THE MATHEMATICAL AND ECONOMIC FOUNDATIONS

OF ACCOUNTING MEASUREMENT

M. J. TIPPETIT

PheDe
UNIVERSITY OF EDINBURGH

1978



I declare that I am the author of this work, that unless otherwise
stated all work was carried out by myself and that this work is
original and has not been submitted in part or in full for any other

degree.



2e

3e

ACKNOWLEDGEMENTS

ABSTRACT

AN INTRODUCTORY NOTE

o
[ ]

-0
1

Introduction
Scope and Content

AXIOMS OF ACCOUNTING MEASUREMENT

Introduction

Axiomatics and Euclidean Geometry
Ijiri's System Criticized

2.2.1 Euclidean Geometry

2.2.2 Set Theory

Axioms of Accounting Measurement
2e3.1 Axioms and Resource Sets
2.3+.2 An "Historical Cost" Example
2.3%3.3 The System Developed

2.3.4 Profit, Assets and Liabilities
A Comparison of Systems

Summary

MEASUREMENT IN ACCOUNTING

3.0
)

343

3ok

Introduction

Stevens! Measurement Scheme
3elel Mappings and Measurement
5ele2 Measurement Scales

The Accounting Implications

%3221 The Meaningfulness of Some Recent Empirical
Accounting Research

3e2e2 The Problem of m Rankings

3e2e3 The Likeness Ratio

A Probablllstlc Analysis of Accounting Measurement

5e3e "Normal" Measurement

5e3:2 "Non-Normal' Measurement

Summary

MODELS OF ACCOUNTING MEASUREMENT

k.0
bol

Introduction

The Mathematical Foundations of Edwards and Bell
L,1.1 Cost Savings Concepts

4,1.2 Two Fundamental Theorems



S5e

6.

7o

Current Purchasing Power Accounting
Market Value Accounting

Axiomatic Treatment

Summary

A PROBLEM IN ACCOUNTING MEASUREMENT: ESTIMATION OF THE
REPLACEMENT COST OF ASSET DISPOSALS

U1 \n '\
[l
N = O

53

6e3

Ool

Introduction

Interpolation

Numerical Methods

521 Midpoint Rule

56242 Trapezoidal Rule

523 Simpson's Rule

5.2«4 An Example

Some Alternative Methods

5¢3«.1 The Edwards and Bell Method
5632 A Modified Midpoint Rule
5e3e3 A Simulated Test
5¢3¢4 A
S

Comparison of Methods

ECONOMIC FOUNDATIONS OF ACCOUNTING MEASUREMENT

Introduction

Fisher's "Second Approximation"

An Example

6.2.1 The Agents

6.2.2 The Firm

6.2.3 The System Solved

The Accounting Implications

6.3.1 The Predictive Ability of Current Operating Profit

6+%3.2 The Empirical Significance of Current Operating
Profit

6+.3.3 The Maintenance of Productive Capacity

6.3.4 Realizable (operating) Profit

6.3.5 Current Purchasing Power

Summary

A CONCLUDING NOTE

70 Summary

Tel

Conclusions and Prognosis

BIBLIOGRAPHY



ACKNOWLEDGEMENTS

I should like to acknowledge the invaluable assistance and
advice provided by Dr. T.A. Gillespie, Professor T.A. Lee and
Dre. D.P. Tweedie during the preparation of this thesis. The numerous
suggestions and comments offered by each effected substantial improve-
ment in the manuscripte. Others to act as "sounding boards", (some
unknowingly) or who have read a portion of the manuscript at various
times over the last three or four years, are P.J. Best, James C. Dyer IV,
Professor M.0. Jager, Falconer Mitchell and John Smyrk. To Debbie
Hathorn, Jeanette Heggie and Mrs. G. Hunter I offer thanks for speedy,
yet effective typinge. To my parents I am indebted for the guidance
which I am only now beginning to appreciate. My greatest debt,
however, is to my wife, Julie, who cheerfully shared the strains of
an encumbent Ph.D. student, and our two daughters, Danielle and Kari,
who would have enjoyed far more attention from their father had he not

undertaken this "Machiavellian" exercisee.



ABSTRACT

In many respects, the present state of the theory of accounting
measurement resembles that of probability theory before the path
breaking analysis of A.Ne. Komolgorove. In accounting, as in "pre-
Komolgorov! probability theory, there have been numerous attempts at
providing a set of axioms for accounting measurement, all of which have
either been ignored or subjected to varying degrees of criticisme. By
building on these prior attempts, the present thesis proposes an
alternative set of axioms and then investigates its implications for

accounting measurement in general.

The unifying conception has been alluded to already. The
thesis endeavours to show that the thegry of accounting measurement
is, in fact, grounded upon three axioms, and it is the specification
of the information assumed given by these axioms, which is the source
of many (if not all) of accounting's problems. The remainder of the
thesis deals with the more important of these problems. Thus,
chapter three concerns itself with the statistical estimation and
identifiability of accounting measurement rules; chapter four, with
the commonly encountered models (or interpretations) of the axiom
system alluded to above; chapter five, with some numerical methods
for estimating the replacement cost of asset disposals (a necessary
piece of datum if we are to provide the axiom system with a replacement
cost interpretation), whilst chapter six, relying on the capital theory
of Irving Fisher, deals with the economic foundations of accounting

measuremente.

There are two major conclusions which emerge from the study.



Firstly, by summarizing the antecedent conditions which must be satis-
fied before it is possible to generate accounting measurements, the
"axiomatic method" provides a useful framework from which to determine
(and organize) the relative importance of measurement problems in
accountinge However, much remains to be done if the method is to
achieve its "ideal" function as a watershed or '"clearing house!" for
measurement problems in accounting. Secondly, Irving Fisher's
"capital theory" possesses far greater potential for accounting theory
than has hither to been realized. Specifically, by deriving Fisher's
"investment opportunity locus" from first principles, as distinct from
assuming it to be exogeneously specified, it is possible to provide
an economic rationale for each of the measurement systems alluded to

in chapter four.



CHAPTER ONE

AN INTRODUCTORY NOTE




1.0 Introduction

Recent years have witnessed the emergence of a bewildering volume
of books and articles each concerned with some aspect of measurement
in accounting.l This topic, which Professor Ijiri aptly dubbed the
theory of accounting measurement,2 arose from two principal considera-
tions. First and foremost of these, was the realization that the
antecedent conditions which need to be satisfied, before it is possible
to construct accounting measurements, have nowhere been adequately
specified or documented.3 Yet, without a thorough understanding of

the ingredients which go to make up accounting measurements, it is

l. See, for example, any of the following

Bierman, H.J. "Measurement in Accounting", The Accounting Review,
XXXVIII, 3 (July 1963), pp«501=507.

Mattessich, Re Accounting and Analytical Methods. Homewood ,
Illinois: Richard D. Irwin, Inc., 1964,

Chambers, ReJe. '"Measurement in Accounting", Journal of Accounting
Research, 3, 1 (Spring 1965), pp.17-25.

Chambers, ReJe Accounting, Evaluation and Economic Behavior.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1966.

Ijiri, Y. The Foundations of Accounting Measurement. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1967.

Larson, Ke.De. "Descriptive Validity of Accounting Calculations!",
The Accounting Review, XLIV, 1 (January 1969), pp.38-47.

Moonitz, M. "Price Level Accounting and Scales of Measurement!,
The Accounting Review, XLV, 3 (July 1970), pp.465-475.

Vickery, Do.W. "Is Accounting a Measurement Discipline?" The
Accounting Review, XLV, & (October 1970), pp.731-742. ==
Sterling, ReRe. Theory of the Measurement of Enterprise Income.
Lawrence, Kansas: The University of Kansas Press, 1970.

Ijiri, Y. Theory of Accounting Measurement. American Accounting
Association, 1975.

2. Ibid.

3« Ijiri, Foundations, peX.
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doubtful if there can be any systematic advance in accounting as a
scientific d:l'.S{::l'.plirj,e..)[k That such improvement is warranted is demon-
strated by the fact that accounting practice is an uncomfortable com-
promise of rules and procedures, some of which possess no basis in
logic, others being contradictory in nature.5 A second consideration,
however, stems from the oft-made assumption that accounting measure=-
ments are the product of some exact scientific procedure.6 More
often than not, of course, accounting measurements are the outcome of
a compromise between the three competing objectives of accuracy,
economy and versatility.7 As a consequence, the reliability of some
accounting measurements may be open to question. Yet, accountants
continue to operate in a vacuum of reliability which fails to provide

any form of error measuremente.

The present volume documents our contribution to the theory of
accounting measurement and is predicated on two assumptions.
Firstly, we claim that the precept embodied in the approach which
treats accounting as a measurement discipline, possesses both practi-
cal and theoretical utility; that is, by specifying the essential
ingredients of accounting measurement, it enables us to differentiate

between the important and peripheral areas of accounting theory.

ko Ibide

5 Tilley, I. "A Critique of Historical Cost Accounting", Accounting
and Business Research, 5, 19, (Summer 1975), pp.185-197.

6. Mattessich, ops.cit., p.l2.
7« Ibid.

8. Ijiri, OE-Cit.1 P.X-



:

Obviously, effective response to the multitude of criticisms and
challenges currently confronting the accounting discipline requires

an effective base from which to determine the relative significance

of eachs For similar reasons, the approach is significant from a
pedagogical point of view.9 In this respect, a student equipped with
a thorough understanding of the basic ingfedients which go to make

up accounting measurements, is better placed to comprehend the complex
fabric of rules and procedﬁres embodied in accounting practice.
Finally, by understanding accounting in its simplest form, we can
compare it with measurement systems in other fields of science. Such
comparisons enable us to integrate into accounting the desirable fea-

3o 10
tures of these other disciplines.

A second and more important consideration, however, derives from
the fact that there is, as yet, no generally accepted theory of account-
ing measuremente. Indeed, the works of Mattessich and Ijiri who,
collectively, have undoubtedly been the most influential and prolific
writers on this aspect of accounting theory, have both been subject
to a welter of criticism and debate. Since this is a topic to which
we devote considerable attention in the text, it suffices here to note
that Ijiri's work has been criticized on the grounds that it is not,
in fact, a deductive theory of accounting measurement,ll whilst
Mattessich's system has been variously attacked for its preoccupation

with the double entry bookkeeping system12 and also for its unnecess-

9. Ibide, peXI.
10. Ibid.

11. Chambers, Re.Je. "Measurement in Current Accounting Practice", The
Accounting Review, XLVII, 3 (July 1972), p.504.

12. Most, K.S. "The Planning Hypothesis as a Basis for Accounting Theory",
Abacus, 9, 2 (December, 1973), pel31l.



et

; 1
arily complicated nature. ?

Taken together, these considerations suggest the existence of a
prima facie case for yet another research project whose objective is
to probe into the foundations of accounting measﬁrement. It is the
purpose of the present thesis to undertake such an analysis. In the
next section, therefore, we provide an outline of the content of the

present volume.

13. Chambers, Rs.J« "Accounting and Analytical Methods: A Review
Article", Journal of Accounting Research, 4, 1 (Spring 1966),
PP.106~107.




l.1 Scope and Content

Recall that the principal objective of the present work is to set
forth an analytical structure as a base from which to build a unifying
theme for the theory of accounting measurement. Such a structure is,
in fact, derived and analyzed in chapter two of the text. We shall
there argue that the theory of accounting measurement is grounded upon
three axioms and it is these axioms which summarize a sufficient set
of conditions for generating accounting measurementse. The axioms,
in turn, assume the existence of the "accounting measurement space"
(Ptzjzi' Lt), where Pt is a "property set“zjzt is an algebra of
"resource sets" generated by the "property set" Pt' and Lt is a real
valued measurement rule defined on the algebr%};t. We shall see that
it is the specification of the configuration (Ptﬂ};t’ Lt) which is the

source of many (if not all) of accounting's problem areas.

Having introduced the concept of an "accounting measurement space'',
we turn, in chapter two, to a more detailed analysis of the nature of
accounting measuremente. We commence the chapter with an analysis of
the Stevens measurement scheme; the usual point of departure for
discussions focussing on accounting measurement.lé Contrary to
"popular belief", we shall find Stevens' work to possess very little
direct significance to the theory of accounting measuremente Indeed,
its principal function seems to be as a device for vetting the
"meaningfulness" of the "numerical procedures" applied to measurements
when there is a choice in the unit (of measurement) in which the

results of measurement are expressed. We shall conclude the chapter

14, See footnote l.
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by investigating a variety of techniques for estimating the bias and
objectivity of accounting measurements. Specifically, by imposing
the assumption that the measurements analyzed represent a random
sample from a normal frequency function, we shall demonstrate how
the sample's mean and variance may be used as a base from which to
construct point and interval estimates of the sample's bias and

objectivity.

In chapter four, we shall complete our analysis of the accounting
measurement systems by investigating the properties of a general
"valuation!" model; that is, a model which can meaningfully accommo-
date the replacement cost, net realizable valuels and C.P.P.
measurement systems. The model, in fact, was first proposed by
Edwards and Bell in the context of replacement cost accounting, but
its properties were not fully investigated by its authors. As a
consequence, the model's generality has not been fully appreciated.

We shall see that the system is based on two "fundamental theorems,
both of which shall be stated, proved and illustrated in the context

of the measurement systems alluded to above. The first, and more
important of these theorems provides a means for computing the
(potentially) realizable "holding gains" accruing during an interval

of time. When the model is provided with a replacement cost interpre=-
tation, the theorem requires (as an input) the accumulated replacement
cost of disposals during the time interval. This has proved to be
one of the most intractable problems confronting the adherents of the

replacement cost measurement system. In chapter five, therefore,

15. We shall henceforth take the terms "net realizable value" and
"market value" to be synonymous.
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we shall examine several methods for estimating the replacement cost
of disposals over a specified time interval. The first three of
these are polynomial based numerical methods abstracted from the
discipline of "numerical mathematics". The relevance of such methods
to the problem at hand has not been investigated, and yet, on the
surface, they would seem to possess considerable potential. Having
achieved this, we shall then examine two methods (the Edwards and Bell
technique and the modified midpoint rule) which have been hinted at

by accountants, but whose properties have not been fully investigated.

In the final and somewhat lengthy chapter, we shall examine
the economic foundations of accounting measuremente. Basing our
work on the capital theory of Irving Fisher,we shall provide an
economic rationale for each of the measurement systems alluded to in
chapter fours Specifically, we shall show that the ratio of a
firm's current operating profit to the replacement cost of goods sold
during some productive interval T, can be utilized to bound the
firm's market value at the end of the next productive interval (T+l).
The realizable operating profit (of the market value system) will be
shown to measure the contribution of a firm's productive activities
(as against purely holding operations) to the variation in the firm's
market value over the productive interval covered by the income
statement. Finally, we shall demonstrate that the real realized
income (of the C.P.P. system) measures the increased command of a
firm's resources over a composite of consumptive Services as a
result of the firm's prior productive investments. In words, each
of the measurement systems will be shown to possess some degree of

utility to the owners of productive resources.
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We shall now turn our attention to the first of these topics;

namely the axiomatic foundations of accounting measuremente.



CHAPTER TWO

THE AXIOMS OF ACCOUNTING MEASUREMENT*

*
This chapter, with minor modifications, is to appear in a forth~-

coming number of Accounting and Business Research.
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2,0 Introduction

In many respects, the present state of the theory of accounting
measurement resembles that of probability theory before the publication
of Kolmogorovis famous paper.l Like probability, there have been
numerous attempts at providing a set of axioms for accounting measure-
ment all of which have either been ignored, or attracted varying
degrees of criticism.2 To some extent this is understandable, since
accounting is essentially a pragmatic discipline, and, therefore,
attempts at axiomatizing its basic constructs may appear as alien and
unnecessarily esoterice. But probability theory is designed to model
a pragmatic discipline; a discipline which owes its origins to
Blaise Pascal (1623-1662) and the "gambling houses" of France.3
Consequently, the pragmatic nature of a discipline is of little
significance to the decision of whether to axiomatize its basic
constructs. Indeed, the effort to axiomatize the theory of account-
ing measurement is the "logical" outcome of the recent tendency of

accountants to subject their "dogma" to more rigorous analysise.

"The mathematical development of any science culminates
in the axiomatic formulation of its contents ... The
axiomatic method is simply a superb technique for
summarizing our knowledge in a given field and for
finding further knowledge deductively. This involves
inevitably logico-mathematical operations, sometimes
of great complexity. If the state of axiomatization
of an empirical field has been reached, which is a
state of some perfection, mathematics is indispensable

l. Kolmogorov, A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung.
Berlin, 1933.

2. Mattessich, Re. Accounting and Analytical Methods. Homewood,
Illinois: Richard D. Irwin, Inc., 1964, p.4L7.

3. Eisen, M. Introduction to Mathematical Probability Theory.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1969, p.2.
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ess Axiomatics does not burst upon the scene unprepared.
There will have been a vast amount of preparatory explora-
tion and thinking, much of it tentative and in parts.

Some will have been in mathematical form, some not."

The most notable  attempts at axiomatizing the theory of account-

ing measurement are those provided by Mattess:i.ch5 and Ijiri.
Mattessich's system is the earlier and more obscure of the two
attempts. It has been variously criticized for its preoccupation
with the double entry bookkeeping system7 and for its unnecessarily

8 :
complicated nature. Yet Mattessich was the first to admit that

his system

",.. is not a finished structure, but a foundation hopefully
stable enough to serve others as a basis for further
ventures."?

Further, he expressed the opinion that the system would event-

ually be simplified.10 In this respect, since Ijiri's system is

Lo Morgenstern, O. quoted in Mattessich, op. cit., p.448.
5 Ibide, PPe32=45 and pp..4iB8-L65.

6. Liiivi, Y. The Foundations of Accounting Measurement. Englewood
Cliffs, New Jersey: Prentice~-Hall, Inc., 1967, pp.87-99.

7« Most, KeSs "The Planning Hypothesis", Abacus. 9, 2 (December
1973), pp.130-131.
Chambers, R.J. "Accounting and Analytical Methods: A Review
Article", Journal of Accounting Research. 4, 1 (Spring 1966),

PP.106=107.
For an example of multidimensional bookkeeping see Ijiri, op. cit.,
Chapter 5.

8. Chambers, op. cit.
9. Mattessich, op. cite, p=4i7.

10. Ibid., p.32’ p.291.
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composed of threell "axioms" (as compared with Mattessich's eigh'l:&en)]'2
and is not based upon the double entry bookkeeping systeml3 (Mattessich's
duality axiom14) it may, at first sight, appear to provide the simpli-
fied system predicted by Mattessich. There are two reasons, however,
why this is not the case. Firstly, Ijiri's axiom system is stated

for historic cost accounting measurement only,15 whereas of course,
Mattessich's system is stated for accounting measurement in gener'al.1
Thus, Ijiri's system is not capable of modelling the non=historical
cost accounting measurement systems.l7 Secondly, in Ijiri's system,
the valuation rules are designed to "complement" the axioms rather
than being the deductive consequences of ‘them.l8 As such, Ijiri's
axiom system is not a deductive theory of accounting measurement and

‘ o 1
any pretence to rigour within his system is purely superficial. 9

11le Iji.ri, DE Cit., p-90.
12. Mattessich, op cit., pp.32-45.

13. Ijiri, Y. "Axioms and Structures of Conventional Accounting
Measurement,'" The Accounting Review, XL, 1 (January 1965) p.36.

14. Mattessich, op cite., DPp«33-34.
15. Ijiri, loc cite.

16. Mattessich, op cit., p.32.

17. Ijiri, Foundations, p.98.

18. This view was expressed to the writer in correspondence from
Ijiri dated February 16, 1976. See also Chambers, R.J.
"Measurement in Current Accounting Practice: A Critique", The
Accounting Review, 47, 3 (July 1972), p.50k.

Ijiri, Y. "Measurement in Current Accounting Practice: A
Reply", The Accounting Review, 47, 3 (July 1972), pp.520-521.

19. This point receives more consideration below.
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It is our view, however, that these are problematic limitations which
are easily overcome. Specifically, it is our view that Ijiri's
system can be modified so as to provide a set of axioms for accounting
measurement which whilst being perfectly general, also retains the

simplicity of the original system.

It is the purpose of this chapter to expand upon the issues isola-
ted above. To this end, the chapter is divided into four sections.
In the first section, we shall elucidate the significant features of
an axiom systems. This section is included for the dual purpose of
providing the "uninitiated" with some "feel" for the workings of an
axiom s;stem, and, at the same time, to facilitate evaluation of
certain comparisons made by Ijiri with the axiom system of Euélidean
geometry. In the second section, we shall examine the mathematical
propriety - of Ijiri's system in some detail. Needless to say we
shall find it to contain several deficiencies. In the third section,
we shall propose a method by which these deficiencies may be overcome
without at the same time detracting from the simplicity of Ijiri's

systeme. Finally, in the fourth section we shall compare Ijiri's

system with the modified version proposed in section three.

We now turn to a consideration of the first of these topics,
namely a consideration of the significant features of the axiomatic

methode




1

it

2,1 Axiomatics and Euclidean Geometry

A deductive system T may be characterized as a collection of
statements (theorems, lemmas and corollaries) which may be derived
from a set of "basic" statements called axioms.zo The axioms are
viewed as assumptions which are entertained purely because of the

: 21 2 : 3 2
theorems they implye. There is no consideration of their truth value.

"Many propositions formerly regarded as self-evident ... are
now known to be false. Indeed contradictory propositions
about every variety of subject matter ... have ... at differ-
ent times, been declared as fundamental intuitions and there-
fore self-evidently true. But whether a proposition is
obvious or not depends on cultural conditions and individual
training, so that a proposition which is 'self-evidently true!
to one person or group is not to another."22

If the set of axioms from which the statements in T are derived is

23 Thus the

finite, then T is said to be finitely axiomatizable.
"propositions" contained in Euclid's Elements are finitely axiomatiz-

able because they have been variously proved by employing a finite

set of axiomse

Every set of axioms contains a collection of primitive or unde-

s 2 : - . : ‘.
fined terms. > The function of the axioms is to specify the relations

20. Beth, E.W., The Foundations of Mathematics. Amsterdam: North=
Holland Publishing Company, 1965, p.81.

21l. Cohen, MeR. and E. Nagel, An Introduction to Logic and Scientific
Method. New York: Harcourt, Brace and World Inc., 1934, p.l133.

22+ Ibides; pel3l.

23. Enderton, H.Bs, A Mathematical Introduction to Logi . New York:
Academic Press, Inc., 1972, p.lki6.

24. Beth, op. cit., p.139.

25. Cohen and Nagel, Oope cite, pPe239.
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which must or are considered to hold between the undefined terms.
The necessity for such primitive terms arises for the following

reasons:

",.. when questioned of the truth or the reason for believing
the truth of an assertion, we usually justify our belief by
indicating that it .s.. can be deduced from certain other
assertions which we accept. If somebody ... continues to
ask for definitions or deductions, it is obvious that one
of two things will happen. Either we find ourselves
travelling in a circle, making use, in our answers, of
concepts and assertions whose meaning and justification we
originally set out to explain; or, at some stage, we refuse
to supply any more definitions and deductions and reply
bluntly that the concepts and assertions we employ in our
answer are already the most basic which we take for granted."

27
In Hilbert's axiomatization of Euclidean geometry for example,
G e 28 % ; :
the primitive terms are "point", "straight line", "order" (a
point lies between the points x and y), "congruence" (congruence of
line segments and of angles) and "incidence" (a point lies on a line,
a line lies on a plane, a point lies in a plane). Other "concepts"

are defined in terms of the primitives.zg

"eeoo if A and B are points on a straight line a, the segment
AB or BA can be defined as the set of points on a and between
A and B."

26. Ibid., p.135.

27+ Wang, H., A Survey of Mathematical Logic. Peking: Science Press,
1962, pal.

28. Weyl, H., Philosophy of Mathematics and Natural Science.
Princeton: Princeton University Press, 1949, p.l.

29. Beth, op. cit., p.139.
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"If a is a straight line and if B and C are points not on a,
we shall say that B and C have similar position with respect
to a if and only if the segment BC does not contain a point
on a."

All definitions can be reduced to statements containing only the
primitive terms. In the above examples, even though "similar posi-
tion" is defined in terms of "segment" it can be reduced to a defini-
tion purely in terms of the primitives by merely replacing "segment"
by its definition in the text. Thus in mathematics "definitions are

implicit, the subject being defined in terms of the axioms which it
30

must satisfy." It is partly because of this that Euclid's Elements

fail to provide a satisfactory answer to the problem of axiomatizing

31

consist of five "common notions" and

five "postulates" and are reproduced in Table 2.1.32 "Point" and

geometry. Euclid's "axioms"

"line" are obvious primitives,33 vet Euclid defines them as "that
which has no part!" and "breadthless length" respectively.34 In
words, explicit definitions are provided. This caused Weyl to remark

that Euclid

".ss begins with opov definitions; but they are only in part
definitions ... the most important among them are descrip-
tions, indications of what is intuitively given. Nothing
else, in fact, is possible after all for the basic geometri-

30. Cohen and Nagel, op.cite., p.238.
31. Wang, loca.Cite.

32. Heath, T.L., The Thirteen Books of Euclid's Elements, Volume 1,
Cambridge: Cambridge University Press, 1908, pp.l154=-155.

33. wa-r-lg’ OECCit-’ P.z.

34- Heath, OE.Cit., p-l53.
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TABLE 2.1

AXIOMS OF EUCLIDEAN GEOMETRY

POSTULATES

Let the following be postulated:

1.
2.
e
L,

5e

1.

2.
5e
Lo

Se

To draw a straight line from any point to any point.

To produce a finite straight line continuously in a straight line.

To describe a circle with any centre and distance.

That all right angles are equal to one another.

That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side

on which are

Things which
anothere.

If equals be
If equals be
Things which

The whole is

the angles less than the two right angles.

COMMON NOTIONS

are equal to the same thing are also equal

added to equals, the remainders are equal.
subtracted from equals, the remainders are
coincide with one another are equal to one

greater than the part.

to one

equale.

anothere.
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cal concepts such as 'point'!, 'between', etc.j; but as far as
the deductive construction of geometry is concerned, descrip-
tions of this kind are evidently irrelevant."35

Of course, the purpose of Euclid's system was to facilitate the
provision of proofs of geometrical propositions. The method used
was to argue deductively from the axioms and definitions to the
desired proposition. As an example of this, Euclid's first proposi-
tion of Book I concerning the existence of equilateral triangles and
; . 36 T
its "proof" are reproduced in Table 2.2. Note that it involves a
statement of the proposition to be proved followed by a segquence of
assertions in terms of the axioms and definitions, culminating in

37

what was to be proved - the proposition itself. Thus, the axioms

imply the proposition.

Although Euclid's work attracted criticism practically from the
time of its completion,38 it was not until the end of the nineteenth
century that Hilbert, amongst others, proved that Euclid appealed to
a number of tacit "presuppositions" besides the axioms explicitly
laid down, in proving several propositions.39 They are the so-called

Worder" axioms which concern the "betweenness" properties of points

and lines.

35+ Weyl, opecits, p.19.

36. Heath, ope.cite, pp.24l-242.

37. Cohen and Nagel, op.cite., p.136.
38+ Beth, opecite, Pel39.

39. Ibid.




3
Al
TABLE 2.2

EUCLID'S PROPOSITION I, BOOK I

On a given finite straight line to construct an equilateral triangle.

Proof

Let AB be the given finite straight line. Thus
it is required to construct an equilateral

triangle on the straight line AB.

With centre A and distance AB let the circle BCD be described (Post 3);
again, with centre B and distance BA let the circle ACE be described
(Post 3); and from the point C, in which the circles cut one another,
to the points A, B let the straight lines CA, CB be joined (Post 1).
Now, since the point A is the centre of the circle CDB, AC is equal to
AB (Defe 15). Again, since the point B is the centre of the circle
CAE, BC is equal to BA (Def. 15). But CA was also proved to equal
AB; therefore each of the straight lines CA, CB is equal to AB.

And things which are equal to the same thing are also equal to one
another (C.N. 1); therefore CA is also equal to CB. Therefore, the
three straight lines CA, AB, BC are equal to one another. Therefore
the triangle ABC is equilateral; and it has been constructed on the

given finite straight line AB. (Being) what it was required to do.
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Thus, in "recent!" years two major criticisms of Euclid's axiomatiza-
tion of geometry have emerged. Firstly, he endeavoured to make
explicit definitions of the primitive terms; secondly, he made implicit

assumptions in "proving" propositions involving order.

Recall that the purpose of this section was to isolate the signifi-
cant features of the axiomatic method as a prelude to analyzing the
axiomatized method of accounting measurement proposed by Ijirie.

Having accomplished the former task we now shift our attention to the
latter, namely an examination of Ijiri's axiomatized theory of

"conventional" accounting measurement.
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2.2 Ijiri's System Criticized

Our inquiry into Ijiri's system shall endeavour to reveal two
thingse Firstly, we shall argue that Ijiri's system is not a deduc-
tive theory of accounting measurement and that any pretence to rigour
within his system is purely superficial. Secondly, it will be
argued that Ijiri was in error in eschewing a set theoretic foundation

for accounting measuremente.

2.2.1 Euclidean Geometry

The stated purpose of Ijiri's Foundations of Accounting

Measurement was to approximate

".,.. conventional accounting by devising a relatively
simple set of axioms and valuation rules in the same
manner that scientists in other fields have tried to
develop a relatively simple set of concepts in order
to explain complicated phenomena to a satisfactory
degree "4l

The resulting system devised by Ijiri is reproduced in

L2, 4%

Table 2.3 and is claimed to have the following properties:

"The set of axioms and the set of valuation rules ...
correspond to the set of axioms and the set of theorems
in Buclidean geometry in the sense that if the set of

I.E].. Ijiri, OE.Cit., p.88-
42, Ibid, pp.90=95.

43, The "basic class" referred to is some numeraire, usually money.
Ijiri has gone to great lengths to show that accounting measure-
ments can be formulated by using some other numeraire such as
wheat.

Ijiri, Y., 'Physical Measures and Multi-Dimensional Accounting", in
R.K. Jaedicke, Y. Ijiri, and O. Nielsen (editors), Research in
Accounting Measurement, New York: American Accounting Association,
1966, pp.150~16L4,
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TABLE 2.3

IJIRI'S HISTORIC COST "AXIOM SYSTEM"

Axioms
Control
There exists a method by which resources under the control (pre-
sent or future, positive or negative) of a given entity at any
time t are uniquely determined at that time or later.
Quantities
There exists a method by which all resources are uniquely parti-
tioned into a collection of classes so that for each class a non-
negative and additive quantity measure is defined and so that we
are indifferent to any two sets of resources in the same class if
and only if their quantities are the same.
Exchanges
There exists a method by which all changes in the resources contro-
lled by a given entity up to any time t are identified at that time
or later and are partitioned uniquely into an ordered set of pairs
of an increment and a decrement, where the increment belongs to

one and only one class.

Valuation Rules

Basic Rule 1

The value of any set of (present and future) resources in the basic
class is defined to be equal to its quantity as determined by the
gquantity measure for the class.

Basic Rule 2

The value of an empty set is defined to be equal to zero.
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TABLE 2.%.

Value Allocation Rule

Allocate the value of all resources in each class before the
exchange to outgoing resources in the class and remaining
resources in the class in proportion to their quantities. The
sum of values allocated to outgoing resources in each class

is the value of the decrement. Decrease the value of resources
in each class by the value allocated to outgoing resources in the
classe.

Valuation Imputation Rule

If the resources in the increment belong to a non basic class, set
the value of the increment equal to the value of the decrement.
Increase the value of resources of the class by the value of the
increment.

Value Comparison Rule

If the resources in the increment belong to the basic class,
calculate a value gain or loss by subtracting the value of the

decrement from the value of the increment.
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axioms is granted the valuation rules can be applied
in a purely mathematical way without making'any
empirical judgement ... (The axioms) are not a mere
listing of concepts ... but are tied logically and
mathematically to the set of valuation rules «.."

However, in an axiom system there are the axioms them=
selves, definitions made in terms of the axioms, and theorems,
lemmas and corollaries derived from the axioms; there are no

valuation 1:-111.&;:5..&5 Thus

",.. it is not clear just how ... the (valuation) rules
are related to or derived from the axioms."

The confusion is aggravated by the fact that at differ=-
ent times Ijiri has described the valuation rules as both
definitions and theorems. Thus, having formulated the axioms

of control, quantities and exchanges Ijiri declares

"OQur task now is to define a method by which these hetero-
geneous quantity measures are converted into a homo-
geneous measure called a value measure."

Yet in a later publication the following assertion appears

45.
46.

L7.

Ijiri, Foundations, p.88.
See the previous section on "Axiomatics and Euclidean Geometry".

Dyckman, T.R., "The Foundations of Accounting Measurement'", The
Accounting Review, XLIII, 1 (January 1968), p.200.

Ijiri, op.cit., p.9l.
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"The set of valuation rules (listed in Table 2.3) is not
the only set of such rules that can be derived from the
three axioms, just as numerous theorems can be derived
fromKolmogorov's axioms of probability or from the axioms
of Euclidean geometry."48

Despite this latter and similar assertions it is our view
that the valuation rules are purelydefinitiopalin nature. The
: e T 49
Basic Rules one and two are explicitly stated definitions,
whilst no evidence has been provided by Ijiri to substantiate

the view that the axioms imply the valuation rules as theorems.

Further, conventional accounting is viewed

"as though it consisted of a set of axioms on the one
hand and a set of valuation rules on the other. These
are extracted from conventional accounting se."

In other places Ijiri describes the axioms as "empirical
judgements" or M"abilities" which when satisfied leave only the
"computational procedure' of applying the valuation rules.51
It would thus seem that the "logical" connection between the axioms
and the valuation rules is an "empirical one" in that either the
axioms contain sufficient information to operationalize the valua-
tion rules or they do not. The "mathematical connection" is mere-

52

ly the computational one of "applying" the valuation rules using

48,

L9.

50,

51.

52

Ijiri Y., "Axioms for Historical Cost Valuation: A Reply", Journal
of Accounting Research, IX, 1 (Spring 1971), p.184.

Basic Rule One is also poorly formulated. In none of the axioms
is "basic class" mentioned. Thus, the definition is not (directly
or indirectly) stated in terms of the primitives.

Ijiri, Foundations, p.88 (emphasis added).

Ibid- E) pp. 84-85-
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the information provided by the axioms.

We may state the "logical" connection between the axioms
and the valuation rules in the following terms. Let P denote
the statement "the information assumed by the axioms is known"
and Q denote "we can operationalize any set of historic cost

53

valuation rules". Then the connection is given thus
P if and only if Q.

Note that the axioms do not imply the valuation rules in
the sense that the axioms of Euclidean geometry imply the
corresponding theorems. The theorems of Euclidean geometry are
obtained by deductive argument; the valuation rules are defined.5
It is misleading, therefore, for Ijiri to compare his "axiom

system" with that of Euclidean geometry.

The mathematical connection between the axioms and the
valuation rules is illustrated as follows.55 Suppose an ent=
tity's property set at time t consists of 2,000 bushels of wheat
with an historical cost of £2,000. In the interval Et, t+]]
1,000 bushels of the wheat are sold for £1,500. At time (t+l1)
the axiom of control is satisfied by noting that the entity owns

some wheats. The axiom of quantities specifies that there are

53

5ke

55

".ee the set of axioms is necessary and sufficient to support
the set of valuation rules." Ibid., p.88 (emphasis added).

See section 2.1.

Ijiri, Foundations, pp.92-95.
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1,000 bushels of this commodity remaining, whilst the axiom of
exchanges identifies that in order to obtain the £1,500 cash,
1,000 bushels of wheat was sacrificed. Given this information

we can "apply"56

the valuation rulese. The value allocation rule
allocates a value of £1,000 to the wheat sold whilst the value
comparison rule recognizes a profit of £500 on the transaction.
Note that once we know the information implied by the axioms there

remains only the computational procedure of "applying" the

valuation rulese.

In some sense the theorems of Euclidean geometry are
"applied" in the same waye. Thus, for example, once the co-
ordinates of Zurich (5) and London (z) are determined, the calcula=-
tion of the distance between theml|£7d| o7 is indeed a purely
"mathematical® exercise involving no "empirical judgement!. The
subtle difference of course is that the axioms of Euclidean geo~-
metry imply the theorem that the linear distance between two

points isllfrz“ whilst Ijiri's axioms do not imply the valuation

rules as theorems.

As noted above, this is not the only source of contention

in Ijiri's treatment of "conventional" accounting measurement.

56. Ibida L] p-88.
57« The distance can also be computed b* defining the positive

definite inner product (u,\..r) =af u%-v where u and v are real
Y ~ ~ ~
vectorse. Thus ¥

$xp xypr= W )

= Izl
Py
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Specifically, Ijiri's testimony that it is not possible to con-
struct a set theoretic based axiom system of accounting measure=
ment is questionable. We now proceed to expand upon this

proposition.

2.2.2 Set Theory

In developing his'axiomatic" theory of historical cost
measurement Ijiri discarded a set theoretic foundation on the

grounds that

",.. the mathematical notions of set, field, etc. are all
based on two-valued logic where an element either belongs
to or does not belong to the set or field. However,
assets on the balance sheet may be shown as belonging to
the entity either positively or negatively. Thus, a
resource can take any of three states with respect to the
entity. It belongs to the entity positively, it belongs
to the entity negatively or it does not belong to the
entity."5

The axiom of exchanges was introduced to overcome this

problem.

"It was not until I separated control criteria and recogni-
tion criteria that I felt completely comfortable about
the set of resources as the starting point for construc-
ting the axiomatic system."59

However, if the quantification of assets and liabilities
is separated from their valuation it is a relatively simple

matter to construct a set theoretic based axiom system. Suppose

58. Ijiri, "Axioms for Historic Cost Valuation", p.183.

59. Ibide, p.184.
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for example, that an entity purchases on credit 10,000 widgets
at £2 each thus incurring a debt of £20,000. Its property set
consists of 10,000 widgets and an account payable. This pro-
cess involves the binary operation of partitioning assets and
liabilities into two sets - those belonging to the entity posi=-
tively and those not belonging to the entity. A measurement
rule can then be defined which appropriates a "value! of £20,000
to the widgets and - £20,000 to the accounts payable. In the

next section one such system is specified.

Despite these criticisms Ijiri's contribution to the theory
of accounting measurement is original and unique.60 He rid the
theory of accounting measurement of the shackles of double entry
bookkeeping, realizing that accounting measurement encompasses
more than just a formal recording function.61 When an accoun=-
tant determines the unit cost of stock an accounting measurement
has occurred and this may or may not be recorded in a set of
books e In words, it is no more necessary to have a set of formal
rules governing the way measurements shall be written down on
paper in accounting than it is in Euclidean geometry or statisti-
cal inference. However, by far his greatest contribution are the
axioms of historical cost measurement. It is these which are the
foundations of the generalized theory of accounting measurement

exhibited in the next section.

60. We echo the following remark

"eee Ijiri's work ranks with Edwards and Bell's classic ... as a
must for serious scholars of accounting thought."

Dyckman, opecits, pp.199-200.

6l. Ijiri, "Axioms and Structures of Conventional Accounting Measure-
ment", op.cit., P«36.
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We have now demonstrated that Ijiri's "axiomatic model" of
"conventional accounting measurement is not, in fact, a deductive
theory and that he was incorrect in eschewing a set theoretic
foundation for accounting measurements. In the next section we
shall develop upon this theme by providing a set theoretic based

deductive theory of accounting measurement.



2.3 Axioms of Accounting Measurement

In the previous sections it was claimed that Ijiri's system could
be modified so as to provide a set theoretic based deductive theory of
accounting measurement. In this section we shall demonstrate how
this may be achieved. After stating the modified system and illus-
trating its practical implementation in the context of an historical
cost accounting example, we shall state some formal consequences of
the axioms and demonstrate how various accounting concepts such as

"asset'", "liability" and "profit" may be defined within the system.

2.3.1 Axioms and Resource Sets

Accounting measurement is concerned with the monetary
expression of resources belonging to a designated entity. Thus
for a mathematical theory of accounting measurement the essential
ingredients are the existence of a non-empty set of resources
belonging to a clearly defined accounting entity upon which can
be imposed in a consistent and comprehensive fashion, a measure-
ment rule which associates a real number with each element of

the resource set.

Given an accounting entity the set of resources belonging

to that entity at time t is called a property set and will be

denoted Pt' The individual resources generically denoted by p

comprise the elements of the property set and satisfy the follow=-

ing conditions

i ted p. U is the set all
62. The union of sets pj,t and pk,t denote PJ,t Pk,t i e

elements which belong to pj ¢ or p . or to bothe The intersec-
? : )

tion of sets p.

Jyt y * &

which belong to pj,t and also to pk,t' It 3 = then pj,t pk,t -

d ted p. N is the set of elements
and pk,t eno pJ,t pk,t

P. ;0P = P, which is not empty.
Jat

Jst 7 d,t




n
ii P oA = .
(1) Bt R P i#k

Hence, the individual resources form a partition63 of the
property set Pt and will be called simple resources or alterna-
tively simple resource sets. Unions of simple resource sets are
called compound resources or compound resource sets. Simple
and compound resource sets shall be collectively referred to as
"resource sets". Let}zt be the family of subsets of Pt which

are generated by the simple resource sets. The elements of)zt

: , 6L
have the following properties
(i) If A, BEP, then AUBeft

(ii) If Ae)‘.’.t then A e}'at

where the complement in (ii) is with respect to Pt. A collection

of sets having these properties is called an algebra or field.

63. The family of non-empty sets B, §6 I is said to form a partition
of the set A if and only if
o & Bk B; =
) Jer 3

(ii) For any i#j Bf]Bj =@
@ is the empty or null set; the set having no elements.

C :
64, The complement of a set A denoted A 1s the set of elements 1in Pt
which are not in A.

65. Beth, opecit., pp.163-16ke.
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The conditions mean tha§)=t is closed under the formation of
unions and complements. In addition, it can be shown thaE}gt
is closed under the formation of intersections and thatl;i con=-
tains the empty set.66 These closure properties ensure that we
will never need to consider a resource set which does not belong
to the entity under consideration because it is not possible to
manipulate any collection of sets using only the permissible
set operations of union, intersection and complementation and so
obtain a resource set which does not belong to the entity; that
is, is not in’;%. Further, for any A, B and C in/Ft the follow=

67

ing "conditions" also hold

(i) AUB = BUA

(ii) AnB = BpA

(iii) Au(snc) (AUB) n (Auc)

(iv) An(BUC) = (AnB) n (AnC)

(v) There is in}:% an element X such that, for any Y iq};t
YU(ANX) = | OF
and
¥n (AUX) sERSY:

s el
66. By (i) and (ii) A UB 6);t
=0 c.._c.C
By (ii) (A"UB )§)5£
But (ASuBS) = A“Bf}:i

Proving thaﬁ)zt is closed under the formation of intersectionse.

B .
y axiom P%ﬁf%
By (ii) P%
s 7 4
c
But =
u Pt ﬁg):t

Thus, proving that the empty set is in/ﬁi.

67« Ibid., p.l16L.
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The triple g}i, U,[1) is called a Boolean algebra.68 Equipped
with this knowledge we exhibit in Table 2.469 a set of axioms
which are essential to any theory of accounting measurement. In
words, historical cost, market value, price level adjusted and
replacement cost measurement may serve as models of the axiom

system.
Having furnished the modified set of axioms for accounting
measurement we now illustrate their use in the context of an

historical cost accounting example.

2.3.2 An "Historic cost" Example

The balance sheet of the Dyer Company Limited as of
January 1, 1909 and the transactions for the year ending December
31, 1909 are exhibited in Table 2.5. We define the simple
resource sets in the following terms since they exhibit the

70

properties demanded by the axiom of quantities.

68.

Ibid.

69. The reader versed in probability theory will see that this axiom

70+

system is based on Komolgorov's axiomatization of a finite pro-
bability space. It was Littleton who first emphasized the
"statistical nature" of accounting measurement

",.. the subject matter of accounting is inescapably economic and
its basic methodology is unquestionably statistical in character."

Littleton A.C. Structure of Accounting Theory, New York: American
Accounting Association, 1953, p.8a.

However, no one has taken up the obvious implication of this for
an axiomatized theory of accounting measurement.

In general, simple resource sets are not unique. For example, if
it suited our purpose we could specify the simple resource sets to
be equity, assets and liabilities. This is done, in fact, in the
section on "Profit, Assets and Liabilities".
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TABLE 2.4

AXIOMS OF ACCOUNTING MEASUREMENT

Axiom of Control

There exists a "property set" Pt which is uniquely defined for

all non-negative real te.

Axiom of Quantities

There exists an algebra generated by the "simple resource

t
setsh pj,t’ =t g , n and having the following

properties

(a)

|| ot
o
Il
d

n s :
(b) p. OB o o] JAk

for some positive integer ne.

Axiom of Measurement

There exists a mapping called a "measurement rule"

: —_—

L, ‘;Lt IR

with the property

L, WAL, U =il ST (A + L (A
(85,45, ¢ e Ag.0) & B ]

for any pair of disjoint sets Aj,t and Ak'tej;i.
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DYER COMPANY LIMITED

Balance Sheet - Janwary 1, 1909

Shareholders' Funds £ Fixed Asset £
Capital 50,000 Building 8@; 000:
Profit unapprepriated 60,000 Less Aggregate Deprecia=—
tiom 20, 000
110,00Q 665, poe0
Current Liability Current Assets:
Trade creditors 5,000 Cash 255 000
Trade debtors:s 105000
Securities 105000
S : i
£115,000Q £115, 006

Stock: Recorded using "perpetual lifo™; 1,000 umitse at: £100 (per- unit)h.

Building: Purchased January 1, 190&.. Straight line depreciation: iss
used where the life estimation is 20 yearss (no saivage: value)h.

15069

Jatte 30 Purchased (on credit) 500 units at £11 (per unit)k.

1"

Febe. 28 =« Sold 800 units (om credit) ai: 220 (per umit)k.

Mar. 31 ¢ Received £10,000 from debtors (no discouwnts).
April 30 = Paid £8,000 to creditor=s (no discountss)..

Auge 31 ¢ Sold 500 units (om credit) at £21 (per uniit)h.
Nov. 30 ¢ Purchased 300 units (om aredit) at £1% (per unit)h..



p1,5 =  "puilding"

p2,5 = "cash"

P3’5 = "trade debtors"
P4,5 = "securities"
p5,5 = "stock"

P6,5 = "trade creditors"

Note that the simple resources form a partition of the

property set Ps. The 64 subsets?l which may be formed from the

property set P_ determine the algebra 5 The algebr%}as is the

5

domain of the following measurement rule

( 60,000 if j =1
(

( 25,000 if j =2
E 10,000 if j = 3
Ls(pj’5) y E 10,000 if j = 4
E 10,000 if j =5

(
(- 5,000 if j =6

The measurement rule L_ depreciates the building using a

5
straight line allowance of 5% pe.a. Note that once the measures
of the simple resources are given, the measure of every other
set in the algebra can be determined because such sets are

5
72

merely unions of simple resource sets.

Recall that the axiom system exhibited in Table 2.4 repre-

6
7l. See Theorem 1, below: 2 = 6k.

72. In reaching this conclusion we use Theorem 4 below.
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sents a deductive theory of accounting measurement. As such the

axioms imply certain statements about accounting measurement which

can be obtained by "deductive reasoning" alone. In the next

section, therefore, we isolate some consequences of the axioms.

2¢.%3+% The System Developed

In this section we state some formal consequences of the
axioms particularized above. All proofs are relegated to the
appendix so that we may concentrate on the more important task

of interpreting the significance of the results.

Theorem 1

If Pt is the union of n (a positive integer) simple resource

sets then t has 2n elements.

In the example of the previous section P5 was the union of

six simple resources. The algebra s formed from this set has
as its elements, the empty set, six simple resources, fifteen
sets containing two simple resources, twenty sets containing 3
simple resources, fifteen sets containing four simple resources,
six sets containing five simple resources and the property set
73

Ps . itself.

73+ One 'easy" method of determining the elements of the algebra is to
use "Pascal's Triangle'.

Elements in P Triangle Elements inst
, L

(0] ik 1

1 1 1 2

2 1 2 1 L

3 1 3 3 1 8

L 115 L b e SIS | 16

5 1 ST SO 5 1 32

6 R GRS SRR 2O S LGE 6 o] 64

Each element in the triangle is obtained by adding the elements to
the right and left in the preceding rowe.
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Theorem 2
Lt(ﬁi) = 0

The significance of this result is that it implies that
Ijiri's system is in some sense redundant,74 because by Basic
Rule 2 this result is defined and therefore is not a consequence
of the axioms. Thus, if a set is empty, its measure is zero,

irrespective of what type of measurement rule is used.

Definition 1

The triple (Pt’}t’ L‘t) is called an accounting measurement

spaces

Definition 275

Suppose Aj,té/FES then Lt(Aj t) is called the measure of

1

Jat

Definition 3

S A, ‘)B is not a simple resource set; then A,
uppose J’té % p 3 iyt

74h. Ijiri's system may not be redundant in the mathematical sense of
course; that is it may not be possible to prove the Basic Rule
Two from Ijiri's axioms. For a discussion of redundancy see
Cohen and Nagel, ope.cit., pp.l43-147.

75. The measure appropriated to each resource in is unique by virtue

of the fact that Lt is a mappinge.

See Giles J.R., Real Analysis, Sydney: John Wiley and Sons,
Australasia Pty. Ltd., 1972, p.13.

t
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is called a compound resource set.76

The importance of these definitions stems from the following

result
Theorem 3

The accounting measurement space (Ptt)zt, Lt) is completely

described by its simple resource sets and their measures.

The importance of this theorem is that it implies that once

the simple resources and their measures are known, P, is known,

4
and the measure of every set in}'—t can be determined. Thus, in
the case of the Dyer Company Limited, knowledge of the simple

resources and their measures is sufficient to determine the mea-

sure of "current assets".
Theorem &

If AJ. teft j=1, 2, —, n is a disjoint sequence of
]

resource sets then

n n
L( UAs ) = PL(A )
t 524 Jab o1 A
76. That compound resource sets exist follows from Theorem 1. 15

was stated that):t has 20 elements where n is the number of simple
resources. Hence, if we consider the empty set to be a compound
resource, there are 2" -n compound resource sets.



Theorem 5
If A, Beﬁt then
L. (A = =
¢ (AUB) L (A) + L, (B) L, (AmB)
Theorems 4 and 5 together imply that in general, account-
ing measurements are not additive. Thus, for example, the
measure of current assets and non-monetary assets is not necess-

arily the sum of their separate measures.

Theorem 6

s

Suppose B = A 6}.-
j=1 Jyt t

is a disjoint sequence of resource sets with the properties

(1) Lt(Al,t) = Lt(Az,t) s Lt(An,t)

(ii) LB} =e

t
then LA L )= n T j=1,2, ——, n

gt

In effect, Theorem 6 states a set of assumptions which
justify appropriating the same measure to every element of a
resource set. There are numerous instances of this practice

77

in accounting.

The importance of these theorems is that they are true in

77« Horngren C.T., Cost Accounting: A Managerial Emphasis,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1972,
Chapters 4 and 17.
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every accounting measurement system which satisfies the axioms.
They are not the only theorems which can be deduced from the

axioms but merely a sample of the more obvious and useful.

Besides serving as a means through which the basic proper-
ties of accounting measurement rules can be derived, however,
the axioms also enable us to define key accounting concepts in
a clear and unequivocal manner. In the next section, therefore,
we demonstrate the procedure by which definitions of accounting

concepts may be made in terms of the axioms.

2.3.4 Profit, Assets and Liabilities

If the axiom system is to serve as a model of accounting

measurement we need to define a profit measure.

Definition 4

The mapping /U : IR2 ——» IR defined by

ZATG e R P e e

for all real t?n is called the "profit measure" of the interval

'E-n,t .?8
This is the "usual" definition of profit

"The income figure for a period is the difference between
the value of assets at the end of the period and the

78. The profit measure is a real valued function with domain the
Cartesian space 1Rx IR = 1R2. This is so because in order to
operationalize it requires two real numbers; one each for Lt(Pt)
and Lt—n(Pt-n) respectively.
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value of assets at the 1:o(=:g:'mtu'.ng.."'?9
Note that our profit measure is "defective!" in that divi-
dends, prior period adjustments, capital contributions and simi-
lar items are treated as income or expense of the interval
Et-n,g o This could be avoided by the addition of extra axioms.
However, whilst this would improve the predictive ability of our
axiom system it would do very little to enhance the analytical

exposition.

Unlike Ijiri's algorithm for computing income80 our profit
measure is "balance sheet!" oriented. This does not imply that
our system is incapable of providing an analysis of the "economic
phenomena" (transactions in the historic cost system) connecting
any two balance sheets. Thus, for the historic cost system,
define a reporting rule under which financial statements are
prepared after each transaction. The increment and decrement of
each transaction can then be specified by comparing the latest
balance sheet with its immediate predecessors. Suppose we ana=-
lyze the transactions of the Dyer Company Limited in terms of their
effect on equity, assets and liabilities. We construct the

"transactions matrix" A5 6 for the year ending December 31, 1909,
?

79. Ijiri, Foundations, p.97.
80. Ijiri's method for computing profit is stated as follows:

"An exchange involves two sets of resources, an increment at and a
decrement d  ee. : _All changes in the assets Jare partitioned into
a set of pairs (d ,d ), when all increments atts and all decre-

ments d 's in the set of pairs are added together to derive I and
I, respectively, we obtain the income Gt ,I") for the period e.."

Ibid., p.89.
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Equity Assets Liabilities

it
Bautty ] 412 213

DR Assets
& %21 222 o3

Liabiliti

iabilities a31 a32 a33

The element a5, of the transactions matrix, for example,
represents a debit to assets and credit to equity. An example

of such an entry is the Feb. 28 sale of stock.

Dre Trade debtors 16,000

Cre. Sales 16,000

The complete transactions matrix of the Dyer Company

Limited is exhibited below:

0 17,500 0

1]

SvE 26,500 10,000 9,400

o) 8,000 0

Suppose we let x be the vector whose elements are equity,

5

assets and liabilities respectively of the Dyer Company Limited

as of January 1, 1909.

~110,000
- 115,000
- 5,000
L - =y

If we let X be the equivalent vector as of December 31,



1909

-119,000
X, e 125,400
- 6,400

then the connection between x6 and x_ may be described by the
2 -~

5

equation

X o X (A

T
- A
) 596 516 )(Z i E)

where yT = ]3'129 and k is any vector in the kernel or null
-y

-~

space of {A-ATJ.BI Using the first elements of x, and X we
-~

~

now compute the income of the Dyer Company Limited for the year

ending 31, 1909.

Il

'71'(6, 5)

T )

9,000

Perhaps the most contentious parts of our axiom system are
the "implied" definitions of asset and liability which we now

make explicit.

8l. The Kernel or Null space %f a homomorphism @ : 1R*—IR" repre-
sented by the matrix (A-A") is the set of vectors K such that for
any k E K
(A= ADK. =0

-~ L

That is, the kernel is the set of vectors mapped to the zero vectore.
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Definition 5

s ; ;
uppose pj’tﬁﬁ is a simple resource set. If Lt(pj,t) 70

then p. is called ta i
pJ,t ed an asse If Lt(p;j,t)< O then pj,t is

called a liability.

At first sight this definition may appear to contain several
deficiencies. For example, since accumulated depreciation has
a negative measure, our system appears to classify it as a lia-
bilitye However, we can exclude accumulated depreciation from
an entity's property set, on the grounds that the set being
measured is the fixed asset and the measure afforded this asset

is time dependent. That is, the measurement rule

(i etast if-tx > -t
L(A t):( t*-to
: (N &R o
(

appropriates a measure to the fixed asset A, by netting accumu=-

J.t
) t = t° : 82
lated depreciation Y T against the cost Y. Hence,
AT -

there is no need for "accumulated depreciation" to appear as a

simple resource set in the entity's property set and thus the need

82. (t* - t°) is the anticipated productive life (in years) of the
asseta to is the date the asset is put into service and t is the
anticipated date of withdrawal from service. The net book value
of the asset at time t, assuming zero scrap value, is computed

thus:
o
Y - Y t'_to
t* - t

which by factoring t* -~ to may be shown to yield the measurement
rule for t* 7/1:.



for a separate measure is avoided. Similar treatments can be
afforded prepayments, provision for doubtful debts and deferred

income and expense.

A second line of argument is that the definition appears
to classify shareholders' equity as a liability. This criticism
is avoided by excluding shareholders' equity from the property set
83

Pt. This does not detract from the validity of the axiom

system because the property set P, is then composed of the assets

t

and liabilities making up shareholders' equity.

We have now stated and illustrated a modified version of
Ijiri's "axiom system" which has the property that it represents
a set theoretic based deductive theory of accounting measurement.
Further, the basic properties of accounting measurement rules
were derived using the axioms and some key accounting concepts
were defined in terms of thems. To conclude this chapter we shall
compare and contrast Ijiri's "axiom system" with the modified

version developed aboves.

8%. Obviously if the "profit measure" of definition 4 is not to be
identically zero, it is essential that we give Pt this interpreta-
tion.



2.4 A Comparison of Systems

In this section we particularize the connection between Ijiri's
"axiom system" and that developed abovee. In this respect, perhaps
the most basic and important difference between the two systems is
that ours is an axiom system of accounting measurement in general,
whilst Ijiri's system is stated for historical cost accounting measure=-
ment onlye. Ijiri's aim was to construct an axiom system for which

"conventional' accounting served as a model. As such it was

... based upon such principles as historical cost, realization
and accrual."sé

This meant that

",..s such concepts as current market values, replacement costs
and net realizable values."%>

were, of necessity, neglected. Our analysis, however, is based upon
the assumption that there are certain procedures which are common to
all accounting measurement systems. Thus, our system is as relevant
to replacement cost and market value measurement as it is to historical

cost measurement.

Secondly, whilst in each system the axiom of control partitions
resources into two sets -~ those which belong to an accounting entity

and those which do not ~ there is a fundamental difference in the axiom

84. Ijil“i, OE.Cit., p-98.

85. Ibid.
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of quantities in the respective systems. Ijiri's system requires unit

quantification as a basis for valuation through the axiom of exchanges

and the valuation rules. In our system, the axiom of guantities de-

fines an algebra which forms the domain of a real valued measurement

rule. Thus, in our system unit guantification 1is not strictly

necessarys

Finally, Ijiri's valuation rules taken in conjunction with the
axiom of exchanges states one historic cost measurement rule. In
principle, this measurement rule satisfies our third axiom though
strictly from a mathematical point of view it is impossible for it to
do soe. By the axiom of exchanges a change in the property set can
be represented by the unique ordered pair (d+,d_) where d' is an
"increment" and d is a "decrement". In our system the measurement
rule provided by the axiom of measurement is defined on the algebr%):t
generated by property set Pt' But since d is not in general a resource
set inyﬁk, its measure Lt(d-) is in general undefined. However, it
is entirely "permissible" to state a measurement rule Lt where the
measure afforded a resource set is derived by using Ijiri's valua=-
tion rules. Thus suppose an entity exchanges £2,000 cash for 2,000
bushels of wheat. Whilst the value imputation rule does not satisfy
the axiom of measurement because its domain includes d which in general

is not in the algebra upon which L,k is defined, the measurement rule

t

Lt(Pj ) = 2,000 where Pj . is the simple resource set containing 2,000
1

st

bushels of wheat, does satisfy the axiome. Hence while the valuation

rule does not satisfy the axiom, the measure derived from its use does.

86. This conclusion does not imply that our axiom system cannot accomm-
odate unit quantification. By redefining the axiom of measurement
so that its domain is the set of subsets of P,, it is possible to
partition each simple resource set so as to define a quantity mea~
sure of the set.
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2.5 Summary

The purpose of this chapter was to construct an axiomatic theory
of accounting measurement. In order to accomplish this task it was
necessary to specify the properties possessed by an axiom system.
Undoubtedly, the best known axiom scheme is the geometrical system
formulated by Buclid. Consequently, a brief review of his system was

undertakens

Ijiri's "axiom system" was then analyzed and found to lack certain
of the properties possessed by Euclid's system. This was so despite
Ijiri's claim that Euclid's and his system are "analogous" in
principle. However, it was shown that Ijiri's system contained the

germ of an acceptable axiomatic theory of accounting measurement.

FPinally, a set of three axioms was defined and several theorems
were derived. It was found that this system could accommodate many

commonly encountered concepts such as income, asset and expense.
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APPENDIX 2A

Theorem 1

If Pt is the union of n (a positive integer) simple resource sets

then ” has 2“ elements.

Proof

n -
t; C1 = n simple resource sets;

There are C: = 1 empty sets in
Cg compound resource sets containing two simple resources; and S0 one.
There are thus

n 5 s
s But Yicladb Y = (asb)"
- J t it )
J=0 J=0

n
Z: Cq elements in

Letting a = b = 1 proves the result.

Remark

For the data of the Dyer Company Limited as of January 1, 1909,
six simple resource sets were defined. Theorem 1 implies that there
are 2 = 6k resource sets in the algebra generated by the simple
resources. Letting a denote the simple resource "building", b the
simple resource '"cash" and so on, the elements of the algebra can be

depicted as follows:

Resource sets containing zero elements

B 1
Resource sets containing one element

a,. by ch Qi ey Te 6
Resource sets containing two elements

ab, ac, ad, ae, af, bc, bd, be, bf, cd, ce, cf, de, df, ef,. 15
Resource sets containing three elements

abc, abd, abe, abf, acd, ace, acf, ade, adf, aef,

bcd, bce, bef, bde, bdf, bef,

cde, cdf, cef,

def. 20
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Resource sets containing four elements

abcd, abce, abcf, abde, abdf, abef, acde, acdf, acef, adef,

bcde, bedf, bcef, bdef,

cdef. 15
Resource sets containing five elements

abcde, abcdf, abcef, abdef, acdef,

bedef. 6
Resource sets containing six elements

abcdef _i
64

Note that the compound resource containing six elements is the property

set P_ and the resource sets containing one element are, in fact, the

5

simple resource sets.

Theorem 2

Lt(ﬁ) & 0
Proof

By the "Laws of the Albegra of Sets", for any Aﬁﬁi

1
=

(i) Aug

(ii) Ang

]
=

From (ii) A and @ are disjoint. Thus, applying the axiom of measure~

ment

L, (AUB) = L, (A) + L, (#)
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Lt(A) = Lt(A) + Lt(ﬁ)
Lt(ﬁ) = 0
Remarlk

Suppose for any resource set Aj €§;% (trade debtors, land, accrued
1
charges, etc.) we have Aj e Pe Then Theorem 2 implies
:

Lt(Aj't) = 0

Theorem 3

The accounting measurement space (Pt, £ Lt) is completely

described by its simple resource sets and their measures.
Proof

Since Pt is the union of the simple resource sets which by hypo-
thesis are known, we know Pt. Since we know the simple resource sets,
we can construct the algebra/;%, since it consists of all possible
unions of the simple resource sets. By applying the axiom of measure-

ment and Theorem 4 to all possible unions of simple resources we can

compute the measures of the compound resources.
Theorem A4

If Aj tb/at’ j=1, 2, —n is a disjoint sequence of resource
3
sets then

n

n
L G 0A; Y ST (A )
iy it j=



Proof

n
U A

Define B :
j=2 J!

t

It then follows from the axiom of measurement

n
E (YU A =
e J,t) Lt(Al,tUBz)
Jj=1
n
A A
LG j,t) Lt(Al,t) + L.(B,)
J=1
n
Define B = WA,
. t
3 323 J,

It then follows from the axiom of measurement

n
Lt(jHIAj’t) = Lt(Al,t) + Lt(Az,tUBB)
n
Lt(jHlAj’t) = Lt(Al’t) + Lt(Az’t) + Lt(B3)

Continuing this process proves the result.
Remark

Theorem 3 effectively says that once the simple resource sets and
their associated measurements are known, we can compute the measurement
of any compound resource set in the algebra generated by the simple
resourcess. Suppose, for example, we desire to determine the measure
of current assets for the Dyer Company Limited as of January 1, 1909.
By Theorem & we have

5

5
B0 W@ ) =i B (e )
2 jaz J9° jeg 2 912

= 25,000 + 2 x 10,000
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= 55,000

By similar procedures we may compute the measure of any collec-

tion of resource sets in the algebra

5.
Theorem 5
If A, BQJE% then L (AUB) = L (A) + L (B) - L (AgB)

Proof

By the "Laws of the Algebra of Sets" the following may be proved

AU(BnAS) (AUB) n(AUA®)

= AUB

As the sets A and (BnA®) are disjoint we may apply the axiom of

measurement
o ~
Lt(A) + Lt(A nB) = Lt(AUB) (i)
B = Bn(AuA®)
= (BnA)U(BnA®)

As the sets (BIA) and (BnA®) are disjoint we apply the axiom of

measurement
- a ch - o
Lt(B) LitAnB) Lt(A B) (ii)
substituting (ii) into (i) gives the result.

Remark

Defi N = U U to be the non-monetary assets of the
efine pl,5 P&,S p5,5 N
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Dyer Company Limited as of January 1, 1909. Similarly, define
5
C= pj 5 to be the current assets as of the same date. Note that
j=2 9

NOC = p4 5Up From Theorem 5 we have
9

5450

= - n
Ls(NUC) 5(N) + LB(C) LS(N C)

= 80,000 + 55,000 - 20,000
Ls(Nuc) = 115,000

]

Since the simple resource sets '"securities" and "inventory" are
both current assets and non-monetary assets, the measure of the union
of current assets and non~-monetary assets, is not the sum of their
separate measures. To avoid double counting, we must subtract the

measure of this common element.

Theorem 6

n
Suppose B = U A_.tb‘}z t is a disjoint sequence of resource sets
J'=1 \],
with the properties

i = En et L (A
(1) LA ) Ly(Ay ¢) A
(ii) Lt(B) = T
then L (A ) = n-lT S L n
t j,t ? ? ;]
Proof

By hypothesis we have

nLt(Aj,t) = T

for some arbitrarily chosen j, proving the result.
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Remark

For the Dyer Company Limited as of January 1, 1909 define each
unit of stock to be a simple resource. Suppose it is "known" that the
measure of each unit of stock (each element of the compound resource
"stock") has the same measure. It follows from Theorem 6 that stock

has a "value" of £1 (per unit).
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CHAPTER THREE

MEASUREMENT IN ACCOUNTING
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3.0 Introduction

In the previous chapter the mathematical foundations of accounting
measurement were examined in some detail, Using a set of three axioms,
some properties common to all accounting measurement systems were
derived and their implications examined. Absent, however, was a
discussion of the factors which influence the specification of account—
ing measurements; that is, the allocation of numbers to the resource

sets composing the algebra That accountants are prone to dis-

£
agreement on this aspect of the accounting function is well documented.1
Yet, despite this, there has been no attempt at formalizing a statisti-
cal theory of accounting measurement. In our view, one reason for

this is that efforts at providing a logical framework for accounting
measurement have adopted methods which, essentially, are alien to
accountinge. A prime example is the repeated reference one finds in
the accounting literature to the work of Stevens.2 Whilst Stevens!
work would appear to bear some significance for accounting measurement,

it is our view that its implications for measurement, in general, have

not been fully appreciated by accountants.

For these reasons, the purpose of this chapter is to examine
measurement in accounting at two levels. Firstly, we undertake to
analyze Stevens' measurement scheme. After introducing the concept

of a measurement rule, the "scales" of measurement are defined and

l. Sterling, Re.R. "Cost Versus Values: An Empirical Test", The
Australian Accountant, 41, 5 (June 1971), pp.218-21.

2. Stevens, S.S. "On the Theory of the Scales of Measurement",
Science, Cl111 (June 7, 1946), pp.677-80.



illustrated. We then examine the "meaningfulness" of the statistical

manipulationsapplied to each of these scales. This permits us to

analyze the propriety of some recent empirical research in accountinge.

In the second part of the chapter we undertake a statistical
analysis of accounting measurement. Using Stevens' scales of measure-
ment as a basis, the likeness ratio is introduced as a means of quanti-
fying the correlation between imperfectly related measurement rules.

We conclude the chapter with some discussion of the estimation tech=
niques which may be employed when there is disagreement between account-
ants concerning the measurement to be associated with a specific
resource sete. We now focus on the first of these topics; namely the

Stevens measurement schemes



3.1 Stevens' Measurement Scheme

That contemporary writers on accounting measurement attribute some
importance to Stevens' work is illustrated by the fact that few recent
publications in accounting measurement fail to mention it in some way.3
Seldom, however, does the discussion advance past the descriptive stage.
Stevens'! measurement scales are "defined" in some vague sense, usually
by a series of examples, but the implications of this classification
scheme for measurement in general, let alone accounting measurement,
are rarely entertained.é For this reason, this section has as its
purpose the illustration of the important features of Stevens' work
and their implications for measurement in generale. In some later

sections, we will examine its implications for accounting measurement.

3elel Mappings and measurement

Given two sets X and Y, a mapping from X into Y or a func-

tion from X into Y associates with each element in X one and only

3. See, for example, any of the following

Bierman, HeJe "Measurement and Accounting", The Accounting Review,
38, 3 (July 1963) pp.501-507.

Chambers, R.J. ""Measurement in Accounting", Journal of Accounting
Research, 3, 1 (Spring 1965), pp.32-62.

Bierman, He.Je. Financial Accounting Theory, New York: The MacMillan
Company, 1965, pe333.

Chambers, R.Je. Accounting, Evaluation and Economic Behavior.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1966, pp.84-89.

Larson, K.O. "Descriptive Validity of Accounting Calculations",
The Accounting Review, %44, 1 (January 1969), pp.38-47.

Moonitz, M. "Price Level Accounting and Scales of Measurement",
The Accounting Review, 45, 3 (July 1970), pp.465-475.

Sterling, Re.R. Theory of the Measurement of Enterprise Income.
Lawrence, Kansas: The University of Kansas Press, 1970, pPP.66-71.

ko, A notable exception is provided by

Mattessich, R. Accounting and Analytical Methods. Homewood,
Illinois: Richard Do Irwin, Inc., 1964, Chapter 3.
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one element f£(x) in Y.” We say f maps or transforms X into Y
and write fiX-———sYy, The set X is called the domain of f and
f(X) is called the range or image of f.6 Thus f3:1R————s]1R
defined by f(x) = x> im & mapping since each real x’ has one and
only one real square.B However, the "relation' g: IR=—>1R

defined by g(x) =4/ x is not a mapping since each positive real

x has two square roots in 1R.9

Suppose we have the mapping f:X ——I1R, Then, we say
the ordered pair (f;X) forms a measurement rule. We refer to
the image of f (or subsets thereof), that is f (X), as a measure-

ment series. We consider some examples of "measurement rules"

l. The measurement of intelligence is described in the
following terms

I : P~—>IR
where P is a set of people and I associates with each
element in P (i.e. each person) an "intelligence score'"

in 1R.

S5e

Te

8.

Giles, Jo.R. Real Analysis. Sydney: John Wiley and Sons Austra-
lasia Pt}' Ltdo, 1972, p.13-

Note that f(X) need not be identical to Y. Functions possessing
this property are called onto. Functions possessing the property
that for each y in f(X) there exists only one x in X such that y =
f(x) are called one-to-one. Ibide, ppel3=1k.

For the properties of the real number system, see
Ibid., ppe1~7.
Ibid.' pp.ls-li.l'o

Ibid.
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2. The measurement of temperature is described in the
following terms

F § Te———plR
where T is a set of points in time. F associates with
each element in T, a "measurement! (farenheit, centigrade
based) in 1R. Note that T is not restricted to points
in time. We may, for example, define T to be the set of
points on a surface, so that F measures the temperature

at each point.of the surface, at some point in time.lo

3« An accounting measurement rule is described in the
following terms
: — 1R
e
where)st is the algebra generated by the property set
Pt. Lt associates with each set iq):t (accounts
payable, cash, securities, etc.) a "measurement" in 1R.

This may be a "replacement cost'" measure, an "historic

cost" measure and so one

We are justified, therefore, in describing the process of

measurement in the following terms

", .. measurement ... is defined as the assignment ofl
numerals to objects or events according to rules."l

10. Measurement rules may be derived from the conditions wh%ch it is
known they must satisfy. For example, the '"heat equation

Ut = U with initial conditions U(x,0) = sin2x, o€ x € 7C
XX

" =Lt .
and U(o,t) = UW,t) = o has the solution U(x,t) = e 51ngx.
Here U(x,t) is the temperature of a point x on a rod at time t.

11. Stevens, opecite, Po677.
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It is noted, however, that different measurement rules

produce different measurements, Temperature, for example, may

be measured in a variety of ways, the most common, of course,

being the farenheit and centigrade systems,. Thus, for any given
empirical situation, the metrician is likely to be confronted with
a choice of measurement rule or, more precisely, a choice in the
unit of measurement. We are then faced with three specification

problemsl2

l. Identifying the measurement rules (admissible measure-

ment rules) appropriate to a given empirical situatione

2. Determining the group affiliation of the collection

of measurement rules obtained from (1).

Having satisfied (1) and (2) the third specification problem is

stated in the following terms

3. Determining the "numerical procedures" which may

"meaningfully" be applied to the chosen measurement series.

There is, of course, some inadequacy in purely verbal
descriptions of this kind. What, for example, is meant by such
obscure expressions as '"meaningful" and "numerical procedures',
for their significance is not clear from context. It is vital,

however, that we eliminate any confusion inherent in these state-

12, Ibid., p.678.
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ments for they are the hub of the Stevens measurement scheme.

In the next section, therefore, we shall provide a more refined

interpretation of the measurement concepts implied by these

statements.

%3e¢le2 Measurement Scales

In this section, our objective is to fix exactly the mean-
ing of the three specification problems isolated in the previous
section. Having achieved this, we shall then be in a better
position to understand the significance of Stevens' measurement
scheme to the theory of accounting measurement, a topic deferred
to some later sections. For the moment, however, we concentrate
on the problem at hand, namely the provision of a more refined

interpretation of the measurement concepts introduced aboves.

The first two specification problems resolve themselves in
what Stevens termed the measurement scales. Since the factors
determining the set of "admissible measurement rules" vary accord-
ing to the empirical situation being analyzed and tend therefore
to be somewhat fluid, it is not possible to provide in any sub=-
stantive sense a definition of the measurement scales, a point
acknowledged by Stevens.13 Once, however, the set of "admissible
measurement rules" is known, rigour may be compromized, a fact
which is illustrated by the following definition of the measure-

ment scales

The measurement rules f and g are J scaled if there
exists a function U in J such that

13. Stevens, S«S. '"Measurement, Statistics and the Schemapiric View",
Science, CLXI (August 30, 1968), p.850.
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A J measurement scale C_ is a collection of measurement
rules X —®1R which are mutually J scaled.

The precise form of the measurement scale is determined,
of course, by the "group structure" of the set J. Stevens, for
example, introduced the four measurement scales displayed in
Table 3.1..'“t Note that each of these scales is defined by the
group affiliation of the collection of mappings relating each
pair of "admissible measurement rules." Thus in the Stevens
scheme, measurement occurs on a nominal, ordinal, interval or
ratio scale according to whether each pair of admissible measure-
ment rules is related by a one~to-one mapping (permutation group),
monotonic (increasing) mapping (isotonic group), linear (increas-
ing) mapping (general linear group) or similarity (increasing)
mapping (similarity group)e. Whilst these are undoubtedly the
best known measurement scales, other lesser known scales have been

B 2 1
(and may be ) introduced as circumstances dictate. 3

Taken by themselves, the measurement scales serve merely

as a convenient receptacle for classifying measurements according

to the transformations which may be applied to each. Whilst this

1k,

15.

Stevens, S.S. "Mathematics, Measurement and Psychophysics", in
Stevens, SeSe (ed.) Handbook of Experimental Psychologx. New
York: John Wiley & Sons, Ince., 1951, pPe«25.

Suppes, P. and J.L. Zinnes "Basic Measurement Theory", in R.D. Luce,
ReR. Bush and E. Galanter (eds.) Handbook of Mathematical Psycho-
John Wiley and Sons, Inc., 1963,

logy, Volume 1l. New York:
PpP-1-76.
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is a function of some import, their main role derives from the
fact that they provide a means of solving the third specification
problem; namely, determining the "numerical procedures" which may

meaningfully be applied to each scale. This concept may be more

precisely defined as follows

A "numerical procedure! ﬁf is J(~,f) scale
meaningful if when

pis)~ die)
then
FTot ) ~ JToe)

*
for all £ , £t &Ff in CJ and 7T in J.

where it will be recalled that the J measurement scale CJ is a
collection of measurement rules which are mutually J scaled.

The tilde (~) is one of the arithmetic operations "greater than"

(?), "equivalence" (=) or combinations thereof (g or ).

As an example of the implementation of the above defini-
tion we prove that the arithmetic mean may be "meaningfully"
applied to the interval measurement scale. We thus suppose
the intervally scaled measurement rule f to possess the property

n m

— — — —

f » £ where f(£*) = £* = zlf*j and g(£') = £' = kif,lfrk are
J= =

the arithmetic means of the two f measurement seriese. Trans-

forming each measurement series by the general (increasing)
20 : 2—

linear group ef = a + b f implies ﬂ(ﬂ'.f*) =a+bf*y

}f(n'.f') = a + b2E' or that comparison of the arithmetic means of

16. Chambers, loc.cit.
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intervally scaled measurement series is a "meaningful" procedure.
In words, for an interval measurement scale, the relationship

rule
between arithmetic means is independent of the measuremeng(employed.

In Table 3.1 we list the statistical procedures which may
meaningfully be applied to each of the Stevens measurement scales.
Several factors deserve emphasizinge. The permissible statistics
are cumulative. Since, for example, the similarity group is a
subset of the general linear group, a statistic permissible to the
interval scale is also permissible to the ratio scale. Similarly,
a statistic permissible to the ordinal scale is also permissable
to the interval and ratio scales. Should, however, a statistic
be applied to a measurement scale for which it is not permissible
(for example, the geometric mean applied to intervally scaled
measurements), conclusions concerning the statistic become depen-

dent on the measurement rule utilized.l?

17. A numerical example may help to clarify this point. Consider the
two temperature series A = (2,10) and B_ = (4,6) where the measure-

ments are on the centigrade scale. The comparable measurements
on the farenheit scale are AF = (35.6,50) and BF = (39.2, 42.8)

where tBese figures are obtained by applying the familiar formula
j 32@30 to the centigrade measurementse. Denote by G, the

geometric mean of each series, in which case we have
G(Ac)=./2x10 = &.47(@(5‘:) =|/4x6 = 4,90

for the centigrade scale measurements. For the farenheit scale
measurements we have

G(AL) =y 35:6 x 50 = 42.19 ¥ G(B) = 4/;9.2 x 42.8 =

L0.96

Thus, using the geometric mean as a criterion, the centigrade scale
measurements indicate that the "A" temperature series is "hotter!
than the "B" temperature series. If, however, we employ the faren-
heit scale, precisely the opposite result is obtained. The "B"
temperature series is "hotter" than the "A" temperature series.
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This completes our analysis of the Stevens measurement
scheme. In summary we note that the Stevens measurement scales
are merely a device for classifying measurements according to the
transformations which may be applied to each but that in so doing
it provides a means for determining the "meaningfulness' of the
numerical procedures applied to such measurements. We now focus
our attention on the more important task of investigating the

significance of Stevens' work to the theory of accounting

measurements
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32 The Accounting Implications

In this section our objective is to examine the accounting
implications of the Stevens measurement scheme. These are at least
two in number. Firstly, Stevens' work has been used to cast doubt
on the verity of some recent empirical research in accountinge. That
it is important to resolve this issue derives from the fact that the
methods concerned are widely used in practice and if they be invalid
they may be the source of some invalid empirical generalizations.
Secondly, in many aspects of his measurement function, the accountant
must choose one of several admissable measurement rulese. Recall
that in the Stevens scheme, measurement scales are defined in terms
of the relationship which exists between such rules. Although it
is unlikely that alternative accounting measurement rules will have
any deterministic relationship, the Stevens scheme does provide a
rationale for utilizing one accounting measurement rule as a means

of estimating another.

In the present section we shall examine each of these topics
in some detail. We commence with the implications of Stevens' work

for empirical research in accounting.

3e.2e1 The Meaningfulness of Some Recent Empirical Accounting
Research

A significant feature of Stevens' work, at least as far
as accounting is concerned, is that it has been utilized to

cast doubtsl8 upon the validity of some recent empirical research

18. Peasnell, K.V. "The Objectives of Published Accounting Reports:
A Comment", Accounting and Business Research, 4, 17 (Winter 1974)

pP-?l'—?G.
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conducted by Carsberg, Hope and Scapens.19 Since a similar
statistical methodology was adopted in the empirical investiga=-
s ; 20 . 21
tions conducted by Fisher, Lee and Tweedie = and Baker and
22 -y s
Haslem, it is important that we evaluate the criticism's

authenticity. This we proceed to do.

Each of the research projects noted above reports results
obtained from requesting questionnaire respondents to rank finan-
cial information in some preferred order. Thus, for example,

in the Carsberg et al study

"The nub of our enquiry was expressed in a question
which asked respondents to rank, on a seven point
scale, the importance they thought should be attached

to a number of possible objectives for published
accounts."“

As a basis for comparisons the ranks were summed over all
respondents and the mean and standard deviation of each objective
was computeda. It was this procedure which attracted the atten=-

tion of Professor Peasnell.

19. Carsberg, Be., Ae. Hope and R.W. Scapens. "The Objectives of
Published Accounting Reports", Accounting and Business Research, 5,
15 (Summer 1974), ppel162-173.

20. Fisher, J. I'""Financial Information and the Accounting Standards
Steering Committee'", Accounting and Business Research, 5, 16
(Autumn 1974), pp.275-285.

2l. Lee, TeA. and D.P. Tweedie. '"Accounting Information: An
Investigation of Private Shareholder Usage'", Accounting and Business
Research, 5, 20 (Autumn 1975), pp.280-297.

22, Baker, H.K. and J.A. Haslems "Information Needs of Individual
Investors", The Journal of Accountancy, 136, 11 (November 1973),
PP+ 64=69.

23, Carsberg, et ale., OpsCite, pP«170.
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eees One cannot agree with Carsberg et al that

"averages seem to be a reasonable way of summaris-
ing the replies" ... because the averaging proced-
ure is based on the ... erroneous assumption that
the measurements are in the interval scale.!2%

1

The criticism may be more fully appreciated by reference

to the following matrix

Objective
Individual 1 2 3 n
1 P P
= x11 x12 x13 xln
@
=
X X b, SN T —
13 3 31 32 33 n
~
~
: 1
E
B R —
£ xml xﬁz xﬁ3 .

The elements xij of this matrix define a measurement rule,

1 L]
£ Z;_leT——bZT where Z? is the set of integers contained

in the interval [l,n] representing the ranks allotted to each of

: M : : : .
n objectives, Z 1s the set of integers contained in the interval

1

n

T
[l,ﬁ] representing the m respondents and Z Zn represents each

1 1

of the n objectives. Thus, for example, the entry X23

sents the rank allotted to the third objective by the second

repre=-

respondent, or in functional form, f(2,3) = xz3 where x23 S

of course, a positive integer.

To substantiate the view expressed by Professor Peasnell
we must show that there exist at least two admissable measurement
rules and that these rules are ordinally scaled; that is, linearly

independent. Recall, from Table 3.1, that the mean and standard

24, Peasnell, opeCite, DPe75e
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deviation are not statistics permissible to the ordinal scale (that
is, are not meaningful numerical procedures to the ordinal scale)e
It follows that on the ordinal scale the relationship between
means and standard deviations is (in general) dependent upon
which of the admissible measurement rules is utilized to express
the results of measurement. The question, turns, therefore, on

whether there exists a pair of linearly independent methods

(measurement rules) for denoting ranks.

Our examination of the literature indicates that there is
but one numerical procedure (that is, one admissible measurement

rule) available for denoting ranks; namely, denotation of ranks

by the positive integers 1, 2, y N, where n is the number
of objects rankeds As such, the numbers denoting ranks (z)

may only be transformed by the identity mapping W(z) = z.
Measurement rules possessing this property are said to be abso-
lutely scaled,25 and have the additional feature that each of

the statistics listed in Table 3.1 is a meaningful numerical
procedure with respect to the measurement rule.26 The conse-
quence of this, of course, is that Professor Peasnell's criticism
of the Carsberg et al paper is unsubstantiated. In words, com=-

puting the mean and standard deviation of a set of ranks is a

"meaningful" numerical proceduree.

We conclude, therefore, that estimating the "true" rank-

25. Suppes and Zinnes, OpeCite, Pe25.

26. This follows from the fact that the identity mapping is obtained
from the similarity mapping W(z) =Xz, by setting %X = l.
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ings by the procedure utilized in each of the above noted studies
(the arithmetic mean of the respondents' ranks) is a meaningful
operations It may not, however, be the most "efficient" means

of doing so. This is a topic we devote some time to in the

ensuing sectione.

32.2 The Problem of m Rankings

Carsberg et al estimate the "true" ranking of n objects
on the basis of the (arithmetic) mean rank taken over the m
27

questionnaire respondents. This procedure, however, is defi=-

cient in two respects

1l It presupposes the existence of consensus amongst
the m respondents.
2. There is no criterion by which to judge the "effi-

ciency" of the estimated rankings.

To overcome the first objection the coefficient of concor-

dance has been proposede

125
W o= ————
mz(ns-n)

where m is the number of respondents and n is the number of

27. Carsberg et al, loc. cit. See also

Lee and Tweedie, OE¢cit.’ p.282.
Baker and Haslem, opsCite, Pe65.
Fisher, opecite, p.280.

28. Kendall, Opecite, DPe95e
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objects being rankede S is the sum of the squared differences

between the total of the ranks attributed to each object and the

average attributed to all objects. Define the following

(m=1)w
Uy = 1=-w
v, = (n-1) _%
vV, = (m=1)v,
V = m(n=1)w

On the presumption that there is no consensus between the m
respondents it can be shown for n » 5 and m 7 3 that U is distri=-
buted as an F(Vl,Vz) 1.!':5!.1"1&11:&3.29 When n >7, however, a more
convenient test is provided by the fact that V has an approxi=-

2 ¢ ; 30
mate X frequency function with (n-=1) degrees of freedom.
When neither of these conditions is satisfied we resort to the

use of specially prepared Tables.31

For the second problem, it may be shown that to rank

objects according to the sum of ranks allotted to each provides

32

a "best" estimate in a "least squares' sense. The ranking

29. See Appendix 3A. See also Ibide, pp.107-1ll.
30. Ibide, D98
31. Ibid.' pp-184-188-

32. Ibide s Pe 101.



thus obtained remains invariant when the rank sums are trans-
formed to their arithmetic means.33 It would seem, therefore,

that the research reported above provides rankings consistent

with the "least squares" rankings. Unfortunately, this is not

necessarily the case.

In the Carsberg et al study, questionnaire respondents
were requested to rank ten potential uses of financial state=-
ments on a scale from one to seven.34 Thus, the rank allotted
to each use was not necessarily unique. Similar procedures
were adopted by Lee and Tweed1935 and Baker and Haslem.36 The
consequence of this is that the estimated rankings reported in
each of these papers are not necessarily consistent with the
"least squares" estimates because under the "least squares!

criterion each object must receive a unique rank from each

respondent.S?

33

5k
35
36.

37

Obviously if J| x. & X. then = V' x. o
Tle 20 e A L

=8
M=
Ll

=1 ik

=
i

Carsberg et al, loce.cite

Lee and Tweedie, loc.cite.
Baker and Haslem, loc.cite
Kendall, opecit., p.10l and pelll,

Note that the studies referred to in the test requested question=~
naire respondents to map various kinds of financial information
into a set of mutually exclusive "importance! ranks. Under

this scheme, it is possible for each type of financial datum to
receive the same importance rank.
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This completes our analysis of the implications of
Stevens' work for empirical accounting researche. In summary,
we note that his work is of vital importance to any research
project involving some species of measurement. Recall, however,
that his work does bear a more direct relationship to accounting
measurement in that it can be used as a base from which to
rationalize the statistical estimation of one accounting

measurement rule by recourse to another. In the next section

we shall develop this theme in more detail.

3e2s3 The Likeness Ratio

In the Stevens system, scales are defined in terms of
relations amongst admissible measurement rules. Thus, the
measurements obtained under one measurement rule can be trans-
formed into their equivalent measurements under another rule by
merely applying the transformation which defines the scale type.
In accounting measurement, however, whilst there are usually
several potentially useful measurement rules, it is doubtful
if there is any deterministic relation between them. Since
financial statements must, of necessity, limit the number of
valuation bases reported, users may be denied some potentially
useful information. A partial solution to this problem was
provided by Ijiri in the form of the linear aggregation coeffi=-

38

cient. The square of the linear aggregation coefficient,
which Ijiri dubbed the aggregation effectiveness coefficient, is

a summary measure designed to reveal the degree of identifiability

384 Ijiri, Y. The Foundations of Accounting Measurement.
Englewood Cliffs: New Hersey: Prentice-Hall, Ince., 1967, p.130.
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between any two accounting aggregations.39 Unfortunately,
our axiom system is not stated in a form which facilitates use
of the aggregation effectiveness coefficient due to the absence
of quantification in the sense implied by Ijiri's axiom of
quantities. In this section, therefore, we shall define and
investigate the properties of the likeness ratio which is designed

as the analogue of Ijiri's aggregation effectiveness coefficiente.

In this respect, suppose a set of financial statements
to be prepared under the valuation basis implied by the measure-
ment rule (Lt; }t)' Suppose, however, a user of these state=~
ments "prefers" the valuation basis implied by the unknown
measurement rule (L! ,}: )e Since L, is known, it may be
t t t
possible to decrease the user's uncertainty by estimating L't by

the following method

= = X. + e.
ya/daa

= to(st dx. = L.(S.) for all S. in e, is
where yJ. Lt( J} an XJ t( i 3 £ 5y

the error from estimating yJ. hy/ax‘j and /d is a parameter. In

order to determine a "best" value for ﬁ we must choose an

optimality criterion. In this respect, the quantity

Vv, Bx)
1 AL _J __ jis the fraction of the squared values of the

Ly
]

39 Ibidl’ p¢126-
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y's that is eliminated as a result of estimating y by x. For
"exact!" fits the ratio assumes a value of unitye When the

fit is not exact the ratio decreases in value as the fit
deteriorates. Consequently, we employ this ratio as a criterion
for gauging how useful one measurement rule is in estimating
another. Specifically, define the following function as an

optimality criterion

N
2
jg,l(yj —/dxj)

2

Y
i

Az(/s) 2 e

1:42

Il

J

x 5 n
where each summation is taken over the N = 2 measurements

obtained by respectively applying L't and Lt to £

T 2 : : . - < :
tiating A 96) with respect tO/ﬂ implies A?gﬂ) attains its maximal

Differen=-

value when assumes the following figureéo

A o !:x
fo-k

where the summation subscripts have been dropped for convenience.

This result implies that|A29ﬁ) attains its maximal value at the
A
- f(p)] 'nvherezk:L

ixy)?
Y2l

A

point[ﬁ

);2(,3)

40, See Appendix 3B.

41, See Appendix 3B.
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: 2.4
We thus define A 95) as the likeness ratio.

The likeness ratio possesses all the properties one would
expect of a '"determination coefficient". The range of Agsa) is

!
defined bykz
2 A
0g A (/6)4 1
: : 2 . 2 L3
whilst it can be shown that X (ﬂ) = 0 if and only 1f/5 = O.
Further, if the fit is exact in the sense that ej = 0 for all j,

then Azsg) = 1.&4

The likeness ratio may be used as a means of choosing the
simple resources to be reported in financial statements. We
may, for example, define a standard such as ,\2(’3) = 0.95 to be
"satisfactory" and then where possible, choose the simple resources
so-that "satisfactory" approximations can be made to the measure-
ments of other valuation bases. As an example of this, we com=-
pute the likeness ratio for the historic cost and replacement
cost measurement rules of the Dyer Company Limited as of Decem-
ber 31, 1909. The data upon which the computations are based
are contained in Appendix 3C to this chapter and Table 4.9 of

. 2 A
Chapter 4. Applying the equation for A (F) we have

42, See Appendix 3B.
43, See Appendix 3B.

LLk, See Appendix 3B.
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s Exy)?
S

I

(335, 402.2)>
(302, 465.5)(379, 576.7)

0.9798

>
1%]
5>
n

A likeness ratio as "significant" as this implies that
the historic cost measurement rule is "likely" to be quite useful
in estimating the replacement cost measurements of the Dyer
Company's resources. Had the fit been less precise, it may
have been possible to improve the value of the likeness ratio
by aggregating some simple resources into compound resources
whilst disaggregating otherse. In any event, the likeness ratio
seems not only to provide a means for determining the content
of financial statements, but also a summary measure of the

identifiability of accounting measurement rules.

This completes our consideration of Stevens' work as it
affects accounting measurements. In summary, we note that the
main import of Stevens' work seems to be to empirical research
in accounting, although it can be used as a base from which to
rationalize the estimation of one accounting measurement rule
by recourse to another rule. We now entertain a topic which
has received surprisingly little attention in the accounting
literature; namely a probabilistic analysis of accounting

measurement rulesa.



84

3e3 A Probabilistic Analysis of Accounting Measurement

In the analysis to date, there has been little discussion of the
factors influencing the appropriation of numbers to the resource sets

composing the algebr%)st. These numbers have been taken as somehow

determined outside the axiom systems. That accountants are prone to

disagreement over this procedure is well t:‘;ocv.:men‘t;ec‘z..1}'5 Indeed, the
American Accounting Association went so far as to suggest the incorpora-

tion of interval estimates of accounting measurements into financial

statements.

".ss pressure exists for an expansion of the scope of
accounting. The Committee believes that initially this
expansion will be reflected in accounting reports
with multiple valuations e.ee « (An) aspect of multiple
valuations involves the use of non-deterministic measures
or quantum ranges se.e o

In this section we shall examine two methods for implementing
this procedure. The first method imposes the strong assumption that
the measurement series under examination possesses a normal fregquency
function, whilst the second relaxes this assumption and imposes the
alternative condition that the measurement series merely possesses
mean and variancee. We now turn to the first of these methods.

b7

363l "Normal! Measurement

Suppose the measurement series x , X ——, xn to consist of n

1Y a2

45, Sterling, "Cost versus Values: An Empirical Test", op.cit.

46, American Accounting Association. A Statement of Basic Accounting
Theory. Evanston, Illinois: American Accounting Association,
1966, P.65.

47, The analysis of this section may, at first sight, appear to be
similar to the work conducted by Ijiri and Jaedicke. See
Ijiri, Y. and R.Ke. Jaedicke, "Reliability and Objectivity of

(Contd.)
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metricians' estimates of the measure of a resource set using the
rules of a particular measurement system, such as, for example,

the method of replacement cost. Define the sample objectivity

measure of the measurement series as

e 2
e -i: (x. =X)
nj:l J

where & is determined so as to minimize V. Differentiating

with respect to= and setting the result to zero gives

n
dv -2
e Q= HE (XJ. -x)
J=1
so that
n
1
X = ;E X.
=1
l-l'?- (Contd-)

48,

Accounting Measurements'", The Accounting Review, XLI, 3 (July
1966), pp.474-83. There are, however, several differences.
Firstly, Ijiri and Jaedicke's ''falleged value" is not, in general,
equivalent to our "true value', The "true value" is the first
moment (about the origon) of the metricians' frequency function.
Ijiri and Jaedicke have little to say on how the "alleged value"
is derived. Secondly, Ijiri and Jaedicke did not discuss how
estimates of the bias and objectivity measurements implied by
their system could be obtained. See also,

Ijiri, opecite, Chapter 7 for some more discussion on thise.
d2

Since 7—! = 2% 0 we are assured of a minimum. See Hancock,
dx

H. Theory of Maxima and Minima. Boston: Ginn and Company,
1917, p.k or any elementary calculus text.
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is merely the arithmetic mean of the measurement series.

Suppose the elements of the measurement series are random elements

from a frequency function pPossessing the following parameters

l. /4/: E(x)

Be 0';= _'E[x - E(x)]2

Ly
We call/u, the "true value" 9 (or consensus value) of the resource
2 ) el
and 5~ the "objectivity measure" of the resource. This permits

the sample reliability measure to be defined in the following

terms

163 2
R = H‘]El(x\] "/Al)

Since X was determined so as to minimize the sample
objectivity measure we have that R 2 V. The precise relation=-

ship between these quantities, however, can be derived in the

following manner
nv = 8 (x:I - ;)2

where the summation subscripts have been dropped for conveniences.

Continuing we have

oy =0 [(xj -/t.) - (x —/u)]z
D[ - - 20 s ) + & ou)7]

49, This terminology was introduced by Morgenstern. See
Morgenstern, O. On the Accuracy of Economic Observations.
Princeton: Princeton University Press, 1963, p.76.
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¥ e Z(xj -/«.«,)2 =& -/u)z(xj )+ n(x -/u)z

But since

21(xj ;AL) = n(x 7/&)

we may restate the above expression in the following terms

nv = Z(xj 7«)2 - n(x -/a)z

. — 2
Define B = (x 7/L) as the sample bias measure thus implying

n(Vv + B)

so that the non-negative sample bias measure is the exact differ-
ence between R and V. Suppose we impose the following assump-

tion
, X_is a
n

The measurement series X9 Xp
random sample from a normal frequency function.

o, 2 L
and divide nV by the objectivity measure y~ thus giving

v _ nR _nb
A= 2 2
o i

It can then be shown

l. The variate x = %zzxj possesses a normal frequency
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function with meanvﬂband variance EE.50
n

/Chi squared
2. Th iate &V i ;
. e variate ~5 Possesses a frequency function with

(n = 1) degrees of freedom.51

) nR /Chi squared
3« The variate — possesses a frequency function with

n degrees of freedom.52

B /Chi squared
4. The variate — Ju i i
ia e“:,_‘2 Possesses a frequency function with

53

one degree of freedom.

< nB E
5« The variate ;:5 bossesses a normal frequency function
L

with zero mean and unit variance.

and

: / ~1)B
6. The variate LE—Fl— possesses a t frequency function

with (n-1) degrees of freedom.55

50.

51.
52
53
Ske
55

Mood, A.M. and F.A. Graybill. Introduction to the Theory of
Statisticse. New York: McGraw-Hill Book Company, Inc., 1963, p.
146.

Ibide, pPe230.
Ibide, ps227.
Ibide, DPe230.
Ibide.

Suppose y to be a normal variate with zero mean and unit variance.
Let u be a x“ variate with k degrees of freedom and suppose u and
y to be independently distributed. Then the random variable

has a student's t frequency function with k degrees of freedom.
Recall that the variate
{Contd.)
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We are thus provided with a powerful set of tests by which
to determine the consistency of alternative hypotheses concerning

3 2
the variates B, R and G * We illustrate their use by recourse

to the following example

An accountant is required to estimate a building's
replacement cost and objectivity measures. A

random sample of 25 metricians produces the following
statistics

(i) x = 10
(ii) v = 100

Construct 95 per cent confidence intervals for the
variates B, g and the ordered pair (B, F?).

From result 6 above we know that the variate ,iﬂeilg

has a t frequency function with (n-l1) degrees of freedom. Sub-

55 « Contd.

has a normal frequency function with zero mean and unit variance,
whilst the variate

T ok

= 62

has a x2 frequency function with (n=1) degrees of freedom. Since
the frequency functions of x and V are, in fact, independently
distributed we may use the above result. Substituting we have

2
nB
L o /—-é- E:—V fn-l
6" ™
(n=1)B
< =|/_——Tr_

has a t frequency function with (n-1) degrees of freedom. See
Ibid., p.233 and p.255.
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stituting the given values of n and V implies

p[l ’0.2413 | < 2.064]

This may be restated as

1

0.95

1

This result implies that the probability of the sample
bias measure exceeding 17.750 is 0.05. - A similar procedure may
be applied in estimating the objectivity measure 2. By virtue
v /Chi squared

of result 2, the variate ) possesses a frequency function
o

with (n-1) degrees of freedom. Substituting the given values

of n and V implies

|

which may be restated as

> 13.8 ] = 0.95

)2

2 nv
2 oy
p[ o < 181.59 = 0.95

Thus, the probability of the objectivity measure exceed-

ing 181.59 is 0.05.

The procedures specified above provide separate interval

estimates of the sample bias measure B and the objectivity



gl

2
measure p- . In addition, however, it is possible to construct
a confidence region in (B,d?) parameter spaces This procedure
provides some insight into the possible values which B and ﬂ?
may Jjointly assume. Since the frequency functions of X and V
are independently distributed,56 we employ results 2 and 5 above,

57

in which case it follows

p[ I &-_n-gl < 2.24] = 0.975
which may be restated as

p[tg < 5.02] = 0.975
and

p[:—-{- > 12-4] = 0.975

56. Ibide, DPe255a

57« The confidence region determined here is but one of an infinite
number of possibilities. To be more precise, we must choose real
numbers h and k so that

{/Z1 < o]
o

n
=

k

I}

v
p :‘F 2 12.&]

where hek = 0.95. We have chosen h = k =,J0.95 & 0.975 but
there are obviously an infinite number of other possibilities.
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The two inequalities obtained from the above equations
taken in conjunction with the fact that both B and 0-2' must
assume non-negative values,58 determines the required confidence

region. Substituting the observed values of n and V into the

above expressions, we have

B < 0.20 5.2

5 & 201.61

2
B, o 20

The confidence region implied by these equations is
graphed in Figure 3.1l. The probability of both B and U? being

interior points of this confidence region is 0.95.

As the justification of these procedures is grounded in
their practical utility, we illustrate their application by
recourse to the example pursued above. Suppose the following
alternate criteria are provided by ''management!" as necessary

conditions for the inclusion of x in the financial statements.

1. The probability of the sample bias measure

exceeding 20 (twenty) must not be greater than 0.05.

2. The probability of the sample objectivity measure

exceeding 150 must not be greater than 0.05.

58. Since B and E? are squared real numbers, this must be the case.
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FIGURE 3,1

CONFIDENCE REGION IN (B,g°) PARAMETER SPACE
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3. The probability of the ordered pair (B, F?) being
contained in the region defined by the upper half of

the rectangle formed from the origon and the point

(30,150) must not be less than 0.95.

Under the first criterion the sample mean would be inclu-

59

ded in the financial statements as

p| Bg 20 p[l f———-—-—tn'; jBIs 2.191]

0.980

]

d
(u1]

n
\b]
o
i

This result implies that the probability of the sample
bias measure exceeding 20 is (1-0.98) or 0.02. This is well

within the tolerance specified by "management!.

Using the second criterion, however, the sample mean would

6
be excluded from the financial statements =

59 Recall that n = 25 and V = 100. It follows, therefore, that

(n-1)B _ 24B o 24
VA S21001 " 100

/(n—l)B
v

The probability reported in the text may then be obtained by
interpolating on the t distribution function tables.
2 2
60. [ AN I 150
nV = 2500 ~ 2500

x 20

€ 2.191

16.67 € “—g
o

The probability reported in the text may then be obtained by
interpolating on the distribution function tables.
/Chi squared

i\l



99

2 T nv
2 Re

This result implies that the probability of the objectivity
measure exceeding 150 is (1-0.86) or 0.lk. This is outwith the
probability specified by '""management" and consequently the sample

mean is excluded from the financial statements.

Utilization of the third criterion effects exclusion of
the sample mean from the financial statements. To determine
the probability of the ordered pair (B,OE) being interior points

of this region we must determine the real numbers d and g where

: _
o|| /% |< 4]

1}
=3

and

Il
P

=

so that the "vertex" of the confidence region occurs at the
point (30,150). Using this condition, the second of the above

equations and recalling that n = 25 and V = 100, we have

ooy
0_2
= 25 x 100
150
g = 16467
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Similarly, from the first equation we have

wecf ]
- |A2==]

’n
Using tables and the fact that Eg possesses a normal frequency
function with zZero mean and unit variance whilst B possesses a

xz frequency function with (n-1) degrees of freedom, we have

p[l /% | < 2.24] = 04975
and
nv
p[ 2 > 16.67] = 86

or, h = 0,975 and k = 0.86. Since the freguency functions of
X and V are independently distributed,61 these results imply
that the probability of the ordered pair (B, 52) being an

interior point of the region specified by "management!" is

p[ {I/%I £ 2.2.4}:\ 6% z 16.6?}]
p[ljgl < 2.24].;:[ ?‘21 > 16.67]
h

k

n

]

= 0.84

Thus, the probability of the ordered pair (B, Jz) being an

61s Mood and Graybill, op.cite, pe255.




exterior point of the region is (1-0.8%4&) or 0.16. Since this

is outwith the probability specified by "management" the sample

mean is excluded from the financial statements.

The normal frequency function occupies a conspicuous
position in statistical theory if only because it has been found
to be a "good" approximation to many empirical frequency functions.
Misleading conclusions may be derived, however, when the normal

: 63 A
assumptions are erroneously employed. In the next section,
therefore, we shall investigate some methods which may be utilized

when the normal assumptions are violatede.

3e%3e2 "Non-Normal' Measurement

In cases when there is evidence of "non—normality"64
but we are assured that/u,and 52 exist, there are two results

of some significance. The first of these may be stated as

62.

63

6k

Ibide, P.156.

Lusk, E. "Normal Assumptions in Decision Making", Accounting and
Business Research, 3, 10 (Spring 1973), pp.l133-1L4k.

For some "goodness of fit tests", see

Kendall, M.Ge. and A. Stuart. The Advanced Theory of Statistics,

Volume 2. London: Charles Griffin and Company Limited, 1973,
Chapter 30.

On the "sensitivity" of normal tests to departures from normal-
ity; that is, the robustness of these tests, see

Ibid., Chapter 31, especially pp.483-48L,




65

follows

l. Let ; be the mean of a random sample of size n.

Then the variate

’ nB
52

has an asymptotic normal frequency function with zero

mean and unit variance.

This result is known as the central limit theorem.

The rate of convergence to "mormality'" and, therefore, the

degree of approximation, depend on the sample size and the
frequency function being sampled. As an example of the theorem's
application, suppose the normal approximation to be reasonable

and that o> is knowne It then follows that

(s

represents a (1-X) confidence region for the sample bias measure.

£ Z%-‘] = (1-%)

In words, the probability of the sample b%aszmeasure (B) being
“ix0

an interior point of the interval [?, -3;;—-] is (1-%). A

similar procedure may be adopted for the objectivity measure

( 52) when the sample bias measure is known. It is unlikely,

of course, that the precise values of B or 5= (or both) will be

65. For a proof of this theorem, making the redundant assumption that
the frequency function's moment generating function exists, see
Mood and Graybill, op.cit., pp.149-150. For proofs using more
general conditjons, see
Freund, J.E. Mathematical Statistics. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1971, p.208.

Keeping, E.S. Introduction to Statistical Inference. New York:
D. Van Nostrand Company, Inc., 1962, pp.90-92.
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known, and as a consequence, this result is of little use in

the form in which it is statede.

A far more significant result, however, is provided by

the following theorem
If y is random variable with finite second moment then
p[ |y| Z t] < BT
for all non-negative real te.

This result is known as Chebyshev'!s inequality, so named
after the Russian mathematician who discovered it. A proof of

the theorem (in this form) is provided in Appendix 3D.

Chebyshev's theorem can be used to prove some so called
"ergodic!" theorems. To illustrate, make the substitutions

y =+/B and t = k# in which case we have

| A

| el -A) 2]
K67

66. For some other forms of this inequality, see
Mood and Graybill, op.cit., pp.l148-149.
Freund, op.cit., pp.149-151.

Keeping, op.cit., pp.45-46.

When M is known to exist, but we are not assured that 5'2 exists,

then the Markov Inequality may be of some assistance. See
Ibid., p..45.



Thus, for "large" samples, it is likely that the sample
bias will be negligible. A similar result holds for the
sample objectivity measure (V) in its relation to the object-
ivity measure (62). To illustrate, let s =V y=(s =7)

and t = k&', in which case we have

2
p[ Is -o-' 7 ko'] < : [(Sk;:;) ]

E(sz) - 20E(s) +U"2

e

But since

Etsz) n-1 .2 68

n
|
S

67. This result follows from the fact that

o = E[&-m?
x

ol = o2
X n

A proof of this result is provided in
Mood and Graybill, op.cit., p.146.

68. Freund, OPeCite, Pe257.
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E(s) = 0 (1-in+02)®

It follows that

{lo-el > x0] &[5

20.'2(1-%;1’1-;-0;];-2)+d‘2]

1. [ 2n-1 e 1
_kz[n -2(1—:,n+0;2)]

Taking limits across this inequality we have

n
()

Lim p[ls-o-' 7/ kn‘]

n —»00

or that for "large" samples s =,V is likely to be a reasonable
approximation ford . This, of course, implies that for "large"
n, the sample objectivity measure (V) is likely to be "good"

approximation to the objectivity measure (6'2).

The "ergodic" theorems (concerning B and 6'2) derived
above are of considerable practical significance since they
imply for large samples taken from frequency functions possess-
ing second moment about the mean (6‘2), that the measurement
bias (B) is likely to be negligible whilst the sample object~

ivity measure (V) is likely to be a reasonable approximation for

69. Keeping, op.cit., ps209.
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[
the actual objectivity measure (62]. When the sample size is

small.,70 however, knowledge of the underlying frequency function

is a necessity if we are to make substantive conclusions.

This completes our analysis of the probabilistic founda=-
tions of accounting measurement. We now summarize the contents

of the present chapter.

70. Note that Sterling found the normal frequency function to be a
reasonable approximation to the actual frequency function in

his study. See Sterling, "Cost versus Values: An Empirical
TeS‘t", o] -Cit., Pe220.
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3elte Summary

In this chapter we have endeavoured to analyze accounting
measurement by building on the axiom system developed in the previous
chapter. Since few recent publications in accounting measurement
fail to devote some attention to the Stevens measurement scheme, we
commenced the chapter with an examination of the important features
of Stevens! Measurement scheme. Having achieved this, we proceeded
to examine its potential to the theory of accounting measurement.

In this respect, it was suggested that the main import of Stevens'
work lies in the province of empirical researchs It would seem to
bear little significance to accounting measurement per se unless, of
course, it were to be demonstrated that the several accounting

measurement rules have some deterministic relationship.

Stevens' measurement scheme can be used, however, as a base
from which to rationalize the estimation of one accounting measurement
rule by recourse to another. The likeness ratio was thus defined
as a means of measuring the identifiability of any two accounting
measurement rules. The likeness ratio was also shown to possess all

the properties one would expect of a "determination coefficient".

As a final exercise, we undertood an analysis of the "estima-
tion" techniques which may be utilized when there is disagreement
between accountants concerning the measurements to be accorded a
specific resource set. Specifically, this part of our work developed
upon a theme initially developed by Ijiri and Jaedicke and enabled us
to specify a means of incorporating interval estimates into financial
statements. An unsatisfactory feature of the analysis, however, is

that it assumed that measurements were normally distributed.
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APPENDIX 3A

THE COEFFICIENT OF CONCORDANCE

On the assumption that all (m) observers are independent in
their judgements, Pitman has shown that the frequency function of W

may be approximated by the Beta distribution

STl .IJ;%%L Wl (1) 3 Law
pJ (a)

1
where P = 3(n=1) - =

and q = (m=1)p

provided m 73 and n 75. Recall that m is the number of objects
being rankede. This frequency function may be more usefully restated

as

i T(p+a) w P AL ~(p+q) 1 z
T’(p)'r'(q) 1~ 1-W W(1-w)

Make the substitution

(m~-1)w
ZANCAS ¢ oo
W(1l-W)

Thus implying that the frequency function may be restated as

aF g EEiﬂ) (m=1)2 ezpz [(m-l) + ezz] -(p+Q)dz

= T @I (@)

Letting Vl = 2D, Va = 2q and eliminating m, the above frequency
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function may be restated as

V. +V \'s

1
J1-L_2) " 1 vz o ~2(V,+V,)
dFF = 2 _ll2.e 1+ v e dz
2
T Le
2 2

which is the frequency function of Fisher's z variate with V, and

(m=1)W

Vz degrees of freedom. In words, the variate z =1lo e

has a

z frequency function with V. = (n-1) = % and V

i = (m-l)V1 degrees of

2

freedome Suppose now we make the substitution

£ = eZz

-é—f"ldf

1]

dz

then the frequency function of Fisher's z variate may be re=

expressed as

L
_I_|(vl+vz) : \_Ii v, = v, 2(V,+V,)
ar = 2 lla2f2 Lot df
v v Vv 2
1 2,-L°2
1—%§_er(2 )

which is the frequency function of Fisher's f variate with V. and

1
X (m=1)W
Vz degrees of freedom. Hence, the variate f = e has an f
frequency function with Vl = (n=1) =~ % and Vz = (m-l)v1 degrees of

freedome. On this topic generally see

Ken