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Abstract 	 1 

Abstract 

The Radial Basis Function (RBF) neural network architecture is a powerful 

computing paradigm that can solve complex classification, recognition and prediction 

problems. Although the RBF is similar in structure to the ubiquitous Multilayer Per-

ceptron (MLP) neural architecture, it operates in a different way. 

This thesis discusses the issues addressed, and the findings from, a project that 

involved implementing a Radial Basis Function neural network in analogue CMOS 

VLSI. The developed hardware exploits the pulse width modulation (PWM) neural 

method, which allows compact, low power hardware to be realised through a combi-

nation of analogue and digital VLSI techniques. 

Novel pulsed circuits were designed and developed, fabricated and tested in 

pursuit of a fully functioning RBF demonstrator chip. The theory underpinning the 

designs is discussed and measured hardware results from two test chips are presented 

along with an assessment of circuit performance. Although the circuits generally 

functioned as required, discrepancies between the actual and theoretical operation 

were observed. Thus suggested improvements to the original designs are made and 

the circuit and system level considerations for the final demonstrator chip are dis-

cussed. 

Measured results are presented from the final demonstrator chip, confirming the 

correct operation of its constituent circuits, along with results from experiments 

showing that, when modelled in software, the developed circuitry is capable of per-

forming as well as an identically trained RBF with Gaussian non-linearities. How-

ever, further results indicated that the expected network performance would degrade 

when the neural parameters are quantised. 

Hardware experiments with the demonstrator chip indicated that it could be 

used as an RBF classifier, but its performance degraded for more complex problems. 

A summary of the probable reasons for the performance degradation is provided. 

The final conclusion reached as a result of this work is that, provided care is 

taken when designing and laying out the circuits, it is possible to produce pulsed 

hardware capable of reproducing the required RBF operations. However, success-

fully applying the hardware to real problems is not trivial, as indicated by a discus-

sion of the pertinent issues. 
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Chapter 1 

Introduction 

1.1. Background 

Research into Artificial Neural Networks (ANNs) is driven by two main aims: 

the desire to model the operation of the brain in order to derive a better under-

standing of cognitive function 

the desire to automate the processes of recognition, classification and time-

series analysis for solving increasingly complicated real world problems. 

While biologists, psychologists, neurologists and cognitive scientists investigate the 

finer nuances of thought processes, it is the application of such biologically-inspired 

computation that concerns the electronics engineer and which is explored here. 

Although recent advances in neural network research have only been achievable 

because of the rapid developments witnessed in electronic integration and computer 

architectures over the last quarter of a century, the structure and operation of ANNs 

is in marked contrast to that of the traditional, ubiquitous, von Neumann computer 

architecture, Figure 1.1. 

Control kA_t\J  Execution Kh1I Memory 
Unit 	I 	I 	Unit 

I/o 

The von Neumann Architecture. 	 An ANN Architecture. 

Figure 1.1 - The von Neumann Computer Architecture and an ANN Architecture. 

Whereas a von Neumann computer consists of a single, complex, multi-functional 

processor, ANNs are densely interconnected topologies of simple computational 

units called neurons. Whilst von Neumann computers operate serially, processing a 

list of instructions in sequential order, ANNs operate in parallel, processing all the 

inputs at the same time and distributing the results along their interconnections. 
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Furthermore, artificial neural networks have the ability to learn - they can be trained, 

via learning algorithms, to solve complex non-linear input to output mappings 

through the evolution of a number of adaptable parameters, or weights, associated 

with each computational unit. In contrast, although the von Neumann computer has 

found widespread use due to its ability to process numbers quickly and to arbitrary 

accuracy, even simple classification tasks have proven to be troublesome. 

So herein lies the aspiration for ANNs: if computing engines can be developed which 

draw inspiration from the understood and observed operation of the brain, will simi-

lar highly developed, 'human-like", performance be achieved? 

1.2. Historical Summary 

Although often considered as a new, "leading-edge" technology, ANNs have had a 

long and chequered history. The first model of a biological neuron was conceived in 

the 1940's by McCulloch and Pitts [1], and was developed from their research into 

the operation of the brain. Rosenblatt later termed these computational units 

perceptrons [2]. Interest in the neural network field continued from the 1940s until 

the late 1960s when a publication by Minsky and Papert [3] examined single layers 

of perceptrons in detail and highlighted that they could only solve linearly separable 

problems. This was seen as a fundamental limitation and research all but ceased for 

fifteen years. 

However, work by Werbos [4], Parker [5] and Rumelhart et al [6] demonstrated that 

the crippling limitation of the single layer perceptron could be circumvented and the 

latter group demonstrated that trained ANNs could produce superior classification 

performance in high-level tasks compared to traditional computers. There then fol-

lowed an explosion of research interest in the area of adaptive, parallel, intercon-

nected structures and many "neural" paradigms, with associated learning schemes, 

have since been developed. 

Although numerous architectures have been developed since 1986, one has domi-

nated the field: the multilayer perceptron or MLP. This was the architecture originally 

proposed by Rumeihart et al and, along with its back-propagation learning scheme, 

was the most utilised architecture during the 1980's. 

Research by Broomhead and Lowe [7] and Moody and Darken [8] in the late 1980s 

produced a new neural architecture based on radial basis functions. The Radial 

Basis Function (RBF) neural architecture has a similar structure to the MLP, and 
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possesses the same ability to universally approximate any function given enough 

computational units. However, it can be trained faster than the MLP and its training 

mechanisms do not suffer from the same pathologies as back-propagation. Due to 

these advantages, the RBF has reduced the MLP's monopolisation of neural network 

applications. 

This thesis investigates the implementation of the RBF neural network architecture in 

electronic hardware. 

1.3. The Need for Neural Hardware 

Since ANNs are essentially simple computing machines connected in parallel, their 

behaviour can be replicated on von Neumann computers using an appropriate high-

level programming language. However, in order to exploit the inherent parallelism of 

the architectures, dedicated hardware is required. Fortunately, ANNs are amenable to 

both analog and digital hardware implementations and numerous examples of each 

type are available in the literature. A summary of the advantages and disadvantages 

of both is presented in Table 1.1. 

Analogue Digital 

Advantages Disadvantages Advantages Disadvantages 

Small Area 

Low Power 

Low Precision 

Corruptible 

High Precision 

Robust 

Large Area 

High Power 

Table 1.1 - Summary of the advantages and disadvantages of 

analogue and digital neural network implementations 

As the field of neural network research has matured, so the focus of the research 

community has developed and evolved. The main emphasis of ANN research has 

now shifted towards generic software solutions, where different architectures can be 

evaluated simply, efficiently and with the minimum of effort. Hardware implementa-

tions now fall into two main categories: 

digital co-processor and accelerator boards 

application specific analog and hybrid hardware solutions. 

Whilst co-processor and accelerator boards are used for speeding up software neural 

network simulations, dedicated analog and hybrid hardware is expected to fill a niche 

market where there is an identified need for low power, parallel processing chips hav-

ing both a small area and a high data throughput. 
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The Integrated Systems Group at the University of Edinburgh has been engaged in 

neural network research since 1986. Notable work performed by the group over the 

past decade includes the development of the Pulse Stream suite of neural evaluation 

techniques [9],  the development of a generic neural network chip (EPSILON) 

[10-12], an investigation into the benefits gained from training MLP networks using 

inherent analogue noise [13] and, more recently, the successful application of a neu-

ral architecture to robotic control [14]. The work contained in this thesis both com-

plements and extends this work. 

1.4. Aim of Thesis 

As mentioned in Section 1.2, the complementary MLP and RBF architectures have 

dominated the resurgent ANN field. However, whilst there have been many success-

ful implementations of hardware MLPs, there have been, in contrast, surprisingly few 

implementations of RBF chips. This has been due partly to the shift in emphasis in 

neural research to generic software development platforms and dedicated application 

specific hardware solutions and partly due to the perceived difficulty in implementing 

the requirements of RBFs - especially the basis functions - in VLSI. 

The aim of this work was to study the circuit, system and operational issues relating 

to implementing the Radial Basis Function neural network architecture in analogue 

VLSI, using the pulse width modulation (PWM) neural technique, and to explore the 

constraints imposed on the algorithm by the chosen implementation medium. 

1.5. Thesis Overview 

To address the thesis aim, suitable circuits for realising the paradigm were designed, 

developed, fabricated, tested and assessed. The goal of the work was the production 

of a functioning pulsed RBF demonstrator that could be applied to classification 

problems. 

In addition to producing and testing the RBF hardware, software simulations were 

also carried out to assess the suitability of the developed circuitry for solving classifi-

cation problems and investigate the precision constraints that analogue VLSI could 

impose on the implementation. 

This project is therefore concerned with circuit and system level aspects of the design 

of feedforward RBF chips. No attempt was made to produce an optimal or generic 

neural chip, nor were new learning algorithms or on-chip learning implementations 
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considered. 

The remainder of this thesis is organised as follows. 

Chapter 2 reviews the theoretical background to the work through considering the 

RBF and MLP neural architectures as discriminant function classifiers. The operation 

of both architectures is discussed and training methods presented for both. 

Chapter 3 reviews the Complementary MOSFET (CMOS) transistor technology - the 

medium for which the analogue circuitry was developed. This chapter considers 

alternative methods for implementing RBFs in CMOS VLSI before introducing the 

actual method used: the hybrid Pulse Stream technique. After considering the general 

principles of pulsed methods, the motivations and scope for the project are presented. 

Chapter 4 discusses the design and development of novel circuitry to realise the out-

put layer of the RBF architecture. In addition to explaining the theory and moti-

vations behind the DYMPLE synapse design, hardware measurements from a fabri-

cated test chip are presented, along with an assessment of circuit operation and sug-

gestions for design improvements. 

Chapter 5 çliscusses the circuits developed for the basis function test chip: the RHO 

chip. Again the theoretical operation of each circuit is presented along with results 

from the second test chip. On the basis of these results, conclusions are drawn as to 

the best circuit to implement on the final demonstrator chip. 

Chapter 6 presents the PAR chip - the final, pulsed, RBF demonstrator produced for 

the project. The improvements made to the circuit designs from Chapters 4 and 5 are 

discussed, along with the system level considerations necessary for the demonstrator 

chip. Hardware measurements from the PAR chip are presented and the operation of 

the final circuits assessed. 

Chapter 7 summarises the results from a set of simulations carried out to investigate 

whether the designed circuitry could successfully solve a variety of classification 

problems. Further, the effect of using limited precision parameter storage is also con-

sidered. In addition to presenting and discussing the results of these experiments, 

descriptions of the classification problems and the operation of the software simula-

tor are also given. 

Chapter 8 presents the results from the classification experiments performed with the 

PAR chip. After detailing the constraints imposed on the hardware experiments, the 

results and observations from the demonstrator chip are summarised and the conclu-

sions drawn from this work are listed and discussed. 
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Finally, Chapter 9 summarises the project and presents the conclusions from the 

work. 
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Chapter 2 

MLP and RBF Theory 

As stated in the last chapter, the goal of this work was to produce a small RBF 

demonstrator chip and demonstrate its functionality by applying it to a classification 

problem. Classification problems occur frequently in industry and business and cur-

rently represent one of the main application areas for artificial neural network simu-

lations and hence one of the expected areas for using dedicated hardware. 

In the context of this thesis, it is also instructive to consider the problem of pattern 

classification because it allows some of the fundamental concepts underpinning 

MLPs and RBFs to be introduced. 

This chapter uses pattern classification as a means to introduce discriminant func-

tions, before going on to consider the MLP network and especially the RBF network 

in more detail. The aim of the chapter is to provide the necessary theoretical back-

ground for the work in this thesis from a consideration of a popular application area 

for feedforward neural networks. 

2.1. Pattern Classification 

Pattern classification is the task of assigning data to one of several categories, or 

classes, based on the information contained in a feature vector representing the data. 

The feature vectors to be classified, or identified, can either contain raw data or data 

which has been preprocessed to extract more salient features [15]. Whatever form 

the vectors take, though, they must contain relevant information that allows the data 

to be identified as belonging to a specific class and allows vectors belonging to differ-

ent classes to be differentiated. The processing of the vectors to identify their rele-

vant features and allocate them to specific categories is usually performed by a dedi-

cated pattern classifier. 

One way to achieve class differentiation is to use discriminant functions. A discrimi-

nant function is a mathematical relationship that can be used to determine whether or 

not an input vector belongs to a certain class [16]. 
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2.2. Discriminant Function Classifiers 

If each feature vector is assumed to define a point in some feature space, then a pat-

tern classifier can be considered as a means of partitioning this space into a number 

of regions, Figure 2.1. The different symbols in this figure represent vectors from the 

different classes, whilst the lines mark the class boundaries and correspond to the 

crossing points of the discriminant functions used. 

feature x 2  
Class 2 

XX 
XX 

X X XX( 

/ X/ 
/* 

X5o(X/* 

000 
OOøO\ 
00000 \ 

* 
* 

Class 0 	\ 	Class 1 

feature x 1  

Figure 2.1 - Feature space divided up using discriminant functions 

The classification problems considered in this thesis are 1-out-of-N coded problems. 

This means that for an N-class problem, each class, n, will have its own unique dis-

criminant function. Thus the classification problem can be considered as computing 

N discriminant functions, with the classification being determined by finding the 

class whose discriminant function produces the highest output [16].  Usually, the 

ideal output for class n, 0(n), will be 1.0 if input vector xn and will be 0.0 other-

wise. Thus, for any input vector, one and only one output can be 1. 0, with all other 

outputs ideally 0. 0. However, a more likely scenario is that all outputs will lie in the 

range,0.0<0(n)< 1.0,nEN. 

To consider pattern classification using discriminant functions in more detail, con-

sider the two class problem in Figure 21 [15, 171. Clearly these two classes can be 

separated with the dotted line - it is termed a decision boundary - and the problem is 

said to be linearly separable. 

The decision boundary can be described mathematically using the general equation 

for a straight line - y = mx + c. In this case, the decision boundary can be written as: 
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Figure 2.2 - A two-class linearly separable problem 

x 2 ax 1 +b 	 (2.1) 

By defining a = - -- and b = - 	and assuming x0  is always 1.0, equation 2.1 can 
w 2 	w 2  

be re-expressed as: 

w 2  x 2  + w 1  x 1  + w 0  = 0 	 (2.2) 

or more generally 

wTx = 0 	 (2.3) 

where w is the weight vector and describes the orientation of the 1-dimensional deci-

sion boundary in the 2-dimensional x 1  - x2  plane. In general, equation 2.3 describes 

the orientation of a (d - 1)-dimensional boundary in d-dimensional space. The 

weight vector actually defines a d-dimensional vector normal to the decision bound-

ary and pointing in the direction where wTx>  0. 

For this two class case, wTx  is a discriminant function since it can be used to differ -

entiate the two classes. For example, the input vector could be assigned to class A if 

wTx > 0 and class B if wTx  <0. If wTx = 0, however, no unique decision can be 

reached since the vector lies on the decision boundary and could belong to either 

class. 

As stated previously, most decision problems usually use one discriminant function 

per class and assign the input vector to the class whose discriminant function has the 

largest value. Many functions can be used as discriminant functions and if the dot 
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product of the weight vector and input vector, wTx,  is transformed using a monotonic 

function fO then the decision process is unaltered [16]. Suitable forms for fO 
include the Heaviside function H(x), Figure 2.3(a), and the logistic sigmoid function 

as defined by equation 2.4 and shown in Figure 2.3(b). 

Heaviside 
	

Logistic 
Function 	 Func2tion 

(a) 
	

(b) 

Figure 2.3 - (a) The Heaviside Function and (b) the Logistic Sigmoid Function 

1 

(1 + e°) 
	 (2.4) 

Using the logistic function for the 2-class problem in Figure 2.2, it is possible to 

define two discriminant functions f(wTx)  and f(wx) where w 1  = —w2 . This situa-

tion is depicted in Figure 2.4. 
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Figure 2.4 - Visualisation of the two-class problem using non-linear 

discriminant functions 
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Now the classication problem can be defined in terms of the two discriminant func-

tions: 

if f(wx) > f(wx), XE class A 

if f(wfx) < f(wX), XE class B 

This consideration of non-linear discriminant functions for pattern classification 

leads naturally onto multilayer perceptron and radial basis function neural networks. 

These networks can be used to solve non-linear classification problems because they 

have simple computational units that form non-linear and linear discriminant func-

tions respectively. 

2.3. Feedforward Neural Networks for Classification Problems 

Multilayer Perceptron and Radial Basis Function neural networks are feedforward 

architectures that have no recursive links within their topologies and information 

propagates from input to output through parallel processing units, Figure 2.5. 

Signal Flow 

Output 

Vector 

Input 	Hidden 	Output 
Units 	Units 	Units 

Figure 2.5 - A Typical Feedforward Neural Network Architecture 

Both types of network implement uni-directional, non-linear functional mappings 

between multi-dimensional input spaëe and multi-dimensional output space. Feedfor-

ward neural networks can solve non-linear classification problems, a special case of 

general non-linear multi-variate functional mappings, through the use of the non-

linear activation functions in the computational units within the networks. 
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In this chapter, only the MLP and RBF neural network architectures are considered 

for solving pattern classification problems. These two topologies are not the only 

neural classifiers [18], nor are neural networks the soul means of solving classifica-

tion problems [15, 16]. However, it is necessary to limit the scope of this discussion 

due to the available space. 

Neural networks learn to produce the desired functional mappings through the adap-

tion of the neural parameters, or weights, associated with the synaptic links connect-

ing the processing units. No prior knowledge about the form of the mapping is 

required, only a training set of input and output vector pairs, which the network uses 

in the learning process, and a similar set of vector pairs, the test set. The test vectors 

are applied to the network after training, allowing its generalisation performance (ie 

its ability to classify previously unseen data) to be evaluated. 

In essence, feedforward neural networks are non-parametric models, designed to cap-

ture the underlying trends and dynamics in a data set by gleaning information about 

the problem during learning. The primary aim for fitting such a model to a problem is 

to balance the conflicting requirements of providing enough free parameters to ade-

quately reproduce the mapping, without fitting the model to the idiosyncrasies of the 

noise within the available data. Since any data set has its input and output dimension-

alities pre-specified, then the number of weights in a neural network depends on the 

number of hidden units required to solve the problem. Knowing how many hidden 

units to use must usually be determined empirically, although algorithms do exist for 

both the MLP and RBF that allow the number of hidden units to be adapted as train-

ing proceeds [19, 20]. Normally the number of hidden units required depends on the 

complexity of the problem, with more difficult tasks needing more adaptable parame-

ters. 

Neural learning can either be supervised or unsupervised. Supervised learning 

involves adapting the neural weights to reduce a global error function; the error func-

tion usually being defined in terms of the adjustable network parameters. Supervised 

learning is therefore akin to teacher-based training. Alternatively, unsupervised 

learning requires no output vectors and has no error function to minimise. Unsuper-

vised learning often involves a clustering of the input vectors into groups possessing 

similar properties. 

Geometrically, neural learning can be thought of as finding an abstract global solu- 

tion surface for the problem under consideration. The shape of the solution surface 

is determined by the neural weights and changes as the weights are adapted. 
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Similarly, generalisation can be thought of as interpolating new data onto the final 

solution surface, with each classification decision determined by where the data vec-

tor lies on the surface. 

2.4. Multilayer Perceptrons 

The early ANN researchers proposed neural models that used non-linear discriminant 

functions based on the Heaviside Function, Figure 2.6. Rosenblatt termed such com-

putational units perceptrons [2]. 

Figure 2.6 - A Perceptron with a Heaviside Activation Function 

Minsky and Papert's book [3] proved conclusively that it was impossible to solve 

non-linear classification problems using only a single layer of perceptrons. However, 

it was realised that it was possible to solve non-linear problems by cascading layers 

of perceptrons together [21]. The main problem was how to adapt the weights of the 

network to partition up input space correctly. For example, consider a two-layer feed-

forward network of perceptrons with hard-limiting Heaviside non-linearities, Figure 

2.7. The training algorithms for single layer perceptron networks adapt the network 

weights depending upon how much they contribute to providing a right or wrong 

answer [17]. However, the outputs from the hidden layer of the network in Figure 

2.7, are all either 0 or I and it is impossible to assign target values to these units and 

therefore tell by how much the hidden weights should be adapted to produce better 

performance. This is known as the credit assignment problem [15]. Neural network 

research thus stalled in the 1960s because of the lack of suitable learning algorithms 

for training multi-layer non-linear networks. 
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Figure 2.7 - A Multilayer Neural Network with Heaviside Activation Functions 

However, work by several authors showed that the credit assignment problem could 

be solved, and the weight updates for all layers of the network calculated, if continu-

ous monotonic activation functions were used instead of the Heaviside function 

[4-6]. These researchers devised the back-propagation algorithm and it gained 

widespread popularity due to a publication by Rumelhart and McClelland [22]. The 

development of this algorithm and the use of continuous, differentiable activation 

functions represented a major contribution to the neural network field and helped 

regenerate a stagnant research area: trainable networks consisting of multiple layers 

of perceptrons were now a reality. 

2.4.1. MLP Operation 

The basic architecture for an MLP is shown in Figure 2.8. 

In general, the MLP consists of an input layer, a number of hidden layers and an out-

put layer. Both the hidden and output layers consist of banks of perceptrons that use 

logistic function non-linearities. In principle, any number of hidden layers can be 

used, but it has been shown that an MLP with only a single hidden layer can approxi-

mate any continuous function to arbitrary accuracy provided enough hidden units are 

used [23].  Thus MLPs with a single hidden layer are currently used in most applica-

tions and are considered here. 

The input units in the MLP distribute the components of the input vector to all the 

hidden layer perceptrons, with the output from each perceptron in the hidden layer 
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Figure 2.8 - The Basic MLP Architecture 

distributed to all the output layer perceptrons. 

The perceptrons in the hidden and output layers calculate the inner vector product (or 

dot product) of that unit's input neural state vector and the synaptic weights of the 

links feeding into that unit. A threshold value is then added to the resulting sum to 

form the neural activation value, equation 2.5: 

x, =Wjis i + Oj 	 (2.5) 

where X iact is  the neural activation value for neuron j, w, is the weight for the synap-

tic link connecting unit i in one layer to neuron j in the next layer, S i  is the input 

neural state from unit i and Oi  is the threshold value for neuron j, and is equivalent 

to w0  in equation 2.2. 

Each neural activation is then transformed into a neural state (between 0 and 1) by 

applying it to a non-linear function, usually the logistic sigmoid from Figure 2.3(b), 

equation 2.6. 

Si 
= 	 (2.6) 

1 + e te,np 

	

where S is the output neural state value, X 	is the neural activation value from 

equation 2.5 and temp is a parameter which defines the slope of the sigmoid function. 

Clearly each perceptron calculates a non-linear discriminant function as described in 

Section 2.2. 
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The new neural states, S, are then propagated to the next layer of perceptrons, or if 

the current layer is the output layer, the neural states form the network outputs. 

Geometrically, the operation of an MLP for pattern classification can be considered 

as follows. The hidden units non-linearly transform the input space into a new space, 

the classification space, where the problem is linearly separable. The output percep-

trons then calculate the discriminant functions for each class and the original input 

vector is assigned to the class whose discriminant function output is largest. 

Since the transformation taking place in the hidden layer is done using a continuous 

monotonic function, fQ, it is possible to project the straight decision boundaries in 

classification space back into input space by transforming them using the inverse of 

the non-linear function, f'. In this way, the overall operation of the network can 

simply be regarded as partitioning input space using non-linear decision boundaries, 

Figure 2.9. 
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Figure 2.9 - A non-linearly separable two-class problem 

2.4.2. MLP Training 

The standard method for training an MLP is to use a two step supervised learning 

process [15, 17, 24]. Step 1 consists of presenting an input training vector to the net-

work, propagating it through from input to output and generating an output vector. 

Step 2 consists of comparing this output vector to the desired output vector for the 

pattern, forming an error vector and using the error vector to adjust the weights and 
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reduce the error cost function for the network. This is repeated for all the training 

vectors until the error in the input to output mapping for the problem is minimised. 

For non-linear networks such as the MLP, a weight set must evolve through the 

repeated application of an iterative training algorithm such as backpropagation. How-

ever, because MLP training is a non-linear optimisation task, it can be a long and 

laborious task. 

2.4.2.1. The Backpropagation Algorithm 

The backpropagation algorithm is a computationally efficient algorithm that allows 

the first derivative of the error cost function defined for the network to be calculated 

with respect to the current weight set [6]. Knowing the derivatives of the cost func-

tion with respect to the weights allows the weights to be changed so as to reduce the 

value of the cost function. 

The cost function is normally expressed in terms of the sum of the squares of the dif-

ferences between the desired and actual output vectors for all the patterns in the 

training set. This is expressed using equations 2.7 and 2.8: 

Enet - 	E1 , 	 (2.7) 
pats 

E (, 1  = 12 Z('rk -  Ok) 2 	 (2.8) 
k 

where k  is the desired target value for output k and 0k  is the actual value for that 

output. The poorer the network performance, the higher the value of E,,et . 

Clearly the actual output can be re-expressed in terms of the the input vector compo-

nents plus the synaptic weights and thresholds in the network, equation 2.9. 

Enet  = 12 1 Z('Ck -  f (Z wkJf( WjiXp atsi + e) + ek)) 	 (2.9) 
patsk 	k 	j 

where Wkj  is the weight of the link connecting output unit k to hidden unit j, w 1  is 

the weight of the link connecting hidden unit j to input i, e is the threshold value for 

hidden unit J' 6l is the threshold value for output unit k and f(.) represents the con-

tinuously differentiable activation function. 

By applying simple differential calculus to equation 2.9, the partial derivative of the 

cost function in terms of each network weight and threshold can be calculated, ie it is 

possible to discover the rate of change of the cost function with respect to all the net-

work parameters. 
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A full derivation of the backpropagation algorithm is beyond the scope of this thesis, 

so only the main results will be summarised here [6]. 

Essentially the backpropagation algorithm allows the gradient of the current point in 

weight space to be expressed in terms of the inputs to the current layer, the errors 

between the target and actual output values and the first derivative of the non-linear 

activation function - hence the use of differentiable activation functions. In general, 

the expression for the change in the cost function with respect to the weights is given 

by: 

aEpat - 

Wkj 
- SpaIkXkJ 	 (2.10) 

where 8patk  represents the error term for the kth node and pattern pat and XkJ  is the 

jth input to that node. For output units, S is expressed by equation 2.11 and for hid-

den units, it is expressed by equation 2.12. 

5patk = Ok(l - ok)('rk - Ok) 	 (2.11) 

8patj = o(l 0j)8patkWkj 	 (2.12) 
k 

In essence, equation 2.12, expresses the error for each hidden unit output in terms of 

the errors it produces in the perceptron outputs in the next layer. 

During MLP training, the partial derivatives are calculated after each pattern presen-

tation. However, the actual weight adaptations can be made either after each pattern 

presentation (stochastic or on-line learning) or the changes for each pattern can be 

summed and applied after all the pattern presentations (batch-mode learning). Some 

differences exist between stochastic and batch-mode learning and the choice of 

which one to use depends on the problem under consideration [25].  However, if 

stochastic training is used, changing the order of presentation for the training patterns 

after each epoch will usually produce a more robust network with better generalisa-

tion properties. 

Geometrically, each partial derivative can be thought of as the positive (uphill) slope 

of the error surface, with respect to the weight or threshold, at the point on the error 

surface defined by the current weight vector. Taking partial derivatives with respect 

to all the weights produces a gradient vector which points in the direction of the max-

imum increase in Ep,, for the current pattern. Thus moving in the opposite direction 

(ie downhill) will produce the maximum decrease in the cost function with respect to 

the current weights. Having found the gradient vector using the backpropagation 
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algorithm, most MLP training techniques use some form of gradient descent algo-

rithm to adapt the weights in the network. 

2.4.2.2. Simple Gradient Descent 

Simple gradient descent is commonly used to train MLP networks. Since the back-

prop algorithm allows the instantaneous gradient vector for each pattern to be calcu-

lated, simply moving in the opposite direction to this vector (or the sum of the gradi-

ent vector over all the patterns for batch-mode learning) the value of Eptet  can be 

reduced. Once the weights have been adapted they define a new point on the error 

surface that has its own gradient vector and the back-propagation algorithm must be 

re-applied. 

Error surfaces for feedforward neural networks are usually very harsh, being charac-

tensed by steep slopes, flat plateaus and local minima solutions [26]. Given the 

severity of the error surfaces, it is not advisable to move too far on the surface for any 

one training iteration, so the actual change made to each weight is usually the gradi-

ent vector component for that weight attenuated by a small positive constant, equa-

tion 2.13. 

aE 
AWji = -17 	 (2.13) 

Jwji  

where ii is the learning rate. Thus for each learning iteration (or epoch), the weight 

vector is adjusted slightly in the direction which causes the maximum instantaneous 

decrease in the error function. 

The choice of learning rate can have a profound impact on the training time of the 

network. Choosing a small value for i tends to make the weights less susceptible to 

oscillations during training, but can dramatically increase the training time: weight 

updates are proportional to the gradient of the error surface, so the training proceeds 

very slowly across the plateaus. Alternatively, choosing a larger learning rate means 

that bigger steps can be taken, but this can lead to a lack of convergence or, if the 

learning rate is too big, to the weight values "exploding", their value incrementing 

out of control [24]. 

Several techniques exist for speeding up the convergence of the simple gradient 

descent algorithm. For example, solutions can be found more quickly if the learning 

rate is made adaptable [27, 28], or if a proportion of the previous weight changes are 

also included in the weight update equations - a process know as adding 
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momentum [6]. These techniques allow the local terrain of the error surface to influ-

ence the size of step the network takes towards a solution and can lead to faster con-

vergence. However, as with all gradient descent techniques, they do not guarantee 

that the solution found will be the optimal one. 

The presence of local minima, representing possibly good but non-optimal solutions, 

means that networks are frequently trained many times, from different starting points 

on the error surface, in order to find the network with the best generalisation perfor -

mance. This further increases the time taken to find the best MLP architecture and 

weight set for a given problem. 

2.4.2.3. Second Order Techniques 

The simple gradient descent algorithm uses information about the first derivatives of 

the cost function, with respect to the weight set, to improve the fit of the model to the 

problem. Alternatively, second order techniques, which use information about the 

second derivatives of the same cost function, can be used to find solutions in fewer 

iterations. Examples of second order techniques include the conjugate gradient algo-

rithm [25, 27] and quasi-Newton methods [29]. Second-order methods tend to be 

computationally intensive, although, given an initial starting point in weight space, 

second order techniques will normally find the nearest minimum more quickly than 

simple gradient descent [ 29]. 

2.5. Radial Basis Functions 

Like the MLP, the RBF topology is a feedforward architecture which can universally 

approximate any function using only a single hidden layer, provided enough hidden 

units are chosen [30]. As will be explained, however, the RBF can often be trained 

faster and without the training pathologies of the MLP. 

2.5.1. Principle of Operation 

The RBF architecture, Figure 2.10, is similar in structure to the MLP, but operates in 

a slightly different way. Instead of having two or more layers of non-linear percep-

trons, the RBF has a single hidden layer of non-linear basis function units, or 

centres, followed by an output layer of linear units. For RBF networks, each output 

is a linear combination of the basis function responses, with the output layer forming 

linear discriminant functions, equation 2.14. 
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Figure 2.10 - The Radial Basis Function neural network architecture 
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Yk = 	kfø(MX - cIII) + ' kbia.c 	 (2.14) 
j-o 

In this equation, Yk  is the output from output unit k, Akf  is the weight associated with 

the connection between output unit k and centre j, x is the input vector, c j  is the 

location vector for centre j, Ø(.) represents the basis function, 2ac  is the bias term 

for output k and is similar to the threshold term in the MLP, and 11.11 represents a dis-

tance metric. Usually the bias term, 'k/,iac,  is considered to be connected to an addi-

tional centre whose output is always 1.0, and it is absorbed into the summation, equa-

tion 2.15. 

In 

Yk =I /% kJ ø(flx - cI II) 	 (2.15) 
j—O 

Each hidden unit is assumed to have a position, c, in input space and a correspond-

ing region of influence, or width. Operationally, each hidden unit calculates the dis-

tance between its location vector and the input vector and outputs a response - again 

between 0 and 1 - that is a non-linear function of the proximity of the input vector to 

that centre, eg Figure 2.11. In other words, the response of each unit in the hidden 

layer of an RBF network is an indication of the match between the input vector and 

the position vector of that unit. 
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Figure 2.11 - A hidden unit in an RBF calculates the distance between the input 

vector and its location vector in d-dimensional space. It then uses 

this distance as the argument to a non-linear function as shown. 

The hidden layer responses are then propagated to the linear output layer of the net-

work, where each output unit calculates the weighted sum (dot product) of the hidden 

layer responses before adding a bias term (threshold), equation 2.15. This final sum 

is the network output for that unit. In pattern classification problems, the input data is 

assigned to the class corresponding to the output that produces the largest value. 

The primary advantage of using RBFs over MLPs is that the two layers can be 

trained independently and, once the candidate centres have been chosen, the output 

layer weights can be determined using linear as opposed to non-linear optimisation 

techniques. This means that RBF training is faster than MLP training. Also, since the 

error surface for the output layer is a quadratic function of the output weights, a 

unique, optimal output weight set exists for the selected set of centres. Note that the 

solution will not be optimal for the given problem, rather the output weight set will 

produce the least squares solution given the selected set of centres. 

Geometrically, an RBF network can be thought of as non-linearly expanding input 

space into a new space, usually of higher dimensionality [25, 31], where the problem 

is linearly separable. However, in contrast to the MLP, the classification space is par-

titioned using linear, instead of non-linear, discriminant functions. 
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2.5.2. Basis Function Considerations 

Theoretically, many functions can be used as the non-linear basis functions, such as 

thin-plate splines 

0(x) = x 2  log(x) 	 (2.16) 

the multiquadric function 

0(x) = (x2  + r2) 2 	 (2.17) 

or the inverse multiquadric function 

0(x) = (x2 + r20 	 (2.18) 

where r is a real constant. 

However, most RBF applications have concentrated on using the Gaussian non-

linearity, equation 2. 19, and Gaussians are used for all the illustrations in this thesis. 

(x 2  

0(x) = e) 	 (2.19) 

As shown by equation 2.15, each basis function is required to calculate the distance 

between the input vector and the location vector for that basis function. The 

Euclidean distance measure, equation 2.20, is the most popular distance measure 

used, but the Manhattan distance, equation 2.21, often suffices. 

lix - c1 	= ((X  I - c11) 2  + (x2 - cJ2)2  + 	+ 	- cjd ) 2 ) 	(2.20) 

	

lix - c 11man = 1x1 - CjI + 1x2  - c 2 I + 	+ Ix - CidI 	 (2.21) 

Using the Gaussian function and the Euclidean distance measure gives the following 

equation for an RBF: 

11 2  
in 2r2 J Yk = 	AkJ 	 (2.22) 

j-o 

Thus, in contrast, to the globally responsive perceptrons in the MLP, the centres in a 

Gaussian RBF are locally responsive and act only over a finite region of input space, 

Figure 2.12. 
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(a) 
	

(b) 

Figure 2.12 - (a) An MLP paves input space with a number of globally responsive 

hyperplanes. (b) In contrast, an RBF paves input space 

with locally responsive hyperspheres. 

The use of a single width parameter, r, for each dimension of the RBF is a simplifi-

cation of the Mahalanobis distance, equation 2.23, a more general expression for the 

argument to the Gaussian in equation 2.22. 

((X 
- c)T 	'(x - cj )J 	(2.23) 

where 

= E[(x - m)(x - m)T] 	 (2.24) 

In equation 2.24, E[.] is the expectation operator and m is the mean vector calcu-

lated from all the training vectors. 

Using the Mahalanobis distance allows different shapes of basis functions to be 

defined [27]: 

If 7, is a diagonal matrix with equal elements, then equation 2.22 describes the 

radially symmetric basis functions generated, Figure 2.13(a). 

If Y is diagonal with unequal elements, then hyperellipsoidal basis functions 

are produced, whose axes are parallel to the coordinate axes of input space, Fig-

ure 2.13(b). 

• 	If E is not diagonal, hyperellipsoids are formed in input space whose orienta- 

tion to the co-ordinate axes is described by the covariance matrix Z. 
The use of the different width parameters for the separate dimensions can improve 

classification performance, eg [27, 32], although the number of parameters to be 

adjusted during learning is also increased. 
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input#1 
	

input# 1 

(a) 
	

(b) 

Figure 2.13 - (a) If a single value is used for the width, radial basis functions 

are produced. (b) If a diagonal co-variance matrix is used, 

the basis functions become elliptical. 

For the work in this thesis, a single width is used for all the input dimensions since 

this keeps the number of adjustable parameters to a minimum and ensures that radi-
ally symmetric basis functions are produced. 

2.5.3. Practical RBF Implementations 

The use of Radial Basis Functions is not a new concept, confined to neural networks. 

Radial Basis Functions were originally applied to the problem of strict interpolation 

in high multi-dimensional spaces [33, 34]. 

The problem of strict interpolation can be defined as choosing a function f(.) for a 

set of m n-dimensional data vectors, x ( 1 :!~ i :!~ m ), and m real numbers yeR, such 

that f(x) = y, ViEm. For strict interpolation, the function f(.) is forced to pass 

through all the data points used in the curve fitting process [7]. 

Work by Poggio and Girosi also showed that radial basis functions provide a natural 

solution to certain regularisation problems [35]. For solving regularisation prob-

lems, the aim is to find a function f() which minimises the cost function defined by 

Eco,ct  = Esqerr(fO) + AE reg(f 0) 	 (2.25) 

where the first term represents the usual error cost function summed over all the pat- 

terns and all the outputs of the network, the second term represents the regularisation 

penalty term for the cost function and the parameter % is a positive number that 
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determines the contribution that the regularisation term makes to the cost function. 

The second term in equation 2.25 contains a stabiliser, P, that stabilises the solution 

and makes it smooth by employing some a priori information about the problem. 

Poggio and Girosi show that if P is both rotationally and translationally invariant, 

then the solution for f() is a sum of basis functions as defined by equation 2.15. 

Again, though, for a unique solution to the regularisation problem, all the data points 

in the training set must be used [35]. 

The use of all the training data for finding the exact, unique solutions for various 

problems may be conceptually pleasing mathematically, but for practical RBF imple-

mentations it is neither necessary nor desirable to fit a function to the vagaries of all 

the outputs. 

The types of problems that require to be solved in the real world tend to be ill-posed, 

(meaning there is insufficient data from which to define a unique mapping from input 

space to output space) and the data vectors tend to be corrupted by noise. Further, if 

an abundant supply of training data is available, the use of all the data vectors can 

lead to the storage and use of vast amounts of possibly redundant data [7]. 

If fewer basis functions than data vectors are used, the problem becomes over-

determined and no unique solution exists. In this case, the solution is constrained to 

lie on a vector sub-space of the space spanned by all the data vectors and the output 

weights must be found using a linear optimisation technique such as minimising a 

sum of squares error cost function. 

2.5.4. RBF Training 

The following review presents a small selection of the possible ways to implement 

RBF training, but is far from exhaustive. 

2.5.4.1. Centres Chosen Directly from the Training Data 

One of the easiest ways to train an RBF network is to simply choose N vectors at 

random from the training data and assign each input vector directly to a centre. This 

assumes that the chosen vectors adequately represent the problem and that enough 

have been picked to adequately cover input space. 

The widths of the Gaussian centres are determined using a simple heuristic which 

sets each width equal to some proportion of the distance between that centre and its 

nearest neighbour or, alternatively, to some portion of the average distance between 



Chapter 2 	 27 

the centre and its k nearest neighbours. The actual heuristic chosen does not really 

matter. What matters is the coverage of input space that the width parameter affords 

each centre. If more centres are used then the widths can be decreased, but if only a 

few centres are used, then large widths should be used in order to adequately cover 

input space. 

Once the centre positions and widths have been determined, then the output layer 

weights can be calculated using either the least mean squares (LMS) algorithm [36] 

or some form of pseudo-inverse matrix technique [15]. 

The advantage of choosing the centres directly from the training set is its speed: no 

iterative learning is required within the hidden layer and the output layer can be 

trained very quickly. However, the learning scheme does have a significant disadvan-

tage in that since the N centres are chosen at random, there is no way of knowing 

whether they truly represent the underlying problem. Thus the solution could be 

poor. 

2.5.4.2. Adaptive k-Means Training 

With this form of learning, an on-line version of the adaptive k-means algorithm [8] 

is applied to the hidden layer of an RBF network whose initial N centre values have 

been selected at random from the training vectors. 

Once the candidate centres have been chosen, each vector in the training set is pre-

sented in turn to the network. The Euclidean distance between each training vector 

and each centre is calculated and the centre nearest to the current training vector is 

moved towards the training vector using equation 2.26: 

Ac ji  = a[x, - ci,] 	 (2.26) 

where Ac, is the change made to component i of centre Cj , x, is the ith component of 

training vector x and a is a constant learning parameter. 

The training data is usually presented in random order for a fixed number of epochs 

and the location of the candidate centres evolve to represent the distribution of the 

training data within input space. Once the centre positions have been adapted, the 

widths can again be calculated using some form of heuristic and the output weights 

again found by a linear optimisation technique. 
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2.5.4.3. Fully Supervised Learning 

Instead of decoupling the two layers of an RBF network and training both separately, 

fully supervised learning can be used to train all the network parameters simultane-

ously [15, 37]. 

The sum-of-squared-errors cost function for an RBF network can be expressed in 

terms of all the network parameters if equation 2.22 is substituted into the right hand 

side of the cost function, equation 2.27. 

	

in 	II 	- 	II 2  

	

E,iet  = 	Epat  = 	 - 	kJe 	2r2 	 (2.27) 

	

pat 	 pat k 	 j=O 

Again, by the application of simple differential calculus to equation 2.27, similar to 

that carried out for the MLP cost function, it is possible to express the rate of change 

of the network error in terms of all the adjustable parameters. Thus, the rate of 

change of the error with respect to output weight, 2kj  is given by 
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while the partial derivative of the error with respect to centre position component c ji  

is given by 
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and the partial derivative of the error cost function with respect to width r is given as 

Enet  	Xp 	- c. 11 2 	
IIXj,at - Cj 11 2  ( 	 in 	Ilx,,<,, - Cj 112 ' 

	

pat k 	r3 	
AkJe 	2r2 	[Patk - 	kJe 	2r2 	(2.30) 

	

j=0 	
) 

These partial derivatives can be used along with the simple gradient descent algo-

rithm (or a more complex second order technique) to find a possible solution to the 

problem under consideration. 

The main disadvantage with using such fully supervised learning, however, is that the 

problem becomes a non-linear optimisation, with the same pathologies and problems, 

such as local minima solutions, as an MLP. Indeed, when Moody and Darken used 

fully supervised learning to train their RBFs, they found that some of the local 

responsiveness of the network was lost, especially if the width parameters of the cen-

tres became large [8]. Tarassenko and Roberts suggest using either fixed or adapted 
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centre positions, as would be obtained from the first two learning strategies consid-

ered in this section, to get good initial guesses for the positions and widths of the 

centres. They believe that doing so will help to circumvent the the problems wit-

nessed when the centres and widths are selected as small random numbers [37]. Any 

supervised learning will then be applied to these educated guesses. 

Training an RBF network using a fully supervised method would not seem to provide 

many benefits over training an MLP network, but it may prove useful for fine-tuning 

a solution found by a faster method and does represent another possible method of 

training RBFs. 

2.5.4.4. Resource Allocating Network 

The three training mechanisms considered thus far have all required N centres be 

chosen from the training data. However, the pertinent question to ask is: how many 

centres should be selected in order to find a good solution to the problem? 

For the previous algorithms, N must be determined empirically, requiring that many 

simulations be run, using different values for N, in order to determine its optimal 

value and find the best weight set for the problem. A more efficient solution would be 

to allocate a new centre during training whenever a training vector with sufficient 

novelty was presented to the network. This is the motivation behind Platt's Resource 

Allocating Network (RAN) [ 20]. 

Training vectors are presented to the network in turn and if the current vector lies far 

enough away from all the current centres and the output error from the network 

exceeds some pre-defined threshold, then the current input vector is selected as a new 

centre. The position of this new centre is defined by its vector components, its initial 

width is the distance between it and the closest of the previously selected centres and 

the output weights are initialised as the network output errors for the current "novel" 

pattern. 

If both novelty criteria are not met, then stochastic gradient descent is used to 

improve the fit of the network to the problem through further reducing the network 

error. 

This algorithm is particularly efficient since it requires only a single pass through the 

data and also allows the complexity of the problem to determine how many centres 

are chosen. Indeed, more than one pass is often used to allow the solution to be 

improved through repeated application of the gradient descent algorithm. 
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However, since the first training vector will always be selected as the first centre, it 

may be advantageous to run the algorithm several times, with the input vectors pre-

sented in a random order each time, and select the network which gives the best per-

formance on the problem test set of vectors. 

2.5.4.5. Orthogonal Least Squares 

The Orthogonal Least Squares (OLS) algorithm [38, 39],  like the RAN algorithm 

discussed in the previous section, builds up the hidden layer of the RBF through 

time. The OLS technique selects candidate centres from the training set in a system-

atic way, determined by the contribution they make to producing the correct input to 

output mapping: those centres that contribute most to the mapping are selected in 

descending order. Once a centre has been selected, its directional component is 

removed from all remaining unchosen vectors using techniques such as Gram-

Schmitt orthogonalisation [38].  Thus each candidate centre is selected based to its 

contribution to the reduction of the input to output mapping error in a direction 

orthogonal to the previously selected centres. 

The algorithm can be stopped when either the requisite number of centres have been 

selected or when the approximation to the input to output mapping is good enough. 

The OLS algorithm does not provide a globally optimal solution, however, as this can 

only be determined after considering all possible subset models. A further drawback 

with this method is that all the Gaussian widths must be determined before training 

commences and the highest tolerable error on the training set must also be defined. 

Thus, the OLS algorithm may also need to be applied to a given problem several 

times, with different values of Gaussian width and maximum allowable network 

error, before the network which produces the best performance on the test vectors is 

found. 

Once again, after the hidden layer has been trained, the output weights can be found 

using a linear matrix inversion technique. 

2.6. Summary 

This chapter has considered the problem of pattern classification using discriminant 

functions, using it as a means to introduce the MLP and RBF feedforward neural net-

work architectures. Both the operation and training of the two topologies has been 

reviewed and the use of both types of network for pattern classification problems 



Chapter 2 
	

31 

highlighted. 

As stated at the beginning of the chapter, the aim has been to introduce the funda-

mentals of the MLP and RBF networks through a consideration of their use as pat-

tern classifiers. 
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Chapter 3 

RBF Hardware 

Having discussed the theory behind RBF networks, this chapter considers the imple-

mentation of these networks in CMOS VLSI technology. CMOS VLSI has emerged 

as the most popular technology for implementing neural networks in hardware and a 

myriad designs exist for the different neural algorithms, eg see [40-42]. It is impossi-

ble to cover every example here, so this chapter only covers the circuitry capable of 

reproducing the mathematical operations necessary for RBF networks, viz, distance 

calculation, non-linear transformation, plus linear multiplication and addition. 

The chapter begins with an explanation of the different operating modes of MOS 

transistors (or MOSFETs) before reviewing the implementation of complete RBF 

networks, or their constituent parts, using transistors biased into these modes. The 

hybrid analogue-digital pulse stream method is then discussed as an alternative 

implementation technique and some consideration is given as to how pulsed RBF cir-

cuits could be produced. 

3.1. MOSFET Transistors. 

The MOS transistor [43] is the basic building block of the modern electronics indus-

try. Capable of denser implementation and dissipating less power than the older bipo-

lar junction technologies, it is the technological advances associated with MOSFETs, 

especially the CMOS technology, that have allowed electronics products to become 

smaller, cheaper and have higher functionality. 

CMOS transistors can be operated as digital switches or as analogue devices in either 

strong or weak inversion. This section discusses the three operating modes of the 

MOSFET, using the NMOS transistor for simplicity when describing strong and 

weak inversion analogue operation. Subsequent sections will review the neural cir-

cuitry designed for each mode. 
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3.1.1. Digital Regime 

When operated digitally, CMOS transistors are simple complementary switches. 

Logic HIGHs turn NMOS devices ON and PMOS devices OFF, whilst logic LOWs 

have the opposite effect. Digital CMOS circuits, eg Figure 3.1, propagate and process 

logic levels through the charging and discharging of the input capacitances of the 

next logic gates in the data path. By combining MOSFETs in different ways, it is 

possible to implement a large number of simple logic gate, eg NAND, NOT, NOR, 

EX-OR, AND etc, and more complicated digital circuits, such as multipliers, adders 

and shifters, can be constructed from the simpler gates. 

OUT 
B 	> 

Vdd 

A H_H B  
OUT 

AH 

BH 

(a)  

A  —::: 

:>_ OUT 
B 

Vdd 

A 

AH 

OUT 

(b) 

Figure 3.1 - Logic level (Top) and Transistor level representations of 

(a) a two input digital NAND gate and (b) a two input digital NOR gate 

However, because each transistor only acts as a switch, huge numbers are required to 

implement high functionality logic blocks, with the number of required transistors 

scaling linearly with the required precision of the block. Thus as the precision of dig-

ital circuitry increases, so to does the area and power requirement. 
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3.1.2. Analogue Strong Inversion 

Operating a MOS transistor, from a standard 5V process, with gate voltages between 

the usual logic levels of OV and 5V lets the inherent physics of the device be 

exploited. Complex circuits can be designed using a fraction of the transistors 

required in the digital equivalent, with a corresponding drop in the area and power 

requirement of the circuit. 

When biased into either weak or strong inversion, MOS transistors operate in the lin-

ear region or the saturation region depending on the values of Vgs  and V. For 

strong inversion operation, Vg, ~! VT, and the transistor has an I-V characteristic as 

shown in Figure 3.2. 
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Figure 3.2 - The 'd.c  vs. VdS  first-order characteristic for an NMOS 

transistor operating in strong inversion 

When (Vgs - VT) ~! V, the transistor is biased into its linear region and the first order 

drain-source current vs. drain-source voltage relationship is given by: 

l 
'd.c = fi [(Vrs  - VT) Vd 

- 

Vdc2 	
(3.1) 

Meanwhile, when (Vgs - VT) :! ~ Vd, the transistor is in saturation and the first order 

current-voltage relationship is: 

'ds = 
18  

	

 (Vg.c - VT) 2 	 (3.2) 

For these equations, 'd, is the drain-source current flowing through the transistor, Vgs  

is the gate to source voltage of the device, VT  is the threshold voltage and Vd,  is the 
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voltage between the drain and the source. The transconductance parameter, ,8, is 

defined as [43] 

/3= IUOCTOX 
7 
	 (3.3) 

where 1u0 is the surface mobility of the carriers in the device, CTOX  is the capacitance 

per unit area of the gate oxide, W is the transistor width and L is the transistor length. 

By altering the 	ratio of a MOSFET, a circuit designer can tailor the operation of 

each device. 

3.1.3. Analogue Weak Inversion 

When a MOS transistor is operated with a gate to source voltage in the range, 

0 < Vgs  <VT, the transistor operates in the weak inversion, or subthreshold, region. 

The characteristic equation for a transistor operating in weak inversion is given by 

[44,43] 

W 
'ds = 7 Idso eT[e kT - e kT ] 	 (3.4) 

and this can be approximated to 

w 
'd.c 7 'dso e nkT (3.5) 

when 4JL >> 1.0 and V, = 0. The exponential current to voltage relationship for 

subthreshold transistors exists for several orders of magnitude [25]. In these equa- 

tions, the terms retain the same definitions as described previously with the addition 

kT 
of the thermal voltage term 	( = 25mV at room temperature), n, the subthreshold 

q 
slope factor and 'ds,'  a process dependent current [44]. 

The currents in the subthreshold region are in the pA to 4uA range, far smaller than 

the currents flowing in transistors biased into strong inversion. Subsequently the 

power dissipation in subthreshold transistors is very small, making them popular in 

applications where low power and high functionality is required [45]. The primary 

disadvantages with subthreshold circuits are their potential susceptibility to noise and 

poor transistor matching. 

In the context of neural networks, subthreshold circuits have been used by various 

researchers [46-48], especially Mead [49, 50],  mainly to implement locally 
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connected, fixed function circuitry capable of modelling biological "sensors" such as 

the retina or cochlea [49]. 

3.2. Digital Neural Implementations 

As already discussed in Chapter 1, ANN architectures can be implemented serially 

on general purpose computers using a suitable high-level programming language. 

However, general purpose serial computers are not optimised for executing the set of 

operations required by parallel neural networks and are usually too slow for real-

time applications. Thus, in order to speed-up the through-put of neural networks, 

several special purpose digital configurations can be used [51]. 

Standard neural architectures such as the MLP or RBF consist of straight-forward 

mathematical operations that are usually simple to cast into digital hardware. By 

employing the specialised digital arrangements as discussed below, the through-put 

of the neural network can be increased by exploiting the specialised instruction set, 

reduced precision computation and streamlined data-flow that these digital solutions 

can provide [52]. 

3.2.1. General Purpose Parallel Computers 

This type of digital solution consists of several autonomous general purpose micro-

processors connected together and operating in parallel. Each processor has its own 

memory and data paths and can operate using its own instruction set. Some exam-

ples are presented in a review by Atlas and Suzuki [51]. 

Although some researchers have investigated this technique for implementing neural 

networks, difficulties exist with the interconnectivity required for neural networks 

and the programming of the parallel processors [53]. Thus, this type of digital imple-

mentation is only mentioned for the sake of completeness. 

3.2.2. Reconfigurable Digital Neurocomputers 

A popular form of implementing ANNs in digital VLSI is with special purpose, 

reconfigurable boards. These usually consist of several interconnected DSP or FPGA 

chips on a PC board or bus-based system. Such solutions are generally capable of 

supporting several neural algorithms through the programmability inherent in the 

multi-functional, reprogrammable chips. 
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Reconfigurable neurocomputers usually provide at least an order of magnitude 

increase in data through-put compared to serial computers and can often utilise 

reduced precision data representations [52]. Examples of digital neural accelerators 

include the Adaptive Solutions CNAPS chip [54], the Virtual Image Processor of 

Cloutier et al[55], based on the Altera EPF8 1500 FPGA, and the L-Neuro 2.3 neu-

rocomputer of Duranton [56], based on an array of 12 DSP chips. 

Reconfigurable accelerator boards are available commercially and are an invaluable 

experimental tool for neural researchers allowing high functionality at low cost, with 

the chance to try different networks quickly and with the minimum of fuss. 

3.2.3. Dedicated Digital VLSI 

Although reconfigurable neurocomputers can provide faster throughput compared to 

general purpose microprocessors, speed of operation must be sacrificed for the flexi-

bility to support several algorithms. In order to optimise speed, custom VLSI circuits 

are required. Again, as with the board-based accelerators, significant savings in area 

and speed can be achieved using reduced precision arithmetic and tailored architec-

tures. 

For example, Watkins and Chau [57] have investigated using reduced complexity 

VLSI to implement RBF neural networks that allow faster operation at lower power 

and which require a smaller silicon area compared to higher precision circuitry. Their 

10-bit custom VLSI solution realised an 88% reduction in the power and area 

requirement compared to a 32-bit custom approach, for little loss in performance. 

Another dedicated digital RBF solution that utilises reduced precision arithmetic is 

the Nil000 chip from Nestor Inc. [58]. It can implement a 256 input, 1024 centre, 64 

output RBF network and is capable of supporting other Gaussian-based topologies 

such as a Restricted Coulomb Energy (P-RCE) network [27], Parzen windows classi-

flers [59] and the Probabilistic Neural Network (PNN) [60]. 

The Ni 1000 has a resolution of 5 bits for weight storage, uses the Manhattan distance 

measure in the hidden layer and is capable of classifying 40,000 patterns per second. 

It is fabricated in 0.8 um Flash EEPROM technology on a 15.8mm by 13.7mm die 

and dissipates SW at 5V. 

In order to reproduce the Gaussian non-linearity, the Ni 1000 uses a look-up table to 

exponentiate the distance measure. Maffezzoni and Gubin [61] have produced a cus- 

tom RBF circuit that implements an approximation to a Gaussian using only digital 
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circuitry. Their method derives from considering the definition of a exponential in 

the limit 

'\fl 

e = urn I - 	1 	 (3.6) 
n—*o4 	n) 

which can be approximated by 
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ifx<2 e Z =J 	2) 	 (37) 
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Clearly the RHS of equation 3.7 is far simpler to cast into digital VLSI than the LHS 

and reproduces an approximation to the Gaussian without the need for look-up 

tables. The authors discuss implementing the design in VLSI and indicate that for a 

100 centre chip, they would expect to increase the through-put by two orders of mag-

nitude'over a similar design that uses a single sequential look-up table. 

3.3. Analogue Implementations 

The large area and power requirement of the components for multi-functional or 

fixed-function digital ANNs means only a relatively small number of processing ele-

ments can be provided on a given chip. For larger, more compact and lower power 

VLSI solutions, ANNs must be designed using analogue techniques. 

The parallel structure of neural networks makes them amenable to arrays of regularly 

structured, repeatable circuit blocks [62], whilst the simplicity of the computational 

units allows them to be produced using a small number of transistors. 

An implicit assumption with standard neural architectures is the individual computa-

tional elements all have exactly the same characteristics, with identical transfer func-

tions. Whilst this is true for the processing elements within digital solutions, across-

chip variations affect the operation of arrays of analogue circuits, causing different 

elements within the array to have slightly different characteristics. Variations in dop-

ing levels, ion implants and the photolithographic etching process, for example, lead 

to differences in the threshold voltage V, transconductance parameter ,8, and the 

drawn values of transistor widths W and lengths L. These variations, in turn, mean 

that different synapses can have different characteristics. In other words, arrays of 

analogue circuits are not matched. Further, the desire for compact circuitry in hard-

ware neural nets means that precision is usually sacrificed for area reduction, with 
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the design engineer making the trade-off between area and acceptable accuracy. 

However, learning schemes such as chip-in-the-loop learning have been shown to 

account for circuit inaccuracies and process variations, compensating for the loss of 

precision introduced by designing the neural networks in analogue VLSI [12, 63-65]. 

Thus analogue VLSI currently represents the best medium for the production of 

dense, compact realisations of artificial neural networks. 

The structure of neural networks requires that the same input, be applied to many pro-

cessing elements within the array, while the outputs from these elements must be 

summed. Parallel signal distribution into high impedance nodes can be readily 

achieved using voltage as the signal medium, whilst the outputs can be summed as 

currents through Kirchoff's Current Law. For these reasons, most hardware neural 

processing units are based on transconductance circuits. 

The transconductance parameter, 8 (equation 3.3), is used to define the range of cur-

rents in a MOSFET through appropriate choice of the width to length ratio, 	Tai- 

bring /3 via the transistor width and length parameters defines the static transcon-

ductance properties of the transistor, ie those fixed at fabrication. However, the cur -

rent through an operational transistor also depends on Vgs , Vd, and V T  as shown in 

Figure 3.2. Therefore, altering these quantities during normal circuit operation allows 

the dynamic transconductance properties of the transistor to be varied. The most 

common ways of achieving this dynamic variation in neural networks is through 

altering the gate or threshold voltages. 

The dependency of 'dv  on Vgc , combined with its high input impedance, makes a 

MOSFET an ideal building block for transconductance circuits. Typical examples of 

developed circuits will be considered later, once the various methods for storing 

weights within an analogue array have been introduced. 

3.4. Weight Storage in Analogue Neural Networks 

When using arrays of analogue circuits to build ANN solutions, the most efficient 

realisations store the neural weights locally. When designing feedforward neural net-

works, the important issues pertaining to weight storage are as follows. 

Adaptability. Each weight should be relatively easy to adapt so any non-

idealities in the circuit can be trained out and the network can be retrained, if 

required, at some future date. 
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Storage Time. Ideally, when the weights are not being adapted, their value 

should remain fixed indefinitely. 

Resolution. The range of implemented weights must have a high enough reso-

lution to allow the problem to be adequately solved. 

Implementation Area. The area required to store the weight should be as 

small as possible to ensure that the area of each neural circuit can be as small as 

possible. 

Process Compatibility. The method chosen for weight storage should be com- 

patible with existing processing steps in the chosen implementation technology. 

Bearing these criteria in mind, the most suitable forms for the local storage of neural 

weights in analogue VLSI are local digital storage, capacitive storage with refresh 

and non-volatile analogue storage. 

3.4.1. Local Digital Storage 

It is possible to store neural weights for analogue networks as digital words in appro-

priate storage registers. This is commonly done in MDACs (Multiplying Digital to 

Analogue Converters). Examples of MDACs have been suggested by Hollis and Pau-

los [66], Tawel [64] and Jabri et al [67] amongst others. 

The basic principle of an MDAC can be explained with reference to Figure 3.3. In 

this circuit, currents 10  to 13  represent binary weighted versions of biasing current 

'ref These weighted currents are selectively switched onto the common output line 

depending on the bit pattern stored in the registers D0  to D3 . Thus 

loUt =2'tI,d, 	 (3.8) 
0 

where 'ref  is the reference current and d0  is the value (0 or 1) of weight bit n. 

In the example shown here, the output current from the DAC, 'dac'  is used to bias the 

differential pair comprising transistors M 1  and M2 . The resulting differential output 

current, 1 - J_, then represents the desired product of the DAC current and the dif-

ferential voltage V. - V_. Two quadrant multiplication is achieved by using the MSB 

of the digital weight as a sign bit, steering the output current onto the appropriate 

output line. 

Heim and Jabri [68] have also developed a digital static storage cell for analogue 

neural chips with on-chip learning. The circuit quantises a "learned" weight current 

to the nearest digital level using successive approximation, then regenerates an 
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Figure 3.3 - MDAC with Local Digital Weight Storage 

approximation to the current by using the stored digital word to switch binary 

weighted current sources onto a common output line. 

Murray and Smith also used digital storage in the first pulse-stream chip [69].  The n 

bit digital synaptic weights were constrained to lie in the effective analogue range 

—1 !!~ T1  :!~ 1 and the digital weight bits were used to selectively mask an input stream 

of pulses. The resulting masked pulse trains were then recombined on a common out-

put line to yield the required product term. 

The advantage of local digital storage is the ease of programming the weights (each 

weight storage circuit is essentially a write-only register), lack of corruption and 

indefinite storage times. The main disadvantages are the area requirement for storing 

each bit (higher resolution requires proportionally more area) and, for current-based 

MDACs, the difficulty in accurately weighting the currents as the resolution of the 

stored weights is increased. Nonetheless, local digital storage is an attractive solution 

for neural circuits requiring a weight precision (unsigned) of 5 bits or less. 
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3.4.2. Capacitive Storage with Refresh 

A very popular method for the local storage of analogue weights is as the charge on a 

MOS capacitor implemented either between the two polysilicon layers on a double 

poly CMOS process or, more usually, using the gate to substrate capacitance of a 

MOSFET biased into strong inversion [70]. 

Storing charge on a capacitor causes a voltage V%vgt = stored to be developed 

between its plates and this voltage represents the analogue weight. The storage 

capacitor is accessed via a MOS transistor switch, Figure 3.4, and the system forms a 

crude sample and hold circuit. 

write 

'store 

'subthreshold 

store 

reverse_bias 

Figure 3.4 - Schematic diagram of a capacitive storage refresh node showing the 

subthreshold and reverse-biased diode leakage currents 

The voltage on the capacitor will not be stored indefinitely, though. Charge leakage 

effects due to subthreshold conduction through the switch and the reverse biased 

diode current associated with the drain terminal of the MOS switch cause charge to 

leak from C ctore  and the stored voltage decays accordingly. 

Refresh schemes are therefore required to periodically "top-up" the charge on the 

capacitor and ensure that the stored value remains as stable as possible. The refresh 

schemes are either global or local and the resolution of the stored weight depends on 

the size of the storing capacitor, the leakage currents and the time between refreshes. 

For neural applications, weight storage of over 8 bits has been reported using capaci-

tive storage [71]. 
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3.4.2.1. Global Capacitative Refresh 

With global refresh, each neural circuit is accessed sequentially and the weight for 

that circuit is written from a global source, usually the combination of an external 

RAM chip and a voltage DAC, Figure 3.5. 

RAM address 
(from counter) 

Vwgt 

to on-chip 
)acitor array 

Figure 3.5 - Schematic Diagram of a typical Off-Chip Global Refresh System 

The advantage of this form of refresh is that each weight is periodically refreshed 

with the trained value held in the global source. It is also easy to load the weights 

into the global source initially and adapt them iteratively during learning. Also, only 

a single refresh circuit is necessary for the whole array. 

The main disadvantage with the system is that the refresh rate depends on the size of 

the network and may need to be customised for neural chips with different numbers 

of hidden and output units. Since the refresh rate depends on capacitor size and leak-

age currents, it must be chosen such that the time between refreshes for the whole 

array is less than the time required for any stored weight to decay by a voltage 

equivalent to half the LSB. Thus as the network size increases, the refresh rate 

and/or capacitor size must also increase to retain the precision of weight storage. 

This could prove problematic for very large networks. 

3.4.2.2. Local Capacitative Refresh 

Alternatively, rather than control the weight refresh globally, it can be done locally, 

eg Figure 3.6. 

The principle of operation behind this system is straightforward [70].  Stored voltage, 

V vgt  is continuously compared to ramped voltage, When Vramp  exceeds V vgt , 

the comparator switches, activating the pulse generating circuitry and causing a short 

pulse to turn on M S(C h momentarily. This action restores the value on C st(,re  to the 

instantaneous, quantised value of Vra,np.  The pulse generating circuitry then remains 

SET until RESET, ready for the next refresh cycle, by the falling edge of Vra,np. 
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Figure 3.6 - Local Refresh Circuit Similar to that of Vittoz et al 

Castello et al have designed a similar system, capable of a 5 bit resolution, using 

current mode circuits [72]. 

Hochet proposed a similar local refresh system, capable of 5 bit storage at 100kHz, 

based on ratioed clocks [73]. However, rather than distribute the ramp signal glob-

ally, Hochet's circuit generates it locally using globally distributed clock waveforms. 

The refresh rate of this circuit is determined by the periodic time of the slowest 

clock. 

The main advantage of local refresh is that the refresh rate is independent of the size 

of the network, with only a ramp (or clock) signal needing to be distributed globally. 

With all these refresh circuits, though, the periodic time of the globally distributed 

signals and the resolution of the stored weight are again determined by the size of the 

storage capacitors and the leakage currents. 

The main disadvantages of local capacitive refresh are: 

the refresh circuitry has to be included within every weight storage circuit, 

therefore it must be compact 

weight initialisation could prove troublesome 

• 	any errors produced in the Vvgt  values due to noise or interference could lead to 

the capacitors being incorrectly refreshed, irrecoverably, to the wrong quantised 

value. 
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In order to try and remove this last disadvantage, and potential source of error, 

Cauwenberghs and Yariv have developed a fault-tolerant local refresh scheme, capa-

ble of supporting at least 8-bit weights, where the analogue value is updated by a 

fixed increment in the direction of the closest quantised value, rather than being over 

written completely [74]. Again, however, the periodic time of the global ramp must 

not allow the voltage to decay by more than half the LSB. 

3.4.3. Non-Volatile Analogue Weight Storage 

The highest packing density for neural weight storage can be achieved using non-

volatile analogue techniques. Examples include EEPROM technologies such as 

MNOS transistors and floating-gate transistors, as well as adaptable materials such as 

amorphous silicon. Not only are these devices compact, but because weight storage 

depends on altering a physical characteristic of the device, they retain their weight 

value even during power-downs. 

3.43.1. Floating Gate Technology 

The MNOS and floating gate technologies have both been used to implement EEP-

ROMS via the alteration of transistor threshold voltages to one of two extremes, arbi-

trarily chosen to represent logic LOW and logic HIGH [75].  Both techniques rely on 
trapping charge in order to modulate the threshold voltage; the MNOS device traps 

charge between the nitride and oxide layers, whilst the floating gate transistor traps 

charge on an insulated polysiicon gate above the transistor channel, Figure 3.7. Both 

techniques can also produce intermediate changes in the threshold voltage, directly 

proportional to the trapped charge. 

control gate 	V 	 Vgate 	 gate 
	control gate 

nitride 	 oxide 	 floating gate 

source 	P 	drain 

(a) 	 (b) 

Figure 3.7 - (a) An MNOS Transistor and (b) a Floating Gate MOS Transistor 

Whilst floating gates can be implemented on any standard double poiy CMOS pro- 

cess, MNOS transistor technology is more exotic, requiring a special nitride layer. 
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Thus, although MNOS transistors have been used to implement neural weights [76], 

the use of floating gates is more widespread and the remainder of this discussion will 

be limited to them. 

Floating gate transistors consist of an additional polysilicon gate, buried in the oxide 

and electrically isolated from the main gate terminal. Mechanisms for adding or 

removing charge from the floating gates include hot-electron injection [77], Fowler -

Nordheim tunnelling [78] and the use of UV radiation [79]. 

The use of floating gates has been widely reported within the context of non-volatile 

weight storage in analogue neural networks, eg [70, 80-84], however, since different 

fabrication processes possess different characteristics, no universal, transferable pro-

gramming standard exists for the effective implementation of floating gates in all 

VLSI processes. In summary, whilst the implementation of floating gates is straight-

forward, programming them is not and this constitutes the main disadvantage with 

their use. 

Meanwhile, the principle advantage of using floating gates is that through modulating 

the charge on the isolated gate, it is possible to modulate the transconductance prop-

erty of the floating gate transistor: although the floating gate is physically isolated 

from the control gate, it is capacitively coupled to it. Therefore, it is possible to pro-

duce neural circuits where the weight is actually stored within the circuit, contribut-

ing to its transfer characteristic, and the desired operation can be achieved by appro-

priately controlling the voltage on the control gate. This technique has been widely 

exploited in the distance and multiplier circuits discussed in later sections. 

3.4.3.2. Amorphous Silicon 

Amorphous silicon can also be used to implement programmable neural weights, not 

through the trapping and subsequent storage of charge, but through directly altering 

the resistive properties of the silicon. 

Research into hydrogenated amorphous silicon, a-Si:H, has shown that, when sand-

wiched between vanadium (top) and chromium layers, Figure 3.8 [85], amorphous 

silicon can be programmed to have a resistance of between lkQ and 1MQ. This 

could have significant implications for neural networks, with the possibility of the 

neural synaptic circuits and refresh circuits being replaced by programmable resis-

tors. Indeed, neural networks have already been manufactured using fixed value 

amorphous silicon resistors, but these networks were fixed function and not adaptable 



Chapter 3 
	

47 

- Vanadium 
	I 	- Chromium 

N\N - Photoresist 
	I 	- Passivation 

- Amorphous Silicon iIIIIIIIIllJ 	riw 

Figure 3.8 - Amorphous Silicon Cross-Section 

[86]. 

Amorphous silicon is programmed as follows. After fabrication, short duration 

(300ns) voltage pulses incremented between 5V and 14V are applied to the vanadium 

electrode. This facilitates the formation of a vertical conducting channel in the amor-

phous silicon. This channel can then be iteratively programmed using shorter dura-

tion (120ns) pulses between 2V and 5V to implement the required resistance value in 

the range lkQ to lM[87]. 

Although this technology requires vanadium and chromium layers, these processing 
steps are required after the normal fabrication steps in a standard CMOS process. 

However, the resolution of the devices may be poor (4 bit resolution has been 

reported [88]) and a recent investigation concluded that a-Si:H resistors were not the 

optimal weight storage devices for small scale ANNs, as may be envisaged for appli-
cation specific chips [85]. 

3.5. Strong Inversion Circuits for RBF Operations 

For transistors operating in strong inversion, both the linear and saturation region 

equations yield transconductance relationships that are useful for feedforward neural 

networks. Here the use of strong inversion MOSFETs for reproducing RBF functions 

is considered. 
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3.5.1. Multiplication 

To bias a transistor into its linear region, Vg, must be at least a threshold voltage 

above Vdc.  Thus big gate voltages imply linear operation, while small gate voltages 

imply saturated operation. 

For small VdS,  equation 3.1 becomes 

'd.c = fi (Vgs - VT) Vd, 	 (3.9) 

and 'dc  is approximately linear in both Vgs  and Vd c . Some researchers have suggested 

using single transistors to implement linear two-quadrant multiplication for neural 

networks, eg [89],  Figure 3.9. However the source voltage must be kept fixed for this 

implementation. 

write_wgt2 

current summation node 

Figure 3.9 - An Array of Single Transistor Multipliers 

An alternative approach uses two matched transistors connected so that the non-

linear terms cancel. Denyer and Mayor [90] suggested the circuit shown in Figure 

3.10(a), for use in array-based monolithic filter applications. By assuming that tran-

sistors M 1  and M2  are matched, biased into their linear region and have equal drain-

source voltages, 

'OUt = iS (Vg.52 - Vgs i) Vd 	 (3.10) 

This circuit has been adapted for pulse-stream neural implementations and will be 

discussed in more detail later. 

Another synapse circuit based on two linear MOSFETs was presented by Kub et 

al[91], Figure 3.10(b). Their circuit outputs a differential current 

It - 12 = /8 (Vwgt - Vref) V 0 	 (3.11) 
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Figure 3.10 - Linear Transconductance Multiplier Circuits 

exactly as required for two-quadrant operation. The disadvantage with this arrange-

ment, however, is that low impedance amplifiers are required to convert the differen-

tial current to a voltage. 

Differential pairs [91, 92] can also be used to implement multiplication in ANN 

chips. A differential pair circuit is shown in Figure 3.11(a) and has the following 

strong inversion transfer characteristic 

21b,as 
'1 12 = /3L\V djff ( 	_ V iff J 	(3.12) 

16 

where AV dI  = V1  - V2  and 'bias  is the bias current generated by Mbjas . Clearly the 

output of this circuit is non-linear in both 'bj  and AVd ff . However, for small Vdff, 

the equation reduces to 

( 

I! - 12 	flzXVdiff( /3 

21bias 	
(3.13) 

and this can be re-written as 

'I - 12 /3AVdiff(Vbias - VT) 	 (3.14) 

if Mbias  is saturated. Thus for small differential voltage inputs, the circuit in figure 

3.11(a), can implement two-quadrant multiplication. In fact, the naturally saturating 

characteristic of the differential pair makes them suitable for implementing multiply-

and-add arrays requiring asymptotic sigmoidal non-linearities. 
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Figure 3.11 - Schematic of (a) A Differential Pair, (b) Borgstrom's Floating Gate 

Differential Pair and (c) Borgstrom's Current Comparator Neuron 

The simple differential pair and modifications to it, for example the Gilbert Multi-

plier [93], modified Gilbert Multiplier [83] and folded Gilbert Multiplier [94], have 

found widespread use in hardware neural networks [92, 49, 83, 95, 96, 801, including 

in the work of Borgstrom et at [97], who implemented a cascadable two-quadrant 

multiplier as shown in Figure 3.11(b). This circuit multiplies the difference between 

two stored floating gate voltages by V 0  and highlights how compact analogue cir -

cuits can be produced using analogue techniques and a very small number of transis-

tors. For Borgstrom's implementation, currents I and 12 from all the synapses feed-

ing into a neuron are summed onto common lines and passed to a current comparator 

with a sigmoidal characteristic, Figure 3.11(c). 

3.5.2. Euclidean Distance Based Circuits 

Saturated MOSFETs have been used in compact circuits that calculate the Euclidean 

distance [98, 99],  or squared Euclidean distance [84], between two vectors of volt-

ages. 

Landolt, Vittoz and Heim [98] have produced a self-biased circuit based on the 

squarer circuit of Bult and Wallingã [100]. Their circuit can be used to calculate the 

Euclidean distance between two n-dimensional vectors. However, as pointed out by 

Collins et at [84], to form the squared Euclidean distance between two n-

dimensional vectors, the original circuit of Bult and Wallinga can simply be repli-

cated n times and the n outputs connected to a common node. The main disadvan-

tage with these two circuits is that they operate in current mode, requiring that, for 
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sensor fusion applications, the input voltages are initially converted into accurate cur -

rents that must be distributed to the relevant circuits. As already discussed, input sig-

nals are most easily distributed as voltages. 

In comparison, the circuit produced by Tuttle et al[99], Figure 3.12, operates with 

input voltages and only uses small geometry transistors. This circuit block self-

calibrates and memorises differential code-book vector components during its initial-

isation phase. It subsequently produces an output current equal to the Euclidean dis-

tance between the input and stored vectors, using a single, saturated transistor, during 

the evaluation phase. However, this circuit was not produced for implementing RBF 

networks, so no non-linear circuit has been designed for this implementation. As 

with the circuit of Landolt, Vittoz and Heim, however, the squared Euclidean dis-

tance between the two vectors, represented as a current, can be obtained from this 

circuit if the diode-connected output transistor is replaced by a current mirror. 
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Figure 3.12 - The Euclidean Distance Cell developed by Tuttle et al showing 

(a) the Initialisation Phase and (b) the Evaluation Phase 

Collins et al have developed a novel, compact, squared Euclidean distance cell 

designed for an RBF network [84], Figure 3.13(a). This circuit uses floating gates to 

"memoriset" each centre position in a manner analogous to that used by Tuttle et al, 

except that the Collins centre circuit permanently stores the centre positions. Once 

the centres positions have been stored, complementary input vectors and V in bar 

can be presented to the control gates. (Only one transistor conducts at any time, so 

complementary inputs are used to account for Vin > Vcentre  and V jn  <Vcentre .) The 

input voltages capacitively couple to the floating gates, modulating the voltages on 

them and thus altering the current flowing in the device. Since the devices operate in 
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saturation, the output current is proportional to (V - Vcen tre ) 2 . 
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Figure 3.13 - (a) The Two Transistor Squared Euclidean Distance Cell Developed by 

Collins et al and (b) its Implementation in an N-Dimensional Centre Circuit 

The output currents from the Collins cells are summed and converted to a voltage 

using a distributed, diode-connected load transistor, before being applied to a bump 

circuit [101], Figure 3.13(b). The bump circuit is based on a differential pair and 

'bump depends on the proximity of Vd St  to V Width'  where V W dth controls the spread of 

the bump. Subsequently, the 'bump  current from each centre is passed to the output 

layer where it forms an input to the output layer's synaptic multipliers. The synaptic 

multipliers of this implementation are based on a modified Gilbert multiplier [101]. 

Collins and co-workers have designed a 3 input, 3 centre, 2 output chip to test the 

functionality of their circuits and predict that a 32 input, 160 centre, 16 output RBF 

network could be fabricated on a 1cm by 1cm microchip [102]. 

The centre circuit designed by Collins et al was an improved version of an earlier 

one produced by Anderson et al [103]. The operation of the Anderson circuit, Figure 

3.14(a), depends on the fact that an inverter passes a non-linear current near its 

switching voltage. Anderson et al use this non-linear current to approximate the 

squared Euclidean distance between an input vector and a reference vector. Again the 

reference vector position is programmed onto the floating gate inputs to the inverters. 

The currents through all the inverter circuits in a given centre are summed and con-

verted to a voltage using a sense amplifier tailored to produce the desired bump func-

tion. 
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Figure 3.14 - (a) The Centre Circuit Developed by Anderson et al and (b) the Output 

Layer for their Chip 

The outputs from the centre layer are combined using an aggregator follower [49] 

based on the one shown in Figure 3.14(b). The aggregator follower blends the hidden 

layer responses to implement equation 3.15, the equation for a normalised RBF net-

work using the partition of unity 1 . 

yj= 	 (3.15) 

The chip produced by these researchers incorporates an 8 input, 159 centre, 4 output 

RBF network in 2.2mm by 9.6mm of silicon (2um process) and has a static power 

dissipation of 2mW. 

Finally, another distance circuit designed for a non-REF application formed the basic 

element in the Euclidean distance block-matching array of Kramer [62]. The circuit 

fabricated here was developed by Seevinck and Wassenaar [105] and produces an 

output current that is the square of the difference between its input voltages. 

3.5.3. Manhattan Distance Based Networks 

As an alternative to calculating the Euclidean distance between two vectors, the Man-

hattan distance can be calculated instead. 

Normalised RBFs are valid RBF implementations, but have slightly different properties compared to normal RBFs 
[104]. 
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Verleysen et at have designed and manufactured a classification chip which supports 

both vector quantisation and kernel-based classification [106, 107].  Their Manhattan 

distance circuitry is shown in Figure 3.15. Each component cell, Figure 3.15(a), 

stores a centre position current using a dynamic current mirror, loaded via M,. Both 

and Mcentre  are biased into their linear region by transistor pairs M 1 /M2  and 

M3 1M4 . The bidirectional current produced by the cell is either sourced from or sunk 

to the 'neg  or  IPOS  lines respectively. By rectifying 'neg  and adding it to IPOS,  the Man-

hattan distance between two vectors can be realised. 
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Figure 3.15 - (a) The Single Dimension Manhattan Distance Cell of Verleysen et at. 

(b) N Cells are Cascaded to Form the Total Manhattan Distance 

Kernel circuits have also been developed by Verleysen and co-workers. One uses the 

non-linear properties of the differential pair to produce an approximation to the 

Gaussian, whilst the other uses transistors biased into subthreshold, exploiting the 

natural exponential transfer function in that region of operation [106]. 

The use of the Manhattan distance has also been advocated by Dogaru et al[108] 

after they obtained impressive results from software simulations of a network using a 

modified RBF non-linearity and the Manhattan distance metric. 

Finally Cauwenberghs and Pedroni have designed a novel, compact Manhattan dis-

tance cell [109], although again it has been designed for use in a vector quantiser 

chip rather than a hardware RBF implementation. 
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3.6. Weak Inversion RBFs 

Some implementations of RBF networks using subthreshold currents have also been 

proposed. 

Watkins and co-workers [48, 95] have implemented a hybrid RBF network where the 

hidden layer functions are all executed using analogue subthreshold circuits and the 

output layer is implemented using a fast DSP chip. In the hidden layer, the distance 

calculation is calculated using a folded Gilbert Multiplier, figure 3.16(a), while the 

exponential transconductance function is produced using the circuit in Figure 

3.16(b). 

These researchers considered implementing a fully analog RBF network, but 

declined to do so, believing analogue inaccuracies and limitations in theIr circuitry 

would be compensated for by the increased precision in the digital output layer [95]. 
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Figure 3.16 - (a) The Folded Gilbert Multiplier Used for Distance Calculation by 

Watkins et al and (b) the Variable Width Neuron they developed 

Another subthreshold implementation has been proposed by Harris [110]. He sug-

gests using circuits based on Delbruck's bump circuit [111] to implement RBFs, 

again using the partition of unity by implementing the output layer as an aggregator 

follower. Indeed, the implementation proposed by Harris is similar to that of Ander-

son et at, with the output currents from the bump circuits controlling the conduc-

tance of the transconductance amplifiers - via the bias input - in the aggregator fol-

lower in Figure 3.14(b) [112]. 
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3.7. Pulse Stream Neural Networks 

Hybrid neural systems are systems that combine analogue and digital circuit tech-

niques,eg [113, 114]. 

One hybrid technique which has been successful in the neural network arena is the 

pulse stream neural method pioneered at the University of Edinburgh [9]. The pulse 

stream technique encodes the neural states within an architecture, in analogue format, 

along the time axis of a stream of digital pulses [115]. The neural states are usually 

represented as either the repetition frequency of a stream of fixed width pulses - pulse 

frequency modulation (PFM), or the width of a stream of fixed frequency pulses - 

pulse width modulation (PWM), Figure 3.17. 

PFM J[ 1j1j1J1J1 J1J1j1L 

PWM 
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Figure 3.17 - Representation of PFM (top) and PWM (bottom) where analogue 

neural state information is recorded in time as the repetition rate of fixed 

width pulses and the width of fixed frequency pulses respectively 

The original motivations for the use of pulses were the analogy with the biological 

exemplar - pulses are known to be used in natural neural systems - and the desire to 

implement analogue circuitry on economical, digital CMOS processes. While the 

first motivation may seem somewhat ambitious given the sheer magnitude of the dif-

ference in complexity between biological networks, believed to have evolved over 

millions of years, and the current artificial variety, which have existed for a little over 

fifty years, the second motivation has important consequences and implications for 

the design and fabrication of neural network chips. 

Analogue VLSI allows the design of compact, fast, low power, asynchronous circuits 

that, unfortunately, are not robust to noise or interference and are susceptible to pro-

cess variations. On the other hand, digital VLSI technologies are more readily avail-

able and cheaper, but have been tailored to produce circuits whose primary aim is to 
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process logic signals quickly; signals that are easily generated, transmitted, multi-

plexed and regenerated as required. 

Pulse stream techniques therefore utilise the known advantages of both analogue and 

digital VLSI technologies, combining the use of analogue circuitry in the computa-

tional core of neural architectures, with the use of digital encoding technology for the 

transmission of analogue neural information as robust digital pulses. Since the digi-

tal pulses can be used to switch analogue circuitry on or off, the resulting pulsed cir-

cuits are compact and operate at all times in known and well defined ways. 

3.7.1. Pulse Stream Circuits 

The best way to illustrate the applicability and power of the pulse stream technique 

for neural VLSI, is through a review of some of the circuitry which has been devel-

oped over the years. Many varieties of pulsed circuits have been developed during the 

past decade, eg [69, 115-120], too many to describe in detail. For this reason, this 

review considers circuits from the EPSILON Cell Library [12], which evolved from 

early pulsed designs at the University of Edinburgh. 

The EPSILON chip is a large generic analogue neural network chip, fabricated in the 

early 1990s, and designed to act as both an analogue neural accelerator and as a stand 

alone neural processor [10-12]. Subsequent experiments with the chip indicated that 

analogue circuitry is unlikely to be advantageous for producing reconfigurable neural 

co-processors - digital VLSI is much better - but that analogue solutions for applica-

tion specific problems are likely to find a niche market. The production of the 

EPSILON chip was a tremendous achievement, marking the coming of age of the 

pulse stream technique, and the on-board circuitry serves as a good example of the 

power of the methodology. 

3.7.1.1. Synaptic Multiplication 

In order to implement the weighted sums, E Tij Vj , the EPSILON chip used the cir-

cuit shown in Figure 3.18(a) [10]. 
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Figure 3.18 - (a) The Pulsed Synaptic Multiplier Developed by Baxter and 

(b) the equivalent circuit describing its operation 

This 5 transistor circuit is cascadable and is based on the linear transconductance 

multiplier of Denyer and Mayor [90] described earlier in this chapter. The circuit is 

electrically equivalent to the one in Figure 3.18(b), with each synapse in (a) imple-

menting a pulse-controlled, variable current source. 

Transistors M 1 and M2 are operated in their linear region and, assuming they are 

well-matched, current I Tj  can be expressed as 

8(Vgsi - Vgs2)Vds 	 (3.16) 

where Vgsl  is the gate-source voltage of transistor M 1, V9s2 is the gate-source voltage 

of M2 and VdS  = Vref 	
Vh•,h + Vlow  maintained at 	

2 

Transistor M3, controlled by the input pulse stream V, is used to gate pulses of cur-

rent, 'T,'  between transistor pair M1-M2 and transistor.pair M4-M5. For this circuit, 

V1  can be encoded as either PFM or PWM. Transistors M4 and M5, in conjunction 

with the Op Amp, implement negative feedback with the result that the Op Amp out-

put voltage, Vi., represents a snap-shot of the instantaneous neural activity of all the 

synapses feeding into that particular neuron. By integrating V. over time, the synap-

tic activation 17act  can be calculated. 
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3.7.1.2. Pulse Frequency Neuron 

Since pulse frequency modulation encodes the neural state, V, as the frequency of a 

stream of fixed width pulses, PFM neurons are simply voltage controlled oscillators 

(VCOs). The output frequency of these VCOs, ranging from f001 = 0Hz for V 0.0 

to fout = fmax for V = 1.0, depends non-linearly on the instantaneous synaptic acti-

vation, V. The PFM neuron from the EPSILON Cell Library is shown in Figure 

3.19 [12]. 

'high 	 'high 

V 
- 	

JT  —V  iZ] I —T~~ act 

h owl 
	

low 

Figure 3.19 - The EPSILON PFM Neuron 

The output pulse stream, V 1 , is generated by the hysteretic charging and discharging 

of capacitor, C vco ,  using currents 'high  and 'low 'high is derived from a global refer -

ence current and is used to define the fixed width of the pulses; 'low  defines the spac-

ing of the pulses and is generated by the differential pair in Figure 3.19. Due to the 

non-linear (sigmoidal) characteristic of the differential pair, 	which lies in the 

range 0 !!~ 'low 'high' is the correct non-linear transform of 	- V mid. The fre- 

quency of the output pulse stream is therefore the correct non-linear function of the 

input synaptic activation voltage, V. 

The asynchronous nature of PFM makes it ideal for implementing asynchronous, 

recurrent architectures such as the Hopfield network [121]. However, the data-

dependent evaluation time means that PFM is less suited for feedforward networks 

since the neural evaluation time cannot be guaranteed. 

3.7.1.3. Pulse Width Neuron 

The early hardware neural research focused on implementing simple recurrent archi- 

tectures and most early pulsed circuits operated using PFM. The desire to develop 

circuits and chips capable of reproducing feedforward neural architectures, such as 
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MLPs, led to the design of circuits operating using PWM. 

With pulse width modulation, the frequency of the pulses is constant and the neural 

states are encoded as the widths of individual pulses. Thus a separate neural calcula-

tion is performed per pulse and the evaluation time of the circuit is synchronised to 

the frequency of the pulses [122]. 

A simple PWM neuron is shown in Figure 3.20. The neuron is a comparator with the 

synaptic activation voltage, V, applied to one input and a ramp voltage waveform, 

V ranp , applied to the other. The rathp waveform has been traditionally generated off-

chip using an external RAM with a voltage DAC, allowing the non-linearity to be 

arbitrarily defined. 

Vramp  - 

(a) 

Figure 3.20 - A PWM Neuron 

The principle of operation of the neuron is simple. The constant neural activation 

voltage V lies somewhere between the maximum and minimum extremes of V ramp . 

When V ramp  dips below V, the comparator switches, switching again when V ra, izp  
exceeds V once more. This double switching action produces an output pulse 

whose width in time depends jointly on V and Vrcn,.  The maximum evaluation 

time for the PWM circuit in Figure 3.20, is the length of time the ramped waveform 

deviates from its maximum value. 

In order to correctly implement the non-linear neural transformation from the voltage 

domain to the time domain, V ramp  should be stored as the inverse function, f' (), of 

the desired non-linearity, JQ. This is because the activation voltage is effectively 

being transformed from the y-axis variable into the x-axis variable. Also, symmetri-

cal ramps are often used to ensure that all the comparators do not switch simultane-

ously as this can exert a large transient demand on the power rail. Symmetrical ramps 

produce symmetrical pulses centred on the mid-point of each time frame and are 

advisable for large networks with many neurons, but are not absolutely necessary for 

networks with only a few neurons. 
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3.8. Pulsed RBF Networks 

Having described and demonstrated the elegance of using pulse streams for neural 

networks implementations, it is time to consider the motivations and scope for the 

implementation of Radial Basis Functions using the pulse stream technique. 

3.8.1. Motivations 

The reasons for implementing RBFs using pulse streams are as follows. 

RBFs have not yet been implemented using pulses, while other network archi-

tectures have been successfully demonstrated. This makes any investigation into 

developing pulsed RBFs academically interesting. 

The potential advantages and limitations of using pulsed RBF networks for 

application specific problems can be investigated through developing the final 

demonstrator chip and applying it to a small-scale problem. 

The pulse stream technique can be developed and extended by building on pre-

vious work. The pulsed circuits described in Section 3.7 were developed from 

earlier designs, taking into account the lessons learned from their production 

and use. Thus the knowledge gained from testing and using EPSILON and sub-

sequent pulsed circuits augments all the earlier work and all this practical infor-

mation can be used in the development of the next generation of pulsed circuits. 

3.8.2. Scope 

Before describing the development of the pulsed circuitry in Chapters 4 to 6, the ini-

tial considerations regarding the nature and extent of the project will be summarised 

in order to define limits for the scope of this work. 

Primarily this project was a concept proving exercise. The aim was to develop 

and refine circuitry that demonstrated the possibility, or otherwise, of producing 

pulsed RBF circuitry. Thus large geometry processes were used because they 

were more economical, allowing for the production of two test chips as well as 

a final demonstrator. 

The desire to test whether theoretically viable circuits would work when manu- 

factured meant that simple circuits were designed whenever possible. The tran- 

sistors and capacitors were over-sized to minimise transistor mismatch and par- 

asitic coupling respectively, and the MOS switches were designed to be small to 
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minimise charge injection. All the circuitry was also laid out very conserva-

tively. These measures meant that area was consumed to give greater accuracy, 

but this was deemed to be a warranted trade-off for a concept proving project. 

• 	Since PWM is a synchronous technique that guarantees the evaluation time for a 

forward pass through the circuit, it is more suited to implementing the RBF 

algorithm than PFM. 

• 	From a consideration of the requirements for the RBF algorithm, the most natu- 

ral partition is between the two layers. Thus it was decided to develop separate 

circuits for the hidden and output layers, with PWM neurons, Figure 3.20, con-

verting the voltages produced by the hidden layer into pulses for the output 

layer, Figure 3.21. 

C 

Hidden Layer rA 
	

Output Layer 

PWM Neurons 

Analogue Inputs 

Digital PWM Outputs 
Figure 3.21 - Floorplan of Proposed RBF Demonstrator Chip 

The aim was to design pulsed circuits for implementing the forward pass 

through an RBF architecture. No attempt was made to produce circuits capable 

of on-chip learning and it was envisaged that chip-in-the-loop learning would be 

used to account for process variations and offsets. 

• 	From the review of analogue weight storage techniques presented earlier, it is 

clear that floating gate technology probably represents the best method, in the 

long term, for implementing the local storage of neural weights. However, 
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programming these devices is not trivial and the most appropriate method for 

storing the weights in these development chips was as dynamic voltages, on 

MOS transistor capacitors, globally refreshed from off-chip RAM. In order to 

ensure that weight refresh was continuous, without affecting the through-put of 

the chip, the refresh system was designed to be transparent to the operation of 

the hidden layer and output layer circuits. 

All the developed analogue circuitry was designed to operate in strong inver-

sion. None of the pulsed circuits developed thus far have used weak inversion 

and it is not clear what effect the noise generated by the rising and falling edges 

of the pulses would have on the subthreshold voltages or currents. 

Finally the centre circuits and output circuits were designed to be cascadable. 

This allows networks of any size to be designed without significant re-design of 

any circuit blocks, although the refresh rate may have to be increased as dis-

cussed in Section 3.4.2. 

3.8.3. Related Work 

Having defined the scope of the work contained in this thesis, it is worth mentioning 

the related work that was carried out in parallel, but independently, of this work by 

Reyneri and co-workers at the Politecnico di Torino in Italy. 

This group use Coherent Pulse Width Modulation (CPWM) [123], a technique very 

similar to PWM, for implementing their neural chips. 

Reyneri and co-workers are currently trying to implement the Weighted Radial Basis 

Function algorithm (WRBF) [124] in VLSI, using current mode circuits. Their aim is 

to produce a WRBF chip [125], based on an earlier design [126], which will be 

applied to various control problems. Although not directly comparable to the work in 

this thesis, their research is nonetheless relevant to this work, providing a useful 

alternative contribution to pulse stream neural network research. 

3.9. Summary 

This chapter has 'considered the different ways in which the RBF neural algorithm 

could be implemented in VLSI hardware. The use of both analogue and digital tech-

niques was considered, and the actual implementation method, the hybrid pulse 

stream technique was described in detail. Finally the motivations for the project were 

discussed, along with a review of the initial considerations that defined the scope of 
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the project. 

Now that the implementation method has been decided, it is time to discover how the 

algorithm was actually cast into hardware, beginning with the output layer circuitry. 
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Chapter 4 

The DYMPLES Chip 

As illustrated in Chapter 2, both the MLP and the RBF neural architectures require 

two-quadrant multipliers for the calculation of the vector dot (or inner) product of the 

weight and the neural state vectors. This requirement has led to the design and devel-

opment of a variety of different circuit implementations to carry out this function, 

some of which have been reviewed in Chapter 3. 

This chapter presents the DYMPLE synapse 2, the production of which was motivated 

by the desire to produce a simple, cascadable, pulsed synapse that was easy to set-up 

and operate and that could be easily transferred between different fabrication pro-

cesses. To satisfy these requirements, the synapse was developed using the current 

mode approach [127-129]. Further, in order to test the viability of the new design 

and demonstrate its functionality, an array of DYMPLES multipliers were fabricated 

on a suitable test chip. 

4.1. Voltage Mode vs. Current Mode Operation 

The difference between voltage mode and current mode operation can be succinctly 

summarised as: 

Voltage mode circuits use voltages as the main signal medium, 

current mode circuits use currents. 

Analogue IC design has been predominantly voltage mode for two main reasons. 

All circuit design was traditionally analogue voltage mode design. 

After the advent of the IC, a greater emphasis has been placed on digital tech-

nology and there has been a lack of investment in alternative analogue IC design 

techniques. 

Before the widespread utilisation of cheap and reliable ICs, the majority of electronic 

circuit design was analogue in nature and used discrete components. Circuits tended 

2 DYMPLES is an acronym for DYnamic Mirror PuLsed Experimental Synapse. 
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to favour processing voltages rather than currents (eg operational amplifier circuits 

and discrete BJT transistor based circuits) due to good voltage processing perfor -

mance. The inherently poor matching achievable with discrete components rendered 

them unsuitable for the current mode approach. Thus, before the advent of the IC, 

analogue voltage mode circuit design was a mature subject. 

The advent of the IC saw the digital circuit replace the analogue circuit as the pri-

mary tool of the electronics industry. Compared to analogue circuits, digital ones are 

reliable and precise and the trends in technological advances, especially in comput-

ing, have favoured digital ICs. Nowadays, fabrication processes continue to be opti-

mised for digital rather than analogue circuit performance, more investment is 

directed towards improving digital techniques and the development of analogue IC 

design has suffered as a result. 

This situation is changing, however. The demand for increased functionality, 

increased performance and system-on-a-chip integration has led to renewed interest 

in analogue design techniques. Digital technology remains the dominant force, 

though, and as the level of digital integration increases, power supply voltages must 

decrease as a direct result. Reducing the supply voltage has serious implications, in 

terms of dynamic range and noise, for analogue voltage mode operation [127]. 

In comparison, analogue current mode operation has a high immunity to the level of 

the power supply voltage. In addition, current mode circuits tend to be simpler than 

voltage mode circuits, are more transferable between different processes and, due to 

their reliance on voltage differences rather than absolute values, are more amenable 

to fabrication on the existing digital processes. Thus current mode design has 

increased in popularity as a direct result. 

4.2. Pulsed Two-Quadrant Multiplication 

Two-quadrant multiplication is a straight-forward mathematical operation and the set 

of ideal characteristics for neural versions of such multipliers is given in Table 4.1. 

However, as with all engineering designs, trade-offs must be made between these dif -

ferent competing priorities, always striving to make the implementation as small and 

as simple as possible. 

Figure 4.1 shows the schematic diagram for a simple implementation of a pulsed 

two-quadrant multiplier whose operation depends on the principle of conservation of 

charge. 
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The Ideal Synapse. 

Multiplier Circuit 

Accurate Small Area 

Cascadable Low Power 

Linear Robust 

Table 4.1 - The Characteristics of an Ideal Synapse 

 

Vdd 11. 
/!\ 	pulse generating 

PWM neuron 

ramp 

summation node 

I 
zero 

I wgt 

Figure 4.1 - A Pulsed Two-Quadrant Multiplier 

In this design, a fixed current source and a variable current sink are connected 

together and joined, via a simple pass transistor, to capacitor By applying Kir -

choff's Current Law at node X, the value and direction of the output current, 'out'  is 

determined by the difference between 'vgt  and 'zeroS This net current is subsequently 

used to selectively charge or discharge Cact  under the control of the voltage on the 

gate of the pass transistor. If 'out  is chosen to represent the synaptic weight, ,% fi , and 

the relative on-time of the pass transistor, At 0 ,1 , is used to represent the neural state, 

Si , then, by the principle of conservation of charge, the change in voltage on the 

capacitor is proportional to the product of the synaptic weight with the neural state, 

equation 4.1. 

= Ir . At0,2  = Aji . Si (4.1) 
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This arrangement represents a simple and parsimonious implementation of a two-

quadrant multiplier. To turn this schematic into a circuit, suitable implementations for 

the current source and sink must be used. 

4.3. MOS Transistors as Real Current Sources and Sinks 

Ideal current sources and sinks conduct the same constant current irrespective of the 

voltage across their terminals [43]. They therefore have infinite output resistance. 

Ideal sources and sinks cannot be implemented, however, but accurate approxima-

tions can be implemented using appropriately biased MOS transistors [128]. 

As discussed in Section 3.1.2, the current through a MOS transistor operated in 

strong inversion is a function of Vgr - VT and  VdS.  Clearly, as shown in Figure 3.2, a 

MOSFET provides a good first order approximation to a current source when satu-

rated. Further, if the drain voltage can be fixed, then a transistor operated in its linear 

region can also sink a constant current, although it is less common to implement a 

current sink in this way. In both cases the current conducted through the device is 

dependent on the voltage stored on its gate. 

Thus, to produce a pulsed two-quadrant multiplier, a PMOS and NMOS transistor 

can implement the constant current source and variable current sink respectively, Fig-

ure 4.2. This design is similar to those proposed by Tombs [122], Churcher [11] and 

Baxter [ 1 0]. 

Vdd 

pulse 

LIIv  M 	I 	zero 
zero 	I  
wgt 

I 

M 	

wgt 
C 

act 

Figure 4.2 - A traditional CMOS Pulsed Two Quadrant Multiplier 
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Traditionally, pulsed multipliers of this type have operated in voltage mode, using 

transistors biased into their linear region. Global gate voltages, refreshed from off-

chip voltage RAM, have been used to define local currents, with the appropriate volt-

ages for each synapse stored locally on capacitors attached to the transistor gates. 

However, as discussed in Section 3.3, a problem exists with this approach. The 

global gate voltages will remain the same for all the synapses, but the threshold volt-

age for individual synapses will vary across-chip. Thus, since the current through a 

transistor varies as a function of Vgs  - VT, synapses in opposite corners of the chip 

will, in all likelihood, have different characteristics. 

Since it is the currents I vgt  and  'zero  which determine the accuracy and linearity of 

the multiplier, far higher performance should result if global currents are used to pro-

gram the synapses. This approach was adopted for the DYMPLE synapse, with the 

current loading implemented using dynamic current mirrors (DCMs). 

4.4. Dynamic Current Mirrors 

One of the most popular and widely used building blocks in analog IC design is the 

current mirror, Figure 4.3. Current mirrors are current mode circuits that allow cur-

rents to be replicated, multiplied, divided and distributed across-chip. Their opera-

tion exploits the principle that if two identical, matched transistors are biased with 

the same gate-source voltage, then the currents through them will be identical. There-

fore, ideally, ju = Ii, in Figure 4.3. 

in 	
I

out 

Figure 4.3 - A Two Transistor Conventional Current Mirror 

However, fabrication process variations mean that it is almost impossible to produce 

two transistors with exactly the same operating characteristics. Thus, even two tran- 

sistors that are physically close on the silicon substrate, and are biased with the same 
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gate-source voltage, cannot be guaranteed to have exactly the same operating charac-

teristics. These variations, in turn, mean that, for the current minor in Figure 4.3, 

iout = kI,, where k is close to, but not exactly equal to, unity. Although the precision 

of analogue devices such as current mirrors can always be improved by increasing 

the size of the transistor gate area or operating the transistors with higher gate volt-

ages, the circuits performance can never be better than the effective mismatch 

between the two devices. 

Improved precision in matching 'in  and 'out  can be obtained by using dynamic cur-

rent mirrors [130, 131], Figure 4.4. Dynamic current mirrors are two-phase sampled 

data circuits that remove transistor mismatch by using a single transistor instead of 

the "identical" pair. In the first phase, the DCM is loaded with a current, which, in 

the second phase, is distributed, by switches, to another node. Thus, assuming the 

biasing conditions remain the same between the loading and copying phases, the 

loaded current will be precisely copied. 

4.4.1. DCM Principle of Operation 

The two-phase operation of the DCM is straight-forward [130, 131] and is illustrated 

in Figure 4.4. When the toggle switch TS 1 is closed in position A, transistor Mdyfl0m jc  

tries to conduct current jm•  When switch Si is closed, the voltage required by 

Mdynam ic  to conduct I,, is established on the gate capacitor, Cgate . Once equilibrium 

has been reached, Si can be opened and C gate  isolated. The dynamic minor has thus 

been programmed to sink 1m  due to the voltage on Cgate.  Further, if toggle switch 

TS 1 is moved to position B, I, is sourced from the power rail, through the load resis-

tor. 

The critical point with DCMs is that, although a voltage is still stored on a capacitor 

and used to generate a current, knowledge of the precise voltage stored is not impor-

tant. The voltage stored is that voltage which causes the loaded current to flow in 

that specific transistor. Gate voltages are generated and stored locally by global cur-

rents, so assuming that the currents are well controlled, the stored gate voltages 

implicitly account for any across-chip transistor variations, leading to more accurate 

current reproduction. 



Chapter 4 
	

71 

Vdd 	 Vdd 

LOAD 	
LOAD 

I 
in h I 

in 

A 	B 	
TS 1 control 	 TS 1 

TS1 

Si 
S 11  

dynaic 	 - 
M 

m 	

Si control 

to M 
C 

gate 	
Cgate 

wgt cd _____

rJ  

__ 	
M 

dynamic 

Figure 4.4 - (a) Schematic for a DCM and (b) its CMOS implementation 

4.4.2. Factors Affecting Ideal 0CM Operation 

Although DCMs employ a single transistor to remove the mismatch problems that 

occur in conventional current mirrors, they are affected by channel length modulation 

and, because they are sampled data systems, DCMs are also affected by charge injec-

tion. 

4.4.2.1. Channel Length Modulation 

Channel length modulation [43] is a second order effect that causes a change in 'dc 

with increasing Vdc  when a transistor is in saturation. Channel length modulation 

occurs because the effective channel length of a saturated MOS transistor varies with 

Vdc . Basically, as the gate to drain voltage of the MOS transistor increases, the pinch-

off point of the substrate moves closer to the source and the effective length of the 

channel is reduced. Since the current through a MOS device is inversely proportional 

to the channel length, the reduction in length causes a corresponding increase in the 

current through the device. This is modelled by the parameter A in the second order 

equations for a saturated MOS transistor and results in a slight positive slope for the 

flat saturated region characteristics in Figure 3.2. 

Channel length modulation occurs in both conventional and dynamic current minors. 

It arises when different drain-source voltages bias the two legs of the circuit in the 
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conventional case and when different drain-source voltages bias the single transistor 

during the two phases of DCM operation. 

It can be reduced by increasing the output impedance of the circuits by either using 

longer transistors, or by using a cascode biasing technique [130, 132-135]. The for-

mer solution results in bigger transistors, whilst cascode methods increase circuit 

complexity. Both solutions increase the area of the circuit. 

4.4.2.2. Charge Injection 

Charge injection in DCMs occurs due to two phenomena, both related to the use of 

MOS transistor switches to sample the current. 

Charge Injection from the Channel 

In order to conduct current in its on state, a MOS transistor needs to attract sufficient 

carriers into its channel: an on MOSFET thus acts like a crude electrostatic magnet. 

To turn switch Si on, its gate voltage must be large enough to attract many carriers 

into its channel, Figure 4.5. Similarly, when it switches off, these surplus charges are 

released and flow away from the gate. 

5V1 	 OV 
gate 	 I 

source 	 drain 
p- 

V Channel charge 
(electrons) 

Figure 4.5 - The MOS Transistor as an electrostatic magnet 

Some of this released charge flows to ground and some flows onto the C gate capaci-

tance [136-139]. The charge which flows onto the gate affects the voltage stored, as 

described by equation 4.2. 

= 
AQswitch (4.2) 

C gate 
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Charge Injection due to Clock Feedthrough 

MOSFET switches require one voltage to turn them on and another to turn them off. 

Typically, an NMOS switch is turned on by applying 5V to its gate and is turned off 

by applying OV to the gate. However, due to the parasitic capacitances which exist 

between the gate and drain/source of a MOS transistor (caused by the gate overlap of 

the source/drain regions) a portion of the gate voltage is fed onto the source and drain 

nodes, Figure 4.6. 

gate 

C paras itic 1 C parasitic 

source 	 drain 

p- 
Figure 4.6 - Charge Injection from. Clock Feedthrough 

Overlap capacitors cause a fixed portion of charge to be dumped onto the C gate 

capacitor of the DCM and the stored voltage is affected as described by equation 4.3. 

C 

	

AVf eedz/zr(,ugh = 
C parasitic + C gate 

/XV gate 	 (4.3) 

Several techniques exist for overcoming the limitations due to both types of charge 

injection. These include increasing the size of the gate capacitor and making the 

switch as small as possible or altering the effective switch-on voltage of the device 

and thereby decreasing the channel charge [129, 131]. Again, however, these tech-

niques either increase the size of the circuit or they increase its complexity. 

4.5. The DYMPLE Synapse 

The DYMPLES circuit was designed such that dynamic current mirrors, programmed 

from global current sources, replaced the gate capacitors, programmed by global 

voltage sources, used in previous designs. The schematic diagram for the complete 

DYMPLES design is shown in Figure 4.7. 
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Figure 4.7 - A complete DYMPLE synapse circuit 

Because DCMs are used to load and store the global currents, MZer(,  and Mwgt  operate 

in saturation. By operating Mzer(,  and Mwgt  in saturation, and ensuring their output 

impedance accounts for channel length modulation, 'zero  and 'vgt  are independent of 

V 0 ,, and no additional compensation circuitry is required to fix the common drain 

voltage of Mzer(,  and M ivgt . 

The synapse operates as follows. Currents ' vgt dach and 'zero_dash  are loaded and stored 

simultaneously in the NMOS and PMOS DCMs via Si Control and TSJ Control. 

These currents generate 'ivgt  and Izero in M wgt  and MZer(,,  and it is these latter currents 

that selectively charge or discharge C00  under the control of V pu j se . 

The circuit was designed for 'zero = 0.5jiA, 'wgt  ranging between 0.0jiA and 1.0jtA 

and with Cout  = 5pF. Bigger currents are produced and distributed by the global 

source to allow faster loading of the DCMs and to remove any imprecision effects 

that may result from distributing small currents. Thus 'zero_dash  was designed to be 

2.5uA, with 'wgLdash  ranging between 0.0iA and 5.OpA. 

By defining a 0us pulse to represent a neural state of 0.0, a 5 dus pulse to represent a 

neural state of 0.5 and a lOfls pulse to represent a neural state of 1.0 etc, this synapse 

can, at most, produce a ±1V change in V 01 . Prior to each calculation, C0  is 

precharged to 2.15V and, after the input pulse has been applied, a triangular V ramp  
waveform, ranging from 1.15V to 3.15V and back to 1.15V in 10us, is used to gener -

ate the output pulse in the output PWM neuron (also shown in Figure 4.7). 

It is worth reiterating that, by accurately controlling the 'wgt_dash  and 'zero_dash  cur- 

rents, it is possible to exploit the ability of DCMs to derive and store gate voltages 
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locally, allowing globally distributed currents to be accurately stored in specific 

DCMs, therefore helping to account for across-chip variations in individual synapses. 

However, it is important to realise that this circuit does not fully exploit the potential 

offered by DCMs. Here each DCM is used to load and store a gate voltage that gen-

erates a copy of the loaded current in another, similar, transistor and it is this copy 

that alters the charge on the output capacitor. The true potential offered by DCMs can 

only be realised by using the actual DCM transistors to discharge the output capaci-

tor. The implementation in Figure 4.7 is actually based on a conventional current 

mirror; using the DCM principle simply allows more accurate programming of indi-

vidual synapses. Therefore, not only will the DYMPLES circuit be affected by the 

limitations associated with conventional current mirrors, it will also have to account 

for the additional discrepancies, such as charge injection and channel length modula-

tion, introduced by the DCMs. 

Despite these known limitations, the synapse was implemented as described for two 

main reasons: 

the currents 'Zer(,_d(Ish  and 'wgt_dash  were required to be scaled down before being 

used to charge or discharge the output capacitance in the desired time period 

by employing the DCMs for weight storage only, a circuit was produced that 

was transparent to the refresh system and whose data through-put was therefore 

independent of the refresh rate of the circuit. 

Both reasons were deemed to be critical to the effective operation of the synapse and 

took precedence over other design considerations. 

The current division in each DCM was implemented using five matched transistors, 

connected in parallel, to load and store the current. A sixth transistor, Mzero  or  M vgt , 

identical to the other five, was then used to replicate it. Thus the currents 'ivgt dash 

and 'Zero dash are approximately five times bigger then 'wgt  and 'zero  respectively 

[140]. 

To maximise the circuit performance, the transistors implementing the DCMs and 

current sources/sinks were laid out to be physically close on silicon to minimise any 

mismatch between them. They are also designed to be long and thin as this increases 

their output impedance and so reduces the effects of channel length modulation as 

Vout varies. Furthermore, to minimise the effects of charge injection, the C gate  capac-

itances are large and the switch transistors in each DCM have the minimum dimen-

sions allowed by the process. 
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4.6. DYMPLES Simulations 

DYMPLES was designed for ES2's 1 .5pm double metal, single poly, digital CMOS 

process. Typical, fast and slow Level 6 model cards for this process were used to 

model the circuit's operation. 

4.6.1. Variation of Vgr  with Current in the DCMs 

The first experiment performed with the simulated synapse illustrates that different 

gate voltages are required to conduct the same current through transistors with differ-

ent threshold voltages. Sixteen values of current (equally distributed between O 1aA 

and 5uA) were loaded into the NMOS DCM and the corresponding voltage stored on 

C gate was recorded. This process was repeated for all three model cards and the 

results are shown in Figure 4.8. 
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Figure 4.8 - Variation of V gç  with Synaptic Weight for transistors 

with different threshold voltages 

This result confirms that, if global voltages are used to derive local currents, varia-

tions in the threshold voltage of the transistors will cause variations in the generated 

currents. 
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4.6.2. Simulated Multiplier Performance 

As already discussed, the DYMPLES circuit was designed to use currents to program 

the synapses in the belief that simpler multipliers, with a higher degree of process 

tolerance, would result. Thus the next experiment investigated the similarity of the 

multiplier performance for synapses constructed from fast, slow and typical transis-

tors. Again the circuit was modelled with the three model cards and the multiplier 

performance of each synapse was recorded. For the purpose of these experiments, the 

synapses were used to alter the charge on a 5pF capacitor implemented using a typi-

cal NMOS transistor. The same capacitor was used for all the experiments since it 

was essential to compare the operation of the synapses rather than the combination of 

the synapse and transistor capacitor. 

For the experiments, each NMOS DCM was loaded with currents of OpA, 1 .667,uA, 

3.333uA and 5 4uA and the PMOS DCM was loaded with 2.5pA. The net current was 

then allowed to charge or discharge the output capacitor for several time periods (as 

determined by the on-time of the pass transistor connecting the DCMs to the capaci-

tance) and the final output voltage on C0  was noted at the end of each trial. The 

results from these simulations are shown in Figure 4.9, which shows the final Output 

Voltage (on Gout)  vs. Input Pulse Width for the three synapse types and the four dif-

ferent values of 'vgt_dois/i  The characteristics for all 3 synapses overlap. 
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Figure 4.9 Simulated Multiplier Performance 

The excellent results obtained from this experiment confirm that the DYMPLES 

implementation should work as required, despite the threshold voltage variations, and 

indicates that the current mode approach appears to account for the type of transistor 
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variations that can occur across a silicon wafer. Encouraged by these findings, a hard-

ware implementation of an array of DYMPLES devices was designed, fabricated and 

tested. 

4.7. The DYMPLES Chip 

The DYMPLES chip was manufactured to: 

prove the viability of hardware implementations of the synapse design 

highlight the potential of current mode circuit implementations for ANNs, 

including the benefits to be gained from greater on-chip integration. 

4.7.1. DYMPLES Chip Floorplan 

The floorplan of the DYMPLES chip is shown in Figure 4.10 and the layout of the 

chip is shown in Figure 4.11. The DYMPLES chip was implemented in 4mm by 

4mm of silicon, is pulse-width input : pulse-width output and consists of: 

• 	an 8 by 8 array of DYMPLES multipliers (arranged as 8 synaptic columns with 

8 synapses per column) 

• 	a 4-bit current DAC for generating 'wgt dash 

• 	a zero current mirror (ZCM) for generating 'zero dash 

• 	8 PWM output neurons (one per column) 

• 	row and column decoders to allow each synapse to be addressed and loaded. 

The synapse was laid out by Jean E Louvet, an undergraduate student from Napier 

University, as part of his "industrial" experience. 

4.7.2. The On-Chip ZCM and Current DAC 

Since the correct operation of the DCMs rely on accurate control of the global cur -

rents, it was necessary to design an on-chip current DAC for generating the 'wgt_dash 

currents and a suitably biased conventional current mirror for generating 'zero_dash 

By biasing these circuits with small off-chip currents, it was possible to allow the 

DAC and ZCM output currents to be set up independently. 

The ZCM was easily designed: it is simply a 2:5 multiplying conventional current 

mirror that outputs a current 2.5 times larger than its biasing current, Figure 4.12. 

Current multiplication was implemented by using two transistors on the input and 

five on the output. These transistors were interleaved on the chip to account for any 
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Figure 4.10 - A block diagram of the DYMPLES Chip 

on-chip gradients. 

The 4-bit current DAC on the DYMPLES chip was designed to switch binary 

weighted values of the biasing current onto the common output line [141, 142]. Thus 

it was necessary to balance the desire for the weightings to scale as linearly as possi-

ble with the requirement that the DAC be as simple as possible to design and lay out. 

Thus a compromise was reached whereby multiple banks of transistors were used to 

generate the bias current weightings, Figure 4.13, and the transistors were laid out 

such that the DAC had a common axis of rotation [142]. Again this was to implicitly 

account for across-chip gradients to ensure that the DAC would function as intended. 

For correct operation, it is important that the transistors in the DAC and ZCM are 

resistant to noise and output constant currents regardless of their drain-source volt-

ages. Thus the transistors in these devices were designed to be long and thin to 

ensure the output currents were unaffected by changes in VdS  and ensure the currents 

in the transistors were resistant to noise coupling onto the gates 3 . 

Decreasing the W:L ratio of a transistor increases the range of gate voltages needed to conduct a specified range of 
currents in it and thereby reduces the effect capacitively-coupled noise has on the current in the transistor. 
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Figure 4.11 - The DYMPLES chip 
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Figure 4.12 - Schematic Diagram of the Zero Current Mirror 

4.7.3. Design for Testability 

One of the aims of the chip was to ensure it was as simple as possible to set up, oper-

ate and test. Thus all the necessary biasing signals were designed to be easily derived 

and several additional features were included on the chip to allow straight-forward 
measurements to be taken. 
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Figure 4.13 - Schematic Diagram of the Current DAC 

In case the chip did not function as expected (even to the point of complete failure), 

sufficient test points were provided to allow potential discrepancies to be traced and 

identified. Therefore the chip was designed so that individual units (row and column 

decoders, the DAC and some DCM5) could be tested in addition to the neurons. 

In order to allow on-chip currents to be measured off-chip, transistors were included 

within the core of the design, the drains of which were connected to pads. Scaled 

versions of the on-chip currents are generated in these transistors and can be used to 

produce measurable voltages off-chip, Appendix A. Therefore, on-chip current 

variations can be characterised by corresponding variations in off-chip voltages. 

4.8. Chip Results 

A total of eight chips were returned by the fabrication house, ensuring that enough 

devices were available to allow the functionality of the designs to be assessed. 

The DYMPLES Development Board (Appendix A) was designed and built to allow 

the chips to be biased correctly and allow measurements to be taken easily and auto-

matically. 

The performance of the DYMPLES chips can be characterised by several factors viz. 

the performance of the current DAC, the performance of the NMOS and PMOS 

dynamic current mirrors and the multiplication characteristic of the chips. A descrip-

tion of how the experimental results were recorded is also given in Appendix A. 
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Since the pulse widths used in these experiments are generated or recorded in RAM 

chips on the development board, the following graphs of measured results represent 

the Input and Output pulse widths in terms of RAM Locations rather than a time 

period. This was done purely for simplicity and the corresponding pulse times can be 

obtained by dividing the pulse widths by the frequency of the development board 

clock (24MHz). 

4.8.1. DAC Characteristic 

The performance of each current DAC was measured using the off-chip Op-Amps. 

Each DAC was loaded with all sixteen 4-bit binary combinations and the Op-Amp 

output voltage recorded. The currents necessary to generate the voltages were then 

calculated to allow the DAC characteristic to be visualised. All the DACs produced 

similar characteristics, and the average of the results for all the DACs, along with 

errorbars representing ±3 standard deviations of the results, are shown in Figure 4.14. 

Clearly there is a linear relationship between applied weight and measured on-chip 

current and from these results, it was concluded that the DACs functioned as 

required. 
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Figure 4.14 - The DAC Characteristic of the DYMPLES chips 

4.8.2. Dynamic Current Mirror Characteristics 

Having shown that the DACs worked, it was concluded that accurate on-chip current 

control should be possible and that the performance of the NMOS and PMOS DCMs 

could be reliably assessed. A total of eight current minors were available for 
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characterisation per chip, four NMOS versions and four PMOS versions. 

For assessing the DCMs, all possible 4-bit words were applied to the DAC in turn 

and every synapse on the chip was then loaded with '%vgt dIz and 'zero_h•  The cur-

rents stored in each testable synapse were then measured using the same type of Op-

Amp arrangement as for the DAC characteristic. However, in order to minimise the 

differences between the measurements for each output, an 8-way PC-controlled ana-

logue multiplexor was used to steer the currents from the individual outputs to the 

Op-Amp arrangement. The results from most of the chips were in good agreement, 

although two chips had NMOS DCMs which exhibited large across-chip variability. 

A typical set of NMOS and PMOS DCM characteristics are shown in Figure 4.15. 
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Figure 4.15 - The DCM Characteristic of a DYMPLES Chip 

This graph shows the average current measured in the DCMs on a single chip against 

the weight applied to the DAC of that chip; the error bars represent ±3 standard devi-

ations of the measured results. 

The results obtained indicate that the DCMs on most of the chips function correctly. 

The currents in the PMOS devices are constant with respect to the applied weight, 

whereas the current in the NMOS devices vary linearly with the applied weight. The 

small spread in the results from all but two of the chips also suggests that the DCMs 

possess the inherent ability to account for across-chip variations, although no firm 

conclusions can be drawn from experiments on a few chips from a single wafer. 
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4.8.3. Multiplication Performance 

With both the DACs and the DCMs functioning, the multiplication performance of 

the chips was measured. Two sets of measurements were used to detennine the capa-

bility of the circuits to implement the desired two-quadrant multiplication operation: 

output pulse width vs. input pulse width - to indicate the linearity of the mul-

tiplier with the applied neural state 

output pulse vs. loaded weight - to highlight the linearity of the multiplier 

with the loaded synaptic weight. 

By loading the entire chip with all the neural weights and applying every possible 

neural state it was possible to measure the output pulse widths for every combination 

of weight and state for all eight neurons per chip. From these results it was possible 

to assess the performance of the multipliers with respect to both input variables. 
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Figure 4.16 - The Output Pulse vs. Input Pulse Characteristic of a DYMPLES Chip 

Figure 4.16, shows the Output Pulse Width against Input Pulse Width characteristic 

averaged over all 8 output neurons on a single chip. These results clearly indicate the 

chip is functioning as intended and show a linear relationship exists between the 

input pulse width and the output pulse width for all 16 neural weights. However, the 

linearity of the multiplier can be affected by the off-chip ramp 4 . 

" The ramp is generated by firing values from off-chip RAM through an off-chip DAC (Appendix A) and so any slight 
perturbations on the generated ramp (due to noise etc.) permeate through to the multiplication characteristic graph, as 
shown by the slight 'wobbles' in Figure 4.16. 
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Figure 4.17 - The Output Pulse vs. Synaptic Weight Characteristic of a DYMPLES Chip 

Further, Figure 4.17, shows the variation of Output Pulse Width vs. Synaptic Weight, 

averaged over all 8 output neurons on the same chip, for input pulse widths of 0, 50, 

100, 150, 200 and 250 RAM locations. Again it is clear that the chip is functioning 

correctly and that the multiplier is linear with respect to the neural weight. 

4.8.4. Discrepancies with the DYMPLES Multipliers 

Unfortunately, not all the DYMPLES multipliers produced the excellent results as in 

Figures 4.16 and 4.17. Half of the chips appeared to have a weight dependent off-set 

error as shown in Figure 4.18. 
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Figure 4.18 - Effect of the weight dependent offset error on the averaged 

multiplication characteristic of a DYMPLES multiplier 
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From these results, it is apparent that as the neural weight increases, so does the ini-

tial offset. This can be more clearly seen in Figure 4.18(b). The reason for the offset 

is not known, although it may be caused by the pass transistor used to charge and dis-

charge the output capacitor. Apart from this offset, though, the characteristic is still 

linear and it is not known if the phenomenon would affect the operation of the multi- 

plier in a neural application. 

Output vs. Input Characteristic - Chip 7 

200 

180 

160 

140 

120 

100 

- 	80 

60 
& 
0 0 	50 	100 	150 	200 	250 

Input Pulse Width (RAM Locations)  

Vdd 

zero 

A I 	pulse 

Offset 

C iii parasitic 
act 

M 
wgt 

(a) 	 (b) 

Figure 4.19 - The parasitic induced offset 

Another minor effect seen in the measured results was the small offset produced 

between the positive and negative weights, Figure 4.19(a). This effect can be easily 

explained. When the synaptic weight, ';vgt'  is greater than 'zero'  the parasitic capaci-

tance of node X in Figure 4.19(b) will be discharged. When the switch is opened, 

some charge sharing will occur, resulting in a slight decrease in the voltage on the 

output capacitor, which translates into a slight increase in the observed output pulse 

width. Similarly, if 'zero  is greater than 'wgt'  the capacitor gains a slight increase in its 

voltage that translates, in turn, into a small reduction in the output pulse width. As 

can be seen from the results presented, the offset has an almost negligible effect on 

the multiplication characteristic and it was not thought to be critical to the operation 

of the circuit. In any case, the effect can be minimised by reducing the size of the 

parasitic drain capacitance, C parasitic  of the synapse output. 

4.9. Design Improvements 

The original DYMPLES design required a large silicon area for a number of reasons: 
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conservative layout techniques were used since this was a concept-proving chip 

and not a prototype for a commercial product 

large capacitors were used for the Cgate  capacitors and C(,Ut  to minimise the 

effects of noise, charge injection and capacitive coupling 

guard-rings were used whenever possible to help isolate and protect sensitive 

transistors. 

All these techniques increase the likely accuracy of the design at the expense of sili-

con area and in order to be commercially feasible, the overall area of the synapse will 

need to be reduced to increase its implementation density. A number of techniques 

can be employed to achieve this. 

Cascode DCM transistors. By using cascode techniques it will be possible to 

increase the output impedance of the Mdynam ic  transistors and reduce the voltage 

feedthrough to the C gate  capacitors from the common drain node of transistors 

Mze ri, and M%Vgt.  This modification will allow a reduction in the size of the C gate 

capacitances and a reduction in the length of M wgt  and Mzero . However, as 

already discussed, cascode techniques increase the complexity of the circuit and 

the cascode configuration chosen must allow the synapse to be realised in a 

smaller silicon area. 

Ratioed Transistors. By using single Md)flam jc  transistors which are N times 

wider than the corresponding M vgt  and Mzer(,  transistors, 'wgt  and 'zero  will be 

wgt dash 	zero dash 	. approximately equal to 	and 	respectively. Using ratioed tran- 

sistor widths to scale currents in this way is not nearly as accurate as the multi-

transistor method used in the DYMPLES multiplier. However, the DYMPLES 

design relies on the charge/discharge of a fixed value capacitor that can only be 

fabricated to within 10% of its value [43], with the correct operating point 

obtained by adjusting the biasing currents for the DAC and ZCM. Thus the new 

inaccuracy in the mirrors will simply be combined with the existing capacitor 

inaccuracy and both can be accounted for by adjusting the off-chip biasing cur-

rents. 

Smaller C01  Capacitors. By using ratioed transistors as in ii), smaller values 

of 'vgt  and 'zero  can be generated. Therefore, by equation 4.1, this allows the 

size (and therefore the area) of C0  to be reduced. Also, by using smaller Lt00  

times, the value of C00  can be reduced too. 
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All these techniques should allow the synapse to be implemented in a smaller area at 

the expense of circuit accuracy (possibly) and circuit complexity. 

4.10. Summary 

This chapter has concentrated on the design and development of the DYMPLES cur-

rent-mode pulsed synaptic multiplier. The DYMPLES circuit was designed to be 

easy to implement, set-up and operate and theoretical considerations indicated that it 

should provide improved process-tolerance to digital fabrication processes by using 

currents, rather than voltages, to implement the synaptic programming. 

HSPICE simulation results and hardware measurements highlighted that the design 

has the following capabilities. 

It is a valid implementation of a two-quadrant multiplier since the output is lin-

ear for both operands (synaptic weight and input neural state). 

• 	The use of DCMs appears to account for across-chip variations implicitly. 

• 	The use of the current mode approach makes it possible to improve the level of 

on-chip integration for hardware ANNs. 

The hardware measurements also indicated some of the potential disadvantages with 

the design and these were subsequently discussed, along with suggestions for possi-

ble improvements. 

It is clear from this chapter, however, that the DYMPLES design fulfils all its initial 

requirements and is a valid implementation of a two-quadrant multiplier. Thus it can 

be used to implement the output layer of pulsed RBF neural networks. 
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Chapter 5 

The RHO Chip 

The previous chapter detailed a suitable current mode implementation of a pulsed 

two-quadrant multiplier and it was concluded that an array of these multipliers could 

be used in the output layer of an REF network. This chapter focuses on the design 

and testing of circuits for reproducing the operation of the basis functions in the hid-

den layer. 

As detailed in Chapter 2, each hidden unit in an RBF calculates the Euclidean (or 

Manhattan) distance between an input vector and a reference, or centre, vector and 

produces a non-linear transformation of this distance as its output. Separate circuits 

have therefore been developed to calculate an approximation to the squared 

Euclidean distance between two voltages and implement the non-linear transforma-

tion. 

Another test chip, the RHO chip 5 , was fabricated to demonstrate the functionality of 

the circuits and this chapter presents simulation and measured hardware results from 

the developed designs. 

5.1. Centre Circuit Aims 

In addition to reproducing the correct operation of an REF hidden unit, the centre cir -

cuits were designed to fulfil the following requirements: 

they should be easily set-up, operated and tested 

they should easily interface to the "real world" 

they should be cascadable 

they should be designed to operate using pulse width modulation and should 

easily interface to the DYMPLES circuits. 

The target process for these circuits was the MIETEC 2.4jim, double metal, double 

poly, analog CMOS process and all the circuit simulations were carried out using the 

RHO is an acronym for RBF Hardware Options. 
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Level 3 transistor models for this process. 

5.2. The Distance Circuit 

The schematic diagram for the distance circuit is shown in Figure 5.1. It calculates 

an approximation to the squared Euclidean distance between two voltages, nominally 

V, and Vcenire,  which represent single components of the input and centre vectors 

respectively. 
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Figure 5.1 - Distance Circuit 
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Figure 5.2 - NMOS version of the Distance Circuit in Figure 5.1 

The implementation chosen [143, 144] exploits the natural square-law relationship 

between 'ds  and Vgs  in a saturated MOS transistor. This implementation for the 
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distance circuit had already been proposed by a fellow researcher in this group and 

published in the open literature [143]. The circuit was originally designed for the 

ES2 1.5 4um process, but had never been laid out nor fabricated. The ES2 1.5jim pro-

cess was withdrawn just after the DYMPLES chip was fabricated and the RHO chip 

was designed for the MIETEC 2.4pm process. Thus the original distance circuit had 

to be re-developed for the new process, and it was possible to extend the input range 

of the circuit in doing so. 

The operation of the distance circuit can be easily explained by considering the 

NMOS version, Figure 5.2, and decomposing it into its constituent parts. 

5.2.1. Ratioed Transistor Pairs 

Consider that the long thin transistor M,iarrow  in Figure 5.3, operates in saturation. 
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Figure 5.3 - Single Ratioed Pair Schematic Diagram 

To a first order, the relationship between its drain-source current and gate-source 

voltage is given by equation 5.1. 

	

'ds = (V9V - VT 	 (5.1) 

Fixing the source voltage of Mnarr(,w  to a known, constant value, produces a current 

that varies as (the transistor gate voltage minus a constant) all squared. The source 

voltage of the transistor can be fixed by using a simple source follower, Figure 5.3. 
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The source follower consists of two series connected transistors Mwjde  and  Mbias- 

Mwide has a high conductivity (large WIL ratio) to ensure that its source is clamped to 

around a threshold voltage below its gate, whilst Mb U , controls the maximum current 

flowing through the circuit. By connecting a source follower to Mri,rrow  as shown, a 

circuit is created where the common source, node X, of transistors Mwjde  and Mnarrow  

is clamped to approximately ( - VT. d ). By considering the currents at node X, 

three equations are obtained (assuming all three transistors operate in saturation): 

'bias = 'narrmv + 'wide 	 (5.2) 

fi
de (VIentre

wi 	
2

'wide =2 	- Vx - 	J 	(5.3) 

(Vi. 

 vfinar 
'narrow 	

row 
	VT (5.4) = - 	-

2 narrow 
) 

If M Wj  and Mn(jrr(,;v  are physically close in silicon, then it can be assumed that 

VT = VT d . Combining equations 5.3 and 5.4 therefore yields the following equa-

tion for the output current from the circuit: 

finarrow 1 	(21wide 	
I (5.5) 'narrow = 	V11, - Vcentre +

\ 2 I 

2 	 flwide)J 

This result is valid for V, 1  > Vce,ztre . Using a second identical ratioed pair, with V,,, 

and Vcentre  applied to the complementary transistors, Figure 5.4, a circuit is obtained 

whose output current (to a first order) is proportional to a quadratic function of the 

difference between V i,, and '7centre• 

The current 'dist  output from the circuit in Figure 5.4 is given by equation 5.6. 

finarrow 
'dist = 	[i 	- Vcentre  I 

+ (21wj 	f (5.6) 
2 	 flWide 

The valid range of equation 5.6 (in terms of the voltage difference Vin - Vcenrre) is 

determined by (W/L), zarr(,w  and 'bia• (W/L), larr(, v  is large for a given bias current, 

then Mnarr(,w  does not require too substantial a gate voltage before it can sink all 'bias• 

When this happens, 'dict  levels off, the quadratic relationship between (Vin Vcentre ) 

and 'dist  is lost and the input dynamic range of the circuit is small. Similarly, Mnarr(,w  

must be strong enough to sink 'bia,  at the maximum value of IV - V centre l in the 

desired operating range, otherwise power will be wasted unnecessarily, since 
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Figure 5.4 - Double Ratioed Pair Circuit 

'wide 'bias - 'narrowS Thus the Mwjde  and  Mnarr(,lv  transistors must be carefully sized 

to produce a circuit which satisfies these criteria. 

For the distance design fabricated on the RHO chip, PMOS rather than NMOS tran-

sistors have been used to implement the circuit. PMOS devices were used because 

the intrinsic mobility of holes in a silicon substrate is lower than that of electrons, 

especially in an N-well process. Thus, the inherently smaller transconductance of 

PMOS devices is a distinct advantage in this case, allowing a higher input dynamic 

range to be obtained, for a given 'biac'  compared with the NMOS version of the cir-

cuit. 

5.2.2. Compensation Circuit 

Both ratioed pairs in Figure 5.4, output a current when (V - Vcentre ) is zero. The 

value of this current is small, approximately constant, and can be removed using the 

circuitry in Figure 5.5. 

This compensation circuit is identical to the ratioed pairs, except the gates of both 

transistors are tied to Vcentre.  Thus 'camp = (finarrow 1'flwide )'wide. By using a 1:2 con- 

ventional current mirror, ICOMP  can be doubled and subtracted from 'dist'  producing an 

(ideally) offset-free current from the final distance circuit, equation 5.7. 

finarrow 
'dist = 	( I 	- V centre 

1)2 + 
flnarrow( fiwide T21wide 

(IV - Vcentre l) 	(5.7) 
2 
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Figure 5.5 - Distance Circuit Compensation Circuit 

Figure 5.6, shows the simulated distance circuit current from an HSPICE simulation 

of the circuit in Figure 5.1, along with a scaled version of the ideal squared Euclidean 

distance current between V m  and V ce ,ttre . For these simulations, Vcentre  was tied to OV. 

The simulated characteristic indicates that the fabricated circuit should produce a 

good approximation to the desired distance metric. 
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distance cct current - 

Vcentre = O.OV 

OL 
-3 	-2 	-1 	0 	1 	2 	3 

Vin - Vcentre (V) 

Figure 5.6 - Simulated Distance Circuit Output and Scaled Squared Euclidean 

Distance Measure 
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The current generated by the compensation circuit, 	was estimated from an 

HSPICE simulation, Figure 5.7. The generated current is only approximately lOOnA 

over the OV to 3V range of Vcentre,  2% of the maximum 'd,t  value. 

lOe-08 

6e-08 

U 4e-08 Valid Circuit Operating Range 

1 	2 	3 	4 	5 

Ycentre (V) 

Figure 5.7 - Simulated Output from the PMOS Compensation Circuit 

Further, the change in 21,, MP with Vce,jtye  appeared to be negligible over the valid 

range of V centre . Therefore, in what appeared to be a pragmatic engineering solution, 

which would save silicon area, local compensation, where each distance circuit has 

its own dedicated compensation circuit, was sacrificed in favour of global compensa-

tion, where a single ratioed pair was used to generate a compensation current. This 

compensation current was then copied to several cells. 

Also, by tying both gates of the compensation circuit ratioed pairs to OV, a parsimo-

nious solution, which required fewer transistors than local compensation, appeared 

to have been found for removing the constant term in equation 5.6. The effect of this 

solution on the simulated performance of the circuit was negligible. 

5.2.3. The Body Effect 

Correct symmetrical operation of the distance circuit requires that each ratioed pair 

Of M wide  and Mncirr,w  transistors are placed in separate wells so that the voltage 

between the common source of the transistors and the bulk silicon, Vbx,  does not 

affect the operation of the circuit. If Vb, is not equal to zero, then the Body Effect 

[145], or substrate bias [146], affects the symmetry of the output current variation 

with lVi,, - Vcentre l, Figure 5.8(a). 
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Figure 5.8 - The output of the PMOS Distance Circuit (a) Without N-Wells 

and (b) With N-Wells 

The reason for this effect is clear. A non-zero bulk-source voltage increases the mag-

nitude of the threshold voltage for the transistors, making them less conductive: the 

higher the bulk-source voltage, the lower the conductivity of the transistor channel. 

The common source voltage in each ratioed pair is determined by the gate voltage of 

M vide . Therefore, Vh, varies with the gate voltage of affecting the operation of 

the circuit and leading to the asymmetry of the output current. 

The use of separate wells for each ratioed pair ensures that Vb c =O and removes the 

asymmetry from the characteristic, Figure 5.8(b). Unfortunately using separate wells 

necessarily increases the area of silicon required. For the RHO test chip, second 

order effects such as the Body Effect were removed wherever possible, normally at 

the expense of increased silicon area. Separate wells were therefore used for each 

ratioed pair in order to establish that the theoretical operation of the circuit was cor-

rect. 

5.2.4. Weight Load Circuitry 

The distance circuit uses two pass transistors (switched by the ROW and COL sig-

nals) to facilitate the loading of the C centre  storage capacitance. Thus the loading of 

the neural parameters is a voltage mode operation that relies on transferring the cor-

rect amount of charge from the common ip_centre node, Figure 5.2, onto C centre  to 

establish the correct value of Vcentre.  With both the ROW and COL pass transistors 

off, the Vce,ztre  voltage is stored dynamically on Ccentre . This voltage will decay over 

time due to the constant leakage currents associated with the transistor switch (Sec-

tion 3.4.2), and so must be periodically refreshed. As with the Cgate  capacitances in 
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the previous chapter, charge injection from the two switches can affect the stored 

value of Vcentre . Again, though, the effects of charge injection can be minimised by 

using minimum area switches and a large C centre capacitance. 

5.3. Non-linearity Circuits 

The non-linear transformation of the Euclidean distance approximation into the hid-

den layer output state was implemented using two different PWM approaches: 

linear discharge of a capacitor with 'dirt  followed by use of a non-linear ramp to 

create the output pulse [143] 

use of the inherent non-linearities of MOS transistors to perform a non-linear 

current to voltage transformation, followed by use of a linear ramp to create the 

output pulse. 

Both these methods have programmable width parameters, allowing a series of non-

linear curves to be generated. 

5.3.1. Capacitor-Based Non-linearity Circuit 

By using the output current from the distance circuit, 'dirt'  to selectively discharge a 

capacitor, it was possible to implement a system (similar to other PWM implementa-

tions) which exploited the principle of conservation of charge in its operation, Figure 

5.9. 

A v H v  
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- + 	PWM Neurons W. 
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Figure 5.9 - Schematic Diagram for the Capacitor-Based Non-linearity Circuit 
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Capacitor Cdl  is initially precharged to V11,11  and 'di,vt  is generated by the distance 

circuit described in Section 5.2, shown here as a variable current sink. Whilst 

Mdi.ccIurge  is on, 'did  linearly discharges CdS  producing a change in the output voltage 

Vd 5t . Once Mdischarge  switches off, CdS  is isolated, and VdjSt  is held dynamically on 

the output node. With Cd5  isolated, Vd.,  remains constant (subject to leakage cur -

rents) and can be applied to one input of a pulse generating comparator. By applying 

a suitable inverse Gaussian to the other input, Vgauss  an output pulse is produced 

whose width is a Gaussian function of time. 

The linear operation of this circuit can be described using equation 5.8. 

- - Idisttwidt/i 	
(5.8) 

dist 

From this equation, it is clear that the discharge of the capacitor can be varied using 

both 'djct  and &,.vidtlz,  the on-time of Mdiscluirge . By varying the discharge time of the 

capacitor as well as 'divt'  it is possible to obtain a family of VdiSt  vs. 'djst  curves, Fig- 

Figure 5.10 - (a) Variation in VdSt  with At1 1  and Vi, - Vcen tre  and (b) the Gaussian- 

like curves produced by non-linearly transforming Vd St  

The results shown here were obtained from a suitable HSPICE simulation of the cir-

cuit. These curves illustrate that the discharge of the capacitance is quadratic in 

(Vin Vcentre ) and linear in Each individual point from the family of curves is 

an approximation to the squared Euclidean distance between two voltages and each 

curve can be transformed, by a suitable exponential function, into an equivalent 

Gaussian curve, Figure 5.10(b). Therefore, not only does this circuit allow the repro-

duction of a Gaussian non-linearity, it also allows the width of the curve to be 

adjusted. 
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For this circuit, the distance circuit can discharge Cdl  by 3.2V in 1.28ps using a 

maximum value for 'dist  of 5uA. 

5.3.2. Transistor-Based Non-linearity Circuit 

The basic transistor non-linearity circuit is shown in Figure 5.11. Its operation is 

based on the fact that, when a transistor is biased into its linear region of operation, it 

behaves like a non-linear voltage controlled resistor: the voltage dropped between the 

source and drain terminals being related to both the drain-source current in the device 

and the voltage on its gate. 

The operation of the circuit is illustrated by the results of the HSPICE simulation of a 

circuit comprised of a distance circuit, as in Figure 5.1, and the M Width  transistor from 

Figure 5.11. For this simulation, different values of Vd (h were applied to M ;vjdth, 

Vcentre  was fixed at OV and V i,, was increased linearly from OV to 3V for each value 

of V width•  Figure 5.12(a) shows the variation of both Vd t  and 'djst  with (V - Vcentre ) 

for several values of Vd th. 

PWM Neuron 	V limit 

ramp 

V dist 

H width 

M width 

I 
dist 

Figure 5.11 - Schematic Diagram of the Transistor-Based Non-linearity Circuit 

Whilst these graphs indicate the possibility of using single transistors biased into 

their linear operating regime to produce a family of "bump-like" non-linearities, cor- 

rect operation breaks down as soon as MWdth  saturates. Once Mwjdth saturates, Vd5l 
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falls quickly to OV and 'dist  levels off, no longer a quadratic function of 

(V0 - Vcentre). 
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Figure 5.12 - Transistor Circuit Curves showing (a) VdS(  and 'dist  with Mload  discon- 

nected from the circuit in Figure 5.11 and (b) VdjS(  and 'djct  with M1(,ad  connected 

However, if Ml(,ad  is connected in parallel with M W drh and the simulation repeated, it 

can be seen that the disadvantages of the previous circuit are overcome, Figure 

5.12(b). Ml(,ad conducts any excess current drawn as MWdth  saturates and clamps the 

output voltage to around a threshold drop below Vijmjt.  The load transistor also rounds 

the corners of the Vd, VS Id., characteristic as M width enters saturation, smoothing the 

shape of the non-linearity and providing a tapered roll-off as 'dist  increases. 

The shape and spacing of the series of non-linear curves generated for different val-

ues of VWdh  are determined by the WIL ratios of MWjdth  and  M100d  respectively. 

Varying (W/L) l .,ud  for constant ( W/L) Wdh  affects the fall-off of Vd5l  after  M width satu-

rates - wider M1(,ad  transistors produce flatter tapers. Meanwhile, varying (W/L) Wjdth  

for constant (W/L) 1(,ad  alters the shape and range of the curves - longer M width transis-

tors produce less spacing between the curves. Thus, different shapes of non-linearity 

can be created by varying the WIL ratios for the two transistors. 
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Whilst the two-transistor circuit of Figure 5.11 provides a parsimonious implementa-

tion of a transistor-based non-linearity, it is not the only option. The load connected 

in parallel with M,.dth  can be made of several diode connected transistors. These 

other arrangements allow for countless other non-linear curves to be produced and by 

series-connecting two or three devices, it is possible to increase the dynamic range of 

the circuit. The transistor-based non-linearity circuit fabricated on the RHO chip was 

the four transistor version in Figure 5.13, shown along with its output characteristic. 
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Figure 5.13 - The Transistor-Based Non-linearity Circuit implemented on the RHO 

chip along with its output characteristic 

5.3.3. Circuit Cascadability 

The different problems that can be solved using an ANN require specific numbers of 

input units, hidden units and output units. In order to prevent re-design of the circuits 

and cells for each application specific neural chip solution, it is imperative that a neu-

ral cell library of cascadable cells is designed. Then, only the relative number of the 

hidden and output cells will change between different neural chip designs, greatly 

reducing the design effort required for the chips. The circuits for the hidden layer 

were all designed to be cascadable components of a neural cell library. 

5.3.3.1. Cascaded Distance Circuits 

The distance circuit in Section 5.2 calculates a quadratic approximation to the 

squared Euclidean distance between two voltages, each voltage representing single 

components of multi-dimensional vectors. In order to calculate an approximation to 

the distance between multi-dimensional vectors, several instances of these circuits 

must be cascaded together. This cascading is achieved by connecting all the output 
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nodes of the circuits together. Then, by Kirchoff's Current Law, the total current sunk 

by the cascaded circuits is equal to the linear summation of the currents sunk by the 

individual circuits - as required by equation 2.15. 

5.3.3.2. Cascaded Capacitor Circuits 

The capacitor non-linearity circuit is also easily cascaded. By assuming each distance 

circuit has a capacitor of fixed value attached to its output, and that the same PWM 

width signal is applied to all the Mdj. cIiarge  transistors, the size of the total distance 

capacitance, CdjSt  tOt' increases linearly with the number of cascaded distance circuits. 

The operation of the cascaded capacitor circuitry is therefore described by equation 

5.9. 

N 

twjdt/z  E 'out_i 
i=1 = 	 (5.9) 

NC 1  

Since N lumped capacitances, C, combine to form the single distributed capacitance, 

Cdjsjt(, f , this arrangement results in the formation of an averaged capacitance dis-

tributed across the chip. Distributing the capacitance in this way helps to implicitly 

account for across-chip variations in one direction. 

5.3.3.3. Cascaded Transistor Circuits 

In essence, the operation of the transistor-based non-linearity circuit is described by 

equation 5.10, where Rtra,z  is the resistance of the transistor combination. 

VdL (  = Vjp,j1 - R tran  'dist 	 (5.10) 

Ideally, 'dist  should be drawn through a circuit whose non-linear resistive characteris-

tic remains constant no matter how many distance circuits are cascaded together. 

Therefore, Rtran  must decrease linearly with the number of distance circuits. Correct 

operation is obtained by cascading the transistor-based non-linearity circuits in 

exactly the same way as the capacitor-based circuits, although this may not be so 

intuitively obvious. 

By way of explanation, consider the equivalent circuit for three cascaded transistor-

based centre circuits, Figure 5.14. 

In Figure 5.14, 

Vd (  = Vjimit - RTOT 'TOT 	 (5.11) 
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V limit 

V dist 

Figure 5.14 - Equivalent Circuit of 3 Cascaded Transistor-Based Circuits 

3 

'TOT = jl + 1 + 13  = I, 	 (5.12) 
i=1 

RTOT
1 
 + 	+ 

1 	1 	= Riran 	
(5.13) 

 R 2  R 3 	3 (R I
----   

iffR 1  = R 2  = R 3  = RIran (5.14) 

Assuming the resistance of each circuit is the same, then, to a first order, as the num- 

ber of circuits increases, the total resistance, decreases linearly. The non-linear 

characteristic of each circuit is determined by the gate voltage of Md(h,  thus if the 

same gate voltage is applied to each circuit, it will, ideally, generate the same resis-

tance in all the cascaded circuits. 

5.3.4. Comparison of Capacitor and Transistor Non-linearities 

Although both the capacitor and transistor-based non-linearity circuits are capable of 

producing families of non-linear curves, each implementation has its respective 

advantages and disadvantages. 
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The Capacitor Circuit 

The capacitor circuit is simple to implement and understand and is also easily adapt-

able: the actual shape and width of the non-linear curves are determined by the arbi-

trary ramped waveforms applied to the PWM Neurons. There is therefore no restric-

tion to using Gaussian non-linearities with the circuit. 

However, due to the pulsed nature of the width control signal, the circuits have a 

finite evaluation time which restricts the maximum rate of data through-put. Further-

more, the dynamic storage of Vd f  allows this voltage to be corrupted by leakage cur-

rents, analogue noise and capacitive coupling. To reduce the effects of these phenom-

ena, Cd S  should be large, but this increases the area of silicon needed to implement 

the circuit and directly reduces the number of centre circuits that can be fabricated on 

a given die size. 

The Transistor Circuit 

The transistor circuit takes up a far smaller area than the capacitor circuit, holds the 

final value of Vdjct  statically on the input to the PWM Neuron, and the only evalua- 

tion time overhead required to produce VdS(  is the settling time of the circuit should 

or 'dist  change. Also, since the transistors generate the non-linearity, only lin-

ear ramps are required for the voltage to pulse width conversion. Linear ramps are 

easier to generate both on-chip and off-chip. 

However, the non-linear characteristic of the transistor-based circuits are fabrication 

dependent, so the shape of the non-linear curves is likely to vary both across-chip and 

between chips. 

5.4. The RHO Test Chip 

Having developed a distance circuit and non-linear capacitor and transistor-based 

PWM circuits for implementing the hidden layer of an RBF network, a test chip was 

manufactured to test and assess their functionality and operational performance. 

The aims of the chip were to: 

confirm the functionality of multiple instances of all three circuit implementa-

tions 

review the level of across-chip and inter-chip variations of the circuits 

compare and contrast the operation and characteristics of arrays of both the 

capacitor-based and transistor-based non-linearity circuits 
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iv) consider the operational requirements for both methods of generating the RBF 

non-linearity. 

A block diagram of the chip is shown in Figure 5.15. 

Each chip consists of a CAP array of capacitor-based centre circuits, a TRAN array 

of transistor-based centre circuits and the necessary support circuitry for both arrays. 

Both the CAP and TRAN arrays consist of 64 cells arranged as 8 centres with 8 

inputs per centre. Each centre cell is cascadable and consists of a single distance cir -

cuit and one capacitor or one transistor-based non-linearity circuit. 

The Row and Column decoders are simply multiple instances of 3 input NOR gates 

and allow each cell in both arrays to be uniquely addressed. 

8 Analog (Width) Inputs 
8 Analog (Width) Inputs 

4 Dist. Cct. Ops Input Comparators. 	
4 Dist. Cct. Ops. 

CAP Array 

I.) 

0 
0 

0 
UP 

TRAN Array 

4 Vin Inputs 
(1,3,5,7) Colunm Decode 

Output Neurons. 	Output Neurons. 

4 Vin Inputs 
(0,2,4,6) 

8 Digital PWM Outputs 	8 Digital PWM Outputs 

Figure 5.15 - RHO Chip Block Diagram 

The output neurons are the PWM comparators - they generate the output pulses from 

the centres in each array - while the input PWM comparators in the CAP array gener-

ate the pulses that control the selective discharge of the Cd(  capacitances. 

The layout for the chip is shown in Figure 5.16, and it was fabricated on a 6mm by 

5mm die. 
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Figure 5.16 - The Layout for the RHO chip 

5.5. Experimental Results 

A dedicated development board was built for the RHO chip to allow it to be correctly 

biased and automatically tested. A description of the RHO development board is 

given in Appendix A. 

For the RHO Development Board, the V,,, and Vcemre  voltages were generated using 

off-chip 8-bit voltage DACs, calibrated to produce voltages between OV and 3V. For 

this reason, both voltages, or their difference, are expressed in terms of the 8-bit digi-

tal words presented to the respective DACs. Also, as per Chapter 4, the neural out-

puts from the chip are expressed in RAM Locations. 

5.5.1. Distance Circuit Results 

Experiments were carried out to assess the functionality of several distance circuits 

on the RHO chips. By providing on-chip measurement transistors, similar to those 

used for characterising the DAC and DCMs on the DYMPLES chip, it was possible 

to allow 8 distance circuits to be characterised per chip, 4 from each array. Again on-

chip current variations were tracked as off-chip voltage variations. 
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5.5.1.1. Functional Operation 

The variation of the output voltage from the off-chip up Amp with (Vin Vcentre ) was 

measured for the 8 distance circuits on 10 RHO chips and Figure 5.17 shows the 

results from two chips. All the distance circuits characterised produced results con-

sistent with the existence of a quadratic relationship between 'diet  and (V in Vcentre ), 

however variations exist between the curves from different circuit implementations. 

This is no more than expected, though, since no explicit steps were taken to account 

for process variations during the design process. 
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Figure 5.17 - Results from 8 Distance Circuits on two RHO chips 

Figure 17(b) highlights a more worrying observation. Here the minima of half the 

curves are offset along the x-axis. This phenomenon was witnessed to some extent on 

over half of the characterised chips. After an exhaustive test procedure, the following 

observations were noted regarding this offset error: 

the results were consistent - the same outputs on any given chip were always 

offset 

pairs of curves were always offset and both came from the same row of cells, 

one from the distance circuit in the CAP array, the other from the distance cir-

cuit in the TRAN array 

pairs of curves from the even, but never the odd, numbered rows were always 

offset. 

The source of the error was traced to a design decision taken when the cells forming 

the CAP and TRAN arrays were fitted together. In an attempt to reduce the silicon 

area required, every second row of cells in both the CAP and TRA.N arrays were 

flipped over to allow the power and ground lines of alternate rows to butt together. 
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However, this "mirroring" increases the likelihood of differences existing between 

the normal and mirrored rows and this is the most likely explanation for the offset 

characteristics witnessed in the results from the distance circuit experiments. 

5.5.2. Capacitor Circuit 

The operational performance of the capacitor-based non-linearity circuit was thor-

oughly investigated and the observed results are now considered in terms of the func-

tional operation of the circuit and the effect that the discharge time, and the 

offset distance characteristics, have on this operation. Details of how the experimen-

tal results were obtained are given in Appendix A. 

5.5.2.1. Functional Operation 

Initial results from the RHO chips confirmed that the capacitor-based non-linearity 

circuits functioned correctly, Figure 5.18. This graph shows the measured output 

pulse width vs. V i,, characteristic averaged over the 8 outputs on a single RHO chip. 

Vcentre  was fixed at 128 for this experiment. The errorbars shown for every 8th value 

of (V - Vce ,ztre ) represent ±3 standard deviations of the measured results. The family 

of curves shown were produced using different values of V width'  and confirms that the 

width of the capacitor-based circuit can be altered using traditional PWM techniques. 
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Figure 5.18 - Measured Output Pulse Widths for a Single RHO chip 

Further experiments using different maximum times for the width pulse indicated 

that by further increasing the evaluation time, At W dh for the circuit, it was possible to 
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produce narrower Gaussian-like curves. Sample results from a single RHO chip are 

displayed in Figure 5.19. 
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Figure 5.19 - Narrower Measured Output Pulse Widths for a Single RHO chip, gen- 

erated using a longer evaluation time, At WId,h 

The following observations were also recorded from the functionality experiments: 

multiple results from single centres using the same V%vjdt/I  and Vcentre  values 

showed the circuit performance to be consistent under consistent operating con-

ditions, although the dynamic storage of Vdt  meant that it was susceptible to 

noise, leading to occasional corruption of the output pulses 

the performance of the capacitor circuits and the width generating comparators 

varied across chip 

the use of PWM circuitry to determine the discharge time of the Cd S , capaci-

tances increased the complexity of the circuitry and the effort required to set it 

up and operate it correctly 

although the circuit performance was impressive, the Gaussians were fairly 

wide in comparison to the range of each input dimension - even for a full 10 1us 

discharge pulse. 
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5.5.2.2. Circuit Performance and & width Evaluation Time 

Concern at the implications of the last observation in the previous section warranted 

investigation of the circuit operation at slower development board clock speeds. The 

theoretical considerations already discussed in Section 5.3.1 suggested that operating 

the circuit with a slower clock should produce narrower Gaussian-like curves. There-

fore some experiments were performed using 1 MHz and 12 MHz development 

board clocks. 

These experiments consisted of producing output curves from the CAP arrays for six 

different values of Vcentre.  The combined results from three trials, on two RHO chips, 

are shown in Figure 5.20. 

0 	50 	100 	150 	200 	250 	 0 	50 	100 	150 	200 	250 
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(a) 	 (b) 

Figure 5.20 - Gaussian Shape Variation with Board Speed for Two Different RHO Chips 

These results are from a single capacitor-based centre circuit on two chips and corre-

spond to the measured output pulse widths obtained for: 

a maximum discharge pulse, generated using a 12MHz clock (approx. 21,us) 

a discharge pulse one quarter of the maximum generated using a 1MHz clock 

(approx. 64 Cus) 

a maximum discharge pulse generated by a 1MHz clock (approx. 250,us). 

Clearly, for these curves, not only is there a variation in curve amplitude with board 

clock speed for some chips, there is also an amplitude variation with V centre . 

5.5.2.3. Common Mode Circuit Performance 

Since the last experiments indicated that the performance of some of the CAP arrays 

varied with Vcentre , further experiments were performed to investigate the common 

mode operation of the circuit, ie when V i,, = V centre . The maximum discharge pulse 
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width was applied to Mdischarge  for these observations since this allows any offset cur -

rent to produce the maximum change in Vd t . 

The trials were conducted several times, with different clock speeds, and using 3 dif-

ferent chips. The collective results are shown in Figure 5.21. They indicate: 

the results of these experiments are chip dependent 

using the 12MHz and 24MHz crystals to drive the RHO Development Board 

produces negligible differences in the amplitude of the measured output pulse 

width with either the clock or with Vcentre  

using the 1MHz crystal produces a marked reduction in the amplitude of the 

measured output pulse width on some chips and the amplitude of the output 

pulse increases as the values of V 1,, and Vcentre  increase. 
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Figure 5.21 - Common Mode Variation: Different Clock Speeds 

and Different Chips 

By extending the valid voltage range of Vm  and Vcentre  from OV - 3V to OV - 4V and 

repeating the experiment using a single chip and the 1MHz board clock, the graph in 

Figure 5.22(a) was obtained. This graph mirrors the output current vs. Vcentre  charac-

teristic obtained from an HSPICE simulation of the distance circuit without a com-

pensation circuit, Figure 5.22(b). 
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Figure 5.22 - Graphs showing (a) the common mode output pulse width variation 

with V 1, measured from the circuit and (b) the simulated output current against V 1,, 

variation of a distance circuit with no compensation circuit 

Thus it was concluded from these results that the compensation circuit on certain 

chips was not working correctly and was causing small offset currents to be produced 

by the distance circuits even when the same voltage was applied to both inputs. 

These currents were too small to be of significance at board speeds of 12MHz and 

24MHz but were critical when the 1MHz clock was used. Indeed, it was calculated 

that a current of only 30nA from a distance circuit could discharge the Cdl  capaci-

tance by half its range using a maximum width discharge pulse generated using a 

1MHz board clock. This current represents only 0.6% of the maximum discharge 

current the circuit was designed to produce. 

The most important consequence of these results, however, is that increasing the dis-

charge time is equivalent to reducing the size of Cd! - deemed a necessary modifica-

tion for reducing the area of future versions of the circuit. Therefore, using this cir -

cuit with a smaller output capacitance could introduce significant discharge problems 

when the board is operated at 12MHz or 24MHz. 

5.5.2.4. Non-linearity Reproduction Ability 

Since some chips appeared to have malfunctioning compensation circuits, the ability 

of all 10 RHO chips to reproduce the Gaussian-like non-linearity at 1,12 and 24 MHz 

board speeds was investigated. A total of nine chips had working CAP arrays and 

results from one output from two different chips are shown in Figure 5.23. The mea-

surements showed that whilst some of the CAP arrays were unable to reproduce the 

non-linearity at low clock speeds, others could reproduce it extremely well. 
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Figure 5.23 - Comparison of the ability of two chips to reproduce Gaussians at differ- 

ent clock speeds 

Significantly, those chips that had difficulty reproducing the non-linearity also had 

offset distance characteristics from either or both even rows of measurable distance 

circuits. Thus it appears that the failure of some chips to reproduce the correct shape 

of the non-linearity is a direct result of the inappropriate layout decision discussed 

earlier. 

5.5.2.5. Other Observations 

Further observations from the experiments carried out on the CAP array were: 

i) 	the grounded transistor gates in the global compensation circuits caused the "flat 

tops" on the non-linearities obtained from working chips, Figure 5.23 
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ii) most of the Gaussian-like curves appeared to be asymmetrical, indicating that 

the use of separate N-wells for the ratioed pair transistors in the distance circuits 

may not be necessary. 

5.5.3. Transistor Circuit Experiments 

As with the CAP arrays, the performance of the TRAN arrays on the RHO chips was 

thoroughly investigated. 

Before considering the results from the transistor circuit experiments, it is worth 

highlighting that the small currents generated by the distance circuit when V in = 

Vcentre will not adversely affect the operation of the transistor-based circuit. Any 

small currents generated by the distance circuits in the TRAN array will simply pro-

duce small Idict R tra,, voltage drops from V 1 . These small voltage drops will have a 

negligible affect on the operation of the circuit. 

5.5.3.1. Functional Operation 

Experiments again determined the functionality of the circuitry within the TRAN 

array and were used to investigate the across-chip variations in the shape of the tran-

sistor-based non-linear curve. 

The experimental results shown in Figure 5.24(a) to (d) confirmed the theoretical 

properties of the circuit, namely: 

each centre produced a consistent non-linearity, Figure 5.24(a) 

a family of non-linear curves was produced by varying Vdth,  Figure 5.24(b) 

the shape of the non-linear curves varied both across-chip and between chips, 

Figures 5.24(c) and (d). 

In all, 8 TRAN arrays had 8 functioning centres, all of which were affected to some 

degree by across-chip variations in the fabricated circuits. Again such discrepancies 

were expected since the circuits operate in voltage mode. 

Further trials on a single chip for a single value of Vcentre  and several values of V W dt/1  

indicated that the measured output pulse width was unaffected by the operating speed 

of the RHO development board. 
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Figure 5.24 - Results from the TRAN array of the RHO chip 

5.5.3.2. Transistor Centre "Block Tests" 

Some of the initial experiments on the TRAN arrays indicated that some centres on 

some chips were narrower than the others. Since the RHO chip was designed so that 

rows of distance and non-linearity cells could be switched in and out of the centres, 

allowing the dimensionality of the centres to be altered by 2, 2 and 4, this discrep-

ancy was investigated further. 

The transistor-based non-linearity circuit depends on the total 'djct  current being 

drawn through what is effectively a distributed resistance. Thus, it was postulated 

that the observed width variation in the centres could be due to the malfunctioning of 

one or more of the cascaded circuits within the centre, with a single circuit malfunc-

tion affecting the averaged operation of the centre. 

All 8 combinations of circuit blocks on several chips were characterised and the 

results from two centres on a single chip are shown in Figure 5.25. It was observed 

that although slight differences exist between the different combinations of blocks for 

both centres, clearly all the curves are almost identical. Therefore, the difference in 
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Figure 5.25 - Block Test Results showing the transistor non-linearities obtained for 

different combinations of the cascaded cells on a single RHO chip - (a) shows the 

curves obtained from centre 0 and (b) shows the curves obtained from centre 4 of 

RHO chip 0 

width between these two centres cannot be due to the malfunction of a single circuit, 

or a combination of centre circuits. Rather the malfunctioning must be due to some-

thing that is common to each centre. The most likely culprit is the VWidth voltage since 

it determines the shape of the non-linearity. 

5.6. Discussion 

A study of the characteristics and operation of the two centre arrays on the RHO chip 

has led to a number of interesting observations, as described in the previous sections. 

Now the probable effect of these observations for RBF implementations must be con-

sidered. 

5.6.1. Distance Circuit 

The experiments on the testable distance circuits on the RHO chips showed: 

• 	the circuits functioned as required, producing a quadratic approximation to the 

squared Euclidean distance between two voltages 

• 	offsets occurred in the characteristics of some distance circuits because every 

second row of cells were mirrored in the y-axis. 

Since the characteristics of all the distance circuit cells on an RBF chip should be 

identical, the cells must have the same orientation on the silicon substrate [147]. 

This will reduce the likelihood of offsets, such as those seen in Figure 5.17(b), 
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occurring. 

Further, the following observations were attributed to malfunctioning compensation 

circuits: 

• 	the flat portions on the tops of the non-linear curves from some of the CAP 

arrays, Figures 5.23(a),(c) and (e) 

• 	the variation of the amplitude of the CAP array non-linearities with Vcentre , 

especially at low clock speeds, Figure 5.21 

• 	the non-linearities with reduced height obtained from the TRAN arrays, Figure 

5.24(b). 

Future implementations of the circuit should therefore use local, rather than global, 

compensation circuitry, with the gates of the compensation circuit ratioed pair tied to 

Vcentre . 

Whilst the adoption of the identical cell orientation and local compensation cannot 

guarantee identical, matched operation for all instances of the circuit on an RBF chip 

(they will still be subject to the vagaries of process variations), these techniques will 

help minimise the effect of the experimentally observed corruption mechanisms and 

so will help minimise the discrepancies between the characteristics, potentially lead-

ing to improved circuit performance. 

5.6.2. Capacitor Circuit 

The main observations from the experiments on the CAP arrays can be summarised 

as: 

the expected functional performance has been demonstrated, but the perfor-

mance varied dramatically between different chips 

the non-linear curves were wide compared to the domain of input space when a 

24MHz board clock was used 

circuit performance, for some chips, is dependent on the AtWdth  evaluation time 

• 	the common-mode output characteristic, for some chips, varies with the input 

and these chips also have offset distance curves. 

Whilst it was clear that the operation of the circuits in the CAP arrays were affected 

by the discrepancies in the distance circuits, it was concluded that any reduction in 

the size of Cdr  would magnify the effects of any offset currents and this could cor -

rupt the operation of the circuit unacceptably. 
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Furthermore, the observations from the measured results are compounded by the cir-

cuit's large area requirement, finite evaluation time, reliance on dynamic voltage stor -

age and its need for additional circuitry to determine the Atidh evaluation time. 

5.6.3. Transistor Circuit 

The experiments on the TRAN arrays showed: 

• 	the circuitry functioned as expected 

• 	the performance of the centres were fabrication dependent, with the width vary- 

ing across-chip 

• 	the affect of the discrepancies in the distance circuit were far less severe than 

they were in the CAP arrays. 

Indeed, the main concern with circuitry in the TRAN arrays was the fabrication 

dependent nature of the non-linearities. However, since the width of these curves is 

dependent on V width'  it should be possible to account for fabrication variations by 

independently setting the value of Vd l,7  for each centre. 

5.6.4. Conclusion 

Based on the experimental results obtained from the RHO chips, the experience 

gained from setting up and operating the arrays and the known properties of the cir-

cuits, it was concluded that a transistor-based non-linear circuit offered the greatest 

potential for the final pulsed RBF chip. 

5.7. Summary 

This chapter has concentrated on the RHO chip. RHO was developed, built and 

tested to investigate the operational characteristics of pulsed circuits for implement-

ing the hidden layer of an RBF neural network. The aims and requirements of the cir-

cuits and chip were stated before the operation of each circuit was described in detail. 

The experimental observations, and their likely implications, were then discussed and 

a conclusion reached about which non-linearity circuit showed the greatest potential 

for further development. 
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Chapter 6 

The PAR Chip 

The previous two chapters have detailed the development of pulsed analogue VLSI 

circuitry capable of implementing the functions required by an RBF neural network. 

This chapter considers, in terms of the circuit and system level aspects, how this col-

lection of individual circuits was modified and combined on a single piece of silicon 

to produce the Pulsed Analogue RBF (PAR) chip - a pulsed analogue VLSI imple-

mentation of a complete RBF neural network. 

6.1. Circuit Level Considerations 

The experiments on the DYMPLES and RHO chips had proven the functionality of 

all the developed pulsed RBF circuits. Furthermore, observations from these test 

chips suggested that possible alterations could be made to the original circuit designs 

and/or cell layout in order to improve performance. However, due to a pressing fab-

rication deadline, there was insufficient time to fully investigate and implement all 

the suggested modifications. In any case, since the PAR chip was the final demon-

strator chip for the project, there was little merit in radically modifying or re-

designing the circuits, as making such changes could introduce design errors or 

degrade the performance of the circuits. 

Several modifications to the circuits were necessary, though, since, for example, the 

cell libraries for the DYMPLES and RHO chips were incompatible and the size of 

the centre cell needed to be significantly reduced to implement more centres on-chip. 

The necessary modifications made for the PAR chip are considered in the following 

sub-sections. 

6.1.1. Centre Circuit Modifications 

Three main modifications were made to the centre cell design. 
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Local Compensation in the Distance Circuit. 

The experiments on the RHO chip had indicated that local, as opposed to global, 

compensation circuitry was required for the distance circuits to function correctly. 

Removal of the N-wells for the Ratioed Transistor Pairs. 

The requirement for separate N-wells for each ratioed pair of transistors was ques-

tioned. Indeed, since local compensation was also to be adopted, three pairs of 

ratioed transistors would now be required per cell and the removal of the wells would 

save silicon real estate. 

Use of a Two-Transistor Non-Linearity. 

In Chapter 5, the non-linearity circuit was initially presented as a two-transistor 

device, although a four transistor variation was fabricated on the RHO chip to double 

the dynamic range of the circuit output. Inspection of the four transistor characteristic 

(both measured and simulated) showed it covered all of input space for many choices 

of Vdth.  Since these RBFs should be locally responsive, it is unlikely that such large 

widths will be desirable. Furthermore, the four-transistor non-linearity was deemed 

to be too complicated since a suitable non-linear circuit could be designed using only 

two transistors. 

Thus a series of HSPICE simulations were performed to investigate: 

the effect of the N-wells and local compensation circuit on the distance circuit 

performance 

the effect of the local compensation circuit on the shape of the non-linearity 

produced by a two-transistor circuit. 

6.1.1.1. Distance Circuit HSPICE Simulations 

The purpose of the compensation circuity is to remove offset currents in the distance 

circuits, ensuring 'dirt = OA when Vi,, = Vcentre . Thus several HSPICE simulations 

were performed to investigate the effect of different compensation circuit configura-

tions on the common mode current in the distance circuit. For these simulations, dis-

tance circuits with and without separate N-wells for the ratioed pairs were simulated 

for the following configurations: 

a distance circuit with no compensation circuitry 

a distance circuit with a compensation circuit whose ratioed pair transistor gates 

were connected to ground 
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iii) a distance circuit with a compensation circuit whose ratioed pair transistor gates 

connected to Vcentre . 

The results of these simulations are shown in Figures 6.1(a)-(d) and from these 

graphs, it is clear that very small common-mode currents result when no separate N-

wells are used and the compensation circuit has the gates of its ratioed pair transis-

tors tied to Vcenire . 
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Figure 6.1 - HSPICE simulation results showing the common-mode output current 

for a distance circuit with (a) no compensation circuit, (b) separate N-wells and a 

compensation circuit whose gates are tied to OV, (c) no separate N-wells and a com- 

pensation circuit whose gates are tied to OV and (d) a compensation circuit whose 

gates are tied to Vcentre  

As can be seen from Figure 6.1(d) 6 , though, when the compensation circuit is used 

with a distance circuit having no N-wells, the common-mode current varies with the 

The discontinuity in Figure 6.1(d) for the circuit with separate N-wells is believed to be due to the simulator having 
difficulty modelling the transition region between strong inversion and weak inversion MOSFET operation. 
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applied common-mode voltage. This produces slight variations in both the output 

current from the circuit, Figure 6.2(a), and the centre circuit output voltage, Figure 

6.2(b). These differences are due to the non-zero, bulk-source voltages produced 

when Vcentre  = OV and Vce, tre  = 3V, as discussed in Section 5.2.3. 
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Figure 6.2 - The asymmetry in the distance circuit (a) 'djct  current and 

(b) output voltage for compensation circuit configuration iii) without N-wells 

Having established that separate N-wells were not essential to the operation of the 

distance circuit, they were not used for the centre circuits on the PAR chip. 

6.1.1.2. Transistor Non-Linearity Circuit Simulations 

Next the requirement for a compensation circuit was questioned: as shown in Figures 

6.3(a) and (b), very little difference exists between the 'djst  versus - Vcentre l 

curves for distance circuits with and without compensation, when no N-wells are 

used. 
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Figure 6.3 - Comparison of the output current, 'di.ct'  from the distance circuit both 

(a) with and (b) without a compensation circuit 
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However, simulations of the complete centre circuit (distance circuit plus two-

transistor non-linearity) indicated that a compensation circuit is definitely required if 

the non-linearity is to be reproduced for the valid range of Vcentre , Figures 6.4-6.6. 
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6.1.1.3. Centre Circuit Layout 

It was concluded from the HSPICE simulations that the N-wells could be removed 

from the distance circuit if, and only if, a local compensation circuit was included. 

Thus new layout was created for the centre circuit, with the new cell occupying 

248pm by 168pm of silicon real estate. The schematic diagram and layout for the 

circuit are shown in Figure 6.7 and Figure 6.8, respectively. 
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Figure 6.8 - The Centre Circuit Layout for the PAR chip 
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6.1.2. Two-Transistor Centre Circuit Properties 

Previously, the two transistor non-linearity circuit has simply been considered as a 

circuit that produces a non-linear monotonic response when a current is drawn 

through it. However, by analysing the circuit, some desirable first-order properties 

emerge. 

As already stated in Chapter 5, the two-transistor circuit, Figure 6.9(a), relies on tran-

sistor MWjdth  operating in its linear region, with M1,,  . .. d used to smooth off the tail of 

the curve and clamp V,)Ut  as Mwidth  saturates. For the purposes of this analysis, con-

sider that M1(,ad  is off and M,d(h  is biased into its linear region. The circuit to be 

analysed is therefore shown in Figure 6.9(b). 
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Figure 6.9 - Schematic diagrams of (a) the complete centre circuit and 

(b) the circuit analysed in this section 

Applying Kirchoff's Current Law to node X yields equation 6.1. 

'width = 'dist 	 (6.1) 

where 'jdth  is the current flowing from source to drain in Mwidth  and 'djt  is the cur-

rent produced by the distance circuit. 

Currents 'width  and 'dist  are defined by equations 6.2 and 6.3 respectively. 

2.' 
 

'width = 	Vgs  - VT) Vd, - 	J 
2 

= flwdth((Vwidlh - V limit - VT) (V i,,,, - 	
- (V, u  - Viimit) 

2 	J (6.2) 
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'di 	

21wide 
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st 
flnarrmv 

(iv,1 - Vcentre l)2  + flnarrow( fiwide J (Iv - Vcentre l) 	(6.3) 
2 

Rearranging equation 6.2 gives: 

'width = /3 width[ V OUtV W dth - VTV(,ut - Vli mitV wjdth + VTVli m it] 

+ 
/3 width (V 

2 	
mit  - V 2  oUt) 	 (6.4) 

Expanding this equation and using the relationship given by equation 6.1 yields: 

21dict = 2 flwidth V 0  (VWidth - VT) - 2 flwidth Vii m it  (VWjdth - VT) 

+ /3width limit V2 - /JWidthV DUt 	 (6.5) 

Dividing equation 6.5 by 8  width and rearranging gives: 

v2  - 2V (VWd1h - VT) + 2Viimit(  V Wjdth - VT) - V m it 
 + 2(flwidth

_'djst = 0 (6.6) 

	

(Jut 	(JUt 
) 

Combining equations 6.3 and 6.6 produces the following quadratic expression in 

terms of 

v2  - 2Vout (Vwidth - VT) + 2V iimit  (VWdth - VT) - V2limit out  

+ ( 	) (Ii". I 	- Vcentre l)2  
/3 width  

+ 2( 	rrow (21wid,

/3wiiitii )  /3wia'e ,) 
(IV - Vcentre l) 0 	 (6.7) 

Therefore, to a first order, it is possible to relate the output voltage from the centre 

circuit to the other circuit parameters before M width saturates. 

The final equation can be solved for V,, ut  using the standard equation for finding the 

roots of a general quadratic equation of the form ax 2  + bx + c = 0, equation 6.8. 

x= 
—b±(b 2 -  4ac) 

2a 
(6.8) 

where 

a=1 

b = - 2 ( V 1 idth - VT) 
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C = 2 Vlimit (V w dth VT) - V 2  limit 

+ flnarmw (IV1 - Vcen tre l) 2  
fi width 

+ 2 finarrow (2I iide  " 

flwidth 	flwie ,j 
(I V0 - Vcentre I) 

Whilst it is unlikely that this equation will ever be used to find specific values of V0  

(HSPICE simulations will give more accurate estimations if high level models are 

used), two important properties emerge from equation 6.7. These are: 

/3 narrow the 	fl-ratios which help to make the circuit more tolerant to process 
flwia'th 

variations 

the ( Vwjdth - VT) terms, that allow variations in the threshold voltages of MW dth 

to be compensated for by tuning the V1d1h  values for individual centres, ie a 

variation in the threshold voltage of AV T  can be compensated for by a change in 

V 1 ldth of AV %Vjdt,,. 

Thus, as this analysis shows, the two-transistor non-linearity circuit has more desir-

able properties than first realised. 

6.1.3. DYMPLES Circuit Re-Design 

As already mentioned, the original DYMPLES circuit was designed for ES2's 1 .5 1um 

digital CMOS process. However, this process was withdrawn during the course of 

this project and the RHO and PAR chips were designed for MIETEC's 2.4pm ana-

logue CMOS process. In order to implement DYMPLES multipliers on the PAR 

chip, the DYMPLES circuit had to be re-designed, and new layout created. 

Fortunately, the DYMPLES circuit was designed to be conceptually simple to ensure 

it was easy to transfer to new processes. Since the synapse only consists of current 

mirrors, switches, capacitors and digital logic, subsequent re-designs were intended 

to be straight-forward. 

For the initial simulations of the circuit with the HSPICE transistor models for the 

MIETEC 2.4um process, the original width to length ratio of the current mirror tran-

sistors was retained, the transistor sizes were scaled accordingly and the original 

specifications of the circuit (voltage change, capacitor size, maximum discharge time 

etc.) were preserved. The results from the simulations of the circuit for the fast, 
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slow and typical transistor models are shown in Figure 6.10 and illustrate the excel-

lent linearity obtained from the re-sized synapse. Again all 3 characteristics overlap. 

Thus the re-design of the DYMPLES circuitry proved to be trivial. 
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Figure 6.10 - Response of DYMPLES Circuit for the MIETEC 2.4um Process Using 

Fast, Slow and Typical Transistor Models for 4 different Synaptic Weights 

One consequence of moving to the larger geometry process, however, was the 

inevitable increase in the area of the synapse - the new synapse occupies 404pm by 

168 1um in the new process, as opposed to 220pm by 220pm in the E52 1.5pm pro-

cess. Although this area increase is unavoidable (unless the circuit is re-designed) it 

is an insignificant detail in the development of the PAR chip, which is, after all, sim-

ply the final concept-proving demonstrator. 

The schematic diagram and layout for the circuit fabricated on the PAR chip are 

shown in Figure 6.11 and Figure 6.12, respectively. 

6.2. System Level Considerations 

Although they were complex designs, the DYMPLES and RHO chips were test chips 

of limited functionality, fabricated primarily to test circuit prototypes and prove novel 

ideas as opposed to forming part of a complete RBF chip. Since the PAR chip was 

intended to be a fully functioning, pulsed RBF demonstrator, more consideration had 

to be devoted to the system level aspects of the design. These issues are discussed in 

the following sections. 
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Figure 6.11 - Schematic Diagram of the PAR chip's DYMPLES circuit 

switching logic 	I dynamic current mirrors and switches I 	output capacitor I 

Figure 6.12 - Layout for the PAR chip's DYMPLES circuit 

6.2.1. Network Size - How big should the PAR chip be? 

The size of a neural network is determined by the number of input, hidden and output 

units it possesses. Although there is no merit in producing large, generic neural net-

work chips simply for the sake of it, the ideal demonstrator should be non-trivial and 

should be capable of indicating the potential of a larger system. Thus enough inputs, 

centres and outputs had to be chosen so that the chip had the flexibility to be applied 
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to a range of non-trivial problems, whilst not exceeding the available silicon area. 

For the PAR chip, it was therefore necessary to compromise between circuit size, net-

work complexity and the available silicon area. From a consideration of these three 

criteria, PAR was designed with 8 analog inputs, 16 centres and 4 digital PWIvI out-

puts. 

PAR was designed with this specification for a number of reasons. 

Designing a chip whose inputs, centres and outputs are binary powers eases the 

interfacing of the chip to standard logic blocks (eg the 74000 TTL series), hence 

simplifying the design of the test board. 

Twice as many inputs as outputs were used because the hidden layer cell was 

smaller than the output layer cell and it was not envisaged that the chip would 

be applied to problems with more than a few classes. 

The chip was designed with 16 centres simply because there was insufficient 

silicon to implement 32 centres without significantly re-designing the centre cell 

- a task not undertaken for the reasons discussed in Section 6.1. 

In fact, whilst the chip has been designed with 16 centres, it was necessary to use one 

to generate the bias term pulse for the RBF, equation 2.15. Thus, the centre cells at 

the top of the design were adapted such that V, 1  was applied to both gates in all three 

ratioed pairs, ensuring that the output pulse from that centre is always of maximum 

width. Therefore, in reality, the chip has 15 centres whose position and width can be 

altered with the sixteenth centre being used to produce a fixed width pulse. 

6.2.2. On-chip DAC Precision 

As described in Chapter 4, the DYMPLES circuit had shown good performance with 

a 4-bit on-chip current DAC. However, given that it is possible to achieve at least 

8-bit precision in analog VLSI and that recent results have indicated that MLPs need 

at least 6-bit to 8-bit precision in the forward pass [148], it was decided to implement 

a simple 8-bit DAC on the PAR chip. 

No quantitative analysis has been conducted for the precision required in RBF net-

works as yet, and it can be argued that, assuming that the RBF hidden layer's non-

linear expansion sufficiently separates the classes in classification space, it is unlikely 

that the linear output layer units would require the same precision to define the 

hyperplanes as the non-linear output units of a corresponding MLP applied to the 

same problem. Implementing an 8-bit DAC on the PAR chip provided it with the 
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flexibility to have the same precision as an MLP, if required, whilst also allowing the 

precision requirement of the output layer to be investigated in hardware. 

6.2.2.1. PAR Chip DAC Design 

The time constraint for producing the PAR chip meant that the on-chip current DAC 

had to be simple and straightforward to design, easy to lay out and have a creditable 

level of performance. To fulfil these requirements, the DAC was implemented as two 

4-bit DACs connected by a 16:1 attenuating current mirror, Figure 6.13. 

Divide by 16 
Circuit 

'bias 	 I out 
I 

x3H
I 	 _ I  4-Bit DAC 4-Bit DAC 

(MSB5) (LSBs) 

Figure 6.13 - PAR Chip 8-Bit DAC Schematic 

By laying out the DAC so that its mirroring transistors were again rotationally sym-

metric, it was hoped to reduce the effects of on-chip gradients and variations, thus 

preventing degradation of the DAC's performance. In addition, long, thin mirroring 

transistors were again used within the DAC to increase the output impedance and 

make the currents less susceptible to corruption. 

Whilst it is acknowledged that this design is far from optimal, HSPICE simulations 

indicated that it was approximately linear and monotonic, Figure 6.14, and thus suffi-

cient to fulfil the requirements for the DAC required on the PAR chip. 

In addition to an on-chip current DAC, the PAR chip also required a Zero Current 

Mirror (ZCM), Section 4.7.2, to generate the 'zero  currents for the PMOS transistors 

in each DYMPLES multiplier. Again the ZCM was designed as a 2:5 amplifying cur-

rent mirror biased with an off-chip current. 

The final layout for the DAC and ZCM is shown in Figure 6.15 and the cell shown 

occupies a silicon area of 925.2pm by 499.2pm. 
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Figure 6.14 - Simulated 8-Bit DAC Characteristic 
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Figure 6.15 - PAR Chip 8-Bit DAC and ZCM Layout 

6.2.3. PAR Chip Refresh Scheme 

Since the neural parameters on the PAR chip are dynamically stored on capacitors, 

they are subject to decay from leakage currents and so must be periodically 

refreshed. This section describes the PAR chip's refresh scheme, concentrating on 
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how the refresh rate was determined and how the system was actually implemented. 

6.2.3.1. Refresh Rate Determination 

The refresh rate of a chip is determined from a compromise between the tolerable 

parameter corruption due to leakage currents and the tolerable performance corrup-

tion due to capacitively coupled noise. 

Assuming that the neural circuitry is expected to obtain a precision of N bits, then 

the refresh rate must be sufficient to ensure that the leakage currents do not discharge 

the storage capacitor by a voltage equivalent to half of the storage requirement for 

the least significant bit. Thus fast refresh rates are desirable. However, slower refresh 

rates mean fewer clock edges, lower levels of capacitive coupling and hence lower 

levels of clock-induced noise within the chip. 

As can be seen from the graphs in Figure 6.16, the range of Vgate  voltages in the 

DYMPLES circuits is significantly smaller than the range of Vce,,tre  voltages in the 

centrecircuits. Further, since the globally distributed currents are used to charge the 

C gate  capacitances, current mode loading can be significantly slower than voltage 

mode loading if small currents are used. Thus the DYMPLES circuit was used to 

determine the refresh rate of the PAR chip. 
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Figure 6.16 - Voltage Ranges for the Hidden and Output Circuits 

From an HSPICE simulation of the NMOS DCM, it was established that the stored 

voltage was a non-linear function of the loaded current and the minimum voltage dif-

ference between two consecutive 8-bit weight values was lmV, Figure 6.16(b).(The 

minimum voltage difference (at 8-bit precision) between Vi,, and Vcentre  for this chip 

is approx. 11 .7mV). Thus the refresh rate must be sufficiently high to ensure the 

leakage currents do not discharge C gate  by more than 0.5mV between refresh cycles. 
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By assuming that the leakage currents are constant, the periodic refresh time can be 

determined using equation 6.9. 

Ilealwge tXt = CgateAV 	 (6.9) 

where '1eage  is the total constant leakage current due to subthreshold conduction and 

reverse-biased diodes, and At is the time for a voltage drop of A V to occur on C gate' 

the capacitor storing voltage 

In order to calculate an approximate value for At for the minimum refresh period, the 

value of the leakage currents in the MIETEC process had to be determined. This was 

achieved using the measurement transistors on the RHO chip to monitor the varia-

tion, over time, of the Vce,,tre  voltages dynamically stored on the C centre  capacitors of 

the RHO chip. By setting Vcentre  to 3V and V i, to OV, it was possible to determine 

the rate of decay of Vce,,jre  from the variation in the measured Op Amp output volt-

age, V01,  Figure 6.17. 

ON-CHIP OFF-CHIP 

'dist 
	

'disM 	centre 	 R feedback 

V ref 

Figure 6.17 - Schematic Diagram of '1eage  Determination Circuit 

Figures 6.18(a) and (b) show the change in V0  with time for two circuits on two dif-

ferent RHO chips. As can be seen, the variation is quadratic and identical to the left 

hand side of the measured distance circuit curves shown in Figure 5.17. So, since 

V0 - and hence 'did - is a quadratic function of IV,, - Vcentre l, it was concluded that 

V cengre  is decaying linearly over time, showing '1eage  is indeed constant for the 

MIETEC process. 
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Figure 6.18 - Measured Decay Characteristic for 2 Distance Circuits on 2 RHO Chips 

By substituting the values for the known and determined parameters into equation 

6.9, the estimated leakage currents for the two chips were determined, Table 6.1. The 

leakage currents for both chips were calculated to be less than 5fA. 

Chip C centre iV Atdischarge 'leakage 

2 

4 

2.01pF 

2.01pF 

3V 

3V 

1305s 

1425s 

4.621fA 

4.232fA 

Table 6.1 - Parameter Values for 'leakage  Determination. 

Having empirically determined 'leakage'  it was now possible to determine the maxi-

mum allowable period between refreshes such that the voltages on the C gate  capaci-

tors of the NMOS DYMPLES DCMs did not fall by more than 0.5mV. For the pur-

poses of this calculation, leakage currents of lOfA were assumed, allowing a safety 

margin of over 100%, and the Cgite  capacitances were assumed to be 1 .OpF. 

'leakage C gate V, nin discItarge  At max  period 

lOfA 1.0pF 0.5mV SOms 

Table 6.2 - Parameter Values used for Minimum Refresh Rate Determination. 

By again substituting the appropriate parameter values into equation 6.1, Lt m perj(,d 

was calculated as SOms, Table 6.2. Thus the refresh rate for the PAR chip can be as 

low as 20Hz for 8-bit resolution. Again, however, it was decided to have a large 

safety margin in the design and the initial refresh period was selected as 1.28ms, or 

approximately 800Hz. One benefit of having such a short refresh period is that the 

precision of V m  and Vce,ttre  can be increased to 12-bits, with respect to the leakage 
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currents alone, since the maximum refresh period required for 1 .OpF C centre  capaci-

tors at 12-bit resolution is 36ms 7 . 

6.2.3.2. Refresh Scheme Implementation 

The off-chip refresh scheme for the PAR chip is shown in Figure 6.19. 

	

CLK I 	Counter 

	

Centre RAM I 	I Width RAM I 	I Weight RAM 

	

Centre DAC I 	I Width DAC 

to on-chip row and 	to Vcentre 	 to Vwidth 	 to 8-Bit on-chip 
col. decoders 	input pin 	 input pin 	 current DAC 

Figure 6.19 - Off-Chip Refresh Scheme for the PAR Chip 

Centre, width and synaptic weight values are generated and loaded simultaneously as 

determined by an off-chip counter. Since there are approximately twice as many cen-

tre cells as output cells, the centre cells are addressed for half as long as the output 

cells. 

The cells on the PAR chip are refreshed sequentially using on-chip row and column 

decoders (composed of NOR gates) to address each one in turn, while additional off-

chip circuitry produces the appropriate neural parameter for that cell. This additional 

off-chip circuitry consists of the counter, which simultaneously addresses the neural 

parameter RAM chips in addition to driving the row and column decoders and, in the 

case of the Vcentre  and  Vd t/, values, voltage DACs to convert the digital word to an 

analogue voltage. Thus, the appropriate centre, width and synaptic weight values are 

generated whilst the cells to which they will be loaded are being addressed. 

This calculation does not take into account other possible corruption mechanisms within the hardware, such as charge 
injection, noise, mismatch, temperature variations etc., which will conspire to reduce the actual achievable precision to less 
than the expected 12-bits. 
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A potential problem exists with such a refresh mechanism, though: delays through 

the off-chip circuitry and on-chip clock skew are likely to produce over-lapping clock 

edges, Figure 6.20, possibly causing two adjacent cells to be addressed concurrently 

if the cell addressing signals alone are used to initiate cell loading. Concurrent 

loading could result in cells being loaded with the wrong value, or correctly loaded 

values being partially corrupted, causing significant degradations in the performance 

of the hardware. 
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Possible Overlap and Corruption 

[01 

col_Il 	cot_I 	col_2 	 col_7 

jul 
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Figure 6.20 (a) A possible implementation of a NOR gate decoder along with (b) an 

indication of the overlapping clock edges which are likely to affect this decoder. 

Also shown is an improved decoder (c) and (d) an illustration of the guard bands 

that the new signalling scheme introduces 

To eradicate this problem, signals derived by exclusive-ORing some of the higher 

frequency counter bits were used to initiate the loading of the centre, width and 

synaptic weight values. The use of these loading signals creates guard bands, 

allowing the circuitry in Figure 6.19 to settle after being addressed and before the 

cell capacitors are loaded, thereby removing any possibility of concurrent cell load-

ing. The price for this added feature is one more input to each column decoder NOR 

gate; the benefit is the knowledge that time delays and clock skews should not now 

pose a problem assuming the guard bands are long enough. The addressing time, 

loading time and guard band widths for each cell in the hidden and output layers, 

with the 1.28ms chip refresh time, are presented in Table 6.3. 
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Layer Addressing Pre-Load Guard Band Loading Post-Load Guard Band 

Hidden 

Output 

lO 4us 

20us 

2.5is 

5is 

5us 

lOps 

2.5 its 

5ts 

Table 6.3 - Cell Addressing Times, Loading Times and Guard Band Times for the 

PAR Chip Refresh Scheme 

6.2.4. Width Storage Scheme 

Results from the RHO chip had indicated that the width of the centre non-linearity 

could vary from centre to centre and from chip to chip. After conducting several 

tests, this problem was deemed to be due to some on-chip alteration or corruption of 

the VWdlh  values. Thus, to give the PAR chip added flexibility, a width storage capac-

itor was allocated to each centre. Each centre can therefore have an individually 

tuned width, allowing any on-chip variations to be accounted for during chip-in-the-

loop training. 

Load  

Xvidth 	Output 	Row _I 
Load Output Luycr Row 	Layer 	- JLELELSL. - 

I
To Centre Circuits 

+ 

2_ 
Iwidth 

Figure 6.21 - Width Storage Scheme Schematic 

From the implementation aspect, each Cwidlh  capacitor is addressed using the row 

decoder and loaded using the load signal for the output layer, Figure 6.21. As a 

result, the width storage capacitor is actually loaded four times every time it is 

addressed. 

6.3. PAR Chip Floorplan 

The individual cells for the PAR chip were laid-out, netlisted and their functional 

operation checked before they were combined to form the final pulsed RBF demon-

strator chip. The floor plan for the chip is shown in Figure 6.22, whilst Figure 6.23 

shows the chip plot of the fabricated design. The PAR chip was implemented on a sil-

icon die measuring 6.5mm by 4.8mm. 
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6.4. Chip Testing 

A total of ten chips were returned from the silicon foundry and the PAR Develop-

ment Board (Appendix A) was built to allow them to be correctly biased and tested 

automatically. 

In order to assess the operation of the fabricated circuits, including the modifications 

to the centre circuits, sufficient provision had been made to allow the separate chip 

components to be tested independently. In addition to including outputs to test the 

operation of the on-chip digital inverters, measurement transistors were again 

included for testing and assessing the functionality of the DAC, DCMs and distance 

circuits. As well as the DAC output, four distance circuits, four PMOS DCMs and 

four NMOS DCMs could be characterised per chip. 

Further, it was intended that the chip be configured to allow the hidden and output 

layers to be tested and characterised separately, in addition to operating the chip with 

the hidden layer directly connected to the output layer. To achieve this, the switching 

arrangement in Figure 6.24 was devised, allowing the chip to be configured as 

desired using only two off-chip control bits ( Connect and Enable). 

As with the previous chips, the experimental procedures for recording the results in 

the following sections are detailed in Appendix A. 

6.4.1. Test Procedure 

Since the aim of this work was to develop a pulsed RBF demonstrator, it was neces-

sary to check the operation of the circuits to verify their operation and investigate 

what differences, if any, existed between different circuit instances both across-chip 

and between chips. 

However, the DACs, DCMs and distance circuits plus the hidden and output layers 

on all the chips were only rigourously tested once or twice for two main reasons: 

the results obtained from the tests proved the circuits worked correctly and con-

sistently, highlighted the expected deficiencies in performance and displayed no 

unexpected ones 

the time available was limited and there was judged to be little point, given the 

good quality of the results obtained, in testing each set of circuits, on every 

chip, five or ten times. 
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Figure 6.24 - Switching Arrangement to Facilitate the Testing of the Hidden 

and Output Layers 

Therefore the results presented in the remainder of this chapter are typical of the per-

formance for all the chips, except where stated otherwise, but were generated from a 

single measurement run on one of the chips. The one exception are the results for the 

current DACs: the DAC responses for all 10 chips were measured and the presented 

results indicate the mean performance and ±3 standard deviation error bounds for all 

the DACs. 

No numerical values for the statistical quantities are quoted, though, since they are 

almost meaningless for such a small number of results and this thesis is more con-

cerned with the performance of the circuits within a trained RBF network, rather 

than how well matched the circuits are. Thus a qualitative rather than a quantitative 

presentation of the measured results suffices. 

It is also believed that chip-in-the-loop training will account for across-chip and 

inter-chip differences between the circuits, rendering any differences insignificant to 

the operation of the trained networks. However, for the sake of completeness, each 

results section describes the differences noted in circuit operation. 

As in Chapters 4 and 5, the input and output pulse widths in the following results 

graphs are presented in terms of RAM Locations instead of time periods and the V,,, 
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and Vcentre  voltages are represented by the input digital words to the 12-bit off-chip 

voltage DACs. 

6.4.2. PAR DAC Characteristic 

The performance of the DAC on all ten PAR chips was measured. Each DAC was 

loaded with all 256 valid digital words and the output voltage from the off-chip Op-

Amp recorded. From these recorded voltages, the test currents flowing out the DAC 

were calculated. All the DACs produced very similar characteristics and Figure 6.25 

shows the Output Test Current vs. Input DAC Word characteristic averaged over all 

ten DACs. Also shown in the figure are the error bounds representing ±3 standard 

deviations of the results. The measured results have been processed such that all the 

DAC characteristics pass through the origin. 
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Figure 6.25 - Average Test Current vs. Input Word Characteristic for the DACs on all 

ten PAR Chips 

From analysing the obtained DAC characteristics, it was concluded that the DACs 

were approximately linear, but were not monotonic. The non-monotonicity in the 

DAC is due to the inaccuracy in the "divide by sixteen circuit" between the two 4-bit 

DACs in the circuit, Figure 6.13. Since the division is implemented using a 16:1 cur -

rent mirror, it is highly unlikely this division will be exact and from the results, it is 

apparent that the maximum output from the DAC representing the lower nybble is 

greater than the LSB of the upper nybble DAC. 

0 
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A non-monotonic DAC should not cripple the operation of the chip, but if any prob-

lems are encountered, it is envisaged that a software "fix" can be used to swap the 

offending codes, thereby  ensuring monotonicity. 

The average results presented here show that the gain of the DACs vary from chip to 

chip, although only slightly. Such gain variations should be due to different degrees 

of transistor mismatch between the chips. 

6.4.3. PAR DCM Characteristics 

As with the DYMPLES Chip, provision was made to allow four NMOS and four 

PMOS DCMs to be tested on each PAR chip. Again, in order to minimise the output 

differences, each output DCM current was steered through a common Op-Amp using 

an 8-way analogue multiplexor. From the measured voltage results, the output cur -

rent from the chip was calculated. All the chips had working DCMs and a typical set 

of results are shown in Figure 6.26. 
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Figure 6.26 - The DCM Characteristic of a PAR Chip 

These results were obtained by averaging the output currents from the four PMOS 

and four NMOS DCMs on a single PAR chip for one experimental run. They show 

the average characteristic obtained from the NMOS and PMOS DCMs, plus error-

bars, for every 8th word, representing ±3 standard deviations of the results. 

From the recorded results, it was obvious that the DCMs on the PAR chip were oper- 

ating correctly: the currents stored in the NMOS DCMs varied linearly with the 
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applied DAC word (although the non-monotonicity of the DAC permeated through to 

the DCMs) and the PMOS DCMs stored and conducted constant currents. 

The range of currents from the NMOS DCMs was found to vary very slightly both 

across chip and between chips and the level of the constant PMOS DCM current also 

varied slightly. Such across-chip variations will be due to mismatches between the 

on-chip measurement transistors since the currents are fed to the same Op Amp mea-

surement circuit and, for the PMOS DCMs, the recorded currents are constant for 

each DCM. On a chip to chip basis, different biasing conditions will also affect the 

DAC gain and PMOS current level. Thus a combination of both phenomena will 

account for the gain variations witnessed in the results. 

6.4.4. PAR Distance Circuit Characteristics 

The distance circuit characteristics for all the PAR chips were measured and a typical 

set of results are shown in Figure 6.27. 
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Figure 6.27 - Averaged Distance Circuit Characteristics from a Single PAR Chip 

These results were obtained by averaging the results obtained from the four measur-

able distance circuits on a single PAR chip. 

The results obtained from the distance circuits indicated they function as required. 

Furthermore, the results obtained from the characterisable circuits on all the chips 

indicated the offset error noted on the measurements from the RHO chip had been 

eradicated. This is because all the distance cells have the same orientation on the 
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silicon substrate. 

All the distance circuits produced the correct input-output characteristic, although 

one circuit on chip 7 did have a larger current range than all the other circuits. The 

reason for this was not clear and was attributed to a chip anomaly. Again slight dif-

ferences in the output current range were noted both across chip and between chips 

and these were again attributed to on-chip transistor mismatches. 

6.4.5. PAR Non-linearity Characteristic 

Several experiments were carried out to investigate the performance of the two-

transistor non-linearity circuit. Again the measured results confirmed the theoretical 

properties of the circuit. Figure 6.28 shows the non-linear characteristics of the 15 

centres on a single PAR chip, with the horizontal line at approximately 245 RAM 

locations representing the output of the centre generating the constant, full width, 

"bias" pulse. 
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Figure 6.28 - Measured Results from the PAR Chip Centre Circuits 

This level of matching between centres was noted on nearly all the chips (chip 0 had 

two centres that did not function correctly and chip 6 failed completely during test-

ing), although differences existed in the non-linearities produced by the same centre 

on different chips, Figure 6.29. Again this was no more than expected since the cen-

tre circuit operates in voltage mode. 
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Figure 6.29 - Variation of a Single Centre Between 9 PAR Chips for a Single Value 

of Vh 

Further trials carried out on the hidden layer circuits showed that it was possible to 

reproduce the non-linear shape of the circuit, for the same value of VW th, consis-

tently across-chip, Figure 6.30(a) and (b), although it was noted that the centre of the 

non-linearity was offset from the ideal value loaded into the Vcre  off-chip DAC, 

Figure 6.30(a). Further, it was noted that this offset was constant as Vcerjre  varied, 
Figure 6.30(b). 
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Figure 6.30 - Non-linearity Reproduction Variation with Vm  and 
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The offset is not consistent with a non-zero VhS  voltage and instead corresponds to 

the change in Vce,ztre  resulting from charge injection from the access transistors to 

Ccentre . Given the results displayed in Figure 6.29, it was concluded that this offset 

was likely to vary from chip to chip. 

These results show the non-linear characteristic translated from the baseline. How-

ever, it should be remembered that both the baseline and height of the non-linearities 

can be altered by adapting the off-chip voltage ramp to the PWM Neurons. 

6.4.6. PAR Multiplication Characteristic 

The correct operation of both the on-chip DAC and the, DCMs indicated that the two-

quadrant multiplication circuits in the output layer should also function correctly. 

This proved to be the case and typical results from a single chip are shown in Figures 

6.31 and 6.32. 
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Figure 6.31 - The Output Pulse vs Input Pulse Two Quadrant Multiplication 

Characteristic for a Single PAR Chip Averaged Over All 4 Outputs 

Figure 6.31 shows the measured output pulse width vs. input pulse width results 

averaged over the four output neurons on one chip and Figure 6.32 shows the output 

pulse width vs. loaded DAC weight results for the same chip. Figure 6.33 shows the 

characteristics of the neurons that produced the maximum deviations from the aver-

age characteristic. 
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Figure 6.32 - The Output Pulse vs Input Weight Two Quadrant Multiplication 

Characteristic for a Single PAR Chip Averaged Over All 4 Outputs 

From the characterisation experiments on the output layer circuits, it was noted that 

the weight dependent offset error which had been seen on the multipliers on the 

DYMPLES chip was no longer present, although a slight discrepancy still existed 

between the positive and negative synaptic weights, Section 4.8.4. 
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All the output layers worked, however output neuron 3 (the end neuron in the array) 

always produced narrower output pulse widths for the positive weights than the other 

three. This effect was noticed on all the chips and after investigating it, it was 

deduced to be caused by a chip anomaly. 

For the two quadrant multipliers, the width of the zero activation pulse can be 

adjusted by altering the voltage to which C0  is precharged, the range of the output 

pulse widths can be adjusted by altering the baseline and amplitude of the output 

ramp, and the symmetry of the positive and negative weights can be altered by vary-

ing the on-chip DAC biasing current with respect to the ZCM biasing current, or vice 

versa. Thus, as with the hidden layer, the response of the output layer can be adjusted 

off-chip. 

6.4.7. PAR Chip Summary 

From the experiments carried out to characterise the operation of the DACs, DCMs, 

distance circuits, hidden layer and output layer on the PAR chip, it was concluded 

that the different circuits now functioned as required, that the observed discrepancies 

were principally due to transistor mismatch (and hence only to be expected) and that 

the discrepancies should not affect the chip's ability to implement an RBF classifier. 

6.5. Summary 

This chapter has detailed the development of the PAR chip, the final neural demon-

strator for this project. After discussing the modifications made to previous incarna-

tions of the RBF circuits, some consideration was given to the system level aspects of 

the chip, before the design was described and actual hardware results presented. 

The measured results from the PAR chip indicate that all the circuit designs now 

function as required. Furthermore, the presented results also indicate that different 

instances of the circuits, on the same chip, produce very similar characteristics; this 

trend was noticed on all the chips. Thus it was concluded that the PAR chip as a 
whole should function as required, making it capable of implementing an RBF neural 

network. This hypothesis is investigated in Chapter 8. 
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Chapter 7 

Software Simulation Results 

It has been shown in previous chapters that the two-transistor non-linearity circuit 

produces a "bump" response that falls off monotonically as V 1, and Vcentre  become 

disparate, exactly as required by the hidden layer of an RBF. However, this non-

linearity has never been used in RBFs and, to investigate the capabilities of the bump 

function, several classification problems were solved using software RBFs having 

this hidden layer response. By modelling the designed circuits (albeit ideally) in 

software, it was possible to investigate the functionality and properties of the devel-

oped centre circuit without resorting to the design and manufacture of complicated, 

multi-functional hardware. 

This chapter reviews the classification problems used in the software experiments, 

explains the operation of the simulator incorporating the circuit models, describes the 

software experiments performed and discusses the conclusions drawn as a result of 

the work. In addition to presenting the results of experiments carried out using full 

64-bit floating point precision calculations, the findings from weight quantisation 

experiments are also discussed. The quantisation experiments were performed to 

investigate the likely effect of reducing the precision of the neural parameters in the 

hardware model after training was complete. 

In addition to performing circuit feasibility trials, the simulator was used to produce 

solution sets of centres, weights and thresholds for downloading to the PAR chip. 

The generation of the neural parameters and the performance issues pertaining to 

using the actual RBF hardware to solve a problem are discussed in Chapter 8. 

7.1. Classification Problems 

Four 1-out-of-N encoded classification problems were chosen for these investiga-

tions. The number of inputs and outputs plus the size of the training and test sets for 

each problem are summarised in Table 7.1. 

Although many vectors were available for training the network, only small training 

sets (containing 100 vectors from each class) were used. This was due to the training 
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Problem Inputs Outputs Training Vectors Test Vectors 

Gaussian Distributions 2 2 200 9800 

Speaker Recognition 8 3 300 150 

Sleep State 10 3 300 7200 

Robot Location 8 6 600 5000 

Table 7.1 - Summary of the Properties for each Classification Problem 

method selected and will be discussed in greater detail in Section 7.2.3. Additionally, 

the components of the input vectors for all eight data files were translated and scaled 

to lie between 0.0 and 3.0, corresponding to the range of voltages that the PAR chip 

was designed to accept. 

The Gaussian Distributions and Robot Location problems are both artificial, ie the 

data has been synthetically generated, whilst the Speaker Recognition and Sleep 

State problems use input vectors obtained after processing real measurements. 

7.1.1. Two Class Gaussian Problem 

This problem consists of data drawn from two separate, but overlapping Gaussian 

distributions. One distribution was centred at (1.224,1.224) with a standard deviation 

of o= 0.127, whilst the other was centred at (1.478,1.478), with o= 0.380, Figure 

7.1. For this problem, the RBF network is required to identify from which distribu-

tion any given input vector is drawn. 

Class I 

Figure 7.1 - Statistical Distributions for the 2 Class, 2 Input Gaussian Problem 

This classification problem is an artificial one and it is impossible to achieve perfect 

classification. The maximum performance can be calculated by using Bayes Rule 

[16] and the optimal classification performance on the full 9800 vector test set is 

88.4%. 
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7.1.2. Speaker Recognition Problem 

To solve the speaker recognition problem, the neural network must learn to recognise 

which of three speakers produced a given sample of speech. The data base of classi-

fied exemplars has been produced by sampling and processing raw speech data, from 

3 male speakers, to generate the cepstrum [149]. The first 8 cepstral coefficients 

form the input vector for each exemplar. This data set, and those for the two remain-

ing problems, were obtained from the Engineering Science Department at the Uni-

versity of Oxford [148]. 

7.1.3. Medical Sleep Data Problem 

For this problem, the RBF is required to identify whether the input vector represents 

a patient in the wakefulness, the dreaming sleep or the deep sleep state. The data vec-

tors have been obtained from a single channel of recorded human EEG (electroen-

cephalogram). By sampling analogue EEG recordings (from 5 patients) at 128 Hz 

and computing Kalman filter coefficients from the samples, a database was con-

structed which contains equal numbers of exemplars from all 3 sleep states [37]. 

Each input vector comprises the first 10 Kalman filter coefficients, averaged over one 

second blocks. 

7.1.4. Robot Location Problem 

This is the most difficult of the problems considered. A mobile robot is assumed to 

be in one of six regions in an L-shaped room that contains 6 corners and two objects, 

Figure 7.2. 

Figure 7.2 - Diagrammatic representation of the Robot Location Problem 
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To generate the data vectors, the robot was assumed to be positioned at various loca-

tions in the room and 3600  range scans were generated artificially using a simulation 

program. From these range scans, the information was extracted to construct 

8-dimensional input vectors [150]. Whilst it is assumed that each input vector can 

only be generated in one region of the room, this problem is intrinsically difficult 

because locations close in input space (ie positions within the room) can be far apart 

in classification space [148]. 

7.2. Software Simulator 

In order to investigate the properties of the two-transistor circuit, a special software 

simulator was written in C. The purpose of the simulator was to model the operation 

of the developed centre circuit and indicate: 

whether the developed circuit could usefully solve any of the classification 

problems 

how the classification results from a model of the developed circuits compared 

to those obtained from Gaussian RBF networks with the same centres and 

trained in exactly the same way. 

In the simulator, the operation of several non-linearities, corresponding to different 

values of V1d(/l,  were compared to two Gaussian networks. One Gaussian network 

used basis functions all having the same width (equal to the maximum distance 

between any two centres), while the other used non-linearities with widths equal to 

the distance between that centre and its nearest neighbour. All the basis functions 

used single width values for all the dimensions. 

In the simulator, the output layer was assumed to be ideal, thus it was "modelled" in 

software using the normal CPU multiplication and addition operators. 

It is important to realise that for the simulations carried out in this chapter, the abso-

lute value of the classification rate is not critical. Of greater significance here is the 

performance of the modelled hardware compared to a software RBF that uses Gaus-

sian non-linearities. 

7.2.1. Overall Operation 

The overall operation of the simulation program, which uses the hybrid training 

scheme of Moody and Darken (as described in Section 2.5.4.2), is shown by the flow 

diagram in Figure 7.3. 
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Figure 7.3 - Flow Diagram description of the operation of the 

Software Simulator Program 

After the program has been initialised, a random number generator seed is selected 

and the hidden layer of the network trained using the adaptive k-means algorithm: 

each input vector, x, in the training set is presented to the network in turn and the 

closest centre, c1 , to the input vector is adjusted using equation 2.26, with a set to 

0.02. This procedure is repeated 100 times for the entire training set, with the order 

of vector presentation varied for each epoch to improve the robustness of the training. 

The random number generator seed is used to select the location of the initial centres 

and determine the order of presentation of the training vectors. Thus the use of seeds 

allows a direct comparison to be made between the different non-linearities since 

each seed produces a unique training schedule. 

Once the hidden layer has been trained, a non-linearity is placed on each centre loca- 

tion and the output weights calculated using a pseudo-inverse method, Section 7.2.3. 

On completion of output layer training, the network is used to classify the vectors in 
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both the training set and the test set for the problem under consideration and the cor -

rect classification rate is recorded. This process is repeated for all the non-linearities. 

However, since the weights required to reproduce the input to output mapping vary 

with the non-linearities, a new output weight set must be calculated for each non-

linearity used. 

After all the non-linearities have been used as the basis functions in a given hidden 

layer, the number of centres is increased by one, the hidden layer is re-trained using 

the same seed and the output weight calculation and classification processes are 

repeated for the new hidden layer. This process is continued until the maximum 

number of centres is reached, whereupon the next seed is loaded, the number of cen-

tres is re-set to the minimum allowed and the entire process is repeated. 

By running this procedure using many seeds, enough results were generated to allow 

meaningful mean classification rates to be obtained. 

7.2.2. Hidden Layer Operation 

In an RBF network using the Euclidean distance measure and the Gaussian non-

linearity, a suitable algorithm for calculating the output of each centre is: 

loop over centres( 

tot=O. 0; 

/* calculate squared euclidean distance *1 

loop over vector dimensions[ 

tot+=(input[i] - centre[j][i])2; 

I 
/* take square root *1 

dist= (tot) ; 

/* calculate basis function output *1 

rbf_op[j]=f(dist;width[j]); 

I 
where f() is the non-linearity used. With this algorithm, the Euclidean distance 

between the input and centre vectors is calculated initially and it is then applied as 

the argument to the non-linear function. The region of influence of the function is, of 

course, determined by its width parameter. 
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Unfortunately, although it is possible to use this algorithm to calculate the hidden 

layer responses for the Gaussians, it is not possible to use it for the non-linearities 

generated by the two-transistor circuit. This is due to the important operational differ-

ences that exist between using the circuit and the Gaussian/Euclidean distance com-

bination in the hidden layer, and the difficulty of accurately modelling the two-

transistor circuit with a simple formula. 

The modelling of the two-transistor circuit operation will now be considered in more 

detail. 

7.2.2.1. Distance Circuit Modelling 

Since the response of each distance circuit is a quadratic approximation to the 

squared Euclidean distance between V i,, and Vcentre,  it was deemed necessary to 

approximate the transfer function of the distance circuit more accurately than simply 

assuming the squared Euclidean distance would suffice. 

As derived in Section 5.2, the output current from the distance circuit (to a first 

order) can be expressed as 

narrow 
'dist = 	( IV - 	)2 + fl,iarrow 21wide 

fiwide T - V cenrre l 	(7.1) 
2 

By using typical process parameters to evaluate the coefficients for the squared and 

linear terms in the above equations, it was possible to model the actual current for the 

circuit (as generated by a level 3 HSPICE simulation) by an empirical approxima-

tion, equation 7.2. 

'dist(modelled) = 5. 376e - 7 * ' in - Vcentrel 
)2  

+ 1. 554e 4 * ('wide) 1i,z - Vcentre l 	 (7.2) 

The empirical formula described by equation 7.2 required a scaling factor of 	 to 
1.78  

scale the modelled current to the same range as the measured current when the typi-

cal process parameters for the MIETEC 2.4u process were used. This scaling factor 

has been included in the given coefficients in equation 7.2 

Since 'ivide'  the current sunk by the wide transistor in the conducting ratioed pair, 

depends non-linearly on IVm - Vcentre l, this current was modelled in the simulator 

using an HSPICE-extracted current look-up table. 
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Further, as acknowledged in Chapter 6, by not using separate wells for the ratioed 

pairs, a non-symmetrical current response, that depends on the value of V centre , 5 

obtained from the distance circuit. However, as shown in Figure 7.4, the empirically 

modelled current is a good approximation to the simulated cases for Vcentre  equal to 

OV and 3V. Thus the formula was deemed to be a good representation of the actual 

current, irrespective of Vcentre . 
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Figure 7.4 - Comparison of the Modelled and Simulated Distance Circuit Currents 

7.2.2.2. Non-Linear Circuit Modelling 

The non-linear response of the two-transistor circuit, Figure 5.11, relies on Mjdth 

and M1ad  competing for 'djst  Since the output voltage relies on exploiting the physi-

cal properties of the transistors, it will be very difficult to model their operation using 

simple formulae. Indeed, this problem is further exacerbated by the fact that both 

transistors operate in different modes depending on the values of Vjdt/7  and 'djst• 

However, the operation of the circuit can be adequately and easily modelled for sim-

ulation purposes by using look-up tables of either the V0,  vs. IV,1 - Vcenrre l or the V (, Ut  

VS. 'dist  curves generated by HSPICE simulation. 

The V,, ,, t  VS 1r curves were used for this simulator since the output from each dis-

tance circuit (Idist)  has already been modelled by equation 7.2. The use of the volt-

age vs. current curves is also advantageous since the vs. IVm - Vce,ztre l curves 

will differ slightly depending on the value of Vcentre,  whereas the V01  vs. 'dix,'  curves 

do not. 
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For the purpose of the software simulator, the look-up table consisted of 11 different 

non-linear curves, Figure 7.5, with 501 points per curve. 

7.2.2.3. Complete Circuit Model 

Having looked at how the distance circuit and non-linear circuit were modelled, the 

algorithm used for modelling the feedforward operation of the centre circuit can now 

be defined. 

loop over centres{ 

tot=O. 0; 

/* calculate total current *1 

loop over vector dimensions( 

I 	- V centre_ji I; 

'wide interpolation of "cur" onto 'wide  look-up table; 

/* calculate current component using empirical formula */ 

1* a = 5.376e-7, b = 1.554e-4 *1 

tot+=acur2  + b(I,vide ) cur; 

I 
/* scale and average total current *1 

1* n is the number of vector pairs *1 

tot 
'dist = n 

/* calculate basis function output *1 

rbf_op[j] = interpolation of 1dict  onto transistor curve look-up table; 

I 
As can be seen, this algorithm differs from the one described earlier in this section 

and models the simulated operation of the distance circuit more realistically than 

simply assuming it can be approximated by Gaussians using the Euclidean distance 

metric. One important addition to this new recipe is the division of the total distance 

circuit current by n, the number of circuits: I jj, is now the average current in any 

circuit and is interpolated onto the transistor non-linearity curves for a single centre 

circuit. It is easy to prove mathematically, using equations 5.11 to 5.14, that this is 
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equivalent to interpolating the total current onto the combined non-linear curves for n 

centre circuits. This proof assumes that the same non-linear curves are generated by 

all n circuits. 

0 

10 

 

0 50 100 150 200 250 300 350 400 450 500 

Lookup Table Entry 

Figure 7.5 - Graph of the Scaled V01  vs. 'dist  Non-linearity Look-up Table 

7.2.3. Output Layer Training 

Using the hybrid training method of Moody and Darken [8],  the centre positions are 

fixed after the hidden layer has been trained and the training of the output layer can 

be achieved through the minimisation of a sum of squares error cost function similar 

to equation 2.7. Further, since only a single layer of linear units is being trained, the 

error surface for the output layer is a quadratic function in weight space, guarantee-

ing that a global minimum solution, corresponding to an optimal weight set, can be 

found. However, it should be noted that this weight set is only optimal, in a least 

squares sense, for the chosen centres and chosen non-linearity. It need not be the 

best solution for the actual problem itself. 

The optimal output weight set for an RBF can be found by solving the following 

equation for A. 

17DxN = DXMAMXN 	 (7.3) 

In this equation, Y represents the D by N matrix of N network output unit responses 

for each of the D training vectors, 1 is the D by M matrix of the M hidden layer 

responses for each of the input vectors and A is the M by N matrix of output 
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weights. If M <D, the usual case for an RBF neural network, then the pseudo-

inverse [15], I, of cJ  must be found instead of the inverse matrix :j:—i. 

Assuming that (TMXD) t  exists, then the output weight matrix can be found from 

AMXN = (DXM)YDXN 	 (7.4) 

One of the most powerful methods for matrix inversion is singular value decomposi-

tion (SVD) [151], and it was used in this hardware simulator program. One major 

advantage of using SVD is that the optimal output weight set for an RBF network 

can be found in a single execution of the algorithm, unlike training an MLP using 

backpropagation and gradient descent. Thus, using SVD allows the output weights 

for all the networks to be found quickly, without the need to optimise the learning 

rate, or the number of epochs, for an iterative algorithm. 

The main disadvantage of using the SVD algorithm is the large memory requirement 

for storing the various matrices during normal program operation. The memory 

required scales with both the size of the training set and the size of the network and 

this was why only small networks and 100 vector training sets were used. 

7.3. Full Precision Software Experiments 

The main software experiments carried out with the simulator investigated the ability 

of the centre circuit, using transistor and Gaussian non-linearities, to solve the four 

classification problems. In addition, the simulator was also used to investigate possi-

ble explanations for some of the observed results. 

7.3.1. Two-Transistor Non-linearity Performance 

Initially the simulator was used to find the classification performance of RBF net-

works with different numbers of centres, for 13 non-linearities. The non-linearities 

were given different reference tags: the 11 transistor curves were numbered as shown 

in Figure 7.5, whilst the RBF using Gaussians of a single width was tagged with 11 

and the RBF with Gaussians having individual widths was tagged with 12. Each 

simulation run used 25 seeds to train RBFs with between 10 and 32 centres using the 

11 transistor and 2 Gaussian non-linearities 8 . The network size was restricted to 

between 10 and 32 centres because this was considered to be the range that would be 

The stated number of centres does not include the bias term. Separate provision was made for it within the software 
simulator. 



Chapter 7 	 161 

initially implementable on a chip - the desire with RBFs is to adequately solve the 

problem using as few centres as possible - and the small size of the training sets 

meant that the maximum number of centres had to be limited otherwise the network 

could simply be trained to act as a look-up table. 

Thus 25 sets of results were obtained for each problem for a total of 299 RBF net-

works. Mean classification results were calculated for both the training and the test 

data sets and these are tabulated in Appendix B. Figure 7.6 provides a visual display 

of the results. A summary of the best and worst classification performances are given 

in Tables 7.2 and 7.3. Table 7.4 compares the performance of the best network using 

a transistor non-linearity with the best network using a Gaussian non-linearity. 

A number of features are apparent from the results of these classification trials. 

The performance of both the transistor and Gaussian non-linearities are clearly 

problem dependent. 

There is a general tendency for the classification rate for all the training sets to 

increase with the number of centres used, Figure 7.6. Indeed, the best classifi-

cation results are usually obtained from networks with a large number of cen-

tres, whilst the worst classification performances tend to be produced by net-

works using a small number of narrow non-linearities, Tables 7.2 and 7.3. 

All the classification rate graphs have dips in them, occurring for some of the 

narrower curves, though not necessarily the narrowest. The reason behind this 

warranted further investigation and is explored in Section 7.3.2. 

• 	In some cases, the performance of the transistor non-linearity look-up table 

curves surpassed that of the Gaussian networks. This too warranted further 

research and this is considered in Section 7.3.3. 

Since the results from both the transistor and Gaussian non-linearities are similar, it 

can be concluded from these results that the designed centre circuit can be used as 

effectively as Gaussians within small RBF networks solving classification problems. 

It must be emphasised, though, that it is impossible to make general assumptions 

from these results with regard to the ability, or the lack of ability, of the new circuit to 

outperform Gaussians generally. These trials have been limited, only networks with 

a small number of units have been used, and were designed to investigate the perfor -

mance capabilities of transistor non-linearity RBFs, using the same networks with 

Gaussian non-linearities as a benchmark. From these results, all that can be stated is 

that the performance achieved using both types of non-linearity are similar and that 
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Classification_Results_Summary - All Non-linearities 

Data Set Max(%) Curve Centres Min(%) Curve Centres 

Gaussian Training 87.44 0 32 80.18 8 11 

Gaussian Test 87.78 11 14 82.27 8 11 

SpeechTraining 87.80 11 32 67.52 10 10 

Speech Test 76.67 7 29 54.13 9 10 

Sleep Training 86.65 11 32 72.21 8 10 

SleepTest 80.52 11 32 68.22 9 32 

Robot Training 86.53 2 32 58.59 10 10 

Robot Test 80.18 2 32 56.49 8 10 

Table 7.2 - Summary of the Maximum and Minimum Classification Rates 

Obtained Using the Hardware Simulator Program and all the non-linearities 

Classification Results_Summary' - Only the Transistor Non-linearities 

Data Set Max(%) Curve Centres Min(%) Curve Centres 

GaussianTraining 87.44 0 32 80.18 8 11 

Gaussian Test 87.45 10 27 82.27 8 11 

Speech Training 84.41 0 32 67.52 10 10 

Speech Test 76.67 7 29 54.13 9 10 

Sleep Training 81.51 6 32 72.21 8 10 

Sleep Test 75.10 6 32 , 	 68.22 9 32 

Robot Training 86.53 2 32 58.59 10 10 

Robot Test 80.18 2 32 56.49 8 10 

Table 7.3 - Summary of the Maximum and Minimum Classification Rates 

Obtained Using the Hardware Simulator Program and excluding the Gaussian results 

the classification performances are adequate. 
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Figure 7.6 - Graphical Illustration of the mean classification performance of the 

software simulator for the training and test sets of all 4 problems 
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Comparison of Best Transistor with Best Gaussian Non-linearities 

Data Set Best Transistor (%) Best Gaussian (%) 

Gaussian Training 87.44 ± 0.94 86.78 ± 0.53 

Gaussian Test 87.45 ± 0.29 87.78 ± 0.10 

Speech Training 84.41 ± 1.16 87.80 ± 2.24 

Speech Test 76.67 ± 2.06 73.95 ± 1.87 

Sleep Training 81.51 ± 1.59 86.65 ± 1.82 

Sleep Test 75.10± 1.54 80.52± 1.76 

Robot Training 86.53 ± 0.81 84.10± 1.87 

Robot Test 80.18 ± 0.78 78.86 ± 1.59 

Table 7.4 - Comparison of the Best Transistor Non-linearity Performance with the Best 

Gaussian Non-linearity Performance. Mean and ±1 standard deviation results are given. 

7.3.2. Curve Interpolation Investigation 

To investigate the cause of the dips in the classification surfaces displayed in Figure 

7.6, the simulation program was altered so that the region where each scaled, nor-

malised distance measure was interpolated onto the non-linearity look-up table was 

recorded for 15 centre and 31 centre RBF networks: these two networks being the 

most suitable (of the ones tested) for implementing on a chip (Section 6.2.1). The 

distances were stored for exemplar training and test vectors for all the problems and 

results from 25 seeds were obtained for the 4 training sets and the test set for the 

Speaker Recognition problem. However, due to file size limitations, only the results 

from one seed were recorded for the test sets for the remaining problems - although 

further experiments indicated using different seeds for the test sets produced almost 

identical results. 

The recorded distances were sorted into one of 500 bins, each corresponding to an 

interval between two consecutive entries in the look-up table. (Each interval corre-

sponds to an increment in 'did  of lOnA.) The frequency of the samples in each bin 

was then calculated and the results overlaid onto the two-transistor V 0  V5. 'did 

curves. The resulting graphs are shown in Figures 7.7(a)-(h) and 7.8(a)-(h). 

When the bias term is included as an additional centre, these chips would have 16 and 32 centres respectively. 
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These graphs show that in each case, the majority of the normalised distance mea-

sures are fairly small, usually lying in the first 100 to 150 bins. From the superposi-

tion of the frequency distribution graphs onto the transistor non-linearity curves, it is 

clear that these distance measures fall in the region of the steepest gradients for the 

narrowest curves: exactly where a small change in the calculated cunent could lead 

to a large change in the calculated RBF output and a potential increase in the number 

of misciassifications. This was concluded to be the reason for the dips in the classifi-

cation surfaces for the narrower non-linearities. 

Further, an explanation can also be hypothesised as to why the classification for even 

narrower curves increases. It is believed that the gradients are fairly shallow when-

ever good interpolation results are obtained. However, these interpolations could be 

occurring where the RBF outputs are consistently high (0.8 to 1.0) or consistently 

low (0.0 to 0.2). The SVD algorithm does not care, it simply finds a set of numbers 

that solves the problem in the least squares sense. Thus, as long as the distance mea-

sures are interpolated consistently onto the same area of the graph for the training set 

and test set, then the test set classification rate should be similar to that of the training 

set. 

7.3.3. Gaussian Width Investigation 

The results from the classification experiments indicated that the classification per-

formance of some of the transistor non-linearities were better than those from the 

networks using Gaussians. It was decided that this situation required further investi-

gation, considering that the widths of the transistor non-linearity networks were fixed 

before any learning took place, while the widths of the Gaussians are determined 

after the centre locations have been adapted. 

Often RBF networks with Gaussian non-linearities are developed on the premise that 

as many centres as required can be chosen to solve the problem. Heuristics such as 

distance to nearest neighbour etc. are then used to calculate the spread of the non-

linearities to ensure that input space is adequately covered. 

This is not the case for the Gaussian networks generated by the simulator program. 

Here the number of allowable centres is restricted and it was hypothesised that in this 

situation, the width heuristic used is not allowing the Gaussians to adequately cover 

input space. Meanwhile, the fixed width transistor non-linearities afford better cover-

age and hence produce a superior classification rate. 
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Figure 7.7 - Distance Interpolations for a 15 Centre RBF Network 
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To explore this hypothesis, the simulator was used to investigate the performance of 

the two Gaussian networks again, this time for progressively larger widths. Again 25 

seeds were used to train RBFs with between 10 and 32 centres and the classification 

rates for the test sets were recorded. This time, though, the heuristically calculated 

widths were varied up to 25 times the original value and the classification rates 

recorded in each case. From these measures, the mean classification rates were found 

and graphs of mean test set classification performance vs. width factor for networks 

using both types of Gaussian curves are shown in Figures 7.9(a)-(h). 

Clearly, with the exception of the 2 class Gaussian problem, the classification rate of 

all the networks increases with increasing Gaussian width. However, for most net-

works, after an initial steep rise in performance when the width factor lies between 1 

and 5, it levels off or increases at a much slower rate for further width increases. 

For the 2 class Gaussian problem, the best classification rates occur for small values 

of the width factor (up to approx. 3) and the classification rate actually decreases as 

the coverage of input space increases. This suggests this problem can be solved using 

only a small number of carefully chosen centres and that the width heuristic used is 

adequate for this problem. This should not be too surprising considering the problem 

is concerned with classifying vectors drawn from two distributions with the same 

functional form as the RBF non-linearity 

The best performance from the Gaussian networks with increased widths were also 

compared with the best transistor curves from Tables 7.3 and 7.4. These results are 

summarised in Table 7.5. The first number in the brackets in the Curve 11 and Curve 

12 columns represents the number of centres and the second number represents the 

width multiplication factor in the network producing the maximum classification 

result for each problem. 

Width Investigation - Comparison of Best Transistor and Gaussian Curves 

Data Set Best Transistor (%) Curve 11 (%) Curve 12 (%) 

Gaussian Test 87.45 ± 0.29 87.78 ± 0.10 (14,1) 87.81 ± 0.09 (13,5) 

Speech Test 76.67 ± 2.06 76.51 ± 2.08 (31,8) 76.03 ± 1.48 (13,25) 

Sleep Test 75.10 ± 1.54 85.31 ± 0.24 (32,25) 83.52 ± 0.60 (32,25) 

RobotTest 80.18 ±0.78 81.29± 1.08 (32,24) 79.72± 1.14 (32,6) 

Table 7.5 - Comparison of the Best Classification Performances of the Gaussian and 

Transistor Non-linearities. 
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From the results of the width comparison experiments, it is clear that: 

In general, when the widths of the Gaussians are increased the performance of 

the networks tends to increase also, confirming the original hypothesis regard-

ing inadequate coverage of input space by the original network. 

When the widths of the Gaussians are increased, the performances of the best 

Gaussian and best Transistor non-linearities are similar, giving further confirma-

tion that the developed centre circuits can be used as basis functions in small 

RBF networks. 

7.4. Quantisation Experiments 

Having shown the potential of the two-transistor non-linearity within RBF networks, 

the performance of the software model of the hardware was investigated when the 

neural parameters were quantised after training. 

Quantisation of the inputs and the weights is an issue relevant to many analogue, as 

well as digital, neural implementations. In the PAR chip, for example, quantisation 

is introduced through the use of chip-in-the-loop learning to train the hardware (the 

outputs are sampled in time by a RAM chip before being decoded), the use of a 

global dynamic refresh scheme where the neural weights are stored in off-chip RAM, 

and the use of DACs to generate the neural parameters and chip inputs. 

Thus it was important to have an idea as to how input and weight quantisation might 

affect the hardware. To achieve this, quantisation experiments were performed on all 

four classification problems. 

It is worth noting that in these experiments, only the performance of the the transistor 

non-linearities were investigated. Looking at the performance, of the Gaussians 

would raise issues over the need for, and best way to implement, quantisation of the 

calculated widths. This was unnecessary for the thesis. 

To perform these experiments, the software model of the hardware was again used to 

train RBF networks, to 64-bit floating point precision, using the adaptive k-means 

and SVD algorithms. The generated weight sets were quantised to the desired levels 

after network training and before the test vectors were classified. For these experi-

ments, the hidden layer and output layer neural parameters were quantised to 16-bit 

& 16-bit, 12-bit & 12-bit, 8-bit & 12-bit, 12-bit & 8-bit and 8-bit & 8-bit respec-

tively. Again 25 seeds were used for each quantisation experiment to obtain meaning-

ful results. 



Chapter 7 
	

170 

P 
C 

CS 
C,) 

CS 

U 
C,) 
5) 

C 
U 

C 
0 

•0 
CS 
U 

CS 

U 

C 
0 

•0 
CS 
U 

CS 

U 
U 
C) 

0 
U 

C 
0 

CS 
U 

CS 

U 
C) 
5) 

0 
U 

C 
0 

CS 
U 

CS 

U 
U 
C) 
b 
0 
U 

C 
0 
•0 

CS 
U 

SC 

CS 

U 

C 
0 

CS 
U 

SC 

CS 

U 
U 
C) 

0 
U 

C 
0 

CS 
U 

SC 

CS 

U 
U C) 
0 
U 

V 
Gaussian Dist. - single width Gaussian - 

5 	10 	15 	20 	2 

Width Scaling Factor 

(a) 

Speaker Rec. - single width Gaussian - 

5 	10 	15 	20 	25 

Width Scaling Factor 

(c) 

Sleep State - single width Gaussian - 

5 	10 	15 	20 	25 

Width Scaling Factor 

(e) 

Robot Location,- single width Gaussian - 

Gaussian Dim. - multi width Gaussians - 

5 	10 	15 	20 	25 

Width Scaling Factor 

(b) 

Speaker Rec. - multi width Gaussiant - 

5 	10 	15 	20 	25 

Width Scaling Factor 

(d) 

Sleep State - multi width Gaussians - 

5 	10 	15 	20 	25 

Width Scaling Factor 

(f) 

Robot Location - multi width Gaussians - 

5 	10 	15 	20 	25 	 5 	10 	15 	20 	25 

Width Scaling Factor 	 Width Scaling Factor 

(g) 	 (h) 

Figure 7.9 - Classification Performance vs. Width Scaling Factor Graphs 



Chapter 7 
	

171 

7.4.1. Parameter Quantisation 

The following simple routine was used to round the floating point weights to the 

nearest equivalent fixed point "bit" in the specified weight range. 

for all centre components I 
1* quantise value to nearest integer in "range" *1 

r(no,ai_vaiue * quant_level 
scaled_value=(int)I I 	 1+0. 5 ; 

weight_range 

1* rescale rounded value back into original range *1 

quantised_value = (double)scaled_value * range 

quant_level 

Fj 

Note that the recipe shown here is used for quantising the unipolar centre positions 

and the value of weight_range for this task is 3.0. Since the output weights and 

thresholds are bipolar, it was necessary to determine whether each of these parame-

ters was positive or negative before quantising them. The principle for quantising 

bipolar weights is the same as shown in the recipe above, except that negative 

weights have 0.5 subtracted from them before they are rounded to the nearest integer. 

The weight_range for the output weights and thresholds was found by simply dou-

bling the magnitude of the largest positive or negative weight. 

7.4.2. Classification Performance 

Rather than obtain results for many RBFs with different numbers of centres, only 

networks with 15, 31 and 63 centres were studied. This supposes that PAR chips with 

these numbers of centres, plus a bias term centre, could be fabricated. The mean and 

standard deviation of the classification results obtained from the experiments on the 

test sets of the problems are tabulated in Appendix C. 

The results from the quantisation experiments show some interesting features. 

• 	As with the original classification experiments detailed in Chapter 7, the results 

are problem dependent. 

• 	Classification performance tends to decrease as the quantisation becomes 

coarser. 

• 	The performance of the networks is greatly decreased, for all but the narrowest 

curves, when the quantisation of the output layer parameters is decreased from 
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12-bit precision to 8-bit precision. This degradation is more severe for the 

wider curves and networks with larger hidden layers. 

• 	The performance of the narrower transistor non-linearities (especially the curves 

tagged 8, 9 and 10) remains fairly constant for all the problems, despite coarser 

quantisation. 

The decrease in performance with coarser quantisation for networks with wide cen-

tres and large hidden layers is due to the system of equations describing the operation 

of the RBF network being ill-conditioned10  [152]. This phenomenon can be 

explained with reference to Figures 7.7 and 7.8 - the Distance Interpolation graphs. 

These diagrams show all the distances calculated in these problems are small, hence 

all the RBF outputs in the hidden layer will be almost identical for all but the narrow-

est of curves. Also, adding more and more wide centres tends to "flatten' input 

space, reducing the severity of the terrain and increasing the number of similar out-

puts. 

If all the hidden layer outputs in the RBF are approximately equal, then large, pre-

cise weights will be required to allow the discriminating functions in the output layer 

to differentiate between the classes - indeed, examination of the maximum weights 

produced for the different non-linearities indicated that the weight range increases as 

the non-linearities widen. 

Taking these effects into account, it can be hypothesised that, when a solution set of 

output weights and thresholds is obtained to 64-bit floating point precision using the 

SVD algorithm, it produces very precise, accurate weights for solving the problem. 

However, because the system of equations represented by equation 7.3 is inherently 

ill-conditioned for wider widths and larger networks, the performance of these net-

works depends critically on the values of these weights. Hence, as the quantisation 

in the output layer becomes coarser, more noise is added to the multiplication pro-

cess, greatly increasing the likelihood of misclassifying a vector in the ill-conditioned 

networks. 

In contrast, for the narrow curves, there is sufficient variability in the range of the 

RBF outputs in the hidden layer to allow the system to remain well-conditioned 

despite the increase in quantisation and the number of centres. Hence the classifica-

tion performance for these networks remains approximately constant. A further effect 

An ill-conditioned system is one in which small errors in the coefficients can have a large effect on the solution. 
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of this increased variability is that all the weights in the output layer of these net-

works remain small. 

Therefore, in summary, it can be concluded from these results that, when using the 

developed centre circuit as the basis function in a small RBF network, the widths 

should be kept small since this allows network performance to remain adequate and 

well-conditioned, despite the limitations introduced by quantising the neural parame-

ters. However, as shown earlier in this chapter, the narrow curves tend to produce the 

lowest classification performances due to their steep sides. 

Furthermore, these experiments have shown that the precision of the output weights 

in an RBF network has a greater effect on network performance than the precision of 

the centre locations. 

7.5. Software Experiments - Discussion 

In general, two trends were noted from the software experiments. 

• 	The performance of RBF networks using the transistor non-linearities with nar- 

row widths are unaffected by reducing the precision of the hidden layer and out-

put layer parameters. However, the narrow widths produced the poorest classifi-

cation performance in the full precision classification experiments due to their 

rapid fall-off as 'dist  increases. 

• 	The performance of RBF networks using wider widths was generally good in 

the full precision classification experiments. However, these networks were 

inherently ill-conditioned and the performance degraded as the quantisation of 

the output layer became coarser. 

Thus, it is clear from these experiments that, whilst the developed non-linearity could 

be successfully used in small, software RBF networks, the level of parameter quanti-

sation on the PAR chip - 12-bit precision in the hidden layer, 8-bit precision in the 

output layer - will degrade the classification performance of the network. The degra-

dation will be due to either the coarse quantisation in the output layer for wider non-

linearities or the rapid fall-off of the narrower non-linearities. The acceptable level 

of degradation, and hence the chosen value for VWdt,7,  will be problem specific. 

The results also show, however, that if 12-bit precision is used in the output layer, the 

performance of the reduced precision networks compares very well with that of the 

full precision network. Thus it can be concluded that the performance of RBFs using 

the developed non-linearity can be maintained if the full precision output weights are 
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quantised to 12-bits. 

7.6. Summary 

This chapter has discussed the software experiments undertaken with a specially 

developed model of the hardware. The purpose of these experiments was to investi-

gate whether the designed centre circuitry would be capable of solving a variety of 

classification problems and to discover what effect parameter quantisation would 

have on the results. In addition to describing the operation of the software simulator 

and summarising the classification results, each problem was discussed and a couple 

of interesting observations from the full precision classification experiments 

explored. 

From the results, it was concluded that the transistor non-linearity could be used in 

implementations of small RBF networks for solving classification tasks when the 

neural parameters were calculated and stored using 64-bit floating point precision. 

However, when the neural parameters were subsequently quantised after training, it 

was discovered that the classification performance of most networks suffered. Net-

works using narrow hidden layer non-linearities were unaffected by coarser parame-

ter quantisation, however these networks produced poorer classification perfor-

mances in the full precision trials. 

Thus, a hardware RBF implementation with the fixed precision parameter storage of 

the PAR chip is likely to produce degraded classification performances, on these 

problems, compared to a full precision software solution. This clearly has implica-

tions for the development of application specific chips using the pulsed analogue 

hardware developed in this work. 
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Chapter 8 

Hardware Results 

In the last chapter, the suitability of the two-transistor non-linearity for solving a 

selection of classification problems using both full precision and quantised weights 

was investigated. This chapter describes the results and observations from hardware 

classification experiments using the PAR chip. 

Several 2 input, 2 class Gaussian distribution problems, of differing complexity, were 

used for these experiments. A description of how the problems were cast into hard-

ware is given, along with a discussion of the constraints imposed on the hardware 

experiments. The Gaussian distribution problems were chosen for the hardware 

demonstrations not only because they require the minimum external hardware for 

implementation, but because it is also possible to visualise the distribution of the 

training vectors and test vectors in input space. 

Classification results from the chip, taken both before and after learning, are pre-

sented and observations from the learning experiments are discussed. A summary of 

the conclusions from the hardware experiments is given, and some consideration is 

given to the issues that arose whilst trying to solve problems on a pulsed analogue 

RBF chip whose internal circuits had been proven to function correctly. 

8.1. Classification with the PAR Chip 

The remainder of the work in this thesis attempts to assess the performance of the 

PAR chip on several problems, demonstrate that it can be trained in-the-loop and 

investigate if any further constraints are imposed on the RBF architecture through 

implementing it in VLSI. 

The object of the hardware experiments was to discover what the classification per -

formances of the chips were for problems of differing complexity using unadapted 

software generated weights, and then investigate if, and by how much, this perfor -

mance could be adapted using chip-in-the-loop learning. The importance of the 

work is not so much the actual classification rates, but the performance of the hard-

ware network, both before and after learning, compared to the software network. 
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The results of the hardware experiments will be presented in the next section; the 

remainder of this section describes how the hardware and the training procedure was 

configured for them. 

8.1.1. Training Data and Test Data 

For the hardware experiments, three different Gaussian distribution problems were 

created. These were labelled Easy, Intermediate and Hard to indicate their complex-

ity. 

The Easy problem consisted of two separate, distinct, linearly separable distribu-

tions. The Intermediate problem consisted of two distributions that overlapped 

slightly, whilst the Hard problem consisted of two over-lapping, non-linearly separa-

ble distributions, with one distribution embedded in the other. The Hard problem is 

therefore similar to the one used in the software experiments in Chapter 7. 

Figures 8.1 to 8.3 illustrate the input space distributions of the training set and test set 

for the problems. All problems consisted of a 200 vector training set and a 200 vec-

tor test set. The circles in the diagrams indicate the range of the distributions: each 

circle is located on the centre of the distribution and has a radius equal to twice the 

standard deviation of the distribution. 

All the data files were quantised to 12-bit precision before being used to generate the 

software solution sets. Thus the weights to be downloaded to the PAR chip had 

already been tailored to the quantised vectors to be presented to the hardware. 

8.1.2. Generation of Weight Sets in Software 

The software simulator described in Chapter 7 was used to generate the software 

solutions. As usual, the weight sets were found to 64-bit floating point precision 

using a combination of the adaptive k-means and the SVD algorithms. This time, 

however, the quantised training vectors were used in the training process. 

Once the simulator was trained, the unquantised centre, output weight and threshold 

values were saved to files, ready to be downloaded to the hardware. These centre, 

output weight and threshold files were then used by the simulator to classify the 

training set and test set data. The classification rate and mean square error (MSE) 

value were obtained from the software simulator using both the full precision neural 

parameters and versions of the centre, output weight and threshold files quantised to 

12-bit, 8-bit and 8-bit precision respectively. 
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By using the software model of the hardware, it was possible to generate several 

solution sets to the problems (through the use of random number generator seeds) 

and find their classification performance in software both before and after quantisa-

tion. All that remained was to download these solutions sets to hardware and investi-

gate their classification performance there. 

8.1.3. Network Set-Up 

The PAR chip has 15 centres, so a 2 input, 15 centre, 2 output RBF was the only net-

work considered for solving the problems. 

Since the chip has 8 inputs, the PAR Development Board was hardwired such that 

inputs 0, 2, 4 and 6 all received one component of each 2-dimensional vector, with 

inputs 1, 3, 5 and 7 all receiving the other. By interleaving the inputs in this way, all 

the hidden layer circuits were utilised and any lateral across-chip variations should 

have averaged out. 

8.1.4. Chip-in-the-Loop Learning 

The hardware was trained using chip- in- the- loop learning - a process that allows a 

PC host to "train" the chip. 

The first stage of this learning process involves training an ideal software version of 

the RBF under consideration to find a solution set of software weights for the prob-

lem. This set of centre positions, widths and output weights and thresholds is then 

downloaded to the hardware. However, using software generated weight sets in a 

hardware network generally leads to very poor performance: the software network 

has not been trained to account for hardware idiosyncrasies during learning. 

By performing additional training iterations with the chip performing the feedfor-

ward calculations and the PC host calculating the weight updates based on a model 

of the network, the software generated weights can be adapted to the hardware envi-

ronment, Figure 8.4. This is the second stage of the chip-in-the-loop learning process 

and usually improves the performance of the hardware. 

8.1.5. Training Set-Up 

Owing to the vast number of variations that could be made to the training schedules 

for the hardware, and because of the limited time left for completing the project, a 

number of constraints had to be placed on the hardware learning experiments. 
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Easy Problem - Training Data 
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for the Easy Problem 
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Intermediate Problem - Training Data 
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Hard Problem - Training Data 
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Hardware RBF 

A C 

Figure 8.4 - Schematic Diagram of the chip-in-the-loop learning scheme 

Only two widths of transistor non-linearity were considered for the hardware 

experiments, one narrow width and a wider one. These RBF Output vs. I 

non-linearities were used to find the original software solutions and subse-

quently by the PC program executing chip-in-the-loop learning. The non-

linearities were presented to the software as look-up tables, having been gener-

ated using an HSPICE model of the circuit in Figure 6.9(a) - V 1  was set to 

3.8V, whilst was set to 2.OV for generating the narrow curve and 1.OV for 

the wider one. Figure 8.5(a) shows the RBF Output vs. I di,, representation of the 

non-linearities used by the software, whilst Figure 8.5(b) shows the equivalent 

RBF Output vs. IV - V ctre I non-linearities for the same Vjjj, and Vh 
values 11 . 

These latter curves have been generated by an HSPICE model of the complete centre circuit in Figure 6.7, assuming 
there is zero bulk-source voltage. 
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RBF Output vs. Idist 
	

RBF Output vs. Yin - Vcentrel 

	

1.0 
	

1.0 

	

0.8 
	

0.8 

	

& 0.6 
	

0.6 

0 
	

0 

	

0.4 
	

0.4 

	

0.2 
	

0.2 

00 1 	 - 	 ------ 	 I 

0 50 100 150 200 250 300 350 400 450 500 
0.0 

0 	0.3 0.6 0.9 1.2 	1.5 1.8 2.1 2.4 2.7 3.0 

IVin-Vcentrel=OV 	Look-Up Table Entry 	IVin-Vcentrel=3V 	 Win - Vcentrel (V) 

(a) 	 (b) 

Figure 8.5 - (a) The RBF Output vs. 'dist  graphs used for the hardware 

experiments and (b) the equivalent RBF Output VS. lVi,, - Vcentre l characteristic 

Only the output layer weights were altered in the training experiments. This 

was done for three reasons. Firstly, since the output layer is linear, its error sur-

face is a quadratic function of the weights and an optimal output weight set 

exists. Gain and offset errors in the hardware were assumed to have moved the 

minimum of the error surface, thus the software generated weight set corre-

sponds to a non-minimal eiror for the chip. Further training of the output layer 

would help each REF find a better solution, closer to the ideal minimum. Sec-

ondly, altering all the neural parameters in both layers using gradient descent 

would make the training process non-linear, with the same pathologies as simi-

larly trained MLPs. This was not desirable. Finally, the limited time available 

meant that any training had to be simple if any conclusions were to be reached. 

Batch-mode LMS updating was used to alter the output weights and thresholds. 

Although this is not an optimal training technique, it provided two distinct 

advantages over other techniques such as stochastic mode gradient descent or 

weight perturbation [153, 154]. Firstly, since the weight updates are accumu-

lated over the entire training set, the order of presentation need not be changed 

between epochs. Secondly, the weight updates are only made at the end of each 

epoch, significantly reducing the number of write instructions to the output 

weight RAM and consequently reducing the training times. 

The centres, widths and output weight and threshold values were stored in the 

PC as 64-bit floating point numbers. Consequently they were only quantised 

when being downloaded to the development board RAMs. Storing the weights 

in the PC to this precision helps avoid any update precision problems that may 
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be encountered during learning [148, 155] without the need to develop new 

training algorithms [156, 19]. 

Finally, to avoid overflow problems in the DACs during learning, all the output 

weights and thresholds were normalised and clipped to the original weight 

range before being downloaded. Thus weights could continue to grow in the 

software model, but were assumed to have saturated by the hardware if they 

exceeded ±0.5 the original range. (The original range for each software weight 

set was calculated by doubling the magnitude of the largest positive or negative 

weight.) 

8.2. Hardware Results 

In order to assess the performance of the hardware, the neural parameter solution sets 

generated in software were downloaded to the classification system and the training 

set and test set for each problem were fed through the network 10 times. The results 

from these feedforward presentations were accumulated and averaged and are pre-

sented as the Initial hardware results in the following tables. The output layer of 

each RBF was then trained and, once this was complete, the same data sets were 

reprocessed a further 10 times using the new neural parameters. The classification 

results were again accumulated and averaged and form the Final results in the same 

tables. The hardware results presented in Tables 8.2 to 8.5 are the average results 

from each set of 10 ten passes, whilst the errors represent ±1 standard deviation of 

the results 12 . 

The hardware system used to generate the hardware results is discussed in Appendix 

D, along with a description of the software used to control the board and process the 

results. A performance anomaly was found with the software control of the board and 

this is also discussed in Appendix D. 

Experimentation with the classification system confirmed that the LMS training pro-

cedure was dependent on the learning rate, i. For these experiments, the learning 

rates were chosen to allow the network. to be trained fairly rapidly and the learning 

rates used for -the different problems are summarised in Table 8.1. Momentum was 

also added (a = 0. 9) to ensure that weight changes were influenced by the local ter-

rain of the error surface. 

2 Standard deviations are not presented for the MSE results because the variability in them was less than 0.35% for all 

the forward passes. 
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1V Curve 2V Curve 

Problem i Epochs 77 Epochs 

Easy 0.01 3 0.001 4 

Intermediate 0.05 100 0.01 20 

Hard 0.2 100 0.005 20 

Table 8.1 - Summary of the Learning Rate and Training Epochs 

for the Different Problems 

The learning rate and number of training epochs were not optimised for these experi-

ments. To ensure rapid training, as high a learning rate as possible was used to show 

the chip could be trained. Training for the simplest problem was stopped as soon as 

the problem was solved (100% classification for the training set). Training was termi-

nated on the other networks after a fixed number of epochs. The mean squared error 

(MSE) and the classification performance of all the networks were monitored during 

training. 

8.2.1. Narrow Non-linearity Results 

The classification performance and MSE results for a single PAR chip, using weight 

sets generated from a single seed, and a VWdh  value of 2V, are presented in Tables 

8.2 and 8.3 respectively. Several observations were made from these results. 

There is very little difference in either classification performance or in the value 

of the MSE of the trained network when full precision and quantised weights 

are used in the software model of the hardware. 

In the hardware results, the initial classification performance decreases and the 

initial MSE increases as the problem becomes more difficult. 

When chip-in-the-loop learning is implemented, the MSE for the training set 

decreases for all three problems. Moreover, the performance on the test set, both 

in terms of the classification performance and MSE, is similar to the perfor-

mance on the training set both before and after learning. 

Although the MSE decreases with LMS learning, the total classification perfor-

mance does not necessarily increase significantly. 

The final MSE produced by the hardware is always much greater than that 

obtained from the software and the classification results from the trained hard- 

ware does not necessarily reflect those obtained in software using the original 
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Classification Performance - 2V Curve 

Chip 5, Seed 100 Software Hardware 

Problem Data Set Unquantised Quantised Initial Final 

Easy Training 

Test 

100.0 

98.0 

100.0 

98.0 

95.80 ± 0.48 

95.05 ± 0.50 

99.65 ± 0.34 

99.40 ± 0.21 

Intermediate Training 

Test 

95.0 

92.5 

95.0 

92.5 

89.05 ± 1.26 

92.50 ± 0.71 

91.80 ± 0.59 

94.95 ± 0.37 

Hard Training 

Test 

84.5 

88.8 

85.0 

88.0 

72.90± 1.10 

74.35± 1.20 

73.75 ±0.35 

74.05 ±0.37 

Table 8.2 - Classification Performance Result Summary for the 3 problems using a 

single chip, a single seed and a Vdh  voltage of 2V 

Mean Squared Error - 2V Curve 

ChipS, Seed 100 Software Hardware 

Problem Data Set Unquantised Quantised Initial Final 

Easy Training 

Test 

1.453x10 2  

1.890x10 2  

1.456x10 2  

1.885x10 2  

2.206x10' 

2.21 1x10' 

2.038x10' 

2.038x10 1  

Intermediate Training 

Test 

4.187x10 2  

3.478x10 2  

4.188x10 2  

3.496x10 2  

2.418x10' 

2.407x10 1  

1.641x10' 

1.568x10 1  

Hard Training 

Test 

1.175x10' 

9.796x10 2  

1.175x10' 

9.776x10 2  
2.440x10' 

1  2.434x10' 

2.166x10' 

2.112x10' 

Table 8.3 - MSE Result Summary for the 3 Problems using a single chip, a single 

seed and a V Width  voltage of 2V 

software weight sets. 

The hardware performance for the most difficult problem after training is far 

poorer than the software performance. 

When using the hardware to process the data sets, performance variations in 

both the classification performance and the MSE were noted when using both 

the original software generated weight sets and the weights sets obtained after 

training. 
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The significance of these results will be discussed in greater depth later. 

8.2.2. Wider Non-linearity Results 

The results obtained for a single chip using weight sets generated from a single seed 

for all three problems and a VVjdth  value of IV are presented in Tables 8.4 and 8.5. 

The following observations were made from these results. 

Unlike the results obtained when V V jdth = 2V, there are greater discrepancies 

between the unquantised and quantised software results, for both the classifica-

tion performance and the network MSE. Furthermore, the discrepancy increases 

as the problem becomes more difficult. 

For the training conditions imposed on the hardware network, there is a signifi-

cant increase in classification performance, but only a relatively small decrease 

in MSE after chip-in-the-loop learning. 

The initial hardware classification performance is far poorer for all three prob-

lems when the wider non-linearity is used. 

Classification performance and MSE performance variations were again noted 

in all the forward pass experiments. 

8.2.3. Chip and Seed Variations 

To investigate the performance variations, under the same training conditions, for dif-

ferent chips or when different random number generator seeds were used, further 

hardware experiments were carried out using different seeds and different chips to 

solve all three problems. For these experiments, V, id h was fixed at 2V. 

The results from these experiments are tabulated in Appendix E and the observations 

are summarised below. 

The final classification performance, final MSE and the variation of the MSE 

during learning all depended on the chip or seed used in the experiment. 

Although every experiment produced a decrease in the MSE for the network, 

again the classification performance need not improve for the Intermediate or 

Hard problems. 

Quantising the weights in software made very little change to either the classifi-

cation performance or the MSE performance. These results were in agreement 

with those obtained for the initial experiments listed in Tables 8.2 and 8.3. 
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Classification Performance - 1V Curve 

Chip 5, Seed 100 Software Hardware 

Problem Data Set Unquantised Quantised Initial Final 

Linear Training 

Test 

100.0 

99.0 

99.0 

99.0 

73.80 ± 2.00 

76.30± 1.55 

99.50 ± 0.53 

99.10 ±0.61 

Intermediate Training 

Test 

95.5 

96.0 

94.0 

97.0 

49.15 ± 1.23 

48.50± 1.31 

84.00 ± 0.56 

84.85 ±0.63 

Hard Training 

Test 

85.5 

79.5 

72.5 

73.0 

34.90 ± 1.73 

34.80 ±2.99 

69.45 ± 0.64 

72.15 ± 0.75 

Table 8.4 - Classification Performance Result Summary for the 3 Problems us- 

ing a single chip, a single seed and a VWd(h  voltage of IV 

Mean Squared Error - lv Curve 

Chip5, Seed 100 Software Hardware 

Problem Data Set Unquantised Quantised Initial Final 

Easy Training 

Test 

1.414x10 2  

1.436x10 2  

5.051x10 2  

4.908x10 2  

2.383x10' 

2.380x10' 

2.343x10' 

2.343x10' 

Intermediate Training 

Test 

5.906x10 2  

4.272x10 2  

7.800x10 2  

6.104x10 2  

2.478x10' 

2.476x10' 

2.232x10' 

2.215x10' 

Hard Training 

Test 

1.167x10' 

1.025x10 

2.501x10' 

2.198x10' 

2.498x10' 

2.498x10' 

2.431x10' 

2.418x10' 

Table 8.5 - MSE Result Summary for the 3 Problems using a single chip, 

a single seed and a Vdl,1  voltage of 1V 

The classification results and MSE results again varied between each forward 

pass when using both the untrained and trained weight sets. 

Software and hardware performance again decreased as the problem became 

more difficult. 

Again the performance, after training, for the most difficult problem is signifi-

cantly poorer than that obtained from the software. 
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8.2.4. Additional Observations 

In addition to the observations already listed for the hardware experiments, several 

others were noted. These are summarised below. 

• 	The performance improvements noted in these trials were all obtained in a short 
number of epochs using a high learning rate. 

• 	When the same chip was trained under exactly the same conditions, it was 

observed that, except for small variations due to noise, the MSE decreased in 

the same way each time, Figure 8.6. For the experiments shown in Figure 8.6, 

the learning rate was set to i = 0.005, a momentum term of a = 0.9 was used 

and the network was trained for 50 epochs. 
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Figure 8.6 - (a) The variation of the MSE for the Intermediate and (b) Hard 
problems for several learning runs under the same conditions 

• 	Although the total classification performance for some networks may not appear 

to have altered significantly as a result of LMS learning, the proportion of each 

class correctly identified did change radically. Class 1 was always quickly pre-

ferred to Class 2 and the proportion of Class 2 identified recovered after an ini-
tial drop, Figure 8.7. The Hard problem was used for the simulation shown in 
this figure, with a learning rate of 0.005 and momentum term of 0.9. 

8.3. Discussion of the Hardware Experiments 

Before drawing conclusions from the observations of the hardware learning experi-

ments, the limitation of the experiments will be discussed along with some of the fea-
tures of the learning environment. 
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Figure 8.7 - (a) The variation of the MSE and (b) the classification rate during 

hardware training 

8.3.1. Use of LMS Learning 

The main disadvantage with LMS learning is that the best value for the learning rate, 

and the number of training epochs, must be determined experimentally. If the learn-

ing rate is too high, the training will be quite fast, but will also be coarse since large 

weight changes will be made at the end of every training epoch. The results of the 

hardware experiments indicate that the learning rate used was too high. 

If a small learning rate was used, the training times in this study would have been 

prohibitively long, although a superior performance is likely to have been obtained. 

However, if the learning rate is too small, then the analogue noise present in the hard-

ware could dominate, rendering any weight changes insignificant. The best solution, 

therefore, would use an adjustable learning rate that starts off large and is reduced as 

learning proceeds. 

So, although these experiments confirm that RBF networks can be cast into pulsed 

analogue VLSI and can have their performance adapted using LMS learning, the 

results obtained are unlikely to be optimal. Many further experiments will need to be 

carried out before definitive results regarding the ability of the hardware to emulate 

software performance can be obtained. 

However, the results using LMS learning are encouraging nonetheless. 

8.3.2. Training Times 

The training times for the PAR chip were fairly long, with the vast majority of time 

spent interrogating the Output RAM chip. The long training times were principally 

due to the slow clock speed of the IBM PS2 286 PC used to control the training 
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process. By using a faster PC, it will be possible to increase the training speed, allow-

ing more training epochs to be completed in a given time interval. Faster training 

times will also ailow smaller values of learning rate to be tried, without incurring 

prohibitively long training times. 

8.3.3. Biased Classification 

It was noted with all three problems that the classification system was heavily biased 

towards one of the classes - Class 1, the denser cluster in the Intermediate and Hard 

problems. 

As observed in the experiments, even although the total classification performance 

did not seem to vary for some of the experiments, the proportion of each class cor-

rectly identified did vary. As training proceeded, the classifier quickly learned to 

identify all of Class 1 correctly, usually at the expense of Class 2. Thus, although the 

total classification rate for some of the problems did not seem to alter by much, the 

proportion of each class correctly classified varied significantly. 

The biased classification in hardware, Figure 8.7, was also observed when a software 

version of the LMS algorithm was applied to these problems, Figure 8.8. For the 

results in this figure, the Hard problem was used, the output weights were initialised 

to small random numbers and a learning rate of i = 0.000005 was applied without 

momentum. 

Thus, since there are clear similarities between the hardware and software learning, 

the biased classification was concluded to be a feature of the chosen problems and 

the LMS learning rule, not of the chip or development board. 
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Figure 8.8 - (a) The variation in MSE and (b) the classification rate for LMS learning 

in software 
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For these biased classification results, the following hypothesis is proposed by way of 

an explanation. For the Gaussian distribution problems, misclassifying vectors in the 

denser distribution (Class 1) leads to a higher cost, for the MSE cost function, than 

misclassifying vectors in the less dense distribution. Thus, with LMS learning, the 

greatest reduction in the cost function comes from identifying all of the denser clus-

ter initially, with further reductions occurring as a result of beginning to correctly 

classify more vectors of Class 2, whilst still correctly classifying all the vectors of 

Class 1. 

8.3.4. Size of the Final MSE 

It was noted that the size of the final MSE for all the networks was far larger than the 

MSEs obtained in software. For the results from the Easy problem, this was due to 

stopping the training once 100% recognition of the training set occurred. However, as 

shown in Figures 8.6(a) and (b), after an initial decrease, the MSEs for the 

Intermediate and Hard problems level off. 

The reason for the difference between the hardware and software MSE is due to cast-

ing the RBF algorithm into VLSI [157], and using dedicated circuits to approximate 

the arithmetic functions usually carried out by the CPU in a computer. For the classi-

fication system incorporating the PAR chip, the difference in MSE performance is 

due to a combination of the strength of the synapse and the accepted widths for the 

maximum and minimum pulse widths from the classifier. 

8.3.4.1. Synapse Strength 

The DYMPLE synapse was designed to be cascadable. Each synapse is connected to 

the local 5pf capacitance it has been designed to charge or discharge by 1V in 10us. 

(A l0jis input pulse corresponds to a hidden layer output neural state of 1.0). 

A full positive synaptic weight can charge the capacitor by IV, whilst a full negative 

weight discharges it by this amount in lOjis. However, when N synapses are cas-

caded in a synaptic column, the capacitance to be charged or discharged becomes 

5Npf. This capacitance will only be charged or discharged by 1V if all the synaptic 

weights are fully positive or fully negative respectively and maximum input pulses 

are applied to all the synapses. 

For the problems used in these experiments, the weights in the column were dis- 

tributed between the maximum and minimum limits. Also, due to the nature of the 
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RBF paradigm, each input pulse to the multiplier will not have the maximum width. 

Thus it is impossible to fully charge or discharge the distributed capacitance by 1V 

during normal operation, ie the synapse is not strong enough, and it is impossible to 

produce the acceptable maximum and minimum output pulse widths. 

8.3.4.2. Acceptable Pulse Widths 

For this classifier, the input vector is assigned to the class whose output unit produces 

the largest width of output pulse. Ideally, the output unit for the correct class would 

output a maximum width pulse (220 RAM locations) whilst the unit for the other 

class would produce a minimum width pulse (30 RAM locations). These represent 

the ideal acceptable maximum and minimum pulse widths the classifier is trained to 

produce. 

However, as discussed above, the synapse was not strong enough to charge or dis-

charge the total output capacitance by an amount that would allow these pulse widths 

to be generated. Thus for each vector, both output pulses lay between the ideal maxi-

mum and minimum widths. 

Within the classifier, the controlling software simply assigned the input vector to the 

class associated with the output producing the widest pulse, and calculated the MSE 

from the difference between the ideal and actual output pulse widths for the output 

units. This means the defined limits for the pulse widths have a large effect on the 

value of the MSE, although the classification performance can be good even if the 

network MSE is large. 

The residual MSE can be reduced if the accepted minimum pulse width is increased 

and the accepted maximum pulse width is reduced in the controlling software, Figure 

8.9. 

8.3.4.3. The Effect of Altering the Acceptable Pulse Widths 

To investigate the effect the defined pulse width limits had on the residual MSE, the 

acceptable pulse widths were altered and learning re-started. Figures 8.10(a) and (b) 

show the variations in network training, using different acceptable pulse widths, for 

both the MSE and the classification rate. 

These results were obtained from the Hard problem using a defined maximum 

pulsed width of 220 RAM Locations and a defined minimum pulse of 30 RAM Loca- 

tions, a maximum pulse width of 177 RAM Locations and a minimum pulse width of 
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Figure 8.9 - (a) The MSE is calculated by summing the squared differences between 

the actual and acceptable pulse widths. (b) If the acceptable pulse widths are altered, 

the MSE can be reduced. 
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Figure 8.10 - Altering the acceptable pulse widths for correct classification (a) lowers 

the final MSE and (b) increases the performance for the network 

77 RAM Locations, and finally a maximum pulse width of 150 RAM Locations and 

a minimum pulse width of 100 RAM Locations. Each training run consisted of 150 

learning epochs using a learning rate of ii = 0.0005 and a momentum term of a = 0.9. 

Clearly from these results, the values for the MSE decrease and the classification 

rates increase, whilst following the same trend, as the difference between the maxi- 

mum and minimum pulse widths is reduced. Indeed, the overall classification rate for 
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the 150 and 100 RAM Location limits is almost 80%, higher than the performance 

obtained in the original hardware experiments (Table 8.2) and 5% short of the perfor-

mance obtained in software for the training set of the Hard problem. 

Therefore, these results indicate that improved performance can be obtained from the 

hardware if both the learning rate and the defined acceptable pulse widths are altered. 

Thus the maximum and minimum acceptable pulse widths will also need to be deter-

mined empirically for all problems, further increasing the complexity of applying the 

chips to specific applications. 

The improved performance obtained using the 150 RAM Location and 100 RAM 

Location limits may not be too surprising, though, as the following explanation sug-

gests. 

When the difference between the defined maximum and minimum pulse widths is 

large, the weight magnitudes will grow as the synapse tries to charge or discharge 

C(, Ut  to re-produce the desired output pulse widths and reduce the value of the MSE. 

However, because the synapse is not strong enough, the actual output pulses will 

never be longer than 220 RAM Locations nor narrower than 30 RAM Locations. 

Therefore, only unipolar weight changes will be made, the synaptic weights will 

never decrease in magnitude and will eventually saturate at the positive or negative 

extremes of the original hardware weight range. When this occurs, the network per-

formance cannot improve further and the MSE levels off. 

Reducing the difference between the defined limits of the pulse widths effectively 

strengthens the synapse. The voltage changes required to reproduce the defined 

pulses are smaller, the defined extremes can be exceeded by the actual pulse widths 

and bi-directional weight changes can occur. Now the synaptic weights do not satu-

rate and increase or decrease in magnitude, as required, to reduce the network MSE 

and produce the defined output widths. Since the weights do not saturate, the network 

can continue to improve its performance until the optimal classification rate is 

reached (ideally) or the VLSI constraints prevent further improvement. 

8.3.5. Differences Between Software and Hardware Results 

Other reasons for the differences between the hardware and software results could be 

due to differences between the hardware RBF implementation and the software 

model used for chip- in- the-loop training. 
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The software uses models (formulae, look-up tables, ideal multiplication and addi-

tion) to represent the operation of hardware circuits. The hardware itself uses the 

characteristics of MOS transistors and voltage ramps to reproduce the RBF opera-

tions. It has been assumed during this work that the software model approximates 

the operation of the hardware. How well this has been achieved has not been investi-

gated. However, if there are built-in differences between the software model and the 

hardware, it may not be possible to train these out. Fundamental differences between 

the two include the following. 

Precision of the Weight Storage and the Feedforward Calculations - All the 

weights stored in the hardware have limited precision, as do the feedforward calcula-

tions. Operations in the software model are carried out to 64-bit floating point preci-

sion using using full precision or quantised parameters. Thus the precision in the 

hardware may not be high enough to allow it to emulate the software solution for 

more complex problems. 

Shape of the Hidden Layer Non-linearity - The actual hidden layer non-linearity 

need not be exactly the same shape or height as the non-linearity modelled in 

HSPICE. Improved learning may be possible by determining the actual shape of the 

on-chip non-linearity and using this in the software model for finding the initial 

weights sets and performing subsequent in-the-loop training. 

Location of the centres - The location of the centres in the hardware is affected by 

charge injection, whilst those in the software model are not. The centres and widths 

could also be trained using in-the-loop training, although this has not been attempted 

in this work. Training the centres and widths in this way may help to improve the 

network performance. 

Noise - The hardware is affected by noise, the software model isn't. Whilst noise 

does not prevent learning, it may stop the hardware from reaching as good a solution 

as the software. 
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8.4. Hardware Experiments - Conclusions 

Considering the limitations imposed on the hardware experiments, and the features of 

the classification system and Gaussian problems discussed in the last section, the fol-

lowing conclusions were drawn from the experiments. 

Since a decrease in the MSE occurs for all the training experiments, and the per-

formance of the test set mirrors that of the training set both before and after 

learning, it was concluded that LMS learning had been successfully imple-

mented, and the hardware could be trained in-the-loop to account for hardware 

non-idealities. This is similar to the results obtained in other studies of imple-

menting neural networks in hardware [12, 63, 158, 71]. 

Inherent analogue noise does not prevent learning, in agreement with several 

other studies [13, 158, 71], but it does affect the classification and MSE perfor-

mance during separate passes of the data through the network. 

The higher classification performance and lower MSE obtained with VWdt/1  set 

to 2V, compared to when it was set to 1V, indicates that the 2V curve is more 

suited to solving these classification problems than the 1V curve, for 8-bit out-

put layer precision. This is in agreement with the weight quantisation experi-

ments conducted in Chapter 7. 

The results of the quantisation experiments in Chapter 7 indicated that a 

decrease in performance was likely when the PAR chip was used as a classifier. 

However, the final hardware results for the Easy problem (for both the 1V and 

2V curves) and the Intermediate problem (for the 2V curve) indicate that the 

capability of the PAR chip to produce excellent classification results, compara-

ble to full-precision software results, depends to some extent on the complexity 

of the problem. 

For these experiments, as the problem becomes harder, the difference between 

the full precision software results and the final hardware results becomes unac-

ceptably large. This inability to replicate the software performance for the more 

difficult problems was concluded to be due to either using inappropriate param-

eter limits in the learning system, or to differences between the software model 

and the actual hardware, principally the reduced precision in the hardware. 

Under the same training conditions, for a given chip and a given initial weight 

set, network training in terms of the change in the MSE proceeds in the same 

manner during different chip training runs. However, although the shape of the 
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MSE reduction is the same, each training run is affected by random noise, so 

the precise value of the MSE varies between the runs, Figure 8.6. 

The experiments indicated the problems could be solved using different seeds 

and different chips. However, given that different chips will have different off -

set and gain variations to be trained out, it is recommended that each chip is 

trained individually, as also stated in [158]. 

Whilst it has been proven that RBFs can be implemented in pulsed analogue 

VLSI, from the discussion in this chapter it is apparent that questions remain 

regarding the effective training of pulsed hardware RBF chips in-the-loop and 

their applicability to real world applications. Further research should now be 

directed towards studying the training of hardware implementations of Radial 

Basis Function neural networks. It is recommended this research concentrates 

on investigating the learning algorithms used for in-the-loop training, and study-

ing the validity of the software models used, and the assumptions made, when 

simulating the operation of the hardware for training purposes. Fruitful 

research in this area will allow a fuller understanding of the constraints pulsed 

analogue VLSI places on the RBF architecture, and this will subsequently allow 

the true potential of hardware RBFs, for real applications, to be assessed. 

8.5. Summary 

This chapter has presented the results obtained from the classification experiments 

carried out with the PAR chip. 

The results show the PAR chip is capable of being trained to solve a range of classifi-

cation problems, but that its performance is variable and appears to depend both on 

the complexity of the problem and the parameters used in the hardware learning 

algorithm. 

Probable reasons for the discrepancies between the hardware and software results 

were presented, and some inherent features of the classification system and the Gaus-

sian distribution problems were discussed. 

Further, it was concluded that, whilst the capability of using the developed pulsed 

RBF chip as a classifier had been demonstrated by this work, issues remained regard-

ing the optimal training of the developed hardware in-the-loop. Only by addressing 

these issues can the true potential of pulsed RBFs for real applications be assessed. 
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Chapter 9 

Summary and Conclusions 

This chapter draws together all the work detailed in the preceding chapters, sum-

marising the work completed at various stages of the project and presenting the con-

clusions reached at each stage. 

9.1. Overall Project Summary 

This project has investigated the circuit, system and operational issues affecting the 

implementation of the Radial Basis Function neural network architecture in pulsed 

analogue VLSI. In order to realise this aim, the goal of the work was the production 

of a functioning RBF demonstrator chip that was able to solve classification prob-

lems. The production of the demonstrator and its application as a classifier served as 

a vehicle for the investigation. 

To achieve the project goal, several hybrid pulsed circuits, operating using PWM, 

were designed and developed. Furthermore, to investigate the functionality of the cir-

cuits, assess their operation and highlight any potential problems, the DYMPLES and 

RHO test chips were fabricated and tested. 

After drawing appropriate conclusions from experiments conducted on the two test 

chips, some circuit modifications were made and the final demonstrator chip - the 

PAR chip - was fabricated. Subsequent hardware measurements were made using the 

PAR chip to assess the functionality of the modified circuits. 

Software experiments were performed to investigate the performance of the devel-

oped two-transistor non-linearity circuit and see how it compared with Gaussian non-

linearities when both were used as the hidden layer non-linearity in small RBF net-

works solving a selection of classification problems. 

Subsequent software experiments were also performed to investigate how the classifi-

cation performance of the hardware network would alter if the hidden layer and out-

put layer neural parameters were quantised. From a consideration of the results from 

the quantisation trials, it was possible to determine which of the non-linearities 

should give the best on-chip performance. 
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Neural parameters for a small number of networks were then generated in software 

for a number of two-class Gaussian distribution problems. These parameters were 

downloaded to the PAR chip and initial classification results from the hardware were 

recorded. Subsequent classification measurements were also made after the output 

layer of PAR chip had been given some additional training using a chip- in- the-loop 

implementation of the LMS algorithm. 

From the hardware experiments, it was possible to draw conclusions about the per-

formance of the hardware, compare it to the performance of the software model and 

hypothesise as to the causes of the observed differences. 

The development of the PAR chip and its application to 2-class classification prob-

lems realised the goal of this project. As a direct result, it was also possible to fulfil 

the aim expressed in Section 1.4. 

9.2. Detailed Summary and Conclusions 

This section summarises in more detail the issues addressed and the work undertaken 

at each stage of the project. The conclusions reached as a result of each piece of 

work are then presented. 

9.2.1. Introduction and Background 

Summary 

The concept of discriminant functions in pattern classifiers was reviewed as a prelude 

to introducing the MLP and RBF neural architectures. The operation of both neural 

paradigms was discussed, along with methods for training them. 

Having introduced the theoretical background, the operating modes of the CMOS 

transistor was discussed. The motivations for producing digital and analogue hard-

ware neural networks were reviewed and examples from the literature of complete 

CMOS RBF networks, or their constituent parts, were presented. 

The hybrid pulse stream neural technique was then reviewed, and circuits from the 

EPSILON Cell Library were used to illustrate the elegance of both PWM and PFM. 

Finally, the motivations for this project were discussed and the scope of the investiga-

tion was defined. 
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Conclusions 

Clearly RBF networks can be implemented in both analogue and digital VLSI. How-

ever, since a pulsed RBF had not yet been attempted, this project was of academic 

interest from the outset. Further, the developed circuitry would allow the use of 

pulsed RBFs in classification problems to be assessed and this could have implica-

tions for other analogue implementations. 

Another benefit of this work would be the further development of the pulse stream 

neural technique. 

9.2.2. Circuit Issues 

Since this heading covers a large proportion of the work covered in this thesis, it has 

been sub-divided to allow each chip to be presented individually. 

9.2.2.1. The DYMPLES Chip 

Summary 

The DYMPLES chip was designed and fabricated to allow the functionality of the 

current-mode synapse, developed to implement the output layer of a pulsed RBF, to 

be tested and assessed. 

The DYMPLE synapse is a current-mode, PWM, two-quadrant multiplier. It uses 

dynamic current mirrors (DCMs) to store local copies of currents produced by a 

global, on-chip, current DAC. These currents are then used to selectively charge or 

discharge an output capacitance and a comparator is used to produce the output 

pulse. The synapse was designed to be simple, easily set-up and operated and easily 

transferred between different fabrication processes. 

Conclusions 

Measured results from the DYMPLES chip indicated that the synapse, DCMs and 

on-chip DAC all functioned as required. Additionally, the simulated and measured 

results from the circuit indicated that the use of DCMs allowed process variations to 

be accounted for implicitly, as well as increasing the on-chip integration of the pulse 
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stream technique. It was concluded that the synapse is a valid design of two-

quadrant multiplier and could therefore be used to implement the output layer of a 

pulsed RBF chip. 

9.2.2.2. The RHO Chip 

Summary 

The RHO chip was designed and fabricated to test and assess the operation of circuits 

developed to implement the basis function layer of an RBF chip. This chip consisted 

of two centre circuit arrays, both based on a distance circuit previously produced 

from this research group and published in the literature [143]. One array consisted of 

circuits using a capacitor-based technique for generating the hidden layer non-

linearity, whilst the other consisted of a circuit that exploited the natural physics of 

MOS transistors. 

Both centre circuits were designed to have an easy interface to the outside (analogue) 

world, be easy to set-up and operate, use PWM and interface easily to the DYM-

PLES circuit. 

Conclusions 

Experiments on the RHO chip indicated that all the developed circuits functioned as 

required. However, discrepancies were noted in them all. 

Distance Circuit - It was concluded that the discrepancies in the distance circuit 

were due to the use of an inappropriate layout technique and the use of global, as 

opposed to local, compensation circuits. Furthermore, the observations from the 

capacitor and transistor non-linearities could also be attributed to these effects. 

Capacitor Circuit - Results from the capacitor array indicated that the ability of 

each chip to produce a Gaussian non-linearity varied and often depended on the time 

allocated to discharging the output capacitor. This latter effect was due to offset cur-

rents produced by the distance circuit and these currents would have more serious 

consequences if the capacitor size were scaled down. 

Transistor Circuit - Offset currents had a negligible effect on the transistor-based 

array and the main discrepancy with this circuit was the variation of the shape of the 
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non-linearity both across-chip and between chips. However, it was believed that this 

variation could be accounted for in subsequent designs. 

From a consideration of the requirements of the capacitor circuit and transistor cir-

cuit arrays, in addition to the experiences and observations acquired from setting up 

and experimenting with the RHO chip, it was concluded that the transistor-based 

non-linearity offered the greater potential for the final RBF chip. 

9.2.2.3. The PAR Chip 

Summary 

The PAR chip was the final demonstrator chip fabricated for this project and con-

sisted of the hidden layer and output layer circuits developed for the two test chips. 

The PAR chip was designed as a small, non-trivial RBF network that could be 

applied to classification problems. 

Some improvements were made to the design and layout of the centre circuit and the 

correct operation of the modified version was demonstrated via HSPICE simulation. 

The DYMPLES circuit also required to be re-designed for the MIETEC 2.4pm fabri-

cation process. 

Since the PAR chip was to implement a complete RBF, consideration was given to 

system issues such as network size, on-chip DAC precision, chip refresh schme, and 

storage of the V1dt,,  voltage for each centre. 

The PAR chip was finally configured as an 8 input, 16 centre, 4 output RBF network. 

One centre on each chip was configured as the bias unit for the output layer and 

always produces a maximum width pulse. 

Conclusions 

Measured results indicated that all the circuits on the PAR chip functioned as 

required, and correct performance of the chip as an RBF network was therefore 

expected. 

DACs and DCMs - The variation between the 8-bit DACs on the different chips was 

very low, however the output current was non-monotonic. This was due to the sim- 

plicity of the design: it only comprises two 4-bit DACs connected by a 16:1 
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attenuating current mirror. Unfortunately this 16:1 ratio is not being implemented 

accurately enough. The DAC non-monotonicity permeated through to the NMOS 

DCMs, which, along with the PMOS DCMs, otherwise functioned as expected. 

Transistor Non-Linearity - The two-transistor circuit was observed to exhibit a 

good static response, which was repeated and well-matched over all the centres on 

80% of the chips. However, the shape of the non-linearity varied between chips. Fur-

ther, a constant displacement of the centre of the non-linearity from the ideal value of 

Vcentre  was observed on all the chips. The size of the displacement varied between 

chips and was due to charge injection, from the access transistors, onto the capacitor 

storing Vce , ztre . 

DYMPLE Synapse - The DYMPLE synapse again exhibited good performance and 

was linear with variations in both the applied input pulse width and the loaded synap-

tic weight. The ease with which the synapse was re-designed for the new process, 

and its proven performance in the new technology, highlighted that the design was 

indeed simple to transfer between different fabrication processes. Furthermore, 

although a discrepancy still existed between the positive and negative weights, none 

of the synaptic columns on any of the PAR chips produced a weight dependent offset 

error as witnessed on the original DYMPLES chip. 

9.2.2.4. Overall Circuit Conclusions 

This work has highlighted that it is possible to implement the constituent operations 

required for RBF neural networks in pulsed analogue VLSI, provided adequate care 

is taken when designing the circuits and laying out the chips. 

Furthermore, this work has also allowed the pulse stream technique to be extended 

through the development of: 

a current-mode synapse, using an on-chip current DAC, which implicitly 

accounts for process variations and allows greater on-chip integration of pulsed 

circuitry 

a centre circuit which produces a static, instead of a dynamic, voltage for the 

pulse generating PWM neuron 

a neural network implementation that requires only linear ramps, which 

increases the potential for even greater on-chip integration since linear ramps 

can be easily generated on-chip, eg [159]. 
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9.2.3. Basis Function Issues 

Summary 

Having developed a novel radial basis function non-linearity, it was necessary to have 

an indication of its likely performance when it was used in RBFs. 

To assess the performance of the non-linearity, it was used in small RBF networks 

applied to classification problems. The performance of these networks was then com-

pared to identically trained RBFs which used Gaussians. A specially developed soft-

ware simulator of the hardware was used to perform these experiments. 

For these trials, the transistor-based non-linearity was modelled as a look-up table 

extracted from an HSPICE simulation of the circuit. Also, to ensure that the results 

were consistent, the performance of both types of non-linearity on several classifica-

tion problems, both real and artificial, was studied. - 

Conclusions 

The overall conclusion from the classification experiments was that a small RBF 

using the non-linearity derived from the transistor-based circuit was capable of per-

forming at least as well as a Gaussian-based RBF, when both were implemented in 

software to 64-bit floating point precision. These results are in agreement with those 

from other studies that claim the precise shape of the non-linearity is not important 

[107, 108]. A necessary proviso to the results from this work however, is that the 

non-linear function used was still a "bump" function: localised, monotonic and differ-

entiable. 

However, it was also concluded from these simulations that, when the distance mea-

sures were continuously interpolated onto shallow regions of the transistor non-

linearities, the network performance was better than if the distance measures were 

continuously interpolated onto steep regions. This suggests that, whilst the non-

linearity need not be a well-defined mathematical function, the gradient of the 

"bump" function used is important. 

Further, it was found that increasing the width of the Gaussians led to an increase in 

the initial classification performance, which levelled off as the widths increased fur- 

ther. This suggests that the simple "distance to nearest neighbour" heuristic, often 
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used for determining the widths in Gaussian RBFs, may not be suitable in RBFs pos-

sessing a small number of centres. 

9.2.4. Parameter Quantisation Issues 

Summary 

To study the effect of parameter quantisation on the software model of the hardware, 

additional software experiments were carried out. Parameter solutions were obtained 

for all four classification problems using three different sizes of RBF network. By 

subsequently quantising the hidden layer and output layer parameters of these neural 

solutions, it was possible to investigate how parameter quantisation, to different lev -

els, affected the performance of trained RBF networks. 

Conclusions 

These experiments indicated that quantising the output layer to 8-bits had the biggest 

effect on the classification performance of the classifier, severely degrading the per-

formance of those networks using wide non-linearities and with large hidden layers. 

Quantisation of the output layer parameters to 16 bits or 12 bits produced some slight 

performance degradation, as did quantising the hidden layer parameters to 16 bits, 12 

bits or 8 bits. 

From a consideration of the results, it was concluded that, due to the distances calcu-

lated in these problems, use of wide non-linearities led to numerical ill-conditioning. 

This ill-conditioning was exacerbated by increasing the number of centres in the hid-

den layer, or increasing the width of the non-linearities. 

Meanwhile, the networks using narrower centres were well-conditioned and were 

unaffected by coarser quantisation of the neural parameters. However, a degraded 

classification performance was obtained from the networks using narrow non-

linearities in the full precision classification experiments. 

These results indicated that an inter-dependence existed between the shape of the 

basis function non-linearity and the precision of the weight storage in the output 

layer. Specifically, if narrow widths were used in the hidden layer, 8-bit precision 

could be used in the output layer, without performance degradation. However, if the 
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wider non-linearities were used, 12-bit precision was required in the output layer. 

Therefore, it was concluded from this work that, if the PAR chip was used as a classi-

fier for any of the four problems studied, its performance would be poorer than that 

obtained from a full precision software simulation. This performance degradation 

would be due to either the shape of the non-linearity (if narrow widths were used) or 

the ill-conditioning of the network (if wider widths were used). The tolerable degra-

dation will be problem dependent, however pulsed RBFs using the developed non-

linearity and 8-bit precision in the output layer may not be suitable for practical solu-

tions to real problems. 

9.2.5. Hardware Performance Issues 

Summary 

In order to investigate the functionality and potential of the developed RBF hardware, 

and explore some of the operational issues of pulsed RBF hardware, the PAR chip 

was used in a hardware classification system. Three Gaussian distribution problems, 

of different complexity, were applied to this system. 

Conclusions 

The hardware experiments confirmed that the PAR chip was able to act as an RBF 

classifier. It could solve classification problems of different complexity and have its 

performance adapted by LMS learning on its output layer parameters. 

Although it was observed that a performance comparable to that from full precision 

software could be obtained from the simpler problems, the performance of the net-

work, compared to the software results, fell as the problem became more complex. 

Whilst the reason for the performance drop is not fully understood, several explana-

tions were hypothesised. 

Although LMS learning was observed to cause a reduction in the MSE in every 

experiment, this did not necessarily cause a significant improvement in the overall 

classification performance of the network. LMS learning did cause a radical change 

in the proportion of each class correctly identified, though, and this phenomenon was 

shown to be attributable to the problem and learning rule rather than the hardware 
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system. However, the use of LMS learning in future developments of this work is not 

recommended. 

Further experiments also showed: 

• 	learning was repeatable on a given chip, under the same conditions 

• 	different chips should be individually trained 

• 	different seeds produce different solutions to the problem. 

Finally, although the hardware experiments determined the potential of the developed 

system, questions remain with regard to optimally training the developed hardware 

for real applications and assessing the limits of the constraints that pulsed analogue 

VLSI places on the RBF paradigm. 

9.3. Comparison with Other Implementations 

A comparison of the PAR chip with other RBF implementations cited in the literature 

is given in Table 9.1. 

Implementation Inputs Centres Outputs I I Size (mm) Power 

PAR Chip (Pulsed) 8 16 4 3.0 6.5x4.8 35mW 

WRBF Chip (Pulsed) •  8 16 8 1.0 5.2x4.9 75mW 

Kirk et at (Analog) 8 159 4 2.0 2.2x9.6 2mW 

Collins et al (Analog) 32 150 16 2.0 lOxlO 0.5W 

Nil000 (Digital) 256 1024 1 	64 0.8 16x14_ --  5W 

Table 9.1 - A comparison of different RBF implementations 13  

As can be seen from this table, analogue RBF implementations currently have an 

order of magnitude more centres per chip, and digital implementations two orders of 

magnitude more centres, than the pulsed RBF implementations. Using the cell sizes 

implemented on the PAR chip - 248um by 168um for the centre circuit and 404um 

by 168 1um for the DYMPLES circuit - it is estimated that a 16 input, 64 centre, 8 out-

put PAR chip would require a core area of 10.752mm by 6.720mm, whilst dissipating 

less than 130mW. The DAC, ZCM and PWM neurons have not been included in this 

13 In this table, the estimated sizes are presented for the Collins chip [102]. The parameter, ,%, is the minimum dimen-
sion size for the chosen fabrication process. 
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calculation, but, assuming a square chip is required, can be implemented in the 

remaining 10.752mm by 4.032mm of silicon. By moving to a smaller geometry pro-

cess and re-designing the circuits, more centres could be implemented on a chip of 

this size. 

However, although the desire for most implementations has been to implement as 

many centres as possible on an RBF chip, little consideration has been given in the 

open literature as to what precision these circuits require, what range of widths the 

basis function circuits can produce compared to the range of input space, or what 

performance can be obtained from software models of the system. 

The work in this thesis has shown that all these issues are critical to the design of 

hardware RBF solutions. Therefore, until a need for a 64 centre pulsed RBF chip is 

identified, it is not recommended that one is designed. 

9.4. Implementation Issues for Pulsed Analogue RBFs 

So what issues need to be considered before RBFs are designed in pulsed analogue 

VLSI for real problems? 

Obviously, it must be established that: 

• 	a hardware solution is the best option for the problem 

• 	pulsed analogue VLSI is the best implementation technique for the solution 

• 	the specifications with respect to performance, power dissipation and chip area 

can be met. 

These issues are generic to any potential neural hardware solution and do not form a 

part of this thesis. 

However, assuming that a pulsed RBF is required, the following issues must be 

addressed. 

• 	Can suitable circuitry be designed to reproduce the operation of the centres and 

output units in an RBF, including a basis function of suitable shape and width? 

• 	Can the problem be solved in simulation, within performance specifications, 

using models of these circuits ? 

• 	What precision is required in the hidden and output layers of an RBF using the 

developed basis function non-linearity and can this precision be realised in 

pulsed analogue VLSI? 



Chapter 9 	 209 

Can the resulting network be trained to account for process variations and how 

long will the training take? 

This investigation has shown that it is possible to realise the constituent operations of 

RBF networks using pulsed analogue VLSI, provided that adequate care is taken 

whilst designing the circuits and laying out the chip. However, as shown by the sub-

sequent software and hardware classification experiments, circuit functionality is no 

guarantee of system performance. 

It has been shown that the precision required in the output layer of an RBF depends 

on the shape and width of the basis function used in the hidden layer. Specifically, 

whilst 12-bit precision was shown to be acceptable for the output layer in this work, 

an output layer precision of 8-bits was unacceptable for solving most of the prob-

lems. However, it is believed that the relationship between the basis function shape 

and output layer precision will be problem dependent. Thus, whilst it is impossible to 

make firm conclusions here, it is reckoned that individual, as opposed to generic, 

solutions will be required for real problems - requiring a thorough, and potentially 

time-consuming, design process in each case. 

Further, this work has indicated that, whilst LMS learning was adequate to highlight 

the potential of the developed system, it should not be used for further developments 

of this work, and it is recommended that the use of other hardware training algo-

rithms is investigated. 

9.5. Further Work 

Having considered the pertinent issues for implementing pulsed analogue RBFs, the 

following areas have been identified as suitable areas for further work. 

9.5.1. Circuit Level 

Work yet to be tackled includes attempting to reduce the area of the developed cir-

cuits, using floating gates to store the neural parameters within the hidden layer and 

output layer cells and investigating the effect of temperature on the circuit perfor-

mance. 

Since it has been shown that the non-linear characteristics of MOS transistors can 

produce suitable basis function non-linearities, the use of other shapes of transistor 

non-linearity can be investigated. 
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In addition, the operational characteristics and performance of combinations of cir -

cuit ideas from the literature can also be studied. For example, combining the two-

transistor circuit from this work with the Euclidean distance cell of Collins et al [84], 

yields a pulsed RBF centre circuit that can be realised using only 4 transistors, Figure 

9.1. 

Vlimit 

	

Vwidth J 	L 	 Vramp 

n 
output  Vdist ;+ > _P1  

vinH 	 Vin 

	

Vcentre / 	 Vcentre 

Figure 9.1 - Schematic Diagram illustrating how the Two-Transistor Circuit could be 

combined with the Euclidean Distance Cell of Collins et al 

9.5.2. System Level 

From this work, it is clear that the inter-dependence between the shape of the basis 

function and the precision of the output layer in an RBF implementation is critical to 

the successful operation of the system. Therefore it will be necessary to investigate 

what precision is required for the output layer in a range of RBF applications, for 

several transistor non-linearities, and determine if this precision can be realised in 

pulsed or conventional analogue VLSI. Such an investigation could begin with a 

determination of the minimum output layer precision required for each of the four 

problems used in this work. 

Also, since the experiments in this work quantised the parameters after training, the 

use of limited precision software LMS learning should be investigated to determine 

whether it could compensate for a low precision output layer. 
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9.5.3. Operational Level 

Further work on the operational issues of the developed system should be aimed at 

investigating the actual precision achievable in the hidden and output layers of the 

chip (12-bit and 8-bit precision has been predicted) and then determining the hard-

ware performance that can be obtained with the PAR chip, using this precision, for a 

range of problems. This should allow an assessment of whether the software perfor-

mance, for the reduced precision parameters, can be realised in the developed hard-

ware. 

Also, the extent to which differences between the hardware and its software model 

affects the training process can be investigated by developing software that models 

the hardware more realistically and using it for both off-line and in-the-loop training. 

For undertaking these additional trials, however, it is recommended that a fast pro-

cessor is used and that the performance anomaly on the board is corrected. 

Assuming that a faster processor, with more memory, is available, then it should be 

possible to estimate the output weights for the PAR chip using SVD on the mea-

sured hidden layer outputs produced by the hardware. The hidden layer positions 

and widths of a trained network can be downloaded to the PAR chip, the training vec-

tors can then be presented to the trained hidden layer and the actual outputs read off 

the chip and into RAM via the switching arrangement shown in Figure 6.24. The hid-

den layer pulses can then be read back from the off-chip RAM and appropriately 

scaled to produce the hidden layer response matrix (1 in equation 7.3). 

Using SVD to invert the matrix of actual hidden layer responses should lead to an 

output weight set that already accounts for any non-idealities in the trained hidden 

layer. The estimated output weights can then be scaled in software and downloaded 

to the chip and, if required, further chip-in-the-loop training can be carried out to try 

and achieve further performance improvements. 

Adapting the hidden layer parameters, to investigate if learning could be improved 

using fully supervised techniques, can also be attempted. 

Other learning algorithms, suitable for hardware RBFs, should also be investigated to 

prevent consuming too much time optimising the LMS learning rate for each prob- 

lem. These new learning algorithms may also lead to some performance 

improvements. 
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9.6. Final Conclusion 

This thesis has investigated the circuit, system and operational issues raised when the 

RBF neural architecture is implemented in pulsed hardware and applied to real prob-

lems. 

It has been shown that, provided adequate care is taken whilst designing the circuits 

and laying out the chips, the constituent RBF operations can be realised in pulsed 

analogue VLSI. 

However, simply reproducing these operations on silicon does not guarantee system 

performance and it was shown that the inter-dependence between the shape of the 

basis function and the precision in the output layer is critical to the operation of the 

hardware. 

Further, the development of a robust learning environment and an understanding of 

the constraints imposed by the implementation technique are also essential to the 

final development of a working RBF system. 
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Appendix A 

Chip Development Boards and Experiments 

The development boards designed and built for the DYMPLES, RHO and PAR chips 

were used to: 

• 	correctly bias the chips 

• 	allow the chips to be tested automatically 

• 	provide test points to allow the hardware to be calibrated and checked manually. 

System Overview 

Although separate development boards with different functionality were constructed 

for the three chips, they all operated as part of the set-up shown in Figure A. 1. 

LJJ Oscilloscope 

1 	 - 

I 	 - 

GP1B 	 - 
... 

\\\ 

Chip 

P1o48 Link 	I 	 I 

Chip Development Board 
Figure A. 1 - Chip Measurement System. 
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An IBM PS/2 286 Pc was used to set-up and control each development board via a 

suite of 'c' programs and a Blue Chip Technology P10-48 interface card. Provision 

was provided within each 'C' program to: 

• 	set up the board for generating the desired outputs 

• 	set up the board andlor oscilloscope for recording the results 

• 	trigger the board 

• 	interpret and process the raw measurements 

• 	transfer the processed results to appropriate files. 

Development Board Overview 

At the heart of each development board is a development board clock, a counter and 

8-bit or 12-bit digital buses which are split and terminated by various buffers, RAMs 

and DACs. The PAR chip uses 12-bit digital buses for all the neural parameters 

except the output weights and thresholds, whilst the DYMPLES and RHO chips use 

8-bit buses. 

The flow of information on the bus is controlled by a mixture of combinatorial logic 

and control bits. The control bits are generated by: 

• 	the PC whilst the board is being set-up or intenogated 

• 	the board counter once the board has been triggered and the results are being 

generated. 

By considering which results would best characterise the performance of each chip 

and designing the development boards to easily record the relevant measurements, it 

was possible to produce simple boards with the desired functionality. 

Development Board Features 

The following features appeared on the three development boards. 

- Test Pins - 

By providing the boards with test points, it was possible to check signal flow, board 

functionality, voltage levels and waveform generation. This was deemed to be a nec-

essary part of the development board design process and helped to confirm it was 

operating conectly, as well as help in the process of locating and diagnosing develop-

ment board faults. 
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- Off-Chip DACs - 

The RHO and PAR chips required the generation of analogue voltages for quantities 

such as Vin7 V cen tre  and V,,dfh etc. These were produced using 8-bit or 12-bit off-chip 

voltage DACs, loaded and latched by the PC. The DACs were biased and amplified 

to produce voltages within a defined range and could be calibrated before running the 

experiments. 

- Op-Amp Measurement Circuits - 

Measurement transistors were included on all three chips. By connecting them to an 

Op-Amp circuit similar to that in Figure A.2, copies of on-chip currents were con-

verted into buffered off-chip voltages and, since there is a linear relationship between 

'sink 
and equation A. 1, this enabled on-chip current variations to be tracked as 

off-chip voltage variations. 

= Vref + 'sink Rfeedback 	 (A. 1) 

When multiple circuits required to be characterised off-chip, analogue multiplexors 

were used, under PC control, to steer current from a particular measurement transis-

tor through the Op-Amp circuit. This ensured that the experimental set-up was con-

sistent for all the results and so any observed differences between the measurements 

from the outputs would be due to on-chip variations, as opposed to off-chip ones. 

To PC 

Figure A.2 - The Op-Amp circuit for (a) a single measurement transistor and 

(b) eight transistors connected to an 8-way analogue multiplexor 

- Board Counter - 

To fully test the three chips, measure the non-linear characteristics of the hidden lay -

ers and the multiplication characteristics of the output layer, the chips were operated 

in real time. For this, pulses and ramps were produced, applied to the chip and the 
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output pulse widths were recorded and measured. 

The timing control of the input pulse and ramp generation and the output pulse 

recording was facilitated by the development board counter. This was incremented 

using either a 1MHZ,  12MHz or 24MHz development board clock - a 24MHz clock 

was used for the DYMPLES and PAR chip development boards, whilst the RHO chip 

development board counter was incremented using a 1MHz, 12MHz or 24MHz 

counter. 

Whilst setting up the board for each experiment, the PC disabled the board counter 

and loaded the RAMs with the necessary bit patterns for the input pulses and off-chip 

ramps. Once the RAMs were loaded, the PC triggered the board, ceding control to 

the counter, and entered a timed 'idle-state" loop. Having been triggered, the board 

counter was incremented by the clock, addressing the RAMs as it did so and causing 

bitstreams to be read out of memory. These bitstreams produced the input pulse 

widths and time varying ramps for the chip, eg Figure A.3(a). 

As the output ramp was generated, the output pulses from the chips were simultane-

ously read into another RAM by setting it into write mode and using the develop-

ment board counter to address it. This circuit basically sampled the chips PWM out-

puts, Figure A.3(b). 

'Read' Output bitstreams 

---- ---- 	m 

Input bitstreams 

r 

RIW i- "Write" 

II 

64k -- --- 
--- --- 64k 

8-bit JL J 	iL 8-bit (5 
RAM j—  '- 	

- 	 j—i RAM 
Chip Chip 

H ~Clk Cik 

(a) 
	

(b) 

Figure A.3 - The Development Board hardware for (a) generating the PWM input pulses 

and time-varying analogue ramps and (b) recording the PWM outputs from the chip 

After the counter reached its maximum value, it was automatically disabled and the 

system remained idle until the PC ioop timed-out and the PC retook control of the 

board. The RAM containing the sampled data from the chips PWM outputs was then 

interrogated by the PC and the output pulse widths calculated. 
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In this way it was possible to automatically test the chips and simultaneously gather 

corresponding results from all the outputs on a given chip. 

The DYMPLES Chip Experiments 

This section details how the experimental results from the DYMPLES chip were gen-

erated and measured. 

- DAC Characteristics - 

All sixteen 4-bit binary words were applied to the DAC in turn. 

The output voltages from an Op-Amp measurement circuit (Figure A.2) were 

recorded and the corresponding on-chip currents calculated. 

- DCM Characteristics - 

All sixteen 4-bit binary words were applied to the DAC in turn. 

All the synapses on the chip were loaded 10 times with the DAC current and the 

2.5flA 'zerot' current. This multiple loading ensured the synapses had the cor -

rect gate voltages for a given current. 

The current to be measured was steered to the Op-Amp circuit through an 

8-way analogue multiplexor and the output voltage recorded. Again the cone-

sponding on-chip current was calculated. 

- Multiplication Characteristics - 

A 4-bit binary word was applied to the DAC. 

All the synapses on the chip were loaded 10 times with the DAC current and the 

2.5 4uA "zero "current. 

A pulse was fired into the PWM inputs of the chip and a linear time varying 

ramp was then generated at the appropriate input, Figure A.4. 

The output pulse widths were measured - the outputs from all 8 neurons being 

logged simultaneously. 

Steps i) to iv) were repeated for all 16 4-bit words and 250 input pulse widths 

between 0us and 10us. 
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Figure A.4 - Block diagram indicating the inputs and outputs to the DYMPLES 

chip during the multiplication characteristic experiments 

The RHO Chip Experiments 

This section details how the experimental results from the RHO chip were generated 

and measured. 

- Distance Circuit Characteristics - 

The Vcentre  DAC was loaded and latched with the 8-bit digital word required to 

produce the required output voltage. 

The V, DAC was loaded likewise. 

The V and Vcentre  voltages combined to produce an output current, 'djt•  A 

scaled version of 'djct  was taken off-chip where measurable output voltages 

were produced by an Op-Amp and 8-way switching circuit. These voltages 

were automatically measured using a Philips digital storage oscilloscope con-

trolled by the PC. (All the cells were continuously refreshed as the measure-

ments were taken.) 

Steps ii) and iii) were repeated for up to 256 values of V,,. 
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v) Steps i) to iv) were repeated for several values of Vcentre  (if required). 

- CAP Array and TRAN Array Circuit Characteristics - 

Note: Two separate arrays of circuits were produced on the RHO chip and, since 

these operated slightly differently, two separate programs (one for each array) were 

used to set up and control the board. Both programs were almost identical (only the 

ramps and some control sequences were different) and operated using the recipe 

below. 

The Vce ,ztre  DAC was loaded and latched with an 8-bit value. 

The Vwidlh  DAC was loaded and latched with an 8-bit value. 

The V,, DAC was loaded and latched with an 8-bit value. 

All the cells on the chip were loaded with V ce,ztre  and this was continuously 

refreshed as the experiment proceeded. 

The input ramps were fired onto the chip and the output pulse widths were read 

into the off-chip RAM. Again the pulses from all 8 outputs were logged simul-

taneously. 

Steps iii) to v) were repeated for all values of Vi,, (if required). 

Vd (J1  was altered and steps i) and iii) to vi) were repeated (if required). 

V ce,ztre  was altered and steps ii) to vi) were repeated (if required). 

For the other experiments mentioned in Chapter 5, such as the common mode trials 

performed on the CAP Array and the Transistor Centre 'Block Tests", the two pro-

grams were simply reconfigured in such a way so as to allow the quantities to be 

assessed. 
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The PAR Chip Experiments 

This section details how the experimental results from the PAR chip were generated 

and measured. 

- Current DAC Characteristic - 

All 256 8-bit words were applied to the on-chip current DAC. 

The output voltages from an Op Amp measurement circuit similar to that in 

Figure A.2(a) were recorded. 

The DAC test currents (scaled versions of the actual DAC currents) were calcu-

lated using the following formula: 

Vzer(, - V vt,rdi 
'dac_i = 	 (B .2) 

R feedback 

where 'dijcj  is the calculated DAC test current, Vzer(,  is the Op Amp output volt-

age for a current DAC word of 0 10 , V V(,Td1 is the recorded voltage for DAC 

word i 10  (0 ~ i 255) and Rfeedback  is the feedback resistor in the Op Amp cir-

cuit. Processing the results using this formula removes the zero input dc offset 

from the characteristic. 

- DCM Characteristics - 

All 256 8-bit DAC words were used. 

The chip was refreshed continuously ensuring that correct weight and zero cur-

rents were read into the DCMs. 

The currents to be measured were steered to the Op Amp circuit through an 

8-way analogue multiplexor, Figure A.2(b), and the Op Amp's output voltage 

was recorded. 

The DCM test currents (again scaled versions of the actual currents flowing in 

the DCMs) were calculated using a similar formula to that used for finding the 

DAC test currents. When finding the DCM test currents, however, the zero 

input dc offset was not removed. 

- Distance Circuit Characteristics - 

i) The Vcentre  off-chip voltage DAC was loaded and latched with the required 

12-bit word. 



Appendix A 
	

221 

The chip was refreshed continuously. 

The V i,, DAC was loaded and latched with 256 12-bit words in the range 010  to 

4095. 

For each combination of Vce,jtre  and V 111 , all 4 characterisable distance circuits 

were connected, in turn, to a measurement Op Amp via a 4-way analogue multi-

plexor. The Op Amp output voltage was recorded in each case. 

Steps iii) and iv) could be repeated for several values of Vce,ztre  (if required). 

- Hidden Layer Non-linearity Characteristics - 

The V 1 dth, V ce , z ire and Vj, off-chip voltage DACs were loaded and latched with 

the required 12-bit words. Again the PAR chip was continuously refreshed. 

The board counter was stepped through under PC control. This applied the hid-

den ramp to the hidden layer PWM neurons and the current state (on or off) of 

all the neurons was recorded for each counter step. The output pulse width was 

then calculated by summing the number of logic HIGH states for each neuron. 

The values latched into the V j, Vce,ztre  and Vdth  DACs were then altered as 

required and step ii) repeated for each combination. 

- Output Layer Characteristics: Output Pulse vs. Input Pulse - 

18 8-bit words between 0 10  and 255 10  were applied to the on-chip current DAC. 

250 different input pulse widths were applied to the output layer circuits. 

After each input pulse width application, the output ramp was fired onto the 

chip and the output pulse widths from all 4 outputs were recorded. 

- Output Layer Characteristics: Output Pulse vs. Synaptic Weight - 

All 256 8-bit words were applied to the on-chip current DAC. 

Pulse widths of 0, 50, 100, 150, 200 and 250 RAM locations were applied to the 

output layer. 

Again, after each pulse width application, the output ramp was fired onto the 

chip and the output pulse widths were recorded. 
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Appendix B 

Software Simulator Classification Results 

This appendix contains the mean classification rates and the standard deviations for 

the software simulator experiments described in Section 7.3. The results are pre-

sented in tabular format. Each entry in the mean classification tables is the percentage 

of that particular data set that was correctly classified. Graphical depictions of these 

results are shown in Chapter 7. The results in the standard deviation tables are again 

given as percentages. 
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Gaussian Distributions Training Set - Mean Classifications 

Gaussian Distributions - Training Set - Mean Classifications  
- 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 85.64 85.80 85.74 85.80 85.78 85.56 85.60 82.58 80.44 83.88 84.38 85.66 86.78 

11 85.90 85.98 85.88 86.04 85.70 85.71) 85.6)) 82.80 8018 84.44 84.28 85.94 86.28 

12 86.04 86.02 85.96 85.94 85.86 85.76 85.84 82.80 80.24 84.58 84.64 86.02 86.20 

13 86(8) 85.78 85.76 85.8)) 85.68 85.74 85.56 83.06 80.74 84.9)) 85.28 86.16 86.06 

14 8592 85.74 85.74 85.94 85.98 85.98 85.78 83.72 80.64 85.18 85.56 86.12 85.74 

15 8592 85.68 85.94 65.78 86.16 8606 85.68 84.12 81.16 85.2)) 85.44 86.06 85.66 

16 85.98 85.62 85.82 85.78 86.20 86,16 86.04 84.96 81.84 85.78 85.52 86.02 85.64 

17 86.26 86.18 8624 86.24 66.48 86.40 86.22 85.26 81.88 85.84 85.40 85.66 85.84 

18 86.52 86.36 86.34 86.52 86.60 86.5)) 86.36 84.98 82.22 85.56 85.46 85.82 85.78 

19 86.60 86.48 86.66 86.62 86.66 86.66 86.64 85.44 82.46 85.64 85.56 85.76 86(8) 

20 866)) 86.68 86.72 86.72 86.7)) 86.76 86.76 85.80 82.48 85.58 85.44 85.64 85.76 

21 86.8)) 86.74 86.52 87.02 86.98 86.92 86.76 85.78 82.46 85.46 85.76 85.56 85.8)) 

22 96.72 86.68 86.64 86.72 66.88 86.72 86.92 85.74 83.06 85.54 85.58 85.58 85.84 

23 8692 86.64 86.78 86.74 86.80 86.62 86.82 85.96 82,94 85.70 85,68 85.68 85,94 

24 87.28 66.64 86.90 86.52 87.16 86.68 86.48 85.94 82.84 85.56 85,94 85.74 85.96 

25 86.92 86.58 86.74 86.70 86.84 86.64 86.66 85.86 83.14 85.70 85.88 85.68 85.84 

26 87.12 86.70 86.64 86.82 87.06 86.74 86.44 85.96 83,48 85.8)) 85.56 85,86 86.06 

27 87.16 86.82 86.70 86.82 86.86 86.76 86.34 86.28 83.64 85.82 85.98 85.94 86.06 

28 97.1)4 86.84 86,92 86.86 86.86 86.8)) 86.32 86.06 84.04 86.04 86,22 86.12 86,20 

29 87,14 86.86 86.84 86.74 86.92 86.62 86.64 86.22 84.50 85,88 86,38 86.12 86,14 

30 871)) 86.84 86.86 86,82 86.98 86.76 86.76 86.50 84.62 86.18 86.3)) 86.14 86.22 

31 8742 8716 87.22 87.02 87.18 87,1)4 87.12 86.70 84.82 86.10 86.20 86.16 

JE 
32 8744 87.14 87,26 87.28 87.32 86.96 87.20 86.66 85.28 85.98 86.60 86,06  

Table B. 1 - Percentage Classification Rate of trained RBF networks for the training 

set of the two class Gaussian Distributions problem. 
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Gaussian Distributions Training Set - Standard Deviations 

Gaussian Distributions - Training Set - Standard Deviations 

Transistor Curve Gaussian 

Cts 0 I 2 3 4 5 6 7 8 9 10 11 12 

10 ().88 0.82 0.92 0.66 0.94 1.07 083 1.62 2.21 1.50 1.3)) 0.65 ((.53 

11 ((.68 0.72 ((.89 0.82 085 0.72 1.1%) 1.98 2.19 1.32 1.42 ((.56 0.66 

12 0.85 ((.77 0.93 ((.84 0.83 ((.75 ((.87 1.88 2.27 1.1$ ((.95 0.52 0.79 

13 ((.94 ((.90 105 0.97 ((.98 1.21 ((.91 1.34 1.80 1.13 1.14 0.44 ((.47 

14 1.()4 ((.89 ((.89 ((.94 0.77 0.81 ((.91 1.15 2.35 1.11 ((.80 ((.47 0.53 

15 0.9)) 0.88 ((.91 ((.85 1.01 0.68 ((.76 1.18 1.94 ((.74 ((.91 0.50 0.64 

16 ((.88 ((.8)) ((.83 ((.77 ((.85 ((.7)) ((.75 ((.88 1.54 0.64 ((.87 0.52 ((.54 

17 ((.90 ((.82 ((.82 0168 ((.95 ((.71 ((.92 ((.75 1.68 ((.87 1.05 ((.53 ((.58 

18 ((.71 ((.85 ((.94 0.71 ((.77 ((.68 ((.91 ((.68 1.58 0.66 0.64 ((.55 ((.57 

19 ((.79 ((.76 ((.79 0.66 ((.76 0.67 ((.79 ((.90 1.61 ((.63 ((.84 ((.47 ((.53 

20 0.77 ((.89 ((.85 ((.72 ((.74 0.92 ((.82 0.53 1.66 ((.83 ((.92 ((.40 ((.59 

21 ((.72 ((.87 ((.68 ((.83 0.90 ((.64 ((.83 ((.77 1.62 ((.85 ((.87 ((.4)) ((.39 

22 ((.69 ((.84 ((.70 ((.69 ((.81 0.74 1 	((.76 ((.75 1.52 ((.76 ((.78 ((.41 ((.50 

23 0.90 ((.76 ((.88 ((.82 ((.74 ((.47 ((.78 0.62 1.89 ((.81 0.96 ((.41 ((.68 

24 ((.83 0.68 0.66 0.70 ((.82 ((.66 ((.70 ((.85 1.68 ((.63 ((.73 ((.51 ((.69 

25 ((.69 ((.79 ((.77 0.69 ((.80 0.71 0.76 ((.58 1.33 ((.64 ((.82 ((.53 ((.86 

26 ((.91 ((.82 ((.62 ((.57 ((.6)) ((.66 ((.74 ((.61 1.74 0.79 1.12 ((.40 ((.81 

27 ((.67 1.03 ((.39 11.66 ((.54 ((.82 ((.76 ((.55 1.41 ((.75 ((.83 ((.4(1 ((.89 

28 11.8! (.1(5 ((.70 ((.73 0.80 ((.92 ((.67 ((.54 1.44 ((.67 ((.87 ((.37 ((.87 

29 ((.56 ((.85 ((.65 ((.94 ((.80 ((.71 ((.76 ((.79 1.38 ((.78 ((.97 ((.34 ((.81 

30 ((.90 ((.80 ((.91 ((.79 0.71 ((.78 ((.77 ((.72 1.03 ((.75 ((.83 ((.40 ((.78 

((.84 ((.93 ((.74 ((.73 ((.71 ((.76 ((.83 1.24 ((.49 ((.79 ((.41 ((.66 

((.97 ((.72 ((.82 ((.91 ((.88 ((.78 0.62 1.10 ((.67 ((.83 ((.37 ((.78 

Table B .2 - Standard Deviations of Mean Classification Percentages in Table B. 1 
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Gaussian Distributions Test Set - Mean Classifications 

Gaussian Distributions - Test Set - Mean Classifications 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 87.06 87.04 66.96 66.89 66.71 86.59 86.74 84.25 82.72 85.76 86.38 87.48 87.74 

ii 87.02 86.99 86.85 86.81 86.70 86.63 86.81 84.35 82.27 86.25 86.11 87.66 87.58 

12 86.88 86.93 86.84 86.81 86.68 86.69 86.94 84A07 82.52 86.23 85.84 87.69 87.48 

13 86.74 86.73 66.64 86.69 86.55 86.62 86.93 84.71 82.80 86.48 86.17 87.76 87.45 

14 86.72 86.7)) 86.59 86.65 86.59 86.66 86.95 84.71 82.87 86.52 86.5)) 87.78 87.47 

15 86.71 86.7)) 86.69 86.67 86.69 86.76 8704 84.55 82.97 86.74 86.79 87.78 87.50 

16 86.62 86.65 86.59 86.66 86.62 86.77 87.16) 84.93 83.45 86.85 86.92 87.78 87.51 

17 86.65 86.73 86.68 86.73 66.6)) 86.77 87.02 84.83 83.54 86.91 87.02 87.77 87.64 

18 86.67 86.72 86.63 86.71 86.62 86.73 87.06 84.89 83.74 86.92 87.09 87.71 87.61 

19 86.65 86.73 86.66 86.76 86.63 86.84 87.15 85)8) 83.66 870) 87.11 87.55 87.67 

20 86.64 86.64 86.6)) 86.72 86.6)) 86.8)) 87.11 85.02 83.74 87.07 87.18 87.39 87.69 

21 86.56 86.67 86.67 66.67 86.55 86.85 87.08 84.93 83.79 8709 87.28 87.08 87.74 

22 86.66 86.64 86.64 86.7)) 86.61 86.79 86.98 85.16 84.42 87.13 87.25 86.99 87.70 

23 86.53 86.62 86.5)) 66.65 86.52 86.72 86.84 85.15 84.28 87.14 87.37 86.9)) 87.69 

24 j 	86.49 86.54 86.54 86.52 86.53 86.71 86.78 85.12 84.14 87.12 67.41 86.82 87.67 

25 86.45 66.56 86.50 86.51 86.51 86.69 86.76 85.2)) 84.50 87.12 87.36 86.69 87.70 

26 86.44 86.54 86.50 66.59 86.43 86.82 86.81 85.25 84.53 67.09 87.34 86.63 87.62 

27 86.41 86.47 86.44 86.47 86.38 66.69 86.73 85.32 84.69 87.16 87.45 86.56 87.63 

28 86.41 86.47 86.35 66.42 86.34 86.63 86.60 85.32 84.73 87.19 87.29 86.41 87.67 

29 86.34 86.41 86.27 86.25 86.21 86.63 86.53 85.35 84.62 87.21 87.28 86.33 87.57 

30 86.33 86.38 86.2)) 86.23 86.21 86.47 86.4)) 85.26 84.84 87.14 87.23 86.34 87.53 

31 86.31 86.18 86.13 66.14 86.17 86.33 66.31 85.24 84.64 87.15 87.13 86.20 87.50 

32 86.12 86.05 66.02 85.95 86.07 86.23 86.08 85.42 84.7)) 86.96 86.97 86.114 87.35 

Table B.3 - Percentage Classification Rate of trained RBF networks for the test set of the 

two class Gaussian Distributions problem. 
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Gaussian Distributions Test Set - Standard Deviations 

Gaussian Distributions - Test Set - Standard Deviations 

Transistor Curve Gaussian 

Cts 0 I 2 3 4 5 6 7 8 9 10 11 12 

10 0.40 0.44) ((.39 0.39 0.44 0.51 0.41 1.47 1.49 0.78 0.7)) 0.43 0.18 

11 033 0.33 ((.36 ((.35 0.38 0.31 0.41 1.43 1.33 ((.67 0.76 0.30 0.23 

12 0.30 ((.28 ((.31 ((.29 ((.36 0.32 ((.36 1.47 0.97 ((.71 0.82 0.18 0.20 

13 ((.41 0.39 0.40 ((.39 ((.39 0.33 ((.39 1(8) 1.18 ((.65 ((.68 )).12 ((.19 

14 0.32 0.27 ((.36 0.29 0.31 0.25 ((.37 ((.85 1.23 ((.54 0.58 0.10 0.22 

15 ((.27 0.30 ((.24 ((.27 0.25 j 	((.30 ((.27 ((.91 1.26 ((.59 0.54 ((.12 ((.17 

16 ((.31 ((.26 ((.26 ((.29 ((.27 ((.27 ((.42 ((.72 ((.85 ((.51 ((.42 ((.11 ((.18 

17 ((.22 ((.16 ((.24 ((.21 0.27 ((.28 ((.4)) ((.61 ((91 ((.59 ((.34 ((.18 ((.21 

18 ((.22 ((.20 ((.23 ((.23 ((.24 0,31) ((.29 ((.82 ((.75 ((.66 ((.32 ((.20 ((.28 

19 ((.24 ((.20 ((.25 ((.24 ((.29 ((.30 ((.24 ((.81 ((.98 ((.47 ((.41 ((.29 ((.20 

20 ((.27 ((.27 ((.23 ((.26 0.26 ((.27 ((.28 ((.71 1.31 ((.55 ((.37 ((.30 ((.20 

21 ((.29 ((.29 j 	((.22 ((.26 ((.33 ((.22 ((.3)) ((.78 1.30 0.440 ((.36 ((.27 ((.19 

22 ((.23 ((.28 ((.21 ((.22 ((.23 1 	((.21 ((.24 ((.81 ((.94 ((.34 ((.34 ((.21 ((.19 

23 ((.21 ((.22 ((.32 ((.25 ((.20 ((.32 ((.33 0.70 1.01 ((.50 ((.23 ((.20 ((.26 

24 ((.39 ((.39 ((.29 ((.31 ((.41 ((.33 ((.41 ((.59 1.03 ((.47 ((.26 0.28 ((.32 

25 ((.36 ((.33 ((.30 ((.32 0.36 ((.34 ((.42 ((.58 1.02 ((.44 ((.26 ((.35 ((.31 

26 ((.35 ((.33 ((.24 ((.31 ((.38 ((.37 ((.35 ((.59 (.1)) ((.37 ((.34 0.40 ((.36 

27 ((.29 ((.39 ((.29 0.30 ((.34 ((.47 ((.47 ((.63 ((.56 ((.35 ((.29 ((.37 ((.33 

28 ((.38 ((.39 ((.34 ((.28 ((.41 ((.5)) ((.54 0.76 ((.86 ((.44 ((.39 ((.41 ((.31 

29 ((.44 ((.37 ((.38 ((.52 ((.53 ((.56 ((.63 ((.52 ((.88 0,44 ((.37 ((.37 ((.38 

30 ((.39 03)) ((.45 ((.46 ((.56 ((.56 ((.75 ((.65 ((.88 ((.42 ((.41 ((.31 ((.41 

31 ((.38 ((.4! ((.40 ((.32 ((.44 ((.5)) ((.63 0.64 ((.80 0.44 ((.49 ((.32 ((.35 

32 ((.47 ((.41 ((.51 ((.40 ((.52 ((.61 ((.67 ((.67 1.02 1 	((.64 ((.54 ((.38 0.40 

Table B.4 - Standard Deviations of Mean Classification Percentages in Table B.3 
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Speaker Recognition Training Set - Mean Classifications 

Speaker Recognition - Training Set - Mean Classifications 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 77.59 77.37 77.44 77.59 77.23 76.93 76.36 72.87 69.49 69.36 67.52 75.80 77.33 

11 79.88 79.87 79.83 79.56 79.19 78.96 78.28 74(8) 70.99 70.65 68.97 77.15 78.61 

12 79.80 79.71 79.79 79.67 79.39 79.05 78.73 74.68 72.17 72.40 7025 78.59 80.15 

13 80.33 80.33 8037 60.19 79.97 79.55 79.08 74.76 72.69 73.24 7188 79.52 80.53 

14 81.73 81.83 81.76 81.45 81.43 81.03 79.85 75.64 73.60 74.67 73.03 80.67 81.73 

15 82.49 82.45 82.11 82.37 82.03 81.13 79.60 76.36 74.81 75.55 75.29 81.37 82.19 

16 82.81 82.53 82.28 82.47 82.09 81.75 911.36 76.83 75.17 76.07 75.89 81.81 82.56 

17 82.77 82.51 82.27 92.55 82.28 91.56 90.52 77.59 75.76 76.32 76.19 82.07 82.64 

18 82.99 83.12 82.87 82.32 82.25 81.68 911.47 77.73 76.93 76.56 77.27 81.96 82.80 

19 93.12 83.21 83.05 92.77 82.56 92.11 81.01 78.16 78(14 77.20 77.63 83.11 93.27 

20 93.43 83.28 83.53 83.2)) 82.89 82.25 810) 78.47 78.33 77.52 78.48 83.61 84.13 

21 83.29 83.39 83.19 82.99 82.92 82.16 91.15 79.12 78.97 78.32 79.07 83.85 84.49 

22 83.40 83.53 83.09 83.36 83.09 82.32 81.68 79.36 79.56 78.73 79.43 84.28 84.53 

23 83.52 83.47 93.51 83.29 93.09 82.56 81.87 90.1) 79.89 79.56 79.63 94.81 84.87 

24 83.55 83.76 83.75 83.44 93.35 82.72 82.11 80.60 80.45 79.85 80.17 85.05 85.21 

25 83.41) 83.43 83.47 83.51 83.16 82.85 82.39 80.72 80.57 80.39 80.49 85.67 86.05 

26 83.64 83.67 83.46 83.45 83.11 82.80 82.55 81.05 80.41 80.79 80.83 86.17 86.24 

27 83.61 83.47 83.51 83.53 83.39 83.39 82.65 81.27 80.72 81.23 8144 86.49 86.77 

28 83.71 83.55 83.53 83.55 83.56 83.24 82.76 81.51 81.17 80.81 81.20 86.60 86.64 

29 83.84 84.))1 83.92 83.72 83.49 83.59 83.11 91.87 80.89 81.47 81.56 86.99 87.35 

30 84.31 84.11 84.09 83.89 83.72 83.56 83.36 82.53 81.51 81.88 82.04 87.03 87.49 

31 84.08 84.04 83.87 83.93 83.64 83.51 83.65 82.71 81.83 82.37 820) 87.24 87.52 

32 84.41 84.36 84.11 83.87 1 	83.85 84.05 84.18) 83.29 1 	82.16 92.57 81.81 87.8)) 87.80 

Table B.5 - Percentage Classification Rate of trained REF networks for the training 

set of the three class Speaker Recognition problem. 
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Speaker Recognition Training Set - Standard Deviations 

Speaker Recognition - Test Set - Standard Deviations 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 2.45 2.22 2.25 2.17 2.35 2.21 1.79 1.60 1.91 4.14 3.04 3.32 3.08 

II 1.60 1.47 1.46 1.55 1.45 1.50 1.43 1.82 2.56 3.36 3.47 3.05 2.62 

12 2.71 2.92 2.88 2.75 2.42 2.14 1.69 1.37 1.90 2.47 4.08 	1 2.51 2.50 

13 2.01 1.87 2.16 1.85 2.11 204 1.55 1.55 1.67 2.44 3.14 2.15 1.96 

14 1.67 1.61 1.87 1.50 1.48 1.51 III 1.55 2.10 2.56 2.88 1.72 20) 

15 1.49 1.43 1.67 1.62 1.45 1.25 1.18 1.79 1.79 1.93 3.21 1.59 1.6)) 

16 1.19 1.36 1.29 1.4)) 1.01 1.22 1.28 1.58 2.31 1.78 2.76 1.29 1.41 

17 1.29 1.22 1.39 I.)) 1.58 1.51 1.16 1.45 2.07 1.51 2.49 1.13 1.46 

18 I.!! ((.88 1.24 1.04 ((.99 j 	I.!! I.))! 1.38 2.2)) 1.8)) 2.59 1.50 1.37 

19 10! 1.14 1.25 1.14 1.14 1.22 1.33 1.53 1.58 1.84 2.77 1.25 1.25 

20 ((.98 1.03 1.12 1.33 1.11 1.20 1.08 1.6)) 1.95 1.93 2.6)) 1.53 1.52 

21 ((.87 ((.97 1.29 1.3)) 1.18 1.14 1.28 1.29 1.94 1.86 2.38 1.41 1.43 

22 i.o4 1.09 1.25 1.39 1.24 1.4)) 1.20 1.52 1.40 1.94 2.23 1.26 1.27 

23 1.4)) 1.55 1.40 1.43 1.36 1.1(9 1.09 1.59 1.36 1.83 2.06 1.50 1.38 

24 1.22 ((.96 ((.98 I.!)) 1.22 ((.84 1.18 1.59 1.24 1.89 1.86 1.45 1.45 

25 1.05 1.15 1.14 1.05 1.05 ((.91 II)) 1.43 1.77 1.94 1.75 1.52 1.24 

26 099 1.06 1.15 1.03 1.24 1.22 ((.95 1.13 1.56 1.66 1.46 1.61 1.41 

27 ((.94 ((.97 ((.86 ((.81 0.91 1.13 106 1.52 1.57 1.70 1.72 1.34 1.47 

28 1.28 1.08 1.25 1.12 ((.97 ((.98 1.24 1.65 1.49 1.48 1.79 1.86 1.91 

29 j 	((.77 ((.94 ((.98 ((.96 1.13 119 1.41 1.52 1.59 1.66 1.87 1.96 1.6$ 

30 1.05 ((.97 (.0) 1.13 1.12 1.4)) 1.50 1.75 1.73 1.54 1.73 1.84 1.8)) 

31 1.19 ((.96 ((.82 1.08 1.0) ((.93 ((.88 1.56 1.77 1.65 1.51 1.91 1.81 

32 1.16 1 	1.02 1.07 1.1)4 1(8) IA)! ((.83 1.31 2.07 1.37 1.59 2.24 1.82 

Table B.6 - Standard Deviations of Mean Classification Percentages in Table B.5 
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Speaker Recognition Test Set - Mean Classifications 

Speaker Recognition - Test Set - Mean Classifications  

Transistor Curve Gaussian 

Cts 0 I 2 3 4 5 6 7 8 9 10 11 12 

10 73.07 73.28 73099 73.25 73.25 73.55 73.81 72.69 66.64 54.13 59.07 63.07 64.51 

II 73.41 73.36 73.39 73.07 73.44 73.81 74,24 73.52 68.43 54.96 58.51 61,81 63.76 

12 73,07 73.28 73.31 73.39 73.52 73,57 74.16 73.68 69.09 57.44 	j 61.03 63.81 65.44 

13 73.84 73.63 73.87 74.13 74.11 73.97 74.48 74.45 70.35 58.99 61.15 65.63 67.12 

14 73.44 73.41 73.79 73.84 73.81 73.76 74,59 74.19 71.01 61.47 61.68 66.05 67.6)) 

15 73.25 72.91 73.31 73.47 73.29 73.57 74.69 74.96 70.59 61.6)) 63.92 67.57 68.24 

16 72.96 73.15 73.41 73.44 73.2)) 73.73 74.77 75.92 71.49 62.13 63.52 67.23 68.05 

17 72.85 72.72 72.77 73.01 73.12 73.49 74.75 76.43 72.19 62.61 (A.16 68.03 68.13 

18 72.83 72.85 72.64 73.01 72.96 73.31 74.37 76.48 72.56 62.61 65.44 68.45 69.04 

19 72.77 72.37 72.85 72.75 72.93 73.65 74.93 76.35 72.48 63.89 66.03 68.51 69.01 

20 72.32 72.19 72.32 72.37 72.56 73.04 74.91 76.19 73.49 6309 65.15 68.75 68.83 

21 71.92 71.87 71.84 71.92 72.37 73.2)) 74.61 76.48 73.36 63.23 65.71 7003 70.56 

22 72.21 72.11 72.56 72.43 72.35 72.96 74.61 76.48 73.17 63.79 66.48 7)1.61 7093 

23 72.64 72.88 72.67 72.69 72.88 73.55 74.77 76.61 73.25 64.19 66.29 70.93 70.93 

24 72.24 72.24 72.05 72.21 72.56 73.44 74.67 76.29 73.31 66.03 67.01 71.81 71.20 

25 72.53 72.64 72.69 72.88 73.28 73.76 75.57 76.32 72.77 66.03 67.36 71.81 71.87 

26 72.21 72.32 72.35 72.37 72.83 73.79 75.12 76.19 73.28 65.92 67.49 72.37 71.97 

27 71.87 71.84 71.41 7192 72.1%) 72.77 74.13 75.73 73.23 66.72 67.89 72.80 72.51 

28 71.44 71.57 71.65 71.73 72.24 72.61 74.19 76.37 73.49 67.12 68.48 72.59 71.84 

29 72.05 71.6)) 72.11 72.11 72.48 73.23 74.96 76.67 73.15 67.89 67.71 73.65 73.07 

30 71.97 71.81 71.63 7187 71.95 72.83 74.37 76.03 72.85 67.31 68.03 73.33 72.59 

31 72.13 72.11 71.87 72.59 72.53 73.25 74.64 76.32 72,83 67.87 68.29 73.63 73.20 

32 72.27 71,79 72A%) 72.13 72.64 73.23 74.91 76.64 73.49 67.89 68.67 73.95 72.85 

Table B.7 - Percentage Classification Rate of trained RBF networks for the test set of the 

three class Speaker Recognition problem. 
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Speaker Recognition Test Set - Standard Deviations 

Speaker Recognition - Test Set - Standard Deviations 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 2.48 2.46 2.50 2.45 2.45 2.59 2.53 2.11 3.27 5.48 5.16 4.47 3.81 

11 2.94 2.71 2.91 2.48 2.63 2.20 1.95 2.22 3.23 5.19 5.46 3.34 2.44 

12 2.43 2.48 2.39 2.31 2.02 2.05 2.35 2.21 3.10 3.48 4.89 2.98 3.53 

13 . 2.70 2.70 2.72 2.87 2.77 2.65 2.99 2.46 3.01 3.57 4.72 2.63 3.38 

14 2.74 2.77 2.57 2.49 2.47 2.49 2.54 2.56 2.21 3.55 4.38 2.63 3.36 

15 2.68 2.31 2.61 265 2.65 2.54 2.37 1.98 2.13 4.55 4.17 2.38 2.59 

16 2.16 2.13 2.50 2.01 2.1)) 2.4)) 2.90 2.20 2.7)) 3.55 3.90 2.43 2.36 

17 2.11 1.79 1.83 2.03 2.19 2.04 2.03 2.14 2.98 3.54 3.41 2.71 2.83 

18 2.13 1.74 1.93 1.86 2.05 2.19 2.21 2.57 2.47 3.37 3.47 2.63 3.22 

19 1.89 2.17 1.94 2.12 2.12 2.14 2.18 1.91 2.28 3.23 3.44 2.64 2.44 

20 1.44 2.01 1.70 1.79 j 	1.47 1.86 1.79 2.38 2.63 2.85 2.88 2.61 2.55 

21 1.64 1.52 1.73 1.75 2.13 2.25 1.95 2.26 2.08 3.52 3.35 2.26 1.89 

22 1.83 2.13 1.76 2.05 2.08 2.27 2.11 2.11 2.08 3.14 3.17 2.72 2.69 

23 1.93 1.79 1.69 1.99 2.35 2.14 2.56 1.94 2.17 3.1)) 3.24 2.45 2.1)) 

24 2.05 2.03 1.77 1.81 2.12 2.19 2.47 2.21 2.45 2.77 3.65 2.53 1.99 

25 2.11 2.19 2.41 2.13 2.27 1.81 2.48 2.06 1.82 2.55 3.08 2.01 2.49 

26 1.52 1.47 1.63 1.78 2.17 1.78 2.40 2.04 2.51 3.03 3.28 2.07 2.39 

27 1.62 1.34 1.41 1.72 1.42 1.81 2.14 2.27 2.54 2.83 2.26 2.07 2.34 

28 1.82 1.64 1.43 1.66 1.76 1.48 2.01 2.5)) 2.59 3.31 3.10 2.57 2.29 

29 1.39 1.57 1.63 1.43 1.74 1.85 1.84 2.06 2.53 2.75 2.22 2.43 2.09 

30 1.85 2.16 2.09 2.24 2.36 1.9)) 1.82 2.38 2.13 2.61 2.73 1.69 1.84 

31 1.69 1.81 1.98 1.72 1.55 2.42 2.16 2.44 2.14 2.81 2.73 1 	1.97 1.77 

32 1.52 2.07 1.61 1.9)) 1.60 1.81 1.72 2.45 2.34 2.38 2.97 1.87 1.73 

Table B.8 - Standard Deviations of Mean Classification Percentages in Table B.7 
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Sleep State Training Set - Mean Classifications 

Sleep State - Training Set - Mean Classifications  

Transistor Curve Gaussian 

Cts 0 I 2 3 4 5 6 7 8 9 10 Ii 12 

10 7620 7621 76.64 76.51 76.25 76.49 76.28 76.25 72.21 74.83 74.65 75.64 75.87 

11 76.37 76.43 76.41 76.45 76.16 76.40 76.47 76.36 72.39 74.37 74.43 75.29 75.73 

12 7616 76.16 76.53 76.43 76.2)) 76.47 76.32 76.49 72.88 75.12 74.45 75.52 75.84 

13 7644 76.25 76.55 76.6)) 76.45 76.57 76.63 76.29 72.95 75(44 74.21 75.96 75.92 

14 7661 76.53 76.72 76.75 76.69 76.73 76.65 76.43 73.37 75.21 74.51 75.96 75.64 

15 76.48 76.48 76.59 76.73 76.56 76.65 76.84 76.44 73.40 75.4)) 74.40 76.29 75.61 

16 7683 76.76 77.45 76.85 77.03 76.96 77.19 76.84 73.81 75.80 74.77 76.73 75.6)) 

17 76.79 76.93 77.28 76.92 77.12 77.11 77.29 76.61 73.93 75.88 74.88 77.07 75.87 

18 7724 77.25 77.44 77.33 77.64 77.32 77.73 77.12 74.12 76.23 75.49 77.53 75.80 

19 77.57 77.27 77.85 77.32 77.81 77.72 78.01 77.28 74,37 76.15 75.44 	1  78.37 75.95 

20 7769 77.87 78.09 77.84 77.89 77.77 78.27 77.47 74.92 76.61 75.13 79.65 75.96 

21 7780 77.88 j 	78.39 77.94 j 	78.49 78.01 78.67 77.65 74.96 76.49 75.12 8052 76.09 

22 78.13 78.2)) 78.56 78.09 78.47 78.12 78.93 77.79 74,9! 76.91 75.36 80.69 76.25 

23 7831 78.35 78.80 78.35 78.79 78.440 79.05 78.444 74.99 77.23 1 	75.15 81.59 76.01 

24 78.61 78.45 79.41 78.43 79.03 78.67 79.11 78.15 74.83 77,4)9 75.28 82.36 76.19 

25 78.75 78.91 79.43 78.80 78.95 78.99 79.20 78,59 75.07 77.39 75.64 83,17 76.59 

26 79.32 79.2)) 79.75 79.35 79.56 79.27 79,87 78.93 75.49 77.45 75,80 84.08 76.96 

27 79.47 79.59 79.87 79.37 79,88 79,64 8)4.15 79.32 75.81 77.76 75.92 84.75 77.4)9 

28 79.96 79.97 80.45 80.04 80.41 80,29 80.44 79,64 75.99 75,80 85.48  77.16 

29 80.35 8)4.40 80,67 8)1.2! 80.72 8)4.77 80,67 8)4)6 76.16  76.13 85.65 77.55 

30 8)4.56 80,8)) 81.( $) 8)4.84 84,4(9 81.13 81.07 8)4.48 76.24  r79.49 76.39 86,43 77.8! 

31 8)1.6)) 8)4.89 81,16 8)1,75 84.08 81.08 81.2)) 8)4,61) 76,93  76.6) .18) 

32 8)1.89 81,03 84.45 8!.)! 81.19 84.29 81.5! 8)4.71 76.99  77.08 

86.47 

 86.65 .03 ~78 

Table B.9 - 
Percentage Classification Rate of trained RBF networks for the training 

set of the three class Sleep State problem. 
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Sleep State Training Set - Standard Deviations 

Sleep State - Training Set - Standard Deviations  

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 0.70 0.55 0.73 0.86 0.74 0.88 0.89 0.43 0.73 1.09 0.93 0.55 0.46 

II 0.91 0.88 0.86 0.89 0.87 0.93 0.67 0.53 ((.7)) 1.16 1.17 0.48 0.43 

12 0.97 (.01 0.96 1.15 0.87 1.20 0.94 066 0.68 0.97 1.11 0.(4 0.64 

13 0.75 0.83 1.08 ((.71 0.97 084 0.79 0.46 0.84 1.23 1.17 0.79 0.51 

14 097 0.94 0.83 0.86 097 1.06 1.(8) ((.65 11.92 0.93 0.93 0.74 062 

15 1.02 1.02 1(8) 1.01 0.94 1.22 1.06 0.74 0.87 1.15 0.69 0.87 0.63 

16 1.05 0.81 1(%) (1)4 1.1)9 ((.93 0.88 ((.87 ((.83 ((.82 0.89 1.34 ((.69 

17 1.23 0.99 1.02 0.94 I.!)) 1.07 1.28 ((.8)) 0.86 1.02 0.68 1.46 0.59 

18 1.41 ((6 1.10 1.18 1.30 1.13 1.16 ((.84 1.16 1.01 ((.75 1.63 ((.54 

19 1.24 ((.96 0.96 1.16 1.04 ((.98 1.06 ((.93 ((.91 1.05 1)8) 1.52 0.83 

20 1.01 ((.99 ((.85 10) 1.14 11.8)) 1.02 093 j 	1.13 1.15 11.69 2.25 ((.75 

21 1.08 1.14 ((.96 ((.89 1.27 ((.81 1.03 ((.95 1)8) 1.13 0.73 2.58 )).66 

22 1.16 1.19 1.07 1.36 1.23 1.05 1.23 1.15 0.95 1.3)) 0.84 2.82 ((.79 

23 )).88 ((.9)) 1.36 1.16 1.23 ((.93 1.27 1.22 1.04 (.44 ((.72 2.81 0.70 

24 ((.93 III 1 	((.96 1.09 1.15 ((.99 1.14 1.28 0.95 1.07 ((.9)) 2.95 060 

25 1.14 1.17 1.16 1.46 1.23 1.38 1.45 1.42 094 1.29 ((.99 2.92 ((.91 

26 1.57 1.53 1.29 1.62 1.70 1.78 1.70 2.08 1.1(4 0.90 ((.96 2.61 1.35 

27 1.41 1.49 1.35 1.86 1.71 1.52 1.57 1.84 1.35 1.15 ((.78 2.14 1.35 

28 1.52 1.39 1.17 1.71 1.73 1.45 1.66 1.72 1.59 (.01 0.75 1.91 1.26 

29 1.87 1.71 1.53 1.97 1.97 1.82 1.84 2.22 1.53 1.1)) 1.08 2.18 1.53 

30 1.72 1.7)) 1.35 1.61 1.55 1.75 1.66 1.89 1.49 ((.99 1.14 1.81 1.42 

31 1.62 1.75 1.27 1.65 1.66 1.63 1.66 1.96 1.93 1.30 1.12 1.84 1.20 

32 32 (.86 (.64 (.54 (.49 1.95 1.56 1 ~6 1.59 1.90 1.74 (II 1.17 1.82 1.62 

Table B. 10 - Standard Deviations of Mean Classification Percentages in Table B.9 
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Sleep State Test Set - Mean Classifications 

Sleep State - Test Set - Mean Classifications  

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 ii 12 

10 70.44 7052 70.56 70.56 70.51 70,57 70.54 70.43 68.69 68.59 68.93 69.52 69.57 

II 70.51 70.56 70.62 70.63 70.58 70.65 70.62 70.49 68.84 68.49 68.85 69.7)) 69.68 

12 70.81 70.81 70.86 70.84 70.81 70.88 70.86 70.58 69.01 68.97 690) 69.76 69.76 

13 70.92 7093 70.97 70.98 70,99 71,04 71.()) 70.76 69.02 68.96 69.1) 69.89 69.81 

14 71.11 71,11 71.19 71.12 71.19 71.20 71.21 70.97 68.91 69.21 69.4)) 70.14 69.81 

15 71.16 71.21 71.27 71.26 71.28 71.32 71.34 ' 	 71.07 68.93 69.08 69.43 70.29 69.79 

16 71.39 71.43 71.51 71.45 7146 71.56 71.60 71.24 69.07 69.27 69.64 71)8) 69.89 

17 7134 71.37 71.46 71.46 7144 7153 71.62 71.24 69.04 69.12 69.58 71.41 69.94 

18 71.42 71.41 7155 7144 7155 71.65 71.68 71.33 69.02 69.16 69.55 71.82 69.93 

19 j 	71.61 71.63 7184 71.74 71.80 71.85 71.97 71.48 69.03 69.15 69.58 72.91 69.99 

20 71.8)) 71.76 72,)(6 7180 72.02 72.03 72.21 7167 69.11 69.14 69.5)) 74.25 69.98 

21 7198 71.9)) 72.22 7195 72.26 72.26 72.40 71.85 69.10 69.07 69.42 75.08 70.04 

22 72.37 72.25 72.48 72.25 72.69 72.62 72.75 7213 69.21 68.96 69.26 75.54 71)1)9 

23 72.32 72.27 72.58 72.26 72.74 72.71 72.84 72.26 69.13 68.80 69.29 76.45 7013 

24 72.34 72.21 72.65 72.28 72,80 72.77 72.95 72.26 69.08 68.99 69.27 76.71 70,00 

25 72.54 72.42 72,82 72,49 73.07 73.09 7315 72.55 69,014 68.84 69.06 77.39 70.06 

26 73.13 73)8) 73.32 73.)) 73.68 73.58 73.70 73.04 69.35 68.81 69.05 78.36 70.42 

27 73.35 73.20 73.55 73.2)) 73.92 73.84 73,9)) 73.24 69.39 68.79 69.08 78.98 70.52 

28 73.7)) 73.46 73.86 73.51 74.22 74.11 74.27 73.51 69.39 68.66 69.07 79.41 70.59 

29 73,86 73.65 74.04 73.82 74.54 74.3)) 74.41 73.69 69.34 68.49 68.92 79.62 70,75 

30 7418 74,07 74.38 74.17 74.91 74.72 74.79 7416 69.33 68.44 68.89 8)(.06 70.94 

31 74.27 74.1) 74.57 74.29 74.91 74.94 75.04 74.31 69.59 68.30 690) 80.29 7095 

32 74.3)) 74.26 74.66 74.34 74.95 74.94 1 	75.00 74.34 69.56 68.22 68.84 80,52 1 	70.83 

Table B. 11 - Percentage Classification Rate of trained RBF networks for the test set 

of the three class Sleep State problem. 



Appendix B 
	 234 

Sleep State Test Set - Standard Deviations 

Sleep State - Test Set - Standard Deviations  
- 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 0.35 0.40 ((.45 ((.38 0.37 0.44 ((.46 0.31 ((.82 0.41 0.73 0.27 0.21 

11 048 ((.57 ((.51 0.51 ((.53 0.60 ((.58 0.29 0.68 ((.47 0.80 ((.28 0.20 

12 ((59 ((.68 ((.69 ((.59 ((.62 ((.72 ((.66 ((.35 0.57 ((.79 ((.91 ((.31 0.21 

13 ((.58 ((.65 ((.65 0.60 ((.6)) ((.69 ((.66 ((.38 ((.56 ((.54 ((.79 ((.33 ((.27 

14 ((58 ((.68 ((.71 ((.71 ((.63 ((.70 ((.70 ((.57 ((.51 ((.66 ((.65 ((.53 ((.20 

15 ((.56 ((.62 ((.65 ((.58 ((.53 ((.64 ((.64 ((.60 ((.54 ((.57 ((.49 0.90 ((.20 

16 ((.68 ((.70 ((.75 ((.72 ((.71 ((.74 ((.71 ((.63 ((.49 ((.62 0.35 1.40 ((.19 

17 ((.65 ((.71 ((.75 ((.75 ((.70 ((.76 ((.71 ((.51 ((.61 ((.65 ((.29 1.74 ((.19 

18 ((.77 ((.87 ((.82 ((.82 ((.83 ((.84 ((.81 ((.60 ((.61 ((.63 ((.35 1.43 ((.19 

19 ((77 ((.79 ((.83 ((46 ((.78 ((.82 0.87 ((.57 ((.58 ((.63 ((.36 1.99 ((.24 

20 ((62 ((.63 ((.66 ((.65 ((.59 ((.63 ((.64 ((.58 ((.68 ((.60 ((.28 2.28  

21 ((.61 ((.55 ((.65 ((.67 ((.63 ((.58 ((.67 ((.65 1 	((.63 ((.58 ((.32 2.76 ((.28 

22 ((.88 ((.86 ((.95 ((.96 ((.98 ((.95 1.03 094 ((.59 ((.51 ((.39 2.08 11.37 

23 ((.83 ((.76 ((.83 ((.78 ((.89 ((.92 ((.92 ((.93 ((.83 ((.67 ((.28 2.77 ((.44 

24 ((.87 ((.73 ((.78 ((.72 ((.92 ((.87 ((.91 ((.94 ((.74 ((.61 ((.26 2.95 ((.49 

25 ((.92 ((.90 ((.95 ((.95 1.00 1.15 1.09 1.07 ((.64 ((.49 ((.40 2.93 ((.48 

26 1.39 1.50 1.38 1.43 1.56 1.59 1.52 1.57 ((.79 ((.57 ((.44 2.39 ((.85 

27 1.47 1.48 1.41 1.43 1.59 1.62 1.55 1.68 ((.89 ((.7)) ((.45 2.03 1.11 

28 1.51 1.47 1.43 1.46 1.63 1.57 1.50 1.59 ((.94 ((.59 ((.48 1.61 1.21 

29 1.62 1.77 1.61 1.67 1.79 1.82 1.86 (.93 1.19 ((.58 ((.52 1.98 1.35 

30 1.53 1.59 1.51 1.54 1.65 1.65 1.64 1.82 1.15 ((.49 ((.56 1.86 1.34 

31 1.49 1.59 1.56 1.61 1.66 1.65 1.66 1.82 1.41 ((.46 ((.55  

32 1.42 1.48 1.46 1.55 1.48 1.54 i 	1.54 1.60 1.37 ((.58 ((.59  

Table B. 12 - Standard Deviations of Mean Classification Percentages in Table B.11 
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Robot Location Training Set - Mean Classifications 

Robot Location - Training Set - Mean Classifications 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 JO Ii 12 

JO 68.43 68.39 68.22 68.26 68.10 67.85 64.19 62.67 60.46 59.57 58.59 63.15 63.37 

II 69.12 69.10 68.93 69.19 68.92 68.59 65.45 63.18 61.1)7 59.84 58.97 63.37 63.60 

12 70.03 69.97 69.84 69.89 69.82 69.77 66.53 63.78 61.47 60.95 59.85 64.24 64.35 

13 70.89 71.10 70.71 7085 70.64 7061 67.35 64.56 62.05 62.23 (1)45 64.66 64.89 

14 71.99 72.32 72.05 72.31 71.95 71.99 68.47 65.05 62.35 62.29 60.93 65.75 65.43 

15 73.39 73.49 73.61 73.67 73.45 72.98 7031) 66.09 62.57 63.69 61.85 66.89 66.37 

16 74.71 74.69 74.92 74.94 74.77 74.07 71.47 66.21 63.13 64.55 62.28 67.83 67.25 

17 75.77 75.75 75.87 76.06 75.99 75.31 72.26 67.14 63.1)) 64.49 63.01 68.57 68.11 

18 76.97 77.06 77.13 77.44 77.35 76.46 74.31 67.73 63.65 65.15 62.75 7055 69.03 

19 77.82 77.88 78.25 78.13 78.15 77.17 75.07 68.4)) 64.41 65.66 63.67 72.29 7043 

20 78.73 78.9)) 79.08 79.15 79.15 78.12 76.09 68.85 64.43 66.91 64.42 73.50 71.61 

21 79.42 79.56 79.89 79.95 79.84 78.83 77,18) 70.18) 64.78 67.42 64.61! 74.65 72.54 

22 $11.64 8)1.96 81.06 81,01 81.05 79.74 77.46 7)1.3! 64.92 67.73 65.31 75.85 73.8! 

23 81.61 81.67 91.87 81.64 81.71 80.87 78.21 70.53 64.95 67.75 65.85 76.49 74.81 

24 82.10 82.31 82.49 82.49 82.4)) 81.51 79.02 71.17 65.39 68.51 66.45 77.63 75.51 

25 82.89 83.(8) 93.11 83.14 83.11 81.99 79.73 71.71 65.89 68.94 67.1) 78.44 76.13 

26 83.59 83.87 84.05 83.91 83.88 82.73 80.15 72.62 66.86 69.51 67.64 79.45 76.79 

27 84.12 64.59 84.69 64.29 84.34 83.23 811.73 73.07 67.11 7006 68.43 811.19 77.71 

28 84.59 84.99 85.09 64.67 84.83 93.77 81.18) 73.17 67.27 69.94 68.65 81A)8 78.35 

29 85.02 85.31 85.29 85.16 85.07 83.97 81.75 73.63 67,97 70.35 68.88 81.83 78.89 

30 85,31 85,64 85.83 85.41 65,49 84.29 82.01 74.21 68.35 70.91 69.61 82.51 79.25 

31 85.77 85,79 86.15 85,73 85.74 84.97 82.47 74.33 68.26 71.37 70194 82.89 79.93 

32 86.05 86,26 96.53 86.19 96,116 85.09 82.67 75.1)4 68.77 71,87 70.48 1 	84.10 8!.!)) 

Table B. 13 - Percentage Classification Rate of trained RBF networks for the training 

set of the six class Robot Location problem. 
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Robot Location Training Set - Standard Deviations 

Robot Location - Training Set - Standard Deviations 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 1.16 1.13 1.20 1.15 1.12 1.15 1.63 1.20 2.33 1.97 4.59 1.06 0.94 

11 1.51 1.5)) 1.58 1.71 1.44 1.24 III 1.40 1.74 2.39 1.36 1.14 1.01 

12 1.72 1.73 1.81 	j 1.94 1.61 1.5)) 1.23 1.50 2.13 1.73 1.44 1.40 1.27 

13 2.06 2.01 2.01 1.97 1.89 2.02 1.49 1.3)) 1.67 1.94 1.71 1.59 1.49 

14 1.89 1.85 1.83 1.95 1.74 1.62 1.68 1.47 2.17 1.54 1.57 1.79 1.52 

15 1.86 1.77 1.81 1.78 2.08 1.67 2.6)) 1.59 2.33 2.03 2(44 1.84 1.68 

16 1.98 1.89 1.83 1.77 2.(8) 1.89 2.86 1.75 2.45 1.77 2.31 1.66 1.71 

17 1.51 1.68 1.47 1.73 1.92 2.14 2.44 1.48 2.06 2.12 2.27 1.6)) 1.73 

18 1.26 1.14 1.29 1.44 1.57 1.59 2.05 1.46 2.57 1.9)) 1.61 1.87 1.6)) 

19 1.95 2.07 1.82 1.85 1.76 1.72 2.09 1.62 2.46 2.23 1.35 2.10 1.70 

20 1.72 1.69 1.57 1.62 1.72 1.69 1.5)) 1.87 2.06 2.21 1.53 1.92 1.41 

21 1.73 1.46 1.35 j 	1.33 1.55 1.98 1.46 2.2)) 1.79 1.9)) 1.67 1.89 1.91 

22 1.42 1.52 1.18 1.52 1.37 1.67 1.21 1.93 2.02 1.52 1.36 1.97 1.75 

23 1.5)) 1.39 1.23 1.43 1.42 1.49 1.53 1.93 2.05 1.68 1.39 2.30 1.62 

24 1.29 1.19 j 	1.23 1.11 1.09 1.26 1.36 2.2)) 1.87 1.28 1.68 2.14 2.25 

25 1.26 1.42 1.49 1.37 1.28 1.31 1.68 2.27 1.95 1.33 1.88 2.49 2.05 

26 1.40 1.53 1.15 1.29 1.39 1.3)) 1.31 j 	1.71 j 	1.59 1.14 1.13 1.93 1.93 

27 1.05 11.82 ((.98 1.18 1.12 ((.96 1.12 1.94 1.68 1.42 1.25 1.75 1.66 

28 14.92 1.19 1.20 1.06 44.92 ((.88 1.18 1.95 2)8) 1.33 1.45 4.86 4.98 

29 1.3)) 4.34 1.08 1.34 1.25 1.3)) 1.41 2.03 2.13 1.31 4.28 4.96 4.73 

30 4.32 1.10 (0) 1.18 ((.99 0.96 1.27 2.12 1.89 1.68 1.35 1.89 1.97 

31 1.17 1.14 II) 1.14 1.04 1.14 1.25 2.)) 2.36 1.32 1.83 2.11 2.06 

32 44.95 ((.72 0.81 0.80 11.79 1.12 1.20 2.18 1.9)) 4.42 1.53 1.87 2.05 

Table B.14 - Standard Deviations of Mean Classification Percentages in Table B.13 
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Robot Location Test Set - Mean Classifications 

Robot Location - Test Set - Mean Classifications 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 67.63 67.78 67.64 67.49 66.92 66.22 61.96 58A04 56.49 56.79 58.50 60.33 60.63 

11 68.42 68.32 68.28 68.13 67.69 67.23 63.17 58.37 56.78 57.3)) 58.64 60.94 61.17 

12 69.13 69.07 69.06 68.94 69.59 68.32 64.26 59.06 57.17 57.80 58.64 62.08 j 	62.15 

13 69.70 69.70 69.66 69.58 69.37 69.05 65.23 59.86 57.32 58.56 58.89 62.81 62.80 

14 70.08 70.11 70.04 70.05 69.92 69.88 66.22 60.32 57.33 58.14 59.24 63.49 63.22 

15 70.99 7108 7102 71.04 71.08 70.94 67.64 61.30 57.75 58.99 59.34 64.52 63.82 

16 72.11 72.24 72.22 72.28 72.31 71.78 68.46 61.58 58.30 59.76 59.80 65.22 64.18 

17 72.44 72.61 72.67 72.66 72.86 72.31 69.30 61.81 58.78 59.60 59.97 65.41 64.72 

18 73.46 73.63 73.63 73.73 73.79 73.20 70.83 62.80 59.46 59.89 59.68 67.14 j 	65.41 

19 7405 74.20 74.26 74.31 74.37 73.48 71.22 63.64 59.99 60.27 61(5(1 68.78 66.77 

20 74.96 75.07 7514 75.18 75.30 74.50 72.06 64.20 60.23 60.90 60.93 69.87 67.55 

21 75.51 75.64 75.76 75.78 75.93 74.74 72.54 65.45 60.56 61.22 61.41 70.89 68.45 

22 76.23 76.36 76.53 76.48 76.77 75.78 73.28 66.08 61066 61.65 61.84 71.48 69.01 

23 76.85 76.92 77.07 77.02 77.19 76.34 74.10 66.26 60.76 61.88 62.41 72.02 69.60 

24 77.07 77.17 77.36 77.34 77.61 76.76 74.55 66.81 61.49 62.57 62.97 72.99 70.20 

25 77.72 77.92 78.00 77.90 78.02 77.20 74.93 67.25 61.61 62.68 63.46 73.62 70.90 

26 78.05 78.21 78.28 78.13 78.23 77.49 75.45 68.12 62.22 63.20 64.17 74.78 71.43 

27 78.40 78.58 78.70 78.46 78.64 77.77 75.91 68.47 62.67 63.80 65.03 75.14 72.02 

28 78.92 79.12 79.15 79.02 79.09 78.33 76.36 69.05 62.96 63.74 65.16 76.03 72.82 

29 79.24 79.50 79.48 79.33 79.35 78.69 76.66 69.33 63.50 64.02 65.43 76.74 73.44 

30 79.58 79.84 79.89 79.69 79.74 79.10 77.12 69.99 63.76 64.4)) 66.19 77.70 74.22 

31 79.81 79.98 80.06 79.75 79.77 79.18 77.23 70.05 64.12 64.83 66.78 78.16 74.70 

32 79.99 80.17 80.18 79.88 79.94 79.36 77.67 70.85 64.66 65.10 67.16 78.86 75.61 

Table B. 15 - Percentage Classification Rate of trained RBF networks for the test set 

of the six class Robot Location problem. 
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Robot Location Test Set - Standard Deviations 

Robot Location - Test Set - Standard Deviations 

Transistor Curve Gaussian 

Cts 0 1 2 3 4 5 6 7 8 9 10 11 12 

10 1.14 1.21 1.21 1.24 1.19 II! 1.44 0.117 1.93 1.311 1.19 1.30 1.11 

11 1.40 1.41 1.40 1.42 1.21 0.88 1.12 0.80 1.35 1.76 1.13 108 1.05 

12 1.69 1.73 1.79 1.81 1.88 2.01 1.19 1.14 (.51 1.41 1.44 1.82 ((.96 

13 1.91 1.79 1.87 1.85 1.89 1.83 1.36 ((.99 1.69 1.42 2.04 1.66 1.12 

14 1.93 1.87 1.96 1.99 1.92 1.87 1.81 0.87 1.79 1.47 2.12 1.59 1.29 

15 1.65 1.62 1.55 1.56 1.60 1.74 2.16 1.20 1.71 1.7)) 2.29 1.85 1.12 

16 1.71 1.7)) 1.66 1.65 1.59 1.67 2.23 1.19 1.87 1.85 2.29 1.54 1.05 

17 1.25 1.23 1.30 1.24 1.43 1.52 1.60 1.54 2.03 1.64 213 1.33 1.22 

18 1.16 1.24 ((9 1.3)) 1.14 1.18 1.37 1.43 2.25 1.76 1.88 1.83 1.24 

19 1.52 1.49 1.47 1.49 1.60 1.34 1.37 1.51 2.29 1.78 1.51 1.96 1.39 

20 1.32 1.33 1.30 1.23 1.3)) 1.01 1.35 1.73 1.72 1.57 1,28 1.99 1.33 

21 1.35 1,3)) 1.41 1.41 1.55 1.52 114 1.55 1,77 1.65 1.30 1.62 1,79 

22 1.16 1.20 1.25 1.25 1.37 1.06 1.01 1.5)) 1.74 1.54 1.33 1.57 1.37 

23 ((1 1.11 1.22 III 1.29 1.41 1.25 2.13 2.27 1.48 1.33 1.85 1,4)) 

24 091 094 (1,9(1 ((.94 095 1.18 1.28 2.27 219 1.02 (.3) 1.65 1.63 

25 1.21 1.15 1.16 1.17 1.17 1.42 1.41 1.99 2,09 1.30 1.68 1.61 1.57 

26 1.25 1.20 1.19 1.09 1.23 1.44 1.39 1.96 1.86 1.33 1.16 1.83 1.69 

27 1.02 1.09 0.96 0.98 1.16 (.01 1.15 1.82 1.68 1.39 1,44 1.67 1.57 

28 080 ((.79 0.73 ((.78 091 1.10 1.25 2,07 2.21 1.26 1.89 1.60 1.7)) 

29 1.11 1.11 1,03 1.03 ((2 1.16 1.06 2.15 2.13 1.33 1.80 1.45 1.49 

30 0.94 0.97 11,88 0.99 1.07 1.03 1.22 1.98 1.85 1.21 1.91 (.40 1.88 

31 2)11) ((.99 100 1.02 ((.96 ((.84 2.02 1.76 2.19 1.24 1.84 1.66 1.81 

32 080 084 )).78 ((.69 ((.7)) 11.80 1.08 1.57 1.76 1,21 1.54 1.59 1.99 

Table B.16 - Standard Deviations of Mean Classification Percentages in Table B. 15 
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Appendix C 

Quantisation Experiments - Classification Results 

This appendix contains the results for the quantisation experiments discussed in 

Chapter 7. Results for different levels of parameter quantisation on the test set for all 

four problems are given. As explained in Chapter 7, the weight values were found 

using full 64-bit floating point arithmetic and the quantisation was only introduced 

for the forward passes of the test data through the trained network. The classification 

performances are given as percentages along with ±1 standard deviation of each 

result. 

The results for each problem have been tabulated as follows. The first table in each 

section contains the average classification performances for the problems for RBFs 

with 15, 31 and 63 centres and no parameter quantisation. The remaining three tables 

then summarise the results for the 15, 31 and 63 centre networks with different levels 

of quantisation. The levels of quantisation chosen are defined as hidden layer quanti-

sation and output layer quantisation. This corresponds to quantising the centre posi-

tions in the hidden layer and the weight and threshold values in the output layer to 

the precision indicated, eg 16-bit . 16-bit means that both the centre positions and the 

output weights and thresholds were quantised to 16-bit precision. 
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Gaussian Distributions 

Gaussian Distributions - No_Quantisation 

Curve 15 Centres 31 Centres 63 Centres 

0 86.71 ± 0.27 86.31 ± 0.38 83.85 ± 1.02 

1 86.70±0.30 86.18 ±0.41 83.09± 1.13 

2 86.69 ± 0.24 86.13 ± 0.40 82.97 ± 1.14 

3 86.67 ±0.27 86.14 ±0.32 81.98±1.19 

4 86.69 ±0.25 86.17 ±0.44 83.48± 1.04 

5 86.76 ± 0.30 86.33 ± 0.50 83.21 ± 0.99 

6 87.04±0.27 86.31±0.63 81.55± 1.18 

7 84.55 ±0.91 85.24 ±0.64 82.07± 1.36 

8 82.97 ± 1.26 84.64 ± 0.80 81.62 ± 1.18 

9 86.74±0.59 87.15 ±0.44 83.16± 1.76 

10 86.79 ± 0.54 87.13 ± 0.49 84.75 ± 1.13 

Table C. 1 - Classification performance for all 3 networks with no parameter quantisation 

Gaussian Distributions - 15 Centres 

Curve 16-bit: 16-bit 12-bit 	12-bit 8-bit: 12-bit 12-bit 	8-bit 8-bit: 8-bit 

0 86.71 ± 0.27 86.58 ±0.36 86.31 ±0.60 72.39±13.14 72.84± 13.54 

1 86.70 ±0.30 86.63 ± 0.28 86.25 ± 0.66 75.24± 12.53 75.33 ± 12.00 

2 86.69 ± 0.24 86.62 ± 0.28 86.33 ± 0.58 74.99 ± 13.79 74.72 ± 13.75 

3 86.67 ± 0.27 86.66 ± 0.24 86.47 ± 0.42 77.92 ± 9.66 77.80 ± 9.25 

4 86.69 ±0.25 86.63 ±0.33 86.47 ±0.42 75.59±12.05 76.07±12.29 

5 86.76±0.30 86.74±0.28 86.64±0.27 80.92±7.24 80.42±8.21 

6 87.03 ± 0.28 87.01 ± 0.35 86.93 ± 0.36 84.62 ± 3.51 84.37 ± 3.85 

7 84.55 ± 0.91 84.54 ± 0.92 84.52 ± 0.96 82.64 ± 3.68 82.39 ± 5.10 

8 82.97 ± 1.26 82.98 ± 1.25 83.01 ± 1.32 82.87 ± 1.37 82.90± 1.43 

9 86.74 ± 0.59 86.73 ± 0.59 86.76 ± 0.57 86.73 ± 0.64 86.75 ± 0.60 

10 86.79 ± 0.54 86.78 ± 0.54 86.75 ± 0.57 86.75 ± 0.53 86.72 ± 0.55 

Table C.2 - Quantisation classification performances for the 15 centre network 



Appendix C 
	

241 

Gaussian Distributions - 31 Centres 

Curve 16-bit: 16-bit 12-bit: 12-bit 8-bit: 12-bit 12-bit: 8-bit 8-bit: 8-bit 

0 86.31 ±0.37 84.88±3.13 84.32±3.85 58.22±13.45 58.91 ± 14.37 

1 86.15 ± 0.42 85.46 ± 1.18 84.77 ± 1.47 58.24 ± 13.50 58.53 ± 13.85 

2 86.14±0.38 85.41 ± 1.35 84.74±2.00 61.94±15.33 61.82±15.22 

3 86.13 ±0.32 85.63 ±0.86 85.07 ± 1.74 57.35 ± 13.68 57.73 ± 13.44 

4 86.17±0.44 84.85 ± 2.19 84.53 ± 1.90 61.28±12.21 62.63 ± 13.07 

5 86.33 ± 0.50 85.57 ± 2.08 84.82 ± 2.85 57.98 ± 10.60 59.28 ± 10.93 

6 86.30 ± 0.63 85.74 ± 1.45 84.95 ± 2.75 62.11 ± 11.20 63.20 ± 11.65 

7 85.24±0.64 85.14±0.66 84.74±0.80 69.30±14.75 69.31 ± 14.31 

8 84.64±0.81 84.60±0.84 84.39±1.05 79.86±8.32 79.42±8.73 

9 87.15±0.44 87.14±0.45 87.12±0.51 87.13±0.48 87.12±0.51 

10 87.13±0.49 87.13±0.49 87.08±0.49 87.13±0.50 87.08±0.48 

Table C.3 - Quantisation classification performances for the 31 centre network 

Gaussian Distributions - 63 Centres 

Curve 16-bit: 16-bit 12-bit: 12-bit 8-bit : 12-bit 12-bit: 8-bit 8-bit : 8-bit 

0 83.78 ± 1.03 79.56 ± 6.96 76.96 ± 6.57 54.54 ± 10.97 53.98 ± 10.26 

1 83.01 ± 1.17 77.83±9.49 70.62±10.90 52.98±7.01 52.49±6.28 

2 82.95 ± 1.19 76.94 ± 7.79 72.49 ± 11.14 52.03 ± 6.09 52.75 ± 6.43 

3 81.94± 1.23 77.26±7.30 71.96±9.58 50.88±2.83 51.40±4.38 

4 83.46±1.09 78.63 ± 5.02 69.42±10.36 52.01 ± 6.13 52.60 ±7.94 

5 83.11 ±0.97 77.41 ± 8.24 72.58 ±7.98 50.83±3.10 51.98 ±6.01 

6 81.57± 1.21 77.81 ± 5.82 74.60±6.32 53.71±7.44 53.43 ± 5.67 

7 82.08±1.30 78.75 ±6.18 69.57 ±9.81 58.86± 12.05 56.73 ±9.63 

8 81.64 ± 1.20 80.47 ± 2.76 76.62 ± 5.04 60.78 ± 11.51 59.53 ± 11.43 

9 83.16± 1.75 83.14± 1.79 82.94± 1.84 80.54± 7.69 80.41 ± 7.43 

10 84.75±1.13 84.76± 1.12 84.54± 1.07 84.71 ± 1.11 84.50±1.08 

Table C.4 - Quantisation classification performances for the 63 centre network 
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Speaker Recognition 

Speaker Recognition - No_Quantisation 

Curve 15 Centres 31 Centres 63 Centres 

0 73.25 ± 2.68 72.13 ± 1.69 72.05 ± 1.90 

1 72.91±2.31 72.11± 1.81 71.33±2.22 

2 73.31 ± 2.61 71.87 ± 1.98 71.25 ± 1.76 

3 73.47 ±2.65 72.59± 1.72 71.97 ±2.29 

4 73.28 ± 2.65 72.53 ± 1.55 72.35 ± 2.91 

5 73.57 ± 2.54 73.25 ± 2.42 72.53 ± 2.71 

6 74.69±2.37 74.64±2.16 74.24±2.34 

7 74.96± 1.98 76.32±2.44 74.64±2.16 

8 70.59 ±2.13 72.83 ±2.14 70.21 ± 3.50 

9 61.60 ± 4.55 67.87 ± 2.81 70.83 ± 3.22 

10 63.92 ± 4.17 68.29 ± 2.73 72.19 ± 2.96 

Table C.5 - Classification performance for all 3 networks with no parameter quantisation 

Speaker_Recognition - 15 Centres  

Curve 16-bit: 16-bit 12-bit: 12-bit 8-bit: 12-bit 12-bit: 8-bit 8-bit: 8-bit 

0 73.23±2.64 73.17±2.65 73.39±2.85 67.76±8.95 67.71 ±9.38 

1 72.91 ±2.22 72.99±2.33 72.96±2.52 60.61 ±9.42 60.85±9.49 

2 73.23±2.61 73.17±2.71 73.01 ±2.54 67.52±7.51 67.09±7.64 

3 73.41 ±2.64 73.28±2.69 73.09±2.71 68.67±5.16 68.67±5.50 

4 73.31 ± 2.68 73.36 ± 2.49 73.25 ± 2.63 70.59 ± 3.76 70.32 ± 4.08 

5 73.55 ± 2.54 73.55 ± 2.58 73.73 ± 2.72 70.67 ± 5.03 70.61 ± 5.25 

6 74.75 ± 2.38 74.85 ± 2.51 74.77 ± 2.63 73.01 ± 3.06 72.99 ± 2.95 

7 74.96 ± 1.98 74.99 ± 1.98 75.36 ± 2.35 74.37 ± 2.53 74.56 ± 2.68 

8 70.61±2.11 70.59±2:13 70.40±2.06 70.29±2.35 70.19±2.29 

9 61.60±4.55 61.60±4.55 61.63 ±4.54 61.57±4.60 61.55 ±4.58 

10 63.92±4.17 63.79 ±4.21 63.81 ± 4.01 63.68±4.44 63.84 ±4.46 

Table C.6 - Quantisation classification performances for the 15 centre network 



Appendix C 
	

243 

Speaker_Recognition - 31 Centres  

Curve 16-bit: 16-bit 12-bit : 12-bit 8-bit : 12-bit 12-bit: 8-bit 8-bit : 8-bit 

0 72.16±1.56 72.13±1.81 71.92±1.89 56.43±13.16 56.40±12.98 

1 72.11 ± 1.84 71.84 ± 1.72 72.03 ± 1.95 56.72 ± 13.24 56.56 ± 13.05 

2 71.87 ± 1.83 72.03 ± 1.65 72.11 ± 1.80 57.95 ± 9.55 57.71 ± 9.74 

3 72.59 ± 1.64 72.75 ± 2.03 72.27 ± 2.06 63.52 ± 8.21 63.87 ± 8.60 

4 72.53 ± 1.75 72.51 ± 1.66 72.53 ± 1.85 64.08±8.26 63.39±8.31 

5 73.23 ± 2.43 73.15 ± 2.53 73.25 ± 2.42 66.99 ± 6.59 66.80 ± 6.67 

6 74.69±2.16 74.67±2.11 74.21 ±2.18 69.33±6.04 69.15±6.15 

7 76.35 ± 2.49 76.24 ± 2.61 76.27 ± 2.61 74.93 ± 2.75 75.09 ± 2.89 

8 72.83±2.14 72.77±2.06 72.75±2.33 72.77±2.14 72.75±2.34 

9 67.87 ± 2.81 67.89 ± 2.79 67.87 ± 2.60 68.05 ± 2.63 67.89 ± 2.68 

10 68.32 ± 2.73 68.32 ± 2.73 68.27 ± 2.71 68.24 ± 2.74 68.21 ± 2.76 

Table C.7 - Quantisation classification performances for the 31 centre network 

Speaker_Recognition - 63 Centres  

Curve 16-bit: 16-bit 12-bit : 12-bit 8-bit : 12-bit 12-bit : 8-bit 8-bit: 8-bit 

0 72.00± 1.93 71.20±2.32 70.93 ±2.28 44.00± 11.53 44.03 ± 11.71 

1 71.12±2.46 70.40± 2.07 70.24±3.00 43.47±10.02 43.73 ± 10.81 

2 71.41 ± 1.97 70.83 ±2.18 70.67 ±2.27 40.56±10.26 40.61 ± 10.55 

3 72.05 ± 2.34 71.76±2.22 71.09 ± 3.18 45.28±10.97 45.09 ± 11.02 

4 72.37±2.85 72.00±2.89 71.49±2.98 44.21 ± 11.64 44.13±11.31 

5 72.43 ± 2.93 71.92 ± 2.81 72.11 ± 3.24 48.21 ± 11.14 47.52 ± 10.87 

6 74.24 ± 2.29 73.81 ± 2.32 73.55 ± 2.38 52.48 ± 12.45 51.79 ± 12.05 

7 74.69±2.17 74.77±2.33 74.61 ±2.19 72.24±4.22 72.27±4.15 

8 70.24 ± 3.50 70.19 ± 3.56 69.97 ± 3.09 70.13 ± 3.29 70.19 ± 2.98 

9 70.83 ±3.22 70.80± 3.25 70.83 ±3.34 71.01 ± 3.06 70.91 ± 3.10 

10 72.16±2.98 72.13 ± 2.82 72.08 ± 2.90 72.21 ± 2.85 72.29±2.78 

Table C.8 - Quantisation classification performances for the 63 centre network 
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Sleep State 

Sleep State - No Quantisation 

Curve 15 Centres 31 Centres 63 Centres 

0 71.16±0.56 74.27±1.49 78.10±1.14 

1 71.21 ±0.62 74.11 ± 1.59 78.46±0.83 

2 71.27 ±0.65 74.58±1.56 78.67 ±0.89 

3 71.26±0.58 74.29±1.61 78.44± 1.00 

4 71.28 ±0.53 74.91 ± 1.66 79.03 ±0.84 

5 71.32±0.64 74.94± 1.65 79.18±0.76 

6 71.34±0.64 75.04± 1.66 79.28±0.61 

7 71.07 ±0.60 74.31 ± 1.82 78.84±0.83 

8 68.93 ± 0.54 69.59 ± 1.41 71.43 ± 2.13 

9 69.08 ± 0.57 68.30 ± 0.46 66.99 ± 0.83 

10 69.43 ± 0.49 69.00 ± 0.55 68.29 ± 0.72 

Table C.9 - Classification performance for all 3 networks with no parameter quantisation 

Sleep State - 15 Centres  

Curve 16-bit: 16-bit 12-bit: 12-bit 8-bit: 12-bit 12-bit: 8-bit 8-bit: 8-bit 

0 71.17±0.56 71.12±0.52 71.17 ±0.53 58.30± 11.41 58.26±11.38 

1 71.21 ±0.63 71.18 ±0.65 71.19 ±0.69 60.05 ± 12.80 59.96± 12.75 

2 71.26±0.65 71.26±0.63 71.28±0.64 56.80±11.25 56.69±11.24 

3 71.26 ± 0.57 71.25 ± 0.61 71.29 ± 0.62 64.04 ± 10.83 63.85 ± 10.97 

4 71.28±0.53 71.26±0.55 71.28±0.57 64.61 ±9.25 64.63±8.96 

5 71.32 ± 0.64 71.34 ± 0.69 71.34 ±0.68 63.75 ± 9.51 63.57 ± 9.66 

6 71.34± 0.64 71.35 ± 0.66 71.36 ±0.69 67.71 ± 5.13 67.61 ± 5.13 

7 71.08±0.61 71.08±0.61 71.07±0.63 69.14±3.18 69.01 ±3.33 

8 68.93 ± 0.54 68.93 ± 0.55 68.93 ± 0.54 68.77 ± 0.83 68.77 ± 0.83 

9 69.08 ±0.57 69.08 ±0.56 69.08 ±0.61 69.11 ± 0.56 69.08 ±0.60 

10 69.43 ± 0.50 69.43 ± 0.49 69.41 ± 0.49 69.42 ± 0.48 69.41 ± 0.49 

Table C.10 - Quantisation classification performances for the 15 centre network 
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Sleep State - 31 Centres  

Curve 16-bit: 16-bit 12-bit: 12-bit 8-bit: 12-bit 12-bit: 8-bit 8-bit: 8-bit 

0 74.27±1.47 73.30± 1.75 73.15±1.85 40.19±10.27 40.16±10.45 

1 74.11 ± 1.59 73.12± 1.64 73.06±1.84 37.41 ±9.36 37.60±9.32 

2 74.54± 1.56 73.96±2.13 73.79 ±2.39 4410±11.35 44.28±11.19 

3 74.30± 1.61 73.67±1.51 73.56± 1.63 44.66± 13.60 44.72±13.58 

4 74.90± 1.64 74.06±1.91 74.02±1.89 46.91 ± 15.06 46.94± 15.10 

5 74.96± 1.65 74.46±1.58 74.29±1.67 42.54± 13.30 43.07±13.05 

6 75.03 ± 1.64 74.42 ± 1.66 74.33 ± 1.74 43.67 ± 10.27 43.25 ± 9.83 

7 74.33 ± 1.83 74.13 ± 1.70 74.00 ± 1.94 52.94 ± 14.02 52.95 ± 13.86 

8 69.59±1.40 69.51 ± 1.42 69.47±1.52 62.88±10.11 62.97 ±9.90 

9 68.30±0.46 68.29±0.45 68.30±0.49 68.32±0.43 68.31 ±0.48 

10 69.00 ± 0.55 69.00 ± 0.56 68.97 ± 0.57 68.98 ± 0.56 68.97 ± 0.58 

Table C. 11 - Quantisation classification performances for the 31 centre network 

Sleep State - 63 Centres  

Curve 16-bit: 16-bit 12-bit: 12-bit 8-bit: 12-bit 12-bit: 8-bit 8-bit: 8-bit 

0 78.08±1.15 74.52±2.47 74.13±2.59 35.21±5.02 35.10±4.38 

1 78.42±0.85 75.33±3.59 74.79±3.29 36.27±7.14 36.75±7.92 

2 78.61 ± 0.92 75.42 ± 2.34 74.53 ± 3.06 38.64 ± 9.32 38.71 ± 9.49 

3 78.41 ± 1.01 75.62±3.08 75.55±3.03 39.39±9.53 39.36±9.75 

4 78.98 ± 0.84 74.64 ± 4.80 73.06 ± 6.75 37.48 ± 8.77 37.71 ± 8.89 

5 79.16±0.80 76.39±3.02 75.70±2.94 37.81 ±9.33 38.54±9.85 

6 79.28±0.60 76.83±3.29 76.62±2.88 42.92±15.00 43.03±14.13 

7 78.83 ± 0.82 77.55 ± 1.68 76.49 ± 2.33 37.03 ± 6.96 36.86 ± 6.67 

8 71.42 ± 2.13 70.96 ± 2.32 70.95 ±2.11 47.53 ± 11.36 48.25 ± 11.47 

9 66.99 ± 0.83 66.98 ± 0.81 66.93 ± 0.84 66.92 ± 0.84 66.89 ± 0.89 

10 68.29 ± 0.72 68.28 ± 0.71 68.25 ± 0.73 68.26 ± 0.75 68.26 ± 0.74 

Table C. 12 - Quantisation classification performances for the 63 centre network 
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Robot Location 

Robot Location - No Quantisation 

Curve 15 Centres 31 Centres 63 Centres 

0 70.99 ± 1.65 79.81 ± 1.00 84.28 ± 0.63 

1 71.08 ± 1.62 79.98 ± 0.99 84.44 ± 0.65 

2 71.02 ± 1.55 80.06 ± 1.00 84.28 ± 0.67 

3 71.04 ± 1.56 79.75 ± 1.02 84.03 ± 0.74 

4 71.08±1.60 79.77 ±0.96 84.22 ±0.61 

5 70.94 ± 1.74 79.18 ± 0.84 83.99 ± 0.72 

6 67.64±2.16 77.23±1.02 81.93±0.77 

7 61.30 ± 1.20 70.05 ± 1.76 76.05 ± 1.03 

8 57.75 ± 1.71 64.12 ± 2.19 72.46 ± 1.50 

9 58.99 ± 1.70 64.83 ± 1.24 72.73 ± 1.29 

10 59.34±2.29 66.78± 1.84 77.69 ±2.11 

Table C. 13 - Classification performance for all 3 networks with no parameter quantisation 

Robot Location - 15 Centres  

Curve 16-bit: 16-bit 12-bit: 12-bit 8-bit: 12-bit 12-bit: 8-bit 8-bit: 8-bit 

0 70.99 ± 1.64 70.73 ± 1.82 70.70 ± 1.77 49.10 ± 13.47 48.98 ± 13.63 

1 71.06 ± 1.61 70.76 ± 1.88 70.73 ± 2.01 50.95 ± 12.38 51.06 ± 12.34 

2 71.03 ± 1.56 70.71 ± 1.73 70.73 ± 1.83 50.49 ± 13.58 50.50 ± 13.59 

3 71.04 ± 1.57 70.88 ± 1.92 70.83 ± 2.05 50.98 ± 13.42 50.81 ± 13.31 

4 71.10± 1.58 70.79±1.72 70.70±1.81 54.60±9.83 54.60±9.98 

5 70.93 ± 1.76 70.74 ± 1.76 70.59 ± 1.82 62.70 ± 8.19 62.64 ± 8.28 

6 67.63 ± 2.15 67.64 ± 2.17 67.62 ± 2.15 64.44 ± 3.57 64.45 ± 3.56 

7 61.30± 1.20 61.32± 1.20 61.30±1.19 60.98± 1.39 60.96±1.41 

8 57.75 ± 1.71 57.75 ± 1.73 57.74±1.66 57.74±1.71 57.71 ± 1.68 

9 58.99 ± 1.70 59.00 ± 1.70 59.02 ± 1.68 58.97 ± 1.78 58.99 ± 1.78 

I 	10 59.34±2.29 59.34±2.29 59.33±2.30 59.54±2.52 59.56±2.51 

Table C.14 - Quantisation classification performances for the 15 centre network 
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Robot Location - 31 Centres  

Curve 16-bit: 16-bit 12-bit: 12-bit 8-bit: 12-bit 12-bit: 8-bit 8-bit : 8-bit 

0 79.78 ± 1.02 78.96 ± 1.82 78.73 ± 2.06 39.03 ± 16.73 39.14 ± 16.69 

1 79.98±1.01 79.22±1.69 78.79±1.76 35.88± 13.38 36.00±13.42 

2 80.05±1.01 79.50±1.74 79.14± 1.87 43.44± 19.72 43.36± 19.87 

3 79.75 ± 0.99 79.31 ± 1.31 79.08 ± 1.53 46.86 ± 14.61 47.30 ± 14.23 

4 79.78 ± 0.93 79.65 ± 1.34 79.43 ± 1.36 48.55 ± 14.65 48.52 ± 14.39 

5 79.20±0.82 79.06±1.10 78.90± 1.20 51.82± 16.09 51.97 ± 15.88 

6 77.24± 1.00 77.22±1.23 77.00± 1.25 62.65±7.93 62.32±8.03 

7 70.05±1.76 70.11 ± 1.77 70.12±1.78 68.10±2.58 68.08±2.58 

8 64.12±2.19 64.12±2.18 64.10±2.15 64.16±2.16 64.16±2.17 

9 64.83 ± 1.24 64.84 ± 1.24 64.84 ± 1.21 64.83 ± 1.28 64.85 ± 1.24 

10 66.78 ± 1.85 66.79 ± 1.86 66.78 ± 1.86 66.63 ± 2.14 66.64 ± 2.14 

Table C. 15 - Quantisation classification performances for the 31 centre network 

Robot Location - 63 Centres  

Curve 16-bit: 16-bit 12-bit: 12-bit 8-bit: 12-bit 12-bit: 8-bit 8-bit: 8-bit 

0 84.32±0.66 82.14±2.15 82.12±2.40 33.96± 15.62 34.80±15.37 

1 84.45 ± 0.67 82.66 ± 2.15 82.47 ± 2.43 32.52 ± 18.43 32.74 ± 18.58 

2 84.31 ± 0.69 82.57 ± 1.98 82.40 ± 1.93 24.74 ± 13.94 24.42 ± 13.37 

3 84.05 ± 0.78 82.95 ± 1.89 82.76 ± 2.11 34.48 ± 15.51 34.72 ± 15.58 

4 84.25±0.59 83.21 ± 1.63 82.80±1.93 29.57± 18.21 29.62±17.63 

5 83.98 ± 0.71 83.33 ± 1.24 82.59 ± 1.91 32.98 ± 12.58 32.30 ± 12.32 

6 81.93±0.77 81.50±1.16 81.39±1.41 49.17±11.44 50.18±10.45 

7 76.05 ± 1.04 76.03 ± 1.12 75.86 ± 1.15 66.57 ± 7.86 66.24± 8.30 

8 72.46±1.50 72.46±1.48 72.41 ± 1.46 72.48±1.60 72.43±1.58 

9 72.73 ± 1.29 72.73 ± 1.28 72.70 ± 1.30 72.70 ± 1.25 72.69 ± 1.28 

10 77.70±2.11 77.69±2.12 77.72±2.10 77.56±2.02 77.60± 1.97 

Table C. 16 - Quantisation classification performances for the 63 centre network 
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Chip Development Boards and Experiments 

This appendix illustrates how the PAR chip development board was configured for 

taking the results presented in Chapter 8 and describes, via a flow diagram, how the 

controlling software allowed the results to be collected. 

Board Set-Up 

This section describes how the signals necessary to operate the PAR chip as a classi-

fier were generated using hardware on the PAR chip development board. The exter-

nal hardware requirement is shown in Figure D.1. 

800Hz 

Clock 	Refresh Ctr 	Refresh Counter Trigger 

REFRESH SYSTEM  

ri 

DACs 

INPUTS 

widths RAM entres RAMI 	weights RAM 

DAC 	 H 

[PAR CHIP] 

Hidden 	Output 

Layer 	Layer 
0/P Pulse RAM 

riiden I 8-bit DACs I output 

RAMP GENERATION 
I Ramo RAM I 

24MHz 

Clock 	Ramp Ctr 	Ramp Counter Trigger 

Figure D. I - Schematic Diagram of the PAR chip Classification System 
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REFRESH SYSTEM 

The different neural parameters were downloaded to the widths, centres and weights 

RAMs before vector classification began. The widths and centres RAMs were each 

12 bits wide and their digital words were read to off-chip 12-bit voltage DACs. The 

weights RAM was 8 bits wide and output its digital words to the on-chip current 

DAC. 

The top 7 bits of a 9-bit refresh counter were used to address these RAMs during nor-

mal operation. By Ex-ORing some of the LSBs, it was possible to generate loading 

signals with guard bands as described in Chapter 6. 

The refresh operation was designed to run continuously and to be transparent to the 

vector throughput. It could be reset using the Refresh Counter Trigger control bit. 

RAMP GENERATION 

A single RAM and two 8-bit off-chip voltage DACs were used to generate the linear, 

double-sided, hidden layer and output layer ramps. These ramps were applied to the 

hidden layer and output layer PWM neurons respectively, and were used to convert 

the analogue voltages to pulse widths. The Ramp RAM was addressed using a 10-bit 

counter that also addressed the Output Pulse RAM. Thus the output pulses from the 

chip were recorded as the ramps were generated. 

As with the Refresh RAM, the Ramp RAM was loaded before vector processing 

began. Unlike the Refresh counter, however, the Ramp counter was designed to ter-

minate, until reset, after it had cycled through four 256-location RAM pages. The 

RAM pages consisted of ramp pages interleaved with blank pages as shown in Table 

D.L By configuring the Ramps in this way, it was possible to prevent overlap of the 

pulses from the hidden layer and output layer and allow output pulses that "spilled-

over" the Output Pulse page (page 3 in the Output Pulse RAM) to be recorded. 

Ramp_RAM Contents 

Page Contents 

1 Hidden Layer Ramp 

2 Blank Page 

3 Output Layer Ramp 

4 Blank Page 

Table D. 1 - Contents of the Ramp RAM 
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INPUTS 

The two components of each input vector were presented to the chip as analogue 

voltages between OV and 3V. To generate the voltages, the analogue values of the 

input vector components (stored in PC memory) were converted to 12-bit digital 

words and downloaded and latched into the 12-bit DACs. The input DACs were cali-

brated to produce output voltages in the desired range. 

Classification Software Operation 

The operation of the software used to control the PAR chip classification system is 

described by the flow diagram in Figure D.2. 

The software worked as follows. 

Initialisation - After reading all the input vectors, neural parameters and look-

up tables into computer memory, the hardware board was accessed and all the 

neural parameters and the ramps were downloaded to the relevant RAM chips. 

Vector Presentation - Each input vector component was loaded and latched 

into the 12-bit input DACs and the Ramp RAM was subsequently triggered. 

This fired the ramps onto the board. The generated output pulses were automati-

cally read into the Output Pulse RAM. 

Pulse Width Calculation - The Output Pulse RAM was interrogated by reading 

its contents back into PC memory. The widths of the stored pulses were then 

calculated. 

Classification Decision - The classification of the input vector was made by 

assigning it to the class represented by the output that had produced the longest 

pulse. The errors between the actual and target output vectors were then calcu-

lated. 

Result Presentation - Once all the vectors had been processed by the network, 

the performance results (classification rate and MSE) were recorded. 

Optional Learning - If the system was required to implement chip-in-the-loop 

learning, then the output weights and thresholds were updated using the LMS 

Rule. The new weights and thresholds were over-written into the weights RAM 

and the chip was refreshed for I second before the training vectors were. re-

processed. If learning was not implemented, no weight updates were made and 

the data set being classified was simply fed through the hardware again. 
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Figure D.2 - Flow diagram describing the operation of the software used to 

control the hardware classification system 
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Performance Anomaly 

During the development of the classification and learning system, a problem was 

observed with the software control of the board. 

When a delay was added between loading the input DACs and triggering the Ramp 

RAM, the classification performance of the PAR chip varied periodically with the 

length of the delay. Figure D.3 shows the classification variation with the delay in ms 

for four different PAR chips attempting to solve the Hard classification problem. 

Using a different PC and compiler to compile the code and control the development 

board resulted in the same variations. Although the results were not identical for the 

new PC, the same variations were noted if the time delays were altered or the code 

changed. It may be significant that the clock speed of the second PC was much faster 

than the first: this would account for the results not being identical, whilst using the 

same code and board could account for the same variations in performance being 

observed. 

The performance of the board RAMs, clocks and ramps were investigated and were 

found to function as required. Further, all the required signals were connected to the 

relevant chip pins and were generated as required. Also, Chapter 6 had shown that 

the static performance of the chip was consistent and as expected. Thus, having 

ruled out a chip or a board problem, attention was focused on the software control of 

the board and on the chip refresh system. 

For the experiments that indicated the performance variations, the chip refresh had 

always been on only during the time delay. Thus for a given, fixed, delay, the refresh 

would be addressing the same location in the refresh RAMs. The refresh system was 

therefore altered and allowed to run continuously. The periodic variation remained, 

though. 

However, further investigations indicated that the variation appeared to depend on the 

time between reseting the global refresh clock and triggering the Ramp RAM. Due to 

the way that the board was set up and controlled, when the refresh clock was running 

continuously, it was reset when the Output Pulse RAM was being interrogated. Since 

the delay was added between loading the input DACs and triggering the Ramp RAM, 

the refresh counter of the continuously running, and supposedly asynchronous, 

refresh system would again be addressing approximately the same location in RAM 

for each vector presentation. 
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Figure D.3 - Periodic Variation in Classification Performance with added Delay 

In essence, the refresh was pseudo-synchronous to the data through-put. 

By not re-setting the refresh counter during normal operation, it was possible to 

remove the periodicity in the Classification Performance, Figure D.4. Figure D.4(a) 

shows the observed variation for a continuous refresh clock reset when the Output 

Pulse RAM was interrogated, whilst Figure D.4(b) shows the observed variation 

when the refresh clock is again continuous but not reset when the RAM is interro-

gated, ie the refresh is completely asynchronous to the vector presentation. 

Clearly, there is a periodic variation when the clock is reset that is not present when 

refresh is completely asynchronous to the vector presentation. Furthermore, the clas-

sification performance for a system with an asynchronous clock varies from run to 

run, Figure D.4(b). However, it was noted that the performance of the chip when the 

refresh is asynchronous and continuous is generally lower than that obtained for the 

performance peaks when the variations are periodic. This is believed to be due to ran-

dom variations introduced into the results by digital switching noise. 

From these results, it was concluded that the variation in performance was indeed 

due to the pseudo-synchronism of the global refresh system with vector throughput. 

Although removing the source of this variation would be necessary in the develop-

ment of a final version of this system, in the context of this thesis it was not 
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Figure D.4 - Graphs showing how the Classification Performance varies with the 

added Delay for a continuously running refresh clock that is (a) reset before each 

vector presentation and (b) never reset 

justifiable to spend an unpredictable amount of time correcting it. Thus, a pragmatic 

decision was made to regard the performance "peaks" in Figure D.3 as a good mea-

sure of the expected performance from a final system with a corrected refresh sys-

tem. The recorded results in this thesis were therefore measured when the board was 

configured to be at one of these peaks. 

To fix the refresh system problem, and avoid a drop in performance due to digital 

noise, it is recommended that the refresh counter is redesigned to refresh the chip a 

set number of times before switching itself off. Thus, it is envisaged that the refresh 

system will only be used between vector presentations (in addition to loading the 

board initially and during learning). As already mentioned, at present the counter is 

designed to run continuously until it is terminated by a global master reset signal 

(MR_bar). If a more significant, and presently unused, counter bit is fed back to an 

AND gate as shown in Figure D.5, then the counter will terminate once bit N-i 

becomes set, ie if N is 12 in Figure D.5, the chip will be refreshed 16 times before the 

counter needs to be re-set. To restart the refresh counter, it must be globally reset and 

re-triggered using the Refresh Counter Trigger input. 

Altering the board in this way will: 

allow the board to be completely refreshed between separate vector presenta-

tions 
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allow the refresh to be off during vector presentations thus reducing the level of 

noise on the chip. 

bit N-i L 	To refresh RAMs 

bit 6 
bit5 
bit4 
bit 3 

Cik

bit 2 
bit i 
bit 0 

Clock 	 MR 

Refresh Counter Trigger 

Figure D.5 - Suggested re-design for the Refresh Counter 
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Appendix E 

Hardware Experimental Results 

This appendix contains the multi-chip and multi-seed classification performance and 

mean squared error (MSE) measurements from the hardware experiments detailed in 

Chapter 8. Software results are also given for comparison purposes. For these results, 

the transistor non-linearity corresponding to V W jd111  = 2V was used. The learning rates 

and training epochs for each of the experiments are tabulated below. 

Learning Rate Seed   Chip  

Problem 100 101 102 103 2 5 8 

Easy 0.001 - 0.001 0.0005 0.001 0.001 0.001 

Intermediate 0.01 0.01 0.01 - 0.01 0.01 0.01 

Hard 0.005 0.005 0.005 - 0.005 0.005 1 	0.005 

Table E. 1 - Learning Rates 

Epochs  Seed  Chip 

Problem 100 101 102 103 2 5 8 

Easy 4 - 4 7 6 4 5 

Intermediate L2O  20 20 - 20 20 20 

Hard  20 20 - 20 20 20 

Table E.2 - Epochs 

The software results were obtained from a single execution of the software model of 

the PAR chip using the listed random number generator seed to control network 

training. The Unquantised results were obtained by using the weights generated by 

adaptive k-means and SVD training in software to process the training set and test set 

without any quantisation. The Quantised results were obtained by quantising the 
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64-bit floating point centre locations to 12-bit precision and the output weights and 

thresholds to 8-bit precision after training and before processing the vectors. 

The hardware results were obtained by calculating the average classification perfor-

mance from a single chip after passing the data set through 10 times. The mean clas-

sification performance over the ten runs is presented, along with an error term repre-

senting ±1 standard deviation of the results. The average MSE over the 10 runs is 

also presented, however no standard deviations are presented for the MSEs as they 

were all less than 0.35%. 

The initial results were obtained by downloading the unaltered software generated 

weights to the chip and using them to process the vectors. The final average results 

were obtained in the same manner except that the original software generated output 

weights and thresholds had been adapted for the chip using chip-in-the-loop learn-

ing. 
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Easy Problem - Single Chip : Multiple Seed 

Classification Performance - Easy Problem 

Chip 5 Used Software Hardware 

Data Set Seed Unquantised Quantised Initial Final 

Training 

Test 

100 

100 

100.0 

98.0 

100.0 

98.0 

95.80 ± 0.48 

95.05±0.50 

99.65 ± 0.34 

99.40±0.21 

Training 

Test 

102 

102 

100.0 

98.0 

100.0 

98.0 

96.85 ± 0.82 

97.45 ± 0.80 

100.0 ± 0.0 

99.35 ± 0.24 

Training 

Test 

103 

103 

100.0 

99.0 

100.0 

99.0 

99.00 ± 0.24 

98.65±0.34 

99.45 ± 0.28 

99.15±0.34 

Table E.3 - Classification Performance Result Summary for the Easy Problem 

Single Chip : Multiple Seed 

Mean Squared Error - Easy Problem 

Chip 5 Used Software Hardware 

Data Set Seed Unquantised Quantised Initial Final 

Training 

Test 

100 

100 

1.453x10 2  

1 	1.890x10 2  

1.456x10 2  

1.885x10 2  

2.206x10 

1 	2.211x10' 

2.038x10' 

2.038x10' 

Training 

Test 

102 

102 

1.397x10 2  

2.157x10 2  

1.398x10 2  

2.155x10 2  

2.298x10' 

2.298x10' 

2.075x10' 

2.080x10' 

Training 

Test 

103 

103 

1.560x10 2  

1.908x10 2  

1.562x10 2  

1.907x10 2  

2.299x10' 

2.295x10' 

2.092x10 

2.080x10 

Table E.4 - MSE Performance Summary for the Easy Problem 

Single Chip Multiple Seed 
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Easy Problem - Multiple Chip: Single Seed 

Classification Performance - Easy Problem 

Seed was 100 Software Hardware 

Data Set Chip Unquantised Quantised Initial Final 

Training 

Test 

2 100.0 

98.0 

100.0 

98.0 

95.45 ± 0.76 

94.90 ± 0.57 

99.90 ± 0.21 

99.40 ± 0.21 

Training 

Test 

5 100.0 

98.0 

100.0 

98.0 

95.80 ± 0.48 

95.05±0.50 

99.65 ± 0.34 

99.40±0.21 

Training 

Test 

8 100.0 

98.0 

100.0 

98.0 

98.50 ± 0.41 

97.80±0.26 

100.0 ± 0.0 

99.40±0.21 

Table E.5 - Classification Performance Result Summary for the Easy Problem 

Multiple Chip : Single Seed 

Mean Squared Error - Easy Problem 

Seed was 100 Software Hardware 

Data Set Chip Unquantised Quantised Initial Final 

Training 

Test 

2 1.453x10 2  

1.890x10 2  

1.456x10 2  

1.885x10 2  

2.199x10' 

2.204x10' 

1.899x10 

1.897x10' 

Training 

Test 

5 1.453x10 2  

1.890x10 2  

1.456x10 2  

1.885x10 2  

2.206x10' 

2.211x10' 

2.038x10 

2.038x10' 

Training 

Test 

8 1.453x10 2  

1.890x10 2  

1.456x10 2  

1.885x10 2  

2.192x10' 

2.197x10' 

1.954x10 

1.957x10' 

Table E.6 - MSE Performance Summary for the Easy Problem 

Multiple Chip: Single Seed 
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Intermediate Problem - Single Chip : Multiple Seed 

Classification Performance - Intermediate Problem 

Chip 5 used Software Hardware 

Data Set Seed Unquantised Quantised Initial Final 

Training 

Test 

100 

100 

95.0 

97.5 

95.0 

97.5 

89.05± 1.26 

92.50 ± 0.71 

91.80±0.59 

94.95 ± 0.37 

Training 

Test 

101 

101 

95.5 

96.5 

95.5 

96.5 

94.95 ± 0.16 

95.95±0.16 

94.55 ± 0.55 

96.90±0.21 

Training 

Test 

102 

102 

95.0 

97.5 

95.0 

97.5 

94.30 ± 0.26 

96.80 ± 0.26 

92.50 ± 0.62 

95.45 ± 0.28 

Table E.7 - Classification Performance Result Summary for the Intermediate Problem 

Single Chip : Multiple Seed 

Mean Squared Error - Intermediate Problem 

Chip 5 used Software Hardware 

Data Set Seed Unquantised Quantised Initial Final 

Training 

Test 

100 

100 

4.187x10 2  

3.478x10 2  

4.188x10 2  

3.496x10 2  

2.418x10 

2.407x10' 

1.641x10' 

1.568x10' 

Training 

Test 

101 

101 

4.212x10 2  

2.426x10 2  

4.209x10 2  

2.438x10 2  

2.384x10' 

2.377x10 1  

1.808x10' 

1.763x10 

Training 

Test 

102 

102 

4.353x10 2  

3.662x10 2  

4.355x10 2  

3.662x10 2  

2.388x10' 

2.382x10' 

1.830x10' 

1.787x10 

Table E.8 - MSE Performance Summary for the Intermediate Problem 

Single Chip : Multiple Seed 
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Intermediate Problem - Multiple Chip : Single Seed 

Classification Performance - Intermediate Problem 

Seed was 100 Software Hardware 

Data Set Chip Unquantised Quantised Initial Final 

Training 

Test 

2 95.0 

97.5 

95.0 

97.5 

93.10±0.66 

95.50 ± 0.53 

91.00±0.47 

94.25 ± 0.26 

Training 

Test 

5 95.0 

 97.5 

95.0 

97.5 

89.05 ± 1.26 

92.50±0.71 

91.80 ± 0.59 

94.95±0.37 

Training 

Test 

8 95.0 

97.5 

95.0 

97.5 

91.10±0.70 

93.35 ± 0.53 

88.00±0.53 

91.20 ± 0.63 

Table E.9 - Classification Performance Result Summary for the Intermediate Problem 

Multiple Chip: Single Seed 

Mean Squared Error - Intermediate Problem 

Seed was 100 Software Hardware 

Data Set Chip Unquantised Quantised Initial Final 

Training 

Test 

2 4.187x10 2  

3.478x10 2  

4.188x10 2  

3.496x10 2  

2.408x10' 

2.398x10' 

1.637x10' 

1.559x10' 

Training 

Test 

5 4.187x10 2  

3.478x10 2  

4.188x10 2  

3.496x10 2  

2.418x10 

2.407x10 1  

1.641x10' 

1.568x10' 

Training 

Test 

8 4.187x10 2  

3.478x10 2  

4.188x10 2  

3.496x10 2  

2.400x10' 

2.394x10 

1.655x10 

1.585x10 

Table E. 10 - MSE Performance Summary for the Intermediate Problem 

Multiple Chip: Single Seed 
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Hard Problem - Single Chip : Multiple Seed 

Classification Performance - Hard Problem 

Chip 5 used Software Hardware 

Data Set Seed Unquantised Quantised Initial Final 

Training 

Test 

100 

100 

84.5 

88.5 

85.0 

88.0 

72.90± 1.10 

74.35± 1.20 

73.75 ±0.35 

74.05 ±0.37 

Training 

Test 

101 

101 

85.5 

88.5 

85.5 

88.5 

57.65± 1.78 

61.00±2.05 

74.10± 0.61 

77.00±0.78 

Training 

Test 

102 

102 

85.5 

87.5 

86.0 

87.0 

68.05±2.13 

72.80 ± 2.25 

68.60±0.39 

1 	84.70 ± 0.95 

Table E. 11 - Classification Performance Result Summary for the Hard Problem 

Single Chip Multiple Seed 

Mean Squared Error - Hard Problem 

Chip 5 used Software Hardware 

Data Set Seed Unquantised Quantised Initial Final 

Training 

Test 

100 

100 

1.175x10' 

1 	9.796x10 2  

1.175x10 1  

9.776x10 2  

2.440x10 

2.434x10' 

2.166x10' 

2.112x10' 

Training 

Test 

101 

101 

1.156x10' 

1.021x10 1  

1.155x10 1  

1.023x10' 

2.452x10 1  

2.445x10' 

2.235x10' 

2.208x10' 

Training 

Test 

102 

102 

1.166x10' 

9.796x10 2  

1.167x10 

9.775x10 2  

2.441x10' 

2.434x10' 

2.217x10' 

2.230x10' 

Table E.12 - MSE Performance Summary for the Hard Problem 

Single Chip Multiple Seed 



Appendix E 
	

263 

Hard Problem - Multiple Chip : Single Seed 

Classification Performance - Hard Problem 

Seed was 100 Software Hardware 

Data Set Chip Unquantised Quantised Initial Final 

Training 

Test 

2 84.5 

88.5 

85.0 

88.0 

75.00 ± 0.75 

78.45 ± 1.57 

71.65 ± 0.34 

72.75 ± 0.35 

Training 

Test 

5 84.5 

88.5 

85.0 

88.0 

72.90 ± 1.10 

74.35 ± 1.20 

73.75 ± 0.35 

74.05 ± 0.37 

Training 

Test 

8 84.5 

88.5 

85.0 

88.0 

76.00± 1.39 

74.15±0.63 

68.60±0.57 

69.00±0.41 

Table E.13 - Classification Performance Result Summary for the Hard Problem 

Multiple Chip: Single Seed 

Mean Squared Error - Hard Problem 

Seed was 100 Software Hardware 

Data Set Chip Unquantised Quantised Initial Final 

Training 

Test 

2 1.175x10' 

9.796x10 2  

1.175x10' 

9.776x10 2  

2.432x10' 

2.427x10 

2.172x10' 

2.121x10' 

Training 

Test 

5 1.175x10 

9.796x10 2  

1.175x10' 

9.776x10 2  

2.440x10' 

2.434x10' 

2.166x10' 

2.112x10' 

Training 

Test 

8 1.175x10' 

9.796x10 2  

1.175x10' 

9.776x10 2  

2.435x10 

2.430x10' 

2.191x10 

2.146x10' 

Table E. 14 - MSE Performance Summary for the Hard Problem 

Multiple Chip: Single Seed 
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