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INTRODUCTION

Logarithmetics and index polynomials originated in

Etherington' s study of train algebras of rank 3 (cf.

(12)j {16}). In (16) Etherington showed that if X, p

are the right and the left principal train roots and X

is a non-idempotent element of the algebra then
2 2

X = X + u, uX » Xu, Xu = pus u » 0, where u «

X^ - X . It follows that X*5 « X + 9 u where 0
F F

denotes a polynomial in X and p, the index 9-polynomial

of the index P or the power X^. ^-polynomials were

introduced in the same paper; ^*=1+ (X + p - l)0p
(X + p y* 1), i.e. if v » (X + p - l)~^u and I = X - v

then X^ » I + sjipV .
These concepts were further developed in a research

course given by Etherington in 1954-55 at the University

of Edinburgh in which he discussed his previous work and

some new results which he later published in (IS) and

(19)® During this course, which the author attended,

Etherington suggested representations of the free loga-

rithmetic by index polynomials in non-commuting indeter-

minates and by bifurcating root-trees. The intimate

connection between these was pointed out by the author

and developed in (25). This paper is incorporated in

Chapter I . Index polynomials are defined there as sums

of terms which can be interpreted as coordinates of



certain knots in the corresponding tree. Apart from

the and the 9-polynomials two further types are de¬

fined, the X.- and the a>-polynomials. The latter are

used in Chapter IV to define X2 -trees, a generalization

of bifurcating root-trees to trees of infinite altitudes.

In Chapter I we also prove two inequalities relating

the potency and the altitude of a bifurcating root-tree

to its mutability; these results were obtained in (30).

Etherington (15) gave a most elegant interpretation

of indices of the free logarithmetie and of some of its

homomorphs as partitions. This was pursued further by

Hourston (24). His approach however was purely forma¬

list and is not acceptable to the author (see the intro¬

duction in Chapter IV). A constructivist theory of

bifurcating root-trees of infinite altitudes is deve¬

loped in Chapter IV (cf. (31))*

Etherington (15), Robinson (36) and Evans (22) gave

systems of postulates for the free logarithmetic .

Evans also obtained some results in the non-associative

number theory. This was followed by the author in (26);

the contents of this paper constitute Chapter II.

Chapter III contains mainly results obtained in (27).

The only addition is a section on index and ©-poly¬

nomials in commuting indeterminates A, p. This is the

only part of the thesis which has not been previously



published or submitted for publication by the author.

The thesis concludes with Chapter V on enumeration of

indices (cf. (27), (26), (29)).
The author is indebted to Dr. I.M.H. Etherington for

his supervision, advice and constructive criticism in

the writing of this work.
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CHAPTER I. INDEX POLYNOMIALS AND BIFURCATING ROOT-TREES.

1. THE FREE LQGARIXHMETIC

A groupoid is a set closed with respect to a binary

operation. It is cyclic if it is generated by one

element.

Let x be the generator of the free cyclic (multipli¬

cative) groupoid (X . Then any element of Oi can be
P

written in the form x where

x"*" * x and XQ*& = x <x** •

Thus, e.g., x((1+1)+(1+{1+1)))+l « {(xx)(x[xx)))x .

P
Call P the index of x and the above defined binary

operation on indices - addition of indices. We say that

two indices Q and R are equal and write Q * R if and

only if ^ » xR.
For brevity we can use the symbols of natural numbers

for the right principal powers:

X1 - X, X2 » X^X, X? ■ x2x, ... , xn » xn~^xf ...,
and similar symbols with dots to denote the left prin¬

cipal powers:

X"*" « x, x2 « xx"*", x^ ■» xx2, ... , xn « xxn~•
The set of all indices C/ and their addition form a

cyclic groupoid generated by 1. Call it the additive
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free logarithmetic* and denote it by is ob¬

viously isomorphic with 01 .

We define for Cf another binary operation of multi¬

plication: PQ is defined by

xP« - (xP)S.
We easily prove that the multiplication is associa¬

tive and right distributive with respect to addition:

XFQ.R „ (xPQ,K . ((XP,Q)R . (XP)QK . XP.QR.

and xP<Q+R' - (xP)«*R - (xp)<MxP)R - xP«xPR - xP«+PR.
The semi-group formed by the set of all indices Cf

and their multiplication is called the multiplicative

free logarithmetic and is denoted by . 1 is the
y

identity element of X .

In this chapter we investigate the properties and

representations of the algebra of indices with the two

operations, addition and multiplication, which we call

^ree logarithmetic and denote by .

*
This is Etherington's free logarithmetic B (cf. (17))
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2. BIFURCATING ROOT-TREES

Indices can be represented graphically by bifurca¬

ting root-trees which may be defined as follows:

Definition* (a) • and \^/ are bifurcating root-
trees;

(b) If (P) and (Q) are two bifurcating

(Pi AQ)
root-trees is also a

bifurcating root-tree.

Trees will mean bifurcating root-trees unless otherwise

stated.

The points of a tree where lines meet or terminate

are called knots, V.e call the diagram a fork. its
"i H

upper two knots its left and right ends, its bottom

knot the node of the fork and the two lines joining its

knots the left and the right arm of the fork. A knot is

said to cover another knot if the latter is the node of

a fork of which the former is an end.

In each tree there is exactly one knot which does

not cover any other knot; it is called the root of the

tree. The knots of a tree which are not covered by other

knots are the free ends of the tree. In the tree • the

only free end coincides with the root of the tree.

(P) Ad)
, ,The tree \ / is called the sum of trees (P)
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arid (Q) which are respectively the left and the right

subtrees of the first order of , We write

(PI iQ)
(P) * (Q)

If (S) is a subtree of the first order of a subtree

of (n-l)th order of (R) then (S) is called a subtree of

(R) of nth order.

Example.

is a subtree of 2nc* order of

The other subtrees of 2nc* order are •

Since » • + • , it follows from the inductive

definition of trees that any tree can be generated by

repeated addition of • . Hence the set of all trees and

their addition form a free cyclic groupoid, obviously

isomorphic with .

The fundamental correspondence is 1 «—>• • • For

example

(1 + (2 * 2)} + 1 —

We can now define multiplication of trees so that ^ ,

the algebra of trees with the operations of addition and

multiplication, is isomorphic with ££ .
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Definition. The product (P)(q) of two trees is the

tree obtained by joining to each free end of (Q) the

root of a tree identical with (P).

Examples. If (P) « and (Q) ®X. /

Evidently multiplication of trees is right-distri¬

butive.

It can be easily proved by non-associative induction

that if indices P, Q correspond to trees (P), (Q) then

their product PQ corresponds to tree (P)(Q). Thus

is isomorphic with ^ . Because of this isomorphism we

can use the terminology arid the notation for trees and

for indices indiscriminately. We can also write ■

without ambiguity in place of <—> , or even speak of

the tree 1, a tree P + Q, etc.

*
Principle of non-associative induction; A proposi¬

tion Z involving index X is true for all X e ^ if Z
A JL

is true and (Z and Z ) => Z . (Cf. (15), P» 446.)
This can be proved by appeal to the principle of ma¬

thematical induction which in turn must be regarded as

the fundamental intuitive principle of mathematics.
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3. KNOTS AND TBRKS

Given any knot other than the root there is one and

only one knot in the tree which is covered by the given

knot, vis. the node of the fork of which the given knot

is an end. Hence the chain of knots of which the root

of the tree is the first and the given knot the lest

element (v. (6), p. 10} is uniquely determined. Thus
we can determine uniquely the position of any knot in

a tree by specifying for each knot in this chain, other

than the root, whether it is a left (k} or a right (p}
end.

Sxample.

In the tree knot I is a left end,
knot II is a right end,

mK / knot III is a left end,
knot IY is a left end

and knot I can be specified (reading from knot to

root} by the ordered set (k, p, k, k).
In general: the root can be represented by the empty

set and any other knot by the ordered set (k, v^, v^, ...}
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or by (ji, v^, where (v^, v^, ..♦) is the set
representing the knot covered by the given knot, according

as the latter is a left or a right end.

It will be convenient to virite these ordered sets as

products, so that a knot is represented by a monomial
O

in X, p (e.g. XpX ) which will be called its term, and to

add terms to form polynomials. These polynomials will be

subject to the ordinary laws of algebra, excepting the

commutative law of multiplication. Thus we shall be opera¬

ting in the ring $lLjX,p] obtained by adjoining two non-

commuting indeterminates X, p to the domain KYL of inte¬
gers. T?l,[X,p] consists of all polynomials in X, p with

integer coefficients .

Definition, (i) The term of the root of a tree is 1.

(ii) The term of a knot, which covers a

knot whose term is v, is Xv or pv according as the

former is a left or a right end.

It follows immediately from the definition that if a

tree contains a knot whose term is v.v v . ..v (where
1 c J R

« X or p as the case may be) then it contains all the

knots whose terms are right divisors of viv2v3***vn*

*

Although the index polynomials to be introduced have
only positive integer coefficients, minus signs are needed
for expressing relations connecting different index poly¬
nomials.
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4. ALTITUDE. POTSKCI AMD MUTABILITY

We define the altitude of

an index P

as the ordinal num¬

ber ap such that
a * 0 and

V 1 * maj=<CtQ.aR>-

a knot

as the degree in
X, p, of the corre¬
sponding term a

(Alternatively
we define the al¬
titude of the root
as 0, and that of
any other knot as
equal to 1 + (al¬
titude of the knot
covered by it).)

a tree

as the maximum of
the altitudes of
all its knots.

Further, we define the potency of

an index P a tree P

as the cardinal number Bp
such that ^

S, « 1

Q+ii *Q + SR*
(Alternatively: 6p is

the number which P denotes
if all symbols in P are
interpreted as numbers and
operations in ordinary
arithmetic.)

as the (cardinal) number 5p
of all free ends of P.

(Alternatively:
(no. of forks in P) + 1.)

*
Called "degree of an index" by Etherington (11), (15)

and Popova (34) and "length of a non-associative number"

by Evans (22). The terra "potency" is to be preferred

here in order to avoid confusion with degree, in the

ordinary sense, of the corresponding index polynomials.
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It Is easily seen that these definitions are con-

Two trees are said to be conformal if the correspon¬

ding indices become equal when addition of indices is

commutative. A knot of a tree P is called unbalanced if

the subtree of P of which the knot is the root has non¬

conforms! subtrees of the first order; otherwise it is

balanced. The mutability pp of P is equal to the number
of unbalanced knots in P. Thus the number of trees con-

formal to a given tree P (or indices conformal to a

given index P) is 2 . We have (cf. (11)):

sistent with the isomorphism of X and ^

Example.

P « (1 ♦ 2.2) ♦ 1 =

The terms of the knots are

X2pXt pXpX, Xp2X, p^X, XpX, p^X, X2, pX, X, p, 1

Their altitudes are

4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0,

respectively; and we have

Up m 4, 6p * 6, pp - 2.
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From the definition of the product of two trees we

deduce the formulae

8pg ■ 8rB4' °PQ - ap + V ^pq - Vp + "g •

These are easily provable by non-associative induction

applied to Q.

Etherington has shown (11) that a , & , p must

satisfy the following conditions:

(1) 2a > 5 > a + 1 ;

(2) 5>p+2 (o f 1); the equality holding only

when o « a + 1, i.e. when the tree is primary

(v. infra,§ 5)}
(3) p < 3.2a"3 - 1 (a > 3).

For a given 6 or a given a conditions (2), (3)

prescribe the maximal value for p. In this section we

find two minimal conditions for p and show constructi¬

vely that for any given non-negative integers a, 5

satisfying condition (1) the least number satisfying

these minimal conditions is in fact the mutability of

a tree of altitude a and potency 6.

Potency S can be expressed uniquely as a sum of hp
distinct powers of 2 : $ * 2*' + 2^z + ... + 2ih
(i^ > i^ > ...>i^ >0). Obviously i^ » [log^ b] and
h is equal to the sum of digits in § written in the

binary scale of notation.
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LEMMA. + ii„ > h„ „ .

P Q — P*Q

For clearly in any scale of notation the total sum of

digits in several natural numbers cannot be exceeded by

that of the sum of these numbers.

THEOREM 1.1 . Let 6 and fa be the potency and the

mutability of a tree P and let S ® 2*' + 2*2 + ... + 2^h
(> ig > ... > i^). Then u > h - 1 .

Proof. Use non-associative induction.

If P ■ 1 : p * 0, 6 • 2C, hence h «= 1 ana p » h - 1.

Let P « Q ♦ R and assume that the theorem holds for Q

and R. Then (i) if Q and R are not conformal

p ■ p ♦ p + 1*Q+R >Q ^R
> (h - 1} «• (h - 1) ♦ 1, by the induction hypothesis ,*"* Q R

* % + V *1
> - 1, by preceding lemma;

(ii) if Q and R are conformal

•W - 2
> 2h - 2, by the induction hypothesis,

ZhQ+R " 2
^ VR " 1 3ince hQ.R ^ 1 •
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THEOREM 1.2 . If a, S, n are the altitude, potency

and mutability of tree P then a - p < log {5 - p) .— d

Proof. If P = 1 then a~p = 0- Q« log2(l - 0)
« log^(6 - p). Let P «= Q + R and assume that
"Q - < logz(6e - „Q) and aR - „R < log2(bR - nR).
Without loss of generality assume that a > a , Then

Q K

(i) if Q, R are not conformal

V* " WQ+R " (°Q * X) " (,1« * "R + 11
- (aQ - HQ) - (aR - nR) - dK
< log2(Sa - ♦ log2(i>R - nR) - log2dH>
using the induction hypothesis and a > log 5,

&

" l0g2i6Q " * *,»
<i0g2tss - ^ ♦ &B - „R - 1),

Sln0e ^'rK V * ° 5 SR * hi * l>
■ log (5 - p ) .

2 Q+R Q+R

(ii) if Q, R are conformal then S « b , p • p
Q R Q R

and VR " VR * (oQ * 11 ■ 2"Q
- <°Q - fQJ * 10«Z2 - "q
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< log2{2c^ - 2pg) - ugJ
by the induction hypothesis,

< log2^2SQ " 2'UQ)
° i0S2!SQ+R ' >W *

THEOREM 1.3 . Let a, S be non-negative integers

such that a + 1 < 8 < 2a and let

5 - 21' + 2iz+ ... + 2ih (i_ > i_ > ... > i,> 0).1 2 h -

If p is the least integer such that

a. ~ \i < log2(S - p) (I)
and n > h - 1 , (II)

then there exists a. tree (in general not unique) of

altitude a, potency S and mutability p *

Proof, (i) If a < i^+ h - 1 then the tree
(({(2i,^2i2)+ 2lj) + ...) + 21") + (2^p*' * (2i'3+2+ (...+ (2"L|'"1 + 2±t7 ))))»
where p * a • i^ < h, has altitude a, potency S and
mutability h - 1. Moreover, since any number less

than h - 1 contravenes condition (II), p - h - 1.

(ii) If a > i^ + h then o can be written in the
form 5 « 23' ♦ 2^z + ... + 2J* where k * a - j ♦ 1 and

either (a) Jx> J2 > ••• > Jk-1 * j'k ,

or (b) >3r„i> Jr> Jr+1* Jr+2 = * 0 <r-3)»
or (c) J1> j2 - j « ... = - 0.
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This can be done as follows. We first partition 2*"h in¬

to powers of 2, seeking to make k, the number of terms in

an expression for 5, equal to a - i 1 so that

i^+k-l«a. If a<i +h-2 + 2^h we can achieve
that by partitioning 2^ and thereby obtain an expression

of the form (a), (b) or (c). If a ® i^ + h - 2 ♦ 2iy>
we can just do it by partitioning 2 ^ entirely into l*s

(then k » h - 1 + 2 11 = a - i^ + 1 }. If a exceeds
this value we partition 2*h_l also; and so on. If in

the course of this process we obtain an expression

2n+l + ... ♦ 1 (n > 2) and the number of terms is

still insufficient the next step in partitioning is

2n+ 2n""* + 2n~*" ♦ 1 + ... + 1 because the values

of M+ k - 1" for 2n + 1+ ... + 1 and for

n—1 n-1
2 +2* + 1 ♦•••■#■ 1 are equal and in what follows
both partitions would yield the same tree. Thus the

first two terms in an expression for 5 are never equal

and k > 3 unless k » h. Finally If a has its maximum

value 5-1 we reach 6«2+l+ ...+1, where

j • 1,

Now consider the tree (((2J| + 2^) + 2^ ) +...) * zK
Its altitude is a, its potency 5 and its mutability

k - 1. In order to prove that p « k - 1 we have to

show that no tree can have altitude a, potency 0 and
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mutability k - t where t > 1, We prove that

a - (k - t) > log2(5 - (k - t)} .

If (a), then S < 2J"' + 2^rl * ... + 2Jr<km2) + 2,*r*k~2}
* 2**+1 < 2^,+1 * k - 3 since k > 3 .

If (b), then b < 2J| 4 2^"1 +...+ 2^"*r""2^ 4 2j"^r"2^ + (k - r)

* 2**'+1 4 k « r < 2^1 + k - 3 •

If (c), then b « 2^' + (k - 1) < 2J<+1 4 k - 3 .

Thus in all cases S < 2 + k - 3 •

Hence a- (k-t) » j 4 t - 1
« log^ 2^t"'1

/^j+1 -t-2,= log2( 2 1 . 2 }
> log2({6 • k + 3) . 2W)
> log2{(b - k ♦ 3) * (t - 2)}
> log2io - (k - t) } .

5. SUBORDINATES

A fork of a tree is said to be free if both its ends

are free ends.

A fork in a tree P is called the leading fork if

either (1) it coincides with P (if P « 2),
or (2), if P « P» 4 P« (P / 2) and a > aff — P,



• 21 -

it is the leading fork of F',

or (3), if P - P* + Pw (P i 2) and apf< apw>
it is the leading fork of P«.

The leading fork of a tree P is necessarily a free

fork and the altitude of its ends is a

A tree P is called primary if P f 1 and each, of its

forks has at least one free end •

A tree Q is called a first subordinate of a tree P, if

Q can b© obtained from P by removing a single free fork.

It is called an n**' subordinate of P if it is a first

subordinate of an (n-l}th subordinate of P. It is conve¬

nient to regard P as its own subordinate (of order 0).

If q is an nth subordinate of P we call P an nth superior

of Q*

Examples. The (6 - 2)th subordinate of P (o > 2)
I r

is necessarily the tree •

(P ♦ Q) ♦ 1 and (P ♦ 1) ♦ 1 are respectively a

(b - l}th and a (6 ♦ b - 2)th subordinate of (P ♦ Q) ♦ &.
si fit Q

#e say that Q, a first subordinate of a tree P, is the
first principal subordinate of P if Q does not contain

the leading fork of P. The nth principal subordinate of P

is the first principal subordinate of the (n - l)th
principal subordinate of P.
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If all free forks of Q (Q / 1), a subordinate of P,

are free forks of P, then Q is said to be a component

of P. If a component of P is primary it is called a

branch of P.

Example,

The tree P

((2 + (2 + 3)) + 1) * 3

has 4 branches:

and altogether 15 ■ + ^2 ♦ =2^-1
components, obtainable by superimposing any combination

of the branches.

Gall the number of free forks in a tree P (P ^ 1)

the lineage of P and denote it by ^^ is the number
of distinct branches of P. Call the trees of lineage

2, 3, • ••, n binary, ternary, ... , n-ary.

Further, we say that Q is a first total subordinate

of P if Q is obtained from P by removing a single free
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fork from each branch of P (i.e. by removing all free

forks of P). R is the total subordinate of P if it

is the first total subordinate of the (n - l)t^1 total

subordinate of P. Write R « dnP.
We have 8dp - 8p - )fp.

The index dP is obtained from the index P (written in

its shortest additive form) by replacing each

2, 3, 3, 4, 4, 5> 5, 6, ...
by 1, 2, 2, 3, 3, 4, 4, 5, ... .

If P » QR and Q / 1 then dP ■ (dQ) R.

Examples, (i) P ■ ((2 + (2 + 3)) + 1) + 3,

dP - ((1 + (1 + 2)) + 1) + 2 - (4 + 1 ) + 2,

d2P - (3 + 1) * 1, d3P - (2 + 1) ♦ 1 - 4,

d4P «= 3, d5P « 2, d6P - 1.

(ii) P - 3.2, dP - (d3).2 - 2.2 ,

d2P « (d2).2 - 2, d3P - d2 - 1 .
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6. INDEX POLYNOMIALS

Consider the ring '1TL[X,p] of non-commutative poly¬

nomials defined in $3. Suppose that rr is a function

mapping the set of all trees on to TT , a subset of

KK[X,n] : P -* ttp, with the property that whenever
rrp = rrp, and nQ - „Q, then np+Q - trp, +Q, . It can then
be proved by non-associative induction that also

rr « rr
f . We can then define for TT the operations

• W * W

"p ® "q = V«» "p ® "q " "pa-
The algebra TT so determined is said to form a represen¬

tation of the algebra of all trees, by means of

Index tt-polynomials.

Examples. {i) The function mapping all trees on to

a fixed polynomial (e.g. X + pX) gives a representation

(though a trivial one) of ^ .

(ii) The polynomials defined inductively by

tt, « 1, rr « X ( tt + tt )
1 ' P+Q P Q

give a representation of ^ . It will be shown in Chap¬
ter III that these polynomials give a faithful (v. infra)

representation of the free commutative entropic logari-

thmetic, i.e. of the homomorph of % determined by the

congruence relations

P + Q ~ Q ♦ P

(P + Q) + (K + S) (P + R) + (Q ♦ S)
all P,Q,R,S.
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If the correspondence P ■*-*- tTp is one-one the index
tt-polynomials are said to represent ^ {and thus also <£}
faithfully. Faithful representations by index polyno¬

mials are of special interest, particularly in the case

of index polynomials whose terms actually represent

knots in the corresponding trees.

The most obvious polynomials to possess this property

are the ^-polynomials.

Definition. The index ^.-polynomial a tree P is

the polynomial whose terms correspond to all the knots of P,

Obviously = 1 and from the definition of ^-polyno¬

mials and that of a term of a knot it fallows that

X_ " X.X + \ p. + 1
P+Q P

(which is an alternative definition of index X-polyno-

mials).

Evidently the X.-polynomials provide a faithful repre¬

sentation of trees.

The Xj-polynomials, however, are very unwieldy because

of the inclusion of the terms corresponding to all the

knots of a tree.
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7. ^-POLYNOMIALS

It appears that a tree could be completely determined

by the terms corresponding to all its free ends or

equally well by the terms corresponding to all the other

knots. We now introduce two important types of index

polynomials which contain precisely these terms and

eventually we prove that either of these representations

is a faithfull one.

Definition. The index ^-polynomial of a tree P is the

polynomial whose terms correspond to all free ends of P.

Examples.
P - <Jrp • X + p .

2 2
Q ** » X (i ♦ pXp ♦ p. * X .

R - • to " 1 •it

There are b terms in {P ^ 1).
* r

THEOREMS • (i) *x " 1 .

*P.Q * *PX + V '

un *PQ - vQ •

(N.B. (i) provides an alternative definition of ^-poly¬

nomials. )
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Proof, (i) The terms corresponding to the free ends
(PI (Q)

of \/ are the terms corresponding to the free ends

of P post-multiplied by X (i.e. those of ijfpX) and the terms
corresponding to the free ends of Q post-multiplied by p

(i.e. those of This follows from the definition of

the term of a knot (v. §3)»
(ii} is provable by non-associative induction applied

to Q. The theorem is true for Q = 1 :

*P1 s *p ■w
Assume tpR " and ijfp « then

^P{R+S) " ^PR+PS " ^PRX +
c ♦ptp* * tp^oP, by induction

hypothesis,
* *P^RX +
" VW by (i! •

This direct representation of multiplication of trees

(or of indices) by multiplication of the corresponding

^-polynomials is very convenient, particularly in the

study of factorization of trees and indices.

The f-polynomials obviously provide a representation

of ^, since to each tree corresponds a uniquely deter¬
mined index ^-polynomial. We prove that this represen¬

tation is faithful.
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LEM-MA» If is an index f-polynomial and
C 91X + V*' \ * 92 6 ^ t X>^

then tj> , «p are both index ^-polynomials and are uniquely

determined.

For P ^ 1; therefore P = Q + R and ^"p * tqk ♦
Each term of has a well-determined last (right) factor,Jr

either A or p. The terms having A for last factor are

those of Hence ^q is uniquely determined. But also
f^A contains all the terms of <jfp ending in A. Therefore
<P1X = ^.<X' i,e* similarly

THEOREM 1.5 . Index ^-polynomials represent faith¬

fully the algebra of trees ^ (and thus also the logarith-

metic aL )»

Proof. It suffices to prove that

(tp " (P " Q) (A)
Use induction on a_, the altitude of P.P

If a = 0, P = 1, Tr » \jr =1 and Q » 1.
P ' P Q

Suppose (A) is true for ao < a. Let = a (>0)
and let P = P^ + P^ and Q » + Q , Then
+t> " + ^ + i,M and, by the Lemma,t rt tz W Q,

^ ^ are uniquely determined index \^-poly-° ° Qi Qz
nomials. Thus » & implies , tD " ^ and»P Q 1] Q| "i Q2.



- 29 -

since altitudes of P, , Q. , P , CL ara less than a,JL X d d

by the induction hypothesis P « Q , P0 « Q„,J. j. d d

i.e. P ■ Q .

8, 9-POLYNOMIALS

Definition. The index 9-polynomial of a tree P is

the polynomial whose terms correspond to all nodes of P

(i.e. to all knots of P which are not free ends). 9^ « 0.
THEOREM 1,6 . (i) ©1 - 0,

{This is an alternative definition of ©-polynomials.)

Proof, (i) The terms corresponding to nodes of

are those corresponding to nodes of P post-multiplied

by X, those corresponding to nodes of Q post-multiplied
(P1 1Q

by p and the term corresponding to the root of \/

Hence the result.

(ii) The formula is true for Q = 1:

9ni = 9=9*9 + ♦ P - 1) 6 since 9 - 0.rl r r X r X X

%>+Q * ©pk ♦ 9QP + 1 *

(ii) epQ - ep ♦ ©Q ♦ 9p(x + p - i) eQ
(iii) - l ♦ (x + p - l) e_

r Jr

(iv) \p - ©2p = 1 + (X + p) 9p .
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Assume that it is true for Q « R and Q « S,

i.e. 9pii " 9p 4 0R 4 8p(X + p - 1)8R ,

0PS " * ®S + + ^ ~ i)«s *

Then

0P{R+S} " ePE+PS
* Opv^X 4- fipgji. 4 1
« (9p + eH + ©F(X4p~i)eR)x + (6p + e3 + ep(x+n-i)e3)Mi
88 8p + ^®|r^ * + ^-) + 8p(X + p «"1)(8RX + * 1)
" SP + Vs + 8P(>1 + " - 1)8H»S •

Alternatively, we can prove (iii) first and then

(X-H-l)9p(J - *pQ - 1
« dr * - 1Vq
•11+ (x +(i - i)©p)(i + (\ + p-i)eQ) - 1
* (X + p- l)(0 -f 9 4 9 (X*|i -1)8 ) •

r q r q

(iii) ^ « 1 » 1 4 (X 4 jo, • 1)9^, since 0^ « Q.
To prove the formula by induction assume

® 1 4 (X 4 p «» 1)6 and « 1 4 (X 4 (t • 1)8 .
Q Q h. R

Then +q»r " V ♦ V
- (l 4 (\ 4 n - i)eQ)x 4 (i 4 (x 4 p - i)eR)p
«= 1 4 (X 4 p - 1) (8 X 4 9 P 4 1)

%4 it
. l . U ♦ n - 1)9 .
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(iv) Xp * \j?-p + 9p , by definition of these index
polynomials,

•» 1 ♦ (X + p - l)ep + © , by (iii),
- 1 ♦ (X + p.)Qp
" G2P' by {ii} *

From the formula * 1 ♦ (X + p - l)ep and Theorem
1.5 {or equally well from the formula \? » 1 + (X + p)9p)
follows

THEOREM 1.7 . Index ©-polynomials represent faith¬

fully the algebra of trees ^ (and thus also the logarith-

metie <£ ) •

A necessary and sufficient condition that a polynomial

9 e m,[X,p] should be an index ©-polynomial is that
either 9=0

or 9 ■ 9 X + 9 u + 1
X 2

and both 9 and 9 are ©-polynomials.
x 2

We can have, however, a much more direct criterion:

THEOREM 1.8 . A polynomial 9 e /WL [ X,p] is an index

©-polynomial if and only if: either 9 » 0

or (i) all coefficients of 9 are equal to 1

and (ii) with each of its terms 9 contains also all the

(positive} right divisors of that term.

To prove the necessity, i.e. that

(9 » ©p)=>(9 «= 0 or (i) and (ii))
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use induction on the altitude of P. The conditions are

evidently necessary for a «= 0 and 1. Assume necessity

for a < a (a > 1) and let « a. Then

0p « A -*• 9p {i, + 1 where and P^ are the subtrees
of P of the first order and their altitudes are less

than a. (i) obviously follows from the induction hypo¬

thesis.

If cp contains a term .. .v^A (where each
vi « A or p) then must contain the term vxv2v3**#vk
and, by the induction hypothesis, all its other right

divisors: v2v3**,vk» v3***vk» *** ' vk» * Hence cp
contains the terms ^^...v^A, ^...v^A, ... , A
and since it also contains the term 1 it contains all the

right divisors of viv2V3 * * *vk^* Similarly for a term of
the form v' viv* .. .v* u.

12 3 n

We prove the sufficiency of conditions (i) and (ii)

by induction on n, the degree of <p in A, p.

If n = 0, f « 0 or 1 and <p » 9^ or
Assume the conditions are sufficient for polynomials of

degree less than m (m > 0) and let cp be of degree m.

Then (ii) implies that cp has a term 1, i.e. we can write

f« + ^ ^ anci T satisfies (i) and (ii) then

so do <p^ and cp^. Hence by the induction hypothesis cp^,
cp^ are 9-polynomials and so is cp.
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An immediate consequence of the foregoing is that the

9-polynomial of a primary tree is uniquely determined by

its leading term (i.e. the term of highest degree in A, p).
We say that a tree F is the union of trees P, , P P ,

i > 2 » r»
r

and write , ,
p - Pxu P2u...upr - Vj ?±i»l

r

if {«,} -fVu{Vu-0{V"Ut8^
where { 6 J denotes the set of all the terms of 9n .
r W W
[^J P. is therefore the least common superior of the P.'s.
i=l 1 1
It is easily seen that Q is a subordinate of P if and

only if {0 } C { © } .Qi - <• P

THEOREM 1.9 • Any tree P f 1 is the union of its

branches P^, i.e. { ®p} = •

Proof. Use induction on otp, the altitude of P. The
theorem is true for a = 1 as the only branch of is

\^/ itself. Suppose it is true for a < a (a > 1). Let
aD » a. Then Q_ « 9...A + Qrp + 1 where a_t a„ < aP P Q R Q R
and at least one of arit aR jt 0. Row, free forks of Q, R
are free forks of P, i.e. if Qg and R^ are branches of Q
and R respectively 9„ A + 1 and 9D p + 1 are 9-poly-

^s Kt
nomials of branches of P. Moreover, if Q and R. runS Xt

through all branches of Q and R, the 9-polynomials of all
branches of P are thus obtained.
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Hence, {9p} - {©QX ©^p + 1}
(UK x ♦ i}) u (U le„ n * i})

3 t "t

U ■̂
i i

COKOLLAHX. The index ©-polynomial of any tree P / 1

is uniquely determined by the leading terms of the ©-po¬

lynomials of all the branches of P .

9. <o-polynomials

The corollary to Theorem 1.9 suggests that the algebra

of trees can be represented faithfully by index polyno¬

mials containing fewer terms than either t- or ©-poly¬

nomials.

Definition. The index o-polynomial of a tree P is

the polynomial whose terms correspond to all the nodes

of free forks of P. cu^ ■ 0.

Example,
2 2

cop « X p + p + X i

The definition of co-polynomials amounts to this:

or (P f 1} consists of all those terms of ©p which are
not right-divisors of any other terms of ©p.
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Whence, the necessary and sufficient condition for a

polynomial <p e KYl[h,v.) to be an index o-poiynomial is

that either 9 » 0

or (i) all coefficients of 9 are equal to 1

and (ii) if 9^ is a term of 9, 9 does not contain any
other right-divisors of 9^.

The proof is similar to that in Section $.

THEOKEM 1.10 . (i) - 0, 0^ = i,
wp+q " WPX + V (P + Q * 2)'

(This is an alternative definition of 00-polynomials.)

(in - »Q if p -1,
% - °V+Q if * **■'

(lli) " W2Q'
(iv) u> "oo if P « 1,PQ Q '

<0 ■ wnw if P / 1.PQ P 2Q

The proof of {i) is almost identical with the proof

of Theorem 1.4 (i). Proposition (ii) is obviously true

if either P « 1 or Q » 1, To complete the proof assume

that it is true for two trees A and B, i.e. that
* Va' UPB " WP^B*

Then "WA.B) = °V>A.PB " >kX * "to"1

" +

0 ¥a+B'
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(iii) is a particular case of (ii) when P = 2;

(iv) follows from (ii) and (iii).

We have seen (Corollary to Theorem 1.9) that there is

a one-one correspondence 0p oj^. Hence

THEOREM 1.11 . The algebra of trees 'Y (and thus also

the logarithmetic & ) is faithfully represented by index

to-polynomials.

For each branch of a tree P (P 1) the index polyno¬

mial on contains one term. There are therefore )(_ terms
P P

in to-, i.e.F

!Cp - u)p(l,l).
Also since the potency of a tree P can be defined as the

number of free ends in P, the number of terms in ^ is 5 .
r r

i.e. Sp - * (1,1).
But « u)2p and thus

Now, ^ < i^P* i,e* ^p — equality sign holding* 2 2
only if P itself is of the form 2Q.

Thus an to-polynomial of a tree ( 1) contains at most

only half as many terms as the ^-polynomial of the same

tree. Moreover, since the number of terms in the ©-polyno¬

mial of P

V1'1*e 6P -1 ■ V1*1)" 1'
the number of terms in top is at most ~(1 + number of terms in Qp).
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Thus the u>-polynoraials have the great advantage of

brevity, ©-polynomials again give a more direct represen¬

tation of trees showing the position of each node (cf.

the definition of the union of trees).

The principal advantage of the ijr-polynomials is that

they represent the multiplication of trees by multipli¬

cation of polynomials. This will be found particularly

useful in the study of factorization of trees and indices.

10, FACTORIZATION

A tree or an index P is said to be prime if

(P / 1) and {{P ® QR) > (Q «= 1 or R « 1)).
Since and ^i * a bree is prime if

its potency is a prime number.

For similar reasons the index f-polynomial of a prime

tree must be prime in (the algebra of all ^-polynomials),
but it is by no means obvious that it is also prime in

/??t[A,p] . Indeed an o>-polynomial of a prime tree need

not be prime in ,

3 2
e.g. w(3+2)+l * + P*- " (*• * p)**
although (3 + 2) + 1 is prime.

Thus even if the unique factorization law holds in

Oflftlh,p] it may not be so in . It is not a priori

impossible that, e.g., a p-polynomial
=

91*<II>2,<,P3 *<V<V?6'
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where qne but are not ^-polynomials, and that

Va * V V4 ■ V *5*6 " *a'
<Px<P2f3 - tj. V59-

where^, tg» » Vy are ^-polynomials °? prime
trees. Then ijL » and though perhaps

F Q K 5 IV F

uniquely factorizable in /3Tt[A,p] would not have unique

prime factors in .

We prove, however, that this is in fact impossible

and that the ijr-polynomials and therefore also the indices

and trees are uniquely factorizable.

LEMMA. If ® trjtr. and » tv are both prime,'

I Q It 5 r H
then tp e and tQ * f§.

The lemma is true if is of degree 0; for ^ * 1
implies that * « 11, and since y_ , * are prime weP R h pa

have ^ « 1 and . Assume that the lemma holds
o F It

if the degree of & is less than n. Let \jr be a ^-polyno-
Q Q

rnial of degree n (n>0).

Then ^ x + tQ P
and ts - ^S] x + P (tg t 1, since « l)=^(tQ » D)

*PQ %\ X + VQ/ " Vs " Vs, X * W"
Hence by the lemma to Theorem 1.5

*e\ "Vs, and * *h\
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and. since >jr , ^ , >4 > f, ar® of degree less than n and
Q, 0( Q4 b2

tp, ta are prime, \Jrp - tJtr , tQ - tQ - by the
induction hypothesis. Therefore ijr * tg •

THEOREM 1.12 . ("Unique factorization into primes.")

(ij if *p - tj, ^. • -v.v - v«; •W•
where r, s are finite ordinals and <k , are prime

pi yi
f-polynomials then r * s and ** {1 < i < r).

i ^i ~ -

(ii) If P - pxp2 •••pr-lPr " Ql% * * #Qs-lQs
where r, s are finite ordinals and P^ , are prime trees

X-

or indices then r » s and (1 < i < r).

Proof, (i) Multiplication of ^'-polynomials is associa¬

tive , therefore t {% ...tp ) 58 • • »tr,) ♦
*1 *2 rr Hi W$

f , are prime, hence by the Lemma
P Qt

*j,-\ and tPi • • .fFr - ^ • .+Qs

Sow r and s are finite. The result follows (formally by

induction on r).

(ii) follows from (i) and Theorem 1.5.

COROLLARY. ("Unique division".) If P, Q are two trees

there is at most one tree jL and one tree I satisfying

PX • Q, IP - Q.

* This is also a direct corollary to Etherington*s Theorem

on unique factorization of partitioned serials ((15), p.44$).
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One of the most remarkable properties of index ^-poly¬

nomials is that ^-polynomials of prime trees are prime

in , i.e. cannot be a ^-polynomial unless
both <p* and are {t) t-P°lynoraials. The following quite

obvious lemma will be required. Denote by n(<p) the degree

of 9 in X, p.

LEMMA. If \jr is a ^-polynomial of degree k it can be'

1

expressed in the form ^p «= (X ♦ p)<j^ ,

where n( cp^) » k - 1, n( ) < k - 1,
and ^ is a ^-polynomial.

For if P has r forks with ends at the maximal altitude

k (i.e. if has r terms of degree k-1) + <p^ is the
^-polynomial of the rth principal subordinate of P or of

a subordinate of that tree.

THEOREM 1.13 . The product of two polynomials

9* , , with non-negative coefficients, is an

index ^-polynomial if and only if both cp' and <pn are

^-polynomials.

Proof. Sufficiency. If <p' and are ^-polynomials,

(pt* y say, then q>» <p» - 9p¥Q « ypQ.
Necessity. Use induction on n{<p?<p"). The condition

is necessary if the degree of the product is 0, because

if <p' cp" is a ^-polynomial of degree 0 then

cp»9« «= 1 and « <p" ■ 1 » .
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Assume that it is necessary for products whose degree

is less than m (m>0). Let * m. If either <p'

or <|s,? is 1 there is nothing to prove.

Suppose f f 1, Since is an index ^Polyno¬

mial of degree m > 0, <?* cp" cannot contain 1 as a term arid

all coefficients of cp* f" are 1. Thus at roost one of q>T ,

cp"f contains 1 as a term.

Firstly, if cpn does not contain 1 as a term it must

contain terms ending in A as well as terms ending in p

(since cp' being a ^-polynomial must contain such

terms). Let <p" *»

Then <p*®= cp*cpJfA +
JL (C

and, by the lemma to Theorem 1.5, <SP? aud 9' f* are
J> <C

f-polynomials.

Hence by the induction hypothesis tp* , <pF, are

f-polynomials, i.e. <ff and f" « ®nA ♦ fnp are index
X ^

^-polynomials.

Secondly we prove that <pn cannot contain 1 as a

term. We do this by showing that M cp!f f 1 and. 9" con¬

tains 1 as a term" is incongruous with the premiss
33 <p? n is an index ^-polynomial", viz. that from these

premises it can be concluded that <pff is an index po¬

lynomial which is impossible if <p*' contains 1 as a term

and <pn f 1.
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Suppose then that f* « <^A +
and fw ■ f£X * fl'p * 1
where at least one of •* is non-rero.

1 2

f?f" ■ (f^A + + 1)
- (?[(Xf£ * 1} + ^p?|)A + («^(p<j>2 + * f{Xf|^

©rid by the lemma to Theorem 1,5

both ^ (Af£ + 1} + %'^x and f2^Uf2 * ^
are ^-polynomials.

(i) If n(f|) > nlf1| thens by the Immm applied to1 2
the above two f-polynomials,

^ - (X ♦ u)?^ ♦ <t'12 where n^i + fl2* " B*?i* " 1
and (♦ t*2)(X?^ + 15 + f2^f2 + + **11* *12^X*2
are ^-polynomials• Thus

**fll* *12^X*1 + X* * f2^*lJX + **2*^*2 * Vi ***11 + *12,Xf2^
- ((t^ ♦ ${2*x * + 1}
* ^fli4 *i.2^x * *2^*'n is a ^*j>olyaorala1'

But n(((*| ♦ .y*2)X ♦ ^uho*) » m - 1.
Hence by the induction hypothesis ?rt is an index f-poly¬

nomial, f 1, with 1 as one of its terms. Contradiction,

{ii) If n{f*) < n{} the proof is similar, dote that

although n{f£) « n{fjp implies n(^X^) • n(^p^£) the
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terms of the two free ends of a fork at maximal altitude

in the tree corresponding to the ^-polynomial

{Xcof + 1) + cp^tipj' cannot be contained one in ^Xtp£ and
the other in unless ^ « 1. In this case, how¬
ever, <p' « X + jj. and <pf«pn, a ^-polynomial, would contain X
and p as terms as well as other terms; this is impossible,

COROLLARY. A ^-polynomial of a prime tree is prime

in tf3fL[X,|i] .

If P is a left (right) divisor of Q and Q is a left

(right) divisor of R then P is a left (right) divisor of R.

If a tree or an index P is a left divisor of Q and of E

then it is also a left divisor of Q+R. For if Q « PX and

R - PI then Q + R - PX + PY = P(X ♦ Y). This property

does not hold, in general, for right divisors.

A very useful criterion of primeness of many trees is

the following:

The sum of two unequal trees which have no common proper

left divisor is a prime tree.

For P + Q * RS where S 1, i.e. S «= $ + S , would im-
X

ply P « RS and Q « RS^ and, since P and Q have no commonX A.

proper left divisor and P / Q, E is equal to 1.

On the other hand if two trees or indices Q and R have

a common left divisor P then every index expressible in the

form QX + RI has P as left divisor.
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All indices having P as left divisor form a subgrou-

poid of . This cyclic subgroupoid {which is a proper

subgroupoid if P f 1) is additively isomorphic with ^
itself. Obviously the product of any such index post-

multiplied by any other index has P as left divisor.

Thus all indices having P as left divisor form a right

ideal of X .

11. THE LATTICE OF ALL TKKES

The union of two trees PuQ has been defined by

fW - SV^V-
We can similarly define the intersection PoQ of P and Q

by

and consider the lattice of all trees L . L is partial¬

ly ordered by the relation of subordination, i.e. P < Q

if P is a subordinate of Q. It is obviously a distribu¬

tive lattice.

Since 8_ ♦ § = + 8^
P Q PuQ PoQ

and P < Q (i.e. P < Q and P ^ Q) implies 8 < 8 ,
*

potency is a positive valuation on L and L is a metric

lattice (v. (6), pp. 74-76).
If we now define the distance from P to Q

3(P, Q) - 8p^ -
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i.e. as the number of forks belonging either to P or to

Q but not to both we have

MP, P) - 0 while MP, Q) >0 if P / Q,

MP, Q) «MQ, P),

MP, Q) + MQ, H) > MP, R), /

and thus the set of all trees, with distance so defined,

forms a metric space.

If P is a subordinate of Q then all trees X such that

P < X < Q form a sublattice of L . Such a sublattice

is called a closed interval of L and is denoted by [p, q] *

Q is its greatest and P its least element. In particular

the closed interval [l, P] is the sublattice of all sub¬

ordinates of P. Similarly the sublattice of all superiors

of P may be denoted by [P, °o].
The concept of the lattice of all trees should prove

particularly useful in the study of those collapsed

logarithraetlcs (v. (15), P* 452) which can be regarded

as closed Intervals or as lattice homomorphs of L .
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CHAPTER II. HON-ASSOCIATIVE NUMBER THEORY

Etherington (15) has obtained some basic results in

the non-associative number theory. hotably he proved the

unique factorization in the free logarithmetic £ (see
also (22) and (25) or Theorem 1.12), both cancellation

laws and the associative law for multiplication in »

Evans (22) deduced these and other simple properties of

"non-associative numbers" (i.e. indices of S6 ) from

Peano-like postulates. In particular he proved that if

S is a proper factor of P, not a right-factor, and
P * Q + R then S is a proper factor of Q and R. A similar

result was obtained independently by the author in (25)

(v. Chap. I, § 10).
Addition and multiplication in are both non-commu¬

tative. Two indices commute additively if and only if

they are equal. In Theorem 2.1 we give a necessary and

sufficient condition that two indices of S6 should com¬

mute multiplicatively. In Theorems 2.2 and 2.3 we solve

Diophantine-like equations. In (22) Evans has proved

"Fermat's Last Theorem" for non-associative numbers.

Theorem 2.3 generalizes this result which is then deduced

as a corollary.

It is convenient to extend the definition of exponen¬

tiation of an index (cf. (15), 449): We define P° « 1

for all indices P of .
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THEOREM 2.1 . P and Q, two indices of , commute

with respect to multiplication, i.e. PQ * QP, if and

only if they are powers of the same index.

Proof. The condition is obviously sufficient. To

prove necessity denote the number of prime factors in an

index X by pr(X) and use induction on pr(PQ).

If pr(PQ) = 0 or 1 then either P or Q is equal to 1 and

either P » Q° or Q « P°.
Row let pr(PQ) «= a (a>l) and assume that the condition

is necessary for all pairs of commuting indices whose pro¬

ducts contain less than a prime factors. Without loss of

generality we can suppose that pr(P) < pr(Q).

If P ■» 1 then P = Q°. Otherwise PQ « QP gives

Q « PQ1, where Q' is a proper left-divisor of Q or is

equal to 1. It follows that P2Q» » PQ*P and therefore

PQ* « Q* P. Mow, pr(PQ*} < a and, by the induction hypo-
s ts

thesis, P ■ R and R for some index R. Hence

P - RS and Q - Rs+t.

THEOREM 2.2 . If /p - Yn or PI®1 = Yn, where X, P,

Y are indices of ££ , P is prime and m, n are integers

greater than 1, then X and Y are both pov/ers of P.

Proof. XmP - Yn implies either (i) X - Y®Y* or
t

(ii) Y = X X', where s and t are maximal in the sense
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that YT, X1 are proper left-divisors of Y, X respectively

or are equal to 1.

If (i) X = YSYl then XP - YSY» P and, since XP is a

proper right-divisor of Yn and pr(Ys) < pr(XP) < pr(Ys*Y),
s

XP « Y"Y where YM is a proper right-divisor of Y or is

equal to Y. But pr(Yw} ® pr(Y*P) « pr(XP) - pr(Ys) and

since Y" is a left-divisor of XP it is a left-divisor of X

and thus of Y, Hence Y,T * Y'Q where Q is a prime index.

Now, Y" is also a right-divisor of Y so that Q is the

prime right-divisor of Y. Therefore Q « P and YSY' P «

Y* PYS, i.e. Ys and YfP commute. Hence, by Theorem 2.1,
YS « Ha and V P ■ R*3 for some index R. Note that P is a

right-divisor of R and R is a left-divisor of Y and let

R «= Y, Y ...Y, „P where the Y. are prime. Then1 2 k-1 i *

XP . ur..w,-b, x - (i ...i
and, as XmP » Yn and m>l,

<V • •\-ip 'a+b"\- • -Yk-i(Yi • • •\-ip'a+b"1- • -p
- (ri-Wg- >

where g > 2a ♦ 2b - 1. Since factorization into primes

is unique in XL, the (k(a+b)}th, (k(a+b)+l}th, ... ,

(k{a+b)+k-l)th prime factors on both sides are equal, i.e.

Y1 * P' Y2 = Yi» p * Xk-V HenC® Y1 " "• " Yk-1 '
and X and Y are both powers of P.
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If (ii) I « X^X* consider first the case when X' = 1.

Then « Xnt. Hence P « xnt,~rfl and since P is prime

X - P and Y - P*.
If X' 1 it is a proper left-divisor of X. Since P is

a right-divisor of Y it is a right-divisor of X' . Let

V » X"P. How, prU*1) < pr(Y) < pr (Xt+1) and Y is a

right-divisor of X®?; therefore Y « XnfX^P, where Xm

is a proper right-divisor of X or is equal to 1. But X"*

is a left-divisor of Y and therefore of X. Also X" is a

left-divisor of X and pr(Xn) = pr(X"' ). It follows

that X« = Xm and Y - XtXwP - XnXtP. Hence XtXrt - X"Xt,
t

i.e. X and X" commute and, by Theorem 2.1,

xt = (X,...X,)C and XM - (X, ...Xjd1 h 1 h
where the X^ are prime. Remembering that n >1 we have

»f , vC+d , ,c+d
(X-...XJ ...P - Xn...Xj F 1...XJ ... ,1 h 1 h 1 h *

where f > 2c + 2d. Comparing the (h(c+d)+l)th,

{h(c+d) +2)th, ..., (h(c+d)+h)th prime factors on both si¬

des we have X = P, 1 - X, , X = X . ... , X * X, , .1 *2 13 2 * h h-1

Hence X^ » ... » X^ » P and both X and Y are powers of P.
If PX™ « Yn the proof is similar.

Note. In the statements and proofs of Theorems 2.1

and 2.2 no direct use is made of the operation of addition.

It follws that these theorems are really about the free

multiplicative logarithmetic , and they actually apply
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to free semigroups. Indeed the free semigroup with p

generators is isomorphic to any subsemigroup of X *
generated by p prime indices.

THEOREM 2.3 . If XP + Yq « 7? where X, Y, Z are

indices of £6 and p, q, r are integers greater than 1

then X « 2k, Y » 2m, Z «= 2n and kp «= mq - nr - 1.

Proof. Let Z » where the are prime.

Xp + Yq - Z*" implies Xp » (Z.....Z )r"iZ, ...Z , Z* and^ 1 n 1 n-1 n

Ya « (Z1...Z)P*1Z1...Z.1 -Z" where Z' + Z" « Z„ (Cf.In 1 n~l n n n n

(22), p. 302 or Chap. I, §10). Since Zfi is prime, Z^
and Z^ must be mutually left-prime.

Suppose 1. Then X « UXf and Y » UY* where

X', Y1 are mutually left-prime and neither is 1. Therefore

UU'XP*"1 + Y'Y^1) » Zr and X'xP"1 ♦ Y'Y^1 is prime.

Since p,q^l the potency of XfXp ♦ Y*Yq""^ is greater

than that of U and hence X'xP""^ ♦ yiyq-1 not a factor

of U. Thus a prime occurs only once as a factor of Xp * Yq.
r

But every prime factor of Z occurs at least r times, i.e.

more than once and Xp ♦ Y^ « Zr which is a contradiction.

Therefore either Z* or 2M is equal to 1.
n n

If Z' is equal to 1, XPZ » Zr, where Z is prime and
n n n

p,r>l» Therefore, by Theorem 2.2, X « 2k, Z ■ Zn .* n* n

Thus Y^ » Z^'^Z^ . Since q >1 the potency of I is
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y] 1
not greater than half of that of Z Z" . Now,

n n

nr - 1 > 0 and the potency of Z£ is less than that of
Zn, which is prime. Hence all prime factors of Y are
equal to and Z" « 1. Therefore Z„» Z' + Z" « 2n n n n n n

and X * 2^, I « 2m, Z * 2n where kp ■ mq ■ nr - 1.
If Z" » 1 the proof is similar,

n

COHOLLAEY ("Format's Last Theorem").

X? + ? Zr implies r • 1 .
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CHAPTER III. HQMQMQRPHS OF THE FREE LOGARITHM11C

1, INTRODUCTION

Addition in the free logarithmetic is non-associa¬

tive and non-commutative. Multiplication in is asso¬

ciative and right-distributive but not commutative nor

left-distributive. The following congruence relations

determine therefore homomorphisms on if :

commutative: P + Q ~ Q + P, (c)

palintropic: PQ ^QP, (p)

left-distributive: (P + Q)R — PR + QR, (d)
and entropic: (P + Q) + (R + S) (P + R) + (Q + S) (e)

(cf. (1$)}.

We denote the homomorph of dC determined by congruence

relation (r) by . It is known that if is a homomorph
r e

of if and that if is isomorphic to if,. The above
P p d

four relations determine therefore only five distinct

homomorphs: the free commutative logarithmetic if ,

the free palintropic logarithmetic aC , the free entro-
P

pic logarithmetic if , the free commutative palintropic©

logarithmetic ifc and the free commutative entropic
logarithmetic if .



2. CONGRUENCE RELATIONS OR £

P =- Q means that P and Q represent the same index

in X or the same tree in ^ . We shall say that P is

congruent to Q modulo (r) and write P — Q mod (r) if

(r) is an equivalence relation on % and

either (i) P « Q;

or (ii) P —- Q mod (r) by direct application of (r)

(e.g. 2+3^3 + 2 mod (c);

2.3 — 3.2 mod (p); etc.);

or (iii) P « P* + Pw, Q ■ Q» + Q" and P*~ Q», P«~Q"

mod (r);

or {iii *} P « EPT and Q ® RQ} and P1 Qf mod (r);

or (iv) P = ~ ~ » Q where R^,~
mod (r) (1 < i < k - 1) by virtue of (i) or

(ii) or (iii) or (iii')«

We prove that "congruencen on thus defined is a.

congruence relation in the usual sense (cf. (6), p. vii),

It is obviously a congruence relation for addition.

It suffices to prove

THEOREM 3.1 . If P-P' and Q- Q» mod (r)

then PQ ~ Pf Q* mod (r).

Proof. PQ PQ', by (iii')» We prove that the premi¬

ses of the theorem imply PQ* ^ P*Qf mod (r). Use non-

associative induction on Q*.
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If Q* * 1 there is nothing to prove. Otherwise let

Q' K + QJ. Assume that PQ£ ~ P'QJ and pQ2~ptQ2*
Then, by (iii), PQj[ + PQ* ~ P' + P'Q^, i.e.
PQ* ~ P' Q' , since multiplication in is right-distri¬

butive.

For all congruence relations considered in the prece¬

ding section case (iii'} of the definition follows from

the other four cases.

THEQKEM 3.2 . Let p , p , p be equivalence relations
x <£ j

on % defined as follows:

(1) Pp.Q if (I) P = S + T and Q «= T + S;

(2) Pp2Q if (I) P - ST and Q «= TS;
(3) Pp3Q if (I) P - (S + T) + (U + V) and

Q » (S ♦ U) + (T + V);
also Pp^ Q {i ■ 1, 2, 3) if
either (II) P ■ Q;

or (III) P - P» + P", Q = Q» + Q« where P'p^'and P^Q";
or (IV) P - iiPiR2piK3Pi,**Pihk e Q where

by virtue of (I) or (II) or (III).

Then Pp^ Q is equivalent to P ~ Q mod (c),
Pp Q is equivalent to P — Q mod (p)

and Ppj Q is equivalent to P — Q mod (e).
Proof, p^, p2 , p^ are obviously congruence relations

for addition. It remains to prove that Pp^Q implies
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RPp^RQ (i » 1, 2, 3)» We consider the four cases in
which Pp^Q.
(!) If (I) P « S * T and Q - T + 3 then,

R{S 4 T) » RS + RT, since multiplication in X is

right-distributive,

P1ET + RS, by (Px },
- R(T + S).

Hence, by (IV)., RPp^RQ.
(2) If (I) P « ST and Q » TS the proof is by non-associa¬

tive induction.

When T *= 1, P = Q and thus RPp^RQ, by (II).
Let T « T* 4 T" and assume that RST'p2RT*S and
RSTnpuRTnS. Then

RST « RST' 4 RSTn

P2RT'S + RT"S, by the induction hypothesis and (III),
P2SRT' + SRT", since (RT* )Sp2S(RT* ) and

(RT»)Sp S(RTM),
£

- SR(T* + T")

« SRT

• RTS, by (p2 ).
Hence RPp^RQ.

(3) If P - (S ♦ T) ♦ (U ♦ V), Q - (S + U) + (T 4 V) then

HP » (RS + RT) 4 (RU 4 RY), since multiplication in #
is right-distributive,

P3 (RS 4 RU) 4 (RT 4 RY), by (P3 ),
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» R((S + U) + (T + V))

" RQ .

Hence RPp^RQ.
Further, for all three relations:

if (II) P » Q, we have RP « RQ and thus RPp^RQ;
if (III) P « P' + P«, Q « <? * Qtt, where P^Q', P"PiQ%

the result is easily provable by induction on alti¬

tude (or potency) of P;

if (I?) P = Hj.PiR2piB3pi* *#piRk * Q» yrhere RspiRs+l by
virtue of (I), (II) or (III), the proof is by

induction on k.

It follows from the above theorem that congruence rela¬

tions mod (p), (c), (e) are completely defined by cases

(i), (ii), (iii) and (iv) of the definition and in all sub¬

sequent proofs in which it is premised that indices or trees

are congruent it will suffice to consider these four cases

only.
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3 » FREE COMMUTATIVE LOGARITHMETIC. FREE

EM'RQPIC LQGARITHMETIC

Commutative logarithmetics have been studied by

Etherington ((11), (12) and (15))• In this section we

only add a theorem on faithful representations of the free

commutative logarithmetie

Denote the homomorphs of (the algebras of

all *jr-, Q-, a>-polynomials) determined by congruence

relations

~ 9(X,p) ~ 6(p,X), <d(X,p) — u>(u,X)

by ^ , <B^ , respectively.

THEOREM 3.3 . <£c is faithfully represented by
also by and by JTL^ .

Proof. We prove first that

^(X,p) ~ f(p,X) M

implies t
P+Q

tp4Q(X,p) - * ¥QU,d)«M-
- tP+Q(^,^), by U),
s ^p(p,X).p + yQ(p,X).X



*• 5$ —

To prove the converse, i.e. that tp^~ — implies (-n),
note that & ~ t mod (^) and use induction on the

X 1
altitude of P + Q.

When ap+^ « 1, tp<|>Q(X,p) - X + P while ^p+Q(p,X) « p + X.
Suppose the theorem holds for altitudes less than a (a >1}

and let a„ ^ a. Then
P+Q

WX,|J) ~ Wx,|i)
86 ^p(X,p) .p + s^(X,p) .X
— <Jrp(p,X).p + tq(^,X).X, by the induction

hypothesis since

aF» aQ <
= ♦p.Q1'''*1 •

The proof for 9- and topolynomials is almost identical.

The free entropic logarithraetic is a homomorph

of the free palintropic logarithraetic, that is to say

PQ and QP are congruent modulo {e) for all P and Q.

This result was essentially obtained by Murdoch ((32),

Corollary to Theorem 10) and in a more general form by

Etherington ((15), Theorem 4)» Etherington has also

proposed the question ((16), p. 249) whether the free

entropic logarithmetic is represented faithfully by

index 9-polynomials in commuting indeterminates X, p.

Call index polynomials in commuting indeterminates
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palindromic* It is known that palindromic ©-polynomials

represent faithfully the logarithmetic of the general

train algebra of rank 3 (v. (16), p. 249). Etherington's

question amounted therefore to this: are the free

entropic logarithmetic and the logarithmetie of the

general train algebra of rank 3 isomorphic? In 1954

I communicated to Dr. Etherington the following example

which answers the question in the negative.

Example. The indices (4 + 1) + (1+3) and

(3 + 1) + (1 + 4) are not congruent mod (e) although

their palindromic ©-polynomials are both equal to
2 2 2 2 2 ?

X p + X p + Xp + X* + p* + X + p + 1 .

4. PALINDROMIC >1- AND 6-POLYNOMIALS

Palindromic index and ©-polynomials are polynomials

in two commuting indeterminates X, p over the domain of

integers and are defined as follows:

*1 " 1' *P+Q " ;

81 = °> ®fQ " X®P * "e(J + 1 *
The algebras of palindromic index polynomials are homo-

morphs of the algebras of the corresponding index poly¬

nomials (in non-commuting indeterminates) determined by
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the congruence relation

Xp » pX (t) «

This homomorphis® induces a homomorphism on X. The

resulting homoraorph is called the free palindromic loF,a-

rithmetic and is denoted by X. . is a homomorph of
' " ' ' '' ' "t O

X* (cf. §3). It is not known if X is equationally© X#

definable on X, Note that even if X^ is not equatio¬
nally definable on X it may be so on L , the lattice of

all trees (or indices).

The terms of a palindromic index polynomial of a

tree P still represent knots of P: those of ^ represent
the free ends of P and those of 9„ the nodes of forks

r

in P, Each term of an index polynomial is determined by

one or more knots of the corresponding tree; a term vXrps
X* s

is the sum of v monomials X p which are determined by

v knots in the tree. The palindromic or 9-polynoraial

can be written down by inspection of the tree, exactly

as the corresponding general index polynomials, except

that the distinction between Xp and pX is here ignored.

Example.

P » 4 + (2.2 + 1)

, -»3 ~,2 2 3 .2 .2 2
fp *= X p ♦ 3X p + 2Xp + X p + X ♦ p ,

Qp » X^p + 2Xp^ 2Xp + X + p + 1 .
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Terras of palindromic index polynomials can be represen¬

ted by %feighted lattice points on a "tree pattern" in the

following way: Let Oi, Oj be two semi-axes making 45°, or

any other convenient acute angle, with the upward vertical;
i j

the term vX \x corresponds to the point (i, j) and its

weight is v . This representation is suggested by the

fact that if a tree is drawn so that the arms of all its

forks are of equal length and make 45° with the upward

vertical then knots coincide if and only if their terms

are equal (when X, p commute) (cf. fig. on p. 60).
Palindromic index polynomials are represented by certain

sets of weighted lattice points on this pattern; terms

not appearing in the polynomial can be regarded as having

weight 0.

Etherington (16) gave necessary and sufficient condi¬

tions that a given polynomial 2] should be a

palindromic index ©-polynomial. They are: (i) all nr^ .

are non-negative integers, (ii) if i,j are not both

zero- nij * "1-1,3 + "i.j-i- (iii) "oo * 0 or 1 "
It follows that in any representation of a palindromic

©-polynomial on a tree pattern the weights of the points

(i, 0), (0, j) cannot exceed 1 and that of the point

(i+1, j+1) cannot exceed the sum of the weights of points

(i+11 j ) and (i, j+1).
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Example, P - 4 + (2.2 + 1),

. ^3 *^2 2 3 ,2 .2 2
tjfp « X p + 3X * 2Xp -»• X p + X + p ,

©P = X p *• 2Xp + 2Xp ♦ X + p + 1 *

(In the remainder of this section "index polynomials"

will mean "palindromic index polynomials" and fp, 9p will
denote palindromic , ©-polynomials.)

We now obtain a necessary and sufficient condition
V i j

that Zlv. .X p be an index ^-polynomial (Theorem 3.63-
1J

V i 1
Call a polynomial Z_,v. .X \i° ordered with respect to

«*- J
P q F S

X if the term v X*pH precedes the term v X u when
pq rs

p + q > r + s or when p + q « r + s and p > r. The

first term of a polynomial <p, when <p has been ordered

with respect to X, is called the leading term of <p.

THEOREM 3.4 . If a ^-polynomial ^ can be written in
i i

the form f ■ X fi" + f, where f Is a polynomial in X, p.

with non-negative coefficients, and f is any polynomial
i i

then X p"^' + <p is a ^-polynomial.

Proof. Use induction on n(^), the degree of

If n(^) « 1, ^ = X + p and the theorem holds since

both X + p\jf* and X^* + p are f-polynomials.
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Suppose that the theorem is true for iff-polynomials of

degree less than N (N>1) and let n{^) « N. Then
i-1 i

f ® + pf_ and either (i) \jr contains a term X p ,
A B A

or {ii) |r contains a term X^p***"^, or both.B
i i i

If (i): let & «* X " pJ + 9 , where © is a polynomial
A A A

in X, |i with positive integer coefficients.
i 1

\Jr » x ^ and ^ * p»^ imply t? » X© + p^ •A B A B

Now, n(^A) < K and therefore, by the induction hypothe-

sis, X^~^p^' + is an index ^-polynomial. Hence

X(Xi~1p*V + Ta) ♦ H-tg " X* p*V + (X<j>A + p^g) " Xip^f1r + cp
is also one. Similarly if (ii) is the case.

Note that if i|/f are the ^-polynomials of P and Q
i 1

respectively then X p^' + 9 is the ^-polynomial of a

tree obtained by joining the root of Q to any free end of P
i i

whose term is X pu.

COROLLARY 1. If <p1, 92> ... , 9r &re polynomials in
X, p with positive integer coefficients such that 2 9^
is a ^-polynomial and , \}r_, ... , are any ^-polyno¬

mials then tjr, is a ^-polynomial*
ill

COROLLARY 2. If ^ is a ^-polynomial containing the
i *i jL "1

term v^jX p^ then ijr + (X ♦ p - 1)X pJ is also a ^-poly¬
nomial.



• 64 *"

COROLLARY 3. If ^ is a ^-polynomial containing the
i "i i *f

term v X pJ then \jr ♦ (X+p-lJvXp, where v is a po-
•J

sitive integer not greater than v, is also a ^-polynomial.

Proof. Apply Corollary 2 v times.

Note that the converse of Theorem 3*4 is not true,
i i

i.e. the fact that X p^iff* + <P and f are ^-polynomials

does not imply that X1 p^ + <p is one. For example
3 3 3 3

" Xp^2 + X + p^ + 2Xp but Xp + X + p + 2Xp is
not a ^-polynoiuial. foe can, however, prove a somewhat

weakened form of the converse of Corollary 2:

THEOREM 3.5 . Let ^ be a ^-polynomial of degree n
Z* s

in X,p (n f 0) and let vX p be its leading term. Then

*|f— (X + p — 1)X p is a ^-polynomial.

Proof. If f is the ^-polynomial of ? then
r—1 s

t - (X + p - 1)X ~p is the ^-polynomial of the first

principal subordinate of P. To prove the theorem formal¬

ly use induction on n.

If n » 1, » X + p and Xr = 1 . Therefore
s

^-(X+p-l)X p ■ 1 » .

Assume that the theorem holds for all ^-polynomials of

degree less than N (N>1). Let f be of degree N.
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Then ijr « Xf1 + p^'* where <jr' , \Jf" are ^-polynomials of
V%| fit

degree less than N. If v'X p , v'X pk are the leading

terras of yf , then either (i) r « r' + 1 and s ■ s*

or (ii) r = rM and s * s" + 1 (or both). Also, by the
2. s'

induction hypothesis, - (X + p - 1)X p and
rM-l

- (X + p - ljx* are ^'-polynomials. Therefore

if (i): X(tf - (X + p - DX^-V) ♦ p^r»
« X^1 + pf" - (X + p - l)Xr ps
® f ~ (X + p « l)Xr~V

is a ^-polynomial;

and if (ii): Xf + p(tT' - (X + p - 1 )Xr""1psn)
. rw-l q"+l

* X»jrf + pf - (X + p - l)Xr p

» t - (X + p - l)xr""1p8
is a ^.'-polynomial#

COROLLARY. The premises of Theorem 3*5 imply also
X"*** 1. s

that >)f-(X+p-l)vX p is a ^-polynomial.

Proof. If v * 1 the corollary reduces to Theorem 3«5»
2*"*1 S

If v >1, the leading term of >]r- (X ♦ p - 1)X p is

(v - l)XrpS. Hence i|r - (X ♦ p - l)2Xr~^p8 is a ^-poly¬

nomial; and so on.

THEOREM 3.6 • A polynomial (p = Ev X"*"p*5 (cp j* 1) with
* J

positive integer coefficients and leading term v Xrps
rs

is a '^-polynomial if and only if <p - (X + p - l)v^gXr~^ps
is a ^-polynomial.
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Proof. Necessity follows from the Corollary to

Theorem 3*5 •

Sufficiency: Since all coeffients of q> are positive

integers, the ^-polynomial <? - (X + p - l)vrsXr"'"*'ps
contains the term vXr~VS (v Then, by Corolla-*"■* IS

ry 3 to Theorem 3»4,

(f - (X + p - l)vrgXr~1pS) + (X + p - l)vrsXr~1pS = cp
is a ^-polynomial.

Theorem 3.6 provides a useful algorithm for ascertain¬

ing if a given polynomial 9 is a ^-polynomial. In fact

S, the sum of coefficients in <p, is greater than that of
I*"**1 s

<p-(X+p-l)v X p and the process will determine
rs

whether f is a ^-polynomial or not in less than 6 steps.

Obviously a polynomial <p = Sn. . X*p*3 is a 0-polyno-
«*J

mial if and only if (X + p-l)qp+l is a ^-polynomial.

We may expect that if all rr. are positive integers and
-l

the leading term of cp is ^.2, s^" tiien T is a 0-
polynomial if and only if 9 - sXr~"VS Ts one.
The condition is in fact necessary, viz.

THEOREM 3.7 . If 0 is a ©-polynomial and tt^ g X^p3
its leading term then 9 - rr, _ Xr"^"ps is a ©-polynomial.

r"*ij s

Proof. The premises imply that (X + p - 1)0 ♦ 1

is a \jr-polynomial with leading term rr , Xrps .
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Therefore, by Theorem 3.6,
((X + p - 1)9 + 1) - (X + p - l)TTr.i>s Xr"^pS

- (X * p - 1){© - nr>i>s^r"VS) * 1
X***l s

is a ^-polynomial, say tp« Hence 0 - nr«x s^ P" * Qp*
The condition, however, is not sufficient, i.e. the

mere fact that q> - rr^ ^ sXr~*ps is a ©-polynomial does'
2 2

not imply that 9 is one. For example, (5X ♦ X + 1) - 5X
2

is a ©-polynomial but 5X + X + 1 is not a ©-polynomial.

To see why it should be so, let us try to use the method

of proof in Theorem 3.7 to prove the sufficiency of the

condition. Let therefore 9 - rr , Xr~"^ps be a 0-poly-

nomial, 9 say. ThenP

(X + p - 1) (<p - X^p8)
■ ({X ♦ p — 1)<P ♦ 1) - (X + p - 1)tt 1 Xr~1psr**Xj s

and, by Theorem 3.6, (X + p- l)cp + l is a ^-polynomial

(and thus 9 is a ©-polynomial) provided that all coeffi¬

cients of (X + p - 1)<j> ♦ 1 are positive integers.

Since 9 itself is a polynomial with positive integer

coefficients, this additional condition amounts to:

rr. . < rr. , . + rr. . , (i, j not both 0) , which is Ethering-IJ — 1—XpJ 1,J~X
ton's condition (ii).
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5. FREE COMMUTATIVE EHTHOPIC LOGARITHMETIC

This logarithmetic has particularly interesting faith¬

ful representations by index polynomials. We introduce

for it a special nomenclature and notation. If two indi¬

ces or trees, P and Q, are congruent mod (c)(e) we call

them concordant and we write P Q.

Observe that (P + Q) + (R + 3) ~ (A + B)+ (C + D)

where (A, B, C, D) is any of the 4! permutations of

(P, Q, R, S). Indeed this fact together with the relation

1 + P ~ P + 1 are equivalent to (c)(e). This suggests

THEOREM 3.3 . If two subtrees of the same order of a

tree P be transposed the resulting tree Q is concordant to P.

Proof. The theorem holds trivially when P is of alti¬

tude 1. We use induction on altitude and assume that the

theorem is true for trees of altitudes less than a.

Let P be of altitude a.

(1) If P « P* + 1 or 1 + P1, both subtrees must

belong to P', a tree of altitude a-1; the result

follows by the induction hypothesis.

(2) If P = + P2) * (P + P ) then:
(a) If both subtrees belong to + P , a tree of

altitude a-1, the theorem again follows by the

induction hypothesis.

Similarly if the two subtrees belong to P + P .
3 4
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(b) If one subtree belongs to and the other

to P_ (or one to P_ and the other to P.} the
12 4

result follows from (a) since

(P1 + P2» + (p3 * V" (P1 + P3J + (p2 + V'
(c) If one subtree belongs to and the other

to (or one to P^ and the other to } the
result follows from (a) since

(Px * P2) + (P3 ♦ P4) ~ (Px + P2) + (P4 + P3)
~ <P1 * V ♦ <p2+p3»-

(Note. The proof of the equivalent proposition (which
is false; v. Example in § 3) for the non-commutative entro-

pic logarithmetic fails in case (2)(c).)

We shall require a more general form of this result.

LEMMA. If a tree P has a free end at altitude a

then any tree Q concordant to it has also a free end at

the same altitude.

Proof. The lemma is quite obvious if (i) P » Q, or If

(ii) (1) P « (R + S) + (T+U) and Q » (R+T) + (S+U),
or if (ii)(2) P - R + 3 and Q - S + R.

It is easily provable by induction on altitude

if (iii) P - R + S, Q - Rf + S» and R ~ R* , S ~ Sf

and by induction on k if (iv) P « Rj_ ^ R2 ^ . ..^R^ «■ Q.



- 70 -

P is an nth superior of R if R is an nth subordinate

of P. We shall use the following notation: Let a first

superior of R be denoted by R or by if* the node of

the additional fork in the superior is at altitude a.

R (or R(a)) denotes a definite though unspecified tree,
not the class of all first superiors of R.

THEOREM 3.9 • If P and Q are two concordant trees,

each with a free end at altitude a, then P{a) ~ Q(a}*

Proof. Consider in turn the four cases defining P ~ Q.

(i) If P « Q the result follows from Theorem 3.8 .

(ii) (1) P «= (R+S) + (T + U) and Q » (R + T) + (S + U).

One at least of R, S, T, U has a free end at

altitude a-2; let it be R. Then

^{a) ^ ^(a~2) * + (T + U), by Theorem 3*$,
~ ^(a-2) + + + U^»
~ Q/aj, by Theorem 3»& •

{ii){2} P «= R + S and Q « S ♦ R. First suppose that R

has a free end at altitude a-1. Then

P^aj ~ ^{a-1} * by Theorem 3 • $,
~ s * H(a-1)' by (c)>
~ ^{a)s Theorem 3.# .

If R has no free ends at altitude a-1, S must have

one; the proof is then similar.



- 71 -

(iii) P » R + S, Q = R* + S* and R ~ R* , S ~ S* .

Suppose that R has a free end at altitude a-1.

Then, by the lemma, R* has a free end at the same

altitude and P, ^ ~ R, . > + S, Q/ \ ~ R'/ n \ ♦ S'.(a) (a-1) ' (a) (a-1)
These are concordant if R, _ . ~ R*, , , . Use(a-1) (a-1)
therefore induction on a.' Again, if R has no free

ends at altitude a-1 then S must have one and the

proof is similar.

(iv) If P « R_ ~ R,j ^ ~ R^ " Q then by the lemma
each R^ has a free end at altitude a. The proof
is by induction on k.

We are now in a position to prove the principal theorem

on the structure of concordant trees.

THEOREM 3.10 . Two trees are concordant if and only

if they have the same number of free ends at each altitude.

Proof. Let the two trees be P and Q.

Necessity. Let p^, q^, ri, s^, t^, u^ denote the numbers
of free ends at altitude i in the trees P, Q, R, S, T, U

respectively.

(i) If P « Q there is nothing to prove.

(ii) If P » (R + S) + (T + U) and Q - (R + T) + (S + U)

then P, - q, - r^., ♦ ♦ t±_2 ♦
(2 < i < Op) and pQ - p ■ « q » 0.
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(H)(2) If P « R + S and Q - S + R then

Pi » s ri-i + si-i (1 < i < ap)
and p0 = q_ « 0.

(iii) P - R + 3, Q - T + U and ft - T, S - U. The

condition is obviously necessary if = 1.

Use induction on altitude of P. The lenuria to

Theorem 3.9 implies that altitudes of concordant

trees are equal. The altitudes of P and Q are

therefore equal and those of ft, S, T, U are all

less than a . Thus, by the induction hypothesis,
r

r. «* t. and s. » u. for all i. But
11 i i

pi - ri-i + «i-i» "i " ti-x + Ui-1- Hence pi "

(iv) If P » ~ ft^ ~ ~ ft^ « Q the necessity is
proved by induction on k.

Sufficiency. Mote that the potency of any tree T is
» /L t^ and use induction on the potency of P.
If 6ri <= 1. P ■ Q « 1 and the condition is obviously

P

sufficient. Assume that it is sufficient for trees of

potency less than d. Let &p » 5 » d, a * ar « a
* w * m

and let ft, S be the first principal subordinates of P,

Q respectively. Then, since p. » q. (1 < i < a),
X X

r^ « si » p^ (1 < i < a-2), ra«i " sa-l ** pa-l * ^ and
ra « Sa ■ Pa - 2. But the potencies of ft and S are
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equal to d-1. Thus, by the induction hypothesis, R and

S are concordant and , by Theorem 3.9, R, ,, — S, , x.' ' (a-1) (a-1)
Now, by Theorem 3*&, P ~ H, 1. and Q ~ S, ,v a—x) \a—x)

Hence the result.

A similar necessary and sufficient condition can be

obtained for numbers of nodes (or of all knots) at each

altitude.

6. -if AND Q-PQLTNOMIALS IN ONE INDETERMINATE

The altitude of a knot is equal to the degree in A, p

of its term. This and Theorem 3*10 suggest that concor¬

dant trees (or indices) can be represented by polynomials

in one indeterminate in which the degree of each term

corresponds to the altitude and the coefficient to the

number of free ends at this altitude. We now introduce

such index polynomials, study their properties and prove

that is faithfully represented by them. It turnsc©

out that these are Etheringtonfs original index polyno¬

mials (cf. (12)).

The algebras of the two types of index polynomials

defined below are homomorphs of ^ and © determined

by the congruence relations:

<MX,n) - «S"(A,p) if *(X,X) - +'(X,X) in ^[X.m] i
e(x,n) ~ d'(xt*i) if e(\,x) - e*(x,x) in m[x,J.
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It is convenient therefore to call them index y- and

polynomials In one indeterminate and to denote them

by an<* ori where no confusion is likely

to arise (as in this section), simply f- and G-polyno-

mials and to write tp and 9p.

Definitions.

(i) Index ^-polynomials in one indeterminate:

h{X) " 1* VqU) " X<VM " ^Q(X))*
(ii) Index 9-polynomials in one indeterminate:

©1(X) » 0, dP+Q(X) 18 X(ep(X) * VX)) + 1'
We have ^ « (2X - 1)9 +1. This is easily proved

P P

by non-associative induction. For, since 8^ » 0,
<|r « (2X - 1)9 + 1 and if we assume that \Jr « (2X-1)9
jl <L Q

and » (2X - l)©g + 1 then

Vr " *(*Q +
» X((2X - 1)6 + 1 ♦ (2X - 1)© + 1)

y it
- (2X - 1)(X(9q ♦ 0R) + 1) + 1
« (2X - 1)9^ ♦ 1 .

Call the term of maximal degree in X in a polynomial

q>(X) the leading term of <p(X), It is easily seen that

all coefficients in index polynomials defined above are '

non-negative integers and that the coefficient of the

leading term of * (P ^ 1) is even.
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THEOREM 3.11 . The polynomial 9 = 2X"*" + 9' , where

9* is a polynomial in X with non-negative integer coeffi-
i**X

cients, is an index ^-polynomial if and only if X 9'

is one.

i
Proof. If 2X «• 9' is an index polynomial, tp say,

then [2k1 + 9') - 2X1 + X1*"1 - XU1 + 9* is the ^-poly¬

nomial of a first subordinate of either P or of a tree

i-1
concordant to P. Again, if X + 9* is a ^-polynomial,

say, then [k1"1 + 9*) - X*~"^ + 2X^ « 2X* + 9' is they

^-polynomial of a superior of Q.

To these somewhat loose remarks we add a formal proof.

Necessity. Use induction on n(<p), the degree of 9.

If n(<jp) « 1, © = 2X, i.e. i « 1, 9' * 0 and therefore
i-1

X, + 9* « 1 m ijr . Assume that the condition is necessa¬

ry for ^-polynomials of degree less than m. Let n(9) » m.

Then 9 « 2X1 + 9' » Xf + Xs|r_ andA D

either (a) \V. or ijr contains a term vX^~^ with v > 2;A D

or (b) and each contains a term X .

If (a); suppose that fg contains a term vX^~^ and let
i-1

\}r « 2X + 9n where ^ is a polynomial with non-negative
D D B

i-2
coefficients. Then, since n(*jr ) < m - 1, X + 9 is aB D

^-polynomial and X*"^ + 9' = 9 - 2X* + X

• X^. ♦ Xxjr - 2X^ + X^""^A B
- X^A + (2X1 + X9J - 2X1 + X1A D

- + XiX1-2 + 9b)
is also a ^-polynomial.
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If (b): let tA " a + tr, " + M'® andA A, Az xs IS, Hz
i-2

suppose that \jr^ and each contains a term X . Then
9 « X(X^A + XyB) + X(X^ + \tyB) « X^c + XfD, say, where

i— 2
contains the term 2X and the proof proceeds as in

case fa).

Sufficiency. Let ^ *» X^~^ + q>*. Then
4

? = tp + (2X - 1)X . Use induction on n(^p).
If n(i|/"p) « 0, * 1, i « 1 and (p = l+ (2.X - 1} «* 2X »

Suppose that the condition is sufficient for polynomials

of degree less than m (m>0) and let n(w ) « m. ThenJr

e Xty + Xijr and either \Jr or >jr contains a term
* Q H Q ' it

vA1*"2 {v> 0); let it be . Hence can be written in
±V ft

i~2
the form X +9. where cpK is a polynomial with non-R R

negative coefficients, and, since n(t^) < m» 2Xi-^ ♦
is an index y-polynomial. But

9 - + (2X - 1JX1"1
* XtQ + XU1"2 + <PR) + (2X - ljx1'1
» Xtyq + X(<pR + 2X^"^)

and is therefore also a ^-polynomial.

COROLLARY 1. A necessary and sufficient condition

for <j>(X), a polynomial of degree n (n > 1) with positive

integer coefficients, to be an index i}r-polynomial is that

9 - (2k - l)Xn_1 should be one.
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COROLLARY 2. 9(X), a polynomial with positive coeffi¬

cients and leading term vXn, is an index ^-polynomial if
and only if 9 - {2X - l)Y.Xn~^ is one.

2
n

Necessary and sufficient conditions that v.X* should
i»0 1

be an index ©-polynomial have been given by Etherington

{(16), p.251). They are: (i) all are non-negative

integers; (ii) if i / 0, (iii) vQ • 0 or 1.
The necessity of these is quite obvious. The sufficiency

_ nv •

can be proved by above Corollary 2. For _2__, v .X is a
i-0

n

©-polynomial if 9 = (2X - 1)(/L v.X*) + 1 is a \jr-poly-
i«0

nomial and this is so if

n

9' - (2X - DtEv.X1) + 1 - (2X - l)v Xn
i«J 1 n

- (2X - l)(Jv X1) + 1
i-0 1

is one. Now the degree of 9* is less than that of 9.

The proof is by induction on degree.

It is worth noting that if 5Tv-X is an index Q-polyno-
i i-o A

mial then so is / v,X (0 < r < n)
t^O - -

THEOREM 3.12 . The free commutative entropic logarith-

metic is faithfully represented by index 9-polynomials in

one indeterminate.
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Proof. I. To prove that concordant indices have the

same ^-polynomial, i.e. that (P Q) n(^) * (M):r Q
(i) If P « Q then obviously

r

{ii) (1) If P - (R* S) + (T + U) and Q = (H+T) + (S + U)

then « tQ - ^2(tR * ts + ♦ ty)-
(ii) (2) If P <= h + S and Q - S + R

then «= « k(tR ♦ tg).
(iii) If P = R + S, Q=T+U and R ~ T, S ~U

then m MtR + ^s) and tq " MtT + ty) which
are equal if * t<j> an<* tg * ty yse induction
on altitude.

(iv) If P « R^ ~ Rg— ...~Rr » Q, use induction on k.
II. To prove that (tp °= ) =>■ (P ~ Q): ^p » tq im¬

plies that Sp « §q and aR » a^. Use induction on &p.
If Sp - 1, P ■» Q * 1. Assume that the theorem holds
for indices of potency less than d. Let 6 « d.

r

Consider the trees P and Q. Their first principal sub-
QL

ordinates have both the ^-polynomial - (2X-1)X P .

The potency of these subordinates is d-1 so that, by the

induction hypothesis, they are concordant. Row, P and Q

are their superiors satisfying the premises of Theorem 3*9-

The result follows.
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COROLLARY. The free commutative entropic logarith-

metic is faithfully represented by index 0-polynomials

in one indeterminate.

For (P ~ (tP - ¥q)
<=$■{ (2X - 1)0 ♦ 1 - (2A - 1)0 * 1)

r w

<==* (0p « 0^) .
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CHAPTER IV. BIFURCATING ROOT-TREES OF INFINITE ALTITUDE

I. INTRODUCTION

The development of a mathematical theory depends both

in form and in meaning on its author's conception of the

nature and the purpose of mathematics. This is not so

evident in theories dealing with finite quantities only,

as any theory which concerns a finite number of given

mathematical entities is per se constructive (unless one

adopts the extraordinary course of defining the finite

by means of the infinite). When, however, a theory deals

with non-terminating processes, its development is enti¬

rely conditioned by its author's philosophical point of

view.

Root-trees of infinite altitude have been studied,

essentially from a formalist point of view, by Hourston (24).
In the present chapter we develop a constructivist theo¬

ry of bifurcating root-trees of infinite altitude.

The sequence N of natural numbers is a basal intuition

of mathematics. This sequence is non-terminating, i.e.

every natural number has a successor. This is precisely

what we mean when we say that the sequence of natural num¬

bers is infinite. What is definitely not meant is that

there is an actual completed infinite aggregate of all

natural numbers. Such an assertion would be tantamount
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to saying that an unfinishable process can be completed

which is contradictory, he shall use the terms: ordered

species. similar ordered species, order type, segment

and sum of an ordered species of ordered species, in their

usual meaning as, e.g. defined in (B) (where, however,

order type is called Ordinalzahl).

A sequence S of mathematical entities, called elements

of 3, is a law which gives the first element of 3 and a

method of constructing the nth element when its predece¬

ssors are known. A sequence is said to be finite if it

is similar to a segment of N and infinite if it is similar

to N itself.

A well-ordered species is defined as follows:

(1) A sequence is a well-ordered species;

(2) The sum of a sequence of well-ordered species is a

well-ordered species.

The order type of a well-ordered species is called its

ordinal number.

A finite bifurcating root-tree can be defined (cf.

(15)) as a law which at the first stage partitions a

given ordered species, called the basis of the tree,

into a left and a right subspecies, and at each subse¬

quent stage partitions all subspecies which do not con¬

sist of a single element into a left and a right subspe¬

cies. After the final stage all subspecies consist of
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single elements. The ordinal number of stages is the

altitude of the tree.

This definition of finite trees can be extended to

trees of transfinite altitude (cf.(24))» As a trans-

finite well-ordered species of partitions may not have a

final stage and as some stages may not be immediately

preceded by another stage, we can require only that every

element of the basis should be ultimately separated from

any other. In order that this definition be constructive,

the basis and the law of partition must be given initially

in such a way that there is an a priori eertairity that the

conditions of the definition are complied with. Such a

definition would be unwieldy, moreover it would be diffi¬

cult to define trees of large transfinite altitude. This

can be avoided if we abandon partitions as the basis of

our definition. It is clear that transfinite trees can

be defined as infinite sequences of finite trees where

each tree of the sequence is a subordinate of its succe¬

ssor. This approach gives a very satisfactory definition

which enables us to define even trees which cannot be de¬

fined constructively by means of partitions (i.e. which

would require a "non-denumerable" basis). It is not

possible, however, to define constructively in this manner

any trees of altitude greater than u>. In order to define
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a tree of any transfinite altitude we generalize the

concept of index oo-polynomials and represent trees by

sums of transfinite products.

2. SEQUENCES OF TREES AJMD LIMIT TREES

An infinite sequence of trees {P^} is called increasing
if i*e* if P^ is a subordinate of Pi+1» for
all i. In what follows "sequence" will mean "infinite

increasing sequence".

A sequence is said to be an echelon sequence if
i

aD , the altitude of P.. is equal to i and P. « 2 nP. ,

Pi i i i+l
for all i. For instance the sequences 2, 22, 2^, 2^, ...
and 2, 2+2, 3+3, 4+4, ••• are echelon sequences while

the sequences 4, 5, 6, 7, ••• and 2, 3, 32 , 3^ , 3^,
are not.

Sequence {ft. } is called a subordinate of sequence

if for each i a number j » j{i) can be found such

that < P^.. \ie write {Q^} < [P^} •
If all trees in a sequence are equal to a fixed tree

the sequence is said to be constant. Any sequence subordi¬

nate to a constant sequence is called bounded. Obviously

a sequence is bounded if the corresponding sequence of

altitudes is bounded. If the sequence of altitudes

corresponding to the sequence is unbounded, i.e. if,

given any number K, a number I » I(K) can be found such
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that otp_ > K, the sequence {P } is said to be unbounded.
A sequence need not be either bounded or unbounded.

Consider the sequence (P^J , defined as follows: « 2
if among the first i digits in the decimal expansion

of tt no sequence 01231567^9 occurs, and « i (where
i denotes the right-principal tree of altitude i-1) if

it does, is well defined but is neither bounded nor un¬

bounded.

THEOREM 4.1 . If {P^ < fPjJ and fQi] < /Qj, j
then (i) [?i + < }pj + QjJ ,

(il) {P. sj Qil < fPf u Q[},
(iii) [P± n Q±] < /-> Q{}.

Proof. Let i be any suffix. Since {P^] < {P^l and
{Q^ < {Q|j numbers h and k can be found such that

— *h an^ Qf 5 ^et 11 be any number greater than
both h and k. Then since the sequences {P^} and
are increasing and Q,. < Q^, i.e.
Opt "©p + % and 0 f - 0 + tp , where © , ©
n i n v*i 2 12

are polynomials with non-negative coefficients.

(i) 6pt+r,» a 9p»^ + +
n *n n **n

88 (@p + % )* * (0,. + © )p + 1
ri 1 yi 2

=0p\+enp+l+ (terms with non-negative
i ^i coefficients)

*
« + (terms with non-negative coefficients).VQi
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Therefore

Pi + % < Pn + i*e* ^Pi + Qs3 5 {pl + Q]_} •
(ii) Since [©D} C {©p,l anci f©n / c f®ni? then

ri n %

obviously [©p^u^Qj] C ©qW , i.e.
fi v Qj[ ^ Pn <-> Qn •

(iii) Similarly [©p ] n fe- 1 C {©p, lr\f©ol] , i.e.
i n wn

PinQi < Pj* nQ^ .

Mote that we cannot state a similar theorem about

fP^Q^} since the fact that fp^) and (Q^} are sequences
does not imply that {P^Q^j is en (increasing) sequence.
For example, the sequences {PjJ » 3+1, 3+1, 3+1,
and (Qi) » 2, 3, 4, ••• are both increasing but (3 + 1)2
is not a subordinate of (3+ 1)3, for

3 3 2
© ^ 3+1)3 a P* + P^pX + X + XpX + pXp ♦ X +Xp+pX+X+p+l

2 2
while ©(3+1)2 ** ^ + + ^ + ^P + 4 + P + l and

{©(3+1)2^ is notl a s^species of f ^3+x)3 ^ *

If [P|_^ < and {Q^j < fp^j we say that the two
sequences are equivalent and write IP^} — [Q^i . It is
easily seen that this relation is reflexive, symmetric

and transitive.

We define the sum, the union (l.u.b.) and the inter¬

section (g.l.b.) of two sequences {P^\ and [CL} :
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(Pil ♦ {Qj.1 - {Pi + Qj_] ,
ipii u {«ii - {Px u Qil,
If r\ f Qil = { Pi Q^} •

THEOREM 1.2 . {PjJ ♦ { QjJ ~ f P{ j ♦ f Q£} if and
only if jPjj ~ (P'} and fQ^-fQp.

Proof. Sufficiency is obvious.

Necessity: We have {P^ + Q^} — (P^ + Qj[] . Therefore
there exist numbers h, k such that

and P^ + Q| < Pk + Q^. But this implies
Pi < pa. Si < Qf,, p i<pk. q < «k-

For {©p^ ♦ ©q^ + l] c + + ^ andi since
the only terms on the right-hand side ending in \ are

i©pfM, {© X}c{© i.e. (© }c{© }. A similar
h *i h *i rh

argument holds for the other subordinates.

Given any two increasing sequences {P^ , [Q },
either (i) {P^ < [Qj] ,
or (ii) (Q^j < {Pj} ,

or (iii) [P.] £ {Q.?, i.e. we can prove that [p.] < [q.]
is impossible,

or (iv) {Qjl g {Pi],
or (v) we may not be able to determine whether either

of these sequences is subordinate of the other
or not.
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If ^pil 5 {QjJ and {we write fP^} < {Q±}.
Note that {P^i < fQ^} is not equivalent to: {PjJ < {Qj_}
or {P^} {Q^} • The latter means

{P±l < {Qjl and ( [Qjj ^ fP.} or lQ±) < {P±} )
and is therefore stronger than f Pj- < [Q^] .

Definition. A sequence is called effectively increasing

if we can find an echelon or a constant sequence equivalent

to it.

Example. The sequence P^ where P^ « 1.2.3*
(i.e. P^ is the product of the first i right-principal
trees) is effectively increasing because

(i) ap « 0 ♦ 1 ♦ 2 ♦ ... + (i - 1) - ^i(i - 1)
1

,

and thus P^ < 2ri^i
(ii) we can prove by induction on i that 21 is a sub¬

ordinate of P<+2* m i » 1 then 2* » 2 and P^+j * 2*
Assume 2* < Pi+i for d < a (a>l). We want to prove
that Qd contains all possible terms of degree a, i.e.

a+1

that all such terms are right-divisors of terms of (o
a*l

Now, pa+x " Pa^a + Therefore
- V*~l

, .a-1 . .a-2 . .2 ^ ," (Jjp (K + pA. + pA +...+PA, + pA. + p;
a

and, since all possible terms of degree a-1 (and thus all

<



- 8S -

terms of degree less than a) are by the induction hypo¬

thesis right-divisors of terms of uv, , all possible terms
a

of degree a are right-divisors of terms of uu . Hence
a+1

2i < and {P^} — {2*}. Since {2*} is an echelon
sequence, (P^) is effectively increasing.

Call the species of sequences equivalent to the sequen¬

ce {P^} the limit tree of {P^} and denote it by lim P^.
Lim P^ is said to be infinite or finite according as {P^}
is unbounded or bounded.

THEOREM 4.3 • Two effectively increasing sequences

have the same limit tree if and only if they are equiva¬

lent to the same echelon sequence or to the same constant

sequence.

Proof. The sufficiency follows directly from the

definition of limit trees. To prove the necessity we

have to show that if two echelon or constant sequences

are equivalent they are identical. This is quite obvious

for constant sequences. Let fP^} , {Qj} be two equivalent
echelon sequences. Then for some k > 0.

Since ap = i we have P^ < 2* ^ Qi+fc* (QjJ is an
echelon sequence. Therefore
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Qi » 2*a Qi+1
- 2iA(2i4lAQi42) - 2^ Qi+2
535 « • • • • «

" 2iA Qi+k'
is therefore a subordinate of Q^. Similarly Q- < P^.

Hence P^ « for all i.

The preceding theorem should not be interpreted as

an assertion that we can establish a one-one correspon¬

dence between finite limit trees and constant sequences

and between infinite limit trees and echelon sequences,

for we may not be able even to determine whether a given

seouence is constant or not (cf. example preceding

Theorem 4.1) or indeed whether two echelon seouences are

equivalent or not. Let, e.g., k be the least number such

that the (k-9)th, (k-£)th, ... ,(k-l)th, kth digits in the

decimal expansion of tr are all 9 and define Pi » 2i if
k

i < k, « 2 n (i+1) if i> k; then we carmot say whether

{P^jand i21} are equivalent or not.
The limit tree lim P, is said to be a subordinate

i

of the limit tree lim Q^, written lim P^ < lim Q^,
if fPil < iQj) •
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THEOREM 4.4 • (i) The relation lim < lim Q.

is well defined.

(ii) If lim < lim and lira < lim P^ then
the two limit trees are identical.

Proof. (i) We prove that fPi] ~fPP], ~ {Q*}
and {P.] < {Q^ imply fPJ] < {Q£}. If [P.} and fP^j
are equivalent then, given any number i, we can find a

number j d j(i) such that Pg < Fj« {P^} < {Q|} implies
that Pj < for some k. Finally jQ^l ~ j QJ} implies
Qk < for some h. It follows that PP < and thus
(%'> < foil-

(ii) If lim P^ < lim Q and lim < lira P^ then,
by part (i) of the theorem and the definition of a sub¬

ordinate of a limit tree, fP^} < {Q,] and /Q^< fP^}
and therefore {Fgl ~ {&.}. This, by the definition of a
limit tree means that lim «= lim Qi.

We now define the sum, union and intersection of

two limit trees having regard to the following considera¬

tions:

The sum, the union and the intersection of two limit

trees should be limit trees. Thus we cannot define the

union of two limit trees as the logical sum of the two

species.
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The union and the intersection of two limit trees

should be their l.u.b. and g.l.b. respectively, i.e.

whenever lira P^ < lim and lim < lim then
lim u lim < lim and dually for intersection.

The following definitions satisfy these requirements.

Definitions. Lim P^ + lim » lim(P^ + Q^),
lim P.^ u lim Q. ■ lim(P. u Q.^),
lim Pi r\ lim « lim(Pi n Q^)»

Clearly these definitions do not depend specifically

on sequences {P.^ and fQ.] . For if (?.] ~ (P'J andJL «X X X

then {PiuQii /v/ (apply Theorem 4.1
twice), i.e. if lim P^ « lim P£ and lim Qi « lim Q|
then lim(P^ o Q*) » lim(P^ u Q*). Similarly for the
intersection. Also, by Theorem 4-2,

lim P^ + lim » lim P^ + lira if and only if
lira P^ - lim P^' and lim Qi » lim Q| .

Lim P^ u lim and lim n lira Qi are the l.u.b.
and the g.l.b. of limit trees lira P. and lira Q.. Thus

l i

limit trees form a lattice T which obviously is distri¬

butive. The sublattice of all finite limit trees defined

by means of effectively increasing sequences and Lj , the
lattice of all trees (cf. Chap. I, §11), are lattice

isomorphic.
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Lim 2* is the greatest element of T . For if lim

is any limit tree and a(i) is the altitude of then

Pi < 2a^^. Evidently lim 1 is the least element of T ,

3. SI -TREES

Trees are faithfully represented by index u>-polyno¬

mials. to-polynomials of primary trees are monic mono¬

mials in non-commuting indeterminates X and p. To a

sequence of primary trees corresponds a sequence of these

monomials. Each term in this sequence is a right-divisor

of every term following it in the sequence. A primary

limit tree therefore can be represented uniquely by a

finite (in the case of finite limit trees) or an infinite

product of the form v ...v_v_v_ or ...v.v_v- (v. «=
n 3 2 1 3 2 1 i

X or p) such that if fP^l £ lim then is a right-
divisor of this product for all i.

Unions* of primary limit trees and the limit tree

lim 1 are said to be convergent. Limit trees for which

it can be shown that they cannot be constructed as a

union of primary limit trees are called divergent.

Evidently all finite limit trees are convergent.

Lim 2* is divergent. Primary limit trees bear the same

relation to lim 2 as real numbers to the continuum.

*
i.e. constructible unions.
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Indeed there is an obvious one-one correspondence be¬

tween primary limit trees and binary fractions between

0 and .1 (fractions such as 0.11, 0.110, 0.1100, 0.10111...

being considered as distinct symbols) and lim 2 can

be interpreted as a spread (cf. (23)) defining the linear

continuum.

To a tree P (P ^ 1) of lineage y , i.e. a union of
K distinct trees, corresponds an co-polynomial of ^

terms, each of which represents a branch of P. Conver¬

gent limit trees can be represented by a species of

infinite products of the form vn***v3v2vl or **#V3V2V1*
It is convenient to write these species as sums. For

example the limit tree lim with P^ » 2, » 2 ♦ 2,
P. « 2 + (Q. + R.), where Q, ana R are the left and2 if l i

right principal trees of altitude i, is represented by
X + ...XXXp + ...pppp . The altitude of a limit tree is

equal to 1 + max cu where are the duals of the order

types of the terms (these being ifell-ordered from right

to left) in the corresponding polynomial.

Although it is not possible to construct limit trees

of altitudes greater than w1" we can define polynomials

co here obviously denotes the ordinal number co which

is quite unrelated to the symbol in "t*>-polynomialn.
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involving terms whose order types are duals of any (denu-

merable) ordinal number. Since for finite altitudes these

polynomials are simply oopolynomials which represent trees

faithfully and for all altitudes not exceeding to they re¬

present convergent limit trees, they provide a natural

generalization of the concept of trees. We shall call

these polynomials _Q-trees. We define first finitary _(l-trees.

Definition, (i) 0 and 1 are finitary 12-trees. The

latter is a primary 12-tree.
{ii) The dual species of a well-ordered species of

symbols X and p, written as a formal product, is a pri¬

mary (and therefore finitary) Oi -tree.
(iii) A polynomial of y terms each of which is a

primary .Q-tree is a finitary 12-tree provided that no

term of the polynomial is a right-divisor of any other

term.

ft is called the lineage of the XI-tree. Each term in a

finitary II-tree is called a branch of the tree. Two

finitary XI-trees are equal if and only if they contain

the same branches.

Addition of two H-trees p and cr is defined by analogy

with the formation of the copolynomial of a sum of two

trees (cf. Chap. I, §9):
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where ® denotes addition of II-trees and + the formal

summation of terms in an SI -tree.

We define the potency and the altitude of a fini-

tary 12-tree P such a way that whenever p can be inter¬

preted as a well-ordered species of partitions the potency

of p is the order type of its basis and the altitude of p

is the ordinal number of stages of partitions {v. ^1):
(i) * 1, B« = 2; Uq m 0, » 1 .

(ii) If p is a primary H-tree:

Bp * p(p)* + 2 + p(X) , (Xp ■ p* + 1 ,

where p* is the dual of the order type of p and p(p),

p(X) denote the order types of the ordered subspecies

of p composed entirely of p's and X's respectively.

(iii) If p is of lineage / ( ^ > 1), then p can be
expressed in the form p « (crX + -Cp)rr « (a ® ^)rr, where

tt is the primary SI-tree which is the greatest common

right-divisor of all branches p^ of p and cr, x, are IX-
trees of lineage less than y ; and we define

Bp - n(p) + ♦ 5^ + tt(\) , ap » max(ap ) .i

We have, as in the case of ordinary finite trees,

5P®a " Sp + 5<rand ap©<r = 1 + max<Va<JK
Note that the XX-tree 0 is not an identity element

with respect to the operation (+) , e.g.

...XpXpXp @ 0 = ...XpXpXpX . In fact p ® 0 » p if and
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only If ...XXXX is a right-divisor of p and 0 <$> cr « or

if and only if . ..pppp is a right-divisor of c.

Two finitary XL-trees commute with respect to the

operation © if and only if they are equal. For

p ® a » cr ® p means pX + op « crX + pp and, since XL-
trees are equal only if their branches are identical, p «

p ($> C « p + c if either pX » p and crp « c i.e.

if ...XXXX is a right-divisor of p and ...pppp is a

right-divisor of a (p, cr not both 0) or pX = cr and

crp * p i.e. ...XpXpXp is a right-divisor of p and

•..pXpXpX is a right-divisor of o.

No finitary XL-tree is idempotent with respect to

addition <$> , since the lineage of p © p is twice that

of p if p / 0 and if p « 0 then p©p = 0©0®l^p.

Note that there exists an idempotent limit tree, viz.
i i i

lim 2 « lim 2 + lim 2 . Moreover if lim is idem-

potent P + P « 6 fP.,} and thus P„.2n £ (p,} .
i i X X i 1

But 2n < Pr.2n and therefore {2^'] < {R} . Now

{P^} < {2*} and therefore {P^} ~ {2^}. Hence the only
Idempotent limit tree is lim 2* . This is obvious from

the graphical representation which we introduce in the

next section.

It is possible to define non-finitary 12-trees by

replacing part (iii) of the definition of finitary XL-

trees by;
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(iii*) A species, written as a formal series, of

primary XX-trees is an Xl~tree provided that no term

of this series is a right-divisor of any other term.

It follows at once that if p and cr are (non-finitary)

XL-trees, not both 0, then p © or « pX + dp is an IX-

tree.

Although in many particular cases such trees can be

constructively defined and from this definition one could

define their lineage, potency and altitude, it seems that

in the general case constructive definitions of altitude

and potency are not possible. Vie could define altitude

as the "l.u.b." of the altitudes of all branches of the

XL-tree and potency as the order type of the basis, the

construction of which can be achieved in particular cases

(e.g. by using the graphical representation of the next

section). These definitions, however, in the general

ease would be essentially non-constructive and the unique¬

ness of potency probably would not be constructively

provable.

We can define index <]r- and ©-polynomials representing

finitary fL-trees. Again, in the case of non-finitary

XI-trees, due to the enormous chaos of possibilities it

is doubtful if these definitions can be regarded as

constructive.
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Definitions* The ©-polynomial of a finitary 12-tree

is the polynomial containing all the terms of the 12 -
tree and all their proper right-divisors (including 1)

each term appearing only once.

For example, the ©-polynomial of the finitary 12 -tree

p * X + ...XXXp + ...pppp is 0(p)s=l + X+|i. + Xp +
2 3 2 3

+ X p + X p + ... + ...XXXp + p." + p + ... + ...ppup .

The ^-polynomial of a finitary 12-tree a is defined

as follows:
ty{a) - 1 + (X + p - 1} ©(a) .

Thus the \|r-polynomial of p is
2 o 1

Hp) = X + pX + pXp + (lX n + pX p + ... + ...XXXp +

2 3
+ Xp + Xp + ... + ...pppp .

THEOREM 4.5 • If P and a are finitary 12 -trees then

9(p®ff) - 9(p)X + 9(cr)p + 1,

t(p£> cr) » H P) * + ^(o)h- •

Proof. If p ■ c « 1 the theorem Is obvious.

Otherwise p © cf •» pX + op. 9(p)X and 9(cr)p contain

all terms of pX and up and all their proper right-divi¬

sors except 1. Therefore ©(p)X ♦ 9(ff)p + 1 « 9(p®or).

^(p©c) - 1 + (X p - 1) 9( p@cr)
« 1 + (X ♦ p - l){9(p)X + 9(cr)p + l}
■ jl + (X + p - 1 )©( P)} X + fl + (X + p - l)9(<r)} p
* Hp)* + •
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We now define multiplication of .0.-trees by analogy

with the formation of the to-polynomial of a product of

two trees.

Definition. p®0 « p ,

p (g) cr - p ijf(ff) {or 0).

An immediate consequence of the definition is that the

X7-tree 0 is a multiplicative identity and rjr(a) « 1 (g> cr.

Dote that we have defined £1 -trees so that finite Q-trees

are the to-polynomials of the corresponding bifurcating

root-trees and therefore the _Q -trees 0 and 1 correspond

to trees 1 and 2 respectively.

We now prove that the above-defined multiplication of

finitary .Q-trees has the same properties as multiplication

of trees.

LEMMA 1. If p and a are finitary _Q.-trees then

(i) Q(pff) « (e(p) - 1)0- + 0(d),

(ii) f(pff) » t(p)°" + f(°") - (X ♦ p)cr .

Proof.

(i) ©(per) » per + ^(all proper right-divisors of terms of per)
- per + Z( all proper right-divisors of terms of p) cr +

+ Xl(all proper right-divisors of terms of cr)
« per + (©(p) - p)ar + (9{cr) - cr)
- (©(p) - l)a + 9(a) .
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(ii) *{pc) * 1 + (X ♦ p - l)((Q(p) - l)cr + Q{tr))
« 1 + (y(p) - l)cr - (x + p - Do1 + - 1
= |r(p)cr + ljr(cr) - (X + p)c .

LEMMA 2. The polynomial whose terms are all distinct

proper right-divisors of terms of ty(c) is 9(c).

Proof. tCff) » 1 + (X + p - 1) 9(cr) . Therefore proper

right-divisors of terms of f(c) are proper right-divisors

of terms of X9(cr) and those of terms of p9(c) less those

of terms of 9(c). Hence the terms of 9(cr) are precisely

the proper right-divisors of terms of Some of them

of course may be proper right-divisors of several terms

of <jr(c).

The ^-polynomial of an fl-tree a, itself an

ri-tree, viz. 1 (x) c. The ant* 9-polynomial of t( °")
are therefore well defined.

LEMMA 3 . If cr is a finitary .Q-tree then

(i) ©(4^(cr)) - <M<t) + 0(ff) i

(ii) t(^(c)) " (X * p) •

Proof.

(i) ©(4^(cr)) » y(o) + Z (all proper right-divisors of
terms of ^Tc))

■ f(a) + Q(a), by Lemma 2.

(ii) t(t(°r)) - 1 + (X ♦ p - 1) 9(^(cr))
« 1 + (X + p - 1) (f {c) + 9(c))
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» 1 + (X + p — 1) (c) ♦ H0") -1
- (x + ia) 4f(°r) •

THEOREM 4.6 . If p and or are finitary Q-trees then

HP®<y) ■ Hp) Her) .

Proof,

<|r(P®cr) » HP *|r(cr))» by the definition of the (g) product,
■ Hp) H0") * HH<r)) - (*• ♦ p) Hff)f by Lemma 1,
38 tip) Hff) * (*■ + p) Hff) - (X ♦ p) *jr(o), by Lemma 3,
- Hp) t(cr) .

THEOREM 4*7 • Multiplication (g) of finitary _Q-trees
is (i) associative,

(ii) right-distributive with respect to addition® ,

Proof. Let p, cr, n be any finitary _Q.-trees.
(i) (p (x) <r) (x) tt « p f(e) (§rr

■ p Hff) ^(tt) ;

p (X) (<r (x) rr) « p Hff® «*)
■ P HoO H™)* by Theorem 4,6 .

{ii) p (g) (cr (?) rr) - pHor®n)
■ p(t(c)X + Htt)*a)
= p \|r(cr)X + p Hn)p
» (p (g) cr)X + (p (g n)p
■ p (g or ® p(g)fT .
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4. GRAPHICAL REPRESENTATION OF LIMIT TREES Ahi) Q. ~TREES
In the study of bifurcating root-trees it is convenient

to adopt a graphical representation in which the arms of

all forks of a tree are of equal length and are at 45°,
or any other convenient acute angle, to the upward

vertical. This graphical representation carmot be used

for sequences of trees of ever increasing altitudes. We

shall make the length of the arms decrease in geometric

progression with altitude.

Refer knots of a tree to two semi-axes originating

from the root and making an angle of 45° with the upward

vertical. Call the axis on the left the i-axis and the

axis on the right the j-axis. The coordinates of the

root are (0, 0} (the corresponding term is 1). The

coordinates of knots whose terms are X and p are (A, 0}
and (0, A). In general, if (i , j ) are the coordinates*

2 o' o
of the knot whose term is vjc.^vjc • ,V2vi 85 X or p)
then the coordinates of the knots corresponding to the

terms kvk_ivk_2* * *V2 V1 and M'Vk-lVk-2 *9 *V2V1 are

(i0+2~kf and (±o, jQ+ 2~k) respectively. Clearly
all arms are parallel to the axes and all knots of alti-

a
V ' ^ y»

tude a lie on the line i + j = y , 2 (see example).
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Example. P = ((1 + 3) + b) + (2.3 + 1),
2 2 2 2

cjp = XpX + X |iX + X |i + XpXp + p Xp .

V i J'
\ /

Terms Coords. Terms Coords. Terms Coords.

1 (0,0) p2X { - \\ 2 , $ J p2Xp ( i '1)V 4 , 16 /

X (1,0) X2P i i i \
V 8 » -1 ' X2 pX2 ( - 1 )V a , g >

( o, i) pXp / i S )I * , < > pXpX2 ( !2 £ )V 16 , 32. 1

x2 (i»o) XpX2 / 13 i \
V 16 , 3 J X3 pX i 11 i )\ 32 > Xr /

pX (i . i)
2.2
p X ( - - )v h > 16 > px2px ( E 1 )V 16 * il'

Xp (k , i) X2pX 1 II L \'
Ife » 4 J X2pXp ( - £)v 32 » « '

(o,D pXpX ( 5 - )V "J , 16 1 pXpXp ( £ U\v (6 » 32 '

(1,0) I 1 J. \
I 16 » 2 ' Xp2 Xp , (6 >

CM
i ( 1, J) pX p ( - -)V g , 16 ' P3Xp { - Q)^ 4 , J2 '

XpX (t , i) XpXp ( - ~ )V 16 » I '
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There is a one-one correspondence between i*>-polynomials

of primary trees and points (i, j) such that i and j are

proper non-negative fractions with denominators dividing
(X**1

2 , where a is the altitude of the corresponding tree,
a-1

and i ♦ j » Z 2 r (i + j « 0 if a « 1). There is
r«l

therefore a one-one correspondence between these points

and primary trees.

An unbounded sequence of primary trees is represented

by a sequence of points converging to a definite point

on the line i + j « 1. This point is called the limit

point of the limit tree to which the sequence belongs.

The i-coordinate of this point can be obtained by inter¬

preting the dual of the primary H-tree corresponding

to the limit tree as a binary fraction where X, p. re¬

present the digits 1, 0. The j-coordinate can be ob¬

tained similarly by interpreting X, p as the digits 0, 1,

or simply by subtracting the i-coordinate from 1.

For example, the limit tree corresponding to the Q.-
tree ...pXXpXXpXX has the limit point whose i-coordinate

is 0.110110110... , i.e. the point (£, ~). Each point

on the line i + j ■ 1 corresponds to a unique infinite

limit tree except a denumerable species of double points

whose coordinates are of the form (k/2n, l-k/2n),
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where n is a positive integer and k is a non-negative

integer not exceeding 2n. Each of these double points

is a limit point of two distinct infinite limit trees

corresponding to primary Xl-trees of the form

.. vh~l* • *v2 vx &ncl • • .XXXXpv^ v^i* • *v2vi
(v. = X or p). For example, ( 1, i) is the limit pointx 4 4
of limit trees corresponding to -Q-trees ». .ppppXX and

...XXXXpX . The analogy between these double points and

the two alternative notations for binary fractions such

as 0.11 « 0.10111... is obvious.

A convergent infinite limit tree has a well-defined,

finite or denumerably infinite, species of limit points

on the line i + j « 1. For a divergent limit tree any

point on certain segments of this line is a limit point.

Example. The sequence

{P±} - { 2, 2+2, 3 + (2 + 2), 4+(3 + (2 + 2),
where P^ = i + t^se union of the sequences of
primary trees , fp[2)}. M3)}, - .

- \2,3, 4, 5, ... i ,

jp[2)} - f2, 1+2, 1 + 3, 1+4, ...} ,

{P, ]-j2, 1 + 2, l+(l + 2), l+(l + 3), 1 + (1 + 4),

}p'4)1 - {2, 1+2, l+(l+2), 1+(1+(1+2)), 1+(l+(l+3)), ...

= \2, 3, 4, 5, ... } •
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The corresponding primary J1 -trees are:
2 3

*«•WXk , • • • XXXp, , • • • XX A.u g •«• p | j •• •

Therefore lim is convergent and its limit points are:

(1, 0), (A, A), (^, I*), (g, ^), ... f (0, 1).
The limit tree lim{((1+ 2*)+ 1) ♦ (2i+* ♦ 1}} is

divergent. Any point (i, j) such that A < i < A or
4 — — 2

1 < i < 2 and j « 1 - I is a limit point of the limit
4 ~ e
tree.

We turn now to the graphical representation of _Q-trees.
Finite SI -trees are represented in the same way as the

corresponding trees, viz. by graphs consisting of forks

whose nodes are points (i, j) given by the terms of the

©-polynomial of the Q -tree. The arms of a fork with

its node at altitude a are of length 2""a""^. Similarly

the coordinates of nodes of an Q-tree p of a transfinite

altitude are given by the terms of 9(p). If the term of

a node is of the form err (1 < b* < u>, tt* « to.k) then
-k -k

the coordinates of the point are (2 i^ + iQ, 2 + jQ)
where (i^, (iQ, jQ) are the coordinates of the
points corresponding to cr, tt respectively. In other

words if the term is of the form * *n2nl where
nl' n2 * * * * * "k are orc*er type anci ^he or(ier
type of is either finite or w* then the coordinates

of the point are found as follows: Let be the
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value of the dual of tt^ interpreted as a binary fraction
in which X, p represent the digits 1, 0 and q(tr^) the
value when X, p are the digits 0, 1. Then the coordinates
of the point are , . , „

k±^ ka
( / . P("r)/r, 2L, q("r)/r )•
r=l r»l

For example, the point corresponding to the term
2 2

XpX ...XXXX ...XpXpXp has coordinates

( rff + r1 + t> rik + $.o + f ) - <^§£, x§2> •

In the preceding discussion to.k represents a finite

multiple of w. A straightforward extension of the above

procedure would represent terms of order types (u ) ,

<*P)\ {c*A)* , ... by points on the lines i + j » 2,

i ♦ j « 3, i + j e 4, . Conceivably one might

represent terms of higher order types on a finite graph

by more drastic contractions of the scale.



- 10S -

CHAPTER V. ENUMERATION OF INDICES

1. INDICES OF g AND

The numbers a^, pa of possible indices in of given
potency 5 and of given altitude a respectively are given

(cf. (11)) by the recurrence formulae

®8 " alaS-l ♦ a2a5-2 * a3a8-3 + ••• ♦ ao-lal' al " l!
O «= 2p {P + p + p + ... + P ) + P^, P " 1.
a+1 *V*0 *1 p2 a-1 *V *0

The formulae for bg, q , the corresponding numbers of
possible non-congruent indices in ^c, are (ibid.):

bl - b2 - q0 - l;

b20-l - b.jb2S_2 + b2b2S-3 + ... + bg^bg,

b25 = blb2B-l + b2b2S-2 + ••• + b6-lb8.1 + §Vb6 *

qa+l ql + q2 + " • + "a-lJ * K(qa + 11 *

If we denote the number of indices in of altitude
a

not greater than a by sn, i.e. s,„ « X* ' p., the formulaa i=0 1
■for p i becomes^a+l

2
p . = 2p s . + p*a+l *a a-1 *a

f >22
«= ( S .+P) -Siv a-1 Fa' a-1

2 2* sa - 3a-l-

Alternatively, pa+1 - pa(sa + sa_1)
J*

TT
i=l

<S1 + si-l>-
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The first of these formulae gives

sa+l
a

1

Similarly if t = zLj q., we obtain the corresponding

The problem of enumeration of indices of of given

potency 5 (B>1) and given altitude a (a ♦ 1 < b < 2a t

cf. Chap. I, §4) is essentially one of finding the number
of partitions of a sequence of 6 objects according to the

following rules (cf. (15); also Chap. 4, §1):
(1) At the first stage the sequence of S objects is

partitioned so that the first a objects are in the

left subsequence and the remaining o - cr objects

in the right subsequence.

(2) At stage v all subsequences which do not consist

of single elements are again partitioned into a

left subsequence and a right subsequence.

(3) There are a stages. After stage a all subsequences

consist of single elements.

formulae

2<Wl ' *1 " ta-I + % ' <ia(ta * Vl + •
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The corresponding problem for indices of is equiva¬

lent to the enumeration of partitions of an unordered

set of 8 identical objects according to similar rules.

As there is an index of potency 1 and altitude 0 we

may say that a set of a single element can be partitioned

at stage 0.

Let p(a, 8) denote the number of indices of altitude

a and potency 6 in ZC, Obviously p{0, 1} » 1.

If a >1, any index I of altitude a and potency o is the

sum of its left subindex X* and its right subindex X?f,

i.e. X = X' + X". We can obtain all required indices by:

(1) Letting subtree X' run through all indices of alti¬

tude a - 1 and X" through all indices of altitude

less than a - 1 and potency 5 - 8^.t (where b^.f denotes
the potency of X*). There are

d-1 a-2

J5Z{p(a-X, d)2Z pU, 8-d>] such indices;
d»a 8=0

{2} as in (1) but interchanging the roles of X' and X";

and (3) if 8 - a > a, letting Xf run through all indices

of altitude a - 1 and potency d (d * a, a + 1,.••, 8 - a),
and Xn through all indices of altitude a - 1 and

potency 8-d. There are

6-q

p(a-l, d) p(a-l, 8-d) of these.
d«a
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Hence

THEOREM 5.1 .

5-1 a-2

p(a, S) « 2~! [p(a-l, d) 21! 2p(a, 5-d) + p(a-l, 5-d)},
d*a a=0

where p(x, y) - 0 whenever x + 1> y or y > 2 .

Denote the number of non-congruent commutative indices

of of altitude a and potency t> by q(as 6), Then

q(0, 1) *> 1. If a > 1 and X « I* * In is an index of

altitude a and potency 6, we obtain all such non-congru¬

ent indices by:

(1) letting X' run through all indices of ££ of altitude

a - 1 and X" through all indices of altitude less

than a - 1 and of potency S- $ . There are

5-1 a-2

yt jq(a-l, d) ^ ' dJai $-d)} such indices;
d=a a*0

and (2)(a) if 5 is odd and .|(5 - 1) >a, letting X1 run
through all indices of of altitude a- 1 and

potency d (d » a, a+1, ... , ^(5-1)} and X"
through all ir.dices of altitude a - 1 and potency

5 - d. There are

y(S-l)
q(a-ls d) q(a-l, d-d) of these.

d=a

(b) if 6 is even and |» - 1 > o
(i) letting X' run through all indices of

V
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of altitude a-1 and potency d (d » a, a+1,...

...f ip-D and X'r through all indices of altitude
a-1 and potency 0 - d. There are

xS-1
q(a-l, d) q(a-l, d-d) of these; and

d«=a
; \

(ii) letting both X' and X" run through all indices
of of altitude a-1 and potency but taking

only one index from each thus obtained pair of
congruent indices except when X'~Xn. There are

iq(a-l, -|b)[q(a-l, id) + l) of these.
Thus

THEOREM 5.2 .

S-l a-2

q(a, S) • [q(a-l, d) q{a, S-d)} ♦ Q(a, §), where
d=a a«0

/ q(a-l, d) q{a-l, 0-d), if o is odd,
d«a

Q(a, 5) » <( _is-l
—«

y q(a-l, d) q(a-l, 0-d) +

^ d"a + §6){q(a-i, ♦ i} ,

if 6 is even.

Q(x, y) » q(x> y) ** 0 whenever x ♦ 1 > y or y > 2X.
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We calculate

a

i

oil
i

r~"
i

1! 2
i
i .

2

,,,

2 3
"

3 ' 3 »3
i t

—j-|—
5 i 6! 7

i i
■ >

3
""

i

4! 4
1

4 4
1

4-' 4
1

' —

T
1

9! 10
I
1

1

4 ! 4
1
1

1 i

4; 4; 4
1 1

5 3 4 4 fi

"T~~l

5l 6
1
1

7 8

T
1

11 ! 12
1
1

r~

rH~4r-i 16

P(a,8)

i
!

Ijl
1
1

2 1 4

t i
i I

6! 6' 4
t f
i i

1

1
1
1

^ J 20
1
1

40 68

1
1

94!114
i
1

1
1

116194
1
1

T

to

1ir

to

I

(V

14

O

1

vO

1

1

q(a ,8)

1
1

111
i
i

1 1 1

: i
i i
1 !

2 j 2 j 1
i i
i i

r: .i,,:;.!1:, .j

1 l! 3
t
1

5 7

1
1

8 i 9
1
1

I
1

7 i 7
i
i

e===f-~-i

1 I
1 1
1 1

4! 3! 1
1 i
! 1
, ,

1

2. INDICES OF AND OF ^ce
Let /Dp be the number of trees (or indices) which have

the same palindromic ijr- and ©-polynomial as a given tree

P and let Myp be the number of trees (or indices) con¬
cordant to P.

THEOREM 5.3 . If P is a given tree and I i v-.X1^ ,

<r i»J
i i

rr, .X p are its palindromic index ^-polynomial and
ij ij
©-polynomial respectively then Mp -

(This result was conjectured by Etherington.)

Proof. Use induction on the potency of P. The formula

holds trivially for potency 1. Assume that it holds for
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trees of potencies less than d. If P is of potency d

and ,r s
v X p is the leading term of ijfp then

to * tn ** (X + p - l)v„ Xr-1ps is the ^-polynomial ofirQ rs

the (v )th principal subordinate of P (cf. Theorem 3»5)*rs

The potency of Q is d - and thus, by the induction

hypothesis, As »
w

r-l,s

Vij +nij
ijtr

tr-l sNow, the coefficient of X "V*3 in *jr is v . + v' Q r-l,s rs
and therefore any tree congruent to Q mod (t) has

v , + v free ends corresponding to this term (i.e.r-j. ,s rs

corresponding to the point (r-1, s) on the tree pattern)
To obtain all trees congruent to P mod (t) we join the

nodes of v forks to these free ends in all possible
rs

manners. For each tree congruent to Q mod (t) this can

'r-1, s+ vrs
be done in

r s
distinct ways. Therefore

'V T + vr-l,s rs

rs
4,.

vr-l,s+TTr-l,s
"r-l, s

4/ „ since v « tt t

q ' rs r-l,s»

i *j

vij +tTij
nij

Example. To find the number of trees congruent to

3.3.4 mod (t).
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The palindromic index polynomials of 3.3*4 are

^3.3.4 " X? + + 3^5|jl2 + + 3X^ + 6xV2 + 3X3p3
♦ X^p + 5X3p2 + 4X2p3 ♦ 2X2p2 + 3Xp3 + p3 ,

Q
3.3.4

4 2 5 ^3.2X. + 2X p + X p + X+ 4X p + 3X p + X + 4X p +

+ 4X2p2 + X3 + 3X2p + 3Xp2 + X2 + 2Xp + p2 + X ♦ p

,i j. ,5 .4 2 .4 ,3 2 .2 21X p^; X'p, X p , X ji, X p , X p

U *

TT,Yj '

3

2

6

1

1

4

5

3

2

4

For all other terms

either or Ttjj
is 0 and thus

/ vij+nij\
\ tt±j J - 1 •

4/
3.3.4

51 (& 294 000 .

THEOREM 5.4 . If * « viX and 9 -Z Zn,
are index polynomials in one indeterminate of a given

tree P then M<p, the number of trees concordant to P,

is equal to
vi *ni

tr*

The proof is similar to that of Theorem 5,3 (v. (27),

p. 19D.

Example. To find the number of trees concordant to 3.3.4<

^3.3.4 * gX? * 12x6 + 10x5 + 5x4 + x3'
©oil " 4X6 + ax5 + 9X4 + 7X3 + 4X2 + 2X + 1 .3.3.4
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'i *

rr.

At
3.3.4

12 , 10 , 5 ,

4 , « , 9 ,

16
4

xV
1 ;

7 .

For all other terms either

> v. or it. is 0 and thus
> i i

vi * V
tr.

1.

(*/) (194) (* )- 1 275 507 192 960.

Finally we give two formulae: one for the number of

non-concordant Indices of altitude a and the other for

the number of non-concordant indices of potency 6.

Let v be a non-negative integer, X an indeterminate

and i any non-negative integer such that 2^- > v.

Denote by A_ the operator defined as follows:

and

jVfvX1) » vX1 if v « 0 or 1

jY(vX1) - (v - 2)X* + X1"1 if v > 2.

Define the A-value of v, denoted Av, as the number of
all possible (different) polynomials in X obtained by

operating with A in all possible manners on vX* and on

terms of thus derived polynomials.

Example. To find the A-value of 7. We have

7X1,
ji(7Xi) - 541 + X1"1,

(jl(541)) + 41"1 - 341 + 2X1"1,
(AO*1)) + 2X1"1 - X1 + 3X1"1,
34" A (2X1"*1) 3X1 + x1"2,
X1 + A(34i"1) = x1 + X1"1 + X

i-2



- 117 -

i.e. 6 distinct polynomials and it is impossible to

obtain more than 6. Hence the A-value of 7 is 6.

It is easily seen that

-V 1, At - 4, 10, l12 = 20,

Ai - 1, Ac = A9 » 10, i13 = 20,

A2 - 2, ^6 " A
io « 14, AX4 " 26,

"^3 " 2, A? « 6, A,, »li 14, ^15 " 26, etc

In fact we have

LEiViMA.
v

2v + l * "^2v * 2^A-r.r«0

Proof. Use induction on v. The formula gives cor¬

rect .A-value for v « 1. Assume that the formula holds

for integers less than v. Consider A^ , the number of
1

all distinct polynomials which can be obtained from 2vX

by the process described above. All such polynomials
i i i i

with a term in X are obtained from 2vX * 2X + 2{v-l)X

by operating with A in all possible manners on the term

2(v - 1JX1 and on terms derived from it. There are

-y/^2( v- such polynomials. All the derived polynomials
of degree less than i are obtained by operating in the

X X A
same way on vX . There are Ay of these.
Hence A^ = 2(v-l) + A~y. But, by the induction hypo-

^ v-1 v
thesis,A . » 2^ i. Thus A„ « /A vlr + A » J* x' r»0 r«=0 r»0

r
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A
, , is the number of possible polynomials obtained<cV + X

i .

\ i.
from (2v + 1)X by the same process. Now, (2v + 1)X «

X1 + 2vX* and since AtX1) « X* all the required

polynomials are obtained by operating with A on the

term 2vX* and on terms derived from it. Thus

~^"2v+l = -^2v*
Denote by r the number of all non-concordant indicesct

of altitude a, i.e. the number of all index ^-polynomials,

ty(X), of degree a.

THEOREM 5.5 .

2"-l

1,(1+1 ^0 i,e* ra " 5p-2*

Proof. All possible trees of altitude a + 1 are sub¬

ordinates of the plenary tree 2a+1. Moreover, Theorem 3,11

implies that if we operate with A on a term of a t-POly*

nomial yp and the resulting polynomial 9 differs from |p
then 9 is the ^-polynomial of a first subordinate of P.

Thus all index ^-polynomials of degree a + 1 can be obtained

by operating with A on 2G+1Xa+1, the index ^-polynomial
ot+1

of the plenary tree 2 , and on terms of the derived

polynomials in such a way as to leave in each resulting

polynomial a term in X0^1. We can obtain all these poly¬

nomials in the following way: first operate with A on

the leading terms only and obtain the sequence of ty-



<x
polynomials of the first, second, ... , [2 - l)th

Ci+1
principal subordinates of 2 :

2a+ixa+l (2a+l . 2)Xa+1 * Xa, (2a+1- 4)Xtt+1 ♦ 2Xa,
... , {2®+1 - 2i)Xa+1 + iXa, ... ,

4Xa+1 * (2a - 2)Xa, 2Xa+1 ♦ (2a - l)Xa.

Now, from each (2a*"^- 2i)Xa+^"+ iXa we can obtain all *jf-

polynomials of degree a + 1 with leading term (2a+^- 2i)Xa'1"^
by leaving the term in Xa+*^ alone and operating with A
on iXa and on other resulting terms. But, by the defini¬

tion of A-value, we can obtain in this manner exactly A ^
2a-l

polynomials. Hence r A.... Now, by the Lemma
2a-l-]L a+1 i=0 1
2T Ai - A2a.2 and so ra - .

For a«0, 1, 2, 3, 4, 5, 6, 7,...

r « 1, 1, 2, 6, 26, 166, 1626, 25510, ... .(X

Let f(x) « Aq + A^x + A 2x2 + ... . Then
- (An + A,x + A„x2 + ...}(i + x + x2+ ...)1 - x 0 1 2

- A0 + (A0 + Ax)x + (A0 * Ax + A2)X2 + ...
- A n + Anx + A.x2 + ... = A, + Aax + Acx2 ♦0 2 4 1 3 5

Hence f(x) ® £li£. 1 + xf(x ) >

1 - x2 1 - x2
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i. e. f(x) «* *) .
1 - x

This functional equation is easily solved by iteration:

f(x) . —L-f(x2) » f>(x4}
1 - x l-xl-x^

oo

111 f (x ) (1 - x2*)"1
1 - X 1 - x2 1 - x4 i-0

« (l+x + x^+x^+x^+ ...)(1 + x2 + x^ ♦ ...)(l + x^+x^+ .

. ( 1 + X^ + . . • ) .

Thus r (a>0) is the coefficient of x2a""2 in the Maclaurin
KX/

expansion of this function. Alternatively, ra is the
coefficient of x2a in 1 + x2f(x) (all a).

(The preceding paragraph on the generating function f(x)

was communicated to me by Dr Etherington.)
n

A non-zero polynomial t|A* where the c^ are positive
integers is a 0-polynornial in one indeterminate if and only

if Cq ■ 1 and < 2c ^ (i = 0, 1, 2, ... , n-1) (cf.
Chap. Ill, §6). Also if P has 2"* c. A* for its 6-polyno-

i=0 x
a

mial the potency of P is equal to 1 ♦ c.. Hence the
i-0 1

problem of finding the number of non-concordant indices of

potency d+1, i.e. the number of distinct ©-polynomials
n, n
/ , Cj A such that \ c. - d, is equivalent to the prob-
i-0 i-0

lem of finding the number of partitions of d such that
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d « 1 + c^ + c2 + ... + cn where c-^ - 1 or 2 and ci+1 < 2^
To solve it consider the more general problem: given

two positive integers c and d find the number of parti¬

tions of d such that d « c + + .. • ♦ cn where
c, < 2c and c. , < 2c.. Denote this number by v(c, d).1 - i+1 — i '
Since c. can take any value between 1 and min(2c,d-c) we

2c

have: v(c, d) ® v( i > d-c), where v(xty) » 0 when-
i«l

ever x>y. The formula expresses v(c, d) in terms of

values of the function for smaller values of the second

argument. Since v(x, x) » 1 for all positive x we can

calculate v(c, d) for any given c and d by repeated use

of the formula. Thus

\d
c\

1 2 3 4 5 6 7 8 9 10 11 12 13 14

v(c, d)
1 1 1 2 3 5 9 16 28 50 89 159 285 510 914

2 0 1 1 2 4 7 12 22 39 70 126 225 404 725

3 0 0 1 1 2 4 7 13 24 42 76 137 245 441

4 0 0 0 1 1 2 4 7 13 24 43 78 140 251

5 0 0 0 0 1 1 2 4 7 13 24 43 78
6 0 0 0 0 0 1 1 2 4 7 13 24 43 76

7 0 0 0 0 0 0 1 1 2 4 7 13 24 43

B 0 0 0 0 0 0 0 1 1 2 4 7 13 24

The first row (c ■ 1) in the above table gives the

number of non-concordant indices of potency d + 1.
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INDEX OF DEFINITIONS

Addition
of indices 6
of limit trees 91
of sequences B5
of trees 8
of Q.-trees 94

altitude
of an index 13
of a knot 13
of a tree 13
of an J2-tree 95

arm 8

Basis Bl

bifurcating root-tree B

bounded sequence B3
branch

of a tree 22
of an Il-tree 94

Component 22

concordant 6B

conformal 14

congruence on 53

constant sequence #3

convergent limit tree 92

Distance 44

divergent limit tree 92

Echelon sequence $3

effectively increasing 87

end 8
free 8

equivalent sequences

Faithful representation

fork
free
leading

Increasing sequence

index

index polynomial

induction,
non-associative

intersection
of limit trees
of sequences
of trees

interval, closed

Knot
unbalanced

Lattice
of all trees
of limit trees

limit point

limit tree

lineage

logarithmstic, free
additive
commutative

entropic
palintropic

entropic
multiplicative
palindromic
palintropic

£5

25

8
20
20

83

6

24

10

91
a 5
44

45

a
14

44
91

104

88

22, 94

7
6

52
52
52
52
7

60
52
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Multiplication Root 8
of indices 7
of trees 10 Sequence 81
of f2.-trees 99 bounded S3

constant S3
mutability- 14 echelon S3

S
increasing S3

Node effectively S7
unbounded S3

Operator 116
Subordinate 21

ordered polynomial 62 of limit trees S9

Si
of sequences S3

ordinal number principal 21
total 22

Polynomial, index 24 <?
x. - 25 Superior 21

26
0 - 29 Term 12
w - 34 leading 62 , 74
of an -0--tree 98
in one indeterminate 74 total subordinate 22
palindromic 60

XI -tree 94
potency 13 , 95

- Sof an index 13 tree, bifurcating root-
of a tree 13
of an il -tree 95 Union

of limit trees 91
power, principal 6 of sequences S5

of trees 44
primary 21, 94

_A_-value 116
prime 37

Well-ordered species SI
principal subordinate 21


