problem has recently

been illustrated in the design of the Pentium IV processor where specific pipeline

stages are provided solely for the purpose of communication. Architectural tech-

niques such as the clustering of functional units have also been necessary due to

increasing interconnect delays [75]. The increasing interconnect delays relative

to the delay of transistors will lead to an increase in the range of on-chip delays.

Predicting the precise time required for such communications will also become

increasingly difficult as technology scales. Such calculations require a complex

analysis of capacitances and consideration of increasing process and environmen-

tal variations [167]. Even with improvements in interconnect materials, such as

the introduction of copper, and dielectric insulators, interconnect delay will still

have a significant impact on the development of future architectures.

The trends described above are also expected to be accompanied by a move

away from the implementation of a single clock domain. Local clock frequencies

are predicted to rise above 10Ghz, making it both unrealistic and undesirable to

Chapter 1 - Introduction 	 9

maintain global synchronisation. At present multiple clock frequencies are usually

only required to support off-chip accesses. In the future the number of individ-

ual clock domains and the associated synchronisation problems are likely to rise

considerably. Even with a move towards multiple clock domains, the generation

and distribution of clocks with cycle times of much less than a nanosecond will be

problematic. Significant resources are already required to analyse and construct

clock distribution networks [34, 401. This task is complicated by the introduction

of low-power techniques such as clock gating, which can potentially introduce

additional skew [1451.

The performance of synchronous designs will of course continue to grow even

in the presence of such technology trends. Engineering solutions will inevitably

be found and applied. The cost of such an approach will be a sharp rise in the

complexity of both the design and verification processes. However, as design

team sizes cannot grow indefinitely the degree to which the underlying technol-

ogy is exploited will be reduced. The fundamental problem is that the design

environment is steadily moving away from one in which a synchronous timing

regime may be applied efficiently. Traditionally, the clock has been viewed as a

simplifying assumption providing opportunities to exploit predictable behaviour

and minimise critical paths dominated by gate delays. Future designs will pose

different problems requiring the creation of far more heterogeneous systems to

tackle power and communication issues. Another key requirement in applying

a synchronous approach efficiently is the ability to accurately predict on-chip

delays. Future Deep Sub-Micron (DSM) technologies will provide a number of

challenges in this area, these include: the data-dependent nature of interconnect

delays due to coupling effects, state-dependent timing effects in newer technolo-

gies such as Silicon-On-Insulator (SOI), voltage drops due to large cycle-to-cycle

current swings, and increased thermal gradients [1]. As synchronous clock fre-

quencies must be set by considering worst-case delays, difficulties in predicting

delays and an increase in data-dependent delays will mean that on average the

amount of useful work performed in a clock cycle will drop.

1.1 A clock-free design approach

Shifting design trade-offs have led to the proposal that future VLSI systems

should be designed to operate asynchronously - removing the clock completely

and freeing the system from lockstep operation [124, 140, 59, 149]. In contrast to

synchronous systems, asynchronous designs operate in an event-driven manner.

10 	 Chapter 1 - Introduction

Operations are initiated with local communications and completion is detected

explicitly. In fact, the correct operation of the circuit is in many cases indepen-

dent of the delays of both gates and interconnect. Another consequence of the

way in which control is implemented is that superfluous switching activity is often

minimised. This can be considered as equivalent to a rigorous clock and signal

gating scheme, but unlike a synchronous design this behaviour is implicit in the

construction of many asynchronous systems. As operations are now initiated in

a data-driven fashion, free from any global timing constraints, switching activity

is also more evenly distributed. This helps to reduce the problems of high cycle-

to-cycle current variations and the clock-related electromagnetic emissions found

in synchronous designs. Finally, asynchronous techniques allow the construction

of circuits which operate correctly regardless of actual circuit delays. While this

reduces the need for precise timing information from a verification perspective, it

also has the potential to improve performance by exposing and exploiting actual

logic and interconnect delays.

Asynchronous or self-timed techniques are already in use in synchronous pro-

cessors where they are designed to operate within the constraints of the syn-

chronous clock period [78]. They are also generally accepted as one possible solu-

tion to the problem of providing a communication structure between many differ-

ent synchronous clock domains [1]. This has led to the development of Globally-

Asynchronous Locally-Synchronous (GALS) approaches [28, 164, 20, 93]. The use

of fully asynchronous techniques is far less widespread and is commercially limited

to a few designs with low power or EMI requirements [149]. One reason for this is

that in the past asynchronous design techniques have represented both area and

performance overheads due to the additional logic required for communication

and completion detection. With a significantly different set of design trade-offs

currently facing designers the relative cost of each approach to system timing is

set to change. In the long term, the ability of an asynchronous approach to sup-

port an increasingly heterogeneous timing environment and to minimise power

consumption will become increasingly important. The reduced importance of

absolute timing information and the composability offered by delay-insensitive

module interfaces also aids in managing verification and design complexity. To-

gether, these trends are set to make a fully asynchronous approach increasingly

attractive. At the same time, retaining a synchronous design style will lead to

increasingly inefficient implementations.

Chapter 1 	Introduction 	 11

1.2 Aims of the thesis

One obstacle to fully exploiting an asynchronous approach is the development of

architectures that are able to operate efficiently in an asynchronous environment.

While the synthesis and verification of asynchronous circuits has matured in the

last ten years [601, the design of high-performance asynchronous processors has

received less attention.
Many mechanisms in existing superscalar designs exploit the deterministic

and predictable nature of a synchronous system. These architectural features may

only be retained in an asynchronous design through the introduction of additional

synchronising communications. These synchronisations force the asynchronous

system to operate in a pseudo-synchronous manner. High-level synchronisations

potentially expose worst-case delays and limit the extent to which actual delays

may be exploited and the control overheads hidden.

Two mechanisms that traditionally rely on global synchronisation are data

forwarding and dynamic scheduling. These operations typically require commu-

nication between different pipeline stages that introduces the type of synchroni-

sations outlined above.
The aim of this dissertation is to investigate the impact of asynchrony on the

architecture of superscalar processors. Initially the transformation of traditional

synchronous architectures is explored. A number of techniques are presented

which can be used to provide mechanisms for out-of-order dispatch and data-

forwarding suitable for an asynchronous implementation. Later designs extend

these ideas by exploiting additional dependency information provided to the ar-

chitecture by the compiler. Each of the proposed designs is described and their

performance compared with a generic synchronous superscalar processor through

simulations.

1.3 Thesis Outline

A summary of the remaining chapters is given below.

Chapter 2 details four main background areas: (1) system timing, contrasting

the synchronous and asynchronous timing regimes; (2) the impact of scaling

CMOS technologies; (3) asynchronous processor architecture, presenting an

overview of previous work in this area and finally (4) an overview of the

architecture of existing synchronous multiple-issue machines.

Chapter 3 introduces the operation of a generic superscalar processor. The

12 	 Chapter 1 - Introduction

translation of this synchronous style architecture into one suitable for an

asynchronous implementation is then investigated. Alternative schemes for

both data forwarding and dynamic scheduling are presented which are able

to better exploit an asynchronous implementation.

Chapter 4 explores how dependency information extracted at compile-time may

be used to simplify the datapath. The technique of instruction compound-

ing is introduced which exploits information appended to instructions at

compile-time to provide a simplified implementation of both dynamic schedul-

ing and data-forwarding mechanisms.

Chapter 5 explores the performance characteristics of each of the architectures

presented in Chapters 3 and 4. A fully synchronous architecture is also

simulated and compared.

Chapter 6 summarises the work presented and discusses future work, including

the development of appropriate formal verification techniques and compiler

technology. Promising future directions are also identified and overall con-

clusions presented.

Chapter 2

Background

2.1 Introduction

This chapter explores the characteristics of both synchronous and asynchronous

design styles; trends in process technology are used to highlight the limitations of

enforcing global synchronisation with the growth in design sizes and the increase

in power requirements; an overview of the state-of-the-art in asynchronous pro-

cessors and contemporary synchronous superscalar architectures is also provided.

2.2 The Timing Regime

The physical nature of the components of a VLSI system make it impossible

to compose them without considering a suitable method for orchestrating their

operation. In contrast to systems where implicit synchronisation exists, the tran-

sistors which form the building blocks of a VLSI system cannot be guaranteed to

take an exact time to perform an operation. As a result, two distinct approaches

exist for designing VLSI systems. The first is to ensure that when logic gates

are composed they behave in a predictable and predefined manner (asynchrony).

The second is to accept any behaviour from the system as long as it settles to

provide a stable output within a given fixed time interval (synchrony). The fol-

lowing two sections provide a brief overview of the synchronous and asynchronous

approaches.

2.3 Synchronous Design

The vast majority of digital circuits designed today operate synchronously. The

aim of such an approach is to create a system whose observable behaviour develops

in a predictable and timely fashion. In a synchronous system this is achieved

13

14 	 Chapter 2 - Background

by organising circuit activity into discrete bursts followed by periods where the

system is guaranteed to be quiescent. A new burst of activity is then initiated as

soon as the results from the previous one have been saved. The system progresses

in lockstep in this way under the control of a globally distributed timing reference

or clock signal. The clock period is set to represent the slowest operation which

will ever need to be performed. This guarantees that at the end of each clock

cycle all operations will have been completed.

The design of synchronous systems begins at the cycle level, which makes it

easy to predict performance for a given clock frequency. Global synchronisation

provides the designer with complete control over system behaviour at this level.

Operations may be scheduled during the design process to take place at a par-

ticular time, or within a given clock cycle. From an architectural perspective,

the design may be optimised with knowledge of when a future operation will be

performed and with the availability of global state information. This often allows

control circuits to run in parallel with the datapath, preparing control signals

for the next cycle while datapath computations are performed. Conceptually the

circuit design process is simplified by hiding the transient behaviour of the cir-

cuits between clock edges. This allows logic to be optimised to produce results as

quickly as possible, regardless of the intermediate values which may be generated.

As the clock controls the rate at which operations are performed in such

a system, increasing the clock frequency will always improve the performance

of a particular design. This often means that the primary design goal is to

minimise the critical path until the required clock frequency and performance is

met. The probability of taking a particular critical part is unimportant, only that

it represents the worst-case delay. Optimisations at the circuit level are simplified

by the fact that the logic found between clocked registers is purely combinational.

The need to minimise only the worst-case logic path has a significant impact on

the structure of the final circuit. In practice, high clock frequencies are achieved

both through circuit level optimisations and architectural innovations. Pipelining

(see Section 2.6.1) in particular has played a key role in achieving high clock

frequencies in modern processors. In addition, the simplicity and effectiveness

of pipelining schemes means that it often provides significant reductions in the

energy-delay product [54].

As resources in a synchronous system are usually allocated at the cycle level,

resource utilisation is also often measured in terms of clock cycles. This is in

some ways misleading as the real resource utilisation within a clock period is in

fact much lower than 100%. The clock period not only accounts for the system's

Chapter 2 - Background 	 15

critical path, but must also include register setup and clock-to-output delays.

Delay modeling inaccuracies and environmental and process variations are also

accounted for with the inclusion of a clock safety margin. Finally, imperfections

in the clock generation (jitter) and distribution (clock skew) also require clock

periods to be extended. The key requirement in order to exploit the implementa-

tion technology when using a synchronous design style is the early and accurate

prediction of absolute delays in the design flow. This allows the identification of

critical paths and permits the necessary modifications to be made at the circuit

and architectural level.

A final issue with respect to synchronous circuits are the problems associated

with metastability [27]. Metastability may occur when flip-flop setup times are

violated, for example when attempting to synchronise an asynchronous input. If

this occurs the output of the flip-flop may hang at an intermediate voltage while

a decision to either rise or fall to a true logic level is made. To provide additional

time for metastability to resolve, such inputs are usually synchronised by passing

them through a number of flip-flops (usually two). Although the probability

of failure may be practically removed, the use of additional flip-flops increases

latency. This type of synchronisation is also required when interfacing two or

more independently clocked synchronous modules.

2.4 Asynchronous Design

Systems implemented using an asynchronous design approach operate without

reference to a global clock signal. In the absence of global synchronisation, com-

munication of data and the sequencing of control actions must be implemented

explicitly. In the case of communication this is made possible through the use

of handshaking and other delay-insensitive signalling protocols. Control circuits

to implement such functionality are distributed throughout the system wherever

communication or other control tasks must be performed. In such a system,

correct operation is no longer dependent on meeting strict timing requirements.

Instead, it relies only on controlling the order in which events are permitted to

occur. In fact, it is often the case that due to the data-dependent nature of

delays the precise ordering of independent events within the system will be non-

deterministic. The following sections provide a brief overview of the implications

of taking such an approach for both the circuit design and the architecture.

16 	 Chapter 2 - Background

2.4.1 Asynchronous circuits

The value on a wire in a digital system changes whenever a transition from one

logic level to another occurs. Within an asynchronous circuit this is often called

an event. Events which occur on non-clock signals in synchronous systems are

unable to influence functionality, only their value when an event occurs on the

clock wire is important. In practice, due to varying delays through different logic

paths, a particular wire in a block of combinational logic may perform a number

of transitions before reaching a stable value. The potential for the generation of

such intermediate values on the outputs of logic gates is called a hazard. Hazards

may also result in incomplete or non-monotonic transitions. In an asynchronous

system, where all events potentially influence behaviour, it is important to ensure

that such glitches do not cause the circuit to malfunction.

Due to the potential for hazards, the number of useful asynchronous circuits

that operate correctly free from any assumptions about wire and gate delay is

limited. Practical synthesis and design methodologies usually operate under a

more relaxed timing model, e.g. speed-independence, where the delay of wires

is considered to be insignificant. Such assumptions are realistic when they are

applied locally, to so called equipotential regions. Communication between these

regions may be handled using delay-insensitive signalling conventions. Self-timed

systems, introduced by Seitz in [124], is an example of a scheme which follows

such an approach.

In general, the process of designing asynchronous circuits is simplified by

local timing assumptions about the environment and the internal delays of the

circuit. Over time an increasing number of internal timing assumptions have

been introduced in order to optimise designs. Possible delay models range from

the fully Delay-Insensitive (DI), where no constraint is placed on any gate or

wire delay, to timed-circuits [65, 100, 150] where bounded-delay assumptions are

made about both internal delays and the environment. More recently, relative

timing assumptions [138] have been used to optimise the synthesis of asynchronous

circuits. A more complete introduction to the theory of asynchronous circuits may

be found in [60].

The complexities of ensuring that asynchronous circuits behave correctly un-

der a particular delay model often preclude the use of ad-hoc circuit design meth-

ods, or the reliance on simulation alone to ensure correct operation. The need to

specify concurrency and handle delay assumptions at the circuit level also means

that traditional state-machine based specifications cannot always provide a suit-

able formalism for synthesis or verification. As a result, much of the research in

Chapter 2 - Background 	 17

asynchronous systems has focused on techniques for specification, synthesis and

formal verification. Synthesis techniques broadly fall into two categories: graph

based synthesis techniques and syntax-directed translation approaches. Graph-

based methods manipulate Petri-net or signal transition graph (STG) specifica-

tions. Such representations offer a simple way to describe concurrency, this is

important as many asynchronous control circuits have a high-degree of concur-

rency, permitting a complex interweaving of events at their interface. A number

of freely available CAD packages may be used to automate the tasks of state

assignment and technology mapping - these include Petrify [31] and SIS [80].

Such approaches are usually limited to specifying small asynchronous control cir-

cuits due to the problems of state space explosion. An alternative is to specify

systems using parallel programming languages that are then translated to asyn-

chronous circuit implementations. The translation process compiles high-level

descriptions into low-level programs whose operations map directly to a library

of asynchronous components. The final circuit may be improved further by ap-

plying a range of peep-hole optimisations. Examples of such systems include:

work on translating Occam to delay-insensitive circuits [23], the Philips Tangram

system [17], Manchester's Balsa system [14] and the CSP-based approach taken at

Caltech [86]. In general, direct translation methods provide a guaranteed route to

an implementation, regardless of the complexity of the specification. In contrast,

state-based techniques are limited to smaller specifications but provide the ability

to create highly optimised solutions. Attempts to combine both approaches have

also been explored [111, 77].

The absence of a clock signal in an asynchronous system poses the question of

how we can choose between two potential inputs without suffering from the prob-

lems of metastability. While it is impossible to detect or remove metastability,

asynchronous circuits are free to wait for it to resolve. This is in contrast to a syn-

chronous circuit where the hard deadline for metastability resolving is the arrival

of the next clock edge. Circuits that implement mutual-exclusion or arbitration

functions are provided with a metastability filter, preventing metastable states

propagating to their outputs [124, 1231. Multi-way arbitration is also possible by

combining two or three-way arbiters into tree structures [69, 1591 or through the

use of token based ring arbiters [157].

2.4.2 Communication and delay-insensitive signalling

In a clocked system all communication takes place simultaneously at the end of

each clock cycle. In the absence of global synchronisation, asynchronous sys-

18 	 Chapter 2 - Background

tems must initiate communication explicitly. The handshake protocol provides a

suitable delay-insensitive signalling convention for such communications. A re-

quest signal is used to indicate the desire of the sender to communicate, while an

acknowledgement signal produced by the destination indicates that the commu-

nication has completed.

Request 	I 	 I

	

ItI 	I
Sender 	Acknowledge 	Receiver

ii

req

\/

ack

Handshakel Handshake2
Two Phase Protocol

Handshakel
Four Phase Protocol

Figure 2.1: Two and Four phase handshaking protocols

Figure 2.1 illustrates two such protocols. These protocols differ in the number

of signal transitions used to complete a communication. In the two-phase or

transition signalling scheme, a single event is used to generate a request prompting

a single event as an acknowledge. As a consequence, the levels on the acknowledge

and request wires have no meaning. An alternative is to use a four-phase or level-

signalling protocol and ensure both request and acknowledge wires are returned-

to-zero (RTZ) after each communication. In this case the levels on the request

and acknowledge wires indicate a particular phase of the handshake.

The choice of handshaking protocol influences the design of the corresponding

interface circuits. In general, it is accepted that four-phase protocols result in

smaller interface implementations, while the fewer transitions required by a two-

phase approach may result in power and performance advantages. The trade-

off is complicated by architectures that effectively hide the RTZ phase of the

four-phase handshake by performing other useful operations in parallel. Timing

assumptions can also be introduced into the protocol to improve performance [90].

Four-phase protocols may also be competitive in terms of power consumption

when simplifications to the interface circuitry due to a reduction in state are

Chapter 2 - Background 	 19

considered. An alternative to using a transition to represent an event is to use

a complete pulse, such ideas have recently been revisited in [112, 1391. This

approach potentially combines the simplicity of the two phase protocol with the

advantages of returning-to-zero as found in the four phase system.

In addition to performing purely control related tasks, the handshaking proto-

cols described above are also used to transmit data. As the simultaneous arrival of

both data and request signals cannot be guaranteed under a delay-insensitive de-

lay model, a technique is required to detect when data is present. The arrival of a

particular bit of data is only possible if it produces an event on a wire. If the data

was sent unencoded this would mean that only those bits whose values changed

could be detected. To overcome this limitation a number delay-insensitive codes

have been devised [63, 152, 21]. Dual-rail encoding is one such technique. Here

two bits are used to encode each bit of data, allowing the presence or absence of

valid data to be established. The encoding is illustrated in Figure 2.2, where DO

and Dl are the two wires used to transmit the data. A high logic level on both

wires is not usually permitted in normal operation and may be used to indicate

an error has occurred.

Data DO Dl

No value 0 0

Logic 1 0

Logic 0 1

Illegal 1 1

Figure 2.2: Dual-rail delay insensitive encoding scheme

One potential disadvantage of such techniques is the circuit and performance

overhead required to encode and decode data. An alternative to detecting the

presence of data is to simply introduce a safety margin by delaying the request

event. This ensures that the request arrives after new data values have been

established at the receiver's interface. This approach is called bundled data.

Both the bundled-data and delay-insensitive encoding schemes are also used

when completion signals must be generated for combinational logic, e.g. a func-

tional unit. In such cases, both schemes may be employed together. For example,

delay-insensitive codes may be preferred for paths with significant data-dependent

delay while other delays are modelled with a bundled data approach [51]. Bit-

sliced and pipelined completion detection techniques have also been developed in

order to achieve high performance [88].

Alternatively, the inactivity at the end of a computation may be detected

20 	 Chapter 2 - Background

directly at the circuit level, either through current sensing techniques [32, 33] or by

monitoring the activity of nodes within the combinational logic [57]. The bundled

data approach may also be extended to model a range of delays. Techniques exist

for dynamically selecting a fixed delay depending on input data values to avoid

worst-case performance [104].

2.4.3 Control circuit architecture

Control in synchronous systems tends to be centralised. This is a consequence

of the availability of a global system state, which is readily available due to the

lockstep operation of both control circuits and the datapath. In contrast, the

interface between control circuits and the datapath in an asynchronous environ-

ment is an event-driven one. The need to service local communications between

different control and datapath circuits efficiently suggests that control should be

distributed.

A fine-grain highly concurrent control structure is required to produce the

complex interweaving of events necessary to exploit actual circuit delays. An ex-

cellent example of how distributed control may be utilised is the micropipeline [140].

Figure 2.3 shows two pipelines (with processing logic omitted), the uppermost

is a traditional synchronous pipelined constructed from edge-triggered flip-flops,

while the micropipeline version is shown below. The only control signal required

in the synchronous case is a simple square-wave clock signal. Each time a rising

clock edge is received by the flip-flop's clock input, data in the pipeline is shifted

forward by one stage.

The asynchronous version has no global control signals, each stage has a DI

interface, which is used to communicate with the previous and next stages. Each

stage uses these local handshake signals to determine the earliest time at which

the next stage may receive its data. The example shown here uses a two-phase

handshaking protocol as described in the previous section. Only a single gate is re-

quired to produce the necessary control for each stage. The Muller C-elements [99]

used to produce the necessary handshaking signals may be thought of as an AND-

gate for events. Only when an event has occurred on both inputs will an event

occur on the output. The C-element's truth table and a possible standard cell

implementation are shown in Figure 2.4. Fixed delays account for the logic and

interconnect between each pipeline stage (bundled-data), although completion de-

tection techniques may also be used. The state storing elements are also modified

in the asynchronous case to operate under the control of events.

The resulting behaviour creates an elastic pipeline where both the number of

Chapter 2 - Background 	 21

Clock - ----- --------- - --------- - --------- I

D(in)

H

\:f 	

D(out)

R(m) -" rI1 	R(out)
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I 	 I
I
I 	 I
I 	 I
I 	 I
I 	 I
I 	 I

I 	 I 	I I

CPd

I

CdP CPd 	Cd?' H__
Cd

 P

I 	D(out)
II-

_ _

A
C Pd Cd P C Pd I 	I

I 4

A k-7,
I

I 	-------i
I

I
I
I

I 	I 	 I 	I
I 	'------ 	I 	I
I 	 I 	I

I
I
I
I
I

I
I
I
I
I

I 	 I 	I
I 	

c1I 	
I

I 	 I
I 	 I 	I
I 	 I 	I
I 	 I 	I

A(in) 	 '-I
'- 	

I ----- A(out)

Figure 2.3: Synchronous and Asynchronous Pipelines

data items and the rate at which they move through different stages may vary.

Such structures are potentially able to exploit variations in the delay of each stage.

With adequate buffering and completion detection this may allow performance

to tend towards the average case as opposed to the worst [73]. Two-dimensional

micropipelines [55] and micronets [9, 8, 117] have also been explored. The design

of the micropipeline latch control logic has received much attention, and many

designs have been suggested for both two and four-phase styles [3, 44, 141, 165].

The organisation of control is critical to obtaining high-performance in an

asynchronous environment. The implementation of control in a synchronous sys-

tem is simplified by the fact that the granularity of parallel operations is in most

x y
o 	0 	10
o 	1 	Z
1 	0 	I z
1 	1 	Ii

Y

Figure 2.4: Truth table for C-element and a standard cell implementation

22 	 Chapter 2 - Background

cases limited to the cycle level. In many cases control is able to run in parallel

with datapath operations due to the deterministic and predictable nature of the

system. Asynchronous designs must expose fine-grain parallelism in order to ex-

ploit local timing variations, but must also ensure that the handshaking and other

control signals themselves do not represent a significant performance overhead.

These aims influence the design of both circuits and architecture. Trade-offs are

often necessary between parallelism, circuit complexity and the resulting speed of

circuits. These problems, common to the designers of synchronous systems, must

now be made at a much lower level of design.

A number of common problems which may limit the performance of asyn-

chronous designs are enumerated below. These issues impact on both the design

of local control circuits and overall architecture.

The generation of handshaking signals in order to communicate between

control or datapath components represents a control overhead.

Overheads exist due to completion detection logic or delay matching safety

margins.

A computation's average delay may naturally tend towards its worst-case,

providing little scope for exploiting local variations in delay.

Buffering will often be required to exploit variations in datapath delays,

unfortunately the buffer itself will introduce an additional delay.

System performance may be limited by bottlenecks that are unaffected by

the choice of timing regime, such as the latency associated with accessing

main memory.

Synchronisations may be required that mitigate the advantages of exposing

a range of processing or communication delays.

When multi-way arbitration is required in an asynchronous system it may

be slow and complex. Equivalent operations are often simplified in the

presence of global synchronisation.

The ability to optimise asynchronous logic may be restricted by the need

to consider its transient behaviour.

One final consideration is the problem of ensuring that correctness is main-

tained at the architectural level. While distributing control may produce the nec-

essary concurrency, care must be taken to avoid potential deadlock conditions.

Chapter 2 - Background 	 23

As a result formal verification is often required to ensure that such situations

cannot occur.

2.4.4 Mixing Synchronous and Asynchronous Techniques

Globally Asynchronous Locally Synchronous (GALS) systems [28, 164, 61, 120, 6]

aim to exploit many of the advantages of both clocked and asynchronous design

styles. Synchronous modules, potentially working at a range of clock frequencies,

are composed using an asynchronous communication structure. This allows syn-

chronous design techniques to be applied locally, where interconnection delays are

relatively small and global synchronisation may be achieved at a reasonable cost.

Providing a reliable communication mechanism between independent clock

domains is a well known problem. Traditionally, inputs that are asynchronous to a

particular clock domain are synchronised by passing the input signal through two

flip-flops, as described previously. The probability of failure due to metastability

not resolving in time may be reduced to an arbitrarily small number by increasing

the time provided for its resolution [125]. Here a trade-off is made between

reliability and latency.

An alternative and completely reliable approach is to stretch the clock of the

module receiving data when additional time is required to resolve metastabil-

ity [20, 164, 93]. In this case the clock must be generated locally using a pausible

ring oscillator [94, 1641. Limits to the performance of such an approach are im-

posed by the requirement that the clock period must be larger than twice that

of the clock tree insertion delay. This is necessary to ensure that no more than

a single clock edge is present in the clock tree at any one time. This guaran-

tees that the clock may be paused when necessary [164, 127]. Unfortunately,

high-performance designs already require that multiple clock edges are generated

before the first edge appears at the outputs of the clock tree. This problem is

compounded by the need to gate clock signals in order to reduce power dissipation

(clock gating), which also leads to an increase in insertion delay.

For the highest performance systems, such as a superscalar processor, GALS

techniques may be difficult to apply. Traditional synchroniser designs represent a

minimum synchronisation delay of at least two clock periods, an increase in this

delay may also be necessary as clock frequencies rise. Generating pausible very

high-frequency clocks on-chip with the necessary characteristics would also be dif-

ficult. One possible approach would be to reduce clock tree delays by increasing

the number of clock domains, although the latency penalty involved in commu-

nicating between a large number of clock domains may be too large. A more

24 	 Chapter 2 - Background

realistic approach may be to simply generate clock domains with clock frequen-

cies which are either equal or at integer multiples of each other. The remaining

uncertainity in the phase of each clock can then be tackled by adaptive synchro-

nisation techniques [34, 53]. This approach would also require interconnect to

be routed from each clock domain to a central phase detector, which limits the

scalability and performance of such an approach.

2.5 The impact of process scaling

Figure 2.5 shows the recorded reduction in feature size for CMOS processes over

the past fifteen years and the SIA [1] predictions for the next fifteen years. Histor-

ically each successive generation has offered improvements in the speed, density,

and power consumption. As technologies continue to scale the ability to ex-

ploit potential gains with current design methods is becoming increasing difficult.

Much of the renewed interest in asynchronous circuits is a result of these chal-

lenges and the potential advantages asynchrony offers. This section provides an

overview of process scaling and its impact on the choice of control paradigm.

(4)

C)
U
0
I-

a-

10

1

0.1

0.01

—.—Actual
—s-- Predicted

1980 1985 1990 1995 2000 2005 2010 2015

Year

Figure 2.5: Process Generations

Each new generation of CMOS technology provides around a 30% reduction

in the lateral and vertical dimensions of a transistor, reducing capacitances and

hence switching time. Performance improvements due to technology alone have

Chapter 2 - Background 	 25

accounted for around a 30 - 35% increase in microprocessor performance per

year [62, 19] since the mid 1980s.

Dynamic power consumption is also reduced as the capacitance switched falls.

Power = C x V 2 x f 	 (2.1)

As a consequence a 30% reduction in capacitance translates to an equivalent

saving in power dissipation. In practice faster switching times are exploited to

enable designs to operate at a higher clock frequency. In ported designs where the

supply voltage remains constant and the clock period is reduced by 30%, power

requirements remain constant. An alternative to constant voltage scaling is to

lower the supply voltage in addition to feature sizes (constant field scaling). A

30% reduction in supply voltage results in a 50% reduction in power, even after

the clock period is scaled. The range of supply voltages used in each process

technology is shown in Figure 2.6. Traditionally lower voltages have been used in

power critical applications such as battery powered devices. When performance

must be maximised higher voltages have been advantageous.

5

C)
tM
cC
4-

0 >
0.
0.

U)

[SI

1.5 	1 	0.8 0.6 0.5 0.35 0.25 0.18 0.13 0.1 0.07 0.05

Process (pm)

--- Max Performace —a— Lowest Powe r I

Figure 2.6: Voltage Scaling. Values after 0.18jim are predictions [1].
Recorded results are taken from major microprocessor generations.

Figure 2.7 plots the actual and predicted power requirements of high perfor-

mance microprocessors. The trend is in fact one where power requirements are

increasing even after supply voltage is scaled. This is a result of new processor

designs which exploit greater numbers of transistors and which accelerate the

26 	 Chapter 2 - Background

increases in clock frequency. One example of this is the use of deeper pipelines

by reducing the number of logic levels required per pipeline stage. Greater levels

of ILP, made possible through speculation and dynamic scheduling, also lead to

increased power requirements as a result of higher resource utilisation. These

rising requirements power will force a steady convergence of supply voltages to

their minimum, as illustrated in the graph.

200

IE;I'J

160

140

120

100

E 80

60

40

4911

[II

Predictions

Alpha 21364
(prediction)

c Alpha 21264

Alpha 211640 	 • Intel P11
Intel Pentium 	• Intel Pill • 	

Pro
• Intel P5

• Intel 386

1 	0.8 	0.6 	0.5 0.35 0.25 0.18 0.13 0.1 	0.07 0.05

Process (jnii)

Figure 2.7: Power Dissipated by a selection of microprocessors and predicted
values for future high-performance designs [1].

Large power requirements pose problems both due to the heat that must be

removed and the supply of power to the die. Dissipating more than around 30W

of power begins to add sharply to the total integration cost [145]. Hot spots in a

design also limit performance; this problem will be compounded by the negative

impact of high temperatures on static power dissipation [19]. It has already been

seen that reducing supply voltage alone is inadequate in preventing increases in

power, in response recent microprocessors have begun to include other approaches

to lowering power.

The largest component of CPU power is currently consumed when transistors

switch; as a result many low power techniques attempt to reduce unnecessary

circuit activity. The fact that circuits are active even when they are not taking

part in useful work is often due to the clock. Isolating inactive subsystems from

the clock by clock gating [115] is one technique used to circumvent this prob-

lem. Signal gating is also used on non-clock signals for similar reasons, e.g. the

inputs to a multiplier may be isolated when it is not in use. While clock and

signal gating are used successfully to reduce power consumption in synchronous

Chapter 2 - Background 	 27

circuits, their use complicates both circuit design and timing analysis [58]. In

particular additional logic in the clock tree complicates the analysis of skew. Ex-

plicit control is also required for each module whose clock is gated. For these

reasons the granularity to which these techniques may be applied is limited [145].

In contrast, the event-driven nature of asynchronous circuits allow them to nat-

urally avoid superfluous circuit activity. Clock gating may also introduce large

cycle-to-cycle power fluctuations placing additional requirements on the power

supply. The concentration of switching activity at the point the system is clocked

also produces similar problems, requiring careful design to minimise any resulting

voltage drops [56]. Asynchronous circuits, in the absence of global synchronisa-

tion, may spread switching activity more evenly over time, thus alleviating such

problems. This also aids in the reduction of electro-magnetic radiation emis-

sions [47, 109, 291.

Static power requirements due to leakage currents are also increasing. Sub-

threshold leakage currents increase exponentially as a result of reductions in

threshold voltage, which are required to maintain switching times as the supply

voltage is lowered. Gate oxide leakage is also increased as gate oxide thickness is

reduced. Figure 2.8 (reproduced from [145]) shows a first order analysis of these

leakage trends.

10000

1000

0
0
I-. 	100

10
0.25 	 0.18 	 0.13 	 0.09 	 0.06

Process (pm)

Figure 2.8: Static and Dynamic Power Trends. Trends for static and dy-
namic power are calculated using constant field scaling. The total power
requirements for the case where voltage remains constant is also shown.

The increased importance of both dynamic and static power consumption also

28 	 Chapter 2 - Background

makes the need to minimise worst-case delays increasingly costly in a synchronous

design. As critical paths determine clock frequency, they must be optimised how-

ever rarely they are followed. In previous process generations where gate-delay

has been the overriding performance limiter, the addition of extra gates to reduce

critical path delays has not been too costly. A potential advantage of asyn-

chronous circuits is their ability to exploit average-case delay as power limits

both the number of transistors and transitions. Implementations are possible

which sacrifice worst-case delay to achieve a far simpler implementation with

equal or improved average-case performance. Examples include, adders and di-

viders [87, 51, 105, 156], and other complete datapaths [18, 166, 15, 103]. The

fine-grain control over resource allocation may also help in reducing resource re-

quirements. While resources must be budgeted for a worst-case scenario in the

synchronous case, asynchronous systems can potentially operate with fewer re-

sources, if adequate buffering in the system can provide smoothing for peaks of

high utilisation.

The continuing increase in the performance of synchronous systems also de-

pends on the generation of high-frequency clocks. This in itself is a complex

design problem requiring significant design resources [34, 40]. Minimising clock

skew is a major problem in the presence of supply voltage and process variations.

Recent designs have required adaptive de-skewing circuits to minimise skew due

to on-die variations [34]. Distributing sharp clock edges and minimising skew also

requires large clock buffers, with substantial power requirements. The generation

of the global clock signal (even before conditional and local clocks are generated)

often account for the single highest use of power. For example the global clock

network in the Alpha 21264 microprocessor accounts for 32% of total power re-

quirements. As clock periods decrease, multiple clock periods must exist in the

clock distribution network simultaneously, further complicating design. Alter-

native approaches to clock distribution have also been explored. Wireless clock

distribution using integrated CMOS receivers has been demonstrated at frequen-

cies approaching 10GHz [42]. Similar approaches using optical injection are also

being explored [98].

Interconnect, together with transistor dimensions, is also shrinking. By re-

ducing the length of wires their overall delay falls in line with gate delay. In

the case where wire lengths cannot be reduced, delays will not scale as the over-

all resistance of the wire increases as the area of the cross-section is reduced.

Replacing aluminium interconnect with materials with a lower resistivity, such

as copper, is one way to lower the delay of global interconnects. Replacing the

Chapter 2 - Background 	 29

traditional silicon dioxide interlayer dielectric with materials with a lower dielec-

tric constant will also bring improvements. Another possibility is to increase the

width and height of wires to reduce their resistance, the so called negative scaling.

The requirement for fat wires leads to hierarchical wiring solutions and increased

levels of wiring. The most dense level of wiring is available at the bottom while

the uppermost layers contain fatter wires suitable for global interconnect [142].

Of course, interconnect performance is ultimately limited by the speed of light,

regardless of the actual implementation of the communication mechanism.

Reducing metal interconnect spacings while maintaining taller wires to reduce

resistance also exacerbates the problem of cross capacitance between neighbouring

wires. The result of such crosstalk is to alter the interconnect delay. If the

transitions on neighbouring wires are in the same direction, the delay will be

reduced, while transitions that occur in opposite directions increase delay. The

impact on delay is determined by how close the transitions occur and their slew

rates [72]. Operating asynchronously has the advantage that transitions are not

forced to occur together, hence providing an opportunity to reduce the impact of

crosstalk. The use of delay-insensitive signalling schemes also allows variations

in interconnect delay to be exposed and exploited. The encoding scheme itself

may also reduce crosstalk by reducing the number of neighbouring data wires

which change simultaneously [12]. In a synchrohous environment, the insertion

of inverters to stagger signals and balance the effect of aggressor signals can help

reduce crosstalk, at the cost of increasing time of flight. Other schemes focus

on the provision of shielding. In both the synchronous and asynchronous cases

crosstalk noise has the potential to change logic values and lead to failure.

Large variations in interconnect delay, increasing power usage and the diffi-

culties in maintaining global synchronisation (low skew) at high-frequencies have

led to suggestions that multiple on-chip clock domains will be required. The use

of asynchronous logic to implement a global interconnect between such frequency

domains has also been predicted [1]. From a power perspective, the possibility

of selecting from a range of clock frequencies aids in making judicious use of the

available power budget. Where performance goals can be met at a lower clock

frequency, either due to higher levels of available parallelism or lower require-

ments, a lower clock frequency will save on dynamic power. Dual Vt processes

can again make similar savings in static power dissipation if lower performance

can be tolerated. Increased levels of integration and design reuse also suggests

that designs from different sources will be integrated, requiring support for a

range of clock frequencies. The need for multiple frequency domains also requires

30 	 Chapter 2 - Background

the generation of multiple clock signals and their distribution. A latency penalty

must also be paid when communicating between different clock domains due to

the synchronisation overhead.

2.5.1 Summary

The previous section described many potential advantages of adopting an asyn-

chronous approach. It is also true that techniques are being developed which

enable synchronous designs to mimic many of these advantages, but their appli-

cation is usually at the cost of increased complexity and design time. The most

significant reason for a shift to an asynchronous approach would be in order to

reduce this complexity. The biggest gains will come in providing clear interface

specifications free from timing assumptions and a significant easing of the reliance

on accurate physical timing information.

2.6 Asynchronous Processor Architecture

This section describes the problems in attempting to adapt synchronous pipelined

architectures to operate asynchronously. Much of the previous work in this area

is also reviewed. The introduction of asynchronous control influences processor

design at the architectural level. The greatest impact comes from the lack of

implicit knowledge about datapath state. Control decisions can only be made

with state information available locally, or with data obtained through explicit

communications.

2.6.1 Asynchronous instruction pipeline

Pipelining divides an instruction's execution into a number of distinct stages. The

execution of a number of instructions is then overlapped by allowing instructions

at different stages of execution to progress concurrently. Figure 2.9 illustrates a

possible organisation of a five stage pipeline.

In such a pipeline, the register file represents the lowest level of the memory

hierarchy and provides the basic mechanism for naming operands and communi-

cating results. In the absence of pipelining, all the values stored in the register

file are up to date when each instruction begins to execute. In a pipelined archi-

tecture, data values are read and written at different stages; as a consequence, it

may no longer be the case that results are immediately available from physical

registers.

Chapter 2 - Background
	

31

Clock

Write

Fetch 	
Decode Ø'j H Execute H H Memory 	

Back

	

Instruction H I Ihstruction I I 	

AccessI IRegReadi I

Figure 2.9: A typical RISC instruction pipeline

Consider the example in Figure 2.10. At time t+2 the second instruction will

attempt to read the result generated by the first. In this case, the data obtained

from the register (Ri) will be incorrect as the first instruction will not write its

result to the register file until time t+4. The correct value will not be available

from the register file until time t+5.

Time

Instr Dest, Srcl, Src2

ADD Ri, R2, R3

SUB 	R2,R1,R4

t 	t+1 	t+2 	t+3 	t+4 	t+5

IF ID EX MEM WB

WB IF ID EX MEM

IF ID EX MEM WB

IF ID EX MEM I 	WB

Figure 2.10: A pipeline hazard (true dependency). IF = Instruction Fetch,
ID = Instruction Decode, EX = Execute, MEM = Memory access, WB =

Write Back.

If no other communication mechanism could be provided within the pipeline,

such dependencies would force instructions to be stalled or rescheduled at compile-

time. To overcome this problem, additional buses are usually provided to bypass

the register file, allowing results to be sent directly between pipeline stages. This

mechanism is called data-forwarding. Figure 2.11 illustrates the various buses

used to forward results to the input of the execute stage for a single operand.

The multiplexor, at the input to the execute stage, selects one of three pos-

sible sources of data: the register value read in the previous stage, the result

of the last instruction (ALU), or the result of the instruction before that (ALU

or memory). Results which are read from the register file on the same cycle as

they are written are obtained through bypasses in the register file. An alternative

to providing bypasses is to order writes and reads within a single clock cycle.

Memory instructions require two execute cycles (address calculation and memory

32
	

Chapter 2 - Background

Figure 2.11: An instruction pipeline with result forwarding

access) which means that the result of a load is not immediately available to the

next instruction even with data-forwarding. This situation is usually handled by

stalling the pipeline, known as a pipeline or hardware interlock, or by introducing

load-delay slots into the program [62].

By operating synchronously a snapshot of the datapath state at the start of

the current clock cycle is always available to the control logic. This makes it

trivial to determine the correct source of data for a particular operand. The

lockstep operation of both datapath and control logic also guarantee that the

data at the selected source will always be valid. For example, if an instruction I

enters the execute stage we can assume that instruction 1-3 must have completed

write back and that the data read during instruction decode is valid.

2.6.2 An asynchronous instruction pipeline

The previous section has shown how synchronous architectures are able to exploit

implicit state information in the implementation of both register-based commu-

nication and data-forwarding. The elastic nature of an asynchronous pipeline

prevents any assumptions being made by one pipeline stage about the state of

another. The implicit state information available through global synchronisa-

tion must be reproduced by explicit communication or maintained as local state

information.

Register based communication may be extended for use in an asynchronous

environment with the addition of a locking mechanism. The register locking mech-

anism allows the reading of a particular register to be stalled until pending writes

have completed. A simple locking scheme is implemented by appending an extra

bit to each physical register. Each instruction's destination register can now be

locked by setting this bit during decode, which is reset and the register unlocked

after the instruction's write-back operation has completed. Any reads that are

Chapter 2 - Background 	 33

made when the register is locked are stalled. The issue units of early supercom-

puters, including the CRAY-I, used the same scheme to enforce dependencies

(here the bits were called busy bits) [153].

Time

Instr Dest, Srcl, Src2 	Lock Ri Ri unlocked 	 Ri unlocked

(Ii) ADD RI, 112, R3 I 	if II) EX MEM WB Lock Ri
N

 SUB R2, Rl, R4 ID -9
i 	read EX MEM WB

 ADD RI, R5, R6 I 	I IF ID EX MEM

Lock Ri

I 	I stage stalled

Figure 2.12: Register locking in an asynchronous pipeline. IF = Instruction
Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory access,
WB = Write Back.

The mechanism is illustrated in Figure 2.12. Instruction Ii locks its desti-

nation register during instruction decode. Instruction 12 is subsequently stalled

when it attempts to read register Ri until Ii has completed its write back oper-

ation.

The lock bit is associated with the execution and completion of a single in-

struction. In a vanilla RISC pipeline this is usually adequate. In the example,

instruction 13 is prevented from locking its destination register too early by the

intermediate instruction 12. If this was not the case, the potential exists for 13 to

lock register Ri when it is still locked by Ii. This would result in instruction Ii

clearing the lock before 13 had completed. Where such intermediate instructions

cannot be guaranteed, e.g. when conditional execution is supported, additional

lock bits may be required. An alternative is to stall each instruction until the lock

bit corresponding to their destination register is clear. This also ensures correct

operation in the presence of out-of-order write-backs [117].

The lock FIFO has been proposed as a scheme for organising multiple lock

bits [110]. Destination register identifiers are decoded and stored in the lock

FIFO. The lock status of a particular register is determined by obtaining the

logical OR of all bits in the column of the FIFO associated with the register.

Figure 2.13 shows the logic associated with each register to obtain write and read

select signals. The scheme allows a register to be locked a number of times and

also generates write select signals during write back. An interesting feature of the

queue is how entries propagate in the FIFO (micropipeline) without invalidating

the lock bit, this is achieved by temporarily holding entries in both the succeeding

and preceding stage.

34 	 Chapter 2 - Background

Allowing multiple instructions with the same destination register to be in-flight

simultaneously may in general complicate the process of issuing instructions and

writing back results, while also limiting ILP. Register renaming (see Section 2.8.2)

removes these problems by providing each instruction with a unique physical

destination register.

Opt - First decoded operand

Op2 - Second decoded operand

D - Decoded destination register

EJI

Write Select 	Read Select 	 Write Select 	Read Select 	 Write Select 	Read Select

Register N- I 	 Register N 	 Register N+1

Figure 2.13: The lock FIFO

To maintain performance a data-forwarding scheme must also be incorporated

into the asynchronous instruction pipeline. The challenge presented by an asyn-

chronous pipeline is that we can now longer predict where a particular instruction

or result is in the pipeline. The communications necessary to identify the location

of a result would in fact synchronise the operation of pipeline, mitigating many

of the advantages of the asynchronous approach.

• A number of different asynchronous architectures are reviewed in the follow-

ing sections. Each uses a different approach to handling dependencies in an

asynchronous environment. Many organise their functional units in parallel in an

attempt to increase their utilisation, which may be useful even in scalar machines

if functional unit delays vary and out-of-order write-back is possible.

2.6.3 Amulet Processors

The Amulet group at the University of Manchester have designed and fabricated

a number of asynchronous microprocessors since 1990 [45, 47, 46]. Three ARM

compatible microprocessors have been developed with increasing levels of perfor-

mance and functionality. The latest AMULET3 design is said to have broadly

Chapter 2 - Background 	 35

the same performance as a synchronous ARM9 processor operating at 120Mhz

(manufactured in the same technology).

From an architectural perspective, each design has included a more sophisti-

cated approach to handling dependencies. The AMULET1 relied solely on the

lock FIFO as described in the Section 2.6.2 to ensure dependencies are respected.

The development of AMULET2 aimed to improve performance. In addition to a

move from 2- to 4-phase handshaking, a form of data-forwarding was also intro-

duced. Designs have generally used a bundled-data implementation style.

Store Data

W Bus

Figure 2.14: AMULET2 style pipeline

A simplified block diagram of the AMULET2 organisation is shown in Fig-

ure 2.14. In the generic RISC pipeline described in earlier sections, all instructions

were forced to spend at least one clock cycle in every pipeline stage. An alter-

native to this is to skip pipeline stages when they are not required. In the case

of AMULET2 the memory access pipeline may be bypassed. This behaviour is

advantageous as it prevents the availability of independent ALU results depend-

ing on the completion of earlier memory operations. A consequence of this type

of organisation is the need for out-of-order write backs. For this reason a sepa-

rate lock FIFO is used for internally generated results and loads from memory.

The possibility of write-after-write (WAW) hazards may be avoided by stalling

the issue of an instruction until its destination register is unlocked (in the other

FIFO).
The forwarding of results in the AMULET2 was achieved using a technique

called last result reuse. This allows the previous result of either an ALU or

memory load operation to be forwarded to the input of the execute stage.

The use of the previous ALU result is relatively straightforward as we know

that it is always available. This is due to the fact that only when the previous ALU

operation has completed can a new instruction enter the execute stage. In the

36 	 Chapter 2 - Background

AMULET2 scheme an additional register, called the Last Result Register (LRR)

is used to hold the previous ALU result. The reading of the register file can be

bypassed by detecting the availability of data from the LRR during decode. This

simply requires the decode stage to store the previous instruction's destination

register. The use of the last loaded value from memory is more complicated as

we cannot assume that its contents is always up to date or valid.

The Last Loaded Value (LLV) register is updated each time data returns from

memory. Opportunities to make use of the forwarding register and bypass the

register file are again identified in the decode stage. In this case, the destination

register of the last load instruction is stored and compared to the operands of

subsequent ALU instructions. An additional constraint in the case of the LLV is

that each time an ALU instruction is decoded with the same destination regis-

ter the LLV's contents can no longer be used. The AMULET2 architecture also

introduces the possibility that there may be multiple outstanding memory oper-

ations. To ensure that the latest memory value is present in the LLV register a

small FIFO is used to record the progress of pending memory operations. Only

when the FIFO is empty can the contents of the LLV be read.

In practice, in the AMULET2e test chip [48] it was discovered that the other

parts of the system including the decode stage, address interface and memory, lim-

ited the overall performance of the design. This made the resulting performance

impact of the inclusion of such forwarding schemes small.

Store Data
FIFO

Pipelined
Memory I 	Load Data Access 	I

Instruction
Instruction' 	 _____________:Buffer ______________ 	 Write

Decode

rder
Fetch j
	[Reg.ReH{ Execute

j

 Addr 	

Back

Forwarded Results

Figure 2.15: AMULET3 style pipeline

The AMULET3 design includes a more complete data-forwarding capability.

The use of a reorder buffer [129] (see also Section 2.8.1) provides the possibility

of forwarding data from the previous N results, regardless of WAW hazards. The

reorder buffer also provides a mechanism for ensuring that all write-backs to the

register file are in program order. This sort of mechanism is used extensively in

synchronous designs which exploit out-of-order issue and completion. Maintaining

Chapter 2 - Background 	 37

in-order program state in the register file is important here to support precise

interrupts. In the absence of such a mechanism, as is the case in the AMULET2

architecture, operations that follow a memory access must be prevented from

completing until exception detection has completed, potentially imposing a large

performance penalty [52]. An outline of the AMULET3 architecture is given in

Figure 2.15.

The reorder buffer implementation is based around a parallel FIFO [161, 1601.

A small RAM in the buffer is indexed by two pointers to create a circular buffer.

Once a write has been completed the location of the new buffer entry is static,

this is in contrast to a micropipeline style FIFO where each data item always

propagates through every FIFO stage. In addition to reducing latency, this char -

acteristic is important in providing random access to data within the buffer.

ALLOCATE (write destination register into CAM)

LOOKUP (match operands I
to destinations stored 	I Store Data

in CAM) 	0, 	 FIFO 	
PipeWied H Reorder Access Buffer

lntruction
Instructi

Op

Loadi 	_______

E 	

Addr 	
Data

Write
VDecode

Back

ARRWAL
WRITEOUT

(results written

L_j

(copy results
into queue)

to register file)

FORWARD (forward results for matched operands)

Figure 2.16: Reorder Buffer Processes

Figure 2.16 illustrates the five processes which access the reorder buffer. Po-

tential operand sources are identified by the lookup process' during instruction de-

code. This matches the current instruction's operands to the destination registers

of those instructions already allocated entries in the buffer. These comparisons

are performed in parallel using a Content Addressable Memory (CAM). The bit

mask produced by this process indicates possible data sources and is used by the

forwarding process. The second step, allocation, is also performed during decode.

This reserves an entry in the buffer for the result of the current instruction and

writes the destination register address into the corresponding CAM entry. The

allocated buffer address is carried by the instruction and used during the arrival

'In this dissertation the word process is used to refer to the component or group of compo-
nents responsible for carrying out a particular task.

38 	 Chapter 2 - Background

process to write the result to the correct buffer entry. The writeout process sim-

ply waits for results to become available in the original program order and copies

them to the register file.

The reorder buffer operates as a cache for recently generated results. A result

may be forwarded from the buffer as soon as it arrives and is available until every

other buffer entry has been allocated. The allocation process must then reuse the

entry, forcing the data to be obtained from the register file. A detailed description

of the operation of the reorder buffer within the AMULET3 is given in [52].

2.6.4 Micronet Processors

The idea of a micronet as an operational model for distributing control in an

asynchronous architecture was developed at the University of Edinburgh [9, 8].

Micronets model a processor, even a scalar one, as a network of functional units

which compute concurrently and communicate asynchronously. In [117] the study

of the conversion of a synchronous processor architecture to an efficient micronet-

based one was undertaken. The process was described in a number of refinement

steps, each introducing additional scope for exploiting fine-grain parallelism and

decentralising control.

In order to maximise the utilisation of datapath resources, the architecture is

designed to enforce only minimal constraints on their use. This is best achieved

by breaking each individual instruction into a number of micro-operations. Each

micro-operation is now scheduled independently, which allows different micro-

operations from different instructions to exist in the same logical pipeline stage.

For example, the architecture exposes resources such as register read ports and

operand buses to allow different instructions to use them concurrently. Minimum

constraints on the scheduling of such micro-operations are explored together with

their implementation. The idea of exposing micro-operations to allow them to

execute concurrently under local control is an important one. This idea forms the

basis for the architectures described in Chapters 3 and 4.

The development of scheduling algorithms targeted at micronet processors

was also explored [10]. The work also suggested additional schemes for exploiting

information obtained at compile-time; for example, the use of concurrency bits

to aid instruction issue. The theme of exploiting a close interaction between

compiler and architecture is continued in the work described in Chapter 4.

An instance of a RISC architecture developed using the micronet model is

shown in Figure 2.17. Arbitration to access the single write back bus is in this

case handled by a small token ring. WAW hazards are avoided by ensuring that

Chapter 2 - Background
	

39

Token Ring Arbitration

X Bus 	 Z Bus

Y Bus h4 ALU

I Instruction
Instruction I

>1 Decode
Fetch 	I

I Reg. Read

Write
A 4.f+

Back

Memory

Forwarded Data

go-write

Figure 2.17: A Micronet architecture

an instruction's destination register is unlocked before write back can take place.

In the case of a WAW hazard the architecture avoids stalling instruction issue

and instead only stalls the write back operation itself. The go-write signal shown

in the diagram is generated at the register file and indicates when it is safe to

write back a particular result.

Forwarding is implemented by tagging each result with its destination register

identifier. When a write-back is taking place the tag may be matched to operands

currently being fetched. This allows the operand fetch stages to obtain the data

from the write-back bus before the result is available from the register file. In such

an event, a second handshake signal sent to the register file cancels the pending

read request.

2.6.5 MiniMIPS processor

The MiniMIPS [88] processor was designed and fabricated at Caltech between

1995 and 1998. An outline of the architecture is shown in Figure 2.18. Although

a number of parallel functional units are supported, the design lacks a renaming

mechanism such as the reorder buffer described previously. Results are simply

reordered by polling functional units in the order they were used. This technique

is similar to the use of a result shift register [130], and is the simplest way in which

precise interrupts may be supported.

The results of functional units that complete out-of-order are unavailable un-

til all previous instructions have written their results to the register file. As a

consequence, forwarding of data is only possible from one instruction to its im-

mediate successor (in program order). The cases when forwarding can take place

are detected during decode by maintaining a record of the previous instruction's

Forward data between
adjacent instructions

40 	 Chapter 2 	Background

destination register. As both the writing of results and reading of operands is

performed in program order, there is no possibility of Write-After-Write (WAW)

or Write-After-Read (WAR) hazards.

FU usage in program order

Figure 2.18: Minimips style pipeline

At a lower level, the design benefits from a number of innovations, which in-

clude the use of pipelined completion detection, pipelined caches [106], and the

design of a low-latency adder. Unlike the AMULET processors described earlier,

the design is implemented using full-custom dynamic logic. Techniques to opti-

mise the number of pipeline stages and buffering, while guaranteeing correctness

are also presented [82, 85].

The performance of the processor is reportedly high when measured in MIPS

(approx. 165MIPS03.3V in a 0.6im technology). Unfortunately it is unclear

what impact data and control dependencies have on performance. Therefore peak

MIPS must be considered a very bad indicator of performance in the case of a

deeply-pipelined asynchronous processor. A more useful measure of performance

could be obtained by running benchmark programs and reporting their execution

times.

2.6.6 Hades Architecture

A simplified view of the Hades architecture [38] is presented in Figure 2.19. In

addition to writing results to the register file, each functional unit maintains

its last result in a special forwarding register. Opportunities to forward results

from these registers are subsequently detected during instruction decode. This

simply requires a comparison between the current instruction's operands and the

destination addresses of the results currently allocated to the forwarding registers.

This operation is similar to the lookup operations, performed during instruction

decode. This operation may again be performed using a small Content-Address

Chapter 2 - Background
	

41

Memory (CAM). Each time a new instruction is issued, this CAM is updated to

reflect the new data which will become available. An overwrite signal is also sent

from the decode unit to the corresponding functional unit to indicate that a new

result may be written into the forwarding register. This ensures that results are

only overwritten after any forwarding operations have been completed.

Forwarding
Registers

Figure 2.19: Hades style pipeline

A simple example of how this forwarding scheme operates is provided be-

low. Events are described from the point at which the first instruction listed in

Figure 2.20 obtains its operands.

LD Ri, [R2]
ADD R3, Ri, BA

Figure 2.20: Example Program Fragment

The decode unit updates its CAM to indicate that the memory unit will

produce a result destined for register Ri.

An overwrite signal is generated to permit the contents of the memory unit's

forwarding register to be overwritten. This also indicates that the current

contents are out of date.

3. The first instruction is dispatched to the memory unit and begins execution.

42 	 Chapter 2 - Background

The second instruction enters the decode stage. A match in the CAM indi-

cates that register Ri should be available from the memory unit's forwarding

register.

The second instruction is issued and a forwarding request is made to the

memory unit. If the load operation has not yet been completed, forwarding

will be stalled until the result is available from the forwarding register.

The result of the load is eventually received by the ADD instruction to-

gether with its other operand. This allows the instruction to progress to its

functional unit.

Register writes and reads are synchronised using a register locking mecha-

nism, employing a single lock bit per register. The lack of a renaming scheme

forces WAW hazards to be avoided by stalling instruction issue. Only when an

instruction's destination register is unlocked may it be allowed to assert the lock

and issue. This restriction and the possibility of only forwarding from the last

instruction issued to each functional unit, means that data forwarding is not sup-

ported in all cases (as is the case in the AMULET3's reorder buffer). In practice,

the scheme may be generalised to allow the forwarding of the previous N results

generated at each functional unit. One way in which this may be achieved is

described in the next chapter.

2.6.7 Alternative Pipeline Organisations

The processors described in the previous sections are all loosely based on the RISC

pipeline described in Section 2.6.1. In such architectures two mechanisms exist

for obtaining operands: the register file and data forwarding. The fact that there

are multiple potential sources of data is more problematic in an asynchronous

implementation than a synchronous one. An alternative is to implement a single

communication mechanism for all results, irrespective of their age.

Figure 2.21 illustrates a number of possible ways of organising instruction

and data flow. Option (a) represents the traditional RISC pipeline. The figure

shows a number of parallel instruction pipelines, instructions obtain operands by

reading the register file and write results back to the register file after execution.

Conceptually instructions and results flow in the same direction, except for the

special case when the possibility to forward data is detected.

An alternative organisation (b) is to provide results from a single source, in

this case a counterfiowing result pipeline. This allows all data to be obtained

Chapter 2 - Background

(a) 	 (b)

Instructions + Results 	 Instructions + Results

Register

Register Register
Write

Read 	 Write

Results 	

Register
Read

Special Forwarding Mechanism

(c) 	Instructions
	

(d) 	
Instructions

4

Register

(I Read

Results

- 	 Register
Write

0 Result Q Instruction E> Pipeline

Figure 2.21: Instruction and Data Flow Possibilities

by a local communication between the instruction and result pipelines. Results

are also carried in the instruction pipeline and are eventually committed to the

register file. Register read operations may be initiated during instruction decode

to ensure that all the required operands are present in the result pipeline. The

third possibility (c) also maintains a single operand source. In contrast to (b)

instructions are placed in separate execution pipelines. Results are also returned

to the register file using the same result pipeline that is used to provide operands.

A purely data-flow organisation is shown in , here instructions flow around

their pipeline until all their operands and a functional unit of the required type

are ready.

A number of architectures which exploit these alternative pipeline organi-

sations have been presented since the development of the Counterfiow Pipeline

Processor by Sproull, Sutherland and Molnar. The counterfiow pipeline is an

example of organisation (b). Examples of (c) and (d) include the Rotary Pipeline

Processor and Counterdataflow processor. Each of these architectures are de-

scribed in the following sections.

44
	

Chapter 2 - Background

2.6.8 Counterfiow pipeline architecture

Localising control and communication is advantageous in both the design of asyn-

chronous systems and the use of DSM technologies. This idea together with the

aim to develop a simple modular processor architecture based around the concept

of micropipelines, led to the development of the Counterfiow Pipeline Processor

(CFPP) [136].

Within the processor a result pipeline provides a means of obtaining all

operands through local communication. To make this possible, instruction and

result pipelines flow in opposite directions. Each time an instruction produces a

result it is able to insert it into the result pipeline for later instructions to acquire.

Results are also carried to the end of the instruction pipeline where they are writ-

ten into a register file. Operands are read and sent down the result pipeline after

requests are made during instruction decode. Figure 2.22 illustrates one possible

counterfiow organisation.

Instruction Pipeline

Cached Data 	
Multiplier

HI:DZecode

Register
File

(read!
write)

Result Pipeline
I 	 I

Adder 	 I

I 	 I
• --I

Source register names

Figure 2.22: An example of a counterfiow style pipeline

Functional units reside in sidings which may be accessed at predetermined

stages in the instruction pipeline. At one stage an instruction, once it has received

its operands, will dispatch an operation to the functional unit. A number of

stages later the result and instruction will merge and continue until they reach

the register file. In this way in-order write-back is maintained. Careful design of

the local control at each stage is required to ensure that results cannot move past

an instruction without the opportunity for the result to be required, a process

called garnering.

2.6.9 The non-stalling Circular counterfiow architecture

Work described in [89, 67], describes the development of a non-stalling counter-

flow or counterdataflow architecture. Their architecture attempts to solve three

Chapter 2 - Background 	 45

problems that they identify in the original CFPP concept. Firstly, the potentially

high latency required to fetch from the register file. This is a result of the register

file and issue stages being at opposite ends of the pipeline. Secondly, if instruc-

tions stall in the original CFPP all successive instructions may also be forced to

wait. Stalls may be a result of the need to wait for access to the last FU of a

particular type. Finally, extending the architecture to issue multiple instructions

in parallel was considered difficult due to the complexity of detecting cases where

instructions could safely be issued together.

The first of these problems was tackled by moving the register file to the

bottom of the pipeline, next to instruction decode and issue. The need to stall

instructions was then prevented by feeding the end of the instruction pipeline

back through the decode unit to create a ring. This always allows instructions

to progress with the knowledge that they will eventually reach a free FU of the

correct type. The process of dispatching an instruction to a functional unit now

removes the instruction permanently from the instruction pipeline. The multiple

issue of instructions is also simplified as all data dependencies are resolved in the

pipeline.

The performance limitations of all the counterfiow-based architectures de-

scribed are discussed later in Section 2.6.14.

2.6.10 Rotary pipeline processor

The rotary pipeline [92] exploits a number of general purpose data buses organised

as a ring. The buses provide a means of transporting results in all communication

scenarios. In addition to providing a direct path for communication between

functional units, they also provide a means of reusing data values fetched for one

instruction, if required as operands by another. The basic organisation of the

rotary pipeline is shown in Figure 2.23. The connection of a particular bus to an

input or output of a functional unit is controlled by a set of switches as illustrated.

An instantiation of the architecture without an explicit register file is also

possible if adequate register storage can be made available in the result ring

alone. The architecture differs from the counterfiow architecture described in the

previous section by allowing instructions to be issued directly to their functional

units. This simplifies the local communications required between the result buses

and functional units.

The effectiveness of such an architecture hinges on the ability to allocate buses

in an efficient manner. Managing a table indicating the allocation of data to par-

ticular bus segments centrally seems unrealistic. Buses would probably have to

flip-flops

:eneral purpose
data buses

Rol
	

Chapter 2 - Background

Figure 2.23: The Rotary Pipeline

be allocated in round-robin fashion to avoid the need for synchronisation be-

tween the dispatch and write-back processes. Control of individual bus segments

could be handled locally, using a series of segment interfaces organised as a mi-

cropipeline. Opportunities to forward data (results or register operands) from one

bus segment to the input of a functional unit would have to be determined during

dispatch, in a similar fashion to AMULET3 or Hades. The allocation of buses

for write-back is complicated by the fact that it cannot be determined ahead of

time whether a particular operand may be reused by a subsequent instruction.

Although where possible, it is probably a sound policy to always reuse an operand

bus as a write-back bus. It must also be noted that the architecture does not

provide uniform support for forwarding. Only the function units downstream are

allowed to receive the new data directly.

The use of dedicated buses in a traditional superscalar or RISC architecture

simplifies their allocation and ensures that latencies are minimised.

Chapter 2 - Background 	 47

2.6.11 Alternative Instruction Set Architectures

The architectures in the previous sections name operands and specify the desti-

nation of results by directly addressing registers in a register file. The existence

of a large number of general-purpose registers is important in such architectures

for two reasons. Firstly, pipeline architectures often benefit from both local and

global instruction scheduling. Given enough registers, the way in which depen-

dencies are represented using a register file provides few constraints on scheduling.

Secondly, the register file is the lowest level of the memory hierarchy, providing a

fast multi-ported memory to store both intermediate results and distribute those

results required by different instructions. Some systems also extend the register

file to provide an indexed addressing mode for registers. An example is the rotat-

ing register-files [116], which provide a restricted form of register renaming which

may be used to support software pipelining.

Operands may also be obtained implicitly; common examples include accumu-

lator and stack architectures. Some form of implicit naming may also be exploited

in addition to a register file; for example, the use of register-windows or result

queues.

The register file provides a means of communication through a shared memory.

Alternatively, communication may be specified explicitly within the instruction

(analogous to a message-passing scheme). In this case each instruction must

specify where its result will be used in the datapath. This scheme is adopted

by the SCALP processor described in the next section. Other examples of this

type of approach include Transport Triggered Architectures (TTA's) [30], where

data-transports also trigger functional-unit operations. An asynchronous version

of a transport triggered architecture was verified using CCS in [49].

2.6.12 SCALP: A Superscalar Low-Power Processor

The development of a Superscalar Low-Power Processor (SCALP) is described

in [39]. A register-less implementation was devised based on explicit forward-

ing. The hope was to reduce power consumption by increasing code density and

decreasing the overall complexity of the processor. Each instruction specifies ex-

plicitly the location where its result is required. An example of how this may

work in practice is given in Figure 2.24.

Unfortunately, non-deterministic behaviour introduced by control hazards and

asynchronous operation complicates the use of such a mechanism. For example,

it may be necessary to introduce explicit sequencing instructions in some cases

to guarantee the order particular results arrive at a functional unit. Communi-

48 	 Chapter 2 - Background

x = y * 30 + c 	load [y_addr] —> mul_a
Mul 30 —> alu_a
load [c_addr] —> alu_b
Add —>

Figure 2.24: Example of code generated for SCALP

cation across branches is also problematic as the destination of the result cannot

be determined a priori. In this case a register bank functional unit is used. Du-

plicate instructions are also introduced into the program to allow results to be

distributed to more than one destination (the duplicate and sequence instructions

are executed in the move unit). The need to send many results through the regis-

ter file and move functional units actually results in lower dynamic code density

for the benchmarks tested.

Result
Router

Figure 2.25: The SCALP architecture

The SCALP architecture is shown in Figure 2.25. Queues provide buffering

for both instructions and results, reducing the need to stall the issue unit and

the operation of functional units. Overall performance is said to be lower than

expected, due to a combination of poor code density and the inability of the

architecture to expose and exploit instruction-level parallelism.

Chapter 2 - Background 	 49

2.6.13 Other Asynchronous Processors

Implementations of the TITAC architecture, based on the MIPS R2000, have

been fabricated at the Tokyo Institute of Technology [102, 101]. Although asyn-

chronous circuits are used throughout the design, the processor operates in a com-

pletely pseudo-synchronous manner at the architectural level. As a consequence,

a register locking mechanism is not required and a synchronous style forward-

ing mechanism may be adopted. The ECSTAC [95, 4] processor developed at

the University of Adelaide is also designed to operate completely asynchronously.

Register locking is implemented using a single lock-bit attached to each register.

The architecture does not support data-forwarding.

Various asynchronous implementations of micro-controller architectures have

also been designed and fabricated. These include Philips' 8051 microcontroller [50]

and an asynchronous version of Cambridge Consultants' XAP processor at the

University of Cambridge. Due to the modest degree of pipelining in such archi-

tectures, data-forwarding is not usually beneficial.

2.6.14 Performance limitations of existing approaches

Many of the architectures described in the previous sections have made attempts

to exploit asynchrony. In most cases this has required some modification of the

instruction pipeline, either to reduce the impact of synchronising communications

or to better exploit datapath resources. The handling of data-dependencies in

particular has produced a number of novel solutions. The alternatives presented

may be broadly categorised as follows:

Local Forwarding All results are made available at some point in time through

a local communication. No explicit management of forwarding is performed.

Examples include the rotary and counterfiow pipelines.

Centralised Forwarding The possibility of forwarding is detected during in-

struction decode. Results are subsequently obtained from a forwarding

register or buffer. Examples of this organisation include AMULET2/3 and

Hades. A further distinction may be made between architectures that cen-

tralise the temporary storage required to hold values that may be forwarded

and those that distribute the registers amongst the functional units. Such a

forwarding mechanism exploits the fact that the order in which instructions

will be executed is known during decode.

Explicit Forwarding The possibility of forwarding data is indicated explicitly

50 	 Chapter 2 - Background

by the program. This removes completely the synchronisations typically

required to determine if forwarding is possible. The technique is used in

the SCALP architecture and in the instruction compounding technique de-

scribed in Chapter 5.

While many of the designs present solutions to the problem of handling data-

dependencies in scalar processors, the techniques do not necessarily provide effi-

cient solutions for architectures attempting to exploit higher levels of ILP.

Local forwarding schemes tend to suffer from the need to sequentialise both

the flow of instructions and results, as a result it has been acknowledged that they

are unlikely to be competitive with existing high-performance architectures [29].

Implementations often also require excessively wide datapaths. While attempts

have been made to overcome these problems, such architectures still tend to ex-

tend operand fetch latency, which severely limits the levels of ILP that may be

exploited. Developing dynamic scheduling schemes that recirculate instructions

is undesirable both due to power requirements and resulting irregular dispatch

latencies. One potential pitfall of developing architectures while targeting an

asynchronous implementation is to favour an elegant implementation while sac-

rificing overall performance.

Both the centralised and explicit forwarding schemes offer the potential to

provide efficient asynchronous implementations without requiring a completely

novel processor architecture. Many desirable architectural features such as, par-

allel operand fetch and parallel functional units may be retained. Of particular

interest are schemes that do not require results to be stored temporarily in a

central buffer. This avoids the need to limit forwarding performance by the need

to write and read results to and from a slow central structure such as a reorder

buffer. In a superscalar architecture this is likely to have a much greater access

time due to the requirement for both a large number of read/write ports and

entries.

The use of both centralised and explicit forwarding schemes in asynchronous

superscalar architectures will be explored further in the following Chapters. We

also explore how dynamic scheduling complicates the implementation of the data

forwarding scheme further and how attempting to solve each problem in isolation

leads to a poor overall solution.

Chapter 2 - Background
	

51

2.7 ILP Architectures

A typical RISC pipeline exploits the parallelism available between different phases

of an instruction's execution. In order to make full use of the available ILP

requires an architecture that allows greater numbers of instructions to execute

concurrently. The availability of independent operations may then be exploited

in one of two ways. Firstly, deeper pipelines may be introduced to make better

use of resources over time (temporal parallelism). Secondly, operations may be

performed in parallel by duplicating resources (spatial parallelism). Architectures

that exploit ILP using deep pipelines are often called superpipelined, while those

which are able to fetch and execute multiple instructions in parallel are called

superscalar or Very Long Instruction Word (VLIW). It may be noted that in-

creasing the degree of pipelining or parallel issue should in theory provide similar

performance gains [701. In practice, careful trade-offs must be made between the

degree of pipelining and the number of instructions fetched per cycle. Pipelining is

ultimately limited by latching overheads and the ability to evenly distribute delay

between different stages. The majority of modern high-performance architectures

can in fact be considered both superscalar and superpipelined, maintaining high-

clock frequencies with deep pipelines and exploiting many parallel datapaths.

Superscalar architectures differ from VLIW architectures in their ability to

schedule operations at run-time. While this allows them to exploit information

only available at run-time, it also requires additional hardware to identify op-

erations that may be performed in parallel. In contrast, a strict VLIW micro-

architecture is simplified by the fact that the compiler guarantees all instructions

that are fetched together are independent. The schedule will also guarantee that

the required functional unit is free. If a suitable instruction cannot be found at

compile-time a no-op may be inserted. Although this results in conceptually sim-

pler datapaths, expected gains in terms of power or performance may in practice

be difficult to realise. Power may suffer due to the need to perform greater spec-

ulation in order to maintain competitive performance, while performance itself is

limited by the quality of very complex optimising compilers. Dynamic schedul-

ing hardware in contrast may compete with compile-time global schedules even

when they are able to predict branches perfectly [81]. In addition, practically all

of the current high-performance processors have demonstrated that superscalar

implementations are possible with both high clock rates and dynamic scheduling

hardware.

Figure 2.26 (from [1161) illustrates a number of different possibilities for par-

titioning operations between the compiler and micro-architecture. These range

52 	 Chapter 2 - Background

from a purely superscalar approach, relying mainly on hardware scheduling of

both instructions and resources, to a VLIW approach where both instructions

and the majority of hardware resources are allocated during compilation.

Frontend & Optimiser

Determine Dependences

Sequential
(Superscalar)

Dependence 	 Determine Dependences
Architecture
(Dataflow) 	 4,

Determine Independences

I. - -

	- I 	Independences

Architecture

Bind Resources 	
(Horizon) 	- - -

Architecture

(VLIW)

Compiler

Figure 2.26: Division of responsibilities between the compiler and hardware

for three classes of architecture (reproduced from [116])

In general, systems that exploit information provided by the compiler about

independent instructions are called independence architectures. While a VLIW

architecture represents the extreme case where all the instructions fetched are

independent, the possibility exists of providing additional bits to indicate paral-

lel sub-groups. Recent examples of this approach include Intel's 1A64 architec-

ture [64] and TI's VelociTI VLIW architecture [147], which are both capable of

indicating variable size groups of independent instructions. Earlier examples of

similar techniques are described in [143, 76, 151]. The SCISM [151] architecture

also enables some dependent instructions to be included for parallel issue where

a suitable interlock collapsing functional unit exists'. A simple example may be

where two dependent addition instructions may be issued to a single 3-input ALU.

In addition to identifying independent operations, the compiler may also be used

to specify forwarding or communication operations explicitly. Examples of archi-

tectures which exploit this type of compiler/datapath interface were described in

Section 2.6.11. The ability to specify dependencies explicitly also forms the basis

for the instruction compounding technique described in Chapter 4.

In the following chapters we discuss the development of a number of asyn-

chronous multiple-issue architectures. We shall in all cases describe them as su-

perscalar as some degree of dynamic scheduling is exploited. The following section

Bind Resources

Execute

Hardware

'Work presented in [151] also introduces the notion of an instruction compound, this is
unrelated to the work described in this dissertation

Chapter 2 - Background 	 53

provides an outline of the architecture of synchronous superscalar processors.

2.8 Superscalar Processors

The design of instruction set architectures is usually based on a purely sequen-

tial programming model. The resulting interface between compiler and processor

reflects the way instructions are executed in a simple scalar pipeline. If the pro-

cessor's architecture is extended to become superscalar, this interface essentially

remains unchanged, while it becomes possible to fetch and execute multiple in-

structions in parallel. The utilisation of the duplicated datapath resources is

now dependent on exposing the available ILP dynamically. Contemporary de-

signs achieve this by forming a window into the dynamic instruction stream from

which instructions may be issued out-of-order. As the ILP available from a single

basic block is far too limited, hardware branch prediction is used to extend the

scheduling window across multiple outstanding branch instructions. The possi-

bility that instructions may now be fetched and executed from a mispredicted

branch direction requires support for the speculative execution of instructions.

The efficient use of the instruction window also requires the removal of inter-

instruction dependencies, which do not represent real data-dependencies. These

so called false- or anti- dependencies are often introduced due to the way operands

are named. Support for both speculative execution and the removal of false de-

pendencies is usually provided through a form of register renaming. The register

renaming mechanism provides the architecture with the required flexibility in the

management of results and provision of operands. Together these techniques are

used to create a buffer of instructions that is continuously scanned at run-time

in search for instructions that may be dispatched to free functional units. While

the aim of the hardware described above is to exploit ILP through speculation

and out-of-order execution, additional hardware is also provided to ensure that

from a programmer's or interrupt-handling perspective the sequential execution

model is retained.

The following sections provide a brief introduction to these mechanisms and

an overview of how they are incorporated into a number of different superscalar

architectures.

2.8.1 Precise Interrupts

The organisation of a superscalar architecture is heavily influenced by the need

to support precise interrupts. The provision of precise interrupts requires that

54 	 Chapter 2 - Background

on the event of an interrupt the datapath is restored to a state that is consis-

tent with a sequential model of execution [130]. This enables a minimal amount

of state to be saved in order to restart execution after the interrupt has been

serviced. It also allows the interrupt to modify the subsequent behaviour of the

program; for example, in the case of a page fault or arithmetic exception. For ar-

chitectures that exploit out-of-order write-back or more complex techniques such

as dynamic scheduling, the provision of this state information requires additional

state-sequentialising hardware.

In-order
write back

	
Registe1

(stall issue or FU 	91 	FileJ

Source Data

Out-of-order
write back

Reorder 	Register
Buffer _T File

Source Data

(a) In-order write back (b) Reorder buffer

teback
Out-ofrder 	 restore sequenlial stste Regtater E Buffer__J

tF j
j~ler

Isto Out-of-order
)Restore

[Buffer 	J
dcardff write back

(u)

Supply _ not required

save results which
Source Data 	will be overwritten Source Data

(c) History buffer
	

(d) Future file

Figure 2.27: State-serialising hardware

Figure 2.27, illustrates four possible techniques for providing a sequential state

from the register file. The first technique (a) is to simply force all register writes

to occur in program order. This may be achieved by allocating cycles on the

write-back bus prior to issuing an instruction. Instruction issue is stalled when

it is not possible to ensure that register writes occur in the correct order [130].

A similar scheme is employed in the asynchronous MiniMIPS architecture (see

Section 2.6.5). In this implementation the order in which register writes are

performed is controlled locally at the register file preventing the need to initially

stall instruction issue. In general, forcing in-order write-back reduces ILP by

serialising the availability of results to subsequent instructions. For this reason

the technique is never used in superscalar designs.

The reorder buffer (b) provides a technique that not only ensures that the reg-

ister file is updated in program order, but also provides access to results generated

Chapter 2 - Background 	 55

out-of-order. The mechanism operates by allocating an instruction and its future

result an entry in the buffer prior to issue. As results are generated they are

written out-of-order to their corresponding entries in the reorder buffer. Entries

are subsequently held in the buffer until all prior results have been committed in

program order. The buffer provides a temporary store for results generated out-

of-order, allowing execution to continue unhindered. An asynchronous reorder

buffer providing support for both precise interrupts and forwarding is described

in Section 2.6.3.

One potential drawback of the reorder buffer scheme is that operands may

now reside in one of two locations: in the register file or temporarily in the re-

order buffer. The process of determining the location of a particular result in the

buffer involves an associative lookup prioritised by the age of the instruction that

produced it. The buffer must also be implemented as a multi-ported memory in

order to permit parallel read and write accesses. This additional complexity may

be undesirable if a large number of instructions are issued in parallel, or if a large

number of instructions may be in-flight simultaneously. Even though these com-

plications exist, a reorder buffer is usually adopted in some form in a superscalar

design. In practice, the problems of identifying results in the reorder buffer and

the supply of operands may be simplified through the use of the register renaming

mechanisms described in the next section. For completeness, two earlier schemes

that attempted to overcome these problems and which probably influenced later

schemes supported by explicit register renaming are described below.

The use of a history buffer [129] (c) provides a mechanism for restoring the

sequential state of the register file in the event of an interrupt. During normal

program execution results are written out-of-order to the register file, which can

as a result provide all source data. The history file is similar in structure to a

reorder buffer maintaining instructions in their original program order. As each

instruction writes to the register file, the data it displaces is written into its

corresponding entry in the history buffer. The buffer contents may subsequently

be used whenever an interrupt occurs to restore the register file to the required

sequential state. Unfortunately, while the scheme provides a single source of

operands it requires multiple clock cycles to restore the state of the register file.

The final scheme (d) overcomes this problem by maintaining two complete register

files. The first, called the future file is updated with out-of-order write-backs and

provides a source of operands during normal operation. The second, provides

the sequential state maintained by a reorder buffer. The dotted lines distinguish

two possible organisations, (i) the case where the future file is updated to by the

56 	 Chapter 2 - Background

register file after an interrupt [130] or (ii) the possibility of selectively reading

the operands from either register file in order to minimise the delay associated

with restarting after an interrupt [68]. In this case, each entry in the future file

also contains a valid tag indicating if the contents should be read or the register

file output selected. In the event of an interrupt all entries in the future file are

marked as invalid.

2.8.2 Register Renaming

The mechanisms in the previous section exploit the provision of additional phys-

ical registers in order to provide support for precise interrupts. In general, the

number of physical registers in a superscalar architecture is often greater than

the number of logical registers available to the compiler. This is important to

ensure that false dependencies are removed and that enough state information

is maintained to recover quickly after a mispredicted branch. The term register

renaming [74] is used to describe the techniques that manage these additional

physical registers.

Renaming operates by selecting a new destination for the result of each in-

struction. All subsequent references to the result of the instruction are then

directed to this new physical destination register. The aim is usually to provide

a unique destination for each of the instructions that may be in-flight simulta-

neously. This results in the removal of false-dependencies, which are introduced

simply by reusing a logical register name at compile-time. Figure 2.28 provides

an example of each possible type of dependency. These false dependencies re-

quire that otherwise independent instructions are executed sequentially in order

to maintain correct program semantics. Increasing the number of logical reg-

isters available to the compiler doesn't necessarily solve this problem as false-

dependencies may be introduced between different iterations of a loop. False

dependencies, if not removed, limit ILP and complicate the process of determin-

ing when an instruction is ready to issue.

The reorder buffer described in the previous section has already introduced

one form of renaming. Here additional registers are provided to store those results

that are generated out-of-order. The correct source of data for each operand is

obtained prior to issuing an instruction by searching the contents of the reorder

buffer. The search itself is usually executed in parallel using a content-addressable

memory (CAM), if the search results in multiple matches the result corresponding

to the youngest instruction must be selected. Entries in the buffer are released

and reused once the instruction is able to commit its result to the register file in

Chapter 2 - Background
	

57

add r9, 	r8

Write After Read (WAR) load rl, 	[r2]

dependency
add r2

Write After Write (WAW) \ dependency
mul r

- False (Anti) Dependency add r5, 	ri

True (Flow) Dependency

Read After Write (RAW)

dependency

Figure 2.28: Data Dependencies

program order.

Register renaming may also be implemented by maintaining explicit register

mapping tables. These tables record the current logical to physical mapping

for each register [97]. The tables may also be duplicated to record a mapping

corresponding to different levels of speculative execution, or one that enables

a sequential state to be restored in the event of an interrupt. The potential

advantage of renaming registers in this way is that the reorder buffer is no longer

required to perform an associative lookup to identify operands. Many processor

architectures, including the Intel Pentium Pro, II and III, use a mapping table for

this reason alone. In these architectures mapping relationships are maintained

in the register alias table, which is used to locate results in the reorder buffer.

An alternative is to merge the rename registers present in the reorder buffer with

the existing register file in order to provide a single source of operands. In such

a scheme the reorder buffer is retained, but it is no longer required to store or

serve results. It is now simply used to maintain an in-order mapping table for use

in the event of an interrupt, it also provides the basic mechanism for releasing

physical registers back into the free register pool. In such a scheme the last-

use of a physical register is only detected when its corresponding logical register

is reused as a destination, more sophisticated schemes that are able to allocate

physical registers for a shorter period of time are also possible [91].

In general, register renaming schemes are distinguished by the technique used

to translate between logical and physical register names and the location of the

additional rename registers in the architecture. A detailed description of the

range of implementation possibilities is given in [126].

58 	 Chapter 2 - Background

2.8.3 Speculative Execution

Instructions may be executed speculatively by predicting the outcome of a yet

unexecuted instruction on which their execution depends. Common examples

include branch prediction, value prediction [83] and cache hit/miss prediction [75].

A mechanism to support speculative execution must allow instructions to be re-

executed in the event that a misprediction is discovered.

While value prediction techniques are less common, exploiting even modest

levels of ILP requires a branch prediction mechanism. Predicting the direction

of branches may be performed either during compilation [131, 22] or at run-time

using a hardware branch predictor [62]. Each technique attempts to reduce the

effect of control dependencies in order to expose greater levels of ILP. We limit

the following discussion of recovery mechanisms to those architectures exploiting

hardware branch prediction.

In the event of a mispredicted branch, a mechanism is required to allow exe-

cution to be rolled back and restarted from the correct branch destination. The

performance impact of mispredicting branches must be minimised by ensuring

that the recovery mechanism is fast. For this reason the history buffer is unsuit-

able for a system supporting both precise interrupts and speculative execution

due to the multiple cycles required to restore state. Of the remaining schemes

the reorder buffer and future file both offer potential solutions. In the simplest

scheme, mispredicted branches are only handled when they reach the end of the

reorder buffer. Recovery now simply consists of clearing the entire reorder buffer

and restarting execution with the correct program counter value. If a future file is

used, its contents are marked invalid as in the case of an interrupt. The drawback

of waiting until all instructions prior to a mispredicted branch have completed

before initiating the recovery process is a loss of performance. Although John-

son [68] reports that this only results in a 4-5% drop in overall performance,

modern superscalar designs usually handle mispredictions as soon as they occur.

In the reorder buffer this may be achieved by invalidating only the results queued

after the mispredicted branch entry. In the case of the future file this operation is

complicated by the fact that the results in the reorder buffer cannot be accessed

directly to provide operands. If the complete contents of the future file are to be

invalidated, the register file must first be updated with the pending register writes

in the reorder buffer. Alternatively, entries in the future file that correspond to

instructions on the wrongly-predicted branch must be selectively invalidated. For

this reason direct implementations of the future file scheme where immediate

recovery from mispredicted branches is required are unrealistic.

Chapter 2 - Background 	 59

Schemes to handle speculative execution are also possible using multiple reg-

ister mapping tables. A particular mapping table is now associated with each

branch prediction. The process of restoring state in the event of a misprediction

now simply requires the saved mapping table to be restored. The values stored

in the active set of physical registers for this table will have remained unchanged

as additions to the reorder buffer are only made at the end of the reorder buffer;

either when it is determined that the instruction was on a mispredicted path or

that the logical destination register has been reused.

2.8.4 Dynamic Scheduling

In most cases, data-dependent control flow and cache behaviour make it impossi-

ble to determine an optimal instruction schedule at compile-time. This provides

additional scope for exposing ILP at run-time by relaxing the strict program order

execution of instructions. This may be achieved in a limited fashion by allowing

out-of-order completion, potentially reducing unnecessary stalls as a result of dif-

ferences in functional unit latencies. Additional performance gains are possible

if instructions can be scheduled dynamically. Scheduling at run-time has the ad-

vantage that the availability of functional units and results can be monitored in

order to dispatch instructions as early as possible.

The dynamic scheduling process itself operates on a buffer of instructions that

is maintained between the instruction fetch and execute stages. This buffer may

be viewed as a window into the dynamic instruction stream, potentially spanning

many basic blocks. The operation of the scheduling hardware may be divided

into the following processes, regardless of its actual implementation:

Issue and Write Instructions enter the window after the instruction fetch

stage.

Initialise At some point, the initial status of the instruction's operands

must be determined.

Wake-up Maintain the status of each instruction's operands as new results

are generated.

Selection and dispatch For each free functional unit select (possibly from

many ready entries) an instruction to dispatch.

Removal After an instruction has been dispatched, remove the entry from

the window and reuse it.

60 	 Chapter 2 - Background

From a performance perspective, it is obvious that a primary goal of any

synchronous implementation is that it should not increase the overall cycle-time

of the machine. It is also important that the scheduling process does not introduce

an additional delay between the execution of dependent instructions. If dependent

instructions are to issue in consecutive cycles, the wake-up operation associated

with an instruction should proceed concurrently with its execution. This allows

instructions that are dependent on its result to be dispatched at the beginning

of the next clock cycle, obtaining the result through data-forwarding. The issues

raised by the inclusion of instructions with variable latencies are discussed later

in this section.

Initially we will consider an implementation of dynamic scheduling in which

neither wake-up nor select processes operate speculatively. With this restriction

the need to schedule dependent instructions in consecutive cycles means that

the wake-up and selection (and dispatch) processes must be considered as an

atomic operation [108]. As a consequence they must be designed to operate

within a single clock cycle. When considering the implementation of the other

processes, issue and write and initialise, it is important to ensure that the status

of instruction operands is initialised and updated correctly. Two possibilities

exist for implementing the initialise process. Firstly, a shared memory may be

established between the initialise and wakeup processes. Correct operation is

maintained by ensuring that write (wakeup) and read (initialise) operations are

performed in that order for each clock cycle. Alternatively, the status of operands

may be initialised by examining the current instructions that lie in the window

waiting to be dispatched. This requires that the dispatch status of instructions

remains unchanged during initialisation.

The following section discusses a number of possible designs and implementa-

tion details. In the following discussions, the hardware used to buffer instructions

and perform the dynamic scheduling operation will be called the dispatch buffer,

while individual entries relating to a single instruction will be referred to as reser-

vation stations.

2.8.4.1 Implementation Details

The organisation of the reservation stations themselves, requires that a number

of initial design decisions be made. These are introduced below.

• Centralised/Distributed A single large monolithic window represents the

best use of reservation stations, although cycle time restrictions usually

Chapter 2 - Background
	

61

forces some division of the window. Designs typically provide separate dis-

patch buffers for integer and floating point instructions. A fully distributed

window would provide localised reservations stations at each functional unit.

Other schemes exist where the particular entries in a centralised buffer can

only be dispatched to particular functional units. The PA-8000 [79] uses this

type of organisation to achieve its cycle time requirements, here odd and

even entries of its dispatch buffer are allocated to different sets of functional

units.

• Compacted/Non-Compacted While instructions are written to the buffer

in program order they will be dispatched out-of-order. The most efficient

use of the reservation stations is made if entries are reused as soon as they

become free. In general, additional logic will be required to compact the

buffer in this way. Designs that merge the functionality of both reorder and

dispatch buffers will of course want to retain instructions in the buffer even

after they have been dispatched.

• Are results held in reservation stations? The need for reservation

stations to hold result data is dictated by the position of the register read

stage in the processor's pipeline. One possible organisation is to read the

contents of registers in the stage preceding dynamic scheduling. This forces

results required by an instruction and generated after it enters the window

to be stored with the instruction in its reservation station.

When new instructions are first added to the dispatch buffer, the initial status

of their operands must be determined. The way in which this is implemented is

influenced by the location of the rename registers. If all register state (rename and

sequential) is stored in a single register file and register renaming is performed

using register mapping tables, register status is usually maintained in a busy-bit

table [162](MIPS RiOk). This table holds a single one-bit entry for each physical

register. The entry is reset whenever a physical register is placed into the free-

register pool. It is subsequently set to indicate that data is available whenever a

result is written to the register. Operand status is initialised by reading the cor -

responding busy-bit table entry once the operands of newly fetched instructions

have been mapped. If a different renaming scheme is employed, where no map-

ping table is maintained, initialisation may require a different implementation.

In the scheme described in [79] (PA-8000), initialisation is performed by identi-

fying dependencies that exist between new instructions and those already in the

window. This identifies either the rename register file (if a dependency exists) or

62 	 Chapter 2 - Background

the register file storing sequential state, as the source for a particular operand.

The scheme requires a 5-bit comparator for each new instruction at each entry in

the buffer, 3360 in total for a 48-entry buffer. An additional colour bit appended

to the register is used to detect the possibility that a result has moved from the

rename registers to become part of the sequential state, since the instruction was

initialised.

Once an instruction has obtained the current state of its operands and entered

the dispatch window it monitors the dispatch of instructions to determine when

it is ready to execute. If we imagine a simple processor where all instructions

take a single cycle to execute, the wake-up process simply involves broadcasting

the destination register of each instruction that has just been dispatched. These

destination register identifiers are then compared to each instruction's operand

and their status updated whenever a match occurs. A block diagram of this type

of wake-up logic is shown in Figure 2.29.

Request

Enable Issue

Figure 2.29: Block diagram of wake-up logic for a single reservation station

If it is known that particular instructions require multiple clock cycles in or-

der to produce a result, then the wake-up of the instruction's children should be

delayed. In the Alpha 21264, the hardware that tracks the progress of instruc-

tions is called the register scoreboard. Conceptually, the scoreboard contains a

counter associated with each physical register. Whenever an instruction is is-

sued, the counter is set to indicate the latency of the particular operation being

performed. On each clock cycle the counter is decremented until the register

identifier is broadcast to wake-up dependent instructions in the dispatch buffer.

Chapter 2 - Background 	 63

An additional complication of such a scheme is the need to handle variable la-

tency operations such as loads, which may hit or miss the data cache. In order to

maintain performance, instructions dependent on the result of load instructions

may be issued tentatively. If, after dispatching the instruction, it is discovered

that the load has resulted in a cache miss, then the instruction is squashed and

reissued when the data is available. In practice, this may require that many in-

structions are aborted and a mini-restart of the pipeline is initiated. In order

minimise the performance impact of squashing instructions, a load hit/miss pre-

diction table may be used [75, 163]. This can then be used to set the initial value

of the wake-up counter to minimise the need to squash and reissue instructions.

2.8.4.2 History and Recent Developments

Dynamic scheduling was originally exploited in the design of early scalar machines

that had numerous parallel functional units. Tomasulo's algorithm found in the

the IBM 360/91 [146] and the CDC-6600's scoreboarding algorithm [144] are well

known examples. The inclusion of dynamic scheduling in superscalar micropro-

cessors became possible in the 1990's with the Metaflow architecture [113]. Other

early design examples include the dispatch stack [2, 37], the BPS architecture [66]

and the register update unit (RUU) [133, 132]. Johnson's work [68], describes and

contrasts a number of these designs.

The latest work in the area of dynamic scheduling focuses on the need to

pipeline implementations as the number of logic levels per pipeline stage decreases.

Modern microprocessors, such as the Pentium IV, aim to operate at multiple GHz

frequencies by employing very deep instruction pipelines (20 stages). If the ability

to issue dependent instructions in consecutive cycles is to be retained, the wake-up

process now becomes a speculative one. Schemes utilising this type of speculation

are described in [137].

2.8.5 Data Memory Accesses

Data dependencies between instructions whose operands are registers can be de-

tected by simply comparing physical register identifiers. For instructions that

access memory a comparison of this kind cannot be made until after each in-

struction has made its address calculation. Figure 2.30 provides an example of

potential dependencies that may exist between memory instructions in a dispatch

buffer. In order to issue the youngest load instruction, it must be ensured that

the pending stores in the buffer do not write to the same memory location.

A conservative approach is to dispatch memory instructions twice, once to

64
	

Chapter 2 - Background

Original
program
order of
instructions

load r3, [r2,

store r7, [r4]

store r8, [r5,

load r4, [r6]

r5]

	

\) 	
data dependency if r2+r5=r4

data dependency if r2=r6

r6) 	/

out-of-order dispatch of load

Figure 2.30: Examples of potential load-after-store hazards in a dispatch
buffer

generate an address, and again, after dependencies have been detected to access

memory. In such a scheme, memory addresses are stored in the dispatch buffer as

soon as they are generated. The dispatch of a load instruction to access memory

is now only attempted when the memory addresses of all older pending stores

are available. At this point a comparison is possible between the addresses of

the pending store instructions and the load. If no dependency is then detected

the load is able to access the data memory cache to obtain the correct data.

If a dependency is detected and the store data is available, then data may be

forwarded between the pending store and load instructions. If no data is available,

then the execution of the load must be delayed. Store instructions themselves

must be buffered until their speculative status, due to branch prediction or the

potential execution of an interrupt, has been resolved.

One possible enhancement is to issue loads speculatively before it can be de-

termined if the load is independent of pending stores. The subsequent detection

of a dependency is handled in much the same way as a mispredicted branch, re-

quiring that the load instruction and all subsequent instructions that operated on

incorrect data are re-executed. In practice, implementations are usually simpli-

fied by forcing an exception when the load graduates, and re-executing the load

and all subsequent instructions. Loads are handled in this way in many modern

microprocessors [75, 79, 162]. In the case of the Alpha 21264 [75], loads that cause

exceptions of this type are recorded in a load wait table. This allows subsequent

exceptions to be avoided by delaying the dispatch of the load until all prior stores

have executed. The table is periodically cleared to prevent unnecessary waits. Ad-

ditional performance gains are possible if load address calculations can be made

earlier in the instruction pipeline [11]. More sophisticated techniques for reducing

load latency are based on dependency or data-value prediction [148, 84, 96, 122].

Chapter 2 - Background
	

65

2.9 Summary

Asynchronous circuits offer a number of potential advantages as technology scales

and the cost of maintaining global synchronisation increases. A major challenge

in taking advantage of these benefits is in developing architectures which are able

to operate efficiently in an asynchronous environment. Superscalar architectures,

in particular, pose a challenge due to the large numbers of high-level synchroni-

sations which are exploited in traditional designs. The following chapters develop

and characterise a number of techniques which may be used to produce efficient

asynchronous superscalar architectures.

Chapter 3

Towards Asynchronous
Superscalar Processors

3.1 Introduction

Architectures that are able to exploit asynchrony should possess two important

characteristics: the ability to both expose local variations in delay and translate

these local performance gains into an overall improvement in performance. Ob-

taining these characteristics can usually be aided by distributing control allowing,

where possible, for datapath components to be scheduled on a local basis.

Distributing control in this way gives the system the ability to respond to

many different potential orderings of events, which provides a framework for ex-

ploiting fine-grain parallelism. When supported by a datapath that exposes a

large number of independent datapath operations, potential exists for exploiting

asynchrony. One major obstacle in organising a superscalar processor in this way

is that both dynamic scheduling and data forwarding implementations tradition-

ally exploit global synchronisation. Synchronous implementations rely on the

predictable state of the datapath that is guaranteed by its lockstep operation. In

an asynchronous system this predictability is often sacrificed in order to improve

average-case performance.

A naive asynchronous implementation is one that simply mimics the syn-

chronisations present in a synchronous design. Unfortunately, synchronising op-

erations in an asynchronous system has the effect of exposing the delay of the

slowest operation. The impact of requiring regular synchronisations at a high

level is that it becomes impossible to exploit performance gains made on a local

basis. If performance and timing tends towards the worst-case it is unlikely that

an asynchronous design would offer many benefits, as a clock would probably

represent a significantly smaller control overhead.

67

68 	 Chapter 3 - Towards Asynchronous Superscalar Processors

The challenge therefore in devising a good asynchronous implementation is

to provide both an effective dynamic scheduling and data-forwarding mechanism,

while guaranteeing that individual datapath components have maximum freedom

to exploit actual circuit delays.

Provided that such an effective asynchronous design can be devised, the provi-

sion of a dynamic scheduling mechanism will potentially complement the schedul-

ing of low-level operations that is already achieved by distributing control. This

may be particularly important for an asynchronous processor where the data-

dependent nature of delays potentially limits the extent to which a compiler can

produce optimal schedules. In addition to delays incurred by functional units,

it is also likely that any asynchronous implementation will impose a wide range

of inter-instruction communication delays. Related work described in [5, 134]

investigates the problems of scheduling for asynchronous targets.

We first introduce a generic superscalar architecture as the framework for

exploring a number of implementation possibilities. The areas of the architec-

ture that pose a potential problem for an asynchronous implementation are then

identified. This is followed by the development of a dispatch buffer suitable for

inclusion in an asynchronous superscalar processor. The addition of a data for-

warding capability is then discussed with the introduction of a simplified queue

based architecture. The data-forwarding mechanism is then extended to support

the fully-asynchronous dispatch buffer. Finally, two other asynchronous architec-

tures that support out-of-order dispatch are discussed: the Asynchronous Fast

Dispatch Stack (AFDS)[155] and the FRED architecture [119].

3.2 A Generic Superscalar Processor

In this section we outline the superscalar architecture that will form the basis of

the ones explored in this chapter and the next. At this point a number of design

decisions can be made that will hopefully simplify the exploration of the design

space. These are summarised below.

• Operands are read from the register file after instructions have been dis-

patched. This simplifies the implementation of the dispatch window in

both the synchronous and asynchronous cases, as results do not need to be

stored within each instruction's reservation station.

• Operand fetch and the initialisation of operand status can be simplified

by maintaining explicit register mapping tables. The existence of a busy-

bit table minimises synchronisation by only requiring that a single bit be

Chapter 3 - Towards Asynchronous Superscalar Processors 	 69

examined to initialise the status of an operands. The use of register mapping

tables also allows all registers to be maintained in a single register file,

removing the need to identify the most up to date source for each register.

• The reorder and dispatch buffers will be implemented as separate pieces of

hardware, which will provide us maximum flexibility in the design of the

dynamic scheduling and execute stages.

• For simplicity, we also assume that the dispatch buffer does not attempt to

compact its entries.

This type of organisation is similar to the MIPS R10000 [162]. An abstract

view of instruction and data-flow is provided in Figure 3.1, together with an out-

line of the basic instruction pipeline in Figure 3.2. By examining the paths in

Figure 3.1 that feedback to earlier operations we can identify the remote commu-

nications that potentially limit the extent to which asynchrony may be exploited.

The communications identified in the diagram do not all represent synchroni-

sations that are problematic in an asynchronous implementation. In many cases

the communication will not synchronise the main functions of the pipeline stages.

In fact, there are only two places where performance is potentially threatened

by the need to synchronise with a remote pipeline stage: firstly, in providing

a data-forwarding mechanism and secondly, in initialising and maintaining the

state of operands in the dispatch buffer. These problems are examined in more

detail in the following sections. A brief description of the remaining remote com-

munications required in the pipeline and why they are less of a problem is given

below.

The synchronisation required at the register file is implemented using a register-

locking mechanism. Register renaming guarantees that each instruction in flight

has a unique destination register. As a consequence a single lock-bit per register

is sufficient to implement the locking mechanism. Synchronisation is minimised

by performing locking on a per-register basis. Stalls introduced at the operand

fetch stage are in practice reduced with the use of a data-forwarding mechanism.

The reorder buffer must also receive destination register identifiers as results

are generated in-order to allow instructions to graduate. If the reorder buffer

is organised as a parallel FIFO (outlined in following section), the operation of

updating the execute status of instructions queued in the FIFO is a simple one.

This is a result of the entries within the buffer remaining in fixed locations,

allowing the processes that must operate on it to proceed in parallel.

LI]
	

Chapter 3 - Towards Asynchronous Superscalar Processors

Q INSTRUCTION FETCH

DECODE Q

New Free

REGISTER Registers

RRENAMEO
Q INITIALISE

Result of branch check 	 / Write instructions
into window (ISSUE

Result available or soon to be WAKJF

a Instructions are held until
all operands are available

Update status t
of waiting SELECTION
operands \ Each ready instruction waits for a free

DISPATCH FU and to be selected for dispatch Maintain original
program instruction

WRITE 	Register 0
BACK 	File 	OPERAND READ Remove instructions

0 Wait until oldest

EXECUTE

from window
instruction has
executed

Results 	0 DATA FORWARDING

Results
GRADUATION

Result Tags

 Conit stat ,, /

Figure 3.1: Simplified view of instruction and data-flow in a generic super-

scalar processor

I I I I I 	EXECUTE/ I
INSTRUCTION DECODE REGISTER SCHEDULE REGISTER FORWARD REGISTER

FETCH RENAME READ DATA WRITE

Figure 3.2: Pipeline stages of a generic superscalar processor

The remaining communications: to add new registers to the free register pool

and communicating the outcome of branches to the instruction fetch stage are

effectively decoupled, and as such do not represent a synchronisation problem.

The free register pool may be implemented as a FIFO, only forcing synchronisa-

tion between the renaming stage and the reorder buffer if the free register FIFO

becomes empty. In practice, sufficient registers may be provided for this never to

occur. The instruction fetch stage decouples itself by speculating on the outcome

of branches.

While other architectures could have been taken as a starting point, this par-

ticular organisation creates a simple interface between the scheduling and execute

stages, and the rest of the processor. This provides a good starting point for inves-

tigating a range of asynchronous designs, without being disadvantageous to any

Chapter 3 - Towards Asynchronous Superscalar Processors 	 71

synchronous implementation. The following sections describe new approaches to

both dynamic scheduling and data-forwarding which operate without the need to

be performed in a pseudo-synchronous fashion.

3.3 An asynchronous dispatch buffer

The dispatch buffer creates a window into the dynamic instruction stream with

the ability to dispatch' any instruction, irrespective of its age, when its operands

and a free FU become available. A clear requirement of any asynchronous imple-

mentation, in addition to minimising synchronisation, is to provide a low-latency

implementation of both the wakeup and selection processes.

A block diagram of the register rename and dispatch buffer pipeline stages is

shown in Figure 3.3. The busy-bit table is accessed by both the register rename

stage and dispatch buffer. The table contains an entry for each physical register,

consisting of a single bit indicating the status of the instruction that will write

to it. During register rename each instruction resets the entry in the busy-bit

table corresponding to its physical destination register. The entry is set once the

instruction is dispatched. The table provides the first of two mechanisms used

to update the status of instruction operands. Instructions in the register rename

stage query the table prior to being written into the buffer, which provides the

initial state of their operands. The second mechanism is the wakeup operation

performed when an instruction is dispatched, which updates the status of any

of the operands in the buffer that match the dispatched instruction's destination

register identifier.

At least two possible implementations exist for the underlying instruction

buffer, these include: the micropipeline introduced in Section 2.4.3 and the paral-

lel FIFO [161, 160, 171. The micropipeline operates by propagating entries from

its input to its output along a linear array of identical stages. In contrast, the

parallel FIFO implements a hardware version of the circular array buffer. Dur-

ing a write or read, the appropriate buffer entry is indicated by a write or read

pointer and accessed directly. The use of a parallel FIFO allows new instructions

to be written directly into a fixed buffer memory location, where they remain

until they are removed. This simplifies the implementation of both wakeup and

selection operations, as additional arbitration between these processes and the

propagation of entries may be omitted. While we discuss only implementations

'The word issue is used to describe the movement of an instruction from the decode stage
of a pipeline to an instruction or dispatch buffer. The word dispatch describes an instruction
leaving this buffer and being sent to a functional unit.

72 	 Chapter 3 - Towards Asynchronous Superscalar Processors

based around a parallel FIFO, designs utilising micropipelines in a counterfiow

organisation are also possible [155, 154] and are discussed later in this chapter.

One possible benefit of such an approach is that compaction of the buffer is ob-

tained at a low cost, with empty slots in the buffer being filled as instructions

propagate. However, the inability to perform a parallel wakeup operation is likely

to severely limit performance.

Free Register
Pool

	

n 	Wakeup operations

Register Mapping
Tables

Instructions 	 Register 	__________ 	____________________

	

____ 	____ 	 1' from decode 	,' 	I 	Mapping 	 Dispatch 	 to functional
units

stage 	N 	 Logic 	N 	 Buffer

	

2N } 	
set busy-bits

N , 1 	
on dispatch

status info. 	 I 	I
Busy-bit

	

10 	Table 	__________

reset status

Figure 3.3: A block diagram of the register rename and dispatch buffer
pipeline stages

3.3.1 Communicating with the dispatch buffer

In the following section we describe how access to the dispatch buffer is controlled.

The goal is to ensure correct operation while also maximising concurrent access

to the buffer.

To guarantee that all instructions are eventually dispatched we must ensure

that the status of every operand is updated. In the organisation shown in Fig-

ure 3.3, the possibility exists for an operand to read a busy-bit entry indicating

that its parent instruction has not been dispatched, while also missing the same

instruction's wakeup operation. This may occur as the initialisation and the buffer

write processes operate completely asynchronously to the dispatch/wakeup pro-

cesses. This creates the possibility that a wakeup operation and a write may occur

simultaneously. While this behaviour is acceptable when the register identifiers

of the operands being written and the wakeup process differ, we cannot guarantee

a match and successful updating of the operand's status if they are the same.

The problem is solved by arbitrating access to the busy-bit table and dispatch

Chapter 3 - Towards Asynchronous Superscalar Processors 	 73

buffer. The simplest scheme would involve the register rename stage and wakeup

processes requesting access to the dispatch buffer and busy-bit table through a

single arbiter. This first scenario is illustrated in Figure 3.4(a) in the form a petri-

net. Only one of the processes is permitted to acquire the token from the mutual-

exclusion place at any one time. The token is only returned allowing another

process to proceed, when the process that receives the token has completed. This

scheme, while providing a correct solution, sequentialises all of the initialise and

wakeup operations that are performed on the window. One possibility would be to

stall wakeup until a number of wakeup operations could be performed in parallel.

In practice, as the wakeup processes are asynchronous this is difficult to achieve.

Stalling wakeup operations will also quickly lead to worst-case behaviour.

Initially contains
locAsjbr roth

physical register
l..N

busy-bit table

Process 	 Process I Proc 2 	 3

, 	used 	
(_equest [lock

Initialise 	 Wakeup Wakeup 	Wakeup

receive I 	\ 	 receive

tack 	 I 	\ 	 lock

/ return locks \

	(pdate

-lock oc
release 	

/ 	\ 	I lk 	
I

	

Initialise Process 	 Wakeup Process P

(b)

return lock

(a)

Figure 3.4: Petri-net representations of two schemes for enforcing mutual-
exclusive access to busy-bits and dispatch buffer entries.

Synchronisation may be minimised in this case by enforcing mutual-exclusion

only when absolutely necessary. As described previously, permitting concurrent

access to the busy-bits and dispatch buffer is only problematic when the ini-

tialisation process and wakeup processes access the same busy-bit. This occurs

when the update process is attempting to modify the status of an operand that

is required by one or more of the instructions in the register rename stage. By

providing an arbiter at each entry in the busy-bit table correct operation may be

guaranteed, while allowing maximum concurrency between each of the processes.

This organisation is illustrated in the second Petri-net (Figure 3.4(b)). A wakeup

process now only requires the token from the busy-bit place which corresponds to

74 	 Chapter 3 - Towards Asynchronous Superscalar Processors

its destination register identifier. Similarly, the initialisation process only requires

tokens for each of the instruction operands currently in the rename stage. Each

process now performs the following operations in sequence: obtains the necessary

lock or locks, operates on the busy-bits and dispatch buffer and then returns the

lock(s). A detailed description of how this mechanism may be implemented is

provided below.

A possible implementation of the arbitration and state-holding logic required

within each entry of the busy-bit table is shown in Figure 3.5. Together with the

decode logic necessary to steer read and write requests to each of the entries, this

forms both the data-dependent arbitration scheme and busy-bit table.

Clear Busy Bit

Write Req 0

Write Req I

Write Req 2

Read Req

Write Ack

Read Ack 0

Read Ack I

Figure 3.5: Arbitrated Access to an Individual Busy-Bit Table Entry

The SR-Latch stores the dispatch status of the instruction corresponding to

the busy-bit entry. The latch is initially cleared when a new physical register

is assigned to an instruction. The task of clearing a particular busy-bit may

actually take place at any time between the point at which the corresponding

physical register is reclaimed and added to the free register pool, and the point

at which it is allocated to a new instruction.

Register renaming guarantees that no two instructions with the same physical

destination register may be in flight simultaneously. This guarantees that no two

wakeup processes will ever attempt to access the same busy-bit table entry simul-

taneously. A number of possible sources of write request are therefore combined

using an OR gate. Write requests are generated by wakeup processes and set the

status of the busy-bit to indicate that the instruction corresponding to the entry

has been dispatched. The operation is acknowledged as soon as the request is

granted by the mutual exclusion element and the busy-bit has been set. Register

renaming will of course guarantee that no further write requests are generated

until after the entry has been cleared.

Read requests are generated by the initialisation process to obtain the initial

status of instruction operands. Initialisation occurs during the register rename

pipeline stage after physical register identifiers have been obtained. In practice,

Chapter 3 - Towards Asynchronous Superscalar Processors 	 75

dependencies within the group of instructions fetched in parallel may be deter-

mined without reference to the busy-bit table. This reduces accesses to the busy-

bit table and permits all busy-bit table entries associated with the destination

registers of the instructions in the group to be reset simultaneously. A further

optimisation may be made by allowing busy-bit entries that are set to be read

without the need for the arbiter to provide a read grant. This is permissible as

we can assume that if the entry is set, no further write operations can take place.

This functionality is provided by the two AND gates. The upper gate prevents

the Ack 0 output from going high in this case, while the lower gate allows the

mutual exclusion element to be bypassed.

3.3.2 Selecting ready instructions for dispatch

The previous section described a scheme that minimised the synchronisation re-

quired between the initialise and wakeup processes. This ensured that we main-

tained the correct status of instruction operands waiting in the dispatch buffer.

The final requirement is to provide a scheme that selects an instruction for dis-

patch. Synchronous solutions are simplified by the fact that the status of in-

structions does not change during the selection process. In an asynchronous

implementation however, where the aim is to minimise synchronisation, wakeup

operations occur asynchronously and may produce ready instructions at any time.

The implementation of the selection logic has a number of potential imple-

mentations. Conceptually, the simplest is to construct an ri-input asynchronous

arbiter. Large fan-in arbiters may be constructed as tree arbiters [69], meshes or

token rings [158]. To avoid the dispatch stage becoming a bottleneck it is impor-

tant that the latency of such an arbiter is minimised. Studies have shown that

the performance impact of the selection policy itself is small [24], e.g selecting

older ready instructions first or selecting ready instructions at random. Hence,

an approach that minimises latency at the expense of fairness [26] and the ability

to prioritise grants is acceptable. We next describe two possible solutions.

The first one is to use a tree arbiter where a large multi-way arbiter is con-

structed as a tree of two-input tree-arbiter elements. When a request is first

made at one of the inputs to the arbiter, the request signal that travels up the

tree is generated by a simple combiation1 logic function at each element. This

allows the request to travel quickly up the tree and hides much of the delay of the

slower mutual-exclusion elements, which grant concurrently with the propagation

of the request. This scheme is illustrated by considering the highlighted path in

Figure 3.6. Here it is clear that the request r9 may be generated before it is

76 	 Chapter 3 - Towards Asynchronous Superscalar Processors

determined that input, r5 or r7 will receive the final grant. The result of the

arbitration required to determine that one will be granted will only be required

when the grant signal g9 is raised. Two recent designs that employ this type

of eager request propagation and also allow eager acknowledge of releases are

presented in [159, 69].

Request

ME

Grant hi? Gj€JJ1

TA
Ri U U
R2

p

ME = Mutual-Exclusion Element ri gi r2 g2 	r3 g3 r4 g4 	r5 g5 r6 g6 	r7 g7 r8 g8

Tree Arbiter Element Tree Arbiter

=._95 L
Figure 3.6: Tree arbiter element and multi-way arbiter block diagram

Figure 3.6 also provides a possible implementation of a tree-arbiter element.

The design differs slightly from that presented in [69]; for the sake of simplicity

the design here has been mapped to standard cells (and a ME element). The

possibility of skewing the tree to favour of particular inputs, for example those

requests from instructions at the head of the dispatch buffer, is unfortunately

unrealistic as the location of the head entry in a parallel FIFO changes.

While tree arbiters potentially offer good performance by exploiting concur-

rency in their operation, an alternative solution is to provide static inputs to a

purely combinational selection function. Such a scheme attempts to mimic the

synchronous case where an instruction's status cannot change during selection.

This offers the possibility of simplifying and reducing the latency of the selection

process. Such a selection scheme may be implemented in the following way:

1. One or more instructions are detected as being ready. This any ready

signal is simply the logical OR of the ready outputs generated by each

reservation station.

_....uction status for port N-I

ready

not ready RB GB

Arbiter 	Instruction status for port 0

ready

not ready

'uction status for port N

ready

not ready

Chapter 3 	Towards Asynchronous Superscalar Processors 	 77

The detection of a ready instruction prompts the selection logic to request

that each reservation station produces a ready or not ready output. This

output is fixed until the removal of the selection logic's request signal.

The selection logic may now be simplified with the knowledge that the status

of instructions will not change during selection.

FU required
by instruction Operands
(unary encoded) 	Ready 	Selection requests from each dispatch port

('any ready" sienall

Figure IT Selection Arbiters for a single reservation station. Highlighted

area shows the logic corresponding to a single FU dispatch port.

We assume at this point that there is a dispatch process associated with each

functional unit. To ensure maximum concurrency and minimum synchronisation

between each of the dispatch processes, we must implement selection logic inde-

pendently for each dispatch port. The logic required to create the outputs, as

described in step 2 above, is shown in Figure 3.7. Here an arbiter is required for

each dispatch port to provide a decision on whether a ready or not ready signal

is established prior to selection. For a particular dispatch port only those ready

instructions requiring the functional unit associated with the port will output a

ready signal.

A block diagram of the selection logic is shown in Figure 3.8. A similar

structure is used in the PA-8000 processor [79] and is also described in [108]. The

selection logic operates in a way similar to the tree arbiter described previously, al-

78 	 Chapter 3 	Towards Asynchronous Superscalar Processors

though its implementation is simplified by removing the need for mutual-exclusion

elements at each node.

Functional unit status

any ready

ready/not _ready 	
dispatch-enables

signals

	

request = readyO or readyl or readyn 	
11

no-req = not_readyO and not_readyl and not_readyn

	

consplete=(readyO or not_readyO) and (readyl or not_readyl) 	
Propagate 	prinfity

and (readyn or not_readyn) Encoder

anyready

dispatch_enable

request/no-req

Select Node

Figure 3.8: Selection logic for an asynchronous dispatch buffer.

The selection nodes create two outputs in response to the ready and not-ready

inputs from the reservation stations. Firstly, an eager request signal is gener-

ated as soon as any one of the ready inputs is raised. This any-ready signal is

combined with the outputs of other select nodes and broadcast to all entries in

the dispatch buffer. This eventually forces every reservation station to produce

a ready or not-ready output. Concurrently, each ready signal is propagated to

the next level of the tree or the root node priority encoder. If none of the ready

inputs to a select node are set, then the node will wait until all the not-ready

inputs are available before raising the second output (no-request). This signifies

that all reservation stations have responded but none require a dispatch enable

signal.

As soon as the root node priority encoder has a valid input from each select

Chapter 3 - Towards Asynchronous Superscalar Processors 	 79

node (no-request or request) it is able to grant one of the nodes that requires a

dispatch enable. This takes place concurrently with the completion detection

and priority encoding that is necessary in each select node. Within a node, the

priority logic is stalled until a valid input is detected from each reservation station

and the complete signal is raised. The subsequent receipt of a dispatch enable

allows the ready entry with the highest priority to be enabled for dispatch.

Further optimisations may be sought by observing that the any-ready sig-

nal may stay high between successive selection operations if a number of ready

instructions are detected. Schemes could also focus on exploiting opportunities

to enable early dispatch under some conditions. For example, enabling dispatch

before the complete signal is raised if the highest priority ready input is set.

In practice, in the case of the selection logic the aim should be to ensure a low

worst-case latency, which will ensure that the selection logic rarely, if ever, limits

performance.

However when compared to a typical synchronous implementation of selection

logic a small latency overhead may be seen. This would probably at most be the

time required to detect one ready entry, together the delay of the arbiter required

to generate ready and not-ready outputs at each reservation station. In general,

the approach provides a low-latency alternative to the tree-arbiter approach while

introducing no additional synchronisation or arbitration requirements. The min-

imisation of the worst-case selection latency is important as it is exposed when

attempting to execute dependent instructions in succession. Introducing an addi-

tional latency between two such instructions immediately limits the levels of ILP

that may be exploited.

Independent of which implementation style is adopted, further reductions in

latency may be possible by assigning instances of duplicated FU units to different

subsets of the dispatch buffer. For example, assigning different ALUs to odd and

even buffer entries. The resulting decrease in the size of the selection problem

provides a corresponding reduction in latency.

3.3.3 Summary

The previous sections have described techniques for implementing a completely

asynchronous dispatch buffer. Synchronisation between the processes that ac-

cess the buffer is only enforced to guarantee correct operation. This requires

that initialise and wakeup operations that reference the same result do not access

the dispatch buffer and busy-bits simultaneously. Furthermore, a realistic imple-

mentation of the selection logic is provided, again without the need to resort to

80 	 Chapter 3 - Towards Asynchronous Superscalar Processors

synchronising the operation of the dispatch or wakeup processes.

At this point it is useful to contrast the operation of the original synchronous

buffer and the new asynchronous implementation. In the original synchronous

buffer the wakeup and selection phases of dynamic scheduling are performed

strictly sequentially, while in the asynchronous scheme they operate concurrently.

Of course, the dispatch of ready instructions in the synchronous scheme is also

synchronised. The asynchronous implementation provides fully independent dis-

patch processes, allowing instructions to be dispatched at any time. The need

to support both concurrent wakeup and initialisation processes is critical when

we are attempting to exploit the actual delays exposed in the following pipeline

stages. Another consequence of operating wakeup and selection processes inde-

pendently is that ready instructions may potentially be dispatched faster than

the synchronous rate of one per clock cycle.

3.4 Data Forwarding

In a synchronous processor, the execution of data-dependent instructions in con-

secutive clock cycles requires that the result of the first instruction be communi-

cated to the second as soon as possible. The delay incurred in the execute pipeline

stage of a synchronous processor includes both this bypass delay and the delay

of the functional unit itself.

1Li

H H LII
Register Execute

Read

Figure 3.9: Example of forwarding between parallel execution pipelines

Figure 3.9 shows three parallel instruction pipelines, the dotted line represents

a communication between the top two pipelines. This data-forwarding operation

Chapter 3 - Towards Asynchronous Superscalar Processors 	 81

supplies instruction X with the result of instruction T. In a synchronous processor

the detection of such an opportunity to bypass the register file is easy, as all

pipelines progress in lockstep. When instruction X enters its operand fetch stage

a comparison between its operands and the destination register identifiers of the

instructions currently in the execution stage determines if forwarding can take

place. The result generated by T can then be obtained from the appropriate

bypass at the beginning of the next cycle.

In an asynchronous processor we wish to minimise synchronisation between

the pipelines in order to exploit data-dependent delays and minimise control over-

heads. This requires a data forwarding mechanism that does not rely on the

lockstep operation of instruction pipelines. We must also be conscious of the

performance implications of increasing operand fetch latency, either by reducing

opportunities to forward data or by increasing the latency of the data-forwarding

operation itself. One potential advantage of any asynchronous implementation is

that, if forwarding is not required or can be initiated before an instruction enters

its operand fetch stage, then there is scope for improving average performance.

The following sections first describe how data-forwarding may be implemented

in the simple case where prior knowledge about the dispatch order of instructions

may be exploited. The scheme is then extended to support the asynchronous

dispatch buffer discussed in the previous section.

3.4.1 Data forwarding with locally in-order dispatch

Figure 3.10 shows a scheme for implementing a limited form of dynamic schedul-

ing. The complex dispatch buffer is replaced with a number of instruction queues.

Each queue dispatches instructions to its local functional unit in the order they

were issued to it. While the instruction schedule is fixed for each functional

unit, the rate at which each instruction pipeline proceeds may vary. Queues only

become synchronised when data-dependencies exist between queues, potentially

forcing one queue to stall until a result is available.

The assumption that instructions are executed at each functional unit in the

same order as they are issued may be exploited to detect opportunities to forward

data. A similar approach is exploited in the Hades and AMULET2 architectures

described in Section 2.6. For the sake of simplicity, we first describe a scheme

where only results from the last instruction issued to each dispatch queue are

considered for forwarding. A more general scheme is introduced later.

Figure 3.11 illustrates the steps required for forwarding data in such an ar-

chitecture. The issue unit holds the destination register identifiers for the last

82 	 Chapter 3 - Towards Asynchronous Superscalar Processors

Forwarding and overwrite commands

Fror

Write Back

Forwarding
Instruction Queues 	 Registers

Figure 3.10: A simple queue-based dynamic scheduling scheme. The operand
fetch stages may read data from either the register file (RE) or forwarded data
result queues (the RE and buses associated with operand fetch are omitted
for clarity).

instruction issued to each instruction queue. The current values for each step

in the example are listed underneath the Issue Unit (labeled Forwarding Table).

Opportunities to forward data are detected in the Issue Unit by comparing in-

struction operands to those register identifiers stored in the forwarding table.

Forwarding registers temporarily hold results at the output of each FU. Data

may be written to, or forwarded from, these registers under the control of the

issue unit.

Step 1 in the example, shows the state of the datapath just after the first

two instructions from the program fragment have been issued. The issue unit

also sends accompanying overwrite commands. When these commands reach the

head of the forwarding register command queue, then they allow new data to be

written into the forwarding register.

At the beginning of step 2, a comparison between the operands of instruction

13 and those register identifiers stored in the Issue Unit results in two matches. In

response, the issue unit creates two forwarding requests: one to FUO and one to

FU1, each request indicates that the result held in the forwarding register when

the request is received should be sent to FU2.

Step 3, illustrates the point at which Ii has created a result, and the for-

warding request has been received at the forwarding register. The forwarding

command is executed and the data in the forwarding register is sent to instruc-

tion 13 in FU2's operand fetch stage. In addition to the forwarding operation,

a new instruction (14) is shown in the Issue Unit. As this instruction requires

FUO, the Issue Unit sends an overwrite command to clear the contents of the

forwarding register. The register identifier of the new instruction is also noted,

Chapter 3 - Towards Asynchronous Superscalar Processors 	 83

replacing that of Il.

An obvious problem with such a scheme is that the order in which data is

forwarded to a particular functional unit from different pipelines cannot be guar-

anteed. For example, if two instructions at FU2 request data from FUO and FU1

respectively, then the order in which the results arrive at FU2's operand fetch

stage is non-deterministic. This problem could be overcome by ensuring that we

only forward data when the order of the arrival of forwarded results at a par-

ticular FU could be guaranteed. A particular order could be the result of other

data dependencies or additional hardware introduced to guarantee the ordering

of results. Such approaches would most likely either reduce opportunities for

forwarding, and increase synchronisation or add to the latency of the forwarding

operation.
A general solution to the problem is to provide a buffer for each possible source

of forwarded data at each operand fetch stage. An instruction entering its operand

fetch stage is able to select data from the correct queue by examining a tag added

to each operand during issue. The tag indicates whether forwarding is possible,

and if so, the source of the data. A block diagram illustrating a single execute

pipeline incorporating data forwarding is shown in Figure 3.12. The technique

works as we can assume that results from a particular FU will always arrive in

the order in which they are sent.

One final requirement is to guarantee only a single FU source is recorded for

each result in the Issue Unit's Forwarding Table. For example, consider the case

where three instructions with the same destination register are issued consecu-

tively - this would result in three different sources being recorded for the same

register. The problem can be avoided by first deleting those table entries that

match a newly-fetched instruction's destination register. In practice this opera-

tion may be performed each time a new register is added to the free register pool,

preventing any lengthening of the issue stages cycle time. Correct operation is

ensured by only allocating registers to new instructions after their entries have

been deleted from the forwarding table.

The buffering of forwarded data is also beneficial to prevent unnecessary

pipeline stalls. In a synchronous architecture the forwarding operation always

takes place just prior to the use of the result. In the asynchronous queue-based

architecture, a forwarding request may be received and serviced well before the

data is actually required. The provision of buffers allows such forwarding opera-

tions to take place while preventing the need to stall the source pipeline until the

consumer instruction has reached its operand fetch stage.

Chapter 3 - Towards Asynchronous Superscalar Processors

Ii: ADD Ri, R2, R3
MUL R5, R6, R7
LD R8, [Ri + R51 	

STEP 1._________ ADD R9, RiO, #5 	Forwarding and
overwrite commands 	 I OVERWRITE

OVERWRITE

Issue

12 From Register
Ful Renaming

FUO RI
FU1
FU2 FU2

Forwarding table Instruction Queues
Forwarding

Registers

STEP 2.

Forwarding and overwrite commands FWD TO FU2

Issue
_M*O

Unit

OVERWRITE

FUO RI
FU1
FU2 FU2

Write Back

STEP 3.

Figure 3.11: Step-by-step illustration of a simple asynchronous forwarding

mechanism

Chapter 3 - Towards Asynchronous Superscalar Processors 	 85

Forwarding Network

Source 	FLJ 0

Forwarded Data

Forwarding

1 	. 	Operand I 	I Functional I 	I 	egister I 	I 	I 	I

Instruction Queue 	 Fetch 	I 	Unit 	I'1

From Instruction 	 I 	I 	Forwarding Issue 	
Register

	

Register File 	 Control

	

Read Ports 	 Buffer

Figure 3.12: Execution pipeline with Data Forwarding

86 	 Chapter 3 - Towards Asynchronous Superscalar Processors

It should be noted that data forwarding may be preferable to obtaining operands

from the register file from a power perspective even when performance is unaf-

fected. Reductions in register file traffic may provide an opportunity to reduce

the total number of read ports, leading to a decreases in their access time. The

forwarding operation is also likely to consume less energy. The levels of forward-

ing may be increased by providing more forwarding registers at each FU. This

allows the results from the previous N instructions issued to each instruction

queue to be considered for forwarding during issue.

The first step is to increase the number of forwarding registers at the output

of each functional unit to N. The forwarding register command queues remain,

while the forwarding registers themselves are organised as a circular buffer. The

overwrite command now removes the oldest entry from the FIFO, allowing a new

result to be written in its place - of course this can only be permitted to take place

after the old result has been written to the register file. The forwarding table in

the issue unit is now expanded to store the destination registers of the previous N

instructions issued to each instruction queue. The number of operand/destination

register comparators is also increased to allow all the table entries to be searched

in parallel. Forwarding requests are now made as before, but are tagged with the

particular entry in the buffer that is required. The implementation of the circular

buffer would be very similar to the parallel FIFO described earlier.

3.4.2 A simple write-back scheme

The forwarding scheme described previously is suitable for inclusion in a simple

multiple-issue architecture; one in which scheduling at compile-time is more crit-

ical than in a typical superscalar machine. To reduce the complexity of such an

architecture, the register renaming and reorder buffer hardware may be removed

and replaced with a simpler scheme to support precise interrupts and speculation.

For example, a result shift register scheme similar to the one used by the Mm-

iMIPS architecture may be used (see Section 2.6.5). This ensures that instructions

only ever write to the register file in program order, removing the need for a re-

order buffer. Unlike the MiniMIPS architecture, access to results generated out of

order would be provided through the use of the forwarding mechanism described

in the previous section. This type of architecture is illustrated in Figure 3.13. The

approach can be thought of as a distributed version of the AMULET3's reorder

buffer. The reorder buffer provides a slightly more general forwarding scheme

enabling results of the previous N instructions to be forwarded, irrespective of

the FU they use. More important than the generality of the distributed forward-

order
ak

A rite Back

Fmi

Chapter 3 	Towards Asynchronous Superscalar Processors 	 87

ing scheme, is its ability to buffer results locally in order to minimise pipeline

synchronisation. A distributed implementation of forwarding is also preferable in

order to minimise the latency of the forwarding operations.

FU usage in program order

Forwardmg
Instruction Queues 	 Registers

Figure 3.13: The queue-based processor with additional hardware to enforce

in-order write-back (highlighted). The operand fetch stages may read data
from either the register file (RE) or forwarded data result queues (the RE and

buses associated with operand fetch are omitted for clarity).

If the table-based register renaming mechanism was also removed, we could

no longer assume that each instruction is assigned a unique destination register.

This forces instructions to stall during issue if they detect that their destination

register is already locked.

3.4.3 Data forwarding with out-of-order dispatch

We now describe how data forwarding, as detailed in the previous sections, may

be employed when instructions are dispatched out of order from a central dispatch

buffer.

Consider the organisation shown in Figure 3.14. In contrast to the queue-based

architecture, overwrite and forwarding requests can now only be made once an

instruction reaches its operand fetch stage. This is because the order in which

instructions will be dispatched is not known. Potential sources of data are now

identified dynamically during wakeup operations. For example, if an instruction is

dispatched to the memory unit, then any operands requiring its result will record

the memory unit as the source of data. \Vakeup operations that match particular

operands and set their status to ready, now also write this source FU data into

the reservation station. Instruction operands that are initialised to be ready at

the time the scoreboard is read will not generate forwarding requests. In reality

88 	 Chapter 3 	Towards Asynchronous Superscala.r Processors

such data will often already be available from the register file. To summarise, a

forwarding operation now involves the following steps:

Forwarded Data Queues

Instruction

JRXequ.e5ts

J Register File
Read Ports

From Dispatch
Buffer -H 	I 	I Functional

 Unit

Forwardin

(toea I

Forward Data

Forwarding Register FIFO

Register
Write

Overwrite signal

Forwarding
Requests (from each FU)

Free Register
Pool

111 Register Mapping
Tables

Wakeup operations

Instructions 	 Register
from decode 	I 	I 	Mapping

stage 	N 	 Logic

Dispatch
Buffer

Write

J
back

	

Operand 	
Ft.)

2 N 	 Fetch

~
info.

N 	

sta
set busy-bits

Busy-hit on dispatch
Table

reset Status

Figure 3.14: Data Forwarding supporting Out-of-order Dispatch

Wakeup processes broadcast the destination register identifiers of dispatched

instructions to all entries in the dispatch buffer.

The status of those operands that have the same register identifier as the

broadcast result are set to ready. The FU at which the result is generated

is also appended to the instruction in the same reservation station.

Instructions are dispatched when all operands are ready and a suitable FU

is free.

Forwarding requests are made, if necessary, for each operand. Operands

that cannot be obtained via forwarding are fetched from the register file.

An overwrite signal is sent to the forwarding registers at the output of the

instruction's functional unit. This invalidates the contents of the oldest

forwarding register in preparation for a new result to be latched.

Chapter 3 	Towards Asynchronous Superscalar Processors 	 89

At this point it is clear that concurrent forwarding requests may be made

from a number of operand fetch stages to a single forwarding register control

buffer. One problem is that overwrite signals, invalidating the current contents of

a forwarding register, may also be sent concurrently with forwarding requests for

the current data. In the queue-based architecture this problem was avoided by

ordering overwrite and forwarding requests from a centralised issue unit. When

dispatch is truly out of order, such requests must be sequentialised through arbi-

tration. This arbiter component is shown in Figure 3.14 (just below the forward-

ing buffer).

Given that requests are now generated in a distributed fashion, the forwarding

requests may be received too early or too late; either prior to the receipt of an

overwrite signal preparing for the receipt of a particular result, or after subsequent

overwrite signals have effectively removed the data. To avoid the possibility

that incorrect data is forwarded, the forwarding requests must now include the

register identifier of the required result. A comparison in the forwarding buffer

now determines if forwarding is possible, or if the forwarded operation must be

cancelled. In the latter case, a signal is sent to indicate that the data is not

available, which forces the result to be obtained via the register bank.

Operand Fetch 	 Forwarding Buffer

FUO 	 R5 k]] 	Write back

	

From Dispatch 	 II

	

Buffer 	dest=R10 	- - - -

Fl

dest=RIO

From FUI 	FWDTO FIJI
data=R5

From FU2
data=R1 0

Arbiter

Figure 3.15: An example of how forwarding requests cannot always be guar-
anteed to be successful if out-of-order dispatch is employed

The situations leading to successful and unsuccessful forwarding requests will

now be illustrated using Figure 3.15. Instruction Ii will generate a result destined

for register RiO. To enable the result to be written into the forwarding buffer,

and to make it available for forwarding, Ii generates an overwrite command

when in its operand fetch stage. When this command reaches the forwarding

register, the entry currently holding the contents of R5 will be overwritten. The

90 	 Chapter 3 	Towards Asynchronous Superscalar Processors

success of the two forwarding requests from FiJi and FU2, for results P.5 and

P.10, respectively, now depends on the order in which the forwarding request and

overwrite commands are granted:

• If the overwrite command is granted first, then the contents of P.5 will no

longer he available for forwarding. When the forwarding request from FU1

for P.5 reaches the forwarding registers, a response indicating that forward-

ing was not possible will be sent in place of the result data. When the

second forwarding request for RiO reaches the forwarding registers, the reg-

ister identifiers will match and forwarding may take place. In practice, the

forwarding operation may stall until the data has actually been generated

and written to the register.

• If both forwarding requests are granted before the overwrite command, then

the forwarding request for FU1 will be successful, while the request for RiO

will fail as no overwrite command has yet been received to initialise its entry

in the forwarding buffer.

The point at which the overwrite signal is generated defines the precise char-

acteristics of this window in which a forwarding request will be successful. In the

extreme case, the overwrite command could travel with the instruction through

the functional unit, only arbitrating with forwarding requests after the result has

been generated. Such a scheme would deny all forwarding requests made for the

result of an instruction that has not generated a result - even if the request was

made just prior to a result becoming available. In the other extreme, generating

overwrite commands too early is likely to reduce the effectiveness of the forward-

ing registers, reducing the chance of forwarding data from the oldest entry. Our

simulations have showed that a reasonable trade-off may be made by generat-

ing overwrite signals during operand fetch after an instruction has received its

operands.

3.4.3.1 Reducing the number of unsuccessful forwarding requests

In the scheme described previously it would be beneficial if it could be predicted

when forwarding requests were likely to be unsuccessful. This would allow the

total number of forwarding requests to be reduced, while having no impact on

the actual number of results forwarded. Such a reduction in surplus forwarding

requests would in many cases decrease the time required to service those that

remained. The mechanism described next operates by resetting forwarding op-

Chapter 3 - Towards Asynchronous Superscalar Processors 	 91

erations before an instruction is dispatched, but some time after forwarding has

been initialised.

To enable forwarding operations to be reset, a source counter is associated

with each operand in the dispatch buffer. When a wakeup operation matches

an operand, then its status is set to ready and the source of the result is noted.

At the same time the source counter is initialised. Each subsequent wakeup

operation from the same functional unit now reduces the value of the source

counter (irrespective of the destination register identifier of the result). If the

counter is reduced to zero, then the source of the data is reset to the register file

and a forwarding request will no longer be made. The counters simply predict

the case when it is likely that the contents of the forwarding register have been

overwritten by subsequent dispatches to the same functional unit.

Counters in the dispatch buffer are only updated after forwarding has been

initialised. This removes any concern about the behaviour of the counters when

a new instruction is written to the window. To guarantee that a counter is not

modified during dispatch, an additional arbiter is required within each reserva-

tion station. This ensures that counter decrement and dispatch operations are

mutually exclusive.

3.5 Alternative approaches

The following sections explore two existing designs for asynchronous ILP archi-

tectures.

3.5.1 Counterfiow-pipeline based dispatch buffer

In [155] Werner and Akella describe an asynchronous implementation of the Fast

Dispatch Stack (FDS) [2, 371. The dispatch stack architecture exploits a large

amount of unary encoded data to minimise the critical path of the scheduling

hardware. The motivation for an asynchronous version came from the idea that

a counterfiow pipeline could be used to simplify the compaction and dependency

resolution logic. Dependency resolution is complicated by the fact that no register

renaming takes place, which requires that both true- and false-dependencies be

detected.

A block diagram of the architecture is shown in Figure 3.16. The buffer unit

prepares instructions for entry into the issue unit, it is here that a number of

unary-encoded vectors are appended to the instruction. These vectors simplify

the process of detecting dependencies with instructions waiting to be issued higher

92 	 Chapter 3 - Towards Asynchronous Superscalar Processors

in the issue unit's instruction pipeline.

Read (source) and write (destination) vectors identify the registers used by

each instruction. In addition a unique result tag, again unary encoded, is associ-

ated with each instruction. These vectors together with the instruction form an

I-group. I-groups flow from the bottom of the issue unit towards to the top. The

other pipeline, which flows in the opposite direction carries dependency informa-

tion. The pipelines operate together as a counterfiow pipeline.

Common Tag Bus

Returned Tags

I I I
I
 i
 i

I
I

D

_

-
_
Vecto

_

r I-Grou

_

p
_

I
i

-

 I FU0

_ _

0-Vector I-Group,

I
I

II

_ I
I

I
i

. 0-Vector
H'IGroup

I
I I

FUt

D-Vector I-Group I i

I 	Issue Unit
- -

I
IkLj ~t

I-Group
Generation

From Instruction Cache

Figure 3.16: AFDS Block Diagram

Tag vectors are issued with an instruction to its functional unit; on completion,

the tag is returned to the issue unit and enters the dependency pipeline at the

top. The dependency pipeline contains two vectors - read and write. These

vectors incorporate dependency information as they pass each I-group. At any

particular stage in the pipeline they allow all potential dependencies created by

the instructions that they have passed to be represented. Each instruction uses

the information provided in the dependency pipeline to determine if it may issue.

The result tag is never modified and is simply used to remove instructions from

the issue unit that have completed; the so-called evaporation takes place whenever

the result tag matches the tag contained within the I-group.

The selection process is controlled by the instruction dispatcher. A call request

Chapter 3 - Towards Asynchronous Superscalar Processors 	 93

from the dispatcher queries each instruction in the buffer, forcing an issue request

or negative acknowledgement signal to be generated. This provides the static

inputs necessary for the selection logic that is implemented using dynamic logic.

Two problems are likely to limit the performance of such an approach. Firstly,

the architecture is complicated by the lack of a generalised register renaming

scheme. This both limits the extent to which ILP may be exploited and compli-

cates the process of determining when an instruction may be dispatched. Sec-

ondly, the resolution of dependencies using a counterfiow pipeline is likely to

represent a significant delay between the dispatching of some dependent instruc-

tions. This again will limit the scheduling hardware's ability to exploit ILP. From

an implementation perspective the architecture requires a very wide counterfiow

pipeline, around 350 bits for an architecture with 64-registers, 32 window en-

tries and 4 functional units. No results from any performance studies have been

presented so far.

The provision of a data forwarding scheme is also not discussed. The data-

forwarding scheme presented in the previous section relies on the availability of

information indicating the source of each result. This type of information is

lost if dependency resolution is performed using unary encoded vectors. Due

to the relative implementation cost of dynamic scheduling hardware and data

forwarding, it is probably sensible to consider an efficient data-forwarding scheme

before devising a dynamic scheduling mechanism.

The scheme could be adapted to operate in the generic superscalar framework

described previously in this chapter. The counterfiow pipeline is retained, while

unary encoded dependency vectors are replaced by result destination identifiers.

Again the major concern would be the latency involved in communicating wake-

up information to newer instructions. The counterfiow pipeline experiments that

have already been performed tend to suggest that its performance would not be

adequate for this purpose. While the provision of a separate reorder buffer would

allow full-compaction within the scheduling window, a simpler non-compacted im-

plementation such as the one described previously in this chapter, could perhaps

compensate for the lack of compaction with a slightly larger number of entries.

3.5.2 The FRED architecture

The FRED architecture [119, 1181 is shown in Figure 3.17. A central dispatch

unit together with a register scoreboard implements out-of-order instruction issue.

Implementation details are scarce, and only a brief description of the problems of

providing arbitrated access to the shared resources of the dispatch unit is given.

94 	 Chapter 3 - Towards Asynchronous Superscalar Processors

Again the lack of register renaming means that both true and false-dependencies

must be tracked within the dispatch unit.

SET/CLEAR
SCOREBOA7D

1CLEAR

READ

DISPATCH UNIT OPERAND REQUEST QUEUE
REGISTER FILE

z

OPERAND QUEUE

• ---i r f __________

DISTRIBUTOR DONE QUEUE

Lj BRANCH 	 T ARITHNMTICUNU

I
P1 	MEMORY UNIT ft

L --- --------------------------- - 	
--

A
- --

DATA

DATA MEMORY

Figure 3.17: FRED Architecture

One unusual feature of the architecture is that register Ri accesses a queue.

Writing to register Ri adds data to the tail of the queue, while specifying Ri

as an operand will cause a value to be read out from the head of the queue. To

ensure deterministic operation, instructions that utilise the queue are forced to

execute in the original program order. Deadlocking the processor by filling the

Ri queue must be avoided by the programmer, although such a condition would

also force an exception. The Ri queue is available to every functional unit, as

shown in the block diagram (queues are not represented explicitly as every data

and control path is potentially buffered).

A very restricted form of data-forwarding is implemented. Instructions are

able to reuse the last result generated at the functional unit they are dispatched

to, although conditions are described when even this data cannot be used.

Again, the implementation of a dynamic scheduling mechanism is likely to

be a poor replacement for a complete data-forwarding scheme. Some form of

register renaming is also likely to boost ILP and simplify the implementation of

the dynamic scheduling hardware. As a result of these problems, performance is

reported to be lower when out-of-order issue is used.

Chapter 3 - Towards Asynchronous Superscalar Processors 	 95

3.6 Summary

In many cases the adoption of an asynchronous design style will require architec-

tural modifications in order to fully exploit its potential advantages. In particular,

the removal of high-level synchronisations may force the design to operate in a

pseudo-synchronous fashion. In the case of a superscalar architecture, the exis-

tence of a large number of parallel instruction pipelines makes this task even more

important. Two mechanisms key to exploiting ILP in such processors present a

challenge in this respect. Both dynamic scheduling and data forwarding schemes

traditionally exploit synchronous operation, their inclusion in an asynchronous

ILP architecture without careful design will force the majority of datapath com-

ponents to operate in lockstep - exposing both worst-case delays and control

overheads.

Solutions to both problems have been presented in this chapter. Traditional

implementations of dynamic scheduling exploit global synchronisation to control

access to the dispatch buffer creating sequential wakeup and selection phases.

In the asynchronous design each process that must access the buffer operates

concurrently. Mutually-exclusive access is only enforced when it is necessary to

guarantee a successful communication between two dependent instructions. A

design is also presented for the selection logic that removes the need to imple-

ment a large N-way arbiter. In this case, synchronous operation is mimicked by

sampling the state of the instructions before selection takes place.

In providing a data forwarding mechanism, two approaches may be employed

to substitute for the lack of global synchronisation. Firstly, if the order of par -

ticular operations may be guaranteed we may be able to exploit this information

even in an asynchronous environment. This leads to a simple data-forwarding

mechanism if dispatch is guaranteed to be in-order at each functional unit. Sec-

ondly, information may be maintained locally to minimise the need for additional

synchronisations in order to acquire non-local state information. A data forward-

ing scheme to support out-of-order dispatch is possible, if instructions are tagged

with the source of data while they are stalled in the dispatch buffer. This data

may then be used after dispatch to acquire operands via forwarding.

In the following chapter we will expand these ideas to develop an architecture

that is targeted specifically at an asynchronous implementation. In particular, we

focus on how the datapath may be simplified by exploiting explicit dependency

information appended to instructions during compilation.

96 	 Chapter 3 - Towards Asynchronous Superscalar Processors

Chapter 4

Compounded Instruction
Architectures

4.1 Introduction

The previous chapter explored how a typical synchronous architecture could be

transformed to operate efficiently without reference to a global clock. Actual

delays exposed by operating asynchronously are exploited by maximising concur-

rency - creating opportunities for local timing gains to be translated into increased

overall performance. This is achieved by distributing both control and state to

minimise the need for high-level synchronisations. Additional concurrency may

also be exposed by reducing the need for mutually-exclusive operation. One way

in which this may be achieved is by considering the need for mutual-exclusion as

a data-dependent requirement.

The aim of this chapter is to explore how information appended to instructions

at compile-time may also aid in exploiting asynchrony. The ability to append

information prior to instruction fetch or issue can be viewed as an extension of

the idea of distributing state and control. The previous chapter demonstrated

how maintaining a small amount of state locally in the issue unit could provide a

mechanism for implementing data-forwarding. One limitation of such an approach

is that information can only easily flow in one direction: from older to younger

instructions. In contrast, information appended at compile-time may exploit

a global view of the program, albeit without precise information regarding the

behaviour of branches and caches.

The goal of exploring such an approach is an attempt to find novel schemes for

dynamic scheduling and data-forwarding specifically aimed at an asynchronous

implementation. One target, in particular, is to simplify the implementation of

both the wake-up and selection processes. In the scheme detailed in the pre-

97

98 	 Chapter 4 - Compounded Instruction Architectures

vious chapter, these processes operate on all entries of the dispatch buffer in

parallel. For this reason the implementation can be thought of as a brute force

technique, utilising a significant level of power and offering poor scalability. In

the synchronous case, there is little alternative as the operations are designed to

operate within a fixed time period. Adopting an asynchronous design style allows

additional performance/ complexity trade-offs to be explored.

The technique that forms the basis for the architecture described in this chap-

ter is called instruction compounding. In contrast to a synchronous VLIW archi-

tecture, where grouping independent instructions is beneficial, we aim to exploit

explicit dependency information to simplify execution. This involves identifying

groups of dependent instructions that are then scheduled as atomic units called

instruction compounds. This additional dependency information may then be ex-

ploited at run-time by an asynchronous processor. A brief summary of some of

key features of an instruction compounding processor is provided below.

• Dependent instructions are grouped at compile-time into instruction corn-

pounds.

• Data is only forwarded between consecutive instructions in compounds.

Communication between compounds is performed through the register file.

• Explicit dependency information allows the producer of a result to make a

request to forward its data to a consumer.

• Requests to forward data are also used to wake instructions up, indicating

that one of their operands is ready. This mechanism becomes part of the dy-

namic scheduling scheme, which allows instructions in different compounds

to execute out of order.

4.2 Instruction Compounds

Instruction compounds consist of a number of instructions where each instruction

in the group is dependent on the previous. In the first instance, compounding is

restricted to within basic blocks, and will assume that compounds are formed at

compile-time. Compounding instructions from different basic blocks is compli-

cated by the presence of control hazards, which prevents the need for communica-

tions to be identified until run-time. We will also assume that the most efficient

way to name operands in such communications is by using registers.

Figure 4.1 illustrates two possible ways in which compounds may be selected

from the instructions a to g. The only restriction placed on the compiler while

Chapter 4 - Compounded Instruction Architectures 	 99

forming compounds is that the resulting compound dependency graph is acyclic.

If this is not the case, as illustrated by the grouping on the right hand-side, it

becomes impossible to schedule the compounds atomically.

c2

Compounding 	- -
Bits

) 	
ci

c2

'S f;

Figure 4.1: Two possible basic-block partitionings that form compounds. The

compounds shown on the left form a valid cycle-free dependency graph, while

the rightmost graph does not. The compounded program for the valid case

is also listed.

Membership of a particular compound is indicated by a single additional bit

appended to each instruction. This places the restriction that each member of

a compound must be scheduled in order and consecutively. The setting of a

particular instruction's compounding bit indicates that the next instruction is

also a member of the same compound and requires the result of the preceding

one. This form of compounding permits only a single communication from one

particular instruction to be indicated explicitly. Figure 4.1 also shows the only

valid schedule for the rightmost compound. 111 this example, instructions whose

compounding bits that are set are preceded by an asterisk.

A simple graph partitioning algorithm that compounds instruction DAGs is

provided in Figure 4.2. The -< symbol is used to represent the covering relation,

this evaluates true when there is a dependency between the two instructions,

for example y depends on x (x < y), but no other instruction z exists such

100 	 Chapter 4 	Compounded Instruction Architectures

C0MP0uND(DAG, maxLength)
1 EdgeList = CREATEWEIGHTEDEDGELIST(DAC)

2 S0RT(EdgeList)
3 / Initially each instruction is a compound /
4 for each (n1 , flto) in EdgeList
5 do Let C1 , C2 be the compounds containing instructions flfrom and nt0

	

6 	if ((LENG'rH(C1) + LENGTH(C2) <= maxLength)

	

7 	and (ISTAIL(flf rorn)) and (not (ISSTORE(flfrom)))

	

8 	and (IsHEAD(n t0)) and (C1 —< C2))

	

9 	then C0NcAT(C1 ,C2)

	

10 	 DELETE(C2)

11

Figure 4.2: Basic block paritioning algorithm

that x < z < y. This prevents compounds from being created that cannot be

scheduled. Edges of the DAG may be given weights to prioritise the creation

of particular compounds. For example, to increase the chance of a particular

communication being serviced using the forwarding mechanism, or for implying

a particular set of dynamic scheduling possibilities.

4.3 Exploiting Compounds at Run-Time

In this section, we examine how the availability of explicit dependency information

may be exploited at run-time. The value of such information is that it provides

a means by which the consumer of a result may be identified without the need to

introduce high-level synchronisations.

A simple technique to exploit such information, which would combine both

dynamic scheduling and data forwarding, is to consider moving entire compounds

between execution pipelines. The instruction issue stage would operate by initially

sending the whole compound to the functional unit required by the head (first)

instruction. Once the compound had reached the end of the dispatch queue and

the head instruction had fetched its operands, its tail (i.e. all instructions except

the first) would be forwarded to the functional unit of the new head instruction.

As soon as the result of the first instruction had been generated it would be

forwarded to the tail's functional unit. A number of architectures that operated

in this manner were explored [7].

These architectures unfortunately suffer from two problems. Firstly, deadlock

conditions could potentially arise when compound tails are sent between func-

tional units. Compiler-based scheduling constraints must be introduced to avoid

Chapter 4 - Compounded Instruction Architectures 	 101

the possibility of deadlock or dynamic run-time schemes should be devised to

detect deadlock situations. Scheduling constraints were explored, although it was

concluded that opportunities to create compounds were limited if this approach

was taken. The lack of an appropriate formalism and related tools also makes

reasoning about the interaction of programs and such architectures difficult. Re-

lated work, described in [16], investigates the application of typing calculi to prove

correctness given a particular architecture and program. A second problem is the

impact on power and performance of moving a large number of instructions be-

tween functional units. In this respect, a design that issues instructions once to

the functional unit at which they are required would be preferable.

4.3.1 Overview of a compounding architecture

Figure 4.3 provides an outline of an architecture that is designed to exploit in-

struction compounding. In some ways this architecture appears similar to the

queue-based architecture described in Section 3.4.1. While there are similarities,

the compounding architecture is capable of dispatching instructions out-of-order

from each dispatch buffer. Data-forwarding is also implemented using a com-

pletely different mechanism. This section provides a brief overview of the different

components of the architecture.

Not shown on the diagram are the additional components required to support

speculative execution and register renaming, which include the register rename

mapping tables, branch prediction logic, free register pool and reorder buffer. We

assume that their implementation poses few problems, and they are therefore

omitted for the sake of clarity.

Instructions are fetched and proceed in parallel to the register rename stage.

At this point, logical registers are mapped to physical registers and the busy-

bits corresponding to each instruction's destination register are reset. Note that

unlike the dispatch buffer described in the previous chapter, the busy-bit table

performs no arbitration and is simply implemented as a multi-ported memory.

After register renaming the instructions proceed in parallel to the instruction

issue unit.

Instruction issue consists of two stages. Firstly, if the instruction is a mem-

ber of a compound, then the location of the next instruction (consumer) in the

compound is appended to it. The location takes the form of both a functional

unit identifier and a dispatch buffer entry index. The dispatch buffers themselves

are organised as parallel FIFOs that allow the next free entry in each buffer to

be determined using counters maintained in the issue module. The correct buffer

102 	 Chapter 4 - Compounded Instruction Architectures

index for the consumer instruction may therefore be obtained as soon as the func-

tional unit it requires is known. If both instructions in question were fetched in

parallel and are now both in the issue stage then this operation is trivial. If the

compound spans an instruction fetch boundary, the type of the next instruction

must be obtained from the register rename stage. The second step in the issue

process simply distributes each instruction to the appropriate functional unit.

If functional units are duplicated, then we assume instructions are issued in a

round-robin fashion.

A compounded instruction encapsulates information about the use of results of

instructions within the compound; this enables data forwarding operations to be

initiated by the producer of results. In contrast, in all the architectures discussed

previously in Chapter 3, it is the consumers of results which request data from

the producer (or producer's FU). The basic steps of a forwarding operation are

illustrated in Figure 4.3. The highlighted control and data paths around FU2

represent the communications necessary to implement a forwarding operation. On

dispatch, a compounded instruction will initiate both its operand fetch stage and

also its forwarding request unit. The instruction is then able to make a request to

forward data to the next instruction in the compound. The request is directed at

the correct dispatch buffer entry using the location information appended during

issue. A response generated at the consumer's dispatch buffer then determines if

forwarding proceeds or not. The forwarding request now also forms part of the

wake-up process of the consumer instruction, indicating that one of its operands is

ready. The following sections provide a detailed description of how these dynamic

scheduling and data-forwarding processes operate and may be implemented.

4.3.2 Out-of-order dispatch

A dynamic scheduling mechanism exposes ILP by enabling instructions from

many compounds to execute in parallel. One aim in developing such a scheme

is to avoid the need to broadcast result register identifiers to all the waiting in-

structions and the resulting high fan-in associated with the selection logic. The

scheme must also be compatible with the way in which forwarding requests now

emanate from the instructions producing the results. This is achieved by updat-

ing the status of operands of individual instructions directly, without the aid of

comparators or content-addressable memory. The wake-up operation is now little

more than a write to a single memory location in one of the dispatch buffers. In

the following discussion, the term micro-operations defines the constituent steps

for executing an instruction. A micro-operation may travel though a number of

Chapter 4 - Compounded Instruction Architectures 	 103

Register
File

Clear busy-bits 	Busy-bit
Table

	

to FUI/FU[2

Read busy-bits 	

operand fetch

Forwarding
Control Units

 A~patch rOp.

From register file

	

Instruction]__, Register 	 FUI 	
Write

	

Dispatch 	Op. Fetch 	 Back Fetch 	Rename
orwan ling Request 2

Responce 	 Forward or Cancel

Forwarding Request Uni t

	

Dispatch 	Op. Fetch 	FU[2

From register file

Figure 4.3: A superscalar instruction compounding processor. For clarity the

data buses required for data forwarding have been omitted.

local control units to complete its task or may simply need to complete a single

handshake with one particular function unit.

Wake-up operations may be generated either by micro-operations which have

read a ready entry in the Busy-bit Table, or by forwarding requests. The micro-

operations for reading the Busy-bit Table are generated and queued for each

operand in the buffer that will be obtained via the register bank. These repre-

sent all communications that are not explicitly indicated through compounding.

Each read micro-operation accesses the busy-bit table and waits until the entry

corresponding to the particular operand's register is set. This indicates that the

instruction that will generate the result for the register has been dispatched. Once

the busy-bit has been read as set, then the wake-up operation may proceed. The

second way in which operand status is updated is through forwarding requests.

These emanate from the preceding instruction in an instruction compound. The

precise handling of forwarding requests is described in detail in the next section.

A block diagram of the logic surrounding a single dispatch buffer is shown in

Figure 4.4. Two busy-bit read queues are used to store the pending read and

wakeup micro-operations. Each micro-operation contains the operand's register

identifier and its entry in the buffer. Operations are allocated to the queues

in round-robin style. No arbitration is required at the busy-bit table as read

operations simply stall until the bit they are reading is set, which is identical to the

behaviour of the lockable register file. The other source of wake-up operations is

104 	 Chapter 4 - Compounded Instruction Architectures

provided by forwarding requests. Forwarding requests from each of the functional

units are first arbitrated and then buffered before being served in sequence by the

dispatch buffer. In this case the single ack signal is replaced by both ack and

cancel signals as in some cases forwarding is not allowed to proceed as detailed

in the next section.

	

<__Pr 	

II from register rename 	 I 	Busy-bit 	
- _______) set on dispatch stage 	_______ 	table)l

P1
read

busy-bit read micro-operations 	 I I
I 	III

control

Arbiter

Instruction from 	 r 	few_
a
rdig : re issue unit

Forwarding requests from each FU

P
cancel

wake-up ports 1,2 and 3

_____________ Dispatch

new buffer entry [

	

j Buffer

dispatched instruction
P

(Set destination register's bit in busy-bit table)

Figure 4.4: Reading busy-bits and waking buffer entries

Figure 4.5 provides an example of how an instruction may be dispatched in

the compounding processor. Operations which may be performed in parallel are

composed using the parallel operator (H) while those which must be performed

sequentially are composed using a sequential operator (;). In the example, com-

munication is performed through the register-file as the instructions do not belong

to a compound. Information is communicated between the instructions at two

points. Firstly, the dispatch of the first instruction is detected by the second

instruction after its busy-bit is read as set. Secondly, the result of the first in-

struction is read by the second during its operand fetch stage. A register-locking

mechanism, as described previously in section 2.6.2, ensures that the second in-

struction only reads the data after the first has finished its write-back operation.

Chapter 4 - Compounded Instruction Architectures
	

105

A = ADD R5, R6, R7

B = LD Ri, [R5]

II Initially
Busy bit 6,7 is set

Busy bit 5 is clear

Register Ri and R5 1 s lock bits are set on issue

Execute A

C
((write instruction A to dispatch buffer entry N, initialise

each operand's status to not ready)Il

(queue micro-operation to read busy-bit 6, for entry N) II
(queue micro-operation to read busy-bit 7, for entry N));

(((wait until busy-bit 6 is read as set);

(update status of op R6 in A's reservation station)) II
((wait until busy-bit 7 is read as set);

(update status of op R7 in A's reservation station)));

(dispatch A);

((set busy bit 5)11 (read operand R6) II (read operand R7));

(execute A);

(write back result to R5, clear R5 1 s lock bit)

)

Execute B

(

((write instruction B to dispatch buffer entry P, initialise

each operand's status to not ready)II

(queue micro-operation to read busy-bit 5, for entry P));

(wait until busy bit 5 is read as set);

(update status of op R5 in B's reservation station);

(dispatch B);

Note: operand fetch may be stalled until valid data
is available, this is enforced by the setting of lock

bits in the register file

((set busy bit 1)ll(read operand R5));

(execute B);

(write back result to Ri, clear Ri's lock bit)

)

Figure 4.5: Example of instruction dispatch in a compounded instruction ar-

chitecture. In this example all the communications take place via the register

file.

106 	 Chapter 4 - Compounded Instruction Architectures

The wake-up logic for a single reservation station is shown in Figure 4.6 (the

logic for a broadcast style reservation station is shown in Figure 2.29). Each of the

wake-up operations, produced either as a result of busy-bit reads or forwarding

requests, access a particular wake-up port on the buffer. There are three identical

wake-up ports associated with the two parallel busy-bit read operations and the

incoming forwarding requests. Wake-up operations when performed at the buffer,

update the status of the target operand directly. This creates a request (rising

edge) at the input to one of the OR gates shown in the diagram, setting the

associated status flip-flop. When both of these status bits have been set the

instruction is ready to be dispatched.

Requests to set operand status as ready

acknowledge signals for wake-up

ports 1,2 and 3

ano aces 	- 	.

Dispatch Requests and Grants

Figure 4.6: Wake-up logic for a single reservation station

If wake-up operations were acknowledged immediately by the buffer, then

the selection logic described in section 3.3.2 would be required to select a ready

instruction for dispatch. In practice, the selection logic is simplified by limiting

the number of instructions that may become ready simultaneously. To ensure

this, the last wake-up operation to update the status of an instruction's operands

is not acknowledged until the instruction has been dispatched. This prevents

the wake-up port from being used to wake-up another instruction. The number

of simultaneous dispatch requests is therefore limited to the number of wake-up

ports. The arbiter shown in the diagram is required to determine which operation

was the last to update the status of the instruction, as wake-up requests to the

same instruction may be made concurrently at different wake-up ports.

Chapter 4 - Compounded Instruction Architectures 	 107

Requests to set operand status as ready

HI
acknowledge signals for wake-up

ports 12and3

Dispatch Requests and Grants

Figure 4.7: Wake-up requests and acknowledgements

The wake-up process is illustrated in Figure 4.7. Two concurrent wake-up

requests are made to the reservation station; in this case, through wake-up ports

2 and 3. Once the status of both the instruction's operands have been updated,

then the instruction is ready for dispatch. The arbiter allows one of the wake-

up ports to be acknowledged (in this case port 3), allowing it to be used again

immediately to wake-up further instructions. The other port is stalled until the

instruction in the reservation station has been dispatched. A dispatch request is

initiated on the dispatch port corresponding to the stalled wake-up port - port

2, in this case. The instruction is dispatched as soon as a grant is received, the

wake-up port is then acknowledged.

A block diagram of a complete dispatch buffer is shown in Figure 4.8. In

this example, each reservation station is capable of raising one of three dispatch

requests. These outputs are OR'ed together and arbitrated in order to generate

each dispatch grant signal. At most one dispatch request will be granted, allowing

at most one instruction to be dispatched at a time.

4.3.3 Data forwarding

The architectures described in Chapter 3 queue forwarded results at their desti-

nation depending on their source. These queues are required as the order in which

results are received from different sources cannot be guaranteed to be the same

order in which they must be consumed. In these architectures this is the only

108 	 Chapter 4 - Compounded Instruction Architectures

wake-up acknowledgements
(each generated as OR of acks
from each reservation station) OR hi.

(2 - 1 23/

WAKE—UP)

-

INTERFACE a
operandi

- I operand

I wake-up requests 	l 23 -o
__,

(buffer entry, operand)
a

-—a
--a

requests

Arbiter r 	 1

JPJt± t5

DISPATCH
I
IIcI

i 	Control req/ack

(to all entries)

Figure 4.8: Dispatch Buffer

step which must be taken to ensure that instructions receive the correct data.

This is because the order in which instructions arrive at their operand fetch stage

can be controlled, either because dispatch is in order at each functional unit, or

because forwarding requests are made after instructions are dispatched (by those

instructions requiring the results).

In the compounded instruction architecture additional care must be taken to

ensure that forwarded data reaches the correct instruction. Only when a forward-

ing request causes the instruction to make a dispatch request can we guarantee

that the instruction will receive the correct forwarded data. If a forwarding re-

quest is made to an instruction which is not ready to be dispatched, we must

create a forward cancel signal in place of the acknowledge signal. In either case

the status of the corresponding operand is updated to indicate that it is ready.

If the forwarding operation has to be cancelled, the operand is obtained via the

register bank. If forwarding can proceed, the result is read from the appropriate

forwarded data result queue. To ensure that only valid data is read from the

register file, each register is locked using a single bit as described previously.

Another plausible option may be to stall the wake-up port associated with the

forwarding request and wait until the instruction becomes ready. This option is

Chapter 4 - Compounded Instruction Architectures 	 109

undesirable as it may lead to deadlock, this is a possibility as the dispatch buffer

is blocked from accepting additional forwarding requests. Blocking such requests

may mean execution can no longer proceed. Such an approach, even if it did not

lead to deadlock, would probably lower performance by attempting to forward

data to instructions that may not be dispatched until the data is available from

the register file. An example of how compounds execute on such an architecture

is provided in the following section.

4.3.4 An example

This section provides a step-by-step description of how instruction compounds are

executed. The program fragment, together with compounding bits and target FU,

used to illustrate the dynamic scheduling and forwarding mechanisms is shown in

Figure 4.9. Also shown is a sample compound selection and a description of the

format used to represent the state of the busy-bit table read queues and dispatch

buffer.

C-Bit Instruction FU

(A) 1 MULR1,R2,7 2

(B) 0 LD R3, [RI] I

(C) 1 ADD R4, R5, R6 3

(D) 0 ST R4, [R3] 1

Busy-bit table read queues 	Operand Status

CII H

Dispatch Buffer

(C)

Reservation stations

Figure 4.9: Example program fragment and explanation of format used to

represent state at each functional unit

Figure 4.10 Step 1, shows the initial state of the busy-bit table read queues

and dispatch buffers after all the instructions in the program fragment have been

issued. Busy-bit read operations are generated and queued for each of the register

operands in the fragment. Each operation contains the register identifier and

buffer entry of the corresponding instruction. Communications that are initially

WI FUI

CHIlD
flfliiu

LDR3,[R

0 0 STR4,[R3]
CII I 	 fl 	(B)

ID

	(D)

CI

1 LDR3,[R1

0 STR4,1R3]

(B) C1—II 	
(D)

CHLD
WI

Request for data from
register file

110 	 Chapter 4 - Compounded Instruction Architectures

set to take place via the data forwarding mechanism do not generate entries for

the read queues.

Busy-bit table
n 	76543210

CoIoIoIoIililoIoliLID

Busy-bit table
n 	_____76543210

Co 0 1 0 oh Ii 10 0 	0

U.

[J [o I MULRLR2,71 (A) 	CI I [J '
1

'
 1 MULR1,R2,7)(A)

FU2 	FU2

CI I ID CT 	ID

0

_IR5D [0 ADR4,R5,R61 (C) C_I
FU3 	FU3

CII

I AD R4, R5, R6 	(C)

Set Busy-bits corresponding

D
	to destination registers

FU2 __________
I CT_I_I_J 	$1MULR1.R2.7jJ[

rn H

-'Ui.. 1 I_1I

• II• RN

Data from register file
(R2)

Operand 	
to functional unit Fetch

(P5 and R6)

Operand
Fetch 	to functional unit

Dispatch Instructions to operand fetch stages

Figure 4.10: Sample execution of a compounded instruction

Busy-bit table
n 	_____76543210

C0I0I0I0I1I1 [1]0 1 1_L11

The instructions A and C are tagged with the location (FU and buffer entry;

the tags are not shown in the diagram) of the next instruction in their compounds,

in this case B and D respectively, this information is stored together with the

instruction in its dispatch buffer. The status of all the register operands in the

dispatch buffer is initially set to zero, indicating that the instructions are not yet

ready to be dispatched. The busy-bit table indicates that the registers required

Chapter 4 - Compounded Instruction Architectures 	 111

to begin execution of instructions A and C are ready (R2, R5 and R6).

Step 2, shows the state of the datapath after all the busy-bit read and wake-

up operations for functional units 2 and 3 have completed. This updates the

status of the operands of both instructions A and C making them both ready to

be dispatched. The shaded areas in the figure are used to highlight these state

changes. The busy-bits read are also highlighted with thick black borders.

In Step 3, both instructions A and C are dispatched. At this point each

instruction sets the busy-bit corresponding to its destination register. Requests

are also made to the register file for each instruction's operands, in this case

registers R2, R5 and R6.

In parallel with the operand fetch stage outlined in the previous step, both

instructions A and C initiate forwarding requests. The order in which these

forwarding requests are generated depends on when each instruction is actually

dispatched, the queuing of such requests requires arbitration. In the first instance

we consider the scenario when the forwarding request from functional unit 2

(instruction A) arrives first and is placed at the head of the forwarding request

queue at Functional Unit 1 (as illustrated in Step 4 of Figure 4.11).

The forwarding request is tagged with the location in the dispatch buffer

of the instruction requiring the result. When the request reaches the head of

the forwarding request queue a wake-up operation is performed. The status of

instruction B's operand Ri is updated to indicate that it is (or soon will be)

available. In this case as the data is to be acquired through data forwarding the

source of the data (functional unit identifier) is also appended to the instruction.

Updating the status of Ri allows instruction B to request to be dispatched. As

the forwarding request renders the instruction ready to execute, it is acknowledged

for the data must now be sent. The final step illustrates how instruction B obtains

its operand via the data forwarding mechanism. Instruction A first sends its result

to the forwarded result queue corresponding to Functional Unit 2; this data is

then read when instruction B reaches its operand fetch stage - the correct queue

is selected using the information received during the forwarding request. The final

instruction D will dispatch soon after B has set the busy-bit corresponding to

its destination register and its forwarding request has been serviced. Instruction

D will also read forwarded data, in this case from the forwarded result queue

corresponding to Functional Unit 3.

Another possible scenario is that the forwarding requests illustrated in step

4 arrive in reverse order, resulting in the forwarding request from instruction C

being queued ahead of the request from instruction A. Figure 4.12 illustrates

112 	 Chapter 4 - Compounded Instruction Architectures

how deadlock is avoided in this case. Instruction D cannot be permitted to

be dispatched in this case as instruction B must execute first (to generate the

result for register R3). As D cannot be dispatched, the forwarding request must

be cancelled. The wake-up operation is still permitted to change the state of

operand R4, although the data will be obtained through the register file when

instruction D is eventually dispatched.

Once the forwarding request for instruction D has been handled, the forward-

ing request for instruction B proceeds and is successful (illustrated in step 7).

As soon as B is dispatched, the busy-bit for register R3 is set that will eventu-

ally allow instruction D to make a request to be dispatched. When D reaches

its operand fetch stage both operands will be read from the register file as the

forwarding operation has been cancelled.

	

Chapter 4 - Compounded Instruction Architectures
	

113

Busy-bit table
n 	76543210

[a 1010101111111011101 iD
Forwarding Request Queue

	

FU1 I 	0 0 STR4ER3I 	(D)

	

I 	I 11! 	 ,lR1l _(R1) (R4)

LC__

D
Dispatch

CI IJJ 	 _
Cding

ACK

(A)

Cl- LU

H 	
Fong FU3

 fl- I ID

(C)

Busy-bit table
n 	76543210

(set busy-bit)

Operand Fetch

	

LD R3 [Ri] 	
Functional

Unit

	

ST R4, [) 	

rwarded result queues

[II I) _________

CIII) H FU2

Result of instruction (A)

Figure 4.11: Sample execution of a compounded instruction (continued)

114 	 Chapter 4 - Compounded Instruction Architectures

Busy-bit table
n 	76543210

Co 1010101111111011101 iJ
Forwarding Request Queue

2 LDR3,[R1]
0 STR4,[R3]

C1iIR 	(B)
FU1 	(D)

FU2__

FU3___ 	

equest rl I I D
(C)

Busy-bit table
n 	76543210

Co I o I ololilli l lo 1 1 1 0 1
Forwarding Request Queue

IN

ON.. -
ii 11W 	tJ

sptch

CIHJ __ _ ACK 	

IFonvarding
Cl 1IJ

(A)

CT1IJ
FU3 ____

(arding
CIHJ [Ruest 	J

(C)

Figure 4.12: Sample execution of a compounded instruction (cancelling a

forwarding operation)

) 	C

_____ Operand 	Address]_!_{ Cache
I 	Fetch 	Calculation 	Stage I

Cache
Stage 2

Chapter 4 - Compounded Instruction Architectures 	 115

4.3.5 Load and Store Operations

Section 2.8.5 described a number of techniques that are used to schedule memory

operations. As in synchronous processors, the dispatching of load instructions in

a compounding datapath is preferably handled in a speculative manner. Correct

program semantics is ensured by detecting store-to-load dependencies that have

not been respected after a load has been dispatched. Recovery mechanisms such

as those described in chapter 2 are then used to rollback the execution to a point

before the load was dispatched. Schemes that attempt to respect all memory

dependencies by comparing addresses prior to dispatch would provide significant

implementation problems, while also unnecessarily stalling the dispatch of the

majority of load instructions unnecessarily. The frequency at which loads and

stores that are executed in proximity, reference the same memory location, should

in practice be small as such communication does in most cases take place through

the register-file. Of course, situations do exist where it is impossible for the

compiler to disambiguate memory addresses statically. The following section

gives an overview of the implementation of the memory unit and describes how

various techniques commonly found in a synchronous implementation may also

be applied in an asynchronous one.

The execution pipeline of the memory unit is typically longer than that of

a typical integer functional unit. In the compounded instruction architecture,

the operand fetch is followed by memory address calculation and two cache ac-

cess pipeline stages. In addition, address comparisons are required to ensure

that all memory carried dependencies (store-to-load dependencies) are respected

when loads are dispatched out of order. One possible scheme for performing such

address comparisons is described below.

o i Load

00

.)a
S

55
LOAD

LOADS: Write address
STORES: Compare address to loads dispatched prior to store

Dispatch Buffer

set busy-bit/forwarding request unit

Figure 4.13: Proposed scheme for detecting store-to-load dependencies

116 	 Chapter 4 - Compounded Instruction Architectures

Figure 4.13 shows the memory dispatch buffer followed by its execution pipeline

stages. A check to ensure that no store-to-load dependencies have been violated

is made each time a store instruction calculates its effective address. At this point

the address is compared to all younger loads that have been dispatched prior to

the store instruction. Of course, store instructions can only execute in program

order after their non-speculative status has been confirmed. To implement such

an in-order mechanism, the stores are only dispatched after they receive a wake-up

signal from the reorder buffer. This store wake-up signal is provided with its own

dedicated wake-up port at the memory unit. The current dispatch status of loads

is copied just prior to the dispatch of a store. The store then uses this copy of the

dispatch status when it subsequently requests that its address be compared with

younger dispatched loads. This ensures that loads dispatched after the store, but

before the address comparison request is made, are not included in the address

comparison. To complete the scheme, loads must write their addresses back into

the dispatch buffer after they are generated.

4.3.5.1 Memory unit optimisations

In this section we discuss how schemes typically employed to improve memory

performance in a synchronous superscalar processor may be adapted to operate in

an asynchronous compounded instruction one. The three techniques are: hit/miss

cache prediction, the use of a load wait table and aborting instructions on a cache

MISS.

The ability to predict a cache miss allows the dispatch of a load instruction's

children to be delayed, and potentially allows other independent instructions to

proceed. The scheme operates by preventing the load instruction from updating

its corresponding busy-bit, or making a forwarding request, until after the pre-

diction has been read. In the event that a miss is predicted the updating of the

busy-bit, or forwarding request, is delayed until just prior to the result becoming

available. The cache hit/miss prediction table is read after the address calculation

and is updated after each memory operation. A simple predictor mechanism may

be implemented by maintaining a counter for each recent load operation. The

scheme utilised in the Alpha 21264 [75] uses a 4-bit saturating counter. Here the

most significant bit of the counter is used as the load hit/miss prediction. The

counter decrements by two on each cache miss and is incremented on a cache hit.

A second technique that may be used to improve the performance of the

memory unit is the introduction of a load wait table [75]. This attempts to

minimise the number of loads that are dispatched prematurely ahead of older

Chapter 4 - Compounded Instruction Architectures 	 117

stores. This table is read during the instruction fetch or register rename stage

and is used to set a single bit in each load instruction. If the load has previously

caused an exception then its dispatch is delayed until all previous stores have

been executed.

One simple scheme to ensure that all previous stores have executed is to stall

the dispatch of the problematic load until it reaches the head of the dispatch

buffer. The dispatch port used to dispatch stores in order may be used for this

purpose.

A more elaborate scheme is required if we wish to dispatch the load earlier, as

soon as all previous stores have been dispatched. The detection of the condition

when no stores exist between a particular delayed load and the head of the FIFO

requires the generation of a no store signal. This signal is propagated along the

FIFO from the head, to indicate that no store instructions exist between the

current entry and the FIFO head. Entries in the buffer that contain a load that

does not have an entry in the wait table, propagate the signal when it is received.

In the other cases, where the entry is a store or a load that must be delayed, the

signal propagates no further. Only when a load that is delayed detects that the

no store signal is set can it make a dispatch request. Again an additional dispatch

port would be required for loads dispatched in this manner.

The final technique aims to prevent cache misses stalling other functional

units' execution pipelines. If a cache miss is detected, it may be beneficial to

abort the execution of instructions that have been dispatched in anticipation of

the load quickly producing a result. In a compounded instruction architecture

this requires two problems to be solved. Firstly, how the consumer of the load's

result is aborted and secondly, how the instruction is then dispatched a second

time when the result of the load becomes available. Further problems arise when

one considers that the dispatch of the consumer of the load may result in further

dependent instructions being dispatched.

Aborting instructions in such a situation may be feasible by propagating abort

signals through the forwarding paths and the register file. On detecting a cache

miss the load would write or forward a value indicating a miss, instructions re-

ceiving such a signal would then do the same - forcing all instructions that are

dependent on the initial load to be aborted. Such a technique may involve signifi-

cant additional hardware. An alternative may be to stall the setting of busy-bits,

or the sending of forwarding requests when instructions are dependent on the

result of a load. In practice, this may simplify the abort operation but lower

overall performance.

118 	 Chapter 4 - Compounded Instruction Architectures

Unfortunately, even if instructions could be aborted in a satisfactory manner,

the dispatching of the instructions a second time would be equally complex. In

the synchronous case these operations are far simpler due to the presence of

global synchronisation and the ability to broadcast result register identifiers to

wake-up instructions. Overall, it may be concluded that this final optimisation is

probably not suitable for inclusion in a compounded instruction architecture. To

compensate for any loss in performance, greater effort could be focused on the

need for a hit/miss prediction mechanism.

4.4 Dynamic Compounding

In the previous sections it has been assumed that compounds have been selected

from instructions within the same basic block. Therefore, no communication

between basic blocks can be serviced using the data-forwarding mechanism. In

this section we describe a scheme to allow the limits of compounding, if it were

to be permitted across basic block boundaries, to be explored.

Dynamic compounding is achieved by maintaining a forwarding table within

the processor. The table records pending results and a list of potential consumers.

This information is then used to construct compounds dynamically free from

the restrictions imposed on the compiler. The table is accessed twice by each

instruction: once to indicate that it has generated a result and again prior to

the generation of a forwarding request to obtain the location of a consumer. At

this point, the entry would also be reset to indicate that the result is no longer

available via the forwarding mechanism. An instruction that requires a result

that the table indicates will soon be available, simply records its destination in

the same table entry and sets its compounding bit. The necessary forwarding

request would then be generated by the producer after reading the location of

its recorded consumer from the forwarding table. As in the static case, dynamic

compounding is restricted to only recording a single consumer of each result.

The performance cost of such a scheme would be the additional delay, incurred

by accessing the forwarding table, prior to generating a forwarding request. Con-

sumers would write their dispatch location into the table during instruction issue,

while entries would be read and reset by producer instructions following their dis-

patch. Synchronisation between the issue unit and each functional unit would be

minimised by arbitrating access to the forwarding table on a per-entry basis, this

is in fact very similar to the organisation of the busy-bits described in Section 3.3.

A different approach would be to form compounds within a trace cache [121],

Chapter 4 - Compounded Instruction Architectures 	 119

which could be used to avoid the need to centralise the generation of compounds

as described previously. Compounding opportunities identified within instruction

traces could be indicated by appending the offset of the consumer to the producer

instruction. During instruction issue these offsets would then be used to determine

the dispatch buffer entry the consumer instructions would subsequently occupy.

Compounding in this way would also remove the selection restriction that requires

compounds to form an acyclic graph.

In the simulation results that follow we simply use the dynamic compounding

mechanism to explore the limits of compounding. For this reason, when the

forwarding table is accessed within the compounded instruction processor model

no additional delays are imposed.

4.5 Summary

The instruction compounding technique described in this chapter allows a novel

approach to be taken to both data forwarding and dynamic scheduling. Com-

pounding dependent instructions allows the location of an instruction that makes

use of a result to be appended to the producer instruction. This allows instruc-

tions within a compound to communicate using a data-forwarding mechanism.

Furthermore, as forwarding requests are made directly to waiting instructions

they may also be used as wake-up operations.

Dynamic scheduling is simplified by removing both the need for a large fan-

out associative wake-up operation and the traditional large fan-in of the selection

process. These simplifications should reduce both the delays associated with

dynamic scheduling and its power requirements.

120 	 Chapter 4 - Compounded Instruction Architectures

Chapter 5

Results

5.1 Introduction

The previous chapters described asynchronous architectural techniques aimed at

exploiting ILP. The aim of this chapter is to provide quantitative measures of

goodness for the different approaches through simulation. In particular, the im-

pact of key architectural parameters are investigated, such as the number of

reservation stations and the data-forwarding configuration, on the architecture's

ability to expose and exploit ILP. The asynchronous processor's ability to exploit

reduced functional-unit latencies or fewer register read ports is also explored.

5.2 Experimental Setup

The simulation environment for the experiments is outlined in Figure 5.1. The

simulator used to generate the final timing information is driven by a trace of

instruction and data addresses. Trace-driven simulations such as this generally

simplify the modeling process and improve simulation performance. Any fur-

ther studies of the architectures would most likely be oriented towards a final

implementation. At this point performance studies would require more detailed

data-dependent delay information, which is only available through the use of an

execution-driven model.

The benchmarks are compiled using the GNU C compiler. The binary is then

modified to generate instruction and data traces using the Wisconsin Quick Pro-

filing Tool (QPT2). The QPT tool operates by inserting code into each basic

block to record execution frequency and data memory addresses. The QPT pro-

gram is part of a larger set of tools called the Wisconsin Architectural Toolset

(WARTS) [36]. Actual traces are then generated by running the modified bench-

mark using the appropriate data set.

121

122 	 Chapter 5 - Results

The simulator is fed with instruction and data traces, together with a disas-

sembled version of the original binary. This allows the actual instructions that

were executed in each basic block to be identified. In the case where an instruc-

tion compounding processor is being modeled, a compounded version of each

basic block is fed to the simulator in place of the original instruction schedule.

Data cache behaviour is modeled using the Dinero (IV) cache simulator [35]. This

provides a highly configurable model of cache behaviour. Access to the simulator

is provided through a number of simple function calls integrated into the main

simulator. Instructions are simulated at a rate of around 1000 per second for the

most complex of the asynchronous processor models using a 300Mhz U1traSPARC

II system.

Benchmark Source

GCC

1
rcompr]

1
binary

[filer] QFT 	 [assemb1er]

annotated binary 	 I...............

Benchmark 	Benchmark j
	 rou]

data set 	L 	run 	 non-compounding
architectures

Instruction and
Address Traces 	Simulator 1...........

program source

CacheDinero I Simulator

Figure 5.1: Simulation Environment

5.2.1 Modeling techniques

Each processor is modeled at the micro-operation or register-transfer levels. While

the models explicitly describe each interaction between the datapath components,

the architectures are not modelled at the gate level. The aim is to describe

the architectures to characterise their performance without binding to particular

implementations.

Chapter 5 - Results 	 123

The simulator kernel provides the basic functionality necessary to manage an

event queue, while a small library of code provides mechanisms for instantiating

and interconnecting components.

At the highest level each processor model is described in a structural form,

detailing the interconnections between datapath components. The components

themselves describe functionality at a micro-operation level. Figure 5.2 provides

an example in pseudo-code of how a typical component, in this case a simplified

operand fetch stage, is modelled.

Events generated by other components are managed by a central event queue.

When events reach the end of the queue they cause the relevant component func-

tion to be called with the appropriate state and input event. The component then

processes the input event, and if necessary produces one or more output events

in response. For example, the arrival of an INSTRUCTION event causes others to

be produced to fetch each of its operands. These events would then subsequently

be handled by the register file and forwarded result queue components. Delays

may be inserted by modifying an output event's time-stamp, which causes the

event to be inserted in the event queue for handling at the appropriate time. The

implementation uses a single thread of execution requiring that each component

return control back to the kernel after processing their input event.

124
	

Chapter 5 - Results

// create new event and add it to the output event list
void new-event (output-event-list, destination, event)

// Example component description
void operand-fetch (component-state, event-in, events-out)

{

c s=component-state

switch (event-in):

{

case INSTRUCTION:
// Handle receipt of new instruction
instr=event-in->instr-data
for 1. .instr.num-operands do

send request to source of operand
register file or forwarding queue

new-event (events-out, instr.op -source[operandn], REQUEST)

cs->outstanding-operandsinstr num-operands
cs->instr=instr

case DATA:

// Data received from register file
c s->out standing-operands--

case FWD-DATA:

// Data received from forwarded result queue
cs->out standing-operands--

case ACK:

// Acknowledge from output received
c s->output-readyTRUE

default:
Error!

11
I-I

If operands have been fetched and all outputs are
ready to receive new data, send instruction to FU

if ((cs->outstanding-operands==O)&&
(cs->output-ready)&&
(cs->instr!NULL)) {
new-event (events-out, cs->fu-output, cs->instr)
cs->output-ready=FALSE
cs->instrNULL

}

}

Figure 5.2: Pseudo-code example of a simple operand fetch model

Chapter 5 - Results 	 125

Benchmark
Name

Description

compress Standard UNIX text compression (input is 5k of random text)
cjpeg GIF to JPEG image compression (input is 40x26 GIF image)
fgrep Search a file for a character string (input is 100k text file)
gcc GNU C Compiler (input is bubblesort.i)
go Go game
perl Perl interpreter (input is script to find prime numbers)
xlisp LISP Interpreter (input is queens program)

Table 5.1: Descriptions of benchmark set and their inputs

rBenchmark
Name

Trace
Length

BB size Result
fanout

Operand
per instr.

Dcache
miss rate

compress 450K 7.49 1.84 1.28 1.32

cjpeg 530K 7.12 1.80 1.40 0.66
fgrep 1.5M 4.20 1.83 1.29 0.33

gcc 1.5M 4.67 1.72 1.20 1.47

go 1.5M 4.82 1.98 1.29 4.04

perl 795K 5.19 1.68 1.14 0.44

xlisp 600K 5.23 1.69 1.16 0.73

Table 5.2: Benchmark statistics. BB size - Average basic block size, Operand
per instr - Average number of register operands per instruction (excluding
branches).

5.2.2 Benchmarks

The benchmarks used for the experiments are listed in Table 5.1, which are similar

to those found in the SPEC CINT95 benchmark suite. A detailed description of

the benchmarks may be found at [135]. In contrast to the input data required to

run the full SPEC benchmarks, the results presented are for shorter inputs that

reduce simulation times to realistic levels. Benchmarks whose traces were still

deemed too long were truncated to 1.5M instructions. An overview of some of

the characteristics of each benchmark is given in Table 5.2, together with dynamic

instruction frequencies in Table 5.3. The benchmarks provide a typical sample of

compute intensive integer benchmarks which contain modest levels of ILP.

The benchmarks were compiled using GCC (version 2.8.1), with the optimi-

sation level set to three. Binaries were statically linked to ensure that libraries

were also instrumented and traced. A final requirement was that GCC was in-

structed to use a single register window and not generate SAVE and RESTORE

instructions, which was necessary as the instruction traces were collected from a

SPARC processor which exploits a register window mechanism.

126
	

Chapter 5 - Results

Benchmark
Name

Loads Stores Add/
 Sub

Logic Shift/
 Mult

Branch Other

compress 20.31 14.59 27.53 5.61 7.95 13.35 10.66
cjpeg 18.31 9.49 36.11 3.83 12.39 14.04 5.83
fgrep 23.37 7.70 35.37 2.04 0.70 23.79 7.03
gcc 14.94 10.62 26.92 5.00 7.08 21.41 14.03
go 12.21 9.03 31.14 2.27 9.47 20.76 15.12
perl 21.04 11.57 22.88 5.12 3.19 19.27 16.93
xlisp 18.36 15.17 24.85 4.34 3.06 19.13 15.09

Table 5.3: Dynamic Instruction Frequencies (%). The category "other",
includes set/move and clear instructions

5.2.3 The models

Results have been collected from four different processor models. Firstly, the

synchronous superscalar processor detailed at the beginning of Chapter 3 was

characterised. Secondly, results generated from an asynchronous version of this

architecture are presented. This model again includes full dynamic scheduling

and data-forwarding capabilities, which are implemented using the techniques

described in Chapter 3. The third model describes a queue-based architecture,

where dispatch is in-order at each functional unit. Finally, instruction compound-

ing is explored using models of the datapaths detailed in Chapter 4. Results

exploiting both static and dynamic compounding techniques are presented.

Each model uses a similar address disambiguation and memory access model.

Where dynamic scheduling permits, loads are able to be executed out of order with

respect to independent store instructions - although no store to load forwarding

is implemented. Address disambiguation is performed speculatively and always

returns the correct answer. This corresponds to the existence of a perfect load wait

table. This removes the possibility of load instructions being dispatched before

an earlier store accessing the same memory location has completed; in reality

such situations would occur and raise an exception. The final detail describes

the behaviour of the dispatch logic when an instruction uses the result of a load

instruction. In this case no cache hit/miss prediction is made available, and

all instructions which require the result of a load are dispatched speculatively

assuming the load will be a hit. If this is not the case, and the load in fact

misses, then the instruction will be stalled in its operand fetch stage until the

data becomes available. This behaviour is the same in both the synchronous and

asynchronous processors and may result in functional units remaining idle while

cache misses are being serviced.

Also common to each model is use of register renaming and the existence of

Chapter 5 - Results 	 127

Parameter Value

Fetch Width 4 instructions/cycle
Functional Units 2 Memory units, 	2 	ALUs, 	1 	Complex ALU

(mult/div/shift)
Branch Prediction Perfect
Instruction Window 0-80
Physical Registers 80
Li I-cache Infinite, 1 cycle latency
Li D-cache 64k, 2 cycle latency, 2-way, LRU, 32-byte blocks
L2 D-cache Infinite, 12 cycle latency

Table 5.4: Common Parameters

a reorder buffer. No mechanism is included to detect and enforce carry/borrow

dependencies in any of the models, but would be simple to add [114]. This type

of dependency was very rare in the benchmarks, and any impact on performance

would be undetectable.

A list of parameters common to each of the models is provided in Table 5.4.

The choice of a four-way superscalar architecture was made as it is only at these

levels of parallelism, for the given set of benchmarks, that dynamic scheduling and

data-forwarding become critical. While the performance of two-way superscalar

models tends to saturate, the results provided by the four-way models show clear

trends indicating different abilities of the architectures to expose ILP at run-time.

Delays used in the asynchronous models are listed in Table 5.5. Note that

in the asynchronous case, cache and register-file accesses (for the 2-port per FU

instance) are same as those used in the synchronous model. A model of register

file access times was provided using a modified version of the Cacti cache access

model [71], which was also used to provide results for [107]. SPICE simulations of

transistor netlists provided an approximation to the delays of arbiters, although

metastability is not modelled. In practice many of the models are only sensitive to

a few critical delays, such as register-file read/write delays and data-cache latency.

The differences in performance are also heavily influenced by an architecture's

ability to perform dynamic scheduling or the restrictions on performing data-

forwarding operations.

More specific details of each model are provided at the beginning of each of

the following sections where appropriate.

128
	

Chapter 5 - Results

Delay Description Rel. delay Abs. delay (pS)

Register Read/Write
2 read ports per FU 100 2891
1 read port per FU 78 2245
Functional units
ALU (add/shift) 50 1445
Set/Move/Clear 0 0
Logical 20 578
Memory (load/store) 100 2891
Typical FIFO buffer throughput 4 items/cycle
Queued
Write to fwding reg. 7 200
Data Forwarding delay 6.4+3.5*reg 185+100*reg

Async. Dispatch
Forward req. arbiter
Req. to grant 17.5 505
Cycle time 28.8 832
Forwarding
Write to fwding reg. 7 200
Data Forwarding delay 6.4+10.5*reg 185+300*reg

Dispatch Buffer
Write instruction 34.5 1000
Max. dispatch rate 2 instr/port/cycle
Data write/wakeup 2 instr/port/cycle
Mm. wakeup to dispatch delay 100 2891
Reg Scoreboard Access 50 1445
Compounding
Dispatch Buffers
Data write Latency 10.4 300
Dispatch Latency 50 1445
Busy-bit table access 34.5 1000
Forwarding
Fwding req. arbiter
Req. to grant 17.5 505
Cycle time 28.8 832
Forward data delay 10.4 300

Table 5.5: Overview of delays. Rel. delays - are shown as a percentage of the
synchronous clock period. Data forwarding delays exclude any result buffering
delays

Chapter 5 	Results
	 129

5.3 Synchronous Processor

The synchronous processor model describes the architecture introduced in Sec-

tion 3.2. The processor's dispatch buffer may be configured to operate either

as a centralised buffer storing instructions of all types, or one in which the dis-

patch buffer is divided amongst each functional unit (distributed). In the case of

the synchronous model a completely unrestricted data forwarding mechanism is

implemented. To explore the impact of data forwarding this may be artificially

constrained, either to within basic blocks or switched off completely. The simula-

tions explore the impact of each of these parameters, while also sweeping across

a range of dispatch buffer sizes.

TtT1 	1T1

compress cjpeg

—;——

fgre p

gcc 	 go 	 pen

Unrestricted towardlrrg

----u- Forwarding with basic blocks only

C C 	No Forwarding

xlisp Average Average

Figure 5.3: Impact on performance of dispatch buffer size and forwarding
policy, for a centralised dispatch buffer. Graphs show IPC vs. buffer size.
(synchronous)

Performance results for the experiments are shown in Figures 5.3 and 5.4 for

centralised and distributed dispatch buffer configurations, respectively. On aver-

age the difference in performance, when forwarding is unrestricted, between the

centralised and distributed cases is around 6.5%. These results are summarised in

Figure 5.5. The slightly lower performance of the distributed window is a result

of the fact that on average it can only take advantage of a subset of all of the

130
	

Chapter 5 	Results

compress

-

gcc

xlisp

ci peg

go

Average

fgrep

pen

Unrestricted forwarding

• *- Forwarding with basic blocks only

• • 	No Forwarding

Figure 5.4: Impact on performance of dispatch buffer size and forwarding

policy, for a distributed synchronous dispatch buffer. Graphs show IPC vs.

buffer size. (synchronous)

available reservation stations. This is because instruction issue must stall when

any one of the dispatch buffers becomes full.

A more significant impact on the performance comes from restricting the data-

forwarding capabilities of the model. Results for the case when the dispatch buffer

size is set to a maximum for a distributed window are summarised in Figure 5.6. A

performance drop of around 30% is incurred for removing forwarding altogether,

while restricting forwarding to basic blocks reduces the measured IPC on aver-

age by 13%, with similar reductions in performance for the case of a centralised

window. The number of results forwarded as a percentage of the total number

of operands is shown in Figure 5.7. It can be seen that on average around 40%

of operands are forwarded for the case where forwarding is unrestricted and the

dispatch buffer size is set to its maximum. Restricting forwarding to within basic

blocks reduces this figure to just over 25%.

The performance benefits of increasing the size of the dispatch buffer are clear

for up to 40 entries; after this the gains in performance from additional reservation

stations are far more modest. Overall, the difference between the performance at

the smallest window size of 10, and the largest one of 80, is around 35% for both

Chapter 5 	Results 	 131

centralised and distributed windows.

The results provide a base case for comparing the performance of each of

the different architectures. By reproducing well known results [62, 68] a basic

validation of the simulation environment has also been performed.

4

3.5

3

25

0

1.5

0.5

0

'4

-- 	 - 	

[dnIralised U Distributed -

Figure 5.5: A comparison of centralised and distributed dispatch windows.

The dispatch buffer's size is set to maximum and forwarding is unrestricted.

(synchronous)

132
	

Chapter 5 	Results

4

3.5

3

25

C.) . 	2

1.5

0.5

0 1101 LII i•i IMI iii IMI IMI lilt

/
- 113 None •Not between BB 0 Full

Figure 5.6: Performance comparison of a synchronous superscalar processor
with full, restricted and no data-forwarding. The dispatch buffer size is set

to maximum and distributed. (synchronous)

100

90

80

70

60

o 50
-D
C

40

30

20

10

0

RP ?
S

D full/distributed U fulI/centralised 0 restricted/distributed 0 restricted/centralised

Figure 5.7: Levels of forwarding for cases where data-forwarding is restricted
and unrestricted. Results are shown for both distributed and centralised dis-

patch buffers. Buffer size is set to maximum. (synchronous)

Chapter 5 - Results 	 133

5.3.1 Queue-based Asynchronous Processor

The queue-based model was first described in Section 3.4.1. As described pre-

viously, dispatch is in order at each functional unit. Data forwarding is imple-

mented by detecting opportunities to forward results during instruction decode.

The number of results buffered at the output of each functional unit may be

specified as a. configuration parameter. The architecture does not implement the

simplifications described in Section 3.4.2 and supports full out-of-order write-back

for maximising performance.

3.5

2.5

1,5

0.5

Cf
JE30 01 0203

Figure 5.8: Impact on performance of number of forwarding registers. In-

struction queues are 16 entries long at each functional unit(queued)

100

90

80

70

60
U-
u 50 El 0
C

cL

! 40
0,

30

20

10 I
0

IDi •203]

Figure 5.9: Levels of forwarding for 1,2 and 3 forwarding registers per FU.

Instruction queues are 16 entries long at each functional unit(queued)

134 	 Chapter 5 	Results

The first results explore the impact of increasing the number of forwarding reg-

isters at each functional unit. This allows more results to be buffered at each func-

tional unit, which creates a greater scope for data forwarding. Figure 5.8 shows

results for 0,1,2, and 3 forwarding registers. Although the differences between

1,2 and 3 registers are small, removing the possibility of forwarding altogether

results in a 41% drop in average IPC 1 . This percentage drop in performance is

larger than that seen previously in the synchronous model. This is a result of

the limitations in the queue-based model's dynamic scheduling scheme. Unlike

schemes which allow full out-of-order execution, the order in which instructions

must be dispatched at each FU is fixed - providing less opportunities to adapt

to the increased operand fetch latencies. It can also be seen that increasing the

number of forwarding registers beyond 1 does not provide any real performance

advantage. One explanation is that levels of forwarding, as shown in Figure 5.9,

are already high for a single forwarding register. Adding additional registers both

increases the delays in accessing the forwarding registers and increases the amount

of traffic on the forwarding network, as a result any additional forwarding of data

has little overall performance benefit.

Figure 5.10: Impact on performance of number of register read ports per FU.

Instruction queues are 16 entries long at each functional unit(queued)

The second configuration examined the reduction in the number of register

read ports available to each functional unit. With forwarding levels around 60%,

it is reasonable to assume that in the majority of cases only a single register

read port will be required for each instruction. Results for the single and dual

'For the asynchronous models IPC is calculated by measuring execution time and dividing
it by the clock period of the synchronous processor.

Chapter 5 - Results 	 135

register read port cases are shown in Figure 5.10. Here it can be seen that a small

increase (5%) in performance is produced when the number of register read ports

are halved. This is a result of the asynchronous architecture's ability to exploit

a lower register read/write latency when only a single operand must he fetched

from the register file. Although the penalty of sequential register reads has to

be incurred when two or more operands must be fetched from the register-file,

on average, the performance is improved as the complexity of the register-file is

reduced significantly.

25

'5

0.5
0

go

-a --------a fgrep
a 	a compresu

Wet)

5 	 10 	 15 	 20

Queue Length (p., FU)

Dual read ports
	

Single read port

Figure 5.11: Impact on performance of instruction queue length. The leftmost
graph shows case where two register read ports are available to each FU, while
the other is shows the case where only a single port is available. (queued)

Various instruction queue lengths were also explored, and the results of these

experiments are shown in Figure 5.11. It can be seen that there is a sharp increase

from 1 to 2 FIFO entries per FU, after which the IPC levels off quickly with little

increase after 4 FIFO entries per FU. This behaviour is similar irrespective of the

number of register read ports.

The final sets of experiments explore the impact of the register file access

time and functional unit latencies. Figure 5.12 contrasts the performance of

each benchmark when the FUs have latencies equivalent to a full clock period or

the reduced latencies listed previously. On average, the reduced functional unit

latencies provide almost a 20% increase in performance (for the single register

port case). Reducing the register file access time by 50% produces on average a

6% and 10% increase in IPC, for the single and dual port configurations respec-

tively. The fixed dispatch schedule at each functional unit and the high levels of

data-forwarding mean that reducing the register-file access time does not have a

dramatic effect on overall performance.

136
	

Chapter 5 	Results

4

2.5

1.5

0.5

1 ° °

•ireg/worst Dl reg/re&iced 02 reg/worst 02 reg/reduceô

Figure 5.12: Impact of FU latencies on performance. (queued)

05

4 -- - - 	 - --- 	 --

35

3

25— -

2 	 •- -.

Sin

1.5
(from top 6

Dual read ports per FU
	

gle read read port per FU

Figure 5.13: Impact of reducing register file access time on IPC. Reduction

ranges from 0-50% of original delay. (queued)

Chapter 5 - Results 	 137

5.3.2 An asynchronous processor with out-of-order dis-
patch

This section presents simulation results for an asynchronous superscalar processor

which supports both out-of-order dispatch and data forwarding. The techniques

used to implement such a processor are described at length in sections 3.3 and 3.4.

The model uses a centralised dispatch buffer and places no restrictions on which

instructions may request forwarded data. As in the queue-based model the data-

forwarding scheme may be configured with different numbers of forwarding reg-

isters at each functional unit. The dispatch buffer itself, models the wake-up and

selection processes using fixed delays. While ready instructions can be dispatched

at the rate of 2 per synchronous clock period, the minimum time for the wake-up,

selection and dispatch of an instruction takes the equivalent of a full synchronous

clock period. The aim of the experiments is not to investigate any one particular

implementation of the dispatch buffer, but to ensure that the arbitrated access

to the dispatch buffer and the limited data-forwarding mechanism do not have a

detrimental impact on overall performance.

compress 	 cjpeg 	 fgrep

o l 	
_

gcc
	 pen

—0--.— No fow,dg regi

• ft- 	I to.v.aokng mgnW

2 Ew*wg ,.gI.s

• 	 3 Io.o.ng ,.,I..,

4 b,wa.g F0QoIfto

----•- 5 bFFd.ng Feg.$tfto

xtisp
	 Average

Figure 5.14: Impact on performance of dispatch buffer size and number of

forwarding registers (no forwarding counters are present). Graph shows IPC

vs. buffer size. (async. dispatch)

138
	

Chapter 5 	Results

The first set of results (see Figure 5.14) explore the effect of the size of the dis-

patch buffer and the number of forwarding registers on performance. Forwarding

is initially not supported by source counters (see Section 3.4.3.1). The best con-

figuration is one with 4 forwarding registers per functional unit. The difference

between this configuration and one where no forwarding is performed is around

20%. The penalty of removing data-forwarding altogether is lower than in the

synchronous case, which showed a 30% drop, this is a result of the asynchronous

processor's ability to exploit reduced functional unit latencies. As expected, the

trend of the curves generated by sweeping a range of dispatch buffer sizes are very

similar to those generated from the synchronous processor.

compress 	 cjpeg 	 fgrep

o l

_

gcc
	 go 	 pert

-.----.— No fowarthng ,eoNos

---*-- 	1 brwdin9 r$Qite

2f.—,ding reg4otero

3 brwd,g reg.Ie

4 ?­ ,ding rogste5

.—+ 	5 Iorwardng rog,e1es

xlisp
	

Average

Figure 5.15: Impact on performance of dispatch buffer size and number of

forwarding registers (with forwarding counters). Graphs show IPC vs. buffer

size (async. dispatch)

The previous experiments were repeated for the case where source counters

are exploited (see Section 3.4.3.1). The counters aim to improve performance

by reducing the number of forwarding operations which must be aborted. Once

forwarding is initiated at a particular reservation station, subsequent update op-

erations from the same source functional unit reduce the corresponding operand's

source counter. If the counter reaches zero before the instruction is dispatched,

then the forwarding operation is cancelled. Source counters are initialised to the

Chapter 5 	Results 	 139

same value as the number of forwarding registers at each functional unit. A com-

plete set of results where source counters are exploited is shown in Figure 5.15.

A comparison of average performance for a range of different forwarding regis-

ter/source counter configurations is presented in Figure 5.16. Here the highest

performing schemes, 4 forwarding registers without counters and 3 with counters,

are shown against results where no forwarding and a single forwarding register

were configured. While the highest performing scheme is one in which counters

are employed, adding a forwarding register and removing the counters only incurs

a performance penalty of just over 27c.

Increasing the number of forwarding registers increases the number of operands

which may be forwarded, while reducing the number of forwarding operations

which must be cancelled. The use of source counters also reduces the number

of cancelled forwarding operations. Results illustrating these relationships are

shown in Figure 5.17. At 3 forwarding registers the level of forwarding activity is

comparable to the results provided by the synchronous processor model.

Figure 5.16: A comparison of a number of different forwarding regis-
ter/counter configurations. 4 and 3 forwarding registers provide the best

performance for the cases where counters are not used and used respectively.

(async. dispatch)

Results where also generated to measure the impact of reducing functional

unit latencies on performance. The results are summarised in Figure 5.18. On

average a 7% performance improvement was possible through reducing functional

unit latencies from a fixed one cycle delay to those listed in section 5.2.3. This is

smaller than the 20% increase possible in the queued-model. This is a result of

the model's superior dynamic scheduling capabilities and corresponding reduced

sensitivity to the performance of sequential operations.

140
	

Chapter 	Results

compress 	 cjpeg 	 fgrep

gcc
	 go

	 pen

-.---.- % oponnndo to,wnnMd (wih 000nlorn(

—4--+— % opornnd, I o,wo,dod (no 000010,0)

% Iwdg P. o00coIIe1 (whoot 0000(0,0)

n 	% (wdng opo nonoolled (with noonInrn)

xlisp
	

Average

Figure 5.17: Percentage of operands forwarded and percentage of forwarding

operations cancelled. Results are shown for different numbers of forwarding
registers and the cases where forwarding counters are and are not employed.

(async. dispatch)

The use of a single register read port and the impact of a reduction in register

access time is explored in Figure 5.19. Again, asynchrony allows the number

of register read ports to be reduced without any significant change in average

performance. Register file access times in general do not effect performance in

any significant way, except in the case of the CJPEG benchmark.

Chapter 5 	Results
	

141

Figure 5.18: Impact of worst-case functional unit delays on best perform-

ing configuration: 3 forwarding registers with forwarding counters. (async.

dispatch)

! 	!

	

35 	 1 	-

— - 	- 	* 	-

15

pen. SP. 3CC.

	

1 	 Car PfSSS ave'aQO,

	

05 	

50. fg'eP

0 	-10 	-20 	-30 	40 	-50

I_/UOi I 	'J 	 I. 	-•
Single read port per FU

Figure 5.19: Impact of reducing register file access time on IPC. Reduction

ranges from 0-50% of original delay. (async. dispatch)

142
	

Chapter 5 	Results

5.3.3 An asynchronous compounded instruction processor

This section provides results for a processor that compounds instructions. The

compounds are produced using a simple graph partitioning algorithm, compound-

ing opportunities were selected at random and no attempt was made to optimise

the final compounded instruction schedule. A complete description of the com-

pounding processor is provided in section 4.3. The dynamic compounding mech-

anism is also modelled, which permits data-forwarding across basic block bound-

aries. In this case no delay was imposed on the construction of the compounds or

the reading of compounding information from the forwarding table. The results

were simply used to explore the likely performance advantages of allowing com-

pounds to span basic block boundaries. The results were collected for a model

which includes two busy-bit read queues for each functional unit. In the case of

memory units an additional busy-bit read queue is added and used exclusively

for store instructions.

We first explore the relationship between the compounding dispatch buffer

size and performance. Results are included for two different configurations of

the dispatch buffer. The first one where instructions at each functional unit

are stored in a single dispatch buffer; and the second, in which instructions are

stored in one of two buffers at each functional unit depending on their position in

a compound (split buffers). In the case of split buffers, those instructions which

will receive forwarding requests are stored in a separate buffer. In an instruction

compounding processor only those instructions which follow the first instruction

in the compound are eligible to receive forwarded data. Hence we will call the

two buffers at each functional unit the head and tail buffers. It is important to

note that these configurations are local modifications at each functional unit, it

is never the case that a single monolithic dispatch buffer serves the functional

units.

Figure 5.20 shows the configuration in the split buffer case. The equivalent

diagram for the unified buffer case has been described previously in Section 4.3.2.

Instructions are written into one of the two buffers depending on whether they

can receive forwarded data or not. Subsequent busy-bit read micro-operations are

tagged with both the buffer (head or tail) and particular buffer entry that will

be updated when the busy-bit read completes. Splitting the dispatch buffer in

this way simplifies the implementation of the head buffer by removing the need

to support the wake-up logic associated with forwarding requests. A modest

increase in concurrency is also possible as we can now perform dispatch request

arbitration for the two buffers in parallel. An additional arbiter is required to

	

Chapter 5 - Results
	 143

arbitrate between dispatch requests from each buffer.

from register rename 	 Bsy­bit

	

) set on dispatch stage 	 table
read

irony-bit read micro-operations

control

Arbiter

Instruction from
issue unit 	 F—arding requests frorn each FU

ack

J{IIIIII] 	
I U 	I 	Ii 	 'cancel

4:
Buffer
I L 	L Tail

 '-H Buffer
new buffer entry

Dispatch

	

Buffer 	 ____________ ____________

I 	Arbiter 	I
dispatched instruction

(Set destination register's bit in busy-bit table)

Figure 5.20: The split dispatch buffer configuration

The results in Figure 5.21 show that for larger buffer sizes the performance

difference between the two configurations for an equal number of reservation sta-

tions is minimal. Due to the slight improvement in complexity and performance

offered by the split buffer configuration all subsequent results in this section will

be based on a model configured with split buffers. For all the results shown in

Figure 5.21, the delays associated with the buffer have remained constant, a!-

though a smaller buffer would in reality reduce access delays, this effect had a

very small impact on performance.

The differences in performance between statically and dynamically compound-

ing programs and the use of a single or dual register read ports per functional

unit, is summarised in Figure 5.22. Figure 5.23 records the levels of data for-

warding for the same model configurations. While dynamic compounding has

greater scope for creating opportunities to forward data, overall levels of result

forwarding are very similar in all the configurations. This can be explained by

examining the graph presented in Figure 5.24, which records the percentage of

forwarding operations initiated but subsequently cancelled. In the case where

dynamic compounding is employed, it can be seen that cancellation levels are

significantly higher than those when compounds are constructed statically. Even

though this is the case, the overall performance benefits from the ability to con-

struct compounds dynamically, without restricting forwarding to within basic

blocks.

Chapter 5 	Results 	 143

arbitrate between dispatch requests from each buffer.

frcorn registerre.m 	

)

set ondispatch
stage 	 t7.ble

read

busy-bit 	miaoopbO.S

Arbiter

issue unit 	 Forwarding

I 	
f—ardingrequests

requests Iron, each FU

ck

Tall

ro 	ro bo1fen 	
• 	 Br

Dispatch
Buffer 	

Arbi eE,'
dispatched instruction

(Set destination register's bit In bony-bit t.bte)

Figure 5.20: The split dispatch buffer configuration

The results in Figure 5.21 show that for larger buffer sizes the performance

difference between the two configurations for an equal number of reservation sta-

tions is minimal. Due to the slight improvement in complexity and performance

offered by the split buffer configuration all subsequent results in this section will

be based on a model configured with split buffers. For all the results shown in

Figure 5.21, the delays associated with the buffer have remained constant, al-

though a smaller buffer would in reality reduce access delays, this effect had a

very small impact on performance.

The differences in performance between statically and dynamically compound-

ing programs and the use of a single or dual register read ports per functional

unit, is summarised in Figure 5.22. Figure 5.23 records the levels of data for-

warding for the same model configurations. While dynamic compounding has

greater scope for creating opportunities to forward data, overall levels of result

forwarding are very similar in all the configurations. This can be explained by

examining the graph presented in Figure 5.24, which records the percentage of

forwarding operations initiated but subsequently cancelled. In the case where

dynamic compounding is employed, it can be seen that cancellation levels are

significantly higher than those when compounds are constructed statically. Even

though this is the case, the overall performance benefits from the ability to con-

struct compounds dynamically, without restricting forwarding to within basic

blocks.

144
	

Chapter 5 - Results

.3

of

5 	 '0 	 5 	 20 	 20 	 30 	 30

35

0 	 6 	 10 	 IS 	 30 	 25 	 30 	 30

compress 	 cj peg
	

fgrep

gcc 	 go 	 pen

—.---.— LJnth.d dopauh b.41o25

U -- . - 	 n.j d5f So2oO30I 5.30.30

xlisp
	

Average

Figure 5.21: Impact on performance of dispatch buffer size and configuration.
Graphs shows [PC vs. buffer size, for unified and split buffer configurations.
(compounding)

Results illustrating the impact of register file access times are presented in

Figure 5.25. It can be seen that reducing register file access times, in the case of

a compounding architecture, has a significant impact on overall performance. A

reduction of 50% in register file access time produces around a 20% improvement

in the performance of all the configurations. The larger impact of register file

access time is most likely a result of the lower levels of data-forwarding, when

compared to the previous two models. In the compounding case only just over

20% of operands are forwarded, this compares to around 40% in the case of the

asynchronous dispatch buffer and 60% for the queue-based model.

Chapter 5 - Results
	

145

4

3.5

3

2.5

0
2

1.5

0.5

0

4.9 	? 	c°

• 2rp/static U 2rp/äynamic Dl rp/static •i rp/5ynamic

Figure 5.22: Performance of instruction compounding datapaths. Results are
shown for both static and dynamic cases, with single and dual register read

ports per FU. (comp)

100

90

10 80

70

60

50

40

CL 30

20

10

0

!2p/tt 02rplôynamic Dlrp/s tat ic •lrp/dynamic

Figure 5.23: Levels of forwarding in compounding datapaths. Results are
shown for both static and dynamic cases, with single and dual register read

ports per FU. (comp)

146 	 Chapter 5 	Results

72 100
90

80

2 70
0

60

a 50
0
CR 40

30

—A 20

10 	 11 UI I
"le 	 10

• 2rplstatic 0 2rp/dynamc Dl rpfstatic •i rp/ynamic] -

Figure 5.24: Percentage of forwarding operations cancelled. Results are
shown for both static and dynamic cases, with single and dual register read

ports per FU. (comp)

.JLOI.R./ ...IUOI I LO iL/ 31J II 	I O'J jJ'.JI I.

:-i1ii
(from lop down)

fgrep, go

0.

0 	10 	20 	30 	40 	50

% Reduction In register access time

L..'yIIaIuII%..f'..JLJaI 1...0'.. Vw- Dynamic/single read port

Figure 5.25: Impact of reducing register file access time. Results are shown
for static and dynamic cases. Reduction ranges from 0-50% of original delay.

(comp)

Chapter 5 - Results
	

147

15

MIii
Ile 5

3-5

25

05

, I
•Stac DStaSc/W

Dual read ports per FU
	

Single read port per FU

Figure 5.26: Impact of worst-case functional unit delays on static and dynamic
compounding datapaths. Results are shown for both single and dual read port

configurations. (comp)

RM
	

Chapter 5 - Results

5.3.4 Performance and complexity comparisons

The results in the previous sections show a disparity in performance between

the models with full dynamic scheduling and data-forwarding and those without.

This 35% difference in performance comes from the simpler models' inability to

exploit the same levels of ILP, either through a lack of dynamic scheduling, or in

the compounding case, due also to its inferior sequential performance as a result

of a limited data-forwarding mechanism.

The performance of both these models will improve significantly with the

introduction of appropriate compiler optimisations. This is particularly true in

the case of the instruction compounding processor where its performance relies

on careful selection and scheduling of compounds. One example of where the

current random compounding algorithm often limits performance is in the case

of loops. Here a poor selection of compounds can force each iteration of the loop

to execute sequentially, even when there are no real loop carried dependencies

forcing this behaviour. In the architectures with centralised dispatch buffers,

where dispatch is far less restricted, the execution of many iterations of a loop may

easily be overlapped or pipelined at run-time. To fully exploit the compounding

architecture would require the development of an optimising compiler aware of

the implications of creating particular compounds. This analysis would have to

be performed at a high level in conjuction with global scheduling algorithms. The

development of such a compiler was deemed to be out of the scope of this thesis.

From a complexity perspective, both the compounding and queue-based mod-

els offer a significant reduction in the hardware required to perform dynamic

scheduling. Neither require destination registers to be broadcast to all waiting

operands, as is the case in the architectures that exploit traditional dispatch buffer

designs. The compounding and queue-based models also simplify the selection

process, removing the need to arbitrate between a potentially large number of

ready instructions. While dispatch buffers typically consume a small percent-

age of total chip area, when compared to caches and the rest of the datapath,

their design is often non-trivial due to performance requirements [41]. The need

to use larger transistors to minimise delays and the broadcasting of results also

leads to significant power requirements when compared to other datapath com-

ponents [56].

A good example of an asynchronous architecture's ability to exploit average-

case performance to enable a reduction in complexity, is illustrated by the reduc-

tion in the number of register read ports required at each FU. This reduction in

complexity has shown to be possible without a significant performance penalty.

2.5

C.) 2

15

0.5

0

4,

3.5

3

Chapter 5 	Results 	 149

A concise overview of the performance of each of the models presented is

shown in Figure 5.27.

d' 	I

DQueued UComp. Static OComp. Dynamic DAsync. Dispatch U

Figure 5.27: Performance comparison of best performing configurations for

each processor model.

Chapter 6

Conclusions and Future Work

6.1 Summary

The adoption of an asynchronous design style offers many potential advantages in

terms of power, performance, and design complexity. The extent to which these

advantages may be exploited in a superscalar processor is largely dependent on its

architecture. Design decisions made at a high-level heavily influence both overall

performance and an architecture's ability to exploit a particular timing regime.

In Chapter 3, data-forwarding and dynamic scheduling are identified as both

key features required to achieve high-performance and schemes whose implemen-

tation are traditionally dependent on the existence of global synchronisation.

When it is considered that these mechanisms provide communication between

instructions, it is unsurprising that their implementation is influenced by the

choice of control paradigm. In the case of an asynchronous implementation, forc-

ing such inter-instruction communication to take place simultaneously effectively

synchronises the operation of the instruction execution pipelines. This type of

pseudo-synchronous operation has a number of negative effects. Firstly, such syn-

chronisation in an asynchronous system would represent a performance overhead,

as it would most likely be exposed on the critical path of the control logic. Sec-

ondly, they would prevent the processor from exploiting actual datapath delays

exposed by an asynchronous implementation; instead performance would tend

towards the worst case. An approach which simply bases an asynchronous imple-

mentation on a synchronous architecture will most likely benefit from the reten-

tion of the clock signal. This ensures that the benefits of synchronous operation,

such as predictability and determinism, can be fully exploited.

Both Chapters 3 and 4 detail a number of data-forwarding and dynamic

scheduling schemes targeted at an asynchronous implementation. First to be

examined is the design of an asynchronous dispatch buffer; here careful handling

151

152 	 Chapter 6 - Conclusions and Future Work

of the arbitration required at the buffer is necessary to maintain performance. In

the design presented, concurrency is maximised by providing a data-dependent

arbitration scheme where mutual-exclusion is only enforced when necessary. Two

implementations of the selection logic were also explored.

The first of the data-forwarding schemes exploits information about the dis-

patch order of instructions at each functional unit. This makes a distributed

implementation of the forwarding mechanism possible. The issue unit is used to

maintain a table of those results which may be provided via a forwarding bus.

A more general data-forwarding scheme is required to support the centralised

dispatch buffer, as assumptions about the dispatch order of instructions can no

longer be made. In the scheme presented, this requires that some forwarding

requests are cancelled when it is determined that the data is not available for for -

warding. A technique was devised as an extension to the dispatch buffer to reduce

the number of forwarding requests which are subsequently cancelled. A counter

associated with each operand in the dispatch buffer allows cases to be detected

where forwarding will be unsuccessful; in such cases forwarding is aborted before

the instruction is dispatched. The resulting reduction in the levels of forwarding

request traffic aids the performance of those requests that are successful.

Chapter 4 introduced a compounded instruction processor. Here groups of

dependent instructions are formed into compounds at compile-time to enable

an alternative approach to be taken to both the design of the data-forwarding

and dynamic scheduling mechanisms. Within instruction compounds, results

are communicated via a data-forwarding mechanism, while between compounds

communication is achieved through the register file. When forwarding is possible,

information appended to the instruction producing the result allows it to make a

forwarding request to a consumer (next instruction in the compound). In addition

to providing a mechanism for forwarding data, this also forms part of the dynamic

scheduling mechanism's wake-up process, indicating the availability of a particular

operand. As a result, the instruction compounding architecture is able to provide

a dynamic scheduling mechanism without the need to broadcast result tags. In

addition, careful design of the dispatch logic also prevents the need to select from

a large number of ready instructions.

The performance characteristics of each of the architectures described have

been explored in the previous chapter. The asynchronous architecture with the

highest performance, based around the dispatch buffer described in chapter 3,

is shown to have broadly similar performance characteristics as the synchronous

implementation. This is promising as it shows that an effective superscalar ar-

Chapter 6 - Conclusions and Future Work 	 153

chitecture can be devised without the support of global synchronisation. Perfor-

mance results for the other, less complex, asynchronous models is shown to be

lower than that of the synchronous model. A major consideration here is the lack

of an optimising compiler which will benefit these architectures much more than

those with more costly dynamic scheduling schemes. The use of a single regis-

ter read port at each functional unit was also explored as a technique to reduce

overall complexity. All the asynchronous models showed an ability to maintain

overall performance after such a modification, even with the need to sequentialise

a percentage of register reads. This type of complexity-effective optimisation is

discussed further in the following section.

6.2 Future Work

Future work could be pursued in any of four major areas: architecture, verifica-

tion, optimising compilers, and implementation.

In architectural terms, the adoption of an asynchronous design methodology

may offer greater flexibility in applying techniques to reduce power consump-

tion. One area in particular that may provide opportunities to exploit asyn-

chronous operation is in the development of run-time reconfigurable components.

Recent examples of such an approach have explored the design of run-time re-

configurable caches [13] and dispatch buffers [43]. While at present this work

is limited to synchronous designs, with the aim of reducing power consumption,

its application to asynchronous designs is an interesting one. The ability of an

asynchronous architecture to exploit local performance gains made possible by

exposing data-dependent delays, should also enable configuration-dependent de-

lays to be exploited. The application of such an approach is also simplified in

the asynchronous case by the absence of global timing requirements. Another

way in which power may be reduced is by carefully partitioning the architecture

to create regions operating at different frequencies [128]. Only those functions

which require the most costly environment in terms of transistor size, threshold

voltage and supply voltage would be integrated into the high-performance core.

Other functions would be supported in cheaper helper engines. An asynchronous

implementation may provide a number of advantages in such a scenario. For

example, communication between regions operating at different speeds could eas-

ily be supported without the need to incur large synchronisation penalties. An

asynchronous approach also offers a wider range of implementation possibilities,

which may be particularly useful in minimising static power requirements. For

154 	 Chapter 6 - Conclusions and Future Work

example, simple asynchronous circuits may be designed that maintain average-

case performance while trading a reduction in complexity for a higher worst-case

performance. Trade-offs in terms of datapath width and frequency of operation

are also simple to employ in the absence of global synchronisation.

A second area of future work is in the area of formal verification. One dif-

ficult challenge when developing asynchronous processors is to show that there

is no possibility of deadlock occurring during the execution of a program. This

problem becomes even more complex when correct execution is dependent on a

combination of compiler-based and architectural features, for example in the case

of the SCALP processor. Related work in [16] has explored the use of typing

calculi to aid in reasoning about the correctness in such cases.

A limiting factor in the performance of both the queue-based and instruc-

tion compounding asynchronous processors is the lack of an optimising compiler.

On going work described in [134], discusses the development of global scheduling

algorithms for asynchronous processors. The architecture used to develop the

scheduling algorithms is not very different from the queue-based architectures

explored here. Incorporating the compiler into the current simulation environ-

ment could provide a fairer evaluation of the queue-based models. Extending

this compiler infrastructure to support compound selection and scheduling could

also be the starting point for exploring more fully the performance potential of

instruction compounding architectures.

The implementation of any of the asynchronous superscalar architectures pre-

sented would also be interesting. For a fair comparison to be made with existing

high-performance architectures similar design techniques would have to be em-

ployed; these include: full custom design, the use of low voltage swing buses,

transistor size optimisations and the use of a modern process technology. In an

academic environment implementing a complete processor design using this type

of design style is unrealistic. A more realistic challenge may be in providing im-

plementations for each of the dispatch buffer designs and the forwarding register

logic in order for a more detailed comparison of their performance and power

characteristics to be made.

6.3 Discussion

The final question is whether an asynchronous design style will ever be adopted for

the design of a commercial superscalar processor. Arguments suggesting that this

will never happen usually cite the existence of a large number of tools designed

Chapter 6 - Conclusions and Future Work 	 155

specifically for designing synchronous systems or the body of knowledge tailored

specifically at synchronous implementations. For many less complex and lower

performance systems this may be true, as circuits are usually synthesized from

high-level descriptions before entering a highly automated tool flow. For the

design of the highest-performance processors these comments are less appropriate

as the whole design process is a fully-custom one, requiring in most cases for

designs to be considered at the transistor level.

The most likely reason for adopting an asynchronous design style will be as a

result of the eventually unmanageable level of complexity and correspondingly un-

realistic design team size required to design synchronous processors. The growing

complexity of the synchronous approach is a result of the reliance on accurately

predicting delays for both logic and interconnect. This complexity is also likely

to increase sharply with the predicted introduction of large numbers of indepen-

dent clock domains. While many of these problems may be solved by a GALS

(Globally-Asynchronous Locally-Synchronous) approach for lower performance

systems, their application in high-performance designs seems less realistic. The

range of on-chip delays will also increase both due to the need to optimise designs

for low-power, but also due to a large range of on-chip communication delays. Re-

sults presented in [121, already suggest that there are significant advantages in

adopting delay-insensitive signalling schemes for on-chip communication.

Synchronous designs have benefited for many years from the existence of a

limited range of on-chip delays and relatively low clock frequencies. The existence

of global synchronisation is ideal when the primary goal is the minimisation of

delays incurred through computation. This is especially true when pipeline stages

can be balanced to make effective use of each clock period. As feature sizes

decrease and levels of integration increase, the problem shifts from a need to focus

on minimising computation delays, to one of managing complex communication

requirements while also minimising power dissipation. In such an environment it

is believed that asynchrony offers the flexibility to better exploit the underlying

implementation technology.

Large investments in CMOS technology and the advances predicted for the

next 15 years, mean it will probably remain the dominant implementation tech-

nology for many years to come. If the problems of rising power consumption,

increasing communication costs, and difficulty in predicting delays continue it is

likely that a switch to an asynchronous design style will soon provide significant

advantages.

156 	 Chapter 6 - Conclusions and Future Work

6.4 Conclusions

The main contribution of this work has been the development of data-forwarding

and dynamic scheduling mechanisms suitable for asynchronous superscalar pro-

cessors. These mechanisms form the main architectural challenges in develop-

ing asynchronous architectures with the ability to exploit instruction-level par-

allelism. The solutions presented have been compared quantitatively through

simulation. Results have shown that asynchronous architectures can be devised

that provide similar performance to synchronous ones. In addition, a number of

architectures have been explored that aim to provide simpler implementations.

While the performance of these architectures is at present lower, performance will

improve with the development of compiler support.

The adoption of an asynchronous control paradigm enables new and interest-

ing trade-offs to be explored at the architectural level. It is hoped that asynchrony

will enable novel computational structures to better exploit future advances in

deep sub-micron technologies.

Appendix A

Published Papers

A.1 A Fully Asynchronous Superscalar
Architecture

Title:
	 A Fully Asynchronous Superscalar Architecture

Authors
	D.K. Arvind and R.D. Mullins

Presented at: 	International Conference on Parallel Architectures and Com-
pilation Techniques (PACT)

Place: 	 Newport Beach, California

Date: 	 October 1999

Publisher: 	IEEE Computer Society Press

157

A Fully Asynchronous Superscalar Architecture

D. K. Arvind and Robert D. Mullins
Division of Informatics

The University of Edinburgh
Mayfield Road, Edinburgh EH9 NZ, Scotland.

dka,rdm@dcs.ed.ac.uk

Abstract

An asynchronous superscalar architecture is presented
based on a novel architectural feature called instruction

compounding. This enables efficient dynamic scheduling
and forwarding of data based on local information, while
maintaining the advantages of asynchrony in terms of ex-
ploiting actual delays. Results are presented in which stat-
ically and dynamically compounded architectures are com-
pared against an equivalent synchronous superscalar archi-
tecture.

Introduction

The design of high clock frequency processors leads to
considerable physical problems in distributing the clock
signal, high power dissipation and poor electromagnetic
(EM) interference characteristics. The asynchronous design
approach has been proposed as a solution to these prob-
lems [8], although the potential of multiple issue asynchron-
ous architectures has not yet been fully explored. This pa-
per introduces a technique called instruction compounding
which better enables the advantages of asynchrony to be ex-
ploited in a superscalar architecture.

Synchronous Superscalar Architecture

This section highlights some features of a typical syn-
chronous superscalar pipeline (see Figure 1) with out-of-
order instruction issue. The pipeline is capable of fetching
and executing multiple instructions on each clock cycle, and
is typically supported by branch prediction and speculative
execution in order to maintain a high instruction bandwidth.

The instruction-issue buffer implements, in essence, a
limited dataflow capability, in holding instructions while
their operands are being generated, and allowing ready in-
structions to issue out-of-order. The buffer may issue mul-
tiple instructions in a clock cycle to a number of functional

units which operate concurrently. The operation of the in-
struction issue buffer can be split into two phases: wakeup

and selection. The wakeup logic matches results generated
by the functional units to the operands in the issue buffer;
the selection logic determines which of the ready instruc-
tions should be issued to free functional units. These ar-
chitectures may issue dependent instructions in consecutive
clock cycles by waking instructions in the same cycle as
their final operand is being produced. A network of result
buses and bypass logic is used to obtain the correct operand
values on the subsequent clock cycle, which is commonly
termed as data forwarding.

lul IOU
I;I

I - JC: I a- ,1H1I Q.

Lii 0

11

LL
Cr

I

data forwarding

Figure 1. Synchronous Superscalar Pipeline

Asynchronous Superscalar Architecture

A number of synchronous implementations of the archi-
tectural features described previously already exist. Un-
fortunately imitating these designs within an asynchronous
environment limits the extent to which the advantages of
asynchrony may be exploited. To appreciate this statement
we need to understand better the influence of the control
paradigm on the architecture.

In synchronous architectures, the control mechanism has
a rigid, periodic interaction with the datapath. Operations
are initiated by the control unit and must complete within
fixed multiples of clock cycles. This produces predict-
able and deterministic behaviour which may be exploited.

However the components of such a system must be designed
to minimise the critical path to ensure a low clock period,
even if this path is rarely taken. As a result, functional com-
ponents lie idle for a proportion of the clock period, even
though utilisation is high when measured in clock cycles.
This is essentially a time-driven approach to the design of
the interface between the control and the datapath. In con-
trast, one can implement an event-driven version of this
interface using asynchronous circuits. This exposes ac-
tual delays within the datapath and results in components
being active only when performing useful computations.
A good asynchronous architecture is one which translates
these local timing benefits to a better overall system per-
formance. One way in which this may be achieved is by
exploiting greater sub-instruction parallelism.

In synchronous implementations, both the instruction
buffer and data forwarding mechanisms exploit global syn-
chronisation. In the absence of a clock, a naive implementa-
tion would require a large number of local synchronisations
- swamping any gains of exposing actual delays. We pro-
pose novel architectural ideas for efficiently realising dy-
namic scheduling and data forwarding in a fully asynchron-
ous environment.

3.1. Novel ideas for instruction execution

In this section, we describe the design of an asynchron-
ous superscalar processor, with emphasis on its out-of-order
instruction execution and data-forwarding capabilities.

The basic pipeline, outlined in Figure 2, differs from the
synchronous one described previously in the way that op-
erands are obtained and instructions are scheduled. These
operations are now distributed to execution units associated
with each functional unit.

structions. This information is used to reduce synchron-
isations between functional units when required to perform
data forwarding and dynamic scheduling. A compound can
be simply defined as a group of dependent instructions. A
more precise definition with respect to the architecture is
given below.

A basic block is partitioned into compounds by group-
ing adjacent dependent instructions. The only constraint in
the selection of compounds is that the resulting graph of
compounds must be a DAG. Within the compounding ar-
chitecture results may only be forwarded between success-
ive instructions within a compound. The example in Fig-
ure 5 illustrates a possible compounding for the code frag-
ment. Instructions 2,3 and 4 are grouped together to form a
compound, each instruction within the compound must be
scheduled consecutively as shown. This allows membership
of a particular compound to be indicated by a single com-
pounding bit for each instruction. When the bit is set the
instruction and the following instruction are both part of the
same compound.

The architecture of an execution unit is shown in Fig-
ure 3. Instructions are issued out-of-order (and asynchron-
ously) from the instruction buffer as soon as it is safe to
do so. This is indicated by forwarding requests from other
execution units, or the setting of future bits as other instruc-
tions issue. Once an instruction is ready and has success-
fully arbitrated for issue then its operands are obtained and
its result is generated. Concurrently, a pipeline determines
whether the result is to be forwarded, both finally converge
in the forwarding unit from where data is actually forwar-
ded. A more detailed description of the operation of these
units follows.

IRd 	 R..d

lu

Fw Re1

Execution Units

Figure 2. Asynchronous Superscalar Pipeline
Unit B

Dw. 	 RI)

The efficient operation of these execution units relies on
information being obtained from the compiler in identify-
ing possible candidates for data forwarding. The mech-
anism used to provide such information is called instruc-
tion compounding [1]. Instruction compounds provide ad-
ditional information regarding the dependences between in-

Figure 3. Execution Unit

Execution units receive results either via the shared re-

gister bank or directly from other units over the forwarding
network.

In the absence of global synchronisation, communica-
tion via the register bank is implemented through the use of
a register locking mechanism [6]. A status bit is attached
to each physical register to indicate when its contents is
valid. In addition, a future bit is associated with each re-
gister to indicate whether the instruction which will write
to the register has been issued. Future bits guarantee the
availability of results and are used to determine when an in-
struction may issue safely, without resulting in a deadlock.
Both register status and future bits are reset during register
renaming when a new physical register is mapped.

Once an instruction is dispatched to an execution unit,
each of its operands which cannot be forwarded must read
its register future bit. This is achieved by queuing each
read operation in one of two read queues. After a future
bit is read, the status of the corresponding operand in the
instruction buffer is updated. This write is made using an
instruction buffer write port. This operation is illustrated in
Figure 4.

Future Bit

Read Queues 	Read Ports L Co

Instruction L<ff E I ts

Generate
Read micro-operations

Instruction Buffer Write Port

Figure 4. Future Bit Read Operation

The instruction buffer dispatches instructions out-of-
order depending on the status of their operands. The oper -
and status is updated via the instruction buffer write ports,
either by successfully reading a future bit (as described be-
fore), or by receiving a forwarding request (to be described).
These operations are equivalent to an instruction wakeup

phase in a synchronous pipeline. Each write port is asso-
ciated with an issue port. If a write wakes an instruction
in the buffer, then the write port is blocked until the issue
request is granted. This limits the number of arbitrating in-
structions to the number of write ports, which is desirable in
asynchronous architectures (due to the delay of multi-way
arbiters). Each write is made directly to a particular buffer
entry - this is possible as both forwarding requests and fu-
ture bit reads are tagged with the instruction's buffer entry.

Each entry in the buffer contains information about a par-
ticular instruction's operands, their status and forwarding
bits, the operation to be performed at the functional unit,
the instruction's compounding bit and the location of the
next instruction in the compound. The forwarding bits as-

sociated with each operand indicate whether the result will
be forwarded, or fetched from the register bank. These bits
are initially set in the instruction dispatch unit.

Once an instruction has issued, it proceeds to the oper-
and fetch stage, and should its compounding bit be set (it
forwards its result), then it is also sent to the early unit input
buffer. The future bit associated with its destination register
will be set to indicate that the result is being generated.

The early unit queries the next instruction in a compound
to determine if forwarding is possible. This query or for-
warding request is also used to update the status of the oper-
and. A detailed description of this operation is given below.

The early unit receives each instruction which is a
member of an instruction compound (bar the final in-
struction) and makes a forwarding request to the next
instruction in the compound. The location (execution
unit and buffer entry) of this instruction is obtained
within the instruction dispatch unit.

The forwarding request must arbitrate for access to
the instruction buffer. Forwarding requests are then
queued before they access a particular entry via a write
port.

• When a forwarding request is made to a particular in-
struction in the buffer, then one of two situations will
arise:

- The status of all other operands has been updated
through future bit reads. In this case, data for-
warding is possible and the instruction may issue.

- Future bit reads are pending for one or more op-
erands. In this case it is not possible to issue
the instruction and data forwarding must be can-
celled. The operand which would have been for-
warded is now obtained from the register bank,
and its forwarding bit is reset to reflect this.

• The early unit will receive either an acknowledgement
or cancellation signal. This information is used to de-
termine whether or not to forward the data at the for-
warding unit.

The order in which results are consumed from a partic-
ular execution unit must be guaranteed to be the same as
the order in which they are sent. This is only possible by
cancelling the forwarding of certain results. The alternative
of issuing an instruction whenever it receives a forwarding
request is not possible without introducing the possibility of
deadlock.

Another potential deadlock condition involving the early
unit is controlled by the release of instructions from the in-
struction buffer. Instructions are only released when there is
no possibility of filling the early unit input buffer. The R++

signal in Figure 3 is used to maintain a count within the in-
struction buffer and implement such a mechanism. If the
queue was to block instruètion issue, then deadlock could
occur.

Operand fetch obtains register and forwarded result data.
Forwarded results are received into an individual queue for
each sender. This is necessary as the order in which for -
warded results are sent is only guaranteed with respect to a
single execution unit. In both the cases of register operands
and forwarded results, operand fetch will stall until the data
is available.

3.2. A Simple Example

In this section we illustrate the operation of the datapath
through a simple example (see Figure 5) of forwarding and
dynamic scheduling.

r5=mem[r2+4]

rl=mem[r2]
r2=rl*321

r3=r2+r5

Figure S. Example Compounds

Instructions 2,3 and 4 are compounded, while instruc-
tion 1 remains a singleton compound. Alternatively, com-
pounds (2,3) and (1,4) could have been created. For simpli-
city, we assume in this example that the logical and physical
registers used for each instruction have the same identifiers.

Instruction 2.

	

q1I I I I r2 	q1 _I
-

q2j 	I 	I 	I 	Ir2I 	q2j 	I 	I 	I 	Ir5I

Instruction 1. 	 instruction 4.

	

Memory Unit 	 ALU

Figure 6. Future bit Read Queues

The following description shows how instructions are is-
sued and obtain forwarded data.

• All instructions are dispatched to their respective ex-
ecution units. In this case, a single memory unit (for
instructions 1 and 2) and ALU (for instructions 3 and
4) are present.

• Future bit read operations are queued for all register
operands (see Figure 6). Communication between in-
structions 2,3 and 4 are handled by forwarding opera-
tions and do not require future bit reads.

We now concentrate on the execution of instructions
2 and 3. Instruction 3 requires no future bit read and
only awaits a forwarding request from instruction 2.
Instruction 2 issues after its operand's status bit is up-
dated upon completion of the future bit read for re-
gister 2 (from q at the memory unit).

The instruction proceeds to both the operand fetch
stage and the early unit. The latter makes a forwarding
request to instruction 3. Causing it to generate a for-
warding acknowledge signal and to issue. Forwarding
cannot be cancelled in this case as the instruction has
no register operands.

Once the result for instruction 2 is generated, the for-
warding unit will receive both a result and forward
request response - in this case an acknowledgement.
The result will then be sent to the ALU's memory unit
result queue, where instruction 3 will obtain the result
during its operand fetch stage.

3.3. Dynamic Compounding

In the architecture presented so far instruction com-
pounds are identified at compile-time. An alternative ap-
proach is to construct the compounds dynamically as in-
structions are read. This section describes an implementa-
tion of dynamic compounding, which extends compound-
ing beyond basic block boundaries.

The implementation is based on a table being maintained
within the register renaming, or issue stages of the datapath.
An entry exists for each physical register and contains the
following information:

• A forward bit to indicate that this result is to be for-
warded. A destination in the form of a functional unit
and instruction buffer entry is also present if the com-
pounded bit is set.

• An executed flag, which is set once the instruction gen-
erating the result for this entry's register has queried
the table.

An entry in the forwarding table is cleared when an in-
struction obtains its physical register destination. A sub-
sequent read of this register may then be forwarded. This
requires the compounded bit to be set in the table and the
location of the instruction requiring the result to be recor-
ded. A result may only be forwarded once, as in the static
case, and only while the executed flag is clear. This flag
is set when the instruction producing the result queries the
table to see if the result is to be forwarded. This query takes
place in an extra stage prior to the early unit. The details of
the implementation have been omitted, as it is only used to
explore the limits of compounding in this context.

H
Figure 8. Percentage of operands compoun-
ded and results actually forwarded

are currently investigating a combined SWIHW approach to
support forwarding across basic blocks.

Techniques also exist for exposing greater fine grained
parallelism. For example, higher utilisation of the register
read ports may be possible if the operand fetch stage is re-
designed to permit each port to be accessed independently.
This would allow both ports to be used if two instructions
only require a single register fetch each. The overhead in-
volved in implementing such aggressive techniques to ex-
pose further parallelism is current being evaluated.

5. Related Work

The effect of asynchrony on processor architecture has
been explored in earlier work [3, 2], which introduced the
notion of a fine-grained network of asynchronous agents
called a micronet. Although this work was limited to scalar
architectures many of the ideas and techniques for distrib-
uting control have been applied here.

Notable asynchronous processor implementations in-
clude an asynchronous MIPS R3000 [5] processor and the
Amulet 2 [7], an asynchronous implementation of the ARM
processor. Each makes some attempt to implement data
forwarding, such as register bypassing in the case of the
R3000 at the register bank, and by implementing last use
registers in the Amulet 2 processor. A result forwarding
mechanism designed for inclusion in the latest Amulet pro-
cessor is presented in [4]. Here a small parallel FIFO is
used to forward results between instructions currently in the
pipeline. Each of these techniques have been developed for
use within a scalar processor and their application to dy -
namically scheduled superscalar machines is limited. One
reason for this is the large number of outstanding instruc-
tions and possible forwarding situations.

6. Conclusions

We have presented a novel architecture for exploiting
asynchrony in superscalar architectures. To our knowledge
this is the first detailed study into the performance advant-
ages of an asynchronous multiple issue architecture.

We achieve better performance by two means: reducing
run-time synchronisation and by exploiting fine-grained
parallelism. Two techniques are used to achieve these
aims. Firstly, instruction compounding reduces run-time
synchronisations by generating forwarding information at
compile time. Secondly, the early unit and future bits ex-
pose additional parallelism by allowing events to occur as
early as possible while avoiding deadlock.

By understanding the interplay between compilers and
architectures we aim to realise fully the performance poten-
tial of asynchronous multiple issue architectures.

References

D. K. Arvind and R. D. Mullins. Instruction compounding. In
Proceedings of the 1st UK Asynchronous Forum, Edinburgh,
Scotland. Dec. 1996.
D. K. Arvind, R. D. Mullins, and V. E. F. Rebello. Micronets:
A model for decentralising control in asynchronous processor
architectures In Asynchronous Design Methodologies, pages
190-199. IEEE Computer Society Press, May 1995.
D. K. Arvind and V. E. F. Rebello. Instruction-level parallel-
ism in asynchronous processor architectures. In M. Moonen
and F. Catthoor, editors, Proc. of the Third mt. Workshop on
Algorithms and Parallel VLSI Architectures, pages 203-215.
Elsevier Science Publishers, Aug. 1994.
D. A. Gilbert and J. D. Garside. A result forwarding mech-
anism for asynchronous pipelined systems. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 2-11. IEEE Computer Society
Press. Apr. 1997.
A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Pen-
zes. R. Southworth, and U. Cummings. The design of an
asynchronous MIPS R3000 microprocessor. In AdvancedRe-
searchin VLSI, pages 164—l81,Sept. 1997.

161 N. C. Paver, P. Day, S. B. Furber. J. D. Garside, and J. V.
Woods. Register locking in an asynchronous microprocessor.
In Proc. International Conf Computer Design (1CCD). pages
351-355. IEEE Computer Society Press, Oct. 1992.
S.B.Furber, J.D.Garside, S.Temple, J.Liu. P.Day. and
N.C.Paver. AMULET2e: An Asynchronous Embedded Con-
troller. In Asvnc '97, pages 290-299. IEEE Computer Society
Press, Apr. 1997.
C. H. K. van Berke], M. B. Josephs. and S. M. Nowick. Scan-
ning the technology: Applications of asynchronous circuits.
Proceedings of the IEEE. 87(2):223-233, Feb. 1999.

4. Evaluation

We compare asynchronous architectures operating with
statically and dynamically generated compounds to a syn-
chronous superscalar machine. We also include results for
a queue-based asynchronous architecture, which offers lim-
ited dynamic scheduling but lacks data forwarding.

All functional units share the same architectural para-
meters, as described (see Table 1). The delays used within
the asynchronous architectures, as listed in Table 2, these
are expressed as a percentage of the synchronous architec-
ture's clock period.

Parameter Number

No. of instrs. fetched per memory cycle 4
Complex ALU (ALU, logic, shift., mult.)
ALU (ALU, logic) 2
Memory Unit
Logical Registers 32
Physical Registers 64
Instruction buffers per Functional Unit 16

Table 1. Architectural Parameters

Component Delay (Cycle time)

Memory Access 100
Register Access 100
Future Bit read/write 60
Instruction Buffer Issue 50
Instruction Buffer Write 30
FU to FU communication
Request (requires arbitration) 45
Acknowledge 30
Data 30
Instruction Delays
ALU (add/shift) 50
Logical 20
Set/Move/Clear 0
Load/Store 100

Table 2. Asynchronous Component Delays

The following list gives additional implementation de-
tails specific to each model.

• The queue-based asynchronous architecture simply is-
sues instructions to execution units consisting of an
instruction queue. operand fetch stage and functional
unit pipeline.

• The synchronous machine's instruction buffer is dis-
tributed amongst the functional units.

• In the case of the compounding architecture, each in-
struction buffer is split in two. One buffer is used to
hold instructions which may receive forwarded data,
and the other for those which will not. Two future bit
read queues and ports are shared between each buffer,
within each execution unit. Read operations were as-
signed in a round-robin fashion to the queues.

• The forwarding table (for dynamic compounding) in-
curs no delay due to reading, writing or arbitration.
In this case, dynamic compounding is simply used to
explore the possible advantages of extending compiler
based compounding beyond basic blocks.

Results where obtained using a trace-driven, event-based
simulator. The benchmarks used are cjpeg (spec95), bubble
sort, queens, con,press(spec92), xlisp (spec92) and fgrep.
Instruction compounds were selected using a greedy graph
partitioning algorithm with a maximum compound length
of 10. No optimisations were performed on the schedule
of compounded instructions, or for the queue-based asyn-
chronous model.

Results showing the IPC (a cycle is defined in terms of a
memory access operation for all the models) for each pro-
cessor model are presented in Figure 7. Perfect branch pre-
diction, memory disambiguation and instruction fetch band-
width are assumed.

-

Figure 7. 1 P for different processor models

The percentage of operands which were compounded
either statically or dynamically and the actual percentage
of operands obtained via forwarding are given in Figure 8.
These differ due to the need to cancel some forwarding op-
erations to avoid deadlock at run-time.

It can be seen from the results that the synchronous
processor only outperforms the dynamically compounded
model in one case (cjpeg). Static compounding performs
worse than dynamic in all cases, only outperforming the
synchronous model in the case of bubble sort and compress.

These preliminary results are encouraging, and they will
improve with compiler optimised static compounding. We

Appendix A - Published Papers
	 163

A.2 Instruction Issue and Data Forwarding
Mechanisms for Asynchronous Superscalar
Processors

Title: 	 Instruction Issue and Data Forwarding Mechanisms for Asyn-
chronous Superscalar Processors

Authors: 	D.K. Arvind and R.D. Mullins

Presented at: 	Workshop on Complexity-Effective Design (WCED'OO), held
in conjuction with ISCA-27

Place: 	 Vancouver, B.C.

Date: 	 June 2000

Instruction Issue and Data Forwarding Mechanisms for Asynchronous
Superscalar Processors

D.K. Arvind and R.D. Mullins
Division of Informatics

The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ, Scotland.

dka©dcs . ed . ac .uk or Robert. Mullins©cl. cam. ac. uk

Abstract

An 	asynchronous 	design 	methodology
offers potential advantages for architectures
implemented in deep sub-micron technologies,
such as low power dissipation and good
elect ro-magnetic compatibility. This paper
explores the impact of such a methodology on
the architecture of superscalar processors. We
examine in particular out-of-order instruction
issue and data forwarding in the absence of
global synchronisation. Three schemes are
presented, and the performances of the resulting
asynchronous superscalar architectures are
compared to an equivalent synchronous one for a
set of well-known benchmarks.

1. Introduction

The design of high-performance processors
is becoming increasingly complex. This is due
to a combination of factors such as their sheer
size, architectural complexity, and the inherent
difficulties of designing in deep sub-micron
technologies [6], such as interconnect delays and
limits on power dissipation and peak currents.
The generation of global clock signals in the
gigahertz frequency ranges is challenging, which
is further compounded by requirements to
gate clocks and support multiple on-chip clock

tRobert Mullins is now with the Rainbow Group,
University of Cambridge Computer Laboratory.

domains.
An alternative and radical approach is

to remove the clock altogether, and adopt
an asynchronous design style [17]. At the
architectural-level, there is no longer a need to
distribute the clock globally, and the control
structure can potentially exploit a range of
computational and communication delays,
without being limited to the worst-case timing
behaviour. At the circuit-level, asynchrony
attempts to minimise superfluous switching
activity, 	which naturally benefits power
consumption. 	The use of delay-insensitive
interfaces and circuits leads to a modular
approach to processor design which is free
of complex timing requirements. This will
become increasingly important as verification
and design re-use become critical factors in
design methodologies which are qualified by
time-to-market considerations.

An asynchronous approach often requires
novel design solutions to problems which
have traditionally exploited global
synchro4isation. Naive solutions which
operate in a pseudo-synchronous manner are
often uninteresting, as they expose the full
overhead of asynchronous handshaking and
completion detection. A case-in-point is the
handling of data dependencies in synchronous
superscalar processors, viz, out-of-order
instruction issue and data-forwarding, which rely
on global synchronisation, and pose challenges in
developing efficient asynchronous solutions.

The following section provides a brief overview
of the core operations in a typical synchronous
superscalar processor. Section 3 develops the
idea of an asynchronous version of the central
instruction window which attempts to minimise
synchronisat ions which degrade performance.
Section 4 discusses a queued asynchronous
architecture and develops data forwarding
mechanisms for both this and the architecture
described in Section 3. An alternative approach
to dynamic scheduling and data forwarding
which relies on a compile-time analysis of
possible data forwarding opportunities, called
instruction compounding, is described in Section
5. Finally, simulation results are presented
comparing the performances of synchronous and
the asynchronous architectures.

2 Superscalar Processors

Figure 1 illustrates a generic superscalar
processor. The pipeline is capable of fetching
and executing multiple instructions in each clock
cycle, and is typically supported by branch
prediction and speculative execution in order to
maintain a high instruction bandwidth.

We first describe the operations which
take place during instruction issue and
data-forwarding, which will clarify the
descriptions in the later sections. (See [13] for
more details about the stages in such a pipeline)
In the rest of the paper, we assume the presence
of register renaming, and references to registers
always imply physical ones, unless otherwise
stated.

E LL

Ca Cu
0

data forwarding

Figure 1. Synchronous Superscalar Pipeline

The central instruction window (CIW) or
instruction issue buffer provides a limited

datafiow capability, which allows instructions to
be issued out of order, when both their operands
and the appropriate execution resources are
available. The basic operations performed within
the window are listed below:

• Write New instructions are loaded into the
window.

• Wakeup The status of the instruction's
operands are updated, based on the lifetimes
of issued instructions. It is useful to further
decompose this phase into:

- Initialise The operand's status is set on
entering the window.

- Update When instructions dependent
on a particular result are issued, then
all instructions which use the result are
found and their status updated.

• Selection The ready instructions request to
be issued. Instructions are selected for the
available functional units. -

• Issue A ready instruction is removed from
the window and sent to the appropriate
execution pipeline.

A 	pipelined 	processor 	includes 	a
data-forwarding mechanism to permit
dependent instructions to be executed in
consecutive cycles. This mechanism enables data
to be sent directly between functional units,
bypassing the register file.

3 Transformation to an Asynchronous
Design with CIW

The first asynchronous design is a gentle
transformation of a typical synchronous
central instruction window. We impose the
following minimum requirement to avoid
pseudo-synchronous operations: (1) we will not
impose a strict order on the basic operations,
as described in the previous section, which
implement the dynamic scheduling mechanism,
and (2) the operation of the functional units
should not be synchronised by the scheduling

mechanism. It should be possible to, issue to,
and, handle results from, each FU independently.

Figure 2 shows a block diagram of the pipeline
of such a design. An instruction in the CIW
is ready for issue when all other instructions
which produce its operands have been issued. An
instructions initially obtains the current status
of its operands (the initialise operation) from
the register scoreboard (or more precisely, the
status of the instructions which will produce
its operands). The scoreboard operates in the
following manner:

• An instruction at the rename stage (after
renaming has taken place):

sets the bit in the scoreboard
corresponding to 	its 	destination
register.

reads the current status of the bits
corresponding to its source operands.

is written into the instruction window.

• An instructions leaving the instruction
window:

1. clears the bit corresponding to its
destination register.

The status of instruction operands already
in the instruction window are also updated as
instructions leave the window. This is performed
in the style of synchronous designs using
content-addressable memory cells. The global
CAM operation and the clearing of bits in the
scoreboard together constitute the update phase.

In order to ensure that the status of the
operands of each instruction is updated correctly,
it is required that the write and initialise
phases, and the update phase are not performed
simultaneously. A single arbiter enforces mutual
exclusion in this first design.

3.1 The Instruction Buffer

The CIW is itself implemented as a parallel
FIFO [20, 191. Reads and writes to each entry
are controlled using head and tail pointers,

Fetch 	 Rename 	Issue

AR OtTER

Register 	Issue
Rename

Scoreboard

Figure 2. Asynchronous Central Instruction

Window

which effectively implements a circular buffer.
The fact that entries in this buffer do not
move between memory elements simplifies our
implementation of the instruction window. Other
asynchronous FIFO implementations such as
micropipelines [16], although offering other
advantages, are problematic in this respect.

3.2 The Update and Selection Processes

Instructions become ready for issue once
the status bits associated with each of their
operands have been reset, which may occur either
initially when the scoreboard is read, or after
subsequent update operations. At the point when
an instruction is ready, it will arbitrate for issue
by raising a ready signal from its entry in the
instruction window.

In order to avoid the need for F, N-input

arbiters (where F and N are the number of
functional units and entries in the window,
respectively) and to ensure that the selection
of older, ready instructions can be prioritised,
a static selection phase is created for each
functional unit. Static inputs to the selection
circuit are provided through the use of selection
arbiters as shown in Figure 3.

Each entry in the window holds a single
instruction and is capable of raising a ready
signal for each functional unit. Once all the
operands of a particular entry are available, then
a request is made to raise the ready signal for the

Register Read 	Execute

•:
DEST 	 •

I'UI
READY

AM
Rh,

R0 G NOT_READY

SELECfl.REQ

FU2 	
Re GA READY

ARE

RE GE NOT_READY

SELECTIJ_REQ

Figure 3. Selection Arbiters

to make this dependent or independent of the
state of the issue port. We do not elaborate
further on these questions here as they depend on
other architecture-specific parameters.

SELECflON.ACK

RFADY-CPI 	 RA GA 	 READY ARR
READY-OP2 	

AM

SELECflONREQ

3.3 Reducing Synchronisation

The architecture as presented so far forces the
write and initialise phases and update phase to
be mutually exclusive. In practice, this is only
required when each phase attempts to access the
same entry in the scoreboard. Synchronisation
may be reduced by providing an arbiter at each
entry in the scoreboard, as shown in Figure 4.

target functional unit. In Figure 3, the signals
Ready_opi and Ready_op2 will be set if both
operands are ready. This will result in a request
to one of the selection arbiters corresponding to
the target functional unit.

The selection and issue of instructions is
outlined below. This process is performed
concurrently for each functional unit.

Ret

FUOReq

FIJI_Req

FU2_Req

Read_Req

Write_Aek

Read_AYk_O

Road_Ack_I

. At least one of the ready signals is raised

The selection_req signal is asserted.

• All entries respond with a selection_ack. This
is either a ready or not _ready signal (for the
sake of clarity this is indicated for only the
uppermost functional unit in the diagram).
The inputs to the selection circuit are now
guaranteed to be static and selection may
take place.

• The selected instruction may be issued once
the appropriate issue port is free (one port is
associated with each execution pipeline).

The exact behaviour of the selection request
signal is not specified here. A number of
possibilities exist for controlling when the signal
is to be asserted or deasserted. For example,
we may wish to issue all ready instructions
before deasserting the selection request signal,
or deassert it after each issue in order maximise
fairness. The point at which the selection request
is raised is also undefined; one question is whether

Figure 4. Arbitrated access to an individual
scoreboard entry

Renaming guarantees that no two instructions
with the same physical destination register may
be simultaneously in flight. This ensures that no
two functional units will ever attempt to access
the same scoreboard entry at the same time.
This enables a simple OR gate to generate the
functional unit write request to the scoreboard
entry. Access to the scoreboard is now arbitrated
as before, but only enforces mutual exclusive
operation, when both the rename stage and an
update operation need to access the same entry.

Arbitration is only required within a particular
entry, when it is possible for the entry to change
its state from indicating a not-ready status to a
ready one. No arbitration is required in the case
when the entry is indicating a ready status (the
RS flip-flop is set in the example).

Dependencies within a group of instructions
which are fetched together may be determined
without reference to the scoreboard during the

rename process. This reduces the number of
scoreboard reads and also enables the status of
all the scoreboard entries associated with the
destination registers of the instructions in the
group to be reset simultaneously.

4 Data Forwarding in a Queued-based
Architecture

Figure 5 shows an alternative asynchronous
architecture with a limited form of dynamic
scheduling. The monolithic instruction window
has been replaced with a number of instruction
queues. While this allows instructions at the head
of each queue to be issued whenever dependencies
permit, execution at a particular functional unit
is always in order. The following section describes
how such an architecture may be extended to
support forwarding, and how a similar scheme
may be used in general with the kind of central
instruction window described previously.

Fd 	 i 	 RgisteR.d 	 RcgitoWn

soon

issue unit maintains a record of the results which
will be generated by the previous N instructions
issued to each functional unit. If these results
are required by subsequent instructions, then
forwarding may be initiated by sending a
forwarding request to the appropriate forwarding
register. These requests together with commands
to enable the contents of the forwarding registers
to be overwritten, are queued in a forwarding
register command buffer in each functional unit.

The existence of many forwarding sources
introduces the problem that a number of
outstanding forwarding requests may result in
data being forwarded to a particular functional
unit in a non-deterministic order. One solution
to this problem is to provide a unique forwarded
data input buffer, for each possible source, at each
functional unit. We can, of course, guarantee that
the data arriving from a particular functional
unit will be in order, as forwarding requests
are queued. The correct source is selected by
the instruction during operand fetch, using
information obtained during issue.

A block diagram illustrating a single execute
pipeline incorporating data forwarding is shown
in Figure 6.

Figure 5. Queued Based Dynamic Scheduling

D.

If it is possible to determine whether data can
be obtained via forwarding at the instruction issue
stage, then it would avoid the synchronisation
necessary in traditional forwarding mechanisms,
which effectively synchronises the operations of all
the functional units. The HADES architecture [4]
exploits a similar forwarding scheme, although
in the absence of instruction queues or parallel
register reads.

Recent results are stored at the output of
each functional unit in a number of forwarding
registers. The issue unit controls both the point
at which the contents of these registers may be
overwritten and when data is forwarded from
these registers to other functional units. The

IH

Figure 6. Execution Pipeline with Data

Forwarding

A more general forwarding scheme is to enable
the forwarding of results from the previous N
instructions, irrespective of the functional unit
they use. This requires that the individual
forwarding registers be combined into a central

forwarding queue. A similar structure, tailored
for inclusion into the Amulet 3 is described
in [9, 8]. The need to be able to forward results
generated in a completely arbitrary order forces
us to allocate entries in the forwarding queue
during instruction decode. The queue must also
be multi-ported for both reading (forwarding)
and writing multiple results in parallel. This
combination would probably preclude this
type of design for the case when there are
many functional units, each with its own input
instruction buffer. Nevertheless, the queueing of
forwarding requests and overwrite signals could
be used in a manner similar to the distributed
case described previously.

4.1 Data Forwarding and Central Instruction
Windows

We now consider how data forwarding, as
described in the previous sections, may be
employed when instructions are issued in an
arbitrary order (while respecting dependencies)
from a central instruction window.

Consider the organisation shown in Figure 7,
where just two functional units are represented.
We now need to generate forwarding requests
during the register read stage, as the order in
which instructions will be executed is unknown
prior to this. As in the previous description of
a queue-based architecture, the source of data
which may be forwarded is determined during
issue. In the case of a central instruction window
this information is appended to instructions
in the window during the update phase. For
example, if an instruction is issued to the memory
unit, any operands requiring its result will
record the memory unit as the source of data.
Instruction operands which are initialised to be
ready at the time the scoreboard is read will not
generate forwarding requests. In reality such data
will often already be available from the register
file.

Instructions are issued to the appropriate
operand fetch stage.

Forwarding requests are made, if necessary,

FeLh 	 Rnmo 	 Is. 	 Rogit 	Rd 	Eute

&o,eboard

Figure 7. Asynchronous CIW Forwarding
Problem

for each operand. Operands which cannot be
obtained via forwarding are fetching from the
register file.

An overwrite signal is sent to a forwarding
register at the output of the instruction's
functional unit. 	This invalidates the
contents of one of the forwarding registers in
preparation for a new result to be latched.

At this point it is clear that concurrent
forwarding requests may be made from a number
of operand fetch stages to a single forwarding
register control buffer. One problem is that
overwrite signals, invalidating the current
contents of a forwarding register, may also be
sent concurrently with forwarding requests for
the current data.

This is solved by, firstly, arbitrating access to
each forwarding register control buffer. Secondly,
forwarding requests can no longer be guaranteed
to be always successful. Forwarding requests may
now occur too early - prior to the receipt of an
overwrite signal preparing for the receipt of a
particular result, or too late - after subsequent
overwrite signals have effectively removed the
data. To avoid incorrect data being forwarded,
forwarding requests must now include the register
identifier of the required data. A comparison
in the forwarding register now determines if
forwarding is possible, or if the forwarded
operation must be cancelled, thereby forcing the
value to be obtained via the register bank.

4.1.1 Source Counters

The cancellation of a large number of forwarding
requests may result in a significant performance
overhead. In order to reduce the number of
surplus forwarding requests a mechanism may be
introduced to cancel forwarding operations while
instructions are still in the CIW.

A counter, which we will call the source
counter, is associated with each operand in the
CIW. This is initialised at the point when an
update operation causes an operand entry to
record a forwarding register as a source of data.
Subsequent update operations from the same
source now cause the counter to be decremented.
When the counter's value is zero the source of
the data is reset to the register file, a forwarding
request will no longer be made.

5 Instruction Compounding

In the schemes discussed previously, forwarding
has been initiated by the consumer. An
alternative approach is to combine forwarding
and dynamic scheduling, by allowing the producer
to initiate a forwarding operation. This requires
that dependencies be identified explicitly prior to
issue. One way in which this may be achieved
is to identify chains of dependent instructions
at compile time. The following section gives an
overview of such an approach, called instruction
compounding - a more detailed description may
be found in [1].

Instruction dependencies are identified by
creating a number of instruction compounds
during compilation, defined as groups of
dependent instructions. A basic block is
partitioned into compounds by grouping
dependent instructions, the only constraint being
that the resulting graph of compounds must be
a DAG. Results may only be forwarded between
successive instructions within a compound.
The example in Figure 8 illustrates a possible
compounding for the code fragment. Instructions
2, 3, and 4 are grouped together to form a
compound, each instruction within the compound
must be scheduled consecutively as shown. This
allows membership of a particular compound to

be indicated by a single compounding bit for each
instruction.

Figure 8. Example Compounding

The architecture consists of a number of
independent instruction buffers and forwarded
data result queues much like the queued-based
architecture described in Section 4. A significant
difference is that data-forwarding and instruction
issue now exploit the explicit dependency
information provided by compounding. An
instruction, after it has been issued, is now
able to make a request to forward its result to
an instruction waiting in another instruction
buffer. This partly implements both a forwarding
and update operation without the need for
the broadcasting of result identifiers. For
those operands which may not be obtained
via forwarding, initialisation of their status is
provided by reference to a scoreboard much like
the one described previously. Operations to read
and update entries in the instruction buffers are
queued upon issue.

Out-of-order instruction issue, as in the case
described in the previous section, forces some
forwarding operations to be cancelled. In the
case of instruction compounding this is necessary
when the instruction, on receipt of a forwarding
request, cannot issue immediately. This is
necessary to both avoid deadlock and guarantee
that forwarded data is consumed in the correct
order.

6 Results

Results were obtained from a trace-driven
event-based simulator running well-known
benchmarks such as cjpeg, compress, fgrep, 9cc,
go, perl and xlisp. Around 1 million instructions

r5=mem[r2+4]

r1=mem[r2]
r2=rl*321

r3=r2+r5

were simulated for each benchmark, the size of
which is at present limited by the complexity
of the asynchronous models. Instruction and
memory reference traces were collected using
QPT2 [3]. The Dinero cache simulator [10]
is integrated into the simulator to provide
information concerning cache misses. A 64k,
2-way set associative data cache and perfect
instruction cache is used in all the simulations.

Instruction compounds were selected at
random using a greedy graph partitioning
algorithm with a maximum compound length set
to 10. Note that no optimisations were performed
on the schedule for either the compounded
instructions, or the queue-based asynchronous
model. Perfect branch prediction and instruction
fetch bandwidth are assumed. Models which
perform out-of-order instruction issue, excluding
the queue-based architecture, are capable of
executing memory instructions out of order with
the aid of speculative memory disambiguation,
although store-to-load forwarding is not
implemented at present. Key architectural
parameters are listed in Table 1. In the case of
the queued and compounded models additional
adders (equal to the number of memory units)
are incorporated to generate memory addresses,
in the architectures with central instruction
windows ALUs are shared between address
calculations and ALU instructions.

Parameter Number
No. of instrs. fetched per mem. 4
cycle
Complex ALU 1
ALU 2
Memory Units 1 or 2
Logical Registers 32
Physical Registers 80
Total No. of Instruction buffers 64

Table 1. Architectural Parameters

Results are included for three main
asynchronous processor configurations, labelled
as: ACIW (Asynchronous Central Instruction
Window) and ACIWc (ACIW with source
counters), Queued (the queue-based architecture

Parameter Delay
(% 	Cycle
Time)

Memory Access 100
Register File (8 read) 100
Register File (4 read) 78
Scoreboard Access 35
4-way arbitration 20
Instruction Delays
ALU (add/shift) 50
Logical 20
Set/Move/Clear 0
Load/Store 100

Table 2. Delay Parameters

described in Section 4) and Comp (Instruction
Compounding). Where appropriate, results have
been obtained for architectures containing 1 or 2
forwarding registers (f), and 1 or 2 register read
ports (r), per functional unit.

A selection of delay values, given as percentages
of the synchronous clock period, are given in
Figure 2. The smaller buffers or queues in the
asynchronous models are assumed to have a
throughput of 4 elements per cycle. Wakeup and
selection in the case of the asynchronous CIW
takes the equivalent of a full clock cycle.

Figures 9 and 11 summarise the IPC obtained
for each model, each result being the geometric
mean of the IPCs for each benchmark. Figures 10
and 12 record the percentage of operands which
were obtained through data-forwarding for each
model. Also shown, as a percentage of the total
forwarding requests made, is the number of
requests which were denied or cancelled.

In the case of the asynchronous CIW the
number of forwarding requests which must
be cancelled is significantly reduced with an
additional forwarding register. This increases
the window of opportunity for obtaining data
through forwarding. Increasing the number
of forwarding registers beyond two produces a
reduction in performance for both CIW and
queued models, for the delay models used.

In the case of both the asynchronous CIW
and compounding models some scope exists for

35

3

25

05

0

70

60

3C

21:

Os . 	D 	'
S

00

Configuration

Figure 11. IPC for different processor models
(two memory units).

the complex arbitration associated with the
counterfiow structure.

SCALP [5] was an attempt to develop a
low-power superscalar processor, based on the
ideas of explicit forwarding. The register bank
is removed and instructions simply indicate the
functional unit to which their result is to be sent.
One problem of such an approach is that if results
are required more than once, explicit duplicate
operations must be performed. Problems also
occur when the destination of a results cannot be
determined at compile-time. A functional unit
which is effectively a register bank is required to
handle some communications.

Other implementations which have attempted
to exploit asynchrony have used more traditional
architectures [7, 14, 11]. These have provided
promising power/ performance results and have
reported significant reductions in EMI.

8 Conclusions

This paper has presented three novel
techniques for out-of-order instruction issue
and data forwarding in the absence of global
synchronisation. Their efficient implementation
is important to the viability of asynchronous

.5 	15 	11 	 .2

Cp
ON 	 W, ,

Cn(Igw.tlon

0% Opoo-i, % Fo,wnj 9e0oron

Figure 12. Percentage of operands forwarded
and percentage of forwarding requests
denied (two memory units).

superscalar architectures. 	Results have been
presented based on trace-driven simulations
of detailed RTL models of the asynchronous
architectures. Their performance is promising
and there is scope for further improvement, in
particular the compounding architecture could
benefit from optimised compound selection and
static scheduling.

Acknowledgements

The authors would like to acknowledge the
support of the Institute for Computing Systems
Architecture, Department of Informatics,
University of Edinburgh. Robert Mullins would
also like to acknowledge the Rainbow Group
at the University of Cambridge Computer
Laboratory for their kind support.

Figure 9. IPC for different processor models
(single memory unit).

70

50

at

20

10

clii • IIIIIIIL_IIlIiIIl 	11 	11 	11 . 11 	IIIII

Co..flg

10% OpwwW. Fo,*e,d.d U% 	 D.,Isd

Figure 10. Percentage of operands forwarded
and percentage of forwarding requests
denied (single memory unit).

improving performance by reducing the number
of these forwarding misses. Some attempts are
already made to reduce misses in the current CIW
design. For example, sources of forwarded data
are reset when subsequent updates to the same
instruction indicate a second operand will be
obtained from the same FU. Results also indicate
the potential of the counter-based scheme in
reducing forwarding misses and increasing overall
performance. Attempts to improve performance
in the case of instruction compounding will centre
on optimisations for compound selection and
scheduling - which control both the forwarding of
data and possible dynamic schedules.

Another factor influencing the performance of
all of the asynchronous models is the reduction in
the number of register file read ports. In all cases
this improves performance due to a reduction in
RF access time, which outweighs the penalty of
serialising operand fetch in the relatively small
number of cases where two or more registers must
be fetched for a single instruction. The total
number of operands forwarded differs significantly
between the queued and compounding models;
this is due to the need to restrict forwarding
to between adjacent instructions and to within
basic blocks. Compounding between basic blocks

cannot be determined statically. 	The ability
for all the models, including compounding, to
outperform the queued model, even with a
reduction in the levels of forwarding, is due to
their more flexible dynamic scheduling schemes.

7 Related Work

The counterfiow pipeline proposed in [15]
consists of two pipelines flowing in opposite
directions. Instructions in the instruction pipeline
are able to inspect, and if necessary copy results
from earlier instructions, as they flow past in
the result pipeline. Unfortunately the orderings
imposed upon data in the architecture may lead
to local congestion and it has been suggested
that from a purely performance viewpoint they
do not compete with traditional architectures [2].
Attempts have also been made to exploit
the counterflow pipeline structure to perform
dynamic scheduling [18].

The rotary pipeline [12] again exploits a regular
pipeline structure. Here results flow between a
number of functional units organised into a ring.
The availability of data on a particular bus is
determined during issue and does not require

References

D. K. Arvind and R. D. Mullins. 	A
fully asynchronous superscalar processor.
In International Conference on Parallel
Architectures and Compilation Techniques,
Newport Beach, California, October 1999.

Bill Coates, Jo Ebergen, Jon Lexau, Scott
Fairbanks, Ian Jones, Alex Ridgway, David Harris,
and Ivan Sutherland. A counterfiow pipeline
experiment. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and
Systems, pages 161-172, April 1999.

Mark D.Hill, James R. Larus, Alvin R. Lebeck,
Madhusudhan Talluri, and David A. Wood.
WARTS Wisconsin Architectural Research Tool
Set. http://www.cs.wisc.edu/ larus/warts.html.

C. J. Elston, D. B. Christianson, P. A. Findlay,
and G. B. Steven. Hades - Towards the design
of an asynchronous superscalar processor. In
M. B. Josephs, editor, The Proceedings of the
2nd Working Conference on Asynchronous Design
Methodologies, pages 200-209, London, UK, May
1995. IEEE Computer Society Press.

Philip Brian Endecott. SCALP: A Superscalar
Asynchronous Low-Power Processor. PhD thesis,
University of Manchester, 1995.

M. J. Flynn, P. Hung, and K. W. Rudd.
Deep-submicron microprocessor design issues.
IEEE Micro, pages 11-22, July 1999.

Stephen B. Furber, James D. Garside, Peter
Riocreux, Steven Temple, Paul Day, Jianwei
Liu, and Nigel C. Paver. AMULET2e: An
asynchronous embedded controller. Proceedings of
the IEEE, 87(2):243-256, February 1999.

J. D. Garside, S. B. Furber, and S.-H.
Chung. 	AMULET3 revealed. 	In Proc.
International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages
51-59, April 1999.

D. A. Gilbert and J. D. Garside. 	A result
forwarding mechanism for asynchronous pipelined
systems. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and
Systems, pages 2-11. IEEE Computer Society
Press, April 1997.

J. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 1990.

Alain J. Martin, Andrew Lines, Rajit Manohar,
Mika Nystroem, Paul Penzes, Robert Southworth,
and Uri Cummings. 	The design of an
asynchronous MIPS R3000 microprocessor. In
Advanced Research in VLSI, pages 164-181,
September 1997.

S. Moore, P. Robinson, and S. Wilcox. Rotary
pipeline processors. lEE Proceedings, Computers
and 	Digital 	Techniques, 	143(5) :259-265,
September 1996.

Subbarao Palacharla, Norman P.Jouppi, and
James E. Smith. Quantifying the complexity
of superscalar processors. 	Technical report
TR-96-1328, University of Wisconsin-Madison,
November 1996.

N. C. Paver, P. Day, C. Farnsworth, D. L.
Jackson, W. A. Lien, and J. Liu. A low-power,
low-noise configurable self-timed DSP. In Proc.
International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages
32-42,1998.

Robert F. Sproull, Ivan E. Sutherland, and
Charles E. Molnar. The counterfiow pipeline
processor architecture. IEEE Design 4 Test of
Computers, 11(3):48-59, Fall 1994.

Ivan 	E. 	Sutherland. 	Micropipelines.
Communications of the ACM, 32(6):720-738,
June 1989.

C. H. (Kees) van Berkel, Mark B. Josephs, and
Steven M. Nowick. Scanning the technology:
Applications of asynchronous circuits. Proceedings
of the IEEE, 87(2):223-233, February 1999.

T. Werner and V.Akella. 	Counterfiow
pipeline-based dynamic instruction scheduling.
In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, March 1996.

Alexandre V. Yakovlev, Albert M. Koelmans, and
Luciano Lavagno. High-level modeling and design
of asynchronous interface logic. IEEE Design &
Test of Computers, 12(1):32-40, Spring 1995.

J. T. Yantchev, C. G. Huang, M. B. Josephs, and
I. M. Nedelchev. Low-latency asynchronous FIFO
buffers. In Asynchronous Design Methodologies,
pages 24-31. IEEE Computer Society Press, May
1995.

Bibliography

The 	National 	Technology 	Roadmap 	for 	Semiconduc-

tors. Tech. rep., Semiconductor Industry Assn., 1999.

http://public.itrs.net/fi1es/1999_SIA_Roadmap/Home.htm.

ACOSTA, R. D., KJELSTRUP, J., AND TORNG, H. C. An instruction

issuing approach to enhancing performance in multiple functional unit pro-

cessors. IEEE Transactions on Computers C-35, 9 (Sept. 1986), 815-828.

APPLETON, S., MORTON, S., AND LIEBELT, M. High performance two-

phase asynchronous pipelines. IEICE Transactions on Information and

Systems E80-D, 3 (Mar. 1997), 287-295.

APPLETON, S. S., MORTON, S. V., AND LIEBELT, M. J. The design of a

fast asynchronous microprocessor. IEEE Technical Committee on Computer

Architecture Newsletter (Oct. 1995).

ARVIND, D., AND SOTELO-SALAZAR, S. Scheduling instructions with un-

certain latencies in asynchronous architectures. In EUROPAR '97 (Passau,

Germany, Aug. 1997), Springer-Verlag.

ARVIND, D. K., AND HILDINGSSON, K. Power tradeoffs in asynchronous

interfaces. In Asynchronous INTerfaces: tools, techniques, and implemen-

tations (AINT) (Delft, The Netherlands, July 2000).

ARVIND, D. K., AND MuLLINS, R. D. Instruction compounding. In

Proceedings of the 1st UK Asynchronous Forum (Edinburgh, -Scotland, Dec.

1996).

ARVIND, D. K., AND REBELLO, V. E. F. Instruction-level parallelism

in asynchronous processor architectures. In Proceedings of the 3rd Interna-

tional Workshop on Algorithms and Parallel VLSI Architectures (Leuven,

Belgium, Aug. 1994), M. Moonen and F. Catthoor, Eds., Elsevier Science

Publishers, pp. 203-215.

177

178
	

Bibliography

ARVIND, D. K., AND REBELLO, V. E. F. On the performance evalu-

ation of asynchronous processor architectures. In Proceedings of the In-

ternational Workshop on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems (MASCOTS'95) (Durham, NC, USA, Jan.

1995), P. Dowd and E. Gelenbe, Eds., IEEE Computer Society Press,

pp. 100-105.

ARVIND, D. K., AND REBELLO, V. E. F. Static scheduling of instructions

on micronet-based asynchronous processors. In The Proceedings of the 2nd

International Symposium on Advanced Research on Asynchronous Circuits

and Systems (ASYNC'96) (Aizu Wakamatsu City, Japan, Mar. 1996), IEEE

Computer Society Press, pp. 80-91.

AusTIN, T. M., AND S0HI, G. S. Zero-cycle loads: Microarchitecture

support for reducing load latency. In Proceedings of the 28th (Ann Arbor,

Michigan, November 29—December 1, 1995), IEEE Computer Society TC-

MICRO and ACM SIGMICRO, pp. 82-92.

BAINBRIDGE, W. J., AND FURBER, S. B. Delay insensitive system-on-

chip interconnect using 1-of-4 data encoding. In Proc. International Sym-

posium on Advanced Research in Asynchronous Circuits and Systems (Mar.

2001).

BALASUBRAMONIAN, R., ALBONESI, D., BUYUKTOSUNOGLU, A., AND

DWARKADAS, S. Memory hierarchy reconfiguration for energy and per-

formance in general-purpose processor architectures. In 33rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-33)

(Dec. 2000).

BARDSLEY, A., AND EDWARDS, D. Compiling the language Balsa to

delay-insensitive hardware. In Hardware Description Languages and their

Applications (CHDL) (Apr. 1997), C. D. Kloos and E. Cerny, Eds., pp. 89-

91.

BENES, M., NowIcK, S. M., AND WOLFE, A. A fast asynchronous Huff-

man decoder for compressed-code embedded processors. In Proc. Inter-

national Symposium on Advanced Research in Asynchronous Circuits and

Systems (1998), pp. 43-56.

Bibliography 	 179

BERINGER, L. Typing assembly programs for asynchronous processors.

In Proceedings of the 9th UK Asynchronous Forum (Cambridge, UK, Dec.

2000).

BERKEL, K. V. Handshake Circuits: an Asynchronous Architecture for

VLSI Programming, vol. 5 of International Series on Parallel Computation.

Cambridge University Press, 1993.

BERKEL, K. V., BURGESS, R., KESSELS, J., PEETERS, A., RONCKEN,

M., AND SCHALIJ, F. A fully-asynchronous low-power error corrector for

the DCC player. In International Solid State Circuits Conference (Feb.

1994), pp. 88-89.

BORKAR, S. Design challenges of technology scaling. IEEE Micro

(July/August 1999), 23-29.

BORMANN, D. S., AND CHEUNG, P. Y. Asynchronous wrapper for het-

erogeneous systems. In Proc. International Conf. Computer Design (ICCD)

(Oct. 1997).

BOSE, B., AND RA0, T. R. N. Theory of unidirectional error correct-

ing/detecting codes. IEEE Transactions on Computers C-31, 6 (June 1982),

521-530.

BRINGMAN, R., MAHLKE, S., HANK, R., GYLLENHAAL, J., AND HWU,

W. Speculative execution exception recovery using writeback suppression.

In 26th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-26) (1993), pp. 214-223.

BRUNVAND, E., AND SPROULL, R. F. Translating concurrent programs

into delay-insensitive circuits. In The Proceedings of the International Con-

ference on Computer Aided Design (ICCAD-89) (Nov. 1989), pp. 262-265.

BUTLER, M., AND PATT, Y. N. An investigation of the performance of

various dynamic scheduling techniques. In 25th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO-25) (1992), pp. 1-9.

BUYUKTOSUNOGLU, A., SCHUSTER, S., BROOKS, D., BOSE, P., COOK,

P., AND ALBONESI, D. An adaptive issue queue for reduced power at high

performance. In Proceedings of the Workshop on Power-Aware Computer

180 	 Bibliography

Systems, held at the 9th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS) (Nov.

2000).

BYSTROV, A., AND YAKOVLEV, A. Ordered arbiters. Electronic Letters

35, 11(1999), 877-879.

CHANEY, T. J., ORNSTEIN, S. M., AND LITTLEFIELD, W. M. Beware

the synchronizer. In IEEE 6th International Computer Conference (1972),

pp. 317-319.

CHAPIRO, D. M. Globally-Asynchronous Locally-Synchronous Systems.

PhD thesis, Stanford University, Oct. 1984.

COATES, B., EBERGEN, J., LEXAU, J., FAIRBANKS, S., JONES, I.,

RIDGwAY, A., HARRIS, D., AND SUTHERLAND, I. A counterfiow pipeline

experiment. In Proc. International Symposium on Advanced Research in

Asynchronous Circuits and Systems (Apr. 1999), pp. 161-172.

CORPORAAL, H. Microprocessor Architectures from VLIW to TTA. John

Wiley, 1998.

CORTADELLA, J., KISHINEVSKY, M., A.KONDRATYEV, LAVAGNO, L.,

AND YAKOVLEV, A. Petrify: a tool for manipulating concurrent specifi-

cations and synthesis of asynchronous controllers. IEICE Transactions on

Information and Systems E80-D, 3 (Mar. 1997), 315-325.

DEAN, M. E., DILL, D. L., AND HoRowITz, M. Self-timed logic using

current-sensing completion detection (CSCD). In Proc. International Conf.

Computer Design (ICCD) (Oct. 1991), IEEE Computer Society Press,

pp. 187-191.

DEAN, M. E., DILL, D. L., AND HoRowITz, M. Self-timed logic us-

ing current-sensing completion detection (CSCD). Journal of VLSI Signal

Processing 7, 1/2 (Feb. 1994), 7-16.

DESAI, U., TAM, S., KIM, R., ZHANG, J., AND Rusu, S. Itanium

processor clock design. In Proceedings of the international symposium on

Physical design (ISPD) (2000), pp. 94-98.

D.HILL, M., AND EDLER, J. Dinero IV Trace-Driven Uniprocessor Cache

Simulator. http://www.cs.wisc.edu/ markhill/DinerolV/.

Bibliography 	 181

D.HILL, M., LARUS, J. R., .LEBECK, A. R., TALLURI, M., AND

WOOD, D. A. WARTS Wisconsin Architectural Research Tool Set.

http://www.cs.wisc.edu/larus/warts.html.

DWYER, H., AND TORNG, H. C. An out-of-order superscalar processor

with speculative execution and fast precise interrupts. SIGMICRO Newslet-

ter (1992), 272-281.

[381 ELSTON, C. J., CHRISTIANSON, D. B., FINDLAY, P. A., AND STEVEN,

G. B. Hades - Towards the design of an asynchronous superscalar proces-

sor. In The Proceedings of the 2nd Working Conference on Asynchronous

Design Methodologies (London, UK, May 1995), M. B. Josephs, Ed., IEEE

Computer Society Press, pp. 200-209.

ENDECOTT, P. B. SCALP: A Superscalar Asynchronous Low-Power Pro-

cessor. PhD thesis, University of Manchester, 1995.

FAIR, H., AND BAILEY, D. Clocking design and analysis for a 600MHz Al-

pha microprocessor. In IEEE International Solid-State Circuits Conference

(Feb. 1998).

FISCHER, T., AND LEIBHOLZ, D. Design tradeoffs in stall-control cir-

cuits for 600Mhz instruction queues. In International solid state circuits

conference (ISSCC) (San Francisco, CA, Feb. 1998), pp. 232-233.

FLOYD, B. A., KIM, K., AND 0, K. K. Wireless interconnection in a

CMOS IC with integrated antennas. In International Solid State Circuits

Conference (Feb. 2000).

FOLEGNANI, D., AND GoNzALEz, A. Reducing power consumption of

the issue logic. In Proceedings of the Workshop on Complexity-Effective

Design (WCED'OO, held in conjuction with ISCA-7) (Vancouver, B.C.,

June 2000).

FURBER, S. B., AND D4vk', P. Four-phase micropipeline latch control

circuits. IEEE Transactions on VLSI Systems 4, 2 (June 1996), 247-253.

FURBER, S. B., DAY, P., GARSIDE, J. D., PAVER, N. C., AND WOODS,

J. V. AMULET1: A micropipelined ARM. In The Proceedings of IEEE

CompCon'94 (Mar. 1994).

owl 	 Bibliography

FURBER, S. B., EDWARDS, D. A., AND GARSIDE, J. D. AMULET3: a

100 MIPS asynchronous embedded processor. In Proc. International Con!.

Computer Design (ICCD) (Sept. 2000).

FURBER, S. B., GARSIDE, J. D., RIocREux, P., TEMPLE, S., DAY,

P., Liu, J., AND PAVER, N. C. AMULET2e: An asynchronous embedded

controller. Proceedings of the IEEE 87, 2 (Feb. 1999), 243-256.

FURBER, S. B., GARSIDE, J. D., TEMPLE, S., Liu, J., DAY, P., AND

PAVER, N. C. AMULET2e: An Asynchronous Embedded Controller. In

Async '97 (Apr. 1997), IEEE Computer Society Press, pp. 290-299.

GAGELDONK, H. V. The asynchronous move machine: Verification us-

ing CCS. Master's thesis, Dept. of Math. and C.S., Eindhoven Univ. of

Technology, Aug. 1994.

GAGELDONK, H. V., BAUMANN, D., VAN BERKEL, K., GLOOR, D.,

PEETERS, A., AND STEGMANN, G. An asynchronous low-power 80c51

micro controller. In Proc. International Symposium on Advanced Research

in Asynchronous Circuits and Systems (1998), pp. 96-107.

GARSIDE, J. D. A CMOS VLSI implementation of an asynchronous ALU.

In Asynchronous Design Methodologies (1993), S. Furber and M. Edwards,

Eds., vol. A-28 of IFIP Transactions, Elsevier Science Publishers, pp. 181-

207.

GILBERT, D. A., AND GARSIDE, J. D. A result forwarding mechanism for

asynchronous pipelined systems. In Proc. International Symposium on Ad-

vanced Research in Asynchronous Circuits and Systems (Apr. 1997), IEEE

Computer Society Press, pp. 2-11.

GINOSAR, R., AND K0L, R. Adaptive synchronization. In Proc. Interna-

tional Con!. Computer Design (ICCD) (Oct. 1998), pp. 188-189.

GONZALEZ, R., AND HoROwITZ, M. Energy dissipation in general pur-

pose microprocessors. IEEE Journal of Solid-State Circuits (Sept. 1996),

1277-1284.

GOPALAKRISHNAN, G. Developing micropipeline wavefront arbiters. IEEE

Design & Test of Computers 11, 4 (Winter 1994), 55-64.

Bibliography 	 183

GOWAN, M. K., BIRO, L. L., AND JACKSON, D. B. Power considerations

in the design of the Alpha 21264 microprocessor. In Proceedings of the 1998

Conference on Design Automation (DAC-98) (Los Alamitos, CA, June 15-

19 1998), ACM/IEEE, pp. 726-731.

GRASS, E., MORLING, R. C. S., AND KALE, I. Activity monitoring

completion detection (AMCD): A new single rail approach to achieve self-

timing. In Proc. International Symposium on Advanced Research in Asyn-

chronous Circuits and Systems (Mar. 1996), IEEE Computer Society Press.

GRUNDMANN, W. et al. Designing high performance CMOS microproces-

sors using full custom techniques. In Proceedings of the 1997 Conference on

Design Automation (DAC-97) (June 1997), ACM/IEEE, pp. 722-727.

HAUCK, S. Asynchronous design methodologies: An overview. Tech. Rep.

TR 93-05-07, Department of Computer Science and Engineering, University

of Washington, Seattle, 1993.

[601 HAUCK, S. Asynchronous design methodologies: An overview. Proceedings

of the IEEE 83, 1 (Jan. 1995).

HEMANI, A., MEINCKE, T., KUMAR, S., POSTULA, A., OLSSON, T.,

NILSSON, P., OBERG, J., ELLERVEE, P., AND LUNDQVIST, D. Low-

ering power consumption in clock by using globally asynchronous locally

synchronous design style. In Proc. A CM/IEEE Design Automation Con-

ference (June 1999), p. 873.

HENNESSY, J., AND PAT'ERSON, D. A. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann, 1990.

HOLLAAR, L. A. Direct implementation of asynchronous control units.

IEEE Transactions on Computers C-31, 12 (Dec. 1982), 1133-1141.

HUCK, J., MORRIS, D., Ross, J., KNIES, A., MULDER, H., AND ZAHIR,

R. Introducing the IA-64 architecture. IEEE Micro (Sept. 2000).

HULGAARD, H. Timing Analysis and Verification of Timed Asynchronous

Circuits. PhD thesis, Department of Computer Science, University of Wash-

ington, 1995.

Hwu, W., AND PATT, Y. N. HPSm, a high performance restricted data

flow architecture having minimal functionality. In Proceedings of the 13th

Annual Symposium on Computer Architecture (June 1986), pp. 297-307.

lull
	 Bibliography

JANIK, K., Lu, S., AND MILLE, M. Non-stalling circular counterfiow

pipeline processor with reorder buffer. U.S. Patent (Dec. 2000). #6,163,839.

JOHNSON, W. M. Super-scalar processor design. Thesis CSL-TR-89-383,

Stanford University, Computer Systems Laboratory, June 1989.

JOSEPHS, M. B., AND YANTCHEV, J. T. CMOS design of the tree arbiter

element. IEEE Transactions on VLSI Systems 4 , 4 (Dec. 1996), 472-476.

Jouppi, N. P., AND WALL, D. W. Available instruction-level parallelism

for superscalar and superpipelined machines. In The Proceedings of ASP-
LOS III (Apr. 1989), ACM Press, pp. 272-282.

Jouppi, N. P., AND WILTON, S. J. An enhanced access and cycle time

model for on-chip caches. Research report 93/5, DEC Western Research

Laboratory, July 1994.

KAHNG, A. B., MUDDU, S., AND VIDHANI, D. Noise and delay un-

certainty studies for coupled rc interconnects. In IEEE International

ASIC/SOC Conference (1999), pp. 3-8.

KEARNEY, D., AND BERMANN, N. W. Performance evaluation of asyn-

chronous logic pipelines with data dependant processing delays. In Asyn-

chronous Design Methodologies (May 1995), IEEE Computer Society Press,

pp. 4-13.

KELLER, R. M. Lookahead processors. ACM Computing Surveys 7, 4

(Dec. 1975), 177-195.

KESSLER, R. E. The Alpha 21264 microprocessor. IEEE Micro 19, 2

(March/April 1999), 24-36.

KOHN, L.., AND MARGULIS, N. Introducing the Intel i860 64-bit micro-

processor. IEEE Micro 9, 4 (1989), 15-30.

KOLKS, T., VERCAUTEREN, S., AND UN, B. Control resynthesis for

control-dominated asynchronous designs. In Proc. International Symposium

on Advanced Research in Asynchronous Circuits and Systems (Mar. 1996).

KOWKA, K. J., AND GALAMBOS, T. Circuit design techniques for a

gigahertz integer microprocessor. In Proc. International Conf. Computer

Design (ICCD) (Oct. 1998), IEEE Computer Society, pp. 11-16.

Bibliography 	 185

KUMAR, A. The HP PA-8000 RISC CPU. IEEE Micro 17, 2 (March/April

1997),27-32.

LAVAGNO, L., AND SANGIOVANNI-VINCENTELLI, A. Algorithms for S yn-

thesis and Testing of Asynchronous Circuits. Kluwer Academic Publishers,

1993.

LEUNG, A., PALEM, K. V., AND UNGUREANU, C. Run-time versus

compile-time scheduling in superscalar (RISC) processors: Performance and

trade-off. Journal of Parallel and Distributed Computing 45 (1997), 13-28.

LINES, A. M. Pipelined asynchronous circuits. Tech. Rep. Caltech-CS-TR-

95-21, Computer Science Department, California Institute of Technology,

1998.

LIPAsTI, M. H., AND SHEN, J. P. Exceeding the datafiow limit via

value prediction. In Proceedings of the 29th International Symposium on

Microarchitecture (Paris, France, Dec. 1996), IEEE.

LIPASTI, M. H., WILKERSON, C. B., AND SHEN, J. P. Value locality and

load value prediction. In Proceedings of the 17th conference on architectural

support for programming languages and operating systems (ASPLOS) (Oct.

1996), pp. 138-147.

MANOHAR, R., LEE, T.-K., AND MARTIN, A. J. Projection: A syn-

thesis technique for concurrent systems. In Proc. International Symposium

on Advanced Research in Asynchronous Circuits and Systems (Apr. 1999),

pp. 125-134.

MARTIN, A. J. Programming in VLSI: From communicating processes to

delay-insensitive circuits. Tech. Rep. Caltech-CR-TR-89- 1, Department of

Computer Science, California Institute of Technology, Pasadena, California,

1989.

MARTIN, A. J. Asynchronous datapaths and the design of an asynchronous

adder. Formal Methods in System Design 1, 1 (July 1992), 119-137.

MARTIN, A. J., LINES, A., MANOHAR, R., NYSTROEM, M., PENZES,

P., SOUTHWORTH, R., AND CUMMINGS, U. The design of an asyn-

chronous MIPS R3000 microprocessor. In Advanced Research in VLSI

(Sept. 1997), pp. 164-181.

Bibliography

MILLER, M., AND JANIK, K. Non-stalling counterfiow architecture. In

4th Int'l Symp. on High-Performance Computer Architecture (Feb. 1998),

pp. 334-341.

MOLNAR, C. E., JONES, I. W., COATES, B., AND LEXAU, J. A FIFO

ring oscillator performance experiment. In Proc. International Symposium

on Advanced Research in Asynchronous Circuits and Systems (Apr. 1997),

IEEE Computer Society Press, pp. 279-289.

MONREAL, T., GONZALEZ, A., VALERO, M., GONZALEZ, J., AND

VIALS, V. Dynamic register renaming through virtual-physical reg-

isters. 	The Journal of Instruction-Level Parallelism 2 (May 2000).

http://www.jilp.org/vol2.

MOORE, S., ROBINSON, P., AND WILCOX, S. Rotary pipeline processors.

lEE Proceedings, Computers and Digital Techniques 13, 5 (Sept. 1996),

259-265.

MOORE, S., TAYLOR, G., MULLINS, R., AND ROBINSON, P. Channel

communication between independent clock domains. In Proceedings of the

ACiD-WG Workshop (Feb. 2001).

MOORE, S. W., TAYLOR, G. S., CUNNINGHAM, P. A., MULLINS, R. D.,

AND ROBINSON, P. Self-calibrating clocks for globally asynchronous lo-

cally synchronous systems. In Proc. International Conf. Computer Design

(ICCD) (Sept. 2000).

MORTON, S. V., APPLETON, S. S., AND LIEBELT, M. J. ECSTAC: A

fast asynchronous microprocessor. In Asynchronous Design Methodologies

(May 1995), IEEE Computer Society Press, pp. 180-189.

MOSHOvOS, A., BREACH, S., VAJAYKUMAR, T., AND S0HI, G. Dynamic

speculation and synchronization of data dependencies. In Proceedings of the

24th Annual International Symposium on Computer Architecture (ISCA-

97) (June 1997), pp. 181-193.

MOUDGILL, M., PINGALI, K., AND VASSILIADIS, S. Register renaming

and dynamic speculation: an alternative approach. Tr 93-1379, Department

of Computer Science, Cornell University, Aug. 1993.

Bibliography 	 187

[98] MULE, A., SCHULTZ, S., GAYLORD, T. K., AND MEINDL, J. D. An

optical clock distribution network for gigascale integration. In IEEE Inter-

national Interconnect Technology Conference (June 2000), pp. 6-8.

[99] MULLER, D. E., AND BARTKY, W. S. A theory of asynchronous circuits.

In Proceedings of an International Symposium on the Theory of Switching

(Apr. 1959), Harvard University Press, pp. 204-243.

[100] MYERS, C. J., ROKICKI, T. G., AND MENG, T. H.-Y. Automatic

synthesis and verification of gate-level timed circuits. Tech. Rep. CSL-TR-

94-652, Stanford University, Jan. 1995.

[101] NANYA, T., TAKAMURA, A., KUWAKO, M., IMAI, M., Fujii, T.,

OZAWA, M., FUKASAKU, I., UENO, Y., OKAMOTO, F.., FUJIMOT0,

H., FUjITA, 0., YAMASHINA, M., AND FUKUMA, M. TITAC-2: A 32-

bit scalable-delay-insensitive microprocessor. In Symposium Record of HOT

Chips IX (Aug. 1997), pp. 19-32.

[102] NANYA, T., UENO, Y., KAGOTANI, H., KUWAKO, M., AND TAKAMURA,

A. TITAC: Design of a quasi-delay-insensitive microprocessor. IEEE Design

4 Test of Computers 11, 2 (1994), 50-63.

[103] NIELSEN, L. S., AND SPARS0, J. An 85/LW asynchronous filter-bank for a

digital hearing aid. In International Solid State Circuits Conference (Feb.

1998).

[104] NOwICK, S. M. Design of a low-latency asynchronous adder using specula-

tive completion. lEE Proceedings, Computers and Digital Techniques 143,

5 (Sept. 1996), 301-307.

[1051 NOWICK, S. M., YuN, K. Y., AND BEEREL, P. A. Speculative com-

pletion for the design of high-performance asynchronous dynamic adders.

In Proc. International Symposium on Advanced Research in Asynchronous

Circuits and Systems (Apr. 1997), IEEE Computer Society Press, pp. 210-

223.

[106] NYSTROEM, M. Pipelined asynchronous cache design. Tech. Rep. Caltech-

CS-TR-97-21, Computer Science Department, California Institute of Tech-

nology, 1997.

188 	 Bibliography

PALACHARLA, S., Jouppi, N. P., AND SMITH, J. E. Complexity-effective

superscalar processors. In Proceedings of the 24th Annual International

Symposium on Computer Architecture (Denver, June 1997).

PALACHARLA, S., P.JourFi, N., AND SMITH, J. E. Quantifying the com-

plexity of superscalar processors. Technical report TR-96-1328, University

of Wisconsin-Madison, Nov. 1996.

PAVER, N. C., DAY, P., FARNSWORTH, C., JACKSON, D. L., LIEN,

W. A., AND Liu, J. A low-power, low-noise configurable self-timed DSP.

In Proc. International Symposium on Advanced Research in Asynchronous

Circuits and Systems (1998), pp. 32-42.

PAVER, N. C., DAY, P., FURBER, S. B., GARSIDE, J. D., AND WOODS,

J. V. Register locking in an asynchronous microprocessor. In Proc. In-

ternational Conf. Computer Design (ICCD) (Oct. 1992), IEEE Computer

Society Press, pp. 351-355.

PEA, M. A., AND CORTADELLA, J. Combining process algebras and

Petri nets for the specification and synthesis of asynchronous circuits. In

Proc. International Symposium on Advanced Research in Asynchronous Cir-

cuits and Systems (Mar. 1996), IEEE Computer Society Press.

PLANA, L. A., AND UNGER, S. H. Pulse-mode macromodular systems. In

Proc. International Conf. Computer Design (ICCD) (Oct. 1998), pp. 348-

353.

POPESCU, V., SCHULTZ, M., SPRACKLEN, J., Gisoi'.i, G., LIGHTNER,

B., AND ISAMAN, D. The metafiow architecture. IEEE Micro (June 1991).

QUEEN, W. J. A 56 entry instruction reorder buffer. In International solid

state circuits conference (San Francisco, CA, Feb. 1996), vol. 39, pp. 212-

213.

RABAEY, J. M., AND PEDRAM, M. Low power design methodologies.

Kluwer Academic Publishers, 1996.

RAU, B. R., AND FISHER, J. A. Instruction-Level Parallel processing:

History, overview and perspective. The Journal of Supercomputing 7, 1/2

(May 1993), 9-50.

REBELLO, V. On the Distribution of Control in Asynchronous Processor

Architectures. PhD thesis, University of Edinburgh, 1996.

Bibliography 	 189

RICHARDSON, W. F. Architectural Considerations in a Self-Timed Pro-

cessor Design. PhD thesis, Department of Computer Science, University of

Utah, UT, USA., Feb. 1996. CSTD-96-001.

RICHARDSON, W. F., AND BRUNVAND, E. An architecture for a self-timed

decoupled computer. In Proc. International Symposium on Advanced Re-

search in Asynchronous Circuits and Systems (Mar. 1996), IEEE Computer

Society Press.

ROSENBERGER, F. U., MOLNAR, C. E., CHANEY, T. J., AND FANG,

T. P. Q-modules - internally clocked delay-insensitive modules. IEEE

Transactions on Computers C-37, 9 (Sept. 1988), 1005-1018.

ROTENBERG, E., BENNETT, S., AND SMITH, J. E. Trace cache: A low

latency approach to high bandwidth instruction fetching. In Proceedings

of the 29th Annual International Symposium on Microarchitecture (Paris,

France, Dec. 2-4, 1996), IEEE Computer Society TC-MICRO and ACM

SIGMICRO, pp. 24-34.

SAzEIDIs, Y., VASSILIADIS, S., AND SMITH, J. The performance potential

of data dependence speculation and collapsing. In Proceedings of the 29th

Annual International Symposium on Microarchitecture (Paris, France, Dec.

2-4, 1996), IEEE Computer Society TC-MICRO and ACM SIGMICRO,

pp. 238-247.

SEITZ, C. L. Ideas about arbiters. Lambda 1, 1, First Quarter (1980),

10-14.

SEITZ, C. L. System timing. In Introduction to VLSI Systems, C. A. Mead

and L. A. Conway, Eds. Addison-Wesley, 1980, ch. 7.

SEizoviC, J. N. Pipeline synchronization. In Proc. International Sympo-

sium on Advanced Research in Asynchrofious Circuits and Systems (Nov.

1994), pp. 87-96.

SIMA, D. The design space of register renaming techniques. IEEE Micro

20, 5 (September/October 2000).

SJOGREN, A. E., AND MYERS, C. J. Interfacing synchronous and asyn-

chronous modules within a high-speed pipeline. In Advanced Research in

VLSI (Sept. 1997), pp. 47-61.

190 	 Bibliography

SMITH, J. E. Processor evolution: From red giants to white drawfs. In

Proceedings of the Workshop on Complexity-Effective Design (WCED '00,

held in conjuction with ISCA-27) (Vancouver, B.C., June 2000).

SMITH, J. E., AND PLESZKUN, A. R. Implementation of precise interrupts

in pipelined processors. In Proceedings of the 12th Annual International

Symposium on Computer Architecture (Boston, Massachusetts, June 17-

19, 1985), IEEE Computer Society TCA and ACM SIGARCH, pp. 36-44.

SMITH, J. E., AND PLESZKUN, A. R. Implementing precise interrupts in

pipelined processors. IEEE Transactions on Computers 37 5 (May 1988),

562-573.

SMITH, M. D., HOROWITZ, M., AND LAM, M. S. Efficient superscalar

performance through boosting. In Proceedings of the 5th International Con-

ference on Architectural Support for Programming Languages and Operating

System (ASPLOS) (New York, NY, 1992), vol. 27-9, ACM Press, pp. 248-

259.

S0HI, G. S. Instruction issue logic for high-performance, interruptible,

multiple functional unit, pipelined computers. IEEE Transactions on Com-

puters 39, 3 (Mar. 1990), 349-359.

S0HI, G. S., AND VAJAPEYAM, S. Instruction issue logic for high-

performance interruptable pipelined processors. In Proceedings of the 14th

Annual Symposium on Computer Architecture (June 1987), pp. 27-34.

SOTELO-SALAZAR, S. Instruction Scheduling in Micronet-based Asyn-

chronous ILP Processors. PhD thesis, Division of Informatics, University

of Edinburgh, 2001. To be submitted.

SPEC OPEN SYSTEMS GROUP (OSG). SPEC CPU95 Benchmarks.

http://www.spec.org/osg/cpu95/.

SPROULL, R. F., SUTHERLAND, I. E., AND MOLNAR, C. E. The coun-

terfiow pipeline processor architecture. IEEE Design €4 Test of Computers

11, 3 (Fall 1994), 48-59.

STARK, J., BROWN, M. D., AND PATT, Y. N. On pipelining dynamic

instruction scheduling logic. In The Proceedings of the 33rd Annual Inter-

national Symposium on Microarchitecture (MICRO'SS) (Dec. 2000).

Bibliography 	 191

STEVENS, K., GIN05AR, R., AND ROTEM, S. Relative timing. In Proc.

International Symposium on Advanced Research in Asynchronous Circuits

and Systems (Apr. 1999), pp. 208-218.

SUTHERLAND, I., AND FAIRBANKS, S. Gasp: A minimal fifo control.

In Proc. International Symposium on Advanced Research in Asynchronous

Circuits and Systems (Mar. 2001).

SUTHERLAND, I. E. Micropipelines. Communications of the ACM 32, 6

(June 1989), 720-738.

TAYLOR, G. S., AND BLAIR, G. M. Reduced complexity two-phase mi-

cropipeline latch controller. IEEE Journal of Solid-State Circuits 33, 10

(Oct. 1998), 1590-1593.

THEI5, T. N. The future of interconnection technology. IBM Journal of

Research and Development 44, 3 (May 2000), 379-390.

THISTLE, M. R., AND SMITH, B. J. A processor architecture for horizon.

In Proceedings of Supercomputing 88 (Orlando, Nov. 1988), pp. 35-41.

THORNTON, J. E. Design of a Computer: The Control Data 6600. Scott

Foresman and Company, 1970.

TIwARI, V., SINGH, D., RAJGOPAL, S., MEHTA, G., PATEL, R., AND

BAEz, F. Reducing power in high-performance microprocessors. In Proceed-

ings of the 1998 Conference on Design Automation (DAC-98) (Los Alami-

tos, CA, June 15-19 1998), ACM/IEEE, pp. 732-737.

TOMASULO, R. M. An efficient algorithm for exploiting multiple arithmetic

units. IBM Journal of Research and Development 11, 1 (Jan. 1967), 25-33.

TRuONG, L. The VelociTl architecture of the TMS320C6xxx. In Sympo-

sium Record of HOT Chips IX (Stanford, California, Aug. 1997), pp. 55-63.

TYSON, G. S., AND AUSTIN, T. M. Improving the accuracy and per-

formance of memory communication through renaming. In 30th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-SO)

(1997), pp. 218-227.

VAN BERKEL, C. H. K., JOSEPHS, M. B., AND NowIcK, S. M. Scanning

the technology: Applications of asynchronous circuits. Proceedings of the

IEEE 87, 2 (Feb. 1999), 223-233.

192 	 Bibliography

VANBEKBERGEN, P., GOOSSENS, G., AND UN, B. Modeling and syn-

thesis of timed asynchronous circuits. In Proc. European Design Automa-

tion Conference (EURO-DAC) (Sept. 1994), IEEE Computer Society Press,

pp. 460-465.

VAssILIADIs, S., B.BLANER, AND R.J.EIcKEMEYER. SCISM: A scalable

compound instruction set machine. IBM Journal of Research and Develop-

ment 38, 1 (1994).

VERHOEFF, T. Delay-insensitive codes—an overview. Distributed Com-

puting 3, 1 (1988), 1-8.

WEISS, S., AND J.E.SMITH. Instruction issue logic in pipelined supercom-

puters. IEEE Transactions on Computers C-33, 11 (Nov. 1984), 1013-1022.

WERNER, T., AND AKELLA, V. An asynchronous superscalar architecture

for exploiting instruction-level parallelism. In Proc. International Sympo-

sium on Advanced Research in Asynchronous Circuits and Systems (Mar.

2001).

WERNER, T., AND V.AKELLA. Counterfiow pipeline-based dynamic in-

struction scheduling. In Proc. International Symposium on Advanced Re-

search in Asynchronous Circuits and Systems (Mar. 1996), IEEE Computer

Society Press.

WILLIAMS, T. E., AND HoRowITz, M. A. A zero-overhead self-timed

160ns 54b CMOS divider. IEEE Journal of Solid-State Circuits 26, 11 (Nov.

1991), 165.1-1661.

YAKOVLEV, A. Designing arbiters using petri nets. In Proceedings of the

1995 Israel Workshop on Asynchronous VLSI (1995), pp. 178-201.

YAKOVLEV, A. Designing control logic for counterfiow pipeline processor

using Petri nets. Tech. Rep. TR 522, Dept. of Computing Science, Univ. of

Newcastle upon Tyne, 1995.

YAKOVLEV, A., PETROV, A., AND LAVAGNO, L. A low latency asyn-

chronous arbitration circuit. IEEE Transactions on VLSI Systems 2, 3

(Sept. 1994), 372-377.

YAKOVLEV, A. V., KOELMANS, A. M., AND LAVAGN0, L. High-level

modeling and design of asynchronous interface logic. IEEE Design 4 Test

of Computers 12, 1 (Spring 1995), 32-40.

Bibliography 	 193

YANTCHEV, J. T., HUANG, C. G., JOSEPHS, M. B., AND NEDELCHEV,

I. M. Low-latency asynchronous FIFO buffers. In Asynchronous Design

Methodologies (May 1995), IEEE Computer Society Press, pp. 24-31.

YEAGER, K. C. The MIPS R10000 superscalar microprocessor. IEEE

Micro 16, 2 (1996), 28-40.

YoAz, A., EREz, M., RONEN, R., AND JOURDAN, S. Speculation tech-

niques for improving load related instruction scheduling. In Proceedings

of the 26th Annual International Symposium on Computer Architecture

(ISCA) (May 1999).

YUN, K., AND DoopLy, A. E. Pausible clocking based heterogeneous

systems. IEEE Transactions on VLSI Systems 7, 4 (Dec. 1999), 482-487.

YuN, K. Y., BEEREL, P. A., AND ARCEO, J. High-performance two-

phase micropipeline building blocks: double edge-triggered latches and

burst-mode select and toggle circuits. lEE Proceedings, Circuits, Devices

and Systems £43, 5 (Oct. 1996), 282-288.

YUN, K. Y., BEEREL, P. A., VAKILOTOJAR, V., DoopLy, A. E., AND

ARCEO, J. The design and verification of a high-performance low-control-

overhead asynchronous differential equation solver. In Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Systems

(Apr. 1997), IEEE Computer Society Press, pp. 140-153.

ZARKESH-HA, P., MULE, T., AND MEINDL, J. D. Characterization and

modeling of clock skew with process variations. In IEEE Custom Integrated

Circuits Conference (1999), pp. 441-444.

