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Abstract 

Illegitimate recombination is a powerful force that is capable of promoting 

large scale genome rearrangements without any requirement for the involvement of 

large regions of sequence homology. In this work an examination is made of 

palindrome instability, an example of an illegitimate event. The factors affecting 

deletion of long DNA palindromes from high copy number cloning vectors are 

investigated with particular reference to the mode of deletion and it is shown that the 

deletion of a 571 bp palindrome occurred from pMS7 using 3 bp repeats. A shorter 

109 bp palindrome deleted from a related plasmid using 7 bp direct repeats and the 

mode of deletion is unaffected by the genotype of the host strain. There also appears 

to be a bias for the deletion of palindromic sequences on the lagging strand of a 

replication fork. 

It is also shown that in a wild-type E. coli strain there is inhibition of plasmid 

multimerization if the plasmids carry long palindromic sequences. It is proposed that 

the lack of plasmid multimers in this background is a result of the removal of 

palindromic sequences form the plasmids by the SbcCD protein of E. coli. In an 

sbcCD strain, plasmid DNA bearing long palindromes is not detected in a 

monomeric form, instead the DNA is present in mutlimeric forms, predominantly 

dimers. The ability to form plasmid multimers in this background may help to 
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stabilise the palindromic sequences. The behaviour of palindromic sequences carried 

on plasmids is also investigated in recA and i-wA sbcCD strains with a view to the 

correct choice of E. co/i strain for the cloning of long palindromic sequences. 

Finally, the influence of an shcCD mutation on the formation of araB-/acZ 

cistron fusion is investigated. The SbcCD proteins are thought to have a role in the 

processing of secondary structures formed by palindromic sequences. The formation 

of arciB-lacZ fusions occurs via a strand transfer complex involving a complex 

genome rearrangment and secondary structure. Although an sbcCD mutation did not 

affect the kinetics or sequence specificity of fusion formation it is possible that 

SbcCD might have a role inprocessing the strand transfer complex which is not 

detected with the assay used. 
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CHAPTER 1 

INTRODUCTION 



Introduction 

In recent years there has been a rapid increase in the understanding of the 

proteins and mechanisms involved in homologous and site-specific recombination 

(for review see Kowalczykowski et al., 1994; Weisberg & Landy, 1983). These 

processes are essential for the generation of genetic diversity, the repair of DNA and 

the correct segregation of chromosomes after replication. However, there is another 

equally powerful and often neglected mechanism capable of rearranging DNA. The 

term illegitimate recombination covers a class of recombination events that are not 

included in homologous or site-specific recombination. It was originally defined by 

Franklin (1971) as a recombination event between sequences of little or no homology 

and occurs independently of the recA function required for homologous 

recombination. In subsequent years, experiments by a variety of workers have done 

little to change this definition and illegitimate recombination has been demonstrated 

to be involved in deletion, duplication and amplification of DNA; transposon 

excision; cointegrate formation; the formation of specialised transducing phage and 

palindrome instability (for reviews see Weisberg and Adhya, 1977; Allgood and 

Silhavy, 1988). Illegitimate recombination has been detected in all organisms 

examined including phage, bacteria, yeast and humans (for reviews see Ehrlich, 1989 

and Meuth, 1989). Although illegitimate events have been demonstrated to be 

independent of the proteins involved in either homologous or site-specific 

recombination, illegitimate recombination is still an example of a true recombination 

event as it results in the formation of a novel DNA joint i.e. the joining together of 
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two DNA segments that were previously non-adjacent. The lack of any requirement 

for sequence identity between two sequences involved in an illegitimate event means 

that potentially any part of the genome may recombine thereby making illegitimate 

recombination a major cause of genome alteration. Duplications provide additional 

copies of a gene that may accumulate mutations and so evolve new functions 

(Anderson and Roth, 1977). Deletions may alter the sequence context of a gene 

placing it under novel expression systems. Insertions of foreign genetic material into 

a genome may facilitate horizontal gene transfer so bypassing the need for similar 

gene functions to evolve repeatedly in different organisms (Arber, 1984). 

Illegitimate recombination events are also of great medical importance. They have 

been shown to be associated with or cause cancers such as human neoplasia (Croce, 

1987), retinoblastoma and osteosarcoma (Friend et al., 1986) along with a variety of 

human inherited disorders including thalassaemia (Collins and Weissman, 1984) and 

Duchenne muscular dystrophy (Forest et al., 1987). 

Illegitimate recombination is a broad term that covers too wide a range of 

subjects to be discussed here, as a result the remainder of this review will concentrate 

mainly on illegitimate recombination in E. coli discussing the factors involved and 

the proposed mechanisms for this mode of recombination. Particular attention will 

be paid to the involvement of illegitimate recombination in deletion formation and 

palindrome-mediated instability. 
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Genetic Rearrangements Caused by Illegitimate 
Recombination 

Deletions 

These are perhaps the most widely studied class of illegitimate events yet the 

actual details of deletion formation are still poorly understood, possibly because 

more than one mechanism may be involved (for review see Ehrlich et al., 1993). 

Despite this apparent confusion there are several main features which define deletion 

formation. 

RecA-independence 

As mentioned previously illegitimate events occur independently of the RecA 

pathway for normal homologous recombination (Franklin, 1971; Jones et ill., 1982; 

Chedin et al.; 1994). However, this has not been seen to be true for every case 

studied. Albertini et al. (1982) found that deletion formation in their system 

occurred 25 times more frequently (per cell generation) in a recK genetic 

background than in a reck background. Control experiments argued that the result 

was not an artefact of the procedure used to determine mutation rates. A possible 

explanation for this result was proposed by Syvanen et al. (1986). Albertini et aL 

had selected lacI deletions in F'128 and it was later demonstrated that conjugal 

transfer during matings within F' populations led to elevated RecA activity. Syvanen 



et al. (1986) suggested that the RecA-dependent stimulation that was observed by 

Albertini et aL was a consequence of the elevated RecA levels, which may have 

served to stabilise important intermediates in deletion formation. In this way the 

observed effect of RecA on the frequency of deletion formation may be related to 

conjugal transfer of F'128 and not the direct involvement of RecA in illegitimate 

recombination. Further support for this idea stems from the fact that the variety of 

deletions isolated by Albertini et aL in recA mutants was identical to that obtained in 

the wild-type background. Deletion formation has also been shown to be independent 

of other genes involved in the recombination and repair of DNA for example e-ecB, 

recC, uvrA, uvrB, uvrC and uvrD (Anderson, 1970; Inselberg, 1967; Spudich et al., 

1970). 

Sequence Homology 

The lack of any requirement for long regions of sequence homology in 

deletion formation means that potentially any sequence may be involved in a deletion 

event, although any deletions that extend into essential sequences cannot be tolerated. 

Therefore, if deletions were formed totally at random the probability of isolating the 

same deletion more than once would be very small. However, some "hotspots" were 

identified that repeatedly led to the formation of identical deletions. Farabaugh et al. 

(1978) performed some of the earliest work on this subject. They examined nine 

novel joints formed by spontaneous deletions of 13-123 bp within the lacl gene of E. 
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coli which was carried on an F plasmid. By comparing the nucleotide sequence of 

the novel joint with that of the wild-type sequence it was revealed that four of the 

nine deletions occurred at sites of microhomology consisting of 5-8 bp in direct 

repeat. Each of the deletion events had removed one of the direct repeats and the 

sequence in between. Three of the four deletions which exhibited microhomology 

were isolated twice, whereas the five deletions without microhomology were isolated 

only once. 

Even more dramatic was the effect of microhomologies in the formation in 

large deletions. Albertini et aL (1982) analysed 24 deletions, ranging from 700-1000 

bp, by direct DNA sequencing. Microhomologies of between 4-17 bp were used as 

deletion endpoints. Approximately 60% of the deletions isolated occurred between 

direct repeats of 17 bp in which 3 of the 17 bases were mismatched. Altering a 

single base within the homology decreased the deletion frequency by an order of 

magnitude, while introducing a base change into one of the 3 mismatched bases had 

no effect, thereby demonstrating the importance of homology length on deletion 

formation. The deletion frequency was also shown to be affected by the distance 

between the direct repeats with the frequency apparently decreasing with increasing 

distance. This observation was investigated in a more systematic manner by Chedin 

et aL,(1994). Deletion frequencies between 18 bp direct repeats were examined in a 

high copy number plasmid and the B. subtilis genome. In both cases deletion 

frequencies decreased exponentially by more than 1000-fold as the distance increased 



from 33 to 2313 bp, indicating that the distance effect was not specific to the system 

used by Albertini et at (1982). The decrease occurred in two phases with a transition 

at about 400bp. 

Although a degree of sequence identity was present between the recombining 

sequences cited above, these events were unlikely to involve RecA-like functions 

since the lengths of the direct repeats were below the 30-70 bp required for 

homologous recombination in bacteria (Shen and Huang, 1986; Khasanov et at, 

1992). The lack of any obvious motifs in the short direct repeats makes unlikely that 

they would be recognised by enzymes which specifically cut and join DNA strands 

(Ehrlich et at, 1993). 

It should be noted that the presence of short sequence identities is not 

essential for deletion formation. In the examples discussed above, only half of those 

isolated by Farabaugh et al. (1978) used direct repeats and one deletion isolated by 

Albertini a al.. (1982) showed no identity between the recombining sequences. 

Benson and Bremer (1987) isolated deletions of 600-1000 bp that fused lamB to 

lacZ. Of the seven deletions detected only one was formed using limited 

microhomology (approximately 50% identity). Six other fusions displayed 20-35% 

homology in the direct repeats used. Sequence analysis demonstrated that other 

possible alignments with greater degrees of homology were present but these were 

never used as deletion endpoints. One interesting feature of the work by Benson and 
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Bremer is that the spectrum of deletions isolated was different when the selection 

was carried out on lactose minimal medium as opposed to lactose tetrazolium 

medium. This is consistent with the work of Shapiro (1984) on lacZ fusion 

formation which suggested that under non-lethal conditions medium composition, 

genetic background and the environment surrounding the potential clone all influence 

the selection process. 

A model was proposed where deletion formation was mediated by 

palindromic or quasipalindromic sequences (Glickman and Ripley, 1984). It was 

suggested that these sequences could form secondary structures which could act as 

intermediates in deletion formation by bringing the direct repeats used as deletion 

endpoints closer together (the model will be discussed in more detail later in the 

chapter). Analysis of previously collected data (Farabaugh et al., 1978) identified 

quasipalindromes at five of the nine deletion sites. Three of these also possessed 

direct repeats so that either or both could be involved in deletion formation. 

Deletions at the other two sites could involve quasipalindromes but not direct 

repeats. However, three of the nine deletions could not be explained by either model. 

Also, when the same model is applied to the deletions isolated by Benson and 

Bremer (1987), only two possessed quasipalindromes near the site of deletion 

formation. It is still unclear what is the major influence in the formation of deletions 

of the fused lamB-lacZ region. Trinh and Sinden (1993) cloned 17 and 18 bp 

palindromic and non-palindromic sequences into the EcoRI site of the CAT gene 



present in pBR325. Deletion of the sequences occurred via the flanking direct 

repeats. A higher deletion frequency was observed for the palindromic sequence as 

compared to a non-palindromic sequence of the same length. Deletion of a non-

palindromic sequence was influenced by the length of the flanking direct repeats. 

Sequence Context 

It is possible that more subtle features of chromosome sequence or structure 

may be involved in the cases where direct repeats or quasipalindromes cannot be 

identified at the sites of deletion formation. The chromosome is divided into 

approximately 40-50 topologically distinct domains (Sinden and Pettijohn, 1981). 

These domains may provide different environments for a particular sequence, with 

different levels of supercoiling or gene expression that could affect the frequency of 

deletion. This theory was tested by moving mutant f3-lactamase genes from plasmid 

pBR322 to different sites within the K coli chromosome (Kazic and Berg, 1990). 

The sequence to be deleted was made up of either a 22 bp or 90 bp palindrome 

flanked by three different 9 bp direct repeats and inserted into different sites in the 

b/a gene along with the lac gene at 8' and a )Jac prophage at attX and an F'lac. 

Moving the sequence from the multicopy plasmid to the single copy chromosome 

reduced the deletion frequency per cell by one or two orders of magnitude. This 

reduction was greater than could be accounted for by the reduction in copy number. 

The shorter palindrome deleted less frequently than the 90 bp palindrome. The 



magnitude of the effect was also dependent on the position on the chromosome with 

a larger variation in reversion frequencies for integrated 2./ac prophages than 

chromosomal lac constructs. Also some constructs which could be tolerated in 2Jac 

could not be recovered as lac insertions. The two sites discussed lie in different 

chromosomal domains as proposed by (Rebollo et (IL. 1988). It is possible that this 

accounts for the differences, although additional features may be involved. 

Transcription induces changes in DNA topology; positive supercoils 

accumulate infront of the transcription complex and negative supercoils behind it 

(Pruss and Drlica, 1989). Vilette et al. (1992) used chimeric plasmids containing 

phage M13 and plasniid pBR322 sequences in E. co/i to look at the effect of 

transcription on high frequency deletion events. In all the plasmids one deletion 

endpoint was located in the M13 replication origin nick site. The effect of 

transcription on the location of the other endpoint was examined by inserting 

promoters and terminators into the plasmids. Transcription affected the deletion in 

an orientation-dependent manner with more than 95% of deletion endpoints being 

located downstream of the induced promoter when it was in the same orientation as 

the major plasmid transcripts. The endpoints did not all lie within the transcribed 

region and they were not affected by the orientation of the pBR322 replication origin. 

It was proposed that deletion events occurred preferentially in a plasmid domain that 

was positively supercoiled by transcription and that this made the region more 

accessible to enzymes that were capable of introducing DNA breaks. 

10 



Duplications and Amplifications 

Unlike deletions which are limited in size to non-essential regions of the 

genome, there is no upper limit on the size of duplications. Consequently 

duplications can arise at frequencies as high as 3% of the population (Anderson and 

Roth, 1981); this is much higher than the frequencies observed for the most active 

deletion hotspots. The only apparent constraint on the size of duplications is that 

they may not include the region for termination of replication (Anderson and Roth, 

1981). 

As with deletion formation the importance of short direct repeats in DNA 

duplications has been demonstrated. Edlund and Normark (1981) isolated a 

spontaneous duplication of 10 kb in the arnpC region of the E. coil genome in which 

the recombination event occurred between 12 bp direct repeats. The role of 

microhomologies was confirmed by the work of Whoriskey et at, (1987) who used 

an F plasmid carrying a lacJ-iacZ fusion with a iacl promoter deletion. LacZ 

duplications which fuse the iacl-iacZ hybrid to a distant active promoter were 

selected by growth on lactose. Investigation of the mutants isolated revealed that a 

single duplication did not produce a sufficiently high enough level of gene 

expression to allow growth on lactose. Instead, amplifications which increased the 

copy number of the duplication 40-200 fold were observed. Unlike the initial event, 

these further amplifications were RecA-dependent unequal crossover events. 
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Using sequence analysis Whoriskey a at (1987) found that 28 of the 30 

novel joints formed occurred between 5-18 bp direct repeats with one novel joint 

being present in 12 of the 30 duplications. As with deletion formation the presence 

of direct repeats was not essential for duplication since two of the novel joints 

produced lacked any sequence homology. It could be argued that the duplications 

isolated by Whoriskey a cii. were not truly illegitimate events due to the involvement 

of RecA in the subsequent amplifications. However, the microhomologies used are 

below the limits needed for homologous recombination, so the initial duplication 

appear to be the result of illegitimate recombination. Given the similarities between 

duplication and deletion formation it seems likely that the two events occur by a 

related mechanism. 

Cointegrate Formation 

Unlike the genome rearrangements discussed above, cointegrate formation is 

an intermolecular event, but as with deletions and duplications the recombination can 

occur between short direct repeats. King a al. (1982) produced in vitro 

recombinants between phage ?. and pBR322. Three of the four isolates resulted from 

a recombination event between 10 or 11 bp homologies. The fourth isolate was 

produced by two recombination events, both of which involved 10 and 13 bp 

homologies. Several other cointegrates were produced in a recA strain arose by 

recombination events between sequences showing homologies of less than 5 bp. The 
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recombinants were produced at a 10-fold lower frequency in a recA host. The 

structure of the recombinants also appeared to be different in a recA background 

(Marvo et al., 1983). Of the four cointegrates sequenced, all had deleted DNA 

around the fusion joint. One of the cointegrates had also duplicated part of the 

plasmid sequence during the fusion event. Owing to the small numbers of 

cointegrates examined in the study it is unclear whether the differences observed in 

recA and recA hosts are due to different mechanisms being active in each 

background. 

The effects of mutations in other genes involved in DNA recombination and 

repair were also investigated. Ikeda at al (1980) added plasmid DNA to a XDNA in 

vitro packaging system and isolated phage which carried plasmid-borne resistance 

markers. The frequency was not altered by mt or red mutations in the X prophages or 

by recA, recB recC or recF mutations in the E. coli host from which the packaging 

extracts were isolated. 

Formation of Specialised Transducing Phage 

At its most basic the formation of specialised transducing phage can be 

thought of as a deletion event which results in the formation of a eovalently closed 

circular molecule composed of the deleted sequence. If the DNA molecule contains 

an origin of replication it may be recovered. Unlike general sequence deletions by 
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illegitimate recombination, the formation of specialised transducing phage were 

characterised by their large size, typically —50 kb. Specialised transducing phage are 

produced by aberrant excision events which results in bacterial genes adjacent to the 

prophages becoming fused to the phage genorne. To be recovered the excised phage 

must be of a suitable length to be packageable and for the case of ?c phage have 

cohesive ends which are still intact (Kaiser and Wu, 1968). Lysates of induced A 

contain phage able to transduce gal and bio genes to the host cell at a frequency of - 

10.6 (Campbell, 1964). Of the various E. coli gene functions affecting DNA 

recombination and repair, many have found to be non-essential for the excision of A 

transducing phage. Mutations in recA and recfi do not affect the yields of specialised 

transducing phage (Franklin, 1967). Mutations affecting the repair of U.V. damage 

(uvrA, B, C, or D) cause a 5-fold or less decrease in bio transducing titres of A lysates 

(Franklin, 1967). Recent work by Ukita and Ikeda (1996) identified a recombination 

hotspot exhibiting short regions of homology which accounted for 60% of all Abio 

phage produced in a wild-type E. coli. This hotspot was not detected in a recJ host. 

Transposon Excision 

When most transposons insert into a genome the target sequence is 

duplicated, resulting in the inserted transposon being flanked by the direct repeats of 

the target sequence. Recombination between the direct repeats of the duplicated 

FE4 



target sequence lead to the excision of the transposon and the retention of one copy 

of the duplicated sequence (Kleckner, 1979; Berg a' at., 1980). 

Transoson Tn5 is 5.7 kb in length. contains 1.5 kb inverted terminal repeats 

(1S50 elements) and has a central region which codes for kanamycin resistance 

(Berg, 1989). Tn5 duplicates a 9 bp target sequence on insertion. Transposase, the 

protein required for transposition of TnS, is not required for excision of the 

transposon. As with the deletion of others sequences, the frequency of excision of 

Tn5 varies greatly depending on the insertion position of the transposon. It ranged 

from 3x10 8  to 2x10 4  for different positions within the lac gene of an F'lac (Berg a' 

al., 1980). When a Tn5 which has the 1S50 elements in direct repeat as opposed to 

the normal inverted repeat, the excision frequency is reduced from 106  to 10 9  

suggesting a role for the inverted repeats in the excision event (Egner and Berg, 

1981). 

Excision of transposon TnlO is similar to that of Tn5. TnlO is 9.3 kb in 

length and encodes tetracycline resistance (Kleckner, 1989). It duplicated a 9 bp 

target sequence on insertion and can excise by recombination between the direct 

repeats (Kleckner, 1979). In addition, TnlO can undergo nearly precise excision by 

recombination between 23-24bp direct repeats present in the 1.4 kb inverted repeats 

of the flanking IS 10 elements. Nearly precise excision leaves 50 bp of the 

transposon flanked by the 9 bp target repeats in the host genome. This sequence can 
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then undergo deletion via the 9 bp direct repeats (Foster et at, 1981). All three 

examples of excision in TnIO occur independently of the transposase function. 

Excision does not lead to transposition to a new site and occurs independently of host 

recombination functions such as recA (Foster cat, 1981). 

There is evidence that transposon excision occurs more frequently from 

replicons using rolling circle replication as opposed to theta replication (Berg ci a! 

1983). A chimera was made between the CoIEI replicon and the M13 origin and 

activation of the M13 origin induces rolling circle replication. The plasmid carried 

an ampicillin resistance gene inactivated by transposon insertion. Nearly precise 

excision of the transposon restores ampicillin resistance. Infection of cells bearing 

the chimeric plasmid with the helper phage fT led to a 1000-fold increase in 

ampicillin resistance cells within three hours. It is possible that the single stranded 

nature of rolling circle replication allows the alignment of direct repeats used in 

deletion formation. 

Palindromic DNA Sequences 

A palindrome is an inverted repeat sequence of DNA with two-fold rotational 

symmetry. Its sequence arrangement allows it to exist in two forms; either an 

interstrand base paired linear form or a cruciform structure with intrastrand base 
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Figure 1. Secondary structure of palindromic DNA. 

3' 	 5' 

la. 

3 ,  

3 ,  

lb. 

Ia. Palindrome in linear interstrand base paired conformation. 

lb. Intrastrand base paired to form a cruciform structure. 

Inverted repeat sequence. 
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pairing (fig. 1). Long perfect palindromes (>40 bp in length) do not naturally occur 

in the E. co/i genome. However, small (<40 bp) imperfect palindromes are found in 

extragenic sequences e.g. REPs (Young and Ames, 1990), BIMEs (Bachellier et al., 

1994) and IRUs (Sharpies and Lloyd, 1990). Imperfect palindromes are also located 

in genetic regulatory regions, for example, in the lac operator, CAP protein binding 

site (Bertrand et al., 1975) and in the initiation of DNA replication (Hirota et at, 

1979). In the early days of DNA cloning experiments it was observed that although 

directly repeated cloned fragments were occasionally recovered in ligations, 

invertedly repeated sequences were never recovered in transformed bacteria (Behnke 

et at, 1979; Casadaban and Cohen, 1980). This prompted the suggestion that such 

palindromic sequences could not be tolerated in E. co/i perhaps because of their 

ability to adopt unusual secondary structures. When long perfect palindromes, either 

obtained from eukaryotic cells where they are prevalent or constructed in vitro, were 

introduced into a bacterial cell they exhibited the two distinct effects of inviability 

and instability. 

Inviability 

This results from the loss of the replicon carrying the palindrome and there is 

an upper limit of approximately 150-200 bp in total length before a palindrome 

exhibits inviability (Warren and Green, 1985). Replicon inviability can be overcome 

by deletion of the entire palindromic sequence, deletion of the central part of the 



palindrome or insertion of segments of DNA into the centre of the palindrome to 

separate the inverted repeats. Inviability is also strongly influenced by the genotype 

of the host used. Leach and Stahl (1983) reported that a lambda phage bearing a 3.2 

kb perfect palindrome plated at an efficiency of less than 1% of the control phage 

lacking the palindrome when in a rec host. However, sbcC is a gene which when 

mutated greatly alleviates inviability. Originally characterised as an additional 

mutation in recBC sbcB strains (Lloyd and Buckman. 1985), mutation of the single 

sbcC gene was sufficient to overcome inviability and allow replication of a 571 bp 

nearly perfect palindrome in E. coli (Chalker et at., 1988). SbcC along with SbcD 

form the primary control for the replication of long palindromes in E. coli. The DNA 

sequence of the genes revealed that the gene products were distantly related to the 

exonucleases of bacteriophages 14 and T5 responsible for the degradation of 

chromosomal DNA (Leach et al., 1992). Genetic evidence suggested that mutation 

of the sbcC gene may mimic the action of the gam gene of bacteriophage X (Kulkami 

and Stahl, 1989) by allowing viability of long palindromic sequences. 

These two lines of evidence suggested that the Gam protein might interact 

with the SbcC protein. Since the Cam protein is known to inactivate the RecBCD 

enzyme (Karu, 1975) it was suggested that Cam may also inactivate the SbcC 

protein. The gene products of the sbcCD genes have been purified and shown to 

possess an ATP-dependent double-strand exonuclease activity (Connelly and Leach, 

1995). SbcCD mutations were originally isolated as additional mutations that 
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increased the viability of recBC sbcB strains. Plasmids propagated in these strains 

also give rise to high levels of linear multimeric DNA possibly because of 

uncontrolled rolling circle replication. The activity of the SbcCD proteins could be 

explained in these two examples by digestion of the linear substrate for 

recombination in the first example and by the digestion of rolling circle tails in the 

second example. The identification of the sbcCD genes has allowed the study of 

palindromic sequences in vivo. Although mutation of shcC overcomes the primary 

determinant of inviability, palindromes retain some problems in this background. 

This is reflected in the reduced plaque size for lambda phage containing long 

palindromes. Also, instability is still seen with palindromes which are no longer 

inviable in this background. 

Instability 

This results in deletions which partially or wholly remove the palindromic 

sequence at a high frequency (Collins, 1981) and many of the features of general 

sequence deletions apply to palindrome instability. Unlike inviability, instability has 

been detected for palindromes as short as 22 bp in length (DasGupta a al., 1987). 

Palindrome-mediated deletions, like spontaneous deletions in general sequence 

DNA, occur by a recA-independent mechanism. Generally, the level of instability 

increases with length of the palindromic sequence (Weston-Hafer and Berg, 1989). 

The deletion frequency is also affected by the general sequence context as well as the 
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local DNA context, such as the presence of flanking direct repeats (Farabaugh et a! 

1978; Albertini et al., 1982), the very nature of cloning palindromic sequences means 

that they are flanked by directly repeated restriction sites. 

The overall sequence context of the palindrome is important. For example, it 

was demonstrated by DasGupta et at (1987) that the deletion frequency of 22, 32 

and 90 bp palindromes, derived from Tn5, varied 100-fold for the same palindrome 

at different insertion sites. A 3000-fold difference in deletion frequency was 

observed for a 90 bp palindrome at a pair of adjacent sites which overlapped at 8 out 

of the 9 bp. This suggests that differences in deletion frequency must involve precise 

effects of local DNA sequence. Excision of the 22 bp palindrome was 3-550 times 

more efficient, than for excision of the whole 50 kb transposon from which it was 

derived, at a number of different sites. For all the insertions (except one) a small 

increase in deletion frequency was observed when the length of the palindrome was 

increased to 32 bp. Increasing the length of the palindrome to 90 bp increased the 

frequency of deletion 9-314 times indicating an increase in instability with increasing 

length of inverted repeats. The one insert which did exhibit a significant increase in 

deletion frequency had a deletion frequency of 116 and 18000 times when the length 

was increased from 22 bp to 32 bp and 90 bp respectively at the same site. 

Kazic and Berg (1990) placed a variety of deletion-prone sequences into the 

same immediate context i.e. within a iacZ gene present at different locations within 
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genomes. The positions used were at Vac at 17' on the E. coil genome, 

chromosomal lac at 8' and on an P/ac. Palindromes which were 22 and 90 bp in 

length, flanked by 4 bp direct repeats, were placed in the b/a gene of pBR322 and the 

gene moved to the different lac locations. Deletion of the palindrome resulted in a 

reversion to ampicillin sensitivity. The 22 bp palindrome deleted less frequently than 

the 90 bp palindrome (—l0 2  fold less). When moved to chromosomal locations most 

of the constructs exhibited a reduced level of deletion (1-2 orders of magnitude). The 

magnitude of the effect was insertion-specific and location-specific. This reduction 

was beyond any effect due to the drop in copy number which resulted in moving the 

constructs from a multicopy plasmid to single copy genomes. All lac positions were 

not identical in their effect on the deletion frequency since some constructs which 

were tolerated at the Xtac position could not be recovered from the chromosomal lac 

position. 

Both DasGupta et aL (1987) and Kazic and Berg (1990) demonstrated the 

increase in deletion frequency when the length of the palindromic sequence is 

increased from 22 to 90 bp. Weston-Hafer and Berg (1989) used a variety of 

palindromes to look at the effect of palindrome length on deletion from identical 

positions within pBR322 and also the choice of direct repeats used as deletion 

endpoints in the recombination reaction. 19, 22 and 26 bp palindromes showed a 

higher deletion frequency when flanked by 10 bp repeats as opposed to 9 bp repeats. 

4 bp direct repeats were also present (one in the palindrome and one in the plasmid) 
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but for the 22 bp palindrome these repeats were used in only 2% of deletion events. 

Palindromes with increased lengths (32, 34, 48 and 90 bp) exhibited increased 

deletion frequency when flanked by 9bp repeats rather than 10 bp repeats. With 

palindromes which were 36, 44 and 90 bp in length 80% of the deletion events used 

the 4 bp direct repeats. Use of these shorter repeats increased form 2-56 17o when the 

length of the palindrome was increased from 22 to 32 bp. It was suggested that the 

use of shorter direct repeats reflected the increased stability of secondary structures 

formed by the palindromes. Replication may be able to poceed into a longer 

palindrome as far as the internal 4 bp repeat without disrupting the structure, whereas 

with a smaller palindrome the replication machinery would disrupt the secondary 

structure and so be able to successfully replicate the sequence. 

The presence of any central asymmetric region in the palindrome decreases 

the deletion frequency and, if long enough, may confer stability to palindromes 

(Warren and Green, 1985). Plasmid pATI53 was restricted with Sau3A to give a 

large number of restriction fragments which varied in length from 8-876 bp and the 

fragments were ligated into the centre of a long palindromic sequence. The smallest 

insertion recovered was 72 Up made up of the insertion of a 46 Up and a 36 bp 

fragment suggesting that insertion of less than about 50 bp did not alleviate 

inviablity. The palindrome remained highly unstable and suffered deletions. 

Instability was detected in all constructs which carried an insertion of less than 150 

bp. A more natural example of the effect of central insertion is seen with transposons 
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which are in essence made up of long inverted repeats separated by a large central 

insertion (Berg, 1989; Kleckner, 1989). 

Genes Involved in Illegitimate Recombination 

Many of the studies investigating the mechanisms of illegitimate 

recombination have relied on screening for chromosomal loci which can be mutated 

to increase the frequency of deletion formation. Such mutations could identify genes 

whose products play a role in illegitimate events. 

Initial screening looked at genes which were involved in DNA recombination 

and repair. Mutations in recA , recB, recC, uvrA, uvrB, uvrC and uvrD were all 

found to have no effect (Franklin, 1967; Inselberg, 1967; Spudich et aL, 1970; 

Coukell and Yanofsky, 1970). Mutations isolated in polA were shown to increase the 

deletion frequency in the tonB-trp region of the E. coli chromosome (Coukell and 

Yanofsky, 1970). However, the allele used was usually polAl which causes a 

dramatic decrease in polymerase function with little effect on the exonuclease 

activity of the enzyme (Joyce et al., 1985). It seemed unlikely that polA mutations 

were having a direct involvement in illegitimate recombination, but may have given 

rise to an increase in gapped and damaged DNA which may have acted as a substrate 

for illegitimate events. 
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Ligase mutations were isolated that gave rise to increased deletion 

frequencies in the tonfi-trp region of the E. coli genome (Gellert and Bullock, 1970). 

Subsequently work by Shafferman et at (1987) demonstrated an increase in 

palindrome deletion from a plasmid in a Hg" mutant at the non-permissive 

temperature. However, it was proposed that the lack of a functional ligase might lead 

to an increase in the presence of gapped DNA within the cell which may be prone to 

deletion. 

A number of mutants (called tex mutants) have been isolated which exhibit 

increased excision of transposable elements. Many of the mutations mapped to 

previously identified genes involved in mismatch repair e.g. darn, mutH, rnutL, mutS 

mutU and also to recB and recC (Lundblad and Kleckner, 1982, 1985; Lundblad et 

al., 1984). The highest frequencies of deletion were seen with mutations in niutU 

and recBC (-100 fold), the lowest with ynutH and mutS (-2 fold). However the 

same mutations did not affect excision from different sites to the same degree 

(particularly for mutations in mutS). Whether the effect of these mutations was a 

direct one was not clear but the effect of the mismatch repair mutations was 

decreased by decreasing the size of the transposon inverted repeats (Lundblad and 

Kleckner, 1985). A mutation isolated in dnaQ (mutD), which encodes the proof-

reading subunit of polymeraseffi (Scheuermann et al., 1983), gave rise to increased 

levels of base mismatches (Lundblad and Kleckner, 1985) which may also stimulate 

an illegitimate event rather than there being a direct involvement of DnaQ. 
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Lejeune and Danchin (1990) reported that deletion of the bglY gene in E. coli 

resulted in an increased frequency of large deletions of chromosomal markers and 

plasmid DNA. The frequency of point mutations was unaffected. It was proposed 

that the bg/Y gene product, a small histone-like protein (Hulton eral., 1990), could be 

a factor involved in the control of tertiary DNA structure. The absence of the protein 

could lead to the looping out of single stranded DNA so increasing the chances of 

short direct repeats aligning and subsequent deletion of the intervening sequence. 

It was also reported that an E. coli strain carrying a mutation in the xth-pnc 

region at 38' on the chromosome again showed an increased frequency of 

illegitimate recombination (Yi et at, 1988). Subsequently Whoriskey a at (1991) 

identified a gene, mutt?, which mapped near 38.5' on the E. coli chromosome. The 

mutation resulted in increased deletion formation on multicopy plasmids and it 

seemed likely that removal of mutt? was responsible for the phenotype demonstrated 

by Yi a al. (1988). Cloning and sequencing of mutR (Schofield et al., 1992) 

revealed that the gene was identical to topB a gene which encodes topoisomerase III 

(DiGate and Marians, 1988). Topoisomerase Ill has been shown to relax negatively 

supercoiled plasmids so the lack of topoisomerase III might lead to an increase in 

supercoiled structures which might increase deletion formation (Schofield a al., 

1992). However, the primary activity of topoisomerase III seems to be decatenation 

so how this would affect deletion formation is unknown. 
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Mutations which mapped to the sbcB gene at 43.5' on the E. coil chromosome 

resulted in increased deletion formation on a plasmid that created rare iacZ fusion 

proteins (Allgood and Silhavy, 1991). The only known biochemical activity of the 

sbcB gene product is that of a single-stranded 3'-5' processive exonuclease (Kushner 

et al.. 1971). The mutant alleles isolated were defective in this function. As a result 

it was suggested that Philips et al. (1988) were correct in indicating that the SbcB 

protein had a second, unidentified function which might play a role in illegitimate 

recombination. 

The formation of specialised transducing phage in E.coii is a rare event but it 

can be induced by U.V. irradiation. A mutation in theE. coil recJ gene was found to 

decrease the formation of Xbio specialised transducing phage by 3-10 fold (Ukita and 

Ikeda, 1996). A recombination hotspot which gave rise to approximately 60% of all 

Xbio phage produced in a wild-type E. coli was not detected in a recf strain. It was 

proposed that RecJ preferentially promoted illegitimate recombination at that 

hotspot. Both this hotspot and other sites of recombination which gave rise to 

transducing phage exhibited short regions of homology (3-10 bp). All recombination 

events at the major hotspot used 9 bp direct repeats. A model for recombination was 

proposed in which a double-strand break induced by direct repeats was acted on by 

the 5'-3' exonuclease activity of RecJ (Yamaguchi et al., 1995). In the model a 

lesion induced by u.v. irradiation blocked the progression of a replication fork 

leading to slippage between the direct repeats and the formation of a DNA loop. 
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Unwinding of the DNA would produce single-stranded DNA subject to attack by 

RecJ which is known to possess a single-stranded DNA 5'-3' exonuclease activity 

(Lovett and Kolodner, 1991). Joining of the DNA could then take place using the 

complementary direct repeats. 

Extensive work has been carried out to identify a role for DNA 

topoisomerases in illegitimate recombination. DNA topoisomerases are found in 

bacteria (Wang, 1991) as well as the nuclei and mitochondria of eukaryotes 

(Champoux and Dulbecco 1972; Fairfield et al., 1979) and can be classified into two 

categories. Type I make single strand DNA breaks and relax DNA supercoiling by 

changing the linking number in steps of one. In E. co/i one such enzyme is 

topoisomerase I (omega protein) which is a 101kDa polypeptide encoded by the topA 

gene. Type II topoisomerases make double strand breaks and mediate the 

interconversion of supercoiled and relaxed forms of DNA by changing the linking 

number in steps of two. In E. coli an example of a type II enzyme is DNA gyrase. It 

is composed of two subunits of 105kDa and 95kDa encoded by the gyrA and gyrB 

genes respectively and has a tetrameric structure of A.$, (Gellert, 1981; Drlica, 

1984). 

Ikeda et al. (1981; 1982 and 1984) developed an in vitro system which 

demonstrated that DNA gyrase could promote illegitimate recombination in E. coli. 

The incubation of plasmid pBR322 with phage X in E. coli extracts led to the 



formation of lambda-pBR322 recombinants. The recombinants were formed by the 

insertion of the plasmid into A DNA or by the substitution of lambda DNA by 

plasmid DNA. The sites of crossovers appeared to be random implying the 

involvement of illegitimate recombination. The reaction was found to occur 

independently of the F. co/i RecA function as well as the tnt and red gene products. 

The addition of oxolinic acid, a DNA gyrase inhibitor which acts on the A subunit 

stabilising the enzyme/DNA complex (Gellert et al., 1977), stimulated recombination 

13 fold. The effect was specifically on gyrase since the use of an extract from a gyrA 

mutant did not produce recombinants. 

The structure of recombinants between A and pBR322 formed in the presence 

of oxolinic acid were analysed by heteroduplex analysis and DNA sequencing (Ikeda 

et al., 1982; Naito et al., 1984). Among nine isolates investigated, two were formed 

by the direct insertion of the plasmid into A. In other cases the phage or the plasmid 

suffered deletions upon insertion. In all cases where a deletion occurred one end of 

the deletion coincided with one end of the plasmid insertion point. Recombination 

sites were randomly distributed on the phage and plasmid genomes. Sequence 

comparisons revealed that the sites did not display more than 4 bp homology and in 

one of the recombinants no homology was present. It was proposed that homology at 

deletion endpoints was not necessary for gyrase-mediated illegitimate recombination. 
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It was noted by Marvo et al., (1983) that some of the recombination sites 

resembled those of the gyrase cleavage consensus. The cleavage sequences for gyrase 

have been determined in vitro as 5' YRT I GNYNNY 3' (Morrison and Cozarelli. 

1979) and in vivo as 5' NRT I GRY CT/CY 3' (Lockshon and Morris, 1985). The 

consensus sequence obtained for the phae/plasmid recombinants was 5'NRT I 

RNNYNY 3' which only weakly matches the consensus cleavage sites for gyrase. 

Also the in vitro and in vivo cleavage sites were determined using pBR322 DNA and 

none of these cleavage sites were used in the formation of the Aiplasmid 

recombinants. 

Direct tests were also carried out in vivo (Ikeda, 1990) to see if DNA gyrase 

participated in illegitimate recombination in E. coli by isolating gyrA mutations 

which reduced the deletion frequency of pBR322 from X-pBR322 hybrids. In 

contrast, oxolinic acid increased the excision rate of pBR322 approximately sixfold 

(Ikeda, 1990). Similarly, a gyrAS  mutation was found to stabilise a 2.1kb palindrome 

isolated from a slime mould, cloned into plasmid pAG60 (Saing et al. , 1988). 

From this data Ikeda et al. (1982) proposed a model for DNA gyrase-

mediated illegitimate recombination (figure 2). It was thought that gyrase binds to 

DNA as a AB, complex and cleaves the double strands of the DNA resulting in an 

intermediate in which each gyrA subunit covalently binds the 5' end of the DNA at 
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the cleavage site (figure 2b). Two gyraselDNA complexes then form a tetramer 

(A4B 4) ( figure 2c). Dissociation of the tetramer into two dimers might lead to subunit 

exchange and so an exchange of DNA strands (figure 2d). Although this mechanism 

may act in vivo to promote illegitimate recombination it seems likely that this is not 

responsible for all known illegitimate recombination events. 

Possible Mechanisms for Illegitimate Recombination 

Two fundamentally different mechanisms for illegitimate recombination, 

based on the available evidence, have been proposed. The first model, termed 

replication slippage, stems from work by Streisinger et al., (1967) on the mechanism 

of frameshift mutations. This model has been adapted to account for palindrome-

stimulated events. In this model (fig.3), the polymerase stalls due to the presence of 

a stem-loop structure in the DNA template caused by intrastrand base pairing in 

palindromic DNA, the presence of quasipalindromic sequence or single stranded loop 
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Figure 2 

Proposed model for DNA gyrase mediated illegitimate recombination. Gyrase binds 

to DNA molecules as A,B, complex at cleavage site (2b). The two gyrase/DNA 

complexes form a tetramer (2c). Subunit and associated strand exchange occurs 

followed by dissociation of the teramer (2d). 
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Figure 2. Model for gyrase-mediated illegitimate recombination (after 

Ikeda etal., 1990) 
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in general sequence DNA or cruciform extrusion. The presence of a structure would 

increase the chances of the nascent DNA strand dissociating from the template strand 

and reannealing to a second copy of a directly repeated sequence on the far side of 

the structure. Palindromes flanked by short direct repeats, such as restriction target 

sites, seldom use these repeats for deletion (Kazic and Berg, 1990; Weston-Hafer and 

Berg, 1991). Instead other direct repeats are used, with a preference for one of the 

repeats to be located just within the palindrome and one to be located just 

downstream. This is consistent with the replication progressing some way into the 

structure before dissociation of the nascent strand, which could then anneal to the 

repeat copy downstream. Replication of the DNA would then continue, the result 

being that one of the repeat copies has been deleted along with the intervening 

sequence. This model could also be used to explain duplications and amplifications, 

which would be created if replication slippage resulted in the sequence between the 

direct repeats being repeatedly copied. This could be a result of slippage of the 

second copy of the repeat in the daughter strand to the first copy of the repeat in the 

template strand. 

The asymmetry of the deletion event permits the question to be asked of 

whether there is a bias for the deletion to occur on the lagging or leading strands of 

the replication fork. The direct repeats can be defined as donor and target, with the 

donor sequence being in the palindrome and the target located downstream. Inversion 

of a DNA sequence containing a palindrome and the favoured target site moves the 
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Figure 3. Replication slippage model for deletion formation (after 

DasGupta etal., 1987). 
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Hairpin structure formed during DNA replication. 

Polymerase stalls at the hairpin. 

Dissociation of nascent strand, followed by re-annealing to a direct repeat 

sequence on the far side of the hairpin. 

Re-initiation of replication with subsequent loss of one direct repeat and the 

intervening sequence. 
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preferred orientation of repeats from leading to lagging strand with respect to the 

direction of replication. Work by Trinh and Sinden (1991) suggested that deletion 

occurred preferentially on the lagging strand. However, experiments performed by 

Weston-Hafer and Berg (1991) showed no difference in deletion frequency between 

the two strands. 

Evidence exists to suggest that polymerases will stall at hairpin structures in 

the template in vitro. LaDuca et aL(1983) found sites on an fd phage DNA template 

which blocked the progression of four forms of E. co/i DNA polymerase III. The 

progression of the enzyme was found to be highly sensitive to any secondary 

structure present in the template strand and to the base composition of the DNA. 

Approximately 65% of pause sites were within 15 nucleotides of potential hairpin 

structures. The remainder of pause sites occurred where there was no discernible 

secondary structure. Hairpin structures with high CC base composition in the stem 

acted as the strongest pause sites. The presence of additional subunits associated 

with the core enzyme altered recognition of some of the pause sites and coating of 

the template strand with single-stranded binding protein (SSB) reduced the level of 

polymerase stalling (Sherman and Gefter, 1976). 

Not all pause sites could be correlated with the presence of DNA able to 

adopt a secondary structure. In vitro studies performed by Weaver and DePamphilis 

(1984) again identified a number of sites in M13 derivatives which could arrest the 
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movement of the mammalian DNA polymerase a. They defined two classes of 

pause sites: class I could be correlated witht the presence of palindromic DNA. Class 

II sites exhibited no secondary structure but they did contain either direct repeats 

between 8-22 bases in length, or alternating purine and pyrimidine residues. A 

stretch of such residues strongly arrested polymerase a as it had just completed their 

synthesis. 

Evidence exists in favour of replication slippage in illegitimate 

recombination, mediated by direct repeats. d'Alencon et al. (1994) looked at 

transposon excision from M13/ColEl chimera. Excision was stimulated 100-1000 

times by induction of single-stranded replication. It was proposed that the presence of 

single-stranded DNA might increase the chance of alignment of direct repeats. Also 

deletion via this mechanism only required that the direct repeats are in a single-

stranded form. These results also confirm the earlier work performed by Hermann et 

cii. (1978) who demonstrated increased deletion formation in fd phage which can 

replicate via a single-stranded phase. Evidence also exists to suggest a bias for 

deletion on the lagging strand of the replication fork (Trinh and Sinden, 1991). 

Replication on the lagging strand is discontinuous in nature (Friedberg, 1992) with 

regions of single-strand DNA formed between the intiation of Okazaki fragments. 

Preference for one of the direct repeats used in palindrome instability to be 

located just inside the palindrome and one outside indicates that replication is able to 
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proceed some way into a secondary structure before dissociation of the nascent strand 

and subsequent annealment at a second copy of the repeat (see earlier section). Also 

the prevalence of direct repeats as deletion ,  endpoints in many illegitimate events can 

be explained by the replication slippage model. 

There are also the observations that 530 bp and 8400 bp palindromes are only 

lost from replicating X phage (Leach and Lindsey, 1986; Shurviton et al., 1987) and 

transposon excision from a plasmidlphage chimera was highest when replication 

switched from single-stranded replication to double stranded replication (Brunier er 

al., 1988). It should be noted however, that not all illegitimate events involve the use 

of direct repeats or secondary structure (e.g. Benson and Bremer, 1987) so it is 

difficult to apply the model of replication slippage in these cases. 

The second model proposed for illegitimate recombination involves the active 

cutting and rejoining of DNA strands (fig.4). In the case of palindrome instability 

this could involve enzymatic cleavage across the base of the palindrome leaving a 

double strand break. This would be followed by limited 3'-5' exonuclease activity 

which allows annealing of the direct repeats. Ligation of the two ends would result 

in one copy of the direct repeats being retained. Many of the enzymes which cut 

DNA have specific recognition sequences. If these enzymes participated in 



Figure 4. Break-join model for deletion formation (after DaGupta et at, 
1987). 
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Cleavage across the base of the cruciform by an endonuclease. 

Flush double-stranded DNA ends result. 

Limited 3'-5' exonuclease digestion and annealing of complementary 

sequences. 

Ligation results in one copy of the direct repeats being retained. 
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illegitimate recombination, then it would be expected that their recognition 

sequences would frequently occur at or near the sites of deletion formation. Work by 

Ikeda (1982, 1990) to correlate the site of illegitimate recombination in 

plasmid/phage fusions with gyrase cleavage is far from conclusive. Glickman and 

Ripley (1986) suggested that the sequence 5'GATC 3' was located at the preferred 

sites for deletion formation. GATC is the DNA sequence that is cleaved in methyl-

directed mismatch repair (Lu et at, 1984) and this preference may account for the 

fact that when searching for mutants with altered frequencies of transposon excision 

Lundblad and Kleckner (1985) isolated mutations in several of the mismatch repair 

genes. 

None of the models described for illegitimate recombination is able to 

adequately explain all the features of recorded recombination events. It seems likely 

that given the variety of genome rearrangements which can result from illegitimate 

recombination and the range of frequencies at which they occur, more than one 

mechanism may actually operate in vivo. What is apparent is that despite many years 

of research by a number of workers, very little is known about illegitimate 

recombination as compared to homologous and site-specific recombination. 
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Aims of thesis. 

The aims of this thesis are as follows:- 

I. To investigate the deletion of long DNA palindromes from high copy number 

plasmids and look at the factors affecting deletion. 

Characterise plasmid derivatives which apparently exhibit increased levels of 

palindrome stability. 

Examine the behaviour of high copy number plasmids bearing long palindromes in 

a variety of E. coli backgrounds with a view to the correct choice of strain for the 

cloning of long palindromes. 

Look for a phenotype associated with sbcCD strains other than those previously 

documented. 
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CHAPTER 2 

MATERIALS & METHODS 



SECTION 1 

MATERIALS 
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Microbiological Strains, Media and Solutions 

All bacterial strains, plasmids and sequencing primers used in this work are described 

in tables Ia, lb and Ic respectively. 

Media 

Bacteriological Media 

The following quantities are for 1 litre final volumes made up in distilled water and 

sterilised by autoclaving for 20 minutes at 15 lb in. 

11-309 .j  

10 g trypticase (Baltimore Biological Laboratories), 5 g NaCl, 10 g Bacto-agar 

(Difco), adjusted to pH 7.2 with NaOH. 

BBL lop Agar 

As BBL agar, but containing only 6.5 g Bacto-agar (Difco) per litre. 

L Agar 

10 g Bacto-tryptone (Difco), 5 g yeast extract (Difco), 10 g NaCl, 15 g Bacto-agar 

(Difco), adjusted to pH 7.2 with NaOH. 

L Broth 

10 g Bacto-tryptone (Difco), 5 g yeast extract (Difco), 10 g NaCl, adjusted to pH 7.2 

with NaOH. 

PA Agar 

200 ml PA lOx salts, 20 ml PA lOOx salts, 2 ml 1% vitamin Bi, 20 ml 20% glucose 

or 10 ml 20% lactose + 10 ml 20% arabinose, 15 g Bacto-agar (Difco). 

PA Broth 

200 ml PA IN salts, 20 ml PA lOOx salts, 2 ml 1% vitamin Bi, 20 ml 20% glucose. 



Table la. E. coil strain genotypes 

Strain Genotype Reference 

JM83 F ara !2i(/ac-proAB) rpsL (Str) [4)80 1 
dlac4(lacZ) M15] 

DL324 JM83+pAC2 D.Leach 

DL494 JM83 sbcC201 D.Leach 

DL733 JM83 zlybcCD::kan' t  D.Leach 

DLS87 JM83 recA::Crr? This work 

DL888 DL733 recA::Crx? This work 

DL528 DL494 +pAC2 D.Leach 

DL917 JM83+pDLJ2 This work 

DL918 DL494+pDLJ2 This work 

DL919 DL733+pDLJ2 This work 

DL920 DL887+pDLJ2 This work 

DL921 DL888+pDLJ2 This work 

DL922 JM83 sJiA::kan t  This work 

DL923 DL494 SJIA::kanR This work 

DL924 DL922+pDLJ2 This work 

DL925 D1923+pDLJ2 This work 

MCS2a2 FthiLi(lac!POZYA argflU169fla relA 2 
rpsL araD 1 39araB: :+Mucts62/l p1(209, 

Ui 18) DW209trp-lacO 

Mcs2a3 FthiLi(IacJPOZYA argF)U169fla relA 2 
rpsL araD I 39araB: :+Muctsó2/1 p1(209, 

UI 18) DW209trp-lacO 

DL943 MCS2a2 AsbcCD::kai? This work 

DL944 MCS2a2 mutS This work 

DL945 MCS2a2 zlsbcCD::kanR  mutS This work 

DL947 MCS2a3 zlsbcCD::kai? This work 

DL949 JM83+pUC18 This work 

DL951 DL733+pAC2 This work 

DL952 DL733+pMS7 This work 



DL954 DL733+pUC18 This work 

DL956 DL887+pUC18 This work 

DL958 DL888+pAC2 This work 

DL959 DL888+pMS7 This work 

DL96 I DL888+pUC 18 This work 

DL473 ABI 157 Fthr-Iara-l4leuB6zi(gpt- 3 
proA)621acYl tsx-3 3supE44ga/K2Xrac 
hisG41JbD lmgl-5 I rspL3 lkdgKS Lty/- 

Smtl- IargE3thi- 1 

DL591 DL473 recA D.Leach 

DL520 DL473 recA recD D.Leach 

DL521 DL473 recA sbcC D.Leach 

DL522 DL473 recA recD sbcC D,Leach 

DL847 K-12 25H28 recA reclJ sbcC D.Leach 

References 
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Table lb. Plasmids used in this work 

Plasmid Contruct Reference 

pAC2 pUCIS+571 bp pal. 1 

pMSS pUCI8+571 bp pal. 2 

pMS7 pUCI8+571 bp pal 2 

pUCI8 - 3 

pDLJ1 pUCI18+lO9bppal. 4 

pDLJ2 pUC1I9+lO9bppal. 4 

References 

Chalker, A.F. Ph.D. Thesis (1990) University of Edinburgh. 

M. Shaw and D. Leach, unpublished. 

Yanisch-Perron, C., Viera, J. and Messing, J. (1985) Gene 33: 103-119 
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Table Ic. Primers used for plasmid DNA sequencing 

Nos. Orientation Primer Sequence Position Refs. 

(bp) 

P2845 Sense 5'-CAATACGCAAACCGCCTC-3' 6-23 This work 

596L Sense 5'-GACTGGAAAGCGGGCA-3' 74-89 - 

-40 And-sense 5'-GTCGTGACTGGGAAAAC-3' 310-326 1 

P38 Sense 5'-T7CCCAACAGflGCGCAG-3' 413-430 This work 

P39 Sense 5'-TCGGGGAAATOTGCGCGG-3' 767-784 This work 

F662 Sense 5'-GAGCAACTCGGTCGCCGC-3' 1143-1160 This work 

F664 Sense 5'-GGAGCCGGTGAGCGTGG-3' 1584-1600 This work- 

H303 Anti-sense 5 '-GGTGCCTCACTGAflAAG-3' 1719-1736 This work 

2975 Sense 5'-TTTCGflCCACTOAGCGT-3' 1867-1884 This work 

F663 Sense 5'-TGGTT7GTTrGCCGGATC-3' 1981-1998 This work 

745W Sense 5'-TATCCGGTAAGCGGCAGG-3' 2352-2369 This work 

H304 Anti-sense 5'-GTCCTGTCGGG1TTCGCC-3' 2428-2445 This work 

References. 

1. -40 primer supplied with Sequenase Version 2.0 sequencing kit from USB. 

All other primers designed for this study and synthesized by Osweil, UK. 
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PA 1 OOX Salts 

20 g MgSO4. 7H20, 0.1 g FeSO4. 7H2 0, 10 mg ZnSO 4 . 7H2O*,  10 mg CuSO4 . 

5H 2O*. 4 mg HIBO3*,  4 mg MnSO,. 7R0, 2 mg MoO,. H2O*. * Diluted from 

concentrated stock solutions. 

Phage Buffer 

3 g KH.PO 4 , 7 g Na2 HPO., 5 g NaCI. 1 mM MgSO4 , 1 mM CaD,, 1 ml gelatin (1% 

w/v). 

TM Buffer 

10 mM Tris/HCI (pH 7.5), 10 MM MgSO 4 . 

Media Additives 

1 M M9504  Stock 

Made up in distilled water, autoclaved. 

20% Arabinose 

Made up in distilled water and filter sterilised. 

20% Glucose 

Made up in distilled water and filter sterilsed. 

20% Lactose 

Made up in distilled water and filter sterilised. 

20% Maltose 

Made up in distilled water and filter sterilised. 

Ampicillin (100 mg ml") 

Ampicllin (Beecham Pharmaceuticals) was made up in sterile distilled water and 

stored at -20 °C. It was used at 100 .tg ml - '. 
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Cephalexin (10 mg) 

Cephalexin (gift from Dr.K.Begg) was made up in sterile distilled water and stored at 

-20 °C. It was used at 10 jig nil*'. 

Chloramphenicol (20 mg m1 1 ) 

Chloramphenicol (Sigma Chemical Company) was made up in 100% ethanol and 

stored at -20°C. It was used 50 g ml. 

Rifampicin (100 mg ml - ') 

Rifampicin (Sigma Chemical Company) was made in dimethylformamide and stored 

in the dark at -20°C. It was used at 150 jig mV. 

Tetracycline (15 mg ml 
1)  

Tetracycline (Sigma Chemical Company) was made up in 50 % ethanol and stored at 

- 20°C. It was then used at 10 jig mY'. 

Trimethoprim (5 mg ml - ') 

Trimethoprim (Sigma Chemical Company) was made up in 100% methanol and 

stored at 4°C. It was used at 10 jig mV. 

IPTG (20 mg mId ) 

IPTG ( isopropyl-thiogalactoside  ) (Calbiochem) was made up in distilled water and 

filter sterilised. It was stored at -20 °C in 1 ml aliquots. 

X Gal (25 mg m) 

X-gal (5-bromo-4-chloro-3 indo1y1-3-D-galactoside) (Calbiochem) was made up in 

dimethylformamide and stored at -20°C. It was used at 40 jig nil - '. 

1% Vitamin Bi 

Vitamin B 1 (Sigma Chemical Company) was made up in distilled water and filter 

sterilised. It was stored at 4°C. 
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Solutions 

Solutions for Transformaton of Escherichia co/i 

0.1 MCaCl2  

Made up in distilled water, autoclaved. 

Solutions for UV Mutagenesis of Escherichia coil 

0.1 M MgSO4  

Made up in distilled water, autoclaved. 

Solutions for Flow Cytometry 

0.1 M Tris/HCI (pH 7.4) 

0.1 M Iris base, adjusted to pH7.4 with concentrated HCI, autoclaved. 

1 MNaCI 

Made up in distilled water, autoclaved. 

0.1 M MgCl2  

Made up in distilled water, autoclaved. 

Mithramycin (20 mg m11 ) 

Mithramycin (Pfizer) was made up in sterile distilled water and stored at -20 °C. 

Ethidium Bromide (10 mg ml") 

Ethidium bromide (Calbiochem) was made up in sterile distilled water and stored at 

4°C. 

Staining Solution 

0.1M Tris/HC1, 50 jig ml - ' mithramycin, 25 jig ml - ' ethidium bromide, 25 mM 

MgCl, and 100 mM NaCl. Made up fresh and stored at 4°C. 
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77% Ethanol 

Prepared by adding 0.23 volumes of sterile distilled water to 0.77 volumes of 

ethanol. 

Materials for DNA Purification and Manipulation 

General Solutions and Materials for DNA Purification 

Unless otherwise stated, general laboratory chemicals were purchased from Sigma 

Chemical Company, Fiscus or BDH. 

1 M Tris/HCI Stock (pH7.5) 

1 M Tris base, adjusted to p1-17.5 with concentrated HCI, autoclaved. 

0.5 M EDIA (pHB.0) 

0.5 M EDTA disodium salt, adjusted to pH8.0 with glacial acetic acid, autoclaved. 

TE Buffer Stock (1 OX) 

100 mM Tris, 10 mM EDTA, adjusted to pH7.5 with concentrated MCI, autoclaved. 

Solutions for Phenol-chloroform and chloroform Extraction 

Phenol-Chloroform 

Distilled, liquified 88% phenol (Rathbum Chemicals) was stored in 25 ml aliquots at 

-20°C, and protected from the light in 25 ml polypropylene tubes. After thawing at 

room temperature 0.1% (w/v) 8-hydoxyquinoline (Sigma Chemical Company) was 

added and the phenol equilibrated using TE buffer. Initially this was performed by 

emulsifying the phenol with lOX TE buffer for 5 mins, followed by centrifugation at 

4.5 krpm in an MSE Centaur-2 bench centrifuge. The aqueous layer was removed, 

and equilibration repeated another two times using lx TE buffer. The aqueous layer 

was then removed and the phenolic layer combined with an equal volume of 24:1 

chloroform-isoamylalcohol and centrifuged at 4.5 krpm in an MSE Centaur-2 bench 

centrifuge. The aqueous layer was removed and replaced with 2 ml 1X TE buffer 
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0.2% (vlv) f3-mercaptoethanol (Sigma Chemical Company). The phenol-chloroform 

was protected from the light, stored at 4°C and used within 1 month. 

24:1 Chloroform-Isoamylalcohol 

24 volumes of chloroform were combined with 1 volume of isoamylalcohol and 

stored away from light. 

Solutions for Ethanol and Isopropanol Precipitation 

3 M Sodium Acetate (pH5.3) 

Sodium acetate solution (3 M in acetate) was prepared by adding 0.19 volumes of 

sterile 3 M acetic acid to 0.81 volumes of sterile 3 M sodium acetate, then 

autoclaved. 

3 M Sodium Acetate (pH7.0) 

3 M sodium acetate, adjusted to pH7.0 with glacial acetic acid and then autoclaved. 

70% Ethanol 

Prepared by adding 0.3 volumes of sterile distilled water to 0.7 volumes of ethanol. 

Preparation of Dialysis Tubing 

Dialysis tubing was cut into lenghts of 20 cm and boiled for 10 mins in 2 litres of 2% 

sodium bicarbonate and 1 mM EDTA. It was then rinsed thoroughly in distilled 

water. After cooling, the tubing was stored at 4°C submerged in 1 mM EDTA 50% 

(v/v) ethanol. Before use the tubing was washed inside and out with sterile distilled 

water. 

Materials for Purification of DNA from Agarose Gels and Solutions 

Purification of DNA from agarose gels and solutions was performed using 

GENECLEAN and MERmaid kits (BIO101). The solutions used were those 

provided by the manufacturer and are listed for reference. 
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6 M Nal Stock 

6 M Nal, protected from the light and stored at 4°C. 

GL.ASSMILK 

Suspension of silica matrix in distilled water, stored at 4°C. 

NEW Wash 

20 mM Tris/HC1 (pH7.2), 0.2 M NaCl, 2 mlvi EDTA, 50 17o ethanol, stored at -20°C. 

High Salt Binding Soluton. 

Saturated solution of sodium perchiorate, stored at room temperature. 

GLASS FOG 

Suspension of fine silica-based matrix in sterile distilled water, stored at room 

temperature. 

Ethanol Wash 

20 mM Tris/HCI (pH7.2), 0.2 M NaCl, 2 mM EDTA, 90% ethanol, stored at room 

temperature. 

Solutions for Plasmid DNA Purification 

Small Scale Method 

TEG 

0.9% glucose, 25 mlvi TrisIHCl (pH7.5), 10 mlvi EDTA, filter sterilised and stored at 

4°C. 

Alkaline SIDS 

0.2 M NaOH, 1% SDS (sodium dodecyl sulphate), freshly prepared. 
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Potassium Acetate 

Potassium acetate (3 M in potassium, 5 M in acetate) was prepared by adding 0.4 

volumes of sterile 5 M acetic acid to 0.6 volumes of sterile 5 M potassium acetate. 

autoclaved and stored at 4°C. 

TE RNase A 

10 mM Tris/l-ICI (pH7.5), 1 mM EDTA, 20 xg ml-I RNase A. Prepared by adding 

100 pA RNase A stock (10mg mY') to 50 ml sterile IX TE buffer. Stored at 4°C. 

Large Scale Method 

Large scale plasmid DNA preparation was performed using a Qiagen plasmid midi 

kit. The solutions were those provided by the manufacturer and are listed for 

reference. 

Buffer P1 

100 gg mi' RNase A, 50 mM Tris/HCI, 10 mMEDTA stored at 4°C. 

Buffer P2 

200 m NaOH, 1 010 SDS, stored at room temperature. 

Buffer P3 

3 M potassium acetate (pH5.5) stored at 4°C. 

Buffer QBT 

750 mM NaCl, 50 mM MOPS (pH7.0), 15% ethanol, 0.15% Triton X-100, stored at 

room temperature. 

Buffer QC 

1 M NaCl, 50 mM MOPS (pH7.0), 15% ethanol, stored at room temperature. 

Buffer OF 

1.25 M NaCl, 50 mlvi TrisJHCl (pH8.5), 15% ethanol, stored at room temperature. 
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Caesium Chloride Purified DNA 

lx STE 

100 mM NaCl, 10 mM Tris/HCI (pH8.0), 1 mM EDTA, autoclaved and stored 

at 4°C. 

Lysozyme 

Lysozyme (Sigma Chemical Company) dissolved in 10 mM Tris/HCI (pH8.0), made 

fresh. 

Enzymes and Buffers for DNA Manipulation 

Restriction Endonuleases 

All restriction endonucleases used in this work are described in table 2. 

DNA Sequencing - Chain Termination Method 

DNA sequencing was performed using a Sequenase v.2.0 sequencing kit (United 

States Biochemical). With the exception of [cz 35S]dATP (Amersham) and the 

sequencing primer, the solutions used were those provided by the manufacturer and 

are listed for reference. All solutions were stored at -20°C. 

Sequenase Buffer (5X) 

200 mlvi TrisfHCl (pH7.5), 100 m MgCl2, 250 mM NaCl. 

Enzyme Dilution Buffer 

10 mM TrisfHCI (pH7.5), 5 mM Dfl, 0.5 mg ml BSA. 

DTT 

0.1 M DII (dithiothreitol), prepared in distilled water. 

Labelling Mix (5X) 

7.5 jiM dGTP, 7.5 jiM CICTP, 7.5 jiM dTTP. 
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Table 2. Restriction enzymes used in this work 

Enzyme Target Site Supplier Buffer 

Aflifi AC/PuPyGT New England Biolabs 3 

Alit' AG/CT New England Biolabs I 

AIwNI CAGNNN/CTG New England Biolabs 4 

EcoRl G/AAYI'C Northumbria Biologicals 6 

HaeIIJ GO/CC New England Biolabs 2 

H/wI GCG/C New England Biolabs 4 

Hind III AJAGCTI' Northumbria Biologicals to 

Sacl GAGTIC Northumbria Biologicals 2 

ScaI AGT/ACT Northumbria Biologicals 6 

Buffer composition 

NEB 1. 10 mM Bis Tris Propane-HCI, 10 mM Mg Cl, 1 mM dithiothreitol. 

NEB 2. 10 mlvi Bis Iris Propane-HCI, 10 mM Mg Cl.,, 1 mM dithiothreitol. 

NEB 3. 100 mM Na Cl, 50 mM Tris-HCI, 10 mlvi Mg Cl.,, 1 mM dithiothreitol. 

NEB 4. 50 mlvi potassium acetate, 20 mlvi Tris-acetate, 10 mM magnesium acetate, 
1 mM dithiothreitol. 

NIBL 2. 33 mlvi Tris-acetate (pH 8.2), 66 mlvi potassium acetate, 10 mM magnesium 
acetate, 0.5 mM dithiothreitol. 

NBL 6. 50 mM Tris-HCI (pH 7.8), 100 mM NaCl, 10 mM MgCl2, 1 mm 
dithiothreitol. 

NBL 10. 50 mM Tris-HCI (pH 8.3), 50 mM NaCl, tO mM M-CI,, 1 mM 
dithiothreitol. 
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ddGTP Termination Mix 

80 .tM dGTP, 80 MM dATP, 80 MM dCTP, 80 jiM dTTP, 8 MM ddGTP, 50 mM 

NaCl. 

ddATP Termination Mix 

80 MM dGTP, 80 MM dATP, 80 MM dCTP. 80 MM dTTP, 8 jiM ddATP. 50 mM 

NaCl. 

ddCTP Termination Mix 

80 MM dGTP, 80 MM dATP, 80 MM dCTP, 80 MM CITTP, 8 MM ddCTP, 50 mM 

NaCl. 

ddTTP Termination Mix 

80 MM dGTP, 80 jiM dATP, 80 MM dCTP, 80 MM dATP, 8 jiM ddTTP, 50 mM 

NaCl. 

Stop Solution 

95% formamide, 20 mM EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol. 

Maxam-Gilbert Chemical Sequencing 

10% Formic Acid 

Prepared by adding 0.1 volumes of formic acid to 0.9 volumes of sterile distilled 

water. 

1 M Piperidine 

Made up in sterile distilled water just prior to use. 

30 % NaOH 

Made up in sterile distilled water 

1%SIDS 

Made up in sterile distilled water. 



KMn04  (2 mg mr') 

Made up in sterile distilled water and stored in the dark for up to one week at 4C. 

Used at 20 jig ml - '. 

Other Eznymes 

Incubation buffers were those supplied by the manufacturer. 

Bacteriophage 14 DNA Ligase 

Bacteriophage T4 DNA ligase (New England Biolabs) was incubated in 50 mM 

TrisIHCl (pH7.5), 10 m M.-CI,, 10 m DTT, 1 mM ATP, 25 ig miBSA. 

Calf Intestinal Alkaline Phosphatase (CIP) 

Calf Intestinal Alkaline Phosphatase (Boehringer Mannheim) was incubated in I mlvi 

ZnCL,, 1 mM M.-C1,, 10 mMTrisIHCl (pH8.3). 

Kienow Enzyme 

Klenow Enzyme (Boehringer Mannheim) was incubated in 10 mM Tris/HCI (pH7.5), 

5 mlvi M.-C12  and 7.5 mM DTT. 

Other Solutions 

dNTP Stocks 

dNTPs (Sigma Chemical Company) were prepared in sterile distilled water at a 

concentration of 50 mM and 2 mM. Stored at -20°C. 

BSA (20 mg m1 1 ) 

Bovine Serum Albumin (Boehringer Mannheim) was stored at -20°C. 
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Solutions for Gel Electrophoresis 

Agarose Gel Electrophoresis 

TAE Gel Buffer Stock 

0.8 M Tris acetate. 20 mM EDTA (pH8.0). 

TAE Gel-Loading Sample Buffer Stock (SX) 

0.2 M Tris acetate, 0.25 M EDTA (pH8.0), 0.2% bromophenol blue. 15% Ficoll 400. 

Ethidium Bromide (10 mg ml ' ) 

Ethidium bromide (Sigma Chemical Company) was prepared in sterile 1X TE 

buffer, stored protected from the light at 4°C. Used at 0.5 jig ml". 

TBE Gel Buffer Stock (1 OX) 

0.89 M Tris borate, 10 mM EDTA (pH8.0) 

Chloroquine (10 mg ml) 

Chioroquine (Sigma Chemical Company) prepared in sterile distilled water, stored 

away from light at 4°C. Used at a concentration of 1.8 jig mE' or 20 jig ml". 

Polyacrylamide Gel Electrophoresis 

TBE Gel Buffer stock 

0.89 m Tris borate, 20 mM EDTA (pH8.0). 

Formamide-EDTA Get-Loading Sample Buffer 

98% formamide, 0.1% bromophenol blue, 0.1% xylene cyanol FE, 10 mM EDTA 

(pH8.0). 

40% Acrylamide Stock Solution 

38% (w/v) acrylamidè, 2% (w/v) N-N-methylene bis-acrylamide (Northumbria 

Biologicals), protected from light at 4°C. 
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0.5X ThE 12% Acrylamide Solution 

46 g urea, 5 ml LOX TEE buffer, 30 ml 40% acrylamide stock, distilled water to 100 

ml total. Degassed and stored protected from the tight at 4°C. 

Long Ranger Gel Solution 

Long Ranger (AT Biochem) 50 17o solution, stored at room temperature. 

1X IBE 6% Long Ranger Gel Solution for Sequencing Gels 

21 g urea, 6 ml Long Ranger, 5 ml lOX TEE buffer, distilled water up to 50 ml total 

volume. Solution prepared just before use. 

TEMED 

TEMED (N-N-N'-N'-tetra-methyl- 1, 2-diamino-ethane)(Sigma Chemical Company). 

Stored protected from the light at 4°C. 

10% AMPS 

10% AMPS (ammonium persuiphate) was freshly prepared in sterile distilled water. 

Gel Fix 

10% (v/v) glacial acetic acid, 10% (v/v) methanol in distilled water. 
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SECTION 2 

METHODS 
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Microbiological Methods 

Bacterial Methods 

Storage of Bacteria 

For short term storage, bacteria were kept at 4°C on L-agar plates sealed with 

parafilm. 	Permanent stocks were prepared by adding 5 drops of sterile 100% 

glycerol to 1 ml of a stationary phase culture in an Eppendorf tube. This was sealed 

with parafilm and stored at -70°C. 

Growth of Bacteria 

Temporary stocks were generated by streaking permanent stocks to single colonies 

on L-agar plates, which were incubated at 37°C overnight unless otherwise stated. 

Overnight cultures were grown by innoculating a single colony into L-broth and 

shaking at 37°C unless otherwise stated. 

Test for UV Sensitivity 

This method was used to test the sensitivity of E. coli recA strains to ultra-violet 

(u.v.) light (see Chapter 3). An overnight culture was diluted 40-fold in to L-broth 

and grown shaking at 37°C to OD=0.5. The culture was then serially diluted in ice- 

cold L-broth and 100 .tl of the 10 3  and io dilutions were spread on two sets of 

fresh, dry L-agar plates. One set of plates was incubatedat 37°C overnight. The 
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other set was exposed for 20 seconds to an ultra-violet lamp (Ultraviolet Products 

Incorporated) giving I J m 2  s '  illumination, wrapped immediately in foil (to prevent 

DNA photolyase activation) and incubated at 37°C overnight. Colonies were 

counted and the strain showing about 2% survival was chosen (McGraw and 

Marinus. 1980). 

AraB-LacZ Fusion Assay 

Plate Assay 

A number of independent cultures of arafi-lacZ fusion strains were grown overnight 

at 30°C in PA medium with 0.4% glucose. Two dilutions of overnight cells were 

plated on fresh plates containing 0.2% lactose and 0.2% arabinose. The plates were 

incubated at 30°C and the number of fusion colonies appearing every day were 

scored for -30 days (Shapiro, 1984). 

Liquid Assay 

A number of cultures were grown overnight in PA medium with 0.4% glucose. The 

cultures were then split in two, one half being continuously incubated with aeration, 

the other half unaerated. Each day 100 jil aliquots of the cultures were plated on PA 

agar with 0.2% lactose and 0.2% arabinose to assay for fusion colonies which appear 

after two days incubation on the plates. The liquid cultures were also assayed for 

viable count by plating dilutions on PA agar with 0.4% glucose (Mäenhaut-Michel 

and Shapiro, 1994). 
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P1 Transduction 

The strain to be transduced was grown overnight in L-broth supplemented with 2.5 

mM Cad.. 1 ml aliquots of the culture were centrifuged at 15 krmp to pellet the 

cells (Sorvall Microspin 24 centrifuge). The pellet was then resuspended in 0.1 nil of 

various dilutions of the P1 lysate to be used. The cells were then incubated at 37°C 

for 20 minutes. 0.8 ml of L-broth supplemented with 2mM sodium citrate were then 

added and incubation continued at 37 °C for a further 30-60 minutes. 0.1 ml aliquots 

were then plated out on the appropriate selective medium and incubated at 37°C 

overnight (unless otherwise stated). 

Potential transductants were streaked out on selective medium and any additional 

tests for the loss of the gene of interest carried out. 

Flow Cytometry 

Method previously described by Skarstad and Boye (1993). 

Overnight cultures of the strains to be studied were diluted 1:1000 into minimal 

medium supplemented with 0.5% casamino acids and 0.2% glucose. The cultures 

were incubated at 37 °C until an 0D 759=0. 15 was reached. 1.5 ml of the culture was 

removed and cooled on ice in an Eppendorl. To the remaining culture 10 jig ml 

cephalexin and 150 jig m1' rifampicin were added and incubation at 37 °C continued 

for 4-6 hours. 1.5 ml aliquots of the cultures were centrifuged for 1 minute at 15 

krpm (Sorvall Microspin 24 centrifuge) along with the samples stored on ice. The 

pellets were then resuspended in 100 p1 lx TE and 1 ml 77% ethanol added. The 
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samples were then stored at 4 °C. Prior to staining for flow cytometry the cells were 

pelleted at 15 krpm (Sorvall Microspin 24 centrifuge) for 1 minute and then washed 

twice in O.IM TrisfHCl (pH7.4). The pellet was then resuspended in ImI of staining 

solution. Flow cytometric measurements were performed with an Argus flow 

cytometrv (Skatron, Tranby, Norway). In this instrument, cells pass one at a time 

through a beam of excitation light. Each cell gives rise to a pulse of fluorescence 

light, the size of the pulse being proportional to the amount of mithramycin bound to 

the DNA. The excitation wavelength used did not excite the ethidium bromide. The 

fluorescence from and the light scattered by each bacterial cell was proportional to 

the mass of the cell. The pulses of light are sized and stored by a mulitchannel pulse 

height analyzer. The multichannel analyzer thus accumulates a DNA histogram (a 

distribution of bacteria with regard to their DNA content). Cells are measured at a 

rate of up to lO cells sec". 

Plasmid Methods 

Maintenance of Plasmids 

Plasmids were maintained by supplementing media with antibiotics. 

Transformation 

This method is derived from Mandel and Higa (1970). 
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Preparation of Competant Cells 

A fresh overnight culture was diluted 1:100 in L-broth and grown shaking at 37°C to 

an 01)65 =0.35-0.45. The culture was chilled on ice for 15 minutes and 20 ml were 

centrifuged at 4.5 krpm for 5 minutes at 4°C (MSE Centaur-2 bench centrifuge). The 

cell pellet was resuspended in 2 ml ice-cold 0.1 M CaCI, and incubated on ice for 20 

minutes. The sample was again centrifuged at 4.5 krpm for 5 minutes at 4°C and 

resuspended gently in 400 41 of ice-cold CaCI,. The competant cells were used 

immediately. 

Transformation 

A 200 R1  aliquot of competant cells was added to 50-100 ng of plasmid DNA 

(suspended in 1-10 jil of 1X TE buffer or sterile distilled water) and incubated on ice 

for 30 minutes. The cells were then heat-shocked to 2 minutes at 42°C in a 

waterbath then rapidly cooled on ice for 2 minutes. 10 R1  and 100 .tl aliquots of the 

transformed cells were then spread on plates containing the appropriate antibiotic and 

incubated at 37°C overnight unless otherwise stated. 

Detection of Inserts in pUC Based Plasmids 

L-agar was supplemented with X-gal (5-bromo-4-chloro-3-indolyl-J3-D-galactoside) 

at a final concentration of 40jig ml - ' and ampicillin at a final concentration of 100 gg 

ml- '. 40 R'  of IPTO (isopropyl-thiogalactaside) at a concentration of 20 mg ml' were 

spread on the plates. Blue colour represents those cells bearing plasmids which have 
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deleted the palindrome, white cells, those which still carry the palindrome (see 

Chapter 3). 

DNA Purification and Manipulation 

General Methods of DNA Purification 

Phenol-Chloroform and Chloroform Extraction 

Successive phenol-chloroform and chloroform extractions were generally sufficient 

to purify DNA from contaminating protein. 

Phenol-Chloroform 

Phenol-chloroform extraction was carried out in Eppendorf tubes. An equal volume 

of equilibrated phenol-chloroform was added to the DNA solution and the two were 

mixed by vortexing briefly. The two phases were separated by centrifugation at 15 

krpm for 15 minutes (Sorvall Microspin 24 centrifuge). The upper (aqueous) layer 

was then transferred to a fresh Eppendorf tube. 

Chloroform-lsoamylalchohol Extraction 

Chloroform extraction was peformed in the same way as phenol-chloroform 

extraction, except that 24:1 chloroform-isoamylaichohol was used in the place of 

phenol-chloroform, and the phases were separated by only 1 minute centrifugation at 

15 krpm. 



Ethanol and Isopropanol Precipitation 

Ethanol precipitation was normally used to concentrate and purify DNA. 

Isopropanol precipitation was used where a large volume was impractical or where it 

was desirable to avoid the co-precipitation of RNA. 

Ethanol Precipitaton 

Ethanol precipitaton was caned out in 15 ml corex tubes or Eppendorf tubes. 0.1 

volumes of 3 M sodium acetate pH5.3 were added to 0.9 volumes of DNA solution, 

followed by two volumes of freezer-cold (-20°C) ethanol. Where the concentration 

of EDTA in the DNA solution exceeded 10-15 mM, 3 M sodium acetate pH7.0 was 

used (high concentrations of EDTA precipitate from solution at acid pH). The 

contents of the tubes were mixed by inversion and incubated at -20°C for at least one 

hour to allow precipiatation. The DNA was then pelleted by centrifugation at 15 

krpm for 20 minutes at 4°C (Sorvall RC5B centrifuge with 5534 rotor or Sorvall 

Microspin 24 centrifuge). The ethanol was discarded, the tube filled with freezer- 

cold 70% ethanol and centrifuged again at 15 krpm for 10 minutes at 4°C. The 70 % 

ethanol was discarded, the pellet air dried for 15 minutes and redissolved in 1X YE 

buffer or sterile distilled water. 

Isopropanol Precipitation 

Isopropanol precipitation was carried out in a similar way to ethanol precipitation, 

except that 0.7 volumes of isopropanol at room temperature were used in place of 2 

volumes of freezer-cold ethanol. The tube was incubated at room temperature for 15 



minutes to allow precipitation, and centrifugation (15 krpm for 20 minutes, as above) 

was also carried out at room temperature. The pellet was rinsed with freezer-cold 

70% ethanol and recentrifuged as described above. 

Purification of DNA From Agarose Gels and Solutions 

Purification of DNA from a.-arose gels and solutions was performed using 

GENECLEAN and MERmaid kits (810101). The procedures are based on the 

method of Vogeistein and Gillespie (1979). 

GENECLEIAN Proceedure 

The band of interest was excised from the agarose gel and its weight determined in a 

tared Eppendorf tube. 3 volumes (v/w) of 6 M Nal stock were added and the agarose 

dissolved by 5 minute incubation in a 50°C waterbath, with occasional mixing by 

tube inversion. Where the DNA was in aqueous solution, 3 volumes (v/v) of 6 M 

Nal stock were added without incubation at 50°C. 5 jil of GLASSMILK suspension 

were added, mixed by vortexing and incubated on ice for 5 minutes. The silica 

matrix with bound DNA was then pelleted by centrifugation for 30 seconds at 15 

krpm (Sorvall Microspin 24 centrifuge) and the supernatant discarded. The pellet 

was resuspended in 500 sl of freezer-cold NEW wash and centrifuged for 30 seconds 

at 15 krpm (Sorvall Microspin 24 centrifuge). The supernatant was discarded and the 

pellet washed a further two times with 500 p1 NEW wash. After the supernatant was 

removed the pellet was air dried for 10 minutes, resuspended in 5 p1 of sterile 

distilled water and incubated in a 50°C waterbath for 3 minutes. It was then 
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centrifuged for 1 minute at 15 krpm (Sorvall Microspin 24 centrifuge) and the 

supernatant containing the eluted DNA was transferred to a fresh Eppendorf tube. A 

second elution step was performed and the two supernatants combined. 

MERmaid Procedure 

This method was used to purify DNA fragments of less than 200 bp from agarose 

gels or solutions. The band of interest was excised from the agarose gel and its 

weight determined in a Eared Eppendorf tube. 3 volumes (v/w) of high salt binding 

solution were added wth 8 j.tl of GLASSFOG suspension. The agarose gel was 

dissolved by continuous vortexing for 15 minutes. If the DNA was in solution, 3 

volumes (v/v) of high salt binding solution and 8 pl of GLASSFOG were added, then 

the tube was incubated at room temperature for 5-15 minutes. The fine silica matrix 

with DNA bound was the pelleted by centrifugation for 30 seconds at 15 krpm 

(Sorvall Microspin 24 centrifuge) and the supernatant dicarded. The pellet was the 

resuspened in 300 itI ethanol wash by vortexing and centrifuged fo 15 seconds at 15 

krpm. The supernatant was discarded and the pellet washed two more times with 

300 R1  ethanol wash. After the third wash the pellet was air dried for 10 minutes, 

resuspended oin 5-10 R'  of sterile distilled water and incubated at room temperature 

for 5 minutes. It was then centrifuged for 2 minutes at 15 krpm (Sorvall Microspin 	- 

24 centrifuge) and the supernatant containing the eluted DNA transferred to a fresh 

Eppendorf tube. A second elution step was performed and the two supernatants 

combined. 
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Plasmid DNA Purification 

Small Scale 

This method was derived from Birrnboim and Doly (1979). 1.5 ml of a fresh 

overnight culture were transferred to an Eppendorf tube and centrifuged fo 30 

seconds at 15 krpm (Sorvall Microspin 24 Centrifuge). The supernatant was 

discarded, the pellet centrifuged again to for 5 seconds and the remaining liquid 

removed. The pellet was resuspended in 100 jil ice-cold TEG by vortexing and the 

tube incubated at room temperature for 5 minutes. 200 j.tl of freshly prepared 

alkaline SDS were added, the tube inverted five times to mix the solutions and the 

tube incubated on ice for 5 minutes. 150 R1  of ice-cold potassium acetate were added 

and the tube vortexed upright for 5 seconds. After a 5 minute incubation on ice, the 

cell debris was pelleted by centrifugation at 15 lu -pm for 5 minutes at 4°C (Sorvall 

Microspin 24 centrifuge). 400 ltI of supernatant containing the plasmid DNA were 

transferred to a fresh Eppendorf tube and extracted with equal volumes of phenol-

chloroform and chloroform-isoamylalchohol. Two volumes of 100% ethanol (at 

room temperature) were added, the tube was inverted to mix and incubated at room 

temperature for 5-10 minute. The DNA was pelleted by centrifugation at 15 krpm 

for 10 minutes at 4°C (Sorvall Microspin 24 centrifuge). The supernatant was 

discarded and the pellet was rinsed with 1 ml freezer-cold 70% ethanol. After further 

centrifugation at 15 krpm for 5 minutes at 4°C, the 70% ethanol was removed and the 

I 
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pellet was air dried for 15 minutes. The plasmid DNA was redissolved in 50p1 TE-

RNaseA and stored at -20°C. 

Large Scale Method 

The large scale purificaton of plasmid DNA was performed using a QIAGEN 

plasmid midi kit. A 40 ml fresh overnight culture was centrifuged at 10 krpm for 10 

minutes at 4°C (Sorvall RC513 centrifuge with SS34 rotor). The cell pellet was 

resuspended in 4 ml buffer P1 and transferred to a 30 ml glass corex tube. 4 ml buffer 

P2 were added, mixed gently by inversion and incubated at room temperature for 5 

minutes. 4 ml of ice-cold buffer P3 were added, the solution mixed by inverting five 

times and the tube incubted on ice for 15 minutes. The sample was then mixed by 

inverting once more and then centrifuged at 16 krpm for 30 minutes at 4°C (Sorvall 

RC5B centrifuge with 5534 rotor). The supernatant was promptly removed and 

applied to a QIAGEN -tip 100 column which had previously been equilibrated with 4 

ml buffer QBT. After the column had been emptied by gravity flow, it was then 

washed twice with 10 n-tI buffer QC to remove contaminants in the DNA preparation 

from the QIAGEN column. After the wash buffer had completely emptied, the DNA 

was eluted from the column with 5 ml buffer QF and allowed to empty in to a 15 ml 

glass corex tube. 3.5 ml (0.7 volumes) isopropanol (at room temperature) were 

added to the DNA solution and the two mixed by inversion. The tube was then 

centrifuged at 12 krpm for 30 minutes at 4°C (Sorvall RC5B centifuge with RC513 

rotor). The supernatant was discarded and the DNA pellet was washed in freezer- 

cold 70% ethanol. After further centrifugation at 12 krpm for 10 minutes at 4°C, the 
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70% ethanol was removed and the DNA pellet was air dried for 15 minutes. The 

plasmid DNA was redissolved in 100 pA LX TE buffer. 

Caesium Chloride Purified DNA 

A 500 ml fresh overnight culture was centrifuged at 8 krpm for 15 minutes at 4C 

(Sorvall RC5B centrifuge with GSA rotor). The supernatant was discarded and the 

pellet resuspended in 250 ml ice-cold IX STE. The cell suspension was centrifuged 

at 8 krpm for 15 minutes at 4°C to pellet the cells. The supernatant was discarded 

and the plasmid DNA extracted with a scaled-up version of the small scale plasmid 

method described earlier. The pellet was resuspended in 18 ml TEG followed by the 

addition of 2 ml lysozyme (10 mg ml' in 10 m Tris/HCI pH8.0) and 40 ml freshly 

prepared alkaline SDS. The suspension was mixed by inverting and incubated at 

room temperatre for 5-10 minutes. 20 ml ice-cold potassium acetate were added, the 

sample mixed by shaking to remove the two phases and then incubated on ice for 10 

minutes. The cell debris was pelleted by centrifugation at 4 krpm for 15 minutes at 

4°C (Sorvall RC5B centrifuge with GSA rotor) and the supernatant transferred to a 

fresh centrifuge bottle. 0.6 volumes of isopropanol (at room temperature) were 

added, the sample mixed by inversion and incubated at room temperature for 10 

minutes. The sample was the centrifuged at 6 krpm for 15 minutes at room 

temperature (Sorvall RC5B centrifuge with GSA rotor). The supernatant was 

discarded and the DNA pellet washed with 50 ml 70% ethanol (at -20 °C) and 

centrifuged at 6 krpm for 10 minutes at 4'C.*The ethanol was discarded, the pellet 

air dried for 10 minutes and the redissolved in 9 ml 1X TE buffer. 9 g CsCI 
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(Boehringer Mannheim) were added and the DNA solution warmed to 37°C until the 

CsCI had dissolved. 0.9 ml ethidiurn bromide (10 mg ml - ') were added and the 

solution transferrred to a centrifuge tube which was sealed, crimped and centrifuged 

at 45 krpm for 48 hours at 18°C (Sorvall ultracentrifuge with a Ti50 rotor). The 

plasmid DNA band was vivalised using an ultraviolet lamp and removed from the 

centrifuge tube using a hypodermic needle and syringe. The volume of sample 

removed was made up to a total of 9 ml with 1X TB, 9 g of CsCI and 0.9 ml of 

ethidium bromide added as before. The sample was centrifuged again for 48 hours 

and the plasmid DNA isolated as previously described. The DNA solution was 

transferred to a screw cap tube and an equal volume of ice cold buffered butanol 

added. the tube was shaken vigorously for several minutes then stored on ice until 

the two liquid phases has separated out. The butanol layer was dicarded and an equal 

volume of fresh ice-cold butanol added to the plasmid fraction. The process was 

repeated approximately ten times until the ethidium bromide was removed from the 

solution. The plasmid fraction from the final extraction was placed in dialysis tubing 

and the dialysed in 2 litres lx TE buffer at 4 °C overnight, with the buffer being 

changed once. After dialysis the plasmid solution was transferred to an Eppendorf 

tube and 0.1 volumes 3 M sodium acetate and 2 volumes of freezer-cold ethanol 

added. The DNA was precipitated at -20 °C for at least one hour then the DNA 

pelleted by centrifugation at 4 °C, 15 krpm for 20 minutes (Sorvall Microspin 24 

centrifuge). The ethanol was discarded, the tube filled with 70% ethanol and then 

centrifuged at 4 °C, 15 krpm for 10 minutes (Sorvall Microspin 24 centrifuge). The 
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ethanol was dicarded, the pellet air dried and then resuspended in 100 .ii lx TE 

buffer. 

DNA Manipulation 

Restriction Digests 

The restriction endonucleases used in this work are shown in table 2. Restriction 

digests were performed in 10-40 .t1 of the appropriate incubation buffer. The buffers 

were supplied by the manufacturer as LOX stock solutions and 0.1 volumes were 

added to the DNA solution to prepare the incubation buffer. This was supplemented 

by BSA (bovine serum albumin) to a final concentration of 100 jig ml'. A five fold 

excess of restriction enzyme (5u jig - ' DNA) was added; this had been experimentally 

determined to be the optimum ratio of enzyme to DNA. The sample was then 

incubated for two hours at 37°C unless otherwise indicated. 

Radiolabelling of DNA 

Radiolabelling of DNA was carried out in a total volume of 30 Ml.  22 pA of the 

appropriate restriction digest was mixed with 3 R1  of Kienow buffer. ijil (10 jiCi) 

[ct32P] dATP was added with ljil of 2 mIvi stock solutions of the appropriate non- 

radioactive dNTP's, as determined by the restriction endonuclease used to cleave the 

DNA. 1 ptl Kienow enzyme (lunit) was added and the reaction was incubated at 

room temperature for 15 minutes. A further 1 i1  Klenow enzyme was added and the 
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incubation continued for a further 10 minutes at room temperature. 1 j.tl of 50 mM 

stock solutions of dGTP, dATP, dCTP and dflP were added as a chase (to ensure 

flush terminii were produced) and the incubation continued at room temperature for a 

further 5 minutes. The DNA was purified using the GENECLEAN prior to use in 

Maxam-Gilbert sequencing. 

DNA Sequencing 

Chain Termination Method 

DNA sequencing was performed using a Sequenase v2.0 DNA sequencing kit 

(United States Biochemical). The method is derived from Sanger et al. (1977) and 

uses dideoxy chain-terminating reactions. 3-5 jig of plasmid DNA were purified 

from aqueous solution using the GENECLEAN proceedure and resuspended in 9 j.tl 

of distilled water. This proceedure was performed for all DNA samples except those 

purified by the caesium chloride proceedure. 1 p1 (-0.5 jig) sequencing primer 

(Oswell DNA service) was added to the DNA in an Eppendorf the. The DNA was 

then denatured by incubation in a waterbath at 100°C for 4 minutes followed by rapid 

cooling on dry ice. The labelling reaction shown below was prepared in an 

Eppendorf tube: 

Dfl 
	

2 p1 

[ct"S] dATP (Amersham) 
	

0.5 p1 (5 jiCi) 

Diluted labelling mix (lx in distilled water) 	 0.7 p1 

Va 



Sequenase buffer (5x) 
	

2 p1 

Diluted Sequenase enzyme (1/8 in ice-cold enzyme dilution buffer) 	2.5 p.1 

The labelling reaction was kept on ice while the template-primer mix was thawed and 

immediately centrifuged at 15 krpm for 10 seconds to remove the DNA solution 

from the walls of the tube. The template-primer mix was then added to the labelling 

reaction and incubated at 20°C for 4 minutes. 4 p1 aliquots of the labelling mix were 

then transferred to four Eppendorf tubes, each containing 2 p1 of either ddG, ddA. 

ddT or ddC termination mix; the tubes had been pre-warmed at 37°C (or 42°C) for 1 

minute before the addition of 4 p.1 of labelling reaction. The termination reactions 

were then incubated at 37°C for 3 minutes. Where the template was capable of 

forming secondary structures (and thereby causing band compressions) the 

termination reactions were performed at 42-45°C. The reactions were halted by the 

additions of 4 p.1 of stop solution to each tube and placing the sample on ice. The 

sequencing reactions were stored at -20°C until electrophoresis. 

When sequencing PCR products the Sequenase v2.0 PCR product sequencing kit was 

used. 5 p.! of PCR product were incubated at 37 °C with 1 p1 Exonuclease I and 1 p.1 

Shrimp Alkaline Phosphatase for 30 minutes (supplied with kit). The reaction was 

then incubated at 80 °C for 30 minutes to heat inactivate the enzymes. The remainder 

of the protocol is the same as that for normal sequencing except that the Sequenase 
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enzyme is pie-diluted in a high glycerol solution and this results in Tris-Taurine-

EDTA buffer (supplied with the kit) having to be used in the sequencing gel. 

Chemical Cleavage Sequencing 

This method is derived from that previously described by Maxam amd Gilbert 

(1977). 

A+G Reaction 

10 M1  of radio-labelled DNA were mixed with 4 p.1 of sonicated calf thymus DNA. 3 

R' of 10% formic acid were then added and the reaction incubated at 37 °C for 7 

minutes. The sample was then cooled on ice and 150 p1 of ice cold 1 M piperidine 

added, followed by incubation at 90 °C for 30 minutes. The sample was then cooled 

to room temperature, 1.2 ml of butan- 1-cl added and the reaction vortexed for 30 

seconds to mix. 

A>C Reaction 

5 Ri  of radio-labelled DNA were mixed with 4 p1 of sonicated calf thymus DNA. 1 

tl 30% NaOH was added and the reaction incubated at 90 °C for 6 minutes. The 

reaction was then cooled on ice and 150 Ill  of ice cold 1 M piperidine added. The 

reaction was then incubated at 90 °C for 30 minutes followed by cooling to room 

temperature. 150 gil 70% ethanol and 1.2 ml butan-1-ol were added and the sample 

vortexed for 30 seconds to mix. 

T Reaction 
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5 M1  of radio-labelled DNA were mixed with 4 R1  of sonicated calf thymus DNA and 

the sample incubated at 90°C for 2 minutes followed by cooling on ice. 20 R 1  

KivinO, were added and the reaction incubated at 20'C for 8 minutes. 10 M1  of allyl 

alcohol (ICN Flow) were added and the sample vortexed for 30 seconds to mix. The 

sample was then dried in a vacuum cetrifuge and the pellet resuspended in 150 pl of 

ice cold 1 M piperidine. Following incubation at 90 °C for 30 minutes, 1.2 ml butan-

1-ol were added and the sample vortexed for 30 seconds to mix. 

All reactions were then treated in the same way after the steps previously described 

were performed. The samples were centrifuged at 4 °C for 2 minutes at 15 krpm 

(Sorvall Microspin 24 centrifuge) and the supernatant removed. 150 jil 1% SDS and 

1.5 ml butan-l-ol were added and the sample vortexed for 30 seconds. The samples 

were then centrifuged at room temperature for 2 minutes at 15 krpm (Sorvall 

Microspin 24 centrifuge). The supernatant was then removed and the samples 

lypholized for 20 minutes. 10 R1  of formamide-EDTA sample loading buffer were 

added and votexed for 20 seconds. The samples were stored at -20 °C until 

electrophoresis. 

Dephosphorylation of DNA 

Dephosphorylation of DNA was carried out in a total volume of 50 j.il Calf Intestinal 

Alkaline Phosphatase (CIP) buffer. This was supplied as a lOx stock of which 0.1 

volumes were added to an aqueous solution containing 1 gg DNA (-0.625 pmol 5' 

MO 



terminii). 1 unit of CIP (Boehringer Mannheim) was then added and the reaction 

incubated at 37°C for 30 minutes. A second aliquot (1 unit) of CIP was added and 

the incubation continued at 37°C for a further 30 minutes. The reaction was 

terminated by the addition of I .tl 0.5 M EDTA and heating to 75°C for 10 minutes. 

The DNA was purified by phenol-chloroform and chloroform extraction, and ethanol 

precipitated using sodium acetate (pH7.0). The DNA was resuspended in lx TE. 

DNA Ligation 

DNA ligation was caned out in a total volume of 10-20 .tl of bacteriophage T4 DNA 

ligase buffer. This was supplied as a lOx stock of which 0.1 volumes were added to 

the DNA solution. 40 units of bacteriophage T4 ligase (New England Biolabs) were 

then added and the reaction incubated overnight at 15°C. The reaction was 

terminated by heating to 70°C; the solution was allowed to cool to room temperature 

slowly to promote the reassociation of double stranded DNA. DNA fragments were 

generally ligated with the vector molecule at a 3-5 fold molar ratio of cohesive ends. 

PCR was carried out directly on bacterial colonies rather than purified DNA. A 

small amount of the colony of interest was resuspended in 50 p.1 of sterile distilled 

water in an Eppendorf tube and boiled for 2 minutes. The tube was then centrifuged 

for 2 minutes at 15 krpm (Sorvall Microspin 24 Centrifuge). 10 p.11 of the lysate wa 

then transferred to a 0.2 ml PCR tube. 2.5 Al Tbr polymerase buffer (NBL) was 
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added along with 11.5 j.tl sterile distilled water and I R1  of each primer used (0.4-1 

jllvI of each). The reaction mix was then layered with PCR wax and the mix stored 

on ice. An upper layer of 0.5 units Tbr polymcrase (NBL), 10 pA dNTP's (250 iiM of. 

each), 2.5 utl polymerase buffer and 123 R1  sterile distilled water was aliquoted on 

top of the PCR wax to allow hot-start PCR to be performed so as to increase the 

specificity of the reaction. The conditions for PCR were 30 cycles with 45 seconds 

at 94°C. 1 minute at 55 °C, 1 minute at 72C  plus 5 seconds of extension followed by 

10 minutes at 72 °C. 5 p.1 aliquots of the reaction were checked on a 2% Nusieve 

agarose gel (FMC Bioproducts) prepared in the same way as normal agarose gels 

(described later). 

Gel Electrophoresis 

Agarose Gel Electrophoresis 

Agarose gels were made and run in lx TAE gel buffer. The concentration of agarose 

was a function of the size of the relevant DNA fragments and varied from 0.5-2%. 

An agarose concentration of 0.8% was generally used to resolve fragments of 

divergent sizes. 

To prepare an agarose gel, the appropriate amount of Seakem agarose (FMC 

Bioproducts) was dissolved in 100 ml lx TAE by simmering in a microwave oven. 

The molten agarose was cooled to 46°C, poured into a 14 cm x 11 cm perspex 

mould with a 14 tooth comb and allowed to set. The gel was then placed into a BRL 



model H5 horizontal gel electrophoresis tank containing I litre IxTAE buffer. DNA 

samples were prepared by the addition of 0.2 volumes of TAE gel-loading sample 

buffer and loaded into the the gel slots. Gels were generally run overnight at —I V 

cm- 1  (-26 V) followed by staining in 0.5 tg ml- ' of ethidium bromide for 30 minutes. 

Following destaining to remove excess ethidium bromide the gel was examined 

using 304 nm UV light on a C-62 Blak-Ray transilluminator (Ultraviolet Products 

Incorporated). Photographs were taken on Polaroid 667 or 665 film using a Wratten 

25 red filter with an exposure time of 1 second and an aperture of f/5.61/2. DNA 

fragments for purification were excised using a sterile scalpel blade. 

Chioroquine Gel Electrophoresis 

To prepare the agarose gel 4 g Seakem agarose (FMC Bioproducts) were dissolved in 

400 ml of lx TBE (10 mM EDTA) by simmering in a microwave oven. The molten 

agarose was allowed to cool to 46°C and chloroquine added to a final concentration 

of either 1.8 jig ml" or 20 jig ml" (these values were determined experimentally to 

give the greatest resolution of topoisomers). The agarose was poured into a perspex 

mould 25 cm x 30 cm, allowed to set. It was then placed into a BRL H2 horizontal 

gel electrophoresis tank containing 2 litres of lx TBE buffer (10mM EDTA). Gels 

were run overnight at —3 V cm" (-75 V). The gels was then stained in 0.5 jig m1' 

ethidium bromide for 1 hour followed by destaining with repeated washes in distilled 

water for at least 1 hour. The gel was then photographed as previously described 

except that an exposure time of 45 seconds used. 



Polyacrylamide Gel Electrophoresis 

Polyacrylamide gels (40 cm x 21 cm x 0.4 cm) were made and run in TBE gel buffer 

using a Sequi-Gen Nucleic Acid Sequencing Cell (BioRad). The apparatus was 

prepared according to the manufacturers instructions. 

12% Denaturing Folyarylamide Gels 

The glass plates were assembled using 0.4 mm spacers and clamps provided by the 

manufacturer (BioRad). 60 pJ TEMED and 150 R1  freshly prepared 10% AMPS 

were added to 10 ml of 0.5x TBE 12% acrylamide solution and the mixture was 

promptly used to impregnate a 25 cm  5 cm strip of blotting paper in a casting tray. 

The bottom edge of the glass plate sandwich was pushed firmly against the blotting 

paper and the catalyzed acrylamide was allowed to enter the mould by capillary 

action. After the acrylamide had set (-2 minutes), thereby sealing the bottom edge, 

the glass plate sandwich was laid at an angle of -20° to the horizontal. 40 l.0 

TEMED and 100 j.tl 10% AMPS were added to 35 ml 0.5x TBE 12% acrylamide 

solution and the mixture was poured into the gel mould using a 25 ml glass pipette. 

A 24 well sharkstooth comb was inserted with the flush side in contact with the 

acrylamide. The top of the mould was covered with Saran wrap and the gel left to set 

overnight at 4°C. The gel mould was assembled in the apparatus according to the 

manufacturers instructions. 350 ml lx TEE buffer were poured into the lower buffer 

chamber, the gel was clamped into place and the upper buffer chamber filled witth lx 

TBE buffer. The comb was then removed and the gel preheated to a temperature of 

50-55°C using a constant power of 40 W. DNA samples were denatured by boiling in 
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a waterbath for 3 minutes followed by rapid cooling on ice. The samples were 

loaded onto the gel using a micropipetter and the gel was run at constant power of 38 

W. After electrophoresis, the gel mould was dismantled and the glass plate with 

polyacrylamide gel attached placed in 2.5 litres of gel fix for 30 minutes. The gel 

was transferred to wet blotting paper (Ford Goldmedal), covered in Saran wrap and 

dried in a BioRad Model 583 Gel Drier for 1 hour at 80°C. 

DNA Sequencing Gels 

DNA sequencing gels were made up using 6% LongRanger gel solution and run in 

Ix TBE buffer. The gels were poured as described previously. The DNA sequencing 

reactions were denatured by boiling for 3 minutes followed by rapid cooling on ice. 

2.5 j.tl of each reaction were then loaded onto the gel in the order ddG, ddA, ddT, 

ddC. The gel was run at a constant power of 38 W for 2-5 hours. After 

electrophoresis the gel was transferred onto wet filter paper (Ford Goldmedal) and 

dried without fixing as described above. 

Autoradiography 

32 P Isotopes 

Autoradiography was carried out at -70°C in Cronex (DuPont) cassettes containing 

"xtra-life" intensifying screens, using Cronex 4 (DuPont)X-ray film (30 cm x 40 cm) 

preflashed to an OD of 0.1. The exposure time was varied from 4-16 hours, and 

films were developed in an X-OGRAPH Compact X2 automatic film processor. 



35S Isotopes 

Autoradiography was carried out at room temperature in Cronex (DuPont) cassettes, 

using Cronex 4 (DuPont) X-ray film (30 cm x 40 cm). The exposure time varied for 

1-3 days and the films were developed in an X-OGRAPH Compact X2 automatic 

film processor. 
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CHAPTER 3 
INSTABILITY OF DNA PALINDROMES 

IN PLASMID REPLICONS 



Introduction 

Many of the spontaneous deletions which occur in general sequence DNA are 

comparatively rare events, for example in the lac operon where they are detected at a 

frequency of between 10" q and 10' (Farabaugh et al.. 1978). The presence of 

palindromic DNA has been shown to increase the frequency of deletion formation 

mediated by illegitimate recombination (see chapter 1) and as a result using 

palindrome instability as an example of an illegitimate event provides greater 

opportunities for investigating deletion formation. Many of the studies performed to 

date have involved the use of relatively short palindromic sequences (DasGupta a 

at, 1987; Weston-Hafer and Berg, 1989; Kazic and Berg, 1991) and although these 

palindromes are longer than any encountered naturally in E. coli they are short in 

comparison to those found in higher organisms. 

An investigation was made into the deletion of long palindromic sequences 

(109 bp and 571 bp) from high copy number pUC based plasmids. In particularly the 

effect of local DNA sequence, i.e. the presence of direct repeats; the-influence of the 

direction of replication through the region of plasmid containing the palindrome and 

the effect of different E. coli mutations on the propagation of plasmids bearing long 

palindromes. 



Results 

Factors Affecting the Stability of a Palindrome in Plasmid 
Replication 

The system used was based on a 571 bp near perfect palindrome cloned into 

the EcoRI site of the high copy number plasmid pUG 18 (Chalker, Shaw and Leach, 

unpublished). This plasmid was denoted pAC2. The palindrome was itself a 

deletion product of a 3.2 kb artificially created palindrome (Leach and Stahl, 1983). 

It contained a central region of asymmetry that was 15 bp in length and there were 

two internal Sac I sites that defined a central fragment of 109 bp (Leach et al., 1989) 

(see figure 5). The EcoRI site used in the cloning was present within the multiple 

cloning site of the plasmid and insertion of the palindrome into this site resulted in 

insertional inactivation of the lacZ gene and so a lack of f3-galactosidase activity. 

When the E. coli sbcC strain DL494 was transformed with the plasmid 

containing the palindrome and the cells plated out on medium containing the 

chromogenic substrate for 13-galactosidase (X-gal), the majority of the colonies had a 

sectoring phenotype (see figure 6). Extraction of the plasmid DNA from E. coli, 

followed by digestion with a restriction enzyme that cut the plasmid only once (e.g. 

Hindffl) resulted in two distinct bands when the DNA was electrophoresed on an 

agarose gel (see figure 7). The upper band had the predicted size of linearised 



Figure 5. Structure of 571 bp palindrome in pAC2 

15 bp 

Central Asymmetry 

MCS 

109 bp 

571 bp 

N.B Not drawn to scale 

H, S, E Restriction enzyme sites (HindJJl, SacI and EcoRI) 

MCS 	Multiple cloning site of the plasmid 

The palindrome in pAC2 is 571 bp in length, with a central asymmetric region of 15 

bp. The palindrome is flanked by EcoRI restriction sites. Two Sacl restriction sites 

define a smaller internal palindrome of 109 bp length. 
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Figure 6. Strain containing plasmid pAC2 plated on medium containing 

ampicillin and X-gal. 

Strain 	DL324 plated on selective medium containing ampicillin and the 

chromogenic substrate X-gal. The blue colour represents those cells bearing plasmid 

which is producing a functional 3-ga1actosidase. 
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Figure 7. Hind III digest of plasmid DNA 
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plasmid containing the palindrome. The lower band was of a size consistent with 

deletion of the palindrome. It was apparent that there was a preferred deletion 

product since only one band of plasmid DNA without palindrome was seen. 

Approximately 50% of the plasmid DNA appeared in a deleted form. 

The 571 bp palindrome contained an internal 109 bp palindrome bounded by 

the Sacl sites. The 109 bp palindrome was subcloned into the related plasmids 

pUC 118 and pUC 119- to give plasmids designated pDLJ 1 and pDLJ2 respectively 

(D.Leach, unpublished). The plasmids differed with respect to the orientation of the 

multiple cloning sites present within them. When an sbcCD strain containing the 

plasmids was plated out on medium containing X-gal and JPTG the colonies 

appeared to have flecks of blue colour rather than the blue sectors seen with cells 

containing pAC2. A higher deletion frequency (i.e. degree of blue flecking) was seen 

for pDLJ2 than pDLJI (data not shown). The deletion frequency was apparently 

much lower than that seen for plasmid pAC2 and only a single band was seen upon 

digestion of the plasmid with HindIH. Blue colonies were isolated and purified by 

restreaking to obtain plasmid which did not carry the palindrome. When plasmid 

DNA was isolated from blue colonies and the multiple cloning site sequenced a 

seven base pair direct (5'-TTGCATG-3') repeat was identified as the deletion 

endpoint. One of the repeats was located within the multiple cloning site of the 

plasmid downstream of the Hindm restriction site and the other repeat was present 

within the palindrome (figure 8). Deletion of the palindrome via the direct repeats 
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resulted in 4 bases (5'-TCCA-3') of the palindromic sequence being retained in the 

plasmid (data not shown). The preference for one of the repeats to be located just 

inside the palindrome and one to be located just outside the palindrome was 

consistent with model in which replication proceeded some way into the palindrome 

before stalling. 

The asymmetry of the direct repeats allowed testing of the hypothesis of 

whether deletion of the palindrome occurred preferentially on the leading or lagging 

strand of the replication fork. Inversion of the fragment of DNA that included the 

palindrome and direct repeats in plasmids pUC 118 and pVC 119 moved the preferred 

orientation of the repeats between the leading and lagging strands (figure 8). As a 

replication fork entered the palindrome in one direction, strand slippage would be 

favoured if a good target repeat was located downstream of the palindrome. A good 

target sequence is one which is located just outside the palindrome and shares several 

bases complementarity with a donor sequence present just within the palindromic 

sequence. 

The highest frequency of palindrome deletion was obtained when inversion of 

the DNA fragment containing the palindrome and the repeat placed the correct 

orientation of repeat on the lagging strand of the replication fork. Experiments by 

Trinh and Sinden (1991) suggested that slippage occurred more frequently on the 
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Figure 8. Position of direct repeats on leading and lagging strands of 

replication fork 
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tagging strand of the replication fork. However, similar experiments by Weston-

[-lafer and Berg (1991) showed no difference between deletion on the two strands. 

This work confirms the former observation using a different system and adds weight 

to the conclusion that there can be a bias for slippage on the lagging strand of the 

replication fork. The hypothesis was further supported by the fact that the direct 

repeats that flank the palindromes, present as a direct consequence of cloning the 

palindrome, were never used as deletion endpoints by the 109 bp palindrome. 

Plasmid Derivatives with Increased Palindrome Stability 

A series of plasmids were isolated that showed a decreased level of 

palindrome instability (Shaw and Leach, unpublished). The plasmids were isolated 

from cells containing the plasmid pAC2. Two of the plasmids, pMS5 and pMS7, 

were investigated to attempt to determine the source of the increased stability. When 

plated on media containing X-gal and ampicillin, pMS5 exhibited a deletion 

frequency of —2% and pMS7 a deletion frequency of <0.002% as determined by 

transformation efficiency into a wild-type and an sbcCD strain (tables 3 and 4). Few 

blue colonies were detected with these plasmids (see figures 9 and 10). When DNA 

was prepared from cells containing the plasmids, restricted with the enzyme Hind III 

and electrophoresed on an agarose gel (see figure 7), a major band was seen for 

pMS5 with a faint band equivalent to a deletion product running just ahead of the 
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major band. Only a single band was seen for pMS7 consistent with the very low 

deletion frequency determined for this palindrome. 

Purification of the rare blue colonies produced by cells containing these 

plasmids followed by sequencing of the multiple cloning sites identified that a three 

base pair direct repeat (5'-TOA-3') was used as a deletion endpoint. One of the 

repeats was present just outside the multiple cloning site of the plasmid and the othe 

repeat was within the palindrome itself. Deletion of the palindrome resulted in three 

bases (5'-AAT-3') of the palindrome sequence remaining within the plasmid (see 

figures 11 and 13). The original sequence of pUCI8 is shown in figure 12 with the 

EcoRI restriction site used in the cloning of the palindrome highlighted. Figure 13 

shows the sequence of pMS7 after deletion of the palindrome via a three base direct 

repeat. The three bases of palindrome sequence remaining in the plasrnid are also 

shown in figure 13. 

Re-introduction of the plasmids into E. coli sbcC or sbcCD strains (DL494 or 

DL733) resulted in the phenotype being transferred with the plasmid. This was 

consistent with the source of the increased stabiliity being present on the plasmid and 

not within the genome of the original E. cciii cell. As a result a number of molecular 

techniques were employed to determine whether the increased stability was the result 



Table 3. Number of transformants obtained after plating on selective 
medium. 

Strain Plasmid 

pAC2 pMS5 	 pMS7 

DL324 	 727 23 	 <I 
(wt) 

DL733 	 1349 866 	 551 
(AsbcCD) 

The number of colonies àrethose obtained afthr transformation of a wild-type and 

sbcCD strain with 100 ng of plasmid DNA followed by plating on selective medium. 

Table 4. Transformation efficiency compared in wild-type and sbcCD 

backgrounds 

Plasmid 	No. of wild-type transformants/ No. of shcCD transformants 

pAC2 	 727/1349=0.540 

pMS5 	 23/866=0.027 

pMS7 	. 	 c1/551=c0.002 
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Figure 9. Strain bearing pMS5 plated on medium containing ampicillin 

and X-gal. 

Strain bearing plasmid pMS5 plated on selective medium containing ampicillin and 

the chromogenic substrate X-gal. The blue colour represents those cells bearing 

plasmid which is producing a functional 3-ga1actosidase. 



Figure 10. Strain bearing pMS7 plated on medium containing ampicillin 

and X-gal. 

Strain bearing plasmid pMS7 plated on selective medium containing ampicillin and 

the chromogenic substrate X-gal. The blue colour represents those cells bearing 

plasmid which is producing a functional -gaIactosidase. 
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Figure 11. Position of direct repeats used as deletion endpoints in 

pMS7. 

EcoRI 	 EcoRI Hint/ITT 

MCS 1  

571 bp 

Deletion of Palindrome 

EcoRI 	Hint/ITT 

-3 AAT 	MCS 

N.B Not drawn to scale. 

TGA direct repeat used in deletion 

AAT Region of palindromic sequence remaining after deletion 

MCS Multiple cloning site 
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Figure 12. Autoradiograph of pUC18 multiple cloning site 
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	 ----- - 	
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Sequence produced by dideoxy chain termination sequencing. EcoRI restriction site 

used in the cloning of the palindrome is highlighted along with the three base direct 

repeat used in deletion of the palindrome. 
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Figure 13. Autoradiograph of deleted form of plasmid pMS7 

T 	 C 	A 	G 

—EcoRT site 

(GAATFC) 

—AAT of pal. 

—Direct repeat 

(TGA) 

. jruJJur 
- 

F71 

Sequence produced using dideoxy chain termination sequencing. EcoRI site used in 

cloning of the palindrome. AAT is sequence of three bases of palindrome remaining 

in the plasmid after deletion. TGA sequence of direct repeat used in deletion. 
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of a plasmid-borne mutation. The region around the multiple cloning site was 

sequenced to determine if the increased stability was due to a mutation in this region. 

The sequences obtained for pMS5 and pMS7 were compared to those of pAC2 and 

pUC18. A mutation was identified in the multiple cloning site of the plasmid but 

this was present in the mutants pMS5, pMS7 along with pAC2 and pUC18 (data not 

shown). This mutation was present within a number of commercially available 

pUCI8 preparations (Lobet et at., 1989). The palindromes from pMS5 and pMS7 

were sequenced by partial restriction of the plasmids with the enzyme Sad. 

Digestion generated two fragments, one being composed of the left arm of the 

palindrome along with the central 109 bp palindrome, this was ligated into pUC19 

restricted with Sad. The second fragment was made up of the right arm of the 

palindrome and the backbone of the plasmid. This was self-ligated to re-circularise 

the plasmid. Sequencing of both these constructs failed to identify a mutation. The 

copy numbers of the plasmids were approximately estimated to investigate whether 

the increased stability observed in pMSS and pMS7 was due to a significant decrease 

in the copy numbers of the plasmids. The experiment was performed by plating 

overnight cultures of cells containing the plasmids on media containing increasing 

concentrations of ampicillin from 1 mg m1 1  to 5 mg ml- '. The percentage survival of 

each of the strains was calculated and an example of the results obtained are shown 

in table 5 and figure 14. The copy number of pMS7, as determined in the experiment, 

was higher than that of pMS5 even though pMS7 was known to have a higher degree 

of palindrome stability: 
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Table 5. Determination of plasmid copy number. 

[Ampicillin] % Survival of Strain Containing Plasmid 

mg ml' pUC18 pAC2 	pMS5 pMS7 

1.0 100.0 100.0 	100.0 100.0 

2.0 92.3 96.1 	 25.6 86.0 

3.0 87.9 93.5 	 0.5 43.0 

4.0 59.4 28.6 	 0 10.3 

5.0 13.5 2.5 	 0 0 

Figure 14. Percentage Survival of Strains Bearing 
Plasmids on Increasing Concentrations of Ampicillin 
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A series of restriction fragment swaps was undertaken to identify a region of 

the plasmid that may contain the mutation responsible for the increased palindrome 

stability. The experiment involved replacing specific DNA fragments in pMS5 and 

pMS7 with the corresponding fragment from pAC2 and pUCI8. The 

fragmentsreplaced were defined by the restriction sites A/wNI to BwnHI and AflhlI to 

ScaI. It was expected that replacing the region in pMS5 or pMS7 that contained 

the mutation with the corresponding region from pAC2 or pUC18 would alter the 

plating behaviour of cells bearing the recombinant plasmid. In other words, the 

colonies would be blue or sectored instead of white. All DNA fragments were 

purified from agarose gels prior to ligation using GENECLEAN to minimise the 

carry over of uncut plasmid DNA. The results obtained were somewhat difficult to 

interpret but it appeared that the mutation lay in the region defined by the A1wNI and 

AJlllI restriction sites. Primers were designed that were specific to sites flanking the 

AIwNI and AJZIH. This region contained the replication origin of the plasrnid and it 

was possible that a mutation in this region could affect the rate of replication and so 

increase the chance of the palindromes being replicated faithfully. However, 

sequencing failed to identify any mutation in this region. 

The origin of the mutation was further investigated by restriction analysis. 

This involved digesting the plasmid with a variety of restriction enzymes which have 

4 bp recognition sites and therefore have a high frequency of sites in DNA. The 

enzymes used were AluI, I-thai and IIaeIII and following digestion the DNA was 
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Figure 15. Restriction analysis of plasmids. 

1 	2 	3 	4 	5 	6 	7 	8 	9 tO 	11 U 	13 14 

I Size marker Boehringer no.VI ( pBR328 BglI mixed with pBR328 HinjI) 

2 pAC2 digested with AluI 

3 pMS5 

4 pMS7 	44 

5 pUC18 	44 

6 pAC2 digested with HhaI 

7 pMS5 

8 pMS7 

9 pUC18 

10 pAC2 digested with HaeHI 

11 pMS5 	" 

	 66 

12 pMS7 	"46 

13 pUC18 	"64 

14 Size marker Boehringer no.VI ( pBR328 BglI mixed with pBR328 Hinfi) 
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electrophoresed on a 2% Metaphor agarose gel (FMC Bioproducts). pUCI8 DNA 

was also restricted and run on the gel to act as a control. The results are shown in 

figure 15. There was no difference in the restriction patterns observed for the original 

pAC2, the mutants pMS5 and pMS7, and the pUCI8 control. This indicated that any 

mutation present did not affect the restriction sites of these enzymes. Neither were 

there any obvious differences in the sizes of the bands observed. 

Primers were designed to produce overlapping sequences that covered the rest 

of the plasmid backbone. The sequences of pMS5 and pMS7 were compared to that 

of both pAC2 and pUC18. The only mutations identified were present in both the 

mutant plasmids as well as pAC2 and pUCI8. One region of the palindrome proved 

impossible to sequence with conventional dideoxy chain termination sequencing. 

The site, at position 1961-1966 bp, contained a naturally occurring palindromic 

sequence which proved to be unusually stable. The presence of a mutation within 

this palindrome might have resulted in it preferentially extruding and so reducing the 

supercoiling level of the palindrome. This may have prevented supercoiling driven 

extrusion of the 571 bp palindrome and so decrease its deletion frequency. Maxam-

Gilbert sequencing was employed, which involved chemical cleavage of the DNA so 

the method was not affected by the presence of secondary structures. No differences 

were visible between the sequences obtained for pMSS, pMS7, pAC2 and pUC18. 

One final method was employed to identify any differences between the 

plasmids involved in the study. The level of supercoiling present within each of the 
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plasmids was determined by electrophoresing uncut plasmid DNA through agarose 

gels containing the chemical chioroquine. Chloroquine is an intercalating agent that 

inserts between the bases of the DNA and so causes relaxation of the DNA. The 

negative twist change is compensated for by a positive writhe i.e. a negatively 

supercoiled molecule becomes more positively supercoiled. The increase in positive 

supercoiling is proportional to the amount of chloroquine added. Two different 

concentrations of chloroquine were utilised, a low concentration of 2jig mV and a 

high concentration of 204g ml - '. It was found that the lower concentration gave the 

most satisfactory results as the higher concentration quenched the fluorescence from 

ethidium bromide used to visualise the DNA under a U.V. light source. A 

differencewas observed between pMS5, pMS7, pAC2 and the pUC18 control. When 

exposed to a low concentration of chloroquine pMS5 and pMS7 migrated behind 

pAC2 indicating that the plasmids were relatively more relaxed compared to pAC2. 

pMS7 appeared to be more relaxed than pMS5 (figure 16). It is unknown whether 

the more relaxed state of pMS7 was a result of a yet unidentified mutation or 

whether the increased stability of palindromes in pMS7 was a consequence of the 

lower level of negative supercoiling in this plasmid. 
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Figure 16. Supercoiling level determination using chioroquine. 

1 	23 	4 	5 	6 	78 

1 &5. pAC2 

2 & 6. pMS5 

3&7. pMS7 

4&8.pUC18 
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Effect of host Genotype 

DNA was purified from the sbcCD strains bearing plasmids pAC2, pMS5, 

pMS7 and pUC1S and the DNA electrophoresed uncut on a.-arose gels to look at the 

effect of host genotype on the form of the DNA (see figure 17). The plasmid DNA 

appeared to be highly multimeric. Using densitometry the relative percentages of 

each of the plasmid multimers were determined. The scans produced by 

densitometry are shown in figures 18, 19, 20 and 21. Plasmid pAC2 is present 

predominantly as dimers with 49.8% of the DNA being in this form (peaks 12 and 

13). The remainder of the DNA is present in higher multimeric forms, no monomers 

were visiblePlasmid pMS5 is also present mainly as dimers, 50.9% (peaks 9 and 10), 

but some monomeric DNA is present (peak 13, 3.7%). Plasmid pMS7 is only 

present as supercoiled multimers, with dimers predominating (peak 11, 55.7%). 

Plasmid pUC18 is present in all multimeric forms with monomers accounting for 

29.5% of the total DNA content (peak 11). 

To examine the effect of a recA sbcCD background on the deletion of the 571 

bp palindromes in plasmids pAC2 and pMS7, monomeric DNA was 

artificiallycreated by restricting the DNA with an enzyme that cut only once, 

followed by self-ligation to recircularise the plasmid. A recA sbcCD host (DL888) 

was then transformed and the cells plated out on medium containing ampicillin, X-

gal and IPTG. From the transformations only one white colony was obtained for 
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Figure 17. Distribution of plasmid multimers in an sbcCD host. 

1 	2 	3 	4 5 	( 	7 	8 	9 	I)) 

Lanes. 

1&10.  Lambda HindJII size marker 

2&6. pAC2 

3&7. pMS5 

4&8. pMS7 

5&9. pUC18 

113 



Figure 18. Distribution of plasmid multimers in pAC2. 
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Figure 19. Distribution of plasmid multimers in pMS5 
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Figure 20. Distribution of plasmid multimers in pMS7 
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Figure 21. Distribution of plasmid multimers in pUC18 
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pMS7, the remaining colonies were all blue. Transformants were obtained from 

pAC2 that appeared to sector. The colonies were purified by streaking to give single 

colonies, liquid cultures produced and plasmid DNA extractions performed. The 

extracted DNA was electrophoresed on a 1% agarose gel overnight. The single 

colony obtained for pMS7 seemed to contain plasmid of the correct size to he a 

monomer and still contain the palindrome (figure 22). The DNA from the pAC2 

colonies were also monomers but the DNA formed a diffuse band running at a point 

between pMS7 that contained the palindrome and monomers of pTJC 18 

An sbcCD strain (DL733) was then transformed with the artificially created 

monomeric DNA to try and determine whether the multimerisation observed in this 

host was a consequence of the host genotype or the presence of the palindrome. 

Transformation with pMS7 resulted in a higher frequency of blue colonies indicating 

that the palindrome was less stable when the plasmid was in monomeric form. 

Transformations were also performed with pAC2 and pUC18 monomers. DNA was 

extracted and the uncut plasmid electrophoresed on a 1% agarose gel. The DNA 

from artificially created pMS7 monomers was introduced into an shcCD host ran as a 

monomer but bands corresponding to dimers and trimers were also visible (figure 

23). pAC2 and pUCI8 appeared to be of the same size indicating that the 

production of artificially created monomers had resulted in the loss of the palindrome 

from pAC2. Both plasmids were present as monomers along with multimeric forms. 



Figure 22. Artificially created plasmid monomers in a recA sbcCD 

strain. 
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Figure 23. Plasmid monomers after re-introduction into an sbcCD 
background. 
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The effect of host genotype on the deletion frequency on the shorter 109 bp 

palindrome was investigated by transforming isogenic E. coli strains with pDLJ2. 

When a wild-type El coli strain (DI-324) was transformed colonies were obtained 

since the 109 bp palindrome was below the size limit for inviability and so could be 

tolerated. The colonies were convex in shape and were covered with light and dark 

blue flecks corresponding to cells containing plasmids which had deleted the 

palindrome. When an sbcC or sbcCD strain (DL494 or DL733 respectively) was 

transformed the deletion frequency was lower than that observed in the wild-type. 

Many of the colonies appear 'sick' with concave centres and produced large white 

sectors when stored on a plate for a seven days at room temperature. Approximately 

25% of the colonies were white. Plasmid DNA from these white colonies still 

carried the palindrome and the colonies remained white when the DNA was re-

introduced into an sbcCD background. 

The deletion frequency was higher than in a recA background than in the 

wild-type strain, as determined by colony morphology. This could have been due to 

the lack of recombinational repair of stalled replication forks in this background. In 

morphology, the colonies were shiny and convex, similar to the wild-type. 

Introduction of the recA mutation, by P1 transduction, into an thcC or sbcCD 

background abolished the poor colony morphology and the high frequency of white 

colonies seen in sbcCD strains. The level of palindrome deletion appeared similar to 

that of a wild-type background. The poor colony morphology observed in an sbcCD 
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background could have been a result of SOS induction. RecA initiates the SOS 

response by binding to single-stranded DNA (Kowaczykowski et al., 1994). It may 

be that the presence of single stranded regions of DNA at stalled replication forks 

that activates the SOS pathway and the introduction of a recA mutation into the 

sbcCD background would prevent this induction. The introduction of a sJIA mutation 

(which prevents SOS induced inhibition of cell division) into the sbcCD background 

by P1 transduction should mimic the effect seen with the recA mutation if the poor 

colony morphology is a result of inhibition of cell division caused by SOS induction. 

However the sJlA mutation did not alleviate the poor colony morphology. 

DNA was purified from each of the strains containing the plasmid pDLJ2 and 

electrophoresed uncut on agarose gels to separate the different topoisomeric forms of 

the plasmid (figure 24). When DNA from the strains containing pDLJ2 were 

examined it was apparent that the yield of DNA was low in the wild-type 

background. This was consistent with the difficulties associated with replicating 

palindromic DNA in this background. The DNA that was present appeared to be in a 

monomeric form. In an sbcC or sbcCD background the yields of DNA were higher 

possibly indicating that there was a residual level of inviability associated with the 

palindrome in the wild-type background even though the palindrome was below the 

size limit for complete inviability. Most of the plasmid in the sbcC and sbcCD 

backgrounds were present in multimeric forms, in particular dimers, trimers and 

tetramers. In a recA background the plasniid DNA was present as monomers and a 
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faint band running ahead of the monomers corresponded to the deleted form of the 

plasmid. This was consistent with the elevated levels of deletion in this background. 

as determined by examination of the colony morphology. The absence of multimeric 

forms in this background was to be expected since recombination between plasmid 

molecules was inhibited because of the lack of a functional RecA protein. In a recA 

sbcCD host the DNA was again in a momomeric form but no band corresponding to 

deletion products was visible. This was consistent with the lower deletion frequency 

deduced from the colony appearance. 

Although no palindrome free pUC1 19 was available as a control, comparison 

can be made between the behaviour of pDLJ2 and pUC18. In a wild-type strain 

pDLJ2 was present as monomers and the DNA content was low. In contrast pUC18 

was present as monomers but also higher multimeric forms (figure 25). In an sbcCD 

background both plasmids were present as multimers (figure 25). In a recA or recA 

sbcCD strain the DNA for both plasmids was present predominantly as supercoiled 

monomers although some faint bands were present corresponding to relaxed 

monomers and possibly some dimers (figure 26). 

123 



Figure 24. pDLJ2 DNA extracted from different E. coil backgrounds. 
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Discussion. 

Factors affecting the deletion of long- on palindromic sequences from plasrnid 

vectors were investigated. A 571 bp near perfect palindrome was cloned into the high 

copy number plasmid pUC18 to give the plasmid designated pAC2 (Chalker. 1990). 

The palindrome apparently deleted at a frequency of approximately 50%. This high 

level of the deletion may be due in some part to the high copy number of the plasmid 

and the tendency of palindrome free derivatives of the plasmid to have a replication 

advantage over plasmids bearing the palindrome. The central 109 bp palindrome 

present within the 571 bp palindrome was previously subcloned into pUC 18 and 

shown to be stable, but was unstable in M13 mpl8 (Leach et al., 1987). This 

difference in stability may reflect some aspect of the local sequence context of the 

palindrome, a long range sequence effect or the fact the M13 is a single stranded 

filamentous phage. The single stranded nature of the phage could increase the 

chances of the palindrome adopting a hairpin structure which would promote 

replication slippage during the double stranded replication cycle of the phage. It may 

be that there is a more general problem associated with the cloning of palindromes in 

Ml 3 and not just with the 109 bp palindrome. 

The central 109 bp palindrome could be stably cloned into the plasmids 

pUC1 18 and pUCl 19 but showed a degree of instability in pUC1 19 (D.Leach, 

unpublished). Using these plasmids it was demonstrated that their was a bias for 
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deletion to occur on the lagging strand of the replication fork. The preferred position 

of the direct repeats used in the deletion occurred on the lagging strand of pUCI19 

but on the leading strand of pUCI 18. This observation of a bias in the deletion 

supports the work performed previously by Trinh and Sinden (1991) which used a 

different system than the one used in this study. However, it is unclear why the 

system used by Weston-Hafer and Berg (1991) failed to find a bias for either the 

leading or lagging strand. Both groups used a system which employed the cloning of 

palindromes into lower copy number plasmids (pBR325 and pBR322 respectively). 

It may be that the discrepancy reflects some feature of the insertion sites used. 

An investigation was made into a series of plasmid derivatives of pAC2 

which exhibited the stable maintenance of a long palindromic sequence. Despite 

employing a number of different methods no differences at the sequence level could 

be detected. However, it was shown that the two plasmids pMS5 and pMS7 were 

less negatively supercoiled than the parental plasmid pAC2 and the palindrome free 

plasmid pUC18. It is unclear whether the differences in supercoiling levels promotes 

stabilisation of the palindrome, or if the more relaxed nature of the plasmids is a 

consequence of the increased stability. 

Subsequent work involving the plasmids used in this study has revealed new 

information about the structure of plasmid pAC2 (D.Pinder and D.Leach, personal 

communication). It was originally assumed that pAC2 existed as a monomer or 
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homodimer. Deletion of one copy of the palindrome could occur from the dimer 

resulting in a heterodimer, which might stabilise the remaining palindrome. 

However, digestion of the plasmids pAC2, pMS5, pMS7 and pUC18 with the 

enzyme PvuIT revealed the presence of a larger than expected fragment for pAC2 in 

the region between base numbers 306-628 from the half of the plasmid dimer which 

was assumed to have deleted the palindrome. This fragment was not detected in the 

initial restriction fragment analysis of the plasmids because the four base cutter 

enzymes used placed this region of the plasmid on restriction fragments which were 

small in size and poorly resolved from fragments of similar size on the agarose gel 

(table 6). Sequence information for this indicates the presence of a short directly 

repeated sequence between the EcoRI and BaniHI sites in the multiple cloning site. 

Re-circularistion of the plasmid bearing this repeat following introduction into an 

shcCD background gives rise to sectored colonies, possibly indicating an unstable 

insertion of DNA. The presence of this region within the normal heterodimer of 

pAC2 would also explain why pAC2 gives rise to sectored colonies. The deletion of 

one copy of the palindrome from a dimer should give rise to a blue colony rather than 

the sectored colonies actually observed unless the expansion/contraction of this 

repeated sequence switched the plasmid between lac k  and lad status. 

The presence of a repeated sequence within the multiple cloning site in one 

half of the dimer could also explain the diffuse band pattern observed when 

artificially created monomers of pAC2 were electrophoresed on an agarose gel (see 
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figure 22). When the monomers were cut with the enzyme HindIll two bands were 

seen for the monomer of pAC2 compared with the single band observed for pUCI8 

(figure 27). This pattern of double bands was also seen when the uncut monomeric 

DNA was electrophoresed on a gel containing a low concentration of chloroquine 

(figure 28). The formation of this short, unstable repeated sequence within pAC2 

might act to stabilise the remaining copy of the palindrome however this region has 

not been detected in the plasmid pMS5 and pMS7 which exhibit greater palindrome 

stability so the nature of the stability in these plasmids is still unknown. 

An investigation was made into the effect of different host genotypes on the 

propagation of plasmids bearing long palindromes. Plasrnids pAC2, pMS5 and 

pMS7 bearing a 571 bp palindrome could be recovered from an sbcCD but the 

majority of the DNA was in a multimeric form. When the DNA was introduced into 

a recA sbcCD strain in a multimeric form (predominantly dimeric) it remained in 

this form. It was therefore decided to look at the fate of artificially created 

monomers in both of these backgrounds. Plasmid pAC2 could not be stably 

propagated and deletion products accumulated. The plasmid derivative pMS7 could 

be isolated as a monomer but only with difficulty and the DNA isolated may have 

accumulated mutations to allow it to exist as a monomer. 

The plasmid pDLJ2 bearing a 109 bp palindrome could be propagated in all 

the backgrounds tested. In a wild-type strain the yields of DNA were low and the 
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plasmid existed purely in a monomeric form. In an sbcCD strain the plasmid was 

present as a monomer but the majority of the DNA was in a multimeric form. In a 

recA and recA sbcCD strain the plasmid was present predominantly in a monomeric 

form. It would appear that the presence of palindromic sequences in a plasmid leads 

to the formation of plasmid multimers in an sbcCD background 
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Table 6. Restriction fragments produced by 4 base cutters. 

AlisI (AG'CT) 

679 

521 

257 

245 

226 

165 

165 

113 

113 

100 

95 

93 

90 

64 

64 

64 

63 

54 

46 

45 

25 

19 

Him! (GCG'C) 

902 

fin, 

337 

fin 

331 

270270 

174 

130 

109 

103 

100 

100 

93 

67 

65 

30 

28 

HaeLII (GG'CC) 

828 

587 

458 

434 

298 

267 

257 

137 

102 

80 

37 

18 

11 

Numbers shown in bold correspond to those restriction fragments which include the 

short repeated sequence. 
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Figure 27. HincfiIl dige ly created monomers. 

11' 	'1' 

pAC2 pMS7pUC18 

Figure 28. Chloroquine gel of artificially created monomers. 

1' 	'1' 	-1' 

pAC2 pMS7 pUC18 
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CHAPTER 4 
INFLUENCE OF SBCCD MUTATION ON 

DNA REPLICATION 
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Introduction 

Rapidly growing wild-type strains of E. co/i can duplicate in a time much 

shorter than the time required for chromosomal replication (Donachie, 1992). This 

results in multiple replication bubbles in the chromosome. Under these conditions it 

is essential that the integrity of the replication forks is maintained. The DNA strands 

that serve as templates for replication must be free of irregularities and interruptions. 

Occasionally, replication forks do collapse and are subject to recombinational repair. 

It has been proposed that in E. coil, disintegrated replication forks are repaired by the 

combined action of RecA and RecBCD proteins (Kuzminov, 1995). 

The proposed model involves a theta replicating chromosome which, upon 

reaching a single-stranded break, collapses to produce a sigma structure. The free 

double-strand end is degraded by the RecBCD enzyme until its nuclease activity is 

inactivated by a Chi site present in the correct orientation in the DNA strand (Stahl, 

1990). At this point the RecBCD enzyme loses its nuclease activity, possibly 

because of dissociation of the RecD subunit, and proceeds as a helicase unwinding 

the DNA duplex. RecA protein then forms a filament coating the single-strand end 

and promotes invasion of the intact homologous duplex, leading to the formation of a 

Holliday-junction. Resolution of the junction by RuvC restores the replication fork 

(Connolly et al., 1991). 
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If both replication forks of a replication bubble collapse because of nicks in 

the same strand it could result in the release of a whole replication fork as a linear 

molecule. This molecule would be susceptible to RecBCD degradation. The 

RecBCD-dependent degradation of the chromosomes would be especially evident in 

recA strains which cannot repair collapsed replication forks and so would lead to no 

net increase in the chromosome number from that replication bubble. 

The degradation of chromosomes by RecBCD nuclease is thought to have 

been detected in a previous study utilising flow cytometry technology (Skarstad and 

Boye, 1993). When rapidly growing cultures of wild-type E. coli are treated with 

rifampicin, which allows completion of ongoing rounds of replication without the 

initiation of new rounds, the cells are seen to contain two, four or eight fully 

replicated chromosomes (Skarstad and Boye, 1986). RecA strains, which are 

recombination deficient, exhibit an asynchrony phenotype in which cells contain 

three, five, six or seven fully replicated chromosomes. The inter-initation time in 

these strains is normal, indicating that initiation of replication is essentially normal 

and occurs at a specific time in the cell cycle (Skarstad and Boye, 1988). 

A model to explain this phenomenon was suggested in which there was 

selective degradation of individual chromosomes, before and during rifampicin 

treatment, by RecBCD nuclease (Skarstad and Boye, 1993). The replication 

phenotypes of a wild-type, recA, recD and a recA recD strain were investigated by 
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treatment with rifampicin followed by flow cytometry. The wild-type and recD 

strains contained two and four chromosomes and the recA strain contained one, two, 

three and four fully replicated chromosomes. Cells of the double mutant contained 

mainly two and four chromosomes. It was suggested that the exonuclease activity of 

the RecBCD enzyme was responsible for the chromosome degradation seen in recA 

strains. DNA degradation was measured directly in these strains after pre-labeling of 

cultures with [3 1-1]thymidine and comparison of the amounts of acid-insoluble label in 

samples withdrawn at varying times after the addition of rifampicin. It was shown 

that there was little degradation in the wild-type, recD and recA recD strains but 

approximately 40% degradation in the recA strain during the period of incubation 

with rifampicin. Replication forks may also be stalled by the presence of secondary 

structures within the DNA to replicated. As discussed in Chapter 1 it has been 

proposed that an endonuclease could recognise some feature of this structure and 

remove it to produce a broken replication fork with a free end. Exonuclease 

digestion of part or all of the chromosome arm would remove the secondary 

structure. It has been demonstrated that the SbcCD gene products of E. coli possess 

an ATP dependent double-strand exonuclease activity. This nuclease activity may be 

responsible for the removal of secondary structures from stalled replication forks 

(Leach, 1994). Recombination between the partially digested arm and a homologous 

sequence impedes unnecessary degradation of the chromosome. 
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It was decided to investigate whether the degradation of stalled replication 

forks by SbcCD nuclease does take place in E. co/i, using flow cytometry. Also, 

whether the asynchrony phenotype associated with recA strains is alleviated in a 

recA sbccD background. The following work was performed with the kind help of 

Dr Eric Boye and Dr Kirsten Skarstad. 
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Results 

The cultures of interest were grown as previously described with rifampicin 

added to the culture medium to prevent initiation of fresh rounds of replication. 

Cephalexin was also added to prevent cell division and so increase the total number 

of chromosomes present in individual cells. Using flow cytometry a comparison 

was made of both exponentially growing (pre-rifampicin treated) and rifampicin 

treated cultures. The results are presented in histogram form with comparisons of the 

cell number and chromosome number of cultures shown. 

In the strain DL473 (which has a wild-type recombination genotype) a wide 

distribution of chromosome numbers was visible in the exponentially growing 

culture with cells containing incompletely replicated chromosomes (figure 29a). 

Upon rifampicin treatment ongoing rounds of replication were completed to produce 

cells with mainly four or eight fully replicated chromosome equivalents (figure 29b). 

The isogenic reM derivative, DL519, gave a histogram in which the cells containing 

four and eight chromosomes had undergone degradation reducing the number of 

chromosome equivalents to three, two and one, or seven, six and five respectively 

(figure 29d). The untreated culture of this strain contained a proportion of cells with 

no DNA (figure 29c) represented by a peak to the far left of the histogram. 
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In the recA recD double mutant (DL520) the peaks visible in the recA strain 

were much less distinct with a major peak present at four chromosome equivalents 

(figure 29fl.  It could be argued that rather than there being less degradation there 

was actually more and this led to cells with partial chromosomes resulting in a graph 

which looked more like that of an exponentially growing culture. 

A recA sbcC double mutant (DL521) appeared identical to the recA strain in 

so far as there were peaks present at one, two, three, four, five, six, seven and eight 

chromosome equivalents (figure 29h). This indicates that the introduction of an sbcC 

mutation does not alleviate the asynchronous phenotype seen in a recA background. 

A similar result was obtained in the E. coli backgrounds DL888 and NM772 

indicating that the result was not background specific (data not shown). When the 

triple mutant recA recD sbcc (DL522) was examined no distinct peaks were evident 

(figure 29j). Instead there was a broad distribution of chromosome numbers with a 

proportion of cells containing more than eight chromosome equivalents and less cells 

with one or two chromosomes. In the corresponding exponentially growing culture 

(figure 29i), the cells appeared to contain very little DNA, approximately 25% of that 

present in the wild-type strain. However, the rifampicin treated recA recD sbcC 

cells had a normal DNA content. This phenomenon was also seen in another recA 

recD sbcC background, DL847(figure 291). When exponentially growing cultures of 

both DL522 and DL847 were stained using the DNA specific dye DAPI, and 

examined using fluorescence microscopy, the DNA content appeared normal (data 

not shown). It may be that this apparent lack of DNA in the untreated cells is an 
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artefact due to the DNA not being properly stained with mithramycin, the DNA 

specific dye used in flow cytometry. However it is unclear why the triple mutant 

should behave differently from any of the other strains with respect to staining. 
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Figure 29. DNA histograms of cell number versus number of 

chromosome equivalents. 

Exponentially growing culture of DL473 (wild-type) 

Rifampicin treated culture of DL473 

Exponentially growing culture of DL5 19 (recA 

Rifampicin treated culture of DL5 19 

Exponentially growing culture of DL520 (recA recD) 

Rifampicin treated culture of DL520 

Exponentially growing culture of DL52 1 (recA sbcC) 

Rifampiqin treated culture of DL52I 

Exponentially growing culture of DL522 (recA recD sbcC) 

Rifampicin treated culture of DL522 

Exponentially growing culture of DL847 (recA recD sbcC) 

291. Rifampicin treated culture of DL847 
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Discussion 

The data presented here suggest that the asynchrony phenotype associated 

with a recA strain was not alleviated in a sbcC background. However, the SbcCD 

proteins are thought to act on secondary structure present within the replicating DNA 

(Leach, 1994) and since long palindromic sequences which may adopt these 

structures are absent from the E. coli genome, chromosome degradation by SbcCD 

may be a rare event undetectable by this method. The introduction of a long 

palindromic sequence onto the chromosome may facilitate the study of this type of 

secondary structure repair mechanism. It may also be that inactivation of the 

exonuclease activity of the RecBCD enzyme by the use of a recD mutation may 

allow degradation of the chromosome by other nucleases present within the cell, 

many of which may be more potent and act before SbcCD. It could also be postulated 

that there may be more than one gene product and more than one mechanism 

involved in the breakdown of replication forks and so the effect of SbcCD will be 

masked. One feature of RecBCD recombination that was not discussed in the earlier 

work performed by Skarstad and Boye (1993) is the involvement of CM sequences in 

arresting DNA degradation by RecBCD. If the chromosomal degradation associated 

with the asynchrony phenotype is a result of RecBCD nuclease activity it might be 

expected that the degradation may be arrested by Chi site activity before a whole 

chromosome arm is lost. Accumulating data on E.coli sequences show that the CM 

sequence (5'-GCTGGTGG-3') is overrepresented in the genome, but that it is eight 

to nine times more abundant in the orientation leading towards the origin of 
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replication (Burland et al., 1993). It might be expected that the action of Chi sites on 

RecBCD would take place before the loss of an entire chromosome unless there is 

degradation attributable to another nuclease. 
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CHAPTER 5 
ARAB-LACZ FUSION FORMATION IN 

E. COLI 

VEFA 



Introduction 

The ala-/ac fusion system has been one of the best documented examples of 

directed mutation, in which mutations do not arise during the normal growth of the 

culture but do appear when The culture is plated on selective medium (for reviews see 

Foster. 1992 and 1993). Shapiro (1984) used the strain MCS2 to analyse the 

formation of araB-/czcZ coding sequence fusions. The strain has a Mu prophage 

DNA inserted between the araB and lacZ genes. Excision of the prophage fuses the 

two genes and if the fusion occurs in-frame it will place the lacZ gene under the 

control of the araB promoter. Plating of the strain on medium containing lactose as a 

growth substrate and arabinose as an inducer gives rise to the formation of colonies 

after an initial lag period. After that time colonies rapidly appear. Colonies are 

never detected in the first two days after plating indicating that fusion colonies are 

not present in the initial culture. The fusion point can occur in-frame in a 26 bp 

segment of the lacZ gene between nucleotides 49 and 75. For fusion to occur there is 

a requirement for the Mu A transposition function (Shapiro and Leach, 1990) and the 

excision involves a complex DNA rearrangement (Shapiro and Leach, 1990). 

Certain host encoded functions are also required, including IHIF (host integration 

factor), HU and CIpPX protease (Shapiro and Leach, 1990; Shapiro, 1993). 

Given the role of complex DNA rearrangements in excision of the prophage 

and the possible involvement of secondary structure, an investigation was made into 
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the effect of sbcCD mutation alone and in conjunction with mutS on araB-IacZ 

fusion formation. The original fusion strains used in this work were kindly provided 

by Dr. Genevieve Maenhault-Michei. 
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Results 

Two clones, MCS2a2 and MCS2a3 (derived from the original MCS2 strain), 

were patched onto minimal glucose medium and incubated overnight. The patch of 

growth was scraped off the plate with a sterile toothpick and resuspended in imI of 

PA salts. 100 R'  aliquots of a 10 -2  and io dilution of the cell suspension were plated 

onto medium containing arabinose and lactose and the plates incubated overnight at 

30°C. No fusion colonies were detected until approximately 9 days after plating 

indicating that no fusions were present in the original culture. Over a period of days 

the number of fusion colonies formed increased (figures 30, 31, 32 and 33). No 

difference was observed between the two dilutions demonstrating that the number of 

fusions formed was independent of the total number of cells plated, as observed by 

other workers (Shapiro, 1984; Maenhault-Michel and Shapiro, 1994). 

To investigate the involvement of chromosomal mutations on fusion 

formation, derivatives of MCS2a2 were constructed which carried mutations in 

sbcCD (DL943), mutS (DL944) and sbcCD ,nutS (DL945). The strains were plated 

out as previously described and the formation of fusion colonies noted. No 

difference in the kinetics of fusion appearance was observed for any of the strains 

bearing chromosomal mutations as compared with the wild-type strain (figures 34, 

35, 36 and 37). 
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It has previously been reported that the only requirement for fusion formation 

are starvation conditions. Experiments were performed by Mittler and Lenski (1990) 

and Maenhault-Michel and Shapiro (1994) in which fusion strains were grown in 

aerated and unaerated glucose starved cultures. Plating out of the cultures over time 

resulted in the appearance of fusion colonies on medium containing arabinose and 

lactose within two days after plating. Colonies which appeared on the plates within 

two days were assumed to have formed within the initial starved culture. The 

starvation experiment was repeated using the strains constructed in this study 

however no fusion colonies were detected by this method. 

Fusion colonies were purified from plates for the wild-type (DL942), sbcCD 

(DL943), mittS (DL944) and sbcCD mutS (DL945) and the region around the fusion 

junction amplified by PCR using primers previously described (Maenhault-Michel 

and Shapiro 1994). The DNA fragments amplified were electrophoresed on 2% 

NuSieve agarose gels (FMC Bioproducts) and the sizes determined to be between 0.5 

and 0.65 kb. No differences were seen in the sizes of PCR fragments derived from 

fusion colonies produced by strains bearing chromosomal mutations and the wild-

type strain (figures 38, 39 and 40). There was also little variation in size of PCR 

products produced from colonies which form on selective medium as previously 

reported (Maenhault-Michel and Shapiro, 1994). 
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A total of 31 PCR products derived from fusion colonies from the different 

backgrounds used in this study were sequenced (figure4 1). Although no effect of the 

chromosomal mutations on the kinetics of fusion formation was detected, the fusion 

junctions were sequenced to see if the mutations affected the fusion process in other 

more subtle ways. All of the fusions had a portion of Mu R adjacent to lacZ . The 

presence of a MuR-lacZ junction indicated a role for Mu transposition functions 

(Shapiro and Leach, 1990). Of the 31 PCR products sequenced, four different target 

sites for Mu were identified in lacZ (figure 42). Of these 4 target sites, 1 accounts 

for 21 of the 31 fusions isolated (Junction 2 —68%) and matched the NYG/CRN 

consensus of the Mu target site determined in vivo (Mizuuchi and Mizuuchi, 1993). 

This target site is the same as that determined for the previously published fusion 

sequence (Maenhault-Michel and Shapiro, 1994). The 3 remaining junctions 

accounted for 10 out of 31 of the PCR products (-32%). Two different araB-Mu 

junctions were identified (figure 42) and one of these junctions (junction A) was 

found in 30 out of the 31 fusions sequenced (-97%). 
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Figure 38. PCR analysis of araB-IacZ fusion junctions in a wild-type 

host. 

Amplification carried Out using primers previously described (Maenhault-Michel and 

Shapiro, 1994), PCR products electrophoresed on 2% NuSieve agarose gels (FMC 

Bioproducts). 100 bp size marker ladder present in outside wells (Gibco BRL). 
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Figure 39. PCR analysis of araB4acZ fusion junctions in an sbcCD host. 

Amplification carried out using primers previously described (Maenhault-Michel and 

Shapiro, 1994). PCR products electrophoresed on 2% NuSieve agarose gels (FMC 

Bioproducts). 100 bp size marker ladder present in outside wells (Gibco BRL). 
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Figure 40. PCR analysis of araB-IacZ junctions in a mutS and sbcCD 

mutS hosts. 

Amplification carried out using primers previously described (Maenhault-Michel and 

Shapiro, 1994). PCR products electrophoresed on 2% NuSieve agarose gels (FMC 

Bioproducts). 100 bp size marker ladder present in outside wells (Gibco BRL). 

163 



Figure 41. 

Sequences of arall-lacZ fusions. Obtained by direct sequencing of PCR products 

using Sequenase PCR product sequencing kit (USB). Ambiguities present within 

some of the sequences may be due to PCR artefacts or the presence of more than one 

PCR product within the sequencing reaction. 
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Figure 41. Sequence of araB-IacZ fusion junctions. 

Wild-type fusions 	 No. sequenced 

GGYIThLfl'CGTGCGCCGCflCAICTGGCGflAcCCAACTFA 	 3 

CGTflT.LTITCGTGCGCCGCflCATCCCAACUAATCGCCfl 	 2 

GG1mrLYflTCGTGCGCCGCflCAtGCCY1TGCAGCACATC 	 1 

GGTrTAACGGTCGT.LCGCflCAtCCCAACflA 	 1 

SbcCD fusions 

CGTITLflCGTGCGCCGCflCAICTcJGCGrrAcCCAACflA 	 3 

GGYIT.LTFCGTGCGCCGCflCAtATCGCCflcJCAGTcACAT 	 1 

MittS fusions 

GG'm.LTTCGTGCGCCGCnCAICTGGCGflACCCAAC'I-rA 	 1 

OGYFTJT7cGTacGGcGncA1cTGGcGnAcccTAAcTrA 	 10 

GOYVrVVrCGTOCGCCGCnCAtCCCAAC'ITAATCTGA 	 2 

GGYI'ItITCGTGCGCCGCITCAtATCGCCnGCAGTCACA 	 2 

SbcCD MittS fusions 

GGrfl.LncGTocGccocncAtcTQTJccJflAcccTAAcn 	 4 

GGITF,LTCGTGCGCCGCTFCATATCGCCTrGCAGTCACAT 	 1 

Sequences derived from direct sequencing of PCR products. 

T represents ambiguities in sequence (either insertions or substitutions). 

.1- araB -MuR fusion junction. 

tlacZ-MuR fusion junction. 
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Figure 42. Sequences of araB-Mu and Mu-!acZ junctions. 

AraB- 4'IuR Junctions 

TGCTCGACTGGTTTTTCGTGCGCCGCTTCA JUNCTION A 

TGCTCGACTGGT1TAACGGTCGTCGCTTCA JUNCTION C 

LacZ-MuR junctions 

CTTCACTGGCGTT 

CTTCACCCAACTT 

CTTCAATCGCCTT 

CTTCACCTTGCAG 

JUNCTION 2 

JUNCTION 3 

JUNCTION 5 

JUNCTION 6 

Junctions of araB-Mu fusions. Arrows show orientation of short repeated 

sequence. 

Sequence shown in bold is that corresponding to lacZ. 
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Discussion 

Shapiro and Leach (1990) proposed a strand transfer model to account for the 

involvement of Mu transposition in fusion formation. The first step in the fusion 

process involves the formation of a plectonemic complex which brings together the 

two ends of the Mu genome and the target sequence present in the 5' end of the IacZ 

gene. A strand transfer reaction takes place which results in the ligation of the 3' 

hydroxyl groups from the Mu ends and the 5' phosphate groups from the lacZ target 

sequence. The ligation reaction leaves two exposed 3' hydroxyl groups in the lacZ 

target sequence which could act as primers for chain elongation during leading strand 

replication. Replication could proceed into the end of the Mu molecule. Strand 

switching of the nascent strand or a cutting and patching reaction at the end of the 

Mu followed by continued replication into araB would result in a molecule 

composed of araB-MuR-lacZ. This model accounts for all of the sequences 

determined in this study. 

As discussed in Maenhault-Michel et al (1996) the crossover points for 

fusion formation occur within short directly repeated sequences present within araB 

and Mu (figure 43). Formation of the strand transfer complex described by Shapiro 

and Leach (1990) followed by isomerisation to a four way junction places the first 

nucleotide of both of the short direct repeats at the branch point of the molecule 

(figure 43). This branched molecule could be subject to one of three fates. Firstly, 
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cleavage across the junction followed by ligation of the free ends, similar to the 

Holliday junction resolution activity of RuvABC (West, 1994). Secondly, enzymatic 

degradation of two arms of the four way junction from single strand regions present 

at mismatches followed by ligation of the free DNA ends. Thirdly, replication 

through lacZ into MuR followed by strand slippage to a short homologous sequence 

in araB. A second round of replication would effectively fix the mutation allowing 

transcription of lacZ and removal of the strand containing the branched structure. 

Although there was no apparent effect of an sbcCD mutation on either the kinetics of 

fusion formation or the sequences of the fusions formed, SbcCD might have a role in 

the degradation or processing of the intermediate which is not detected in this assay. 



Figure 43. 

Phage Mu inserts into the chosen cistron. Recombination then occurs the inserted 

Mu and a terminal fragment of Mu located upstream of a decapitated lacZ gene 

carried on a ?cplac bacteriophage. The lacZ gene is now positioned downstream of 

Mu. There is no promoter for lacZ transcription and the presence of an ochre triplet 

at codon 18 blocks all transcription and translation of the IacZ gene. Excision of the 

Mu sequence can lead to the in-frame fusion of arciB and IacZ and subsequent 

transcription and translation. 
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Figure 43. Construction of fusion strain MCS2a2 (after Casadaban, 

1976) 

araB 

Mu insertion 

araB' 	 Mu 	 'araB I 	>< 

lacZ 

recombination 

'araB 	 Mu 	 lacZ 

araB-lacZ fusion 

Mu linker 
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Figure 44. 

Strand transfer complex showing orientation of short direct repeats present within 

araB and MuR. Isomerization of the strand transfer complex gives rise to a four way 

junction with the short direct repeats placed at the branch points of the structure. The 

four way junction could be subject to cleavage across the junction to give rise to the 

fusions detected by the assay. 

Short repeats present within araB and MaR 
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Figure 44. Strand transfer complex showing position of short direct 

repeats. 

Mu 	A C 	 IacZ 
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•cleavage site 

MuR/ 

MuR 	4. MuR 	lacZ. 

araB  

araD 

tH / 
172 



CHAPTER 6 

DISCUSSION 

173 



Discussion 

In this work the deletion of long DNA palindromes from high copy number 

plasmids was examined. It was demonstrated that a 571 bp X-derived palindrome 

apparently deleted from pAC2 (pUCI8 +571 bp palindrome) with a frequency of 

—50%. Plating of cells bearing the plasmid on selective medium containing a 

chromogenic substrate gave rise to blue/white sectored colonies. Subsequent work 

by Pinder et al. (1996, submitted for publication) revealed that the apparent sectoring 

phenotype of cells containing plasmid pAC2 was due to its structure as a heterodimer 

made up of one copy of the palindrome and a second copy a short repeated sequence 

of --40 bp of the plasmid multiple cloning site. It was the presence or instability of 

this short repeated sequence which gave rise to the sectoring colonies, although 

deletion of the remaining copy of the palindrome may also have contributed to the 

sectoring. 

Plasmid derivatives of pAC2 (pMS5 and pMS7) which appeared to allow the 

stable maintenance of long palindromes (Shaw and Leach, unpublished) were 

investigated to determine the nature of the stability. The palindromes deleted from 

the plasmid with a frequency of —2% for pMS5 and <0.0025% for pMS7. Deletion 

was mediated by 3 bp direct repeats. A number of molecular techniques were used to 

investigate the source of the increased stability including restriction analysis, DNA 

sequencing and estimation of supercoiling level. No mutation could be found which 
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could lead to the increased palindrome stability, although it appeared that pMS7 was 

less negatively supercoiled than pMS5. 

E. co/i strains which carry mutations in the sbcC and/or shcD gene are used 

for the propagation of long palindromes in A cloning vectors since they overcome the 

inviablity associated with this type of sequence (Leach et al. 1987). In this work a 

plasmid bearing a long DNA palindrome could also be propagated in a plasmid when 

when grown in an sbcCD strain. When plasmid DNA bearing the 571 bp palindrome 

was prepared from strains which were deleted for the sbcC and sbcD genes no 

plasmid monomers were detected for pAC2 and pMS7 and only —4% of the total 

DNA content was present as monomers for pMS5. The palindrome-free plasmid 

pUC 18 could be isolated as monomers which accounted for approximately 30% of 

the total DNA content. It appears that the presence of the palindrome in the plasmid 

leads to increased mulitmerisation of the plasmid DNA. The presence of long 

palindromes may promote RecA-dependent interplasmidic recombination and so give 

rise to large amounts of multimers. When artificially created plasmid monomers of 

pAC2, pMS7 and pUCI8 were produced and propagated in a recA sbcCD 

background only one colony was isolated for pMS7. This single colony contained 

pMS7 DNA in a monomeric form and from the size of this plasmid it was assumed 

that a full length palindrome was still present. However, since only one colony could 

be isolated it is possible that the plasmid may have been a variant of the original 

pMS7, perhaps bearing a mutation to allow propagation in a monomeric form. The 
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colonies isolated for pAC2 contained monomeric DNA which did not contain a 

palindrome but apppeared to be larger than monomers of pUC 18 indicating the 

presence of the additional sequence described by Pinder et al. (submitted for 

publication). From this work it is apparent that plasmids bearing long palindromes 

are most easily propagated in a multimeric form. 

A short 109 bp palindrome was cloned into the related plasmid pUCII8 and 

pUC1 19 to give rise to the plasmid pDLJ1 and pDLJ2 (D. Leach, unpublished). The 

palindrome deleted from the plasmids by an illegitmate recombination event 

involving 7 bp direct repeated sequences. The position of the repeats with respect to 

the direction of replication and the frequency of deletion in each plasmid lead to the 

conclusion that deletion occurred preferentially on the lagging strand of the 

replication fork. This observation is in agreement with earlier work performed by 

Trinh and Sinden (1991) who used a different experimental system. However, 

Weston-Hafer and Berg (1990) could find no difference in the frequency of deletion 

of short palindromic sequences from either the lagging or leading strand of the 

replication fork. It should be noted that in the work presented here and in that 

performed by Trinh and Sinden (1991), the region of DNA which contains the 

palindrome and direct repeats is inverted to switch the preferred position of the 

repeats from the leading to the lagging strand. In this way the local sequence context 

of the palindromes and the repeats remains unchanged. In the work by Weston-Hafer 

and Berg (1990) large regions of the plasmid DNA containing the plasmid origin of 
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replication were inverted, possibly leading to changes in the tertiary structure of the 

plasmid. Inversion of the replication of origin also changed the direction of 

replication with respect to the direction of transcription through the tet gene 

containing the palindromic sequences. Given the influence of local and global 

sequence context on deletion formation (see Chapter 1) it is possible that any 

influence of replication direction could have been masked by rearrangement of the 

plasmid structure. 

Plasmid pDLJ2 (bearing the 109 bp palindrome) also forms multimers in an 

sbcCD background although some monomers are present. Unlike the 571 bp 

palindrome which could not be propagated in a wild-type background (because of the 

associated inviability) pDLJ2 can be grown in a wild-type host. When pDLJ2 is 

propagated in a wild-type background, only plasmid monomers are present which is 

surprising since it might be expected that the presence of RecA could promote 

interplasnildic recombination and so give rise to plasmid multimers (which is 

observed for the palindrome free plasmid pUC18). 

The presence of a functional SbcCD protein in the wild-type strain may lead 

to breakage of a replication fork because of action of the SbcCD protein on a hairpin 

or cruciform structure formed by the palindrome. Breakage of the replication fork 

gives rise to a a structure leading to rolling circle replication. The double strand tail 

of the rolling cirlce molecule would be open to attack by RecBCD nuclease leading 
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to decreased yields of plasrnid DNA in a wild-type host, which is observed in this 

work. Recombination between monomeric units of the plasmid produced by rolling 

circle replication would lead to the production of purely monomeric DNA. In an 

shcCD background any secondary structures formed by the palindromes are not 

subject to processing by SbcCD so the is little or no breakage of the replication forks. 

As a result plasmid multimers can accumulate which increase the stability of 

palindromes as seen with the 571 bp palindrome. 

Warren and Green (1985) investigated plasmid pBR322 bearing palindromes 

which were 147 and 146 bp in length. It appeared that the presence of the 

palindromes inhibited multimer formation in a recAsbcB background, despite earlier 

evidence that this genetic background enhanced multimer formation. A shorter 114 

bp palindrome did not exhibit this inhibition. The results of their study are shown in 

the following table:- 

Plasmid Monomers % Dimers % Multimers % 

pBR322 —84.0 14.8 <1.2 

ll4bppal 79.0 19.4 1.6 

l46bppal —93.9 4.9 <1.2 

147 bp pal —98.3 0.9 <0.8 
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The sbcC mutation was originally isolated as a cosuppressor of recBC in shcB 

backgrounds (Lloyd and Buckman, 1985). It seems unlikely that there is an 

additional sbcC mutation present in the E. co/i K-12 strain used in the study by 

Warren and Green (1985) since cloning of the longer palindromes resulted in a three-

fold reduction in plasmid copy number whereas no effect was seen for the 114 bp 

palindrome. This may be indicative of palindrome inviability in this background. 

The work by Warren and Green (1985) supports the idea that there is an inhibition of 

multimerisation by palindrome bearing plasmids in an sbcCDt background. 

From the work performed here and that of Pinder et al. (submitted for 

publication) it is apparent that plasmid pAC2 exists as a heterodimer, with one half 

of the dimer bearing a mutation in the form of a repeated sequence of —40 bp length. 

It seems likely that pMS7 is in fact the original form of the plasmid and that pAC2 is 

a derivative of the pMS7 arising as a result of aberrant replication of one copy of the 

palindrome. Experiments performed by other workers have looked at the influence 

of plasmid multimerisation and heterodimer formation on the fixing of mutations. 

Studies carried out by Dianov et al (1991) and Mazin et al. (1991) looked at the 

deletion of long (165 bp and 401 bp) and short (13, 21 and 42 bp) direct repeats 

respectively. The repeats were cloned into the ter gene of plasmid pBR322 and 

deletion of the repeats should restore tetracycline resistance. Deletion of the 401 bp 

repeat was 2.5-fold higher than the 165 bp repeat in an E. coli AB 1157 wild-type 

background. In a recA background the deletion frequency was decreased 8-fold for 
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the 401 bp repeats and 10-fold for the 165 bp repeats. Deletion was also reduced in a 

recF, reci or recO background. When the DNA from colonies which had reverted to 

tetracycline resistance was examined it was found that the DNA was only present as 

dimers and monomers were never isolated. DNA in the tetracycline sensitive 

colonies which had not undergone deletion was present only as monomers. 

When the structure of the tetracycline genes was investigated two structurally 

different types of plasmid dimer were identified. Each dimer had two copies of the 

tet gene, one of which was a wild-type copy the other copy containing a repeated 

sequence. The repeated sequence was either made up of the original 165 or 401 bp 

repeats (this was produced by a RecA-independent mechanism involving short direct 

repeats) or three copies of the repeats (produced by interplasmidic recombination 

involving unequal crossing-over in a RecA-dependent mechanism). In a wild-type 

background dimers bearing three repeats dominated amongst the plasmid population 

(-85-90%). Deletion of the short direct repeats used in the study by Mazinet aL 

(1991) was again associated with plasmid dimerization. All the tet colonies 

examined contained dimeric DNA which was predominantly of the structure which 

contained one wild-type copy of the tet gene and one copy containing the original 

number of repeats. Based on these studies Mazin a aL (1996) proposed that under 

conditions of selection, dimers provide a mechanism for the rapid accumulation of 

advantageous mutations since dimers accelerate the segregation of revertant and 

parental plasmids. 
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The formation of dimers decreases the copy number of the plasmid since copy 

number control systems count the total number of plasmid origins within the cell and 

not the number of plasniid present; this leads to an increase in the number of plasmid 

free cells (Summers and Sherratt, 1884). The formation of plasmid free cells would 

account for the poor colony morphology seen with pDLJ2 in an sbcCD background. 

These plasmid free cells would not survive on the selective media used. The 

introduction of a recA mutation into the sbcCD strain alleviated the poor colony 

morphology and lead to the formation of plasmid monomers indicating an effect of 

plasinid multimerisation on the morphology of the cell. Another consequence of 

plasmid dimerization is the high physiological load place on the cell which results in 

slower growth than monomer containing cells (Summers et al., 1993). However, this 

is counteracted by an increase in the replication rate since each plasmid dimer 

contains two replication origins. In this way dimers would be favoured over 

monomers because they are capable of faster replication. The increased replication 

may increase the chances of a palindromic sequence being replicated successfully 

and so there would be a selective advantage in being in a dimeric state. 

The work presented in this thesis has direct relevance to the choice of host 

when cloning long palindromic sequences which are present within eukaryotic 

genomes. A 571 bp palindrome could be successfully cloned into plasmid pUC18 to 

give the plasmid pMS7 (Shaw and Leach, unpublished). The jlasmid could 

propagated in an sbcCD background with low levels of instability. This stability 

181 



seems to be dependent on the plasmid DNA being in a multimeric form since it was 

difficult to produce monomers of this plasmid and propagate them in a recA sbcCD 

strain. A shorter 109 bp palindrome could be propagated in all strains examined 

however, in a wild-type background DNA yields were low compared with an sbcCD 

strain and the sbcCD strain was subject to poor colony morphology possibly because 

of the production of plasniid free cells as a result of plasmid multimer production. 

The use of a recA sbcCD strain resulted in the formation of plasmid monomers and 

good colony morphology. From this work it is suggested that an sbcCD strain be 

used for the cloning of palindromic sequences in plasmids, although the effect on 

plasmid multimerisation of the host strain should be taken into account. In some 

cases it may be preferable to use a recA sbcCD strain. 

Using flow cytometry an asynchrony phenotype is seen with a recA host in 

which partial chromosomes are present within the cell (Skarstad and Boye, 1993). It 

was proposed that the asynchrony was abolished in a recD background because the 

RecBCD nuclease was responsible for the degradation of collapsed replication forks. 

The effect of an sbcCD mutation on the asynchrony phenotype was examined to see 

if there was a role for the SbcCD protein in the degradation of broken replication 

forks. No effect was seen perhaps indicating that other more powerful nucleases are 

at work within the cell or that there may be alternative ways of breaking a replication 

fork other than by the effect of SbcCD on an unusual secondary structure. 

182 



Finally the effect of SbcCD on the formation of araB-lacZ mutations was 

investigated. Using techniques previously described (Maenhault-Michel and Shapiro 

1994) it was shown that an sbcCD mutation did not influence the kinetics of fusion 

formation or the sequences of the fusions points investigated. However, given the 

complex structure of the intermediate involved in fusion formation the SbcCD 

protein may have a role in the processing of the structure which does not effect the 

sequence of the fusions detected. 

* 
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