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The aim of this study was to estimate genetic parameters in the U.K. 

pedigree Holstein-Friesian (HF) population using an animal model 

(AM), and to investigate some implications of the results for genetic 

improvement. 

In a theoretical study it was shown that little bias in estimating 

variances components is introduced by grouping herds according to 

their mean (milk) production, a common practice for investigating 

heterogeneity of variance in dairy populations. 

For each of 26 large pedigree herds, comprising of a total of 7720 HF 

cows, variances and h 2  for first lactation fat yield were estimated 

with residual maximum likelihood (REML) using an AM. The mean fat 

yield was 212 kg. The mean and range of individual herd h 2  estimates 

were 0.38 and 0.03-0.80 respectively, and the average standard error 

of the h 2  estimates was 0.19. Using likelihood ratio (LR) tests it 

was found that individual herd h 2  were not significantly different 

from each other (P>0.05), but that phenotypic variances differed 

substantially among herds (P<0.01). An investigation into the 

statistical power of a LR test for small samples showed that it is 

difficult to detect real differences in individual h 2  if the standard 

errors of the estimates are relatively large. 

Using production records in lactations 1-3 from 100 large 

Holstein-Friesian pedigree herds, parameters for milk, fat and 

protein yield in lactations 1-3 were estimated with REML using an AM. 

The number of records for each lactation was approximately 39000, 

26000 and 17000 for lactation 1, 2 and 3 respectively. Heritabilities 

for the three yield traits were similar: approximately 0.36 in 

lactation I and 0.30 in lactations 2 and 3. Genetic correlations 

between yield traits in lactations I and 2, for example between milk 

production in first and second lactations, were approximately 0.86. 

Genetic correlations between yield traits in lactations 2 and 3 were 

nearly unity. Genetic correlations between yield traits within 

lactations ranged from 0.58, for milk and fat yield in lactation 3, 

to 0.91, 	for milk and protein yield in lactation 1. Genetic 



correlations between yield traits between lactations ranged from 

0.55, for milk yield in lactation 1 and fat yield in lactation 2, to 

0.85, for milk yield in lactation 2 and protein yield in lactation 3. 

Environmental correlations between traits within lactations were 

approximately 0.95, and approximately 0.40 across lactations. 

The effect of simplifying covariance structures for milk, fat and 

protein yield in lactations 1-3 on accuracy of selection for lifetime 

yield was investigated using selection index theory. It was found 

that applying a transformation to make the traits in lactation I 

independent at the phenotypic and genetic level to the yield traits 

in later lactations, and assuming that three new uncorrelated 

variates were formed, was highly efficient in terms of accuracy of 

selection when compared to the accuracy of a general multivariate 

model. This transformation was recommended for a national BLUP 

evaluation, since it may take account of selection to a larger extent 

than when performing separate analyses for milk, fat and protein 

yield. 

ix 



INTRODUCTION 

One definition of the aim of dairy cattle breeding is to increase the 

economic efficiency of dairy farming by breeding (more) profitable 

cows. An important parameter determining profitability of dairy 

cattle is (efficiency of) the production per cow, and data used for 

studies in this thesis are restricted to milk production traits. To 

achieve the aim of higher yielding cows through breeding, animals of 

superior genetic merit for milk production traits should be 

identified and chosen as parents for the next generation. The 

traditional method of "identifying" cows and bulls of high genetic 

merit is to model the biology underlying the expression of production 

traits and to make predictions about future performances of animals 

and their progeny using this model. In animal breeding, where often 

only phenotypic observations are available, the model to describe the 

observations is usually presented as a statistical model which is 

based on an underlying genetical model. Recently, a so-called animal 

model (AM) has become the genetical-statistical model for predicting 

breeding values in livestock species. The main feature of this animal 

model is that all relationships between animals with records are 

taken into account when predicting breeding values. 

The aim of the work presented in this thesis was to estimate genetic 

parameters in the U.K. pedigree Holstein-Friesian (HF) population 

using an AM, and to investigate implications of results for genetic 

improvement. 

In chapter 1 some problems concerning the above modelling process are 

discussed, in particular the statistical and genetical assumptions 

underlying the prediction and estimation of genetic merit in dairy 

cattle. Chapter 2 deals with potential consequences of parameter 

estimation in dairy cattle when herds are grouped according to their 

mean production. In chapter 3 heterogeneity of variance between 

individual pedigree herds is investigated and chapter 4 is a study 

about the statistical power of detecting different variances between 

herds or herd groups. Variance components for milk, fat and protein 

yield in lactations 1-3, which are required for predicting breeding 

values, are presented in chapter 5, followed by a study about the 
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consequences of these parameter estimates for prediction of breeding 

values in practice (chapter 6). In the final chapter some open 

questions which arose from discussions in chapters 1-6 are addressed. 
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CHAPTER 1 

SOME THEORETICAL AND PRACTICAL PROBLEMS ASSOCIATED 
WITH PREDICTION AND ESTIMATION IN DAIRY CATTLE USING 

AN ANIMAL MODEL 

1.1 Introduction 

At present, the common method in most countries for evaluating dairy 

sires is Best Linear Unbiased Prediction or BLUP (Interbull, 1988). 

Cow evaluation is usually performed separately, using a selection 

index type procedure (for example, Hill and Swanson, 1983), or a 

within-herd BLUP evaluation. Increased computer power, faster 

algorithms and computational shortcuts such as the simple method to 

construct the inverse of the numerator relationship matrix 

(Henderson, 1976; Quaas, 1976) now make it feasible to evaluate sires 

and cows jointly, using a so-called Animal Model (AM). Various 

countries are in the testing phase or have started to use AM analyses 

(see e.g. Wiggans et al., 1988a and 1988b; Ducrocq et al., 1990; 

Jones and Goddard, 1990). 	Whether using a sire model, a 

sire-maternal- grandsire model or an animal model for evaluation of 

dairy cattle data, the effectiveness of using the prediction of the 

random effects (breeding values) for the achievement of the breeding 

goal depends on the extent to which the assumptions of the models are 

violated. What are these assumptions, and what are the consequences 

if some are clearly not valid? 

In this chapter models currently in use for dairy cattle breeding 

value prediction are discussed in relation to their implicit 

assumptions. The aim of the chapter is to highlight existing problems 

in sire and cow evaluation, and to a lesser extent in estimation of 

variance components, and to discuss possible strategies to deal with 

these problems, in particular with reference to, prediction of 

breeding values with an AM. If not specified otherwise, referenced 

data analyses apply to the black-and-white (Holstein-Friesian) 

population. 
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1.2 BLUP - Assumptions 

When describing the assumptions underlying the evaluation using BLUP 

a distinction can be made between the general, theoretical 

assumptions and the assumptions typically made for practical dairy 

evaluation. 

1.2.1 The general statistical model 

Consider the linear model: y = Xb + Zu + e ; where: 

y = a vector of observations 

b = vector of fixed effects and covariables 

ui = random effect i, for example a genetic effect (e.g. sire or 

animal) and environmental effects (e.g. permanent environment, common 

environment) 

e = random environmental effect 

X and Z1  are incidence matrices, and the (co)variance matrices of the 

random effects are: 

v(u) = A 1  
. 	

2 

U. 
, v(e) 

= 	2 

e 	' 	
cov(u.,e') = 0 

1 

Al  is the numerator relationship matrix for (additive) genetic 

effects, and is usually an identity matrix for other random effects. 

The covariance matrix for residuals, R, is often assumed to be an 

identity matrix. The assumptions to obtain unbiased predictions of 

the random effects with minimal prediction error are (e.g. Henderson, 

1973): 

1) Using the correct (linear) model to describe the data. 

Departures from this assumption include incorrect preadjustments 

for certain fixed effects and covariables which do not appear in 

the model (e.g. age and month of calving, lactation length), and 
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a non-linear relationship between the observations and the 

effects in the model. Henderson (1975b) discusses the impact of 

the use of some incorrect models on estimates and predictions. 

2) Variances and covariances are known, or known to 

proportionality. Although the true covariance structure is never 

known, departures from this assumption will still yield unbiased, 

although not "best", predictors of the random effects in an 

unselected population if the estimates of variances and 

covariances are obtained through Maximum Likelihood estimation 

procedures (Kackar and Harville, 1981). "Unbiased" here is 

defined as E(uiti)=i, where the expectation is over the 

distribution of "true" breeding values given a particular 

predicted breeding value. Thus the regression of breeding value 

on predicted breeding value is unity. The more stringent 

statistical definition of unbiasedness, i.e. E(aiu)=u, where now 

the expectation is over the distribution of predicted breeding 

values for a particular true (unobserved) breeding value, only 

holds for the trivial case when cov(u,ti)=v(u), i.e. when ti=u. 

(Incidentally, in the derivation of BLUP E(u)=E(i) is used to 

force the predictors to be unbiased, but these expectations are 

both zero and do not give information about individual true or 

predicted breeding values.) Estimates of fixed effects and 

genetic/environmental trends may be biased when estimates of 

variances and covariances are used. Unfortunately, the bias on 

true selection response has hardly been investigated. Sorensen 

and Kennedy (1984) and Sorensen (1989) give some results from 

simulation, but a prediction of the bias is not presented. This 

prediction would be of interest to breeding organisations in 

particular. In chapter 6 some results concerning bias in 

estimated response are presented. 

Homogeneity of variance or normality is not a necessary assumption 

for BLUIP-evaluation if the covariance structure is known, as shown by 

Gianola (1986) for the case of heterogeneity of variance. For an 

unselected population it is therefore sufficient to know (or use an 

estimate of) the second moments of the distribution. 
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1.2.2 The practical statistical model 

When applying statistical methods to model biological processes, 

simplifications are made to approximate the true, usually unknown, 

underlying biological model. Hence further assumptions are introduced 

in the practical evaluation models: 

Normality: Under the assumption of (multivariate) normal 

distributions of the random effects, BLUP has the further 

desirable properties that the earlier assumptions hold for a 

selected population (Henderson, 1975a) and that it maximises the 

response to truncation selection. Selection decisions should not 

depend on the fixed effects, or, more formally, selection should 

be on a translation invariant function of the observations 

(Gianola et al., 1988; Henderson, 1990; Fernando and Gianola, 

1990), and the data on which selection is based should be 

included in the analysis. It is not clear what the best strategy 

is if selection is not based on a translation invariant function 

of the data. Henderson (1975a) proposed to adjust the BLUP 

equations to take account of this type of selection, but his 

conditional selection model is somewhat controversial (Thompson, 

1979; Gianola et al., 1988; Goddard, 1990). An example of 

selection which is not "within levels of fixed effects" 

(Henderson, 1973) is selection on (group effect + breeding 

value), which is commonly practiced in dairy cattle breeding. 

More research is needed to find methods to optimise genetic 

progress under this type of selection (Gianola et al., 1988; 

Fernando and Gianola, 1990; Henderson, 1990). If selection is 

based on some trait which has zero genetic and environmental 

correlation with the trait being analysed, then the selection 

bias will (of course) be zero. Meyer and Thompson (1984) discuss 

the implications of selection on a correlated trait on variance 

component estimation when the observations of the trait under 

selection are not included in the analysis. A further discussion 

on biases in variance component estimation due to culling is 

found in chapter 5. The assumed linear relationships between the 

ui and y, which follow from normality, is questioned by Dempfle 

and Grundl (1988), who state that it may be appropriate to test 



whether it is true that y and u1  follow a bivariate normal 

distribution. 

Homogeneity of variances: The additive genetic effects and the 

residual error component usually are assumed to be normally 

distributed with homogeneous variances across levels of fixed and 

random effects. Departures from this assumption are obvious. A 

common observation is, for example, that the (residual) variance 

depends on the mean to some extent. An investigation into 

heterogeneity of genetic and error variance between individual 

herds is presented in chapter 3. 

Usually the covariance between u and e is assumed to be zero. 

However, there are cases for which the two effects are 

correlated. Falconer (1983) argues that for dairy cattle, where 

cows are usually fed according to yield, the generated covariance 

should be included with the genetic variance, because the 

environment is thought to be a consequence of the breeding value. 

Strictly speaking treating this specific environment as "part of 

the genotype" is only justified if the regression of the 

environment (i.e. feed in the example) on the true breeding value 

is constant for all breeding values and environments , which is 

unlikely to be true. In section 1.3.2 it is proposed that a GxE 

(genotype by environment) correlation may partly cause the 

generally observed heterogeneity of variance. Unfortunately this 

environmental effect is difficult to classify in commercial 

herds, and Falconer's suggestion seems the most practical. 

The covariance between fixed and random genetic effects is 

usually assumed to be zero, hence it is assumed there is no 

genotype-environment interaction. Possible departures are a sire 

by sex interaction (e.g. in beef cattle), a sire by herd 

interaction (dairy cattle) and in general a genotype by 

management interaction. See section 1.4 for a further discussion. 
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1.2.3 The genetic model 

Sorensen and Kennedy (1984) and Kennedy et al. (1988) describe the 

genetic properties of an AM. Assuming a normally distributed random 

genetic effect and using BLUP in a selected population implies the 

assumption of the infinitessimal genetic model: an infinite number of 

independent loci each with an infinitely small additive effect. 

Bulmer (1980) summarised the assumptions and properties of the 

infinitessimal model in detail. Gene frequencies are assumed to be 

constant over time. Within family genetic variance is then unaffected 

by selection and the Mendelian sampling effect is independent of the 

parental breeding values. The between family variance changes by 

selection, due to gametic phase disequilibrium (Bulmer, 1971). Both 

between and within family variance are affected by inbreeding. 

Turelli and Barton (1990) questioned the mathematical assumptions 

underlying the genetic model described above (which they term the 

"Fisher-Bulmer infinitessimal model"), namely that with infinite loci 

the distribution of breeding values remains normal under selection. 

They showed, using multilocus population genetics theory, that under 

most forms of selection the distribution of breeding values is 

systematically driven away from normality through generation of third 

and higher order linkage disequilibria. For a purely additive model, 

however, a normal approximation of the distribution of breeding 

values should be sufficient to predict short-term response to 

selection in most cases (Turelli and Barton, 1990). 

Inclusion of the covariance matrix of the random effects in the 

model, the numerator relationship matrix "A" for additive animal 

effects, will account for a decrease in genetic variance due to 

selection, genetic drift (Sorensen and Kennedy, 1983), inbreeding and 

assortative mating (Kennedy et al., 1988). 

It has been proposed to include dominance and epistatic effects in 

the practical linear model (e.g. Henderson, 1988). 	Including a 

dominance effect in the usual linear model is only justified if all 

loci are under complete dominance (Bulmer, 1980); incomplete 

dominance gives departures from the linear model because of a 
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non-linear regression between the genotypic values of any pair of 

relatives (e.g. offspring-parent). 	Including dominance gives 

interpretation problems for the infinitessimal model, in fact a 

finite dominance variance and a finite inbreeding depression are 

incompatible under the infinitessimal model (Robertson and Hill, 

1983): 

If d is a dominance effect at a locus, and the number of loci 

approaches infinity, then 

Finite dominance variance implies d 2  - 0 

Finite inbreeding depression implies d - 0 

Therefore, if a finite inbreeding depression is assumed, which seems 

reasonable since this is observed in practice, the dominance variance 

is zero under an infinitessimal model. "Therefore all dominance 

variance in an infinitessimal model derives from (linkage) 

disequilibrium" (Robertson and Hill, 1983). However, Smith and 

Maki-Tanila (1990) proposed mixed linear models including both finite 

dominance variance and finite inbreeding depression. They argued that 

for some particular (peculiar?) infinitessimal models it is feasible 

to have finite inbreeding depression and dominance variance in the 

model. The properties of their proposed models, in particular with 

respect to selection and drift and sensitivity to small changes in 

gene frequencies are not clear and need further investigation. There 

is a particular interest in quantifying dominance variance within 

dairy populations nowadays because of prospects of mass production of 

genotypes (cloning). At present, the pedigree structure from field 

data in dairy cattle is not very suitable for estimating dominance 

variance (few fulls-sibs and confounding of dominance effects with 

common environmental effects), but the increased use of embryo 

transfer and the establishment of nucleus herds will result in more 

"informative" animal comparisons for estimating dominance variance. 

If populations in which breeding values are predicted or variance 

components are estimated are crossbred, such as, for example, most 

black-and-white dairy populations in Europe, crossbreeding effects 

can be fitted in the model as fixed effects or covariates. Ignoring 

crossbreeding effect such as heterosis and recombination loss may 



lead to biases in prediction of breeding values and estimation of 

variance components (Van der Werf and De Boer, 1989a and 1989b). 

Fitting an epistatic effect clearly violates the basic genetic model 

assumption of independent additively acting loci. Furthermore, 

Griffing (1960) and Bulmer (1980) showed that, under selection, the 

selection differentials in additive epistatic effects will give a 

temporary response to selection, which will be reversed when 

selection ceases. The linear model type approach therefore does not 

seem suitable for genetic evaluation fitting epistatic effects. 

Practical problems are the lack of good priors for the variances of 

these effects, and the requirement of the inverse of the dominance 

(and epistatic) relationship matrix (see e.g. Schaeffer et al., 1989, 

and Chang et al., 1989, for computation of the inverse of gametic 

relationship matrices). 

Departures from assumptions based on the infinitessimal genetic model 

are, for example, non-normal distribution of random effects, gene 

effects that are not (very) small (e.g. a major gene segregating in 

the population), the presence of dominance and epistatis effects and 

heterogeneity of (additive) genetic variance. For practical purposes 

the key question seems to be how good the necessarily simplified 

models are in achieving the aim, i.e. to predict and obtain a 

response to selection. 

1.3 Heterogeneity of variance 

1.3.1 Variance heterogeneity between herd groups 

One of the assumptions usually made in dairy cattle (sire) evaluation 

is homogeneity of genetic and residual variance across levels of 

fixed and random effects. There is abundant evidence, however, of 

heterogeneity of variance across herds and herd-years. Relevant 

references to a quantification of heterogeneity of variance in dairy 

cattle and a discussion concerning possible strategies for dealing 

with heterogeneity are given in chapter 3. 

If heterogeneity of variance across herd(groups) is just a scaling 
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effect, heritabilities will be the same across herds and both 

residual and genetic variances will be different in herds with 

different total phenotypic variances. If environmental effects are 

the sole cause of heterogeneity, perhaps the easiest case to grasp, 

heritabilities will be lower in high variance herds. Lastly, a 

relatively higher genetic variance in more variable herds may cause 

the heritability to be greater in those herds. Although this case is 

difficult to interpret, apart from different sire selection 

strategies, it is found in many studies (e.g. Hill et al., 1983; 

Lofgren et al., 1985; Boidman and Freeman, 1988; Bong and Mao, 1990). 

The popular explanation for the latter case, 	that animals are 

allowed to express their genetic potential better in high producing, 

more variable herds, has no relevance to the genetic-statistical 

model (Hill et at., 1983; Vinson, 1987), where a phenotype is 

represented as a random environmental deviation from the genotype. 

However, if the simple model is extended to a multivariate model, as 

for example in the next section, a variable expression of genetic 

potential may be accounted for. Different genetic variation in 

different environments (e.g. herds) may be a case of "environmental 

sensitivity" (Falconer, 1983 and 1990), which is a form of 

"pseudo-interaction" (Dickerson, 1962) if the ranking of genotypes 

across herds is the same. In that case the product moment correlation 

of performances in any two environments is unity, while the 

intra-class correlation is smaller than unity. 

Famula (1989) raised a potential problem concerning parameter 

estimation in herd-classes which may have been classified on a 

function of the parameter of interest. As a result, for example, the 

sire variance in high-mean herds may be lower because in those herds 

relatively more high merit sires are represented, which may just be a 

sampling effect. This potential selection effect is investigated in 

chapter 2. 

Nearly all estimation methods for heterogeneity of variance 

parameters have been ANOVA or Maximum Likelihood-type procedures 

under a sire model. It is not clear how the parameters may differ 

using an animal model estimation procedure, but it is well known that 

use of daughter-dam information may yield different parameters (see 
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for example Van Vleck, 1986, and references therein). Within-sire 

components may show heterogeneity because of the environmental 

component (as usually is assumed) or because of the unaccounted for 

genetic component. For an evaluation with an AM it is necessary to 

obtain a quantification of the problem using the same model of 

estimation. This is investigated in chapter 3. 

1.3.2 Heterogeneity of variance as a GxE correlation 

Conceptually, heterogeneity of variance may be explained through a 

genotype by environment correlation. Suppose the true model for an 

observation Y is: 

Y = A + C + E , with 

A = breeding value (random) 

C = environmental effect correlated with A (random) 

£ = residual environmental effect (random). 

It may be convenient to think of C as the effect of the amount of 

concentrates fed to cows on their (milk) production. If A and C are 

correlated and follow a bivariate normal distribution, it follows 

that: 

C = 3A + Ec  where  Ec = error about the regression. Hence, 

Y = (1 + 3)A + E + E = A' + E' 

= Pca 0c / 0a , the regression of C on A, 

and A'= A + PA is the "targeted" breeding value, i.e. the predicted 

breeding value for unit accuracy if effect C is ignored in the 

prediction procedure. 

Now consider the following cases, assuming 0a  is homogeneous: 
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= constant; all farmers feed the cows in a similar way, 

according to their true BV (breeding value). Hence the variance 

of the "observed" BV (A') is constant across environments and any 

heterogeneity of variance is caused by differences in the 

variance of E, the true environmental variance. 

Pea = constant; farmers feed their cows according to their By, 

but the variation in feeding may differ between herds. As a 

consequence a higher "observed" genetic variance will be found in 

the herds where uc  is largest. This would be a case of allowing 

animals to express their "genetic potential" better, and thus 

increasing "genetic" variance. 

In practice, both Pca  and ac  would differ between herds. Hence 

heterogeneity of "genetic" variance is observed. Unfortunately C 

usually is unknown and therefore A'=(1+0)A should be regarded as the 

By, and differences in variances may be corrected for when necessary. 

Although the assumed model is a simplification, it gives an 

alternative explanation for the observed higher genetic variances and 

heritabilities in more variable herds. The model does not require a 

variable true genetic variation across environments, which would give 

interpretation problems for the underlying genetic model. In 

practice, dairy producers usually feed their cows according to their 

phenotypic production. Although this would complicate the above 

model, the basic argument that heterogeneity of variance could be 

explained by some (hypothetical) unobserved correlated variate should 

still hold. 

1.4 Genotype by environment interaction 

1.4.1 Violations of the assumption of independent genotypes and 

environments 

In the usual practical prediction and estimation models it is assumed 

that interactions between the main (genetic) random effect and the 

remaining fixed/random effects are non-existent. It is therefore 

assumed that a GxE interaction is zero; the ranking of genotypes 

(e.g. sires) is the same across environments. 
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Falconer (1983) describes departures from this assumption. Firstly, 

the genotype and environment may be dependent through a correlation; 

this effect was described in section 1.2.2. Secondly the ranking of 

genotypes may be different in different environments. Thirdly, 

Falconer (1983 and 1990) describes the case where the genetic 

variance depends on the environment where it is measured. This effect 

is called "environmental sensitivity" and is equivalent to the 

"pseudo-interaction" of Dickerson (1962) if the ranking does not 

change across environments. Observed GxE variance components may 

contain a part which is due to true ranking difference across 

environments and a part which is caused by differences in genetic 

variances among environments (Robertson, 1959; Dickerson, 1962). The 

latter part is Dickerson's "pseudo-interaction". Only true ranking 

differences give rise to a departure from unity genetic correlation 

between performances in different environments. This genetic 

interpretation, a multiple trait approach, was first suggested by 

Falconer (1952). 

1.4.2 Sire by herd effect 

A special case of the general GxE interaction is the sire by herd 

(SxH) effect. Conceptually a sire effect can be thought of as a 

vector of breeding values if a sire is tested in many herds (Dempfle 

and Grundi, 1988). If a GxE exists and sires are tested in few herds, 

only a correlated response will be obtained in other environments 

(Dempfle and Grundl, 1988). Henderson (1973) discusses the inclusion 

of an environmental effect for half-sibs in the evaluation model and 

states that it can be regarded as an interaction component. 

Conceptually and statistically, a SxH effect is equivalent to a 

common environmental effect of (half) sibs in the same herd (Meyer, 

1987). 	An explanation for the occurance of a SxH effect is not 

straightforward. It can be due to a "true" GxE effect, in that the 

ranking of sires across herds may differ. Perhaps the conclusions of 

breed rank differences for production/efficiency under low or high 

concentrate diets (see e.g. Oldenbroek, 1988) can be extrapolated to 

a within-breed situation. A GxE effect may be due to a scale effect 

of the observations (see the discussion under heterogeneity of 
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variance). If farmers somehow give different treatment to half-sibs, 

whether it be intentionally or unintentionally, this will result in 

an observed GxE effect, although in this case it is better to speak 

of a common environmental effect. An inappropriate model of analysis 

may also result in an observed SxH component of variance (see Meyer, 

1987, for details). 

Biases in early proofs of natural service bulls (compared with their 

later estimated breeding value from A.I. progeny) were the main cause 

for inclusion of a SxH effect in the national sire evaluation model 

in the U.S. (Norman, 1974; Norman et al., 1972). In retrospect these 

biases were effectively removed by fitting a SxH effect (Norman et 

al., 1985). Although the original motivation (Natural service vs. 

A.I. bulls) may have disappeared, there is no reason to exclude the 

effect again. A present motivation may be the existance of many 

farmers' syndicates, i.e. groups of few breeders that test bulls/cows 

in their herds. True GxE interactions, heterogeneity of variance and 

testing of "syndicate" bulls all are possible present day sources for 

a common environmental half-sib effect. The animal model used in the 

U.S. has the effect incorporated (Wiggans et al., 1988a and 1988b). A 

recent quantification of the effect for the British situation showed 

that approximately 3 % of the total variation could be attributed to 

a SxH effect (Meyer, 1987). The variance due to sire effects in this 

study was approximately 8 %. Sire by HYS effects gave a larger 

components (3.2-4.2 %) than a sire by herd effect (2.5-3.2 %). A 

standardisation of the observations to within-HYS phenotypic standard 

deviation showed lower "c 2" estimates (c 2= variance components for 

SxH effect as fraction of the total phenotypic variance), indicating 

that the observed interaction effect was due partly to scale effect 

of the genetic variance across herds/herd-year-seasons. 

Meyer (1987) gave an interesting illustration of the effect of a SxH 

component on BLUP sire evaluation. If a constant total phenotypic 

variance is assumed, whether there is a SxH effect or not, then the 

amount of information on their sire contributed by n daughters in 

the same SxH subclass is equivalent to m== ri/(1 + (n-1)k) daughters in 

m sire-herd subclasses, where k= c2/(1 - h 2/4). For a few values of 

C2 and n, the values of m are shown in table 1.1. This table is from 
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Meyer (1987) and is slightly extended. 

Table 1.1: Number of daughters (m) in m subclasses equivalent to n 
daughters in one subclass for h 2 	0.25. 

c 2  

n 	0.01 	0.05 	0.10 

2 	1.98 1.90 1.81 
10 	9.12 6.76 5.10 
20 	16.63 9.93 6.61 

00 	 93.75 18.75 9.38 

The table shows the effect of including a SxH component in the 

evaluation, in particular the relative decrease in information for 

increasing rz and c 2. For n - 	, m approaches 1/k. In the U.S. animal 

model c 2  = 0.14 is used (Wiggans et al., 1988b), which with a 

heritability of 0.25 results in an upper limit of 6.7 "effective" 

half-sibs per herd. Clearly, this procedure is powerful in 

restricting extreme values for sires that are represented in few 

herd-classes. The importance of including a SxH effect is likely to 

be increased under an AM evalutation, where half-sibs and full-sibs 

influence each other's breeding values. Both sire by herd and sire by 

herd-year-season have conceptual disadvantages if different 

interaction effects are assumed to be uncorrelated (as in the model 

used by Meyer, 1987). In that case a sire by herd effect assumes a 

common half-sib effect, regardless of time, while a SxHYS effect 

assumes half-sibs in different herd-year-seasons are uncorrelated. 

However, it is not necessary to assume the effects are uncorrelated. 

By treating HYS as random, Chauhan (1987a) showed that some 

interblock information can be recovered. Incorporating a covariance 

matrix for the random HYS effect gives additional information, albeit 

small (Chauhan and Thompson, 1986). The same strategy could be 

applied to SxHYS effects, in a way that half-sibs in "neighbouring" 

HYS are more correlated than half-sibs in the same herd, but calving 

further apart. Wade et al. (1990) used a model assuming that 

observations had an autoregressive error structure and estimated 

parameter with REML. The effect of using their model on the accuracy 

of prediction is expected to be similar to the model used by Chauhan 
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and Thompson (1986). 

1.4.3 Genotype by environment effect in an animal model 

In theory it is easy to incorporate a GxE effect in a BLUP animal 

model: all that is required is some grouping/definition of 

"genotypes" and "environments" and the covariance structure of the 

interaction effects, assuming the genotypes and interaction effects 

are random. At the same time this defines two problems to be 

considered: Quantitative, what is the order of magnitude of a 

possible GxE effect and qualitatively, how should genotypes and 

environments be grouped. A third problem is how to construct an 

efficient breeding strategy in the presence of a GxE interaction. 

Little is known about a GxE within-breed interaction for dairy 

cattle. Hill et al. (1983), using U.K. data, found genetic 

correlations of sires' performances in herd-groups split according to 

mean, variance or coefficient of variation (CV) to be close to unity. 

In similar analyses in the U.S., Carabaio et al. (1990) and Dong and 

Mao (1990) found similar results; their genetic correlation between 

sire performances in different herd-groups and different states 

varied from 0.95 to unity. This does not eliminate the possibility of 

a GxE interaction, since the definition of environments may have been 

inappropriate to detect such an effect. 	Intuitively the genetic 

correlation between performances across environments is unlikely to 

be unity exactly, hence some interaction may be assumed. The question 

of course is how much variation can be explained through this effect 

and whether it is worth the (computational) effort to include it in 

the BLUP analysis. The sire by herd effect of the previous section 

can be seen as an upper limit for any GxE component, because that 

effect is likely to include an environmental (c 2) component. However, 

it may contain a true GxE component, which will be scaled up by a 

factor of four. A desirable experiment would be to measure the 

performances of genetically identical individuals in different 

environments. Present reproductive techniques such as embryo 

splitting and cloning could be used to obtain such genotypes. 

The most detailed grouping of genotypes and environments would be 
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individual genotypes by herd. It is not clear how the covariance 

structure should be defined. It seems logical to assume the 

covariance matrix within a herd (environment) to be proportional to 

the A-matrix, as proposed by Foul ley and Henderson (1989) for a sire 

model. An alternative strategy is to group genotypes and environments 

and assume an identity covariance structure. An example is to group 

the interaction effects as tt%  Holstein by Geographical District". It 

may be argued that genotypes (e.g. genetic groups), environments 

(e.g. production level), and the interaction between the two effects 

should be treated as fixed. If the groups are carefully chosen this 

approach may be preferred since it is simple in concept and 

computation. However, more research is needed to find some suitable 

grouping strategy and to quantify the interaction component 

simultaneously. 

An interesting problem concerning a GxE effect is which animals 

should be selected for breeding purposes. Conceptually a breeding 

value may be represented as a vector of breeding values for all 

environments (Dempfle and Grundl, 1988). The presence of a GxE 

interaction will result in different off-diagonal elements (and 

diagonals if the genetic variation differs between herds) 	of the 

covariance matrix of the vector with breeding values. The definition 

of "breeding value" should therefore be accompanied by the relevant 

environment for which improvement is desired. For example, the 

superiority of an animal (genotype) in its own environment may be 

different from the superiority of its offspring in other environments 

(Dempfle and Grundl, 1988). For within-herd replacement, i.e. for the 

same environment, the interaction component could be regarded as a 

genetic component. In theory we therefore should calculate two (or 

more) breeding values: one for the environment in which the animal 

has performed and where its progeny are likely to perform, and one 

for some average (non-existing) environment. However, this would be a 

rather impractical situation. In the dairy industry, with many small 

herds and no obvious environmental grouping, the best strategy may 

well be to select animals tested over many herds. Progeny testing of 

bulls, of dams (or dam-families), and in future perhaps of clones, 

seems the safest way to achieve the fastest genetic progress in the 

whole population. Selection in any one environment, for example in a 
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nucleus (MOET) herd, may only give a correlated response in other 

environments if the interaction component is substantial. 

Incidentally, the efficiency of any MOET-scheme may heavily depend on 

the magnitude of the GxE component. 

Alternatively, different lines could be selected which are superior 

for a particular environment (Dickerson, 1962). Again the grouping of 

environments would be a problem for the dairy situation. Under the 

quota regulations, an "intensive" vs. 	"extensive" management (e.g. 

according to the number of cows per hectare) may provide a grouping 

strategy, although in this example the breeding aim is likely to be 

different in both environments. 

1.5 Environmental grouping; fixed or random? 

Traditionally herd effects or more precisely herd-year-season (HYS) 

effects have been treated as fixed. 	Most countries include this 

effect or more generally a contemporary group (CC) effect, in their 

sire evaluation model (Interbull, 1988) or animal model. Treating HYS 

as random would give biased sire proofs if sires were not randomly 

distributed over HYS-effects, but to overcome this potential problem 

of selection it is sufficient to treat herds as fixed (Henderson, 

1973). However, this has a major disadvantage in the form of loss of 

information, in particular when herds are small. Small herds or HYS 

with mainly daughters from one bull would hardly contribute to 

progeny group comparison in a sire model. Moreover, it is known that 

cows calving within a short period of time, but in different 

arbitrary HYS, are likely to have more in common than cows calving at 

the beginning and end of the same HYS. With small herd sizes the 

Prediction Error Variance (PEV) of sires can be reduced substantially 

by fitting herds as random. From a genetic progress point of view it 

is interesting to ask if small bias should be allowed in order to 

improve accuracy (see Gianola et al., 1988, for a discussion). 

A possible strategy to recover some of the interbiock information is 

treating some environmental effects as fixed and some as random. 

Chauhan (1987a) tested various models with some environmental effects 

random and concluded that a model with herds as fixed and periods 
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(e.g. years) and herd-period-seasons random was "best", in the sense 

that PEV were smaller and the product moment correlation of sire 

proofs between two random subsets was close to unity. However, 

because there may be a genetic or environmental trend over time 

within herds, a model treating herd-periods (HP) as fixed and 

herd-period-seasons as random may be "safer" (Chauhan, 1987a). The 

latter model, with years as periods and months as seasons, was found 

to be 37 % more efficient than a corresponding model with 

herd-year-month (HYM) fixed. Chauhan and Thompson (1986) constructed 

a "rolling months model", in which months were random and a 

covariance structure of those effects was fitted. It was concluded 

that for practical purposes a general random months model (with 

Identity covariance matrix) would be sufficient (Chauhan and 

Thompson, 1986). Chauhan (1987b) calculated intra-class correlations 

for cows calving in the same HP or herd-period-season (HPS), in a 

model where herds were fixed and the HP and HPS effects random. For 

fat yield the correlations were 0.16 (same FlY) and 0.25 (same HYM). 

The analysis was extended to multiple lactations by Brotherstone et 

al. (1989), who proposed an evaluation model with HP fixed, 

lactation-herd effects 	random, months random and lactation-month- 

herd effects as random. For pairs of lactations the intra-class 

correlation of cows calving in the same herd-year-lactation class was 

0.4-0.45 for log-fat yield. Wade et al. (1990) proposed a time-series 

model to take account of the correlated error structure of 

observations in different environmental groups (e.g. months). 

It is surprising how little attention the strategy of treating some 

environmental effects as random has had outside the U.K. It would be 

easy to adapt existing sire evaluation programs to make some 

environmental effects random, and it may be particularly useful in a 

multiple lactation animal model. In the U.S. animal model, fixed 

seasons are flexible from 2 to 12 months, depending on the number of 

records in a so-called management group (Wiggans et al., 1988a and 

1988b). At present, the average number of records per fixed 

management group for the Holstein-Friesian population is 

approximately 4 and is increased to approximately 7 by merging 

different adjoining month of calving groups (G. Wiggans, personal 

communication). Clearly a substantial improvement can be made by 
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redefining fixed management groups and treating seasons as random 

effects. 

1.6 Genetic grouping 

A usual assumption in the BLUP evaluation is that the random effects 

are from a normal distribution with zero mean. If this assumption is 

violated, e.g. when selection has occurred and the information on 

which selection decisions were made is not included in the data, 

biased estimates will be obtained, and the genetic variance will be 

inflated (for directional selection). An example would be the 

simultaneous evaluation of proven and young, unproven bulls, whilst 

assuming an identity covariance matrix between the sire effects. 

Before the inclusion of the relationship matrix in sire evaluation, 

some grouping was needed to take account of genetic/environmental 

trends. Sires would be grouped according to year of birth, year of 

A.I.-stud entry, percentage genes from another breed, or a 

combination of those (see Interbull, 1988). When it became 

computationally feasible to include the relationship matrix between 

sires into the model, due to Henderson (1976), the need for grouping 

was reduced. In fact, genetic grouping has been a controversial 

subject ever since. Thompson (1979) showed there are different ways 

to include group effects in the model, which will yield different 

predicted sire effects. He also stressed the potential problem of 

"misgrouping", in particular when sires have few daughters. Fernando 

and Gianola (1990) give an example of a sire and grouping selection 

problem, where selection on a biased estimate gave highest genetic 

progress. 

The introduction of the AM for national sire and cow evaluation 

further reduces the need for genetic grouping, because of the 

inclusion of all known relationships. According to Henderson (1988) 

there is now consensus among animal breeders that the only need to 

include groups is to account for unknown parents. The grouping 

strategy likely to be used in practice is based on developments by 

Westell et al. (1988), using so-called "phantom parents" assigned to 

unknown parent groups (if parents are unknown). The basic idea for 

this strategy was first proposed by Thompson (1979) for a sire model. 
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In Europe the grouping of black-and-white dairy cattle is likely to 

remain partly based on the percentage Holstein-Friesian. It is not 

clear what the efficiency is of a simple regression on HF% in an 

animal model, as fitted in the analyses in chapters 3 and 5, compared 

to the more detailed grouping strategy. 

1.7 Individual herd data 

Dairy cattle herds differ in management and as a result in genetic 

and environmental parameters such as variances and heritabilities. In 

theory it would be best to use within-herd parameters to estimate 

breeding values and "production abilities" (= breeding value plus 

permanent environment) for that particular herd. 	In practice the 

average herd size, at present approximately 100 in the U.K. for milk 

recorded herds (Swanson, 1991), is usually too small to obtain 

accurate parameters. Using data from some of the largest pedigree 

herds in England and Wales resulted in standard errors of individual 

herd heritability estimates of approximately 0.19 (see chapter 3). 

Even for large herds, there is the possibility of heterogeneity of 

variance across years , since many years of data are needed to 

utilise information of a sufficient number of daughter-dam pairs in 

the estimation procedure. 

Henderson (1973) showed how to evaluate cows from a (closed) herd 

using all records and relationships, and subsequently showed how to 

include estimated breeding values from other sources (e.g. national 

evaluation) in the intra-herd evaluation (Henderson, 1975c). The 

frequency of a national AM evaluation will be determined by the 

demand of the industry and the (computer) costs. If computer 

access/power is not limiting, new data can be incorporated regularly 

in the evaluation system and breeding values would be available "all 

year round". If the national evaluation is run, say, twice a year, 

and the industry requires information in between those evaluations, a 

within-herd BLUP could be considered. For sire selection a frequency 

of 2/3 times per year would be sufficient, but farmers need breeding 

values before making selection/insemination decisions concerning 

individual cows, therefore preferably as soon as a lactation is ended 

or early in the next lactation. 
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Chesnais and Song (1988) present a system for on-farm beef 

evaluation. Given certain assumptions they propose to use the RHS 

(Right Hand Side) and diagonal elements for parents from the latest 

national evaluation, adjust those values for new progeny information 

and solve the new equations. A decentralised structure of the 

industry, with for example micro-computers on the farm, would be 

ideal for this approach (Robinson and Chesnais, 1988). Intra-herd 

BLUP remains a sub-optimal evaluation, since not all available 

information is used. A regular, even continuous, updating of the 

national evaluation set (e.g. each month a few iterates), 

computational facilities permitted, seems a better strategy. 

1.8 Unlvarlate vs. Multivariate analyses 

In this section a distinction is made between single vs. multiple 

trait evaluation for a given lactation and single vs. multiple 

lactation evaluation for a given trait. This distinction is arbitrary 

since, for example, if 2 traits are measured in 2 lactations, then a 

general multivariate analysis with 4 traits could be compared with 

any model assuming particular covariance structures (see chapter 6). 

1.8.1 Single vs. Multiple trait evaluation 

Selection for milk production traits is usually on some combination 

of breeding values for milk, fat and protein. These traits, which are 

known to be (strongly) correlated, are evaluated separately in most 

countries for the sire evaluation (Interbull, 1988). Implicitly, this 

assumes the traits are uncorrelated if BLUP properties are to hold 

for a population undergoing selection on some function of these 

traits. Even for cow evaluation, a selection index type procedure in 

many countries, traits are evaluated independently (e.g. Hill and 

Swanson, 1983). The question is what can be gained by evaluating the 

traits simultaneously, taking their correlations into account. In 

general, there are two possible advantages of multitrait evaluation 

(see Thompson and Meyer, 1986a, for a review). Firstly, BLUP requires 

data on which selection decisions were based to be included in the 

analysis for unbiased predictions of breeding values, so a potential 
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bias can be reduced or avoided by including traits on which selection 

may have been based. Secondly, accuracy of prediction is increased by 

including more information about any particular trait in the 

analysis. This increase in accuracy results from creating more 

genetic links in the data and by improving the estimates of fixed 

effects through better connectedness of the data. 

A simple example may illustrate the potential gain in accuracy of a 

Multiple Trait (MI) evaluation for milk, fat and protein. Suppose the 

genetic and phenotypic parameters are known, as well as the fixed 

effects. Then a selection index approach will give the gain in 

accuracy of a MT evaluation to a univariate evaluation. With the 

parameters in table 1.2, the relative efficiency of a single trait 

index over a MT evaluation is shown (in the same table). The 

parameters are taken from chapter 5. A simple sire model is used for 

this example, with a variable number of effective daughters recorded 

for each trait. The relative gain in efficiency (accuracy) would be 

greater for cows in an AM, because of their lower levels of accuracy. 

Although this method is an over-simplification of a BLUP evaluation, 

it shows that some, albeit little, improvement in accuracy can be 

gained through a MT approach. 	For this example the gains are 

relatively low because the genetic and phenotypic regressions of any 

trait on the other traits are very similar, and therefore other 

traits contribute little information (Sales and Hill, 1976a). More 

examples are given in chapter 6. Some countries, e.g. the U.S., 

Australia and Holland (Interbull, 1988) for practical purposes (i.e. 

equal design matrices) use the same heritability for all traits in 

their single trait BLUP. Therefore an extra loss in accuracy is 

expected, albeit small since the heritabilities of milk, fat and 

protein yield are similar. If selection is applied to some particular 

traits, the loss in efficiency is higher by using single trait 

evaluations. Wilmink (1988) found selection bias to be highest for 

milk production, which confirms the belief that milk production is 

the likely trait for early culling in the first lactation. 
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Table 1.2: Ratio of accuracies for univariate and multivariate 
(selection index) sire evaluation. 

Number of progeny 	Relative efficiency (in %) of 
univariate analyses 

Milk 	Fat (kg) 	Protein (kg) 

1 95.8 98.8 98.9 
2 96.7 99.0 99.1 
3 97.3 99.2 99.3 
4 97.8 99.3 99.4 
5 98.1 99.4 99.5 
10 99.0 99.7 99.7 
25 99.7 99.9 99.9 

Parameters used 

Milk 	Fat 	Protein 

Milk 	 0.39 	0.85 	0.95 
Fat 	 0.75 	0.36 	0.88 
Protein 	 0.91 	0.81 	0.36 

Heritabilities on diagonals, phenotypic correlations above 
and genetic correlations below diagonals. 

If it is decided to use a MT evaluation, accurate estimates of the 

correlation matrices between the traits are needed. It may be better 

to use single trait evaluations if such estimates are not available 

or if estimated parameters are inaccurate (Sales and Hill, 1976a and 

b). Computationally, the MT evaluation will be more demanding because 

of the more complex (correlated) structure of the A and R matrix. A 

canonical transformation (Thompson, 1977; Hayes and Hill, 1980; 

Meyer, 1985; chapter 6) would reduce the evaluation to essentially 

separate univariate analyses. 

1.8.2 Single vs. Multiple lactations 

Two questions arise with regards to a single versus multiple 

lactation evaluation: what accuracy can be gained by using multiple 

lactations, and if later lactations are used, should they be treated 

as repeated records or as different traits? The discussion differs 

from the general single lactation MT discussion in the sense that 
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other observations are later in time. 

The first question relates to the breeding goal and the genetic 

parameters. Meyer (1983) found an increase in accuracy of 5-6 % when 

using a multiple lactation sire BLUP evaluation over two single 

lactation BLUP evaluations in predicting a linear combination of 

first and second lactation breeding values. The increase in accuracy 

can be partitioned into a genetic part, due to the increase in 

genetic information, and a part due to improved connectedness in the 

data (a better data structure). If the selection criterion is first 

lactation 305-day production and the genetic correlation between 

first and subsequent lactation performance is not unity, little 

improvement will be made in sire evaluation/selection. However, with 

an animal model later lactations will substantially improve the 

accuracy on the cow side where selection is still practised after the 

first lactation. 

It therefore seems logical to include multiple lactations in an AM 

evaluation, regardless of the breeding aim (which incidentally will 

be some function of multiple lactation economic production). The U.S. 

animal (repeatability) model includes lactations 1-5 (Wiggans et al., 

1988a). The second question remains however: should later lactations 

be regarded as repeated records or as different (correlated) traits? 

A recent analysis, which accounted for selection bias due to culling 

on first lactation records, showed a very high genetic correlation 

between first and subsequent lactations (Meyer, 1984). This 

correlation was 0.91 between first and second and first and third, 

and 0.96 for lactations two and three. Similar results were reported 

by Beaumont (1988), who found genetic correlations between pairs of 

lactations to be greater than 0.89, estimated from the first 3 

lactations in the Montbeliarde breed. Estimates for U.K. data using 

an animal model are presented in chapter 5. 

Although these results suggest the traits are genetically nearly 

identical, this should not be the only criterion for deciding on a 

repeatability model. Improved genetic connectedness may be an 

important factor in decreasing the PEV of the random effects. 

Treating some environmental factors as random would reduce the effect 
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of environmental connectedness. The genetic links remain however. A 

repeatability model assumes homogeneity of variance across lactations 

and equal heritabilities across lactations. There is abundant 

evidence that later lactations show higher environmental variances 

(see e.g. Brotherstone et al., 1989; Brotherstone and Hill, 1986; 

Hill et al., 1983, and chapter 5, for U.K. data). Scaling the data 

according to within lactation variance (Hill, 1984) or a 

log-transformation may partly overcome the problem of heterogeneity 

of variance across lactations. In France (Bonaiti and Boichard, 1990) 

and Australia (Jones and Goddard, 1990) second and third lactations 

are weighted with factors of approximately 0.8. This approach assumes 

that the heritability is lower in later lactations, which seems to be 

justified when the literature is considered (Maijala and Hanna, 

1974). Ignoring the difference in variance and heritability between 

first and later lactations will result in the information from later 

lactations being over-emphasised. A repeatability model further 

assumes that fixed effects are the same for all parities, which has 

been found to be incorrect (Meyer, 1983 and references therein). 

However, different fixed effects for different parities can be 

incorporated in the model if necessary. 

It is not fully known what implications use of a repeatability model 

(compared to using a MT-model) with an AM will have on genetic 

progress. The tendency of decreasing the sire-offspring generation 

interval and the relatively low selection intensity for the cow-cow 

pathway may suggest that the effect will not be very large. 

Implications of approximating the "true" covariance structures for 

using simplified models are discussed in chapter 6. 

1.9 Conclusions 

Some problems associated with dairy cattle prediction and estimation 

have been tackled, but only a few. For example, the potential problem 

of preferential treatment and the desirable computing strategy for 

prediction and estimation have not been discussed. Another problem 

which requires further research is how to obtain good approximations 

to the accuracy of the predictions. All changes in evaluation should 

be tested against the aim of the evaluation and the assumptions 
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underlying the model of choice. It seems not desirable to violate 

important assumptions regarding the covariance structure of the 

observations in order to make it feasible to solve equations from 

larger data sets. More research is needed on BLUP under selection, in 

particular how to obtain the largest genetic progress (Fernando and 

Gianola, 1990; Gianola et al., 1988). 

In the following chapters some of the problems discussed above have 

been investigated. Chapter 2 investigates the possible bias in 

parameter estimates, as proposed by Famula (1989), when herds are 

grouped according to their mean production. In chapter 3 genetic and 

environmental variances are estimated for individual herds and 

heterogeneity of variance between herds is investigated. Statistical 

power of likelihood ratio tests as used in chapter 3 is investigated 

by simulation in chapter 4. Parameter estimates for milk, fat and 

protein yield in lactations 1-3 are presented in chapter 5, with a 

discussion about possible practical models approximating the "true" 

covariances structure of the observations in chapter 6. 
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CHAPTER 2 

ON THE ESTIMATION OF VARIANCES WITHIN HERD-MEAN 
PRODUCTION GROUPS 

2.1 Introduction 

One of the assumptions usually made by users of Best Linear Unbiased 

Prediction (BLUP) evaluation is homogeneity of variance across fixed 

effect levels (see chapter 1). There is abundant evidence, however, 

of heterogeneity of variance across herds or herd-year-seasons for 

milk production traits (see e.g. Boidman and Freeman, 1988; 

Brotherstone and Hill, 1986; Dong and Mao, 1990; Hill et al., 1983; 

Lofgren et al., 1985; Mirande and Van Vieck, 1985, and Short et al., 

1990, for some recent analyses). Some of the above authors have found 

a relationship between herd-mean and within-herd (genetic) variance. 

Typically for those studies, herds were classified according to their 

mean (milk) production and parameters were estimated within (and 

between) herd-mean production groups, using a sire model. 

Famula (1989) argued that stratifying herds in this way can be 

regarded as a form of "selection" on sire progeny groups; herd-means 

may be higher because of the sires represented in those herds, 

resulting in herd production groups with a selected sample of sires. 

A "pseudo-heterogeneity" of variance could therefore be induced by 

selecting herds on their mean production (Famula, 1989). Short et al. 

(1990) supported Famula's caution on the interpretation of parameter 

estimates when stratifying herds in production groups. However, the 

results from the simulation study presented in Famula's paper are 

not clear, because the observed biases in estimated sire variances 

were probably not significant (standard errors were not presented, 

but these can be estimated from the presented ranges and the number 

of replicates). Furthermore, one would expect the "selection" effect 

to be symmetrical about the overall mean, i.e., a bias in estimating 

variances from the highest herd-mean group should be similar to a 

bias from the lowest herd-mean group. This was not observed. 

The aim of this study was to qualify and quantify the magnitude of 
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the above selection effect. 

2.2 Methods and results 

For various balanced and "semi-balanced" designs, the effect of 

selection of herd production groups on the estimates of genetic and 

residual variances can be quantified. 

2.2.1 Balanced nested designs of sires within herds 

The reduction in the between progeny groups variance depends on the 

regression of sire progeny mean on herd-mean. This reduction is 

largest for a nested design of sires within herds, in the absence of 

herd effects and other fixed effects, because then selection on 

herd-means is highly correlated with (direct) selection of sires. 

Notation: 

- h = number of herds in selected group 

- n = number of sires per herd 

- p = number of progeny per sire 

- Y = sire progeny mean 

- H = herd mean 

- subscript s = selected 

- 1= mean of selected group (= selection intensity) 

Normality of random effects is assumed throughout this study. Without 

loss of generality, let the total phenotypic variance in the base 

population be unity. Then: 

V(Y) = (1 - t)/p + t 
	

[2.1] 

v(H) = cov(Y,H)= 	(l-t)/(np) + t/n , 	where t is the intra-class 

correlation in the base population. Then, 

b 	=1; 	r 
2 	

=1/n 
(Y, H) 	 (Y, H) 

Using simple linear regression: 
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V(Y5) = (I - kr 2)v(Y), 	 [2.2] 

with k being the reduction in variance for the selected group. (= 

i(i-x)) for truncation selection, where x is the deviation of the 

truncation point from the mean in standard deviation units). 

For a balanced design the orthogonal Sums of Squares for herds, sires 

and residual from the Analysis of Variance can be equated to their 

expectations. It can be shown easily that the expectation for the 

residual variance is the error variance of the base population. The 

expectation of the Sire Sum of Squares (SSS) is, on conditioning on 

the herd-mean: 

E(SSSIH) = E[ ( E p(Y - H) 2  } IH I 

pn[ E(Y 2 iH) - E(H 2 IH) I 

= pn[ (1 - r 2)v(Y) + b 2H 2  - H 2  I 

= p(n - 1)v(Y), since r 2  = I/ri and b 2  = I 

Therefore the SSS is not dependent on the herd-value; in whatever way 

the herds are selected, the within-herd SS for sires is unbiased 

through that selection. The estimated variances in any selected group 

are therefore unbiased estimators of the population parameters. 

Although the expectation of the sums of squares between sire progeny 

group means is unaffected by selection, the expectation of the 

variance between the unobserved sire effects is not. The reduction in 

genetic variance for the selected group can be predicted using the 

regression of sire values on herd-means. It follows that: 

E[v(s)5] = (1 - kr 2/n)v(s), 	 [2.3] 

where r 2  = p/(p + X), X = (1 - t)/t and 

v(s)== sire variance in the base population. 
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2.2.2 Selection on progeny means with overall mean as only fixed 

effect/Ignoring herd-effects 

For the limited case of I sire/herd (n=l; h=total number of sires), 

i.e. ignoring herds and selecting solely on progeny means, it can be 

shown that the expected estimated sire variance in the selected group 

is: 

E[ 
0_2] 

 = v(s) 	k(X + p)/p ] 	 [2.4] 

The expectations in [2.3] and [2.4] are identical only in the case of 

no selection, i.e. k=0, or for the trivial case of X= 0. The term 

between the square brackets can become negative for k > p/(p + X), 

that is, if the repeatability of the predicted sire effect is smaller 

than the reduction is variance for the selected group. If the ordered 

progeny group means are divided into four groups by symmetric 

truncation about the mean, then the largest reduction in estimated 

sire variance is expected in the two middle groups, because the 

variation between progeny means is the smallest in those groups. If 

each group contains exactly 25% of the population, then it can be 

shown that the reduction in variance for the two middle groups is 

0.95 (= k). Of course the distribution of progeny means is symmetric, 

so that selection of the top or the bottom groups should yield 

identical results. Famula (1989) used fixed truncation points to 

obtain four groups each containing approximately 25% of the herds. 

Table 2.1 shows a few combinations of the number of sires in the 

base population (in), h 2  and p, together with predictions of estimated 

parameters and simulation results. Records were simulated as a sire 

effect plus a random error term, and evaluated with an analysis of 

variance (ANOVA), fitting an overall mean and a between and within 

sire term. For the examples given the heritabilities were chosen to 

be large, because for low heritabilities and few daughters per sire 

(highly) negative estimated sire variances were expected (for 

repeatability << k). The number of replicates was chosen to obtain 

sufficiently small standard errors of the mean estimates, and varied 
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for different sets of parameters. 

Table 2.1: Observed and predicted results for selecting on progeny 
means 

Observed parameters Predicted parameters 
from simulation Using formulae (see text) 

[2.2] [2.4] [2.3] 

m p h 2  group v(Y5) U 2  v(s) v(Y5 ) o v(s) 

48 	10 1.0 4 7.996 0.509 10.45 8.06 0.56 10.54 
(.064) (.066) (.067) 

100 	25 1.0 3 1.148 -1.858 3.618 1.15 -1.85 3.59 
(.008) (.009) (.019) 

100 	50 0.50 3 0.590 -1.172 1.973 0.58 -1.17 1.98 
(.007) (.007) (.018) 

Phenotypic variance simulated = 100 (units)2  
m = number of sires in base population 
p = number of progeny per sire 
standard error of simulation results between parenthesis 
groups: 4= top 25 % 	3= second ("next") 25 % 

As expected, the simulation results agree well with the predictions. 

Although this model, for which the criteria on which selection took 

place are ignored, is unlikely to be used in practical situations, 

the results show that even in cases with extreme high heritabilities 

negative variances may be expected. 

2.2.3 Unbiased estimators for balanced designs 

For a balanced cross-classified design unbiased estimators of the 

population variances are again obtained: selection on herd-means now 

is solely environmental, because the variation between herd-means 

does not contain a between sire component. Although the between-herd 

SS are reduced, the expectation of sire and residual SS remains the 

same. Famula (1989) gave a generalisation for the expected SS for 

sires using Henderson's Method-3 in his formula 11. It can be shown 

that the last two terms (the bias) in that formula reduce to zero for 

balanced designs. In all cases the estimate of the residual variance 

is unbiased. 
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Consider the linear model y = Xb + Zu + e and v(y) = ZAZ'T 	+ 

with definitions: 

y,b,u are vectors of the observations, fixed effects (here HYS) and 

sire effects respectively, X,Z are the known incidence matrices for 

the fixed and random effects, and A is the numerator relationship 

mat r ix. 

Famula (1989) showed, using Henderson's selection model (Henderson, 

1975a), the expectation of the reduction in SS for sires after 

fitting HIS in his formula 11, when selection had been practised on a 

vector of herd means. This expectation is (the notation has been 

changed slightly): 

- 
E5[ R(uib) ] = trace[ Z'MZA 

10_2 
 + trace[ Z'MZ(Z'MZ) ]o 

2 
 

U 	 e 

- trace[ Q'ZAZ'MZA.Z'QH 1 0_ 

	

2  + (t'Q'ZAZ'MZAZ'Qt)cr 2 	[2.5] 
o u 	 u 

With, 

M = I - X(X'X)X' 

Q = (P'X'XP P'X' 

P = a matrix to link HIS to herds. 

Matrix HO  and vector t depend on the selection process, but are not 

needed explicitly for the proof. 

The first two terms of [2.5] are the standard terms for the 

unconditional (== no selection) case. The last two terms may result in 

a bias in the estimated sire variance, since they depend on 	the 

unknown H0  and t. To prove that these terms vanish for balanced 

designs, it is sufficient to show that the matrix (X'ZAZ'MZAZ'X), 

which appears in both terms, reduces to a zero matrix. 

There are h HIS; each HIS has in and each sire within a HIS has p 

observations. The vector y is ordered according to sire within HIS. 

Ji is a square matrix of ones of order i and Dj a block diagonal 
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matrix with each block a J submatrix. Let the sires be unrelated ( A 

= I ). Then 

X'ZAZ'MZAZ'X = XtZZ*(I_X(XtXXt)ZvX 

= X'ZZ'ZZ'X - X'ZZ,X(X,X 1X'ZZ'X 

= X'D 
p p 	 p n p 
D X - (1/m)X'D D 0 X 

= pX1 DX - ( p 2/n)X'D X 
n 

= 	- 

=0 

If sires are related, the data structure becomes "unbalanced" in a 

sense and the above equation would not necessarily hold. Therefore 

the assumption A=I is a requirement for the proof. 

2.2.4 Semi-balanced nested designs 

A bias does occur, however, for unbalanced designs, because the 

regression of progeny means on herd means is not constant for all 

sires. Consider the "semi-balanced" case of n sires nested within 

herds, with PiJ  progeny for sire j in herd i. Similarly, b1 is the 

	

regression of progeny group mean 	j on herd mean i. Assume the 

distribution of progeny numbers over sires within a herd is the same 

for all herds; for example all herds have (p1 +p 2 ) progeny records 

pertaining to two sires, with p1  and p 2  constant for all herds. Let 

the sum of all records within a herd be m. Then 

v(H) = v( ( E'• 	.)/(  
1J 1] 	IJ 

	

P. 
)2) 	

[ p2 ((1 - t)/p + t) 
1J 	 1J 	 1J 

[ p (1 + t(p- 1)) ] 	 [2.6] 

	

1J 	 1.1 
and 

cov(Y ,H ) = ( p /m)v(Y ) 	, 	 [2.7] 
ii i 	ii 	ii 

therefore, 
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b = [ mpv(Y  ) ]/[ E p(l + t(p- 1)) ] . 	 [2.8] 
1J 	IJ IJ 	 1J 	 1J 

The sire SS, on conditioning on the herd mean, is: 

E[SSSIH] = E[ Ep Y 2 IR I - E[ 	p H 2 IH 
1J 1J 	 1J 

= 	p v(Y ) - v(H) p 	+ H 2 [ Yp b2 - p 
ii 	ii 	 ii ii 	ii ii 	ii 

Now the SSS can depend on the herd-value H. Only for the cases of all 

b1 = 1, i.e. the balanced case, or for the case of E(H 2) = v(H), 

i.e. E(H) = 0, does the formula reduce to the form independent of 

herd-means. 

Averaging over all possible herd values in the selected group gives: 

E[SSS] = )p v(Y ) - v(H)p 	+ ( i 2- k)v(H)[p b2 - p ] 	[2.9] 
ii 	ii 	 ii 	 ii ii 	ii 

The first two terms are the usual terms for this design, resulting in 

an unbiased estimate of the sire variance. The last term is the bias 

in the SS. The bias for the estimated intra-class correlation is: 

BIAS(t) = {(
2_ 

k)v(H)[p b 2 - 	• ]}/t 	.- 	 [2.10] 
1J IJ 	1J 	1J 	1J 	1J 

To illustrate the effect an example is given for Pij = (1,10), h 2  = 

0.25 and a phenotypic variance of 1.0, in the absence of true herd 

effects. Pij = (1,10) means that each herd has 11 progeny records, 

one pertaining to the first sire and 10 to the second sire 

represented in that herd. Then, using [2.6], [2.7] and [2.8]: 

v(H) = 0.1374, b 1  = 0.66 and b 2 	1.03 

Selecting the top/bottom 25% of the herds (I = 1.27, k = 0.77, j2 -k= 

0.85) gives the bias in the SS of 1.458 per herd (using [2.9]), and 

hence a bias in the estimated heritability, from [2.10], of +0.03. 

Selecting either of the remaining middle groups (I = 0.32, k = 0.95, 

1 2 k = -0.85), gives the bias in the heritability of -0.03. These 
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results were compared with simulation results and were found to agree 

well. Some more examples are given in table 2.2. 

Table 2.2: Predicted biases in heritability estimates from 
semi-balanced nested design 

Sires Progeny h 2  Estimated h 2  Bias(h2) 
per herd distribution 

top middle top middle 

2 1,10 .25 .282 .218 .032 -.032 
2 1,10 .50 .596 .404 .096 -.096 

3 1,5,10 .25 .259 .241 .009 -.009 
3 1,5,10 .50 .529 .471 .029 -.029 

10 1,1,4,4,5 .25 .251 .249 .001 -.001 
,5,6,6,9,9 

10 1,1,4,4,5 .50 .504 .496 .004 -.004 
,5,6,6,9,9 

top = top (or bottom) 25% herds are selected 
middle = 	second (or third) 25% of herds 

In extreme cases a substantial bias may occur, but for moderate 

heritability values and three or more sires per herd, the bias 

becomes very small. 

For the above design the direction of the bias is determined by the 

sign of the factor (12 - k). It follows that the heritability is 

overestimated from evaluating the top/bottom 251/6  herds, and 

underestimated when selecting the "next" 25% groups, the absolute 

value of the bias being the same for both groups, because the 

quantity 112 - ki is identical for the above groups. 

For the limited case of only two sires per herd the result becomes 

obvious if the covariance between the difference of the two progeny 

group means and the herd mean is considered. This covariance is: 

cov[ (Y- Y,H ] = t(p- p)/(p+ p) 
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P1= progeny number of sire I 

P 2 	progeny number of sire 2 

For the above example this covariance is 0.051, and the regression of 

the progeny mean difference on the herd mean is 0.37 (for p1  > p2 ) 1  

which is the difference between the the two regression coefficients. 

Hence the difference between progeny groups within herds depends on 

the mean of that herd, although the difference between the sire 

values remains independent of the herd mean. 

2.3 Discussion and conclusion 

In practice the regression of progeny mean on herd mean may well be 

close to zero due to herd-year-season and other fixed effects. 

Therefore the bias for the estimated parameters and the reduction in 

true genetic variance in the selected group will both be small. Since 

young sires usually are distributed over many herds, the "selection" 

effect is thought to be negligible for most practical evaluations. 

Famula (1989) simulated 1800 herd-year-season (HIS) effects from 150 

herds and 150 sire effects, and randomly assigned 15000 progeny 

records to (270000) HIS by sire subclasses, resulting in an 

unbalanced cross-classified design. Regressions of progeny means on 

herd means were likely to be small, since the expected number of 

records per sire by herd subclass was 15000/(150x150) = 0.67. 

Furthermore, the differences between those regression coefficients 

within any herd were probably small. His results that the higher the 

mean of the herd-group, the lower the estimated sire variance, can 

therefore most likely be explained by sampling. In practice there 

usually is substantial variation within herds due to environmental 

(e.g. year-season) effects; therefore the regressions of progeny 

means on herd means are expected to be small. Most likely the "sire 

selection" effect of stratifying herds on their mean production is 

therefore negligible. If high producing herds have a different sire 

selection strategy from low producing herds, inducing an additional 

covariance between sire and herd values, then heterogeneity of 

variance is present and will be detected by the estimation methods in 

use. 
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ESTIMATION OF GENETIC AND ENVIRONMENTAL VARIANCES 
FOR FAT YIELD IN INDIVIDUAL HERDS AND AN 

INVESTIGATION INTO HETEROGENEITY OF VARIANCE 
BETWEEN HERDS 

3.1 Introduction 

In dairy cattle the model for breeding value prediction for the 1990s 

in many counties is, or soon will become, the so-called Animal Model 

(AM). With the AM cows and bulls are evaluated jointly, using the 

BLUP (Henderson, 1973) method. In theory BLUP requires the true 

variances and covariances to be known, but in practice estimates (of 

the ratio) of the (co)variances are used. Usually the parameters are 

estimated with a similar model to that used for the genetic 

evaluation, using a REML (Restricted Maximum Likelihood: Patterson 

and Thompson, 1971) type estimation procedure. It therefore seems 

logical to estimate the parameters required for the AM-BLUP using a 

REML procedure fitting the same Animal Model. 

Unfortunately AM-REML algorithms are computationally very demanding, 

so that estimation of population parameters has to be carried out 

with relatively small samples. 	For dairy cattle, one suggestion is 

to use data from (groups of) individual herds to estimate the 

population parameters (Swalve and Van Vleck, 1987; Van Vleck and 

Dong, 1988; Van Vleck et al., 1988). This assures that information 

additional to paternal half-sib comparisons, for example daughter-dam 

comparisons, is used, since most daughter-dam pairs are in the same 

herd. Furthermore, use of individual herd data offers a framework to 

investigate heterogeneity of variance between herds. 

One of the assumptions made by most users of Best Linear Unbiased 

Prediction (BLUP) evaluation is homogeneity of variance across fixed 

effect levels. There is abundant evidence, however, of heterogeneity 

of variance across herds or herd-year-seasons for milk production 

traits (see e.g. Hill et at., 1983; Lofgren et at., 1985; 

Brotherstone and Hill, 1986; Mirande and Van Vleck, 1985; Boidman and 
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Freeman, 1988 and 1990; Dong and Mao, 1990; Short et al., 1990, for 

some recent analyses). Ignoring heterogeneity of variance has 

consequences for selection and response to selection. Assuming equal 

heritabilities between groups, Hill (1984) showed the proportion of 

animals that would be selected from the more variable herds under 

mass selection. Vinson (1987) used those results to calculate a loss 

in response to selection. The theoretically correct proportion to be 

selected from the more variable groups depends on the heritability 

and phenotypic variance within each group (Van Vieck, 1988a). For 

sire evaluation the loss in efficiency is likely to be small if sires 

are tested across many herd-variance groups (Vinson, 1987). Random 

testing of bulls is clearly not the case for so-called syndicate 

sires or for proven sires whose semen is imported into another 

country. Since conversion of breeding values is based on the 

predicted breeding values of sires in the 	latter category 

(Interbull, 1986), these linear regressions may be biased if 

expensive semen is used in the more variable herds. If it is not 

known whether the genetic variance, the environmental variance, or 

both variances are heterogeneous, the effect on accuracy of selection 

is not predictable. 	Using an AM, the effect of heterogeneity of 

variance on estimated breeding values (EBVs) is unknown. 

The aims of this study were to estimate genetic and environmental 

variances for fat yield in individual pedigree herds using an AM, and 

to investigate heterogeneity of variance between herds. This is the 

first time an AM has been used to assess heterogeneity of variance 

between herds, previous attempts being based on sire models. In order 

to make appropriate significant tests for the estimates, likelihood 

ratio (LR) tests were used. This involved validating approximations 

of likelihood functions. 

3.2 Material 

Production records from the Milk Marketing Board of a sample of 26 

large Holstein Friesian (HF) pedigree herds, selected on the number 

of heifers present in 1986, were taken. After editing, 7720 first 

lactation fat yield records were present from cows calving between 

1981 and 1986. Some summary statistics for individual herds are 
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presented in table 3.1: 574 sires were represented in the complete 

data set, both young and old (proven) sires; 186 sires had only I 

daughter, whereas proven sires had up to 450 daughters present; 1740 

daughter-dam pairs with records were present, of which only 6 pairs 

were not in the same herd. 

Table 3.1: Summary statistics for individual herd parameters of fat 
yield. 

PARAMETER MEAN MIN 

Mean (kg) 212.4 170.3 
Raw tT 	(kg2 ) 1247.1 625.0 
No. 	records 296.9 168 
No. 	animal effects 500.1 329 

r 2(o,mean)= 0.59 

	

MAX QI 	Q3 STDEV 

	

263.6 	189.9 	228.1 	26.85 

	

2391.2 	967.5 	1532.8 	411.1 
485 
841 

The statistics are respectively: mean, minimum, maximum, lower 
quartile upper quartile and the empirical standard deviation. 
Raw o= phenotypic variance before any corrections. 
r 2(o,mean)= empirical correlation between herd means and herd 
phenotypic standard deviations. 

3.3 Methods 

The following linear model was fitted: 

y=Xb+Zu +e and 

v(y) = ZAZ' 2  or  + 1o2 = ZGZ' + R 	; with the usual definitions 

Y, b, u are vectors of the observations, fixed effects and individual 

animal effects respectively, X, Z are the known incidence matrices 

for the fixed and random effects, and A is the numerator relationship 

matrix. Herd-year-seasons (HYS) were the only fixed effects, and age 

at calving, percentage North American Holstein Friesian and lactation 

length were fitted as covariables. Three seasons of four months were 

defined as December-March, April-July and August-November, which 

correspond to the season definition for the current U.K. sire 

evaluation. Years were defined as from August to July. All sires were 

treated as "base" animals, hence relationships between sires were not 
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fitted, in part because many sires had ancestors from foreign 

populations (the average North American HF percentage of the cows was 

23 %). All animal effects, including those of proven sires, were 

treated as random. 

The (natural) Log-Likelihood (L) for a model with one other random 

effect besides the residual component is (e.g. Harville, 1977; 

Searle, 1979): 

L = - { logiRi + logiAi + logiCi - logiX'Xi + y'Py 

where C is a full rank submatrix of the coefficient matrix (the 

matrix containing the left hand side of the Mixed Model Equations 

[Henderson, 1973]) and y'Py is the residual sum of squares, with P a 

projection matrix. 

The estimations were carried out using a REML program written by 

Meyer (1989), which uses an iterative (simplex) search to maximise 

the likelihood. Consequently, the second differentials (and 

asymptotic variances) with respect to the parameters are not a 

by-product of the algorithm. Asymptotic variances of the parameter 

estimates were calculated by approximating the likelihood surface by 

a quadratic function in the parameters of interest. This was done by 

fitting a small grid around the ML estimates. Heritabilities were 

spaced at intervals of 0.01, and the variances were fitted 1.0 units 

(kg2) apart. The matrix of second differentials then gives the 

realised (observed) Information matrix (see e.g. Fisher, 1956), and 

its inverse is the asymptotic covariance matrix of the parameter 

estimates. In the one-dimensional case the approximation reduces to a 

simple quadratic curve and the second differential matrix reduces to 

a scalar. The quadratic approximation may also be used within the 

grid search algorithm. Both these uses of the approximation were 

suggested by Smith and Graser (1986) for derivative free estimation 

methods. 

Significance tests for heritability and variance estimates were 

carried out as likelihood ratio (LR) tests (see e.g. Mood et at., 

1973), for which 2(L1 - L2) is assumed to follow a Chi-square 
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distribution if Li and L2 are the maximum log-likelihoods for 

different sets of parameters and the parameters in L2 are a subset of 

those in Ll. The quadratic approximation was used to extrapolate the 

likelihood surface for calculating differences in likelihood for 

different parameter values. The extrapolation was checked by 

evaluating the likelihood function at a wide range of parameter 

values. Likelihood ratios were calculated both for an overall 

(single) parameter test and for testing individual herd estimates. An 

overall test (with 25 degrees of freedom) was carried out by 

calculating an overall estimate for a particular parameter, and 

comparing the ML pertaining to the overall estimate with the sum of 

the 26 MLs from the separate herd analyses. The overall estimate was 

obtained by adding 26 approximated likelihood curves and fitting a 

quadratic to the newly obtained curve. This approach assumes that 

parameter estimates from different herds are statistically 

independent. Individual herd variance estimates were tested in two 

ways: 

Assuming the quadratic approximation of the likelihood surface 

around the maximum, the likelihood for the H 0  (Null-hypothesis) value 

was 	maximised and compared with the ML value. This allows the 

remaining (for the present model only one) parameters to change when 

comparing the difference in likelihood. For example, if the 

likelihood surface was parameterised in genetic variance and 

heritability, then the likelihood was maximised at a value of the 

genetic variance of 324.5 kg 2, the H0  value obtained from the 

combined herd analysis. 

Differences in likelihood for different variances were 

calculated 	at a fixed heritability value. This test is 

straightforward: using the likelihood equation from above evaluated 

at a particular heritability value, the likelihoods for different 

variances are easy to compute. Geometrically, this is looking at a 

"slice" of the likelihood "mountain" at the fixed heritability value. 

For this procedure the tests for genetic and environmental variances 

are equivalent. 

Each herd was analysed separately, fitting the above model. To test 
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the different parameter estimates against some overall H 0  value, a 

joint herd analysis was carried out, fitting the same model. The 

estimates from the joint analysis were subsequently used as H. 

values. 

Methods to reduce heterogeneity of variance were investigated by 

using three different transformations of the data. Firstly, data were 

corrected for the within-HIS phenotypic standard deviation (s.d.). 

These standard deviations were calculated ignoring other fixed 

effects and random effects. Data were adjusted in the following way, 

c 
y1= 	

p 
( sd / sd ), with sd = population s.d., sd.= s.d. for HIS i 

and yj  adjusted (transformed) jth observation. 

The estimate of the population s.d. was calculated from the ML 

estimate of the phenotypic variance from the combined herd analysis. 

An adjustment for HIS s.d. rather than for herd s.d. was made because 

it is known that within-herd variances are often heterogeneous across 

years (see e.g. Brotherstone and Hill, 1986), and because HIS rather 

than herds are usually fitted as fixed effects in the breeding value 

prediction. Secondly, a (natural) log transformation was made, and 

finally the square root of the observations were used in the 

analyses. The latter transformation was made because the log 

transformation was found to over-correct the data in this study for 

the mean-variance association. 

3.4 Results 

The results from the individual herd analyses are presented in table 

3.2. Although for all three parameters the estimates were very 

heterogeneous, only few differed significantly from the overall 

estimates. The standard errors for the heritability and genetic 

variance were large, indicating flat likelihood curves. The standard 

errors for the environmental variances were somewhat smaller, since 

they were estimated with more degrees of freedom. 	The average 
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correlation (not presented) between the genetic and environmental 

variance estimates for each herd was approximately -0.85. Results 

from the combined herd analysis are presented in table 3.3. The 

estimates of the heritability for the complete data set were robust 

to transformations of the data. The correlation between herd means 

and estimated herd phenotypic s.d. was 0.71 

Table 3.2: Individual herd REML estimates of heritabilities and 
variances (in kg2) and results from LR tests. 

HERD h2  se(h2) A 
	

U2 	se( & 	a 	se( â) z 	L 4  

1 0.33 0.18 0.1 161.8 92.2 
2 0.43 0.16 0.1 224.9 97.5 
3 0.59 0.17 1.6 513.6 178.0 
4 0.49 0.22 0.3 240.5 122.5 
5 0.03 0.17 44! 16.9 3.3 
6 0.49 0.17 0.4 425.7 168.4 
7 0.42 0.30 0.0 356.4 274.4 
8 0.71 0.16 4•5*  433.9 126.1 
9 0.17 0.13 2.6 109.0 63.0 
10 0.28 0.18 0.3 318.5 199.5 
11 0.37 0.19 0.0 293.5 161.2 
12 0.31 0.20 0.1 281.6 179.6 
13 0.25 0.12 1.1 171.9 80.7 
14 0.31 0.18 0.1 239.8 141.0 
15 0.34 0.19 0.0 318.9 183.1 
16 0.17 0.12 3.2 174.4 93.9 
17 0.59 0.16 1.7 522.4 178.3 
18 0.41 0.32 0.0 501.3 422.5 
19 0.39 0.23 0.0 352.4 221.3 
20 0.80 0.20 44!  646.0 222.1 
21 0.55 0.15 1.3 513.9 168.5 
22 0.21 0.16 1.1 194.4 132.0 
23 0.31 0.26 0.1 250.7 205.1 
24 0.65 0.31 0.8 749.2 415.8 
25 0.10 0.11 6.6* 69.7 37.9 
26 0.38 0.16 0.0 514.7 229.2 

3.0 326.3 
1.0 299.4 
1.3 364.4 
0.5 243.2 

16272.0! 562.4 
0.4 447.5 
0.0 493.7 
0.9 184.2 
11.8* 449.9 
0.0 770.4 
0.0 498.7 
0.0 620.9 
3.4 506.2 
0.3 528.9 
0.0 615.5 
2.3 819.5 
1.3 363.2 
0.2 722.8 
0.0 551.2 
2.2 162.0 
1.3 427.3 
0.8 754.9 
0.1 552.9 
1.2 415.1 

63.7!* 580.2 
0.9 838.8 

77.6 7.0* 32.6* 

76.1 94* 31.8* 

130.0 1.7 0.2 
950 93* 33.6* 

107.3 0.1 9.6* 

132.8 0.4 0.0 
222.2 0.0 0.0 
83.9 17.6* 23.2* 

71.0 1.1 20.2* 

185.8 1.8 8.8* 

137.9 0.1 0.6 
156.1 0.4 0.7 
78.3 0.1 7.1* 

118.5 0.0 1.3 
162.1 0.2 1.1 
117.4 6.4* 8.1* 

129.8 1.7 0.0 
328.4 0.3 15.0* 

191.8 0.0 0.3 
121.5 11.5*  3.2 
123.4 0.7 0.4 
147.2 2.3 3.1 
188.1 0.0 0.3 
323.9 0.1 59* 

80.1 0.4 53* 

191.5 2.7 56.0* 

COMBINING ESTIMATES (BY ADDING CURVES): HERDS 1-26 
0.35 0.03 33.7 	23.5! 	2.4 	997!* 444.8 

	
22.2 58.4* 268* 

SINGLE COMBINED HERD ANALYSIS ESTIMATES, USED AS H. VALUES: 
0.379 	 324.5 	 532.3 

A1,2,3= -2(difference in log-likelihood) at ML estimate and HO value 
&= .-2(difference log-likelihood) for variances at h2= 0.379 
"= significant for P<0.05 
! extrapolation error; estimate is not significant 
!* extrapolation error; estimate is significant at 5% level 
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A summary of the LR tests is given in table 3.4. The single LR tests 

showed a significant difference among herds in genetic and 

environmental variances (P<0.05), but not in heritabilities. A single 

test for the variances at a fixed heritability value of 0.379 (see 

table 3.3) resulted in highly significant differences in variances 

(P<0.01). The ML variance estimates from adding up the curves were 

considerably lower in value compared with the estimates from the 

combined herd analysis. The extreme low value for the genetic 

variance (23.5) is an extrapolation error; excluding herd 5 from the 

analysis resulted in an estimate of 180.9 and a LR of 43.2 (still 

significant). 

Table 3.3: Results of combined herd analyses of variances (kg 2) and 
heritability estimates for fat yield. 

ANALYSIS REML ESTIMATES 

A2 
a 

A2 
a 

A2 
n se(n) 

a e 

I Standard 324.5 532.3 0.379 0.037 
II Adjustment for HYS 261.3 479.0 0.353 0.036 
III Log Transformation 0.0073 0.0123 0.372 0.037 
IV Square root transformation 0.378 0.625 0.377 0.037 

The likelihood differences in columns 4, 7 and 10 of table 3.2 were 

from likelihood comparisons with the ML estimates from the combined 

herd analysis, which were 324.5 kg 2, 532.3 kg 2  and 0.379 for the 

genetic variance, environmental variance and the heritability 

respectively (see table 3.3). For two data sets the heritabilities 

and genetic variances were different from the overall estimate 

(P<0.05). In 6 cases the environmental variance was significantly 

different from 532.3 kg 2. Assuming the heritabilities to be the same 

(0.379) in all herds, 13 of the 26 variances were significantly 

different from the overall estimate (see last column of table 3.2). 

Therefore, if the heritabilities are assumed to be equal, the 

phenotypic variance is highly heterogeneous between herds. Testing 

heritabilities against a H0  value of close to zero (10 4) resulted in 

17 heritabilities differing from that value (P<0.05). A single LR 
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test against "zero" showed a highly significant LR of 205.7 (P<0.01, 

for 25 degrees of freedom). 

Table 3.4: Summary Likelihood Ratio tests. 

I 
ANALYSES 

II 	III IV 

Number of significant 
individual herd estimates 
from 26 separate LR tests 

PARAMETER TESTED 
h 2  P<0.05 2 2 2 2 

P<0.01 0 0 0 1 

P<0.05 2 2 1 1 
P<0.01 2 0 1 1 

P<0.05 6 2 3 4 
P<0.01 5 0 2 3 

1H 2  P<0.05 13 1 8 9 
P<0.01 11 0 8 6 

Test 	statistics from 
single LR test 

PARAMETER TESTED 
h 2  33.7 32.7 36.9 36.0 
0-2 997** 87.7** 559** 62.3** 

58.4** 23.8 51.6** 44.8** 
1H 2  268.4** 16.9 151.7** 154.7** 

Analyses: I = standard, II = data adjusted for within-HYS phenotypic 
standard deviation, III = Log transformation, IV = Square root 
transformation. 

Values for separate herd LR tests are number of estimates which are 
significantly different from the H. values. 

Values for single LR test are -2[difference log-likelihood]. 
H 2  = H heritability value, taken from combined herd analysis (table 

3.3) 

= LR values are overestimates because of extrapolation errors (see 
text). 

o 	iH 2  = ML estimate of the phenotypic variance at H 2  
= P<0.01 

In general, the quadratic approximation overestimated the difference 

in likelihood between the ML estimates and the H 0  values. In some 

cases, for example for the genetic variance in herds 5 and 25, this 
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lead to spurious conclusions regarding the significance of the 

estimates. The real difference in twice the log-likelihood for these 

herds was only 3.70 and 5.92 respectively. The curvature at the ML 

values was much "steeper" than at other points on the likelihood 

surface. 

Adjusting the data for an (uncorrected) estimate of the within-HIS 

variance resulted in 2 heritabilities, 2 genetic variances and 2 

environmental variances (from 4 different herds) being significantly 

different (P<0.05) from the values 0.353, 261.3 and 479.0 

respectively, which were the ML estimates for the complete (combined) 

data set using adjusted records (from table 3.3). Testing the 

variances at a fixed heritability value of 0.353 resulted in one of 

the variances differing (P<0.05). At the 1% level none of the 

parameter estimates were different from the overall estimate. A 

single LR test indicated no significance for all 3 parameters 

(P>0.05). 

For the log transformed data, 2 heritabilities, 1 genetic variance 

and 3 environmental variances for individual herds differed (P<0.05) 

from the H0  values. However, assuming equal heritabilities (0.372), 8 

phenotypic variances were still significant (P<0.01), and a single LR 

test was highly significant 	(P<0.01). The correlation between herd 

mean and phenotypic variance on the log scale was -0.28. The log 

transformation slightly "over-adjusted" the data for heterogeneity of 

variance. The square root transformation, however, showed similar 

results to the log transformation. 

3.5 Discussion 

3.5.1 Estimates of individual herd parameters and their Implications 

Few extreme heritability estimates were obtained despite the 

relatively large standard errors. The combined herd heritability 

estimate agrees well with the most recent estimate using a sire model 

(Meyer, 1987). However, the herds were chosen on size and may not be 

a representative sample of the pedigree herds, and the complete 

sample was rather small. Since all sires were treated as uncorrelated 



random effects, selection would bias the heritability estimates 

downwards. Alternatively, an increased variance might be expected as 

the sires were from different populations (European and 

North-American). 

Apart from two rather high estimates (for herds 8 and 25), the 

heritabilities were similar. More data per herd would increase the 

ability to distinguish between different heritability estimates, but 

the herds were the largest available, and the average herd size in 

the U.K. is the largest in Europe. If no inference could be drawn 

from these samples, it is not clear how AM herd estimates should be 

obtained. A multi-lactation analysis would increase the amount of 

information substantially, but a multi-trait evaluation is 

computationally very demanding and may require different computing 

algorithms (Meyer, 1991). The overall, single, LR test may be more 

suitable for inferences about the population, since sampling will 

usually result in some individual estimates different from the mean 

value. 

The results suggest that the heritabilities are relatively constant 

and that the phenotypic variance is heterogeneous. 	The crude 

correction for the heterogeneity of phenotypic variance, by adjusting 

data for within-HYS phenotypic standard deviation, reduced the 

heterogeneity substantially. Despite the relatively large correlation 

between herd mean and herd variance, the log transformation 

over-adjusted the data for heterogeneity. The resulting negative 

correlation (-0.28) between herd mean and herd variance indicates 

that if this transformation is applied in a BLUP analysis, assuming a 

constant heritability among herds, the breeding values of superior 

cows from high yielding herds would be underpredicted relative to 

the breeding values of superior cows from low yielding herds. 

Existing literature estimates of heterogeneity of variance are often 

contradictory both between countries and within countries over time. 

While some studies find a correlation between herd-mean and 

herd-(phenotypic)-variance (Mirande and Van Vleck, 1988; Hill et al., 

1983; Brotherstone and Hill, 1986; Meinert et al., 1988; Boldman and 

Freeman, 1988 and 1990), others find no evidence of such a 
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relationship (Lofgren et al., 1985; Winkelman and Schaeffer, 1988). 

Even for the studies that did find a (positive) correlation, the 

relationship was not strong. A typical value would be 0.4-0.5 (for 

milk, fat and protein yield). Hence heterogeneity of variance cannot 

be explained fully by a scale effect. With a correlation not very 

close to unity, the log transformation seems to reverse the trend, in 

that the association between mean and variance becomes negative. 

Previous studies to quantify heterogeneity of variance were often 

based on grouping herds according to some criterion and estimating 

variances using a sire model. Grouping on herd-mean (Mirande and Van 

Vleck, 1985; Boldman and Freeman, 1988 and 1990), herd-variance 

(Winkelman and Schaeffer, 1988) or on a function of the mean and 

variance, e.g. the coefficient of variation (Hill et al., 1983; 

Lofgren et at., 1985; Pearson et at., 1988) are the usual choices. 

Lofgren et al. (1985) found no clear pattern of heritability 

estimates by grouping herds on herd-mean. The "average" herd-mean 

class had the lowest heritability for milk yield (0.163). They found 

consistently higher heritabilities in the more variable groups. The 

effect of their implicit assumptions, unrelated sires and all sires 

from the same population, on the obtained estimates is not clear, but 

the heritability estimates were probably biased downwards. Mirande 

and Van Vleck (1985) looked at trends in genetic-environmental 

variances over a 22-year period. Within-sire variances increased over 

time, thus decreasing the heritability. It is perhaps not surprising 

that parameters should change over such a time period. The trait 

itself may well have changed (genetically) in that time, in such a 

way that the genetic correlation between measurements on the same 

trait in different time periods is less than unity. It is debatable 

if the same pre-adjustment factors for certain "fixed" effects can be 

used for cows calving that far apart. Heritabilities for fat yield 

were found to be higher in both high-mean and high-variance herd 

classes (Hill et at., 1983). A log-transformation indicated that the 

difference in variance was a greater cause of those higher 

heritabilities than the high herd means. Results from daughter-dam 

regression within herd classes according to phenotypic standard 

deviation and herd-mean indicated that heritability estimates for 

milk yield would be a function of the herd-variance (higher standard 
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deviation showed higher regression coefficient) and not of the herd 

mean (Pearson et al., 1988). Boidman and Freeman (1988, 1990) found 

similar results: the high herd-production groups showed higher 

genetic and environmental variance and a higher heritability. There 

seems evidence that the heritability is consistantly higher in the 

more variable herds. The conclusion concerning the relationship 

between herd mean and heritability is less clear. 

An interesting question is what causes heterogeneity. Possible 

explanations include management factors (e.g. feeding, housing), 

breeding strategy (sire selection), genotype by environment 

interaction, a common environmental effect for half-sibs (i.e. a 

herd-sire effect) and preferential treatment. For the present 

analysis, a potential sire-herd effect was confounded with the 

genetic variance. Similar results regarding heterogeneity of variance 

may not be expected using an AM compared with using a sire model, 

since the within-sire component may be heterogeneous because of 

environmental variance or because of the unaccounted for genetic 

component. 

Usually the aim of estimating parameters is to use them subsequently 

in, for example, a BLUP evaluation. The question therefore is what 

strategy should be used to deal with the problem of heterogeneity of 

variance between environments. Ignoring it altogether is the simplest 

option, and this may not have been too inefficient until now, when 

sires and cows are evaluated separately, assuming sires were tested 

over many herd-variance groups and that heritabilities are higher in 

the more variable herds. For a separate cow evaluation, the problem 

of heterogeneity of variance is potentially much more serious: 

ignoring the effect will have a cumulative effect over time, given a 

selection index type approach and the fact that most cows will have 

female ancestors producing in the same herd (Vinson, 1987). The cow 

genetic index (CC!) in the U.K. standardises observations to the 

within-HYS phenotypic standard deviation, by regressing the estimate 

of a within-HYS standard deviation to an overall standard deviation 

depending on the variance of the estimate (Brotherstone and Hill, 

1986). 	The (national) genetic progress is affected if it is less 

efficient that more bull-dams come from the more variable herds as 

/ 
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will be the case if correction does not take place. The justification 

for no correction would be that the heritability is also higher in 

the more variable herds. With an AM it seems unjustified to ignore 

the effect, although the effect of heterogeneity of variance on 

accuracy of selection is not clear. Unfortunately biases are 

difficult to predict since they depend on the structure of the data 

and the true parameters. Simulation should indicate what the loss in 

efficiency is for certain population structures and parameters. 

Hill (1984) showed a standardisation to within-group phenotypic 

standard deviation is justified if the heritability is constant 

across groups. Meinert et al. (1988) found this strategy to give the 

best results for the regression of daughter on her sire's predicted 

transmitting ability. For the present data set this correction seems 

to be sufficient. A disadvantage of this adjustment is that it 

requires regular estimates of within-herd variances, preferably 

corrected for fixed effects, if the data are to be precorrected for 

heterogeneity of variance. For small herds (i.e. most herds), this 

may give sampling problems. 	Using a Bayesian argument, parameters 

from individual herds could be regressed to some overall mean 

according to their accuracy (sampling variance), as in Brotherstone 

and Hill (1986). However, the within-herd parameters are likely to 

change over time. Brotherstone and Hill (1986) found repeatabilities 

for most parameters (mean and variances) between herd-years to be 

about 0.7, but even so, changes in management may cause abrupt 

changes in parameters (Mirande and Van Vleck, 1985); for example, the 

effect of quota introduction in Europe on (genetic) parameters is 

unknown. Alternatively, the adjustment could be made in the 

estimation program. Again, however, sampling effects should be taken 

into account. 

A log-transformation has been proposed and investigated by various 

authors (e.g. Hill et at., 1983; Meinert et al., 1988; Boldman and 

Freeman, 1988, 1990), based on the evidence of a correlation between 

herd mean and variance. The log-transformation is justified if the 

heterogeneity is just a scale effect, resulting in the standard 

deviation being linearly related to the mean. If the mean-variance 

correlation has no genetic component, a log-transformation will have 
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the additional advantage of increasing the heritability. If the 

relationship is (partly) genetic, the heritability may be different 

on a log-scale, depending on what proportion of the mean-variance 

correlation is genetically determined. Hill et al. (1983) found 

within-sire variances of log-yields stabilised across herds grouped 

on the mean, but between sire components relatively unaltered. Hence 

the overall heritability increased and the difference between high 

and low increased after the log-transformation. For herds split 

according to variance the ratio of within-between sire components 

before and after the log-transformation remained fairly constant. 

Even given the higher heritability in high mean and high variance 

herds, the weights given to untransformed records from those herds in 

a sire evaluation were theoretically too large (Hill et al., 1983). 

Heritabilities for milk yield, for low, medium and high herd-level 

groups remained nearly constant after a log-transformation, but the 

low-level group (with the lowest heritability for both untransformed 

and transformed yield) had the relatively highest phenotypic variance 

after the transformation (Boidman and Freeman, 1988 and 1990). 

Superior cows in low producing herds would therefore be overevaluated 

on the log-scale; unadjusted yields would overevaluate cows from the 

high-level group. These findings are confirmed in the present study. 

Caution should therefore be taken in applying a log-transformation, 

since the genetic and environmental variances may not respond the 

same way to this transformation. In the present study both variances 

seemed to respond similarly to the transformation, although the 

genetic variance was not very heterogeneous to start with. 

Brotherstone et al. (1989) and Brotherstone and Hill (1986) looked at 

within-sire heterogeneity of variance by adjusting records for the 

breeding value of the sire, and concluded that a log-transformation 

would reduce the heterogeneity. Correcting for a daughter's sire, by 

subtracting her sire's transmitting ability, assumes homogeneity of 

genetic variance, which is inconsistent with previous studies (Hill 

et at., 1983). The 	log-transformation therefore cannot solely be 

justified by looking at the reduction in heterogeneity. 

If further investigation indicates that heritabilities are not the 

same for all herds, then a different approach should be taken. A 

multi-trait approach seems theoretically best (see e.g. Schaeffer et 
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al., 1978; Gianola, 1986), but it may be tedious to estimate genetic 

and phenotypic parameters for all herds in order to group them 

according to some function of the estimated parameters. Furthermore, 

grouping herds according to genetic and/or environmental variances 

would give sampling problems (Winkelman and Schaeffer, 1988). 

Given the literature findings and the results from the present study, 

it seems most practical to pre-adjust data for some estimate of the 

herd or HYS phenotypic standard deviation. 

3.5.2 The use of quadratic approximations in LIZ tests 

A quadratic approximation of the likelihood surface was used to 

obtain asymptotic (co)variances and to extrapolate the likelihood 

surface for testing parameters. The latter use gave spurious 

likelihood differences for variances when the H 0  value to be tested 

was not close to the ML value. Apparently, although perhaps not 

surprisingly, the likelihood surface does not "behave" as a quadratic 

function over a wide range of parameter values. One way to 

investigate the slope of the likelihood surface is to examine the 

geometric curvature at different parameter values; for a perfect 

quadratic surface the curvature, 	here defined as minus the second 

differential of the likelihood with respect to the parameter(s) of 

interest, is constant for all parameter values. The curvature for a 

particular parameter at the ML estimate is called (Fisher's amount 

of) Information. 
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Table 3.5: Curvature of log-likelihood at various values of the 
genetic and environmental variance for a one-way balanced design. 

ADDITIVE GENETIC VARIANCE ( u.  ) 

0.30 

ENV I RONMENTAL 
VARIANCE 

U 	) 

0.35 0.40 0.45 0.50 

0.50 1092.9 849.9 673.7 541.9 440.8 W( o ) 
1068.6 869.1 714.3 592.1 494.1 'I'( U 2 -2 	) 
1305.3 1077.5 895.9 749.4 630.0 'I'( 0-2') 

-0.89 -0.91 -0.92 -0.93 -0.94 r( ycr ) 

0.55 892.8 695.9 552.6 445.1 362.4 ( T  ) 
846.4 692.1 571.6 475.8 398.5 'I( TO ) 
1022.7 850.2 711.4 598.3 505.3 I/( o ) 
-0.89 -0.90 -0.91 -0.92 -0.93 r( ) 

0.60 737.3 575.4 457.3 368.5 300.1 W( o ) 
677.6 556.4 461.2 385.1 323.4 W( U 2 _ 2 	) 
809.6 677.0 569.3 480.8 407.6 'I'( 0-2') 

-0.88 -0.89 -0.90 -0.91 -0.92 r( ro ) 

0.65 614.5 479.9 381.4 307.2 249.8 ( r  ) 
547.5 450.9 374.7 313.6 263.7 'I'(ro ) 
646.4 543.1 458.5 388.5 330.3 4/( o ) 
-0.87 -0.88 -0.90 -0.91 -0.92 r( oo ) 

0.70 516.3 403.1 320.1 257.5 209.1 lIi( o ) 
445.9 367.9 306.2 256.5 215.8 W( ) 
519.9 438.3 371.1 315.3 268.4 '1'( 0-2') 

-0.86 -0.88 -0.89 -0.90 -0.91 r( ) 

curvature matrix= -[matrix of 2nd differentials] 
r( 	oo 	) = correlation between estimates derived from the W-matrix 
True parameters: jy2 = 0.40, 	o = 0.60 

For illustration, following Visscher and Thompson (1990, see 

appendix), consider a one-way balanced half-sib design, with 100 

sires each having 10 recorded offspring. Using true values of the 

heritability and phenotypic variance of 0.40 and 1.0 respectively, 

the curvature for different combinations of parameter values for the 

genetic and environmental variance 	is presented in table 3.5. 

Clearly the curvature changes with different parameter values. 

Visually, this is demonstrated in figure 3.1, which represents 

likelihood contours for various combinations of the values of genetic 
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and environmental 	variances from table 3.5, using both exact 

likelihoods and likelihood values obtained from a quadratic 

approximation of the likelihood surface at the ML values. Close to 

the ML values the quadratic approximation seems 	sufficient, but 

departures from a perfect quadratic surface are clearly visible for 

more extreme values of the variances. A different parameterisation, 

for example in heritability and phenotypic variance, gave similar 

results. The magnitude of the extrapolation error is illustrated in 

table 3.6. For different values of estimated heritabilities, the LR 

was calculated as twice the difference in log-likelihood and compared 

with the LR obtained from approximating the likelihood curve by a 

quadratic around the ML estimate. For this example, the predicted LR 

overestimated the true difference in log-likelihood when testing 

values larger than the ML value, and underestimated the difference 

for values smaller than the ML value. 	The extrapolation error is 

rather small for the example given, but this reflects the flat 

likelihood curve for a heritability estimate based on 100 progeny 

groups of 10 half-sibs. 

Table 3.6: Exact and predicted Likelihood Ratios (LR) for a balanced 
design. 

H 2(ML) 

0.20 0.30 0.40 0.50 0.60 

h 2(t) LR 1 	LR 2  LR 1 	LR 2  LR 1  LR 2  LR 1 	LR 2  LR1 LIZ  

0.20 0.0 	0.0 1.4 	1.2 5.1 3.8 10.9 	7.3 18.4 11.2 
0.30 1.2 	1.5 0.0 	0.0 1.1 1.0 4.2 	3.2 8.9 6.3 
0.40 4.3 	5.9 1.0 	1.2 0.0 0.0 0.9 	0.8 3.5 2.8 
0.50 8.5 	13.2 3.6 	4.6 0.8 1.0 0.0 	0.0 0.8 0.7 
0.60 13.5 	23.5 7.1 	10.4 3.0 3.8 0.7 	0.8 0.0 0.0 

H 2(ML)= Maximum Likelihood estimate 
h2 (t)= heritability estimate which is tested against ML value 
LR 1 = exact LR from likelihood curve 
LR 2=  predicted LR from quadratic around the maximum 

Various authors (e.g. Smith and Graser, 1986; Graser et al., 1987) 

have suggested use of a quadratic approximation of the likelihood 

surface to obtain asymptotic variances when the second differentials 

or the expectations thereof are not a by-product of the estimation 
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algorithm. 	However, in data analysis and simulation it has been 

found that a quadratic approximation sometimes does not produce 

sensible results, in particular when many random effects are 

estimated (Meyer, 1989). 	Visscher and Thompson (1990) discussed 

differences in curvature at different parameter values for a 

hierarchical nested design. For the example given here, a one-way 

balanced design, the argument is analogous: since the variances of 

the Mean Squares depend on their expected values, and the parameters 

of interest are linear functions of the Mean Squares, the curvature 

depends on the values of the parameters. A cubic approximation would 

produce better results, since the second differentials are still 

functions of the parameter values, but if there are many random 

components, for example 	in a multiple trait analysis, this would 

require a large multi-dimensional grid and the inversion of a rather 

large matrix. Using a quadratic approximation for a multi-dimensional 

grid search may not be efficient, so transformations of the 

parameters to make the likelihood surface more quadratic may speed up 

convergence. 

In the discussion above it was argued that more data per herd would 

be needed to increase the ability to distinguish between different 

individual herd parameter estimates. The relationship between the 

size of individual herd data sets and the ability to detect 

differences in variance estimates can be viewed as a problem of 

statistical power. This is investigated in the next chapter. 
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Figure 3.1: Likelihood contours for a balanced half-sibs design 

0.70 

0.50 

GENETIC VARIANCE 
0.30 	 0.50 

Parameters used: o = 0.60, °1 = 0.40 and data on 10 progeny of 100 
sires. 

Differences between subsequent contour lines is 0.10 log-likelihood 

Solid curves: contours for exact likelihoods. 

Dashed curves: contours for likelihoods obtained from a quadratic 

approximation of the likelihood surface around the maximum likelihood 

values. 



CHAPTER 4 

ON THE POWER OF LIKELIHOOD RATIO TESTS FOR 
DETECTING HETEROGENEITY OF INTRA-CLASS 

CORRELATIONS AND VARIANCES IN BALANCED HALF-SIB 
DESIGNS 

4.1 Introduction 

In animal breeding, BLUP has become the method of choice for 

predicting breeding values from mixed linear models. Theoretically, 

(co)variances of random effects included in the mixed model should be 

known without error, but in practice estimates thereof are used. It 

has become standard practice to estimate variances using REML. The 

most desirable (linear) model both for prediction of breeding values 

and estimation of genetic parameters appears to be an (individual) 

animal model (AM), in which relationships between all animals in the 

data and pedigree are taken into account (e.g. Wiggans et at., 1988a 

and 1988b, and Smith and Graser, 1986, for applications in dairy 

cattle). 

One assumption usually made by users of BLUP is homogeneity of 

variances across levels of fixed (and random) effects. In dairy 

cattle, however, there is abundant evidence that this assumption is 

not valid (see e.g. Lofgren et at., 1985; Mirande and Van Vleck, 

1985; Brotherstone and Hill, 1986; Boidman and Freeman, 1988 and 

1990; Short et at., 1990; Dong and Mao, 1990, for some recent 

analyses). Typically for studies investigating heterogeneity of 

variance, herds or herd-year-seasons (HYS) are grouped according to 

their mean production or phenotypic variance, and parameters are 

estimated within and between herds or HYS using a sire model. 

Unfortunately, using an AM for estimating parameters is 

computationally demanding, and relatively small sample sizes are 

necessarily used to estimate population parameters. One suggestion 

for dairy cattle parameter estimation is to use individual herd data 

as samples (see e.g. Swalve and Van Vleck, 1987; Van Vleck and Dong, 

1988; Van Vleck et at., 1988; chapter 3), and to combine several 

individual herd estimates into a population estimate. Using 
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individual herd data separately provides a framework to investigate 

heterogeneity of variance between herds (Van Vieck and Dong, 1988; 

chapter 3). If results about variance heterogeneity from a sample of 

individual herd estimates may be extrapolated to the total population 

(of herds), then, for any trait and parameterisation in heritability 

(h 2) and phenotypic variance, either one of the following conclusions 

may be drawn from one such sample: 

Both heritabilities and phenotypic variances are homogeneous 

across herds 

Heritabilities are homogeneous, phenotypic variances are 

heterogeneous across herds 

Heritabilities are heterogeneous, phenotypic variances are 

homogeneous across herds 

Both heritabilities and phenotypic variances are heterogeneous 

across herds. 

The (arbitrary) parameterisation in heritabilities and phenotypic 

variances, instead of parameterisation in additive genetic and 

environmental variances, was chosen to investigate the conclusions 

from chapter 3 about heterogeneity of variance between herds which 

were in terms of the same parameterisation. Furthermore, results from 

estimating variances in dairy cattle are commonly reported in h 2  and 

phenotypic variances. The implications of these four scenarios for a 

(national) BLIJP evaluation, if the appropriate covariance structure 

of the data is to be considered, vary substantially. Scenarios 2 to 

4 imply that estimates for individual herds should be obtained 

regularly, which is tedious and may be subject to sampling error. 

Furthermore, besides (sampling) problems associated with estimation 

of the relevant parameters, there may be computational problems with 

a large scale implementation. For example, scenarios 3 and 4 suggest 

a general multi-trait approach (Gianola, 1986), which may not be 

feasible for computational reasons, even if all parameters were 

known. 

Inference about the (co)variance structure of observations across 

herds or HIS therefore has implications for the choice of the 

desirable model to be used. A question that arises is what 

significance test should be used in deciding about the most likely 
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scenario, and how powerful such tests are for small sample sizes. 

Since the estimation procedure usually is REML, one suggestion is to 

use a likelihood ratio (LR) test, which has desirable asymptotic 

properties. 

The aim of this study was to investigate the power of a LR test in 

detecting heterogeneous variances for individual groups (herds). To 

define and illustrate the problem and to investigate the effect of 

small samples on departures of test statistics from their expectation 

(based on large samples), a simple model was used for which sets of 

group means were tested for equality while allowing for heterogeneous 

within group variances. Similarly a LR test was used to test whether 

h 2  differed between herds, while allowing for heterogeneous 

individual herd phenotypic variances. To predict the power of a LR 

test for a given design, the distribution of variance estimators are 

required. Unfortunately, in most practical cases the distribution of 

AM-REML variance estimates is not known. One suggestion is to 

investigate the detection of differences in between and within sire 

variances in different herds using balanced half-sib designs, since 

the distributions of variance estimators from such a design are known 

(using ANOVA to estimate variances). Both nested and cross-classified 

half-sib designs were used to contrast the statistical power in 

detecting heterogeneous variances across individual herds for these 

designs. 

4.2 Methods 

4.2.1 Testing for equal group means with heterogeneous group 

variances 

Suppose there are observations in k groups, and that group means are 

assumed to be fixed. Assume each group contains n observations and 

that the observations are normally distributed. Then, for the 

observed mean in group i (i=1,k), 

" 	N (it .,o/n) 	 [4.1] 

A function of the (unrestricted) log-likelihood (La)  is, apart from a 
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constant, 

k 	 k 

-2Lu(xijI 	i• 	k' 	k) = 	[ (x 	- 	
)2 / 
	] + 	n log() 

ii 	 I 

[4.2] 

and minus twice the Maximum Likelihood (ML) with respect to means Ai  

and standard deviations oj, is 

-2MLu  = N + 	Ti log(s) 	 [4.3] 

With N = kn 

and s= 	( X 	
- 	n 	 [4.4] 

Now hypothesise that the means gi are the same, but allowing for 

different variances within each subclass. Let the common mean be 

then, setting the first differentials of [4.2] with respect to j and 

the Q-.2  to zero gives: 

( Xjj - fto  ) / 1 = 0 	 [4.5] 

And for the variance in group i, 

Ti 

Xjj - 
tto  
 

) 2/  U2] - 
TI = 0 	 [4.6] 

j 

Solving [4.5] and [4.6] requires iteration since there is no explicit 

solution. Minus twice the ML under the null hypothesis can be written 

as: 
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k 

-2ML0  = N + 	n log( s + (x. 	
A 	2 
lL o ) ) 	 [4.7] 

I 

Hence an expression for (a function of) the Likelihood Ratio (= X), 

is, 

= -2 (ML0 - MLU ) 

k 

nlog[1 - A 
2 2 

= 	 +(x - 0 )/s] i 
I 

[4.8] 

The LR asymptotically has a ChiSquare distribution with (k-I) degrees 

of freedom if the null hypothesis is true. The degrees of freedom are 

from estimating 2k parameters for the unrestricted model (see 

Equation [4.2]) and (k+1) parameters under the H0  model (see 

Equations [4.5] and [4.6]). If the means are not the same the 

distribution of the LR is a Non-central ChiSquare. 

For any set of k different group means, the non-centrality parameter 

is a function of the sum of squares of the fixed means (Kendall and 

Stuart, 1973, pp.  230-231). Examples of the power of a LR detecting 

differences in means could be given, but would be conditional on a 

particular (arbitrary) set of fixed means. To investigate the power 

of a LR test under the alternative hypothesis (means not the same), 

one suggestion is to look at an average power from different sets of 

fixed means. For ease of computation and simulation, and for 

illustration purposes, sets of means were obtained by sampling them 

from a normal distribution (to keep the illustration in this section 

simple, calculations are still based on a fixed effects model, 

although it could be argued that a random effects model would be more 

appropriate). Then, if the true group means are repeatedly sampled 

and for each true mean its estimate is sampled, assuming a 

multivariate normal distribution of true means and within group 

observations, it can be shown that the asymptotic distribution of the 
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test statistic is: 

X "- c X2 k-1)with c = ( v(x.ii.) + v(t.) ) / v(xiu.) 

v(xiIi) is the sampling variance of the estimate of the group mean 

given the true group mean value, and v(pi) is the population variance 

of true group means. A full proof of the form of the asymptotic 

distribution is outside the scope of this study. An approximation of 

equation [4.8] gives: 

X 	1 	[ (; 	- a. 
)2/ 

 (s/ n) ] + 	[ ( 	
- A

AO 
 )2 / (s/n) 

X 	 [ v(.) / v(x.ijz.) ] X kl) + 	 1 

v(. 1 i.) + v(. 1) ) / v(x.it.) ] 

Assuming a joint multivariate normal distribution of true means and 

their estimates, the (asymptotic) power of the LR test then can be 

predicted using a central ChiSquare distribution. For significance 

level c, the predicted power is: 

CO 

P(cl) 	 f(x)dx 	, with f(x) the density of a X2  distribution 

with (k-i) degrees of freedom, 	 [4.9] 

X2 (k-1)]/c 

c is defined above and X(df) is the 100(1 - c) percentage point for a 

central ChiSquare distribution with df degrees of freedom. 
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To investigate the behaviour of the test statistic for small samples, 

a simulation was carried out using a balanced design. For each 

replicate, k true means were sampled from a normal distribution with 

mean go  and variance v(1). An estimate of Ai, 5, was sampled from "-

N(,oj2/n) and an estimate of the group variance, s1 2, was sampled 

from - (Ti 2 /df)X 2 ( n_1), with df being the degrees of freedom (ri for 

ML). The overall mean, p, and the variance within each group were 

set to 1.0. Therefore, although group variances were individually 

estimated (using equation [4.4], [4.5] and [4.6]), they were sampled 

from a homogeneous population (all ai = 1.0). Replicates were varied 

for different designs to obtain similar standard errors of means over 

replicates. On average, 10,000 samples were simulated. 

4.2.2 Balanced nested half-sib designs 

There is an analogy of the previous model to a balanced half-sib 

design; now consider the groups to be herds (or strata) and a LR test 

is used to determine whether a particular set of herds differ in 

intra-class correlation (ICC), phenotypic variance, or in both. The 

intra-class correlation is the ratio of between sire variance to the 

sum of between and within sire variance, and is usually assumed to be 

one quarter of the heritability. One suggestion is to ignore 

informaton between herds and to assume 	that individual herd 

parameter estimates are solely from progeny group comparisons within 

that herd. Let there be sn observations in each herd, from s sires 

with n progeny each. Then, assuming normality, the log-likelihood of 

error contrasts (Patterson and Thompson, 1971) for data from herd i 

is (see, for example, Thompson and Meyer 1986b), apart from a 

constant, 

2 	 2 	2 
L = - ( s(n-1)lo (o ) + (s-1)lo (o 	+ no ) g 	 g 	

bi 

+ W1/(o 2 .) + Bi/(02. + no.) 
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with 	cr 2.= within sire variance in herd i, 
Wi 

between sire variance in herd i, 

W1= within sire SS (sum of squares) for herd 1, 

B1= between sire SS for herd i. 

Reparameterisation in tj, the ICC for herd i, and r , the phenotypic 

variance in herd i, gives, 

L = - C s(n-1)log(1--t 1) + (s-1)log(1 + (n-1)t1) 

+ Wi/(0_ (1-t)) + Bi/(r(1  + (n-1)t1)) + (sn-1)log(0_) 

If all herds have sri records, from s sires with ri progeny each, and 

sires are only represented in one herd, then a function of the 

likelihood for data from k herds, is: 

k 

-2L = 	[ s(n-1)log(1-t1) + (s-1)log(l + (n-l)ti) 

+ W1/(r(1-t1)) + B1/(r(l + (n-l)t)) + (sn-1)log(r) 1 [4.10] 

and the (Residual) Maximum Likelihood is obtained by substituting the 

ANOVA estimates for ti and 01 2  in [4.10], for t1 > 0. Now consider 

the null hypothesis that the ICC are the same in all herds, whilst 

allowing for heterogeneous phenotypic variances across herds, and let 

the common value of the ICC be t 0. Then, 



k 

-2L0(xi t0,1 	
= I 	

s(n-1)log(1-t 0 ) + (s-l)log(1 + (n-1)t 0 ) 

+ Wi/(cr(l-t 0 )) + B/(cr(1 + (n-1)t 0 )) + (sn-1)log(cr) ] [4.11] 

REML estimates for t o  and 0j2  satisfy, respectively: 

k 

V 

I [ 
-s(n-1) + (s-1)(n-1) + 	W1 	 B1 	

0 [4.12] 
(1-t 0 ) 	(1+(n-1)t0) 	f (1-t)2  + 	(( l)t)2  J =  

i 

and 	
W1 	 B1 	 2 

(1 - t 0 ) 	+ (1 + (n-1)t0) - 	(ns- l)ff. = 0 	 [4.13] 
1 

Again, as for the fixed effects example, there is no explicit 

solution for t o  and o 2 , and iterative techniques must be used to 

solve [4.12] and [4.13] and to obtain the maximum likelihood 

estimate. Similar formulas could be derived for the hypothesis that 

the phenotypic variances are homogeneous while allowing the ICC to 

differ between herds, or for the hypothesis that both ICC and 

phenotypic variances are homogeneous. 

Using REML, the exact sampling variances of the estimates are not 

known. One suggestion is to use approximate sampling variances 

pertaining to ANOVA estimates. Assuming 1i is estimated from an 

ANOVA, its distribution, a non-linear function of a F-distribution, 

is clearly not normal. However, its sampling variance is known, and 

for large s and ri, Ij will be approximately normally distributed. The 
sampling variance of 1i is (from Fisher, 1921), approximately: 
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2[ 1 + (n-1)t. ]2  (1 - t.) 2  (sn - 1) 
v(.) 	

1 

s(s-1)n 2  (n-l) 
[4.14] 

with E[] = t1 , and s and n, as before, the number of sires and 

progeny per sire. 

If it is assumed that the distribution of the true, unknown, ICC in 

the population is normal, with variance v(t),  then, analogous to 

[4.9], a simple prediction of the power of the LR can be made, using 

the variance of true ICC and the approximate (ANOVA) sampling 

variance of their estimates from equation [4.14]. In this situation 

two different sources are expected to cause biases in the LR test; 

one source is that small samples cause departures of the distribution 

of the test statistic from the ChiSquare distribution, as in the 

previous section, the other source is that the estimates of the ICC 

are not normally distributed. 

The power of a LR test to detect heterogeneity of ICC or phenotypic 

variances was investigated by simulation. Per replicate, the true ti 

were sampled from a truncated normal distribution with mean t o  (hence 

ti "- N(t 0 ,v(tj)) in the interval <0,1>. For each of k herds, between 

and within sire SS were sampled from the appropriate X2  distribution 

and the sample between and within sire components were estimated 

using REML. The sampling procedure caused a slightly skewed 

distribution of t1 since to  was 0.1. By sampling SS, data were 

assumed to be corrected for all fixed effects, including fixed herd 

effects. 

For each of 5,000 replicates, LR tests were carried out corresponding 

to the following null hypotheses (H0 ): 

H0  [o, t 0] = both ICC and phenotypic variances are 

homogeneous (df = 2(k - 1)); 

H 0  [o- j 2 , t 0] = ICC are homogeneous, allowing for heterogeneous 

phenotypic variances (df = k - 1); 



H 0  [o, tj] = Phenotypic variances are homogeneous, allowing 

for heterogeneous ICC (df = k - 1). 

For each hypothesis the appropriate REML estimates were calculated 

using simple iterative techniques. The powers of tests 1 to 3 were 

predicted using: 

CO 

P(c) = 	f(x)dx 	, f(x) being the density of a X 2  distribution 

with df degrees of freedom, 	 [4.15] 

X2 (df)]/c 

The constant c = [ ( v(iI0i) + v(01) )/ v(i0) ] for hypotheses 2) 

and 3), with O = ti for hypothesis 2) and Oi = 	for hypothesis 

3). For hypothesis 1), c = (c 2  + c 3)/2, with c 2  and c3  the constants 

for hypotheses 2) and 3) respectively. 

4.2.3 Balanced cross-classified half-sib designs 

4.2.3.1 Model specification 

If sires and herds (strata) are cross-classified, i.e. all sires have 

progeny in all herds, then the following questions arise: 

What is the contribution of the additional information, i.e. 

that animals in different herds are related to each other, to the 

detection of heterogeneity of parameters? 

What is the effect of assuming a hierarchical design when 

maximising the likelihood, whilst data were generated from a 

cross-classified design? 

The implicit assumption in the latter question, that data from 

individual herds were statistically independent of each other, was 

for example assumed by Swalve and Van Vleck (1987), Van Vleck and 

Dong (1988), Van Vleck et at. (1988) and in chapter 3, since 

relationships between animals in different herds were ignored in 

those studies. These questions were addressed again by using 

simulation. The following model was used to generate data consisting 



of MSB (Mean Square Between sires within a stratum), MSW (Mean Square 

Within sires within a stratum) and MCPB (Mean Cross Product for sires 

between strata): 

Yijl = a1S + ieijl 
	

[4.16] 

Yijl is an observation on the 1th  progeny (1-1,ri) of sire j (j=1,$) 

in the ith  stratum (i=1,k) with residual eijl  and cj and fi  are 

constants scaling the sire and residual variance. Therefore the 

assumption is that genetic correlations between sire performances in 

different strata are unity, and that a sire by herd interaction is 

the effect of scaling. Then, if M is a kxk matrix of MSB and MCPB 

between k strata and W is the diagonal matrix of MSW, 

E[ 	M1 	] = fi.
2
cr

2 
 + n 	

2 
 r 

2 	2 
= if . + fl CT 2 

1W 	ib 	wi 	bi 

2 
E[ Mimi = 	 fl 	CT = fl CT .if 

1mb 	bibm 

E[ 	Wi 	3.
2 
 o 2 = if 

2 

1 w 	WI 

for strata i and m. The likelihood function was parameterised in 

terms of between and within sire components, and was maximised 

conditional on the within sire within stratum mean square being the 

ML estimate (MLE) of the within component for that stratum, i.e. 

MLE(o)= Wj. This was done for computational reasons (see next 

section). Although this parameterisation is different from the one 

used in the previous section, the main interest is the power of 

detecting heterogeneous between sire components, and this power is 

likely to be very similar to the power of detecting heterogeneous 

ICC. To verify this, a nested (hierarchical) design was simulated as 

in the previous section, but with parameterisation of the likelihood 

function in between and within sire components (see columns 

pertaining to 04  in table 4.5). The effect of fixing the estimates of 

the within components to the within mean squares is unlikely to have 

a great effect on the likelihood ratio: even for the smallest design 

the degrees of freedom for the within components were as large as 270 



(= 30*(10_1)). 

4.2.3.2 Computing algorithm 

Assume a matrix M of MSB and MCPB, and a diagonal matrix W of MSW, 

are observed from k herds (strata). Each of the s sires has rz progeny 

in each herd (stratum). For the "full" model it is further assumed 

that: 

E[ M ] = V = LL' + D 	, 	 [4.17] 

Where L is a vector of length k with elements L=Jn 0bi 

and D is a diagonal matrix of order k with D1= oj. 

Then the residual likelihood is 

-2L(M, WIV) = 	(s - 1)[ logiVi + tr(MV 1) ] 

+ s(n - l)[ logiDi + tr(W1r1) ]  

Conditional on D = W, and ignoring the second part of the likelihood 

pertaining to 0, the maximum likelihood can be written as: 

k 	k 
_2MLu(M I V, D=W) = (s - 1)[ log(0) + E Oj + llog(W) 1 	[4.19] 

i=2 	i=1 

Where Oi are the eigenvalues of M* = 0 2M D = WM W 2  

and 01  is the largest eigenvalue of M*.  

Hence, conditional on D=W, no iterative procedure is required to 

calculate the maximum likelihood for the full model. Unless the 

number of strata is very large, calculating the eigenvalues for a 

symmetric kxk matrix is computationally relatively easy. The 

algorithm is similar to a commonly used algorithm in factor analysis, 

the analogy being to regard sires as the only "factor" in the 

analysis explaining the data (see e.g. Lawley and Maxwell, 1971). 

Computation of the ML for the alternative hypothesis, that all sire 
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variances are the same, again assuming D=W, involves computing the ML 

estimate of o, the estimate of the overall sire variance. It can be 

shown that for the above model the ML estimate of uA O  has an explicit 

solution, which is: 

ML(â 2  ) = [ 	(1'01MD11) - (1'D -'l) ] / [ n (1,011)2 1 ho 

where 1' is a row vector of length k with all elements unity. 

If data from different strata are assumed independent, computations 

of the ML requires solving a cubic equation in o. The ML estimate 

of the common sire variance then satisfies, conditional on 0=4W, 

k 	 k 
i 

2 	2 2 
1/(r2 
	2 
+nty )=M/(ff+n5 

wi 	ho 	 wi 	bo 

Again, this is relatively straightforward to solve. 

4.3 Results 

4.3.1 Testing for equal group means with heterogeneous group 

variances 

Table 4.1 shows the results using a LR test for small sample sizes 

using the fixed effects model. Clearly the LR is not distributed as a 

ChiSquare for small ri, since the null hypothesis is more often 

rejected when it is true than was expected from the significance 

level. For example, for k = 10 and n = 10, the estimated probability 

of rejecting H. when H0  was true, i.e. when the variance of true 

means (v(1)) was zero, was 10.8% at a nominal significance level of 

5%. For n = 25, the predicted powers were close to the observed ones. 

Expanding the LR function typically gives a X2  approximation exact to 

order 1/ri (see e.g. Kendall and Stuart, 1973, pp.  234-272), so that 

the deviation of observed from predicted powers is not surprising for 

small ri. Modification of the test statistic (e.g. Bartlett, 1937) 

would result in smaller differences between observed and predicted 

powers. In general, the observed powers were low. For v(Ai) 	0.01, 

hence CV(p) = 10%, the maximum power, 26.4%, was observed for k = 25 

and n = 25. 
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Table 4.1: Statistical power (in %) for c-5% from a LR test for 
testing group means and allowing for heterogeneous group variances. 

k= 2 	 10 	 25 

n v(i)  v(1) o P 0 P 0 P 

5 0 0.20 8.1 5.0 19.1 5.0 34.5 5.0 
0.01 8.8 5.6 21.5 6.5 39.4 7.3 
0.25 22.1 19.1 68.5 58.3 95.0 88.1 

10 0 0.10 6.5 5.0 10.8 5.0 15.0 5.0 
0.01 7.9 6.2 14.9 8.1 23.1 10.2 
0.25 31.4 29.5 85.1 84.9 99.4 99.3 

25 0 0.04 5.4 5.0 6.5 5.0 8.8 5.0 
0.01 8.8 8.0 16.5 14.0 26.4 21.5 
0.25 47.0 46.7 98.4 98.5 100 100 

k,n= number of groups and observations within each group 
respectively. 
0 = observed power of LR test. 
P = prediction of power LR test (from formula [4.9] in text). 
Standard errors of observed powers were approximately 0.4%. 

4.3.2 Balanced nested half-sib designs 

Tables 4.2 and 4.3 show simulation results for small and medium 

group sizes for a balanced nested half-sib design. The coefficients 

of variation rather than the variances of the population parameters 

were displayed to make comparisons between the powers for ti and 

The design from table 4.2 was chosen to give similar standard errors 

of the heritability (= h 2  = 4t) estimates as were obtained in chapter 

3 using field data. For the parameters used in table 4.2, the 

approximate standard error of the corresponding heritability estimate 

was 0.189 (from equation [4.14]). The probability of rejecting H 0  

when it was true was very similar to the significance level for 

testing phenotypic variances and for testing heterogeneity of ICC. 

For the double homogeneity test the LR test detected heterogeneity 

even when one of the parameters, in this case the phenotypic 

variance, was homogeneous (see columns pertaining to 01  in tables 4.2 

and 4.3). Clearly the power for detecting heterogeneous ICC was very 

low compared with the power to detect differences in phenotypic 

variances. For example, if the CV(t) in the population of herds was 
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0.3, which corresponds to a distribution of the heritability with 

mean 0.40 and standard deviation 0.12, then in approximately 37% of 

repeated samples of 25 herd estimates a difference in heritability 

would be detected. Table 4.3 confirms that some of the (small) 

differences between observed and predicted powers in table 4.2 were 

caused by small sample sizes. Again the difference in power between 

LR tests for ti and oj 2  is striking. In general simulation results 

agreed well with their predictions. 

Table 4.2: Observed (Of) and predicted (P1) powers (in ii) for LR 
tests from a balanced half-sib design for k=25. 

s=30, n=10, t 0=0.10, 0 j 2=1.0, c==0.05 

CV(t) 	CV(0-1 2 ) 01  P1  02  P2  03  p 3  

0 	0 5.5 5.0 5.5 5.0 4.5 5.0 
0.1 	0 7.1 6.4 8.2 7.1 4.4 5.0 
0.1 	0.1 87.4 84.1 7.3 7.1 89.7 90.8 
0.2 	0 13.9 11.8 16.6 15.7 4.5 5.0 
0.2 	0.2 100 100 14.8 15.7 100 100 
0.3 	0 30.1 24.9 37.0 35.6 4.3 5.0 
0.3 	0.3 100 100 38.4 35.6 100 100 
0.4 	0 51.0 47.4 62.6 62.6 4.6 5.0 
0.4 	0.4 100 100 63.3 62.6 100 100 
0.5 	0 70.6 72.4 80.3 84.1 4.9 5.0 
0.5 	0.5 100 100 82.6 84.1 100 100 

Range standard error (s.e.): 
s.e.(01) 	0 	- 0.7% 
s.e.(02) 	0.4 	- 1.2% 
s.e.(03) 	0 	- 0.5% 
Subscripts 1-3 refer to different null hypotheses: 
1 = both ICCs and phenotypic variances homogeneous 
2 = ICCs homogeneous, allowing for heterogeneous phenotypic 

variances 
3 = phenotypic variances homogeneous, allowing for heterogeneous 

ICCs 
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Table 4.3: Observed and predicted powers for LR tests from a balanced 
half-sib design for k=10. 

S=100 ' 	n=10, 	t 0=0.10, 0-2=1.0, &=0.05 

CV(t) 	CV(u 2 ) 01  P1  02  P 2  03  P 3  

0 	0 4.8 5.0 5.5 5.0 5.2 5.0 
0.1 	0 8.4 8.2 10.2 10.0 5.3 5.0 
0.1 	0.1 95.2 96.9 10.3 10.0 96.3 96.3 
0.2 	0 25.3 22.7 29.7 31.1 5.0 5.0 
0.2 	0.2 100 100 30.9 31.1 100 100 
0.3 	0 55.5 51.5 63.1 62.4 4.8 5.0 
0.3 	0.3 100 100 64.4 62.4 100 100 
0.4 	0 78.9 79.1 84.2 84.1 4.6 5.0 
0.4 	0.4 100 100 82.6 84.1 100 100 
0.5 	0 89.8 93.4 92.6 94.0 4.7 5.0 
0.5 	0.5 100 100 92.4 94.0 100 100 

Range standard errors: 
s.e.(01) 	0 	- 0.6% 
s.e.(O2) 	0.3 	- 0.8% 
s.e.(03) 	0 	- 0.4% 

In table 4.4 the predictions of the powers for large samples for two 

groups are shown. Such samples may be similar to estimating 

parameters from groups of herds which have been split according to 

the herd mean or herd variance. The standard error of the 

heritability is shown because results from studies investigating 

heterogeneity of variance in two or more groups (e.g. Hill et al., 

1983; Lofgren et al., 1985; Dong and Mao, 1990) usually are reported 

in terms of differences between heritability estimates. Table 4.4 

shows that even for large sample sizes moderate powers can be 

obtained using a LR test. For all sample sizes in table 4.4, the 

power of a LR test for detecting heterogeneity of phenotypic 

variances was 100%. 
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Table 4.4: Predicted powers (for c=5%) for detection of heterogeneous 
ICC in two groups for LR tests from various balanced half-sib 
designs, assuming phenotypic variances are homogeneous and t 0=0.10. 

S 	n s.e.(h2) 	 Power (in %) 

CV(t)= 	0.1 0.2 0.3 

100 	25 	0.071 	 17 59 88 
50 	0.061 	 22 72 94 
100 	0.056 	 26 78 96 

	

250 25 0.045 	 40 91 99 

	

50 0.039 	 52 96 100 

	

100 0.035 	 59 97 100 

	

500 25 0.032 	 69 99 100 

	

50 0.027 	 80 99 100 

	

100 0.025 	 86 100 100 

	

750 25 0.026 	 84 100 100 

	

50 0.022 	 91 100 100 

	

100 0.020 	 94 100 100 

1000 	25 0.022 91 100 100 
50 0.019 96 100 100 
100 0.018 97 100 100 

4.3.3 Balanced cross-classified half-sib designs 

Table 4.5 shows the results from simulating data from a balanced 

cross-classified design. Results are shown only for cases where 

CV(512) = 0, i.e. CV(t1) = CV(oi/ffi 2 ) = CV(o). Hence between and 

within sire variances were heterogeneous, but their sum, the 

phenotypic variance, was the same for all herds. The first columns 

for each of the two population designs, i.e. columns 04, can directly 

be compared with columns 02  from tables 4.2 and 4.3. Clearly the 

power for detecting heterogeneous sire components and ICC are 

similar. The second column of observed powers in table 4.5 shows the 

effect of assuming the incorrect model for calculating the LR. The 

loss in power occurs because part of the information about the 

covariance structure of the MSB is not taken into account in the 

calculation of the Maximum Likelihood. Note that the estimates of the 

between and within components both for the unrestricted model 

(different between and within components for each stratum) and for 
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the H0  hypothesis are unbiased (conditional on the ANOVA estimates 

for the between sire variance being positive), since the expectations 

of the mean squares in the usual ANOVA are not changed; ignoring the 

MCPB simply means that the variance of the estimates is increased. 

For a nominal significance level of 5%, the estimated type I errors 

for both designs were less than 1% if an incorrect model was assumed 

(columns 05). The probability of rejecting H0  when it was false, i.e. 

the power of the test, was also small when MCPB were ignored. 

Table 4.5: Observed powers ± s.e. (in %) in detecting heterogeneous 
sire variances for LIZ tests from balanced nested and cross-classified 
half-sib designs. 

	

design I: k=25, s=30, n=10 	design II: k=10, s=100, rz==10 

CV(cr) 04 	 05 	 06 	 04 	05 	06 

0 	6.6 ± .3 	0.4 ± .2 	5.3 ± .3 	5.7 ± .5 0.9 ± .1 5.1 ± .3 
0.1 	8.2 ± .3 	0.5 ± .2 	7.7 ± .5 10.0 ± .5 2.5 ± .3 14.1 ± .3 
0.2 16.5 ± .6 	2.1 ± .6 28.6 ± 1.1 29.4 ± .9 15.9 ± .449.9 ± .6 
0.3 35.6 ± .9 12.2 ± .9 61.6 ± 1.5 58.5 ± .7 49.5 ± .5 82.8 ± .7 
0.4 58.6 ± .4 32.2 ± 1.8 86.5 ± 1.1 80.8 ± .4 74.0 ± .7 94.7 ± .2 
0.5 76.5 ± .6 57.8 ± 2.0 96.4 ± 	.6 91.3 ± .4 88.0 ± .7 98.5 ± .2 

In all cases CV(u 2)=0. 
All LR are conditional on D=W (see text) 
Subscripts 4-6 refer to the following data structures and hypotheses: 
4 = data from nested design, H0= homogeneous sire variances 
5 = data from cross-classified design, but ignoring MCPB, H. 
homogeneous sire variances. 
6 = data from cross-classified design, H0= homogeneous sire 
variances. 

The final column in table 4.5 indicates the gain of using MCPBs for 

the assumed model to detect heterogeneous variance components. The 

power was increased substantially, in particular for the range of 

CV(t1) of 0.2 to 0.3. In absolute terms, the power was still small 

for design I (25 strata, 30 sires, 10 progeny per sire): if the 

coefficient of variation of the between sire variance was 0.30 in the 

population, this heterogeneity would be picked up in approximately 

62% of samples. For CV(t1) = 0.1, the power for the nested design 

(8.2%) was found to be larger than the power for the cross-classified 

design (7.71/o) for the design with 25 herds, while a larger power was 

expected for the cross-classified design. This may be explained by 
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sampling (SE of mean powers were 0.3 and 0.5 respectively) and by 

departures from normality for small sample estimates. The estimated 

type I error for the nested design (column 04) was 6.6%, at a nominal 

significance level of 5%, whereas the estimated type I error for the 

cross-classified design was 5.3%. 

4.4 Discussion 

The analytical and simulation results show clearly that the power of 

a LR test for detecting heterogeneous ICC (or heritabilities) is very 

low for the range of standard errors of h 2  estimates to be expected 

from individual herd data in most countries. In chapter 3, 6 years of 

first lactation data were used from 26 large pedigree herds in 

England and Wales, and standard errors of h 2  estimates of 

approximately 0.19 were obtained. Van Vleck and Dong (1988), using 

300 to 400 first lactation records per herd, estimated the standard 

errors of their h 2  estimates to be approximately 0.15. The U.K. has 

the largest average herd size in Europe, so sampling variances of 

individual herd estimates would be larger in other countries in 

Europe. Using more records per herd seems obvious, but may give 

additional problems of heterogeneity of variance between herd-years 

and between lactations, if the use of later lactations was to be 

considered. 

Therefore the conclusion from chapter 3, that h 2  estimates were 

fairly homogeneous and that phenotypic variances differed between 

herds, is not surprising given the low power of the statistical test. 

However, before using an AM-BLUP evaluation, a decision should be 

made with regards to the correct covariance structure of the data. 

Given the lack of power in detecting any differences in 

heritabilities between herds, it seems logical to assume that 

heritabilities are homogeneous. Records can then be scaled according 

to an (regressed) estimate of the within-herd phenotypic variances, 

if those variances were found to be heterogeneous. A Bayesian 

justification for assuming homogeneous h 2  is that the individual herd 

estimates should be regressed to an overall h 2  estimate (a prior for 

the mean of the distribution of the heritability) and since the 

sampling variances of the individual estimates are large, the 
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regressed estimates would be very similar (homogeneous). This 

regression is further investigated in chapter 7. Foulley et al. 

(1990) presented a general framework to test for sources (e.g. herds 

or sires) causing heterogeneity of residual variance, and presented 

an example to illustrate the generality of their test. However, the 

test failed to detect heterogeneity of residual variance caused by 

sires, and it may be argued that in the power of the presented 

hypothesis test, essentially a LR test, for detecting heterogeneity 

of sire variances (whether caused by herds or sires) is likely to be 

low in most practical situations. San Cristobal et al. (1990) 

questioned the robustness of their or any LR test to departures from 

normality, but the results from the first section, testing for 

equality of group means, and results from the half-sib designs 

suggest that for relatively small samples the lack of statistical 

power is of greater practical importance than violations of normality 

assumptions. 

The power for large samples approaches unity rapidly (table 4.4), 

although differences in t (h2) may not be detected for two 

herd-groups with 100-200 sires represented. For example, Hill et al. 

(1983) estimated parameters in two (high and low) groups, each with 

762 sires and approximately 11 effective daughters per sire. Using 

the prediction formula [4.15], with t = 0.0625 (h 2  = 0.25) and o = 

5%, repeated samples of 2 herd groups from the total population would 

give a power of 13, 32, 47, 58 and 65% for CV(h2) = 0.1,0.2,... ,0.5 

respectively. These relatively low powers are confirmed by performing 

a simple t-test, now conditional on the estimates, on the difference 

of the estimates in the high and low group. Although the sign of the 

difference is consistent (high mean and high variance groups showed 

higher heritabilities), the test statistic is not significant at the 

5% level. 

Using information between herds or strata may increase the power of 

the LR test, but simplified models are necessary, for computational 

reasons, to make calculation of likelihoods under various hypotheses 

feasible. If, for example, in the cross-classified design the 

assumption about scaling was not made, the number of between sire 

parameters to be estimated would increase from k to k(k+1)/2. 
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To conclude, the power of detecting heterogeneous heritabilities or 

(additive) genetic variances between herds using field data is 

expected to be small, while it is relatively easy to detect 

differences in total phenotypic variances. 
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[IJT.T4 4 

UNIVARIATE AND MULTIVARIATE PARAMETER ESTIMATES 
FOR MILK PRODUCTION TRAITS IN LACTATIONS 1-3 USING AN 

ANIMAL MODEL. I: DESCRIPTION OF ANALYSES AND 
PRESENTATION OF REML ESTIMATES 

5.1 Introduction 

As discussed in section 1.2, assumptions about the covariance 

structure of observations analysed with a linear model are often 

simplified to make computations feasible. In particular, this is the 

case for prediction of breeding values for large populations, e.g. 

for a national evaluation. For example, the U.S.A (Wiggans et al., 

1988a), France (Ducrocq et al., 1990) and Australia (Jones and 

Goddard, 1990) use a modified repeatability model for which a genetic 

correlation of unity is assumed between performances across 

lactations and some (pre)scaling is applied to later lactation 

records to account for higher phenotypic variances of traits in later 

lactations. Later lactation records are given lower weightings by 

adjusting the error structure of the observations, and milk, fat, and 

protein yield are analysed separately using this modified 

repeatability model. The potential loss in efficiency of selection by 

making these assumptions depends on the true, unknown, covariance 

structure of the data, and on the breeding goal. By estimating 

relevant (co)variances and assuming a particular combination of 

traits on which to select, the potential loss in efficiency of 

selection by using simplified covariance structures may be 

quantified. 

For estimating (co)variance components it seems desirable to use the 

same model as is, or soon will be, used for the prediction of 

breeding values, i.e. an animal model. Few (co)variance estimates 

from AM analyses have been reported; Swalve and Van Vleck (1987) 

analysed milk yield in lactations 1-3, and Van Vleck and IJong (1988) 

performed a multivariate analysis on milk, fat and protein yield in 

the first lactation. 
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The aims of this study were: 

To estimate multivariate (MV) parameters for milk (M), fat (F) 

and protein (P) yield in lactations 1, 2 and 3 (Li, L2, L3). 

Estimates of correlations between different traits in different 

lactations, for example between milk yield in lactation 1 (Ml) 

and fat yield in lactation 2 (F2) have not been reported before. 

In the notation used, the number following M, F or P refers to 

lactation number, and the combination above, Ml and F2, may be 

written as MIF2. Similarly, a multivariate analysis on Ml, Fl and 

P1 may be written as analysing MIFIPI. 

To investigate the implications of the estimates for 

prediction of breeding values when simplified assumptions are 

made regarding covariances structures. This part of the study is 

presented in chapter 6. 

5.2 Material 

First, second and third lactation production records for the period 

1979-1987 from 100 large pedigree herds were extracted from the Milk 

Marketing Board's production files. Herds were selected on the number 

of heifers present in 1987. Later lactation records, i.e. second or 

third, were included only from cows for which the previous lactations 

were present. All cows were pedigree Holstein-Friesian (HF). Some 

summary statistics of the data are presented in table 5.1. The data 

used to investigate heterogeneity of variance between herds (chapter 

were a subset of the data used for this study. 
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Table 5.1: Summary statistics of data. 

LACTATION 
1 	 2 	3 

Number of records 38811 26223 16542 
Number of animal effects 58689 42835 28919 
Number of sires 2357 1948 1565 

Mean (kg) M 5291 6143 6643 
F 208.8 239.7 257.8 
P 173.0 201.4 215.5 

SD (kg) 	M 
F 
P 

(SD = Standard deviation) 

1111 	1335 	1372 
44.6 	53.0 	55.7 
34.6 	41.5 	42.7 

5.3 Methods 

Residual Maximum Likelihood (REML; Patterson and Thompson, 1971) was 

used to estimate (co)variances, using programs based on software 

written by Meyer (1988, 1989). Fixed effects in the mixed linear 

model were herd-year-seasons (Wi'S) and month of calving. Seasons were 

defined as 4 month periods, corresponding to the definition used for 

the current U.K. sire evaluations. Proportion of Holstein-Friesian in 

the cow, age at calving and lactation length were fitted as 

covariables. All animal effects, including those of proven sires, 

were treated as random; this may cause a (downward) bias in the 

estimates, since comparisons between proven sires contribute to the 

estimate of genetic variance. 

The following analyses were carried out: 

1) Univariate analyses for each of M, F and P in lactations 1-3. 

If culling takes place on performance in previous lactations, the 

parameter estimates from univariate analyses on later lactations 

will be biased. Comparing variance components from these 

univariate analyses with components from models that (partly) 

take account of selection may give some indication about what 

kind of selection (if any) has acted on these data. 
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Analyses using a repeatability model for each of M, F and P in 

lactations 1 and 2. For this model it was assumed that the 

genetic correlation of performance between lactations was unity 

and that heritabilities were constant across lactations. A 

permanent environmental effect was fitted as an additional random 

effect for these analyses. Comparing results from these analyses 

with results from bivariate analyses may show how the 

(co)variances are partitioned when a genetic correlation of unity 

between performances in lactations I and 2 implicitly is assumed. 

Within lactation (for LI, L2 and L3) MV analyses for traits M, 

F and P. An algorithm proposed Thompson and Hill (1990) was used 

to estimate (co)variances. Their algorithm was designed to reduce 

a multivariate estimation problem to a set of independent 

univariate estimations. Assuming equal design matrices for p 

traits, Thompson and Hill (1990) proposed performing q=p(p+1)/2 

univariate analyses, where the q "traits" are obtained from 

linear transformations of the p traits, and suggested finding a 

transformation matrix (iteratively) that would stabilise the 

back-transformed pxp covariance matrix from one round to the 

next. Following Thompson and Hill's suggestion, the initial 

transformation matrix was chosen so that p=3  traits and q-p=3 

sums of traits were analysed. Subsequently, after q=6 univariate 

analyses, a canonical transformation was calculated and 3 

canonical variates were formed. The next "round"  consisted of 

performing univariate analyses on these 3 canonical variates and 

on 3 pairwise sums of the canonical variates. The whole procedure 

was stopped after 5 complete rounds of iteration, since 

correlations on the original scale changed very little from round 

4 to 5. Thompson and Hill (1990) proposed their algorithm for the 

general case of equal design matrices and more than two random 

effects in the linear model. For the analyses described above, 

only two random effects (animal and residual) were fitted, so 

that a "standard" canonical transformation (see e.g. Meyer, 1985) 

could have been applied. Both methods, however, should give 

similar estimates, since the described algorithm was found to be 

highly efficient (Thompson and Hill, 1990). 
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4) Bivariate (BV) analyses on all pairwise combinations of traits 

in different lactations. Unfortunately, analysing the data using 

a general MV model (for example with 3 traits in 3 lactat ions 

i.e. for 9 traits) was computationally not feasible. Therefore, 

selection bias is likely to affect some of the parameter 

estimates. In particular, (co)variances estimated for lactation 2 

and 3 will be biased if culling was based on performance in the 

first lactation. For all BV analyses the fixed effect structure 

was different for both traits. Computations would be reduced if, 

for example, a particular fixed effect was assumed to be the same 

for Ml and M2, but this assumption is difficult to justify for 

other combinations (e.g. M1P3). For all BV analyses, the 

observations were scaled to their phenotypic standard deviation, 

since this was found to be more efficient when using a simplex 

algorithm (Meyer, 1989) to maximise the likelihood. 

For most analyses data sets were too large to be handled in one 

single likelihood evaluation. Data sets were therefore randomly 

subdivided into subsets of herd groups. The estimates from each 

sample were assumed to be independent of other estimates. This 

assumption is strictly true, since some sires had progeny in 

different subsets. The correlation between estimates from different 

samples depends on the number of sires represented in different 

samples and their contribution to the parameter estimates in each 

sample. For analyses 1) and 2) data were split into 5 subsets of 20 

herds each, for analyses 3) into 5, 4 and 2 herd groups (for Li, L2, 

and L3 respectively), and for 4) into 10 groups of 10 herds. For the 

univariate analyses and the analyses using a repeatability model, the 

standard errors (s.e.) of the estimates were calculated by 

approximating the likelihood surface at the maximum likelihood 

estimates by a quadratic function in the parameters of interest and 

using the matrix of second differentials to calculate asymptotic 

variances of the estimates (see chapter 3 for an application and 

discussion of this procedure). For the within lactation MV analyses 

and the BV analyses, the average (co)variance estimates are presented 

with the empirical standard error of the mean estimate. No weighting 

of estimates was applied because subsets were roughly of equal size 
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and there was insufficient information about the sampling 

(co)variances of the variance components (a weighting according to 

the number of records in the analysis was tried and showed 

differences between weighted and unweighted means of the order of 1% 

of the mean). 

It was not clear how to combine the different estimates efficiently 

into one overall (9x9) covariance matrix, since there was 

insufficient information about sampling variances and culling bias. 

Estimates of variances and covariances of M, F and P in lactation 3, 

for example, were available from bivariate analyses LIL3 and L2L3 and 

from MV analyses within L3, all of which were probably subject to 

culling bias. The following method was chosen to create consistent 

9x9 covariance matrices: For Li the (co)variances from analyses 3) 

were used. The variances (diagonals) in L2 and L3 were taken from BV 

analyses L1L2 and L1L3 using the same trait in each lactation. For 

example, the variance estimate for P3 was used from analysis P1P3. 

Within lactation genetic and environmental covariances between M, F 

and P for lactations 2 and 3 were calculated using the variances as 

described above and the estimates of the within lactation genetic and 

environmental correlations. The phenotypic covariances were 

calculated as the sum of the genetic and environmental covariances 

thus created and phenotypic correlations were calculated from these. 

The same method was used to calculate covariances between different 

traits in different lactations, now using the genetic and 

environmental correlations estimated from BV analyses. This somewhat 

arbitrary way of combining different estimates was found to give 

fewest problems of negative definite covariance matrices. It was thus 

assumed that variances from BV analyses L1L2 and L1L3, and genetic 

and environmental correlations between traits within lactations, were 

least biased through selection. 

To summarise the calculation of the 9x9 covariance matrices 

(presented in tables 5.5-5.7): 

- All genetic, environmental and phenotypic (co)variances within 

lactation one were from multivariate analyses on M1F1Pi. 

- Environmental and genetic correlations between milk, fat and 

protein yield within lactations 2 and 3 were from multivariate 
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analyses on M2F2P2 and M3173P3 respectively. 

- Environmental, genetic and phenotypic variances for M2, F2, P2, 

M3, F3, and P3 were calculated from bivariate analyses on M1M2, 

F1F2, P1P2, MIM3, F1F3 and P1P3 respectively. 

- Environmental and genetic correlations between traits between 

lactat ions were taken from bivariate analyses for each pairwise 

comparison. 

- All remaining phenotypic covariances and phenotypic 

correlations followed directly from combining the above 

calculated elements. 

Parameters for fat and protein content were approximated using a 

first order Taylor series expansion. If xi/yi and xj/yj are ratio 

traits in lactat ions i and j respectively, then an approximation of 

the covariance between those two traits is, 

cov(xi/yi ,xj/yj) 

Axi  ,xj { 	CV(xi)CV(xj) r x1 
. 	- CV(xi)CV(yj) r 

x1,yJ 
 

yj ILyj 

- 	CV(yi)CV(xj) r . . + 	CV(yi)CV(yj) r . . 
yl,xJ 

 

with CV the coefficient of variation (= u/n) and rx,y  the correlation 
between traits x and Y. Formula [5.1] was applied using estimates of 

the coefficients of variation and estimates of the (co)variances for 

the yield traits in lactat ions 1-3. 

5.4 Results 

The main results of the different analyses are presented in tables 

5.2-5.11. Heritabilities for production traits for the first 

lactation (table 5.2) were moderate to high. Although the genetic 

parameter estimates from the univariate analysis for lactation 2 may 

be biased through selection, the increase in the environmental 



variance for lactation 2 (which is unlikely to be greatly affected by 

culling) was striking; the ratio of environmental variances in 

lactation 2 to that in 1 was approximately 1.6. Part of the increase 

in variances for the second lactation may be a scale effect (see also 

tables 5.1 and 5.8 for means and coefficients of variation), since 

the (biased) genetic variance for lactation 2 Is also larger than the 

first lactation genetic variance. 

Table 5.2: Univariate REML estimates for lactat ions 1-3 (variances in 
kg2). 

Ml 	Fl 	P1  

238564 330.7 193.2 
371956 584.5 351.0 
610520 915.2 544.2 

h 0.39 0.36 0.36 
s.e.(h 2 ) 0.01 0.01 0.01 

M2 F2 P2 

246425 349.9 218.9 
608266 950.2 571.3 
854691 1300.1 790.2 
0.29 0.27 0.28 
0.02 0.02 0.02  

M3 F3 P3 

207491 300.3 199.0 
693720 1121.6 647.1 
901211 1421.9 846.1 
0.23 0.21 0.24 
0.03 0.03 0.03 

Results from analyses with a repeatability model are presented in 

table 5.3. Heritabilities were slightly lower than those estimated 

from univariate analyses on first lactat ions only. The variance 

component estimates from the analyses using a repeatability model 

(table 5.3) may be explained using the general bivariate model 

results from tables 5.5-5.7; it seems that both the genetic and 

phenotypic variances from the repeatability model were roughly the 

(weighted) average of the bivariate first and second lactation 

parameters, and the average environmental variance in lactation 1 and 

2 was partitioned into a permanent environmental and residual 

variance. If selection were on first lactation performance, a 

repeatability model should account for this selection effect, 

conditional on a genetic correlation of unity between first and 

second lactation performance. 



Table 5.3: Univariate REML estimates from first and second lactations 
using a repeatability model. 

M 	F 	P 

255855 355.1 214.5 
0-2 (permanent environment) 149167 224.9 152.6 

313138 509.6 295.8 
718160 1089.6 662.9 

h 0.36 0.33 0.32 
s.e. (h 2 ) 0.01 0.01 0.01 
repeatability 0.56 0.53 0.55 
s.e. (repeatability) 0.01 0.01 0.01 

Table 5.4 shows the heritability and correlation estimates from the 

within lactation MV analyses. Heritabilities were similar to 

univariate (unitrait) estimates from table 5.2, as expected, and 

again heritability estimates from L2 and L3 are expected to be biased 

downwards. Phenotypic correlations between yield traits were very 

similar for different lactations, and genetic correlations were 

slightly lower in L2 in comparison with Li, but similar for L2 and 

L3. Genetic and phenotypic correlations between milk and protein 

yield were very high, and environmental correlations for these traits 

calculated using the estimates from table 5.4 were close to unity. 

Table 5.4: Within lactation correlation matrices (xlOO) from within 
lactation MV analyses on M, F, and P. 

Ml Fl P1 
Mi 	39 75 91 

(1) (2) (1) 

Fl 	84 36 82 
(1) (1) (1) 

P1 	95 87 36 
(1) (1) (1) 

M2 F2 P2 
M2 	28 62 88 

(2) (6) (1) 

F2 	82 25 75 
(1) (2) (4) 

P2 	94 87 26 
(1) (1) (3) 

M3 F3 P3 
M3 	24 58 86 

(1) (1) (1) 

F3 	82 21 73 
(1) (1)  

P3 	94 86 24 
(1) (1)  

For each 3x3 matrix: heritabilities (xlOO) on diagonals, genetic 
correlations above and phenotypic correlations below diagonals. 
Empirical standard errors (xlOO) below each estimate. 
Mean and empirical s.e. of parameter estimates were based on 5, 4 and 
2 samples for LI, L2 and L3 respectively. 

In tables 5.5-5.7 the combined 9x9 covariances matrices are 



presented. The similarity between the various 3x3 lactation by 

lactation covariance blocks is striking. In a subsequent study the 

consequences of these results for prediction of breeding values are 

investigated further. From table 5.5 it seems that genetically L2 and 

L3 are essentially the same for the yield traits, with genetic 

correlations between performances in second and third lactations in 

excess of 0.97. Comparing pairs of covariances or correlations such 

as M1172 and F1M2 shows that their values are similar, which indicates 

that the ratio of variances for traits in different lactations are 

similar for M, F, and P. Similar proportionalities seem to exist for 

environmental components (table 5.6). Environmental correlations 

between traits within lactations were similar for lactations 1-3. 

Phenotypic correlations between traits within lactations (table 5.7) 

are not necessarily the same as those from table 5.4, because of the 

way this table was constructed. Little change, however, is observed. 

Phenotypic correlations for M1M2, F1F2 and P1P2 were slightly higher 

than repeatability estimates from table 5.3. Again the 

proportionality of the various 3x3 covariance blocks is striking. 

Table 5.5: Additive genetic covariance matrix (upper triangle) and 
genetic correlations (xlOO; below diagonals) for M, F and P in 
lactations 1-3. 

Ml 	Fl 	P1 
	

M2 	F2 	P2 
	

M3 	F3 	P3 

Ml 241594 6699 6276 227270 5893 6019 217083 5523 5808 
Fl 	75 329.3 208.3 
	

5931 316.8 198.4 
	

5695 314.9 195.9 
P1 	91 	82 196.0 
	

5871 185.1 188.7 
	

5736 182.1 189.4 

M2 87 62 79 282462 6651 7289 272594 7174 7381 
F2 59 86 65 62 410.1 236.0 7384 401.8 256.9 
P2 78 70 86 88 75 244.0 7464 254.8 251.1 

M3 84 60 78 98 70 91 274479 6164 7439 
F3 55 85 64 66 97 80 58 415.8 243.3 
P3 72 66 82 85 77 98 86 73 270.1 

Parameters for Li are from within first lactation MV analyses 
(consistent with first block from table 5.4). 
Within lactation off-diagonals for L2 and L3 are calculated using 
variance components from BV analyses (diagonals) and correlations 
from within lactation MV analyses. 
All other estimates are averages from BV analyses on 10 samples. 
Range empirical s.e. (xlOO) of correlations: 	L1L2: 2 - 4 

L1L3: 2 - 6 
L2L3: 1 - 5 
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Table 5.6: Environmental covariance matrix (upper triangle) and 
environmental correlations (xlOO; below diagonals) for M, F and P in 
lactations 1-3. 

Ml 	Fl 	P1 	M2 	F2 	P2 	M3 	F3 	P3 

Ml 373134 13185 11098 
Fl 89 589.5 409.6 
P1 97 90 353.7 

M2 42 36 39 
F2 35 41 37 
P2 42 40 44 

M3 38 32 35 43 35 41 
F3 30 35 31 35 40 38 
P3 36 34 37 42 39 45 

Range s.e. (xlOO) of correlations: L1L2: 1 - 2 
L1L3: 2 - 2 
L2L3: I - 2 

193774 6446 6053 
6589 298.8 228.0 
5635 207.6 193.5 

584290 20685 17481 
90 914.2 648.6 
97 	91 559.3 

188310 5932 5379 
6198 274.1 199.6 
5300 186.9 168.4 

263259 8532 7866 
8471 391.1 285.4 
7860 286.1 259.5 

644499 23051 18846 
89 1040.8 710.3 
97 	91 591.8 

Table 5.7: Phenotypic covariance matrix (upper triangle) and 
phenotypic correlations (xlOO; below diagonals) for M, F and P in 
lactations 1-3. 

Ml 	Fl 	P1  

Ml 614728 19883 17373 
Fl 84 918.8 617.9 
P1 95 87 549.7 

M2 58 44 53 
F2 43 56 46 
P2 54 50 58 

M3 54 41 49 
F3 38 51 41 
P3 49 44 52 

M2 F2 P2 

421044 12339 12072 
12520 615.6 426.4 
11506 392.7 382.2 

866752 27337 24770 
81 1324.3 884.5 
94 	86 803.3 

60 	45 	56 
44 	57 	50 
56 	51 	61  

M3 	F3 	P3 

405393 11454 11187 
11893 589.0 395.6 
11035 369.0 357.7 

535853 15707 15247 
15853 792.9 542.3 
15324 540.9 510.5 

918978 29215 26286 
80 1456.6 953.6 
93 	85 861.9 

In table 5.8, heritability estimates for the 9 "traits" are given 

which are expected to be least biased through selection, with 

coefficients of variation for genetic, environmental and phenotypic 

effects. As before, lactations 2 and 3 seem very similar. For all 

yield traits the additive genetic CV slightly decreased from LI to 

L2, and the environmental CV increased from Li to L2. Scale effects 

therefore act differently for genetic and environmental effects, and 

there seems to be no single scale transformation which would 

standardise both genetic and residual variances across lactations. 
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Table 5.8: Heritabilities (xlOO), their empirical standard errors 
(xlOO) and coefficients of variation (CV; in %) from bivariate 
analyses. 

Ml Fl 	P1 M2 F2 P2 M3 F3 P3 
h 2  40 37 	36 33 31 30 30 29 31 
s.e.(h 2 ) 2 1 	1 2 2 2 2 2 2 

CVa  9.2 8.7 	8.0 8.7 8.4 7.8 7.9 7.9 7.6 
CVe  11.5 11.6 	10.8 12.4 12.6 11.7 12.1 12.5 11.3 
CV 14.8 14.5 	13.5 15.2 15.2 14.1 14.4 14.8 13.6 

First and second lactation estimates 	are 	from M1M2, F1F2 and P1P2; 
third lactation estimates are from M1M3, FIF3 and P1P2. CVs are 
ffe/X and o/ respectively, using the means from table 5.1. 

Many analyses that were carried out yielded different estimates for 

the same variance component. For example, an estimate for Ml was 

available from a univariate analysis, from a MV analysis with Fl and 

P1, and from 6 different BV analyses. All those different estimates 

for the same component are shown in table 5.9. For each row the two 

identical values were from within lactation MV analyses, since, for 

example, Ml, Fl and P1 were analysed multivariately but pairwise 

combinations M1FI, MIN and F1P1 were not analysed bivariately. 

Diagonals in table 5.9 were from univariate analyses (see table 5.2). 

As expected, the various estimates for first lactation variances are 

very similar, since these estimates are free from selection bias. 

Ignoring first lactation information to estimate variances in later 

lactations reduces the additive genetic variances by approximately 

10%, most likely due to culling bias. It is not clear why the highest 

estimate for any trait in L2 was from a combined analysis with the 

same trait in LI, i.e. M1M2 gave the highest estimate for M2, and 

F1F2 and P1P2 showed the highest estimates for F2 and P2 

respectively. Using prediction equations for selection biases from 

Meyer and Thompson (1984), no selection strategy for first lactation 

production traits was found that would produce these results. 
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Table 5.9: Comparison of variance components estimates (kg 2) from 
different pairwise analyes. 

Genetic components for trait 1, from combined analysis with trait 2 

Trait 2 
Ml 	Fl 	P1 	M2 	F2 	P2 	M3 	F3 	P3 

Trait 1 
Ml 	238564 241594 241594 242903 239838 240284 239325 235846 237094 
Fl 	329.3 330.7 329.3 331.1 334.5 331.5 325.1 326.3 325.2 
P1 	196.0 196.0 193.2 195.1 194.7 196.0 194.4 192.5 192.8 

M2 	282462 266699 271265 246425 238205 238205 250612 241764 248120 
F2 	390.1 410.1 392.8 322.7 349.9 322.7 360.3 354.4 361.8 
P2 	242.3 238.5 244.0 207.6 207.6 218.9 221.7 215.3 224.4 

M3 	274479 244164 260351 255960 235948 246660 207491 216977 216977 
F3 	381.9 415.8 387.9 333.9 374.5 344.5 300.0 300.3 300.0 
P3 	262.2 248.3 270.1 241.6 235.7 249.2 204.2 204.2 199.0 

Environmental components trait 1, from analysis with trait 2 

Trait 2 
Ml 	Fl 	P1 	M2 	F2 	P2 	M3 	F3 	P3 

Trait 1 
Ml 	371956 373134 373134 367511 369236 369113 368209 370676 369857 
Fl 	589.4 584.5 589.4 582.7 579.4 582.8 585.7 584.8 585.0 
P1 	353.7 353.7 351.0 349.7 350.1 349.4 349.1 349.9 350.4 

M2 	584291 588395 588537 608266 603973 603973 587910 594193 589094 
F2 	916.2 914.2 917.3 961.3 950.2 961.3 919.6 925.0 918.4 
P2 	558.3 559.8 559.2 574.5 574.5 571.3 556.8 561.3 554.6 

M3 	644499 659592 652339 649053 658737 654627 693720 673182 673182 
F3 	1044.7 1040.7 1044.0 1074.8 1054.9 1072.1 1105.5 1121.6 1105.5 
P3 	594.7 605.4 591.8 603.7 606.7 601.4 633.4 633.4 647.1 

A summary of the parameters calculated for fat and protein content 

(F% and P% respectively), from using equation [5.1], is presented in 

tables 5.10 and 5.11. Heritabilities for F% and P% were high and were 

fairly constant across lactations. Genetic correlations for F2%F3% 

and P2%P3% were substantially lower than the genetic correlations 

between yield traits in second and third lactations. Parameters for 

first lactation traits (Ml, Fl, P1, F1% and P1%) were similar to 

estimates from a 5x5 MV analysis on all traits in lactation one 

(results not presented). Genetic correlations between protein yield 
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and protein percentage were negative in first and positive in later 

lactations, although small in all cases. 

Table 5.10: Parameters for fat content (F%) and protein content (P%) 
in lactations 1-3. 

F1% P1% F2% 132% F3% P3% 

F1% 58 60 85 54 84 52 
P1% 37 62 45 78 44 76 

F2% 55 34 64 64 74 48 
P2% 33 56 40 63 49 78 

F3% 52 34 62 38 61 62 
P3% 35 57 39 60 42 62 

Heritabilities (xlOO) on diagonals, genetic correlations (xlOO) above 
diagonals and environmental correlations (xlOO) below diagonals. 

Table 5.11: Genetic and environmental correlations (xlOO) between 
yield and content traits within lactations 1-3. 

LI L2 L3 

trait 
r  re  r  re  r  re  

combination 

F%M -42 -22 -47 -20 -46 -17 
F%F 28 25 40 26 46 30 
F%P -20 -13 -18 -10 -15 -6 

P%M -50 -36 -44 -34 -33 -37 
P%F -9 -18 11 -15 24 -17 
P%P -10 -10 4 -9 19 -12 

5.5 Discussion 

Univariate first lactation heritabilities were similar to the most 

recent U.K. estimates using a sire model (Meyer, 1987), but higher 

than estimates of Hill et at. (1983) and Meyer (1983 and 1984). 

Heritability estimates from pedigree populations are often higher 

than from non-pedigree populations (Meyer, 1987; Carabaio et al., 

1990). In dairy cattle, heritability estimates from daughter-dam 

regression are notoriously higher than estimates from paternal 

half-sib comparisons (Maijala and Hanna, 1974; Van Vleck 1986), and 
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since the AM-REML estimates are a combination of both, this may 

"explain" why the AM estimates are higher than previous estimates 

from sire models. Swalve and Van Vleck (1987) found AM-REML 

heritability estimates of approximately 0.33 for milk yield in the 

first three lactations, using a trivariate model and ignoring 

relationships between animals across herds. Information contributing 

to their heritability estimates were therefore mainly from 

daughter-dam comparisons. Van Vleck and Dong (1988) reported AM 

heritability estimates of 0.36, 0.35 and 0.33 for milk, fat and 

protein yield in first lactations. The increase of the phenotypic 

variance over time, additional to an increase associated with a 

higher mean production, is striking; a regression of the coefficients 

of variation (CVs) of milk production in the U.K. on time, using 

literature estimates from Hill et al. (1983), Meyer (1984 and 1987) 

and estimates from this chapter, shows a slight increase in the 

phenotypic CV from 1976-1987 and an increase in the genetic CV from 

7% to 9%. The explanation for this observation is not clear, although 

perhaps better estimation procedures, in particular those accounting 

for selection on the data, may account for some increase in the 

estimate of the genetic variance in addition to a scale effect. 

Genetic and phenotypic correlations between Ml, Fl and P1 were 

slightly higher than the correlations found by Van Vleck and Dong 

(1988). Genetic correlations between Ml, M2 and M3 were almost 

identical to the estimates of Swalve and Van Vleck (1987) and 

slightly lower than the sire model estimates of Meyer (1987). A small 

negative genetic correlation between protein yield and protein 

content in lactation 1 was also reported by Swanson and Gnanasakthy 

(1991). Genetic correlations between protein percentage and yield 

traits indicate that response to selection for fat and protein yield 

can be achieved without a reduction in the level of protein 

percentage, which accords with the wishes of many European dairy 

breeders. The explanation for the substantially lower genetic 

correlation between content traits in lactation 2 and 3, i.e. for 

M2%M3% and P2%P3%, compared with near unity correlations for the 

yield traits is not clear. Applying equation [1] to F2% and F3%, 

assuming all CVs are equal and genetic correlations for F2F3 and M2M3 

are unity, gives, 
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r 	= [1 - ( r 	+ 	r ) ] / j[ 0 - r ) (1 - r ) 
F2%F3% 	 F2M3 	M2173 	 M2172 	M3173 

Therefore one explanation may be that the within lactation 

correlations, calculated from within lactation MV analyses, were 

biased downwards relatively more than the between lactation between 

trait correlations which were calculated from BV analyses. 

If culling of first lactation cows were on some linear combination of 

their milk, fat and protein production in the first lactation or on 

any "culling variate" correlated with the traits being analysed, this 

form of selection would only partially be accounted for when using a 

bivariate REML estimation (see Robertson (1966) for a detailed 

theoretical framework of a culling process). Therefore the BV second 

lactation parameter estimates may be slightly biased. The three 

traits considered were highly correlated, however, and the ratio of 

bivariate over univariate variance components was similar for all 

traits, which suggests that the bias may be small. Meyer and Thompson 

(1984) presented prediction equations of selection biases for a 

one-way sire classification, when culling was on a trait correlated 

with yield in the first lactation and maximum likelihood was used to 

estimate the parameters. Using their prediction formulas, the 

selection bias was investigated for various combinations of genetic 

and environmental correlations between the culling variate and the 

traits in the BV analyses. Selection intensity was calculated from 

the relative number of cows that had second lactations. It was found 

that for a range of parameter values likely to correspond with the 

true population values for milk, fat and protein yield, small biases 

were predicted for the estimates of the genetic parameters, but 

substantial biases (up to 40% of the true values) could occur for the 

environmental correlations between the two traits in the analyses. 

For example, if the culling variate was fat yield in lactation 1, the 

percentage biases in the estimate of the heritability for the trait 

in lactation 2 and for the genetic and environmental correlation 

would be 0, 0.4 and -4.4 respectively for M1M2, and 0.2, 0.3 and 4.4 

for PIP2, using the BV parameter estimates as true population values. 

Although most of the information used in AM-REML is a combination of 
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comparisons between (paternal) half-sibs and daughter-dam pairs, the 

effect of selection on a correlated trait is unlikely to be large for 

the range of parameters investigated. 

The parameter estimates from the bivariate model clearly showed that 

production traits in the second lactation are not repeated 

observations of first lactation records. Still, most countries use a 

repeatability model in their national AM evaluation, albeit with a 

lower weighting given to second and later lactation records. The 

weighting of later lactations seems the only instrument within the 

present day national AM evaluations to approximate the more 

appropriate multivariate model, for which heritabilities are lower 

and variances are much higher in later lactations. Additional to the 

implicit assumption of a genetic correlation of unity between first 

and later lactation yields, an improper weighting of later lactations 

when using a repeatability model will reduce genetic progress. Some 

calculations thereof are given in a subsequent study. 

As described previously, the method used to create 9x9 covariance 

matrices from various available estimates was somewhat arbitrary. Any 

combination of estimates is expected to give sampling problems, since 

the traits are so highly correlated. For example, using heritability 

estimates from table 5.8 with genetic and phenotypic correlations 

from table 5.4 gives three within lactation environmental covariance 

matrices which all are negative definite. Using estimates of 

environmental correlations between Ml, Fl and P1 from Maijala and 

Hanna (1974), Meyer (1985) and Van Vleck and Dong (1988), 

determinants of the environmental correlation matrix were found to be 

-0.003, 0.012 and 0.03 respectively, indicating that sampling 

problems may be expected with these traits. Still, when using the 

method described to calculate full 9x9 covariance matrices, sampling 

problems were not eliminated: the 9x9 genetic covariance matrix 

presented in table 5.5 is negative definite. However, the only 

negative eigenvalue is this matrix was relatively close to zero 

(-0.04 after standardising all phenotypic variances to 1.0 for Ml, Fl 

and P1). Setting this eigenvalue to a small positive number (e.g. 

10-6) and recalculating all matrices showed very little difference 

for all variance components. 
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CHAPTER 6 

UNWARIATE AND MULTIVARIATE PARAMETER ESTIMATES 
FOR MILK PRODUCTION TRAITS IN LACTATIONS 1-3 USING AN 

ANIMAL MODEL. II: EFFICIENCY OF SELECTION WHEN USING 
SIMPLIFIED COVARIANCE STRUCTURES 

6.1 Introduction 

In chapter 5, genetic and environmental parameters were presented for 

milk yield (M), fat yield (F) and protein yield (P) in lactations 

1-3. If the breeding goal for dairy cattle breeding is some (linear) 

combination of these production traits in all lactations, an optimal 

way to combine all available information to predict breeding values 

is a multivariate (MV) BLUP analysis. For a national animal model 

(AM) breeding value prediction, however, a general MV BLUP analysis 

is computationally not feasible. In practice, therefore, simplified 

assumptions are made when predicting breeding values for large 

populations using an AM. In dairy cattle AM prediction, milk, fat and 

protein yield are usually evaluated separately using a repeatability 

model with some scaling for observations in later lactations to 

account for heterogeneity of variance across lactations (Wiggans et 

al., 1988a and 1988b; Ducrocq et al., 1990; Jones and Goddard, 1990). 

In this chapter the loss in accuracy of selection is investigated 

when simplified covariance structures are used to predict breeding 

values, using selection index theory. A second aim is to investigate 

how to reduce the dimensionality of the above MV prediction problem 

to a managable size without a great loss in accuracy, using parameter 

estimates from chapter 5. 

6.2 Material 

As reported in section 5.5, the 9x9 genetic covariance matrix for M, 

F and P in lactations 1-3 was found to be negative definite. To 

create a (semi) positive definite matrix the single negative 

eigenvalue was set to 10-6, and covariance matrices were 

recalculated. These matrices were then used for subsequent (index) 



calculations. Without loss of generality, phenotypic variances for M, 

F, and P in lactation one were set to 1.0. The parameters are 

summarised in table 6.1. 

Table 6.1: Scaled and rounded parameter estimates for milk, fat and 
protein yield in lactation 1-3. 

Ml Fl P1 M2 F2 P2 M3 F3 P3 
Ml 39 75 91 86 58 78 84 55 72 
Fl 89 36 82 61 86 70 60 84 66 
P1 97 90 36 78 65 86 78 63 82 

M2 42 36 39 33 62 88 95 64 83 
F2 35 41 37 89 32 75 67 94 76 
P2 42 40 44 97 91 31 88 77 96 

M3 38 32 35 44 36 42 30 59 86 
F3 30 35 31 36 41 38 89 29 73 
P3 36 34 37 43 39 46 97 91 31 

Vp 1.0 1.0 1.0 1.42 1.45 1.48 1.51 1.59 	1.58 

Heritabilities (xlOO) on diagonals, genetic correlations (xlOO) above 
and environmental correlations (xlOO) below diagonals. 
Vp = phenotypic variance. 

Table 6.2 shows the eigenvalues and eigenvectors of matrix PIG, 

where P and G are the 9x9 phenotypic and genetic covariance matrices 

of milk, fat and protein yield in lactations 1-3 (Ml Fl P1 M2 F2 P2 

M3 F3 P3), calculated from parameters in table 6.1. As in chapter 5, 

a number following M, F or P indicates the lactation number. The 

smallest eigenvalue from the original P 1C was -0.03, and the 

corresponding eigenvector was 

[-0.04 0.15 -0.17 0.40 0.36 0.19 -0.50 -0.50 0.09]. 

Hence the negative eigenvalue resulted mainly from the contrast of 

individual yield traits in lactations 1, 2 and 3 ( (M2-M3) + 

(F1+F2-F3) + (P2-Pl) ). After setting the only negative eigenvalue of 

the original matrix C to "zero" (10 6), the corresponding eigenvector 

for the newly formed matrix P 1C represented mainly the contrast 
between yield traits in lactations 2 and 3 (see last row of table 

6.2). This was expected, given the very high genetic correlations for 

yield traits in lactations 2 and 3 (see table 6.1). 



Table 6.2: Elgenvalues and eigenvectors of P 1C using estimates from 
table 6.1. 

Eigenvalue Corresponding Eigenvector 

Ml Fl P1 M2 F2 P2 M3 F3 P3 

0.68 0.87 -0.29 -0.48 1.41 -0.45 -0.91 0.30 -0.02 -0.29 

0.63 -0.47 -0.17 0.72 2.29 -1.08 -1.20 -2.69 0.47 2.20 

0.61 -0.72 -0.54 1.09 -1.62 0.10 1.47 1.42 -1.08 -0.29 

0.51 4.35 -0.83 -3.29 -1.78 0.59 1.22 -1.42 -0.08 1.53 

0.41 -1.65 0.71 1.38 1.17 0.83 -1.78 0.37 -0.81 0.70 

0.36 -0.28 0.15 0.43 -1.10 -1.10 2.38 1.22 1.09 -2.21 

0.15 0.20 -1.65 2.26 -0.07 0.78 -1.05 0.27 0.46 -0.52 

0.11 0.35 2.11 -1.64 -0.27 -0.91 0.71 -0.13 -0.82 0.57 

0.00 -0.06 0.01 -0.02 0.30 0.36 0.31 -0.37 -0.39 -0.16 

6.3 Methods and results 

For index calculations the following well known results were used 

(see, for example, Sales and Hill, 1976a and 1976b): 

R = (a'G' P_1Ga) 	 [6.1] 

R = (a'' 	a) 	 [6.2] 

R*=  (a P 1  a)(at 	_1_1 
a)2 	 [6.3] 

Where R, R and R*  are the optimal, predicted and achieved response to 

selection in the aggregate breeding value (= H) respectively, 

expressed as a ratio of the selection intensity. Further notation 

used, 

u = qxl vector of breeding values for q traits 

a = qxl vector of (marginal) economic values for q traits 

H = u'a = aggregate breeding value 

x = pxl vector of sources of information on an individual (for 
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example phenotypic observations, daughter averages, predicted 

breeding values) 

b = pxl vector of index weights 

I = b'x = index value used to predict H 

P = v(x); G = cov(x,u') and the symbol 	added to a scalar of 

matrix indicates an estimate thereof. 

Equations for the responses are from using 

b = P'Ga 	for the optimal index, and 

= 	' a 
	for an index using estimates of P and C. 

If a new trait is created which is a linear combination of the 

observations, y = w'x, with w a pxl vector of weights, then the 

response to selection is 

R = [ a'G'w (w'Pw) 1wtCa ] 

and similarly, if y = W'x, i.e. variables in vector y are a linear 

combination of the variables in vector x, then 

R = [ a'G'W (WtPW)WtGa ] 
	

[6.5], 

It was assumed that the marginal economic value for any of the 

production traits in later lactations was the product of the relative 

expression of that trait and the phenotypic standard deviation, thus 

reflecting survival to later lactations and the economic importance 

of a larger standard deviation (and mean) in later lactations, 

Cii = €1 °i 	where a , ej and o-i are relative economic value, 

relative expression and standard deviation for lactation I. 

Relative expression was assumed to follow a geometric series, e. = 

(0.8)1 , assuming a relative survival of 80% from one lactation to 

the next and setting the expression in lactation one to 1.0. 

Phenotypic standard deviations were assumed to be 1.0, 1.20 and 1.25 

for lactations 1-3, and 1.25 for all subsequent lactations. If it is 

further assumed that the covariance of any observation with the 

breeding value in lactation three is equal to the covariance of that 
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observation with breeding values in later lactations, i.e. the 

corresponding rows of matrix C are identical, then the economic 

values for lactations 1-3 are [1.0 1.0 4.0], since the sum of 

economic values for third and subsequent lactations is 4.0. Similarly 

for the case of considering only two lactations and assuming second 

and later lactation breeding values have equal covariances with 

observed phenotypes, a = [1.0 5.0]. Economic values for traits within 

a lactation were varied to reflect different breeding goals. 

6.3.1 Single trait multiple lactations considerations 

Meyer (1983) investigated the potential gain in response to selection 

from including multiple lactation information on progeny of sires for 

sire evaluation. The accuracy of selection was increased directly 

through more (genetic) information about the trait(s) of interest, 

and indirectly through a better data structure (better 

"connectedness") Assuming a' = [1 1 4] for either milk, fat or 

protein yield in lactations 1-3, and using the relevant parameters 

for any of these traits from table 6.1, it was found (using standard 

selection theory) that for sires the increase in accuracy through 

including second (and third) lactation daughter information in the 

selection index was approximately 6%-10%. The number of progeny per 

sire for first and second lactations were varied from 25 to 50 and 5 

to 35 respectively. See Meyer (1983) for more examples. 

Perhaps a more interesting question regarding the use of multiple 

lactation information on a single trait is how much accuracy is lost 

when a repeatability model is assumed for breeding value prediction 

instead of the "true"  MV covariance structure. This was investigated 

for three selection indices: 

II = phenotypic index, i.e. sources of information are phenotypic 

observations on individuals 

12 = sire index: sources of information are daughter ;;vArnoAz oP 

sires in different lactations 

13 = cow index; sources of information are the predicted breeding 

value (index) of the cow's sire and dam and the cow's own records. 

The largest reduction in response to selection is expected when 
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selection is across age classes, e.g. across cohorts with different 

amounts of information, since an improper weighting of later 

lactations then would have the largest impact. In the following 

examples, only 2 lactations and 2 cohorts were considerd, but the 

results are thought to be similar for more lactations (given the very 

high genetic correlation between second and later lactation yields) 

and more age groups. The genetic means for the cohorts were assumed 

to be zero, hence the consequences of the error in predicting genetic 

trend were ignored. A thorough study of long term losses in response 

through incorrect estimation of genetic trend (thus creating an 

suboptimal ranking of young vs. old animals) was outside the scope of 

this study. For each index there was different amounts of information 

on the two cohorts, 

Ii: 

Cohort 1: phenotypic observation in lactation I 

Cohort 2: observations in lactations I and 2 

 

Cohort 1: first lactation daughter average based on n1  

daughters 

Cohort 2: n1  first lactation daughter records and n 2  second 

lactation records (n 2  < n1 ) 

 

Cohort 1: sire index based on n1  first lactation progeny, dam 

index based on sire index of dam and dam's first lactation record 

Cohort 2: sire index based on n1  + n2  progeny records, dam index 

based on sire index of dam and dam's records in first and second 

lactation. 

Parameters used for the example with 2 lactations and 2 cohorts were: 

a' = [1 5]; r  = 0.85; r  = 0.55; phenotypic variances were 1.0 and 

1.45 and heritabilities were 0.40 and 0.30 for first and second 

lactations respectively; n1  = 50; n 2  = 35. The "estimated" (assumed) 

parameters were: r g = 1.0 (repeatability model); the true phenotypic 

covariance matrix was used and heritabilities for lactation 1 (Fi) 

and for lactation 2 (1I) were varied. A proportion of 10% of the 

total number of animals available was selected. The definition of 
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repeatability model differs from the usual one because heritabilities 

and phenotypic variances are not necessarily equal in different 

lactat ions. 

Responses to selection were calculated using equations [6.1], [6.2] 

and [6.3]. Given any set of parameters the optimal proportion of 

animals to be selected from each cohort was determined using an 

algorithm from Ducrocq and Quaas (1988), assuming the parameters used 

were the true population parameters. Results are presented in table 

6.3. For the parameter set chosen the loss in efficiency was small; a 

0%-5% reduction in genetic gain for a range of heritabilities for 

first and second lactation performance. These results may be 

expected, since the "true" genetic correlation (=0.85)between 

performance in lactat ions 1 and 2 was high and an observation for 

later lactation performance is always conditional on the presence of 

a first lactation observation. The ratio of achieved to predicted 

response was less robust to changes in parameters. Even when the 

correct heritabilities (0.40 and 0.30) were used the achieved 

response (accuracy) was approximately 10% below the maximum response. 

This may be seen as a very simple illustration that one should be 

cautious when using predicted breeding values (whether from selection 

indices or BLUP) to estimate genetic trend when the parameters used 

in the prediction are subject to large sampling errors or when they 

are a priori incorrect (as in the case of a repeatability model when 

it is known that rg<l). Since results were similar for the three 

indices used, subsequent calculations were only performed for the 

case of mass selection. 
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Table 6.3: Relative responses to selection from using incorrect 
parameters in selection indices. 

INDEX 	Ii 	 12 	 13 

h2  h2  
1 	2 

20 20 
30 
40 

40 20 
30 
40 

60 20 
30 
40 

c' R R 
1 1 2 

42.9 100.0 153.2 
36.0 98.1 116.8 
30.0 94.9 91.9 

49.0 97.8 106.3 
46.2 99.7 89.3 
42.9 100.0 76.6 

50.0 95.0 81.5 
49.0 97.8 70.9 
47.3 99.3 62.9 

Ce R R 
1 1 2 

48.7 99.0 121.3 
47.5 99.8 101.3 
46.5 100.0 88.4 

49.9 97.1 104.9 
49.6 98.3 89.6 
49.3 99.0 79.7 

50.0 95.8 96.6 
49.9 97.1 83.2 
49.8 98.0 74.6 

c R R 
1 1 2 

46.6 97.9 131.1 
43.1 99.0 107.2 
39.7 98.1 90.2 

49.5 98.7 107.2 
48.0 99.6 90.2 
46.0 99.3 78.2 

50.0 95.8 89.1 
49.4 96.5 76.0 
48.3 96.4 66.8 

h2  and h2  are heritabilities for first and second lactation 
performance used in selection index calculations. 
R1= 100(R* / R) = achieved response as proportion of the maximum 
response. 	-. 
R 2= 100(R* / R) = achieved response as proportion of the predicted 
response. 
c= proportion of animals selected from age group 1. 
Indices (see also text): II = index for mass selection 

12 = sire index 
13 = cow index 

Economic values: a = [1.0 5.0] 

6.3.2 Multiple trait multiple lactation considerations 

Suppose the breeding goal is a linear combination of 9 traits (Ml, 

Fl, P1, M2, F2, P2, M3, F3, P3, where the number following M, F or P 

indicates the lactation number), which is thought to be a good 

indicator of lifetime economic production since second and later 

lactation performances are highly correlated. Then, choosing a set of 

economic values and using parameters from table 6.1, the relative 

accuracy of selection for different indices which use different 

amounts of information can be investigated. For three different sets 

of economic values these relative accuracies were calculated, and 

results are presented in table 6.4. The economic values for Ml, Fl 

and P1 in the second breeding goal (H2) are similar to first 
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lactation economic weightings used in practical selection indices in 

Europe. H3 reflects a more "progressive" breeding goal with selection 

only on protein production. Results from table 6.4 show that 

approximately 20% accuracy is lost when only one observation is used 

to predict the aggregate breeding value. Results for H2 and 113 were 

similar since breeding values for these composite traits were highly 

correlated. If only accuracy is considered, using milk and fat yield 

in a selection index does not contribute substantially to increase 

response to selection for lifetime protein yield (113). 

Table 6.4: Accuracies of selection indices for mass selection as 
proportion (xlOO) of the accuracy using observations of M, F and P in 
lactations 1-3. 

BREEDING GOAL 
Hi 	H2 	113 

Traits fitted in 
selection index: 

Ml 84.4 57.0 73.3 
Fl 79.1 71.2 63.9 
P1 83.4 69.6 78.8 
M2 80.2 57.6 74.1 
F2 74.4 72.7 64.3 
P2 81.8 74.1 82.0 
M3 76.8 55.0 72.9 
F3 70.1 71.8 60.2 
P3 80.0 75.9 83.9 
M1,F1,P1 85.9 78.4 79.4 
M2,F2,P2 82.8 83.9 83.2 
M3,F3,P3 80.3 89.2 87.8 
M1,M2,M3 95.6 66.9 86.9 
F1,F2,F3 89.8 86.1 75.3 
P1,P2,P3 97.0 86.7 96.7 
M1,Fl,Pl,M2,F2,P2 95.6 90.8 91.5 

Breeding goals: 
For Hi, a' = [1 1 1 	1 1 1 	1 1 1] 

112, a' = [-1.1 1.0 2.2 -1.1 1.0 2.2 -4.4 4.0 8.8] 
H3, a' = [0 0 1 0 0 1 0 0 4] 

Although these calculations are an oversimplification of breeding 

value prediction and selection in practice, they are useful when 

comparing the accuracies from table 6.4 with accuracies when 

simplified assumptions are made regarding the covariance structure of 

the observations (in next section). 
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6.3.3 Proportionality considerations 

One suggestion to reduce the dimensionality of a MV prediction 

problem is to investigate whether some traits may be approximately 

expressed as linear combinations of other traits, or if some linear 

combination of the traits explain most of the variation in the 

aggregate breeding value. To reduce computations (further) it would 

be of interest to find a minimum number of independent traits which 

would provide all the necessary information. In particular, it would 

be convenient if one linear transformation could be found that 

reduces the prediction problem of 9 highly correlated traits (milk, 

fat and protein yield in lactat ions 1-3) to that of 3 independent new 

traits. 

Notation: 

M = Moment matrix; a symmetric positive definite (PD) matrix of 

order lp, with mean squares and mean cross-products based on df 

degrees of freedom 

I = number of lactat ions, p = number of traits per lactation 

V = E(M); unknown PD covariance matrix of Ip traits 

K 	symmetric matrix of proportionality constants of order I 

= direct product operator (see e.g. Searle, 1966), tr = trace 

operator 

L = natural logarithm of likelihood. 

Using standard multivariate theory (e.g. Anderson, 1958, chapter 10), 

L(M,V) = - df [ logiVi + tr(MV 1 ) 

= - df [ 1 logx1 + E yi] 	with X= eigenvalue of V 

y= eigenvalue of MV-1  

The maximum likelihood (ML) is obtained for V = M, 

ML(M,V) = - df [ logiMi + Ip 
	

[6.7] 
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Suppose a moment matrix M0  is observed, and the null hypothesis is, 

H0: V0  = E(M0) = kV with V specified and k a constant. 

Then, 

L0(M0,V0) = - df [ ( lp)log(k) + logiVi + (E 71)/k ] 	 [6.8] 

and the ML estimate of k, t = ( y)/lp . Hence 

ML 0(M0,V0 ) = - df [ log(  y) + logiVi + Ip ] 	 [6.9] 

For the trivial case of MO 
 = kM where M is the ML estimate of V, all 

eigenvalues of M0V 1  = MOM-' are constant and equal to the 

proportionality constant (=k). The likelihood ratio (LR) test 

statistic, t = 2(ML - ML 0), asymptotically has a X2  distribution with 

degrees of freedom [ 1p(1p + 1) - 1 ]. With observations on p traits 

in I lactations, one suggestion is to test V. = k®Vh , where Vh  is a 

(transformation of a) submatrix describing a (co)variance block of p 

traits within or between lactations. For the case of M, F and P in 

lactations 1-3, the hypothesis is that the complete covariance matrix 

may be expressed as a proportionality matrix multiplied by a 

transformation matrix. V0  may be written as, 

V0  = (K1 (9 1p)(11 (9 Vh) = (Ii ® T)(Ki ® 1p)(11 ® T) 

with IT' = Vh . Subscripts refer to the order of the matrices. Then, 

L0(V0,M) = - df [ logiK®Vl + tr( M(K0Vh)-1  ) 

= -df [ IlogiKi + plogiVI + 

tr( (K 1  8I)(Ii0T1)M(I10DT 1) ) 	 [6.10] 

the trace in [6.10] may be written as 

tr( P(K 1  8I)P'P(I10T 1 )M(I10T 1)P') 

= tr( (I®K l  )P(1 1®T1 )M(I1®T 1  )P') 
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= tr( (Ii®k_1)M* ) 

	

= 1 tr(K 1 	) 

for P a permutation matrix and M1 a Lxl diagonal block of M*. Thus 

[6.10] becomes, 

L 0(V0 ,M) = - df [ llogiKi + plogIVi + 1 tr(1C 1  M'1 ) 	 [6.11] 

Using [6.11], the ML estimate of J, 

	

= (L M*11  )/1 
	

[6.12] 

Unfortunately, the data from table 6.1 were found unsuitable for a LIZ 

test using equations [6.6] and [6.11]. Obviously the additive genetic 

covariance matrix (A) and the environmental covariance matrix (E) 

from table 6.1 are not independent moment matrices; A and E are 

highly correlated and the determinant of A is zero. One suggestion is 

to transform A and E into a between and within sire covariance matrix 

(B and W), assuming these matrices are from a balanced half-sib 

design based on s sires and n progeny per sire. However, there was 

insufficient information about the sampling variances of the 

estimated E and A matrices to determine the appropriate degrees of 

freedom. Furthermore, the exact distribution of the likelihood ratio 

test statistic based on empirically derived degrees of freedom and 

using animal model estimates may differ substantially from a 

Chi-Square distribution. Therefore, significance testing for 

proportionality was not persued. 

Using parameter estimates from table 6.1, however, some inference 

with respect to proportionality may be drawn. One (obvious) choice 

for the transformation matrix in [6.10] is a canonical transformation 

on Ml, Fl, and P1. This transformation was calculated and the 

transformation matrix was used to transform the traits within second 

and third lactat ions. 
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Ml 1 Ml 
Let Vgii  =V 

I pu 
Fl 

	

g [ 
	

, and V 11  =Vp  I Fl I 
1 P1 1 

Then the transformation matrix of milk, fat and protein yield in 

lactation one, Q1 , was chosen such that 

	

Q1 Vg11 Q1'D 	and Q1 V 11 Q1 1 =I 

with elements Di eigenvalues of matrix (VpiVgii). 

Using Q1 , the vector of observations, 

y' = [Ml Fl P1 M2 F2 P2 M3 F3 P3] = [y1 '  y2' y3111 

was transformed using: 

rQ1 O 0 	1 1 Y11 
YcQY =10 Q1 0 I Y2 	I 

Lo 0 Q1 1 1y3 1 

The eigenvectors for the 3 canonical variates in lactation I were 

[2.96 -0.72 -2.09], [-0.85 -1.85 2.61] and [-0.08 0.42 0.69] 

respectively, which form the rows of matrix Q1. The 9x9 correlation 

matrices and the heritabilities of the 9 new traits (Yc)  are shown in 

table 6.5. Off-diagonals in all 3x3 blocks were small, indicating 

that one transformation matrix created nearly three independent 

variates with for each transformed variate highly correlated 

observations in later lactations. Using the covariance matrix of 

milk, fat and protein yield in lactation 1 as Vh,  proportionality 

matrices for additive genetic and environmental effects were 

calculated from equation [6.12]. This assumed the observed covariance 

matrices E and A were moment matrices, but degrees of freedom needed 

not be specified. For A and E, the estimates of K, Ka  and  Ke 

respectively, were: 

	

F 

1.00 1.03 1.06 i 	 1.00 0.60 0.58 
ka  = 	1.55 1.32 I , 	e = 	

[ 	
1.52 0.85 1 

symm. 	1.74 1 symm. 	1.69 1 
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Table 6.5: Parameters on transformed scale after applying the 
canonical transformation matrix from lactation 1 to lactations 2 and 
3. 

Cli C12 C13 C21 C22 C23 C31 C32 C33 
Cli 64 0 0 79 5 -3 78 3 -8 
C12 0 48 0 11 85 -3 10 82 1 
C13 0 0 35 -5 8 85 -8 8 83 

C21 64 2 -11 66 9 -15 77 4 -16 
C22 4 38 11 0 52 8 4 71 10 
C23 -3 0 43 -3 3 30 -13 11 98 

C31 64 3 -1 71 6 -5 65 4 -24 
C32 3 34 4 5 43 5 3 54 17 
C33 -1 -2 36 -7 7 44 1 -6 29 

Heritabilities (xlOO) on diagonals, genetic correlations (xlOO) above 
and environmental correlations (xlOO) below diagonals. 
Cij = Transformed variate j 	in lactation i. 

If proportionality is assumed, the 9x9 MV prediction problem may be 

reduced to three independent 3x3 multivariate predictions or to three 

independent evaluations with a repeatability model. Using the 

breeding goals defined previously the efficiency of this reduction in 

dimensionality was calculated for mass selection, conditional on the 

parameters in table 6.1 being the true population parameters. Thus 

the parameters from table 6.5 were used with all off-diagonals of all 

3x3 covariance blocks set to zero. In the case of a repeatability 

model on the canonical variates, genetic correlations between 

canonical variates across lactations were set to unity. Results of 

selection index calculations for phenotypic selection are presented 

in table 6.6. The relative accuracy when using the first three 

canonical variates is slightly lower than the corresponding accuracy 

using the original first three variates (Ml, Fl and P1) from table 

6.3 because the genetic covariance structure between the canonical 

traits in lactation one and transformed variates in later lactations 

was simplified (off-diagonals of 3x3 blocks in matrix C were set to 

zero). Clearly little accuracy is lost assuming proportionality of 

the covariance structure for milk, fat and protein yield across 

lactations. Simplification to a repeatability model on three 

canonical variates was approximately 97%  as efficient compared to a 

multivariate analysis on 9 traits. When using the canonical variates 

there was no advantage of a MV analysis over an analysis with a 

111 



repeatability model. 

Table 6.6: Accuracies of selection indices for mass selection as 
proportion (xlOO) of the accuracy using observations of M, F and P in 
lactations 1-3, assuming proportionality of covariance blocks between 
traits across lactations. 

BREEDING GOAL 
Hi 	H2 	H3 

Multivariate model using 
traits: 

C1i,C12,C13 85.8 78.2 79.1 
C21,C22,C23 82.0 83.0 82.3 
C31,C32,C33 78.5 87.1 85.4 
All transformed variates 98.5 97.8 97.6 

Repeatability model using 
traits: 

C11,C12,C13 85.7 78.3 79.1 
C21,C22,C23 81.6 83.5 82.2 
C31,c32,c33 78.1 87.2 85.5 
All 	transformed variates 98.2 96.4 96.7 

Breeding goals: 
For HI, a' = [1 1 1 	1 1 1 	1 1 1] 

a' = [-1.1 1.0 2.2 -1.1 1.0 2.2 -4.4 4.0 8.8] 
a' = [0 0 1 0 0 1 0 0 4] 

Cij = Transformed variate j in lactation i. 

6.3.4 Analysing linear combinations of the observations 

A final reduction in dimensionality is achieved by analysing a 

reduced set of traits which are linear combinations of the available 

observations. One suggestion is to create a single new trait which is 

the sum of the phenotypic observations weighted by the corresponding 

economic values in the aggregate breeding value. Using the notation 

from equation [6.4], y = a'x, where variables in x are, for example, 

observations for MI, Fl and P1. Relative accuracies were calculated 

using equation [6.4], fitting first lactation yield traits, first and 

second lactation yield traits, and all yield traits in vector x, 

respectively. Results are presented in table 6.7. 
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Table 6.7: Accuracies of selection indices for mass selection as 
proportion (xIOO) of the accuracy using observations of M, F and P in 
lactat ions 1-3, when using linears combinations of the observations 
as traits. 

BREEDING GOAL 
HI 	H2 	H3 

= w'x 
w = a, using traits 

M1,F1,PI 85.7 76.5 78.8 
MI,FI,PI,M2,F2,P2 95.0 88.9 90.7 
M1,F1,P1,M2,F2,P2,M3,F3,P3 98.1 92.0 92.8 

W'x 
Yi = aj'x1, 	using traits 

Y11 	Y 2  95.3 88.9 90.7 
y11 	y3  95.2 92.2 93.5 

Y21 	y 3  90.9 91.7 92.4 

Y1, 	Y' 	Y3 98.9 95.5 96.7 

Breeding goals as in tables 6.4 and 6.6 
w = a : weights are economic values 

= [Mi Fi Pi] (for 1=1,2,3): milk, fat and protein yield for 
lactation i 

Another suggestion is to use linear combinations of the yield traits 

within a lactation as new traits and to perform an analysis on those 

new traits. For example, if y1  = w1 1 x 1 , for x1 t=[M1 Fl P1], and Y2 = 

w 2 1 x 2, for x2'=[M2 F2 P2], then in the selection index framework this 

would be fitting y = W'x as used for equation [6.5]. Using x 1  and x2  

as above, and x 3 ' = [M3 F3 P3], 3 new traits were created using the 

economic values for each trait in the aggregate breeding value as 

elements for matrix W. Accuracies for fitting combinations of these 

new traits are presented in table 6.7. 

Comparing results from tables 6.4, 6.6 and 6.7 shows that little 

efficiency was lost when analysing linear combinations of the 

observations using economic values as weights. For the case of just 

using observations for MI, Fl and P1 this is not surprising, since 

these traits were so highly correlated and had similar 

heritabilities, hence their index values resembled the economic 

values. For breeding goals 112 and H3 approximately 8% accuracy was 
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lost when using all observations weighted by their economic values as 

a single trait, and approximately 4% accuracy was lost when analysing 

3 new traits, each trait being a linear combination of observations 

and economic values within a lactation (table 6.7). 

6.4 Discussion 

Only one aspect of efficiency of selection, namely accuracy of 

predicting some aggregate breeding value assuming fixed effects were 

known, was considered in this study. Meyer (1983) found that for BLUP 

prediction of breeding values increase in accuracy from including 

later lactation observations was largely through an improved data 

structure. All results should therefore be seen as a first order 

approximation. Results from including information from relatives in 

the calculations, and including comparisons between young and old 

animals should have more direct relevance to practical breeding 

programmes. 

Assuming a repeatability model for milk production traits across 

lactations seemed to have little effect on accuracy of selection, 

although the predicted gain/accuracy may be approximately 10% too 

high. More research is needed to investigate long term losses in 

response to selection when incorrect models are used to predict 

breeding values. 

More information on the sampling variance of the parameter estimates 

are needed for testing the proportionality hypothesis. Ideally, one 

MV REML analysis on the 9 traits should be carried out, with an 

algorithm that would produce (2nd) derivatives. Still, calculations 

then would involve a 90x90 (45 genetic and 45 environmental) sampling 

variance matrix which would probably be subject to large sampling 

errors itself. 

As pointed out by Meyer (1985), the canonical variates from creating 

independent variates in lactation 1 may have a biological 

explanation. The elgenvectors show that canonical variate 1 

corresponds approximately to percentage protein (and fat content to a 

lesser extent) and canonical variate 2 to the difference between fat 
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and protein content. Canonical variate 3 seems just to be the sum of 

fat and protein yield. Heritabilities for canonical variates were 

consistent with heritabilities found for fat and protein content 

previously reported. Canonical variates from diagonalising the 

complete (9x9) P'G matrix have similar biological explanations as 
the canonical variates from lactation 1, but now including 

comparisons between lactations (see table 6.2). 

Given that parameter estimates from table 6.1 are subject to sampling 

error, matrices describing covariances between M, F, and P within and 

between lactations were remarkably proportional to each other. 

Calculations for mass selection confirmed that little information is 

lost if proportionality is assumed. A repeatability model on 

canonical variates from lactation one should account for selection 

bias and only loses approximately 3% in accuracy compared to a 

general multivariate prediction of breeding values of milk, fat and 

protein yield in lactations 1-3. 

Reducing the dimensionality of the prediction problem by analysing 

linear combinations of observations and economic values of 

corresponding breeding values, was found to be very efficient. 

However, no information from relatives was included in the 

calculations, and for the traits considered heritabilities and 

phenotypic and genetic correlations were similar between pairs of 

traits. When using traits with genetic and environmental correlations 

with opposite signs, and including observations over time, then if 

BLUP is used to calculate breeding values this method of creating new 

traits from the available observations is expected to be less 

efficient. 
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CHAPTER 7 

GENERAL DISCUSSION AND CONCLUSIONS 

In chapter 1 genetic and statistical models were discussed which 

underlie most animal breeding data analyses. In general a balance has 

to be struck between the most desirable ("true") model and a model 

which is practical to implement. Finite (computer) resources and 

insufficient knowledge about parameters needed for more realistic 

biological models, e.g. lack of information about the number and 

action of genes that influence quantitative traits, usually result in 

many simplifying assumptions being made. The genetic model 

(implicitly) assumed in practice for prediction of breeding values 

and estimation of variance components is the infinitesimal model (see 

section 1.2.3), for which breeding values follow a normal 

distribution. The statistical model is usually a linear model with 

(multivariate) normality assumed for data and all random effects, 

since unbiasedness properties of BLUP hold under these assumptions 

for selected populations (section 1.2). 

In dairy cattle the use of Best Linear Unbiased Prediction and normal 

distributions of random effects is hardly questioned (except, for 

example, Dempfle and Grundi, 1988; Gianola et al., 1988; Gianola, 

1990); but a national BLUP evaluation requires additional assumptions 

to make computations feasible, and justification for these extra 

assumptions is not always given. For example, the covariance 

structure for traits across lactations, i.e. a genetic correlation 

less than one and lower heritabilities and higher phenotypic 

variances in later lactations, is usually simplified for 

computational reasons. The tendency is to precorrect records for 

heterogeneous phenotypic variances across lactations and to assume a 

repeatability model combined with a weighted analysis, for which 

later lactations have weights of approximately 0.8 	(Bonalti and 

Boichard, 1990; Jones and Goddard, 1990). The exact model that is 

fitted is, however, not clear, since different error variances for 

later lactations seem not to be taken into account when the (mixed 

model) equations are set up. Therefore, it is not known how 

efficient such national evaluations are in predicting breeding values 
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for first lactation or lifetime yields. Gianola (1986), Weller (1988) 

and Quaas et al. (1989) presented models to take account of 

heterogeneity of variance, for example across lactations, for 

practical BLUP analyses, if heterogeneity of variance is assumed to 

be a scale effect. Further research is needed to investigate the 

effect of simplified models, and to find an optimum balance between 

(expected) computer power and the efficiency of predicting breeding 

values. A logical criterion may be to compare (computer) costs with 

benefits (genetic progress) for alternative models. Extending the 

selection index approach used in chapter 6, by including information 

from relatives and comparing animals over time, as for example in 

Wray and Hill (1989), may give some answers about the efficiency of 

simplified models. Future research, using, for example, simulation, 

also may show how robust the genetic (infinitesimal) model is for 

predicting long term responses to selection if more realistic 

assumptions are made with respect to (changes in) gene frequencies, 

gene numbers and gene actions affecting quantitative characters. 

In chapter 2 it was shown that if variances are estimated within 

herd-mean groups, this is unlikely to give biased variance estimates 

caused by correlations between sire progeny means and herd means. 

Perhaps a more interesting question is how to deal with 

subpopulations 	within 	the 	(conceptual) 	whole 	population. 

Subpopulations are, for example, pedigree vs. non-pedigree herds, 

high vs. low yielding herds, intensively farmed vs. extensively 

farmed herds, and nucleus herds. Different parameters, such as 

heritabilities and phenotypic variances, are frequently found in 

different subpopulations. For the U.K. Holstein-Friesian population, 

Meyer (1987) estimated parameters for milk production traits in 

pedigree and non-pedigree herds and Hill et al. (1983) contrasted 

parameter estimates for milk production traits in high vs. low 

yielding herds. Brotherstone and Hill (1991a and b) compared survival 

in several subpopulations and found substantial differences for 

genetic parameters in different subpopulations. A relevant question 

is in which subpopulat ion genetic progress should be made and how 

this may be achieved, in particular if genetic correlations between 

performances in different subpopulations are not one. Fortunately, 

estimates of genetic correlations for milk production traits between 
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subpopulations are often close to unity (Hill et al., 1983; Carabaio 

et al., 1990; Dong and Mao, 1990; Short et al., 1990). Hence, if 

subpopulations can be identified easily, a simple scaling of 

observations may be sufficient to correct for heterogeneity of 

variance between subgroups. If heritabilities differ substantially in 

different subpopulations, this should be taken into account in 

prediction of breeding values (Schaeffer et al., 1978; Gianola, 1986; 

Quaas et al., 1989). 

In chapter 3 it was concluded from a sample of data from 26 pedigree 

herds, that heritabilities were homogeneous and phenotypic variances 

heterogeneous between individual herds. It was shown in chapter 4 

that the statistical power of a likelihood ratio test as was used in 

chapter 3 is very low. Hill (1984) and Brotherstone and Hill (1986) 

proposed to regress individual herd parameters to an overall (prior) 

estimate, a standard Bayesian procedure in which the regression 

coefficient depends on the sample variances of individual herd 

estimates and the variance of the parameters. In general, their 

regression may be written as: 

A* A 	 A A 
0. = 0 	+ 	(3 ( 0 - 0 ) 

1 	0 	 i 	i 	0 
[7.1] 

Where 0 . 
1 
and 0 

0 
are the parameter estimate for herd i and the 

overall (prior) estimate respectively. 0 is the regressed 

parameter estimate for herd i. 

(3. is the regression coefficient, (3. = 1 / ( 1 + X.), 
A 

with X= var(0.i 0.)/var(0.), the ratio of the sampling variance 

and the variance of the parameter, or less formally, the ratio 

of variance "within" and between parameters 0. Brotherstone and Hill 

(1986) suggested estimating var(0.) by: 

variance between 0. = empirical variance between 

- average sampling variance of 0 	[7.2] 

An alternative way to estimate v(0i) is to use the likelihood ratio 

(LR) statistic from the comparison between the maximum likelihood 

from estimating a single heritability estimate using all data (= 
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NIL 0), and the sum of the maximum likelihoods from estimating 

individual herd heritabilities (== ML). If Li is the likelihood 

function for parameter 0 from herd i, and assuming this function is 

quadratic in 0, then 

A 2 A 
1 

L. = a. + c. (0. - 0.) 	with a. and c. constants and 0. the 
1 	1 	1 	1 	 1 	 1 

maximum likelihood estimate of 0. , and 

2(ML. - ML) = - 	2c.(.- 	)2 , with 0 	ML(0) 

Taking 	0= 0 
i + . 	

0 
0 	0 	0 
= 0 + e 	; 	v(E.) = 

the expectation of (twice) the difference between the two maximum 

likelihoods is, approximately, 

E 2[ )ML - ML0  

= Et E [ (E 1 
	

0 )2/ 
v(c. 

1 	 1) ] + 	[ (0.- 0 
0 )2/ 

v(.) 

	

df + v(0.)[E l/var(.) ] 	 [7.3] 

An estimate of v(0)  is, therefore, 

Av(O.) = (t - df) / [ E 1/var(.) ] 	 [7.4] 

with t = 2( EMLi - ML0  ), and df = degrees of freedom. 

Using the heritability estimates for fat yield and their standard 

errors from table 3.2, the empirical variance between the 26 

heritability estimates and the average sampling variance were found 

to be 0.035 and 0.039 respectively. Hence their difference, using 

[7.2], was negative. These values confirm the outcome of a more 

elaborate likelihood ratio test, i.e. that heritabilities were not 

significantly different from each other. Suppose there were true 

differences between heritabilities, but that sampling variances were 
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relatively too large to detect them (see also chapter 4 for 

statistical power calculations). What would the effect be of the 

regression as proposed by Brotherstone and Hill (1986)? One 

suggestion is to assume a coefficient of variation (CV) for 

heritabilities between individual herds, and to apply equation [7.1]. 

Using the mean estimate of the 26 estimates as an estimate of the 

population value (the "prior" estimate), i.e. as an estimate of the 

mean of all true individual herd heritabilities, and assuming a CV of 

5%-20%, equation [7.1] was applied to the 26 heritability estimates 

of table 3.2. Results are presented in table 7.1. For a CV of 10% 

the average regression was 0.05, and the standard deviation of the 

regressed heritabilities was 0.01. Hence, if the CV is low, as 

suggested by the likelihood ratio test and the approximate estimate 

using [7.2], it seems debatable whether it is worthwhile to estimate 

individual herd heritability estimates for many herds, since the 

regressed values are nearly homogeneous. 

Table 7.1: Regressions of individual herd heritability estimates to 
an overall mean, assuming different coefficients of variation for the 
unobserved heritabilities. 

CV 	 0 
_* 	

sd(0 
* ) 
	range(0 *) 

0.05 102.5 0.013 0.387 0.003 0.379 - 0.392 
0.10 25.6 0.049 0.386 0.011 0.356 - 0.406 
0.15 11.4 0.103 0.384 0.023 0.325 - 0.425 
0.20 6.4 0.167 0.382 0.037 0.292 - 0.449 
0.25 4.0 0.239 0.381 0.052 0.260 - 0.476 

CV = coefficient of variation (alp) 
X and 3 are variance ratio and regression, from [7.1] 
0* = heritability after regression 
sd(0*) = standard deviation of regressed heritabilities 

v(0) = (CV)2()2 , with 0 	0 = 0.388 

Using the likelihood ratio statistic from table 3.2, the standard 

deviation of heritabilities was estimated using equation [7.4], and 

was found to be 0.098, corresponding to a CV of 25.3%. The relatively 

large difference between the estimates of the variances using [7.2] 

and [7.4] may be explained by different weightings used in those 

formulas: [7.2] gives equal weightings to all individual herd 
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heritability estimates, whereas in [7.4] the heritability estimates 

are weighted according to their sampling variances. The last row of 

table 7.1 shows the parameters from using regression [7.1], assuming 

a CV of 25.3%. Even for the estimate of the CV of 25%, the standard 

deviation of regressed heritabilities was only 0.05, and data were 

from large pedigree herds. Smaller herds would give heritability 

estimates with such large standard errors that the regressed values 

would be very close to the overall mean (or prior estimate) and 

heritabilities could be regarded as being homogeneous. Some loss in 

accuracy of selection occurs if homogeneity of heritabilities is 

assumed when in fact true differences exist. Hill et al. (1983) 

showed, using selection index calculations, that for selecting sires 

across groups (herds) the optimal weight for a progeny mean from herd 

i is proportional to ibi/°i , where n1, °bi'  and Oj are the 

number of progeny, the between and within sire variance in herd I 

respectively. Assuming a constant phenotypic variance across herds 

(i.e. after scaling of observations), expectations of accuracies of 

sire selection were calculated using either the correct weights from 

above, or using flj0bc/o  as weights, with bo  and 	the average 

variances over all herds. The difference between the expectations of 

accuracies was found to be negligible. Similar results are obtained 

for mass selection across groups, using results from Hill (1984). 

The two methods to estimate v(01) were applied to the phenotypic 

variances, and were found to give similar results. Using equations 

[7.1] and [7.2], a CV of 24.8% was estimated (from a mean of 835 kg 2 ) 

and the standard deviation of regressed variances was 189 kg 2. The 

average regression coefficient was 0.86. Using equation [7.4], a CV 

of 22.8% was estimated, resulting in sd(O*)  of 190 kg 2  and an average 

3 of 0.83. The sampling variances of estimates of the phenotypic 

variances were calculated from the sampling (co)variances of genetic 

and environmental variances. Using further approximations, equation 

[7.4] was applied to the phenotypic standard deviation. The mean and 

CV of phenotypic standard deviations were estimated and were found to 

be 28.6 kg and 12.4% respectively. After regressing individual herd 

phenotypic standard deviations (average 0 was 0.86), the sd of the 
regressed values was 3.4 kg. Comparing the estimates of the CVs for 

phenotypic variances and heritabilities again shows that the findings 
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from chapter 3, homogeneous heritabilities and heterogeneous 

phenotypic variances, merely follows from a lack of statistical 

power, and does not necessarily say anything about true differences 

between heritabilities and between phenotypic variances. For 

practical purposes, it is concluded that individual herd 

heritabilities could be assumed to be homogeneous (through lack of 

accurate estimates thereof), and that individual herd phenotypic 

variances could be estimated and regressed to a prior estimate, 

depending on the number of records per herd. 

The difference between variance component estimates for yield traits 

in lactation 2 from a bivariate and univariate analysis was most 

likely due to culling of heifers being dependent on their first 

lactation performance (chapter 5). Since the exact culling process is 

unknown, estimating variances bivariately may give biased variance 

components for (co)variance in later lactations. In particular the 

(co)variances between yield traits within lactation 2 and 3, and the 

covariances between lactations 2 and 3 are expected to be biased. A 

general multivariate analysis using all traits in all lactations 

would be appropriate to investigate potential selection bias, but 

this is computationally not (yet) feasible. Still, despite possible 

biases in parameter estimates, the proportionality of the 

(co)variance matrices in different lactations is striking, and small 

changes in estimates would not change the observed proportionality. 

In chapter 6 only first order approximations are given for loss in 

efficiency when simplified covariance structures are assumed for 

prediction of breeding values. Clearly, more research is needed to 

investigate the loss in genetic progress when such assumptions are 

made. A related problem, particularly relevant to the breeding 

industry, is that of estimating genetic trend from BLUP analyses. The 

robustness of animal model trend estimates to different models and 

parameters is not fully understood, and needs further research. 

Using the parameter estimates from chapter 5 for milk, fat and 

protein yield in lactations 1-3, it was found that a repeatability 

model of 3 new traits, created by applying the canonical 

transformation for milk, fat and protein yield in lactation I to 
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yield traits within lactations 2 and 3, was highly efficient. This 

conclusion was based on index selection calculations. In practice, 

selection acts on an unknown combinations of yield traits in several 

lactat ions, and a repeatability model on the separate yield traits is 

likely to give biased predictions of breeding values, since 

correlations between yield traits, and hence selection bias, are not 

taken into account properly. It is concluded, therefore, that a 

repeatability model on the canonical variates is more efficient and 

should be preferred to the (standard) separate evaluation of milk, 

fat and protein yield. 
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SUMMARY 

Restricted Maximum likelihood (REML) parameters for fat yield were estimated in large 
Holstein-Friesian pedigree herds, using an Individual Animal Model (lAM). Heritability estimates 
from individual herds were similar, but the genetic and environmental variances differed among 
herds. 

INTRODUCTION 

In the 1990's the AM (Individual Animal Model) is likely to become the model of evaluation for 
dairy cattle. Some countries already have implemented their AM evaluation (Wiggans et al. 
1988), Others will follow within the nest few years. The lAM requires fewer assumptions about 
the data than a sire model, for example random non-mating of males and females is taken into 
account. However, the lAM may be susceptible to problems which previously were of lesser 
importance for evaluation with a BLUP sire model. One such a problem is that of 
heterogeneity of variance, i.e. the variation of EBV's (Estimated Breeding Values) among cows 
within a herd or herd-year-season is influenced by the phenotypic variation within that 
environment. If it is not known whether the genetic variance, the environmental variance, or 
both variances are heterogeneous, then the effect on accuracy of selection is not predictable. 
Previously, if young bulls were tested among herds from many different mean and variance 
groups and evaluated with a sire model, their EBV was unlikely to be heavily influenced by 
heterogeneity of variance between herds or herd-year-seasons. For the problem of het# of 
variance it is not clear what the effect on EBV's will be using an lAM. 

Usually the estimates of variances (Or their ratios) required for BLUP are derived from REML 
(Restricted Maximum Likelihood; Patterson and Thompson, 1971) procedures using a similar 
model of analysis to that used to predict breeding values. For U.K. data the use of an lAM for 
estimating population parameters had not been investigated. The aim of this study was to 
calculate REML estimates using an JAM, with special attention to the problem of heterogeneity 
of within herd variance. To try to explain potential heterogeneity of variance the data were 
analysed initially at herd level. The estimations were carried out using a REML program written 
by Karin Meyer (Meyer, 1989). 

MATERIAL AND METHODS 

A sample of 26 large Holstein Friesian )HF) pedigree herds was taken. Before editing 7979 first 
lactation fat yield records were present, from cows Calving between 1981 and 1986. The overall 
mean and (uncorrected) standard deviation were 213 ± 43.9 kg fat. The ranges of herd means 
and herd standard deviations were 170.3-263.6 and 25.0-48.9 respectively. The correlation 
between herd mean and standard deviation was close to zero (+ 0.02). The average North 
American HF percentage of the cows was 23 %. 581 sires were represented in the complete 
data Set, both young and old (proven) sires. 186 bulls only had I daughter, whereas proven 
bulls had up to 450 daughters present. 1740 daughter-dam pairs with records were present, of 
which only 6 pairs were not in the same herd. After editing 7720 records (from 574 sires) were 
Jett. 
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The assumed linear model, with one random effect besides the residual effect, was: 
Y- Xb + Zu + e and. 
v(y)'. ZAZ'0 2  • 102 - ZGZ' + R ; with the usual definitions: 

y.b,u are vectors of the observations, fixed effects and Individual animal effects respectively, 
X.Z are the known incidence matrices for the fixed and random effects, and A is the numerator 
relationship matrix. 

HYS were the only fixed effects, and age at calving, percentage HF and lactation length were 
fitted as covariables. The (natural) Log-Likelihood (1) for a model with one other random effect 
besides the residual component is (e.g. Harville, 1977; Searle, 1979): 

L- -1/2{ log)RJ + IogAl + logici - log" + y'Py ) 

Where C- full rank submatrix of the coefficient matrix and y'Py. residual Sum of Squares, with 
P a projection matrix. Significant tests for heritability estimates were carried out as Likelihood 

ratio tests (See e.g. Mood et al, 1973). Standard errors on parameter estimates were obtained 
through approximating the likelihood curve by a quadratic function, and taking the second 
differential with respect to the parameter of interest. 

Three different models were fitted. In analysis Ia herds were evaluated separately and, 
assuming independence and equal weightings, maximum (log)likelihoods were summed and 

heritabilities pertaining to those maxima were averaged over all 26 estimates. The standard 
error presented for Ia is from the empirical variance of the estimates. lb  uses the same 26 
estimates, but now the overall maximum and likelihood is obtained by weighting the estimates 
according to the amount of information present In each data set. This was investigated by 

summing up all 26 likelihood curves and fitting a quadratic to the obtained curve to obtain the 
maximum likelihood estimate. in analysis It the some data were used, but all herds were 
combined in one data set to give the overall heritability estimate and likelihood. 

RESULTS 

Table 1 gives a summary of the results of the 3 different analyses. Some summary statistics 
for the individual herd estimates are presented in table 2. 

Table 1: Comparison of different REML evaluations 

Ia lb II 
L 
h2  

-27239.7 -27251.4 -27998.6 
0.388 0.387 0.379 

seth2) 0.037 0.033 0.037 
731 918 734 

s.e.= standard error 
information for h2  estimate' {var(h)y'1  

L' log(Likelihood) 
Analyses: 	Ia: individual herds 

lb: combined estimates of individual herds 
II' all herds together 

The combined analysis TI shows a lower likelihood than the summed maximum likelihoods from 
a, which is not surprising given that II was analysed with fewer degrees of freedom i.e. the 
separate herd analyses allow for more parameters to be fitted: implicitly a sire by herd 
interaction, a herd by genetic variance interaction and a herd by residual variance interaction 

were fitted in analysis Ia. The heritability estimate Is hardly different; this can be a result of 
the particular design, or may be due to a large contribution of daughter-dam comparisons. As 

expected the se. is slightly larger than in lb, confirming that the separate data sets were not 
independent since there Is a Positive covarlence among Individual hard heritability estimates. 

Table 2: Summary statistics for individual herd estimates 

PARAMETER 	 MEAN 	MIN 	MAX 	0.1 	0.3 	STDEV 

'Raw' o,2 	 1247.1 	625.0 	2391.2 	967.5 	1532.8 	411.1 
REML results: 

834.5 	482.7 	13534 	642.0 	943.3 	225.3 
330.6 	17.4 	771.1 	192.0 	613.2 	184.4 
504.0 	161.6 	839.1 	362.5 	619.9 	186.1 h2 	 0.388 	0.030 	0.800 	0.2.73 	0.504 	0.186 

The statistics are respectively: mean, minimum, maximum, lower 

quartile upper quartile and the empirical standard deviation. 
Raw 	: phenotypic variance before any corrections. 

Testing each herd heritability from I against the overall heritability from II showed no 

significant difference at the 1 % level. A single likelihood ratio test, comparing the likelihood 
from Ia )= sum all maxima) with lb (= the maximum likelihood for combining the 26 estimates 
to one estimate) also showed no significant difference between the heritability estimates 
(-2log)difference likelihood)' 23.4 for 25 degrees of freedom). The Overall heritability agrees 
well with the most recent U.K. estimate for pedigree herds (Meyer, 1987) 

In further likelihood ratio tests it was assumed that the heritability was the same for all herds, 
allowing for simple tests for the variances. This assumption results in equivalent tests for 
genetic and environmental variances. The test for variances resulted in 11 out of 26 estimates 
differing from an overall variance estimate. A single likelihood ratio test also showed 
significance at the 1 % level )-2'log)dinerence)= 44.2 with 25 degrees of freedom) Clearly a 
relatively large heterogeneity of variance among herds is present for this data set. The 
estimated phenotypic variances for the separate herds showed a nearly three-fold difference 
between the lowest and highest phenotypic variance. 

DISCUSSION 

The sample of the pedigree herds may not be representative for all the pedigree herds or for 
the non-pedigree herds of the black-and-white breed. Meyer )1987), fitting a sire model, found 
substantially higher heritabilities for fat yield in pedigree herds Compared with non-pedigree 

herds. Furthermore, the amount of information per herd may not be sufficient to detect real 
differences in heritabilities and variances. More information per herd may also provide 

sufficient power to distinguish between heterogeneity of genetic and heterogeneity of 
environmental variance. However, despite the large standard errors for heritability estimates 
from individual herds (approximately 0.19), few extreme heritability estimates were obtained in 
this study and the pedigree herds were the largest herds available 

For these data, heritabilities seemed to be the same for all herds. Other authors also have 

found higher genetic variances in the more variable herds for production traits, sometimes by 
finding higher heritabilities in those herds )e.g. Hill el al, 1983: Lotgren et al, 1985; Boldman and 
Freeman. 1988). The observed heterogeneity of variance could not be explained by a scale 
effect, since the correlation between herd mean and variance was close to Zero Assuming 

equal heritabilities across herds makes it relatively easy to take heterogeneity of variance into 
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account in a BLUP-evaluation: either the data can be precorrected for the within-herd 
phenotypic variance, or the diagonal elements for animals and fixed effects can be manipulated 
during the evaluation. Estimating phenotypic variances from small herds may cause sampling 
problems. Regressing estimates from individual herds to some overall estimate of the 
phenotypic variance, where the regression coefficient depends on the herd size (degrees of 
freedom), was discussed by Brotherstone and Hill (1986). 

If further Investigation Indicates that heritabilities are not the same for all herds, then a 

different approach should be taken. A multi-trait approach seems theoretically best (see e.g. 
Gianola, 1986), but It may be tedious to estimate genetic and phenotypic parameters for all 
herds in order to group them according to some function of the estimated parameters. 
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PEDIGREE HERDS IN THE U.K. USING AN INDIVIDUAL ANIMAL MODEL' 

MALE AND FEMALE HERITABILITY ESTIMATES 

P.M. Visscher and R. Thompson 
Department of Genetics, University of Edinburgh, West Mains Road, 

Edinburgh EH9 3JN, U.K. and AFRC Institute of Animal Physiology 
and Genetics Research, Rostin EH25 9PS, Midlothian, U.K. 

SUMMARY 

In dairy cattle, estimates of heritability from daughter-dam regression are usually higher than 
from paternal half-sib covariance, and the genetic variance of bulls is less than that of females. 

These phenomena are modelled by Introducing an extended [AM (Individual Animal Model) with 

'male" (h 2) and female )h12) heritabilities. Estimates of h,,,2  ,and h12  were 0.280 ± 0.045 and 

0A77 ± 0.052 from a data set of 26 pedigree Holstein-Friesian herds. It is shown that a 
quadratic approximation of the likelihood surface for the two heritabilities is Insufficient, both 

for the data set and for a hierarchical balanced mating design. 

INTRODUCTION 

The genetic and phenotypic parameters required for the BLUP evaluations in dairy cattle are 
usually estimated using a similar model of analysis to that used to predict breeding values. In 
the 1980's that model usually was a sire model, and the estimation procedure which has 
become widely adopted is REML (Restricted Maximum Likelihood: Patterson and Thompson, 

1971) In the present decade the ]AM (Individual Animal Model) is likely to become the model 
of evaluation (Wiggans et at, 1988), resulting in a joint evaluation of males and females. 

This study introduces a model to investigate two related phenomena. Firstly it is well known 
that heritability estimates from daughter-dam regression usually are found to be higher than 

hsritability estimates from PHS (paternal half-sib) correlation Secondly it is likely that the sire 

genetic variance is less than the genetic variance in females, because bull dams and sires are 
selected more intensely than cow dams and sires. In estimating parameters from an lAM one 
is constrained by the size of the data Set to be analysed, and one suggestion is to analyse a 

small number of herds. In this type of data several assumptions could be made about the 
genetic variances of sires of animals. With this type of data Structure, selection in females 
may be taken account of by ML methods, but it is most unlikely that selection in males can be 

accounted for. We extend the lAM to take account of these two phenomena by introducing 

and estimating male" (h,,,2) and "female (h12) heritabilities. 

MATERIAL AND METHODS 

A description of the data set was given by Visscher (1990). All analyses presented here were 
carried Out Using the complete data set of 7720 records and 12620 animals. Analysis I is the 

standard lAM estimation, also presented previously (Visscher, 1990). 

In analysis It two random components (besides the residual component) were estimated; a 
female heritability was estimated by fitting a random effect for females, only including female 
relationships in the covariance matrix, and a male heritability was estimated by fitting sires as 
an uncorrelated random effect with an identity covariance matrix. For analysis III an extended 
lAM was constructed by partitioning the relationship matrix A into male and female 

contributions. Let subscript f and ni denote female and male respectively. Writing the 
relationship matrix as the product of a lower triangular, a diagonal and an upper triangular 

matrix (Thompson, 1977), gives ATOT'. Now partition D into a male and female part, giving: 
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D 	D, 0 	then: A* 	T 	Om  0 1 r + 	T 	0 	0 	T 
0 DI 	 0 0 	 0 D f I 

The variance among breeding values can be written as: v(u)- TD,,.T'oA ,2  + TDiT'o 2, where 
D 	and Df  are diagonal matrices with the appropriate number of zero diagonal elements for 
females and males respectively. The genetic variance in females thus has an individual 
component and a male and female parent component. Essentially this model allows the sires 
to come from a population with genetic variance oAm 	Using the above model, the phenotypic 
variance was estimated as: 

3/4*0 2  1/4*o ,,2  o 2, 

since records were Only on females. The male and female heritabilities presented are the ratio 
of the two genetic variances to this estimated phenotypic variance. Under this model the 
daughter-dam covariance is 0.50 2  and the paternal half-sib covariance is 0.25*0,2.  One 
would expect these relationships to provide most of the information on genetic variance in the 
data. 

Model IV is a sire model, for which all 574 sires were fitted as base sires, i.e. no relationships 
between sires were fitted. Using the results from analyses Ill and II an attempt was made to 
predict the lAM results from I by weighting the two heritability estimates: 
h, i2 o w,0h,, 2  + w1h12, with the vector of weights, w. calculated as w*  t'(1'f1Y 1  1. 
where IF is the information matrix and 1 is a vector of ones. 

RESULTS 

The results from the 4 analyses are presented in table 1. 

Table 1: Comparison of different REML evaluations 

II Ill IV 
L -27998.6 	-27997.9 -27995.4 -28043.8 
hi 

2 
0.408 0.477 

e.(h12 ) 0,043 0.052 
'f(h12) 542 370 

h 	2 
0.288 0.280 0.299 

e (h 2) 0.046 0.045 0.048 
490 509 430 

Combined h 	2 
0.379 	 0.351 0,365 
734 	 1172 1001 

Estimate 	r(h1'.h,,,2 ) -0.14 -0.14 

L= Iog(Likelihood); s.e. standard error, 'I'(h2)= information on h2  estimates 
r(h12.h,,,2)= correlation between estimates derived from the F-matrix 
him 	combined lAM estimate 

Combined estimate: using the estimates and curvature at the maxima 

Model I was discussed by Visscher (1990) Model II allows for heterogeneity of genetic variance 
to some extent, but the covariance Structure is only an approximation of the structure in 
analysis I of Ill. For example. sires are not linked to their grand-offspring in analysis II. The 
estimate of the male heritability in II (4 times the intra-class correlation) is close to the 

heritability estimate using a sire model (analysis IV) The contribution from males and females 

seems similar, but the predicted heritability and curvature for the combined (lAM) estimate are 

not very close to the observed values in I. The likelihood in II is higher than in I, but not 
significantly so at the 10% level, Analysis Ill clearly fits the data best. The likelihood difference 
with I is significant at the 10/*  level (for 1 degree of freedom). The female heritability is 
substantially higher than the male heritability. Again the simple weighting of the estimates did 

not result in the values from I. Comparing U with III the information on the female heritability 
was reduced for III, while the male heritability remained nearly constant- onstant 

In In an attempt to explain the difference between the prediction from III and the observed values 
from I, quadratic functions in h,,,,2  and hi2  were fitted to various grids of (h,,,,2,h12) values. The 
first part of table 2 shows the second differentials of log-likelihood with respect to the 
heritabilities, or curvature matrix, at several grid values. Inverting this curvature matrix at the 
REML heritability estimates gives the asymptotic covariance matrix.' Each grid consisted of 9 
equally spaced points around the presented heritability values. 

Table 2: Curvature of log-likelihood for various values of heritability estimates 
from the data set and from a hierarchical balanced design 

CURVATURE FROM 	 CURVATURE FROM 
DATA 	 HIERARCHICAL DESIGN 

h,,,2  h,,,,2  
0.280 0.335 0.379 0.280 0.330 0.379 

362 373 383 ili(h

(

2  280 290 300 

0.379 	39 40 41 W(h,,,2,h12) 106 89 78 

507 352 270 'V(h,,,2( 983 750 581 

364 376 386 'P(h12) 283 293 303 
0.428 	49 50 52 'Y(h,,,,2,h 2 ) 116 99 88 

507 352 272 'F(h,,, 2) 963 737 571 

370 383 394 I(ht2 286 296 306 
0.477 	59 61 64 iF(h,,, 	,h 2) 125 109 98 

509 354 274 'F)h,, 2) 944 723 562 

From table 2 it can be concluded that a quadratic function is not sufficient to approximate the 
likelihood surface. Clearly the curvature for males depends on the values of both the male and 

female heritability, and similarly uli)h2)  depends on both the heritability values. Fitting a cubic 
function in (hi2.h,,,2) to the complete 9 by 9 grid showed a fairly good approximation of the 
likelihood surface (not presented). The relative contributions from males and females at the 
LAM maximum can be derived from the (0.379,0.379) grid in table 2: w1  (383 • 41)1735= 0.58 
and similarly w,,,,= 0.42. The sum of the elements of the curvature matrix (735) corresponds to 
the observed information in analysis I. The total observed information for model fit is 
approximately 1000 (see tables 1 and 2). 

We considered the 2 ndifferentials for a hierarchical balanced mating design with records on 

progeny only that gives a h,,,2  of 028 and a 1112  of 0.477. The second part of table 2 shows 
the Curvature matrix for a design with 575 sires, 7 dams per sire and 2 progeny per dam. The 
.structure is only a crude approximation of the structure in the data set, but a similar pattern is 
observed; the female heritability curvature is relatively constant, while the male heritability 

curvature depends heavily on the value of the male heritability. 
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DISCUSSION 

One argument for a smaller h1,, than h,5  is because of selection in males. Alternatively, an 

increased variance might be expected as North-American sires are from a different population. 
Another explanation for the difference may be a Genotype by Environment (GeE) Interaction: 
since most daughter-dam pairs have records in the same herd, a potential GeE effect would be 
contained In the daughter-dam covariance. Also there could be a cytoplasmic effect (Bell et at, 
1985; Freeman, 1990). which causes a larger covarlance between daughter and dams than 
between sire and offpring. The present data set was not suitable to Investigate this effect. 

since the pedigrees could not be traced far enough back. 

Various authors (e.g. Smith and Graser. 1986;Graser et a( 1987) have suggested a quadratic 

approximation of the likelihood surface to obtain asymptotic variances when the 2 
differentials or the expectation thereof are not a by-product of the estimation algorithm. 
However, in data analysis and simulation it has been found that a quadratic approximation 
sometimes does not produce sensible results, in particular when many random effects are 
estimated (Meyer. 1989). A cubic approximation would produce better results, since the 2nd 
differentials are still functions of the parameter values. However, for many random 
components, for example in a multiple trait situation, this would involve inverting a matrix of 
order (1+p)(p(p5)/5 • 1), where p is the number of random effects in the model, If for example 
p=5, the order of the matrix would be 56 and for p=10 it would be 286. 

In the hierarchical case the heritability estimates are ratios of linear functions of mean squares. 
As the variances of mean squares depend on their expected value, it is no surprise that the 

curvature depends on the values of the parameters. One suggestion worth investigation would 
be to use transformations of the parameters to perhaps speed up convergence and ease 
interpretation. Candidate transformations are the z-transformation of Fisher (1921) and that of 

Wilson and Hilterty (1931). 

The extended model has been suggested to validate existing models, but it is an open question 
whether the extended lAM will lead to faster genetic progress. It has applications in other 

areas, for example for testing if genetic variances are homogeneous in different parts of 

selection experiments. 
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