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Abstract

A vast number of contemporary production processes rely on living cells or

biomolecules preforming chemical transformations as a vital step in the man-

ufacture of valuable products. Providing sustainable supplies of food and drink

relies on such biochemical processes which are essentially unchanged for millen-

nia, and will remain quintessential for future communities and societies. Like-

wise many pharmaceutical products and produced from similar systems, and have

formed an essential component of modern civilisation. To ensure high produc-

tivity without wasting resources (agricultural feedstock, equipment, time), it is

critical to determine optimal dynamic operating profiles toward prescribing im-

plementable control methodologies. Mathematical models have been developed

for many important food and drink manufacturing processes operated using sub-

optimal recipes: these journal publications are quite rigorous and extensive (often

describing not only composition, but also how flavour can be tuned as desired),

but they frequently require consistent kinetic parameter estimation on the basis of

industrial data, which is itself a dynamic optimisation problem (multi-parametric

error minimisation). Dynamic optimisation of biochemical processes is of extreme

technoeconomic interest and importance in industrial control practice, particu-

larly for biochemical process systems which display steady-state and/or operating

regime multiplicity, and require sizeable vectors of time-dependent concentrations

and temperature-dependent kinetic parameters. Alcohol fermentation is under-

going continuous development for several millennia via concurrent advances in

chemistry and chemical engineering (which greatly affected the art of bringing

yeast, barley and hops together); at the same time, the biological evolution of

yeast strands by natural selection as well as empirical recipes and procedures
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have impacted brewing even more. Ensuring high product quality is not a trivial

task, particularly when strong market demand dictates process intensification.

Producing food and drink in shorter times (more efficiently) with optimised pro-

cesses (more cost-effectively) requires in-depth knowledge of reactive systems.

The problems of consistent kinetic parameter estimation and systematic determi-

nation of optimal operating profiles to improve industrial practice are explored in

this thesis for several different biochemical systems. For the first time attainable

performance in beer fermentation has been exhaustively mapped under a compre-

hensive family of realistic time dependent temperature manipulations, providing

invaluable insight to industrial brewing collaborators. This is expanded upon

with the computation of optimal dynamic fermentor temperature profiles sub-

ject to a range of realistic threshold constraints on flavour degrading compounds

in the product. Herein the influence of each individual by-product level on the

achievable process performance can be explicitly quantified and visualised. Fur-

thermore, the inherent trade-off in brewing process targets (batch time vs product

quality) has been explored for the first time in this work, mapping the Pareto front

via multi-objective dynamic optimisation. These results can be used by decision

makers to better inform process decisions with significant economic implications.

Following an extensive experimental campaign the first lumped parameter model

and associated parameter values for the enzymatic hydrolysis of keratin waste is

also proposed in this work. The model is used to formulate a dynamic optimi-

sation problem, demonstrating that treatment of this waste can be accelerated

with novel feed strategies. This work highlights the immense value in systematic

and rigorous model based simulation and optimisation campaigns for biochemical

process systems.
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Lay Summary

This PhD thesis involves the modelling and optimisation of biochemical networks:

that is any system where at least one stage involves a living organism or an active

biomolecule undergoing or performing a chemical transformation. These systems

can be manipulated on an industrial level to produce products for sale and con-

sumption including bread, yoghurt, beer and wine; other applications include

pharmaceutical production, waste treatment and energy recovery from waste.

To ensure high productivity without wasting resources, it is of great value to

determine to detirmine how the process should be operated for optimal perfor-

mance. Mathematical models have been developed for many important food and

drink manufacturing processes operated using suboptimal recipes. Such models

frequently require parameter estimation on the basis of industrial data: determi-

nation of properties and constants which may not be directly measured, which

is itself an optimisation problem. This thesis presents a framework for biopro-

cess model parameter estimation, rapid dynamic simulation of viable operational

cases with visualisation of the attainable performance, followed by multi-objective

dynamic optimisation strategies. The problems of consistent kinetic parameter

estimation and systematic determination of optimal operating profiles to improve

industrial practice are explored, with best practices presented in this thesis. Spe-

cific studies are centred on two pertinent process systems: beer fermentation

and keratin hydrolysis, with significant and viable improvement demonstrated

in each case via dynamic optimisation. Valuable insight into these systems has

been gained via visualisation of attainable performance, exploration of inherent

target trade-offs and by computation of optimal protocols under varying product

specifications.
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Part I

Introduction & Background





Chapter 1

Introduction

A vast number of contemporary production processes rely on living cells or

biomolecules preforming chemical transformations, as a vital step in the man-

ufacture of valuable products. Many food and drink products which we consume

daily are produced via a range of such processes which have been essentially un-

changed for thousands of years (e.g. bread, yoghurt, beer, wine). Biochemical

processes are not specific to consumer good manufacturing: they also play an es-

sential step in a wide range of areas including pharmaceutical production, waste

water treatment, energy recovery from biomass, the production of added value

chemicals and even a vast range of biological phenomena taking place with the

human body. Biochemical process operation tends to rely on historically estab-

lished and proven recipes due to system complexity and the limited understanding

of the underlying mechanisms; as a result the current protocol or recipe in place

is often suboptimal, creating wide scope for viable improvements.

1.1 General Problem Definition

Determining how a modern industrial production process shall be best operated

typically involves mathematical optimisation in some form. Computational pre-

diction and performance assessment of a biochemical process toward process op-

timisation requires a mathematical model representing species consumption and

production in addition to cell growth (and death). This strategy is applied fre-
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quently in the context of continuous pharmaceutical manufacturing (Engell and

Toumi, 2005; Schaber et al., 2011), among a wide array of further bioprocesses

(e.g. Chachuat et al. 2001; Tse et al. 2007; Lam 2009; Guebila and Thiele 2016;

Spann et al. 2018). Often this will include an optimal control problem, where a

system of state variables (x) are influenced by an externally manipulatable control

variable, u, so the optimal control vector u(t) is sought to minimise an objective,

J , which can consider a terminal pay-off (ϕ) and a running pay-off (
∫ tf
t0
γ) across

the process duration from t0 to tf (Biegler, 2010; Biegler et al., 2012):

J(u) = ϕ(x(tf ), u(tf ), tf ) +

∫ tf

t0

γ(x(t), u(t), t) dt (1.1)

Subject to:
dx(u, t)

dt
= f(x(t), u(t)) for all t∈ [t0,tf ] (1.2)

x(t0) = x0 (1.3)

The ordinary differential equations (ODEs) which dictate the state trajectories

(Eq. 1.2) of known initial value (x0, Eq. 1.3) are influenced at any time by

the current control (u) value. Eqs. 1.4–1.5 represent equality (h) and inequality

constraints (g) across the entire time horizon, t ∈ [t0, tf ], with terminal equality

(hf ) and inequality (gf ) constraints given by Eqs. 1.6 and 1.7 respectively. Lastly

the state and control profiles are constrained within permissible bounds by Eqs.

1.8–1.9, where u(t)L and x(t)L define the lower bounds across the process horizon

and u(t)U and x(t)Uthe corresponding upper bounds.

h(x(t), u(t)) = 0 (1.4)

g(x(t), u(t)) ≤ 0 (1.5)

hf (x(tf )) = 0 (1.6)

gf (x(tf )) ≤ 0 (1.7)

u(t)L ≤ u(t) ≤ u(t)U (1.8)

x(t)L ≤ x(t) ≤ x(t)U (1.9)
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To ensure high productivity in an efficient manner, it is necessary to deter-

mine optimal dynamic operating profiles and implementable control methodolo-

gies for these processes by solving this problem form. Prior authors have devel-

oped mathematical kinetic models for many important biochemical processes via

taking repeated concentration measurements as a process progresses under an ar-

ray of operational conditions (e.g DiStefano III (1969); Bajpai and Reuss (1980);

de Andrés-Toro et al. (1998); Henze et al. (2000); Niu et al. (2013); Spann et al.

(2018)). These non-linear dynamic ODE/DAE systems can be explored compu-

tationally using a range of mathematical techniques with the goal of postulating

optimal operational procedures, the criteria of which is process specific. Dynamic

optimisation of biochemical processes is of extreme technoeconomic interest and

importance in industrial control practice. Ensuring high product quality and the

longest shelf life possible is not a trivial task, particularly when strong consumer

demand and market competitiveness dictates process intensification. Producing

food and drink more efficiently (in terms of time and cost) while maintaining an

adequate product quality requires in-depth knowledge of reactive systems, as well

as rigorous consideration of the operability restrictions imposed by existing pro-

cess equipment. Furthermore, in modern times demands for ‘green’ engineering

practices are at the forefront of public discussion and ever-tightening legislation.

Approaches to process optimisation fall under three areas (Bonvin, 1998):

• off-line optimisation (open loop optimal control)

• run-to-run optimisation

• on-line optimisation

This thesis is concerned with the former: determining solutions to the off-line

optimisation problem to provide optimal open loop trajectories for the manipu-

lated and state variables. These profiles are computed once, off-line, thus feedback

elements are not included, and rather an ideal recipe for optimal production is

produced. This approach can be limited in usefulness as in the presence of distur-

bances these trajectories lose their optimal character (Balsa-Canto et al., 2010),

however on-line optimisation is not practical: online concentration readings are

extremely cumbersome to monitor in many cases.
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1.2 Review of Strategies for Dynamic

Optimisation

A wide range of optimisation methodologies exist for solving optimal control tra-

jectory problems defined by Eqs. 1.1 - 1.9, summarised in Fig. 1.1 (Biegler,

2007). These may be described as either variational methods or finite approxi-

mation methods. Variational methods, also known as indirect methods, attempt

to produce a solution satisfying the classical conditions of optimality. In contrast

finite methods first apply discretisation to the original continuous time prob-

lem. These methods are further divided depending on the extent the problem is

discretised; methods that discretise only the control profile(s) (partial discretisa-

tion, PD) and those that discretise both the state and control profiles (complete

discretisation, CD). The resulting problem from partial discretisation is solved ei-

ther via non-linear programming (NLP) methods or dynamic programming, while

NLP strategies are also used to solve the finite system in complete discretisation

approaches. The primary difference is that CD methods solve the DAE system

only once, at the optimum, in contrast to PD methods whereby a feasible so-

lution of the DAE system is obtained by model integration at every iteration.

As such these PD methods produce smaller discrete problems when compared to

CD, however CD problems have better stability properties than PD methods at

the expense of increased problem size which may require special solution tech-

niques. An overview of each of the solution strategy follows, based on Cervantes

and Biegler (2001).

1.2.1 Variational Methods

Variational methods require optimality conditions from Pontryagin’s maximum

principle (Pontryagin, 2018), formulated as a set of DAEs where the Hamiltonian

is a scalar function of the adjoint variables. The challenging aspect in obtaining

a solution to the adjoint equations is satisfying the boundary conditions. State

variables are typically assigned initial values while adjoint variables are assigned

terminal (final) values. The result is a two point boundary value problem, TP-
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Discretise
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Discretise
controls + states

Figure 1.1: Solution strategies for dynamic optimisation (from Biegler, 2007).

BVP. The TPBVP may be solved with several methods: single shooting, invariant

embedding, multiple shooting, collocation on finite elements or finite differences.

For the single shooting approach the missing initial conditions of the adjoint

equations are guessed, integrating the DAE forward. A Newton iteration adjusts

the guessed values so that the final conditions are those specified. The approach

can fail if problem cannot be solved for a specific initial condition guess, as a

result of non-linearities and instabilities of the system of equations.

Invariant embedding (Støren and Hertzberg, 1995) converts the TPBVP to an

initial value problem (IVP), by assuming the structure of the solution. This leads

to a solution methodology analogous to the Riccati matrix differential equation

(Bittanti et al., 2012), with the primary limitation the resulting high dimension-

ality of the transformed problem.

Multiple shooting methods apply the same concept as single shooting, how-

ever the integration span is sub-divided into discreet intervals such that costate

values are guessed at several points in addition to the initial point. The system of

equations is decomposed by either solving a collocation system for each interval

or by using an integrator along the nominal trajectory on each subinterval. As

the entire solution to the TPBVP is produced simultaneously it is no longer nec-

essary to guess the initial conditions. Various factorisation methods (Lentini and

Pereyra, 1977; Wright, 1992) are used to reduce the computational burden within

each iteration of the solution procedure. These methods work well for unbounded

problems, but often struggle handling inequality constraints if information about

the active constraints at any point is now known (Cervantes and Biegler, 2001).
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1.2.2 Partial Discretisation

Control Vector Parametrisation

In control vector parametrisation (CVP) the time horizon is divided into N ele-

ments, within each of which the control variable(s) are represented with a piece-

wise constant/linear, higher order polynomial or Lagrange polynomials (Almeida

and Secchi, 2011). Given the initial state values and an initial discretised con-

trol trajectory the ODE/DAE system is solved in each iteration. In doing so the

objective function may be evaluated, used by a non-linear programming (NLP)

solver to find the optimal value of the parameters which define the piecewise con-

trol vectors. Since in every iteration the DAE system is solved, the procedure is

very robust providing the system contains only stable modes; otherwise finding a

feasible solution can be difficult. Gradients of the objective function with respect

to the control parameters can be calculated with the sensitivity equations of the

DAE system (Reverberi et al., 1993; Støren and Hertzberg, 1995) or by integra-

tion of the adjoint equations (Sargent and Sullivan, 1979; Hasdorff, 1976; Bryson,

2018). CVP is effective for problems with few decision variables and constraints

(Osorio et al., 2005) which has been widely applied to engineering problems (i.e.

Farhat et al. 1990; Mujtaba and Macchietto 1993; Sørensen et al. 1996).

Dynamic Programming

Iterative dynamic programming (IDP) has been applied to optimal control prob-

lems, however the associated high dimensionality has restricted the approaches

applicability. To prevent problem size explosion a very course grid can be used, a

valuable approach for certain problems where this remains practically accurate.

IDP is a slow algorithm when compared to gradient-based methods, but has

particular value in cross-validating results of smaller problems when the global

optimum is unknown. The likelihood of obtaining the global optimum is good

providing the grid is well chosen (Dadebo and McAuley, 1995). The algorithm

for IDP for dynamic optimisation problems is detailed by Luus (1993).
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1.2.3 Complete Discretisation

Unlike the partial discretisation methods (PD) the complete discretisation meth-

ods (CD) discretise all the variables of the DAE system, now also including any

continuous control vectors, producing a large scale non-linear programming prob-

lem (NLP). Here the DAE system is only solved at the optimal point, rather than

at each and every iteration. As such this class of methods may be described as an

infeasible path approach, in which the NLP is larger than corresponding partial

discretisation methods, but function evaluations are much more rapid. Theses

simultaneous approaches are favourable when path constraints are imposed and

where instabilities are present. They also circumvent troublesome intermediate

solutions, i.e. which are be difficult to obtain or require excessive CPU time,

by not solving the DAE system at every step. Two primary approaches for CD

methods exist: multiple shooting (Bock and Plitt, 1984) and collocation on finite

elements (Cuthrell and Biegler, 1987).

Multiple Shooting

Here control trajectories are approximated with a finite set of control parame-

ters, generally piecewise constant or piecewise linear. A time transformation is

made onto a dimensionless grid such that the control approximation is a basic

function of dimensionless time and the local control parameters. The DAE sys-

tem is discretised on the same grid using multiple shooting (Bock et al., 1987),

such that it is integrated in each element separately. Values of state profiles at

each grid point are treated as further unknowns, producing a set of initial value

problems (IVP). Implementing continuity conditions on the state variables at ele-

ment boundaries into the NLP means that the solution obtained must satisfy the

ODE/DAE model. The NLP can be solved using a SQP-type algorithm, calcu-

lating the objective gradient and the constraint Jacobians in every iteration. For

standard function forms the corresponding derivatives can easily be calculated

(Bock and Plitt, 1984). With this approach it is possible for path constraints to

be violated within each time element, since constraints are only imposed at the

boundaries.
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Collocation

Families of polynomials on finite elements are used to approximate the control

and state trajectories allowing the continuous problem to be converted to NLP

form. Polynomials may be power series, summations of orthogonal polynomials

or Lagrange polynomials. Thus the DAE system is converted to a system of

algebraic equations, where decision variables of the derived NLP problem include

coefficients of the linear combinations of these AEs. The NLP formulation now

consists of the DAE process model discretised on finite elements. Continuity

equations for state variables and the inequality constraints on the system are

added to the NLP, which is large scale and compatible with a number of NLP

solvers. Specialised methods can be used to efficiently solve the large scale NLP:

full space methods exploit the sparsity of the DAE problem, while reduced space

methods exploit the structure of the problem (Biegler, 2007). Precision is known

to vary with collocation point locations and element lengths used (Tanartkit and

Biegler, 1995; Logsdon and Biegler, 1989). The strategy offers numerous benefits,

being faster to solve and able to handle problems with a greater number of decision

variables and constraints compared to PD methods (Cervantes and Biegler, 1998;

Cervantes et al., 2000).

1.3 Application in Process Engineering

Since the early work of Denbigh (1958) optimal control of batch reactors has re-

ceived a vast amount of research interest (i.e Logsdon 1991; Logsdon and Biegler

1993; Luus 1994; Garcia et al. 1995; Aziz and Mujtaba 2002). Logsdon (1991)

considered a maximum conversion and fixed time-frame optimisation problem for

a consecutive reaction scheme. This work sought the optimal temperature profile,

T (t), to maximise conversion of the desired product in a predefined reaction time,

solved with a two-point collocation method. Later Logsdon and Biegler (1993)

solved the same problem with a relaxed simultaneous approach requiring less CPU

time to solve. Luus (1994) also considered a maximum conversion for consecutive

reactions. Here the piecewise constant T (t) profile with fixed switching is opti-
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mised with IDP to maximise conversion. Garcia et al. (1995) considered another

conversion maximisation problem for a consecutive parallel reaction scheme. The

dynamic optimal control is discretised into an NLP problem and solved by a gen-

eralised reduced gradient method coupled with a golden search technique. The

authors compared considering 5 and 10 time intervals to discretise the tempera-

ture profile, concluding that there is no significant improvement upon increasing

the discretisation density and resultant NLP problem size. Aziz and Mujtaba

(2002) consider a CVP method for both maximum conversion (operation time is

fixed a priori) and minimum time problems (conversion is fixed a priori) for a

typical consecutive reaction scheme in batch reactors. They explore the effect of

waste and/or temperature constraints (both path constraints and terminal value

constraints) on the optimal operation policies and on the attainable performance

(solution objective function values). Aside from batch reactor optimisation, un-

conventional chemical process applications of systematic process simulation and

optimisation include high-temperature multiple reactor design (Gerogiorgis and

Ydstie, 2005), fossil fuel production (Arashi et al., 2003; Gerogiorgis et al., 2006),

polygeneration (Liu et al., 2007; Gassner and Maréchal, 2012), cyclic dynam-

ics (Akinlabi et al., 2007; Logist and Van Impe, 2012) and structured products

(Angelopoulos et al., 2013; 2014; Tsikouras et al., 2016).
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1.4 Chapter Conclusions

It can be concluded that first-principles mathematical modelling for systematic

process simulation and optimisation on the basis of validated ODE/DAE sys-

tem models is well established in several (but not all) chemical and material

process industries. Due to the system complexity many existing biochemical sys-

tems are currently operated in a suboptimal manor, and can potentially benefit

significantly from rigorous computational optimisation. Similarly the develop-

ment of novel biotechnologies can be accelerated by seeking optimal operation as

the technology advances from infancy to improve competitiveness versus mature

alternatives. A range of approaches have been successfully applied to control

trajectory optimisation for improved chemical process operation, with sequential

and simultaneous strategies both favourable depending on the specific problem

being solved. This thesis explores several lucrative methodologies for dynamic

optimisation in the context improving the performance of specific bioprocesses

identified as having significant scope for attainable process improvement.
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Chapter 2

Thesis Aims & Objectives

This project aims to produce novel dynamic operational manipulations (control

trajectories) capable of improving upon current performance for select biopro-

cesses under consideration. One primary objective of this thesis is to apply op-

timisation strategies described in Chapter 1 for an established and widespread

industrial bioprocess to gain insight into the viable scope for process improvident

to be made. Additionally, a further objective is also consider a less developed

or novel bioprocess, to attempt to accelerate development and adoption via the

construction, experimental validation and use of a high-fidelity model for dy-

namic optimisation. Achieving more efficient bioprocess operation with shorter

throughput times without any compromise on quality is a challenging task so

the following deliverables are outlined to form a systematic workflow to fulfil the

primary remits of this thesis.

Selection of candidate processes: To be compatible with the general prob-

lem form outlined in Chapter 1 the process progression must be effected by an

externally manipulatable dynamic control profile, the formulation of which ul-

timately becomes the optimisation target. An incentive to improve upon cur-

rent practice must exist, which can include economical or environmental factors.

Additionally, kinetic models of the process must exist to permit computational

simulation and optimisation where data acquisition and model development for

a specific process is out of the scope of this work.
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Assessment of published kinetic models: It is necessary to ensure pub-

lished models are adequate in scope, describing all observables of interest. In

addition to any feed, cells or product, it is of particular importance that any

problematic pollutants or by-products are described, since constraints on these

species which ensure quality are often the performance bottleneck. All assump-

tions made in any model formulation must be cross-checked in order to ensure

computational results are not non-useful in practice on the real process. Model

applicability under realistic operation (scale and valid ranges of input conditions)

must also be ensured, by comparing scales and conditions of the industrial pro-

cess to those used for model validation. Consideration of any specific scale effects

should be made where validation has only been performed on small scale systems

relative to industry. If published parameter vectors are used it is essential that a

suitable data-set was used and that the fitting performed is not ill-conditioned.

Where several models exist for a specific process the relative benefits of each

(number of species, scale, data quality, validation scope, model accuracy etc.)

shall be evaluated to choose the most useful for simulation and optimisation.

Evaluation of existing protocols/recipes: Simulating process progression

following control profiles obtained from literature sources or consultation with

plant operators shall allow their performance to be assessed, acting as a bench-

mark which any improvement can be measured against.

Experimental data acquisition: Subject to a lack of published or available

industrial data, targeted experiments are to be performed to generate necessary

concentration data over time for model parametrisation. Collaboration with the

Process and Systems Engineering Centre (PROSYS) at the Technical University

of Denmark (DTU) to take place to this end.

Model development: Where data availability permits; mathematical formu-

lation and experimental validation of process models correlating adjustable inputs

(feed quality, process conditions, recipe specifications) with measurable outputs

(product component concentrations, pH, shelf life) is to be performed.
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Kinetic parameter estimation: Kinetic parameter estimation using process-

specific concentration vectors, to obtain high-fidelity ordinary-differential-equation

(ODE) system models describing processes of interest, in conjunction with liter-

ature and/or industrial data.

Formulation of appropriate objective(s) and process constraints: The

relative importance of various factors, such as batch time, product/effluent con-

centrations or energy consumption will be process specific and something essential

to ensure optimisation results are valuable.

Systematic determination of optimal operating profiles: A range of op-

timisation techniques are to be used towards systematic determination of optimal

implementable operating profiles (e.g. fermentation cooling profile or wastewa-

ter aerator schedule) to significantly enhance current practice. Control vector

parametrisation can be used to solve the mathematical problem: parametrisation

of the control domain converts the problem to one which may be solved with a

wide range of non-linear programming (NLP) algorithms (i.e. Biegler et al. 2002;

Schlegel et al. 2005).

Sensitivity analysis: Applying efficient algorithms for sensitivity analysis of

resultant output ranges as a function of input parameter variation is another

important aspect which will be considered, to elucidate the design and operational

variables with potential for improvement.

Comparative analysis of optimisation protocols: Both stochastic and de-

terministic dynamic optimisation algorithms are considered in this work, so the

relative benefits of each on a process specific level can be considered including

CPU time, objective value and solution profile implementability.
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The systematic methodology defined by the above objectives represents the neces-

sary steps to reliably fulfil the primary objectives of this thesis. In doing so novel

control trajectories for optimal operation of key bioprocesses shall be produced,

and any scope for industrial improvements shall be elucidated. Additionally, pro-

cedure(s) are to be formulated to use validated process models and favourable

optimisation methodologies to gain process insight, in addition to computing the

unique solution to optimal control problems.
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Chapter 3

Bioprocess Systems Considered

This thesis considers several specific bioprocess systems. These processes are

introduced in this chapter, along with the driving motivation which renders them

promising candidates to benefit from dynamic process optimisation.

3.1 Enzymatic Keratin Hydrolysis

Keratin-rich waste material is an abundant by-product from agro-industrial activ-

ities, particularly the meat and poultry industries (Daroit and Brandelli, 2014):

skin remains, bristle, animal hair, horns and hooves, feathers, etc. It is estimated

that five million tonnes per year of keratin waste is produced in these industries

(Brebu and Spiridon, 2011), which is classified as a low-risk animal by-product.

This constitutes the third most abundant renewable polymeric material present in

nature after cellulose and chitin. This solid residue is not suitable for human con-

sumption and must to be treated for safe disposal into the environment. Keratins

are insoluble and resistant to enzymatic proteases due to a high number of disul-

phide bonds in their structure (Fraser et al., 1988). Their favourable structural

properties for defensive skin appendages become troublesome when attempting

to decompose the waste material, for which a range of strategies are investigated

and employed.
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Figure 3.1: Poultry slaughtered in the UK, 2003–2017, by type (DEFRA, 2018).

3.1.1 Motivation

Consumption of popular meat products has been continuously growing in recent

years in certain markets. Figure 3.1 shows the annual UK poultry consump-

tion by number of birds over the past 14 years (DEFRA, 2018). While turkey

consumption (red) has been relatively static over this time frame, broiler (chick-

ens bred specifically for their meat, blue) consumption has been growing at a

rate faster than the population. Similarly Fig. 3.2 shows the number of clean

pigs slaughtered for their meat in the UK over the same time frame. Again a

growth rate exceeding that of the population is observed, highlighting the increas-

ing supply and demand for these meat products in this market. In recent years

there has been considerable interest in developing strategies for improving the

sustainability of global food consumption (Lichtfouse et al., 2009). While reduc-

ing meat consumption and maintaining vegetarian or vegan diets appear as the

most direct steps an individual can take towards sustainability, the consumption

statistics suggest that this is unlikely to be widely adopted in the near future.

As such there is growing pressure due to the increasing volume hazardous animal

by-products produced from these and other agro-industrial activities each year.
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Figure 3.2: Number of pigs slaughtered in the UK, 2003–2017 (DEFRA, 2018).

Where possible, operators seek to extract as much value as possible from the

animal by-products, once the meat has been stripped from the animal carcasses.

Figure 3.3 presents the export value of animal by-products from the UK in 2017,

showing that aside from guts, bladders, stomachs and skin there is very little

value in additional by-products from slaughterhouses. In particular the extremely

abundant keratin-rich bristles and hair highlighted in Figure 3.3 have a particu-

larly low export value, as a result of the soluble protein content not being useful

in its polymer keratin form. For this reason producers seek waste valorization

by upcycling this non-biodegradable by-product by de-polymerization to extract

soluble proteins from the residual biomass to produce a saleable by-product, for

example as an animal feed supplement.

An additional strategy towards developing and maintaining a sustainable

global food source is that of fish-farming (aquaculture). Figure 3.4 compares

the mass of fish produced over the past 10 years via conventional open fishing

versus that from aquaculture. It is demonstrated that the capture volume is

not increasing, as a result of tariffs in place to prevent unsustainable overfishing,

while in contrast the aquaculture portion is increasing dramatically year on year.

This makes the aquaculture industry one of the fastest growing sectors in food

17



0 5,000 10,000 15,000 20,000 25,000

Guts, bladders and stomachs

Skins and other parts of birds

Coral and similar material, e.g. shells

Bones and horn-cores degelatinised

Pigs', hogs' or boars' etc bristles and hair

Human hair, unworked

Bile and other animal glands

Ivory, whalebone etc, unworked

Export value (in 1,000 GBP)

Figure 3.3: UK animal by-product exports by value (ITC, 2017).

production accounting for close to 50% of global production in 2017.

Deemed more sustainable than open fishing, due to the ability to control fish

populations, fish farming still requires a vast amount of feed to be supplied in

order for the fish to grow. The specific requirements for a fish feed vary depending

on the species and region (FAO, 2018), where regardless of the specific product

or the stage of fish development a minimum crude protein content (%) must

be ensured in all feeds. This essential nutrient is required for the organism to

synthesize muscle tissue which is the desired product for consumption.

The availability of risk-free, easily accessible and economical feed ingredients

capable of meeting this protein requirement for sustainable aquaculture produc-

tion plays a key role in global food security. The protein and amino acid com-

position of a range of ingredients which may be used as components of fish feed

id documented (NRC, 1993), where poultry by-product meal (PBM) containing

a reported 59.7% protein by weight with a favourable blend of amino acids, sug-

gesting that proteins obtained from the biodegradation of keratin could replace a

significant fraction of the fish meal used in aquaculture feed formulation. Conven-

tional fish meal constitutes one of the main ingredients of fish feed and represents

about 40% of its total weight (Fang et al., 2013), suggesting vast potential demand

for such a product.
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Figure 3.4: World fish production, 2007-2017 (FAO, 2017).

3.1.1.1 Keratin Waste Management

Keratins are insoluble and resistant to enzymatic proteases due to a high number

of disulphide bonds in their structure. Their favourable structural properties for

defensive skin appendages become troublesome when attempting to decompose

the waste material, for which a range of strategies are investigated and employed

(Ayyaldaz, 2018).

Thermal Processing Traditionally keratin hydrolysis has been performed via

incineration (Jeske et al., 1976; Orzeszko and Sutarzewicz, 1979). Hydrothermal

treatment has been a favoured mechanism to treat feather and bristle wastes

to produce animal feeds via pressure cooking and subsequent milling. Here high

pressure steam is introduced along with select acids, and by maintaining the waste

mixture at a boil for several hours the keratin polypeptide chains are opened to

release water-soluble peptides, oligo-peptides and amino acids. The product from

this hydrothermal treatment contains a high protein content, in addition to ni-

trogen, fat and mineral substances. However, in addition to substantial fumes

being produced with a foul odour (Suzuki et al., 2006), high temperature pro-

cessing destroys amino acids necessary for the product to be used as animal feed,
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which are costly to supplement afterwards. Because of temperature, pressure,

and chemicals, hydrolysis ultimately causes the partial or complete destruction

of essential amino acids like lysine, methionine and tryptophan and formation

of non-nutritive amino acids like lysine, alanine, and lanthionine. As such these

methods decrease the nutritional quality and digestibility of the products, which

are classified as low-quality animal feed due to their low content of essential amino

acids (Karthikeyan et al., 2007; Korniłłowicz-Kowalska and Bohacz, 2011). An al-

ternative approach reported considers thermally decomposing keratin-rich wastes

in two main steps. The degradation step is performed between 170− 300 ◦C and

is dominated by the evolution of inorganic gases. During the second step, nitriles

and aromatics are formed at temperatures above 300 ◦C. Pyrolysis can be consid-

ered as an alternative method to treat keratin-rich wastes, cleaving the disulphide

bonds and releasing constituent amino acids from the polypeptide chains. How-

ever, this mechanism has economic and environmental drawbacks induced by the

need for high temperature and the production of undesirable by-products (Brebu

and Spiridon, 2011).

Acidic or alkaline hydrolysis Acidic or alkaline hydrolysis can be used to

solubilize keratin material in a heated organic solvent. Proteins may be precipi-

tated with acetone, before distillation and drying to remove residual solvents. It

is demonstrated that the hydrolysate is rich in amino acids and polypeptides with

a protein composition similar to that of soybean rendering it suitable for use as a

diet supplement for ruminant mammals. However its arginine, histidine, lysine,

methionine and threonine content were all too low to be viable as an animal feed

(Korniłłowicz-Kowalska and Bohacz, 2011).

Microbial fermentation The high operational costs and environmental im-

pact of thermal and chemical methods has resulted in growing interest towards

microbial treatment. Microbial degradation methods are considered an environ-

mentally favourable and potentially economical alternative to manage the vast

amount of keratin-rich waste material, without excessive energy consumption

nor undesired degradation of the product amino acid profile. Studies performed
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demonstrating microbiological degradation of wool with fungus, Bacillus and ther-

mophilic and mesophilic actinomycetes show that they can efficiently degrade

keratin by synthesis of keratinases. They attack keratin residues and extract the

valuable proteins at much lower temperature than the aforementioned treatment

strategies. Products obtained from feather waste with keratinolytic strains show

a high content of soluble proteins and amino acids. Unlike thermal and chemi-

cal treatment, the microbial hydrolysis products show a high content of lysine,

threonine, leucine, isoleucine and valine and high digestibility. These favourable

properties suggest this route as a viable means of producing an animal feed sup-

plement to add value to the abundant keratin rich waste material. Keratinolytic

microorganisms have started to be used in select countries such as India, Brazil,

and Venezuela to obtain protein hydrolysates. However, microbial hydrolysis is

not commercially used for keratin reuse as animal feed at present (Brandelli, 2008;

Fang et al., 2013).

Aerobic and anaerobic digestion of keratin waste Previously certain ker-

atin wastes were simply disposed of in landfills, however this does not fulfil envi-

ronmental legislation due to degradation issues, the foul smell and the danger of

spreading pathogens that grow on keratinous waste. In the 1980s waste feathers

were first trailed in the production of fertilizing agents like keratin-bark-urea gran-

ulates. Experiments showed the fertilizer agents affected soil properties and some

plants positively, however in some cases they reduced respiratory activities of light

soils, causing a disturbance to nitrification and nitrogen losses (Korniłłowicz-

Kowalska and Bohacz, 2011). A more recent study demonstrated that waste

feathers can be treated by aerobic or anaerobic digestion. This involves compost-

ing chicken feather together with plant waste rich in lignocellulosic material to

perform biological conversion of keratin waste to a hygienic, stable, and mature

product that can be used to enrich soil properties. This method may be consid-

ered the safest and most cost-effective technologies to utilize keratinous waste as

fertilizer (Korniłłowicz-Kowalska and Bohacz, 2011). Poultry waste can also be

used in bioenergy production: it is possible to produce natural gas, methane gas

fuel pellets and bio-hydrogen via sufficient utilization of keratinolytic microor-
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ganisms. Keratinases hydrolyse keratin waste after which anaerobic digestion is

used to produce biogas from via methane fermentation with methane-producing

bacteria. The remaining protein-rich feather by product from biogas production

could then potentially be used as an animal feed. Alternatively, the feather meal

might be used to produce more keratinase, and the spent keratinous material can

act as a fertilizer (Anbu et al., 2007).

3.1.1.2 Novel Enzymatic Keratin Hydrolysis Process

Many of the established keratin treatment routes feature significant drawbacks.

High utility costs are incurred, their pose a detrimental effect on the environment

from by-products produced, as well as the losses of essential amino acids due

to harsh chemical and thermal conditions. New regulations considering manage-

ment of category three waste material emphasize the need for environmentally-

friendly technologies. Therein there is an increasing need for the adoption of

a more sustainable method to treat keratin-rich residues which can lower the

environmental, financial and public health risks (Daroit and Brandelli, 2014).

Recent studies have considered keratin waste as a possible renewable source for

production of sustainable materials. The enzymatic hydrolysis of keratin waste

employs microbial keratinases to decompose keratin-rich substrates. The solu-

ble proteins, peptides and free amino acids are released during the process, and

not degraded by the reaction conditions. Therefore, biodegradation using kerati-

nolytic bacteria is an attractive way of converting keratinic waste into products

of practical industrial value (Al-Musallam et al., 2003). This can include acting

as a fish meal replacement in feeds for the aquaculture industry, where the prod-

uct has an improved amino acid profile compared to thermal keratin processing

(Korniłłowicz-Kowalska and Bohacz, 2011). Therein a novel two stage process

can be performed for the conversion of keratin-rich waste material into a useful

protein-rich product. Firstly, a keratin sample is used as a bacteria feed to pro-

mote the synthesis of microbial keratinases. Here, keratin consumption is not

of interest and the process stage should be optimised solely for enzyme produc-

tion and growth. Subsequently keratin hydrolysis may be performed using the
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enzyme produced in the previous stage. The two processes (enzyme synthesis

and hydrolysis) are favoured in drastically different conditions. The two stages

can be physically separated by means of a cross-flow ultrafiltration membrane

step, with each stage cyclically repeated to achieve semi-continuous operation.

It is desirable to perform the keratin degradation process stage at high solids

loadings to maximise product titer and reduce process water, energy usage, and

reactor size (Gong et al., 2015). As this is an industrial process in its infancy,

the enzymatic hydrolysis mechanism is not well documented, rendering current

industrial application limited. Therein lies a strong incentive towards developing

a model of the keratin hydrolysis process, to facilitate computational simulations

and process optimisation for the emerging technology.

3.2 Industrial Beer Fermentation

The production of beer is well documented, with suggestions that it is one of the

world’s oldest prepared beverages, dating as early as the early Neolithic period

(Arnold, 2005). Today beer is the most widely consumed alcoholic beverage in

the world (Rehm et al., 2003) with the global beer market estimated to be over

500 billion USD in 2015 (Research and Markets, 2013). The continual growth

of the alcohol industry as a whole has resulted in an ever-increasing demand

for beer products, with a rapid increase in the demand for super premium and

craft beer products observed in the last 5 years. Market competitiveness makes it

imperative that brewers operate their production processes effectively: the ability

to improve any stage of production will have a significant effect on profitability

and the ultimate success or failure of a brewery. While many variations of the

beer manufacturing process exist, industrial production almost invariably follows

the scheme outlined in Figure 3.5. Beer production is a complex chemical process:

nevertheless, its only prerequisite is the use of the same four essential ingredients:

a starch source, yeast, hops and water (Southby, 1885). Beer production requires

few raw materials and many rudimentary processing techniques, however what is

produced is a highly complex mixture of chemical species which govern product

quality and flavour. It is the varying combinations of these compounds which are
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Figure 3.5: Block flow diagram of the beer production process.

responsible for the unique taste of each beer brand, however many are unpleasant

at certain concentrations. Diacetyl (2,3-butanedione) has a pungent butter-like

aroma (Izquierdo-Ferrero et al., 1997), similar to banana flavouring agents (Hanke

et al., 2010), and is often produced well above the flavour threshold in brewing.

Due to their volatility, esters also contribute significantly to beer aroma; ethyl

acetate is often used as an indicator of all esters present, and is described as

having the odour of nail varnish remover. It is essential that efforts to improve

fermentation efficacy are mindful of the degrading effect which these compounds

have on product quality, if present in substantial quantity.

3.2.1 Beer Fermentation Background

Fermentation is an essential brewing process unit operation, and the focus of this

study. Yeast is introduced once the cooled wort (a sugar-rich brewing intermedi-

ate, Hough et al., 2012) from the boiling process (Hudson and Birtwistle, 1966)

enters fermentation vessels (pitching). The primary chemical reaction pathway

is the conversion of two sugar molecules into one ethanol and one carbon dioxide

molecule, which is coupled with biomass growth and exothermic reaction heat

generation. Concurrently, a wide range of species are formed at low concentra-

tions by a multitude of side reactions, many of which contribute to beer flavour.

Fermentation progression is sensitive to yeast pitching rate (Guido et al., 2004),

dissolved oxygen content, batch pressure and system temperature, which strongly

affects yeast growth and metabolic rate: as long as yeast cells are not damaged

and are kept below 30 ºC, high temperature accelerates fermentation. Neverthe-

less, ethanol and volatile flavour component loss rates are too severe at higher

temperatures, coupled with increased production of undesirable aromatic com-

pounds and bacterial growth promotion. Therefore, brewers control temperature

inside the fermentor as the batch progresses, to accelerate fermentation while
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Figure 3.6: Industrial fermentation vessel and mixing pattern.

ensuring that yeast is not denatured and that no undesired by-product species

are produced. Online measurements can be cumbersome: each beer brand or line

may have a proprietary temperature manipulation profile used for every batch, to

ensure product consistency (Trelea et al., 2001). Offline measurements to assess

fermentation progression are often limited to wort density or specific gravity. The

Plato (specific gravity) scale represents equivalent sucrose concentration: sugar

depletion is a useful indicator of the extent of fermentation.

A primary concern of the brewing industry is the selection and implementa-

tion of an appropriate dynamic temperate profile throughout the fermentation

process, to ensure high product quality, eliminate batch variations and ensure

brand consistency and customer satisfaction. Fermentation duration varies by

product sought. Lagers are fermented at temperatures around 10 ºC, requiring

a fermentation time of about a week. Ales are fermented at higher temperatures

(22 ºC) and thus require 3− 4 days (Boulton and Quain, 2008). The worldwide

diversity of brewing plants and operations has induced an enormous variety of fer-

mentor vessel types. Many fermentors are cylindro-conical stainless steel vessels

(Fig. 3.6a), thus promoting circulation and mixing due to CO2 bubbling, since

contents are not agitated mechanically: a uniform vessel temperature is easier and

quicker to achieve. Yeast recovery is thus facilitated via settling into the cone

(lager-producing bottom yeasts) or flotation and skimming of the free surface in

the cylinder (ale-producing top yeasts). Fermentors typically comprise a cooling
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jacket, controlling the wort temperature in order to follow the prescribed pro-

file. Larger tanks may include separate cooling mechanisms on the conical and

cylindrical portions (Fig. 3.6b), allowing for control of the circulation pattern

(Boulton and Quain, 2008).

Following primary fermentation, beer maturation and finishing (also known

as secondary fermentation) achieves numerous objectives: insoluble material is

removed, stability is increased, flavour is finalised and the beverage is carbonated

by 3 distinct strategies employed for conditioning:

1. Lagering: the beer is cooled causing a considerable portion of the yeast

to flocculate: beer is then transferred to a new vessel where any remain-

ing sugar is fermented slowly, while the CO2 produced remains entrapped

toward natural carbonation.

2. Aging: the temperature of the green beer is reduced below freezing (0 ºC)

and maintained for up to 2 weeks, after which external beer carbonation

with pressurised CO2 is conducted.

3. Krausening: a portion of wort which has only recently begun fermenting is

added to the green beer, which is maintained at a moderately low temper-

ature (T = 8 ºC) for several weeks. During this period, additional sugars

are slowly consumed and the CO2 which is produced achieves natural car-

bonation.

During maturation, concentrations of certain undesirable flavour-modifying com-

pounds are reduced by conversion to substances which do not discernibly influence

beer flavour. Beer is then filtered to achieve a clear final product (haze is per-

ceived as a negative product trait), and stabilising agents are added to ensure

prolonged beer clarity until consumption. Chill-haze is a well-known undesirable

phenomenon during which beer develops opacity when chilled prior to drinking, as

a result of the protein/polyphenol content in the beverage. Speciality chemicals

remove such compounds, ensuring that beer remains attractive to the consumer;

it is then ready to be sealed into cans, kegs or bottles for distribution and sale.
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Figure 3.7: UK alcohol consumption per capita. (van de Walle, 2015).

3.2.2 Motivation

An investigation into the beer manufacturing industry in the UK has been per-

formed to determine if a strong incentive for process intensification and optimi-

sation exists. The alcohol industry as a whole has been in decline in recent years

within the UK as shown in Fig. 3.7, where annual litres of pure alcohol per capita

is the metric used to normalise for beverages of differing alcoholic strength. This a

result of several factors: people are drinking from a later age and regular drinkers

are turning away from high strength products, towards more costly and lower

strength drinks, such as craft beer. Beer is however one of the few exceptions

from the trend of a declining sector. The growing market share fuelled by recent

increased demand for high value craft beer products produced on a small scale

has led to the beer industry growing both in terms of production volume and

market value. 1% year on year growth is predicted over the next 3 years, with

the annual production volume in the UK expected to exceed 4.6 billion litres by

2019, compared to 4.2 billion in 2015. Fig. 3.8 shows the number of breweries in

operation over the last 6 years in the UK: it is evident that there is very steady

increase which is predicted to continue moving forward.
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Fig. 3.9 depicts the UK’s alcohol consumption in context of the rest of Eu-

rope. While Scots may have a reputation of being heavy drinkers it is evident

that while their per capita consumption is above the average for the rest of the

UK, it is still a very typical value within Europe. The result of the declining al-

cohol industry and the surge in supply of beer products has created an extremely

competitive environment for producers, many of whom must look towards process

intensification if they are to remain profitable, forming the motivation for this

study. Within the beer production process the fermentation stage is generally the

system bottle neck (Lodolo et al., 2008), with batch times in excess of one week

not uncommon. Fermentation progression depends on many variables (Engasser

et al., 1981; Gee and Ramirez, 1988), however progression is dominated by the

influence of the temperature of the involved substrates. As such, it is necessary

to determine the temperature manipulation profile capable of steering the process

to competition in an optimal manner.

3.2.3 Review of Published Models and Optimisation

Computational prediction and performance assessment of a biochemical process

toward process optimisation requires a mathematical model representing species

consumption/production, as well as cell growth and death. Given the complexity

of the fermentation process, and the numerous (over 600) species present (Vander-

haegen et al., 2006), many chemical interactions are not quantitatively understood

and the construction of a comprehensive dynamic process model is thus infeasible.

Lumped-parameter dynamic fermentation models considering only the key chem-

ical reaction pathways, using parameters computed from experimental campaign

data. The extreme industrial importance of dynamic modelling for high-fidelity

simulation and optimisation of fermentation processes is not confined to brewing

only. Achieving high efficiency is vital in producing a wide array of therapeutic

molecules (i.e. antibiotics), so process intensification is of enormous interest, par-

ticularly in the context of continuous pharmaceutical manufacturing (Engell and

Toumi, 2005; Schaber et al., 2011).
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3.2.3.1 Beer Fermentation Modelling

The earliest kinetic model of beer fermentation has been published by Engasser

et al. (1981), based on fundamental biochemical pathways and the manner in

which the evolution of alcohol and sugars depends on total biomass (yeast) con-

centration. Gee and Ramirez (1988) adapted this work to include temperature ef-

fects on rate expressions. The model includes three ordinary differential equations

(ODEs) predicting consumption of glucose, maltose and maltotriose (assumed to

be the limiting nutrients) via Monod kinetics. Gee and Ramirez (1994) also pub-

lished a subsequent paper to extend the model and consider further compounds,

while also incorporating a simple feedback inhibition mechanism on cell growth

rate. The model considers a total of twelve species affecting product flavour, in ad-

dition to the five described in the original growth model (Gee and Ramirez, 1988),

however new parameters are only stated for isothermal conditions. de Andrés-

Toro et al. (1998) proposed an alternative kinetic model for beer production under

industrial operating conditions. Unlike the model of Gee and Ramirez which is

based on sugar uptake rate, this later model relies on predicting yeast evolution in

order to subsequently compute chemical species production/consumption. Five

responses are considered; ethanol, sugar, biomass and two flavour-contributing

compounds (diacetyl and ethyl acetate). Here, the single sugar compound repre-

sents the sum of all sugars present in the wort. The suspended biomass within

this model is distinguished into three distinct types; active, latent and dead cells.

Latent (lag) cells cannot promote fermentation: over time, they are transformed

into active cells, responsible for consumption of fermentable sugars. Active cells

duplicate and grow over time, but a portion of them will die, settle and no longer

contribute to fermentation. The fermentation process is distinguished into two

observable phases; in the first (lag phase), the majority of biomass introduced

comprises of latent yeast cells, so minimal fermentation takes place as latent cells

undergo activation. Once approximately half of the suspended cells are activated,

the second (fermentation phase) begins: therein, active cell concentration is suf-

ficient to induce the enzymatic effect, converting the sugar substrate to ethanol

product. An overview of the reaction scheme is given in Fig. 3.10a. Evolution of
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Figure 3.10: (a, left) Process scheme considered in the kinetic model; (b, right)
Generic industrial temperature profile.

each cell type is predicted by the respective ODE, where growth rates are Arrhe-

nius temperature functions of the corresponding species maximum growth rate.

This allows the total suspended cell (lag, active and dead) population growth to

be defined as the rate of active cell growth minus the rate of dead cells settling.

Sugar consumption is related to active biomass concentration with its own growth

rate: ethanol production is predicted similarly, but with an inhibition factor used

to account for its decreasing production rate with time. Ethyl acetate produc-

tion is related to sugar consumption with a stoichiometric factor as in the Gee

and Ramirez (1994), which however includes explicit temperature dependence.

Diacetyl growth modelling is more elaborate: the respective ODE includes two

terms, one accounting for its production early in the fermentation process and

another representing its consumption toward partial conversion to 2,3-butanediol

during fermentation progression.

The seven ODEs of the model depend on 10 parameters which vary with

temperature and have been modelled using Arrhenius relationships and param-

eter values estimated from experimental data. Isothermal fermentations have

been carried out in a lab-scale 3 L vessel at 5 different temperatures in order

to obtain online measurements of species concentrations. Following model pa-

rameter estimation, the authors performed a non-isothermal fermentation in a

pilot plant-scale 100 L tank using a generic industrial temperature profile (Fig.

3.10b). Published profile predictions are in good agreement with the pilot-plant

experimental data; the validated model has been successful in predicting process
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behaviour in a variety of operating conditions and in completing relevant optimi-

sation studies. Moreover, it has undergone further experimental validation, on the

basis of over 200 fermentation campaigns carried out over a period of three years

(de Andrés-Toro et al., 2004). Trelea et al. (2001) developed fermentation models

based on CO2 production, using real-time CO2 concentration data obtained with

commercially available sensors (Corrieu et al., 2000). This is deemed an appro-

priate basis for a fermentation model, as it has been validated to represent a

reliable indicator of ethanol and yeast production and sugar consumption (Stassi

et al., 1987). Three dynamic models to predict CO2 production are considered

based on varying knowledge of the underlying biochemical phenomena (Trelea

et al., 2001). The first model is a neutral network (black box) and is purely

statistical, based on experimental data and computed parameters which are not

representative of any physical property. The second (empirical) model is based on

a posteriori analysis of the form of the experimental profiles recorded: parameter

selection and definition occurs after observing the shapes of these curves, how-

ever they have little biological significance. Finally, the third (knowledge-based)

model is developed in order to represent the true kinetic pathways, producing a

complex model formulation which is challenging to validate structurally as well

as computationally.

3.2.3.2 Prior Work

Numerous authors have used the de Andrés-Toro (1998) beer fermentation model

for optimal control studies seeking a suitable temperature profile for operation.

Authors have proposed different optimisation strategies with unique objective

functions, publishing the fermentation temperature profile they have determined

as most favourable. Carrillo-Ureta et al. (2001) used an evolutionary algorithm

in order to determine such an optimal profile; the procedure is based on the natu-

ral selection principal, employing historical simulations to predict new conditions

toward achieving greater performance. Their objective function considers the fi-

nal concentration of ethanol as well as both flavour-degrading species diacetyl

and ethyl acetate), and penalises high temperature gradients in the temperature
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Figure 3.11: Optimal temperature profiles: Carrillo-Ureta et al., (2001): (a) as
determined, (b) smoothed; Xiao et al., (2004): (c) as determined, (d) smoothed.

profile, which are undesirable due to operational adjustment limitations related

to cooling jacket maximum capacity and operability. The evolutionary algorithm

has successfully generated the same profile maximising the objective function irre-

spective of the initial profile considered, showing that a global optimum has been

reached. However, the solution profile produced (Fig. 3.11a) is highly variable

(temperature to be manipulated up and down sporadically), despite the gradi-

ent penalty within the objective function, hence impractical for industrial use.

By averaging the original profile over 40-hour intervals, the authors produced a

manipulation protocol which is more suitable for industrial implementation (Fig.

3.11b). Genetic algorithms constitute a powerful stochastic methodology which

is successfully used for multi-objective optimisation of numerous biological pro-

cesses (Lee et al., 2007; Singh et al., 2009; Taras and Woinaroschy, 2011). Xiao

et al. (2004) also used the de Andrés-Toro model to compute their own optimal

temperature profile. The authors developed a stochastic (ant colony system) al-

gorithm to arrive at the optimal solution: this powerful heuristic tool can be used
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Figure 3.12: De Andrés-Toro et al. (2004) optimal temperature profiles: (a)
improved control, (b) minimum time.

to determine the most suitable path through a graph, based on the behaviour of

actual ant colonies. The algorithm relies on moving randomly across the domain,

determining the value of the objective function continuously. This data (repre-

senting the pheromone which ants leave) gives an indication of how desirable a

path decision has been, thus rendering subsequent passes less random and more

closely following the most desirable historical routes. The procedure is carried

out iteratively until paths through the domain converge on the optimal solution,

the equivalent of an ant colony having found the quickest route to a food source.

The objective function in this work resembles one used previously (Carrillo-Ureta

et al., 2001) but without considering batch time minimisation, as the optimisation

procedure requires the target domain, and thus time to simulate fermentation, to

be a priori defined. The profile produced (Fig. 3.11c) is prohibitively varying for

industrial application, so a similar averaging procedure has been used to generate

a smoothed form of the optimal manipulation (Fig. 3.11d).

de Andrés-Toro et al. (2004) also performed multi-objective optimisation us-

ing the original kinetic model. An evolutionary algorithm (similar to that of

Carrillo-Ureta et al., 2001) is used, where each gene can represent a variable time

interval between discrete temperature points. The objective function used con-

siders eight goals: three high-priority targets are treated as system constraints,

ensuring ethanol concentration is above (while diacetyl and ethyl acetate con-

centrations are below) specified levels. The five lower-priority targets consider

contamination risk (bacterial formation at high temperature), temperature pro-
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file smoothness, batch time as well as instantaneous heat flow and heat flow

smoothness. The last two aspects are used to improve process control (prior

work has not considered implications of temperature and heat flow profiles on

coolant demand). Assigning different weights to the respective targets within

the objective function yields different temperature profiles which address unique

goals: this strategy can thus achieve (a) improved process control as a result of

improved heat smoothness (Fig. 3.12a), and (b) reduce total batch fermentation

time (Fig. 3.12b).

More recently, Bosse and Griewank (2014) have used the kinetic model to

generate optimal control profiles using a sweeping dynamic optimisation method-

ology (Radwan and Griewank, 2011). The process involves guessing a control path

and using this to integrate the states forward in time. This allows the costates to

be integrated backwards through the process time span: a new control profile is

thus deduced by maximising the Hamiltonian for all t ∈ [t0, tf ], and the process

is repeated until path convergence is attained. The authors were able to compute

a more preferable temperature profile using the same objective, compared to a

prior stochastic approach (de Andrés-Toro et al., 1997).

3.3 Chapter Conclusions

Two drastically different biochemical processes have been identified for an ex-

tensive simulation and dynamic optimisation study, to explore scope for viable

process improvement, within this thesis.

Beer fermentation is an extremely established and widespread industrial bio-

process, having been performed globally for thousands of years. Despite this

current operation is often far from optimal, and market conditions mean that

operators currently seek any means to reduce operating costs and improve plant

throughput. Optimising the fermentor temperature control profile is identified

as a potentially favourable route to achieve this, to relax the existing bottleneck

without the requirement for plant modification or any significant capitol invest-

ment.
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Enzymatic keratin hydrolysis on the other hand is an extremely novel emerg-

ing technology. At present the process has only been performed on a lab-scale,

with little knowledge of the precise underlying reaction mechanisms. As this new

strategy for waste treatment appears environmentally favourable over existing

approaches, it is highly desirable to develop the technology to determine whether

it has potential for economic viability. In order to perform computational sim-

ulations and attempt to dynamically optimise the system the construction and

validation of a simplified model for the hydrolysis process on the basis of experi-

mental data is first necessary.
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Parameter Estimation &

Dynamic Simulation
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Chapter 4

Parameter Estimation &

Sensitivity Analysis for Beer

Fermentation Modelling

The accuracy of all model based computational optimisation relies upon a high

fidelity parametrisation of the model. Where model parameters cannot be di-

rectly measured a regression is commonly performed. The discrepancy between

model predictions and process data is minimised by estimation of the unknown

parameters, an optimisation problem in its self. Herein it is often assumed that

the best fit (least squares error) corresponds to the most accurate values of all the

parameters under estimation in the regression. To ensure model robustness and

to explore the importance of estimating a uniquely identifiable parameter set, in

contrast to only ensuring least squares minimisation, the parameter estimation

problem for beer fermentation modelling is considered.

4.1 Fermentation Model

Several mathematical models for the beer fermentation process have been pro-

posed (Engasser et al., 1981; Gee and Ramirez, 1988; de Andrés-Toro et al.,

1998; Trelea et al., 2001). Models are lumped parameter, considering only the

key species of the several hundred present (Vanderhaegen et al., 2006), due to sys-
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tem complexity rendering exhaustive modelling extremely cumbersome: in fact

to date many of the specific chemical interactions in the fermentation process are

not understood. The kinetic model of beer fermentation by Gee and Ramirez

(1988) is used here: the model considers the uptake of three sugars, namely glu-

cose (G), maltose, (M) and maltotriose (Mr), as functions of the total biomass

concentration (X):
dG

dt
= −µG ·X(t) (4.1)

dM

dt
= −µM ·X(t) (4.2)

dMr

dt
= −µN ·X(t) (4.3)

The foregoing ordinary differential equations (ODEs) have consumption rates (µi)

defined with Monod-type kinetics with inhibition effects on higher sugars:

µG =
VG(T ) ·G(t)

KG(T ) +G(t)
(4.4)

µM =
VM(T ) ·M(t)

KM(T ) +M(t)
· K ′

G(T )

K ′
G(T ) +G(t)

(4.5)

µN =
VN(T ) ·Mr(t)

KN(T ) +Mr(t)
· K ′

G(T )

K ′
G(T ) +G(t)

· K ′
M(T )

K ′
M(T ) +M(t)

(4.6)

Where Vi is the maximum reaction velocity for sugar i, Ki is the Michaelis con-

stant for sugar i, andK ′
i is an inhibition constant for sugar i. The rates of biomass

(X) and ethanol (E) production are proportionally related to the uptakes of the

individual sugars by constant yield coefficients determined from stoichiometry:

dE

dt
= REG

· dG
dt

+REM
· dM
dt

+REN
· dMr

dt
(4.7)

dX

dt
= RXG

· dG
dt

+RXM
· dM
dt

+RXN
· dMr

dt
(4.8)

Where Rij is the ratio of j consumption to i production. The fermentation model

comprises of eight unknown model parameters, summarised in Table 4.1.
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Table 4.1: Beer fermentation model parameters for determination.
Symbol Description Units

VG Maximum reaction velocity for glucose h−1

VM Maximum reaction velocity for maltose h−1

VN Maximum reaction velocity for maltotriose h−1

KG Maximum reaction velocity for maltotriose mol m−3

KM Michaelis constant for maltose mol m−3

KN Michaelis constant for maltotriose mol m−3

K
′
G Inhibition constant for glucose mol m−3

K
′
M Inhibition constant for maltose mol m−3

4.2 Global Parameter Estimation (all-at-once)

An experimental campaign has been performed by Gee and Ramirez (1988), where

the authors monitored the concentrations of the three sugar species over time dur-

ing an isothermal batch fermentation by HPLC. This was carried out repeatedly

over a range of feasible temperatures for effective fermentation, resulting in four

distinct data sets at T = [4, 8, 12, 16] °C. The batches were fermented in 100 L

non-agitated conical fermentors using S. carlsbergensis. Despite the lack of exter-

nal mixing, the CO2 generation acts to keep the vessel contents well mixed. The

lumped parameter model relies upon a CSTR approximation of the system, found

to be not too far from reality, even on pilot plant and small-industrial scale. The

parameter estimation problem is defined to determine the values of the eight un-

known parameters by minimising the discrepancy between the experimental data

set and the model state trajectories. Physical boundaries act as lower parameter

non-negativity constraints, and upper limits can be proposed from literature and

related fermentation processes, giving a finite span in which the parameter value

must lie. Several different objective functions may be used as the minimisation

criteria. A sum squared error objective is often used, however this will prove

bias in favour of matching states of greater absolute magnitude. It can make

more sense to divide the discrepancy at each data point by the mean state value,

to normalise the significance of matching the individual states. Alternatively,

a chi-squared objective may be used given that sufficient data quality exists to

determine standard deviations. For any objective function used the resulting
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Figure 4.1: Model fit to experimental data: all at once parameter estimation.

problem optimisation problem is non-convex, being well established that kinetic

parameter estimation problems can be extremely challenging to solve to global

optimality. A method has been developed which utilizes a branch and bound al-

gorithm to guarantee global optimality (Singer et al., 2006). This is particularly

useful because if the global solution to the parameter estimation problem still

does not fit the data suitably, the model structure can be confidently dismissed.

In this work a standard local method is implemented so we can visualize the

effect of multi-start initialisation which can highlight some properties about the

problem (Martí et al., 2016). Given the resolution of the available data set, the

sum squared error minimisation approach is considered in this work, normalizing

the fit at each data point by the mean state value over the time span, where the

objective is defined by Eq. 4.9.

min
∑
i

∑
j

[
(data−model)

¯(datai)

]2
(4.9)

Starting from 1000 points (initial parameter guesses) via Latin-Hypercube sam-

pling (McKay et al., 1979; Stein, 1987) of the input space, the parameter esti-

mation problem has been solved for each instance using IPOPT (Wächter and
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Figure 4.2: Multi-start objective distribution.

Biegler, 2006) via OPTI’s MATLAB® implementation (Currie et al., 2012). Tak-

ing the parameter set from the 1000 result sets computed which obtains the lowest

value of Eq. 4.9, we can plot the approximation of the globally optimal fit, shown

in Fig. 4.1 for three of the temperatures considered in the experimental cam-

paign. Visually the model fit appears excellent, however consideration must be

given to how appropriate this method is for determining the actual parameter

values. Considering the different objective values obtained from the 1000 unique

start points, it can be shown how consistently the best solutions are obtained

(Fig. 4.2). Under 10% of cases are realizing the minimum value of the sum

squared error objective, with a high number of local solutions being produced.

The distributions of the parameter values can be inspected (Fig. 4.3), showing

large ranges for most parameters. This is a result of local solution attainment,

as well as cases where approximately the same objective value is produced with

significantly different parameter sets. This is a result of an ill conditioned prob-

lem where model parameters are highly correlated and thus cannot be uniquely

estimated simultaneously: the are not uniquely identifiable. This results from the

fact that Monod-like models are found to have growth yield parameters which are

significantly correlated with the maximum growth rate terms (Sin et al., 2009). It

is thus necessary to consider which parameters have the most significant bearing

in the model state trajectories, and which less influential ones may be assigned

directly from literature to avoid co-dependence issues in the parameter estima-

tion problem. The parameter co-dependence can be confirmed by looking at the

covariance matrix (Table 4.2). When the absolute value of the correlation for a

parameter pair is greater than ~0.95 it may not be possible to estimate the 2 pa-

rameters uniquely using the available regression data, as changing the parameter

43



Figure 4.3: Multi-start parameter distribution.

values in a coordinated manner may produce very similar model results.

4.3 Sensitivity Analysis

As it is not effective to directly estimate the entire parameter vector, it is de-

sirable to inspect how the parameters influence the model states: to perform a

rigorous sensitivity analysis. A range of methods for sensitivity analysis have

been developed and published in the engineering literature, reviewed by Sin et al.

(2009). Local methods can perturb parameters around nominal or base values to

observe the effect on model outputs. These are generally easy to implement and

take little time to solve, however are non explorative due to their local nature,
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Table 4.2: Parameter covariance matrix.
KG KM KN K

′
G K

′
M VG VM VN

KG 1.000 -0.004 0.185 0.971 -0.004 0.185 -0.001 -0.185
KM 1.000 -0.124 0.004 1.000 -0.124 -0.942 0.127
KN 1.000 0.144 -0.123 1.000 0.167 -1.000
K

′
G 1.000 0.004 0.144 -0.006 -0.144

K
′
M 1.000 -0.123 -0.940 0.125

VG 1.000 0.167 -1.000
VM 1.000 -0.170
VN 1.000

meaning key effects can be missed. Global methods in contrast can give a fuller

picture but are much costlier for implementing.

4.3.1 One-at-a-time (OAAT) Perturbation

To visualise the relative impact and importance of the 8 model parameters one-

at-a-time (OAAT) perturbations have been performed given three perturbation

sizes, 10, 20 and 50%, with both positive and negative perturbations considered.

Nominal values from which perturbations are performed are taken from Gee and

Ramirez (1988), with the 4 °C reaction conditions presented in this instance.

Figure 4.4 depicts the resultant effect of these parameter perturbations on the

total species consumption over the entire reaction duration, with the terminal

(t = tf ) concentrations under 10% perturbations stated in Table 4.3. Red bars

correspond to the effect of negative perturbations, with blue bars the same for the

positive permutations. A positive blue bar thus highlights a positive perturbation

having a positive effect, with a negative blue bar representing the positive per-

turbation resulting in a decrease in the species’ consumption. The three columns

in the figure represent the three perturbation sizes, with the 5 rows showing the

effect on the five model states one by one. It is observed that the effect sizes

scale with the perturbation sizes in all cases, seen by comparing the figure rows.

The relative parameter effects remain unchanged, with all effects scaling with the

increase in perturbation size. It can be noted that the maximum effect size is

approximately equal to the perturbation size in all cases, suggesting a near linear

dependence of each model state on a specific model parameter in each case.
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Figure 4.4: OAAT parameter perturbation effects.

Table 4.3: Terminal state concentrations (mol m3): OAAT perturbations.
Species tf (θ0) θi ± 10% VG VM VN KG KM KN K

′
G K

′
M

Glucose, G 67.36 (+10%): 68.27 67.38 67.37 67.13 67.34 67.36 67.37 67.36
(−10%): 63.45 67.34 67.36 67.58 67.38 67.37 67.35 67.36

Maltose, M 189.60 (+10%): 189.69 193.10 189.62 198.58 186.42 189.59 190.98 189.60
(−10%): 37.46 186.14 189.62 189.62 192.31 189.62 188.39 189.60

Maltotriose, Mr 37.45 (+10%): 37.44 37.47 37.89 37.45 37.44 36.97 37.63 37.50
(−10%): 218.41 34.44 37.02 37.46 37.46 37.85 37.30 37.42

Biomass, X 218.56 (+10%): 218.72 217.62 218.38 218.60 219.43 218.76 218.12 218.55
(−10%): 182.92 219.5 218.74 218.53 217.83 218.40 218.95 218.58

Ethanol, E 185.10 (+10%): 182.92 171.54 182.51 185.65 197.43 187.93 178.76 184.84
(−10%): 187.27 198.5 187.66 184.58 174.60 182.75 190.66 185.31
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It is shown for the three sugars that the maximum reaction velocity parameter

has a very large and positively correlated effect on the sugar consumption, with

a smaller and negative trend shown for the Michaelis-Menten constants. Given

the structure of the model, it is demonstrated that the effects on ethanol and

biomass are identical, as there are both defined as ratios of the different sugars

consumption rates. Here the relative effect of the parameters is influenced by

the relative initial concentrations of these sugars, with the Maltose parameters

having the largest influence on biomass and ethanol trajectories as a result of

being the most abundant species in the feed.

4.3.2 Morris Screening

A more useful method for model sensitivity analysis, developed by Morris (1991),

takes favourable properties of both local and global methods – local sensitivities

are computed, but with sampling to approximate global effects, to give greater

insight when compared to strictly OAAT local perturbations only, described pre-

viously. The model inputs (parameters) are each equally discretised into p bands

between their lower and upper bounds. A random nominal parameter set, θ0, is

then selected from the finite number of values each discretised input can take,

and the model is evaluated by numerical integration. Subsequently a single input

variable is perturbed by a fixed fraction of the input space, ∆, and the model is

revaluated, allowing the elementary effect, EEi, of that parameter on a function

of the model output to be computed as defined by Eqs. 4.10–4.13 for a generic

ODE model.
dx

dt
= f(x, θ, u, t) (4.10)

x(t = 0) = x0 (4.11)

y = g(x, θ, u, t) (4.12)

EE0
i =

y(θ01, θ
0
2, . . . , θ

0
i +∆, . . . θ0m)− y(θ0)

∆
(4.13)

The input vector is then updated with a perturbation to an additional param-

eter, differing from OAAT perturbation in that the prior perturbation is retained

47



Table 4.4: Uncertainty sets for Morris screening.
Uncertainty Set VG VM VN KG KM KN K

′
G K

′
M

High 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Low 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Assigned 0.05 0.05 0.25 0.05 0.5 0.05 0.25 0.25

in the updated vector, and the elementary effect is computed once more. This is

repeated until each parameter has been perturbed in turn, essentially generating

a single random trajectory through the input space from which a single EE of

each parameter is determined. This is repeated from alternative random start

points in the input space r times to produce r trajectories through the input

space. In doing so r elementary effects of each parameter are efficiently sam-

ples across the input space such that the local measure is sampled globally. The

Morris method requires r · (n + 1) model evaluations, where n is the number of

inputs/parameters. This is in contrast to pn model evaluations which would be

required to exhaustively map the parameter sensitivities given the same discreti-

sation for fractional factorial design. For example when n = 8, p = 8 and r = 15,

the Morris method performs 15 · (8 + 1) = 450 model simulations compared to 88

= 1.7×107 simulations for fractional factorial design.

To define parameter ranges across which the sensitivities are sampled, nominal

values for each parameter are assigned as those from Gee and Ramirez (1988).

The lower and upper values considered are defined by the range between the

nominal value ± a factor describing the parameter ’expert uncertainty’ which we

consider in three discreet bands: 0.05 = low, 0.25 = moderate and 0.5 = high. In

this study three different cases are considered to observe the impact the ’expert

uncertainty’, and thus the sample range, has on the ranking of elementary effects:

• Uniform high uncertainty across the entire parameter set

• Uniform low uncertainty across the entire parameter set

• Arbitrarily assigned uncertainty across the entire parameter set

This is performed for 50 samples with 8 parameter levels in each case, with the

range of resultant 450 state trajectories shown in Fig. 4.5 corresponding to the

T = 4 °C case with assigned uncertainty (Table 4.4).
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Figure 4.5: Morris model simulations where samples (r) = 50, parameter bands
(p) = 8 and perturbation factor (∆) = 4/7.

It is demonstrated that glucose shows minimal trajectory variation compared

to the other states, as a result of the fewest parameters having influence on this

model ODE. Additionally, trajectory banding is clearly observed in the maltose

plot due to discrete number of parameter levels considered. It should be noted

that ethanol and biomass are affected by all parameters in the same way, as

a direct consequence of the ODE model considering both as linear functions of

sugar uptake, such that both states are affected in the exact same way by all

parameters and the elementary effect is thus always identical. Each histogram

in Fig. 4.6 shows the distribution elementary effects of parameter i, EEi, (Eq.

4.13) on glucose, with Figs. 4.7, 4.8 and 4.9 showing the same for maltose, mal-

totriose and ethanol respectively. In all figures the 3 columns correspond to the

3 sets of parameter uncertainties defined in Table 4.4. These histograms allows

the mean EE as well as the standard deviation to be visualised, acting as use-

ful metrics for determining which parameters are most strongly correlated with

the state trajectories of interest. The first two columns of histograms represent

the elementary effect distributions with the parameter uncertainty considered to
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Figure 4.6: Morris screening elementary effects of each parameter on glucose.
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be uniformly high and low respectively. In the final column 3 four parameters

are assigned low uncertainty, three moderate, with only KM defined as having

a high uncertainty (Table 4.4). The EE’s on glucose (Fig. 4.6) are conclusive,

with the maximum reaction velocity for glucose uptake, VG, shown to be the

only significant parameter value to predict this specific model state, regardless

of the associated parameter uncertainty being assigned. Here VG shows a linear

negative correlation (EE = -1), with all other parameters having essentially no

effect (full frequency of EE at 0). This could be inferred directly form the model

structure where only this single parameter is directly proportional to the model

ODE. Comparing the low and high uncertainty parameter set Morris histograms

for EE on maltose, maltotriose and ethanol shows how the uncertainty magni-

tudes influence the EEs. Between the two cases (column 1 and 2 in these plots)

the mean EE is not changed significantly when increasing uncertainty fivefold,

however, the standard deviation is much greater when uncertainty is high. Both

sets of results show VG, VM and KM to have the greatest EE. This is in contrast

to the final case considered, where KM significantly outshone the others in terms

of mean EE and suggested relative importance. This is a result of the greatest

concentration of maltose (M) being present, causing the parameters associated

with its consumption having the greatest effect on absolute model trajectories. In

this scenario it is suggested that VN , VM and K ’
G have a moderate effect on these

states, with a small positive correlation shown in all three cases. These are all of

little significance compared to the very large negative correlation shown for KM .

This would suggest that KM has considerably stronger bearing in the trajectory

of ethanol, however consideration must be given to whether it makes sense to

have a priori defined this parameter to have at least twice the uncertainty to

all other parameters. This highlights the importance of accurately defining the

expert uncertainty in model parameters before applying the sensitivity analysis

method, or if such expert knowledge is missing a reasonable analysis can be made

by defining all uncertainties as equivalent.

A full set of 8 histograms for any single uncertainty set can be summarised

with σ versus µ plots (Fig. 4.10). The 8 histograms from Fig. 4.9 map into

the plot in the bottom right of Fig. 4.10, with the other 3 panels showing the
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Figure 4.7: Morris screening elementary effects of each parameter on maltose.
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Figure 4.8: Morris screening elementary effects of each parameter on maltotriose.
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Figure 4.9: Morris screening elementary effects of each parameter on ethanol.
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Figure 4.10: Morris mean EEs and standard deviation distribution.

equivalent for the sugar states. The solid lines represent the estimated standard

error of the mean, such that if the parameter (circle) lies within the bands it is

deemed to have a negligible effect on the state.

The significance of each parameter on each state according to the absolute

mean elementary effect can be ranked, highlighting which are the most influential

and this most important for accurate estimation (Table 4.5). The table shows

that only a single parameter, VG, is significantly influential on glucose, which

could be inferred from the model directly (Eqs 4.1 - 4.8. More insightful is

the ranking of the parameter significance on the other states, highlighting that

the inhibition constants (K ’
i) and maximum reaction velocities (Vi) have much

more significance than the Michaelis constants (Ki). As ethanol and biomass are

linearly related in the model structure, the dimensionless parameter elementary

effects for these two states are identical. Given the small size of the fermentation

model, many of the outcomes of this investigation could be inferred by simply

inspecting the ODE of each model state. It is often apparent when a parameter
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Table 4.5: Elementary effect ranking on each model state.

Rank Glucose, G Maltose, M Maltotriose, M r Biomass, X
θ µEE θ µEE θ µEE θ µEE

1 VG -1.000 KM 0.954 VN -0.935 KM -0.923
2 KG 0.021 K

′
G -0.144 K

′
G -0.217 K

′
G 0.171

3 KM 0.006 VM -0.117 KN 0.193 VG 0.150
4 K

′
G -0.001 VG -0.001 K

′
M -0.027 VN 0.133

5 VN -0.001 VN 0.000 VG 0.001 VM 0.114
6 VM -0.001 KN 0.000 VG -0.001 KN -0.028
7 KN 0.000 KG 0.000 VM 0.000 K

′
M 0.004

8 K
′
M 0.000 K

′
M 0.000 KG 0.000 KG -0.003

value is essentially proportional to the effect it will have on the model state, or

when it is highly correlated with an additional model parameter, meaning such

analysis can potentially be omitted, or at least accelerated in such cases.

4.3.3 Differential Sensitivity Analysis

First-order derivative model outputs (states) can be taken with respect to model

inputs (parameters) to assess their relative effect (Brun et al., 2002):

si,j(t) =
∂yj(t)

∂θi
(4.14)

Where si,j is the dynamic sensitivity function of parameter θi on model state yj.

This allows visualisation of the time dependent sensitivities of model states to

each parameter, shown in Figure 4.11. It is shown that the maximum glucose

uptake rate, VG, is initially instrumental on both Glucose and Ethanol, falling to

0 once the glucose is consumed. For maltose and maltotriose it is evident that

the maximum reaction velocity has a negative correlation, while the Michaelis

constant has a positive correlation of similar magnitude. This is indicative of

the highly correlated nature of these two parameters with regard to the state

trajectory. The mean squared summary of these profiles, δmsqr
i,j , can be used

as a means to quantitatively compare and rank the effect of each parameter on

each model state (Fig. 4.11), determined by Eq. 4.15 where the model has been

evaluated at n discrete time points. The parameters which dictate the sugars

evolution are unsurprising, but interestingly the effect of the inhibition constants
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Figure 4.11: Dimensionless sensitivity functions with respect to each parameter.

Figure 4.12: Mean squared summary of time series sensitivity function ranks.
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are never among the most influential. It is shown how five parameters have sig-

nificant bearing on Ethanol model predictions. There is a high level of similarity

between the results from Morris screening and from differential sensitivity analy-

sis, however a noteworthy difference is that the inhibition constant from glucose

is not flagged up here as important, while it was from Morris screening, high-

lighting the importance of considering multiple strategies for sensitivity analysis

to elucidate the key influential model parameters.

δmsqr
i,j =

√
1

n

∑
s2i,j(t) (4.15)

4.4 Estimation of a More-Readily Identifiable

Parameter Subset

As the most influential model parameters have been identified it is desirable to

solve the parameter estimation problem again, focusing specifically on the key

parameters while taking those less important from suitable literature sources. To

do this we must ensure that the parameter set taken forward for estimation is

not ill-conditioned, and that linearly correlated parameters are not considered

in the problem. A useful way to do this is to consider the collinearity index

(γK): a measure of how aligned the sensitivity functions are between pairs of

model parameters. With 8 parameters there are 247 subsets which could be

estimated, ranging from all pairwise combinations, to the final set where all 8

are estimated. This latter case is as performed initially (Fig 4.2), showing poor

solution attainment due to the very large collinearity index. Of the 247 sets, a

range of low γK cases are presented in Table 4.6.

Typically the set with the most parameters and lowest index should be taken

for estimation. However, it has been identified that neither sensitivity analysis

method found the maltose inhibition parameter, K ′
M , to be impactful, so there

is little benefit in including this in the estimation. Of those remaining several

appear suitable, with subset number 197 selected to estimate the 5 correspond-

ing parameters. This subset incorporates the most influential parameters, while
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Table 4.6: Collinearity index for parameter subset examples.
Subset Components γK

9 VM KG 1.3
79 KG KN K

′
G 2.4

151 VG VM VN K
′
G 10.6

154 VG VM VN KG 7.6
195 VG VM KG K

′
G K

′
M 8.7

196 VG VM KG KN K
′
M 13.5

197 VG VM KG KN K
′
G 10.7

201 VG VM VN K
′
M K

′
N 18.3

205 VG VM VN KM K
′
G 90.3

207 VG VM VN KM K
′
M 13.5

208 VG VM VN KG K
′
G 10.7

225 VG VM KG KM K
′
G K

′
M 18.2

233 VG VM VN KG KM K
′
M 18.4

237 VG VM VN KG KM K
′
G 90.4

241 VG VM VN KG KM K
′
G K

′
M 241.0

ensuring the most heavily correlated pairs are omitted. The values of the three

parameters omitted from the estimation have been taken from Gee and Ramirez

(1988), and the same equivalent multi-start parameter estimation problem has

been repeated for the remaining five unknowns, again from 1000 randomly sam-

pled initial guesses. The resultant parameter value distributions are shown in

Figure 4.13, for the T = 4 °C data set. These results show extremely consistent

parameter values are being obtained, regardless of the initialisation, due to a

priori ensuring a well-conditioned problem is being solved. It can be seen that

there is slight variation in the values of VM and K ’
G, as a result of a local method

being used, however this is a vast improvement versus estimating the entire set.

The model fit is visually identicle to Fig. 4.1, thus is omitted to avoid repeti-

tion. Repeating the well-conditioned parameter estimation problem for each of

the datasets allows for the temperature dependence of each key parameter to be

determined: ensuring temperature dependent model parameters have been deter-

mined consistently is vital for ensuring the model may be used towards dynamic

optimization of the fermentor temperature profile accurately. Sensitivity analy-

sis and parameter estimation results using the Gee and Ramirez (1988) model

have been presented within this chapter, demonstrating how SA methods can be
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Figure 4.13: Multi-start parameter estimates for a non-correlated subset.

used to determine uncorrelated parameter subsets for effective estimation. This

represents the most appropriate beer fermentation model for such an extensive

investigation, on the basis that the only available fermentation data concerns the

uptake of the three sugars, with no other state data monitored. The Gee and

Ramirez model is the only published beer fermentation model which considers

each sugar species independently, with other authors electing to use one bulk

term as the summation of all sugars present. Much of the work in the later chap-

ters of this thesis employ an alternative fermentation model from de Andrés-Toro

et al. (1998), introduced in Chapter 7, which is favourable for process optimisation

due to the inclusion of flavour degrading by-products. Unfortunately insufficient

data availability prohibits performing a parameter estimation study for this later

model, as the different cell types, by-products etc. are very cumbersome and

costly to monitor and out with the scope of this work.

4.5 Chapter Conclusions

This thesis involves utilising lumped parameter fermentation models towards dy-

namically simulating and optimising the process. Doing so requires a high fidelity

parametrisation of the model from experiential data, so it can accurately repre-

sent the real world process. It is demonstrated that attempting to estimate the
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complete unknown parameter set results in an ill-conditioned problem and poor

solution attainment. Systematic sensitivity analyses using two established meth-

ods is performed to assess and elucidate the relative significance of parametric

discrepancy on the validity of dynamic simulation of the evolution of certain

concentration observables. In doing so the parameters of least importance have

been identified and removed from the regression by assigning appropriate values

from literature. Doing so permits high fidelity estimation of the remaining more

significant and influential parameters using an experimental data set. Accurate

values for these model parameters are instrumental towards valuable dynamic

optimisation efforts within the beer fermentation process.
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Chapter 5

Experimental Methods,

Sensitivity Analysis and

Parameter Estimation for a

Novel Hydrolysis Process

The enzymatic hydrolysis of keratin waste is an industrial process in its infancy.

The specific hydrolysis mechanism is not well documented leading to limited

industrial implementation. Therein lies a strong incentive towards developing a

simplified lumped parameter model, to facilitate computational simulations and

preliminary process optimisation. A simple multiplicative reaction model is used

to describe consumption of the substrate, given that the underlying mechanism

is still not precisely known to date.

5.1 Proposed Model for Keratin Hydrolysis

The following model is proposed for the enzymatic hydrolysis of keratin, based

on the high level of similarity the process shared with the extensively studied

depolymerisation process of cellulose into glucose, and the observed dynamics.

The substrate is considered to consist of both hydrolysable, [K]H , and non-readily
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hydrolysable, [K]NH , components (Eq. 5.1):

[K] = [K]NH + [K]H (5.1)

The hydrolysable fraction, H, is defined by Eq. 5.2, representing keratins which

the enzyme is able to digest.

[K]H = H · [K] (5.2)

The consumption rate of the readily hydrolysable substrate, r, is considered as

the product of three factors (Eq. 5.4).

d[K]H
dt

= −r (5.3)

r = ϕ1 · ϕ2 · ϕ3 (5.4)

Firstly, the Michaelis–Menten expression, ϕ1, describes the reaction kinetics (Eq.

5.5) as a function of two parameters. Vmax is the maximum reaction velocity (as

initial substrate mass tends to 0), while Km is the Michaelis–Menten constant.

ϕ1 =
Vmax · [K]H
Km + [K]H

(5.5)

Secondly, ϕ2 defines the to the keratinase enzymatic activity, where ei is the

initial activity and kD is a decay constant. This term differs from a conventional

two parameter first order activity decay expression by the addition of residual

activity (RA).

ϕ2 = [E] = ei · exp(−kD · t) +RA (5.6)

This is a result of an enzyme cocktail being present in place of a single cell type,

where components of the cocktail have drastically differing decay timescales at

this reaction temperature. The residual activity represents the activity of the cells

that do not notably decay within the hydrolysis timescale, which is visible from

the activity in Figure 5.4 plateauing well above 0. Lastly, an inhibition term, ϕ3,

is considered as a function of the product concentration (Eq. 5.7), representing
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Table 5.1: Keratin hydrolysis model parameters.
Parameter Symbol Units

Hydrolysable substrate fraction H -
Maximum reaction velocity Vmax g L−1 hr−1

Michaelis–Menten constant Km g L−1

Initial enzymatic activity ei kU L−1

Enzyme decay constant kD hr−1

Residual enzyme cocktail activity RA kU L−1

Product inhibition constant KI g L−1

Product ratio fr -

the proteins being produced impeding the keratin-enzyme interaction.

ϕ3 =
KI

KI + [P ]
(5.7)

A product ratio, fr, relates protein production to substrate consumption, with

the remainder of the consumed substrate mass consisting of released fats, lipids,

peptides etc. All unknown model parameters are summarised in Table 5.1.

d[P ]

dt
= fr · r (5.8)

5.2 Model Sensitivity Analysis

It can be highly useful to consider the model sensitivity to specific parameters,

to better inform parametrisation and data acquisition experiments, as well as

highlighting identifiability characteristics of correlated parameters. A range of

methods and tools exist for doing so, as considered within Chapter 4.

The Morris method (1991) is applied to the proposed hydrolysis model, with

the state trajectories shown in Figure 5.1. The method is defined by Eqs. 4.10–4.13

for a generic system model, and described in full in Section 4.3.2. The Morris

method has been performed for the proposed hydrolysis model. For the keratin

consumption the corresponding trajectories are shown in blue for each Morris

simulation, where the discreet banding is a result of the finite values any given
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Figure 5.1: Morris simulation trajectories from the proposed model.

parameter can be assigned. Additionally, the wide range in terminal residual

keratin clearly shows how at least some of the parameters do have instrumental

effect on the model outputs. Similarly, the corresponding plots for protein pro-

duction are shown in pink, however with this simple model structure the states

are proportional to one another, and as such the elementary effects on these two

states are also proportional. The parameters are ranked in Table 5.2 according to

their absolute mean elementary effect, identifying four parameters as significantly

contributing to the model state predictions. It is useful to plot the distribu-

tions of elementary effects of each parameter (Figure 5.2). The 8 plots allow

visualisation of the mean and the distribution of the elementary effects from each

parameter. Where the bars are tightly grouped and close to 0 EE, the parame-

ter is said to have a minimal or negligible effect: the values of these parameters

in the model are not very impactful. EE’s far from 0 however are much more

important: the parameter is said to have a significant elementary effect in these

cases and therefore are essential for accurate estimation. For the proposed model

it is demonstrated that four parameters appear to be highly influential: Vmax, the

maximum reaction velocity; ei, the initial or maximum enzymatic activity; H,

the fraction of the substrate readily hydrolysable and KI , the inhibition constant.

On the basis of this information the experiments to take place can be refined: it is

desirable to directly measure the average value for H from hydrolysis experiments

run to completion. It is also determined that the targeted experiments should be
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Figure 5.2: Keratin model elementary effect distribution.

Table 5.2: Model parameters ranked by absolute elementary effect.
Rank θ Description µEEi

1 Vmax Maximum reaction velocity -0.57
2 H Hydrolysable substrate fraction 0.53
3 ei Initial enzymatic activity -0.44
4 KI Product inhibition constant -0.44
5 RA Residual enzyme cocktail activity 0.10
6 fr Product ratio -0.07
7 kD Enzyme decay constant -0.04
8 Km Michaelis–Menten constant 0.03

performed to elucidate the enzymatic activity decay parameters for Eq. 5.6, in-

cluding ei. Performing the classical Lineweaver–Burk double inverse plot method

(Lineweaver and Burk, 1934) for the Michaelis–Menten equation parameters (Eq.

5.5) then ensures that only one influential model parameter, KI , remains in the

sub-set to be fit from experimental state data.

5.3 Experimental Methods & Results

Collaboration with the Process and Systems Engineering Centre (PROSYS) at

the Technical University of Denmark (DTU) was undertaken thanks to the gen-
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Figure 5.3: Enzymatic activity screening.

erous award of a Royal Society of Edinburgh (RSE) John Moyes Lessells Travel

Scholarship. A lab scale experimental campaign has been performed towards

parametrising the first kinetic model for this novel process. Significant work

towards the characterisation of the particular bacterium involved has been per-

formed the Gernaey group within PROSYS at DTU (i.e. Falco et al., 2019),

whose assistance was instrumental in the experimental portion of this work. This

was performed in collaboration with Hakan Ayyaldaz, who also presents a portion

of the data obtained (Ayyaldaz, 2018).

5.3.1 Enzyme Preparation

Lab scale hydrolysis experiments have been performed using a keratinolytic en-

zymatic cocktail with the filamentous bacterium Amycolatopsis keratiniphila D2

(DSM 44409), first reported by Al-Musallam et al. (2003). The bacterium was

cultivated on mineral keratin medium with the following composition: 0.75 g L−1

NaCl, 1.75 g L−1 K2HPO4, 0.25 g L−1 MgSO4·7H2O, 0.055 g L−1 Ca Cl2, 0.010

g L−1 FeSO4·7H2O, 0.005 g L−1 ZnSO4·7H2O and 1% w/w poultry by-product

meal (PBM) keratin powder (Falco, 2018). The medium was sterilized at 121

°C for 20 minutes, with the free keratinase extract taken for the laboratory scale

hydrolysis experiments presented in this thesis.
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Figure 5.4: 40 °C enzyme activity decay and model fit.

5.3.2 Enzymatic Activity Screening

Prior work by the experimental group at DTU PROSYS characterised the ef-

fect of both temperature and pH on observed initial enzymatic activity (Falco,

2018). Optimal conditions were identified to maximise initial activity (T = 65 °C,

Ph = 8), however it was demonstrated that at this temperature the enzyme is

very rapidly denatured and unable to promote sustained hydrolysis. To screen

for suitable reaction temperatures, enzymatic activity was monitored over the

entire timespan required for hydrolysis, following isothermal incubation, by as-

saying with azokeratin as a substrate. A range of temperatures were screened:

30, 40 and 50 °C, where an inherent trade-off exists between increased initial

activity and increasing activity decay rate (Fig. 5.3). It was found that at 40

°C the activity was suitably high and did not decay prohibitively quickly, and

has thus been implemented as the experimental and model reaction temperature.

The same keratinase activity profile at 40 °C can be seen in Figure 5.4, to which

the parameters for Eq. 5.6 have been fit. It is shown that the activity falls to

a level well above 0, with the enzyme still able to act after 72 hours. This ob-

servation can be explained by the fact the experiments are not performed with

an isolated a single enzyme strain, rather are using the cocktail produced by the

amycolatopsis bacterium. It is found that components of the cocktail have dras-

tically differing decay timescales, and as such there is a fraction which does not
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Figure 5.5: (a): Initial hydrolysis reaction rates, (b): Lineweaver-Burk plot.

notably decay in the reactive time-frame at this temperature. To incorporate this

phenomenon into the model and the additional term is considered in the activity

decay function: the residual activity, RA, is defined as the activity level below

which the activity does not drop (Eq. 5.6).

5.3.3 Initial Reaction Kinetics

Vials containing 2 mL keratinase preparation and varying solids loading (PBM

meal) were placed in a thermoshaker at 40 °C and 600 rpm. At fixed time

intervals, triplicate vials were removed for each solid loading considered. A sample

from each vial was taken and the protein content determined by bicinchoninic acid

(BCA) assay, and the remaining vial contents vacuum filtered, dried and weighed

to determine residual substrate mass. Initial reaction kinetics for four substrate

concentrations (1.5, 3, 5 and 7% w/w) were considered: samples were taken over

time in the first hour, a period in which the consumption rate is approximately

constant at the maximum (initial) value. Figure 5.5a presents the consumed

keratin for the four loading cases in the first hour of the reaction. In all cases

linear consumption is observed across the whole hour validating that the reaction

rate is approximately constant and that these rates may be used to accurately

determine Vmax. The gradients from Figure 5.5a are used in the Lineweaver-Burk

plot (circular markers in Figure 5.5b), to elucidate initial reaction kinetics via
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Figure 5.6: Experimental state data.

the classical approach: reading Vmax and Km off the figure from the x-intercept

(−K−1
m ) and y-intercept (−V −1

max) (Lineweaver and Burk, 1934).

5.3.4 Dynamic State Data

A second hydrolysis campaign is performed where three substrate concentrations

were considered (3, 5 and 7% w/w) with the hydrolysis now performed for 72

h to construct state profiles for both substrate (keratin) and product (protein)

throughout the entire reaction duration. Figure 5.6 presents the experimental

state data across the 72 hour experimental campaign. Experiments are performed

in triplicate with the corresponding error-bars presented on the figure.

5.3.5 Parameter Estimation

Of the eight model parameters, three (ei, kD and RA) can be fit from the activity

assay profile (Figure 5.4), whose solid line shows the fit using parameter values

from Table 5.3. Two parameters (Vmax and Km) are determined directly using

the initial kinetics via the Lineweaver-Burk plot method, (Lineweaver and Burk,

1934), shown in Figure 5.5b). Additionally, the product ration, fr, can be directly

inferred as the ratio between the protein and keratin state derivatives in Figure

5.6 Similarly the fraction of the substrate which is digestible by the enzyme, H,

71



Figure 5.7: Experimental state data and model fit.

can be considered as the average of the total substrate fraction digested after the

reaction is completed. Subsequently, the single remaining model parameter, KI ,

to be estimated. This is formulated as a standard parameter estimation problem,

minimising the sum squared error between model and experimental data points,

defined by Eq. 5.9, where the NLP is solved with MATLAB’s fmincon function,

calling the inbuilt ode45 function for model integration to evaluate the objective

in each iteration of the NLP solver.

min
∑

(f(xj, θ)− yj)
2 (5.9)

Here, f(xj, θ) is the model predicted keratin and protein state trajectory for

experiment j, θ is the parameter vector and yj is the experimental state trajectory.

The data sets for 3% and 7% w/w initial substrate concentration were used in

the fitting, leaving the 5% w/w profile as a supplementary dataset to compare

the model to for validation. The model fit is presented with the blue trajectories

in Fig. 5.7, alongside the prior state data.

5.3.6 Discussion

It can be seen from Figure 5.7 that the proposed model is able to effectively

describe the key behaviour observed in the experimental data, both for keratin
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Table 5.3: Keratin hydrolysis model parameter values.
Parameter Symbol Value Units

Hydrolysable substrate fraction H 0.63 -
Maximum reaction velocity Vmax 3.20 g L−1 hr−1

Michaelis–Menten constant Km 14.29 g L−1

Initial enzymatic activity ei 39.96 kU L−1

Enzyme decay constant kD 0.188 hr−1

Residual enzyme cocktail activity RA 23.91 kU L−1

Product inhibition constant KI 0.328 g L−1

Product ratio fr 0.548 -

consumption and protein production. The dataset not used in the model parame-

ter determination (5% w/w loading) shows good agreement between experimental

data and the model prediction, suggesting the model can accurately describe ker-

atin hydrolysis at 40 °C with A. keratiniphila D2. The model assumption of a

fixed fraction of the substrate being hydrolysable, H, is not able to fully capture

the observed phenomena where yield decreases with solids loading. As a result,

the model under-predicts keratin consumption at 3% w/w solids, and over pre-

dicts for 5% and 7% w/w (Figure 5.7). If the value of H is defined individually

for each solid loading campaign according to the observed experimental yield in

that campaign and the model parameters re-determined, the fit is exceptional.

This indicates that if the mechanism behind diminishing yield with increasing

substrate concentration can be incorporated into an updated model it would be

even more accurate in representing the dynamic system. It is known that as

solids loading increases, factors that were insignificant in low-solid systems be-

come more prominent (Modenbach and Nokes, 2013), which can restrict substrate

conversion yield at higher loading and is found to be the case here. It is possi-

ble that mass transfer between the keratin and enzyme is becoming impeded at

high substrate concentrations due to reduced free water content as the liquid ab-

sorbs into the biomass, as has been observed in high-solids enzymatic cellulose

hydrolysis (Hodge et al., 2009), a reactive system known to have many parallels

to keratin hydrolysis; however further experimental work is necessary to confirm

whether this is the precise mechanism responsible for the observed phenomena.
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5.3.7 Chapter Conclusions

The first dynamic model for enzymatic hydrolysis of keratin is proposed. Michaelis–

Menten kinetics with product inhibition allows the observed behaviour of the re-

active system to be captured, with the model fit showing good agreement with

experimental data. The assumption of a fixed fraction of the substrate being

hydrolysable is not able to fully capture the observed phenomena where by yield

in fact decreases with solids loading. Further experimental work is necessary to

explore this with the aim of better describing the apparent inhibitory effect at

higher substrate content to increase model fidelity towards more robust optimi-

sation results, with the aim of increasing the cost competitiveness of this novel

means to treat the abundant quantities of keratin-rich waste produced annually.
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Chapter 6

Dynamic Simulation &

Visualisation

6.1 Visualisation of Attainable Performance for

Beer Fermentation

To assess the potential for process improvements in current plant operation at

an industrial partners brewery, an algorithm has been developed to rapidly gen-

erate plausible temperature manipulations which adhere to realistic operability

constraints at a suitable level of temporal domain discretisation. The system-

atic investigation of potential improvements relies on generating a vast number

of potentially suitable temperature profiles and simulating fermentation for each

dynamic manipulation. Plotting the entire set of different performance indicators

obtained from each dynamic simulation along with those known from the current

industrial manipulation can thereafter reveal the entire performance envelope

towards pinpointing which precise process improvements are feasible.

6.1.1 Industrial Beer Fermentation Model

The lumped-parameter kinetic model of beer fermentation by de Andrés-Toro

et al. (1998) has been selected for industrial fermentation process simulation for

75



several reasons: Published parameters are derived from a very large array of

experiments, resulting in a wide temperature range (8 – 24 °C) which ensures

high fidelity and applicability. The model includes all prominent by-products

which degrade beer product quality in terms of taste and aroma, rendering the

model valuable for assessing performance. Predicted profiles indicate the highest

fidelity with experimental and pilot-plant data in comparison to other models,

due to successful validation against over 200 fermentations. A description of this

kinetic model corresponds to the schematic diagram presented (Fig. 3.10a). The

model has been validated under non-isothermal operation within the prescribed

temperature bounds, so is particularly suitable for exhaustive simulation and

subsequent dynamic optimisation.

The initial cell culture pitched into the fermentor, [Xinc], has a specific com-

position of active ([Xact]), latent ([Xlag]) and dead yeast cells ([Xdead]), which is

defined as (de Andrés-Toro et al., 1998):

0.02 · [Xact]0 + 0.48 · [Xlag]0 = [Xdead]0 = 0.5 · [Xinc] (6.1)

Following their introduction to the system, yeast cells are immediately suspended

in the wort, rendering the total suspended cell concentration at any time, [Xsus],

equal to the sum of all respective cell types:

[Xsus]t = [Xact]t + [Xlag]t + [Xdead]t (6.2)

During the fermentation lag phase, yeast cells undergo conversion into active

cells, which have an enzymatic effect on the sugar substrate:

d[Xlag]

dt
= −µL(T ) · [Xlag]t (6.3)

The specific rate of activation (µL) is highly sensitive to temperature. During

the lag phase, active cells are not considered to grow; their concentration changes

due to cell activation:

d[Xact]

dt
= −d[Xlag]

dt
, t < tlag (6.4)
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During the lag phase, cell death is not considered: the suspended dead cell con-

centration is governed only by the settling rate of cells escaping the suspension

toward the tank bottom:

d[Xdead]

dt
= −µSD(T, t) · [Xdead]t, t < tlag (6.5)

The dead cell settling rate (µSD) depends on wort density, which is in turn related

to the initial sugar concentration ([S]0):

µSD =
µSD0(T )·0.5·[S]0

0.5 · [S]0 + [EtOH]t
(6.6)

The maximum settling rate (µSD0) occurs at the beginning of the process, and is

also highly sensitive to temperature. An Arrhenius equation is used to describe

the temperature dependence of all rate parameter expressions within the model,

where the constants A and B are estimated on the basis of experimental data at

different temperatures (Table 6.1):

µi0 = exp(Ai +
Bi

T (t)
) (6.7)

Combining Eq. 6.2 with the aforementioned rate expressions for each cell type

produces the overall suspended cell balance for the lag phase:

d[Xsus]

dt
= −d[Xdead]

dt
, t < tlag (6.8)

Once active cells constitute a significant portion of suspended biomass, the lag

phase is completed and the fermentation phase begins. Active cell growth occurs

thereafter; suspended cell concentration evolves as a function of both active cell

growth and dead cells settling:

d[Xsus]

dt
= µx(T, t) · [Xact]t − µSD(T, t) · [Xdead]t, t ≥ tlag (6.9)
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The specific growth rate (µx) is a function of sugar and ethanol concentrations:

µx =
µx0(T ) · [S]t
kx + [EtOH]t

(6.10)

The rate at which active cell concentration evolved during the fermentation phase

is a combination of active cell growth, active cell death and latent cell activation:

d[Xact]

dt
= µx(T, t) · [Xact]t − µDT (T ) · [Xact]t + µL(T ) · [Xlag]t, t ≥ tlag (6.11)

Throughout the fermentation phase, the evolution of latent cells is governed by

Eq. 6.3, however the suspended dead cell ODE must incorporate an additional

term to account for the death of active cells:

d[Xdead]

dt
= −µSD(T ) · [Xdead]t + µDT (T ) · [Xact]t, t ≥ tlag (6.12)

The rate of cell death (µDT ) depends on wort temperature, described with an

Arrhenius equation (Table 6.1). The uptake of sugar from wort is proportional

to active biomass concentration:

d[S]

dt
= −µS(T, t) · [Xact]t (6.13)

The consumption rate (µS) has been assumed to follow Michaelis-Menten ki-

netics: the maximum rate (µs0) at t = 0) corresponds to the maximum sugar

concentration which obeys an explicit temperature dependence:

µs =
µs0(T )·[S]t
ks(T ) + [S]t

(6.14)

Ethanol concentration data shows that its production rate is not constant, so it

is necessary to include an inhibition factor (f) in the formulation:

d[EtOH]

dt
= f(t) · µe(T, t) · [Xact]t (6.15)

This factor accounts for the ethanol inhibiting effect in the wort, and is defined
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Table 6.1: Experimentally determined Arrhenius constants
Symbol Description Ai Bi

µSD0 Maximum dead cell settling rate 33.82 -10033.28
µx0 Maximum cell growth rate 108.31 -31934.09
µs0 Maximum sugar consumption rate -41.92 11654.64
µe0 Maximum ethanol production rate 3.27 -12667.26
µDT Specific cell death rate 130.16 -38313
µL Specific cell activation rate 30.72 -9501.54

ke = ks Affinity constant -119.63 34203.95
YEA Ethyl acetate production stoichiometric factor 89.92 -26589

along with the specific growth rate (µe):

f =
1− [EtOH]t

0.5·[S]0
(6.16)

µe =
µe0(T ) · [S]t
ke(T ) + [S]t

(6.17)

Ethyl acetate production rate is considered proportional to active cell growth;

the stoichiometric factor (YEA) is an Arrhenius function of system temperature.

d[EA]

dt
= YEA(T ) · µx(T, t) · [Xact]t (6.18)

The model considers two chemical pathways for diacetyl evolution; the first term

accounts for its production rate (proportional to sugar concentration) while the

second term represents its conversion rate to other components (proportional to

ethanol concentration):

d[DY ]

dt
= µDY · [S]t · [Xact]t − µAB · [DY ]t · [EtOH]t (6.19)

Parameter values required in all modified Arrhenius temperature equations de-

fined in Eq. 6.7 use the ideal gas law constant (R = 8.314 J K−1 mol−1) and

are reported for T in degrees Kelvin (Table 6.1). The original model (de Andrés-

Toro et al., 1998) describes the specific appearance and disappearance rates of

diacetyl (µDY and µAB respectively) using second-order temperature polynomials:

this description predicts erroneous species profiles, entirely different from those

shown in the paper and reported in all experiential studies published. Subsequent
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Table 6.2: Additional model parameters
Symbol Parameter Description Value Units
µDY Diacetyl production rate 1.27672 · 10−7 g−1h−1L
µAB Diacetyl consumption rate 1.13864 · 10−3 g−1h−1L

papers (Carrillo-Ureta et al., 2001; Xiao et al., 2004) use experimentally deter-

mined constants for these growth rates and present profiles in closer agreement

with experimental data (Table 6.2).

While investigating the predictive power of the various kinetic models, the

present study has discovered that the original de Andrés-Toro kinetic model pub-

lication (1998) did not produce the ethyl acetate profile presented in the paper.

This error has been reproduced by numerous authors referencing the model, de-

spite not presenting profiles which follow this mathematical description (Carrillo-

Ureta et al., 2001; Xiao et al., 2004). Carrillo-Ureta (1999) defines an ethyl

acetate ODE identical to that of de Andrés-Toro (1998):

d[EA]

dt
= YEA(T ) ·

d[S]

dt
= YEA(T )·µS(T, t)·[Xact]t (6.20)

6.1.2 Methodology

To generate a finite set of dynamic profiles, the temperature domain must be

discretised. The domain limits have been defined by Eqs. 6.21 - 6.22: the time

span is such that any profile producing reasonable performance will be run to

completion, while avoiding unreasonable computational load for all profiles which

imply a prohibitively long batch time. The lower temperature limit excludes

scenarios in which the system lacks enough energy to promote cell growth; the

upper limit ensures bacteria which are present above this temperature cannot

thrive, while also preventing the temperature from reaching a level at which

undesirably high by-product concentrations are known to be produced.

0 < t < 160 (hours) (6.21)

9 < T < 16 (°C) (6.22)
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An extremely large number of paths within this finite domain exists, so discretisa-

tion is necessary in order to obtain a manageable finite set. Temperature control

of industrial fermentation vessels is extremely challenging, given the complex flow

patterns in fermentors: consequently, attempting to manipulate the temperature

to a finer level than 1 °C is not practical. The temperature range considered has

thus been discretised per degree, for profile nodes/corners, between which the

temperature is is piecewise linear. For a manipulation profile to be useful, the

temperature must not change abruptly with time, to avoid imposing unrealistic

demands on the cooling system. To accommodate this, the fermentation time

span is broken down into 20-hour intervals, so 9 values are considered along the

time axis, thus producing temperature profiles which all consist of 8 linear seg-

ments. This discretised grid will produce 98 total unique paths, a value too vast

for exhaustive numerical dynamic simulation. Many of these paths are evidently

not industrially useful, so it is necessary to select and simulate only technically

promising cases. Constraints must be applied in order to reduce the number of

paths, removing those which evidently produce poor performance and induce an

unnecessary computational burden. An investigation has been performed in order

to identify appropriate profile constraints, which must reduce the total number

of profiles (paths) to a manageable level, selecting those likely to produce good

performance while also allowing a reasonable range of different paths to be con-

sidered so that the effect of various operating conditions can be assessed. A set

of different rules for profile constraints has been developed conceptually. Rule A

states that temperature may only increase to any level within the domain limits

or remain constant when progressing to the next discretised point in time.

Rule A: T (tn+1) ≥ T (tn) (6.23)

In rules B and C, the temperature can remain constant, increase or decrease

when progressing to the next time point. Rules B uses ∆Tmax = 1 °C and rule C

considers ∆Tmax = 2 °C to limit the temperature change between each interval;

e.g. in the latter a step of 0, 1 and 2 °C in both directions is permitted at every

20 hour time step.
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Table 6.3: Number of profiles for constraint rules and time domain resolutions.
Rule: A B C D E F

∆Tmax (°C) 1 2 1 2 3
Equation(s) 6.23 6.24 6.24 6.25, 6.26 6.25, 6.26 6.25, 6.26

N tstep (hrs) Number of unique manipulation profiles:
4 53.33 120 62 512 29 59 94
5 40 330 176 4.1×103 55 157 309
6 32 792 502 3.3×103 106 434 1.1×103

7 26.67 1.7×103 1.4×103 2.6×103 201 1.1×103 3.2×103

9 20 6.4×103 1.2×104 1.7×108 730 7.8×103 2.7×104

Rules B & C: T (tn)−X ≤ T (tn+1) ≤ T (tn) + ∆Tmax (6.24)

One more set of rules have been considered, in which the constraint is split in

time such that the temperature may only increase up to ∆Tmax degrees for the

first half of the process, and then only decrease up to ∆Tmax degrees between

successive time steps for the second half of the fermentation. Rule D selects

∆Tmax = 1 °C, rule E imposes ∆Tmax = 1 °C and F considers ∆Tmax = 3 °C.

This early increase and later decrease represents the form generally employed in

fermentation.

Rules D, E, F:

T (tn) ≤ T (tn+1) ≤ T (tn) + ∆Tmax, for t < tmax

2
(6.25)

T (tn)−∆Tmax ≤ T (tn+1) ≤ T (tn), for t ≥ tmax

2
(6.26)

The number of profiles generated when following each of these constraints is listed

in Table 6.3, for increasing levels of time domain discretisation (N). Rule A pro-

duces a low number of paths, but limiting temperature evolution such that it can

only increase is highly restrictive because cases which include a later decrease in

temperature (as often shown in literature) are excluded. Rules B and C are much

less restrictive, as temperature increase or decrease at any point is permitted.

However, the number of paths produced increases explosively as the allowable

∆T between time points increases. This is clear in Table 6.3, where increas-

ing the allowable temperature variability from 1 °C (Rule B) to 2 °C (Rule C)

drastically influences the number of profiles, with the difference increasing very
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dramatically as the permitted temperature change is further increased. Rules D,

E and F show a much less severe impact on the number of paths when increasing

∆T , while still including typical fermentation cases, and has been found to be

the most suitable of all novel constraints we have developed. To allow a greater

range of potentially suitable paths to be simulated, Eqs. 6.25–6.26 are modified

to remove the permitted temperature step limit, allowing any level of temper-

ature variation between time points while still following the same multi-region

constraint rule, as seen in Eqs. 6.27–6.28. This double constraint states that all

levels of temperature increase within the domain limits are considered for every

time step before the midpoint, and all levels of decrease are considered for every

step after the midpoint. Accordingly, a large set of potentially applicable profiles

has been obtained for the fermentation process. The applied constraint:

T (tn+1) ≥ T (tn), for t < tmax

2
(6.27)

T (tn) ≥ T (tn+1), for t ≥ tmax

2
(6.28)

6.1.3 Simulation Results

The temperature and time limits, discretisation level and constraints considered

in the present study produce 175,252 unique temperature profiles. Simulating

dynamic species evolution for the entire set of manipulations requires 3 hour of

total CPU time. Key performance indicator data from all dynamic simulations are

plotted and compared to the performance of an industrial partners fermentation

manipulation, represented by the circular blue marker on the scatter plots (Figs.

6.1–6.2). Fig. 6.1a illustrates all final concentrations of ethanol, diacetyl and

ethyl acetate after fermentation for 160 hours, for every single scenario simulated,

providing a three-dimensional indicator of product quality. Fig. 6.1b presents a

measure of process performance by correlating fermentation efficiency (measured

by maximum ethanol production) and fermentation time (measured by the time

to produce 99.5% of that value). Here the desirable region is the upper left

corner of the figure, representing maximum ethanol concentration in minimum
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Figure 6.1: (a) Attainable product envelope; Concentration of (b) ethanol, (c)
diacetyl, (d) ethyl acetate vs time.

time. Fig. 6.1(c-d) similarly show produced aromatic compound concentrations

against fermentation time, which is now measured by the time to almost entirely

consume the initial wort sugar concentration. While measuring fermentation

time by sugar consumption and ethanol production do yield marginally different

times, their strong correlation renders either of the two as a reliable indicator

of process performance, providing ethanol production and sugar consumption

are both adequately high. Using sugar consumption as an indicator removes

cases where undesirably high residual sugar concentration remains in the product,

which consequently do not feature in Fig. 6.1(c-d) or Fig. 6.2.

The process lag phase length is also considered for each simulation in order

to determine if it has a strong effect on the total batch time. Thus, Fig. 6.2a

presents the length of the lag phase vs. batch time, while Fig. 6.2b shows the

effect of the lag phase length on the maximum active cell concentration observed

within the yeast culture. Figs. 6.2(c-d) present the active cell population against

batch time: Fig. 6.2c compares fermentation time to maximum active cell pop-

ulation, while Fig. 6.2d considers the final active yeast cell concentration after

fermentation is complete: the latter is of high industrial interest, as it is desirable
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Figure 6.2: Fermentation performance for all simulations; Lag phase length vs.
(a) Batch time, (b) Active cell concentration; Fermentation time vs. (c) Maxi-
mum active cell concentration, (d) Final cell concentration.

to recover the yeast toward using it in subsequent fermentation batches. All fer-

mentation performance indicators suggest that the industrial operational profile

has reasonably high performance, better than a large portion of the simulated

alternatives. It is also evident there is significant potential to improve any single

variable, however often not without compromising on another target parameter.

Thus, Fig. 6.1a shows the relationship between final product concentrations: it

can be seen that the greatest ethanol production also corresponds to the high-

est production of aromatic by-products, well exceeding acceptable levels. It also

indicates that a small sacrifice in final ethanol concentration can lead to large

reductions in the concentrations of aromatic compounds present. Moreover, Fig.

6.1b shows that it is possible to both increase ethanol production and reduce

processing time relative to the industrial manipulation (upper left quadrant data

points). However, the implications on all other design variables must be consid-

ered; the most desirable simulation according to Fig. 6.1b is the upper leftmost

point on the graph, which corresponds to isothermal operation at T = Tmax, but

also to very high by-product production and sugars remaining unconsumed. It
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is more beneficial to retain or marginally reduce the current ethanol production

in order to reduce batch time while not impairing product quality. Furthermore,

Fig. 6.1c illustrates that a reduction in batch time is correlated with an increase

in diacetyl in the beer product.

The current industrial plant manipulation is producing a low ethyl acetate

concentration given the batch time (tf = 130 hours), close to the Pareto front

of this plot, which follows the minimum concentration boundary for any fermen-

tation time. Diacetyl concentration is the most challenging variable to reduce

without suffering a detrimental effect on other process parameters. Because it

is well below the levels produced by most fermentations, it is possible to allow

diacetyl concentration to increase within acceptable limits in order to achieve a

process improvement in terms of batch cycle time. Conversely, Fig. 6.1d shows

that such a high level of a correlation between ethyl acetate concentration produc-

tion and batch time does not exist. Simulation data points are spread out widely,

however it is clear that longer batch times can coincide with higher aromatic com-

pound levels, while shortest batch times correspond to the lowest concentrations.

The current industrial manipulation produces approximately the average ethyl

acetate concentration for all fermentations of this duration. No apparent trend

between the length of the lag phase and the total fermentation time is observed

(Fig. 6.2a). The industrial manipulation corresponds to the average lag phase

duration for this batch time, tf , = 130 hours. The lag phase duration does influ-

ence the maximum concentration of active yeast cells which are produced (Fig.

6.2b): a shorter duration for this lag phase leads to an increased maximum cell

concentration. Also, Fig. 6.2c reveals that the maximum cell concentration is not

closely related to the batch fermentation time, highlighting that this is not an es-

sential parameter for evaluating process performance. The average concentration

of active cells is of higher importance, given that a short-lived high maximum

does not influence fermentation rate for a long period of time. It is desirable to

ensure there is an active cell population when fermentation is complete: Fig. 6.2d

illustrates that while the points are highly spread, the overall trend indicates that

rapid fermentations facilitate a higher concentration of active cells at the end of

the process. This is extremely significant in case of successfully reducing batch
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Table 6.4: Proposed fermentation process improvements.
Parameter Units Existing Manipulation A B C
Batch Time hrs 129.5 119.5 115 119.5
[EtOH] g L−1 59.0 58.9 58.0 58.9
[EA] ppm 1.16 1.19 0.99 1.28
[DY ] ppm 0.06 0.10 0.16 0.09

time, because material costs for fresh yeast can be reduced in addition to improv-

ing plant throughput. Simulation results have been analysed to evaluate which

cases reduce fermentation time with acceptable effect on product quality. The

time for sugar consumption of the industrial manipulation is 130 hours (Table

6.4). A 10-hour reduction of fermentation time would have a significant impact on

brewery production capacity, so all simulated profiles which produce a batch time

under 120 hours must be considered as potentially viable process improvements.

Hence, of the profiles simulated, 2759 take 120 hours or less to consume 99.5% of

the initial sugars. Many of these differ only after fermentation completion (120

hours), so only 826 potentially suitable profiles can improve the first 120-hours.

Three promising process improvement cases are highlighted in Table 6.4, with

the corresponding profiles illustrated in Fig. 6.3. A considerable batch time re-

duction is demonstrated in each case, with minimal impact on product quality.

Options A and C show similar performance, a 10-hour reduction in fermentation

time, with a small (0.1 g L−1) reduction in ethanol produced and a marginal

increase in both aromatic compound concentrations. Option B is more preferable

if a more significant decrease in ethanol concentration is permitted: a decrease

of 1 g L−1 can reduce batch time by 15 hours (Table 6.4), while also reducing

the product ethyl acetate concentration by over 15%. Diacetyl concentration

is also increased, however it remains comparatively low compared to other ma-

nipulations considered (Table 6.4). Depending on a brewer’s particular product

targets, numerous dynamic simulations performed in this study represent clear

and measurable process improvements, which can be attained by tolerating small

sacrifices in areas considered as process targets of lower priority.
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Figure 6.3: Dynamic temperature manipulation profiles producing clear and mea-
surable process improvements.

6.1.4 Optimal Temperature Profile Determination

The attainable envelope of product final concentrations (Fig. 6.1) compiled from

the entire data set of simulation results clearly illustrates that numerous plau-

sible manipulations promise superior performance (hence process improvements)

over current industrial practice. The precise determination of the most suitable

and advantageous temperature manipulations is hence the next essential step

for achieving the best feasible performance (optimal operation). First, Simulated

Annealing (SA) has been implemented to determine the optimal temperature ma-

nipulation profile from the simulation set. Secondly, the performance of each of

the 175,000 profiles has been quantified for a range of objective function weights

by exhaustive evaluation, in order to validate stochastic results from SA, as well

as investigate the sensitivity the solution shows to potentially arbitrary objective

function component weights.

6.1.4.1 Simulated Annealing (SA)

Simulated Annealing (SA) is a valuable approach for approximating a global op-

timum (Kirkpatrick et al., 1983), requiring significantly less CPU time compared

to exhaustive techniques, while effectively exploring the design space. The meta-

heuristic for approximate global optimisation is applicable to the large search

space here, and has been applied to biochemical network processes for parameter

estimation previously (Gonzalez et al., 2006). The computational procedure is

analogous to the thermal annealing of solids, in which the material is heated and

then cooled slowly, allowing atoms to reach a minimal energy state. In simulated
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(much like in material thermal) annealing, the current candidate solution (system

state) may move to another of worse objective function value (akin to a higher

energy state), particularly in the early stages of the process. This occurs so that

early local minima or maxima can be escaped in the search for the globally op-

timal solution: as the SA temperature is gradually reduced, the corresponding

probability of accepting a worse solution is reduced. An objective (cost) func-

tion is essential to define in order to quantify and compare the performance of

fermentation temperature profiles: in principle, it can account for final product

concentrations (ethanol, diacetyl and ethyl acetate) and batch time as terminal

pay-offs, while energy consumption is not considered as a running pay-off, in ac-

cordance to most previous studies and the model (de Andrés-Toro et al., 1998)

employed. The objective function formulated only considers final ethanol con-

centration maximisation and batch time minimisation, and is given by Eq. 6.29:

therein, WE and Wt are the respective weights of the two components, 1
t
is the

inverse batch time (normalised by division with the maximum value recorded)

and ˜[EtOH] is the ethanol concentration (normalised in the same way). In doing

so the normalised ethanol concentration ˜[EtOH] ranges from 0.68 when [EtOH]

= 42 g L−1 to 1 when [EtOH] = 61.3 g L−1, similarly the normalised inverse

batch time ( 1
t̃f
) ranges from 0.62 to 1 when t is 99 hrs and 160 hrs respectively.

By-product species (diacetyl and ethyl acetate) final concentrations are consid-

ered as constraints, since they must be kept below threshold values in the final

product, and are given in Eqs. 6.30 - 6.31; further reductions below these limits

are welcome but not essential, as they do not induce any discernible effect on

flavour (resulting product quality improvements cannot be quantified).

Jmin = −WE · ˜[EtOH]−Wt ·
1

t̃f
(6.29)

s.t. [EA]tf ≤ 2 ppm (6.30)

[DY ]tf ≤ 0.1 ppm (6.31)

The SA algorithm employed is based on published MATLAB® code (Hedengren,

2015). Firstly, the data set produced via exhaustive simulation is compared to the
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Figure 6.4: Simulated annealing flow diagram (Hedengren, 2015).

tolerable by-product limits, Eqs. 6.30 - 6.31, and all cases in which the latter are

exceeded are removed (feasible region identification). Secondly, an ethanol con-

centration is initially assumed, and the corresponding production (batch) time is

retrieved: the objective function value corresponding to the respective tempera-

ture profile can then be computed using Eq. 6.29. The SA algorithm then follows

the flow diagram given in Fig. 6.4.

A new potential ethanol concentration is generated by stepping randomly from

the current value. The corresponding batch time is recorded and the objective

function value is computed again: if the latter shows improvement, it replaces

the current solution. If the solution is worse, it may still replace the existing

solution if a randomly generated number is less than the Boltzmann probability,

Eq. 6.32 where ∆E is the energy displacement (difference in objective function

values for successive iterations), kb is the is the Boltzmann constant and TSA is

the SA temperature (not to be confused with fermentation temperature):

p = exp(
−∆E

kbTSA

) (6.32)

This procedure has been performed for a wide range of objective function

component weights (Eq. 6.29), for several starting points (initial guesses): the

optimal point determined is independent of the starting point selected, provided

that a suitable cooling rate is used. While a multi-start algorithm has been used,
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the same initialisation could be used repeatedly since the method is stochastic.

The number of iterations required and the appropriate starting SA temperature

depend on the accuracy of the initial guess. A wide variation of component

weights have been used, but only three cases are illustrated (Fig. 6.5): for each

of them, three different starting points (A, B, C) are considered and all three

SA trajectories are clearly shown to converge to the same optimal point (which

depends on weight allocation), albeit at quite variable performance (iterations).

The figure depicts the entire set of simulations results as to allow the SA trajec-

tories to be readily visualised, however the data is not an inherent part of the

procedure. The top row of plots within Fig. 6.5 present product [EtOH] versus

batch time on an ethanol basis - defined as the time to produce 99.5% of the

ethanol produced after 160 hours by any profile, denoted by (*). The remaining

plots in the Figs. 6.5, 6.7 and 6.9 still depict batch time in the x-axis, however

these refer to a sugar basis - defined as the time to consume 99.5% of the feed sug-

ars. Furthermore, a remarkable observation is that (while dependent on weight

allocation for Wt < 10%), the optimal temperature profile remains identical (and

independent of weight allocation) for all cases where Wt > 10%; this trend is

significant, because it indicates that the optimal manipulation displays almost

no sensitivity to the arbitrary balance of objective function terms. A minimal

reduction of ethanol concentration (Fig. 6.5, first column) can therefore facilitate

a considerable batch time reduction, while also ensuring that Eqs. 6.30 - 6.31

constraints are satisfied. The temperature profile presented (Fig. 6.5, second and

third columns) can thus be conclusively determined as the optimal result for the

fermentation process considered, excluding the unrealistic case of extreme (and

virtually exclusive) importance of ethanol concentration only (WE > 90%), in

which batch duration is disregarded (Wt < 10%). A larger number of SA itera-

tions are required when the initial point lies far from the optimal result; also, a

higher initial SA temperature is required in these cases so that local maxima can

be overcome. In the first case (Wt = 1%, WE = 99%), the solution lies closer to

the starting points, so a lower initial SA temperature and fewer iterations were

required. Conversely, the other two weight allocation cases required a higher ini-

tial temperature, in order to prevent convergence entrapment in a local minimum
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Figure 6.5: SA optimisation results for varying J-function component weights.
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Table 6.5: SA solution methods.
Weights Tinitial pinitial Tfinal pfinal Iters Simulations Jmin

Wt= 1% 0.621 0.2 0.1087 0.0001 10 103 -0.97
WE = 99%
Wt= 10% 9.491 0.9 0.1087 0.0001 30 364 -0.92
WE = 90%
Wt= 90% 9.491 0.9 0.1087 0.0001 30 324 -0.92
WE = 10%

Figure 6.6: SA objective function per iteration from 3 initial points (Wt = 90%,
WE = 10%).

and attain the global solution. Fig. 6.5 (second and third columns) indicates that

the SA algorithm passed through the point corresponding to optimal operation

in the first case (Wt = 1%, WE = 99%), as the latter constitutes a local (but not

global) maximum for the other two cases. Table 6.5 shows the required parame-

ters to consistently reach the optimal solution for any starting point in each case.

Objective function convergence from various initialisations is illustrated in Fig.

6.6 for the second case (Wt = 90%, WE = 10%).

6.1.4.2 Exhaustive Enumeration

The exhaustive evaluation of all (175,000) candidate temperature manipulation

profiles has been pursued in order to validate the Simulated Annealing (SA)

algorithm constructed and results obtained: the same objective function given in

Eq. 6.29 has been used in order to calculate J values for every single temperature

profile, using the same component weights.

Figure 6.7 illustrates the top 10% (red points) and the optimal (green point)

product quality combinations achieved, respectively, superimposed on the entire
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Figure 6.7: Exhaustive optimisation results for varying J-function component
weights.
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Figure 6.8: Optimal temperature profile from exhaustive search.

Table 6.6: Optimal fermentation profile performance.
Parameter Units Existing Manipulation New Profile (Figure 6.8)
Batch Time hrs 129.5 113.5
[EtOH] g L−1 59.0 59.1
[EA] ppm 1.16 1.35
[DY ] ppm 0.06 0.09

attainable envelope (blue points). The optimal points identified are precisely

those determined via simulated annealing, which is however a lot more efficient

as it performs only a fraction of objective function evaluations. Both simulated

annealing (SA) and exhaustive evaluation approaches arrive at the same tem-

perature profiles to minimise the objective function of Eq. 6.29 and satisfy the

constraints of Eqs. 6.30 - 6.31. For the vast majority of objective function weight

allocation values, the optimal temperature profile determined remains the same

(Fig. 6.8); its performance is compared to the current industrial manipulation

in Table 6.6. The batch time reduction achieved is spectacular (12.3%), and

it is accompanied by a small desirable increase in final ethanol concentration;

while both by-product concentrations do increase marginally as well, they are

well below tolerable thresholds and do not affect flavour.

6.2 Visualisation of the Impact of Wort

Composition

The dynamic simulation and visualisation analysis of beer brewing is conducted

considering two (low/high) values for each of the three system parameters of in-
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terest. Initial wort sugar concentration ([S]0), pitching rate ([XINC ]0) and active

yeast fraction concentration ([Xact]0) have been varied between realistic bounds

for industrial operation, thus producing 8 distinct initial condition combinations.

The base case considered is the one for which all foregoing initial condition param-

eters are set at the lower bound values. Dynamic process simulation for all initial

condition triplets and all 175,252 plausible temperature manipulation profiles has

been performed in order to visualise and comparatively evaluate the impact and

relative importance of each condition parameter on each beer quality attribute,

i.e. [EtOH], [DY ], and [EA] (ethanol, diacetyl and ethyl acetate final concentra-

tions, respectively). Dynamic simulation results are summarised in Fig. 6.9 via

three-dimensional attainable envelopes of attributes (row 1) and two-dimensional

sensitivity analysis plots (rows 2-5), illustrating the output ensembles of all mea-

surable attributes versus all three ([S]0, [XINC ]0, [Xact]0) initial condition steps.

Two-dimensional plots are attainable envelope projections constructed in order

to facilitate pairwise comparisons of possible operational changes against the in-

dustrial base case. Final ethanol concentration is the main beer quality attribute,

whose maximisation is the foremost process efficiency index. The time axis has

been normalised (rows 3-5) to portray the required interval to consume 99.5%

of initial sugar feed, [S]0; it has also been represented (row 2) as the required

interval to achieve 99.5% of final ethanol concentration, [EtOH]max, to elucidate

the full envelope of attainable alcohol production. Filled black circles represent

this base case in all Fig. 6.9 plots, while open grey circles depict each other

alternative scenario.

6.2.1 Initial Wort Sugar Concentration

The impact of raising the initial wort sugar concentration (from 130 to 150 g L−1)

on fermentation process performance and beer quality attributes is illustrated in

Fig. 6.9 (column 1). Evidently, increasing fermentable material correspondingly

increases final attainable ethanol concentrations (rows 2-3). The maximum at-

tainable limit (row 2) is horizontal (virtually independent of batch time), but

shorter times lead to higher flavour compound contents and thus compromise
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Figure 6.9: Effect of fermentation initial conditions on beer flavour and quality
for the set of temperature manipulation profiles.
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beer taste. Moreover, identical temperature manipulations require longer fer-

mentation time at higher initial sugar concentrations, due to the inhibition on

ethanol production in the relevant ODE (this minimal time penalty is quite ac-

ceptable in high-gravity brewing strategies, as it offers the benefit of even higher

final product capacity due to the post-processing dilution stage). Both flavour

compounds attain higher final concentrations for increased initial sugar concen-

tration, a trend which implies that high-intensity fermentation practice should

be monitored judiciously in order to remain safely below taste thresholds. This

effect is apparent but limited for [DY ] (row 4), and more pronounced for [EA]

(row 5) in the entire duration spectrum.

6.2.2 Initial Yeast Concentration (Pitching Rate)

The effect of raising the initial yeast concentration (pitching rate) from 4 to 6

g L−1 is highlighted in Fig. 6.9 (column 2). The maximum attainable ethanol

concentration barely varies: it is slightly higher for shorter and lower for longer

batches, as initial fermentable sugar content is constant for all profiles. Lower

pitching rates induce longer fermentation durations, as shown by the consistent

black band on the right (row 2); thus, a few more hours are required for most

[EtOH] targets. High pitching rates may though induce cases in which short

batches yield low [EtOH] concentrations (Guido et al., 2004), even lower than

that for low [XINC ]0 (grey triangular swarm). Another remarkable observation

is that higher pitching rates also yield a few cases in which fermentation is spec-

tacularly accelerated without any discernible loss in attainable ethanol. Flavour

compound production levels strongly depend on the initial pitching rate and

demonstrate extreme variability. Lower pitching rates induce higher by-product

concentrations of diacetyls and ethyl acetate; higher initial yeast loads drasti-

cally reduce maximum [DY ] and [EA] levels produced. For both pitching rates,

the shortest batch times correspond to the highest final concentrations of unde-

sirable compounds. The diacetyl concentration Pareto front (row 4) embodies

the trade-off observed for both pitching rates: maximum diacetyl concentration

decreases monotonically with batch duration. Higher pitching rates narrow the
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[DY ] concentration range for all batch times (high [XINC ]0 reduces variability by

50%). By-product formation is higher in many faster fermentations, but there is

a subset of T (t) profiles which can simultaneously reduce batch durations as well

as by-product concentrations.

6.2.3 Active Yeast Cell Fraction

The active yeast fraction value used in previous studies (2%) has been compared

to a higher (5%) level (Fig. 6.9 , column 3). Dynamic simulation results indicate

remarkable similarity and identical trends for all observables in both [Xact]0 cases,

with very limited variation seen in all attainable sets (< 2%). Higher initial

active cell population marginally reduces the final concentration of undesirable

compounds (rows 4-5); nevertheless, this minimal effect is barely discernible and

therefore not useful in improving current industrial practice.

6.3 Instantaneous Heat Dynamics

Simulations presented in this chapter have relied upon universal assumption of

direct and instantaneous control of fermentor temperature. With the addition

of only two more ODEs to the system model the heat transfer dynamics can

be approximated. A comprehensive visualisation of the attainable performance

maps for key process variables is presented, obtained via a large-scale dynamic

simulation campaign of viable heat transfer (cooling) policies. These attainable

performance maps are compared to equivalent results produced previously, to elu-

cidate how fermentor performance varies once production scale increases beyond

where the assumption of instantaneous temperature control can apply.

The model is extended to consider heat transfer between the exothermic fer-

mentor contents and the surrounding cooling jacket. Eq. 6.33 defines the bulk

temperature inside the vessel, where energy generated by sugar fermentation at

a rate of (∆H) heats the wort according to its mean physio-thermal proper-

ties (ρR, Cpr). The cooling rate is a function of the jacket temperature (TC),

the jacket:fermentor heat transfer area (Ah), overall heat transfer coefficient
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Table 6.7: Heat transfer model parameters.
Symbol Definition Units Value

T Reaction Temperature °C -
TC Jacket Temperature °C -
TC0 Coolant Feed Temperature °C 4
FC Coolant Feed Rate m3 hr−1 -
∆H Enthalpy of Reaction kJ kg−1 587
ρR Mean Density of Wort kg m−3 1030
ρC Density of Coolant kg m−3 1042
CpR Wort Heat Capacity J kg−1K−1 4065
CpC Coolant Heat Capacity J kg−1K−1 3914.65
Ah Heat Transfer Area m2 221.4
U Overall Heat Transfer Coefficient kJ kg−1 200
VR Wort Volume m3 400
VC Jacket Volume m3 3.8

(OHTC,U) and wort volume (Vh). The temperature of the jacket (volume =

VC) is described by Eq. 6.34, cooled with fresh coolant at (T = TC0) at a volu-

metric rate (FC). Heat losses to the surroundings are negated as the vessel jacket

is operating close to ambient conditions.

dT

dt
=

dCS

dt
·∆H

ρR·CpR
+

(Ah · U)

VR·ρR · CpR
· (T − TC) (6.33)

dTC

dt
=

FC

VC

· (TC0 − TC) +
(Ah·U)

(VC ·ρC ·CpC))
· (TC − T ) (6.34)

A typical large capacity industrial specification fermenting vessel is modelled.

The 400,000 L vessel has a 3,800 L jacket, cooled by a propylene glycol:water

mixture. A 4 °C coolant temperature is first assumed, along with an OHTC of

200 W m−2 K−1. Table 6.7 details the additional parameter values used in Eq.

6.33 - 6.34 (Scheer, 2014).

6.3.1 Impact on Attainable Performance

Prior work investigating potential for process improvement versus current plant

fermentation operation involved an algorithm which rapidly generated and simu-

lated plausible temperature manipulations adhering to realistic operability heuris-

tics, all the while relying on the simplifying assumption that vessel temperature
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Figure 6.10: Comparison between attainable envelopes: direct T (t) control vs
F (t) control.

may be directly manipulated. Attainable performance maps were generated, al-

lowing rapid visualisation of the viable output space permitted by operational

modifications. To elucidate how fermentor performance varies once production

scale increases beyond the point of the previous simplifying assumption, we per-

form a similar simulation campaign using the extended model. To exhaustively

enumerate comparable performance maps for the most simple cooling policies five

discreet coolant rates (F=[0:5:20]) are permitted, which may be only be switched

at the end of a 20 hr interval across the 160 hr span considered.

Thus 59 = 1,953,125 cooling policies are considered. Figure 6.10 depicts the

performance maps from the new cooling policy campaign (red markers) alongside

those from Section 6.1, which assumed direct temperature control (blue markers).

An immediate observation across all metrics is that the addition of the temper-

ature model considerably reduces the broad range of viable terminal product

concentrations, particularly for both the by-product species. This is despite the

solution set for coolant control being significantly larger (∼1.9M policies) than

that for direct temperature control (∼175k). The observation can be attributed

to the fact that in the absence of any external heat source the vessel temperature

can only rise from its initial temperature at a rate governed by the exothermic fer-

mentation reaction: there is considerably less scope to vary the vessel temperature

during primary fermentation, where the temperature is capped by how quickly it

can rise from the reaction enthalpy. This contrasts prior work where the vessel

temperature could instantaneously rise as high as 16 °C, something not feasible

in practice, leading to a subset of simulations corresponding to very short batch
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Figure 6.11: Favourable cooling policy from exhaustive simulation set.

times and high by-product concentrations, highlighted by the black markers lying

to the upper left of their grey counterparts in Fig. 6.10a. Of all cooling policies

considered the most favourable for alcohol maximisation (Jmin = −[EtOH]) is

presented in Fig. 6.11 alongside the corresponding state trajectories under this

manipulation. Here the preferable approach is to begin cooling the jacket once

the temperature exceeds 15 °C after 60 hours, increasing the cooling duty at 80

hours and reducing it at 100 hours before turning the coolant flow off at 120 hours

to allow the temperature to rise again. In doing so the active yeast population

is effectively managed, preventing the substantial cell death if the temperature

were allowed to further rise.

6.4 Chapter Conclusions

Dynamic simulation and visualisation of attainable envelopes of beer fermentation

are extremely useful techniques in order to pictorially capture industrial brewing

operation protocols, capitalize on embedded organizational knowledge but most

notably identify, suggest and evaluate feasible improvements. This thesis chap-

ter employs a widely validated beer fermentation model (de Andrés-Toro et al.,
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1998) which has been implemented in order to predict species concentration evo-

lution for any set of initial and operating (temperature profile) conditions; the

code has been successfully validated computationally against profiles previously

published by other research groups. A range of operating temperature profiles

published in the literature have been simulated, and their performance has been

assessed using several quantitative indicators of fermentation performance (fi-

nal concentrations of ethanol and aromatic by-products, batch production time).

The trade-off between product quality and batch time is evident: results clearly

show that aromatic by-product concentrations can be reduced during longer fer-

mentation. This balance of operational objectives makes the determination of

a single optimal temperature a very challenging problem: the latter depends on

each brewer’s target product composition, and arbitrary target variable weight-

ing appears a popular but also questionable methodology. A simulation-based

optimisation procedure has been developed, facilitating the comparison of over

175,000 unique scenarios against the current industrial temperature manipulation.

Each scenario represents a unique temperature profile, generated using suitable

constraints which are representative of manipulations that are indeed applicable

to the real process. This procedure also ensures that the degree of domain dis-

cretisation only produces temperature profiles which are implementable, without

the need for a secondary smoothing process. A small sacrifice in ethyl acetate

concentration (to a level not exceeding the acceptable beer flavour threshold)

allows for a considerable reduction of batch time, while maintaining the ethanol

and diacetyl concentration levels close to those achieved in the industrial process.

Three unique novel manipulations have been identified, each with the potential to

drastically reduce batch time (by up to 15 hours), with no discernible impact on

beer flavour and quality. A simulated annealing (SA) algorithm has also been de-

veloped in order to rapidly investigate the entire solution space and determine the

optimal temperature manipulation profile which maximises a weighted objective

function considering both ethanol maximisation and batch time minimisation,

subject to explicit by-product constraints; several weight assignment cases have

been solved and presented, indicating limited result sensitivity to weight value

allocation. A novel temperature profile (with a conspicuous heating peak) has
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been discovered, indicating that this non-trivial manipulation can reduce fermen-

tation time by 16 hours, but also increase ethanol concentration and maintain

by-product concentrations below threshold values.

A multi-dimensional sensitivity analysis of key beer quality attributes ver-

sus plausible initial condition modifications for an enormous ensemble (hundreds

of thousands of possible temperature manipulation profiles possible for prescrip-

tion) demonstrates that initial sugar concentration clearly affects final ethanol

concentration and thus beer product quality; the most remarkable finding is that

fermentation efficiency and batch duration can be improved by manipulating the

initial biomass concentration (yeast pitching rate) fed to fermentors. Moreover,

what is also noteworthy is that the active fraction of fed yeast has a quite mi-

nor (virtually insignificant) effect on process efficiency (as long as a potent yeast

strain is used) because the active cell population quickly rises if enough heat is

provided by the selected temperature manipulation profile. Exploring and identi-

fying improved temperature profiles enhancing fermentor productivity in tandem

with beer quality has been a focal point (Rodman and Gerogiorgis, 2016) which

has been further accentuated by the present results. The vast operational space

of plausible T (t) profiles has been reduced on the basis of previously published

heuristics and explored via large-scale dynamic simulations which have been vi-

sualised to identify promising profile improvements. These plots are useful in

capturing and mapping differences in current practice (and possible changes) for

various products. Consideration of explicit fermentor jacket heat transfer marks

a significant improvement over the fidelity of prior work which assumed temper-

ature may freely manipulated. Visualisation of attainable performance reveals

that a vast portion of operation cases considered previously are unobtainable on

an industrial scale.
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Part III

Dynamic Optimisation
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Chapter 7

Initialisation Strategies for

Effective Dynamic Optimisation

A wide range of optimisation methodologies exist for solving optimal control tra-

jectory problems, as considered in Chapter 1. With most approaches it is neces-

sary to solve iteratively, starting from an initialising solution (often referred to as

an initial guess). This chapter presents an investigation into the performance of

two different dynamic optimisation strategies for batch beer fermentation temper-

ature control, using different initialisation strategies and solvers. A simultaneous

strategy (CVP) with an interior point algorithm is presented first, followed by

a complete discretisation (CD) approach: orthogonal collocations on finite ele-

ments. The objective function remains from Chapter 6, here with WE = 0.75,

Wt = 0.25, with the same constraint thresholds dictating the product quality is

suitable:

Jmin = −WE · ˜[EtOH]−Wt ·
1

t̃f
(7.1)

s.t. [EA]tf ≤ 2 ppm (7.2)

[DY ]tf ≤ 0.1 ppm (7.3)
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7.1 Control Vector Parametrisation

The sequential approach to direct dynamic optimisation (often referred to as

control vector parametrisation, CVP) involves discretising the control trajectory

to a function of a few parameters, while the state equations remain in ODE/DAE

form (Biegler et al., 2012). By defining a finite number of equal size piecewise

segments within the temperature profile a NLP problem can be formulated for

Eqs. 1.2–1.9, which any one of many large scale non-linear programming (NLP)

solvers may be applied. Herein function evaluations still invoke integration across

the time horizon, as the state trajectories remain continuous.

7.1.1 Control Profile Encoding Strategies

The first encoding applied to describe the T (t) profile is a simple piecewise con-

stant representation, where the decision vector passed to the NLP solver is:

dPWC = [T1, T2..., TN , SF ] (7.4)

Where the corresponding profile consists of Nequal length periods of temperature

Ti, of length equal to tmax · SF/N . The additional variable SF acts to scale

the profile length and allow variable process duration, without the requirement

to double the problem size by considering each time point as a variable. This

is expanded to the piecewise linear case, with the addition of only one further

variable:

dPWL = [T1, T2..., TN , TN+1, SF ] (7.5)

Now the profile consists of N linear segments between N+1 nodes, again of equal

length scaled by SF .

7.1.2 Solution Strategy

Model integration in the CVP method in this work is performed using the ode45

function based on an explicit Runge-Kutta (4, 5) formula, the Dormand-Prince

pair (Dormand and Prince, 1980; Shampine and Reichelt, 1997), allowing the
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objective to be evaluated and the value reported to the NLP solver applied,

computing objective and constraint derivatives numerically. Two NLP solvers

are compared: fmincon from the MATLAB optimisation toolbox (Waltz et al.,

2006), and the open source Interior Point OPTimizer (IPOPT). IPOPT is a

leading open source software package for large-scale non-linear optimisation. It

solves general non-linear programming problems of the form:

min
x∈Rn

f(x) (7.6)

gL ≤ g(x) ≤ gU (7.7)

xL ≤ x ≤ xU (7.8)

Where x ∈ Rn are the optimisation variables (possibly with lower and upper

bounds, xL ∈ (R
⋃

−∞)n and xU ∈ (R
⋃

+∞)n, f : Rn → R is the objective func-

tion, and g : Rn → Rm are the general non-linear constraints. The functions f(x)

and g(x) can be linear or non-linear and convex or non-convex. The constraints,

g(x), have lower and upper bounds, gL ∈ (R
⋃
−∞)m andgU ∈ (R

⋃
+∞)m.

Equality constraints of the form gi(x) = ḡi are treated as inequality constraints

with equal lower and upper bounds: gUi = gLi = ḡi. IPOPT implements an interior

point line search filter method that determines a local solution of Eqs. 7.6–7.8.

Details of the full mathematical algorithm can be found in several publications

(Wachter, 2003; Wächter and Biegler, 2005, 2006; Nocedal et al., 2009). Both

IPOPT and fmincon has been called via OPTI’s MATLAB® toolbox (Currie

et al., 2012) for the CVP portion of this Chapter.

7.1.3 Results

7.1.3.1 Piecewise Constant Control Profiles

Profiles which are piecewise constant between discreet time points are first com-

puted to investigate the performance of the algorithm and its sensitivity to the

input initial guess (initialising solution, T 0), and as to how performance is affected

by varying the degree of discretisation (N). To achieve this a range of cases are
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systematically considered: four discretisation levels have been considered: N =

[3, 6, 12, 18] along with four isothermal initialising solutions: T 0 (°C) = [11,

12, 13, 14], producing 16 permutations to be solved in turn. The optimal profile

computed in each case is shown in Fig. 7.1, with the performance criteria from

each case shown in Fig. 7.2 using MATLAB’s fmincon solver. The equivalent

results are also shown in Fig. 7.3–7.4, where the only difference is that IPOPT is

now used for solving the NLP. The performance of each solution presented from

the CVP method is tabulated in Table 7.1.

Effect of Initialising Temperature Profile Computed optimal control pro-

files on an identically discretised T (t) domain for numerous initialising tempera-

ture profiles can be seen in each column in Figs. 7.1 and 7.3. From top to bottom

isothermal profiles at 11, 12, 13 and 14 °C were used for the initial iteration re-

spectively. It is observed that the same general solution form is produced in all

cases presented from this method. This tends initially to the highest permitted

temperature for the first stages of the process (16 °C) to accelerate the yeast

growth and promote fermentation immediately. For the solutions from fmincon

(Fig. 7.1) this is followed by a sudden drop in temperature, below 10 °C, before

climbing back over 15 °C and subsequently re-dropping. Differences between the

four solutions in each column (same N) demonstrate how the solver is exhibiting

relatively significant sensitivity to the initialisation profile. As such it is evident

that the method employed is unable to converge to global optimality, using the

fmincon solver. In contrast, the profiles produced via PWC CVP with IPOPT

show a slightly different solution: again starting the process at the maximum per-

mitted temperature, but rather than a sudden drop, a parabolic-like temperature

’dip’ is observed. The temperature is reduced only to 13 °C over approximately

20 hours, before gradually heating back to 16 °C in a symmetric fashion. The

solution profiles obtained via IPOPT (Fig. 7.3) no longer show sensitivity to the

initialisation, converging to the same solution profile for all initialisations, sug-

gesting the algorithm is more robust and less dependent on selecting a favourable

seed solution. The industrial practicalities of fine manipulations to the tempera-

ture of the bulk vessel contents should be noted. While the large batch fermentors
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Figure 7.1: CVP T (t) solutions: PWC with fmincon.

Figure 7.2: Performance metrics of CVP T (t) solutions: PWC with fmincon.
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Figure 7.3: CVP T (t) solutions: PWC with IPOPT.

Figure 7.4: Performance metrics of CVP T (t) solutions: PWC with IPOPT.
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used for industrial scale brewing are capable of accurately regulating tempera-

ture, temperature gradients inevitably exist and manipulations < 0.5 °C likely

lie within the unavoidable variation present throughout the tank, having impli-

cations on the accuracy of model predictions.

Effect of Increasing Time Domain Discretisation To access the effect of

increasing the discretisation level of the control profile, the computed results forN

= 3, 6, 12 and 18 (representing the number of equispaced time segments in which

the fermentor temperature is piecewise constant) are shown in each row Figs.

7.1 and 7.3 for a specific initialising isothermal temperature and NLP solver. In

both cases it is observed that increasing N does not drastically alter the solution

form, rather a gradual refinement is observed. This is particularly true for the

IPOPT profiles (Fig. 7.3) which appear to tend towards a smooth parabola

as the discretisation increases. Improvements in objective function value become

marginal once N exceeds 6 suggesting that optimality is being approached for the

specific objective and that perhaps little value exists in increasing discretisation

drastically. A trade-off exists as the required CPU time for computing the profiles

increases rapidly with increasing discretisation level, so unnecessary discretisation

is undesirable. It is noteworthy that the majority of profiles produced from CVP

with an IPOPT are not highly changeable in form. That is to say there is minimal

abrupt changes in temperature so no secondary smoothing procedure is required,

which often the case with stochastic techniques (Carrillo-Ureta et al., 2001; Xiao

et al., 2004) which often computed abrupt changes in the control profile which

would not be attainable in a real world application.

Control Profile Performance The upper rows in Fig. 7.2 and Fig. 7.4 com-

pares the performance of the profiles computed for N = 18 with each initialising

isothermal profile considered. The second row of plots in these figures considers

a third axis to simultaneously visualise the effect of both discretisation level and

initialising profile on the resulting fermentation performance. These results pro-

duced with IPOPT (Fig. 7.4) demonstrate effective independence to the initiali-

sation profile and the discretisation level, once N is increased past 6. In contrast
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Fig. 7.2 shows how the results produced with fmincon are highly variable. It is

observed that the ethanol concentration varies non-monotonously when N is in-

creased for all values of T 0. Surprisingly, all solutions where N = 6 with fmincon

produce a greater ethanol yield than any of those under greater discretisation,

indicating a local solution has been reached which was not found in the other N

cases. The product concentrations of undesirable fermentation by-products are

shown in the right half of Figs. 7.2 and 7.4. It is apparent that the ethyl acetate

concentration constraint is universally fulfilled, however the constraint imposed

on the diacetyl concentration consistently violated in the solutions from fmincon

solver (Eq. 7.3) in Fig. 7.2 panel 7. The algorithm has converged at unfeasible

solutions due to not being able to fulfil the imposed constraint the objective,

rendering their little reason to progress to higher. The product concentration

of [DY ] is shown to systematically drop with N , however even when N = 18

the constrained is still violated (Fig. 7.2 panel 3). In contrast the solutions ob-

tained by the IPOPT solver are able to meet all constraints imposed (Fig. 7.4),

outperforming all solutions from fmincon.

7.1.3.2 Piecewise Linear Control Profiles

The equivalent result plots to Figs. 7.1–7.4 for the PWL profile encoding (Eq. 7.5)

are presented in Figs. 7.5–7.8. It is apparent that such instantaneous temperature

gradients as shown in Fig. 7.1 are not attainable in large scale process equipment.

Piecewise linear profiles are computed using the same methodology, as to see

how these more readily implementable solutions compare to the more simple

piecewise constant profiles, and if the additional degrees of profile freedom will

enable constraint satisfaction across the range of N and T 0 considered. The same

16 cases have been solved in turn: N = [3, 6, 12, 18], T 0 (°C) = [11, 12, 13, 14], the

optimal profile computed in each case is shown in Fig. 7.5, with the performance

criteria from each case shown in Fig. 7.6 from the fmincon solver, with the IPOPT

equivalent in Fig. 7.7–7.8. Comparing Fig. 7.5 to Fig 7.1 and Fig. 7.7 to

Fig 7.3 shows how the profiles differ for equivalent N and T 0 between piecewise

linear and piecewise constant for each solver. It can be seen that the profile
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Table 7.1: Performance of presented CVP solutions.

Figure Optimisation Initialisation
N Jmin

[EtOH] tf [DY ] [EA]
Method Profile (g L−1) (hrs) (ppm) (ppm)

7.1

11 °C

3 -0.93 51.68 84.00 0.16 2.00
6 -0.96 54.60 84.00 0.14 2.01
12 -0.95 53.17 84.00 0.12 2.00
18 -0.95 53.17 84.00 0.12 2.04

12 °C

3 -0.93 51.80 84.60 0.16 2.00
6 -0.97 55.06 84.00 0.14 2.03

CVP 12 -0.92 51.47 85.20 0.11 2.24
PW Constant 18 -0.95 53.20 84.00 0.12 2.04

fmincon

13 °C

3 -0.93 51.76 84.60 0.16 2.00
Isothermal T 0 6 -0.96 54.60 84.00 0.14 2.01

12 -0.94 53.35 85.20 0.11 2.00
18 -0.94 52.95 84.57 0.12 2.06

14 °C

3 -0.93 51.74 84.30 0.16 2.00
6 -0.96 54.59 84.00 0.14 2.01
12 -0.94 53.11 84.00 0.12 2.00
18 -0.95 53.79 84.67 0.12 2.01

7.3

11 °C

3 -0.98 59.70 99.56 0.10 2.00
6 -0.99 59.32 94.22 0.10 2.00
12 -0.99 59.38 93.97 0.10 2.00
18 -0.99 59.40 93.87 0.10 2.00

12 °C

3 -0.98 59.64 100.66 0.09 1.98
6 -0.99 59.32 94.22 0.10 2.00

CVP 12 -0.99 59.38 93.97 0.10 2.00
PW Constant 18 -0.99 59.40 93.87 0.10 2.00

IPOPT

13 °C

3 -0.98 59.70 99.56 0.10 2.00
Isothermal T 0 6 -0.99 59.32 94.22 0.10 2.00

12 -0.99 59.38 93.97 0.10 2.00
18 -0.99 59.40 93.87 0.10 2.00

14 °C

3 -0.98 59.70 99.56 0.10 2.00
6 -0.99 59.32 94.21 0.10 2.00
12 -0.99 59.38 93.97 0.10 2.00
18 -0.99 59.40 93.87 0.10 2.00

7.5

11 °C

3 -0.98 56.00 84.00 0.19 2.00
6 -0.95 53.26 84.00 0.14 1.40
12 -0.96 54.61 84.00 0.13 2.00
18 -0.95 53.64 84.00 0.12 2.03

12 °C

3 -0.98 56.01 84.00 0.19 2.00
6 -0.95 53.27 84.00 0.14 1.40

CVP 12 -0.96 54.61 84.00 0.13 2.00
PW Linear 18 -0.95 53.61 84.00 0.12 2.03

fmincon

13 °C

3 -0.98 56.01 84.00 0.19 2.00
Isothermal T 0 6 -0.95 53.28 84.00 0.14 1.40

12 -0.96 54.65 84.00 0.13 2.00
18 -0.95 53.42 84.60 0.12 2.04

14 °C

3 -0.98 56.01 84.00 0.19 2.00
6 -0.94 53.33 85.20 0.13 1.44
12 -0.96 54.51 84.00 0.13 2.00
18 -0.95 53.57 84.64 0.12 1.98

7.7

11 °C

3 -0.98 59.96 98.99 0.10 2.00
6 -0.99 59.32 93.78 0.10 2.00
12 -0.99 59.40 93.80 0.10 2.00
18 -0.99 59.39 93.73 0.10 2.00

12 °C

3 -0.98 59.96 98.99 0.10 2.00
6 -0.99 59.32 93.78 0.10 2.00

CVP 12 -0.99 59.40 93.80 0.10 2.00
PW Linear 18 -0.99 59.39 93.73 0.10 2.00

IPOPT

13 °C

3 -0.98 59.96 98.99 0.10 2.00
Isothermal T 0 6 -0.99 59.32 93.78 0.10 2.00

12 -0.99 59.40 93.80 0.10 2.00
18 -0.99 59.39 93.73 0.10 2.00

14 °C

3 -0.98 59.96 98.99 0.10 2.00
6 -0.99 59.32 93.78 0.10 2.00
12 -0.99 59.40 93.80 0.10 2.00
18 -0.99 59.39 93.73 0.10 2.00

115



Figure 7.5: CVP T (t) solutions: PWL with fmincon.

Figure 7.6: Performance metrics of CVP T (t) solutions: PWL with fmincon.
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Figure 7.7: CVP T (t) solutions: PWL with IPOPT.

Figure 7.8: Performance metrics of CVP T (t) solutions: PWL with IPOPT.
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forms are extremely similar, with intermediate cooling prevailing as a strategy

for optimal fermentation performance. The PWL solutions appear to mirror the

PWC solutions, now with gradual and sustained temperature manipulations in

place of instantaneous ones. Once more the solutions produced via fmincon are

unable to satisfy the [DY ] threshold (Fig. 7.6), despite reducing this value as N

increases. The ethanol yield also shows surprising behaviour, now producing the

highest concentration when N = 3, followed by N = 12. In contrast again, results

from IPOPT do not show such sensitivity to initialisation, or discretisation (once

N > 3) with the profiles presented in Fig. 7.7 very closely resembling those in

Fig. 7.3, with the benefit of being more readily realisable due to the lack of

instantaneous temperature manipulations. While prescribing a profile with large

instantaneous jumps in temperature may be challenging to realise in industrial

practice, it is in fact considerably easier for an operator to input a PWC strategy

as a vector of set points for plant equipment, in place of a continuous function

which shall require many more set points to follow.

7.2 Complete Discretisation

7.2.1 Collocation on Finite Elements

An alternative direct method for dynamic optimisation (a simultaneous strategy)

has also been performed in this study. Orthogonal polynomials on finite elements

are used to approximate the control and state trajectories, allowing the continuous

problem to be converted to NLP form. Implementation has been performed using

the DynOpt package for MATLAB (Cizniar et al., 2005). The DAE system is

converted to a system of algebraic equations, where decision variables of the

derived NLP problem are the coefficients of the linear combinations of these

AEs. Precision is known to vary with collocation point locations and element

lengths used (Tanartkit and Biegler, 1995; Logsdon and Biegler, 1989). The

methodology is to approximate the state variables with Lagrange polynomials
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over each element, i:

xKx(t) =

Kx∑
j=0

xijφj(t) (7.9)

Where φj is defined by:

φj(t) =

Kx∏
k=0,j

(t− tik)

(tij − tik)
(7.10)

Similarly the control trajectory is approximated by:

uKu(t) =

Ku∑
j=1

uijθj(t) (7.11)

Where θj is defined as follows:

θj(t) =

Ku∏
k=1,j

(t− tik)

(tij − tik)
(7.12)

With k = 0, j representing k starting form 0 and that k 6= j. WherexKx is

a piecewise polynomial of order Kx+1, uKx is a piecewise polynomial of order

Ku+1. Figure 7.9 shows orthogonal collocation with K = Kx = Ku: defining

basis functions so that they are normalised over each profile element, ∆ξi, such

that the residual equation becomes:

∆ξir(tik) = M

Ku∑
j=0

xijφj(τk)−∆ξf(tik, xik, uik, p) (7.13)

Which may be evaluated at shifted roots of Legendre polynomials.

The NLP formulation now consists of the beer fermentation ODE model dis-

cretised as a finite element approximation, continuity equations for state variables

and the inequality constraints on the system, and is compatible with the same

NLP solvers applied in the partial discretisation (CVP) approach, fmincon and

IPOPT. Both solvers are applied once more, with shall also help understand

whether IPOPTs superior performance in the CVP problem was a consequence

of the formulation, or the solver being superior in general. Similarly to the CVP

solution set, a range of discretisation levels (N) and initialising profiles (T 0)
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Figure 7.9: Collocation method for state and control profiles.

are considered: N = [6: 6: 36], T 0 (°C) = [11, 12, 13, 14]. Three collocation

points have been used for state trajectories, with one collocation point being used

for control profiles, resulting in the computation of profiles which are piecewise-

constant. For both solvers considered, objective and constraint gradients are

defined analytically, requiring no finite difference approximations as the solver

iterates.

7.2.2 Results

The methodology described above has been used to compute control profiles for

6 levels of temporal domain discretisation (N = [6, 12, 18, 24, 30, 36]) along

with four isothermal initialising solutions, T 0 (°C) = [11, 12, 13, 14], producing

24 permutations solved in turn. The solution profiles produced with the fmincon

solver are presented in Figure 7.10, while the equivalent solution profiles from

IPOPT are given in Figure 7.11. The performance of all presented CD solutions

is tabulated in Table 7.3.

Comparing Fig. 7.10 (simultaneous) with Fig. 7.1 (sequential) shows the

differing profile forms favoured by the two methods employing the fmincon NLP

solver. The differences are relatively significant: the sequential (CVP) profiles

show a very drastic temperature drop, meanwhile the results obtained from CD

favour a less significant and more gradual temperature reduction and re-heating,

akin to the parabolic CVP solutions from IPOPT (Fig. 7.3). The primary differ-
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Figure 7.10: CD T (t) solutions: Isothermal T 0, PWC with fmincon.

Figure 7.11: CD T (t) solutions: Isothermal T 0, PWC with IPOPT.
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Figure 7.12: Influence of discretisation level (N) and initialising isothermal profile
(T 0) on profile performance - CD with fmincon.

ence is that most of the solutions in Fig. 7.10 exhibit extremely rapidly fluctuating

temperature during the ’dip’ portion, as the solver struggles to converge. Exclud-

ing this discrepancy, the profile form is similar in the IPOPT solution set (Fig.

7.11), which are essentially identicle to those produced in the CVP IPOPT case

(Fig. 7.3), and believed to be the globally optimal solution to this specific prob-

lem. The primary exception are the two outlier cases in Fig. 7.11 (T 0 = 11 °C; N

= 18–24). In only these two cases an alternative solution is produced, somewhat

similar to those observed in Fig. 7.1. This local solution is less favourable than

the other cases presented, highlighting that the IPOPT solver can also exhibit

sensitivity to the initialisation profile in certain circumstances and get trapped

in less favourable local solutions. Additionally, select IPOPT CD solutions show

artefacts of the solution method, whereby instantaneously the temperature profile

goes up and down (vertical lines off the profile path). Such behaviour is observed

in solutions for T 0 = 13 and 14 °C, particularly at higher N , however this has

no bearing on the performance of the profile or the solution method, and can be

readily removed from the profile prior to implementation.

Control Profile Performance The upper row in Figs. 7.12–7.13 compares

the performance of the profiles computed for N = 36 with each initialising isother-

mal profile for the fmincon and IPOPT solvers respectively. The second row of

plots in these figures considers a third axis to simultaneously visualise the effect
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Figure 7.13: Influence of discretisation level (N) and initialising isothermal profile
(T 0) on profile performance - CD with IPOPT.

of both discretisation level and initialising profile on the resulting fermentation

performance. Firstly looking at the fmincon solutions (Fig. 7.12), it is now shown

that all by-product constraints are universally satisfied, such that all solutions

obtained are feasible. It is also shown that aside from ethanol concentration,

the performance of all solution profiles do not have significant differences in any

other metric. The unusual trend in ethanol concentration obtained with differ-

ent N and T 0 can be understood by looking at the profiles in Fig. 7.10. The

greatest ethanol concentration is produced when T 0 = 12 °C, and only when

N = 18–30. The corresponding profiles are those which show the least erratic

variations around the ’dip’, and closely resemble the profiles which have been

obtained IPOPT in Fig. 7.11. Interestingly this was not reproduced when N was

increased to 36, as this solution now resembles the inferior strategy favoured in

Figs. 7.1 (fmincon CVP). In contrast to the fmincon performance plots, the cor-

responding plots from IPOPT (Fig. 7.13) show no variation in any metric with

T 0 or N , with the exception being the two profiles highlighted above for having

a different form (T 0 = 11 °C; N = 18–24). Panel 6 in Fig. 7.13 highlights these

outliers, showing that these profiles require significantly greater batch times, and

are this significantly inferior solutions, outperformed by both lower and higher

N solutions for the same T 0. While CD with IPOPT appears to be the most

favourable strategy considered, the method shows some sensitivity to the initial-
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Figure 7.14: Performance of promising profiles from exhaustive simulation.

Figure 7.15: Promising profiles from exhaustive simulation for initialisation.

isation profile supplied to the optimiser, which can be problematic when it is not

know whether solutions generated are inferior to undiscovered global optima.

7.2.3 Initialisation with Promising Candidate Profiles

Initialising with isothermal profiles may be considered as a means to assess the

blind performance of the optimisation strategies. This can be highly beneficial not

only in assessing the algorithm performance, but also in preventing the narrowing

of the attainable solution space by starting in the vicinity of local solutions. It

is however shown that for the beer fermentation problem the solutions produced

from isothermal initialisations, specifically when using fmincon, are of limited

applicability, due to their highly changeable nature. It is now desirable to take

solutions already showing promise, and see how the optimisation algorithm per-

124



Table 7.3: Performance of presented CD solutions.

Figure Optimisation Initialisation
N Jmin

[EtOH] tf [DY ] [EA]
Method Profile (g L−1) (hrs) (ppm) (ppm)

7.10

11 °C

6 -0.97 58.06 95.78 0.10 2.01
12 -0.99 59.22 94.32 0.10 1.92
18 -0.97 57.02 92.52 0.10 1.99
24 -0.97 57.52 93.15 0.10 2.01
30 -0.97 57.81 92.89 0.10 1.98
36 -0.98 57.99 92.26 0.10 2.03

12 °C

6 -0.99 59.33 94.20 0.10 2.04
12 -0.98 58.70 95.43 0.10 1.92
18 -0.99 59.18 92.97 0.10 2.06
24 -0.99 58.99 93.01 0.10 1.99

CD 30 -0.99 58.84 92.63 0.10 1.99
PW Constant 36 -0.96 56.06 90.01 0.10 1.98

fmincon

13 °C

6 -0.99 59.26 94.19 0.10 2.02
Isothermal T0 12 -0.99 59.17 94.22 0.10 2.00

18 -0.97 57.65 92.93 0.10 2.04
24 -0.97 57.75 93.04 0.10 1.98
30 -0.97 57.37 93.36 0.10 2.03
36 -0.97 57.59 92.15 0.10 2.00

14 °C

6 -0.98 58.76 96.50 0.10 1.99
12 -0.97 57.69 93.14 0.10 2.05
18 -0.97 57.56 93.61 0.10 2.00
24 -0.97 57.18 93.13 0.10 1.97
30 -0.98 57.96 92.90 0.10 2.07
36 -0.97 57.55 92.34 0.10 2.02

7.11

11 °C

6 -0.99 59.33 93.94 0.10 1.96
12 -0.99 59.35 93.81 0.10 1.98
18 -0.95 58.76 105.24 0.10 1.93
24 -0.95 58.74 106.36 0.10 2.00
30 -0.99 59.37 93.68 0.10 2.01
36 -0.99 59.40 93.74 0.10 2.01

12 °C

6 -0.99 59.33 94.20 0.10 2.04
12 -0.98 58.70 95.43 0.10 1.92
18 -0.99 59.18 92.97 0.10 2.06
24 -0.99 58.99 93.01 0.10 1.99

CD 30 -0.99 58.84 92.63 0.10 1.99
PW Constant 36 -0.96 56.06 90.01 0.10 1.98

IPOPT

13 °C

6 -0.99 59.34 94.11 0.10 2.01
Isothermal T0 12 -0.99 59.30 93.73 0.10 2.00

18 -0.99 59.36 93.68 0.10 2.03
24 -0.99 59.35 93.85 0.10 2.03
30 -0.99 59.38 93.84 0.10 2.02
36 -0.99 59.28 93.87 0.10 2.01

14 °C

6 -0.99 59.34 93.94 0.10 1.96
12 -0.99 59.41 93.77 0.10 2.04
18 -0.99 59.32 93.76 0.10 2.03
24 -0.99 59.31 93.80 0.10 2.02
30 -0.99 59.24 93.81 0.10 1.97
36 -0.99 59.37 93.77 0.10 2.03

7.17

A

6 -0.99 59.35 93.94 0.10 1.97
12 -0.99 59.32 93.72 0.10 2.00
18 -0.99 59.38 93.89 0.10 2.01
24 -0.99 59.29 93.86 0.10 1.99
30 -0.99 59.33 93.69 0.10 1.98
36 -0.99 59.38 93.71 0.10 2.00

B

6 -0.99 59.40 93.74 0.10 2.03
12 -0.99 59.40 93.73 0.10 1.99
18 -0.99 59.42 93.80 0.10 2.04
24 -0.99 59.36 93.65 0.10 2.03

CD 30 -0.99 59.38 93.70 0.10 2.00
PW Constant 36 -0.99 59.41 93.74 0.10 2.00

IPOPT

C

6 -0.99 59.34 94.06 0.10 2.05
Novel T0 12 -0.99 59.36 93.79 0.10 2.00

18 -0.99 59.44 93.72 0.10 2.05
24 -0.99 59.38 93.75 0.10 2.05
30 -0.99 59.41 93.69 0.10 2.03
36 -0.99 59.37 93.67 0.10 1.99

D

6 -0.99 59.13 93.27 0.10 1.94
12 -0.99 59.34 93.73 0.10 1.99
18 -0.99 59.32 93.77 0.10 2.02
24 -0.99 59.34 93.36 0.10 2.13
30 -0.99 59.35 93.52 0.10 2.04
36 -0.99 59.37 93.71 0.10 1.99
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Figure 7.16: PWC approximations of profile D (Fig. 7.15) for varying N .

forms, if the output profile solutions are more suitable for industrial manipulation

than those from an isothermal initialisation. A range of promising profiles from

the prior exhaustive simulation campaign, performed with a low discretisation

level, N = 6 (Chapter 6) are selected to use as T 0 profiles (Fig. 7.15). To vi-

sualise how these profiles perform, the corresponding marker is highlighter over

the entire exhaustive solution set in Fig. 7.14. The top plot (ethanol vs. batch

time) shows that the four profiles taken forward from exhaustive simulation for

initialising the simultaneous optimisation procedure all fall towards the more de-

sirable portion of the plot. The vast number of points which correspond to lesser

batch time and greater ethanol concentration (top left corner of Fig. 7.14) suggest

that there is potential scope to improve upon these profiles. The lower two plots

(by-products vs. batch time) show that profiles A, C & D all universally fulfil

both base limits of the by-product species, while profile B in fact does violate the

diacetyl limit for the base case. This is of interest to observe how a constraint

violation in the initialising solution affects the performance of the algorithm in

producing optimal T (t) profile outputs.

As these profiles are PWL and the CD method employed is computing PWC

temperature profiles, it is necessary to approximate the profiles in Fig. 7.15 to

a piecewise constant form, which will differ for each discretisation level solved.

This approximation is performed by averaging the temperature over N steps of

equal duration: this transformation is shown in Fig. 7.16 for profile D. It is

demonstrated that N increases the profile tends to the original piecewise linear

form. Solution profiles obtained for the same set of cases solved in Section 7.2.2

are presented in Fig. 7.17, only now T 0 = [A, B, C, D].
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Figure 7.17: CD T (t) solutions: Novel T 0, PWC with IPOPT.

Figure 7.18: Influence of discretisation level (N) and initialising novel profile (T 0)
on profile performance - CD with IPOPT.

127



Results

A very high level of similarity is observed between the solution temperature pro-

files in Fig. 7.17 and Fig. 7.11. Similarly to the isothermal initialisations, the

profiles obtained following novel initialisations converge to the same solution tra-

jectory, irrespective of the discretisation level or initialisation. The only difference

is that the two inferior sub-optimal solutions produced when T 0 = 11 °C (Fig.

7.11) are no longer re-produced, suggesting that supplying favourable profiles as a

starting point for the NLP solver can potentially prevent or limit convergence to

less preferable solutions. Within Fig. 7.17 every single profile produced appears

to follow the same optimal path. Once more select solutions show artefacts where

instantaneously the temperature profile goes up and down, however as this is in-

stantaneous it has no bearing on the performance and may be readily removed

from the profile. The upper row in Fig. 7.18 compares the performance of the

profiles computed for N = 36 with each initialising isothermal profile considered,

while second row of plots introduces a third axis to visualise the effect of dis-

cretisation level on the resulting fermentation performance. It is evident that the

method employed is extremely effective in converging to the same optima, given

that the performance metrics and solution appearance are both identicle across

the solution set. Furthermore the fact that the 3D bar plots are all flat shows

that when N > 18, increasing the discretisation level has absolutely no benefit

on the performance of computed profile solutions. An interesting exception to

this trend is the case where T 0 = D and N = 24. In this one instance the limit

on [EA] is exceeded by 0.13 ppm, despite the solver reporting a feasible solution.

This can be attributed to the slight deviations that exist between the approxi-

mated state trajectories from the collocation equations, and later integration of

the DAE model given the solution profile, which depend on the accuracy of the

piecewise polynomial representation of the continuous state trajectories. Devi-

ations are shown to be non-significant as the algorithm used captures the state

trajectories effectively. Figure 7.19 shows an alternative performance plot of the

output profiles computed from the 3 CD solution sets (Figs. 7.10, 7.11 and 7.17).

Plotting batch time against ethanol concentration represents the bi-criteria ob-
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Figure 7.19: Effect of T 0 and N on fermentation performance.

jective function, where the most favourable solutions would exist in the upper

left corner. The first row (isothermal T 0, fmincon) shows significant variation in

batch time and ethanol concentration. Despite the solution profiles all exhibiting

similar objective values, the weighted sum approach means that they can still

differ significantly in the objective components. A general trend observed is that

higher N solutions tend to have a longer batch time with a greater ethanol yield.

Furthermore, the markers in the plot are grouped together depending on their

initialisation profile, reiterating that the method was converging to local solutions

in the vicinity of the initialisation. The second row in plot Fig. 7.19 presents

the solution performance from Fig. 7.11 (isothermal T 0, IPOPT) shows signifi-

cant less variation. In fact all the points lie on top of each other, excluding the

two solutions previously identified as outliers converging to a different solution

(T 0 = 11 °C; N = 18 - 24). The final row (now T 0, IPOPT) now shows every

single marker centred around the same point (believed to be globally optimal),

as no convergence issues have been found to occur when supplying favourable

initialisation profiles to the CD method with the IPOPT NLP solver.

129



7.3 Chapter Conclusions

A control vector parametrisation strategy has been used to compute tempera-

ture profiles to minimise a bi-criteria problem considering ethanol maximisation

and batch time minimisation. Two NLP algorithms are compared, fmincon and

IPOPT, for the computation of both piecewise constant (stepwise) and piecewise

linear temperature profiles to for a range of levels of discretisation and initialising

temperature profiles. It is demonstrated that even at low discretisation levels the

CVP strategy is extremely effective at computing the control profile for optimal

beer fermentation, with little benefit found in increasing the problem size to from

PWC to PWL. While PWL control trajectories can be more realistic to adhere

to in practice, since instantaneous temperature gradients are omitted, it is con-

siderably easier for an operator to input a PWC profile as a vector of set points

for plant equipment, and is the favourable approach of those considered here.

A second dynamic optimisation method is applied, discretisation of the state

trajectories in addition to the control vector using orthogonal collocations to

generate a large scale NLP problem. It is demonstrated that both NLP solvers

considered can converge to local solutions when blindly initialised with isothermal

profiles, which restricts the performance of computed solution profiles. Electing to

initialise with promising candidate profiles is shown to be highly beneficial, with

the simultaneous optimisation approach being able to improve upon the input

profiles in all cases. The robustness and computational performance of the interior

point NLP solver (IPOPT) is clearly superior to that of the alternative solver

(fmincon) considered: while global optimisation is not the purpose of the present

study, it is clear that poor initialisations can result in suboptimal temperature

manipulation profiles, particularly when less powerful solvers are being used.

A highly novel optimal fermentation temperature profile is identified: a sym-

metrical parabola dip in temperature across the majority of the duration effec-

tively manages the active yeast population, slowing down cell death and main-

taining a sustained high concentration of active yeast cells. Doing so permits

very rapid fermentation, while also preventing excessive accumulation of the two

130



flavour degrading by-products under consideration. The form of these solutions

(e.g. high initial temperature, progressive cooling and reheating) carry technical

merit with respect to plant implementations (e.g. feeding warm wort to the fer-

mentor straight from the mashing stage under insulation, rather than allowing

cooling), and appear to be a viable route towards significant process improvement

for industrial beer fermentation.
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Chapter 8

Dynamic Optimisation of

Fed-Batch and Batch

Fermentation Reactors

The favourable dynamic optimisation methodology and initialisation strategies

from the previous chapter are herein applied to two reactor optimisation studies.

8.1 Keratin Hydrolysis Optimisation

The hydrolysis model developed for batch operation in Chapter 5 (where the sub-

strate is all introduced at t = 0 hrs) is applied to a fed batch system. In practice

it is not viable to increase the reactor solids content far above 7% (w/w), with the

viscous broth becoming restrictive of the reaction kinetics. To circumvent this, it

can be favourable to perform the hydrolysis reaction in fed-batch operation: al-

lowing a portion of the substrate to be digested before supplementing additional

solids. In doing so a greater amount of the waste material can be hydrolysed

while ensuring the solids content does not become restrictively high. It is of great

interest to determine the feed schedule (dosage quantities and timings) for opti-

mal performance, to consume the largest portion of a given substrate mass in a

fixed time-frame.
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8.1.1 Problem Formulation

The proposed model structure is unable to capture the observed behaviour at

elevated substrate concentrations, due to the lack of mass transfer consideration

or inhibitory effects under high solid content. This would result in any attempt to

use the model for unconstrained dynamic feed profile optimisation to return batch

operation as the preferred strategy, with no benefit existing (as far as the model

is concerned), in keeping the solids content low to promote consumption (shown

experimentally), compared to feeding the entire substrate mass initially. As such

the concentration of solids in the reactor across the entire timespan is constrained

(Eq. 8.6) to not exceed 7% (w/w), with the assumption that it is above this level

where the viscosity becomes prohibitive for reaction progression (Modenbach and

Nokes, 2013). Additionally, this ensures the model is not applied out with the

substrate range in which the data used for model fitting was obtained. As feed

additions are instantaneous (manual solid addition) the process is modelled as a

series of batch reactors, with the output from one reactor fed to the next with

the supplemented substrate mass. A favourable strategy identified in Chapter

7 is applied: given the small problem size CVP is used with the IPOPT solver

(Wächter and Biegler, 2006) interfaced in MATLAB through OPTI (Currie et al.,

2012). A NLP problem is formulated, where decision variables define the feeding

profile: after the initial substrate, KF0 , is introduced at t = 0 hrs subsequent

additions KFi
are made at times tFi

, such that the decision vector is defined as d:

d = [KF0 , KF1 , ..., KFi
, ..., KFN

, tF1 , ..., tFi
, ..., tFN

] (8.1)

An equality constraint (Eq. 8.2) ensures the various additions of substrate sum to

desired amount of waste to be treated, KT . Inequality constraints (Eqs. 8.3–8.5)

are imposed to ensure the solver only considers feasible feed profiles. The objective

(Eq. 8.7) is to minimise the residual substrate after the reaction time-frame has

elapsed, which coupled with Eq. 8.2 equates to maximising the mass of substrate

hydrolysed. ∑
KFi

= KT (8.2)
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0 < tF1 (8.3)

tFi
< tFi+1

(8.4)

0 ≤ KFi
≤ KT (8.5)

K ≤ KC for all t ∈ [t0, tf ] (8.6)

min
d

J = K(t=tf ) (8.7)

8.1.2 Results

The solution when the number of permitted feeds (excluding t0) is equal to three,

with a total substrate mass to be treated, KT , equal to 135 g L−1 (12% w/w)

is shown in Figure 8.1, compared to a generic feed profile where equal feeds are

added every 24 hours. It can be observed that the optimal protocol involves sup-

plementing the substrate quantity such that it reaches the constrained threshold

(slack variable equal to 0), which is intuitive given that in the unconstrained case

the solution with such a model is to feed the entirety of KT as early as possible.

What is less intuitive is the feeding times: an inherent trade-off exists between

adding the substrate early while the enzyme cocktail retains a higher fraction of

its potency, and delaying the addition so that a greater amount may be added to

approach the constraint threshold, KC . The solution presented shows additions

favouring each of these: the first supplementation of keratin is made after only

∼5 hours, quickly replenishing the permitted concentration while enzyme activity

remains favourable. The two subsequent additions are made after more prolonged

time periods, allowing a sufficient portion to be consumed before topping back up

to the threshold, a result of the finite number of additions and the requirement

to feed the total mass defined by Eq. 8.2. It is demonstrated that the terminal

concentration, Kt=tf , is around 5 g L−1 lower following the optimised schedule

compared to a generic strategy (addition after each 24 hours). This highlights

the potential benefit in applying such a method towards determining the optimal

strategy for maximising substrate consumption. It should be noted that this is

only a modest improvement in yield and does little to improve the viability of this
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Figure 8.1: Optimised fed-batch substrate feed profile.

technology versus conventional thermal processing. Given the model uncertainty

and lack of validation for fed-batch operation, it is highly desirable to perform

the optimised feed profile experimentally as to ascertain whether the model can

indeed be applied to fed-batch mode, and whether the 5 g L−1 hydrolysis im-

provement may be achievable.

8.2 Fermentor Jacket Cooling Optimisation

Beer fermentor optimisation results presented in the previous chapter rely upon

universal assumption of direct and instantaneous control of fermentor tempera-

ture. As with the dynamic simulation and performance mapping in Chapter 6.3,

heat transfer dynamics are now incorporated into the dynamic optimisation prob-

lem so that the implications of such an assumption may be addressed. The most

favourable strategy identified for this specific problem is applied: CD with col-

location on finite elements, solving the NLP produced with IPOPT. Once more

orthogonal polynomials on finite elements are used to approximate the model

control (coolant rate) and state (model species) trajectories using the DynOpt

package for MATLAB (Cizniar et al., 2005). Batch time is fixed at 160 hours, to

investigate cooling strategies for very high yield fermentations where time pres-

sure is not a concern. The objective is defined to maximise ethanol yield:

Jmin = −[EtOH]tf (8.8)
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Figure 8.2: Optimal F (t) solution for maximum [EtOH] in 160 hrs.

Fixing 16 elements across the time horizon, with 3 collocation points per ele-

ment for the nine state ODEs and one collocation point (piecewise constant) per

element for the control (F ) leads to a 16× (3+ 1)× 9+16× 1× 1 = 592 variable

NLP, able to accurately approximate the continuous dynamics of the system. For

a single objective ethanol maximisation problem the NLP is solved using IPOPT

(Wächter and Biegler, 2006). The local solver uses an interior point line search

filter method, with multi-start initialisation used to best approximate global opti-

mality. The optimal control profile produced is presented in Figure 8.3, alongside

the corresponding jacket and vessel temperature trajectories. Similarities are ob-

served between profiles in Chapter 7 (i.e. Fig 7.17) and Fig. 8.2, where using

intermediate cooling to manage the active cell population is evident as a lucrative

and viable policy to maximise ethanol yield. With considerably greater degrees

of freedom than the policies in the exhaustive search (Fig. 6.10), the optimal

policy computed here is to rapidly begin cooling after a favourable temperature

is reached (~15 °C), and to graduate lower the coolant rate over the following 70

hours such that gradual and sustained cooling of the wort is facilitated.
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Figure 8.3: Overall heat transfer coefficient effect on optimal coolant supply rate.

Solution Sensitivity to Process Parameters

To investigate the impact of the coolant temperature and overall heat transfer

coefficient OHTC on the optimal cooling policy, the same dynamic optimisation

problem is repeatedly solved for a range of realistic values for this parameter.

Figure 8.3 shows the solution profile for a range of values of U , while Fig. 8.4

shows the same for coolant temperatures. It is demonstrated in Fig 8.3. that with

decreasing OHTC the same cooling policy profile form is utilised, with increasing

required coolant rate. After a critical point (U < 100 W m−2 K−1) the maximum

coolant rate is insufficient and the solution is to run the coolant at the maximum

rate. The bottom left panel highlights how the jacket temperature differs in these

cases with the increasing coolant rate, which leads to near identical temperature

trajectories in the fermentor (bottom left panel), with the exception of the dark

blue case (U = 50 W m−2 K−1) which takes a less favourable path due to being

limited by the maximum coolant rate.
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Figure 8.4: Coolant temperature effect on optimal coolant supply rate.

Figure 8.4 similarly demonstrates how the same cooling policy form is computed

regardless of the coolant temperature. Across all cases considered it is possible

to maintain essentially the same jacket-side temperature by adjusting the coolant

rate accordingly, such that the wort temperature and corresponding fermentation

progression are unchanged. This highlights that in the common scenario where

coolant feed temperature varies over time (ambient condition variability), adjust-

ments can be readily made by increasing or decreasing the volumetric supply rate

to adhere to the same temperature progression within the batch itself.

8.3 Chapter Conclusions

The hydrolysis of keratin-rich material with keratinolytic bacteria is an attractive

way of transforming undesirable waste from agro-industrial activities into prod-

ucts of practical industrial value. It is demonstrated how the proposed model

may be applied towards fed-batch feed-schedule optimisation. An improvement

(reduction) in terminal keratin concentration of around 5 g L−1 can be made

following the optimised schedule compared to a generic strategy (addition after
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each 24 hours). This highlights the potential benefit in applying such a method

towards determining the optimal strategy for maximising substrate consumption.

It is essential to consider that such a modest improvement in yield does little to

improve the viability of this technology versus conventional thermal processing.

Given the model uncertainty and lack of validation for fed-batch operation, it is

highly desirable to perform the optimised feed profile experimentally, or at least

a fed-batch experimental campaign, as to ascertain whether the model can in-

deed be applied to fed-batch mode, and to verify whether a 5 g L−1 hydrolysis

improvement is achievable.

The beer fermentation dynamic optimisation problem considered in Chapter 7

is extended with the inclusion of realistic, indirect temperature manipulation via

coolant federate, while all prior work assumed direct temperature control. Consid-

eration of explicit fermentor jacket heat transfer marks a significant improvement

over the fidelity of prior work which assumed temperature may freely manipu-

lated. Optimal operation involves a novel cooling policy to effectively manage the

active yeast population in the reactor, capable of improved performance versus

established approaches. Sensitivity analysis of the solution dependence on ther-

mal process parameters shows how adjustments in the coolant rate can be made

to maintain the preferred optimal temperature trajectory of the fermenting wort

in the vessel.
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Chapter 9

Dynamic Optimisation as a Tool

to Gain Process Insight

Applying dynamic optimisation methodologies to compute single and unique con-

trol vector solutions, minimising a given objective function, is an invaluable tool

in process engineering. However doing so relies upon a concise problem formula-

tion, whereby the objective function and system constraints can be readily and

meaningfully defined. In the food and drinks manufacturing industry there is

often varying specifications for different product lines, so such a unique formula-

tion becomes less useful when exploring potential for new or alternative products.

Herein this chapter considers repeatedly solving a finite set of modified versions

of the original dynamic optimisation problem, as a means to gain significant in-

sight into process characteristics and as to how attainable process performance is

potentially dictated specific constraints. The effect of by-product species thresh-

olds on optimal beer fermentation performance is explored, as to identify how the

variable by-product limits in different products impacts the potential efficiency

of production.
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9.1 Methodology

9.1.1 Solution Strategy

The formulated dynamic optimisation problem in Chapter 7 for beer fermentation

is extended. Here the same objective (Eq. 9.1) is used, systematically varying

the specific constraint thresholds on diacetyl and ethyl acetate, as to elucidate

the impact these flavour compounds have on attainable process performance.

Jmin = −WE · ˜[EtOH]−Wt ·
1

t̃f
(9.1)

s.t. [EA]tf ≤ [EA]max (9.2)

[DY ]tf ≤ [DY ]max (9.3)

The most favourable strategy identified for this specific problem is applied: CD

with collocation on finite elements, solving the NLP produced with IPOPT. Three

collocation points have been used for each of the eight model state trajectories per

element, with one collocation point being used for control profiles per element,

resulting in the computation of temperature profiles which are piecewise-constant.

9.1.2 Initialisation

Due to the high number of local extrema which exist when discretising a control

vector problem to NLP form, the initialising profile has considerable bearing on

the solution obtained, which cannot be guaranteed as globally optimal from most

algorithms. To overcome this limitation, it is desirable to input a profile known to

have favourable performance, such that the algorithm can act to improve on this.

As highlighted in Chapter 7, initialising the solver with favourable candidate

profiles can improve the robustness of the algorithms ability to converge to a

feasible and favourable solution. As in Chapter 7, a range of favourable profiles

from the exhaustive simulation campaign (Chapter 6) are used. The specific

profiles which have been used for initialising the solver are shown in the Fig. 7.15,

where their position (corresponding performance) is highlighted in Fig. 7.14.
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Table 9.1: Summary of solution conditions, producing 200 cases.
Number of values Range

[EA]max(ppm) 5 [0.5, 1.0, 1.5, 2.0, 3.0]
[DY ]max(ppm) 5 [0.05, 0.10, 0.15, 0.20, 0.25]

WE : Wt 2 [0.75:0.25, 0.5:0.5]
Initialising profile 4 [A, B, C, D]

9.1.3 Case Definition

To thoroughly investigate effect which by-product constraint thresholds (Eqs.

9.2–9.3) have the attainable fermentation performance, and to access the method-

ology performance, a campaign of cases have been solved. Five realistic thresh-

olds for ethyl acetate and diacetyl have been selected producing 25 constraint

permutations for which the system will be solved. This is performed for different

discretisation levels, with the N = 30 case presented in this thesis for concise-

ness, each of which is initialised with each of the four input profiles (Fig. 7.15)

in turn. Additionally two different sets of objective weights are considered, as to

observe how the solution profiles vary to shorten batch time at the expense of

ethanol yield, when the former is given higher priority. The conditions for the

set of 200 dynamic optimisation problems are summarised in Table 9.1. All solu-

tions presented represent the best performing case of each solution from the four

initialisations, however in the vast majority of scenarios the attained solution is

equivalent for all four.

9.2 Results and Discussion

The solution profiles for all 25 by-product threshold cases are presented in Fig.

9.1, for the problem weighted towards Ethanol maximisation (WE = 0.75, Wt =

0.25). Each panel depicts the specific T (t) solution (temperature profile) for op-

timal performance, subject to the corresponding thresholds: [EA]max decreases

from left to right, [DY ]max decreases moving down each row in the figure. A

high level of similarity is evident across all solutions presented. Much like the

base case ([EA]max = 2 ppm & [DY ]max= 0.10 ppm) presented in Chapter 7,
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Figure 9.1: Solution profiles (N = 30, WE = 0.75, Wt = 0.25).

the solution takes the general form of beginning at 16 °C before exhibiting a

symmetrical parabola dip in temperature over the majority of the duration, re-

turning to 16 °C shortly before completion. As discussed in Chapter 7 this novel

strategy for fermentation very effectively manages the active yeast population,

slowing down cell death and maintaining a sustained high concentration of active

yeast cells. The permits very rapid fermentation, while also preventing excessive

accumulation of the two flavour degrading by-products under consideration. An

astonishing result is the fact that that the same approach can similarly optimise

fermentation for alternative target product quality specifications, only requiring

minor adjustments to the general profile form.

9.2.1 Effect of ethyl acetate limit on optimal solution

Figure 9.1 reveals that in order to satisfy tighter limits on [EA] it is necessary

to initiate the temperature drop earlier in the process, which is sustained for
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a longer portion of the batch duration. This continues to the tightest bound

on [EA] (right most column) where it is no longer possible to start the process

at 16 °C, and essentially the parabolic temperature dip is already underway at

the start of the batch. This observation can be explained by the simple fact

that [EA] is not consumed at any point during the process, so any production

leads to accumulation. Since production is accelerated at higher temperatures,

sustained initial heating is no longer feasible when [EA]max decreases below 1

ppm. Furthermore, it can be observed that the minimum temperature across

each profile (the base of the parabola) decreases with tightening [EA]max, which

also assists in preventing excess production of this undesirable species.

9.2.2 Effect of diacetyl limit on optimal solution

The specific effect which [DY ]max has on the solution profile can similarly be

observed by comparing columns within figure 9.1. Unlike for varying [EA],the

constraint on [DY ] has a negligible effect of the parabolic portion of the profile.

In fact the only notable trend is that in order to satisfy an increasingly tight

upper bound on the product [DY ] (moving down each column in Fig. 9.1) the

fermentor is operated for greater time at T = 16 °C after the parabolic portion of

profile has passed. Once more this observation can be explained by interpretation

of the model and the reaction scheme present. Unlike ethyl acetate, diacetyl

formed during fermentation can break down, being reabsorbed by the yeast which

converts them to acetoin and subsequently to 2,3-butanediol. This is particularly

dominant towards the latter stages of the process when primary fermentation has

essentially completed. As such, any imposed limit on the product [DY ] may be

fulfilled by extending the batch duration until the concentration of the species

falls below the imposed upper limit.

9.2.3 Effect of by-products on attainable performance

The objective function applied in this chapter is of weighed sum form, so ob-

serving the attainable Jmin for each case can only quantify performance in a

general overall sense. To observe more specifically how each constrained species
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Figure 9.2: Solution performance for all cases (N = 30, WE = 0.75, Wt = 0.25).

in this study affects the two process targets (batch time and alcohol yield), Fig-

ure 9.2 simultaneously depicts all performance metrics. Each circular marker

corresponds the performance an output profile from Fig. 9.1; the correspond-

ing by-product concentration limits are represented on the x-y plane with the

z axis showing the batch time, tf , and the marker colour corresponding to the

ethanol product concentration, [EtOH]tf . The results show a very coherent and

consistent pattern, indicating the manner in which fermentation performance is

influenced independently by each constrained species. It is shown that batch

time universally increases as the acceptable threshold on diacetyl, [DY ]max, is re-

duced. Batch time does indeed also increase as [EA]max is reduced, however the

relationship is far less significant, with the dependency on the diacetyl threshold

much stronger. The marker colours show how it is exclusively the ethyl acetate

threshold, [EA]max, which influences the final ethanol yield. In all cases when

[EA]max = 0.5 ppm the product ethanol, [EtOH]tf , is very low (under 56 g L−1),

which increases steadily towards 61 g L−1 as this permitted [EA]max, threshold

is relaxed towards 3 ppm. These results reveal as to how the two components

of the bi-criteria objective are dictated by the two inequality constraints on the

by-product concentrations:
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• [DY ]max has very strong influence on batch time.

• [EA]max is shown to dictate the attainable ethanol concentration.

This finding can be explained by the phenomena discussed in Section 9.2.1 – 9.2.2.

In summary, as [EA] is promoted at higher temperatures along with [EtOH],

and can not be reduced by any side-reactions. Thus a milder fermentation must

be performed if [EA]max is reduced, which unavoidably reduced the potential

ethanol yield. On the other hand, [DY ] can be reabsorbed by the yeast in the

later stages of fermentation, converting to compounds without an adverse effect

on the product flavour. As such, it simply becomes a case of extending the batch

duration until the [DY ] falls below the desired thresholds, leading to prolonged

batch times.

9.2.4 Effect of objective weights

The exact same procedure performed with the objective weights WE = 0.75, Wt

= 0.25 is now repeated, increasing the weight allocated to batch time reduction

(WE = 0.5, Wt = 0.5). Similarly to Fig. 9.1, Fig. 9.3 depicts each T (t) solution

for the same 25 constraint cases, where [EA]max decreases from left to right and

[DY ]max decreases moving down each row. Solution forms remain highly similar

in nature to the prior results with differing objective weightings (Fig. 9.1). Once

more the profile ’dip’ is elongated when the permitted [EA] is reduced, again

to prohibit the unnecessary production which would occur if the fermentor re-

turned to its maximum temperature sooner. Similarly the profile duration after

the ’dip’ portion has passed increases with the tightening [DY ] threshold, so that

sufficient time remains for the concentration to be reduced to an acceptable level.

These solutions differ to those presented prior in that the ’dip’ region is no longer

parabolic in form, and may better be described as a V-profile. The V region is

asymmetric in most cases, unlike the earlier consistently symmetrical parabolas

produced. Since less favour is given to ethanol yield all solutions represent ex-

tremely rapid fermentation, accelerated by controlling the active yeast population

in this manor, at the expense of a sacrifice in the product [EtOH]. Figure 9.4

presents the three dimensional performance plot for all scenarios, analogous to
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Figure 9.3: Solution profiles (N = 30, WE = 0.5, Wt = 0.5).

Figure 9.4: Solution performance for all cases (N = 30, WE= 0.5, Wt= 0.5).
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Fig. 9.2 from the prior result set. Comparing the two 3D performance plots show

a high level of similarity, where the points in Fig. 9.4 are essentially the same

as these in Fig. 9.2, only shifted down in the z-axis (reduced batch time), and

considerably more red in colour (reduced ethanol yield). It is apparent that the

way each objective component is uniquely effected by each by-product limit is

unchanged from the previous case, which is fact shown to be independent of the

specific objective function.

Figure 9.5 depicts the projection of both Fig. 9.2 and Fig. 9.4 on the by-

product concentration plane. Here the marker size is scaled relative to inverse

batch times: smaller makers show the worst performing solutions (longest batch

times) while larger markers show the best performance (shortest batch times). It

is shown that a small selection of solutions do not fall directly on the intersect of

the two by-product limits imposed for the particular case being solved. There are

two factors responsible for this; firstly there are several cases where the constraints

are comfortably fulfilled, i.e. the solution produced for the case [EA] < 3.0

ppm & [DY ] < 0.10 ppm in fact has a lower [EA] of only 2.85 ppm. This

could suggest sub optimality in the solution, perhaps with a shorter batch time

possible if the concentration of diacetyl were to increase more towards the bound.

Secondly, all performance results presented in this work have been computed after

reintegration of the system using the computed control profile. Slight deviations

exist between the performance of the profile during the collocation approximation

in the optimiser and later integration of the solution, depending on the accuracy

of the piecewise polynomial representation of the continuous state trajectories.

Deviations have are shown to be non-significant as the algorithm used captures

the state trajectories effectively.

9.2.5 Performance of key output profiles

Of the entire solution set computed it is of interest to visualise the model state

trajectories which correspond to the extrema by-product thresholds, and how

these compare to the base case solutions shown in Chapter 7. The following five

cases are considered, both for the first solution set (WE= 0.75, Wt = 0.25), and
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Figure 9.5: Performance projection (N = 30): marker size scaled with t−1
f .

that with modified weights (WE = 0.5, Wt = 0.5). The corresponding solution

within Fig. 9.1 and Fig. 9.3 are denoted with the appropriate Roman numeral

in the bottom left of the panel (four corner panels plus the base case).

I: Most relaxed constraints ([EA]max = 3.0 ppm, [DY ]max = 0.25 ppm)

II: Minimum [EA]max (0.5 ppm) and maximum [DY ]max (0.25 ppm)

III: Maximum [EA]max (3.0 ppm) and minimum [DY ]max (0.05 ppm)

IV : The tightest constraint set ([EA]max = 0.5 ppm, [DY ]max = 0.05 ppm)

V : The base case constraints ([EA]max = 2.0 ppm, [DY ]max = 0.10 ppm)

The corresponding trajectories are shown in Figs. 9.6–9.7 for all model states,

with the numerical performance metrics summarised in Table 9.2. Figures

9.6–9.7 allow the manor in which these novel temperature profiles steer fermen-

tation to optimal completion to be visualised. It can be observed how the ’dip’

region of the profile can prevent cell death in all cases, and promote very rapid

sugar uptake by the yeast. The right most column in both cases provides some

insight as to the optimal ’dip’ timing varies with each case. It can be seen that

the ’dip’ is only initiated once [EA] is approaching the permitted upper limit,
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Figure 9.6: Trajectories of key solution profiles (N = 30, WE = 0.75, Wt = 0.25).

Figure 9.7: Trajectories of key solution profiles (N = 30, WE = 0.5, Wt = 0.5).
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Table 9.2: Performance of extrema profiles plus base case.
WE :Wt Profile [EtOH]tf (g L−1) tf (hrs) [DY ]max (ppm) [DY ]max (ppm)

WE= 0.75
Wt= 0.25

I 60.00 77.7 3.0 0.25
II 55.14 90.7 0.5 0.25
III 60.48 103.0 3.0 0.05
IV 56.42 121.1 0.5 0.05
V 59.42 93.9 2 0.1

WE= 0.5
Wt= 0.5

I 57.38 72.9 3.0 0.25
II 52.00 84.1 0.5 0.25
III 59.45 100.0 3.0 0.05
IV 54.75 114.39 0.5 0.05
V 57.52 89.84 2 0.1

preventing this level from being exceeded for the remainder of the batch dura-

tion. Similarly, the way in which [DY ] dictates batch time can be visualised,

as the moment [DY ] (brown profile) drops to the threshold the batch is deemed

complete and the profile terminates.

9.3 Chapter Conclusions

The investigation into the influence of by-product threshold limits on obtainable

fermentation performance has revealed new insight into how each by-product

uniquely affects different aspects of the performance of the fermentor under op-

timal operation. It is found that the permitted diacetyl concentration in the

product has very strong influence on batch time, with lower limits requiring con-

siderably longer batches. Ethyl acetate is shown to dictate the attainable ethanol

concentration, such that low limits prohibit a reasonable alcohol content in the

product. Repeatedly solving a finite set of modified versions of a dynamic opti-

misation problem is demonstrated as a useful means to gain process insight, and

my be used to visualise the effect constraint thresholds have on the performance

ceiling for bioprocess operation.
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Chapter 10

Problem Reduction Towards

Rapid Pareto Approximation

A weighted sum approach for optimal fermentor operation has been applied in

Section 9.2.4; varying the respective objective weights allowed alternative opti-

mal solutions to be produced. Doing so provided insight into the inherent process

trade off between batch time and ethanol yield, and how optimal solution profiles

for temperature control are affected by the weightings, however only two sets of

weights were considered. The weights assigned to the various process targets to

produce a single objective function may be considered arbitrary in many cases,

with decision-makers (brewers) not necessarily able to quantify a priori the rela-

tive importance of competing objectives. Systematically exploring the trade-off

and visualising Pareto optimal temperature manipulations for efficient fermen-

tation is desirable to gain greater insight and assist brewers with the selection

of the most preferable operation strategy. A number of multi-objective optimi-

sation algorithms have been successfully applied to a wide range of engineering

problems, where visualisation of the trade-offs can provide decision makers with

valuable insight (Gujarathi et al., 2015; Zhang et al., 2015; Fraga and Amusat,

2016; Che et al., 2017; Maria and Crişan, 2017; Keßler et al., 2017).

It could be suggested to further vary the objective weights and repeatedly

re-solve the same problem to construct the entire Pareto set. However, difficulty
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exists in determining which weighting-sets to solve, as equally spaced weights are

unlikely to map to equispaced points unless the trade off is linear. Furthermore

unsupported points can be omitted from the solution set when using a weighted

sum approach if the true front is non-convex, even if they are Pareto optimal.

Additionally, the large scale NLPs produced following the complete discretisation

of the continuous dynamic optimisation problem can show large solution times

and convergence issues when the problem size rapidly grows with the level of

discretisation applied. Herein an alternative approach is developed, whereby

the problem size is drastically reduced while still encapsulating the vast scope

for variability of potential operational schemes, in order to rapidly map the full

Pareto solution set and trade-off front between the two objectives.

10.1 The Strawberry Algorithm

It is desirable to develop a novel profile representation (control profile to decision

vector encoding) which permits efficient search of feasible candidate tempera-

ture manipulations for effective fermentation. Such a representation would allow

the bi-criteria trade-off to be mapped using multi-objective optimisation meth-

ods such as NSGA-II (Deb et al., 2002), or for exploration with single objective

methods with weighted sum or ε-constraint approaches. The Strawberry algo-

rithm (Salhi and Fraga, 2011)is a nature-inspired stochastic evolutionary optimi-

sation method which has been successfully applied to a single objective dynamic

optimisation problem in the built environment (Fraga et al., 2015). Recently,

using a new fitness function for multi-objective problems, the algorithm has been

applied to integrated energy systems design for off-grid mining operations (Fraga

and Amusat, 2016). Given the demonstrated success of the algorithm for gaining

insight into a bi-criteria objective trade-off we propose using the Strawberry Algo-

rithm evaluate our solution representations and compute Pareto optimal solution

sets for the industrial beer fermentation process. The fermentation objective in

this chapter is thus no longer the weighted sum formulation from Chapter 6 – 9;

rather the multi-objective problem is now defined by Eqs. 10.1–10.3, subject to
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the base-case constraint thresholds on by-product species (Eqs. 6.30–6.31):

min
d

f1, f2 (10.1)

f1 = −[EtOH]tf (10.2)

f2 = tf (10.3)

Where d is the encoded decision vector which translates to a specific T (t) profile.

The Strawberry algorithm (Salhi and Fraga, 2011) is a nature inspired stochas-

tic evolutionary optimisation method. It emulates the behaviour of strawberry

plants, encapsulating the two key aspects of effective global optimisation algo-

rithms: solution exploration and intensification. In nature, strawberry plants

exploit their surroundings through the propagation of runners. In a favourable

environment, they will generate a greater number of runners, most within their

local vicinity. Less frequently, the plants which are not as well situated will re-

produce through the propagation of fewer yet longer runners. This inspires the

Strawberry algorithm: each member of the population (an individual solution) is

evaluated (objective functions computed) and a fitness function is assigned. The

fitness value influences both the number of runners (exploitation, proportional

to fitness) and the distance which each runner travels (exploration, inversely

proportional to fitness). The population evolves over a pre-defined number of

generations. The evolutionary process is characterised by only two parameters:

the maximum number of runners to generate for any given solution and the num-

ber of solutions to consider for propagation in each generation. The Strawberry

algorithm has previously been successfully applied to a single objective dynamic

optimisation problem in the built environment (Fraga et al., 2015). Recently,

using a new fitness function for multi-objective problems, the algorithm has been

applied to integrated energy systems design for off-grid mining operations (Fraga

and Amusat, 2016), also a dynamic optimisation problem. The algorithm can be

summarised as follows:
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Algorithm 1: The Strawberry Algorithm Pseudo Code
Given: f(x), a vector function; ng, number of generations to perform, np, the
propagation size; nr, maximum number of runners to propagate.

Output: z, vector approximation of Pareto front.
p ← initial random population of size np

for ng generations do
prune p, removing similar solutions
N← fitness(p) ; // Use rank based fitness
p ← ϕ ; // Empty set
for i ← 1 . . . np do

x ← select(p, N) ; // Tournament fitness
based selection

for each runner to generate do ; // Number proportional to
fitness rounded up

x̃ ← new solution(x, 1 − N); // Distance inversely
proportional to fitness

p̃ ←x̃
⋃

p̃; // Add to new population
end for
p ← p̃

⋃
Non-dominated(p) ; // New population with

elitism
end for

end for
z ← Non-dominated(p) ; // Pareto Set

10.2 Control Profile Encoding

In order for any control trajectory optimisation problem to be compatible with

such an algorithm like The Strawberry Algorithm, at least the control profile

must be discretised. Doing so leads to a partial discretisation approach (CVP),

meaning it is necessary to define a function which transforms a vector of decision

variables to a unique profile or trajectory (herein referred to specific profile en-

coding strategy or solution representation). The representation of solutions has

a direct impact on the effectiveness of any optimisation method (Fraga et al.,

2018). Specifically, the bounds imposed on each variable should restrict the so-

lution form such that only realistically practical cases are considered (omitting

unnecessary computational load) while ensuring that a large enough search space

exists so that a wide range of solutions may be considered. In this study we

consider two strategies for profile encoding, a piecewise linear approach and a

piecewise polynomial approach.
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Figure 10.1: (a): Example PWL profile; (b): PWP Profile Structure

10.2.1 Piecewise Linear (PWL) Profile Encoding

For this encoding strategy, each temperature profile consists of N piecewise linear

segments, between N+1 nodes of coordinates [ti, Ti] where 0 ≤ i ≤ N . The time

domain is discretised into N equal intervals:

∆t =
tmax

N
(10.4)

Where tmax is the longest fermentations desirable to be considered, defined using

existing industrial practice as a basis:

tmax = 120 hrs (10.5)

If uniform spacing were used, ti would be i·∆t. However, more effective use of the

N+1 points may be possible if non-uniform spacing were allowed, since drastically

more variation in the profile is permitted. The variable tdev,i is introduced to

represent deviation from the uniform spacing for each time point, excluding t0,

such that each time point (apex of PWL profile) is defined as:

ti = i·∆t+ tdev,i (10.6)

This deviation approach is preferable to permitting completely free movement

of the nodes within the time domain. With suitable bounds on the deviations,
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this approach acts to regulate the segment lengths: preventing a large portion of

the segments bunching together which would require unachievable and undesired

rapid manipulations to be performed to the vessel. Additionally it ensures that

unfavourably long fermentations are not considered: only fermentation times up

to tmax +max(tdev) can be computed. Bounds imposed on time point deviation

prevent subsequent nodes, ti, from overlapping with the prior, ti−1.

−∆t

2
≤ tdev,i ≤

∆t

2
(10.7)

The bounds on the initial temperature and the temperature component of each

profile node are given by:

Tmin ≤ Ti ≤ Tmax (10.8)

Here the values for the bounds taken from Eq. 6.22. In summary, the decision

variables consist of the initial system temperature, Tt=o = T0, and N couplets of

[ti, Ti]:

d = [T0, tdev,1, T1..., tdev,N , TN ] (10.9)

As such that the number of decision variables scales linearly with the discretisa-

tion level:

length(d) = 2 ·N + 1 (10.10)

The search domain which may be explored by the stochastic algorithm is fully de-

fined by Eqs. 10.7–10.10, with the manner in which the decision vector translates

to a piecewise linear T (t) control profile between N +1 nodes [ti, Ti] (0 ≤ i ≤ N)

defined by Eqs. 10.4–10.6. As an illustrative example of this profile encoding,

consider the vector d = [14, -10, 16, 0, 9, 0, 10]. The 7 elements correspond

to N = 3, from Eq. 10.10 meaning the profile described by 4 T (t) points or 3

linear sections. Three equal time intervals would split the 120 hr horizon into

40 hr sections (4t = 40), however the second point in d states a minus 10 hour

deviation on the second time coordinate (the first is always t = 0 so no deviation

applies). This example there-for corresponds to a piecewise linear profile between

the four points: [(0,14), (30,16), (80, 9), (120, 10)], as shown in Fig. 10.1.
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Figure 10.2: PWP Profile Structure

10.2.2 Piecewise Polynomial (PWP) Profile Encoding

To explore the effectiveness of smoother profiles which are not dependent on dis-

cretisation level a piecewise polynomial profile representation is considered. It has

been demonstrated that problems of slow convergence and non-smooth impracti-

cal control strategies can be overcome by representing control profiles with poly-

nomial approximations (Sorek et al., 2017). The authors could achieve significant

computational savings, due to seeking the optimal polynomial coefficients rather

than optimal control values within many time intervals. The PWP implemen-

tation in this thesis considers the time domain to consist of three sub-domains,

on the basis of the optimal solutions from exhaustive simulation and dynamic

optimisation (Chapters 6, 7 and 9) generally showing three distinct regions in the

computed control profiles. In each sub-domain, the solution representation will

define a smooth polynomial. Specifically, we construct T (t) profiles from three

polynomials: a cubic for first and last sections, with an intermediate quintic.

Temperature values and first derivatives of the temperature are defined to be the

same for the respective polynomials at each boundary between sub-domains, and

the gradients at the very start and the end of the profile are set to 0. With these

restrictions, the profile is described uniquely by 5 coordinates and 2 derivatives,

shown in Fig. 10.2. The decision vector corresponds to these 5 points and 2

derivatives, requiring 11 variables as the first point will always occur at t = 0:
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d = [T0, t1, T1, dT1, tf2, T2, dT2, tfm, Tm, T3, t3] (10.11)

The cubic between t0 and t1 has 4 degrees of freedom so defined by 2 points (t, T )

and 2 gradients (dT ). The points (0, T0) and (t1, T1) and gradient dT1 are known

directly from Eq. 10.11, which along with dT0 = 0 fully defines the curve. A

linear system of equations can be rapidly solved to give the coefficients of the

corresponding polynomial. Similarly, the centre polynomial, here 5th order, is

defined by 3 points and 2 derivatives: (t1, T1) and dT1 known from the end of the

first section, T2 and Tm are defined by d (Eq. 10.11) and the corresponding time

of these points are defined by:

t2 = t1 + (t2,max–t1) · tf2 (10.12)

tm = t1 + (t2 − t1) · tfm (10.13)

This allows the linear system of equations to be solved to in order to obtain the

5 coefficients of the middle quintic. The final cubic is defined with 2 points and

2 derivatives: (t2, T2) along with dT2 are known from the previous segment, dT0

is set as 0 so only a final point remains to be defined:

t3 = t3 + (tmax − t2) · tf3 (10.14)

Herein the profile end point (t2, T2) is defined, allowing the coefficients of the

final polynomial to be determined. Therefore, the full profile, consisting of three

piecewise polynomials, is uniquely represented by Eq. 10.11.

10.3 Results

A variety of discretisation levels were investigated for PWL profiles, in addition to

the maximum number of generations (gen) and the number of solutions with each

generation to propagate (referred to as the population size herein), to investigate

how these variables influence solution performance.
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Figure 10.3: Improvement of non-dominated solutions over subsequent genera-
tions with population size of 200; left (a): PWL with N = 6; right (b): PWP

10.3.1 Solution Convergence

Figure 10.3 depicts how the trade-off curve for the two objectives evolves during

the evolutionary process. As batch time minimisation and ethanol maximisa-

tion are the two objectives, the desirable solutions will be to the right and the

bottom of the plot. Each coloured line joins non-dominated points (where no

other solution improves on both objectives simultaneously) from the population

which corresponds by colour to a generation number: this can be considered an

approximation to the Pareto trade-off front. An elitism rule in place ensures that

all non-dominated points pass to subsequent generations: favourable solutions

are not lost and performance of the corresponding temperature profiles the beer

fermentation from the front can only improve or remain unchanged in subsequent

generations. The left panel represents PWL with N = 6 with a population of

200 solutions, while the right panel shows the PWP equivalent with the same

population size.

In the left plot it can be observed that the front moves to towards the bot-

tom right (improvement) significantly between generation 100 and 200 with PWL

profiles. Over the following 500 generations continual improvement occurs, par-

ticularly regarding batch time reduction. The last 300 generations show minimal

gains in either direction so it can be concluded that convergence has occurred to

the final red line which we can consider the Pareto front for N = 6. The algorithm

was repeated numerous times for the same conditions and settings, with conver-

gence to a similar front achieved in under 1000 generations in all instances. When
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Figure 10.4: Non-dominated front after 2000 generations for various control pro-
file discretisation levels.

N was increased to both 12 and 18 it was found necessary to increase the number

of generations to 2000 in order to achieve convergence. This is a direct result of

the increased number of decision variables (Eq. 10.9) which leads to an increase

in the size of the search space. The right plot again shows a significant improve-

ment over the first 200 generations for PWP profiles, however here it is found

that convergence is consistently observed sooner. No discernible improvement is

achieved after generation 500, suggesting that the algorithm has converged on

the most preferable profiles for this particular T (t) profile encoding. Fig. 10.4

compares the final Pareto front approximation after convergence between the two

strategies. The front after 2000 generations, over the same objective axis as Fig-

ure 10.3, for increasing discretisation level (N) of PWL profiles, along with the

front for PWP profiles after 500 generations. A high level of similarity between

the lines is evident. This is surprising between the three PWL cases, given that

with three times as many linear profile segments one might expect the consid-

erably increased level of control to permit significant improvements. However,

this is not found to be the case. The blue line is significantly smoother than

the others as a result of the greater number of non-dominated points in this so-

lution set. It is worth noting that the search for candidate solution profiles for

industrial fermentation is not concerned with the number of candidates detected,

rather the suitability and effectiveness of the most promising candidates. As

the PWP Pareto front very closely follows those from the PWL representation
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Figure 10.5: Final population (population size of 200) of solutions, left (a): PWL
with N = 6; right (b): PWP. Solid red markers are non-dominated.

it is demonstrated that neither encoding is particularly favourable for attainable

fermentation performance across the majority of the domain, as equivalently per-

forming solutions are generated in both cases. However, it is observed that the

lower left portion of front is not reproduced with PWP profiles, highlighting that

the piecewise polynomial encoding restricts the solution space such that very low

batch time (and low ethanol) solutions are not able to be produced. This is a

results of near instantaneous temperature adjustments not being permitted with

PWP profiles, the implications of which are considered subsequently.

10.3.2 Final Solution Populations

The plots shown in Fig. 10.5 represent the final populations from unique in-

stances of the Strawberry algorithm being executed for the two different encoding

strategies. Each hollow blue circular marker corresponds to the performance of

a solution profile in the current population; those which are non-dominated are

coloured red. The algorithm was executed numerous times using varying pop-

ulation sizes, and it has been found that a very similar Pareto approximation

is produced with population sizes as low as 20 solutions. For both methods the

density of the front, thus the number of promising candidate solutions discovered,

increases with population size at the cost of required CPU time. Comparing the

two plots in Fig. 10.5 shows that unlike PWL the PWP encoding is not able

to produce solutions towards the bottom left of the axis; however given the low

ethanol concentration this is unlikely to omit realistically desirable scenarios. In

addition to the performance of the solutions in terms of objective function values,

163



it is of critical importance to examine what the solutions represent in terms of

control profiles to assess their suitability for industrial application. Fig. 10.6

represents samples of the profiles which make up the non-dominated solutions

from the final populations for discretisation levels N = 6 and N = 18 for PWL

profiles, with PWP profiles below. Not all the PWL profiles are of industrial

value due to the ability to physically replicate them on real plant equipment.

Solutions obtained with low N values are more suitable industrially. The number

of manipulations required is smaller and temperature changes more gradual, as

can be seen in the figure. Taking this into account, and considering the marginal

improvement observed when increasing the discretisation level (Fig. 10.4), it is

recommended to only pursue N = 6 solutions for the PWL implementation. Not

all of the solutions produced for high discretisation levels (i.e. N = 18) have

undesired temperature variations. The third example presented in the middle

row of Fig. 10.6 is a particularly promising case where the improved control

permitted with higher discretisation acts to smooth the profile form, rather than

to do the opposite as seen in the second plot from the same row. This suggests

that merit may exist in refining the definition of the search space, D, by refor-

mulating Eqs. 10.4 - 10.10 so that by design only favourable and implementable

solutions may be considered by restricting the ability of the profiles to display a

high level of variability in temperature. It must however be noted that simply

the omission of rapid temperature changes should be avoided, as both a rapid

increase or decrease at some point of the process is not uncommon and can be

desirable to assist with the control of by-product production. In contrast, all of

the solutions obtained from the PWP method would be considered appropriate

for implementation, with no restrictive variability possible due to the polynomial

T (t) encoding. Comparing the solution forms between the two methods it can be

seen that that there are many similarities. In particular the large temperature

drop towards the end of the process appears to be an effective trait for controlling

the by-product levels. Given the high similarity in attainable performance and

the significantly improved inherent implementability and profile smoothness, us-

ing PWP profiles is the most promising strategy for industrial fermentation T (t)

profile formulation via the Strawberry algorithm.
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Figure 10.6: Example non-dominated profiles

10.3.3 Solution Profile Performance – design heuristics

Figure 10.7 shows specifically how the solution profiles correspond with their

performance on the Pareto front for the preferable PWP method, which provides

considerable insight into the fermentation process and as to how the performance

is influenced by the temperature manipulation. The profiles which produce ex-

tremely short batch times (tf < 105 hrs) at the cost of reduced ethanol concen-

tration all have a comparable form. An initial high temperature is immediately

lowered over the first 40 hours (16 °C to 14 °C). The temperature is then raised

back to a peak momentarily around 16 °C at the 70 hour point before being

reduced once more. Depending on the vessel size this cooling and heating cycle

may be attainable on industrial fermentation equipment. In order for the vessel

contents to achieve homogeneity, the cylindrical and conical portion of the tank

must achieve thermal equilibrium. As such, for the assumptions in the lumped

parameter model to apply there is exists a minimum time under which tempera-

ture variations cannot be realised, the time for which is a function of the vessel

size. In contrast, the longer batch time solutions are more likely to be imple-

mentable on any scale of industrial fermentation vessel, as the lesser temperature
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Figure 10.7: Pareto front of non-dominated solutions to the multi-objective prob-
lem and corresponding T (t) profiles, for a quasi-A profile initialisation.
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Figure 10.8: Pareto front of non-dominated solutions to the multi-objective prob-
lem and corresponding T (t) profiles, for a quasi-B profile initialisation.
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Figure 10.9: Pareto front of non-dominated solutions to the multi-objective prob-
lem and corresponding T (t) profiles, for a quasi-C profile initialisation.
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Figure 10.10: Pareto front of non-dominated solutions to the multi-objective
problem and corresponding T(t) profiles, for a quasi-D profile initialisation.
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variability means that homogeneity will more readily be achieved. In the lower

portion of the Pareto set it is demonstrated that magnitude of the batch time

range is comparable to the ethanol concentration range, i.e. a sacrifice of 5 hours

in batch time can enable a significant 0.5 g L−1 increase in ethanol production.

In contrast, the longer batch time subset of the front (tf > 105 hrs) shows a very

steep form, meaning that very minimal further gains in ethanol concentration are

attainable, even upon increasing batch time as high as 130 hrs. A gradual transi-

tion is observed in the T (t) profile form along the Pareto front. The initial dip in

temperature becomes less pronounced as batch time is increased, an indication

that this is an essential component of the temperature profile for extremely rapid

beer fermentation. The first half of the profile continues to level off moving up the

front, suggesting that this is useful for ensuring a very high ethanol yield. The

presence of the later peak and subsequent cooling remains constant throughout

the entire front, a feature that is known to assist with efficient fermentation while

ensuring that the by-product constraints are not violated. Diacetyl compounds

are consumed in the later stages of the process, with this feature of the tempera-

ture manipulation accelerating their consumption to fall below the tolerable level

rapidly.

It has been demonstrated that the tolerable level of diacetyl in the product is

directly restrictive to the attainable batch time, due to the requirement to wait

until a sufficient portion has been consumed (Chapter 9), hence why this is an

essential profile component for efficient beer fermentation throughout. An impor-

tant consideration which can be visualised on Fig. 10.7 is how slight variations in

the temperature profile can affect the performance of the batch. Of the profiles

highlighted in the figure, solutions 12 and 13 is an example of two profiles which

are very similar in terms of the T (t) profile. However, the corresponding perfor-

mance varies drastically, with the later requiring 5 more hours for completion.

This stresses the importance of ensuring the temperature is accurately controlled

in the fermentor, and that system homogeneity is ensured. Additionally, consid-

eration should be given to solution robustness, ensuring that the manipulation

employed will still perform adequately if slight deviations from the profile are

encountered.
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It has been demonstrated that the initialising profile can influence the solution

when using an exact optimisation method (Chapter 7). To investigate whether

the stochastic method used in this study exhibits a similar deficiency, a range of

initialising profiles have been used, with the corresponding profile maps shown

in Figs. 10.7–10.10 for four cases. The initialising profiles presented here are

approximations of the 4 candidate solutions highlighted previously from the ex-

haustive search (Chapter 6), where minor deviations in the profiles are a result of

the polynomial representation being unable to fully mirror the PWL form. From

Figs. 10.7–10.10 it is shown that the approximate Pareto front of non-dominated

points is extremely similar between the four cases, highlighting that attainable

performance is not restricted or significantly influenced by the seed profile. While

these four cases are initialised with promising candidates, very similar results

were found when using either random or isothermal initialisation T (t) profiles,

suggesting robustness of the stochastic optimisation strategy employed in this

paper. Although the performance of the non-dominated solutions is essentially

identical, there are differences observed when comparing the corresponding T (t)

profiles. The same overall trends are present, such that postulated heuristics for

effective fermentation remain valid. The discrepancies in the profiles across dif-

ferent initialisations are minimal. For example the late peak in the temperature

is shown to be less pronounced in the latter three cases, however is still present

throughout. The variability in the profiles shown across these four figures is no

greater than the differences observed when re-initialising the algorithm numerous

times using the exact same seed profile. As such it may be concluded that it is

the stochastic nature of the method which is responsible for the solution profiles

varying slightly across the four cases presented here, rather than the solution

being sensitive to the ‘initial guess’ or initialising solution.

10.3.4 Evaluation of Profile Encoding Strategies

Table 10.1 presents performance metrics (terminal state concentrations and batch

time) comparing the seed solution used for initialising the Strawberry Algorithm

to an example of a non-dominated point in the N = 6 final population of the
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Table 10.1: Example solution profile performance versus initialising profile
Profile [EtOH]tf (g L−1) tf (hrs) [EA]tf (ppm) [DY ]tf (ppm)

Initialisation 59.1 113.5 1.350 0.09
Example solution, PWL 60.0 100.3 1.995 0.10
Example solution, PWP 60.0 100.0 1.996 0.10
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Figure 10.11: Example solution profiles and corresponding state trajectories.

PWL method as well as an example of an attractive PWP solution. The two

novel T (t) profiles produced in this study are shown in Fig. 10.11. It can be seen

that there is a very high level of similarity the two profiles and the correspond-

ing performance metrics, highlighting that the two unique profile encodings are

able to produce comparable favourable solutions. While the upper row of Fig.

10.11 is from N = 6 the profile shown consists of 5 sections only: in this case

the batch is complete before the final segment, so the profile is terminated. Fig.

10.11 also shows the concentration trajectories over time within the batch while

following each example profile. The similarity of the two profiles produces simi-

lar concentration progression throughout the respective batch. In both cases the

desirable ethanol yield is rapidly achieved by permitting the product concentra-

tions of undesirable species to increase towards the upper limits imposed by the

corresponding constraints. The batch time saving of over 12 hours is noteworthy,

suggesting the potential for significant process improvement via a potential plant

throughput increase.
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10.4 Chapter Conclusions

The Strawberry Plant Propagation Algorithm has been used to explore process

improvement potential of an industrial beer fermentation process via control vec-

tor (temperature profile) optimisation. Two different methods for representing

temperature control profiles are investigated, considering batch time minimisa-

tion and ethanol yield maximisation as two simultaneous but conflicting objec-

tives. Consistent convergence to the trade-off curve for the two objectives is

demonstrated after an adequate number of generations have passed, the required

number of which scales with number of decision variables, which in turn scales

linearly with the discretisation level for the piecewise linear representation. It

is found that a large population size is not necessary for the production of a

dense approximation to the Pareto front, due to the inclusion of an elitism rule

when generating new solution populations. It has been demonstrated that if a

piecewise linear profile is being used it can be beneficial to use a moderately low

discretisation level. The minimal performance improvement upon increasing pro-

file complexity is marginal next to the restrictiveness of the highly variable (in

temperature) nature of profiles often computed. In contrast low discretisation so-

lutions are inherently more suitable, given the reduced number of manipulations

required and the more gradual temperature gradients. A piecewise polynomial

encoding has been demonstrated to produce solutions with performance very sim-

ilar to those from the piecewise linear approach. The added benefit is that these

profiles are inherently appropriate for implementation, with no restrictive vari-

ability possible due to the improved polynomial T (t) encoding. A dense Pareto

front of solution profiles is identified describing the optimal trade-off between

these process targets. Such data can be of value as a performance map when

operators weigh up the relative importance of these two process targets. A sub-

set of these output profiles can simultaneously reduce batch time and increase

product ethanol concentration while satisfying constraints on by-products pro-

duced in the fermentors, representing significant improvements versus current

industrial practice. A potential batch time reduction of over 12 hours has been
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highlighted, which is coupled with a moderate improvement in ethanol content.

The ability to identify novel temperature manipulations (control profiles) for im-

proved performance can allow brewers to reduce their batch times and operating

costs, highlighting the effectiveness of the multi-objective Strawberry method for

efficient dynamic optimisation when the control profile is in such a manor. This

approach has the potential to be applied to a range of bioprocess optimisation

problems which may benefit from reducing the problem size from the outset,

based on fundamental knowledge of the system, in place of constructing very

large and complex optimisation problems when not necessary.
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Chapter 11

Research Contributions

This thesis has produced several novel research contributions, summarised herein.

11.1 Visualisation of Attainable Fermentation

Performance

For the first time a simulation-based optimisation procedure has been applied

to a validated industrial scale beer fermentation dynamic model, facilitating the

comparison and visualisation of a vast number of unique scenarios against cur-

rent industrial practice (Chapter 6). Brewers can gain highly valuable insight into

the potential for process modifications via such a dynamic simulation campaign

of viable and readily implementable modifications to current operation (Rod-

man and Gerogiorgis, 2016). Each scenario represents a unique fermentation

temperature profile, generated using suitable heuristics which are representative

of manipulations that are indeed applicable to the real process. Each case can

represent a potential new product, with its own characteristic composition and

aromatic profile, or a modified version of an established product, produced in

a potentially more efficient manor. This procedure favourably ensures that the

degree of domain discretisation only produces temperature profiles which are im-

plementable, without the need for a secondary smoothing process. In doing so

performance maps are attained: high density plots of performance criteria of all

175



the manipulations in the simulation set. Analysing these maps in relation to cur-

rent industrial performance permits brewers the insight necessary to make process

decisions and select candidate profiles for implementation and validation. Three

unique novel manipulations have been identified, each with the potential to dras-

tically reduce batch time of an industrial collaborator (WEST Brewery, Glasgow,

UK) by up to 15 hours, with no discernible impact on beer flavour and quality.

These candidate profiles are also later shown as highly effective for initialisation

or ’initial guesses’ for deterministic and stochastic dynamic optimisation method-

ologies, compared to blind or random initialisation (Chapter 7). This procedure

is extended, comparing performance maps under differing simulation conditions

to ascertain, visualize and quantify the global effect wort components have on

process performance. Multi-dimensional sensitivity analysis of key beer quality

attributes versus plausible initial condition modifications for an enormous ensem-

ble (hundreds of thousands of possible temperature manipulation profiles possible

for prescription) demonstrates that initial sugar concentration clearly affects fi-

nal ethanol concentration and thus beer product quality; the most remarkable

finding is that fermentation efficiency and batch duration can be improved by

manipulating the initial biomass concentration (yeast pitching rate) fed to fer-

mentors. Moreover, what is also noteworthy is that the active fraction of fed

yeast has a quite minor (virtually insignificant) effect on process efficiency (as

long as a potent yeast strain is used) because the active cell population quickly

rises if enough heat is provided by the selected temperature manipulation profile.

These plots are extremely useful in capturing and mapping differences in current

practice (and possible changes) for various products.

11.2 Multi-Objective Dynamic Optimisation of

Beer Fermentation

A range of studies into model based optimisation of beer fermentation are re-

ported in the literature, however prior work relies on the assumption that the

precise process targets are know precisely; allowing a single explicit objective
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function to quantify performance and ultimately be minimised. Given the vast

range in global brewing operations and the diverse spectrum of products in the

market, extreme difficulty exists in formulating a meaningful objective: this de-

pends on each brewer’s target product composition, and arbitrary target variable

weighting appears a popular but also questionable methodology. Additionally,

prior work elects to consider flavour-degrading by-product aromatic species min-

imisation as a component of their objective function. Liaising with industrial

collaborators reveals the reality whereby such a minimisation is often redundant:

rather any specific product features strict threshold upper limits which specific

compound concentrations must adhere to. To this end the first multi-objective

dynamic optimisation beer fermentation study has been performed, consider-

ing batch minimisation and product yield maximisation as the two process tar-

gets, subject to explicit terminal constraints on by-product species concentrations

(Chapter 10). Mapping the Pareto front trade-off via multi-objective dynamic op-

timisation can be used by decision makers to better inform process decisions with

significant economic implications, in place of computing a single solution scenario

deemed optimal by an a priori determined objective weighting (Rodman, Fraga

and Gerogiorgis, 2018).

11.3 Optimisation subject to Variable

Constraint Limits to Gain Process Insight

Alcoholic beverages have differing tolerable concentrations of by-product species.

As a consequence their exists no universal limits which optimal operation would

always be subject to. This thesis presents a strategy for investigating the impact

each species threshold has on the attainable process performance (Chapter 9).

The dynamic trajectory problem for optimal fermentor operation is repeatedly

solved for a spectrum of threshold values on by-product concentrations to investi-

gate the effect which these have on the obtainable process performance. Discreti-

sation of the state trajectories in addition to the control vector using orthogonal

collocations permits a large scale NLP problem to be solved, here for piece-wise
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constant temperature profiles. This is performed for 25 different pairs of con-

straint thresholds on ethyl acetate and diacetyl in the beer product to compare

the performance of the optimal profiles produced in each case. This investiga-

tion into the influence of by-product threshold limits on obtainable fermentation

performance has revealed novel insight into how each by-product uniquely af-

fects process performance (Rodman and Gerogiorgis, 2017). It is found that

the permitted diacetyl concentration in the product has very strong influence on

batch time, with lower limits requiring considerably longer batches as a result

of its consumption in secondary fermentation. Ethyl acetate is shown to dictate

the attainable ethanol concentration, such that low limits prohibit a reasonable

alcohol content in the product.

11.4 Problem Reduction Towards Efficient

Optimisation

Much of the work presented in this thesis involves computing precise solutions

to large scale NLPs, following the complete discretisation of the continuous dy-

namic optimisation problem. Limitations with this approach can include very

large solution times and convergence issues as the problem size rapidly grows

with the level of discretisation applied. Herein an alternative approach is devel-

oped, whereby the problem size is drastically reduced while still encapsulating the

vast scope for variability of potential operational schemes (Chapter 10). Novel en-

coding strategies are developed to represent the fermentor temperature profile as

a vector of only a few decision variables. Strategies are developed from the insight

gained by prior dynamic simulation and optimisation results presented in this the-

sis. Here in the characteristics of favourable manipulations are ensured alongside

inherent industrial implementability and problem size management. Two differ-

ent representations are presented: piece-wise linear and piece-wise polynomial

approaches, where the resultant CVP problem can be solved by a number of ap-

proaches, here by the Strawberry Plant Propagation Algorithm. Consistent and

rapid convergence to the trade-off curve for the two objectives is demonstrated
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after an adequate number of generations have passed, the required number of

which scales with number of decision variables, which in turn scales linearly with

the discretisation level for the piece-wise linear representation. It is found that a

large population size is not necessary for the production of a dense approxima-

tion to the Pareto front, due to the inclusion of an elitism rule when generating

new solution populations. An added benefit is that these profiles are inherently

appropriate for implementation, with no restrictive variability possible under the

improved polynomial T (t) encoding. A dense Pareto front of solution profiles is

identified describing the optimal trade-off between these process targets. These

results highlight the effectiveness of the multi-objective Strawberry method for

efficient dynamic optimisation when the control profile is in such a manor. This

approach has the potential to be applied to a range of bioprocess optimisation

problems which may benefit from reducing the problem size from the outset,

based on fundamental knowledge of the system, in place of constructing very

large and complex optimisation problems when not necessary (Rodman, Fraga

and Gerogiorgis, 2018). .

11.5 Estimation of an Uncorrelated Parameter

Set for Beer Fermentation Modelling

All model based optimisations rely on high fidelity parametrisation. Where model

parameters cannot be directly measured a regression is commonly performed.

An optimisation problem in its self, the discrepancy between the model predic-

tions and data is minimised by parameter estimation. Herein it is often assumed

that the best fit (least squares error) corresponds the most accurate values of all

the parameters under estimation in the regression. However, it is highly com-

mon for bioprocess models to contain parameters which are not uniquely iden-

tifiable: Monod-like models generally have growth yield parameters which are

significantly correlated with the maximum growth rate term (i.e. Vmax and Km

in a Michaelis–Menten expression). It is demonstrated that attempting to esti-

mate the complete unknown parameter for a beer fermentation model results in
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an ill-conditioned problem and poor solution attainment whereby a large num-

ber of parameter sets produce essentially the same model fit. For the first time

systematic sensitivity analyses of this beer fermentation model is performed, us-

ing two established methods, to assess and elucidate the relative significance of

parametric discrepancy on the validity of dynamic simulation of the evolution

of certain concentration observables (Chapter 4). In doing so the parameters of

least importance have been identified, and by assigning appropriate values from

literature it permits high fidelity estimation of the remaining more significant and

influential parameters using the experimental data set. Ensuring accurate values

for these model parameters is instrumental towards ensuring the robustness and

applicability of the dynamic simulation and optimisation results presented in this

thesis.

11.6 Heat Transfer Dynamics in Beer

Fermentation Modelling

A limitation of much prior work towards beer fermentation optimisation is the

universal assumption of direct and instantaneous control of fermentor tempera-

ture. With the addition of a heat transfer model fermentor heat dynamics are

approximated in this thesis. Herein the manipulatable control becomes the jacket

coolant feed-rate in place or the reactor temperature. A novel, comprehensive

visualisation of the attainable performance maps for key process variables is pre-

sented, obtained via a large-scale dynamic simulation campaign of viable heat

transfer (cooling) policies. These attainable performance maps are compared to

equivalent results produced previously, to elucidate how fermentor performance

varies once production scale increases beyond the point of the previous simplifying

assumption (Chapter 6). Consideration of explicit fermentor jacket heat transfer

marks a significant improvement over the fidelity of prior work which assumed

temperature may freely manipulated. Visualisation of attainable performance

reveals that a vast portion of operation cases considering explicit temperature

control are unobtainable on an industrial scale, highlighting the importance of
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the improved approach. Optimal operation involves a novel cooling policy to ef-

fectively manage the active yeast population in the reactor, capable of improved

performance versus established approaches. Sensitivity analysis of the solution

dependence on thermal process parameters shows how adjustments in the coolant

rate can be made to maintain the preferred optimal temperature trajectory of the

fermenting wort in the vessel.

11.7 Keratin Hydrolysis Modelling and

Optimisation

The hydrolysis of keratin-rich material with keratinolytic bacteria is identified as

an attractive way of transforming undesirable waste from agro-industrial activities

into products of practical industrial value. A lab scale experimental campaign

has been performed allowing the first dynamic model for enzymatic hydrolysis

of keratin to be proposed (Chapter 5). Michaelis–Menten kinetics with product

inhibition allows the observed behaviour of the reactive system to be captured,

with the model fit showing good agreement with experimental data. The model

assumption of a fixed fraction of the substrate being hydrolysable is not able to

fully capture the observed phenomena where by yield in fact decreases with solids

loading. Further experimental work is necessary to explore this with the aim of

better describing the apparent inhibitory effect at higher substrate content to

increase model fidelity towards more robust optimisation results, with the aim

of increasing the cost competitiveness of this novel means to treat the abundant

quantities of keratin-rich waste produced annually. It is demonstrated how the

proposed model may be applied towards fed-batch feed-schedule optimisation. To

circumvent the model not capturing the inhibitory effect of high solids content,

the reactor substrate concentration is constrained to a level below which such a

phenomenon is observed, allowing an optimal operating protocol to be computed.

181



182



Chapter 12

PhD Thesis Conclusions

This PhD thesis presents a framework for bioprocess model parameter estimation,

rapid dynamic simulation of viable operational scenarios with visualisation of the

attainable performance, followed by multi-objective dynamic optimisation strate-

gies, all applied to select candidate processes identified to benefit drastically from

process intensification. The problems of consistent kinetic parameter estimation

and systematic determination of optimal operating profiles to improve industrial

practice are explored, with best practices presented in this thesis.

Performing an extensive lab scale experimental hydrolysis campaign has al-

lowed the first dynamic model for enzymatic hydrolysis of keratin to be proposed.

Michaelis–Menten kinetics with product inhibition allows the observed behaviour

of the reactive system to be captured, with the model fit showing good agreement

with experimental data. Developing a model for this highly novel process repre-

sents an important step towards achieving commercial viability of this emerging

technology. Undertaking model sensitivity analysis alongside the experimental

campaigns permitted specific experiments to be performed to uniquely identify

the most pertinent model parameters, prior to regressing those remaining from

the data sets collected. A high-fidelity parametrisation of a previously published

fermentation model is also presented, such that it can represent the real world

process with maximum accuracy. It is demonstrated that attempting to estimate

the complete unknown parameter set results in an ill-conditioned problem and

poor solution attainment, a frequent problem in biochemical model parametrisa-
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tion. Systematic sensitivity analyses using two established methods is performed

to assess and elucidate the relative significance of parametric discrepancy on the

validity of dynamic simulation of the evolution of certain concentration observ-

ables. In doing so the parameters of least importance have been identified and

assigning appropriate values from literature to permit high fidelity estimation of

the remaining influential parameters using an experimental data set.

For the first time attainable performance in beer fermentation has been ex-

haustively mapped under a comprehensive family of realistic time dependent

temperature manipulations, providing invaluable insight to industrial brewing

collaborators. In addition to providing valuable process insight, it is later shown

how favourable solutions from this exhaustive simulation set can be highly valu-

able for initialisation of both deterministic and stochastic dynamic optimisation

methodologies, when local methods are being employed. Optimal dynamic fer-

mentor temperature profiles subject to a range of realistic threshold constraints

on flavour degrading compounds have been computed and presented. Herein the

influence of each individual by-product level on the achievable process perfor-

mance can be explicitly quantified and visualised.

Furthermore, the inherent trade-off in brewing process targets has been ex-

plored for the first time in this work, mapping the Pareto front via multi-objective

dynamic optimisation. These results can be used by decision makers to better

inform process decisions with significant economic implications. This is further

extended to incorporate realistic, indirect temperature manipulation via coolant

feed-rate. Optimal operation involves a novel cooling policy to effectively man-

age the active yeast population in the reactor, capable of improved performance

versus established approaches. Dynamic sensitivity analysis of the solution de-

pendence on thermal process parameters shows how adjustments in the coolant

rate can be made to maintain the preferred optimal temperature trajectory of the

fermenting wort in the vessel.

Dynamic optimisation using the proposed keratin hydrolysis model towards

fed-batch feed-scheduled optimisation has been successfully performed. An im-

provement (reduction) in terminal keratin concentration of about 5 g L −1 can be

made, following the optimised schedule compared to a generic strategy (addition
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after each 24 hours). This highlights the potential benefit in applying such a

method towards determining the optimal strategy for maximising substrate con-

sumption. The case studies presented highlight the immense value in systematic

and rigorous model-based simulation and optimisation campaigns for biochemical

process systems, and the applicability of the methodologies outlined in this PhD

thesis.
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Appendix A

Nomenclature

Greek Characters:

φ Running objective pay-off function

∆ Perturbation step size

∆ξi Profile element

∆E Energy displacement

∆H Enthalpy of Reaction

β Product formation coefficient

γ Terminal objective pay-off function

γK Collinearity index

δi,j msqr Mean squared summary of state yj sensitivity to parameter i

∆Tmax Maximum permitted temperature step

θ Parameter vector

θ0 Nominal parameter vector

θj Basis function

µEE Mean elementary effect

µAB Diacetyl consumption rate

µd Biomass death rate

µDT Rate of cell death

µDY Diacetyl production rate

µe Ethanol specific growth rate
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µe0 Maximum ethanol specific growth rate

µg Biomass growth rate

µG Glucose production rate

µL Specific rate of activation

µM Maltose production rate

µN Maltotriose production rate

µS Sugar consumption rate

µs0 Maximum sugar consumption rate

µSD Dead cell settling rate

µSD0 Maximum cell settling rate

µx Specific cell growth rate

µx0 Maximum cell growth rate

ρC Density of Coolant

ρR Mean Density of Wort

φj Basis function

Roman Characters:

Ah Heat Transfer Area

Ai Arrhenius Constant

Bi Arrhenius Constant

CpC Coolant Heat Capacity

CpR Wort Heat Capacity

d Decision vector

dTi Temperature gradient at interface i

[DY ] Concentration of diacetyl compounds

E,[EtOH] Ethanol concentration

[EA] Concentration of ethyl acatate

EEi0 Elementary effect of parameter i around parameter set θ0
[E] Active enzymatic activity

[EtOH] Concentration of ethanol

ei Maximum enzymatic activity

f Ethanol inhibition factor
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F Reactor feed rate

FC Coolant Feed Rate

fi Objective i

fr Product ratio

g Inequality constraint function

G Glucose concentartion

h Equality constraint function

H Hydrolysable fraction

J Objective function value

[K] Keratin concentration

[K]H Hydrolysable keratin concentration

[K]NH Non-hydrolysable keratin concentration

kb Boltzmann constant

kD Enzymatic activity decay rate

KF i Keratin addition at ti
KG Maximum reaction velocity for maltotriose

K ′
G Inhibition constant for glucose

KI Inhibition constant

KM Michaelis constant

K ′
M Inhibition constant for maltose

KN Michaelis constant for maltotriose

kS Affinity constant

KT Total keratin mass

Ku Polynomial approximation of control

kx Affinity constant

Kx Polynomial approximation of state

M Maltose concentration

Mr Maltotriose concentration

N Discretisation level

p Probability

[P ] Concentration of protein
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pfinal Final acceptance probability

pinitial Initial acceptance probability

r Substrate consumption rate

RA Residual enzymatic activity

REG Yield coefficient (ethanol:glucose)

REM Yield coefficient (ethanol:maltose)

REN Yield coefficient (ethanol:maltotrisoe)

RXG Yield coefficient (biomass:glucose)

RXM Yield coefficient (biomass:maltose)

RXN Yield coefficient (biomass:maltotrisoe)

[S] Concentration of sugar

si,j Dynamic sensitivity function of parameter θi on model state yj

t Time

T Temperature

T 0 Initialising temperature profile

TC Jacket Temperature

TC0 Coolant Feed Temperature

tdev,i Deviation from equispaced time interval i

tf Batch Time

Tfinal Final annealing temperature

ti Discreet timepoint i

Tinitial Initial annealing temperature

tlag Duration of lag phase

TSA SA temperature

tstep Time step duration

u Control variable

U Overall Heat Transfer Coefficient

V Reaction volume

VC Jacket Volume

VG Maximum reaction velocity for glucose

VN Maximum reaction velocity for maltotriose
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VM Maximum reaction velocity for maltose

Vmax Maximum reaction velocity

VR Wort volume

WE Objective weight for ethanol production

Wt Objective weight for batch time

X Biomass concentration

[Xact] Concentration of active cells

[Xdead] Concentration of dead cells

[Xinc] Total inoculum concentration

[Xlag] Concentration of latent cells

[Xsus] Total suspended concentration

YEA Ethyl acetate production stoichiometric factor
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Appendix B

List of Abbreviations

AE Algebraic Equation

BCA BicinChoninic Acid

CD Complete Discretisation

CPUs Central Processing Unit seconds

CVP Control Vector Parametrisation

DAE Differential Algebraic Equations

DEFRA Department for Environment, Food & Rural Affairs

EE Elementary Effect

FAO Food and Agriculture Organization

HPLC High Performance Liquid Chromatography

IDP Itterative Dynamic Programming

ITC International Trade Centre

IPOPT Interior Point OPTimizer

MRSA Methicillin-Resistant Staphylococcus Epidermidis

NSGA Non-dominated Sorting Genetic Algorithm

NLP NonLinear Programming

OAAT One At A Time

ODE Ordinary Differential Equation

OHTC Overall Heat Transfer Coefficient

PBM Poultry By-product Meal
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PD Partial Discretisaton

PWL PieceWise Linear

PWP PieceWise Polynomial

SA Simulated Annealing

VRE Vancomycin-Resistant Enterococci
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Appendix C

Peer-Reviewed Publications

C.1 Journal Articles

1. Rodman, A.D., Gerogiorgis, D.I., An investigation of initialisation strate-

gies for dynamic temperature optimisation in beer fermentation. Computers

and Chemical Engineering, 124: 43-61 (2019).

2. Rodman, A.D., Fraga, E. S. and Gerogiorgis, D.I., On the application of

a nature-inspired stochastic evolutionary algorithm to constrained multi-

objective beer fermentation optimisation. Computers and Chemical Engi-

neering, 108: 448-459 (2018).

3. Rodman, A.D., Gerogiorgis, D.I., Dynamic optimisation of beer fermenta-

tion: sensitivity analysis of attainable performance vs. variable product

flavour constraint levels. Computers and Chemical Engineering, 106: 582-

595 (2017).

4. Rodman, A.D., Gerogiorgis, D.I., Multi-objective process optimisation of

beer fermentation via dynamic simulation, Food and Bioproducts Process-

ing, 100: 255-274 (2016).
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C.2 Conference Proceedings

1. Rodman, A.D., Falco, F.C., Gernaey, K.V. and Gerogiorgis, D.I., Enzy-

matic keratin hydrolysis: Dynamic modelling, parameter estimation and

validation. Computer-Aided Chemical Engineering, 43: 1553-1558 (2018).

2. Rodman, A.D., Gerogiorgis, D.I., Dynamic simulation and visualisation

analysis of fermentation: effect of conditions on beer quality, IFAC-PapersOnline
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3. Rodman, A.D., Gerogiorgis, D.I., Multi-objective optimisation of flavour

and processing time in beer fermentation via dynamic simulation, Computer-

Aided Chemical Engineering, 38: 1033-1038 (2016).

C.3 Conference Presentations

Presenting author in bold.
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timisation and visualisation of industrial beer fermentation with explicit

heat transfer dynamics. The 29th European Symposium on Computer
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