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1 Executive Summary 
 
Different developers outside the project or applications not initially considered in it have 
been identified and addressed in order to assess how the MPI/SMPSs model could be used in 
those cases. Different levels of depth have been actually been carried out, and in some of the 
cases only a part of the application was targeted.  The study mostly focused on widening the 
identification of methodological issues and feedback on the suitability of the model and the 
functionality of its implementations. 
 
This deliverable reports on the experience with 6 apps/codes: Hydro, GROMACS, 
GADGET, CP2K, MRGENESIS and ShallowWaters. 
 
Very interesting feedback has been obtained addressing both methodological programming 
practices and the characteristics of the SMPSs/OmpSs model and implementation. 
 

1 Objectives 
This deliverable reports on the results of the activities carried out to apply or assess the 
applicability of the MPI/SMPSs model to other codes not part of the applications initially 
contributed by project partners. 

2 List of external users codes 
The following table enumerates the list of external applications  
 
Application Code developer  
Hydro Romain Teyssier, Guillaume Colin de Verdiere (CEA) 
GROMACS Erik Lindahl (KTH) 
GADGET (Heidelberg) 
CP2K Iain Bethune (EPCC) 
MRGENESIS M.A. Aloy (UPV) 
Shallow Water Graham Riley. (U. Manchester) 
 
The following sections describe each application, its structure and parallelization approach, 
results and feedback on MPI/SMPSs. For each of them we very briefly describe the 
application, the parallelization approach, some results and feedback from the experience. 
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3 Hydro 

3.1 Short application description 
 
Hydro[7] is a proxy benchmark of the RAMSES[8] application that solves a large-scale 
structure and galaxy formation. Hydro uses a rectangular 2D space domain split in blocks. 
Hydro solves compressible Euler equations of hydrodynamics, is based on finite volume 
numerical method using a second order Godunov scheme for Euler Equations and a Riemann 
solver computes numerical flux at the interface of two neighboring computational cells. 
 
Different version of Hydro have been produced by CEA for different programming models 
and target platforms (C, Fortran, MPI with 1D and 2D decompositions, OpenMP, CUDA, 
HMPP,…). We looked at the C MPI versions to introduce OmpSs within it.  

3.2 Parallelization approach 
We followed two approaches. In the first one we took as reference a fine grain OpenMP 
version, while the second one started from a newer C version that had been produced by CEA 
as an intermediate step towards the manual introduction or CUDA. 
 
The general source code structure for the application is as follows 
  

 
 
For each time step iteration, two traversals of the matrix are performed along the row and 
column dimensions respectively. Each of the internal subroutines has a loop that updates 
either row wise or column wise (depending on the value of dimension) the main data 
structures. 
 
The make_boundary routine is where MPI communication takes place. The application scales 
very well at the MPI level for the problem sizes and core counts that we were looking at, so 
our main focus has been on the OmpSs parallelization of the computational part between 
communications. 
 
 

for (iter = 0; iter < NITERS; iter++) { 
 
  for (dimension = 0; dimension < 2; dimension++) { 
 
     make_boundary(); 
 
     Allocate local variables  
    
     for (j = Hmin; j < Hmax; j++) { 
       gatherConservativeVars(dimension,uold,localvars,…); 
       constoprim(dimension, localvars,… ); 
       equation_of_state(dimension, localvars,…); 
       slope (dimension, localvars,…); 
       trace(dimension, localvars,…); 
       qleftright(dimension, localvars,…); 
       riemann(dimension, localvars,…); 
       cmpflx(dimension, localvars,…); 
       updateConservativeVars(dimension,localvars, uold,…); 
     }                           
 
    Free local variables 
} 

Figure 1: skeleton structure of Hydro 
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3.2.1 Bottom-up approach 
 
Our first effort followed a bottom up approach. The iterations of each of the inner loops that 
traverse the matrix either row wise or column wise are independent so the loops can be 
parallelized with either OpenMP or OmpSs. One feature of OpenMP that is not supported by 
the task based OmpSs is the possibility to specify that a loop is parallel and leave to the 
runtime the splitting into tasks. This means that in OmpSs we had to strip-mine a loop 
manually and associate a task to the inner loop, which is somewhat cumbersome. 
 
This fine grain approach does have two issues. First, the granularity of the tasks can be very 
small, thus overheads become significant and performance is not good. Second it tends to 
derive in a pure fork join approach where each loop is considered in isolation, without 
exploiting its potential concurrency with other loops. 
 
In order to reduce some overhead in OpenMP, the approach implemented in the available 
fine grain OpenMP version was to move the parallel pragma to the main routine and relying a 
lot on the single pragma and orphaning for pragmas inside the routine compute routine (in the 
sketch of Figure 1 only the j loop requires a for pragma). More important than that, another 
practice used in this code was to declare as thread private important data structures that 
contain pointers that are then allocated and freed by each thread further expanding the 
amount of thread private data. It all makes it difficult to identify in the source code to which 
data are we really referring to.  
 
This approach parallelizes along only one dimension (alternatively rows and columns). In 
order to minimize the surface to volume ratio, and minimize the amount of data movement 
(invalidations and cache misses) caused by alternating rows and columns a version of a 2D 
parallelization approach was also available. In it, a synchronization array and the OpenMP 
flush pragma was used to ensure proper order of the computations. This code behaves better 
but is certainly more complex to understand and maintain. 
 
We do believe that these practices are allowed (actually encouraged?) by the OpenMP model 
and methodology and end up generating codes difficult to understand and maintain. 
 
The approach to increase granularity in the OmpSs version was to strip-mine the internal 
loops inside the routines called in Figure 1 and perform loop interchange across the 
subroutine boundary resulting in a code sketched in Figure 2. This keeps the one dimensional 
parallelization approach where each task applies to a set of rows (or columns) the specific 
function it represents. Unfortunately, the fact that the dependency chain within the j iteration 
happens to be very linear results in no real benefit from instantiating many tasks if they end 
up executing serially.  Furthermore, at the end of the j loop, before the change in dimension, 
an OmpSs barrier (taskwait pragma) has to be inserted as the accesses become strided and the 
dependences were not properly computed by the version of OmpSs used. Even if we have 
increase the granularity, the fact that a single level of parallelism is used implies that all task 
instantiations are serialized thus requiring large block sizes to reduce the number of tasks and 
amortize the instantiation cost. 
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A problem we found was that the code was relying a lot on indexing arithmetic. This is 
probably a far too frequent practice that makes the codes difficult to understand for a new 
developer. This was certainly a problem to determine the access patterns required for the 
pragmas. Also very important is the fact that it also makes impossible to properly specify in 
the OmpSs syntax (even with region support) the precise part of an array accessed by a task. 
Certainly we do consider that a bit more of discipline in programmers precisely specifying 
the types of variables would be useful, not only for OmpSs but for programmability and 
maintainability purposes in general. 
 

3.2.2 Top down approach 
 
Looking at the coarse grain structure of the algorithm we see that iterations of the j loop are 
independent so they can be split in blocks and tasks used to compute each such block. 
 
In our case, a code with the structure showed in Figure 3 results. The very linear sequence of 
dependences between the different routines within each iteration makes not sensible to split 
the loop body in different tasks from the point of view of performance. As we can see, only 
one loop is parallelized, thus resulting in a 1D parallelization and given that the main matrix 
(uold) is traversed in different directions for the alternate values of the dimension loop, 
complex dependences arise between two such iterations. A barrier (taskwait) is thus used to 
enforce such dependences. 
 
We have manually privatized several large data structures dynamically allocated whose use is 
local to each block of iterations.  
 
This structure is essentially the same as the one in the original OpenMP code, although we 
believe the privatization approach is cleaner in the task based version. A general top down 
approach for other codes might result in parallelism being extracted at different levels where 

for (iter = 0; iter < NITERS; iter++) { 
 
  for (dimension = 0; dimension < 2; dimension++) { 
 
     make_boundary(); 
 
     Allocate local variables  
    
     for (j = Hmin; j < Hmax; j += Hstep) { 
       for (ii = iinf; ii < isup; ii += iBS) { 
           iimax = ii+iBS > isup? isup : ii+iBS; 
           #pragma omp task input(*uold) output(u[ii]) 
           gatherConservativeVars(slice, uold, u, …); 
       } 
 
       for (ii = iinf; ii < isup; ii += iBS) { 
           iimax = ii+iBS > isup ? isup : ii+iBS; 
           #pragma omp task input(u[ii]) inout(q[ii]) output(e[ii]) 
           constoprim(slice, u, q, e, …); 
       } 
 
       for (ii = iinf; ii < isup; ii += iBS) { 
           iimax = ii+iBS > isup ? isup : ii+iBS; 
           #pragma omp task inout(qID[ii]) output(c[ii]) 
           equation_of_state(slice, qID, e, qIP, c, ii, iimax, …); 
       } 
       ……… 
   }                           
 
} 

Figure 2: Bottom-up OmpSs parallelization 
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different functions or loops could be executed concurrently exploiting the OmpSs 
dependence driven execution. 
 

 

 
 

3.2.3 Task splitting 
 
The next objective was to start introducing CUDA code, by leveraging the CUDA kernels 
from the original MPI+CUDA version. Taking as reference the coarse grain parallelization 
obtained in the previous section and the available CUDA kernels the first observation is that 
these correspond to only a part of the whole computational chain within the main loop body.  
 
Thus, a preliminary step was required. The single task of previous section had to be split into 
several tasks such that each of them encapsulates only the computation for which the kernel 
is available. 
 
Identifying the riemman call as an expensive part of the computation for which a kernel is 
available, we derived a new version of the OmpSs version still targeting SMP but splitting 
the original tasks into three as shown in Figure 4. The nested task support in OmpSs was 
useful in this case. By using nesting, different first level tasks can concurrently generate 
second level tasks. 
 
Beyond the actual splitting of the computation task, we also reorganized the memory 
management structure of the code. We identified which variables were local to each task and 
moved inwards their declaration and allocation. This probably goes against the dominant 
sequential programming practice aiming at minimizing overheads by moving outwards 
memory allocation and deallocation as much as possible. We do believe that such practice is 
very harmful as it leads to less clear and focalized code, it introduces many parallelization 
inhibitors (antidependences) and binds concepts (data objects) to an address space too early. 
Being overhead the major reason for that, we do believe that the right approach it to 
minimize the overhead of the memory allocation functionality. For that purpose we 

for (iter = 0; iter < NITERS; iter++) { 
 
  for (dimension = 0; dimension < 2; dimension++) { 
 
     make_boundary(); 
    
     for (j = Hmin; j < Hmax; j += Hstep) { 
 
        #pragma omp task concurrent (*uold) 
        { 
           Declare & Allocate local variables 
           (u, qleft, qright, qgdnv, flux, sgnm, q, dq, qxm, qxp, e, c) 
 
           gatherConservativeVars(slice, uold, u, …); 
           constoprim(slice, u, localvars,…); 
           equation_of_state(slice, localvars,…); 
           slope (slice, localvars.…); 
           trace(slice, localvars, …); 
           qleftright(slice, localvars, qleft, qright, …); 
           riemann (qleft, qright, qgdnv, sgnm,…) 
           cmpflx(slice, qgdnv, flux, …); 
           updateConservativeVars(slice, uold, u, flux,…); 
 
           Free local variables 
        }   
     } 
  
     #pragma omp taskwait 
  } 
}                           

Figure 3: Top down coarse grain taskification 
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developed a simple but specialized memory allocator that takes into account the repetitive 
allocation and freeing structure of the program heavily reusing previously allocated memory 
slots. We do believe that more elaborated allocators can be integrated in the runtime, this 
being a direction for further experimentation. Also in order to reduce the overhead, a single 
memory region is allocated at the entry of each task, then computing the actual pointers to the 
different variables needed. This functionality was made by hand in our case but could also be 
easily performed by the compiler as part of the private clause. 
 

 

 

3.2.4 MPI + OmpSs + CUDA 
 
In order to now introduce the CUDA code we substituted the invocation of Riemann in 
Figure 4 by a call to the function cuRiemann used in the original version to launch the 
kernels. We modified that function by introducing target device cuda pragmas to encapsulate 
the kernel invocations. Figure 5 shows the skeleton of the resulting routine. 
 

for (iter = 0; iter < NITERS; iter++) { 
 
  for (dimension = 0; dimension < 2; dimension++) { 
 
     make_boundary(); 
    
     for (j = Hmin; j < Hmax; j += Hstep) { 
        #pragma omp task concurrent (*uold) 
        { 
           Declare & Allocate local variables (u, qleft, qright, qgdnv, flux) 
 
           #pragma omp task output(*qleft,*qright) 
           { 
              Declare & allocate local variables (q, dq, qxm, qxp, e, c) 
 
              gatherConservativeVars(slice, uold, u, …); 
              constoprim(slice, u, localvars,…); 
              equation_of_state(slice, localvars,…); 
              slope (slice, localvars.…); 
              trace(slice, localvars, …); 
              qleftright(slice, localvars, qleft, qright, …); 
 
              Free local variables 
           } 
 
           #pragma omp task input (*qleft, *qright) output (*qgdnv) 
           { 
              Declare & allocate local variables (sgnm) 
  
              riemann (qleft, qright, qgdnv, sgnm,…) 
 
              Free local variables 
           } 
 
           #pragma omp task input (*qgdnv) 
           { 
              Declare & allocate local variables (flux) 
 
              cmpflx(slice, qgdnv, flux, …); 
              updateConservativeVars(slice, uold, u, flux,…); 
 
              Free local variables 
           } 
  
           #pragma omp taskwait 
           Free local variables 
        } 
  
        #pragma omp taskwait 
        Free local variables 
   
  } 
  
  #pragma omp taskwait 
}                           

Figure 4: Splitting tasks to match available CUDA kernel structure 
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Our objective was not to modify at all the original kernels, but we ended up doing some 
modifications.  The original code used a programming practice, possibly promoted by CUDA 
itself, to declare a data structure in constant memory to which the host copies all the 
arguments of a kernel in a single explicit memory copy. Such a copy was done inside the 
original cuRiemann function. The result is that this function had to first pack its arguments 
into a local structure and copy them to the device before invoking the kernel. A second effect 
is that all the accesses inside the kernel were referencing fields of such global structure in the 
GPU memory. More important than the cumbersome need to pack the arguments and 
introduce additional indirections is the fact that such structure is bound to an absolute address 
in the GPU because of its –constant—declaration and being known to the kernel and its 
launcher. This practice is harmful, inhibiting for example the simultaneous execution of 
multiple instances of the kernel concurrently.   
 
 

 
 
 
 
We thus decided to clean up both the cuRiemann routine and the kernels it uses by passing as 
arguments to the kernel what has been received as arguments by cuRiemann.  The result is a 
reduction or 29 lines of the original code that get substituted by 8 lines in the OmpSs CUDA 
version within the cuRiemann.cu file. Of course we eliminated the explicit data transfer 
inside this routine, but also the other data transfers that are explicitly done in the original 
CUDA program at an outer level. A proper comparison of the total number of lines should be 
delayed till a version leveraging all the CUDA kernels is done. 
 
We have followed a specific incremental path to move from the pure MPI version to a 
version that uses multiple MPI processes each of them potentially using multiple threads and 
GPUs. Looking back to the general structure of the code, it is quite similar to the original 
pure MPI code. We have used three levels of nested tasks. Alternative task structures could 
be derived by eliminating some of the pragmas and reducing the nesting level. Also a larger 

void cuRiemann(long narray, double Hsmallr, double Hsmallc, double Hgamma,  
          long Hniter_riemann, long Hnvar, long Hnxyt,  
          int slices, int Hnxystep, 
          double *qleft,    // [Hnvar][Hnxystep][Hnxyt] 
          double *qright,   // [Hnvar][Hnxystep][Hnxyt] 
          double *qgdnv,    // [Hnvar][Hnxystep][Hnxyt] 
          long *sgnm)       // [Hnxystep][narray] 
{ 
 
  #pragma omp target device (cuda) copy_deps 
  #pragma omp task input ([Hnvar][Hnxystep][Hnxyt]qleft, \ 
                          [Hnvar][Hnxystep][Hnxyt]qright, \ 
                          [Hnxystep][narray]sgnm) \ 
                   output([Hnvar][Hnxystep][Hnxyt]qgdnv) 
  { 
 
    dim3 block, grid; 
   
    SetBlockDims(Hnxyt * slices, 192, block, grid); 
 
    Loop1KcuRiemann <<< grid, block >>> ((narray, Hsmallr, Hsmallc, Hgamma, 
            Hniter_riemann, Hnvar, Hnxyt, slices, Hnxystep,  
            qleft, qright, qgdnv, sgnm )); 
 
    cudaDeviceSynchronize(); 
 
    if (Hnvar > IP + 1) { 
      Loop10KcuRiemann <<< grid, block >>> (narray, Hnvar, Hnxyt, 
                    slices, Hnxystep, qleft, qright, qgdnv, sgnm); 
      cudaDeviceSynchronize(); 
    } 
  } 
} 

Figure 5: CUDA wrapper function and task declaration 
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part of the main loop could be moved to the GPU leveraging other available kernels. As long 
as the outputs of one task are used as inputs by the next, the runtime should keep data in the 
GPU avoiding the per tasks data transfer of all its inputs and outputs. 
 

3.3 Results 
 
In this section we present some results and analyses of the behavior of the different versions. 
A first analysis is done on the OmpSs version with three tasks used as preliminary step for 
the CUDA version. The results of this version are also representative of those for the single 
task version. We then look at the CUDA version.  
 

3.3.1 Task splitting 
 
We first show in Figure 6 the timeline of the tasks for a run with 8 MPI processes and 3 
OmpSs threads per process and different block sized for 256 on top to 32 on the bottom. 
 
We see the three internal tasks in red, pink and brown respectively. Pink corresponds to the 
riemann call. In the timeline on top we see 4 instances of j loop separated by the MPI 
communication in the make boundary call. We can also see that the actual order of the matrix 
traversal is twice in one direction and twice in another although in the syntactic structure of 
the actual code one such instance is encapsulated in a function called hydro_godunov 
irrespective of the traversal direction. 
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Figure 6: Three internal tasks (red first, pink riemann, brown last) for block sizes between 256 on top 
and 32 on bottom 

  
We see that for one of the directions and large block sizes, there are not enough blocks to 
feed the 3 threads in the process while for the other dimension the load balance is better. This 
has to do with the actual problem size and how data is split into the MPI processes. In this 
case rectangular blocks are allocated to each MPI process as its number is not a perfect 
square. When the number of shared memory blocks is not multiple of the number of cores, 
imbalance appears. The larger the block size, the more imbalanced will be the shared 
memory execution. We could have certainly computed in the program the block size 
depending on the size of MPI data structure for the dimension of interest and on the number 
of OmpSs cores per process. We are essentially interested in understanding the issues so we 
did not further follow that path in this study.   
  

3.3.2 MPI + OmpSs + CUDA 
 
Figure 7 shows a timeline of one and a half iteration of the run with two processes each of 
them with one CPU core and 2 GPUs. The GPU tasks are extremely fast compared to the 
CPU task. We can also see how both GPUs are used randomly within each process. This 
points to a possible optimization in the runtime that only uses the amount of resources of 
each type that match the demand of the application. In this case, one GPU would be enough. 
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Figure 7: Tasks of MPI+OmpSs+CUDA for a run with one core and 2 GPUs 
 
With a detailed look at the trace (zoom in Figure 8) we can also see that the data transfers 
between CPU and GPU do represent an important overhead. The bright red in the CPU cores 
corresponds to the SMP task from within the GPU task is spawned. It can be seen that the 
time it takes is significantly larger than the actual execution on the GPU, the difference 
corresponding to the data transfer between CPU and GPU. The use of GPU kernels for other 
routines and avoiding data transfers would thus be an important line of further code 
optimization.  
 
Even so, a significant gain has been obtained compared to the single core per process whose 
timeline at the same scale of Figure 7 is shown in Figure 9. 
 
A final timeline in Figure 10 shows how using several CPU cores (3 in this case) for each 
process overlaps the execution of the parts that have not been moved to the GPU while a 
single GPU is shared by the CUDA tasks instantiated by all threads. 
 

 

 
 

Figure 8: Zoom of Figure 7showing a pair of GPU tasks instantiated by each process (top) and CUDA 
runtime calls by the Nanos++ runtime to transfer data from CPU to GPU (yellow) and in the reverse 

direction (green) 
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Figure 9: one iteration of the 3 tasks version with just one thread for each of the two MPI 
 
 
 

 
Figure 10: execution with 3 SMP threads sharing one GPU 

 

3.4 Feedback on MPI/OmpSs 
 
Two types of observations or recommendations can be made from this analysis.  A first set of 
findings are methodological:  
 

• Top down design: we would recommend following a top down approach structuring 
and taskifying an application. A typical objection to a task based or functional 
parallelization approach is that not enough parallelism may be obtained at the 
outermost levels. We do believe that parallelizing at all levels through nesting, where 
each level contributes with potential parallel work will be an important approach to 
generate work for the huge amount of cores that future systems will have. 
 

• Importance of blocked code structure: blocking is useful for locality purposes, but 
also to generate enough granularity in the tasks to amortize the overheads of the 
runtime. In our case, the code restructuring of the latest version provided by CEA 
aiming at manually introducing CUDA was actually doing blocking, that ended up 
being very useful. 

 
• Importance of proper declaration of variables: it is important to properly declare 

arrays passed as arguments to functions instead of passing just pointers and doing 
index arithmetic. This makes the code cleaner and is also necessary to properly 
specify the directionality clauses in OmpSs pragmas. 
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• Importance of memory management: interaction between code syntactical structure 
and memory allocation and parallelization is very important. Delaying the binding of 
objects to an address space and specially avoiding binding to absolute addresses in 
devices is important to let the runtime decide the mapping of those objects to the 
physical resources. 

 
A second set of suggestions are more related to the model itself and the implementation: 
 

• For loops and dependences: the specification that a for loop is parallel and leave the 
splitting into tasks to the runtime is a natural approach in OpenMP but is not 
supported in the task-based dependence model of OmpSs. Of course this is trivial for 
parallel loops as in OpenMP. The issue with OpmSs is that it specifies inouts of tasks, 
which means a task must be identified to specify its inouts. In the case of a 
dynamically scheduled for loop the tasks are not defined till the very moment of 
executing them. Combining dependences and late specification of tasks is thus an 
issue which we do believe important and are considering some possibilities, but no 
final approach has been decided.  

• Refactoring tools to do loop splitting, and interchange would be very useful. 
Extracting loops outside of procedures would be an interesting feature.  
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4 GROMACS 

4.1 Short application description 
 
GROMACS is a versatile package to perform molecular dynamics, i.e. simulate the 
Newtonian equations of motion for systems with hundreds to millions of particles. 
 
It is primarily designed for biochemical molecules like proteins, lipids and nucleic acids that 
have a lot of complicated bonded interactions, but since GROMACS is extremely fast at 
calculating the non-bonded interactions (that usually dominate simulations) many groups are 
also using it for research on non-biological systems, e.g. polymers. 
 

4.2 Parallelization approach 
 
We started with an MPI version of the application and added a second level of parallelism 
with SMPSs. The main target was to improve the load balance of the application. For this 
reason we focused the parallelization in the more unbalanced areas of the code. 
 
We implemented five SMPSs tasks from the parts of the code identified previously. The main 
issue we faced was that the different tasks need to perform a global reduction introducing a 
sharing problem. We evaluated different approaches, like having replicas of the data structure 
that needed to be accessed; finally we used some locks to provide mutual exclusion to the 
SMPSs threads executing the tasks. 
 

4.3 Results 
 
In the chart below we are showing the performance results we obtained when running 
GROMACS in MareNostrum with different number of MPI processes and configurations. 
 
The labels BASE/CYCLIC refer to the distribution of MPI processes between the nodes, the 
series labeled as BASE are distributed in a lineal way, while the series labeled CYCLIC are 
distributed round robin. The results show that the impact of distribution of MPI processes 
depend on the number of MPI processes. Up to 32 MPI processes the performance is better 
with the BASE distribution, while when running with 64 or more MPI processes the 
CYCLIC distribution performs better. 
 
The series labeled with LeWI are executed with the Load Balancing Library and the LeWI 
algorithm compared to the original execution of the MPI+SMPSs application labeled as 
ORIG. We can see how the time execution is improved always when using the LeWI 
algorithm.  
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Figure 11: Performance of the GROMACS MPI and MPI+SMPSs versions with and without the LeWI 

load balancing mechanism. 
 
 
In both applications the target was to improve the performance of the application without 
parallelizing the whole code, we have shown how we reduced the execution time for both 
applications while modifying a small amount of code.  
 

 

 
Figure 12: Concurrent execution of coarse grain (non parallelized functions/loops) and fine grain tasks 

 

An interesting experience during the development of this port was that it was not necessary to 
fully parallelize al the functions that were invoked in sequence in order to compute the force 
vector. As shown in Figure 12 it was possible to leave sequential one of the three regions of 
code (the red task in Figure 12) as the use of the SMPSs reduction clause would allow it to 
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overlap with the other two contributing regions that certainly are parallelized with finer grain 
tasks (green and blue tasks). By giving high priority to the coarse task, the runtime is able to 
schedule it as soon as possible and fill the spare time and rest of the cores with the finer grain 
tasks. 

 

4.4 Feedback on MPI/SMPSs 
 
Some observations that we think are worth highlighting are: 
 

• Reductions: This code showed the high importance of reduction operations on large 
vectors though indirections. Including in the model mechanisms to express flexible 
reduction patterns and semantics (like leveraging the User Defined Reductions from 
OpenMP) and providing implementations that support then efficiently when applied 
with indirections on large vectors would significantly help programmability and 
reduce development cost. 
 

• Fighting Amdahl’s Law: This work raised a very optimistic message that it is still 
possible to leave regions of the original code unparallelized as long as it is possible to 
overlap them with regions that are parallelized with fine grain. This is not the case 
with pure fork join codes where it is necessary to fully parallelize each individual 
code section. 
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5 GADGET 

5.1 Short application description 
 
Gadget is a production code that performs a cosmological N-body/SPH simulation. It can be 
used to address different astrophysical problems such as colliding and merging galaxies or 
the formation of large-scale structure in the Universe. 
 
The gravitational forces in Gadget are computed with a hierarchical tree algorithm and the 
fluids are represented by means of smoothed particle hydrodynamics (SPH). The 
computation is performed by time-steps. 
 

5.2 Parallelization approach 
 
The version we started with was parallelized with MPI. Although the application comes with 
its own load balancing code that dynamically updates the tree, there were still some 
imbalance problems that were not solved. 
 
The parallelization with SMPSs was aimed at solving this imbalance while using the Load 
Balancing Library DLB with the LeWI algorithm. For this reason it was not necessary to 
parallelize the whole application as we could obtain a performance improvement with a 
partial parallelization of the code and the load balancing algorithm (LeWI) when running in 
the same amount of computational resources. 
 
We identified and parallelized 3 loops in a code with more than 35.000 lines of code. These 
loops were the ones with more potential because of its load and its imbalance. But we are 
aware that there are more loops in the application that follow the same pattern and can be 
parallelized in a similar way. The loops parallelized with SMPSs where the files density.c, 
gractree.c, and hydra.c. 
 
We used blocking in all the loops to provide the SMPSs tasks enough granularity and at the 
same time have enough malleability to perform the load balancing. The main change in the 
code was the following transformation to allow blocking as shown for one of them in Figure 
13. On top we have the original code and on bottom the blocked code. In all the cases we 
moved the necessary code inside the taskified functions. And the global variables used by the 
tasks changed to private or local ones. 
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Figure 13: blocking transformation in GADGET. (a) original loop, (b) blocked loop 

 
 
 

5.3 Results 
 
In the following Figure we show some of the results we obtained with one of the inputs of the 
application. We executed GADGET with different configurations. The version of the code is 
indicated by ORIG/SMPSS, ORIG means the original application with the MPI 
parallelization and SMPSs refers to the MPI+SMPSs version of the code parallelized by us. 
 
The series labeled with LeWI are executed with the dynamic load balancing library. The 
labels BASE/CYCLIC refer to the distribution of the MPI processes across the nodes, as we 
saw that there was a meaningful difference in the performance obtained depending on how 
were distributes the MPI processes. The MPI processes in the series labeled BASE were 
distributed sequentially, while the MPI processes in the series CYCLIC were distributed in 
round robin. 
 
The experiments were executed in Marenostrum with 256 MPI processes in nodes with 4 
cores with shared memory. All the executions were done with the same computational 
resources, in the Figure we are showing the execution time for each time-step of the run. 

for(nexport = 0, ndone = 0; 
    i < N_gas && nexport <All.BunchSizeHydro-NTask;  
    i++) { 
 
 
                                 (a) 
 
 
for(nexport = 0;  
    ii<N_gas && nexport < (All.BunchSizeHydro - (BS * NTask));  
    ii+=BS){ 
    int tope=MIN(N_gas, ii+BS); 
    hydro_force_block_task(ii, tope...); 
 
                                  (b) 
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We can see how the distribution of MPI processes between nodes is the most important factor 
in the execution time. And the SMPSs version with the Load balancing algorithm LeWI 
obtains the best performance results when using any of the two distributions of MPI 
processes. 
 

 
Figure 14: Performance of the GADGET MPI and MPI+SMPSs versions with and without the LeWI load 

balancing mechanism. 
 
 
 

5.4 Feedback on MPI/SMPSs 
 
Some observations that we think are worth highlighting are: 
 

• Focus on the load imbalanced regions: For applications that expose load imbalance, 
a partial SMPSs parallelization focusing just on the regions that expose it is a 
pragmatic first step that leads to good performance benefits with limited effort even 
for very large codes. Attempting a full parallelization of the whole program and 
overlap of computation and communication can be far more expensive and if not the 
main bottleneck, such an asynchronous execution will not really pay off. 
 

• Interleave mapping of processes to nodes: This does have a significant impact on 
the potential gain as our DLB mechanism can only balance the load between 
processes within a node. If the load is not well balanced at the node level the DLB 
mechanism cannot get any gain. Interleaved mappings of processes to nodes is thus 
recommended as it is frequent that contiguous ranks have similar loads. 
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6 CP2K 

6.1 Short application description 
 
CP2K [1] is a freely available program (under the GNU Public Licence), written in Fortran 
95, to perform atomistic and molecular simulations of solid state, liquid, molecular and 
biological systems. It provides a general framework for different methods such as density 
functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW) known as 
QUICKSTEP [2], and classical pair and many-body potentials. Recently, linear-scaling DFT 
and Møller-Plesset 2nd order perturbation (MP2) methods have been added, broadening the 
applicability of the code to a wider range of users.  On top of these energy evaluation 
methods, a large variety of simulation tools are built, including Molecular Dynamics, Monte 
Carlo, Geometry Optimisation, Path Integrals, Nudged Elastic Band and Normal Mode 
Analysis. 

CP2K is a popular and important code in Europe, used by research groups in Materials 
Science, Computational Chemistry and Biomolecular Sciences.  It is the third most heavily 
used code on the UK national HPC service ‘HECToR’, dominates usage of the Cray XE 
systems at CSCS, Switzerland, and is available to PRACE users on the JUGENE, CURIE 
and HERMIT Tier-0 systems. 
 

6.2 Parallelization approach 
 
Amounting to over 600,000 lines of code, CP2K is designed as a flexible and extensible 
framework for implementing a variety of atomistic simulation methods.  As such, the 
subroutines that dominate the runtime of a particular execution of the code vary greatly 
depending on what type of simulation is being performed.  As a result there are several 
important distributed data structures, including 3D grids (which may be distributed in one, 
two or three dimensions depending on how many processors are employed and the overall 
grid size), sparse and dense matrices, and distributed task lists.  A detailed discussion of the 
parallelization strategy and performance aspects of the code can be found in prior work by 
Bethune [3]. 
 
In order to ensure good scalability on modern multi-core HPC platforms, a mixed-mode 
MPI/OpenMP approach has been taken, and as a result scalability on over 10,000 CPU cores 
has been obtained [4].  One aspect of this work has been the introduction of a bespoke sparse 
matrix library into CP2K.  Called DBCSR (Distributed Block Compressed Sparse Row), this 
library takes advantage of the block structure of matrices used in CP2K arising from the use 
of a localized Gaussian basis set, to provide efficient and scalable matrix multiplication, 
addition, and other primitive operations.  DBCSR has been used to implement a new linear 
scaling DFT algorithm (LS_DFT)[5], based solely on density matrix operations, and so 
simulations based on this method typically spend over 90% of the time in the DBCSR matrix 
multiplication kernel.  Table 1 below shows the profile of an LS_DFT calculation on 
BlueGene/P showing, taken from [6].  The dominance of DBCSR routines is clearly seen. 
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 1024 2048 4096 8192 
Total job time 
CP2K run time 

11009.24 s 
10803.34 s 

5512.72 s 
5495.54 s 

3033.99 s 
2790.11 s 

1809.77 s 
1462.35 s 

     
cp_dbcsr_mult_NS_NS 10512.06 s 97.30% 5347.552 s 97.31% 2701.518 s 96.82% 1414.34 s 96.72% 
cp_dbcsr_frobenius_norm 90.04 s 0.83% 47.46 s 0.86% 28.987 s 1.04% 14.238 s 0.97% 
cp_dbcsr_get_occupation 85.03 s 0.79% 39.225 s 0.71% 25.535 s 0.92% 12.114 s 0.83% 
calculate_rho_elec 52.99 s 0.49% 26.524 s 0.48% 13.271 s 0.48% 6.647 s 0.45% 
integrate_v_rspace 22.71 s 0.21% 11.373 s 0.21% 5.707 s 0.20% 2.846 s 0.19% 

Table 1: Profile by function for a linear scaling DFT calculation of 6144 atoms using 
MOLOPT basis set 

 
In DBCSR, matrices are distributed over MPI processes in a 2D grid. If the matrix is sparse, but not 

uniformly so, load balance is achieved by a permutation of the rows and columns of the matrix, so that 
each process receives the same number of non-zero blocks.  For simplicity, the following description will 
assume a square matrix and square processor grid, although in practice, non-square systems can assign 
multiple domains per processor in one dimension so that there are in total the same number of domains 
in each dimension.  Multiplication is carried out following Cannon’s algorithm – if there are P = Px

2 
processes in each dimension then there are Px local multiplications carried out, and Px-1 row and 

column-wise shifts, with the results of the local multiplications accumulated into the result matrix, as 
shown in  

Figure 15. 
 

 
 

Figure 15: Schematic of Cannon’s algorithm in CP2K (Image courtesy Urban Borstnik, 
University of Zurich) 

 
The local multiplications are carried out by a cache-oblivious recursive strategy.  For a local 
multiplication of matrix blocks C = C + A x B, where C is an N by M matrix, A is N by 
K and B is K by M, then to perform the multiplication we recursively subdivide the N, M and 
K indices, until the remaining number of non-zero elements is below a certain terminating 
value at which point the recursion terminates and the sub-block is multiplied directly. 
 
In common with the rest of the code, there is an also OpenMP parallelization layer in 
DBCSR.  The current implementation is very straightforward – we simply decompose the 
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matrix by row and assign a contiguous block of rows to each thread.  Each thread then builds 
a separate recursion tree, and forms the product of its rows of A with columns of B and 
accumulates these into C.  While this solution entirely avoids the need for any 
synchronization between threads (as each writes to a disjoint subset of the rows of C), it does 
suffer from one serious drawback – load imbalance.  While it is perfectly possible to divide 
the rows up over threads such that each has the same number of total non-zero elements to 
multiply, recall that in Cannon’s algorithm we repeatedly shift A and B while accumulating 
partial products into C.  As a result, we must maintain the same decomposition of rows to 
threads to avoid having to either perform an expensive merging of the thread-local copies of 
C after each step (to allow us to change the decomposition of rows to threads per step of 
Cannon’s algorithm).  Thus, even if the decomposition is chosen to balance the work per 
thread across the entire global row of the matrix, we cannot guarantee load balance at each 
individual step of Cannon’s algorithm. 
 
To overcome this problem we proposed abandoning the row decomposition and instead form 
a single recursion tree at each stage of the Cannon’s multiplication, dividing the 
multiplications at the leaves of the tree between threads using a task-based approach.  While 
this can clearly be done using OpenMP tasks (with appropriate locking to protect concurrent 
access to regions of C), we felt this could also be efficiently implemented using SMPSs, since 
correctly respecting data dependencies would obviate the need for locking inside tasks.  In 
addition, communication is currently done outside the OpenMP parallel region, but with 
SMPSs there is scope for including the row and column shifts directly as tasks (with 
appropriate dependencies) which might allow for more efficient overlapping of 
communication and local multiplication.  We have not had time to implement this, and all our 
results do not include communication but compare only the local multiplication.  Below we 
describe several different implementations of the DBCSR multipication using both SMPSs 
and OpenMP tasks, and compare the performance and programmability of both approaches. 
 

6.3 Results 
 
Rather than implement the new parallelization directly within CP2K, which we anticipated 
would be difficult due to the Fortran 90 usage restrictions – particularly with respect to 
modules, assumed shape arrays and internal subprograms – we instead used a test program 
which was originally written during the development of DBCSR.  This essentially carried out 
only the local recursive multiplication step, but does not include the MPI shifting between 
processes, and as such is an ideal platform for comparing different shared memory 
parallelization schemes. 
 
The following versions were implemented, and the performance of each was tested for up to 
32 CPU cores (OMP_NUM_THREADS = 32, CSS_NUM_CPUS = 32) on a Cray XE6, 
with two AMD Opteron ‘Interlagos’ 2.3 GHz 16-core CPUs forming a single shared memory 
node.  In all cases we have used a 2000 by 2000 matrix, which is a typical local block size for 
problems of interest in CP2K.  Initially we have used a dense matrix where all elements are 
non-zero for testing purposes, as it allows us to compare the efficiency of the different 
implementations directly. 
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Figure 16: Performance against number of cores for dense matrix multiplication using 

OpenMP and SMPSs 
 
 
OMP_BLOCK: This closely matches the current implementation in CP2K, where the matrix 
is partitioned into contiguous blocks of rows for each thread.  Clearly in this case where there 
are many more rows than threads, load imbalance is not a significant issue even when the 
number of threads does not exactly divide the number of rows, and this scales close to 
linearly. 
 
OMP_LEAF:  Here we create an OpenMP task at each leaf of the recursion tree.  We create 
a 2-dimensional array of locks sized so that each task takes a single lock, protecting access to 
the region of C to which it writes.  However, as shown in Figure 16, the performance of this 
method is very poor due to the overhead of taking and releasing the locks inside each task.  
The performance still scales close to linearly, indicating the lock collisions are relatively 
infrequent as there are many more locks than threads. 
 
OMP_TREE:  To rectify the cost of locking in the OMP_LEAF method, instead of creating 
OpenMP tasks (and doing the locking) at the leafs, we instead create tasks at a certain depth 
of the tree, and take the locks corresponding to the entire region of C which will be updated 
by the sub-tree generated by that task.  The choice of where to generate the tasks is a 
compromise between having enough tasks that lock collisions become suitably unlikely, 
without introducing too much task creation and execution overhead.  After some 
experimentation, we found that creating approximately 10 tasks per thread gives the best 
performance, that is tasks were generated at depth d where d ~= log2(nthreads*10).  
 
SMPSS_BLOCK:  This is exactly the same as the OMP_BLOCK implementation, except 
that each block is encapsulated within an SMPSs task.  We see that again this gives close to 
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linear scaling as expected, although the absolute performance is slightly lower than that 
achieved with OpenMP. 
 
SMPSS_LEAF:  For both the remaining SMPSs implementations we required a method of 
ensuring that the data dependencies on C are respected.  Conceptually this is an inout 
dependency on the region of C written by the task, but there are two problems with this in 
practice.  Firstly the entire data array of the matrix is passed as an argument to the task, since 
the sparse indexing relies on being able to access elements by an offset from the beginning of 
the array.  Secondly, as we cut up the M and N indices each task processes a 2D sub-block of 
the 2D array, which is not a pattern for which SMPSs can correctly handle dependencies.  To 
overcome these limitations, we create a second 2-dimensional array, which does not contain 
any data but is used to enforce the dependencies, and the real data array is passed as an 
input parameter to the task.  The new array is sized such that a task generated at the 
shortest path through the tree is passed a 1x1 sub-block of this array, representing the larger 
2D block of the data array that it will write to.  Tasks generated further down the tree are 
passed the same 1x1 sub-block, even though they may in fact write to a smaller 2D data 
block.  This requirement for being over-cautious in the dependencies is a result of the fact 
that tasks may be generated at different tree levels (in the dense case the level differs only by 
1, but it may be more in the general sparse case).  Having set up this second array, in the 
SMPSS_LEAF implementation we simply create an SMPSs task at each leaf of the tree.  
Compared to the OMP_LEAF implementation this gives much better performance, since 
there is no locking overhead inside each task, and even with 32 CPUs there are enough 
independent tasks to keep all CPUs busy. 
 
SMPSS_TREE:  Similarly to OpenMP, we also implemented generation of SMPSs tasks at a 
fixed depth during the descent of the tree.  However, despite experimenting with the chosen 
depth, we found that the performance could not be improved over the SMPSS_LEAF 
implementation, indicating that the overhead of task creation, execution and completion is 
not a significant effect in this case. 
 
These results show that for simple implementations, using SMPSs tasks with data 
dependencies is significantly more efficient that using locking with OpenMP tasks.  
However, by careful implementation in OpenMP to reduce the impact for locking, 
comparable performance with SMPSs can be achieved. 
 
For dense, well load-balanced matrices, the existing block-decomposition approach is 
sufficient.  However, to show the advantage of the task-based parallelism over the static 
decomposition we created load imbalanced system by removing the rows 1 to N/4 from the 
matrix.  Clearly this is a very artificial system, but it does allow us to clearly compare the 
performance under non-ideal conditions.  We tested the two BLOCK implementations and 
also the best task-based ones – OMP_TREE and SMPSS_LEAF, and the performance is 
shown in Figure 17.  Here we can clearly see that the BLOCK implementations give worse 
performance (by a factor of ¼ compared to the fully dense case) while the tasked 
implementations (both SMPSs and OpenMP) are almost entirely unaffected.  There is a small 
performance impact in these cases due to the fact that some indexing calculations are still 
performed for the empty blocks, which takes a small amount of time.  Nevertheless, we can 
clearly see here that using dynamic load balancing with tasks provides a significant 
advantage over the statically load balanced row decomposition. 
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Figure 17: Performance of selected implementations with a load-imbalanced sparse matrix 

 
. 
 

6.4 Feedback on MPI/SMPSs 
 
While we found the performance of SMPSs to be as efficient as OpenMP, there are several 
issues that would prevent us from adopting SMPSs within CP2K itself. 

 
• Restrictions on the features of Fortran 90 that can be used with SMPSs – CP2K 

makes extensive use of modules, Fortran POINTER types, and internal subroutines.  
Even within our test program we had to remove the subroutines we wanted to turn 
into tasks from modules, resulting in difficult to maintain code.  This approach would 
not be practical in the full code. 
 

• Requiring Fortran INTERFACE blocks for each SMPSs task – this essentially 
requires that the parameter list of the task be duplicated in the calling subroutine. This 
is poor software engineering practise, as it means that any further changes to the 
taskified subroutine’s argument list must now be made it two or more places. 

 
• Dependencies on multi-dimensional subarrays – while it may be difficult to 

implement in the runtime, the inability to do this resulted in significant complications 
to our code. 

• Lack of conditional tasks – in OpenMP it is possible to create a task if a certain 
condition is met.  In this case this was used to create tasks at a particular depth of the 
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tree.  In SMPSs to achieve the same effect, we needed to create a new wrapper 
subroutine that was taskified, and calls the original subroutine internally.  This again 
requires duplication of code, and reduces code clarity. 
 

• Subroutine-scope of tasks – related to the above, OpenMP tasks can be added with 
less disruption to the layout and flow of existing code since arbitrary structured 
blocks of code can be designated as tasks, whereas in SMPSs manual ‘outlining’ of 
the task body as a subroutine is required. 

 
Many of these issues seem to be Fortran-specific and the C SMPSs interface seems 
significantly more mature and well used.  Since a significant fraction of current HPC codes 
are written in Fortran, we recommend addressing some of the above issues in future releases 
of SMPSs if it is to become more attractive to a wider range of HPC developers. 
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7 MRGENESIS 

7.1 Short application description 
 
MRGENESIS is an extension of the RMHD (Relativistic MagnetoHydroDynamic) version of 
the RHD (Relativistic HydroDynamic) code GENESIS. It has been developed by the 
Department of Astronomy and Astrophysics, at University of Valencia. It is written in 
Fortran 90. 
 
The code performs simulations of RMHD flows, like collisions of magnetized shells and the 
radiation resulting from these collisions by using the 1D model of MRGENESIS. 
 

7.2 Parallelization approach 
 
Figure 18shows a flowchart of the main loop of the application. Each loop has three MPI 
communication blocks (halo), before each heavy compute block (step). Then, a value dt is 
computed (tstep3) and reduced (dt reduce) between each MPI process. 
 

 
Figure 18: Algorithm flow 

In the original version of the algorithm, only blocks step and tstep3 are parallelized using the 
OpenMP model. With the use of SMPSs, dt_reduce can be also parallelized as a background 
task while other serial code is executed before restarting the main loop. Blocks of 
communication halo will remain serialized. 
 
Figure 19 shows a viable distribution of the grid among MPI processes, and how they 
communicate with each other. 
 

 
Figure 19: MPI distribution 
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7.3 Results 
 
The defined tasks will allow the parallelization of the blocks with a high level of computation 
 
Figure 20 shows a Paraver trace. The trace shows an iteration of the main loop, where all 
tasks has been defined; also it is shown a zoom to see in detail the last task. 
 
One representative thing of the trace is the small amount of MPI communication. It was 
shown before in Figure 19, where only the boundary part of every grid distribution was 
transferred among processes. Now, the trace shows the three blocks of halo_communicate, 
with only a few individual communications among the processes. It could have been possible 
to parallelize these communications and fit them into SMPSs tasks so the computation could 
overlap the communication, but the time invested in these individual communications is not 
large enough to justify the extra overhead that it would introduce. 
 
Figure 21 gathers the speedup of the application for each programming model after every 
optimization has been applied. As it happened with the original code, the MPI version stops 
scaling at 512 processors, while the two hybrid parallel models keep scaling at the maximum 
value of resources. 
 
The differences of performance between the two hybrid programming models were not very 
clear in the previous chart because of the resolution. Figure 22 shows the real improvement 
of SMPSs versus OpenMP for each configuration of processes. 
 

 
Figure 20: Trace of a MRGENESIS execution using this resources: 16 MPI processes and 4 SMPSs 

dedicated threads for each process. A total of 64 cores. 
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Figure 21: Speedup of each programming model 

 
In this case, it is appreciated that OpenMP gets better performance than SMPSs using few 
resources. As we increase the number of processes, the SMPSs performance surpasses the 
other model. 
 

 
Figure 22: Improvement of SMPSs versus OpenMP 

 
 

7.4 Feedback on MPI/SMPSs 
 
Both hybrid models, OpenMP and SMPSs, achieve a very good performance over MPI, 
mainly because the chosen tasks are blocks of code with some huge computation. 
 
The major issue faced has been how to efficiently manage the memory associated to every 
task. In the original OpenMP code, all the memory structures were global structures accessed 
by everyone. But, in order to get the best potential of SMPSs, all these structures has been 
privatized, so the runtime can know the dependencies between them. 
 
As a result of this, SMPSs is getting better scalability than OpenMP; though, with few 
resources OpenMP gets better performance. 
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8 Shallow Water 

8.1 Short application description 
 
The NCAR shallow water model [9] solves the shallow water equations with a second-order 
finite-difference code [10]. The equations are solved over a regular rectangular domain with 
periodic boundary conditions in order to emulate a sphere. Details of the numerical scheme 
can be found in [11]. 
The shallow water equations are similar to the equations solved by many atmosphere models, 
and so shallow can be a useful simplification for certain parts of a full climate model, in 
particular data-parallel grid based computations and halo-swap communications. 
 
The original NCAR code base provided only a 1D MPI decomposition, so the code was 
rewritten in a modular fashion with modern Fortran 90 features and a 2D domain 
decomposition strategy. 
 

8.2 Parallelization approach 
The motivation for exploring SMPSS on this simple shallow water HPC benchmark code 
comes primarily from our involvement in a U.K. joint NERC/Met Office-funded project, 
called Gung Ho (http://www.met.reading.ac.uk/Data/CurrentWeather/wcd/blog/gungho-
development-of-a-new-dynamical-core-for-the-unified-model/). The aim of this project is to 
develop a new highly scalable atmospheric dynamical core for the Met Office's Unified 
Model of Weather and Climate prediction for the emerging many-core high petascale (and 
eventually exascale) computers. 
 
Task-based parallelism is one approach that has shown promise in increasing the scalability 
of scientific codes, in particular in the Linear Algebra domain. Hence the interest in seeing 
how this approach might work on the shallow code. Shallow has relatively simple data access 
patterns and a straightforward domain decomposition strategy, that leads to an efficient MPI 
solution. The problem is 2D so communication is not a big issue and when the data per core 
fits into the level 2 cache, the performance is very high. Thus, it was not expected that an 
SMPSs implementation would outperform the MPI implementation, rather we were 
interested in how easy it would be to implement the code in SMPSs and in the performance 
one could achieve using the task-based approach in SMPSs. 
 
The shallow water calculations are performed on the following fields:  
 

• Velocities u and v 
• Pressure P 
• Mass fluxes U and V 
• Potential vorticity Z 
• Field height H 

 
The basic algorithm is shown in Figure 23 
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The SMPSs version was created from an existing C version of the code. It was restructured 
so that each field is blocked internally, and each task performs calculations for one block of 
one or more fields. The boundary exchange was taskified accordingly. 
 
 
 

 
 

Figure 23: basic structure of the Shallow waters code 
 
 

8.3 Results 
 
The tests were run on a four processor (quad core AMD Opteron 8378, 2.4 GHz) shared 
memory system with 24GB RAM. For the MPI version the processes were were (scatter) 
pinned to cores to improve data affinity. Figure 24 shows the results for the MPI version of 
the shallow water code and Figure 25for the SMPSs version. 
 
The SMPSs versions were improved by introducing artificial task dependencies in order to 
avoid renaming. 

init psi, p 
init u, v 
init uold, vold, pold 
for ncycle { 
 compute cu, cv, z, h 
 update boundaries cu, cv, z, h 
 compute unew, vnew, pnew 
 update boundaries unew, vnew, pnew 
 time smoothing uold, vold, pold 
 update for next cycle u/unew, v/vnew, 
p/pnew 
} 
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The performance difference between the MPI version and the SMPSs version is primarily 
attributed to cache affinity. 
 

 
Figure 24: MPI Shallow scaling on 1 to 16 cores 

 
Figure 25: Shallow SMPSs scaling on 1 to 16 cores (64 * 64 block size per task) 

 
 

8.4 Feedback on MPI/SMPSs 
 
It was relatively simple to produce the SMPSs versions with explicit blocking of the original 
shallow water code. 
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The biggest hinderence to high performance in the best SMPSs implementation developed is 
due to the loss of cache affinity between tasks. Improved affinity scheduling should help to 
reach the same level of performance as the MPI version. 
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9 Conclusions and future work 
 
The applicability of the StarSs model (SMPSs and OmpSs) versions has been investigated to 
different depth levels for several applications. This work has been very useful from the very 
practical issues of detecting bugs in the implementations and help to correct them to a more 
fundamental issue of identifying programming methodology aspects and detecting the 
appropriateness of the model itself. Some of the problems in the SMPSs model and 
implementation are really important. They have caused more cost in the porting effort than 
what should be reasonable and we are grateful for the interaction/cooperation with original 
code owners and developers involved in this activity.  We think OmpSs is already addressing 
them (or will in a very short term). In any case, this feedback will be very useful for guiding 
the continuous evolution of the OmpSs model and implementation.  
 
Some of the examples have shown performance improvements over the MPI case, but in 
many others the results are similar to those obtained with OpenMP. Beyond the assumed 
higher overheads, StarSs does have conceptual benefits over pure OpenMP both in terms of 
concurrency and asynchrony on one side and data management and locality on the other. 
Some applications may inherently have little potential gain for some or both of these 
concepts. In some other cases, the StarSs parallelization may follow very closely the fork join 
parallelization of OpenMP and thus no gain is obtained. The programmability and flexibility 
gains in some cases (i.e. GPUs) are important although often the actual appreciation is very 
subjective. As of today, in some of these codes that already use OpenMP the SMPSs 
performance achieved by the relatively limited effort in this task does not justify a change in 
the application. We believe that further work could demonstrate in many of the cases that the 
claimed joint programmability and performance gains are possible.  
 
We do believe that this type of activity is extremely important. For the above reasons and the 
usefulness of the results we think that more should be done. We also consider that it will be 
necessary to create repositories of example codes making then publicly available as far as 
possible as examples and training material that could be used to expand proper practices. 
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