
THE EFFECT OF PROGRAM STRUCTURE ON PROGRAM

BEHAVIOUR IN VIRTUAL MEMORY SYSTEMS

COLIN T. SCOTT

Submitted for the degree of

Doctor of Philosophy

of the

University of Edinburgh

1980

N

During part of the period of research for this

thesis I was supported by a research studentship from

the Science Research Council. The work is my own,

except where explicit acknowledgement is made in the

text, and this thesis has been composed by myself.

I would like to thank my various supervisors,

Professor S. Michaelson, Mr J. Ellenby and

Dr A. Wight for the assistance they gave me throughout

this period of research. Finally I would like to thank

my mother for her expert typing and Anne for all her

patience and encouragement.

ABSTRACT

The background, both in terms of theory and practice,

to current memory management systems is presented. It

is suggested that current paged memory management systems

have serious operational deficiencies, particularly with

respect to the behaviour of page replacement algorithms.

Examples of these operational deficiencies are presented.

Consequently, an alternative approach to memory management,

based on the notion of a segment, is developed. In this

system, the segments are determined at compile time based

on a knowledge of the structure of the high-level language

program. This segment information is passed to the run-

time system which uses this information as the basis of its

memory allocation policy.

An experimental implementation of such a system for PASCAL

programs has been achieved and results from this system

are presented.

CONTENTS

Introduction

Historical Background

Theoretical Development

Behavioural Characteristics of Conventional Memory

Management Systems

A Proposal for Memory Management Systems based on

a Knowledge of Program Structure

An Experimental Implementation

Results

Conclusions

References

1. 	INTRODUCTION

The behaviour of programs with respect to their residency

in a storage hierarchy, even in the most restricted case

of a two-level system,. has provoked a great deal of

research. General characteristics of program behaviour

have been proposed and these have, within the context of

demand paging systems, stimulated the development of

replacement algorithms which depend upon some subset of

these characteristics.

The work reported in this thesis calls into question

deductions made from these characteristics, and aims to

show that real programs can frequently burst out of the

restrictions that are theoretically imposed upon them.

This leads to poor program behaviour and a general

reduction in efficiency of computer systems using such

algorithms.

The major flaw in such approaches is that programs are

considered to be relatively unstructured "black-boxes"

which generate storage references in some predictable

but poorly-understood fashion. It is the major contention

of this thesis that programs do currently, and, with

developments in programming languages, will in the

future, show distinct structure which is known at compile

time. This thesis maintains that, if such structural

information can be passed to the run-time system, then

that system can satisfactorily tailor itself to the needs

of the running programs. Such a system is adaptable to

2.1

each program currently running on it, and does not

attempt-to fit each program into the strait-jacket of

"average" or "normal" behaviour.

The structural information gained could, it is suggested,

be incorporated into a more general form of the capability

(Den 66) called the "operational capability". This, it is

suggested, is a unifying concept which creates an efficient

run-time environment for programs.

The remaining chapters of this thesis are as follows:-

Chapter 2 - Historical Background

Chapter 3 - Theoretical Development

Chapter 4 - Behavioural Characteristics of Conventional

Memory Management Systems

Chapter 5 - A proposal for Memory Management Systems

based on a Knowledge of Program Structure

Chapter 6 - An Experimental Implementation

Chapter 7 - Results

Chapter 8 - - Conclusions

Chapter 9 - References

1.2

2. HISTORICAL DEVELOPMENT

2.1 Introduction

In this chapter the origins of the current state-of--

the-art in automatic memory management are traced. This

function is carried out in an environment which consists

of a paged virtual memory space, filled by page-on-demand

strategies and freed by a standard page-replacement

algorithm.

2.2 The Problem

Hansen (Han 73) states that:-

"Store management raises three basic questions:

What is the appropriate unit of storage to assign

to computations?

How are these units placed in an internal store

prior to their use?

How are they referenced by computations during

execution?"

Following Hansen a number of features of storage systems

can be identified. Firstly, to the user of a high-level

language a virtual store exists. This consists of data

identified (or addressed) by text strings called identifiers.

Consequently a virtual store can be considered to be a

mapping of identifiers into values:

Virtual store: identifier - value 	 (2.1)

On the other hand, the physical store is made up of

locations identified by consecutive numbers called addresses.

2.1

Since these locations hold values of one form or another,

physical store can be thought of as a mapping from

addresses to values:

physical store: address 	value 	 (2.2)

In order to complete the link between the user and the

"real machine" some process must be carried out, before a

program is run, which associates identifiers with addresses.

This is the store allocation process which defines an

intermediate mapping of identifiers into addresses:

store allocation: identifier - address 	(2.3)

These three mappings are of fundamental importance to the

storage management process.

Mapping (2.2) is clearly outwith the control of the soft-

ware designer, yet what is provided at this hardware level

has a significant effect on what can be achieved by systems

programmers and user programmers alike. In this field alone,

variations exist from the potentially bit-addressable B1700

(Wil 72) to the 512-bit storage accesses performed in CDC

Star (Pur 74).

However if all the above factors are considered, a signifi-

cant amount of useful information about the storage manage-

ment task can be obtained.

2.3 The Appropriate Unit of Storage to Assign to

Computations - Early History

The simplest answer to this problem was to assign the whole

2.2

of the available store to a computation. This approach,

attractive in its simplicity, had a number of disadvantages.

Firstly store was almost invariably wasted. If a sufficient

amount of store was to be available for most problems,

particularly the relatively large ones, then for the smaller

problems during their running time (possibly large) amounts

of store were unused. Even in modern storage hierarchies

such wastefulness of a relatively expensive resource would

not be tolerated. Equally, the need to deal with large

problems meant that large amounts of store had to be avail-

able, thereby compounding the first problem.

Two problems arose from this technique:-

How to deal with wasted space in store?

How to accommodate large programs whose total

memory requirements were larger than the available

main storage space?

The simplest solution to the first problem was by means

of partitions of main store. This technique, used in

OS 360 MFT (IBM 71), operated as follows:-

Any memory not used by the control program was divided

into partitions (see Figure 2.1).

H° I P

Figure 2.1

2.3

The size of each partition was set by the operator

and its associated priority was determined by its

position relative to other partitions. P0 was

reserved for jobs of the highest priority, while Ph

was reserved for jobs of the lowest priority. When

a job was initiated it was allocated a partition for

the class of the job.

This technique has the advantage of allowing multi-programm-

ing, but does not successfully overcome the problem of

wasted memory space. With this technique, jobs do not

normally fill their allocated partition completely and con-

sequently, as with the whole memory approach storage is

wasted.

The second problem, i.e. how to accommodate programs whose

storage requirements were greater than the available

storage, was first solved using overlays.

This method requires that the programmer divides his

program into sections, one of which must be designated the

main section. The remaining sections are called dependent

sections. By using a linking loader, the main section at

run time could call in the dependent sections for execution.

By placing the main section in the available memory and

sharing the rest of the memory among the dependent sections,

the main section can replace dependent sections when they

are no longer needed with other dependent sections. This

technique was used in operating systems for CDC-6000,

2.4

UNIVAC 1108, GE 635, and IBM System 360 (Lan 69).

This technique allows a user to utilise small amounts of

physical storage for large programs. However, there are

some significant drawbacks:-

The user is responsible for the division of his

program into its main and dependent sections.

Careful job preparation is required, so that the

relation between the main section and its dependents

is clear.

References between dependent sections should be

minimised.

The amount of main store allocated to the main

section and its dependents is fixed during the

entire execution peripd. This implies that

dynamic space variations cannot be utilised and

that the maximum amount of memory required be

allocated initially.

All of the sections of a job must be available at

linkage time.

This overlaying technique was most severely criticised by

Sayre (Say 69), who compared results by Brawn et al.

(Bra 68) and measurements on a demand paging unit built

by Belady et al.., against manual "folding" techniques (such

as overlaying) and concluded that

"... a folding mechanism will probably become a -

normal part of most computing systems"

2.5

Sayre gives six reasons for his support of "automatic

folding":-

Proarammina Cost I

Manual folding is difficult to do and get right.

Programming Cost II

Once folded for a particular size of memory, a

program will not run efficiently in another size

of memory.

Multiprogramming and Timesharing

Once folded, a program must have the size of

memory it was folded for. This is not a good

starting point for systems which involve the

dynamic sharing of memory among programs.

System Availability

Since a pre-folded program must have the memory

it was folded for, this will be a significant

drawback if that amount of memory is temporarily

unavailable due to system failures.

Design Predictability

The performance of a program will depend

critically on how well it is folded.

Retention of Technical Options

The large amount of investment in pre-folded

programs does not take account of technological

advance (for example) making more memory

available.

2.6

2.4 The Appropriate Unit of Storage to Assign to

Computations - Pages and Segments

Largely due to the unsatisfactory nature of overlaying and

partitioning - static memory allocation - other techniques,

collectively known as dynamic memory allocation, were being

developed. These were based on two units:-

Pages

Segments.

2.4.1 Pages

The aim of this technique was to ease a number of the

problems mentioned above by dividing a program's address

space into equal fixed-size areas called pages. Main store

was also divided into identical fixed-size areas called

page frames. A number of page frames would be allocated to

a program during its run and these would be filled with

program pages as necessary. All addressing was done in

terms of these pages.

With the adoption of this technique, the pages belonging

to a program could become scattered throughout store in

order to take advantage of any unused page frames that

might become available. This meant that the addresses

used by the program (virtual addresses) had to be translated

into the correct physical addresses before they were used

to access the main store.

Figure 2.2 shows a possible arrangement for address

mapping under a paging scheme. Each user has a page table

which contains an entry for each of the user's pages. If a

2.7

page is in main store then the main store address is

included in this entry, whereas if it is currently

resident in backing store then the backing store address

is given.

An address within a program is of the form of a pair:-

_______ PriysicQ(

Adctss

Figure 2.2

2.8

<page no. , displacement>

where the displacement gives the position of the addressed

item within the specified page. To access any item, the

entry for the specified page is examined in the page table.

If that page is in the main store then the main store

address of the start of the page has the displacement

added to it to give the physical address of the item. If

the page is not in main store, then it is brought into

some free position in main store and the page table updated

accordingly. The above procedure is then followed to

obtain the desired physical address. In practice, the

page table itself may be held in main store and'each user

will be given a hardware register to indicate the base of

his page table. Such an addressing scheme is usually

performed by hardware, but even so this results in two

store accesses for every word accessed (one for the page

table and one for the word itself). Some computer systems

overcome this by holding current page table entries in

associative memories and attempting to ensure that all

current page descriptors are in these memories at all times.

This technique was introduced on the Atlas computer (Ku 62).

In this system main store was divided into blocks of 512

words. This system also yielded one of the earliest page

replacement algorithms which will be discussed later.

Within a paged system placement of pages in main store is

not a significant problem, since any freed page frame will

2.9

accommodate any page. The real problems are:-

when to bring pages into store, and

what page should be removed, if necessary, to

accommodate the new page.

The simplest way to deal with a) is to page on demand.

That is to say, a page is brought into store if and when a

program requests an item on that page. Consequently, the

most significant study refers to page replacement algorithms.

The case in support of the use of demand paging algorithms

will be put forward in Chapter 3 and this chapter restricts

itself to a study of available page replacement techniques.

2.4.1.1 Atlas Loop Detection

This technique, described by Baylis et al. (Bay 68)

assumes a strictly cyclic pattern of use of the blocks (pages)

within a given program. For each page of store two para-

meters are computed:-

t - the time the block has been idle in core store

since last being accessed,

T - the total time the block remained idle the

last time it was written to backing store.

Measurement of both t and T are made in terms of process

time. The implication of the cyclic strategy is that if

t > T then' the block is no longer in use in the current

cycle and can be written out to backing store. If no

block satisfies this property then the block (excluding

the current blocks) with the largest (T - t) is the best

candidate for replacement.

2.10

In the studies presented (Bay 68) this algorithm was

compared with two others:-

selecting a candidate for replacement at random

selecting the page with the largest t.

It appeared from the studies that, overall, the system

behaved best under (b) and that the loop detection method

was about 10% worse than (b). However this was explained

by the non-cyclic nature of the Supervisor program which

was also included in the study. The feeling of the study

was that, although the cyclic strategy was inferior to (b)

strategy (b) penalised programs with cyclic behaviour to

such an extent that the loop detection method represented

the "safest" approach. This was particularly true if, as

was thought likely, cyclic programs could dominate the job

mix over a period of time.

The authors did conclude that applying an algorithm based

on store usage was worthwhile but that the particular

algorithm had only marginal effect.

2.4.1.2 Least Recently Used (LRU)

This method is exactly the alternative (b) mentioned above.

That is to say, the page replaced is that page that has

remained unreferenced for the longest time.

Two types of LRU can be distinguished:-

a) Global LRU - The replaced page is that page which

has not been referenced for the

2.11

longest period of real time, regardless

of the task to which it belongs. This

technique has been used in CP/67 (Ale 69),

(Bay 68b), Multics (Org 69), MTS (Ale 69)

VS1 (IBM) , VS2 (IBM).

b) Local LRU - This allocates a fixed number of memory

pages per task. The least recently

used selection is made from pages belong-

ing to the task which generated the page

fault. This has been implemented in the

original IBM version of TSS (IBM 70).

2.4.1.3 First-in-First-out (FIFO)

This is probably one of the simplest algorithms to

implement, the page which has resided in main store for

the longest time is chosen to be replaced. This technique

has been used on the B5500 (Bat 69). Belady (Bel 66) has

shown that this algorithm can behave quite well in most

cases. However, it is possible (Bel 69b) that it will

increase the number of page transfers made by a program

when the main store made available to that program is

2.4.1.4 Working Set Algorithm

This technique developed by Denning (Den 70) involves the

examination of the pages that have been referenced in a

fixed process time interval before the current reference.

2.12

All pages in this set, known as the Working Set of the

program, remain in core. All others are marked as

candidates for removal. Some implementations of this

technique exist where the replaced page is the least

recently used page which does not belong to the Working

Set of any program (Doh 70).

This algorithm, as will be shown below, has been

extensively analysed and with LRU forms the basis for

much of the work done on the analysis of program behaviour.

2.4.1.5 Page Faulty Frequency Algorithm (PFF)

This algorithm was first suggested by Chu and Opderbeck

(Chu 72). It attempts to dynamically control the rate of

page faults by varying the memory space allocated to a

program.

The PFF algorithm measures the inter-page fault intervals

during execution of the program. At page fault times, it

compares these intervals with previously selected threshold T.

If the inter-page fault time exceeds T then all the pages in

main memory belonging to the program that have not been

referenced since the last page fault are candidates for

removal. Otherwise no page is removed and the program's

allocation is increased by one page.

A modification to this algorithm was suggested by Sadeh

(Sad 75) wherein a program is prevented from collecting

all its pages in main memory (otherwise no page faults

2.13

would be generated during its remaining execution). This

is achieved by placing a limit, z, on the inter page

fault interval. Whenever this limit is reached a memory

allocation is made without waiting for a page fault to

occur.

The operation of this algorithm is described in (Chu 76)

among others.

These, then, represent the major page replacement algorithms

that have been proposed and studied.

2.4.1.6 Other Techniques

A mention must be made at this point of pre-aging. The

aim of this technique, wherein a page is brought into main

store before it is referenced, is to reduce or eliminate

page waits so that CPU utilisation can increase. Pre-

paging involves a balance between initiating the page fetch

early enough to overcome the delays involved in the use of

backing store with high latency periods, and initiating the

fetch late enough to ensure that the page does not wait

around in memory for a significant period before it is

referenced (if at all). Studies on EMAS (Whi 73) by Adams

(Ada 75), (Ada 76) indicate that pre-paging does tend to

outweigh any disadvantages caused by moving in unwanted

pages. On the other hand, Hoare and McKeag (Hoa 72) con-

cluded that pre-paging is not only difficult to use but

may be actually prejudicial in its effect on system

performance.

2.14

Another technique worthy of mention at this point is

that of page recapture. The idea behind this approach

is that when a page replacement algorithm marks a page

as free, it may be some time before that page is actually

overwritten by an incoming page. This is due to the fact

that many algorithms free a number of page frames when,

perhaps, only one is needed at that time. Consequently,

the system remembers what the contents of a page frame

are, whether that page is marked as free or not. It has

been shown in the studies by Adams mentioned above, that

recapture can play a significant role in the operation

of a system. It is only fair to point out however, that

any success that recapture might display tends to imply

the failure of the replacement algorithm in that pages

are being marked as free (and consequently not needed)

only to be needed again after a very short time.

2.4.2 Segments

As will be shown in Chapter 3, one of the major problems

with paging systems is the choice of an appropriate page

size. Again the problem is a matter of balancing

conflicting requirements: -

1. If the page size is too small:-

i) the size of the page tables increases and

this implies a loss of main memory space,

if the tables are held in store (Table

fragmentation).

2.15

the unit of transfer chosen may be

inappropriate for the devices involved.

if large amounts of store are required, a

comparatively large number of pages must be

freed and transferred, thus increasing the

system overheads.

2. If the page size is too lrcJE:- -

i) the region of the store required by a program

may be considerably less than a page, but a

whole page must be allocated to it. This

results in a waste of space within pages

(Internal fragmentation).

These matters are dealt with by Randell (Ran 69). In this

paper he suggests that few designers have reduced single

page sizes below 1024 words because of the overheads.

involved in storing and processing page tables. However

it transpires that the logical unit of transfer (the

segment) can frequently be small (eg 60 words (McK 67)).

Although this mean is small, the variation appears to be

quite large and some designers have provided two page

sizes (Cor 65) to attempt to attack this problem.

Randell further comments, however, that compilers and

programming conventions are likely to have a considerable

effect on the mean segment size (but less likely to remove

the problem of the variation in sizes). This remark will

be considered at a later stage.

2.16

To return to the notion of segmentation as such, this

technique was introduced by Dennis (Den 65). He intro-

duced the concept of a name space, that is, the set of

addresses a program can generate, and contrasted with this

the memory space of physical memory locations that are

accessible to a program. Dennis proposed that:-

A computation should have the use of a name

space sufficiently large that all information

it references may be assigned unique names, and

such that the re-allocation of information

within its name space is never necessary.

Data objects of a computation should be

expandable without re-allocation of name space.

Information referenced in common by several

computations should have the same name for all

computations that reference it.

A protection mechanism should operate in name

space to permit access by a computation only in

an authorised manner.

Dennis claimed that this could be achieved by a sytem in

which information was addressed by a two component address:-

<segment name, word address>

A segment is an ordered collection of words with an

associated segment name.

2.17

S-(segment nume)

I
word
aodress

length

Diagram 2.3

A particular word in a given segment S is accessed as

shown in diagram 2.3.

To use such a system, programs and data are split into

segments which consist of related information. In much

the same fashion as a paging system, the base addresses

of all segments belonging to a computation are kept in

a single table called a segment table. More information

must be retained than for . a paged system because no

limitation has been put on the length of such a segment.

Consequently, the storage management system must have

the segment length available to it at all times (see

Diagram 2.4).

2.18

Physical

Address

Diagram 2.4

A consequence of the choice of segments means that, in

theory at least, such a system would not be susceptible

to internal fragmentation. A proliferation of small

segments would lead to the same table fragmentation as

in a paged system. However - such a system is prone to

another form of fragmentation as will be shown below.

Unlike a paging system, the placement of segments poses

a problem. With a paged system any free page frame can,

by definition, accommodate any page. However, since

segments are of variable size, the same is not true.

Consequently, suitable space must be found in some other

way for a desired segment in main store. A typical memory

layout is shown in Diagram 2.5.

2.19

k12IsJs
9

le
g

V//J
o/I g

'/i
I 	,IgI t1Di 1Z:J e

A I
Vt/' m Vl/

rA t t I 	I

Diagram 2.5

This random pattern of holes and segments has been caused

by the allocation and de-allocation of segments.

If a new segment is required in memory then, given that

the length of a segment will be fixed during its lifetime,

a suitable hole can be chosen by one of the following

algorithms: -

First Fit - a segment is placed in the first hole

large enough to hold it,

Best Fit - a segment is placed in the smallest

hole capable of holding it.

Knuth (Knu 69) has shown that, contrary to expectation,

the First Fit algorithm tends to be superior. As it

also tends to be easier to implement it has been used in

the B5500 MCP (McK 71). Knuth also suggested a third

approach, known as the Buddy System, which involves

mainttvtv holes of fixed sizes on lists. The sizes

chosen are 2,4,82 k words.so that a 2h hole can be

2.20

split into two adjoining 2 	 holes, and similarly two

adjacent holes of the same size can if necessary be

coalesced into one hole of the next larger size. This

technique attempts to tailor the hole sizes to the requests

that might be made on them. But it seems a rather complex

task to maintain these lists in the appropriate fashion.

However Knuth states that it does marginally outperform

the other two techniques mentioned above.

A problem with segmentation is that small holes tend to

proliferate and there comes a point at which it is impossible

to find a suitable hole for a required segment, although the

total free space is sufficient to meet its needs. This loss

of space has been called External Fragmentation (Ran 69) and

can be overcome by moving all used segments to one end of

store (see Diagram 2.6). This technique is known as

compaction.

Compaction is a time-consuming business since large amounts

of information must be moved from one place in store to

another (see Chapter 3). It is suggested that in a well-

designed system compaction occurs so rarely that processor

time spent on this relocation is negligible.

2.21

Before comtirg
	

After compacting

Diagram 2.6

Both paging and segmentation have their drawbacks in

the utilisation of main storage. However attempts have

been made to combine the best of both systems.

2.4.3 Paging and Segmentation

Such a combined technique has been proposed by Arden et al.

(Ard 66). This system involves a three-component address

for informations:-

<Segment Nurnber,Page Nuniber,Address>

The requirements for such a system are shown in Diagram 2.7.

The segment table is defined by a Segment Table Register

2.22

H-

—MMI. Physical

dress

which contains the Segment Table Length (STL) and the

address of the

Diagram 2.7

Segment Table Base (STB). The required segment is used

as an index to the Segment table whose entries consist of

a pair: -

<Page Table Length, Page Table Base>.

The Page Table Base is the base address of the required

page table. The required page is then used as an index

2.23

to the page table which contains the base address of

the required page. This base address then has the dis-

placement added to it in the usual way to provide the

final physical address of the required information.

2.5 Conclusion

This chapter has attempted to trace the development of

memory management systems to the present day. Some

indications of the reasons for the development of the

current demand paged systems have been given. Much more

of the motivation for the choices that have been made lies

in the theoretical analysis of program and paging

behaviour that has also developed. This is considered

in the next chapter.

It is also useful to note, at this stage, that good

theoretical analysis is of vital importance in this field.

It is often the case that, despite the apparent simplicity

of the techniques described above, implementation may be

difficult and costly in real systems. Also, it is true

that it is difficult to evaluate the benefits that may

accrue from these features alone in real situations.

2.24

3. THEORETICAL DEVELOPMENT

3.1 Introduction

In this chapter the theoretical development of current

storage management systems is investigated. This theor-

etical work has tended to be carried out in parallel with

the actual implementation of the techniques, and this has,

perhaps, overly restricted the areas of theoretical study.

However in this chapter the arguments for the conventional

approaches to storage management are put forward.

3.2 storage Utilisation in Segmented Systems

In his paper on virtual memory (Den 70), probably the most

influential paper in this area, Denning identifies three

policies that must be considered in storage management

systems: -

Replacement policies

- which information is to be removed from memory.

Fetch policies

- when information is to be loaded.

Placement policies

- where information is to be. put in memory.

Replacement and fetch policies are much the same for paged

and non-paged systems, but, as will be shown, placement

policies for non-paged systems are considerably more com-

plex than those for paged systems.

3.1

If a non-paged system is considered, two important results

can be derived:-

PROPOSITION 3.1 The Fifty-Percent Rule

If a segmented memory system is in equilibrium

having n segments and h holes (see Figure 3.1),

where n and h are large, then h is approximately n/2.

PROOF

Consider an arbitary segment s, then it is necessary

to find the probability, p, that this segment has a

right neighbour. During the residency of a segment

in store, half the transactions to the region on its

right are insertions and half are deletions (because

the system is an equilibrium). This implies

p=l/2

=> No. of segments with holes as right neighbours

= np = n/2

=> No. of holes = n/2.

ON
I MVA

I

Figure 3.1

3.2

PROPOSITION 3.2 The Unused Memory Rule

If a segmented memory system is in equilibrium and

f = the fraction of memory occupied by holes

so = the average segment size

ks0 = the lower bound on the average hole size (kO)

then

f 	k/ (k+2)

PROOF

Let the memory size = m words. By Proposition 3.1,

if there are n segments in memory then there are n/2

holes. The total amount of space occupied by holes

is
m - ns0

and the average space occupied per hole is therefore

2(m - ns0)/n

Now since it has been assumed that

2(m - ns 0)/n.ks0

> (n/m)s t6 2/(k+2)

f = (m - ns 0)/m = 1 - (n/m)s 0

1 - 2/(k+2) = k/(k+2).

Diagram 3.2 shows the relationship between f and k

graphically. The curve in the diagram represents a

lower bound on the fraction, f, of unused memory. It can

be seen that as the average hole size becomes large with

respect to the average segment size, i.e. k -- , then so

the fraction of unused memory becomes large f + 1.

3.3

0.7

0.6

0.5

0.4

0.3

0.2

01

0.2 0.4 0.6 O.b 1.0 	1.2 	lb 1.6 lt 2.0 2.2 2.4 2.6 2.8
k

Diagram 3.2

situation is thus, for large k, we have a number of holes,

n/2, whose average size is considerably greater-than the

average segment size.

Two states may be distinguished:-

There is insufficient work waiting in the system,

consequently memory is under-utilised. Herein a

large f is reasonable.

There is sufficient work waiting in the system.

If this work has the same segment size profile,

then it would seem to be reasonable that there are

segments waiting to be loaded which will fit into

some of the available holes.

In this latter case, the action of loading another segment

3.3

reduces the average hole size.

Since, if n increases to n', and the amount of memory

allocated increases from ns 0 to n 1 s0 , then the amount of

memory unused decreases from m - ns 0 to m - n's 0 . Con-

sequently the average hole size decreases from 2(m - ns0)/n'.

It is clear therefore that the average hole size, e 0 , must

lie in the range

o 	e0 4 s0' 	 (3.1)

otherwise case 2 above applies. Consequently an upper bound

can be placed on the average hole size. Hence

ks0eoso

o 	k ' 1.

Thus k must be restricted to the range shown in Diagram 3.2.

Using equation 3.1,. the following may be derived:-

Given 	e0 s0

and 	m = ns 0 +(n/2)e0

then 	m <. ns 0 +(n/2)s0

m <. (3nso)/2

s0 > (2m)/(3n)

Now since

f = (m-ns 0)/m

f < (m-((2m)/3n)/m = 1-2/3 = 1/3

Consequently, in practice a management system can achieve

k/(k+2) E. f < 1/3 	 (3.2)

This is the area shown by the cross-hatching in Diagram 3.2

3.4

Three placement algorithms were considered by Knuth

(Knu 68), which have been discussed in 2.4.2 above.

The following compaction result is reported by Denning

(Den 70):-

	

PROPOSITION 3.3
	

Compaction Result

Suppose a non-paged memory system is in equilibrium

immediately after compaction, a fraction f of memory

being unused; suppose that each segment is referenced

an average r times before being deleted and that the

average segment size is 5. Then the fraction F of

the time the system spends on compaction satisfies

	

F 	(1 - f)/(l - f + (f/2) (r/s 0))

PROOF

rn(1-f) 	 , 4 	mf

SEGMENTS 	 HOLE

Diagram 3.3

Diagram 3.3 shows the memory state immediately after

compaction.

If it is assumed that a segment is referenced each

time unit, then a segment is deleted every r time

units, arid, since the system is in equilibrium, a

new segment is inserted every r time units. Con-

sequently, the boundary moves at the rate s 0/r.

3.5

The system will operate happily for to = fmr/s0 , the time

for the boundary to cross the hole.

Since the compaction operation requires at least two

operations for each of the (1 - f)m words to be moved,

then t, the time taken for compaction satisfies:-

t 	2(1 - f)m

Consequently, the

of the total time

F= 1-

Fl-

F(to

F(1

F2(1

time spent compacting as a fraction

is

+ tc)

t0/(to+2(1-f)m)

+ 2(1 - f)m - to)/(to + 2(1 - f)m

- f) (2m/ (fmr/s0 + 2 (1 - f) m)

- f)/((1 - f) + (f/2) (r/s 0)

Diagram 3.4 shows a plot of F against f

1.0
0.9
0 .
0.7
0

F 05
0.4
03
0.2
0i

0.05 	0.1 	0.2 	0.3 	0.4

f

Diagram 3.4

3.6

The use of relation 3.2 has enabled the range of f to be

considerably reduced over that presented by Denning.

It is perhaps even more clear now, in diagram 3.3, that

only in a situation where compaction is carried out

relatively infrequently due to high reference density

in segments can compaction be tolerated (i.e. r/s 0 large)

Denning because of the overhead of compaction and the

possibility of a large amount of unused memory (without

the benefit of relation 3.2), discounts segmentation and

turns to paged systems.

3.3 	Paged Systems - Page Size

The simplicity of paged systems in terms of their implement-

ation and the consequently high number of successful

implementations, has prompted much theoretical interest.

Equally, theoretical investigations have shown that although

the underlying idea is simple, what actually goes on in a

paged system is not at all clear and model building. is

necessary in order to achieve some understanding of the

real situation.

Placement policies as such have no relevance to paged

systems since all that is required in order to place k

pages is that k page frames be freed.

Using Denning (Den 70) again as a starting point, the

following proposition is relevant:-

3. 7

PROPOSITION 3.4 Optimal Page Size Result

Let z be the page size and so the average segment

size; Suppose c 1 is the cost of losing a word to

table fragmentation and c2 is the cost of losing a

word to internal fragmentation, and let c = c1/c2.

If z --,< so then the optimal page size is approxi-

mately (2cs0) 2

PROOF

The cost for any given z is

c(z) = cs0/z + c2 z/2 (Since if z << s then

z/2 words will be

wasted in internal

fragmentation)

This has an optimal value when c' (z) = 0

-(C so)/20 	+ c2 /2 = 0

=> 	z = 2c.s0/c 2

=, (2cs) 2

It is fairly reasonable to assume, in a system where page

tables are held in store, that c = 1. Consequently, it can

be shown that

Z0 - (2 so) 2
	 (3 3

Although this is in itself an important relationship, it is

useful to note that if available data on segment sizes

(Bat 70) implies that s,tS 1000 words then equation 3.3.

implies that z0 45 words. This is somewhat contradictory

to the current practice of page sizes of 512 or 1024 words.

Although there are other good system reasons for these

3.8

choices of page sizes it is essential to observe that

such sizes will necessarily increase the amount of space

wasted within a page. Not because the page does not con-

tain information but because the page contains information

that is not relevant to the segment currently being accessed.

Hatfield (Hat 72) examined the effect of varying the page

size on system behaviour. The time to process a page fault

has three components:-

a - the access time to the device where the page

resides

b - the time to transfer the page

c - the software overhead.

It can be argued that a and c remain more or less constant

irrespective of the page size. Consequently, if two page

sizes b 1 and b, are considered then the relative costs can be

shown as follows:-

(a + b1 + c)/(a + b2 + c)

Now the time to transfer the page, b, is given by

b = Ztr

	

	where tr is the transfer rate for

the device.

If c is assumed to be small compared with a + b then

relative cost 	(a + b 1)/(a + b2).

If actual figures are substituted, for example

a = 50 x 10 --3 secs

b = 5 x lO 	secs/word (for disk storage)

relative cost z (5000 + 5z 1)/5000 + 5z2)

relative cost = (1000 + z 1)/(1000 + z2)

3.9

This shows that unless page sizes are very large, or z 1 -

and z 2 are very different then the page size does not have

a significant effect on the system overhead (see Table

3.5).

z2 Relative Cost

256 512 0.83

256 1024 0.62

256 2048 0.41

512 256 1.20

512 1024 0.75

512 2048 0.49

1024 256 1.61

1024 512 1.33

1024 2048 0.66

2048 256 2.42

2048 512 2.01

2048 1024 1.50

Table 3.5

For example, an eight-fold increase in the page size from

256 to 2048 words causes alittle less than a factor of

2.5 increase in the overheads.

It is useful to note that these figures are very much

dependent on the storage devices being used.

3.10

3.4 Paged Systems - Demand Paging

The term demand paging refers to a process whereby pages

are only brought into main storage when a program refers

to them.

To fully present the notions of demand paging it is

necessary to introduce some formal representation of program

behaviour.

Consequently the following definitions are presented:-

DEFINITION 3.1

Let N = [0,1,2,... ,n-l} be the set of pages of

a program.

DEFINITION 3.2

Let S(t) be the set of pages belonging to a program

that are in main store after the reference at time t.

This is somteimes known as the Store Set of the

program at time t.

DEFINITION 3.3

The memory references of a program are denoted by:-

r(1) ,r(2) ,r(3)r(k) where r(t) € N

and r(t) is the page referenced at reference t.

A sequence of such references is known as a

reference string.

PROPOSITION 3.5
	

The Principle of Locality (Den 70).

During any interval of execution a program tends to

3.11

favour a subset of its pages, and this set of

favoured pages tends to change its membership

slowly.

PROOF

Denning maintains that this is an experimentally

observed phenomenon, but formalises the notion as

follows: -

DEFINITION 3.4 	Reference Density

The reference density for a page i is denoted by

a(i,k) where

a(i,k) = Pr[(reference r(k) = i)]

DEFINITION 3.5 Ranking

A ranking R(k) of a program's pages is an ordering

PO
'p. 	

n-i
..........,p 	where p

1
 eN,Vi, ci'i'n-1 1

such that

a(p0,k)a(p1,k) 	... 	a(pn_i,k).

Such a ranking is strict if

a(p0 ,k)>a(p1 1 k)>... >a(pn_i,k).

DEFINITION 3.6 Ranking Change

There is a ranking change at reference k if

R(k) 	R(k-1)

DEFINITION 3.7 Ranking Lifetime

A ranking lifetime is the number of references

between consecutive ranking changes.

3.12

Now can be stated:-

PROPOSITION 3.5a The Principle of Locality

The rankings R(k) are strict and the expected

ranking lifetimes long.

This will be considered in more detail later. For complete-

ness, it is necessary to include alternative definitions of

locality due to Madnick (Mad 73).

DEFINITION 3.8 Temporal Locality

If the logical addresses a(1), a(2)are

referenced during the time interval t - T to t,

there is a high probability that these same

addresses will be referenced during the time

interval t to t + T.

DEFINITION 3.9
	

Spatial Locality

If the logical address a is referenced at time t,

then there is a high probability that a logical

address in the range a - A to a + A will be

referenced at time t + 1.

These definitions probably have a greater intuitive appeal

than those of Denning.

DEFINITION 3.10 Paging Algorithm

A paging algorithm gives S(t + 1) as follows:-

S(t + 1) = S(t) + X(t + 1) - Z(t + 1)

where X(t + 1) is the set of pages brought in at

3.13

time t + 1 and Z(t + 1), the replaced page set,

is a possibly non-empty subset of S(t). It is

possible that at a given time t' both X(t t) and

Z(t 1) are empty, and this represents no change in

the storage allocation for a program.

DEFINITION 3.11 Strict Demand Paging Algorithm (Spi 77)

A strict demand paging algorithm gives S(t + 1)

as a function of S(t):-

r S(t) if r(t + 1) 	S(t)

S(t+l) =

S(t) ± r(t + 1) - Z(t + 1) if r(t + 1)

S(t)

A variation of this type of algorithm which allows pages

to be removed at any time rather than just at the time of

a page fault is given below:-

DEFINITION 3.12 Loose Demand Paging Algorithm

A loose demand paging algorithm gives S (t + 1) as

a function of S(t):-

S(t) - Z(t + 1) 	if r(t + l)€S(t)

S(t + 1) =

L S(t) + r(t + 1) - Z(t + 1) if r(t +

S(t)

In opposition to pre-paging, demand paging algorithms

have been used because of the difficulty ascribed to the

prediction involved in a pre-paging algorithm. This in

itself would not be sufficient to justify demand paging

3.14

as an acceptable approach if demand paging were shown to

be considerably more expensive than pre-fetching.

The following result, due to Mattson et al. (Mat 70), has

been used to support the case for.demand paging:-

PROPOSITION 3.6

Given any reference string and replacement algorithm,

(.not necessarily using demand paging) another

replacement algorithm exists that uses demand paging

and causes the same or fewer page faults.

This result is intuitively reasonable, since pre-paging can

be considered as only causing page faults to occur earlier

than they would have done under demand paging. If the page

movements are done too soon then it is possible that a

removed page will be referred to before the page that has

been brought in.

Aho, Denning, and Ullman (Aho. 71) have given a generalisation

of this result, which requires the following definition:-

DEFINITION 3.13 The Cost of Replacement Algorithms

If h(k) denotes the cost of an operation that places

k (l) pages in memory, where h(k)>,h(l) = 1, then

the cost for processing a reference string

R = r(l),r(2)r(n)

with a given algorithm A starting from an initial

memory allocation S is given by:-

C(A,S,R) 	=h(IX(t)I tzi

3.15

where X(t) is the set of pages brought into memory

at time t.

If A is a demdnd paging algorithm thenjX(t) I'l, for

l(tn and consequently

C(A,S,R) 	= 	X(t)

The following can now be stated:-

PROPOSITION 3.7

If A is a paging algorithm, and further if h(k) k,

for kl and h(l) = 1, then there exists a demand

paging algorithm A' such that

	

C(A',S,R) 	C(A,S,R)

for all S and R.

Despite the fact that the situation h(k) 	k occurs

frequently in practice, this result is used as a justifi-

cation for a restriction of theoretical consideration to

demand paging alone. This and the other limitations of

the theory will be considered later. A formal representation

of current page replacement algorithms in a demand paging

environment is given below:-

DEFINITION 3.14 	First-in First-out (FIFO)

The page which has been in memory for the longest

time is replaced.

If R(p), pES(t) is defined as

R(p) = t - t' where t' is the latest value of t

where X(t)

={1

3.16

then an ordering of the pages in S(t) can be

defined such that

S(t) =

and

R(p 1)< R(p 2) 	R(p 3) < ... <R(p)

If r(t + 1) 	S(t) then

X(t.+l) = r(t+l)

Z(t+l) 	= pt..

and the new ordering of S(t + 1) is

S(t + 1) 	= I r(t + 1), Pi'P2'•••Pk-l]

NOTE: This is a strict demand paging algorithm.

DEFINITION 3.15
	

Least Recently Used (LRU)

The page in memory which has not been referenced

for the longest time is replaced.

If U(p), p E S(t) is defined as

U(p) = t - t' where t' is the latest t such

that r(t) = p

then an ordering of the pages in S(t) can be

defined such that

S(t) 	= I 	l'2''k

and

cU(pk).

If r(t + 1) S(t) then

X(t + 1) = r(t + 1)

Z(t + 1) = Pk

3.i 7

and the new ordering of S(t + 1) is

S(t + 1) 	=[r(t + 1), p1,p2'k-1

DEFINITION 3.16 	Working Set Algorithm (Den 68a).(Den 68b)

The working set of a program is that set of distinct

pages referenced in the T most recent references,

r(t - T + 1),r(t), where T is called the

window size.

S(t) 	= W(t,T)

where W(t,T) denotes the working set at time t with

a window size of T.

DEFINITION 3.17 Page Faulty Frequency Algorithm (Chu 72)

Let t' be the time of the most recent page fault,

if a subsequent page fault occurs at time t + 1

then:-

S(t) + r(t + 1) if t' - t + 1 4 i/p

S(t + 1)
=

W(t,t-t') + r(t + 1) if t' - t + 1 > i/p

where p is an estimated page fault frequency

parameter.

These definitions correspond to the algorithms that have

largely been used in practice. However, two better,

theoretically obtainable, algorithms exist:-

DEFINITION 3.18 VMIN Algorithm (Pri 76)

V(t,T), the VMIN set at time t is defined as

follows: -

3.18

V(O,T) =

	

V(l,T) 	= r(1)

and for t 2 1

V(t,T) + r(t + 1) if r(t) 	W(t + T,T)

V(t + l,T) =

V(t,T) + r(t + 1) - r(t) if

r(t) 	W(t + T, T)

In this algorithm a page is replaced if it is not referenced

in the next T references. Clearly this involves knowledge

of the page reference string in advance.

DEFINITION 3.19
	

OPT Algorithm (Mat 70)

All pages are assigned a forward distance which

for page p is defined, at time t, as

FD(p) = F - t

F = t' where t' is the leat t such that

r(tp and t' t.

Consequently, a priority list PL can be defined at

time to to be:-

	

PL(t) 	=[p1,p2, pn I

where p 1 = r(t + 1) and FD(p.) FD(p. 1).

If a page is never referenced after time t it can

be arbitarily assigned a forward distance of

infinity.

Thus, the algorithm works as follows:-

3.19

S(t) + r(t+l) - p, if r(t+l)S(t)

S(t + 1) =.

S(t) 	 if r(t+l)E S(t)

where p€S(t) :Vp'E S(t) FD (p) FD (p')

NOTE: After each reference the priority list must

be re-created.

As mentioned above, these algorithms although theoretically

obtainable cannot be implemented in practice since a

complete "dry run" through the program would be necessary

to create the reference string upon which they depend.

The four practical algorithms however need only retain

information on the past behaviour of the programs to

estimate the future behaviour. The main use of VMIN and

OPT is as estimators of the success of the practical

algorithms in test situations.

To return to the Principle of Locality, it is possible to

measure the effectiveness of a management strategy by its

success in estimating the locality at any time T.

Initially, it is sufficient to observe that it is those

pages in the current locality which will be referenced in

the near future that must be estimated.

Calling upon the notation used to describe the principle of

the Working Set algorithm, the temporal locality at time t

of width 2T can be defined as follows:-

TL(t,T) = W(t,T) U W(t + T, T)

3.20

NOTE: In a paged system, spatial locality about refer-

enced addresses normally is automatically handled

by the loading of the surrounding page.

Thus it can be stated that an estimator of W(t + T, T)

is required.

Apart from the problem of finding a suitable estimator,

another difficulty arises, namely the size of T. Coffman

and Denning (Cof 73) suggest that for W(t,T) two criteria

must be satisfied:-

T must be large enough to ensure that the

probability of a member of the current locality

being missing from the working set is small.

T must be small enough to ensure that the

probability of more than one inter-locality

transition being contained in the working set

is small. (An inter-locality transition occurs

when a program moves from one favoured subset

of its pages to another.)

This can be presented formally:-

Let r(l) ,r(2) ,. • ,r(t),... be the reference string

generated by a program, then the Principle of Locality

suggests that the program passes through a series of

localities L 1 ,L 2 where L 1 .N.

the current locality, is given by

L = Lk for

then

r(t) L for tj t

That is to say, if L,

3.21

The management policy generates a sequence of store

sets S 1 1 S 21 ... and the aim is that if at time t

the store set = S1

the locality = Lm

then

S1 = L•

In order to support the theoretical analysis of replacement

algorithms, Coffman and Denning make the following

assumptions about reference strings (Cof 73)

The probability that r(t + x) = j, given that

r(t) = i (i,jEN) is independent of t.

For an t, and any i€ N, there exists a t'' t

such that r(t') = i.

r(t) and r(t + x) become uncorrelated as x

becomes large.

Coffman and Denning are aware of the significant restriction

placed on reference strings by 1. Over a complete reference

string there is no good evidence that 1. should hold-.

Within a locality, however, 1. is more reasonable. That is

to say:-

If L(k) =(r(t) 	t1

and t1 t 't2 , t1 <- t + x 4 t2

then it would appear that 1. is intuitively more reasonable.

This is an example of what Spirn (Spi 77) and Denning and

Kahn (Den 75) observe to be a difference between micro-

3.22

behaviour and macro-behaviour in reference strings. To

further expand this notion, Denning and Schwartz (Den 72)

give some important properties of localities:-

During any interval of time a program distributes

its references non-uniformly over its pages.

Taken as a function of time, the frequency with

which a given page is referenced tends to change

slowly.

Correlation between immediate past and immediate

future patterns of behaviour tends to be high.

Whereas the correlation between disjoint reference

patterns tends to zero as the distance between

them tends to infinity.

In the same paper they make a significant admission:-

"W2: The stochastic mechanism underlying the

generation of a reference string is stationary,

i.e. independent of the time of origin.

Assumption W2 does restrict the results somewhat,

limiting the analysis to the context of a single

program locality in the following sense. As

mentioned above a program passes through a sequence

of localities as it generates references. One

would expect that whatever non-stationarities

exist depend only on the locality. In other

words, we could approximate a reference string r

as a sequence of substrings

3.23

r =

where each substring r1 obeys W2. Therefore

the results are applicable locally in a given

reference string, but not necessarily globally

assumption W2 will not be severe as

long as the measurement intervals are corn-

parable to or less than the average inter-

locality transition time."

This in effect restricts analysis of algorithms to the

micro-behavioural phase, and avoids consideration - of

locality transitions.

It is the contention of this thesis that this and other

assumptions place significant restrictions on the utility

of page replacement algorithms, and consequently cast

doubts on the global validity of demand paging. These

contentions are laid out in the following section.

3.5 Assumptions Inherent in the Theoretical Support

for Current Algorithms

1. 	Ignoring all aspects considered above, it

would seem that from the point-of-view of

system throughput demand paging has a detri-

mental effect. Stated simply at each page

fault occurrence in a demand paged system the

program must wait the maximum possible time

before its request is satisfied, since the

page is only sought once it has been referenced.

3.24

Following on 1. above, since the models on

which paging algorithms are based are effective

only within localities, the effects of locality

transitions are amplified by demand paging.

During a locality transition, a high page

activity must be expected. 	The adoption of

demand paging implies that each page fault will

be treated singly and no optimisation of, say,

disk seeks will be possible.

The effectiveness of demand paging is based on

a rather unimpressive proof (Propositions 3.6

& 3.7). These propositions admit the existence

of optimal demand paging algorithms. However,

what is not shown is:-

that this demand paging algorithm can

indeed be achieved without a complete pre-

determination of the reference string.

that the same demand paging algorithm is.

optimal in all cases. It seems

intuitively likely that OPT should fall

into this category but it is reported

(Aho 71) that counter-examples can be

found.

Proposition 3.7 depends for its proof on

assumptions about the cost of a page fetch

that do not hold for conventional main

store - drum/disk hierarchies.

3.25

The cost of an algorithm is estimated only

in terms of the cost of its page faults.

This is not sufficient since this implies

that an algorithm which generates no page

faults by the simple expedient of holding

all of a program's address space in main

store is optimal and has zero cost.

4. The optimal choice of page size seems to be

dependent on the segment size for a given

program. This is in conflict with:-

the need to achieve efficient transfers

between backing store and main store.

the convenience of establishing a system-

wide norm for page size.

5. All the major replacement algorithms depend on

the establishment of an arbitrary system-wide

behavioural parameter: -

LRU - requires a stack-length to be fixed.

Working Set - requires a window size to be

fixed.

PFF - requires a critical page fault

frequency to be fixed.

As will be shown in the next chapter, the choice

of the values for these parameters is critical

to the efficient operation of the algorithm in

question.

3.26

6. As with 2 above, the algorithms presented make

no significant attempt to deal with locality

transitions, thereby restricting their general

effectiveness. To be fair this is perhaps

least applicable to the Page Fault Frequency

algorithm.'

3.6 	Conclusion

This chapter has attempted to show the theoretical back-

ground of the page replacement algorithms of current

systems. It has also shown that some of the claims made

are questionable and that conclusions drawn from these

propositions are untrustworthy. That the theory has its

limitations is undoubtedly true, however it will be shown

in the next chapter that despite these limitations, the

algorithms can be used to some effect if suitably

limited contexts are chosen.

3.27

CHAPTER 4 	BEHAVIOURAL CHARACTERISTICS OF CONVENTIONAL

MEMORY MANAGEMENT SYSTEMS

4.1 Introduction

In this chapter are presented results showing both

theoretically and in practical situations, the strengths

and limitations of current memory management systems.

4.2 The Working Set Algorithm (Den 70)

This algorithm, which attempts to estimate the current

locality of a program by examination of the pages refer -

enced during a fixed time interval in the past, T (called

its window), has been extensively studied. But before

these studies are considered, it is instructive to examine

Denning's own claims for this algorithm.

Denning claims the following:-

"WORKING SET PRINCIPLE: Suppose memory manage-

ment operates according to the following rule:

A program may run if and only if its working set

is in memory, and a page may not be removed jf

it is a member of the working set of a running

program. Then according to the principle of

locality, this rule is an implementation of the

principle of optimality."

4.1

The proof he presents firmly depends on the consideration

only of the micro-behavioural characteristics of programs

mentioned in Chapter 3. Equally, the related principle of

locality (Proposition 3.5a) which he presents depends on

estimates of the lengths of localities, i.e. the number of

references that a program makes whilein a locality.

Much support for his work has been taken from the work by

Belady (Bel 66) on program lifetime functions and from the

manner in which programs acquire pages on demand from the

beginning of a time quantum (Cof 68) , (Fin 66).

In his paper (Bel 66), Belady describes simulation

experiments which together with simulation studies per-

formed on the 360/67 at SDC (Fin 66) and at Princeton

(Var 67) lent support to the following major results:-

PROPOSITION 4.1 Belady Lifetime Function

If e is the expected length of time between page

faults and s represents the amount of storage

assigned to a program, then the relationship

between e and s can be approximated by

e = as k

where a varies with the individual program and

k has been observed to take values in the

vicinity of 2.

This relationship is shown graphically in Diagram 4.1

4. 2

0

Two points P and R are to be noted on this graph. Firstly

R represents the amount of storage required to totally con-

tain the program and P represents the point of divergence

between

P 	 R

$

Relationship of mean execution interval between page

and storage allocated.

Diagram 4.1

4. 3

the approximation and the actual curve. Belady explains

this divergence in two ways:-

e is the average of all execution intervals,

and in the initial loading phase, a program

goes through a number of short execution periods

which contribute to the reduction of e.

if programs are given sufficient space to

accumulate their current locality, then little

or no paging will occur until a locality change

is made.

From this and the work of Coffman and Varian (Cof 68)

reported below, Denning extracts the following relationship:-

PROPOSITION 4.2 Fault Probability

Let F(A,m,r) denote the number of faults generated

as algorithm A processes reference string r under

demand paging in an initially empty memory of size m,

the fault probability f(A,m) can be defined as

follows: -

f(A,m) = 	Pr(r) (F(A,m,r)/IrI) all r

where Pr(r) denotes the probability of occurrence

of r and Irl represents the length of r.

This, apparently, yields the following graphical relation-

ship (Diagram 4.2) :-

4.4

f(A,m)

Unreal iscite

[I]
n

M

Diagram 4.2

It is stated that ' t reasonable" algorithms lie in the

shaded region on the graph and that the dotted line

represents what could be achieved by optimal unrealisable

algorithms such as that of Belady. The argument is that

for reasonable A, f(A,m) is much more sensitive to m than

to A.

The dashed line above is meant to indicate the behaviour

that would exist if programs exhibited a random reference

pattern.

One of the most unfortunate features of the above diagram

is that, although it shows that the number of page faults

4. 5

decreases for reasonable" algorithms with the increase

of allocated memory, it does not give any quantifiable

estimates of the behaviour of algorithms either in general

or in particular cases.

Further work on the relationship between locality and

lifetime functions has been performed by Denning and Kahn

(Den 75). These authors again quote considerable experi-

mental evidence supporting the notion of locality (Bry 75),

(Hat 71), and (Rod 71). In the same paper they present two

important properties of lifetime functions:-

PROPOSITION 4.3

A lifetime function typically has the convex/concave

shape. The convex region is approximated by

where x is the allocated store size, for some c,k.

PROPOSITION 4.4

For a given reference string, the Working Set life-

time function will tend to exceed that of LRU for

wide ranges of memory allocations.

Evidence for this proposition has been found in the work of

Bard (Bar 73), (Bar 75).

- As mentioned above, a memory management strategy can best be

considered as an estimator of program localities. An ideal

estimator is said to have three properties (Den 75) :-

a) the store set is always a subset of the current

locality set

4.6

at a locality transition, the resident set

contains only the pages in common to the old and

new locality sets

page faults occur only for first references to

entering pages.

The working set algorithm is consequently not an ideal

estimator, since at a locality transition old locality

pages can remain for up to T references after the transition.

However, if T is short enough to include only one locality

transition, then the only penalty is the excess store

allocation made to the program. Later some examples will

be presented which estimate how significant this over-

allocation is.

In another paper (Den 72), Denning and Schwartz establish

behavioural characteristics of the Working Set algorithm.

Given that:-

S(T) = average working set size

m(T) = missing page rate, i.e. the number of

pages per unit time returning to the

working set

f(x) = the over-all inter-reference density

F(x) = the over-all inter-reference distribution

nr = the number of recurrent pages.

PROPOSITION 4.5

1 = S(l)S(T)'S(T + 1)s (min n, T + iJ

4.7

This states that the average working set size is non-

decreasing with T and that the working set size is bounded

below by 1 and above by either one more than the current

window size or n the number of pages (whichever is the

smaller)

PROPOSITION 4.6

S(T + 1) - S(T) = m(T)

This states that the difference between the average working

set size for a window of T+1 and that for a window of T is

equal to the missing page rate.

PROPOSITION 4.7

O 4 m(T + 1) m(T)' m(0) = 1

This states that the missing page rate does not increase

with T.

PROPOSITION 4.8

m 	= 1 - F(T) =) T f(y)

This states that m(T) can be regarded as the probability

that x) T.

4.8

PROPOSITION 4.9

m(T + 1) - m(T) = -f(T + 1)

This states that the difference between m(T + 1) and

m(T) is the negative value of the over-all inter-

reference density f.

PROPOSITION 4.10

(S (T - 1) + S(T + 1))/2.S(T)

This states that the curve S(T) is concave down.

PROPOSITION 4.11

urn S(T) = n T— 	 r

As T—,00 the working set size tends to the number of

recurrent pages.

PROPOSITION 4.12

urn m(T) = 0 T—*

As T—*'. the missing page rate tends to zero.

4.9

These properties are far from remarkable, and as such do

not provide any insight into the physical operation of the

Working Set algorithm. However they do provide two useful

indicators to the size of T. As was mentioned above, this

arbitrary parameter must be chosen with great care in order

to increase the effectiveness of working set policies.

Firstly, if a specified lower bound is placed on the

efficiency required of our algorithm, then this implies (in

a limited context) an upper bound on the value of m(T). This,

in turn,implies a lower bound on T, by Proposition 4.7.

Secondly, the concave down property of S(T) indicates that

varying T need not be advantageous.

From a practical point-of--view, it is fairly clear that these

considerations do not give a clear indication of how a

Working Set algorithm will behave. Much measurement has been

done in practical situations, particularly in comparison with

LRU strategies. In the remainder of this section, and in the

next (dealing with the LRU algorithm itself) these results

will be presented.

Spirn and Denning (Spi 72) present the results of their

experiments. They compare the behaviour of intrinsic models

of locality with the working set algorithm as an estimator

of locality. Experiments were carried out on two machines

(a PDP-8 and System 360) using both assembly code and FORTRAN

programs.

4.10

Measurements were made of the average working set size and

the missing page probability for each of the techniques

studied, compared with possible window sizes.

The work presented in this paper is rather interesting, in

that it attempts to compare the behaviour of the intrinsic

models with that of real programs by comparing how well the

intrinsic compare with the Working Set algorithm. As this

thesis has attempted to show, insufficient evidence has been

produced to show that the Working Set algorithm is indeed a

good estimator of real program behaviour. Even if it were,

it has already been admitted that it only presents a model

of the micro-behaviour within localities and does not deal

with locality transitions. This is contradictory to the

claim in this paper (Spi 72) :-

"We are concerned, however, with locality

transition behaviour."

However, some useful data can be extracted from these

experiments.

For the reference strings used the following statistics

can be obtained:-

4.11

Reference
String

Window
Size

Working Set Size
Program Size

2 250 25

4 250 50

6 250 40

2 500 26

4 500 63

6 500 63

2 750 28

4 750 70

6 750 65

2 1000 30

4 1000 75

6 1000 69

Figure 4.1

In Figure 4.1, the column headed "Reference String"

refers to the identifying number used in the original

paper.

It is interesting to note that Spirn later (Spi 77)

suggests that window sizes of "practical interest" satisfy:

10,000 6 T 100,000 references.

This later statement has also been supported by the work of

Rodriguez-Rose 11 (Rod 73). In this paper, Rodriguez-Rosell

commented on the lack of published data on working set

behaviour from actual program measurements. The measure-

4.12

ments used in his study were made on an assembler program

running on the System 360. The minimum value used for the

window size was 5000 references.

It is puzzling, therefore, to consider the data in Figure

4.1, particularly considering that in all but one of the

reference strings shown, a working set of greater than 70%

of the address space available is achieved with a window

size of the order of 1000 references. It is equally

puzzling that reference strings 4 and 6 are high-level

language generated program reference strings (FORTRAN)and

that reference string 2 is that of a compiler. Another

peculiar feature is that all experiments quoted here were

carried out on the System 360,. also.

It is useful, at this point, to remember a conjecture of

Randell (Ran 69) that programming languages, styles, and

conventions might have an effect on the behaviour of

programs.

4.13

To further support the doubts expressed above, some

experimental evidence is presented which shows that, in

practical cases, the Working Set algorithm acts as a poor

estimator of locality size.

EXAMPLE 4.1.1

On the following page is shown a bubblesort algorithm

taken from Wirth (Wir 76). This well-known technique

was run under two sets of conditions:-

with window size = 10,000 references

with window size = 500 references

In both cases the page size was 256 words.

The results are presented on the following pages.

This particular example brings up some interesting points.

Firstly, the localities are easily determinable by inspection

for the sort part of the program. The references to the

address space can be divided into 3 categories:-

the current code page

the page containing the index variables i,j,k

the page currently being worked upon in the

array.

Consequently, it is to be expected that, since in this example

there is only one code page, and since there are few variables

other than the array elements, the locality estimate will, at

worst, consist of four pages:-

the current code page

the page containing the index variables

two (adjacent) pages from the array

4.14

Thu Jan 18 15u7:48 1979 	 bubble 	 Pane 1

1 	 proiran, bubblesort(iriput,output)
2 	 var

• 	 3 	 i,J,k:ir.teer;
4 	 elen,enitarragE1. .20483of integer;
5 	 begin
6
7 	 for i1 to 2048 do
8. 	 heir,
9
10
11 	 elernentti]=i+J-k
12 	 end;
13 	 for i2 to 2048 do
14 	 for J2048 dowr,to i do
15 	 begin
16 	 if elérnent(J-13>elenieritEJ] thor,
17 	 begin
18 	 kelenuentEJ-13
19 	 elemen,tEJ-1]=elenienttJ]
20 	 e1enuent[J]k
21 	 end;
22 	 end;
23 	 ersd,

Fri Jan 19 14:42:43 1979

1
LRIJ PFF Wor

3 .
4
	

US Store
5
	

C: 0 1
6
7
8
9
	

LRU Store
10
	

C: 0 1
11
12
13
14
	

PEF Store
15
	

C: 0 1
16
17
18
19
20
21
	

LRU FFF Wor
22
23
	

US Store
24
	

C: 0 1 	11:23 2
25
26
27
28
	

LRU Store
29
	

C: 0 1 	11:23 2
30
31
32
33
	

PFF Store
34
	

C: 0 1 	[':23 2
35
36
37
38
39
40
	

LRU PFF Wor
41
42
	

US Store
4:3
	

C: 0 1 	[':23 2 LU 0 3
44
4
46
4?
	

LRU Store
4E
	

C: 0 1 	[':23 2 ii: 0 3
49
5C
51
52
	

PFF Store
5:3
	

C: 0 1 	11:23 2 Li: 0 3
54
55
56

opt
	

e 1

Algorithms causing page fault.

Contents of memory at page fault for each algorithm

In this case, note the Working set store with a window size

of 500 references

61 WS 	Store
62 C 	0 	4 	[':23 	6 	ti: 	0 	7 	r':is 8
63
64
65
66 LRU Store
67 C: 	0 	4 	11:23 	6 	1' 	0 	7 	1I15 8
68
69
70
71 PFF Store
72 C: 	o 	4 	[':23 	6 	r': 	0 	7 	11 U5 8
73
74
75
76
77
78 LRU PFF Wor
79
80 WS 	Store
81 C: 	0 	4 	11:23 	6 	ri: 	0 	7 	t':is 13 t'16 14
82
83
84

85 LRU Store
86 C: 	0 	4 	D23 	6 	ru: 	0 	7 	[':15 13 1U16 14
87
Be
89
90 PFF Store
91 C: 	0 	4 	1'23 	6 	ii: 	0 	7 	r':is 13 1U16 14
92
93
94
95
96
97 LRU PFF Wor
98
99 WS 	Store
100 C 	0 	4 	[':23 	6 	1' 	0 	7 	ri:15 13 1'16 269 	t'17 	270
101
102
103
104 LRU Store
105 C: 	0 	4 	1U23 	6 	r': 	0 	7 	[':15 13 t'U6 269 	11U7 	270
106
107
108
109 PFF Store
110 1'16 	269 	[':17 	270
111
112
113
114
115
116 LRU PFF War
117
118 WS 	Store

Continued in Example 4. 1 2

C WS Store
c: o 1

LRU Store
C: 0 1

PFF Store
C: 0 1

LRU PFF Wor

WS Store
C: 0 1 E':23 2

LRU Store
C 0 1 1 1#23 2

PFF Store
(C: 0 1 [':23 2

(

** ** * * * * * ****** **** ****
(LRU PFF Wor

WS Store
(C 0 1 [123 2 ru: 0 3

(

LRU Store
C: 0 1 [':23 2 D 0 3

(

PFF Store
C 0 1 [':23 2 ii: 0 3

(.

** * * * * * * *********** (******************************
LRIJ PFF Wor

WS Store

FFF Store
C: 0 4 [':23 6 D 0 7 D15 8

LRIJ PFF Wor

WS Store
C: o 4 [':23 6 ru: 0 7 DU5 13 [':16 14

(LRII Store
C: o 4 [':23 6 ii: o 7 1U15 13 [':16 14

PFF Store
C: 0 4 [':23 6 ii: 0 7 [U15 13 [':16 14

* *** * * ** ** *** **** * ******* *
LRU PFF Wor

WS Store
Cl 0 4 [':23 6 D 0 7 DU5 13 [':16 269 [1U7 270

LRU Store
c: 0 4 [':23 6 ru: 0 7 1U15 13 D16 269 ['U? 270 (

PFF Store
[':16 269 [':17 270

(******************************
LRIJ FFF Wor

(WS Store
C: 0 4 [':23 6 r': 0 7 DU5 13 t'16 269 1U17 525 DUG 526

(,

LRU Store
C: 0 4 tu:23 6 tu: 0 7 t'U5 13 t116 269 t1U7 525 DUG 526

1

WS Store
C: 0 4 [':23 6 E' 0 7 11U5 13 D116 269 11U7 525 DUG 781 DU9 782

(' LRU Store
c: 0 4 [':23 6 1' 0 7 1U15 13 [':16 269 DU7 525 11U8 781 D19 782

PFF Store
0:18 781 LU19 782

(LRIJ PFF Wor

WS Store
C: o 4 11:23 6 WO 0 7 I'U5 13 DU6 269 0U7 525 1U18 781 0U9 1037 D20 1038

LRU Store
[':23 6 ii: o 7 1U15 13 11:16 269 11U7 525 DUG 781 11U9 1037 020 1038

(PFF Store
[':19 1037 1U20 1038

(******************************
LRU PFF Wor

(WS Store)

C.' 0 4 1U23 6 [' 0 7 DU5 13 1U16 269 0U7 525 1U18 781 0U9 1037 1U20 1293 021 1294

)

LRU Store
0 0 7 BUS 13 1iU6 269 D17 525 ru:1e 781 1U19 1037 1U20 1293 D21 1294

(

PFF Store
0:20 1293 1U21 1294

(

(******************************

LRU PFF Wor

WS Store
C: 0 4 [':23 6 1' 0 7 [I

PFF Store
ç' 1121 	1549 	[1:22 	1550

** * * ** * *** ******* * ***
LRUPFF V

WS 	Store
C: 	0 	4 	[1:23 	1806 	D: 	0 	7 11:15 	13 11116 269 	11:17 525 	0:18 781 	1U19 	1037 1U20 	1293 	0121 	1549 	11:22 	1805

LRIJ Store
DU6 	269 	0U7 	525 	DUB 781 	0:19 1037 11:20 	1293 1U21 1549 	1122 	1805 	11123 1806

C

(
PFF Store

11:22 	1805 	0123 	1806

(V

(

LRU PFF

(
WS 	Store

Cl 0 	4 	0:23 	2058 	Dl 0 	2059 0115 13 	D16 269 	11:17 525 11:18 	781 	D19 	1037 D20 	1293 	0121 	1549 	022 	1805

LRU Store
(

[':17 	525 	11:18 	781 	DU9 1037 	11120 1293 1U21 	1549 11:22 1805 	11:23 	2058 	Dl 0 	2059

(

FFF Store
EU23 	2058 	III 0 	2059

(V.)

(

LFW PFF
(. a

WS 	Store
C: 0 	2060 	0:23 	2058 	0 	0 2059 	0:15 13 11:16 	269 11U7 525 	11118 	781 	£1119 1037 	0:20 	1293 	11121 	1549 	11122 	1805

LRU Store a
DUB 	781 	1U19 	1037 	1U20 1293 	1U21 1549 [':22 	1805 023, 2058 	111 0 	2059 	C 0 	2060

U
PFF Store

(REF Wor

WS Store c 	C: 0 31939 11:23 31932 0 0 31941 [':22 31942

LRU Store
11:18 781 [':19 1037 1U20 1293 11:21 1549 0:23 31932 C: 0 31939 ii: 0 31941 1U22 31942

C

PFF Store
0:23 31932 fill 0 31941 C: 0 31939 1U22 31942

C

* * * * * * * *** * ******* (******************************
PFF Wor

(WS Store
c:0 62403 [':23 62396 ii: 0 62405 0:22 62287 [':21 62406

LRU Store
[':18 781 DU9 1037 1U20 1293 [':22 62287 [':23 62396 CIO 0 62403 lIt o 62405 1121 62406

I 	 (

F'FF Store
0:23 62396 Ot 0 62405 Ct 0 62403 [U22 62287 D21 62406

(

(******************************

PFF Wor

C.)

WS Store
C: 0 92867 0:23 92860 Ot 0 92869 t121 92751 1U20 92870

C

(LRU Store
D:18 781 0U9 1037 [1:22 62287 0:21 92751 [':23 92860 Ct 0 92867 EU 0 92869 1U20 92870

PFF Store

(. 	0:23 92860 Elt 0 92869 C 0 	2867 1021 92751 1U20 92870

C,
** * * * * * ** **** ******* ** C, 	PFF Wor

WS Store

I 	
LU1 	7 1 11:22 62287 1U21 92751 1120 123215 D:23 123324 C: 0 123331 o: 0 123333 0U9 123334

C

' PFF Store
0:23 123324 ii: 0 123333 C: o 123331 0:20 123215 D19 123334

FFF Wor

\

, 	WS Store
C: 0 153795 0:23 153788 ii: 0 153797 11U9 153679 r':w153798

LRU Store

C 	0:22 62287 021 92751 0420 123215 1U19 153679 0:23 153788 C: 0 153795 o: 0 153797 DUG 153798

(
) PFF Store

0:23 153780 ii: 0 153797 C 0 153795 0:19 153679 D:18 153798

(

(****************************** I
)

- i

LRU FFF Wor
(

WS 	Store
C: 0 	184259 	0:23 	184252 	0 	0 1184261 11:18 184143 [U17 184262

(LRU Store 0)

11:21 	92751 	0:20 	123215 	1U19 153679 DUG 184143 0:23 184252 	C: 0 	184259 	o: 0 	184261 	[U17 	184262

(

PFF Store

(0:23 	184252 	EU 0 	184261 	C: 0 184259 hUG 184143 1U17 184262 0)

• :

(
LRU PEE Wor 0

0)

WS 	Store
C 	0 	214723 	11:23 	214716 	D: 	0 214725 [U17 214607 1U16 214726

LRU Store
0 D20 	123215 	1119 	153679 	DUB 184143 1U17 214607 0:23 214716 	C: 0 	214723 	o: 0 	214725 	1U16 	214726

-JO

C ***************** *************
LRU PFF Wor

C WS Store
C: 0 245187 11:23 245180 1' o 245189 t'16 245071 11U5 245190

C

LRIJ Store
(11:19 153679 r':18 184143 11:17 214607 1116 245071 11:23 245180 c: 0 245187 o: 0 245189 D15 245190

FFF Store
11:23 245180 11 0 245189 c: 0 245187 11:16 245071 1U15 245190

('

PFF Wor
(

US Store
Cl 0 276377 1U23 276378 D 0 276379 I'U6 276319 11:17 276380

(LRU Store
11:19 153679 t'18 184143 D:15 246534 DU6 276319 C: 0 276377 11:23 276378 11 0 276379 11U7 276380

('

PFF Store
D23 276378 11 0 276379 C: 0 276377 1U16 276319 11U5 246534 1117 276380

(

(PFFWor

US Store c: 0 306329 11:23 306330 11 0 306331 E'17 306271 1U18 306332

(

LRIJ Store
D19 153679 ru:15 246534 I'U6 276486 1U17 306271 C: 0 306329 11:23 306330 11 0 306331 DUB 306332

(

PFF Store
11:23 306330 1': 0 306331 C: 0 306329 11:16 276486 11U7 306271 DUB 306332

(,

************** ****************
PFFWor

.1

)

)

y)

)

'3

LT%U OxIore

f' [':15 	246534 	t'16 	276486 	tU17 306438 ['U8 336223 C: 0 336281 [':23 336282 	[U 0 	336283 	[':19 	336284

PFF Store
[':23 	336282 	[U 0 	336283 	C: 0 336281 0:17 306438 DUB 336223 rU19 336284

LRU PFF Wor

C .
WS 	Store

C: 0 	366233 	tU23 	366234 	o: 0 366235 [':19 366175 1U20 366236

(

LRU Store
[':16 	276486 	[U17 	306438 	DUB 336390 ['119 366175 C: 0 366233 [':23 366234 	[U 0 	366235 	[U20 	366236

(.
PFF Store

(D23 	366234 	1U 0 	366235 	C 	0 366233 DUO 336390 [':19 366175 1U20 366236

4:

* * * * *
4 LRUPFFWor .

WS 	Store

(C: 0 	396185 	[':23 	396186 	[U 0 396187 [U20 396127 1U21 396188

4

)

LRIJ Store
DU7 306438 DUB 336390 11:19 366342 1'20 396127 C: 0 396185 11:23 396186 ii: 0 396187 D21 396188

C-'
PFF Store

11:23 396186 11 0 396187 Cl0 396185 EU19 366342 1'20 396127 11:21 396188

Cl

(_• ******************************
- -

LRU PFF Wor

WS Store
C 0 426137 [':23 426138 Eu: 0 426139 D21 426079 1 1422 426140

(LRU Store
DUB 336390 DU9 366342 020 396294 1'21 426079 C: 0 426137 [':23 426138 D 0 426139 1122 426140

(

PFF Store
1U23 426138 ri: 0 426139 c: 0 426137 1120 396294 11:21 426079 11:22 426140

* ** ** * * * * * * ** * * *********** * * ******* *** ** ** * * *** * *** *** **
(LRU PFF Wor

WS Store
C: 0 485399 [(:23 485400 DI 0 485401 r':15 485402

(

LRIJ Store
11:19 366342 11:20 396294 1121 426246 11:22 456198 C: 0 485399 [':23 485400 D 0 485401 11:15 485402

(PFF Store
11:23 485400 Lu: 0 485401 C: 0 485399 D21 426246 11:22 456198 11:15 485402

(

C
LRU PFF Wor

(WS Store
C: 0 485942 1123 485943 D 0 485944 r':15 485892 DU6 485945

(

LRIJ Store
ç 	D20 396294 D21 426246 11:22 456198 11:15 485892 C 0 485942 11:23 485943 LU 0 485944 E'U6 485945

)

)

** * * * * * * * * ******* ***
LRIJ PEE Wor

WS Store
C: 0 515894 [':23 515895 EU 0 515896 [':16 515844 1U17 515897

C

fl LRIJ Store
[U21 426246 11:22 456198 1U15 485959 E'U6 515844 C: 0 515894 [':23 515895 EU 0 515896 0U7 515897

C'

PEF Store
[':23 515895 ri: 0 515896 Cl 0 515894 [':15 485959 0U6 515844 1U17 515897

C
* ** * * * * * ********** **** **

(
LRIJ PEE Wor

WS Store
Ct 0 545846 [':23 545847 DFO 545848 1 1417 545796 DUB 545849

- 	(
LRU Store

[':22 456198 OtiS 485959 [U16 515911 1U17 545796 C: 0 545846 [':23 545847 EU 0 545848 DUB 545849

(
PFF Store

EU23 545847 lit 0 545848 Cl 0 545846 DU6 515911 DU7 545796 EU18 545849

** * * * * ******* * *****
(

LRU PEE Wor

(
WS Store

C: 0 575798 [(:23 575799 EU 0 575800 11:18 575748 1U19 575801

LRU Store
OtiS 485959 [':16 515911 DU7 545863 DU8 575748 c: 0 575798 0:23 575799 o: 0 575800 DU9 575801

PFF Store
[' 1023 575799 EU 0 575800 Ct 0 575798 [':17 545863 DU8 575748 1U19 575801

- (•..
****************************** * *** * * *** * * ** ** *** *

LRU PEE War

LRU Store
D16 515911 D:17 545863 DUB 575815 11:19 605700 C 0 605750 11:23 605751 NO 0 605752 11:20 605753

FFF Store

C' 	11:23 605751 EU 0 605752 Ct 0 605750 DUB 575815 1U19 605700 11:20 605753

** * * * * * * * ***** ** **
LRU PFF Wor

US Store
C: 0 635702 EU23 635703 D 0 635704 1U20 635652 11:21 635705

LRU Store
11:17 545863 DUB 575815 DU9 605767 1U20 635652 C: 0 635702 11:23 635703 11 0 635704 11:21 635705

PFF Store
11:23 635703 EU 0 635704 c: 0 635702 1U19 605767 11:20 635652 D21 635705

(******************************
LRU PFF Wor

(US Store
C: 0 665654 [':23 665655 LU 0 665656 1U21 665604 11:22 665657

LRU Store
EU18 575815 11:19 605767 1U20 635719 11:21 665604 C 0 665654 [':23 665655 EU 0 665656 1U22 665657

(

PFF Store
1U23 665655 LU 0 665656 C 0 665654 ['120 635719 1U21 665604 11:22 665657

(

(: ** * * * * * *************
LRU FFF Wor

US Store
c: 0 724757 11:23 724758 [U 0 724759 [':15 724760

(••

LRU Store
[':19 605767 1U20 635719 [U21 665671 11:22 695623 C 0 724757 11:23 724758 EU 0 724759 ['U5 724760

c

LRU PFF War .

WS Store
C: o 725216 D:23 725217 DI 0 725218 r':15 725158 D:16 725219

LRIJ Store
D:20 635719 [',21 665671 D22 695623 D15 725158 C: 0 725216 D23 725217 ru: 0 725218 11:16 725219

(PFF Store
11:23 725217 LU 0 725218 C: 0 725216 ru:15 725158 1U16 725219

C .
(******************************

LRU PFF War

(WS Store
C: 0 755168 11:23 755169 o: 0 755170 1U16 755110 DU7 755171

(

LRIJ Store
(11:21 665671 1U22 695623 DU5 725325 [':16 755110 C 0 755168 11:23 755169 u: 0 755170 1fl17 755171

(

PFF Store
11:23 755169 LU 0 755170 C: 0 755168 DU5 725325 1116 755110 11U7 755171

(

(.

LRU PFF War
(

US Store
C: 0 785120 11:23 785121 Eu: 0 785122 1U17 785062 EU18 785123

(

LRU Store
.11:22 695623 [':15 725325 tU16 755277 1U17 785062 C: 0 785120 11:23 785121 o: 0 785122 LU18 785123

PFF Store
(; 	LU23 785121 11: 0 785122 C 0 785120 1U16 755277 1U17 785062 LU18 785123

)

I
c:i

LRU Store

0:15 725325 [U16 755277 0U7 785229 DUB 815014 C: 0 815072 0123 815073 ii: 0 815074 1U19 815075

' PFF Store
D23 815073 1': 0 815074 C 0 815072 11,17 785229 DUB 815014 DU9 815075

C
LRU PFF Wor

US Store
C 0 845024 0:23 845025 D 0 845026 DU9 844966 D20 845027

I

LRU Store
(0:16 755277 0:17 785229 0:18 815181 0:19 844966 C: 0 845024 11:23 845025 LU 0 845026 1U20 845027

PFF Store

0:23 845025 [U 0 845026 Cl 0 845024 DUB 815181 DU9 844966 [':20 845027

(******** ************** ******** * * * * * * ** * * * *
LRU PFF Wor

US Store
C 0 874976 0:23 874977 LU 0 874978 1U20 874918 11:21 874979 (

LRU Store
0:17 	785229 	r':ia 	815181 	11:19 845133 11:20 	874918 	C 	0 	874976 	0:23 	874977 	r: 0 	874978 	11:21 	874979

(
PFF Store

(0:23 	874977 	D: 0 	874978 	C 	0 874976 [':19 	845133 	0:20 	874918 	0:21 	874979

LRU PFF Wor

US 	Store
C: o 	904928 	[':23 	904929 	D: 0 904930 [':21 	904870 	11:22 	904931 3

LRU Store
FU1R 	R11R1 	rI!19 	ei -z -z 	n,, 0-7Io

(_••

LRU PFF Wor

ç 	WS Store
C: 0 963956 11:23 963957 EU 0 963958 1U15 963959

LRIJ Store
11:19 845133 1U20 875085 [1:21 905037 11:22 934989 C: 0 963956 11:23 963957 11 0 963958 [1:15 963959

PFF Store
0:23 963957 EU 0 963958 Cl 0 963956 11:21 905037 [1:22 934989 11:15 963959

C 	******************************

LRU PFF Wor

US Store
C: 0 964331 [':23 964332 EU 0 964333 11:15 964273 [1:16 964334

LRU Store
1U20 875085 1U21 905037 [U22 934989 1U15 964273 C: 0 964331 r':23 964332 EU 0 964333 1U16 964334

PFF Store
1123 964332 EU 0 964333 C: 0 964331 [':15 964273 1U16 964334

(LRU PFF Wor

US Store
C: 0 983531 11:23 983532 Of 0 983533 D16 983473 11:17 983534

(

LRU Store
11:21 905037 [':22 934989 1U15 964348 11 1016 983473 Cl. 0 983531 0:23 983532 E' 0 983533 11U7 983534

U

PFF Store
11:23 983532 t': 0 983533 CIO 0 983531 1U15 964348 11:16 983473 11:17 983534

LRU Store
ç 	[U22 934989 11:15 964348 0116 983548 1U17 1002673 Cf. 0 1002731 1U23 1002732 ii: 0 1002733 D18 1002734

(.
PFF Store

023 1002732 D 0 1002733 C: 0 1002731 [':16 983548 [':17 1002673 DUB 1002734 (
* ** * **** * ********* ****** **** **

LRU PFF Wor

WS Store

C: 0 1021931 11:23 1021932 D: 0 1021933 11U8 1021873 0U9 1021934

LRIJ Store

['U5 964348 11:16 983548 [':17 1002748 11U8 1021873 C: 0 1021931 D23 1021932 11 0 1021933 1-U9 1021934

PFF Store
D23 1021932 D: 0 1021933 C: 0 1021931 [':17 1002748 11:18 1021873 11:19 1021934

(

(• LRU PFF War

WS 	Store c: 	0 	1041131 	1U23 	1041132 Ii: 	0 1041133 11:19 1041073 [':20 1041134

C
LRU Store

D16 	983548 	[':17 	1002748 [':18 1021948 D41 19 1041073 C: 0 1041131 	[':23 	1041132 	[U 	0 	1041133 	[':20 	1041134 (
PFF Store

D23 	1041132 	ti: 	0 	1041133 Cl 	0 1041131 [':18 1021948 1U19 1041073 	11:20 	1041134

(
** ** * * ** * * ****** ** ******

(

LRU PFF War

WS 	Store
C: o 	1060331 	[':23 	1060332 EU 0 1060333 1U20 1060273 1U21 1060334

)

3
LRU Store

Ll3 1060332 ii; o 1060333 C 0 1060331 L11V 1041148 020 1060273 L121 1060334
C

n ******************************) * **** ********* *** * ***** *
LRIJ PFF Wor

C
WS Store
C 0 1079531 0:23 1079532 o: 0 1079533 1U21 1079473 0:22 1079534

C LRU Store
D18 1021948 [U19 1041148 EU20 1060348 tU21 1079473 C: 0 1079531 0:23 1079532 o: 0 1079533 0:22 1079534

PFF Store
ç 	0:23 1079532 ri: 0 1079533 C 0 1079531 1U20 1060348 1U21 1079473 0:22 1079534

(,

(LRU PEF Wor

WS Store
C: 0 1117316 [':23 1117317 ii: 0 1117318 tU15 1117319

LRIJ Store
0:19 1041148 1U20 1060348 [U21 1079548 [':22 1098748 C: 0 1117316 [':23 1117317 o: 0 1117318 0:15 1117319

(.

(

(

(

(

(

()

C- 3

This manifestly does not happen in some situations.

The reasons for this are varied. Firstly, with the large

window size all pages referenced in the last 10,000 refer-

ences remain in the working set. This will obviously

include: -

the current code page

the page containing the index variables

but depending on the complexity of the operations being

carried out within a loop (in terms of the number of store

references made) then an undetermined number of pages will

be held in store.

Slightly modifying the current example could produce the

following code:-

for i:= 1 to 2048 do

element [ii :0;

For each time round the loop there might be, say, five data

storage accesses. Consequently, if memory accesses are

estimated as roughly equivalent then as much as half of the

array will be accumulated into the working set.

It would appear that the smaller window sizes are required

for "techniques" of this type.

When the output for the smaller window size run is con-

sidered, an interesting anomaly appears. It is possible for

the algorithm to swop out the current code page. This,

theoretically, undesirable occurence stems from the partic-

ular implementation being considered, and the code page is

4.15

removed when the array is being "initialised" to an

internal "undefined" value. This is done by a single

virtual machine instruction. Yet this machine instruction

initiates 2048 storage references. After 500 of these,

the current code page is no longer in the estimated local-

ity.

This leads to the following results:-

PROPOSITION 4.13

There exists a non-empty class of "real" programs

for which the Working Set algorithm is a non-

optimal estimator of locality.

PROOF

See Examples 4.1.2 and 4.1.3.

Another drawback of this algorithm is its inability to

determine quickly the cause of an increase in the working

set size. Such an apparent expansion of the working set

can be caused by:-

a change of locality, or

a true expansion of the working set.

No differentation can be made between these two cases until

a time interval has elapsed. In fact, it isclear that, by

the retrospective nature of this algorithm, it will always

tend to over-estimate the working set size (See Example

4.1.4 and Diagram 4.3).

4.126

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

LRU Store
C: 0 4 11:23 6 ii: 0 7 11U5 13 t116 269 t 1 U7 525 [lUG 526

PFF Store
DU7 525 DUB 526 	

Example 4.1.2

Here the Working set algorithm

swops out the current code page.
LRU PFF Wor

WS Store
EuU6 269 1U17 525 ru:is 781 tU19 782

Example 4.1.3

LRU Store 	
The same will happen in any program with

C: 0 4 [':23 6 D 0 7 ru:is 13 L'U6 269 DU7 525 hUG 781 E'U9 782 	array initialisation,

cf the programs of'eaamples
PFF Store 	 4.2.4 and 4,3,5,

[(:18 781 11U9 782

LRU PFF Wor

WS Store
11:17 525 1U18 781 D:19 1037 1U20 1038

LRU Store
[(:23 6 Eu: 0 7 ru:15 13 1U16 269 1117 525 E6#18 781 tIU9 1037 [(:20 1038

PFF Store
11:19 1037 1120 1038

* **** * **************** * *** ******************************
LRU PFF Wor

WS Store
[':18 781 ['U9 1037 1120 1293 [':21 1294

.

181 ii: 	0 	7 	11:15 	13 	[1:16 	269 	11U7 	525 	[l41 18 	781 	D:19 	1037 D:20 	1293 	t'21 	1294
182
183
184
185 PFF Store
186 tl20 	1293 	1121 	1294
187
188
189
190
191
192 LRU FFF Wor
193
194 US 	Store
195 D19 	1037 	1U20 	1293 	[1:21 	1549 	[':22 	1550
196
197
198
199 LRU Store
200 [':15 	13 	11U6 	269 	L'U7 	525 	11U8 	781 	1U19 	1037 	1120 	1293 	D21 	1549 	11:22 	1550
201
202
203
204 PFF Store
205 11:21 	1549 	1122 	1550
206
207
208
209
210
211 LRU PFF Wor
212
213 US 	Store
214 11:21 	1549 	11:22 	1805 	[123 	1806
215
216
217
218 LRU Store
219 1':16 	269 	t'U7 	525 	DUB 	781 	[U19 	1037 	D20 	1293 	D21 1549 	[':22 	1805 	[':23 	1806
220
221
222
223 PFF Store
224 11:22 	1805 	1123 	1806
225
226
227
228
229
230 LRU PFF Wor
231
232 US 	Store
233 [l21 	1549 	['41 22 	1805 	11 4#23 	2058 	EU 	0 	2059
234
235
236
237 LRU Store
238 [':17 	525 	[1:18 	781 	[l19 	107 	fl2O 	1293 	Ii21 	1549 	ri27 lAOS 	Ti! 9A 	905R 	nt 	0

A

I

241
242 PFF Store

)

243 11:23 	2058 	ii: 	0 	2059
244
245

)

246
247
248
249 LRU PFF Wor
250
251 WS 	Store
252 tU21 	1549 	D22 	1805 	1U23 2058 	ri: 0 	2059 	C: 0 2060
253
254

)

255
256 LRU Store
257 DUB 	781 	DU9 	1037 	11:20 1293 	1121 1549 	11:22 1805 	D23 	2058 	1' 	0 	2059 	C: 0 	2060
258
259
260

)

261 PFF Store
262 11:23 	2058 	1' 	0 	2059 	C: 	0 2060
263

)

264
265
266

)

267
268 PFF Wor
269
270 WS 	Store
271 1123 	31932 	ii: 	o 	31941 	C: 0 	31939 11:22 	31942
272
273
274
275 LRU Store
276 11:18 	781 	11:19 	1037 	1I20 1293 	1I21 1549 	11:23 31932 .c: 0 	31939 	D 	0 	31941 	11:22 	31942
277
278

)

279
280 PFF Store
281 11:23 	31932 	D 	o 	31941 	C: 0 	31939 11:22 	31942
282
283
284
285
286
287 PFF Wor
288
289 WS 	Store
290 11:23 	62396 	D 	0 	62405 	C: 0 	62403 11:22 	62287 1U21 	62406
291
292
293
294 LRU Store
295 11:18 	781 	11U9 	1037 	1120 1293 	11:22 62287 	11:23 62396 	C: 0 	62403 	EU 0 	62405 	1U21 	62406
296
297
298

301
302
303
304
305
306 PFF Wor
307
308 US 	Store
309 [':23 	92860 	ii: 	o 	92869 	C: 	0 92867 	1U21 	92751 	1U20 	92870
310
311
312
313 LRU Store
314 [':18 	781 	1 1419 	1037 	[':22 	62287 	[U21 / 92751 	[':23 	92860 	C: 	0 	92867 	ri: 	0 	92869 	1120 	92870
315
316
317
318 FFF Store
319 D23 	92860 	1' 	0 	92869 	C: 0 92867 	1121 	92751 	1U20 	92870
320
321
322
323
324
325 PFF Wor
326
327 WS 	Store
328 [':23 	123324 	D 	0 	123333 	C: 0 	123331 	1U20 	123215 	11U9 	123334
329
330
331
332 LRU Store
333 [':18 	781 	11:22 	62287 	D21 	92751 	[':20 	123215 	[':23 	123324 	C: 	0 	123331 	ri: 	0 	123333 	1U19 	123334
334
335
336
337 PFF Store
338 D23 	123324 	D 	0 	123333 	C: 0 	123331 	1120 	123215 	11:19 	123334
339
340
341
342
343
344 PFF Wor
345
346 US 	Store
347 [':23 	153788 	1' 	0 	153797 	C: 0 	153795 	11:19 	153679 	1U18 	153798
348
349
350
351 LRU Store
352 [1:22 	62287 	1I21 	92751 	11:20 123215 	DU9 	153679 	11:23 	153788 	C: 0 	153795 	D: 0 	153797 	1'18 	153798
353
354
355
356 PFF Store
357 [1:23 	153788 	1' 	0 	153797 	C: 0 	153795 	1U19 	153679 	DU8 	153798
358

361
362
363 LRU PFF Wor
364
365 WS 	Store
366 11:23 	184252 	t' 	0 	184261 	C: 0 184259 1118 184143 11:17 184262
367
368
369
370 LRU Store
371 11:21 	92751 	1I20 	123215 	1I19 153679 11:18 184143 11:23 184252 	C: 	0 	104259 	11 	0 	184261 	11:17 	184262 372
373
374
375 FFF Store
376 11:23 	184252 	1' 	0 	184261 	C: 0 184259 1118 184143 [':17 184262
377
378
379
380
381
382 LRU FFF Wor
383
304 WS 	Store
385 11:23 	214716 	Li: 	0 	214725 	C: 0 214723 11:17 214607 1U16 214726
386
387
388
389 LRU Store
390 11:20 	123215 	D19 	153679 	11:18 184143 11:17 214607 11:23 214716 	C: 0 	214723 	Ii: 0 	214725 	1U16 	214726 391
392
393
394 PFF Store
395 11:23 	214716 	1': 	0 	214725 	C: 0 214723 1117 214607 0:16 214726
396
397
398
399
400
401 LRU PFF Wor
402
403 WS 	Store
404 [1:23 	245180 	1': 	0 	245189 	C: 0 245187 11:16 245071 1U15 245190
405
406
407
408 LRU Store
409 11:19 	153679 	1U18 	184143 	1U17 214607 11U6 245071 1U23 245180 	C: 0 	245187 	1': 	0 	245189 	11:15 	245190 410
411
412
413 FFF Store
414 [':23 	245180 	D: 	0 	245189 	C: 0 245187 11:16 245071 1I15 245190
415
416
417
418
419

421
422 WS 	Store
423 11:23 	246426 	D 	0 	246427 C: 	0 246425 [1U5 246367 11U6 246428
424
425
426
427 LRU Store
428 11U9 	153679 	11 4418 	184143 [s:17 214607 t'15 246367 C: 	0 246425 [':23 	246426 	Ii: 0 	246427 	DU6 	246428
429
430
431
432 FFF Store
433 11:23 	246426 	1' 	0 	246427 C: 	0 246425 1U16 246428 D:15 246367
434
435
436
437
438
439 FFF Wor
440
441 WS 	Store
442 1123 	276378 	EU 0 	276379 Cl 	0 276377 1U16 276319 1U17 276380
443
444
445
446 LRU Store
447 D:19 	153679 	1U18 	184143 E':15 246534 1U16 276319 Cl 	0 276377 [':23 	276378 	1I 	0 	276379 	1U17 	276380
448
449
450
451 PFF Store
452 [':23 	276378 	D: 0 	276379 C1 	0 276377 1U16 276319 1U15 246534 1U17 	276380
453
454
455
456
457
458 FFF Wor
459
460 WS 	Store
461 D:23 	306330 	III 0 	306331 Cl 	0 306329 1U17 306271 1U18 306332
462
463
464
465 LRU Store
466 1U19 	153679 	[U15 	246534 1U16 276486 11:17 306271 C 	0 306329 1U23 	306330 	['1 0 	306331 	11118 	306332
467
468
469
470 PFF Store
471 1U23 	306330 	Ill 0 	306331 C: 	0 306329 EU16 276486 1U17 306271 DUB 	306332
472
473
474
475
476
477 FFF Wor
478

481
482
483
484 LRU Store
485 t'15 	246534 	DU6 	276486 [U17 306438 D:18 336223 C: 	0 336281 11.'23 336282 	ii: 0 	336283 	1U19 	336284
486
487
488
489 FEF Store
490 11:23 	336282 	D 	0 	336283 C: 	0 336281 DU7 306438 1U18 336223 DU9 336284
491
492
493
494
495
496 LRU PFF Wor
497
498 WS 	Store
499 11:23 	366234 	D 	0 	366235 C: 	0 366233 019 366175 t'20 366236
500
501
502
503 LRU Store
504 1U16 	276486 	DU7 	306438 D:18 336390 [':19 366175 C: 0 366233 1123 366234 	11: 0 	366235 	1U20 	366236
505
506
507
508 FFF Store
509 11:23 	366234 	D 	0 	366235 C 	0 366233 1'18 336390 11*419 366175 1120 366236
510

EXAMPLE 4.1.4

Implementations of Working Set algorithms do not,

in practice, follow exactly the theoretical model.

It would be too expensive to check, after every

reference, whether a given page remains in the

working set or not. Consequently, the contents of

the working set are only checked at intervals,

usually known as strobe periods. This is also done

after page faults. The size of the strobe interval

is another arbitrary parameter that must be built

into implementations of this algorithm. However

there is a more significant disadvantage. This is

most easily shown in a diagram (Diagram 4.3).

In this diagram is shown the memory requirements of

a hypothetical program. At point (A) it is assumed

that the program loses a number of pages from its

current locality, but does not completely change it.

Point (B) however represents a complete change of

locality. The divisions along the horizontal axis

are given in terms of strobe periods and T = 4/3 S.

Note that it usually requires a strobe (or a page

fault) at least T units after a locality change for

the pages in that locality to be removed from the

working set, if they are no longer required.

4.17

Memory

Allocation

Space required by

Space allocated by

WS algorithm

T = 4/3.5

S 	2S 	3S 	45 	55 	6S 	75 	as 	Os rn

4.2 The LRU Replacement Algorithm

This is an example of what is known as a fixed-space policy

(Den 75) in that the size of the set of pages in memory

belonging to a program is kept fixed. In the theoretical

model of the Working Set policy, this is not the case. In

practical systems, more or less based on the Working Set

philosophy, this is not always true however (Whi 73).

Coffman and Ryan (Cof 72) using a mathematical model of

locality, showed, as might be anticipated, that variable

space policies are always better than fixed. However the

implementation of a pure Working Set strategy is very expen-

sive. This is due to the fact that pages are freed whenever

they leave the window and not simply at page fault times.

As mentioned above this would involve testing each page in

the working set after each reference, or decrementing some

kind of counter associated with each page to see if that

page was still eligible for membership of the working set.

The implementation of a strobing technique to remove this

large overhead widens the gap between theoretically

achievable performance and the best practical implementations.

As a result of this cost, LRU algorithms, which are much

cheaper to implement, have achieved considerable popularity.

With regard to the comparison of local LRU strategies and

global LRU strategies, Oliver (Oh 74) has shown that the

global LRU strategy performs better than the local LRU

strategy where thrashing does not arise.

4.18

This is to some extent surprising and perplexing. Surprising

because the most obvious criticism of the global LRU strategy

is that those pages .which have been, globally, unreferenced

for the longest period of time are those belonging to the

program which has not been running for the longest time. So,

if the program, scheduling algorithm is to any extent "fair",

then this program will have a high probability of being the

next allowed to run. As a result of this, the global LRU

algorithm would appear to tend to remove pages which might

be referenced in the near future. Oliver states that,

although evidence of this was found in his studies, it

turned out that any such space could be more effectively

used by the current program than by reserving it for future

programs. These results are perplexing because the two

other major algorithms are local algorithms, that is to

say, they concern themselves only with pages belonging to

the current program. To compare a global strategy with such

local strategies is an extremely complex business. Not only

does the mix of programs have to be considered for global

strategies, but also the scheduling algorithm for the programs

themselves has a significant effect. Both these factors

concern the observed behaviour of a program as far as the

user is concerned, in that a change of program mix over a

number of runs of a program or a change of the scheduling

algorithm (or its parameters) could affect the paging

behaviour (arid, consequently, on some systems the cost)

of a running program.

4.19

For these reasons, it is proposed that a global algorithm

is not a good idea on principle, and the local LRU only will

be considered below.

With the local strategy the algorithm can be formulated as

follows: -

A program will be allocated a fixed amount of

space, L pages. Initially, it will be allowed to

acquire pages, if it requires them, up to this

limit. The pages are conceived of as being ordered

on a stack with the most recently used at the top

and the least recently used page at the foot. If,

when the program has acquired its L pages, it re-

quests another page not already in store, then the

page at the foot of the stack is freed and the new

page will be brought in and placed at the top of

the stack. Thus the, memory allocation stays con-

stant at L pages.

Theoretically some of the limitations of this approach are

immediately apparent. (That these limitations can occur

in practice will also be shown below.

Firstly, the store set size for a program remains fixed

once it has acquired L pages. This tends to imply that

programs whose locality 'sizes do not match this size

behave poorly. This can manifest itself in two ways.

Firstly, a program which requires more space than it has

been allocated will thrash. That is to say, it will spend

4.20

EXAMPLE 4.2.1

Let N = (0,1,2,3,4,5,6,7

L=3

and R= 	 0,0,1,2,7,0,1,2,7,0,1,2,7

then Store Set = 0 0 1 2 701270127

--01270127012

---012 7012 701

* 	* * * * * * * * * * *

where * implies the occurrence of a page fault.

Whereas, in the same situation, if L = 4 the

following takes place:-

R= 	 0,0,1,2,7,0,1,2,7,0,1,2,7

then Store Set = 0 0 1 2 701270127

--01270127012

---0127012701

----012701270

* 	* * *

with a significant reduction in the number of page

faults.

4.21

EXAMPLE 4.2.2

Let 	= 	0,1,2,3,4,5,6,7J

L=3

and R = 	 .0,0,1,2,7,0,1,2,7,0,1,2,7,3,4,5,3,5,4,4,3,..

then Store Set= 001270127012734535443

--0127012701273453554

---0.12701270127344335

* 	** * * * * * * * * * * * *

showing poor behaviour in the first part of the reference

string but impeccable behaviour in the second part.

Again, with the same reference string and now L = 4

the following occurs:-

R = 	 0,0,1 1 2, 7,0,1,2, 7,0,1,2, 7,3,4,5, 3,5,4,4,3

then Store Set = 001270127012734535443

--0127012701273453554

---012701270127344335

--01270127012777777

* 	* * * 	 * * *

Although the paging behaviour has been improved in the

first part of the string, in the second part the algorithm

consistently over-estimates the locality size.

4.22

EXAMPLE 4.2.3

Let 	= 10,1,2,3,4,5,6,71

L= 3

and R= 	 1,2,3,1,2,3,1,3,2,4,2,3,4,4,3,2

then Store Set =1231231324234432

-123123132423343

--12312213342224

* * * 	 *

As can be seen a "heavily" used page which is totally

discarded can be readily handled.

However, an almost identical situation produces a

different result: -

R = 	 1,2,3,1,2,3,1,3,2,1,4,3,2,2,3,4,4,3,..

then Store Set = 123123132143223443

-12312313214332334

--123122132 14 44222

* * * 	 * * *

A "hiccup" has occurred due to the exact timing of the

reference to the new page. This is equivalent to the

disruption caused by a "casual" reference to onepage:-

R= 	 1,2,3,1,2,3,4,1,2,3,1,2,3,..

then Store Set =1231234123123

-123123412312

--12312341231

* * * 	* * * *

4.23

more time paging than doing useful work (see Example 4.2.1)

Secondly, a program whose locality size varies will

alternate between a thrashing state (or a reasonably

satisfactory state if L has been well cJ iosen) and a

state in which the memory in the system is poorly

utilised (See Example 4.2.2).

Secondly, such a LRU strategy tends to favour programs

which heavily use sets of pages and then discard them

(see Example 4.2.3).

That these examples can be generated is not sufficient.

It must be true that similar observations can be made

in practice before the represesent a significant

criticism of the algorithm itself.

The following examples (4.2.4, 4.2.5, 4.2.6) again in

PASCAL show that these situations do indeed occur.

4.3 The Page Fault Frequency Algorithm

The underlying assumption of this algorithm is that a

high page fault frequency indicates that a program is

running inefficiently due to the fact that it has too

little space allocated to it. Consequently, a page

4.24

I Program ex424(output)
2
3
4
5 (* This Program should show the effect of running
6 (* LRU with too small a stacksize, 	if the chosen
7 (* stacksize4,
8
9
10 var
11 elemenitarra.E1,.20483 of integer;
12 i:ir,teer;
13 begin
14 for i1 to 512 do
15 begin,
16 elementti]=fl
17 elemer,t[i+512]=2
18 element(i+1024]=3
19 elemerst(i+1536]=4
20 end;
21 end.

Example 4.2.5

This is clearly shown in the output from Example 4.1.1, where if the ERU store

is considered, the stack size of eight pages is a large overestimate for this

problem.

Fri Jan 	19 15:40:22 1979 ex424cs ae 1

1
2 WS 	Store
3 [':23 	29953 	ii 14 	0 	29960 	C: 0 29958 o:15 29940 [':21 29937 ['U9 29961 D17 29863

4

7 LRU Store
8 11:23 	29953 	C: 	0 	29958 	El: 0 29960 D19 29961
9
10

4 11
12 PFF Store
13 [':23 	29953 	ii: 	o 	29960 	C: 0 29958 tU15 29940 021 29937 E1U9 29961 0U7 29863

14
15
16
17
18
19 LRU

- Note the frequency of ERU faults.
20)

21 WS 	Store
22 [':23 	29963 	ii: 	0 	29960 	C 0 29962 tU15 29964 [':21 29937 ['U9 29961 0:17 29863

23
24
25
26 LRU Store
27 ['4#19 	29961 	C: 	0 	29962 	[':23 29963 r':15 29964
28
29
30
31 PFF Store
32 0:23 	29963 	D: 0 	29960 	C: 0 29962 1lU5 29964 [':21 29937 [1U9 29961 0:17 29863

33
34

4 35
36
37
38 LRU
39
40 WS 	Store
41 0:23 	29963 	ii: 	0 	29965 	C: 0 29962 ['15 29964 [':21 29937 0:19 29961 0:17 29863

42
43

4 44 I,

45 LRIJ Store
46 C: 	0 	29962 	[':23 	29963 	r':15 29964 o: 0 29965

4 47
48
49
50 PFF Store
51 [':23 	29963 	ii: 	0 	29965 	C: 0 29962 E115 29964 E121 29937 [':19 29961 0U7 29863

52

4 53
54
55
56
57 LRU
58

Fri Jar, 19 15:40:22 1979 ex424cs Page 2 •
61 • 62
63
64 LRU Store • 65 [':23 	29977 	c: 	0 	29982 	ti: 0 	29984 11U7 29985 C)
66
67 • 68)
69 PFF Store
70 11:23 	29977 	ii: 	o 	29984 	C: 0 	29982 E'U5 29964 1U21 29937 t'19 29961 11U7 29985 • 71
72
73 • 74)
75
76 LRU • 77
78 WS 	Store
79 11:23 	29990 	1' 	0 	29987 	C: 0 	29989 D15 29991 1U21 29937 [U19 29961 D:17 29985 • 80
81
82 • 83 LRU Store)
84 D 	0 	29987 	C: 0 	29989 	11:23 29990 1U15 29991
85 • 86
87
88 PFF Store • 89 11:23 	29990 	1' 	0 	29987 	C: 0 	29989 LU15 29991 11:21 29937 11:19 29961 0U7 29985
90
91 • 92
93
94 • 95 LRU
96
97 WS 	Store • 98 [':23 	30051 	ri: 	0 	30058 	C: 0 	30056 11:15 30038 L'21 30059 1119 29961 11:17 29985
99
100 • 101
102 LRU Store
103 1123 	30051 	C: 	0 	30056 	1' 0 	30058 1121 30059 • 104
105
106 • 107 PFF Store
108 1123 	30051 	ri: 	0 	30058 	C: 0 	30056 [':15 30038 11:21 30059 [U19 29961 D17 29985
109 • 110
111
112 • 113
114 LRU
115 • 116 US 	Store
117 [':23 	30061 	11 	0 	30058 	C 0 	30060 1U15 30062 11:21 30059 11:19 29961 1117 29985
118
119

121 LRU Store • 122 021 	30059 	C: 0 	30060 	1U23 30061 1115 30062
123
124

4 125
126 PFF Store
127 11:23 	30061 	o: 0 	30058 	C: 0 30060 1U15 30062 021 30059 11U9 29961 1U17 29965
128
129
130
131
132
133 LRU

C 134
135 WS 	Store
136 0:23 	30061 	o: 0 	30063 	C: 0 30060 1U15 30062 021 30059 1119 29961 017 29985

C 137
138
139

C 140 LRU Store
141 C: 0 	30060 	11:23 	30061 	11U5 30062 ii: 	o 30063
142

4 143
144
145 PFF Store

4 146 0:23 	30061 	ii: 	o 	30063 	C: 0 30060 ri:15 30062 1'21 30059 1119 29961 11U7 29985
147
148

C 149
150
151

C 152 LRU
153
154 WS 	Store

4 155 11:23 	30075 	1' 	0 	30082 	C: 0 30080 o:15 30062 1121 30059 E'19 30083 D17 29985
156
157

4 158
159 LRU Store
160 0:23 	30075 	C: 0 	30080 	1' 0 30082 1'19 30083

C 161
162
163

4 164 PFF Store
165 11:23 	30075 	t' 	0 	30082 	C 0 30080 r':15 30062 021 30059 1119 30083 1117 29985
166

C 167
168
169

4 170
171 LRU
172

C 173 WS 	Store
174 [':23 	30085 	11 	0 	30082 	C: 0 30084 r':15 30086 0:21 30059 1U19 30083 1I17 29985
175

C 176
177
178 LRU Store

4717 en, MC b P a se 9

t

181 • 182 0
183 FFF Store
164 [':23 	30085 	ri: 	0 	30082 	C: 0 	30084 [':15 30086 1121 30059 t119 30083 1U17 29985

a 185 0
186
187

a 188
189
190 LRU
191 9
192 WS 	Store
193 11:23 	30085 	0 	0 	30087 	C: 0 	30084 1115 30086 11:21 30059 t119 30083 1U17 29985

a 194
195
196

a 197 LRU Store
198 C: 0 	30084 	0:23 	30085 	o:15 30086 E1 	0 30087
199

a 200
201
202 PFF Store

O 203 [':23 	30085 	EU 0 	30087 	CO* 0 	30084 D:15 30086 [U21 30059 [U19 30083 1U17 29985
204
205
206
207
208 • 209 LRU
210
211 US 	Store • 212 [':23 	30099 	ii: 	0 	30106 	C 0 	30104 DUS 30086 1U21 30059 [U19 30083 D17 30107
213
214 • 215
216 LRU Store
217 11:23 	30099 	C: 	0 	30104 	1' 0 	30106 DU7 30107 • 218
219
220

O 221 PFF Store
222 [':23 	30099 	o: 	0 	30106 	C: 0 	30104 t'115 30086 1U21 30059 11U9 30083 1U17 30107
223

0 224
225
226 • 227
228 LRIJ
229 • 230 US 	Store
231 11:23 	30112 	D: 	0 	30109 	C 0 	30111 L'15 30113 1U21 30059 [U19 30083 0:17 30107
232 • 233

)I

234
235 LRU Store

0 236 o: 	0 	30109 	C: 0 	30111 	0:23 30112 1115 30113
237
238

Fri Jan 	19 15:40:22 1979 e>424cs Page 5 •
241 11:23 	30112 	1' 	0 	30109 	C: 0 	30111 E115 30113 1U21 30059 r':19 30003 1U17 30107 • 242
243
244 • 245 t)
246
247 LRU

• 248
249 WS 	Store •
250 11:23 	30173 	1' 	0 	30180 	C: 0 	30178 11:15 30160 1U21 30181 1119 30083 1IU7 30107

• 251
252
253

o 254 LRU Store
255 0:23 	30173 	C: 	0 	30178 	ti: 0 	30180 021 30181
256 • 257
258
259 FFF Store • 260 [':23 	30173 	IU 0 	30180 	C 0 	30178 t':15 30160 1U21 30181 11U9 30083 1'17 30107
261
262

• 263
264
265 • 266 LRU
267
268 WS 	Store

• 269 0:23 	30183 	o: 0 	30180 	C: 0 	30182 r':15 30184 1U21 30181 1U19 30083 1U17 30107
270
271 • 272
273 LRU Store
274 t'21 	30181 	c: 	0 	30182 	0:23 30183 ti:15 30184 • 275
276
277 • 278 PFF Store
279 [':23 	30183 	r': 	0 	30180 	C: 0 	30182 [1:15 30184 1121 30181 1U19 30083 017 30107
280

o 281
282
283 • 284
285 LRIJ
286 • 287 WS 	- Store
288 11:23 	30183 	1' 	0 	30185 	C: 0 	30182 DU5 30184 1121 30181 [':19 30083 1U17 30107
289 • 290
291
292 LRU Store • 293 C: 	0 	30182 	0:23 	30183 	t':15 30184 ii: 	o 30185
294
295 • 296
297 PFF Store
298 D23 	30183 	LU 0 	30185 	C 0 	30182 r':15 30184 11:21 30181 1U19 30083 1U17 30107
')QQ

()

)

)

1'

I

a

I

I

a

a

• 1

I

I

• 1

I

I

Stiri Jan 21 151fl07 1979 	 ex433c

1 	 ****************************** Example 4.2.6 2 	 LRU PFF War
3
4 	 US Store
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

LRU Store
C: 0 1

PFF Store
C: o 1

LRU Store
C: 0 1 0:23 2

** * * ** * *** ** ** * **
LRU PFF War

US Store
c: o 1 t'23 2

F'FF Store
C: 0 1 0:23 2

LRIJ PFF Wor

US Store
C: 0 1 11:23 2 o: 0 3

LRU Store
C: 0 1 [':23 2 ii: o 3

FFF Store
C: 0 1 [':23 2 0 0 3

c: 0 1 	 The LR'U algorit7vn along with the others handles well a

program with a small set of heavily used pages.

** ** * * ** * * *** ****

IT 	 -

pane 1

61 US 	Store
62 C: 	0 	999 	D23 	1000 	Eu: 	0 997
63
64

4 65
66 LRU Store
67 W. 0 	997 	C: 0 	999 	11:23 1000

4 68
69
70

4 71 F'FF Store
72 c: 	0 	999 	11:23 	1000 	EU 	0 997
73

4 74
75
76

4 77
78 LRU PFF Wor
79
so us 	Store
81 c: 	0 	1177 	11:23 	1172 	Eu: 	0 1178 C: 	1 1179
82

4 83
84
85 LRU Store

4 86 1U23 	1172 	C: 	0 	1177 	ii: 	0 1178 C 	1 1179
87
88
89
90 PFF Store
91 C: 0 	1177 	1U23 	1172 	1' 	0 1178 C: 	1 1179

4 92
93
94

4 95
96 2
97 3 	3 	2

4 98 • 99 Str
100

4 101 US 	Store
102 C: 	0 	1998 	11:23 	1993 	ii: 	0 2000 C: 	1 1179
103

4 104
105
106 LRU Store

• 	4 107 C: 	1 	1179 	11:23 	1993 	C: 	0 1998 EU 0 2000
108
109

4 110
111 F'FF Store
112 C: 	0 	1998 	11:23 	1993 	11: 	0 2000 C: 	1 1179 • 113
114
115

• 116
117 4 	1 	3
118
110

ae 3 uru Jan 	i 	i,;ii;o/ 	1'//'/ ex433c

121 WS 	Store

4 122 C: 0 	2996 	11:23 	2998 	D 	0 3000
123
124

4 125
126 LRU Store
127 c: 	1 	1179 	C: 	0 	2996 	11:23 2998 1I 0 3000

4 128
129
130
131 FFF Store
132 C: 0 	2996 	D:23 	2998 	1J 	0 3000 C: 1 1179
133

4 134
135
136
137 5 	2
138
139 Str

4 140
141 WS 	Store
142 c: 	0 	3998 	11:23 	4000 	ii: 	o 3999

4 143
144
145
146 LRU Store
147 C: 	1 	1179 	C: 	0 	3998 	ii: 	0 3999 11:23 4000
148

4 149
150
151 PFF Store
152 C: 	0 	3998 	11:23 	4000 	[U 0 3999 c: 1 1179
153
154

4 155
156
157 6 	3 	3
158 7 	1 	2
159
160 Str
161
162 WS 	Store
163 C: 	0 	5000 	11:23 	4994 	ii: 	0 4999
164
165
166

4 167 LRU Store
168 •c: 	1 	1179 	[1:23 	4994 	[U 	0 4999 C: 0 5000
169

4 170
171
172 PFF Store
173 C: 	0 	5000 	11:23 	4994 	t': 	0 4999 C: 1 1179
174
175

4 176
177
178

Sur, Jar, 21 	15:11:07 	1979 ex433c

181 WS 	Store
C' 182 C: 	0 	5998 	11:23 	5991 	ii: 	0 6000

183
184

C 185
186 LRU Store
187 C: 	1 	1179 	1U23 	5991 	c: 0 5998 ti: 0 6000
188
189
190
191 PFF Store
192 C: 	0 	5998 	D:23 	5991 	ii: 	0 6000 C: 1 1179
193
194
195
196
197 8 	3
198
199 Str
200
201 WS 	Store
202 C: 	0 	6991 	11:23 	6999 	ii: 	0 7000
203
204
205
206 LRU Store
207 C: 	1 	1179 	C: 	0 	6991 	11:23 6999 D 0 7000
208
209
210
211 PFF Store
212 C: 	0 	6991 	11:23 	6999 	ii: 	0 7000 C: 1 1179
213
214
215
216
217 9 	2 	3
218
219 Str
220
221 WS 	Store
222 C: 0 	7998 	D:23 	7993 	ii: 0 8000
223
224
225
226 LRU Store
227 C: 	1 	1179 	11:23 	7993 	C: 	0 7998 EU 0 8000
228
229
230
231 PFF Store
232 C: 	0 	7998 	11:23 	7993 	1': 	0 8000 C: 1 1179
233
234
235
236
237
238 Str

Page 4

)

)

Sun Jar. 21 	15:11:07 1979 ex433c

241 C: 	0 	8998 	11:23 	8995 	ii: 	o 9000
242
243
244

c' 245 LRU Store
246 C: 	1 	1179 	11:23 	8995 	C: 	0 8998 	D 0 	9000
247
248
249
250 PFF Store

(
251 C: 0 	8998 	D:23 	8995 	ii: o 9000 	C: 1 	1179
252
253
254
255
256
257 Str
250
259 WS 	Store

(
260 C: 0 	10000 	11:23 	9995 	EU 0 9999
261
262

(
263
264 LRU Store
265 C: 	1 	1179 	11:23 	9995 	1' 	0 9999 	C: 0 	10000
266
267
268
269 PFF Store
270 C: 	0 	10000 	11:23 	9995 	ii: 	0 9999 	C: 1 	1179
271
272
273
274
275
276 Str
277
278 WS 	Store
279 C: 	0 	10998 	11:23 	11000 	ii: 0 	10997
280
281
202
283 LRLJ Store
284 C: 	1 	1179 	o: 	0 	10997 	C: 	0 10998 11:23 	11000
285
206
287
288 PFF Store
289 C: 	0 	10998 	11:23 	11000 	Eu: 0 	10997 C: 	1 	1179
290
291
292
293 ***** * ************************
294
295 Str
296
297 WS 	Store
298 C: 	0 	12000 	11:23 	11995 	1' 0 	11999

pae 5

)

)

Sun Jar, 21 	151107 IY7Y ex'sJc. 	 Fd5W 0

t
301

4. 302 LRU Store ()

303 C: 	1 	1179 	11:23 	11995 	ri: 	0 11999 C: 	0 12000
304

4 305
306
307 PFF Store

4 308 C: 	0 	12000 	[':23 	11995 	ii: 	0 11999 C: 	1 1179)
309
310 • 311)
312
313 3 	2 	3

4 314 S

315 Str
316

4 317 WS 	Store
318 C: 	0 	12996 	11:23 	12998 	ri: 	0 13000
319

4 320)
321
322 LRU Store

4 323 C: 	1 	1179 	C: 	0 	12996 	1'23 12998 1' 	0 13000
324
325

4. 326
327 PFF Store
328 C: 	0 	12996 	[':23 	12998 	ii: 	o 13000 C: 	1 1179

4 329
330
331

4 332
333 4 	3 	1
334

4 335 Str
336
337 WS 	Store
338 C: 	0 	13998 	[':23 	14000 	Eu: 	0 13996
339
340

4 341
342 LRU Store
343 C: 	1 	1179 	o: 	0 	13996 	C: 	0 13998 [':23 14000

4 344
345 5

346

4 347 PFF Store
348 C 	0 	13998 	[':23 	14000 	ii: 	0 13996 C: 	1 1179
349

4 350
351
352

4 353 5 	1 	2
354 6 	3 	3
355

4 356 Str
357
358 WS 	Store

e

a

I

S

a

a

a

a

S

a

a

Sun Jan 	1 1,;11;u/ 1Y/Y

361
362
363 LRU Store

364 C: 	1 	1179 	C 	0 	14995 	11:23 14998 	D 	0 15000

365
366
367
368 FFF Store

369 C: 	0 	14995 	1u23 	14998 	r': 	0 15000 	C 	1 1179

370
371
372
373
374 7 	2

375
376 Str
377
378 WS 	Store

379 C: 	0 	15999 	[':23 	15996 	ii: 	o 16000

380
381
382
383 LRU Store

384 C: 	1 	1179 	[1:23 	15996 	C: 	0 15999 	t1 	0 16000

385
386
387
388 PFF Store
389 C: 	0 	15999 	(':23 	15996 	ii: 	0 16000 	C: 	1 1179

390
391
392
393
394 8 	1 	3

395
396 Str

397
398 WS 	Store

399 C: 	0 	17000 	(':23 	16995 	ii: 	0 16999

400
401
402
403 LRU Store
404 C: 	1 	1179 	(':23 	16995 	ii: 	o 16999 	C: 0 17000

405
406
407
408 FFF Store

409 C: 	0 	17000 	(':23 	16995 	ii: 	0 16999 	C: 	1 1179

410
411
412
413
414

415 Str
416
417 WS 	Store

418 C: 	0 	18000 	0:23 	17997 	ii: 	0 17999

)

S)

)

I,

421
422 LRU Store
423 C: 	1 	1179 	11:23 	17997 	0 0 17999 C2 0 	18000
424

4 425
426
427 PFF Store i 428 C2 	0 	18000 	11:23 	17997 	Ii: 0 17999 C: 	1 	1179
429
430

a 431
432
433 9 	3 	2

4
434
435 Str
436 • 437 WS 	Store
438 C: 	0 	18998 	11:23 	19000 	Ii: 0 18996
439

4 440
441
442 LRU Store

4 443 C: 	1 	1179 	O 	0 	18996 	C: 0 18998 11:23 	19000
444
445

4 446
447 PFF Store
448 C: 	0 	18998 	0:23 	19000 	112 0 18996 C 	1 	1179

4 449
450
451

4 452
453
454 Str

4 455
456 US 	Store
457 C: 0 	20000 	11:23 	19995 	0 0 19999

4 458
459
460

4 461 LRU Store
462 C: 	1 	1179 	1123 	19995 	n: 0 19999 c: 0 	20000
463

4 464
465
466 FFF Store • 467 C: 	0 	20000 	11223 	19995 	11 0 19999 C 	1 	1179
468
469

4 470
471
472

4 473 Str
474
475 US 	Store • 476 C 	0 	20998 	11:23 	21000 	Ii: 0 20997
477
478 • 479

Sun Jan 21 15Ufl07 1979 e<433c

481 C: 	1 	1179 	ii: 	o 	20997 	C: 	0 20998 t':23 21000

• 482
483
484 • 485 PFF Store
486 C: 	0 	20998 	[':23 	21000 	ii: 	0 20997 C: 	1 1179
487

• 488
489
490 • 491
492 Str
493 • 494 US 	Store
495 C: 	0 	21999 	D:23 	21986 	ri: 	0 22000
496 • 497
498
499 LRU Store

o 500 C: 	1 	1179 	D23 	21986 	C: 0 21999 o: 0 22000
501
502 • 503
504 FFF Store
505 C: 	0 	21999 	[':23 	21986 	ii: 	o 22000 C: 	1 1179

• 506
507
508 • 509
510
511 Str • 512
513 US 	Store
514 C: 0 	22997 	0:23 	23000 	11 	0 22999 • 515
516
517 • 518 LRU Store
519 C 	1 	1179 	C: 	0 	22997 	ii: 	o 22999 0:23 23000
520 • 521
522
523 FFF Store • 524 C: 0 	22997 	0:23 	23000 	o: 0 22999 C: 	1 1179
525
526 • 527
528
529 • 530 Won
531
532 US 	Store

• 533 C: 	0 	23881 	0:23 	23883 	ii: 0 23880 C 	1 23884
534
535 • 536
537 LRU Store

- 538 ti: 0 	23880 	C 	0 	23881 	0:23 23883 C: 	1 23884

page 9

Sun Jar. 21 15Ufl07 1979 	 ex433c 	 Page 10

541
542 PFF Store
543 C: 0 	23881 	(':23 	23883 	D 	0 	23880 	C: 	1 	23884
544
545
546
547
548 no solution
549

C 1

(. p

C

(1 p

(.1

J

fault frequency, P, is defined as:-

P = l/T
0

So that if the time between two consecutive page

faults is less than T 0 then the new page is added to the

store set, otherwise pages are removed from the store

set according to the Working Set policy, and the new

page is added to the remaining set.

The authors of this algorithm, Chu and Opderbeck

(Chu 72) present the following drawbacks of LRU and

Working Set:-

•• .the major disadvantage of the LRU

replacement algorithm is that it is not

at all clear how many pages have to be

allocated for different programs in

order to assure efficient running

without wasting space. In addition,

this number is usually data dependent

and may vary during execution. The

Working Set algorithm constitutes a

possible solution to this problem"

4.25

"In general, the Working Set algorithm can be con-

sidered as an LRU algorithm with variable size

memory allocation. There is, however, a crucial

difference. 	Using LRU pages are always replaced

when a fault occurs. This does not apply to the

Working Set algorithm. Here, page frames are

freed whenever they have not been referenced for

the last T msec. it appears to be rather

expensive to implement the Working Set algorithm."

In support of their own algorithm, the authors state:-

"An "ideal" replacement algorithm should be

independent of prior knowledge about program

behaviour; instead, all of the information needed

to assure efficient memory allocation should be

gathered during program execution."

These authors consider their own algorithm to be roughly a

Working Set algorithm with a variable T.

A study of the PFF algorithm by Sadeh (Sad 75) using a

mathematical model has been carried out. This study is

important in that it draws attention to the limitations

of mathematical models of program behaviour:-

"no 'presently available satisfactory model of

program behaviour incorporates localities of

different sizes and the transitions between

them"

A criticism of the simple LRU model, supported by Denning

(Spi 72) is also made:-

4.26

"The main drawback of the simple LRU stack model

is that it generates reference strings that do

not reflect transitions between localities."

These limitations reduce the applicability of the results

presented. However it is possible both theoretically

and practically to demonstrate the drawbacks of this

algorithm.

As might be expected, major difficulties arise with the

choice of frequency threshold (see Examples 4.3.1 and

4.3.2). The practical realisation of this problem is

shown in Example 4.3.3.

Another limitation, only partly alleviated by the Sadeh

amendment (2.4.1.-5) concerns locality changes. It is

also to be expected that at a locality change programs

may refer to pages in both localities for a short period.

If this period coincides with the acquisition of all the

pages of the new locality, then it is possible, due to

the fact that pages are only removed at the time of a

page fault, that this algorithm will over-estimate the

page requirements of a program for a considerable period

after a locality change (see Examples 4.3.4 and 4.3.5).

4.4 Improving the Behaviour of Current Algorithms

A number of authors have appreciated some of the drawbacks

presented above, and have attempted to improve the behaviour

of the algorithms. The techniques that will be considered

4.27

EXAMPLE 4.3.1

Let 	=[o,l,2,3,4,5,6,7,8,9

and R=1,2,3,4,5.,6

If the inter-page fault time is less than T 0 then the

Store Set = 1 1 1 1 1 1

22222

3333

444

55

6

Some other criterion must be applied to prevent this

store set expanding until all pages have been acquired.

Since, if all pages are acquired then no page faults

occur and no pages will be removed. It is to remove

this problem that the Sadeh amendment was proposed.

EXAMPLE 4.3.2

In Example 4.3.1 if the inter-page fault time had been

greater than T0 then the Store Set = 1 2 3 4 5 6

12345

4.28

0

I

I

I

I

I

I

a

a

a

S

S

I

S

.0

burl Jan zi 	4'ILiV

1
2 	 LRU PFF Wor
3
4 	 US Store
5 	 c:o
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

ex's.a 	 I

The trace for the PEF algoritivn is identical for a critical

frequency of both 100 and 500 references.

LRU Store
C: 0 1

PFF Store c: 0 1

** * * * ***** ** ** *** ** ** ** * * * ** *** * ** * *** * * * * ** * **
LRU PFF Wor

US Store
C: 0 1 11:23 2

LRU Store
C: 0 1 11:23 2

PFF Store
C: 0 1 [':23 2

** ** *** * ** **** ** ** *** *** ** * * **
LRU PFF Wor

US Store
C: 0 1 11:23 2 ii: 0 3

LRU Store
C: 0 1 11:23 2 ii: 0 3

F'FF Store
C: 0 1 11:23 2 ii: 0 3

** ** *** * * ** * * * * * * * **

Li

C)

C)

()

3

Page . Sun Jan 21 14:45:10 1979 	 ex433a

61 WS 	Store
62 C: 	0 	500 	11:23 	495 	ii: 	0 	499
63
64
65
66 LRU Store
67 [':23 	495 	tu: 	0 	499 	C: 	0 	500
60
69
70
71 FFF Store
72 C: 	0 	500 	11:23 	495 	ii: 	0 	499
73
74
75
76
77
78 Str
79
80 WS 	Store
81 C: 	0 	999 	11:23 	1000 	ii: 	0 	997
82
83
84
85 LRU Store
86 ii: 	o 	997 	C: 	0 	999 	[':23 	1000
87
Be
89
90 PFF Store
91 C: 	0 	999 	[':23 	1000 	ii: 	o 	997
92
93
94 9

95
96
97 LRU PFF Wor
98
99 US 	Store
100 C: 	0 	1177 	[':23 	1172 	ri: 	0 	1178 C: 	1 	1179
101
102
103
104 LRU Store
105 [':23 	1172 	C: 	0 	1177 	ii: 	o 	1178 C 	1 	1179
106
107
108
109 PFF Store
110 C: 	0 	1177 	11:23 	1172 	1' 	0 	1178 c: 	1 	1179
111
112
113
114
115 2
116
117 Str
118

()

)

)

)

)

)

)

1'JU I 	 .JC IJ S 	 S 7 4 7 J I S F 	 • 	t
121 • 122
123
124 LRU Store

• 125 C: 	1 	1179 	C: 	0 	1487 	ra: 	0 1499 0:23 1500
126
127 • 128
129 PEE Store
130 C: 	0 	1487 	11:23 	1500 	ii: 	0 1499 C: 1 1179

• 131
132
133

• 134
135 3 	3 	2
136

• 137 Str
138
139 WS 	Store

• 140 C: 	0 	1998 	11:23 	1993 	ri: 	0 2000 C: 1 1179
141
142

• 143
144 LRU Store
145 C: 	1 	1179 	11:23 	1993 	C: 	0 1998 1' 0 2000

• 146
147
148

• 149 PEE Store
150 C: 0 	1998 	EU23 	1993 	El: 0 2000 C: 1 1179
151

• 152
153
154

• 155 4 	1 	3
156
157 Str

• 158
159 WS 	Store
160 C: 	0 	2497 	E':23 	2499 	11 	0 2500

• 161
162
163 • 164 LRU Store
165 C: 	1 	1179 	C: 	0 	2497 	0:23 2499 D 0 2500
166 • 167
168
169 PEE Store

• 170 C: 	0 	2497 	0:23 	2499 	ii: 	0 2500 C: 1 1179
171
172 • 173
174
175 • 176 Str

177
178 WS 	Store

•1

()

)

)

101
182
183 LRU Store
184 C 	1 	1179 	C: 	0 	2996 	11:23 2998 u': 0 3000

C), 185
186
187
188 PFF Store
189 C: 	0 	2996 	11:23 	2998 	ii: 	0 3000 C: 1 1179

190
191
192
193

(
194)

195 Str
196
197 US 	Store
198 C: 	0 	3500 	[':23 	3497 	11 	0 3499

199
200)

201
202 LRU Store
203 C: 	1 	1179 	11:23 	3497 	IU 0 3499 C: 0 3500

204
205

(
206
207 PFF Store

208 C: 0 	3500 	11:23 	3497 	0 	0 3499 c: 1 1179

209
210
211
212
213 5 	2
214
215 Str
216
217 US 	Store
218 C: 0 	3998 	1U23 	4000 	D 	0 3999

219
220
221
222 LRU Store
223 C: 	1 	1179 	C: 0 	3998 	EU 0 3999 0:23 4000

224
225
226
227 PFF Store
228 c: 0 	3998 	0:23 	4000 	EU 0 3999 C: 1 1179

229
230
231
232
233 6 	3 	3

234
235 Str

4 236
237 US 	Store
238 C: 0 	4497 	0:23 	4488 	EU 0 4500
.VO)

.JcJuI 	,J op p 	a. a 	n 	. , ..J• S SF 	 S 7 7 7 CFS.J, C 	 C

241 • 242 LRU Store
1)

243 C: 	1 	1179 	D23 	4488 	c: 	0 4497 ii: 0 4500

244

4 245
246
247 PFF Store

4 248 C: 	0 	4497 	0:23 	4488 	ri: 	0 4500 C: 1 1179

249
250 • 251
252
253 7 	1 	2

4 254)
255 Str
256

4 257 WS 	Store
258 c: 0 	5000 	0:23 	4994 	D: 0 4999

259

4 260
261
262 LRU Store • 263 C: 	1 	1179 	0:23 	4994 	o: 	0 4999 c: 0 5000

264
265 • 266
267 PFF Store
268 C: 0 	5000 	0:23 	4994 	D: 0 4999 C: 1 1179 • 269
270
271

4 272
273
274 Str

4 275
276 WS 	Store

277 C: 	0 	5498 	0:23 	5500 	ii: 0 5499 • 278
279

280

4 281 LRU Store
282 C: 	1 	1179 	C: 	0 	5498 	11 	0 5499 0:23 5500
283 • 284
285
286 PEF Store

4 287 C: 0 	5498 	0:23 	5500 	r': 0 5499 C: 1 1179

288
289

4 290
291
292

4 293 Str
294
295 WS 	Store

4 296 C: 	0 	5998 	11:23 	5991 	ii: 	0 6000
297
298

C.)

301 C: 	1 	1179 	11:23 	5991 	C: 	0 5998 ri: 0 6000
302
303
304

4. 305 FFF Store (•)
306 C: 	0 	5998 	[':23 	5991 	t' 	0 6000 C: 1 1179
307

4 300
309
310

4, 311 8 	3
312
313 Str

4 314
315 US 	Store
316 C: 0 	6500 	1U23 	6497 	[U 0 6499

4 317
318
319

4 320 LRU Store
321 C: 	1 	1179 	D:23 	6497 	ii: 	0 6499 C 0 6500
322

4 323
S

324
325 PFF Store
326 C: 	0 	6500 	11:23 	6497 	ri: 	0 6499 C: 1 1179
327
328

4 329
330
331

4 332 Str
333
334 US 	Store
335 C 	0 	6991 	[U23 	6999 	ii: o 7000 5)

336
337

4 338
)

339 LRU Store
340 C: 	1 	1179 	C: 	0 	6991 	[':23 6999 o: 0 7000

4 341
342
343

4 344 PFF Store
345 C: 	0 	6991 	11:23 	6999 	ii: 	o 7000 C 1 1179
346

4 347
348
349
350 9 	2 	3
351
352 Str
353

5)

354 US 	Store
355 C: 	0 	7500 	11:23 	7497 	ii: 	o 7499

I 356
357
358

ae 7 Sun Jan 21 14:45:10 1979 	 ex433a

361
362
363
364 FFF Store
365 C: 0 	7500 	tU23 	7497 	EU 0 7499 C: 	1 	1179

366
367
368
369
370
371 Str
372
373 WS 	Store
374 C: 0 	7998 	1U23 	7993 	EU 0 8000

375
376
377
378 LRtJ Store
379 C: 	1 	1179 	[':23 	7993 	c: 	0 7998 EU 0 	8000

380
381
382
383 FFF Store

384 C: 0 	7998 	1 4023 	7993 	o: 0 8000 C: 	1 	1179

385
386
387
388
389
390 Str
391
392 WS 	Store
393 C: 0 	8497 	11:23 	8500 	LU 0 8499

394
395
396

397 LRU Store
398 C: 	1 	1179 	C: 	0 	8497 	ii: 	o 8499 [1:23 	8500

399
400
401
402 PFF Store
403 C: 0 	8497 	0:23 	8500 	ii: 0 8499 C: 	1 	1179
404
405
406
407
408
409 Str
410
411 WS 	Store
412 C 	0 	8998 	0:23 	8995 	LU 0 9000
413
414
415
416 LRU Store
417 C: 	i 	1179 	0:23 	8995 	C: 0 8998 ii: o 	9000

418

421 PFF Store
422 C: 	0 	8998 	11:23 	8995 	ii: 	o 9000 	C: 1 	1179
423
424
425
426
427
428 Str
429
430 us 	Store
431 C: 0 	9499 	(':23 	9492 	D 	0 9500
432
433
434
435 LRU Store
436 C: 	1 	1179 	('423 	9492 	C: 	0 9499 	ii: 0 	9500

437
438
439
440 PFF Store
441 C: 	0 	9499 	11:23 	9492 	11: 	o 9500 	C 1 	1179

442
443
444
445
446
447 Str
448
449 WS 	Store
450 C: 	0 	10000 	11:23 	9995 	ii: 	o 9999
451
452
453
454 LRU Store
455 C: 	1 	1179 	11123 	9995 	D 	0 9999 	C: 0 	10000

456
457
458
459 PFF Store
460 C: 	0 	10000 	11:23 	9995 	1': 	o 9999 	C: 1 	1179
461
462
463
464
465
466 Str
467
468 WS 	Store
469 C: 	0 	10500 	11:23 	10487 	ri: 0 	10499
470
471
472
473 LRU Store
474 C: 	1 	1179 	11:23 	10487 	D 	0 10499 C: 0 	10500
475
476
477
478 PFF Store
479 A 	1OAO 	nigA 	104R7 	ri 0 	10499 C! 	1 	1179

Sun Jan 	21 	14:45:10 1979 e>433a

481 • 482
483
484 • 485 Str
486
487 WS 	Store • 488 C: 	0 	10998 	11:23 	11000 	1l 0 10997
489
490 $ 491
492 LRU Store
493 C: 	1 	1179 	ri: 	0 	10997 	C: 0 10998 11:23 	11000 • 494
495
496 • 497 PFF Store
498 C: 	0 	10998 	D23 	11000 	ii: o 10997 C: 	1 	1179
499 • 500
501
502 • 503
504 Str
505

o 506 WS 	Store
507 C: 	0 	11500 	11:23 	11490 	D 0 11499
508 • 509
510
511 LRIJ Store $ 512 C: 	1 	1179 	0:23 	11490 	11 0 11499 C: 	0 	11500
513
514 • 515
516 PFF Store
517 C: 	0 	11500 	11:23 	11490 	ti: 0 11499 C: 	1 	1179 • 518
519
520 • 521
522
523 Str • 524
525 WS 	Store
526 C: 	0 	12000 	11:23 	11995 	ii: 0 11999 • 527
528
529 • 530 LRU Store
531 C: 	1 	1179 	11:23 	11995 	o: 0 11999 C: 0 	12000
532 • 533
534
535 PFF Store $ 536 C: 	0 	12000 	0:23 	11995 	1' 0 11999 C: 	1 	1179
537
538

ae 9

burl Jri zi ifiMZJiU i717

541 3 	2 	3
542
543 Str
544
545 WS 	Store
546 C: 	0 	12497 	[':23 	12492 	ii: 	o 12500
547
548
549
550 LRU Store
551 C: 	1 	1179 	11:23 	12492 	C: 	0 12497 ti: 	0 	12500

552
553
554
555 PFF Store
556 C 	0 	12497 	0:23 	12492 	ii: 	0 12500 C: 	1 	1179
557
558
559
560
561
562 Str
563
564 WS 	Store
565 C: 0 	12996 	1U23 	12998 	1' 	0 13000
566
567
568
569 LRU Store
570 C: 	1 	1179 	C: 	0 	12996 	11:23 12998 1' 	0 	13000

571
572
573
574 PFF Store
575 C: 	0 	12996 	11:23 	12998 	ri: 	0 13000 C: 	1 	1179
576
577
578
579
580
581 	 Str
582
583 	 WS Store
584 	 C: 0 13500 11:23 13495 D 0 13499
585
586
587
588 	 LRUStore
589 	 C: 1 1179 11:23 13495 EI 0 13499 C: 0 13500
590
591
592
593 	 FFF Store
594 	 C: 0 13500 11 1023 13495 11: o 13499 C: 1 1179
595
596
597
598

-. 	 a.,.y.j a 	 S I . t wAn0ow

601 Str
602
603 WS 	Store
604 C: 	0 	13998 	[':23 	14000 	ii: 	0 13996
605
606
607
608 LRU Store
609 C: 	1 	1179 	El: 	o 	13996 	C: 	0 13998 [':23 	14000
610
611
612
613 FFF Store
614 C: 	0 	13998 	[':23 	14000 	ii: 	O. 13996 C: 	1 	1179
615
616
617
618
619 5 	1 	2
620
621 Str
622
623 WS 	Store
624 C: 0 	14498 	11:23 	14500 	EU 0 14499
625
626
627
628 LRU Store
629 C: 	1 	1179 	C: 	0 	14498 	ii: 	0 14499 0:23 	14500
630
631
632
633 PFF Store
634 C: 0 	14498 	1U23 	14500 	EU 0 14499 C: 	1 	1179
635
636
637
638
639 6 	3 	3
640
641 Str
642
643 WS 	Store
644 C: 0 	14995 	0:23 	14998 	1' 	0 15000
645
646
647
648 LRU, Store
649 C: 	1 	1179 	C: 	0 	14995 	[':23 14998 1' 	0 	15000
650
651
652
653 PFF Store
654 C: 	0 	14995 	[':23 	14998 	r: 	0 15000 C: 	1 	1179
655
656
657
658

vatgL. IA

)

)

t

661 • 662 US 	Store
663 C: 0 	15499 	1U23 	15500 	ii: 0 15498

664 * 665
666
667 LRU Store

4 668 c: 	1 	1179 	LU 	0 	15498 	C: 	0 15499 [':23 	15500

669
670 • 671
672 PFF Store
673 c: 	0 	15499 	11:23 	15500 	ri: 	0 15498 C: 	1 	1179 • 674
675
676

4 677
678 7 	2
679

4 680 Str
681
682 US 	Store • 683 C: 0 	15999 	D:23 	15996 	o: 0 16000

684
685

4 686
687 LRU Store

688 C: 	1 	1179 	[':23 	15996 	C: 	0 15999 LU 0 	16000

4 689
690
691

4 692 PFF Store

693 C: 	0 	15999 	11:23 	15996 	ru: 	0 16000 C 	1 	1179

694 • 695
696
697

4 698
699 Sti'
700

4 701 US 	Store

702 C: 	0 	16500 	[':23 	16497 	ii: 	0 16499

703

4 704
705
706 LRU Store

4 707 c: 	1 	1179 	[':23 	16497 	r: 	0 16499 C: 0 	16500

708
709

4 710
711 PFF Store
712 C: 	0 	16500 	[':23 	16497 	ii: 	o 16499 C: 	1 	1179

4 713
714
715 • 716
717 8 	1 	3 - 718

ease J.)

721 US 	Store • 722 Ct 0 	17000 	1U23 	16995 	EU 0 16999
723
724 • 725
726 LRU Store
727 C: 	1 	1179 	11:23 	16995 	D 	0 16999 Ct 	0 17000 • 728
729
730 • 731 PFF Store
732 C: 	0 	17000 	[':23 	16995 	ii: 	0 16999 C 	1 1179
733

a 734
735
736

a 737
738 Str
739 • 740 US 	Store
741 C: 	0 	17500 	[':23 	17495 	1': 	0 17499
742 • 743

744
745 LRIJ Store • 746 Ct 	1 	1179 	1U23 	17495 	[U 0 17499 C: 	0 17500
747
748

I 	S 749
750 FFF Store
751 C: 0 	17500 	11:23 	17495 	D 	0 17499 Ct 	1 1179 $ 752
753
754 • 755
756
757 Str • 758
759 WS 	Store
760 C 	0 	18000 	1U23 	17997 	EU 0 17999 • 761
762
763
764 LRU Store
765 Ct 	1 	1179 	1U23 	17997 	EU 0 17999 Ct 	0 18000
766 • 767
768
769 PFF Store

o 770 C: 	0 	18000 	[':23 	17997 	[it 	0 17999 Ct 	1 1179
771
772 • 773
774
775 9 	3 	2 • 776
777 Str
778

1) L

)

.3

781
782
783
784 LRU Store
785 C: 	1 	1179 	11:23 	18487 	ri: 	0 18499 c: 0 	18500

786
787
788
789 PFF Store

790 C: 0 	18500 	[U23 	18487 	tu: 0 18499 C: 	1 	1179

791
792
793
794
795
796 Str
797
798 WS 	Store

799 C: 	0 	18998 	[1:23 	19000 	ri: 	0 18996

800
801
802
803 LRU Store

804 C: 	1 	1179 	ii: 	o 	18996 	c 	0 18998 ['123 	19000

805
806
807
808 PFF Store
809 C: 0 	18998 	[U23 	19000 	ii: 0 18996 C: 	1 	1179

810
811
812
813
814
815 Str
816
817 WS 	Store
818 c: 0 	19500 	1U23 	19494 	lU 0 19499

819
820
821
822 LRU Store

823 C: 	1 	1179 	11:23 	19494 	D 	0 19499 C 	0 	19500

824
825
826
827 PFF Store

828 C: 	0 	19500 	[':23 	19494 	ii: 	0 19499 C 	1 	1179

829
830
831
832
833
834 Str

835
836 WS 	Store
837 C: 0 	20000 	1U23 	19995 	LU 0 19999

838
11—

Sun Jar, 21 1445U0 1979 ex433a

841 LRU Store

• 842 C: 	1 	1179 	[':23 	19995 	ii: 	o 19999 C: 	0 20000
843
844

• 845
846 FFF Store
847 C: 	0 	20000 	11:23 	19995 	1I 	0 19999 C: 	1 1179

• 848
849
850

• 851
852
853 Str

• 854
855 WS 	Store
856 C: 	0 	20497 	11:23 	20488 	1' 	0 20500

• 857
858
859

• 860 LRU Store
861 C: 	1 	1179 	[':23 	20488 	C: 	0 20497 D 	0 20500

862

o 863
864
865 FFF Store

• 866 C: 0 	20497 	[':23 	20488 	1' 	0 20500 C: 	1 1179
867
868

• 869
870
871

• 872 Str
873
874 WS 	Store • 875 C: 	0 	20998 	[':23 	21000 	1' 	0 20997 • 876
877 • 878 • 879 LRU Store
880 C: 	1 	1179 	o: 	0 	20997 	C: 	0 20998 0:23 21000
881
882
883 • 884 FFF Store
885 C: 	0 	20998 	11:23 	21000 	11 	0 20997 C: 	1 1179
886 • 887
888
889. • 890 .
891 Str
892

• 093 WS 	Store
894 C: 0 	21499 	0:23 	.21496 	WO 0 21500
895 • 896
097
098 LRU Store
899 C: 1 	1179 	D.M. 	2149E 	M 0 71499 ri: 	0 71OC

ae 15
I

°

)

U

•1

I Sun Jan 21 	14:45:10 1979 ex433a 	 page 16

901
4Th 902

903 PFF Store
904 C: 	0 	21499 	11:23 	21496 	LU 0 21500 C: 	1 1179
905
906
907
908
909
910 Str

(
911
912 WS 	Store
913 C: 	0 	21999 	11:23 	21986 	r': 	0 22000
914
915
916
917 LRU Store
918 C: 	1 	1179 	D:23 	21986 	C: 	0 21999 ii: 	0 22000
919

(
920
921
922 PFF Store
923 C 	0 	21999 	11:23 	21986 	ri: 	0 22000 C: 	1 1179
924
925

(
926)

927
928
929 Str
930
931 WS 	Store
932 C: 0 	22496 	D:23 	22498 	n: 0 22500
933
934
935
936 LRU Store
937 C: 	1 	1179 	c: 	0 	22496 	11:23 22498 NO o 22500
938
939
940
941 PFF Store
942 C: 0 	22496 	11:23 	22498 	o: 0 22500 C: 	1 1179
943
944
945
946
947
948

-

Str
949
950 WS 	Store
951 C: 0 	22997 	11:23 	23000 	LU 0 22999
952
953
954
955 LRU Store
956 C: 	1 	1179 	C: 	0 	22997 	ii: 	o 22999 11:23 23000
957
958
Qc?

K ,

(.

(.

I

(.

(.

C;

IC)

'C)

Sun Jan 21 14:45:10 1979 	 ex433a

961 c: 	0 	22997 	11:23 	23000 	ri: 	0 22999 C: 	1 	1179
962
963
964
965
966
967 Str
968
969 US 	Store
970 C: 0 	23496 	1U23 	23498 	EU 0 23500
971
972
973
974 LRU Store
975 C: 	1 	1179 	c: 0 	23496 	1123 23498 EU 0 	23500
976
977
978
979 FFF Store
980 C: 	0 	23496 	11:23 	23498 	ii: 	0 23500 C: 	1 	1179
981
982
983
984
985
986 Wor
987
988 WS 	Store
989 C: 	0 	23881 •11:23 	23883 	ii: 	0 23880 C: 1 	23884

990
991
992
993 LRU Store
994 0: 	o 	23880 	C: 0 	23881 	11:23 23883 c: 	1 	23884
995
996
997
998 PFF Store
999 C: 	0 	23881 	11:23 	23883 	Eu: 	0 23880 C: 	1 	23884
1000
1001
1002
1003
1004 no solution
1005

Page 17

p

p

p

p

p

p

p

p

p

'p

)

p .

p

p

EXAMPLE 4.3.4

This is a necessarily simplified example.

Let N=

Critical Frequency = 1/3

R = 	 1,2,3,4,1,4,3,2,1,4,3,4,3,2,1,7,5,6,5,7,6

then Store Set =llllllllllllllllllll1

22222222222222222222

3 3 3 3 3 3 3 3 3 3 3 3 3 • 3 3 3 3 3 3

444444444444444444

777777

55555

6666

* * * * 	 * * *

A B B

A - Although the page fault frequency is less than the

critical frequency, no page is removed since all

have been used since the last page fault.

B - The page fault frequency is higher than the critical

frequency, consequently pages are added without

replacement.

In this situation, the over-estimate will exist until

the first page fault that creates a lower frequency

than the critical frequency. (Whether this be a

natural fault or a "pseudo-fault'.)

4.29

Fri Jare 19 122737 1979 	 ex435

1 	 Program ex435(outrut)
2
3
4
5
	

(* This rrorarn should show the effect of the PEE algorithm 	*)
6
	 (* holdir.g onto Pages after the indicated localit9 change

7
8
9
10 	 elenientarras[l.,2048] of integer;
11
	

i : in,teer
12
	

begin
13
	

for i1 to 512 do
14
	

begin
15
16 	 element[i]=1
17 	 elernenstEi+5123 t2
18 	 elernerit[i+1024] :=3;
19 	 end;
20
21
	

(* 	 LOCALITY CHANGE
22
	

(*********************************t****************************)
23
	

for i:=1537 to 2048 do elenient[i)=4
24
	 end,

Page 1

Sun Jan 	21 	14:10:30 1979 Ex435ad Page 1

1
2
3 Str
4
5 WS 	Store
6 [':23 	6295 	is: 	0 	6300 	C: 	0 6299 1U15 6296 1521 6237 ['19 6261
7
8
9
10 LRU Store
11 [':21 	6237 	1s19 	6261 	[':23 6295 r':15 6296 C: 	0 6299 D 	0 6300
12
13
14
15 PFF Store
16 11:23 	6295 	D: 0 	6300 	c: 	0 6299 [':15 6296 1'21 6237 11:19. 6261
17
18
19
20
21
22 Str
23
24 WS 	Store
25 [':23 	6393 	o: 0 	6399 	C: 0 6400 1U15 6394 t$21 6335 E'19 6359
26
27
28
29 LRU Store
30 rs:21 	6335 	1U19 	6359 	0:23 .6393 [':15 639.) 	0 6399 C: 	0 6400
31
32
33
34 PFF Store
35 1U23 	6393 	ts: 0 	6399 	C: 0 6400 0U5 6394 [121 6335 [':19 6359
36
37
38
39
40
41 Str
42
43 WS 	Store
44 11123 	6499 	ii: 	o 	6500 	C: 	0 6498 1515 6492 1121 6433 1U19 6457
45
46
47
48 • 	LRU Store
49. 15:21 	6433 	1U19 	6457 	£515 6492 C: 	0 6498 [':23 6499 ii; 	0 6500
50
51
52
53 PFF Store
54
55

[':23 	6499 	1' 	0 	6500 	C: 	0 6498 11U5 6492 1U21 6433 11:19 6457

56
57
58
Co •.

Sun Jan 21 14U030 1979 E>435ad

I'
61 • 62 US 	Store
63 [':23 	6597 	[U 0 	6599 	C 	0 6600 11U5 6590 1U21 6531 1JU9 6555
64
65
66
67 LRU Store • 68 1U21 	6531 	tU19 	6555 	t'U5 6590 11:23 6597 ri: 	0 6599 C: 	0 6600
69
70 • 71
72 PFF Store
73 [':23 	6597 	o: 0 	6599 	C: 	0 6600 ri:15 6590 1U21 6531 1U19 6555 • 74
75
76

a 77
78
79 Str • 80
81 US 	Store
82 [':23 	6695 	ri: 	0 	6699 	C: 	0 6700 [':15 6688 1U21 6629 11:19 6653 • 83
84
85 • 86 LRU Store
87 ['21 	6629 	1U19 	6653 	1U15 6688 11:23 6695 ii: 	0 6699 C: 0 6700
Be

a 89
90
91 PFF Store • 92 D:23 	6695 	DI 0 	6699 	C: 0 6700 1'15 6688 ti21 6629 1U19 6653
93
94

I 95
96
97 • 98 Str
99
100 US 	Store • 101 [U23 	6793 	ii: 0 	6800 	C: 0 6798 ri:15 6786 1U21 6727 1U19 6751
102
103 • 104
105 LRU Store
106 EU21 	6727 	[U19 	6751 	11:15 6786 [U23 6793 C: 	0 6798 0 	0 6800 • 107
108
109 • 110 PFF Store
111 [':23 	6793 	1' 	0 	6800 	C: 	0 6798 ii:15 6786 1U21 6727 11:19 6751
112

a 113
114
115 • 116
117 Str
118 • 119 US 	Store

r'ae 2

Sun Jare 21 	14:10:30 1979 Ex435ad Pe 3

121
122
123
124 LRU Store
125 11:21 	6825 	DU9 	6849 	E'15 6884 [U 0 6898 D23 6899 C: 	0 6900 ()
126
127
128)
129 PFF Store
130 [':23 	6899 	EU 0 	6898 	C: 0 6900 11115 6884 EU21 6825 E1U9 6849 (131
132.
133

4 134
135
136 Str
137)
138 WS 	Store
139 [':23 	6993 	0 	0 	7000 	C: 0 6999 [':15 6994 1l21 6923 11:19 6947

4 140
S

141
142
143 LRIJ Store)
144 11:21 	6923 	11:19 	6947 	[1:23 6993 1U15 6994 C: 0 6999 EU 0 7000
145
146
147
148 PFF Store
149 11:23 	6993 	EU 0 	7000 	C: 0 6999 ri:15 6994 [':21 6923 11:19 6947
150
151
152 5)

153
154
155 LRU FFF Wor This is the last actual page fault, and is comparable to the locality 156
157 WS 	Store change indicated.
158 11:23 	7014 	ii: 	o 	7021 	C: 	0 7019 1U15 7007 1U21 6923 EU19 6947 [':17 	7022 5)

159
160

4 161
162 LRU Store
163 1U19 	6947 	D15 	7007 	[':23 7014 C: 0 7019 r': 	0 7021 1U17 7022

4 164)
165
166

4 167 FFF Store
168 11:23 	7014 	ii: 	0 	7021 	C: 	0 7019 [':15 7007 [':21 6923 11:19 6947 E$U7 	7022
169

4 170
171
172 • 173
174 Str

)
175 • 176 WS 	Store
177 [':23 	7093 	EU 0 	7100 	C: o 7099 11:15 7094 1U21 6923 [':19 6947 EU17 	7072
178
179

- 	 - 	 - 	 -

Our. Jar. 21 	14:10:30 1979 Ex435ad page 4 I 	;

181 LRU Store
182 t'U9 	6947 	1U17 	7072 	[':23 7093 D15 7094 C: 	0 7099 ii: 	o 7100

103
184
185
106 PFF Store
187 [':23 	7093 	ii: 	o 	7100 	C: 	0 7099 LU15 7094 [':21 6923 t'U9 6947 11U7 7072

188
189
190 The effect of the Working set "strobe" is shown in this output to
191
192 indicate where the Working set algorithm removes the unnecessary pages.
193 Str
194
195 US 	Store
196 [':23 	7193 	EU 0 	7200 	C: 0 7199 D:15 7194 1U21 6923 1U19 6947 1U17 7172

197
198
199
200 LRIJ Store
201 [1:19 	6947 	D:17 	7172 	D:23 7193 D15 7194 C: 0 7199 Ii: 	0 7200

202
203)

204
205 PFF Store
206 E':23 	7193 	EU 0 	7200 	C: 0 7199 [':15 7194 tU21 6923 1U19 6947 EU17 7172

207
208
209
210
211
212 Str
213
214 US 	Store
215 [':23 	7293 	o: 	0 	7300 	C: 	0 7299 i':15 7294 EU21 6923 EU19 6947 1U17 7272

216
217
218
219 LRU Store
220 1U19 	6947 	[':17 	7272 	1U23 7293 EU15 7294 C: 	0 7299 r': 	0 7300
221
222
223
224 PFF Store
225 E':23 	7293 	r': 	0 	7300 	C: 	0 7299 1U15 7294 1U21 6923 1U19 6947 EU17 7272
226
227 -)
228
229
230
231 Str
232
233 US 	Store)

234 11:23 	7393 	EU 0 	7400 	C: 0 7399 tU15 7394 [':21 6923 EU19 6947 1U17 7372
235
236
237
238 LRU Store
239 [':19 	6947 	tU17 	7372 	11:23 7393 1U15 7394 C: 	0 7399 1' 	0 7400

Sun Jar, 21 14U030 1979 	 E<435ad 	 Page 5

241
242
243 PFF Store
244 [':23 	7393 	t1 	0 	7400 	C: 	0 7399 1U15 7394 [U21 6923 1'19 6947 	[':17 	7372
245 ()
246
247
248

)

249
250 Str
251
252 US 	Store
253 [':23 	7493 	0 	0 	7500 	C: 0 7499 D15 7494 1'17 7472
254
255
256
257 LRU Store

)

258 I'U9 	6947 	D17 	7472 	11:23 7493 ti:15 7494 C: 	0 7499 LU 0 7500
259
260

)

261
262 PFF Store
263 [1:23 	7493 	o: 0 	7500 	C: 0 7499 ['U5 7494 [1:21 6923 1U19 6947 	1U17 	7472
264
265
266
267
268
269 Str
270
271 US 	Store
272 [':23 	7593 	D 	0 	7600 	C: 0 7599 ['U5 7594 1U17 7572
273
274
275

)

276 LRIJ Store
277 11:19 	6947 	1U17 	7572 	11:23 7593 IIUS 7594 C: 0 7599 0 7600
278
279
280
281 PFF Store
282 11:23 	7593 	D 	0 	7600 	C: 0 7599 t':15 7594 1U21 6923 1U19 6947 	[1:17 	7572
283
284
285
286
287
288 Str
289
290 US 	Store
291 [':23 	7693 	ii: 	0 	7700 	C: 	0 7699 t':15 7694 [':17 7672
292
293

294
295 LRU Store
296 [':19 	6947 	1U17 	7672 	[':23 7693 1U15 7694 C: 	o 7699 D 	0 7700
297
298
299

Sun Jan 	21 	14:10:30 1979 Ex435ad ae 6
C' ell

301 [':23 	7693 	o: 	0 	7700 	C: 	0 7699 0:15 7694 021 6923 [U19 6947 [':17 7672
302
303
304
305
306
307 Str
308
309 US 	Store
310 [':23 	7793 	ii: 	0 	7800 	C: 	0 7799 [':15 7794 t'U7 7772

(311
312
313
314 LRU Store
315 t'U9 	6947 	t'U7 	7772 	0:23 7793 0U5 7794 C: 0 7799 o: 0 7800
316
317
318
319 PFF Store
320 0:23 	7793 	0 	0 	7800 	C: 0 7799 11:15 7794 021 6923 1U19 6947 017 7772
321
322

(323)

324
325
326 Str
327
328 US 	Store
329 0:23 	7893 	ii: 	0 	7900 	C: 	0 7899 [':15 7894 11U7 7872
330
331
332
333 LRU Store
334 [':19 	6947 	017 	7872 	[':23 7893 L'U5 7894 C: 0 7899 0 	0 7900
335
336
337
338 PFF Store
339 0:23 	7893 	o: 0 	7900 	C: 0 7899 [':15 7894 1U21 6923 019 6947 1U17 7872
340
341
342
343
344)

345 Str
346

• 	(347 US 	Store
348 .0:23 	7993 	0 	0 	8000 	C: 0 7999 [':15 7994 [':17 7972
349
350
351
352 LRU Store
353 [U19 	6947 	1U17 	7972 	[':23 7993 r':15 7994 C: 	o 7999 0 	0 8000
354
355
356
357 PFF Store
358 0:23 	7993 	0: 0 	8000 	C: 0 7999 0:15 7994 0:21 6923 0:19 6947 ['U7 7972

- 	 - 	 - -

Sun Jan 21 14U030 1979 Ex435ad PaAe 7

361
362
363
364 Str

4. 365
366 US 	Store
367 [':23 	8093 	0 	0 	0100 	C: 0 8099 1U15 8094 [U17 8072

(
368
369
370
371 LRU Store
372 [U19 	6947 	0U7 	8072 	0:23 8093 t':15 8094 C: 	0 8099 o: 	0 8100

373

4 374
375
376 PFF Store
377 0:23 	8093 	ti: 	0 	8100 	C: 	0 8099 1U15 8094 1U21 6923 1U19 6947 0:17 	8072

378
379
380 1)
381
382

(
383 Str
384
385 US 	Store
386 [':23 	8193 	ti: 	0 	8200 	C: 	0 8199 1U15 8194 1U17 8172

387
388

4 389
390 LRU Store
391 11:19 	6947 	0:17 	8172 	11:23 8193 tu:15 8194 C: 	0 8199 ii: 	o 8200

392
393
394
395 PFF Store
396 [':23 	8193 	D: 0 	8200 	C: 0 8199 o:15 8194 tU21 6923 [':19 6947 EU17 	8172

397
398
399
400
401
402 Str
403
404 US 	Store
405 0:23 	8293 	EU 0 	8300 	C: 0 8299 t':15 8294 11:17 8272

406
407
408
409 LRU Store
410 [1:19 	6947 	[1:17 	8272 	[1:23 8293 ti41 15 8294 C: 0 8299 EU 0 8300

411
412

4 413
414 PFF Store
415 [':23 	8293 	ru: 	0 	8300 	C: 	0 8299 ri:15 8294 [1:21 6923 tU19 6947 [1:17 	8272

416
417
418

here are:-

Program Restructuring

Swapped Working Sets

Critical Working Sets

4.4.1 Program Restructuring

Hatfield and Gerald (Hat 71) and Hatfield (Hat 72)

developed techniques for examining programs that are to

be run in virtual memory systems, and for reducing their

physical memory requirements with little or no recoding.

A program is divided into sectors, which represent

contiguous locations which are logically associated

one with another. A "nearness matrix" is constructed

during a pre-run of the program wherein the numbers of

references from each sector to another are filled into

the relevant position in this matrix.

Different sector orderings can be selected where refer -

ences out of blocks of sectors are reduced to a minimum.

This can be represented by a clustering around the

diagonals of the matrix (see Example 4.4.1.1).

The authors themselves present some criticisms of this

technique:

The matrix only presents global nearness and

does not show any time dependent behaviour. -

A new nearness matrix might have to be generated

every time a program is run with new data.

4.30

EXAMPLE 4.4.1.1

Sectors =[l ,2,3,4,5,6

Nearness matrix = C. 	where

1 	2 	3 	4 	5 	6

1 	213 	43 	- 612

2 	769

3 	 3 416 	541
C..

-
13 	4 	 317

5 	 684

6 	39 	297 	 291

which can be restructured to give

15 	3 	6 	4 	2

1 	213 61243

- - - 684:

3 	 :416541, 	3
C.. = 13 	6 	39 	29721,'

4 	 317

2 	 769

Their own experiments have tended to show that:-

program behaviour improves with restructuring

based on this technique

programs which are commonly used tend to show

data independent behaviour.

For the actual running of programs, the blocks of sectors

achieved by the restructuring are allocated to pages in a

4.31

minimal fashion. That is to say, in a manner which will

minimise the number of inte.r-oage references.

The techniques described have been shown to produce a

reduction in paging of between two-to-one and ten-to-one.

The major problem with this technique is that the tracing

program takes about 30 to 60 times as long as the traced

program to run. This seems to be a prohibitively long

time for all but the most frequently used programs.

4.4.2 Swapped Working Sets

If when a program starts a period of execution its

complete working set is not in store, a considerable

amount of page traffic occurs while it builds up its

working set. Experimental evidence reported by Adams

(Ada 76) indicates that more than fifty per cent of page

traffic comes from these faults.

A solution to this problem is to pre-load the working

set of a program when it is re-activated. This is, in

effect, an exact implementation in this respect of the

Working Set policy, since that technique requires that

a process have its complete current working set in store

before it is allowed to run. In practice, this was often

ignored for implementation reasons.

This technique has two effects:-

1. The number of individual page faults is reduced.

(Although the volume of page traffic is not reduced)

4.32

2. A bulk request is made to secondary memory for

the absent working set pages, and this allows

optimisation at the level of secondary memory.

This technique, reported by Potier (Pot 77) was implemented

on the Edinburgh Multi-Access System (EMAS) (Ada 75).

The only drawback of this technique occurs if a program is

re-activated at the time of a locality transition. The

working set that is pre-loaded will be out-of-date and

will not refer to the new locality. Consequently, the

program will demand-page up to its new working set and

will remain with an over-large store alloçtion for some

period which depends on the exact implementation of the

Working Set principle.

4.4.3 Critical Working Sets

This technique also aims at program locality improvement

by means of restructuring (Fer 74).

In this technique, a working set, W(t,T), is said to be

a critical working set if

r(t + 1) . W(t,T).

That is to say, a page fault occurs at r(t + 1).

The idea behind this algorithm is to consider two

reference strings 5b and S 	5b is the reference string

with respect to the logical blocks of a program, and S ,

is the reference string with respect to the pages of the

program. Any mapping of the program blocks into pages

4.33

transforms the block reference string into a page

reference string. It is shown that a page fault in S

always corresponds to a block fault in Sbl although all

block faults do not have corresponding page fault. The

aim of the Critical Working Set algorithms is to mini-

mise the number of critical working sets in S r,.

A critical working set matrix is created which is an

n x n matrix whose entry c is the number of criticalij

working sets having i as their critical reference and

containing j. Consequently, c 	+ c.. is the number of

critical working sets which disappear if i and j are

mapped onto the same page.

This matrix is then used to produce an optimal allocation

of blocks to pages.

It is reported that this technique is as successful as

that reported by Hatfield and Gerald (see 4.4.1) in

practical situations.

Again the major drawback of such a method is the con-

siderable amount of processing time required to obtain

all the necessary information for restructuring.

4.5 Conclusions

A number of conclusions can be drawn from the results and

comments above:-

1. No real measure, of how well a program behaves

with respect to a particular page replacement

4.34

algorithm has been established. Mathematical

models of program behaviour only extend to

some types of reference strings and do not, in

general, deal with locality transitions.

Equally, no "standard" reference string has

been produced against which the behaviour of

algorithms can be measured.

Given a replacement algorithm, it is all too

easy to find "real" programs which will behave

badly under that algorithm. Indeed, even the

"near-optimal" Working Set algorithm is shown

to have unexpected far-from-optimal behaviour

in simple cases.

If a process behaves badly with respect to a

page replacement algorithm, it will always

behave badly with respect to that algorithm no

matter how many times it runs.

Replacement algorithms tend to make assumptions

about the reference behaviour of programs,

whether they display this behaviour or not.

A program is a deterministic entity, yet most

algorithms are based on a probabilistic

approach to program behaviour which completely

ignores any prior information that may be

available about the program's behaviour.

Attempts to improve locality by restructuring

the address space of programs to fit the

4.35

replacement algorithms have met with some

success but are extremely costly.

In the next chapter an alternative approach which

attempts to mould a flexible algorithm to each individual

program is proposed and subsequently developed.

4.36

CHAPTER 5 	A PROPOSAL FOR MEMORY MANAGEMENT SYSTEMS

BASED ON A KNOWLEDGE OF PROGRAM STRUCTURE

5.1 Introduction

In the previous chapter, it has been shown that each of

the major replacement algorithms suffers from major

practical deficiencies. In this chapter the background

to a somewhat different approach to storage management is

presented.

5.2 Program Structure and Program Behaviour

With the development of high-level languages into

complex software tools, it is only natural that programs

have, themselves, grown more complex and more structured.

Due to the timing of the work done on replacement

algorithms, much of the work related to reference strings

produced by FORTRAN or Assembler programs. It is one

of the contentions of this thesis that analysis of the

localities in such strings has produced algorithms that

are appropriate only to such strings.

This, in itself, would be no great disadvantage if it

were not for the fact that reference behaviour within

languages which maintain a very linear and static address

space is radically different from that type of behaviour

displayed in the dynamically changing block-based address

space in wide-spread use today.

5.1

At this point, then, it is useful to examine some of

the language features available and to consider how these

features affect the notion of program locality.

5.2.1 Block Structure

This feature, in itself, gives good support to the notion

of a program going through a series of localities during

its execution. This is a significant diversion from the

early static languages. Dijkstra (Dij 76) examines the

idea of accessibility of variables and states:-

"From the point-of-view of flexibility and general

applicability, the random access of store is, of

course, a splendid invention, but comes the moment

that we must realise that each flexibility, each

generality of our tools requires a discipline for

its exploitation. That moment has come."

Dijkstra identifies first the notion of a declaration as a

useful form of redundancy, not present in the original

version of FORTRAN. Declaring variables meant that data

items could not deliberately (or accidentally) be created

at run-time in a haphazard manner by simply placing the

new name in the text of the program. Block structure

itself was a great departure from the FORTRAN background.

The idea of being able to nest blocks and their associated

variable declarations has led to the idea of global and

local variables.

When a program is executing in a given block, variables

5.2

declared in an inner block are protected by the scope

rules and are inaccessible. Thus a program can access

only a subset of its total address space at a given time,

thereby supporting the idea of locality. However in a

given block of program, everything outside that block is

accessible (except for those identifiers which have

been re-declared in some of the nested blocks). It has

proved to be the case that fledgling programmers have been

encouraged to use local variables widely and global

variables sparingly because of "good style". It is also

true that the use of local variables improves the locality

of a program, whereas reference to variables global to a

given block increases the size of the locality.

It is interesting to note that current notions of departing

from this extensive block context will tend to improve

locality. The idea presented by Dijkstra and others of

maintaining textual context but explicitly enumerating the

names that make up this context at block entry, further

restricts the address space accessible to a program at a

given time and effectively defines the data locality of the

program at that instant (cf, for example (Lam 77)).

5.2.2 Procedures and Functions

Even early implementations of FORTRAN and some assemblers

allowed the idea of procedures and functions (or sub-

programs). These were the first occurrences of explicit

locality in a program text. Statements performing a

5.3

logically distinct.f unction were physically gathered into

a distinct textual unit. During the execution of this

distinct function, the program maintained a distinct

locality (up to the restrictions mentioned above). It is

useful to note that procedures and functions used the

first primitive import and export list for their para-

meter lists.

Again it is useful to note that "good programming style"

tends towards good locality. Within the context of

procedures and functions (particularly the latter) side-

effects are frowned upon. Such entities, it is recommended,

should only affect their environment through their para-

meters or result. This is another way of restricting the

accessible address space of a program at a given time.

However for procedures and functions, the most interesting

aspects of locality behaviour are displayed by the use and

implementation of parameters. Three types of parameter are

identifiable: -

Name-type parameters

Reference-type parameters

Value-type parameters.

These have different effects on locality;-

1. Name-type parameters:- Such parameters, have

addresses calculated at each time of use within

the body of the procedure. This is unfortunate

for locality, as it is impossible at the point

of locality transition to determine exactly the

5.4

extent of the locality. It is fortunate,

from a locality point-of-view, that this method

of parameter passing has gone out of favour.

In fact, the reasons that this technique has

gone out of favour are similar to those used

from arguing the locality viewpoint.

2. Reference-type parameters:- This type of para-

meter passing mechanism is widely used to en-

able the effect of procedures and functions to

be passed out to the environment. However two

implementation techniques result in different

locality behaviour: -

Reference: the address of the parameter is

worked out at the call of the

procedure or function and this

address is used throughout the

body of the procedure wherever

the parameter name occurs.

Value-result: a variable local to the pro-

cedure or function is set up

with the same type and same

value as the actual parameter

- 	 at the time of the call. At

the end of the procedure or

function the value in this

local variable is copied back

to the actual parameter.

Although these techniques are often used inter-

5.5

changeably in the implementations of a

programming language, the reference behaviour

produced is radically different. In the case

of "pure" reference, this technique will almost

certainly add to the locality size of the

program at this point. A (not necessarily

distinct) page (or pages) will be added for

each reference parameter used. This addition

could be critical in the case of LRU where the

stack length is exceeded.

On the other hand, value-result packs the

parameter-inspired variables in the local data

space at the cost of an extra page fault for

each parameter (approximately) at procedure

exit. This could be a poor technique, in that

retrospective algorithms will maintain the pages

containing the actual parameters anyway for a

strobe period. However from an aesthetic

viewpoint the purely internal locality (in the

absence of explicit globals) has its attractions.

Value-result is not very popular for dealing

with array parameters due to the copying in-

volved.

3. value-type parameters: these are essentially

implemented as the first half of value-result

parameters, i.e. the result is not passed back

at exit time. The same comments can be made as

of value-result above.

5.6

Another feature of procedures and functions is their

relationship to the Page-Fault Frequency algorithm

mentioned above. It is clear that at orocedure/function

entry a program will attempt to acquire pages relating

to the new locality quickly. This is the point at which

PFF is likely to behave badly, since the previous

locality is only removed at the first non-critical page

fault. A program which displays good locality in its

procedures using value-result parameters etc might well

have a small locality over-estimated by PFF in this

situation.

5.2.3 Arrays and Records

In that these structures are inherently similar - arrays

being named collections of objects of identical type and

records being named collections of objects of not

necessarily the same type - it is useful to consider them

together. However it is important to note that in typical

applications arrays are significantly larger objects than

records.

The important feature of these structures is that the

whole structure may be referenced with a single textual

reference. (It is assumed that "reasonable" languages

allow record/array assignment and, at least, comparison

for equality and inequality on records and some arrays,

e.g. strings). As far as arrays are concerned, single

5.7

items within the structure are identified by indices that

may themselves be program variables. This implies that

the actual items being dealt with cannot be identified, in

many cases, by simply examining the program text. This is

not usually true of records whose fields are usually

identified by fixed names which are extensions of the

record name and cannot be variables.

The implications of the above are two-fold. Firstly, as

was shown earlier single instructions at the high-level

language level and even at the machine-level language level

can generate large numbers of references. If this number

is large enough it can tend to saturate a retrospective

page replacement algorithm. In fact this saturation can

occur without the array/record assignment statement,

consider: -

for i: = 1 to 2048 do au) :=O;

If the system on which this little program runs has a page

size of 256 words and utilises, say, an LRU algorithm with

a stack size of 8 pages, then the stack is rapidly filled

up with the pages of the array being initialised. Only the

context of the program after this statement will say if

this is reasonable or not.

It is interesting to note that Dijkstra (Dij 76) hesitates

to allow array assignments in languages because they are

not "nice". That is to say, their implications are not

really clear at the language level.

5.8

The second point that arises, chiefly from arrays, is

the notion of access to the mapped linear form of the

array in store. In the case of two dimensional arrays,

two possibilities exist, namely to store by rows or to

store by columns (see Diagram 5.1 a) 	and Diagram

5.1 b).

To illustrate the point a worst-case can be constructed.

Assume a system with a page size of 256 words, and assume

the following (PASCAL) array definition:-

A : arrayIl..256,1..256of integer;

Assume further (though this is not necessary) that A is

aligned

Ci 	C2 	 Cr

a) Storing by columns

5.9

R

R2

R

b) Storing by rows

Diagram 5.1

to a page boundary . Consider the following two pieces

of code:-

for i: = 1 to 256 do

for j: = 1 to 256 do A[i,jl 	:= 0; (5.1)

for i: = 1 to 256 do

for j: = 1 to 256 do A[j,i] 	: 0; (5.2)

The effect of these two pieces of code is identical,

namely the elements of A are set to zero.

5.10

However, (5.1) assigns zeros on a row by row basis and

(5.2) assigns zeros on a column by column basis.

(Assuming the convention of row index followed by column

index in the ordering of array indices).

In the case of arrays stored by row (Diagram 5.j 	b))

then (5.1) will generate a page fault every 256 references.

Similarly in the case of arrays stored by column

(Diagram 5.1 	a)) then (5.2) will generate a page

fault every 256 references. However if the code of (5.1)

is used in the situation where arrays are stored by

column or vice versa, unless the store set size is

allowed to reach 256 pages then this code will generate a

page fault on every reference to the array.

There is nothing that a retrospective algorithm looking

at the reference string can do about this. It is un-

fortunate that the behaviour penalty for not knowing about

how the arrays have benn implemented is so severe (256

times more page faults in this phase).

5.2.4 Complex Data Structures and Pointers

In this category are considered the so-called dynamic and

recursive data structures e.g. lists, queues, trees, etc.

Although such structures can be implemented using the

static data structures the tendency has been to implement

them using pointers. Both techniques have their dis-

advantages.

5.11

If an array is used to simulate any dynamic structure,

two deficiencies are apparent. Firstly, over-estimation

of the space required is necessary in many problems to

deal with all the contingencies. Secondly, the penalty

of random access to a linear store is incurred. For

example, in a list structure it is common to have an

array of list-heads (depending on how many lists are

required) and an available space list which initially

links all the items in the data array (see Dia-

gram 5.2).

Avuilct4e Space List

List Heads

List E

Diagram 5.2

5.12

However as these items are added, in whatever way the

problem requires, to the individual lists and possibly

transferred from list to list, the overall structure

becomes less orderly. As can be seen in Diagram 5.3,

references to logically associated items, i.e. they are

currently on the same list, can lead to accesses to

physically distant areas of store.

Diagram 5. 3

5.13

Implementation of dynamic data structures using

pointers and the ability to create and destroy elements

of a given type during the run of a program implies more

complex storage management structures for the program

itself (e.g. the "heap" construct) and tends to require

effective garbage collection to tidy up disposed-of

items.

Apart from this overhead, the problem of less disciplined

access to store is not resolved. If list items are

created as they are needed and then used in any order

than the one in which they were created, the tendency

towards random access is just as strong as in the first

case.

It is not fair to use this as a criticism of page

replacement algorithms alone, because it is difficult to

see how any storage management technique could accommodate

such potentially undisciplined behaviour. This section

has been included rather to show what potential there is

for poor behaviour in even relatively simple problems.

In the above sections, some aspects of data representations

have been related to data locality behaviour, in the

following sections program structures will be related to

program locality behaviour.

5.14

5.2.5 Procedures and Functions

Such program elements as these represent the support

for an intuitive belief in program locality. As well

as being able (if the suggestions in 5.2.2 are

implemented) to completely define the data locality,

the program (or code) locality is restricted to the

code of the procedure and that of any other procedures

or functions it calls. Under these constraints it is

almost possible to completely define the locality and

the locality transitions during the lifetime of a

program.

For a procedure or function can be defined the following

objects: -

IMPORTS - Values imported from its environment.

These represent the values of para-

meters etc defined outside the

procedure and used within the

procedure.

EXPORTS - Values exported from the procedure at

its exit. Again, these represent the

variables defined in its environment

changed by the procedure.

ASSOCIATES - The procedures and their environ-

ments that are possibly used by

the procedure during its lifetime.

The relationship between these objects is shown graphic-

ally in Diagram 5.4.

5.15

It is not sufficient to look only at this macro-

structure. The program constructs described below have

an effect on the duration of time spent in particular

localities and in the choice of possible localities

used by a program during its lifetime.

+ 	 ASSOCIATES

Diagram 5.4

5.16

5.2.6 Loop Structures

There are three common loop structures: -

the for loop - fori:=ltondo

the while loop - while' con& do

C) the repeat loop - repeatuntil cond' ;

As far as program reference behaviour is concerned, the

body of a loop represents a locality which consists of

a section of code that is repeated a (not necessarily

pre-determinable) number of times. This is further

complicated by the fact that, if a loop is considered

as a locality, it would be desirable to standardise the

treatment of localities. Consequently, an import and

export list is required. This is not as easy to handle

as the procedure/function case where the import and

export lists can legitimately be prespecified. However,

as will be shown later, the contents of the import and

export lists can be predetermined with little extra cost.

The associates of a loop locality can be identified in a

similar fashion to those of a procedure or function.

The two remaining sections deal with two constructs that

can control the particular localities chosen during the

execution of a program.

5.2.7 Conditions

Here are considered the two conditional constructs:-

a) if <cond then

5.17

and the more general form of the condition

b) case of

Each of these constructs represents the selection of

one out of one or more actions depending on the value

of some expression. Diagram 5.5 	below shows the

relationship between the if statement and the case

statement.

If the condition is true then At

is carried out, otherwise A is

performed (A f may be null).

The selection is

performed with more

components than the

boolean in the if

statement. Any of

the A i may be null.

Diagram 5.5

5.18

Obviously, if the actions selected represent a signifi-

cant amount of code then each action could be considered

to be a locality. This implies that the direction, in

terms of locality, which is taken by a program cannot be

determined until the condition is tested.

5.2.8 The goto Statement

The goto statement, often combined with a conditional

statement, represents an almost arbitrary selection of

the next locality. This can cause a complete change of

locality, "at a stroke". Similar criticisms are made of

the goto statement from the program structure point-of-

view. Such a statement which can cause control to be

moved around a program structure in an unrestrained

fashion represents bad style and a positive hindrance

to reliable program development.

However the issue that the goto statement raises in the

terms of program locality is that of the successor to a

given locality. For a given locality, there can be

identified two associated sets of localities:-

Predecessors: these are the localities which have

the given locality as a successor

Successors: these are the localities which may be

entered on exit from this locality.

It is the successor relationship that is the most

important. The problem that exists is to determine which

of the possible successors (if there are more than one)

5.19

will be chosen when the program is executed.

5.3 The Formalisation of the Program Structure Approach

It is not the intention of this thesis to present a

theoretical description of the basis of the program

structure approach to storage management. It is all too

often the case that a theoretical approach to any topic

is forced to make concessions to the tractability of

theoretical analysis which ultimately reduces the

applicability of the results. This criticism can be

made of the theoretical approach to the state-of-the-art

presented in the earlier part of this thesis. A funda-

mental flaw with such approaches is that, although the

final algorithm may match the theory well, practical

programs have a habit of diverging from the theory at a

critical point. The particular problem area for previous

algorithms has been at locality changes. It is intuitively

obvious and easy to demonstrate that any retrospective

algorithm will fail when the past and future diverge.

Consequently, the approach of this thesis has been to

identify localities and to determine the constituents of

all future localities for a given locality.

A locality is defined as follows:-

DEFINITION 5.1 Locality

A program locality is a 7 - tuple

C,L,I,E,P,S,A

where

5.20

C - the code executed in this locality

L - the variables local to this locality (if any)

that are accessed in this locality

I - the values of variables global to this

locality that are accessed in this locality

E - the variables global to this locality whose

values may be changed in this locality

P - that set of localities that have the given

locality as a successor

S - that set of localities which may be entered

on exit from this locality

A - that set of localities which may be entered

from this locality but return control to

this locality.

NOTE: Thus, as was introduced above, for each

locality is identified the local code and

variables, import and export lists, pre-

decessor, successor, and associate locality

sets.

Two particular locality types can be identified:-

DEFINITION 5.2 	Initial Locality

An initial locality is a locality with no predecessor

in the current program context. This will correspond

to the locality entered at the beginning of a program.

DEFINITION 5.3 	Final Locality

A final locality is a locality with no successor in

the current program context. Such a program locality

5.21

will represent a locality in which the program can

halt under program control.

For a orogram, there will be a unique locality with no

predecessor. However if the system allows pre-compiled

procedures to be available with multiple entry points,

then these may have multiple initial localities.

If a programming language provides halt/stop instructions

then there may be multiple localities in which the

program can halt under program control. However if no

such instruction exists then there will be only one such

locality.

As a result, if normal execution of a program is con-

sidered to be running a program until it halts under

program control, then the following formal definition

can be made:-

DEFINITION 5.4 Normal Program Execution

Normal program execution is described as a path from

an initial locality to a final locality. At the

exit from a locality the next locality is chosen

from among the successors of the current locality.

If a program is assumed to have only one initial locality

and one final locality then the possible execution paths

can be represented as shown in Diagram 5.6.

At this point it should be noted that the structure in

Diagram 5.6 implies that there might be some potential

for lattice structure analysis of programs.

5.22

INITIAL LOCALITY

.1•
/\

/\

N
A

/\

\

\/

N
N.

FINAL LOCALITY

Diagram 5.6

5.4 	Conclusion

In this chapter, the aim has been to show how program

structure relates to program locality, and further to

show that in many instances good program structure and

potentially good program behaviour from a memory manage-

ment point-of-view go hand-in-hand. From the point-of-

view of program structure, components of program localities

can be identified and this led to a formal definition of

a program locality.

In the next chapter, it will be shown how program

localities can be identified at the time of compilation of

a program, thereby providing the run-time environment with

a behavioural description of the complete program.

5.23

CHAPTER 6 AN EXPERIMENTAL IMPLEMENTATION

6.1 Introduction

In this chapter a description of a practical implementation

of a program structure oriented approach to storage

management is given. One of the main aims was to show

that this approach could be implemented without, signifi-

cant changes to existing systems and without significant

reductions in their efficiency. The implementation

described is of modifications made to a PASCAL (Jen 74)

compiler running on a PDP-11 computer under the UNIX

operating system (Rit 78) at the University of Stirling.

6.2 Implementation Aims

The aim of the work was to extract at compile time

information sufficient to identify and describe program

segments in the manner introduced above (Chapter 5).

This information would then be made available to the run-

time system and consequently the complete nature of

localities and locality changes would be known at run-time.

This approach is in direct contrast to that of conventional

paged systems. The major practical attractions of paging

are worth recounting at this point. 	Firstly, the

technique is inherently simple. Programs are all divided

into the same fixed size units and these units become the

units of primary and secondary memory allocation as well as

being the unit of transfer between main and secondary

6.1

memory. Secondly, the programmer need know nothing

about how the system works. This technique does not hinder

program portability in any way (cf overlaying).

On the other hand, paging has brought its own problems.

Firstly, the choice of page size is critical and difficult.

Secondly, large amounts of system storage space can be

occupied by tables. Thirdly, the use of demand paging

systems has also tended to mean the use of retrospective

page replacement algorithms whose drawbacks have been out-

lined above.

The proposed system returns to the idea of segmentation

thereby removing the problems associated with page size.

Equally, the proposed system directly identifies localities

and locality changes thereby overcoming the uncertainty

and capacity for error inherent in retrospective systems.

Another aim of the system described here was to implement

the proposals starting from an existing compiler. Apart

from reducing the amount of ancillary work to be carried

out, this approach has two advantages. Firstly, as no

modifications were to be made to the compilation process

itself, it would be impossible to lay the criticism that

such a technique would only work in a controlled test

situation with the desired end always in view. Secondly,

a "normal" programming language could be considered and

not, again, a limited test vehicle.

The programming language, ultimately, chosen was PASCAL.

The PASCAL system used was written by R G Clark at the

6.2

University of Stirling and the compiler produces code for

a simple stack machine which is subsequently interpreted.

In the approach described below, this simple machine

language is considered to be the machine language of a

"real" machine. This is consistent with either micro-

code interpretation or with the design of language-

oriented hardware, both of which techniques seem to be

gaining an increasing number of adherents.

To return to the choice of PASCAL, a number of reasons

can be identified. Firstly, the compiler was available

and access to, and modification of, the code of the com-

piler was possible. Secondly, PASCAL seemed to be an

important language. While it is still not clear that

PASCAL itself will be-of the utmost importance, itis

clear that PASCAL embodies many of the current ideas con-

cerning structured programming and it is likely that

PASCAL will form the basis of a number of future languages.

Consequently, it was decided that, if in the limited

context of this thesis only one language could be studied,

PASCAL should be that language. It is fair to say that

PASCAL is not totally suited to this research due to the

fact that it lacks suitable constructs to describe data

access and locality. Such facilities are only recently

becoming available in languages like LIS (Ich 76) and

EUCLID (Lam 77

The technique employed was to divide the program being

compiled, during the compilation process, into units of

program or data space (subsequently called segments for

6.3

want of a better word) where the constituents of each

unit were logically associated. For these segments the

features described in Chapter 5 would be identified.

The units identified fall into two categories:

Data segments

Program segments

These will be considered in turn.

6.2.1 Data Segments

As has been shown above, it is unwise to consider program

and data locality together. In order that one does not

swamp the other, the locality in each area should be

considered separately.

As was mentioned earlier it would be ideal if the data

structure itself could mirror the access that will be made

to it, much as, say, the structure of a rooted tree mirrors

access made to it via the root. In such an example the

notion of the data locality for a given element could be

identified as its parent and children (see Diagram 6.1)

/

Diagram 6.1

That is to say that having accessed node N it is likely

that the next node to be accessed will be in the set

Cl, C2, C31

Languages exist now in which the access methods for a data

structure can be matched to the structure itself at the

implementation level. PASCAL is not such a language.

Consequently only the most rudimentary data localities are

identified within PASCAL programs. Within any given block

6.5

can be identified:-

constants: this is not strictly (or at all)

necessary since such identifiers are changed

when generating code into the equivalent numerical

constant. However it seemed that it might be a

good idea to consider these as initialised

variables (own variables) - a feature unavailable

in PASCAL.

local variables: the variables local to this block.

arrays: each arrayis a separate data segment.

This can be done at compiler time due to the fact

that PASCAL allows only static arrays. Consequently

the size of such a segment is known at compile time.

Under b) more than one segment can be created if array

declarations are mixed lexically with scalar declarations.

This is a relatively trivial point but it is possible to

support such an action in that the layout of variable

declarations ought to have some logical significance.

Equally a minor modification could produce all local

scalars in a single segment.

6.2.2 Program Segments

Each block (program, procedure/function) is considered to

be a separate unit, although the nesting structure of

the original program is retained for convenience.

Such program segments come under the general heading of

6.6

code segments and the following types can be identified:-

Compound statements:- Loops, "if" statements,

and "case" statements.

Simple statements.

Each compound statement represents a segment and the nesting

of compound statements particularly loops is significant.

Similarly a sequence of simple statements represents a

segment. In this way it is hoped that logically associated

statements can be grouped together.

For each program segment, its associates (which includes

variables used by this segment) are identifiable and retained

with the segment. Since a complete division has been made

between data and program segments all variables are, strictly,

imported. However it is probably useful to distinguish

between variables local to the block to which this segment

belongs and those local to other blocks. In other words

some variables are more important than others.

It is simple to identify successors since, in the worst case,

the "go tow, all labels must be declared and consequently

the segments to which a label refers can be extracted from

the symbol table. Another bad case is that of a procedure

call and return. The successor of a procedure call is the

segment containing the call.

Procedure parameters are specified at call and these

are treated as associates to that particular instance of

the procedure segment.

6.7

In the demonstration case the compiler produces output

which divides the object code into segments. Each of

which has its own associates identified (see Example 6.1).

The implementation is described fully in the next section.

6.3 Implementation

The first modification to the compiler is to extend the

symbol table entry for all named items. This extension

contains all the segment information for that given item.

A segment has the following information held on it:-

no: its number

block: its block number

actuálseg: whether it is, for code segments, a real

segment (i.e. has code in it)

unit: its unit number

kind: the type of the segment

start: starting address of the segment

finish: finish address of the segment

.assocst: the starting position in the associate

table (q.v.) for the associates of this

segment

assocend: the finish position in the associate

table for the associates of this segment.

Each segment has associates, other segments referred to

during the lifetime of that segment. These associates are

held in an array which is passed to the run-time system,

6.8

after the code and other information. Each segment has

itself as an associate. This is to enable the code for

loading associates to be dumped at the start of a segment

before the ultimate extent of the segment or its

associates is known.

The other major modification is to extend the instruction

set of the virtual machine by one instruction. This

instruction is the "fldctxt" instruction.

The function of this instruction is to load the context of

the segment about to be entered. That is to say it causes

the loading of the segments containing the associates of

the current segment. It has a second, subsidiary, function

and that is the marking as free any areas of store

occupied by segments no longer required by the system.

These, then, are the only major modifications to the

operation of an existing compiler to support this approach.

The system identifies two basic segment types:-

Data segments

Code segments

These are discussed more fully in the following sections.

6.3.1 Data Segments

As was mentioned in Chapter 5, data segments in PASCAL are

easy to identify and delineate. The reasons for this are

as follows:-

6.9

No dynamic structures (other than those

created by the facility "now) exist.

The data element descriptions are constructed

in such a way that only one pass is required

of the compiler. In other words, when the

compiler encounters a declaration of a data

element, it has all the necessary information

to compute the size of the element available

to it.

Within the area of data segments, these types can be

identified:-

Constants

Arrays

Others

These are considered below:

1. Constants: Strictly these should not be data

segments at all, since they are

implemented by substituting the

value whenever a constant identifier

is encountered in the text. However,

since it seems possible that

initialised variables might be in-

corporated in PASCAL programs in a

similar textual fashion it was thought

a useful experiment to examine such

segments.

6.10

Arrays: 	Each array is a segment. This is

the first step towards data struct-

ures with accessing methods as

segments.

Others: 	The number of other data segments

for variables depends on the layout

of the declaration of arrays, but

it was thought that, at least

initially, the total number of

segments was not important.

Each data element has its segment information associates

with it in its symbol table entry.

6.3.2 Code Segments

These are somewhat more complex entities. The major

features identified in PASCAL were:-

Procedures and functions

Repeat / White / For loops

Other compound statements

1. Procedures and functions

These represent the main block structure of PASCAL. A

check of the nesting level of the current block is kept

in the segment information (module.block). An index of

the sub-units within each block is also kept (module.unit)

as well as a simple number to identify the segment

(module. no)

6.11

The procedure/function has a unique segment id associated

with its total extent, so that the complete environment of

a procedure/function may be loaded when that procedure/

function is called.

At procedure/function call any variable parameters cause

their segment to be loaded as well. Consequently the

total environment of a procedure/function when called is:-

All associates created by the procedure/function

body

All associates created by the parameters.

2. Repeat / While / For loops

Loops represent localities in which programs can reside

for indefinite amounts of time, consequently they are

allocated segments of their own. The problem of nested

loops is considered fully in Chapter 7, but each loop with

code of its own is considered to be a separate loop. If

two nested loops exist as in the example below:-

for 	i:= itondo

for j : = 1 tomdo

begin

end;

then this can be considered to be a single segment.

6.12

3. Other Compound Statements

Here can be considered

if then (Compound Statement' else'Compound

Statement>

case of

Each of these constructs is in effect made out of a number

of sub-segments representing the compound statements.

They can be grouped together into an encompassing

segment since it is normal for only one of these sub-

segments to be executed.

Program statements not covered in the above categories are

grouped into segments of an indeterminable nature, but it

is hoped that their close proximity would make this a

defensible action.

It should be mentioned at this point that labels should

indicate the start of a new segment since it is possible

to jump to a label from a distant point, and consequently

the context must be loaded when the jump is completed.

Alternatively since Pascal requires labels to be declared

it is possible to load the correct context immediately

before the jump takes place.

Since labels were not available in the reduced compiler

used, and since the use of "goto"s: is currently considered

bad practice, it was not thought to be sufficiently

important to implement this feature.

6.13

6.4 Conclusion

This chapter has presented a brief description of the

implementation of the proposed program structure approach.

Examples of the operation of the system are presented in

detail in Chapter 7.

6.14

CHAPTER 7 RESULTS

7.1 Introduction

The results presented arise from the running of the

compiler and interpreter mentioned in the previous

chapter. The results show that it may be possible

to implement systems which make no storage allocation

decisions other than at locality transitions. The

task of directly comparing this system with current

paging systems is difficult. To do this effectively,

complete operating systems must be built assuming the

use of one of the techniques. In this way it would

be possible to do something which is significantly

lacking in the fieldat present. That is, obtain

information on how well given systems run. Up to

this point, there has been a tendency to obtain only

crude qualitative assessment of the behaviour of

paging systems. What comparisons have been made -

between systems have not attempted to ascertain what

can ultimately be done with memory management systems

but rather have attempted to find which system is

better than the others.

rhat is not shown in the results below therefore, is
how a complete system can be built round the proposed

technique. What has been done, however, is to show

how such a system might he expected to behave, where

its strengths and weaknesses, lie, and how it compares

on a number of counts with existing systems. A

7.1

side-effect of these measurements is that the

sensitivity of some of the existing techniques to

variations in their operational parameters is amply

demonstrated.

7.2 Quantitative Assessment

As has been indicated earlier, to measure the behaviour

of the memory management techniques interpreters were

written which simulated the behaviour of the compiled

programs under different management strategies and

under similar strategies with different parameters. The

four strategies used were:-

the proposed segmented approach

Working Set

Page Fault Frequency

Least Recently Used.

At this point it is necessary to indicate the signifi-

cant limitations placed on the experiments by this

implementation.

Firstly, the relatively small available address space

of the PDP 11/34 significantly constrained the size of

program that could be compiled and run.

Secondly, the speed of the 11/34 meant that relatively

long programs could not be simulated readily (e.g. full

bubblesort).

Finally, no assessment could be made of the behaviour

of each strategy in a multi-programming environment.

7. 2

As a consequence, many of the measurements made below

are scaled-down to this environment, but it is suggested

that extrapolation to "real" systems is both reasonable

and valid.

In this context then the following measurements could be

made: -

a) for all approaches:

the number of allocation decisions made

the amount of program plus data space occupied

during the execution of the program

the traffic between backing store and main

store

the number of entries in the page/segment

tables

the time (in number of references) between

allocation decisions.

b) for the segmented approach:

(i) 	the number, of segments moved in.

c) for the paged approaches:

the effect of variations in page size

the effect of variations in LRU stack size

the effect of variations in PFF critical

frequency

the effect of variations in WS strobe interval

and window size.

These measurements were carried out during the execution

of four programs:-

a) /

7.3

Permutation generation program 	(Example 7.2.1)

Knight's tour program 	 (Example 7.2.2)

C) Stable marriage program 	 (Example 7.2.3)

d) Bubblesort (reduced) program 	(Example 7.2.4)

These programs were chosen for a number of reasons but

it was hoped that they would show up different types of

program and data locality thereby enabling the algorithms

to be tested satisfactorily.

7.4

EX 	7.2
rorarn pe rrriute (input, output) 	-

corist lirnit=20
var perrla1'T'aEi,.1iITiitJ of integer;

lirie:arraC1+ • lirnitJ of integer;
ecnarraC14+191 of inteer
a,ivst3rtv3l,IJPin,n,countir,teEer
up boo 1 cart;

function rniri(1astiriiriteer)irtteerj
var iiniteeri
begin

i : =i;
while((i-<r,)arid(lirie[i.J.(:::.0)) do
i. - 1;
if i<lastini then
bej.

line[i]44 =1;
m i ri = i

end
else rniri-O

end

function rnax(lastiriiriteer)in;teer
'.ar inter
beg i ri

irii
• .. 	while((i>1)and(liriecj].:::).0)) do

i :=j-i;

if i>lastini then
hein /

l 44.nie[i1=1;
max '0=

end
else niaxO

end

function rnak(xiriteer).jnteer
var i,J,tenipirteer

i11eaUhooieari;
begin

errn11J startvaU
lirtccstartval]=i;
ill a1=f1se
for 1= 1 to x do
heir:

if lirieCperrnCiJ+ec -iCiJJ=O then,
heiri

per-,1i+13=periiCj3+cr,Cj3
1irieCperiCi+133=1

end
else illeal.=true

end
if not illegal then

if ((xO)or(x.::"n,-3)or ((x= n-3) arid(ahs(ec.nEn,-2J)•(=ahs(ecn,[r,-11))))th
begin

:= x+;
while()and not illegal) do
heir

J:=i+1;

if (up and (J dlv. 2 *2i+1))or(niot. up arid(J di'/ 2*2<>i+1))) t

-'

. 4-

4 -

else J:=o;
case J of

0perrnCi+11rniri(perniCi])
1:perEi+11:=rnax(perrnCi:J)

end
if perrnCi+10 then

illealtrue 	 -
- 	else ecn[i]perrnEi+lJ -perrnCiji

i. : =1+1;
end;

	

end 	-
else

if xn-3 then
- beiri-

teni 	-1*ecnuCrr-13
eQniCri-11 	-i * ecriEn-21;
ecrCr-21: temp;
pernCn-1JperiiEri-23+eQriErr21;
Per'!iCriJ 	perrri[rr-13+eQr,Cr;-13

	

enid 	-

	

for i 	1 to n do lirieci3-:0
if not illegal then

rnakec =1
else niakecO

	

er,o; 	 -

procedure errnrint
VaT . flirteer
he sl i ni

for i 	I to ri do
write(perrnCi])

writeiri
count 	courit+1

end;

function search(xiriteer)iriteer
var i ,ex integer
begin

ecxecriCxJ
if x>O then

if ccx>O then
ecriExJ : e ax, -1

else erXJeGXf1
eQxecniCxJ
if >>1 then

if ah(e <)ahs(ecriC-1J) then
if ecx>O then

ecniCxJ ecx-1
else ecriCxJ= e ,.,+1

if eniExJ<>O then
if nuakeo(x)1 then
begin,

perrTiprinit
search -ni--3

end
else search.,

else-
end;

- 	 -

- 	

D• , t 	 - 	 .. 	 0

-. 	 •. 	 . 	
0 	

0

iri(*rnain*)
writelri(/ Input number of iriteers to he Permuted');

writelri('1<ri<=20')
read(ri);
while rr:O do
begin

courutOi
while (MO) or W20)) do

Dc i ri
write1ri('Rarie is 1,,20')
writelru('Te 0 to finish');

read(r);

for A= 1 to n-i do eQr,ciJ:0;
for A= 1 to n do lirieci3:0;

writeln('Ineut direction of Permutation');
writelr,('UP-DOWN = 1,tIOWN-UP =
read(upiri)
while ((upirr(>1) and (upjn.:::>0)) do
begin

writeln('tlirection is either 1 -> UP-DOWN or 0-.:::. DOWN-UP.');

read(uiri)
end;
if upinl then

ujptrije
else up:fle
writelnwritelruwritelri('PerrnUtatiorts are:');
if UP then
begin

	

for startval 	1 to ru-i do
if make?c(0)1 then
begin

perrnprirut;
if ri>3 then
begin

an-3
repeat

asearch(a)
until

end;
crud

end

	

else for startval 	ri dowruto 1 do
if makec(0)i then
begin

permpriruti
if ri>3 then,
begin

an-3
repeat

asearch(a)
until a= o;

end;
end;

writeln writelri('Numher of permutations is'vcount)i
writelru

uritelnu('Iri'it No-. of riurruhers to he permuted)
writeln('Tee 0 to finish');
read-(n) i

EX 7.2.2

Program kriihtstoijr(outPut)
const n=3 ;

var j,Jinteer
success: hooleari
a,harraE1..83 of integer;
tablearradC1. .ri,1,,ri] of integer;

Procedure tr(i,x,'diriteer)
(*i is the number of moves made4 x and v live the current Position*

var k,u,vinteer
begin

k:= O;
writelri(i,x') ;.
repeat k=k+i;

(*set up next move*)
ux+aCk]v+bCk]
(*test if the move is acceptable*)

if (,j :::.=1)ani d(u.:::=n)and(v:::.=1)anld(v<:r1) then

if tableCu,v30 then
begin

tahleEu,vJi(*reCOrd rruove*)
(*test if board is full*)
if i=ri*ri then s'Jccess: =true else

begin
tr(i+1,u,v)(*tr next move*)
(*if the move is unsuccessful then erase move*)
if not success then tahleEu,v30

end
e cid

until success or (k=8);
er,d(*tr*)

begin
(*initialise difference arrays and board sQuares*)
a C12aE2J1aE3_1aC4]2aC5J26J 17JlBJ4

hc1J:=1;hc2J:=2;b3]:=2bE4]=lihC5J - 1hC6J_2 ;bC 7] 2 PB

for i1 to ni do
for J1 to ri do tahleEi,j30
(*initialise tour frdm position 1,1*)
successfalseitahleE1,13l
tr(2,1,1)
if success then
begin

(*write out table*)
for i1 to n do
begin

for J=i to ni do write(tahleCi,jJ)
writeln (output)

end
end else writelniYrio solution')

end

EX 	7.2
1 rorarn rnarri age (iriput,output)
2 corist
3
4 var
5 ITiir,teer;
6 wiriteer
7 ; 	 r** integer
8 wrirrraC1,4r,,1,4r,:] 	of 	inteer
9 rnwrarraL1.,ru,1,4r] 	of 	iriteser,
10 rrnwarraE1,,ri,14,rtJ 	of 	inter,
11 rwrnarraCl,,n,i,,r;J 	of 	integer;
12 :arrac14,rJ 	of 	irpteer4
13 v 	arraC144riJ 	of 	iriteeri
14 sir;le 	arrajC14.riJ 	of 	hoo1cari
15
16
17 procedure Print;
18 var.
19 n:iriteer;
20 rrn,rwiruter;
21 	• esir,
22 rni=0
23 rw0
24 for rn=i to r, do
25 begin
26 . 	 write(,,,[!i))
27 rrnrrn4rrr,wCrn,xEmJJ;
28 rwrw+rwrnCx[rnJyiJ;
29 end;
30 :ritelri(rrn' rw)
31 . 	 end'-
32
33 	-... procedure tr(niiriteier)
34 var
35 r:iriteer
36 w1iriteer
3_i
39 function 	stahlehoolear,;
39 var
40 Pffi:irteer;
41 wiriteer
42. i,lii:irteer;
43 shooleari
44 hoiri
45 strue
46
47 while 	(i<r) 	and s do
48 begin
49
50
51 if 	not 	siri1e[pwJ 	then 	srwrriCpw,rn]<rwrriCpw,cpwJJ;
52 end
53
54 lirn;=rwrn[w1 all r
55 while 	(i<ligi) 	and s do
56 heir,
57 prri 	=mw rcw,iJ;
58 . 	 i:=i+l;
59 if 	Pm 	•(n, 	then 	s:=riwcpni,w]:::.raiwcpni,>cpiJJ;
60 end;

stable: s
end;

beigin
for r=1 to ri do
bestin

if siriileCwJ then
if stable then
he i ri

C , 	-i ,sLITI.J •._ W

sirIle1w]4=f.3lse;
if rn<r' then t.r(rn+1) else rirt
sirt1e1wJ : true

end;
end

end;

be i r
for IT , '4=1 to r, do

for r=1 to ri do
he i ri

read(w,iirCci,rj);
rrnwcrn,wrrircrci,r3]:r;

end;
for w=1 to r do

for r=1 to ri do
• heiiri

read (mw r[w, j
rwrri[w,ruwr[w,r]]:r;

erio

for w-1 to ri do sirile[w]:=true;
tr(1)

end.

Example 7.2.4

This is the same biibblesort algorithm that was

used in Example 4.1.1. This example will be

used to describe in detail the output generated

by the experimental system.

Two sets of output are produced for each program:-

a descriptive listing produced by the compiler

the object code generated by the compiler.

These are considered below.

i) Compiler Listing:-

The output is divided into segments, the start

of each segment being indicated by the "New.

Segment" message. Along with this message three

numbers are produced. These represent a) the

block level of this segment, b) the unit

number of this segment (i.e. the number of the

segment with respect to this level) and C) the

number of this segment. In data segments, only

7.5

the size of the segment is produced as any

further information. In this example can be

seen the division of the program variable area

into two segments. The first segment corresponds

to the three scalars "i,j,k" and the second to

the array "element".

Code segments have the code displayed before

the corresponding source line. Here also can be

seen the listing of the associates of the current

segment. Each segment has itself as an associate,

this is an operational convenience with no

special significance.

At the head of each segment can be seen the

"fldctxt" instruction, which loads the context

for this given segment. The second operand

field for this segment indicates where the

contextual information for this segment may be

found in an array that is passed to the run-

time system. (This array is described in part ii)

below). Two further points can be observed in

this example. Firstly, the problem of jumps

(occurring here in loops) which may go to the

middle of segments, thereby avoiding the loading

of that segment's context. This has been removed

by identifying the segment containing the jump

address and passing this segment identifier to

7.,

the run-time system as the second operand of

the jump instruction. Secondly, due to the

time of the generation of the code produced

with the listing, some jumps have not had

their addresses and segment identifiers

determined, the full code output in section ii)

has the complete correct code.

Object Code:-

The object code output consists of a complete

listing of the, object code in a numerical form,

followed by the symbol table, string constants,

the segment context information, and error

information.

The significant part is the segment context

information. This has the following components:-

the line number in this table

the actual segment number

the start of the associates of this segment

the finish of the associates of this segment

(both of these are line indexes for this table)

the start of the area reserved for this segment

the end of the area reserved for this segment

(for data segments the end is the size of

the segment)

It is this table that is referred to by the second

operand of all jump instructions and the "fldctxt't

instruction.

7. 7

EX 	7.2L

1 prorai bubblesort(iriput,outut)
2 var
3 i,J,k:irteer;
4 e1ernerItarraC1,420483of 	iriteer
5 beir,
6
7 for i1 to 2048 do
8 beirt
9
•10
11 e1erneritCi]i+.J-k
12 end;
.13 for i:=2 to 5 do
14 for J2048 dowrto i do
15 begin
16 if 	e1ernerttEJ-1D'e1ciiientCJJ 	then
17 besl
18 k:=e1ernrtEJ-1J;
19 eiernentLj-1Je1ernenitEJJi
20 e1errientEJJk
21 end;

end;
23 end.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

********** New Segment = 	1 	0 	0 **********
0001 Program bubblesort(ir,put,output)

********** New Segment = 	1 	1 	1 **********
0002 var

	

0003 	i,j,k:iriteer;
Size= 	3 words

********** New Segment = 	1 	2 	2 **********

	

0004 	e1euieritarraE1.,20483of integer;
Size= 2048 words

********** New Segment = 	1 	3 	3 **********

	

0 	 fldctxt 	0 	4

	

1 	 fJsub 	2 	0

	

2 	 fsave 	2051 	1

Associates:
Segment No 	3

se 	3

Size= 	3 words
0005 begin

********** New Segment = 	1 	4 	4 **********

	

3 	 fldctxt 	0 	5

	

4 	 fidlit 	1 	1

	

5 	 fidlit 	0 	1

	

6 	 fass 	0 	0

	

7 	 fidlit
	

1 	2

	

8 	 fidlit
	

0 	0

	

9 	 fidlit
	

0 	1

	

10 	 fsub
	

0 	0

	

11 	 fass 	0 	0
0006

Associates:
Segment No 	4

se 	4
se 	1

Size= 	9 words

********** New Segment = 	1 	5 5 **********

- - 	 4T*u Jan 48 i 	t 	 -i;-------- st2 10 	i ,, * 	, • 	 . ll - W —a 	.

- T
61 13 fidlit 1 0
62 14 fidlit 0 1

)

63 15 fass 0 0

64 16 fload 1 0

65 17 f'ldlit 0 2048
)

66 18 fle 0 0
67 19 fJfalse 0 0

C 68 0007 for i1 to 2048 do
69 0008 begin

C
70
71
72
73 20 fidlit 1 1

(
74 21 fidlit 0 0

)

75 22 fload 1 1
76 23 fidlit 0 1

•
77 24 fadd 0 0)

78 25 fsub 0 0
• 79 26 fass 0 0

80 0009 J=-(J+1))

81

82
83)

84 27 fldlit 1 2
85 •28 fidlit 0 0
86 29 fload 1 2

)

87 30 fldlit 0 1
Be 31 fsub 0 0
89 32 fsub 0 0
90 33 fass 0 0
91 0010
92

)

93

94
95 34 fload 1 0
96 35 fin 1 2048
97 36 firnod 1 2
98 37 fload 1 0)

99 38 fload 1 1
100 39 fadd 0 0
101 40 f load 1 2
102 41 fsub 0 0
103 42 fass 0 0
104 0011 elenieritti]=i+J-k
105

106
107
108 43 fidlit 1 0
109 44 fload 1 0
110 45 fidlit 0 1 U
111 46 fadd 0 0
112 47 fass 0 0
113 48 fjump 16 0
114 49 furidef 1 0
115 0012 erid
116
117 Associates
118
110

Segment No
------ ----------------------------------

5

t

4

4

4

4

4

I

I

I

I

I

I

I

I

I

t

a

121 se 	 1
122 se 	2
123
124 Size= 	38 words
125
126 ********** New 8enperit 	1 6 6 **********
127
120
129
130 50 fldctxt 0 10
131 51 fidlit 1 0
132 52 fidlit 0 2
133 53 fass 0 0
134 54 fload 1 0
135 55 fidlit 0 2048
136 56 fle 0 0
137 57 fJfolse 0 0
138 0013 for i2 to 2048 do
139
140 Associates
141 Segment No 	6
142
143 se 	6
144 se 	 1
145
146 Size= 	8 words
147
148 ********** New Segment = 	1 7 7 **********
149
150
151
152 58 fldctxt 0 12
153 59 fidlit 1 1
154 60 fidlit 0 2048
155 61 fass 0 0
156 62 fload 1 1
157 63 fload 1 0
158 64 fe 0 0
159 65 fifalse 0 0
160 0014 for J2048 dowrito i do
161 0015 begin
162
163 Associates
164 Segment No 	7
165
166 segl# 	7
167 se 	 1
168
169 Size= 	8 words
170
171 ********** New Segment = 	1 8 8 **********
172
173
174
175 66 fldctxt 0 14
176 67 fload 1 1
177 68 fidlit 0 1
178 69 fsub 0 0
10 71% I AAO

181 72 fload 1 1
182 73 fin 1 2048
183 74 fliridmod 1 2
184 75 ft 0 0
185 76 fJfalse 0 0
186 0016 if elenieritEJ-1]>elerneritEJ] then
187 0017 begin,
188
189
190
191 77 fidlit 1 2
192 78 f'load 1 1
193 79 fidlit 0 1
194 80 fsub 0 0
195 81 fin 1 2048
196 82 f1irdrnod 1 2
197 83 fass 0 0
198 0018 k.e1enientEJ-13
199
200
201
202 84 fload 1 1
203 85 fidlit 0 1
204 86 fsub 0 0
205 87. fin 1 2048
206 88 firnod 1 2
207 89 fload 1 1
208 90 fin 1 2048
209 91 fliridmod 1 2
210 92 fass 0 0
211 0019 elenuenitEi-13 :=e1eniertEJ
212
213
214
215 93 fload 1 1
216 94 fin 1 2048
217 95 firnod 1 2
218 96 fload 1 2
219 97 fass 0 0
220 0020 elerner,t[J]:=k
221
222 Associates:
223 8enier,t No 	8
224
225 SO 	 8
226 se 	 2
227 se 	 1
228
229 Size= 	32 words
230 0021 end;
231
232 ********** New Segment = 	1 9 9 **********
233
234
235
236 98 fldctxt 0 17
237 99 fidlit 1 1
238 100 fload 1 1

ml A I

1 st2

fass 0 0
fJujrnp 62 12
furidef 1 1

fidlit 1 0
fload 1 0
fidlit 0 1
fadd 0 0
fass 0 0
fJunip 54 10
furidef 1 0

rae 5 Thu Jan 18 15:05:52 1979

241 103
242 104
243 105
244
245
246
247 106
248 107
249 108
250 109
251 110
252 111
253 112
254 0022 	 end
255
256
257
258 113
259 0023 	end,
260
261
262
263
264
265
266
267
268

f stop 	 0 	0

Associates:
Segment No 	9

se 	 9

Size= 	16 words

1

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

113 18
34 0 4
27 2 0
21 2051 1
34 0 5

1 1 1
1 0 1
4 0 0
1 1 2
1 0 0
1 0 1

14 0 0
4 0 0

34 0 7
1 1 0
1 0 1
4 0 0
2 1 0
1 0 2048
5 0 0

18 49 7
1 1 1
1 0 0
2 1 1

.1 0 1
11 0 0
14 0 .0

4 0 0
1 1 2
1 0 0
2 1 2
1 0 1

14 0 0
14 0 0

4 0 0
2 1 0

30 1 2048
28 1 2

2 1 0
2 1 1

11 0 0
2 1 2

14 0 0
4 0 0
1 1 0
2 1 0
1 0

•11 0 0
4 0 0

17 16 7
32 1 0
34 0 10

1 1 0
1 0 2
4 0 0
2 1 0
1 0 2048
5 0 0

1R 112 17

roc 19

61 1 1 1
62 1 0 2048
63 4 0 0
64 2 1 1
65 2 1 0
66 7 0 0
67 18 105 17
68 34 0 14
69 2 1 1
70 1 0 1
71 14 0 0
72 30 1 2048
73 29 1 2
74 2 1 1
75 	. 30 1 2048
76 29 1 2
77 10 0 0
78 18 98 17
79 1 1 2
80 2 1 1
81 1 0 1
82 14 0 0
83 30 1 2048
84 29 1 2
85 .4 0 0
86 2 1 1
87 1 0 1
Be 14 0 0
89 30 1 2048
90 28 1 2
91 2 1 1
92 30 1 2048
93 29 1 2
94 4 0 0
95 2 1 1
96 30 1 2048
97 28 1 2
98 2 1 2
99 4 0 0
100 34 0 17
101 1 1 1
102 2 1 1
103 1 0 1
104 14 0 0
105 4 0 0
106 17 62 12
107 32 1 1
108 1 1 0
109 2 1 0
110 1 0 1
111 11 0 0
112 4 0 0
113 17 54 10
114 32 1 0
115 0 0 0
116 16
117 scr 1
118 abs 2

0 	8 	1
0 	8 	1

121 chr 5 2 0 8 1
122 Pred 6 2 0 8 2
123 succ 7 2 0 8 2
124 false 0 3 0 1 0
125 true 1 3 0 1 0
126 input 1 60 1 0 0
127 output 2 60 1 0 0
128 i 0 1 1 0 0
129 J 1 1 1 0 0
130 k 2 1 1 0 0
131 element 2 1 1 5 1
132 1 1 2048 6 1
133 0
134 1 	0 1 0 0 0
135 2 	1 2 2 0 3
136 3 	2 3 3 02048
137 4 	3 4 4 0 2
138 5 	4 5 6 3 11
139 6 	1 2 2 0 3
140 7 	5 7 9 12 49
141 8 	1 22 0 3
142 9 	2 3 3 0 2048
143 10 	6 10 11 50 57
144 11 	1 2 2 0 3
145 12 	7 12 13 58 65
146 13 	1 2 2 0 3
147 14 	8 14 16 66 97
148 15 	2 3 3 02048
149 16 	1 2 2 0 3
150 17 	9 17 17 98 113
151 18 	10 18 12 50 57
152 19 	0 0 0 0 0
153 1 0 2 0 3 0 	4 	0 	5 	3 	6 	12
cont 10 	34 11 43 12 50 13 	58 	14 	66 	15 	66 	1
cont 93 	20 98 21 98 22 113 	23 	114 	-1 	-1

7 	20 	8 	20 	9 	27
77 	17 	77. 	18 	84 	19

Thu Jar, 18 1:08:34 1979 	 ot2
	

ae 3

7.3 Experimental Results

The results presented in this section are given both

in tabular and graphical form with comments being made

on the appropriate graph or table where necessary.

7.8

Table 7.3.1 Variations in operational paraneters used in
simulation runs.

Page sizes: 	64, 128, 256, 512 words

LRU stack size: 6, 8 pages

PFF critical frequency: 500, 1000 references

Working Set window: 1000, 10000 references

Working Set strobe: 1000 references

The results presented on the following tables and graphs have

the following, layout:-

Segmentation result

PFF (page size64) Cr freq 500 Cr freq 1000

h's (page size 64) Window 1000 Window 10000

..LRU (page size 64) Stack 6 Stack 8

PFF (page sz 128) Cr freq 500 Cr freq 1000

WS (page sz 128) Window 1000 window 10000

ERU (page sz 128) Stack 6 Stack 8

PFF (page sz 256) Cr freq 500 Cr freq 1000

WS (page sz 256) Window 1000 Window 10000

LIRU (page sz 256) Stack 6 Stack 8

PFF (page sz 512) Cr freq 500 Cr freq 1000

WS (page sz 512) Window 1000 Window 10000

E.LRU (page sz 512) Stack 6 Stack 8

7.9

Table 7.3.2.1 Average memory space allocated for progrcn 7.2.1

Segmentation 34 34

PFF (pa 64) 457 481

WS 	(pa 64) 581 726

LRU (pa 64) 378 497

PFF (128) 632 570

WS 	C 128) 787 919

ERU (128) 742 512

PET C 256) 640 640

ws 	C 256) 1110 1192

ERU (256) 640 640

PFF C 512) 768 768

WS 	C 512) 1756 1934

LRU C 512) 768 768

Comments

Note how the scone variation of parameters for PFF and ERU with

page sizes 64 and 128 produce in the first case an increase in

the amount-of memory allocated but in the second case produces

a reduction in the allocated space.

Note generally the very considerable difference between the

allocated memory in the segmentation approach and the amount

allocated by the paged approaches.

7.10

200

1

170

150

130

110

90
ka

70
h.

50

/
/

,
£

PFF

+ rRU

* Sg.

Graph 7.3.2.1 Graphical representation of Table 7.3.2.1

30

10

64 128
	

2S6
	

512

page size

ConDnents

In this and all subsequent graphs the values from the left-hand

column of the table are joined by solid lines whereas those from

the right-hand column are joined by dashed lines.

Note the significantly poorer performance of the WS algorithm.

7.11

Table 7.3.2.2 Average memory space allocated for program 7.2.2

Segmentation 27 27

PFF C 64) 250 241

WS (64) 285 352

E1RU C 64) 261 256

PFF C 128) 298 296

WS C 12) 375, 452

ERU (128) 256 256

PFF C 256) 384 384

h's C 256) 723 803

LRUC256) 384 384

PFF C 512) 512 512

h's C 512) ' 1422 1422 '

ERU C 512) 512 512

Convnents

Note that the sane variation of parameters as in Table 7.3.2.1

produces the opposite effect, namely a reduction of allocated

memory, for page size 64, for the PFF and ERU algorithms.

7.12

Graph 7.3.2.2 Graphical representation of Table 7.3.2.2

200'
190 ,

170v

15.0

130

110

90

70

50

30

10

• PFF-
£ws
+ LRTh
* Seg.

64 128 	256 	 512

page size

7.13

Table 7.3.2.3 Average memory space allocated for program 7.2.3.

Segmentation 50 50

PFF (64) 436 430

WS (64) 595 697

ERU(64) 383 511

PFF C 128) 565 546

WS C 128) 832 889

ERU C 128) 767 512

PFF C 256) 512 512

WS C 256) 1201 1268

LRU C 256) 512 512

PFF C 512) 512 512

W3 C 512) 1.667 	. . 1531

ERU C 512) 512 512

Comments

Note how for both LRU and PFF the average amount of memory

allocated has a tendency to level out, whereas for WS this

is not so.

7.14

200
190

1•Z0

150

130

110

90

70

50

3';

10

• PFF
WS

EftU
Seg.

Graph 7.3.2.3 Graphical representation of Table 7.3.2.3

64 	18 	256 	 5,1,2

page size

7.15

Table 7.3.2.4 Average memory allocated for program 7.2.4

Segmentation 703 703

PFF 	(64) 1251 1120

WS 	(64) 384 426

ERU 	(64) 383 502

PEE C 128) 1280 1152

WS 	C 128) 557 613

ERU (128) 767 970

PEP C 256) 1280 1280

WS 	C 256) 1006 1095

IZRU (256) 1424 1838

PEP C 512) 2001 1536

WS 	C 512) 1928 2017

ERU C 512) 2583 1536

Comments

It is interesting to note again how LRU and PEP seem

to come together in the right-hand column. In this

example the poor data locality measure in the current

segmented approach causes the average store set sine

to increase significantly over the previous examples.

7.16

Graph 7.3.2.4 Graphical representation of Table 7.3.2.4

2500 1
2375-

2125

1875

1 625

13 75

112-5-

875

e5

3?5

125

• PFF
A UC

g.

64 128 	256 	 512
page size

7.17

Table 7.3.3.1 Total amount of program and data traffic into
memory for program 7.2.1

Segmentation 22028 22028

PFF (64) 1280 1216

WS 	(64) 6016 6016

ERU C 64) 14912 10176

PFF C 128) 2304 1408

WS 	C 128) 6272 1152

ERU C 128) 13312 1152

PEF C 256) 1536 1536

WS 	C 256) 3072 1536

ERU 1 256) 1536 1536

PFF C 512) 2048 2048

WS 	C 512) 5120 2048

ILRU C 512) 2048 2048

Coniinents

Note the fact that the segmentation approach moves a considerably

greater amount of information into memory during program execution

than the paged approaches. This is the penalty for small memory

allocations.

Note also that ERU tends to "blow—up" as the page sizes reduce.

Equally note that as page sizes get larger the amount of information

moved in tends to become the same for all the paged approaches.

7.1 8

*
23

21

1

17

15

13

11

9

7

5

3

1

N

• PEE
& ws
+ ERU
* Seg.

Graph 7.3. 3.1 Graphical representation of Table 7.3.3.1

64 128 	256 	 512

7.1 9

Table 7.3.3.2 Total amount of program and data traffic into
memory for program 7.2.2

Segmentation 9993 9993

PFF C 64) 768 576

WS C 64) 704 640

LRUC64) 704 576

PFF C 128) 768 768

WS C 128) 768 768

11W C 128) 640 640

PFF C 256) 1024 1024

WS C 256) 1280 1280

ERU C 256) 1024 1024

PF' C 512) 1536 1536

WS C 512) 1536 1536

ERU C 512) 1536 1536

Comments

All the data movement tables assume that only the required amount

of data need be moved from backing store when required and that

there is no need to access or transfer any encapsulating block.

This is reasonable for the larger page sizes but will tend to

favour the smaller page sizes and particularly the segmented

approach.

7. :20

Graph 7.3.3.2 Graphical representation of Table 7.3.3.2

10

9

8

61

5

It

I

PFF
£

64 128 	256 	 512
page size

Comments -

Only one set of results is shown in the interests of clarity.

Note generally how badly the segmented system behaves

7.21

Table 7.3.3.3 Total amount of program and data traffic into
memory for program 7.2.3

Segmentation 1057007 1057007

PEF (64) 1472 1408

WS C 64) 32704 1344

ERU (64) 477248 227136

PFF C 128) 1536 1408

WS C 128) 14336 1536

ERU C 128) 344416 1152

PFF C 256) 1280 1280

WS C 256) 26312 1792

£RU C 256) 1280 1280

PFF C 512) 1536 1536

WS C 512) 1536 1536

LRIJ C 512) 1536 1536

Comments

In this example the segmented approach fares particularly badly.

Again note the tendency for the ERU algorith'n's performance to

detiorate rapidly as the page size decreases and that, in this

case, the WS algorit7m shows similar but less extreme behaviour.

7.22

6

. 4
by

3

2

7

• PFF

WS
- -w

g.

Graph 7.3.3.3 Graphical representation of Table 7.3.3.3

64 128 	256 	 512
page size

Continents

Note the change of scale on the y-axis

7.23

Table 7.3.3.4 Total amount of program and data traffic into
memory for program 7.2.4

Segmentation 17217176 17217176

PFF (64) 2816 2304

WS (64) 49252 12352

ERU (64) 539392 13960

PFF (128) 2304 2048

WS (128) 32640 12416

ERU (128) 16384 11264

PFF (256) 2816 2816

WS C 256) 13056 12544

ERU C 256) 12288 11264

PFF C 512) 11264 3584

WS (512) 13824 12800

ERU C 512) 11264 3584

Comments

It is again interesting to note that after an initial blow

up ERU comes very close to PFF for large page sizes.

Note also just how large the amount of information moved by

the segmented approach is. This is due to moving the whole

data array in and out of store.

7.24

Graph 7.3. 3.4 Graphical representation of Table 7.3.3.4

8

7

5

by 	4

3

2

1

64 	128 	256 	 512
page size

Cominnents

Only one set of data has been shown for clarity.

It is interesting to see how under these conditions, the

data traffic for 	each algorithm. remain relatively

constant.

7.25

Table 7.3.4.1 Frequency of memory allocation decisions for
program 7.2.1

Segmentation 47 refs 47

PEP C 64) 2068 2176

WS (64) 306 725

ERU C 64) 177 260

PEP C 128) 2297 3760

WS C 128) 459 827

LRU C 128) 397 4595

PEP C 256) 6893 6893

WS (256) 780 880

ERU C 256) 6893 6893

PEP C 512) 10340 10340

WS C 512) 811 919

E,RU C 512) 10340 10340

Corizinents

Here again the penalty of relativel small locality sizes is

shown for the' segmented approach.

However it is interesting to note the relatively poor performance

of both ERU and WS with small page sizes.

Equally it is interesting to see just how similarly PEP and ERU

behave under favourable circumstances.

7.26

Graph 7.3.4.1 Graphical representation of Table 7.3.4.1

10•0

90

8t'

7o

6,0

.50

40

30

20

1,0

5

/ __& ------- -i'.---- - 	4

PFF
£ WS
+ ERU
Seg.

64 128 	256 	 512

page size

7.2 7

Table 7.3.4.2 Frequency of memory allocation decisions for
program 7.2.2

Segmentation 49 49

PFF (64) 2031 2708

WS (64) 696 717

rJRU (64) 2216 2708

PFF (128) 4063 4063

ws (128) 812 812

ERU (128) 4876 4876

PFF C 256) 6095 6095

WS C 256) 4876 4876

ERU C 256) 6095 6095

PIF C 512) 8126 8126

WS C 512) 8126 8126

ERU C 512) 8126 8126

Comments

Note here the tendency for the behaviour of all the algorithms

to come together. This implies that here can be seen some of

the few cases so far where the WS algorithm has not been "worse"

than PFF and ERU.

Again the segmented approach behaves poorly.

7.28 	-

Graph 7.3.4.2 Graphical representation of Table 7.3.4.2

100.j -

95

7.5

65

55

45

35

25

15

5

• PFF
£ WS
+ ERU
* Seg.

64 128 	256 	 512

page size

7.29

Table 7.3.4.3 Frequency of memory allocation decisions for
program 7.2. 3

Segmentation 34 34

PFF C 64) 31937 33389

WS (64) 590 972

EIRU (64) 98 206

PFF C 128) 61213 66778

WS (128) 776 984

TJRU C 128) 270 81618

PFF C 256) 146912. 146912

WS C 256) 876 991

ERU C 256) 146912 146912

PFF C 512) 244584 244584

WS C 512) 996 996

ERU C 512) 244584 244584

Comments

Note again the sensitivity of the ERU algorithm to the page size

variations and how this can be alleviated by increasing the stack

length.

730

4 1 	 6 	 52

PFF
*

ERU

Seg.

Graph 7.3.4.3 Graphical representation of Table 7.3.4.3

6

4
b y

3

2

1

page si.ze

7.31

Table 7.3.4.4 Frequency of memory allocation decisions for
program 7.2.4

Segmentation 46 46

PET (64) 25765 31490

WS (64) 590 857

ERU (64) 134 5966

PFF C 128) 62925 59665

WS C 128) 699 921

LRU C 128) 4429 12322

PFF (256) 103059 103059

WS (256) 957 959

ERU C 256) 23617 25764

PET C 512) 51529 161950

WS C 512) 977 979

ERU (512) 51529 161950

Comments

PFF shows some sensitivity here particularly with the large

page size.

7. 3a

- - -p.,

64 128 	256 	 512

PFF
ws
£RU
Seg.

Graph 7.3.4.4 Graphical- representation of Tab2e 7.3.4.4

.4L

.3

WY

2

page size

7. 3

Table 7.3.5.1 Reference density for program 7.2.1

Segmentation 1.38 1.38

PFF (64) 4.52 4.52

WS (64) .52 .99

LR(J(64) .46 .52

PFF (128) 3.63 6.59

WS (128) .58 .89

ERU (128) .54 8.97

PFF C 256) 10.7 10.7

WS (256) .70 .74

I,RU C 256) 10.7 10.7

PFF (512) 13.4 13.4

WS (512) .46 .48

ERU C 512) 13.4 13.4

Comments 	 -

The reference density is estimated by dividing the average number

of references between reference decisions by the average amount of

memory allocated. This should give an idication of how successful

the algorithm has been at estimating locality.

It is interesting to note here how poorly the WS algorithm behaves,

this is perhaps due to counting strobe decisions as actual memory

decisions.

7.34

Graph 7.3. 5.1 Graphical representation of table 7.3.5.1

15 -

13

l'l

$

c5

*
1

ER Pi
* Seg.

- - /

-_--&

64 	128 	256 	 512
page size

7-

7. _35

Table 7.3.5.2 Reference density for program 7.2.2

Segmentation 1.81 . 	 1.81

PFF (64) 9.2 11.2

WS (64) 2.4 .2.03

ERU (64) 8.4 10.5 	-

PET (128) 13.6 13.6

h'S (128) 2.16 1.79

ERU (128) 19.0 19.0

PET (256) 15.8 	
:

15.8

WS C 256) 6.74 6.07

ERU C 256) 15.8 15.8

PET C 512) 15.8 15.8

WS C 512) 5.71 5.71

LRU C 512) 15.8 15.8

Comments

In this example the segmented approach does not compare as well

as in the previous case.

7.3 6

Graph 7.3.5.2 Graphical representation of Table 7.3.5.2

20 • PFF
19

	Z.

I.' 	 +RU

2-7
Seg.

15

13

7,
7/

7/

*
1

4 129 	25?
	

5i
page size

7.37

Table 7.3.5.3 Reference density for program 7.2.3

Segmentation .68 .68

PFF(64) 73. 78.

WS (64) .99 1.39

ERU (64) .25 .40

PFF C 128) 109. 122.

WS C 128) .93 1.1

ERU C 128) .35 159.

PET C 256) 287. 287.

h's C256) .70 .78

ERU C 256) 287. 287.

PFFC 512) 478. 478.

WS C 512) .55 .55

LRU C 512) 478. 478.

Comments

Again PET seems to be clearly the best approach.

LRU graphically displays the effects of its "blow-up" in its

reference densities.

WS also displays what happens to the reference density when

memory is over-allocated when the page size is 512.

7.38

Graph 7.3. 5.3 Graphical representation of Table 7.3.5.3

500'
475,,

425

37.5.

325•

275

225

175

125

7'.5

9,5

'F

lu
9'.

64 128 	256 	 51
page size

7.3.9

Table 7.3.5.4 Reference density for progrcvn 7.2.4

Segmentation .06 .06

PFF (64) 20.6 28.

WS (64) 1.6 1.89

LRU (64) 2.9 11.8

PFF (128) 49. 51.7

WS (128) 1.3 1.5

ERU (128) 5.8 12.6

PFF (256) 80.5 80.5

WS (256) .V5 .88

LRU (256) 16.58 14.01

PFF (512) 25.75 105.43

WS (512) .50 .48

ERU (512) 19.9 105.43

Comments

It is possible to see here how an increase in the page size

causes even PFF (which has up to now appeared to be a fairly

stable algorithn) to have its reference density reduced when

changing the page size from 256 to 512 and increased in

the sane cicwnstances under different operational parameters.

7.40

Graph 7.3.5.4 Graphical representation of Table 7.3.5.4

1 O'O

.90

80

7:0

60

50

40

30

'20

10

• PFF
I WS
i- ERU
*Seg.

64 128 	256 	 512
page size

Comments

Again only one set of results has been shown for clarity.

7.41

7.4 Conclusions

A number of conclusions can be drawn from the above

results.

Firstly, the segmented approach significantly reduces

the amount of space occupied by a program during its

execution. This can be explained by the relatively small

size of, particularly, code localities established by the

segmentation approach. This space reduction is not,

however, achieved without cost. The cost is first of all

shown by the high number of allocation decisions made

during the execution time of the program. This would

cause a significant increase in the run-time overheads of

a program, particularly when coupled with the second

high-cost factor - data transfers. The segmented

approach causes a very significant increase in traffic

between main store and backing store. This is a severe

limitation of the proposed approach.

Secondly, the segmented approach does not, in general,

give rise to improved locality behaviour when compared

particularly with favourable versions of PFF and LRU.

This is shown in the reference density figures of the

previous section.

Thirdly, compaction overheads would appear to be almost

negligible with this segmented approach due to the fact

that in most cases relatively small amounts of memory

are allocated to programs.

7. 42

• Fourthly, it is clear that multiprogramming systems

would not fare very well with the segmented system

since the small amount of main store occupied by a

program would imply an increase in the multi-

programming level which would give rise to severe

congestion on the main store to backing store data

pathway. 	 -

Fifthly,. without further investigation of data locality

it is not possible to estimate the performance of the

segmentation approach for large unstructured data areas.

Currently the system would require that, say, a large

array would have to be loaded in its entirety to satisfy,

the context requirements. As well as being potentially

wasteful this might even be physically impossible on some

system configurations. This physical limitation however,

tends not to arise on PDP-11 configurations where the

maximum addressable space of a program is usually less

than the available memory.

Sixthly, the investigations have tended to show that the

paged systems are, as was hypothesised earlier, extremely

sensitive to variations in their operational parameters

and that the degree of sensitivity is not the same from

program to program. Equally it has been shown that if

strobes are taken - as being allocation decisions for the

Working Set algorithm then this algorithm behaves

relatively poorly compared with PFF and LRU. This is

perhaps unfair but it does show that if pure WS is not

7. 43

used then practical performance may differ significantly

from theoretical predictions.

Finally, it may be concluded that paged systems, when

behaving optimally, will easily outperform the proposed

approach. However, it is hard to be convinced that

paged systems always or frequently behave optimally.

Whether an improved segmented approach or some combination

of the paged and segmentation strategies could produce

stable and satisfactory performance figures in most cases

must remain an open question. Any future developments must

therefore critically depend on an answer to this question.

7. 44

CHAPTER 8 	FUTURE DEVELOPMENTS

The techniques described above relate strongly the

ideas of program structure and program behaviour. It

is tempting, therefore, to associate these ideas with

the capability concept of Dennis and Van Horn (Den 65).

If this were done, it would be possible to implement

program modules with protection, locality and behaviour

information built-in to them. This, in effect, creates

totallyseif-sufficient program modules, and as such,

would present a totally unifying construct for all

aspects of program behaviour.

To implement such a system requires an implementation of

a language such as EUCLID with a segment-based operating

system. Such a system would require a compiler which

would extract locality information as well as access

information and divide programs into distinct modules

with their associated environments. All this information

would then be passed to the run-time system.

8.2

CHAPTER 9 	REFERENCES

This chapter contains those papers referenced in the

text and a handful of others which although not

explicitly referenced do contribute slightly to the

development.

(Ada 75) 	Adams, 3 C, and Milliard, G E.

Performance Measurement of the Edinburgh

Multi-Access System

Proc. International Computing Symposium 1975

(Ada 76) 	Adams, 3 C.

Evaluation of Performance of the EMAS System

Seminaires Modelisation et Mesures

IRIA - LABORIA (1976)

(Aho 71) 	Aho, A V, Denning, P J, and Ullman, J D.

Principles of Optimal Page Replacement

JACM 18,1 (Jan 1971) pp 80 - 83

(Ale 69) 	Alexander, M T.

Time-Sharing Supervisor Program

Univ. of Michigan Computer Centre (May 1969)

(Ard 66) 	Arden, B, Galler, B, et al

Program and Addressing Structure in a

Time-Sharing Environment

JACM 13,1 (Jan 1966) pp 1 - 16

9.1

(Bar 73) 	Bard, Y.

Characterisation of Program Paging in a

Time-Sharing Environment

IBM Jour. of Res. and Dev. 17, 5 (Sept 1973)

pp 387 - 393

(Bar 75) 	Bard, Y.

Application of the Page Survival Index (PSI)

to Virtual Memory System Performance

IBM Jour. of Res. and Dev. 19, 3 (May 1975)

pp 212 - 220

(Bat 70) 	Batson, A, Ju, S, and Wood, D.

Measurements of Segment Size

CACM 13, 3 (March 1970) pp 155 - 159

(Bat 77) 	Batson, A, Blatt, W E, and Kearns, J P.

Structure within Locality Intervals

Proc. Symp. on modelling and Performance

Evaluation ed. Beilner and Gelenbe (Oct 1977)

pp 221 - 232

(Bay 68) 	Bayels, R A et al.

Control Program - 67/Cambridge Monitor System

Program No 360D 05.2.005

Cambridge, Mass. 1968

(Bay 68b) Bayliss, M H J, Fletcher, D G, and Howarth, D J.

Paging Studies Made on the ICT Atlas Computer

IFIP 1968 pp 835 - 836

9.2

(Bel 66) 	Belady, L A.

A Study of Replacement Algorithms for a

Virtual Store Computer

IBM Systems Journal 5, 2 (1966) pp 78 - 101

(Bel 69) 	Belady, L A. and Kuehner, C J.

Dynamic Space Sharing in Computer Systems

CACM 12, 5 (May 1969) pp 282 - 288

(Bel 69b) Belady, L A, Nelson R A, and Shedler, G S.

An anomaly in the Space-Time Characteristics

of Certain Programs Running in a Paging Machine

CACM 12, 6 (June 1969) pp 349 - 353

(Bel 71) 	Bell, C G, and Newell, A.

Computer Structures: Readings and Examples

McGraw-Hill 1971

(Bra 68) 	Brawn, B, and Gustayson, F.

Program Behaviour in a Paging Environment

AFIPS FJCC (1968) pp 1019 - 1032

(Bry 75) 	Bryant, P.

Predicting Working Set Sizes

IBM Jour. of Res. and Dev. 19, 3 (May 1975)

pp 221 - 229

(Bur 76) 	Burgevin, P, and Leroudier, J.

Characteristics and Models of Program Behaviour

Proc. 1976 ACM Nat. Conf. pp 344 -350

(Chu 72) 	Chu, W W, and Opderbeck, H.

The Page Fault Frequency Algorithm

AFIPS FJCC (1972) pp 597 - 609

9.3

(Chu 76) 	Chu, W W, and Opderbeck, H.

Program Behaviour and the Page Fault

Frequenáy Replacement Algorithm

Computer, 9, 11 (Nov 1976) pp 29 - 38

(Cof 68) 	Coffman, E G, and Varian, L C.

Further Experimental Data on the Behaviour of

Programs in a Paging Environment

CACM 11, 7 (July 1968) Pp 471 - 474

(Cof 72) 	Coffman, E G, andRyan, T.

A Study of Storage Partitioning Using a

Mathematical Model of Locality

CACM 15, 3 (March 1972) pp 185 - 190

(Cof 73) 	Coffman, E G, and Denning, P J.

Operating Systems Theory

Prentice- Hall 1973

(Cor 65) 	Corbato, F J, and Vyssotsky, V A.

Introduction and Overview of the Multics System

AFIPS FJCC (1965) Pt I pp 185 - 196

(Den 68a) Denning, P J.

Resource Allocation in Multi-Process Computer

Systems

MIT Project MAC Technical Report MAC-TR 50.

(May 1968)

(Den 68b) Denning, P J.

The Working Set Model for Program Behaviour

CACM 11, 5 (Nay 1968) pp 323 - 333

(Den 70) 	Denning, P J.

Virtual Memory

Computing Surveys, 2, 3 (Sept 1970) pp 153 - 189

(Den 72) 	Denning, P J, and Schwartz, S C.

Properties of the Working Set Model

CACM 15, 3 (March 1972) pp 191 - 198

(Den 75) 	Denning, P J, and Kahn, K C.

A Study of Program Locality and Lifetime

Functions

Proc 5th ACM SIGOPS Symposium (Nov 1975)

Pp 207 - 216

(Den 78) 	Denning, P J, and Slutz, D R.

Generalised Working Sets for Segment

Reference Strings

CACM 21, .9 (1978) pp 750 - 759

(Den 65) 	Dennis, J B.

Segmentation and the Design of Multi-

Programmed Computer Systems

JACM 12, 4 (Oct 1965) pp 589 - 602

(Den 66) 	Dennis, J B.

Programming Semantics for Multi-Programmed

Computations

CACM 9, 3 (Mar 1966) pp 143 - 155

(Dij 68) 	Dijkstra, E W.

The Structure of the, THE MultiDrograniming System

CACM 11, 5 (May 1968) pp 341 - 346

9. 5

(Dij 76) 	Dijkstra, E W.

A Discipline of Programming

Prentice - Hall 1976

(Doh 70) 	Doherty, W J.

Scheduling TSS/360 for Responsiveness

AFIPS FJCC (1970) pp 97 - 112

(Fag 76) 	Fagin, R.

A Counter-Intuitive Example of Computer Paging

CACM 19, 2 (Feb 1976) pp 96 - 97

(Fer 74) 	Ferrari, D.

Improving Locality by Critical Working Sets

CACM 17, 11 (Nov 1974) pp 614 - 620

(Fer 77) 	Ferrari, D, and Kobayashi, M.

Program Restructuring Algorithms for Global

LRU Environments

Proc. International Computing Symposium 1977

pp 277 - 283

(Fin 66) 	Fine, G H, Jackson, C W, and Mclsaac, P V.

Dynamic Program Behaviour under Paging

Proc. 1966 ACM Nat. Conf. pp 223 - 228

(Fot 61) 	Fotheringham, J.

Dynamic Storage in the Atlas Computer Including

an Automatic Use of Backing Store

CACM 4, 10 (Oct 1961) pp 435 - 436

(Han 73) 	Hansen, P B.

Operating Systems Principles

Prentice - Hall 1973

9.6

(Hat 72) 	Hatfield, •D .J.

Experiments on Page Size, Program Access

Patterns and Virtual Memory Performance

IBM Jour. of Res. and Dev. (Jan 1973) pp 58 - 66

(Hat 71) 	Hatfield D J, and Gerald, J.

Program Restructuring for Virtual Memory

IBM Systems Journal 10,. 3 (1971) pp 168 - 192

(Hed 75) 	Hedges, R L, and Pooch, U W.

A Measure for Program Locality in Demand

Paging

Proc. 1975 ACM Nat. Conf. pp 181 - 188

(Hoa 72) 	Hoare, C A R, and McKeag, R M.

A Survey of Store Management Techniques -

in Operating Systems Techniques

ed Hoare and Perrott

Academic Press 1972

(IBM a) 	IBM

OS / Virtual Storage 1 Features , Supplement

No GC 20-1752-0

,(IBM b) 	IBM

OS / Virtual Storage 2 Features Supplement

No GC 20-1753-0

(IBM 70) 	IBM

System -/ 360 Time-Sharing Operating System

Program Logic Manual

No S360-36 GY 28-2009-2

(IBM 72) 	IBM

IBM System / 360 Operating System Introduction

No GC 28-6534-3

(Ich 76) 	Ichbiah, J D, Rissen, J P, Heliard, J C,

and Cousot, P.

The System Implementation Language LIS

Technical Report 4549 El/EN

Compagnie Internationale pour l'Infbrmatique

(Inn 77) 	Innes, D R.

Exploiting the Least Recently Used Page

Replacement Algorithm

Software - Practice and Experience 7, 1977

pp 271 - 273

(Jen 74) 	Jensen, K, and Wirth, N.

PASCAL - User Manual and Report

Lecture Notes in Computer Science Vol. 18

Springer - Verlag 1974

(Ku 62) 	Kilburn, T, Edwards, D, Lanigan, M, and

Sumner, F.

One - Level Storage System

IRE Trans EC - 11, 2 (April 1962) pp 223 - 235

(Reprinted in (Bel 71))

(Knu 68) 	Knuth, D E.

The Art of Computer Programming Vol. 1

Addison - Wesley 1968

(Lain 77) 	Lampson, B W et al.

EUCLID

SIGPLAN Notices February 1977

(Lan 69) 	Lanzano, B C.

Loader Standards for Overlay Programs

CACM 12, 10 (Oct 1969) pp 541 - 550

(Low 70) 	Lowe, T C.

Automatic Segmentation of Cyclic Program

Structures Based on Connectivity and Processor

Timing

CACM 13, 1 (Jan 1970) pp 3 - 6, 9

(McKe 67) McKeeman, W M.

Language Directed Computer Design

AFIPS FJCC (1967) pp 413 - 417

(McKe 71) McKeag R M.

Burroughs B5500 Master Control Program

Queen's University Belfast 1971

(Mad 73) 	Madnick, S E.

Storage Hierarchy Systems

MIT Project MAC Technical Report MAC-TR 107

(April 1973)

(Mat 70) 	Mattson, R L, Gecsei, J, Slutz, D R and

Traiger,,I L.

Evaluation Techniques for Storage Hierarchies

IBM Systems Journal 9, 2 (1970) pp 78 - 117

on

(Oh 74) 	Oliver, N A.

Experimental Data on Page Replacement Algorithm

AFIPS NCC 1974 pp 179 - 184

(Org 69) 	Organick, E I.

A Guide to Multics for Sub-System Writers

Project MAC 1969

(Par 77) 	Parent, M, and Potier, D.

A Note on the Influence of Program Loading on

the Page Fault Rate

Acta Inforrnatica 8, 4 1977 pp 359 - 370

(Pot 77) 	Potier, D.

Analysis of Demand Paging Policies with Swopped

Working Sets

- 	Proc 6th ACM SIGOPS Symposium (Nov 1977)

pp 125 - 131

(Pri 73), 	Prieve, B G.

Using Page Residency to Select the Working

Set Parameter

CACM 16, 10 (Oct 1973) pp 619 - 620

(Pri 76) 	Prieve, B G, and Fabry, R S.

VMIN - An optimal Variable Space Page Replace-

ment Algorithm

CACM 19, 5 (May 1976) pp 295 - 297

9.10

(Pur 74) 	Purcell, C J.

The Control Data STAR-100 - Performance

Measurements

AFIPS NCC 1974 pp 385 - 387

(Ran 69) 	Randell, B

A Note on Storage Fragmentation and Program

Segmentation

CACM 12, 7 (July 1969) pp 365 - 369, 372

(Rit 78) 	Ritchie, D, and Thompson, K.

The UNIX Time-Sharing System

Bell System Technical Journal 57, 6(Jul -

Aug 1978) Pt II pp 1905 - 1931

(Rod 71) 	Rodriguez-Rosell, J.

Experimental Data on How Program Behaviour

Affects the Choice of Scheduler Parameters

Proc. 3rd ACM SIGOPS Symposium (Oct 1971)

pp 156 - 163

(Rod 73) 	Rodriguez-Rosell, J.

Empirical Working Set Behaviour

CACM 16, 9 (Sept 1973) pp 556 - 560

(Sad 75) 	Sadeh, E

An Analysis of the Page Fault Frequency

Replacement Algorithm 	 -

Proc. 5th ACM SIGOPS Symposium ('Nov 1975)

pp 6-13

9.11

(Say 69) 	Sayre, D. 	 -

Is Automatic Folding of Programs Efficient

Enough to Replace Manual?

CACM 12, 12 (Dec 1969) pp 656 - 660

(Smi 76) 	Smith, A J.

Analysis of Optimal, Look-Ahead, Demand

Paging Algorithms

SIAM Journal on Computing 5,4 (Dec 1976)

pp 743-757

(Smi 78) 	Smith, A J.

Bibliography on Paging and Related Topics

ACM Operating Systems Review 12, 4 (Oct 1978)

(Spi 72) 	.Spirn, J R, and Denning P J.

Experiments with Program Locality

AFIPS FJCC (1972) pp 611 - 621

(Spi 77) 	Spirn, J R.

Program Behaviour : Models and Measurements

Elsevier Computer Science Library 1977

War 67) 	Varian, L C, and Coffman, E G.

An Experimental Study of the Behaviour of

• 	Programs in a Paging Environment

ACM • SOSP 	(Oct 1967) pp

(Wil 72) 	Wilner, W.

Design of the B1700

AFIPS FJCC (1972) pp 489 - 497

9.12

(Whi 73) 	Whitfield, H, and Wight, A S.

The Edinburgh Multi-Access System

Computer Journal 16, 4 pp 331 - 346

(Wir 76) 	Wirth, N.

Algorithms + Data Structures = Programs

Prentice-Hall 1976

9.13

