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James Clerk Maxwell Building, School of Mathematics, The University of Edinburgh
E-mail: B.Buke@ed.ac.uk

Examiners:
I wish to thank

(External) Dr. Ayalvadi Ganesh
(Internal) Dr. Gonçalo dos Reis
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Abstract

In this work we introduce a novel queueing model with two classes of users in which,

instead of accessing a resource, users wait in the system to match with a candidate

from the other class. The users are selective and the matchings occur probabilistically.

This new model is useful for analysing the traffic in web portals that match people who

provide a service with people who demand the same service, e.g. employment portals,

matrimonial and dating sites and rental portals.

We first provide a Markov chain model for these systems and derive the probability

distribution of the number of matches up to some finite time given the number of

arrivals. We then prove that if no control mechanism is employed these systems are

unstable for any set of parameters. We suggest four different classes of control policies

to assure stability and conduct analysis on performance measures under the control

policies. Contrary to the intuition that the rejection rate should decrease as the users

become more likely to be matched, we show that for certain control policies the rejection

rate is insensitive to the matching probability. Even more surprisingly, we show that

for reasonable policies the rejection rate may be an increasing function of the matching

probability. We also prove insensitivity results related to the average queue lengths

and waiting times.

Further, to gain more insight into the behaviour of probabilistic matching systems,

we propose approximation methods based on fluid and diffusion limits using different

scalings. We analyse the basic properties of these approximations and show that some

performance measures are insensitive to the matching probability agreeing with the

results found by the exact analysis.

Finally we study the optimal control and revenue management for the systems

with the objective of profit maximization. We formulate mathematical models for

both unobservable and observable systems. For an unobservable system we suggest a

deterministic optimal control, while for an observable system we develop an optimal

myopic state dependent pricing.

Keywords: Matching systems · Stability · Admission control policies · Rejection rates ·
Fluid approximation · Diffusion approximation · Optimal control · Unobservable queue ·
Observable queue · State dependent pricing · Myopic strategy
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Lay Summary

In recent years there has been a great increase in the popularity of web portals as

a meeting place for individuals who provide services and those who require services.

Some commonly used examples are employment portals (efinancialcareers), classified

advertisement portals (Gumtree), rental portals (Zoopla) and dating websites. A com-

mon feature of these systems is that each pair of users has a probability to match with

each other and the system operator has no control on who matches with whom. We

introduce a new queueing model, which we define as a probabilistic matching system,

to model the traffic in these web portals.

Since so many people use these systems, it is important to guarantee a certain

level of service quality and this raises lots of questions which are also mathematically

interesting. How many people can find a job in an employment portal and how can

we improve the matching rates? What is the probability that someone can find a

match in a dating website? What is a good pricing mechanism for system controllers

to regularise the traffic and to maximise the profit? In this work we answer many

of these questions. To explore the nature of probabilistic matching systems, we use

sophisticated mathematical techniques which are also common to very distinct areas of

science, such as pricing financial products, projectile guidance systems, and so on.

Our research reveals many important properties these systems exhibit, some of

which seem counter-intuitive at the beginning. Through stability analysis, we show

that if the system is uncontrolled, many users accumulate in the system without finding

a match. We then suggest four types of admission controls to remedy this problem

and we study the performance measures of the system under these controls. One of

the surprising results is that under one type of admission control policies, a higher

probability for individuals to match leads to less users finding a match. Further, using

fluid and diffusion approximations, we suggest that the mathematically intractable

queue length processes can be replaced by some analytical diffusion processes. Finally,

we develop optimal control and dynamic pricing for probabilistic matching systems for

both unobservable and observable models.
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Chapter 1

Introduction

Due to advances in technology in the last decade, society has widely adopted the

internet for business and personal interactions. Web portals that serve as a meeting

point for people who provide a specific service/product and people who demand the

service/product are becoming increasingly popular. Employment and rental portals,

dating and matrimonial sites are some examples of such systems. Since so many people

use these systems, it is very important to guarantee a certain level of service quality

and this raises many questions which are mathematically interesting. In an employment

portal, how many people can find a job and how can we improve the matching rate?

What is the probability that someone can find a satisfactory match from a dating

website? What should be a good pricing mechanism for a system operator to regularise

the traffic and to maximize the profit? In this work, we answer many of these questions.

Note that a common factor in each of these systems is that each pair of users

has a probability to match with each other. We introduce a new queueing model,

which we call a probabilistic matching system, to model the traffic in these web portals.

To understand the dynamics of user behaviour in probabilistic matching systems, first

consider the example of an employment portal. There are two classes of users, employers

and employees, in an employment system. Employers arrive at the system at random

times to hire an employee. Upon arrival, they first check the resumés of the employees

in the portal. If they can find suitable candidates, they hire one of the candidates and

close the position. If there are no suitable candidates, employers create a job posting on

the portal website and wait for a suitable candidate to apply for the position. Similarly,

1



Chapter 1. Introduction 2

when a potential employee arrives at the system, she applies for the existing postings

and leaves the system if she gets hired. If she cannot find a suitable job, she posts

her resumé on the portal website and waits until a suitable job becomes available. An

important feature of this system is that each given employer-employee pair matches

with some given probability. As a result, the operators of a probabilistic matching

system do not have any control of who matches with whom.

There are several different types of matching systems studied in the literature. Adan

and Weiss [1] and Caldentey et al. [14] consider a matching system where customers

are matched with servers. Several different types of customers and servers arrive at

the system each according to a stochastic process, and each customer type can be

served by a subset of server types and each server type can serve a subset of customer

types. Adan and Weiss [1] study the stability of the system under the first-come-first-

serve policy and derive explicit product-form equations for the matching rate for some

specific configurations. Bušić et al. [13] develop necessary and sufficient conditions for

the stability of different matching policies for systems where customers and servers form

a bipartite graph and study the computational complexity of deciding whether a given

policy is stable. In a recent and different line of work, Gurvich and Ward [25] consider

a queueing system with multiple types of jobs that can match with each other. Their

goal is to minimize the holding cost by developing a dynamic policy to decide which

types should match at any given time.

The concept of “type” plays an important role in the work presented above, and

differs from the “class” concept used in this work. In [1], [13] and [14], customers and

servers can be viewed as two classes of users of the matching system. These classes

are further divided into types according to their special properties, e.g. there are

several different types of customers and servers. A special subclass of these systems

is the double-ended queue (see e.g. Kashyap [29] and Liu et al. [33]), where there

is exactly one type of user from each class. In the aforementioned models, once the

types of two users (a server and a customer) are known, they match or fail to match

deterministically. In many real world systems, this assumption fails to hold and special

attention is needed on an individual basis. For example, when a company is hiring for

a position, it does not just hire any person who has the desired background, but rather
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the personal qualifications of the candidates play an important role in addition to their

competences in the field. Hence, each candidate should be considered individually,

rather than being classified into a specific type. In this work, we incorporate this

individuality by assuming that matchings occur probabilistically.

We consider probabilistic matching systems with two classes (e.g. customers-servers,

or employers-employees). Upon arrival each user scans the queue of the other class and

may match with each individual in the queue independently with probability q. If

there are more than one matching users in the other queue, one is chosen uniformly

at random. Similar to the aforementioned work, we also assume that the matching

procedure does not take time and happen instantaneously. The matching probability

q is a key factor in the analysis of probabilistic matching systems. If the matching

probability q = 1 and there are two users from different classes have arrived, they match

and leave the system immediately and the users from different classes cannot co-exist

in the system. Hence, the system can be modelled as a one-dimensional continuous

time random walk. However, when the matching probability is less than 1, we need a

two-dimensional process, as users from different classes can be present in the system at

the same time.

In this work, we explore the nature of probabilistic matching systems from three

aspects: stability, fluid and diffusion approximation and optimal control. We introduce

a continuous time Markov chain model for probabilistic matching systems and analyse

user behaviours in probability matching systems by an exact analysis in Chapter 2.

We first provide an explicit formula for the distribution of the number of matched

pairs up to time t which turns out to be complicated for further analysis. Then we

study the stability of the system and show that if the system is uncontrolled, then

many users accumulate in the system without finding a match. We proceed to suggest

four types of admission controls to remedy this problem. Through analysis on the

performance measures under these controls, we reveal many interesting properties the

system exhibits, some of which seem counter-intuitive at the beginning.

The computational complexity and mathematical intractability of the matching

process by an exact analysis motivates us to use approximation techniques to further

characterize the system. We study diffusion approximations in Chapter 3 to replace to
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mathematically intractable queue length process by some appropriate diffusion process.

We suggest two types of scaling to obtain fluid and diffusion limits. The fluid limit

describes the tendency how the queue grows while the diffusion limit captures the

fluctuations of the queue length process around its fluid limit. Under the first scaling,

time and space are scaled while the matching probability is kept constant. We show

that under this scaling both fluid and diffusion limits do not depend on the matching

probability. The scaling is suitable for systems with a high matching probability. To

provide tools to address a small matching probability, we propose a second scaling that

also handles the phenomenon of abandonments by impatient users. In particular, we

scale the matching probability and the abandonment rate along with time and space.

In addition to a direct analysis on the fluid limits, we study the asymptotic behaviour of

the fluid limits and reveal how the user abandonment rate affects the long run average

of number of users in the system.

Finally we study the optimal pricing control and revenue management problem for

probabilistic matching systems in Chapter 4. We formulate mathematical models for

both unobservable and observable systems. For the unobservable system we suggest a

deterministic optimal control for both finite and infinite horizon problem, based on fluid

limits discussed in Chapter 3. For the observable model, we first derive the maximum

price the system can gain from an arriving employer depending on the number of

employees in the system by the analysis of employers’ strategies. We then develop the

optimal pricing mechanism under the assumption of myopic pricing, which maximizes

the profit at each stage regardless of future stages. We finally identify under which

conditions the optimal myopic pricing is the real optimal pricing and we leave the

verification of these conditions as an open question for further research direction.



Chapter 2

Stability Analysis and Stabilizing

Policies

2.1 Introduction

In this chapter, we provide a Markov chain model for analysing probabilistic matching

systems. We start our analysis by studying the transient behaviour of the matching

process, i.e., the counting process for the number of matched pairs up to a finite time t.

We first ask the following question: “What is the probability that exactly k matchings

have occurred, if we know that exactly m class-1 and n class-2 users have arrived?”

To the best of our knowledge, this basic probability distribution has not been studied

in the literature. In Section 2.3 we provide an explicit equation for the mass function

of this distribution. Unfortunately, this equation is relatively complicated and this

indicates the difficulty in completely characterizing the counting process for the number

of matched pairs.

Next, we study the stability of the probabilistic matching systems by defining a

system to be stable when it is ergodic. The earlier lines of work on “assembly-like

queues” [27] and “queues with paired customers” [32] exhibit similarities to probabilis-

tic matching systems in regards to stability. These systems operate similarly to the

probabilistic matching systems where pairs from different classes match with proba-

bility q = 1. However, in these systems the matching procedure (or assembly) takes

some time and requires a resource, whereas the matchings are assumed to occur instan-

5
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taneously in a probabilistic matching system. Harrison [27] studied the waiting time

processes for the assembly-like queues and showed that these systems are not stable,

regardless of the balance between input and service rates. When the matching proba-

bility q = 1, a probabilistic matching system is modelled as a one-dimensional random

walk on integers, which is known to be unstable. More specifically, it is null recurrent or

transient depending on whether the arrival rates are equal or not, respectively. Using a

coupling argument, we show that this implies instability of the matching systems with

q < 1. We also show that when arrival rates are equal, a probabilistic matching system

is null recurrent even when q < 1.

To stabilize probabilistic matching systems, we suggest four different classes of

admission control policies: (i) the simple threshold policy, (ii) the accept-the-shortest-

queue policy, (iii) the functional threshold policy and (iv) the one-sided threshold policy.

The simple threshold policy places constant bounds on the number of users that can be

present in the system from each class. As the resulting state space is finite, the simple

threshold policy stabilizes the matching systems when q = 1. However, if the match-

ing probability is less than 1, this policy yields absorbing states which indicates that

some users experience an infinite waiting time. To avoid absorbing states, the accept-

the-shortest-queue and the functional threshold policies use a “moving” threshold and

try to “balance” the number of users from each class. The accept-the-shortest-queue

admits users if they belong to a class with the minimum number of users in the system

and the functional threshold policy admits users if the number of users from that class

is less than a function of the number of users from the other class. With very mild

conditions on the threshold function to prevent absorbing states, we show that both

policies stabilize the system for any set of arrival rates and any positive matching prob-

ability. This result is closely related to the work of Latouche [32] on queues with paired

customers. Latouche [32] studies the stability of these systems with state-dependent

arrival rates, and characterizes the stationary distributions using matrix analytic meth-

ods when the system is stable. Latouche defines the “excess” as the difference between

the numbers of the two classes of users, and concludes if the state-dependent arrival

process keeps the excess bounded then the queues with paired customers can be sta-

ble. The stability of the accept-the-shortest-queue policy relies on the same idea and
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guarantees an excess with absolute value always less than one. However, the functional

threshold policy allows the excess to be an increasing function of number of users in

the system, and suggests that for the probabilistic matching systems the stability can

be achieved by keeping the excess only “under control”, instead of keeping it strictly

bounded. Our last policy, one-sided threshold policy, relies on the assumption that

one of the classes has a higher arrival rate than the other, and only rejects users from

the class with higher arrival rate if they exceed a certain constant threshold. This

policy also stabilizes probabilistic matching systems with any set of arrival rates that

satisfies the above assumption, any positive matching probability and any non-negative

threshold value.

Our results for the performance measures of probabilistic matching systems under

these policies are even more intriguing. One may think that, as the matching probability

increases, the users match more easily and hence, the departure rate of matched pairs

should increase, or equivalently the long run rejection rate should decrease. However,

contrary to this initial intuition, we prove that under the accept-the-shortest-queue

policy and a subclass of the functional threshold policies, the long run rejection rate

does not depend on the matching probability. Even more surprisingly, we observe that

under most reasonable functional threshold policies the long run rejection rate actually

increases as the matching probability increases! More specifically, when the threshold

function is chosen so that the operators of the system become more eager to admit

users of a class as users of the other class accumulate in the system, then the long run

percentage of rejected users is an increasing function of the matching probability. In

Section 2.6 we intuitively explain this phenomenon based on the geometry of the state

space. This explanation is closely related to the “excess” (as defined by Latouche [32])

and clarifies why the long run rejection rate is independent of the matching probability

under the accept-the-shortest-queue policy. We further show that the behaviour of

the difference between average queue lengths of the two classes is closely related to

the behaviour of the long run rejection rate. We prove that for the cases which the

rejection rate is independent of the matching probability, the difference of queue lengths

also does not depend on the matching probability. However, we observe that if the

rejection rate is an increasing function of the matching probability, then the difference
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between average queue lengths is a decreasing function of the matching probability and

vice versa. We finally show that under the one-sided threshold policy, the long run

rejection rate is independent of both the matching probability and the threshold value,

the explanation of which is however completely different from the above and relies on

the well-known arrival-departure theorem.

This chapter is organized as follows. We introduce the mathematical model for

probabilistic matching systems in Section 2.2 and we analyse the transient behaviour

of the system by concentrating on the process counting the number of matches up to

time t in Section 2.3. In Sections 2.4 and 2.5 we discuss the stability of probabilistic

matching systems and introduce four stabilizing admission control policies. We present

simulation results analysing the long run rejection rates, average queue lengths and

average waiting times under the suggested policies in Section 2.6. Finally, we present

open problems and future research directions in Section 2.7.

2.2 Mathematical Model

In this section we present a continuous-time Markov chain (CTMC) model for the

probabilistic matching systems. The basic assumptions of our model are as follows:

1. The arrival processes of class-1 and class-2 users are independent Poisson pro-

cesses with rates 0 < λ1 <∞ and 0 < λ2 <∞, respectively.

2. Each class-1 and class-2 user pair matches with probability q (0 < q ≤ 1), inde-

pendent of other users.

3. When a class-1 user arrives, she checks whether there are any class-2 users in the

queue matching with her. If there are matching class-2 users, she chooses one of

them uniformly at random and then they leave the system together. If there is

no matching class-2 user in the system, she joins the queue. A similar mechanism

applies when a class-2 user arrives.

4. Once a suitable match is found, the matched pair leaves the system immediately,

i.e., the matching procedure does not take any time.
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5. Users do not abandon the system without being matched.

Under these assumptions, the system can be modelled as a two-dimensional CTMC

{Xq(t) = (Xq
1(t), Xq

2(t)), t ≥ 0}, where Xq
i (t) is the number of class-i users, i = 1, 2,

in a system with matching probability q at time t. The state space is S = N2, where

N is the set of non-negative integers. Since the arrival processes are Poisson processes

and the matchings of each pair of class-1 and class-2 users are independent, we have

the Markov property.

The probability that a given class-1 and class-2 user pair does not match is 1 − q.

Hence, due to independence of matchings, a class-1 user finding j class-2 users waiting

in the system upon arrival does not match with anyone and joins the queue with

probability (1−q)j or she leaves the system with a matching class-2 user with probability

1 − (1 − q)j . For notational simplicity, we define r = 1 − q as the probability of not

matching for each pair and state the generator matrix as follows:

Q
(n1,n2)(n

′
1,n
′
2)

=



λ1r
n2 if n

′
1 = n1 + 1 and n

′
2 = n2,

λ2r
n1 if n

′
1 = n1 and n

′
2 = n2 + 1,

λ1(1− rn2) if n
′
1 = n1 and n

′
2 = n2 − 1 ≥ 0,

λ2(1− rn1) if n
′
1 = n1 − 1 ≥ 0 and n

′
2 = n2,

−(λ1 + λ2) if n
′
1 = n1 and n

′
2 = n2,

0 otherwise.

As the generator matrix suggests, it is convenient to use the probability of not matching,

r, in the equations, but on the other hand, the probability of matching q is a more

intuitive quantity to refer to in the natural language. Hence, we use q and r notation

together in the remainder of the thesis, assuming that the relation q+r = 1 as obvious.

When q = 1, class-1 users and class-2 users cannot co-exist in the system at the

same time. Hence, the system can be modeled as a one-dimensional CTMC, where

X1(t) = k ≥ 0 when there are k class-1 users and X1(t) = −k ≤ 0 when there are k

class-2 users in the system at time t. This CTMC is a continuous time random walk

on integers with rates Qn,n+1 = λ1 and Qn,n−1 = λ2.
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2.3 Transient Behaviour of the System

We first study the transient behaviour of the system to gain probabilistic insight about

the situation at time t. Let Ai(t) and M q(t) be the number of arrivals from class-i

and the number of matched pairs up to time t, respectively. Then, Xq
i (t) = Ai(t) −

M q(t), i = 1, 2, for all t ≥ 0. We focus on the counting process {M q(t), t ≥ 0}, and

provide an explicit equation to the probability of observing exactly k matched pairs up

to time t.

When q = 1, the probability of having k matched pairs up to time t is trivial. As

every class-1 (class-2) user matches upon arrival if there are any class-2 (class-1) users

in the system, M1(t) = min{A1(t), A2(t)}. Hence, P[M1(t) = 0] = e−λ1t + e−λ2t −

e−(λ1+λ2)t, and for k > 0,

P[M1(t) = k] =
e−λ1t(λ1t)

k

k!

(
1−

k−1∑
i=0

e−λ2t(λ2t)
i

i!

)

+
e−λ2t(λ2t)

k

k!

(
1−

k∑
i=0

e−λ1t(λ1t)
i

i!

)
.

However, when 0 < q < 1, the problem is significantly more complicated.

We now define

P qk,m,n ≡ P[M q(t) = k|A1(t) = m,A2(t) = n], (2.1)

for 0 < q ≤ 1, then using the law of total probability, we write

P[M q(t) = k] = e−(λ1+λ2)t
∞∑
m=0

∞∑
n=0

P qk,m,n
λm1 λ

n
2 t
m+n

m!n!
. (2.2)

The quantity P qk,m,n is of interest on its own right. For example, one may be interested

in the probability of exactly k people getting hired, when there are m companies hiring

and n employees looking for jobs. To find an explicit equation for P qk,m,n we need

to solve a three dimensional recursion. Unfortunately, generating function methods

are not easy to use to solve this recursion as the coefficients involve powers. Hence,

we resort to more direct methods for solving the recusion. Theorem 2.1 presents an
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explicit formula for the desired conditional probability.

Theorem 2.1. Suppose P qk,m,n is as defined in (2.1) and without loss of generality

assume m ≤ n. Then,

(i) when q = 1, P 1
k,m,n = 1 if k = m and 0 otherwise.

(ii) when 0 < q < 1,

P qk,m,n =


rmn, k = 0,

ak,mr
(m−k)n

∏k−1
i=0 (1− rn−i), 1 ≤ k ≤ m,

0, otherwise,

(2.3)

where

ak,m =
∑
l>0

 ∑
d1+d2+...+dl=k

rk
(−1)l∏l

i=1

∏di
j=1(1− rj)

+ r−mk
rk

2∏k
j=1(1− rj)

+
k−1∑
i=1

r−mirki∏i
j=1(1− rj)

∑
l>0

 ∑
d1+...+dl=k−i

rk−i
(−1)l∏l

w=1

∏dw
j=1(1− rj)

 ,

with indexes d1, d2, . . . belonging to N+ = {1, 2, 3, ...}.

Proof. See Appendix A

Theorem 2.1 reveals that the elementary conditional probability of k matches suc-

ceed given that m class-1 users and n class-2 users have arrived has a fairly complicated

expression. This implies that even the one dimensional distribution for the match-

ing process is far from trivial, which further indicates the difficulty in the calculation

of finite dimensional distributions to completely characterize {M q(t), t ≥ 0} and the

transient behaviour of probabilistic matching systems. Next, we concentrate on the

steady-state behaviour of probabilistic matching systems.
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2.4 Stability Analysis – Instability of the Uncontrolled

System

In this work, a system is defined to be stable if it is ergodic and unstable otherwise. In

an unstable system, users accumulate in the system without finding a match. We give

the formal definition as follows.

Definition 2.2. A probabilistic matching system is stable if it is ergodic, i.e., positive

recurrent, and unstable if it is either null recurrent or transient.

In this section, we first show that an uncontrolled probabilistic matching system is

unstable for any set of arrival rates, λ1 and λ2, and matching probability q. To study

the stability of the uncontrolled system, we first prove that it is unstable when the

matching probability q = 1. Then, using a coupling argument, we show that this also

implies the instability of the systems where 0 < q < 1.

Theorem 2.3. An uncontrolled probabilistic matching system is unstable for any set

of arrival rates λ1 and λ2, and matching probability 0 < q ≤ 1. More specifically, it is

null recurrent if λ1 = λ2 and transient if λ1 6= λ2.

Proof. When q = 1, the system can be modelled as a one-dimensional continuous

time random walk which is known to be null recurrent if λ1 = λ2 and transient if

λ1 6= λ2. To prove the case where 0 < q < 1, we use a coupling argument. Let

0 < θ1 < θ2 < · · · be the sequence of occurrence times of events following a homogeneous

Poisson process with rate λ1 + λ2, and, to determine the class of arrivals, define a

sequence of independent discrete random variables {τn, n ∈ N} which takes the values

1 or 2 with probabilities λ1
λ1+λ2

and λ2
λ1+λ2

, respectively. Let {Un, n ∈ N} be a sequence

of independent uniform(0,1) random variables, and 1(A) be the indicator function for

event A which takes value 1 if A occurs and 0 otherwise. Finally define X̃q
0,i = 0, i = 1, 2,
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and for n ∈ N,

Ãn,i =
n∑
j=1

1({τj = i}), i = 1, 2,

M̃ q
n =

n∑
j=1

(
1({τj = 1})1({Uj > rX̃

q
j−1,2}) + 1({τj = 2})1({Uj > rX̃

q
j−1,1})

)
,

X̃q
n,i = Ãn,i − M̃ q

n,

X̃q
i (t) = X̃q

n,i, ∀t ∈ [θn, θn+1) and i = 1, 2,

X̃q(t) = (X̃q
1(t), X̃q

2(t)), ∀t ∈ [θn, θn+1).

The process {X̃q(t), t ≥ 0} is stochastically equivalent to {Xq(t), t ≥ 0}. If the match-

ing probability is one, i.e., r = 1− q = 0 and X̃1
n,1 = 0 (X̃1

n,2 = 0) then arriving class-2

(class-1) user cannot match upon arrival. Hence, we take the indeterminate form 00 to

be 1 for notational convenience.

Let r1 > r2 (or equivalently q1 < q2) and define

n∗ = min
{
n : X̃q1

n,1 < X̃q2
n,1 or X̃q1

n,2 < X̃q2
n,2

}
.

By definition n∗ > 0, and without loss of generality, we can assume X̃q1
n∗,1 < X̃q2

n∗,1,

which implies X̃q1
n∗−1,1 = X̃q2

n∗−1,1. The number of class-i arrivals is independent of

the matching probability q and the number of matched individuals (departures) is the

same for X̃q
n,1 and X̃q

n,2. Hence, X̃q1
n∗−1,1 = X̃q2

n∗−1,1 implies X̃q1
n∗−1,2 = X̃q2

n∗−1,2. If

τn∗ = 1, then Un∗ > r
X̃
q1
n∗−1,2

1 and Un∗ ≤ r
X̃
q2
n∗−1,2

2 , and if τn∗ = 2, then Un∗ > r
X̃
q1
n∗−1,1

1

and Un∗ ≤ r
X̃
q2
n∗−1,1

2 which is not possible in either cases and leads to a contradiction.

Hence, we conclude that such an n∗ does not exist and X̃q1
i (t) ≥ X̃q2

i (t), i = 1, 2,

holds for every t ≥ 0. This implies that for any q < 1, if {X̃1
i (t), t ≥ 0} is transient,

then {X̃q
i (t), t ≥ 0} is also transient, and if {X̃1

i (t), t ≥ 0} is null recurrent, then

{X̃q
i (t), t ≥ 0} is either null recurrent or transient.

Now we show that {Xq(t), t ≥ 0} is recurrent when λ1 = λ2 and 0 < q < 1. Let

Xq
n = (Xq

n,1, X
q
n,2) denote the corresponding embedded DTMC. Using Theorem 2.2.1

from Fayolle et al. [21] pg. 26, if we can find a finite set H and a positive function
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f(i, j) such that for (i, j) /∈ H,

E[f(Xq
n+1,1, X

q
n+1,2)|(Xq

n,1, X
q
n,2) = (i, j)]− f(i, j) ≤ 0

and f(i, j) → ∞ as i + j → ∞, the result follows. The transition probabilities for the

embedded DTMC are

p(i,j)(k,l) =



rj/2 if k = i+ 1 and l = j,

ri/2 if k = i and l = j + 1,

(1− rj)/2 if k = i and l = j − 1 ≥ 0,

(1− ri)/2 if k = i− 1 ≥ 0 and l = j,

0 otherwise.

We choose f(i, j) to be

f(i, j) =


1 if i = j = 0,

i+ j − 2 if i > 0, j > 0 and i+ j > 2,

i+ j otherwise.

Clearly, f(i, j) is positive and f(i, j)→∞ as i+j →∞. Let H1 = {(i, j) : 0 ≤ i, j ≤ 2}

and for any (i, j) /∈ H1 we have

E[f(Xq
n+1,1, X

q
n+1,2)|(Xq

n,1, X
q
n,2) = (i, j)]− f(i, j)

=



0 if i = 0, j > 2 or i > 2, j = 0,

−rj if i = 1, j > 2,

−ri if i > 2, j = 1,

ri + rj − 1 if i > 2, j > 2.

Let H2 = {(i, j) : 0 ≤ i, j ≤ ln(1−r2)
ln r }, then for any (i, j) /∈ H = H1 ∪ H2, we have

E[f(Xq
n+1)− f(Xq

n)|Xq
n = (i, j)] ≤ 0 and the result follows.

Theorem 2.3 indicates that for any set of parameters, users of an uncontrolled

probabilistic matching system experiences arbitrarily long waiting times. In the next

section, we suggest admission control policies to stabilize probabilistic matching systems
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and analyse some performance measures for those policies.

2.5 Stabilizing Policies

In this section we analyse four different admission control policies to stabilize probabilis-

tic matching systems. The policies specify the conditions under which an arriving user

is allowed to enter the system and we define an admission control policy a stabilizing

policy if it makes the probabilistic matching system ergodic.

Definition 2.4. A stabilizing policy is an admission control policy which makes the

probabilistic matching system ergodic.

The first policy we study is the simple threshold policy which relies on limiting the

number of users from each class in the system. The simple threshold policy stabilizes

probabilistic matching systems with matching probability q = 1, whereas fails to pro-

vide a finite expected waiting time for users for systems with 0 < q < 1. Analyzing the

reasons behind this failure, we then suggest the accept-the-shortest-queue (ASQ) policy

which relies on balancing the system by accepting only from the class with minimum

number of users in the system. ASQ policy manages to stabilize systems with any

set of arrival rates and matching probability, but may lead to very poor performance

measures. Hence, we introduce the functional threshold (FT) policy by relaxing the

definition of “balancing”. The one-sided threshold (OST) policy is employed if a class

of users has a higher arrival rate than the other, and imposes an upper bound on the

number of users belonging to the class with higher arrival rate while always accepting

the other users.

In addition to proving the stability of probabilistic matching systems under the sug-

gested policies, we analyse how these policies affect some key performance measures.

As the admission control policies are based on rejecting users under specific conditions,

the long run percentage of rejected users is an important measure to assess the perfor-

mance of a specific policy. A basic result in queueing theory states that the throughput

of a stable system, which is defined to be the long run average rate at which users

leave the system, is equal to the long run average rate at which users are admitted

to the system. This implies that there is a one-to-one relationship between long run
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percentage of rejected users and throughput. For completeness, we prove this result for

probabilistic matching systems in Theorem 2.5. We refer the reader to Asmussen [4]

and El-Taha and Stidham [20] for more results of similar flavour.

Theorem 2.5. Consider a probabilistic matching system under a stabilizing policy and

let Aei (t) and M q(t) to be the processes counting the number of type i users admitted to

the system and the number of matched pairs up to time t respectively. Then,

lim
t→∞

Ae1(t)

t
= lim

t→∞

Ae2(t)

t
= lim

t→∞

M q(t)

t
, a.s.

Proof. Without loss of generality, we assume that Xq(0) = (0, 0). Define θ0 = 0,

θj = inf{t ≥ θj−1 : Xq(t) = (0, 0) and ∃s where θj−1 < s < t,Xq(s) 6= (0, 0)}

for j ∈ Z>0 and J(t) = max{j : θj ≤ t}. Then, for i = 1, 2

Aei (t)−M q(t)

t
=

J(t)∑
j=1

Aei (θj)−Aei (θj−1)−M q(θj) +M q(θj−1)

t

+
Aei (t)−Aei (θJ(t))−M q(t) +M q(θJ(t))

t

=
Aei (t)−Aei (θJ(t))−M q(t) +M q(θJ(t))

t

≤
Ai(θJ(t)+1)−Ai(θJ(t))

t

=
Ai(θJ(t)+1)−Ai(θJ(t))

J(t) + 1

J(t) + 1

t
.

The first equality above uses the fact that Aei (θJ(t)) =
∑J(t)

j=1 A
e
i (θj) − Aei (θj−1) and

M q(θJ(t)) =
∑J(t)

j=1 M
q(θj)+M q(θj−1). The second equality follows as Aei (θj) = M q(θj)

for all j by the definition of θj . Finally the inequality in the third step follows by using

M q(θJ(t))−M q(t) < 0 and then realizing that Aei (t)−Aei (θJ(t)) is the number of accepted

users in (θJ(t), t], whereas Ai(θJ(t)+1) − Ai(θJ(t)) is the total number of accepted and

rejected users in the same time window. As t→∞, the second term on the right hand

side converges to a finite number by ergodicity and the elementary renewal theorem.

Now, let Ai,j = Ai(θj+1)−Ai(θj) and E[Ai,j ] = λiE[θj+1− θj ] <∞ (see e.g., Corollary

V.6.7 in Çınlar [15]). Then for any ε > 0, lim supt→∞
Aei (t)−Mq(t)

t ≤ ε if and only

if P[Ai,j > εj infinitly often] = 0. Since we have
∑∞

j=1 P[
Ai,j
ε > j] = E[

Ai,j
ε ] < ∞,
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P[Ai,j > εj infinitly often] = 0 follows from Borel-Cantelli lemma and the result as

desired holds.

Theorem 2.5 implies that if ci is the long run proportion of rejected users from

class-i, then

lim
t→∞

Ae1(t)

t
= (1− c1)λ1 = (1− c2)λ2 = lim

t→∞

Ae2(t)

t
(2.4)

which is also equal to the throughput of the system. Moreover, using Poisson-arrivals-

see-time-averages (PASTA) property (see El-Taha and Stidham [20]), ci also equals to

the total stationary probability of being at a state where class-i users are rejected.

2.5.1 The Simple Threshold Policy

The simple threshold policy imposes a constant upper bound on the number of users

in the system for each class. The aim is to reduce the process {Xq(t), t ≥ 0} to a finite

state space irreducible CTMC which would be always ergodic.

Definition 2.6. A simple threshold policy is an admission control policy which admits

a class-i user arriving at time t if and only if Xq
i (t−) ≤ Ni, where i = 1, 2 and 0 ≤

Ni <∞.

Theorem 2.7. When q = 1, the simple threshold policy stabilizes a probabilistic match-

ing system for any 0 < λi <∞, and 0 ≤ Ni <∞ where i = 1, 2.

Proof. The system with q = 1 is reduced to an irreducible one-dimensional CTMC

with finite state space S = {−N2− 1,−N2, ...,−1, 0, 1, ..., N1, N1 + 1} under the simple

threshold policy and hence ergodic (see Kulkarni [31], pg. 82, Theorem 3.7 and pg.

285, Theorem 6.10).

The admitted users leave the system only when there is a continuing intake of users

from the other class. When q = 1, users of different classes cannot co-exist in the

system. Hence, when the number of users of a certain class reaches its maximum,

the arrivals from the other class are always admitted. However, when 0 < q < 1, the

resulting CTMC is no longer irreducible. Once the system reaches state (N1+1, N2+1),

no users are admitted under the simple threshold policy and hence no users leave the
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system resulting in infinite waiting times. Therefore, better control mechanisms are

needed when 0 < q < 1.

Now, we investigate the long run average proportion of rejected users when q = 1

and the simple threshold policy is employed. Even though, the simple threshold policy

is not applicable when q < 1, it provides us with an interesting benchmark to compare

other control policies.

Theorem 2.8. Let ci be the long run average proportion of rejected class i users for

i = 1, 2. If q = 1 and the simple threshold policy is employed, then

c1 =


1

N1+N2+3 , for λ1 = λ2,

1−λ2
λ1

1−(
λ2
λ1

)N1+N2+3
, for λ1 6= λ2,

(2.5)

and c2 is given by interchanging λ1 and λ2 in (2.5).

Proof. Let {X1,ST (t), t ≥ 0} be the resulting stochastic process, then c1 and c2 corre-

spond to the stationary probabilities for states −N1 − 1 and N2 + 1, respectively. The

process {X1,ST (t)+N1 +1, t ≥ 0} is stochastically identical to an M/M/1/N1 +N2 +2

queueing process and the result follows (see, Gross and Harris [24] pg. 77).

By considering the extreme cases N1 = N2 = 0 and N1, N2 →∞ in equation (2.5),

we obtain bounds on c1. In particular,

max(1− λ2

λ1
, 0) ≤ c1 ≤

λ2
1

λ2
1 + λ1λ2 + λ2

2

. (2.6)

These bounds act as a benchmark when evaluating other policies.

2.5.2 The Accept-the-Shortest-Queue Policy

In the previous section we have seen that assuring continuing intakes of both classes of

users plays a key role in avoiding any absorbing states. Therefore, rather than imposing

strict bounds, the ASQ policy tries to maintain a balance between different classes by

only admitting users belonging to the shorter queue. As the system size increases, both

classes of users get more likely to find a match upon arrivals.
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Definition 2.9. The accept-the-shortest-queue policy is an admission control policy

which admits a class-i user arriving at time t if and only ifXq
i (t−) = minj∈{1,2}X

q
j (t−), i =

1, 2.

Let {Xq,ASQ(t), t ≥ 0} be the CTMC representing the probabilistic matching system

under the ASQ policy. Then the state space is S = {−1, 0, 1} when q = 1, and

S = {(i, j) ∈ N2 : |i − j|≤ 1} when 0 < q < 1. We now prove the stability of the

system under the ASQ policy using Foster’s criterion (see e.g., Fayolle et al. [21], pg.

29, Theorem 2.2.3 or Kulkarni [31], pg. 95. Theorem 3.10).

Theorem 2.10. A probabilistic matching system is stable for any set of arrival rates

λ1 and λ2 and matching probability 0 < q ≤ 1 under the ASQ policy.

Proof. When q = 1, the state space is finite and the result follows. When 0 < q < 1,

define {Xq,ASQ
n , n ∈ N} to be the corresponding embedded DTMC and f(i, j) = i+j+1.

The transition probabilities for the embedded DTMC are

p(i,j)(k,l) =



λ1r
j/(λ1 + λ2) if k = i+ 1 and l = j = i,

λ2r
i/(λ1 + λ2) if k = i = j and l = j + 1,

λ1(1− rj)/(λ1 + λ2) if k = i = j and l = j − 1 ≥ 0,

λ2(1− ri)/(λ1 + λ2) if k = i− 1 ≥ 0 and l = j = i,

rj if k = l = j = i+ 1,

1− rj if k = l = i = j − 1 ≥ 0,

ri if k = l = i = j + 1,

1− ri if k = l = j = i− 1 ≥ 0.

0 otherwise.

Then, f(i, j) is positive for all states and

E[f(Xq,ASQ
n+1,1 , X

q,ASQ
n+1,2 )|Xq,ASQ

n = (i, j)]− f(i, j) =


2ri − 1, if i > j,

2rj − 1, if i ≤ j.

Let m = min{i ∈ N : ri < 1
2}. Then, for the finite set H = {(i, j) ∈ N2, 0 ≤ i, j ≤ m} ⊂

S and ε = 1
2 − r

m > 0, we have E[f(Xq,ASQ
n+1,1 , X

q,ASQ
n+1,2 )|Xq,ASQ

n = (i, j)] − f(i, j)|< 2,
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if (i, j) ∈ H, and E[f(Xq,ASQ
n+1,1 , X

q,ASQ
n+1,2 )|Xq,ASQ

n = (i, j)] − f(i, j) < −2ε if (i, j) /∈ H.

Thus, all conditions in Foster’s Criterion are satisfied, and so the system is ergodic.

The ergodicity of the CTMC guarantees the existence of stationary probabilities.

Theorem 2.11 provides an explicit representation for the stationary probabilities.

Theorem 2.11. The stationary probabilities under the ASQ when 0 < q < 1 are

pi,j = aijp0,0, for (i, j) ∈ S,

where

aij =



1 if i = j = 0

ri
2[∏i

k=1(1− rk)
]2 if i ≥ 1, j = i

λ1

λ2(1− r)
if i = 1, j = 0

λ2

λ1(1− r)
if i = 0, j = 1

λ2r
i(i+1)p0,0

λ1
∏i
k=1(1− rk)

∏i+1
k=1(1− rk)

if i ≥ 1, j = i+ 1

λ1r
i(i−1)p0,0

λ2
∏i
k=1(1− rk)

∏i−1
k=1(1− rk)

if j ≥ 1, i = j + 1

and p0,0 =
1

1 +
∑∞

i=1

∑i+1
j=i−1 aij

.

Proof. See Appendix B.

In principle, the performance measures of a probabilistic matching system under

the ASQ policy can be calculated using the stationary probabilities presented in The-

orem 2.11. In the next section we generalize the ASQ policy and use another method

to calculate the long run percentage of rejected users and present some insights about

average queue lengths and waiting times for a more general set of policies including the

ASQ policy.

2.5.3 The Functional Threshold Policy

In this section we generalize the idea of applying a “moving” threshold behind the ASQ

policy. Instead of applying the threshold as the number of users in the other queue,
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the functional threshold (FT) policy sets the threshold to be a function of the number

of users in the other queue.

Definition 2.12. An admission control policy is called a functional threshold policy if

it admits a class-i user arriving at time t when Xq
i (t−) ≤ h(Xq

j (t−)), i, j = 1, 2, i 6= j,

where h(·) : N → R is a non-decreasing function and satisfies x ≤ h(x) < ∞, for all

x ≥ 0.

The threshold function h(·) makes the FT policy more flexible compared to the ASQ

Policy. When the threshold function is set to be h(x) = x, the functional threshold

policy is equivalent to the ASQ policy. The condition x ≤ h(x) < ∞, for all x ≥ 0

prevents selecting inappropriate threshold functions (e.g., h(x) = N , as seen in the ST

policy), and implies that minj∈{1,2}X
q
j (t−) ≤ Xq

i (t−) ≤ h(Xq
i (t−)), i = 1, 2. Hence, we

always accept the users from the class with the shortest queue and assure a continuing

intake to avoid absorbing states.

Theorem 2.13. A functional threshold policy is a stabilizing policy for probabilistic

matching systems with any set of arrival rates λ1 > 0 and λ2 > 0, and matching

probability 0 < q ≤ 1.

Proof. When q = 1, the resulting CTMC is irreducible with a finite state space and

hence stable. When 0 < q < 1, the state space of the CTMC is S = {(i, j), i ≤

max(h(j + 1), h(j) + 1), j ≤ max(h(i + 1), h(i) + 1)} and we apply Foster’s criterion

on the embedded DTMC. To write down the transition probabilities for the embedded

DTMC, we assume i ≤ j and consider the following cases:

When h(i) + 1 ≤ j ≤ max{h(i) + 1, h(i+ 1)},

p(i,j)(k,l) =


rj if k = i+ 1 and j = l,

1− rj if k = i and l = j − 1,

0 otherwise.
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When i ≤ j ≤ h(i),

p(i,j)(k,l) =



1
λ1+λ2

λ2r
i if k = i and j = l + 1,

1
λ1+λ2

λ2(1− ri) if k = i− 1 and l = j,

1
λ1+λ2

λ1r
j if k = i+ 1 and l = j,

1
λ1+λ2

λ1(1− rj) if k = i and l = j − 1,

0 otherwise.

The transition probabilities for the states where i > j can be obtained by interchanging

i and j. Next, we define f(i, j) = i+ j + 1, then f(i, j) is positive for all states and

E[f(Xq,FT
n+1,1, X

q,FT
n+1,2)|Xq,FT

n = (i, j)]− f(i, j)

=


2ri − 1 if h(i) + 1 ≤ j ≤ max{h(i) + 1, h(i+ 1)},

2rj − 1 if h(j) + 1 ≤ i ≤ max{h(j) + 1, h(j + 1)},
λ2(2ri − 1) + λ1(2rj − 1)

λ1 + λ2
if i ≤ j ≤ h(i) or j ≤ i ≤ h(j).

Let m = min{i : ri < 1
2} and ε = 1 − 2rm > 0. Then when (i, j) /∈ H = {(k, l) ∈ N2 :

k ≤ m or l ≤ m}, we have E[f(Xq,FT
n+1,1, X

q,FT
n+1,2)|Xq,FT

n = (i, j)] − f(i, j) < −ε. Hence,

the result follows.

Under the functional threshold policy, stating and solving the global balance equa-

tions is fairly difficult. However, it is still possible to obtain insights about some key

performance measures of the system by imposing some mild restrictions on the thresh-

old function h(x).

Theorem 2.14. Suppose that the functional threshold policy is employed with the

threshold function h(x) = x+ d, where d ≥ 0 is an arbitrary constant. Then, the long

run percentage of rejected users, c1 and c2, are independent of the matching probability

0 < q ≤ 1 and

c1 =


1

2[d]+3 , for λ1 = λ2,

1−λ2
λ1

1−(
λ2
λ1

)2[d]+3
, for λ1 6= λ2,

(2.7)

and c2 can be obtained interchanging λ1 and λ2.

Proof. See Appendix C.
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Corollary 2.15. Under the ASQ policy, the long run percentage of rejected users is

independent of the matching probability and

c1 =
λ2

1

λ2
1 + λ1λ2 + λ2

2

, (2.8)

c2 is obtained interchanging λ1 and λ2.

Proof. The result follows by replacing d = 0 in (2.7) and cancelling as appropriate.

One may expect that as the matching probability q increases, the users match more

quickly and this yields a better throughput and hence smaller long run percentage

of rejected users. However, contrary to this initial intuition, Theorem 2.14 indicates

that under the specified subclass of functional threshold policies, the long run aver-

age percentage of rejected users does not depend q. In Section 2.6, we numerically

show that for many reasonable threshold functions the behaviour of the system is even

more counter-intuitive, i.e., the long run rejection probabilities actually increase as

the matching probability increases! Further discussions about the reasons behind this

unexpected phenomenon are provided in Section 2.6.

Unlike the throughput, the long run average number of users in the system and the

average waiting times depend on the matching probability q, even when h(x) = x+ d.

However, we are able to prove similar insensitivity results for the difference between the

long run average numbers of users from different classes for the same class of threshold

functions.

Theorem 2.16. Let Lqi denote the long run average numbers of class-i user, i = 1, 2

in the system and ρ = λ2/λ1. If the functional threshold policy is employed with h(x) =

x+d, where d ≥ 0 is a constant, then for any 0 < q ≤ 1, the difference between average

queue lengths of classes, Lq1 − L
q
2, does not depend on the matching probability q, and

we have Lq1 − L
q
2 = 0 if λ1 = λ2 and

Lq1 − L
q
2 =

(d+ 2)ρ2d+3 + d+ 1

1− ρ2d+3
+

(1− ρ)ρd+2(ρd+2 − ρ−d−1)

(1− ρ2d+3)(ρ− 1)2
(2.9)

if λ1 6= λ2.
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Proof. See Appendix C.

Corollary 2.17. Suppose the functional threshold policy is employed with h(x) = x+d,

where d ≥ 0 is a constant. Let W q
1 and W q

2 denote the long run average waiting times

for users, ρ = λ2/λ1 and λe ≡ (1−c1)λ1, where c1 is as in (2.7), then for any 0 < q ≤ 1,

the difference between average waiting times of classes, W q
1 −W

q
2 , does not depend on

the matching probability q, and we have W q
1 −W

q
2 = 0 if λ1 = λ2 and

W q
1 −W

q
2 =

1

λe

(
(d+ 2)ρ2d+3 + d+ 1

1− ρ2d+3
+

(1− ρ)ρd+2(ρd+2 − ρ−d−1)

(1− ρ2d+3)(ρ− 1)2

)

if λ1 6= λ2.

Proof. Using PASTA property (see El-Taha and Stidham [20], Corollary 1.10 and The-

orem 3.23), Little’s Law and (2.4), W q
i = Lqi /λ

e for i = 1, 2, and hence the result follows

from Theorem 2.16.

Functional threshold policy relies on rejecting both types of users in a similar fash-

ion. We next introduce a policy which rejects only one type of user.

2.5.4 The One-Sided Threshold Policy

The policies we discuss so far reject both classes of users when their numbers reach

certain limits. If it is known that the arrival rate of a class is less than the arrival

rate of the other (e.g., λ1 < λ2), it may not be reasonable to ever reject that class

of users. For example, in general, the rate of employers arriving at an employment

portal is significantly less than the arrival rate of employees. Thus, each job posting

is deemed valuable and the employment portal would not want to lose any employer

who wishes to subscribe. In such a matching system, it is more reasonable to reject

only employees when the number of them reaches a certain threshold N2, but to always

accept employers .

Definition 2.18. When λ1 < λ2, a one-sided threshold (OST) policy admits users

of class-2 at time t if and only if Xq
2(t−) ≤ N2, whereas users of class-1 are always

admitted.
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Theorem 2.19. A probabilistic matching system with arrival rates λ1 < λ2 and match-

ing probability 0 < q ≤ 1 is ergodic under a one-sided threshold policy which applies a

finite threshold N2 ≥ 0 to class-2 users.

Proof. When q = 1, the one-dimensional CTMC has a state space the set of integers

from −∞ to N2 + 1. Since λ1
λ2
< 1, the system is ergodic. When 0 < q < 1, we have

the state space S = {(i, j) ∈ N2 : i ≥ 0, 0 ≤ j ≤ N2 + 1}. The transition probabilities

for the embedded DTMC under one-sided threshold policy are

p(i,j)(k,l) =



λ1r
j/(λ1 + λ2) if k = i+ 1 and l = j ≤ N2,

λ2r
i/(λ1 + λ2) if k = i and l = j + 1 ≤ N2 + 1,

λ1(1− rj)/(λ1 + λ2) if k = i and 0 ≤ l = j − 1 ≤ N2 − 1,

λ2(1− ri)/(λ1 + λ2) if k = i− 1 ≥ 0 and l = j ≤ N2,

rj if k = i+ 1 and l = j = N2 + 1,

1− rj if k = i and l = j − 1 = N2,

0 otherwise.

For 0 < q < 1, we can always find a positive number a, such that, r < a(1 − r)

(recall that r = 1 − q). Thus, the inequality rj < a(1 − rj) holds for all j and in

particular, for some ε0 > 0, rN2+1 − a(1 − rN2+1) < −ε0. For any state (i, j) ∈ S,

define f(i, j) = i+ aj + 1 and d(i, j) = E[f(Xq,OST
n+1,1 , X

q,OST
n+1,2 )|Xq,OST

n = (i, j)]− f(i, j).

Then, for all i ≥ 0, d(i,N2 + 1) = rN2+1 − a(1 − rN2+1) < −ε0. Also, for all i ≥ 0,

d(i, 0) = 1
λ1+λ2

(λ1 − λ2 + aλ2r
i + λ2r

i). Since, λ1 < λ2, there exists an m1 and ε1 > 0

such that d(i, 0) < −ε1. If N2 ≥ 1, then for i ≥ 1 and 1 ≤ j ≤ N2

d(i, j) =
1

λ1 + λ2
(λ1ar

i − λ1(1− ri) + λ2r
j − λ2(1− rj)a) <

λ1

λ1 + λ2
(ri(a+ 1)− 1).

Thus, there exists an m2 > 0 and ε2 > 0, such that, when i > m2, d(i, j) = −ε2 < 0.

Takem2 = 0 whenN2 = 0, and letm = max{m1,m2} and ε = min{ε0, ε1, ε2}. Then, for

the finite set H = {(i, j) ∈ N2, 0 ≤ i ≤ m, 0 ≤ j ≤ N2} we have, d(i, j) < −ε, (i, j) /∈ H.

The conditions of Foster’s criterion are satisfied and hence the system is stable.

Theorem 2.19 states that the stability of the matching system neither depends on the
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matching probability nor the threshold N2. As a consequence of Theorem 2.5, we prove

that the long run average percentage of rejected users of a probabilistic matching system

under a one-sided threshold policy is also independent of the matching probability q

and the threshold N2.

Theorem 2.20. Suppose a one-sided threshold policy with threshold N2 is employed

on a probabilistic matching system with arrival rates 0 < λ1 < λ2 < ∞ and matching

probability 0 < q ≤ 1. Then, the long run proportion of rejected users is independent of

both the matching probability q and the threshold N2 and is given by

c2 = 1− λ1

λ2
.

Proof. Since, no class-1 user is rejected, using Theorem 2.5,

lim
t→∞

Ae1(t)

t
= lim

t→∞

Ae2(t)

t
= λ1, a.s.

The result follows from (2.4).

Unlike the percentage of rejected users, most other performance measures, such as

the average waiting time or the average queue length, depend on both the matching

probability and the threshold. We analyse these quantities numerically in Section 2.6.

The one-sided threshold policy achieves the lower bound in (2.6) which is the best

rejection rate possible as rejecting less users will definitely yield an unstable system.

As there are always rejected users from both classes in functional threshold policy, the

same performance cannot be attained under any threshold function. On the other hand,

the rejection percentage under the ASQ policy is equal to the upper bound in (2.6),

which is the worst rejection percentage possible under the simple threshold policy when

q = 1.

2.6 Numerical Results

We have seen that it is rather difficult to derive explicit equations for the performance

measures of the probabilistic matching systems under the suggested stabilizing policies.
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This is partly due to the transition rates involving powers of the matching probability.

In this section, we present a numerical analysis of the performance of probabilistic

matching systems under different policies. Some of our results appear to be quite

counter-intuitive and we present explanations for these results.

2.6.1 Computational Experiments on Long Run Percentages of Re-

jected Users

Theorem 2.20 shows that if one-sided threshold policy is employed the long run rejection

rate is insensitive to both the matching probability and the threshold value. Similarly,

Theorem 2.14 shows that if the functional threshold policy is employed with a specific

type of threshold function, the long run rejection rate of a probabilistic matching system

is insensitive to the matching probability. In this section, we present simulation results

to see how the rejection rate behaves under various functional threshold policies.

We consider two probabilistic matching systems, where the first system has arrival

rates λ1 = λ2 = 1 and the second system has λ1 = 1 and λ2 = 2, to test how the

matching probability affects the long run percentages of rejected users. We simulate

10 replications in each experiment, where each replication covers 1,000,000 time units.

We compare four different threshold functions: h1(x) = x, h2(x) = 2x, h3(x) = x2 and

h4(x) = max{5, x}. Note that the first threshold function h1(x) = x corresponds to

the ASQ policy.

Table 2.1 and Figure 2.1 summarize the corresponding results. As proven in The-

orem 2.14, the first column of Table 2.1 demonstrates the insensitivity of the long run

rejection probabilities to the matching probability q under the ASQ policy. The situa-

tion for general threshold functions is even more surprising. One may intuitively guess

that as the matching probability increases, the users match faster and as a result better

performance for rejection rates can be achieved. Contrary to this initial intuition that

we would observe lower rejection percentages for higher matching probabilities, we dis-

cover that for h2(x) = 2x and h3(x) = x2 the long run rejection percentages actually

increase as the matching probability q increases. The rejection percentages are very

close to 0 when q is close to 0, and as q increases to 1, they converge to that of the ASQ

policy. However, for the threshold function h4(x) = max{5, x}, we notice an opposite
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Table 2.1: Long run percentage of rejected users for functional threshold policies with
various threshold functions when λ1 = λ2 = 1

q x 2x x2 max{x, 5}
0.10 0.333 0.091 0.069 0.310
0.20 0.333 0.159 0.183 0.120
0.30 0.333 0.211 0.275 0.086
0.40 0.333 0.252 0.315 0.080
0.50 0.332 0.282 0.329 0.077
0.60 0.333 0.303 0.332 0.076
0.70 0.334 0.319 0.333 0.077
0.80 0.333 0.326 0.333 0.077
0.90 0.333 0.332 0.333 0.078
1.00 0.333 0.334 0.334 0.078

(a) λ1 = λ2 = 1 (b) λ1 = 1, λ2 = 2

Figure 2.1: Matching probability q vs. long run percentage of rejected class-1 users for
functional threshold policies with different threshold functions

behaviour which matches our initial intuition, i.e., the rejection probabilities are very

close to that of the ASQ policy when q is close to 0 and it decreases as q increases.

We explain this surprising behaviour using Figure 2.2 which illustrates the state

space of the CTMC under various functional threshold policies. The boundaries in

Figures 2.2(a) and 2.2(c) shown with bold lines correspond to the regions where a class

of users are rejected. For h2(x) = 2x, the shaded region corresponds to the states where

users are rejected. As q decreases, we see that the probability mass of the stationary

distribution moves in the direction of the arrows shown in the figures, somewhat parallel

to the diagonal illustrated by the dashed line. For the threshold function h2(x) = 2x,

the random walk is pushed towards a wider region as q decreases, and the proportion

of time spent in rejection region decreases. For h4(x) = max{x, 5}, the situation is the
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(a) h1(x) = x+ d (b) h2(x) = 2x (c) h4(x) = max{x, 5}

Figure 2.2: State space for the CTMC under functional threshold policies with various
threshold functions when λ1 = λ2 = 1

Table 2.2: Average queue lengths and waiting times for functional threshold policies
with various threshold functions when λ1 = λ2 = 1

h1(x) = x h2(x) = 2x h3(x) = x2 h4(x) = max{x, 5}

q L1 W1 L1 W1 L1 W1 L1 W1

0.1 6.458 9.680 6.532 7.188 6.655 7.148 6.655 9.512
0.2 2.998 4.497 3.009 3.575 2.945 3.607 3.311 3.766
0.3 1.842 2.766 1.831 2.318 1.767 2.440 2.370 2.591
0.4 1.265 1.898 1.235 1.650 1.228 1.794 2.000 2.174
0.5 0.924 1.387 0.889 1.239 0.911 1.358 1.813 1.965
0.6 0.702 1.053 0.671 0.964 0.699 1.048 1.727 1.870
0.7 0.550 0.826 0.530 0.778 0.550 0.826 1.681 1.822
0.8 0.446 0.669 0.437 0.651 0.447 0.670 1.653 1.791
0.9 0.377 0.566 0.375 0.561 0.377 0.566 1.629 1.766
1.0 0.333 0.500 0.333 0.500 0.334 0.501 1.613 1.747

opposite, i.e., the walk is pushed to narrower areas and the proportion of time spent

in the rejection region increases as q decreases. This explanation is also in accordance

with Theorem 2.14, as the width of the state space is constant for h1(x) = x + d as

seen in Figure 2.2(a).

2.6.2 Computational Experiments on Average Queue Lengths and

Average Waiting Times

We now turn to the study of long run average queue lengths (Li) and waiting times

(Wi). Our simulations use the same structure described in Section 2.6.1. Our first set

of experiments analyse how changing the matching probability q affects our parameters

under the functional threshold policy. The results are presented in Table 2.2 and

Table 2.3.

As expected, we see that the long run average queue lengths decrease as q increases.
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Table 2.3: Long run average queue length and waiting times for functional threshold
policies with various threshold functions when λ1 = 1 and λ2 = 2

h1(x) = x h2(x) = 2x

q L1 L2 L2 − L1 W1 W2 W2 −W1 L1 L2 L2 − L1 W1 W2 W2 −W1

0.1 6.249 6.678 0.429 7.297 7.798 0.501 4.531 8.759 4.228 4.537 8.771 4.234
0.2 2.776 3.206 0.430 3.241 3.743 0.502 2.096 4.006 1.910 2.129 4.070 1.941
0.3 1.630 2.058 0.428 1.902 2.401 0.499 1.250 2.458 1.208 1.305 2.565 1.260
0.4 1.053 1.482 0.429 1.228 1.727 0.499 0.812 1.690 0.878 0.874 1.819 0.945
0.5 0.715 1.143 0.428 0.834 1.333 0.499 0.557 1.243 0.686 0.616 1.376 0.760
0.6 0.496 0.924 0.428 0.578 1.077 0.499 0.397 0.965 0.568 0.450 1.092 0.642
0.7 0.348 0.776 0.428 0.406 0.906 0.500 0.293 0.788 0.495 0.336 0.904 0.568
0.8 0.248 0.676 0.428 0.289 0.789 0.500 0.224 0.677 0.453 0.260 0.786 0.526
0.9 0.182 0.611 0.429 0.213 0.714 0.501 0.176 0.611 0.435 0.206 0.712 0.506
1.0 0.143 0.572 0.429 0.167 0.667 0.500 0.143 0.572 0.429 0.167 0.668 0.501

h3(x) = x2 h4(x) = max{x, 5}

q L1 L2 L2 − L1 W1 W2 W2 −W1 L1 L2 L2 − L1 W1 W2 W2 −W1

0.1 3.475 10.467 6.992 3.473 10.458 6.985 6.243 6.851 0.608 7.118 7.811 0.693
0.2 2.063 3.928 1.865 2.131 4.058 1.927 1.898 5.158 3.260 1.911 5.195 3.284
0.3 1.367 2.199 0.832 1.507 2.422 0.915 0.604 5.084 4.480 0.603 5.079 4.476
0.4 0.969 1.502 0.533 1.109 1.719 0.610 0.214 5.061 4.847 0.214 5.060 4.846
0.5 0.689 1.143 0.454 0.801 1.328 0.527 0.085 5.041 4.956 0.085 5.038 4.953
0.6 0.490 0.923 0.433 0.571 1.075 0.504 0.039 5.032 4.993 0.040 5.037 4.997
0.7 0.345 0.775 0.430 0.403 0.905 0.502 0.024 5.023 4.999 0.024 5.018 4.994
0.8 0.248 0.676 0.428 0.289 0.789 0.500 0.018 5.021 5.003 0.018 5.020 5.002
0.9 0.183 0.610 0.427 0.213 0.711 0.498 0.016 5.017 5.001 0.016 5.017 5.001
1.0 0.143 0.571 0.428 0.167 0.667 0.500 0.015 5.013 4.998 0.015 5.009 4.994

The average queue lengths under all threshold functions behave similarly. The only

exception is that, if q is close to 1, the average queue lengths are significantly higher

under h4(x), which is expected because when q = 1, the number of users is bounded

by 5 for this threshold function, whereas the others are bounded by 1. We also observe

that the average waiting times for h1(x) and h4(x) are quite high for small q due to the

poor throughput. When q is close to 1, we observe that the average waiting times under

h4(x) is still higher, because even though the throughput for this threshold function is

higher than the others, the average queue length is still relatively higher.

Theorem 2.16 proves that under specific functional threshold policies, the difference

between average queue lengths of different types of customers is constant with respect

to q. When λ1 = λ2, this is trivially true for any functional threshold policy, as due

to symmetry L1 − L2 = 0. When λ1 = 1 and λ2 = 2, the observations as presented in

Table 2.3, are parallel to those related to the rejection probabilities. For the threshold

functions where the rejection probabilities are insensitive to q, we see that the difference

between average queue lengths is also insensitive to q. For the threshold functions where

the rejection probabilities are increasing (decreasing) with respect to q, the difference

L2 − L1 is decreasing (increasing).
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Table 2.4: Long run average queue
length under the one-sided threshold
policy for varying q

N2 = 3 N2 = 5

q L1 L2 L1 L2

0.1 12.847 3.219 8.851 5.152
0.2 3.429 3.192 1.933 5.116
0.3 1.327 3.167 0.604 5.086
0.4 0.597 3.139 0.213 5.066
0.5 0.291 3.121 0.086 5.043
0.6 0.161 3.100 0.041 5.032
0.7 0.102 3.085 0.025 5.024
0.8 0.077 3.075 0.019 5.019
0.9 0.067 3.067 0.017 5.016
1 0.063 3.060 0.016 5.013

Table 2.5: Long run average queue
length under one sided threshold pol-
icy for varying N2

q = 0.1 q = 0.4

N2 L1 L2 L1 L2

0 33.726 0.499 4.128 0.500
1 21.551 1.350 1.875 1.320
2 16.149 2.270 1.023 2.211
3 12.822 3.220 0.596 3.140
4 10.557 4.182 0.354 4.096
5 8.852 5.155 0.215 5.060
6 7.537 6.128 0.131 6.039
7 6.468 7.109 0.080 7.021
8 5.599 8.102 0.048 8.018
9 4.856 9.087 0.029 9.015
10 4.262 10.075 0.018 10.007

Next, we study the average queue lengths and the average waiting times under

the one-sided threshold policy and see how they depend on N2 and q. We assume that

λ1 = 1 and λ2 = 2 and vary q and N2. Since the average waiting times can be calculated

as the products of the average queue lengths and the throughput (which is 1 in our

case), we present the results only for the average queue lengths in Tables 2.4 and 2.5.

We see that the average queue length (L1) of the user class with the lower arrival rate is

highly sensitive to the changes in matching probability and the threshold, and decreases

as these quantities increase. On the other hand, the average queue length for the class

with higher arrival rate (L2) is less sensitive to the changes in the matching probability

and the threshold. Under the one-sided threshold policy, the number of class-2 users is

bounded by N2 + 1 and we observe that average queue length is in general very close

to this upper bound and increases almost linearly as N2 increases.

The one-sided threshold policy requires one of the arrival rates to be strictly greater

than the other, e.g., λ1 > λ2. Next, we investigate how the ratio of arrival rates λ2/λ1

affects the average queue lengths and waiting times under different control policies. In

these experiments, we fix λ1 = 1 and vary λ2, while ensuring that λ1 > λ2. We present

our results for functional threshold and one-sided threshold policies in Figures 2.3

and 2.4, respectively. We see that as λ2 increases to λ1, the average queue lengths and

average waiting times for class-1 users decrease monotonically for both control policies.

Similarly, we observe that the average queue lengths for class-2 users increase as λ2

increases. Surprisingly, the average waiting times of class-2 users do not exhibit the
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(a) L1 vs. λ2 (b) L2 vs. λ2

(c) W1 vs. λ2 (d) W2 vs. λ2

Figure 2.3: Average queue lengths and waiting times vs. λ2 for various q and λ1 = 1
under the functional threshold policy with h(x) = x+ 5



Chapter 2. Stability 33

(a) L1 vs. λ2 (b) L2 vs. λ2

(c) W1 vs. λ2 (d) W2 vs. λ2

Figure 2.4: Average queue lengths and waiting times vs. λ2 for various q and λ1 = 1
under the one-sided threshold policy with N1 = 2
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same monotonic behaviour. Under both policies, the average waiting times of class-2

users first decrease as λ2 increases and then start increasing and this non-monotonic

behaviour is observed especially when the matching probability is low. To understand

the reasons behind this unexpected behaviour, we should remember two basic properties

of the probabilistic matching systems: (i) if a user does not match with users in the

system upon arrival, she should wait for new users to arrive at the system, and (ii) if

too many users from the same class accumulate in the system, it becomes less likely for

those users to be picked by a new arrival. When q and λ2 are very small, an increase

in λ2 causes class-1 users to leave faster and new class-1 users can be admitted, which

in return decreases the waiting time of class-2 users due to (i). However, when λ2 is

above a critical value, the negative effects of (ii) dominate the benefits of refreshing the

class-1 queue, and the average waiting times increase as λ2 increases.

2.7 Conclusion

In this chapter we present a Markov chain model to conduct an exact analysis of prob-

abilistic matching systems. We derive an explicit formula for the probability distribu-

tion of the matching process to characterize the transient behaviour of the probabilistic

matching systems. We show that if no control mechanism is applied, a probabilistic

matching system is not ergodic for any set of parameters. We suggest admission con-

trol policies to ensure stability and analysed some performance measures. The simple

threshold policy and one-sided threshold policy employ constant threshold values to

admit users in the system. The simple threshold policy stabilizes the system for q = 1,

but fails to stabilize the system when q < 1. The one-sided threshold policy stabilizes

the system when one of the classes has a higher arrival rate. The ASQ and functional

threshold policies rely on balancing the number of users in the system and stabilizes

matching systems for any set of parameters. We prove that under a subset of func-

tional threshold policies, the long run proportion of rejected users and the difference

between average queue lengths is insensitive to the matching probability. Even more

surprisingly, we show that the long run proportion of rejected users is an increasing

function of the matching probability for a wide subset of functional threshold policies
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and we have the following conjecture:

Conjecture 2.21. Suppose the functional threshold policy is employed with a thresh-

old function h(x) which satisfies h(x+ 1) ≥ h(x) + 1 (or equivalently, h(x+1)−h(x)
x+1−x ≥ 1).

Then, the long run proportion of rejected users is a non-decreasing function of the

matching probability q.

The analysis on probabilistic matching systems provide us with many interesting

results. One research direction for further study is to analyse how a probabilistic

matching system performs under user abandonments. The computational complexity

and mathematically intractability of the matching process as shown in Section 2.3

suggest that an exact analysis of these systems for further characterization of the system

is very difficult. We suggest to study heavy traffic limits to gain further insight in

Chapter 3.



Chapter 3

Fluid and Diffusion

Approximations

3.1 Introduction

In Chapter 2, Markov chain models are proposed for an exact analysis on probabilis-

tic matching systems. As shown in Section 2.3, the probabilistic matching behaviour

complicates the analysis of these systems and renders a complete exact analysis in-

tractable. This motivates us to study diffusion approximation methods, in which the

mathematically intractable queue length processes are replaced by some appropriate

diffusion processes, to further characterize the system performance. In this chapter we

propose approximation methods based on fluid and diffusion limits under two different

scalings. A fluid limit is a deterministic process that approximates the stochastic queue

length process. It applies the idea of functional law of large numbers and describes the

tendency how the queue grows. On the other hand, the diffusion limit captures the

fluctuations of the queue length process around its fluid limit and applies the idea of

functional central limit theorem. Under the first scaling, we scale time and space while

keeping the matching probability constant to obtain the limiting processes. We show

that under this scaling both fluid and diffusion limits do not depend on the matching

probability, which implies that the users from at most one class accumulate in the sys-

tem and the probability of a user finding a match upon arrival approaches either zero

or one.

36
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To provide tools to address the matching probability explicitly, we propose a second

scaling that also handles the abandonment of impatient users and scales the match-

ing probability and the abandonment rate along with time and space. The resulting

fluid and diffusion limits under this scaling involve differential equations which are not

analytically tractable in the general case, although we can derive an analytical for-

mula for the fluid limit when there are no abandonments. In Chapter 2 we show that

some performance measures including the difference between the average queue lengths

of different classes are insensitive to the matching probability under certain control

policies. In this chapter, we show that despite not imposing any control policy, the

difference between queue lengths for different classes is still insensitive to the matching

probability in the fluid limit.

In addition, we analyze the asymptotic behaviour of the fluid limits. We first

compare the fluid limits under both scalings, i.e., limits with and without scaling the

matching probability, and show that when the abandonment rate is zero, the fluid limits

in both scaling regimes agree with each other as time goes to infinity. Further, we show

that for non-zero abandonment rates, the fluid limits converge to a unique fixed point,

which is representative of the long run average number of users in the system. We

prove that as the abandonment rate increases, the fixed point component for the class

with lower arrival rate first experiences an increase and then decrease, while for the

class with higher arrival rate it decreases monotonically. Finally we present numerical

results of the fluid and diffusion limits in the second scaling regime.

There exists an extensive literature on fluid and diffusion approximations for Marko-

vian systems with abandonments. Ward and Glynn [39] suggest diffusion approxima-

tions for the M/M/1 queue with exponential abandonments. They generalize these

results to arrival, service and abandonment times with general distributions in [40].

Garnett et al. [23] consider M/M/N queue with exponential abandonments and sug-

gest diffusion approximations under Halfin-Whitt regime (see Halfin and Whitt [26]).

Generalizing these results, Dai and He [18] and Mandelbaum and Momčilović [35] sug-

gest diffusion approximations for many-server queues with general arrival, service and

abandonment times. A recent work by Liu et al. [33] suggests diffusion approximations

for the double sided queue where arrivals are renewal processes and customers abandon
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the system if they cannot find a match after an exponential time. This paper is closest

to our work in nature and even though we restrict ourselves to Poisson arrival processes,

our work extends [33] by assuming probabilistic matching structure.

3.2 Mathematical Model

The model we study in this chapter is similar to that introduced in Chapter 2, except

that we incorporate the factor of user abandonments by assuming that each user aban-

dons the system without being matched after waiting an exponentially distributed time

with rate γ ≥ 0.

Recall that in Chapter 2, we define Xq
i (t) to be the number of class-i users in the

system at time t when the matching probability is q and M q(t) to be the number of

matched pairs up to time t. For notational simplification, we drop the notation of q

for the rest of the work and denote {Xi(t)}t≥0 and {M(t)}t≥0 to be the queue length

process of user-i and the matching process respectively.

With the introduction of the phenomenon of user abandonments, the continuous

time Markov chain (CTMC) on a probability space (Ω,F ,P) has the generator matrix

Q
(n1,n2)(n

′
1,n
′
2)

=



λ1(1− q)n2 if n
′
1 = n1 + 1 and n

′
2 = n2,

λ2(1− q)n1 if n
′
1 = n1 and n

′
2 = n2 + 1,

λ1(1− (1− q)n2) + γn2 if n
′
1 = n1 and n

′
2 = n2 − 1 ≥ 0,

λ2(1− (1− q)n1) + γn1 if n
′
1 = n1 − 1 ≥ 0 and n

′
2 = n2,

−(λ1 + λ2 + γ(n1 + n2)) if n
′
1 = n1 and n

′
2 = n2,

0 otherwise.

The above model reduces to the one introduced in Chapter 2 when γ = 0.

It is sometimes useful in our analysis to express the queue length processes, Xi(t), as

the difference of counting processes. AsAi(t) is defined to be the number of arrivals from

class-i in Chapter 2, we further define Ri(t) to be the number of user abandonments

from class-i up to time t. Then we have the basic relation

Xi(t) = Ai(t)−M(t)−Ri(t) for all t ≥ 0 and i = 1, 2.
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As we have seen in Chapter 2, the essential element distinguishing a probabilistic match-

ing system from a conventional queuing system is the matching probability q. In par-

ticular, for a system without abandonment, i.e., γ = 0, when the matching probability

q = 1, class-1 and class-2 users cannot co-exist in the system at any time. Therefore

the number of matched pairs up to time t is equal to the minimum of class-1 and class-2

arrivals, that is,

Xi(t) = Ai(t)−M(t) = Ai(t)−min{A1(t), A2(t)}, for all t ≥ 0 and i = 1, 2.

However, when 0 < q < 1, analyzing the matching process M(t) is far more difficult.

The one dimensional distribution of the matching process, P(M(t) = k) for a given t ≥ 0

and k ∈ N provided in Theorem 2.1 in Chapter 2 presents its complicated nature which

further indicates the difficulty in fully characterizing the law of the matching process.

Hence, in this chapter we propose fluid and diffusion approximations for probabilistic

matching systems.

3.3 Fluid and Diffusion Approximations with Constant

Matching Probabilities

In this section we focus on fluid and diffusion approximations for probabilistic matching

systems obtained by only scaling time (or equivalently the arrival rates) and space

while keeping the matching probability constant. This approach is especially useful

in approximating systems where the probability that a given pair of users matches is

high. For scalings with a constant matching probability, we assume that the users do

not abandon the system without being matched, i.e., γ = 0.

3.3.1 Fluid Limits

We start by defining the scaled process {(X̄n
1 (t), X̄n

2 (t)), t ≥ 0} as

X̄n
i (t) =

Xi(nt)

n
, i = 1, 2.
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We derive the limiting process of {X̄n
i (t), t ≥ 0} as n → ∞. Note that in the rest of

this chapter, we use the notation X(ω, t) when we need to specify the sample path of

the stochastic process X(t) corresponding to a scenario ω ∈ Ω. In this chapter, when

we say a sequence of stochastic processes {Xn(t)} convergences almost surely (a.s.) to

a stochastic process {X(t)} uniformly on compact sets (u.o.c.), it means that

P(ω, X̄n(ω, t)→ X̄(ω, t), u.o.c) = 1

Below we give the definition for Converge Uniformly on Compact Sets which is intro-

duced in Chen and Yao [17].

Definition 3.1. (Converge Uniformly on Compact Sets (See Chen and Yao [17])) For

any ω ∈ Ω, we say that X̄n(ω, t) converges uniformly on compact sets (u.o.c.) to

X̄(ω, t), if sup0≤t≤T |X̄n(ω, t)− X̄(ω, t)| converges to 0 for all T > 0 as n→∞.

A direct application of the functional strong law of large numbers (see e.g. [8], [17]

and [41]) to Poisson arrival processes yields

Āni (t) :=
Ai(nt)

n

a.s.−→ λit u.o.c. as n→∞, i = 1, 2, (3.1)

where a.s. indicates that the convergence is almost surely.

As users from a class accumulate in the system, the users from the other class are

more likely to match upon their arrival. This implies that class-1 and class-2 users

are unlikely to accumulate in the system at the same time. Lemma 3.2 formalizes this

argument.

Lemma 3.2. For any fixed k > 0, min{X1(nt)
nk

, X2(nt)
nk
} a.s.−→ 0 u.o.c. as n→∞.

Proof. If q = 1, since class-1 and class-2 do not co-exist in the system, for any t ≥ 0,

min{Xn
1 (t), Xn

2 (t)} = 0, and hence the desired conclusion follows trivially. If 0 < q < 1,

to simplify the notation, define In,k(t) := min(X1(nt)
nk

, X2(nt)
nk

), choose an a ∈ (0, k) and
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let λ = λ1 + λ2. Then for m ≤ n2 − 1 ∈ N, we have

P

 sup
0≤t≤m+1

n2

In,k(t) ≥ n−a| sup
0≤t≤ m

n2

In,k(t) < n−a


= P

 sup
m
n2
≤t≤m+1

n2

In,k(t) ≥ n−a| sup
0≤t≤ m

n2

In,k(t) < n−a


= P

 sup
m
n2
≤t≤m+1

n2

min(X1(nt), X2(nt)) ≥ nk−a| sup
0≤t≤ m

n2

min(X1(nt), X2(nt)) < nk−a


≤
∞∑
j=0

e−
λ
n2 ( λ

n2 )j

j!
jrn

k−a
(3.2)

=
λ

n2
rn

k−a
.

We see that the inequality (3.2) holds using the following argument. For both X1(nt)

and X2(nt) to reach a level above nk−a at some point during [m
n2 ,

m+1
n2 ], at least one

of the arrivals occurring during [m
n2 ,

m+1
n2 ] should fail to match and stay in the system

upon arrival when facing at least bnk−ac users from the other user queue (where bxc

is the smallest interger no smaller then x). If we observe j arrivals during this time
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frame, the probability of this event is bounded by jrn
k−a

. Then, for any fixed T > 0,

P

(
sup

0≤t≤T
In,k(t) ≥ n−a

)

= P

 sup
0≤t≤T

In,k(t) ≥ n−a| sup
0≤t≤T− 1

n2

In,k(t) < n−a

P

 sup
0≤t≤T− 1

n2

In,k(t) < n−a


+ P

 sup
0≤t≤T

In,k(t) ≥ n−a| sup
0≤t≤T− 1

n2

In,k(t) ≥ n−a
P

 sup
0≤t≤T− 1

n2

In,k(t) ≥ n−a


≤ P

 sup
0≤t≤T

In,k(t) ≥ n−a| sup
0≤t≤T− 1

n2

In,k(t) < n−a


+ P

 sup
0≤t≤T− 1

n2

In,k(t) ≥ n−a


≤
Tn2∑
m=0

P

 sup
0≤t≤m+1

n2

In,k(t) ≥ n−a| sup
0≤t≤ m

n2

In,k(t) < n−a


≤

Tn2∑
m=0

λ

n2
rn

k−a
= Tλrn

k−a

For any ε > 0, there exists an Nε, such that for n ≥ Nε such that

P

(
sup

0≤t≤T
In,k(t) ≥ ε

)
≤ ε,

which implies In,k(t)
P−→0 u.o.c. Furthermore,

∞∑
n=1

P

(
sup

0≤t≤T
In,k(t) ≥ n−a

)
≤ Tλ

∞∑
n=0

rn
k−a

<∞.

For any ε > 0 choosing N ≥ 1, such that for N−a < ε, we obtain

∞∑
n=1

P

(
sup

0≤t≤T
In,k(t) > ε

)

=
N−1∑
n=1

P

(
sup

0≤t≤T
In,k(t) > ε

)
+
∞∑
n=N

P

(
sup

0≤t≤T
In,k(t) > ε

)

≤
N−1∑
n=1

P

(
sup

0≤t≤T
In,k(t) > ε

)
+
∞∑
n=N

P

(
sup

0≤t≤T
In,k(t) ≥ n−a

)
<∞
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Using Borel-Cantelli lemma we get

P

(
sup

0≤t≤T
In,k(t) > ε infinitely often

)
= 0,

and In,k(t) = min
(
X1(nt)
nk

, X2(nt)
nk

)
a.s.−→ 0 u.o.c.

Theorem 3.3. X̄n
i (t)

a.s.−→ X̄i(t) u.o.c. as n→∞, where

X̄i(t) = λit−min(λ1, λ2)t, i = 1, 2.

Proof. Equation (3.1) and Lemma 3.2 imply that there exists a Ω′ ⊂ Ω with P(Ω′) = 1

where for every ω ∈ Ω′,

Ai(ω, nt)

n
→ λit u.o.c.

min

(
X1(ω, nt)

n
,
X2(ω, nt)

n

)
→ 0 u.o.c.

for all t ≥ 0 and i = 1, 2. Our first goal is to show M̄n(ω, t) := M(nt)
n → min(λ1t, λ2t)

u.o.c. as n→∞ for all t ≥ 0 and ω ∈ Ω′. Suppose that there exists some ω′ ∈ Ω′ which

this statement does not hold and without loss of generality assume λ1 ≥ λ2. Also, we

know that the number of matchings is always bounded by the number of arrivals as

M(ω, t) < min(A1(t), A2(t)) for all t ≥ 0. These imply that there exists a δ > 0, Nδ > 0

sequences nj →∞ as j →∞ and 0 ≤ tj ≤ T such that λ2tj−M̄nj (ω, tj) > δ for all j >

Nδ. Boundedness of tj and M(ω, 0) = 0 also implies that there exists a subsequence

tjk → t′ > 0. For any ε > 0, we can choose Nε such that for every k > Nε we have∣∣∣Ai(njk tjk )

njk
− λitjk

∣∣∣ < ε
2 for i = 1, 2 and |tjk − t′|< ε

2(λ1−λ2) , which in turn implies

A1(njktjk)

njk
− M(njktjk)

njk
=
A1(njktjk)

njk
− M(njktjk)

njk
− (λ1 − λ2)(tjk − t

′)

+ (λ1 − λ2)(tjk − t
′)

> λ2tjk −
M(njktjk)

njk
+ (λ1 − λ2)t′ − ε

> δ − ε+ (λ1 − λ2)t′.
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Similarly, we also get

A2(njktjk)

njk
− M(njktjk)

njk
> δ − ε.

Letting ε→ 0, we get

min{X1(ω, njktjk)

njk
,
X2(ω, njktjk)

njk
} > δ,

which contradicts with Lemma 3.2 and proves M̄n(t)
a.s.−→ min{λ1t, λ2t} u.o.c. as n goes

to ∞ for all t ≥ 0. Then the result follows using continuous mapping theorem ([17],

Theorem 5.2).

3.3.2 Diffusion Limits

Fluid limits provide useful approximations to determine how queue lengths grow, how-

ever they fail to represent the stochastic fluctuations. To understand the fluctuations

of sample paths around the fluid limit, we now focus on diffusion approximations. A

direct application of functional central limit theorem (see e.g. Theorem 5.7 in [17]) on

Poisson arrival streams we get

Âni (t) :=
Ai(nt)− nĀi(t)√

n
⇒ Âi(t), i = 1, 2, (3.3)

where Âi =
√
λiBi, Bi(t), i = 1, 2, is independent one-dimensional standard Brownian

motions and “⇒”denotes weak convergence with respect to the Skorokhod topology.

We define the process

X̂n
i (t) =

Xi(nt)− X̄i(nt)√
n

.

Now we state the result of diffusion limits for probabilistic matching systems when

the matching probability is kept constant, which shows that the diffusion limits are

independent of the matching probability q.

Theorem 3.4. As n→∞, X̂n
i ⇒ X̂i, i = 1, 2, where X̂i is defined as:

1. If λ1 = λ2, X̂i = Âi −min(Â1, Â2), i = 1, 2.

2. If λ1 > λ2, X̂1 = Â1 − Â2, X̂2 = 0.
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Proof. We first consider the case when λ1 = λ2 = λ. Define M̂n(t) := M(nt)−λnt√
n

.

Using Skorokhod representation theorem (Theorem 5.1 in [17]) there exists versions of

Ai(t), Âi(t) and Bi(t), i = 1, 2, which we denote A′i(t), Â
′
i(t) and B′i(t), i = 1, 2, and

matching and scaled processes M(t) and Ân
′
i (t), i = 1, 2 associated with these versions

such that Ân
′
i (t)

a.s.−→ Â′i(t) =
√
λB′i(t), i = 1, 2. Lemma 3.2 implies min(Ân

′
1 (t) −

M̂n′(t), Ân
′

2 (t)− M̂n′(t))
a.s.−→ 0 u.o.c. Proceeding in the same manner as in the proof of

Theorem 3.3, we get M̂n′ a.s.−→ min(Â′1, Â
′
2). Applying the continuous mapping theorem

(Theorem 5.2 in [17]) the result follows for λ1 = λ2 = λ.

When λ1 > λ2, let τm = inf{t ≥ 0 : A2(t) ≥ m} and define a sequence of random

variables {ξm}m≥1 such that

ξm =


1, the m-th arriving user-2 finds a match successfully upon her arrival,

0, otherwise.

We have τm → ∞, as m → ∞, and for any m ≥ 1,
∑A2(t)

m=1 ξm ≤ M(t). Generate

a sequence of a uniform random variables {Um}m≥1 such that Um ∼ U(0, 1), then

assuming 00 = 1, we have

P(ξm = 0) = P(Um < (1− q)X1(τm))

≤ P(Um < (1− q)A1(τm)−m)

= E[P(Um < (1− q)A1(τm)−m|A1(τm))]

= E[((1− q)A1(τm)−m) ∧ 1].

Next we show that there exists an M > 0 and c > 0 such that for any m ≥M ,

E[(1− q)A1(τm)−m] < (1− q)cm.

For any c1 such that 1 < c1 <
λ1
λ2

we have, as t→∞, A1(t)
t − c1

A2(t)
t

a.s.−→ λ1− c1λ2, i.e.,

there exists a T > 0, such that for any t > T , A1(t) − c1A2(t) > (λ1−c1λ2)t
2 a.s. Since
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τm →∞, there exists an M > 0 such that for any m ≥M , we have τm > T and

A1(τm)− c1A2(τm) = A1(τm)− c1m >
(λ1 − c1λ2)

2
τm > 0 a.s.

Choosing c = c1 − 1 we have E[(1− q)A1(τm)−m] < (1− q)cm and

∞∑
m=0

P(ξm = 0) =
∞∑
m=0

P(Um < rX1(T2(m))) <
∞∑
m=0

rcm <∞.

Using Borel-Cantelli Lemma, P(ξm = 0 infinitely often) = 0 which in turn implies

X̂n
2 (t) =

A2(nt)−M(nt)√
n

a.s.−→ 0.

Finally, we have

X̂n
1 (t) =

A1(nt)−M(nt)√
n

− (λ1 − λ2)nt√
n

=
A1(nt)− λ1nt√

n
− A2(nt)− λ2nt√

n
− A2(nt)−M(nt)√

n
.

Hence, the result follows from the continuous mapping theorem.

We conclude that when the matching probability q is kept as a constant in the

diffusion approximation, it is absent in both the fluid limits and the diffusion limits.

Moreover, we can compare our results with those of an M/M/1 queue. When the

arrival rates in probabilistic matching systems are not equal, the fluid and diffusion

limits of queue length process i behaves in accordance with that of an M/M/1 queue

with arrival rate λi and service rate λj (see Chen and Yao (2001) [17] for more details).

When the arrival rates are identical, the diffusion limits are distinct from those of

an M/M/1 queue, due to the fact that in a probabilistic matching system, the next

arriving user i is possible to be matched immediately upon arrival which indicates that

the accumulation of user j when no user i is at present would not be a “waste” unlike

the service time generated in an empty M/M/1 queue. As a result, rather than having

the one-sided reflection mapping of the net-input process, we only have the positive

sign of the difference between the arrival processes. We suggest that this diffusion
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approximation would fit the system which has a relatively high matching probability

of each pair of users and thus the probability of an arriving user getting matched

increases significantly as the number of users from the other queue grows. However,

the underlying assumption above does not hold in those systems which have a very

small matching probability for each pair of users, because if q is very close to 0, a user

is not so likely to find a match upon arrival even when there are many users in the

other queue.

3.4 Fluid and Diffusion Limits for Systems with Small

Matching Probabilities

The matching probability disappears in the fluid and diffusion limits presented in Sec-

tion 3.3 and this indicates that the systems with matching probability 0 < q < 1 behave

very similar to the systems with matching probability 1. However, in many real world

problems the matching probability q is very small and we need tools that explicitly ad-

dresses the probabilistic nature of the matchings. In this section, we suggest a second

type of diffusion approximation which scales q together with the space and time to get a

better description of the dynamics of those systems with small matching probabilities.

We often observe that the users are impatient and may leave the system without

being matched if they cannot match after waiting for sometime. We include this factor

in the discussion of the queue length process in the new asymptotic regime, adopting

a similar approach to that of Ward and Glynn [39], in which the diffusion limit of an

M/M/1+M queue with small abandonment rate is provided. We assume that each

user has an exponentially distributed abandonment time with rate γ, 0 ≤ γ < ∞,

independent of others, where γ � λi, i = 1, 2. Hence, as we scale space, time and the

matching probability, we also let abandonment rate approach to zero.

3.4.1 Fluid Limits

Let Xn
i (t) to be number of class-i users in a probabilistic matching system where class-i

users arrive according to a Poisson process with λi, users abandon the system if they

do not match after waiting an exponential time γ(n) = γ
n , (0 ≤ γ < ∞), the matching
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probability is q(n) = q
n , 0 < q < 1. Then, we define

X̄s,n(t) :=
Xn
i (nt)

n

to be the scaled system in this regime. Note that we use the small notation s in the

scaled process to indicate that this is the situation of systems with small matching

probability. Now our goal is to show that as n→∞, the scaled system approaches to

the fluid limit X̄s(t), which is the unique solution to the following ordinary differential

equations (ODE):

X̄s
1(0) = X̄s

2(0) = 0, (3.4)

dX̄s
1(t)

dt
= λ1e

−qX̄s
2(t) − λ2(1− e−qX̄s

1(t))− γX̄s
1(t), (3.5)

dX̄s
2(t)

dt
= λ2e

−qX̄s
1(t) − λ1(1− e−qX̄s

2(t))− γX̄s
2(t). (3.6)

Define

F (x) =

(
λ1e
−qx2 − λ2(1− e−qx1)− γx1

λ2e−qx1 − λ1(1− e−qx2)− γx1

)
. (3.7)

Then the equations (3.5)-(3.6) are in the form dx
dt = F (x) = (F1(x), F2(x))ᵀ, where

F (·) is Lipschitz and hence the initial value problem admits a unique solution. We first

show that the solution X̄s(t) is bounded when γ > 0.

Lemma 3.5. Let X̄s(t) = (X̄s
1(t), X̄s

2(t)) be the unique solution to (3.4)-(3.6) and

γ > 0, then

sup
0≤t<∞

X̄s
i (t) < λi/γ, i = 1, 2.

Proof. For any (x1, x2) such that x1 ≥ λ1/γ, we have

F1(x1, x2) = λ1e
−qx2 − λ2(1− e−qx1)− γx1 < λ1 − γx1 ≤ 0.

Using (3.4) this implies that X̄s
1(t) ≤ λ1/γ, for all t. Similar argument also holds for

X̄s
2(t).

When the matching probability is scaled in a way that qn → 0, the techniques we

use to derive fluid and diffusion limits differ from the ones used in Section 3.3. In
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particular, we appeal to the Laplace transform methods where a limiting kernel with

the corresponding Laplace transform is identified (see e.g. [19] for a brief review of these

methods). For this purpose, we need the Lévy kernel for the Markov process X̄s,n(t)

defined as follows:

Kn(x, dy) := λ1n(1− q

n
)nx2δ

(
(y − x)− (

1

n
, 0)

)
dy

+ λ2n(1− q

n
)nx1δ

(
(y − x)− (0,

1

n
)

)
dy

+ (λ1n(1− (1− q

n
)nx2) + γnx2)δ

(
(y − x) + (0,

1

n
)

)
dy

+ (λ2(1− (1− q

n
)nx1) + γnx1)δ

(
(y − x) + (

1,

n
, 0)

)
dy,

where δ(y) is the Dirac delta function. Then, we can define the Laplace transform of

operator Kn(x, dy) as

mn(x, θ) =

∫
(0,∞)×(0,∞)

e〈θ,y〉Kn(x, dy)

= λ1n(1− q

n
)nx2e

θ1
n + λ2n(1− q

n
)nx1e

θ2
n

+ (λ1n(1− (1− q

n
)nx2) + γnx2)e−

θ2
n

+ (λ2n(1− (1− q

n
)nx1 + γnx1)e−

θ1
n . (3.8)

Now, we are ready to state our result for convergence to the fluid limit.

Theorem 3.6. For any δ > 0 and T > 0,

lim sup
n→∞

n−1 logP

(
sup

0≤t≤T
|X̄s,n

i (t)− X̄s
i (t)|> δ

)
< 0 (3.9)

and as n→∞,

X̄s,n
i (t)

a.s.−→ X̄s
i (t) u.o.c.,

where X̄s
i (t), i = 1, 2 is the unique solution to the system of ODE given by (3.4)-(3.6).

Proof. If γ = 0, set S = R≥0 × R≥0 and Tn = T , otherwise choose Ci > λi/γ for

i = 1, 2, and set S = [0, C1] × [0, C2] and Tn = inf{t ≥ 0 : X̄s,n(t) /∈ S} ∧ T . Then,
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Proposition 5.1 in [19] implies

lim sup
n→∞

n−1 logP

(
sup

0≤t≤Tn
|X̄s,n

i (t)− X̄s
i (t)|> δ

)
< 0 (3.10)

if we can show that the following three conditions hold:

(i) There exists a η0 > 0 such that

sup
n

sup
x∈S

sup
|θ|≤η0

mn(x, nθ)

n
<∞

.

(ii) supx∈S

∣∣∣∂mn(x,θ)
∂θ |θ=0−F (x)

∣∣∣→ 0.

(iii) lim supn→∞ n
−1 logP(|X̄s,n

i (0)− X̄s
i (0)|> δ) < 0.

The third condition is trivially satisfied as we assume that a probabilistic matching

system is initially empty and we have X̄s,n(0) = 0 for all n. When γ > 0 the first

condition follows as when x ∈ S for any η0 > 0 and θ ≤ η0 we have

mn(x, nθ)

n
= (λ1(1− (1− q

n
)nx2) + γx2)e−θ2 + (λ2(1− (1− q

n
)nx1) + γx1)e−θ1

+ λ1(1− q

n
)nx2eθ1 + λ2(1− q

n
)nx1eθ2

≤ (λ1 + λ2)eη0 + λ1 + λ2 + γ(C1 + C2).

Similarly, when γ = 0, the supremum can be bounded by (λ1 + λ2)eη0 + λ1 + λ2. To

prove the second condition we write

∂mn(x, θ)

∂θ1

∣∣∣∣
θ1=0

= λ1(1− q

n
)nx2 − (λ2(1− (1− q

n
)nx1) + γx1),

∂mn(x, θ)

∂θ2

∣∣∣∣
θ2=0

= λ2(1− q

n
)nx1 − (λ1(1− (1− q

n
)nx1) + γx2).

Then it is easy to see pointwise convergence ∂mn(x,θ)
∂θ |θ=0→ F (x) and when γ > 0 the

uniform convergence follows from continuity of the functions and compactness of the

underlying set. When γ = 0, to show the uniform convergence we use the definition of

uniform convergence. In particular, we need to show that for any ε > 0, there exists N
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such that when n > N , we have for any x ∈ R≥0, |(1− q
n)nx − e−qx|< ε. First we show

that for any ε > 0, there exists N1 and c such that when n > N1 and x > c, we have

|(1− q
n)nx− e−qx|< ε. We know that ln(1− q

n)n → −q as n→∞. For any δ1 such that

0 < δ1 < q, we can find an N1, s.t., for n > N1, we have x ln(1− q
n)n < x(−q + δ1). As

a result, letting c1 =
ln ε

2
−q+δ1 , when x > c1, we have ln(1− q

n)nx < x(−q + δ1) < ln ε
2 , or

equivalently, (1− q
n)nx < ε

2 . Moreover, we know that as x→∞, e−qx → 0. We can find

a c2 such that when x > c2, e−qx < ε
2 . Letting c = max(c1, c2), the statement follows.

Next, due to compactness and pointwise convergence, we know that for x ∈ [0, c], there

exists an N2 such that for n > N2, we have |(1− q
n)nx − e−qx|< ε. Therefore choosing

N = max(N1, N2) we have the uniform convergence for any x ∈ R≥0. As a result, the

uniform convergence result for our system when γ = 0 follows. Therefore (3.10) follows

from Proposition 5.1 in [19]. When γ = 0, Tn = T a.s., and when γ > 0 from (3.10),

Lemma 3.5 and Ci > λi/γ we conclude that Tn
P−→ T , which implies (3.9). The almost

sure convergence is a simple application of Borel-Cantelli lemma.

When there are abandonments (γ > 0), the right hand sides of (3.5) and (3.6)

involve both e−qx and x terms which makes it difficult to obtain an analytical solution.

However, when the customers do not abandon the system, the ODE can be solved

analytically. Corollary 3.7 presents this special case.

Corollary 3.7. When γ = 0, as n→∞,

X̄s,n
i (t)

a.s.−→ 1

q
ln(eλ1qt + eλ2qt − 1)− λjt u.o.c., i, j ∈ {1, 2}, i 6= j. (3.11)

Proof. Setting γ = 0 and taking the integral of (3.5) and (3.6), we see that

X̄s
1(t) + λ2t = X̄s

2(t) + λ1t =: y(t).

Then, we have

dy(t)

dt
= e−qy(t)(λ1e

λ1qt + λ2e
λ2qt)

and y(0) = 0 which has the unique solution y(t) = 1
q ln(eλ1qt + eλ2qt− 1) and the result

follows.
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In [12], certain performance measures are proven to be independent of the matching

probability q under some additional control policies. Specifically, Theorem 14 in [12]

states that under some admission control policies where the difference between long

run average queue lengths of class-1 and class-2 users does not depend on the matching

probability q. The following corollary also indicates a similar property even under the

presence of user abandonments.

Corollary 3.8. When γ > 0, as n→∞,

X̄s,n
1 (t)− X̄s,n

2 (t)
a.s.−→ λ2 − λ1

γ
e−γt +

λ1 − λ2

γ
, u.o.c.

Proof. Applying Theorem 3.6 and the continuous mapping theorem, X̄s,n
1 (t)− X̄s,n

2 (t)

converges to the unique solution of

dx(t)

dt
= λ1 − λ2 − γx(t) (3.12)

with initial condition x(0) = 0. Using integrating factors, the solution of this first order

ODE can be obtained as X̄s
1(t)− X̄s

2(t) = λ2−λ1
γ e−γt + λ1−λ2

γ .

Corollary 3.8 implies that when γ > 0, the matching probability q does not affect

the difference between the numbers of class-1 and class-2 users in the system. As

t → ∞, this difference converges to λ1−λ2
γ , which coincides with the results of [39] for

M/M/1+M queue with has arrival rate λ1, service rate λ2 and abandonment rate γ > 0.

Next, we analyze the asymptotic behaviour of the fluid limits as time goes to infinity.

Corollary 3.7 assumes γ to be 0 and allows us to compare X̄s(t) with fluid limits X̄(t),

given in Theorem 3.3. Different from X̄(t) which does not carry any information on

the matching probability q, the fluid limits in Corollary 3.7 depends on q. When t is

small, X̄s
i (t) grows for both i = 1 and 2 as q increases. However, as t becomes larger,

the influence of the matching probability becomes weaker. Proposition 3.1 shows that

the fluid limits X̄s(t) converges to X̄(t) as t→∞.

Proposition 3.1. Suppose γ = 0, then as t→∞, |X̄i(t)− X̄s
i (t)|→ 0, t ≥ 0, i = 1, 2.

Proof. Without lost of generality, we assume that λ1 ≥ λ2. Then applying using
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Corollary 3.7 and Theorem 3.3, we have

X̄s
1(t)− X̄1(t) =

1

q
ln(eλ1qt + eλ2qt − 1)− λ1t

= ln(eλ1qt + eλ2qt − 1)
1
q − λ1t

= ln
q
√
eλ1qt + eλ2qt − 1

q
√
eλ1qt

Since λ1 > λ2, we can see that as t → ∞,

∣∣∣∣ q√eλ1qt+eλ2qt−1
q√
eλ1qt

∣∣∣∣ → 1 and this implies

|X̄s
1(t)− X̄1(t)|→ 0.

In other words, we can explain the dynamics of a probabilistic matching system

in the following way: without considering the effect of user abandonments, if each

pair of users gets harder to match with each other, we observe more users waiting in

the system. However if we run the system long enough, the average of numbers of

users in the system only depends on the arrival rates. Next we show that for general

abandonment rate γ ≥ 0, the fluid limits of the queue length processes converge to a

fixed point as t→∞.

Proposition 3.2. If γ > 0, the fluid limit X̄s
i (t) → x∗i , i = 1, 2 as t → ∞, where

x∗i ∈ R satisfies the following set of equations

λ1e
−qx∗2 − λ2(1− e−qx∗1)− γx∗1 = 0, (3.13)

λ2e
−qx∗1 − λ1(1− e−qx∗2)− γx∗2 = 0. (3.14)

Proof. First, we prove that Equations (3.13) and (3.14) have a unique solution. Sub-

tracting the second equation from the first one x∗2 = x∗1 + λ2−λ1
γ and replacing this into

(3.13) we get

λ1e
− q(λ2−λ1)

γ e−qx
∗
1 − λ2(1− e−qx∗1)− γx∗1 = 0.

The left hand side of the equation is decreasing in x∗1, equals to λ1e
− q(λ2−λ1)

γ > 0 if

x∗1 = 0 and goes to −∞ as x∗1 → ∞. Hence, using the intermediate value theorem we

conclude that (3.13) and (3.14) have a unique solution and x∗ = (x∗1, x
∗
2) is the unique

fixed point of the system of equations (3.4)-(3.6).
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When λ1 6= λ2, X̄s(t) solving (3.4)-(3.6) converges to x∗ as t→∞, if we can find a

Lyapunov function V (x) with the following properties (see e.g. Strogatz [37]):

1. V (x) > 0 for all x 6= x∗ and V (x∗) = 0.

2. dV (X̄s(t))
dt < 0 for all x 6= x∗.

Without loss of generality, we assume that λ1 > λ2 and define V (x) = λ1−λ2 +γ(x2−

x1). Writing V (x) as V (x) = λ1e
−qx2−λ2(1−e−qx1)−γx1− (λ2e

−qx1−λ1(1−e−qx2)−

γx2), we have V (x∗) = 0 and V (x) 6= 0 for all x 6= x∗. Applying Corollary 3.8 we have

x1 − x2 <
λ1−λ2
γ and hence, V (x) > 0. The second condition follows as

dV (X̄s(t))

dt
= γ

(
dX̄s

2(t)

dt
− dX̄s

2(t)

dt

)
= λ2 − λ1 + γ(X̄s

1(t)− X̄s
2(t)) = −V (X̄s(t)),

which is negative. Therefore, x∗ is globally asymptotically stable: for all initial condi-

tions, X̄s(t)→ x∗ as t→∞.

When λ1 = λ2 = λ, Corollary 3.8 implies that X̄s
1(t) = X̄s

2(t). Denoting X̃(t) =

X̄s
1(t) = X̄s

2(t) and x̃∗ = x∗1 = x∗2 we need to show that X̃(t)→ x̃∗, t→∞, where X̃(t)

and x̃∗ satisfy the following equations:

X̃(t)

dt
= 2λe−qX̃(t) − λ− γX̃(t), (3.15)

0 = 2λe−qx̃
∗ − λ− γx̃∗ (3.16)

The righthand side of (3.16) is a decreasing function of x̃∗ and can be seen to have

a unique solution. Equation (3.15) defines a gradient system with potential function

U(x) = λx+ 1
2γx

2 + 2λ
q e
−qx, i.e., it can be written as X̃(t)

dt = −5U(X̃(t)) where U(x)

is a continuously differentiable, single valued scalar function. Hence, using Theorem

7.2.1 in Strogatz [37] X̃(t)→ x̃∗, t→∞.

The fixed point x∗ in Proposition 3.2 can be thought of as the long run average

numbers of users in the system. Now, we analyze how x∗ behaves for different values

of the abandonment rate γ. It is reasonable to expect that x∗ should decrease as

abandonment rate increases, which always holds for the user class with the higher
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arrival rate. However, Proposition 3.3 shows that for the class with lower arrival rate

x∗ first increases and then decreases as γ increases.

Proposition 3.3. Suppose λ1 ≥ λ2. Then the long run average number of user-1

x∗1 decreases as the abandonment rate γ increases, while the long run average number

of user-2 x∗2 increases when λ1−λ2
γ >

γx∗1
qλ1(1−e−qx

∗
2 )+qγx∗2

and decrease when λ1−λ2
γ <

γx∗1
qλ1(1−e−qx

∗
2 )+qγx∗2

.

Proof. Manipulating Equation (3.13) to obtain x∗2, substituting in Equation (3.14) and

doing cancellations, we get

ln(λ2(1− e−qx∗1) + γx∗1) = −qx∗1 −
q(λ2 − λ1)

γ
+ lnλ1 (3.17)

Taking the implicit derivative of x∗1 with respect to γ, we obtain

x∗1+γ
dx∗1
dγ

+
γ

q

d

dγ
[ln(λ2(1−e−qx∗1)+γx∗1)]+

ln(λ2(1− e−qx∗1) + γx∗1)

q
− lnλ1

q
= 0. (3.18)

Letting D1 = λ2(1 − e−qx∗1) + γx∗1, D2 = γλ2 + γ2x∗1 + γ2

q and substituting Equation

(3.17) into Equation (3.18) to get rid of the logarithm terms, we get

dx∗1
dγ

=
D1

D2
(
λ2 − λ1

γ
− γx∗1
qD1

) (3.19)

Since D1 and D2 are always positive, when λ1 ≥ λ2, the right hand side of Equation

(3.19) is always negative, and hence as γ increases x∗1 increases. Interchanging x∗1 and

λ1 with x∗2 and λ2 the right hand side of Equation (3.19) is positive when λ1−λ2
γ >

γx∗2
qλ1(1−e−qx

∗
2 )+qγx∗2

and negative when λ1−λ2
γ <

γx∗2
qλ1(1−e−qx

∗
2 )+qγx∗2

. Hence, the conclusion

for x∗2 follows.

Proposition 3.3 shows that as γ increases, the limiting number of users for the class

with lower arrival rate first increases and then decreases and the limiting number of

users for the class with higher arrival rate decreases monotonically, which coincides

with the observation in Figure 3.3. This behaviour can be explained as follows. As the

abandonment rate increases, users from both classes tend to abandon the system a lot

faster and hence the arriving users from the class with lower arrival rate are less likely
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find a match. The decrease in the number of matches is higher than the increase in the

abandonments and as a result we observe a certain level of accumulation in the limit

for users from the class with lower arrival rates.

3.4.2 Diffusion Limits

Now, we move to the discussion on the diffusion limits when the matching probability

and the abandonment rate are both scaled to study the fluctuations of the queue lengths

around the fluid limit X̄s(t). We define

X̂s,n
i (t) =

Xs,n
i (nt)− X̄s

i (nt)√
n

, t ≥ 0.

To prove weak convergence we again use convergence of generators utilizing the tech-

niques in [19].

Theorem 3.9. Suppose X̄s(t) = (X̄s
1(t), X̄s

2(t))ᵀ is the unique solution to the system

of ODEs given by (3.4)-(3.6). Denote

a1(t) = qλ2e
−qX̄s

1(t),

a2(t) = qλ1e
−qX̄s

2(t),

σ1(t) =

√
λ1e−qX̄

s
2(t) + λ2(1− e−qX̄s

1(t)) + γX̄s
1(t),

σ2(t) =

√
λ2e−qX̄

s
1(t) + λ1(1− e−qX̄s

2(t)) + γX̄s
2(t),

and further define z(t) =
∫ t

0 e
γsσ2(s)dB2(s)−

∫
eγsσ1(s)dB1(s), z3(t) = e

∫ t
0 a1(s)+a2(s)ds

and z1(t) = e−
∫ t
0 a1(s)+a2(s)ds

(
−
∫ t

0 z3(s)a2(s)z(s)ds+
∫ t

0 z3(s)eγsσ1(s)dB1(s)
)
. Then

we have X̂s,n(t)⇒ X̂s(t), where X̂s = (X̂s
1(t), X̂s

2(t))

X̂s
1(t) = e−γtz1(t) (3.20)

X̂s
2(t) = e−γt(z1(t) + z(t)). (3.21)
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Proof. Let ∇F (x) =

 ∂F1
x1

∂F1
x2

∂F2
x1

∂F2
x2

 =

 −qλ2e
−qx1 − γ −qλ1e

−qx2

−qλ2e
−qx1 −qλ1e

−qx2 − γ

 ,

σ(x) =

√λ1e−qx2 + λ2(1− e−qx1) + γx1 0

0
√
λ2e−qx1 + λ1(1− e−qx2) + γx2

 ,

and X̄s(t) = (X̄s
1(t), X̄s

2(t))ᵀ is the unique solution to system of ODE given by (3.4)-

(3.6). We first show that X̂s,n(t) ⇒ X̂s(t), where X̂s(t) is the unique solution to the

stochastic differential equation

dX̂s(t) = σ(X̄s(t))dBt +∇F (X̄s(t))X̂s(t)dt, (3.22)

starting from X̂s(0) = (0, 0)ᵀ, where B = (B1, B2)ᵀ is a two-dimensional standard

Brownian motion.

Defining S as in the proof of Theorem 3.6, the weak convergence follows from Lemma

5.5 in [19], if we can show the conditions below hold: (remember that F (x) is defined

as in Equation (3.7)).

(a) F (x) is continuously differentiable on S,

(b) supx∈S
√
n
∣∣∣∂mn(x,θ)

∂θ |θ=0−F (x)
∣∣∣→ 0,

(c) ∂2m(x,θ)
∂θ2

|θ=0 is Lipschitz continuous in x on S, where m(x, θ) is defined by

m(x, θ) = (λ1(1− e−qx2) + γx2)e−θ2 + (λ2(1− e−qx1) + γx1)e−θ1

+ λ1e
−qx2eθ1 + λ2e

−qx1eθ2 .

Condition (a) is trivial and condition (b) reduces to showing
√
n
((

1− q
n

)nx − e−qx)
converges to 0, which is elementary calculus and hence (b) holds as well. Finally

∂2m(x, θ)

∂θ2

∣∣∣∣
θ=0

=

λ1e
−qx2 + λ2(1− e−qx1) + γx1 0

0 λ2e
−qx1 + λ1(1− e−qx2) + γx2


which is Lipschitz on R2

≥0. Using Lemma 5.5 in [19], X̂n ⇒ X̂s as n → ∞, where
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X̂s(t) is the unique solution to the stochastic differential equation (3.22).

Next we show that (3.20) and (3.21) together is the unique solution to (3.22) which

can be expressed as:

dX̂s
1(t) = (−a1(t)− γ)X̂s

1(t)dt− a2(t)X̂s
2(t)dt+ σ1(t)dB1(t)

dX̂s
2(t) = −a1(t)X̂s

1(t)dt− (a2(t) + γ)X̂s
2(t)dt+ σ2(t)dB2(t).

Defining zi(t) = eγtX̂s
i (t), i = 1, 2, we obtain

dz1(t) = eγtdX̂s
1(t) + γeγtX̂s

1(t)dt

= (−a1(t)− γ)eγtX̂s
1(t)dt− eγta2(t)X̂s

2(t)dt

+ γeγtX̂s
1(t)dt+ eγtσ1(t)dB1(t)

= −a1(t)z1(t)dt− a2z2(t)dt+ eγtσ1(t)dB1(t), (3.23)

and similarly dz2(t) = −a1(t)z1dt− a2(t)z2(t)dt+ eγtσ2(t)dB2(t). Furthermore, letting

z(t) = z2(t)− z1(t) we have

dz(t) = eγt(σ2(t)dB2(t)− σ1(t)dB1(t)). (3.24)

Solving Equation (3.24) directly, we obtain that

z(t) =

∫ t

0
eγsσ2(s)dB2(s)−

∫
eγsσ1(s)dB1(s).

Substituting that z2(t) = z(t) + z1(t) into the Equation (3.23), we have

dz1(t) = (−a1(t)− a2(t))z1(t)dt− a2(t)z(t)dt+ eγtσ1(t)dB1(t).

Moving the term of z1(t) to the right hand side, we have

dz1(t) + (a1(t) + a2(t))z1(t)dt = −a2(t)z(t)dt+ eγtσ1(t)dB1(t).
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Multiplying both sides by z3(t) = e
∫ t
0 a1(s)+a2(s)ds, we have

e
∫ t
0 a1(s)+a2(s)dsdz1(t) + (a1(t) + a2(t))e

∫ t
0 a1(s)+a2(s)dsz1(t)dt

= z3(t)(−a2(t)z(t)dt+ eγtσ1(t)dB1(t)),

and thus,

d(z1(t)e
∫ t
0 a1(s)+a2(s)ds) = z3(t)(−a2(t)z(t)dt+ eγtσ1(t)dB1(t)).

As a result z1(t) = e−
∫ t
0 a1(s)+a2(s)ds

(
−
∫ t

0 z3(s)a2(s)z(s)ds+
∫ t

0 z3(s)eγsσ1(s)dB1(s)
)
,

and Xs
1(t) = e−γtz1(t) and Xs

2(t) = e−γt(z1(t) + z(t)) follow.

Theorem 3.9 indicates that if the fluid limit X̄s(t) is given the diffusion limit can

be fully characterized analytically. However, as we have seen in Section 3.4.1, it is not

always possible to analytically solve the ODEs for the fluid limit. In the next section,

we present numerical experiments to study fluid and diffusion limits presented in this

section.

3.5 Numerical Experiments

In Section 3.4, we show that when the matching probability and abandonment rate are

scaled to go to zero along with the time and space, the fluid and diffusion limits can

be expressed as the unique solutions to some systems of ODEs and SDEs which do not

have explicit solutions in general. To gain some insight into the solutions, we study

numerical approximations in this section. We use Euler and Euler-Maruyama method

to obtain numerical solutions of ODEs (3.4)-(3.6) and SDEs (3.22), respectively. (See

Kloeden and Platen [30] for more details.)

To study the fluid limit which is the unique solution to the system of ODEs (3.4)-

(3.6), we apply Euler method with step size h = 10−6. In our first experiment, we

test the effect of the matching probability q on the fluid limits. First we consider the

case λ1 < λ2 by setting λ1 = 200, λ2 = 400, γ = 0.5 and compute the fluid limits

for q = 0.01, 0.02, 0.03. The results are given in Figure 3.1. We observe that for the
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(a) Fluid Limit of User 1 for different q
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(b) Fluid Limit of User 2 for different q

Figure 3.1: Fluid Limits when λ1 < λ2 for various q

class with lower arrival rate, the number of users in the system demonstrates a very

sharp increase at the beginning and then decreases approaching a limit as t goes to

infinity. We see that there is a considerable difference between the number of users

corresponding to different matcing probabilities for this class. On the other hand, the

number of users for the class with higher arrival rate grows monotonically converging to

its supremum as t goes to infinity. Surprisingly, the matching probability does not play

a significant role for this class and the fluid limits corresponding to different matching

probabilities are very close.

To test the case where λ1 = λ2, we performed the same experiment by taking

λ1 = λ2 = 200. Figure 3.2 demonstrates that the number of users for both classes

increase monotonically as t goes to infinity approaching to the supremum, which is

very similar to the behaviour of the class with higher arrival rate when the rates are

not equal. However, in this case the matching probability has a major effect on the

limiting number of users and as q increases the number of users in the system decreases.

Also as q gets larger we see that the number of users increases to its supremum faster

and the fluid limit is steeper.

Next we study how the effect of the abandonment rate γ on the number of users in

the system. In this set of experiments, we set the arrival rates λ1 = 200, λ2 = 400 and

the matching probability q = 0.01 and vary the abandonment rate. Figure 3.3 shows

that the shape of fluid limits are not affected by the changes in the abandonment
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(a) Fluid Limit of User 1 and 2 for different q
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(b) Fluid Limit of User 1 and 2 for different q

Figure 3.2: Fluid Limits when λ1 = λ2 for various q
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(a) Fluid Limit of User 1 for various γ
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Figure 3.3: Fluid Limits when λ1 < λ2 for various γ

rate, i.e., the number of users for the class with lower arrival rate first increases and

then decreases and the number of users for the class with higher arrival rate decreases

monotonically. We also see that when there are abandonments the number of users

for the class with lower arrival rate does not converge to 0 as t goes to infinity. In

agreement with Proposition 3.3, we see that the limiting number of users for the class

with lower arrival rate increases in our experiments as the abandonment rate increases.

Now, we discuss numerical approximation to diffusion limit, which is the unique so-

lution to the system of SDEs (3.22). In our experiments, we apply the Euler- Maruyama

method with the step size h = 10−6. We again start with the case when the arrival

rates are not equal and set λ1 = 200, λ2 = 400. Figures 3.4 and 3.5 demonstrate some
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(a) Diffusion Limit of User 1 for various γ
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(b) Diffusion Limit of User 2 for various γ

Figure 3.4: Diffusion Limits when λ1 < λ2 for various γ
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(a) Diffusion Limit of User 1 for various q
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Figure 3.5: Diffusion Limits when λ1 < λ2 for various q

sample paths. We see that the fluctuations for the class with higher arrival rates are

always bigger. When q is fixed we see that the changes in γ does not have a major effect

on fluctuations. We also see that the fluctuations for the class with lower arrival rate

diminish as t increases. As q increases the fluctuations diminish a lot faster. Finally we

observe in Figure 3.6 that when the arrival rates are equal and set to be λ1 = λ2 = 200,

both queue length processes keep fluctuating as usual.

3.6 Conclusion

In this chapter, we propose two different scalings to obtain fluid and diffusion approx-

imations to the queue length processes of probabilistic matching systems. For the first

approach, the space and time are scaled while the matching probability is kept fixed.
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(a) Diffusion Limit of User 1 for various q
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Figure 3.6: Diffusion Limits when λ1 = λ2 for various q and γ

Under this scaling, the matching probability q does not play any role in the fluid limit

and the minimum of the queue lengths converges to zero. We suggest that this scaling

should be used when the matching probability is considerably high.

The second scaling considers the systems in which the probability to match for

each pair of users is small. The effect of abandonments is also taken into account and

the matching probability and the departure rate are scaled along with time and space

in this regime. The limiting processes enable us to address the matching probability

explicitly. Unfortunately, the resulting system of ODEs cannot be solved analytically in

general, although when there are no abandonments it is possible to obtain an analytical

solution. In Chapter 2, some performance measures were shown to be insensitive to

the matching probability under certain admission control policies. Using fluid limits,

we show that the difference between the average queue lengths of different classes of

users is also independent of the matching probability. We also analyse the asymptotic

behaviour of the fluid limits in this scaling. First we show that when abandonment rate

is zero, the two fluid limits, obtained with and without scaling the matching probability,

converges to each other with time. We further show that when there are abandonments,

the fluid limits converge to a unique fixed point, which represents the long run average

number of users in the system. Conducting analysis on the fixed point, we reveal that

as the abandonment rate increases, the number of users for the class with lower arrival

rate first experiences an increase and then decrease while the number of users for the

class with higher arrival rate decreases monotonically.
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As analytical expressions are not available for fluid and diffusion limits, we resort

to numerical methods to study the corresponding ODEs and SDEs. We observe that

for the class with higher arrival rate, the number of users in the system increases mono-

tonically. On the other hand, the users from the class with lower arrival rate first tend

to accumulate in the system and then decrease to a limit as time goes to infinity. This

limit is different from zero and increases as the abandonment rate increases agreeing

with our theoretical analysis. This indicates that there are always a significant number

of users waiting in the system from both classes.

We believe the fluid and diffusion limits introduced in this chapter will be helpful

in many research directions. For example, the approximations introduced here can be

used to study the performance of admission control policies which are intractable using

exact methods. Another promising research direction which we introduce in the next

chapter is to identify optimal and asymptotically optimal policies to maximize profit

generated by charging users admission fees.



Chapter 4

Optimal Control and Dynamic

Pricing

4.1 Introduction

In this chapter we focus on optimal control and dynamic pricing of probabilistic match-

ing systems. These ideas are presented through an employment portal, an important

example of probabilistic matching systems. The users of an employment portal are

employees and employers and we assume that employees arrive with a larger rate than

employers, i.e., λ1 > λ2. When an employer arrives at the system, she is charged a fee

to enter the system and she makes a decision on whether to join the system based on

the price, the information of the system given to her and her own willingness-to-pay

function. As a consequence, the entry price affects the arrival process of employers.

On the other hand, employees are accepted to the system without paying a fee. After

employees and employers join the system, the dynamics of user behaviour is the same

as described in Chapter 3. In particular we assume that users are impatient and leave

the system after waiting an exponentially distributed time with a strictly positive rate

γ > 0. When an employer abandons the system, the system operator pays a compen-

sation fee a > 0 to the employer. We further assume that employers are not strategic,

i.e., they do not abandon the system simply to earn the compensation fee.

To maximize the profit, the system operator may change the price p at any time

based on the current system state. The entry of an employer brings a profit p to

65
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the system while a compensation fee of a is paid to the employer if she abandons the

system without being matched. In general, the system operator maximizes the profit by

attracting employers to join the system when there is a high probability that an arriving

employer will find a match before she abandons the system. Intuitively speaking, when

there are a large of number of employees in the system it is desirable to accept an

arriving employer. However, if employers accumulate in the system, it might not be

so beneficial to encourage the arriving employer to join the system. As we know that

each employer has a maximum price that she is willing to pay to join the system, we

control the entry of an arriving employer by dynamically setting the entry fee p. In

this chapter, we study the natures of the pricing mechanisms with the objectives to

maximize the expected total profit and the long run average profit respectively.

To define the objective function to maximize the expected total profit, it is crucial

to specify the time horizon under consideration. When the system operator is looking

at the performance of the system in a specific finite time period, the number of users

remaining in the system at the end of the period is sometimes important. We include

this factor by introducing a function based on the number of users left in the system at

terminal time to the objective function. On the other hand, if we are considering the

total profit in the infinite time horizon, it is desirable to bring in a discount factor ρ > 0

or to study the long run average profit. We introduce the formulation to the pricing

problem with respect to different time horizon setting as follows. Let {p(t)}t≥0 be the

pricing process, i.e., p(t) is the entry price for employers at time t, and {Ae2(t)}t≥0

is the counting process of employers accepted to the system influenced by the pricing

process, which is called effective arrival process of employers. As defined in Chapter 3,

{R2(t)}t≥0 is the abandonment process of employers. Given a pricing policy {p(t)}t≥0

and a time horizon T < ∞, the finite horizon problem is to maximize the expected

total profit in [0, T ]:

J(T ) = E
[∫ T

0
(p(t)dAe2(t)− adR2(t)) + h(X1(T ), X2(T ))

]
, (4.1)

where the exact form of h(·, ·) is the terminal cost function to be specified later. On

the other hand, for the infinite horizon problem, we want to maximize the expected
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discounted total profit:

J(∞) = E
[∫ ∞

0
e−ρt(p(t)dAe2(t)− adR2(t))

]
. (4.2)

To study the long run average profit maximization problem, we want to maximize

J(average) = lim
T→∞

1

T
E
[∫ T

0
(p(t)dAe2(t)− adR2(t))

]
. (4.3)

Our goal is to find the optimal pricing policy i.e., {p(t)}t≥0 to maximize (4.1), (4.2)

and (4.3) respectively.

Optimal pricing for queueing systems has been extensively studied in the last

decades. We classify related literature into two streams: optimal pricing for unob-

servable and observable models. Hassin and Haviv [28] provides a detailed discussion

for unobservable and observable models on queues with incentives. In an observable

model, users see how many people are in the system, while in an unobservable model

this information is not revealed.

In the unobservable queueing literature, Bäuerle [6] consider a general control

problem for networks with linear dynamics by using fluid approximation to provide

a lower bound to the stochastic network problem and show the existence of an average-

cost optimal decision rule for scheduling problems in multiclass queueing networks.

Maglaras [34] studies the profit maximizing problem for a multiclass Mn/M/1 queue

with controllable arrival rates, general demand curves, and linear holding costs using a

fluid model relaxation. Ward and Kumar [38] use the solution of an approximating sin-

gular diffusion control problem to construct an admission control policy for an GI/GI/1

queue with impatient customers. Atar and Reiman [5] study a dynamic pricing problem

in finite time horizon in diffusion scale and proves diffusion-scale asymptotic optimal-

ity of a dynamic pricing policy that mimics the behaviour of the Brownian bridge.

Afeche [2] looks at a multi-product M/M/1 queue under a market of heterogeneous

price- and delay-sensitive users with a profit-maximizing objective.

On the other hand, Naor [36] is a pioneer in the area of pricing observable queues.

Chen and Frank [16] introduce the idea of state dependent pricing to Naor’s model
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and show that there is a threshold at which users are prevented to join in the system.

Yildirim and Hasenbein [42] investigate a similar model as Chen and Frank [16] but with

batch arrivals. After solving the pricing problem, Yildirim and Hasenbein formulate the

control problem and determine the optimal admission thresholds for groups of different

sizes implicitly. Borgs et al. [9] is another work which considers Chen and Frank’s

model and provides the first derivation of the optimal threshold in closed form and a

formula for the maximum revenue under the optimal threshold.

In this chapter, we first study the optimal pricing problem for the unobservable

model in Section 4.2 using the idea motivated by the fluid limit discussed in Chapter

3. Then we analyse the state dependent optimal pricing for the observable model in

Section 4.3.

4.2 Unobservable Model

4.2.1 Model Description

Assumptions

In an unobservable model, employers are not informed about the number of employers

and employees in the system upon arrival. They make decisions on whether to join the

system based on the price and their willingness-to-pay function. We start our discussion

by reviewing some standard economic assumptions on how the entry price influences

the arrival rate of employers as introduced by Gallego and Van Ryzin [22].

We assume that the employment portal is operated in a market with imperfect

competition and the effective arrival process of employers is a non-homogeneous Poisson

process whose arrival rate at time t, i.e., λ̃2(t), is influenced by the price p(t) through

a function λ̃2(t) = τ(p(t)). We assume that τ(p) satisfies the following properties:

(i) τ(p) is non-increasing in p,

(ii) there is a one-to-one mapping between p and τ(p) and

(iii) τ(p) has an inverse τ−1(λ̃2).

Following the definition of price set in Gallego and Van Ryzin [22], we assume that the
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price p(t) is selected from from the set of allowable price P ⊆ R≥0. Further we restrict

that τ(p) ≤ λ2 holds for all possible entry prices chosen from P, where λ2 < λ1 is the

largest arrival rate of employers achieved when p = 0. Then the allowable set of arrival

rates is denoted by Λ = {λ̃2 : λ̃2 = τ(p), p ∈ P} ⊆ [0, λ2]. Further, the income rate of

the system at time t can be expressed through a function of the arrival rate,

I(λ̃2(t)) = p(t)λ̃2(t) = τ−1(λ̃2(t))λ̃2(t).

We assume that the income rate function is continuous, bounded, concave and satisfies

I(λ̃2) satisfies limλ̃2→0 I(λ̃2) = 0, so that λ̃∗2 = min{λ̃2 ∈ Λ : I(λ̃2) = maxλ̃2∈Λ I(λ̃2)} is

well-defined. As a consequence, we are changing the control variable from the pricing

process {p(t)}t≥0 to be the arrival rate of employers {λ̃2(t)}t≥0.

Formulation

Recall that the queue length processes of employees and employers are denoted as

{X1(t)}t≥0 and {X2(t)}t≥0, respectively. As each employer abandons the system with

rate γ > 0, we have E[dR2(t)] = E[γX2(t)dt] holds for any t ≥ 0. Therefore, the

expected total profit of the system operator under a pricing policy {p(t)}t≥0 in the

interval [0, T ] can be expressed as follows:

E
[∫ T

0
(p(s)dAe2(s)− adR2(s))

]
= E

[∫ T

0
(p(s)λ̃2(s)− aγX2(s))ds

]
= E

[∫ T

0
(I(λ̃2(s))− aγX2(s))ds

]
.

Define the terminal cost function as h(x1, x2) = cx2, where c ≤ 0. The finite horizon

problem is to find a set of solutions {λ̃2(t)}0≤t≤T to achieve the maximum expected

profit J(T ), where

J(T ) = E
[∫ T

0
(I(λ̃2(t))− aγX2(t))dt+ cX2(T )

]
. (4.4)



Chapter 4. Optimal Control and Dynamic Pricing 70

For the infinite horizon problem, the discounted cost objective function can be expressed

as

J(∞) = E
[∫ ∞

0
e−ρt(I(λ̃2(t))− aγX2(t))dt

]
. (4.5)

Fluid Optimization Problem

An exact study of probabilistic matching systems as introduced in Chapter 2 implies

that the queue length process is intractable and so are the control problems 4.4 and 4.5

defined above. Therefore we look for the optimal control in the limiting regime.

In many real world problems the matching probability for each pair of employees

and employers is fairly small. Motivated by the idea of fluid approximations for systems

with small matching probability that is introduced in Theorem 3.6 in Chapter 3, we

therefore suggest to approximate the queue length processes {X1(t)}t≥0 and {X2(t)}t≥0

by the deterministic processes {x1(t)}t≥0 and {x2(t)}t≥0, respectively, where x1(t) and

x2(t) are the unique solution of the following set of ODEs:

x1(0) = x2(0) = 0, (4.6)

dx1(t)

dt
= λ1e

−qx2(t) + λ̃2(t)e−qx1(t) − λ̃2(t)− γx1(t), (4.7)

dx2(t)

dt
= λ1e

−qx2(t) + λ̃2(t)e−qx1(t) − λ1 − γx2(t). (4.8)

In Section 4.2.2 Section 4.2.3, we solve the finite horizon problem (4.4) and the

infinite horizon problem (4.5) respectively subject to the system equations (4.6)-(4.8).

For notational convenience in later sections, here we denote

x(t) = (x1(t), x2(t))ᵀ,

h(x(T )) = cx2(T ), c ≤ 0,

g(x(t), λ̃2(t)) = I(λ̃2(t))− aγx2(t),

f1(x(t), λ̃2(t)) = λ1e
−qx2(t) + λ̃2(t)e−qx1(t) − λ̃2(t)− γx1(t),

f2(x(t), λ̃2(t)) = λ1e
−qx2(t) + λ̃2(t)e−qx1(t) − λ1 − γx2(t)

f(x(t), λ̃2(t)) = (f1(x(t), λ̃2(t)), f2(x(t), λ̃2(t))ᵀ.
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4.2.2 Deterministic Finite Horizon Problem

In this section, we solve the deterministic finite horizon optimal control problem. Specif-

ically, we look for an admissible control trajectory {λ̃2(t)|t ∈ [0, T ]} which together with

its corresponding state trajectory {xλ̃2(t)|t ∈ [0, T ]}, solves the following problem:

max
λ̃2

JD(T ) =

∫ T

0
g(x(t), λ̃2(t))dt+ h(x(T ))

s.t.


x(0) = (0, 0),

dxi(t)
dt = fi(x(t), λ̃2(t)), i = 1, 2, 0 ≤ t ≤ T.

(4.9)

This is a standard continuous-time optimal control problem, which can be solved

by the method of The Pontryagin Minimum Principle. Now we introduce the concepts

of Hamiltonian function, adjoint equation and Pontryagin Minimum Principle.

The Hamiltonian function that maps triplets (x, λ̃2, ψ) ∈ R2×R×R2 to real numbers

is given by

H(x, λ̃2, ψ) := g(x, λ̃2) + ψᵀf(x, λ̃2), (4.10)

where ψ, which is called adjoint variable. We suppose that ψ is a solution to the

following system of linear differential equations:

ψi(t)

dt
= −∇xiH(x∗(t), λ̃∗2(t), ψ(t)), i = 1, 2, (4.11)

where {(x∗(t), λ̃∗2(t))|t ∈ [0, T ]} is an optimal state and control trajectory. The Mini-

mum principle is stated as follows.

Theorem 4.1 (Minimum Principle (Bertsekas [7])). Let {λ̃∗2(t)|t ∈ [0, T ]} be an optimal

control trajectory and let {x∗(t)|t ∈ [0, T ]} be the corresponding state trajectory. Let

ψ(t) be the solution of the adjoint equation defined by (4.11) with boundary condition

ψ(T ) = 5h(x∗(T )),
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where h(·) is the terminal cost function. Then for all t ∈ [0, T ],

λ̃∗2(t) = arg max
λ̃2∈Λ

H(x∗(t), λ̃2, ψ(t)). (4.12)

In our optimal control problem (4.9), the objective function is concave and the

system equations satisfy Lipschitz and continuous conditions, we can easily show the

existence of an optimal solution. (See Proposition 2.1 in Bertsekas [7] for more details.)

Next we state our main result of the optimal solution to the deterministic control

problem.

Theorem 4.2. Let {λ̃∗2(t)}t∈[0,T ] with its corresponding state trajectory {x∗(t)}t∈[0,T ]

be an optimal solution for the problem (4.9). Then {λ̃∗2(t)}t∈[0,T ] and {x∗(t)}t∈[0,T ]

satisfies

λ̃∗2(t) = arg max
λ̃2∈Λ

(I(λ̃2) + λ̃2((ψ1(t) + ψ2(t))e−qx
∗
1(t) − ψ1(t))), (4.13)

where ψ(t) = (ψ1(t), ψ2(t))ᵀ solves the systems of ODE:



ψ1(t)
dt = γψ1(t) + (ψ1(t) + ψ2(t))λ̃∗2(t)qe−qx

∗
1(t)

ψ2(t)
dt = γ(a+ ψ2(t)) + (ψ1(t) + ψ2(t))λ1qe

−qx∗2(t)

ψ1(T ) = 0,

ψ2(T ) = c.

(4.14)

Proof. Let ψ(t) = (ψ1(t), ψ2(t))T be the adjoint variable corresponding the optimal

solution {λ∗2(t)}t∈[0,T ] and {x∗(t)}t∈[0,T ], then the Hamiltonian function and the adjoint

system are as follows:

H(x, λ̃2, ψ) = I(λ̃2)− aγx2 + ψ1(λ1e
−qx2 + λ̃2e

−qx1 − λ̃2 − γx1)

+ ψ2(λ1e
−qx2 + λ̃2e

−qx1 − λ1 − γx2), (4.15)
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ψ1(t)
dt = −∇x1H(x∗(t), λ̃∗2(t), ψ(t)) = γψ1(t) + (ψ1(t) + ψ2(t))λ̃2qe

−qx∗1(t)

ψ2(t)
dt = −∇x2H(x∗(t), λ̃∗2(t), ψ(t)) = γ(a+ ψ2(t)) + (ψ1(t) + ψ2(t))λ1qe

−qx∗2(t)

ψ1(T ) = ∇x1h(x∗(T )) = 0,

ψ2(T ) = ∇x2h(x∗(T )) = c.

Using the Minimum Principle as stated in Theorem 4.1, we achieve

λ̃∗2(t) = arg max
λ̃2(t)∈Λ

(I(λ̃2(t)) + λ̃2(t)((ψ1(t) + ψ2(t))e−qx
∗
1(t) − ψ1(t))). (4.16)

Theorem 4.2 provides a way of finding an optimal solution to the deterministic

finite horizon problem. Looking at Equation (4.13), we notice that the function to

be maximized consists of two parts, a concave function I(λ̃2) and a linear term, and

hence is a concave function. Therefore it has a unique solution depending on the

definition of the rate income function I(λ̃2) as introduced in Section 4.2.1. We thus

can express the optimal control λ̃2(t) in terms of the adjoint variable ψ(t) for a certain

income rate function. Substituting this expression into the adjoint system defined

by (4.14) and the system function in (4.9), we can then solve the system and then

obtain the optimal solution. Corollary 4.3 presents the solution for a special case when

the terminal function is defined to be 0 and the income rate function is defined as

I(λ̃2(t)) = (λ2 − λ̃2(t))λ̃2(t).

Corollary 4.3. When the income rate function is defined as I(λ̃2(t)) = (λ2−λ̃2(t))λ̃2(t),

the optimal solution {λ̃∗2(t)}t∈[0,T ] and its corresponding state trajectory {x∗(t)}t∈[0,T ]

satisfy

λ̃∗2(t) =


λ2, if b(t) > λ2,

1
2b(t), if 0 ≤ b(t)

2 ≤ λ2,

0, if b(t) < 0,

(4.17)

where b(t) = λ2 + [(ψ1(t) + ψ2(t))e−qx
∗
1(t) − ψ1(t)] and ψ1(t), ψ2(t) solves the adjoint

system (4.14).
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Proof. Substituting I(λ̃2(t)) = (λ2 − λ̃2(t))λ̃2(t) in to the Equation (4.13), then

λ̃∗2(t) = arg max
λ̃2(t)∈Λ

((λ2 − λ̃2(t))λ̃2(t) + λ̃2(t)((ψ1(t) + ψ2(t))e−qx
∗
1(t) − ψ1(t)))

= arg max
λ̃2(t)∈Λ

(−λ̃2(t)2 + λ̃2(t)(λ2 + ((ψ1(t) + ψ2(t))e−qx
∗
1(t) − ψ1(t))))

= arg max
λ̃2(t)∈Λ

(−λ̃2(t)2 + λ̃2(t)b(t))

It is trivial that the concave function −λ̃2(t)2 + λ̃2(t)b(t) achieve its maximum at either

its extreme points 0 or λ2 or 1
2b(t). Hence the result as desired follows.

Corollary 4.3 presents an example of finding an optimal solution to the control

problem for a special simply defined income rate function. For any other income rate

function which satisfies the assumptions introduced in Section 4.2.1, we can use similar

method to find the optimal solution. Next we discus the infinite horizon problem.

4.2.3 Deterministic Infinite Horizon Problem

In this section, we discuss the deterministic infinite horizon optimal control problem.

Distinct from the finite horizon problem discussed in Section 4.2.2, in the infinite hori-

zon problem the terminal cost function h(X2(T )) is no longer present in the objective

function. Rather, we have a discount factor ρ > 0. Specifically, we find an admissible

control trajectory {λ̃2(t)|t > 0} which together with its corresponding state trajectory

{xλ̃2(t)|t > 0}, solves the following problem.

max
λ̃2

JD(∞) =

∫ ∞
0

e−ρtg(x(t), λ̃2(t))dt

s.t.


x(0) = (0, 0),

dxi(t)
dt = fi(x(t), λ̃2(t)), i = 1, 2.

(4.18)

In the infinite horizon problem, the Minimum Principle does not apply directly, due

to the fact that there is no boundary condition on the adjoint variable ψ for the control

problem as it is in the finite horizon problem. A detailed discussion on the infinite

horizon problem in Aseev and Kryazhimskii [3] sheds light on a solution for the above

question. First we discuss the existence of a solution to the problem.
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Existence of the Optimal Solution

Before discussing the optimal solution of an infinite horizon control problem, we first

need to check if there exists an optimal solution. Theorem 2.1 in [3] shows that if

Condition (C1)-(C3) stated below are satisfied then an optimal solution exists.

(C1) There exists a C0 ≥ 0 such that for any x ∈ R2, λ̃2 ∈ Λ,

〈x, f(x, λ̃2)〉 ≤ C0(1 + ‖x‖2). (4.19)

(C2) The control system in the optimization problem (4.18) is affine in control, i.e., it

can be represented as

dxi(t)

dt
= ξi(x(t)) + ζi(x(t))λ̃2(t), i = 1, 2.

(C3) There exist positive functions µ and ω on [0,∞) such that µ(t)→ +0 and ω(t)→

+0 as t→∞ and, for every admissible pair (x, λ̃2), the following inequalities hold

for any t > 0 and T > 0,

e−ρt max
λ̃2∈Λ
|g(x(t), λ̃2)|≤ µ(t), (4.20)

∫ ∞
T

e−ρt|g(x(t), λ̃2(t))|dt ≤ ω(T ), (4.21)

We first state our result then check the conditions above in the proof.

Theorem 4.4. There exists an optimal solution to Problem (4.18).

Proof. Now we check the above conditions (C1) -(C3). First we know that

〈x, f(x, λ̃2)〉 = λ1x1e
−qx2 + λ̃2x1e

−qx1 − λ̃2x1 − γx2
1

+ λ1x2e
−qx2 + λ̃2x2e

−qx1 − λ1x2 − γx2
2.

Since limx→∞ e
−qx = 0 and limx→0 e

−qx = 1, then for any x = (x1, x2) ∈ R2
+ ∪ {(0, 0)},
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there exists C1, such that

λ1x1e
−qx2 + λ̃2x1e

−qx1 ≤ C1x
2
1,

λ1x2e
−qx2 + λ̃2x2e

−qx1 ≤ C1x
2
2.

In addition, for any x = (x1, x2) ∈ R2
+ ∪ {(0, 0)}, there exists C2, such that

−λ̃2x1 − γx2
1 ≤ C2x

2
1,

−λ1x2 − γx2
2 ≤ C2x

2
2.

Letting C0 = max(C1, C2), Equation 4.19 in condition (C1) holds. Second, let

(ξ1(x(t)), ξ2(x(t))) = (λ1e
−qx2(t) − γx1(t), λ1e

−qx2(t) − γx2(t)− λ1)

and

(ζ1(x(t)), ζ2(x(t))) = (e−qx1(t) − 1, e−qx1(t)).

Then we can write

dxi(t)

dt
= ξi(x(t)) + ζi(x(t))λ̃2(t), i = 1, 2,

and hence (C2) is satisfied. Third, using a similar method as in the proof of Lemma 3.5

in Chapter 3, we can show that x(t) in the control problem (4.18) is bounded from

both below and above. This together with the fact that I(·) satisfies the assumptions

introduced in Section 4.2.1 implies that there exists a constant C such that for any

t ≥ 0,

max|g(x(t), λ̃2(t))|= max|I(λ̃2(t))− aγx2(t)|≤ C.
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Letting µ(t) = Ce−ρt, Equation (4.20) in condition (C3) is satisfied. Further,

∫ ∞
T

e−ρt|g(x(t), λ̃2(t))|dt ≤ C
∫ ∞
T

e−ρtdt

= −C
ρ

(0− e−ρT )

=
C

ρ
e−ρT

Letting ω(t) = C
ρ e
−ρT , the Equation (4.21) in Condition (C3) holds. Consequently,

applying the result in Theorem 2.1. in Aseev and Kryazhimskii [3], there exists an

optimal solution to the infinite horizon problem 4.18.

Theorem 4.4 ensures that there exists an optimal solution for the infinite horizon

control problem 4.18. Next we discuss the properties of an optimal solution.

Properties of an Optimal Solution

Now we discuss some important properties of an optimal solution. To facilitate our

discussion, we give the definitions of the Hamiltonian function, the normalised funda-

mental matrix of the linear system of differential equations corresponding to the infinite

horizon optimal control problem and its adjoint system as follows. For infinite opti-

mal control problem (4.18) the Hamilton function H∞ : R2 × [0,∞)× Λ× R2 and the

Hamiltonian H∗∞ : R2 × [0,∞)× R2 are defined as:

H∞(x, t, λ̃2, ψ) = e−ρtg(x, λ̃2) + ψᵀf(x, λ̃2),

H∗∞(x, t, ψ) = max
λ̃2∈Λ

H∞(x, t, λ̃2, ψ),

where ψ is the adjoint variable. For a given admission pair (x, λ̃2), the normalised funda-

mental matrix of the linear system of differential equations: Yx,λ̃2(t) =

 y11(t) y12(t)

y21(t) y22(t)


for the whole infinite horizon [0,∞) is defined as

 dy11(t)
dt

dy12(t)
dt

dy21(t)
dt

dy22(t)
dt

 =

 df1(x(t),λ̃2(t))
dx1

df1(x(t),λ̃2(t))
dx2

df2(x(t),λ̃2(t))
dx1

df2(x(t),λ̃2(t))
dx2


 y11(t) y12(t)

y21(t) y22(t)

 .
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The normalised fundamental matrix of the corresponding adjoint system

Zx,λ2(t) =

 z11(t) z12(t)

z21(t) z22(t)


is defined as dz11(t)

dt
dz12(t)
dt

dz21(t)
dt

dz22(t)
dt

 = −

 df1(x(t),λ̃2(t))
dx1

df2(x(t),λ̃2(t))
dx1

df1(x(t),λ̃2(t))
dx2

df2(x(t),λ̃2(t))
dx2


 z11(t) z12(t)

z21(t) z22(t)

 .

Then for any t ≥ 0, Y ᵀ
x,λ̃2

(t) = Z−1

x,λ̃2
(t).

Before we present the result of an optimal solution, we state three more conditions

introduced in [3] in addition to Conditions (C1)-(C3) and show that all of them are

satisfied in our system.

(C4) There exists constants κ1 and κ2 such that for any x ∈ R2 and λ̃2 ∈ Λ,

∥∥∥∥∥∂g(x, λ̃2)

∂x

∥∥∥∥∥ ≤ κ1(1 + ‖x‖κ2). (4.22)

(C5) There exists numbers k ∈ R, k1, k2, k3 ≥ 0 such that for any t ≥ 0, any admissible

pair (x, λ̃2) satisfies the conditions

‖x(t)‖≤ k1 + k2e
kt (4.23)

and

‖Y(x,λ̃2)(t)‖≤ k3e
kt (4.24)

(C6) The following inequality holds

ρ > (κ2 + 1)k. (4.25)

Theorem 4.5. Let (x∗, λ̃∗2) be an optimal admissible pair in problem 4.18. Then there

exists an adjoint variable ψ such that the following conditions hold:

(i) the optimal admissible pair (x∗, λ̃∗2) together with the adjoint variable ψ satisfies the
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maximum principle in the normal form in the infinite interval [0,∞):


dψ1(t)
dt = e−ρtaγψ1(t) + (ψ1(t) + ψ2(t))λ̃∗2(t)qe−qx

∗
1(t)

dψ2(t)
dt = e−ρtaγψ2(t) + (ψ1(t) + ψ2(t))λ1qe

−qx∗2(t),

H∗∞(x∗(t), t, ψ(t)) = H∞(x∗(t), t, λ̃∗2(t), ψ(t));

(ii) the optimal admissible pair (x∗, λ∗2) together with the adjoint variable ψ satisfies

the normal form stationarity condition for any t ≥ 0:

H∗∞(x∗(t), t, ψ(t)) = ρ

∫ ∞
t

e−ρsg(x∗(s), λ̃∗2(s))ds

= ρ

∫ ∞
t

e−ρs(I(λ̃∗2(s))− aγx∗2(s))ds

(iii) for any t ≥ 0, the integral Υ∗(t) =
∫∞
t e−ρsY ᵀ

x∗,λ̃∗2
(s)

∂g(x∗(s),λ̃∗2(s))
∂x ds converges

absolutely (i.e., Υ∗(t) <∞), where Yx∗,λ̃∗2
(t) satisfies that

 dy11(t)
dt

dy12(t)
dt

dy21(t)
dt

dy22(t)
dt

 = −

 qλ̃∗2(t)e−qx
∗
1(t) + γ qλ1e

−qx∗2(t)

qλ̃∗2(t)e−qx
∗
1(t) qλ1e

−qx∗2(t) + γ


 y11(t) y12(t)

y21(t) y22(t)

 .

Moreover we have ψ(t) = Z(x∗,λ̃∗2)(t)Υ
∗(t) where Z(x∗,λ̃∗2)(t) satisfies

 dz11(t)
dt

dz12(t)
dt

dz21(t)
dt

dz22(t)
dt

 =

 qλ̃∗2(t)e−qx
∗
1(t) + γ qλ̃∗2(t)e−qx

∗
1(t)

qλ1e
−qx∗2(t) qλ1e

−qx∗2(t) + γ


 z11(t) z12(t)

z21(t) z22(t)

 .

Proof. If Conditions (C1)-(C6) hold, then the conclusion as desired follows from Theo-

rem 12.1 in [3]. In the proof of Theorem 4.4, we have shown that Conditions (C1)-(C3)

hold, here we only need to check (C4)-(C6). In our system,

‖∂g(x, λ̃2)

∂x
‖= ‖(0,−aγ)ᵀ‖,
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and hence for κ1 = |aγ| and κ2 = 0, (C4) holds. Since Y(x,λ̃2)(t) satisfies that

 dy11(t)
dt

dy12(t)
dt

dy21(t)
dt

dy22(t)
dt

 =

 −qλ̃2(t)e−qx1(t) − γ −qλ1e
−qx2(t)

−qλ̃2(t)e−qx1(t) −qλ1e
−qx2(t) − γ


 y11(t) y12(t)

y21(t) y22(t)

 ,

‖Y(x,λ̃2)‖(t) is bounded, i.e., there exists a number k3 such that ‖Y(x,λ̃2)‖≤ k3. This

together with the fact that x(t) is bounded implies that for k = 0, condition (C5) holds.

Since k = 0 and κ = 0, ρ > 0 holds and so does condition (C6). Therefore the results

as desired follow.

Although the infinite horizon optimization problem (4.5) is difficult to solve in

general, Theorem 4.4 guarantees an optimal solution and Theorem 4.5 provides a way

to compute the optimal solution for a specified income rate function. Next we move to

the discussion for the observable model.

4.3 Observable Model

4.3.1 Model Description

This section addresses observable systems, where an employer observes the length of

the queue of employers and employees in the system before making her decision on

whether to join the system. Moreover, the information on the arrival rate of employees,

the matching probability q are known to employers. Our goal is to develop a state

dependent pricing policy for observable systems to maximize the long run average

profit. As the system is observable, the strategy of employers plays an important role

in the pricing. Hence we start our analysis by studying employers’ strategies. For

notational convenience we use the notation r = 1 − q to denote the probability of not

matching for a pair of employees and employers as defined in Chapter 2.

When an employer decides to join the system, she considers the chance of finding

a match either by an immediate match upon arrival or a later match after spending

sometime in the system with a later arriving employee. We assume that the cost of

waiting in the system until finding a match cancels out the value of finding such a
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late match. Therefore employers decide on whether to join the system by evaluating

the instant reward from joining the system. She looks at the number of employees in

the system and evaluates the probability of finding an immediate match upon arrival.

Suppose an immediate match upon arrival brings an employer a reward of R ≥ 0, where

R is a constant. Then when an arriving employer sees x1 employees in the system, she

computes her expected reward from joining in the system as

E[Reward] = (1− rx1)R− p,

where p is the entry price for her to join in the system. This arriving employer joins the

system and pays the system operator a fee p if and only if her expected reward is non-

negative, i.e. E[Reward] ≥ 0. As a consequence, when there are x1 employees in the

system, the maximum entry price a system operator could gain is pmax(x1) = (1−rx1)R.

Therefore, at any time t when there are X1(t) employees in the system, if it is desirable

to accept an arriving employer we charge her

p(t) = pmax(X1(t)) = (1− rX1(t))R. (4.26)

Since any price larger than pmax(X1(t)) will prevent an arriving employer from joining

the system and hence result in a zero profit from her, for notational convenience, we

denote p(t) =∞ whenever it is better to reject an arriving employer. As a consequence,

an optimal pricing strategy essentially tells when it is desirable for an arriving employer

to be accepted or rejected.

We consider the long run average profit problem as defined in Equation (4.3). First

we notice that the expected total profit generated in any time interval [0, T ] is the

sum of the expected profit from each arriving employer during that interval. Defining

V (x1, x2) as the expected profit we gain from an arriving employer when there are x1

employees and x2 employers in the system, we have

V (x1, x2) =


(1− rx1)R− arx1P (x1, x2)), if an arriving employer is accepted,

0, otherwise.

(4.27)
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where P (x1, x2) is the probability that a newly joined employer will abandon the system

when there are x1 employees and x2 employers in the system when she arrives, given

that she cannot find a match upon arrival. Then the long run average profit we consider

in an observable system is

J(average) = lim
T→∞

1

T
E
[∫ T

0
V (X1(t), X2(t))dA2(t)

]
(4.28)

Our aim is to find the optimal V ∗(X∗1 (t), X∗2 (t)) with the corresponding queue length

process {(X∗1 (t), X∗2 (t)} to maximize Equation (4.28). As we see in Equation (4.27),

to compute V (x1, x2) we need to quantify the probability that an arriving employer

abandons the system if she joins, which is very complicated due to the probabilistic

matching structure. Therefore in Section 4.3.2 we analyse a myopic optimal pricing

strategy which guarantees that the system operator receives the optimal amount of

profit at each stage when an employer arrives.

4.3.2 Myopic Pricing

Due to the difficulty in completely quantifying the probability of abandonment P (x1, x2)

in Equation (4.27), a direct analysis on the optimal pricing with respect to the objec-

tive function (4.28) is very complicated. To provide a reasonable pricing scheme, we

discuss the myopic pricing which assumes that the system operator wants to maximize

the profit at each stage when an employer arrives, regardless of what will happen in

the future. With this assumption, we should accept an employer to the system if the

expected profit she brings to the system is positive and reject her otherwise. In partic-

ular, we propose bounds on the numbers of employers and employees in the system at

which arriving employers should be accepted or rejected. The bounds proposed in this

section are based on myopic pricing strategy adopted by system operators.

Assumption 4.6. The system operator adopts a myopic pricing strategy when an

employer arrives, regardless what will happen in the resulting future stages.

Note that under Assumption 4.6, at any time t, the optimal control variable which is

denoted as V m∗(Xm∗
1 (t), Xm∗

2 (t)) together with its corresponding queue length process
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{(Xm∗
1 (t), Xm∗

2 (t))} satisfies the following relationship:

V m∗(Xm∗
1 (t), Xm∗

2 (t)) = max((1− rXm∗
1 (t))R− arXm∗

1 (t)P (Xm∗
1 (t), Xm∗

2 (t)), 0). (4.29)

This essentially means that we accept an arriving employer if she brings a positive

expected profit and reject her otherwise. Through determining pricing strategy, Theo-

rem 4.7 provides bounds on the number of employees at which an arriving employer is

accepted and rejected.

Theorem 4.7. Under Assumption 4.6, the optimal myopic pricing pm∗(t) at time t

satisfies

pm∗(t) =


pmax(Xm∗

1 (t)), if Xm∗
1 (t) ≥ xu1 = logr

R
R+a ,

∞, if Xm∗
1 (t) < xl1 = logr

R
R+a γ

γ+qλ1

,

where pmax(Xm∗
1 (t)) is defined as Equation(4.26).

Theorem 4.7 provides a pricing policy under the assumption of myopic pricing which

tells us that regardless of the number of employers, when the number of employees

reach above xu1 , we should accept an arriving employer; when the number of employees

drops below xl1, we should reject an arriving employer. The case when the number of

employees falls in the interval of [xl1, x
u
1 ] is discussed in Theorem 4.8.

Proof. By Equation (4.29) we know that if

(1− rXm∗
1 (t))R− arXm∗

1 (t)P (Xm∗
1 (t), Xm∗

2 (t)) ≥ 0,

to accept the arriving employer brings a positive profit and hence we should set pm∗(t) =

pmax(Xm∗
1 (t)). Otherwise we should reject the arriving employer by setting the entry

price larger than pmax(Xm∗
1 (t)). Therefore we need to show the following two results: if

Xm∗
1 (t) ≥ xu1 , then (1− rXm∗

1 (t))R − arXm∗
1 (t)P (Xm∗

1 (t), Xm∗
2 (t)) > 0; and if Xm∗

1 (t) <

xl1, then(1− rXm∗
1 (t))R− arXm∗

1 (t)P (Xm∗
1 (t), Xm∗

2 (t)) < 0.
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First if Xm∗
1 (t) ≥ xu1 , we have

(1− rXm∗
1 (t))R− arXm∗

1 (t) ≥ 0.

Since P (X1(t), X2(t)) ≤ 1 holds for any pricing strategy associated with its correspond-

ing queue length process, we have, under the myopic optimal pricing strategy,

(1− rXm∗
1 (t))R− arXm∗

1 (t)P (Xm∗
1 (t), Xm∗

2 (t)) ≥ (1− rXm∗
1 (t))R− arXm∗

1 (t) ≥ 0.

Next we define E1 to be the event that an employer arriving at time t finds a match

after arrival if she joins the system when there are Xm∗
1 (t) employees and Xm∗

2 (t)

employers in the system. Then P (Xm∗
1 (t), Xm∗

2 (t)) = 1 − P(E1). If an employer who

joins in the system does not get matched upon arrival, the only chance that she finds

a match is to match with the later arriving employees who join the system before her

patient time runs out. Conditioning on there are n employees arriving to the system

before her patient time runs out, she need to be able to match at least one of them,

which has a probability 1− rn. Using the law of total probability, we have

P(E1) ≤
∫ ∞

0

∞∑
n=0

(1− rn)
(λ1s)

n

n!
e−λ1sγe−γsds. (4.30)

To simplify the right hand side of Inequality (4.30), we conduct the following compu-

tation:

∞∑
n=0

(1− rn)
(λ1s)

n

n!
e−λ1s =

∞∑
n=0

(λ1s)
n

n!
e−λ1s −

∞∑
n=0

(λ1sr)
n

n!
e−λ1s

= 1−
∞∑
n=0

(λ1sr)
n

n!
e−λ1rseλ1rs−λ1s

= 1− e−λ1qs.
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Therefore, we have

P(E1) ≤
∫ ∞

0
(1− e−λ1qs)γe−γsds

=

∫ ∞
0

γe−γs − γe−λ1qs−γsds

=
λ1q

λ1q + γ
,

and hence P (Xm∗
1 (t), Xm∗

2 (t)) ≥ γ
λ1q+γ

. As a result, when Xm∗
1 (t) < xl1, the inequality

(1−rXm∗
1 (t))R−arXm∗

1 (t)P (Xm∗
1 (t), Xm∗

2 (t)) = 1−(1−rXm∗
1 (t))R−arXm∗

1 (t)(1−P(E1)) <

0 holds and thus, the optimal strategy is to reject the arriving employer by setting

pm∗(t) =∞.

Next, to gain insight about what the optimal strategy should be if the number of

employees lies in the interval between [xl1, x
u
1 ], we indroduce Theorem 4.8. In particular,

it takes the number of employers in to consideration.

Theorem 4.8. Under Assumption 4.6, the optimal myopic pricing pm∗(t) = ∞ if

Xm∗
1 (t) ∈ (xl1, x

u
1) and Xm∗

2 (t) ≥ xu2 , where

xu2 =


max(x ∈ N+ : 1− rXm∗

1 (t)R− arXm∗
1 (t)g(x) > 0), if such x exists

0, otherwise,

g(x) =

(
1 +

h(x)

r

)
γ

λ1q + γ
, x ∈ N+

and

h(x) =


(1− r)2 λ1

λ1+γ
1
2 , x = 1

(1− r)( λ1

λ1+xγ
(1− 1−rx+1

(x+1)q ) +
∑x−1
m=1(

∏x−1
l=m+1

l
λ1+lγ

)λ1γ
x−m

λ1+mγ
(1− 1−rm+1

(m+1)q )), x ≥ 2.

Proof. We prove the theorem by developing another bound on P (Xm∗
1 (t), Xm∗

2 (t)) based

on Xm∗
2 (t). First we define E2 to be the event that the an employer matches with the

first later arriving employee but does not get picked by her given she meets the the first

later arriving employee before her patience time runs out and there are x ≥ 1 other



Chapter 4. Optimal Control and Dynamic Pricing 86

employers in the system when she joins in. Then if x = 1,

P(E2) = (1− r) λ1

λ1 + γ
(1− r)1

2
.

If x ≥ 2,

P(E2) = (1− r) λ1

λ1 + xγ

(
x∑
k=1

(
x

k

)
qkrx−k

k

k + 1

)

+ (1− r)

[
x−1∑
m=1

xγ

λ1 + xγ
· · · (m+ 1)γ

λ1 + (m+ 1)γ

λ1

λ1 +mγ

(
m∑
k=1

(
m

k

)
qkrm−k

k

k + 1

)]

To simplify the expression, we notice that,

m∑
k=1

(
m

k

)
qkrm−k

k

k + 1
=

m∑
k=1

m!

k! (m− k)!
qk(1− q)m−k k

k + 1

=
1

m+ 1

m∑
k=1

(
m+ 1

k + 1

)
qk(1− q)m−kk

(letting l = k + 1) =
1

(m+ 1)q

m+1∑
l=2

(
m+ 1

l

)
ql(1− q)m+1−l(l − 1)

=
1

(m+ 1)q
(
m+1∑
l=2

(
m+ 1

l

)
ql(1− q)m+1−ll

−
m+1∑
l=2

(
m+ 1

l

)
ql(1− q)m+1−l)

= 1− 1− rm+1

(m+ 1)q

Similarly we have
∑x

k=1

(
x
k

)
qkrx−k k

k+1 = 1− 1−rx+1

(x+1)q , and hence P(E2) = h(x) as defined

in the theorem.

Suppose that an arriving employer joins the system when there are Xm∗
2 (t) employ-

ers in the system and she does not get matched upon arrival, and we further assume

that there are n employees arriving the system before she decides to abandon. Then the

probability that this employer abandons the system is larger than the probability that

she does not match with any of these n employees (which is rn) plus the probability

that she matches only with the first arriving employee but does not get picked (which
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is rn−1h(Xm∗
2 (t)). That is, using the law of total probability,

P (Xm∗
1 , Xm∗

2 ) ≥
∫ ∞

0

∞∑
n=0

(rn + rn−1h(Xm∗
2 (t))

(λ1s)
n

n!
e−λ1sγe−γsds.

To simplify this inequality, we first look at the total sum:

∞∑
n=0

(rn + rn−1h(x2(t))
(λ1s)

n

n!
e−λ1s =

(
1 +

h(X2(t))

1− q

) ∞∑
n=0

(rλ1s)
n

n!
eλ1rseλ1rs−λ1s

=

(
1 +

h(X2(t))

1− q

)
e−λ1qs.

Therefore we have

P (Xm∗
1 , Xm∗

2 ) ≥
∫ ∞

0

(
1 +

h(Xm∗
2 )

1− q

)
e−λ1qsγe−γsds

=

(
1 +

h(Xm∗
2 )

1− q

)
γ

λ1q + γ

= g(Xm∗
2 ).

As a consequence, the expected revenue of the arriving employer if she is accepted to

the system can be bounded as

(1− rXm∗
1 (t))R− arXm∗

1 (t)P (Xm∗
1 (t), Xm∗

2 (t))

≤ (1− rXm∗
1 (t))R− arXm∗

1 (t)g(Xm∗
2 (t)).

Since h(x) increases as x increases and so does g(x), for a fixed Xm∗
1 (t), if there exists

an x̃2, such that x̃2 = max(x ∈ N, (1−rXm∗
1 (t))R−arXm∗

1 (t)g(Xm∗
2 (t)) ≥ 0), then for any

Xm∗
2 (t) ≥ x̃2, (1− rXm∗

1 (t))R−arXm∗
1 (t)P (Xm∗

1 (t), Xm∗
2 (t)) ≤ 0, the optimal strategy of

the system controller is to reject the arriving employer and so the optimal entry price

pm∗(t) = ∞; otherwise, if no such x̃2 exists for some Xm∗
1 (t), then for all Xm∗

2 (t) ≥ 0,

the optimal entry price pm∗(t) =∞.

We learn that under the assumption of myopic pricing, when the number of employ-

ees reaches a constant upper bound, we should always accept an arriving employer by
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charging her the maximum price based on the number of employees in the system. On

the other hand, when the number of employees drops below a constant lower bound, we

should reject an arriving employer by setting the entry price to be higher than what she

would like to afford. In addition, if the number of employees in the system is between

the upper and lower bounds, then we turn to the number of employers to adjust the

pricing strategy. In this case, if the number of employers is above a constant upper

bound, then we should reject the arriving employer.

In this section we discuss myopic pricing mechanism which provides a way to max-

imize the profit at each stage. It guarantees that at each stage, we receive the best

possible expected profit. However, to check if the optimal myopic pricing is the optimal

over all pricing strategies, we have to verify Equation (4.29). In particular, we need to

show Equation (4.29) by justifying the following two claims:

(a) V ∗(X∗1 (t), X∗2 (t)) ≥ 0.

(b) Whenever (1− rXm∗
1 (t))R−arXm∗

1 (t)P (Xm∗
1 (t), Xm∗

2 (t)) > 0, V ∗(X∗1 (t), X∗2 (t)) > 0.

To see (a), first we can show that V (x1, x2) increased in x1 and decreases in x2.

Then if a pricing policy π accepts an employer who brings in a negative profit at some

time t0, then this employer results in either an increase in the number of employers or

a decrease in the number of employees. We can define another policy π̃ which follows

the same acceptance or rejection of employers as π at any time expect from t0. Then

before t0, π and π̃ generate the same expected total profit but at t0, π̃ receives a zero

profit but π receives a negative profit. Since π̃ rejects the employer arriving at t0, there

will be at least (at most) as many employees (employers) as in the scenario under π

for any later arriving employer. This guarantees that after t0, π̃ generates at least as

much profit as π. Therefore the total profit generate by π is worse then π̃. As a result,

in the optimal pricing mechanism there is no stage when we accept an employer who

brings in a negative profit.

However it is not so straightforward to check (b), which essentially says that when-

ever an arriving employer brings in a positive profit it is accepted by the optimal mech-

anism. We know that accepting an employer might lead to a decrease of the number

of employees, which might further results in a decrease of price we can set for the next
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arriving employers and the expected profit we gain from her. In addition we need to

know how the probability of abandonment P (x1, x2) is affected by a decrease in x1 and

an increase in x2, before we can draw our conclusion that the optimal myopic pricing

is the optimal pricing. We leave this to be an open question for further research.

4.4 Conclusion

In this chapter we discuss the optimal pricing for probabilistic matching systems with

the objective of profit maximization. We formulate the optimal control problems for

both the unobservable and observable models. For the unobservable model, we consider

the expected discounted total profit. We first introduce general economic assumptions

on the income rate function and then suggest a deterministic control model based on

fluid limits discussed in Chapter 3. In particular we provide an explicit solution for the

finite time horizon problem for a general arrival rate function and present an example

for a specific definition of arrival rate function. For the infinite time horizon problem,

we show the existence of an optimal solution to determine some properties of an optimal

solution.

For the observable model, we study the long run average profit maximization prob-

lem. We first analyse employers’ strategies and derive the maximum price the system

can gain from an arriving employer depending on the number of employees in the sys-

tem. By charging exactly this maximum price we are accepting an arriving employer,

while charging a price higher than the maximum price we are rejecting an arriving

employer. Therefore we suggest that the pricing problem is equivalent to finding the

optimal thresholds at which an employer is accepted or rejected. We develop the opti-

mal pricing mechanism under the assumption of myopic pricing, which maximizes the

profit at each stage regardless of future stages. In particular, we provide an upper

bound and a lower bound on the number of employees at which an arriving employer

should be rejected and accepted respectively. Furthermore, we show that when the

number of employees stays between the lower and upper bounds and when the number

of employers reaches an upper bound, any arriving employer should be rejected. We

identify under which conditions the optimal myopic pricing is the optimal over all pric-
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ing strategies and we leave the justification of the conditions as an open question for a

further research direction.

There are many interesting directions to carry on for further research on the topic

of pricing for probabilistic matching systems. One might want to analyse the difference

between the long run average profits generated by the unobservable and observable

models. This will shed light on whether it is beneficial for the system operator to

reveal system information to arriving employers. Another interesting direction is to

study social welfare maximization for an observable model and compare the optimal

pricing with the established results of profit maximization.



Chapter 5

Conclusion and Future Work

In this work, we propose a novel queueing model to analyse customer behaviours in

probabilistic matching systems, where unlike the traditional queueing systems where

users wait to access a resource, two classes of users arrive and wait to match with users

from the other class. This model is motivated by internet portals, e.g. employment

and rental portals, matrimonial and dating sites and multi-purpose portals. As an

important feature, the users match probabilistically and this type of matching captures

the nature of individuality in these portals, e.g. an employer hires an employee with

some probability even when the employee has the necessary background.

We start our analysis by studying the transient behaviour of this new model and

derive the basic probability distribution of the number of matches given the number

of arrivals, e.g. the probability of exactly k people finding a job, when there are m

employers hiring and k employees looking for jobs. After that, we prove that the

system is unstable for any set of parameters if it is not controlled and characterize

the nature of instability. We then suggest four different classes of admission control

policies and prove that one type of the admission control stabilizes the system when

matching probability q = 0 and other three controls stabilize the probabilistic matching

systems for any system parameters. In addition we conduct performance analysis on the

admission controls. Contrary to our intuition that the throughput should increase as the

users get more likely to match, we show that under specific control policies throughput

is insensitive to the matching probability. We also show similar insensitivity results

relating to the average queue lengths and waiting times. Even more surprisingly, we

91
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show that under many control policies the throughput may decrease as the matching

probability increases. By explaining the reasons behind this unexpected behaviour, we

argue that these policies can be deemed to be more reasonable than the policies where

the throughput is an increasing function of the matching probability.

Furthermore, we propose approximation methods based on fluid and diffusion limits

using different scalings to characterize further features of probabilistic matching sys-

tems. We propose two different scalings to obtain fluid and diffusion approximations

to the queue length processes of probabilistic matching systems. We suggest that the

first approach of scaling space and time while the matching probability is kept fixed is

suitable for those systems when the matching probability is considerably high. Then

we introduce the second approach to study the systems with small matching probabil-

ity and we incorporate the phenomenon of user abandonments in the model. Through

the analysis of the fluid limits, we show that the difference between the average queue

lengths of different classes of users is independent of the matching probability. This re-

sult is similar to that under some admission controls as shown by exact analysis. Based

on the fluid limits obtained, we study the asymptotic behaviour and provide insights

on the long run average numbers. First, when abandonment rate is zero, the two fluid

limits, obtained with and without scaling the matching probability, converges to each

other with time. Further, for non-zero abandonment rates, the fluid limits obtained

in the second scaling converge to a unique fixed point, which represents the long run

average number of users in the system. Carrying on analysis on the fixed point reveals

that as the abandonment rate increases, we show that the number of users for the class

with lower arrival rate first experiences an increase and then decrease while the number

of users for the class with higher arrival rate decreases monotonically.

Finally we study optimal pricing and revenue management for probabilistic match-

ing systems with the objective of profit maximization. We formulate mathematical

models for both unobservable and observable models respectively. For the unobserv-

able model, we impose general economic assumptions on the income rate function and

suggest to change the control variable of pricing to the arrival rate. We suggest a

deterministic optimal control for finite and infinite time horizontal problems respec-

tively based on the fluid approximation of the queue length process. For the observable
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model, we analyse users’ strategies and identify the maximum state dependent price

the system can gain from an arriving user. Whenever it is profitable to accept an arriv-

ing employer we charge her exactly the maximum price, but more than the maximum

price while otherwise. As a result, the optimal price essentially suggests that when an

arriving user should be accepted/rejected. We develop an optimal pricing mechanism

under the assumption of myopic pricing, which maximizes the profit at each stage.

We show that under the assumption of myopic pricing, when the number of employees

goes above (drops below) an upper (lower) bound, it is profitable to accept (reject)

an arriving employer. Further when the number of employees lies between the upper

and lower bounds, an arriving employer should be rejected if the number of employers

reaches an upper bound. We identify the conditions under which the optimal myopic

pricing policy is the overall optimal pricing policy and we leave the justification of these

conditions to be an open question for further research.

Probabilistic matching systems exhibit many interesting properties and we provide

a few promising future directions as follows. One interesting research direction is to

consider probabilistic matching networks, where each class have several types of users

and each pair of types has a different matching probability. In the network setting we

can focus on matching strategies, in addition to devising admission control policies.

Moreover we can consider fluid and diffusion limits for probabilistic matching networks

and to develop a pricing mechanism with the objective of social farewell maximization.



Appendix A

Proof of Theorem 2.1

Proof of Theorem 1. When q = 1, the result is trivial. When 0 < q < 1, the proba-

bility of no matchings, i.e., k = 0, when there are m and n class-1 and class-2 users,

respectively is rmn. Also, we know that k ≤ m ≤ n and P qk,m,n = 0 for k > m. When

1 ≤ k ≤ m, conditioning on whether a specific class-1 user matches with any of the n

class-2 users or not, we get

P qk,m,n = rnP qk,m−1,n + (1− rn)P qk−1,m−1,n−1. (A.1)

It is clear that given P q0,m,n = rmn and P qk,m,n = 0 when k > m, the solution to (A.1)

is unique. We now use induction to prove that for m ≥ 1

P q1,m,n = (1− rn)r(m−1)n 1− rm

rm−1(1− r)
. (A.2)

For m = 1, P q1,1,n = 1−rn. Now, assume that (A.2) holds for P qk,m−1,n where 2 ≤ m ≤ n.

Then,

P q1,m,n = rnP qk,m−1,n + (1− rn)P q0,m−1,n−1

= rn(1− rn)r(m−2)n 1− rm−1

rm−2(1− r)
+ (1− rn)r(m−1)(n−1)

= (1− rn)r(m−1)n 1− rm

rm−1(1− r)
,

and hence (A.2) holds for any 1 ≤ m ≤ n.

Now, we show that solving the three-dimensional recursion (A.1) can be reduced to
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solving a two-dimensional recursion. Suppose, {ak,m, k ≥ 0,m ≥ 0} solves

ak,m =


1 k = 0,

rk−mak−1,m−1 + ak,m−1 1 ≤ k ≤ m,

0 k > m.

(A.3)

Then,

P qk,m,n = ak,mr
(m−k)n

k−1∏
i=0

(1− rn−i) (A.4)

solves (A.1), where if k = 0,
∏−1
i=0(1−rn−i) is assumed to be 1. To prove this statement,

first observe that (A.4) implies, P q0,m,n = rmn. When k = 1, a1,0 = 0, a1,1 = 1 and

a1,m = r−m+1 + a1,m−1 when m ≥ 2, which implies

a1,m =
m−1∑
i=0

(
1

r

)i
=

rm − 1

rm−1(r − 1)
.

Now, fix k,m and n such that n ≥ m ≥ 2 and k ≥ 1. Suppose that for 0 ≤ n′ < n,

0 ≤ m′ < n′, 0 ≤ k′ ≤ m′, 0 ≤ m′′ < m, k′′ ≥ 0 and 0 ≤ k′′′ ≤ k, P qk′,m′,n′ , P
q
k′′,m′′,n and

P qk′′′,m,n given as (A.4) coincides with the solution of (A.1). Then, if k + 1 ≤ m,

P qk+1,m,n = rnP qk+1,m−1,n + (1− rn)P qk,m−1,n−1

= ak,mr
(m−k−1)n

k∏
i=0

(1− rn−i) + ak,m−1r
(m−k−1)(n−1)

k∏
i=0

(1− rn−i)

= (ak+1,m−1 + r−m+k+1ak,m−1)r(m−k−1)n
k∏
i=0

(1− rn−i)

= ak+1,mr
(m−k−1)n

k∏
i=0

(1− rn−i).

This proves that if we can solve (A.3), (A.4) provides us with the solution of (A.1).

Now, we provide a solution to the recursion (A.3). Using (A.3) m−k+ 1 times, we get

ak,m = r−m+kak−1,m−1 + r−m+k+1ak−1,m−2 + ...+ ak−1,k−1︸ ︷︷ ︸
1

+ ak,k−1︸ ︷︷ ︸
0

=

m−k∑
j=0

r−m+k+j · ak−1,m−1−j . (A.5)
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We now guess that for 0 ≤ k ≤ m, ak,m has the following form

ak,m =

k∑
i=0

r−miαk,i. (A.6)

Then, a0,m = 1 implies α0,0 = 1. For k ≥ 1, we plug (A.6) into both sides of (A.5) and

we obtain:

k∑
i=0

r−miαk,i =

m−k∑
j=0

r−m+k+j
k−1∑
i=0

r−(m−1−j)iαk−1,i

=

k−1∑
i=0

αk−1,ir
−m+k−mi+i

m−k∑
j=0

(
r(i+1)

)j
=

k−1∑
i=0

αk−1,i
1− r(i+1)(m−k+1)

1− r(i+1)
r−m+k−mi+i

=
k−1∑
i=0

r−m+k−mi+i − r−ki+2i+1

1− ri+1
αk−1,i

=
k−1∑
i=0

r−m(i+1) rk+i

1− ri+1
αk−1,i +

k−1∑
i=0

−r−ki+2i+1

1− ri+1
αk−1,i.

We then shift the index of the first sum on the righthand side, and for k ≥ 1, we get

k∑
i=0

r−miαk,i =
k∑
i=1

r−mi
rk+i−1

1− ri
αk−1,i−1 +

k−1∑
i=0

−r−ki+2i+1

1− ri+1
αk−1,i.

Now, comparing the coefficient of r−mi for 0 ≤ i ≤ k, we obtain,

αk,0 =

k−1∑
i=0

−r−ki+2i+1

1− ri+1
αk−1,i, (A.7)

and for every 1 ≤ i ≤ k:

αk,i =
rk+i−1

1− ri
αk−1,i−1. (A.8)



Appendix A. Proof of Theorem 2.1 97

Repeating (A.8) i times we have for 1 ≤ i ≤ k,

αk,i =
rk+i−1

(1− ri)
rk+i−3

(1− ri−1)

rk+i−5

(1− ri−2)
· · · r

k−i+5

(1− r3)

rk−i+3

(1− r2)

rk−i+1

(1− r1)
αk−i,0

=
rki∏i

j=1(1− rj)
αk−i,0. (A.9)

Plugging (A.9) into (A.7) and substituting βk = αk,0, we obtain a new recurrence:

βk =

k−1∑
i=1

−r−ki+2i+1

(1− ri+1)

r(k−1)i∏i
j=1(1− rj)

βk−1−i +
−rβk−1

1− r
=

k−1∑
i=0

−ri+1βk−1−i∏i+1
j=1(1− rj)

,

and replacing l = k − 1− i, we get

βk =

k−1∑
l=0

−rk−lβl∏k−l
j=1(1− rj)

.

Thus by now we have a recurrence of the form: β0 = 1 and for every k ≥ 1:

βk =
k−1∑
l=0

γk,lβl, (A.10)

where

γi,j =
yi
yj
zi−j , (A.11)

with yi = ri and zi = −1∏i
j=1(1−rj) . The recursion (A.10) is a 1-dimensional recurrence,

and for k ≥ 1 has a general solution :

βk =
∑
l>0

 ∑
0=i0<i1<...<il−1<il=k

 l∏
j=1

γij ,ij−1

β0

=
∑
l>0

 ∑
0=i0<i1<...<il−1<il=k

γil,il−1
γil−1,il−2

· · · γi2,i1γi1,i0

 . (A.12)

We prove this by induction.

(i) when k = 1, Equation (A.12) implies

β1 =
∑
l>0

 ∑
0=i0<i1<...<il−1<il=1

 l∏
j=1

γij ,ij−1

β0 = γ1,0,
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which satisfies Equation (A.10). Hence Equation (A.12) holds for β1.

(ii) suppose Equation (A.12) holds for all βn, 1 ≤ n ≤ k − 1, then according to

Equation (A.10),

βk =
k−1∑
n=0

γk,nβn

=
k−1∑
n=0

γk,n

∑
l>0

 ∑
0=i0<i1<...<il−1<il=n

 l∏
j=1

γij ,ij−1

β0

= γk,0 + γk,1γ1,0 + · · ·+
∑
l>0

 ∑
0=i0<i1<...<il−1<il=n

γk,nγn,il−1
· · · γi1,0


+ · · ·+

∑
l>0

 ∑
0=i0<i1<...<il−1<il=k−1

γk,k−1γk−1,il−1
γil−1,il−2

· · · γi1,0


=
∑
l>0

 ∑
0=i0<i1<...<il−1<il=k

 l∏
j=1

γij ,ij−1

 .

Therefore, if Equation (A.12) holds for all βn, 1 ≤ n ≤ k − 1, then it also holds

for βn, n = k.

Now by adding equation (A.11) to (A.12), we have:

βk =
∑
l>0

 ∑
0=i0<i1<...<il−1<il=k

yk
y0

l∏
j=1

zij−ij−1 .

 .

Further more, using substitution dj = ij − ij−1 ≥ 1, where d1 + d2 + . . . + dl = k we

have:

βk =
∑
l>0

 ∑
d1+d2+...+dl=k

yk
y0

l∏
i=1

zdi

 ,

where indexes d1, d2, ... are taken from N = {1, 2, 3, ...}. Thus, for k ≥ 1,

βk =
∑
l>0

 ∑
d1+d2+...+dl=k

rk
l∏

i=1

−1∏di
j=1(1− rj)

 . (A.13)

Finally (A.9) implies for 1 ≤ i ≤ k,

αk,i =
rki∏i

j=1(1− rj)
βk−i.
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Using (A.6), we have

ak,m =
k∑
i=0

r−miαk,i = (
k−1∑
i=0

r−miαk,i) + r−mkαk,k

= αk,0 + (
k−1∑
i=1

r−miαk,i) + r−mkαk,k.

As a result,

ak,m =
∑
l>0

 ∑
d1+d2+...+dl=k

rk
(−1)l∏l

i=1

∏di
j=1(1− rj)

+ r−mk
rk

2∏k
j=1(1− rj)

+
k−1∑
i=1

r−mi
rki∏i

j=1(1− rj)

∑
l>0

 ∑
d1+d2+...+dl=k−i

rk−i
(−1)l∏l

w=1

∏dw
j=1(1− rj)

 ,

with indexes d1, d2, ... taken from N+ = {1, 2, 3, ...}.



Appendix B

Stationary Probabilities under

the ASQ Policy.

Proof of Theorem 2.11. Under the ASQ policy, the rate balance equations can be writ-

ten as follows:

(λ1 + λ2)p0,0 = λ1(1− r)p0,1 + λ2(1− r)p1,0, (B.1)

(λ1 + λ2)pi,i = λ1r
ipi−1,i + λ2r

ipi,i−1 (B.2)

+ λ1(1− ri+1)pi,i+1 + λ2(1− ri+1)pi+1,i, i ≥ 1,

λ2pi+1,i = λ1r
ipi,i + λ1(1− ri+1)pi+1,i+1, i ≥ 0, (B.3)

λ1pi,i+1 = λ2r
ipi,i + λ2(1− ri+1)pi+1,i+1, i ≥ 0, (B.4)

∞∑
i=0

i+1∑
j=i−1

pi,j = 1. (B.5)

The state space has a very special structure where the removal of a state in the form

(i, i), i > 0 disconnects the transition graph. This implies a rate balance for the transi-

tions between states {(i, i− 1), (i− 1, i)} and (i, i), which implies the following detailed

balance type equations:

(λ1 + λ2)ripi,i = λ1(1− ri+1)pi,i+1 + λ2(1− ri+1)pi+1,i, i ≥ 0, (B.6)

(λ1 + λ2)(1− ri)pi,i = λ1r
ipi−1,i + λ2r

ipi,i−1, i ≥ 1, (B.7)
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Equation (B.1) can obtained by setting i = 0 in (B.6) and further, summing up (B.6)

and (B.7) for a given i ≥ 1 we have (B.2). Hence, any solution to the set of equations

(B.3)-(B.7) also solves (B.1)-(B.5) and hence should be unique. Further, Equations

(B.3) and (B.4) imply
pi+1,i

pi,i+1
=

λ21
λ22
. Hence, substituting pi+1,i =

λ21
λ22
pi,i+1 into (B.6) we

obtain

pi,i+1 =
λ2

λ1

1− ri+1

ri
pi,i and pi+1,i =

λ1

λ2

1− ri+1

ri
pi,i. (B.8)

Then (B.8) and (B.7) together imply pi+1,i+1 = riri+1

(1−ri+1)2
pi,i, i ≥ 0, and hence, for i ≥ 1,

pi,i =
i∏

k=1

rkrk−1

(1− rk)2
p0,0 =

ri
2
p0,0[∏i

k=1(1− rk)
]2 . (B.9)

Substituting (B.9) into (B.8) and defining
∏0
k=1(1− rk) = 1, for i ≥ 0

pi,i+1 =
λ2r

i(i+1)p0,0

λ1
∏i
k=1(1− rk)

∏i+1
k=1(1− rk)

pi+1,i =
λ1r

i(i+1)p0,0

λ2
∏i
k=1(1− rk)

∏i+1
k=1(1− rk)

.

Finally the result follows from plugging all pi,j back in (B.5).



Appendix C

Insensitivities of Functional

Threshold Policies with

h(x) = x + d

Lemma C.1. Suppose that the functional threshold policy with a threshold function of

the form h(x) = x + d, where d ∈ N is employed to stabilize a probabiltic matching

system. For (i, j) ∈ N2, let pi,j be the stationary probability of being at state (i, j).

Now, define al =
∑∞

i=0 pi,i+l and a−l =
∑∞

j=0 pj+l,j Then, if λ1 6= λ2,

ad+1 =
1− λ2

λ1

1− (λ2λ1 )2d+3
and al = (

λ2

λ1
)d+1−lad+1, for − d− 1 ≤ l ≤ d,

and if λ1 = λ2, al = 1
2d+3 , −d− 1 ≤ l ≤ d+ 1.

Proof. When q = 1, the process {X1,FT (t) + d + 1, t ≥ 0} is stochastically equivalent

to an M/M/1/2d+ 2 system and the result follows. When 0 < q < 1, the state space

can be written as S = {(i, i+ l) : i ∈ N,−d− 1 ≤ l ≤ d+ 1, i+ l ∈ N}, hence the global
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balance equations are

(λ1 + λ2)p0,0 = λ1(1− r)p0,1 + λ2(1− r)p1,0, (C.1)

(λ1 + λ2)pi,i = λ1r
ipi−1,i + λ2r

ipi,i−1 + λ1(1− ri+1)pi,i+1

+ λ2(1− ri+1)pi+1,i, i ≥ 1, (C.2)

(λ1 + λ2)pl,0 = λ1pl−1,0 + λ1(1− r)pl+1,1 + λ2(1− rl+1)pl+1,0,

1 ≤ l ≤ d (C.3)

(λ1 + λ2)pi+l,i = λ1r
ipi+l−1,i + λ1(1− ri+1)pi+l,i+1 + λ2r

i+lpi+l,i−1

+ λ2(1− ri+l+1)pi+l+1,i, i ≥ 1, 1 ≤ l ≤ d, (C.4)

(λ1 + λ2)p0,l = λ2p0,l−1 + λ2(1− r)p1,l+1 + λ1(1− rl+1)p0,l+1,

1 ≤ l ≤ d (C.5)

(λ1 + λ2)pi,i+l = λ2r
ipi,i+l−1 + λ2(1− ri+1)pi+1,i+l + λ1r

i+lpi−1,i+l

+ λ1(1− ri+l+1)pi,i+l+1, i ≥ 1, 1 ≤ l ≤ d, (C.6)

λ2pi+d+1,i = λ1r
ipi+d,i + λ1(1− ri+1)pi+d+1,i+1, i ≥ 0, (C.7)

λ1pi,i+d+1 = λ2r
ipi,i+d + λ2(1− ri+1)pi+1,i+d+1, i ≥ 0, (C.8)

∞∑
i=0

i+d+1∑
j=i−d−1

pi,j = 1. (C.9)

We sum (C.2) for i = 1 to ∞ and then add (C.1) to get

(λ1 + λ2)a0 = λ1a−1 + λ2a1. (C.10)

Repeating the same procedures for pairs (C.3) and (C.4), (C.5) and (C.6), (C.7) and

(C.8),

(λ1 + λ2)al = λ2al+1 + λ1al−1, 1 ≤ l ≤ d, (C.11)

(λ1 + λ2)a−l = λ1a−l−1 + λ2a−l+1, 1 ≤ l ≤ d, (C.12)

λ2ad+1 = λ1ad, (C.13)

λ1a−d−1 = λ2a−d. (C.14)
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We notice that, similar to the case q = 1, if we replace bl = al−d in (C.10)-(C.14), we

obtain the global balance equations of an M/M/1/2d + 2 system. Hence, the result

follows.

Proof of Theorem 2.14. Using PASTA property, c1 = ad+1 and the result follows from

Lemma C.1.

Proof of Theorem 2.16. Without lost of generality, assume d ≥ 0 is an integer. The

difference of average queue lengths can be written as

Lq1 − L
q
2 =

d+1∑
l=−d−1

lal

=
1− λ2

λ1

1− (λ2λ1 )2d+3
(−λ2

λ1
)d+2

d+1∑
l=−d−1

(−l)(λ2

λ1
)−l−1.

Using ρ = λ2
λ1

,

d+1∑
l=−d−1

(−l)(λ2

λ1
)−l−1 =

d+1∑
l=−d−1

∂

∂ρ
ρ−l

=
∂

∂ρ

ρd+1(1− ρ−2d−3)

1− ρ−1

=
((d+ 2)ρd+1 + (d+ 1)ρ−d−2)(ρ− 1)− (ρd+2 − ρ−d−1)

(ρ− 1)2

Hence,

Lq1 − L
q
2 =

(d+ 2)ρ2d+3 + d+ 1

1− ρ2d+3
+

(1− ρ)ρd+2(ρd+2 − ρ−d−1)

(1− ρ2d+3)(ρ− 1)2



Bibliography

[1] I. Adan and G. Weiss. Exact FCFS matching rates for two infinite muti-type

sequences. Operations Research, 60(2):475–489, 2012.

[2] P. Afeche. Incentive-compatible revenue management in queueing systems:

Optimal strategic delay. Manufacturing and Service Operations Management,

15(3):423–443, 2013.

[3] S. M. Aseev and A. V. Kryazhimskii. The pontryagin maximum principle and

optimal economic growth problems. Proceedings of the Steklov Institute of Math-

ematics, 257:1–255, 2007.

[4] S. Asmussen. Applied Probability and Queues. Applications of Mathematics Series.

Springer, New York, 2003.

[5] B. R. Atar and M. I. Reiman. Asymptotically optimal dynamic pricing for network

revenue management. Stochastic Systems, 2(2):232–276, 2012.
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