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Abstract 

Endometrial cancer (EC) is the most common gynaecological malignancy in the developed 

world, with approximately 9000 new cases reported annually within the UK (2013-2015). 

Incidence rates of EC have been steadily climbing over the last decade, with a notably steep 

increase described in the 40 to 49-year-old age group, most likely as a consequence of rising 

rates of obesity. Endometrial hyperplasia (EH) is a uterine pathology which is characterised 

by an increase in the endometrial gland-to-stroma ratio when compared to endometrium from 

the proliferative phase of the menstrual cycle. The clinical significance of EH lies in its 

association with progression to endometrioid endometrial cancer and ‘atypical’ forms of EH 

are widely considered to be premalignant lesions.  

The overarching objective of the studies described in this thesis was to use cellular 

and molecular approaches to improve our capacity for earlier diagnosis of EC, through 

targeting and enhancing our understanding of EH. The following aims were addressed: 

1. To develop a human EH tissue resource and utilise this to evaluate the current methods used 

to classify EH and predict its progression to EC. 

2. To characterise key molecular changes within EH lesions so that they can be used to extend 

and enhance pathological classification of EH. 

3. To explore in vitro models of the endometrium and investigate the role of PTEN and 

ARID1A in endometrial epithelial cell proliferation. 

The results obtained herein provide novel insight into the diagnostic reproducibility 

of the two prominent EH pathological classification systems; i) the well-known and widely 

used World Health Organisation 1994 (WHO94) classification and ii) the more recent 

Endometrioid Intraepithelial Neoplasia (EIN)/WHO2014 iteration. Following an extensive 

retrospective review of patient medical records, a human tissue resource was established from 

samples held within The Lothian NRS Human Annotated Bioresource. Archival tissue sections 

from n=125 individual patient samples, that were pathologically diagnosed and coded as EH 

lesions based on the WHO94 criteria, were identified. A dual, blinded, expert gynaecological 

pathologist review was subsequently carried out. Interobserver percentage agreement for each 

of the expert pathologists and the original WHO94 based diagnosis was 56.0 % (n=70) and 

48.8 % (n=61) respectively. Upon reclassification using the EIN/WHO2014 classification 

system, EIN lesions were identified in 52/125 patients, with increased interobserver agreement 
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noted between the expert pathologists (67.2 %, n=84). The EIN/WHO2014 classification 

system also appeared to improve upon the WHO94 system when predicting progression to EC. 

Investigation of EH lesions for molecular changes pertinent to endometrial 

carcinogenesis revealed significant differences in the immunohistochemical expression 

pattern of the tumour suppressor PTEN, and the transcription factors PAX2 and HAND2 

between EIN and benign EH lesions. These data may, pending further validation studies, lend 

favourably to their use as a diagnostic pathological aid. Somewhat unexpectedly, the frequency 

of defects in mismatch repair protein (dMMR) expression was considerably less than 

hypothesised amongst EIN lesions. This was surprising given that dMMR are reported in 

approximately 25-30 % of somatic ECs. 

An accepted risk factor for the development of both EH and EC is exposure to 

‘unopposed oestrogens’ i.e. oestrogen without progesterone opposition. A novel in vitro model 

was created utilising EC cell lines to investigate the proliferative effects of silencing two 

commonly mutated genes within both EHs and ECs, namely PTEN and ARID1A, and also the 

overexpression of oestrogen receptor alpha (ERα). Cellular manipulation of gene expression 

for ERα, PTEN and ARID1A was performed. Findings demonstrated a significant increase in 

EC cell proliferation with knockdown of PTEN and to a lesser extent ARID1A, when 

compared to EC cells transfected with a scrambled sequence. The addition of a functional ERɑ 

to the knockdown models did not appear to increase cell proliferation in this context.   

In conclusion, novel data described herein highlights the current difficulties in 

achieving a reproducible diagnosis for EH. The use of immunohistochemistry identified 

changes in protein expression, which together with automated tissue analysis and in vitro 

studies, were used to complement and extend our understanding of premalignant changes in 

the endometrium. These findings have implications for the clinical management of women 

diagnosed with EH, as well as the development of a personalised approach to monitoring of 

women at increased risk of progression to EC.   
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Lay Summary 

The inner lining layer of the womb is called the endometrium and it is made up of many 

different types of cells. The endometrium undergoes monthly structural changes, called ‘the 

menstrual cycle’ and this is controlled by chemical structures called hormones. The two main 

female hormones are oestrogen and progesterone. Cancer of the endometrium is the most 

common reproductive cancer to affect women in the developed world and it is strongly 

associated with being overweight or obese. 

Too much oestrogen without progesterone can cause the endometrium to grow and 

become abnormally thickened. This can occur, either 1) as a woman nears the menopause 

(natural cessation of periods), 2) due to an underlying medical condition, 3) due to hormonal 

medications or 4) due to obesity. Abnormal growth and thickening of the endometrium is 

called endometrial hyperplasia (EH) and this condition has a wide variety of appearances when 

viewed with a microscope. In its most abnormal form EH may develop into endometrial cancer 

(EC).  

The studies described in this thesis explore how EH is classified and investigate 

strategies to aid in its diagnosis. The results presented demonstrate problems in reproducibly 

diagnosing EH using traditional classification methods. These problems arise because at a 

microscopic level, it can be difficult to separate worrying EH features that are high-risk for 

future cancer development, from benign EH features caused by high levels of oestrogen 

exposure. We demonstrate that a newer classification system which uses strict criteria 

improves on its predecessors. In addition, further findings suggest that this newer classification 

system may be enhanced using a pathology technique called immunohistochemistry, which 

allows changes in the presence of proteins between benign and pre-cancerous types of EH to 

be directly visualised in tissue samples with a microscope. Finally, using a model system of 

endometrial cancer cells, we have discovered that two commonly altered genes in both EC and 

EH (i.e. the codes present in the cells that controls the cell behaviour) may affect endometrial 

cell growth. 

With rates of EC continuing to rise, especially in younger pre-menopausal woman, 

our hope is that though improved understanding of EH (as a potential pre-cancerous 

condition), strategies for the earlier diagnosis of EC can be developed. 
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Chapter 1 

1 Literature Review 

1.1 Introduction  

Endometrial cancer (EC) is the most common gynaecological malignancy in the 

developed world and the 4th most common cancer to affect UK women (Ferlay et al., 2015). 

Incidence rates are reported to be rising, with approximately 8500 new cases registered in the 

UK in 2015 (Cancer Research UK, 2018). Most EC cases occur in postmenopausal women; 

however, age specific incidence increases steeply from 45-49 years (Figure. 1-1) (Cancer 

Research UK, 2018). 

 

 

Figure 1-1: UK Uterine cancer statistics 2013-2015. The average number of new cases per 
year and age-specific incidence rates per 100,000 population for all uterine cancers, UK, 2013-
2015. Red dashed line represents the average age a UK woman will have her first child (28.8 
years in 2016 (Haines, 2017)). Black dashed line represents the average age of menopause in 
UK women (51 years (Dunneram et al., 2018)). Adapted from Cancer Research UK, 2018. 

 

 A significant risk factor for this increase in incidence is the current obesity epidemic, 

and EC ranks highest amongst all cancers in its association with obesity (Mackintosh and 

Crosbie, 2013). If diagnosed and treated whilst confined to the uterus (International Federation 
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of Gynecology and Obstetrics (FIGO) stage I and II disease) EC carries an excellent prognosis 

with high curability. Endometrial hyperplasia (EH) is an ‘umbrella’ term representing a 

heterogenous spectrum of morphologically abnormal endometrial lesions and the condition 

shares many risk factors with EC. When cytological atypia (a variety of abnormal nuclear 

features including; loss of ‘axial polarity’, unusual / clumped shapes that may be rounded with 

irregular nuclear contours, noticeable nucleoli, and cleared or dense chromatin) is present 

within EH lesions there is a substantial risk of a coincident or subsequent diagnosis of 

endometrioid EC (Ellenson et al., 2011). There is an increasing need for individualised risk 

stratification and personalised treatment approaches within EC care, especially for younger 

women who may wish to preserve fertility and for those at a high risk of surgical morbidity. 

To ensure robust and early diagnosis advancing our understanding of EH as a premalignant 

lesion is required.   

 

1.2 The normal human endometrium and menstrual cycle 

The human endometrium is a dynamic, multicellular tissue structure which forms the 

inner lining layer of the uterus. During the reproductive years of a woman’s life it responds to 

fluctuating levels of ovarian sex-steroid hormones, undergoing cyclical proliferation and 

decidualisation ready to support a developing pregnancy (Jabbour et al., 2006). When 

pregnancy implantation does not occur, the endometrium is shed (menstruation) and without 

loss of function or scarring it rapidly repairs and restores tissue integrity, ready to begin the 

process again (Critchley and Maybin, 2011).  Abnormal sex-steroid hormone exposure and 

coexisting pathology can have significant effects on both the structure and function of the 

endometrium, leading to abnormal uterine bleeding  (AUB) and in some cases neoplasia 

(Maybin and Critchley, 2015). 

 

1.2.1 Structure of the human endometrium 

The endometrium lines the uterine cavity and it is surrounded by an outer layer of 

smooth muscle known as the myometrium (Figure. 1-2). The endometrium is structurally 

divided into two distinct layers (Figure. 1-2); a luminal (inner) functional layer and a basal 

layer that is adjacent to the myometrium (Bartelmez, 1957). It is the functional layer that 

breaks down and is shed during menstruation, however both layers have been proven to 

contribute to the cyclical regeneration process (Gaide Chevronnay et al., 2009).  
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The endometrium is comprised of several cell types, which include luminal and 

glandular epithelial cells and a multicellular stromal compartment. The stromal compartment 

contains ‘fibroblast-like’ cells, vascular and lymphatic channels as well as a diverse population 

of immune cells, the numbers of which fluctuate across the cycle (King, 2000; Maybin and 

Critchley, 2015; Rogers, 1996). Endometrial blood vessels become heavily coiled in the latter 

half of the menstrual cycle and consist of endothelial cells with surrounding pericytes (Rogers, 

1996). Endometrial lymphatics are suggested to be sparsely distributed in the functional layer, 

with larger lymph vessels found within the basal layer (Donoghue et al., 2007). Tumour 

invasion of the lymphovascular space (LVSI) is considered to be a poor prognosticator for EC 

(Briët et al., 2005).  

 

 

 

Figure 1-2: Schematic representation of the human uterus and representative 
histology. The human uterus is divided anatomically into four regions, the fundus, the 
body, the isthmus and the cervix. The human uterus contains a single uterine cavity 
(*). The inner lining layer of the human uterus is the endometrium which is divided 
into: A) an inner/luminal functional layer ‘functionalis’ and B) a basal layer ‘basalis’. 
The outer smooth muscle layer of the uterus (C) is the myometrium. Representative 
haematoxylin and eosin (H&E) histological image from the secretory phase of the 
menstrual cycle kindly provided by Dr Ioannis Simitsidellis, University of Edinburgh. 
1000μm scale bar. 
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1.2.2 The human menstrual cycle 

The human menstrual cycle can be considered as having two synchronous aspects: 1) 

the ovarian cycle - governing the preparation of endocrine tissue and the release of an oocyte 

and 2) the endometrial cycle - governing the preparation and maintenance of the uterine lining.  

 

1.2.2.1 The ovarian cycle 

The menstrual cycle is controlled by ovarian sex-steroid hormones and mediated by 

feedback loops as part of the hypothalamic-pituitary-ovarian axis (HPA). The average human 

menstrual cycle lasts from 28-35 days (Sherman and Korenman, 1975; Treloar et al., 1967). 

The ovarian cycle is divided into two phases: 1) the follicular phase (~14-21 days duration) 

and 2) the luteal phase (14 days duration) (Figure. 1-2).  

The follicular phase begins following the onset of menses (day 1), whereby there is a 

progressive, pulsatile increase in gonadotrophin-releasing hormone (GnRH) from the 

hypothalamus and a subsequent slow increase in both serum follicle-stimulating hormone 

(FSH) and luteinising hormone (LH) concentrations (Bates and Bowling, 2013). The increase 

in FSH stimulates growth and survival of a cohort of antral follicles within the ovary, which 

increase their expression of aromatase (Turner et al., 2002) and secrete oestradiol (E2) 

(Johnson, 2007). This secreted E2 provides negative feedback to the HPA to lower FSH and 

LH secretion, preventing further follicle stimulation. Large follicles require less FSH to 

survive than smaller ones and so a dominant follicle emerges (Johnson, 2007). Serum 

oestradiol concentration continues to rise, and a sudden mid-cyclical surge occurs (Adams et 

al., 1994). This surge represents a switch from negative to positive HPA feedback, resulting 

in release of LH by the pituitary that can be detected as a rapid rise in serum LH levels in the 

circulation (Adams et al., 1994). It marks the beginning of the luteal phase of the cycle and 

also corresponds with ovulation (Figure. 1-3).  

After ovulation, transformation of the ovulatory follicle into the corpus luteum (CL) 

results in the production of high levels of the hormone progesterone, which gradually increases 

in the mid- to late-luteal phase (Bates and Bowling, 2013) (Figure. 1-3). The CL also produces 

E2 and Inhibin A (Stocco et al., 2007). These hormones provide negative feedback on the HPA. 

If pregnancy does not occur, the CL degenerates, precipitating a fall in circulating 

concentrations of progesterone and oestrogen with the onset of menses. The HPA axis is 
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released from negative feedback, causing FSH and LH levels to start to rise and begin the next 

cycle. 

 

 

Figure 1-3: The human menstrual cycle. Schematic figure demonstrating 
the changes in sex-steroid hormone levels during the human menstrual cycle, 
with the corresponding physiological changes in the endometrium and ovary. 
In response to FSH a dominant follicle develops with a concomitant increase 
in the secretion of oestradiol. Following ovulation, oestradiol levels fall 
rapidly, and the corpus luteum secretes progesterone. Should a pregnancy 
not establish, regression of the corpus luteum leads to withdrawal of ovarian 
hormones resulting in menstruation. Image adapted from www.uptodate.com 
(Graphic 62189 Version 4.0) (UpToDate inc, 2019) 
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1.2.2.2 The endometrial cycle - proliferative phase 

The proliferative phase of the human menstrual cycle commences immediately after 

menstruation and lasts until ovulation. Under the stimulation of oestrogens, predominantly E2, 

proliferation of the epithelial, stromal and vascular cell compartments occurs, resulting in a 

two-to-three-fold increase in endometrial thickness (ET) by the time of ovulation (Fleischer et 

al., 1986). In the early-proliferative phase (~ days 4-7 of a 28-day cycle) the endometrium is 

characterised by a thin luminal epithelium and straight, short and narrow endometrial glands 

with numerous mitoses present (Noyes et al., 1975). The stromal compartment is compact, 

and the stromal cells exhibit large nuclei and scanty cytoplasm (Noyes et al., 1975). The mid-

proliferative phase (~ days 8-10 of a 28-day cycle), sees the formation of a taller columnar 

luminal epithelium and elongated curving glands with a ‘looser’ stromal structure (Figure. 1-

4A) (Noyes et al., 1975). Glandular epithelium shows stratification of nuclei – this is 

characteristic of proliferative phase, and disappears in the secretory phase, when nuclei are 

situated in a single row close to the basement membrane. By the late-proliferative phase (~ 

days 10-14 of a 28-day cycle, the luminal epithelium undulates, and the glands appear tortuous 

with a pseudostratified appearance (Noyes et al., 1975). 

 

1.2.2.3 The endometrial cycle - the secretory phase 

The secretory phase of the endometrial cycle begins after ovulation, with the luteal 

production of progesterone dominating the endocrine environment. The secretory phase is 

normally divided into three stages: 1) early (days 14-18 of a 28-day cycle), 2) mid (days 19-

23) and 3) late (days 24-28). In the early-secretory phase, subnuclear vacuolation of the 

glandular epithelium becomes prominent and the glands become tortuous in shape (Noyes et 

al., 1975). The mid-secretory phase (Figure. 1-4B) sees a single layer of rounded nuclei at the 

base of the epithelial cells, the vacuoles having slipped past and expelled their contents into 

the gland lumen; the high glycogen content of these secretions aids potential blastocyst 

survival prior to implantation (Noyes et al., 1975). Within the functional layer changes in the 

size and shape of the stromal cells become apparent and there is marked oedema. The late-

secretory phase is characterised by further transformation of stromal cells (decidualisation) 

particularly those found under the luminal epithelium and adjacent to the arterioles, further 

maturation and differentiation of the vasculature (spiral arterioles) and a discernible increase 

in the numbers of immune cells including uterine natural killer cells and macrophages (King, 

2000; Maybin and Critchley, 2015; Noyes et al., 1975).  
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1.2.2.4 The endometrial cycle - the menstrual phase 

In the absence of a pregnancy, withdrawal of oestrogens and progesterone culminates 

in piece-meal shedding of the functionalis layer of the endometrium (Garry et al., 2009). Blood 

‘lakes’ become apparent, with fragmented stromal cells and inflammatory exudate (Figure 1-

4C) (Noyes et al., 1975). These appearances rapidly become generalised and the luminal 

surface has a ragged and torn appearance with several gland openings (Garry et al., 2009). 

 

1.2.2.5 Postmenopausal endometrial life 

There is a progressive failure of ovarian function and a decline in ovarian oestrogen 

production towards the end of reproductive life, culminating in the permanent cessation of 

menstruation. Menopause is officially diagnosed following 12-months of amenorrhoea 

without any other pathological or physical cause (Harlow et al., 2012). The menopausal 

transition, or ‘peri-menopause’, occurs after the reproductive years, but before menopause, 

and is characterised by irregular menstrual cycles, endocrine changes, and vasomotor 

symptoms (McKinlay et al., 1992). Histologically, the postmenopausal endometrium should 

appear atrophic, with a cuboidal or columnar epithelium with no mitotic figures (Pernick, 

2017). Endometrial glands are usually tubular or cystic. The stroma appears inactive with 

variable collagenisation and minimal mitotic activity (Pernick, 2017).  

 

1.2.3 The ‘unopposed oestrogen’ hypothesis 

The primary source of oestrogen in postmenopausal life is from adrenal androgens 

that have been converted by aromatase enzymes to oestrone (E1) in adipose tissue (Kaaks et 

al., 2002; Simpson, 2003). Notably, obese postmenopausal individuals have been reported to 

have higher levels of circulating oestrogen (Moley and Colditz, 2016). In postmenopausal 

women, any excess oestrogen is not moderated by progesterone and is therefore considered to 

be ‘unopposed.’ The same principle applies to women experiencing extended periods of 

anovulation (e.g. individuals with polycystic ovarian syndrome PCOS or those experiencing a 

protracted ‘peri-menopause’) who lack regular luteal phase progesterone (Dumesic and Lobo, 

2013). Individuals with a chronic absence of progesterone with continuous exposure to 

‘unopposed’ oestrogen are at risk of EH and EC due to the proliferative and anti-apoptotic 

effects of oestrogens (Lewis-Wambi and Jordan, 2009). Progesterone, be it physiologically  
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released, or administered exogenously, has been suggested to ‘protect’ the 

endometrium from the proliferative effects of oestrogen (Greenblatt et al., 1982; Kim et al., 

2013).  

 

1.3 Abnormal uterine bleeding (AUB) 

Abnormal uterine bleeding (AUB) is a common gynaecological condition accounting 

for ~ 1/3 of all referrals to a gynaecologist (Spencer and Whitehead, 1999). AUB refers to any 

uterine bleeding which is of abnormal quantity (individualised approach used to define 

‘excessive’ blood loss that affects patient quality of life), duration or schedule (Spencer and 

Whitehead, 1999; Whitaker and Critchley, 2016). It incorporates heavy menstrual bleeding 

(HMB), intermenstrual bleeding (IMB) and postmenopausal bleeding (PMB) patterns. In 

2011, the International Federation of Gynecology and Obstetrics (FIGO) introduced new 

terminology to classify the causes of AUB, abbreviated by the acronym PALM-COEIN 

(Table. 1-1) (Munro et al., 2011). EC and EH are classified according to PALM-COEIN as 

AUB-M. Both conditions commonly present with postmenopausal bleeding (PMB) (~ 90 %), 

although only around 10 % of women with PMB will have EC. Women with AUB over 45-

years of age, or those with irregular bleeding or failure of treatment over 45-years of age, 

require endometrial sampling to rule out the presence of EH or EC (Sundar et al., 2017). 

Prompt referral for gynaecological assessment is mandatory for any episode of PMB. 

 

Table 1-1: The 2011 FIGO PALM-COEIN classification of abnormal uterine bleeding 
(AUB). 

Structural entities (PALM) Non-structural entities (COEIN) 

Polyp Coagulopathy 

Adenomyosis Ovulatory dysfunction 

Leiomyoma (Fibroids) Endometrial  

Malignancy & hyperplasia Iatrogenic 

 Not otherwise classified 

Reproduced from Munro et al., 2011. 
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Figure 1-4: Representative haematoxylin and eosin (H&E) stained tissue sections from across the human menstrual cycle. Representative images 
from human endometrial tissue samples obtained during the course of the studies described herein. A) Mid-proliferative phase endometrium. Small, 
uniform and rounded endometrial glands arrowed, with compact endometrial stroma (S). B) Mid-secretory phase endometrium with nuclei towards the 
base of the endometrial glands (arrowed) and vacuoles transitioning from a sub-nuclear position to the luminal surface to expel glycogen rich secretions. 
The stroma (S) demonstrates marked oedema, with small almost ‘naked’ nuclei and filamentous cytoplasm. C) Menstrual phase endometrium with blood 
‘lakes’ (circled), fragmented stromal cells (S) and torn, opened glands (arrowed). Magnification – see scale bar. 
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1.4 Endometrial Cancer 

As touched on above, endometrial cancer (EC) is the most common gynaecological 

malignancy affecting women in developed countries (Ferlay et al., 2015). The incidence of 

EC is steadily increasing; largely owing to an aging population and escalating rates of obesity 

(Ferlay et al., 2015; Renehan et al., 2010; Wise et al., 2016). In spite of the frequency of the 

disease, awareness amongst the general population is low and EC research is somewhat 

underfunded relative to its societal burden (Carter and Nguyen, 2012). If diagnosed and treated 

in its early stages (International Federation of Gynaecology and Obstetrics, [FIGO] stages I 

and II), EC 5-year survival figures stand at approximately 92 % and 75 % respectively 

(Creasman et al., 2006; Murali et al., 2014). Women diagnosed with advanced EC (FIGO 

stages III and IV) have 5-year survival figures described at 57-66 % and 20-26 % respectively 

(Murali et al., 2014). As discussed above, the majority of women with EC will present 

clinically with symptoms of AUB, in addition EC can also present as persistent 

postmenopausal discharge, as abdominal endometrial cells on cervical cytology or as an 

incidental finding. Established risk factors for the development of EC are listed in Table 1-2. 

 

1.4.1 Endometrial cancer pathology 

ECs have traditionally been pathologically described via a dualistic model, dividing 

them into ‘type 1’ and ‘type 2’ cancers based upon their clinical, metabolic and histological 

features (Bokhman, 1983). Type 1 ECs incorporate most of tumours seen and include the 

endometrioid adenocarcinomas, which account for >80 % of all ECs. Type 1 ECs are 

considered oestrogen-dependent and are frequently associated with EH, they are 

characteristically seen in post-menopausal obese women. Type 1 ECs are assigned a grade (1-

3) depending on the degree of differentiation and nuclear features, with grade 1 representing 

slow growing tumours with low metastatic potential and grade 3 representing tumours with 

poor differentiation and an aggressive phenotype. Differential expression of oestrogen 

receptors alpha and beta has been demonstrated in type 1 ECs according to tumour grade 

(Collins et al., 2009). Type 1 ECs are strongly associated with conditions contributing to 

unopposed oestrogen exposure (Table. 1-2), in addition to nulliparity and insulin resistance. 

Furthermore, some evidence has also been presented intimating a role for endocrine disrupting 

chemicals (EDCs) in EC development (reviewed in Gibson and Saunders, 2014). At a 

molecular level, type 1 ECs frequently harbour mutations in the genes PTEN, KRAS, CTNNB1 

and PIK3CA (Murali et al., 2014).  
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Table 1-2: Established risk factors for the development of ‘type 1’ endometrial cancer. 

Risk factor category Risk factor Comments 

Non-modifiable Age Incidence highest in females aged 75 to 791 

 Family history Suggested higher risk if first degree relative affected by EC 

Menstrual Postmenopausal status 90 % of women with EC will present with PMB 

 Early menarche  11 % higher in parous women aged under 13 at menarche1 

 Late menopause 34 % higher in nulliparous women aged 50-54 at menopause1 

 Prolonged perimenopause Suggested increased risk of EC proportional to duration that oestrogens are inadequately opposed2 

 Null parity 35-42 % higher in nulliparous women1 

Co-morbid conditions Obesity  34 % higher in overweight (BMI 25-30) women, and 2.5 times higher in obese (BMI 30+) women1 

 Diabetes mellitus 40-81 % higher in diabetics compared with non-diabetics1 

 Polycystic ovarian syndrome (PCOS) 2.8 times higher1 

 Oestrogen secreting tumours e.g. Granulosa cell tumours 

Iatrogenic Oestrogen only HRT 2.3 times higher risk of EC with use1 

 Tamoxifen therapy Risk higher in postmenopausal women and is dose and duration dependent3 

 Exogenous oestrogen exposure 2.1-2.7 times higher in women with the high circulating oestrogen levels1 

Others Physical inactivity Likely related to obesity 

 Hereditary  Lynch, HBOC and Cowden’s Syndromes 

1(Cancer Research UK, 2018a), 2(Hale et al., 2002), 3 (Mourits et al., 2001). BMI = Body mass index, PCOS = polycystic ovarian syndrome, PMB = post-

menopausal bleeding, HBOC = Hereditary breast and ovarian cancer syndrome, EC = Endometrial cancer
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Conversely, type 2 ECs tend to be oestrogen-independent and include the clinically 

aggressive ‘serous’, ‘clear cell’ and ‘mixed-cell’ histological subtypes. Type 2 ECs are high-

grade tumours by definition. Type 2 ECs are not associated with the same risk factors as type 

1 ECs and are more often associated with endometrial atrophy in the postmenopausal woman 

rather than with EH (Abu-Rustum et al., 2010; Creasman et al., 2006; Matias-Guiu and Prat, 

2013). Type 2 ECs are associated with a much poorer clinical prognosis as they also have a 

high tendency for extra-uterine spread. At a molecular level type 2 ECs are associated with 

HER2 amplification and recurrent TP53 mutations (Matias-Guiu and Prat, 2013).  

Despite the seemingly intuitive division of ECs into these two types, this dichotomous 

classification is far from perfect. There is a significant overlap between type 1 and type 2 ECs. 

For example, 10 % - 19 % of endometrioid ECs are deemed high-grade and have clinical, 

histopathological, and molecular features that are more akin to type 2 ECs (Brinton et al., 

2013; Voss et al., 2012). Mixed histological patterns incorporating endometrioid and serous 

morphology also exist (Mackenzie et al., 2015). 

EC normally presents as a primary tumour, however in very rare cases it may be 

metastatic from another malignancy (e.g. breast, ovary, lung, stomach, colorectal, and 

melanoma). ECs usually spread by direct extension into surrounding structures (myometrium, 

cervix and vagina), with deeper infiltration eventually leading to a breach of the uterine serosa 

and invasion of the parametria. Haematogenous and trans-tubal spread may also occur, with 

the lungs being the most common site for distant metastasis. Lymph node involvement is 

related to the depth of tumour invasion into the myometrium and the grade of the tumour (Chi 

et al., 2008). Lymphatic spread usually follows an anatomical distribution with involvement 

of the pelvic lymph nodes (internal and external iliac, obturator nodes) and the para-aortic 

nodal chain. 

 

1.4.1.1 Hereditary endometrial cancer 

Lynch syndrome (hereditary non-polyposis colorectal cancer (HNPCC) syndrome) is 

an hereditary condition which increases a woman’s risk of EC. Women with Lynch Syndrome 

have up to an ~80 % life-time risk of developing colon cancer, followed by an ~60 % life-time 

risk of developing EC and an ~10 % risk of developing other cancers (including but not 

exhaustive of; ovarian, pelvi-calyceal/ureteric, gastric, small intestinal, skin, brain and hepato-

biliary tumours) (Bonadona et al., 2011; ten Broeke et al., 2015). This autosomal dominant 

syndrome is caused by a germline (inheritable, i.e. present in gametes) mutation in one or more 
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of the DNA mismatch repair genes (MLH1, MSH2, MSH6 and PMS2). Cowden’s Syndrome 

is an autosomal dominant syndrome caused by a germline mutation in the PTEN gene which 

has life-time risk of ~20-30 % for developing EC and other cancers as well as hamartomas 

(Gammon et al., 2016). Hereditary breast–ovarian cancer syndrome (HBOC) is due to 

inherited pathogenic mutations in the BRCA1 and BRCA2 genes, and confers high risks of 

breast carcinoma, ovarian serous cancer, as well as other cancers including serous carcinoma 

of the endometrium. 

 

1.4.2 2009 FIGO endometrial cancer staging  

In the UK, current staging of ECs currently utilises the 2009 International Federation 

of Gynecology and Obstetrics (FIGO) system (Table. 1-3). Staging for EC is surgical because 

the condition is predominantly treated with surgery. The 2009 FIGO staging system does not 

require peritoneal cytology in its staging criteria since the prognostic significance of cytology 

is limited to cases of extrauterine spread, where positive cytology is associated with a poorer 

outcome. 

 

1.4.3 The Cancer Genome Atlas (TCGA) molecular classification of 
endometrial cancers 

In 2013, an integrated molecular classification drawing on proteomic, genomic and 

transcriptomic analyses of over 370 ECs was performed by The Cancer Genome Atlas 

(TCGA) and resulted in new insights into EC subtypes (Kandoth et al., 2013). Briefly, 

employing array-based and sequencing methodologies, four major EC groups were 

characterised: i) Ultramutated cancers with DNA polymerase epsilon (POLE) mutations (7 

%), ii) Hypermutated cancers with microsatellite instability due to MLH1 promoter 

methylation (28 %), iii) ECs with low mutation rate and low frequency of DNA copy-number 

alterations (CNA, 39 %) and iv) ECs with low mutation rate but high-frequency DNA CNA 

(26 %) (Kandoth et al., 2013). The TCGA data generated interest as the authors discovered 

that EC patients in the ultramutated group harbouring POLE mutations (more commonly seen 

in grade 3 endometrioid ECs in their cohort) had a less clinically aggressive course and 

improved progression-free survival when compared with patients in the other the three groups 

(Figure. 1-5) (Kandoth et al., 2013).  
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Table 1-3: International Federation of Gynecology and Obstetrics (FIGO) endometrial 

cancer staging system 2009.  

FIGO Stage Descriptor 

Stage I Tumour limited to the corpus uteri 

IA No or less than half myometrial invasion 

IB Invasion equal to or more than half of the myometrium 

Stage II Tumour invades the cervical stroma but does not spread beyond the uterus* 

Stage III Local and/or regional spread of tumour 

IIIA Tumour invades the serosa of the corpus uteri and/or adenexas 

IIIB Vaginal and/or parametrial involvement 

IIIC Metastases to the pelvis and/or para-aortic lymph nodes 

IIIC1 Positive pelvic lymph nodes 

IIIC2 Positive para-aortic lymph nodes with or without positive pelvic lymph nodes 

Stage IV Tumour invasion of bladder and/or bowel mucosa and/or distant metastases 

IVA Tumour invasion of bladder and/or bowel mucosa 

IVB Distant metastases, including intra-abdominal metastases and or inguinal lymph 
nodes 

Grading is reported addition to stage: either G1, G2 or G3, Positive cytology to be reported 
separately without changing the stage, *Endocervical glandular involvement should only be 
considered as stage I. Adapted from Creasman, 2009. 
 
 

Since adjuvant treatment would routinely be offered to women in this group, it is 

unclear whether this group may be overtreated with adjuvant treatment and would do well 

regardless (due to their POLE status) or whether the favourable outcomes are secondary to 

their tumours being more susceptible to the adjuvant treatment.  

All four TCGA groups contained some low-grade endometrioid ECs, suggesting that 

the genomic profiles of ECs can be markedly different even in tumours which have similar 

histological appearances. Furthermore, many of the grade 3 endometrioid ECs within the 

TCGA cohort had genomic profiles similar to serous carcinomas (i.e. p53 mutations and high 

copy number alterations (CNAs)), extending the existing argument as to whether high-grade 

endometrioid ECs should be grouped with other high grade serous ECs and considered as a 

‘type 2’ tumour (Alvarez et al., 2012). In 2014, Meng et al reported that POLE mutations 

could function as a prognostic marker for management of grade 3 endometrioid EC (Meng et 

al., 2014).  
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A suggested mechanism for the TCGA observations is that ECs with POLE mutations 

have a favourably enhanced antitumour T-cell response combined with an enrichment of 

antigenic neopeptides (van Gool et al., 2015). Given the expense and technical expertise 

required when undertaking molecular classification of ECs, surrogate and clinically applicable 

methods for use with formalin-fixed paraffin-embedded (FFPE) tissues have been proposed 

(Talhouk et al., 2015). Through analysis of 152 historic ECs using a combination of p53 

immunohistochemistry (as a surrogate marker for copy number status), MMR (MLH1, MSH2, 

MSH6, PMS2) immunohistochemistry and POLE mutation analysis, Talhouk  and colleagues 

were able to replicate the survival curves as demonstrated by the TGCA (Talhouk et al., 2015). 

 

 

Figure 1-5: Kaplan-Meier progression-free survival (PFS) curves from the 
TCGA EC cohort.  POLE-mutant tumours have significantly better PFS, while 
copy number high tumours have the poorest outcome. Image adapted from 
Kandoth et al., 2013.  

 

  



Chapter 1 – Literature Review 

16 
 

1.5 Endometrial Hyperplasia 

 Endometrial hyperplasia (EH) is a gynaecological condition which is primarily 

characterised by abnormal proliferation of the endometrial glandular epithelium. EH is widely 

recognised to precede the development of endometrioid EC, with atypical EH (synonymously 

known as endometrial intraepithelial neoplasia (EIN)) considered a direct pre-cursor lesion 

(Ellenson et al., 2011). It is unsurprising therefore that many of the EC risk factors (Table 1-

2) are also risk factors for EH. Histologically, the condition represents a range of 

morphological abnormalities, resulting in an increase in the endometrial gland-to-stroma ratio 

when compared to endometrium from the proliferative phase of the menstrual cycle (Ellenson 

et al., 2011; Kurman et al., 2014). The aberrant endometrial glands can vary greatly in size, 

shape and may exhibit cytological atypia. In developed countries the incidence of EH stands 

at approximately 200,000 cases per annum (Chandra et al., 2016). However, this is likely an 

underestimation since epidemiological registry data on EH patients are not routinely recorded 

(unlike cancer diagnoses) and so statistical information can vary greatly between institutions. 

It is generally accepted that most cases of EH will develop due to chronic exposure of 

the endometrium by oestrogens unopposed by a progestin (Trimble et al., 2012). As such, EH 

is relatively uncommon during the reproductive years in women who have a regular menstrual 

cycle (Ellenson et al., 2011). Women affected by EH will normally have a history of persistent 

anovulation, exogenous ‘un-opposed’ oestrogen exposure or obesity (Figure. 1-6). The 

majority of women with EH will present clinically with AUB. Lidor and colleagues reported 

a study of n=226 women with PMB, noting that EH was the cause in 15 % of the participants, 

whilst genital tract atrophy was the commonest associated cause overall (56 %) (Lidor et al., 

1986). Although stimulation of the endometrium by oestrogens is considered the basis for 

developing EH, other causes such as immunosuppression and infection have been implicated 

(Bobrowska et al., 2006). A retrospective study of 45 immunosuppressed renal graft recipients 

with AUB found a two-fold increase in the incidence of EH (69 % vs. 33 %) compared to non-

transplanted immunocompetent controls (Bobrowska et al., 2006).  

The clinical relevance of a diagnosis of EH relates to a future risk of progression to 

endometrioid EC and it is generally accepted that cytological atypia is the principal 

histological characteristic when assessing EHs for malignant potential (Ellenson et al., 2011). 

When atypia is present, it has been estimated that progression to EC can take approximately 4 

to 7 years (Gusberg and Kaplan, 1963; Kurman et al., 1985). Not all EH will progress to 

malignancy; some EHs occur secondary to oestrogenic proliferation without an underlying 
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malignant mechanism. These patients may be asymptomatic and, in some cases, the EH may 

regress without ever being detected.  

 

 

 

Figure 1-6: Factors contributing to ‘unopposed’ oestrogen stimulation of the 
endometrium in endometrial hyperplasia (EH). PCOS = Polycystic ovarian syndrome 
(Stein-Leventhal syndrome), FSH = follicle stimulation hormone, FSH: LH = follicle 
stimulating hormone to luteinising hormone ratio, SHBG = sex hormone binding globulin, 
HRT = hormone replacement therapy. Figure reproduced from Sanderson et al., 2017. 

 

1.5.1 Terminology and classification of endometrial hyperplasia 

The terminology and classification of EH has undergone multiple iterations over the 

past several decades, each system aiming to correlate EH histological features with the risk of 

progression to endometrioid EC (Chandra et al., 2016). The two prominent classification 

systems currently in use are: 1) The World Health Organisation (WHO) system, established in 

1994 with revision in 2003, which is heavily used within current clinical gynaecological 

practice and 2) The Endometrial Intraepithelial Neoplasia (EIN) system, introduced in 2000 

(Mutter, 2000) and which has recently been endorsed by the WHO in 2014 as part of their 

most recent classification of tumours of the female reproductive organs (Kurman et al., 2014). 
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1.5.1.1  The World Health Organisation (WHO) 1994 Classification  

In 1994, the WHO proposed a classification system based upon the histological 

features of EH lesions, in an attempt to stratify EHs based on their potential for malignant 

transformation (Scully et al., 1994). This system centres around the glandular/stromal 

architectural configuration of the endometrium (which is defined as being either simple or 

complex, compared with proliferative endometrium) and the presence or absence of glandular 

cytological atypia. Four groups were suggested: 1) Simple hyperplasia without atypia (SH) 2) 

Complex hyperplasia without atypia (CH) 3) Simple atypical hyperplasia (SAH) 4) Complex 

atypical hyperplasia (CAH) (Table. 1-4).  

These groups appeared to correlate with long-term follow-up studies of patients 

diagnosed with EH that had been conducted previously (Ferenczy and Gelfand, 1989; Kurman 

et al., 1985). The most influential of these studies was reported by Kurman et al in 1985 

(Kurman et al., 1985). In this study the authors performed a retrospective analysis of 170 

‘untreated’ EH patients whom had been diagnosed with EH on uterine curettage. The mean 

follow-up period for women was 13.4 years, during which time a hysterectomy was not 

performed before 1 year following the index diagnosis. Thirteen of the 170 women in the study 

progressed to EC during the follow-up period, of which 8% (n=1) had SAH and 29% (n=10) 

had CAH on initial curettage (Kurman et al., 1985). Subsequent research has corroborated the 

findings of Kurman et al demonstrating that cytological atypia is the most important feature 

when evaluating EH lesions for malignant potential (Baak et al., 2001; Ferenczy and Gelfand, 

1989; Lacey, Ioffe, et al., 2008).  

Cytological atypia can be seen in both simple and complex EH architectural 

arrangements, although SAH is very rarely seen, leading some to question its reproducibility 

and clinical relevance as a category of EH (Bergeron et al., 1999; Kendall et al., 1998). 

Abnormal mitotic figures distinctive of atypia include; scattered chromosomes, disrupted 

metaphase plates or tri/multipolar appearances. Cellular cytoplasm volume can vary, and a 

large number of eosinophils can be present in regions demonstrating atypia (Ellenson et al., 

2011). When first introduced the WHO94 system was considered a significantly novel 

approach to EH classification since it correlated the histological features of EH lesions with 

clinical outcome data (Baak and Mutter, 2005).  However, the subjective nature of this system 

has meant that significant diagnostic variation occurs between pathologists and overall 

diagnostic reproducibility is reportedly poor (Skov et al. 1997; Kendall et al. 1998). 

Cytological atypia is also not always uniformly seen across individual EH proliferations and 

subjective atypia grading scales, i.e. mild, moderate and severe are adopted by some, adding 
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further confusion especially when translating the scheme to clinical management (Kendall et 

al., 1998). In a study by Trimble and colleagues, 289 endometrial sample specimens with a 

community diagnosis of atypical EH were re-reviewed by specialised gynaecological 

pathologists using WHO94 criteria; 25 % of cases were downgraded to less severe histology 

than atypical EH, and 29 % were upgraded to EC (Trimble et al., 2006). 

 

Table 1-4: The World Health Organisation (WHO) 1994 classification of endometrial 
hyperplasia. Adapted from Sanderson et al., 2017. 

WHO94 Categories Histological & Cytological Features 

Simple hyperplasia without atypia (SH) 

• Irregularly shaped and sized glands  
• Cystic dilatation  
• Abundant cellular stroma 
• No back to back crowding  
• Nuclear pseudo-stratified glands but 

no nuclear atypia 
• Variable mitotic activity 

Simple atypical hyperplasia (SAH) • As per SH including nuclear atypia 

Complex hyperplasia without atypia (CH) 

• Crowded glands – can be complex or 
tubular, with or without dilatation 

• Sparse intervening stroma 
• Oval, bland nuclei with uniform 

shape 
• Variable mitotic activity 

Complex atypical hyperplasia (CAH) 
• Tightly packed glands  
• Very little intervening stroma  
• Nuclear atypia 

 

1.5.1.2  The Endometrial Intraepithelial Neoplasia (EIN) 2000 classification 
system 

A multicenter European study was conducted in 1999 by Bergeron and colleagues to 

assess both intra and inter-observer variability between expert pathologists in the diagnosis of 

56 endometrial samples utilising the WHO94 classification system (Bergeron et al., 1999). 

The authors reported significant disagreement in the diagnoses of CH and atypical hyperplasia 

(combining SAH and CAH) between pathologists (Bergeron et al., 1999). They concluded that 

histological classification should be simplified, suggesting that two groups be used; a 
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combined category for SH and CH, referred to as ‘hyperplasia’ and a combined category for 

atypical hyperplasia (SAH and CAH) and well-differentiated adenocarcinoma called 

‘endometrial neoplasia.’ The rational for this is that by utilising two groups, one benign and 

one neoplastic, reproducibility would be increased, and a two-tier system would align easily 

with potential therapeutic interventions i.e. medical or surgical (Bergeron et al., 1999).  

Research in the 1980s, spearheaded by Jan Baak and colleagues, developed a prognostic 

tool designed to predict EC progression risk based upon computerised morphometric analysis 

of the histological features seen within EH lesions (Ausems et al., 1985). It was proposed that 

by combining pathological analysis of nuclear and architectural features with morphometric 

analysis, prognostic value could be increased (Baak et al., 1988). This work culminated in the 

development of a weighted likelihood ratio called the ‘D-score’. The D-score centres on three 

key EH features: 1) volume percentage of stroma, 2) outer surface density of the glands 

(reflecting gland branching / convolution) and 3) the standard deviation of the shortest nuclear 

axis within glandular cells, i.e. nuclear atypicality (Baak et al., 1988; Baak and Mutter, 2005). 

The following equation is used:  

“D-score = 0.6229 + 0.0439 × (volume percentage stroma) − 3.9934 × Ln 

(standard deviation shortest nuclear axis) − 0.1592 × (glands outer surface 

density)” (Baak et al., 1988).  

By applying the D-score, hyperplastic biopsies with a score less than or equal to 1 have 

a high rate of progression to EC, whereas biopsies with a score greater than 1 almost never 

progress to EC (Baak et al., 1992,  2001). This system has been reported to have high 

diagnostic reproducibility (Baak and Mutter, 2005). Advances in molecular genetics, at around 

a similar time to the progress being made with morphometric analysis, recognised a shared 

monoclonal pattern of development between atypical EH lesions and ECs (Jovanovic et al., 

1996). This monoclonal pattern describes a situation whereby mutated cells with a growth 

advantage proliferate to the detriment of their neighbours, forming mutant clonal expansions 

stemming from a common progenitor (Jovanovic et al., 1996). Through the application of 

morphometric analysis, EH samples can be separated into monoclonal lesions (D-score <1, 

i.e. a high risk of progression to endometrioid EC) and polyclonal lesions (D-Score >1, low 

risk lesions, deemed to be reactive to an abnormal hormone environment) (Baak and Mutter, 

2005).  

Acknowledging the aforementioned reproducibility deficiencies within the WHO94 

classification system, the Endometrial Collaborative Group introduced the concept of 
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Endometrial Intraepithelial Neoplasia (EIN) in 2000 (Mutter, 2000). This system incorporated 

the advances in morphometric understanding and recognised the novel molecular research 

occurring in the field of endometrial precancers at the time (Jovanovic et al., 1996; Mutter, 

2000; Mutter et al., 1996). The EIN classification system divides hyperplastic endometrial 

lesions into two groups: 1) endometrial hyperplasia and 2) Endometrial Intraepithelial 

Neoplasia (EIN).  

EIN is defined as a monoclonal proliferation of architecturally and cytologically 

altered premalignant endometrial glands, which are prone to transformation to endometrioid 

EC (Mutter, 2000). This is in contrast to non-neoplastic, polyclonal lesions, which encompass 

a spectrum of changes ranging from disordered proliferative endometrium to non-atypical 

hyperplasia. These ‘benign’ lesions that occur reactively due to a proliferative oestrogenic 

stimulus i.e. a response to anovulatory cycles or exogenous estrogen exposure - an ‘endocrine 

effect’ (Mutter, 2000). The EIN concept proposes that initial genetic alterations within EH 

occur at a level undetectable by standard light microscopy. It is hypothesized that these 'latent’ 

genetically mutated cells could be present for several years in normal cycling endometrium 

(Mutter et al., 2007). Through the accrual of further genetic damage, higher-risk mutant clones 

assert themselves phenotypically as they have a proliferative advantage, demonstrating 

architectural and cytological features indicative of EIN. It has been inferred that endocrine 

modifiers of EC (e.g. unopposed oestrogens) can act upon the latent and EIN phases to alter 

the balance of cancer progression versus lesion involution (Mutter et al., 2007). 

Since morphometric ‘clonality’ analysis cannot be performed on diagnostic specimens 

routinely in most pathology laboratories, the EIN classification system adopts surrogate 

criteria (Table. 1-5) which emulate what the D-score achieves, however they can be assessed 

quickly using routine light microscopy on haematoxylin and eosin (H&E) stained EH 

specimens (Owings and Quick, 2014). The EIN system of EH classification signified a 

conceptual shift from the long-held belief that oestrogen-driven endometrial proliferation, with 

increasing glandular architectural complexity and accumulating cytological atypia gradually 

leads to the development of endometrioid EC. The EIN system recognises that EH lesions can 

have a several appearances that may include an emergent premalignant clone (EIN) within an 

oestrogen stimulated hyperplastic background. The notion of separating these two events, 

mutational activation and oestrogenic promotion, permits histological examination of the two 

components separately and gives a comprehensible model of the multistep carcinogenic 

process that is similar to that described in many other tissue types (Vineis et al., 2010) 
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The EIN system has been suggested to be highly reproducible between observers and 

straightforward to establish in standard pathological practice (Kane and Hecht, 2012; 

Usubutun et al., 2012). EIN categories do not correspond directly to specific categories in the 

WHO94 system and since both systems are governed by different rules the two systems are 

not directly comparable (Mutter, 2000). However, there is some recognisable overlap, with 

most SH and some CH falling into the EH category and many CH and most CAHs falling into 

the EIN category.  

 

Table 1-5: Haematoxylin and eosin section diagnostic criteria for Endometrial 
Intraepithelial Neoplasia (EIN) 

NB: All criteria must be met in order for a diagnosis of EIN to be made. 
VPS = volume percentage stroma. 
Reproduced with permission from Baak and Mutter, 2005. 

 

1.5.1.3 The World Health Organisation (WHO) 2014 Classification 

In 2014 the WHO made significant changes to their EH classification system, 

simplifying their 4-tier 1994 classification into a 2-tier classification (Kurman et al., 2014). 

The architectural component of simple or complex was removed and instead recommendations 

were made to refer to EH as either 1) hyperplasia without atypia (HwA) or 2) atypical 

hyperplasia (Kurman et al., 2014). For the first time the WHO recognised the EIN concept, 

refashioning the term to ‘Endometrioid Intraepithelial Neoplasia’, an adjustment on the 

original, to reflect that EIN is the precursor lesion to endometrioid EC and not to serous EC 

EIN Criterion Comments 

Architecture Area of glands exceeds that of stroma (VPS <55 %). 

Cytology 
Cytology differs between architecturally crowded focus and 
background. 

Diameter >1 mm Maximum linear dimension of the lesion exceeds 1 mm. 

Exclude mimics 
Benign conditions with overlapping criteria: basalis, secretory, 
polyps, repair, etc. 

Exclude Cancer 
Carcinoma if maze-like meandering glands, solid areas, or 
appreciable cribriforming. 
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(Kurman et al., 2014). The new WHO2014 classification refers to the premalignant 

endometrioid lesion as atypical hyperplasia / EIN and views the two terms synonymously.  

 

1.5.2 Predicting progression of endometrial hyperplasia to endometrial 
cancer  

As reviewed in Sanderson et al., 2017, understanding the pathogenesis and classifying 

EHs permits stratification of women at risk of progression to endometrioid EC, enabling 

necessary treatment in an appropriate and timely fashion. Several studies have investigated 

progression rates from EH to malignancy (Feldman et al., 1994; Horn et al., 2004; Lindahl 

and Willén, 1994; Tabata et al., 2001; Terakawa et al., 1997) however, many lack sufficient 

controls and/or demonstrate under-powering of EC cases which limits the conclusions that can 

be drawn in many cases. 

The aforementioned study by Kurman et al in 1985 is widely cited for its estimates of 

progression of EH to endometrioid EC based on a retrospective analysis of 170 women 

between 1940 and 1970 (Kurman et al., 1985). Classification in this study used what would 

eventually become the WHO94 system and published rates of progression of 1% (SH), 3% 

(CH), 8% (SAH) and 29% (CAH) respectively for the four categories (Kurman et al., 1985). 

The differences in progression between the four groups were not statistically significant and 

given the small number of EC patients and lack of controls, the results cannot be extrapolated 

to form true rates of progression (Ellenson et al., 201; Lacey, Ioffe, et al., 2008). Lacey et al 

conducted a nested case-control study in 2007. The authors analysed 138 cases of EH (and 

241 matched controls) which progressed to EC at least 1 year following index EH diagnosis. 

They demonstrated a 40 % probability of developing EC following a diagnosis of atypical 

hyperplasia (incorporating both simple and complex variants), compared to a 10 % probability 

when atypia was not present (Lacey, Ioffe, et al., 2008). Lacey et al commented on the need 

to increase sensitivity and specificity when diagnosing atypical hyperplasia and to find 

methods of identifying the rare non-atypical EH lesions that are also likely to progress to EC 

(Lacey, Ioffe, et al., 2008). 

The D-score has consistently been reported to have high levels of sensitivity and 

specificity when evaluating EH lesions for risk of progression to EC. Baak et al, in their 2001 

prospective multicentre evaluation, quote a sensitivity of 100 % and specificity 82 % when the 

D-score was used by technicians to analyse 132 EH cases for EC progression risk in a blinded 

settling (Baak et al., 2001). Furthermore, the D-score has shown high reproducibility between 
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users (Kendall et al., 1998) and in a retrospective study by Orbø et al, over a 10-20 year follow-

up period, the D-score was found to be significantly more accurate and sensitive in predicting 

EC than the WHO94 classification system (Orbø et al., 2000). Hecht et al analysed the use of 

the D-score compared to EIN criteria in their 2005 retrospective study of 97 EH biopsies. They 

demonstrated that subjective EIN assessment correlates well with objective morphometric 

analysis. All of the EH that progressed to EC occurred in patients whose endometrial biopsies 

were deemed high risk by both methods, although interestingly n=15 samples were given a D-

score of <1 (i.e. high risk) and yet subjectively classified as non-EIN (Hecht et al., 2005). D-

score based morphometry however, especially when computerised, is not without financial 

cost (Baak and Mutter, 2005). Whilst the long-term benefit may offset the initial expenditure 

and training time, a significant limitation is that not all institutions will be able to meet this 

financial outlay or have the necessary computer infrastructure in place to permit its use. 

Furthermore, in spite of the strength of the computerised D-score assessment, the accuracy of 

the method still needs to be refined. For example, is it reported that overlapping nuclei might 

result in higher values of the shortest nuclear axis, either higher or lower SD values, and 

consequently a lower or higher D-score (Ørbo A, Baak JPA, et al., 2000). 

Clinical outcome data by Baak et al has suggested that 41 % of women diagnosed with 

EIN will develop EC within 12 months. The mostly likely explanation for this is the presence 

of a concurrent EC that was not sampled on initial biopsy. Those women who do not develop 

EC within 12 months have a reported 45-fold increased future risk of EC developing (Baak, 

Mutter, et al., 2005). Baak et al, also argued that of the women who do go on to develop EC, 

the preceding lesion is more likely to be EIN rather than atypical hyperplasia (Baak, Mutter, 

et al., 2005). The authors referring to the finding that some EH lesions classified as non-

atypical hyperplasia under the WHO system actually meet EIN criteria and as such should be 

deemed premalignant.   

In contrast, a later study in 2008 reported that both EIN and atypical hyperplasia have 

similar risks of progression to EC when followed-up for 12 months after an EH diagnosis 

(Lacey, Mutter, et al., 2008). Salman et al concluded along similar lines in their 2010 study. 

They retrospectively found that atypical or complex atypical EH and EIN had similar 

sensitivities and negative predictive values for the presence of coexistent EC in the pre-

operative biopsies of 49 women (Salman et al., 2010). Importantly, they add the caveat that 

the EIN system may be preferred in centres without an experienced gynae-pathologist in order 

to minimise diagnostic errors given its use of objective diagnostic criteria (Salman et al., 

2010). 
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1.5.3 Management of endometrial hyperplasia 

Clinical management of EH and follow-up should be customised to each woman, 

taking into account baseline risk factors, symptomatology, fertility wishes and response to 

treatment (Committee on Gynecologic Practice, 2015; Gallos et al., 2016). Three management 

options are available, including conservative surveillance, progestin therapy or hysterectomy. 

All treatment approaches should be accompanied by addressing baseline risk factors in an 

attempt to remove or limit the source of unopposed oestrogen stimulation, i.e. correcting 

ovulatory dysfunction, weight loss in the obese, evaluation of iatrogenic oestrogen sources, 

e.g. HRT and tamoxifen.  

Where there is a high risk of concurrent or future EC progression (i.e. EIN) and where 

there are no absolute contraindications (i.e. unsuitable surgical candidate due to co-morbidities 

or a wish to retain fertility), total hysterectomy should always be recommended as the first-

line treatment, (Committee on Gynecologic Practice, 2015; Gallos et al., 2016). Surveillance 

alone should only be undertaken if an established risk factor has been corrected and where the 

risk of occult EC or progression to EC is low (Gallos et al., 2016).  

Progestin therapy has been demonstrated to be effective by multiple studies in 

achieving regression of HwA (Gallos et al., 2012; Gunderson et al., 2012; Montz et al., 2002; 

Randall and Kurman, 1997; Reed et al., 2009). Progesterone counterbalances the mitogenic 

effects of oestrogens and induces secretory differentiation of the endometrium (Kim and 

Chapman-Davis, 2010). Delivery of progestins is challenging due to the short half-life and 

doses that are required. Regional practice varies on the route of progestin administration, 

however both continuous oral and local intrauterine (levonorgestrel-releasing intrauterine 

system (LNG-IUS), e.g. Mirena® (Bayer Pharmaceuticals, Germany) are reported to be 

effective in achieving regression of HwA (Gallos et al., 2016).  

When cytological atypia is present, there is a higher incidence of failure of progestin 

management (Ferenczy and Gelfand, 1989). A meta-analysis by Gallos and colleagues, 

incorporated 14 studies with a total of 151 women with atypical hyperplasia treated with 

progestins (varying routes), reporting a regression rate of 86 % and a relapse rate of 26 %, 

median follow-up was 11-77 months (Gallos et al., 2012). A further meta-analysis by an 

Australian group included 12 studies, with 117 women with CAH treated with progestins and 

found a relapse rate of 20.1 % over a 45-month median follow-up period (Baker et al., 2012). 

Both the American College of Obstetricians and Gynecologists (ACOG) and the UK Royal 

College of Obstetricians and Gynaecologists (RCOG) have issued guidelines / opinion papers 
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detailing management of EH (Committee on Gynecologic Practice, 2015; Gallos et al., 2016). 

The RCOG advice includes a management algorithm for EH, detailing preferred treatment and 

advising on the timing of endometrial biopsy for patients undergoing conservative surveillance 

and medical management (Figure. 1-7) (Gallos et al., 2016). 

 

Overleaf: Figure 1-7: Current UK guidelines on the management of endometrial 

hyperplasia. Algorithm adapted from the joint RCOG / BSGE joint Green-top guideline 

(Gallos et al., 2016). Key below. 

 

a. Risk factors include obesity, HRT (hormone replacement therapy) regimens, 
tamoxifen therapy and anovulation. 

b. Consider ovarian conservation according to age, menopausal status and patient 
preferences. In addition to non-regression of EH or persistence of AUB symptoms 
following nonsurgical treatments, a total hysterectomy may be indicated where there 
are (i) adverse effects associated with medical treatment, (ii) concerns over 
compliance with treatment or follow-up, or (iii) patient preferences e.g. high levels of 
anxiety. 

c. The follow-up interval should be customised to each woman, taking into account 
baseline risk factors, associated symptoms and response to treatment. 

d. Regression – non-hyperplastic or non-malignant endometrial sample or non-
diagnostic endometrial sample from an appropriately placed endometrial sampling 
device; persistence – no regression or progression of initial EH subtype after 3 or more 
months; progression – development of AH or EC; relapse – recurrence of EH or AH 
after one or more negative EB result(s). 

e. In general, advise continuation of the LNG-IUS for the duration of its 5-year use, 
especially if EH associated with AUB or other baseline risk factors and no adverse 
effects.  

f. Start medical management if EH not treated initially. The decision to persist with 
medical management should be taken after careful consideration and thorough 
discussion with the woman regarding the risks and benefits of prolonged medical 
treatment compared with total hysterectomy with or without BSO. Persistence beyond 
12 months is associated with a significant risk of underlying malignancy and a high 
risk of failure to regress such that a total hysterectomy with or without BSO should be 
recommended. 

g. At discharge, inform the woman of her estimated individual risk of recurrence, of the 
need to continue any risk-reducing strategies and to present for an urgent review if 
any further episodes of AUB. 

h. Review the appropriateness of ongoing endometrial surveillance, continuation of 
medical management or total hysterectomy with or without BSO based on factors such 
as baseline risk factors including BMI, AUB symptoms, fertility requirements, 
compliance with treatment and follow-up, medical comorbidities and risk–benefit 
ratio for total hysterectomy with or without BSO. 
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1.6 Molecular alterations in endometrial hyperplasia 

Atypical hyperplasia / EIN lesions have been found to harbour several molecular 

alterations similar to those described in endometrioid EC. These commonly include; somatic 

alterations in the tumour suppressor gene, PTEN and other constituent genes of the 

PI3K/AKT/mTOR pathway (Hayes et al., 2006; Sun, Enomoto, et al., 2001,  2002), in addition 

to microsatellite instability (Hardisson et al., 2003; Nieminen et al., 2009). Numerous 

alterations in candidate genes have also been found, the vast majority as a result of 

immunohistochemical studies (reviewed in Sanderson et al., 2017).  

The focus of the following review surrounds molecular alterations detected using 

immunohistochemical biomarkers. An EH diagnosis currently requires endometrial tissue 

sampling for histological confirmation. In the future, alternative non-invasive biomarker 

approaches, such as blood, urine and cervical smear cytology may become more 

commonplace, since they are starting to gain momentum in the diagnosis/screening of other 

gynaecological conditions, e.g. endometriosis and cervical screening (Fassbender, et al., 2015, 

Sargent, et al., 2019). Currently however, immunohistochemistry is widely used technique and 

there is a plethora of literature information detailing application of the technique in both EH 

and EC tissues. Despite this abundance of data, there are currently no adequately robust 

molecular biomarker candidates that can be used on their own to aid diagnosis of EH or that 

are able to predict progression of EH to endometrioid EC. The following section summarises 

information available for several of the prominent immunohistochemical candidates reported 

in the current literature and reviews their suitability as biomarker candidates. 

 

1.6.1 Tumour Suppressors 

1.6.1.1 Phosphatase and Tensin Homolog (PTEN)  

Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene located on 

chromosome 10q23 that encodes a dual-specificity phosphatase with both protein and lipid 

actions (Latta and Chapman, 2002). PTEN protein helps to regulate cellular proliferation and 

apoptosis via inhibition of Akt (formally Protein Kinase B), whereby its enzymatic activity 

dephosphorylates Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to Phosphatidylinositol 

4,5-bisphosphate (PIP2) (Slomovitz and Coleman, 2012). Furthermore, loss-of-function 

mutations of PTEN have also been reported to increase endometrial glandular proliferation via 

the PI3K/AKT/mTOR pathway (Daikoku et al., 2008; Hayes et al., 2006). PTEN has been 
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demonstrated to be inactivated by other mechanisms across several somatic cancer types, 

including promotor methylation (Wiencke et al., 2007), micro-RNA interference (Kim et al., 

2010), phosphorylation (Poliseno et al., 2010) and delocalization from the plasma membrane 

(Silva et al., 2008). Due to its high frequency of inactivation in carcinogenesis, PTEN is ranked 

as the second most mutated tumour suppressor gene after p53 (Georgescu, 2010). Evidence 

for an association with EH and endometrioid EC has been inferred from results obtained using 

heterozygous Pten knockout mice, in which all females developed signs of EH by 6 months 

of age (Stambolic et al., 2000).  

PTEN protein expression has been assessed across the normal menstrual cycle, with 

immunoexpression observed to be more intense in both the glandular epithelium and stromal 

compartments during the proliferative phase (plausibly influencing proliferation), whilst there 

is an apparent decrease in the glandular epithelial compartment during the secretory phase 

(Mutter, Lin, et al., 2000). Numerous studies have investigated PTEN immunohistochemical 

expression in EH and EC, with mixed reports regarding expression patterns. Several authors 

have reported that loss of endometrial glandular PTEN protein expression is more frequent in 

endometrioid EC and EIN compared to proliferative endometrium and benign EH (Baak, van 

Diermen, et al., 2005; Monte et al., 2010; Mutter, et al., 2000; Steinbakk, Malpica, et al., 

2011). Mutter and colleagues determined that PTEN mutations were evident in up to 55 % of 

EIN lesions (whereby the formation of a truncated protein resulted in loss of 

immunohistochemical PTEN expression) and suggested that PTEN inactivation is an early 

event in EC carcinogenesis (Mutter, Lin, et al., 2000).  

Xiong et al, suggested that loss of PTEN expression is not a robust diagnostic marker 

of EIN, since they described complete PTEN protein loss occurring in only 38 % of EIN 

lesions (Xiong et al., 2010). Furthermore, Cirpan et al, demonstrated no significant difference 

in ‘complete-loss’ of PTEN protein expression between proliferative endometrium, EIN and 

endometrioid EC, with minor differences demonstrated due to ‘incomplete-loss’ of PTEN 

expression (Cirpan et al., 2006). These two studies raise the question as to what constitutes 

‘complete-loss’ of PTEN protein expression within an EH lesion, a discussion point 

considered by Allinson et al in their 2008 review who noted that some researchers regard 

PTEN-null expression as a single negative gland within a lesion whilst others consider only a 

more extensive expression loss (Allison et al., 2008). 

Authors using WHO94 criteria have reported along similar lines to their counterparts 

using EIN criteria (Erkanli et al., 2006; Kapucuoglu et al., 2007; Lee et al., 2012; Sarmadi et 

al., 2009). Lee et al, found PTEN expression loss in endometrioid EC and CAH was higher 
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than in SH. Kapucuoglu and colleagues, echoed this finding, however they noted no significant 

differences in PTEN protein expression between CAH and EC, nor between individual EH 

groups (Kapucuoglu et al., 2007). One study examining a small group of samples (n=11) 

showed no significant difference between normal endometrium or EH (Kimura, Watanabe, et 

al., 2004). However, this study analysed PTEN nuclear staining via a histoscore system rather 

than reporting PTEN loss of expression, as is the usual convention (Kimura, Watanabe, et al., 

2004). 

Isolated PTEN-null glands have also been demonstrated within macroscopically 

normal premenopausal endometrial samples in a reported 43 % of cases (Mutter et al., 2001). 

These glands do not express PTEN protein due to a genetic mutation and/or deletion and 

notably they persist between menstrual cycles (Mutter et al., 2001). The Mutter group has 

previously designated these mutant PTEN glands as ‘latent precancers,’ suggesting that with 

accrual of further genetic damage they may transition into phenotypically recognisable pre-

malignant lesions (Monte et al., 2010; Mutter, 2000; Mutter et al., 2014). However, subsequent 

work suggests only a small proportion of these microscopically normal, PTEN-null glands will 

progress to endometrioid EC (Ayhan et al., 2015). Further work by the Mutter group in 2014 

compared PTEN immunohistochemistry between endometrial samples from a cohort of 

women with EIN or endometrioid EC, as well as histologically benign biopsies taken from the 

same women (matched non-neoplastic controls were included) (Mutter et al., 2014). Where 

PTEN-null glands were identified in both the index neoplastic biopsy and historic ‘normal’ 

biopsy, DNA sequencing was performed on both samples for comparative PTEN somatic 

mutation analysis. Results demonstrated that in only 6.7 % of cases the PTEN-null, 

microscopically normal glands were the direct progenitors of the high risk neoplasia 

subsequently detected (Mutter et al., 2014).  

The role of PTEN has also been investigated in the context of treatments for EH and 

early stage endometrioid EC. As discussed above, progestins are a medical treatment for EH 

and can also be considered where hysterectomy is contraindicated for high risk EH-lesions 

(Committee on Gynecologic Practice, 2015; Gallos et al., 2016). Attempts to reverse baseline 

risk EH factors, e.g. obesity, should also be made. Building on earlier work from the Mutter 

group, Zheng et al tested the hypothesis that progestin therapy preferentially leads to clearance 

of immunohistochemically detected PTEN-null endometrial glands, concluding that 

progestins promote PTEN-null gland involution, albeit in their small (n=17, of which n=5 were 

diagnosed as EIN) sample set (Zheng et al., 2004). Ørbo et al compared the LNG-IUS to oral 

progesterone as treatment for EH in their 2015 multicentre randomised control trial and 
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evaluated clearance of PTEN-null glands (Ørbo et al., 2015). The group reported significantly 

higher rates of clearance of PTEN-null glands with intrauterine progestin delivery (58 % 

regression and 4% persistence of PTEN-null glands) and noted that PTEN-null gland clearance 

was also significantly related to regression of EH / therapy response (Ørbo et al., 2015). 

Furthermore, in a study of n=72 women undergoing bariatric surgery with concomitant 

endometrial tissue assessment before and after surgery-induced weight loss, n=12 (24 %) of 

the baseline endometrial biopsies contained PTEN-null glands (MacKintosh et al., 2019).  Of 

these PTEN-null baseline biopsies, n=5 were diagnosed as having atypical hyperplasia 

(MacKintosh et al., 2019). PTEN-null glands regressed in n=4 of these patients by 12-months 

post bariatric surgery-induced weight loss, albeit only n=1 without any addition hormonal or 

surgical intervention (MacKintosh et al., 2019).  

In terms of evaluating the role of PTEN protein expression to predict progression of 

EH to endometrioid EC, Steinbakk and colleagues noted lower PTEN expression in EC 

samples than in EH samples and using a univariant analysis suggested that PTEN negativity 

in EH was prognostic of progression to EC (p=0.026) (Steinbakk, Malpica, et al., 2011). 

Conversely, Lacey et al argued that loss of PTEN expression in EH was neither sensitive nor 

specific in predicting progression to EC (Lacey, Ioffe, et al., 2008). Baak and colleagues tested 

the hypothesis that PTEN inactivation may stratify EC progression risk among EHs classified 

by means of the morphometric D-score (Baak, van Diermen, et al., 2005). They demonstrated 

that all EH cases that progressed to EC were PTEN-null, however only 16 % of all PTEN-null 

cases progressed to EC (Baak, van Diermen, et al., 2005). They concluded that the prognostic 

power of PTEN could be increased when combined with tissue analysis using the 

morphometric D-score (Baak, van Diermen, et al., 2005).  

Two studies of women who had a concurrent/coexisting EC after a biopsy result of 

EH were more divisive. Pavlakis et al, noted that loss of PTEN expression on its own was not 

predictive of concurrent EC, however that changed when analysed in conjunction with a 

finding of marked nuclear atypia within an EIN lesion (Pavlakis et al., 2010). Ørbo et al, found 

loss of function of PTEN was more likely in EH lesions when a concurrent EC was present or 

when EC subsequently developed (Ørbo et al., 2003). 

 

1.6.1.2 Tumour Protein p53 

Tumour protein p53, or simply p53, is a protein encoded by the TP53 gene that in 

humans is located on the short arm of chromosome 17 (17p13.1) (Isobe et al., 1986). TP53 is 
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the most commonly mutated gene in human cancers (Schultheis et al., 2016). The majority of 

mutations affecting TP53 in human tumours are missense, and primarily affect the DNA-

binding domain of the protein (Schultheis et al., 2016). TP53 is considered a tumour 

suppressor gene and the wild-type p53 protein has several functions; it can activate DNA repair 

after damage (Berchuck et al., 1994), can cause cell-cycle inhibition at the G1/S checkpoint 

to allow DNA to be repaired (Agarwal et al., 1995), it can initiate apoptosis in the event of 

irreparable cell damage and it is essential for the senescence response to short telomeres (Deng 

et al., 2008; Ozkara and Corakci, 2004). Mutant p53 proteins lose their tumour suppressor 

functions and many of these mutant p53 proteins then acquire oncogenic properties that enable 

them to promote invasion, metastasis, proliferation and cell survival (Muller and Vousden, 

2013).  

In ECs, most TP53 mutations are reported to be missense and are generally detected 

in serous / ‘type 2’ ECs. They are associated with the formation of a functionally defective 

p53 protein that is more stable, with a longer half-life than the wild-type p53 protein (Soong 

et al., 1996). In the TCGA dataset TP53 mutations were found in 15 % of endometrioid ECs 

and 88 % of serous ECs (Kandoth et al., 2013). Variations in the type and pattern of TP53 

mutations were also observed across the TCGA dataset between the different EC histological 

groups, including hotspot mutations (frequent in the serous ECs), frameshift / nonsense 

mutations and a subset of TP53 mutations co-occurring with a PTEN mutation that were more 

frequently seen in endometrioid ECs than the serous ECs (Schultheis et al., 2016). 

The missense mutated p53 protein product usually accumulates and is detected as 

overexpression in cell nuclei using immunohistochemistry. Typically, wild-type p53 in cells 

cannot be detected by immunohistochemistry; however, if p53 is stabilised, due to 

overexpression in normal cells in response to DNA damage, a positive immunohistochemistry 

reaction (usually focal, weak and heterogeneous) can be detected in the absence of any 

mutation (Soong et al., 1996). To further complicate matters, deletions or frame-shift 

mutations of TP53 can lead to a truncated/altered protein that lacks epitopes recognized by 

specific antibodies so a completely negative p53 immunohistochemistry reaction may also 

indicate a gene abnormality (Garg et al., 2010).  

Several studies have assessed p53 immunohistochemical expression in EH and EC. 

Horrée and colleagues noted p53 expression gradually increasing from nearly all negative cells 

in inactive endometrium, through to EH where only a few cells were positive, with the highest 

expression seen in ECs (Horrée et al., 2007). Both Cinel et al and Elhafey et al demonstrated 
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higher expression scores in atypical hyperplasias, with the highest expression scores in non-

endometrioid EC (Cinel et al., 2002; Elhafey et al., 2001).  

In terms of using p53 as a marker of progression from EH to EC, Steinbakk and 

colleagues performed a retrospective analysis and demonstrated that 2 out of 8 patients who 

developed EC from EH had <1% positivity for p53, which using a univariant analysis they 

found was prognostic of progression (p=0.038). Although, given the small number of patients 

progressing to EC captured by this study the confidence interval is notably wide (0.9-23.2) 

(Steinbakk, Malpica, et al., 2011). 

 

1.6.1.3 AT-rich interactive domain-containing protein 1A (ARID1A) 

AT-rich interactive domain-containing protein 1A (ARID1A), also known BAF250A, 

is an important component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) nucleosome 

remodeling complex. It is encoded by ARID1A which is located on chromosome 1p36.11 

(Takeda et al., 2016). The SWI/SNF complex is involved in the regulation of cellular 

differentiation, tissue development, and DNA repair (Guan, Mao, et al., 2011; Werner et al., 

2012). ARID1A is required for SWI/SNF complexes to suppress DNA synthesis and as such 

ARID1A is considered a tumour suppressor since it regulates cell proliferation and functions 

to prevent genomic instability (Mao and Shih, 2013). Mutations of ARID1A have been 

described in approximately 29-40 % of cases of EC (Guan, Mao, et al., 2011; Kandoth et al., 

2013; Wiegand et al., 2011).  ARID1A mutations are normally insertions or deletions that lead 

to the formation of truncated proteins (Guan, Mao, et al., 2011).  

Mao and colleagues performed an immunohistochemical investigation of 246 

endometrial tissue samples spanning a range from normal cycling endometrium, to CAH and 

high-grade endometrioid EC (Mao et al., 2013). They specifically analysed tissues for ‘clonal’ 

loss of ARID1A, in addition to complete loss of expression across the entire tissue section 

(Mao et al., 2013). The authors reported that all samples of normal endometrium retained 

ARID1A protein expression, with 16 % (n=38) of CAH demonstrating clonal but not complete 

loss of protein expression. Complete loss of expression of ARID1A increased with EC tumour 

grade, from 25 % (n=88) in low-grade to 44 % (n=55) in high-grade endometrioid tumours 

(Mao et al., 2013). The same group went on to compare ARID1A expression, along with that 

of PTEN and the proliferation marker Ki67, utilising a cohort of 114 endometrial samples with 

a diagnosis of atypical hyperplasia / EIN (Ayhan et al., 2015). They noted that all specimens 

(n=17) with focal ARID1A loss also exhibited concurrent loss of PTEN expression and that 

this was correlated with a significant increase in proliferation when compared to adjacent areas 
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in the same tissue without concurrent loss of both markers (Ayhan et al., 2015). The authors 

used these findings to suggest that ARID1A may act to prevent PTEN inactivation from 

furthering cellular proliferation in the transition from pre-malignancy to EC (Ayhan et al., 

2015). 

Werner et al adopted a semi-quantitative intensity staining score when analysing 

ARID1A expression in their retrospective study of 679 endometrial tissue samples (n=436 

endometrioid ECs, n=38 EH). Their findings echoed those of Mao et al demonstrating a 

stepwise reduction in staining intensity of ARID1A with progression from hyperplasia without 

atypia (no loss of protein expression) to hyperplasia with atypia (16 % loss of expression, n=6) 

and endometrioid tumours (19 % loss of expression, n=84) (Werner et al., 2012).  

 

1.6.2 Transcription Factors 

1.6.2.1 Paired Box 2 Protein (PAX2)  

Paired Box 2 Gene (PAX2) is a member of a large family of paired box genes which 

globally are implicated in transcriptional regulation during the process of embryogenesis 

(Mansouri et al., 1994; Ryan et al., 1995) The interest in paired box (PAX) genes as a predictor 

of EH/EC has been stimulated by reports that they can act as proto-oncogenes through 

regulation of cell proliferation, survival and apoptosis (reviewed in Robson et al., 2006). 

Further reports have suggested that PAX2 is activated by oestrogen and tamoxifen in 

endometrial cancer-derived cells and EC cell lines but not in the normal endometrium and that 

PAX2 is able to promote the growth of EC cells (Shang, 2007; Wu et al., 2005). PAX2 gene 

expression has been connected to the normal growth of the central nervous system, eyes, ears, 

and urogenital system (Allison et al., 2012). Expression of PAX2 protein has been described 

as a marker of the Müllerian duct derivatives (Fallopian tubes, uterus, cervix, and upper 

vagina) (Tong et al., 2006). According to Tong et al, epithelial cells within the uterine glands 

normally demonstrate nuclear expression of PAX2 (Tong et al., 2006).  

 Loss of PAX2 immunoexpression has been implicated in the development of EIN by 

several authors and has found potential utility as a tool when diagnosing difficult EIN cases 

(e.g. where there is no ‘normal’ tissue in a sample to act as in internal control when assessing 

nuclear morphology) (Quick et al., 2012). Joiner and colleagues built on these 

recommendations (Quick et al., 2012) and compared the WHO94 and EIN classification 

systems for EH using PAX2 immunohistochemistry (Joiner et al., 2015). In their study the 

authors considered complete loss of nuclear staining, or ‘reduced’ nuclear staining as 
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compared to background endometrium, to be indicative of reduced PAX2 bioactivity (Joiner 

et al., 2015). Reduced PAX2 expression was noted in 92 % (33/36) of EIN cases and 88 % 

(22/25) of atypical EHs. Although the authors concluded that loss of PAX2 immunoexpression 

is a useful finding when deciding whether lesions are premalignant, they also advocated 

careful comparison to H&E sections when considering the findings (Joiner et al., 2015) 

Loss of PAX2 expression was also found in 71 % (37/52) of EIN cases by Monte et 

al and in 74 % (40/56) of atypical EHs by Allison et al (Allison et al., 2012; Monte et al., 

2010). Allison et al proposed that PAX2 loss occurs early in the process of endometrial 

carcinogenesis as they did not detect loss of expression in their proliferative or secretory 

endometrial samples. They added the caveat that the expression pattern does not discriminate 

between diagnostic categories of EH since its expression is ubiquitously lost amongst all EH 

groups (Allison et al., 2012). Monte et al also corroborated this, adding that the greatest 

stepwise change in PAX2 expression occurs between normal and premalignant endometrium 

(Monte et al., 2010). Alternative findings are presented by Kahraman et al, suggesting an 

increase in PAX2 expression with progression from premalignant states to EC (Kahraman et 

al., 2012).  

 

1.6.2.2 Heart and neural crest derivatives expressed transcript 2 (HAND2)  

Heart and neural crest derivatives expressed transcript 2 (HAND2) belongs to the 

basic helix-loop-helix (bHLH) family of transcription factors; it plays crucial roles during 

embryological cardiac morphogenesis (VanDusen et al., 2014) and knockout mice are infertile 

due to failure of implantation (Li et al., 2011). In mice, Hand2 has been shown to be a 

progesterone receptor-regulated gene and its expression in endometrial stromal cells inhibits 

epithelial cell proliferation via suppression of several fibroblast growth factors (FGFs) (Li et 

al., 2011).  

When Jones and colleagues conducted a comprehensive epigenome-transcriptome-

interactome analysis, they found HAND2 was at the centre of the most highly ranked 

differential hotspot in EC (Jones et al., 2013), leading them to propose that epigenetic 

deregulation of HAND2 was a crucial step in endometrial carcinogenesis. They reported that 

methylation of the HAND2 promoter was increased in pre-malignant endometrial lesions when 

compared to normal endometrium and that this was associated with a reduction in HAND2 

expression (Jones et al., 2013).  
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Buell-Gutbrod et al. also hypothesised that HAND2 plays a role in the development 

of EH and type 1 endometrioid EC (Buell-Gutbrod et al., 2015). In their immunohistochemical 

study, 56 archival hysterectomy specimens with a known pathological diagnosis of either 

disordered proliferative endometrium, simple or complex hyperplasia with or without atypia 

and EC were investigated for expression of HAND2 (Buell-Gutbrod et al., 2015). Results 

demonstrated a statistically significant (P<0.001) reduction in the stromal expression of 

HAND2 between benign endometrium and both simple and complex hyperplasia with atypia 

and EC (Buell-Gutbrod et al., 2015). However, there was no statistically significant difference 

between benign endometrium and simple hyperplasia without atypia or disordered 

proliferative endometrium (Buell-Gutbrod et al., 2015). The authors remarked that the 

HAND2 antibody cannot distinguish between simple hyperplasia with atypia, complex 

hyperplasia with atypia and EC (Buell-Gutbrod et al., 2015). 

 

1.6.3 DNA mismatch repair (MMR) 

The role of the DNA mismatch repair (MMR) system is to correct for ‘mismatches’ 

(i.e. mismatched base-pairs such as G-A) and small insertions/deletions (InDels) that are 

mostly caused by errors during DNA replication and sometimes by other forms of DNA 

damage. DNA mismatches may occur in any DNA sequence, whereas InDels occur in regions 

of repetitive nucleotide sequences (e.g. AAAAAAAAAA… or CACACACA…) called 

microsatellites, leading to an expansion or reduction in length of those microsatellites termed 

microsatellite instability (MSI). Both mismatches and altered microsatellites are normally 

repaired by a functioning MMR system, but if there is defective mismatch repair (dMMR) as 

occurs in tumours in Lynch Syndrome, then they remain unrepaired and such cells have a 

100x-1000x fold increased mutation rate and microsatellite instability (MSI) (Diaz-Padilla et 

al., 2013; Poulogiannis et al., 2010). MSI is a characteristic feature of Lynch Syndrome-

associated EC and other cancers. Defective mismatch repair (dMMR) arises in Lynch 

syndrome as a result of inactivation of any one of the four main MMR genes (MLH1, MSH2, 

MSH6 and PMS2) by inheritance of one mutated MMR allele (the cause of Lynch Syndrome) 

together with acquired mutation or deletion of the other copy of the same MMR gene in a cell, 

often a neoplastic precursor cell that may go on to evolve into a tumour (Eshleman and 

Markowitz, 1996; Poulogiannis et al., 2010).  Defective mismatch repair can also occur 

spontaneously in tumours of patients who do not have Lynch syndrome, and this is almost 

always due to acquired MLH1 promoter hypermethylation that leads to silencing of MLH1 

expression, which is found in ~ 25-30 % of EC cases (Hecht and Mutter, 2006). 
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 Inactivation of any of the MMR genes (including MLH1, MSH2, MSH6 and PMS2) 

can cause MSI (Eshleman and Markowitz, 1996; Poulogiannis et al., 2010). The National 

Cancer Institute (NCI) consensus or ‘Bethesda’ panel was established as a panel of 

microsatellite markers to be used to diagnose MSI. Although initially designed for colorectal 

cancer, the system has also been adopted for use in the endometrium (Boland et al., 1998). 

The panel comprises five microsatellite loci: two mononucleotide markers and three 

dinucleotide markers. MSI-high tumours are defined by instability at two or more of the five 

loci (or >30% of loci if a larger panel of markers is used), whereas MSI-low tumours show 

instability at one locus out of the five (or in 10–30% of loci in larger panels). Microsatellite 

stable (MSS) tumours are those without instability at any loci (or <10% of loci in larger panels) 

(Vilar and Gruber, 2010). MSI-high status has been demonstrated to be an indicator of poor 

prognosis in International Federation of Gynecology and Obstetrics (FIGO) stage 1, but not 

FIGO 2–4 endometrioid ECs (Steinbakk et al., 2011). 

dMMR within somatic ECs is commonly associated with endometrioid histology 

(Hecht and Mutter, 2006). In sporadic EC, dMMR is mainly caused by hypermethylation of 

the MLH1 promoter, silencing its expression, thus leading to MSI. This is then responsible for 

a lack of immunohistochemically detectable MLH1 protein expression. (Simpkins et al., 

1999). Woo et al demonstrated the utility of MMR immunohistochemistry in their 2014 study 

of MMR proteins in women with EC (Woo et al., 2014). 

Berends et al, suggest that loss of MLH1 or MSH2 protein may be an early event in 

endometrial carcinogenesis. Their study of 62 cases was interesting in that they looked at 

patients with EC who had germline HNPCC (Hereditary non-polyposis colorectal cancer / 

Lynch syndrome) mutations, patients with HNPCC and no EC and patients with EC without 

HNPCC. In patients with EH both with and without a germline MLH1 mutation, loss of the 

corresponding protein was detected using immunohistochemistry (Berends et al., 2001). In 6 

cases of EH and concurrent EC, loss of MLH1 or MSH2 proteins was seen in both hyperplastic 

and tumour areas within the tissue (Berends et al., 2001).  

Hamid et al analysed endometrial samples from 123 women (including 51 EH cases) 

for MSH2 expression. They noted that all simple hyperplasias showed a normal positive 

expression of MSH2, with some complex and atypical EHs demonstrating weak or no MSH2 

expression at all (Hamid et al., 2002). However, this was not significant enough to be able to 

infer utility as a diagnostic marker for distinguishing between EH categories (Hamid et al., 

2002). The authors also comment that loss of MSH2 expression is rarely observed in sporadic 

EC cases (Hamid et al., 2002). Orbo et al looked at EC progression from EH and analysed 
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expression of MLH1, MSH2 and MSH6. They found loss of expression in these markers was 

higher in EH cases where there was either a concurrent EC or subsequent progression to EC 

(Orbo et al., 2003). 

Molecular evidence connecting an absence of expression of MLH1 with tumour-

specific promoter hypermethylation in EH has previously been described, suggesting ECs with 

MSI may acquire this feature as pre-cancers (Jovanovic et al., 1996). Esteller and colleagues 

share this view; they found that aberrant MLH1 methylation is almost exclusively restricted to 

atypical EHs (Esteller et al., 1999). In addition, the group noted that the atypical EHs 

methylated at MLH1 which demonstrate a MSI phenotype are usually those also associated 

with a concurrent EC that also have MSI and MLH1 methylation (Esteller et al., 1999). These 

reports and the trends observed from the above literature imply a role for the detection and 

categorisation of deficiencies in the MMR system within EHs, with suggestions that 

deficiencies in the MMR system may be useful in predicting malignant progression.  
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1.7 General conclusions, hypothesis and aims of this study 

Endometrial hyperplasia is an abnormal proliferative disorder of the uterus, most often 

caused by exposure of the endometrium to oestrogens unopposed by progesterone. 

Endometrial hyperplasia is not a homogenous entity, rather the condition represents a variety 

of morphologically and cytologically abnormal endometrial lesions, defined histologically by 

an increase in the endometrial gland-to-stroma ratio. When cytological atypia is present within 

EH lesions there is a substantial risk of progression to endometrioid EC However, not all 

hyperplastic lesions will progress to malignancy, some occur in response to an abnormal 

hormonal environment without an underlying neoplastic mechanism.  

Making the correct distinction between benign hyperplasia and pre-malignant 

hyperplasia has significant implications, since their differing endometrial cancer risks must be 

matched with an appropriate clinical intervention to avoid detrimental undertreatment or 

unnecessary overtreatment. At present histopathological classification is the only method used 

to achieve this objective, and as discussed, reports of diagnostic reproducibility vary 

depending on the classification scheme used. With the reported rise in endometrial cancer 

incidence, the clinical need for improved patient risk stratification has received renewed 

interest, especially in the context of women who are either unable to undergo surgical 

treatment or who wish fertility preservation.   

As such, the overarching aim of the studies described in this thesis was to improve our 

capacity for earlier diagnosis of EC through targeting and enhancing our understanding of EH. 

Specific chapter aims include: 

1. To develop a human EH tissue resource and utilise this to evaluate the current 

methods used to classify EH and predict its progression to EC. 

Hypothesis: The 2014 World Health Organisation (WHO2014) / Endometrioid 

Intraepithelial Neoplasia (EIN) system of endometrial hyperplasia classification improves 

diagnostic reproducibility and prediction of endometrial cancer progression when 

compared with its predecessor. 

2. To characterise key molecular changes within EH lesions so that they can be used 

to extend and enhance pathological classification of EH. 

Hypothesis: An immunohistochemical ‘biomarker’ panel can be used to improve the 

diagnosis of endometrial hyperplasia 
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3. To explore in vitro models of the endometrium and investigate the role of PTEN 

and ARID1A in oestrogen driven cellular proliferation. 

Hypothesis: Reduced expression of the tumour suppressors PTEN and ARID1A increase 

proliferation of endometrial epithelial cells and these effects are further enhanced by 

oestrogen. 

 

To achieve these aims, the studies described herein capitalised on access to an archival 

pathology resource of human endometrial hyperplasia tissues, in addition to informative 

endometrial cancer cell lines.
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Chapter 2 

2 General materials and methods 

 Unless otherwise specified all chemicals and standard laboratory reagents were 

purchased from Sigma-Aldrich (Sigma-Aldrich Ltd, Dorset, UK). 

 

2.1 Human endometrial tissue samples 

2.1.1 MRC-CIR archival human endometrial tissue  

 Archival human endometrial tissues held within the MRC Centre for Inflammation 

Research were utilised in the current study. These tissues were collected under Lothian 

Research Ethics number LREC/1999/6/4 held by Professor Richard Anderson. In brief, 

endometrial biopsies were obtained from women undergoing hysterectomy for a suspected 

endometrial cancer between March 1999 and October 2010. The tissues were fixed in 4 % 

neutral buffered formalin (NBF), prior to paraffin embedding and histological analysis by a 

gynaecological pathologist. Written informed consent was obtained from the patients. 

Endometrial tissues with a histological diagnosis of endometrial hyperplasia without evidence 

of malignancy were selected from this cohort (Appendix. 1).  

 

2.1.2 Lothian NRS Human Annotated Bioresource endometrial tissue 

 The Lothian NRS Human Annotated Bioresource is a Tissue Bank based within NHS 

Lothian. The Tissue Bank supports a wide range of research involving disorders of the human 

body. The material collected is from living donors and consists of residual or waste tissues 

that are surplus to diagnostic requirements or have been removed for therapeutic reasons and 

would normally be disposed of. Under ethical approval REC/13/ES/0126 and 

REC/15/ES/0994 unconsented archival diagnostic tissue samples (including material from the 

histopathology diagnostic archive) can be utilised, provided all samples and data are 

anonymised.  

 An application was made to the Bioresource for the purposes of the current study 

(SR465, Appendix. 2). Formalin-fixed paraffin-embedded (FFPE) serial sections of human 

endometrial tissue (n=127 endometrial biopsies) pathologically reported and coded as having 

a diagnosis of endometrial hyperplasia between the years 2004-2009 were obtained, in 
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addition to their matched patient demographic data. The endometrial biopsies were either 

collected using a Pipelle® endometrial sampler or via a dilatation and curettage (D&C) 

procedure at the time of a hysteroscopy. All the samples obtained represent an index 

endometrial hyperplasia diagnosis, i.e. they were not follow-up biopsies and thus were 

obtained prior to the commencement of any form of treatment. In addition, anonymised 

vermiform appendix FFPE tissue sections were also obtained (n=2 samples) for use as positive 

control tissue.  Specific sample details are provided in the relevant results chapter. 

 

2.1.3 Human tissue collection and processing 

 Human endometrial tissues were obtained from women undergoing surgery for benign 

gynaecological conditions. Endometrial biopsies were performed using a Pipelle® endometrial 

sampler, divided equally and processed as follows: 1) DPBS (Dulbecco's Phosphate-Buffered 

Saline, without calcium and magnesium, Gibco 14040-091) for immediate in vitro culture, 2) 

4 % NBF for processing into paraffin wax and histological analysis, 3) RNASave (Biological 

Industries, 01-891-1) for 24 hours at 4 oC and then stored at -80 oC for subsequent RNA 

extraction.  Informed written consent was obtained prior to tissue collection by a member of 

the research team. Ethical approvals were held by Professor AW Horne (LREC/11/AL/0376) 

and Professor HOD Critchley (LREC/10/S1402/59, LREC/16/ES/007). Specific sample 

details are provided in the relevant results chapter. 

 

2.2 In vitro cell culture 

2.2.1 Isolation of primary human endometrial cells 

 Primary human endometrial cells were isolated from endometrial biopsy tissue 

(section 2.1.3) by a modified enzymatic digestion as previously described (Bombail, Gibson, 

et al., 2010). In brief, endometrial tissue specimens were washed twice in 37 oC DPBS, finely 

dissected using sterile scalpels and digested with type IV collagenase (1 mg/mL; Sigma-

Aldrich, C5138) and DNase (0.1 mg/mL; Sigma-Aldrich, DN25) in 2 mL of DPBS for 90 

minutes at 37 oC. The digested tissue was then resuspended in RPMI 1640 medium (Gibco, 

21875) to halt enzymatic digestion and passed through a syringe with 19-gauge needle to aid 

tissue dispersion. The digested tissue was then sequentially passed through a 70 μm and a 40 

μm nylon mesh cell strainer (BD Falcon, 352350; 352340), to separate stromal (pass through 

mesh) from glandular (remain above mesh) cell components. The stromal follow-through was 
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used for other in vitro research projects within the laboratory. The cell strainers were 

backwashed with DPBS to obtain the glandular epithelial components and pelleted by 

centrifugation (115 g for 5 minutes, room temperature). An optional red cell lysis step was 

performed at this stage dependent on the amount of blood contamination of the digested tissue. 

If needed, 1 mL of red cell lysing buffer (Sigma-Aldrich, R7757) was added to the cell pellet 

and gently mixed for 1 minute. 15 mL of complete primary epithelial cell medium (Table. 2-

1) was then added, the specimen again pelleted by centrifugation (115 g for 5 minutes, room 

temperature) and the supernatant decanted. The final cell pellet was resuspended in complete 

primary epithelial cell medium (Table. 2-1), transferred to a 25 cm3 tissue culture flask 

(Corning, CLS430639) pre-coated with attachment factor (Gibco, S006100) and maintained 

in 37 oC humidified conditions with 5 % CO2 in air. 

 

Table 2-1: Components of complete cell culture medium 

 
Gibco 

Catalogue 
Number 

Complete primary epithelial cell medium  

DMEM/F12 GlutaMAX medium to 500 mL 31331028 
5 mL 100x Insulin-Transferrin-Selenium (ITS)  51500056 
50 ng/mL EGF Human Recombinant Protein PHG0311 
5 mL Penicillin/Streptomycin (10,000 U/mL, 10 mg/mL) 15140122 
2.5 mL Amphotericin B (2.5 μg/mL) 15290026 
5 mL L-Glutamine (2 mM) 25030081 
5 mL 100x MEM Non-essential Amino Acid Solution 11140050 

  
Complete epithelial cell line medium (Ishikawa / MFE-280 / KLE cells)  

DMEM/F12 GlutaMAX medium to 500 mL 31331028 
10 % Heat inactivated fetal calf serum (FCS) 16140071 
5 mL Penicillin/Streptomycin (10,000U/mL, 10mg/mL) 15140122 
2.5 mL Amphotericin B (2.5 μg/mL) 15290026 
5 mL L-Glutamine (2 mM) 25030081 
5 mL 100x MEM Non-essential Amino Acid Solution 11140050 
  

Complete SHT-290 cell medium  
RPMI 1640 medium to 500 mL A1049101 
10 % Heat inactivated fetal calf serum (FCS) 16140071 
5 mL Penicillin/Streptomycin (10,000 U/mL, 10 mg/mL) 15140122 
2.5 mL Amphotericin B (2.5 μg/mL) 15290026 
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2.2.2 Human endometrial cell lines 

 Cell line identity was authenticated by Eurofins Medigenomix Forensik GmbH. In 

brief, genomic DNA was provided from available cell lines for multiplex short tandem repeat 

(STR) loci analysis using the following profile markers: Amelogenin, D3S1358, D1S1656, 

D6S1043, D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, vWA, 

D21S11, D7S820, D5S818, TPOX, D8S1179, D12S391, D19S433 and FGA. 

 Cell lines were routinely tested for mycoplasma contamination using the 

commercially available MycoAlert™ mycoplasma detection kit (Lonza, LT07-318). 

 

2.2.2.1 Human Ishikawa endometrial epithelial cancer cell line 

 The human Ishikawa cell line was purchased from the European Collection of 

Authenticated Cell Cultures (ECACC, Wiltshire, UK; 99040201). The cell line is a well 

differentiated endometrial epithelial cancer cell line, derived in 1980 (Tsukuba University 

Hospital, Japan) from a 39-year-old parous patient diagnosed with a grade 2 endometrioid 

endometrial adenocarcinoma (Nishida, 2002). Ishikawa cells are well recognised to express 

functional ERs and progesterone receptors (PRs) (Lessey et al., 1996; Nishida, 2002).  

 

2.2.2.2 Human MFE-280 endometrial epithelial cancer cell line 

 The human MFE-280 cell line was purchased from the European Collection of 

Authenticated Cell Cultures (ECACC, Wiltshire, UK; 98050131). The cell line is a poorly 

differentiated endometrioid endometrial epithelial cancer cell line, derived from a recurrent 

grade 3 endometrial adenocarcinoma from a 77-year-old patient. MFE-280 cells have been 

documented not to have functional ERs or androgen receptor (AR) (Hackenberg et al., 1997). 

Of note for the current study, MFE-280 cells do not possess mutations of the tumour 

suppressor genes PTEN or ARID1A (Liang et al., 2012). 

 

2.2.2.3 Human KLE cell line endometrial epithelial cancer cell line 

 The human KLE cell line was purchased from the American Type Culture Collection 

(ATCC, Manassas, USA; CRL-1622). The cell line is a poorly differentiated endometrioid 

endometrial epithelial cancer cell line, derived in 1982 (Vincent Memorial Hospital, Boston, 
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USA) from a 68-year-old parous patient diagnosed with a grade 3, locally invasive 

endometrioid endometrial adenocarcinoma (Richardson et al., 1984). KLE cells have defective 

ERɑ, however express ERβ (Raam et al., 1983; Richardson et al., 1984; Zhang et al., 2015). 

Of note for the current study, KLE cells do not possess mutations of the tumour suppressor 

genes PTEN or ARID1A (Liang et al., 2012). 

 

2.2.2.4 Human SHT-290 endometrial stromal fibroblast cell line 

 The human SHT-290 cell line was gifted from Dr. David Kaufman, Department of 

Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC, USA. 

This endometrial stromal fibroblast cell line is derived from a patient with normal 

endometrium and has been immortalised by expressing a transduced human telomerase reverse 

transcriptase (hTERT). SHT-290 cells are reported to retain steroid hormone receptor 

expression and responsiveness (Barbier et al., 2005). 

 

2.2.3 Routine culture of cell lines 

 Ishikawa, MFE-280, KLE and SHT-290 cell lines were routinely maintained in 162 

cm3 tissue culture flasks (Corning, CLS3151) with complete medium (Table. 2-1) in 37 oC 

humidified conditions with 5 % CO2 in air. Cell passage was performed twice weekly at a split 

ratio of 1:10 for Ishikawa cells and a ratio of 1:2-3 for MFE-280, KLE and SHT-290 cell lines. 

Experiments were carried out using the lowest possible passage number. Phenol-red 

containing culture medium was substituted for phenol-free variants (DMEM/F12 (Gibco, 

21041025), RPMI 1640 (Gibco, 11835030)), in addition to charcoal stripped fetal calf serum 

(CSFCS, as per 2.3.3.4), 72 hours prior to experimentation. This was performed to reduce 

confounding effects; phenol-red can act as a weak ER agonist (Berthois et al., 1986; Welshons 

et al., 1988). 

 

2.2.3.1 Cell harvesting 

 To harvest cells in routine culture, the 162 cm3 plastic tissue culture flasks were first 

washed twice with DPBS to remove all traces of sera which inhibits trypsin. Cells were then 

detached from the plasticware by incubating with 5 mL of 0.05% phenol-red Trypsin-EDTA 

(Gibco, 25300054) for 5 minutes at 37 oC. Trypsin was then inactivated by adding 10 mL of 
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complete medium. The resultant cell suspension was then pelleted by centrifugation at 115 g 

for 5 minutes at room temperature and the supernatant discarded. 

2.2.3.2 Cryopreservation 

 Cells were harvested as per 2.2.3.1. The cell pellets were resuspended in 2-3 mL of 

complete medium containing 5 % DMSO (KLE cells) or 10 % DMSO (Ishikawa, MFE-280, 

SHT-290 cells). The cell suspension was then equally decanted into Nunc® 1.8ml CryoTubes 

(Sigma-Aldrich, V7884), labelled and frozen immediately at -80 oC for 24 hours prior to 

transfer to liquid nitrogen storage units for long-term storage.  

 To recover cells from liquid nitrogen storage, CryoTubes containing cells were rapidly 

defrosted to 37 oC, the contents transferred to 15 mL falcon tubes (BD Biosciences, 352096) 

with 10 mL of complete medium and pelleted by centrifugation at 115 g for 5 minutes. Cell 

pellets were resuspended in 5 mL of complete medium and seeded into 25 cm3 tissue culture 

flasks (Corning, CLS3055). Cell viability was checked at 24 hours and complete medium 

exchanged. Cells were grown to confluence before harvesting and transferring into larger 

tissue culture flasks. 

 

2.2.3.3 Cell counting 

 Cells were harvested as per 2.2.3.1 and the cell pellets resuspended in 5 mL of 

complete medium. 10 μL of the cell suspension was mixed with 10 μL of 0.4 % trypan blue 

solution (ThermoFisher Scientific, T10282). 10 μL of the cell mix was then loaded into each 

chamber of a Countess™ Cell Counting Chamber Slide (ThermoFisher Scientific, C10228) and 

read on the Countess™ II Automated Cell Counter (ThermoFisher Scientific, AMQAX1000). 

The total alive cell count was obtained for each chamber and the average of the two counts 

used to dilute the cell suspension to the correct cell number needed for each experiment.  

 

2.2.3.4 Dextran charcoal stripping of fetal calf serum 

 Heat inactivated fetal calf serum (FCS) was substituted in complete medium (where 

required, see Table. 2-1) with charcoal stripped fetal calf serum (CSFCS) for all cell lines, 72 

hours prior to experimentation. Charcoal treatment of FCS is used to deplete a number of 

peptides and small molecules ordinarily found in FCS, e.g. steroid hormones. Short-term 

maintenance of cells in complete medium lacking significant levels of steroid hormones (i.e. 
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with phenol-red free medium and CSFCS) permits more reliable phenotypic analysis after cell 

treatment with exogenous hormones (Sikora et al., 2016). In brief, 500 mL of heat-inactivated 

FCS (Gibco, 1614007) was mixed with 5 g dextran coated charcoal (Sigma-Aldrich, C6241) 

overnight on a stirrer at 4 oC. Excess charcoal was removed by centrifugation (10 minutes, 

13,000 g, room temperature) and the supernatant passed through 0.2 μm filters, aliquoted and 

stored at -20 oC. 

 

2.2.4 Manipulation of gene expression within cell lines 

2.2.4.1 Lentiviral miRNA knockdown 

Lentiviral vectors (created by Dr. Pamela Brown and Ms. Linda Ferguson, Shared 

University Research Facility (SuRF), Bimolecular Core, see Evans et al., 2009; McCloskey et 

al., 2014 for detailed methods) were utilised in this study to manipulate gene expression within 

human endometrial cell lines (see 2.2.2) utilising the principles of RNA interference (RNAi). 

After screening of efficiency of gene knockdown, several stably transduced cell lines variants 

were created utilising these vectors as described below.  

In brief, miRNA oligonucleotides of interest to this project  were designed using a 

combination of published literature data (Ayhan et al., 2015; Guan, Wang, et al., 2011; Juric 

et al., 2015), the Invitrogen BLOCK-iT™ RNAi designer web programme or were purchased 

directly from ThermoFisher Scientific (see corresponding results chapters for further details).  

Each miRNA oligonucleotide construct was then cloned into a 

pcDNA6.2_GW_EmGFP_miR Gateway plasmid (ThermoFisher Scientific) using the 

BLOCK-iT™ Pol II miR RNAi Expression Vector Kit (ThermoFisher Scientific, K4935-00) 

according to the manufacturer’s protocols and the inserts verified by DNA Sanger Sequencing. 

Human endometrial cell lines (MFE-280 and KLE, see 2.2.2) were transiently transfected with 

the plasmid vectors and the effect on protein expression analysed by Western Blotting (see 

2.9). The two most favourable plasmids were then recombined into pLent6.2 vectors. 

HEK293T cells were transfected with the pLent6.2 vectors to produce the Lentivirus particles 

using the BLOCK-iT™ Lentiviral Pol II miR RNAi Expression System (ThermoFisher 

Scientific, K4937-00). 
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2.2.4.2 Transduction efficiency testing of cell lines 

 To determine the optimum lentiviral transduction conditions of cell lines a test 

lentivirus carrying emerald GFP (ThermoFisher Scientific) was used, Lv-cppt-CMV-emGFP-

opre. This was previously generated in house by Biomolecular Core at the University of 

Edinburgh. 

 

2.2.4.3 Cloning of oestrogen receptor alpha (ERα / ESR1). 

 ESR1 (NCBI Reference Sequence: NM_000125.3) was liberated from pDC315-ESR1 

(as described in Bombail et al., 2010) using an Eco RI/Bam HI digest, then inserted into 

digested pDONR221-attB1-IRES-mcherry-attB2 (IRES-mCherry (Clontech)) and finally 

Gateway cloned in pLenti6-cppt-DEST-opre (as described in McCloskey et al., 2014) to 

generate pLenti6-cppt-CMV-ESR1-IRES-mCherry-opre. Unmodified pLenti6-cppt-CMV-

IRES-mCherry-opre was used as a control. This was packaged (as described in McCloskey et 

al., 2014) to generate high titre > 3 x 107 transduction units (TU) / ml lentivirus.  

 

2.2.5 Ligands 

 17β-Oestradiol (E2, C18H24O2) is a steroid ligand; it is the primary female sex 

hormone produced by the premenopausal ovary. E2 (Sigma-Aldrich, E8875) powder was 

reconstituted in dimethyl sulfoxide (DMSO) to a stock concentration of 10-3 M and stored, 

protected from light, in a glass bijou at -20 oC for a maximum of three months. Working stock 

dilutions were prepared, as required, in sterile Dulbecco’s calcium and magnesium free 

phosphate buffered saline (DPBS; Gibco, 14190136) diluted to a final working concentration 

of 10-8 M. 

 4-Hydroxytamoxifen (4-OHT, C26H29NO2) is the active metabolite of the 

antioestrogen, Tamoxifen. It is a cell permeable SERM, with a partial agonist action in the 

endometrium. 4-OHT (Sigma-Aldrich, H7904) powder was reconstituted in DMSO to a stock 

concentration of 10-3 M and stored, protected from light (to reduce a cis-trans interconversion), 

in a glass bijou at -20 oC for a maximum of three months. Working stock dilutions were 

prepared, as required, in DPBS diluted to a final working concentration of 10-7 M. 

 Propyl pyrazole triol (PPT, C24H22N2O3) is a potent subtype-selective ER agonist, with 

a 410-fold selectivity for oestrogen receptor alpha (ERɑ) over oestrogen receptor beta (ERβ) 
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(Stauffer et al., 2000). PPT (Tocris, 1426) powder was reconstituted in DMSO to a stock 

concentration of 10-3 M and stored, protected from light, in a glass bijou at -20 oC for a 

maximum of three months. Working stock dilutions were prepared, as required, in DPBS 

diluted to a final working concentration of 10-8 M. 

 Fulvestrant (ICI 182,780, C32H47F5O3S) is a high affinity ER antagonist, demonstrated 

to block both ERɑ and ERβ activity (Wakeling et al., 1991). ICI 182, 720 (Tocris, 1047) 

powder was reconstituted in DMSO to a stock concentration of 10-3 M and stored, protected 

from light, in a glass bijou at -20 oC for a maximum of three months. Working stock dilutions 

were prepared, as required, in DPBS diluted to a final working concentration of 10-7 M. 

 

2.3 Immunohistochemistry 

 Immunohistochemistry (IHC) is a widely used, multistep, histological technique 

which permits the detection and localisation of proteins of interest by exploiting the ability of 

an antibody to bind to specific antigenic sites on proteins against which they have been raised. 

Through the use of a detection system, either an enzyme mediated chromogenic reaction or a 

fluorescence-based system, visualisation of the antibody-antigen complex can be achieved. 

Generally speaking, immunohistochemistry refers to the detection of antigens in tissues and 

immunocytochemistry to the detection of antigens in individual cells. Unless otherwise stated, 

all wash steps were carried out twice for 5 minutes at room temperature on a rocker. 

 

2.3.1 Tissue processing 

 Formalin-fixed paraffin-embedded (FFPE) blocks of human endometrial tissue (see 

2.1.1 and 2.1.2) were cooled on ice blocks to facilitate tissue sectioning and increase the 

rigidity of the tissue. 5 μm sections were cut from the FFPE tissue blocks using a microtome 

(Leica Biosystems, RM2135), floated on a water bath set at 40 oC (Thermo Shandon, 3120058) 

and mounted on charged glass slides (Leica, 3800084E). Cut tissue section slides were oven 

dried overnight at 55 oC. 
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2.3.2 Dewaxing and tissue rehydration 

 Cut tissue sections of human endometrial tissue (see 2.2.2 and 2.4.1) were dewaxed 

by immersion in xylene (VWR Chemicals, 28975.325) twice for 5 minutes. Rehydration of 

the tissue sections was achieved by immersion in descending grades of ethanol (absolute to 70 

%) for 20 seconds each followed by a tap water wash. 

 

2.3.3 Heat-induced epitope retrieval 

 Formalin fixation of tissue causes protein crossing-linking, stabilising the architecture 

of the tissue for histological processing and increasing tissue longevity. However, this limits 

the ability of an antibody to bind to the antigenic determinant site (epitope) of the protein of 

interest. As a consequence, epitope retrieval, using sufficient heat and an acid or alkali pH to 

break the cross-linking without denaturing the protein of interest, must be performed.  

 After dewaxing and tissue rehydration, tissue sections were submersed in 0.01 M pH 

6 citrate retrieval buffer (0.1 M stock: Citric acid 84.04 g, 3.5 L deionised H2O, adjusted to pH 

6 with NaOH). Heat-induced epitope retrieval (HIER) was performed in one of two ways: 1) 

Heating submersed tissue sections to 110 oC in a pressurised decloaking chamber (BioCare 

Medical, DC2012) and gradually cooling to 90 oC over the course of 1 hour, or 2) Microwave 

HIER; Boiling 0.01 M pH 6 citrate retrieval buffer - full power 4 ½ minutes, adding the tissue 

sections in a plastic rack, boiling on full power for 2 ½ minutes and then leaving for 30 minutes 

to cool. Microwave HIER was only used when a second HIER was required during dual 

immunofluorescence (see 2.5.1). Tissue sections were allowed to cool and then washed in tap 

water. 

 

2.3.4 Peroxidase blocking 

 Endogenous peroxidase enzymes found within several tissues can interact with 

enzyme mediated chromogen detection systems and increase non-specific background staining 

during immunohistochemistry. In order to avoid this, a peroxidase block was performed by 

incubating the tissue sections with 3 % (v/v) hydrogen peroxide (H2O2; VWR Chemicals, 

23614.360) in methanol (Fisher Chemical, M/4000/15) for 15 minutes, followed by a tap water 

wash and a 5 minute wash with tris-buffered saline (TBS; 0.05 M Tris-HCL, pH 7.4, 0.85 % 

NaCl).  
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All subsequent incubations after this point were performed in a humidity chamber (Sigma-

Aldrich, H6644) to prevent drying of tissues. 

 

2.3.5 ImmPRESS™ polymerised reporter enzyme staining system 

 Commercially available ImmPRESS™ detection kits (Vector Laboratories, Inc., 

Burlingame, USA) were used for the human endometrial tissue immunohistochemistry in this 

study. The kits contain a ready-to-use ImmPRESS™ reagent, which employs horseradish 

peroxidase (HRP) micropolymers conjugated to affinity-purified secondary antibodies. This 

permits a higher density of enzymes per antibody to bind to the target, increases binding 

specificity and reduces background staining. 

 

2.3.5.1 Serum blocking  

 To reduce non-specific binding from the ImmPRESS™ reagent, a blocking step with 

serum from the same animal species used to produce the reagent, i.e. horse, was performed. 

The serum carries antibodies that bind to reactive sites in the tissue and thus prevents 

nonspecific binding. After peroxidase blocking (see 2.4.4), ready-to-use 2.5 % normal horse 

blocking serum (NHS; Vector Laboratories, Inc., S-2012) was applied to the tissue sections 

for 20 minutes. The excess serum was then blotted away using cleaning tissue.  

 

2.3.5.2 Primary antibody incubation and controls 

 The primary antibody diluted in NHS at an optimised concentration (Figure. 2-1), was 

applied to the tissue sections and incubated overnight at 4 oC in a humidity chamber. Lists of 

the antibodies used during this study can be found in the materials and methods sections of the 

corresponding results chapters.  

 Control tissues were included with each experimental run. Positive controls utilised 

either internal control regions within the tissue of interest or separate tissue sections known to 

express the antigen of interest. A no-primary antibody control was used to detect false-positive 

or background staining as a result of non-specific binding of the ImmPRESS™ regent. 

 



Chapter 2 – General materials and methods 
 

52 
 

2.3.5.3 ImmPRESS™ reagent incubation 

 After incubation overnight with the primary antibody, the tissue sections were washed 

in TBS and the ImmPRESS™ (peroxidase) polymer IgG reagent (horse raised) applied and 

incubated for 30 minutes (Figure. 2-1). The animal species of the ImmPRESS™ IgG reagent 

used was dependent on the animal species that the primary antibody was produced in, e.g. a 

mouse produced primary antibody would be used with the ImmPRESS™ (peroxidase) polymer 

anti-mouse IgG reagent. Two further washes in TBS were then performed. 

 

2.3.6 Enzyme medicated chromogenic detection  

 Enzyme mediated chromogenic detection utilises an enzyme/substrate reaction to 

produce a detectable (normally coloured) precipitate, the signal from which can be easily 

visualised. Commonly used enzymes include HRP and alkaline phosphatase. An enzyme-

labelled primary antibody can be used (direct method), however as this involves only one 

labelled antibody binding per epitope, little signal amplification is achieved. A more 

commonly used technique modifies a two-step indirect method, whereby a secondary antibody 

directed against the same animal species of the primary antibody is used. The secondary 

antibody can be directly conjugated to an enzyme (e.g. HRP, as is the case with the 

ImmPRESS™ polymer system, see Figure. 2-1) or the secondary antibody can be biotinylated, 

whereby biotin is covalently attached. In the latter method, the high affinity of streptavidin for 

biotin is exploited and a preformed streptavidin-biotin enzyme complex (ABC method) or an 

enzyme-labelled streptavidin substrate (LAB method) can then be used. By introducing a 

secondary antibody, signal amplification is enhanced since several secondary antibodies (and 

hence more enzyme molecules) are likely to react with different epitopes on the primary 

antibody. 

 In this study the 3, 3’-diaminobenzidine (DAB) chromogen system was used (Vector 

Laboratories, Ltd., SK-4105). DAB is oxidised by any antigen bound antibody HRP 

complexes resulting in the development of brown deposit at antigen sites, indicating a positive 

reaction (see Figure. 2-1). DAB chromogen was diluted in its own dilutant as per 

manufacturer’s instructions and incubated on the tissue sections until brown colour developed 

(maximum 5 minutes). After which the reaction was terminated by immersing the tissue 

section in H2O. 
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2.3.7 Nuclear counterstaining – immunohistochemical method  

 In order to achieve optimal contrast between positive (brown) and negative areas after 

the use of the DAB chromogen system, tissue sections were counterstained with haematoxylin. 

Haematoxylin is a dark blue stain which binds basophilic structures such as those found within 

cell nuclei. Slides were submersed in Harris’ haematoxylin (CellPath, RBA-4213-000A) for 5 

minutes followed by a tap water wash. Next, slides were submersed in acid-alcohol (CellPath, 

RHS-787-1L) for 10 seconds to remove excess haematoxylin, followed by a tap water wash. 

Finally, tissue sections were submersed in Scott’s tap water (CellPath, EGW-0200-25A) for 

30 seconds to ‘blue-up’ the nuclei, followed by a tap water wash.  

 Tissue sections were then dehydrated through ascending grades of ethanol (70 % to 

absolute) for 20 seconds each and then immersed in xylene twice for 5 minutes, before being 

mounted with glass coverslips (VWR, various) using Pertex solvent-based glue (CellPath, 

SEA-0100-00A).  

 

 

Figure 2-1: Schematic representation of DAB chromogen mediated 
immunohistochemistry using the ImmPRESS™ detection system. 1) Primary antibody 
binding to antigen of interest within tissue section. 2) ImmPRESS™ reagent (secondary 
antibody conjugated to HRP polymer) binding to primary antibody. 3) Incubation with DAB 
chromogen substrate. 4) Enzyme/substrate reaction between HRP and DAB with production 
of a detectable brown precipitate.  

 

2.3.8 Automated immunohistochemistry 

 The Leica BOND-MAX (Leica Biosystems) robotic staining platform was used to 

automate immunohistochemical staining of human endometrial hyperplasia tissue sections 
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(see 2.1.2) with the antibody PTEN. This work was undertaken by the Shared University 

Research Facility (SuRF, Edinburgh University). It is well known that the antigenicity of tissue 

sections can decline with time after sections are cut from FFPE blocks (Grillo et al., 2017). A 

reduction in antigenicity can cause a reduction in signal intensity and increase non-specific 

background staining. This is especially true for the antibodies PTEN (Combs et al., 2016; Gelb 

et al., 2011). Therefore, the high-throughput ability of automated immunohistochemistry was 

utilised in order to stain endometrial hyperplasia tissues for these antibodies as soon as possible 

after tissues sections were generated. Table. 2-2 briefly summarises the optimised automated 

protocols and reagents used. 

 

Table 2-2: Optimised IHC staining protocols using Leica BOND-MAX robotic system. 

Antibody HIER Bond protocol & detection 
method Notes 

PTEN 6H2.1 (Dako, M3627) 
1:300 

10 minutes pH9 (Novocastra, 
RE7119-CE) 

Bond polymer refine detection 
(Leica Biosystems, DS9800) 

Protocol 60/10/10 

DAB enhancer (Leica Biosystems, 
AR9432) 

Haematoxylin counterstain 

Protein block, 
serum free 

(Dako, 
X090930-2) 

used  

 

2.3.9 Haematoxylin and eosin staining 

 Haematoxylin and eosin (H&E) staining is the principle stain used in histology, 

producing a spectrum of blue, violet and red colours within tissue sections that permits 

examination of the different compartments of the tissue. H&E staining was performed on all 

human endometrial tissue sections used in this study to facilitate tissue diagnosis and 

morphological assessment. As described in 2.3.7, haematoxylin binds basophilic structures, 

whilst eosin (a red/pink stain) binds acidophilic structures. After dewaxing and rehydration 

(see 2.4.2) tissue sections were stained with haematoxylin as per 2.3.7. After submersion in 

Scott’s tap water, tissue sections were washed with tap water and submersed in 1 % aqueous 

eosin Y (CellPath, RBC-0100-00A) for 5-10 seconds followed by a final wash with tap water. 

Tissue sections were then dehydrated and mounted as described in 2.3.7. 
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2.4 Immunofluorescence 

 Immunofluorescence utilises the same principles as immunohistochemistry, only 

instead of an enzyme mediated chromogenic detection method, fluorochrome generated 

fluorescence is employed instead (summarised in Figure. 2-2). The tissue sections are 

subsequently imaged using confocal microscopy. Immunofluorescence permits the 

simultaneous detection of several target antigens and is useful for detecting co-localisation of 

different antigens within the same tissue section. 

 After dewaxing and tissue rehydration (see 2.3.2), HIER (see 2.3.3) and peroxidase 

blocking (see 2.3.4), tissue sections were blocked in normal animal serum buffer (50 mL stock: 

20 % normal animal serum (10 mL), 5 % bovine serum albumin (2.5 g) (BSA; Sigma-Aldrich, 

05470), made up to 50 mL with TBS) for 30 minutes at room temperature, followed by TBS 

washes. The species of the animal serum used was dependent upon the species that the 

secondary antibody was created in, i.e. a goat hosted secondary antibody against a mouse IgG 

(for use with a mouse created primary antibody) would require normal goat serum for blocking 

non-specific binding of the secondary antibody.   

 Following serum blocking, the primary antibody diluted to an optimised concentration 

in normal animal serum buffer (NAS), was applied to the tissue sections and incubated 

overnight in a humidity chamber at 4 oC (Figure. 2-2). The next day, after TBS washes, a HRP-

conjugated secondary antibody was diluted 1:500 in NAS and the tissue sections incubated for 

30 minutes followed by further TBS washes (Figure. 2-2). Lists of the antibodies used during 

this study can be found in the materials and methods sections of the corresponding results 

chapters.   

 

2.4.1 Tyramide™ signal amplification system 

 The Tyramide™ signal amplification system (TSA™; PerkinElmer, USA) was the 

principal fluorochrome system used in this study (Figure. 2-2). Tyramide induces signal 

amplification, permitting sub-cellular localisation of low abundance antigens. In addition, 

there are a large selection of fluorochromes that can be combined for multiple antigen 

detection. Following HRP-conjugated secondary antibody incubation, TSA™-fluorochrome 

was diluted 1:50 with its own diluent as per the manufacturer’s instructions and incubated with 

tissue sections incubated for 10 minutes in the dark (all incubations and washes were 

conducted in the dark thereafter to prevent photo-bleaching of the fluorochromes), followed 
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by TBS washes (Figure. 2-2). Specific TSA™-fluorochromes used in this study can be found 

in the materials and methods sections of the corresponding results chapters. 

 

2.4.2 Nuclear counterstain – immunofluorescence method 

 Tissue sections undergoing an immunofluorescent detection method were 

counterstained with the fluorescent dye, DAPI (4`, 6-diamidion-2-phenylindole; 

ThermoFisher Scientific, D1306). DAPI passes through the cell membrane and binds to A-T 

rich regions within DNA. It stains nuclei blue since its emission wavelength is 461 nm. DAPI 

was diluted 1:500 in TBS and tissue sections were incubated for 10 minutes at room 

temperature, followed by 3 TBS washes. Tissue sections were mounted with glass coverslips 

(VWR, various) using PermaFluor™ aqueous mounting medium (ThermoFisher Scientific, 

TA-030-FM) and allowed to dry protected from the light. 

 

Figure 2-2: Schematic representation of immunofluorescence using TMA™ amplification 
system. 1) Primary antibody binding to antigen of interest within tissue section. 2) Secondary 
antibody conjugated to HRP binding to primary antibody. 3) Incubation with TMA™ reagent. 
4) TMA™ reagent activated by the enzyme HRP and converted into a short-lived, extremely 
reactive free radical intermediate. This free radical intermediate covalently binds to electron-
rich regions of adjacent proteins (predominantly tyrosine residues). This binding occurs 
adjacently to the sites at which the HRP enzyme is bound. Fluorescence detected by excitation 
with the appropriate light wavelength. 

 

2.4.3 Dual immunofluorescence   

Detection of two antigens was performed using dual immunofluorescence. After 

incubation with the first TSA™ fluorochrome and TBS washes (see section 2.4.1), a second 
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round of HIER was performed using a microwave (see 2.3.3). This does not elute antibodies 

but prevents their reaction with subsequently applied regents (Tornehave et al., 2000). It also 

inhibits reactions with endogenous immunoglobulins present in extracellular compartments 

(Tornehave et al., 2000). 

 A second NAS buffer blocking step was then performed, again using serum from 

same animal species as the secondary antibody. A second primary antibody (for detection of 

the second antigen of interest) was then applied to the tissue sections and incubated overnight 

at 4 oC in a humidity chamber. The next day, after TBS washes, a HRP-conjugated secondary 

antibody was diluted 1:500 in NAS buffer and the tissue sections incubated for 30 minutes, 

followed by further TBS washes. A second TSA™ fluorochrome (different to the first; unless 

otherwise stated the green fluorochrome, fluorescein was normally added second since it is 

particular prone to photo-bleaching) was then applied (as per 2.5.1) and nuclear 

counterstaining and mounting performed (as per 2.5.3). 

 

2.5 Fluorescent immunocytochemistry 

Cells grown in vitro as part of this study underwent both single and dual fluorescent 

immunocytochemistry for detection of proteins/antigens of interest. For this method, 

phosphate buffered saline (PBS; VWR, E404) was used for all wash steps in place of TBS. 

Primary human endometrial cells (see 2.2.1) and informative cell lines (see 2.2.2) were 

seeded into 4-well chamber slides (BD Falcon, 354104). Chamber slides were pre-treated with 

attachment factor (Gibco, S006100) prior to seeding with primary endometrial cells. Cells 

were counted (see 2.2.3.3) and 1 mL of cell suspension seeded into individual chambers at a 

density of 1 x 104 cells/mL. After appropriate incubation periods, cell medium was aspirated, 

and the chambers washed twice with PBS. Care was taken not to disturb cell monolayers 

throughout this method, i.e. chamber slides were tilted and a vacuum aspirator (Integra 

Biosciences, 158310) used to remove the liquid contents at each step. 

Fixation was performed by adding 1 mL of ice-cold acetone (Acros Organic, 

423240010) per chamber for 10 minutes at -20 oC, followed by PBS washes. Several fixation 

chemicals and methods were tested during optimisation, these included: methanol, acetone, 

50:50 methanol/acetone, 4 % paraformaldehyde (PFA; Sigma-Aldrich, P6148) and 10% NBF. 

Acetone yielded the best imaging results. Acetone fixed cells do not require a permeabilisation 

step in order to permit antibody entry. Cell permeabilisation is required for intracellular 
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epitopes when the antibody requires access to the inside of the cell to detect a protein. It is also 

required for detection of transmembrane proteins if the epitope is in the cytoplasmic region. 

A peroxidase block was performed (modified method from 2.3.4) with 0.15% H2O2 in 

PBS (1:200 dilution of 30 % H2O2) for 15 minutes, followed by PBS washes. NAS blocking 

was the performed (as per 2.4) for 30 minutes, followed by PBS washes. The primary antibody 

and secondary antibodies were applied (as per 2.4) with intermediate PBS washes. At this 

point the plastic inserts were removed from the chamber slides. A TSA™ fluorochrome was 

then applied (see 2.4.1) and nuclear counterstaining performed (see 2.4.2) prior to slide 

mounting with PermaFluor. 

 

2.5.1 Dual fluorescent immunocytochemistry 

Detection of two antigens in the same cell was performed using dual fluorescent 

immunocytochemistry using the same method as described in 2.4.3, modified to exclude the 

HIER step and to substitute TBS for PBS washes. The exception to this was where both 

primary antibodies were raised from the same animal species, i.e. both mouse. This would not 

ordinarily be a problem when performing dual immunofluorescence on tissue sections with 

the TMA™ system, since the second HIER step would prevent reaction of the first primary 

antibody complex with subsequently applied regents. However, HIER is not routinely 

performed for immunocytochemistry due to the damage and cell loss that it can cause. For this 

reason, an alternative fluorochrome detection method to the TSA™ system was employed for 

the second antibody/antigen complex detection for dual fluorescent immunocytochemistry.  

After incubation with the first TSA™ fluorochrome and PBS washes (see section 

2.4.1), a second NAS buffer blocking step was then performed, using serum from same animal 

species as the second, secondary antibody. This was again followed by PBS washes. A 

streptavidin (Vector, SP-2002) block was then performed for 15 minutes, followed by PBS 

washes and a 15-minute biotin block (Vector, SP-2002) and further PBS washes. A second 

primary antibody (for detection of the second antigen of interest) was then applied and 

incubated overnight at 4 oC in a humidity chamber. The next day, after PBS washes, a 

biotinylated secondary antibody was diluted 1:500 in NAS buffer and the tissue sections 

incubated for 30 minutes followed by further PBS washes. A streptavidin, Alexa Fluor™ 555 

conjugate was then added, diluted 1:500 in PBS and incubated for 1 hour, followed by PBS 

washes. Counterstaining and mounted was then performed (see 2.4.2). 
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2.6 Image analysis 

 Tissue sections stained by immunohistochemistry and H&E were scanned using a 

NanoZoomer-XR (Hamamatsu, C12000-01) digital slide scanner in 40x mode. Digital images 

were stored electronically on a University of Edinburgh managed and backed-up server; 

NDP.view2 (Hamamatsu, U12388-01) imaging software was used to view the digital images. 

For quantitative image analysis, .ndpi (NanoZoomer Digital Pathology Image) files were 

imported and processed using StrataQuest analysis software (TissueGnostics GmbH, Vienna).  

 Tissue sections and fixed cells that were fluorescently stained were visualised using a 

Zeiss confocal laser scanning microscope 780, (Carl Zeiss Microscopy, Cambridge, UK) and 

analysed using Zen Black Edition 2.0 software (Carl Zeiss Microscopy). 

 

2.7 RNA Extraction 

 Total RNA from endometrial cells (see 2.2.1 and 2.2.2) was extracted using the 

commercially available RNeasy Mini Kit (Qiagen, 74106) according to the manufacturer’s 

instructions. This spin-column method enriches for mRNA by excluding sRNAs and rRNAs 

based upon their size. RNA extraction was performed in a dedicated region of the laboratory, 

with all surfaces and equipment cleaned with RNaseZAP (ThermoFisher Scientifc, AM9780) 

before commencing.  

 Endometrial cells were harvested using the method described in 2.2.3.1. Cell pellets 

were first lysed with a denaturing guanidine-thiocyanate containing buffer (RLT buffer) with 

1 % (v/v) β-Mercaptoethanol (Sigma Aldrich, M6250) added. Individual cell lysates were then 

homogenised by centrifugation (12,000 g for 2 minutes, room temperature) using QIAshredder 

spin columns (Qiagen, 79654); an equal volume of 70 % ethanol was added to each sample to 

aid binding conditions. Each sample was subsequently transferred to a RNeasy mini spin 

column, where the total RNA was allowed to bind to the membrane and contaminants were 

washed away during progressive wash buffer steps. Finally, RNA was eluted in 30 μL RNase 

free H2O. Genomic DNA contamination was removed using an intermediate DNase digestion 

step (Qiagen, 79654).  
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2.7.1 RNA quantification 

 RNA concentrations were measured using a Nanodrop® ND-1000 spectrophotometer 

(ThermoFisher Scientific). Spectrophotometric analysis is based on the principle that nucleic 

acids absorb ultraviolet light in a specific pattern. The ratio of the absorbance at 260 and 

280 nm (A260/280) was used to assess the purity of the RNA. A ratio of ~2.0 is generally 

accepted as “pure” for RNA. If the ratio is appreciably lower, it may indicate the presence of 

protein, phenol or other contaminants that absorb strongly at or near 280 nm. RNA samples 

were individually standardised to a concentration of 100 ng/μL using RNase free H2O and 

stored at -80 oC. 

 

2.8 Two-step quantitative real-time reverse transcription 
polymerase chain reaction (qRT-PCR) 

 A two-step method was utilised to perform relative quantification of gene expression 

for this study. Complementary DNA (cDNA) molecules were first created from total RNA 

(extracted as per section 2.7) via a reverse transcription polymerase chain reaction (RT-PCR). 

A real-time quantitative polymerase chain reaction (qPCR) was then used to measure the 

amplification of targeted genes of interest (GOI) within the cDNA using fluorescent molecules 

(TaqMan® method). Target GOIs were normalised to an endogenous control ‘house-keeping 

gene’ and relative quantitation performed to analyse fold-change differences in the expression 

levels of individual GOIs between different samples. 

 

2.8.1 Reverse transcription and synthesis of cDNA 

 A reverse transcription polymerase chain reaction (RT-PCR) using a template of total 

RNA to generate a pool of cDNA was performed using the SuperScript™ VILO™ cDNA 

synthesises kit (ThermoFisher Scientific 11754250), adapted from the manufacturer’s 

instructions as follows. Each reaction contained a final concentration of 1x VILO™ reaction 

mix (random primers, dNTPs, and MgCl2), 0.125x SuperScript™ enzyme (reverse 

transcriptase) and 100 ng/μL of RNA, made to a final volume of 20 μL with RNase free H2O.  

 For each group of cDNA samples made, the following control samples were also 

added: 1) a no reverse transcriptase (RT) control with substitution of the SuperScript™ enzyme 

by using RNase free H2O, 2) a positive control using 100 μg/μL Human Total RNA Control 
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(ThermoFisher Scientific, 4307281) and 3) a negative control substituting the RNA with 1 μL 

of RNase free H2O. In addition, where qPCR primer validation was required a standard curve 

was created using 10-fold serial dilutions of pooled RNA from the cohort (1000ng, 100ng, 

10ng, 1ng, 0.1ng) to adequately cover the 100 ng/μL starting concentration of RNA. 

 Samples were incubated in a thermal cycler (MJ Research PTC-200 Thermo Cycler, 

BC-MJPC200) under the following conditions: 25 oC for 10 minutes (annealing), 42 oC 

(extension) for 60 minutes, and 85 oC for 5 minutes (termination and inactivation of RT).  

 

2.8.2 Quantitative real-time PCR (TaqMan® method) 

 The TaqMan® method was used for qPCR in this study. The method utilises the ability 

of the thermostable DNA polymerase, Taq polymerase, to cleave fluorescently labelled probes 

from a template sequence of DNA. In brief, TaqMan® probes consist of a ‘reporter’ 

fluorophore covalently joined to the 5’-end of an oligonucleotide and a ‘quencher’ at the 3’-

end. The quencher molecule, as the name suggests, quenches the fluorescent ability of the 

reporter, provided that the two remain in proximity to one another. This occurs via a process 

of fluorescence resonance energy transfer (FRET). TaqMan® probes are 8-9 nucleotides long 

and designed such that they will anneal within a DNA region amplified by a specific set of 

PCR primers. During the extension phase of the PCR cycle, Taq polymerase extends the 

primer templates (designed to bind to a specific GOI) along the nascent DNA strand to produce 

the complementary DNA strand (amplicon). On encountering a TaqMan® probe the 5' to 3' 

exonuclease activity of the Taq polymerase breaks down the probe, separating the reporter and 

quencher, with the resultant fluorescence detected by the qPCR machine. With each PCR 

cycle, more reporter molecules are released, resulting in an increase in fluorescence intensity 

which is proportional to the amount of DNA being synthesised (Figure 2-3). 
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Figure 2-3 Schematic representation of TaqMan® qPCR. A) Denaturing of cDNA, B) 
Annealing of primers and probe to cDNA (only sense strand of cDNA shown), and C) The 5'-
nuclease activity of Taq polymerase cleaves the probe during the amplicon extension step, 
which separates the detectable reporter fluorophore (R) from a quencher (Q). Adapted from 
Macmillan Publishers Ltd: Nature Reviews Drug Discovery. Koch W (Koch, 2004) copyright 
2004. 

 

2.8.3 TaqMan® qPCR reagents  

 TaqMan® probes used in this study utilised the Universal ProbeLibrary™ system 

(UPL™; Roche, West Sussex, UK) and were labelled at their 5’ -end with a 6-carboxy-

fluorescein (FAM) reporter and a dark quencher dye at their 3’ -end. Primers were designed 

using the Roche online UPL assay design centre (Roche Molecular Systems, 2017) and 

primers purchased from Eurofins (Eurofins Genomics, Ebersberg, Germany). Lists of the 

primer/probe combinations used during this study can be found in the materials and methods 

sections of the corresponding results chapters. All primers were validated for efficiency of 

amplification prior to use. A TaqMan® master mix was created for qPCR experiments as per 

Table. 2-3 and mixed thoroughly with 1 μL of cDNA. 15 μL of samples were plated, in 

duplicate, into MicroAmp™ 96-well optical reaction plates (ThermoFisher Scientific, 403012). 

The plates were then sealed with clear adhesive film (ThermoFisher Scientific, 4306311) and 

briefly centrifuged at room temperature. qPCR was performed using an Applied Biosystems 

(ABI) 7900HT fast real-time qPCR machine (ABI, 4329001). The following programme was 
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used; 95 oC for 10 minutes and 40x cycles of 95 oC for 15 seconds, 60 oC for 1 minute. Data 

were analysed and processed using Sequence Detector System version 2.4 (SDS; Applied 

Biosystems, California, USA). 

 

Table 2-3: Constituent reagents for qPCR reaction mix 

Reagent  Final 
Concentration 

Volume / 15 μL 
reaction  Manufacturer 

2x TaqMan™ Fast 
Advanced Reaction Mix 

1x 7.5 μL  
ThermoFisher 

Scientific, 4444963 

Forward Primer 20μM  200nM 0.15 μL  EuroFins 

Reverse Primer 20μM 200nM 0.15 μL  EuroFins 

UPL™ Probe 10μM 100nM 0.15 μL  
Roche Molecular 

Systems 

20x Endogenous Control 
Gene, CYC (VIC® 

Conjugated)* 
1x 0.75 μL  

ThermoFisher 
Scientific, 
4310883E 

RNase-free H2O  to 15 μL final  

cDNA  1.5 μL   

*Assay-On-Demand™; used in place of forward / reverse primers and probe 
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2.8.4 TaqMan® qPCR analysis 

As described in 2.8.2, increasing levels of fluorescence are detectable with each PCR 

cycle as more and more reporter molecules are released. The fluorescence intensity at each 

PCR cycle can be graphically represented as an amplification plot using SDS analysis software 

(Figure. 2-4).  

 
Figure 2-4: Real-Time PCR TaqMan® data. A) Standard curve for a gene of interest (GOI) 
and an endogenous control (CYC). The CT value for each standard is plotted against the 
common logarithm of the mRNA concentrations. The equation of the linear trendline is used 
to analyse data by the relative standard curve method. B) An example of a typical qPCR 
amplification plot from a TaqMan® reaction, demonstrating the cycle threshold (CT). 

 

A threshold for the detection of fluorescence can be established as the point where the 

amount of fluorescent signal achieves statistical significance over the background / baseline 

fluorescent signal. The number of PCR cycles at which the fluorescence signal exceeds this 

threshold is called the cycle threshold (CT) (Figure. 2-4). During the exponential phase of the 

PCR reaction, CT values are directly proportional to the amount of targeted nucleic acid in the 

sample; assuming a 100 % reaction efficiency, an increase of 1-fold in CT value corresponds 

to a 2-fold increase in cDNA concentration.  

 



Chapter 2 – General materials and methods 
 

65 
 

2.8.4.1 Determination of qPCR primer efficiency 

As described above, qPCR analysis applies the premise of a 100 % reaction efficiency, 

whereby a doubling of PCR product occurs with each cycle during the exponential phase of 

the reaction. This however is not always the case. Suboptimal primer/probe design, reaction 

contaminants with PCR inhibitors and technical errors can all reduce the efficiency of the PCR. 

To establish primer efficiency, a standard curve was used to validate all primer/probe 

combinations used in this study (Figure. 2-4). The exception to this was when Assay-On-

Demand™ (Applied Biosystems, California, USA) gene expression products were used. These 

are TaqMan® gene expression assays that have already been externally validated by the 

manufacturer for optimal reaction efficiency.  

To establish primer efficiency a cDNA standard curve was created using 10-fold serial 

dilutions of RNA (as per 2.8.1). The common logarithm of the RNA concentrations was 

plotted against the CT values using Excel® (Microsoft®, Redmond, WA, USA) and a linear 

regression trendline calculated using the least squares method (Figure. 2-4A). The slope of the 

trendline was then used in the following formula in order to calculate the percentage primer 

efficiency:  

% Efficiency (E) = (10^(-1/slope)-1)*100. 

Where primer efficiency was between 95-105 % the 2-ΔΔCT method was used for TaqMan® 

qPCR analysis, otherwise the relative standard curve method was used. 

 

2.8.4.2 2-ΔΔCT method for analysis of TaqMan® data 

Utilising a standard curve as per 2.8.4.1 the efficiency of the target GOI amplification 

and the efficiency of the endogenous control gene amplification were first calculated. Where 

these were both between 95-105 % the 2-ΔΔCT method was used for relative quantification 

analysis as follows: ΔCT was first calculated, whereby the CT value of the endogenous control 

sample (CYC in this study) was subtracted from the CT value of the target GOI sample, i.e. 

ΔCT = target GOI CT – CYC CT. This normalises the target GOI to the endogenous control. 

ΔCT was then expressed as a relative change to a reference sample (i.e. a no treatment or 

vehicle control sample) to give ΔΔCT, i.e. ΔΔCT = ΔCT sample - ΔCT reference sample. 

Relative fold-change in gene expression was then calculated from this value using the formula 

2-ΔΔCT.  
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2.8.4.3 Relative standard curve method for analysis of TaqMan® data 

The relative standard curve method for analysis of qPCR data first quantitates gene 

expression for each unknown experimental sample from a set of known standards. This 

quantity is then expressed relative to that of a reference sample (i.e. a no treatment or vehicle 

control samples). This method negates the need for extensive validation and optimisation of 

the qPCR reaction. However, it is more time consuming, uses more reagents and requires 

accurate serial dilutions of the template RNA to produce the standards. 

Standard curves were prepared for both the target GOI and the endogenous control 

(CYC) as per 2.8.4.1 (Figure. 2-4A). For each experimental sample, the amount of target GOI 

and endogenous control was determined utilising the equation of the trendline from their 

corresponding standard curve. These values were then raised to the power 10, since the 

standard curves plot the common logarithm of the RNA concentrations. The target GOI values 

were then divided by the endogenous control values for each experimental sample to 

normalise. Each of the normalised target GOI values were then divided by the reference sample 

normalised target value to generate the relative gene expression levels. 

 

2.9 Western Blotting 

Western blotting is a long-established laboratory technique used to detect and quantify 

proteins of interest within a tissue lysate. In common with immunohistochemistry, the process 

is dependent on the interaction between an antibody and the antigen to which it was raised, to 

visualise proteins of interest. However, unlike immunohistochemistry proteins are not 

visualised in-situ, but they are extracted from the tissue and separated by size using 

electrophoresis, before being transferred to a membrane (in this study polyvinylidene 

difluoride, PVDF) where they can be detected and also quantified. 

 

2.9.1 Whole protein extraction from human endometrial cell lines 

Human endometrial cell lines (detailed in 2.2.2) were utilised for experiments in this 

study. Following experimental procedures (see relevant results chapters for further details), 

cell lines were harvested and pelleted (modified as per 2.2.3.1). After DPBS washes of the 

plastic tissue culture flasks, cells were detached from the plasticware by incubating with 5 mL 

of 0.05% phenol-red Trypsin-EDTA (Gibco, 25300054) for 20 seconds at room temperature. 
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Trypsin was aspirated, discarded and the flask incubated at 37 oC for 5 minutes. 10 mL of ice-

cold DPBS was used to wash the flask and in doing so, detach the cells. The resultant cell 

suspension was pelleted by centrifugation (115 g, 5 minutes, room temperature) and the 

supernatant discarded. 500 uL of ice-cold protein lysis buffer (Table. 2-4) was added to the 

cell pellet and pipetted up-and-down to mix, followed by a 20 second vortex. Samples were 

kept on ice from this point forward. After vortexing, the samples were placed on a rocker at 4 
oC for 10 minutes prior to transfer to 1.5 mL Eppendorf® microcentrifuge tubes (Sigma-

Aldrich, T9661). The lysate was centrifuged (10 minutes, 13,000 g, 4 oC) to pellet cellular 

debris and the supernatant was aliquoted into fresh microcentrifuge tubes, before immediately 

storing at -80 oC. Whole protein lysates underwent a maximum of x3 freeze/thaw steps before 

being discarded. 

Table 2-4: Composition of protein lysis buffer  

Reagent Final Concentration Manufacturer 

1 M Tris base pH 7.5 50 mM Sigma-Aldrich, 252859 

0.5 M EDTA pH 8.5 5 mM Sigma -Aldrich, E5134 

1 M NaCl 150 mM Sigma-Aldrich, S3014 

Triton-X 1 % Sigma-Aldrich, T8787 

Aprotinin 2 μg/mL Sigma-Aldrich, A3428 

100x Halt™ Protease 
Inhibitor Cocktail 

1x 
ThermoFisher Scientific, 

78430 

 

2.9.2 Measurement of whole protein lysate concentration 

The commercially available Bio-Rad DC Protein Assay (Bio-Rad Laboratories, 

5000111) was used to measure whole protein lysate concentration (extracted as per 2.9.1). 

This assay utilises a colorimetric technique for measuring protein concentration following 

detergent solubilisation. The assay is based on the reaction of protein with an alkaline copper 

tartrate solution and Folin reagent, leading to colour development which can be measured on 

a spectrophotometer.  
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In brief, a BSA standard curve of known protein concentrations (1.5, 1.0, 0.75, 0.5, 

0.25, 0.125 and 0.0625 mg/mL respectively) made up in protein lysis buffer (Table. 2-4) was 

first created. 5 uL of each of the standard curve samples and protein lysates were added in 

duplicate to a clear, flat-bottomed 96-well plate (Sigma-Aldrich, CLS3628). Assay buffers 

were added as per the manufacturer’s instructions and the plate incubated in the dark for 15 

minutes. Blank wells (buffer only) were also included to control for any background signal. 

The plate was read on a spectrophotometer (Multiscan EX, Labsystems) at both 620 nm and 

540 nm. The 540 nm reading was subtracted from the 620 nm reading to give the optical 

density (OD). A standard curve graph was created plotting the OD reading against the known 

BSA standard concentrations. The equation of the line was then used to calculate the protein 

concentration of the experimental lysates in mg/mL. 

 

2.9.3 Denaturing gel electrophoresis 

As part of the Western blotting procedure, protein lysate samples were first resolved 

by gel electrophoresis. Following protein extraction (as per 2.9.1), lysates were thawed on ice 

and protein concentration measured (as per 2.9.2). 40-60 ng of protein lysate was used from 

each sample and added to an electrophoresis sample mix (Table. 2-5). The mix contained 

lithium dodecyl sulphate (LDS), pH 8.4, which together with the reducing agent, breaks 

disulphide bonds between protein molecules and maintains them in a denatured state during 

the electrophoresis. Sample mixes were heated to 70 oC for 10 minutes and kept on ice prior 

to loading into a precast electrophoresis gel (10 well comb, 1.5mm thick, maximum load 

volume 37 μL). Positive control protein lysates were included as necessary. 

Table 2-5: Protein electrophoresis sample mix preparation 

Regents and samples Amount per sample Manufacturer 

4x NuPage™ LDS Sample 
Buffer 

1x (8.5 μL) 
ThermoFisher Scientific, 

NP0007 

10x NuPage™ Reducing 
Agent 

1x (3.4 μL) 
ThermoFisher Scientific, 

NP0004 

Protein Lysate 40-60 ng (variable volume)  

Deionised H2O 
Made up to 34 μL total 

volume 
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2.9.3.1 4-12 % Bis-Tris gel electrophoresis 

For detection of proteins with an expected size of between 15-260 kDa, NuPAGE™ 4-

12 % Bis-Tris Protein Gels (ThermoFisher Scientific, NP0322) were used. These precast gels 

cassettes were first washed with deionised H2O and their combs removed. The gel cassettes 

were washed three times with 1x running buffer (50 mLs 20x NuPAGE™ MOPS SDS Running 

Buffer (ThermoFisher Scientific, NP000102) made up as 1x with 950 mL deionised H2O). 

Cassettes were loaded into an XCell SureLock™ Mini-Cell (ThermoFisher, EI0001) and 1x 

running buffer added, ensuring an adequate seal between upper and lower chambers. 34 μL of 

each protein sample was added per gel well, in addition to a well containing 10 μL of 

Chameleon® Duo Pre-stained Protein Ladder (Li-Cor Biosciences, 928-60000). 500 μL of 

Novex™ NuPAGE™ Antioxidant (FisherScientific, 15744412) was added to the running buffer 

in the upper chamber prior to commencing electrophoresis to help maintain the samples in a 

reduced state during electrophoresis. The gel was run at 200 V constant for approximately 50 

minutes. 

 

2.9.3.2 3-8 % Tris-Acetate gel electrophoresis 

For detection of proteins with an expected size of between 40-500 kDa, NuPAGE™ 3-

8 % Tris-Acetate Protein Gels (ThermoFisher Scientific, NP0378) were used. The same 

protocol as per 2.9.3.1 was used, with the following modifications: 1) 1x running buffer (50 

mLs NuPAGE™ Tris-Acetate SDS Running Buffer (ThermoFisher Scientific, LA0041) made 

up as 1x with 950 mL deionised H2O) was used and 2) the gel was run at 150 V constant for 

60 minutes. 

 

2.9.4 Gel transfer to Immobilon® membrane 

 For proteins to be accessible to antibody detection they need to be transferred to a 

porous membrane. An electric current is used to ‘pull’ proteins from the gel into the membrane 

whilst maintaining the same layout that they had within the gel. After electrophoresis was 

completed, gel cassettes were removed from the XCell SureLock™ Mini-Cell and the stacking 

gels removed, cut as needed and equilibrated in 1x transfer buffer (Table. 2-6) for 15 minutes 

to remove salts and detergents. For most proteins separated on Bis-Tris gels, transfer used a 

semi-dry method, whereas larger proteins of interest were transferred from Tris-Acetate gels 

using an overnight wet transfer method. 
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2.9.4.1 Semi-dry electrophoretic transfer 

An Immobilon®-FL PVDF (Millipore, IPFL00010) membrane was first cut to size 

(slightly larger than the gel being transferred) and pre-soaked in methanol for 15 seconds. The 

membrane was equilibrated in 1x transfer buffer (Table. 2-6) for 5 minutes, along with 6 sheets 

of Whatman™ 3 mm Chr chromatography paper (FisherScientific, 10211031) cut to a 

corresponding size. A Trans-Blot SD semi-dry electrophoretic transfer cell (Bio-Rad, 

1703940) was then loaded, stacked as follows on to the anode plate: 1) three sheets of pre-

soaked Whatman™ 3 mm Chr chromatography paper, 2) equilibrated PVDF membrane, 3) 

equilibrated electrophoresis gel, 4) three sheets of pre-soaked Whatman™ 3 mm Chr 

chromatography paper.  A Corning® Costar® Stripette® serological pipette (Sigma-Aldrich, 

CLS4488) was used to ‘roll’ the final stack to remove any trapped air bubbles. The cathode 

plate and safety cover were then placed on top to ‘sandwich’ the stack. Semi-dry transfer was 

performed for 90 minutes, 14 V constant.  

 

Table 2-6: Composition of Western blot transfer buffers 

Reagent Quantity Concentration Manufacturer 

Tris base  30.28 g 250 mM 
Sigma-Aldrich, 

252859  

Glycine 144 g 1.92 M 
Sigma-Aldrich, 

G8898 

Sodium dodecyl 
sulphate (SDS) 

1 g 0.1 % 
Sigma-Aldrich, 

L3771 

Ultrapure deionised 
H2O 

To a make final 
volume of 1 L 

10x  

Final transfer buffered used at a 1x concentration 

Semi-dry Transfer: 100 mL 10x transfer buffer, 200 mL methanol (20 %), 700 mL 
ultrapure deionised H2O 

Wet transfer: 100 mL 10x transfer buffer, 100 mL methanol (10 %), 800 mL ultrapure 
deionised H2O, 1 mL Novex™ NuPage™ Antioxidant 
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2.9.4.2 Wet electrophoretic transfer 

For transfer of large molecular weight proteins from the Tris-Acetate gels an overnight 

wet transfer was favoured. Membrane, chromatography paper and Tris-Acetate gels were 

prepared and equilibrated as described in 2.9.4.1. 1x transfer buffer as per Table. 2-6 was used. 

Note, for transfer of larger proteins, methanol concentration was reduced, and antioxidant 

added (both following extensive optimisation), to enhance transfer success.  

A Hoefer® Mighty Small Transfer Tank (Hoefer®, TE22) was used for the transfer. 

Cartridges were stacked as follows, grey side to the bottom: 1) sponge, 2) three sheets of pre-

soaked Whatman™ 3 mm Chr chromatography paper, 3) equilibrated PVDF membrane, 4) 

equilibrated electrophoresis gel, 5) three sheets of pre-soaked Whatman™ 3 mm Chr 

chromatography paper, 5) sponge. A serological pipette was used to ‘roll’ the final sponge 

stack to remove any trapped air bubbles, before locking the transfer cartridge closed.  The 

transfer cartridge was placed centrally within the transfer tank, black side of cartridge facing 

the cathode and grey side to the anode. 1x transfer buffer was added to the tank as per 

manufacturer recommendations, completely submerging the transfer cartridge. Wet transfer 

was performed for 16 hours (overnight) in a cold-room (4 oC) at 10 V constant. 

 

2.9.5 Blocking and antibody incubation 

Following transfer, PVDF membranes were placed in either PBS or TBS for 5 minutes 

(dependent on the protein of interest; PBS was used routinely unless phosphorylated proteins 

were being detected, in which case TBS was used). A blocking step was then performed to 

prevent non-specific antibody binding and reduce background signal. 5 mL of PBS or TBS 

(see previous comment) Odyssey® Blocking Buffer (Li-Cor Biosciences, 927-50000 / 927-

40000) was used to cover the PVDF membrane and incubated for 1 hour at room temperature 

on a rocker.  

Primary antibodies were diluted to optimised concentrations in 5 mL of blocking buffer 

with the addition of 0.1 % Tween®-20 (Sigma-Aldrich, P6416). The antibody directed against 

the protein of interest was multiplexed with an antibody directed against an endogenous 

‘loading’ protein (the antibodies used were always raised in two different species, i.e. a mouse 

antibody to the protein of interest with a rabbit antibody directed against the loading protein).  

Lists of the antibodies used during this study can be found in the materials and methods 
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sections of the corresponding results chapters. Primary antibodies were incubated with the 

PVDF membrane for 16 hours (overnight) at 4 oC on a rocker. 

The following day, PVDF membranes underwent 4 washes with PBST or TBST (PBS 

or TBS with 0.1 % Tween®-20 added) for 5 minutes each. An IRDye® 640RD secondary 

antibody and an IRDye® 800CW secondary antibody (Li-Cor, Biosciences) were multiplexed 

in 5 mL of blocking buffer with 0.1 % Tween®-20 and incubated with the membrane for 1 

hour on a rocker at room temperature. PVDF membranes were kept in the dark from this point. 

The secondary antibodies corresponded to the animal species of the primary antibodies and 

were all raised in donkey, i.e. a mouse primary antibody would be used with an IRDye® 

680RD donkey anti-mouse IgG (H + L) secondary. Secondary antibodies to detect proteins of 

interest were all IRDye® 680RD, detected with a 700 nm channel. Whereas IRDye® 800CW 

secondaries were exclusively used for loading controls, detected with an 800 nm channel.  Four 

further PBST or TBST washes were then performed followed by a final rinse in PBS or TBS. 

 

2.9.6 Detection and analysis 

Two-colour multiplex detection using near-infrared fluorescence was performed. PVDF 

membranes were scanned using an Odyssey® FC imaging system (Li-Cor Biosciences, 2800-

03) using the 700 nm and 800 nm channels for 4 minutes each. Detectable protein bands were 

pseudo-colour labelled, red for the protein of interest and green for the loading control. Image 

Studio™ (Li-Cor Biosciences) software was used to view Western blots and perform 

densitometry for protein quantification. Each sample band was normalised to its own loading 

control and expressed as a fold-change over a reference/control sample. 

  

2.10  Statistical Analysis 

Statistical analysis was performed using GraphPad Prism version 8.0 (GraphPad 

Software, CA, USA) unless otherwise stated. Details of specific statistical tests can be found 

in the respective results chapters. For human samples, ‘n’ represents the number of individual 

patients. For in vitro cell experiments, ‘n’ denotes the number of times the experiment was 

repeated, with the number of technical replicates per experiment indicated in the figure legend. 

All graphs display mean ± standard error of the mean, unless otherwise stated in figure legends, 

p < 0.05 was considered statistically significant.
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Chapter 3 

3 Exploring the utility of pathological classification in the 
diagnosis of endometrial hyperplasia 

3.1 Introduction  

The endometrium is a complex, well organised, multicellular tissue that forms the inner 

lining layer of the uterus. As reviewed in chapter 1, the endometrium is comprised of luminal 

and glandular epithelia with a multicellular stromal compartment, it physiologically responds 

to changes in the steroid hormone environment, notably fluctuating concentrations of ovarian 

oestrogen and progesterone. Aberrant steroid hormone exposure and coexisting pathology can 

have profound effects on both the structure and function of the endometrium, leading to 

menstrual abnormalities and in some cases neoplasia. 

Endometrial hyperplasia (EH) is an ‘umbrella’ term that incorporates a heterogeneous 

spectrum of abnormal endometrial lesions. EH is characterised by irregular proliferation of the 

glandular epithelial compartment, whereby the endometrial gland-to-stroma ratio becomes 

markedly increased when compared to endometrium from the normal proliferative phase of 

the menstrual cycle (Ellenson et al., 2011; Kurman et al., 1985). Hyperplastic endometrial 

glands can vary both in size and shape, with cytological atypia also seen in some cases. The 

clinical significance of a diagnosis of EH relates to an associated risk of progression to 

endometrioid endometrial cancer (EC). The presence of cytological atypia is generally 

accepted as the principal histological characteristic when assessing EH lesions for their 

malignant potential (Ellenson et al., 2011). Risk factors for the development of EH are similar 

to those associated with EC (as discussed in chapter 1), with the majority of EHs developing 

within a background of chronic endometrial stimulation by oestrogens unopposed by 

progesterone (reviewed in Sanderson et al., 2017).  

Clinically, most women with EH will present with abnormal uterine bleeding (AUB). 

Two high-risk patient populations prone to the development of EH are (i) obese 

peri/postmenopausal women, due to peripheral aromatisation of androgens to oestrogens in 

adipose tissue, coupled with erratic anovulatory menstrual cycles, and (ii) premenopausal 

patients with polycystic ovarian syndrome (PCOS), due to hyperandrogenic anovulation.  

Not all EHs will progress to malignancy; EHs occurring entirely due to unopposed 

oestrogen exposure, i.e. an ‘endocrine effect’ (as discussed in chapter 1), are capable of 
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regression back to normal endometrium through the withdrawal of the oestrogen source or 

through exogenous progesterone administration. Some patients with EH may be entirely 

asymptomatic and EH may even regress without being clinically detected. Argenta et al, 

investigated the prevalence of occult uterine pathology in asymptomatic, morbidly obese 

women before and after bariatric surgery-induced weight loss (Argenta et al., 2013). In this 

cohort they demonstrated a baseline EH prevalence of 6.8 % (n=4/59) in pre-surgery obese 

(mean BMI 46.8 kg/m2) women (Argenta et al., 2013). Interestingly, the EH of all 4 women 

regressed following surgery-induced weight loss, albeit n=2 patients were potentially aided by 

the use of hormonal contraception. This raised the notion that weight loss may potentially 

reverse EH (Argenta et al., 2013).  

The difficulty for both gynaecologist and pathologist alike is in achieving reproducible 

stratification of women with EH attributable to purely endocrine factors (i.e. chronic 

unopposed oestrogen exposure), from those women with EH that also harbours significant 

malignant potential. Multiple pathological classification systems, stretching back to 1963, 

have attempted to do just this (reviewed in Chandra et al., 2016). As discussed in chapter 1, 

the two prominent EH classification systems in current widespread use are: (i) The World 

Health Organisation (WHO) 1994 system and (ii) The endometrial intraepithelial neoplasia 

(EIN) system, which was recently endorsed in 2014 by the WHO (Zaino et al., 2014).  

Despite extensive use and popularity within modern gynaecological practice, the 

WHO94 system is widely reported to suffer from poor pathological reproducibility, in part due 

to the vast heterogeneity demonstrated by EH lesions (Bergeron et al., 1999; Skov et al., 1997). 

In contrast, the premise of the EIN system is based around the molecular assessment of the 

clonality of EH lesions, whereby premalignant EH lesions and their subsequent ECs have been 

demonstrated to have a shared lineage (Jovanovic et al., 1996; Mutter et al., 1996). The EIN 

classification system is based upon objective diagnostic criteria (Table. 3-1 reproduced from 

chapter 1) that can be determined from a H&E stained tissue section (Mutter, 2000) and is 

supported by evidence derived from computerised morphometric analysis (Baak, Mutter, et 

al., 2005; Dunton et al., 1996). EIN classification categories do not correspond directly to 

specific categories in the WHO94 system (Mutter, 2000) although, there is an element of 

recognisable overlap.  

In 2014 the WHO published the 4th edition of Classification of Tumours of Female 

Reproductive Organs in which they endorse the EIN system (Zaino et al., 2014) and revised 

the classification of EH. The EIN/WHO2014 system splits EHs into two groups based upon 

the presence or absence of cytological atypia, i.e. (i) hyperplasia without atypia (HwA) and 
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(ii) atypical hyperplasia/EIN. The complexity of the gland architecture is removed from this 

classification system. A diagnosis of EIN in this revised WHO classification is considered 

interchangeable with a diagnosis of atypical hyperplasia (Zaino et al., 2014). This ‘half-way 

house’ approach to nomenclature integrates the two-tier subjective EIN system and its 

molecular foundations, with evidence that cytological atypia (rather than gland architecture) 

appears to be the main characteristic of EH that determines the risk of progression to 

malignancy (Lacey, Ioffe, et al., 2008). The two-tier EIN/WHO2014 classification recognises 

that EHs fall into very different functional categories: i) polyclonal lesions diffusely 

responding to an abnormal hormonal milieu (i.e. HwA) and ii) intrinsically proliferative 

monoclonal lesions that arise focally and confer an elevated risk for endometrioid EC (i.e. 

EIN/atypical hyperplasia). The subjective EIN diagnostic criteria (Table. 3-1) permits the 

histological segregation of these two entities.  

 

Table 3-1: Haematoxylin and eosin section diagnostic criteria for Endometrial 
Intraepithelial Neoplasia (EIN) 

NB: All criteria must be met in order for a diagnosis of EIN to be made. 
VPS = volume percentage stroma. 
Reproduced with permission from Baak and Mutter, 2005. 

 

 Documented progression rates to endometrioid EC differ dependent on the EH 

classification system used. A 1985 study by Kurman et al. (Kurman et al., 1985) performed a 

retrospective analysis of 170 ‘untreated’ EH patients diagnosed on uterine curettage. These 

EH cases were classified using the same 4-tier system that would go on to become the WHO94 

classification. The mean follow-up period for the women was 13.4 years, during which time a 

EIN Criterion Comments 

Architecture Area of glands exceeds that of stroma (VPS <55 %). 

Cytology 
Cytology differs between architecturally crowded focus and 
background. 

Diameter >1 mm Maximum linear dimension of the lesion exceeds 1 mm. 

Exclude mimics 
Benign conditions with overlapping criteria: basalis, secretory, 
polyps, repair, etc. 

Exclude Cancer 
Carcinoma if maze-like meandering glands, solid areas, or 
appreciable cribriforming. 
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hysterectomy was not performed <1 year following the index diagnosis. Of the 170 women in 

the study, 13 progressed to EC during the follow-up period (Kurman et al., 1985). The authors 

published EC progression rates of 1 % (simple hyperplasia, SH, without atypia), 3 % (complex 

hyperplasia, CH, without atypia), 8 % (simple atypical hyperplasia, SAH) and 29 % (complex 

atypical hyperplasia, CAH), respectively, for the four categories (Kurman et al., 1985). Lacey 

et al. conducted a nested case–control study in 2007. The authors analysed 138 cases of EH 

(and 241 matched controls) who progressed to EC at least 1 year following an index EH 

diagnosis. They demonstrated a 40 % probability of developing EC following a diagnosis of 

atypical hyperplasia (incorporating both simple and complex architectural variants), compared 

to only a 10 % probability when atypia was not present (Lacey, Ioffe, et al., 2008). 

 Outcome data for a diagnosis of EIN suggests that approximately 40 % of women will 

have an EC diagnosed within 12 months of index biopsy (Baak and Mutter, 2005; Mutter, 

2008). The mostly likely explanation for this is the presence of a concurrent EC that was not 

sampled on initial biopsy. Those women who do not develop EC within 12 months are 45-

times more likely to develop a future EC (Baak and Mutter, 2005). Baak et al. also argued that 

the EIN classification system more accurately predicts progression to EC than the WHO94 

system (Baak, Mutter, et al., 2005). Although, a subsequent study reported that both EIN and 

atypical hyperplasia have similar risks of progression to EC when followed-up for 12 months 

after the index diagnosis (Lacey, Mutter, et al., 2008). 

 The EIN system has been suggested to improve upon interobserver reproducibility and 

reduce the subjective bias inherent within the WHO94 classification system (Baak and Mutter, 

2005; Semere et al., 2011). However, the EIN system is not without its own set of challenges. 

A crucial feature of the EIN diagnostic criteria (Table. 3-1) is the ability to define cytological 

atypia in an architecturally crowded area of tissue and differentiate that from normal 

endometrial glands present within the same tissue section/sample. This is not always easy to 

achieve, especially in the context of fragmented endometrial biopsies, which are increasingly 

more common with the use of outpatient vacuum aspiration biopsies, e.g. the Pipelle® system. 

In addition, the light microscopic assessment of gland-to-stroma ratio to ascertain a volume 

percentage stroma (VPS) of <55 % still remains a subjective measure and its diagnostic 

reproducibility has not been comprehensively assessed (Ellenson et al., 2011).  

In summary, rates of EC are rising (Cancer Research UK, 2018) and establishment of 

robust methods for diagnosis and prognostication of EH have received renewed interest 

because of the association of some, but not all, of these endometrial lesions with progression 

to EC. The studies described in this chapter utilise retrospectively collected endometrial tissue 
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samples from 125 women who received a WHO94 diagnosis of EH between the years 2004 

and 2009; all samples were reclassified according to the EIN/WHO2014 criteria and the 

diagnoses of two expert gynaecological pathologists investigated. We hypothesised that 

pathological reclassification of these tissue samples using the EIN/WHO2014 system would 

i) increase the diagnostic reproducibility of premalignant EH lesions and ii) confer a greater 

prediction of EC progression.  

For the purposes of this study, when referring to the premalignant EH lesion diagnosed 

under the EIN/WHO2014 classification, the lesion will be referred to as EIN and it should be 

assumed that where a diagnosis of EIN has been made, the five diagnostic criteria (Table. 3-

1) have all been met. 

 

3.2 Aims of the chapter 

1. To establish and retrospectively phenotype a human endometrial hyperplasia tissue 

resource. 

2. To assess interobserver variability between the two most widely used endometrial 

hyperplasia pathological classification systems, WHO94 and EIN/WHO2014, 

using this tissue resource. 

3. To explore the role of semi-automated computerised image analysis to objectively 

quantify endometrial tissue compartments as a diagnostic adjunct to pathological 

classification.  

4. To evaluate the WHO94 and EIN/WHO2014 pathological classification systems 

with respect to subsequent endometrioid endometrial cancer progression using this 

tissue resource. 
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3.3 Materials and methods 

3.3.1 Human endometrial hyperplasia tissue resource 

A human EH tissue resource was established as summarised in the workflow diagram 

(Figure. 3-1). In brief, following a search of the NHS Lothian pathology ‘Apex’ clinical 

database, n=143 patient cases clinically coded with a diagnosis of EH were identified between 

January 2004 and December 2009. After exclusions and accounting for the availability of 

archival tissue, n=125 EH patients were finally identified (Figure. 3-1). Following an 

application to The Lothian NRS Human Annotated Bioresource (as described in 2.1.2), 

anonymised, serial sections of formalin-fixed, paraffin embedded (FFPE) tissue from these 

patients (n=125) was obtained along with matched medical history information (where 

available). In addition, the original diagnostic H&E stained section for each of these patients 

was also obtained.  

 

3.3.2 Haematoxylin and eosin staining 

In some cases, the original index H&E sample from the histopathology diagnostic 

archive was too badly degraded or bleached to assess the tissue morphology. For this reason, 

a freshly stained H&E sample was made available for pathological review. Human EH FFPE 

tissue, obtained as described in 3.3.1 underwent haematoxylin and eosin (H&E) staining as 

described in 2.3.9. 

 

3.3.3 Histopathological assessment, reclassification and imaging 

All human EH tissues used and described in this study underwent a dual, blinded 

review by two expert gynaecological pathologists, Professors Alistair Williams (Professor of 

Gynaecological Pathology, The University of Edinburgh ‘AW’) and Simon Herrington 

(Professor of Molecular Cancer Pathology, The University of Edinburgh ‘SH’). The original 

diagnostic H&E stained tissue sections were reviewed by each pathologist (Professor Williams 

was accompanied by myself ‘PS’ for educational purposes) using standard light microscopy 

techniques.  

Each pathologist was instructed to review each sample as they would a routine 

endometrial biopsy. No corresponding clinical information was provided at the time of the 

review to blind the pathologist and attempt to reduce bias. Where the original diagnostic slide 
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was unavailable or too badly degraded for complete assessment, a freshly stained H&E tissue 

section was provided, as described in section 3.3.2.  

Diagnostic coding is a method of translating a written diagnosis into an alphanumeric 

value in order to group and identify disease types. The most commonly used coding system 

for classifying diseases is the International Statistical Classification of Diseases and Related 

Health Problems version 10 (ICD-10). Each expert pathologist was asked to independently 

assess every H&E stained tissue sample, originally ICD-10 coded by NHS Lothian 

pathologists as EH (n=125), utilising a standardised diagnostic proforma (Appendix 3). Each 

expert pathologist was instructed to diagnose all samples according to both the WHO94 and 

EIN/WHO2014 classification systems.  

After data collation, where there was a diagnostic discrepancy between the two expert 

pathologists (AW and SH) using the EIN/WHO2014 system, both were asked to re-review the 

discrepant samples using a dual-headed microscope (if needed) in order to reach a final 

consensus diagnosis. A third independent pathologist was available to settle any unresolvable 

discrepancies. For the purposes of the consensus review, only those discrepancies that would 

hypothetically result in a change to clinical management (n=32) were subject to re-review, e.g. 

where one pathologist diagnosed a case as HwA and the other pathologist diagnosed the same 

case as EIN.  

The threshold for making a benign diagnosis and ‘drawing a line’ between it and a 

diagnosis of an unopposed oestrogen effect is notoriously subjective and as such double-

reporting and consensus diagnostic meetings are becoming more commonplace. A diagnosis 

of disordered proliferative endometrium (DPE) versus HwA often involves interpretation of 

varying degrees of difference along a subtle spectrum caused by prolonged oestrogen exposure 

(discussed in chapter 1). In addition, the Pipelle® endometrial sampler produces smaller and 

often fragmented tissue biopsy samples when compared to curettage samples, reducing the 

overall sense of tissue volume. Thus, where there were discrepancies between DPE and HwA, 

the cases were not subjected to consensus review and were instead upgraded into the HwA 

category. Furthermore, discrepancies between two benign diagnoses were upgraded to the 

more ‘abnormal’ of the two in order to form the final diagnosis, e.g. a discrepancy between 

proliferative endometrium and DPE was considered as DPE.  
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Figure 3-1: Workflow-diagram to summarise the establishment of a human endometrial 
hyperplasia (EH) tissue resource. *Index refers to the first documented EH biopsy, i.e. not 
a repeat or follow-up biopsy.  TRAK EPR = NHS Lothian’s electronic patient records system. 
APEX = NHS Lothian’s pathology records system.  
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3.3.4 Whole-slide imaging and region of interest (ROI) selection 

All original diagnostic H&E stained EH slides (n=125) were digitally slide-scanned 

(as per section 2.6). Using the NDP.view2 (Hamamatsu, U12388-01) imaging software, each 

whole-slide scanned image was then digitally marked with two separate regions of interest 

(ROIs) by AW and PS (Figure. 3-2).  

One ROI corresponded to the pathologically ‘most abnormal’ appearing area of the 

sample. For example, in samples with a consensus expert pathologist diagnosis of EIN, the 

‘most abnormal’ ROI corresponded to the entire clonal expansion of EIN (or where the entire 

tissue section contained only EIN / multiple foci, then the most abnormal focus of EIN was 

marked). The second ROI marked within the sample corresponded to the background 

endometrium or the ‘least abnormal’ area.  

Where the sample had a non-EIN consensus diagnosis, the ‘most abnormal’ ROI 

corresponded to an area displaying the most representative pathological features of the non-

EIN sample, whilst the ‘least abnormal’ ROI within the sample corresponded to the 

background endometrium.  

  

Figure 3-1: An example H&E stained tissue section containing two highlighted ROIs 
(exploded regions) digitally marked by AW and PS. In this example the consensus 
diagnosis of tissue section ‘A’ was HwA. ROI 1 (B) therefore represented the ‘most 
abnormal’ region within the tissue section i.e. the region contained the most representative 
features of HWA and ROI 2 (C) corresponded to the ‘least abnormal’ region or background 
endometrium. Where a tissue sample had a consensus diagnosis of EIN, one ROI would 
correspond to the entire clonal expansion of EIN and the other to the ‘background 
endometrium’ with the sample. Varying magnifications, see scale bars. 
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3.3.5 Digital computerised quantitative image analysis 

 Quantitative image analysis of the endometrial cellular compartments (i.e. epithelial 

area, stromal area, etc.) of EH tissues was performed. In brief, StrataQuest analysis software, 

v5.0 (TissueGnostics GmbH, Vienna) was utilised for cytometric analysis of H&E stained EH 

tissue sections. Whole slide-scanned H&E images (see section 2.6) were imported into the 

StrataQuest software. Pre-defined, bespoke analysis parameters for endometrial H&E image 

processing and pattern recognition algorithms were commercially designed, ‘the H&E app’ 

(TissueGnostics GmbH, Vienna) and applied to individual regions of interest (ROI – see 3.3.4) 

within the imported EH images. After manual optimisation and correction of analysis 

parameters (Ms Arantza Esnal-Zufiurre, Research Support, The University of Edinburgh), 

layered segmentation or ‘masks’ were applied. These were assigned colours (Figure. 3-3) by 

the software dependent on the tissue structure being detected (i.e. endometrial stromal cells = 

dark green). On final analysis the ‘masks’ were built up to give a final image (Figure. 3-3) and 

numerical data calculated for each tissue compartment, e.g. tissue area, number of nuclei, etc. 

Volume percentage stroma (VPS) was calculated as: VPS = total stromal area (dark green) / 

[total stromal area (dark green) + total epithelial area (blue + red) + total glandular lumen area 

(light green) + total vessel area (purple)] x 100. 

 

Figure 3-3: A representative example of layered segmentation analysis of an 
EH tissue sample using the TissueGnostics ‘H&E app’.  Individual regions of 
interest (ROI) within whole slide-scanned H&E stained EH tissues were analysed 
using the software to permit numerical area/volume analysis of the individual tissue 
components. Dark green = endometrial stromal, blue area = endometrial gland 
connecting with a lumen, red = endometrial gland without lumen / surface 
epithelium, light green = gland lumen, purple = bloods vessel. 
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3.4 Results 

3.4.1 Endometrial hyperplasias represent a heterogeneous spectrum of 
endometrial lesions 

Haematoxylin and eosin (H&E) stained tissue sections of n=125 pathologically 

diagnosed and coded, human endometrial hyperplasia lesions were obtained as described in 

3.3.1 and 3.3.2. On baseline examination using light-microscopy, considerable heterogeneity 

was identified between the EH lesions. Compared to human endometrium from the normal 

proliferative phase of the menstrual cycle (Figure. 3-4A), EH lesions demonstrated a range of 

appearances, from large cystically dilated glands (Figures. 3-4B and C) surrounded by 

abundant cellular stroma, to glands demonstrating architectural complexity and arranged in a 

‘back-to-back’ fashion with very little intervening stroma (Figure. 3-4D). On closer 

observation of the endometrial glands from certain EH lesions, features consistent with 

cytological atypia could be identified (Figures. 3-4E and F). High power magnifications 

confirmed that these glandular cells had enlarged and irregular nuclei, rounded in places, with 

coarse chromatin clumping towards the nuclear membrane and often prominent nucleoli 

(Figure. 3-5).  
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Figure 3-4: Haematoxylin and eosin (H&E) stained sections 
demonstrating variation in size and shape of endometrial glands within a 
spectrum of endometrial hyperplasia (EH) lesions compared to normal 
proliferative endometrium (PE). Glands marked by (G) in lumen and (S) to 
mark the stroma. A) Normal proliferative phase, B) and C) large, cystically 
dilated glands surrounded by ample stroma, D) EH sample exhibiting 
crowded, varied and irregular gland morphology with reduced areas of stroma, 
E & F) EH lesions with irregular gland architecture and cytological atypia 
(arrowed). Varying magnifications: see scale bars.  
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Figure 3-5: Cytological atypia within an H&E stained endometrial gland. A) High-power view of an endometrial gland 
exhibiting features of cytological atypia: Pseudostratified appearance of the glandular epithelial cells, with necrotic and apoptotic 
cells centrally within the glandular lumen. Evidence of a) apoptotic body, b) prominent nucleoli, c) chromatin clumping around the 
nuclear membrane, d) mitotic figure, e) rounded nuclei. B) For comparison, a high-power view of an endometrial gland from the 
normal proliferative phase, with uniform ‘cigar’ shaped nuclei and consistent nuclear: cytoplasmic ratios.  Epithelial compartment 
highlighted by concentric dashed ovals on image B. Varying magnifications:  see scale bars.  
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3.4.1.1 Effect of exogenous progesterone on the appearance of the 
hyperplastic endometrium 

The effects of exogenous progesterone on the endometrium were noted in this study. 

Four of the n=125 patients reported hormonal contraceptive use at the time of their initial index 

biopsy, three of whom were using progesterone only preparations and one patient a combined 

oral contraceptive (both oestrogen and progesterone). Figure. 3-6 demonstrates the histological 

features seen with recent progesterone exposure to hyperplastic endometrium. The most 

common pattern of response seen was that of a pseudodecidualised stromal pattern (Figure. 3-

6A), whereby the stromal cells were noted to be enlarged, with abundant more eosinophilic 

cytoplasm, prominent cell borders and occasional mitotic figures. Some affected glands 

displayed a secretory phenotype (Figure. 3-6B) with vacuolated cytoplasm and luminal 

secretions. The spiral arteries also demonstrated marked thickening (Figure. 3-6C) and 

leucocytes were visualised (Figure. 3-6D).  
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Figure 3-6: Evidence for the impact of progesterone in endometrial tissue sections 
containing areas of endometrial hyperplasia. A) H&E section of hyperplasia without 
atypia (HwA) demonstrating a pseudodecidualised stromal response (above dashed line), 
from within the same tissue section note, B) endometrial glands with a secretory phenotype 
(arrowed) with sub-nuclear vacuoles C) prominent coiled arterioles (arrowed) and D) an 
influx of leucocytes (arrowed). Varying magnifications: see scale bars. 
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3.4.2 Interobserver variability is apparent when diagnosing EH using the 
WHO94 classification  

All n=125 EH lesions were originally diagnosed and coded by NHS pathologists (i.e. 

the ‘index’ diagnosis) utilising the WHO94 classification system (as described in chapter 1). 

Table. 3-2. displays the breakdown of these index diagnoses by each WHO94 diagnostic 

category. A dual, blinded, expert gynaecological pathologist review was carried out (as 

described in section 3.3.3) and the number of cases where each expert pathologist agreed with 

the index diagnosis are also displayed in Table. 3-2.  

For all n=125 cases, percentage agreement between each expert pathologist and the 

original diagnosis was 56.0 % (n=70) and 48.8 % (n=61) respectively. This amounted to a 

Cohen’s Kappa (k) interobserver agreement score of 0.385 (95 % CI 0.268-0.501) ‘fair’ for 

expert pathologist A and a score of 0.298 (95 % CI 0.210-0.387) ‘fair’ for expert pathologist 

B. Of note was the complex hyperplasia (CH) category which exhibited the lowest levels of 

agreement between that of the index diagnoses and the experts, with pathologist A agreeing 

with 12/29 (41.3 %) of the index diagnoses and pathologist B not agreeing with any. In 

addition, pathologist B upgraded n=2 diagnoses from EH to malignancy. Interobserver 

agreement was also assessed between the two expert pathologists utilising the WHO94 

classification. Agreement did not improve upon that seen between the experts and the original 

index diagnoses, with total percentage agreement reaching 52.1 % (n=64), k = 0.327 (95 % CI 

0.227-0.427) ‘fair’.  

Diagnostic inconstancy was noted within the complex atypical hyperplasia (CAH) 

category of the original index diagnoses, with six descriptive variants of the CAH category 

identified (Table. 3-3).  A diagnosis of CAH would normally lead to a clinical recommendation 

of a hysterectomy, therefore atypia subgroupings within this category may create potential 

confusion over the urgency or indeed the necessity for a surgical intervention.  
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Table 3-2: Interobserver agreement when diagnosing endometrial hyperplasia samples using the WHO94 classification. 

Diagnostic category Index 
diagnosis 

Path A 
diagnosis 

Path B 
diagnosis 

Agreement 
between Path 

A & index 
diagnosis 

Agreement 
between Path 

B & index 
diagnosis 

Agreement 
between Path 

A & Path B 
diagnoses  

Complex atypical hyperplasia (CAH) 24 26 67 15 21 23 

Simple atypical hyperplasia (SAH) 0 2 0 0 0 0 

Complex hyperplasia (CH) 29 21 1 12 0 0 

Simple hyperplasia (SH) 56 54 45 36 38 34 

Malignant 0 0 2 0 0 0 

Hyperplastic polyp (HP) 16 12 4 7 2 4 

Other* 0 10 6 0 0 3 

Combined total (%) 125 125 125 70 (56.0) 61 (48.8) 64 (52.1) 

Kappa, k 
(95% CI)    

0.385 (0.268-
0.501) 
‘Fair’ 

0.298 (0.210-
0.387) 
‘Fair’ 

0.327 (0.227-
0.427) 
‘Fair’ 

Numbers in each column are based on classification of a single H&E stained section of endometrial tissue from n=125 women. *Incorporates functional 
endometrial polyps and normal / cycling endometrium. Cohens Kappa, k, is a measure of agreement among observers that attempts to correct for chance 
agreement and whose values are 1.00 or less, where 1.00 indicates perfect agreement and 0 indicates the level of agreement expected by chance alone. 
Interpret as follows: 0.00–0.20, slight; 0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substantial; and 0.81–1.00, almost perfect agreement. 
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Table 3-3: Subgroup breakdown within the index WHO94 complex atypical hyperplasia 
category. Multiple variants of the diagnostic subgroup of complex atypical hyperplasia can 
create confusion when translating the diagnosis to clinical management. 

Subgroup Variant Patients, n (%) 

Complex atypical hyperplasia 10 (41.6) 

Complex hyperplasia with mild atypia 6 (24.0) 

Complex hyperplasia with moderate atypia 4 (16.0) 

Complex hyperplasia with severe atypia 2 (8.0) 

Severe atypical hyperplasia 1 (4.0) 

Complex hyperplasia with minor atypia 1 (4.0) 

Total combined 24 

 
 

3.4.3 Identification of EIN within the patient cohort 

The premalignant lesion, EIN can be diagnosed on a routine H&E stained section of 

EH tissue by adhering to the prescribed criteria listed in Table. 3-1. To investigate whether 

this EH patient cohort contained cases of EIN, each H&E stained patient sample was reviewed 

as described in 3.3.3. Figure. 3-7 is a representative EH tissue example from the patient cohort 

containing a focal region of EIN. The diagnostic process firstly involved establishing the 

presence an architecturally crowded focus of endometrial glands, >1 mm in size and with a 

volume percentage of glands to stroma exceeding 55 % (indicated in Figure. 3-7A by a dashed 

oval). Within this architecturally crowded focus the glandular cells were required to differ 

cytologically from those of the background endometrium for an EIN diagnosis. Figure. 3-7B 

indicates a gland from within the area of glandular crowding and 3-7C displays a background 

endometrial gland, confirming cytological differences. In cases with no ‘normal’ background 

glands for internal reference, the freestanding cytology of relevant endometrial fragments was 

assessed in the context of their architectural features. EIN was ultimately identified in 52/125 

patients and HwA in 54/125 patients following consensus diagnosis by 2 expert 

gynaecological pathologists (see 3.4.4). Demographic details for these two groups are 

displayed in Table. 3-4. Note the statistically significant differences between the two groups 

regarding parity, with a greater number of nulliparous patients diagnosed with EIN (a known 

risk factor for EIN development). In addition, a statistically significant difference between the 

groups was noted in terms of co-existing PCOS.      
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Figure 3-7: A clonal area of EIN within an endometrial biopsy. A) Low power view of a clonal area of EIN, 
with prominent gland crowding (marked in oval with bold dashes), in a background endometrium demonstrating 
HwA, B) high-power view of EIN lesion gland, C) high-power view of a gland from the background endometrium 
as a comparator. Sample stained with H&E, varying magnifications: see scale bars. 
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Table 3-4: Demographics and clinical features of patients with EIN and HwA following 
consensus diagnosis by two gynaecological pathologists.  

 EIN 
n=52 (%) 

HwA 
n=54 (%) P Value 

Age    
Mean 52.8 52.9 0.9898 
<40 6 (11.6) 4 (7.4) 0.7206 
41-50 16 (30.8) 22 (40.8) 0.3419 
51-60 18 (34.6) 19 (35.2) 0.7343 
61-70 10 (19.2) 4 (7.4) 0.9585 
>70 2 (3.9) 5 (9.3) 0.0718 

Ethnicity    
White Scottish 26 (50.0) 21 (38.9) 0.3284 
White English 6 (11.6) 8 (14.8) 0.7759 
Other 1 (1.9) 0 0.4906 
Not disclosed 19 (36.5) 25 (46.3) 0.3308 

Menopausal status    
Premenopausal 14 (26.9) 15 (27.8) >0.9999 
Perimenopausal 6 (11.5) 7 (13.0) >0.9999 
Postmenopausal 30 (57.7) 30 (55.6) 0.8428 
Unknown 2 (3.9) 2 (3.7)  

Presenting complaint    
PMB 28 (53.9) 26 (48.2) 0.5672 
HMB 13 (25.0) 16 (29.6) 0.6657 
IMB 6 (11.5) 8 (14.8) 0.7759 
Subfertility 2 (3.9) 0 0.2383 
Incidental finding 3 (5.8) 4 (7.4) >0.9999 

Parity    
Nulliparous 16 (30.8) 7 (13.0) *0.0308 
1-4 29 (55.8) 40 (74.1) *0.0222 
>5 2 (3.9) 1 (1.9) 0.6170 
Unknown 5 (9.6) 6 (11.1)  

BMI    
Mean 37.9 38.3 0.8661 
21-25 5 (9.6) 2 (3.7) 0.4425 
26-30 2 (3.8) 5 (9.3) 0.1964 
31-35 8 (15.4) 2 (3.7) 0.1411 
36-40 9 (17.3) 8 (14.8) 0.5687 
>40 6 (11.5) 8 (14.8) 0.2149 
Unknown 22 (42.3) 29 (53.7)  

Co-morbid factors^    
Diabetes mellitus 12 12 >0.9999 
PCOS 7 1 *0.0264 
HRT use 4 7 0.5283 
Tamoxifen use 4 4 >0.9999 
> 2 of above  2 1 0.6060 

^Complete co-morbid factor information unavailable for n=5 EIN and n=3 HwA patients. 
Statistical analysis performed using the 2-sided Fisher’s exact test to determine statistical 
differences between the categorical data and a two-tailed unpaired t-test used to compare the 
means of the continuous data, for those with EIN and those with HwA. *p<0.05. 
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3.4.3.1 Mimics and technical processing can influence an EIN diagnosis 

 Technical artefacts were noted when assessing the cohort (Figure. 3-8). These, if they 

remain unrecognised can lead to inaccuracies in diagnosis and contribute to poor levels of 

interobserver diagnostic agreement. Several architectural mimics of EIN were also identified 

and excluded before a final diagnosis of EIN was made. Figure. 3-9 displays a representative 

sample of the architectural mimics of EIN that were noted in this study.  

Figure 3-8: Encountered technical problems with H&E stained sections may lead to 
difficulties in making a reliable diagnosis. A) Specimen architectural compression, 
demonstrating pseudo gland-crowding (dashed oval) which may be mistaken for EIN – 
commonly seen with Pipelle® endometrial sampling due to the negative pressure created 
when the biopsy is taken, B) Small and scanty specimen, not permitting adequate 
architectural assessment, C) Tissue distortion from histological processing, D) microtome 
‘chatter’ artefacts. Varying magnifications: see scale bars. 
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Figure 3-9: Representative samples of H&E stained images of the common 
mimics of EIN lesions seen within this study. A) and B) secretory endometrium, 
C) menstrual endometrium, D) Lipid-laden “foam-cells” within the stroma 
(examples marked / arrowed) that are commonly seen in cases of EH, E) Squamous 
metaplasia, with morules (encircled by dashed line) admixed amongst the glands, F) 
endometrioid endometrial carcinoma, note disorganised tissue architecture with 
prominent numbers of cells with condensed nuclear architecture and lack of a 
defined stromal/epithelial architecture. Varying magnifications: see scale bars. 
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3.4.4 Interobserver variability is improved upon when diagnosing EH 
using the EIN/WHO2014 classification 

As already described, all n=125 EH lesions were retrospectively reclassified using the 

EIN/WHO2014 system. Total percentage agreement between the diagnoses for each expert 

pathologist was higher than that previously seen when utilising the WHO94 system, standing 

at 67.2 % (n=84) and amounting to an interobserver agreement score of k = 0.478 (95 % CI 

0.356-0.600) ‘moderate’ (Table. 3-5). Interestingly and somewhat unexpectedly, pathologist 

A diagnosed n=46 cases of EIN and pathologist B diagnosed n=66 cases, both noticeably 

different and both higher than the number of cases originally given an index diagnosis of CAH 

(n=24), i.e. the highest risk category under the WHO94 criteria. A final consensus diagnosis 

was reached (as described in 3.3.3) and the results displayed in Table. 3-5. For the purpose of 

completeness, endometrial polyp diagnoses and “others” (incorporating benign/atrophic 

changes and DPE, etc.) are displayed.   
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3.4.5 Potential for disparity between clinical treatments dependent upon 
the EH classification system used 

As previously discussed in chapter 1, patients diagnosed with a high risk EH, i.e. CAH 

(WHO94) and EIN (EIN/WHO2014) are usually recommended to have definitive surgical 

treatment in the form of a total hysterectomy, due to the risk of a concurrent un-biopsied EC 

or future malignant progression. Reclassification from WHO94 to EIN/WHO2014 criteria 

revealed a potential for disparity between clinical treatments.  

Following consensus reclassification, n=52 patient samples were diagnosed as EIN, 

incorporating n=20 patients with an original index diagnosis of CAH (Table 3-6). For these 

n=20 patients, surgical treatment would have been recommended under both classification 

systems. The remaining n=32 EIN diagnoses had an original index WHO94 diagnosis less 

severe than CAH. Consequently, under the WHO94 system they may not have been 

recommended surgery as a 1st line treatment. Figure. 3-10 is a representative example of a case 

with an index WHO94 diagnosis of simply hyperplasia without atypia (SH) and upgraded to 

EIN following consensus reclassification using the EIN/WHO2014 system. Conversely, n=3 

patients originally diagnosed as CAH and for whom hysterectomy would have been 

recommended, were downgraded to HwA under EIN/WHO2014. These patients may have 

been offered conservative observation and/or progestins as first-line treatment under the 

EIN/WH02014 system. Figure. 3-11 displays the histology from one of these cases.  
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Table 3-5: Interobserver agreement when diagnosing endometrial hyperplasia samples using the EIN/WHO2014 classification. 

Diagnostic category Path A diagnosis Path B diagnosis  
Agreement between 

Path A & Path B 
diagnosis 

Final consensus 
diagnosis 

Endometrial intraepithelial neoplasia (EIN) 46 66 40 52 

Hyperplasia without atypia (HwA) 58 46 37 54 

Malignant 0 2 0 2 

Endometrial intraepithelial neoplasia in a 
polyp (EIN-EMP) 1 0 0 3 

Hyperplastic polyp (HP) 10 4 3 6 

Others* 10 7 4 8 

Combined total (%) 125 125 84 (67.2) 125 

Kappa, k 
(95% CI)   

0.478 (0.356-0.600) 
‘Moderate’ 

 

Numbers in each column are based on classification of a single H&E stained section of endometrial tissue from n=125 women. *Incorporates 
atrophic/benign endometrium, DPE, etc. Cohens Kappa, k, is a measure of agreement among observers that attempts to correct for chance agreement and 
whose values are 1.00 or less, where 1.00 indicates perfect agreement and 0 indicates the level of agreement expected by chance alone. Interpret as 
follows: 0.00–0.20, slight; 0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substantial; and 0.81–1.00, almost perfect agreement. 
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Table 3-6: Contributions of each hyperplasia type (index WHO94 classification) to the final consensus (EIN/WHO2014 classification) diagnostic 
classification 

Index WHO94 
classification 

Patients 
Consensus EIN/WHO2014 classification, patients 

EIN HwA Malignant EIN-EMP HP Others* 

Complex atypical hyperplasia (CAH) 24 (19.2) 20 (16.0) 3 (2.4) 1 (0.8) 0 0 0 

Complex hyperplasia (CH) 29 (23.3) 18 (14.4) 7 (5.6) 0 1 (0.8) 0 3 (2.4) 

Simple hyperplasia (SH) 56 (44.8) 8 (6.4) 43 (34.4) 0 0 2 (1.6) 3 (2.4) 

Hyperplastic polyp (HP) 16 (12.8) 6 (4.8) 1 (0.8) 1 (0.8) 2 (1.6) 4 (3.2) 2 (1.6) 

  52 (41.6) 54 (43.2) 2 (1.6) 3 (2.4) 6 (4.8) 8 (6.4) 

Total 125 125 

Numbers in each column are based on classification of a single H&E stained section of endometrial tissue from n=125 women. Percentages in brackets. 
*Incorporates atrophic/benign endometrium. Under the EIN/WHO2014 classification system, all patients with a diagnosis of EIN (red) should, where 
able, be offered surgical treatment in the form of a total hysterectomy, due to the high associated risk of concurrent or future endometrial cancer. 
Conversely, those patients with a diagnosis of HwA could be offered medial therapy with progestins or a conservative approach in the first instance. As 
a comparison, only those diagnosed with complex atypical hyperplasia (Green; CAH) should, where able, be offered surgical treatment under the WHO94 
system. This highlights a potential for treatment disparity between the two classification systems. 
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Figure 3-10:  Reclassification to EIN using the EIN/WHO2014 classification system.  H&E stained human EH tissue section, 
originally diagnosed as simple hyperplasia (SH), this tissue section underwent dual, blinded expert gynaecological pathologist 
review and a final consensus diagnosis of EIN was made. A) Low power view of entire tissue section, B) higher power view of 
a region with an architecturally crowded focus, note VPS >55 % and size >1 mm, C) background endometrial gland, D) gland 
from within the architecturally crowded focus, demonstrating cytological differences from the background gland in C. Varying 
magnifications: see scale bars. 
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Figure 3-11:  Reclassification to HwA using the EIN/WHO2014 classification system.  H&E stained human 
EH tissue section, originally diagnosed as complex atypical hyperplasia (CAH), this tissue section underwent 
dual, blinded expert gynaecological pathologist review and a final consensus diagnosis of HwA was made. A) 
Low power view of entire tissue section, B) higher power view from a representative region of the tissue section 
with an architecturally crowded focus, note VPS <55 %, C) background endometrial gland, D) gland from within 
the architecturally crowded focus, demonstrating no significant cytological differences from the background 
gland in C. Varying magnifications: see scale bars. 
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3.4.6 Computerised quantification of EH tissue compartment 

architecture could assist pathologists with difficult to classify EH 

cases when utilising the EIN/WHO2014 classification system. 

 As previously discussed, the EIN/WHO2014 classification system relies on a 

subjective volume assessment of the endometrial stromal compartment by the diagnosing 

pathologist in order to estimate a volume percentage stroma (VPS) of <55 % (Table. 3-1). 

Following the initial dual pathological review, n=32 EH cases required re-review since the 

two expert pathologists failed to initially agree. After a consensus review of these cases, n=10 

had a final diagnosis of EIN and n=11 a final diagnosis of HwA, and the remaining were 

deemed non-hyperplastic.  

 To assess the role of semi-automated computer image analysis as a diagnostic adjunct 

to pathological classification, these consensus EH cases (n=21) underwent digital image 

analysis (as per 3.3.5) to quantify objectively the volume percentages of the stromal and 

epithelial tissue compartments. The hypothesis was that the subjective nature of VPS 

architectural assessment was a factor which may have caused the pathologists to initially 

disagree regarding these samples. The ROIs deemed the ‘most abnormal’ within each tissue 

sample (as described in 3.3.4) were used for the analysis. Thus, for the EIN samples (n=10) 

the ‘most abnormal’ ROI corresponded to a clonal region of EIN and for the HwA samples 

(n=11), the ‘most abnormal’ ROI corresponded to the most representative region of HwA.  

 Computerised digital quantification of the stromal and glandular compartments 

demonstrated that the consensus EIN cases (n=10), which by definition should have a VPS of 

<55 %, were identified by computer-assisted image analysis as having a VPS of <55 % in 30 

% (3/10) of cases (Figure. 3-12A) indicating that in the ‘most abnormal’ region of the tissue 

sections, 7/10 of the cases did not have glandular area which exceeded that of the stromal area 

by image analysis. Therefore, based on this image analysis evaluation of architecture alone 

these cases may not be considered as meeting the VPS criterion for EIN as per the 

classification system (Table. 3-1). All of the consensus cases of HwA (n=11) met the 

architectural requirements of the EIN/WHO2014 classification system and demonstrated a 

VPS of >55 % using this image analysis technique (Figure. 3-12B).  
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Figure 3-12: Semi-automated quantitative image analysis demonstrates discrepancies 
between the final consensus pathology diagnosis and the EIN diagnostic criteria. Dashed 
line represents the 55 % threshold for volume percentage stroma (VPS). A) 3/10 (red) cases 
with a final consensus diagnosis of EIN met the EIN diagnostic criteria for architecture with a 
VPS of <55 %, meaning that the glandular epithelial compartment exceeded that of the stromal 
compartment within the ROI. The remaining 7/10 cases (blue) do not show image analysis 
evidence of EIN using the architectural definition of a VPS <55 %. B) All final consensus 
diagnoses of HwA were correctly found to have stromal areas that exceeded that of the glands 
by image analysis.  
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3.4.7 Computerised image analysis quantification of difficult to classify 

EIN cases using a comparison of the most and least abnormal 

regions of interest  

 The EIN classification system requires a comparison between the cytology within an 

architecturally crowded glandular focus and the cytology within the background endometrial 

glands (Table. 3-1.). As described in 3.4.6, objective quantification of the volume percentage 

stroma (VPS) demonstrated that for 7/10 re-reviewed consensus cases the EIN diagnostic 

threshold of a VPS <55 % was not met using this image analysis technique. These n=10 cases 

are likely to be difficult to diagnose cases since the two expert pathologists were unable to 

agree upon their initial assessments. 

To investigate why a final consensus diagnosis of EIN may have been reached, further 

quantitative architectural analysis of these n=10 cases was undertaken (Figure 3-13). The 

hypothesis was that the background endometrial architecture within these cases may display 

less gland crowding than the presumed clonal EIN region, contributing to the reporting 

pathologist subjectively judging the clonal region as showing a VPS of <55 %. A direct 

comparison was made between the ‘most-abnormal’ ROI (deemed to be the clonal expansion 

of EIN, as described in 3.3.4) and the ‘least-abnormal’ ROI (deemed to be the background 

endometrial tissue) for each of these n=10 cases.  

The VPS values of the ‘most abnormal’ ROIs were significantly less than those of the 

‘least abnormal’ ROIs (Figure. 3-13A.) within these n=10 cases. There also appears to be 

clustering of the ‘most abnormal’ ROIs closer to the 55 % VPS definition threshold when 

compared to the ‘least abnormal’ ROIs, which demonstrated a trend well above this threshold 

line (Figure. 3-13A). In addition, the epithelial compartment demonstrates significantly 

increased percentage volumes within the ‘most abnormal’ ROIs compared with the ‘least 

abnormal’ ROIs (Figure. 3-12B.), with a non-significant trend towards an increased overall 

glandular volume suggested (Figure. 3-13C.). 

 Taken together this implies a potential increase in glandular crowding within the 

‘most abnormal’ ROIs when compared with the ‘least abnormal’ ROIs. The luminal volume 

remains largely unchanged (Figure. 3-13D.) suggesting no differences in cystic dilatation of 

the endometrial glands between the two ROIs.  
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Figure 3-13: Semi-automated quantitative image analysis of individual tissue 
compartments in difficult to diagnose cases of EIN. A) Volume percentage stroma within 
the ‘most’ and ‘least abnormal’ ROIs within a tissue section diagnosed as EIN. Dashed line 
represents the 55 % VPS defined diagnostic threshold for EIN, B) Volume percentage 
epithelium within the ‘most’ and the ‘least abnormal’ ROIs within a tissue section diagnosed 
as EIN, C) Volume percentage of total glands (epithelium and lumen) within the ‘most’ and 
‘least abnormal’ ROIs within a tissue section diagnosed as EIN, D) Volume percentage of 
glandular lumen within the ‘most’ and ‘least abnormal’ ROIs within a tissue section diagnosed 
as EIN. Statistical analysis performed using a two-tailed paired t-test. *p<0.05, **p<0.01. 
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3.4.8  Progression of EH to endometrioid endometrial cancer 

12 (10.17 %) from 118 (n=7 lost to follow-up from the original n=125 cohort) patients 

for whom the index endometrial biopsy demonstrated an EH were later diagnosed with 

endometrioid EC. Table. 3-7 displays the demographics and clinical details for these 12 

patients, along with the detail of the patients who did not progress to cancer for comparison. 

Median time from index EH diagnosis to EC diagnosis was 146.5 days (range 36 – 3481 days, 

standard deviation, SD 1081.46 days). Ten of the ECs were diagnosed within 12 months of 

the index EH diagnosis and are therefore considered to be concurrent cancers not sampled by 

the initial index endometrial biopsy. The remaining 2 ECs were diagnosed 1571 and 3481 days 

respectively after the initial index EH diagnosis and therefore developed subsequently. Of 

note, n=5 (41.7 %) patients who developed EC were premenopausal and n=2 (16.7 %) were 

under 40 years of age.  

 

Table 3-1: Demographics and clinical features of patients who did and who did not 
develop an endometrial cancer following an initial biopsy diagnosis of endometrial 
hyperplasia. 

 Cancer 
n=12 (%) 

No cancer 
n=106 (%) P Value 

Age    
Mean 55.4 53.8  
<40 2 (16.7) 8 (7.6) 0.7619 
41-50 4 (33.3) 36 (34.0) 0.3259 
51-60 1 (8.3) 37 (35.0) >0.9999 
61-70 4 (33.3) 16 (15.1) 0.1844 
>70 1 (8.3) 9 (8.5) >0.9999 

Menopausal status    
Premenopausal 5 (41.7) 26 (24.5) 0.7642 
Perimenopausal 2 (16.7) 13 (12.3) 0.6493 
Postmenopausal 5 (41.7) 67 (63.2) 0.2114 

Presenting complaint    
PMB 4 (33.3) 59 (55.7) 0.2115 
HMB 4 (33.3) 28 (26.4) 0.7327 
IMB 1 (8.3) 12 (11.3) >0.9999 
Subfertility 2 (16.7) 1 (0.9) *0.0270 
Incidental Finding 1 (8.3) 6 (5.7) 0.5378 

Parity    
Nulliparous 4 (33.3) 22 (20.8) 0.2968 
1-4 8(66.7) 71 (67.0) >0.9999 
>5 0 3 (2.8) >0.9999 
Unknown 0 10 (9.4)  

   Continued. 
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BMI    
Mean 30.9 39.0  
<20 0 1 (0.9) >0.9999 
21-25 3 (25.0) 5 (4.7) 0.9183 
26-30 0 5 (4.7) >0.9999 
31-35 3 (25.0) 7 (6.6) 0.2073 
36-40 2 (16.7) 17 (16.0) 0.9822 
>40 0 16 (15.1) >0.9999 
Unknown 4 (33.3) 55 (52.0)  

Co-morbid factors    
Diabetes Mellitus 1 (8.3) 20 (18.8) 0.6904 
PCOS 1 (8.3) 7 (6.6) 0.5877 
HRT Use 1 (8.3) 8 (7.5) >0.9999 
> 2 of above 1 (8.3) 2 (1.9) 0.2772 

Index EH biopsy sample (WHO94)    
Complex atypical hyperplasia 
(CAH) 

4 (33.3) 18 (17.0) 0.2332 

Complex hyperplasia (CH) 5 (41.7) 23 (21.7) 0.2962 
Simple hyperplasia (SH) 1 (8.3) 51 (48.1) *0.0166 
Hyperplastic polyp (HP) 2 (16.7) 14 (13.2) 0.6659 

Index EH biopsy sample 
(EIN/WHO2014) *    

Endometrial intraepithelial neoplasia 
(EIN) 

10 (83.3) 41 (38.7) **0.0044 

EIN-EMP 0 3 (2.8) >0.9999 
Hyperplasia without atypia (HwA) 0 50 (47.2) **0.0011 
Hyperplastic polyp (HP) 0 6 (5.7) >0.9999 
Malignant^ 1 (8.3) 0 0.7327 
Benign 1 (8.3) 6 (5.7) 0.5378 

Endometrial cancer subtype All 
endometrioid 

-  

FIGO Stage (Pre-2009)    
1A 5 (41.7) -  
2A 2 (16.7) -  
1B 3 (25.0) -  
2B 2 (16.7) -  

Clinical outcome    
Alive without disease 10 (83.3) -  
Dead from disease 1 (8.3) -  
Dead from other cause 1 (8.3) -  

Median follow-up (mean, SD), days 3485 (3180, 
1383)  

3673 (3744, 
522) 

 

*Consensus review by two gynaecological pathologists using EIN/WHO2014 criteria. 
^Upgraded to a malignant index biopsy sample, despite an original index diagnosis of CAH 
using WHO94. EIN-EMP = endometrial intraepithelial neoplasia in a polyp. Statistical 
analysis performed using the 2-sided Fisher’s exact test to determine statistical differences 
between the categorical data and a two-tailed unpaired t-test used to compare the means of the 
continuous data, for those with EIN and those with HwA. *p<0.05, **p<0.01 
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3.4.8.1 Malignant outcome by hyperplasia classification system 

Table. 3-8 details the progression of EH to EC in this study, broken down according 

to the classification system used. Using the initial WHO94 index diagnosis, the progression 

rate to EC was 17.40 % (4/23) for CAH and 8.42 % (8/95) when atypia was not present. Using 

the EIN/WHO2014 classification system, 19.23 % (10/52) of patients with EIN were later 

diagnosed with EC, contrasting with 1.56% (1/64) for a non-EIN diagnosis. n=2 of the index 

EHs biopsies reclassified using EIN/WHO2014 were deemed to be malignant specimens, only 

n=1 of these was found to have an EC at hysterectomy during the follow-up period. 
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Table 3-8: Disease progression of endometrial hyperplasias by World Health Organization (WHO94) and Endometrial Intraepithelial Neoplasia 

(EIN/WHO2014) classification schemes. 

Index WHO94 Classification Patients 

Consensus EIN/WHO2014 Classification, patients  

Progression to malignancy 

Yes No 

EIN
$
 Non-EIN

#
 Malignant EIN

$
 Non-EIN

#
 Malignant 

Complex atypical hyperplasia (CAH) 23 (20.0) 3 (25.0) 0 1 (8.3) 16 (15.1) 3 (2.8) 0 

Complex hyperplasia (CH) 29 (24.8) 5 (41.6) 0 0 12 (11.3) 10 (9.4) 0 

Simple hyperplasia (SH) 51 (43.2) 1 (8.3) 0 0 6 (5.7) 44 (41.5) 0 

Hyperplastic Polyp (HP) 15 (11.2) 1 (8.3) 1 (8.3) 0 8 (7.6) 6 (5.7) 1 (0.9) 

Total  10 (83.3) 1 (8.3) 1 (8.3) 42 (38.7) 63 (59.4) 1 (0.9) 

Overall Totals 118* 12 (10.2) 106 (89.8) 

Numbers in each column are based on classification of a single H&E stained section of endometrial tissue from n=118 women. Percentages in brackets.  

*Less than the overall n=125 original EH patients; n=7 patients excluded as they were lost to follow-up immediately after their initial index biopsy (moved 

NHS health board or to the private sector for treatment/follow-up). $EIN represents all EIN and EIN-EMP. #Non-EIN represents all HwA, HP without 

EIN and atrophic/benign endometrium. 
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3.4.8.2 Sensitivity and specificity of a malignant outcome by EH classification 

system 

When comparing the WHO94 classification system with the EIN/WHO2014 system, 

a diagnosis of EIN more often correctly predicted a malignant outcome (EIN sensitivity 91.0 

%) than a diagnosis of complex atypical hyperplasia (CAH sensitivity 33.3 %) (Table. 3-9). 

The specificity of both classification systems to correctly predict a non-malignant outcome 

favoured the WHO94 system (specificity 82.1 %), since the EIN/WHO2014 system 

demonstrated a higher rate of ‘false positives’, i.e. those diagnosed as EIN who did not develop 

a malignancy during the follow-up period (n=42, Table. 3.8). 

The EIN/WHO2014 system was excellent in predicting the absence of malignant 

progression (negative predictive value, of 98.4 %), i.e. a non-EIN diagnosis demonstrated a 

higher probability of being associated with a non-malignant outcome than a non-CAH 

diagnosis. Both systems displayed similarly low positive predictive values, i.e. a premalignant 

diagnosis (EIN or CAH) associated with a subsequent malignant outcome, reflecting the 

overall low prevalence of subsequent malignancy within the cohort. 

 

Table 3-9: Prediction of a malignant outcome following a biopsy diagnosis of endometrial 
hyperplasia. Comparing WHO94 CAH WHO2014 EIN, in terms of progression to 
malignancy in this study. 

 WHO94  EIN/WHO2014  

 CAH EIN 

% Sensitivity (95% CI) 33.3 (13.8-61.0) 91.0 (62.3-99.5) 

% Specificity (95% CI) 82.1 (73.7-88.2) 60.0 (50.4-68.7) 

% Positive predictive value (95% CI) 17.4 (7.0-37.1) 19.2 (10.8-31.9) 

% Negative predictive value (95% CI) 91.6 (84.3-95.7) 98.4 (91.7-99.9) 

NB/ EIN incorporates EIN (n=49) and EIN-EMP (n=3). 
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3.4.8.3 An EIN/WHO2014 diagnosis of EIN improves the prediction of a 

malignant outcome compared with a WHO94 diagnosis of Complex 

Atypical Hyperplasia. 

As already stated, EC occurrences in this study were most often seen within the first 

12-months of an initial EH biopsy diagnosis (10/12). Figure 3-14 demonstrates Kaplan-Meier 

‘survival-curves’ detailing the percentage (y-axis) of patients with EH remaining cancer-free 

during the follow-up period (x-axis), subdivided into, Figure 3-14A: those with CAH (highest 

risk category for EC progression in WHO94) vs. non-CAH and Figure 3-14B: EIN (highest 

risk category for EC progression in WHO14/EIN) vs. non-EIN. The median (mean, SD) 

follow-up period was 3485 days (3180 days, 1383 days). Statistical analysis of the curves 

using a Log-rank (Mantel-Cox) test demonstrated a statistically significant difference between 

the curves for EIN vs. non-EIN (10.41, p=0.0013**), compared with CAH vs. non-CAH 

(2.115, p=0.145 ns). This suggests that in this study an EIN diagnosis, as part of the 

WHO2014/EIN classification system, better identifies those at risk of future EC than the CAH 

category in the WHO94 classification system. In this study an EIN diagnosis carried a 13x 

higher chance of a subsequent or concurrent EC than a non-EIN diagnosis (Hazard ratio (HR) 

13.37, 95 % CI 4.05-44.13) over the follow-up period, compared to a CAH diagnosis which 

had a 3x higher chance of a subsequent or concurrent EC than a non-CAH diagnosis (Hazard 

ratio, (HR) 3.029, 95 % CI 0.68-13.49). 
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Figure 3-14: Kaplan-Meier curves to demonstrate the percentage of endometrial hyperplasia patients free of cancer during follow-up when 

classified using the WHO94 compared with the EIN/WHO2014 classification systems. Median follow-up period (mean, SD) 3485 days (3180 days, 
1383 days). A) The original diagnostic classification of the patients in this study utilised WHO94 criteria. Percentage cancer-free time was not statistically 
significantly different between those with a WHO94 diagnosis of CAH vs those with a non-CAH diagnosis, Log-Rank (Mantel-Cox) 2.115, p=0.145 ns, 
HR 3.029 (95% CI 0.68-13.49). B) Consensus reclassification of the same EH cohort of patients utilising EIN/WHO2014, revealed a statistically 
significant difference in the percentage cancer-free time between those reclassified to an EIN diagnosis vs those reclassified to a non-EIN diagnosis, Log-
Rank (Mantel-Cox) 10.41, p=0.0013**, HR 13.37 (95% CI 4.05-44.13). NB/ Non-CAH incorporates patients with CH (n=29), SH (n=51) and HP (n=15). 
EIN incorporates EIN (n=49) and EIN-EMP (n=3). Non-EIN incorporates patients with HwA (n=50) HP without EIN (n=6) and atrophic/benign 
endometrium (n=8). 
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3.5 Discussion 

 The incidence of EC within the United Kingdom has increased across all adult female 

age ranges since the early 1990s (Cancer Research UK, 2018). Having previously been 

considered a predominantly postmenopausal disease, a notable increase in EC incidence is 

now seen within younger age groups.  A 36 % increase in incidence rate was observed in 25-

49-year-old women during the period 1993-2015 within the UK (Cancer Research UK, 2018). 

A driving factor for this increase is the current unprecedented level of obesity, with an 

estimated 34 % of all UK ECs linked with being overweight or obese (Parkin and Boyd, 2011). 

Meta-analysis data suggests that the risk of EC is 81 % higher per 5-unit BMI gained during 

adulthood (Stevens et al., 2014). Longer menstrual lifespans, diabetes mellitus and polycystic 

ovarian syndrome (PCOS) have also been demonstrated to be significant EC risk factors 

(Dossus et al., 2010; Komm and Mirkin, 2014; Luo et al., 2014). All these factors are creating 

unique challenges both diagnostically and therapeutically. In addition, with the ‘gold-

standard’ treatment for EC being hysterectomy and younger women potentially wishing to 

preserve fertility, there exists an unmet need for personalised EC risk prediction (Wan et al., 

2016).  

 Advancing understanding of the hyperplastic endometrium and the pre-malignant 

stages of EC development are essential if we are to devise strategies to improve earlier EC 

diagnosis, enable appropriate risk stratification of women and allow for timely therapeutic 

interventions. Diagnostic classification of endometrial hyperplasia (EH) is currently in a state 

of transition from the legacy four-class WHO94 system to the newer two-class EIN/WHO2014 

system. The current study sought to establish and retrospectively phenotype a human EH tissue 

resource to; i) investigate interobserver variability between the WHO94 and EIN/WHO2014 

classification systems and ii) evaluate within this cohort, the ability of each system to predict 

subsequent endometrioid EC progression. 

 In preparing the samples for the EH tissue resource described herein it became 

immediately apparent that EH tissues are very heterogeneous by nature, since a significant 

spectrum of endometrial architectural and cytological variants were observed during the initial 

light-microscopy assessment. At one end of the spectrum were tissues with regions of slight 

glandular crowding and large cystically dilated endometrial glands, whilst at the other end 

were tissues with nearly ‘back-to-back’ glands and markedly abnormal nuclei, almost 

bordering on the appearances of carcinoma. In the past, several terms have been utilised in an 

attempt to define these observed features and capture the differences in morphological severity 

across the spectrum, for example, ‘adenomatous hyperplasia,’ and ‘carcinoma in situ’ 
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(Chandra et al., 2016; Ellenson et al., 2011). The overall aim being to pathologically classify 

EH lesions and to correlate the microscopic features with patient outcomes and clinical 

treatments. 

 The endometrium is a dynamic, multicellular tissue structure that undergoes 

hormonally driven cyclical proliferation, shedding and rapid healing (reviewed in Jabbour et 

al., 2006). This renders a consistently ‘normal’ or ‘control’ reference state difficult to establish 

(Ellenson et al., 2011). This is especially true for perimenopausal women (a high-risk group 

for EH development) who will often have erratic menstrual cycles. As described herein, 

several morphological mimics of EH are commonly observed and the diagnosing pathologist 

needs to be aware of the confounding effect that the cycling endometrium can have on the 

appearances of EH, especially in pre/peri-menopausal women e.g. the mimic effects of 

secretory endometrium. In addition, the effect of both endogenous and exogenous steroid 

hormones, e.g. progesterone, also need to be considered. Progesterone is used either as a single 

agent or combined with oestrogen as part of medical contraceptives, in addition to itself being 

a medical therapy for EH treatment (Gallos et al., 2016). Within this study the effect of 

progesterone on the hyperplastic endometrium was noted to cause a pseudodecidualised 

pattern and the affected endometrial glands displayed a secretory phenotype. These features 

are predominantly seen following recent commencement of progesterone, i.e. when the 

endometrium is still ‘oestrogen-primed’ (Rex and Bentley, 2009). After prolonged use of 

progesterone an atrophic glandular appearance would typically be expected, due to 

downregulation of both the oestrogen and progesterone receptors (Critchley et al., 1998; Rex 

and Bentley, 2009).  

 As discussed above the aim of the pathological classification of EHs is to permit 

correlation with patient outcomes and facilitate appropriate clinical treatments. However, how 

does one go about categorising a lesion so heterogeneous by its very nature? This is a question 

with which pathologists have grappled for decades (Beutler et al., 1963). The WHO94 

classification was one of the first systems to assess both architectural and cytological changes 

within EH lesions and link these categories to clinical outcome data for their risk of EC 

progression (Kurman et al., 1985; Scully et al., 1994). A striking feature of the data generated 

during the course of this chapter was the finding of poor interobserver variability within the 

WHO94 system, not only between the original index diagnoses and the expert review, but also 

between the diagnoses of the two expert pathologists. This was surprising given that they are 

both highly experienced in the evaluation of endometrial tissues. These data support the 

findings of others who have previously assessed interobserver variability with the WHO94 
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classification system (Kendall et al., 1998; Skov et al., 1997). Although the WHO94 

classification contains four separate EH categories (simple or complex hyperplasia, with or 

without atypia), very few researchers analyse all four categories as originally described 

(Usubutun et al., 2012). Simple atypical hyperplasia (SAH) is very rarely reported and has 

such low interobserver reproducibility scores (Kappa (k), 0.06–0.08), that some question its 

clinical relevance as a diagnostic category (Bergeron et al., 1999; Kendall et al., 1998; Skov 

et al., 1997). Furthermore, assessment of cytological atypia is often problematic. As described 

herein, the presence of atypia is not always uniform across an EH lesion and subcategories of 

atypia grading are frequently applied to the WHO94 system. This becomes challenging for the 

treating gynaecologist, for example, should ‘mild atypia’ be treated the same as ‘severe 

atypia’? Whilst the finding of both should warrant consideration of hysterectomy (dependent 

on patient wishes, comorbid status and fertility desires), the adjective ‘severe’ evokes a greater 

sense of urgency than ‘mild’. Whilst higher atypia grades may be a subliminal tactic of the 

reporting pathologist to infer urgency, “I highly suspect that there may be an EC within this 

uterus that is not evident to me in the biopsy,” it nevertheless creates added confusion within 

a classification system that already does not straightforwardly correlate with available 

treatments, i.e. medical, surgical or conservative. Subjective atypia grading may also 

contribute to a tendency for surgical overtreatment due to the fear of malignant progression 

for lesions with no underlying sinister mechanism (Baak et al., 2001). For example, nuclear 

rounding, enlargement and vesicular change as seen in metaplasia, can suggest cytological 

atypia, but this metaplastic change should not be construed as true atypia since it has not been 

shown to affect clinical outcome (Hendrickson and Kempson, 1980). 

 The endometrial collaborative group (an informal affiliation of pathologists) 

published recommendations in 2000, advocating a move away from the WHO94 system of 

EH classification (Mutter, 2000). Summarising pertinent advances in the understanding of the 

evolution of premalignant disease, they introduced the concept of Endometrial Intraepithelial 

Neoplasia (EIN) as a monoclonally derived premalignant endometrial lesion, distinguishable 

as a separate entity from both endometrioid EC and from hormonally reactive hyperplastic 

endometrial tissue (Baak and Mutter, 2005; Mutter, 2000; Mutter et al., 2001). The concept of 

EIN signalled a paradigm shift from the previously held notion that unopposed oestrogenic 

stimulation (discussed in chapter 1) causes ever-increasing hyperplastic endometrial 

proliferation, with accumulating cytological atypia leading to the development of 

endometrioid EC (reviewed in Sanderson et al., 2017). The EIN concept recognises the 

importance of unopposed oestrogenic stimulation but distinguishes this from the separate 
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event of a mutationally activated clone developing within an oestrogenic background (Mutter, 

2000; Mutter et al., 2007; Owings and Quick, 2014). Moreover, a diagnosis of EIN is made 

upon observation and confirmation of defined diagnostic criteria (Table. 3-1) which can be 

determined from a H&E stained tissue section. Several studies have published findings 

suggesting that use of EIN improves diagnostic reproducibility (Hecht and Mutter, 2006; 

Usubutun et al., 2012). 

Certainly, within this study we have demonstrated that interobserver variability is 

improved following the application of EIN diagnostic criteria (Table. 3-1) when compared 

with the WHO94 system within the same set of EH samples. However, we did not see the large 

increases in reproducibility scoring that have been proposed by others. For example, Usubutun 

and colleagues investigated 62 EH samples concordantly diagnosed by three experts using 

EIN criteria (Usubutun et al., 2012). They proceeded to use a panel of 20 reviewing 

pathologists (self-taught the EIN criteria) to compare to the experts and reported a Cohen’s 

Kappa (k) score of 0.72 between the reviewers and the experts (Usubutun et al., 2012). 

Interestingly, Usubutun and colleagues conducted hierarchical clustering of their results and 

suggest that pathologists will fall into one of three groups when diagnosing EH using EIN 

criteria; i) those offering a balanced approach to EIN versus non-EIN, ii) those favoring a 

benign diagnosis over pre-malignant/malignant and iii) those who favor EIN (Usubutun et al., 

2012). The authors refer to the phenomenon of ‘splitters versus lumpers’ when describing the 

diagnostic ‘personality’ of a pathologist. A ‘lumper’ being a pathologist who groups into broad 

categories, which are more often exaggerated. Whereas a ‘splitter’ favors precision and prefers 

to divide into smaller categories that differ in key ways.  

Although, the concept of a diagnostic ‘personality’ may partly offer an explanation as 

to the smaller increase in reproducibly found within this current study, other factors including 

place of postgraduate training, departmental practice and years active as a clinician may also 

contribute. Cofounding histological factors should also not be overlooked, which may 

influence interobserver variability. An interesting feature noted in the data generated for this 

chapter was the way in which each expert pathologist approached endometrial polyps. Expert 

pathologist A classified 12/125 cases as a hyperplastic polyp using WHO94 criteria, whilst 

10/125 using EIN criteria. Whereas pathologist B reached the diagnosis of a HP in 4/125 cases 

in both instances. Endometrial polyp diagnoses can be problematic since polyps themselves 

have variable gland density and somewhat altered gland cytology (Carlson and Mutter, 2008; 

Ellenson et al., 2011). 
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Ordi and colleagues argue that all systems of EH classification suffer from marked 

interobserver variability, including both the WHO94 and EIN systems (Ordi et al., 2014). The 

authors unsurprisingly noted that a reduction in the number of categories within a classification 

system is the only way to increase interobserver reproducibility / Cohen’s Kappa (k) rating 

(Ordi et al., 2014). The authors reasoned that EC risk is considerably greater when atypia is 

present and therefore in order to increase reproducibility a ‘dichotomous’ classification should 

be used, segregating ‘atypical’ hyperplasias from less severe lesions (Ordi et al., 2014). In 

2014, the WHO revised their classification of EHs (see chapter 1) and recommended 

classification of EHs into two groups based upon the presence or absence of cytological atypia, 

i.e. (i) hyperplasia without atypia (HwA) and (ii) atypical hyperplasia/EIN (Zaino et al., 2014). 

As discussed above the data herein describes a modest improvement in interobserver 

reproducibility with the application of EIN diagnostic criteria. An EIN diagnosis relies on an 

internal comparison within the tissue in question for cytological assessment. As suggested 

herein, cases demonstrating interobserver variability are more likely to contain equivocal or 

ambiguous diagnostic features. We and others recognise that use of the EIN criteria requires a 

subjective estimate of ‘volume percentage stroma’ (VPS), with the previously suggested 

definition of <55% VPS required to diagnose EIN (Table. 3-1) (Baak and Mutter, 2005).  This 

threshold of 55% VPS was determined using a particular technique of computer-assisted 

morphometry (D-score) (Baak et al, 1988; Baak and Mutter, 2005) that is not in widespread 

use by gynaecological pathologists across the world. Other image analysis techniques may 

involve use of different thresholds for the VPS criterion, to be determined by large studies and 

validation studies using the new technique, such as the TissueGnostics app used in the work 

described in this chapter, which may require a higher VPS threshold. Subjective estimation of 

VPS is restricted by the reporting pathologist’s judgement of whether the tissue section 

contains a focus of gland crowding where VPS should be assessed, and then providing an 

estimate of the extent of that crowding. In practice, most gynaecological pathologists do not 

use a computer-assisted image analysis technique and can only compare the crowded focus 

with background appearances (equivalent to comparing the most and least abnormal regions 

of interest) and judge whether the glands are more crowded in the most abnormal region of 

interest, but pathologists are not able to accurately quantify such gland crowding with respect 

to a pre-defined threshold without using an image analysis technique. 

We utilised novel quantitative image analysis techniques (TissueGnostics app) to 

objectively measure intact foci of endometrial glands together with their surrounding stroma, 

within defined regions of interest (ROI). The data from this study indicate that the process of 
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searching within an EH tissue sample for a comparator ‘background’ region to act as a 

cytological control, whilst creating a ‘mental-image’ of the clonal focus of concern, does not 

allow accurate quantitation of VPS levels by the pathologist without computer assistance. This 

can lead to variability in the estimation of the VPS levels within the clonal focus and may 

contribute to the differences in levels of interobserver variability seen when using EIN 

diagnostic criteria.  

 Ultimately the purpose of EH pathological classification is to identify women who 

are at a higher risk of progression to EC. Several researchers have attempted to assess the risk 

of progression from EH to EC, with many of the studies unfortunately lacking robust 

methodology to permit comparison and ensure validity (Feldman et al., 1995; Sherman and 

Brown, 1979; Weber et al., 1999).  As described in the introduction to this chapter, the 1985 

study by Kurman et al. is frequently cited for the author’s estimation of progression from EH 

to EC and formed the basis for the widely held opinion that approximately one third of patients 

with complex atypical hyperplasia (CAH) will eventually develop EC if they do not undergo 

hysterectomy (Kurman et al., 1985; Lacey and Chia, 2009). As previously discussed, Lacey 

and colleagues demonstrated that women with both simple and complex EH without atypia, 

had a 10 % probability of developing EC in comparison to a 40% probability for those with 

atypical hyperplasia (Lacey, Ioffe, et al., 2008). Researchers utilising the EIN diagnostic 

criteria have published clinical outcome data to suggest that approximately 40 % of women 

diagnosed with EIN will have an EC diagnosed within 12 months of index biopsy (Baak, 

Mutter, et al., 2005; Mutter et al., 2008). Those women who do not develop EC within 12 

months are 45x more likely to develop a future EC (Baak, Mutter, et al., 2005). 

Baak et al. claim that the EIN classification system more accurately predicts 

progression to EC than the WHO94 system (Baak, Mutter, et al., 2005). However, others 

report that both EIN and atypical hyperplasia have similar risks of progression to EC when 

followed-up for 12 months after the index diagnosis (Lacey, Mutter, et al., 2008).  Data 

described herein suggests that within our cohort of women (n=118, less than the original n=125 

owing to losses to follow-up) an EIN diagnosis carried a 13x higher chance of subsequent EC 

than a non-EIN diagnosis, compared to a CAH diagnosis which had a 3x higher chance of a 

subsequent EC than a non-CAH diagnosis, over a median follow-up period of 9.5 years. 

Within our cohort 80 % (8/10) cases of EC were diagnosed within 12 months of an index 

biopsy of EIN. We chose to consider a 12-month cut off for distinguishing between a 

concurrent EC, ‘mis-sampled’ on initial biopsy and a genuine progression to a subsequent 

malignancy. This reflects published data to suggest that approximately 50 % of women who 
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have a hysterectomy for atypical hyperplasia in the subsequent weeks to months after an 

endometrial biopsy will be found to have an endometrial carcinoma, reflected a concurrent 

‘mis-sampled’ initial biopsy (Lacey and Chia, 2009). Furthermore, from observational studies 

the natural progression of EIN/atypical hyperplasia to endometrioid EC is reportedly 4 - 7 

years (Ellenson et al., 2011). 

Sensitivity and specificity data from this study are in keeping with that described by 

others (Baak, Mutter, et al., 2005), although we found that the WHO94 system was not as 

good at predicting the absence of subsequent EC (Negative predictive value, NPV, of 91.6 %) 

when compared to the EIN/WHO2014 system (NPV 98.4 %).  

Another striking feature of the data presented within this chapter is the discord 

between the numbers of patients diagnosed with a ‘high-risk’ EH, i.e. those originally 

diagnosed as CAH, n=23 (WHO94) and those reclassified to EIN, n=52 (EIN/WHO2014). A 

diagnosis of CAH or EIN should warrant clinical consideration of hysterectomy (Ellenson et 

al., 2011; Gallos et al., 2016). We have demonstrated that within our cohort, the 

EIN/WHO2014 classification system improves the prediction of a malignant outcome. 

However, within this cohort, n=29 additional women would have been offered surgical 

management under the EIN/WHO2014 system, a question of the potential for surgical over-

treatment is therefore raised, especially when considering the lower percentage specificity rate 

which we found when assessing the EIN/WHO2014 system as a predictor of an EC outcome 

(60.0 % EIN/WHO2014 versus 82.1 % WHO94).  

In conclusion, endometrial hyperplasia is an ‘umbrella term’ representing a uniquely 

heterogeneous spectrum of morphologically abnormal endometrial lesions. The significance 

of a diagnosis of EH lies with its associated risk of progression to EC, especially when 

cytological atypia is evident. Pathological classification of EHs aims to correlate 

morphological differences with patient outcomes and in so doing, enable appropriate and 

timely clinical treatments to be actioned. However, translating pathological classification of 

EHs into clinical management is challenging, since the desire to definitively treat those at high 

risk of EC needs to be balanced against potential fertility-limiting factors and the morbidity 

associated with EH treatments. 

 The data presented herein provide further insight into the diagnostic reproducibility of 

two EH pathological classification systems; i) the well-known and widely used WHO94 

classification and ii) the more recent EIN/WHO2014 iteration, which draws upon molecular 

data suggesting a monoclonal pattern of development between EHs and ECs. Our findings add 
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support to the argument that the EIN/WHO2014 classification system increases the level of 

interobserver reproducibility between pathologists. We suggest however, that this increase 

may not be as marked as proposed by some researchers and suggest that a potential reason for 

this rests with the subjective non-quantitative estimates of the volume percentage stromal 

tissue compartment. This could be improved by the use of computer-assisted image analysis, 

such as the TissueGnostics app used here, but this would require further larger scale research 

studies and validation studies. In addition, our findings would suggest that the EIN/WHO2014 

system of classification improves upon the WHO94 system when predicting progression to 

EC. However, we remain cautious, since the potential for surgical overtreatment when utilising 

the EIN/WHO2014 system of classification requires further investigation in larger prospective 

studies. In future studies we would wish to add some ‘normal’ and EC samples to our dataset 

when undertaking dual, blinded pathological re-classification in order to ‘confuse’ the 

assessors to try to further reduce any inherent bias during the reclassification process. 

 In subsequent studies, we have utilised the retrospectively phenotyped human EH 

tissue resource developed within this chapter to investigate the potential for diagnostic and 

prognostic adjuncts to pathological classification and these are described in chapter 4. 
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Chapter 4 

4 Identification of potential diagnostic and prognostic 
immunohistochemical markers for endometrial 
hyperplasia 

4.1 Introduction 

Recent advances in our understanding of the genetic changes detectable within 

endometrial cancers (EC) are paving the way for a greater understanding of the aetiology of 

the disease. In a landmark study, The Cancer Genome Atlas (TCGA) Research Network used 

array and sequencing technologies to provide new insight into the genomic changes found in 

different EC subtypes, marking an important step forward from the traditional ‘type 1’ and 

‘type 2’ dichotomous EC classification (discussed in chapter 1). Notably, the TCGA study 

reported that most endometrioid endometrial cancers (EEC) (the most common histological 

EC subtype, and strongly associated with a background of endometrial hyperplasia, (EH)) 

frequently harbour mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS (Kandoth et 

al., 2013).  

Despite these exciting developments in genomic profiling of EEC, only marginal 

advances have been made in establishing the molecular changes that might occur in EHs which 

predispose them to develop as premalignant EC lesions. There are several reasons why this 

may be the case. Firstly, as discussed previously, when studying the endometrium, the 

dynamic cyclical changes that take place in cell constituents and hormone-dependent changes 

in gene expression can make it difficult to characterise a consistently ‘normal’ or ‘control’ 

state against which to measure premalignant change. (Allison et al., 2008; Ellenson et al., 

2011). This can be especially challenging in peri-menopausal women (a higher risk EH 

population) who will often have erratic menstrual cycles. Secondly, as demonstrated in chapter 

3, EHs can be very heterogeneous; they may present as focal or diffuse lesions and often 

exhibit multifaceted architectural and cytological features. An EH lesion may be shed with 

menses or may regress with progestin treatment or even spontaneously without intervention 

(Trimble et al., 2012). Furthermore, because of their aforementioned heterogeneity, and the 

blind manner in which endometrial biopsies are usually obtained (i.e. the Pipelle® endometrial 

sampler), EH lesions may be grossly under-sampled or missed entirely in a diagnostic 

specimen (Allison et al., 2008).  
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Diagnostic reproducibility between EH pathological classification systems also varies, 

further hampering attempts to evaluate molecular changes within these lesions. As 

documented in chapter 3, the current study showed that the WHO94 classification suffers from 

poor reproducibility, a finding also echoed by other research groups (Bergeron et al., 1999; 

Kendall et al., 1998; Mutter, Baak, et al., 2000). The introduction of the EIN system of EH 

classification, has been suggested to improve diagnostic reproducibility (reviewed in 

Sanderson et al., 2017). However, as demonstrated in chapter 3, whilst this system does appear 

to improve upon the poor reproducibility inherent with the WHO94 classification, it is far from 

perfect and contains its own limitations, i.e. the subjective assessment of the volume 

percentage stroma (% VPS).  

 A number of studies have reported evidence that genomic changes in candidate genes 

and/or expression of key regulatory proteins may be involved in the development of EH and 

play a role in its progression to EC (reviewed in Sanderson et al., 2017). Notably, changes in 

the tumour suppressor gene PTEN, a negative regulator of the PI3K/AKT/MTOR pathway, 

has been investigated by several groups. Loss of function mutations of PTEN have been 

reported in ~80 % of EECs (Daikoku et al., 2008; Hayes et al., 2006; Stambolic et al., 2000). 

These mutations can lead to the development of a truncated PTEN protein which is detectable 

using immunohistochemical techniques. PTEN protein regulates cellular proliferation and 

apoptosis, acting as an antagonist to growth factor-induced intracellular signalling pathways 

(Kimura, Watanabe, et al., 2004; Upson et al., 2012). PTEN protein expression has been 

evaluated across the normal menstrual cycle with changes in concentrations occurring in 

response to changes in the hormonal environment across the different phases (Mutter, Lin, et 

al., 2000). Evidence for an association with EH and EEC has been inferred from the results 

obtained using heterozygous Pten knockout mice, where all females developed evidence of 

EH by 6 months of age (Stambolic et al., 2000). In addition, several researchers have 

investigated immunohistochemical loss of glandular PTEN protein expression within EHs, 

exhibiting a spectrum of findings and suggesting 38-55 % of EIN lesions contain PTEN 

protein-deficient glands (Mutter, Lin, et al., 2000; Xiong et al., 2010). Most surprising 

perhaps, was the discovery that very small foci of PTEN protein–deficient glands are 

frequently demonstrated within the endometrium of healthy pre-menopausal women (Mutter 

et al., 2001). These PTEN-null glands appear phenotypically normal upon routine 

haematoxylin and eosin (H&E) staining and examination using light-microscopy, leading 

some to designate them as ‘latent-precancers’ and suggest that with further (not fully 

elucidated) genetic alterations, these glands could develop into pre-malignant lesions (Monte 

et al., 2010; Mutter et al., 2001,  2014). 
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 Another prominent molecular candidate investigated for a role in progression of EH 

to EEC is Paired Box 2 Protein (PAX2). PAX2 is a transcription factor involved in 

embryogenesis and cell proliferation (Shang, 2007). High levels of PAX2 protein expression 

have been reported in endometrial glands throughout the menstrual cycle (Monte et al., 2010). 

A role for the PAX2 gene in the development of EC was suggested by Wu et al, who found 

that PAX2 is activated by oestrogen and tamoxifen in ECs but not in normal endometrium, and 

that this activation is associated with cancer-linked hypomethylation of the PAX2 promoter 

(Wu et al., 2005). Several immunohistochemical studies have suggested a role for PAX2 in 

the development of EH, both in isolation and with loss of PTEN (reviewed in Sanderson et al., 

2017). 

The data from the TCGA EC study identified a group of hypermutated ECs with 

microsatellite instability (MSI), highlighting the role for deficient DNA mismatch repair 

(dMMR) in endometrial carcinogenesis. MSI is characterised by defects in the DNA mismatch 

repair (MMR) system and represents phenotypic evidence that MMR is not functioning 

normally. Inactivation of any of the MMR genes (including MLH1, MSH2, MSH6 and PMS2) 

can cause MSI (Poulogiannis et al., 2010). In somatic EC, dMMR is mainly caused by 

hypermethylation of the MLH1 promoter, silencing its expression, thus leading to MSI 

(Simpkins et al., 1999; Woo et al., 2014). Overall, MSI has been suggested to occur in ~25-

30 % of somatic EECs (Hecht and Mutter, 2006). Inherited germline MMR gene mutations 

and subsequent development of dMMR with MSI in tumours are associated with Lynch 

Syndrome (hereditary non-polyposis colorectal cancer (HNPCC) syndrome). Lynch 

Syndrome confers an approximately 60 % lifetime risk of developing EC (Bonadona et al., 

2011; ten Broeke et al., 2015). Lucas et al suggest that the prevalence of abnormal MMR 

expression in EIN adjacent to a concurrent EC and in patients with isolated EIN is similar to 

the reported prevalence of Lynch syndrome in EC (Lucas et al., 2018). The group go as far as 

to suggest screening for Lynch syndrome by testing for abnormal MMR expression in EIN 

(Lucas et al., 2018). 

 A further, novel candidate implicated in EH development and progression is Heart and 

neural crest derivatives expressed transcript 2 protein (HAND2). This transcription factor 

plays crucial roles during embryological cardiac morphogenesis (VanDusen et al., 2014). In 

mice, Hand2 has been shown to be a progesterone receptor-regulated gene and its expression 

in endometrial stromal cells inhibits epithelial cell proliferation via suppression of several 

fibroblast growth factors (FGFs) (Li et al., 2011). Minimal data exist describing the expression 

pattern of HAND2 protein across the menstrual cycle. A comprehensive epigenome-
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transcriptome-interactome analysis by Jones et al, found HAND2 at the centre of the most 

highly ranked differential hotspot in EC (Jones et al., 2013), leading them to propose that 

epigenetic deregulation of HAND2 was a crucial step in endometrial carcinogenesis. They 

reported that methylation of HAND2 was increased in pre-malignant endometrial lesions when 

compared to normal endometrium and that this was associated with a reduction in HAND2 

protein expression (Jones et al., 2013). 

 AT-Rich Interactive Domain-Containing Protein 1A (ARID1A) has emerged from 

molecular and genomic studies as an important candidate and tumour suppressor in 

gynaecological malignancies, especially EEC (Mao and Shih, 2013; Wiegand et al., 2010,  

2011). ARID1A is a component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) 

nucleosome remodelling complex (Ayhan et al., 2015). It is required for SWI/SNF complexes 

to suppress DNA synthesis, and as such ARID1A is considered a tumour suppressor gene since 

it regulates cell proliferation and functions to prevent genomic instability. Mutations of 

ARID1A have been described in 29–40 % of cases of EC (Mao et al., 2013). ARID1A mutations 

are normally insertions or deletions that lead to the formation of a truncated protein detectable 

by immunohistochemistry. 

Tumour Protein p53 is a protein encoded by the TP53 gene. When cellular DNA is 

damaged, the p53 protein regulates cell-cycle inhibition and apoptosis which helps in 

determining whether or not the damaged DNA should be repaired, or the cell destroyed. It is 

fittingly called ‘The Guardian of the Genome’(Lane, 1992). Loss of expression of wild-type 

p53 due to mutation or gene inactivation leads to malignant transformation (Sherman et al., 

1995). In ECs, most TP53 mutations are missense mutations, generally detected in serous, 

‘Type 2’ ECs, however, they have also been reported in in 2-20 % of EECs (Alkushi et al., 

2004; Sherman et al., 1995). TP53 mutations are associated with formation of a functionally 

defective p53 protein that is more stable and has a longer half-life than the wild-type p53 

protein (Sherman et al., 1995; Soong et al., 1996). The missense mutated p53 protein product 

usually accumulates and is detected as overexpression in cell nuclei using 

immunohistochemistry. Typically, wild-type p53 in cells cannot be detected by 

immunohistochemistry; however, if p53 is stabilised, due to overexpression in normal cells in 

response to DNA damage, a positive immunohistochemistry reaction (usually focal, weak and 

heterogeneous) can be detected in the absence of any mutation (Soong et al., 1996). To further 

complicate matters, deletions or frame-shift mutations of TP53 can lead to a truncated/altered 

protein that lacks epitopes recognized by specific antibodies so a completely negative p53 

immunohistochemistry reaction may also indicate a gene abnormality (Garg et al., 2010).  
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In summary, current histological classification alone is unable to accurately predict 

which EH cases will progress to EEC and therefore accurate prognosticators are required. 

Having surveyed the available literature, some of which is summarised above, we would 

hypothesize that moving forwards, a collective ‘panel’ approach of multiple candidates may 

provide greater diagnostic and prognostic value than can currently be achieved by any single 

candidate in isolation. With this in mind, we have selected several prominent 

immunohistochemical markers from the current available literature (reviewed in Sanderson et 

al, 2017), spanning several facets of EEC carcinogenesis for investigation within the 

retrospective human endometrial hyperplasia tissue resource established in chapter 3.  

 

4.2 Aims of the chapter 

1) To establish the immunohistochemical expression pattern of the proteins PTEN, 

PAX2, ARID1A, MMR (MLH1, MSH2, MSH6, and PMS2), HAND2 and p53 within 

a retrospective human EH tissue resource classified using the EIN/WHO2014 

diagnostic system.  

2) To evaluate the above putative immunohistochemical markers with respect to their: 

i. Utility as diagnostic markers for EH  

ii. Association with progression of EH to endometrioid endometrial cancer. 
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4.3 Materials and methods 

4.3.1 Human endometrial hyperplasia tissue resource 

A human EH tissue resource was created as detailed in 2.1.2 This EH resource was 

pathologically classified according to the EIN/WHO2014 diagnostic system (Table. 3-1) and 

as detailed in 3.3.3. A total of 105 EH tissue samples were utilised. Endometrial Intraepithelial 

Neoplasia (EIN) was diagnosed in 51/105 cases and hyperplasia without atypia (HwA) in 

54/105 cases. Serial sections of FFPE tissue were obtained (2.1.2). 

 

4.3.2 MRC-CIR archival human endometrial tissue 

Experimental control and optimisation tissues were obtained as described in 2.1.1. 

4.3.3 Immunohistochemistry 

Chromogenic Immunohistochemistry using detection with 3, 3 -diaminobenzidine 

(DAB) was performed as described in section 2.3 employing the ImmPRESS™ polymerised 

reporter enzyme staining system (described in 2.3.5): positive staining resulted in a brown 

colour reaction. A list of the primary antibodies used within this chapter can be found in Table 

4-1 along with details of the corresponding ImmPRESS™ polymer detection system.  

Antibody dilutions factors were optimised using archival human endometrial 

hyperplasia tissue, obtained as per 2.1.1. A no-primary antibody control was used to detect 

false-positive or background staining as a result of non-specific binding of the ImmPRESS™ 

regent. Appropriate positive control tissue was used as necessary and as recommended by the 

antibody manufacturer (antibodies marked with a * in Table 4-1 did not require a separate 

positive control tissue as the endometrial stromal cells were used as a positive internal control). 

 

4.3.3.1 Automated immunohistochemistry 

As described in 2.3.8, a reduction in antigenicity can cause a reduction in signal 

intensity and increase non-specific background staining. High-throughput automated 

immunohistochemistry was therefore performed to detected PTEN protein expression in this 

study (described in 2.3.8). Antibody concentrations were first optimised using the method 

described in 4.3.3 and validated literature protocols, prior to being performed on the Leica 

BOND-MAX (Leica Biosystems) robotic staining platform.  
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4.3.3.2 Image analysis 

All immunohistochemical stained tissue sections were whole-slide scanned as 

described in 2.6 to create digital reference library. 

Table 4-1: Primary antibodies and detection systems used for chromogenic 

immunohistochemistry  

Antigen Species Supplier Cat. No Dilution ImmPRESS™ 
polymer 

Anti-
PTEN 
(clone 

6H2.1)* 

Mouse 
(Monoclonal) 

Agilent 
Dako M362729-2 1:300 

ImmPRESS™ Anti-
Mouse (Vector MP 

7402) - DAB 

Anti-
PAX2 

(clone Z-
RX2) 

Rabbit 
(Polyclonal) Invitrogen 71-6000 1:900 

ImmPRESS™ Anti-
Rabbit (Vector MP 

7401) - DAB 

Anti-
ARID1A* 

Rabbit 
(Polyclonal) 

Sigma-
Aldrich HPA005456 1:2000 

ImmPRESS™ Anti-
Rabbit (Vector MP 

7401) - DAB 

dHAND 
(clone M-

19) 

Goat 
(Polyclonal) Santa-Cruz sc-9409 1:250 

ImmPRESS™ Anti-
Goat (Vector MP 

7405) – DAB 

p53 
(clone 
DO7) 

Mouse 
(Monoclonal) Santa-Cruz sc-126 1:500 

ImmPRESS™ Anti-
Mouse (Vector MP 

7402) - DAB 

MLH1 
(clone C-

20) 

Rabbit 
(Polyclonal) Santa-Cruz sc-582 1:100 

ImmPRESS™ Anti-
Rabbit (Vector MP 

7401) - DAB 

MSH2 
(clone 
FE11) 

Mouse 
(Monoclonal) 

Millipore 
Merck MABE284 1:500 

ImmPRESS™ Anti-
Mouse (Vector MP 

7402) - DAB 

MSH6 
(clone 44) 

Mouse 
(Monoclonal) 

BD 
Biosciences 610919 1:250 

ImmPRESS™ Anti-
Mouse (Vector MP 

7402) - DAB 

PMS2 
(clone 
A16-4) 

Mouse 
(Monoclonal) 

BD 
Pharmingen 556417 1:300 

ImmPRESS™ Anti-
Mouse (Vector MP 

7402) - DAB 

*Internal positive control present within endometrial tissues. 
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4.3.4 Scoring of immunohistochemical staining 

Scoring of immunohistochemical staining patterns for all tissue was performed as 

follows. Unless otherwise stated scoring was performed on the stained tissue section slides by 

Professor Alistair Williams (Professor of Gynaecological Pathology, The University of 

Edinburgh ‘AW’) with myself (‘PS’). 

 

4.3.4.1 Scoring of Phosphatase and Tensin Homolog (PTEN) staining in 
endometrial hyperplasia tissues 

Endometrial hyperplasia samples stained for PTEN protein were scored using a 

modified method based upon that described by Mutter et al (Mutter, Lin, et al., 2000). In brief, 

PTEN immunoreactivity was evaluated within the endometrial glandular and stromal cells of 

an entire EH tissue section. A result of PTEN ‘positive’ was recorded if the entire tissue section 

contained endometrial glands and stromal cells which demonstrated a brown (3, 3 –

diaminobenzidine (DAB)) nuclear and cytoplasmic staining pattern. The stromal cells served 

as a positive internal control. A result of ‘isolated null glands’ was recorded if < 2 endometrial 

glands in close proximity within the tissue section demonstrated loss of both glandular nuclear 

and cytoplasmic brown DAB staining, resulting in a blue appearance of the nuclei (due to the 

haematoxylin counterstain), in addition to positive brown DAB nuclear staining within the 

stromal cells. A result of a PTEN ‘null region’ was recorded if a focal region of endometrial 

glands (>2 glands) within the tissue section demonstrated loss of glandular nuclear and 

cytoplasmic brown DAB staining, in addition to positive brown DAB nuclear staining within 

the stromal cells. The scoring descriptors were translated into a plain numerical value as per 

table 4-2 for the purposes of hierarchical agglomerative clustering (HAC) analysis. 

 

4.3.4.2 Scoring of Paired Box 2 Protein (PAX2) staining in endometrial 
hyperplasia tissues 

Endometrial hyperplasia samples stained for PAX2 protein were scored using a 

modified method based upon that described by the Mutter group (Monte et al., 2010; Quick et 

al., 2012). In brief, PAX2 immunoreactivity was evaluated within the endometrial glandular 

cells of an entire EH tissue section. A result of PAX2 ‘positive’ was recorded if the entire 

tissue section contained endometrial glands which demonstrated a brown nuclear (3, 3 –

diaminobenzidine (DAB)) staining pattern. A result of ‘null glands’ was recorded if small 
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isolated clusters of endometrial glands in close proximity within the tissue section 

demonstrated loss of glandular nuclear brown DAB staining, resulting in a blue appearance of 

the nuclei (due to the haematoxylin counterstain). A result of a PAX2 ‘altered expression’ was 

reported if large foci of endometrial glands or the entire population of glands within the tissue 

section, demonstrated loss of glandular nuclear brown DAB staining. The scoring descriptors 

were translated into a plain numerical value as per table 4-2 for the purpose of HAC analysis. 

 

4.3.4.3 Scoring of Heart and Neural Crest Derivatives-expressed 2 (HAND2) 
protein staining in endometrial hyperplasia tissues 

Firstly, in order to reduce inherent scoring bias, whole-slide scanned H&E stained 

sections of EH tissue were digitally annotated with two regions of interest (ROI) as described 

in 3.3.4. Each ROI corresponded to either the ‘most abnormal’ or the ‘least abnormal’ region 

within the EH tissue section as described in 3.3.4. Utilising the NDP.view2 (Hamamatsu, 

U12388-01) imaging software, each ROI was exactly digitally copied from the H&E scanned 

image on to a corresponding serial section that had been stained for HAND2 and subsequently 

slide-scanned. Each ROI was then ‘blinded’ by randomly assigning a designation of either 

‘Area 1’ or ‘Area 2’. The pathological classification / diagnosis of each ‘Area’ was known to 

only ‘PS’ and ‘AW’.  

Endometrial hyperplasia samples stained for HAND2 protein were scored using a 

modified method based upon that described by Buell-Gutbriod et al (Buell-Gutbrod et al., 

2015). Briefly, three members of the Saunders laboratory group (Ioannis Simitsidellis (‘IS’), 

Phoebe Kirkwood (‘PK’) and Olympia Kelepouri (‘OK’) - each member is familiar with 

normal endometrial morphology but not with EH) were asked to independently score the 

percentage number of stromal cells demonstrating HAND2 expression for both ‘Area 1’ and 

‘Area 2’ in each tissue section. The scoring was based solely on the appearances of the 

endometrial stroma within each area. Any degree of brown (3, 3 –diaminobenzidine (DAB)) 

staining intensity was deemed as demonstrating HAND2 expression. A score of 0 (absent 

expression) was given if 0 % of stromal nuclei in the designated area stained brown, 1 (reduced 

expression) if 1-50 % of the stromal nuclei in the designated area stained brown and 2 

(positive) if >50 % of stromal nuclei in the designated area stained brown. The scoring results 

of ‘PK’ and ‘OK’ were compared for consensus agreement. Where a consensus was not 

reached, the score from ‘IS’ was used to achieve a 2/3 majority consensus. The scores were 

then unblinded by ‘PS’ and compared to their pathological classification / diagnosis for 
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analysis. The ‘most abnormal’ ROI score was used for further analysis and the scoring 

descriptors were translated into a plain numerical value as per table 4-2 for the purposes of 

HAC analysis. 

 

4.3.4.4 Scoring of mismatch repair (MMR) protein expression in endometrial 
hyperplasia tissues 

Immunohistochemistry for the DNA Mismatch repair proteins (MLH1, MSH2, 

MSH6 and PMS2) were scored in EH tissues as described by Woo, et al (Woo et al., 2014) 

and in keeping with UK NEQAS recommendations (Arends et al., 2008). All scoring was 

performed on the stained tissue section slides by Professor Mark Arends (Professor of 

Pathology and Head of the Division of Pathology, The University of Edinburgh ‘MA’) with 

myself (‘PS’). Any tissue areas demonstrating evidence of poor fixation were not taken into 

consideration. Normal human vermiform appendix tissue was used as a positive control as 

described by Arends, et al (Arends et al., 2008). 

 

Table 4-2: Plain numerical scoring of observed immunohistochemical staining patterns. 

 Score 0 Score 1 Score 2 

PTEN Positive Isolated Null Glands Null Region 

PAX2 Positive Null Glands Altered Expression 

HAND2 Positive (>50 %) Reduced Expression 
(1-50 %) 

Absent Expression 
(0 %) 

PTEN - Phosphatase and Tensin Homolog, PAX2 - Paired Box 2 Protein, HAND2 - Heart and 

Neural Crest Derivatives-expressed 2. 

 

4.3.4.5 Scoring of AT-rich interactive domain-containing protein 1A (ARID1A) 
within human endometrial hyperplasia tissues. 

Endometrial hyperplasia samples stained for ARID1A protein were scored using a 

modified method based upon that described by Ayhan et al (Ayhan et al., 2015). In brief, 
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ARID1A immunoreactivity was evaluated within the endometrial glandular and stromal cells 

of an entire EH tissue section. A result of ARID1A ‘positive’ was recorded if the entire tissue 

section contained endometrial glands and stromal cells which demonstrated a brown nuclear 

(3, 3 –diaminobenzidine (DAB)) staining pattern. The stromal nuclear cells served as a 

positive internal control. A result of ‘isolated null glands’ was recorded if < 2 endometrial 

glands in close proximity within the tissue section demonstrated loss of glandular nuclear 

brown DAB staining, resulting in a blue appearance of the nuclei (due to the haematoxylin 

counterstain), in addition to positive brown DAB nuclear staining within the stromal cell 

nuclei. A result of ‘confluent null glands’ was recorded if a focal region of endometrial glands 

(>2 glands) within the tissue section demonstrated loss of glandular nuclear brown DAB 

staining, in addition to positive brown DAB nuclear staining within the stromal cell nuclei. A 

result of ‘complete expression loss’ was recorded if the entire tissue section demonstrated loss 

of glandular nuclear brown DAB staining, in addition to positive brown DAB nuclear staining 

within the stromal cell nuclei. 

 

4.3.4.6 Scoring of Tumour protein 53 (p53) within human endometrial 
hyperplasia tissues. 

Endometrial hyperplasia samples stained for p53 protein were scored using the 

method described by Alkushi, et al (Alkushi et al., 2004). In summary, diffuse brown (3, 3 –

diaminobenzidine (DAB)) nuclear staining was deemed as demonstrating p53 

‘overexpression’. Weak, patchy and heterogenous nuclear expression was interpreted as 

‘Wild-Type’ p53 expression. Completely absent nuclear brown DAB staining was regarded as 

‘aberrant’ p53 expression.  

 

4.3.5 RNA extraction 

RNA was extracted and quantified as described in section 2.7. 
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4.3.6 Two-step quantitative real-time reverse transcription polymerase 
chain reaction (qRT-PCR) 

Reverse transcription, quantitative real-time PCR (TaqMan® method) and qPCR 

analysis was performed as described in section 2.8. CYC was used as the housekeeping gene. 

Primer/probe use for this chapter is listed below (Table. 4-3). 

 

Table 4-3: Primer pair sequences and probes used for qRT-PCR 

Gene 
Name Accession Code Primer Sequences Primer Position / Probe 

HAND2 NM_021973.2 
ggtagctttgcagtgagcagt 391-411 

19 
gaatccaggggcgagtct 463-480 

 

4.3.7 Statistical analysis 

Statistical analysis was performed using GraphPad Prism 8.0. The two-sided Fisher’s 

Exact test was used to compare between groups for the immunostaining data. For qRT-PCR 

samples, data were tested for normality (Gaussian distribution) using the D’Agostino & 

Pearson normality test. If they passed the normality test an ordinary one-way ANOVA with 

Holm-Sidak’s multiple comparison post-test used to compare between groups. If they failed 

the normality test the nonparametric Kruskal-Wallis test with Dunn’s multiple comparison 

post-test was used to compare between groups.��

 

4.3.7.1 Unsupervised hierarchical clustering analysis 

Unsupervised hierarchical agglomerative clustering (HAC) was used to evaluate the 

correlation of immunohistochemical scoring data with EH diagnosis and also with subsequent 

malignant progression. Clustering analysis organises the data according to the 

similarity/dissimilarity of immunostaining profiles, arranging the cases with similar 

immunoprofiles together in rows in a heatmap. The relationship between EH cases and 

immunomarkers is displayed graphically as a dendrogram, where the branch length is 

determined by correlation between immunostaining scores.  
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Immunohistochemical score data was firstly formatted as described by Liu et al (Liu 

et al., 2002) further to analysis and visualisation using the Cluster and TreeView software 

platforms respectively, as described by Eisen, et al (Eisen et al., 1998). The clustering of the 

immunohistochemical data was performed using the complete linkage method and the 

Euclidean distance. Comparison was performed to the average linkage clustering method to 

assess reproducibility of the cluster groups described. This demonstrated a 75.2 % agreement 

with a Kappa, k score of 0.629 “Substantial”. Cohens Kappa, k, is a measure of agreement 

among observers that attempts to correct for chance agreement and whose values are 1.00 or 

less, where 1.00 indicates perfect agreement and 0 indicates the level of agreement expected 

by chance alone. Interpret as follows: 0.00–0.20, slight; 0.21–0.40, fair; 0.41–0.60, moderate; 

0.61–0.80, substantial; and 0.81–1.00, almost perfect agreement. Chi-squared and Fisher’s 

exact tests were used to determine which EH diagnosis and immunohistochemical markers 

contributed to the formation of individual clusters. 
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4.4 Results 

4.4.1 Immunohistochemical expression pattern of Phosphatase and 
Tensin Homologue (PTEN) protein within a human endometrial 
hyperplasia (EH) tissue resource 

Positive PTEN protein expression was visualised as brown DAB staining within the 

nuclear and cytoplasmic compartments of both the endometrial glandular and stromal cells. A 

total of 104/105 (99.0 %) EH samples were successfully stained and interpreted. The 

appearance of the glandular compartment was the primary site of interest for PTEN protein 

expression. In all cases, stromal cells and blood vessels had intensely positive 

immunoexpression for PTEN and thus served as positive internal controls. EH samples 

demonstrating a loss of PTEN glandular protein expression could be readily identified in this 

study; glands with no PTEN staining were distinct from glands with strong PTEN staining and 

surrounding stroma (Figure. 4-1). Loss of PTEN protein expression was observed in two 

distinct patterns: 1) A PTEN null region, where a confluent region of >2 endometrial glands 

demonstrated widespread loss of nuclear and cytoplasmic brown DAB staining (Figure. 4-1B). 

The endometrial glands displayed a blue appearance due to haematoxylin counterstaining. 2) 

Isolated PTEN null glands (Figure. 4-1D & E), where < 2 endometrial glands in close 

proximity demonstrated a loss of both nuclear and cytoplasmic brown DAB staining.  

 

4.4.1.1 Confluent regional loss of PTEN protein expression in endometrial 
glands is significantly associated with Endometrial Intraepithelial 
Neoplasia (EIN)  

Loss of PTEN protein expression was observed in 61/104 (58.7 %) of the total EH 

cases examined in this study, with 24/104 (23.1 %) demonstrating a PTEN null region (Figure. 

4-1B) and 37/104 (35.6 %) demonstrating isolated PTEN null glands (Figure. 4-1D & E). The 

finding of a PTEN null region was significantly associated with an EH diagnosis of EIN, with 

23/51 (45.1 %) of EIN cases demonstrating a PTEN null region compared to 1/53 (1.9 %) of 

HwA cases (p<0.0001, 2-sided Fisher’s exact test), with the abnormal glands demonstrating 

either features of EIN or HwA showing loss of PTEN immunostaining. The finding of isolated 

PTEN null glands also significantly differed between the two groups, with EIN cases being 

significantly less likely to demonstrate isolated null glands 11/51 (21.6 %), compared to HwA 

cases 26/53 (49.1 %) (p=0.042, 2-sided Fisher’s exact test). Overall, loss of PTEN protein 
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expression was not significantly associated with either EH diagnosis, with 34/51 (66.7 %) of 

EIN cases and 27/53 (50.1 %) of HwA cases demonstrating some degree of loss of PTEN 

protein expression (p=0.1155, 2-sided Fisher’s exact test). 

 

 

Figure 4-1: Immunohistochemical expression of PTEN protein within human 
endometrial hyperplasia (EH) tissue. A) Haematoxylin and Eosin (H&E) staining of 
human endometrial tissue containing an area of Endometrial Intraepithelial Neoplasia 
(EIN) below the dashed line. B) PTEN immunohistochemical staining of a serial tissue 
section from the same patient as in A. PTEN null glandular region demonstrated by a loss 
of brown (DAB) nuclear and cytoplasmic staining in the same region corresponding to the 
EIN lesion as seen in image A. C) Negative control. D&E) Isolated PTEN null glands 
(arrowed; highlighting glands with loss of brown (DAB) staining) seen within two separate 
tissue sections diagnosed as hyperplasia without Atypia (HwA). G = representative 
endometrial gland. S = endometrial stromal; used as a positive internal control for PTEN 
immunohistochemistry. Varying magnifications – see scale bars. 
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4.4.2 Immunohistochemical expression pattern of Paired Box 2 Protein 
(PAX2) within a human endometrial hyperplasia (EH) tissue 
resource 

Positive PAX2 protein expression was detected as any degree of brown DAB staining 

within the nuclei of the endometrial glands (Figure. 4-2A). All samples (n=105) were 

successfully stained and interpreted. The endometrial stromal compartment was not used for 

interpretation. Loss of PAX2 protein expression was observed in two distinct patterns in this 

cohort of EH samples: 1) PAX2 null glands, where small isolated clusters of endometrial 

glands demonstrated widespread loss of nuclear brown DAB staining (Figure. 4-2C & D). The 

null endometrial glands displayed a blue appearance due to haematoxylin counterstaining 

(Figure. 4-2C). 2) Altered PAX2 expression (Figure. 4-2E), where large foci or the entire tissue 

section demonstrated a loss of glandular nuclear brown DAB staining. Of note, whilst staining 

for PTEN allowed for distinct definition of PTEN glands, the positive nuclear staining pattern 

of PAX2 was observed to have a variable intensity pattern across individual EH lesions which 

may relate to variation in fixation efficiency. 

 

4.4.2.1 Loss of PAX2 protein expression is significantly associated with a 
diagnosis of Endometrial Intraepithelial Neoplasia (EIN) 

Loss of PAX2 protein expression was observed in 21/105 (20.0 %) of the total EH 

cases examined in this study, with 15/105 (14.3 %) demonstrating PAX2 altered expression 

(Figure. 4-2E) and 6/105 (5.7 %) demonstrating PAX2 null glands (Figure. 4-2C & D). The 

finding of a PAX2 altered expression pattern was significantly associated with an EH 

diagnosis of EIN, with 15/51 (29.4 %) of EIN cases demonstrating PAX2 altered expression 

compared to 0/54 of HwA cases (p<0.0001, 2-sided Fisher’s exact test). The finding of PAX2 

null glands was not significantly different between the two groups. Both EIN and HwA cases, 

n=3/51 and n=3/54 respectively, demonstrated very few regions of PAX2 null glands 

(p>0.9999, 2-sided Fisher’s exact test). Overall loss of PAX2 protein expression was 

significantly associated with an EIN diagnosis, with 18/51 (35.3 %) of EIN cases and only 

3/54 (5.6 %) of HwA cases demonstrating some degree of loss of PAX2 protein expression 

(p=0.0002, 2-sided Fisher’s exact test), with loss seen in the abnormal glands. 
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Figure 4-2: Immunohistochemical expression of PAX2 protein within human 
endometrial hyperplasia (EH) tissue. A) PAX2 immunohistochemical staining of a tissue 
section demonstrating hyperplasia without atypia (HwA). Positive PAX2 endometrial glands 
(G = representative endometrial gland) demonstrated by brown (DAB) glandular nuclear 
staining. B) PAX2 negative control. C) PAX2 null gland (arrow indicating loss of brown DAB 
glandular nuclear staining) within a tissue section demonstrating HwA. D) PAX2 null glands 
(arrow indicating loss of brown DAB glandular nuclear staining) within a tissue section 
demonstrating Endometrial Intraepithelial Neoplasia (EIN). Comparative PAX2 positive 
glandular area seen to the right side of figure 4-2D with a representative positively stained 
gland marked as G. E) PAX2 altered expression (arrow indicating loss of brown DAB 
glandular nuclear staining) within a tissue section demonstrating EIN. S = endometrial stroma, 
expression of PAX2 in the stromal compartment was not used for PAX2 immunohistochemical 
interpretation. Varying magnifications – see scale bars. 
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4.4.3 Expression pattern of Heart and Neural Crest Derivatives-
expressed 2 (HAND2) within the normal human endometrium. 

In order to establish the expression pattern of HAND2 within the normal human 

endometrium, HAND2 mRNA expression was investigated within cycling and non-cycling 

endometrial tissues by qRT-PCR. In addition, immunohistochemistry was performed on 

representative samples from across the menstrual cycle to investigate HAND2 protein 

expression.  

 

4.4.3.1 HAND2 mRNA expression within the normal human endometrium. 

HAND2 mRNA was detected in all samples of normal postmenopausal, proliferative 

and secretory endometrium. An apparent increase in HAND2 mRNA expression was 

demonstrated within the secretory phase, however overall expression was not significantly 

different between the groups in this small sample set (Figure. 4-3).  

 

4.4.3.2 HAND2 protein expression within the normal human endometrium 

HAND2 protein expression was detected by immunohistochemistry within 

representative tissues from all phases of the menstrual cycle (Figure. 4-4). HAND2 protein 

expression was detected as any degree of brown DAB staining within the nuclei of the 

endometrial stromal cells (Figure. 4-4). All representative samples of normal cycling 

endometrium demonstrated a positive staining pattern with >50 % of the endometrial stromal 

cells exhibiting HAND2 staining. Of note, endometrial epithelial cells (endometrial glands and 

luminal surfaces) do not express HAND2 protein and thus HAND2 is a purely stromal cell 

marker within the human endometrium. 
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Figure 4-3: Expression of HAND2 mRNA is not significantly different between normal 
postmenopausal, proliferative and secretory endometrium. 1) Whole tissue homogenates 
from hysterectomy specimens of postmenopausal endometrium (n=9), proliferative 
endometrium (n=5) and secretory endometrium (n=8) underwent qRT-PCR analysis for 
HAND2 gene expression. NB/ Early, mid and late secretory endometrial data were pooled for 
comparison due to the small numbers of samples available. No menstrual endometrial samples 
were available for comparison. The data are presented as a relative fold-change over 
postmenopausal endometrium and all data were normalised to the housekeeping gene CYC.  
Kruskal Wallis statistical test. ns=non-significant. 
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Figure 4-4: Immunohistochemical expression of HAND2 protein within the 
normal cycling human endometrium. Endometrial Pipelle® biopsy specimens 
from all phases of the menstrual cycle demonstrate positive stromal nuclear 
immunohistochemical expression of HAND2 protein. A) Proliferative 
endometrium, B) Early secretory endometrium, C) Mid-secretory endometrium, D) 
Late secretory endometrium, E) Menstrual endometrium, F) Negative control 
(proliferative endometrium). S = endometrial stroma. LE = Luminal epithelium. 
Arrows highlight representative endometrial glands which do not express HAND2 
protein. Varying magnifications – see scale bars.  
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4.4.4 Heart and Nuclear Crest Derivatives-expressed 2 (HAND2) mRNA 
and protein expression is reduced in all grades of endometrioid 
endometrial cancer (EEC). 

In order to establish the expression pattern of HAND2 within the malignant 

endometrium, samples from a human data resource of endometrioid endometrial cancer (EEC) 

(see 2.1.1) were utilised. HAND2 mRNA expression was investigated using tissue 

homogenates from postmenopausal endometrial tissues and samples of EEC previously 

classified (Collins et al., 2009) as well, moderately or poorly differentiated, (i.e. grades 1-3 

EEC respectively) by qRT-PCR. In addition, immunohistochemistry was performed on 

representative samples from both the postmenopausal endometrium and G1-3 EEC data 

resource to investigate HAND2 protein expression.  

HAND2  mRNA expression was significantly reduced across all grades of EEC when 

compared to normal postmenopausal endometrium (Figure. 4-5-1). There were no significant 

differences in HAND2 mRNA expression between the individual grades of EEC. Normal 

postmenopausal endometrium demonstrated strong positive (>50 %) HAND2 staining by 

immunohistochemistry (Figure. 4-5-2A) in keeping with the pattern of staining previously 

described within normal cycling endometrial tissues (Figure. 4-4).  All representative tissue 

samples spanning grades 1-3 of EEC were immunonegative for HAND2 protein (Figure. 4-5 

2C, 2E and 2F), with no stromal nuclear staining demonstrated (0 %).  
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Figure 4-5: Expression of HAND2 mRNA and protein is reduced in human 
endometrioid endometrial cancers (EEC). 1) Whole tissue homogenates from 
hysterectomy specimens of postmenopausal endometrium (n=9) and grade 1 (n=32), grade 2 
(n=65) and grade 3 (n=36) EEC underwent qRT-PCR analysis for HAND2 gene expression. 
The data are presented as a relative fold-change over postmenopausal endometrium and all 
data were normalised to the housekeeping gene CYC.  Kruskal Wallis statistical test. 
**p<0.01, ****p<0.0001. 2) Representative immunohistochemistry for HAND2 protein 
expression. 2A) Postmenopausal endometrium demonstrating HAND2 positive stromal 
nuclear staining. 2B) Negative control. 2C) Grade 1 EEC. 2D) Positive Control. 2E) Grade 2 
EEC. 2F) Grade 3 EEC. All EEC specimens demonstrate loss of HAND2 stromal nuclear 
staining (arrowed). S = Stroma. G = Gland. Varying magnifications – see scale bars.  
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4.4.5 Immunohistochemical expression of Heart and Nuclear Crest 
Derivatives-expressed 2 (HAND2) within a human endometrial 
hyperplasia (EH) tissue resource 

Having established the pattern of HAND2 expression within both normal and 

malignant endometrial tissues, HAND2 protein expression was evaluated within the cohort of 

EH tissue samples developed as part of this study. A total of 103/105 (98.1 %) EH samples 

were successfully stained and interpreted. HAND2 protein expression was visualised as any 

degree of brown DAB staining within the nuclei of the endometrial stromal cells as previously 

described. Three distinct patterns of staining were observed: 1) Positive HAND2 protein 

expression was noted if >50 % of the stromal cells demonstrated brown DAB staining (Figure. 

4-6A). 2) Reduced HAND2 protein expression was noted where 1-50 % of the stromal cells 

demonstrated brown DAB staining (Figure. 4-6C&D). 3) Some samples were 

immunonegative for HAND2 (0 % of the stromal cells DAB+, Figure. 4-6E).   

The pattern of HAND2 protein expression was scored within digitally marked regions 

of interest (ROIs) on slide scanned images (as described in 4.3.4.3). Absent or reduced 

HAND2 protein expression was noted to occur in two distribution patterns, either focally 

around the EH lesion with normal positive HAND2 expression within the background tissue 

(unique to cases of EIN and demonstrated in Figure. 4-7) or diffusely across the entire ROI 

and further beyond into the tissue section. 

 

4.4.5.1 Altered HAND2 protein expression is significantly associated with a 
diagnosis of Endometrial Intraepithelial Neoplasia (EIN) 

Altered HAND2 protein expression (either reduced or absent) was observed in 45/103 

(43.7 %) of the total EH cases examined in this study, with 11/103 (10.7 %) demonstrating 

absent HAND2 expression (Figure. 4-6E) and 34/103 (33.0 %) demonstrating reduced 

HAND2 expression (Figure. 4-6C&D). The finding of a HAND2 altered immunoexpression 

pattern was significantly associated with an EH diagnosis of EIN, with 38/49 (77.6 %) of EIN 

cases demonstrating reduced or absent HAND2 expression compared to 7/54 (13.0 %) of HwA 

cases (p<0.0001, 2-sided Fisher’s exact test). The finding of absent HAND2 protein expression 

alone (Figure. 4-6E and Figure. 4-7) was also significantly associated with an EH diagnosis of 

EIN. 9/49 (18.4 %) of EIN cases demonstrated absent HAND2 expression compared to 2/54 

(3.7 %) of HwA cases (p=0.0235, 2-sided Fisher’s exact test). 
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Figure 4-6: Immunohistochemical expression of HAND2 protein within human 
endometrial hyperplasia (EH) tissue. A) HAND2 immunohistochemical staining of a tissue 
section demonstrating hyperplasia without atypia (HwA). Positive (scored as >50 %) HAND2 
endometrial stromal cell nuclear staining (S = endometrial stroma) demonstrated by brown 
(DAB) nuclear staining. B) HAND2 negative control. C) Reduced (scored as 1-50 %) HAND2 
stromal cell nuclear staining within a tissue section demonstrating HwA. D) Reduced (scored 
as 1-50 %) HAND2 stromal cell nuclear staining within a tissue section demonstrating 
Endometrial Intraepithelial Neoplasia (EIN). E) Absent (scored as 0 %) HAND2 stromal cell 
nuclear staining within a tissue section demonstrating EIN. Arrows highlighting representative 
endometrial glands not do not demonstrate HAND2 protein expression and were not used for 
immunohistochemical interpretation of HAND2 staining. Varying magnifications – see scale 
bars. 
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Figure 4-7: Immunohistochemical expression of HAND2 protein within a tissue biopsy 
specimen demonstrating Endometrial Intraepithelial Neoplasia (EIN). A) Haematoxylin 
and Eosin (H&E) stained biopsy specimen containing EIN. B) Higher power representative 
background endometrium from A. C) Higher power EIN lesion from A. D) HAND2 
immunohistochemical staining of B. E) HAND2 immunohistochemical staining of C. F) 
Higher power image of D demonstrating positive (scored as >50 %) HAND2 stromal nuclear 
staining within the background endometrium. G) Higher power image of E demonstrating 
absent (scored as 0 %) HAND2 stromal nuclear staining within an EIN lesion (left of dashed 
line). Junctional region marked with dashed line. Positive HAND2 (>50 %) staining of 
background endometrium to right of dashed line. Arrows highlight representative endometrial 
glands. S= Stroma. Varying magnifications – see scale bars.  
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4.4.6 Immunohistochemical expression of AT-rich interactive domain-
containing protein 1A (ARID1A) within a human endometrial 
hyperplasia (EH) tissue resource 

ARID1A protein expression was visualised as brown DAB staining within the nuclear 

compartments of both the endometrial glandular and stromal cells. All samples (n=105) were 

successfully stained and interpreted. The appearance of the glandular compartment was the 

primary site of interest for ARID1A protein expression.  In all cases, stromal cells and blood 

vessels had intensely positive expression for ARID1A and thus served as positive internal 

controls. EH samples demonstrating a loss of ARID1A glandular protein expression could be 

readily identified; glands with no ARID1A nuclear staining were distinct from glands with 

strong ARID1A staining and surrounding stroma (Figure. 4-8). Loss of ARID1A protein 

expression was observed in three distinct patterns: 1) ARID1A isolated null glands, where < 

2 endometrial glands demonstrated complete loss of glandular nuclear brown DAB staining 

(Figure. 4-8C). The endometrial glands displayed a blue nuclear appearance due to 

haematoxylin counterstaining. 2) ARID1A confluent null glands, where there was a focal loss 

of ARID1A in >2 glands (Figure. 4-8D). 3) ARID1A complete expression loss, where the 

entire tissue section demonstrated loss of brown glandular nuclear staining (Figure. 4-8E). 

 

4.4.6.1 Loss of ARID1A protein expression is significantly associated with a 
diagnosis of Endometrial Intraepithelial Neoplasia (EIN) 

Loss of ARID1A protein expression was observed in 6/105 (5.7 %) of the total EH 

cases examined in this study, with 1/105 (1.0 %) demonstrating ARID1A isolated null glands 

(Figure. 4-8C), 4/105 (3.8 %) demonstrating ARID1A confluent null glands (Figure. 4-8D) 

and 1/105 (1.0 %) demonstrating ARID1A complete expression loss (Figure. 4-8E). Overall 

loss of ARID1A protein expression was significantly associated with an EIN diagnosis, with 

6/51 (11.8 %) of EIN cases and 0/54 of HwA cases demonstrating some degree of loss of 

ARID1A protein expression (Table 4-4, p=0.0112, 2-sided Fisher’s exact test). There were no 

significant differences between individual ARID1A protein expression patterns for either EIN 

or HwA (Table. 4-4). 
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Figure 4-8: Immunohistochemical expression of ARID1A protein within human 
endometrial hyperplasia (EH) tissue. A) ARID1A immunohistochemical staining of a tissue 
section demonstrating hyperplasia without atypia (HwA). Positive ARID1A endometrial 
glands (G = representative endometrial gland) demonstrated by brown DAB glandular nuclear 
staining. B) ARID1A negative control. C) Isolated ARID1A null glands (arrow indicating loss 
of brown DAB glandular nuclear staining) within a tissue section demonstrating Endometrial 
Intraepithelial Neoplasia (EIN). D) ARID1A confluent null glands (arrow indicating loss of 
brown DAB glandular nuclear staining) within a tissue section demonstrating Endometrial 
Intraepithelial Neoplasia (EIN). E) ARID1A complete glandular expression loss (arrow 
indicating loss of brown DAB glandular nuclear staining) within a tissue section demonstrating 
Endometrial Intraepithelial Neoplasia (EIN). S = endometrial stromal; used as a positive 
internal control for ARID1A immunohistochemistry. Varying magnifications – see scale bars. 
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Table 4-4: Correlation between ARID1A immunoreactivity and endometrial hyperplasia 
diagnosis. 

ARID1A EIN, n=51 HwA, n=54 P Value 

Positive  45 (88.2) 54 (100.0) 
0.0112* 

Null 6 (11.8) 0 

^Isolated Null 
Glands 1 (2.0) 0  0.4857 

^Confluent Null 
Glands 4 (7.8) 0  0.0523 

^Complete 
Expression Loss 1 (2.0) 0 0.4857 

^Subgroups of Null ARID1A immunoreactivity included for comparison. HwA = Hyperplasia 
without Atypia, EIN = Endometrial Intraepithelial Neoplasia. Percentages in brackets. 
Statistical analysis performed using a Fisher’s exact test, 2-sided. *p<0.05. 

 

4.4.7 Immunohistochemical signature of mismatch repair (MMR) within 
a human endometrial hyperplasia (EH) tissue resource 

The mismatch repair (MMR) proteins, MutL homologues (MLH1 and PMS2) and 

MutS homologues (MSH2 and MSH6) were evaluated in endometrial hyperplasia (EH) tissues 

by immunohistochemistry as part of this study. All samples (n=105) were successfully stained 

for all four MMR protein markers and interpreted. EH samples were considered to show 

abnormal protein expression (and thus deficient mismatch repair (dMMR) status) where there 

was clear absence of brown DAB staining within the nuclei of the glandular epithelial cells 

and positive brown DAB staining of lymphocytes or stromal cell nuclei in the adjacent stroma. 

Appropriate control tissue was included in all immunostaining runs (Figure. 4-9 demonstrates 

a representative positive control example for MSH2).  

A single patient (1/105, 1 %) within the EH tissue resource demonstrated dMMR, with 

absence of MLH1 and PMS2 proteins within a focal region of EIN (Figure. 4-10 D1 and D4, 

respectively). This patient was 51-years-old at the time of endometrial biopsy, she was 

perimenopausal and presented with heavy menstrual bleeding. The patient had no family 

history of note. The patient was treated surgically with a total abdominal hysterotomy, bilateral 

salpingo-oophorectomy and peritoneal washings, the final surgical specimens demonstrated a 

small focus of residual EIN with no evidence of malignancy.
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Figure 4-9: Representative example of positive control tissue (human vermiform appendix) immunohistochemistry for mismatch 
repair (MMR) function. Representative example of MSH2 positive control tissue immunohistochemistry demonstrating the expected 
positive expression pattern of immunostaining. A) Low-power view of a cross-section of normal human vermiform appendix tissue stained 
for MSH2 protein. B) Strong nuclear staining of the epithelium at the base of the crypts, with fading of nuclear intensity in the middle and 
upper third of the crypts, to negative / weak staining at the luminal surface. C) Negative control. D) Strong staining of the lymphoid follicles. 
Varying magnifications – see scale bars. 
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Figure 4-10: Deficient mismatch repair (dMMR) within endometrial hyperplasia tissue. A case of 
endometrial intraepithelial neoplasia (EIN) showing loss of MLH1 expression, together with loss of its binding 
partner PMS2.
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Figure 4-10 continued. 

A) Low power haematoxylin and eosin (H&E) image of an EH lesion containing a focus of 
EIN (B). C) Background endometrial glands for comparison. D) Higher power view of the 
EIN lesion from B. B1) Loss of MLH1 expression in the glandular nuclei of the EIN lesion 
(loss of nuclear brown DAB staining within the glandular nuclei). B2) Normal expression of 
MSH2 in the same sample. B3) Normal expression of MSH6 in the same sample. B4) Loss of 
binding partner PMS2 expression in the glandular nuclei of the same sample (loss of nuclear 
brown (3, 3 –diaminobenzidine (DAB)) staining within the glandular nuclei). D1 & D4) High 
power views demonstrating loss of MLH1 and PMS2 expression respectively (arrowed), 
background endometrium positively stained and included in C1 & C4 for comparison. D2 & 
D3) High power views demonstrating MSH2 and MSH6 positive expression, background 
endometrium positively stained and included in C2 & C3 for comparison. G = Representative 
endometrial gland, S = Endometrial Stroma. Varying magnifications – see scale bars. 

 

4.4.8 Immunohistochemical expression of Tumour Protein p53 (p53) 
within a human endometrial hyperplasia (EH) tissue resource 

All samples (n=105) were successfully stained for p53. Positive p53 protein 

expression (i.e. p53 ‘overexpression’ occurring due to p53 mutation or gene inactivation) was 

anticipated to result in intense (strong) DAB staining within the nuclear compartments of both 

the endometrial glandular epithelial cells. ‘Wild-type’ p53 expression (occurring in the 

absence of mutant / inactivated p53) was anticipated to be focal, weak and heterogeneous 

glandular epithelial nuclear DAB staining. ‘Aberrant’ p53 expression (due to a nonsense or 

frameshift p53 mutation, known to be undetectable with immunohistochemistry) was 

anticipated to be complete absence of DAB staining with glandular epithelial cells, with only 

the haematoxylin blue counterstain evident. Serous endometrial carcinoma was used as a 

control tissue for analysis (Figure. 4-11A&B).  

4.4.8.1 All EH tissues express ‘Wild-type’ p53 regardless of diagnosis 

In our current dataset all EH tissues (n=105) regardless of diagnosis (EIN or HwA) 

demonstrated heterogenous, weak and patchy p53 staining in this study (Figure. 4-11 C&D) 

considered consistent with the presence of a functional ‘wild-type’ p53 protein in these tissues.
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Figure 4-11: Immunohistochemical expression of Tumour protein p53 within endometrial hyperplasia (EH) tissue. A) Positive control tissue 
(serous endometrial cancer) p53 positive overexpression demonstrated by strong brown (DAB) glandular nuclear staining. B) Negative control. C) 
High ‘Wild-type’ heterogenous, weak/patchy p53 staining pattern within a tissue section demonstrating hyperplasia without atypia (HwA). D) Low 
‘Wild-type’ heterogenous, weak/patchy p53 staining pattern within a tissue section demonstrating Endometrial Intraepithelial Neoplasia (EIN). G 
= Representative endometrial glands. S = Endometrial stroma. Varying magnifications – see scale bars.  
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4.4.9 Unsupervised hierarchical cluster analysis of PTEN, PAX2 and 
HAND2 protein expression within EH tissues 

Further analysis of the relationship between EH diagnosis, EH progression to 

malignancy and the immunohistochemical expression of the proteins PTEN, PAX2 and 

HAND2 was undertaken utilising a method of unsupervised hierarchical agglomerate 

clustering (HAC). In order to undertake this method of analysis each immunostaining result 

was expressed as a plain score (0, 1 or 2) as described in Table 4-2. Table 4-5 summarises the 

plain score results for these three protein markers alongside the corresponding EH tissue 

diagnosis. ARID1A, the MMR proteins and p53 immunostaining results were not taken 

forward for further analysis due to the minimal changes noted in their expression patterns 

across the EH tissue resource as detailed above.  

 

Table 4-5: Immunohistochemical scoring results of PTEN, PAX2 and HAND2 protein 
expression within a human endometrial hyperplasia tissue resource. 

 
EIN, n=51 HwA, n=54 

Score 0 Score 1 Score 2 Score 0 Score 1 Score 2 

PTEN^ 17 (33.3) 11 (21.6) 23 (45.1) 26 (49.1) 26 (49.1) 1 (1.9) 

PAX2 33 (64.7) 3 (5.9) 15 (29.4) 51 (94.4) 3 (5.5) 0 

HAND2* 11 (21.5) 29 (59.2) 9 (18.4) 47 (87.0) 5 (9.3) 2 (3.7) 

Scoring system as described in chapter 4 materials and methods (Table 4-2). ^x1 HwA sample 
stained for PTEN protein was not interpretable. *x2 EIN samples stained for HAND2 protein 
were not interpretable. Percentages in brackets. PTEN - Phosphatase and Tensin Homolog, 
PAX2 - Paired Box 2 Protein, HAND2 - Heart and Neural Crest Derivatives-expressed 2. 
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4.4.9.1 Unsupervised hierarchical cluster analysis reveals four distinct EH 
clusters, demonstrating potential clinical usefulness as a ‘rule out test’ 

HAC analysis segregated the immunoscoring results of PTEN, PAX2 and HAND2 for 

the n=105 EH samples into four novel clusters based on their immunohistochemical staining 

patterns. The clusters were divided into cluster 1 (n=12), cluster 2 - which was further sub-

classified into cluster 2a (n=4) and 2b (n=54) and cluster 3 (n=35) according to dendrogram 

branch length, which represents the correlation of the scoring data (Figure. 4-12).  

Clusters 1, 2a and 3 largely contain cases of EIN i.e. the ‘premalignant clusters’ 

(44/51, 86.3 %), with cluster 2b containing the majority of HwA cases i.e. the ‘benign cluster’ 

(47/54, 87.0 %). Table 4-6 demonstrates the breakdown of each cluster by EH diagnosis and 

the statistical difference between EH diagnosis for each individual cluster. The patient 

demographics for each cluster group are displayed in Table 4-7, demonstrating no significant 

differences in clinical features between any of the four clusters. HAC analysis of 

immunostaining patterns may help in everyday pathological classification as a ‘rule out test’, 

i.e. it has a useful negative predicative value, whereby the majority of ‘benign’ HwA fall into 

cluster 2b. 

Table 4-6: Summary of endometrial hyperplasia (EH) classification between cluster 
groups 

 EIN, n=51 HwA, n=54 P Value 

Cluster 1 12 (23.5) 0 0.0001*** 

Cluster 2a 4 (7.8) 0 0.0565 ns 

Cluster 2b 7 (13.7) 47 (87.0) <0.0001**** 

Cluster 3 28 (54.9) 7 (11.3) <0.0001**** 

EIN = Endometrial Intraepithelial Neoplasia. HwA = Hyperplasia without atypia. Percentages 
in brackets. Statistical analysis using a Fisher’s exact test, 2 sided. ***p<0.001, ****p<0.0001, 
ns = non-significant.  
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Figure 4-12: Dendrogram and heat map. Summary of unsupervised hierarchical cluster analysis of PTEN, PAX2 and HAND2 immunohistochemical 
staining data. Patient cases orientated along the horizontal axis (n=105). Immunohistochemical markers orientated along the vertical axis. Dendrogram 
branch length represents the similarity between the results obtained. Heat map colours represent outcome of immunohistochemical scoring (as described 
in Table 4-2) Endometrial hyperplasia cases were classified into 4 distinct cluster groups according to the dendrogram: Cluster 1 (n=12), Cluster 2a (n=4), 
Cluster 2b (n=54) and Cluster 3 (n=35). PTEN - Phosphatase and Tensin Homolog, PAX2 - Paired Box 2 Protein, HAND2 - Heart and Neural Crest 
Derivatives-expressed 2. Black lines in the heatmap represent cases where the immunoscore was not available. 
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Table 4-7: Demographics and clinical features of endometrial hyperplasia patients 
broken down by cluster group. 

 Cluster 1  
n=12 (%) 

Cluster 2a 
n=4 (%) 

Cluster 2b 
n=54 (%) 

Cluster 3 
n=35 (%) P Value 

Age^      
Mean 51.4 51.3 53.2 52.5 0.9329 
<40 3 (25.0) 0 3 (5.6) 4 (11.4) 0.5634 
41-50 2 (16.7) 2 (50.0) 22 (40.7) 12 (34.3) 0.5297 
51-60 5 (41.7) 1(25.0) 20 (37.0) 11(31.4) 0.4701 
61-70 1 (8.3) 1 (25.0) 4 (7.4) 8 (22.6) 0.3461 
>70 1 (8.3) 0 5 (9.3) 0 NS 

      

BMI^      
Mean 35.33 34.50 38.7 39.1 0.8105 
Normal  
(18.5 – 25) 1 (8.3) 0 2 (3.7) 2 (5.7) 0.9470 

Overweight 
(26 – 30) 0 0 5 (9.3) 0 NS 

Obese 
(> 30) 5 (41.7) 2 (50.0) 18 (33.3) 16 (45.7) 0.4602 

Unknown 6 (50.0) 2 (50.0) 29 (53.7) 17 (48.6)  
      

Postmenopausal$      
Yes 5 (41.7) 2 (50.0) 31 (57.4) 21 (60.0) 0.7222 No 7 (58.3) 2 (50.0) 23 (42.6) 14 (40.0) 

      
Presenting 
complaint$      

PMB 5 (41.7) 2 (50.0) 29 (53.7) 17 (48.6) 

0.9125 HMB 4 (33.3) 1 (25.0) 14 (25.9) 10 (28.6) 
IMB 2 (16.7) 1 (25.0) 8 (14.8) 3 (8.6) 
Others 1 (8.3) 0 3 (5.6) 5 (14.3) 

      

Parity$       
Nulliparous  3 (25.0) 2 (50.0) 8 (14.8) 11 (31.4) 

0.2700 1-4 7 (58.3) 1 (25.0) 39 (72.2) 20 (57.1) 
>5 0 0 1 (1.9) 2 (5.7) 
Unknown 2 (16.7) 1 (25.0) 6 (11.1) 2 (5.7)  

      

Body max Index (BMI) categorised according to the World Health Organisation (WHO) 
categories. PMB = Postmenopausal bleeding, HMB = Heavy menstrual bleeding, IMB = 
Intermenstrual Bleeding, Others = Incidental and subfertility. Statistical analysis performed 
using a Chi-Squared test to determine statistical differences between the categorical data ($) 
and a one-way ANOVA was used to compare the means of the continuous data (^). 
Percentages in brackets. NS = Non-significant. 
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4.4.9.2 Three distinct immunohistochemical phenotypes for EIN are evident 

following cluster analysis and are defined by PAX2 and HAND2 protein 

expression  

Three distinct immunohistochemical phenotypes are evident for EIN based on the 

clustering analysis (Table 4-8). Cluster 1 contains exclusively cases of EIN (Table 4-6, n=12). 

The predominant immunohistochemical phenotype of this cluster is that of PAX2 altered 

expression (a PAX2 score of 2) and HAND2 altered expression (a HAND2 score of 1-2, i.e. 

absent or reduced HAND2 expression) (Figure. 4-12). Cluster 2a which is the smallest cluster, 

also contains exclusively EIN cases (Table. 4-6, n=4). Although more similar (as indicated by 

dendrogram branch length) to cluster 2b, i.e. the ‘benign cluster’ due to all its cases being 

HAND2 positive, cluster 2a has an exclusively PAX2 altered immunohistochemical 

phenotype (PAX2 score of 2) which defines it as a separate sub-cluster. Cluster 3, which 

contains the largest number of EIN cases (Table. 4-6, n=28) has a largely PAX2 positive (score 

of 0) and HAND2 altered expression (score of 1-2) immunohistochemical phenotype. Cluster 

2b (‘the benign cluster’ with the largest number of cases of HwA, n=47), has the greatest 

number of cases which expressed positivity (i.e. a score of 0) for both PAX2 and HAND2. 

Further analysis of the immunoscoring between each cluster group was undertaken 

(Table. 4-9). As described previously, an immunoscore of 0 used for the HAC analysis, equates 

to the descriptive finding of positive expression of the protein of interest within the EH tissue 

(Table. 4-2). Combining groups with an immunoscore score of 1 and 2 therefore equates to 

the descriptive finding of any degree of protein expression loss. A score of 0, vs a score of 1-

2 were compared across the clusters. Results demonstrated statistically significant differences 

between the clusters for PAX2 and HAND2 expression (Table. 4-9).  

 

Table 4-8: Predominant immunohistochemical phenotype of each cluster group 

 Immunohistochemical phenotype 

Cluster 1 PAX2 and HAND 2 altered expression 

Cluster 2a PAX2 altered expression, HAND2 positive expression 

Cluster 2b PAX2 and HAND2 positive expression 

Cluster 3 PAX2 positive expression, HAND2 altered expression 
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PAX2 - Paired Box 2 Protein, HAND2 - Heart and Neural Crest Derivatives-expressed 2. 

Table 4-9: Scoring of immunohistochemistry data between clusters 

 
Cluster 1 

n=12 

Cluster 2a 

n=4 

Cluster 2b 

n=54 

Cluster 3 

n=35 
P Value 

PTEN      

Score 0, vs 1-2 3 1 26^ 13 0.3453 

PAX2      

Score 0, vs 1-2 0 0 51 33 <0.0001**** 

HAND2      

Score 0, vs 1-2 0 4 54 0$ <0.0001**** 

Scoring system as described in chapter 4 materials and methods (Table 4-2). ^x1 sample 
stained for PTEN protein was not interpretable. $x2 samples stained for HAND2 protein were 
not interpretable. PTEN - Phosphatase and Tensin Homolog, PAX2 - Paired Box 2 Protein, 
HAND2 - Heart and Neural Crest Derivatives-expressed 2. Statistical analysis performed 
using Chi-Squared test., ****p<0.0001. 

 

4.4.9.3 PTEN protein is ubiquitously expressed across all EH cluster groups 

There does not appear to be a well-defined pattern of PTEN protein expression unique 

to any of the individual EH cluster groups (Figure. 4-12). Indeed, loss of PTEN protein 

expression was not significantly different between cluster groups (Table. 4-9). This appears to 

be in keeping with the data described in section 4.4.1.1, whereby overall loss of PTEN protein 

expression (incorporating both the findings of PTEN isolated null glands and PTEN null 

regions) was found not to be significantly associated with either an EH diagnosis of EIN or 

HwA. Furthermore, as indicated by the vertical axis dendrogram (Figure. 4-12), PTEN stands 

very much on its own, unlike PAX2 and HAND2 which are more closely related (indicated by 

dendrogram branch length).  

  



Chapter 4 – Immunohistochemical markers in endometrial hyperplasia 

158 
 

4.4.10 Progression of endometrial hyperplasia (EH) cases to 

endometroid endometrial cancer (EEC)  

Of the 105 EH cases within the EH tissue resource used for immunohistochemical 

analysis, n=10 (9.5 %) went on to have a diagnosis of EEC. 8 of these were diagnosed within 

the first 12 months after an initial endometrial biopsy and were therefore considered likely to 

have a concurrent EEC which was not sampled on the initial biopsy. The remained 2 were 

diagnosed with cancer following hysterotomy, 9.5 and 4.3 years respectively after the initial 

EH biopsy. Notably, all ten of these subsequent EEC cases had a reclassified biopsy diagnosis 

of EIN following retrospective, dual gynaepathology review (as per 3.3.3).  

 

4.4.10.1 Relationship of EEC cases to EH cluster group  

Table 4-10 summarises the EH cluster groups from where each EEC originated. As 

demonstrated, clusters 1 and 3 contained most of the subsequent EECs, with cluster 1 

containing n=3 (25.0 %) of cases that subsequently progressed and cluster 3 containing n=6 

(17.1 %). There was a statistically significant difference in the occurrence of EEC cases 

between the cluster groups (p=0.0231).  

 

Table 4-10: Summary of malignant outcome by cluster group. 

 Cluster 1 
n=12 (%) 

Cluster 2a 
n=4 (%) 

Cluster 2b 
n=54 (%) 

Cluster3 
n=35 (%) P Value 

Endometrioid 
Endometrial 
Cancer 

3 (25.0) 0 1 (1.9) 6 (17.1) 0.0231* 

Concurrent 
(<12months) 2 (16.7) 0 1 (1.9) 5 (14.3)  

Subsequent 

(>12 months) 
1 (8.3) 0 0 1 (2.9)  

Malignancy was defined as concurrent if diagnosed <12 months from the index EH biopsy. 
Subsequent malignancy was defined as being diagnosed >12 months after the index EH 
biopsy. Percentages in brackets. Statistical analysis performed using Chi-Squared test. 
*p<0.05. 
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4.4.11 Immunohistochemical phenotype of EH cases that subsequently 

progressed to EEC demonstrates a tendency for altered HAND2 

and PTEN protein expression  

The immunohistochemical phenotype as determined using detection of PTEN, PAX2 

and HAND2 proteins, for each case of EH that subsequently progressed to EEC is displayed 

in Figures. 4-13, 4-14, 4-15A and 4-15B. These were divided by the EH cluster groups from 

which the EEC originated. Importantly, n=9 (90 %) of the EH that progressed to EEC 

demonstrated reduced expression of HAND2 protein. PAX2 protein expression varied 

dependent on cluster grouping (altered PAX2 expression was exclusive to cluster 1 EH cases), 

with n=3 (30 %) of the overall EH cases that progressed to EEC demonstrating a change in 

PAX2 protein.  PTEN protein loss was found in n=7 (70 %) of the EH cases which progressed 

to EEC, incorporating n = 2 (20 %) cases which exhibited isolated PTEN null glands, and n=5 

(50 %) which exhibited a PTEN null region. Figure. 4-16 demonstrates two ‘benign’ HwA 

cases that did not progress to malignancy for comparison and to demonstrate the clinical 

usefulness of the HAC cluster analysis as a ‘rule-out test’. 

Regarding the additional protein markers investigated as part of this study, p53 

expression and MMR status was not altered in any of the cases that subsequently progressed 

to EEC.  Interestingly, ARID1A protein expression was lost in n=2 (20 %) of the EH cases 

that progressed to EEC. The loss of ARID1A immunostaining was confined to a single case 

demonstrating confluent null glands (Figure. 4-8D) and another case with complete loss of 

ARID1A glandular protein expression (Figure. 4-8E). Both cases of ARID1A loss in EH were 

associated with an EEC that was likely concurrent (i.e. diagnosed within 12 months of initial 

EH biopsy).  
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Figure 4-13: Immunohistochemical phenotype of Cluster 1 EH cases that progressed to malignancy. n=3 patients from cluster 1 had a subsequent 
endometrioid endometrial cancer diagnosis. Figure 4-13 summarises the expression pattern of the PTEN, PAX2 and HAND2 immunohistochemical 
staining profile for each EH case that progressed, along with pertinent clinical details. The selected images for each case represent serial tissue sections 
of the most abnormal hyperplastic region. H&E - Haematoxylin and Eosin, PTEN - Phosphatase and Tensin Homolog, PAX2 - Paired Box 2 Protein, 
HAND2 - Heart and Neural Crest Derivatives-expressed 2, EC - Endometrial cancer, PMB - Postmenopausal bleeding, HMB - Heavy menstrual bleeding, 
IMB - Intermenstrual bleeding. Varying magnifications – see scale bars.   
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Figure 4-14: Immunohistochemical phenotype of the Cluster 2b EH case that progressed to malignancy. n=1 patient from cluster 2b had a 
subsequent endometrioid endometrial cancer diagnosis. Figure 4-14 summarises the expression pattern of the PTEN, PAX2 and HAND2 
immunohistochemical staining profile for the case, along with pertinent clinical details. The selected images for each case represent serial tissue sections 
of the most abnormal hyperplastic region. H&E - Haematoxylin and Eosin, PTEN - Phosphatase and Tensin Homolog, PAX2 - Paired Box 2 Protein, 
HAND2 - Heart and Neural Crest Derivatives-expressed 2, EC - Endometrial cancer, HMB - Heavy menstrual bleeding. Varying magnifications – see 
scale bars.   
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Figure 4-15A: Immunohistochemical phenotype of Cluster 3 EH cases that progressed to malignancy. n=6 patients from cluster 1 had a subsequent 
endometrioid endometrial cancer diagnosis. Figure 4-15A summarises the expression pattern of the PTEN, PAX2 and HAND2 immunohistochemical 
staining profile for each EH case that progressed, along with pertinent clinical details. The selected images for each case represent serial tissue sections 
of the most abnormal hyperplastic region. H&E - Haematoxylin and Eosin, PTEN - Phosphatase and Tensin Homolog, PAX2 - Paired Box 2 Protein, 
HAND2 - Heart and Neural Crest Derivatives-expressed 2, EC - Endometrial cancer, PMB - Postmenopausal bleeding, HMB - Heavy menstrual bleeding. 
Varying magnifications – see scale bars.   
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Figure 4-15B:  Immunohistochemical phenotype of Cluster 3 EH cases that progressed to malignancy. n=6 patients from cluster 1 had a subsequent 
endometrioid endometrial cancer diagnosis. Figure. 4-15B summaries the expression pattern of the PTEN, PAX2 and HAND2 immunohistochemical 
staining profile for each EH case that progressed, along with pertinent clinical details. The selected images for each case represent serial tissue sections 
of the most abnormal hyperplastic region. H&E - Haematoxylin and Eosin, PTEN - Phosphatase and Tensin Homolog, PAX2 - Paired Box 2 Protein, 
HAND2 - Heart and Neural Crest Derivatives-expressed 2, EC - Endometrial cancer, HMB - Heavy menstrual bleeding. Varying magnifications – see 
scale bars. 
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Figure 4-16: Representative immunohistochemical phenotype of Cluster 2b EH cases. n=2 patients from cluster 2b had a benign EH diagnosis. 
Figure. 4-16 demonstrates representative examples of the expression pattern of PTEN, PAX2 and HAND2 profile for two hyperplasia without atypia 
cases (HwA), along with pertinent clinical details. The selected images for each case represent serial tissue sections. H&E - Haematoxylin and Eosin, 
PTEN - Phosphatase and Tensin Homolog, PAX2 - Paired Box 2 Protein, HAND2 - Heart and Neural Crest Derivatives-expressed 2, EC - Endometrial 
cancer, HMB - Heavy menstrual bleeding. HwA - Hyperplasia without atypia. Varying magnifications – see scale bars. 
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4.5 Discussion 

We used optimised immunohistochemistry techniques to evaluate the expression 

patterns of the proteins PTEN, PAX2, HAND2, MLH1, MSH2, MSH6, PMS2, ARID1A and 

p53 across a well characterised endometrial hyperplasia (EH) tissue resource. These proteins 

were selected for investigation following a review of the literature relating to changes in their 

expression pattern in EECs (Sanderson et al., 2017). Our study benefitted from access to an 

EH tissue resource, the details of which are described in Chapter 3, as well as control samples 

from postmenopausal women without a diagnosis of EH or EEC. The overarching objective 

of our study was to see if we could elucidate any patterns of protein expression using these 

putative markers and we assumed that we might need to combine the results from several 

proteins to investigate the potential for a robust diagnostic marker panel for EH.  

PTEN protein expression has been widely reported to be altered across EH tissues, with 

a propensity for expression loss in premalignant EH lesions (reviewed in Sanderson et al., 

2017). Moreover, during the 2014 joint consensus conference on EC by the triad of: The 

European Society for Medical Oncology (ESMO), The European Society for Radiotherapy & 

Oncology (ESTRO) and The European Society of Gynaecological Oncology (ESGO), it was 

recommended that PTEN immunohistochemistry could be used to distinguish atypical 

hyperplasia/EIN from benign mimics (Colombo et al., 2016). In our current study, loss of 

PTEN protein in EH tissues with a diagnosis of EIN was 45.1 %, which is in keeping with 

previously published data (Monte et al., 2010; Mutter et al., 2001). However, we did not find 

any significant association between PTEN protein expression and a diagnosis of EIN or 

hyperplasia without atypia (HwA), concluding that PTEN is not a diagnostic marker for EIN, 

nor is it able to distinguish between high-risk EH (i.e. EIN) versus low-risk EH (i.e. HwA). 

Our data are supported by a recent meta-analysis of PTEN expression in EH tissues from 

Raffone et al (Raffone, et al., 2018a). The authors reviewed 27 observational studies 

incorporating 1736 cases of EH, reporting low pooled diagnostic accuracy: sensitivity 54 % 

and specificity 66 % and concluding that immunohistochemical evaluation of PTEN 

expression has low usefulness in the differential diagnosis between benign and premalignant 

EH (Raffone, et al., 2018a). Furthermore, when we analysed PTEN immunoexpression 

alongside the proteins PAX2 and HAND2 by hierarchical cluster analysis, PTEN protein was 

ubiquitously expressed across all cluster groups, with no significant difference in its 

expression pattern between the groups. This suggests that even as part of this potential 

diagnostic immunomarker panel, PTEN protein expression is not a helpful contributor. In 

terms of an association with progression of EH to EEC, 70 % of EH cases that progressed to 
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EEC in this study cohort exhibited some form of PTEN protein expression loss. This mirrors 

what is already known, that PTEN expression loss is associated with approximately 60 % of 

endometrioid endometrial cancers (EEC) (Garg et al., 2012) 

 Loss of PAX2 protein was noted to exhibit two distinct expression patterns in our 

current study, either the presence of null glands (Figure. 4-2C) or complete altered expression 

across EH tissues (Figure. 4-2E). Immunostaining of PAX2 has been reported in the literature 

to be technically robust, with a distinct glandular nuclear staining pattern that is not difficult 

to interpret and is seemingly highly reproducible (Quick et al., 2012; Rewcastle et al., 2018). 

Previous studies have reported a PAX2 immunoexpression loss rate at 71 % within EIN cases 

(Monte et al., 2010) and 74 % within atypical hyperplasia cases (Allison et al., 2012). PAX2 

immunohistochemistry was also recommended by the ESMO-ESGO-ESTRO Consensus 

Conference on EC to be used to distinguish atypical hyperplasia/EIN from benign mimics 

along with PTEN immunohistochemistry (Colombo et al., 2016).  

Contrary to published literature, we did not find similar rates of PAX2 protein 

expression loss within EIN cases from our human tissue resource, with 29.4 % of EIN cases 

demonstrating PAX2 altered expression in our hands. This is despite using the same antibody 

clone and immunohistochemical methodology as described by others (Jeffus et al., 2014; 

Monte et al., 2010; Quick et al., 2012; Rewcastle et al., 2018). Anecdotally, we did find that 

on reviewing our PAX2 stained tissues, a cytoplasmic ‘flare’ in the endometrial glands could 

sometimes be fairly significant and could distract from the evaluation of the pattern of nuclear 

immunostaining. This may reflect artefact from the age of the tissue specimens used in this 

study or the method of tissue fixation used, which could not be standardised. Our rate of PAX2 

loss may therefore be higher than described. Moving forwards, this creates a potential role for 

automated image analysis in the assessment of PAX2 stained tissue sections, to improve 

assessment of a nuclear staining pattern whilst excluding any confounding influence from the 

background glandular cytoplasm.  

 Despite our overall lower rates of PAX2 expression loss, we did find that loss of PAX2 

expression was significantly associated with a diagnosis of EIN in our study, although in 

isolation it was not a diagnostic marker. This is in keeping with a recent meta-analysis of 

PAX2 expression and EH by Raffone, et al who reviewed 6 studies, incorporating 266 normal 

endometrium, 586 EHs and 114 ECs. The authors observed that both decreased and complete 

loss of PAX2 expression were significantly more common in EC and precancerous EH than 

benign EH (Raffone, et al., 2018b). When we analysed PAX2 expression alongside PTEN and 

HAND2 by hierarchical cluster analysis, we found that the immunoscores of both PAX2 and 
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HAND2 defined the individual clusters groups, achieving statistical significance. Indeed, 

positive expression of PAX2 and HAND2 was highly associated with a benign EH diagnosis, 

as indicated by cluster 2b in the heatmap (Figure. 4-12).  

In murine models hand2 has been shown to be a progesterone receptor-regulated gene 

and its expression in endometrial stromal cells inhibits epithelial cell proliferation via 

suppression of fibroblast growth factors (FGFs) (Li et al., 2011). In addition, epigenetic 

modification of HAND2 has been suggested to play a role in endometrial carcinogenesis, 

whereby it is hypothesised that in the absence of HAND2, oestrogen signalling pathways 

become dominant and this may lead to increased endometrial proliferation (Bagcchi, 2013). 

Novel data generated by our study has demonstrated the stable expression of HAND2 protein 

across the normal cycling endometrium and the postmenopausal endometrium, which is 

exclusively located within the endometrial stromal compartment. We had considered that we 

might detect an increase in HAND2 protein expression in sections recovered during the 

secretory phase in keeping with higher expected levels of progesterone, and although there 

appeared to be a trend towards an increase in HAND2 mRNA expression, the changes were 

not statistically significant. We did not detect a change in the intensity of immunoexpression 

in samples from tissues recovered across the menstrual cycle. In keeping with published 

literature (Buell-Gutbrod et al., 2015; Jones et al., 2013), we demonstrated loss of HAND2 

protein immunoexpression across all grades of EEC utilising a representative sample set, with 

the novel finding of significant reductions in mRNA expression of HAND2 irrespective of 

EEC grade.   

 Altered (absent and/or reduced) HAND2 immunoexpression was significantly 

associated with a diagnosis of EIN in our study, with 77.6 % of all EIN cases demonstrating 

altered HAND2 immunoexpression. Our data represents the first investigation of HAND2 

protein expression applying the EIN classification system and we have utilised one of the 

largest sample sets of premalignant lesions (n=51 EIN cases) to date. These data corroborate 

findings from other groups who have investigated HAND2 protein expression within EH 

tissues and who found reduced protein expression, albeit using the WHO94 classification 

system and much smaller sample sets (complex atypical hyperplasia samples of n=10 and n=7 

respectively) (Buell-Gutbrod et al., 2015; Jones et al., 2013). 

 Contrary to expectations based on genomic profiling of EEC, in our dataset of EHs 

we did not find evidence that changes in expression of ARID1A were common in benign EHs 

or, pre-malignant EH lesions. We demonstrated that changes in ARID1A expression were 

exclusive to EIN lesions, with 5/51 (9.8 %) of EIN lesions demonstrating focal glandular loss 
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(either isolated or confluent ARID1A null endometrial glands) or complete ARID1A 

expression loss 1/51 (2.0 %). This was surprising given that ARID1A expression has been 

reported to be lost in 26-29 % of low grade and 39 % of high-grade EEC respectively (Takeda 

et al., 2016). Other groups have described similar rates of ARID1A expression loss in EH 

tissues. Mao et al reported clonal loss (focal regions of loss of ARID1A expression) at rates 

of 16 % in atypical endometrial hyperplasia, 24 % in uterine low-grade endometrioid 

carcinomas and 9 % in uterine high-grade endometrioid carcinomas, with respective rates of 

complete loss of 0, 25 and 44 % in these conditions (Mao et al., 2013). The lower rates of 

ARID1A expression loss that we describe may reflect the lower rate of EEC progression in 

our cohort. We found that 10/105 (9.5 %) EH cases in our cohort progressed to EEC, of these 

cases, n=2 (20 %) had altered ARID1A expression. Both of the EH samples with altered 

ARID1A expression were deemed to have concurrent EECs. We would speculate therefore 

that alteration in ARID1A expression may be a late step in the precancer-cancer transition and 

would advocate for further studies of this protein to investigate its role as: 1) a predictor of 

higher-risk EIN lesions with significant malignant potential and 2) an indicator of a possible 

concurrent malignancy that has not been sampled on biopsy. 

A further unexpected finding from our study was the low frequency of deficient 

mismatch repair (dMMR) within our tissue cohort, with a single patient sample exhibiting loss 

of MLH1 and PMS2 protein expression. dMMR is reported in ~25-30 % of somatic EEC 

(Hecht and Mutter, 2006) and in Lynch associated EEC, adjacent areas of atypical 

hyperplasia/EIN have been demonstrated to be highly concordant in their loss of expression 

of MMR proteins (Lucas et al., 2018). Larger scale investigation of dMMR detection by 

immunohistochemistry may therefore be warranted on more diverse EH sample sets in order 

to establish firm conclusions, however based on our current data we would not advocate the 

use of MMR proteins in an EH diagnostic panel. Staining for p53 was also not informative in 

this study, which is probably unsurprising since TP53 mutations are more usually associated 

with serous than endometrioid cancers for which EH is the major precursor (Alkushi et al., 

2004; Sherman et al., 1995; Soong et al., 1996).  

We subjected the results of the immunohistochemical staining for PTEN, PAX2 and 

HAND2 to hierarchical agglomerative clustering analysis (HAC). This analysis is one of the 

multivariate statistical methods that identifies groups of samples that behave similarly or show 

similar characteristics (Eisen et al., 1998). In the agglomerative approach used in our study, 

each immunohistochemical observation starts in its own cluster, and pairs of clusters are 

merged as one moves up the hierarchy (Szekely and Rizzo, 2005). Results of the present study 
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revealed that in utilising these three immunomarkers (PTEN, PAX2 and HAND2), EH samples 

could be classified into four distinct cluster groups. The immunohistochemical phenotype of 

each cluster was largely dependent on the pattern of HAND2 and PAX2 expression. The most 

striking feature from the cluster analysis was that in cluster 2b i.e. the ‘benign cluster’ 

containing 87.0 % of all the HwA cases, the immunohistochemical phenotype was that of 

PAX2 and HAND2 positivity. This suggests a potential role for these two protein markers as 

a diagnostic aid to differentiate between benign EH and premalignant EH. Certainly, this data 

warrants further prospective investigation in larger and more diverse sample cohorts. The 

largest number of EIN cases was located in cluster 3 (n=28, 54.9 %). This cluster group 

demonstrated predominantly HAND2 altered expression and interestingly also contained the 

largest number of cases which progressed to EEC (n=6, 60.0%). This finding raises further 

questions surrounding the role played by HAND2 in the premalignant-malignant transition of 

the endometrium. Further investigation is therefore needed into regulatory interactions 

between the stromal and epithelial cellular compartments in this context.   

We acknowledge that there will be limitations to the data presented in this study due 

to the retrospective nature of the tissue resource, in particular the variables which could not be 

standardised, e.g. the age of the tissue samples and discrepancies in tissue fixation. Moving 

forward, we would wish to verify the results obtained on larger and prospectively collected 

tissue resources. Further potential limitations of the studies described herein include the use 

of manual over automated immunohistochemistry techniques, the use of biopsy material over 

whole tissue / hysterotomy specimens and the evaluation of an endometrial stromal marker 

(HAND2) for conditions where stromal to epithelial ratios are decreased.  

Firstly, manual techniques were employed for immunohistochemical staining due to 

the heterogenous nature and the variable size of the tissue of interest. PTEN 

immunohistochemistry was performed using a Leica BOND-MAX (Leica Biosystems) robotic 

staining platform. This was due to known reports of a reduction in PTEN antigenicity within 

tissue sections with time after sections are cut from tissue blocks (Grillo et al., 2017). An 

observation from the automated PTEN staining was that larger tissue sections (which would 

often cover the entirety of the glass slide), often exhibited an ‘edge effect’ due to incomplete 

reagent coverage because of the automated covertile. Taking all of the above factors into 

consideration, manual techniques were employed for the remaining proteins of interest to 

maximise the information gained from each tissue sample. Likewise, tissue microarrays were 

not utilised, since we wanted to evaluate protein expression across the entire biopsy specimen 

rather than run the risk of sampling a tissue area which underrepresented a particular staining 
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pattern. Each manual staining batch used relevant control tissues, with meticulous adherence 

to standard operating procedures and quality checks.  

Secondly, biopsy materials were used in the current study over whole tissue or 

hysterectomy samples since the practical application of the protein markers would be on 

smaller biopsy samples, although we acknowledge that whole tissue wedge samples would 

permit localisation of protein expression patterns more accurately. Furthermore, tissue fixation 

is always superior in endometrial biopsy material, as there is no delay in formalin diffusing 

into the tissue, unlike hysterectomy specimens. Finally, with the use of a stromal 

immunomarker, a potential concern was that adequate volumes of stromal tissue would not be 

present in the EH and EEC samples to permit analysis. We did not find this to be the case and 

even in cases with limited amounts of stroma there was still sufficient material for analysis.  

In conclusion, data presented in this chapter confirm and extend existing literature on 

the expression patterns of the proteins PTEN, PAX2, ARID1A, MMR (MLH1, MSH2, MSH6, 

and PMS2), HAND2 and p53 within EH tissues. Importantly, this observational study of well 

characterised human EH samples utilises the EIN/WHO2014 diagnostic system, which as 

previously demonstrated offers improved diagnostic reproducibility over its predecessors. In 

line with our expectations we did not find any single protein marker which was singularly able 

to act as a diagnostic aid to pathological classification of EH or predict progression from EH 

to EEC. However, novel data generated using hierarchical cluster analysis suggests that the 

combined use of PAX2 and HAND2 immunohistochemistry may prove useful in delineating 

benign from premalignant EH and that this warrants further prospective investigation, 

potentially also as part of a larger panel of immunomarkers. 
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Chapter 5 

5 Investigation of the role of the tumour suppressors PTEN 

and ARID1A in endometrial epithelial cell proliferation 

5.1 Introduction  

The pre-menopausal endometrium undergoes cyclical changes in response to 

fluctuating levels of sex-steroid hormones produced by the ovaries (Critchley and Saunders, 

2009). In post-menopausal life, ovarian follicles no longer form, and ovulation ceases so that 

progesterone is no longer produced by corpora lutea. Any exposure to oestrogens (either 

natural or synthetic) in the absence progesterone can result in chronic stimulation of the 

endometrium, increased cell proliferation and an increased risk of endometrial hyperplasia 

(EH) and endometrial cancer (EC) (Key and Pike, 1988).  

Oestrogens occur naturally in several structurally related forms including, oestrone (E1), 

oestradiol (E2) and oestriol (E3). Members of 7β-Hydroxysteroid dehydrogenase family of 

enzymes (17β-HSDs) can reduce E1 to E2 and conversely can oxidise E2 to E1. Although E1 is 

the most abundant serum oestrogen during postmenopausal life, due to local biosynthesis 

within tissues (i.e. peripheral adipose tissue), the predominant intracellular oestrogen within 

the postmenopausal endometrium is reportedly E2 (Whitehead et al., 1981). Oestrogens bind 

to one of two nuclear receptors (oestrogen receptors (ERs) alpha and beta, ERα and ERβ), 

which are both encoded by independent genes (reviewed in Gibson and Saunders, 2012). The 

full-length receptors classically operate as ligand-dependent transcription factors, which in 

turn modulate gene expression.  

The typical endogenous ligands for both ERα and ERβ are E1 and E2, both of which 

exhibit agonist activity (Gruber et al., 2002). Classically, ligand-activated ERs form homo- or 

hetero-dimers which interact with consensus sequences, termed oestrogen response elements 

(EREs), within the promoter regions of genes (reviewed in Nilsson et al., 2001). However, 

ERs can also bind imperfect EREs or ERE half sites, eliciting transcriptional responses 

(reviewed in Klinge, 2001) and genomic investigation has suggested that several oestrogen-

response genes can also be regulated through indirect association of ERs with other DNA 

binding proteins (reviewed in Heldring et al., 2007).  

Molecular modelling of ER ligand binding domains has facilitated development of 

synthetic agonists and antagonists. For example, the compound Fulvestrant (ICI 182,780 
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marketed as FaslodexÒ) acts as an antagonist of both ERα and ERβ and is used for treatment 

of hormone-responsive breast cancer. An ERα-specific agonist, widely used in cell and animal 

studies is propyl-pyrazole-triol (PPT) (Sun, Huang, et al., 2002). The selective oestrogen 

receptor modulator (SERM), Tamoxifen, is capable of mixed agonist and antagonist activities 

at ERs which is dependent on tissue type; acting as an antagonist in breast tissue, with mixed 

agonist/antagonist activity in endometrial tissues (Dutertre and Smith, 2000). As such, 

Tamoxifen treatment for breast cancer can increase the risk of developing of both EH and EC, 

and there should be a low threshold for investigation of women with abnormal uterine bleeding 

(AUB) who are taking this medication.  

The PTEN tumour suppressor gene is reported to be the most commonly mutated and/or 

deleted gene within endometrioid ECs (Ayhan et al., 2015). In the landmark genomic profiling 

study undertaken by The Cancer Genome Atlas, which characterised ECs into four groups (i) 

‘ultramutated’, (ii) ‘hypermutated’, (iii) ‘copy-number low’ and (iv) ‘copy-number high, 

PTEN mutations were found in 94 %, 88 %, 77 % and 15 % of cases respectively (Kandoth et 

al.). In addition, the endometrial premalignant lesion, atypical hyperplasia / endometrioid 

intraepithelial neoplasia (EIN), has been reported to harbour PTEN mutations in ~55 % of 

cases (Mutter, Lin, et al., 2000).  

PTEN mutations can lead to the development of a truncated protein product (Ali et al., 

1999), alterations in which can be detected by immunohistochemistry, providing a surrogate 

marker for mutational status. As reported in chapter 4, we noted a loss of PTEN protein 

expression in 23/51 (45.1 %) cases of EIN (4.4.1.1). Furthermore, loss of PTEN protein 

expression has also been described in morphologically normal endometrial tissues, leading 

some to speculate that PTEN abnormalities may be an early event in the development of 

sporadic EC (Mutter, Lin, et al., 2000). On the contrary, a subsequent longitudinal study by 

the same group, analysed clone-specific PTEN mutations over time in the endometrium of 

women with a high- or low-reported risk for developing endometrial neoplasia (Mutter et al., 

2014). The group described that in only a small proportion (6.7%, 1/15) of cases, the PTEN-

null glands seen within historic benign biopsies were the direct progenitors of the ensuing 

neoplasia (EIN or EC) in high-risk women (Mutter et al., 2014). The authors therefore 

surmised that the temporal dynamics of PTEN clonal emergence, persistence, and involution 

are so sufficiently complex, that the presence of PTEN-null glands in otherwise histologically 

benign endometrium has an unknown contribution to long-term EC risk (Mutter et al., 2014).  

As discussed previously, PTEN expression is increased in both the glandular epithelium 

and stromal compartments during the oestrogen dominant proliferative phase, plausibly 
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influencing proliferation (Mutter, Lin, Fitzgerald, et al. 2000). Moreover, alterations in the 

endometrial hormonal milieu, both pharmacological (i.e. progestin therapy) (Zheng et al., 

2004) and physiological (i.e. bariatric weight loss surgery) (MacKintosh et al., 2019) have 

been demonstrated to promote reversal of PTEN expression loss. 

A suggested role for PTEN expression as a marker for EC progression stems from 

several lines of evidence showing that the protein regulates cell proliferation, tissue growth, 

and apoptosis via the PI3K/Akt/mTOR pathway (reviewed in Sansal and Sellers, 2004). PTEN 

catalyses degradation of Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generated by the 

PI3K pathway, and as such it exerts its role as a tumour suppressor by inhibiting downstream 

functions, including; the activation of Akt, cell proliferation and cell survival (Stambolic et 

al., 1998). PTEN overexpression in cancer cells carrying mutant- or deletion-type protein has 

been demonstrated to inhibit cell proliferation and tumorigenicity by instigating cell-cycle 

arrest at the G1 phase and also apoptosis (reviewed in Downward, 1998; Saito et al., 2003). 

Several in vitro and in vivo studies have suggested cross-talk between PI3K/Akt and 

oestrogen receptor signalling (Joshi et al., 2012). In breast cancer epithelial cells, ERα can 

reportedly bind to the p85α regulatory subunit of PI3K, in the absence or presence of E2, and 

as a consequence it can activate PI3K/Akt2 (Sun, Paciga, et al., 2001). Furthermore, in human 

and bovine endothelial cells, Simoncini and colleagues demonstrated that ERα binds in a 

ligand-dependent manner to the p85α regulatory subunit of PI3K and that stimulation with 

oestrogen increases ERα-associated PI3K activity, leading to the activation of Akt (Simoncini 

et al., 2000). It has also been suggested that PI3K and Akt can phosphorylate and directly 

activate ERα in the absence of a ligand, leading to an increased capacity to transcriptionally 

activate several target genes (Campbell et al., 2001). Moreover, in the endometrium of Pten+/− 

mice (which develop endometrial neoplastic lesions, both EH and EC), loss of Pten has been 

suggested to activate Akt leading to increased phosphorylation of ERα, and in turn activate the 

receptor in vivo and in vitro without the presence of a ligand (Vilgelm et al., 2006). The same 

group also reported that a reduction in endometrial ERα activity dramatically reduces the 

neoplastic effect of Pten loss in the murine endometrium, in contrast to complete oestrogen 

depletion (Vilgelm et al., 2006). These discoveries have led to some researchers to suggest 

that loss of PTEN may result in changes in tissue function through activation of ERα (Joshi et 

al., 2012). In addition, nongenomic actions of oestrogen via a surface receptor have been 

studied (Coleman and Smith, 2001; Levin, 2000), providing an alternative mechanism via 

which PTEN and oestrogen signalling may overlap. 
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The chromatin remodelling gene, ARID1A has been reported to be frequently mutated 

in a number of human cancers, including renal, breast and prostate malignancies (reviewed in 

Mao and Shih, 2013). An interestingly link with endometriosis associated ovarian cancers has 

also been suggested (Wiegand et al., 2010). ARID1A is described as a tumour suppressor 

(Huang et al., 2007) with reports that it can influence cell proliferation in both in vitro and in 

vivo tumorigenesis models (reviewed in Guan et al., 2011). Within the endometrium, ARID1A 

mutations have been demonstrated in ~40-50 % of low-grade endometrioid ECs (Guan, Mao, 

et al., 2011; McConechy et al., 2012). ARID1A mutations have been reported to frequently 

coexist with mutations of PIK3CA (Yamamoto et al., 2012) and/or loss of PTEN expression 

(Bosse et al., 2013), which both lead to a downstream activation of the PI3K/Akt pathway. 

Additionally, it has also been shown that loss of ARID1A expression in EC leads to an 

increased phosphorylation of Akt (Liang et al., 2012).  

Most mutations in ARID1A are insertions or deletions, bringing about the formation of 

a truncated protein that is susceptible to rapid degradation (as seen with PTEN). Thus, ARID1A 

gene mutations are highly correlated with loss of protein expression as assessed by 

immunohistochemistry, even in the absence of mutation in the other allele (i.e. 

haploinsufficiency) (Bosse et al., 2013). Endometrial ARID1A protein expression has been 

investigated, with reports of ‘clonal loss’ within glandular regions in 16 % (6/38)  of complex 

atypical hyperplasia’s (WHO94 classified), rising to ‘complete-loss’ loss in 24 % (21/88) of 

low-grade endometrioid ECs (Mao et al., 2013). This has led to the suggestion that ARID1A 

expression correlates with tumour progression in the endometrium (Mao et al., 2013). In our 

own studies, we have noted loss of ARID1A protein expression in 6/51 (11.8 %) of EIN cases 

(4.4.6.1). 

In summary, the proliferative endometrial environment created by exogenous or 

endogenous ‘unopposed’ oestrogen exposure (be that iatrogenic, pathological, obesity-related, 

or as a consequence of chronic anovulatory states) is generally regarded as one of the major 

risk factors for the development of both EH and EC. In addition, mutations of the tumour 

suppressors PTEN and ARID1A have been extensively described in endometrial neoplasia, 

with immunohistochemical evidence for loss of their protein expression within pre-malignant 

EH lesions (as reported in chapter 4). The potential for overlap of these two factors is apparent, 

especially in the context of driving the proliferation of a neoplastic endometrial environment. 

To that end, we hypothesised that manipulation of PTEN and ARID1A within endometrial 

epithelial cells would increase cellular proliferation and postulated that the effect may be 

further enhanced by an oestrogenic environment.   
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5.2 Aims of this chapter 

1. To establish an in vitro endometrial epithelial cell model and use it to investigate cell 

proliferation in the context of: 

a. Knockdown of PTEN expression 

b. Knockdown of ARID1A expression 

c. Overexpression of oestrogen receptor alpha (ERα) 

 

2. To explore the effect that knockdown of PTEN expression with overexpression of 

oestrogen receptor alpha (ERα) has on cell proliferation in an oestrogen stimulated 

environment 
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5.3 Materials and methods 

5.3.1 In vitro cell culture 

 All cell culture work was carried out in class II biological safety cabinets designated 

specifically for either primary cell culture, secondary cell culture or for viral work. Local 

standard operating procedures for tissue culture were strictly adhered to. 

 

5.3.1.1 Isolation of primary human endometrial cells 

 Primary human endometrial cells were isolated from human endometrial biopsy 

material as described previously (section 2.1.3 and 2.2.1) and following established literature 

protocols (Chan et al., 2004; Gargett et al., 2009; Valentijn et al., 2013). All patient 

endometrial biopsy samples utilised for the isolation of primary endometrial cells in this study 

are listed in Table. 5-1, together with anonymised clinical information. All patients were 

within an 18-49-year age range and had menstrual cycles ranging between 24-35 days. Stage 

of the cycle was confirmed by histopathology. In addition to routine cell culture for 

propagation, a 4-chamber glass slide (Thermo Scientific Nunc 154526) pre-coated with 

attachment factor (Gibco, S006100) was seeded immediately after isolation (Day 0) at 1x105 

cells/mL (cells counted as per 2.2.3.3) for imaging and immunocytochemical analysis of each 

sample. 

 

5.3.1.2 Human endometrial cell lines 

 Ishikawa, MFE-280, KLE and SHT-290 human cell lines were utilised as part of this 

study, as detailed in 2.2.2. Experiments were carried out using the lowest possible cell passage 

number. Routine cell culture was performed as per 2.2.3. As previously described, 72 hours 

prior to any experimentation, cells were moved to phenol-free media variants (DMEM/F12 

(Gibco 21041025) and RPMI 1640 (Gibco, 11835030)), in addition to a switch to charcoal 

stripped fetal calf serum (CCFCS, as per 2.3.3.4), in order to reduce potential cofounding 

stimulatory effects. 
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5.3.1.3 Cell line doubling time 

 Experimental procedures were carried out with cell lines in the exponential growth 

phase, i.e. with all the cells dividing regularly and growing by geometric progression. Cell 

doubling time was calculated for all secondary cell lines (Table. 5-2). Cell lines were first 

seeded into 24-well plates (Corning, CLS3527) at 1x105 cells/mL per well. Cell counts were 

performed every 24 hours for a period of 10 days (see 2.2.3.3). An online cell doubling time 

calculator (http://www.doubling-time.com/compute_more.php) was utilised to analyse the 

data. Cell doubling times were used to inform the initial seeding concentrations of cell lines 

within this study. 

 

Table 5-1: Anonymised clinical information and histological cycle stage of endometrial 
biopsy material utilised for isolation of primary endometrial cells.  

Ref Ethics 
approval 

Lab 
code Age BMI Parity Exogenous 

hormones H&E stage 

1 16/ES/007 CT1691 48 22 2 No Proliferative 

2 16/ES/007 CU1725 39 25 3 Yes Proliferative 

3 16/ES/007 CT1924 52 35 3 No Proliferative 

4 11/AL/0376 3526 40 19 1 UN Early secretory 

5 11/AL/0376 3520 29 24 1 UN Proliferative 

6 11/AL/0376 3519 UN UN 0 No Early secretory 

7 11/AL/0376 3516 20 23 1 UN Proliferative 

8 11/AL/0376 3537 UN UN 1 Yes Early secretory 

9 11/AL/0376 3540 22 26 0 No Proliferative 

10 11/AL/0376 3541 22 25 0 UN Proliferative 

BMI = body mass index (kg/m2), H&E = haematoxylin and eosin stain, UN = Unknown 

 

Table 5-2: Cell line doubling times. 

Cell line Cell doubling time (hours) 

Ishikawa 22.4 

MFE-280 52.0 

KLE 96.2 

SHT-290 48.7 
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5.3.1.4 3D cell co-culture 

 3D cell co-culture was performed utilising the Ishikawa and SHT-290 cell lines. In 

brief, highly porous polystyrene scaffolds engineered into a 200 µm thick membrane mounted 

on a 6-well insert (Alvetex®, Amsbio AMS.AVP004-32) were purchased. After washing the 

scaffold membrane in 70 % ethanol, followed by x2 sterile DPBS (Dulbecco's Phosphate-

Buffered Saline, without calcium and magnesium (Gibco 14040-091)), washes, Matrigel® 

extracellular matrix (Corning, 734-110) was added to the centre of the scaffold at a 1:10 

dilution in complete cell medium to a total volume of 300 µl and allowed to stand for 90 

minutes at room temperature over a 6-well plate (Corning, CLS3516-50EA).   

 SHT-290 cells were added to the required number of scaffolds at 1x106 cells per 

scaffold in 300 µl of media. Scaffolds were then incubated for 120 minutes at 37 oC humidified 

conditions with 5 % CO2 in air. 5 mL of complete cell medium was then added to the bottom 

of the well contained the scaffold using a pipette and allowed to slowly rise and submerse the 

scaffold membrane, prior to returning to the incubator. 24 hours later, cell culture medium was 

aspirated, and Ishikawa cells were added to the top of the scaffold membrane at 0.5x106 cells 

per scaffold in 300 µl of media. Scaffolds were incubated for 30 minutes prior to the addition 

of 5 mL cell culture medium as above. Scaffolds were cultured for 10 days with complete cell 

medium changes every 2 days.  

 After 10 days of culture, scaffolds were removed from their inserts with sterile forceps 

and washed twice in sterile 37oC DPBS. Scaffolds were bisected using a sterile scalpel with 

one half fixed for 24 hours in Bouins fixative (for future haematoxylin and eosin staining) and 

the other half for 24 hours in 4 % Paraformaldehyde (for future immunofluorescence). After 

24 hours the bisected scaffolds were removed from their respective fixatives and carefully 

washed twice in sterile DPBS, prior to dehydration in various ethanol concentrations (50 %, 

70 %, 80 %, 90 % and then 95 % ethanol). Bisected scaffolds were stored in 95 % ethanol 

prior to paraffin wax embedding, sectioning and histology (see 2.3.1).  
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5.3.2 Lentiviral manipulation of gene expression within cell lines 

 Lentiviral vectors (see Table. 5-3) were designed and created as described in 2.2.4 (by 

Dr. Pamela Brown and Ms. Linda Ferguson, Shared University Research Facility (SuRF), 

Biomolecular core, The University of Edinburgh). Viral transduction efficiency was 

determined for the MFE-280 and KLE cell lines using a test lentiviral construct, Lv-cppt-

CMV-emGFP-opre (previously generated in-house by the Biomolecular core, The University 

of Edinburgh). This established the optimum lentiviral multiplicity of infection (MOI) number 

as 5 for both MFE-280 and KLE cell lines. The pLenti6-cppt-CMV-IRES-mCherry-opre 

control lentivirus (previously generated in-house by the Biomolecular core, The University of 

Edinburgh) was also used in this study. 

 

5.3.2.1 Creation of stably transduced cell lines 

 In brief, MFE-280 and KLE cell lines were harvested and counted as per 2.2.3.1 and 

2.2.3.3. MFE-280 and KLE cells lines were seeded into 6-well cell culture plates (Corning, 

CLS3516-50EA) at 5x105 cells/well in 2 mL complete cell medium. After 24 hours incubation, 

the cells were visualised using an inverted phase contrast microscope to ensure their health 

and 40 – 80 % confluence. From this point forward, all experimentation took place in a 

designated viral cell culture room. The cells were infected with the desired lentivirus at a MOI 

of 5 in 1 mL of complete cell medium and incubated for 24 hours. Polybrene (Hexadimethrine 

Bromide, Sigma-Aldrich, 107689) was used as necessary (at 8 µg/mL) (see Table. 5-3) in 

order to increase transduction efficiency by neutralising any repulsion charge between viral 

particles and the cell surface. After 24 hours, cell medium was exchanged, and cells incubated 

for a further 48 hours. 

  At 72 hours post infection, cells were imaged using an epifluorescence microscope 

with relevant light filter cubes (EVOS™ FL Imaging System, Thermofisher Scientific 

FLAMF4300). Once expression of the expected fluorescent tag was confirmed (either 

EmGFP, Figure. 5-1 or mCherry, Figure. 5-2) the cells were incubated with 10 µg/mL of 

blasticidin (Thermofisher Scientific, A1113903) in 2 mL of cell medium. Resistant cells were 

selected by culture over a period of ~10-14 days with medium changes twice weekly. After 

~10-14 days the cells were re-imaged with the epifluorescence microscope to confirm that all 

surviving cells were expressing the fluorescent tag. Cells were then propagated as per 2.2.3 in 

complete cell medium containing a maintenance dose of blasticidin (1 µg/mL) and protein 

expression was determined by Western blot prior to experimentation.
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Table 5-3: Details of lentiviral vectors created specifically for use in this study 

Lentiviral vector Construct Construct sequence 
Titre  

(TU / mL) 
Polybrene 

Fluorescent 
tag 

pLenti6-cppt-CMV-emGFP-
hPTEN-1093 miR-1093 

TGC TGT ATA GGT CAA GTC TAA GTC GAG TTT TGG 
CCA CTG ACT GAC TCG ACT TAC TTG ACC TAT A 1.3 x 108 No EmGFP 

pLenti6-cppt-CMV-emGFP-
hPTEN-1672 miR-1672 

TGC TGT TAG CTG GCA GAC CAC AAA CTG TTT TGG 
CCA CTG ACT GAC AGT TTG TGC TGC CAG CTA A 1.2 x 108  No EmGFP 

pLenti6-cppt-CMV-emGFP-
hARID1A-1776 miR-1776 

TGC TGT TTG CTG GTT GTA ATA TGG AGG TTT TGG 
CCA CTG ACT GAC CTC CAT ATC AAC CAG CAA A 1.4 x 108  No EmGFP 

pLenti6-cppt-CMV-emGFP-
hARID1A-2233 mir-2233 

TGC TGT CTT CTT GCC CTC CCT TAC TGG TTT TGG 
CCA CTG ACT GAC CAG TAA GGG GGC AAG AAG A 1.3 x 108  No EmGFP 

pLent6-cppt-CMV-emGFP-
miR-NEG-control Scr-miR 

TGC TGA AAT GTA CTG CGC GTG GAG ACG TTT TGG 
CCA CTG ACT GAC GTC TCC ACG CAG TAC ATT T 8x107 No EmGFP 

pLenti6-cppt-CMV-ESR1-
IRES-mCherry-opre ESR1 GAT CCC AGA TTG GCC AGT ACC AAT GTT CAA 

GAG ACA TTG GTA CTG GCC AAT CTT TTT TTG GAA 3.2 x 107 Yes mCherry 

miR = micro-ribonucleic acid, IRES = internal ribosomal entry site, CMV = cytomegalovirus promotor, opre = optimised post-translational response 
element, emGFP = emerald green fluorescent protein, mCherry = member of red fluorescent protein family, cppt = central polypurine tract, Scr-miR = 
scrambled micro-ribonucleic acid, PTEN = phosphatase and tensin homolog, ARID1A = AT-rich interactive domain-containing protein 1A. TU = 
transduction unit.
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Figure 5-1:Representative images demonstrating lentiviral transduction of endometrial cell lines (‘Knock-down’). Representative images of the 
KLE endometrial adenocarcinoma cell line following lentiviral transduction with Lv-cppt-CMV-EmGFP-ARID1A-1776-miR. A) KLE cells 72 hours 
after lentiviral transduction, phase-contrast image. B) As in image A, epifluorescent image with GFP light cube. Several cells demonstrate expression of 
emerald green fluorescent protein (EmGFP) indicating integration of the lentiviral vector into the host cell genome. C) Merged image A and B. D) KLE 
cells after 14 days of Blasticidin selection, phase-contrast image. E) As in image D, epifluorescent image with GFP light cube. All cells demonstrate 
expression of EmGFP, indicating integration of the lentiviral vector. Cells without lentiviral integration lack the resistance gene to blasticidin and have 
been killed by the selection agent. F) Merged image D and E. Magnification – see scale bar.
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Figure 5-2: Representative images demonstrating lentiviral transduction of endometrial cell lines (‘Overexpression’). Representative images of 
the MFE-280 endometrial adenocarcinoma cell line following lentiviral transduction with pLenti6-cppt-CMV-ESR1-IRES-mCherry-opre. A) MFE-280 
cells 72 hours after lentiviral transduction, phase-contrast image. B) As in image A, epifluorescent image with RFP (red fluorescent protein) light cube. 
Several cells demonstrate expression of mCherry (member of the RFP family) indicating integration of the lentiviral vector into the host cell genome. C) 
Merged image A and B. D) MFE-280 cells after 14 days of Blasticidin selection, phase-contrast image. E) As in image D, epifluorescent image with RFP 
light cube. All cells demonstrate expression of mCherry, indicating integration of the lentiviral vector. Cells without lentiviral integration lack the 
resistance gene to Blasticidin and have been killed by the selection agent. F) Merged image D and E. Magnification – see scale bar.
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5.3.2.2 Fluorescence activated cell sorting (FACS) of co-transduced cell lines 

 Cell lines co-transduced with two lentiviral vectors in order to alter the expression of 

two proteins of interest were created as per 5.3.1.6, with the following modifications. The cells 

were co-infected with two lentiviral vectors simultaneously at a MOI of 5 for each virus in a 

total of 1 mL of culture medium (+/- polybrene). In order to select for double positive cells 

expressing both EmGFP and mCherry the cells underwent FACS at 72 hours instead of 

blasticidin selection.  

 In brief, following detachment from plasticware as per 2.2.3.1, cells were washed with 

3 mL filtered FACS buffer (sterile Dulbecco's Phosphate-Buffered Saline, without calcium 

and magnesium (Gibco 14040-091), with 2 % bovine serum albumin added). Samples were 

centrifuged for 5 minutes (115g at room temperature) prior to resuspension in 5 mL of FACS 

buffer and filtered to remove clumps using a 40 μm nylon mesh cell strainer (BD Falcon, 

352340). Cell suspensions were counted, and viability assessed as per 2.2.3. FACS was 

performed by the Centre for Inflammation Research (CIR) Flow Cytometry Facility team, 

using a BD Aria Fusion FACS sorter (BD, UK). Sorted cells (Figure. 5-3) were then 

propagated as per 2.2.3 in cell medium containing a maintenance dose of blasticidin (1 µg/mL) 

and protein expression was determined by Western blot prior to experimentation.
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Figure 5-3: Representative images demonstrating lentiviral co-transduction of endometrial cell lines (‘Knockdown and ‘Overexpression’) post 
FACS. Representative images of the MFE-280 endometrial adenocarcinoma cell line following lentiviral co-transduction with pLenti6-cppt-emGFP-
hPTEN-1093 and pLenti6-cppt-CMV-ESR1-IRES-mCherry-opre. 72 hours post lentiviral co-transduction cells were detached from plasticware and 
underwent fluorescence-activated cell sorting (FACS) in order to produce a population of EmGFP and mCherry double positive cells. After sorting, double 
positive cells were returned to culture in maintenance Blasticidin cell media and imaged 24 hours later. A) MFE-280 co-transduced cells 24 hours after 
FACS sorting, phase-contrast image. B) As in image A, epifluorescent image with GFP (green fluorescent protein) light cube. All cells demonstrate 
expression of EmGFP (example with white arrow) indicating integration of the pLenti6-cppt-emGFP-hPTEN-1093 vector into the cell genome. C) As in 
image A, epifluorescent image with RFP light cube. All cells demonstrate expression of mCherry (example with white arrow), indicating integration of 
the pLenti6-cppt-CMV-ESR1-IRES-mCherry-opre vector into the cell genome. D) Merged image of A, B and C demonstrating co-localisation of EmGFP 
and mCherry expression in all cells (example with white arrow). Magnification – see scale bar.
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5.3.3 Cell proliferation assay 

 The impact of both manipulation of gene expression and ligand treatment on cell 

proliferation was assessed using CyQUANT® Direct Cell Proliferation Assay (Thermo Fisher, 

C35011) according to manufacturer’s instructions and nuclear fluorescence measured using a 

Novostar Microplate Reader (BMG labtech). The CyQUANT® assay consists of two 

components: a green fluorescent nucleic acid stain and a background suppression dye. The 

nucleic acid dye is a live cell-permeable reagent that mainly concentrates in the nucleus of 

mammalian cells. The suppression dye is impermeable in live cells and suppresses “green” 

fluorescence. The combination of these two components results in an assay based on both 

DNA content and membrane integrity. 

 In brief, cell lines were harvested and counted as previously described (2.3.3.1 and 

2.2.3.3), before being seeding into black 96-well optical bottom plates (Thermofisher 

Scientific 165305) at 5000 cells per well in 200 µL of phenol-free, CSFCS containing cell 

medium – numbers of wells guided by individual experimental design. Each plate was 

centrifuged (Sorvall ST 16R, Thermofisher Scientific) (1 minute at 30g, room temperature) in 

order promote even spread of the cells within each well and cell adherence. The CyQUANT® 

assay was then utilised at desired time points.  

 Firstly, a 2x cell detection regent was made (12 mL required for x1 96-well plate; 11.7 

mL of phenol-red free, CSFCS complete cell medium was added to 48 µL of CyQUANT® 

Direct nucleic acid stain and 240 µL of CyQUANT® Direct background suppressor I, prior to 

mixing at room temperature). 200 µL of the 2x detection reagent was added to the desired 

wells, followed by a 60-minute incubation at 37 oC humidified conditions with 5 % CO2 in air. 

Fluorescence was then measured using a Novostar Microplate Reader (BMG labtech) at 

480/535 nm, 1500 gain. Cell free control wells were used to exclude background ‘noise’. For 

each cell line variant investigated, cell number was first quantified using a standard curve of 

known cell numbers. 

 

5.3.3.1 Treatments with ligand 

 The CyQUANT® Direct Cell Proliferation Assay was used to assess the effect of 

ligand treatment of cell lines and their variants. Ligands were prepared to final working 

concentrations as per 2.2.5. Cell lines were prepared as per 5.3.3. 24 hours after seeding, 

complete cell medium was removed from each well by gentle vacuum aspiration, taking care 
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not to dislodge the cells. 200 µL of phenol-free, serum free complete cell medium or phenol-

free, serum free complete cell medium with 10-7M Fulvestrant (ICI, 182,780) was added and 

incubated at 37 oC in humidified conditions with 5 % CO2 in air for 1 hour, thereafter the 

medium was removed by gentle aspiration and 200 µL of phenol-free, serum free complete 

cell medium containing the desired ligand was added. Plates were then incubated for 72 hours 

and the CyQUANT® assay performed as per 5.3.3. Using standard curves of known cell 

numbers for each transduced cell line, fold-change in cell number was calculated relative to 

vehicle control for each ligand treatment group. 

 

5.3.4 Reporter assays 

 An adenoviral vector containing a 3× ERE-tk-luciferase reporter gene was generated 

as described in Collins et al., 2009. Cells lines of interest were cultured in 6 well-plates 

(Corning, CLS3516-50EA) at 1x105 cells/ well in 4 mL phenol-red free complete medium 

with the addition of CSFCS (complete medium for each cell line as per Table. 2-1). 24 hours 

later they were infected with Ad-ERE-Luc adenovirus at a MOI of 25 (MOI already 

established from previous adenoviral transfections performed by the Saunders group utilising 

MFE-280 and KLE cells). After a further 24 hours, cells were incubated with phenol-free, 

serum free, complete cell medium or phenol-free, serum free, complete cell medium with 10-

7M Fulvestrant (ICI, 182,780) for 1 hour (as described in 5.3.3.1, modified to account for the 

larger volume of complete cell medium required for a 6-well plate, i.e. 4 mL per well). 

Following this, medium was removed by gentle aspiration and 4 mL of phenol-free, serum 

free, complete cell medium containing the desired ligand (as described in 2.2.5) was added. 

Cells were treated for 24 hours, following which luciferase activity was determined using the 

Bright-Glo™ Luciferase Assay System (Promega, TM052). Luminescence was measured 

using Fluostar Microplate Reader (BMG labtech) and the change in luciferase activity was 

calculated relative to vehicle control for each treatment. All treatments were carried out in 

duplicate to permit measurement of whole protein lysate concentration (as per 2.9.2) in order 

to normalise the reporter assay for cell number.
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5.3.5 Immunohistochemistry and immunofluorescence  

Immunohistochemistry, immunofluorescence and fluorescent immunocytochemistry 

were carried out as described in section 2.3 using the antibodies and detection systems outlined 

in Tables. 5-4 and 5-5. 

 

Table 5-4: Primary antibodies used for immunohistochemistry and immunofluorescence. 

Primary 
antibody Species Supplier Cat. No Dilution 

IHC Dilution IF 

CD10 Mouse ThermoScientific MS-728-S 1:250 1:400 

pan-
Cytokeratin Mouse Sigma-Aldrich C2562 1:4000 1:15000 

pan-
Cytokeratin* Rabbit Abcam ab9377  1:100 

IHC = immunohistochemistry, IF = immunofluorescence 
*For dual fluorescent immunocytochemistry utilising both CD10 and pan-cytokeratin, where 
the antibodies need to be raised in different animal species (as discussed in 2.5.1) a rabbit 
raised pan-cytokeratin antibody was used. 

 

 

Table 5-5: Detection systems used for immunohistochemistry and immunofluorescence. 

Primary 
antibody Detection 

 IHC IF 

CD10 ImmPRESS™ 
Anti-Mouse DAB Goat anti-Mouse HRP 

Tyramide 
(Fluoresin) 

pan-
Cytokeratin 

ImmPRESS™ 
Anti-Mouse DAB Goat anti-Mouse HRP 

Tyramide 

(Cyanine-3) 

pan-
Cytokeratin*   

Goat anti-rabbit 
biotinylated IgG H&L 

Streptavidin 
Alexa Fluor 555 

IHC = immunohistochemistry, IF = immunofluorescence, DAB = 3, 3 –diaminobenzidine, 
HRP = horseradish peroxidase, H&L = heavy and light chains.  
*For dual fluorescent immunocytochemistry a biotin and streptavidin method was used   
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5.3.6 Western Blot 

 Western blots were performed as described in Section 2.11. The antibodies used are 

listed in Table. 5-6. Semi-quantitative densitometry was performed using the Image Studio 

Lite software (Licor, UK). 

 

Table 5-6: Antibodies used for the detection of proteins of interest in this study by 
Western blot. 

Protein 
target Species Supplier Cat. No Dilution 

IR 
Secondary 
antibody 

Dilution 

PTEN Mouse Agilent 
Dako 

M362729-2 1:1000 
DAM 

680RD 
1:10000 

ARID1A Rabbit Sigma-
Aldrich 

HPA005456 1:500 
DAR 

680RD 
1:10000 

ERα Mouse Vector ER6F11 1:800 
DAM 

680RD 
1:10000 

Actin Goat Santa-
Cruz 

SC-1616 1:500 
DAG 

800CW 
1:10000 

β-Tubulin Mouse Sigma-
Aldrich 

T8328 1:1000 DAM 
800CW 

1:10000 

IR secondary antibody = IRDye® secondary antibody by Licor. DAM = Donkey anti-Mouse, 

DAR = Donkey anti-Rabbit, DAG = Donkey anti-Goat.  

 

5.3.7 RNA extraction 

RNA was extracted and quantified as described in section 2.7. 
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5.3.8 Two-step quantitative real-time reverse transcription polymerase 

chain reaction (qRT-PCR) 

Reverse transcription, quantitative real-time PCR (TaqMan® method) and qPCR 

analysis was performed as described in section 2.8. CYC was used as the housekeeping gene. 

Primer/probe use for this chapter is listed below (Table. 5-7). 

 

Table 5-7: Primer pair sequences and probes used for qRT-PCR 

Gene 
Name Accession Code Primer Sequences Primer Position / Probe 

MME NM_000902.3 
gcgaagcttgaccgagag 41-58 

19 
tgcccatcacctaaaatcgt 108-127 

 

 

5.3.9 Statistical analysis 

 Statistical analysis was performed using GraphPad Prism 8.0. A one-way ANOVA 

was used to determine significance between variables that were normally distributed, with 

Tukey’s multiple comparison test. A two-way ANOVA was used to determine significance 

between variables and time for data that were normally distributed, with Sidak’s multiple 

comparisons test. Non-parametric testing was utilised where sample sizes were insufficient to 

confirm normality of data distribution or data was not normally distributed; Kruskal–Wallis 

test was used. For data analysed as fold-change, significance was tested using a one sample t 

test and a theoretical mean of 1. Criterion for significance was p < 0.05. All data are presented 

as mean ± s.e.m. 
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5.4 Results 

5.4.1 Human endometrial epithelial tissue and the immortalised 

Ishikawa adenocarcinoma epithelial cells are both pan-Cytokeratin 

positive  

Cytokeratins are keratin proteins found within the cytoskeleton of epithelial tissues. It 

is widely accepted that the pan-Cytokeratin (PCK) antibody provides a broad spectrum of 

reactivity and recognises epitopes in low-molecular weight and high-molecular weight 

cytokeratins in virtually all human epithelia. Expression of PCK was investigated in order to 

confirm or exclude the presence of endometrial epithelial cells within cell isolates from 

primary human endometrial tissue in this study. Within normal endometrial tissue, PCK was 

detected by immunohistochemistry, demonstrating a strong brown (DAB) cytoplasmic 

staining pattern within the endometrial glandular epithelial compartment; in line with 

expectations the endometrial stromal compartment was immunonegative (Figure. 5-4A).  

A ‘normal’ human endometrial epithelial cell line is not widely available, since 

anecdotally the phenotype of such cells tends to vary, and there have been reports that some 

cultures that claim to be endometrial cells have become contaminated with other cell lines, 

e.g. MCF7 (Korch et al., 2012). The Ishikawa cell line (see 2.2.2.1) is therefore commonly 

used as a surrogate for primary cells, as it was originally derived from a well-differentiated 

tumour (Nishida et al., 1985) and shares several phenotypic characteristics with epithelial cells 

in situ, including expression of oestrogen and progesterone receptors (Lessey et al., 1996b). 

Expression of PCK was confirmed within the Ishikawa cells grown in our laboratory (ECACC 

99040201) by means of single fluorescent immunocytochemistry, showing intense strong 

cytoplasmic staining in keeping with epithelial cell lineage (Figure. 5-4C). 

 

5.4.2 Human endometrial stromal tissue and human immortalised SHT-

290 stromal cells are both CD10 positive  

Expression of the cell surface enzyme CD10 was investigated in order to confirm or 

exclude the presence of endometrial stromal fibroblasts within cell isolates from primary 

human endometrial tissue samples. It has been reported that CD10 is exclusively expressed 

within the cytoplasm of stromal cells in normal cycling human endometrium (McCluggage et 

al., 2001; Toki et al., 2002). This was confirmed in house using immunohistochemistry to 

interrogate sections of normal human endometrial tissue (Figure. 5-4B, courtesy of Dr Douglas 



Chapter 5 – The role of PTEN and ARID1A in endometrial epithelial cell proliferation 

191 
 

Gibson, The University of Edinburgh). Expression of CD10 was investigated within 

immortalised SHT-290 cells (see 2.2.2.4) by means of single fluorescent 

immunocytochemistry, confirming strong cytoplasmic staining pattern and indicating that the 

SHT-290 cell line remains phenotypically similar to human endometrial stromal cells even 

after repeated passage in vitro (Figure. 5-4D).  

 

5.4.3 Immuno-phenotyping of human immortalised SHT-290 stromal 

cells and the Ishikawa adenocarcinoma cell in a 3D co-culture 

system 

The purpose of immuno-phenotyping endometrial epithelial and stromal cell lines was 

to provide positive controls for characterisation of primary cells isolated cells from human 

primary endometrial tissues. For this reason, Ishikawa and SHT-290 cells were grown in a 3D 

co-culture system and investigated for their dual expression of CD10 and PCK. Figure. 5-4E 

demonstrates that Ishikawa cells express PCK but not CD10 and SHT-290 cells express CD10 

but not PCK, confirming that different cell types can readily be identified in 3D scaffolds, 

providing a platform for the future investigating of primary endometrial stromal and epithelial 

cells obtained from human tissue biopsy material.   

 

  



Chapter 5 – The role of PTEN and ARID1A in endometrial epithelial cell proliferation 

192 
 

 
Figure 5-4: Immuno-characterisation of endometrial epithelial and stromal cells. A, B) Within FFPE tissue sections of normal human cycling 

endometrium, endometrial epithelial cells (black arrow) express strong cytoplasmic brown (DAB) staining of pan-Cytokeratin (PCK) (A) but are negative 

for CD10 (B). Conversely, endometrial stromal fibroblast cells (S) demonstrate strong brown (DAB) cytoplasmic staining of CD10 (B) but are negative 

for PCK (A). C) The human endometrial adenocarcinoma (epithelial cell malignancy) immortalised cell line, Ishikawa, demonstrates strong cytoplasmic 

staining of PCK (red - Cyanine3) by single fluorescent immunocytochemistry (white arrow). D) The human telomerase reverse transcriptase (hTERT) 

immortalised endometrial stromal cell line, SHT-290, demonstrates strong cytoplasmic staining of CD10 (green - fluorescein) by single fluorescent 

immunocytochemistry (white arrow). E) Dual fluorescent immunocytochemistry of both Ishikawa cells and SHT-290 cells grown in 3D co-culture, 

demonstrates that Ishikawa cells (yellow arrow) stain positively for PCK (red) and are negative for CD10 (green), whilst SHT-290 cells (white arrow) 

stain positively for CD10 (green) and are negative for PCK (red). NC = Negative control, DAPI (4’, 6-diamidino-2-phenylindole) = blue nuclear 

fluorescent counterstain. Image B courtesy of Dr Douglas Gibson, The University of Edinburgh. Various magnifications – see scale bars.
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5.4.5 Morphological characteristics of primary human endometrial cells 
isolated from Pipelle® human endometrial biopsy material 

Human primary endometrial cells (PECs) were isolated as described (5.3.1.1) with the 

aim of obtaining a pure population of primary endometrial epithelial cells with which gene 

manipulation could be performed in order to address the objectives of this chapter.  Figure. 5-

5 shows phase-contrast microscopy images of a representative isolate of primary endometrial 

cells (sample 3526, Table. 5-1). In this representative example, the morphology of cells on day 

2 post isolation was consistent with an epithelial cell phenotype (Figure. 5-5 C&D), with 

discernible isolated groups of adherent cells with a polygonal shape and regular dimensions. 

By day 4, the presence of cells with fibroblastic morphology (multipolar and elongated cells) 

was detected, suggestive of contamination with more rapidly dividing stromal cells. By day 

10 of culture, significant cell death appeared to have occurred (less cells), those that remained 

adherent to the plastic had a morphology suggestive of senescence (Figure. 5-5 G&H) with 

flat, enlarged and irregular appearances.  

 

5.4.6 Dual fluorescent immunocytochemistry for CD10 and pan-
Cytokeratin on isolated primary endometrial cells suggests a 
mixed population of epithelial and stromal cells   

As described in 5.3.1.1 four-chamber glass slides were seeded with isolated human 

PECs on day 0 for the purpose of immuno-phenotyping the isolated cells. Consistent with 

morphology observed under the phase-contrast microscope, on day 2 post isolation 

populations of cells that were immunopositive for PCK but not CD10 were present consistent 

with an epithelial cell phenotype (Figure. 5-6). By day 4 post isolation, the cultures contained 

some CD10 positive cells, PCK negative cells was more apparent, suggesting potential stromal 

cell contamination / overgrowth within the population of isolated primary cells (Figure. 5-7. 

NB/ this image is from the same culture as in Figure. 5.6).
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Figure 5-5: Representative inverted phase-contrast microscopy images of primary endometrial cells isolated from human endometrial Pipelle® 

biopsy material. A, B) Day 0 immediately post cell isolation. Several small clusters of presumed endometrial epithelial cells are noted in suspension (B 
– arrow). C, D) Day 2 post cell isolation. Cell attachment has occurred. Discrete patches of adherent cells (presumed endometrial epithelial cells) can be 
visualised demonstrating a polygonal shape with regular dimensions (D – arrow). E, F) Day 4 post cell isolation. Expansion of some of polygonal cells 
has occurred. The presence of multipolar, elongated cells is apparent (F – arrow), suggestive of stromal fibroblast contamination. G, H) Day 10 post cell 
isolation. Large numbers of cells appear dead and those that remain have a predominantly fibroblastic morphology (G – arrow). Cells appear enlarged, 
flattened and irregular (H – arrow) with morphology suggestive of senescence. Various magnifications – see scale bars.  
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Figure 5-6: Representative dual fluorescent immunocytochemistry for pan-
Cytokeratin (PCK) and CD10 expression in primary human endometrial cells 
day 2 after isolation. Isolated primary endometrial cells were grown in 4-well glass 
chamber slides alongside the standard cell culture flasks. The above figure utilises 
day 2 primary endometrial cells and suggests a predominantly epithelial cell 
population, with cells demonstrating positive expression of PCK (red - Cyanine3) 
and negative expression of CD10 (green-fluorescein). DAPI = blue nuclear 
counterstain. Magnification – see scale bar. 
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Figure 5-7: Representative dual fluorescent immunocytochemistry for pan-
Cytokeratin (PCK) and CD10 expression in primary human endometrial cells 
day 4 after isolation. Isolated primary endometrial cells were grown in 4-well glass 
chamber slides alongside the standard cell culture flasks. The above figure utilises 
day 4 primary endometrial cells and suggests a mixed epithelial and stromal cell 
population. A CD10 positive (green - fluorescein), PCK negative (red - Cyanine3) 
endometrial cell can be seen in this field of view, suggestive of an endometrial 
stromal fibroblast (yellow arrow). In addition, a population of PCK positive, CD10 
negative cells, suggestive of endometrial epithelial cells can also be seen (white 
arrow representative). DAPI = blue nuclear counterstain. Magnification – see scale 
bar. 
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5.4.7 qRT-PCR for membrane metallo-endopeptidase (MME) gene 
expression suggests the presence of stromal cells in primary 
endometrial cell isolates 

In addition to immuno-phenotyping the human PEC isolates for their CD10 and PCK 

expression, day 4 isolates also underwent RNA extraction and qRT-PCR in order to quantify 

expression of the membrane metallo-endopeptidase (MME) gene.  The MME gene encodes the 

CD10 protein and so SHT-290 mRNA lysates (positive control, n=3), Ishikawa cell mRNA 

lysates (negative control, n=3) and day 4 human PEC mRNA lysates (n=10) were analysed. In 

line with expectations, data shown in Figure. 5-8 confirm that Ishikawa cells have significantly 

lower levels of MME gene expression when analysed compared to SHT-290 cells. Notably, 

the PEC isolates expressed a range of MME expression levels compared to both SHT-290 cells 

and Ishikawa cells, suggestive of significant cell heterogeneity within this group, with some 

cultures having similar concentrations to Ishikawa (n=5), whilst others had variable amounts 

of MME mRNA. These results support and extend the immuno-phenotyping data and suggest 

a proportion of the cultures were predominantly made up of epithelial cells, whilst others were 

significantly contaminated with stromal fibroblasts. 

 

 

Figure 5-8: Analysis of MME gene expression is suggestive of stromal cell contamination 
of primary endometrial cell isolates. The expression of the MME gene relative to the internal 
control gene CYC was assessed by qRT-PCR within mRNA extracted from whole-cell lysates 
of SHT-290 (n=3 cell passages), Ishikawa (n=3 cell passages) and day 4 isolated primary 
endometrial cells (PEC) (n=10). The endometrial epithelial cancer cell line, Ishikawa, 
demonstrates significantly lower expression levels of MME gene expression compared to the 
endometrial stromal fibroblast cell line, SHT-290. In contrast, mRNA extracted from PEC 
demonstrates varying levels of MME gene expression, suggesting the presence of stromal 
fibroblast contamination in some cultures. Kruskal-Wallis, p<0.05.
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5.4.8 Use of a cell line endometrial epithelial model and creation of MFE-
280 and KLE stable cells line 

Given the difficulties in reliably isolating and maintaining a population of pure 

primary human endometrial epithelial cells, experiments were refocused with the use of 

endometrial epithelial cancer cell lines in order to investigate the aims of this chapter as set 

out in 5.2. The cells lines chosen for this purpose were MFE-280 and KLE cells, both isolated 

from poorly differentiated cancers with an epithelial phenotype reported to have non-

functional ERα, whilst retaining normal ‘wild-type’ expression of PTEN and ARID1A (see 

2.2.2). Several stable cell line variants were created as detailed in 5.3.2.1. For these studies 

Ishikawa cells were not used since they are ERα positive, with mutant PTEN and ARID1A 

and they were rapidly proliferating at baseline.  

 

5.4.9 Knockdown of PTEN significantly increases cell proliferation in 
MFE-280 and KLE endometrial epithelial cancer cell lines 

To determine whether silencing of PTEN promotes proliferative cellular activity in 

MFE-280 and KLE cells, PTEN protein expression was knocked down using RNA 

interference. Two lentiviral constructs were created, ‘1093’ and ‘1672’, each containing a 

different miRNA oligonucleotide sequence targeted against the PTEN gene; a lentivirus 

containing a scrambled miR oligonucleotide was used as a control (Table. 5-3).  

Six new stable cell lines variants (MFE-280(1093), MFE-280(1672), MFE-280(Scr-miR), 

KLE(1093), KLE(1672) and KLE(Scr-miR)) were created following lentiviral transduction. 

Knockdown efficiency was robust as evidenced by a decrease in protein expression of PTEN 

within the stably transduced cell lines compared to controls (representative Western blots, 

Figure. 5-9 A&B). miR-1093 demonstrated a statistically significant knockdown of PTEN 

protein compared to the scrambled miR control (Figure. 5-9 C&D), and visually it 

demonstrated lower expression of PTEN protein on Western blot analysis compared to miR-

1672 in both the MFE-280 and KLE cells (Figure. 5-9 A&B).  

Cell proliferation was then measured over a 7-day time course for the newly created 

MFE-280(1093), MFE-280(Scr-miR), KLE(1093) and KLE(Scr-miR) stable cell lines. Cell numbers were 

normalised to the percentage of cells initially seeded on day 1. Figure. 5-9 E&F demonstrate 

a statistically significant increase in cell proliferation with both the MFE-280(1093) and KLE(1093) 
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PTEN knockdown cells compared with their scrambled miR control counterparts by the day 7 

time point (*p<0.05 and **p<0.01 respectively). 

 

 

 

Figure 5-9: The effect of PTEN knockdown on proliferation of MFE-280 and KLE 
endometrial epithelial cancer cells. Two lentiviral constructs: i) pLenti6-cppt-emGFP-
hPTEN-1093 (‘1093’) and ii) pLenti6-cppt-emGFP-hPTEN-1672 (‘1672’), each containing a 
different miR oligonucleotide targeted against human PTEN, were analysed for their efficiency 
of PTEN protein knockdown compared to a control lentivirus (pLent6-cppt-CMV-emGFP-
miR-NEG-control) containing a scrambled miR sequence (Scr miR). A, B) Western blot 
analysis of PTEN protein expression demonstrates successful knockdown of PTEN in the 
newly created MFE-280 and KLE stable cell lines with both miR oligonucleotides compared 
to the scrambled controls. C, D) Densitometry quantification of Western blot analyses 
demonstrates a significant PTEN knockdown effect with miR-1093 compared to the Scr miR 
control (n=3 cell passages) in (C) MFE-280 and (D) KLE cells. One-way ANOVA, *p<0.05. 
AU = Arbitrary units. The cell lines with miR-1093 were therefore taken forward for 
proliferation analysis. E, F) Cell proliferation of MFE-280(1093) and KLE(1093) PTEN 
knockdown cell lines, as assessed by the CyQuant direct proliferation assay, was significantly 
increased by day 7 compared to the Scr miR control cell lines. n=4, with x8 technical replicates 
in each. Two-way ANOVA, *p<0.05, **p<0.01.  
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5.4.10 Knockdown of ARID1A suggests a marginal trend towards 
increased cell proliferation in MFE-280 and KLE endometrial 
epithelial cancer cell lines 

To determine whether silencing of ARID1A promotes cell proliferation in MFE-280 

and KLE cells, ARID1A protein expression was knocked down using miRNAs. The ARID1A 

gene encodes two isoforms of protein (2285 and 2086 amino acids) although the relative 

expression and functional significance of the two isoforms are reportedly unclear (Wu and 

Roberts, 2013). Two lentiviral constructs were created, ‘1776’ and ‘2233’, each designed to 

contain a different miRNA oligonucleotide sequence targeted against both isoforms of the 

ARID1A mRNA, in addition to a control lentivirus containing a scrambled miR 

oligonucleotide (Table. 5-3).  

Six new stable cell lines variants (MFE-280(1776), MFE-280(2233), MFE-280(Scr-miR), 

KLE(1776), KLE(2233) and KLE(Scr-miR)) were created following lentiviral transduction. 

Knockdown efficiency was robust as evidenced by a decrease in protein expression of 

ARID1A within the stably transduced cell lines compared to controls (representative Western 

blots, Figure. 5-10 A&B). Interestingly, miR-1776 and miR-2233 both demonstrated 

statistically significant knockdown of ARID1A protein compared to the scrambled miR 

control in MFE-280 cells, when assessed by combined densitometry analysis of protein 

expression from n=3 cell passages (Figure. 5-10 C). miR-1776 was taken forward for 

proliferation analysis in MFE-280 cells as it gave the more statistically significant result with 

a p-value of 0.0128. In KLE cells, introduction of miR-2233 resulted in lower expression of 

ARID1A protein, both visually and by utilising Western blot densitometry, compared to miR-

1776 (Figure. 5-10 B&D). These results were notable as they suggested differences in cellular 

machinery in the two cell lines.  

Cell proliferation was measured over a 7-day time course for the newly created MFE-

280(1776), MFE-280(Scr-miR), KLE(2233) and KLE(Scr-miR) stable cell lines. Cell numbers were 

normalised to the percentage of cells initially seeded on day 1 (Figure. 5-10 E&F). Whilst 

there was an apparent trend towards an increase in cell proliferation with both the MFE-

280(1776) and KLE(2233) ARID1A knockdown cells compared with their scrambled miR control 

counterparts by the day 7 time point, this did not reach statistical significance in these 

experiments with n=4 cultures/conditions. Notably in both cell lines some residual protein 

expression was detectable. 
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Figure 5-10: The effect of ARID1A knockdown on proliferation of MFE-280 and KLE 
endometrial cancer cells. Two lentiviral constructs: i) pLenti6-cppt-emGFP-hARID1A-1776 
(‘1776’) and ii) pLenti6-cppt-emGFP-hARID1A-2233 (‘2233’), each containing a different 
miR oligonucleotide targeted against human ARID1A, were analysed for their efficiency of 
protein knockdown compared to a control lentivirus (pLent6-cppt-CMV-emGFP-miR-NEG-
control) containing a scrambled miR sequence. A, B) Western blot analysis of ARID1A 
protein expression demonstrates successful knockdown of ARID1A in the newly created 
MFE-280 and KLE stable cell lines with both miR oligonucleotides compared to the scrambled 
controls. C) Densitometry quantification of Western blot analyses demonstrates a significant 
ARID1A knockdown effect with miR-1776 and miR-2233 compared to the Scr miR control 
(n=3 cell passages) in MFE-280 cells, *p=0.0128 and *p=0.0136 respectively. D) 
Densitometry quantification of Western blot analyses demonstrates a significant ARID1A 
knockdown effect with miR-2233 compared to the Scr miR control (n=3 cell passages) in KLE 
cells. One-way ANOVA, *p<0.05. MFE-280 cells with miR-1776 and KLE cells with miR-
2233 were both therefore taken forward for proliferation analysis. E, F) Cell proliferation of 
MFE-280(1776) and KLE(2233) ARID1A knockdown cell lines, as assessed by the CyQuant direct 
proliferation assay, suggests non-significant increases in percentage cell number by the day 7 
time-point when compared to Scr miR controls. n=4, with x8 technical replicates in each. Two-
way ANOVA, ns=non-significant.
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5.4.11 Overexpression of oestrogen receptor alpha (ERα) does not 
increase cell proliferation in unstimulated MFE-280 or KLE 
endometrial epithelial cancer cells 

To determine whether overexpression of oestrogen receptor alpha (ERα) promotes 

cellular proliferation in MFE-280 and KLE cells in the presence or absence of oestrogenic 

ligands, full length ESR1 cDNA was stably introduced into MFE-280 and KLE cells via a 

lentiviral vector with an mCherry fluorescent tag (Table. 5-3). A control lentivirus containing 

an unmodified IRES construct was purchased from the Biomolecular core, The University of 

Edinburgh. Wild-type MFE-280 and KLE cells are known not to possess a functional ERα 

(see 2.2.2) and this was confirmed by Western blot (Figure. 5-11 A). 

Four new stable cell lines variants (MFE-280(ERα+), MFE-280(IRES), KLE(ERα+) and 

KLE(IRES)) were created following lentiviral transduction. Expression of ERα protein (and 

therefore successful genomic integration of ESR1) was evaluated by Western blot and 

compared with the Ishikawa endometrial epithelial cancer cell line, which retains a function 

ERα (representative Western blots, Figure. 5-11 A). Quantification of ERα protein expression 

was performed by Western blot densitometry (n=3 passages) and demonstrated significant 

overexpression of ERα protein in the new MFE-280(ERα+) and KLE(ERα+) stable cell lines, when 

compared to Ishikawa cells (Figure. 5-11 B&C). Notably expression in KLE cells was 15x 

higher than Ishikawa when compared to loading control (ß-tubulin). 

Cell proliferation in medium without the addition of E2 was then measured over a 7-

day time course for the newly created MFE-280(ERα+), MFE-280(IRES), KLE(ERα+), KLE(IRES) 

stable cell lines. Cell numbers were normalised to the percentage of cells initially seeded on 

day 1. Figure. 5-11 D&E detail the results and show there was no statistical change in the 

increase in percentage cell proliferation for either the MFE-280(ERα+) or KLE(ERα+) ERα 

overexpressed cells compared with their control counterparts by the day 7 time point (p=non-

significant). 
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Figure 5-11: Overexpression of oestrogen receptor alpha (ERα) in MFE-280 and KLE 
endometrial epithelial cancer cells does not increase cell proliferation in an unstimulated 
environment. cDNA for the ESR1 gene was inserted into a pDONR221-attB1-IRES-mcherry-
attB2 plasmid prior to being Gateway cloned into the pLenti6-cppt-DEST-opre to produce the 
pLenti6-cppt-CMV-ESR1-IRES-mCherry-opre vector. MFE-280 and KLE cells were 
transduced with this lentiviral vector in order to stably overexpress ERα (“ERα+”). Unmodified 
pLenti6-cppt-CMV-IRES-mCherry-opre was used as a negative control (“IRES”). A) Western 
blot protein analysis of transduced and wild-type (WT) cell lines for ERα expression. The 
Ishikawa endometrial cancer cell line retains ERα protein expression, unlike the MFE-280(WT) 
and KLE(WT) cell lines which do not. MFE-280(ERα+) and KLE(ERα+), stably express ERα protein 
unlike their control counterparts transduced with an unmodified lentivirus (MFE-280(IRES) and 
KLE(IRES)). B,C) Densitometry quantification of Western blot analyses demonstrates 
significant overexpression of ERα protein within (B) MFE-280(ERα+) and (C) KLE(ERα+) cells 
compared to Ishikawa controls (n=3 cell passages). One-way AVOVA, **p<0.01, 
****P<0.0001. Cell proliferation of MFE-280(ERα+) and KLE(ERα+) cells, as assessed by the 
CyQuant direct proliferation assay across multiple time points. D) Unstimulated MFE-
280(ERα+) cell proliferation was not significantly altered at any time-point when compared to 
an unstimulated MFE-280(IRES) control. E) A non-significant trend towards reduced cell 
proliferation was seen by the day 7 time point in unstimulated KLE(ERα+) cells when compared 



Chapter 5 – The role of PTEN and ARID1A in endometrial epithelial cell proliferation 

204 
 

to unstimulated KLE(IRES) control cells. n=4, with x8 technical replicates in each. Two-way 
ANOVA, ns = non-significant. 

5.4.12 Introduction of full length ESR1 cDNA into MFE-280 and KLE cells 
produces a functional ERα capable of binding to exogenous 
ligands and activating ERE-dependent transcription 

In the classical oestrogen receptor pathway, natural lipophilic ligands such as E2 freely 

pass across the cell membrane into the cytoplasm. Once there they can bind to ERα causing a 

conformational change, form receptor dimers and recruit cofactors to blinding sites within the 

promotor regions of target genes, including the well-documented EREs (oestrogen receptor 

response elements) resulting in over/under expression of genes and altered cell responses. In 

order to assess if the transduced stable cell lines MFE-280(ERα+) and KLE(ERα+) contained a 

functional ERα, the impact of several known ligands for ERα were investigated using a 

luciferase reporter gene under the control of an oestrogen response element (in this case 

3xERE-tk-luciferase) packaged within an adenovirus (‘Ad-ERE-Luc’). 

MFE-280(ERα+), MFE-280(IRES), KLE(ERα+), KLE(IRES) and Ishikawa cell lines were 

transiently transfected with Ad-ERE-luc and treated with E2 10-8M, 4-Hydroxytamoxifen (4-

OHT) 10-7M and Propyl pyrazole triol (PPT) 10-8M; concentrations were based on previous 

experience of using these ligands in reporter assays (Collins et al., 2009; Gibson et al., 2018). 

After 24 hours the cells were incubated with a luciferase substrate (Bright-Glo™ Luciferase 

Assay System) and luminescence was measured. E2 and PPT increased ERE-dependent 

transcription in all three cell lines containing ERα (Figure. 5-12 A, B&C). This effect was 

abrogated by co-incubation with the anti-oestrogen, Fulvestrant (ICI 182,780), consistent with 

oestrogen receptor dependence. In contrast, incubation of the control cell lines containing an 

unmodified IRES construct with ligands, did not show any activation of ERE-dependent 

transcription of the reporter (Figure. 5-12 D&E). 

When tamoxifen is used as antagonist therapy for ER+ breast cancer it is reported to 

have partial agonist effect on the endometrium; it can also stimulate proliferation of Ishikawa 

cells, with a reportedly stronger affinity for ERα than 17β-Oestradiol (E2). The ligand 4-

Hydroxytamoxifen (4-OHT) is the active metabolite of tamoxifen and was used in the current 

study. At a concentration of 10-7M the ligand had no impact on ERE-dependent transcription 

in Ishikawa cells and only a moderate (non-significant) response was in MFE-280(ERα+) and 

KLE(ERα+) cells (Figure. 5-12 A, B&C).  
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Figure 5-12: Transduced MFE-280(ERα+) and KLE(ERα+) cells possess a functional 
oestrogen receptor alpha (ERα). The presence of a functional ERα in MFE-280 and KLE 
cells stably transduced with the pLenti6-cppt-CMV-ESR1-IRES-mCherry-opre vector was 
confirmed by way of an oestrogen response element (ERE) reporter assay. Utilising a 
luciferase reporter gene under the control of an ERE (3× ERE-tk-luciferase) packaged within 
an adenovirus (‘Ad-ERE-Luc’), known ligands for ERα (17β-Oestradiol (E2) 10-8M, 4-
Hydroxytamoxifen (4-OHT) 10-7M and Propyl pyrazole triol (PPT) 10-8M) were assessed for 
their effect on ERE-dependent transcription. In addition, the ligands were also co-incubated 
with the antioestrogen Fulvestrant (ICI 182,780, 10-6M) in order to block ERα activity. A, B, 
C) As expected in ERα positive cells ((A) Ishikawa, (B) MFE-280(ERα+) and (C) KLE(ERα+) 

luciferase activity (and therefore ERE activity) was significantly induced by E2 and PPT, and 
to a lesser extent in the MFE-280(ERα+) and KLE(ERα+) cells with 4-OHT. This effect was 
abrogated when the ligands were co-incubated with ICI. D, E) ERα negative cells transduced 
with a control IRES lentivirus had no increase in luciferase activity. All data displayed consists 
of n=3 experiments, with x2 technical replicates in each. VC = Vehicle control. One-way 
ANOVA, **p<0.01, ***p<0.001, ****p<0.0001  
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5.4.13 Knockdown of PTEN together with overexpression of oestrogen 
receptor alpha (ERα) reduces proliferation in unstimulated MFE-
280 but not KLE endometrial epithelial cancer cells 

To determine whether the silencing of PTEN in combination with overexpression of 

ERα changes proliferative activity in MFE-280 and KLE cells, PTEN protein expression was 

knocked down and full length ESR1 cDNA was stably introduced into MFE-280 and KLE 

cells via lentiviral vectors respectively.  

Knockdown vectors together with their respective controls were tagged with emerald 

green fluorescent protein (EmGFP) and the overexpression vector and control with mCherry. 

Six new stable cell lines variants (MFE-280(1093/ERα+), MFE-280(1672/ERα+), MFE-280(Scr-miR/IRES), 

KLE(1093/ERα+), KLE(1672/ERα+)  and KLE(Scr-miR/IRES) were created following lentiviral 

transduction. The cell lines were FACS sorted as per 5.3.2.2 to yield populations of double 

positive EmGFP+/mCherry+ cells indicating genomic integration of both a knockdown and 

overexpression lentiviral vector into each cell (Figure. 5-13). 

Knockdown efficiency was confirmed by a decrease in protein expression of PTEN 

compared to controls (representative Western blots, Figure. 5-14 A&B). miR-1093 

demonstrated a more statistically significant knockdown of PTEN protein compared to miR-

1672 (Figure. 5-14 C & D) by densitometry, and visually it demonstrated lower expression of 

PTEN protein on Western blot band analysis. Presence of ERα protein was confirmed by 

Western blot (Figure. 5-14 A & B) and quantification of ERα protein overexpression was 

performed by densitometry, demonstrated significant overexpression of ERα protein in the 

new MFE-280(1093/ERα+) and KLE(1093/ERα+) stable cell lines (Figure. 5-14 E & F).  

Cell proliferation was then measured over a 7-day time course for the newly created 

MFE-280(1093/ERα+), MFE-280(Scr-miR/IRES), KLE(1093/ERα+) and KLE(Scr-miR/IRES) stable cell lines. 

Cell numbers were normalised to the percentage of cells initially seeded on day 1. Figure. 5-

14 G & H shows that a statistically significant decrease in cell proliferation occurred in MFE-

280(1093/ERα+) cells compared with control by the day 7 time point (***p<0.001) in the absence 

of exogenous oestrogens. There was a marginal trend towards an increase in cell proliferation 

in the corresponding KLE(1093/ERα+)  cells
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Figure 5-13: Representative gating strategy for FACS on a co-transduced cell line expressing EmGFP and mCherry fluorescent proteins. A) 
Total population of ‘events’ (i.e. all cell material, debris, single cells, double cells and clumps), in this example 24,931 events. B, C, D) Gating based on 
cell size and shape as determined by forward scatter area (FSC-A), forward scatter height (FSC-H), side scatter area (SSC-A) and side scatter height 
(SSC-H). This delineated a population of single cells, excluding clumps, doublets and cell debris. E, F) A blue laser (505 nm with filter 525/50) was used 
to detect EmGFP positive cells and a yellow-green laser (600 nm filter 610/20) was used to detect mCherry positive cells. Single cells were then sorted 
based on double positivity (E - orange upper, outer quadrant) with good separation noted between the cell populations as represented by the histograms 
(F). The final sorted, double positive population contained 4,295 events in this example (25.5 % of the parent population).
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Figure 5-14: The effect of both PTEN knockdown and ERα overexpression on cell 
proliferation in unstimulated MFE-280 and KLE endometrial epithelial cells. Stably 
transduced MFE-280 and KLE cell lines were created using the following lentiviral constructs: 
i) pLenti6-cppt-emGFP-hPTEN-1093 (‘1093’) + pLenti6-cppt-CMV-ESR1-IRES-mCherry-
opre and ii) pLenti6-cppt-emGFP-hPTEN-1672 (‘1672’) + pLenti6-cppt-CMV-ESR1-IRES-
mCherry-opre. Each cell line was transduced with a different miR oligonucleotide targeted 
against the human PTEN gene in addition to full length cDNA for the ESR1 gene. The stably 
transduced cell lines were analysed for their efficiency of PTEN protein knockdown compared 
to a transduced control cell line (pLent6-cppt-CMV-emGFP-miR-NEG-control + pLenti6-
cppt-CMV-IRES-mCherry-opre). A, B) Western blot analysis of protein expression 
demonstrates both knockdown of PTEN and the presence of ERα in the transduced MFE-280 
cells and KLE cells respectively compared to control. C, D) Densitometry quantification of 
PTEN Western blot analyses demonstrates a significant PTEN knockdown effect, with miR-
1093 and miR-1672 compared to control in (C) MFE-280 and (D) KLE cells respectively (n=3 
cell passages). E, F) Densitometry quantification of Western blot analyses demonstrates 
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significant overexpression of ERα protein within (E) MFE-280(1093/ERα+) and (F) KLE(1093/ERα+) 

Continued.  and KLE(1672/ERα+)  cells compared to controls (n=3 cell passages). The ERα+ cell 
lines with miR-1093 were taken forward for proliferation analysis since they had the more 
significant knockdown of PTEN and overexpression of ERα+. One-way ANOVA,*p<0.05, 
**P<0.01, ***P<0.001. E, F) Cell proliferation, as assessed by the CyQuant direct 
proliferation assay. In the unstimulated MFE-280(1093/ ERα+) cell line, percentage cell 
proliferation was significantly reduced compared to control by the day 7 time-point. In 
contrast, unstimulated KLE(1093/ ERα+) cells demonstrated a non-significant trend towards 
increased percentage proliferation compared to control by the day 7 time-point. n=4, with x8 
technical replicates in each. Two-way ANOVA, ***p<0.001, ns = non-significant. 

 

5.4.14 17β-Oestradiol (E2) reduces cell proliferation at a 72-hour 

timepoint in MFE-280 and KLE cells when ERα is overexpressed 

regardless of PTEN status 

This experiment formed part of a pilot designed to explore the effect on cell 

proliferation of combined knockdown of PTEN (using miR-1093) and overexpression of ERα 

when cells were incubated with E2. Stably transduced MFE-280 (1093 / ERα+, IRES / Scr miR, 

ERα+, IRES, miR-1093, Scr miR) and KLE (1093 / ERα+, IRES / Scr miR, ERα+, IRES, miR-

1093, Scr miR) cell line variants were incubated with vehicle control (VC, DMSO), E2 (10-

8M), Fulvestrant (ICI 182,780, 10-6M) or E2 10-8M + Fulvestrant 10-6M and their effect on cell 

proliferation assessed at a 72 hour time-point. This experiment used a 72-hour time-point 

based on the knowledge of the doubling time of the MFE-280 and KLE ‘wild-type’ cells 

(Table. 5-2, 52 and 96 hours respectively) and because in MFE-280(1093/ ERα+) the first 

significant change in cell number between this cell line variant and control was detectable after 

72 hours of growth (Figure. 5-14 G). 

Incubation of cell line variants created to overexpress ERα with E2 resulted in a 

reduction in cell number compared with VC that reached significance in KLE cells regardless 

of PTEN knockdown status (Figure. 5-15 B compared with F). In MFE-280 cells, the reduction 

in cell number was only significant when cells had reduced PTEN expression (Figure. 5-15 

A).  In all cultures the impact of E2 was abrogated by co-incubation with Fulvestrant. Ishikawa 

cells (Figure. 5-15 M) (which retain a functional ERα), demonstrated a non-significant trend 

towards increased cell number when incubated with E2 (10-8M). Incubation with E2 had no 

impact on the number of cells compared with those incubated with VC when cells had PTEN 

knockdown but remained ERα negative (Figure. 5-15 I, J) even though these cells showed 

higher rates of proliferation in the absence of E2 compared with controls (see Figure. 5-10).  
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Figure 5-15: Cell proliferation in MFE-280 and KLE endometrial cells is reduced following the overexpression of a functional ERα when 
incubated with 17β-Oestradiol (E2).  
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Continued. Ishikawa cells (M), stably transduced MFE-280 [(A) PTEN knockdown miR-
1093 / ERα+, (C) IRES / Scr miR, (E) ERα+, (G) IRES, (I) PTEN knockdown miR 1093, (K) 
Scr miR] and KLE [(B) PTEN knockdown miR-1093 / ERα+, (D) IRES / Scr miR, (F) ERα+, 
(H) IRES, (J) PTEN knockdown miR-1093, (L) Scr miR] cell lines were incubated with 17β-
Oestradiol (E2, 10-8M), Fulvestrant (ICI 182,780, 10-6M) or a combination of both ligands. The 
effect of ligand incubation was assessed using the CyQuant direct proliferation assay after 72 
hours. Cell lines with overexpression of ERα (A, B, E, F) demonstrated a reduction in cell 
proliferation when compared to vehicle control (VC) when incubated with E2. This effect was 
found to be abrogated by co-incubation with Fulvestrant. Ishikawa cells (M) (which retain a 
functional ERα), demonstrated a non-significant trend towards increased cell proliferation 
when incubated with E2 10-8M. PTEN knockdown utilising miR-1093 did not appear to 
influence cell proliferation, in isolation or with overexpression of ERα, in either MFE-280 or 
KLE cells. MFE-280 and KLE data represent an n=3, with x8 technical replicates in each. 
Ishikawa data represent n=3, with x2 technical replicates in each. Date represented as a fold-
change over vehicle control. One-sample t test with a hypothetical mean of 1, *p<0.05. 

 

5.5 Discussion 

To start to address the aims of the present study, we attempted to refine a technique to 

isolate a pure population of primary endometrial epithelial cells with which we could study 

the effect of silencing the expression of PTEN and ARID1A proteins. Primary cell isolation 

techniques were based upon published literature techniques (Chan et al., 2004; Gargett et al., 

2009; Valentijn et al., 2013). Endometrial Pipelle® biopsy samples were obtained from women 

undergoing surgery for benign disorders and were retrospectively dated by histopathology.   

Due to the smaller numbers of cells in Pipelle® endometrial biopsy samples, it is difficult 

to conduct cell-based studies without first culturing and expanding these cells. We found that 

although we were able to isolate primary endometrial epithelial cells (Figure. 5-5 and 5-6), 

expansion of the cell population often resulted in cell death or senescence and allowed 

overgrowth of endometrial stromal cells (Figure. 5-7), regardless of the how pure the initial 

starting cultures seemed. Some cultures had minimal stromal contamination (Figure. 5.8) and 

anecdotally these cultures had greater starting numbers of isolated cells (potentially 

encouraging cell-cell interactions) or upon retrospective histological assessment, they were 

found to be from the early secretory phase of the menstrual cycle (plausibility at their maximal 

proliferative potential). 

The observations above raise two points for future consideration: 1) How should 

primary endometrial epithelial cells be maintained culture? and 2) Should the ‘normal’ uterine 

physiological environment be considered when propagating these cells? Epithelial-cell 

function requires cellular polarity in which apical membrane surfaces have unique 

characteristics and cellular organelles are stratified (Munson et al., 1990). In addition, 
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endometrial epithelial cells in vivo do not exist in isolation and the role of the stromal 

compartment may need to be considered when planning experiments. There is a suggested role 

for improving endometrial epithelial cell propagation by using an extra-cellular matrix derived 

from endometrial stromal cells which may maintain cell polarisation and enhance in vitro 

longevity (Munson et al., 1990). Furthermore, several authors have investigated endometrial 

epithelial cells utilising model systems which propagate the cells in vitro at an air-liquid 

interface to maintain cellular polarity (Altman et al., 1999; Li et al., 2018; Rochon et al., 

2010).  

There may be a role for immortalisation techniques which maintain the cellular 

phenotype to extend the culture longevity of primary endometrial epithelial cells. One such 

method with reported success in keratinocyte culture is Rho/ROCK immortalisation. Rho 

GTPases are a subfamily of the RAS superfamily of proteins that play essential roles in cell 

adhesion, cytokinesis, and cell migration (reviewed in Jaffe and Hall, 2005). Mammalian cells 

encode 2 Rho kinases, ROCK1 and ROCK2 (Chapman et al., 2010) and it has been suggested 

that inhibition of ROCK greatly increases the cloning efficiency of human embryonic stem 

cells (Watanabe et al., 2007) and human keratinocytes (Terunuma et al., 2010). 

 An alternative avenue to pursue is that of 3D cell culture methods, which are suggested 

to mirror cellular phenotypes and gene expression in vivo more closely than 2D culture systems 

(Eritja et al., 2010; Greaves et al., 2017; Wang et al., 2012). Moreover, 3D co-culture models 

can be used to assess the effect of one cell type on another and offer the opportunity to explore 

the interactions between different cells types (Greaves et al., 2017). We have generated 

preliminary data to investigate a 3D hanging drop method of cell culture (Figure. 5-16) 

utilising the Ishikawa cell line as a proof of principle. This method of cell culture is proposed 

to have several advantages over traditional 2D methods, including: a more natural shape 

(retaining polarisation of cells), improved cell interface with culture media (as in physiological 

conditions, there is gradient availability of the media component, with upper layers of cells 

being highly exposed over the lower layers) and cell junctions are more prevalent than 2D 

systems (to enable improved cell to cell communications).  

Another option to consider is the use of cellular organoids. Organoids are 3D structures 

generated in vitro from stem cells that self-organise through cell sorting into multicellular 

structures that have a functionality characteristic of the organ or tissue from which they were 

obtained (Deane et al., 2017). They are a miniature and simplified version of their parent 

organ/tissue and may contain several differentiated cells types (Deane et al., 2017). 

Endometrial organoids have been investigated, with promising results suggesting clonal 
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origins and physiologically appropriate responses to ovarian hormones (Boretto et al., 2017; 

Turco et al., 2017). 

 

 
Figure 5-16: Double fluorescent immunocytochemistry of a 3D Ishikawa cell spheroid. 
Ishikawa cells were grown in a 3D hanging drop culture system (Perfecta 3D®, 3D Biomatrix 
Inc., Michigan, USA) as per manufacturer instructions. 1x103 Ishikawa cells were initially 
seeded, and spheroids were harvested after 10 days in 3D monoculture. Spheroids were fixed 
(24 hours, 10 % neutral buffered formalin) prior to embedding (initially in agarose and 
subsequently paraffin), before sectioning for histology. Double fluorescent 
immunocytochemistry (see 2.5) was performed for Ki67 (MIB-1 Dako, M7240, 1:150,000 
dilution) and cleaved caspase-3 (Cell signalling Tech, 9961, 1:500 dilution) using a dual 
TyramideTM detection and amplification system (see 2.4.1), with DAPI (4,6-diamidino-2-
phenylindole) nuclear counterstaining. Images were obtained using confocal microscopy. A) 
DAPI nuclear counterstaining of Ishikawa cells. B & C) In keeping with expectations of a 
gradient availability of media exposure, Ki67 staining demonstrates a proliferative outer ring 
of Ishikawa cells (B) and Cleaved caspase-3 staining demonstrates an internal apoptotic core 
of Ishikawa cells (C). D) Merged image. Scale bars - see individual figures.  
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 Given the difficulties in reliably isolating and maintaining a population of pure 

endometrial epithelial cells, efforts were refocused on the use of cell lines. The human MFE-

280 and KLE endometrial epithelial cancer cell lines were chosen for this purpose. These cells 

are both poorly differentiated and are slow to proliferate at baseline (Table. 5-2). They have 

been reported to lack a functional ERα protein, whilst retaining wild-type PTEN and ARID1A 

protein expression (Hackenberg et al., 1998; Kwan et al., 2016; Liang et al., 2012; Qu et al., 

2019). We confirmed these findings by Western blot analysis in our study. Interestingly, Qu 

et al, reported that MFE-280 cells possess ERα mRNA raising the potential for post-

translational modification in these cells (Qu et al., 2019).  

 Both the unstimulated MFE-280 and KLE cell lines demonstrated increased cell 

proliferation with knockdown of PTEN protein when compared to controls (Figure. 5-9). This 

is in keeping with the known regulatory role that PTEN has in cell proliferation. Future work 

would aim to confirm the downstream implications of PTEN knockdown on the PI3K/Akt 

pathway in order to determine the mechanism by which PTEN exerts its effects in these cells. 

In addition, investigation of apoptosis should be also undertaken in order to corroborate that 

the changes seen in cell number are as a result of increased cell proliferation as opposed to 

reduced cell apoptosis.  

Knockdown of ARID1A in unstimulated MFE-280 and KLE cells did not demonstrate 

a statistically significantly increase in cell proliferation as hypothesised (Figure. 5-10). This is 

in contrary to data presented by Ayhan and colleagues, who demonstrated an increased in cell 

proliferation in immortalised endometrial epithelial cells with knockdown of ARID1A (Ayhan 

et al., 2015). Whilst this could be a limitation of cells type used in our study, it could also 

represent the efficiency of the protein knockdown in our study. Although we achieved a 

statistically significant knockdown of ARID1A protein expression (Figure. 5-10 C & D), some 

protein did still remain, and it may be that a minimal level of ARID1A protein is all that is 

required in order to influence a biological effect. Interestingly, Ayhan and colleagues also 

reported that compared to knockdown of either ARID1A or PTEN alone, the growth rate of 

endometrial epithelial cells was significantly elevated when both ARID1A and PTEN genes 

were silenced simultaneously (Ayhan et al., 2015). They propose a gatekeeper role for 

ARID1A in preventing tumour progression despite the presence of PTEN mutation (Ayhan et 

al., 2015). 

When ERα was stably overexpressed in unstimulated KLE and MFE-280 cell lines, 

as anticipated cell proliferation was not significantly altered when compared to controls 

(Figure. 5-11). Work from the Saunders laboratory has previously shown that wild-type MFE-
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280 cells do not respond to E2 stimulation (Gibson et al., 2018), however, these cells do have 

a Liver X receptor (LXR), that responds to a selective agonist, indicating that they have the 

necessary cellular machinery to drive a reporter assay (Gibson et al., 2018). We therefore 

demonstrated that the overexpressed ERα in the MFE-280(ERα+) and KLE(ERα+) cells was 

functional by way of an ERE-luciferase reporter assay. This confirmed a significant increase 

in ERE-dependent transcription when the MFE-280(ERα+) and KLE(ERα+) cells were stimulated 

with the ligands E2 and PPT (Figure. 5-12 B & C) compared to controls (Figure. 5-12 D & E). 

This was in keeping with a similar response seen in Ishikawa cells which are known to retain 

a functional ERα (Figure. 5-12 A). 4-Hydroxytamoxifen (4-OHT) had no impact on ERE-

dependent transcription in Ishikawa cells and only a modest (non-significant) response in 

MFE-280(ERα+) and KLE(ERα+) cells (Figure. 5-12 A, B & C). This was unusual and not in 

keeping with published literature (Anzai et al., 1989; Sakamoto et al., 2002) and so a dose 

response experiment may be needed to further evaluate this, since a 10-7 M concentration of 4-

OHT may be either too low to exert an effect, or too high that it becomes inhibitory.  

 Unexpectedly, co-transduction of MFE-280 and KLE cells to both knockdown PTEN 

(using miR-1093) and overexpress ERα demonstrated a significant reduction in cell 

proliferation in unstimulated MFE-280 cells but not the KLE cells (Figure. 5-14). This is 

despite baseline cell culture medium being phenol-red free and utilising charcoal stripped 

serum (CSFCS). This may suggest a difference in cellular machinery between the two cell 

lines. Stimulation with E2 appeared to reduced cell proliferation at a 72-hour timepoint in all 

transduced cells with overexpression of ERα, regardless of PTEN knockdown status (although 

in MFE-280 cells this did not achieve statistical significance) (Figure 5-15. A, B, E, F). This 

was again unexpected. The overexpression of ERα may be too much for the basic proliferative 

machinery of these poorly differentiated EC cells (NB/ MFE-280(ERα+) and KLE(ERα+) cells had 

x5 and x15 the amount of ERα respectively, compared to Ishikawa cells (Figure. 5-11 B & 

C)).  

Although the ERα overexpressed cells responded well in the reporter assay, a full 

response of genes implicated in proliferation would require co-factors e.g. steroid receptor 

coactivators (SRCs), to activate steroid hormone signalling and growth factor pathways in 

order to mount a proliferative response, which these cell lines may not possess (reviewed in 

Lonard and O’Malley, 2016). That being said, other groups have also reported inhibition of 

cellular growth with overexpression of ERα, not only in EC cells (Ali et al., 2004; Webb et 

al., 1992; ZHOU et al., 2013) Ali and colleagues hypothesised that this effect may be due to 

modulation of angiogenic factors within the cells, which may ultimately function to limit blood 
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supply in ERα positive ECs and favourably limit tumour growth (Ali et al., 2004). Webb et al 

suggest that saturation of the cellular capacity to mediate an oestrogen response and ER-

dependent squelching occur at receptor titres well above those encountered in nature (Webb 

et al., 1992). Clearly, further work needs to be undertaken to ascertain the exact mechanism 

responsible for the reduction in proliferation seen. Initially this may involve looking at several 

time-points, ligand doses, and modifying the level of ERα receptor titres. 

In conclusion, data presented in this chapter confirm and extend existing literature on 

the proliferative effects of PTEN within endometrial epithelial cancer cells. The data also 

raises several further questions regarding the role of ARID1A and ERα in endometrial cell 

proliferation, which will form the basis for future research endeavours aiming to address 

mechanisms by which the normal endometrium transitions to neoplasia. Finally, preliminary 

work on 3D spheroid cell culture, may favourably lend itself to developing a robust technique 

for in vitro culture of primary endometrial epithelial cells able to model the physiological 

tissue environment. 



Chapter 6 – Final discussion 

217 
 

6 Chapter 6 

6 Final Discussion 

6.1 Introduction 

Endometrial cancer (EC) is the most common gynaecological malignancy in the United 

Kingdom (UK) and the 4th most common cancer to affect UK women after breast, lung and 

colorectal cancer (Cancer Research UK, 2018a). The incidence of EC is rising, with ~9000 

new cases reported in the UK alone in 2015 (Kitson et al., 2018). In the ten years between 

1992 and 2012, the incidence of EC increased by 2 % every year in women under the age of 

50 (Beavis et al., 2016; MacKintosh and Crosbie, 2018). Furthermore, despite overall 

improvements in EC survival (Evans et al., 2011), women continue to die from the disease, 

and projections envisage a potential rise of 19 % in mortality between 2014 to 2035 within the 

UK (Cancer Research UK, 2018).  

The current obesity epidemic is playing a substantial role in driving this increase in EC 

incidence, such that every 5 kg/m2 rise in body mass index (BMI) reportedly increases EC risk 

by 1.6-fold (Mackintosh and Crosbie, 2013). Other factors including delayed childbearing and 

a reduction in hysterectomy rates for benign disorders may also be contributing (Daniluk and 

Koert, 2016; MacKintosh and Crosbie, 2018).  Surgery is, and has always been, the mainstay 

of treatment for early stage EC and takes the form of a total hysterectomy with bilateral 

salpingo-oophorectomy. There has been a progressive move towards the use of minimally 

invasive surgical (MIS) techniques, however, surgical intervention is not without risk, 

especially amongst obese individuals and in those with medical co-morbidities. In addition, 

~120 women present annually in the UK with EC before the age of 45 years (Cancer Research 

UK, 2018; Farthing, 2006) and with age-specific incidence rates of EC rising steeply from 

around age 45-49, women of reproductive age are being seen more frequently, with requests 

to preserve fertility becoming commonplace. 

At present, a screening programme for EC does not exist and there is not a standard or 

routine screening test available. Endometrial biopsy is a sensitive and specific test, but it can 

be uncomfortable and invasive. Since ~75 to 90 % of women with EC present with AUB as 

an early symptom (Kimura, Kamiura, et al., 2004; Seebacher et al., 2009), the majority of 

women are diagnosed when their EC is still confined to the uterus and have a >90 % five-year 

survival rate (Creasman et al., 2006; Lewin et al., 2010). The presence of early symptoms 

therefore affords secondary prevention, allowing detection of EC when surgical treatment can 
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stop it from progressing, although as mentioned above not all women will be candidates for 

surgical intervention. Women at risk of developing hereditary EC, e.g. those with Lynch 

syndrome, are normally invited for endometrial assessment at around age 30 to 35 years or 5 

to 10 years prior to the earliest age of first diagnosis of a Lynch-associated cancer of any kind 

in the family (Lindor et al., 2006), although this varies between institutions.  

Current strategies for prevention of EC centre around reducing levels of obesity and 

counterbalancing un-opposed oestrogen exposure, e.g. progestin therapy (MacKintosh and 

Crosbie, 2018). A recent priority setting partnership, that brought together patients as well as 

health care professionals using a methodology established by the James Lind Alliance, 

provided an agreed list of the top-ten unanswered questions for EC research, helping to shape 

the future research agenda. Importantly, and of relevance to the current studies, these included 

the desire for development of a personalised risk score for developing EC (Wan et al., 2016).  

The studies contributing to this thesis centre around the condition endometrial 

hyperplasia (EH). This condition incorporates a heterogeneous group of endometrial lesions 

that can occur in response to oestrogenic stimulation. The variant, atypical hyperplasia / 

endometrioid intraepithelial neoplasia (EIN) is widely considered a true pre-malignant 

endometrial lesion, being a clonal proliferation of endometrial epithelial cells, and conferring 

a substantial risk of a concurrent or future EC when it is detected on endometrial biopsy 

(reviewed in Sanderson et al., 2017). Historically, due to the heterogeneous nature of EH 

lesions, there has been considerable difficulty classifying them into clinically relevant and 

pathologically reproducible groups that correlate risk of malignancy with treatment options 

and clinical outcome. In addition, the mechanisms that drive progression of the endometrium 

from a benign to a neoplastic state are not fully understood. To that end, the studies presented 

herein aimed to use cellular and molecular approaches to further the capacity for earlier 

diagnosis of EC, through targeting and enhancing understanding of EH. 

 

6.2 Aims and experimental approaches 

The present studies addressed the following three aims: 

• To evaluate the current pathological approaches used to classify EHs and predict 

progression to EC. Using a well characterised human archival EH tissue resource, the 

WHO94 and EIN/WHO2014 classification systems were investigated for their 

diagnostic reproducibility and capacity to predict progression to EC. 
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• To characterise key molecular changes within EH lesions so that they can be used to 

extend and enhance pathological classification of EH. Using the archival EH tissue 

resource, molecular changes pertinent to endometrial carcinogenesis were evaluated 

by immunohistochemistry with a view to potential use as a diagnostic / prognostic aid. 

 

• To explore in vitro models of the endometrium and investigate the role of PTEN and 

ARID1A within endometrial proliferation. Utilising informative cell lines, the 

principles of RNA interference were employed to silence the protein expression of 

two frequently mutated tumour suppressors in ECs, PTEN and ARID1A. Cellular 

proliferation was investigated, both with and without a functional oestrogen receptor 

alpha (ERα).  

 

6.3 The EIN/WHO2014 system of EH classification improves 

diagnostic reproducibility and better predicts progression 

to endometrial cancer compared to the WHO94 system 

In chapter 3 it was demonstrated that the EIN/WHO2014 system of EH classification 

improves interobserver variability when compared to the WHO94 system of EH classification. 

A dual, blinded, expert gynaecological pathologist review of n=125 archival endometrial 

biopsy specimens was performed. Each pathologist was asked to record a diagnosis for each 

endometrial biopsy specimen utilising both the WHO94 and EIN/WHO2014 classification 

systems. The review diagnoses of each pathologist were compared to the original diagnosis 

for each specimen and also to each other. Interobserver percentage agreement for each of the 

expert pathologists and the original WHO94 based diagnosis was 56.0 % (n=70) and 48.8 % 

(n=61) respectively. When comparing the expert pathologists to each other, the percentage 

agreement was 52.1 % (n=64). Upon reclassification using the EIN/WHO2014 classification 

system, increased interobserver percentage agreement was noted between the two expert 

pathologists (67.2 %, n=84). Kappa (k) coefficient analysis was performed to account for any 

interobserver agreement occurring by chance, demonstrating an increase from ‘fair’ to 

‘moderate’ agreement with the use of the EIN/WHO2014 classification system. This increase 

in interobserver variability echoed findings from other studies (Hecht et al., 2005; Usubutun 

et al., 2012), providing further validation of the EIN/WHO2014 system of EH classification.  
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Pathological interobserver variation is not a phenomenon unique to EH diagnoses, it has 

been studied extensively across numerous tissue types, e.g. Barratts oesophagus 

(Montgomery, 2005), breast hyperplasia (Jain et al., 2011) and cutaneous melanoma (Eriksson 

et al., 2013), to name but a few. Although diagnostic agreement is high in many key areas of 

pathology, increased levels of variability have been identified for diagnoses on the borderline 

between established entities (Allison et al., 2014). In agreement with previous reports, the 

results summarised in chapter 3 identified significant morphological heterogeneity between 

EH lesions. The relationship between the presence of EH lesions and progression to EC is 

further complicated by evidence that EH lesions can be unstable; they may be shed 

spontaneously with menses, or they may be reversed by a change in the patient's hormonal 

milieu, whether through alterations in physiology (e.g. weight loss) or alterations produced 

iatrogenically (e.g. hormonal medications) (Gallos et al., 2013; Terakawa et al., 1997). The 

effects of endogenous hormones can also be problematic when accessing and classifying EH 

specimens. As such when analysing tissues partially treated with hormones and where there is 

difficulty in interpretation, hormonal therapy should be temporarily stopped, and a re-biopsy 

performed after 2-6 weeks (Mutter 2000). 

Given the spatial and temporal alterations that occur in EH, together with the spectrum 

of morphological appearances often presented, it is unsurprising that diagnostic reproducibility 

varies so widely. In the case of EH, interobserver variation can have significant clinical 

implications. Since pre-malignant EH lesions are typically treated surgically with 

hysterectomy and other ‘benign’ EH variants offered conservative treatment or medical 

progestin therapy, diagnostic variation may result in some women being potentially 

overtreated or indeed undertreated. Whilst pathological classification helps to stratify EHs, 

with the EIN/WHO2014 system appearing to be superior to WHO94 in doing so, further 

avenues need to be pursued to ensure a robust diagnosis is made. To that end, the role of digital 

image analysis warrants further investigation.  

The EIN system of classification was based upon innovative work by Jan Baak and the 

introduction of the morphometric D-score, which has consistently been demonstrated to have 

high diagnostic reproducibility (Baak et al., 1988,  1992,  2001; Mutter, Baak, et al., 2000; 

Orbo et al., 2000). A reticence to adopt image analysis techniques often stems from a high 

initial cost outlay and the technical infrastructure required to set up such a service, although 

some would argue against this (Baak, Mutter, et al., 2005). We investigated the role of digital 

image analysis in chapter 3, suggesting that the subjective non-quantitative estimates of the 

volume percentage stromal tissue compartment could be improved using computer-assisted 
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image analysis, such as that offered by the TissueGnostics Stratquest software. With advances 

in whole-slide scanning technologies and digital pathology becoming more mainstream, it is 

hoped that larger scale research studies and validation studies of diagnostic reproducibility 

using digital image analysis will provide alternate modalities to improve on what can be 

achieved currently with pathological classification alone. There is a reported national and 

global shortage of pathologists, due to poor recruitment in recent years (Bracey, 2017). In 

addition, workloads have increased, as has the complexity of diagnostic material (Bracey, 

2017). Validated digitised analysis processes may offer a solution to these problems, working 

in parallel with a pathologist to help improve the accuracy, reliability and efficiency of 

histological testing. Further ahead in the future, application of automated artificial intelligence 

may offer more robust diagnostic reproducibility that is not currently achievable. In the 

interim, nationalised guidance on pathological approaches to EH classification, potentially 

with a stipulation for a dual-pathologist consensus on atypical hyperplasia / EIN diagnoses, 

may be beneficial.  

As discussed above EC incidence increased sharply from around age 45-49 and what 

has previously been considered a predominantly postmenopausal disease is becoming an 

increasing concern for younger women of childbearing age, obese individuals and those with 

polycystic ovarian syndrome (PCOS). EIN may reside concurrently with EC or may precede 

EC by several years. Reports suggest that EC occurrences beyond 1 year of an EIN diagnosis 

are 45 times more likely than in EIN free women (Baak, Mutter, et al., 2005). The ability to 

offer a comprehensive, evidence-based metric to women who may wish to retain their fertility 

is therefore essential. The EIN/WHO2014 classification system appears to offer this, and our 

data add to the body of evidence that a diagnosis of EIN confers an improvement on the 

prediction of a malignant outcome when compared with a WHO94 diagnosis of complex 

atypical hyperplasia. 

 

6.4 Altered PAX2 and HAND2 protein expression in 

endometrial hyperplasia - steps forward towards 

identification of a diagnostic / prognostic panel? 

Given the aforementioned challenges of achieving diagnostic reproducibility in EH, yet 

the clear clinical need for a reliable diagnosis, a role for tissue biomarker analysis is apparent. 

There exists an unmet need for a diagnostic test capable of: (i) differentiating neoplastic EIN 

lesions from benign hyperplasia and (ii) predicting progression of EH to EC. For example, a 
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pre-menopausal nulliparous patient with PCOS, found to have EIN on endometrial biopsy and 

who wishes to have future children would benefit from a prognostic test, able to predict the 

likelihood of her EIN progressing to EC vs EIN lesion involution, to guide her decision 

making. In addition, a diagnostic test may aid pathological analysis of sub-diagnostic EH 

lesions, as described by Owings et al, whereby crowding of cytologically suspicious glands is 

a concern; however, the overall lesion size may be insufficient for diagnosis (Owings and 

Quick, 2014). With this goal in mind, we endeavoured to characterise key molecular changes 

within EH lesions to extend and enhance pathological classification. I chose to focus on 

immunohistochemical markers since this technique is widely available in histopathological 

laboratories with validated methodologies, including the use of automated staining platforms. 

In chapter 4, well characterised archival EH tissue samples (~105 samples) underwent 

immunohistochemical analysis for several key protein markers, established from current 

scientific literature to be pertinent to endometrial carcinogenesis (reviewed in Sanderson et 

al., 2017). Individually, loss of PAX2 expression and altered HAND2 expression were 

significantly associated with a biopsy diagnosis of EIN. When subjected to hierarchical cluster 

analysis alongside PTEN protein expression, changes in PAX2 and HAND2 protein 

expression appeared to be the defining markers of each cluster group, with positivity for both 

proteins being highly suggestive of a benign EH diagnosis. HAND2 has been suggested to be 

one of the most commonly hypermethylated and silenced genes in EC and increased HAND2 

methylation within premalignant lesions has been demonstrated (Jones et al., 2013). Within 

our cohort 90 % of all the EH that progressed to EC demonstrated altered HAND2 protein 

expression. 

Despite widespread suggestions that PTEN protein expression is a useful diagnostic 

marker of EIN (Colombo et al., 2016), we demonstrated that although confluent PTEN-null 

glandular regions were significantly associated with an EIN lesion, overall loss of PTEN 

protein expression was not significantly associated with either a EIN or hyperplasia without 

atypia (HwA) diagnosis. This finding was supported by a recent meta-analysis which 

investigated the diagnostic accuracy of PTEN within EH lesions and reported low rates of 

sensitivity and specificity when PTEN was analysed across n=1736 EH specimens (Raffone, 

et al., 2019).  

The data presented in chapter 4 confirm and extend existing literature on the 

expression patterns of several key proteins within EH tissues. Utilising well characterised 

retrospectively classified samples using EIN/WHO2014 diagnostic criteria, the proteins PAX2 
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and HAND2 appear to lend themselves favourably to use in a diagnostic / prognostic panel 

and their expression warrants further investigation. 

 

6.5 In an in vitro endometrial cell line model, knockdown of 

PTEN protein increases cellular proliferation 

As previously discussed, several lines of evidence have demonstrated that PTEN protein 

regulates cell proliferation, tissue growth, and apoptosis via the PI3K/Akt/mTOR pathway 

(reviewed in Sansal and Sellers, 2004). PTEN mutations are widely considered to be both an 

early event and a frequent initiating event for endometrial carcinogenesis (Mutter et al., 2001). 

However, they are not the rate-limiting event; several other steps of a multi–stage process are 

needed for EC to develop (Mutter et al., 2014).  

Data from chapter 4 demonstrated PTEN protein expression loss in 64/104 (58.7 %) of 

EH samples in the current study, which despite not being statistically associated with EH 

diagnosis, was still the largest change in protein expression of any of the markers investigated. 

In chapter 5 we utilised two endometroid epithelial cancer cell lines to investigate the effect 

that silencing of PTEN protein expression had on cell proliferation. In this in vitro model 

system, knockdown of PTEN expression using a lentiviral vector resulted in a significant 

increase in percentage cell number by day 7 in culture when compared to cells transfected with 

a control lentivirus in both of the transduced cell lines.  

We hypothesised that there may be an association between PTEN expression loss and 

ERα, that may bestow a proliferative effect, since several lines of evidence have suggested 

that loss of PTEN can result in changes in tissue function through activation of ERα (Joshi et 

al., 2012; Vilgelm et al., 2006). To that end we both silenced PTEN and overexpressed ERα 

in two endometrioid epithelial cancer cell lines. In the absence of a ligand this co-manipulation 

resulted in a significant reduction in cell proliferation by day 7 in culture in MFE-280 cells 

when compared to control, however no significant effects were noted in KLE cell line. This 

this may be suggestive of alternated cellular machinery between the two cell lines. 

Furthermore, when these cells were stimulated with oestradiol (E2) the opposite effect to what 

we expected was seen after 72 hours, with both co-manipulated cell lines demonstrating a 

significant reduction in cell proliferation.  A similar effect was also observed in manipulated 

cell lines with ERα overexpression alone, without silencing PTEN. In retrospect, these results 

may demonstrate a limitation of the model system used, since both cell lines were developed 
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from grade 3 endometrioid tumours without a functional ERα. Despite the addition of 

functional ERα these cell lines may still lack all the necessary proliferation machinery e.g. 

steroid receptor coactivators (SRCs), to activate steroid hormone signalling and growth factor 

pathways in order to mount a proliferative response (reviewed in (Lonard and O’Malley, 

2016).  

 

6.6 Limitations 

Whilst every effort was taken to ensure a vigorous methodological approach to the 

studies described herein, there are several limitations which should be taken into account. 

Firstly, the human EH tissue resource was obtained retrospectively from archival material. 

Whilst the quality of the archival tissue material was excellent, permitting comprehensive 

pathological classification, the associated clinical patient details were incomplete in several 

cases, e.g. complete body mass index (BMI) data. Moreover, the vast majority of the study 

population were of white Caucasian ethnicity, reflecting the fact that South East Scotland has 

a minority ethnic population, which was estimated at just over 4 % in the 2011 census (The 

Scottish Government, 2011).  

Secondly, the number of EH cases that progressed to EC in this study was low (n=10 

with tissue samples available for immunohistochemical analysis). This meant that simple 

observation and reflection on the immunohistochemical staining patterns was the ceiling of 

what could be realistically achieved in these cases. Whilst the primary outcome objective in 

chapter 3 was to analyse diagnostic pathological reproducibility, a secondary objective looked 

at progression to EC within the EH tissue cohort. The data generated regarding progression to 

EC in this study is limited by the absence of a power calculation and therefore true progression 

rates of EH to EC cannot be ascertained from this cohort. For future prospective studies to 

investigate rates of progression from EH to EC, an estimated sample size of EH cases to 

investigate would be ~3300 cases. This estimate is based upon the incidence of women 

developing EC being ~3.1 % and EH ~ 5 % (Cancer Research UK, 2018) and utilising an alpha 

value of 0.05 (i.e. false positive rate) and 80 % power (false negative rate). 

Finally, as discussed in chapter 5, the mechanistic cellular arm of this study was limited 

by the known difficulties in obtaining primary human endometrial epithelial cells. Whilst cell 

lines provide a durable model system, they do not always provide a biological response close 

to an in vivo situation. Future in vitro work would focus on methods to obtain a pure population 
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of primary cells or consider using an organoid based model system able to recapitulate cellular 

processes and cellular arrangements as seen in the tissues (Deane et al., 2017). 

 

6.7 Future directions 

The work presented in this thesis formed part of a pilot study based on an archival 

resource. A robust diagnostic/prognostic immunohistochemical panel requires independent 

validation using larger tissue resources which have linked clinical information, including data 

about subsequent development of EC. Importantly, this must also include a more diverse 

population than that in South East Scotland, as the risk of developing EC has been reported to 

vary according to ethnicity, although the reasons remain poorly understood (Setiawan et al., 

2007). In future endeavours it would also be useful to look at confirmed cases of endometrioid 

EC and then go back to review for pathology in archival biopsies prior to hysterectomy. 

In the current study we obtained promising results using a digital pathology software 

platform, capable of analysing both the morphological proportions of different cellular 

compartments (stroma vs. epithelia) within tissues and evaluating the immunohistochemical 

staining pattern for different cellular markers. This software could also be used to quantify 

numbers of proliferating cells (via Ki67 interpretation) as well as other molecular markers, 

such as CTNNB1 (beta catenin) mutations, which have recently been reported as a predictor 

of disease-free survival in low-grade early EC (Kurnit et al., 2017). The increasingly 

widespread use of slide-scanning technology will also mean that histology images could be 

shared between laboratories that may use alternative methods of tissue evaluation, i.e. the D-

score, to see if a newer common diagnostic algorithm can be developed. As discussed in 

chapter 4, we found the scoring of PAX2 was sometimes challenging due to a ‘cytoplasmic 

flare’ effect, likely due to the use of a polyclonal primary antibody. The use of an automated 

system to segregate tissue compartments whilst analysing staining patterns would be very 

valuable under these circumstances. 

In this study the challenges of maintaining a pure primary epithelial cell population 

limited their use for genomic manipulation in part due to limited amounts of starting material, 

but also most likely because the culture conditions had not been optimised for epithelial cells. 

This is a common problem reported by other groups and several recent advances in culture 

methodology, some reported from other tissue systems, may offer future promise including 

the growing of cells in media containing a ROCK inhibitor (Y-27632) in cultures at an air-

liquid interface to promote cell polarisation (Li et al., 2018). In the present study some 
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preliminary success was achieved in maintaining cells in 3D cultures using a hanging drop 

system. Once the epithelial cells have been established it will be important to revisit 3D culture 

systems that allow for interrogation of the stromal-epithelial cross talk that underpins the 

regulation of the normal endometrium, and which may be disturbed by excess unopposed 

oestrogens or mutations in other genes such as HAND2 which is expressed only in the stroma. 

Building on the work from chapter 4 utilising immunohistochemical HAC analysis, 

knockdown of HAND2 and PAX2 in a future cellular epithelial/stromal co-culture model 

system would allow functional validation of immunohistochemical data and allow permit 

further work aimed at unravelling a mechanism of action. 

 

6.8 Conclusions 

Endometrial hyperplasia (EH) represents a spectrum of morphological and cytological 

endometrial aberrations, and abnormal forms pose a significant risk of progression to 

endometrial cancer. Efforts to classify EH into clinically meaningful groups have historically 

suffered from poor diagnostic reproducibility, creating the potential for under- and over-

treatment of the condition. Given the current observed increase in incidence of endometrial 

cancers, accurate and reproducible diagnosis of EH has a key role in the early detection and 

prevention of this disease. Whilst the EIN/WHO2014 classification system offers 

improvement on EH diagnostic reproducibly when compared to its predecessor WHO1994, it 

is not flawless, and efforts should be made to complement and improve pathological 

classification. This may, pending further validation, be with an immunohistochemical 

diagnostic panel and the studies presented herein suggest that HAND2 and PAX2 may lend 

themselves favourably to this. Furthermore, digital image analysis techniques and in vitro 

endometrial modelling have the capacity to extend our knowledge and assist in uncovering 

mechanisms which drive endometrial neoplasia.
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8 Appendix 1 

 

• Details of MRC-CIR archival endometrial hyperplasia tissue resources used for 

optimisation experiments. 

 

Number WHO94 WHO2014 Study 
number Block number 

1 Atypical hyperplasia EIN CA9/100 1999-1632 

2 Complex atypical hyperplasia Proliferative CA73/02 2001-1562 

3 Complex atypical hyperplasia EIN CA200 2006-1584 

4 Complex atypical hyperplasia EIN CA52/01 2000-2690 

5 Complex atypical hyperplasia EC CA55/01 2000-3080 

6 Complex hyperplasia EIN CA264 2009-1956 

7 Complex hyperplasia EIN CA264 2009-1957 

8 Complex hyperplasia EC CA183 2005-2084 

9 Complex hyperplasia EIN CA265 2009-1964 

10 Complex hyperplasia Cervix CA265 2009-1965 

11 Complex hyperplasia EC CA187 2006-111 

12 Complex hyperplasia EC CA188 2006-112 

13 Complex hyperplasia EC CA124 2003-2759 

14 Hyperplasia with atypia HwA CA208 2006-3478 

15 Hyperplasia with atypia EIN CA220 2007-1682 

16 Hyperplasia with atypia EC CA204 2006-2724 

  



Appendix 2 

246 
 

9 Appendix 2 

 

• Application form to South East Scotland HSS Bioresource 

• Approval letter from South East Scotland HSS Bioresource 
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SR465 
 

 

REQUEST FOR ACCESS TO SOUTH EAST SCOTLAND HSS  
(formerly SAHSC) BIORESOURCE 

 
This application form is for the purpose of making a request to collect, use and process 
tissue/data via the HSS (SAHSC) BioResource. The tissue/data must be utilised within the 
laboratory and by personnel that fall under the supervision of the Principal Investigator listed 
on the application. Any transfer of tissue/data to personnel or laboratories that are not under 
the supervision of the indicated PI requires the following: 

• An explanation of the need to transfer the tissue/data and benefit to the investigator’s 
research 

• A copy of the enclosed BioResource agreement form signed by the collaborator 
The South East Scotland HSS (SAHSC) BioResource does not supply tissue/data solely for 
distribution to third party researchers, those researchers should apply to the BioResource 
directly. 
The requested information is necessary in order to document your request for  permission to 
collect, or access tissue/data and to ensure that the South East Scotland HSS (SAHSC) 
BioResource operates within the guidelines of the Tissue Act Scotland, 2006.  
When submitting a written request for permission to collect or access tissue/data: 
 
• Please print neatly or type. 
• Patient identity is confidential. Samples will be coded and supplied with a minimum data 

set. 
• Researchers are required to cover the cost of transport of their samples and supply 

appropriate customs declarations if applicable. 
• For additional information please contact the South East Scotland HSS (SAHSC) 

BioResource at frances.rae@luht.scot.nhs.uk, craig.marshall@luht.scot.nhs.uk, or 
rie.tissuegovernance@luht.scot.nhs.uk 

• Please send completed request forms and proof of ethical approval where applicable to 
Frances Rae with a copy to Craig Marshall at the above e-mail address. 

• Application will then be sent to the appropriate Scientific Review Committee for 
consideration and approval. No tissue or data will be released prior to approval being 
granted. 
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REQUEST FORM. 
 

Name & Address of PI: 
 
 
 
 
 
 
e-mail address: 

Professor Philippa Saunders 
Director, Postgraduate Research, CMVM.  
Professor of Reproductive Steroids,  
MRC Centre for Inflammation Research,  
The Queen's Medical Research Institute,  
47 Little France Crescent  
Edinburgh  
EH16 4TJ  
0131-242-6388 (office) 
 
p.saunders@ed.ac.uk 

Study Title: 
 
 
Ethical Status: 

Early Diagnosis and Treatment Strategies for Endometrial 
Cancer 
 
N/A 

Sponsor: N/A 

Funding Body: Cancer Research UK / Edinburgh Cancer Research 

Centre 

Material/Data Requested: 

 

Please be specific as to the 

nature of the material/data and 

indicate exactly the type and 

quantity eg fresh frozen, 

paraffin embedded, archival or 

prospective etc. 

 

If the request is for sections, 

please specify quantity, 

thickness of sections required, 

and type of slide eg plain or 

adhesive.  

We would like to request endometrial tissue samples and 
have access to anonymised patient medical history data 
stored within NHS Lothian and the Department of 
Pathology at the Royal Infirmary of Edinburgh. 
 
Via our NHS Lothian/Clinical collaborator – Professor 
Alistair Williams, Chair of Gynaecological Pathology, a 
patient cohort of interest has been identified. These 
patients underwent endometrial sampling and/or surgery 
between the years 2004-2009 and were diagnosed with 
the condition endometrial hyperplasia (Now also referred 
to as Endometrial Intraepithelial Neoplasia – EIN). 
 
From this patient cohort we would like to obtain the original 
index diagnostic tissue sample(s), any prior / subsequent 
tissue samples taken in the diagnostic/treatment timeline 
and also anonymised demographic/medical history 
information about these patients from their medical 
records (paper or electronic.) 
 
These data/tissue sections will be used within the 
University of Edinburgh for further research into the 
classification and understanding of the condition 
endometrial hyperplasia/EIN by examining expression of 
putative biomarkers of the condition.  
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This will involve immunohistochemical staining for proteins 
previously identified as diagnostic of 1) the proliferation 
status of cells within the tissue; 2) response to steroids 
[e.g. receptor proteins] 3) epithelial-mesenchymal 
transition 4) mismatch repair activity 5) inflammation. 
Information from this study will be analysed and correlated 
along with the medical history data and patient 
demographics. 
 
If unstained slides are provided, we would like the archival 
tissue to be from FFPE blocks, cut at 5 microns and on 
adhesive glass slides. 
 
There are 143 patients within our identified cohort and we 
would initially require 50 unstained sections from the index 
diagnostic biopsy of each patient.  
 
From a subset of the cohort (unknown quantity at present) 
we would also want 50 unstained sections from selected 
pre and post index biopsy samples along the diagnostic 
timeline in order to map disease progression. 
 
Medical history and demographic data would include: age, 
BMI, parity, hormone use, family history, past medical 
history, past surgical history, smoking status and other 
relevant risk factor(s) data for development of endometrial 
hyperplasia/EIN. 

Synopsis of project (100 – 200 

words approximately): 

Endometrial cancer is a common malignancy of the uterine 
lining; rates are rising and there is an increasing incidence 
of pre-menopausal disease which is more difficult to 
diagnose.  
Sex-steroids (especially unopposed oestrogens) have 
been shown to play a crucial role in the development of 
endometrial cancer, with lifetime exposure influencing cell 
proliferation in normal and malignant endometrial tissue. A 
recent integrated genomic and proteomic analysis has 
provided new insights into the biology and classification of 
endometrial cancer.  
This project will investigate endometrial pre-malignant 
neoplasia using a range of methods in order to develop 
improved strategies for earlier diagnosis and treatment.   
In 1994 The World Health Organisation (WHO) classified 
the condition known as ‘Endometrial Hyperplasia’. The 
WHO classification of endometrial hyperplasia consists of 
four categories, of which complex hyperplasia with nuclear 
atypia is considered to have the greatest risk of 
progression to endometrioid endometrial carcinoma. 
However, there is often considerable variability amongst 
pathologists when diagnosing specimens using the WHO 
nomenclature 
A new classification of the endometrial intraepithelial 
neoplasia (EIN) was published in 2000. It has been 
claimed that the EIN system better predicts disease 
progression. 
 
We wish to investigate the following: 
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(i) What are the key cellular changes that 
characterise these precursor lesions of 
endometrioid endometrial carcinomas?  
 

(ii) What are the patterns of expression of steroid 
receptors and steroid responsive genes in the 
precursor lesions of endometrioid endometrial 
carcinomas and can they predict responsiveness 
to therapies designed to interrupt the precursor-
cancer transition? 

If tissue collection is 
prospective, estimated 
number of patients to be 
consented. 

N/A 

Material disposal or storage 
plan: 

1) Slides would be physically stored within the 
University of Edinburgh, MRC Centre for 
Inflammation Research and if no longer required, 
sensitive disposal would be undertaken in line with 
the University of Edinburgh guidelines on disposal 
of human tissue waste. 

 
2) Electronically stored (Slides scanned) on secure 

server as a future reference library. 
Date Required: ASAP 

Shipping Address  
(if different to above): 

Saunders Lab, West-Block 
MRC Centre for Inflammation Research,  
The Queen's Medical Research Institute,  
47 Little France Crescent  
Edinburgh, EH16 4TJ 

 

AGREEMENT FOR USE OF TISSUE/DATA. 
The recipient agrees that any tissue/data provided by the South East Scotland HSS (SAHSC) 
BioResource will only be used for the purposes specified in this application and will only be used 
for the common good in scientific research or education. The recipient shall maintain retrievable 
records linking the material and accompanying data to the terms of acquisition. The recipient 
agrees not to attempt to obtain information identifying the individuals donating tissues/data to 
the South East Scotland HSS (SAHSC) BioResource. The recipient agrees they shall not sell 
any portion of the tissues/data provided by the South East Scotland HSS (SAHSC) BioResource, 
or products directly extracted from tissue material (e.g. protein, mRNA or DNA). The recipient 
also agrees that they shall not transfer tissue/data (or any portion thereof) supplied by the South 
East Scotland HSS (SAHSC) BioResource to third parties without prior written permission of the 
South East Scotland HSS (SAHSC) BioResource. Any subsequent transfer that may be made 
to other parties, with prior agreement from the South East Scotland HSS (SAHSC) BioResource, 
will require signature of this agreement between the final recipients of the material and the South 
East Scotland HSS (SAHSC) BioResource. 
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The recipient understands that while the South East Scotland HSS (SAHSC) BioResource 
attempts to avoid providing tissues that are contaminated with highly infectious agents eg 
hepatitis or HIV, all tissues should be handled as if potentially infectious. The individuals who 
have supplied tissue to the South East Scotland HSS  
(SAHSC) BioResource have not agreed to have clinical tests performed on this tissue, therefore, 
the recipient agrees not to perform such tests on the tissues supplied by the South East Scotland 
HSS (SAHSC) BioResource. The recipient acknowledges that the institution where the 
tissue/data will be used follows the relevant Human Tissue Authority or appropriate local 
regulations for handling human specimens and will instruct their staff to abide by those rules. 
The recipient further agrees to assume all responsibility for informing and training personnel in 
the potential risks and safety procedures for the handling of human tissues. 
 
Tissues are provided as a service to the research community without warranty of merchantability 
or fitness for a particular purpose or any other warranty, express or implied. The South East 
Scotland HSS (SAHSC) BioResource accepts no responsibility for any injury (including death), 
damages or loss that may arise either directly or indirectly from their use. 
The recipient agrees to acknowledge the contributions of the South East Scotland HSS (SAHSC) 
BioResource in all publications resulting from the use of these tissues/data 
The institution agrees to assume all risks and responsibility in connection with receipt, handling, 
storage and use of tissue/data from the South East Scotland HSS (SAHSC) BioResource. It 
further agrees to indemnify and hold harmless the South East Scotland HSS (SAHSC) 
BioResource from any claim costs, damages or expenses resulting from the use of the 
tissue/data provided by the South East Scotland HSS (SAHSC) BioResource. The undersigned 
warrant that they have authority to execute this agreement on behalf of the recipient institution. 

 
By my signature I agree to the terms set out in the above agreement 
 

Name of Principal 
Investigator: 

Professor Philippa TK Saunders 

Institution: The University of Edinburgh 
 

Signature:  
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Document Name 

 
QF-TGU-A-SAMREQA                 VERSION 1.0 

 
Page 

 
1 of 1 

 
Review date  

 
15-Jul-2016 

 

Author                      : Frances Rae  Date :  15-Jul-2010 
Authority for Issue  :  Craig Marshall Date  :  15-Jul-2010 
Quality Checked      : Craig Marshall Date  : 15-Jul-2010 

 

NHS LOTHIAN SAHSC BIORESOURCE 
SAMPLE REQUEST ANSWER FORM 

 
Sample Request number: 
 

SR465 
 

Name of Researcher: 
 

Professor Philippa Saunders 
 

Address of Researcher: 
 

Director, Postgraduate Research CMVM 
MRC CIR 
QMRI 
Edinburgh 
 

Study Title: 
 

Early Diagnosis and Treatment Strategies for 
Endometrial Cancer 
 

Ethical status: 
 

13/ES/0126 
 

Material Requested 
 
 
 
 
 
 
 
 

Release and use of the followng is approved in principle 
for the purposes of this project:, but we will be unable to 
meet the requirement for 50 sections from the blocks. 
 
Anonymised archival endometrial tissue samples and  
linked patient medical history data as described on the 
request form. 
 
Paraffin sections will be supplied, but the number of 
slides will be significantly less than 50, and further 
discussion with Prof Williams will be necessary.   

 
REQUEST AUTHORISED 
Date: 12-Feb-2015 

 
Authorised by: 
 

 
REQUEST REJECTED 
Date:  

 
Authorised by:  

 
Reason 
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• Sample histopathology scoring proforma for endometrial hyperplasia samples.  
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Sample number: 

Date reviewed: 

Reviewer: 

Adequate endometrial tissue for 
diagnosis? 

YES NO Only if NO: Tick all that apply 

□ □ 

Inadequate Quality □ 

Processing / technical problems □ 

Other: Specify 

Diagnosis: 

Benign Endometrium 

YES  NO Only if YES: only tick one 

□ □ 

Atrophic □ 

Inactive □ 

Proliferative □ 

Disordered Proliferative □ 

Secretory (including progestin & OCP effect) □ 

Menstrual □ 

Endometritis □ 

Other: Specify 

Endometrial Hyperplasia 

□ WHO 
2014 

Hyperplasia without Atypia □ 

Endometrioid intraepithelial neoplasia (EIN) □ 

□ WHO 
1994 

Simple, non-atypical hyperplasia □ 

Complex non-atypical hyperplasia □ 

Simple atypical hyperplasia □ 

Complex atypical hyperplasia □ 

Malignant Neoplasm □ □ 

Endometrial neoplasm □ 

Type: Specify 

Other malignant neoplasm □ 

Type: Specify 

Polyp: 

Endometrial polyp 

YES NO Only if YES: only tick one 

□ □ 

Atrophic □ 

Functional □ 

Hyperplastic □ 

Notes: 
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Published paper: 

Peter A. Sanderson, Hilary O.D. Critchley, Alistair R.W. Williams, Mark J. Arends, Philippa 

T.K. Saunders; New concepts for an old problem: the diagnosis of endometrial hyperplasia, 

Human Reproduction Update, Volume 23, Issue 2, 1 March 2017, Pages 232–254. 
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BACKGROUND: Endometrial hyperplasia (EH) is a uterine pathology representing a spectrum of morphological endometrial alterations.
It is predominantly characterized by an increase in the endometrial gland-to-stroma ratio when compared to normal proliferative endomet-
rium. The clinical significance of EH lies in the associated risk of progression to endometrioid endometrial cancer (EC) and ‘atypical’ forms
of EH are regarded as premalignant lesions. Traditional histopathological classification systems for EH exhibit wide and varying degrees of
diagnostic reproducibility and, as a consequence, standardized patient management can be challenging.

OBJECTIVE AND RATIONALE: EC is the most common gynaecological malignancy in developed countries. The incidence of EC is ris-
ing, with alarming increases described in the 40–44-year-old age group. This review appraises the current EH classification systems used to
stratify women at risk of malignant progression to EC. In addition, we summarize the evidence base regarding the use of immunohisto-
chemical biomarkers for EH and discuss an emerging role for genomic analysis.
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