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Abstract 

The Viterbi Algorithm is a popular method for decoding convolutional codes, receiving 

signals in the presence of intersymbol-interference, and for channel equalization. 

In 1981 the European Telecommunication Administration (CEPT) created the Groupe 

Special Mobile (GSM) Committee to devise a unified pan-European digital mobile 

telephone standard. The proposed GSM receiver structure brings together Viterbi de-

coding and equalization. 

This thesis presents three VLSI designs of the Viterbi Algorithm with specific atten-

tion paid to the use of such modules within a GSM receiver. The first design uses 

a technique known as redundant number systems to produce a high speed decoder. 

The second design uses complementary pass-transistor logic to produce a low-power 

channel equalizer. The third design is a low area serial equalizer. 

In describing the three designs, redundant number systems and complementary pass-

transistor logic are examined. It is shown that while signed binary redundant number 

systems offer significant speed advantages over twos-complement binary, there are 

other representations such as carry-save arithmetic that can perform equally well, if 

not better. It is also shown that complementary pass-transistor logic can offer a small 

improvement for some VLSI functions in terms of power consumption. 
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Chapter 1 

Introduction 

1.1 Background 

A communication system must ensure the reliable transmission and reception of data. 

Modern communication systems often transfer data as digital signals. Channel effects 

such as multipath propagation, noise, and intersymbol interference mean that the re-

ceived signal is a severely distorted version of the transmitted signal. 

Before the received data can be used, the effects of this distortion must be removed. 

One common method is to introduce controlled redundancy into the transmitted signal, 

which is then removed by the receiver in such a way as to correct the distortion. A 

receiver using the Viterbi algorithm (VA) [1] is a popular method of correcting the 

received signal. 

1.1.1 The Viterbi algorithm 

In 1967, Viterbi proposed a maximum-likelihood sequence estimation algorithm for 

decoding convolutionally encoded signals [1]. 

The VA has been examined comprehensively in the literature and it has two main 

applications: 

error correction 

channel equalization. 

To correct errors, the VA compares the received digital sequence with each of the 

possible received sequences. The possible sequence which has least differences from 



the actual received sequence is deemed the most likely sequence, and this is output. To 

examine all possible sequences would be expensive in terms of time and silicon area. 

The VA is an iterative algorithm and reduces the complexity by discarding half of the 

possible sequences at each iterations. 

For channel equalization, the VA is based on a trellis representation of the modulation 

process, and an estimate of the channel impulse response (CIR) is required [2]. Sim-

ilar to the algorithm applied to error correction, the received sequence is iteratively 

compared with possible transmitted sequences filtered through a filter matched to the 

dR. 

Chapter 2 will describe the VA in detail and both these applications will be reviewed. 

1.1.2 The European mobile radio standard: GSM 

In 1981, the European Telecommunication Administration (CEPT) created the Groupe 

Special Mobile (GSM) Committee to devise a unified pan-European digital mobile 

telephone standard. After entertaining a number of different proposals, a FDMAITDMA 

system was settled on in 1987 and the specification for the GSM system was published 

in 1988 [3]. 

One of the proposed GSM receiver structures brings together both of the uses of the VA 

as described above. The data is transmitted in packets which are encoded using block 

encoding, interleaving, and convolutional encoding. A Viterbi decoder is required to 

decode the convolutional code. A Viterbi equalizer is also required to combat the 

channel effects. 

The design of a Viterbi decoder is presented in Chapter 4 and the design of a Viterbi 

equalizer for GSM is presented in Chapter 5. 

1.1.3 Redundant Number Systems 

Redundant number systems were first presented by Avizienis in 1961 [4]. They of-

fer the possibility of high speed digital arithmetic because addition and subtraction 

operations using redundant number do not require a long carry propagation chains. 

Redundant numbers have been used in the literature to develop high speed arithmetic 
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circuits [5], [6]. In Chapter 3, redundant number systems are reviewed, and it is shown 

that while they offer significant speed advantages over twos-complement binary, there 

are other representations that can often perform equally well, if not better. 

The Viterbi decoder presented in Chapter 4 uses redundant number systems to provide 

a high speed implementation. 

1.1.4 Complementary pass-transistor logic 

In recent years, technological advancements in the production of integrated circuits has 

resulted in VLSI circuits with smaller and smaller feature sizes. This reduction in size 

has brought a considerable increase in speed and there are now many complex and fast 

CMOS ICs available. 

In Chapter 6 we review complementary pass-transistor logic (CPL) as a logic style for 

producing high speed, low power CMOS circuits. CPL will be compared with CMOS 

and similar circuit styles and it will be shown that only careful use of CPL can offer 

gain in terms of power consumption. 

The CPL implementation of the Viterbi equalizer design proposed in Chapter 5 will 

be described, and conclusions about the feasibility of the implementation will be pre-

sented. 

1.2 Objectives 

The objective of the research described in this Thesis was to investigate the Viterbi 

algorithm, which is used twice in a GSM receiver system, and to implement a VLSI 

Viterbi decoder and Viterbi equalizer. It was decided to investigate a number of issues, 

such as speed, area, and power consumption which are important when developing 

a general Viterbi implementation, and also an implementation specific to GSM. The 

aim of developing the Viterbi decoder design was to put into practice some of the 

issues which are important when designing a high-speed Viterbi decoder. The Viterbi 

equalizer design was produced with the aim of putting into practice the issues which 

are important when designing a Viterbi equalizer specific for GSM. 

This thesis will present three VLSI designs of implementations of the VA. The first 
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design uses a technique known as redundant number systems [4] to produce a high 

speed decoder. The second design uses complementary pass-transistor logic (CPL) 

[7] to produce a low-power channel equalizer. The third design is a low area serial 

equalizer suitable for use in a handheld GSM receiver. 

The initial direction of the research was influenced by a Electronic Letters paper by 

Srinivas and Pahri which described a fast addition circuit which used redundant num-

ber systems as an internal representation to sum two twos-complement numbers at high 

speed [5].  This design used a novel sign-select circuit which was used to quickly deter-

mine the sign of a redundant number (not a trivial task, as we shall see in Chapter 3). 

It was noted than this circuit could be used as the basis of a fast add-compare-select 

unit for a Viterbi implementation (Chapter 4 will describe how the add-compare-select 

operation in the Viterbi algorithm is generally considered to be the main bottleneck in 

any implementation). It was decided to base the Viterbi implementation on redundant 

number systems. However, during the course of the research, the underlying archi-

tecture of the Srinivas and Pahri design was shown to be purely twos-complement 

(this will be described in Chapter 3) and the speed of the circuit was due to hybrid 

carry-lookaheadlcarry-select nature of the circuit and not due to any inherent speed 

advantage that redundant number systems may have. 

The other main influence on the direction of the research was a paper by Yano et al 

in published in the IEEE Journal of Solid-State Circuits in 1990 which described a 

VLSI circuit style called complementary pass-transistor logic (CPL) [7]. CPL was 

shown to produce circuits with lower power consumption, lower area requirements, 

and higher speeds than CMOS. It was decided to use this circuit style to implement 

a Viterbi Equalizer design, so a library of CPL cells were designed to implement the 

design. It was discovered during the implementation of the CPL cell library that the 

improved performance of CPL over CMOS was not as significant as described in [7]. 

In fact Yano et al independently reached the same conclusions and proposed a revised 

circuit style [8]. 

1.3 Custom ASIC Design 

Finally, one thing that has not been discussed yet, is one of the main elements of the 

title of the thesis: ASIC implementation. 

ru 



When designing an electronic system, such as a mobile telephone, there are a number 

of different routes that can be taken, these include: 

. Off-the-shelf components. 

. Software solutions using Digital Signal Processors (DSPs). 

. Custom ASIC design. 

The most expensive solution, at least in the short term, is the last choice, yet this is 

the route that has been taken in this research. It seems as strange choice, given that 

the final product needs to be low cost. However, the other options have disadvantages 

also, these will be discussed in this section. 

Using off-the-shelf components is a quick and cheap solution. Many electronics man-

ufacturers have already invested significantly in the Viterbi algorithm, and have im-

plemented components which can be used in many different applications. Using such 

components would reduce the development time for a product. The problem with this 

route is that one chip would be required for the Viterbi components of the system. This 

will increase the chip count of the final product, which will effect overall power con-

sumption. In addition, off-the-shelf components tend to be generic, they often contain 

additional circuitry (and pins) which are not relevant to the chosen application. This 

can also increase the power consumption of the systems, and increase the size of the 

circuit board of the product. 

The next possibility for implementation is a software solution using a DSP. To briefly 

explain, a number of manufactures produce processors which can be used for digital 

signal processing. These allow algorithms to be written software, and run on the pro-

cessor. Again, this solution would reduce the development time for a product. This 

solution may not increase the chip count, because the DSP could be used for many el-

ements of the overall system, not just for the Viterbi algorithm. A DSP solution would 

require ROM (to store the code) and RAM (to store any dynamic data). It should be 

noted that DSPs are available with on-board RAM, so additional RAM may not be 

required. However, DSPs are designed to be flexible, so they may contain redundant 

elements, which could increase size, and power consumption. In general DSPs come 

in large packages, which may not be suitable to a hand-held product. Finally, since 

DSPs are complex, and flexible, they are often relatively expensive, almost certainly 

more expensive than off-the-shelf components. 



The last possibility is custom ASIC design, this involves producing a circuit level im-

plementation of the algorithm, and manufacturing custom chips. The initial devel-

opment cost, and time for this method is significantly greater than the others, but it 

does have a number of advantages. The cost decreases as the number of units in-

creases, so the actual cost of the product could be cheaper that if the other methods 

were used. Specifically, any manufacture or distributor mark-up on using off-the-shelf 

components does not apply here. In addition, the implementation can be customized 

to the product, this means that the size of design (and hence power consumption) can 

be minimised. Also, with regards power consumption, the design could be produced 

using low-power circuit techniques, resulting in far lower power usage than the other 

methods. Finally, the Viterbi element of the system does not require its own chip, if 

custom ASIC design is used, many elements of the system could be integrated onto the 

same device, thus minimising the chip count. 

It can be seen that there are a number of different methods of implementing a Viterbi 

module within a mobile telephone system. Each of these has advantages, and disadvan-

tages. The method chosen for this research was the custom ASIC design. In addition 

to the advantages discussed above, this method allowed innovative design styles, and 

recent advancements in VLSI technology to be investigated, and implemented. 
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Chapter 2 
The Viterbi Algorithm for Decoding 

and Equalization 

2.1 Introduction 

2.1.1 Motivation 

The initial direction of the work described in this thesis, was to examine algorithms 

that have a number of different digital applications, and to design and implement ASIC 

devices that could be used in those applications. One of the algorithms that was inves-

tigated in the early period of work was the Viterbi algorithm. The main attraction of 

this algorithm is that it is used twice within one of the proposed mobile telephone 

receiver structures for the European mobile telephone standard. In addition, the two 

applications of the Viterbi algorithm within the receiver are quite different. The results 

of this initial investigation are presented in this chapter, in the form of a review of the 

Viterbi algorithm for decoding, and equalization. 

2.1.2 Overview 

In real time communication systems a common technique for error correction is to 

introduce redundancy at transmission using convolutional encoding and remove this 

redundancy at the receiver using a Viterbi decoder [I]. 

This chapter describes convolutional codes and reviews the Viterbi algorithm (VA) 

which was developed in 1967 as a method of decoding data from a convolutional 

encoder [1], [9].  The VA has been extended to correcting data in the presence of 

intersymbol interference (ISI) [10] and it has also been popular in satellite communi-

cations [11], [12]. The VA has also been applied to channel equalization [2].  Both 
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of these applications will be reviewed in this chapter. Viterbi decoding and Viterbi 

equalization are popular decoding and equalization techniques for the European mo-

bile radio standard GSM. GSM will be reviewed, with particular attention to the use of 

Viterbi equalization for removing channel effects. 

2.2 Convolutional codes 

Convolutional encoding was developed as an alternative to conventional block encod-

ing techniques [13].  The main difference is that they allow continuous encoding of a 

bit-stream into a redundant representation suitable for transmission. 

A convolutional encoder operates serially on a bit-stream of arbitrary length. The 

encoder in Figure 2.1 consists of a 3 stage shift register, two modulo-2 adders and a 2-

1 multiplexor. The constraint length K of the encoder is defined as the number of shifts 

over which a single input bit can influence the output of the encoder. In Figure 2.1, 

K = 3. The rate r is defined as the ratio of output bits to input bits. 

e(n) 

e2(n) 

Figure 2.1: A block diagram of a convolutional encoder for K = 3 and r = 

In this section and Section 2.3 we shall use K = 3, r = 	convolutional codes in 

examples for simplicity. The techniques described can be extended for use with codes 

of arbitrary values of K and r. 



The behaviour of a convolutional encoder is defined by the impulse responses of the 

modulo-2 adders. That is, the output sequence from the modulo-2 adders, given an 

impulse input sequence of 1, 0, 0. .... In the case of the encoder in Figure 2.1 there are 

two impulse responses: 

gi (ri) = {101} 

92(n) = { 111 } 

These are known as the code generators of the convolutional encoder. By examining 

the diagram in Figure 2.1 it can be seen that the code generators define the connections 

between the shift register and the modulo-2 adders. The code generators are more 

commonly expressed in octal notation, for this encoder, gi = 5, 92 = 7. 

The choice of code generators affects the performance of the encoder. The performance 

of a code is defined as its robustness to channel noise, the property of a convolutional 

code which describes this robustness is called the free distance and is defined as the 

minimum Hamming distance' between any two code words in the code [13]. 

For different values of K and r there are optimal values for the code generators. These 

have been determined experimentally [14] and Table 2.1 shows the optimal values for 

r=. 

Constraint Length 92 
3 5 7 
4 15 17 
5 23 35 
6 53 75 
7 133 171 
8 247 371 
9 561 753 
10 1167 1545 
11 2335 3661 
12 4335 5723 
13 10533 17661 
14 21675 27123 

Table 2.1: Optimal Code Generators for r = 

'The Hamming distance between two binary words is defined as the number of bitwise mismatches. 



2.2.1 The trellis representation 

An important representation of a convolutional code is a trellis diagram. The trellis di-

agram is also essential to the understanding of the Viterbi decoding algorithm. To draw 

a trellis diagram for a convolutional code we first must create a state transition table. 

Table 2.2 shows a state transition table for the convolutional encoder of Figure 2.1. 

State Input symbol Next State Output symbol 
00 0 00 00 

10 11 
10 0 01 11 

1 11 00 
01 0 00 10 

1 10 01 
11 0 01 01 

11 10 

Table 2.2: State transition table 

The states in the first column correspond to the value stored in the shift register. The 

second column shows the next input symbols that result in a new value next state being 

stored in the shift register. The final column shows the pair of output symbols produced 

by the encoder for the corresponding input symbol. 

From this table of state transitions, a trellis diagram can be constructed. Figure 2.2 

shows the trellis diagram which was constructed from this table. The trellis diagram is 

an interconnected set of stages, each stage is indicated by a different time, t. 

An input sequence to the encoder is represented in the trellis diagram as a path through 

the structure, starting at time t = 0. A solid line corresponds to a 0 input symbol and 

a dashed line corresponds to a 1 input symbol. The edges between nodes are labelled 

with the output symbol pairs. 
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State 

'S 	 'S 
00 	5 00 • 00 5_00 	OO—P 

11 	11 	11 	ii/ 
'S 

S 	

'S 
'S 	 's 	 'S 	 'S 

10 	
\ 	

10 ,I
/0 

' 11 

01 	 00 "' 00 	' o,). 

' 1010 	' 

\w'- - 0 1 - -11 0 1 --- \0 

Time t=0 	1 	2 	3 	4 

Figure 2.2: A trellis diagram representing the encoder in Figure 2.1 

2.3 Maximum-likelihood decoding of convolutional 

codes 

2.3.1 The Viterbi algorithm 

The VA is based on the concept of the trellis diagram as described in Section 2.2.1. 

The algorithm is a maximum-likelihood decoding algorithm which selects the path 

through the trellis diagram which is the closest to the original input sequence [ 1 0]. 

The branches on this path denote the originally encoded sequence. Figure 2.3 shows a 

basic communication system using a Viterbi decoder. 

a(t) 	CONVOLUTIONAL 	s(t) 	
CHANNEL 	

r(t) 	 VITERBI 	 (t) 

DATA 	 ENCODER 	ENCODED 	 RECEIVED 	 DECODER 	ESTIMATED 
SEQUENCE 	 SEQUENCE 	 SEQUENCE 	 - 	 SEQUENCE 

Figure 2.3: A basic communication system using a Viterbi decoder 

	

At each stage of the trellis there are 	nodes (where m is the alphabet size, and K 

is the constraint length of the convolutional code). The VA implements one stage of 
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the trellis diagram directly. For each node, two values are stored: 

Path Metric Value (PMV): this value indicates the likelihood that this path is the 

correct one. At each stage the node with the lowest PMV is taken to be the most 

likely one. 

Path History (PH): a sequence of bits which corresponds to the branches which 

led to this node: a dashed line being a 1 and a solid line being a 0. 

The VA steps through the trellis evaluating new PMVs for each stage in the following 

way: 

. At each time interval the decoder receives n symbols (where n is the number of 

modulo-2 adders). 

. A Branch Metric Value (BMV) is calculated for each branch, this is the differ-

ence (or Hamming distance) between the received symbols and the labels on the 

branches. This can be defined simply as the number of mismatches between the 

received signal bits and the branch designation. 

. For each node in the current stage, the following steps are performed: 

For all the nodes in the previous stage that are connect via a branch to this 

node: 

- Sum the PMV of the previous node with the BMV of the interconnect-

ing branch. 

Choose the lowest of these sums as the PMV for this node. 

Append the PH with a 0 or a 1 depending on whether the branch was a solid 

(0) or dashed (1) line. 

At each step the PH of the node with the lowest PMV corresponds to the decoder's 

prediction for the original unencoded sequence. When implementing the VA, it is not 

reasonable to store the whole of the message, so a finite number of bits have to be used 

to store the PH. Simulations by Michelson and Levesque have shown that storing PHs 

of more than 4 times the constraint length of the convolutional code shows no increase 

in performance [ 1 5]. 
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Received sequenc 	'' 

Step 2 

2.3.2 Correcting bit errors with the Viterbi algorithm 

Figure 2.4 shows how the VA can correct bit errors. The diagram shows the steps in 

the algorithm as the received sequence is decoded. The value on the nodes represent 

the PMV up to that point. Where there are two values on a node, they represent the 

addition of the BMVs and PMVs for the upper and lower paths into the node. 

In this example the transmitted sequence is 100, 11, 11, 101, representing a original 

data sequence of {0, 1, 0, Q. However, a bit error occurs at position 4 so the received 

sequence is 100, 10, 11, 10}. 

Received sequence 	00 0 	10 

Step 1 

ip 

Received sequence 00 	10 	Ii 	10 

Step 3 

13 

Figure 2.4: Correcting bit errors with the Viterbi Algorithm 

At step 1, just after the error has occurred, there are two paths through the trellis with 

the same value of metric. However, because no errors are present in the subsequent 

steps, by the time we reach step 3, the metric associated with the correct path is the 

lowest. 
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The VA is able to correct the error because the Hamming distance between the received 

sequence and the transmitted sequence is less than the free distance of the code as 

defined in Section 2.2. 

2.3.3 Failure of the Viterbi algorithm 

There are cases where the bit errors cannot be corrected by the VA, or rather the bit 

errors are incorrectly corrected. This occurs when the Hamming distance between the 

received sequence and the transmitted sequence is greater than or equal to the free 

distance of the convolutional code. 

Figure 2.5 shows an example of breakdown of the VA due to too many bit errors in the 

channel. 

	

Received sequence 	01 	11 
S 

Step! 

	

Received sequence 	01 	11 	10 	 I 	3 	2 

' /2 

i 	.i 	 I 	1 	4 • 

	

S 	 S 

N. 

Step 	
'\../ç 	

2 	2 

3 

	

Received sequence 	oi 	1 	11 	3 	10 	2 	10 	 01 	II 	10 	2 	10 

Step 3 

Figure 2.5: Breakdown of the Viterbi Algorithm 

The transmitted sequence is {OO, 11, 11, 101, as in the previous example in Section 2.3.2. 
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This time there are two bit errors, at positions 1 and 5, so the received sequence is 

{01,11,10,10} 

The layout of the diagram is the same as before. It can be seen that at step I the 

lowest metric corresponds to the correct path through the trellis. However, at step 2, 

correct path is discarded because both paths into the 3rd node have metrics of size 2 

and the correct path is selected (at random) to be discarded. By the time we get to step 

three, the algorithm has incorrectly identified the sequence {00, 11, 00, 101 which cor-

responds to a data sequence of {0, 1, 1, 01 as being the most likely received sequence 

This time the Hamming distance between the received sequence and the transmitted 

sequence is equal to the free distance of the convolutional code so the VA is equally 

likely to choose the correct sequence as the nearest incorrect sequence. 

2.3.4 The VA applied to intersymbol interference 

Soon after the original publication of the VA, Forney applied it to the detection of 

digital transmissions in the presence of intersymbol interference (1ST) [ 1 0]. 

ISI is a problem in pulse modulation systems and occurs when the a transmitted pulse 

has not decayed before transmission of the next pulse is started. As an example of 1ST, 

we will consider a simple pulse amplitude modulation (PAM) system, as described by 

the system shown in Figure 2.6. The transmitted signal is described by equation 2.1. 

s(t) 	 - kT), 	 (2.1) 
k=—oo  

where, Xk are the samples of the data sequence, i.e. the modulating waveform; h(t) is 

the channel impulse response which describes the pulse shaping; and T is the symbol 

period. 

The transmitted signal is then corrupted by additive white Gaussian noise (AWGN) 

signal n(t), to give the received signal, r(t) as described by equation 2.2. 

r(t) = s(t) + n(t). 	 (2.2) 

Figure 2.7 is an example of the 151 within a PAM communication system, Figure 2.7(a) 
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X 	CHANNEL 

DATA 	ENCODER 

SEQUENCE 

00 

SW = > Xh(t - kT) 
k=—oo 

SIGNAL 
TRANSMITTED 

AWGN n(t) 

r(t) = s(t) + n(t) 

RECEIVED 
SIGNAL 

Figure 2.6: A PAM communications sysem 

represents the data sequence 

X(t) ={1,O,1,1,o,1,o,o,1,o,o,o,i,i,i,o,i,o} 	(2.3) 

Figure 2.7(b) shows h(t) applied to this pulse sequence, in this example h(t) is a 

Gaussian shaping function. The transmitted sequence s(t) is shown in Figure 2.7(c). 

x(t 

LIII1C 

 

 

S(t) 

time 

 

Figure 2.7: An example of intersymbol interference 

The decoder structure proposed from [10] is shown in Figure 2.8. The received data is 

passed through a whitened match filter with response w(—t). This filter is necessary 

because the VA requires the noise components of each successive received sample to 
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be statistically independent [16]. 

Z0, Z1, 
WHITENED 	

.. 

k 	 LT)dt 	
VITERBI MATCHED 	

Z 

RECEIVED SIGNAL 	FILTER 	 RECEIVED SEQUENCE 	ALGORITHM 	DECODED SEQUENCE 
w(-t)  

Figure 2.8: A maximum-likelihood decoder for PAM 

Forney noted that the VA receiver has a recursive structure with complexity propor-

tional to mL, where m is the input alphabet size and L is the length of the channel 

impulse response h(t). He also showed that the structure requires no multiplications 

and it is optimum for maximum-likelihood sequence estimation, as long as there are 

no limits placed on the delay through the decoder. 

2.4 Channel equalization using the Viterbi algorithm 

The VA was suggested in [3] as a method for channel equalization in the European 

mobile radio standard GSM. Previously the VA had been applied to the equalization of 

phase shift keying (PSK) modulation by Ungerboeck in 1974 [16], and Acampora ex-

tended the application of the VA to the more generalised form of modulation - quadra-

ture amplitude modulation (QAM), of which PSK is a subset [2], [17]. 

In this section, the application of the VA to the equalization of QAM signals will be 

reviewed. It will be shown that the VA can be applied to minimum shift keying (MSK) 

which is also a form of QAM [18], [19]. 

2.4.1 Quadrature Amplitude Modulation 

From [2], we assume that the QAM process can be described by equation 2.4: 

S(t, d) = { 
	

[ak(d) + jbk(d)] (t - kT)e_3w0t}, 	(2.4) 

where t) = hR(t)+jhl(t) is a complex waveform, a(d) and b(d) are real numbers 

dependent on the data d, T is the symbol period, and N + 1 is the number of complex 

channel symbols used to transmit the data d. 
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Figure 2.9, from [2] shows a model of a QAM digital communication system. The 

channel encoder transforms the input data stream d into the in-phase and quadrature-

phase symbols streams a and b. These signals can be dependent or independent of 

each other. 

S(t, d) = E[ak(d)+ jbk(d)li(t - kT) 

A 

____ 	 ____ ____ 	 I d -] SYMBOL 
DATA 	

I 	_________ 	 _________ 
ENCODER I b(d) IMODULATOR I 	 __________ DATA 

d 	CHANNEL 	a(d) SYMBOL BY I 1" 	_______ 

RECEIVER ESTIMATE SEQUENCE 

AWGN n(t) 

Figure 2.9: Symbol-by-symbol QAM model 

2.4.1.1 MSK as a subset of QAM 

Figure 2.10 shows a 4-QAM constellation diagram and the state transition diagram for 

minimum shift keying (MSK). These diagrams represent the operation of the channel 

encoder in Figure 2.9. Both modulation processes have four phase states. In gener-

alised 4-QAM, an input symbol can result in a transition from the current state to any 

of the four states. 

Im 

r7~ 
'I"k- 	_j 

- 

(a) 	 (b) 

Figure 2.10: 4-QAM constellation and MSK transition diagram 

In MSK, transitions between phase states are limited to those defined in the transition 
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diagram. A solid line represents an input symbol —1 to the encoder and a dashed line 

represents an input symbol of +i. 

The real and imaginary coordinates of the phase states represent the in-phase and 

quadrature-phase samples ak and bk in equation 2.4. 

As the Figure 2.10 shows, MSK is a subset of 4-QAM where the symbol streams a and 

b have a dependency on each other as defined by Figure 2.10(b). 

2.4.2 Equalization of QAM and MSK using the Viterbi algorithm 

2.4.2.1 Deriving the trellis diagram 

To apply the VA to equalization of QAM we need to produce a trellis diagram of 

the modulation process. Figure 2.11(a) shows a trellis diagram for 4-QAM with four 

bits (two symbols) of 1ST. The trellis is constructed from the constellation diagram. 

The number of states in the trellis diagram is determined by the amount of 1ST that is 

expected to be introduced in the channel and can be tolerated. 

Similarly, the trellis diagram for MSK can be derived from the MSK modulation di-

agram of Figure 2.10(b). Alternatively the 4-QAM trellis diagram can be altered to 

obtain the MSK trellis. Figure 2.11 shows which of the transitions in the 4-QAM trel-

lis are not possible in the MSK trellis. We can see that the MSK trellis requires only 

eight states. 

It should also be observed that if the we know the starting state of the MSK modulation 

process, then the number of states in each iteration reduces to 21S12 4. This is 

shown in Figure 2.12. 

2.4.2.2 Applying the Viterbi algorithm to QAM 

The analysis presented in this section is for QAM but, as explained in Section 2.4.1, 

the technique can be applied to MSK signals. The transmitted signal is described by 

equation 2.5: 

1(t) = R[x(t)e Jct], 	 (2.5) 
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a f  b, a,b 

- - 	-I 

I-I 	I-I 

III 

	

3 1b a. b. 	 a b, ab 	 a,b, a b. 

	

Il-Il 	 Il-I-I 	 Il-Il 

	

III 	 1111 	- 	 - 	1111 

(a) 	 (b) 

Figure 2.11: 4-QAM and MSK trellis diagrams 

a, b ab 1 	 a ) b J a,,,  b j 	 a.b,a 1+2 b. 

State 0 

State I 

State 2 

State 3 

State 4 

State 5 

State 

State 7 0 
Figure 2.12: MSK trellis diagram 
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where w is the carrier frequency and x(t) is the transmitted signal consisting of in-

phase and quadrature phase data sequences: 

N 	 N 

	

x(t) = E a,g(t - 2kT) + j 	bkg(t - 2kT - T), 	(2.6) 
k=O 	 k=O 

where ak and bk can assume the values ±1 and the data rate is 11T. 

The signal is then transmitted though a channel with complex impulse response g(t) 

and a receiver filter with response gr (t). Then received signal is: 

f(t) = R[s(t)ejw ,t  1 1 (2.7) 

where 

N 
s(t) = 	akh(t - 2kT) + ni(t) + 

k=O 
N 

J 	bk g(t - 2kT - T) + jn2 (t), 	 (2.8) 
k=O 

ni(t) and n2(t) are independent AWGN functions. The overall channel impulse re-

sponse (CIR) h(t) is given by the convolution of the three impulse responses, shown 

in equation 2.9. 

h(t) = g(t) ® g(t) ® g, (t) 	 (2.9) 

2.4.2.3 The Viterbi algorithm for QAM 

To apply the VA to QAM we need to derive an expression for the metric calculation. 

Each of the 22N±2  possible sequences through the trellis has a metric associated with 

it. To apply the VAwe need to assume that the CIR h(t) is known - or at least can be 

estimated. 

The reconstructed signal for the mth sequence is: 

S m (t) = 	ah(t - 2kT) +j 	bg(t - 2kT - T) 	(2.10) 

From [3], the most likely transmitted sequence is one which maximises the likelihood 
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function: 

f
°°

= exp - 	Is(t) - Sm(t)12dt
77o00 

where 71,, comes from the spectral density of the AWGN functions n1 (t) and n2  (t) in 

equation 2.8. This is equivalent to maximising: 

1 00 	 1 	"00 

Am  = 2 I f s(t)s(t)dtI - I 	ism (t)Idt 	 (2.12) 
00 	 J 	J-00 

After substituting for s(t) and Sm(t) [2], the metric computation becomes: 

N 
Am  = 2 (ayk + bzk) 

k=O 
NN 

- 	+ bbj)xk 
k=O i=O 
NN 

- E >(abj + ba)Ck_, 	 (2.13) 
k=O i=O 

where Yk  and zk are the received signals statistics at time kT obtained by passing the 

received samples though a matched filter matched to h(t); and Xn and (n  are the real 

and imaginary samples of the matched filter's response to h(t) at time nT. 

From [2], rewriting (2.13) and assuming that ak and bk are 0 for k < 0 and k > N: 

N 	 k—i 
Am = 	a 2Yk - akxo - 2 E (aXk_j + b(k-) 

k=O 	 i=k—L 

N 	 k—i 

> b 2Zk - bkxo - 2 	(bxk_j + ak) 	(2.14) 
/c=O 	I 	i—k—L 

Equation 2.14 can be computed recursively from the previous partial sum as shown in 

equation 2.15. 

n—i 
Amn  = Am (n-1) + a- > (a_ + b(_) [y. 

 i=n—L 

+ b I n - 	(bx + a2(ni)] 

i=n—L 

= Am (n-1) +a,-,[y. - I] + b2[z - Q8] 	 (2.15) 

where y, and Zn  are the in-phase and quadrature received signals samples after passing 

through a filter matched to an estimate of the channel impulse response (CIR). 
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The values I and Q can be pre-computed and are constant for is long as the CIR 

remains constant. It can be seen that the computational complexity of the Viterbi 

equalizer for QAM is four additions per state. 

2.4.2.4 Extending Viterbi equalization to GMSK modulation 

In equation 2.6, the function g(t) describes the pulse shaping of the transmitter. This 

allows us to extend the analysis to the equalization of Gaussian minimum shift keying 

(GMSK) which is the modulation technique used in the GSM system [3]. 

g(t) 

 

-2 	-1 	 0 	1 	2 

Bit Periods 

Figure 2.13: Pulse shaping function g(t) for GMSK 

Figure 2.13 shows the g(t) waveform for GMSK. From [20] the shaping function is 

defined by: 

g(t) = 	[Q (2,7rB~I)  
- Q (27rB)iI)] 	(2.16) 

2T 	vf1 

for 

O<BT<oc 	 (2.17) 

where 

Q(t)= I V 
	 (2.18) 

B is the bandwidth of a low pass filter with a Gaussian shaping spectrum and T is 

the bit period. Figure 2.13 shows the effect of different values of BT on the shaping 
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function g(t). This Gaussian shaping introduces controlled 1ST. 

2.4.3 Performance of the Viterbi Algorithm 

Forney and Viterbi have both analysed the performance of the VA, for convolutional 

codes [9],  [21]. With an alphabet size of 2 and symmetric memoryless channels, P(ck), 

the probability of an error occurring at time k is: 

P(6k) 	Nd 2_dlJ, 	 (2.19) 

where d is the free distance as defined in Section 2.2, Nd is the number of all possible 

paths, and D is the Bhatacharyya distance [9]: 

D = 1092 	P(zI 0 )
1/2

P(z 1 ) 112 , 	 (2.20) 

where Ez  is the sum over all outputs z is the channel space Z. 

For channels with AWGN, the error probability is: 

P(Ek) 	 (2.21) 

where r is the code rate, and Eb/No is the signal-to-noise ratio of the channel. 

Heller and Jacobs showed by simulation that the results achieved using 8-level quanti-

zation are very close to this upper bound [11].  They also showed that 2-level quantiza-

tion is 2 dB worse than 8-level. 

The performance of the VA for equalization of GMSK signals in the GSM system will 

be reviewed in Section 2.6.6. 

2.5 A comparison of Viterbi decoding and equalization 

In this Chapter the use of the VA for decoding of convolutional codes, and the equaliza-

tion of QAM modulation have both been explained. These applications have different 

complexities which will be explained in this section. 
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The construction of the trellis for convolutional codes is straightforward. The trellis is 

directly related to the code generators and optimum code generators for rate r = 1  are 

known (see Table 2.1) [14]. For a rate r = code with constraint length (the number 

of bits in the encoded sequence over which a single bit can influence the output of the 

encoder) K = 7, the trellis diagram will have 2 4 = 64 states with 2 branches from 

each state to the next states. For MSK the trellis construction is more complicated, 

it is dependent on the modulation constellation and the amount of ISI in the channel. 

However, with an 1ST of 6, the trellis diagram for MSK equalization would also have 

64 states with 2 branches from each state to the next states. So the complexity of the 

trellis is similar for equalization and decoding. 

The interconnection of the equalizer trellis states becomes more complicated if a QAM 

modulation system, such as the one shown in Figure 2.10 (a), is used. In such a system, 

any input symbol to the modulator can result in a transition to any state. In the case 

of 4-QAM there are four branches from each state to the next stage of states. So, 

increasing the complexity of the modulation process will increase the complexity of the 

trellis. This is also true for the decoding of convolutional codes if the rate is changed. 

The main difference in complexity is the calculation of the incremental metrics. As 

discussed in Section 2.3.1, for Viterbi decoding, the branch metrics are computed as 

the Hamming distance between the received symbol and the labels on the branches. 

This is a fairly straightforward operation and consists of a bitwise comparison and 

summation. From [11], an 8-level quantization is satisfactory for the input values, 

using the distances described in [22],  a rate r = 1  decoder has branch metric value 

consisting of 3 bits, this means that the metric evaluation can be implemented with 

simple gates (Section 4.2.1 will describe the design of such a circuit). 

It can be seen from equation 2.15 that for Viterbi equalization the evaluation of the 

branch metric is a summation operation consisting of real number additions and sub-

tractions. If we assume that the inputs and coefficients have a resolution of 8 bits [3] 

and that there are 5 bits of 1ST, then the metric calculation operation consists of sum-

ming 12, 8-bit numbers. It can be seen that the metric calculation is significantly more 

complicated for Viterbi equalization than decoding. 

It should be noted that the summations only have to be performed for a new CIR esti-

mate. If the CIR estimate is constant then only 2 subtraction operations are performed. 

This means that to reduce the delay in metric calculation for a Viterbi equalizer it is ad-

visable not to update the CIR estimate at every received signal interval. This means that 
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equalizer could be pipelined and the summations for the current CIR estimate could be 

performed while the equalizer is decoding the received symbols for the previous CIR 

estimate. This method can be applied to GSM (Section 2.6). 

Since the incremental metrics are significantly larger for Viterbi equalization, then the 

path metrics are also. This means that the add-compare operation which has to be 

performed for each node will be operating on numbers of larger word length. This 

means that the area required to implement each node will be larger. 

In summary a Viterbi equalizer is more complicated that a Viterbi decoder. In Chap-

ter 4 a design of a Viterbi decoder is proposed and in Chapter 5, a Viterbi equalizer 

design is described. The remainder of this chapter will describe the GSM system which 

is a common application of Viterbi decoding and equalization. 

2.6 The GSM system 

The GSM system was developed by the European Telecommunications Standard In-

stitute/Group Special Mobile European Community working group [3].  The GSM 

system aimed to provide a unified mobile telephone standard for the entire European 

Community. 

Previously there had been 6 different mobile telephone standards operating in 16 dif-

ferent counties [23],  and the majority of these system were analogue based. The GSM 

working group set themselves the task of devising a unified telephone standard that 

would allow equipment and networks all over the European Community to be compat-

ible with each other. 

Before the GSM standard was introduced in 1991 it was decided that the new system 

should be digital rather that analogue based. A digital system would provide: improved 

transmission quality, increased security in communications, ISDN services [24], im-

proved bandwidth utilisation, network modularity, and lower operating cost [ 25]. 

Nine different proposals were "entertained" by the GSM group; the one chosen was 

a frequency division multiple access / time division multiple access (FDMA/TDMA) 

hybrid system using a GMSK modulation process. 

The most popular proposal for the GSM receiver structures [3], [26], [27], uses two 



distinct Viterbi processors. The first one is a Viterbi equalizer and is used for channel 

equalization. The second is a Viterbi decoder and is used to decode the data which is 

encoded using a convolutional code of rate 1  and constraint length 5. 

This section will review the GSM system and describe how the Viterbi equalizer and 

Viterbi decoder fit into such a system. 

2.6.1 Specifications 

The Time Division Multiple Access (TDMA) transmission operates in the 900 MHz 

frequency band. The gross bit rate is 270.833kb/s, and the voice data rate achievable 

is 13kb/s. The data is transmitted using GMSK modulation with a BT product of 

0.3 (see Section 2.4.2.4). The GSM system should be able to cope with many severe 

propagation conditions, and vehicle speeds of up to 250km/h [23]. 

There are two frequency bands: 890-915 MHz is used for mobile-to-base-station trans-

mission; and 935-950MHz is used for base-station-to-mobile transmission. These two 

frequency bands are divided into 124 carrier frequencies with 200 kHz guard band 

spacing between them. 

2.6.2 TDMA packet structure 

Each of the carrier frequencies described above supports 8 time slots, within a TDMA 

frame, the structure of which is shown in Figure 2.14. As the diagram shows, the 

TDMA frame lasts for 4.615ms and contains 8 times slots lasting for 0.577ms which 

are reserved for channel packet bursts. 

Each normal burst time slot contains 114 data bits, and a 26 bit midamble. This mi-

damble is used by the receiver to estimate the impulse response of the channel. The 

CIR is obtained by correlating the received midamble with the correct midamble which. 

is known by the receiver. The midamble sequence is composed of a 16 bit word fol-

lowed by 5 cyclically repeated bits [27]. The GSM groups have identified 8 midamble 

sequences by computer simulation by optimising their autocorrelation and crosscorre-

lation properties [27]. 

The GSM system base stations are arranged in a cellular network and all of these 8 
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TDMA Frame 4.6 15 ms 

Frame rate:I 	I 	I  

1011121314151617 1733 slots/s 

/--gu  

housekeeping bits 

ard bits /\ guard bits 

Bit rate: 	131  270.833 kb/s 	57 	1 	26 	1 	57 	3 

data 	midamble 	data 

guard time, 
S t  

slot-time 0.577 ms 

Figure 2.14: The GSM TDMA frame structure 

midambles are used as a means of identifying the base station, since adjacent base 

stations use different midamble sequences [23]. 

When a mobile station initialises a link with the base station a physical channel is 

opened. Each physical channel is allocated a TDMA time slot (TN), numbered 0 - 7 

and a TDMA frame number (FN), numbered 0 - 123, corresponding to the carrier 

frequency. The GSM system employs frequency hopping which helps to overcome 

the problem of channel fading [23]. This means that the FN can change throughout a 

channel's existence. 

Each mobile station is allowed to operate when they are within a 35km distance from 

the base station. The time for a signal to travel the the maximum distance of 70km to 

and from a base station is 233.3s. This seems to imply that a guard spacing longer 

than 233.3is is required at the end of every slot to ensure that signals from mobile 

stations do not overlap. In fact, a guard time of 68.25bits (252is) is only required 

when the mobile station initially connects to the base station (either during call start 

up or handover). This is achieved with a special type of burst called an access burst. 

There are five types of GSM burst structure and these are shown in Figure 2.15. 

When the mobile station uses the access burst, the base station calculates a 6-bit offset 

called the timing advance. This offset informs the mobile station to transmit subse-

quent slot packets earlier by multiples of 3.69s. This ensure that slots arrive at the 

base station during the correct time period, it also allows the guard time to be reduced 
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NORMAL BURST 
TAIL BITS 	 DATA BITS 	 MIDAMBLE 	 DATA BITS 	 TAIL BITS GUARD11ME 

L3 	 58 	 26 	 1 	 58 	 3 	1 	8.25 

FREQUENCY CORRECTION BURST 
TAIL BITS 	 FIXED BITS 	 TAII.BITS I GUARDTIME 

3 	 142 	 3 	8.25 

SYNCHRONISATION BURST 
TAILBITS 	 SYNC BITS 	 EXTENDED MIDAMBLE 	 SYNC BITS 	TAIL BITS I  GUARI)11ME 

3 	 39 	 1 	 64 	 1 	 39 	 3 	8.25 

ACCESS BURST 

TAIL BITS I 	SYNCHRO SEQUENCE 	ENCRYPTED BITS 	TAILBITS 	 GUARD TIME 

8 	 41 	 1 	36 	 3 	 68.25 

DUMMY BURST 
TAIL BITS 	 MIXED BITS 	 MIDAMBLE 	 MIXED BITS 	 TAIL BITS GUABI) TIME 

3 	 58 	 26 	 58 	 3 	8.25 

Figure 2.15: The 5 difference GSM TDMA burst structures 

to 30.36is or 8.25 bits [23]. 

During the call, the base station continually monitors the time that the slot from the 

mobile station is received and adjusts the timing advance accordingly. 

2.6.3 Channel coding operations 

Before the speech data is transmitted in the TDMA packet, it is pre-coded. The reason 

for this coding is twofold: firstly to make the communication of the data more robust; 

and secondly, to introduce encryption into the data for security reasons. In this section 

the GSM channel coding operations will be outlined. 

The GSM system offers two main modes of communication: speech communication 

at full rate (22.8kb/s) and half rate (11.4kb1s); and data communication at full rate 

(22.801s) and half rate (11.4kb1s). In' addition to these two channels, there are a 

number of control channels for synchronisation, frequency control, etc. 

These data rates correspond to the coded channel data rate, rather than the rate of data 

actually communicated over the channel. For full rate speech, the rate of the traffic 

channel is 13kb1s. The half rate channel is provided for future development of the 

GSM system, when low bit-rate voice coders are available, the channel capacity can 

be doubled, with two channels occupying the same time slot at alternate frames. 
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Information about other channel coding techniques can be found in the literature [23], 

[28], [3]. 

2.6.3.1 Speech coding 

The block diagram in Figure 2.16 shows the channel coding procedure for full rate 

speech. The speech is sampled at 8kHz which after compression has at a bit rate of 

1301s, each speech frame consists of 260 bits and this data is fed into the channel 

encoder. The data bits are divided into three classes: 

frame 160 bits 

Class IA 	 Class I 	 Class 2 
50 bits 	 132 bits 	 78 bits 

	

Parity bits 	 - - 	 Tail bits 

50 bits 	3 	 132 bits 	 4 

ter I 

12 

lock partitioning 

0 	 1 	 2; 1 :5: 	6 	 7 
57 bits 	57 bits 	57 bits 	57 N1, 	57 Hi 	57 bits 	57 bits 	57 bits 

_rIes _ 

57 	hI 6 	57 	57 	hIht 	57 	57 	hlht 	57 	57 	hIht 	57 

Figure 2.16: The channel coding for GSM full rate speech 

. Class 1A 

These bits are encoded using a systematic cyclic code with the generator poly-

nomial of: 

G4 (D)=D3 +D+1 	 (2.22) 

and are appended with three parity bits. 

. Class lB 

These bits are appended to the encoded Class IA bits, with four tail bits to flush 

the Viterbi decoder in the receiver. All of the Class I bits are re-ordered as 
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described in [23] and are convolutionally encoded with the encoder shown in 

Figure 2.17. 

. Class 2 

These bits are left unencoded. 

After these encoding operations, there are 456 bits left to be transmitted, these are 

block partitioned into groups of 57 bits, which are then interleaved with each other, 

and blocks from the preceding and following speech frames. Each pair of 57 bit blocks 

make up one normal burst (as outlined in Section 2.6.2) along with two flag bits which 

indicate whether the information is speech or control [23]. 

U0- 77 

Figure 2.17: The convolutional encoder for GSM full rate speech 

2.6.4 Channel specifications 

To evaluate the performance of different receivers, eight different channel models have 

been developed by the COST 207 committee [3], [ 29]. Table 2.3 shows the definitions 

of six of these models. 

In addition to the channel models in Table 2.3 there are two models based on a tapped 

delay line, these are the equaliser model (shown in Table 2.4) and the simplified hilly 

terrain model (shown in Table 2.5). 
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COST 207 channel models 

1 static two-path H(f) = 1 - bexp[—j27r(f - fo)r] 

2 Rayleigh two-path H(f) = a - baexp[—j27r(f - 
3 flat Rayleigh fading H(f) = —baexp[—j27r(f - 

exp(-3.5t) 0 < t < 2 

4 hilly terrain P 	= 0.lexp(15 - t) 	15 < t < 20 

0 otherwise 

5 rural area = P(t) 
exp(-19.2t) 	0 < t < 0.7 

 0 otherwise 

6 typical urban area P(t) = 
I  exp(—t) 0<t<7 

0 otherwise 

Table 2.3: COST 207 channel models 

2.6.5 A GSM receiver structure 

Figure 2.18 shows the communication between a GSM transmitter and a receiver. At 

the transmitter the signal is precoded (as described in Section 2.6.3) and placed into 

TDMA packets. These are then transmitted using GMSK modulation and the signal is 

passed through a channel. 

The receiver structure consists of a GMSK demodulator which separates the signal 

into in-phase and quadrature-phase signals, the signals are synchronised and passed to 

the equalizer. As discussed earlier on in this chapter, the Viterbi equalizer requires an 

estimation of the CIR to perform equalization. The CIR is estimated by extracting the 

midamble, or sounding sequence, from the received packet, and comparing it with the 

known midamble which is known by the receiver. 

The five bits at the start and the end of the received midamble are discarded to avoid 

transient situations [26], so only 16 received samples are used in the estimation of the 

CIR: 

V (t) = (vo , v 1 , ..., v 15 ) 	 (2.23) 
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Tap number Relative time (us) 
1 0.0 
2 3.2 
3 6.4 
4 9.6 
5 12.8 
6 16.0 

All taps have a doppler spectrum of 
S(f) 

= v1_u/fd2' fd < f < +fd 

and the same relative power. 

Table 2.4: COST 207 equalizer channel model 

Tap number Relative time (/is) Average relative power (dB) 
0.0 0.0 

2 1.7 -2.0 
3 12.0 -8.0 
4 16.0 -7.0 

Table 2.5: COST 207 simplified hilly terrain channel model 

There are 26 reference samples, denoted as: 

X (t) = (x0 , x 1 , ..., x25 ) 	 (2.24) 

To estimate the CIR, a complex correlation between these sequences is performed: 

RXII 	= f f v(r + t - a)h()v*(y)dyd 	 (2.25) 

= f Rv , ( t — a) h (a) da 	 (2.26) 

= R(t) ® h(t) 	 (2.27) 

So, R(t) is the convolution between the impulse response h(t) and the autocorrela-

tion R,,, (t). Since the midamble sequence have been chosen so that R(t) is a delta 

function: 

Rvv 	11 if 1 = 0 	
(2.28) 

10 if-5<l<5andl0 

So, 

R(t) 	h(t) 
	

(2.29) 
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Figure 2.18: A block diagram of the GSM commucination system 

The h(t) estimate is then passed to the Viterbi equalizer which implements the al-

gorithm as described in Section 2.4.2.3. Deinterleaving and Viterbi decoding (as de-

scribed in Section 2.3) [30],  [31] to remove the channel coding effects is performed to 

produce an estimate of the original sequence. 

2.6.6 Performance 

From simulations performed by the COST 207 group it was shown that a receiver 

structure using a 32 state Viterbi equalizer can compensate for echo delay up to 15i.s 
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in a severe multipath Rayleigh fading environment [3].  This corresponds to a vehicle 

speed of up to 200km/h. The receiver structure discussed here assumes that the CIR 

is constant for the whole TDMA burst, adaptive Viterbi equalizers that adjusts the co-

efficients of CIR during the burst have been shown to have increased performance over 

non-adaptive implementations [32], [33].  It should be pointed out that the computa-

tion complexity of the VA for channel equalisation is quite high. Hence a number of 

alternative receiver structures have been proposed when low implementation costs are 

important [34]. 

2.7 Conclusions 

This chapter has been a review chapter on the Viterbi algorithm. Convolutional codes 

have been described, and the trellis representation for a convolutional code has also 

been presented, this forms the basis for the Viterbi algorithm. The Viterbi algorithm 

has been described by a worked example, and it has been shown that the algorithm can 

be used to decode convolutional codes. In addition, the Viterbi algorithm can exploit 

the fact that only certain sequences are valid convolutional encodings, and correct er-

rors in a convolutionally encoded signal. The amount of errors that can be corrected 

is determined by the complexity (or rather the constraint length) of the convolutional 

code. It has been shown that the size of the Viterbi trellis used to decode the code 

is exponentially proportional to the constraint length. This limits useful convolution 

codes to ones with relatively small constraint lengths. 

It has been shown how the Viterbi algorithm can be extended to channel equalization 

to correct errors introduced by intersymbol interference (ISI) in quadrature amplitude 

modulation (QAM) systems. This can be achieved by describing the modulation sys-

tem as a convolutional code, and designing a Viterbi decoder to decode this modula-

tion system. In the GSM mobile telecommunications system, the modulation process 

is Gaussian minimum shift keying (GMSK), an extension of QAM, and one of the 

suggested receiver structures uses Viterbi equalization. This chapter has shown how 

a Viterbi equalizer fits into a GSM receiver system. The GSM system also convo-

lutionally encodes the data before transmission, so a Viterbi decoder is also required 

in a GSM receiver. GSM provides a good example of these two applications of the 

algorithm. 

This chapter has been mainly a review chapter. It has contained original work in the 
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form of the comparison of Viterbi decoding and equalization in Section 2.5. The com-

plexity of the code (in the case of Viterbi decoding) and the modulation process (in the 

case of Viterbi equalization) have a direct (and large) impact on the size and complex-

ity of the Viterbi implementation. It was noted that the main difference between the 

two applications is the calculation of the branch metrics, which is significantly more 

complicated for a Viterbi equalizer. Additionally, the incremental metrics for equaliza-

tion have a larger resolution than the metrics for decoding, so the add-compare-select 

units will be larger (and probably slower). With the equalization applications, it was 

noted that the use of 4-QAM (rather that MSK or GMSK) will produce a heavily inter-

connected trellis structure. This is probably not desirable for a small device because it 

will result in a large amount of routing between trellis nodes. 
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Chapter 3 

Redundant Number Systems for High 

Speed Arithmetic 

3.1 Introduction 

3.1.1 Motivation 

This chapter discusses a technique which was to have an important effect on the re-

search. In addition to investigating different signal processing algorithms, the early 

months of the research involved examining different techniques for producing "better" 

VLSI circuit designs. "Better" was defined as faster, more reliable, and lower power 

consumption. One of the techniques investigated for faster circuit design was redun-

dant number systems. A paper by Srinivas and Parhi had a large impact on the direc-

tion of the work [5]. This paper described a fast adder structure, which used redundant 

number systems to gain a substantial speed increase over conventional methods. At the 

heart of this adder structure was a "sign-select circuit" for redundant numbers which 

suggested their suitability to a high-speed add-compare-select unit, which was very 

much applicable to the Viterbi algorithm, described in the previous chapter. It tran-

spired later on during the research (in fact, after the initial implementations had been 

produced), .that the Srinivas and Parhi design was a red herring, and the use of redun-

dant number systems simply served to disguise the true source of the speed up. This 

chapter describes this investigation. 

3.1.2 Overview 

In the previous chapter the Viterbi algorithm (VA) for error correction and equaliza- 

tion was reviewed. The VA requires many addition operations to be performed at each 
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iteration. In this chapter a redundant number representation [4] will be examined as 

a possible technique for high speed arithmetic. The arithmetic operations which are 

required by the Viterbi algorithm: addition, subtraction, and multiplication will be dis-

cussed. Division using redundant number will also be examined. Although division 

is not used in the Viterbi algorithm, reviewing it will allow conclusions to be drawn 

on the usefulness of redundant number arithmetic in a wider range of digital applica-

tions. In Chapter 4 we will go on to propose a Viterbi decoder design which uses the 

techniques described in this chapter. 

The most common operation in arithmetic is addition. In conventional number rep-

resentations, the addition operation requires the propagation of a carry from the least 

significant digit, to the most significant digit, this places a limit on the speed of imple-

mentation. 

Avizienis developed signed-digit number representations (SDNR) in 1961 [4]. In a 

conventional number representation of radix-r, where r > 1, each digit can assume 

only r values. In an SDNR with radix-r, each digit is allowed to assume more than r 

values. This means that a value has more than one representation in an SDNR. 

For example, a radix-5 SDNR could have the following allowable digits (4, , , I, 0, 1, 

2, 3,4) , the overbar indicates that the digit has negative sign. So, the numbers 121 and 

231 in this radix-5 SDNR are equal to each other, and represent the value 36 in decimal. 

Redundant number systems have been used to develop high speed digital circuits [35], 

[36], [37]. This chapter will examine high speed arithmetic using redundant num-

ber systems. Radix-2 SDNR has possible digit values: {I, 0, 1} and is also known as 

signed binary number representation (SBNR). Each of the four main arithmetic op-

erations will be explained and the improvement in speed offered by SBNR will be 

reviewed. Carry-save arithmetic will also be examined as a redundant number system, 

and its performance relative to SBNR will be assessed. 

3.2 Choice of Radix 

Before investigating Radix-2 SDNR, the choice of radix 2 redundant numbers should 

be examined. The main reason for choosing radix-2 was because of routing. Designs 

which use redundant number sytems with a radix other than 2 often suffer from large 



amounts of routing, or require novel placement techniques to overcome this [38].  One 

of the main goals of this research was to produce two (or more) Viterbi algorithm 

designs, using automatic routing methods. While it would have been possible to base 

the designs on a redundant number system with a radix greater than 2, it was decided, 

for speed of implementation, that SBNR was the prefered choice. 

3.3 Converting between SBNR and binary representa-

tion 

The usefulness of SBNR for implementing arithmetic functions depends on the ease 

at which SBNR can be converted to and from conventional binary representations. In 

this section we will examine the techniques for these conversions. 

3.3.1 Converting binary into SBNR 

As discussed in Section 3. 1, SBNR is similar to binary, except that there is an additional 

possible value for each digit, 1. It can be seen that conventional binary is a subset of 

SBNR so no conversion is necessary [5], [39]. 

However, this is not true for twos-complement representation. An ri bit twos-complement 

word Z = { z_ 1 , z_ 2 , ..., zo } has the algebraic value, Z, shown in equation 3.1. 

= 	- z_ 12' 	 (3.1) 

As equation 3.1 shows, if the MSB (the sign bit) is set, then the value of the word 

is negative. It can be seen from equation 3.1 that conversion into SBNR consists of 

changing the sign bit if it is a 1 into a I. Otherwise the number is positive and no 

conversion is necessary. 

Hence, conversion from twos-complement to SBNR can be achieved in constant time, 

independent of word length. 
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3.3.2 Converting SBNR into binary 

Converting from SBNR into binary is not so straightforward. The most common tech- 

nique [6] is to separate a SBNR number Z = { z 0 , z 1 , ..., z_ 1 } into two binary numbers 

= {4, z, ..., zi 1 } and Z = {z, zj, ..., z_ 1 }. z = 1 if Zk = 1, and z = 0, 

otherwise. Similarly, z = 1 if Zk = T, and z = 0, otherwise: in effect the positive 

and negative components of the number. 

The binary number Z is then subtracted from Z+ using conventional twos-complement 

arithmetic to yield the twos-complement representation of the SBNR number Z. 

If the subtraction is performed using carry-lookahead techniques the minimum time 

taken for the conversion would be 0(1092(n)) [6]. 

It should be noted that the subtraction cells can be simplified since if z = 1 then 

z = 0, similarly if z 	1 then z = 0. 

Many designs for converting SBNR into binary have been presented in the litera-

ture, these all have similar performance because they rely on carry-lookahead tech-

niques [40],  [41]. However, it should be noted that if the SBNR number is produced in 

a digit-by-digit manner then the conversion to conventional binary can be acheived by 

"on-the-fly" conversion [42]. 

3.4 Fast addition using redundant number systems 

It has been claimed in the literature that redundant number systems have a major speed 

improvement over conventional number systems for addition [4], [5]. In this section 

addition using redundant numbers will be described and a fast twos-complement adder 

will be presented, based on a design from [5], which does not require the use of redun-

dant number systems. 



3.4.1 Totally parallel addition 

Figure 3.1 shows a schematic for a totally parallel addition circuit using SDNR. The 

two cells ® and ® implement the following two equations, 

rt 1  + w 2  = z + y 	 (3.2) 

Si = Wi + ti 
	 (3.3) 

where, for r = 3 (for example), 

E {,I,0,1,2} 

y E {,I,0,1,2} 

t E IT, O,i} 

E IT, O,i} 

S E {,i3 O,1,2}. 

Z = (z_, Zn_2, ..., zo) and Y = ( yn_i, Yn-2, ..., yo) are the two numbers to be 

summed; r is the radix of the number system; wi  is the intermediate sum; and t, is 

the transfer digit from the previous stage. 

Yi+I Z11 	 )'1 	zi 	y1 	Z1 

Figure 3.1: A totally parallel adder for SDNR 

As the diagram shows each digit in the input word can only affect two digits in the 

output word, thus eliminating the need for a carry propagation chain. However, for the 

adition of digits zi  and yj  to be totally parallel, the following two conditions must be 
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satisfied [4]: 

The sum digit si IS a function only of z, y2  and the transfer digit t. 

The transfer digit t 1  is a function only of zi  and y2 . 

This condition will be satisfied if the range of values of s i  in equation (3.3) does not 

exceed the range of values in zi and y2  in equation (3.2) [4]. However, this does not 

allow totally parallel addition for SBNR. Almost parallel addition for SBNR can be 

accomplished by allowing the input signal to propagate over a range of three output 

digits. This means that the following three transfer steps are needed. 

rt 1  + w = z + y 	 (3.4) 

rt' 1  + w' = w + t 	 (3.5) 

= w' + t', 	 (3.6) 

where, for r = 2, 

z E {i 3 O,1} 

yj  e {I,O,1} 

E {O,1} 

w E {,i3 O} 

E {I, O} 

E {o,1} 

si e {T,O,i}. 

This structure is shown in Figure 3.2, and Figure 3.3 shows each of the three subcells. 

These digits are encoded using multiple binary bits, which are indicated in Figure 3.3 

by a * superscript. Table 3.1 shows how these values are represented. 

So, addition can be achieved with a very small delay, independent of word length, but 

only if the representation remains as SBNR. 

42 



yi ,1 I 	I 	 Yi' 	Z1' 	 i '  I 

,, 
si+1  

Figure 3.2: An almost totally parallel adder for SBNR 

3.4.2 A fast twos-complement VLSI adder design 

In 1992 Srinivas and Parhi published a fast VLSI adder architecture for summing two 

32-bit twos-complement words [5]. The authors claimed at the time that this design 

was 20 - 28% faster than the fastest known binary lookahead adder designs. 

Figure 3.4 shows Srinivas and Parhi's fast adder design. Since conventional binary is a 

subset of SBNR, two 32-bit twos-complement numbers {a 31  ... ao } and {b 31  ... b o } can 

be summed as SBNR numbers (without carry propagation) to yield an 32-digit SBNR 

number. This is then converted into back into twos-complement format. 

In Figure 3.4 it can be seen that the main part of the adder circuit concerns the conver-

sion of the SBNR word into twos-complement format. The circuit consist of converter 

units which convert the SBNR number in 8 digit blocks. These are basically ripple 

adders which sum the positive and negative components of the SBNR word to produce 

a twos-complement result. To avoid having to propagate the carry the full length of 

the word, two converters are used for each 8 digit block in a similar manner to a carry-

select adder. The choice of which converter to take the output from is made by the 

sign of the previous 8 digit block. This sign is produced by a novel sign-select circuit 

43 



z;*y:* 	**y;** 

w;** 	w;* 

t* 	W'' 	 w.:' 	t' 

S * 	s** 

Figure 3.3: The three subcells for SBNR parallel addition 

which Srinivas and Parhi proposed for detecting the sign of a SBNR number. Their 

sign-select cicuit is shown in Figure 3.5. 

This remainder of this section proposes a simple static-logic binary-tree carry generator 

to support high-speed adder implementations with a delay of 11092 (N)] +2 gates based 

on the Srinivas and Parhi design. 

In examining this design it was observed that the initial SBNR addition block of [5] 

can be replaced by xor(a, b2 ), xnor(a, b) and and(a, b) (conventional propagate 

and generate signals for a carry-lookahead adder); and the remaining circuit can thus 

operate directly on twos-complement representation producing the inverse of the sum 

(easily corrected). With trivial changes, nand(a, b) can be used instead of and(a, b) 

and so reduce the gate count of the design by 3N - 1 and the critical path by 2. More 

significantly, the design is thus equivalent to the hybrid carry-lookahead/carry-select 

architecture shown in Figure 3.6 and it is a purely twos-complement architecture whose 

high speed has no reliance upon SBNR. 

In Figure 3.6, the pairs of 8-bit additions are performed using carry-lookahead logic 

and their outputs selected according to the true value of the corresponding carry-in. 

Unlike the usual carry-select architecture [43],  the carry terms are generated by inde-

pendent logic (the carry-generator tree) rather than by using the results of successive 

adder sub-sections; this is where the speed advantage lies since the Srinivas and Parhi 

design uses a tree structure to achieve O(log(N)) delay. 
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Figure 3.4: The Srinivas and Parhi's fast adder 
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Digit set {I, 0, 11 
2; 

Ii 1 
00 0 
10 1 

Digit set {, 1, 0} 
2; 

1 0 
10 1 
00 0 

Digit set {I, 01 
2; 

T 	1 
0 	0 

Digit set 10, 1} 
2;. 

T 1 
0 

Table 3.1: Representation of redundant digits 

3.4.2.1 Carry-generator tree 

The carry-generator is based on the novel 8-digit SBNR sign-checking circuit pre-

sented in [5] (Figure 3.5). There are two inputs to the circuit {Z N _ 1 , ... Z0 } and 

{Sjv_i, .. .So} which in [5] are generated by the addition of 2 twos-complement num-

bers to form an SBNR sum and interpreted as zero and sign. We have replaced this 

pre-logic with Zi  = xor(a, b) and Si  = and(a, b) (conventional carry-propagate 

and carry-generate signals in "carry-lookahead" terminology), and the remainder of 

Z. Z. Z '  Z ' 	Z. Z. 	2. z. 	Z. S. 	Z. 	S. 	Z. S. 	Z, 	S. 	Z '  Z ' 	 Z, S. 	Z, 	S. 	Z. S. 	Z. 	S, 

Figure 3.5: The 8-digit SBNR sign select circuit 
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Figure 3.6: The hybrid carry-lookaheadlcarry-select logic 

the circuit can be described in the following way. Define 

	

= and(Z,,Z3 _ l ,...Zk+l ,Zk ) 	 (3.7) 

and Ci,k  as the carryOut of the addition of bits j through to k with a zero carryln 

(giving Cj ,j = S3 ). 

We build a carry-generator tree using the following relations at each node: 

mux(Z p , q , Cp ,q , Cr,p_i) = Cr, q 	 (3.8) 

	

nand(Zp ,q , Z,_1) = Zr, q 	 (3.9) 

nor(Z,, Zr,p_i) = Zr,q  (3.10) 

which effectively combines two adjacent adder sections. The first relation states that 

the carryOut of combined sections is the same as the carryOut of the more significant 

section unless its inputs are such that its carryln propagates through it completely. 

This is so when each bit has a "0" and a "1" input and the resulting carryOut will then 
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be the carryOut of the less significant section. (In practice, we propagate carry to 

use an initial nand to form 83 ). The second and third relations maintain the function 

each bit has a "0" and a "1" input for the combined inputs at each node; these two 

relationships are not needed at the leaf nodes. 

By applying these relations first to pairs of inputs, and then to pairs of the outputs of 

such pairs, etc, we build up a simple binary tree. This naturally produces carryOut on 

boundaries for successive powers of 2 (2, 4, 8, 16 etc); to obtain carryOut on interme-

diate boundaries, we augment the tree with other nodes (using the same relationship). 

Figure 3.7 shows this for a 8-bit carry generation tree with 2-bit boundaries. Note that 

the generation of carry-bit 6 from inside the tree structure shows how the critical delay 

on each term can be limited to 1092(N)]. It is believed this was not known to Srinivas 

and Parhi since it allows the use of 4-bit adder sections in their 32-bit example which 

moves the critical path from the carry-lookahead adders to the carry-generate tree and 

thus would have reduced their critical path delay. 

Z7 S7 	6 5  S5 	S4 z3 S3 	s2 Z 1  S 1 	S 

o1L_i 

IITUX,
0MU MUX LirJ.LJ   

mux mux 
Z4 ,7 	 z4 ,5 

0 	 0 

mux LUX 

carry 8 	carry 6 	carry 4 	carry 2 

Figure 3.7: An 8-bit carry-generation tree augmented for 2-bit boundaries 

The optimal decomposition for this architecture is found by determining the delay 

through the binary-tree carry generator and then selecting adder sub-sections (not nec-

essarily carry-lookahead) which complete within that time. The only problem is fan-

out, but this will be constrained in practice since larger adder tree sizes will lead to 

larger carry-boundaries. 
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The carry-generator tree is based upon two-input gates and multiplexors and, we be-

lieve, is suitable for the implementation of large adders using circuit techniques such 

as complementary pass-transistor logic [7] (CPL) which provide both high speed and 

low power. With the improvements outlined above, this circuit technique leads to a 

critical'path delay of 109 2 (N)] + 2 gates. Thus a 32-bit adder, will have a critical path 

of 7 gate delays, compared to 12 as reported in [5]. 

3.4.2.2 Discussion 

The underlying architecture can now be seen to be similar to that of Lynch and Swart-

zlander also published in 1992 [44], [45]. Their design creates a tree structure using 

4-input dynamic-logic Manchester carry chains and uses ripple adders in place of the 

carry-lookahead adders. Like Srinivas and Parhi their "modified" tree produces carry 

signals only on 8-bit boundaries. In contrast, the design presented here provides a 

simple static-logic implementation based on two-input nodes with greater flexibility in 

choosing the carry boundaries and with no requirement for a system clock. This design 

also has similar performance to that reported by Suzuki et al but with fewer gates [46]. 

Finally, it should be noted that the improved circuit can form the basis for a fast SBNR 

to twos-complement conversion. 

3.5 Multiplication using SBNR 

As has been shown so far in this chapter, addition using SBNR can be achieved with 

a relatively small delay that is independent of word length. However, we have also 

shown that the conversion of SBNR into conventional binary representation is similar 

to a conventional binary addition operation, so SBNR is not suitable as the basis of fast 

twos-complement addition circuits with two operands as claimed in [5]. 

The advantages of SBNR can be seen in algorithms which either do not require the 

result to be converted back into binary representation, or where multiple addition op-

erations are performed before converting into binary. 

The most common arithmetic function in VLSI which consists of many addition oper-

ations is multiplication. In this section we will outline a two techniques for multiplying 

binary numbers using SBNR. 
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3.5.1 Multiplication using SBNR partial products 

The most straightforward technique of performing multiplication is to use SBNR par-

tial products. Figure 3.8 shows the concept on two 4-digit SBNR numbers. Each of 

the ri digits in the multiplier are multiplied by the multiplicand to produce n partial 

products. This is shown on the left hand side of Figure 3.8. These n partial products 

are summed using a binary tree of SBNR adders. The final sum represents the product 

of the two inputs. 

o I 0 I 	(+5) 
T 0 I 0 	(-6) 

uuuu+ 	01010 	
+oT 0 1 0 I 	 000io 	(-30) - 

0000 	
iiiii -  I - oToT 000  

o T o T 

Figure 3.8: SBNR multiplication using SBNR partial products 

In this example all of the partial products are implemented using SBNR. This pro-

duces a simple regular structure which is shown in Figure 3.9 for a multiplier and 

multiplicand of 4 bits. Because the structure is based on a binary tree, the delay of the 

multiplier is O(log(n)). If this structure was to be used for binary multiplication, there 

would be an additional delay for conversion of SBNR to binary at the output. 

In [6] a twos-complement multiplier based on this design was shown to have a gate 

count of 0(n2 ) and area requirement of 0(n2 logn), the same as a Wallace tree multi-

plier, but with a less complicated structure. 

3.5.2 SBNR multiplication using the modified Booth algorithm 

A common technique for reducing the delay and complexity of twos-complement mul-

tipliers is to use the modified Booth's algorithm [47] which halves the number of partial 

products to be summed. 

The algorithm examines the bits of the multiplier in triplets with one bit overlap be-

tween each adjacent triplets. A partial product is produced by performing an operation 

on the multiplicand depending on the pattern of the triplets. 

For a multiplicand A = {ao, a 1 , ..., ai} and a multiplier B = {b0 , b 1 , ..., bm_i}, the 
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a3 	a2 	a 1 	a()  

P6 	p5 	p4 	p3 	p2 	p 1 	p0 

Figure 3.9: SBNR multiplier using SBNR partial products 

operations performed to produce each partial are outlined in Table 3.2. 

Multiplier triplet Operation 

a2+i a2i  a2 _ 1  
o o 0 +OxB 
o o I 
o 1 0 
o i i +2xB 
1 0 0 —2xB 
1 0 1 —B 

1 0 —B 
I I I +OxB 

Table 3.2: Booth's algorithm for generating partial products 

It can be seen that the multiplier can only be divided into triplets in this way if n is 

odd. If n is even, then the multiplier is sign extended. A 4 bit Booth's multiplier is 

shown in Figure 3. 10, note the sign extension. 

It should be noted from Table 3.2 that the generation of the partial products is equiva-

lent to re-coding the multiplier as a radix-4 redundant number with the values {, ii, 0, 1, 21, 

then multiplying the multiplicand by the digits of the recoded multiplier in the same 



a3 	a2 	a 1 	a0  

P6 	p5 	p4 	p3 	p 2 	p 1 	Po 

Figure 3.10: SBNR Booth's multiplier 

way as described in Section 3.5.1. The number of partial products is halved by this 

recoding [48]. 

The main disadvantage with the modified Booth's algorithm for twos-complement 

numbers is that the generation of the partial products involves a negation operation. For 

twos-complement numbers a negation operation means inverting the bits and adding 1; 

this involves carry propagation delay which is dependant on the word length n. This 

means that there is a greater delay for generating the partial products than with the 

technique outlined in Section 3.5.1, which can be performed in constant time. 

In addition to the delay of the negation operation, power consumption is also a prob-

lem. To negate a twos-complement word all of the bits need to be inverted, this results 

in a•  high switching activity [39]. 

SBNR can be used to lower the delay and switching activity of the negation operation 

since to negate a SBNR number, only the signs of those digits which are 1 or ii need to 

be inverted. Also, this inversion can be performed in constant time since there is now 

no carry propagation. It has been shown that SBNR can reduce the average switching 

activity by 87.5% for partial product generation for 8-bit numbers [39]. 
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3.6 Division using SBNR 

In 1958, Robertson presented a new digital division method using redundant number 

systems as an alternative to non-restoring division using conventional arithmetic [49]. 

In this section, restoring and non-restoring division is reviewed and Robertson's tech-

nique will be shown. 

3.6.1 Restoring division 

Restoring division is based on the conventional approach to division, it is a recursive 

algorithm defined by equation 3.11 

X 1 rx (Xi —qD),j=0,1,...,m-1, 	 ( 3.11) 

where X°  is the dividend, Xi is the partial remainder for iteration j; qi  E 10, 11 is the 

jth digit in the quotient; m is the number of digits, radix-r , in the quotient; Xm is the 

remainder; and D is the divisor, bit aligned with X°. So the quotient, Q, is: 

Q=rq 	 (3.12) 

At successive iterations, if X 3  > D then q3  = 1, otherwise qj = 0. 

The main drawback with this approach is that the test XJ > D is slow and since it has 

to be performed at every iteration it slows down the whole division operation. 

3.6.2 Non-restoring division 

Non-restoring division removes the test X' > D and replaces it with a test on the 

sign of X3 . The algorithm is similar to that for restoring division and is described by 

equation 3.13: 

X' = r x (X - qD),j = 0, 1, ...,m - 1 	 (3.13) 

where X °  is the dividend XJ is the partial remainder for iteration j and —2D < X < 

2D; qi  E {ii, 11 is the jth digit in the quotient; m is the number of digit, radix-r , in 

the quotient; Xm is the remainder; and D is the divisor, bit aligned with X ° . So the 
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quotient, Q, is: 

Q _ 	 (3.14) 

From [50], at each iteration, the quotient digit qj  is selected such that the partial re-

mainder X' lies between —rD and rD. For radix-2 division, this means that the 

quotient digits can assume the values 1 or T. In can be shown that if the digits can only 

have values 1, 1, then the quotient Q has a unique representation for all values so this 

number system is not redundant. 

j+I R 
2D 

D 
//
4 -.---- 

VD 2 

 

0  
X° X2  X' 

Q=T.ITI 	=-0.625 10 

Figure 3.11: A Robertson diagram for non-restoring division 

Figure 3.11 shows a Robertson diagram which illustrates this division algorithm. The 

two diagonal lines at X 1  = 2(X3  + N) and X 1  = 2(X - N), represent a quotient 

digit of —1 and +1 (i.e. an addition of —D and +D) respectively. 

In this example, the dividend X °  is —D. At each iteration, a vertical line from X 

is drawn, it either intersects with the left hand line, in which case qj I, or the right 

hand line, qj = 1. The division stops when the j = m or when X 3  = 0, the latter being 

the case in this example. 

It can be seen that for radix-2, the value of the quotient digit qj  is equal to the sign 

-2D R 
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of the partial remainder X. However, because the allowable quotient digits are 1, T, 

the evaluation of the sign of X' requires a carry-propagation of 0(n) (where n is the 

word size of the divider) which slows down the iterative step. The whole non-restoring 

division operation is 0(nm). 

3.6.3 Non-restoring division with redundant number systems 

If the quotient and the partial remainders are stored using SBNR, which allows the 

digits {I, 0, 11, the Robertson diagram for the example above becomes Figure 3.12. 

R j+I 

2D 

7 • 1/ Z 4 - 

/ T \\/ \  
__

Txo 	X 2  

/ 
Q=O]Oi =-0M25 •,. Q=T.O 11 =-O.625 

Figure 3.12: A Robertson diagram for non-restoring division with SBNR 

As the diagram shows, there is now a third diagonal line, through the origin, which 

represents a quotient digit of 0. Now, the quotient is evaluated in the following manner: 

if 	X<0then q3 =I 

if 	—D<X 3 <Dthen q,=0 

if 	X3 >Othen q3 =1. 

Since there is an overlap in the diagonal lines, when —D < X3  < D the qj  can be 

evaluated incorrectly and the final result will still be correct. This is shown in the 

-2D R 
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diagram. The lightly shaded line represents the correct evaluations, and results in 

Q = 0.101 (-0.625 o ). The darker shaded line shows what would happen if q0 is 

evaluated incorrectly as T. The final result is Q = toil (-0.625) which is also 

correct. 

It is sufficient to examine the 3 most significant digits of the Xi to the correct evalua-

tion of the quotient [50], this eliminates the need for carry propagation so the delay for 

the non-restoring division using SBNR is 0(m). 

3.7 Comparision using redundant number systems 

While not strictly an arithmetic operation, the comparision of two numbers will be 

briefly described, due to its relavence to the Viterbi algorithm. 

A block diagram for a 4-bit binary tree based twos-complement comparator is shown 

in Figure 3.13. The first level, comprised of type ® cells determines whether the 

corresponding bits in words a and b are equal. 

The second and subsequent levels are comprised of type ® cells which take the results 

from two adjacent cells and perform the following: 

• If most significant inputs are equal then the outputs are the least significant in-

puts. 

• If most significant inputs are not equal then the outputs are the most significant 

inputs. 

The delay through the binary tree comparator is 0(1092N) where N is the word length. 

Because of the redundancy inherent in SBNR, the same technique cannot be extended 

to redundancy number systems. For example, if we wanted to compare two SBNR 

numbers: a = 1010 and b = 0111. The MSD comparision implies that a> b. However 

because, this is incorrect as b > a. The method used for comparing 2 SBNR numbers 

is to perform a subtraction operation, and then to use a sign select circuit, such as the 

one in Figure 3.5, to compute the boolean result. This comparision technique has a 

delay of 0(1092N) + 3 where N is the word length, and the 3 comes from the delay 

through the SBNR addition circuit. 
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a>b 

0 

—\ 
b 	 - equal 

- a>b 
equal 

equal - 

equal°  - 

Figure 3.13: A 4-bit binary tree based twos-complement comparison circuit 

3.8 Carry-save arithmetic as a redundant number sys-

tem 

A popular redundant number system which is used to produce high speed designs is 

carry-save arithmetic. A ripple adder is a carry-propagate adder, this means that the 

carry signal is passed from each full adder to the next most significant full adder in 

the current level. In a carry-save adder, the carry signal is passed to the next most 

significant adder in the next level. This is shown in Figure 3.14. 

It can be seen that carry-save arithmetic is a redundant number system with each digit 

represented by binary digits: carry and sum. This means that each digit can assume 4 

values {O, 1, 2, 3}. In this section we will examine how carry-save arithmetic compares 

with SBNR as technique for producing high speed arithmetic VLSI designs. 
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Figure 3.14: A carry-save adder for summing 3 three bit numbers 

3.8.1 Converting between binary and carry-save arithmetic 

The possible values for binary digits are {O, 11 which is a subset of the possible digit 

values for carry-save arithmetic. This means that, as with SBNR (Section 3.3), no 

conversion from binary to carry-save is necessary. 

Converting from carry-save to binary is also very similar to converting from SBNR to 

binary. A carry-save number Z, of n + m digits, can be described as a list of pairs: 

((c_ a , s_a ), (c-+i, 8-n+1)' . ..' ( CM-1, 3m-1)). The arithmetic value of Z is: 

rn-i 	rn-i 

Z = E .922 + > 

= s+c, 	 (3.15) 

where S = (s n , s+i, ..., Sm_i), C = (C-n, C_n+1, ..., Cm_i). 

It can be seen from equation 3.15 that conversion from carry-save to binary is equiv-

alent to a twos-complement addition operation of two binary words formed from the 

sum and carry bits. 

As discussed in Section 3.3, the conversion from SBNR to binary can be optimised 

since the pairs of bits being subtracted cannot both be equal to 1. With carry-save 



arithmetic, both the carry and sum bits can be either 0 or 1 irrespective of the value of 

the other, so the operation cannot be optimised. 

3.8.2 Carry-save addition 

As shown in Figure 3.14, only one adder delay is required to sum two carry-save num-

bers; this is because there is no carry propagation. It is possible to design a full adder 

circuit with only one gate delay, so the addition of two carry-save numbers can take 

only one gate delay, independent of word length. Figure 3.2 shows that the addition 

of two SBNR numbers requires at least three gate delays because of the transfer digit 

propagation. So for addition operations, carry-save arithmetic is smaller and faster 

than SBNR. 

3.8.3 Carry-save multiplication 

As the diagram in Figure 3.14 shows, carry-save arithmetic is useful for cascaded 

adders because the carry-propagation only happens once at the output. This implies 

that carry-save would be useful for multiplication circuits. 

The first SBNR based multiplier that was examined in Section 3.5.1 took two twos-

complement number as input: n partial products in SBNR were formed by multiplying 

each of the n digits of the multiplier with the multiplicand. These partial products were 

then summed and the final results was converted back into twos-complement form. 

A carry-save multiplier could be designed in exactly the same way, with the partial 

products produced in carry-save format, rather than SBNR. As noted in Section 3.8.2, 

carry-save adders are slightly faster and smaller than SBNR adders so a carry-save 

multiplier based on this design would also be faster and smaller that a SBNR multiplier. 

The second type of SBNR multiplication circuit examined in Section 3.5.2 used Booth's 

algorithm to reduce the number of partial products formed. It was noted that Booth's 

algorithm required the multiplicand to be multiplied by —2, —1, 0, 1 and 2. The mul-

tiplication by 0 and 2 are trivial, requiring the resetting of all the bit and a left shift 

operation respectively. However, the negating of the multiplicand is not as straightfor-

ward. For twos-complement word, a negation operation requires all of the bits to be 

inverted and 1 to be added to the result. This involves carry propagation. It was noted 
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that negating an SBNR number involves only inverting those digits which are ii or 1 so 

the operation is independent of word length. 

The negation of a carry-save word is not trivial. Since the allowed digit values are 

{O, 1, 2, 3} it is not possible to invert a single digit without taking into account the 

rest of the word. So it appears that a carry propagation the full length of the word is 

required to negate a carry-save number. 

However, if our input words are twos-complement binary then the Booth's recoding 

stage involves multiplying a twos-complement word by —2, —1, 0, 1 or 2 to produce 

a carry-save number. This can be achieved by inverting all of the twos-complement 

bits, and adding 1 using carry-save addition. Because carry-save addition has no carry 

propagation, this operation is also independent of word length. 

Thus, a multiplier based on the modified Booth's algorithm would be faster and smaller 

using carry-save arithmetic than SBNR. However, it should be noted that the negation 

operation Of SBNR has less switching activity than the negation of a twos-complement 

number [39] so the SBNR multiplier may have lower power consumption inspite of its 

larger area. 

3.8.4 Carry-save division 

As discussed in Section 3.6, the advantage of non-restoring division over restoring 

division is that a "greater than" test is replace by a sign test. The advantage of non-

restoring division with redundant arithmetic, as proposed by Robertson, is that the 

sign test of the partial remainder does not need to be accurate [49].  This is due to the 

additional redundancy introduced by an extra quotient digit. 

The Robertson diagram in Figure 3.12 shows that for each quotient digit q there is a line 

X 1  = 2(Xi + qD) which represents the subtraction of qD from the current partial 

remainder to give the next partial remainder. This means that the partial remainder lies 

between —D and +D and an incorrect evaluation of the sign test is performed, then 

this can be corrected because the digits 1 and 1 are the inverse of each other. 

With carry-save arithmetic the quotient digits are all positive so we cannot exploit 

the redundancy of carry-save arithmetic and apply the technique proposed by Robert-

son [49] 
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We can, however, use borrow-save [51] arithmetic. Borrow-save arithmetic is similar 

to carry-save arithmetic with two bits: minus, borrow. The borrow-save cells are full 

subtractors and the borrows are passed to the next most significant full subtractor on 

the next level. To convert from borrow-save arithmetic into binary, a borrow-propagate, 

i.e. a binary subtractor (or adder) is required. 

As 	with 	carry-save 	there 	are 	four 	possible 	pairs 	of 	bits: 

(m, b) e {(0, 0), (0, 1), (1, 0), (1, 1)}, which correspond to the three possible digit val-

ues 1-1, 0, 11. So borrow-save arithmetic is really SBNR. The only difference is the 

way that the digits are represented with binary values. 

So if borrow-save is the same as SBNR, then the division methods described in Sec-

tion 3.6.2 are equally applicable to borrow-save arithmetic. This has been shown by 

the implementation in [51]. 

3.9 On-line arithmetic 

This Chapter has been devoted to redundant number systems in parallel arithmetic 

circuits. However, mention should be made of the relevance of redundant number 

systems in serial circuits. Specifically, with regards a technique known as on-line 

arithmetic. 

On-line arithmetic is an application of redundant number systems that reduces the la-

tency of digit serial circuits. An example of this can been seen in a paper by Ercogovac 

and Lang which describes the conversion of redundant numbers into conventional bi-

nary in a serial manner [42].  The technique described in [42] is applicable to any circuit 

which produces as redundant result in a digit serial manner, with the most significant 

digit first. The delay of the circuit is proportional to the size of the word, but since the 

input is serial with the MSD first, the result is ready one adder delay after the input 

was ready. 

This pipelining technique can be used to produce circuits that, although in some cases 

may have a significant delay, have a very high throughput. 

On-line arithmetic has been extended to a MSD first skew-parallel data format which 

allows the technique to be applied to digit parallel circuits, with similarly large gains 

in throughput [36], [52], [53].  This technique shows that redundant arithmetic can be 
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a powerful method of increasing the speed of arithmetic circuits. 

3.10 Conclusions 

This chapter has primarily been a review chapter for redundant number systems. Re-

dundant number systems, particularly SBNR have been defined. It has been shown 

that redundant numbers (especially SBNR) can be used to perform addition and sub-

traction operations very fast. In fact, the speed of these operations is 2 cell delays for 

systems other than SBNR, and 3 cell delays for SBNR. Also, the speed is independent 

of the word-length of the operands. The main problem with redundant numbers, which 

means that SBNR cannot be used to arbitrary speed-up parallel circuits, is that the con-

version between SBNR and conventional twos-complement is expensive (in fact, it is 

equivalent to summing two twos-complement operands). 

This chapter has reviewed SBNR in some detail. All of the major arithmetic operations 

have been examined, and compared in speed and complexity to the equivalent conven-

tional binary operations. Also, the comparison operation has been reviewed. While 

this function is not as common, it plays an important part in any implementation of the 

Viterbi algorithm. 

One of the most common redundant number systems, carry-save arithmetic, has also 

been reviewed, and the similarities between it and SBNR have been discussed. 

One of the most important uses of redundant number systems in digital circuits, on-line 

arithmetic, has been briefly discussed. This technique has been used in the literature to 

produce novel digital designs with very high throughput rates. 

This chapter has also presented the design of a fast twos-complement adder circuit. 

The design was based on a Srinivas and Parhi fast adder design that used SBNR as 

an internal representation. Their use of redundant number systems has been shown to 

be pointless. In fact, the use of SBNR in their design only served to disguise the true 

nature of the speed-up, which has been revealed here. From that investigation, we have 

shown that redundant number systems should not be used simply as a arbitrary method 

for achieving speed-up, as demonstrated in the Srinivas and Parhi design. Unfortu-

nately, this design was used as a stepping stone for the project, and the shortcomings 

of it were not discovered until later. However, this is an important piece of original 
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work, because it led to the design of a new fast adder circuit, which is purely twos 

complement. It has been shown that this design has a lower gate count, and smaller 

critical path, than existing designs. 
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Chapter 4 

High Speed Viterbi Decoding using 

Redundant Number Systems 

4.1 Introduction 

4.1.1 Motivation 

As discussed in the opening section of the last chapter, the Srinivas and Parhi paper 

had suggested that SBNR would be applicable to an implementation of the Viterbi al-

gorithm. The Viterbi algorithm is an iterative algorithm, with an add-compare-select 

circuit forming the main part of the feedback loop. If this loop could be minimised, per-

haps with a very fast add-compare-select circuit, a high speed Viterbi implementation 

could be produced. It should be noted that while a high-speed Viterbi implementation 

is not essential to a hand-held telephone system, such a device could be useful in re-

ceiver stations where signals could be multiplexed on a single device, reducing the size 

of the implementation. This chapter describes the VLSI design of the first devices. 

4.1.2 Overview 

In Chapter 2 Viterbi decoding was reviewed and in Chapter 3 redundant number sys-

tems were examined. This chapter describes the application of redundant, number sys-

tems to a Viterbi decoder. As has been shown, SBNR has the potential for producing 

high speed arithmetic circuits, particularly when the speed of the addition circuitry is a 

primary concern. This chapter will present the design of a Viterbi decoder which uses 

redundant arithmetic as a representation for the path metric values. These metrics are 

totally internal and never form part of the output from the decoder. This means that 

the design will not suffer from the drawback of having to convert redundant numbers 
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into twos-complement arithmetic as covered in Chapter 3. Two final Viterbi decoder 

designs were produced, with constraint lengths K = 4, and K = 5, and rate r = 

In Section 4.2 the decoder design is presented and each of the main modules are de-

scribed. In Section 4.3 issues regarding Viterbi decoder design for high-bit rates are 

reviewed. The remainder of the Chapter compares redundant arithmetic with conven-

tional binary techniques for producing a high-speed Viterbi decoder design. 

4.2 Viterbi decoder design 

To achieve the highest possible throughput, the decoder design is based on a fully 

parallel architecture with a single add-compare-select (ACS) unit for each node. The 

block diagram in Figure 4.1 shows the basic design of the decoder. The incoming bit-

stream is used to calculate the branch metric values (BMVs) which are then used to 

increment the path metric values (PMV5). 

PMV and Path History bus 

Add 
BMV0  Compare 

Select 	 y(t) 	
Calculation 	[BMV 2  

BMV 

	

	

input 	
Unit 
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Compare  

BMV, 	Select 	 L L PMV 	 Output 
Normalisation 

	

Determination 	
output 

Unit 	T_ 	Unit 	

dPath history Add 

BMV 	
Compare 	 length  

Select 

HMV 

Add 
Compare 

Select 

Figure 4.1: A block diagram of a Viterbi decoder 

For constraint lengths K = 4 and K = 5, 7 bits is the minimum resolution for the 

PMV [22], [54]. As stated in Chapter 3, because of properties peculiar to redundant 

arithmetic, one extra digit must be stored to achieve the same dynamic range as con-

ventional binary notation [4]. Therefore 8 SBNR digits are required to achieve the 

same resolution as 7 binary bits, and so we use a PMV resolution of 8 digits. 



4.2.1 The branch metric value calculation unit 

The BMV calculation unit computes the Euclidian distance between the received sym-

bol pairs, and the possible received value associated with the trellis branches (see Sec-

tion 2.3.1 for details). 8-level quantization was used for the input symbols in prefer -

ence to a 2-level (binary) system. This level of quantization is known to provided 2dB 

higher coding gain over 2-level binary inputs [11].  It was decided that 8-level quan-

tization was sufficient since infinite resolution provides an additional increase of only 

0.25dB [11]. 

Table 4.1 shows how the Euclidian distance between the received input symbols and 

the possible input symbols is calculated. The two columns in the table show the input 

symbol with 8-level quantization. This system is the same as that used in [22] and [11.]. 

The circuit which calculates this is shown in Figure 4.2. 

Quantized value Binary value Distance from 0 Distance from 1 

0 000 0 6 
1 001 0 5 
2 010 0 3 

3. 011 0 1 

4 100 1 0 

5 101 3 0 
6 110 5 0 
7 111 1 	6 0 

Table 4.1: 8-level quantization values for different received symbols 

In a rate r = 1  code the input symbols are pairs of bits, so the BMVs are calculated 

by summing two distances. The BMV calculation circuit for a rate r = decoder is 

shown in Figure 4.3. 

The BMV calculation unit uses conventional binary notation rather that SBNR. As Ta-

ble 4.1 shows, the maximum Euclidian distance for one bit is 6. So for pairs of bits, 

the maximum distance is 12, which can be represented with 4 binary bits. Since con-

ventional binary is a subset of SBNR, and since a SBNR adder requires a transfer digit 

propagation of 3 digits (Section 3.4.1), there is little to be gained, except additional 

complexity, by using redundant arithmetic for the BMV calculation unit. 



Figure 4.2: Schematic diagram of the bit distance generator 

4.2.2 The add-compare-select unit 

There is one ACS unit for each of the nodes in the trellis diagram. The ACS unit 

for state j performs the summation PMV + BMVi,j, where BMV is the BMV 

associated with a transition from state ito state j, for all permitted transitions i -+ J. 

The ACS unit selects the lowest of these summations as the PMV for state j. For a rate 

r = code there are two such transitions for each state. 

4.2.3 The output determination unit 

The path history length depends on the technique which is used for output determina-

tion. The standard technique for determining the output bit in the Viterbi algorithm is 

minimum metric selection. It involves selecting the least PMV from all the nodes and 

output the oldest bit in the corresponding path history. 

Michelson and Levesque have simulated a Viterbi decoder using minimum metric se- 
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Figure 4.3: Schematic diagram of the BMV calculation unit 

lection, with varying sizes of path history [15]. Their results showed that increasing 

the number of bits stored in the path history to more than 4 times the constraint length 

resulted in no discernible improvement in performance. 

A binary tree based minimum metric selection circuit was initially investigated. This 

is shown in Figure 4.4. 

SRNR 	
OLDFS 

 BIT 

LDEST rr 	
UNIT 	mp-MIC 

SBNR 

UNIT 

SBNR 
COMPARE-SELECT 

UNIT 

SBNR 

COMPARE-SELECT 
UNIT 

SI3NR 

COMPARE-SELECT 
UNIT 

SBNR 
COMPARE-SELECT 

UNIT 

SBNR 

COMPARE-SELECT 
UNIT 

Figure 4.4: Schematic diagram of the minimum metric selection circuit 

The circuit in Figure 4.4, which is suitable for an eight state Viterbi decoder with a 

constraint length of K = 4, was implemented using the 1 .2gm standard cell library 

from ES2. The resulting circuit was relatively slow at 10.50ns, compared with the ACS 



units which were 4.56ns (as will be explained in Section 4.4.4). While this circuit 

could have been pipelined to increase the throughput rate, the area requirement was 

also large at 1073 x 1322 microns. 

It was decided instead to use majority voting [55], [56] to determine the output. This 

involves examining the oldest bits of all the path histories and outputting a one or a 

zero depending upon which is the most common. 

The oldest bits in the path histories are often the same [57]. This means that the oldest 

bit in the path history from each ACS. unit can be fed into a majority gate to determine 

the output. The majority voting circuit for K = 4 only takes 1.48ns and is only 

requires 113 x 162 microns of silicon area. The disadvantage of using majority voting 

is that to achieve the same performance as for minimum path metric selection, the path 

history length must be increased. Michelson and Levesque's experiments showed that 

the path history length should be increased to 5 to 6 times the constraint length to 

provide the same coding gain as minimum metric selection [15]. This means that the 

path history is 24 bits for K = 4 and 30 bits for K = 5. 

The path history storage has been implemented as one 24 or 30 bit register for each 

ACS unit. The output of each register is fedback to the input of 2 other ACS units. 

While other smaller implementations are possible, such a RAM blocks, the intention 

of the design was to compare SBNR with conventional binary so a basic path history 

implementation was used. 

4.2.4 Metric normalization with redundant arithmetic 

As discussed in Chapter 2, a PMV for a node is the sum of all the BMVs along the path 

to that node. This corresponds to the accumulated error between the received signal, 

and the individual path. Because of the trellis structure, paths will merge and for each 

convolutional code there is a maximum difference, L, between the smallest PMV and 

the largest PMV [22]. 

The number of errors in the transmitted signal can only increase, not decrease. For 

the amount of errors to decrease, previously incorrectly received bits would have to be 

received correctly - which is clearly impossible. With this knowledge it can be seen 

that the PMVs will increase continually if they are not regulated. This is undesirable 

since they must be stored using a finite number of bits. However, as has been pointed 



out, the largest PMV can only be greater than the smallest PMV by A so when the 

largest value exceeds t., A can be subtracted from all the PMVs. This will not affect 

the computation of the algorithm because the absolute values of the PMVs are not 

important, only their relative differences are considered. 

A PMV normalisation circuit is used to control and adjust the PMVs. The standard 

technique for normalisation when using conventional binary notation is to detect when 

all the MSBs (most significant bits) of the PMVs are set and reset them. If the number 

of bits used to represent the PMV is chosen carefully (see Table 4.2, based on results 

from [22]) then this is equivalent to subtracting the next power of 2 above A from all 

the path metric values [22]. 

PMV length 

(binary bits) 

PMV length 

(SBNR Digits) 

upper constraint length (K) 

r = 	r = 
5 6 1 - 
6 7 2 1 

7 8 5 3 

8 9 10 7 

9 10 21 14 

Table 4.2: Maximum constraint length for different word resolutions for our chosen 
quantisation 

When using SBNR rather than conventional binary, instead of detecting that the MSB 

is set we must detect one of the following two conditions: 

Is the 2nd MSB set to +1? 

Is the MSB set to +1 and is the 2nd MSB set to —1? 

This means that the normalisation circuitry is slightly more complex for redundant 

arithmetic. 

The normalisation is achieved by the use of a normalisation control circuit. Each of 

the ACS nodes asserts a normalisation request line (NORM req) when the PMV for 

that node satisfies one of the above conditions. The normalisation circuit generates 

a normalisation grant signal (NORM grant) if all of the NORM req  lines are asserted. 

When an ACS node received a NORM grant  signal, the top two digits of its PMV are 

reset. This circuit is shown in Figure 4.5. 
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Figure 4.5: Schematic diagram of the normalisation circuitry 

4.3 High bit-rate Viterbi Decoder design 

In modern day communications systems, it is important to achieve higher, and higher 

bit rates. Hence it is important to be able to implement a Viterbi decoder that can 

operate at fast speeds. The fact that the VA is an iterative algorithm means that the 

throughput of the decoder is limited by the time it take to compute one iteration. This 

problem will be described in terms of the add-compare-select bottleneck. 

This section will describe design techniques for producing high bit-rate Viterbi de-

coders. Both architectural and algorithmic methods will be reviewed. 

4.3.1 The add-compare-select bottleneck 

The feedback loop in the Viterbi decoder is shown in Figure 4.6. The addition oper-

ation of one iteration cannot be performed until the comparison operation of all the 

nodes of the previous iteration has been completed. 

This results in a bottleneck which means that the conventional Viterbi algorithm cannot 

be pipelined. Hence the data rate of an implementation of the Viterbi algorithm is 
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Figure 4.6: The add-compare-select bottleneck 

dependant on the delay of the ACS units. To produce a high speed Viterbi decoder, 

this delay needs to be minimised by the use of architectural improvements, or the 

feedback loop has to be removed altogether by the use of algorithmic manipulation 

4.3.2 Architectural improvements 

The first method of producing a high speed implementation of the Viterbi algorithm 

is to introduce architectural improvements, normally to the ACS unit to minimise the 

length of time needed for each iteration. 

In [58] the design of a 45 Mbps Viterbi decoder in presented for use in digital video 

applications. This design employs a traceback memory management unit [59],  for 

output determination, which accesses the path histories of the ACS units. To speed up 

the decoder, multiport memory is used to store the path histories which means that the 

output determination and the ACS operation can be performed in the same cycle. This 

reduces the overall cycle time and allows the decoder to operate at high bit rates. 

In [60] a 140 Mbps Viterbi decoder for satellite communications is presented. The de-

sign of a high speed ACS unit using custom emitter-coupled logic (ECL) is described. 

The use of ECL has the advantage of much higher speeds than CMOS. However, it has 

two main drawbacks: the power consumption is very large compared with CMOS; and 

the size of the design is much greater. In the design presented in [60] each ACS unit is 

implemented on one ECL gate-array which means that for a 16 state trellis code more 

than 16 chips would be required to perform the Viterbi algorithm. 

The design presented in [61] uses carry-save arithmetic to create an ACS unit that can 

be pipelined, thus removing the feedback bottleneck. The use of carry-save addition 

means that the addition section of the ACS unit has no carry chain, and a bit-local carry-

save maximum selector [62] is employed which means that the data rate is independent 
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of word length. 

4.3.3 Algorithmic manipulation 

An alternative method of producing high speed Viterbi decoders is to remove this bot-

tleneck entirely by algorithmic manipulation. 

In [57],  [63] and [64] the ACS iterations are combined algebraically to produce an 

step ACS recursion" which means that word-level parallelisation can be introduced to 

produce an arbitrary speedup, although the area of the design increases significantly. 

The design in [64] can operate up to 600 Mbps but requires an area of 170mm 2 . In [651 

this technique is extended and finer grain pipelining is introduced which can result in 

a Viterbi decoder up to eight times faster than conventional detectors. 

4.4 Redundant number systems for high speed 

add-compare-select units 

The technique that is explored in the remainder of this chapter is using redundant 

number systems, specifically SBNR, as an architectural method of producing a high 

speed Viterbi decoder. 

Chapter 3 showed that addition circuits using SBNR can be considerably faster than 

twos-complement addition circuits, especially for large word lengths, because they 

eliminate the need for a long carry propagation chain. This section describes the re-

sults obtained from simulations to determine whether significant speed-ups could be 

achieved with SBNR ACS units over more conventional ones. 

4.4.1 Simulation conditions 

The circuits which follow were implemented using Boolean functions in the standard 

CMOS 0.7 micron library from ES2. Full adder modules were available in this library, 

but since the SBNR modules were designed from Boolean functions, it was decided 

that the twos-complement adders should also be designed from Boolean functions to 
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avoid biasing the results. The areas and delays are based on fully placed and routed 

units, both 8 bit and 16 bit ACS units have been simulated. 

4.4.2 Adder circuits 

Table 4.3 shows the results obtained for different adder units. The SBNR adder takes 

two SBNR numbers and outputs the sum in SBNR. From the table it can been seen 

that the redundant adder is faster than all other addition units. The fact that it does not 

require a carry propagation chain means that the 16 digit adder has the same delay as a 

8 digit adder. It should also be noted that the redundant adder required only 30% more 

area than the carry-lookahead adder and is more than twice as fast. 

8 digit 16 Digit 

Adder Type Delay (ns) 	Area (x 10 3 im2 ) Delay (ns) 	Area (x 10 3 im2 ) 

Ripple Adder 4.77 50.58 9.33 92.66 

Carry Lookahead 2.27 111.54, 2.78 221.67 

Carry Select 4.11 78.32 4.38 147.84 

SBNR Adder 1.06 143.02 1.06 283.86 

Table 4.3: Comparison of 8 and 16 Digit Addition Circuits 

4.4.3 Comparator circuits 

Table 4.4 shows the area and delays for three types of comparator circuits. All of 

the circuits operate on two input words and determine which of the two is the larger. 

The first two comparators operate on twos-complement numbers, and the last circuit 

operates on two SBNR input words. 

8 digit 16 Digit 

Comparator Type Delay (ns) Area(x10 3 jtm2 ) Delay (ns) Area (x1O 3 m2 ) 

Ripple 4.66 44.47 8.98 82.58 

Binary Tree 2.19 46.87 2.86 80.77 

SBNR 2.83 164.86 3.37 333.46 

Table 4.4: Comparison of 8 and 16 Digit Comparison Circuits 
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4.4.3.1 Binary comparator 

The binary comparator used is based on the 4-bit binary tree twos-complement com-

parator shown in Figure 3.13, on Page 57. 

The delay through the binary tree comparator is 0(1092N) where N is the word length. 

4.4.3.2 Ripple comparator 

The second type of twos-complement comparator is a ripple comparator. A block 

diagram for this is shown in Figure 4.7. The comparator is built up from type Q cells 

which take the maximum and equality result from the previous bits and compute the 

maximum and equality result for the current bits. These cells implement the following: 

. If the a and b inputs being compared are equal then the new outputs are the same 

as the previous outputs. 

• If the a and b inputs being compared are different then the equal = 0 and max = 

b. 

The delay through the ripple adder is 0(N) from the least significant bits of a and b 

being available. However, if the values a and b are generated from a ripple adder then 

the delay though a cascaded ripple adder and ripple comparator would be equivalent to 

one carry chain. i.e. 0(N + 1). 

4.4.3.3 SBNR comparator 

The final comparator circuit shown in Table 4.5 is a SBNR comparator. While SBNR 

addition is fast and does not require a carry chain - the same is not true for SBNR 

comparison. Our comparator consists of a SBNR subtraction circuit followed by an 

SBNR sign select circuit based on a design from [5] which is shown in Figure 4.8. 
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Figure 4.7: A 4-bit twos-complement ripple comparison circuit 

4.4.4 Add-compare-select circuits 

Table 4.5 shows results from five different ACS circuits comprised of the addition and 

comparison modules described in Sections 4.4.2 and 4.4.3. 

The table confirms the observation made in Section 4.4.3.2 that a ripple adder followed 

by a ripple comparator would perform faster than the same adder followed by a binary 

tree comparator. In fact the ripple adder / ripple comparator circuit is approximately 

10% faster than the ripple adder / binary comparator circuit. 

Table 4.5 also shows that the CLA is roughly 75% larger than the ripple adders for 8 

bits and 100% larger for 16 bits but it is significantly faster in both cases. 

Finally it can be seen that the speed of SBNR is similar to that of CLA techniques for 

8 digit adders but a speed-up of 14% can be achieved for 16 digit adders. However, the 

SBNR ACS units require almost twice the area of the corresponding CLA 16 bit ACS 
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Figure 4.8: The 8-digit SBNR sign select circuit 

ACS Unit Type 
8 digit 	- 

De!ay(ns) 	Area (xlO3 iim2 ) 

16 Digit 

Delay(ns) 	Area (x1O 3 m2 ) 

Ripple add / ripple compare 6.86 193.36 12.81 336.12 
Ripple add / binary compare 7.58 209.32 11.42 358.11 
CLA add / binary compare 4.62 348.19 5.92 668.25 
Carry select add / binary compare 6.40 243.46 7.60 488.56 
SBNR add! SBNR compare 4.56 507.26 5.10 1056.65 

Table 4.5: Comparison of 8 and 16 Digit add-compare-select units 

units. 

4.4.5 Discussion 

We have shown that an increase in speed of 14% for an ACS unit can be achieved by us-

ing SBNR instead of twos-complement number representation. However, the increase 

in area in considerable, roughly 45%. If SBNR were to be used as an internal repre-

sentation for the metrics in a Viterbi decoder, we could expect a 14% increase in the 

bit rate, but the increase in area is probably not practical in a number of applications, 

certainly SBNR is not applicable to small or low-power design. 

4.5 Implementation and layout 

Two Viterbi decoders have been designed and simulated, these are K = 4, r = 1  and 

K = 5, r = . They were both produced using the 1.0iim two-metal standard cell 

Mg. 

77 



CMOS process from ES2. 

The K = 4 design was produced using Cadence Design Framework II schematic 

capture and logic synthesis tools to optimise the area and speed of the lowest level 

cells. 

For the K = 5 decoder, a C program was written. This program generates a Verilog 

HDL structural description of the decoder. The code accepts the constraint length K 

as input and generates a Viterbi decoder, rate r = , with a trellis based on the optimal 

convolutional code for the constraint length K, as determined by Larson [14]. 

The Verilog code which is produced does not contain all of the modules, the rest (such 

as the SBNR addition modules etc) have been designed in schematics. The Verilog 

code was then imported into Cadence Design Framework II which produces schematic 

diagrams and netlists. 

The layout was then produced using the Cadence/ES2 automatic place and route tools. 

The layout of the K = 4, r = decoder occupied 13.5mm 2  of silicon and is shown in 

Figure 4.9, the K = 5, r = decoder required 26mm 2 . 

It has been estimated that a similar decoder with K = 7 would occupy 100mm2 . 

4.6 Simulation and testing 

The capacitance of the routed chips were extracted and the decoders were simulated. 

Both the layouts of the K =1 4 and K = 5 decoders have achieved similar bit rates of 

up to 100 Mbps. 

As the constraint length K is increased, the speed of the decoder does not decrease 

considerably. So we estimate that a decoder of K = 7 based on this design would be 

able to operate at a similar speed to the K = 4 and K = 5 decoders. 

4.7 Comparisons 

This section will review some existing Viterbi decoders designs, and compare them 

with the design presented in this chapter. 





chapter is CMOS (hence significantly lower in power usage) and is implemented on 

one chip with a silicon area of 13.5mm 2 . 

Designs 3 and 4, from [61] and [64] have been developed by Fettweis and Meyr. The 

implementations use carry-save arithmetic to create an ACS unit that can be pipelined, 

thus removing the feedback bottleneck. In addition, in [64] the ACS iterations are 

combined algebraically to produce an arbitrary speedup (as discussed in Section 4.3.3), 

however, the implementation is very large, at 170mm 2 , and only has a 4 state trellis 

(K —3) 

Design 5 has been produced by Black and Meng at Stanford University [38], [66]. It 

is the most comparable design to the one presented in this section. The design is faster 

than the one presented here, the throughput is 140Mbps (40% faster than our design). 

However, the design is considerably larger at 62mm 2 , compared to 26mm2 . 

Details, such as the chip area, and process type, of commercial implementations are 

difficult to come by. This is why none are included in Table 4.6. However, in [38], 

Black and Meng described single chip Viterbi solutions from Stanford Telecommuni-

cations and Qualcomm Incorporated. These implementations are based on convential 

radix-2 techniques and are capable of bit rates in the region of 25Mbps. Signigicantly 

slower that the implementations presented here. 

4.8 Conclusions 

This chapter has described the architectural design of a Viterbi decoder which lead to 

the implementation of two Viterbi decoder devices, one with constraint length K = 4, 

and one with constraint length K = 5. The decoder design used redundant number 

systems as an internal representation for the incremental metrics. One of the attractions 

of SBNR for this was that the metrics are used internally only, they are never output. 

This meant that the problem of the slow conversion from SBNR into twos-complement 

binary format was not an issue. 

Specifically, the following components of the Viterbi decoder have been described: the 

branch metric calculation unit, the add-compare-select unit, the output determination 

unit, and the metric normalization unit. The metric normalization unit was based on 

the conventional normalisation technique for binary numbers; it had to be extended 
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slightly to apply the same method to SBNR. The add-compare-select unit used the 

sign-select circuit based on the Srinivas and Pahri fast adder described in Chapter 3. 

This produced a circuit, which was faster than the equivalent twos-complement circuit. 

It should be noted that this chapter has contained a large amount of original work. 

The design of a fast SBNR add-compare-select unit has been produced, it has been 

shown to give a limited (but significant) speed increase of 14% over conventional 

carry-lookahead techniques for l6bit values. Also, the implementation of a decoder 

design using SBNR throughout, specifically using the fast add-compare- select units, 

has been presented. This design as been shown to produce a very fast implementation 

that is small (even though the ACS units are large) and compares well against existing 

designs. In fact, the design shown in Figure 4.9 is better in terms of speed and area than 

most of the designs reviewed in Section 4.7. A design using the carry-save techniques 

described in Chapter 3 would be even smaller and faster. 
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Chapter 5 
Digital Architectures for Viterbi 

Equalization 

5.1 Introduction 

5.1.1 Motivation 

The second application of the Viterbi algorithm within a GSM receiver is for channel 

equalization. The implementation of the decoder module (presented in Chapter 4) had 

been quite successful. It seemed logical to extend this design to equalization. Again, a 

high-speed Viterbi equalizer is not essential to a hand-held telephone system, but such a 

device could be useful in receiver stations. In addition, a technique for producing low-

power VLSI circuits called Complementary Pass-transistor Logic (CPL) [7] had been 

investigated during the early period of the project. The equalizer was designed with 

the intention of implementing it using CPL. This chapter describes the architectural 

design of the Viterbi equalizer. 

5.1.2 Overview 

As described in Chapter 2, the VA was proposed in the COST 207 report into Digital 

land mobile radio communications as a possible channel equalization technique for 

GSM [3].  In this chapter, the design and a low-power implementation of a Viterbi 

equalizer (VE) suitable for a GSM receiver is described [67]. The techniques presented 

here have been being implemented for an intersymbol interference (1ST) of 5 bits which 

(in GSM) represents a multipath delay spread of 15s [ 27]. 

A number of VE designs for GSM have been presented in the literature. In [68] the 

design and simulation of a VE is proposed, although not implemented. In [69] a pa- 
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rameterised VLSI serial implementation of VE is presented and in [70] the simulation 

of a Verilog HDL implementation is described. 

In this chapter the design of a fully parallel YE for GSM will be described, the ar-

chitecture uses high-speed combinatorial logic to minimise the speed of the inter-

nal clock, and is designed to be implemented by complementary pass-transistor logic 

(CPL) which offers the possibility of low power consumption and low area at a high 

speed [71]. 

The parallel architecture will be described, although the design was not implemented 

due the large area requirements. Chapter 6 will examine why the implementation was 

halted and why a serial design was developed instead. 

5.2 The Viterbi equalizer design 

From Chapter 2, for each possible received sequence, (a, b) = ((an-L, a_L+1, ..., a_), 

(bfl _L, b_L+1, ...) b,_)), the YE minimises the metric [2]: 

	

A(a,b) = A_ i (a,b) + a [Yn - 	(amXn_m + bm(n_m)] 
m=n - L 

	

+b [_ 	(bm X n_ m +anz (n _m )] 	(5.1) 
rn =n- L 

Amn  = A m (n -1) +a[y - I] + b [z - Q8} 	 (5.2) 

Is = 	( amXn_m + bm (n_m ) 	 (5.3) 
rn=n- L 

Q5 = 	(bmn _m  + am(n_m) 	 (5.4) 
m=n-L 

where y, and zn  are the in-phase and quadrature received signals samples after passing 

through a filter matched to an estimate of the channel impulse response (CIR), xn 

and (n  are the CIR matched filter autocorrelation coefficients, and m represents the 

unique possible received sequence (a, b) which results in a path to state S in the trellis 

diagram. 

It can be seen that I and Q5, defined in equations 5.3 and 5.4 depend only on the 

sequence of possible received signal sequences (a, b) and the CIR estimate. If the CIR 



is changing rapidly then the incremental metric (equation 5.2) will be incorrect. In 

the GSM system, each 0.577ms TDMA burst contains a midamble which is used to 

estimate the CIR (Section 2.6.2). It is possible that the CIR could be varying so quickly 

that the CW estimate is not sufficiently accurate for the whole of the 0.577ms TDMA 

burst. If this is the case then the VE needs to be adaptive [72], [73], [74], [ 27], [75]. 

Adaptive equalizers have been shown to be able to operate with multipath delay of 

20ts, corresponding to a mobile station speed greater than 200km/h, [27] which 

would allow the use of cellular telephone handsets in high speed trains. In fact some 

adaptive equalizer design using the fast Kalman algorithm [3] can achieved a good 

signal-to-noise ratio at up to 300km/h [72]. 

In this work, the main objective was to produce a small, low-power design which 

would be suitable for use in a cheap portable handset. It was decided not to produce 

an adaptive equalizer which would require significantly more complexity than a non-

adaptive one [3].  It has been shown that a non-adaptive YE design with 32 states is 

capable of equalizing signals with multipath delays of up to 15s which corresponds 

to a vehicle delay of 200km/h [75]. It was decided to select this as the specification 

of the VE design for GSM applications. 

The diagram in Figure 5.1 shows the overall structure of a non-adaptive YE for an N 

state trellis. 

Normalization 
Circuit 

Path Metric Buses 

Unit 

Constant 

Generation 	
;: 	 Determination 

Figure 5.1: Top level block diagram 

The resolution for the received sample and the coefficients was chosen to be 8-bit. 

From the literature, a binary wordlength of 8-bit is necessary to reduce performance 
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degradation [72]. 

5.2.1 Viterbi equalizer complexity 

To design a VE circuit, the trellis diagram needs to be constructed. In Section 2.4.2, 

the MSK trellis diagram for an ISI of 2 in-phase/quadrature-phase pairs is derived. A 

VE which is required to cope with multipath echo delay of 15jis must be able to cope 

with an ISI of 5 in-phase/quadrature-phase pairs [27]. 

Table 5.1 shows the state transition table for the MSK trellis diagram with an ISI of 

5. The table shows the (a, b) sequences which are associated with a path each of 

the states. It can be seen that the length of the (a, b) sequence corresponds to the 

number of symbols of 1ST, or the memory of the modulation code and the memory of 

the channel. 

A branch into a state represents a path between state on the modulation diagram (as 

shown in Figure 2.11(b) on page 20). Each of the transitions represents an input symbol 

to the modulator, these are shown in the "Append" column of Table 5.1 and these are 

the values that are appended to the path histories for the states. 

The trellis consists of 64 states. As noted in Section 2.4.2, if we know the starting state 

then the number of states in each iteration is halved, in this case the trellis has 32 states 

at each iteration. Assuming the first state at the modulator (Figure 2.11(b)) is Lq = 0, 

then the final column shows the cycles (odd or even) that each state is valid. 

5.2.2 The summation circuit 

Examining equation 5.1 we can see that for each single TDMA packet we are required 

to evaluate 4 sets of summations: 

anXn (5.5) 
m=n- L 

bn(n _ m  (5.6) 
m=n- L 

bnXn_m (5.7) 
m=n-L 



State Number (a, b) sequence Output to states Append bit Cycle 
0 1 1 1 -1 -1 -1 -1 1 1 1 48.56 -1 even 

1 1 -1 1 1 1 1 -1 -1 -1 16,24 -1 even 
2 1 1 1 -1 1 1 1 -1 -1 -1 49,57 -1 even 
3 1 1 -1 1 -1 -1 -1 1 1 1 17,25 -I even 
4 1 1 1 -1 -1 -1 1 -1 -1 -1 50,58 -1 even 
5 1 1-1 1 1 1-1 1 1 1 18,26 -1 even 
6 1 1 1-1 1 1-1 1 1 1 51,59 -1 even 
7 1 1 -1 1 -1 -1 1 -1 -1 -1 19,27 -1 even 
8 1 1 1 -1 -1 -1 -1 1 -1 -1 52,60 I even 
9 1 1-1 1 1 1 1-1 1 1 20.28 I even 
10 1 1 1-1 1 1 1-1 1 1 53,61 I even 
I  1 1 -1 1 -1 -1 -1 1 -1 -1 21,29 I even 
12 1 1 1-1-1-1 1-1 1 1 54.62 1 even 
13 1 1-1 1 1 1-1 1-1-1 22,30 I even 
14 1 1 1-1 1 1-1 1-1-1 55.63 I even 
IS 1 1 -1 1 -1 -1 1 -1 1 1 23,31 I even 
16 -1 1 1 1 1 -1 -1 -1 -1 1 0.8 -I odd 
17 -1 1 -1 -1 -1 1 1 1 1 -1 32.40 -1 odd 
18 -1 1 1 1-1 1 1 1 1-1 1,9 -I odd 
19 -1 1 -1 -1 1 -1 -1 -1 -1 1 33.41 -1 odd 
20 -1 1 1 1 1-1 1 1 1-1 2,10 -1 odd 
21 -1 1 -1 -1 -1 1 -1 -1 -1 1 34,42 -1 odd 
22 -1 1 1 1 -1 1 -1 -1 -1 1 3,11 -1 odd 
23 -1 1 -1 -1 1 -1 1 1 1 -1 35,43 -1 odd 
24 -1 1 1 1 1 -1 -1 -1 1 -1 4,12 1 odd 
25 -1 1-1-1-1 1 1 1-1 1 36,44 1 odd 
26 -1 1 1 1-1 1 1 1-1 1 5,13 I odd 
27 -1 1 -1 -1 1 -1 -1 -1 1 -1 37,45 I odd 
28 -1 1 1 1 1-1 1 1-1 1 6,14 1 odd 
29 -1 1 -1 -1 -1 1 -1 -1 1 -1 38,46 I odd 
30 -1 1 1 1 -1 1 -1 -1 1 -1 7, 15 1 odd 
31 -1 1 -1 -1 1 -1 1 1 -1 1 39,47 I odd 
32 -1 -1 -1 1 1 1 1 -1 -1 -1 16,24 -1 even 
33 -1 -1 1 -1 -1 -1 -1 1 1 1 48,56 -I even 
34 -1 -1 -1 1 -1 -1 -1 1 1 1 17,25 -1 even 
35 -1 -1 1 -1 1 1 1 -1 -1 -1 49,57 -1 even 
36 -1-1-1 1 1 1-1 1 1 1 18,26 -1 even 
37 -1 -1 1 -1 -1 -1 1 -1 -1 -1 50,58 -I even 
38 -1 -1 -1 1 -1 -1 1 -1 -1 -1 19,27 -I even 
39 -1-1 1-1 1 1-1 1 1 1 51,59 -1 even 
40 -1-1-1 1 1 1 1-1 1 1 20,28 I even 
41 -1 -1 1 -1 -1 -1 -1 1 -1 -1 52,60 1 even 
42 -1 -1 -1 1 -1 -1 -1 1 -1 -1 21,29 I even 
43 -1-1 1-1 1 1 1-1 1 1 53.61 I even 
44 -1 -1 -1 1 1 1 -1 1 -1 -1 22,30 I even 
45 -1 -1 1 -1 -1 -1 1 -1 1 1 54,62 I even 
46 -1 -1 -1 1 -1 -1 1 -1 1 1 23,31 I even 
47 -1 -1 1 -1 1 1 -1 1 -1 -1 55,63 I even 
48 1 -1 -1 -1 -1 1 1 1 1 -1 32,40 -I odd 
49 1 -1 1 1 1 -1 -1 -1 -1 1 0,8 -1 odd 
50 1 -1 -1 -1 1 -1 -1 -1 -1 1 33,41 -1 odd 
51 1-1 1 1-1 1 1 1 1-1 1,9 -I odd 
52 1 -1 -1 -1 -1 1 -1 -1 -1 1 34,42 -1 odd 

53 1-I. 1 1 1-1 1 1 1-1 2,10 -1 odd 
54 1 -1 -1 -1 1 -1 1 1 1 -1 35,43 -1 odd 
55 1 -1 1 1 -1 1 -1 -1 -1 1 3,11 -1 odd 

56 1-1-1-1-1 1 1 1-1 1 36,44 1 odd 

57 1 -1 1 1 1 -1 -1 -1 1 -1 4,12 I odd 

58 1 -1 -1 -1 1 -1 -1 -1 1 -1 37,45 I odd 

59 1-1 1 1-1 1 1 1-1 1 5,13 I odd 

60 1 -1 -1 -1 -1 1 -1 -1 1 -1 38,46 I odd 

61 1-1 1 1 1-1 1 1-1 1 6,14 I odd 

62 1 -1 -1 -1 1 -1 1 1 -1 1 39,47 I odd 

63 1 	1 -1 1 1 -1 1 -1 -1 1 -1 	1 7, 15 I 1 	odd 

Table 5.1: 64 state MSK trellis transition table 
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(5.8) 
m=n- L 

where {a} = ±1 and {b} = ±1 are state dependant, and the sequences 

(Xn-L, Xn-L+1, ) Xn-1) and ((n-L, (n-L+1, ..., (fl-i) are the same for all states and, 

for a non-adaptive yE, they are constant for each single TDMA burst. 

The number of states increases with the 1ST level, therefore the number of summations 

required increases exponentially. To reduce the computational complexity we compute 

the summations using a differential addition circuit. This is an architecture which 

exploits the inherent symmetries in the algorithm as described below. 

Table 5.1 shows the following three symmetries: 

. Each (a, b) sequence differs from at least one other sequence by only one digit. 

• For each state, the (a, b) sequence is the exact inverse of the (a, b) sequence for 

a different state. For example, for state 0, (a, b) = (1, 1, 1,—i, —1,—i, 1, 1, 1) 

and state 32, (a, b) = (-1, —1,—i, 1, 1, 1,—i, —1, —1). In fact, the sequences 

for states 0 through to 31, are the exact inverses of the sequences for states 32 

through 63. The means thatwe only need to consider evaluating the summations 

for states 0 through to 31 and the others can be computed simply by negation. 

• Each of the a sequences from one state are the same as the b sequences on two 

other states. For example, for state 16, b = (1, 1, —1, —1, 1), which is the same 

as the a sequence for states 0 and 64. In fact, the a sequences for states 0 through 

15 are the same as the b sequences for states 16 through 31. 

This means that the summations in equation 5.7 are the same as the summations in 

equation 5.5, similarly the summations in equation 5.8 are the same as the summations 

in equation 5.6. 

So, to evaluate equations 5.5 to 5.8 for (a, b) for the states 0 to 31, we only have to 

compute equation 5.5 and equation 5.8 for states 0 to 15. Hence, only two summation 

trees are required, each of which evaluates 16 summations. 

Figure 5.2 shows the summation tree for summations 0 - 16 in equation 5.5. An 

identical tree with coefficients Xi replaced by (i  is used for calculating summations 

0 - 15 in equation 5.8. 



Figure 5.2: Top level block diagram 

Only the two summations are evaluated initially, for state 0, and the summations for 

the remaining states are obtained by adding ±2X j  or +2(. Figure 5.3 shows the circuit 

which performs the initial summation for equation 5.5. 

X, 

Figure 5.3: Top level block diagram 

The complete circuit for generating the constants I and Q requires 8 addition units 

to form the two initial summations; 30 11-bit addition/subtraction units for the two 

summation trees; and 32 12-bit addition units and 32 12-bit negation units to produce 

the I. and Q values. If the summations were to be evaluated individually in parallel, 

1280 addition/subtraction units would be required. 

In terms of speed, the two initial summations are formed in 3 adder delays. The sum- 

mation trees require 4 adder delays. The evaluation of I and Q3 for states 0 to 31 by 

adding together two of these summations requires one adder delay and one negation 



delay. Then the evaluation of I and Q3 for states 32 to 63 requires the delay of one 

negation unit. 

It was decided to implement the summation circuit using ripple addition because the 

ripple adder often has the smallest area and lowest power of all the adder architec-

tures [71]. The delay for a ripple adder is 0(n), however, the least significant bit 

(LSB) of the output of a ripple adder is available only 1 full adder delay after the LSB 

of the input words are available. This means that for cascaded ripple adders, the critical 

path is the carry chain of the last ripple adder in the sequence, plus the first full adders 

of all the prior ripple adders. This is shown in Figure 5.4, the critical path through the 

two cascaded ripple adders is highlighted. 

a2 

b2  

a 1  

b 1  

a 
b0  

S4  

S 3  

S 2  

S I  

So  

Figure 5.4: The critical path through two cascaded ripple adders 

In the state constant generation circuit, assuming full adder cells and one bit negation 

cells have one gate delay, after the coefficients Xo, Xi, 	X5 are available, it will take 
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9 gate delays to evaluate the LSBs for all of the I and Q5 and another 12 gate delay 

for the carry to propagate. This means that the delay for the whole state constant 

generation circuit is 21 gate delays. 

If the fast adder circuit proposed in Section 3.4.2 with a delay of 1092  (n) + 2 was used 

instead of ripple adders, with n being 9, 10, and 10, the total delay would be 17 gate 

delays. However, the circuit would be significantly larger and in this design the speed 

saving is not necessary. 

5.2.2.1 A serial summation unit 

An alternative implementation would be to produce the summations serially. Figure 5.5 

shows a design of a serial summation circuit which produces the summation for the a 

sequence for state 0. 

Figure 5.5: A serial summation unit 

The coefficients x to  X5  are loaded on the 8-bit input line serially, at each cycle of cik. 

First the reset line is asserted, to zero the accumulated sum. Then the first coefficient 

is loaded on to the 8-bit input bus and the reset is de-asserted. At the same time as the 

first coefficient being loaded onto the bus, the first coefficient input is asserted. This is 
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the input to the shift register which is used to determine which of the 5 coefficients is 

currently being added to the accumulated sum. 

The connections between the shift register and the xor gate indicate that the corre-

sponding ak in the a sequence is —1. The connections in Figure 5.5 represent the 

sequence (1, 1, —1,—i, 1). 

If these summation units were used instead of the summation tree described in Sec-

tion 5.2.2 then the number of addition units would only be reduced from 70 to 64 but 

it is likely that the amount of routing would also be reduced. 

However, the previous summation circuit was fast because ripple addition was use. 

The same properties that were outlined in Section 5.2.2 cannot be used in the serial 

summation circuit because each coefficient has to be added to the accumulated sum 

before the addition of the next coefficient can be started. It is possible to pipeline the 

serial summation circuit, but this would mean introducing additional latches which 

would increase the area and power consumption of the circuit. 

It would be better to use a carry-save addition unit as described in Section 3.8, with 

a carry propagation unit on the output. This would reduce the delay at each iteration 

from 11 full-adder cells to 1, with a delay of 11 full-adder cells at the output for carry-

propagation. 

In conclusion this serial design is smaller, although slower than the parallel circuit 

described in Section 5.2.2. 

5.2.3 The Viterbi trellis 

The trellis is implemented as interconnected add-compare-select (ACS) units. Exam-

ining Figure 5.6 we see that only half of the states are used at each time interval, hence 

we can use only one ACS unit to represent different trellis nodes at odd and even time 

intervals. The branch metric generation unit ensures that the correct corresponding 

branch metric values (BMVs) are fed to the ACS units at the correct time interval. 

The trellis nodes are paired up so that each ACS unit is shared between two nodes. The 

pairs are chosen in the following way: 

. An even time interval node is paired with an odd time interval node. 
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Figure 5.6: MSK trellis diagram 

. Each pair of nodes are connected to 4 nodes which themselves form two pairs. 

This ensures the minimum amount of routing between ACS units and that the routing 

between node pairs is never redundant at either odd or even time intervals. 

Using a computer program which performed an exhaustive search on the states shown 

in Table 5. 1, it was found that the state pairings are: (0,63), (1,62), (2, 61), ..., (31, 32). 

BMV )  1 

PMV0  18, 

BMVOUI  

BMV1  I, 

PMV 1  18, 

Figure 5.7: An add-compare-select unit 

The ACS unit shown in Figure 5.7 implements the following function: 
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if ((PM V0  + BMV0 ) > (PMV1  + BMV 1 )) 

PMVOU t = PMV0  + BMV0  
select= 0 

else 

PMV0  = PMV1  + BMV1  
select= 1 

The select signal is fed to the memory management unit which stores the path histories 

for all the trellis states. 

For the reasons outlined in Section 5.2.2, the addition and comparison units are imple- 

	

mented using ripple propagation. 	- 

5.2.4 Branch metric calculation 

When a new pair of in-phase and quadrature-phase symbols (yn,  z7-1 ) are received, the 

incremental metric for each branch on the trellis diagram is computed. From equa-

tion 5.1 the incremental metric associated with a transition from state p to state q is: 

:-- a, (Yn  - I) + b(z - Q3) 	 (5.9) 

where a and b are the expected in-phase and quadrature-phase signals which would 

result in a transition from state p to state q. 

From Section 5.2.3, state 0 and state 63 are paired and so they share the same ACS unit 

in the implementation of the Viterbi trellis. The branch metric values associated with 

these states can be derived from Table 5.1. These are: 

	

\1610 = 	l(yfl - 116) + 1(z - Q16) 

= _l(yn —149 ) + 1(z - Q) 

'14163 = l(yn - 114) + 1(z - Qi) 

)'47163 = 1(Y - 147 ) + 1(z - Q) 

These two states share two branch metric calculation cells, as well as the same ACS 

unit. At even samples the metrics for state 0 are computed and at odd samples the met- 

rics for state 63 are computed. Figure 5.8 shows these two branch metric calculation 
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cells, where sample is 0 for even samples and 1 for odd samples. 

BRANCH METRIC VALUE 	
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Figure 5.8: The first two cells of the BMV unit for ISI=5 

The BMV generation cell is shown in Figure 5.9; it performs the sum 	- y) + 

(Q8 - z7 ) where the ± operator is chosen by the values of ctrl a and ctrl b. For some 

ACS units, the control signals are the same for both trellis states so the logic can be 

optimized. 

As discussed at the end of Section 5.2.3 the adders in the branch metric value cell are 

cascaded so that the delay through the adders is equivalent to a full-adder and one carry 

chain. 
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yn 
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Figure 5.9: BMV cell 



5.2.5 Metric normalisation 

The metrics must be normalised so that they can be stored using finite length registers. 

In the conventional Viterbi algorithm, metrics are always positive and are normalised 

by observing when all the most significant bits are set and resetting them [22].  In the 

design the metrics can be both positive and negative twos-complement numbers. We 

normalise metrics of N bits in length if: 

. All metrics are positive and > 2N-2 

. All metrics are negative and < 2 2 .  

In the first case, bit N - 1 = 0 and bit N - 2 = 1, to normalise we reset bit N - 2. In 

the second case, bit N - 1 = 1 and bit N - 2 = 0, to normalise we set bit N - 2. The 

Normalisation unit is shown in Figure 5.10 

AO : 

	
A° IN-11 	 A°  l0:NI 

AO 

A 1  INI 	 A l  INtl 	
- 	 A '  IONI 

- 	A NI 	 :: 
: - 	 AS 	IS NI 

A IN-11 

Figure 5.10: Metric Normalisation Unit 

In [76],  Hekstra proposed an alternative to metric normalisation in Viterbi decoders by 

exploiting the "wraparound" properties of twos-complement arithmetic. This method 

cannot be used in this design because we have both positive and negative incremental 

metrics [76]. 

For ISI=5, assuming our channel estimation coefficients have an accuracy of 8 bits, our 

path metric values are required to be stored using 18 bits. This means that normalisa-

tion occurs if all of the metrics are larger than 216  or if all of the metrics are lower that 

_216. 

A°  I0Ni 

A 1  I0:NI 

AS I0:NI 



5.2.6 Memory management 

We have used a register exchange method of path history memory management for 

simplicity (see Section 4.2.3). However, the module has been specified so that it is 

compatible with a traceback management unit [59] to allow the possibility of future 

development. 

Path Histtwy Node 
(state 	5) 

Path History Node 
I. state 4) 

Path History Node 
(state 2. state 7) 

Path History  Node 
(state 3. statc 6) 

Path History Node 

Figure 5.11: Register Exchange Memory Management Unit 

Each state in the trellis appends either a 1 or a 0 to the path history. The append signal 

shown in the circuit is dependent on the trellis state and the cycle. For simplicity the 

output bit is determined by a majority vote on the oldest bit in all of the path histories 

which means that the path histories are longer but the circuitry for selecting the output 

bit is simple. 

For ISI=5, we have 32 registers in the memory management unit. For majority vot-

ing the length of the path history register is 5-6 times the length of the path metric 

values [22].  This means that the path history registers should be roughly 90 bits in 

length. This is quite large which would suggest that a traceback method of path history 

memory management would be more desirable. 

5.3 Performance 

We need to estimate the delay though the circuit to determine whether CPL [71] will 

produce a satisfactory implementation. From the specifications of GSM [3] the VE 



output is buffered to produce a continuous bitstream at 22.8 kbit/s, hence the VE has 

5ms to complete the decoding of a TDMA packet. 

Each GSM TDMA packet contains 114 bits of data which need to be passed through 

the yE, in addition, the VE needs to be flushed with the same amount of bits as in the 

path history. For these iterations the branch metrics are all set to zero. With a path 

history of 90 bits, this means that our VE has to perform 204 iterations. 

Assuming that the output determination unit has a shorter delay than the Viterbi trellis 

then the clock period T in CPL gate delays is: 

T > (LBMV + LACS  + LNORMALIZE) 	 (5.10) 

and the delay through the state constant generator followed by 204 iterations of the VE 

must be less than 5ms. 

Circuit Element Delay (CPL gates) 
State Constant Generator 20 
Branch Metric Generator 16 
Add-Compare-Select Unit 15 

Normalization Unit 5 

Table 5.2: CPL gate delays for various circuit elements 

The number of CPL gate-delays through the various circuit elements are summarised 

in Table 5.2. Using these delays and equation 5.10 we can estimate a maximum gate-

delay of 0.5ts which is clearly realisable. 

5.4 Conclusions 

This chapter has presented the architectural design of a Viterbi equalizer for GMSK 

signals as used in the GSM system of mobile radio communications. The design has 

implemented the theory of using the Viterbi algorithm to equalize signals encoded 

using an MSK modulation processes that was discussed in Chapter 2. 

One of the major parts of design for the equalizer was the state constant generation 

circuit. The branch metric computation for the equalization requires a large number 

of summations (based on the impulse response of the communication channel) to be 



calculated. The state constant generation circuit performs these summations. Since 

each packet contains a new estimate for channel, this needs to be performed for each 

frame. The circuit that was developed, which is presented here, is an incremental 

tree-based summation circuit. The design uses the relationships between summation 

sequences to reduce the number of adder units required from 1280 to 70. Also, the 

evaluation of all 128 sums requires only 7 adder unit delays. The design of a second 

possible summation circuit was also produced. This serial summation circuit is suitable 

for implementation using carry-save arithmetic. This circuit would reduce the number 

of addition units to 64, and have delay of 16 full-adder cells. It was noted during the 

design that a recent alternative to metric normalization, which exploits the wraparound 

properties of twos-complement arithmetic, cannot be used for the Viterbi Equalizer 

design because the incremental metrics can be positive or negative. For this reason 

the conventional normalization method has been extended to work with positive or 

negative twos-complement numbers. 

Finally, the performance of the decoder design has been analysed and it has been shown 

that the speed requirement of the GSM communication system can be easily realised 

by this design. 



Chapter 6 

Implementation of the Viterbi 

Equalizer using Complementary 

Pass-Transistor Logic 

6.1 Introduction 

6.1.1 Motivation 

Yano et al had presented the technique of Complementary Pass-transistor Logic (CPL) [7] 

for producing lower-power, and slightly higher speed circuits when compared with the 

equivalent CMOS circuit designs. The architectural design of the Viterbi equalizer 

discussed in the previous chapter had been developed with CPL in mind. A standard 

cell library of CPL functions was then produced to develop the silicon layout for the 

design. During the implementation, the performance of individual modules (including 

size, power, and speed) was not as good as had been expected. The implementation 

was suspended, and a detailed examination of the CPL technique was undertaken. It 

was soon discovered that Yano's results were biased, in that two examples presented in 

[7] (the full adder cell and the xor gate) were the only ones that gave increased speed, 

and decreased power. Even then, it was found that Yano's CMOS full adder cell was 

not very well optimised, resulting in a poor comparision. This chapter describes the 

investigation into CPL. 

6.1.2 Overview 

The VE architecture described in Chapter 5 consists of 32 interconnected add compare 

select (ACS) units and the path history module consists of 64 interconnected registers. 



It can be seen that the design, when implemented, would be quite large. For a portable 

handheld receiver is would be desirable to minimise this area, and minimise the power 

consumed. To achieve this without altering the VE architecture it was decided to in-

vestigate a number of logic styles which provide low power consumption and low area 

utilisation, and choose one to implement the VE architecture. 

6.1.2.1 Low power logic styles 

In recent years, advancements in the production of integrated circuit technology have 

resulted in VLSI circuits with smaller and smaller feature sizes. This reduction in size 

has brought a considerable increase in speed and there are now many complex and fast 

CMOS ICs available. However, the need for high speed digital circuits to implement 

complex algorithms such as RSA encryption [50], MPEG encoding/decoding and the 

Viterbi Algorithm [77] is increasing faster than the CMOS technology. 

Circuit speed can be increase by architectural improvements such as pipelining and 

parallelisation [78],  but also by new logic circuits such as pass transistor circuits [7] 

which have been developed as an alternative to conventional CMOS logic design. 

In addition, a growing emphasis on low power circuit design has emerged [78], [71]. 

With organisations such as CEPT developing standards for mobile digital radio com-

munications [3],  a need for low power implementations of complex algorithms has 

become more important, especially since battery technology has not improved signifi-

cantly in recent years [78]. 

In the previous chapter, the architectural design for a Viterbi equalizer (VE) was de-

scribed. It was suggested that logic design style was proposed by Yano et al in 1990 

called complementary pass-transistor logic (CPL) [7] would be a good choice for im-

plementing the VE on silicon. Yano et al claimed that CPL offers lower power dissi-

pation than conventional CMOS logic. The equalizer is designed for use in the GSM 

mobile telephone system so a low-power implementation would be useful for a hand-

held receiver. In this chapter, logic design using CPL is reviewed. The performance of 

CPL for various logic functions is analysed relative to CMOS implementations. The 

development of a CPL standard library is outlined, and the implementation of the yE, 

proposed in Chapter 5 is described. Finally the results of implementing the VE de-

sign using this standard library, and the reasons for discontinuing the design will be 

explained. 

100 



6.2 Complementary pass-transistor logic 

CPL features a logic network consisting of N-type transistors only. Since there are 

no P-type transistors, the complement of the each input and output signal is required. 

This allows the full range of logic functions to be produced using a small number of 

transistors. Figure 6.1 shows the generic schematic diagram for a CPL circuit. 

COMPLEMENTARY DRAIN INPUTS 

0C 	............. 

z 
- 

0 

z 
LL 

Z 

Lei 
CMOS OUTPUT INVERTERS 

Figure 6.1: A generic CPL schematic diagram 

The output of the logic network is buffered using standard CMOS inverters which 

restore the outputs to a full logic level. 

It should be noted that because signals and their complements are available, an and 

gate is exactly the same as a nand gate, this is not the case with CMOS. This means 

that by using CPL more flexibility is available in terms of the choice of logic functions. 

Figure 6.2 shows a transistor circuit for a nand/and gate in CPL. 

2-input boolean functions can be design using the same transistor network of four 

transistors shown in Figure 6.2. Only the input and output connections need to be 

altered, all of the internal connections are the same [71]. 
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Figure 6.2: A nand/and gate in CPL 

It should be noted that the standard CPL circuit shown here suffers from sub-threshold 

current [78] which results in static power dissipation. This is shown in Figure 6.3 which 

shows a CMOS inverter being driven by a single N-type pass transistor. The threshold 

drop of the N-type is VT, which means that the input to the inverter is VDD - V'rn . 

This means that the gate-to-source voltage of the P-type is —VT and the P-type is not 

completely turned off. This results in a significant sub-threshold dc current, as shown 

by the dashed line. 

DD 	 VDD 

sub threshold 

	

current I 	 DD 

output 	I VDD - VTfl  

Figure 6.3: Static power consumption in the CPL output inverter 

This static power consumption can be eliminated by using a pair of cross-coupled P- 

type transistors as shown in Figure 6.4, although this increases the circuit area and 
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decreases the circuit speed [ 78]. 

A B 

B 

B 

Q=A.B 

Figure 6.4: A nand/and gate in CPL with cross-coupled p-types 

6.2.1 Design of standard logic functions in CPL 

A CPL gate can be thought of as implementing two separate functions. The schematic 

diagram for a 2-input nand/and gate shown in Figure 6.4 shows that there are two 

N-type logic networks, one implementing A.B and the other A. 

To design a CPL transistor diagram for any 2-input boolean function, one of the inputs 

is selected as the control input. This control input (and its complement) will form the 

transistor gate inputs (as shown in Figure 6.1). The output is expressed in terms of this 

control input and the remaining input. In the case of A.B, with B as the control input: 

if B = 0 then A.B = B. 

if B = 1 then A.B = A. 

This gives the lefthand transistor network in Figure 6.4. The righthand network is 

identical to the lefthand one with the drain inputs inverted. 

Figure 6.5 shows the schematic diagram for a 3-input nand/and gate. It can be seen 

from the diagram that similar techniques can be used to create a 3-input CPL gate as 

were used to create 2-input one. This time two of the 3-inputs are selected as control 

inputs. The output is expressed in terms of one of the 3-inputs for each of the four 

possible values of the control signals. In the case of the 3-input nand/and gate with 

control inputs A and B: 
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Figure 6.5: A 3-input nand/and gate in CPL 

if 	A=0 A.B.C=A 
elseif B=0 A.B.C=B=B 
else 	 A.B.0 = C 

Which gives the lefthand network in Figure 6.5. Again, the righthand network is iden-

tical with the drain inputs inverted. 

Alternatively, more complicated 3-input functions can be implemented as cascaded 2-

input gates. Figure 6.6 shows a 3-input xnor/xor gate which is constructed for two 2-

input xnor/xor gates. This allows more complex 3-input functions, such as a full adder, 

to be implemented by decomposing into 2-input functions, which can be cascaded to 

produce a circuit with a single CPL gate delay. 

6.2.2 Comparison of CPL and CMOS logic functions 

To asses the merits of this logic style, a number of 2-input and 3-input CPL and CMOS 

functions have been simulated and compared. The circuits were designed at the tran-

sistor level using Cadence Design Framework II and the layout for all the circuits were 

produced using the Cadence layout synthesis tools (LAS). Simulations of the extracted 

version of the layout were performed using HSpice. 

Table 6.1 shows the results for 2-input CMOS nand, nor, xor gates and Table 6.2 

shows the results for 2-input CPL nand/and, or/nor, xorlxnor gates. The power was 
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Figure 6.6: A 3-input xnor/xor gate in CPL 

obtained by simulating a circuit consisting of a tree of seven of these cells, with the 

same random test vectors presented to all of the circuits. The relative power is shown 

to provide a straightforward comparison between different circuits. The CMOS nand 

gate was set at a power of 100.00 and all the other powers are shown relative to this. 

Function nand nor xor 

: 
: 

FB 
Circuit 

Transistor count 4 4 12 

Area 382.03tm2  412.38im2  1336.67m2  

Delay 1.l3ns 1.64ns 2.36ns 

Relative Power j 	100.00 110.93 535.66 

Table 6.1: Simulation results for 2-input CMOS logic functions 

Comparing the results from Table 6.1 and Table 6.2 it can be seen that for the 2-input 

nand and nor gates, the CPL implementations are more than three times the size of 

the CMOS circuit. The delays of the CPL nand and nor gates are greater than the 
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Function 

Circuit 

nand nor 

B  

xor 

-GD J~~ 	AGB 
Transistor count 10 10 10 

Area 1360.24m2  1392.92m2  1204.05m2  

Delay 2.47ns 2.05ns 2.33ns 

Relative Power 195.05 286.75 532.33 

Table 6.2: Simulation results for 2-input CPL logic functions 

CMOS delays. It can be seen that the power dissipation is double for the CPL nand 

gate and for the nor gate the power is almost three times that of the corresponding 

CMOS circuit. 

Finally, the tables show that the CMOS and CPL xor circuits are very similar in terms 

of performance. The CPL xor is comparable to the CMOS xor gate for area, delay and 

power consumption. 

These results suggest that for simple 2-input boolean function, CPL does not offer any 

advantages over CMOS. 

Table 6.3 and Table 6.4 show similar results for 3-input CMOS and CPL functions. 

Again, the power is shown relative to the CMOS nand gate. The power is calculated 

in the same manner as before, with a tree circuit of the relevant gates, and 50 random 

input vectors. 

It can be seen from Table 6.3 that the CMOS xor gate (which is constructed from two 

cascaded 2-input xor gates) is over four times as large than the other two gates. In 

addition, it dissipates 15 times more power than the nand gate. 

Table 6.4 shows that all three 3-inputs gates require the same number of transistors in 

CPL. It can also be seen that the nand and nor gates are roughly four times the size of 

the corresponding CMOS gates. The CPL nand gate is half the speed on the CMOS 

and gate but both the nor and xor gates are faster, the xor gate is 22% faster than the 

CMOS implementation. 
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Function nand nor xor 

C_ 	 ARC 

Circuit_____________ 

Transistor count 6 6 24 

Area 543 .40im2  548 .46pm2  2746. 20m 2  

Delay 1.61ns 3.03ns 4.13ns 

Relative Power 100.00 180.55 1514.83 

Table 6.3: Simulation results for 3-input CMOS logic functions 

The table also shows that the power consumption for the CPL gates is very similar to 

their CMOS equivalents, except in the case of the xor which requires half of the power. 

Finally, Table 6.5 shows comparisons for CMOS and CPL full adder cells, which are 

shown in Figure 6.7 and Figure 6.8 [7],  respectively (note that for compactness the 

cross-coupled p-type transistors are not shown). 

A 

B 

C 

A 

B 

Figure 6.7: A CMOS full adder circuit 

The same technique was used for these comparisons as was used for the previous ones. 

The table shows that the CPL design uses significantly less silicon area, and is 30.8% 

faster. For each of the three different supply voltages the CMOS full adder has been 

given a relative power of 100. 

In [7],  Yano et al claimed a reduction in power dissipation of 28.3% at 3V compared 

to CMOS while our results show an reduction of 10% for 3V, although this rises to an 
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Function nand nor xor 

Circuit 

"J 

r.7 

Transistor count 14 14 14 

Area 2027.69pm2  2002.02im2  2176.51jtm2  

Delay 3.16ns 2.72ns 3.22ns 

Relative Power 117.94 188.14 774.79 

Table 6.4: Simulation results for 3-input CPL logic functions 

CPL and CMOS Full Adder comparisons 

Circuit Style CMOS CPL 

Transistor count 40 32 

Area 7241.52jtm2  5612.96jtm2  

Delay (at 3V) 6.62ns 4.59ns 

Relative Power (5V) 

Relative Power (4V) 

Relative Power (3V) 

100 

100 

100 

82.31 

85.30 

90.86 

Table 6.5: Simulation results for CPL and CMOS full adders 

18% reduction for 5V. 

It can be concluded from these results that CPL is best suited to designs which require a 

large amount of complex multi-input functions, such as xor gates. The CPL full adder 

provides a reduction in power of 10% for a 3V supply and it is significantly smaller 

and faster. 

6.3 Improvements to conventional CPL 

Since CPL was first proposed by Yano et al [7],  a number of similar logic styles based 

on CPL have been suggested. These will be summarised here to provide an idea of the 
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Figure 6.8: A CPL full adder circuit 

current "state of the art". 

6.3.1 Modified CPL 

Rather than use the cross-coupled p-type transistors, a small p-type transistor can be 

used in the manner depicted in Figure 6.9 [79]. This will reduce the sub-threshold 

currents, and reduce power consumption. However, the propagation delay is increased. 

AB 

B 	 LL O  A.B 

Figure 6.9: A nand/and gate in CPL with a p-type feedback transistor 

The transistor count, and the power consumption, can be decreased further with the 

circuit shown in Figure 6.10 [79].  Only one of the two transistor networks is used, 

an additional inverter is used to generate the complementary output. This reduces the 

transistor count by half, but increases the propagation delay by the delay of a CMOS 

inverter. According to Ko et al [79] this CPL based circuit can reduce the power 
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consumption by almost a third while only increasing the delay by roughly 10%. 

S 
S 

RE 

MI 

Figure 6.10: A nand/and gate in modified low-power CPL with double inverter 

6.3.2 Dual pass-transistor logic 

In dual pass-transistor logic (DPL) [80], both p-type and n-type transistors are used in 

the logic network. P-types are used to pass a logic level 1 and n-types are used to pass 

a logic level 0. 

A 	B 	 A 	B 

Li 
I.' 

A 

A.B 	 ATh 

Figure 6.11: A nand/and gate in DPL 

Figure 6.11 shows a 2-input nand/and gate in DPL. Looking at the transistor network 

on the left it can been seen that for any combination of inputs, there are always two 
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current paths driving the output. This means the output is also at a full logic level so 

there are no problems due to threshold voltage drop and there is no need for cross-

coupled p-types on the input to the output inverters. 

6.3.3 Swing restored pass-transistor logic 

The final CPL based circuit style that will be examined is swing restored pass-transistor 

logic (SRPL) [81]. This is the same as CPL with the output inverters and the cross-

coupled p-types replaced by a pair of cross-coupled inverters. 

AB 

[a] 
L!J 

p 

Figure 6.12: A nand/and gate in SRPL 

Figure 6.12 shows a 2-input nand/and gate using SRPL. The sizing of the transistors 

both in the inverters and the network affects the speed and power dissipation of the 

circuit greatly [71]. 

6.3.4 Discussion 

Bellaouar and Elmasry compared these circuit styles (except modified CPL) and con-

cluded that CPL and SRPL result in the smallest circuits [71]. It has been shown that 

modified CPL with two cascaded inverters has the smallest area [79].  According to 

Bellaouar and Elmasry, SRPL has the lowest power dissipation [71] and DPL has both 

the largest area and power consumption. 
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In 1996, during this investigation, Yano et al proposed a new methodology for design 

circuits with pass-transistor logic [8] which utilises the advantages of CPL but with 

reduëed routing since complements are not propagated. A circuit synthesis tool called 

a circuit inventor is used to represent a design in terms of three basic pass-transistor 

based cells (Yano referred to them as "Y" cells due to the shape of the transistor net-

work, here we will use the term single-output-PL, or SO-PL) and four inverters of 

varying size. 

Gates are constructed using these seven cells, and the complements are generated lo-

cally using small inverters. The gates do not produce complementary outputs which 

halves the size of the transistor network compared to conventional CPL. When comple-

mentary signals are required, they are generated locally. Results produced by Yano et 

al show that a full adder based on this technique dissipates 53% of the power dissipated 

by a CMOS full adder [8]. 

It was decided to implement the VE described in Chapter 5 using a mixture of CPL 

and SO-PL. The ACS units are connected by 18-bit buses. If full CPL was to be used 

for the design, these buses would have be 36 bits wide (including complements). The 

SO-PL cells would be used at the output of the ACS units and local inverters would 

create the complements at the inputs. The majority of the VE architecture is made up 

of full adder and xor cells, with a small proportion of the design being 2-input and 

and or functions. It was decided to use CPL for all of these cells (even though our 

comparisons favoured CMOS for these simple 2-input functions) because the outputs 

of the 2-input functions are used by CPL gates which require complementary inputs. 

An alternative would be to have complements generated from local inverters. 

6.4 Developing a standard library of CPL functions 

The VE was developed using Verilog HDL and the low level gates required are: 

• 2-input and gate 

• 2-input or gate 

• 2-input xor gate 

4-input or gate 
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F' 	
'•1 

. 2-1 mux 

. Full adder 

. Half adder 

. Reset latch 

The cells were designed using schematic capture in Cadence Design* Framework H. 

The layout was generated using the layout synthesis tool (LAS) with a him process, 

the simulations used typical industrial delays. The automatic place and route tools 

would be used to generate the VE chip layout. 

All of the cells had to have the same separation of power and ground rails, so LAS was 

used to generate the best layout for each of the cells, the largest power and ground rail 

separation of all the cells was then noted and LAS was re-run on all the other cells with 

this separation as a constraint. 

This means that the simple cells (such as the and and or gates) are inefficient in terms 

of area, while the larger, more complex cells (such as the adder cells) are more com-

pact. Figure 6.13 shows the layout for the and, or and xor standard cells and Fig-

ure 6.14 shows the layout for the full adder cells. 

(a) 	 (b) 	 (c) 

Figure 6.13: Layout for CPL based and, or and xor standard cells. 

Two different full adders and three different half adder cells were designed. To reduce 

the amount of routing generated in the automatic place and route stage, the carry inputs 

and outputs from the full adder (and the carry outputs from the half adder) were put 

on the left and right edges of the cell. This meant that a large ripple adders could be 

constructed by placing the cells end-to-end. 
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(a) 	 (b) 

Figure 6.14: Layout for the two CPL based full adder standard cells. 

Since these connections were in the metal 1 layer (the same as the power and ground 

rails) additional layout cells for the half and full adders had to be designed with the 

carry inputs and outputs in the metal 2 layer at the top and bottom of the cells. This 

can been seen in Figure 6.14 (b) which shows the full adder layout with the carrys at 

the left and right sides, and Figure 6.14 (a) which shows the full adder layout with 

carrys at the top and bottom of the cell. 

The half adders have been designed in the same way, but there is also a half adder cell 

with a hardwired carry in of 1 for the subtraction circuits. Table 6.6 shows the full CPL 

standard library with size and delays. 

Note that the cell delays in this table are shorter than the results of the simulations pre-

viously shown in this Chapter. This is because in the default setup the layout synthesis 

tool automatically uses polysilicon routing between transistors if it determines that it is 

preferably to using metal. This sometimes generates slower circuits (if too much poly 

routing is used) although often it generates faster ones (since there are less vias). It was 

decided from the previous simulations that poly routing should be totally disabled, to 

give a fairer comparison between the logic styles (and not the implementation of those 

styles). In constructing the standard library, the poly routing options were varied to 

achieve smaller and faster circuits. 

As stated at the beginning of this section, a smaller library of standard cells based on 

the SO-PL cell methodology [8] was developed. The memory management unit in the 

VE (see Section 5.2.6) consists of interconnected shift registers, which only pass data 

between each other at each iteration. Since speed was not critical for this part of the 

architecture, little would be gained by implementing this in CPL, instead this unit was 

implemented using the SO-PL cell standard library. 
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The full CPL standard library  

Cell name function Area (m 2 ) Delay (ns) 
CPLAND2 2-input and gate 1547.15 1.02 
CPLOR2 2-input or gate 1644.15 1.04 

CPLXOR2 2-input xor gate 1623.75 1.05 
CPLAND4 4-input and gate 2982.75 2.55 

CPLMUX21 2-1 mux 1644.15 1.08 
CPLHADDO Half adder (Cin = 0) 2725.70 1.64 
CPLHADD1 Half adder (Cin = 1) 2725.70 1.61 
CPLHADP2 Half adder (Top/Bottom) 2725.70 1.10 
CPLFADDO Full adder (Left/Right) 5097.35 1.82 
CPLFADD2 Full adder (Top/Bottom) 5097.35 1.83 
CPLLATR Reset latch 2231.00 - 

Table 6.6: The full CPL standard library 

The Viterbi trellis (see Section 5.2.3) features 32 interconnected add-compare-select 

units. These units transfer the path metric values, of 18 bits in width, between each 

other. To reduce the amount of routing the complements of the path metrics are gen-

erated locally, and SO-PL cells are used for the block mux (see Figure 5.7), since 

complementary outputs are no longer necessary. Since the complements are not avail-

able for the metric normalisation unit (Section 5.2.5), this unit is also implemented 

using SO-PL cells. Table 6.7 shows the SO-PL cell standard library. 

The SO-PL cell standard library 
CPLYAND2 2-input and gate 
CPLYAND4 4-input and gate 
CPLYXOR2 2-input xor gate 
CPLINV 1 small inverter 
CPLINV2 large inverter 
CPLLATR reset latch 
CPLLATR2 reset latch with 

complementary outputs 
CPLYMUX21 2-1 mux 

Table 6.7: The CPL SO-PL cell standard library 
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6.5 Implementation of the Viterbi equalizer using the 

CPL and SO-PL standard libraries 

The Verilog HDL code for the design was imported into Cadence Design Framework 

II which mapped the cells in the code to the custom cells in the CPL and the SO-PL 

libraries. The Cell Ensemble automatic place and route tools were used to produce the 

chip layout. 

Rather than place and route the whole chip at one, four subsections were identified and 

implemented separately: the state constant generator; the branch metric calculation 

unit; the add compare select trellis; and the path history module. 

For the trellis, the placed and unrouted area was large at 7656 mm x 3613jim. However, 

after routing this increased to 10186/Lm x 24354im, roughly 5cm 2 . Similarly the 

placed and routed path history module was also large 5532 jim x 18282jim, 1cm 2 . TheY 

large area utilisation was due to the wide buses which connect the trellis node (and the 

path history registers), and also the fact that the architecture was a fully parallel design. 

Because of the size of the routed modules, and the fact that CPL no longer appear to 

produce the power improvement initially expected, it was decided not to proceed with 

the implementation of the VE design using CPL. 

6.6 Conclusions 

This chapter has reviewed low power logic styles. Specifically it has described CPL, 

which attempts to produce low-power designs by using complementary input and out-

put signals. This allows a smaller number of transistors to be used for the same logic 

functions when compared to CMOS. This lower number of transistors is the main 

source of any lower power consumption. CPL is flexible, in that many logic functions 

can be produced with a single gate delay, although this is limited by the voltage drop 

across the transistors. 

CPL and CMOS have been compared like-for-like with a number of common logic 

functions. It was shown that for simple functions, CMOS is smaller and requires less 

power. Only for more complex functions such as cascaded xor gates and full-adders 

does CPL begin to show any improvements over CMOS. 
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Improvements to conventional CPL have also been reviewed. Modified CPL claims 

to reduce power consumption by one third, and increase delay by 10%. Dual pass-

transistor logic uses both n-type and p-type transistors, although a double inverter is 

required to produce a complementary signal. Finally, SRPL has a pair of cross-coupled 

p-types on the output instead of inverters, however, speed and power dissipation are 

very sensitive to transistor sizing which makes circuit design more difficult. 

The construction of a standard cell library of CPL has also been reviewed. This library 

was used to produce an implementation of the design in the previous chapter, although 

the resulting design was very large, and development was halted. 

The major piece of original work in this chapter is the investigation into CPL. It was 

prompted because the performance improvement of CPL claimed by Yano et al in their 

original paper had been difficult to emulate. On closer investigation it was discover that 

in many cases, CPL circuits were actually slower, and had greater power consumption 

than their CMOS counterparts. Specifically, the CMOS full adder circuit that Yano et 

at had used in their paper, which they used to show a 28.3% speed-up for CPL, was 

not very well optimised. Comparing like with like, using the same layout software and 

routing algorithms, this research has suggested that a more realistic speed-up is 10%. 

The implementation of the Viterbi design also highlighted another problem with CPL 

circuit styles. The requirement that a signal and its complement is needed, means that 

routing can become the dominant factor in anything other than the smallest designs. 

It should be noted that Yano independently reached the same conclusions when he 

suggested an alternative to CPL in the form of SO-PL. This logic style uses local 

inverters to generate complementary signals, only when they are required. It also uses 

more complex cells than the standard Boolean logic functions, because that is where 

the advantage of CPL lies. 
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Chapter 7 

A Low Area Serial Viterbi Equalizer 

Implementation 

7.1 Introduction 

7.1.1 Motivation 

After the initial Viterbi equalizer design was halted, it was decided that an alternative 

implementation should be developed, and the conclusions of the previous implemen-

tations should be considered. A low-power design was still the goal. Using the lessons 

learned from previous implementations, the preferred circuit style would be SO-PL, 

however for speed of implementation it was decided to use a conventional CMOS pro-

cess. In addition, the redundant number system was discarded. This chapter describes 

the low-area serial Viterbi equalizer. 

7.1.2 Overview 

The results of implementing the fully parallel Viterbi equalization module using CPL, 

as described in Chapter 6, showed that a fully parallel module results in a large use of 

silicon area. The use of CPL also has the effect of increasing the silicon area due to the 

increase in routing between cells. This additional routing had a substantial effect on 

the parallel architecture which already had large amounts of routing between the node 

processors. 

When designing a VIE module for a hand-held mobile GSM receiver, it is preferable 

to develop a serial module which has a smaller number of add compare select (ACS) 

units, than trellis nodes. 
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In this chapter the design of a serial VE module is described. From the results of 

Chapter 6 it was concluded that single-output CPL cells, such as those proposed by 

Yano [8] are the desired logic style since these are smaller and require less powers 

that conventional CPL cells, and do not require the distribution of a signal and its 

complement, which resulted in the large amount of routing that was present in the 

implementation of the fully parallel yE. However, for speed of implementation we 

have used the ES2 0.7m CMOS process [82]. 

Section 7.2 describes the overall VE module, the following 8 sections will describe 

each of the units in the module in more detail. Section 7.11 describes the implemen-

tation of the design using Verilog HDL [83], the ES2 design kit, and Cadence Design 

Framework II. Section 7.11.3 outlines the testing and the layout of the design and Sec-

tion 7.12 describes the specifications of the implementation. Finally in Section 7.13 

some conclusions are drawn. 

7.2 Serial Viterbi equalizer overview 

The simplified block diagram in Figure 7.1 represents the serial VE module. The 

method of operation is similar to the fully parallel decoder design which is described 

in Chapter 5, only the developments for the serial architecture are discussed here. 

Path Metric 
Dual RAM 

CIR estimate] State Constant 	 lsQs Dual 	 Node 	 Output Determination Ouput Datastream 

Generator 	 RAM 	 Processor 	 Circuit 

input data 

Path History  
Dual RAM 

Figure 7.1: A block diagram of the Serial Viterbi Equalizer 

The channel impulse response (CIR) is used to generate the state constants Is  and Qs 
as described in equation 2.15 on page 22. Once computed, the state constants are stored 
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in a block of memory out of which they are read by the node processor (NP). Note from 

the diagram that the memory is a "dual" memory. This means that there is in fact two 

blocks of memory, while one block is being written to by the state constant generator 

(SCG), the other block is being read by the NP. This allows the SCG to compute the 

state constants for the next packet while the NP is decoding the current packet. 

To have the SCG and the NP working on different packets, it is assumed that the input 

and output of the whole module is buffered. This is acceptable because due to the GSM 

block encoding scheme [3],  the packets must be stored at the output of the VE module. 

The NP contains a single ACS unit which represents each of the trellis nodes in turn 

throughout one iteration. This means that the path metrics values (PMV5) and path 

histories (PHs) cannot be stored at the corresponding node, as with the design in Chap-

ter 5, these values are now stored in two RAM modules external to the NP. 

The PMV and PH RAMs are also "dual" RAMs similar to the RAM for the state 

constants. This is because of the iterative nature of the VA which means that the 

results of the previous iteration need to be available for all of the required nodes in the 

subsequent iteration. To achieve this two identical blocks of memory are present in the 

two RAM modules, during odd and even iterations. Alternative RAMs are used for 

reading and writing. 

Finally, the output determination unit is far simpler than the one required for the fully 

parallel version. Recall that there are two main methods of determining the output 

of the VA: majority voting [55] [56] or minimum/maximum metric select [76] [22] 

(Section 4.2.3). In the parallel version we were unable to use metric selection, even 

though the performance is considered to be better [15] because of the large area which 

would be required for a parallel metric selection circuit with 32 inputs. In the serial 

design we have designed a very small metric selection circuit, which selects the largest 

metric during the final iteration, and outputs the corresponding PH. 

The following sections will describe the operation of each of the modules in more 

detail. 

7.3 The state constant generator 

Figure 7.2 shows a schematic diagram of the SCG circuit. 
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Figure 7.2: The state constant generator 

To re-cap, the SCG computes the constants 1s  and  Qs  as defined by the equation 2.15 

on page 22. This involves adding, or subtracting the CIR coefficients 

{xi, X2, X3, X4, X51 and  {(', (2, (3, (4, (5} depending on the sequence (a, b) which de-

scribes the sequence of data corresponding to a path to state S. 

The serial SCG shown in Figure 7.2 computes Is  and Qs  for 4 values of S simulta-

neously, by adding or subtracting the CIR coefficients in turn. When the 4 pairs of 

constants are computed they are written serially into the IsQs RAM module. 

To understand the operation of the circuit, the transition table of the modulation process 

is shown in Table 7.2 and the control signals generated by the SCG control unit are 

shown in Table 7.1. Table 7.2 is a re-drawn version of Table 5.1 which shows: all 

64 states of the trellis; the state pairs; the (a, b) sequence associated with each state; 

the input pair from the previous iteration; the pair of Is  and Qs  constants required for 

computing the two incoming metrics; the append bit for each state; and the iteration 

(odd or even) for which each state is valid. 

It is known from equation 5.3 that the Is  and  Qs  values are based on the (a, b) coeffi- 

cients. Since the (a, b) coefficients for state S = 32.. .63 are the negative of the (a, b) 
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Signal Names 
] 

Description 

stateO-3 The 4 states numbers, S, for which Is and Qs  are 
being evaluated in parallel. 

coeff The index of the coefficients Xn  and  (, which are 
being added or subtracted during the current cycle. 

write 0 if the constant are being computed and 1 if they are 
begin written out to RAM. 

stateNum If write=] then writeState is the state number S 
for which Is  and Qs  are being written to RAM. 

enable 1 if the summations are being computed. 
done 1 if Is  and Qs  have been evaluated for all values of S 

resetSum At the start of computation of the summation this is held high 
for one clock cycle to reset the sums. 

Table 7.1: The state constant generator control signals 

coefficients for states S = 0.. .31 (as in Section 5.2.2), it can be seen that only 64 out 

of the 128 1s  and  Qs  values need to be computed. 

In addition, it can be seen from the table that computing the four summations: 

(7.1) 
m=n- L 

bn(n_ (7.2) 
rn=n -L 

(7.3) 
m=n- L 

a_ (7.4) 
m=n- L 

for state zero, allows the computation of 1s  and  Qs  for s = 0, 15, 16, 31 since a 15  = 

b0 , b 15  = a0 , a16  = —b0 , b 16  = a0 , a31  = —a0 , and b 31  = b0 . The same relationship 

applies for the quadruplets of states: (1, 14, 17, 29), (2, 13, 18, 28),..., (7, 8, 23, 24). 

The schematic diagram in Figure 7.2 shows the circuit which computes the Is and Qs 
values. The black lines on some of the wires signify that the signals are latched by the 

system clock. 

The control unit generates the timing signals which control the circuit. The inputs to 

the SCG are the CIR coefficients Xi, X2, ..., Xs and (j,  (2,..., (5  and the control signal 

nextPacket, which is held high for one clock cycle to signify that new CIR coefficients 
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are available, and computation begins on the next packet. 

The control unit cycles through the 8 quadruplets of 4 states on the lines stateO, state], 

state2, state3, and each of the five coefficient indices on the coeff line. The summation 

modules calculate the summation defined in equations 7.1 to 7.4 serially. When the 4 

Is and Qs  values are available the Write Enable output is asserted and the values are 

written out in turn to the IsQs RAM module. 

7.4 The IsQs dual RAM module 

Figure 7.3 shows the IsQs dual RAM module which is written to by the SCG, and read 

from by the NP during the equalization of the packet data. 

Figure 7.3: The IsQs dual RAM module 

The SCG and NP access the RAM at the same time and to ensure that the correct values 

are available for the NP, two separate RAM banks are used. The RAMs used are from 

the ES2 design kit [82] megacell compiler and have tn-state outputs. 

The control signal IsQsRamSelect is generated by the SCG and determines which of 

the RAM banks is being read and which is being written to. This signal is toggled 
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when a new packet is received so that the SCG always computes the Is  and Qs values 

for the next packet while the NP is decoding the current packet. 

7.5 The node processor 

The NP shown in Figure 7.4 computes the metric for each of the trellis nodes during 

each iteration. Table 7.3 explains the control signals which are generated by the NP 

control unit. 

To path metric From path metric To lsQs From lsQs 
dual RAM 	dual RAM dual RAM dual RAM 

24 
y_n  

a—n 	- 	45• 	18 

PMVReadAddr 
lsQsReadAddu 

___________ 	 Is reset 	 state - 

elk 	
______________ Qs 

— clk 	Control Unit 	b_n  

reset 	Node Processor 	a_n 	
::: 	

Ill 

a_n 
append 	 b 

metricNum  

gnd 	I 
- 	

elk 
aeroMetric, 

cycle 	

bit Mux 	I I I 
H 

out 	 II 

Branch Metric Value 
Calculation Unit 	

BMV 

PMV1n 
BMVin 	 PMVout 

PMVnum 	Unit 
Add Compare Select 	

select 

clk elk  

0 

5 Bit Max dcl 

out 

To path history dual RAM 

Figure 7.4: The node processor module 

The main inputs to the NP are y_n and z_n, the received data sequences. In addition the 

module receives inputs from the IsQs RAM module and the PMV RAM module. 

The NP cycles through the 32 states pairs and reads the corresponding PMVs from the 

RAM. The 1s  and  Qs values are also read out of RAM and used by the branch metric 

calculation unit to determine the branch metric values (BMVs). 

To ensure that the signals arrive at the correct inputs at the correct time, latches have 
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Signal Name I Description 

state The current state pair for which the metric is being 
computed. Cycles from 0 to 31 every 2 clock cycles. 

PMVReadAddr The state in the previous stage which is linked 
by a branch to this one. Two for each state. 

IsQsReadAddr The number of the Is  and Qs pairs required 
(see Table 7.2). Two for each state. 

metricNum 0 or 1 indicating the first or second PMV (and Is  Qs) value. 
a_n Last a in the seqeunce for this state (see Table 7.2). 
b_n Last b in the seqeunce for this state (see Table 7.2). 

append append value forthis state (see Table 7.2). 
zeroMetric High for all of the first iteration. 

cycle 0 for an even iteration 1 for odd. 

Table 7.3: The node processor control signals 

been inserted into the circuit. These are indicated by the thick black lines on some of 

the wires and busses. 

The two BMVs and PMVs are added and compared by the ACS unit. The largest of 

the two sums is then written back into the PMV RAM. In addition, the results of the 

comparison are passed to the PH RAM module which updates the PH values with the 

correct append bit. 

Because the operation of the NP is pipelined, even though it requires 6 clock cycles to 

compute each PMV, an average of only 2 clock cycles per state is required to complete 

all 32 state pairs. However, all of the results of an iteration must be written into memory 

before the next iteration can commence so an additional 4 cycles must be inserted after 

the last PMV is computed. 

7.6 The path metric value RAM module 

Figure 7.5 shows the PMV RAM module. The design of the module is similar to the 

IsQs RAM module described in Section 7.4, however, as discussed in Section 5.2.5, 

the metrics need to be normalised to avoid them increasing beyond the resolution of 

the registers that store them. 

The normalisation circuit shown in Figure 7.6 is based on the classic normalisation 
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slalc=O 

Figure 7.5: The path metric dual RAM module 

technique used in the Viterbi algorithm, when the MSBs of all the metrics are set, then 

reset them [22]. 

msb Write 

state=O 	 in 
reset 

enable I Bit Enable  Latch 
elk 	

elk 	
I Bit Reset Latch 

out 	

enable 

k OUL  

msbRead 	
L>—L-~~ms~bReadNo r~m 

Figure 7.6: The normalisation module 

The normalisation module is a serial and gate. When the PMVs are being written into 

memory, the MSBs are all anded together. At the end of the iteration the result is 

latched and used to conditionally reset the MSBs of the PMVs as they are read from 

the memory during the next iteration. 
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7.7 The BMV calculation unit 

The BMV calculation unit is shown in Figure 7.7. It can be seen that the circuit is a 

direct implementation of the incremental metric equation: 

= a, (y. - Is) + b. (z - Qs) 	 (7.5) 

The only difference is the inclusion of the two negation units. As was discussed in 

Figure 7.7: The branch metric value calculation unit 

Section 7.3, 1s  and  Qs  for S 32.. .63 have not been calculated because they are the 

negative of 1s  and  Qs  for S = 0. .31, this means that for the second of the two Is  and 

Qs values for each state, the value should be negated. This is achieved by a conditional 

negation unit with its input connected to the metricNum control signal from the NP. 
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7.8 The add-compare-select unit 

Figure 7.8 shows a schematic diagram for the ACS unit. The ACS units compares 

the sums of 2 PMVs and 2 BMVs, since both PMVs are stored in the same RAM 

they cannot be accessed simultaneously. The ACS unit performs the two additions and 

latches the results of the first one for comparison in the next clock cycle. It can be seen 

that the output of the ACS unit is valid on alternate clock cycles. 

PMVin 

BMVin 

PMVnum 	I I 
en a 
	b 

S  

Addition 
cik 	I 
—Icik a+b 

a 	b 
en —1 

1Addition 
elk 	I 
—Icik a+b 

in 

I 	l8 Bit Latch 
elk 

elk 	out 

j1k 
Compare 

cik b>a 

select 

0 

ctrl 18 Bit Multiplexor 

PMVout 

Figure 7.8: The serial add-compare-select unit 

7.9 The path history RAM 

Figure 7.9 shows the schematic diagram for the PH RAM module. The PH RAM 

module also controls the updating of the PHs with the correct append bit. 

When the NP selects the correct path based on the PMVs, the numbers of the previous 

state and the current state in the path are passed to the PH RAM module on the inputs 
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Figure 7.9: The path history dual RAM module 

lastState and state respectively. The PH RAM module then reads the PH for lastState 

out of the read RAM, appends it with the append bit, and writes the result into the PH 

for state in the write RAM. The read and write RAMs are selected by the input cycle 

which is the same signal which is used to determine which PMV RAM is being written 

to and read from. 

The selected PH forms the output of the PH RAM block. This is used by the output 

determination unit which is described in the next section. 

7.10 The output determination unit 

Figure 7.10 shows a schematic diagram of the output determination unit. 

The unit examines the metrics as they are written into the PMV RAM module (incom-

ing metrics appear on the input PMVnew), the enable input signifies that a new metric 

is available. At the start of each iteration (i.e. when the state number is equal to zero) 

the current maximum metric is reset. When a new PMV is available, this is compared 

with the current maximum stored in the latch. If the new metric is larger than the 

current maximum, the current maximum is set to the value of the new PMV. 
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Figure 7.10: The output determination unit 

The unit also takes the new PH values from the PH RAM module as input. When a 

new metric is chosen to be the maximum, the corresponding PH is also stored. 

When the packet has been fully decoded, the SelectedPH output is equal to the equal-

ized packet. 

7.11 Implementation 

As discussed in the introduction to this chapter it was decided to implement the serial 

VE design using the Cadence automatic place and route tools and the ES2 0.7jim 

CMOS design kit. 
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7.11.1 Development using Verilog HDL 

It was decided to use Verilog HDL because the language allows the use of behavioural 

and structural module descriptions in a straightforward manner. 

Initially a Verilog description for the design was produced with the low-level modules 

described with a behavioural definition and the more high level modules defined with 

structural definitions. 

7.11.2 The Synergy logic synthesis tool 

Each of the behavioural modules were imported into the Cadence Synergy logic syn-

thesis tool which was used to produce structural implementations using the ES2 library. 

This structural description for each module was exported as a Verilog netlist and used 

to replace the behavioral modules in the original Verilog description file. 

7.11.3 Testing and Verification 

When the behavioural definition of the design was produced, sets of test vectors were 

created to verify the design. Synthesised version of each module were used to replace 

the behavioural versions and the design was retested. This made it straightforward to 

identify errors which where introduced as a result of the synthesis step. 

7.11.4 Layout 

The equalizer module was place and routed using the Cadence Cell Ensemble auto-

matic place and route tools. Figure 7.11 shows the layout for the serial VE module. 

The area of the module is 4392 x 3233gm which makes the design suitable for a hand-

held receiver. 

In Figure 7.11 the RAM modules are clearly visible at the top and bottom of the circuit. 

The large RAMs are for the path history storage and the smaller RAMs to the right are 

the path metric, and state constant RAMs. 
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Figure 7.11: The Viterbi Equalizer layout 

7.12 The YE module specifications 

Table 7.4 describes the input and output ports of the VE module. Simulation showed 

that the maximum clock speed for the module was 20MHz which is well within the 

requirements for GSM. 

Port Name Input/Output Description 
clk input system clock, max. freq 20AIHz 

reset input system reset 
nextPacket input indicates the start of a new packet 

y[0:7] input received in-phase signal statistic 
z[0:7] input received quad-phase signal statistic 

coeffln[7:0] input coefficient value 
coeffSelect input selects either x or 

 ( 
coefficients 

coeffNum[2:0] input index of current coefficient 
latchCoeff input new coefficient value is ready 

dataOut output equalized data stream 
dataEnd output indicates that decoding has finished 

on the current packet 

Table 7.4: The ports of the serial VE module 
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7.13 Conclusions 

This chapter has presented the design of a serial Viterbi equalizer. The major reason 

for producing this design was because the previous fully parallel design was too large. 

In addition, while a high-speed design would be useful for a GSM base station (where 

different transmissions could be multiplexed using a single Viterbi device), a hand-

held receiver requires only a very slow bit-rate. The most important requirement is 

that the design should be small. The lower the transistor count, the lower the power 

consumption. 

The main reason in which the design presented in this chapter differs from the parallel 

one, is because there is only one node processor. This processor performs the calcula-

tions for each of the trellis nodes, in a serial manner. This means that the data cannot 

be stored locally at the nodes, some sort of memory management system is required. In 

addition, because the algorithm is computed serially (which is obviously slower than 

a parallel implementation) the design is heavily pipelined to maintain an acceptable 

throughput. This makes the design more complicated, although the final implementa-

tion is significantly smaller (in fact, the size of the final design is similar to the smaller 

of the two Viterbi decoders presented in Chapter 4). 

The heavily pipelined design features dual RAM blocks where results are written into 

one section, for reading out in the next cycle. The state constant generator unit exploits 

the similarities between summations in a similar manner to the circuit described in 

Chapter 5. In addition, the fact that only half of the trellis states are valid at each stage 

is exploited in the dual RAM structure. 

The pipelining of the design means that the processing of the data has a high through-

put. On average only 2 clock cycles are required per state to evaluate each of the 

32 states. Because of this pipelining, and the serial manner in which the metric are 

evaluated, the path history calculation unit is substantially more straightforward that 

the parallel design. The unit has been simplified to a serial comparison unit, which 

requires much less silicon area than the parallel equivalent. 

The design has been implemented and has been shown to be very small at about 

14mm2 , with a bit- rate of 312.5Kbps, well above the GSM standard requirement 

of 22.8Kbps. 
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Chapter 8 

Conclusions 

The thesis has examined implementations of the Viterbi algorithm in VLSI, from that 

investigation a number of secondary investigations have emerged. They have been 

concerned with redundant number systems, and complementary pass-transistor logic. 

Section 8.1 will provide a summary of the content of the thesis, detailing the work that 

has been presented. Section 8.2 will discuss the main conclusions that can be drawn 

from the research. 

8.1 Thesis Review 

8.1.1 Redundant Number Systems 

In Chapter 3 redundant number systems for high-speed arithmetic were reviewed. Spe-

cific attention was paid to signed binary number representation (SBNR) [4]. Major 

arithmetic functions were discussed, and SBNR implementations were compared in 

some detail with their twos-complement equivalents. The investigation showed that 

SBNR can be a used to perform addition and subtraction operations at very high speed. 

It was also shown that the delay of such circuits is independent of the word-length of 

the operands. One of the main drawbacks of SBNR for VLSI circuit design is that 

the conversion back into twos-complement is relatively slow, and is dependent on the 

word-length. 

During this investigation, a novel static-logic binary-tree based twos-complement VLSI 

adder design was proposed which used SBNR concepts to produce a purely twos-

complement adder with a delay of 11092(N)]  + 2. The design was as fast as previously 

reported designs. 
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8.1.2 Viterbi Decoding 

In Chapter 4, the design of a Viterbi decoder using SBNR was described. The design 

uses redundant number systems as an internal representation for the metrics. Because 

the representation is purely internal, the values never need to be converted into twos-

complement representation. 

It was shown that the design required an estimated 45% more area than an equiva-

lent implementation using twos-complement arithmetic, although it demonstrated an 

increase in bit rate of 14% over conventional methods. 

The decoder design was compared with a number of designs from the literature in 

Section 4.7. The implementation compared favourably with similar designs, in most 

cases it was smaller, and faster. 

8.1.3 Complementary Pass-Transistor Logic 

Chapter 6 described the use of complementary pass-transistor logic (CPL) to produce 

low-power VLSI circuits. The technique of CPL had been proposed by Yano et al as 

an alternative to CMOS circuit design [7]. 

CPL has been investigated thoroughly in this work. A large number of logic functions 

have been implemented using both CMOS and CPL and their speed, area, and power 

consumption have been compared. A standard cell library of CPL functions has also 

been developed using the Cadence design tools. 

8.1.4 Viterbi Equalization 

In Chapter 5, the design of a low-power implementation of a Viterbi equalizer suit-

able for a GSM receiver was described. The implementation of this design was not 

completed because the area requirement for the routing was too large. For the Viterbi 

trellis, the placed and unrouted area was at 7656gm x 3613jtm, however, after routing 

this increased to 10186tm x 24354im, roughly 5cm 2 , which is clearly not suitable 

for a VLSI implementation 

Using the lessons from this implementation. A serial Viterbi equalizer was described 
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in Chapter 7. The design presented contained only one node processor. This proces-

sor performs the calculations for each of the trellis nodes, in a serial manner. This 

makes the design more complicated, although the final implementation was signifi-

cantly smaller than the parallel circuit. The area of the entire module was 4392 x 

3233/Lm, very much suitable for a handheld receiver. The design is very small, and 

meets the GSM specifications. 

8.2 Final Conclusions 

This section will discuss the main achievements of the research, and discuss some 

possible further work. 

8.2.1 Achievements 

8.2.1.1 Viterbi Implementation 

The original aim of the thesis was to focus on VLSI implementations of the Viterbi 

algorithm. In producing the three designs, the following conclusions can be reached 

which are important to consider when produced a VLSI Viterbi decoder or equalizer. 

The throughput of the algorithm is primarily influenced by the delay of the add-

compare-select unit. The algorithm is iterative, and each iteration cannot proceed 

until the results of the previous iteration are known. To maximise the throughput 

of the design, a high-speed add-compare-select unit is required. 

The path metric values are internal to the decoder/equalizer so their represen-

tation need not be twos-complement. The choice of representation of the path 

metric is important and should be chosen based on the speed, power, and area 

requirements of design. It can be concluded from this work that for high speed 

designs carry-save arithmetic is preferable while for non speed critical designs, 

where low power and low area are more important twos-complement represen-

tation is a better choice. 

The Viterbi algorithms complexity increases exponentially as the length of con-

volutional code, or the required intersymbol interference is increased. Parallel 
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implementations are practical for low ISI (as the design described in Chapter 4 

showed), but for larger values of ISI, for non-speed critical applications, and for 

small devices, a serial implementation (such as the one described in Chapter 7) 

is desirable. 

8.2.1.2 A fast twos-complement adder 

During the investigation into redundant number systems, a fast adder design by Srini-

vas and Parhi was investigated [5]. The adder circuit used SBNR as an internal rep-

resentation to compute the sum of two operands, and then converted the result back 

into twos-complement representation. Detailed analysis of this design showed that the 

use of redundant number representation was pointless, and it disguised the true nature 

of the speed increase. Using this knowledge a fast adder design was developed which 

was purely twos-complement, and was faster and smaller that the original Srinivas and 

Parhi design. In fact, this design has a lower gate count, and smaller critical path, than 

existing designs. 

This achievement was an important development in the investigation into redundant 

number systems. It showed that using SBNR arbitrarily is not a sensible method of 

speeding up arithmetic computations in digital circuits. As with most things, care 

must be taken to ensure that the technique is suitable for the application. In many 

cases (particularly parallel designs) carry-save arithmetic (which is, itself a redundant 

number representation) is probably more useful than SBNR. However, it should be 

noted that redundant number systems have been used in the literature to achieve large 

throughput rates in digit-serial, and digit-skewed designs. 

8.2.1.3 The failings of CPL 

Another important achievement in the research was the results obtained from the de-

tailed investigation into complementary pass-transistor logic. In the original paper on 

the subject, Yano et al had presented the technique as an alternative to CMOS logic de-

sign [7].  They claimed that circuits designed using CPL had lower power consumption, 

and were often faster than the CMOS equivalents. 

In this investigation, many logic functions were implemented, using the same layout 

tools and technology, in both CMOS and CPL. The conclusions were that in most 
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cases CPL is actually slower, and higher in power consumption than CMOS. The ex-

ceptions to this were more complex functions, such as xor gates and full-adder cells. 

Even in these cases the reduction in power, and the increase in speed was quite small, 

significantly lower than the original claims made by Yano et al. 

In addition, the implementation of the Viterbi equalizer using CPL raised another prob-

lem with the logic style. The requirement that cells need both the original signal, and 

its complement, means that the routing between cells is doubled. In practice this will 

more than double the area requirement for the routing, as the routing becomes more 

complicated. This was the main reason for the massive area requirement for the origi-

nal Viterbi equalizer design. 

It should be noted than Yano himself independently came to the same conclusions. In 

a follow-up paper, which was published during the latter stages of this research, Yano 

et al presented an extension to CPL that we have called single-output pass transistor 

logic (SO-PL) [8].  These SO-PL cells use local inverters to generate complementary 

signals, only when they are required. This reduces the routing requirements. Yano also 

doesn't suggest replacing common logic functions with SO-PL equivalents. Instead, he 

presents a methodology for logic circuit design based on a very specific set of primitive 

cells that are optimised for SO-PL. 

8.2.2 Further Work 

Further work could include the following: 

• An in-depth comparison of redundant number systems and carry-save arithmetic. 

The work described in Chapter 3 showed that SBNR can offer significant im-

provements in speed performance for many arithmetic circuits. It was also con-

cluded that carry-save arithmetic could offer greater speed increases than SBNR. 

Valuable further work would be to examine important applications of SBNR and 

compare the speed performance of carry-save implementations of the same de-

signs. In addition, the fast-adder design showed that, at least in one case, redun-

dant number systems can be considered redundant and only serve to disguise the 

underlying concepts. Again, important designs using SBNR should be examined 

and this finding investigated further. 
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• Implementation of the fast-adder design. 

The twos-complement adder design presented in Chapter 3 was as fast as pre-

viously reported designs and had a smaller gate count. Implementation of this 

design and a detailed investigation of its performance would allow a better com-

parison with other adder implementations. 

• Implementation of the Viterbi decoder using carry-save arithmetic, and tailoring 

it for use in a GSM system. 

The Viterbi decoder implementation presented in Chapter 4 was implemented 

using SBNR, subsequent investigations of carry-save arithmetic described in 

Chapter 3 showed that a Viterbi decoder design using carry-save arithmetic could 

be smaller and faster that the SBNR design. This should be investigated. In addi-

tion, the decoder design was suitable for decoding the convolutional codes used 

in the GSM telephone system, but does not contain the necessary interface for 

placing the decoder within a GSM receiver structure. This should be designed 

and implemented to produce small Viterbi decoder module for a GSM receiver. 

• Implementation of the Viterbi equalizer design using SO-PL. 

The serial Viterbi equalizer design described in Chapter 7 was designed for im-

plementation with SO-PL. Due to time constraints a standard library of CMOS 

cells was used for the implementation. ASO-PL implementation would allow a 

performance evaluation of the complete design methodology. 
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Abstract 
	

O(log(N)) delay. 

,' b, 

us paper reexamines the design by Srinivas and 
urhi[ I] which used redundant -number adders for fast 
os-complement addition. The underlying media-
sin is revealed and improvements are presented 
uich lead to a static-logic binamy-tree carry genera-

to support high-speed adder implementations with 
lelay oflog,(N) + 2 gates. 

Introduction 

1992, Srinivas and Parhi[l] presented a design for a 
os-complement adder which uses Signed Binary 
imber Representation[2] (SBNR). Since 
nventional binary is a subset of SBNR, two ii-bit 
os-complement numbers (aN_i .... a) and 
N—I h 11 } can be summed as SBNR numbers 
'ithout carry propagation) to yield an N-digit SBNR 
mber. The Srinivas and Parhi architecture consisted 
such an addition stage and followed by conversion 
the SBNR sum back into twos-complement format. 
e authors claimed that this provided the fastest 
;hitecture for the addition of two twos-complement 
mbers. 

)wever, the initial SBNR addition block of [I] can 
replaced by xor(a1 , b1 ), xnor(a1 , b 1 ) and and(a1 , h 1 ) 

)nventional propagate and generate signals for a 
rry-lookahead adder); and the remaining circuit can 
is operate directly on twos-complement 
)resentation producing the inverse of the sum (easily 
rrected). With trivial changes, we can also use 
nd(a1 , h 1 ) instead of and(a1 , b1 ) and so reduce the 
le count of the design by 3N-1 and the critical path 
2. More significantly, the design is thus equivalent 

our hybrid carry-lookahead/carry-select architecture 
awn in Fig. I and it is a purely twos-complement 
:hitecture whose high speed has no reliance upon 
NR. 

Fig. I (which corresponds to Fig. 6 and 8 in III). 
pairs of 8-hit additions are performed using carry-

)kaheacl logic and their outputs selected according 
the true value of the corresponding carry-in. Unlike 

usual carry-select arch itecture[3], the carry terms 
generated by independent logic rather than by 

Lug the results of successive adder sub-sections: this 
where the speed advantage lies since the Srinivas 
LI Parhi design uses a tree structure to achieve 

,r s  (131 

32 hit carry generation circuit 

S  24-~ 	 S  1& 1 3 	 SX-15 	

t 
S 
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Fig. I: The hybrid carry- lookaheadlcarry-select logic. 

IL Carry-generator tree 

The carry-generator is based on a novel 8-digit SBNR 
sign-checking circuit presented in [I] (Fig. 7 in [I]). 
There are two inputs to the circuit (ZNI, . . Z 11 ) and 

• . S 11 ) which in [1] are generated by 
manipulation on an SBNR sum and interpreted as zero 
and sign. We have replaced this pre-logic with 
Z 1  = xor(a 1 , b,) and Si  = and(a,, by ), and the 
remainder of the circuit can be described in the 
following way. Define 
Zi . k = and(Z,Z_ t , . . Z.), and CJ k as the 
carryOut of the addition of bits j through to k with a 
zero carryln (giving C j ,j  = S.). 

We build a carry-generator tree using the following 
relations at each node: 

C 1,,, 	) = C,,, 

nand(Z,,,,, Z,,,_ 1  ) = 

nor (Z,,,,, Z,.,,_ ) = Z,,, 

which effectively combines two adjacent adder 
sections. The first relation states that the carryOut of 
combined sections is the same as the carryOut of the 
more significant section unless its inputs are such that 
its carryin propagates through it completely. This is 
so when each bit has a "0" and a "I" input and the 
resulting carryOut will then be the carryOut of the less 
significant section. (In practice we propagate ca rry to 
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use an initial nand to form Si ). The second and third 
relations maintain the function each bit has a "0" and 
a "I" input for the combined inputs at each node; 
these two relationships are not needed at the leaf 
nodes. 

By applying these relations first to pairs of inputs, and 
then to pairs of the outputs of such pairs, etc, we build 
up a simple binary tree. This naturally produces 
carryOut on boundaries for successive powers of 2 (2, 
4, 8, 16 etc); to obtain carryOut on intermediate 
boundaries, we augment the tree with other nodes 
(using the same relationship). Fig. 2 shows this for a 
8-bit carry generation tree with 2-bit boundaries. Note 
that the generation of carry-bit 6 from inside the tree 
structure shows how the critical delay on each term 
can be limited to Il092 (N)]. We believe this was not 
known to Srinivas and Parhi since it allows the use of 
4-bit adder sections in their 32-bit example which 
moves the critical path from the carry-lookahead 
adders to the carry-generate tree and thus would have 
reduced their critical path delay. 

Z 7  S 7 	S, Z S 5 	S4  Z 1  S 3 	S2  Z 1  S 1 	S0  

Z,  

carry 8 	carry 6 	carry 4 	carry 2 

Fig. 2: An 8-bit carry-generation tree augmented for 
2-bit boundaries. 

The optimal decomposition for this architecture is 
found by determining the delay through the binary-
tree carry generator and then selecting adder sub-
sections (not necessarily carry- lookahead) which 
complete within that time. The only problem is fan-
out, but this will be constrained in practice since larger 
adder tree sizes will lead to larger carry-boundaries. 

The carry-generator tree is based upon two-input gates 
and multiplexors and, we believe, is suitable for the 
implementation of large adders using circuit 
techniques such as compiernentary pass-transistor 
logic[4] (CPL) which provide both high speed and low 
power. With the improvements outlined above. this 
circuit technique leads to a critical path delay of 
[log(N) ± 2 gates. Thus a 32-bit adder, with a sub-
block size of 4-bits, will have a critical path of 7 gaic 
delays. compared to 12 as reported in [11.  

The underlying architecture can now be seen to be 
similar to that of Lynch and Swartzlander[5] also 
published in 1992. Their design creates a tree structure 
using 4-input dynamic-logic Manchester carry chains 
and uses ripple adders in place of the carry-lookahead 
adders. Like Srinivas and Parhi their "modified" tree 
produces carry signals only on 8-bit boundaries. In 
contrast, the design presented here provides a simple 
static-logic implementation based on two-input nodes 
with greater flexibility in choosing the carry 
boundaries and with no requirement for a system 
clock. Our design also has similar performance to that 
reported by Suzuki et a! [6] but with fewer gates. 
Finally, we also note that our improved circuit can 
form the basis for a fast SBNR to twos-complement 
conversion. 

Ill. Conclusions 

We have revealed the true source of the speed 
advantage in the Srinivas and Parhi[1] design, and 
have reduced the number of gates by 3N-1 and the 
critical path to [l09 2(N)l + 2 gate delays. 
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Abstract 
This paper examines the application of Viterbi equalization for receiving Gaussian minimum 
shift keying (GMSK) signals with respect to the Group Special Mobile (GSM) system of mobile 
radio communications. GMSK modulation is described and the theoretical background to Viterbi 
Equalization for GMSK is reviewed. The VLSI architecture for the Viterbi equalizer is then 
described. 
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Introduction 
The Viterbi algorithm is a well-accepted technique for receiving signals in the presence of inter-
symbol interference [1]. In the last 15 years the algorithm has been applied to the area of channel 
equalisation for mobile radio communications [2]. 

Viterbi equalization was proposed in the COST 207 Report into Digital land mobile radio 
communications as a possible channel equalization technique for GSM [3]. The aim of this 
project is to design and a low-power implementation of a Viterbi equalizer (VE) suitable for a 
GSM receiver. The techniques presented here are currently ,being implemented for an intersymbol 
interference (1ST) of 5 bits which (in GSM) represents a multipath delay spread of 15is [4]. 

For simplicity we will describe the theory and show diagrams for an 1ST of 2 bits. Any 
important differences for an IS! of 5 bits will be indicated in the text. 

The architecture uses high-speed combinatorial logic to minimise the speed of the internal clock, 
and is implemented by complementary pass-transistor logic (CPL) which offers the possibility of 
low power consumption and low area at a high speed [5]. We will show that the architecture can 
be implemented successfully using CPL to provide a low-power implementation. 

GMSK Modulation 

The GSM system uses GMSK as the modulation process. We approximate GMSK as an MSK 
modulation process and assume that the Gaussian shaping can be modelled as part of the channel 
impulse response. As the transition diagram in Figure 1 shows MSK is similar to 4-QAM except 
that only certain transitions between phase states are valid. 

The Viterbi algorithm is based on the trellis diagram which is derived from the MSK transition 
diagram shown in Figure I. The diagram for ISI=2 is shown in Figure 2. To construct the trellis 
we must choose, L, the level of [SE in bits, the number of states in the trellis is 2 1". Each state has 



Figure I: MSK transition diagram 

a correlative state vector (a, b) = (a1 , b1 , a,+,, b1+1..... al+L_ i, b +L_I) associated with it. This vector 
represents the magnitudes of the in-phase and quadrature-phase coefficients shown in Figure 1, 
hence a and b can assume the value + I. The branches in the trellis diagram are derived from 
mapping the transitions from Figure 1 onto the trellis diagram. Because of the nature of GMSK, 
if we know the starting state, only half of the states are valid at each iteration, this is indicated in 
Figure 1. 

abab i 	 aba.b, 

State 0 

State 

State 2  

State  

State  

State  

State 6 

State 7 

Figure 2: GMSK Trellis for ISI=2 

For ISI=5 the resulting trellis diagram consists of 64 states. Again, only half of the trellis states 
are valid at each iteration. 



3. The Viterbi Equalizer 
For each possible received sequence, (a, b), the VE minimises the metric [2]: 

A,1 (a,b) = A_ 1 (a,b) +an l
y"  — ,n=n - L 
	+ bm(n_nz)] 

+ 
b [Zn ni=n - L (b

m X n _ rn +am Cn _ m )] 	 (1) 

A,,(a,b) = A,,_ 1 (a,b) +i.+Q. 	 (2) 

where y,, and z,, are the in-phase and quadrature received signals samples after passing through a 
filter matched to an estimate of the channel impulse response (CIR), and Xn and (n  are the CIR 
matched filter autocorrelation coefficients. The CIR estimate remains constant for each single 
TDMA burst. 

The summations I, and Q in the equation (I) are pre-computed for each TDMA packet, S 
refers to the state in the trellis for which the summation is computed. The diagram in Figure 3 
shows the overall structure of the VE for an N state trellis. 

Normalization 

Circuit 

Path Metric Buscs 

II 	 . State 	 Branch 	 Memory I 	I 	VITERBI 	ACS 	 Management and 	OUtPUt 
Constant 	 Metric 

Generation 	 Generation 	

Trellis 	dci.,swns 	 Output -Determination
"Ivs 	 Unit 

Figure 3: Top level block diagram 

3.1 Summation Circuit 

Examining equation (1) we can see that for each single TDMA packet we are required to evaluated 
4 summations of a form similar to: 

- 

(3) 

where {a 1 } is state dependant, ai 	I and the x sequence is the same for all states and constant 
for each single TDMA burst. 

The number of states increase with the IS[ level and therefore the number of summations 
required increases exponentially. To reduce the computational complexity we compute the sum-
inations using a differential addition circuit. Only one summation is evaluated initially and the 
remaining summations are obtained by adding ±2y. 

Table I shows how the summations relate to the sequence {a,}. Note from Table I, each of the 
summations has a duplicate, and also each summation has a negative; which implies that we only 
need to compute a quarter of the summations. 



State a vector] 
fl' LaflXflFflj 

3 1 	I +X1 +X2 
4 -1 	-1 —X—X2 
5 I 	I +X1 +X2 
6 -I 	l —XIX2 
7 1 	-1 XI—X2 

Table 1: Summation Table for ISI=2 

The summation tree for equation (3) is straightforward, and consists of one adder or subtractor. 
Two such trees are needed to compute I  and Q., for every state. 

For ISI=5, each of the 2 trees perform 16 summations. All of the I and Q, values can be 
computed in 6 adder levels and with 94 adder cells and 32 negation units. It would require 640 
adder cells to compute these summation individually. An alternative implementation could produce 
these summations serially using two adder accumulators and the results stored at the branch metric 
cells. 

3.2 Viterbi Trellis 

The trellis is implemented as interconnected add-compare-select (ACS) units. Examining Figure 2 
we see that only half of the states are used at each time interval, hence we can use only one ACS 
unit to represent different trellis nodes at odd and even time intervals. The branch metric generation 
unit ensures that the correct corresponding branch metric values (BMVs) are fed to the ACS units 
at the correct time interval. 

The trellis nodes are paired up so that each ACS unit is shared between two nodes. The pairs 
are chosen in the following way: 

. An even time interval node is paired with an odd time interval node. 

. Each pair of nodes are connected to 4 nodes which themselves form two pairs. 

This ensures the minimum amount of routing between ACS units and that the routing between 
node pairs is never redundant at either odd or even time intervals. 

One possible pairing of the trellis states from Figure 2 is shown in Table 2. 

State I Paired with 

0 	5 
1 	4 

2 	7 

3 	6 

Table 2: State Pairing Table for Figure 3 

The ACS unit implements the following function: 



if((PMV0 +Bfv!V 0)> (PMV I  +BMV)) 
PMV,, UI  = PA'! V0  + BMVO  
select = 0 

else 

PMV(, UI  = PMV1  + BMV 1  
select = 

The select signal is fed to the memory management unit which stores the path histories for all 

the trellis states. 

The addition and comparison units are implemented using ripple propagation. The ripple 

adder's delay is proportional to the word length of the operands. However, the ripple adder often 

has the smallest area and lowest power of all the adder architectures [5]. In our ACS unit the 

comparison operation is implemented as a subtractor chain which operates in parallel to the two 

ripple adders chains. Thus the delay through these cascaded operations is equivalent to a full-adder 

and one carry chain. 

3.3 Branch Metric Calculation 

When a new pair of in-phase and quadrature-phase symbols (y,,, z) are received, the incremental 

metric for each branch on the trellis diagram is computed. From equation (1) the incremental 

metric associated with a transition from state p to state q is: 

= a, (y, - Is.) + b(z - Q) 	 (4) 

where a, and b are the expected in-phase and quadrature-phase signals which would result in a 

transition from state p to state q. 
From Table 2, state 0 and state 5 are paired and so they share the same ACS unit in the 

implementation of the Viterbi trellis. The branch metric values associated with these states can be 

derived from Figure 2. These are: 

= - I (Y' 	- 12) + I (z,, - Q2) 

A 4 ..... 0 	= - I (y,, - 14 ) + I (z - Q) 

= I On - 1) + I (z,, - Q i ) 
A 7 _ 5 	= I (y,, - 17 ) + I (z,, - Q) 

These two states share two branch metric calculation cells, as well as the same ACS unit. At 

even samples the metrics for state 0 are computed and at odd samples the metrics for state 5 are 

computed. Figure 4 shows these two branch metric calculation cells, where sample is 0 for even 

samples and I for odd samples. 

The BMV generation cell is shown in Figure 5; it performs the sum +(I. - y,,) ± ( Q - z,,) 
where the + operator is chosen by the values of ctrla and ctrlb. At some nodes the control signals 

are fixed and so the logic can be optimized. 

As discussed at the end of Section 3.2 the adders in the branch metric value cell are cascaded 

so that the delay through the adders is equivalent to a full-adder and one carry chain. 

3.4 Metric Normalisation 

The metrics must be normalised so that they can be stored using finite length registers. In the 

conventional Viterbi algorithm, metrics are always positive and are normalised by observing when 

all the most significant bits are set and resetting them [6]. In our design the metrics can be both 

positive and negative 2's complei -nent numbers. We normalise metrics of N bits in length if: 

. All metrics are positive and > 2 2  

All metrics are negative and < 2A'2 
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Figure 4: The first two cells of the BMV unit for ISI=2 

In the first case, bit N - I = 0 and bit N - 2 = 1, to normalise we reset bit N - 2. In the second 
case, bit N - 1 = I and bit N - 2 = 0, to normalise we set bit N - 2. The Normalisation unit is 
shown in Figure 6 

For ISI=5, assuming our channel estimation coefficients have an accuracy of 8 bits, our path 
metric values are required to be stored using 18 bits. This means that normalisation occurs if all 
of the metrics are larger than 2 16  or if all of the metrics are lower that _216 

3.5 Memory Management 

We have used a register exchange method of path history memory management for simplicity. 
However, the module has been specified so that it is compatible with a traceback management 
unit [7] to allow the possibility of future development. 

Each state in the trellis appends either a I or a 0 to the path history. The append signal shown in 
the circuit is dependent on the trellis state and the cycle. For simplicity the output bit is determined 
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Figure 5: BMV cell 
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by a majority vote on the oldest bit in all of the path histories. 
For ISI=5, we have 32 registers in the memory management unit. For majority voting the the 

length of the path history register is 5-6 times the length of the path metric values [6]. This means 
that the path history registers should be roughly 90 bits in length. This is quite large which would 
suggest that a traceback method of path history memory management would be more desirable. 

4. Performance 
We need to estimate the delay though the circuit to determine whether CPL [5] will produce a 
satisfactory implementation. From the specifications of GSM [3] the VE output is buffered to 
produce a continuous bitstream at 22.8 khit/s, hence the VE has 5nis to complete the decoding of 
a TDMA packet. 

Each GSM TDMA packet contains 114 bits of data which need to be passed through the yE, 
in addition, the VE needs to be flushed with the same amount of bits as in the path history. For 
these iterations the branch metrics are all set to zero. With a path history of 90 bits, this means that 
our VE has to perform 204 iterations. 

Assuming that the output determination unit has a shorter delay than the Viterbi trellis then the 
clock period T in CPL gate delays is: 

T > ( A s, + AAcs + NORI'4ALIZE) 	 (5) 



and the delay through the state constant generator followed by 204 iterations of the VE must be 

less than 51ns. 

Circuit Element Delay (CPL gates) 
State Constant Generator 20 
Branch Metric Generator 16 

Add-Compare-Select Unit 15 
Normalization Unit 5 

Table 3: CPL gate delays for various circuit elements 

The number of CPL gate-delays through the various circuit elements are summarised in Table 3. 

Using these delays and equation (5) we can estimate a maximum gate-delate of 0.5s which is 

clearly realisable. 

5. Conclusions 
In this paper we have reviewed the concepts of Viterbi equalization for GMSK signals as used 
in the GSM system of mobile radio communications. We have presented the design of a VLSI 
implementation of a Viterbi Equalizer module using Complementary Pass-transistor Logic, which 

satisfies the GSM specification and has low-power requirements. 
Further work will include implementing the memory management unit using a traceback system 

rather than register passing. This should further reduce the area requirement and power usage of 

the design. 
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Abstract 

In recent years the popularity of mobile telephones has risen dramatically. With 
the introduction of the European digital telephone standard GSM in 1988 the qual-
ity of these telephone links has also improved. The Viterbi Algorithm has been an 
excepted method of decoding convolutional code since its conception in 1967. Re-
cently it has been used to equalizer channel effect in digital transmission, and is a 
popular equalization technique for GSM receivers. The paper presents the design of 
a low area Viterbi Equalizer VLSI module for GSM we will conclude that the design 
is compact and suitable for a handheld GSM receiver. 

Introduction 

The Viterbi algorithm is a well-accepted technique for receiving signals in the presence of 
intersyrnbol interference [1]. In the last 15 years the algorithm has been applied to the area of 
channel equalisation for mobile radio communications [2]. 

Viterbi equalization was proposed in the COST 207 Report into Digital land mobile radio com-
munications as a possible channel equalization technique for GSM [3]. The aim of this project 
is to design and a low-power implementation of a Viterbi equalizer (VE) suitable for a GSM 
receiver. The techniques presented are implemented for an intersymbol interference (ISI) of 5 
bits which (in GSM) represents a multipath delay spread of 15ts [4]. 

When designing a VLSI module for a handheld device it is important to produce a low area, and 
low power implementation. Previous work in designing a VLSI VE module [5] showed that a 
fully parallel module results in a large use of silicon area, which is not suitable for a handheld 
device. When designing a VE module for a hand-held mobile GSM receiver, it is preferable to 
develop a serial module which has a smaller number of add compare select (ACS) units, than 
trellis nodes. 

In this paper the design of a serial VE module is described. For speed of implementation 
we have used the ES2 0.71tm CMOS process. Section II describes the overall VE module. 
Section III describes the implementation of the design using Verilog HDL, the ES2 design kit, 
and Cadence Design Framework 11. Section IV outlines the testing and the layout of the design 



and Section V describes the specifications of the implementation. Finally in Section VI some 
conclusions are drawn. 

II Architecture 

The simplified block diagram in Figure 1 represents the serial VE module. The VE theory will 

Path Mctric 
Dual RAM 
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I 
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data 
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Figure 1: A block diagram of the Serial Viterbi Equalizer 

not be described here. Explainations can be found in the literature [3], [2], [5]. 

For each possible received sequence, (a, b), the VE minimises the metric [2]: 
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where y 72  and z n  are the in-phase and quadrature received signals samples after passing through 
a filter matched to an estimate of the channel impulse response (CIR), and Xn  and ( are the 
CIR matched filter autocorrelation coefficients. The CIR estimate remains constant for each 
single TDMA burst. 

The summations I and Q in the equation (1) are pre-computed for each TDMA packet, S 
refers to the state in the trellis for which the summation is computed. Once computed, the state 
constants are stored in a block of memory out of which they are read by the node processor (NP). 
Note from the diagram that the memory is a "dual" memory. This means that there is in fact two 
blocks of memory, while one block is being written to by the state constant generator (SCG), 
the other block is being read by the NP. This allows the SCG to compute the state constants for 
the next packet while the NP is decoding the current packet. 

To have the SCG and the NP working on different packets, it is assumed that the input and 
output of the whole module is buffered. This is acceptable because due to the GSM block 
encoding scheme [3], the packets must be stored at the output of the VE module. 

The NP contains a single ACS unit which represents each of the trellis nodes in turn throughout 
one iteration. The path metrics values (PMVs) and path histories (PHs) are now stored in two 
RAM modules external to the NP. 



The PMV and PH RAMs are also "dual" RAMs similar to the RAM for the state constants. 
This is because of the iterative nature of the VA which means that the results of the previous 
iteration need to he available for all of the required nodes in the subsequent iteration. To achieve 
this two identical blocks of memory are present in the two RAM modules, during odd and even 
iterations, alternative RAMs are used for reading and writing. 

Finally, the output determination unit is far simpler than the one required for the fully parallel 
version [5]. A very small metric selection circuit has been designed, which selects the largest 
metric during the final iteration, and outputs the corresponding PH. 

III Implementation 

It was decided to implement the serial VE design using the Cadence automatic place and route 
tools and the ES2 0.7tin CMOS design kit. 

Verilog HDL was used because the language allows the combination of behavioural and struc-
tural module descriptions in a straightforward manner. Initially a Verilog description for the 
design was produced with the low-level modules described with behavioural definitions and the 
more high level modules defined with structural definitions. 

Each of the behavioural modules were imported into the Cadence Synergy logic synthesis tool 
which was used to produce structural implementations using the ES2 library. This structural 
description for each module was exported as a Verilog netlist used to replace modules in the 
original Verilog file. 

IV Testing and Layout 

When the behavioural definition of the design was produced, sets of test vectors were created 
to verify the design. Synthesised versions of each module were used to replace the behavioural 
versions and the design was retested. This made it straightforward to identify errors which 
where introduced as a result of the synthesis step. The equalizer module was place and routed 

I - 

Figure 2: The Viterbi Equalizer layout 

using the Cadence Cell Ensemble automatic place and route tools. Figure 2 show the layout 
for the serial VE niodule. The area of the module is 1:392 x 3233im which makes the design 
suitable for a handheld receiver. 



In Figure 2 the RAM modules are clearly visible at the top and bottom of the circuit. The large 
RAMs are for the path history storage and the smaller RAMs to the right are the path metric, 
and state constant RAMs. 

V Performance 

Table 1 describes the input and output ports of the VE module. Simulation showed that the 
maximum clock speed for the module was 20MHz which is well within the requirements for 
GSM. 

Port Name Input/Output Description 
clk input system clock, max. freq 20MHz 

reset input system reset 
nextPacket input indicates the start of a new packet 

y[0:7] input received in-phase signal statistic 
z[0:7] input received quad-phase signal statistic 

coeffln [7:0] input coefficient value 
coeffSelect input selects either x or 

 ( 
coefficients 

coeffNum[2:0] input index of current coefficient 
latchCoeff input new coefficient value is ready 
dataOut output equalized data stream 
dataEnd output indicates that decoding has finished on the current packet 

Table 1: The ports of the serial VE module 

VI Conclusions 

In this paper a serial implementation of a Viterbi Equalizer for GSM has been proposed. Using 
the concepts which were developed in design of the parallel VE in [5] a serial design has been 
produced which has been implemented and has been shown to have a low area. 
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