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ABSTRACT 

In many respects, the present state of the theory of accounting 

measurement resembles that of probability theory before the path 

breaking analysis of A.N. Komolgorov. In accounting, as in "pre - 

Komolgorov" probability theory, there have been numerous attempts at 

providing a set of axioms for accounting measurement, all of which have 

either been ignored or subjected to varying degrees of criticism. By 

building on these prior attempts, the present thesis proposes an 

alternative set of axioms and then investigates its implications for 

accounting measurement in general. 

The unifying conception has been alluded to already. The 

thesis endeavours to show that the theory of accounting measurement 

is, in fact, grounded upon three axioms, and it is the specification 

of the information assumed given by these axioms, which is the source 

of many (if not all) of accounting's problems. The remainder of the 

thesis deals with the more important of these problems. Thus, 

chapter three concerns itself with the statistical estimation and 

identifiability of accounting measurement rules; chapter four, with 

the commonly encountered models (or interpretations) of the axiom 

system alluded to above; chapter five, with some numerical methods 

for estimating the replacement cost of asset disposals (a necessary 

piece of datum if we are to provide the axiom system with a replacement 

cost interpretation), whilst chapter six, relying on the capital theory 

of Irving Fisher, deals with the economic foundations of accounting 

measurement. 

There are two major conclusions which emerge from the study. 



Firstly, by summarizing the antecedent conditions which must be satis- 

fied before it is possible to generate accounting measurements, the 

"axiomatic method" provides a useful framework from which to determine 

(and organize) the relative importance of measurement problems in 

accounting. However, much remains to be done if the method is to 

achieve its "ideal" function as a watershed or "clearing house" for 

measurement problems in accounting. Secondly, Irving Fisher's 

"capital theory" possesses far greater potential for accounting theory 

than has hither to been realized. Specifically, by deriving Fisher's 

"investment opportunity locus" from first principles, as distinct from 

assuming it to be exogeneously specified, it is possible to provide 

an economic rationale for each of the measurement systems alluded to 

in chapter four. 
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CHAPTER ONE 

AN INTRODUCTORY NOTE 



1.0 Introduction 

Recent years have witnessed the emergence of a bewildering volume 

of books and articles each concerned with some aspect of measurement 

in accounting.1 This topic, which Professor Ijiri aptly dubbed the 

theory of accounting measurement,2 arose from two principal considera- 

tions. First and foremost of these, was the realization that the 

antecedent conditions which need to be satisfied, before it is possible 

to construct accounting measurements, have nowhere been adequately 

specified or documented.3 Yet, without a thorough understanding of 

the ingredients which go to make up accounting measurements, it is 

1. See, for example, any of the following 

Bierman, H.J. "Measurement in Accounting ", The Accounting Review, 
XXXVIII, 3 (July 1963), pp.501-507. 
Mattessich, R. Accounting and Analytical Methods. Homewood, 
Illinois: Richard D. Irwin, Inc., 1964. 

Chambers, R.J. "Measurement in Accounting ", Journal of Accounting 
Research, 3, 1 (Spring 1965), pp.17 -25. 
Chambers, R.J. Accounting, Evaluation and Economic Behavior. 
Englewood Cliffs, New Jersey: Prentice -Hall, Inc., 1966. 
Ijiri, Y. The Foundations of Accounting Measurement. Englewood 
Cliffs, New Jersey: Prentice -Hall, Inc., 1967. 
Larson, K.D. "Descriptive Validity of Accounting Calculations ", 
The Accounting Review, XLIV, 1 (January 1969), pp.38 -47. 
Moonitz, M. "Price Level Accounting and Scales of Measurement ", 
The Accounting Review, XLV, 3 (July 1970), pp.465 -475. 
Vickery, D.W. "Is Accounting a Measurement Discipline ?" The 
Accounting Review, XLV, 4 (October 1970), pp.731 -742. 
Sterling, R.R. Theory of the Measurement of Enterprise Income. 
Lawrence, Kansas: The University of Kansas Press, 1970. 
Ijiri, Y. Theory of Accounting Measurement. American Accounting 
Association, 1975. 

2. Ibid. 

3. Ijiri, Foundations, p.X. 
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doubtful if there can be any systematic advance in accounting as a 

scientific discipline .4 That such improvement is warranted is demon- 

strated by the fact that accounting practice is an uncomfortable com- 

promise of rules and procedures, some of which possess no basis in 

logic, others being contradictory in nature.5 A second consideration, 

however, stems from the oft -made assumption that accounting measure- 

ments are the product of some exact scientific procedure.' More 

often than not, of course, accounting measurements are the outcome of 

a compromise between the three competing objectives of accuracy, 

economy and versatility.? As a consequence, the reliability of some 

accounting measurements may be open to question. Yet, accountants 

continue to operate in a vacuum of reliability which fails to provide 

any form of error measurement. 

The present volume documents our contribution to the theory of 

accounting measurement and is predicated on two assumptions. 

Firstly, we claim that the precept embodied in the approach which 

treats accounting as a measurement discipline, possesses both practi- 

cal and theoretical utility; that is, by specifying the essential 

ingredients of accounting measurement, it enables us to differentiate 

between the important and peripheral areas of accounting theory.8 

4. Ibid. 

5. Tilley, I. "A Critique of Historical Cost Accounting ", Accounting 
and Business Research, 5, 19, (Summer 1975), pp185-l97. 

6. Mattessich, op.cit., p.12. 

7. Ibid. 

8. Ijiri, op.cit., p.X. 
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Obviously, effective response to the multitude of criticisms and 

challenges currently confronting the accounting discipline requires 

an effective base from which to determine the relative significance 

of each. For similar reasons, the approach is significant from a 

pedagogical point of view.9 In this respect, a student equipped with 

a thorough understanding of the basic ingredients which go to make 

up accounting measurements, is better placed to comprehend the complex 

fabric of rules and procedures embodied in accounting practice. 

Finally, by understanding accounting in its simplest form, we can 

compare it with measurement systems in other fields of science. Such 

comparisons enable us to integrate into accounting the desirable fea- 

tures of these other disciplines.10 

A second and more important consideration, however, derives from 

the fact that there is, as yet, no generally accepted theory of account- 

ing measurement. Indeed, the works of Mattessich and Ijiri who, 

collectively, have undoubtedly been the most influential and prolific 

writers on this aspect of accounting theory, have both been subject 

to a welter of criticism and debate. Since this is a topic to which 

we devote considerable attention in the text, it suffices here to note 

that Ijiri's work has been criticized on the grounds that it is not, 

in fact, a deductive theory of accounting measurement,11 whilst 

Mattessich's system has been variously attacked for its preoccupation 

with the double entry bookkeeping system12 and also for its unnecess- 

9. Ibid., p.XI. 

10. Ibid. 

11. Chambers, R.J. "Measurement in Current Accounting Practice ", The 
Accounting Review, XLVII, 3 (July 1972), p.504. 

12. Most, K.S. "The Planning Hypothesis as a Basis for Accounting Theory ", 
Abacus, 9, 2 (December, 1973), p.131. 



arily complicated nature.13 

Taken together, these considerations suggest the existence of a 

prima facie case for yet another research project whose objective is 

to probe into the foundations of accounting measurement. It is the 

purpose of the present thesis to undertake such an analysis. In the 

next section, therefore, we provide an outline of the content of the 

present volume. 

13. Chambers, R.J. "Accounting and Analytical Methods: A Review 
Article ", Journal of Accounting Research, 4, 1 (Spring 1966), 
pp.106 -107. 



 

1.1 Scope and Content 

Recall that the principal objective of the present work is to set 

forth an analytical structure as a base from which to build a unifying 

theme for the theory of accounting measurement. Such a structure is, 

in fact, derived and analyzed in chapter two of the text. We shall 

there argue that the theory of accounting measurement is grounded upon 

three axioms and it is these axioms which summarize a sufficient set 

of conditions for generating accounting measurements. The axioms, 

in turn, assume the existence of the "accounting measurement space" 

(Pt' )p, Lt), where Pt is a "property set ", ;t is an algebra of 

"resource sets" generated by the "property set" Pt, and Lt is a real 

valued measurement rule defined on the algebrat. We shall see that 

it is the specification of the configuration (Pt, 

/Ot, 

Lt) which is the 

source of many (if not all) of accounting's probl em areas. 

Having introduced the concept of an "accounting measurement space ", 

we turn, in chapter two, to a more detailed analysis of the nature of 

accounting measurement. We commence the chapter with an analysis of 

the Stevens measurement scheme; the usual point of departure for 

discussions focussing on accounting measurement.14 Contrary to 

"popular belief ", we shall find Stevens' work to possess very little 

direct significance to the theory of accounting measurement. Indeed, 

its principal function seems to be as a device for vetting the 

"meaningfulness" of the "numerical procedures" applied to measurements 

when there is a choice in the unit (of measurement) in which the 

results of measurement are expressed. We shall conclude the chapter 

14. See footnote 1. 
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by investigating a variety of techniques for estimating the bias and 

objectivity of accounting measurements. Specifically, by imposing 

the assumption that the measurements analyzed represent a random 

sample from a normal frequency function, we shall demonstrate how 

the sample's mean and variance may be used as a base from which to 

construct point and interval estimates of the sample's bias and 

objectivity. 

In chapter four, we shall complete our analysis of the accounting 

measurement systems by investigating the properties of a general 

"valuation" model; that is, a model which can meaningfully accommo- 

date the replacement cost, net realizable value15 and C.P.P. 

measurement systems. The model, in fact, was first proposed by 

Edwards and Bell in the context of replacement cost accounting, but 

its properties were not fully investigated by its authors. As a 

consequence, the model's generality has not been fully appreciated. 

We shall see that the system is based on two "fundamental" theorems, 

both of which shall be stated, proved and illustrated in the context 

of the measurement systems alluded to above. The first, and more 

important of these theorems provides a means for computing the 

(potentially) realizable "holding gains" accruing during an interval 

of time. When the model is provided with a replacement cost interpre- 

tation, the theorem requires (as an input) the accumulated replacement 

cost of disposals during the time interval. This has proved to be 

one of the most intractable problems confronting the adherents of the 

replacement cost measurement system. In chapter five, therefore, 

15. We shall henceforth take the terms "net realizable value" and 
"market value" to be synonymous. 
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we shall examine several methods for estimating the replacement cost 

of disposals over a specified time interval. The first three of 

these are polynomial based numerical methods abstracted from the 

discipline of "numerical mathematics ". The relevance of such methods 

to the problem at hand has not been investigated, and yet, on the 

surface, they would seem to possess considerable potential. Having 

achieved this, we shall then examine two methods (the Edwards and Bell 

technique and the modified midpoint rule) which have been hinted at 

by accountants, but whose properties have not been fully investigated. 

In the final and somewhat lengthy chapter, we shall examine 

the economic foundations of accounting measurement. Basing our 

work on the capital theory of Irving Fisher,we shall provide an 

economic rationale for each of the measurement systems alluded to in 

chapter four. Specifically, we shall show that the ratio of a 

firm's current operating profit to the replacement cost of goods sold 

during some productive interval T, can be utilized to bound the 

firm's market value at the end of the next productive interval (T +l). 

The realizable operating profit (of the market value system) will be 

shown to measure the contribution of a firm's productive activities 

(as against purely holding operations) to the variation in the firm's 

market value over the productive interval covered by the income 

statement. Finally, we shall demonstrate that the real realized 

income (of the C.P.P. system) measures the increased command of a 

firm's resources over a composite of consumptive services as a 

result of the firm's prior productive investments. In words, each 

of the measurement systems will be shown to possess some degree of 

utility to the owners of productive resources. 
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We shall now turn our attention to the first of these topics; 

namely the axiomatic foundations of accounting measurement. 



CHAPTER TWO 

THE AXIOMS OF ACCOUNTING MEASUREMENT* 

* 

This chapter, with minor modifications, is to appear in a forth- 
coming number of Accounting and Business Research. 



2.0 Introduction 

In many respects, the present state of the theory of accounting 

measurement resembles that of probability theory before the publication 

of Kolmogorov's famous paper. 
1 

Like probability, there have been 

numerous attempts at providing a set of axioms for accounting measure- 

ment all of which have either been ignored, or attracted varying 

degrees of criticism. 
2 

To some extent this is understandable, since 

accounting is essentially a pragmatic discipline, and, therefore, 

attempts at axiomatizing its basic constructs may appear as alien and 

unnecessarily esoteric. But probability theory is designed to model 

a pragmatic discipline; a discipline which owes its origins to 

Blaise Pascal (1623 -1662) and the "gambling houses" of France.3 

Consequently, the pragmatic nature of a discipline is of little 

significance to the decision of whether to axiomatize its basic 

constructs. Indeed, the effort to axiomatize the theory of account- 

ing measurement is the "logical" outcome of the recent tendency of 

accountants to subject their "dogma" to more rigorous analysis. 

"The mathematical development of any science culminates 
in the axiomatic formulation of its contents ... The 
axiomatic method is simply a superb technique for 
summarizing our knowledge in a given field and for 
finding further knowledge deductively. This involves 
inevitably logico- mathematical operations, sometimes 
of great complexity. If the state of axiomatization 
of an empirical field has been reached, which is a 
state of some perfection, mathematics is indispensable 

1. Kolmogorov, A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung. 
Berlin, 1933. 

2. Mattessich, R. Accounting and Analytical Methods. Homewood, 
Illinois: Richard D. Irwin, Inc., 1964, p.447. 

3. Eisen, M. Introduction to Mathematical Probability Theory. 
Englewood Cliffs, New Jersey: Prentice -Hall, Inc., 1969, p.2. 
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... Axiomatics does not burst upon the scene unprepared. 

There will have been a vast amount of preparatory explora- 

tion and thinking, much of it tentative and in parts. 

Some will have been in mathematical form, some not." 

The most notable attempts at axiomatizing the theory of account- 

ing measurement are those provided by Mattessich5 and Ijiri.6 

Mattessich's system is the earlier and more obscure of the two 

attempts. It has been variously criticized for its preoccupation 

with the double entry bookkeeping system7 and for its unnecessarily 

complicated nature.8 Yet Mattessich was the first to admit that 

his system 

"... is not a finished structure, but a foundation hopefully 
stable enough to serve others as a basis for further 
ventures. "9 

Further, he expressed the opinion that the system would event- 

ually be simplified.10 In this respect, since Ijiri's system is 

4. Morgenstern, 0. quoted in Mattessich, op. cit., p.448. 

5. Ibid., pp32 -45 and pp.448 -465. 

6. Ijiri, Y. The Foundations of Accounting Measurement. Englewood 
Cliffs, New Jersey: Prentice -Hall, Inc., 1967, pp.87-99. 

7. Most, K.S. "The Planning Hypothesis ", Abacus. 9, 2 (December 

1973), pp.130 -131. 
Chambers, R.J. "Accounting and Analytical Methods: A Review 
Article ", Journal of Accounting Research. 4, 1 (Spring 1966), 
pp.106 -107. 
For an example of multidimensional bookkeeping see Ijiri, op. cit., 
Chapter 5. 

8. Chambers, op. cit. 

9. Mattessich, op. cit., p.447. 

10. Ibid., p.32, p.291. 
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composed of three11 "axioms" (as compared with Mattessich's eighteen)12 

and is not based upon the double entry bookkeeping system13 (Mattessich's 

duality axiom14) it may, at first sight, appear to provide the simpli- 

fied system predicted by Mattessich. There are two reasons, however, 

why this is not the case. Firstly, Ijiri's axiom system is stated 

for historic cost accounting measurement only,15 whereas of course, 

Mattessich's system is stated for accounting measurement in general.16 

Thus, Ijiri's system is not capable of modelling the non -historical 

cost accounting measurement systems.17 Secondly, in Ijiri's system, 

the valuation rules are designed to "complement" the axioms rather 

than being the deductive consequences of them.18 As such, Ijiri's 

axiom system is not a deductive theory of accounting measurement and 

any pretence to rigour within his system is purely superficial.19 

11. Ijiri, op cit., p.90. 

12. Mattessich, op cit., pp.32-45. 

13. Ijiri, Y. "Axioms and Structures of Conventional Accounting 
Measurement," The Accounting Review, XL, 1 (January 1965) p.36. 

14. Mattessich, op cit., pp.33-34. 

15. Ijiri, loc cit. 

16. Mattessich, op cit., p.32. 

17. Ijiri, Foundations, p.98. 

18. This view was expressed to the writer in correspondence from 
Ijiri dated February 16, 1976. See also Chambers, R.J. 
"Measurement in Current Accounting Practice: A Critique ", The 
Accounting Review, 47, 3 (July 1972), p.504. 
Ijiri, Y. "Measurement in Current Accounting Practice: A 
Reply ", The Accounting Review, 47, 3 (July 1972), pp.520 -521. 

19. This point receives more consideration below. 
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It is our view, however, that these are problematic limitations which 

are easily overcome. Specifically, it is our view that Ijiri's 

system can be modified so as to provide a set of axioms for accounting 

measurement which whilst being perfectly general, also retains the 

simplicity of the original system. 

It is the purpose of this chapter to expand upon the issues isola- 

ted above. To this end, the chapter is divided into four sections. 

In the first section, we shall elucidate the significant features of 

an axiom system. This section is included for the dual purpose of 

providing the "uninitiated" with some "feel" for the workings of an 

1 

axiom system, and, at the same time, to facilitate evaluation of 

certain comparisons made by Ijiri with the axiom system of Euclidean 

geometry. In the second section, we shall examine the mathematical 

propriety ' of Ijiri's system in some detail. Needless to say we 

shall find it to contain several deficiencies. In the third section, 

we shall propose a method by which these deficiencies may be overcome 

without at the same time detracting from the simplicity of Ijiri's 

system. Finally, in the fourth section we shall compare Ijiri's 

system with the modified version proposed in section three. 

We now turn to a consideration of the first of these topics, 

namely a consideration of the significant features of the axiomatic 

method. 



2.1 Axiomatics and Euclidean Geometry 

A deductive system T may be characterized as a collection of 

statements (theorems, lemmas and corollaries) which may be derived 

from a set of "basic" statements called axioms.20 The axioms are 

viewed as assumptions which are entertained purely because of the 

theorems they imply.21 There is no consideration of their truth value. 

"Many propositions formerly regarded as self- evident ... are 

now known to be false. Indeed contradictory propositions 
about every variety of subject matter ... have ... at differ- 
ent times, been declared as fundamental intuitions and there- 
fore self -evidently true. But whether a proposition is 
obvious or not depends on cultural conditions and individual 
training, so that a proposition which is 'self- evidently true' 
to one person or group is not to another. "22 

If the set of axioms from which the statements in T are derived is 

finite, then T is said to be finitely axiomatizable. 
23 

Thus the 

"propositions" contained in Euclid's Elements are finitely axiomatiz- 

able because they have been variously proved by employing a finite 

set of axioms.24 

Every set of axioms contains a collection of primitive or unde- 

fined terms. 
25 

The function of the axioms is to specify the relations 

20. Beth, E.W., The Foundations of Mathematics. Amsterdam: North - 
Holland Publishing Company, 1965, p.81. 

21. Cohen, M.R. and E. Nagel, An Introduction to Logic and Scientific 
Method. New York: Harcourt, Brace and World Inc., 1934, p.133. 

22. Ibid., p.131. 

23. Enderton, H.B., A Mathematical Introduction to Logic. New York: 
Academic Press, Inc., 1972, p.146. 

24. Beth, op. cit., p.139. 

25. Cohen and Nagel, op. cit., p.239. 
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which must or are considered to hold between the undefined terms.26 

The necessity for such primitive terms arises for the following 

reasons: 

"... when questioned of the truth or the reason for believing 

the truth of an assertion, we usually justify our belief by 

indicating that it ... can be deduced from certain other 
assertions which we accept. If somebody ... continues to 

ask for definitions or deductions, it is obvious that one 
of two things will happen. Either we find ourselves 

travelling in a circle, making use, in our answers, of 

concepts and assertions whose meaning and justification we 

originally set out to explain; or, at some stage, we refuse 

to supply any more definitions and deductions and reply 
bluntly that the concepts and assertions we employ in our 

27 
answer are already the most basic which we take for granted." 

In Hilbert's axiomatization of Euclidean geometry for example, 

the primitive terms28 are "point ", "straight line ", "order" (a 

point lies between the points x and y), "congruence" (congruence of 

line segments and of angles) and "incidence" (a point lies on a line, 

a line lies on a plane, a point lies in a plane). Other "concepts" 

are defined in terms of the primitives.29 

"... if A and B are points on a straight line a, the segment 
AB or BA can be defined as the set of points on a and between 
A and B." 

26. Ibid., p.135. 

27. Wang, H., A Survey of Mathematical Logic. Peking: Science Press, 
1962, p.l. 

28. Weyl, H., Philosophy of Mathematics and Natural Science. 
Princeton: Princeton University Press, 1949, p.l. 

29. Beth, op. cit., p.139. 
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"If a is a straight line and if B and C are points not on a, 

we shall say that B and C have similar position with respect 

to a if and only if the segment BC does not contain a point 

on a." 

All definitions can be reduced to statements containing only the 

primitive terms. In the above examples, even though "similar posi- 

tion" is defined in terms of "segment" it can be reduced to a defini- 

tion purely in terms of the primitives by merely replacing "segment" 

by its definition in the text. Thus in mathematics "definitions are 

implicit, the subject being defined in terms of the axioms which it 

must satisfy. "30 It is partly because of this that Euclid's Elements 

fail to provide a satisfactory answer to the problem of axiomatizing 

geometry. Euclid's "axioms "31 consist of five "common notions" and 

five "postulates" and are reproduced in Table 2.1.32 "Point" and 

"line" are obvious primitives,33 yet Euclid defines them as "that 

which has no part" and "breadthless length" respectively.34 In 

words, explicit definitions are provided. This caused Weyl to remark 

that Euclid 

"... begins with opov definitions; but they are only in part 
definitions ... the most important among them are descrip- 
tions, indications of what is intuitively given. Nothing 
else, in fact, is possible after all for the basic geometri- 

30. Cohen and Nagel, op.cit., p.238. 

31. Wang, loc.cit. 

32. Heath, T.L., The Thirteen Books of Euclid's Elements, Volume 1, 

Cambridge: Cambridge University Press, 1908, pp.154 -155. 

33. Wang, op.cit., p.2. 

34. Heath, op.cit., p.153. 
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TABLE 2.1 

AXIOMS OF EUCLIDEAN GEOMETRY 

POSTULATES 

Let the following be postulated: 

1. To draw a straight line from any point to any point. 

2. To produce a finite straight line continuously in a straight line. 

3. To describe a circle with any centre and distance. 

4. That all right angles are equal to one another. 

5. That, if a straight line falling on two straight lines make the 
interior angles on the same side less than two right angles, the 

two straight lines, if produced indefinitely, meet on that side 
on which are the angles less than the two right angles. 

COMMON NOTIONS 

1. Things which are equal to the same thing are also equal to one 
another. 

2. If equals be added to equals, the remainders are equal. 

3. If equals be subtracted from equals, the remainders are equal. 

4. Things which coincide with one another are equal to one another. 

5. The whole is greater than the part. 
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cal concepts such as 'point', 'between', etc.; but as far as 
the deductive construction of geometry is concerned, descrip- 
tions of this kind are evidently irrelevant. "35 

Of course, the purpose of Euclid's system was to facilitate the 

provision of proofs of geometrical propositions. The method used 

was to argue deductively from the axioms and definitions to the 

desired proposition. As an example of this, Euclid's first proposi- 

tion of Book I concerning the existence of equilateral triangles and 

its "proof" are reproduced in Table 2.2.36 Note that it involves a 

statement of the proposition to be proved followed by a sequence of 

assertions in terms of the axioms and definitions, culminating in 

what was to be proved - the proposition itself.37 Thus, the axioms 

imply the proposition. 

Although Euclid's work attracted criticism practically from the 

time of its completion,38 it was not until the end of the nineteenth 

century that Hilbert, amongst others, proved that Euclid appealed to 

a number of tacit "presuppositions" besides the axioms explicitly 

laid down, in proving several propositions.39 They are the so- called 

"order" axioms which concern the "betweenness" properties of points 

and lines.40 

35. Weyl, op.cit., p.19. 

36. Heath, op.cit., pp.241 -242. 

37. Cohen and Nagel, op.cit., p.136. 

38. Beth, op.cit., p.139. 

39. Ibid. 

40. Ibid. 
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TABLE 2.2 

EUCLID'S PROPOSITION I, BOOK I 

On a given finite straight line to construct an equilateral triangle. 

Proof 

Let AB be the given finite straight line. Thus 

it is required to construct an equilateral 

triangle on the straight line AB. 

With centre A and distance AB let the circle BCD be described (Post 3); 

again, with centre B and distance BA let the circle ACE be described 

(Post 3); and from the point C, in which the circles cut one another, 

to the points A, B let the straight lines CA, CB be joined (Post 1). 

Now, since the point A is the centre of the circle CDB, AC is equal to 

AB (Def. 15). Again, since the point B is the centre of the circle 

CAE, BC is equal to BA (Def. 15). But CA was also proved to equal 

AB; therefore each of the straight lines CA, CB is equal to AB. 

And things which are equal to the same thing are also equal to one 

another (C.N. 1); therefore CA is also equal to CB. Therefore, the 

three straight lines CA, AB, BC are equal to one another. Therefore 

the triangle ABC is equilateral; and it has been constructed on the 

given finite straight line AB. (Being) what it was required to do. 
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Thus, in "recent" years two major criticisms of Euclidls axiomatiza- 

tion of geometry have emerged. Firstly, he endeavoured to make 

explicit definitions of the primitive terms; secondly, he made implicit 

assumptions in "proving" propositions involving order. 

Recall that the purpose of this section was to isolate the signifi- 

cant features of the axiomatic method as a prelude to analyzing the 

axiomatized method of accounting measurement proposed by Ijiri. 

Having accomplished the former task we now shift our attention to the 

latter, namely an examination of Ijiri's axiomatized theory of 

"conventional" accounting measurement. 
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2.2 Ijiri's System Criticized 

Our inquiry into Ijiri's system shall endeavour to reveal two 

things. Firstly, we shall argue that Ijiri's system is not a deduc- 

tive theory of accounting measurement and that any pretence to rigour 

within his system is purely superficial. Secondly, it will be 

argued that Ijiri was in error in eschewing a set theoretic foundation 

for accounting measurement. 

2.2.1 Euclidean Geometry 

The stated purpose of Ijiri's Foundations of Accounting 

Measurement was to approximate 

"... conventional accounting by devising a relatively 
simple set of axioms and valuation rules in the same 
manner that scientists in other fields have tried to 
develop a relatively simple set of concepts in order 
to explain complicated phenomena to a satisfactory 
degree. "41 

The resulting system devised by Ijiri is reproduced in 

Table 2.342,43 and is claimed to have the following properties: 

"The set of axioms and the set of valuation rules ... 
correspond to the set of axioms and the set of theorems 
in Euclidean geometry in the sense that if the set of 

41. Ijiri, op.cit., p.88. 

42. Ibid, pp.90-95. 

43. The "basic class" referred to is some numeraire, usually money. 
Ijiri has gone to great lengths to show that accounting measure- 
ments can be formulated by using some other numeraire such as 
wheat. 

Ijiri, Y.,'Qhysical Measures and Multi- Dimensional Accounting ", in 
R.K. Jaedicke, Y. Ijiri, and O. Nielsen (editors), Research in 
Accounting Measurement, New York: American Accounting Association, 
1966, pp.150 -164. 
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TABLE 2.3 

IJIRI'S HISTORIC COST "AXIOM SYSTEM' 

Axioms 

Control 

There exists a method by which resources under the control (pre- 

sent or future, positive or negative) of a given entity at any 

time t are uniquely determined at that time or later. 

Quantities 

There exists a method by which all resources are uniquely parti- 

tioned into a collection of classes so that for each class a non - 

negative and additive quantity measure is defined and so that we 

are indifferent to any two sets of resources in the same class if 

and only if their quantities are the same. 

Exchanges 

There exists a method by which all changes in the resources contro- 

lled by a given entity up to any time t are identified at that time 

or later and are partitioned uniquely into an ordered set of pairs 

of an increment and a decrement, where the increment belongs to 

one and only one class. 

Valuation Rules 

Basic Rule 1 

The value of any set of (present and future) resources in the basic 

class is defined to be equal to its quantity as determined by the 

quantity measure for the class. 

Basic Rule 2 

The value of an empty set is defined to be equal to zero. 
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TABLE 2.3. 

Value Allocation Rule 

Allocate the value of all resources in each class before the 

exchange to outgoing resources in the class and remaining 

resources in the class in proportion to their quantities. The 

sum of values allocated to outgoing resources in each class 

is the value of the decrement. Decrease the value of resources 

in each class by the value allocated to outgoing resources in the 

class. 

Valuation Imputation Rule 

If the resources in the increment belong to a non basic class, set 

the value of the increment equal to the value of the decrement. 

Increase the value of resources of the class by the value of the 

increment. 

Value Comparison Rule 

If the resources in the increment belong to the basic class, 

calculate a value gain or loss by subtracting the value of the 

decrement from the value of the increment. 
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axioms is granted the valuation rules can be applied 
in a purely mathematical way without making any 
empirical judgement ... (The axioms) are not a mere 
listing of concepts ... but are tied logically and 
mathematically to the set of valuation rules ... "44 

However, in an axiom system there are the axioms them- 

selves, definitions made in terms of the axioms, and theorems, 

lemmas and corollaries derived from the axioms; there are no 

valuation rules.45 Thus 

"... it is not clear just how ... the (valuation) rules 
' are related to or derived from the axioms. "46 

The confusion is aggravated by the fact that at differ- 

ent times Ijiri has described the valuation rules as both 

definitions and theorems. Thus, having formulated the axioms 

of control, quantities and exchanges Ijiri declares 

"Our task now is to define a method by which these hetero- 
geneous quantity measures are converted into a homo- 
geneous measure called a value measure. "47 

Yet in a later publication the following assertion appears 

44. Ijiri, Foundations, p.88. 

45. See the previous section on "Axiomatics and Euclidean Geometry ". 

46. Dyckman, T.R., "The Foundations of Accounting Measurement ", The 
Accounting Review, XLIII, 1 (January 1968), p.200. 

47. Ijiri, op.cit., p.91. 



"The set of valuation rules (listed in Table 2.3) is not 
the only set of such rules that can be derived from the 
three axioms, just as numerous theorems can be derived 
from Kolmogorov's axioms of probability or from the axioms 
of Euclidean geometry.i48 

Despite this latter and similar assertions it is our view 

that the valuation rules are purely definitioalin nature. The 

Basic Rules one and two are explicitly stated definitions,49 

whilst no evidence has been provided by Ijiri to substantiate 

the view that the axioms imply the valuation rules as theorems. 

Further, conventional accounting is viewed 

"as though it consisted of a set of axioms on the one 
hand and a set of valuation rules on the other. These 
are extracted from conventional accounting ...,,50 

In other places Ijiri describes the axioms as "empirical 

judgements" or "abilities" which when satisfied leave only the 

"computational procedure" of applying the valuation rules.51 

It would thus seem that the "logical" connection between the axioms 

and the valuation rules is an "empirical one" in that either the 

axioms contain sufficient information to operationalize the valua- 

tion rules or they do not. The "mathematical connection" is mere- 

ly the computational one of "applying "52 the valuation rules using 

48. Ijiri Y., "Axioms for Historical Cost Valuation: A Reply ", Journal 
of Accounting Research, IX, 1 (Spring 1971), p.184. 

49. Basic Rule One is also poorly formulated. In none of the axioms 
is "basic class" mentioned. Thus, the definition is not (directly 
or indirectly) stated in terms of the primitives. 

50. Ijiri, Foundations, p.88 (emphasis added). 

51. Ibid., pp.84 -85. 

52. Ibid., p.88. 
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the information provided by the axioms. 

We may state the "logical" connection between the axioms 

and the valuation rules in the following terms. Let P denote 

the statement "the information assumed by the axioms is known" 

and Q denote "we can operationalize any set of historic cost 

valuation rules ". Then the connection is given thus53 

P if and only if Q. 

Note that the axioms do not imply the valuation rules in 

the sense that the axioms of Euclidean geometry imply the 

corresponding theorems. The theorems of Euclidean geometry are 

obtained by deductive argument; the valuation rules are defined.54 

It is misleading, therefore, for Ijiri to compare his "axiom 

system" with that of Euclidean geometry. 

The mathematical connection between the axioms and the 

valuation rules is illustrated as follows.55 Suppose an ent- 

tity's property set at time t consists of 2,000 bushels of wheat 

with an historical cost of £2,000. In the interval [t, t +1, 

1,000 bushels of the wheat are sold for £1,500. At time (t +l) 

the axiom of control is satisfied by noting that the entity owns 

some wheat. The axiom of quantities specifies that there are 

53. "... the set of axioms is necessary and sufficient to support 
the set of valuation rules." Ibid., p.88 (emphasis added). 

54. See section 2.1. 

55. Ijiri, Foundations, pp.92 -95. 
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1,000 bushels of this commodity remaining, whilst the axiom of 

exchanges identifies that in order to obtain the £1,500 cash, 

1,000 bushels of wheat was sacrificed. Given this information 

we can "apply "56 the valuation rules. The value allocation rule 

allocates a value of £1,000 to the wheat sold whilst the value 

comparison rule recognizes a profit of £500 on the transaction. 

Note that once we know the information implied by the axioms there 

remains only the computational procedure of "applying" the 

valuation rules. 

In some sense the theorems of Euclidean geometry are 

"applied" in the same way. Thus, for example, once the co- 

ordinates of Zurich (x) and London (y) are determined, the calcula- 

tion of the distance between them IIx -y1I 57 is indeed a purely 

"mathematical" exercise involving no "empirical judgement ". The 

subtle difference of course is that the axioms of Euclidean geo- 

metry imply the theorem that the linear distance between two 

points is Ux-yll whilst Ijiri's axioms do not imply the valuation ti V 

rules as theorems. 

As noted above, this is not the only source of contention 

in Ijiri's treatment of "conventional" accounting measurement. 

56. Ibid., p.88. 

57. The distance can also be computed b defining the positive 
definite inner product (u,v ) =Adridr.v where u and v are real 

N ti Y V V r 
vectors. Thus 

x-y, _ (x-y)T 
r 

. 
ti y 



Specifically, Ijiri's testimony that it is not possible to con- 

struct a set theoretic based axiom system of accounting measure- 

ment is questionable. We now proceed to expand upon this 

proposition. 

2.2.2 Set Theory 

In developing his' xiomatic" theory of historical cost 

measurement Ijiri discarded a set theoretic foundation on the 

grounds that 

"... the mathematical notions of set, field, etc. are all 

based on two- valued logic where an element either belongs 
to or does not belong to the set or field. However, 
assets on the balance sheet may be shown as belonging to 
the entity either positively or negatively. Thus, a 

resource can take any of three states with respect to the 
entity. It belongs to the entity positively, it belongs 
to the entity negatively or it does not belong to the 
entity."58 

The axiom of exchanges was introduced to overcome this 

problem. 

"It was not until I separated control criteria and recogni- 
tion criteria that I felt completely comfortable about 
the set of resources as the starting point for construc- 
ting the axiomatic system. "59 

However, if the quantification of assets and liabilities 

is separated from their valuation it is a relatively simple 

matter to construct a set theoretic based axiom system. Suppose 

58. Ijiri, "Axioms for Historic Cost Valuation ", p.183. 

59. Ibid., p.184. 



for example, that an entity purchases on credit 10,000 widgets 

at £2 each thus incurring a debt of £20,000. Its property set 

consists of 10,000 widgets and an account payable. This pro- 

cess involves the binary operation of partitioning assets and 

liabilities into two sets - those belonging to the entity posi- 

tively and those not belonging to the entity. A measurement 

rule can then be defined which appropriates a "value" of £20,000 

to the widgets and - £20,000 to the accounts payable. In the 

next section one such system is specified. 

Despite these criticisms Ijiri's contribution to the theory 

of accounting measurement is original and unique.óO He rid the 

theory of accounting measurement of the shackles of double entry 

bookkeeping, realizing that accounting measurement encompasses 

more than just a formal recording function.61 When an accoun- 

tant determines the unit cost of stock an accounting measurement 

has occurred and this may or may not be recorded in a set of 

books. In words, it is no more necessary to have a set of formal 

rules governing the way measurements shall be written down on 

paper in accounting than it is in Euclidean geometry or statisti- 

cal inference. However, by far his greatest contribution are the 

axioms of historical cost measurement. It is these which are the 

foundations of the generalized theory of accounting measurement 

exhibited in the next section. 

60. We echo the following remark 

"... Ijiri's work ranks with Edwards and Bellts classic ... as a 
must for serious scholars of accounting thought." 

Dyckman, op.cit., pp.199 -200. 

61. Ijiri, "Axioms and Structures of Conventional Accounting Measure- 
ment", op.cit., p.36. 
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We have now demonstrated that Ijiri's "axiomatic model" of 

"conventional" accounting measurement is not, in fact, a deductive 

theory and that he was incorrect in eschewing a set theoretic 

foundation for accounting measurement. In the next section we 

shall develop upon this theme by providing a set theoretic based 

deductive theory of accounting measurement. 



2.3 Axioms of Accounting Measurement 

In the previous sections it was claimed that Ijiri's system could 

be modified so as to provide a set theoretic based deductive theory of 

accounting measurement. In this section we shall demonstrate how 

this may be achieved. After stating the modified system and illus- 

trating its practical implementation in the context of an historical 

cost accounting example, we shall state some formal consequences of 

the axioms and demonstrate how various accounting concepts such as 

"asset ", "liability" and "profit" may be defined within the system. 

2.3.1 Axioms and Resource Sets 

Accounting measurement is concerned with the monetary 

expression of resources belonging to a designated entity. Thus 

for a mathematical theory of accounting measurement the essential 

ingredients are the existence of a non -empty set of resources 

belonging to a clearly defined accounting entity upon which can 

be imposed in a consistent and comprehensive fashion, a measure- 

ment rule which associates a real number with each element of 

the resource set. 

Given an accounting entity the set of resources belonging 

to that entity at time t is called a property set and will be 

denoted The The individual resources generically denoted by p 

comprise the elements of the property set and satisfy the follow- 

ing conditions62 

62. The union of sets pj,t and Pk ,t 
denoted pj,tUpk,t is the set all 

elements which belong to pj,t or pk,t 
or to both. The intersec- 

tion of sets pj,t and pk,t 
denoted pj,tnpk,t is the set of elements 

which belong to pj,t and also to pk,t. If j = k then 

P. flPj,t = pjt which is not empty. 
j,t 

Pj,tnPk,t = 



(i) Pt = Upj't 

(ii) Pj,tnpk 
t 

j = 1, 2, 

j # k 

n 

Hence, the individual resources form a partition63 of the 

property set Pt and will be called simple resources or alterna- 

tively simple resource sets. Unions of simple resource sets are 

called compound resources or compound resource sets. Simple 

and compound resource sets shall be collectively referred to as 

"resource sets ". Lett be the family of subsets of Pt which 

are generated by the simple resource sets. The elements of)ét 

have the following properties64 

(i) If A, B 6/ 
t 

then AUB E.Pt 

(ii) If A E °t then Ac ét 

where the complement in (ii) is with respect to P. A collection 

of sets having these properties is called an algebra or field.65 

63. The family of non -empty sets Bj is said to form a partition 

of the set A if and only if 

(i) U. B. = A 

(ii) For any iLj Bi Bj = 0 

0 is the empty or null set; the set having no elements. 

64. The complement of a set A denoted Ac is the set of elements in Pt 

which are not in A. 

65. Beth, op.cit., pp.163 -164. 



31 

The conditions mean that)t is closed under the formation of 

unions and complements. In addition, it can be shown tható /t 
is closed under the formation of intersections and that con- 

tains the empty set.ó6 These closure properties ensure that we 

will never need to consider a resource set which does not belong 

to the entity under consideration because it is not possible to 

manipulate any collection of sets using only the permissible 

set operations of union, intersection and complementation and so 

obtain a resource set which does not belong to the entity; that 

is, is not in ÿt. Further, for any A, B and C in); the follow- 

ing "conditions" also hold67 

(i) AUB = BUA 

(ii) AnB = BnA 

(iii) AU(BnC) = (AUB) n (Auc) 

(iv) An(BUC) = (AnB) n (Anc) 

(v) There is in it an element X such that, for any Y in}ót 

YU(AflX) = Y 

and 

Yn (AUX) = Y 

66. By (i) and (ii) AcUBcéPt 

By (ii) (AcUBc) é f°t 

But (AcUBc) c = MBE); 

Proving that)t is closed under the formation of intersections. 

By axiom 

By (ii) 

But 

Thus, proving that the empty set is inft. 

67. Ibid., p.164. 



The triple (A, U,fl) is called a Boolean algebra.68 Equipped 

with this knowledge we exhibit in Table 2.469 a set of axioms 

which are essential to any theory of accounting measurement. In 

words, historical cost, market value, price level adjusted and 

replacement cost measurement may serve as models of the axiom 

system. 

Having furnished the modified set of axioms for accounting 

measurement we now illustrate their use in the context of an 

historical cost accounting example. 

2.3.2 An "Historic cost" Example 

The balance sheet of the Dyer Company Limited as of 

January 1, 1909 and the transactions for the year ending December 

31, 1909 are exhibited in Table 2.5. We define the simple 

resource sets in the following terms since they exhibit the 

properties demanded by the axiom of quantities.70 

68. Ibid. 

69. The reader versed in probability theory will see that this axiom 
system is based on Komolgorov's axiomatization of a finite pro- 
bability space. It was Littleton who first emphasized the 
"statistical nature" of accounting measurement 

"... the subject matter of accounting is inescapably economic and 
its basic methodology is unquestionably statistical in character." 

Littleton A.C. Structure of Accounting Theory, New York: American 
Accounting Association, 1953, p.8. 

However, no one has taken up the obvious implication of this for 
an axiomatized theory of accounting measurement. 

70. In general, simple resource sets are not unique. For example, if 
it suited our purpose we could specify the simple resource sets to 
be equity, assets and liabilities. This is done, in fact, in the 
section on "Profit, Assets and Liabilities ". 
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TABLE 2.4 

AXIOMS OF ACCOUNTING MEASUREMENT 

1. Axiom of Control 

There exists a "property set" Pt which is uniquely defined for 

all non -negative real t. 

2. Axiom of Quantities 

There exists an algebra): generated by the "simple resource 

sets" p. 
,t 

, j = 1, 2, , n and having the following 

properties 

n 

(a) U pjt = Pt 
j=1 

(b) 
pj,t npk,t = 0 

for some positive integer n. 

j k 

3. Axiom of Measurement 

There exists a mapping called a "measurement rule" 

Lt :/ 0t -> IR 
with the property 

Lt(Aj,tUAk,t) = Lt(Aj,t) + Lt(Ak,t) 

for any pair of disjoint sets A.'t and Ak,t6 P. 
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TABLE 2.5 

DYER COMPANY LIMITED 

Balance Sheet - January 1, 1909 

Shareholders' Funds £ Fixed Asset 

Capital 50,000 Building 8.0,000 

Profit unappropriated 60,000 Less Aggregate Deprecia- 
tion Z0,000 

110,000 60,000 

Current Liability Current Assets 

Trade creditors 5,000 Cash 25,000 
Trade debtors 1:0,000 

Securities 10,000 
Stock 10,000 

£115,000 

55,00Q 

£115, QQQ . 
Stock: Recorded using "perpetual Lifter; 1,000 units at £7 Q- (per unit)., 

Building: Purchased January 1, 1904. Straight line depreciation is 
used where the life estimation is 20 years (no salvage- value-) .. 

Transactions in the year ending December 31, 1909 

1909 
Jan. 30 Purchased (on credit) 500 units at 211 (per- unit)- 

Feb. 28 Sold 800 units (an credit) at 220 (per unit)., 

Mar. 31 Received E10,000 from debtors (no- discounts) 

April 30 Paid 28,000 to creditors (nor discuuunts).. 

Aug. 31 Sold 500 units (on credit) at mil (per unit).. 

Nov. 30 Purchased 300 units (on credit) at 2.13 (per unit)- 
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p 
1,5 

p 
2,5 

p3,5 

P4,5 
4,5 

p5,5 

P6,5 6,5 

= 

= 

= 

= 

= 

"building" 

"cash" 

"trade debtors" 

"securities" 

"stock" 

"trade creditors" 

Note that the simple resources form a partition of the 

property set P5. The 64 subsets71 which may be formed from the 

property set P5 determine the algebra.): The algebra): is the 

domain of the following measurement rule 

( 60,000 if j = 1 

( 

( 25,000 if j = 2 

( 

( 10,000 if j = 3 

L5(pj,5) 
= ( 

( 10,000 if j = 4 

( 

( 10,000 if j = 5 

( 

(- 5,000 if j = 6 

The measurement rule L5 depreciates the building using a 

straight line allowance of 5% p.a. Note that once the measures 

of the simple resources are given, the measure of every other 

set in the algebra ))O5 can be determined because such sets are 

merely unions of simple resource sets.72 

Recall that the axiom system exhibited in Table 2.4 repre- 

71. See Theorem 1, below: 26 = 64. 

72. In reaching this conclusion we use Theorem 4 below. 
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sents a deductive theory of accounting measurement. As such the 

axioms imply certain statements about accounting measurement which 

can be obtained by "deductive reasoning" alone. In the next 

section, therefore, we isolate some consequences of the axioms. 

2.3.3 The System Developed 

In this section we state some formal consequences of the 

axioms particularized above. All proofs are relegated to the 

appendix so that we may concentrate on the more important task 

of interpreting the significance of the results. 

Theorem 1 

If Pt is the union of n (a positive integer) simple resource 

sets thenft has 2 n elements. 

In the example of the previous section P5 was the union of 

The algebrao5 formed from this set has six simple resources. 

as its elements, the empty set, six simple resources, fifteen 

sets containing two simple resources, twenty sets containing 3 

simple resources, fifteen sets containing four simple resources, 

six sets containing five simple resources and the property set 

P5 , itself. 
73 

73. One'basy" method of determining the elements of the algebra is to 

use "Pascal's Triangle ". 

Elements in P Triangle Elements in): 

O 1 1 

1 1 1 2 

2 1 2 1 4 

3 1 3 3 1 8 

4 1 4 6 4 1 16 
5 1 5 10 10 5 1 32 

6 1 6 15 20 15 6 1 64 

Each element in the triangle is obtained by adding the elements to 
the right and left in the preceding row. 
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Theorem 2 

Lt(0) = o 

The significance of this result is that it implies that 

Ijiri's system is in some sense redundant,74 because by Basic 

Rule 2 this result is defined and therefore is not a consequence 

of the axioms. Thus, if a set is empty, its measure is zero, 

irrespective of what type of measurement rule is used. 

Definition 1 

The triple (Pt,;0t, Lt) is called an accounting measurement 

space. 

A. 

Definition 2?5 

Suppose A. tEfrt; then Lt(A. ) is called the measure of 

Definition 3 

Suppose A. 6)6 is not a simple resource set; then A. 
j,t t j,t 

74. Ijiri's system may not be redundant in the mathematical sense of 
course; that is it may not be possible to prove the Basic Rule 
Two from Ijiri's axioms. For a discussion of redundancy see 
Cohen and Nagel, op.cit., pp.143 -147. 

75. The measure appropriated to each resource in1 is unique by virtue 

of the fact that Lt is a mapping. 

See Giles J.R., Real Analysis, Sydney: John Wiley and Sons, 

Australasia Pty. Ltd., 1972, p.13. 



is called a compound resource set.76 

result 

The importance of these definitions stems from the following 

Theorem 3 

The accounting measurement space (Pt, ót, Lt) is completely 

described by its simple resource sets and their measures. 

The importance of this theorem is that it implies that once 

the simple resources and their measures are known, Pt is known, 

and the measure of every set in,t can be determined. Thus, in 

the case of the Dyer Company Limited, knowledge of the simple 

resources and their measures is sufficient to determine the mea- 

sure of "current assets ". 

Theorem 4 

If Aj't9r. j = 1, 2, 

resource sets then 

n n 
Lt( U Ajt) = E Lt(Ajet) 

j=1 j=1 

, n is a disjoint sequence of 

76. That compound resource 
was stated thatA has 

resources. Hence, if 

resource, there are 2" 

sets exist follows from Theorem 1. It 

2" elements where n is the number of simple 
we consider the empty set to be a compound 
-n compound resource sets. 
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Theorem 5 

If A, B 
tf°t 

then 

Lt(AUB) = Lt(A) + Lt(B) - Lt(AUB) 

Theorems 4 and 5 together imply that in general, account- 

ing measurements are not additive. Thus, for example, the 

measure of current assets and non -monetary assets is not necess- 

arily the sum of their separate measures. 

Theorem 6 

n 

Suppose B = U A;,tt 
j=1 

is a disjoint sequence of resource sets with the properties 

(i) Lt(Al,t) = Lt(A2,t) _ 

(ii) Lt(B) = T 

then Lt(Aj,t) = n-1T 

_ Lt(An 
, t) 

j = 1, 2, n 

In effect, Theorem 6 states a set of assumptions which 

justify appropriating the same measure to every element of a 

resource set. There are numerous instances of this practice 

in accounting.77 

The importance of these theorems is that they are true in 

77. Horngren C.T., Cost Accounting: A Managerial Emphasis, 
Englewood Cliffs, New Jersey: Prentice -Hall, Inc., 1972, 

Chapters 4 and 17. 
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every accounting measurement system which satisfies the axioms. 

They are not the only theorems which can be deduced from the 

axioms but merely a sample of the more obvious and useful. 

Besides serving as a means through which the basic proper- 

ties of accounting measurement rules can be derived, however, 

the axioms also enable us to define key accounting concepts in 

a clear and unequivocal manner. In the next section, therefore, 

we demonstrate the procedure by which definitions of accounting 

concepts may be made in terms of the axioms. 

2.3.4 Profit, Assets and Liabilities 

If the axiom system is to serve as a model of accounting 

measurement we need to define a profit measure. 

Definition 4 

The mapping 7: IR2 - 2) IR defined by 

71C-(t, t-n) = Lt(Pt) - Lt-n(Pt-n) 

for all real t 7 n is called the "profit measure" of the interval 

1.7.t-n,3. 
78 

This is the "usual" definition of profit 

"The income figure for a period is the difference between 
the value of assets at the end of the period and the 

78. The profit measure is a real valued function with domain the 
Cartesian space 1Rx lR = 1R2. This is so because in order to 
operationalize it requires two real numbers; one each for Lt(Pt) 

and L 
t -n 

(P 
t -n 

) respectively. 
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value of assets at the beginning. "79 

Note that our profit measure is "defective" in that divi- 

dends, prior period adjustments, capital contributions and simi- 

lar items are treated as income or expense of the interval 

L -n,t] . This could be avoided by the addition of extra axioms. 

However, whilst this would improve the predictive ability of our 

axiom system it would do very little to enhance the analytical 

exposition. 

Unlike Ijiri's algorithm for computing income80 our profit 

measure is "balance sheet" oriented. This does not imply that 

our system is incapable of providing an analysis of the "economic 

phenomena" (transactions in the historic cost system) connecting 

any two balance sheets. Thus, for the historic cost system, 

define a reporting rule under which financial statements are 

prepared after each transaction. The increment and decrement of 

each transaction can then be specified by comparing the latest 

balance sheet with its immediate predecessor. Suppose we ana- 

lyze the transactions of the Dyer Company Limited in terms of their 

effect on equity, assets and liabilities. We construct the 

"transactions matrix" 
A5,6 

for the year ending December 31, 1909. 

79. Ijiri, Foundations, p.97. 

80. Ijiri's method for computing profit is stated as follows: 

"An exchange involves two sets of r 
decrement d ... . All changes in 

a set of pairs (d ,d ); when all i 

ments d 's in the set of pairs are 

I , respectively, we obtain the inc 

Ibid., p.89. 

esources, an increment d+ and a 
the assets are partitioned into 

ncrements d +'s and all decre- 
added together to derive I+ and 
ome (I +,I ) for the period ..." 
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CR 

Equity Assets Liabilities 

Equity a 
11 a12 a13 

DR Assets a21 a22 a23 

Liabilities a31 a32 a33 

The element a21 of the transactions matrix, for example, 

represents a debit to assets and credit to equity. An example 

of such an entry is the Feb. 28 sale of stock. 

Dr. Trade debtors 16,000 

Cr. Sales 16,000 

The complete transactions matrix of the Dyer Company 

Limited is exhibited below: 

0 17,500 0 

A5'6 = 26,500 10,000 9,400 

O 8,000 O 

Suppose we let x5 be the vector whose elements are equity, 

assets and liabilities respectively of the Dyer Company Limited 

as of January 1, 1909. 

-110,000 

x5 = 115,000 

- 5,000 

If we let x6 be the equivalent vector as of December 31, N 



1909 

.x6 
= 

- 

125, 

6, 

then the connection between x and x may be described by the 
y5 

equation 

Z6 = 5 + (A5,6 
- A56T)(ÿ + k) 

where yT = C,1,' and k is any vector in the kernel or null 
w/ 

space of (A- AT).81 Using the first elements of x and x we 
.6 ,5 

now compute the income of the Dyer Company Limited for the year 

ending 31, 1909. 

!c 
( 

6, 
5) = L6(P6) - L5(P5) 

TZ (6, 5) = 9,000 

Perhaps the most contentious parti of our axiom system are 

the "implied" definitions of asset and liability which we now 

make explicit. 

81. The Kernel or Null space of a homomorphism 0 : 1Rr lRm repre- 
sented by the matrix (A -AT) is the set of vectors K such that for 
any k E K 

(A - AT)k = O 
v 

That is, the kernel is the set of vectors mapped to the zero vector. 
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Definition 5 

Suppose pi,t CA is a simple resource set. If L (p. t) ) O 
J, 

then p't is called an asset. If L (p. t) < O then p, 
t 

is 
J, J, 

called a liability. 

At first sight this definition may appear to contain several 

deficiencies. For example, since accumulated depreciation has 

a negative measure, our system appears to classify it as a lia- 

bility. However, we can exclude accumulated depreciation from 

an entity's property set, on the grounds that the set being 

measured is the fixed asset and the measure afforded this asset 

is time dependent. That is, the measurement rule 

( 

Y 
t* - t if t* 7j t 

L(Ai,t) = ( t* to 
( 

O 
if t* < t 

( 

appropriates a measure to the fixed asset A, by netting accumu- 
o 

J,t 

lated depreciation Y 
t 

- t against the cost Y. Hence, 

t* - to 
there is no need for "accumulated depreciation" to appear as a 

simple resource set in the entity's property set and thus the need 

82. (t* - to) is the anticipated productive life (in years) of the 
asset. to is the date the asset is put into service and t is the 
anticipated date of withdrawal from service. The net book value 
of the asset at time t, assuming zero scrap value, is computed 
thus: 

Y - Y 
t - t 

o 

t* - to 

which by factoring t* - to may be shown to yield the measurement 

rule for t* .t. 
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for a separate measure is avoided. Similar treatments can be 

afforded prepayments, provision for doubtful debts and deferred 

income and expense. 

A second line of argument is that the definition appears 

to classify shareholders' equity as a liability. This criticism 

is avoided by excluding shareholders' equity from the property set 

Pt.83 This does not detract from the validity of the axiom 

system because the property set Pt is then composed of the assets 

and liabilities making up shareholders' equity. 

We have now stated and illustrated a modified version of 

Ijiri's "axiom system" which has the property that it represents 

a set theoretic based deductive theory of accounting measurement. 

Further, the basic properties of accounting measurement rules 

were derived using the axioms and some key accounting concepts 

were defined in terms of them. To conclude this chapter we shall 

compare and contrast Ijiri's "axiom system" with the modified 

version developed above. 

83. Obviously if the "profit measure" of definition 4 is not to be 
identically zero, it is essential that we give Pt this interpreta- 

tion. 
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2.4 A Comparison of Systems 

In this section we particularize the connection between Ijiri's 

"axiom system" and that developed above. In this respect, perhaps 

the most basic and important difference between the two systems is 

that ours is an axiom system of accounting measurement in general, 

whilst Ijiri's system is stated for historical cost accounting measure- 

ment only. Ijiri's aim was to construct an axiom system for which 

"conventional" accounting served as a model. As such it was 

"... based upon such principles as historical cost, realization 
and accrual. "84 

This meant that 

"... such concepts as current market values, replacement costs 
and net realizable values. "85 

were, of necessity, neglected. Our analysis, however, is based upon 

the assumption that there are certain procedures which are common to 

all accounting measurement systems. Thus, our system is as relevant 

to replacement cost and market value measurement as it is to historical 

cost measurement. 

Secondly, whilst in each system the axiom of control partitions 

resources into two sets - those which belong to an accounting entity 

and those which do not - there is a fundamental difference in the axiom 

84. Ijiri, op.cit., p.98. 

85. Ibid. 
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of quantities in the respective systems. Ijiri's system requires unit 

quantification as a basis for valuation through the axiom of exchanges 

and the valuation rules. In our system, the axiom of quantities de- 

fines an algebra which forms the domain of a real valued measurement 

rule. Thus, in our system unit quantification is not strictly 

necessary. 
86 

Finally, Ijiri's valuation rules taken in conjunction with the 

axiom of exchanges states one historic cost measurement rule. In 

principle, this measurement rule satisfies our third axiom though 

strictly from a mathematical point of view it is impossible for it to 

do so. By the axiom of exchanges a change in the property set can 

be represented by the unique ordered pair (d +,d ) where d+ is an 

"increment" and d is a "decrement ". In our system the measurement 

rule provided by the axiom of measurement is defined on the algebra t 
generated by property set Pt. But since d is not in general a resource 

set in its measure Lt(d ) is in general undefined. However, it 

is entirely "permissible to state a measurement rule Lt where the 

measure afforded a resource set is derived by using Ijiri's valua- 

tion rules. Thus suppose an entity exchanges £2,000 cash for 2,000 

bushels of wheat. Whilst the value imputation rule does not satisfy 

the axiom of measurement because its domain includes d which in general 

is not in the algebra upon which Lt is defined, the measurement rule 

Lt(pj,t) = 2,000 where pj't is the simple resource set containing 2,000 

bushels of wheat, does satisfy the axiom. Hence while the valuation 

rule does not satisfy the axiom, the measure derived from its use does. 

86. This conclusion does not imply that our axiom system cannot accomm- 
odate unit quantification. By redefining the axiom of measurement 
so that its domain is the set of subsets of Pt, it is possible to 
partition each simple resource set so as to define a quantity mea- 
sure of the set. 



2.5 Summary 

The purpose of this chapter was to construct an axiomatic theory 

of accounting measurement. In order to accomplish this task it was 

necessary to specify the properties possessed by an axiom system. 

Undoubtedly, the best known axiom scheme is the geometrical system 

formulated by Euclid. Consequently, a brief review of his system was 

undertaken. 

Ijiri's "axiom system" was then analyzed and found to lack certain 

of the properties possessed by Euclid's system. This was so despite 

Ijiri's claim that Euclid's and his system are "analogous" in 

principle. However, it was shown that Ijiri's system contained the 

germ of an acceptable axiomatic theory of accounting measurement. 

Finally, a set of three axioms was defined and several theorems 

were derived. It was found that this system could accommodate many 

commonly encountered concepts such as income, asset and expense. 
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APPENDIX 2A 

Theorem 1 

If Pt is the union of n (a positive integer) simple resource sets 

then)t has 2n elements. 

Proof 

There are Co = 1 empty sets in )mo; C1 = n simple resource sets; 

C2 compound resource sets containing two simple resources; and so on. 

There are thus 

n n 

E CI! elements in," . But 2: Cnaibn i= (a+b)n 
j=o j=o 

Letting a = b = 1 proves the result. 

Remark 

For the data of the Dyer Company Limited as of January 1, 1909, 

six simple resource sets were defined. Theorem 1 implies that there 

are 26 = 64 resource sets in the algebra generated by the simple 

resources. Letting a denote the simple resource "building ", b the 

simple resource "cash" and so on, the elements of the algebra can be 

depicted as follows: 

Resource sets containing zero elements 

o- 

Resource sets containing one element 

a, b, c, d, e, f. 

Resource sets containing two elements 

ab, ac, ad, ae, af, bc, bd, be, bf, cd, ce, cf, de, df, ef. 

Resource sets containing three elements 

abc, abd, abe, abf, acd, ace, acf, ade, adf, aef, 

bcd, bce, bcf, bde, bdf, bef, 

cde, cdf, cef, 

def. 

1 

6 

15 

20 
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Resource sets containing four elements 

abcd, abce, abcf, abde, abdf, abef, acde, acdf, acef, adef, 

bode, bcdf, bcef, bdef, 

cdef. 15 

Resource sets containing five elements 

abcde, abcdf, abcef, abdef, acdef, 

bcdef. 6 

Resource sets containing six elements 

abcdef 1 

64 

Note that the compound resource containing six elements is the property 

set P5 and the resource sets containing one element are, in fact, the 

simple resource sets. 

Theorem 2 

Lt(0) = o 

Proof 

By the "Laws of the Albegra of Sets ", for any Aé°ot 

(i) AU0 = A 

(ii) Afl0 = 

From (ii) A and 0 are disjoint. Thus, applying the axiom of measure- 

ment 

Lt(AU0) = Lt(A) + Lt(sÓ) 
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Lt(A) = Lt(A) + 
t 
(0) 

Lt(0) = O 

Remark 

Suppose for any resource set 
A. E,°t 

(trade debtors, land, accrued 

charges, etc.) we have Ai,t = 0. Then Theorem 2 implies 

Lt(A.,t) = O 

Theorem 3 

The accounting measurement space (Pt, Lt) is completely 

described by its simple resource sets and their measures. 

Proof 

Since Pt is the union of the simple resource sets which by hypo- 

thesis are known, we know Pt. Since we know the simple resource sets, 

we can construct the algebra)ot, since it consists of all possible 

unions of the simple resource sets. By applying the axiom of measure- 

ment and Theorem 4 to all possible unions of simple resources we can 

compute the measures of the compound resources. 

Theorem 4 

If A i, j = 1, 2, ,n is a disjoint sequence of resource 

sets then 

n n 
Lt( U Ajt) _ Lt(Aj ) 

j=1 j=1 
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Proof 

n 
Define B 

2 
U A. 

2 
j=2 J,t 

It then follows from the axiom of measurement 

n 

Lt( U Aj't) = Lt(A1 
, 

tUB2) 
j=1 

n 

Lt( U Ajt) = Lt(A1 t) + Lt(B2) 
' 

n 
Define B3 = U Aj't 

j=3 

It then follows from the axiom of measurement 

n 

Lt(JUlAj,t) = Lt(Al,t) + Lt(A2,tUB3) 

n 

Lt(JUlAj,t) = Lt(A1't) + L 
t 
(A 
2,t 

) + Lt(B3) 

Continuing this process proves the result. 

Remark 

Theorem 3 effectively says that once the simple resource sets and 

their associated measurements are known, we can compute the measurement 

of any compound resource set in the algebra generated by the simple 

resources. Suppose, for example, we desire to determine the measure 

of current assets for the Dyer Company Limited as of January 1, 1909. 

By Theorem 4 we have 

5 5 

L 13 
L5(pj,5) 

j=2 j=2 

= 25,000 + 2 x 10,000 
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= 55,000 

By similar procedures we may compute the measure of any collec- 

tion of resource sets in the algebra,. 

Theorem 5 

If A, BEA then Lt(AUB) = Lt(A) + Lt(B) - Lt(AnB) 

Proof 

By the "Laws of the Algebra of Sets" the following may be proved 

AU(BfAc) = (AUB)n(AUAc) 

= AUB 

As the sets A and (BnAc) are disjoint we may apply the axiom of 

measurement 

Lt(A) + Lt(Ac11B) = Lt(AUB) 

B = Bf1(AUAc) 

= (BIIA)U(BIIAc) 

(i) 

As the sets (BIIA) and (BIIAc) are disjoint we apply the axiom of 

measurement 

Lt(B) - Lt(AIIB) = Lt(AcnB) 

substituting (ii) into (i) gives the result. 

Remark 

Define N = p 
1,5 4,5 

5Up5 to be the non -monetary assets of the 
5,5 



57 

Dyer Company Limited as of January 1, 1909. Similarly, define 
5 

C = U p. to be the current assets as of the same date. Note that 
j =2 

Nf1C = p 
4,5 

Up 
5,5 

From Theorem 5 we have 

L5(NUC) = L5(N) + L5(C) - L5(NnC) 

= 80,000 + 55,000 - 20,000 

L5(NUC) = 115,000 

Since the simple resource sets "securities" and "inventory" are 

both current assets and non -monetary assets, the measure of the union 

of current assets and non -monetary assets, is not the sum of their 

separate measures. To avoid double counting, we must subtract the 

measure of this common element. 

Theorem 6 

n 

Suppose B = U A. 6 " is a disjoint sequence of resource sets 

j =1 

with the properties 

(i) Lt(Al 
,t) 

= Lt(A2,t) _ 

(ii) Lt(B) = T 

then L (A. ) = n 1T 
t j,t 

Proof 

j = 1, 2, 

- Lt(An,t) 

n 

By hypothesis we have 

nL (A. ) = T 
t j,t 

for some arbitrarily chosen j, proving the result. 
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Remark 

For the Dyer Company Limited as of January 1, 1909 define each 

unit of stock to be a simple resource. Suppose it is "known" that the 

measure of each unit of stock (each element of the compound resource 

"stock ") has the same measure. It follows from Theorem 6 that stock 

has a "value" of E1 (per unit). 
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CHAPTER THREE 

MEASUREMENT IN. ACCOUNTING 



ii 

3.0 Introduction 

In the previous chapter the mathematical foundations of accounting 

measurement were examined in some detail. Using a set of three axioms, 

some properties common to all accounting measurement systems were 

derived and their implications examined. Absent, however, was a 

discussion of the factors which influence the specification of account- 

ing measurements; that is, the allocation of numbers to the resource 

sets composing the algebra That accountants are prone to dis- 

agreement on this aspect of the accounting function is well documented.1 

Yet, despite this, there has been no attempt at formalizing a statisti- 

cal theory of accounting measurement. In our view, one reason for 

this is that efforts at providing a logical framework for accounting 

measurement have adopted methods which, essentially, are alien to 

accounting. A prime example is the repeated reference one finds in 

the accounting literature to the work of Stevens.2 Whilst Stevens' 

work would appear to bear some significance for accounting measurement, 

it is our view that its implications for measurement, in general, have 

not been fully appreciated by accountants. 

For these reasons, the purpose of this chapter is to examine 

measurement in accounting at two levels. Firstly, we undertake to 

analyze Stevens' measurement scheme. After introducing the concept 

of a measurement rule, the "scales" of measurement are defined and 

1. Sterling, R.R. "Cost Versus Values: An Empirical Test ", The 

Australian Accountant, 41, 5 (June 1971), pp.218-21. 

2. Stevens, S.S. "On the Theory of the Scales of Measurement ", 

Science, C111 (June 7, 1946), pp.677 -80. 



illustrated. We then examine the "meaningfulness" of the statistical 

manipulationsapplied to each of these scales. This permits us to 

analyze the propriety of some recent empirical research in accounting. 

In the second part of the chapter we undertake a statistical 

analysis of accounting measurement. Using Stevens' scales of measure- 

ment as a basis, the likeness ratio is introduced as a means of quanti- 

fying the correlation between imperfectly related measurement rules. 

We conclude the chapter with some discussion of the estimation tech- 

niques which may be employed when there is disagreement between account- 

ants concerning the measurement to be associated with a specific 

resource set. We now focus on the first of these topics; namely the 

Stevens measurement scheme. 



VN 

3.1 Stevens' Measurement Scheme 

That contemporary writers on accounting measurement attribute some 

importance to Stevens' work is illustrated by the fact that few recent 

publications in accounting measurement fail to mention it in some way.3 

Seldom, however, does the discussion advance past the descriptive stage. 

Stevens' measurement scales are "defined" in some vague sense, usually 

by a series of examples, but the implications of this classification 

scheme for measurement in general, let alone accounting measurement, 

are rarely entertained.4 For this reason, this section has as its 

purpose the illustration of the important features of Stevens' work 

and their implications for measurement in general. In some later 

sections, we will examine its implications for accounting measurement. 

3.1.1 Mappings and measurement 

Given two sets X and Y, a mapping from X into Y or a func- 

tion from X into Y associates with each element in X one and only 

3. See, for example, any of the following 

Bierman, H.J. "Measurement and Accounting ", 

38, 3 (July 1963) pp501 -507 

Chambers, R.J. "Measurement in Accounting ", 
Research, 3, 1 (Spring 1965), pp.32-62. 

Bierman, H.J. Financial Accounting Theory, New York: The MacMillan 

Company, 1965, p.333. 

Chambers, R.J. Accounting, Evaluation and Economic Behavior. 
Englewood Cliffs, New Jersey: Prentice -Hall, Inc., 1966, pp.84 -89. 

Larson, K.O. "Descriptive Validity of Accounting Calculations ", 
The Accounting Review, 44, 1 (January 1969), pp38-47. 

Moonitz, M. "Price Level Accounting and Scales of Measurement ", 

The Accounting Review, 45, 3 (July 1970), pp.465 -475. 

Sterling, R.R. Theory of the Measurement of Enterprise Income. 

Lawrence, Kansas: The University of Kansas Press, 1970, pp.66 -71. 

The Accounting Review, 

Journal of Accounting 

4. A notable exception is provided by 

Mattessich, R. Accounting and Analytical Methods. Homewood, 

Illinois: Richard D. Irwin, Inc., 1964, Chapter 3. 
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one element f(x) in Y.5 We say f maps or transforms X into Y 

and write f :X ---0Y. The set X is called the domain of f and 

f(X) is called the range or image of f.6 Thus f:1R ---41.1R 

defined by f(x) = x2 is a mapping since each real x7 has one and 

only one real square. 
8 

However, the "relation" g: 1R+ 'P lR 

defined by g(x) =4/x is not a mapping since each positive real 

x has two square roots in 1R.9 

Suppose we have the mapping f:X -----i1R. Then, we say 

the ordered pair (f;X) forms a measurement rule. We refer to 

the image of f (or subsets thereof), that is f (X), as a measure- 

ment series. We consider some examples of "measurement rules" 

1. The measurement of intelligence is described in the 

following terms 

I P --1R 
where P is a set of people and I associates with each 

element in P (i.e. each person) an "intelligence score" 

in 1R. 

5. Giles, J.R. Real Analysis. Sydney: John Wiley and Sons Austra- 
lasia Pty Ltd., 1972, p.13. 

6. Note that f(X) need not be identical to Y. Functions possessing 

this property are called onto. Rinctions possessing the property 
that for each y in f(X) there exists only one x in X such that y = 
f(x) are called one -to -one. Ibid., pp.13 -14. 

7. For the properties of the real number system, see 

Ibid., pp.1 -7. 

8. Ibid., pp.13 -14. 

9. Ibid. 



64 

2. The measurement of temperature is described in the 

following terms 

F T -P1R 
where T is a set of points in time. F associates with 

each element in T, a "measurement" (farenheit, centigrade 

based) in 1R. Note that T is not restricted to points 

in time. We may, for example, define T to be the set of 

points on a surface, so that F measures the temperature 

at each point of the surface, at some point in time.10 

3. An accounting measurement rule is described in the 

following terms 

Lt : ÿó lR 

where is the algebra generated by the property set 

Pt. Lt associates with each set inot (accounts 

payable, cash, securities, etc.) a "measurement" in 1R. 

This may be a "replacement cost" measure, an "historic 

cost" measure and so on. 

We are justified, therefore, in describing the process of 

measurement in the following terms 

"... measurement ... is defined as the assignment of 

numerals to objects or events according to rules. "11 

10. Measurement rules may be derived from the conditions which it is 

known they must satisfy. For example, the "heat equation" 

U. = U with initial conditions U(x,o) = sin2x, o . x 4 7r 

and U(o,t) = U(7t,t) = o has the solution U(x,t) = e 4tsin2x. 
Here U(x,t) is the temperature of a point x on a rod at time t. 

11. Stevens, op.cit., p.677. 



It is noted, however, that different measurement rules 

produce different measurements. Temperature, for example, may 

be measured in a variety of ways, the most common, of course, 

being the farenheit and centigrade systems. Thus, for any given 

empirical situation, the metrician is likely to be confronted with 

a choice of measurement rule or, more precisely, a choice in the 

unit of measurement. We are then faced with three specification 

problems 

1. Identifying the measurement rules (admissible measure- 

ment rules) appropriate to a given empirical situation. 

2. Determining the group affiliation of the collection 

of measurement rules obtained from (1). 

Having satisfied (1) and (2) the third specification problem is 

stated in the following terms 

3. Determining the "numerical procedures" which may 

"meaningfully" be applied to the chosen measurement series. 

There is, of course, some inadequacy in purely verbal 

descriptions of this kind. What, for example, is meant by such 

obscure expressions as "meaningful" and "numerical procedures ", 

for their significance is not clear from context. It is vital, 

however, that we eliminate any confusion inherent in these state- 

12. Ibid., p.678. 



ments for they are the hub of the Stevens measurement scheme. 

In the next section, therefore, we shall provide a more refined 

interpretation of the measurement concepts implied by these 

statements. 

3.1.2 Measurement Scales 

In this section, our objective is to fix exactly the mean- 

ing of the three specification problems isolated in the previous 

section. Having achieved this, we shall then be in a better 

position to understand the significance of Stevens' measurement 

scheme to the theory of accounting measurement, a topic deferred 

to some later sections. For the moment, however, we concentrate 

on the problem at hand, namely the provision of a more refined 

interpretation of the measurement concepts introduced above. 

The first two specification problems resolve themselves in 

what Stevens termed the measurement scales. Since the factors 

determining the set of "admissible measurement rules" vary accord- 

ing to the empirical situation being analyzed and tend therefore 

to be somewhat fluid, it is not possible to provide in any sub- 

stantive sense a definition of the measurement scales, a point 

acknowledged by Stevens.13 Once, however, the set of "admissible 

measurement rules" is known, rigour may be compromized, a fact 

which is illustrated by the following definition of the measure- 

ment scales 

The measurement rules f and g are J scaled if there 

exists a function Tin J such that 

13. Stevens, S.S. "Measurement, Statistics and the Schemapiric View ", 

Science, CLXI (August 30, 1968), p.85O. 



9 = 7C,f 

A J measurement scale CJ is a collection of measurement 
rules X ---1R which are mutually J scaled. 

The precise form of the measurement scale is determined, 

of course, by the "group structure" of the set J. Stevens, for 

example, introduced the four measurement scales displayed in 

Table 3.1.14 Note that each of these scales is defined by the 

group affiliation of the collection of mappings relating each 

pair of "admissible measurement rules." Thus in the Stevens 

scheme, measurement occurs on a nominal, ordinal, interval or 

ratio scale according to whether each pair of admissible measure- 

ment rules is related by a one -to -one mapping (permutation group), 

monotonic (increasing) mapping (isotonic group), linear (increas- 

ing) mapping (general linear group) or similarity (increasing) 

mapping (similarity group). Whilst these are undoubtedly the 

best known measurement scales, other lesser known scales have been 

(and may be ) introduced as circumstances dictate.15 

Taken by themselves, the measurement scales serve merely 

as a convenient receptacle for classifying measurements according 

to the transformations which may be applied to each. Whilst this 

14. Stevens, S.S. "Mathematics, Measurement and Psychophysics ", in 

Stevens, S.S. (ed.) Handbook of Experimental Psychology. New 

York: John Wiley & Sons, Inc., 1951, p.25. 

15. Suppes, P. and J.L. Zinnes "Basic Measurement Theory ", in R.D. Luce, 

R.R. Bush and E. Galanter (eds.) Handbook of Mathematical Psycho- 

logy, Volume 1. New York: John Wiley and Sons, Inc., 1963, 

pp.1-76. 
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is a function of some import,16 their main role derives from the 

fact that they provide a means of solving the third specification 

problem; namely, determining the "numerical procedures" which may 

meaningfully be applied to each scale. This concept may be more 

precisely defined as follows 

A "numerical procedure" f is J( ",f) scale 
meaningful if when 

Af*)- f6(v) 

then 

yfgref * ) ^' A7t.f , ) 

for all f , f' CT in CJ and 7¿in J. 

where it will be recalled that the J measurement scale CJ is a 

collection of measurement rules which are mutually J scaled. 

The tilde (y) is one of the arithmetic operations "greater than" 

(>) "equivalence" ( =) or combinations thereof (6 or;). 

As an example of the implementation of the above defini- 

tion we prove that the arithmetic mean may be "meaningfully" 

applied to the interval measurement scale. We thus suppose 

the intervally scaled measurement rule f to possess the property 
n 

171 f * f' where ßÌ(f *) = f* = 2, f* and fó(f') = = 11 
f'k 

are 
j =1 k =1 

the arithmetic means of the two f measurement series. Trans- 

forming each measurement series by the general (increasing) 

linear group 7U. f = a + b2f implies f(7C.f *) = a + b217* 

2- 
f(%Cef') = a + b f' or that comparison of the arithmetic means of 

16. Chambers, loc.cit. 
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intervally scaled measurement series is a "meaningful" procedure. 

In words, for an interval measurement scale, the relationship 
rule 

between arithmetic means is independent of the measurement /employed. 

In Table 3.1 we list the statistical procedures which may 

meaningfully be applied to each of the Stevens measurement scales. 

Several factors deserve emphasizing. The permissible statistics 

are cumulative. Since, for example, the similarity group is a 

subset of the general linear group, a statistic permissible to the 

interval scale is also permissible to the ratio scale. Similarly, 

a statistic permissible to the ordinal scale is also permissable 

to the interval and ratio scales. Should, however, a statistic 

be applied to a measurement scale for which it is not permissible 

(for example, the geometric mean applied to intervally scaled 

measurements), conclusions concerning the statistic become depen- 

dent on the measurement rule utilized.17 

17. A numerical example may help to clarify this point. Consider the 
two temperature series Ac = (2,10) and Bc = (4,6) where the measure- 

ments are on the centigrade scale. The comparable measurements 
on the farenheit scale are AF = (35.6,50) and BF = (39.2, 42.8) 

where these figures are obtained by applying the familiar formula 
F = 32+-C to the centigrade measurements. Denote by G, the 

geometric mean of each series, in which case we have 

G(A) =177"--c l0 = 4.47 < G(Bc) = 4 x 6 = 4.90 

for the centigrade scale measurements. For the farenheit scale 

measurements we have 

G(AF) x/35.6 x 50 = 42.19 ''G(B 
F 

) = ,ti/ 39.2 x 42.8 = 

40.96 

Thus, using the geometric mean as a criterion, the centigrade scale 

measurements indicate that the "A" temperature series is "hotter" 

than the "B" temperature series. If, however, we employ the faren- 

heit scale, precisely the opposite result is obtained. The "B" 

temperature series is "hotter" than the "A" temperature series. 



This completes our analysis of the Stevens measurement 

scheme. In summary we note that the Stevens measurement scales 

are merely a device for classifying measurements according to the 

transformations which may be applied to each but that in so doing 

it provides a means for determining the "meaningfulness" of the 

numerical procedures applied to such measurements. We now focus 

our attention on the more important task of investigating the 

significance of Stevens' work to the theory of accounting 

measurement. 
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3.2 The Accounting Implications 

In this section our objective is to examine the accounting 

implications of the Stevens measurement scheme. These are at least 

two in number. Firstly, Stevens' work has been used to cast doubt 

on the verity of some recent empirical research in accounting. That 

it is important to resolve this issue derives from the fact that the 

methods concerned are widely used in practice and if they be invalid 

they may be the source of some invalid empirical generalizations. 

Secondly, in many aspects of his measurement function, the accountant 

must choose one of several admissable measurement rules. Recall 

that in the Stevens scheme, measurement scales are defined in terms 

of the relationship which exists between such rules. Although it 

is unlikely that alternative accounting measurement rules will have 

any deterministic relationship, the Stevens scheme does provide a 

rationale for utilizing one accounting measurement rule as a means 

of estimating another. 

In the present section we shall examine each of these topics 

in some detail. We commence with the implications of Stevens' work 

for empirical research in accounting. 

3.2.1 The Meaningfulness of Some Recent Empirical Accounting 
Research 

A significant feature of Stevens' work, at least as far 

as accounting is concerned, is that it has been utilized to 

cast doubts18 upon the validity of some recent empirical research 

18. Peasnell, K.V. "The Objectives of Published Accounting Reports: 

A Comment ", Accounting and Business Research, 4, 17 (Winter 1974) 

pp.71 -76. 
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conducted by Carsberg, Hope and Scapens.19 Since a similar 

statistical methodology was adopted in the empirical investiga- 

tions conducted by Fisher,20 Lee and Tweedie21 and Baker and 

Haslem,22 it is important that we evaluate the criticism's 

authenticity. This we proceed to do. 

Each of the research projects noted above reports results 

obtained from requesting questionnaire respondents to rank finan- 

cial information in some preferred order. Thus, for example, 

in the Carsberg et al study 

"The nub of our enquiry was expressed in a question 
which asked respondents to rank, on a seven point 
scale, the importance they thought should be attached 
to a number of possible objectives for published 
accounts. "23 

As a basis for comparisons the ranks were summed over all 

respondents and the mean and standard deviation of each objective 

was computed. It was this procedure which attracted the atten- 

tion of Professor Peasnell. 

19. Carsberg, B., A. Hope and R.W. Scapens. "The Objectives of 
Published Accounting Reports ", Accounting and Business Research, 5, 

15 (Summer 1974), pp.162 -173. 

20. Fisher, J. "Financial Information and the Accounting Standards 

Steering Committee ", Accounting and Business Research, 5, 16 

(Autumn 1974), pp.275-285. 

21. Lee, T.A. and D.P. Tweedie. "Accounting Information: An 

Investigation of Private Shareholder Usage ", Accounting and Business 
Research, 5, 20 (Autumn 1975), pp.280 -297. 

22. Baker, H.K. and J.A. Haslem. "Information Needs of Individual 

Investors ", The Journal of Accountancy, 136, 11 (November 1973), 

pp.64 -69. 

23. Carsberg, et al., op.cit., p.170. 
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'... one cannot agree with Carsberg et al that 
"averages seem to be a reasonable way of summaris- 
ing the replies" ... because the averaging proced- 
ure is based on the ... erroneous assumption that 
the measurements are in the interval scale.'24 

The criticism may be more fully appreciated by reference 

to the following matrix 

Ob.iective 

Individual 1 2 3 n 

1 X11 X12 
X13..._.` 

Xln 

2 X21 

x31 

X22 

X32 

X23 

X33 

~ X2n 
3 

1 

m X 
f 

m3 mit ml m2 

The elements xij of this matrix define a measurement rule, 

n m 
f: Z1xZ1 1 Zip where Z1p is the set of integers contained 

in the interval [l,n] representing the ranks allotted to each of 

n objectives, Zi is the set of integers contained in the interval 

(l,m] representing the m respondents and Zi = Zi represents each 

of the n objectives. Thus, for example, the entry X23 repre- 

sents the rank allotted to the third objective by the second 

respondent, or in functional form, f(2,3) = X where X23 is, 

of course, a positive integer. 

To substantiate the view expressed by Professor Peasnell 

we must show that there exist at least two admissable measurement 

rules and that these rules are ordinally scaled; that is, linearly 

independent. Recall, from Table 3.1, that the mean and standard 

24. Peasnell, op.cit., p.75. 



deviation are not statistics permissible to the ordinal scale (that 

is are not meaningful numerical procedures to the ordinal scale). 

It follows that on the ordinal scale the relationship between 

means and standard deviations is (in general) dependent upon 

which of the admissible measurement rules is utilized to express 

the results of measurement. The question, turns, therefore, on 

whether there exists a pair of linearly independent methods 

(measurement rules) for denoting ranks. 

Our examination of the literature indicates that there is 

but one numerical procedure (that is, one admissible measurement 

rule) available for denoting ranks; namely, denotation of ranks 

by the positive integers 1, 2, , n, where n is the number 

of objects ranked. As such, the numbers denoting ranks (z) 

may only be transformed by the identity mapping%(i(z) = z. 

Measurement rules possessing this property are said to be abso- 

lutely scaled, 5 and have the additional feature that each of 
the statistics listed in Table 3.1 is a meaningful numerical 

procedure with respect to the measurement rule.26 The conse- 

quence of this, of course, is that Professor Peasnell's criticism 

of the Carsberg et al paper is unsubstantiated. In words, com- 

puting the mean and standard deviation of a set of ranks is a 

"meaningful" numerical procedure. 

We conclude, therefore, that estimating the "true" rank- 

25. Suppes and Zinnes, op.cit., p.25. 

26. This follows from the fact that the identity mapping is obtained 

from the similarity mapping 7G(z) = K z, by setting K= 1. 



ings by the procedure utilized in each of the above noted studies 

(the arithmetic mean of the respondents' ranks) is a meaningful 

operation. It may not, however, be the most "efficient" means 

of doing so. This is a topic we devote some time to in the 

ensuing section. 

3.2.2 The Problem of m Rankings 

Carsberg et al estimate the "true" ranking of n objects 

on the basis of the (arithmetic) mean rank taken over the m 

questionnaire respondents.27 This procedure, however, is defi- 

cient in two respects 

1. It presupposes the existence of consensus amongst 

the m respondents. 

2. There is no criterion by which to judge the "effi- 

ciency" of the estimated rankings. 

To overcome the first objection the coefficient of concor- 

dance has been proposed.28 

W = 

12S 

m2(n3-n) 

where m is the number of respondents and n is the number of 

27. Carsberg et al, loc. cit. See also 

Lee and Tweedie, op.cit., p.282. 

Baker and Haslem, op.cit., p.65. 

Fisher, op.cit., p.280. 

28. Kendall, op.cit., p.95. 



objects being ranked. S is the sum of the squared differences 

between the total of the ranks attributed to each object and the 

average attributed to all objects. Define the following 

(m -1)w 
U = 1-W 

Vl = (n-1) - 

V2 = (m -1)V1 

V = m(n -1)W 

On the presumption that there is no consensus between the m 

respondents it can be shown for n7 5 and m 7 3 that U is distri- 

buted as an F(V1,V2) variate. 
29 

When n 77, however, a more 

convenient test is provided by the fact that V has an approxi- 

mate X2 frequency function with (n -1) degrees of freedom.30 

When neither of these conditions is satisfied we resort to the 

use of specially prepared Tables.31 

For the second problem, it may be shown that to rank 

objects according to the sum of ranks allotted to each provides 

a "best" estimate in a "least squares" sense.32 The ranking 

29. See Appendix 3A. See also Ibid., pp.107 -111. 

30. Ibid., p.98. 

31. Ibid., pp.184 -188. 

32. Ibid., p.101. 
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thus obtained remains invariant when the rank sums are trans- 

formed to their arithmetic means.33 It would seem, therefore, 

that the research reported above provides rankings consistent 

with the "least squares" rankings. Unfortunately, this is not 

necessarily the case. 

In the Carsberg et al study, questionnaire respondents 

were requested to rank ten potential uses of financial state- 

ments on a scale from one to seven.34 Thus, the rank allotted 

to each use was not necessarily unique. Similar procedures 

were adopted by Lee and Tweedie35 and Baker and Haslem.36 The 

consequence of this is that the estimated rankings reported in 

each of these papers are not necessarily consistent with the 

"least squares" estimates because under the "least squares" 

criterion each object must receive a unique rank from each 

respondent.37 

m m 
1 m 1 

33 Obviously if E xi ^' 1] xi 
k 

then 
m -+ x ~ m + xi k 

i=1 ' i=1 ' 

i 
i=1 ' i=1 ' 

34. Carsberg et al, loc.cit. 

35. Lee and Tweedie, loc.cit. 

36. Baker and Haslem, loc.cit. 

37. Kendall, op.cit., p.101 and p.114. 

Note that the studies referred to in the test requested question- 

naire respondents to map various kinds of financial information 

into a set of mutually exclusive "importance" ranks. Under 

this scheme, it is possible for each type of financial datum to 

receive the same importance rank. 
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This completes our analysis of the implications of 

Stevens' work for empirical accounting research. In summary, 

we note that his work is of vital importance to any research 

project involving some species of measurement. Recall, however, 

that his work does bear a more direct relationship to accounting 

measurement in that it can be used as a base from which to 

rationalize the statistical estimation of one accounting 

measurement rule by recourse to another. In the next section 

we shall develop this theme in more detail. 

3.2.3 The Likeness Ratio 

In the Stevens system, scales are defined in terms of 

relations amongst admissible measurement rules. Thus, the 

measurements obtained under one measurement rule can be trans- 

formed into their equivalent measurements under another rule by 

merely applying the transformation which defines the scale type. 

In accounting measurement, however, whilst there are usually 

several potentially useful measurement rules, it is doubtful 

if there is any deterministic relation between them. Since 

financial statements must, of necessity, limit the number of 

valuation bases reported, users may be denied some potentially 

useful information. A partial solution to this problem was 

provided by Ijiri in the form of the linear aggregation coeffi- 

cient.38 The square of the linear aggregation coefficient, 

which Ijiri dubbed the aggregation effectiveness coefficient, is 

a summary measure designed to reveal the degree of identifiability 

38. Ijiri, Y. The Foundations of Accounting Measurement. 

Englewood Cliffs: New Hersey: Prentice -Hall, Inc., 1967, p.130. 



between any two accounting aggregations.39 Unfortunately, 

our axiom system is not stated in a form which facilitates use 

of the aggregation effectiveness coefficient due to the absence 

of quantification in the sense implied by Ijiri's axiom of 

quantities. In this section, therefore, we shall define and 

investigate the properties of the likeness ratio which is designed 

as the analogue of Ijirils aggregation effectiveness coefficient. 

In this respect, suppose a set of financial statements 

to be prepared under the valuation basis implied by the measure- 

ment rule (Lt; ÿot). Suppose, however, a user of these state- 

ments "prefers" the valuation basis implied by the unknown 

measurement rule (1,1t,/ r t). Since Lt is known, it may be 

possible to decrease t he user's uncertainty by estimating LIt by 

the following method 

y. = 
/ 

xj + ej 

where yj = L't(s.) and xj = Lt(Sj) for all S. in Tot, ej is 

the error from estimating y. by/ x. and e is a parameter. In 

order to determine a "best" value for id we must choose an 

optimality criterion. In this respect, the quantity 

2 
¿(y. ax.) 

1 - is the fraction of the squared values of the 

4.1 yj 

39. Ibid., p.126. 
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y's that is eliminated as a result of estimating y by x. For 

"exact" fits the ratio assumes a value of unity. When the 

fit is not exact the ratio decreases in value as the fit 

deteriorates. Consequently, we employ this ratio as a criterion 

for gauging how useful one measurement rule is in estimating 

another. Specifically, define the following function as an 

optimality criterion 

N 

/1 'xj)2 
A2(16) = 1 - j=1 

i 2 
!`a Y 

j j=1 

where each summation is taken over the N = 2n measurements 

obtained by respectively applying Ltt and Lt tot. Differen- 

tiating A2( ,d) with respect to i6 implies A2( ,6) attains its maximal 

value when assumes the following figure 

^ /5 _ _X 
(1 2 x 

where the summation subscripts have been dropped for convenience. 

This result implies that 2 (,) attains its maximal value at the 

point R X (6 )J where 1 

(uxy ) 2 
2(tS) _ Ex2f! 2 

40. See Appendix 3B. 

41. See Appendix 3B. 
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2 A 

We thus define A (R) as the likeness ratio. 

The likeness ratio possesses all the properties one would 

A expect of a "determination coefficient". The range of A (A) is 

defined by42 

O t A2 (id) 4 1 

whilst it can be shown that A2(// /4) = O if and only if id = O.43 Further, if the fit is exact in the sense that e. = O for all j, 

then A2 (b) = 
1.44 

The likeness ratio may be used as a means of choosing the 

simple resources to be reported in financial statements. We 

may, for example, define a standard such as A 2 (i6) = 0.95 to be 

"satisfactory" and then where possible, choose the simple resources 

so that "satisfactory" approximations can be made to the measure- 

ments of other valuation bases. As an example of this, we com- 

pute the likeness ratio for the historic cost and replacement 

cost measurement rules of the Dyer Company Limited as of Decem- 

ber 31, 1909. The data upon which the computations are based 

are contained in Appendix 3C to this chapter and Table 4.9 of 

A 
Chapter 4. Applying the equation for A 9) we have 

42. See Appendix 3B. 

43. See Appendix 3B. 

44. See Appendix 3B. 
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(Gpxy ) 2 

A 90 = 

E%2 

(335, 402.2)2 
(302, 465.5)(379, 576.7) 

A2) = 0.9798 

A likeness ratio as "significant" as this implies that 

the historic cost measurement rule is "likely" to be quite useful 

in estimating the replacement cost measurements of the Dyer 

Company's resources. Had the fit been less precise, it may 

have been possible to improve the value of the likeness ratio 

by aggregating some simple resources into compound resources 

whilst disaggregating others. In any event, the likeness ratio 

seems not only to provide a means for determining the content 

of financial statements, but also a summary measure of the 

identifiability of accounting measurement rules. 

This completes our consideration of Stevens' work as it 

affects accounting measurement. In summary, we note that the 

main import of Stevens' work seems to be to empirical research 

in accounting, although it can be used as a base from which to 

rationalize the estimation of one accounting measurement rule 

by recourse to another rule. We now entertain a topic which 

has received surprisingly little attention in the accounting 

literature; namely a probabilistic analysis of accounting 

measurement rules. 



84 

3.3 A Probabilistic Analysis of Accounting Measurement 

In the analysis to date, there has been little discussion of the 

factors influencing the appropriation of numbers to the resource sets 

composing the algebra). These numbers have been taken as somehow 

determined outside the axiom system. That accountants are prone to 

disagreement over this procedure is well documented.45 Indeed, the 

American Accounting Association went so far as to suggest the incorpora- 

tion of interval estimates of accounting measurements into financial 

statements. 

"... pressure exists for an expansion of the scope of 
accounting. The Committee believes that initially this 
expansion will be reflected in accounting reports 
with multiple valuations ... . (An) aspect of multiple 
valuations involves the use of non -deterministic measures 
or quantum ranges ... ."46 

In this section we shall examine two methods for implementing 

this procedure. The first method imposes the strong assumption that 

the measurement series under examination possesses a normal frequency 

function, whilst the second relaxes this assumption and imposes the 

alternative condition that the measurement series merely possesses 

mean and variance. We now turn to the first of these methods. 

3.3.1 "Normal" Measurement 

Suppose the measurement series x1, x2 , xn to consist of n 

45. Sterling, "Cost versus Values: An Empirical Test ", op.cit. 

46. American Accounting Association. A Statement of Basic Accounting 

Theory. Evanston, Illinois: American Accounting Association, 

1966, p.65. 

47. The analysis of this section may, at first sight, appear to be 

similar to the work conducted by Ijiri and Jaedicke. See 

Ijiri, Y. and R.K. Jaedicke, "Reliability and Objectivity of 

(Contd.) 
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metricians' estimates of the measure of a resource set using the 

rules of a particular measurement system, such as, for example, 

the method of replacement cost. Define the sample objectivity 

measure of the measurement series as 

V = -E (xj _°() 2 
nj_1 

whereck is determined so as to minimize V. Differentiating 

with respect toa< and setting the result to zero gives48 

so that 

dV 
O = 

2jn 
d°c = n u (xj -K) 

3=1 

1 
0( _ E x. 

n. 
J=1 

47. (Contd.) 

Accounting Measurements", The Accounting Review, XLI, 3 (July 
1966), pp.474 -83. There are, however, several differences. 

Firstly, Ijiri and Jaedicke's "alleged value" is not, in general, 

equivalent to our "true value ". The "true value" is the first 
moment (about the origon) of the metricians' frequency function. 
Ijiri and Jaedicke have little to say on how the "alleged value" 
is derived. Secondly, Ijiri and Jaedicke did not discuss how 
estimates of the bias and objectivity measurements implied by 

their system could be obtained. See also, 

Ijiri, op.cit., Chapter 7 for some more discussion on this. 

2 

48. Since 2 = 2 7 O we are assured of a minimum. See Hancock, 

dot 

H. Theory of Maxima and Minima. Boston: Ginn and Company, 

1917, p.4 or any elementary calculus text. 
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is merely the arithmetic mean of the measurement series. 

Suppose the elements of the measurement series are random elements 

from a frequency function possessing the following parameters 

1. " = E(x) 

2. 61= E[x - E(x)]2 

We call 

/ 

a the "true value "19 (or consensus value) of the resource 

and 
r2 

the "objectivity measure" of the resource. This permits 

the sample reliability measure to be defined in the following 

terms 

R = ! (xJ 
7(42 

J=1 

Since c( was determined so as to minimize the sample 

objectivity measure we have that R 7 V. The precise relation- 

ship between these quantities, however, can be derived in the 

following manner 

nV = E (x. - x)2 
J 

where the summation subscripts have been dropped for convenience. 

Continuing we have 

nV = E C( x -t,) - ( x 7,14;1 2 

11 
J / 

t = L C(xJ -/k)2 2 
- 2(xj / , )(x 74.4) + (x 704)2] 

49. This terminology was introduced by Morgenstern. See 

Morgenstern, O. On the Accuracy of Economic Observations. 

Princeton: Princeton University Press, 1963, p.76. 
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nV = /4.1(x -14.442 - 2(7 -µ) (xj -µ) + /167 -µ)2 
J / // // / 

But since 

2:(xj -µ) = n(x ) 

we may restate the above expression in the following terms 

nV = (xj )2 - n(x 71144 
2 

Define B = (x - µ) 2 as the sample bias measure thus implying 

n(V + B) = nR 

so that the non -negative sample bias measure is the exact differ- 

ence between R and V. Suppose we impose the following assump- 

tion 

The measurement series x1, x2, , xn is a 

random sample from a normal frequency function. 

and divide nV by the objectivity measure 0 2 thus giving 

nV nR nB 
2 2 2 

0" 6 ö 

It can then be shown 

1. The variate x = Exj possesses a normal frequency 
n 
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function with mean Aland variance -. 50 n 

/Chi squared 
2. The variate n2 possesses a frequency function with 

j (n - 1) degrees of freedom.51 

/Chi squared nR 
3. The variate 

2 
possesses a frequency function with 

n degrees of fr edom.52 

/Chi squared nB 
4. The variate possesses a frequency function with 

one degree of freedom.53 

5. The variate a normal frequency function 

54 with zero mean and unit variance. 

(n -1)B 
6. The variate 

V 
possesses a t frequency function 

with (n -1) degrees of freedom.55 

50. Mood, A.M. and F.A. Graybill. Introduction to the Theory of 
Statistics. New York: McGraw -Hill Book Company, Inc., 1963, p. 

146. 

51. Ibid., p.230. 

52. Ibid., p.227. 

53. Ibid., p.230. 

54. Ibid. 

55. Suppose y to be a normal variate with zero mean and unit variance. 
Let u be a x2 variate with k degrees of freedom and suppose u and 

y to be independently distributed. Then the random variable 

t = u 
has a student's t frequency function with k degrees of freedom. 

Recall that the variate 
(Contd.) 
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We are thus provided with a powerful set of tests by which 

to determine the consistency of alternative hypotheses concerning 

the variates B, R and 6 . We illustrate their use by recourse 

to the following example 

An accountant is required to estimate a building's 
replacement cost and objectivity measures. A 
random sample of 25 metricians produces the following 
statistics 

(i) x = 10 

(ii) V = 100 

Construct 95 Rer cent confidence intervals for the 
variates B, d- and the ordered pair (B, 0.2). 

From result 6 above we know that the variate J(n-1)B 
V 

has a t frequency function with (n -1) degrees of freedom. Sub- 

55. Contd. 
n 

y = 
2 

O- 
has a normal frequency function with zero mean and unit variance, 

whilst the variate 

nV 
u 

r 2 
has a x 

2 
frequency function with (n -1) degrees of freedom. Since 

the frequency functions of x and V are, in fact, independently 

distributed we may use the above result. Substituting we have 

2 

-1 t = 
n2 

n 
nV 

t 
-./ V 

(n -1)B 

has a t frequency function with (n -1) degrees of freedom. See 

Ibid., p.233 and p.255. 
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stituting the given values of n and V implies 

4Io.24B (G 2.0641 = 0.95 

This may be restated as 

p[B 417.750 
a 

= 0.95 

This result implies that the probability of the sample 

bias measure exceeding 17.750 is 0.05. A similar procedure may 

be applied in estimating the objectivity measure . By virtue 

/Chi squared 
of result 2, the variate 

n2 
possesses a frequency function 

6- 
with (n -1) degrees of freedom. Substituting the given values 

of n and V implies 

PEn2 13.8 
J Ó .i 

which may be restated as 

2 nV 
p t, 13.8 

p[ 

2 < 181.59] 

= 0.95 

= 0.95 

= 0.95 

Thus, the probability of the objectivity measure exceed- 

ing 181.59 is 0.05. 

The procedures specified above provide separate interval 

estimates of the sample bias measure B and the objectivity 



2 
measure In In addition, however, it is possible to construct 

2 a confidence region in (B4O-) parameter space. This procedure 

provides some insight into the possible values which B and 
or 

may jointly assume. Since the frequency functions of x and V 

are independently distributed,56 we employ results 2 and 5 above, 

in which case it follows57 

pf I 

Z 
I 4 2.241 = 0.975 

which may be restated as 

and 

PE 4 5.02 
J 

= 0.975 

p(' nV 12.41 = 0.975 e .1 

56. Ibid., p.255. 

57. The confidence region determined here is but one of an infinite 
number of possibilities. To be more precise, we must choose real 
numbers h and k so that 

and 

[IJi< 2.24] = h 
d.2 

p[ ?/. 12.4] = k 

where h.k = 0.95. We have chosen h = k = 0.95 g 0.975 but 
there are obviously an infinite number of other possibilities. 
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The two inequalities obtained from the above equations 

taken in conjunction with the fact that both B and o- must 

assume non -negative values,58 determines the required confidence 

region. Substituting the observed values of n and V into the 

above expressions, we have 

B, 7 0 

The confidence region implied by these equations is 

graphed in Figure 3.1. The probability of both B and cir being 

interior points of this confidence region is 0.95. 

As the justification of these procedures is grounded in 

their practical utility, we illustrate their application by 

recourse to the example pursued above. Suppose the following 

alternate criteria are provided by "management" as necessary 

conditions for the inclusion of x in the financial statements. 

1. The probability of the sample bias measure 

exceeding 20 (twenty) must not be greater than 0.05. 

2. The probability of the sample objectivity measure 

exceeding 150 must not be greater than 0.05. 

58. Since B and 0- are squared 
real numbers, this must be the case. 



FIGURE 3.1 

CONFIDENCE REGION IN (B,ç) PARAMETER SPACE 
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3. The probability of the ordered pair (B, 6-) being 

contained in the region defined by the upper half of 

the rectangle formed from the origon and the point 

(30,150) must not be less than 0.95. 

Under the first criterion the sample mean would be inclu- 

ded in the financial statements as59 

p[ B, 201 = 
14/(n-)B I 4 2.1911 

p[ B4 20] = 0.980 

This result implies that the probability of the sample 

bias measure exceeding 20 is (1 -0.98) or 0.02. This is well 

within the tolerance specified by "management ". 

Using the second criterion, however, the sample mean would 

be excluded from the financial statements6O 

59. Recall that n = 25 and V = 100. It follows, therefore, that 

(n-1)B 24B < 24 

V 100 ! 100 
x 20 

IP1_B 
I 2.191 

The probability reported in the text may then be obtained by 
interpolating on the t distribution function tables. 

60. ó2 0- 2 < 150 

nV 2500 2500 

16.67 4 
n2 

ô 

The probability reported in the text may then be obtained by 
interpolating on the distribution function tables. 

/Chi squared 



e7 5 

pr.2 < 150 
a 

= pn2 7 16.671 

p[0- 2 150 1= 0.86 

This result implies that the probability of the objectivity 

measure exceeding 150 is (1 -0.86) or 0.14. This is outwith the 

probability specified by "management" and consequently the sample 

mean is excluded from the financial statements. 

Utilization of the third criterion effects exclusion of 

the sample mean from the financial statements. To determine 

the probability of the ordered pair (B,T) being interior points 

of this region we must determine the real numbers d and g where 

and 

= h 

er 

nV 
PI 6,2 g 1 = k 

so that the "vertex" of the confidence region occurs at the 

point (30,150). Using this condition, the second of the above 

equations and recalling that n = 25 and V = 100, we have 

g 
nV 

r2 

= 25 x 100 
150 

g = 16.67 



95 

Similarly, from the first equation we have 

d = 14T1 

= V25 1 
x 
50 30 I 

d = 2.24 

Using tables and the fact that j possesses a normal frequency 
nV 

function with zero mean and unit variance whilst possesses a 

x2 frequency function with (n -1) degrees of freedom, we have 

and 

[Iii' .I 

2.241 = 0.975 

prn2 16.671 = 0.86 

or, h = 0.975 and k = 0.86. Since the frequency functions of 

x and V are independently distributed,61 these results imply 

that the probability of the ordered pair (B, 62) being an 

interior point of the region specified by "management" is 

[fIJi 4G. 2.241(1{72- 16.641 

= PI 
I 

12714;.2.24]. 62 pf n2 .;p 16.61 
LLL 

= h x k 

= 0.84 

Thus, the probability of the ordered pair (B, 6'2) being an 

61. Mood and Graybill, op.cit., p.255. 
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exterior point of the region is (1 -0.84) or 0.16. Since this 

is outwith the probability specified by "management" the sample 

mean is excluded from the financial statements. 

The normal frequency function occupies a conspicuous 

position in statistical theory if only because it has been found 

to be a "good" approximation to many empirical frequency functions.62 

Misleading conclusions may be derived, however, when the normal 

assumptions are erroneously employed.63 In the next section, 

therefore, we shall investigate some methods which may be utilized 

when the normal assumptions are violated. 

3.3.2 "Non -Normal" Measurement 

In cases when there is evidence of "non- normality"64 

but we are assured that..4 and 9.2 exist, there are two results 

of some significance. The first of these may be stated as 

62. Ibid., p.156. 

63. Lusk, E. "Normal Assumptions in Decision Making ", Accounting and 
Business Research, 3, 10 (Spring 1973), pp.133 -144. 

64. For some "goodness of fit tests ", see 

Kendall, M.G. and A. Stuart. The Advanced Theory of Statistics, 
Volume 2. London: Charles Griffin and Company Limited, 1973, 
Chapter 30. 

On the "sensitivity" of normal tests to departures from normal- 
ity; that is, the robustness of these tests, see 

Ibid., Chapter 31, especially pp.483 -484. 
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follows65 

1. Let x be the mean of a random sample of size n. 

Then the variate 

J-773- 

6.2 

has an asymptotic normal frequency function with zero 

mean and unit variance. 

This result is known as the central limit theorem. 

The rate of convergence to "normality" and, therefore, the 

degree of approximation, depend on the sample size and the 

frequency function being sampled. As an example of the theorem's 

application, suppose the normal approximation to be reasonable 

and that is known. It then follows that 

111 IJFI 
! zz l 

J 

represents a (1 -K) confidence region for the sample bias measure. 

In words, the probability of the sample bias2measure (B) being 

an interior point of the interval CO, 
zK6' 

is (1-g). A 
n 

similar procedure may be adopted for the objectivity measure 

( 6) when the sample bias measure is known. It is unlikely, 

of course, that the precise values of B or (or both) will be 

65. For a proof of this theorem, making the redundant assumption that 
the frequency function's moment generating function exists, see 
Mood and Graybill, op.cit., pp.149 -150. For proofs using more 
general conditions, see 
Freund, J.E. Mathematical Statistics. Englewood Cliffs, New 
Jersey: Prentice -Hall, Inc., 1971, p.208. 
Keeping, E.S. Introduction to Statistical Inference. New York: 
D. Van Nostrand Company, Inc., 1962, pp.90 -92. 



known, and as a consequence, this result is of little use in 

the form in which it is stated. 

A far more significant result, however, is provided by 

the following theorem 

If y is random variable with finite second moment then 

p[IItI C E(y2)t-2 

for all non -negative real t. 

This result is known as Chebyshev's inequality, so named 

after the Russian mathematician who discovered it. A proof of 

the theorem (in this form) is provided in Appendix 3D. 

Chebyshev's theorem can be used to prove some so called 

"ergodic" theorems. To illustrate, make the substitutions 

y =I%B and t = k 6 in which case we have 

E(B) 
P [1/73-1 icy] 

k26- 

EC(x -ÌW2] 
= J 

66. For some other forms of this inequality, see 
Mood and Graybill, op.cit., pp.148 -149 
Freund, op.cit., pp.149 -151. 
Keeping, op.cit., pp.45 -46. 

When/4,0.s known to exist, but we are not assured that 62 exists, 
then the Markov Inequality may be of some assistance. See 
Ibid., p.45. 



p k2D' 

J 

1 67 

nk2 

Taking limits across this inequality we have 

Lim p1 B 
LLL 

k ] = O 

n--00 

Thus, for "large" samples, it is likely that the sample 

bias will be negligible. A similar result holds for the 

sample objectivity measure (V) in its to the object- 

ivity measure (d 
it 

). To illustrate, let s =4/77 y = (s -ö) 

and t = k4', in which case we have 

pL Is 
-erI 

But since 

E ((s -Cr)2] 

k26- 

E(s2) - 2TE(s) +D"2 

k20" 
2 

E(s2) n-1 d.2 68 
n 

67. This result follows from the fact that 

01"2 

= E [(x 
7/4,21 

2 d2 

x n 

A proof of this result is provided in 
Mood and Graybill, op.cit., p.146. 

68. Freund, op.cit., p.257. 



and 

E(s) _ 11- (1 - in + 012)69 
n 

It follows that 

1 n-1 2 
p f Is - a-) 7 ice] 1 ñ 6 - 

s 
ñ247(l - 4n + 02) + 

k2 
[2n-1 

2(1 - 4n + Oñ2 ) 

Taking limits across this inequality we have 

Lim 
n --00 

pr I s kid = o 

or that for "large" samples s =4/7 is likely to be a reasonable 

approximation for 6. This, of course, implies that for "large" 

n, the sample objectivity measure (V) is likely to be "good" 

approximation to the objectivity measure (62). 

The "ergodic" theorems (concerning B and 0 ) derived 

above are of considerable practical significance since they 

imply for large samples taken from frequency functions possess- 

ing second moment about the mean (41- 2), that the measurement 

bias (B) is likely to be negligible whilst the sample object- 

ivity measure (V) is likely to be a reasonable approximation for 

69. Keeping, op.cit., p.209. 
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the actual objectivity measure (T2). When the sample size is 

small, 70 however, knowledge of the underlying frequency function 

is a necessity if we are to make substantive conclusions. 

This completes our analysis of the probabilistic founda- 

tions of accounting measurement. We now summarize the contents 

of the present chapter. 

70. Note that Sterling found the normal frequency function to be a 
reasonable approximation to the actual frequency function in 
his study. See Sterling, "Cost versus Values: An Empirical 
Test ", op.cit., p.220. 
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3.4. Summary 

In this chapter we have endeavoured to analyze accounting 

measurement by building on the axiom system developed in the previous 

chapter. Since few recent publications in accounting measurement 

fail to devote some attention to the Stevens measurement scheme, we 

commenced the chapter with an examination of the important features 

of Stevens' Measurement scheme. Having achieved this, we proceeded 

to examine its potential to the theory of accounting measurement. 

In this respect, it was suggested that the main import of Stevens' 

work lies in the province of empirical research. It would seem to 

bear little significance to accounting measurement per se unless, of 

course, it were to be demonstrated that the several accounting 

measurement rules have some deterministic relationship. 

Stevens' measurement scheme can be used, however, as a base 

from which to rationalize the estimation of one accounting measurement 

rule by recourse to another. The likeness ratio was thus defined 

as a means of measuring the identifiability of any two accounting 

measurement rules. The likeness ratio was also shown to possess all 

the properties one would expect of a "determination coefficient ". 

As a final exercise, we undertood an analysis of the "estima- 

tion" techniques which may be utilized when there is disagreement 

between accountants concerning the measurements to be accorded a 

specific resource set. Specifically, this part of our work developed 

upon a theme initially developed by Ijiri and Jaedicke and enabled us 

to specify a means of incorporating interval estimates into financial 

statements. An unsatisfactory feature of the analysis, however, is 

that it assumed that measurements were normally distributed. 
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APPENDIX 3A 

THE COEFFICIENT OF CONCORDANCE 

On the assumption that all (m) observers are independent in 

their judgements, Pitman has shown that the frequency function of W 

may be approximated by the Beta distribution 

where 

and 

dF -_ 
1 (p+9.) Wp-1(1-W)q-1dW 

rCPrik(1) 

P = 1(n-1) - 

q = (m-1)p 

provided m ;>3 and n '75. Recall that n is the number of objects 

being ranked. This frequency function may be more usefully restated 

as 

dF 
r(P+g) W P 

W 1 dW 

r(p)(q) [r]W 1-W W(1 -W) 

Make the substitution 

z _ z log (m 
-1)W 
1 -W 

2dz 
1 

W(1-W) 
dW 

Thus implying that the frequency function may be restated as 

2p+q) (m-1)q e2Pz [(rn_i) + 
e2z1 -(P+) 

J 

Letting V1 = 2p, V2 = 2q and eliminating m, the above frequency 



function may be restated as 

V1+V2) 
V1 V1 -(V1+V2) 

dF = 2 [iJ:e 1 2z d z 

T 
1 V1V2) V2 2 

2 2 

which is the frequency function of Fisher's z variate with V1 and 

(m -1)W 
V2 degrees of freedom. In words, the variate z =4loge 

1 -W 
has a 

z frequency function with V1 = (n -1) - m and V2 = (m -1)V1 degrees of 

freedom. Suppose now we make the substitution 

f = e2z 

zf-ldf = dz 

then the frequency function of Fisher's z variate may be re- 

expressed as 

7 -2 ( V 
1 
+V 

2 
) 

1 (V1+V2) [Vil V1 V1 -1 
V 

dF = 

;2 

2 f 2 1+ V f df 

(21J1 (22) 

V2 2 

which is the frequency function of Fisher's f variate with V1 and 

V2 degrees of freedom. Hence, the variate f - (m11wW has an f 

frequency function with V1 = (n -1) - m and 
V2 = (m -1)V1 degrees of 

freedom. On this topic generally see 

Kendall, M.G. Rank Correlation Methods. (London: 

Charles Griffin & Company Limited, 1948), pp.107 -111. 



APPENDIX 3B 

THE LIKENESS RATIO 

For any resource set S. , define y. = Lt(S.) and X. = 
j t j t j 

t(Sj) for the N = 2n sets int. Define the function 

N 

ñ2i.45) = 1 - E (yj -Axj)2 
j=1 
N 

23 Yj 
j=1 

The stationary points of A (,) occur where 

d2ñ 
yg) 

= O = 

d? 

2%xy - ,x2 

E2 Y 

where the summation subscripts have been dropped for convenience. 

This result implies A2( /6) has a stationary point when /d assumes the 

following value 

^ _ La xy j 
,c+ x 2 

Since 

d2Á2 (p) -2fix2 
O d E y2 

Y 

there is a maximum at the 

A 
expression fore into the 

point S , A2( ) . Substituting the 

expression for A (fi) implies 



()2 
ñ2(i4) _ 

x2j' 2 

By the Cauchy- Schwartz Inequality we have 

("xY)24 Ex2r 
2 

thus implying 

0` A 2 ( 6 ' ) 1 

A 
Substituting the expression for, into the expression for 

A2(íó) implies 

115(2 

A () 2 
Y 

In this form, j¡(,8) = O if and only if /5 = O. 

Finally, when yj 

2 ^d 22 i1(ó) = 
E2 Y 

2 A 9ó ) = 

A =8 x. (that is, e. = 0 for all j ) then 

2 Thus, when the fit is exact, then A(6) = 1. 



Components 
Empty Set 

O 

APPENDIX 3C 

COMPUTATION OF THE LIKENESS RATIO 

Y X Xy 
2 2 

x y 

O 0 0 O 0 

O O O O O 

Simple Resource sets 

1 60.2 56.0 3,371.2 3,136.0 3,624.0 

2 7.5 5.9 44.3 34.8 56.3 
3 26.5 26.5 702.3 702.3 702.3 
4 20.0 10.0 200.0 100.0 400.0 
5 27.0 27.0 729.0 729.0 729.0 
6 -6.4 -6.4 41.0 41.0 41.0 

134.8 119.0 5,087.8 4,743.1 5,552.6 

Compound resources (two elements) 

1,2 67.7 61.9 4,190.6 3,831.6 4,583.3 
1,3 86.7 82.5 7,152.8 6,806.3 7,516.9 
1,4 80.2 66.0 5,293.2 4,356.0 6,432.0 
1,5 87.2 83.0 7,237.6 6,889.0 7,603.8 
1,6 53.8 49.6 2,668.5 2,460.2 2,894.4 
2,3 34.0 32.4 1,101.6 1,049.8 1,156.0 
2,4 27.5 15.9 437.3 252.8 756.3 

2,5 34.5 32.9 1,135.0 1,082.4 1,190.3 

2,6 1.1 -0.5 -0.5 0.2 1.2 

3,4 46.5 36.5 1,697.2 1,332.3 2,162.3 

3,5 53.5 53.5 2,862.3 2,862.3 2,862.3 
3,6 20.1 20.1 404.0 404.0 404.0 
4,5 47.0 37.0 1,739.0 1,369.0 2,209.0 
4,6 13.6 3.6 49.0 13.0 185.0 
5,6 20.6 20.6 424.4 424.4 424.4 

674.0 595.0 36,392.0 33,133.3 40,381.2 
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Components y x Y x 

(three elements) 
x2 

2 Y 
Compound resources 

1,2,3 94.2 88.4 8,327.3 7,814.6 8,873.6 
1,2,4 87.7 71.9 6,305.6 5,169.6 7,691.3 
1,2,5 94.7 88.9 8,418.8 7,903.2 8,968.o 
1,2,6 61.3 55.5 3,402.2 3,080.3 3,757.7 
1,3,4 106.7 92.5 9,869.8 8,556.3 11,384.9 
1,3,5 113.7 109.5 12,450.2 11,990.3 12,927.7 
1,3,6 80.3 76.1 6,110.8 5,791.2 6,448.1 
1,4,5 107.2 93.0 9,969.6 8,649.o 11,491.8 
1,4,6 73.8 59.6 4,398.5 3,552.2 5,446.4 
1,5,6 80.8 76.6 6,189.3 5,867.6 6,528.6 
2,3,4 54.0 42.4 2,289.6 1,797.8 2,916.0 
2,3,5 61.o 59.4 3,623.4 3,528.4 3,721.o 
2,3,6 27.6 26.o 717.6 676.o 761.8 
2,4,5 54.5 42.9 2,338.1 1,840.4 2,970.3 
2,4,6 21.1 9.5 200.5 90.3 445.2 
2,5,6 28.1 26.5 744.7 702.3 789.6 

3,4,5 73.5 63.5 4,667.3 4,032.3 5,402.3 
3,4,6 40.1 30.1 1,207.o 906.0 1,608.0 

3,5,6 47.1 47.1 2,218.4 2,218.4 2,218.4 
4,5,6 40.6 30.6 1,242.4 936.4 1,648.4 

1,348.0 1,190.0 94,691.1 85,102.6 105,999.1 

Components y x x2 
2 Y 

Compound resources (four elements) 

1,2,3,4 114.2 98.4 11,237.3 9,682.6 13,041.6 
1,2,3,5 121.2 115.4 13,986.5 13,317.2 14,689.4 
1,2,3,6 87.8 82.0 7,199.6 6,724.0 7,708.8 
1,2,4,5 114.7 98.9 8,683.4 9,781.2 13,156.1 
1,2,4,6 81.3 65.5 5,325.2 4,290.3 6,609.7 
1,2,5,6 88.3 82.5 7,284.8 6,806.3 7,796.9 
1,3,4,5 133.7 119.5 15,977.2 14,280.3 17,875.7 
1,3,4,6 100.3 86.1 8,635.8 7,413.2 10,060.1 
1,3,5,6 107.3 103.1 11,062.6 10,629.6 11,513.3 
],4,5,6 100.8 86.6 8,729.3 7,499.6 10,160.6 
2,3,4,5 81.o 69.4 5,621.4 4,816.4 6,561.0 
2,3,4,6 47.6 36.o 1,713.6 1,296.0 2,265.8 
2,3,5,6 54.6 53.0 2,893.8 2,809.0 2,981.2 
2,4,5,6 48.1 36.5 1,755.7 1,332.3 2,313.6 

3,4,5,6 67.1 57.1 3,831.4 3,260.4 4,502.4 

1,348.0 1,190.0113,937.6 103,938.4 131,236.2 



Components y x xy 
Compound resources (five elements) 

1,2,3,4,5 141.2 125.4 
1,2,3,4,6 107.8 92.o 
1,2,3,5,6 114.8 109.0 
1,2,4,5,6 108.3 92.5 
1,3,4,5,6 127.3 113.1 

2,3,4,5,6 74.6 63.o 

674.0 595.o 

17,706.5 
9,917.6 
12,513.2 
10,017.8 
14,397.6 
4,699.8 

69,252.5 

Compound resources (six elements) 

1,2,3,4,5,6 134.8 119.0 16,041.2 

134.8 119.0 16,041.2 

x2 
2 Y 

15,725.2 19,937.4 
8,464.0 11,620.8 
11,881.0 13,179.0 
8,556.3 11,728.9 
12,791.6 16,205.3 

3,969.0 5,565.2 

61,387.1 78,236.6 

14,161.0 18,171.0 

14,161.0 18,171.0 

4,313.6 3,808.0335,402.2 302,465.5 379,576.7 

Using this information we are enabled to compute the following 

parameter 

335,402.2 
302,465.5 

A 
= 1.1089 

The likeness ratio may be computed as 

2 ;22 
E2 Y 

(1.1089)2(302 465.5) 

(379,576.7) 

2 (,d) = 0.9798 
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APPENDIX 3D 

CHEBYSHEV ' S INEQUALITY 

Theorem 

If y is a random variable with mean/Land variance , 
then for all t 70 

pl ( y ( t] 4; E(y2)t-2 

Proof 

We prove the result for the simple random variable defined on 

the finite probability space (QQ,y., p). The generalization to 

elementary random variables and random variables is straight forward. 

By theorem 

N 

Y2(w) = f] y. I A.(w) 

j=1 

y2(w) = Ey I (w) +Eyj IA.(w) 

where 
[s' 

is the summation over the y. possessing the property 
J 

J 
.I t and E" is the summation over the yi possessing the 

. 

property 
I 

y. < t. Taking expectations across this equality 
J 

ECy2(w), = tyZP(A.) +Erry2P(A.) 
J J J J 

Since 
2 2 

yj y co and P(Aj) 7 O for all j this implies 'yjP(Aj) 7 O. 

This, in turn, implies 

E [y2(w)1 yP(Aj) 



By hypothesis on El, 

But since 
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t, thus implying 

ELY2(w)] LIYP(A) 

ETP(A. ) 

EfP(A. ) 

Giving the result 

t2ZIP(A.) 

EF2(w)] t-2 

t] [2(W)] c2 
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CHAPTER FOUR 

MODELS OF ACCOUNTING MEASUREMENT 



1I 
4.0 Introduction 

In the second chapter of this work, we developed what was loosely 

described as an axiom system of accounting measurement. Recall that 

an axiom system may be characterized as a deductive theory whose 

constituent parts are a set of primitive notions or concepts, a set 

of axioms defined in terms of those concepts, and the theorems, 

lemmas and corollaries which may be derived from the axioms and 

definitions. 
1 

In this respect, it is well to remember that a 

deductive theory is purely formal in that neither its primitive 

concepts or its axioms have any connection to reality.2 A 

deductive theory may, of course, be interpreted; that is, empirical 

meaning may be assigned to its primitive concepts.3 When an 

accounting interpretation is provided, the deductive theory 

constitutes a formalized model of accounting measurement.4 Since 

the model is based on a set of axioms, it is called an axiomatic 

model of accounting measurement.5 

To date we have examined an "historic cost" interpretation of the 

axiom system developed in the second chapter of this work. In the 

present chapter, we shall complete our analysis of the accounting 

measurement systems by investigating and illustrating the properties 

1. Beth E.W. The Foundations of Mathematics. Amsterdam: North 
Holland Publishing Company, 1965, p.81. 

2. Ibid. 

Barker, S.F., Philosophy of Mathematics. Englewood Cliffs, 
New Jersey: Prentice -Hall, Inc., 1964, pp.91 -94. 

3. Weddepohl, H.N. Axiomatic Choice Models. Rotterdam: Rotterdam 
University Press, 1970, p.7. 

4. Ibid. 

5. Ibid. 



of a general "valuation" model; that is, a model which can meaning- 

fully accommodate the replacement cost, net realizable value and 

C.P.P. measurement systems. This would seem to be of some signifi- 

cance because it implies that the numerical processes associated with 

"adjusting" a set of "historic cost" financial statements to an 

alternative "valuation" basis are analogous in principle. 

The "valuation" model which we shall investigate was first 

proposed by Edwards and Bell in the context of replacement cost 

accounting.6 Its properties, however, were not fully examined by 

its authors, and consequently, the generality of the system has not 

been fully appreciated. 

The nucleus of the Edwards and Bell system is provided by two 

"fundamental" theorems. We will commence the present chapter by 

stating these theorems and illustrating their use by recourse to the 

Dyer Company example employed in Chapter 2_. Proofs of the theorems 

are provided in Appendixes 4A and 48. To illustrate the generality 

of the Edwards and Bell System, we shall then extend it into the 

realm of C.P.P. and net realizable value measurement. Finally, we 

shall examine the difficulties associated with incorporating the 

theorems into the axiom system developed in Chapter 2. 

Before examining each of these topics, however, we reproduce 

in Table 4.1 the financial information pertaining to the Dyer Company 

which was first introduced as Table 2.5 of Chapter 2. Table 4.2 

contains the movement in balance sheet items for the year ending 

December 31, 1909. Table 4.3 contains the historical cost financial 

6. Edwards, E.O. and P.W. Bell. The Theory and Measurement of 

Business Income. Berkley, California: University of California 

Press, 1961. 
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statementsfor the year ending December 31, 1909. Finally, Table 4.4 

contains the Dyer Company's balance sheet as of January 1, 1909 where 

the replacement cost basis of measurement has been used. The Tables 

are introduced at this point to facilitate the reader's appreciation 

of some ensuing examples. 
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TABLE 4.1 

THE DYER COMPANY LIMITED 

(a) Balance Sheet - January 1, 1909 Amount 

Shareholder's Funds £ 

Capital 50,000 

Profit unappropriated 60,000 

Current Liability 

Trade creditors 

110,000 

5,000 

£115,000 

Amount 

Fixed Asset £ 

Building 80,000 

Less Aggregate depreciation 20,000 

Current Assets 

Stock 

Trade debtors 

Securities 

Cash 

60,000 

6(a) 

10,000 

10,000 

10,000 

25,000 

55,000 

£115,000 

Stock: Recorded on a perpetual LIFO basis - 1000 units at £10 

(per unit) 

Building: Purchased January 1, 1904. Straight line depreciation is 

used where the life estimation is twenty years (no scrap 

value). 

6(a) It should be emphasized that we are here assuming application 
of the "pure" historic cost model. Thus, the fact that stock's 
historic cost (£10,000) exceeds its market value (Z9,000, 
TABLE 4.16(a), P. 152) is not considered. 



1.1.8 

(b) Transactions in the year ending December 31, 1909 

1909 

Jan 30 Purchased on credit 
500 units at £11 

(per unit). 

Feb 28 Sold 800 units (on 

credit) at £20 

(per unit). 

Mar 31 Received £10,000 
from debtors (no 

discounts). 

Apr 30 Paid £8000 on 
trade creditors 
(no discounts). 

Aug 31 Sold 500 units 
(on credit) at 

£21 (per unit). 

Nov 30 Purchased 300 
units (on 

credit) at £13 

(per unit). 

Debtors Creditors Purchases Sales 

£ £ £ 

5,500 

16,000 

10,000 

8,000 

10,500 

3,900 

£10,000 £8,000 £9,400 £26,500 
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TABLE 4.2 

MOVEMENT IN BALANCE SHEET FIGURES 

(a) Trade Creditors 

Balance - January 1, 1909 

Purchases 

Payments 

Balance - December 31, 1909 

(b) Aggregate Depreciation 

Balance - January 1, 1909 

Depreciation 

Balance - December 31, 1909 

(c) Stock 

Table Amount 

4.1(a) 5,000 

4.1(b) 9,400 

14,400 

4.1(b) 8,000 

£6,400 

Table Amount 

£ 

4.1(a) 20,000 

4.1(a) 4,000 

£24,000 

4 -Quantity- 41,rl --£ 
Date Table Dr Cr Balance Dr Cr Balance 

1909 
Jan 1 4.1(a) 1,000 10,000 

30 4.1(b) 500 1,500 5,500 15,500 

Feb 28 4.1(b) 500 1,000 5,500 10,000 

4.1(b) 300 700 3,000 7,000 

Aug 31 4.1(b) 500 200 5,000 2,000 

Nov 30 4.1(b) 300 500 3,900 5,900 
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(d) Trade Debtors 

Balance - January 1, 1909 

Sales 

Receipts 

Balance - December 31, 1909 

(e) Cash 

Balance - January 1, 1909 

Receipts 

Table Amount 

£ 

4.1(a) 10,000 

4.1(b) 26,500 

36,500 

4.1(b) 10,000 

£26,500 

Table Amount 

£ 

4.1(a) 25,000 

4.1(b) 10,000 

35,000 

Payments 4.1(b) 8,000 

Balance - December 31, 1909 £27,000 



121 

TABLE 4.3 

THE DYER COMPANY LIMITED 

(a) (Historic Cost) Profit and Loss Statement for the year ending 

December 31, 1909 Table Amount 
£ 

Sales 4.1(b) 26,500 

Less Cost of Goods Sold 

Beginning stock 4.1(a) 10,000 

Purchases 4.1(b) 9,400 

19,400 

Ending stock 4.2(a) 5,900 

13,500 

13,000 

Depreciation 4.1(a) 4,000 

9,000 

Profit unappropriated. - January 1, 1909 4.1(a) 60,000 

Profit unappropriated - December 31, 1909 £69,000 

(b) (Historic Cost) Balance Sheet - December 31, 1909 

Table Amount 

Shareholders' Funds 

£ 

Capital 4.1(a) 50,000 

Profit unappropriated 4.3(a) 69,000 

119,000 

Current Liability 

Trade creditor 4.2(e) 6,400 

£125,400 



lw 

Fixed Asset 

Table Amount 

£ 

Building 4.1(a) 80,000 

Less Aggregate depreciation 4.2(b) 24,000 

56,000 

Current Assets 

Stock 4.2(a) 5,900 

Trade debtors 4.2(c) 26,500 

Securities 4.1(a) 10,000 

Cash 4.2(d) 27,000 

69,400 

£125,400 



123 

TABLE 4.4 

THE DYER COMPANY LIMITED 

(a) (Replacement Cost) Balance Sheet - January 1, 1909 

Table Amount 

Shareholders' Funds £ 

Capital 4.1(a) 50,000 

Profit unappropriated 4.1(a) 60,000 

Unrealized cost savings 4.4(b) 2,500 

112,500 

Current Liability 

Trade creditors 4.1(a) 5,000 

£117,500 

Table Amount 

Fixed Asset £ 

Building 4.4(a) 82,000 

Less Aggregate depreciation 4.4(a) 20,500 

61,500 

Current Assets 

Stock 4.4(a) 11,000 

Trade debtors 4.1(a) 10,000 

Securities 4.1(a) 10,000 

Cash 4.1(e) 25,000 

56,000 

£117,500 

Building: The replacement cost of the building in its original 

condition as of January 1, 1909 is £82,000. As of 

December 31, 1909 it is £86,000. 
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Stock: The replacement cost is £11 (per unit) as of January 1, 

1909, £12 (per unit) as of February 28, 1909, £13 (per 

unit) as of August 31, 1909 and £15 (per unit) as of 

December 31, 1909. 

Securities: The market value of securities was £10,000 as of 

January 1, 1909 and £20,000 as of December 31, 1909. 

(b) Unrealized Cost Savings 

Table Building Stock Total 

£ £ £ 

Replacement cost 4.4(a) 61,500 11,000 72,500 

Historic Cost 4.1(a) 60,000 10,000 70,000 

Unrealized cost savings £ 1,500 £ 1,000 £ 2,500 



4.1 The Mathematical Foundations of Edwards and Bell 

Our objective in this section is to state and illustrate two 

theorems which are peculiar to the method of accounting advocated by 

Edwards and Bell. The first of these theorems provides a means of 

computing the potentially realizable "holding gains" accruing on a 

simple resource during some time interval [6,1 , whilst the 

second reconciles the resource's unrealized cost savings as of time 

T with its replacement cost as of that date. If we are to be more 

specific about these theorems, however, it is necessary to define 

and illustrate the various cost savings concepts which are 

employed within the Edwards and Bell model, since it is in terms of 

these that the theorems shall be stated. This we proceed to do. 

4.1.1 Cost Savings Concepts 

Of central importance to the Edwards and Bell method of account- 

ing are the definitions of realizable cost savings, realized cost 

savings and unrealized cost savings. In this section we shall 

provide definitions of these concepts. As far as practicable, we 

shall retain the definitions and notation which were introduced in 

Chapter 2. 

Suppose a simple resource is an element of every property set 

defined in the interval [o,1 . The increase in the replacement 

cost measure during the interval is called the realizable cost 

savings accruing on the simple resource in the interval LO,T] 

Thus suppose ten bolts were purchased at a cost of £1 (per bolt) 

at time 0. At time T suppose the same bolts could be replaced for 

£1.50 (per unit). The realizable cost savings accruing on the 

bolts during 10,1 amount to £5.00. If the bolts had a replace- 

ment cost measure of £1.25 (per bolt) at time t, o <t <T, then 



the realizable cost savings accruing on the bolts in the interval 

Ct,T, amount to £2.50. Suppose a simple resource is an element of 

every property set defined in the interval r0,T] but is not an element 

of the next succeeding property set. The increase in the replacement 

cost measure during LO,T] is called the realized cost savings accruing 

on the simple resource during[0,T] . Suppose the bolts referred to 

above were disposed of at time T. The realized cost savings accruing 

on the bolts amounts to £5.00 during[0,T] and £2.50 during [t,T] . 

The difference between the realizable cost savings and the 

realized cost savings accruing on a simple resource in the interval 

[0,T] is called the unrealized cost savings accruing on the simple 

resource during [0,T1 . The difference between the replacement cost 

measure and the historic cost measure at time T is called the 

unrealized cost savings of the simple resource at time T.7 Thus, 

if 5 of the bolts referred to above were disposed of at time t, 

the realizable cost savings accruing during [0,T) amount to £3.75, 

the realized cost savings amount to £1.25 and the unrealized cost 

savings as of T amount to £2.50. 

In Table 4.5 we summarize the results of this section under the 

assumption that five of the bolts were disposed of at time t for 

£1.25 (per bolt) leaving five bolts on hand at time T with a 

replacement cost of £1.50 (per bolt). Recall that each bolt was 

purchased for £1.00. We are now in a position to state and 

illustrate the two fundamental theorems referred to above. 

7. Ibid., p.115. 
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TABLE 4.5 

COST SAVINGS CONCEPTS 

(a) Realizable Cost Savings £ 

Gain accruing on 5 units held over 
the interval [O,T] 5 x (1.50 - 1.00) 

Gain accruing on 5 units disposed of 
at time t. 5 x (1.25 - 1.00) 

(b) Realized Cost Savings 

2.50 

1.25 

£3.75 

Gain accruing on 5 units disposed of 
at time t . 5 x (1.25 - 1.00) £1.25 

(c) Unrealized Cost Savings 

Realizable Cost Savings 

Less Realized cost savings 

Represented by: 

3.75 

1.25 

£2.50 

Gain accruing on 5 units held over 

the interval [5,T] . 5 x (1.50 - 1.00) £2.50 
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4.1.2 Two Fundamental Theorems 

In this section our objective is to state and illustrate what 

we shall call the "fundamental" theorems of the Edwards and Bell 

system. The theorems are called "fundamental" because they form 

the foundations of the Edwards and Bell method of accounting and as 

such they are the vehicle through which we shall extend the Edwards 

and Bell system into the realm of the other measurement system. 

We now state the first of these theorems 

Let 3 be the replacement cost measure of a simple 
resource at time 0, plus additions (at cost) in the 
interval [O,T] less disposals (at the replacement 
cost measure at time of disposal) in the interval 
E10,1-) . Let be the replacement cost measure of the 

simple resource at time T. The difference -10 is 
the realizable cost savings accruing on the simple 
resource during [O.0] . 

This result is proved in Appendix 4A. 

In Table 4.6 we compute the realizable cost savings accruing on 

the Dyer Company's stock during the year ending December 31, 1909. 

We first compute the realizable cost savings directly, and then by 

using the above theorem. Note, however, that although the theorem 

is illustrated in relation to stock, it is stated as applying to 

any simple resource, such as, for example, the Dyer Company's 

building or securities. 

The second theorem is stated in the following terms 

Let AT be the unrealized cost savings at time T and 8T 

be the historic cost at time T, of a simple 

resource. Let T be the "quantity measure" of the 

simple resource at time T. Then 

8. To what extend Edwards and Bell were aware of this theorem's 

existence is a point for conjecture. They almost certainly 

realized the theorem applied to stock, but judging from the 

procedures they applied in computing the realizable cost savings 

accruing on fixed assets, were unaware of theorem's relevance to 

other resources. At no stage, however, did they state, let 

alone prove the theorem in the form presented in this chapter. 

See, also, appendix 4C to this chapter and Ibid pp.146 -47, 

pp.188 -193. 
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TABLE 4.6 

REALIZABLE COST SAVINGS ACCRUING ON STOCK IN THE YEAR ENDING 

DECEMBER 31, 1909 

(a) Direct Calculation 
Table Amount 

Gain accruing on 200 units held 
entire year 200 x (15 - 11) 

Gain accruing on 800 units sold 

the 

4.2(a),4.4(a) 800 

February 28. 800 x (12 - 11) 4.1(b),4.4(a) 800 

Gain accruing on 500 units sold 

August 31. 500 x (13 - 11) 4.1(b), 4.4(a) 1,000 

Gain accruing on 300 units of 
ending stock 300 x (15 - 13) 4.2(a),4.4(a) 600 

Realizable cost savings 

(b) By Theorem 

Replacement cost - December 310 

30200 
1111=111111=11111E1 

Table Amount 
î 

1909 (500 x 15) 4.2(a),4.4(a) 7,500 

Beginning stock (1000 x 11) 4.1(a),4.4(a) 11,000 

Purchases 4.1(b) 9,400 

20,400 

Replacement cost of goods sold 

(800 x 12 + 500 x 13) 4.2(a),4.4(a) 16,100 

4,300 

Realizable cost savings £3,200 



AT + 8T = RT 
IT 

where RT is the replacement cost measure (per unit) 
of the simple resource at time T.9 

This result is proven in Appendix 4B. 

In Table 4.7 we apply this result to the Dyer Company's stock 

for the year ending December 31, 1909. Again, note that although 

we illustrate the theorem in relation to stock, it is stated for 

any simple resource and as such is also applicable to the Dyer 

Company's building or securities. 

We now extend the above results to the Dyer Company's other 

assets for the year ending December 31, 1909.10 Table 4.8 

applies the theorems to the data contained in Tables 4.1, 4.2, 4.3, 

and 4.4 whilst Table 4.9 exhibits the corresponding replacement 

cost financial statements. Table 4.10 contains the journal entries 

required to effect the inclusion of the replacement cost 

measurements into the books of the Dyer Company Limited.11 In 

preparing Table 4.10, we have assumed that the balance sheet 

exhibited in Table 4.4(a) plus the historical cost income and 

expense of the year ending December 31, 1909 have been recorded in 

the Dyer Company's books. 

We have now accomplished the first objective of this chapter, 

which was to examine the mathematical foundationsof the Edwards and 

9. This theorem was neither stated or proved by Edwards and Bell. 
They were, however, aware of its existence. See Ibid, p 220. 

10. For a discussion of the problems encountered in applying the 

fundamental theorems to fixed assets see Appendix 4C to this 

chapter. 

11. For a discussion of the theoretical underpinnings of the 

replacement cost interpretation of the model, see Ibid, 

pp 88-103, and chapter 6 infra. 
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TABLE 4.7 

RECONCILIATION OF COST SAVINGS CONCEPTS FOR STOCK IN THE YEAR ENDING 

DECEMBER 31, 1909 

(a) Realized Cost Savings Table Amount 

Replacement cost of goods sold 
(800 x 12 + 500 x 13) 4.2(a),4.4(a) 16,100 

Historic cost of goods sold 
(800 x 10 + 500 x 11) 4.3(a) 13,500 

Realized cost savings £ 2,600 

(b) Unrealized Cost Savings Table Amount 
£ 

Unrealized cost savings - January 1, 

1909 1000 x (11 - 10) 4.4(b) 1,000 

Realizable cost savings 4.6(b) 3,200 

4,200 

Realized cost savings 4.7(a) 2,600 

Unrealized cost savings £1,600 

(c) Replacement Cost Data Table Amount 
£ 

Historic cost - December 31, 1909 4.2(a) 5,900 

Unrealized cost savings 4.7(b) 1,600 

Replacement cost £7,500 
1:91111M11 

Units 500 

Replacement cost (per unit) £15.00 
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1 4 

TABLE 4.9 

FINANCIAL STATEMENTS 

(a) Profit and Loss Statement for the year ending December 31, 1909 

Table Amount 

E 

Sales 4.1(b) 26,500 

Less Replacement Cost of Goods Sold 

Beginning stock 4.4(a) 11,000 

Purchases 4.1(b) 9,400 

20,400 

Ending stock 4.8(e) 7,500 

12,900 

Realizable cost savings 4.6(b) 3,200 

16,100 

10,400 

Depreciation 4.8(a) 4,200 

Current operating profit 6,200 

Realizable cost savings 4.8(a) 16,100 

Business profit 22,300 

Unrealized cost savings 4.8(c) 13,300 

Realized profit 9,000 

(b) Balance Sheet - December 31, 1909 Table Amount 

Shareholders' Funds 

Capital 4.1(a) 50,000 

Profit unappropriated 4.3(a) 69,000 

Unrealized cost savings 4.8(d) 15,800 

134,800 

Current Liability 

Trade creditors 4.2(a) 6,400 

141,200 



13 

Fixed Assets 

Building 

Less Aggregate depreciation 

Current Assets 

Stock 

Trade debtors 

Securities 

Cash 

Table Amount 

4.4(a) 86,000 

4.4(a) 

4.8(a) 25,800 

60,200 

4.8(e) 7,500 

4.2(d) 26,500 

4.4(a) 20,000 

4.2(e) 27,000 

81,000 

141,200 



ivv 

TABLE 4.10 

REPLACEMENT COST JOURNAL ENTRIES 

1. Cost of goods sold 

Stock 

Stock valuation adjustment 

To transfer beginning stock to cost of 
goods sold 

2. Stock 

Stock valuation adjustment 

Cost of goods sold 

To record ending stock 

3. Cost of goods sold 

Purchases 

To transfer purchaes to cost of goods sold 

4. Current operating profit 

Cost of goods sold 

To transfer the replacement cost of goods 
sold to current operating profit 

5. Cost of goods sold 

Dr Cr 

11,000 

5,900 

1,600 

9,400 

16,100 

3,200 

10,000 

1,000 

7,500 

9,400 

16,100 

Realizable cost savings 3,200 

To record realizable cost savings accruing 

on stock 

6. Building valuation adjustment 

Realizable cost savings 

To record realizable cost savings accruing 

on Building 

2,900 

2,900 



7. Depreciation 

Building valuation adjustment 

To record depreciation of building on a 

replacement cost basis 

B. Current operating profit 

Depreciation 

To transfer depreciation to current 
operating profit 

Dr Cr 

200 

4,200 

200 

4,200 

9. Sales 26,500 

Current operating profit 26,500 

To transfer sales to current operating 
profit 

10. Securities valuation adjustment 10,000 

Realizable cost savings 10,000 

To record realizable cost savings accruing 
on securities 

11. Current operating profit 

Realizable cost savings 

Business profit 

To record Business profit 

12. Business profit 

Unrealized cost savings 

Realized profit 

To record (historical cost) realized profit 

13. Realized profit 

Profit unappropriated 

To transfer realized profit to profit 
unappropriated 

6,200 

16,100 

22,300 

9,000 

22,300 

13,300 

9,000 

9,000 



Bell system. We turn now to the more important task of extending 

the results into the realm of some other measurement systems. 

4.2 Current Purchasing Power Accountingl2 

In this section our objective is to extend the Edwards and 

Bell method of accounting into the realm of current purchasing 

power accounting. In this respect, the fundamental theorems 

which were stated and illustrated in the previous section can be 

extended in a fairly straight forward manner to other accounting 

measurement systems, including the current purchasing power 

system. So as to avoid confusion with the Edwards and Bell 

replacement cost system, we shall prefix the C.P.F. cost savings 

concepts with the term "fictional ".13 We thus speak of fictional 

realizable cost savings, fictional realized cost savings and 

fictional unrealized cost savings. These descriptions seem 

advisable because they reflect the increased amounts necessary 

to maintain command over a composite of consumption goods. 

The "traditional" C.P.P. financial statements of the Dyer 

Company Limited for the year ending December 31, 1909 are 

contained in Tables 4.11(a) and 4.12.14 

12. The C.P.P. interpretation of the model offered by Edwards and 
Bell is unnecessarily complex and there is little (we would 

venture so far as to say no) discussion of its underlying 

mathematical framework. Because of this, the rationale under - 

lying many of their computations is vague, to say the least. 

13. Ibid., pp 124 -129. 

14. We have employed an "averaging" technique in restating the 

Dyer Company's financial statements to a C.P.P. basis. By this 

we mean, for example, that sales are assumed to occur at the 

midpoint of the period under consideration, thus justifying 

use of the midpoint index value in their restatement. This 

procedure may, however, result in some inaccuracy. See the 

ensuing chapter 5 for some further discussion on this point. 



(a) 

10.1 

TABLE 4.11 

CURRENT PURCHASING POWER ACCOUNTING 

Adjusted 

"Traditional" Balance Sheet - January 1, 1909 

Table Raw Multiplier 

Shareholders' Funds £ £ 

150 
Capital 4.1(a) 50,000 100 75,000 

Profit unappropriated 4.1(a) 60,000 * 65,000 

110,000 140,000 

Current Liability 

Trade creditors 4.1(a) 5,000 5,000 

E115,000 £145,000 

Table Raw Multiplier Adjusted 

Fixed Asset E E E 

150 

Building 4.1(a) 80,000 100 120,000 

Less aggregate deprecia- 150 

tion 4.1(a) 20,000 100 30,000 

60,000 90,000 

Current Assets 
14(a) 

Stock 4.1(a) 10,000 10,000 

Trade debtors 4.1(a) 10,000 10,000 

Securities 4.1(a) 10,000 10,000 

Cash 4.1(a) 25,000 25,000 

55,000 55,000 

£115,000 £145,000 

* Balancing figure 

Index: The index's value was 100 on January 1, 1904, 

150 on January 1, 1909, 155 on June 30, 1909 

and 160 on December 31, 1909. 

14(a) We are here assuming stock was acquired on December 31, 1908. 



(b) "Edwards and Bell" Balance Sheet - January 1, 1909 

Shareholders' Funds 

Capital 

Profit unappropriated 

Fictional unrealized cost savings 

Current Liability 

Trade creditors 

Table Amount 

E 

4.1(a) 50,000 

4.1(a) 60,000 

4.11(c) 30,000 

140,000 

4.1(a) 5,000 

1145,000 

Table Amount 

Fixed Asset E 

Building 4.11(a) 120,000 

Less Aggregate depreciation 4.11(a) 30,000 

90,000 

Current Assets 

Stock 4.1(a) 10,000 

Trade debtors 4.1(a) 10,000 

Securities 4.1(a) 10,000 

Cash 4.1(a) 25,000 

55,000 

E145,000 

(c) Fictional Unrealized Cost Savings as of January 1, 1909 

Table Building 

C.P.P. value - January 1, 1909 4.11(a) 90,000 

Historic cost - January 1, 1909 4.1(a) 60,000 

E 30,000 
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TABLE 4.14 

EDWARDS AND BELL C.P.P. FINANCIAL STATEMENTS 

(a) (C.P.P.) Profit and Loss Statement for the year ending 

Amount 
December 31, 1909 

Table 

E 

Sales 4.1(b) 26,500 

Less Cost of Goods Sold 

Beginning stock 4.1(a) 10,000 

Purchases 4.1(b) 9,400 

19,400 

Ending stock 4.2(c) 5,900 

13,500 

13,000 
Depreciation 4.2(b) 4,000 

Realized Profit 9,000 

Fictional realizable cost savings 9,334 

(334) 

Fictional unrealized cost savings 4.13(c) 4,457 

C.P.P. Income £4,123 

* 4.11(b)) 

for the ear 

Table Amount 

140,000 x(150 
- 1) = 9,334 (See Table 

(b) (C.P.P.) Profit and Loss Appropriation Statement 

ending December 31, 1909 

Profit unappropriated - January 1, 1909 4.11(b) 60,000 

Fictional realizable cost savings 4.14(a) 9,334 

C.P.P. income 4.14(a) 4,123 

13,457 

73,457 

Fictional unrealized cost savings 4.13(c) 4,457 

Profit unappropriated - December 31, 1909 £69,000 
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(c) (C.P.P.) Balance Sheet - December 31, 1909 

Shareholders' Funds 

Capital 

Profit unappropriated 

Fictional unrealized cost savings 

Current Liability 

Table Amount 

£ 

4.1(a) 50,000 

4.14(b) 69,000 

4.13(d) 34,457 

Trade creditors 4.3(b) 

153,457 

6,400 

£159,857 

Table Amount 

Fixed Asset £ 

Building 4.12(e) 128,000 

Less Aggregate depreciation 4.12(e) 38,400 

89,600 

Current Assets 

Stock 4.12(c) 6,090 

Trade debtors 4.2(c) 26,500 

Securities 4.12(e) 10,667 

Cash 4.2(d) 27,000 

70,257 

£159,857 
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TABLE 4.15 

C.P.P. ACCOUNTING JOURNAL ENTRIES 

Dr Cr 

1. Profit and loss 9,334 

Fictional realizable cost savings 9,334 

To record the fictional realizable cost 
savings for the year ending December 
31, 1909 

2. Building (C.P.P.) Adjustment 3,600 

Stock (C.P.P.) adjustment 190 

Securities (C.P.P.) adjustment 667 

Profit and loss 

To record the C.P.P. adjustments for the 
year ending December 31, 1909 

3. Profit and loss 4,123 

C.P.P. income 

To record the C.P.P. income of the year 
ending December 31, 1909 

4. Fictional realizable cost savings 

C.P.P. income 

Profit and loss appropriation 

Fictional unrealized cost savings 

To record the unrealized component of 
fictional realizable cost savings 

9,334 

4,123 

4,457 

4,123 

9,000 

4,457 



We call these statements "traditional" because they employ the 

"usual" methods of restating the historical cost financial 

statements to a C.P.P. basis.15 Their Edwards and Bell counter- 

parts are contained in Tables 4.11(b), 4.13 and 4.14.16 Table 

4.15 contains the journal entries required to effect the inclusion 

of the "Edwards and Bell" C.P.P. measurements into the books of the 

Dyer Company Limited. In preparing Table 4.15, we have assumed 

that the balance sheet exhibited in Table 4.11(b) plus the 

historical cost income and expense of the year ending December 31, 

1909 have been recorded in the Dyer Company's books. 

In restating the Dyer Company's historical cost financial 

statements to their "Edwards and Bell" C.P.P. equivalents, we have 

employed a third theorem of commensurate importance to those stated 

in the previous section. The theorem is stated as follows 

15. "Accounting for changes in the purchasing power of money," 

Provisional Statement of Standard Accounting Practice 7, May 

1974. 
American Institute of Certified Public Accountants. "Reporting 

the Financial Effects of Price Level Changes," Accounting 

Research Study 6, 1963. 

16. In computing the fictional realizable cost savings accruing on 

a resource, Edwards and Bell assume that the beginning quantity 

(I ) is held while the index varies from that prevailing at the 
o 

beginning to that prevailing at the end. Assuming that the 

index is r1 at the midpoint of the interval and r2 at the end 

and presuming the index to be "normalized" so that its beginning 

value is unity implies that the fictional realizable cost savings 

on Io amount to (rlr2 -1)I0. The increment P, is assumed by 

Edwards and Bell to be acquired at the midpoint of the interval, 

thus implying fictional realizable cost savings of (r -1)P1. 

The total fictional realizable cost savings are thus 
(-r2 
-1)P1 + 

(rlr2 -1)I0. This result is literally "plucked out of the air" 

by Edwards and Bell. (Ibid., pp.235 -239), but is easily 

rationalised in terms of the "fundamental" theorems proved above. 

See Appendix 4E for some further discussions on this. 
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Let Fj be the "historical cost" shareholders' 
equity at time j, plus the fictional unrealized 
cost savings at time j. Let rj and rk be the 
values of a specified index at times j and k 
respectively. The total of the fictional 
realizable cost savings during the interval 
Cj,k] amounts to 

r 

( rk - 1 ) F. 

j 

where k 
17 Ìj 

This result is proved in Appendix 4E. 

The theorem implies that the total of the Dyer Company's 

fictional realizable cost savings in the year ending December 31, 

1909 amount to 

140,000 x(150 
-1) - 

£9 334 

where from Table 4.11(b), the sum of the historical cost shareholders' 

funds and the fictional realized cost savings as of December 31, 1909 

amount to £140,000, whilst from Table 4.11(a) the index's value is 

160 and 150 as of December 31, 1909 and January 1, 1909 respectively. 

At first sight, this result may appear to conflict with the 

contents of Table 4.13(a) where the fictional realizable cost savings 

are listed at £7,637. The discrepancy, however, is accounted for as 

the difference between the loss from holding net monetary items 

(L2,552) and the adjustment which is necessary to restate sales on a 

C.P.P. basis (E855). These figures may be obtained from Table 4.12(c). 

The fictional realizable cost savings in the year ending December 31, 

1909 is then seen to be composed of the following items 

17. Edwards and Bell provide an intuitive and somewhat unsatis- 

factory proof of this result. 

Ibid., p 250. 

For a rigorous proof employing the "fundamental" theorems see 

Appendix 4E. 
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Building 6,000 

Stock 970 

Securities 667 

Sales (855) 

Monetary loss 2,552 

£9,334 

Of this figure, the amounts listed in Table 4.13(c) and 

totalling £4,457 remain unrealized as of December 31, 1909. The 

fictional realized cost savings in the year ending December 31, 

1909 are the sum of the £3,180 listed in Table 4.13(b), the loss 

from holding net monetary items (L2,552) less the adjustment to 

sales (£855). 

We have now partially fulfilled the second objective of this 

chapter which was to illustrate how the Edwards and Bell method of 

accounting may be extended into the realm of other measurement 

systems.18 To complete the analysis, we now extend the model into 

the realm of market value (net realizable value, current cash 

equivalent etc.) accounting. 

4.3 Market Value Accounting 

The point of departure for extending the Edwards and Bell 

technique into the province of market value measurement is provided 

by Table 4.16. This Table restates the Dyer Company's balance sheet 

as of January 1, 1909 on a market value basis, and also provides the 

necessary information for preparing the market value financial 

statements for the year to December 31, 1909. So as to avoid confusion 

18. For a discussion of the theoretical foundations of the C.P.P. 

interpretation of the model, see 

Ibid., pp.121 -131 and chapter 8. See also chapter 6 infra. 



TABLE 4.16 

MARKET VALUE ACCOUNTING 

(a) Balance Sheet - January 1, 1909 

Shareholders' Funds 

Capital 

Profit unappropriated 

Unrealized capital gains 

Current Liability 

Trade creditors 

Table Amount 

4.1(a) 

£ 

50,000 

60,000 

4,000 

114,000 

5,000 

£119,000 

Table Amount 

Fixed Asset £ 

Building 4.16(a) 65,000 

Current Assets 

Stock 4.16(a) 9,000 

Trade debtors 4.1(a) 10,000 

Securities 4.1(a) 10,000 

Cash 4.1(a) 25,000 

54,000 

£119,000 

Building: Market value as of January 1, 1909 is £65,000. As 

of December 31, 1909, the building's market value 

is £63,000. 

Stock: Market value is £9 (per unit) as of January 1, 1909, 

£10 (per unit) as of February 28, 1909, £11 (per 

unit) as of August 31, 1909 and £13 (per unit) as 

of December 31, 1909. 
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Securities: The market value of securities was £10,000 as of 
January 1, 1909 and £20,000 as of December 31, 1909. 

(b) Unrealized Capital Gains 

Table Building Stock Total 

£ £ £ 

Market value 4.16(a) 65,000 9,000 74,000 

Historic cost 4.1(a) 60,000 10,000 70,000 

Unrealized Capital Gains £ 5,000 £(1,000) £4,000 
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with the Edwards and Bell replacement cost system, we shall refer to 

the "cost savings" concepts of market value measurement as "capital 

gains". 
19 

We thus speak of realizable capital gains, realized capital 

gains and unrealized capital gains. The realizable capital gains 

thus represent the increase in market value of a firm's resources 

during some interval of time. The realized capital gains represent 

the realizable capital gains which have been realized through use or 

sale during the period, whilst the unrealized capital gains represent 

the difference between the market value of a firm's resources and 

their historic cost at a point in time. 

Tables 4.1720 and 4.18 apply the Edwards and Bell model to the 

market value information contained in Table 4.1621 In this respect 

19. Ibid., pp.80-88. 

20. As in the case of the replacement cost system, direct calculation 

of the realizable holding gains is more cumbersome. This may be 

illustrated by computing the realizable capital gains accruing 
on stock 
Gain accruing on 200 units held the 

entire year 200 x (13 -9) £ 800 

Gain accruing on 800 units sold 

February 28 500 x (10 -11) + 300 x (10 -9) (200) 

Gain accruing on 500 units sold 

August 31 500 x (11 -9) 1,000 

Gain accruing on 300 units of 

ending stock 300 x (13 -13) - 

Realizable capital mains î1,600 

The underlying these figures may be obtained from Tables 4.2(a) 

and 4.16(a). The figure of £1,600 corresponds with the realizable 

capital gains accruing on stock which appears in Table 4.17(a). 

21. For a discussion of the theoretical foundations of the market 

value interpretation of the model, see 

Ibid., chapter 2 and chapter 6 infra. 
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TABLE 4.18 

FINANCIAL STATEMENTS 

(a) Profit and Loss Statement for the year ending December 31, 1909 

Table Amount 

Sales 4.1(b) 26,500 

Less Cost of Goods Sold 

Beginning stock 4.16(a) 9,000 

Purchases 4.1(b) 9,400 

18,400 

Ending stock 4.17(e) 6,500 

11,900 

Realizable capital gains 4.17(a) 1,600 

13,500 

13,000 

Depreciation 4.17(a) 4,417 

Realizable operating profit 8,583 

Realizable capital gains 4.17(a) 14,017 

Realizable profit 22,600 

Unrealized capital gains 4.17(c) 13,600 

Realized profit £ 9,000 
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(b) Balance Sheet - December 31, 1909 

Shareholders' Funds 

Capital 

Profit unappropriated 

Unrealized capital gains 

Current Liability 

Trade creditors 

Table Amount 

4.1(a) 50,000 

4.3(a) 69,000 

4.17(d) 17,600 

136,600 

4.2(à) 6,400 

£143,000 

Table Amount 

Fixed Assets £ 

Building 4.16(a) 63,000 

Current Assets 

Stock 4.17(e) 6,500 

Trade debtors 1i..2(d) 26,500 

Securities 4.17(e) 20,000 

Cash 42(e) 27,000 

80,000 

£143,000 



there is one point which requires emphasizing. The market value of 

building disposals (market value depreciation) is listed at £4,417 

in Table 4.17(a) whereas the building's market value declined only 

by £2,000 in the year to December 31, 1909.22 In computing the 

£4,417 appearing in Table 4.17(a) a distinction was drawn between 

_changes in market value due to the consumption of the productive 

services embodied in the building and those attributable to the passage 

of time.23 These latter gains are usually referred to as "holding gains ".24 

Presuming the firm's depreciation policy to be an adequate reflection of 

market value in the absence of holding effects, then the building may be 

characterized as consisting of 15 equally valued units of unused service 

potential as of January 1, 1909 and 14 such units as of December 31, 1909. 

Each unit has a market value of £4,33325 as of January 1, 1909 and £4,50026 

as of December 31, 1909. If we now suppose the market value of these units 

to increase linearly over the year to December 31, 1909, and assume that 

disposals occur in equal amounts at each of n equally spaced points of 

this year, then the market value of such disposals may be computed in the 

following manner. 
2.7 

22. See Table 4.16(a) 

23. Ibid., pp.70 -S0. 

24. Ibid. 

25. From Table 4.16(a) the total market value is £65,000. Hence, the market 

value (per unit) is 65,000 or £4,333. See,also, Appendix 4C. 

15 
26. From Table 4.16(a) the total market value is £63,000. Hence, the market 

value (per unit) is 63,000 or £4,500. See,also, Appendix 4C. 

14 n 

27. Recall that the sum of the first n integers is 2 (n +l). The figure may 

also be computed by taking the arithmetic mean on the interval [0,I] of 

the function n(t) 4,333 + 167t., Thus we have 

f n(t)dt = d( (4,333 + 167t)dt 
o 

n(t)dt = 4,417 

This topic receives more consideration in the ensuring chapter. 



n n 
TI 1 4,333 + 167j = 4,333 + 167 

n n j 

j=1 j=1 
= 4,333 + 167 

n 
7-17 n(n+1) 

1 4,333 + 167j = 4,333 + 84(1 +1) 
n n 

j = 

Supposing n to be "large" it necessarily follows that the figure of 

£4,417 appearing in Table 4.17(d) is a reasonable approximation to the 

market value of the disposals. The realizable capital gains accruing 

on the building in the year to December 31, 1909 may likewise be 

rationalized. 

The balance of the computations appearing in Table 4.17(a) are quite 

straight forward and are obtained by applying the fundamental theorems 

stated earlier in this chapter. The journal entries by which these figures 

are incorporated into the Dyer Company's books are contained in Table 4.19. 

In preparing this Table, we have assumed that the balance sheet exhibited 

in Table 4.4(a) plus the historical cost income and expense of the year 

ending December 31, 1909 have been recorded in the Dyer Company's books. 

We have now achieved the second objective of this chapter which, it 

will be recalled, was to illustrate the generality of the Edwards and Bell 

model of accounting measurement. We now progress to the final topic of 

this chapter, namely consideration of the problems associated with 

incorporating the fundamental theorems, developed in section 4.1.2 of 

this chapter, into the axiom scheme proposed in chapter 2. 

4.4 Axiomatic Treatment 

In section 4.1.2 of this chapter, two "fundamental" theorems of the 

Edwards and Bell accounting model were stated. In so doing, "definitions" 

of the terms realizable cost savings, realized cost savings and unrealized 

cost savings were employed. Further, these definitions were shown to 

generalize to the other measurement systems. If these concepts could be 

defined within the axiom system developed in chapter 2, it would be 
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TABLE 4.19 

MARKET VALUE JOURNAL ENTRIES 

1. Cost of goods sold 

Stock valuation adjustment 

Stock 

To transfer beginning stock to cost of 
goods sold. 

2. Stock 

Stock valuation adjustment 

Cost of goods sold 

To record ending stock. 

3. Cost of goods sold 

Purchases 

To transfer purchases to cost of goods 
sold. 

Dr Cr 

9,000 

1,000 

5,900 

600 

9,400 

10,000 

6,500 

9,400 

4. Depreciation 417 

Building valuation adjustment 417 

To record depreciation of building on a 

market value basis. 

5. Realizable profit 

Depreciation 

Cost of goods sold 

To transfer depreciation and cost of goods 
sold. 

17,917 

4,417 

13,500 
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6. Cost of Goods sold 

Building valuation adjustment 

Securities valuation adjustment 

Realizable capital gains 

To record the realizable capital gains 
accruing on stock, building and 
securities. 

7. Sales 

Realizable capital gains 

Realizable profit 

To transfer realizable capital gains and 
sales. 

8. Realizable profit 

Realized profit 

Unrealized capital gains 

To record realizable profit 

9. Realized profit 

Profit unappropriated 

To record (historic cost) realized profit 

Dr 

1,600 

22417 

10,000 

26,500 

14,017 

22,600 

9,000 

Cr 

14,017 

40,517 

9,000 

13,600 

9,000 



, 

possible to prove the theorems directly from the axioms. Unfortunately, 

this task is rather imposing. To illustrate the reason for this, consider 

the following definition of realizable cost savings which, at first sight, 

may appear to be reasonable 

Suppose the simple resource set pi t6 5° t for all 
t6 [T,TJ . The mapping R :1R 

. -p1R defined by 
R(T1,T) = LT1(Pj,t) - LT(Pj,t) 

is called the realizable cost savings of pit in 
the interval CT,T1] . ' 

This definition certainly "works" in the case of "current" simple resources 

such as stock or securities. Thus, the realizable cost savings accruing 

on stock in the period from January 30, 1909 to February 28, 1909 amounts 

to £1,500.28 Applying this definition to the simple resource "building ", 

however, implies that the realizable cost savings in the year ending 

December 31, 1909 amount to -£1,300,29 compared with the "correct" 

figure of £2,900. One method of overcoming this is to replace the above 

expression for R by the following 
T1 

R(T1,T) = [LTlPjt) - L (Pj,t)] f (t,T,T1)dt 

where f (t,T,T1) is a real valued integrable function defined on the 

interval [T,T1]. In the case of the building, for example, the 

following definition is appropriate 
T1 

R(T,T1) = [LT1P1,5 - LT(Pl 
' 

5)] f (20Ot ) dt 

where f (t) - 2020 , defined on the interval [0,20] , is an expression 

of the proportion of the building's productive life remaining at time t. 

Whilst, in the case of inventory and similar current items this definition 

"works" provided 
if(t,a,.Q/)dt = 1 

a 

for all intervals a,j] in T,Tl , the precise form of f is not 

28. See Tables 4.2(a) and 4.4(a). 1500 x (13 -12) = 1500. 

29, See Table 4.4(a) and 4.9(b) 60,200 - 61,500 = -1300. 



1 
endogenous to the axiom system, and consequently, the modified definition 

is of little use. Thus, we choose not to incorporate these concepts into 

the axiom system. Unfortunately, this reduces the number of propositions, 

specific to replacement cost measurement which can be proved from the 

axioms. The two "fundamental theorems" stated earlier, for example, are 

not theorems of the axiom system. This does not imply, however, that the 

axiom system cannot be applied to the measurement systemsexamined in this 

chapter. To prove this, Appendix 4D applies the axiom system exhibited 

in chapter 2 to each of the measurement systems examined in this chapter. 

4.5 Summary 

Our objective in this chapter has been to provide a general model of 

accounting valuation; that is, a model which can meaningfully accommodate 

the replacement cost, net realizable value and C.P.P. measurement systems. 

The import of this for accounting measurement is that it implies that the 

"numerical processes" associated with restating a set of historical cost 

financial statements to a C.P.P., net realizable value or replacement 

cost basis of measurement are the same in principle. That is, there is a 

single adjustment procedure applicable to all accounting measurement 

systems; not separate procedures for each. 

The basis of these procedures is to be found in two "fundamental" 

theorems. These theorems provide respectively a means of computing the 

potentially realizable "holding gains" for some time interval, and the 

unrealized holding gains at a point in time. Although each theorem was 

proved in relation to replacement cost accounting, they were found to 

generalize to other measurement systems. In this respect, we found 

little difficulty in extending the theorems into the province of market 

value and C.P.P. accounting, 

We concluded the chapter by examining the possibility of proving the 

theorems within the axiom scheme particularized in chapter 2. Given 



the simplicity of the scheme therein advanced, this proved to be rather 

imposing. 



APPENDIX 4A 

COMPUTATION OF REALIZABLE COST SAVINGS 

Theorem 

Let T be the replacement cost measure of a simple resource 

at time 0, plus additions (at cost) in the interval [001 less 

disposals (at the replacement cost measure at the time of disposal) 

in the interval [O,T] . Let). be the replacement cost measure of 

the simple resource at time T. The difference 

/ 

O - 10 is the 

realizable cost savings accruing on the simple resource during the 

interval [O,T] 

Proof 

(i) Suppose an entity disposes of )iQ units during 

[O,T, where (Q) is the quantity measure of the simple resource at 

time O. Assume without loss 

o++f 

generality 

(i) [ Y ¿`< 1 

ti 

(ii) there is a physical flow. 

Suppose the entity acquires A Q units during [0,1 . By 

(i) and (ii) the units held at both time 0 and time (T) amount to 

Q - E Y Q and thus have corresponding realizable cost savings of 

(RT - R0)(l -E Y;,)Q where RT and Ro are the replacement cost 

measures (per unit) at time T and time 0 respectively. The 

realizable cost savings accruing on disposals during [O,TJ amount 

to E (R. - Ro))' Q where R. is the replacement cost measure of 

disposals at the time of disposal. The cost savings 

accruing on purchases during [O,T] amount to ! (RT - R)11 g where 

is the acquisition price (per unit) of purchases. Hence, the 

realizable cost savings accruing during [0,1 amount to 

R [O,TJ = (RT- Ro)(1- Z )Q + 4 (Ft; -Ro) Ys Q + 

E -RJ )/d Q 



R [OA = (RT -RO)Q+ (E6*- i )RTQ - 

( -C Ri Yi ) Q 

To prove the proposition, we must show that the method stated in the 

conclusion gives the above result. Computing the quantities therein 

so that 

= RoQ+F, JQ-4RtiytiQ 
= RTQ (1-,4 iy ) + EA) 

- = RTQ (1-<, Yy ) +`,/dJ -RoQ- 

RAJ Q + Q 

= (RT Ro)Q + ( Aj -ZY¡.)RTQ- 

(E Rti. - Z Ri Y¡, )Q 

[O,1 Y = 

thus proving the result. 

(ii) To Show that assumption (i) (Z Y.; 1) does not affect the 
ti 

proposition's validity we prove the proposition under the 

assumption ry 7'1. Let Z 0(.Q + $kQ be acquisitions of the 

interval [O,T] . Suppose that E jQ are disposed of in the 

interval [O,T] . The realizable cost savings of the interval [OAT, 

are computed as follows 

R [O,1 = (R` -Ro) ÿQ +Z(R -R.) <Q 

+ (RT -Rk) $ kQ 

k 
where R. and R. are replacement cost measures (per unit) at time 

ti J 

of disposal and R. and Rk are acquisition costs (per unit). 

Applying the above proposition we have 

++ C 
= R 

o 
Q + (`R K +E Rk S )Q 

- (ZRy) +Z J,C )Q 

!° 4 RTkQ 
k 

so that 
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- r = L: RT kQ-RoQ-(Z 
R.% 

+ i Rk b ) Q 

+(`i R yti + r pG ) Q 

= 
4 

(R -Ro)yy Q +E ( -) Q 
+Z (RT-Rk) d kq 

= R [02 T] 

By similar procedures, we may show the proposition holds for other 

physical flows. 
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APPENDIX 4B 

REALIZABLE COST SAVINGS AND REPLACEMENT COST 

Theorem 

Let AT be the unrealized cost savings and BT be the historic 

cost measure of a simple resource both at time T. Let IT be the 

"quantity measure" of the simple resource at time T. Then 

AT + BT 
= RT 

IT 

where RT is the replacement cost measure (per unit) of the simple 

resource at time T. 

Proof 

(i) We use the same notation as in part (i) of the theorem proved in 

Appendix 4A and assume without loss of generality 

(i) there are no unrealized cost savings 

carried forward from previous periods, 

(ii) there is a FIFO physical flow, 

(iii) 7ti < 1, 

The realized cost savings of the interval [,TJ amount to 

E (Rti -Ro) Yti Q. It thus follows that 

++ 
AT = R[O,T] -E (Ry -R0)Yti Q 

AT = (RT -Ro) (1- E l ) Q +2; (RT -R ) )0J Q 

The historic cost measure of the simple resource at time T is 

BT = (1- EYfR0Q +Z,ó;Q 

This implies 

It follows that 

AT+BT = (RT-Ro) (1- )Q +F. (RT R )b. Q + 

r(1-Zn, 
)RoQ +.74": R.) 6.Q 

AT+8T = RTQ(1- 
r 

Yÿ + . J ) 

AT+BT 
= RTQ(1- yy + /51 ) 

IT Q(1- 23 Yy ) 
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AT+BT = RT 

IT 

thus proving the result. 

(ii) To show that assumption (iii) has no effect on the proposition's 

validity we assume Yy 71 and adopt the notation of part (ii) of 

the proof in Appendix 4A. It then follows that 

AT = R COST, -L (Ri -130)Y1 Q -Z(R -))611 Q 

AT = Fi ( RT -Rk) S kg 

BT = Rk S 
kg 

so that AT +BT = Z ( RT 
-Rk) S kQ + 

E 
Rk S kQ 

and 

IT ` b kQ 

= RTQZbk 

QZ bk 

AT+BT = RT 

IT 

which was to be proved. By similar procedures, we may show that the 

procedure holds for other physical flows. 



APPENDIX 4C 

REALIZABLE COST SAVINGS (CAPITAL GAINS) AND FIXED ASSETS 

In computing the realizable cost savings accruing on fixed 

assets during the interval [T,T +1] , Edwards and Bell employ a 

method which they proved (under a redundant set of assumptions) 

as applying to stock. In applying the method, a necessary 

piece of information is the weighted average acquisition cost of 

the interval [T,T +l] . In the case of fixed assets this datum 

is unlikely to exist simply because fixed assets are, by nature, 

"wasting" resources. It is doubtful, therefore, if the method 

has a legitimate application to fixed assets. The problem can, 

however, be overcome by employing the following result. 

Theorem 

Suppose there are no acquisitions of a simple resource 

during the interval CT,T +l] and the replacement cost of disposals 

amount to 

rn 
n 

r(tk) .s(tk) = r(z)E s(tk) 
k =1 k =1 

where r(t) is the replacement cost of a unit of the simple resource 

at time t and s(t) is disposals (in units) of the simple resource 

at time t. The realizable cost savings accruing on the simple 

resource during CT,T +l, can then be computed in either of the 

following ways 

(a) Assume that the beginning quantity is held over the 

interval (T,T +l while the replacement cost varies 

from that prevailing t time T to that prevailing at 

time (T +l). The excess (or deficiency) of the ending 

quantity over the beginning quantity is assumed 

acquired (or disposed of) at the replacement cost 

prevailing at time z. 

(b) Assume that the beginning quantity is held whilst its 

replacement cost varies from that prevailing at time 

T to that prevailing at time z. The ending quantity 

is assumed acquired at time z and held while its 

replacement cost varies to that prevailing at time 

(T +l). 



Proof 

We prove each of these results in turn. 

(a) The quantity held at time (T +1) is le where by hypothesis 

Ie = Ib - S 

where S = 2] s(tk) is disposals during [T,T +1 and Ib is 
k =1 

quantity held at time T. From the first fundamental theorem we have 

= r(T+1)Ie 

= r(T+1)Ib - r(T+1)E s(tk) 

k=1 

Also 31/ = r(T)Ib - E r(tk) s(tk) 

which, by hypothesis, may be restated as 

we thus have 

But 

thus implying 

proving the result. 

k=1 

)0 = r(T)Ib - r(z)Zs(tk) 

k=1 

- r = Cr(T+l) - r(T), Ib +(T+1)- 

r(z)n1 

CI s(tk) 

k=1 

rrn 
-L.s(tk) = le - Ib 

k=1 

- % = Cr(T+1)-r(TlIb + Cr(T+l)- 

r(zi (Ie-Ib) 

(b) To obtain the second result, we merely refactor the above 

expression 
iro - 110 = r(T +1)Ib- r(T)Ib + r(T +1)Ie- 

r(T+1)Ib- r(z)Ie + 

r(z)Ib 

- y = [r(T +1) -r(z Ie + Cr(z)- r(T),Ib 

completing the proof. 

Replacement Cost Measurement 

In applying the above results to the Dyer Company's building 

we impose the following assumptions. 
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(i) The building consists of 15 equally valued units 
of unused service potential as of January 1, 
1909 and 14 such units as of December 31, 1909. 
Each unit has a replacement cost of £4,100 as of 
January 1, 1909 and £4,300 as of December 31, 1909. 

(ii) Disposals can be taken as occurring at time 
2T +1 

z - 
2 

, the midpoint of the interval [T,T +11. 

(iii) The replacement cost (per unit) at time 
2T +1 

z - is £4,200 (per unit). 

Applying method (a) we have 

Cr(T +1)- r(T),Ib + [r(T +l) -r(22 +1)] 

= (4,300 -4,100) X 15 - (4,300- 4,200) 

= 2,900 

Applying method (b) we have 

rr(T+l)-r(22+1 )Ib + Cr(22+1)-r(T)]Ie 

= (4,300 -4,200) X 15 + (4,200 -4,100) x 14 

= 2,900 

Note that this result agrees with Table 4.8(a). For some further 

comment on this see Edwards and Bell, pp.144 -148 and pp.188 -193. 

Market Value Measurement 

The methods used in the text can be obtained by imposing 

assumptions similar to those employed for replacement cost measure- 

ment 

(i) The building consists of 15 equally valued units of 
unused service potential as of January 1, 1909 and 

14 such units as of December 31, 1909. Each unit 

has a market value of £4,333 as of January 1, 1909 

and £4,500 as of December 31, 1909. 

2T +1 
(ii) Disposals can be taken as occurring at time z = 

the midpoint of the interval [T,T +l] . 

2T +1 
(iii) The market value at time z = 

2 
is £4,417 (per unit). 

Applying method (a), we have 
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C r(T +1)- r(T)]Ib + fr(T +1) -r( 
2T +1 

)] (Ie -Ib) 

= (4,500 -4333) x 15 - (4500 -4,417) 

= 2,422 

Applying method (b) we have 

Cr(T+1)-r( 22+1)Ib + 
Cr(22+1) 

- r(T3 Ie 

= (4,500- 4,417) x 15 + (4,417- 4333) x 14 

= 2421 

Note that this result agrees with Table 4.17(a), the slight discrepency 

being caused by rounding. 
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APPENDIX 4D 

"VALUATION" MODELS OF THE AXIOMS OF ACCOUNTING MEASUREMENT 

Each of the valuation 'models provide the same interpretation 

for the axiom of control and the axiom of quantities. Thus, we have 

(a) Axiom of Control 

December 31, January 1, 1909 

P5 

where 

p1,5 

P2,5 

p3,5 

p4,5 

p5,5 

P6,5 

= 

= 

= 

= 

= 

6 

=1P 

_ 
building 

cash 

trade debtors 

securities 

stock 

trade creditors 

P6 

where 

P 1,5 

p2,5 

P3,5 

P425 

P5,5 

P6,5 

= 

= 

= 

= 

= 

= 

(b) Axiom of Quantities 

January 1, 1909 

The algebra ",5 consists of the 

64 sets generated by the property 

set P5. 

1909 
6 

. 
U1 ,6 - 
building 

cash 

trade debtors 

securities 

stock 

trade 
creditors 

December 31, 1909 

The algebra 0 consists of 

the 64 sets generated by 

the property set P6. 

The measurement rules applicable to replacement cost measurement 

are then defined in the following terms 

(c) Axiom of Measurement 

December 31, 1909 January 1, 1909 

L5(p 5) ./' 

= 

= 

= 

= 

= 

61,500 if = 1 

25,000 if) = 2 

10,000 of.; = 3 

10,000 if = 4 

11,000 if.; = 5 

L (p 
6 6 

) 

= 

= 

= 

= 

= 

60,200 ifJ = 1 

27,000 if J = 2 

26,500 if J = 3 

20,000 if J = 4 

7,500 ifJ = 5 

_ -5,000 if = 6 = -6,400 if = 6 



The profit measure of the year ending December 31, 1909 is 

7 (6,5) = L6(P6) - L5(P5) 

134,800 - 112,500 

%r (6,5) = 22,300 

which is the Business profit for the year ending December 31, 1909. 

Building, cash, trade debtors, securities and cash satisfy the 

definition of an asset. Trade creditors satisfies the definition of 

a liability. 

The measurement rules applicable to market value measurement 

are defined as follows. 

(c 
i 

) Axiom of Measurement 

December 31, 1909 January 1, 1909 

65,000 if = 

25,000 if.; = 

10,000 if = 

10,000 ifj = 

9,000 if" = 

-5,000 if = 

measure of the 

1-,(P' 

= 

= 

5) = 

= 

= 

= 

The profit 

1 = 63,000 if) = 1 

2 = 27,000 if = 2 

3 L6(p. 6) = 26,500 if = 3 

4 = 20,000 if.; = 4 

5 = 6,500 ifj = 5 

6 = -6,400 if = 6 

year ending December 31, 1909 is 

%r (6,5) = L6(P6) - L5(P5) 

= 136,600 - 114,000 

7(6,5) = 22,600 

which is the Realizable profit for the year ending December 31, 1909. 

Building, cash, trade debtors, securities and cash satisfy the 

definition of an asset. Trade creditors satisfies the definition of 

a liability. 

The measurement rules applicable to C.P.P. measurement are 

defined as follows 



(c") Axiom of Measurement 

January 1, 1909 

= 

90,000 if j 

25,000 if 

- 10,000 if 
LS . 5) 

(P ' _ 10,000 if j 

= 10,000 if 

_ -5,000 if 

1 4: 

= 

= 

= 

= 

= 

= 

1 

2 

3 

4 

5 

6 

December 31 1909 

ifs; 

if 

if 

if 

if.; 

if 

= 1 

= 2 

= 3 

= 4 

= 5 

= 6 

ii 

L6 (p ' 6) 
= 

= 

= 

= 

= 

_ 

89,600 

27,000 

26,500 

10,667 

6,090 

-6,400 

The profit measure afforded by Definition 4 of chapter 2 does 

not provide the C.P.P. income reported in Tables 4.12(c) and 4.14(a). 

The reason for this is that the Shareholders' Funds as of January 1, 

1909 is multiplied by the ratio of the index as of December 31, 1909 

and the index as of January 1, 1909 before the C.P.P. income is 

computed. To overcome this problem we define a fourth axiom as 

follows 

Axiom of Indexing 

There exists a real number iT called a "price level index" 

uniquely defined for all real t >T o. 

The profit measure may then be redefined as follows 

Definition 41 

The mapping 717: 1R2 ®-(.1R defined by 

7 (t,T) Lt(Pt) - iT 
s 

LT(PT) 

is called the "profit measure" of the interval [T,t, 

In the present example the axiom of indexing is satisfied by 

noting that i 
5,6 15' 

Applying Definition 41 implies that the 

C.P.p. income for the year ending December 31, 1909 is computed as 

follows 
L6(P6) - i 

5,6 
L5(P5) 

153,456 - 
16 

x 140,000 

4,123 



The simple resources Building, cash, trade debtors, securities 

and cash satisfy the definition of an asset whilst the simple 

resource trade creditors satisfies the definition of a liability. 



APPENDIX 4E 

C.P.P. MEASUREMENT 

Let the following be defined accordingly 

Ft = Shareholders' funds at time t. 

M 
t 

? Net monetary items at time t. 

Nt = Net non- monetary items (excluding stock) at time t. 

At = Acquisitions of non -monetary items (excluding stock) at time t. 

It = Stock of inventory at time t. 

St = Sales of stock at time t. 

Pt = Purchases of stock at time t. 

Et = Expenses (excluding cost of sales and depreciation) at time t. 

Dt = Depreciation at time t. 

rt A price index at time t. 

Supposing all transactions to occur at discrete points in time 

denoted by t = 12 22 , nl define the loss from holding net 

monetary items during the interval [J;21] to be (r4 -1)r, . 

Consequently the "monetary loss" during the interval 
2-1 

is 

(r1- 1)Ino, having a "price level adjusted value" of r2(r1 -1)Mo at t = 2. 

The "monetary loss" over the interval [022] amounts to r2(r1 -1)Flo + 

(r2 -1)MM1 where (r2 -1)M1 is the monetary loss during [122] . We 

may restate this as 

r2 (r1 -1)Mo + (r2 -1)['1 = r2r1Mo - r2Plo + r2111 - M1 

= r2r1Mo - Mo + r2M 1-M 1-r2Mo+Iho 

= (r2r1 -1)Mo + (r2 -1)Mi - (r2 -1)Mo 

r2(r1 -1)Mo + (r2 -1)Mi = (r2r1 -1)Mo + (r2- 1)(M1 -Mo) 

The "current purchasing power income" of the interval [022] 

is defined in the following terms 



(F2 -Fo) - (r2r1 -1)Mo - (r2- 1)(Mi -Mo) + (r2- 1)(S1 +I1- 131 -E1) - 

(rir2- 1)(Io +Do) 

where (F2 -Fo) = 81- (Io +P1 -I1) -E1 -Do is the "historic cost" income 

of the interval [021 , (r2r1 -1)Ivio + (r2- 1)(Ivii -Mo) is the loss from 

holding net monetary items during [022] and (r2- 1)(S1 +I1- Pi -E1) + 

(r1r2- 1)(Io +Do) is the adjustment to income and expense of the 

interval [0,2] . Adding and subtracting r1r2Fo from the above 

expression gives F2- rir2Fo + (rir2- 1)(Fo- Igo -Do) + (r2 -1), 

(mo +51- Ili- Pi -E1) - (r1r2 -1)Io + (r2 -1)I1 

Noting that Fo - [lo = No + Io and Iii = Igo +S1- (Pi +Ai -E1) allows the 

above expression to be restated as 

F2- rir2Fo + (r1r2- 1)(No +Io -Do) + (r2- 1)(A1 +I1) - (rir2 -1)Io 

Noting that Ni = No + Ai - Do allows the above expression to be 

restated as 

F2 - rir2Fo + (rir2- 1)(No -Do) + (r2- 1)(N1- (No- Do) +I1) 

Adding and subtracting Fo gives 

(F2 -Fo) . (rir2- 1)(No -Do) + (r2- 1)(N1- (No- Do) +I1) - (rir2 -1)F0 

It follows that 

(F2 -Fo) - (rir2- 1)Mlo -(r2- 1)(111 -P1o) + (r2- 1)(Si +Ii- Pi -E1) - (r1r2-1). 

(Io +Do) 

(F2 -Fo) - (rir2 -1)Fo + (rir2- 1).(No -Do) + (r2- 1)(N1- (No- Do) +Ii) 

From which it follows that (rir2 1)Fo is equivalent to 

(rir2 -1)110 + (r2- 1)(111 -1Mo) - (r2-1)(51 +I1- Pi -E1) + (rir2- 1)(Io Do)+ 

(rir2- 1)(No -Do)+ (r2- 1)(N1- (No- Do) +I1) 

This expression is in turn equivalent to 

(rir2 -1)Mo + (r2- 1)(111 -11o) - (r2- 1)S1 +(r2- 1)E1 +(r2 -1)P1 + (rir2 -1)Io + 

(rir2 -1)No + (r2- 1)(N1- (No -Do)) 



o 
Our objective is to show that this expression is the fictional 

realizable cost savings of the interval [0,2) . The fictional 

realizable cost savings accruing on stock is computed using the 

first fundamental theorem (Appendix 4A) 

= Io + 131 - (r1r2Io +r2P1 -r2I1) 

T = r2I1 - [(r2_l)P1 + (r1r2 -1)Io] 

= (r2 -1)131 + (r1r2 -1)Io 

Similarly, the fictional realizable cost savings accruing on the 

non -monetary items (excluding stock) amount to 

= No + Al - r1r2Do 

= No + N1 - (No -Do) - r1r2Do 

= r1r2(No -Do) + r2 [N1- (No -Do] 

= (r1r2-1)No + (r2-1) 

Note that the expression for the fictional realizable cost savings on 

stock and non -monetary items (excluding stock) appear in the 

expression for (r1r2 -1)Fo. The other components of this quantity 

are the loss from holding net monetary items and the adjustments to 

sales and expense respectively. This completes the proof. 



CHAPTER FIVE 

A PROBLEM IN ACCOUNTING MEASUREMENT: ESTIMATION OF THE REPLACEMENT 

COST OF ASSET DISPOSALS 



5.0 Introduction 

In the previous chapter the Edwards and Bell method of accounting 

was presented as a general model of accounting measurement in the 

sense that it could be meaningfully adapted and applied to any of the 

several accounting measurement systems. It will be recalled that the 

model is grounded on two theorems, the first and more important of 

which provides a means for computing the (potentially) realizable 

"holding gains" accruing during some interval of time IT,T +1J . 

This theorem requires, as an input, the accumulated "value" of dis- 

posals during [T,T +l] , where the term "value" is to be interpreted 

in the context of the measurement system being utilized. With the 

exception of replacement cost measjrement, this "problem" has proved 

to be of relatively minor importance. 
1 

In the case of replacement 

cost measurement, however, it has proved to be a major obstacle to 

implementation.2 For these reasons, the purpose of the present 

chapter is to examine several methods for estimating the replacement 

cost of disposals during the interval [TAT +1] . 

The present chapter, in fact, develops two variations on a theme. 

The first of these is concerned with the relevance of some polynomial 

1. Net realizable value accounting has at no time been advocated by 

the professional accounting bodies. In Statement of Standard 

Accounting Practice No.7, which dealt with C.P.P. adjustments to 

historic cost figures, the problem was virtually ignored. Only in 

the following publications was the problem recognised as being of 

some importance. 

"Current Cost Accounting," Exposure Draft 18, Accounting Standards 

Committee 1976, pp.85 -90. 

Inflation Accounting, Cmnd 6225, HMSO, 1975, pp.179 -186. 

2. Exposure Draft, loc.cit. 
Inflation Accounting Committee, loc.cit. 
Hamilton, S. "Field Testing ED 18: The Practical Reality," 

The Accountant's Magazine, LXXX1 (May 1977), p.195. 



interpolation based numerical techniques to the problem of estimating 

the replacement cost of disposals. The relevance of these methods to 

the problem at hand has not been investigated, and yet, on the surface 

they would seem to hold considerable potential. Having achieved this, 

we shall then examine two numerical methods which have been hinted at 

by accountants but whose properties have not been fully investigated. 

The first, which utilizes the weighted average cost of acquisitions, 

was introduced by Edwards and Bell.3 The second, which is basically 

a simple averaging technique, was alluded to by both Edwards and Bell 

and the Inflation Accounting Steering Group amongst others.4 

We now focus our attention on the topic of polynomial interpola- 

tion since this provides the background material necessary for an 

understanding of the polynomial based numerical techniques to be 

examined in section 5.2. 

3. Edwards, E.O. and P.W. Bell. The Theory and Measurement of Business 

Income, Berkley, California: The University of California Press, 

1961, pp.144 -45. 

4. Ibid. p.192. 
Inflation Accounting Steering Committee. Guidance Manual on Current 

Cost Accounting. Institute of Chartered Accountants in England and 

Wales, 1976, pp.85 -90. 



5.1 Interpolation 

Each of the numerical techniques particularized in section 5.2 

utilizes an interpolating polynomial to estimate a function defined 

on an interval Ca, b] . Suppose we have (n +l) elements denoted by 

= 0, 1, 2, , n from the domain [a, b] of a real function f 

which we call quadrature points or nodes,5 and whose corresponding 

functional values are f(xi). A polynomial Pn(x) is said to inter- 

polate f(x) on the nodes xi if and only if6 

Pn(xi) = f(xi) i = 0, 1, 2, , n (1) 

It can be shown that the nth degree polynomial defined on the (n +l) 

nodes and their corresponding functional values is unique.7 Further, 

there are various methods for determining the (n +l) coefficients of 

the polynomial.8 One such method, attributed to Lagrange, proceeds 

by using the equations9 

17(x-x.) 
j=0 

li(x) 

(x 
i j 

-x ) 

j=0 

i # j 

n 

Fn(x) = £, lj(x)f(xj) 
j=o 

(2a) 

(2b) 

5. Isaacson, E. and H.B. Keller, Analysis of Numerical Methods. New York: 
John Wiley and Sons, Inc., 1966, p.300. 

6. Henrici, P. Elements of Numerical Analysis. New York: John Wiley and 
Sons, Inc., 1964, p.183. 

7. Ibid. 

8. Isaacson and Keller, op.cit., chapter 6. 

9. Henrici, op.cit., p.184. 



where 

f(x) = Pn(x) + en(x) (2c) 

for all x in the interval [a, b, and en(x) is the error from approxi- 

mating f(x) by the interpolating polynomial Pn(x). It can be shown, 

provided certain assumptions10 are satisfied, that 

en(x) = f(n +l)fz(x l f (x -x.) (3) 

(n +l)! j =0 

where z(x) is located in the smallest interval containing the points 

xo, xl, , xn. However, since z(x) is in general unknown 
11 

we can 

bound the error by letting 
Mn 

= max If'(x)) for all x in the 

interval [a, b] whence 

le (x) 

M 
n+l 

n 
(n+l)! j-0 Ix-xj1 

Table 5.1 provides an example of the interpolating procedures 

particularized above. 

(4) 

10. Ibid., p.187. 

11. Ibid. 
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TABLE 5.1 

EXAMPLE OF POLYNOMIAL INTERPOLATION 

(a) Interpolation 

Given that loge1.0 = 0, logel.l = 0.09531 and loge1.3 = 0.26236 

we determine a second degree interpolating polynomial for the function 

f(x) = logex on the interval 

Lagrangian Coefficients 

1,(3(x) (x- 1.1)(x -1.3) 
(1- 1.1)(1 -1.3) 

x2-2.4x+1.43 
r 0.03 

(x-1)(x-1.3) 
(x) (2.1-1)(1.1-1.3) 

(x) 
x 
2 
- 2.3x+1.3 
-0.02 

a (x-1)(x-l.l) 
4(x) (1.3-1)(1.3-1.1) 

p 2-2.1x+1.1 
t2(x) 

x 

0.06 

(b) Error Bound 

Given that f(x) = log x 

[1.0,1.3] 

Interpolating Polynomial 

2 

P 
2 
(x) 

2 
= 

J=0 
11(x)f(x.) 

0.(x2-2.4x+1.43) 
0.03 

0.09531(x2-2.3x+1.3) 
0.02 

0.26236(x2-2.1x+1.1) 
0.06 

P2(x) = -0.3928x2+1.7780x-1.3852 

then f(3)(x) = 2-3 and max If3(x)I on the 

interval [1.0, 1.3] is 2. We thus have 

1e2(x) L 3 I x -1 I. 
I x 
-1.1 I. 

I x 
-1.3 I 

where x 6 [1.0,1.3, 



6v 

Recall that the purpose of this section was to provide the back- 

ground material necessary for an understanding of the numerical 

integration techniques which may be utilized in estimating the replace- 

ment cost of asset disposals. Having furnished this background, we now 

turn to a consideration of these numerical techniques. 

5.2 Numerical Methods 

Our objective in this section is to apply some of the commonly 

encountered numerical integration techniques to the problem of 

estimating the replacement cost of asset disposals during some interval 

of time. The relevance of these methods to the problem at hand can be 

explained in the following terms. Consider the composite function 

u(t) = r(t).s(t) 

where r(t) is the function whose value is the replacement cost of a 

unit of resource at time t and s(t) is the function whose value is the 

rate of change in accumulated disposals at time t. If u(t) is integrable 

over the closed interval [T,T +1] then our problem is to evaluate the 

integrall2 

12. Define the function S(t) whose value is accumulated disposals (in 

units) at time t. Let S(t) be monotone increasing on (T,T +1] and 

define the jth increment of S(t) as t varies from ti-1 to tj 

accordingly 
Sj = S(t-J )-S(t- 

J- 
1) 

for t and ti-1 in [T,T 
+1] 

. Suppose the interval [T,T 
+1] 

to be 

partitioned into n subintervals so that in general the replacement 
cost of disposals during [ti_l,tj] is r(5j)A Si for some,j in 

tj_1,t 7 . This implies that the replacement cost of di posals 

wring [T,T +1] is n 

c [T,T +] = )ti S. 2] r(4)F0.1 

J 

If this sum tends to a finite limit as the lengths of the subinter- 

vals tend to zero we write +l 

c CT,T +1] = i r(t)dS(t) 
T 

and call such a limit the Stieltjes integral. If we further suppose 

r(t) to be continuous and 8(t) to be differentiable on [T,T +l]then 

it follows T +1 

c [T,T +1] = )( r(t)s(t)dt 

dS(t) T 

where dt = s(t) is the rate of change in accumulated disposals at 

time t. On this point, see 
Ferrar, W.L. Integral Calculus. Oxford: Oxford University Press, 1958, 

pp.150 -58. 



T+1 
c [T,T+1] = f r(t).s(t)dt 

T 
(5) 

Where c [T,T +l] is the replacement cost of asset disposals during the 

interval CT,T +1 . When the integral in (5) cannot be evaluated 

analytically, we may resort to any of the several numerical integration 

techniques alluded to above. Each of these techniques estimates the 
b 

integral J f(x)dx by using the following procedure 
a b n 

J f(x)dx = E w.f(x.) + E 

a j =1 

where the w. are a set of weights and E is the error associated with 

the method. If the technique integrates polynomials of degree m or 

less exactly, but is not exact for polynomials of higher degree, then 

it is said to have m degree precision.13 

We now turn to a consideration of three such methods, namely the 

midpoint rule, the trapezoidal rule and Simpson's rule. 

5.2.1 Midpoint Rule 

Suppose we estimate the function f defined on the interval [a, b] 

by interpolating on the node alb and its corresponding functional 

value.14 This implies 
b b 

, f(x)dx = )( PO(x)dx + E 

a a 

b 

b 

i f(x)dx = (b-a 
a 

+ E 

(6a) 

(6b) 

(6c) 

The error15 from approximating the integral of f(x) by the integral of 

the constant interpolating polynomial is obtained from the equation 

13. Isaacson and Keller, op0 it., p.301. 

14. Ibid., p.316 

15. Ibid. 



E = 
f(22 CZ(x)) 

(b -a) 
3 

(7a) 

for some z(x) in the interval [a, b]. As z(x) is in general unknown16 

we can bound the error by letting 
M2 

= max I2),I for all x in the 

interval [a, b] whence 

I E I ;20-a)3 (7b) 
4 

This rule has one degree precision and thus integrates polynomials of 

degree one and zero exactly. Further, the method can be used to estimate 

the replacement cost of disposals in the interval [T,T 
+l) by replacing 

f(t) by the composite function u(t) = r(t).s(t). This implies 

T +1 T +l 

jr r(t).s(t)dt = jr pg(t)dt + E 

T T 

where 

T+1 uì2T+ld 
+ E = 1 

2 
T 

T+l 
rd( 

r(t) .s(t)dt = + E 

T 

E = u(2)(Z(t)) 
24 

(8a) 

(8b) 

(8c) 

(9a) 

for some z(t) in the interval [T,T +1]. A bound on the error is given by 

IEIKTM2 
24 

(9b) 

The above method of estimating the integral of f(x) and u(t) is called 

the midpoint rule.17 However, the more commonly encountered numerical 

methods are the Trapezoidal rule and Simpson's rule. 

5.2.2 Trapezoidal Rule 

The Trapezoidal rule approximates the function f(x) by interpolating 

a linear polynomial P1(x) on the nodes a and b and their corresponding 

functional values.18 This implies 

16. Ibid. 

17. Ibid. 

18. Ibid. 
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b b 

J f(x)dx = f P1(x)dx + E 

a a 

b 1 

= J E lj(x)f(xj)dx + E 

a j=0 

J f(x)dx = b2a f(a) + f(b)1 + E 

a 

The error19 from approximating f(x) by the integral of the linear inter- 

polating polynomial is obtained from the equation 

E _ -f(2)Cz(x) (b -a)3 
12 

for some z(x) in the interval Cap b.]. As z(x) is in general unknown20 

we can bound the error in the same fashion as the midpoint rule 

E 

lYl 
4te.' 

12 

-a)3 

Like the midpoint rule the trapezoidal rule has one degree precision. 

Further, the trapezoidal rule can be used to estimate the replacement 

cost of disposals in the interval [TAT +1] by replacing f(t) by u(t). 

This implies 
T+1 T+1 

r(t).s(t)dt = J P1(t)dt + E 

T T 

T+l 1 

1.(t)u(t.)dt + E 

T j=0 

where 

T+1 

jr r(t).s(t)dt = [u(T) + u(T+1)] + E 

T 

E 
-u(2) 

12 
(13a) 

for some z(t) in the interval [TAT +1]. A bound on the error is given 

by 

(13b) 

19. Ibid. 

20. Ibid. 
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5.2.3 Simpson's Rule 

Simpson's rule approximates the function f(x) by interpolating a 

quadratic polynomial P2(x) on the nodes a, 
a2b 

and b and their 

corresponding functional values.21 This implies 
b b 

J f(x)dx = ¡ P2(x)dx + E 

a a 

b 2 

= , E l.(x)f(x.)dx + E 

a j =0 

f f(x)dx = + 4f(-- -)+ f(b)] + E 
ab 

a 

b 

22 

The error from approximating the integral is obtained from the equation 

f(4) E 2880z(x)(b 
-a)5 (15a) 

for some unknown23 z(x) in the interval Cap b.. A bound on the error 

is given by 

m 
E 

I 

2880 
(b....05 

(15b) 

where X14 = max tf4(x)I for all x in the interval Cap b]. This rule has 

3 degree precision since it integrates polynomials of degree three or 

less exactly. In addition, like the trapezoidal and midpoint rules, the 

method can be used to approximate the replacement cost of disposals in 

the interval [T,T +l] by replacing f(t) by u(t). This implies 
T +1 T +1 

J r(t).s(t)dt = ,% P2(t)dt + E 
T T 

T +1 2 

= j( E' 1.(t)u(t.)dt + E 
T j =0 J J 

where 

T+1 

f r(t).s(t)dt = 
6 

Cu(T) + 44.212-.:-L11+ u(T+1) 1 + E 

T 

E 
-u(4)[z(t)] 

2880 
(17a) 

for some z(t) in the interval [TAT +1]. A bound on the error is given 

21. Ibid. 

22. Ibid. 

23. Ibid. 



by 

lE I 
` F14,4_ 

2880 

104 

(17b) 

5.2.4 An Example 

As an example of the implementation of the above procedures assume 

the functions 

r(t) = lekt 

an d24 

(18a) 

s(t) = m (18b) 

are defined on the interval [0, l]. It then follows that the replace- 

ment cost of disposals in the interval [0, 1] is computed thus 
1 

40, 1] = 
J r(t).s(t)dt (19a) 
0 

1 

= lmf ektdt (19b) 
0 

40, 1 I = 
lk Lek -1i (19c) 

We call the absolute error expressed as a fraction of the replacement 

cost of disposals c [0, 1] the relative error R where 

R - LE 40, 
I 

(20) 

This expression gives a better basis for gauging the accuracy of our 

calculations than 1E1 because it relates the error to the quantity 

being estimated. 

In Tables 5.2 and 5.3 we apply each of the numerical methods 

particularized above to estimate the integral (19b) under the assumption 

1 = m = 1 and for various positive values of k. Column 1 of each 

method in Table5,3contains the estimate of (19b) obtained from applying 

24. This assumption implies that the accumulated i posals at time t is 

described by the function S(t) = mt, since ddt - s(t) = m. See 
footnote 12, above. 



the rule, column 2 contains the actual error, column 3 contains the 

error bound, whilst column 4 contains the maximum relative error. The 

Fortran program from which the figures in Table 5.3 are generated is 

contained in Appendix 5A25 

5.3 Some Alternative Methods 

A problem in implementing each of the methods specified above is 

that the precise form of the functions r(t) and s(t) are unknown.26 

25. The accuracy of the above methods can be increased by splitting the 

interval [T,T +]] into n equally spaced subintervals and then apply- 
ing the method to each subinterval. For the midpoint rule, for 

example, the error of the jth subinterval is 

E. 243 u (2zj(t)] 

where z.(t) is bounded in the interval [ T + T + - . It follows 

that tq total error is given by n n 

n 

Ej = 24ná u(21zj(t)] 
j =1 

E - 277.711 u(2) Cz(t),. 

for some z(t) in the interval [T,T +1]. This result implies that a 

sufficient condition for convergenceis that u(2)(t) is bounded on 

CT,T +lJ . Similar procedures apply to the other rules. The error 

from applying the trapezoidal rule to the n equally spaced sub- 

intervals of IT,T +1] is 

E - 7717 u(2)r (t), 

whilst for Simpson's rule the error is 

is 
= u(4)lz (t)] 

26. In general it is not necessary to know the precise form of u(t) 

in order to operationalize the above procedures. Estimates of (5) 

can be obtained from a finite set of points [t., u(tj)] but knowledge 

of u(n)(t) is necessary to bound the error of the estimate. 

E 



Midpoint Rule 

where 

and 

Trapezoidal Rule 

where 
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TABLE 5.2 

NUMERICAL METHODS APPLIED 

c [o, 1, 

k i 

R 

c[0, 1, 

IE 

and R 

Simpson's Rule 

where 

and 

c[0, 

¡E: 

R 

1, 

k 

= e2 + E 

k2ek 

24 

k3 ek 

= 24'-X1 

= 2[1+ek + E 

k2ek 

12 

= k3 . ek 

12 ;771 

r 

k 

6 r 1+ 4e2 + el + E 

k4ek 
< 

2880 

= k5 . ek 

2880 e -1 
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However, in general for r(t) we do know a set of nodes and their corres- 

ponding functional values whilst sales (in units) of the interval CT,T +1) 

are also known. Hence, if a numerical method is to be of practical 

significance, it must be capable of providing estimates of C [T,T +l] and 

its error using only this information set. 

In this section we shall consider two such methods. The first of 

these was stated by Edwards and Bell but only proved under a redundant 

set of assumptions.27 Further, its properties were not fully invest- 

igated by its authors. The second method is original and, so far as we 

are aware, has not been advanced in the form in which it is presented. 

5.3.1 The Edwards and Bell Method 

To derive the Edwards and Bell method, suppose disposals to occur 

at the points t1, t2, , tm in [T,T +l] and impose the following 

assumption 

There is a constant ratio of acquisitions to 

disposals at each "disposal point" in `T,T +l) . 

Using this assumption we now prove the following result 

The replacement cost of disposals during 

[T,T +l] is the weighted average acquisition 

cost during [T,T +1] multiplied by unit 

disposals during CT,T +1] 

27. The method was proved under the following redundant assumptions 

(i) Acquisitions are described by the function 

B(t) = kert 

where k is the constant ratio of purchases to sales, and 

Acquisition cost (per unit) is described by the function 

R(t) = ePt 

On this point, see 

Edwards and Bell, op.cit., pp.144 -145. 



19 

To prove this result, suppose r(tj) to be the replacement cost (per 

unit) of resource at time tj and s(tj) to be disposals (in units) also at 

time t.. It follows that the replacement cost of disposals at time tj is 

given by 

c(tj). = r(tj).s(tj) (21a) 

whilst the replacement cost of disposals during [T,T +1, amount to 

c (T,T +1) = c (tj) 

j =1 

c [T,T +l] = r (tj).s(t.) 
j =1 

To prove the proposition we must show that the method defined in the 

conclusion yields the above result. We thus define the weighted average 

purchase price during the interval (T,T +1) in the following terms 

w [T,T +1, _ E r (tj).a(tj) 
j =1 

13 a(t.) 

j =1 

(22a) 

where a(t.) is acquisitions (in units) at time t.. By hypothesis we have 

a(t.) =.L' s(tj) (22b) 

where Lis the (constant) ratio of acquisitions to disposals at time t.. 

This assumption implies 

w [TITA = 1] r(tj)e6(tj) 
j=1 

i ts(tj) 

j=1 

w CT,T+1, = L: r(tj).s(tj) 
j=1 

E s ( t . ) 

j=1 J 

(22c) 

(22d) 



Using equation (21c) the above expression may be restated as 

c [T, T +1) = w CT, T +1 E s (t .) 
j =1 

(22e) 

thus proving the result. In Appendix 58 to this chapter we compute the 

realizable cost savings implied by this result.28 

Table 5.4 applies the above result to the data of the Best Company 

using the assumption that the ratio of acquisitions to disposals in the 

year ending December 31, 1909 is 0.8. The corresponding realizable cost 

savings are computed in Appendix 58. 

When the assumptions employed in deriving the above result are not 

satisfied, it can still be applied as a means of estimating the 

replacement cost of disposals, although we are then confronted with 

the problem of ascertaining the magnitude of the error involved. To 

obtain an expression for the error of this estimating procedure, 

expand r as a Taylor series about the point t =w in which case we have29 

r(tj) = r(w) + (t. - w)rl()!j) (23) 

where w is a point in the interval [T,T +1] 
30 

such that r(w) = w [T,T +l] 

28. The results proved in Appendix 5B were initially proved by Edwards 
and Bell using the redundant set of assumptions specified in 
footnote 27. 
Edwards and Bell, op cit., pp.146 -148. 

29. In exp9n ing r(t) as a Taylor series we impose the assumption 
that r\ -)(t) is defined on the interval (T,T +11 

Giles, J.R. Real Analysis. Sydney: John Wiley and Sons, Australia 

Pty. Ltd., p.86. 

30. Imposing the condition that r(t) is a monotone increasing mapping 

guarantees this result. See 
Ibid., pp.62 -63. 



TABLE 5.4 

STOCK EXAMPLE 

(a) Acquisitions and Disposals 

The Best Company Limited accounts for stock by the perpetual 

FIFO method. The following data relate to the year ending 

December 31, 1909. 

1909 
Jan 1 Stock on hand 1,000 units with an historic cost of £10 

(per unit). 

Replacement cost is £11 (per unit). 
Sold 500 units. 
Purchased 400 units at £11 (per unit). 

Mar 1 Sold 800 units. Replacement cost is £12 (per unit). 
Purchased 640 units at £12 (per unit). 

May 1 Sold 600 units. Replacement cost is £13 (per unit). 
Purchased 480 units at £13 (per unit). 

July 1 Sold 200 units. Replacement cost is £14 (per unit). 
Purchased 160 units at £14 (per unit). 

Sept 1 Sold 300 units. Replacement cost is £15 (per unit). 
Purchased 240 units at £15 (per unit). 

Nov 1 Sold 500 units. Replacement cost is £16 (per unit). 

Purchased 400 units at £16 (per unit). 

Dec 31 Replacement cost is £20 (per unit). 

(b) Direct Calculation of Replacement Cost of Disposals 

('6 

c [0, T] = Ltlr(t)S(t) 

= (500 x 11) +(B00 x 12) +(600 x 13) +(200 x 14) 

+(300 x 15) +(500 x 16) 

0, 1 = 38,200 
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(c) Theorem Calculation of Replacement Cost of Disposals 

6 

Er(t.)a(t ) 

j =1 J 

[o, 1 _ 
6 

E a(t.) 
j=1 

(400x11) +( 640x12) +(480x13) +(160x14) +(240x15) +(400x16) 
(400 + 640 + 480 + 160 + 240 + 400) 

= 30,560 
2,320 

W [0 Tl = 13.1724 
6 

c [ 01 T) = W[02 T,. E S(tj) 
j=1 

= 13.1724 x 2900 

c [02 T, = 382200 



and,. is an unknown number bounded in the interval [T,T +l] . 

Substituting equation (23) into equation (21c) allows the expression for 

the replacement cost of disposals to be restated as 

c [T,T+11 = E[r(w) + (t. -w)rl(a )] s(t.) (24a) 
j=1 J J 

m m 

= r(w) 2: s(t.) + 2: (t. - w)r1(; )s(t.) (24b) 
j=1 j=1 J ] J 

c [T,T+1] = w [T,T+1] s(t.) + E (24c) 

j=1 

It follows that the error associated with this estimation technique 

may be expressed as 
m 

E = 1: (tj - w)rl(;J)s(tj) 
j=1 

(25a) 

Letting M1 = max Ir1(t) I on the interval,[T,T +l] and given that 

It - wk l 31 it then follows that a bound for E is given by the follow- 

ing expression 

m 

1E14. Ml E s(t.) 
j=1 

Empirical research has shown this formulation to yield poor 

(25b) 

approximations under a wide class of circumstances.32 The accuracy of the 

method may be increased, however, by partitioning the interval [T,T 
+11 

into 

several subintervals and then applying the method to each. To illustrate, 

suppose the interval [T,T +l]to be subdivided into n < m subintervals 

[t t 
] 

k = 1, 2, 
> 

n where t. = t = T and t. = t = 
J(k-1), J(k) J(o) o j(n) m 

(T +1). The contribution of the interval [t.(j tj(k)] to the replace- 

j60 
ment cost of disposals c [T,T +l] is r(wk) E s(ti) + Ek where wk is a 

J=J(k-1) +1 
point in the interval 

[ J 
t. 

(k -1), j(k) 
t 

] 
such that r(w 

k 
) = w [t. 

(k -1), 
t 
J(k) 

], 

31. This result follows from the assumption that r is monotone increasing. 

32. See any of the following 
Dickerson, P.J. Business Income - A Critical Analysis. Berkley, 
California: University of California Press, 1965, p.9. 
Chambers, R.J. "Edwards and Bell on Business Income," The Accounting 
Review, XL, 4 (October 1965), pp.737 -738. 
Benjamin, J. "The Accuracy of the Period -End Method for Computing the 
Current Cost of Materials Used," Abacus, 9, 1 (June 1973), pp.73 -80. 
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k j 

s(t) is accumulated disposals over the interval 
[tj(k- 1),tj(k)) and 

j= j(k -1ì 
+1 

Ek is the error from applying the technique to the interval 
Ctj(k -1), 

It thus follows that the replacement cost of disposals during tj(k)] 

[T,T +1] amounts to 

n j(k) 

c[T,T +1] = E [r(wk) s(tj),+ Ek 

k =1 j= j(k -1) +1 

n j(k) n 

c[T,T +1] = E E r(wk)s(t.) + 
L: E 

k =1 j= j(k -1) +1 k =1 
k 

where E = F, Ek is the error from applying the method to the interval 
k =1 

[T,T +11 . To bound this error, note that 
j(k) 

Ek = E (t - wk)rl(,j)s(tj) 
j=j(k -1J +1 

(26a) 

(26b) 

(27a) 

is the error associated with applying the technique to the interval 

[tj(k- 1), 
tj(k), . If we suppose the intervals to be of equal length, it 

follows that 
It. 

- wkly - 33 in which case we have 
j(k) 

IEkI 4 1 r s(t.) (27b) 

j=j(k-i.) +1 

where it will be recalled tit = max Irl(t)I on the interval [T,T +1] . By 

virtue of this result and the triangle inequality we have34 
n 

IEI 1IEkI (27c) 

33. See footnotes 30 and 31 above. 

34. Noting that 
E = 1: 

Ek 
k=1 

it follows from the triangle inequality that 

n 

I E Ek I I Ek I 

or that n 

I.E I E IEk 
k =1 

Giles, op.cit., p.8 



n j(k) 
E M1 E s( t.) 

k=1 n j=j(k-1)+1 

( E I Ml s(t.) 

n 
j=1 

(27d) 

(27e) 

This result implies that the absolute error can be reduced to any 

desired level by merely increasing the number of intervals utilized. To 

illustrate, suppose E* is set as an "acceptable absolute error. In 

words, we must have 

I E I E* (28a) 

which is achieved when 
m 

E* > Ml E s(t.) (28b) 
n j=1 

m 

n M1 E s(t.) (28c) 
E* j=1 

where n is the number of "quadrature points" necessary to guarantee an 

absolute error of E* or less. Although M1 will seldom be known, note that 

a sufficient condition for convergence is that the function rlbe bounded 

on the interval [T,T +l] . In practical terms, this means that as n 

increases, the method converges to the actual replacement cost of disposals 

during [T,T +1] if the rate of increase in price has an upper bound on the 

interval [T,T +1] . 

We now focus on a second method which we have chosen to call the 

modified midpoint rule. The reason for this is that estimates of the 

replacement cost of disposals are obtained by evaluating r(t) at the mid- 

point of each interval analyzed. 

5.3.2. A Modified Midpoint Rule 

The Edwards and Bell technique for estimating the replacement cost of 

disposals during the interval [T,T +l] is suggestive of a simpler procedure 

which has been alluded to by a variety of authors.35 It may be broadly 

35. Exposure Draft 18, loc.cit. 
Inflation Accounting Committee, loc.cit. 
Edwards and Bell, op.cit., p.192. 
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described as the "averaging technique" and is applied by costing 

disposals at the midyear replacement cost. In terms of the notation 

employed to date, it may be stated as follows 

c [T,T +1, = r(921) ) 12 s(t.) 

j =1 
(29) 

2T +1 
where r( 

2 
) is the replacement cost (per unit) at the midpoint of the 

interval [T,T +1] . To illustrate the mechanics of the method, consider 

the data of Table 5.4. The replacement cost (per unit) as of July 1, 

1909 is £14, where July 1 is the midpoint (in time) of the year ending 

December 31, 1909. Since disposals amount to 2,900 units, we estimate 

their replacement cost at (14 x 2,900) or £40,600. It will be recalled 

from Table 5.4(b) that the actual replacement cost of disposals amounts 

to £38,200 and it would seem, therefore, that the method offers a simple 

but reasonably accurate means of estimating the replacement cost of 

disposals. We proceed, therefore, to investigate its properties in 

further detail. 

To obtain an expression for the error of this estimating procedure, 

expand r as a Taylor series about the point t - 
22 

+1 
in which case we 

have 

= 
r(22 +1) 

- 
2T +1)rl( 

where 
j 

is an unknown real constant bounded in the interval [T,T +1] . 

Substituting (30) into 21(c) allows the expression for the replacement cost 

of disposals to be restated as 

c [T,T+1] = 

c [T, T+1] = 

V. 

Lr(22+1) 
- 
22+1)rl(j) 

is(tj 

/ 

) (31a) 

(31b) 

r(22+1) -m+ 22+1)rl(j)s(tj) 
jL=.,1 jL=1 

m 2T+1 
r( 

2 
) E s(tj) + E (31c) 
j=1 

36. See footnote 29. 
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It follows that the error associated with this estimation technique 

may be expressed as 

E = L (tj - 

j=1 

2T 

2 
+1)r1(,.)s(t.) (32a) 

Recalling that f11 = max1r1(t)I on the interval [T,T +1] and noting 

2T +1 
that Itj - , z implies that the error is bounded as 

follows 

IEI 
m1 E s(tj) 
2 j=1 

(32b) 

Like the Edwards and Bell technique, the accuracy of this 

method can be increased by partitioning the interval [T,T +1) into 

several subintervals and then applying the method to each sub- 

interval. Thus, suppose the interval [T,T +i] to be subdivided 

into n m subintervals 
[tj(k- 

1),tj(k)] k = 1, 2, , n where 

tj( 
0 

= to = T and tj(n) = tm = T + 1. The contribution of the 

interval jtj(k- 1),tj(k)] to the replacement cost of disposals 

c [T,T+1] is r(tJ(k-1 
+ tj(k)) 

j( 5) 
ik 

s(tj) + Ek where 

j=jlk-1)+1 

/ 

t. 
1(k-1) 

+ 
t)(,f< ) 

) is the midpoint of the interval [tj(k- 
1),tj(k)] , 

(t 

j(k) 

Es(t.) is accumulated disposals over the interval 
J= j(k -1) +1 

j(k- 1),tj(k).] 
and Ek is the error from applying the technique 

to the interval [tj(k- 1),tj(k)] . It thus follows that the 



replacement cost of disposals during [TAT +1] amounts to 

(TT+1] = r 
[r( 

.1(k-12 
+ 

ti(k) j(k) 
) s(t.) + Ek,(33a) 

LL 
k+lL 

j=j(k-1)+1 

[T,T+1_ 
_ 

n -J(k) 
r(tj(k-12 

+ 
t.i(k))s(tj) (33b) 

k-1 j-jk-1)+1 
n 

+ Ek 
k=1 

where E = Ek is the error from applying the method to the 

k =1 

interval [T,T +1 ] . To bound this error'note that 

Ek 

j(k) 
tj(k -1)2+ tj(k))r1 

(34a) 

j= j(k -1) +1 

( O.)s(tj) 

is the error associated with applying the technique to the interval 

[tj(k_1)'tj(k)) . If we suppose the intervals to be of equal 

length, it follows that 
It. 

- 
t](k -12 tj(k) - 

Its - (T + 22nD ) 

1 in which case we have 
2n 

l Ek _I 

M 1 J(k) 
E 

2n 
s(ti) 

j=j(k-1)+1 

(34b) 
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By virtue of this result and the triangle inequality we have 

lEI E lEkl 
k =1 

n il j(k) 

L 2n E s(ti) 
k =1 j= j(k -1) +1 
M1 m 

< i! 2n s(t.) 
j =1 

37 

(34c) 

(34d) 

(34e) 

This result implies that the absolute error can be reduced to any 

desired level by merely increasing the number of intervals utilized. 

Thus, supposing E* is set as an "acceptable" absolute error, we have 
Il m 

E , 2n E s(t.J ) 
j 

n 7 2 
1 E s(t.) (35b) 
E* j =l 

(35a) 

where n is the number of "quadrature points" necessary to guarantee an 

absolute error of E* or less. As in the case of the Edwards and Bell 

technique, a sufficient condition for convergence is that 1?-be bounded 

on the interval [T,T +l] . Unlike the Edwards and Bell technique, 

however, this method has not been subjected to empirical testing. In 

the next section we undertake to rectify this situation. 

5.3.3. A Simulated Test 

The analysis of the previous section indicates that the modified 

midpoint rule is likely to be accurate under a fairly wide class of 

circumstances. Specifically, if the rate of change in inventory price 

is bounded, then the error associated with the method is bounded and, 

indeed, can be reduced to any "acceptable" level by merely increasing 

the number of quadrature points. Since, however, r1(t) can only be 

estimated,38 we are only enabled to "approximate" an upper bound 

37. See footnote 34. 

38. To operationalize the error bound implied by (25b), (27e), (32b) 

and (34e) requires a complete specification of the function rl(t) 

on the interval [T,T +i] . Since, in general, rl(t) is unknown 

on this interval, it is not possible to obtain such a bounding. 
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for the error, and there is no guarantee that the approximation will 

be accurate. Thus, in this section we undertake to test more rigor- 

ously the accuracy of the proposed method. 

The method of testing was to simulate a daily inventory price 

and quantity series, assuming a 256 day year.39 The daily price 

series was generated by the following process 

r(t) = a + bt + e(t) (36) 

where t is time and is bounded in the interval [0, 1,40 r(t) is 

price at time t (the daily price) and a and b are parameters denoting 

respectively inventory price at t = 0 and the rate of change in 

inventory price; that is, r1(t) = b for all t in [0, l],e(t) is a 

random variable having a normal frequency function with mean /Wand 

variance ir 2. For testing purposes it was assumed a = 10 whilst b 

was allowed to vary in increments of 0.5 over the interval [0, 10) . 

The values attributed to b imply an inflation rate 

38. Continued 
However, by estimating r1(t) at the nodes of the interval by some 
numerical technique we can obtain an "idea" of the error involved. 

One such numerical method is the centred difference approximation 
of the first derivative 

rl(t) r(t + h) - r(t - h) + E 
2h 

where the error is computed from the equation 

E = - L h2r(3) [z(t)] 

for some unknown z(t) in the interval [t - h, t +h ]. If we 

ignore this error term and approximate I1 by the maximum of r1(t) 
on the set of nodes, it is possible to obtain a "crude" approxi- 

mation of the maximum absolute error on the interval [T,T +1] . 

See Isaacson and Keller, op cit., p.293 

39. A 256 day year was chosen because it facilitated the programming 

without, at the same time, abstracting from the generality of 

the results obtained. 

40. Thus at day t in the year, a fraction 
256 

of the year has elapsed. 
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which varies in multiples of 5 %, from 5% to 100;4 per annum. Finally, 

it was assumed thatAi = 0 and r-= 2. 

Daily unit sales were generated by assuming the existence of a 

linear trend with a sinusoidal seasonal term. Specifically, unit sales 

were generated by each of the following processes 

s(t) = 'C + /St + el(t) (37a) 

s(t) = a( + /St + )(sin (27Gt) + el(t) (37b) 

s(t) = al + /St + Ysin (7Gt) + el(t) (37c) 

s(t) = ^( + /6 t - Y sin (Tt) + e1(t) (37d) 

The parameters 0( and /d denote respectively unit sales at t = 0 and 

the rate of change in unit sales in the absence of seasonal elements; 

that is, s1(t) = /Ó if y = O. The parameter Y is the maximum 

absolute value of the seasonal factors.41 Finally, e1(t) is a random 

41. The trend of a time series is usually estimated by the method of 

"least squares ". In our case, this can be achieved in either of 

two ways. One method is to define the function 

1 

L(a, b) = f [a + bt - s(t)) 2 dt 

o 

where s(t) is the sales generating function, and minimize L with 

respect to the parameters a and b. A more convenient method, 

however, is to define the positive definite inner product space 

1 

f(t); g(t)' = J f(t),g(t) dt 

o 

and note that B = 1, 12(t - 2)} forms an orthonormal basis 

for the space of linear functions on the interval [0, 1]. The 

'blosest" linear function to s(t) (in the "least squares" sense) 

is given by-2. 1.J B.J where the 1. are the "fourier co- efficients " 

j=1 
with respect to B. As an example, let 

s(t) = °i( + r t + )'sin (27Gt) 

11 = < 1; QC+ /St + Ysin (27Vt) 

f9(+ /dt + )(sin (27Ct) dt 

11 
0 

1 
= 

°( + 
2 p 

12 = < 72(t - z); v + 'Ft + )(sin (27Gt)> 
= 12, (t - 2)(°C+ ,6t + )'sin (271D0 )dt 

12 = 12(°)4- - 
2 

) 

We then compute the "least squares" estimate h(t) as follows 

we then have 



variable having a normal frequency function with mean and variance 
lo 

For testing purposes it was assumed °C = 100, r = 2.5, )(= 25, 

1 = 0 and 
1 

5. 

The random variables e(t) and e1(t) were generated as follows. 

Suppose r1 and r2 to be two uniformly distributed and independent 

random variables defined on the interval IO, 1] . Then, the random 

variable42 

x = ( -2 loge r1) cos(27Cr2) (38) 

has a normal frequency function with zero mean and unit variance. 

It follows that the random variable z = xQ- has zero mean and variance 

0-2. Values for r1 and r2 were generated by calling the function 

GO5AA(Y) from the Edinburgh Regional Computing Centre FORTRAN Compiler. 

This function generates a sequence of pseudo random numbers from the 

uniform frequency function defined on the interval [0, 1) . 

The results of each simulation are contained in Tables 5.5 

through 5.8. Each table contains the actual replacement cost of goods 

41. Continued 
2 

h(t) _ E 1 .B . 

J=1 
J J 

( o(+ 2 /4S) + 12 - 
27C 

)(t - 2) 

h(t) _ (°K + ) + (p - ) t 
MG 

This estimate provides a negative trend when/l< Since, in 

our example, /I= 2.5 and Y = 25, the "least squares" trend is 
negative for every simulation, whereas, of course, the actual 
trend is positive. For each of the other sales generating 
functions, positive "least squares" trends are obtained. For 
the function s(t) = ^C +,e t +Ysin (7 t) the "least squares" trend 

is (°i( + 2Y) + 14t whilst for the function s(t) 
2 
yQc + At - 

i sin ( m t) the "least squares" trend is ( o( - ) + t. 

On this topic generally see Yamane, T. Statistics., New York 
Harper & Row, Publishers, Inc., 1973, Chapter 13. 

42. Box, G.E.P. and M.E. Muller. "A Note on the Generation of Normal 

Deviates," Annals of Mathematical Statistics, XXIX (1958), 

pp.610 -611. 



sold corresponding to one of the sales generating functions and several 

estimates thereof to varying degrees of accuracy. The estimates were 

obtained by applying the following form of equation (33b) to the 

simulated data 

k2(9 
-i) 

c [0, 
1] = L (9 -i) r 

[2k_li 
21 S 256 

(39) 

k =1 j= 1 +(k -1)2 

The summation limit n = 2(1 
-1) 

was initially set to unity by 

letting i = 1 and then doubled by increasing i in unit increments until 

the following relative error condition was satisfied 

I (E - A) 14 d (40) 
A 

where E is the estimate obtained from equation (39), A is the actual 

replacement cost of goods sold and d, the relative error, succesively 

assumes the values 0.10, 0.05, 0.025 and 0.01. The "days" column appear- 

ing to the right of each estimate represents the size of the n intervals 

(in days) over which equation (39) was applied. Thus, for example, if 

n = 8, the method was applied eight times during the year or equivalently, 

every 286 = 32nd working day. 

A brief inspection of Tables 5.5 through 5.8 should lead the reader 

to the conclusion that convergence to within 22% of the actual replace- 

ment cost of disposals is virtually guaranteed if the modified midpoint 

ß+3(a) 
rule is applied at the end of every thirty second working day. Further, 

in 75% of the cases, this same thirty two day "quadature period" results 

in the estimate of the replacement cost of disposals converging to 

within 1% of the actual figure. Since a thirty two day "quadrature 

period" means the method is applied eight times (236 = 8) in a full 

year, or less than once a month,the method seems to guarantee a high 

degree of accuracy at the cost of very little time and effort.44 This 

43. This equation is obtained by setting T = 0 in equation (33b). 

44. In the case of stock compensating effects in the errors will, in 

all likelihood, increase the method's accuracy. 

43(a) If the difference between the actual replacement cost and the 
estimate thereof is expressed as a fraction of the firm's net 
profit, the above results may not be as impressive. 
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conclusion,of course, is very much influenced by the assumptions 

underlying the simulation, but we see no reason to doubt the 

conclusion's generality, even when alternative assumptions are specified. 

The FORTRAN programs from which the figures in Tables 5.5 through 5.8 

were generated are contained in Appendix 5C. 

Having provided two methods for estimating the replaoment cost of 

disposals over the interval [T,T 
+1) , we now focus our attention on the 

relative merits of each. 

5.3.4 A Comparison of Methods 

The choice of whether to utilize the Edwards and Bell technique 

or the modified midpoint rule depends to a certain extent on personal 

preference. Each has the desirable characteristic of converging to the 

actual replacement cost of disposals as the number of intervals over 

which the method is applied is increased. Several points, however, 

require noting. 

In implementing the Edwards and Bell method, we assume that the 

weighted average acquisition cost is defined for each interval to which 

the method is applied. If, for example, there are no acquisitions in 

some interval, the Edwards and Bell technique cannot be applied to the 

interval. Thus, the method is of no significance to the problem of 

estimating the replacement cost depreciation accruing on a fixed asset. 

Note, however, that the replacement cost (per unit) at the midpoint of 

each interval will almost certainly be defined. Indeed, the modified 

midpoint rule is, in fact, employed by Edwards and Bell to estimate 

replacement cost depreciation.45 

Secondly, the modified midpoint rule has certain computational 

advantages over the Edwards and Bell technique. Specifically, in 

45. Edwards and Bell, loc.cit. 
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applying the modified midpoint rule to some interval al [tkltk J we 
t 

merely require the replacement cost (per unit), i( k), at the 

interval's midpoint. The Edwards and Bell technique, however, demands 

the more lengthy procedure of computing the weighted average acquisition 

cost of the interval 
itk -1,tk j 

Because of this, the Edwards and Bell 

technique is likely to require much more data and computing than the 

modified midpoint rule. 

Finally, the modified midpoint rule seems to provide a high degree 

of accuracy when applied to disposals on a monthly basis.46 We did 

not perform an analogous series of tests on the Edwards and Bell 

technique because, given any disposal pattern, the firm's acquisition 

policy is likely to be affected by a variety of factors such as the 

cost of capital, current investment levels, ordering costs etc.47 In 

some "pilot simulations" designed to test the accuracy of the Edwards 

and Bell technique and for which these parameters were assumed to be 

exogenously determined, we were also confronted with the problem that 

some time intervals involved no acquisitions and thus the weighted 

average acquisition cost was not defined for the interval. This meant, 

of course, that any attempt at testing the Edwards and Bell technique 

which included such intervals were, of necessity, abandoned. Therefore, 

given the superficial nature of the assumptions which, of necessity, 

are imposed in testing the Edwards and Bell technique, plus the fact that 

the weighted average acquisition cost is not always defined, resulted in 

our abandoning any attempt at duplicating the simulation tests on the 

Edwards and Bell technique. 

46. See previous section. 

47. Weston, J.F. and E.F. Brigham. Managerial Finance. New York : Dryden 

Press, 1975. See especially the sections on inventory management. 
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This completes our analysis of the numerical methods which may be 

applied to the problem of estimating the replacement cost of disposals 

during some interval of time. We now summarize the contents of the 

present chapter. 

5.4 Summary 

In the previous chapter we proposed a general model of accounting 

measurement. One vexing problem restricting the model's practicability 

concerns the computation of the accumulated "value" of disposals during 

the period covered by the financial statements where,it will be recalled, 

the term "value" is to be interpreted in the context of the measure- 

ment system being utilized. Although this problem is applicable to all 

the measurement systems, it seems to have caused most consternation to the 

advocates of the replacement cost measurement system. In the present 

chapter, therefore, we analyzed several methods for estimating the 

replacement cost the interval [T,T +1] . 

In introducing these methods we defined two functions, the first 

of which was denoted by r(t) and represented the replacement cost 

(per unit) of a resource at time t. The second function, denoted by 

s(t), represented the rate of change in accumulated disposals at time 

t. When the composite function u(t) = r(t).s(t) is integrable, then 

our problem is to estimate the quantity 
T +1 

c [ T,T +1] = f r(t).s(t)dt (5) 

T 

When, however, the integral cannot be evaluated analytically, there 

exist an assortment of numerical approximating techniques of varying 

accuracy and computational ease. Three of the better known numerical 

integration techniques were examined, but their relevance was questioned 

due to the fact that s(t) is likely to be unknown and thus the 



integrability of the composite function cannot be guaranteed. 

For this reason, we analyzed two numerical methods which have 

been hinted at by accountants, but whose properties have not been 

fully investigated. Thé first of these methods, which utilizes the 

weighted average cost of acquisitions, was introduced by Edwards 

and Bell. In this respect, we proved that the method converges to 

the actual replacement cost of disposals as the number of intervals 

to which it is applied is increased. Computationally, however, the 

method is very cumbersome and has the disadvantage that the weighted 

average acquisition cost may not be defined for the interval to which 

it is applied. To overcome these problems, we defined a modified 

midpoint rule and investigated its properties. Like the Edwards and 

Bell technique, it has the property of converging to the actual 

replacement cost of disposals as the number of intervals to which it 

is applied is increased, but it is with the lengthy 

computational procedures of the Edwards and Bell method. Further the 

method seems to afford a high degree of accuracy when applied on a 

monthly basis. 



FORTRAN IV G LEVEL 21 MAIN DATE = 78202 

C APPENDIX 5A 

C 

C 

C 

C 

C 
C *******414************************** ** ** 

C THIS PROGRAM COMPUTES THE REPLACEMENT 
C COST OF ASSET DISPOSALS DURING THE 
G INTERVAL (T,T +1) USING EACH OF THE 
C i FOLLOWING QUADRATURE TECHNIQUES 
C s * * * * * ** 2* * **** tc* * ** * * *** **ßká;* ** * % *** * *** 

C001 DIMENSION R(12) 

C002 CO 3C0 I =1450 

C003 FI =I 

0004 FI= FI *O.C1 

C005 E1= EXP(FI) 
C006 F2= EXP(FI /2.) 
0007 4= 1. /FI.(E1 -1.) 

C * * * * * **A * ***** *s* * ** 

C MIDPOINT RULE { 

C * * * * * * ** * * * * * *a * * ** 

C008 P(1) =E2 

C009 R(2)= ABS(A -R(1)) 
C010 R(3) =FI *ä2E1/24. 
C011 R(4)= R(3) /A 

C = **ita****** k******** 
C TRAPEZOIDAL RULE e, 

C -************,r****** 
0012 R(5)=0.5(1.+F1) 
C013 R(6)=AbS(A-R(5)) 
C014 R(7)=2.*R(3) 
C015 P(8)=2.*R(4) 

C **2+*s*,r***********së 

C SIMPSONS RULE * 

C ***t*.****,r**e?,*** 
C016 R(9)=0.16667+(1.+4.*E2+E1) 
C017 P(10)=AßS(ArR(9)) 
C018 R(11)=R(7)*FI+2/240. 
C019 R(12)=R(11)/A 
CO20 WRITE(64200)FI4A4(R(J)4J=1412) 
CO21 200 FORM4T(1X4F6.242X4F6.4412(2X4F6.4)) 
CC22 300 CONTINUE 
CO?3 STOP 
CO24 END 

17/34/02 PbE 0001 
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APPENDIX 5B 

REALIZABLE COST SAVINGS 

Theorem 

If there is a constant ratio of acquisitions to disposals at each 

"disposal point" t. in [T,T +l] , then the realizable cost savings of 

the interval [T,T +l, may be computed in either of the following ways 

(a) Assume the beginning quantity is held over the interval 
CT,T +1) whilst the replacement cost changes from that 

prevailing at time T to that prevailing at time (T +l). 

The excess (or deficiency)of the ending quantity over 

the beginning quantity is assumed to be held whilst its 

replacement cost varies from the weighted average acquisition 

price to that prevailing at the time (T +l). 

(b) Assume that the beginning quantity is held while its 

replacement cost changes from that at time T to the weighted 
average acquisition cost of the interval [T,T +1] . The 

ending quantity is assumed acquired at the weighted average 

acquisition price and held while its replacement cost rises to 

that prevailing at time (T +1). 

Proof 

We prove each of these results in turn 

(a) The quantity held at time (T +1) is Ie where 

Ie = Ib + A - S 

n n 

and A = 1la(t 
k 

) is acquisitions during [T,T 
+lJ 

S = E S(tk) is disposals 

k =1 

during CT,T +11 and Ib is quantity held at time T. We can thus restate 

le in the following terms 

en 
le = Ib + L a(tk) - L¡ S(tk) 

k =1 k =1 

The replacement cost of I 
e 

at time (T +1) is thus 

= r(T +1) 
le 

= r(T+1) Ib + r(T+l) 1: a(tk) - r(T+l) 1: S(tk) 
k=1 k=1 

By hypothesis we have 

a(tk) _ 1/S(tk) 

thus implying 

= r(T +1) Ib + ( 

p 
-1)r(T +l) S(tk) 

k =1 

The replacement cost of I 
b 

at time T is r(t) Ib. Acquisitions (at cost) 



n 

during [T,T +l]amount to E r(tk)a(tk) whilst the replacement cost of 
k =1 n 

disposals during [T,T +1J amounts to E r(tk)S(tk). Hence, from the 
k =1 

first fundamental theorem, (Appendix 4A of Chapter 4) we have 
n n 

T = r(T) Ib + E r(tk)a(tk) - r(tk)S(tk) 
k =1 k =1 

which by virtue of the fact a(tk) = L S(tk) may be restated as 
n 

T = r(T) Ib + (.,ii- 1) r(tk)S(tk) 
k =1 

Applying the first fundamental theorem of Chapter 4 

[r(T +l) - r(T)jIb + n n 

4-1) [r(T+1) 1: S(tk) - 2: r(tk)S(tk)] 
k=1 k=1 

The first term of this expression is the beginning quantity multiplied 

by the difference between the replacement cost at time T +1 and the 

replacement price at time T. The second term can be reexpressed in 

the following form 

e 
n n 

(e -l) [r(T +1) E s(tk) - E r(tk)s(tk) 
k =1 k =1 

n n n 

= (17/ -1) [r(T+1) S(tk) - 2: r(tk)S(tk) S(tk), 
k=1 k=1 k=1 

Li S(tk) 
k=1 

= (.G-1) E S(tk) rr(T+l) - W(T,T+l)) 
k=1 ` 

On the r.h.s. of this expression, the quantity (1:-1) 1: S(tk) is the 

k =1 

excess (or deficiency) of acquisitions over disposals whilst [r(T +l) - 

W(T,T +1)J measures the increase in replacement cost at time (T +l) over 

the weighted average acquisition cost of the interval [T,T +l] . This 

proves the result. 

(b) Before proving the second result, we compute the following 

quantity 



 - 

//J, /[ W 

W [T,T+1] (Ib - Ie) = -W [T,T+l, (.L-1)17, S(tk) 

k=1 
n n 

E, r(tk)S(tk) E S(tk) 
= k=1 . k=1 

E S(tk) 
k=1 

n 

W [T,T+1] (Ib - Ie) = -(.L-1) r(tk)S(tk) 
k=1 

Applying the first fundamental theorem of Chapter 4 

)7, - )1) = r(T+l) Ie - [r(T)Ib + 11r(tk)a(tk) - 
n k=1 

E r(tk)S(tk)] 
k=1 

n 

= r(T+l) Ie - [r(T)Ib + (4!-1) Er(tk)S(tk,l 
k=1 

= r(T +l) le - [r(T)Ib - W(T +l)(Ib - Ie)] 

= [W(T,T +1) - r(T)] Ib + [r(T +l) - W(T,T +1)]Ie 

The first term in this expression is quantity at time T multiplied by the 

difference between the weighted average acquisition cost of the interval 

[T,T +1 ] and the replacement cost at time T. The second term is the 

quantity at time (T +1) multiplied by the difference between the replace- 

ment cost at time (T +1) and the weighted average acquisition cost of the 

interval [T,T +l] . This proves the result. 

In Table 5.9 we apply these results to the data of Table 5.4. 
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TABLE 5.9 

STOCK EXAMPLE 

(a) Direct Calculation of Realizable Cost Savings £ 

- 
Gain accruing on 500 units sold 

January 1. 500 x (11 -11) 

Gain accruing on 800 units sold 

March 1. 800 x (12 -11) 800 

Gain accruing on 600 units sold 
May 1. 100 x (13 -11) + 500(13 -12) 700 

Gain accruing on 200 units sold 

July 1. 140 x (14 -12) + 60(14 -13) 340 

Gain accruing on 300 units sold 

Sept. 1. 300 x (15 -13) 600 

Gain accruing on 500 units sold 

Nov. 1. 120 x (16 -13) + 160 x (16 -14) + 220(16 -15) 900 

Gain accruing on 420 units of ending 
stock. 20 x (20 -15) + 400 x (20 -16) 1,700 

£5,040 
111MIEMINII= 

(b) Theorem Calculation of Realizable Cost Savings 

Applying the first method 
6 

[r(T) - r(0) ] Ib + (1g- 1) E s(tk) [r(T) - W(O,T), 
J=1 

= (20 - 11) x 1000 - 5 x 2900 x (20 - 13.1724) 

= 9000 - 3960 
6 

[r(T) - r(0), Ib + (t- 1) E s(t 
j=1 

= 5040 

(T) W(O,T)] 

Applying the second method 

[W(00T) - r(0)] Ib + [ r(T) - W(00T)] Ie 

= (13.1724 - 11) x 1000 + (20 - 13.1724) x 420 

= 2172.41 + 2,867.59 

[WIT) - r(0), Ib + [ r(T) - W(0,T)) le 

= 5040. 
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Stock Record 

Quantity E 

Date Dr Cr Bal Dr Cr Bal 
1909 
Jan 1 1,000 - - 10,000 

31 500 500 - 5,000 5,000 
400 900 4,400 - 9,400 

Mar 1 - 500 400 - 5,000 4,400 
300 100 - 3,300 1,100 

31 640 740 7,680 8,780 

May l - 100 640 - 1,100 7,680 
500 140 - 6,000 1,680 

31 480 620 6,240 7,920 

July 1 - 140 480 - 1,680 6,240 
60 420 - 780 5,460 

31 160 580 2,240 - 7,700 

Sept 1 - 300 280 - 3,900 3,800 
30 240 520 3,600 7,400 

Nov 1 - 120 400 - 1,560 5,840 
160 240 - 2,240 3,600 
220 20 - 3,300 300 

30 400 420 6,400 - 6,700 
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C APPENDIX 5C 
s m. .....a. ma IdtW 

C 

C 

C THIS PROGRAM SIMULATES THE REPLACEMENT * 

C COST OF ASSET DISPOSALS AND ITS ERROR 
C FOP THE INTERVAL (T,T +1),ASSUMING THE 
C EXISTENCE OF A LINEAR TREND IN QUANTITIES 
C ` AND A NORMALLY DISTRIBUTED ERROR TERM 
C FOR BOTH QUANTITIES AND PRICE. 

C001 DIMENSION A(?56,3),R(1024) 

_x002 DATA P,P1,A1,A2,B1,S1,S2 /6. 28318 ,3.14159,100.,10.,2.5,5.,0.5 / 

C003 H2 =0. 

C004 WRITE(6,10) 

C005 10 FORMAT(44H1RATE ACTUAL ESTIMATED COMMENTS ) 

0006 no 1100 N =1,20 

C007 B2= B2 +0.5 
C ** -* ** * * ** `.* ** * *w* * * * * * * * * **** * ** *kieía * *t 
C GENERATION OF THE RANDOM NUMBERS 

**4:* ** ** *gr ***r ****kki:**i *** *** b*r *ù **á°h44* *# 

C008 DO 20 J= 1,1024 
0009 R(J)= GO5,AAF(Y) 
U010 20 CONTINUE_ 

C, * * *** k **** rat -4* *** *-tn :d** 1 *ïetei * if -*** t 1+ t* ** 

C GENER.4RTION OF THE PRICE QUANTITY SERIES 
C i** *.tk#.t** *hth *04.-R*it i*** *****4** *,,**t:W:x*ft. **** 

C011 DO 100 I=1,256 
C012 FI =I 

G013 T =F I /256 . 

C014 JJ= 4 *(I- -1) 
0015 J1 =JJ +1 
C016 J ? =JJ +2 
C017 J3 =JJ +3 
G018 J4 =JJ +4 
CC19 X1= SORT(- 2.3,ALCG(P(J1))) *COS(P *P(J2)) 

CC20 X2= SORT (- 2. *ALOG(R(J3))) *COS(P ?,R(J4)) 

0021 E1 =X1 A,S1 

CO22 = 2 =X2 ;S2 
CG23 CJ= A1+B11T +25.4SIN(P1 *T) +E1 
CO24 PJ= A2 +B2+T +E2 
CO25 CJ= PJ0QJ 
CO26 II =I =1 
C0 ?7 IF(II)40,40,60 
CO28 40 A(1,1) =PJ 
0029 A(1,2) =QJ 
C030 A(113) =CJ 
C031 GO TO 10G 
0032 60 A(191)=Pt; 
C033 A(I,2)= 0J +A(II,2) 
0034 A(I,3)= C +A(II,3) 
C035 100 CONTINUE 

C 

C 
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C 

C 

r, 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

MAIN DATE = 78207 16/38/33 PE 0002 

*t***veat,t**,tr.**tb*x*_K4**?Iét**kfi**.*fc**4r.F:7Uil*i;*it* 

NUMERICAL TECHNIQUE 
.#tx*ic*.1t4**ir*'kiCir*f!-ll*#irÁi+sC****ir*-:R9r*****`.*i`itie;+: 

C036 
C037 
0038 

DO 500 I=1,8 
J=2.*Y(I-1) 
K=128/J 

C039 ^!3=0 

C040 CO 400 M=1,J 

C041 P!1=N3 

C042 N2=N1+K 

C043 N3=N2+K 
CC44 IF(N1)200,200,300 
C045 200 t=S=A(.n!2,1 ) *A(r.:3,2) 

0046 GO TO 400 

C047 300 ES=E4+A(h2,1)(A(N3,2)-A(N1,2)) 
C04N 400 CONTINUE 
0049 TEST=ABS((A(256,3)-LS)/A(256,3)) 
0050 IF(TEST-C.025)700,700,500 

500 CONTINUE 
C052 kRITE(6,E00)B2,A(256,3),ES 
0053 600 FORMAT(F4.1,2X,2(F12.2,2X),15H NO CONVERGENCE) 

0054 GO TO 1100 

0055 700 wRITE(6,8GG)B2,A(256,3),ES,J 
0056 800 FORMAT(F5.1,2(F12.2,2X),19H CONVERGENCE AFTER ,I3,11H ITERATIONS) 

C057 1100 CONTINUE 
CG58 STOP 
C059 END 

*OPTIONS IN EFFECT* NOIR, EBCDIC, SOURCE,NOLIST,NOPECK,LOAD,NOMAP 

*CPTIONS IN EFFECT* NAME = MAIN , LINECNT = 58 

*STATISTICS* SOURCE STATEMENTS = 59/PROGRAM SIZE = 9050 

¡STATISTICS* NO DIAGNOSTICS GENERATED 
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CHAPTER SIX 

THE ECONOMIC FOUNDATIONS OF ACCOUNTING MEASUREMENT 
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6.0 Introduction 

Our exposition to date has been concerned with an abstract 

analysis of accounting measurement to the almost total neglect of 

the more pragmatic issues which plague contemporary accounting 

practice. In the present chapter we endeavour to remedy this 

position. We should note at the outset, however, that the phrase 

"pragmatic issues" conceals a host of unresolved problem areas, 

and given the confines of the present work it would be an achieve- 

ment indeed if we were to consider but a few of them. Many of 

accounting's problem areas, however, share a common origin in that 

they arise out of economic considerations, a point acknowledged by 

Chambers,1 Ijiri2 and Sterling3 amongst others. For this reason, the 

objective of the present chapter is to examine the economic 

foundations of the theory of accounting measurement. 

The logical framework of the present chapter follows the 

general equilibrium analysis of Irving Fisher4 in both spirit and 

form. Since Fisher's work is but one of several competing economic 

specifications, we must explain why this choice is not to be seen 

as arbitrary. This we proceed to do. 

1. Chambers, R.J. Accounting, Evaluation and Economic Behaviour, 
Englewood Cliffs, New Jersey: Prentice -Hall, Inc., 1966, 

pp. 349 -352. 

2. Ijiri, Y. The Foundations of Accounting Measurement. Englewood 
Cliffs, New Jersey: Prentice -Hall, Inc., 1967, p.69. 

3. Sterling, R.R. Theory of the Measurement of Enterprise Income. 
Lawrence, Kansas: The University of Kansas Press, 1970, pp. 193 -245. 

4. Fisher, Irving. The Theory of Interest. New York: The MacMillan 
Company, 1930. 
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Perhaps the most obvious reason is that the Sharpe- Lintner5 

asset pricing model which has had and continues to have such a 

profound influence on accounting theory, 
6 

g y, 
6 

is but a generalization 

of Fisher's theory of interest to a world of uncertainty.7 Unfor- 

tunately, the asset pricing model deals with one period consumption- 

investment decisions and is not easily generalized to several periods.8 

Since many accounting propositions are concerned with the predictive 

properties of accounting measurements, it is of some importance that 

our analysis anticipates more than a single consumptive- productive 

interval. By "regressing" to the pioneering work of Irving Fisher 

and thus imposing conditions of "perfect knowledge ",9 we retain 

many of the asset pricing model's featureswithout the restriction 

of a single productive -consumptive interval. 

A second reason, however, is that the Fisherine system is a 

convenient device through which to examine both a priori and empirical 

propositions concerning the firm. This may seem to be somewhat sur- 

prising, especially as Fisher eschewed an analysis of the product 

and factor markets underlying the "investment opportunity locus"" 
10 

5. Sharpe, William F. "Capital Asset Prices: A Theory of Market 
Equilibrium under conditions of Risk ", Journal of Finance, XIX 
(September 1964), pp. 425 -442. 
Lintner, John. "The Valuation of Risk Assets and the Selection of 
Risky Investments in Stock Portfolios and Capital Budgets ", Review of 
Economics and Statistics, XLVII (February 1965), pp. 13 -37. 

6. Gonedes, N.J. and Dopuch, N. "Capital Market Equilibrium, Information 
Production and Selecting Accounting Techniques: Theoretical Framework 

and Review of Empirical Work ", Supplement to Journal of Accounting 
Research (1974), pp. 48 -129. 

7. Jensen, Michael, C. "The Foundations and Current State of Capital Market 

Theory ", in Jensen, Michael C. (ed,) Studies in the Theory of Capital 

Markets. New York: Praeger Publishers, Inc., 1972, p.2. 

8. I p. 16 -17.. 

9. Fisher, op.cit., p. 99. 

10. Fisher, op.cit., pp. 143 -149. The "investment opportunity locus" is more 

commonly referred to nowadays as the "productive opportunity locus ". 

See Hirshleifer, J. Investment, Interest and Capital. Englewood Cliffs, 

New Jersey: Prentice -Hall, Inc., 1970. p.13. 
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For as Fisher himself observed 

"Walras and Pareto determine the rate of interest 
simultaneously with all other unknowns of the 
problem - the quantities of the commodities exchanged 
and the other services used in their production and 
the prices of the commodities and the services while 
I try .., at the outset to get these] interactions 
cancelled out, leaving only the income stream and 
(labour) sacrifice ".11 

If, however, we derive a firm's "investment opportunity locus" 

from first principles, it is a relatively simple matter to resurrect 

the theory of the firm implied by the Fisherine analysis. Indeed, 

this leads to a much clearer exposition of the theory of the firm 

than is usually encountered in price theory texts. Other reasons 

for analyzing the Fisherine system could be cited, but perhaps we have 

now established a prima facie case. 

Our analysis of the Fisherine system and its accounting implications 

is divisible into three sections. In the first section we shall 

summarize the mathematical form of Fisher's "second approximation "12 

to the theory of interest. The "second approximation" is relevant 

because it assumes that each agent's13 income stream may be modified 

by investments in productive facilities14 thus permitting the intro- 

duction of the firm as a device through which consumptive resources 

11. Fisher, op.cit., p.519. 

12. Ibid., pp. 302-315. 

13. ".., the analysis applies not only to individuals proper but also 
to groupings of individuals such as households ... The key assumption 
is that any such groupings can be treated as a unitary body making 
decisions analagous to those of a self interested individual ". 
Hirshleifer, op.cit., p.1. 

14. Fisher, op.cit., p,125. 
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as of one date are physically transformed into consumptive resources 

as of another date. This, of course, provides a base from which to 

examine the economic foundations of the accounting measurement systems 

introduced in Chapter 4. Having discussed and illustrated the mathe- 

matical foundations of Fisher's "second approximation" we then il- 

lustrate its implementation by means of a practical example. The 

example, in fact, is designed to serve a dual function. Its main 

task is to serve as a device through which to examine the economic 

foundations of the accounting measurement systems introduced in 

Chapter 4, but it is also designed to promote a better understanding 

of the purely mathematical analysis of the previous section. As a 

final exercise, we shall examine each of the accounting measure- 

ment systems introduced in Chapter 4 in the context of the Fisherine 

system. The emphasis is on replacement cost measurement if only 

because Fisher's work seems to bear most relevance to that measure- 

ment system, but the market value and C.P.P. systems are also 

examined. Needless to say, we shall find the Fisherine system an 

extremely valuable device through which to examine accounting 

propositions concerning the firm. 

We now focus on the first of these topics, namely an examination 

of the mathematical foundations of Fisher's "second approximation" 

to the theory of interest. 

6.1 Fisher's "Second Approximation" 

In this section we summarize Fisher's second approximation to the 

theory of interest; namely, the optimal allocation of consumption 

expenditures over time assuming "that all available income streams 

can be definitely foreseen ".15 More precisely, we impose the 

15, Ibid. 
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following assumptions 

1. The "economic agent" has a remaining life of (T -t) 
years, where t is the present and T is the date of 
"death ". The interval (t,T) is divisible into (T -t) 
subintervals (t, t +1) , (t +1, t +2 ), , 

with consumption occurring and income being received 
at the beginning of each interval. 

2. The economic agent acts as if16 it maximizes a utility 
function U(c°, ct +1, , CT) which relates "satisfaction" 
to the consumption series ct, et +1, cT. 

3. At the commencement of the interval [j,j +1] in Ct,T,; 
that is, at time j 

(a) the agent has an endowment of wealth Avi, which 
consists of loans made through the capital market. 
Loans are made, repaid and renewed at the beginning 
of each time interval. 

(b) the agent makes a net disinvestment of pi in 
productive facilities. The set of potential dis- 
investment patterns is described by the function 
K(Pt, Pt +1, , PT) = 0. 

4. The agent has equal and costless access to information 
about ruling security prices. Buyers, sellers and 
issu'rs of securities take the prices of securities as 
given and there are no brokerage fees, transfer taxes, 
or other "transactions" costs incurred when securities 
are sold.17 

5. The agent has an exogenously determined and known income 
stream of yt, yt +1, , yT. Further, the one period 
interest rates jrj +1 for each interval [j,j +1] in Ct,T) 
are also known. 

Using these assumptions the agent's life -time consumption 

profile may be stated in the following terms 

16. This phrase is quite significant from a methodological stance. 
See Friedman, M. "The Methodology of Positive Economics" in 
Friedman, M. (ed.) Essays in Positive Economics. Chicago: 
University of Chicago Press, 1953, pp. 3 -43. 

17. These are the usual assumptions of a perfect capital market. 
See Fama, E.F. and MOH. Miller. The Theory of Finance. 
Hindsdale, Illinois, Dryden Press, Inc., 1972, p.22. 
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ypt+1 = (Wt + yt + pt - ct)(1 + trt+1) 

Wt+2 - (Wt+1 +yt+1 + pt+1 - ct+1)(1+t+1rt+2) 

R 

1 

WT 
= 

(WT-1 + yT-1 + pT-1 - cT-1)(1+T-1rT) 

cT = WT + PT + YT 

since (yj +pj -cj) measures the excess (or deficiency) of "income" 

over consumption expenditures at time j and is the "endowment" 

carried forward from the interval ID-1,j1. Hence, (WJ .+y.+13.-c.) JJJ 
is "invested" in (or borrowed from) the capital market at time j 

and, with interest, yields ( . +y. +p. -c.)(1 r. ) at time (j +1), JJJJ 
Equation (T) imposes the condition that the agent leaves neither 

bequest nor debt at the time of death, Substituting (t) into (t +1) 

implies 

Wt+2 l(Wt+yt+pt-ct)(1+trt+1) + yt+1 + pt+1 
- et+1(1+t+1rt+2) (2) 

continuing this process and dividing the end product by 

T -1 

(1+. r. 1) implies 
j =t 

ct+1 ct+2 
ct 

+ (1+trt+1) + t+1 (1+.r. 
J 

) 

J +1 
j= 

cT 

T-1 
1-T(1 jrj+1) 
j=t 



yt+1 Yt+2 
W + Yt (1+trt+1) 

+ t+1 + 
1F111+jrj +1) 
j=t 

Pt+1 Pt+2 
+ Pt + (1+trt+1) 

+ t+1 + 

(1 J- 
jrj+1) 

YT 

+ T-1 
-r-p1 jrj+1) 
J=t 

+ T-1 
1+ r. 

j=t 
j J+1) 

PT 

(3) 

or, the present value of the consumption series ct, ct 
+1, ,cT 

is equivalent to the present value of the income series 

yv yt +1' , YT and the "investment series" Pt' pt +1 PTA 

Thus, the agent's "problem" may be stated as maximizing the 

satisfaction obtainable from the consumption series, subject to the 

following constraints 

1. The agent must choose a permissible investment 
pattern in productive facilities. Specifically, 

the investment pattern must be one described by 

the function K(pt,Pt +1, , PT) = 0^ 

2. The agent must choose a consumption series so 

that its present value is equivalent to the sum 

of the present value of the income series and 

the present value of the investment series. 

To state this in mathematical form, define the Lagrangian L, 

in the following terms 

L = 
U(ct'ct+1> 

, cT) - A1K(PVPt+1' >PT) 

et+1 et+2 

+ (1+trt+1) + 
t+1 
1-71+.r. ) 

j=t 
J j+1 

c 
T 

+ T-1 

1-r1 jrj+1) 
j=t 



wt-yt 

Pt (1+trt+1) t+1 

yt+1 Yt+2 

1+trt+1 t+1 
T111+.r. ) 

J=t j j+1 

YT 

T-1 
TT(1+r. ) 
J=t J J+1 

Pt+1 Pt+2 _ PT 

Tr( 1+.r ) 
j=t J J+1 

T-1 
T111 jrj+1) 
J=t 

1 

(4) 

Maximizing with respect to the consumption series, the 

investment series, Al and A2 gives the following system of equations 

aL aU ._ A 2 

A2 

= o 

= 0 

= 0 

ó°t 

) L 

)°t 

U 
ct+1 

aL 

a ct+1 

aU 

(1+trt+1) 

- A2 

ct +2 èct+2 t+1 
TT(.1 J rJ +1) 
j=t 

iL ÓU A2 
Ó cT ó cT T-1 

T1-(1 Jrj+1) 
J- 

aL 
A 

Ó Pt 
2 

)1( ^1 )pt 

óL A2 
Ó Pt+1 (1+trt+1) 

= 

= 0 (5) 

_ i1 
óx 

_ 0 
1 aPt+1 



áL 

_ À2 
t+1 

1771+.r. ) 

j=t 
J J+1 

A2 
T-1 
1-1j1+.r. ) 

j=t 
J J+1 

)41 

J6 

ÓK 

apt+2 

ÓK 

óX1 
= K(Pt,Pt+1' ,PT) 

= 0 

= 0 

= 0 

plus equation (3). This system has as its solution the consumption 

1 1 1 1 
series et , et 

+1' et +2' , 
cT and the investment series 

1 1 1 

Pt ' pt+1 pt+2' 

1 

, pT, for which 

a U ó U a U t+1 
- 

óc +1 

(1+trt+1) 
c =t (1 jrj+1) _ t t a t+2 j 

Ó U 
T-1 

óc 
1 
Jrj+1) T j- 

and (6) 

óK 
t+1 T-1 

Óg aK 171 Jrj+1) = - 1+.rj+1) 
?Pt p p 

i=t 
p t t+1 j=t J a t+1 a t+2 T 

The fact that the system of equations defined in (6) decomposes 

into one set of equations which is dependent for its solution only 

on the function U(c 
t 
,c 

t +1 
, , cT) and a second set of equations 

which, in turn, is dependent for its solution only on the function 

K(P 
t 
,P 

t +1 
, ' pT) is known as the separation theorem. This 

theorem asserts, inter alia, that the choice of an optimal consumption 



series decomposes itself into two independent decisions.18 The first 

of these involves choosing the investment series which maximizes wealth, 

where wealth is defined in the following terms 

T 

W(t) = W + yt + Pt + E t-1 
i.=t+1 (1 jrj) 

j =t 

(7) 

The second, the allocation of this greatest wealth to an optimal 

consumption series. Any excess (deficit) of consumption expenditures 

over "money income" is financed (invested) through the capital market 

at the prevailing one period rate of interest. 

The above analysis also serves to determine the equilibrium 

return earned by each asset in the economy. To illustrate, suppose 

the "economy" to consist of I agents each with the same time horizon 

of (T -t) years.19 Then market equilibrium establishes (T -t) interest 

rates which equate the productive and consumptive demands and supplies 

for "money" in each period. The equilibrium position is obtained from 

the following set of equations: 

0 
"Impatience Principle A" I(T -t) equations 

)u /aU 
Yt+1(ct'ct+1' 

)c- t+1 )c 
cT) 

18. Hirshleifer, op.cit., p.14. 

19. I, T and t must all assume integer values. We shall henceforth 

assume Wt =O. 

20. Fisher, op.cit., p.148. 



aU aU 
ct+2 /ct+i - Yt+2(ct'ct+1' 

, 

cT) 

(8) 

aU DU = i( 
c c YT(ct'ct+1' ' cT) T T-1 

These equations determine the marginal rates of substitution 

in consumption between funds at time .i and time J -1 as a function 

of the consumption series defined on the interval [t,T). Since there 

are I agents and (T -t +1) consumption dates there are I(T -t) such 

equations. 

"Impatience Principle B"21 I(T -t) equations 

)u óU 1 

a ct+1 a ct (1+trt+1) 

aU )U = 1 

ct+2 a ct+1 (1+t+1rt+2) 
(9) 

bu au 
a cT Ó cT-1 

1 

(1 ±T -1rT) 

The necessary condition for the individual to have attained an 

optimal consumption series is that the marginal rate of substitution 

between successive consumption dates j -1 and j must be equivalent to 

-1 

(1+. r.) 
J-1 

where, it will be recalled, j -1rj is the one period rate of 

21. Ibid. 



interest prevailing in the interval 
Cj 

-1,j,. Since there are I 

agents and CT-t+1) consumption dates there are I(T -t) such equations. 

"Market Principle A "22 

I 

ct E 'i 
i=1 

I 

E c 

(T -t +1) equations 

rI 

L! yt'i E+ pt'i 
i=1 i=1 

I I 

t+1'i EYt+1,,. + E pt+1'i 
i=1 ( i=1 j i=1 

I I 1 I 

cT'i = E T'i 
+E P T 2. 

i=1 i=1 j,=1 

(10) 

These "conservation relations" express the condition that the 

total consumption occurring at time j, j =t, t +1, ,T must be 

equivalent to the exogenous endowments and productive investments 

as of the date. These are, in effect "market clearing" equations. 

Since there are (T -t +1) consumption and investment dates, there are 

(T -t +1) of these equations. 

"Market Principle B "23 I equations 

T 
ct'1 ct,1 + E 

i 
t+1 

-117r(1+.r. 
) 

J J+1 
j=t 

T 
yi 1+pi 1 

- yt,1 + pt,1 + i-1 

i=t+1 
TT(l+ .r. ) 

J J +1 

j=t 

22. Ibid, p.149. 

23. Ibid. -.__.. 
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T 
ci,2 

ct, 2 + I-.1 (1+. r . ) i=t+1 ! I` j j+1 
J=t 

T 
Yi 

2+Pi 
r 
2 

= Yt,2+ Pt,2+ 
i-1 

i=t+1 
1-T(1+.r. 

) 

j=t 
j j+1 

T T ci,I Yi,I i,I +P 
ct,I+ E i -1 - Yt,I+ Pt,I + XI i -1 

i=t+1 17111+..r. ) i=t+1 (1+.r. ) 

J=t J+1 J J+1 
J- 

These are the "wealth constraints" and imply that for each of 

the I agents, loans must be repaid with interest so that each agent 

leaves neither debt nor bequests at time of "death". 

"Investment Opportunity 
Principle A" 24 I(T -t +1) equations 

K(Pt 
,Pt+1' 'PT) = 9 

a K Ó K 
= Wt+1(Pt'Pt+1' 'PT) 

Ó Pt+1 i) Pt 
(12) 

áK ÓK 

) Pt+2 Ó Pt+1 

= 
t+2 

'Pt 
+1' 

'PT) 

)K )K = WT(Pt'Pt+1' 'PT) 

PT APT-1 

24. Ibid., p.148. 
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These equations determine the marginal rates of substitution 

in production between funds at timej and time j -1 as a function 

of the investment series defined on the interval (t,T). These 

equations differ from those specified in "Impatience Principle A" 

because in the implicitly defined productive opportunity locus 

K(pt'Pt+1' ,pT) =0, specification of (T -t) disinvestment variables 

determines the remaining unknown disinvestment variable. Since there 

are I agents each with one productive opportunity locus and (T -t) 

marginal rates of substitution in production there are I(T -t +1) 

equations under this head. 

"Investment Opportunity I(T -t) equations 
Principle B" 25 

óK )K = 1 

a Pt +1 apt (1 +trt +1) 

aK ÓK = 1 

pt+2 / (1+t+1 rt+2) 

(13) 

1 

T 13T-1 
(1+T-1rT) 

The necessary condition for an agent to have attained an optimal 

production strategy is that the marginal rate of substitution between 

-1 
successive production dates j -1 and j must be equivalent to (1+. _1rj) 

where, it will be recalled, j -1rj is the one period rate of 

25, Ibid. 



interest prevailing over the interval Cj -1,4. Since there are 

(T -t +1) production dates, there arel(T -t) equations under this head. 

The above analysis implies that there are a total of 

4.I(T- t +1)- 2I +(T -t +1) equations to determine the unknowns of the 

economy. Since there are I agents and (T -t +1) production and 

consumption dates, there are I(T -t +1) consumption expenditures and 

I(T -t +1) production expenditures to be determined. Similarly, there 

are I(T -t) marginal rates of substitution in consumption and I(T -t) 

marginal rates of substitution in production to be determined. 

Finally, though of the utmost importance in Fisher's analysis, there 

are (T -t) interest rates to be determined. This gives a total of 

4I(T- t +1)- 2I +(T -t) unknowns in the economy. Since one of the equations 

appearing under the "Market Principles" head is redundant, this implies 

that we have 4I(T- t +1)- 2I +(T -t) equations and the same number of 

unknowns. As such the system is fully determined. 

We have now completed our analysis of the mathematical under- 

pinnings of the Fisherine system. Our next objective is to illustrate 

its implementation by recourse to a practical example. Recall that 

there is a twofold reason for doing so. Firstly, in the third 

section of this chapter, we shall employ the example as a device 

through which to examine accounting propositions concerning the firm. 

As a second and equally important reason, however, it is designed to 

sharpen the analysis of the previous section. To simplify the analysis 

we shall consider only a one period example, but it is important to 

remember that a multi -period example may also have been utilized. 



6.2 An Example 

In this section our purpose is to illustrate the Fisherine 

system in terms of a practical example. We shall assume that 

consumption occurs and productive investments are made at each 

of two consecutive dates. The analysis may be generalized to 

more than a single consumptive interval, of course, but this would 

result in considerable complication without corresponding analytical 

benefit. 

The example shall be worked in three sections. In the first and 

second sections the equations describing consumptive and productive 

equilibrium respectively shall be set forth whilst in the third 

section we shall derive the equilibrium solution in terms of these 

equations. We thus turn to the first of these topics, namely 

derivation of the equations describing consumptive equilibrium. 

6.2.1 The Agents 

We suppose the economy to be composed of two equally numerous 

classes of agents, which we shall label type J and type U agents 

respectively. We shall assume that only type U agents possess 

productive opportunities, but that both sets of agents have identical 

utility functions for consumption expenditures. Further, we employ 

the "representative individual "26 device to justify an analysis of 

the economy based on the assumption that it is composed of one type J 

agent and one type U agent. We thus proceed to define the economy 

in the manner utilized by Fisher. 

26. Hirshleifer, op.cit., p.107. 
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"Impatience Principle A" 2 equations 

We shall suppose the agents' utility functions for consumption 

expenditures to be of the following form 

J(bo,b1) = bob1 

U(co,c1) _ °o 
c1 

where bo and co are the consumption expenditures of agent J and agent 

U respectively at time zero, whilst b1 and c1 are the equivalent 

expenditures at time 1. These functions define the following marginal 

rates of substitution in consumption 

and 

a)J ÓJ bo 

Ó b1 ó bo b1 

Du )U co 

Ó c1 I )co c1 

These equations together satisfy "Impatience Principle A ". 

"Impatience Principle B" 2 equations 

(14a) 

(14b) 

"Impatience Principle B" requires that the marginal rates of 

substitution (in consumption) between successive consumption dates j -1 

and j must be equivalent to -1 where, it will be recalled, r., 
(1 +. r.) j -1 j 

J -1 J 

is the one period rate of interest prevailing during the interval 

[j -1,j] . As the marginal rates of substitution (in consumption) are 

defined by equations (14a) and (14b), this implies 

and 

b1 

bo (1+or1) 

c1 

c - 

(15a) 

(15b) 



These equations together satisfy "Impatience Principle B ". 

"Market Principle A" 2 equations 

"Market Principle A" expresses the condition that the total 

of the agents' consumption expenditures at each consumption date 

are to be equivalent to the sum of the exogenous endowments and 

productive disinvestments as of the date. In terms of the present 

example this implies 

c +b = 2y +p 
o o o o 

c1 + b1 
- p1 

where we impose the condition that all agents possess the same initial 

endowment. Recall that only type U agents possess productive 

opportunities. 

"Market Principle B" 2 equations 

This principle expresses the condition that agents leave neither 

bequestsror debt at time of "death ". In terms of the present example 

this implies 

and 

c1 13 
1 

co + - Yo + po + (1+or1) 

b 
1 

bo + (1+or1) - Yo 

(17a) 

(17b) 

These equations together satisfy "Market Principle B ". 

We now introduce the firm as the device through which production 

occurs. 
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6.2.2 The Firm 

Although Fisher did not integrate the more "traditional" theory 

of the firm with his interest theory, he was fully aware that the 

connection could be made. 
27 

Fisher preferred to commence his 

analysis rather further out, taking the productive opportunity locus 

as somehow specified outside the system.28 Whilst this simplified 

the analysis considerably, it restricts our capacity to examine the 

accounting implications of Fisher's work. In this section, therefore, 

we shall illustrate the method by which a firm's productive opportunity 

locus is derived from the more traditional principles of price theory 

and then use the resulting construct to satisfy Fisher's "Investment 

Opportunity Principles ". 

We thus impose the following assumptions on the firm 

1. During the interval[0,) , the firm produces a 

single non -storable commodity, the demand for which 

is given by 

q = 500 -20p (18a) 

where q is the quantity produced and sold during 

[0,1] and p is the price (per unit). 

2. The firm's production function which relates 

output q to factor usage during [0,g is of 

the form 

q = F(x,y,1) = 10 xy (18b) 

where x and y are variable factors of production 

(in units) and z is a fixed factor of production 

exogenously specified at one unit, 

3. Factors of production are purchased in perfectly 

competitive markets at time zero. Revenue 

income is received at time one. 

4. To finance production during (0,1) securities 

are issued to a single owner. Revenue income is 

distributed to the firm's owner at time one. 

We thus suppose the firm to issue securities in the amount of 

27. Fisher, op.cit., p.131. 

28. Ibid., p.519., 



I pounds. The optimal production strategy is then determined by 

maximizing 

F(x,y,1) = 10177 

subject to the constraint 

px+py+p = I 

where px, py and pz are the factor prices prevailing at time zero. 

Define the Lagrangian L, as follows 

L = 10 xy + A(pX +pyy +pz -I) 

and maximize with respect to the choice variables x, y and A, 

We thus have 

X = 5 
x +Xpx = 0 (19a) 

aÿ 
= 5 +Apy = 0 (19b) 

?I, 
- 

53 
p x+p y+p -I = 0 
x y z 

(19c) 

Equations (19a) and (19b) together imply the following 

"expansion path" 
29 

v = v 
x y 

(20) 

where vx = pxx and v = p y are the sums expended on factors x and y 
Y Y 

respectively during [0,1]. Substituting (29) into (19c) implies 

V = 2V 
X 

(21) 

where y = I -pz is the sum expended on variable resources during [0,11. 

29. Liebhafsky, H.H. The Nature of Price Theory. Homewood, Illinois; 
The Dorsey Press, Inc., 1963, p.145. 



To determine the cost function implied by the assumptions imposed 
V p 

on the firm, substitute x = x and y = --- into the firm's production px Py 

function, equation (18b), thus implying 

10 Pxpy q vxvy (22) 

which by virtue of equations (20) and (21) may be restated in each of 

the following forms 

1 

vx 10 Pxpy q 

v - pxpy q 

(23a) 

(23b) 

Thus, the optimal variable cost of production may be obtained 

from the expression 
5 

pxpy q. The total cost of production is 

obtained by adding the fixed cost (pz) to the variable cost. This 

implies the following total cost of production for the firm 

c(q) = pz+ 
5 

PXPY q 

which, as expected, is linear. 
30 

(24) 

In terms of the theory of production,31 the "income constraint" 

during [0,1] is v = 1 p p q and the maximum quantities of x and 
5 x y . 

y which may therefore be used in production are 
P 

= 
1 

x 

q and 

v 17- 
The "isocost line "32 is obtained by interpolating 

Py py 
¡' 1 [o, on the points 1 

J 
and p I thus giving 

l 

30. This follows from the fact that F is homogeneous of degree one. 

31. Ibid., p.140. 

32. Ibid. 



v = v + v 
x y (25) 

Isoquants 
33 

are obtained by letting q assume an assortment of 

non -negative real numbers in (18b) as follows 

K 2 1 

Y [TO x (26) 

where K is some permissible value of q. Each isoquant specifies the 

most efficient "technical" combination of x and y which may be used 

to produce the output (in our case K) which is implied by the 

isoquant. 
34 

Having determined the set of optimum production strategies, we 

now determine the maximum returns to be earned from each. To 

accomplish this task, restate the firm's demand function in the 

following equivalent form 

500 -q 
P 

20 

Multiplying through this expression by q implies that revenue income 

at time one amounts to 

S 
500q-q2 

20 

where S = pq. Substituting equation (24) into the above expression 

implies 

S = 20 (c-pz)(500m + pz -c) (27) 

where from equation (24) m = 
1 

p p is the firm's marginal cost of 
5 x y 

production. Equation (27) specifies the maximum return to be obtained 

at time one from investing c in productive resources at time zero. This 

is the point at which Fisher commences his analysis of firms as they 

affect the rate of interest. We are thus in a position to specify 

the equations satisfying Fisher's "Investment Opportunity Principles ". 

33. Ibid., pp. 133 -136. 

34. Ibid. 

35. Fisher, op.cit., chapter 6. 



"Investment Opportunity 
Principle A" 2 equations 

It is a relatively simple matter to derive the productive 

opportunity locus from equation (27). Suppose we impose the assumption 

that the type U agent is bequeathed an endowment which is sufficient 

to finance productive investments at time zero. In terms of our 

earlier notation this implies that yo = c = -po, since an investment 

in productive facilities at time zero represents a negative cash flow 

at that time. As an investment of -po, in productive facilities at 

time zero returns an amount s = pl at time one, equation (27) may be 

restated in the following implicit form 

K(po'p1) 
80 

(po+2000)(po+3000)-p1 = 0 (28) 

where we have assumed pz = 2000 and pX = py = 10, Equation (28) is 

the firm's productive opportunity locus and, as such, defines the 

productive opportunities for physically transforming time zero con- 

sumption into time one consumption.36 From the productive opportunity 

locus we derive the marginal rate of substitution (in production) 

between funds at time zero and funds at time one. 

a1K 

)p1 oPo 

80 

5000 + 2po 
(29) 

Equations (28) and (29)together satisfy Fisher's "Investment 

Opportunity Principle A ". 

"Investment Opportunity 
Principle B" 

1 equation 

"Investment Opportunity Principle B" requires that the marginal 

rate of substitution (in production) between the successive production 

36. Ibid. 



j-1 and j must be equivalent to 
-1 

dates j- q 
(1 +. r.) 

where it will be 
J -1 J 

recalled, 
j 
-lrj, is the one period rate of interest prevailing during 

the interval [j -1,j] . In the present context, the marginal rate of 

substitution (in production) between the successive production dates 

zero and unity is defined by equation (29), thus implying 

po = 40(1+(3 r1) - 2500 (30) 

This equation satisfies "Investment Opportunity Principle B ". 

Our progress to date is summarized in Table 6,1 where we provide a 

complete listing of the equations derived above. We now determine 

equilibrium values for each of the unknowns appearing in this system 

of equations. 

6.2.3 The System Solved 

From Table 6.1 it will be observed that we have eleven equations 

expressed in terms of the following ten unknown variables 

J íJ ?u ?u ÓK /ÓK 
)b1 )100, óc1 /Dco, apt )po, bo, b1, co, c1, Po, p1 and ori 

Recall, however, that one of the equations appearing under the 

"Market Principles" head is redundant. To illustrate this, add 

equations (17a) and 17b) thus giving 

ci bi pi 

co + bo 
+ (1+or1) + (1+or1) 2yo + Po + 

Substituting equation (16a) into the above expression and 

multiplying through by (1+ori) gives 

(16b) 



TABLE 6.1 

THE FISHERINE EQUATIONS 

Impatience Principle A 

DJ ÓJ 
b b 

-1 

b1 bo 0 1 

Ó u u 
= c c )ci a 0 

0 1 

-1 

2 equations 

(14a) 

(14b) 

Impatience Principle B 2 equations 

b b1 
o = (15a) 

c1 

co 
(1 +or1) (15b) 

Market Principle A 2 equations 

c + b = 2y+ p (16a) 
o o 0 

c1 + b1 = p1 (16b) 

Market Principle B 

= 

- 

p1 

2 equations 

c 

bo 

c1 

(17a) 

(17b) 

+ 

0 1 

b 
1 

Yo + Po + r 
0 1 

Yo 

) 

+ (1 

Investment Opportunity Principle A 2 equations 

K(po,p1) 
= 

- 80 (Po + 2000)(po + 3000) - p1 = 0 (28) 

K óK 80 

Ó p1 -?po 
5000+2po 

Investment Opportunity Principle B 

po = 40(1+or1) - 2500 

(29) 

1 equation 

(30) 



 

which is equation (16b). Hence, one of the "Market Principles" 

equations is redundant. We are thus left with ten independent 

equations to determine the ten unknowns of the system. We proceed, 

therefore, to determine each of these unknowns. 

The available supply of consumptive services at time one is 

obtained by substituting equation (30) into equation (28), the 

firm's productive opportunity locus 

p1 
= 

80 [40(1+ r1) - 500 
] 

[40 (1 +o r1) + 500] 

which may be restated as .! 

p1 = 3125 - 20(1+ or1)2 (31) 

The type U agent's demand for these services may be obtained by 

substituting equation (15b) into (17a) as follows 

2c1 
p1 

= Yo + po + 

Recall that each agent was bequeathed an endowment of y = -p 
0 0 

which was sufficient to finance productive investments at time zero. 

Using this condition, it follows that 

1 

c1 -2-P1 
(32) 

represents the type U agent's "consumption function" for time one 

consumptive services. 

To obtain the type J agent's demand for time one consumptive 

services, substitute equation (15a) into (17b) thus obtaining 

b1 = - 
2 
po(1+or1) (33) 

where we have used the condition that yo = -po. Equation (33) is the 

type J agent's "consumption function" for time one consumptive services. 



Adding equations (32) and (33) determines the agents' aggregate demand 

for time one consumptive services 

c1 + b1 = 
2 [p1 

- po(1+or1)1 

By virtue of equations (30) and (31), the aggregate demand 

function may be restated as 

c1 + b1 = 2 [3,125 + 2500 (1+or1) - 60(1+or1)2] (34) 

As by "Market Principle A" we must have 

c + b 
1 = p1 

(16b) 

or that the aggregate demand for time one consumptive services must be 

equivalent to the aggregate supply, it follows using equations (31) 

and (34) that 

0 = -3125 + 2500 (1 +or1) - 20(1 +or1)2 (35) 

which has as its solution or1 = 0.2628, The consequences of this 

interest rate are depicted in Table 6.2. The results set forth in 

Table 6.2 may be obtained by direct substitution in the various 

functions. Thus, for example, the initial endowment y 
0 

= 2,44949 

may be obtained by substituting or1 = 0.2628 into equation (30) and 

recalling that y 
0 

= -p 
0 

. By similar use of equation (31) it follows 

that p1 = 3093.11, whilst this result may be used in conjunction with 

equation (32) to obtain the type U agent's time one consumption of 1546.46. 

By analogous procedures we may derive the price and factor usage 

data relating to the type U agent's productive activities. Since by 

hypothesis pZ = 2000 and px = py = 10 it follows from equation (24) 

that the firm's cost function is defined by 

Ç(q) = 2,000 + 2q 
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Using the conditions yo = -po = c, it follows that q = 224.74. 

Using this result and equations (20), (21) and (18a) we have 

x = y = 22.47 and p = 13.76. These results imply the income 

statement portrayed in Table 6,3. 

There are several points about this Table which require emphasizing. 

Firstly, it will be observed that the firm's (maximum) return over 

cost for the interval [0,1] is equivalent to the rate of interest 

prevailing during the interval. This position characterizes an 

economy in "long run equilibrium" in the sense that only "normal 

returns" are earned. 
37 

Secondly, the firm's net income during 

[0,11 is in fact the excess of the firm's market value at time one 

over its market value at time zero.38 

This completes our analysis of the Fisherine system. We now turn 

to the more important task of examining its significance to accounting 

theory. 

37. Liebhafsky, op.cit. p.290. 

38. Fama and Miller, op.cit., p.74. 



2'9 

TABLE 6.3 

INCOME STATEMENT FOR THE INTERVAL to,1] 

Sales (224.7449 x 13.7628) 3,093.11 

Expenses 

Factor x (22,4745 x 10) 224.75 

Factor y (22.4745 x 10) 224.74 

Factor z (2000 x 1) 2,000.00 2,449.49 

Realized profit 643.62 

Rate of return (over cost) 0.2628 
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6.3 The Accounting Implications 

Our interest in Fisher's work is restricted solely to its 

accounting implications. Unfortunately, the theory is developed 

under several restrictive assumptions, the consequence of which is 

to reduce its analytical power, at least for accountants. For 

example, the presumed existence of perfect knowledge, and hence the 

absence of risk, implies that there is but one rate of interest 

prevailing over each time interval, 
39 

an obviously false speci- 
40 

fication of reality. Despite this, however, there are several 

respects in which the model does contain both a priori and empirical 

implications for accounting theory. Indeed, Fisher was probably 

first in utilizing the model for this purpose 

"Past cost does not affect present valuations 
except indirectly as future 
income and cost... The only cases in which cost 
... is equal to value is where this value is also 
equal to the estimate of worth on the basis of 
future expectation; when, in other words, cost is 
superfluous as a determinant of value ". 41 

In this section we shall deploy Fisher's analysis to provide a 

rationale for each of the measurement models specified in Chapter 4. 

We commence the section with an analysis of the replacement cost 

measurement system, placing particular emphasis on the predictive 

properties attributed to current operating profit by Edwards and 
42 

Bell. In this respect, Fisher's work contains both a priori and 

39. Fisher, op.cit., p.206. 

40. Ibid. 

41. Ibid., p.467. 

42. Edwards, E.O. and Bell, P.W. The Theory and Measurement of 

Business Income. Berkley, California: The University of California 

Press, 1961. 



empirical implications for replacement cost measurement which only 

partially supports the position taken by Edwards and Bell. Speci- 

fically we shall prove under a set of restrictive assumptions, 

that the current operating profit (over cost) of one interval is a 

lower bound for the ratio of realized (operating) income to cost of the 

next interval. Whilst the empirical evidence is certainly consistent 

with this hypothesis it is also consistent with several competing 

hypotheses, so much so that using a purely empirical criterion, no 

one hypothesis distinguishes itself over the others. 

Having analyzed replacement cost measurement in the context of 

the Fisherine system we then focus our attention on market value 

measurement. In this respect, we shall find Fisher's analysis to 

corroborate much of what Edwards and Bell have to say about the 

market value system of measurement. As a final exercise, we examine 

the C.P.P. system of accounting measurement. Unfortunately, we shall 

find Fisher's work to be of little assistance in providing a 

42(a) 
satisfactory rationale for this measurement scheme. Indeed, it would 

seem that the works of Walras,43 Pareto44 and Hicks45 hold more 

potential in this regard since their analyses commence with the 

product and factor markets omitted from the Fisherine analysis. 

We now turn our attention to the first of these topics, namely 

a consideration of the replacement cost scheme of accounting measurement. 

43. Hicks, J.R. "Léon Walras," Econometrica, 11 (1934), pp. 338 -348. 

44. Hicks, J.R. Value and Capital. Oxford: The Clarendon Press, 1946, 

pp. 13 -18. 

45. Ibid, 

42(a) As Fisher was the first adherent of indexation, we are here, f , 

perhaps, being unduly harsh. see Fisher, Irving. The 
Purchasing Power of MoneE.- New York: The McMillan Company, 1911. 
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6.3.1 The Predictive Ability of Current Operating Profit 

Although Edwards and Bell 
46 

dubbed their book the "Theory and 

Measurement of Business Income", throughout most of the work 

"business income" occupies a fairly subordinate position to " current 

operating profit ". One of the more important, if not the most 

important proposition contained in the book, for example, attributes 

a predictive property to current operating profit. 

"Current operating profit can be used for predictive 
purposes if the existing production process and the 
existing conditions under which that process is 
carried out are expected to continue in the future; 

current operating profit then indicates the amount 

the firm can expect to make in each period over the 

long run".47 

The stability conditions implied by this statement - stable 

technology, demand and factor prices - are unrealistic to say the 

least. Indeed, they imply that current operating profit, business 

profit and realized profit are identically equal and constant 

through time.48 After acknowledging the verity of this criticism,49 

Edwards and Bell substitute the following proposition in its place. 

46. Edwards and Bell, op.cit. 

47. Ibid., p.99. 

48. Revsine, L. Replacement Cost Accounting. Englewood Cliffs: New 

Jersey: Prentice -Hall, Inc., 1973, p.119. 

49. Edwards and Bell, loc.cit. 



"If a particular production process promises a 
larger current operating profit in this period 
than that promised by any other production 
process, is it [not] reasonable to assume that 
the production process will also promise higher 
current operating profits in subsequent periods 
than alternative processes, even though 
conditions have changed in those periods ? "50 

But this proposition is not free of criticism. We may legitimately 

question the motive for providing such "predictions" to the owners of 

productive facilities. There is no suggestion by Edwards and Bell 

that current operating profit represents relevant information to the 

owner of such productive facilities, save for the purpose of predicting 

itself. The circularity of this contention is obvious and has been well 

documented elsewhere.51 But unless we can provide some rationale for 

current operating profit, there can be no justification for investi- 

gating its empirical significance. Fortunately, however, Fisher's 

work does provide some insight into this problem. 

The relevance of Fisher's work to the problem at hand may be 

stated in the following terms 

Consider the intervals [i,j] and (j ,k) with i < j 4 k, 
Let the function St (q) describe the "monetary value" 
of a firm's sales (at time t) in terms of its output 

(q) and suppose Sk (q'), Si (q') where q' is output 

produced at time i and sold at time j. Then the ratio 

of current operating profit to the replacement cost of 
goods sold during [i,j] is a lower bound for the 

maximal ratio of realized (operating) profit to the cost 

of goods sold during [Lk] . 

To prove this result, let C. (q) = pi.Q. (q) be the function 
i t 1 

whose value is the minimum production cost of q at time i; where pi 

is the vector of (per unit) factor prices at time i and Qi(q) is 

the vector whose elements are the factors of production (in units) 

50. Ibid. 

51. Lee, T,A,: "The Cash Flow Accounting Alternative for Corporate 

Financial Reporting" in Cees Van Dam (ed.) Trends in Managerial 

and Financial Accounting. Leiden /Boston: Martinus Nijhoff Social 

Sciences Division. 1978, p.68, 
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consumed in producing q. It then follows that C. (q') 4 p TQ. (q'). j. 
Since by hypothesis Si(W)4, Sk(q') we then have 

S. (q') + C. (q') Sk (q') + P.Qi (q') 

or, more conveniently 

Now 

S. (q') - pT.Q. (q') 
,7 

T 
since C. (q') C Lai Qi (q'), 

G Sk (q') - C (q') 

it necessarily follows that 

T T 
Cj(q') 

[S (W) 
- jQi (q'), G PjQl (q') [Skcq') - Cj (g'), 

From which it follows 

T 
S. (nt) - pj . Qi (q' ) 4 Sk (q2) - C. 04') 

13.0Q. (CI') Cj ( q' ) 

The expression 
S. (q') - pT.Q. (q') 

Pji (q') 

(36) 

is the current operating profit 

of the interval [i,jl divided by the replacement cost (at time j) of 

the factors consumed (at time i) in producing the firm's output q'. 

The expression 
Sk (q') - C. (W) 

Cj (q') 
is the ratio of realized (operating) 

income to cost from producing q' during [j,k,. This ratio can never 

exceed the maximum ratio of realized (operating) income to cost during 

{ ,I thus proving the result. 

The significance of this result to the owners of productive 

facilities is that under certain circumstances it can be used to 

provide a lower bound on the firm's market value at time k. Specifically, 

suppose we impose the following "normal return" assumption. 

During the interval [i,k) the firm's maximal ratio 

of realized (operating) income to cost is equivalent 
to the rate of interest prevailing during (j ,k] . 



Using this assumption, we now illustrate how the above result 

may be used to bound the firm's market value at time k. Suppose q* 

to be the output which maximizes the ratio of realized (operating) 

profit to cost during [j,k]. In terms of the above proposition, this 

implies 

Sj(q') - p=QiCq') 

PT-Q, (q') 

Sk(q49- C. (q*) 

C. (q*) 

(37) 

From this, it follows that the return Sk (q *) (at time k) to 

productive investments C.(q *) (at time j) has the following lower bound 

S.(q') - pT.Q. (q') 

C.(q*) 1+ .J 

(CV) 

4 Sk (q*) (38) 

P..@. (q ) 

The surplus of funds to productive requirements at time j amounts 

to S.(q') - C.(q *). Since, by hypothesis, the maximum return (over 
J J 

cost) during [j,kJ defines the rate of interest prevailing during the 
Sj(q *)- C.(q *) 

interval, these funds accumulate to [Sj(q') - C.(q *)]. 1+ 
C.(q*) 
J 

at time k. By virtue of equation (37) these funds have the following 

lower bound as of that date. 

Sj(q')-P..Qi(g') 

[S.(q')-C.(q*)].1 1+ 
T 

J J Pj 

Sj (q*) - c- (q*) 

.[1+ * (39) 
C J C(q ) 

The firm's market value at time k is given by the sum of the 

productive returns, Sk(q *), and the accumulated value of surplus 
funds 

S.(e)- Cj(q *) 

[3.(q1)- Cj(q *), [1+ 
(q *) 

Using equations (38) and (39), 

a lower bound for this sum is given by the following expression 



2 iJ 

S.(q')-pT.Q.(g') 

S. (q' ) [1+ . 
p. .Q. (q' ) S(g*)+ )-CJ 

Sk(g*) cj(g*) 

C 1+ . (q * ) 
(40) 

Note that knowledge of the firm's current operating profit ratio and 

productive returns at the prior production date is sufficient to 

operationalize this lower bound. For computational purposes, however, 

it may be more convenient to restate equation (40) in the following 

equivalent form 

CS. ( q' ), 2 S. ( q' ). Sk ( q* ) 

p .Q(q' ) C. (q*) 
(41) 

To illustrate the application of these results, suppose the 

firm whose income statement is exhibited in Table 6.3 to continue in 

existence over the interval [1,2]. Impose the assumption that demand 

for the firm's output remains stable during [1,2] but that factor prices 

vary to 8,18 and 2400 for x, y and z respectively at time one. Suppose 

also that (at best) the firm earns a "normal return" over cost during 

[1,2]. Substituting the factor prices into equation (27) gives 

S = 56 (C-2400)(3600-C) (42) 

Recall that equation (42) specifies the maximum return, S, which may 

be obtained at time two from investing C in productive facilities at 

time one. It follows that the optimum return (over cost) is obtained 

from the expression 

d S-C d(S/C) 

dC C d C 

5 

[8,640,000 

1 = 0 

2 576 C 



which implies C = 2,939.39 as the optimum investment in productive 

facilities at time one. Using this result in conjunction with equation 

S 
(42) implies S = 3,093.11 and C = 1,0523. These results yield the 

income statement exhibited in Table 6.4. Note that the productive 

strategy depicted in this income statement is 'optimal" in the sense 

that it provides a higher return (over cost) than any alternative 

strategy. 

In Table 6.5 the current operating profit of the interval (0,1] 

is computed in conformity with the method proposed by Edwards and Bell 

and utilized in proving the above propositions. Note that the 

108,77 
current operating profit ratio 

2984.34 - 
0.0364 is in fact a 

lower bound for the ratio of realized (operating) income (to cost) 

153.72 

2939.39 - 0.0523 . Further, by using equation (40) a lower bound 
S . (q') -p Q (q' ) 

for the firm's market value at time two is S(q') 1+ 

T ( q ') PjQ 

(3,093.11 x 1.0364) or 3,205.70. The actual market value is of course 

Sj(q').Sk(q*) 

C. 0q*) 

(3,093.11)2 
2,939.39 

or 3,254.87 which may be verified from 

equation (41). 

To be sure, the above analysis is founded upon an extremely 

simplistic view of the economy. Firms are viewed as consisting of 

a sequence of "cash" based ventures. Further, as productive resources 

are purchased at time of use, increased factor prices are instantaneously 

reflected in firms' realized incomes. Finally, we assume conditions of 

constant technology (represented by a time invariant production function), 

of non -decreasing demand and certainty with respect to competing 

productive opportunities, returns and interest rates, etc. These 
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TABLE 6.4 

INCOME STATEMENT FOR THE INTERVAL [1,2] 

Sales (224.7448 x 13.7628) 3,093.11 

Expenses 

Factor x (33.7117 x 8) 269.69 

Factor y (14.9830 x 18) 269.70 

Factor z (2400 x 1) 2.400.00 

2,939.39 

Realized (operating) profit 153.72 

Interest income* 8.04 

Realized profit 161.76 

Rate of return (over cost) 0.0523 

* (3093.11 - 2939.39) x 
153.72 

2939.39 



TABLE 6.5 

CURRENT OPERATING PROFIT FOR THE INTERVAL [0,1] 

Sales (224.7449 x 13.7628) 

Expenses 

3,093.11 

Factor x (22.4745 x 8) 179.80 

Factor y (22.4745 x 18) 404.54 

Factor z (2400 x 1) 2,400.00 

2,984.34 

Current operating profit 108.77 

Realizable cost savings 

Factor x (22.4745 x -2) (44.95) 

Factor y (22.4745 x 8) 179.80 

Factor z (2400 -2000) 400.00 

534.85 

Business profit 643.62 

Unrealized cost savings 

Realized profit 643.62 

Current operating profit (over cost) 0.0364 



N 

assumptions are, of course, a simplification of reality designed 

to facilitate the derivation and analysis of a priori propositions. 

But this does not imply that the model is devoid of empirical content, 

for the significance of an economic model lies not in the accuracy of 

its assumptions, but in the predictive ability of its conclusions. 
52 

In the next section, therefore, we consider the empirical implications 

of the above model. 

6.3.2 The Empirical Significance of Current Operating Profit 

In the previous section it was demonstrated under conditions 

of non -decreasing demand that the current operating profit ratio of 

an interval is a lower bound for the return (over cost) of the next 

succeeding interval. We observed that the assumptions utilized in 

reaching this conclusion were, in some instances, a false specification 

of reality and that a possible consequence of this is that the model 

may be a poor device through which to make empirical generalizations. 

In this section, therefore, we undertake to test the model against 

some available empirical evidence. We should like to emphasize from 

the very beginning, however, that the tests conducted herein are of 

a pilot nature only and that much more comprehensive testing procedures 

need to be adopted if the results reported herein are to be regarded 

as valid empirical generalizations. 
53 

52. Friedman, op.cit. 

53. Several reasons may be cited for this conclusion. Firstly, the sample 

analyzed is small, consisting of nineteen observations drawn from the 

period 1930 -1949. Data for the ensuing period was not available in the 

Edinburgh region and could not be obtained given the time constraint 

placed upon the present work. Secondly, the current operating profit 

of each year is an estimated figure. Should these estimates show a 

consistent bias (in one direction or the other), the estimates of the 

parameters 't( andid may not be minimum variance unbiased. Finally, we 

assume that the unknown error term possesses a normal frequency function 

Should this assumption be unjustified, then the conclusions concerning 

contained in the test may be in error. For a more comprehensive 

treatment of these points, see Mood, A.M. and Graybill, F.A. 

Introduction to the Theory of Statistics. New York: McGraw -Hill Book 
Company. Inc.. 1963. Chapter 13. 
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Table 6.6 contains estimates of the return (over cost) 
and the 

current operating profit ratio of U.S. firms over 
the two decades 

1930 through 1949. Most of the data underlying these ratios were 

initially reported by Edwards and Bell. Where necessary, however, we 

have complemented the material with information from other sources, 

these being noted in the Table itself. The data contained in this 

Table lend themselves to both regressive and non 
-parametric tests, 

the results of which we now summarize. 

The first test applied to the data of Table 6.6 was 
the non- 

parametric'Sign test ".54 Specifically, define the parameter p = z to 

be the expected proportion of cases in which the 
current operating 

profit ratio of one interval exceeds the return (over 
cost) of the 

next. The specification of p = i is based on the assumption 
that 

there is in fact no relationship between these 
two ratios. If, 

in addition, we suppose increased sales to 
reflect an increased 

demand for firms' output, then there are thirteen (13) instances55 

where the return (over cost) exceeds the current 
operating profit 

ratio and one (1) instance56 where the current 
operating profit ratio 

exceeds the return (over cost). The probability of this event, given 

that p = 2, is computed as follows 

54. Freund, J.E.Mathematical Statistics. Englewood 
Cliffs, New Jersey: 

Prentice -Hall, Inc., 1971, pp. 343 -344. 

55. The thirteen instances are 1933 through 
1937 (inclusive), 1939 

through 1943 (inclusive) and 1946 through 1948 (inclusive). 

56. This being the year 1944. 
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Sn 14 14 

P[j<1 I p = = C. 1 

15 

16384 

P[j 4.1 
I P 

= i = 0.0009 

Given this result, it is unlikely in the extreme that the 

current operating profit ratio bears no relationship to the return 

(over cost). 
57 

We thus reject this contention and accept the 

alternative hypothesis that under conditions of non -decreasing demand, 

the current operating profit ratio of one interval is a "consistent" 

lower bound for the return (over cost) of the next. 

The exact relationship between the current operating profit 

ratio and the return (over cost) is, of course, dependent on the 

nature of the demand function confronting the firm and also the 

available productive opportunities. If, however, we make the usual 

concession to convenience and assume the relationship to be linear, 

we would then have it that 

= a + r +F.t 

57. Should the years of decreasing aggregate sales be included, the 

evidence is much less impressive. For we then have that the years 

1931, 1932, 1938, 1944, 1945 and 1949 are "counter examples" to 

the theory advanced. We then have 
6 

19 19 

P [j < 6 Ip=J = C. 
C'z) 

j =0 

43,796 
524,288 

Pj 4 6 ip=11 = 0.0836 

Given this result, we accept the null hypothesis P = i at the 0.05 

significance level. 



where it is the return over cost of the interval ft,t +11, rt 

is the current operating profit ratio of the interval [t -1,1, 

Et is an unobservable error term and`( and, are unknown parameters. 

For the n = 14 observations analyzed above, the "least squares" 

estimates of I< and P are a = 0.0269 and b = 0.8739 with the (unbiased) 

estimate of the R2 statistic being 0.91. If we now suppose 
/5 

= 0 

and that the error term has a normal frequency function with mean 

2 Cl - 2 

zero, it follows that the variable58 
(n -2) b (rt -r) 

E 
2 

et 

/Chi squared 
58, Suppose U to be a - variate with m degrees of freedom and V to be 

Chi squared variate with n degrees of freedom. Further, suppose U and V 
to be independent. It can then be shown that the variate nU 

F 
mV 

has an F(m,n) frequency function. By theorem, the variate 

r - 2 
(b1) L.i (rt -r) 0- has a normal frequency function with zero mean 

rand unit variance, thus implying that the variate U = (b y). 
2 

2: (rt- T92 
I6-2 

has a X2 frequency function with one degree of 

freedom. Also, the variate V = E (it +l- a -brt)2 16.2 11 
2 

/ 

/Chi squared 
possesses a frequency function with (n -2) degrees of freedom. 

Since U and V are independent, it follows that the variate 

F = 
(n-2)(b74)2 1E (rt-r)2 

2 I 2 

E e 1s- 

t 

F = 
(n-2)(b-/5)2E (rt-r) 2 

Le 
t 

has an F(1,n -2) frequency function. Settingp = 0 yields the result 

displayed in the text. On this topic generally, see 

Mood and Graybill, op.cit., p.211, pp. 226 -232 and p.333. 



`ta 

58(a) Note that although the apriori results underlying the above 
analysis relate only to individual firms, the empirical tests 
were conducted on aggregate data. The main re'.son for use of 
aggregated data was to control for risk. 



where et = 
t+1 - 

a - brt, has an F(1,n -2) frequency function. In 

our case, we have an observed value of F = 137.73 with 1 and twelve 

degrees of freedom. Since 1{F(1,12) 7 9.331 
/ 

= 0] = 0.01, we 

reject the contention that 
/ 

= 0 and accept the alternative hypothesis 

that under conditions of increasing demand it 
+1 

and rt are in fact 

58(a) 
related. 

At first sight, the above results may appear to provide conclusive 

evidence for the proposition advanced, namely that under conditions of 

increasing demand, the current operating profit ratio of an interval 

is a lower bound for the return (over cost) of the next succeeding 

interval. We should note, however, that the data exhibited in 

Table 6.6 are also consistent with several competing hypotheses, so 

much so that on purely empirical grounds, no one hypothesis dis- 

tinguishes itself over the others. This point is pursued further in 

Appendix 6A to this chapter. 

A second motive for the provision of replacement cost financial 

information derives from the desire of a firm's owners to maintain the 

firm's "productive capacity ". Unfortunately, the usual means of 

implementing this requirement effects a consistent over -statement 

of the costs necessary to achieve the objective. This is a topic 

we pursue in the next section. 

6.3.3 The Maintenance of Productive Capacity 

The reputed predictive ability of current operating profit is 

but one of t, o major reasons cited in the literature for the provision 

of replacement cost data to the owners of productive facilities. A 

second and perhaps more familiar justification relates to the 

maintenance of productive capacity. The Guidance Manual on Current 
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Cost Accounting expresses the argument in the following terms 

"CCA [Current Cost Accounting] in computing profit 
attempts to deduct from ... revenue the amount 
needed to restore the productive capacity ... 

consumed [ in generating that revenue] ," 59 

The usual method of implementing this procedure, and indeed the 

method illustrated in the Manual,60 is to cost the factors consumed 

(in producing the output from which the firm's revenue is generated) 

at the replacement costs prevailing at the time of the output's sale. 

The mechanics of the method were, in fact, illustrated earlier. 

Recall that the income statement exhibited in Table 6.3 

represents the optimal productive strategy for a firm over the 

interval [0,1]. Table 6.5 computes the current operating profit 

for the firm over the interval [0,1) on the assumption that factor 

prices (per unit) have varied from 10, 10 and 2000 for factors x, y 

and z respectively at time zero to 8, 18 and 2400 respectively at 

time one. Thus, if we apply the "logic" of the manual, it would 

seem that the firm should retain 2,984.34 if it is to maintain its 

productive capacity at 224.7449 units. 

That such is not the case is illustrated in Table 6.4 where 

this same output (224.7449 units) is produced at a cost of 2,939.39, 

marginally less than the 2,984.34 "predicted" by Table 6.5, The 

fallacy in computing the replacement cost of disposals by the method 

demonstrated in the Manual is that it assumes that the optimal 

59. Inflation Accounting Steering Group, Guidance Manual on Current 
Cost Accounting. Institute of Chartered Accountants in England 
and Wales, 1976, p.13. 

60. Ibid., pp. 13-14. 
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productive strategy is not affected by variations in the prices of 

factor inputs. That the set of optimum productive strategies available 

to a firm is dependent on factor prices is intuitively obvious and 

for the firm under consideration is demonstrated by the fact that the 

prices of factors x, y and z appear as arguments in equation (24), 

the firm's cost function. Indeed, if the firm under consideration 

were to be availed with an "income constraint "61 of 2984.34 it 

2984.34 - 2400 
would be enabled to produce - 243.475 units of 

output, as is evident from substituting the factor prices (px = 8, 

p = 18 and pz = 2400) at time one into equation (24). This is 
Y 

"substantially" (8,3 %) in excess of the 224.7449 units mooted in 

Table 6.5. 

To isolate the existence of the above problem and to suggest 

the means by which it may be solved are, of course, completely 

different issues. For whilst it is a relatively simple matter to 

prove the problem's existence, its solution does not come so readily 

to mind. If, however, we are acquainted with the firm's production 

(or cost) function, the most efficient means of reproduction may be 

calculated therefrom. Experience has shown, however, that these are 

not easily obtained and that there is a labyrinth of statistical and 

conceptual barriers confronting any potential endeavour in this 

direction.ó2 Obviously, research into the area is required, however, 

for the consequence of shunning it is the provision of potentially 

misleading financial "information ". 

This completes our analysis of the replacement cost scheme of 

accounting measurement. We now focus attention on the market value 

system of accounting measurement. 

61. Liebhafsky, op.cit., p.140. 

62. Johnston, J. 'Statistical Cost Analysis. New York: Econometric 

Handbook Series, 1960. 



6.3.4 Realizable (Operating) Profit 

In the analysis to date, we have assumed that the prices 

prevailing in the factor markets at time t represent the replacement 

costs prevailing at that time. Since, by hypothesis, the factor 

markets are characterized by perfect competition and, therefore, 

unhindered entrance and perfectly homogeneous (interchangeable) 

products, it follows that the prices prevailing in the markets may 

also be viewed as realizable 
63 

(market) values. We are thus provided 

with the means for investigating the validity of certain propositions 

relating to "the" market value system of accounting measurement. 

In Table 6.7 we exhibit the realizable operating profit for 

the interval C0,1, corresponding to the optimal productive strategy 

displayed in Table 6.3, under the assumption that the market values 

(per unit) of factors x, y and z have varied from 10,10 and 2000 

respectively at time zero to 8, 18 and 2400 respectively at time one. 

The measurement model upon which this income statement is based was 

described in section 4.3 (of chapter 4), although at that stage we 

made only sketchy comment on the model's significance. We are now 

in a position to make more concrete assertions. 

Realizable operating profit was vested with the following 

significance by Edwards and Bell 

"(Realizable] operating profit arises because at least 
some of the assets of the firm have changed their form 

(or place) during the production moment. Operating 
64 

profit is attributable solely to this change in form ". 

In the context of the present example, it is clear how Edwards 

63. Liebhafsky, op.cit., p.21. 

64. Edwards and Bell, op.cit., p.88. 
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TABLE 6,7 

REALIZABLE OPERATING PROFIT FOR THE INTERVAL [0,1] 

Sales (224.7449 x 13.7628) 3,093.11 

Expenses 

Factor x (22.4745 x 8) 179.80 

Factor y (22,4745 x 18) 404.54 

Factor z (2400 x 1) 2.400.00 
2,984.34 

Realizable operating profit 108.77 

Realizable capital gains 

Factor x (22.4745 x -2) (44.95) 

Factor y (22.4745 x 8) 179.80 

Factor z (2400 -2000) 400.00 

534.85 

Realizable profit 643.62 

Unrealized capital gains 

Realized profit 643.62 
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and Bell arrived at this conclusion. For had the firm refrained 

from production and merely elected to hold the productive resources 

in their original (unused) form over the interval [0,1], the firm's 

market value would have been (108.77) less than it otherwise is. In 

contrast, a negative realizable operating "profit" indicates that the 

firm is better in electing to hold the productive resources in their 

original (unused) form and disposing of them at the succeeding 

production date. Thus, the realizable operating profit of a 

productive interval represents the potential contribution of production 

(as against purely holding activities) to the firm's market value at 

the end of the productive interval. This, of course, is precisely 

the function attributed to it by Edwards and Bell. 

Realizable profit, however, is a conglomerate in the sense that 

it represents the combined contribution of the firm's productive and 

holding activities over some productive interval, to the firm's 

market value at the end of that interval. It was accorded the 

following significance by Edwards and Bell 

"When realizable profit falls below interest on 
opportunity cost (and is not expected to exceed it 

65 
in the future), the date of abandonment has arrived ". 

In terms of the above example this implies that should the firm's 

maximum return (over cost) be less than the rate of interest, then the 

resources available for investment in productive facilities should be 

loaned through the capital market (at the rate of interest). In 

light of Fisher's work, this makes obvious sense, since to invest 

in productive facilities under these circumstances (whether for 

holding or productive reasons) implies subordination of the wealth 

65. Ibid., p. 101. 
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maximization criterion and thus contradiction of the separation 

theorem. 
66 

This completes our analysis of the market value scheme of 

accounting measurement. We now focus our attention on the C.P.P. 

system of accounting measurement. 

6.3.5 Current Purchasing Power 

Several approaches have been utilized by accountants in an 

endeavour to provide a satisfactory rationalization for the provision 

of'burrent purchasing power" financial statements to the owners of 

productive facilities.ó7 Each attempt, however, has been the 

recipient of varying degrees of criticism, so much so that it is 

not unfair to say that, with the possible exception of historical 

cost measurement, the C.P.P. system has been endowed with the most 

fragile of conceptual foundations. Nor should this be surprising, 

for Professor Hicks, when confronted with the problem of defining 

an "appropriate index number of prices" opined 

"To this question there is, I believe, no 

completely satisfactory answer ". 68 

66. Hirshleifer, op.cit., p.14. 

67. For an excellent summary of the attempts at rationalizing the 
C,P,P, measurement system, see Gynther, R. "Why Use General 
Purchasing Power ", Accounting and Business Research, 5,14 

(Spring 1974), pp. 141 -156. 

68. Hicks, op.cit., p.175. 



This opinion was expressed as long ago as 1939, and there has 

been little in the intervening period to suggest that Hicks' opinion 

was unfounded.ó9 To what extent Fisher's analysis can be utilized 

in providing a solution is a moot point, though it is our view that 

the full potential of his work will not be realized until the link 

between utility functions for consumption goods and utility functions 

for consumption expenditures is completely specified. Recall that 

the theory of price -index numbers as formulated by Allen et a170 

in the first half of this century was developed in terms of utility 

functions for consumption goods, whereas, of course, Fisher's analysis 

proceeds in terms of utility functions for consumption expenditures. 

Although some research has been conducted along these lines, it has 

been far from conclusive.71 Whilst we would not pretend to have the 

answer to this important question, the reader is entitled to a 

statement of our opinion and of its relevance to the problem at 

hand, namely the "theory" of current purchasing power accounting. 

We thus proceed. 

69. Gynther, op.cit., p.145. 

70. Allen, R.G.O. "On the Marginal Utility of Money and its Application ", 

Economica, XIII (May 1933), pp. 186 -209. 

Staehle, H. "A Development of the Economic Theory of Price Index 

Numbers," Review of Economic Studies, 11 (1934 -35), pp. 163 -188. 

71. Fama, E.F. "Multiperiod Consumption -Investment Decisions ", 

American Economic Review, LX (March 1970), pp. 163 -174. 

Fama, E.F. "Ordinal and Measurable Utility ", in Jensen, op.cit., 

pp. 125 -145. 



A utility function for consumption expenditure3 may be decomposed 

into a utility function for consumption goods by merely imposing the 

condition that the amount available for consumption at any time must 

be expended on some finite number of consumption goods. In terms of 

the notation employed above, this implies 

n n 

U(Ct' Ct+1' 
CT) = U( P. 

(t) (0 Ct) 
> > E CT) 

/ 
gJ 

CT)) 

where 
(t) 

pj is the price (per unit) of the jth consumption good at 

time t and q 
(t) 

is the quantity consumed. Two species of market 

equilibrium equations suggest themselves. The first, which we shall 

label "the Consumptive Equilibrium Equations ", would have it that 

the optimal consumption series (Ct, Ct +1' 

e 

, CT) must be completely 

expended on consumption goods. The second, which we shall call "the 

Goods Market Clearing Equations ", would have it that the demand for 

each consumption good must be equivalent to its supply. Supposing 

for the moment, that the prices and available supply of consumption 

goods and the optimal consumption series of each agent to be known, 

we may approach the task of decomposing each agent's optimal consumption 

vector into a vector of consumption goods by a procedure analogous 

to that employed in section 6.1. We proceed, therefore, to illustrate 

the method. 

Supposing there to be 1 consumptive dates, m economic agents and 

n consumption goods, then there are lmn consumptive expenditures 

to be determined. There are lm "consumptive equilibrium equations" 

and In "goods market clearing equations" by which to determine the 

above expenditures. Since 1 of the "goods market clearing equations" 

may be derived from the other 1(m +n) -1 equations, there are thus 



1(m +n -1) independent equations by which to determine the lmn consumptive 

expenditures. This represents a deficiency of 1 [mn- (m +n) +1-, of 

independent equations over the unknown consumptive expenditures. 

These equations, or "nearly all "72 of them, would need to be specified 

if we are to build even the simplest goods market into the Fisherine 

system. 

In Table 6.8 these principles are applied to the data of Table 6.2. 

Recall that there are 1 = 2 consumption dates and m = 2 economic 

agents in this example. If, in addition, we suppose there to be two 

consumption goods available at each consumptive date, it follows 

there 1(m +n -1) =6 independent equations by which to determine lmn = 8 

unknown consumptive expenditures. Two independent equations must, 

therefore, be exogenously specified. For illustrative purposes we 

shall take q1,1 = 22.475 and q1,2 = 100.000 thus rendering the system 

determinate. The reason `for this choice will become evident as we 

proceed. The consumptive solution implied by these equations and 

those contained in Table 6.8 is displayed in Table 6.9. 

The content of this Table may be employed to examine the utility 

of C.P.P. financial information to the owners of productive facilities. 

Observe that the weighted average price of consumption goods at time 

one is 
3093.12 

or 10.909, whereas at time zero the equivalent 
283.536 

figure is 
2 10.9090 ,449.50 

or 10. The ratio of these figures - 1.0909 
244.95 10 

is a "price index" of prices at time one in terms of prices at time 

zero. Using this index, we exhibit in Table 6.10 the C.P.P. income 

statement for the optimal productive strategy depicted in Table 6.3. 

The income figure portrayed therein may be dissected further, as follows 

72. Some of the equations may need to be exogenously specified. See 

Friedman, M. "A Theoretical Framework for Monetary Analysis ", 

Journal of Political Economy., 78, 2 (March 1970), pp. 217 -222. 



TABLE 6.8 

EQUILIBRIUM EQUATIONS 

Consumptive Equilibrium 

= 

= 

1,224,75 

1,224.75, 

4 Equations 

1081,1 + 10q 
2'1 

10g1,2 + 10g2,2 

10q'1,1 + 12q'2'1; = 1,546.56 

10q'1,2 + 128'2,2 _ 1,546.56 

Goods Market Clearing 4 Equations 

q1'1 + g1'2 = 122.475 

q2'1 + g2'2 
122.475 * 

qt1'1 + W1'2 = 154.656 

qí2'1 + W2'2 
= 128.880 * 

* Redundant equations 
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TABLE 6.9 

CONSUMPTIVE EQUILIBRIUM 

Good Agent 1 Agent 2 Totals 

Units £ Units £ Units £ 

1 22,475 224,75 100.000 1,000.00 122.475 1,224.75 

2 100.000 1,000.00 22.475 224.75 122,475 1,224.75 

Totals 122,475 1,224.75 122.475 1,224.75 244.95 2,449.50 

1' 34.656 346.56 120.000 1,200.00 154.656 1,546.56 

2' 100.000 1,200.00 28.880 346.56 128.880 1,546.56 

Totals 134.656 1,546.56 148.880 1,546.56 283.536 3,093.12 
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TABLE 6.10 

REAL REALIZED INCOME FOR THE INTERVAL [0,1] 

3,093.11 Sales (224.7449 x 13.7628) 

Expenses 

224.75 

224.74 

Factor x (22.4745 x 10) 

Factor y (22.4745 x 10) 

Factor z (2000 x 1) 2.000.00 

2.449.49 

Realized income 643.62 

Fictional realizable cost savings 

(2,449.49 x 0.0909) 222.68 

420.94 

Fictional unrealized cost savings 

Real realized income 420.94 
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Consumptive units available at 

Units price Total 

time one 283.536 10.9090 3,093.11 

Consumptive units invested at 
time zero 244.95 10.9090 2,672.17 

Real realized income 420.94 

Fictional realizable cost savings 222.68 

Realized income 643.62 

Recall that although only type U agents possess productive 

opportunities, each type J agent contributes half the amount required to 

finance the type U agents' productive investments at time zero. As such, 

each type U and type J agent combined sacrificed 122.475 units of goods 

73 
one and two respectively at time zero. At time one this "investment" 

returns an entitlement to 154.656 units of good one and 128,880 units of 

good two. Note that the C.P.P. income (real realized income) of the 

interval (0,1) is the excess of the consumptive units available for 

consumption at time one over the consumptive units "invested" at time 

zero "valued" at the weighted average price of units available for 

consumption at time one. In this sense the C.P.P. income records the 

"increased" command over goods one and two accruing to each type U and 

type J agent collectively as a consequence of the productive investments 

made at time zero. 

73. The consumptive units sacrificed at time zero are computed by dividing 
the amount invested at time zero (2,449.49) by the weighted average 

price of goods available for consumption at time zero (10.00). We 
then have 2,449.49 = 244.95 units are sacrificed at time zero and 

10 

this may readily be decomposed into goods one and two by observing the 
ratio in which these goods are produced is one to one. 



Before concluding this section, we make a short comment on the 

place of the fictional realizable cost savings within the C.P.P. 

measurement scheme. From the computations conducted above, it should 

be clear that the fictional realizable cost savings represents that 

part of realized income which is necessary to maintain the agents' 

consumptive potential at time one at 244.95 units.74 The obvious 

difficulty with this line of reasoning is that the ratio of good one 

to good two is different at each consumptive date and as a consequence, 

it does not seem legitimate to take their difference in striking the 

C.P.P. income of the interval. 

This completes our treatment of the accounting measurement systems 

specified in chapter four. We now summarize the content of the present 

chapter. 

74. Note that the excess of the weighted average price of goods available 

for consumption at time one over the equivalent weighted average price 

at time zero multiplied by the consumptive potential at time zero 

yields the fictional realizable cost savings of the interval [0,11 
That is 244.95 x (10.9090 - 10) = 222.68. 
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6.4 Summary 

The objective of this chapter was to provide the means for 

rationalizing each of the measurement systems specified in chapter four. 

In this respect, we chose as the point of departure, the general equili- 

brium theory of Irving Fisher. A sufficient reason for doing so was 

that Fisher's work is the foundation for the Sharpe -Lintner asset pricing 

model, but unlike that model, it is not restricted to a single productive - 

consumptive interval. 

Having analyzed the mathematical foundations of the Fisherine system, 

we illustrated its implementation by means of a practical example. The 

example, in fact, was designed to fulfil a dual purpose. Its main 

function was to serve as a device through which to examine accounting 

propositions concerning the firm but, as a secondary objective, it was 

intended to "sharpen" the mathematical foundations of the Fisherine 

system presented in the previous section. 

We then proceeded to examine each of the measurement systems 

introduced in chapter four in the context of the Fisherine system. We 

found that Fisher's work contained both a priori and empirical implications 

for replacement cost measurement and that these provided only partial 

support for the predictive properties attributed to current operating 

profit by Edwards and Bell. In contrast, Fisher's analysis seemed to 

corroborate much of what Edwards and Bell had to say about market value 

measurement. As a final exercise, we examined the C.P.P. system of 

accounting measurement. Fisher's work seemed to be of little assistance 

in providing a satisfactory rationale for this measurement scheme. We 

expressed the view that the full potential of Fisher's work to this 

measurement scheme would not be realized until the link between utility 

functions for consumption goods and utility functions for consumption 

expenditures was more completely specified. 



APPENDIX 6A 

INCOME NUMBER PREDICTIONS 

Several empirical studies have investigated the predictive 

properties of accounting income numbers. Those most cited in the 

literature are the following 

Frank, Werner. "A Study of the Predictive Significance 
of Two Income Measures ", Journal of Accounting Research, 
7,1 (Spring, 1969), pp. 123 -36. 

Simmons, K. and Gray, J. "An Investigation of the Effect 
of Differing Accounting Frameworks on the Prediction of 
Net Income ", The Accounting Review? 44, 4 (October 1969), 

pp. 757 -76. 

Buckmaster, D.A., Copeland, R.M. and Dascher, P.E. "The 
Relative Predictive Ability of Three Accounting Models ", 
Accounting and Business Research, 7,27 (Summer, 1977), 
pp. 177 -186. 

Each of these studies either eschews the a priori foundations 

of income predictions or suggest rather ambiguously and without 

elaboration that knowledge of a prior income series facilitates 

prediction of future income numbers. That a theoretical foundation 

for such propositions is required is demonstrated by the fact that 

several hypotheses are consistent with the empirical evidence. This 

fact is amply illustrated by Table 6.11. 

Table 6.11 provides purely empirical estimates of the relationship 

between various accounting income numbers based upon the method of 

simple linear regression. In words, the relation 

_.(+ /6xJ +fiJ 

was estimated from the data of Table 6.6. yj+1, the independent 

variable, is regressed against the lagged dependent variable x. 
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to obtain the "least squares" estimates a and b of the parameters 

"( and/ 5. Estimates of these parameters (for each of eight regressions) 

are listed in columns four and five of Table 6,11, If we now assume 

the error terms (j, j = 1,2, , n to possess independent normal 

frequency functions and that /6 = 0, it follows that the variable 

(n -2)b2Z (xj -x) 
2 

F - has an F(1,n -2) frequency function (see 

e 

J 

footnote 58 to this chapter). We are thus provided with a means of 

testing the null hypothesis, H, 
0 

:16= 0 against the alternative 

hypothesis, H1:6 O. Column 7 of Table 6.11 contains the F 

statistic for each of the eight regressions listed therein. Column 

eight records the level of significance at which the null hypothesis 

can be rejected for each of the regressions. Note that in each case 

the null hypothesis is in fact rejected in favour of the alternative 

hypothesis and that for each regression the relationship is stronger if 

the regression is restricted to those years over which aggregate sales 

is increasing. 

Before analyzing the above results in more detail a brief note 

on the Durbin- Watson statistic (denoted D.W. in Table 6.11) is warranted. 

A necessary condition for the "least squares" estimates (a and b) of 

the parameters A( and /4 to be. "minimum variance unbiased" is that the 

unobservable random variables E. do not exhibit autocorrelation of 

any order. Durbin and Watson proposed a test for the existence of 

autocorrelation in normally distributed errors, based on the statistic 

rt )2 L (e.-e. ) 
= J=2 



wheree 
Yj+1 

- a - bx . Critical values for this statistic are 
J 

tabulated in 

Durbin, J. and Watson, G.S. "Testing for Serial Correlation 
in Least Squares Regression II ", Biometrika, 38 (1951), 
pp. 173 -175. 

Yamane, T. Statistics. Harper and Row, Publishers, Inc., 
1973 pp. 1096 -1098. 

A method for removing the effects of autocorrelation is provided 

in-the latter text. For our purposes, however, it is sufficient to 

note that the existence of autocorrelation implies that the variance 

2 
(b) of b around /6 will in general be underestimated. This, in 

turn, implies that there is a tendency to reject the null hypothesis 

Ho:4 = 0 when, in fact, it is true. In words, adjusting for the 

effects of autocorrelation can only make the "results" worse. For 

some further discussion on this see 

Durbin, J. and Watson, G.S. "Testing for Serial Correlation 
in Least Squares Regression I," Biometrika, 37 (1950), 
pp. 409 -428. 

Yamane, T. Statistics. Harper and Row, Publishers, Inc., 
1973, pp. 998 -1009. 

For the regressions reported in Table 6.11, the Durbin- Watson 

statistic was significant on three occasions and inconclusive for 

two others. Since the three regressions exhibiting a significant 

Durbin- Watson statistic provided the three worst empirical relation- 

ships (as measured by the R2 statistic), we did not adjust for the 

effects of the autocorrelation but rather ignored the affected 

regressions in any further statistical manipulations. 

R.A. Fisher has shown that for bivariate normal frequency 

functions, the statistic z = 1 loge 
i 

r where 



2 9 to 

r 
E xy - nxy 

1/ 
(tx2 

- nx2) ( 11y2 - ny 2) 

1 +/O 

has an approximate normal frequency function with mean E(z) = z loge1 /o, 

where p is the "correlation" between x and y, and variance 
1 

n -3' 
For 

some more discussion on this, see 

Freund, J.E. Mathematical Statistics. Englewood Cliffs, 
New Jersey: Prentice -Hall, Inc., 1971, p.381. 

It thus follows that the variate 

q = 
2-3 

r) (11) 

(1+r)(1 P) 

has a normal frequency function with zero mean and unit variance. The 

above expression may be converted to a (1 -"Q confidence interval for 
/ 

by solving the double inequality - z1 ; q 4 z1 where z1 is the normal 
2i 2K 2x 

deviate corresponding to a probability of (1-.0 that there will occur 

on random sampling a deviation from the mean of z1K 
times the standard 

2 

deviation or greater (in absolute terms). For the regressions not 

exhibiting significant autocorrelation, the following 0.95 confidence 

intervals were obtained 

2 2 
r 

1 0.7425 `< /04 0.9725 0.9132 

3 0.8560 < /04 0.9855 0.9536 

4 0.8100 G /34 0.9535 0.8806 

5 0.6890 4 
/ 

< 0.9660 0.8930 

7 0.7880 4 /0., 0.9760 0.9270 

Note that each confidence interval overlaps to some extent and 

thus on purely empirical grounds it is not possible to prefer one 

regression over another. This point, of course, was made in the text. 
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CHAPTER SEVEN 

A CONCLUDING NOTE 



7.0 Summary 

The theory of accounting measurement is and will remain an 

interminable and contentious area for accounting researchers. For 

if and when a set of basic postulates (or axioms) for accounting 

measurement is defined and agreed upon, it will always be possible 

to specialize the analysis in the interests of simplicity and 

concreteness on the one hand or to generalize it in the interests 

of wider applicability on the other. The ultimate objective of 

this exercise, of course, is to provide a structure of concepts 

and relationships which define a unique set of measurement 

procedures for each potential measurement problem. Thus, for 

example, the "choice" of depreciation method would then resolve 

itself as a deductive consequence of the postulates or axioms. 

The present volume documents our contribution to this objective. 

The foundation and unifying theme of the work is contained in the 

axiom system exhibited in Table 24 of chapter two. We there saw 

that the theory of accounting measurement is grounded upon three 

axioms and it is these axioms which summarize a set of sufficient 

conditions for generating accounting measurements. The axioms, 

in turn, assume the existence of the data set (Pt,t, Lt), where 

Pt is a "property set",,)1,t is an algebra of "resource sets" and Lt 

is a measurement rule. Recall that the triple (P 
t' t' 

Lt) was, 

in fact, called an "accounting measurement space" and that it is 

the specification of this configuration which is the source of many 

(if not all) of accounting's problem areas. 

In chapter three, therefore, we focused more particularly upon 

the nature of accounting measurement. Specifically, we suggested 

that the Stevens' measurement scheme, which is the usual point of 
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departure for discussions focusing on accounting measurement, is a 

useful device for determining the significance of the "numerical 

procedures" applied to measurements when there is a choice in the 

unit (of measurement) in which the results of measurement are 

expressed. Yet, despite the importance which contemporary writers 

on accounting measurement associate with the Stevens' scheme, it is 

doubtful whether it bears any direct significance to the theory of 

accounting measurement if only because it is questionable as to 

whether the collection of admissible measurement rules in accounting 

(historic cost, replacement cost, C.P.P. etc.) is capable of being 

"scaled" (that is, share a common group allegiance) in the sense 

implied by Stevens' work. However, Stevens' scheme was suggestive 

of a simple procedure for measuring the degree of identifiability 

between any pair of accounting measurement rules (a contributing 

factor to the definition of the likeness ratio) and it was also 

demonstrated as being of considerable practical significance to any 

form of empirical research in accounting. In concluding chapter 

three, we investigated a variety of techniques for estimating the 

bias and objectivity associated with accounting measurements. 

Specifically, by imposing the assumption that the measurements 

analyzed represent a random sample from a normal frequency function, 

it was demonstrated how the sample's mean and variance (the sample 

objectivity measure) could be used as a basis for constructing 

interval estimates of the sample's bias and (actual) objectivity 

measurements. 

In chapter four, we completed our analysis of the accounting 

measurement systeim by examining a general model of accounting valuation, 

a scheme which was designed to satisfy a dual objective. Its main 



purpose was to demonstrate that the axiom system exhibited in 

Table 2.4 of chapter two can, in fact, be meaningfully applied to 

measurement problems involving some species of "valuation ", but it 

was also designed to show that the "numerical procedures" associated 

with adjusting a set of historical cost financial statements to 

some alternative basis of valuation, are analogous in principle. 

Recall that the model is founded upon two theorems, the first and 

more important of which provides a means of determining the 

(potentially) realizable "holding gains" accruing on a firm's resources 

during some interval of time T. When the model is provided with a 

replacement cost interpretation, the theorem requires (as an input) 

the accumulated replacement cost of disposals during T. The sheer 

complexity associated with computing this figure has proved to be a 

major bugbear to the adherents of the replacement cost measurement 

model. 

In chapter five, therefore, we examined several methods for 

estimating the replacement cost of disposals over the interval 

CT,T +1) . In fact, five such methods were examined. The first three 

of these, namely the midpoint rule, the trapezoidal rule and Simpson's 

rule, are drawn from the topic of numerical mathematics, a discipline 

which, on the surface, appears to hold considerable potential for 

the problem at hand. Unfortunately, each of these "quadrature 

techniques" assumes the existence of a function which describes the 

rate of change in the firm's accumulated disposals for all t in 

[T,T +1, a quantity which would seldom be known. As such, the methods 

are somewhat impracticable. However, the remaining two methods, 

namely the Edwards and Bell technique and the modified midpoint rule, 

seem to provide a practicable and reasonably accurate means of 



estimation, with the modified midpoint rule being the more 

computationally efficient of the two. 

In the final and somewhat lengthy chapter, we examined the 

economic foundation of accounting measurement. Basing our analysis 

on the capital theory developed by Irving Fisher, we were able to 

provide an economic rationale for each of the measurement systems 

investigated in chapter four. We established, under very general 

conditions, that the ratio of a firm's current operating profit 

to the replacement cost of goods sold during the productive 

interval T is a lower bound for its return (over cost) during the 

next succeeding productive interval (T +1). The realizable operating 

profit (of the market value system) was shown to measure the contri- 

bution of a firm's productive activities (as against purely holding 

operations) to the variation in the firm's market value over the 

productive interval covered by the income statement. Finally, we 

demonstrated that the real realized income (of the C.P.P. system) 

measures the increased command of a firm's resources over a composite 

of consumptive services as a result of the firm's prior productive 

investments. In words, each measurement system was found, for a 

given class of circumstances, to possess some degree of utility to 

the owners of productive facilities. 

There is, of course, a multitude of topics which we have chosen 

either to ignore or furnish with the most superficial of treatments. 

Clearly, little else could be expected from a work of the present 

proportions. This does not deny, however, that a host of further 

generalizations and applications await development. In the next 

section, therefore, we shall endeavour to provide the reader with 

some insight into the likely direction of these investigations. 



7.1 Conclusions and Prognosis 

The line of advance most forcefully demanded by the analysis 

of previous chapters lies in the province of the axiomatic 

foundations of accounting measurement. For whilst the axiom scheme 

exhibited in Table 2.4 of chapter two is undoubtedly a reasonable 

abstraction of the procedures associated with generating accounting 

measurements, it is far too general to be of much practical utility. 

Indeed, as presently constituted, it possesses only the most trivial 

of deductive consequences and is far removed from its ideal function 

as a watershed or "clearing house" for measurement problems in 

accounting. Whether, in fact, it is possible for the theory of 

accounting measurement to achieve the level of sophistication 

implied by this objective is a moot point. Our own view is that 

some improvement upon the axiom scheme exhibited in Table 2.4 is 

inevitable, but that to achieve the ideal is akin to taking the 

"breeks off a hielanman ". 
1 

A second, and far more pressing practical consideration, 

concerns the estimation of the replacement cost of goods sold 

during a financial period. It was claimed in chapter five of the 

text that the Edwards and Bell technique and the modified midpoint 

rule provide a practicable and reasonably accurate means of over- 

coming this obstacle. For firms possessing a "small" number of 

inventory lines this assumption is undoubtedly justified, but as 

1. For an excellent discussion of the problems involved, see 

Morrison, A.M.C. "The Role of the Reporting Accountant Today el ZI ", 

The Accountant's Magazines LXXXIV (October 1970), p.468. 



the number of stock items increases these methods too are likely 

to become increasingly cumbersome.2 It would seem, therefore, 

that there is a need for a comprehensive research programme directed 

toward providing a more satisfactory solution to this problem. Our 

own opinion is that the solution will emerge from a synthesis of the 

methods of numerical mathematics and mathematical statistics. 

Finally, there is the sine qua non of accounting measurement - 

namely, its economic foundations. Although the Fisherine system, 

which was analyzed in chapter six of the text, was found to be a 

useful device through which to examine accounting propositions 

concerning the firm, we would be practising self -delusion if we 

were to pretend that it does not possess "weaknesses ". The first 

of these concerns the introduction of productive resources into 

the Fisherine scheme. Recall that the text of the present volume 

introduced the firm as a device through which contemporaneous 

consumptive resources are productively transformed into future 

consumptive services, and that for reasons of simplicity and clarity 

of exposition, this was achieved by considering the firm to consist 

of a sequence of cash based ventures. Although this aspect of the 

topic of capital theory is one of the most formidable and intractable 

spheres of economic science, there is a handful of standard (albeit 

conflicting) expositions which may be "productively" utilized by 

2. To illustrate, suppose a firm which carries m inventory lines, applies 
one or other of the above rules on n occasions during an accounting 
period. Since each of the m inventory lines requires n (per unit) 

replacement costa and n periodic sales figurq3, this implies that a total 

of 2mn pieces of datum must be supplied (per accounting period) if the 
rule is to be applied to inventory in its entirety. Thus, for example, 

a firm possessing m = 10,000 inventory lines and which utilizes the 

rule on a monthly basis (n = 12, as suggested in the text), requires 

2mn = 2 x 12 x 10,000 or 240,000 pieces of datum (per annum), if the 

rule is to be comprehensively applied. Our view is that firms in 

possession of a computing machine would find this a rather trivial 

exercise, provided the data collection phase (unit replacement costs 

and periodic sales) of its operations were efficiently organized. 



accounting theorists. We are here, of course, referring to the 

Knightian, Bohm -Bawerk and "durable goods" concepts of "real capital ". 
3 

In our view, it is only by examining these more "realistic" approaches 

to "real capital" theory that the relevance of the "accrual accounting" 

measurement systems to the owners of productive facilities, will emerge. 

A second consideration concerns the incorporation of risk and un- 

certainty into the Fisherine system. Recall that in a world of 

uncertainty, firms may produce information about themselves as well 

as undertake physical production. Although some progress along 

these lines has been made, there still remains much to be done. 
4 

3. Hirshleifer, J. Investment, Interest and Capital. Englewood Cliffs, 
New Jersey: Prentice -Hall, Inc., 1970, Chapter 6. 

4, Gonedes, N.J. and Dopuch, N. "Capital Market Equilibrium, 
Information Production, and Selecting Accounting Techniques: 
Theoretical Framework and Review of Empirical Work ", Studies on 
Financial Accounting Objectives, 1974, pp. 48 -129. Supplement 
to Journal of Accounting Research, 12 (1974). 
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