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ABSTRACT 

The background, both in terms of theory and practice, 

to current memory management systems is presented. It 

is suggested that current paged memory management systems 

have serious operational deficiencies, particularly with 

respect to the behaviour of page replacement algorithms. 

Examples of these operational deficiencies are presented. 

Consequently, an alternative approach to memory management, 

based on the notion of a segment, is developed. In this 

system, the segments are determined at compile time based 

on a knowledge of the structure of the high-level language 

program. This segment information is passed to the run-

time system which uses this information as the basis of its 

memory allocation policy. 

An experimental implementation of such a system for PASCAL 

programs has been achieved and results from this system 

are presented. 
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1. 	INTRODUCTION 

The behaviour of programs with respect to their residency 

in a storage hierarchy, even in the most restricted case 

of a two-level system,. has provoked a great deal of 

research. General characteristics of program behaviour 

have been proposed and these have, within the context of 

demand paging systems, stimulated the development of 

replacement algorithms which depend upon some subset of 

these characteristics. 

The work reported in this thesis calls into question 

deductions made from these characteristics, and aims to 

show that real programs can frequently burst out of the 

restrictions that are theoretically imposed upon them. 

This leads to poor program behaviour and a general 

reduction in efficiency of computer systems using such 

algorithms. 

The major flaw in such approaches is that programs are 

considered to be relatively unstructured "black-boxes" 

which generate storage references in some predictable 

but poorly-understood fashion. It is the major contention 

of this thesis that programs do currently, and, with 

developments in programming languages, will in the 

future, show distinct structure which is known at compile 

time. This thesis maintains that, if such structural 

information can be passed to the run-time system, then 

that system can satisfactorily tailor itself to the needs 

of the running programs. Such a system is adaptable to 
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each program currently running on it, and does not 

attempt-to fit each program into the strait-jacket of 

"average" or "normal" behaviour. 

The structural information gained could, it is suggested, 

be incorporated into a more general form of the capability 

(Den 66) called the "operational capability". This, it is 

suggested, is a unifying concept which creates an efficient 

run-time environment for programs. 

The remaining chapters of this thesis are as follows:-

Chapter 2 - Historical Background 

Chapter 3 - Theoretical Development 

Chapter 4 - Behavioural Characteristics of Conventional 

Memory Management Systems 

Chapter 5 - A proposal for Memory Management Systems 

based on a Knowledge of Program Structure 

Chapter 6 - An Experimental Implementation 

Chapter 7 - Results 

Chapter 8 - - Conclusions 

Chapter 9 - References 
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2. HISTORICAL DEVELOPMENT 

2.1 Introduction 

In this chapter the origins of the current state-of--

the-art in automatic memory management are traced. This 

function is carried out in an environment which consists 

of a paged virtual memory space, filled by page-on-demand 

strategies and freed by a standard page-replacement 

algorithm. 

2.2 The Problem 

Hansen (Han 73) states that:- 

"Store management raises three basic questions: 

What is the appropriate unit of storage to assign 

to computations? 

How are these units placed in an internal store 

prior to their use? 

How are they referenced by computations during 

execution?" 

Following Hansen a number of features of storage systems 

can be identified. Firstly, to the user of a high-level 

language a virtual store exists. This consists of data 

identified (or addressed) by text strings called identifiers. 

Consequently a virtual store can be considered to be a 

mapping of identifiers into values: 

Virtual store: identifier - value 	 (2.1) 

On the other hand, the physical store is made up of 

locations identified by consecutive numbers called addresses. 
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Since these locations hold values of one form or another, 

physical store can be thought of as a mapping from 

addresses to values: 

physical store: address 	value 	 (2.2) 

In order to complete the link between the user and the 

"real machine" some process must be carried out, before a 

program is run, which associates identifiers with addresses. 

This is the store allocation process which defines an 

intermediate mapping of identifiers into addresses: 

store allocation: identifier - address 	(2.3) 

These three mappings are of fundamental importance to the 

storage management process. 

Mapping (2.2) is clearly outwith the control of the soft-

ware designer, yet what is provided at this hardware level 

has a significant effect on what can be achieved by systems 

programmers and user programmers alike. In this field alone, 

variations exist from the potentially bit-addressable B1700 

(Wil 72) to the 512-bit storage accesses performed in CDC 

Star (Pur 74). 

However if all the above factors are considered, a signifi-

cant amount of useful information about the storage manage-

ment task can be obtained. 

2.3 The Appropriate Unit of Storage to Assign to 

Computations - Early History 

The simplest answer to this problem was to assign the whole 
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of the available store to a computation. This approach, 

attractive in its simplicity, had a number of disadvantages. 

Firstly store was almost invariably wasted. If a sufficient 

amount of store was to be available for most problems, 

particularly the relatively large ones, then for the smaller 

problems during their running time (possibly large) amounts 

of store were unused. Even in modern storage hierarchies 

such wastefulness of a relatively expensive resource would 

not be tolerated. Equally, the need to deal with large 

problems meant that large amounts of store had to be avail-

able, thereby compounding the first problem. 

Two problems arose from this technique:- 

How to deal with wasted space in store? 

How to accommodate large programs whose total 

memory requirements were larger than the available 

main storage space? 

The simplest solution to the first problem was by means 

of partitions of main store. This technique, used in 

OS 360 MFT (IBM 71), operated as follows:- 

Any memory not used by the control program was divided 

into partitions (see Figure 2.1). 

H° I P 

Figure 2.1 
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The size of each partition was set by the operator 

and its associated priority was determined by its 

position relative to other partitions. P0 was 

reserved for jobs of the highest priority, while Ph 

was reserved for jobs of the lowest priority. When 

a job was initiated it was allocated a partition for 

the class of the job. 

This technique has the advantage of allowing multi-programm-

ing, but does not successfully overcome the problem of 

wasted memory space. With this technique, jobs do not 

normally fill their allocated partition completely and con-

sequently, as with the whole memory approach storage is 

wasted. 

The second problem, i.e. how to accommodate programs whose 

storage requirements were greater than the available 

storage, was first solved using overlays. 

This method requires that the programmer divides his 

program into sections, one of which must be designated the 

main section. The remaining sections are called dependent 

sections. By using a linking loader, the main section at 

run time could call in the dependent sections for execution. 

By placing the main section in the available memory and 

sharing the rest of the memory among the dependent sections, 

the main section can replace dependent sections when they 

are no longer needed with other dependent sections. This 

technique was used in operating systems for CDC-6000, 
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UNIVAC 1108, GE 635, and IBM System 360 (Lan 69). 

This technique allows a user to utilise small amounts of 

physical storage for large programs. However, there are 

some significant drawbacks:- 

The user is responsible for the division of his 

program into its main and dependent sections. 

Careful job preparation is required, so that the 

relation between the main section and its dependents 

is clear. 

References between dependent sections should be 

minimised. 

The amount of main store allocated to the main 

section and its dependents is fixed during the 

entire execution peripd. This implies that 

dynamic space variations cannot be utilised and 

that the maximum amount of memory required be 

allocated initially. 

All of the sections of a job must be available at 

linkage time. 

This overlaying technique was most severely criticised by 

Sayre (Say 69), who compared results by Brawn et al. 

(Bra 68) and measurements on a demand paging unit built 

by Belady et al.., against manual "folding" techniques (such 

as overlaying) and concluded that 

"... a folding mechanism will probably become a - 

normal part of most computing systems" 
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Sayre gives six reasons for his support of "automatic 

folding":- 

Proarammina Cost I 

Manual folding is difficult to do and get right. 

Programming Cost II 

Once folded for a particular size of memory, a 

program will not run efficiently in another size 

of memory. 

Multiprogramming and Timesharing 

Once folded, a program must have the size of 

memory it was folded for. This is not a good 

starting point for systems which involve the 

dynamic sharing of memory among programs. 

System Availability 

Since a pre-folded program must have the memory 

it was folded for, this will be a significant 

drawback if that amount of memory is temporarily 

unavailable due to system failures. 

Design Predictability 

The performance of a program will depend 

critically on how well it is folded. 

Retention of Technical Options 

The large amount of investment in pre-folded 

programs does not take account of technological 

advance (for example) making more memory 

available. 
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2.4 The Appropriate Unit of Storage to Assign to 

Computations - Pages and Segments 

Largely due to the unsatisfactory nature of overlaying and 

partitioning - static memory allocation - other techniques, 

collectively known as dynamic memory allocation, were being 

developed. These were based on two units:- 

Pages 

Segments. 

2.4.1 Pages 

The aim of this technique was to ease a number of the 

problems mentioned above by dividing a program's address 

space into equal fixed-size areas called pages. Main store 

was also divided into identical fixed-size areas called 

page frames. A number of page frames would be allocated to 

a program during its run and these would be filled with 

program pages as necessary. All addressing was done in 

terms of these pages. 

With the adoption of this technique, the pages belonging 

to a program could become scattered throughout store in 

order to take advantage of any unused page frames that 

might become available. This meant that the addresses 

used by the program (virtual addresses) had to be translated 

into the correct physical addresses before they were used 

to access the main store. 

Figure 2.2 shows a possible arrangement for address 

mapping under a paging scheme. Each user has a page table 

which contains an entry for each of the user's pages. If a 
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page is in main store then the main store address is 

included in this entry, whereas if it is currently 

resident in backing store then the backing store address 

is given. 

An address within a program is of the form of a pair:- 

_______ PriysicQ( 

Adctss 

Figure 2.2 
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<page no. , displacement> 

where the displacement gives the position of the addressed 

item within the specified page. To access any item, the 

entry for the specified page is examined in the page table. 

If that page is in the main store then the main store 

address of the start of the page has the displacement 

added to it to give the physical address of the item. If 

the page is not in main store, then it is brought into 

some free position in main store and the page table updated 

accordingly. The above procedure is then followed to 

obtain the desired physical address. In practice, the 

page table itself may be held in main store and'each user 

will be given a hardware register to indicate the base of 

his page table. Such an addressing scheme is usually 

performed by hardware, but even so this results in two 

store accesses for every word accessed (one for the page 

table and one for the word itself). Some computer systems 

overcome this by holding current page table entries in 

associative memories and attempting to ensure that all 

current page descriptors are in these memories at all times. 

This technique was introduced on the Atlas computer (Ku 62). 

In this system main store was divided into blocks of 512 

words. This system also yielded one of the earliest page 

replacement algorithms which will be discussed later. 

Within a paged system placement of pages in main store is 

not a significant problem, since any freed page frame will 
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accommodate any page. The real problems are:- 

when to bring pages into store, and 

what page should be removed, if necessary, to 

accommodate the new page. 

The simplest way to deal with a) is to page on demand. 

That is to say, a page is brought into store if and when a 

program requests an item on that page. Consequently, the 

most significant study refers to page replacement algorithms. 

The case in support of the use of demand paging algorithms 

will be put forward in Chapter 3 and this chapter restricts 

itself to a study of available page replacement techniques. 

2.4.1.1 Atlas Loop Detection 

This technique, described by Baylis et al. (Bay 68) 

assumes a strictly cyclic pattern of use of the blocks (pages) 

within a given program. For each page of store two para-

meters are computed:- 

t - the time the block has been idle in core store 

since last being accessed, 

T - the total time the block remained idle the 

last time it was written to backing store. 

Measurement of both t and T are made in terms of process 

time. The implication of the cyclic strategy is that if 

t > T then' the block is no longer in use in the current 

cycle and can be written out to backing store. If no 

block satisfies this property then the block (excluding 

the current blocks) with the largest (T - t) is the best 

candidate for replacement. 
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In the studies presented (Bay 68) this algorithm was 

compared with two others:- 

selecting a candidate for replacement at random 

selecting the page with the largest t. 

It appeared from the studies that, overall, the system 

behaved best under (b) and that the loop detection method 

was about 10% worse than (b). However this was explained 

by the non-cyclic nature of the Supervisor program which 

was also included in the study. The feeling of the study 

was that, although the cyclic strategy was inferior to (b) 

strategy (b) penalised programs with cyclic behaviour to 

such an extent that the loop detection method represented 

the "safest" approach. This was particularly true if, as 

was thought likely, cyclic programs could dominate the job 

mix over a period of time. 

The authors did conclude that applying an algorithm based 

on store usage was worthwhile but that the particular 

algorithm had only marginal effect. 

2.4.1.2 Least Recently Used (LRU) 

This method is exactly the alternative (b) mentioned above. 

That is to say, the page replaced is that page that has 

remained unreferenced for the longest time. 

Two types of LRU can be distinguished:- 

a) Global LRU - The replaced page is that page which 

has not been referenced for the 
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longest period of real time, regardless 

of the task to which it belongs. This 

technique has been used in CP/67 (Ale 69), 

(Bay 68b), Multics (Org 69), MTS (Ale 69) 

VS1 (IBM) , VS2 (IBM). 

b) Local LRU - This allocates a fixed number of memory 

pages per task. The least recently 

used selection is made from pages belong-

ing to the task which generated the page 

fault. This has been implemented in the 

original IBM version of TSS (IBM 70). 

2.4.1.3 First-in-First-out (FIFO) 

This is probably one of the simplest algorithms to 

implement, the page which has resided in main store for 

the longest time is chosen to be replaced. This technique 

has been used on the B5500 (Bat 69). Belady (Bel 66) has 

shown that this algorithm can behave quite well in most 

cases. However, it is possible (Bel 69b) that it will 

increase the number of page transfers made by a program 

when the main store made available to that program is 

2.4.1.4 Working Set Algorithm 

This technique developed by Denning (Den 70) involves the 

examination of the pages that have been referenced in a 

fixed process time interval before the current reference. 
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All pages in this set, known as the Working Set of the 

program, remain in core. All others are marked as 

candidates for removal. Some implementations of this 

technique exist where the replaced page is the least 

recently used page which does not belong to the Working 

Set of any program (Doh 70). 

This algorithm, as will be shown below, has been 

extensively analysed and with LRU forms the basis for 

much of the work done on the analysis of program behaviour. 

2.4.1.5 Page Faulty Frequency Algorithm (PFF) 

This algorithm was first suggested by Chu and Opderbeck 

(Chu 72). It attempts to dynamically control the rate of 

page faults by varying the memory space allocated to a 

program. 

The PFF algorithm measures the inter-page fault intervals 

during execution of the program. At page fault times, it 

compares these intervals with previously selected threshold T. 

If the inter-page fault time exceeds T then all the pages in 

main memory belonging to the program that have not been 

referenced since the last page fault are candidates for 

removal. Otherwise no page is removed and the program's 

allocation is increased by one page. 

A modification to this algorithm was suggested by Sadeh 

(Sad 75) wherein a program is prevented from collecting 

all its pages in main memory (otherwise no page faults 
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would be generated during its remaining execution). This 

is achieved by placing a limit, z, on the inter page 

fault interval. Whenever this limit is reached a memory 

allocation is made without waiting for a page fault to 

occur. 

The operation of this algorithm is described in (Chu 76) 

among others. 

These, then, represent the major page replacement algorithms 

that have been proposed and studied. 

2.4.1.6 Other Techniques 

A mention must be made at this point of pre-aging. The 

aim of this technique, wherein a page is brought into main 

store before it is referenced, is to reduce or eliminate 

page waits so that CPU utilisation can increase. Pre- 

paging involves a balance between initiating the page fetch 

early enough to overcome the delays involved in the use of 

backing store with high latency periods, and initiating the 

fetch late enough to ensure that the page does not wait 

around in memory for a significant period before it is 

referenced (if at all). Studies on EMAS (Whi 73) by Adams 

(Ada 75), (Ada 76) indicate that pre-paging does tend to 

outweigh any disadvantages caused by moving in unwanted 

pages. On the other hand, Hoare and McKeag (Hoa 72) con-

cluded that pre-paging is not only difficult to use but 

may be actually prejudicial in its effect on system 

performance. 
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Another technique worthy of mention at this point is 

that of page recapture. The idea behind this approach 

is that when a page replacement algorithm marks a page 

as free, it may be some time before that page is actually 

overwritten by an incoming page. This is due to the fact 

that many algorithms free a number of page frames when, 

perhaps, only one is needed at that time. Consequently, 

the system remembers what the contents of a page frame 

are, whether that page is marked as free or not. It has 

been shown in the studies by Adams mentioned above, that 

recapture can play a significant role in the operation 

of a system. It is only fair to point out however, that 

any success that recapture might display tends to imply 

the failure of the replacement algorithm in that pages 

are being marked as free (and consequently not needed) 

only to be needed again after a very short time. 

2.4.2 Segments 

As will be shown in Chapter 3, one of the major problems 

with paging systems is the choice of an appropriate page 

size. Again the problem is a matter of balancing 

conflicting requirements: -  

1. If the page size is too small:- 

i) the size of the page tables increases and 

this implies a loss of main memory space, 

if the tables are held in store (Table 

fragmentation). 
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the unit of transfer chosen may be 

inappropriate for the devices involved. 

if large amounts of store are required, a 

comparatively large number of pages must be 

freed and transferred, thus increasing the 

system overheads. 

2. If the page size is too lrcJE:-  - 

i) the region of the store required by a program 

may be considerably less than a page, but a 

whole page must be allocated to it. This 

results in a waste of space within pages 

(Internal fragmentation). 

These matters are dealt with by Randell (Ran 69). In this 

paper he suggests that few designers have reduced single 

page sizes below 1024 words because of the overheads. 

involved in storing and processing page tables. However 

it transpires that the logical unit of transfer (the 

segment) can frequently be small (eg 60 words (McK 67) ). 

Although this mean is small, the variation appears to be 

quite large and some designers have provided two page 

sizes (Cor 65) to attempt to attack this problem. 

Randell further comments, however, that compilers and 

programming conventions are likely to have a considerable 

effect on the mean segment size (but less likely to remove 

the problem of the variation in sizes). This remark will 

be considered at a later stage. 
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To return to the notion of segmentation as such, this 

technique was introduced by Dennis (Den 65). He intro-

duced the concept of a name space, that is, the set of 

addresses a program can generate, and contrasted with this 

the memory space of physical memory locations that are 

accessible to a program. Dennis proposed that:- 

A computation should have the use of a name 

space sufficiently large that all information 

it references may be assigned unique names, and 

such that the re-allocation of information 

within its name space is never necessary. 

Data objects of a computation should be 

expandable without re-allocation of name space. 

Information referenced in common by several 

computations should have the same name for all 

computations that reference it. 

A protection mechanism should operate in name 

space to permit access by a computation only in 

an authorised manner. 

Dennis claimed that this could be achieved by a sytem in 

which information was addressed by a two component address:-

<segment name, word address> 

A segment is an ordered collection of words with an 

associated segment name. 
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S-(segment nume) 

I 
word 
aodress 

length 

Diagram 2.3 

A particular word in a given segment S is accessed as 

shown in diagram 2.3. 

To use such a system, programs and data are split into 

segments which consist of related information. In much 

the same fashion as a paging system, the base addresses 

of all segments belonging to a computation are kept in 

a single table called a segment table. More information 

must be retained than for . a paged system because no 

limitation has been put on the length of such a segment. 

Consequently, the storage management system must have 

the segment length available to it at all times (see 

Diagram 2.4). 
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Physical 

Address 

Diagram 2.4 

A consequence of the choice of segments means that, in 

theory at least, such a system would not be susceptible 

to internal fragmentation. A proliferation of small 

segments would lead to the same table fragmentation as 

in a paged system. However - such a system is prone to 

another form of fragmentation as will be shown below. 

Unlike a paging system, the placement of segments poses 

a problem. With a paged system any free page frame can, 

by definition, accommodate any page. However, since 

segments are of variable size, the same is not true. 

Consequently, suitable space must be found in some other 

way for a desired segment in main store. A typical memory 

layout is shown in Diagram 2.5. 
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Diagram 2.5 

This random pattern of holes and segments has been caused 

by the allocation and de-allocation of segments. 

If a new segment is required in memory then, given that 

the length of a segment will be fixed during its lifetime, 

a suitable hole can be chosen by one of the following 

algorithms: -  

First Fit - a segment is placed in the first hole 

large enough to hold it, 

Best Fit - a segment is placed in the smallest 

hole capable of holding it. 

Knuth (Knu 69) has shown that, contrary to expectation, 

the First Fit algorithm tends to be superior. As it 

also tends to be easier to implement it has been used in 

the B5500 MCP (McK 71). Knuth also suggested a third 

approach, known as the Buddy System, which involves 

mainttvtv holes of fixed sizes on lists. The sizes 

chosen are 2,4,8 .....2 k  words.so  that a 2h  hole can be 
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split into two adjoining 2 	 holes, and similarly two 

adjacent holes of the same size can if necessary be 

coalesced into one hole of the next larger size. This 

technique attempts to tailor the hole sizes to the requests 

that might be made on them. But it seems a rather complex 

task to maintain these lists in the appropriate fashion. 

However Knuth states that it does marginally outperform 

the other two techniques mentioned above. 

A problem with segmentation is that small holes tend to 

proliferate and there comes a point at which it is impossible 

to find a suitable hole for a required segment, although the 

total free space is sufficient to meet its needs. This loss 

of space has been called External Fragmentation (Ran 69) and 

can be overcome by moving all used segments to one end of 

store (see Diagram 2.6). This technique is known as 

compaction. 

Compaction is a time-consuming business since large amounts 

of information must be moved from one place in store to 

another (see Chapter 3). It is suggested that in a well-

designed system compaction occurs so rarely that processor 

time spent on this relocation is negligible. 
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Before comtirg 
	

After compacting 

Diagram 2.6 

Both paging and segmentation have their drawbacks in 

the utilisation of main storage. However attempts have 

been made to combine the best of both systems. 

2.4.3 Paging and Segmentation 

Such a combined technique has been proposed by Arden et al. 

(Ard 66). This system involves a three-component address 

for informations:- 

<Segment Nurnber,Page Nuniber,Address> 

The requirements for such a system are shown in Diagram 2.7. 

The segment table is defined by a Segment Table Register 

2.22 



H- 

—MMI.  Physical 

dress 

which contains the Segment Table Length (STL) and the 

address of the 

Diagram 2.7 

Segment Table Base (STB). The required segment is used 

as an index to the Segment table whose entries consist of 

a pair: - 

<Page Table Length, Page Table Base>. 

The Page Table Base is the base address of the required 

page table. The required page is then used as an index 
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to the page table which contains the base address of 

the required page. This base address then has the dis-

placement added to it in the usual way to provide the 

final physical address of the required information. 

2.5 Conclusion 

This chapter has attempted to trace the development of 

memory management systems to the present day. Some 

indications of the reasons for the development of the 

current demand paged systems have been given. Much more 

of the motivation for the choices that have been made lies 

in the theoretical analysis of program and paging 

behaviour that has also developed. This is considered 

in the next chapter. 

It is also useful to note, at this stage, that good 

theoretical analysis is of vital importance in this field. 

It is often the case that, despite the apparent simplicity 

of the techniques described above, implementation may be 

difficult and costly in real systems. Also, it is true 

that it is difficult to evaluate the benefits that may 

accrue from these features alone in real situations. 
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3. THEORETICAL DEVELOPMENT 

3.1 Introduction 

In this chapter the theoretical development of current 

storage management systems is investigated. This theor-

etical work has tended to be carried out in parallel with 

the actual implementation of the techniques, and this has, 

perhaps, overly restricted the areas of theoretical study. 

However in this chapter the arguments for the conventional 

approaches to storage management are put forward. 

3.2 storage Utilisation in Segmented Systems 

In his paper on virtual memory (Den 70), probably the most 

influential paper in this area, Denning identifies three 

policies that must be considered in storage management 

systems: -  

Replacement policies 

- which information is to be removed from memory. 

Fetch policies 

- when information is to be loaded. 

Placement policies 

- where information is to be. put in memory. 

Replacement and fetch policies are much the same for paged 

and non-paged systems, but, as will be shown, placement 

policies for non-paged systems are considerably more com-

plex than those for paged systems. 
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If a non-paged system is considered, two important results 

can be derived:- 

PROPOSITION 3.1 The Fifty-Percent Rule 

If a segmented memory system is in equilibrium 

having n segments and h holes (see Figure 3.1), 

where n and h are large, then h is approximately n/2. 

PROOF 

Consider an arbitary segment s, then it is necessary 

to find the probability, p, that this segment has a 

right neighbour. During the residency of a segment 

in store, half the transactions to the region on its 

right are insertions and half are deletions (because 

the system is an equilibrium). This implies 

p=l/2 

=> No. of segments with holes as right neighbours 

= np = n/2 

=> No. of holes = n/2. 

ON 
I MVA 

I  

Figure 3.1 
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PROPOSITION 3.2 The Unused Memory Rule 

If a segmented memory system is in equilibrium and 

f = the fraction of memory occupied by holes 

so  = the average segment size 

ks0 = the lower bound on the average hole size (kO) 

then 

f 	k/ (k+2) 

PROOF 

Let the memory size = m words. By Proposition 3.1, 

if there are n segments in memory then there are n/2 

holes. The total amount of space occupied by holes 

is 
m - ns0  

and the average space occupied per hole is therefore 

2(m - ns0)/n 

Now since it has been assumed that 

2(m - ns 0)/n.ks0  

> (n/m)s t6 2/(k+2) 

f = (m - ns 0 )/m = 1 - (n/m)s 0  

1 - 2/(k+2) = k/(k+2). 

Diagram 3.2 shows the relationship between f and k 

graphically. The curve in the diagram represents a 

lower bound on the fraction, f, of unused memory. It can 

be seen that as the average hole size becomes large with 

respect to the average segment size, i.e. k -- , then so 

the fraction of unused memory becomes large f + 1. 
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situation is thus, for large k, we have a number of holes, 

n/2, whose average size is considerably greater-than the 

average segment size. 

Two states may be distinguished:- 

There is insufficient work waiting in the system, 

consequently memory is under-utilised. Herein a 

large f is reasonable. 

There is sufficient work waiting in the system. 

If this work has the same segment size profile, 

then it would seem to be reasonable that there are 

segments waiting to be loaded which will fit into 

some of the available holes. 

In this latter case, the action of loading another segment 
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reduces the average hole size. 

Since, if n increases to n', and the amount of memory 

allocated increases from ns 0  to n 1 s0  , then the amount of 

memory unused decreases from m - ns 0  to m - n's 0  . Con-

sequently the average hole size decreases from 2(m - ns0)/n'. 

It is clear therefore that the average hole size, e 0  , must 

lie in the range 

o 	e0 4 s0' 	 (3.1) 

otherwise case 2 above applies. Consequently an upper bound 

can be placed on the average hole size. Hence 

ks0eoso 

o 	k ' 1. 

Thus k must be restricted to the range shown in Diagram 3.2. 

Using equation 3.1,. the following may be derived:- 

Given 	e0 s0 

and 	m = ns 0  +(n/2)e0  

then 	m <. ns 0  +(n/2)s0  

m <. (3nso)/2 

s0 > ( 2m)/(3n) 

Now since 

f = (m-ns 0)/m 

f < (m-((2m)/3n )/m = 1-2/3 = 1/3 

Consequently, in practice a management system can achieve 

k/(k+2) E. f < 1/3 	 (3.2) 

This is the area shown by the cross-hatching in Diagram 3.2 
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Three placement algorithms were considered by Knuth 

(Knu 68), which have been discussed in 2.4.2 above. 

The following compaction result is reported by Denning 

(Den 70):- 

	

PROPOSITION 3.3 
	

Compaction Result 

Suppose a non-paged memory system is in equilibrium 

immediately after compaction, a fraction f of memory 

being unused; suppose that each segment is referenced 

an average r times before being deleted and that the 

average segment size is 5. Then the fraction F of 

the time the system spends on compaction satisfies 

	

F 	(1 - f)/(l - f + (f/2) (r/s 0 )) 

PROOF 

rn(1-f) 	 , 4 	mf 

SEGMENTS 	 HOLE 

Diagram 3.3 

Diagram 3.3 shows the memory state immediately after 

compaction. 

If it is assumed that a segment is referenced each 

time unit, then a segment is deleted every r time 

units, arid, since the system is in equilibrium, a 

new segment is inserted every r time units. Con-

sequently, the boundary moves at the rate s 0/r. 
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The system will operate happily for to  = fmr/s0 , the time 

for the boundary to cross the hole. 

Since the compaction operation requires at least two 

operations for each of the (1 - f)m words to be moved, 

then t, the time taken for compaction satisfies:- 

t 	2(1 - f)m 

Consequently, the 

of the total time 

F= 1- 

Fl-

F(to 

F(1 

F2(1 

time spent compacting as a fraction 

is 

+ tc) 

t0/(to+2(1-f)m) 

+ 2( 1 - f)m - to)/(to + 2(1 - f)m 

- f) (2m/ (fmr/s0 + 2 ( 1 - f) m) 

- f)/( ( 1 - f) + (f/2) (r/s 0 ) 

Diagram 3.4 shows a plot of F against f 
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The use of relation 3.2 has enabled the range of f to be 

considerably reduced over that presented by Denning. 

It is perhaps even more clear now, in diagram 3.3, that 

only in a situation where compaction is carried out 

relatively infrequently due to high reference density 

in segments can compaction be tolerated (i.e. r/s 0  large) 

Denning because of the overhead of compaction and the 

possibility of a large amount of unused memory (without 

the benefit of relation 3.2), discounts segmentation and 

turns to paged systems. 

3.3 	Paged Systems - Page Size 

The simplicity of paged systems in terms of their implement-

ation and the consequently high number of successful 

implementations, has prompted much theoretical interest. 

Equally, theoretical investigations have shown that although 

the underlying idea is simple, what actually goes on in a 

paged system is not at all clear and model building. is 

necessary in order to achieve some understanding of the 

real situation. 

Placement policies as such have no relevance to paged 

systems since all that is required in order to place k 

pages is that k page frames be freed. 

Using Denning (Den 70) again as a starting point, the 

following proposition is relevant:- 
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PROPOSITION 3.4 Optimal Page Size Result 

Let z be the page size and so the average segment 

size; Suppose c 1  is the cost of losing a word to 

table fragmentation and c2 is the cost of losing a 

word to internal fragmentation, and let c = c1/c2. 

If z --,< so then the optimal page size is approxi-

mately (2cs0) 2  

PROOF 

The cost for any given z is 

c(z) = cs0/z + c2 z/2 (Since if z << s then 

z/2 words will be 

wasted in internal 

fragmentation) 

This has an optimal value when c' (z) = 0 

-(C so )/20 	+ c2 /2 = 0 

=> 	z = 2c.s0/c 2  

=, (2cs) 2  

It is fairly reasonable to assume, in a system where page 

tables are held in store, that c = 1. Consequently, it can 

be shown that 

Z0 - ( 2 so) 2 
	 (3 3 

Although this is in itself an important relationship, it is 

useful to note that if available data on segment sizes 

(Bat 70) implies that s,tS 1000 words then equation 3.3. 

implies that z0  45 words. This is somewhat contradictory 

to the current practice of page sizes of 512 or 1024 words. 

Although there are other good system reasons for these 

3.8 



choices of page sizes it is essential to observe that 

such sizes will necessarily increase the amount of space 

wasted within a page. Not because the page does not con- 

tain information but because the page contains information 

that is not relevant to the segment currently being accessed. 

Hatfield (Hat 72) examined the effect of varying the page 

size on system behaviour. The time to process a page fault 

has three components:- 

a - the access time to the device where the page 

resides 

b - the time to transfer the page 

c - the software overhead. 

It can be argued that a and c remain more or less constant 

irrespective of the page size. Consequently, if two page 

sizes b 1  and b, are considered then the relative costs can be 

shown as follows:- 

(a + b1 + c)/(a + b2 + c) 

Now the time to transfer the page, b, is given by 

b = Ztr 

	

	where tr  is the transfer rate for 

the device. 

If c is assumed to be small compared with a + b then 

relative cost 	(a + b 1 )/(a + b2). 

If actual figures are substituted, for example 

a = 50 x 10 --3 secs 

b = 5 x lO 	secs/word (for disk storage) 

relative cost z (5000 + 5z 1 )/5000 + 5z2) 

relative cost = (1000 + z 1 )/(1000 + z2) 
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This shows that unless page sizes are very large, or z 1 - 

and z 2  are very different then the page size does not have 

a significant effect on the system overhead (see Table 

3.5). 

z2  Relative Cost 

256 512 0.83 

256 1024 0.62 

256 2048 0.41 

512 256 1.20 

512 1024 0.75 

512 2048 0.49 

1024 256 1.61 

1024 512 1.33 

1024 2048 0.66 

2048 256 2.42 

2048 512 2.01 

2048 1024 1.50 

Table 3.5 

For example, an eight-fold increase in the page size from 

256 to 2048 words causes alittle less than a factor of 

2.5 increase in the overheads. 

It is useful to note that these figures are very much 

dependent on the storage devices being used. 
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3.4 Paged Systems - Demand Paging 

The term demand paging refers to a process whereby pages 

are only brought into main storage when a program refers 

to them. 

To fully present the notions of demand paging it is 

necessary to introduce some formal representation of program 

behaviour. 

Consequently the following definitions are presented:- 

DEFINITION 3.1 

Let N = [0,1,2,... ,n-l} be the set of pages of 

a program. 

DEFINITION 3.2 

Let S(t) be the set of pages belonging to a program 

that are in main store after the reference at time t. 

This is somteimes known as the Store Set of the 

program at time t. 

DEFINITION 3.3 

The memory references of a program are denoted by:- 

r(1) ,r(2) ,r(3) ......r(k) where r(t) € N 

and r(t) is the page referenced at reference t. 

A sequence of such references is known as a 

reference string. 

PROPOSITION 3.5 
	

The Principle of Locality (Den 70). 

During any interval of execution a program tends to 
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favour a subset of its pages, and this set of 

favoured pages tends to change its membership 

slowly. 

PROOF 

Denning maintains that this is an experimentally 

observed phenomenon, but formalises the notion as 

follows: - 

DEFINITION 3.4 	Reference Density 

The reference density for a page i is denoted by 

a(i,k) where 

a(i,k) = Pr[ (reference r(k) = i)] 

DEFINITION 3.5 Ranking 

A ranking R(k) of a program's pages is an ordering 

PO 
'p. 	

n-i 
..........,p 	where p 

1 
 eN,Vi, ci'i'n-1 1  

such that 

a(p0,k)a(p1,k) 	... 	a(pn_i,k). 

Such a ranking is strict if 

a(p0 ,k)>a(p1 1 k)>... >a(pn_i,k). 

DEFINITION 3.6 Ranking Change 

There is a ranking change at reference k if 

R(k) 	R(k-1) 

DEFINITION 3.7 Ranking Lifetime 

A ranking lifetime is the number of references 

between consecutive ranking changes. 
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Now can be stated:- 

PROPOSITION 3.5a The Principle of Locality 

The rankings R(k) are strict and the expected 

ranking lifetimes long. 

This will be considered in more detail later. For complete-

ness, it is necessary to include alternative definitions of 

locality due to Madnick (Mad 73). 

DEFINITION 3.8 Temporal Locality 

If the logical addresses a(1), a(2) .....are 

referenced during the time interval t - T to t, 

there is a high probability that these same 

addresses will be referenced during the time 

interval t to t + T. 

DEFINITION 3.9 
	

Spatial Locality 

If the logical address a is referenced at time t, 

then there is a high probability that a logical 

address in the range a - A to a + A will be 

referenced at time t + 1. 

These definitions probably have a greater intuitive appeal 

than those of Denning. 

DEFINITION 3.10 Paging Algorithm 

A paging algorithm gives S(t + 1) as follows:-

S(t + 1) = S(t) + X(t + 1) - Z(t + 1) 

where X(t + 1) is the set of pages brought in at 
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time t + 1 and Z(t + 1), the replaced page set, 

is a possibly non-empty subset of S(t). It is 

possible that at a given time t' both X(t t ) and 

Z(t 1 ) are empty, and this represents no change in 

the storage allocation for a program. 

DEFINITION 3.11 Strict Demand Paging Algorithm (Spi 77) 

A strict demand paging algorithm gives S(t + 1) 

as a function of S(t):- 

r S(t) if r(t + 1) 	S(t) 

S(t+l) = 

S(t) ± r(t + 1) - Z(t + 1) if r(t + 1) 

S(t) 

A variation of this type of algorithm which allows pages 

to be removed at any time rather than just at the time of 

a page fault is given below:- 

DEFINITION 3.12 Loose Demand Paging Algorithm 

A loose demand paging algorithm gives S (t + 1) as 

a function of S(t):- 

S(t) - Z(t + 1) 	if r(t + l)€S(t) 

S(t + 1) = 

L S(t) + r(t + 1) - Z(t + 1) if r(t + 

S(t) 

In opposition to pre-paging, demand paging algorithms 

have been used because of the difficulty ascribed to the 

prediction involved in a pre-paging algorithm. This in 

itself would not be sufficient to justify demand paging 
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as an acceptable approach if demand paging were shown to 

be considerably more expensive than pre-fetching. 

The following result, due to Mattson et al. (Mat 70), has 

been used to support the case for.demand paging:-

PROPOSITION 3.6 

Given any reference string and replacement algorithm, 

(.not necessarily using demand paging) another 

replacement algorithm exists that uses demand paging 

and causes the same or fewer page faults. 

This result is intuitively reasonable, since pre-paging can 

be considered as only causing page faults to occur earlier 

than they would have done under demand paging. If the page 

movements are done too soon then it is possible that a 

removed page will be referred to before the page that has 

been brought in. 

Aho, Denning, and Ullman (Aho. 71) have given a generalisation 

of this result, which requires the following definition:-

DEFINITION 3.13 The Cost of Replacement Algorithms 

If h(k) denotes the cost of an operation that places 

k (l) pages in memory, where h(k)>,h(l) = 1, then 

the cost for processing a reference string 

R = r(l),r(2) ......r(n) 

with a given algorithm A starting from an initial 

memory allocation S is given by:- 

C(A,S,R) 	=h(IX(t)I tzi 
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where X(t) is the set of pages brought into memory 

at time t. 

If A is a demdnd paging algorithm thenjX(t) I'l, for 

l(tn and consequently 

C(A,S,R) 	= 	X(t) 

The following can now be stated:-

PROPOSITION 3.7 

If A is a paging algorithm, and further if h(k) k, 

for kl and h(l) = 1, then there exists a demand 

paging algorithm A' such that 

	

C(A',S,R) 	C(A,S,R) 

for all S and R. 

Despite the fact that the situation h(k) 	k occurs 

frequently in practice, this result is used as a justifi-

cation for a restriction of theoretical consideration to 

demand paging alone. This and the other limitations of 

the theory will be considered later. A formal representation 

of current page replacement algorithms in a demand paging 

environment is given below:- 

DEFINITION 3.14 	First-in First-out (FIFO) 

The page which has been in memory for the longest 

time is replaced. 

If R(p), pES(t) is defined as 

R(p) = t - t' where t' is the latest value of t 

where X(t) 

={1 
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then an ordering of the pages in S(t) can be 

defined such that 

S(t) = 

and 

R(p 1)< R(p 2 ) 	R(p 3) < ... <R(p) 

If r(t + 1) 	S(t) then 

X(t.+l) = r(t+l) 

Z(t+l) 	= pt.. 

and the new ordering of S(t + 1) is 

S(t + 1) 	= I r(t + 1), Pi'P2'•••Pk-l] 

NOTE: This is a strict demand paging algorithm. 

DEFINITION 3.15 
	

Least Recently Used (LRU) 

The page in memory which has not been referenced 

for the longest time is replaced. 

If U(p), p E S(t) is defined as 

U(p) = t - t' where t' is the latest t such 

that r(t) = p 

then an ordering of the pages in S(t) can be 

defined such that 

S(t) 	= I 	l'2''k 

and 

cU(pk). 

If r(t + 1) S(t) then 

X(t + 1) = r(t + 1) 

Z(t + 1) =  Pk 
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and the new ordering of S(t + 1) is 

S(t + 1) 	=[ r(t + 1), p1,p2 .....'k-1 

DEFINITION 3.16 	Working Set Algorithm (Den 68a).(Den 68b) 

The working set of a program is that set of distinct 

pages referenced in the T most recent references, 

r(t - T + 1) ......,r(t), where T is called the 

window size. 

S(t) 	= W(t,T) 

where W(t,T) denotes the working set at time t with 

a window size of T. 

DEFINITION 3.17 Page Faulty Frequency Algorithm (Chu 72) 

Let t' be the time of the most recent page fault, 

if a subsequent page fault occurs at time t + 1 

then:- 

S(t) + r(t + 1) if t' - t + 1 4 i/p 

S(t + 1) 
= 

W(t,t-t') + r(t + 1) if t' - t + 1 > i/p 

where p is an estimated page fault frequency 

parameter. 

These definitions correspond to the algorithms that have 

largely been used in practice. However, two better, 

theoretically obtainable, algorithms exist:- 

DEFINITION 3.18 VMIN Algorithm (Pri 76) 

V(t,T), the VMIN set at time t is defined as 

follows: - 
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V(O,T) = 

	

V(l,T) 	= r(1) 

and for t 2 1 

V(t,T) + r(t + 1) if r(t) 	W(t + T,T) 

V(t + l,T) = 

V(t,T) + r(t + 1) - r(t) if 

r(t) 	W(t + T, T) 

In this algorithm a page is replaced if it is not referenced 

in the next T references. Clearly this involves knowledge 

of the page reference string in advance. 

DEFINITION 3.19 
	

OPT Algorithm (Mat 70) 

All pages are assigned a forward distance which 

for page p is defined, at time t, as 

FD(p) = F - t 

F = t' where t' is the leat t such that 

r(tp and t' t. 

Consequently, a priority list PL can be defined at 

time to to be:- 

	

PL(t) 	=[ p1,p2 ....., pn I 

where p 1  = r(t + 1) and FD(p.) FD(p. 1 ). 

If a page is never referenced after time t it can 

be arbitarily assigned a forward distance of 

infinity. 

Thus, the algorithm works as follows:- 
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S(t) + r(t+l) - p, if r(t+l)S(t) 

S(t + 1) =. 

S(t) 	 if r(t+l)E S(t) 

where p€S(t) :Vp'E S(t) FD (p) FD (p') 

NOTE: After each reference the priority list must 

be re-created. 

As mentioned above, these algorithms although theoretically 

obtainable cannot be implemented in practice since a 

complete "dry run" through the program would be necessary 

to create the reference string upon which they depend. 

The four practical algorithms however need only retain 

information on the past behaviour of the programs to 

estimate the future behaviour. The main use of VMIN and 

OPT is as estimators of the success of the practical 

algorithms in test situations. 

To return to the Principle of Locality, it is possible to 

measure the effectiveness of a management strategy by its 

success in estimating the locality at any time T. 

Initially, it is sufficient to observe that it is those 

pages in the current locality which will be referenced in 

the near future that must be estimated. 

Calling upon the notation used to describe the principle of 

the Working Set algorithm, the temporal locality at time t 

of width 2T can be defined as follows:- 

TL(t,T) = W(t,T) U W(t + T, T) 
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NOTE: In a paged system, spatial locality about refer-

enced addresses normally is automatically handled 

by the loading of the surrounding page. 

Thus it can be stated that an estimator of W(t + T, T) 

is required. 

Apart from the problem of finding a suitable estimator, 

another difficulty arises, namely the size of T. Coffman 

and Denning (Cof 73) suggest that for W(t,T) two criteria 

must be satisfied:- 

T must be large enough to ensure that the 

probability of a member of the current locality 

being missing from the working set is small. 

T must be small enough to ensure that the 

probability of more than one inter-locality 

transition being contained in the working set 

is small. (An inter-locality transition occurs 

when a program moves from one favoured subset 

of its pages to another.) 

This can be presented formally:- 

Let r(l) ,r(2) ,. • ,r(t),... be the reference string 

generated by a program, then the Principle of Locality 

suggests that the program passes through a series of 

localities L 1 ,L 2  .....where L 1 .N. 

the current locality, is given by 

L = Lk for 

then 

r(t) L for tj t 

That is to say, if L, 
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The management policy generates a sequence of store 

sets S 1  1 S 21 ... and the aim is that if at time t 

the store set = S1 

the locality = Lm  

then 

S1 = L• 

In order to support the theoretical analysis of replacement 

algorithms, Coffman and Denning make the following 

assumptions about reference strings (Cof 73) 

The probability that r(t + x) = j, given that 

r(t) = i (i,jEN) is independent of t. 

For an t, and any i€ N, there exists a t'' t 

such that r(t') = i. 

r(t) and r(t + x) become uncorrelated as x 

becomes large. 

Coffman and Denning are aware of the significant restriction 

placed on reference strings by 1. Over a complete reference 

string there is no good evidence that 1. should hold-. 

Within a locality, however, 1. is more reasonable. That is 

to say:- 

If L(k) =(r(t) 	t1 

and t1 t 't2 , t1 <- t + x 4 t2 

then it would appear that 1. is intuitively more reasonable. 

This is an example of what Spirn (Spi 77) and Denning and 

Kahn (Den 75) observe to be a difference between micro- 
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behaviour and macro-behaviour in reference strings. To 

further expand this notion, Denning and Schwartz (Den 72) 

give some important properties of localities:- 

During any interval of time a program distributes 

its references non-uniformly over its pages. 

Taken as a function of time, the frequency with 

which a given page is referenced tends to change 

slowly. 

Correlation between immediate past and immediate 

future patterns of behaviour tends to be high. 

Whereas the correlation between disjoint reference 

patterns tends to zero as the distance between 

them tends to infinity. 

In the same paper they make a significant admission:- 

"W2: The stochastic mechanism underlying the 

generation of a reference string is stationary, 

i.e. independent of the time of origin. 

Assumption W2 does restrict the results somewhat, 

limiting the analysis to the context of a single 

program locality in the following sense. As 

mentioned above a program passes through a sequence 

of localities as it generates references. One 

would expect that whatever non-stationarities 

exist depend only on the locality. In other 

words, we could approximate a reference string r 

as a sequence of substrings 
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r = 

where each substring r1  obeys W2. Therefore 

the results are applicable locally in a given 

reference string, but not necessarily globally 

assumption W2 will not be severe as 

long as the measurement intervals are corn-

parable to or less than the average inter-

locality transition time." 

This in effect restricts analysis of algorithms to the 

micro-behavioural phase, and avoids consideration - of 

locality transitions. 

It is the contention of this thesis that this and other 

assumptions place significant restrictions on the utility 

of page replacement algorithms, and consequently cast 

doubts on the global validity of demand paging. These 

contentions are laid out in the following section. 

3.5 Assumptions Inherent in the Theoretical Support 

for Current Algorithms 

1. 	Ignoring all aspects considered above, it 

would seem that from the point-of-view of 

system throughput demand paging has a detri-

mental effect. Stated simply at each page 

fault occurrence in a demand paged system the 

program must wait the maximum possible time 

before its request is satisfied, since the 

page is only sought once it has been referenced. 
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Following on 1. above, since the models on 

which paging algorithms are based are effective 

only within localities, the effects of locality 

transitions are amplified by demand paging. 

During a locality transition, a high page 

activity must be expected. 	The adoption of 

demand paging implies that each page fault will 

be treated singly and no optimisation of, say, 

disk seeks will be possible. 

The effectiveness of demand paging is based on 

a rather unimpressive proof (Propositions 3.6 

& 3.7). These propositions admit the existence 

of optimal demand paging algorithms. However, 

what is not shown is:- 

that this demand paging algorithm can 

indeed be achieved without a complete pre-

determination of the reference string. 

that the same demand paging algorithm is. 

optimal in all cases. It seems 

intuitively likely that OPT should fall 

into this category but it is reported 

(Aho 71) that counter-examples can be 

found. 

Proposition 3.7 depends for its proof on 

assumptions about the cost of a page fetch 

that do not hold for conventional main 

store - drum/disk hierarchies. 
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The cost of an algorithm is estimated only 

in terms of the cost of its page faults. 

This is not sufficient since this implies 

that an algorithm which generates no page 

faults by the simple expedient of holding 

all of a program's address space in main 

store is optimal and has zero cost. 

4. The optimal choice of page size seems to be 

dependent on the segment size for a given 

program. This is in conflict with:- 

the need to achieve efficient transfers 

between backing store and main store. 

the convenience of establishing a system-

wide norm for page size. 

5. All the major replacement algorithms depend on 

the establishment of an arbitrary system-wide 

behavioural parameter: -  

LRU - requires a stack-length to be fixed. 

Working Set - requires a window size to be 

fixed. 

PFF - requires a critical page fault 

frequency to be fixed. 

As will be shown in the next chapter, the choice 

of the values for these parameters is critical 

to the efficient operation of the algorithm in 

question. 
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6. As with 2 above, the algorithms presented make 

no significant attempt to deal with locality 

transitions, thereby restricting their general 

effectiveness. To be fair this is perhaps 

least applicable to the Page Fault Frequency 

algorithm.' 

3.6 	Conclusion 

This chapter has attempted to show the theoretical back-

ground of the page replacement algorithms of current 

systems. It has also shown that some of the claims made 

are questionable and that conclusions drawn from these 

propositions are untrustworthy. That the theory has its 

limitations is undoubtedly true, however it will be shown 

in the next chapter that despite these limitations, the 

algorithms can be used to some effect if suitably 

limited contexts are chosen. 

3.27 



CHAPTER 4 	BEHAVIOURAL CHARACTERISTICS OF CONVENTIONAL 

MEMORY MANAGEMENT SYSTEMS 

4.1 Introduction 

In this chapter are presented results showing both 

theoretically and in practical situations, the strengths 

and limitations of current memory management systems. 

4.2 The Working Set Algorithm (Den 70) 

This algorithm, which attempts to estimate the current 

locality of a program by examination of the pages refer -

enced during a fixed time interval in the past, T (called 

its window), has been extensively studied. But before 

these studies are considered, it is instructive to examine 

Denning's own claims for this algorithm. 

Denning claims the following:- 

"WORKING SET PRINCIPLE: Suppose memory manage-

ment operates according to the following rule: 

A program may run if and only if its working set 

is in memory, and a page may not be removed jf 

it is a member of the working set of a running 

program. Then according to the principle of 

locality, this rule is an implementation of the 

principle of optimality." 
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The proof he presents firmly depends on the consideration 

only of the micro-behavioural characteristics of programs 

mentioned in Chapter 3. Equally, the related principle of 

locality (Proposition 3.5a) which he presents depends on 

estimates of the lengths of localities, i.e. the number of 

references that a program makes whilein a locality. 

Much support for his work has been taken from the work by 

Belady (Bel 66) on program lifetime functions and from the 

manner in which programs acquire pages on demand from the 

beginning of a time quantum (Cof 68) , (Fin 66). 

In his paper (Bel 66), Belady describes simulation 

experiments which together with simulation studies per-

formed on the 360/67 at SDC (Fin 66) and at Princeton 

(Var 67) lent support to the following major results:- 

PROPOSITION 4.1 Belady Lifetime Function 

If e is the expected length of time between page 

faults and s represents the amount of storage 

assigned to a program, then the relationship 

between e and s can be approximated by 

e = as k 

where a varies with the individual program and 

k has been observed to take values in the 

vicinity of 2. 

This relationship is shown graphically in Diagram 4.1 
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0 

Two points P and R are to be noted on this graph. Firstly 

R represents the amount of storage required to totally con-

tain the program and P represents the point of divergence 

between 

P 	 R 

$ 

Relationship of mean execution interval between page 

and storage allocated. 

Diagram 4.1 
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the approximation and the actual curve. Belady explains 

this divergence in two ways:- 

e is the average of all execution intervals, 

and in the initial loading phase, a program 

goes through a number of short execution periods 

which contribute to the reduction of e. 

if programs are given sufficient space to 

accumulate their current locality, then little 

or no paging will occur until a locality change 

is made. 

From this and the work of Coffman and Varian (Cof 68) 

reported below, Denning extracts the following relationship:- 

PROPOSITION 4.2 Fault Probability 

Let F(A,m,r) denote the number of faults generated 

as algorithm A processes reference string r under 

demand paging in an initially empty memory of size m, 

the fault probability f(A,m) can be defined as 

follows: - 

f(A,m) = 	Pr(r) (F(A,m,r)/IrI) all r 

where Pr(r) denotes the probability of occurrence 

of r and Irl represents the length of r. 

This, apparently, yields the following graphical relation-

ship (Diagram 4.2) :- 
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f(A,m) 

Unreal iscite 

[I] 
n 

M 

Diagram 4.2 

It is stated that ' t reasonable" algorithms lie in the 

shaded region on the graph and that the dotted line 

represents what could be achieved by optimal unrealisable 

algorithms such as that of Belady. The argument is that 

for reasonable A, f(A,m) is much more sensitive to m than 

to A. 

The dashed line above is meant to indicate the behaviour 

that would exist if programs exhibited a random reference 

pattern. 

One of the most unfortunate features of the above diagram 

is that, although it shows that the number of page faults 
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decreases for reasonable" algorithms with the increase 

of allocated memory, it does not give any quantifiable 

estimates of the behaviour of algorithms either in general 

or in particular cases. 

Further work on the relationship between locality and 

lifetime functions has been performed by Denning and Kahn 

(Den 75). These authors again quote considerable experi-

mental evidence supporting the notion of locality (Bry 75), 

(Hat 71), and (Rod 71). In the same paper they present two 

important properties of lifetime functions:- 

PROPOSITION 4.3 

A lifetime function typically has the convex/concave 

shape. The convex region is approximated by 

where x is the allocated store size, for some c,k. 

PROPOSITION 4.4 

For a given reference string, the Working Set life-

time function will tend to exceed that of LRU for 

wide ranges of memory allocations. 

Evidence for this proposition has been found in the work of 

Bard (Bar 73), (Bar 75). 

- As mentioned above, a memory management strategy can best be 

considered as an estimator of program localities. An ideal 

estimator is said to have three properties (Den 75) :- 

a) the store set is always a subset of the current 

locality set 
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at a locality transition, the resident set 

contains only the pages in common to the old and 

new locality sets 

page faults occur only for first references to 

entering pages. 

The working set algorithm is consequently not an ideal 

estimator, since at a locality transition old locality 

pages can remain for up to T references after the transition. 

However, if T is short enough to include only one locality 

transition, then the only penalty is the excess store 

allocation made to the program. Later some examples will 

be presented which estimate how significant this over-

allocation is. 

In another paper (Den 72), Denning and Schwartz establish 

behavioural characteristics of the Working Set algorithm. 

Given that:- 

S(T) = average working set size 

m(T) = missing page rate, i.e. the number of 

pages per unit time returning to the 

working set 

f(x) = the over-all inter-reference density 

F(x) = the over-all inter-reference distribution 

nr = the number of recurrent pages. 

PROPOSITION 4.5 

1 = S(l)S(T)'S(T + 1)s (min n, T + iJ 
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This states that the average working set size is non-

decreasing with T and that the working set size is bounded 

below by 1 and above by either one more than the current 

window size or n the number of pages (whichever is the 

smaller) 

PROPOSITION 4.6 

S(T + 1) - S(T) = m(T) 

This states that the difference between the average working 

set size for a window of T+1 and that for a window of T is 

equal to the missing page rate. 

PROPOSITION 4.7 

O 4 m(T + 1) m(T)' m(0) = 1 

This states that the missing page rate does not increase 

with T. 

PROPOSITION 4.8 

m 	= 1 - F(T) = 	) T f(y) 

This states that m(T) can be regarded as the probability 

that x) T. 
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PROPOSITION 4.9 

m(T + 1) - m(T) = -f(T + 1) 

This states that the difference between m(T + 1) and 

m(T) is the negative value of the over-all inter-

reference density f. 

PROPOSITION 4.10 

(S (T - 1) + S(T + 1) )/2.S(T) 

This states that the curve S(T) is concave down. 

PROPOSITION 4.11 

urn S(T) = n T— 	 r 

As T—,00 the working set size tends to the number of 

recurrent pages. 

PROPOSITION 4.12 

urn m(T) = 0 T—* 

As T—*'. the missing page rate tends to zero. 
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These properties are far from remarkable, and as such do 

not provide any insight into the physical operation of the 

Working Set algorithm. However they do provide two useful 

indicators to the size of T. As was mentioned above, this 

arbitrary parameter must be chosen with great care in order 

to increase the effectiveness of working set policies. 

Firstly, if a specified lower bound is placed on the 

efficiency required of our algorithm, then this implies (in 

a limited context) an upper bound on the value of m(T). This, 

in turn,implies a lower bound on T, by Proposition 4.7. 

Secondly, the concave down property of S(T) indicates that 

varying T need not be advantageous. 

From a practical point-of--view, it is fairly clear that these 

considerations do not give a clear indication of how a 

Working Set algorithm will behave. Much measurement has been 

done in practical situations, particularly in comparison with 

LRU strategies. In the remainder of this section, and in the 

next (dealing with the LRU algorithm itself) these results 

will be presented. 

Spirn and Denning (Spi 72) present the results of their 

experiments. They compare the behaviour of intrinsic models 

of locality with the working set algorithm as an estimator 

of locality. Experiments were carried out on two machines 

(a PDP-8 and System 360) using both assembly code and FORTRAN 

programs. 
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Measurements were made of the average working set size and 

the missing page probability for each of the techniques 

studied, compared with possible window sizes. 

The work presented in this paper is rather interesting, in 

that it attempts to compare the behaviour of the intrinsic 

models with that of real programs by comparing how well the 

intrinsic compare with the Working Set algorithm. As this 

thesis has attempted to show, insufficient evidence has been 

produced to show that the Working Set algorithm is indeed a 

good estimator of real program behaviour. Even if it were, 

it has already been admitted that it only presents a model 

of the micro-behaviour within localities and does not deal 

with locality transitions. This is contradictory to the 

claim in this paper (Spi 72) :- 

"We are concerned, however, with locality 

transition behaviour." 

However, some useful data can be extracted from these 

experiments. 

For the reference strings used the following statistics 

can be obtained:- 
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Reference 
String 

Window 
Size 

Working Set Size 
Program Size 

2 250 25 

4 250 50 

6 250 40 

2 500 26 

4 500 63 

6 500 63 

2 750 28 

4 750 70 

6 750 65 

2 1000 30 

4 1000 75 

6 1000 69 

Figure 4.1 

In Figure 4.1, the column headed "Reference String" 

refers to the identifying number used in the original 

paper. 

It is interesting to note that Spirn later (Spi 77) 

suggests that window sizes of "practical interest" satisfy: 

10,000 6 T 100,000 references. 

This later statement has also been supported by the work of 

Rodriguez-Rose 11 (Rod 73). In this paper, Rodriguez-Rosell 

commented on the lack of published data on working set 

behaviour from actual program measurements. The measure- 
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ments used in his study were made on an assembler program 

running on the System 360. The minimum value used for the 

window size was 5000 references. 

It is puzzling, therefore, to consider the data in Figure 

4.1, particularly considering that in all but one of the 

reference strings shown, a working set of greater than 70% 

of the address space available is achieved with a window 

size of the order of 1000 references. It is equally 

puzzling that reference strings 4 and 6 are high-level 

language generated program reference strings (FORTRAN)and 

that reference string 2 is that of a compiler. Another 

peculiar feature is that all experiments quoted here were 

carried out on the System 360,. also. 

It is useful, at this point, to remember a conjecture of 

Randell (Ran 69) that programming languages, styles, and 

conventions might have an effect on the behaviour of 

programs. 
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To further support the doubts expressed above, some 

experimental evidence is presented which shows that, in 

practical cases, the Working Set algorithm acts as a poor 

estimator of locality size. 

EXAMPLE 4.1.1 

On the following page is shown a bubblesort algorithm 

taken from Wirth (Wir 76). This well-known technique 

was run under two sets of conditions:- 

with window size = 10,000 references 

with window size = 500 references 

In both cases the page size was 256 words. 

The results are presented on the following pages. 

This particular example brings up some interesting points. 

Firstly, the localities are easily determinable by inspection 

for the sort part of the program. The references to the 

address space can be divided into 3 categories:- 

the current code page 

the page containing the index variables i,j,k 

the page currently being worked upon in the 

array. 

Consequently, it is to be expected that, since in this example 

there is only one code page, and since there are few variables 

other than the array elements, the locality estimate will, at 

worst, consist of four pages:- 

the current code page 

the page containing the index variables 

two (adjacent) pages from the array 
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Thu Jan 18 15u7:48 1979 	 bubble 	 Pane 1 

1 	 proiran, bubblesort(iriput,output) 
2 	 var 

• 	 3 	 i,J,k:ir.teer; 
4 	 elen,enitarragE1. .20483of integer;  
5 	 begin 
6 
7 	 for i1 to 2048 do 
8. 	 heir, 
9 
10 
11 	 elernentti]=i+J-k 
12 	 end;  
13 	 for i2 to 2048 do 
14 	 for J2048 dowr,to i do 
15 	 begin 
16 	 if elérnent(J-13>elenieritEJ] thor, 
17 	 begin 
18 	 kelenuentEJ-13 
19 	 elemen,tEJ-1]=elenienttJ] 
20 	 e1enuent[J]k 
21 	 end;  
22 	 end;  
23 	 ersd, 



Fri Jan 19 14:42:43 1979 

1 
LRIJ PFF Wor 

3 .  
4 
	

US Store 
5 
	

C: 0 1 
6 
7 
8 
9 
	

LRU Store 
10 
	

C: 0 1 
11 
12 
13 
14 
	

PEF Store 
15 
	

C: 0 1 
16 
17 
18 
19 
20 
21 
	

LRU FFF Wor 
22 
23 
	

US Store 
24 
	

C: 0 1 	11:23 2 
25 
26 
27 
28 
	

LRU Store 
29 
	

C: 0 1 	11:23 2 
30 
31 
32 
33 
	

PFF Store 
34 
	

C: 0 1 	[':23 2 
35 
36 
37 
38 
39 
40 
	

LRU PFF Wor 
41 
42 
	

US Store 
4:3 
	

C: 0 1 	[':23 2 LU 0 3 
44 
4 
46 
4? 
	

LRU Store 
4E 
	

C: 0 1 	[':23 2 ii: 0 3 
49 
5C 
51 
52 
	

PFF Store 
5:3 
	

C: 0 1 	11:23 2 Li: 0 3 
54 
55 
56 

opt 
	

e 1 

Algorithms causing page fault. 

Contents of memory at page fault for each algorithm 

In this case, note the Working set store with a window size 

of 500 references 



61 WS 	Store 
62 C 	0 	4 	[':23 	6 	ti: 	0 	7 	r':is 8 
63 
64 
65 
66 LRU Store 
67 C: 	0 	4 	11:23 	6 	1' 	0 	7 	1I15 8 
68 
69 
70 
71 PFF Store 
72 C: 	o 	4 	[':23 	6 	r': 	0 	7 	11 U5 8 
73 
74 
75 
76 
77 
78 LRU PFF Wor 
79 
80 WS 	Store 
81 C: 	0 	4 	11:23 	6 	ri: 	0 	7 	t':is 13 t'16 14 
82 
83 
84 

85 LRU Store 
86 C: 	0 	4 	D23 	6 	ru: 	0 	7 	[':15 13 1U16 14 
87 
Be 
89 
90 PFF Store 
91 C: 	0 	4 	1'23 	6 	ii: 	0 	7 	r':is 13 1U16 14 
92 
93 
94 
95 
96 
97 LRU PFF Wor 
98 
99 WS 	Store 
100 C 	0 	4 	[':23 	6 	1' 	0 	7 	ri:15 13 1'16 269 	t'17 	270 
101 
102 
103 
104 LRU Store 
105 C: 	0 	4 	1U23 	6 	r': 	0 	7 	[':15 13 t'U6 269 	11U7 	270 
106 
107 
108 
109 PFF Store 
110 1'16 	269 	[':17 	270 
111 
112 
113 
114 
115 
116 LRU PFF War 
117 
118 WS 	Store 

Continued in Example 4. 1 2 



C WS Store 
c: o 1 

LRU Store 
C: 0 1 

PFF Store 
C: 0 1 

LRU PFF Wor 

WS Store 
C: 0 1 E':23 2 

LRU Store 
C 0 1 1 1#23 2 

PFF Store 
( 	C: 0 1 [':23 2 

( 

** ** * * * * * ****** **** **** 
( 	LRU PFF Wor 

WS Store 
( 	C 0 1 [123 2 ru: 0 3 

( 

LRU Store 
C: 0 1 [':23 2 D 0 3 

( 

PFF Store 
C 0 1 [':23 2 ii: 0 3 

(. 

** * * * * * * *********** ( ****************************** 
LRIJ PFF Wor 

WS Store 



FFF Store 
C: 0 4 [':23 6 D 0 7 D15 8 

LRIJ PFF Wor 

WS Store 
C: o 4 [':23 6 ru: 0 7 DU5 13 [':16 14 

( 	LRII Store 
C: o 4 [':23 6 ii: o 7 1U15 13 [':16 14 

PFF Store 
C: 0 4 [':23 6 ii: 0 7 [U15 13 [':16 14 

* *** * * ** ** *** **** * ******* * 
LRU PFF Wor 

WS Store 
Cl 0 4 [':23 6 D 0 7 DU5 13 [':16 269 [1U7 270 

LRU Store 
c: 0 4 [':23 6 ru: 0 7 1U15 13 D16 269 ['U? 270 ( 

PFF Store 
[':16 269 [':17 270 

( 	****************************** 
LRIJ FFF Wor 

( 	WS Store 
C: 0 4 [':23 6 r': 0 7 DU5 13 t'16 269 1U17 525 DUG 526 

(, 

LRU Store 
C: 0 4 tu:23 6 tu: 0 7 t'U5 13 t116 269 t1U7 525 DUG 526 

1 



WS Store 
C: 0 4 [':23 6 E' 0 7 11U5 13 D116 269 11U7 525 DUG 781 DU9 782 

(' LRU Store 
c: 0 4 [':23 6 1' 0 7 1U15 13 [':16 269 DU7 525 11U8 781 D19 782 

PFF Store 
0:18 781 LU19 782 

( 	LRIJ PFF Wor 

WS Store 
C: o 4 11:23 6 WO 0 7 I'U5 13 DU6 269 0U7 525 1U18 781 0U9 1037 D20 1038 

LRU Store 
[':23 6 ii: o 7 1U15 13 11:16 269 11U7 525 DUG 781 11U9 1037 020 1038 

( PFF Store 
[':19 1037 1U20 1038 

( ****************************** 
LRU PFF Wor 

( 	WS Store 	 ) 

C.' 0 4 1U23 6 [' 0 7 DU5 13 1U16 269 0U7 525 1U18 781 0U9 1037 1U20 1293 021 1294 

) 

LRU Store 
0 0 7 BUS 13 1iU6 269 D17 525 ru:1e 781 1U19 1037 1U20 1293 D21 1294 

( 

PFF Store 
0:20 1293 1U21 1294 

( 

( ****************************** 

LRU PFF Wor 

WS Store 
C: 0 4 [':23 6 1' 0 7 [I 



PFF Store 
ç' 1121 	1549 	[1:22 	1550 

** * * ** * *** ******* * *** 
LRUPFF V  

WS 	Store 
C: 	0 	4 	[1:23 	1806 	D: 	0 	7 11:15 	13 11116 269 	11:17 525 	0:18 781 	1U19 	1037 1U20 	1293 	0121 	1549 	11:22 	1805 

LRIJ Store 
DU6 	269 	0U7 	525 	DUB 781 	0:19 1037 11:20 	1293 1U21 1549 	1122 	1805 	11123 1806 

C 

( 
PFF Store 

11:22 	1805 	0123 	1806 

(V  

( 
****************************** 

LRU PFF 

( 
WS 	Store 

Cl 0 	4 	0:23 	2058 	Dl 0 	2059 0115 13 	D16 269 	11:17 525 11:18 	781 	D19 	1037 D20 	1293 	0121 	1549 	022 	1805 

LRU Store 
( 

[':17 	525 	11:18 	781 	DU9 1037 	11120 1293 1U21 	1549 11:22 1805 	11:23 	2058 	Dl 0 	2059 

( 

FFF Store 
EU23 	2058 	III 0 	2059 

( V.) 

( 
****************************** 

LFW PFF 
(. a 

WS 	Store 
C: 0 	2060 	0:23 	2058 	0 	0 2059 	0:15 13 11:16 	269 11U7 525 	11118 	781 	£1119 1037 	0:20 	1293 	11121 	1549 	11122 	1805 

LRU Store a 
DUB 	781 	1U19 	1037 	1U20 1293 	1U21 1549 [':22 	1805 023, 2058 	111 0 	2059 	C 0 	2060 

U 
PFF Store 



( 	REF Wor 

WS Store c 	C: 0 31939 11:23 31932 0 0 31941 [':22 31942 

LRU Store 
11:18 781 [':19 1037 1U20 1293 11:21 1549 0:23 31932 C: 0 31939 ii: 0 31941 1U22 31942 

C 

PFF Store 
0:23 31932 fill 0 31941 C: 0 31939 1U22 31942 

C 

* * * * * * * *** * ******* ( ****************************** 
PFF Wor 

( WS Store 
c:0 62403 [':23 62396 ii: 0 62405 0:22 62287 [':21 62406 

LRU Store 
[':18 781 DU9 1037 1U20 1293 [':22 62287 [':23 62396 CIO 0 62403 lIt o 62405 1121 62406 

I 	 ( 

F'FF Store 
0:23 62396 Ot 0 62405 Ct 0 62403 [U22 62287 D21 62406 

( 

( ****************************** 

PFF Wor 

C. 	 ) 

WS Store 
C: 0 92867 0:23 92860 Ot 0 92869 t121 92751 1U20 92870 

C 

( LRU Store 
D:18 781 0U9 1037 [1:22 62287 0:21 92751 [':23 92860 Ct 0 92867 EU 0 92869 1U20 92870 

PFF Store 

(. 	0:23 92860 Elt 0 92869 C 0 	2867 1021 92751 1U20 92870 

C,  
** * * * * * ** **** ******* ** C, 	PFF Wor 

WS Store 



I 	
LU1 	7 1 11:22 62287 1U21 92751 1120 123215 D:23 123324 C: 0 123331 o: 0 123333 0U9 123334 

C 

' PFF Store 
0:23 123324 ii: 0 123333 C: o 123331 0:20 123215 D19 123334 

FFF Wor 

\ 

, 	WS Store 
C: 0 153795 0:23 153788 ii: 0 153797 11U9 153679 r':w153798 

LRU Store 

C 	0:22 62287 021 92751 0420 123215 1U19 153679 0:23 153788 C: 0 153795 o: 0 153797 DUG 153798 

( 	
) PFF Store 

0:23 153780 ii: 0 153797 C 0 153795 0:19 153679 D:18 153798 

( 

( ****************************** I  
) 

- i 

LRU FFF Wor 
( 

WS 	Store 
C: 0 	184259 	0:23 	184252 	0 	0 1184261 11:18 184143 [U17 184262 

( LRU Store 0) 

11:21 	92751 	0:20 	123215 	1U19 153679 DUG 184143 0:23 184252 	C: 0 	184259 	o: 0 	184261 	[U17 	184262 

( 

PFF Store 

( 0:23 	184252 	EU 0 	184261 	C: 0 184259 hUG 184143 1U17 184262 0) 

• : 

( 
LRU PEE Wor 0 

0) 

WS 	Store 
C 	0 	214723 	11:23 	214716 	D: 	0 214725 [U17 214607 1U16 214726 

LRU Store 
0 D20 	123215 	1119 	153679 	DUB 184143 1U17 214607 0:23 214716 	C: 0 	214723 	o: 0 	214725 	1U16 	214726 

-JO 



C ***************** ************* 
LRU PFF Wor 

C WS Store 
C: 0 245187 11:23 245180 1' o 245189 t'16 245071 11U5 245190 

C 

LRIJ Store 
( 	11:19 153679 r':18 184143 11:17 214607 1116 245071 11:23 245180 c: 0 245187 o: 0 245189 D15 245190 

FFF Store 
11:23 245180 11 0 245189 c: 0 245187 11:16 245071 1U15 245190 

(' 

PFF Wor 
( 

US Store 
Cl 0 276377 1U23 276378 D 0 276379 I'U6 276319 11:17 276380 

( LRU Store 
11:19 153679 t'18 184143 D:15 246534 DU6 276319 C: 0 276377 11:23 276378 11 0 276379 11U7 276380 

(' 

PFF Store 
D23 276378 11 0 276379 C: 0 276377 1U16 276319 11U5 246534 1117 276380 

( 

( 	PFFWor 

US Store c: 0 306329 11:23 306330 11 0 306331 E'17 306271 1U18 306332 

( 

LRIJ Store 
D19 153679 ru:15 246534 I'U6 276486 1U17 306271 C: 0 306329 11:23 306330 11 0 306331 DUB 306332 

( 

PFF Store 
11:23 306330 1': 0 306331 C: 0 306329 11:16 276486 11U7 306271 DUB 306332 

(, 

************** **************** 
PFFWor 

.1 

) 

) 

y) 

) 
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LT%U OxIore 

f' [':15 	246534 	t'16 	276486 	tU17 306438 ['U8 336223 C: 0 336281 [':23 336282 	[U 0 	336283 	[':19 	336284 

PFF Store 
[':23 	336282 	[U 0 	336283 	C: 0 336281 0:17 306438 DUB 336223 rU19 336284 

LRU PFF Wor 

C .  
WS 	Store 

C: 0 	366233 	tU23 	366234 	o: 0 366235 [':19 366175 1U20 366236 

( 

LRU Store 
[':16 	276486 	[U17 	306438 	DUB 336390 ['119 366175 C: 0 366233 [':23 366234 	[U 0 	366235 	[U20 	366236 

( . 
PFF Store 

( D23 	366234 	1U 0 	366235 	C 	0 366233 DUO 336390 [':19 366175 1U20 366236 

4: 

* * * * * 
4 LRUPFFWor . 

WS 	Store 

( C: 0 	396185 	[':23 	396186 	[U 0 396187 [U20 396127 1U21 396188 

4 

) 



LRIJ Store 
DU7 306438 DUB 336390 11:19 366342 1'20 396127 C: 0 396185 11:23 396186 ii: 0 396187 D21 396188 

C-' 
PFF Store 

11:23 396186 11 0 396187 Cl0 396185 EU19 366342 1'20 396127 11:21 396188 

Cl 

(_• ****************************** 
- - 

LRU PFF Wor 

WS Store 
C 0 426137 [':23 426138 Eu: 0 426139 D21 426079 1 1422 426140 

( LRU Store 
DUB 336390 DU9 366342 020 396294 1'21 426079 C: 0 426137 [':23 426138 D 0 426139 1122 426140 

( 

PFF Store 
1U23 426138 ri: 0 426139 c: 0 426137 1120 396294 11:21 426079 11:22 426140 

* ** ** * * * * * * ** * * *********** * * ******* *** ** ** * * *** * *** *** ** 
( 	LRU PFF Wor 

WS Store 
C: 0 485399 [(:23 485400 DI 0 485401 r':15 485402 

( 

LRIJ Store 
11:19 366342 11:20 396294 1121 426246 11:22 456198 C: 0 485399 [':23 485400 D 0 485401 11:15 485402 

( PFF Store 
11:23 485400 Lu: 0 485401 C: 0 485399 D21 426246 11:22 456198 11:15 485402 

( 

C 
LRU PFF Wor 

( WS Store 
C: 0 485942 1123 485943 D 0 485944 r':15 485892 DU6 485945 

( 

LRIJ Store 
ç 	D20 396294 D21 426246 11:22 456198 11:15 485892 C 0 485942 11:23 485943 LU 0 485944 E'U6 485945 

) 

) 



** * * * * * * * * ******* *** 
LRIJ PEE Wor 

WS Store 
C: 0 515894 [':23 515895 EU 0 515896 [':16 515844 1U17 515897 

C 

fl LRIJ Store 
[U21 426246 11:22 456198 1U15 485959 E'U6 515844 C: 0 515894 [':23 515895 EU 0 515896 0U7 515897 

C' 

PEF Store 
[':23 515895 ri: 0 515896 Cl 0 515894 [':15 485959 0U6 515844 1U17 515897 

C 
* ** * * * * * ********** **** ** 

( 	
LRIJ PEE Wor 

WS Store 
Ct 0 545846 [':23 545847 DFO 545848 1 1417 545796 DUB 545849 

- 	( 
LRU Store 

[':22 456198 OtiS 485959 [U16 515911 1U17 545796 C: 0 545846 [':23 545847 EU 0 545848 DUB 545849 

( 
PFF Store 

EU23 545847 lit 0 545848 Cl 0 545846 DU6 515911 DU7 545796 EU18 545849 

** * * * * ******* * ***** 
( 

****************************** 
LRU PEE Wor 

( 
WS Store 

C: 0 575798 [(:23 575799 EU 0 575800 11:18 575748 1U19 575801 

LRU Store 
OtiS 485959 [':16 515911 DU7 545863 DU8 575748 c: 0 575798 0:23 575799 o: 0 575800 DU9 575801 

PFF Store 
[' 1023 575799 EU 0 575800 Ct 0 575798 [':17 545863 DU8 575748 1U19 575801 

- (•.. 
****************************** * *** * * *** * * ** ** *** * 

LRU PEE War 



LRU Store 
D16 515911 D:17 545863 DUB 575815 11:19 605700 C 0 605750 11:23 605751 NO 0 605752 11:20 605753 

FFF Store 

C' 	11:23 605751 EU 0 605752 Ct 0 605750 DUB 575815 1U19 605700 11:20 605753 

** * * * * * * * ***** ** ** 
LRU PFF Wor 

US Store 
C: 0 635702 EU23 635703 D 0 635704 1U20 635652 11:21 635705 

LRU Store 
11:17 545863 DUB 575815 DU9 605767 1U20 635652 C: 0 635702 11:23 635703 11 0 635704 11:21 635705 

PFF Store 
11:23 635703 EU 0 635704 c: 0 635702 1U19 605767 11:20 635652 D21 635705 

( ****************************** 
LRU PFF Wor 

( US Store 
C: 0 665654 [':23 665655 LU 0 665656 1U21 665604 11:22 665657 

LRU Store 
EU18 575815 11:19 605767 1U20 635719 11:21 665604 C 0 665654 [':23 665655 EU 0 665656 1U22 665657 

( 

PFF Store 
1U23 665655 LU 0 665656 C 0 665654 ['120 635719 1U21 665604 11:22 665657 

( 

(: ** * * * * * ************* 
LRU FFF Wor 

US Store 
c: 0 724757 11:23 724758 [U 0 724759 [':15 724760 

(•• 

LRU Store 
[':19 605767 1U20 635719 [U21 665671 11:22 695623 C 0 724757 11:23 724758 EU 0 724759 ['U5 724760 



c 

LRU PFF War .  

WS Store 
C: o 725216 D:23 725217 DI 0 725218 r':15 725158 D:16 725219 

LRIJ Store 
D:20 635719 [',21 665671 D22 695623 D15 725158 C: 0 725216 D23 725217 ru: 0 725218 11:16 725219 

( PFF Store 
11:23 725217 LU 0 725218 C: 0 725216 ru:15 725158 1U16 725219 

C .  
( ****************************** 

LRU PFF War 

( WS Store 
C: 0 755168 11:23 755169 o: 0 755170 1U16 755110 DU7 755171 

( 

LRIJ Store 
( 	11:21 665671 1U22 695623 DU5 725325 [':16 755110 C 0 755168 11:23 755169 u: 0 755170 1fl17 755171 

( 

PFF Store 
11:23 755169 LU 0 755170 C: 0 755168 DU5 725325 1116 755110 11U7 755171 

( 

(. 

LRU PFF War 
( 

US Store 
C: 0 785120 11:23 785121 Eu: 0 785122 1U17 785062 EU18 785123 

( 

LRU Store 
.11:22 695623 [':15 725325 tU16 755277 1U17 785062 C: 0 785120 11:23 785121 o: 0 785122 LU18 785123 

PFF Store 
(; 	LU23 785121 11: 0 785122 C 0 785120 1U16 755277 1U17 785062 LU18 785123 

) 

I 
c:i 



LRU Store 

0:15 725325 [U16 755277 0U7 785229 DUB 815014 C: 0 815072 0123 815073 ii: 0 815074 1U19 815075 

' PFF Store 
D23 815073 1': 0 815074 C 0 815072 11,17 785229 DUB 815014 DU9 815075 

C 
LRU PFF Wor 

US Store 
C 0 845024 0:23 845025 D 0 845026 DU9 844966 D20 845027 

I 

LRU Store 
( 	0:16 755277 0:17 785229 0:18 815181 0:19 844966 C: 0 845024 11:23 845025 LU 0 845026 1U20 845027 

PFF Store 

0:23 845025 [U 0 845026 Cl 0 845024 DUB 815181 DU9 844966 [':20 845027 

( ******** ************** ******** * * * * * * ** * * * * 
LRU PFF Wor 

US Store 
C 0 874976 0:23 874977 LU 0 874978 1U20 874918 11:21 874979 ( 

LRU Store 
0:17 	785229 	r':ia 	815181 	11:19 845133 11:20 	874918 	C 	0 	874976 	0:23 	874977 	r: 0 	874978 	11:21 	874979 

( 
PFF Store 

( 0:23 	874977 	D: 0 	874978 	C 	0 874976 [':19 	845133 	0:20 	874918 	0:21 	874979 

LRU PFF Wor 

US 	Store 
C: o 	904928 	[':23 	904929 	D: 0 904930 [':21 	904870 	11:22 	904931 3 

LRU Store 
FU1R 	R11R1 	rI!19 	ei -z -z 	n,, 0-7Io 



(_•• 

LRU PFF Wor 

ç 	WS Store 
C: 0 963956 11:23 963957 EU 0 963958 1U15 963959 

LRIJ Store 
11:19 845133 1U20 875085 [1:21 905037 11:22 934989 C: 0 963956 11:23 963957 11 0 963958 [1:15 963959 

PFF Store 
0:23 963957 EU 0 963958 Cl 0 963956 11:21 905037 [1:22 934989 11:15 963959 

C 	****************************** 

LRU PFF Wor 

US Store 
C: 0 964331 [':23 964332 EU 0 964333 11:15 964273 [1:16 964334 

LRU Store 
1U20 875085 1U21 905037 [U22 934989 1U15 964273 C: 0 964331 r':23 964332 EU 0 964333 1U16 964334 

PFF Store 
1123 964332 EU 0 964333 C: 0 964331 [':15 964273 1U16 964334 

( 	LRU PFF Wor 

US Store 
C: 0 983531 11:23 983532 Of 0 983533 D16 983473 11:17 983534 

( 

LRU Store 
11:21 905037 [':22 934989 1U15 964348 11 1016 983473 Cl. 0 983531 0:23 983532 E' 0 983533 11U7 983534 

U 

PFF Store 
11:23 983532 t': 0 983533 CIO 0 983531 1U15 964348 11:16 983473 11:17 983534 



LRU Store 
ç 	[U22 934989 11:15 964348 0116 983548 1U17 1002673 Cf. 0 1002731 1U23 1002732 ii: 0 1002733 D18 1002734 

(. 
PFF Store 

023 1002732 D 0 1002733 C: 0 1002731 [':16 983548 [':17 1002673 DUB 1002734 ( 
* ** * **** * ********* ****** **** ** 

LRU PFF Wor 

WS Store 

C: 0 1021931 11:23 1021932 D: 0 1021933 11U8 1021873 0U9 1021934 

LRIJ Store 

['U5 964348 11:16 983548 [':17 1002748 11U8 1021873 C: 0 1021931 D23 1021932 11 0 1021933 1-U9 1021934 

PFF Store 
D23 1021932 D: 0 1021933 C: 0 1021931 [':17 1002748 11:18 1021873 11:19 1021934 

( 

(• LRU PFF War 

WS 	Store c: 	0 	1041131 	1U23 	1041132 Ii: 	0 1041133 11:19 1041073 [':20 1041134 

C 
LRU Store 

D16 	983548 	[':17 	1002748 [':18 1021948 D41 19 1041073 C: 0 1041131 	[':23 	1041132 	[U 	0 	1041133 	[':20 	1041134 ( 
PFF Store 

D23 	1041132 	ti: 	0 	1041133 Cl 	0 1041131 [':18 1021948 1U19 1041073 	11:20 	1041134 

( 
** ** * * ** * * ****** ** ****** 

( 
****************************** 

LRU PFF War 

WS 	Store 
C: o 	1060331 	[':23 	1060332 EU 0 1060333 1U20 1060273 1U21 1060334 

) 

3 
LRU Store 



Ll3 1060332 ii; o 1060333 C 0 1060331 L11V 1041148 020 1060273 L121 1060334 
C 

n ****************************** 	 ) * **** ********* *** * ***** * 
LRIJ PFF Wor 

C 
WS Store 
C 0 1079531 0:23 1079532 o: 0 1079533 1U21 1079473 0:22 1079534 

C LRU Store 
D18 1021948 [U19 1041148 EU20 1060348 tU21 1079473 C: 0 1079531 0:23 1079532 o: 0 1079533 0:22 1079534 

PFF Store 
ç 	0:23 1079532 ri: 0 1079533 C 0 1079531 1U20 1060348 1U21 1079473 0:22 1079534 

(, 

( 	LRU PEF Wor 

WS Store 
C: 0 1117316 [':23 1117317 ii: 0 1117318 tU15 1117319 

LRIJ Store 
0:19 1041148 1U20 1060348 [U21 1079548 [':22 1098748 C: 0 1117316 [':23 1117317 o: 0 1117318 0:15 1117319 

(. 

( 

( 

( 

( 

( 

( ) 

C- 3 



This manifestly does not happen in some situations. 

The reasons for this are varied. Firstly, with the large 

window size all pages referenced in the last 10,000 refer-

ences remain in the working set. This will obviously 

include: -  

the current code page 

the page containing the index variables 

but depending on the complexity of the operations being 

carried out within a loop (in terms of the number of store 

references made) then an undetermined number of pages will 

be held in store. 

Slightly modifying the current example could produce the 

following code:- 

for i:= 1 to 2048 do 

element [ii :0; 

For each time round the loop there might be, say, five data 

storage accesses. Consequently, if memory accesses are 

estimated as roughly equivalent then as much as half of the 

array will be accumulated into the working set. 

It would appear that the smaller window sizes are required 

for "techniques" of this type. 

When the output for the smaller window size run is con-

sidered, an interesting anomaly appears. It is possible for 

the algorithm to swop out the current code page. This, 

theoretically, undesirable occurence stems from the partic-

ular implementation being considered, and the code page is 

4.15 



removed when the array is being "initialised" to an 

internal "undefined" value. This is done by a single 

virtual machine instruction. Yet this machine instruction 

initiates 2048 storage references. After 500 of these, 

the current code page is no longer in the estimated local-

ity. 

This leads to the following results:- 

PROPOSITION 4.13 

There exists a non-empty class of "real" programs 

for which the Working Set algorithm is a non-

optimal estimator of locality. 

PROOF 

See Examples 4.1.2 and 4.1.3. 

Another drawback of this algorithm is its inability to 

determine quickly the cause of an increase in the working 

set size. Such an apparent expansion of the working set 

can be caused by:- 

a change of locality, or 

a true expansion of the working set. 

No differentation can be made between these two cases until 

a time interval has elapsed. In fact, it isclear that, by 

the retrospective nature of this algorithm, it will always 

tend to over-estimate the working set size (See Example 

4.1.4 and Diagram 4.3). 

4.126 



121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 

LRU Store 
C: 0 4 11:23 6 ii: 0 7 11U5 13 t116 269 t 1 U7 525 [lUG 526 

PFF Store 
DU7 525 DUB 526 	

Example 4.1.2 

Here the Working set algorithm 

swops out the current code page. 
LRU PFF Wor 

WS Store 
EuU6 269 1U17 525 ru:is 781 tU19 782 

Example 4.1.3 

LRU Store 	
The same will happen in any program with 

C: 0 4 [':23 6 D 0 7 ru:is 13 L'U6 269 DU7 525 hUG 781 E'U9 782 	array initialisation, 

cf the programs of'eaamples 
PFF Store 	 4.2.4 and 4,3,5, 

[(:18 781 11U9 782 

LRU PFF Wor 

WS Store 
11:17 525 1U18 781 D:19 1037 1U20 1038 

LRU Store 
[(:23 6 Eu: 0 7 ru:15 13 1U16 269 1117 525 E6#18 781 tIU9 1037 [(:20 1038 

PFF Store 
11:19 1037 1120 1038 

* **** * **************** * *** ****************************** 
LRU PFF Wor 

WS Store 
[':18 781 ['U9 1037 1120 1293 [':21 1294 



. 

181 ii: 	0 	7 	11:15 	13 	[1:16 	269 	11U7 	525 	[l41 18 	781 	D:19 	1037 D:20 	1293 	t'21 	1294 
182 
183 
184 
185 PFF Store 
186 tl20 	1293 	1121 	1294 
187 
188 
189 
190 
191 
192 LRU FFF Wor 
193 
194 US 	Store 
195 D19 	1037 	1U20 	1293 	[1:21 	1549 	[':22 	1550 
196 
197 
198 
199 LRU Store 
200 [':15 	13 	11U6 	269 	L'U7 	525 	11U8 	781 	1U19 	1037 	1120 	1293 	D21 	1549 	11:22 	1550 
201 
202 
203 
204 PFF Store 
205 11:21 	1549 	1122 	1550 
206 
207 
208 
209 
210 
211 LRU PFF Wor 
212 
213 US 	Store 
214 11:21 	1549 	11:22 	1805 	[123 	1806 
215 
216 
217 
218 LRU Store 
219 1':16 	269 	t'U7 	525 	DUB 	781 	[U19 	1037 	D20 	1293 	D21 1549 	[':22 	1805 	[':23 	1806 
220 
221 
222 
223 PFF Store 
224 11:22 	1805 	1123 	1806 
225 
226 
227 
228 
229 
230 LRU PFF Wor 
231 
232 US 	Store 
233 [l21 	1549 	['41 22 	1805 	11 4#23 	2058 	EU 	0 	2059 
234 
235 
236 
237 LRU Store 
238 [':17 	525 	[1:18 	781 	[l19 	107 	fl2O 	1293 	Ii21 	1549 	ri27 lAOS 	Ti! 9A 	905R 	nt 	0 



A 

I 

241 
242 PFF Store 

) 

243 11:23 	2058 	ii: 	0 	2059 
244 
245 

) 

246 
247 
248 
249 LRU PFF Wor 
250 
251 WS 	Store 
252 tU21 	1549 	D22 	1805 	1U23 2058 	ri: 0 	2059 	C: 0 2060 
253 
254 

) 

255 
256 LRU Store 
257 DUB 	781 	DU9 	1037 	11:20 1293 	1121 1549 	11:22 1805 	D23 	2058 	1' 	0 	2059 	C: 0 	2060 
258 
259 
260 

) 

261 PFF Store 
262 11:23 	2058 	1' 	0 	2059 	C: 	0 2060 
263 

) 

264 
265 
266 

) 

267 
268 PFF Wor 
269 
270 WS 	Store 
271 1123 	31932 	ii: 	o 	31941 	C: 0 	31939 11:22 	31942 
272 
273 
274 
275 LRU Store 
276 11:18 	781 	11:19 	1037 	1I20 1293 	1I21 1549 	11:23 31932 .c: 0 	31939 	D 	0 	31941 	11:22 	31942 
277 
278 

) 

279 
280 PFF Store 
281 11:23 	31932 	D 	o 	31941 	C: 0 	31939 11:22 	31942 
282 
283 
284 
285 
286 
287 PFF Wor 
288 
289 WS 	Store 
290 11:23 	62396 	D 	0 	62405 	C: 0 	62403 11:22 	62287 1U21 	62406 
291 
292 
293 
294 LRU Store 
295 11:18 	781 	11U9 	1037 	1120 1293 	11:22 62287 	11:23 62396 	C: 0 	62403 	EU 0 	62405 	1U21 	62406 
296 
297 
298 



301 
302 
303 
304 
305 
306 PFF Wor 
307 
308 US 	Store 
309 [':23 	92860 	ii: 	o 	92869 	C: 	0 92867 	1U21 	92751 	1U20 	92870 
310 
311 
312 
313 LRU Store 
314 [':18 	781 	1 1419 	1037 	[':22 	62287 	[U21 / 92751 	[':23 	92860 	C: 	0 	92867 	ri: 	0 	92869 	1120 	92870 
315 
316 
317 
318 FFF Store 
319 D23 	92860 	1' 	0 	92869 	C: 0 92867 	1121 	92751 	1U20 	92870 
320 
321 
322 
323 
324 
325 PFF Wor 
326 
327 WS 	Store 
328 [':23 	123324 	D 	0 	123333 	C: 0 	123331 	1U20 	123215 	11U9 	123334 
329 
330 
331 
332 LRU Store 
333 [':18 	781 	11:22 	62287 	D21 	92751 	[':20 	123215 	[':23 	123324 	C: 	0 	123331 	ri: 	0 	123333 	1U19 	123334 
334 
335 
336 
337 PFF Store 
338 D23 	123324 	D 	0 	123333 	C: 0 	123331 	1120 	123215 	11:19 	123334 
339 
340 
341 
342 
343 
344 PFF Wor 
345 
346 US 	Store 
347 [':23 	153788 	1' 	0 	153797 	C: 0 	153795 	11:19 	153679 	1U18 	153798 
348 
349 
350 
351 LRU Store 
352 [1:22 	62287 	1I21 	92751 	11:20 123215 	DU9 	153679 	11:23 	153788 	C: 0 	153795 	D: 0 	153797 	1'18 	153798 
353 
354 
355 
356 PFF Store 
357 [1:23 	153788 	1' 	0 	153797 	C: 0 	153795 	1U19 	153679 	DU8 	153798 
358 



361 
362 
363 LRU PFF Wor 
364 
365 WS 	Store 
366 11:23 	184252 	t' 	0 	184261 	C: 0 184259 1118 184143 11:17 184262 
367 
368 
369 
370 LRU Store 
371 11:21 	92751 	1I20 	123215 	1I19 153679 11:18 184143 11:23 184252 	C: 	0 	104259 	11 	0 	184261 	11:17 	184262 372 
373 
374 
375 FFF Store 
376 11:23 	184252 	1' 	0 	184261 	C: 0 184259 1118 184143 [':17 184262 
377 
378 
379 
380 
381 
382 LRU FFF Wor 
383 
304 WS 	Store 
385 11:23 	214716 	Li: 	0 	214725 	C: 0 214723 11:17 214607 1U16 214726 
386 
387 
388 
389 LRU Store 
390 11:20 	123215 	D19 	153679 	11:18 184143 11:17 214607 11:23 214716 	C: 0 	214723 	Ii: 0 	214725 	1U16 	214726 391 
392 
393 
394 PFF Store 
395 11:23 	214716 	1': 	0 	214725 	C: 0 214723 1117 214607 0:16 214726 
396 
397 
398 
399 
400 
401 LRU PFF Wor 
402 
403 WS 	Store 
404 [1:23 	245180 	1': 	0 	245189 	C: 0 245187 11:16 245071 1U15 245190 
405 
406 
407 
408 LRU Store 
409 11:19 	153679 	1U18 	184143 	1U17 214607 11U6 245071 1U23 245180 	C: 0 	245187 	1': 	0 	245189 	11:15 	245190 410 
411 
412 
413 FFF Store 
414 [':23 	245180 	D: 	0 	245189 	C: 0 245187 11:16 245071 1I15 245190 
415 
416 
417 
418 
419 



421 
422 WS 	Store 
423 11:23 	246426 	D 	0 	246427 C: 	0 246425 [1U5 246367 11U6 246428 
424 
425 
426 
427 LRU Store 
428 11U9 	153679 	11 4418 	184143 [s:17 214607 t'15 246367 C: 	0 246425 [':23 	246426 	Ii: 0 	246427 	DU6 	246428 
429 
430 
431 
432 FFF Store 
433 11:23 	246426 	1' 	0 	246427 C: 	0 246425 1U16 246428 D:15 246367 
434 
435 
436 
437 
438 
439 FFF Wor 
440 
441 WS 	Store 
442 1123 	276378 	EU 0 	276379 Cl 	0 276377 1U16 276319 1U17 276380 
443 
444 
445 
446 LRU Store 
447 D:19 	153679 	1U18 	184143 E':15 246534 1U16 276319 Cl 	0 276377 [':23 	276378 	1I 	0 	276379 	1U17 	276380 
448 
449 
450 
451 PFF Store 
452 [':23 	276378 	D: 0 	276379 C1 	0 276377 1U16 276319 1U15 246534 1U17 	276380 
453 
454 
455 
456 
457 
458 FFF Wor 
459 
460 WS 	Store 
461 D:23 	306330 	III 0 	306331 Cl 	0 306329 1U17 306271 1U18 306332 
462 
463 
464 
465 LRU Store 
466 1U19 	153679 	[U15 	246534 1U16 276486 11:17 306271 C 	0 306329 1U23 	306330 	['1 0 	306331 	11118 	306332 
467 
468 
469 
470 PFF Store 
471 1U23 	306330 	Ill 0 	306331 C: 	0 306329 EU16 276486 1U17 306271 DUB 	306332 
472 
473 
474 
475 
476 
477 FFF Wor 
478 



481 
482 
483 
484 LRU Store 
485 t'15 	246534 	DU6 	276486 [U17 306438 D:18 336223 C: 	0 336281 11.'23 336282 	ii: 0 	336283 	1U19 	336284 
486 
487 
488 
489 FEF Store 
490 11:23 	336282 	D 	0 	336283 C: 	0 336281 DU7 306438 1U18 336223 DU9 336284 
491 
492 
493 
494 
495 
496 LRU PFF Wor 
497 
498 WS 	Store 
499 11:23 	366234 	D 	0 	366235 C: 	0 366233 019 366175 t'20 366236 
500 
501 
502 
503 LRU Store 
504 1U16 	276486 	DU7 	306438 D:18 336390 [':19 366175 C: 0 366233 1123 366234 	11: 0 	366235 	1U20 	366236 
505 
506 
507 
508 FFF Store 
509 11:23 	366234 	D 	0 	366235 C 	0 366233 1'18 336390 11*419 366175 1120 366236 
510 



EXAMPLE 4.1.4 

Implementations of Working Set algorithms do not, 

in practice, follow exactly the theoretical model. 

It would be too expensive to check, after every 

reference, whether a given page remains in the 

working set or not. Consequently, the contents of 

the working set are only checked at intervals, 

usually known as strobe periods. This is also done 

after page faults. The size of the strobe interval 

is another arbitrary parameter that must be built 

into implementations of this algorithm. However 

there is a more significant disadvantage. This is 

most easily shown in a diagram (Diagram 4.3). 

In this diagram is shown the memory requirements of 

a hypothetical program. At point (A) it is assumed 

that the program loses a number of pages from its 

current locality, but does not completely change it. 

Point (B) however represents a complete change of 

locality. The divisions along the horizontal axis 

are given in terms of strobe periods and T = 4/3 S. 

Note that it usually requires a strobe (or a page 

fault) at least T units after a locality change for 

the pages in that locality to be removed from the 

working set, if they are no longer required. 

4.17 
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4.2 The LRU Replacement Algorithm 

This is an example of what is known as a fixed-space policy 

(Den 75) in that the size of the set of pages in memory 

belonging to a program is kept fixed. In the theoretical 

model of the Working Set policy, this is not the case. In 

practical systems, more or less based on the Working Set 

philosophy, this is not always true however (Whi 73). 

Coffman and Ryan (Cof 72) using a mathematical model of 

locality, showed, as might be anticipated, that variable 

space policies are always better than fixed. However the 

implementation of a pure Working Set strategy is very expen-

sive. This is due to the fact that pages are freed whenever 

they leave the window and not simply at page fault times. 

As mentioned above this would involve testing each page in 

the working set after each reference, or decrementing some 

kind of counter associated with each page to see if that 

page was still eligible for membership of the working set. 

The implementation of a strobing technique to remove this 

large overhead widens the gap between theoretically 

achievable performance and the best practical implementations. 

As a result of this cost, LRU algorithms, which are much 

cheaper to implement, have achieved considerable popularity. 

With regard to the comparison of local LRU strategies and 

global LRU strategies, Oliver (Oh 74) has shown that the 

global LRU strategy performs better than the local LRU 

strategy where thrashing does not arise. 

4.18 



This is to some extent surprising and perplexing. Surprising 

because the most obvious criticism of the global LRU strategy 

is that those pages .which have been, globally, unreferenced 

for the longest period of time are those belonging to the 

program which has not been running for the longest time. So, 

if the program, scheduling algorithm is to any extent "fair", 

then this program will have a high probability of being the 

next allowed to run. As a result of this, the global LRU 

algorithm would appear to tend to remove pages which might 

be referenced in the near future. Oliver states that, 

although evidence of this was found in his studies, it 

turned out that any such space could be more effectively 

used by the current program than by reserving it for future 

programs. These results are perplexing because the two 

other major algorithms are local algorithms, that is to 

say, they concern themselves only with pages belonging to 

the current program. To compare a global strategy with such 

local strategies is an extremely complex business. Not only 

does the mix of programs have to be considered for global 

strategies, but also the scheduling algorithm for the programs 

themselves has a significant effect. Both these factors 

concern the observed behaviour of a program as far as the 

user is concerned, in that a change of program mix over a 

number of runs of a program or a change of the scheduling 

algorithm (or its parameters) could affect the paging 

behaviour (arid, consequently, on some systems the cost) 

of a running program. 
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For these reasons, it is proposed that a global algorithm 

is not a good idea on principle, and the local LRU only will 

be considered below. 

With the local strategy the algorithm can be formulated as 

follows: -  

A program will be allocated a fixed amount of 

space, L pages. Initially, it will be allowed to 

acquire pages, if it requires them, up to this 

limit. The pages are conceived of as being ordered 

on a stack with the most recently used at the top 

and the least recently used page at the foot. If, 

when the program has acquired its L pages, it re-

quests another page not already in store, then the 

page at the foot of the stack is freed and the new 

page will be brought in and placed at the top of 

the stack. Thus the, memory allocation stays con-

stant at L pages. 

Theoretically some of the limitations of this approach are 

immediately apparent. (That these limitations can occur 

in practice will also be shown below. 

Firstly, the store set size for a program remains fixed 

once it has acquired L pages. This tends to imply that 

programs whose locality 'sizes do not match this size 

behave poorly. This can manifest itself in two ways. 

Firstly, a program which requires more space than it has 

been allocated will thrash. That is to say, it will spend 

4.20 



EXAMPLE 4.2.1 

Let N = (0,1,2,3,4,5,6,7 

L=3 

and R= 	 0,0,1,2,7,0,1,2,7,0,1,2,7 

then Store Set = 0 0 1 2 701270127 

--01270127012 

---012 7012 701 

* 	* * * * * * * * * * * 

where * implies the occurrence of a page fault. 

Whereas, in the same situation, if L = 4 the 

following takes place:- 

R= 	 0,0,1,2,7,0,1,2,7,0,1,2,7 ..... 

then Store Set = 0 0 1 2 701270127 

--01270127012 

---0127012701 

----012701270 

* 	* * * 

with a significant reduction in the number of page 

faults. 
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EXAMPLE 4.2.2 

Let 	= 	0,1,2,3,4,5,6,7J 

L=3 

and R = 	 .0,0,1,2,7,0,1,2,7,0,1,2,7,3,4,5,3,5,4,4,3,.. 

then Store Set= 001270127012734535443 

--0127012701273453554 

---0.12701270127344335 

* 	** * * * * * * * * * * * * 

showing poor behaviour in the first part of the reference 

string but impeccable behaviour in the second part. 

Again, with the same reference string and now L = 4 

the following occurs:- 

R = 	 0,0,1 1 2, 7,0,1,2, 7,0,1,2, 7,3,4,5, 3,5,4,4,3 

then Store Set = 001270127012734535443 

--0127012701273453554 

---012701270127344335 

--01270127012777777 

* 	* * * 	 * * * 

Although the paging behaviour has been improved in the 

first part of the string, in the second part the algorithm 

consistently over-estimates the locality size. 
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EXAMPLE 4.2.3 

Let 	= 10,1,2,3,4,5,6,71 

L= 3 

and R= 	 1,2,3,1,2,3,1,3,2,4,2,3,4,4,3,2 

then Store Set =1231231324234432 

-123123132423343 

--12312213342224 

* * * 	 * 

As can be seen a "heavily" used page which is totally 

discarded can be readily handled. 

However, an almost identical situation produces a 

different result: -  

R = 	 1,2,3,1,2,3,1,3,2,1,4,3,2,2,3,4,4,3,.. 

then Store Set = 123123132143223443 

-12312313214332334 

--123122132 14 44222 

* * * 	 * * * 

A "hiccup" has occurred due to the exact timing of the 

reference to the new page. This is equivalent to the 

disruption caused by a "casual" reference to onepage:- 

R= 	 1,2,3,1,2,3,4,1,2,3,1,2,3,.. 

then Store Set =1231234123123 

-123123412312 

--12312341231 

* * * 	* * * * 

4.23 



more time paging than doing useful work (see Example 4.2.1) 

Secondly, a program whose locality size varies will 

alternate between a thrashing state (or a reasonably 

satisfactory state if L has been well cJ iosen) and a 

state in which the memory in the system is poorly 

utilised (See Example 4.2.2). 

Secondly, such a LRU strategy tends to favour programs 

which heavily use sets of pages and then discard them 

(see Example 4.2.3). 

That these examples can be generated is not sufficient. 

It must be true that similar observations can be made 

in practice before the represesent a significant 

criticism of the algorithm itself. 

The following examples (4.2.4, 4.2.5, 4.2.6) again in 

PASCAL show that these situations do indeed occur. 

4.3 The Page Fault Frequency Algorithm 

The underlying assumption of this algorithm is that a 

high page fault frequency indicates that a program is 

running inefficiently due to the fact that it has too 

little space allocated to it. Consequently, a page 
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I Program ex424(output) 
2 
3 
4 
5 (* This Program should show the effect of running  
6 (* LRU with too small a stacksize, 	if the chosen 
7 (* stacksize4, 
8 
9 
10 var 
11 elemenitarra.E1,.20483 of integer;  
12 i:ir,teer; 
13 begin 
14 for i1 to 512 do 
15 begin, 
16 elementti]=fl 
17 elemer,t[i+512]=2 
18 element(i+1024]=3 
19 elemerst(i+1536]=4 
20 end;  
21 end. 

Example 4.2.5 

This is clearly shown in the output from Example 4.1.1, where if the ERU store 

is considered, the stack size of eight pages is a large overestimate for this 

problem. 



Fri Jan 	19 15:40:22 1979 ex424cs ae 1 

1 
2 WS 	Store 
3 [':23 	29953 	ii 14 	0 	29960 	C: 0 29958 o:15 29940 [':21 29937 ['U9 29961 D17 29863 

4 

7 LRU Store 
8 11:23 	29953 	C: 	0 	29958 	El: 0 29960 D19 29961 
9 
10 

4 11 
12 PFF Store 
13 [':23 	29953 	ii: 	o 	29960 	C: 0 29958 tU15 29940 021 29937 E1U9 29961 0U7 29863 

14  
15 
16 
17 
18 
19 LRU 

- Note the frequency of ERU faults. 
20 ) 

21 WS 	Store 
22 [':23 	29963 	ii: 	0 	29960 	C 0 29962 tU15 29964 [':21 29937 ['U9 29961 0:17 29863 

23 
24 
25 
26 LRU Store 
27 ['4#19 	29961 	C: 	0 	29962 	[':23 29963 r':15 29964 
28 
29 
30 
31 PFF Store 
32 0:23 	29963 	D: 0 	29960 	C: 0 29962 1lU5 29964 [':21 29937 [1U9 29961 0:17 29863 

33 
34 

4 35 
36 
37 
38 LRU 
39 
40 WS 	Store 
41 0:23 	29963 	ii: 	0 	29965 	C: 0 29962 ['15 29964 [':21 29937 0:19 29961 0:17 29863 

42 
43 

4 44 I,  

45 LRIJ Store 
46 C: 	0 	29962 	[':23 	29963 	r':15 29964 o: 0 29965 

4 47 
48 
49 
50 PFF Store 
51 [':23 	29963 	ii: 	0 	29965 	C: 0 29962 E115 29964 E121 29937 [':19 29961 0U7 29863 

52 

4 53 
54 
55 
56 
57 LRU 
58 



Fri Jar, 19 15:40:22 1979 ex424cs Page 2 • 
61 • 62 
63 
64 LRU Store • 65 [':23 	29977 	c: 	0 	29982 	ti: 0 	29984 11U7 29985 C) 
66 
67 • 68 ) 
69 PFF Store 
70 11:23 	29977 	ii: 	o 	29984 	C: 0 	29982 E'U5 29964 1U21 29937 t'19 29961 11U7 29985 • 71 
72 
73 • 74 ) 
75 
76 LRU • 77 
78 WS 	Store 
79 11:23 	29990 	1' 	0 	29987 	C: 0 	29989 D15 29991 1U21 29937 [U19 29961 D:17 29985 • 80 
81 
82 • 83 LRU Store ) 
84 D 	0 	29987 	C: 0 	29989 	11:23 29990 1U15 29991 
85 • 86 
87 
88 PFF Store • 89 11:23 	29990 	1' 	0 	29987 	C: 0 	29989 LU15 29991 11:21 29937 11:19 29961 0U7 29985 
90 
91 • 92 
93 
94 • 95 LRU 
96 
97 WS 	Store • 98 [':23 	30051 	ri: 	0 	30058 	C: 0 	30056 11:15 30038 L'21 30059 1119 29961 11:17 29985 
99 
100 • 101 
102 LRU Store 
103 1123 	30051 	C: 	0 	30056 	1' 0 	30058 1121 30059 • 104 
105 
106 • 107 PFF Store 
108 1123 	30051 	ri: 	0 	30058 	C: 0 	30056 [':15 30038 11:21 30059 [U19 29961 D17 29985 
109 • 110 
111 
112 • 113 
114 LRU 
115 • 116 US 	Store 
117 [':23 	30061 	11 	0 	30058 	C 0 	30060 1U15 30062 11:21 30059 11:19 29961 1117 29985 
118 
119 



121 LRU Store • 122 021 	30059 	C: 0 	30060 	1U23 30061 1115 30062 
123 
124 

4 125 
126 PFF Store 
127 11:23 	30061 	o: 0 	30058 	C: 0 30060 1U15 30062 021 30059 11U9 29961 1U17 29965 
128 
129 
130 
131 
132 
133 LRU 

C 134 
135 WS 	Store 
136 0:23 	30061 	o: 0 	30063 	C: 0 30060 1U15 30062 021 30059 1119 29961 017 29985 

C 137 
138 
139 

C 140 LRU Store 
141 C: 0 	30060 	11:23 	30061 	11U5 30062 ii: 	o 30063 
142 

4 143 
144 
145 PFF Store 

4 146 0:23 	30061 	ii: 	o 	30063 	C: 0 30060 ri:15 30062 1'21 30059 1119 29961 11U7 29985 
147 
148 

C 149 
150 
151 

C 152 LRU 
153 
154 WS 	Store 

4 155 11:23 	30075 	1' 	0 	30082 	C: 0 30080 o:15 30062 1121 30059 E'19 30083 D17 29985 
156 
157 

4 158 
159 LRU Store 
160 0:23 	30075 	C: 0 	30080 	1' 0 30082 1'19 30083 

C 161 
162 
163 

4 164 PFF Store 
165 11:23 	30075 	t' 	0 	30082 	C 0 30080 r':15 30062 021 30059 1119 30083 1117 29985 
166 

C 167 
168 
169 

4 170 
171 LRU 
172 

C 173 WS 	Store 
174 [':23 	30085 	11 	0 	30082 	C: 0 30084 r':15 30086 0:21 30059 1U19 30083 1I17 29985 
175 

C 176 
177 
178 LRU Store 



4717  en, MC b P a se 9 

t 

181 • 182 0 
183 FFF Store 
164 [':23 	30085 	ri: 	0 	30082 	C: 0 	30084 [':15 30086 1121 30059 t119 30083 1U17 29985 

a 185 0 
186 
187 

a 188 
189 
190 LRU 
191 9 
192 WS 	Store 
193 11:23 	30085 	0 	0 	30087 	C: 0 	30084 1115 30086 11:21 30059 t119 30083 1U17 29985 

a 194 
195 
196 

a 197 LRU Store 
198 C: 0 	30084 	0:23 	30085 	o:15 30086 E1 	0 30087 
199 

a 200 
201 
202 PFF Store 

O 203 [':23 	30085 	EU 0 	30087 	CO* 0 	30084 D:15 30086 [U21 30059 [U19 30083 1U17 29985 
204 
205 
206 
207 
208 • 209 LRU 
210 
211 US 	Store • 212 [':23 	30099 	ii: 	0 	30106 	C 0 	30104 DUS 30086 1U21 30059 [U19 30083 D17 30107 
213 
214 • 215 
216 LRU Store 
217 11:23 	30099 	C: 	0 	30104 	1' 0 	30106 DU7 30107 • 218 
219 
220 

O 221 PFF Store 
222 [':23 	30099 	o: 	0 	30106 	C: 0 	30104 t'115 30086 1U21 30059 11U9 30083 1U17 30107 
223 

0 224 
225 
226 • 227 
228 LRIJ 
229 • 230 US 	Store 
231 11:23 	30112 	D: 	0 	30109 	C 0 	30111 L'15 30113 1U21 30059 [U19 30083 0:17 30107 
232 • 233 

)I 

234 
235 LRU Store 

0 236 o: 	0 	30109 	C: 0 	30111 	0:23 30112 1115 30113 
237 
238 



Fri Jan 	19 15:40:22 1979 e>424cs Page 5 • 
241 11:23 	30112 	1' 	0 	30109 	C: 0 	30111 E115 30113 1U21 30059 r':19 30003 1U17 30107 • 242 
243 
244 • 245 t) 
246 
247 LRU 

• 248 
249 WS 	Store • 
250 11:23 	30173 	1' 	0 	30180 	C: 0 	30178 11:15 30160 1U21 30181 1119 30083 1IU7 30107 

• 251 
252 
253 

o 254 LRU Store 
255 0:23 	30173 	C: 	0 	30178 	ti: 0 	30180 021 30181 
256 • 257 
258 
259 FFF Store • 260 [':23 	30173 	IU 0 	30180 	C 0 	30178 t':15 30160 1U21 30181 11U9 30083 1'17 30107 
261 
262 

• 263 
264 
265 • 266 LRU 
267 
268 WS 	Store 

• 269 0:23 	30183 	o: 0 	30180 	C: 0 	30182 r':15 30184 1U21 30181 1U19 30083 1U17 30107 
270 
271 • 272 
273 LRU Store 
274 t'21 	30181 	c: 	0 	30182 	0:23 30183 ti:15 30184 • 275 
276 
277 • 278 PFF Store 
279 [':23 	30183 	r': 	0 	30180 	C: 0 	30182 [1:15 30184 1121 30181 1U19 30083 017 30107 
280 

o 281 
282 
283 • 284 
285 LRIJ 
286 • 287 WS 	- Store 
288 11:23 	30183 	1' 	0 	30185 	C: 0 	30182 DU5 30184 1121 30181 [':19 30083 1U17 30107 
289 • 290 
291 
292 LRU Store • 293 C: 	0 	30182 	0:23 	30183 	t':15 30184 ii: 	o 30185 
294 
295 • 296 
297 PFF Store 
298 D23 	30183 	LU 0 	30185 	C 0 	30182 r':15 30184 11:21 30181 1U19 30083 1U17 30107 
')QQ 
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1 	 ****************************** Example 4.2.6 2 	 LRU PFF War 
3 
4 	 US Store 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

LRU Store 
C: 0 1 

PFF Store 
C: o 1 

LRU Store 
C: 0 1 0:23 2 

** * * ** * *** ** ** * ** 
LRU PFF War 

US Store 
c: o 1 t'23 2 

F'FF Store 
C: 0 1 0:23 2 

****************************** 

LRIJ PFF Wor 

US Store 
C: 0 1 11:23 2 o: 0 3 

LRU Store 
C: 0 1 [':23 2 ii: o 3 

FFF Store 
C: 0 1 [':23 2 0 0 3 

c: 0 1 	 The LR'U algorit7vn along with the others handles well a 

program with a small set of heavily used pages. 

** ** * * ** * * *** **** 

IT 	 - 

pane 1 



61 US 	Store 
62 C: 	0 	999 	D23 	1000 	Eu: 	0 997 
63 
64 

4 65 
66 LRU Store 
67 W. 0 	997 	C: 0 	999 	11:23 1000 

4 68 
69 
70 

4 71 F'FF Store 
72 c: 	0 	999 	11:23 	1000 	EU 	0 997 
73 

4 74 
75 
76 

4 77 
78 LRU PFF Wor 
79 
so us 	Store 
81 c: 	0 	1177 	11:23 	1172 	Eu: 	0 1178 C: 	1 1179 
82 

4 83 
84 
85 LRU Store 

4 86 1U23 	1172 	C: 	0 	1177 	ii: 	0 1178 C 	1 1179 
87 
88 
89 
90 PFF Store 
91 C: 0 	1177 	1U23 	1172 	1' 	0 1178 C: 	1 1179 

4 92 
93 
94 

4 95 
96 2 
97 3 	3 	2 

4 98 • 99 Str 
100 

4 101 US 	Store 
102 C: 	0 	1998 	11:23 	1993 	ii: 	0 2000 C: 	1 1179 
103 

4 104 
105 
106 LRU Store 

• 	4 107 C: 	1 	1179 	11:23 	1993 	C: 	0 1998 EU 0 2000 
108 
109 

4 110 
111 F'FF Store 
112 C: 	0 	1998 	11:23 	1993 	11: 	0 2000 C: 	1 1179 • 113 
114 
115 

• 116 
117 4 	1 	3 
118 
110 
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121 WS 	Store 

4 122 C: 0 	2996 	11:23 	2998 	D 	0 3000 
123 
124 

4 125 
126 LRU Store 
127 c: 	1 	1179 	C: 	0 	2996 	11:23 2998 1I 0 3000 

4 128 
129 
130 
131 FFF Store 
132 C: 0 	2996 	D:23 	2998 	1J 	0 3000 C: 1 1179 
133 

4 134 
135 
136 
137 5 	2 
138 
139 Str 

4 140 
141 WS 	Store 
142 c: 	0 	3998 	11:23 	4000 	ii: 	o 3999 

4 143 
144 
145 
146 LRU Store 
147 C: 	1 	1179 	C: 	0 	3998 	ii: 	0 3999 11:23 4000 
148 

4 149 
150 
151 PFF Store 
152 C: 	0 	3998 	11:23 	4000 	[U 0 3999 c: 1 1179 
153 
154 

4 155 
156 
157 6 	3 	3 
158 7 	1 	2 
159 
160 Str 
161 
162 WS 	Store 
163 C: 	0 	5000 	11:23 	4994 	ii: 	0 4999 
164 
165 
166 

4 167 LRU Store 
168 •c: 	1 	1179 	[1:23 	4994 	[U 	0 4999 C: 0 5000 
169 

4 170 
171 
172 PFF Store 
173 C: 	0 	5000 	11:23 	4994 	t': 	0 4999 C: 1 1179 
174 
175 

4 176 
177 
178 
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181 WS 	Store 
C' 182 C: 	0 	5998 	11:23 	5991 	ii: 	0 6000 

183 
184 

C 185 
186 LRU Store 
187 C: 	1 	1179 	1U23 	5991 	c: 0 5998 ti: 0 6000 
188 
189 
190 
191 PFF Store 
192 C: 	0 	5998 	D:23 	5991 	ii: 	0 6000 C: 1 1179 
193 
194 
195 
196 
197 8 	3 
198 
199 Str 
200 
201 WS 	Store 
202 C: 	0 	6991 	11:23 	6999 	ii: 	0 7000 
203 
204 
205 
206 LRU Store 
207 C: 	1 	1179 	C: 	0 	6991 	11:23 6999 D 0 7000 
208 
209 
210 
211 PFF Store 
212 C: 	0 	6991 	11:23 	6999 	ii: 	0 7000 C: 1 1179 
213 
214 
215 
216 
217 9 	2 	3 
218 
219 Str 
220 
221 WS 	Store 
222 C: 0 	7998 	D:23 	7993 	ii: 0 8000 
223 
224 
225 
226 LRU Store 
227 C: 	1 	1179 	11:23 	7993 	C: 	0 7998 EU 0 8000 
228 
229 
230 
231 PFF Store 
232 C: 	0 	7998 	11:23 	7993 	1': 	0 8000 C: 1 1179 
233 
234 
235 
236 
237 
238 Str 

Page 4 
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241 C: 	0 	8998 	11:23 	8995 	ii: 	o 9000 
242 
243 
244 

c' 245 LRU Store 
246 C: 	1 	1179 	11:23 	8995 	C: 	0 8998 	D 0 	9000 
247 
248 
249 
250 PFF Store 

( 
251 C: 0 	8998 	D:23 	8995 	ii: o 9000 	C: 1 	1179 
252 
253 
254 
255 
256 
257 Str 
250 
259 WS 	Store 

( 
260 C: 0 	10000 	11:23 	9995 	EU 0 9999 
261 
262 

( 
263 
264 LRU Store 
265 C: 	1 	1179 	11:23 	9995 	1' 	0 9999 	C: 0 	10000 
266 
267 
268 
269 PFF Store 
270 C: 	0 	10000 	11:23 	9995 	ii: 	0 9999 	C: 1 	1179 
271 
272 
273 
274 
275 
276 Str 
277 
278 WS 	Store 
279 C: 	0 	10998 	11:23 	11000 	ii: 0 	10997 
280 
281 
202 
283 LRLJ Store 
284 C: 	1 	1179 	o: 	0 	10997 	C: 	0 10998 11:23 	11000 
285 
206 
287 
288 PFF Store 
289 C: 	0 	10998 	11:23 	11000 	Eu: 0 	10997 C: 	1 	1179 
290 
291 
292 
293 ***** * ************************ 
294 
295 Str 
296 
297 WS 	Store 
298 C: 	0 	12000 	11:23 	11995 	1' 0 	11999 

pae 5 
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t 
301 

4. 302 LRU Store () 

303 C: 	1 	1179 	11:23 	11995 	ri: 	0 11999 C: 	0 12000 
304 

4 305 
306 
307 PFF Store 

4 308 C: 	0 	12000 	[':23 	11995 	ii: 	0 11999 C: 	1 1179 ) 
309 
310 • 311 ) 
312 
313 3 	2 	3 

4 314 S  

315 Str 
316 

4 317 WS 	Store 
318 C: 	0 	12996 	11:23 	12998 	ri: 	0 13000 
319 

4 320 ) 
321 
322 LRU Store 

4 323 C: 	1 	1179 	C: 	0 	12996 	1'23 12998 1' 	0 13000 
324 
325 

4. 326 
327 PFF Store 
328 C: 	0 	12996 	[':23 	12998 	ii: 	o 13000 C: 	1 1179 

4 329 
330 
331 

4 332 
333 4 	3 	1 
334 

4 335 Str 
336 
337 WS 	Store 
338 C: 	0 	13998 	[':23 	14000 	Eu: 	0 13996 
339 
340 

4 341 
342 LRU Store 
343 C: 	1 	1179 	o: 	0 	13996 	C: 	0 13998 [':23 14000 

4 344 
345 5 

346 

4 347 PFF Store 
348 C 	0 	13998 	[':23 	14000 	ii: 	0 13996 C: 	1 1179 
349 

4 350 
351 
352 

4 353 5 	1 	2  
354 6 	3 	3 
355 

4 356 Str 
357 
358 WS 	Store 



e 

a 

I 

S 

a 

a 

a 

a 

S 

a 

a 

Sun Jan 	1 1,;11;u/ 1Y/Y 

361 
362 
363 LRU Store 

364 C: 	1 	1179 	C 	0 	14995 	11:23 14998 	D 	0 15000 

365 
366 
367 
368 FFF Store 

369 C: 	0 	14995 	1u23 	14998 	r': 	0 15000 	C 	1 1179 

370 
371 
372 
373 
374 7 	2 

375 
376 Str 
377 
378 WS 	Store 

379 C: 	0 	15999 	[':23 	15996 	ii: 	o 16000 

380 
381 
382 
383 LRU Store 

384 C: 	1 	1179 	[1:23 	15996 	C: 	0 15999 	t1 	0 16000 

385 
386 
387 
388 PFF Store 
389 C: 	0 	15999 	(':23 	15996 	ii: 	0 16000 	C: 	1 1179 

390 
391 
392 
393 
394 8 	1 	3 

395 
396 Str 

397 
398 WS 	Store 

399 C: 	0 	17000 	(':23 	16995 	ii: 	0 16999 

400 
401 
402 
403 LRU Store 
404 C: 	1 	1179 	(':23 	16995 	ii: 	o 16999 	C: 0 17000 

405 
406 
407 
408 FFF Store 

409 C: 	0 	17000 	(':23 	16995 	ii: 	0 16999 	C: 	1 1179 

410 
411 
412 
413 
414 

415 Str 
416 
417 WS 	Store 

418 C: 	0 	18000 	0:23 	17997 	ii: 	0 17999 

) 

S) 

) 



I, 

421 
422 LRU Store 
423 C: 	1 	1179 	11:23 	17997 	0 0 17999 C2 0 	18000 
424 

4 425 
426 
427 PFF Store i 428 C2 	0 	18000 	11:23 	17997 	Ii: 0 17999 C: 	1 	1179 
429 
430 

a 431 
432 
433 9 	3 	2 

4 
434 
435 Str 
436 • 437 WS 	Store 
438 C: 	0 	18998 	11:23 	19000 	Ii: 0 18996 
439 

4 440 
441 
442 LRU Store 

4 443 C: 	1 	1179 	O 	0 	18996 	C: 0 18998 11:23 	19000 
444 
445 

4 446 
447 PFF Store 
448 C: 	0 	18998 	0:23 	19000 	112 0 18996 C 	1 	1179 

4 449 
450 
451 

4 452 
453 
454 Str 

4 455 
456 US 	Store 
457 C: 0 	20000 	11:23 	19995 	0 0 19999 

4 458 
459 
460 

4 461 LRU Store 
462 C: 	1 	1179 	1123 	19995 	n: 0 19999 c: 0 	20000 
463 

4 464 
465 
466 FFF Store • 467 C: 	0 	20000 	11223 	19995 	11 0 19999 C 	1 	1179 
468 
469 

4 470 
471 
472 

4 473 Str 
474 
475 US 	Store • 476 C 	0 	20998 	11:23 	21000 	Ii: 0 20997 
477 
478 • 479 



Sun Jan 21 15Ufl07 1979 e<433c 

481 C: 	1 	1179 	ii: 	o 	20997 	C: 	0 20998 t':23 21000 

• 482 
483 
484 • 485 PFF Store 
486 C: 	0 	20998 	[':23 	21000 	ii: 	0 20997 C: 	1 1179 
487 

• 488 
489 
490 • 491 
492 Str 
493 • 494 US 	Store 
495 C: 	0 	21999 	D:23 	21986 	ri: 	0 22000 
496 • 497 
498 
499 LRU Store 

o 500 C: 	1 	1179 	D23 	21986 	C: 0 21999 o: 0 22000 
501 
502 • 503 
504 FFF Store 
505 C: 	0 	21999 	[':23 	21986 	ii: 	o 22000 C: 	1 1179 

• 506 
507 
508 • 509 
510 
511 Str • 512 
513 US 	Store 
514 C: 0 	22997 	0:23 	23000 	11 	0 22999 • 515 
516 
517 • 518 LRU Store 
519 C 	1 	1179 	C: 	0 	22997 	ii: 	o 22999 0:23 23000 
520 • 521 
522 
523 FFF Store • 524 C: 0 	22997 	0:23 	23000 	o: 0 22999 C: 	1 1179 
525 
526 • 527 
528 
529 • 530 Won 
531 
532 US 	Store 

• 533 C: 	0 	23881 	0:23 	23883 	ii: 0 23880 C 	1 23884 
534 
535 • 536 
537 LRU Store 

- 538 ti: 0 	23880 	C 	0 	23881 	0:23 23883 C: 	1 23884 

page 9 
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541 
542 PFF Store 
543 C: 0 	23881 	(':23 	23883 	D 	0 	23880 	C: 	1 	23884 
544 
545 
546 
547 
548 no solution 
549 

C 1 

(. p 

C 

(1 p 

(.1 

J 



fault frequency, P, is defined as:-

P = l/T 
0 

So that if the time between two consecutive page 

faults is less than T 0  then the new page is added to the 

store set, otherwise pages are removed from the store 

set according to the Working Set policy, and the new 

page is added to the remaining set. 

The authors of this algorithm, Chu and Opderbeck 

(Chu 72) present the following drawbacks of LRU and 

Working Set:- 

•• .the major disadvantage of the LRU 

replacement algorithm is that it is not 

at all clear how many pages have to be 

allocated for different programs in 

order to assure efficient running 

without wasting space. In addition, 

this number is usually data dependent 

and may vary during execution. The 

Working Set algorithm constitutes a 

possible solution to this problem" 

4.25 



"In general, the Working Set algorithm can be con-

sidered as an LRU algorithm with variable size 

memory allocation. There is, however, a crucial 

difference. 	Using LRU pages are always replaced 

when a fault occurs. This does not apply to the 

Working Set algorithm. Here, page frames are 

freed whenever they have not been referenced for 

the last T msec. 	.... it appears to be rather 

expensive to implement the Working Set algorithm." 

In support of their own algorithm, the authors state:- 

"An "ideal" replacement algorithm should be 

independent of prior knowledge about program 

behaviour; instead, all of the information needed 

to assure efficient memory allocation should be 

gathered during program execution." 

These authors consider their own algorithm to be roughly a 

Working Set algorithm with a variable T. 

A study of the PFF algorithm by Sadeh (Sad 75) using a 

mathematical model has been carried out. This study is 

important in that it draws attention to the limitations 

of mathematical models of program behaviour:- 

"no 'presently available satisfactory model of 

program behaviour incorporates localities of 

different sizes and the transitions between 

them" 

A criticism of the simple LRU model, supported by Denning 

(Spi 72) is also made:- 

4.26 



"The main drawback of the simple LRU stack model 

is that it generates reference strings that do 

not reflect transitions between localities." 

These limitations reduce the applicability of the results 

presented. However it is possible both theoretically 

and practically to demonstrate the drawbacks of this 

algorithm. 

As might be expected, major difficulties arise with the 

choice of frequency threshold (see Examples 4.3.1 and 

4.3.2). The practical realisation of this problem is 

shown in Example 4.3.3. 

Another limitation, only partly alleviated by the Sadeh 

amendment (2.4.1.-5 ) concerns locality changes. It is 

also to be expected that at a locality change programs 

may refer to pages in both localities for a short period. 

If this period coincides with the acquisition of all the 

pages of the new locality, then it is possible, due to 

the fact that pages are only removed at the time of a 

page fault, that this algorithm will over-estimate the 

page requirements of a program for a considerable period 

after a locality change (see Examples 4.3.4 and 4.3.5). 

4.4 Improving the Behaviour of Current Algorithms 

A number of authors have appreciated some of the drawbacks 

presented above, and have attempted to improve the behaviour 

of the algorithms. The techniques that will be considered 

4.27 



EXAMPLE 4.3.1 

Let 	=[o,l,2,3,4,5,6,7,8,9 

and R=1,2,3,4,5.,6 ....... 

If the inter-page fault time is less than T 0  then the 

Store Set = 1 1 1 1 1 1 

22222 

3333 

444 

55 

6 

Some other criterion must be applied to prevent this 

store set expanding until all pages have been acquired. 

Since, if all pages are acquired then no page faults 

occur and no pages will be removed. It is to remove 

this problem that the Sadeh amendment was proposed. 

EXAMPLE 4.3.2 

In Example 4.3.1 if the inter-page fault time had been 

greater than T0  then the Store Set = 1 2 3 4 5 6 

12345 

4.28 



0 

I 

I 

I 

I 

I 

I 

a 

a 

a 

S 

S 

I 

S 

.0 

burl Jan zi 	4'ILiV 

1 
2 	 LRU PFF Wor 
3 
4 	 US Store 
5 	 c:o 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

ex's.a 	 I 

The trace for the PEF algoritivn is identical for a critical 

frequency of both 100 and 500 references. 

LRU Store 
C: 0 1 

PFF Store c: 0 1 

** * * * ***** ** ** *** ** ** ** * * * ** *** * ** * *** * * * * ** * ** 
LRU PFF Wor 

US Store 
C: 0 1 11:23 2 

LRU Store 
C: 0 1 11:23 2 

PFF Store 
C: 0 1 [':23 2 

** ** *** * ** **** ** ** *** *** ** * * ** 
LRU PFF Wor 

US Store 
C: 0 1 11:23 2 ii: 0 3 

LRU Store 
C: 0 1 11:23 2 ii: 0 3 

F'FF Store 
C: 0 1 11:23 2 ii: 0 3 

** ** *** * * ** * * * * * * * ** 

Li 

C) 

C) 

() 

3 
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61 WS 	Store 
62 C: 	0 	500 	11:23 	495 	ii: 	0 	499 
63 
64 
65 
66 LRU Store 
67 [':23 	495 	tu: 	0 	499 	C: 	0 	500 
60 
69 
70 
71 FFF Store 
72 C: 	0 	500 	11:23 	495 	ii: 	0 	499 
73 
74 
75 
76 
77 
78 Str 
79 
80 WS 	Store 
81 C: 	0 	999 	11:23 	1000 	ii: 	0 	997 
82 
83 
84 
85 LRU Store 
86 ii: 	o 	997 	C: 	0 	999 	[':23 	1000 
87 
Be 
89 
90 PFF Store 
91 C: 	0 	999 	[':23 	1000 	ii: 	o 	997 
92 
93 
94 9 

95 
96 
97 LRU PFF Wor 
98 
99 US 	Store 
100 C: 	0 	1177 	[':23 	1172 	ri: 	0 	1178 C: 	1 	1179 
101 
102 
103 
104 LRU Store 
105 [':23 	1172 	C: 	0 	1177 	ii: 	o 	1178 C 	1 	1179 
106 
107 
108 
109 PFF Store 
110 C: 	0 	1177 	11:23 	1172 	1' 	0 	1178 c: 	1 	1179 
111 
112 
113 
114 
115 2 
116 
117 Str 
118 

() 

) 

) 

) 

) 

) 

) 



1'JU I 	 .JC IJ S 	 S 7 4 7 J I S F 	 • 	t 
121 • 122 
123 
124 LRU Store 

• 125 C: 	1 	1179 	C: 	0 	1487 	ra: 	0 1499 0:23 1500 
126 
127 • 128 
129 PEE Store 
130 C: 	0 	1487 	11:23 	1500 	ii: 	0 1499 C: 1 1179 

• 131 
132 
133 

• 134 
135 3 	3 	2 
136 

• 137 Str 
138 
139 WS 	Store 

• 140 C: 	0 	1998 	11:23 	1993 	ri: 	0 2000 C: 1 1179 
141 
142 

• 143 
144 LRU Store 
145 C: 	1 	1179 	11:23 	1993 	C: 	0 1998 1' 0 2000 

• 146 
147 
148 

• 149 PEE Store 
150 C: 0 	1998 	EU23 	1993 	El: 0 2000 C: 1 1179 
151 

• 152 
153 
154 

• 155 4 	1 	3 
156 
157 Str 

• 158 
159 WS 	Store 
160 C: 	0 	2497 	E':23 	2499 	11 	0 2500 

• 161 
162 
163 • 164 LRU Store 
165 C: 	1 	1179 	C: 	0 	2497 	0:23 2499 D 0 2500 
166 • 167 
168 
169 PEE Store 

• 170 C: 	0 	2497 	0:23 	2499 	ii: 	0 2500 C: 1 1179 
171 
172 • 173 
174 
175 • 176 Str 

177 
178 WS 	Store 

•1 

() 

) 

) 



101 
182 
183 LRU Store 
184 C 	1 	1179 	C: 	0 	2996 	11:23 2998 u': 0 3000 

C), 185 
186 
187 
188 PFF Store 
189 C: 	0 	2996 	11:23 	2998 	ii: 	0 3000 C: 1 1179 

190 
191 
192 
193 

( 
194 ) 

195 Str 
196 
197 US 	Store 
198 C: 	0 	3500 	[':23 	3497 	11 	0 3499 

199 
200 ) 

201 
202 LRU Store 
203 C: 	1 	1179 	11:23 	3497 	IU 0 3499 C: 0 3500 

204 
205 

( 
206 
207 PFF Store 

208 C: 0 	3500 	11:23 	3497 	0 	0 3499 c: 1 1179 

209 
210 
211 
212 
213 5 	2 
214 
215 Str 
216 
217 US 	Store 
218 C: 0 	3998 	1U23 	4000 	D 	0 3999 

219 
220 
221 
222 LRU Store 
223 C: 	1 	1179 	C: 0 	3998 	EU 0 3999 0:23 4000 

224 
225 
226 
227 PFF Store 
228 c: 0 	3998 	0:23 	4000 	EU 0 3999 C: 1 1179 

229 
230 
231 
232 
233 6 	3 	3 

234 
235 Str 

4 236 
237 US 	Store 
238 C: 0 	4497 	0:23 	4488 	EU 0 4500 
.VO ) 



.JcJuI 	,J op p 	a. a 	n 	. , ..J• S SF 	 S 7 7 7 CFS.J, C 	 C 

241 • 242 LRU Store 
1) 

243 C: 	1 	1179 	D23 	4488 	c: 	0 4497 ii: 0 4500 

244 

4 245 
246 
247 PFF Store 

4 248 C: 	0 	4497 	0:23 	4488 	ri: 	0 4500 C: 1 1179 

249 
250 • 251 
252 
253 7 	1 	2 

4 254 ) 
255 Str 
256 

4 257 WS 	Store 
258 c: 0 	5000 	0:23 	4994 	D: 0 4999 

259 

4 260 
261 
262 LRU Store • 263 C: 	1 	1179 	0:23 	4994 	o: 	0 4999 c: 0 5000 

264 
265 • 266 
267 PFF Store 
268 C: 0 	5000 	0:23 	4994 	D: 0 4999 C: 1 1179 • 269 
270 
271 

4 272 
273 
274 Str 

4 275 
276 WS 	Store 

277 C: 	0 	5498 	0:23 	5500 	ii: 0 5499 • 278 
279 

280 

4 281 LRU Store 
282 C: 	1 	1179 	C: 	0 	5498 	11 	0 5499 0:23 5500 
283 • 284 
285 
286 PEF Store 

4 287 C: 0 	5498 	0:23 	5500 	r': 0 5499 C: 1 1179 

288 
289 

4 290 
291 
292 

4 293 Str 
294 
295 WS 	Store 

4 296 C: 	0 	5998 	11:23 	5991 	ii: 	0 6000 
297 
298 



C.) 

301 C: 	1 	1179 	11:23 	5991 	C: 	0 5998 ri: 0 6000 
302 
303 
304 

4. 305 FFF Store (•) 
306 C: 	0 	5998 	[':23 	5991 	t' 	0 6000 C: 1 1179 
307 

4 300 
309 
310 

4, 311 8 	3 
312 
313 Str 

4 314 
315 US 	Store 
316 C: 0 	6500 	1U23 	6497 	[U 0 6499 

4 317 
318 
319 

4 320 LRU Store 
321 C: 	1 	1179 	D:23 	6497 	ii: 	0 6499 C 0 6500 
322 

4 323 
S 

324 
325 PFF Store 
326 C: 	0 	6500 	11:23 	6497 	ri: 	0 6499 C: 1 1179 
327 
328 

4 329 
330 
331 

4 332 Str 
333 
334 US 	Store 
335 C 	0 	6991 	[U23 	6999 	ii: o 7000 5) 

336 
337 

4 338 
) 

339 LRU Store 
340 C: 	1 	1179 	C: 	0 	6991 	[':23 6999 o: 0 7000 

4 341 
342 
343 

4 344 PFF Store 
345 C: 	0 	6991 	11:23 	6999 	ii: 	o 7000 C 1 1179 
346 

4 347 
348 
349 
350 9 	2 	3 
351 
352 Str 
353 

5) 

354 US 	Store 
355 C: 	0 	7500 	11:23 	7497 	ii: 	o 7499 

I 356 
357 
358 
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361 
362 
363 
364 FFF Store 
365 C: 0 	7500 	tU23 	7497 	EU 0 7499 C: 	1 	1179 

366 
367 
368 
369 
370 
371 Str 
372 
373 WS 	Store 
374 C: 0 	7998 	1U23 	7993 	EU 0 8000 

375 
376 
377 
378 LRtJ Store 
379 C: 	1 	1179 	[':23 	7993 	c: 	0 7998 EU 0 	8000 

380 
381 
382 
383 FFF Store 

384 C: 0 	7998 	1 4023 	7993 	o: 0 8000 C: 	1 	1179 

385 
386 
387 
388 
389 
390 Str 
391 
392 WS 	Store 
393 C: 0 	8497 	11:23 	8500 	LU 0 8499 

394 
395 
396 

397 LRU Store 
398 C: 	1 	1179 	C: 	0 	8497 	ii: 	o 8499 [1:23 	8500 

399 
400 
401 
402 PFF Store 
403 C: 0 	8497 	0:23 	8500 	ii: 0 8499 C: 	1 	1179 
404 
405 
406 
407 
408 
409 Str 
410 
411 WS 	Store 
412 C 	0 	8998 	0:23 	8995 	LU 0 9000 
413 
414 
415 
416 LRU Store 
417 C: 	i 	1179 	0:23 	8995 	C: 0 8998 ii: o 	9000 

418 



421 PFF Store 
422 C: 	0 	8998 	11:23 	8995 	ii: 	o 9000 	C: 1 	1179 
423 
424 
425 
426 
427 
428 Str 
429 
430 us 	Store 
431 C: 0 	9499 	(':23 	9492 	D 	0 9500 
432 
433 
434 
435 LRU Store 
436 C: 	1 	1179 	('423 	9492 	C: 	0 9499 	ii: 0 	9500 

437 
438 
439 
440 PFF Store 
441 C: 	0 	9499 	11:23 	9492 	11: 	o 9500 	C 1 	1179 

442 
443 
444 
445 
446 
447 Str 
448 
449 WS 	Store 
450 C: 	0 	10000 	11:23 	9995 	ii: 	o 9999 
451 
452 
453 
454 LRU Store 
455 C: 	1 	1179 	11123 	9995 	D 	0 9999 	C: 0 	10000 

456 
457 
458 
459 PFF Store 
460 C: 	0 	10000 	11:23 	9995 	1': 	o 9999 	C: 1 	1179 
461 
462 
463 
464 
465 
466 Str 
467 
468 WS 	Store 
469 C: 	0 	10500 	11:23 	10487 	ri: 0 	10499 
470 
471 
472 
473 LRU Store 
474 C: 	1 	1179 	11:23 	10487 	D 	0 10499 C: 0 	10500 
475 
476 
477 
478 PFF Store 
479 A 	1OAO 	nigA 	104R7 	ri 0 	10499 C! 	1 	1179 
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481 • 482 
483 
484 • 485 Str 
486 
487 WS 	Store • 488 C: 	0 	10998 	11:23 	11000 	1l 0 10997 
489 
490 $ 491 
492 LRU Store 
493 C: 	1 	1179 	ri: 	0 	10997 	C: 0 10998 11:23 	11000 • 494 
495 
496 • 497 PFF Store 
498 C: 	0 	10998 	D23 	11000 	ii: o 10997 C: 	1 	1179 
499 • 500 
501 
502 • 503 
504 Str 
505 

o 506 WS 	Store 
507 C: 	0 	11500 	11:23 	11490 	D 0 11499 
508 • 509 
510 
511 LRIJ Store $ 512 C: 	1 	1179 	0:23 	11490 	11 0 11499 C: 	0 	11500 
513 
514 • 515 
516 PFF Store 
517 C: 	0 	11500 	11:23 	11490 	ti: 0 11499 C: 	1 	1179 • 518 
519 
520 • 521 
522 
523 Str • 524 
525 WS 	Store 
526 C: 	0 	12000 	11:23 	11995 	ii: 0 11999 • 527 
528 
529 • 530 LRU Store 
531 C: 	1 	1179 	11:23 	11995 	o: 0 11999 C: 0 	12000 
532 • 533 
534 
535 PFF Store $ 536 C: 	0 	12000 	0:23 	11995 	1' 0 11999 C: 	1 	1179 
537 
538 

ae 9 



burl Jri zi ifiMZJiU i717 

541 3 	2 	3 
542 
543 Str 
544 
545 WS 	Store 
546 C: 	0 	12497 	[':23 	12492 	ii: 	o 12500 
547 
548 
549 
550 LRU Store 
551 C: 	1 	1179 	11:23 	12492 	C: 	0 12497 ti: 	0 	12500 

552 
553 
554 
555 PFF Store 
556 C 	0 	12497 	0:23 	12492 	ii: 	0 12500 C: 	1 	1179 
557 
558 
559 
560 
561 
562 Str 
563 
564 WS 	Store 
565 C: 0 	12996 	1U23 	12998 	1' 	0 13000 
566 
567 
568 
569 LRU Store 
570 C: 	1 	1179 	C: 	0 	12996 	11:23 12998 1' 	0 	13000 

571 
572 
573 
574 PFF Store 
575 C: 	0 	12996 	11:23 	12998 	ri: 	0 13000 C: 	1 	1179 
576 
577 
578 
579 
580 
581 	 Str 
582 
583 	 WS Store 
584 	 C: 0 13500 11:23 13495 D 0 13499 
585 
586 
587 
588 	 LRUStore 
589 	 C: 1 1179 11:23 13495 EI 0 13499 C: 0 13500 
590 
591 
592 
593 	 FFF Store 
594 	 C: 0 13500 11 1023 13495 11: o 13499 C: 1 1179 
595 
596 
597 
598 



-. 	 .... a.,.y.j a 	 S I . t wAn0ow 

601 Str 
602 
603 WS 	Store 
604 C: 	0 	13998 	[':23 	14000 	ii: 	0 13996 
605 
606 
607 
608 LRU Store 
609 C: 	1 	1179 	El: 	o 	13996 	C: 	0 13998 [':23 	14000 
610 
611 
612 
613 FFF Store 
614 C: 	0 	13998 	[':23 	14000 	ii: 	O. 13996 C: 	1 	1179 
615 
616 
617 
618 
619 5 	1 	2 
620 
621 Str 
622 
623 WS 	Store 
624 C: 0 	14498 	11:23 	14500 	EU 0 14499 
625 
626 
627 
628 LRU Store 
629 C: 	1 	1179 	C: 	0 	14498 	ii: 	0 14499 0:23 	14500 
630 
631 
632 
633 PFF Store 
634 C: 0 	14498 	1U23 	14500 	EU 0 14499 C: 	1 	1179 
635 
636 
637 
638 
639 6 	3 	3 
640 
641 Str 
642 
643 WS 	Store 
644 C: 0 	14995 	0:23 	14998 	1' 	0 15000 
645 
646 
647 
648 LRU, Store 
649 C: 	1 	1179 	C: 	0 	14995 	[':23 14998 1' 	0 	15000 
650 
651 
652 
653 PFF Store 
654 C: 	0 	14995 	[':23 	14998 	r: 	0 15000 C: 	1 	1179 
655 
656 
657 
658 

vatgL. IA 

) 

) 



t 

661 • 662 US 	Store 
663 C: 0 	15499 	1U23 	15500 	ii: 0 15498 

664 * 665 
666 
667 LRU Store 

4 668 c: 	1 	1179 	LU 	0 	15498 	C: 	0 15499 [':23 	15500 

669 
670 • 671 
672 PFF Store 
673 c: 	0 	15499 	11:23 	15500 	ri: 	0 15498 C: 	1 	1179 • 674 
675 
676 

4 677 
678 7 	2 
679 

4 680 Str 
681 
682 US 	Store • 683 C: 0 	15999 	D:23 	15996 	o: 0 16000 

684 
685 

4 686 
687 LRU Store 

688 C: 	1 	1179 	[':23 	15996 	C: 	0 15999 LU 0 	16000 

4 689 
690 
691 

4 692 PFF Store 

693 C: 	0 	15999 	11:23 	15996 	ru: 	0 16000 C 	1 	1179 

694 • 695 
696 
697 

4 698 
699 Sti' 
700 

4 701 US 	Store 

702 C: 	0 	16500 	[':23 	16497 	ii: 	0 16499 

703 

4 704 
705 
706 LRU Store 

4 707 c: 	1 	1179 	[':23 	16497 	r: 	0 16499 C: 0 	16500 

708 
709 

4 710 
711 PFF Store 
712 C: 	0 	16500 	[':23 	16497 	ii: 	o 16499 C: 	1 	1179 

4 713 
714 
715 • 716 
717 8 	1 	3 - 718 



ease J.) 

721 US 	Store • 722 Ct 0 	17000 	1U23 	16995 	EU 0 16999 
723 
724 • 725 
726 LRU Store 
727 C: 	1 	1179 	11:23 	16995 	D 	0 16999 Ct 	0 17000 • 728 
729 
730 • 731 PFF Store 
732 C: 	0 	17000 	[':23 	16995 	ii: 	0 16999 C 	1 1179 
733 

a 734 
735 
736 

a 737 
738 Str 
739 • 740 US 	Store 
741 C: 	0 	17500 	[':23 	17495 	1': 	0 17499 
742 • 743 

744 
745 LRIJ Store • 746 Ct 	1 	1179 	1U23 	17495 	[U 0 17499 C: 	0 17500 
747 
748 

I 	S 749 
750 FFF Store 
751 C: 0 	17500 	11:23 	17495 	D 	0 17499 Ct 	1 1179 $ 752 
753 
754 • 755 
756 
757 Str • 758 
759 WS 	Store 
760 C 	0 	18000 	1U23 	17997 	EU 0 17999 • 761 
762 
763 
764 LRU Store 
765 Ct 	1 	1179 	1U23 	17997 	EU 0 17999 Ct 	0 18000 
766 • 767 
768 
769 PFF Store 

o 770 C: 	0 	18000 	[':23 	17997 	[it 	0 17999 Ct 	1 1179 
771 
772 • 773 
774 
775 9 	3 	2 • 776 
777 Str 
778 

1)  L 

) 

.3 



781 
782 
783 
784 LRU Store 
785 C: 	1 	1179 	11:23 	18487 	ri: 	0 18499 c: 0 	18500 

786 
787 
788 
789 PFF Store 

790 C: 0 	18500 	[U23 	18487 	tu: 0 18499 C: 	1 	1179 

791 
792 
793 
794 
795 
796 Str 
797 
798 WS 	Store 

799 C: 	0 	18998 	[1:23 	19000 	ri: 	0 18996 

800 
801 
802 
803 LRU Store 

804 C: 	1 	1179 	ii: 	o 	18996 	c 	0 18998 ['123 	19000 

805 
806 
807 
808 PFF Store 
809 C: 0 	18998 	[U23 	19000 	ii: 0 18996 C: 	1 	1179 

810 
811 
812 
813 
814 
815 Str 
816 
817 WS 	Store 
818 c: 0 	19500 	1U23 	19494 	lU 0 19499 

819 
820 
821 
822 LRU Store 

823 C: 	1 	1179 	11:23 	19494 	D 	0 19499 C 	0 	19500 

824 
825 
826 
827 PFF Store 

828 C: 	0 	19500 	[':23 	19494 	ii: 	0 19499 C 	1 	1179 

829 
830 
831 
832 
833 
834 Str 

835 
836 WS 	Store 
837 C: 0 	20000 	1U23 	19995 	LU 0 19999 

838 
11— 
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841 LRU Store 

• 842 C: 	1 	1179 	[':23 	19995 	ii: 	o 19999 C: 	0 20000 
843 
844 

• 845 
846 FFF Store 
847 C: 	0 	20000 	11:23 	19995 	1I 	0 19999 C: 	1 1179 

• 848 
849 
850 

• 851 
852 
853 Str 

• 854 
855 WS 	Store 
856 C: 	0 	20497 	11:23 	20488 	1' 	0 20500 

• 857 
858 
859 

• 860 LRU Store 
861 C: 	1 	1179 	[':23 	20488 	C: 	0 20497 D 	0 20500 

862 

o 863 
864 
865 FFF Store 

• 866 C: 0 	20497 	[':23 	20488 	1' 	0 20500 C: 	1 1179 
867 
868 

• 869 
870 
871 

• 872 Str 
873 
874 WS 	Store • 875 C: 	0 	20998 	[':23 	21000 	1' 	0 20997 • 876 
877 • 878 • 879 LRU Store 
880 C: 	1 	1179 	o: 	0 	20997 	C: 	0 20998 0:23 21000 
881 
882 
883 • 884 FFF Store 
885 C: 	0 	20998 	11:23 	21000 	11 	0 20997 C: 	1 1179 
886 • 887 
888 
889. • 890 . 
891 Str 
892 

• 093 WS 	Store 
894 C: 0 	21499 	0:23 	.21496 	WO 0 21500 
895 • 896 
097 
098 LRU Store 
899 C: 1 	1179 	D.M. 	2149E 	M 0 71499 ri: 	0 71OC 

ae 15 
I 

° 

) 

U 

•1 
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901 
4Th 902 

903 PFF Store 
904 C: 	0 	21499 	11:23 	21496 	LU 0 21500 C: 	1 1179 
905 
906 
907 
908 
909 
910 Str 

( 
911 
912 WS 	Store 
913 C: 	0 	21999 	11:23 	21986 	r': 	0 22000 
914 
915 
916 
917 LRU Store 
918 C: 	1 	1179 	D:23 	21986 	C: 	0 21999 ii: 	0 22000 
919 

( 
920 
921 
922 PFF Store 
923 C 	0 	21999 	11:23 	21986 	ri: 	0 22000 C: 	1 1179 
924 
925 

( 
926 ) 

927 
928 
929 Str 
930 
931 WS 	Store 
932 C: 0 	22496 	D:23 	22498 	n: 0 22500 
933 
934 
935 
936 LRU Store 
937 C: 	1 	1179 	c: 	0 	22496 	11:23 22498 NO o 22500 
938 
939 
940 
941 PFF Store 
942 C: 0 	22496 	11:23 	22498 	o: 0 22500 C: 	1 1179 
943 
944 
945 
946 
947 
948 

- 

Str 
949 
950 WS 	Store 
951 C: 0 	22997 	11:23 	23000 	LU 0 22999 
952 
953 
954 
955 LRU Store 
956 C: 	1 	1179 	C: 	0 	22997 	ii: 	o 22999 11:23 23000 
957 
958 
Qc? 
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961 c: 	0 	22997 	11:23 	23000 	ri: 	0 22999 C: 	1 	1179 
962 
963 
964 
965 
966 
967 Str 
968 
969 US 	Store 
970 C: 0 	23496 	1U23 	23498 	EU 0 23500 
971 
972 
973 
974 LRU Store 
975 C: 	1 	1179 	c: 0 	23496 	1123 23498 EU 0 	23500 
976 
977 
978 
979 FFF Store 
980 C: 	0 	23496 	11:23 	23498 	ii: 	0 23500 C: 	1 	1179 
981 
982 
983 
984 
985 
986 Wor 
987 
988 WS 	Store 
989 C: 	0 	23881 •11:23 	23883 	ii: 	0 23880 C: 1 	23884 

990 
991 
992 
993 LRU Store 
994 0: 	o 	23880 	C: 0 	23881 	11:23 23883 c: 	1 	23884 
995 
996 
997 
998 PFF Store 
999 C: 	0 	23881 	11:23 	23883 	Eu: 	0 23880 C: 	1 	23884 
1000 
1001 
1002 
1003 
1004 no solution 
1005 

Page 17 
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EXAMPLE 4.3.4 

This is a necessarily simplified example. 

Let N= 

Critical Frequency = 1/3 

R = 	 1,2,3,4,1,4,3,2,1,4,3,4,3,2,1,7,5,6,5,7,6 

then Store Set =llllllllllllllllllll1 

22222222222222222222 

3 3 3 3 3 3 3 3 3 3 3 3 3 • 3 3 3 3 3 3 

444444444444444444 

777777 

55555 

6666 

* * * * 	 * * * 

A B B 

A - Although the page fault frequency is less than the 

critical frequency, no page is removed since all 

have been used since the last page fault. 

B - The page fault frequency is higher than the critical 

frequency, consequently pages are added without 

replacement. 

In this situation, the over-estimate will exist until 

the first page fault that creates a lower frequency 

than the critical frequency. (Whether this be a 

natural fault or a "pseudo-fault'.) 

4.29 
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1 	 Program ex435(outrut) 
2 
3 
4 
5 
	

(* This rrorarn should show the effect of the PEE algorithm 	*) 
6 
	 (* holdir.g onto Pages after the indicated localit9 change 

7 
8 
9 
10 	 elenientarras[l.,2048] of integer;  
11 
	

i : in,teer 
12 
	

begin 
13 
	

for i1 to 512 do 
14 
	

begin 
15 
16 	 element[i]=1 
17 	 elernenstEi+5123 t2 
18 	 elernerit[i+1024] :=3; 
19 	 end;  
20 
21 
	

(* 	 LOCALITY CHANGE 
22 
	

(*********************************t****************************) 
23 
	

for i:=1537 to 2048 do elenient[i)=4 
24 
	 end, 

Page 1 
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1 
2 
3 Str 
4 
5 WS 	Store 
6 [':23 	6295 	is: 	0 	6300 	C: 	0 6299 1U15 6296 1521 6237 ['19 6261 
7 
8 
9 
10 LRU Store 
11 [':21 	6237 	1s19 	6261 	[':23 6295 r':15 6296 C: 	0 6299 D 	0 6300 
12 
13 
14 
15 PFF Store 
16 11:23 	6295 	D: 0 	6300 	c: 	0 6299 [':15 6296 1'21 6237 11:19. 6261 
17 
18 
19 
20 
21 
22 Str 
23 
24 WS 	Store 
25 [':23 	6393 	o: 0 	6399 	C: 0 6400 1U15 6394 t$21 6335 E'19 6359 
26 
27 
28 
29 LRU Store 
30 rs:21 	6335 	1U19 	6359 	0:23 .6393 [':15 639. ) 	0 6399 C: 	0 6400 
31 
32 
33 
34 PFF Store 
35 1U23 	6393 	ts: 0 	6399 	C: 0 6400 0U5 6394 [121 6335 [':19 6359 
36 
37 
38 
39 
40 
41 Str 
42 
43 WS 	Store 
44 11123 	6499 	ii: 	o 	6500 	C: 	0 6498 1515 6492 1121 6433 1U19 6457 
45 
46 
47 
48 • 	LRU Store 
49. 15:21 	6433 	1U19 	6457 	£515 6492 C: 	0 6498 [':23 6499 ii; 	0 6500 
50 
51 
52 
53 PFF Store 
54 
55 

[':23 	6499 	1' 	0 	6500 	C: 	0 6498 11U5 6492 1U21 6433 11:19 6457 

56 
57 
58 
Co •. 
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I' 
61 • 62 US 	Store 
63 [':23 	6597 	[U 0 	6599 	C 	0 6600 11U5 6590 1U21 6531 1JU9 6555 
64 
65 
66 
67 LRU Store • 68 1U21 	6531 	tU19 	6555 	t'U5 6590 11:23 6597 ri: 	0 6599 C: 	0 6600 
69 
70 • 71 
72 PFF Store 
73 [':23 	6597 	o: 0 	6599 	C: 	0 6600 ri:15 6590 1U21 6531 1U19 6555 • 74 
75 
76 

a 77 
78 
79 Str • 80 
81 US 	Store 
82 [':23 	6695 	ri: 	0 	6699 	C: 	0 6700 [':15 6688 1U21 6629 11:19 6653 • 83 
84 
85 • 86 LRU Store 
87 ['21 	6629 	1U19 	6653 	1U15 6688 11:23 6695 ii: 	0 6699 C: 0 6700 
Be 

a 89 
90 
91 PFF Store • 92 D:23 	6695 	DI 0 	6699 	C: 0 6700 1'15 6688 ti21 6629 1U19 6653 
93 
94 

I 95 
96 
97 • 98 Str 
99 
100 US 	Store • 101 [U23 	6793 	ii: 0 	6800 	C: 0 6798 ri:15 6786 1U21 6727 1U19 6751 
102 
103 • 104 
105 LRU Store 
106 EU21 	6727 	[U19 	6751 	11:15 6786 [U23 6793 C: 	0 6798 0 	0 6800 • 107 
108 
109 • 110 PFF Store 
111 [':23 	6793 	1' 	0 	6800 	C: 	0 6798 ii:15 6786 1U21 6727 11:19 6751 
112 

a 113 
114 
115 • 116 
117 Str 
118 • 119 US 	Store 

r'ae 2 
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121 
122 
123 
124 LRU Store 
125 11:21 	6825 	DU9 	6849 	E'15 6884 [U 0 6898 D23 6899 C: 	0 6900 () 
126 
127 
128 ) 
129 PFF Store 
130 [':23 	6899 	EU 0 	6898 	C: 0 6900 11115 6884 EU21 6825 E1U9 6849 ( 131 
132. 
133 

4 134 
135 
136 Str 
137 ) 
138 WS 	Store 
139 [':23 	6993 	0 	0 	7000 	C: 0 6999 [':15 6994 1l21 6923 11:19 6947 

4 140 
S 

141 
142 
143 LRIJ Store ) 
144 11:21 	6923 	11:19 	6947 	[1:23 6993 1U15 6994 C: 0 6999 EU 0 7000 
145 
146 
147 
148 PFF Store 
149 11:23 	6993 	EU 0 	7000 	C: 0 6999 ri:15 6994 [':21 6923 11:19 6947 
150 
151 
152 5) 

153 
154 
155 LRU FFF Wor This is the last actual page fault, and is comparable to the locality 156 
157 WS 	Store change indicated. 
158 11:23 	7014 	ii: 	o 	7021 	C: 	0 7019 1U15 7007 1U21 6923 EU19 6947 [':17 	7022 5) 

159 
160 

4 161 
162 LRU Store 
163 1U19 	6947 	D15 	7007 	[':23 7014 C: 0 7019 r': 	0 7021 1U17 7022 

4 164 ) 
165 
166 

4 167 FFF Store 
168 11:23 	7014 	ii: 	0 	7021 	C: 	0 7019 [':15 7007 [':21 6923 11:19 6947 E$U7 	7022 
169 

4 170 
171 
172 • 173 
174 Str 

) 
175 • 176 WS 	Store 
177 [':23 	7093 	EU 0 	7100 	C: o 7099 11:15 7094 1U21 6923 [':19 6947 EU17 	7072 
178 
179 
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Our. Jar. 21 	14:10:30 1979 Ex435ad page 4 I 	; 

181 LRU Store 
182 t'U9 	6947 	1U17 	7072 	[':23 7093 D15 7094 C: 	0 7099 ii: 	o 7100 

103 
184 
185 
106 PFF Store 
187 [':23 	7093 	ii: 	o 	7100 	C: 	0 7099 LU15 7094 [':21 6923 t'U9 6947 11U7 7072 

188 
189 
190 The effect of the Working set "strobe" is shown in this output to 
191 
192 indicate where the Working set algorithm removes the unnecessary pages. 
193 Str 
194 
195 US 	Store 
196 [':23 	7193 	EU 0 	7200 	C: 0 7199 D:15 7194 1U21 6923 1U19 6947 1U17 7172 

197 
198 
199 
200 LRIJ Store 
201 [1:19 	6947 	D:17 	7172 	D:23 7193 D15 7194 C: 0 7199 Ii: 	0 7200 

202 
203 ) 

204 
205 PFF Store 
206 E':23 	7193 	EU 0 	7200 	C: 0 7199 [':15 7194 tU21 6923 1U19 6947 EU17 7172 

207 
208 
209 
210 
211 
212 Str 
213 
214 US 	Store 
215 [':23 	7293 	o: 	0 	7300 	C: 	0 7299 i':15 7294 EU21 6923 EU19 6947 1U17 7272 

216 
217 
218 
219 LRU Store 
220 1U19 	6947 	[':17 	7272 	1U23 7293 EU15 7294 C: 	0 7299 r': 	0 7300 
221 
222 
223 
224 PFF Store 
225 E':23 	7293 	r': 	0 	7300 	C: 	0 7299 1U15 7294 1U21 6923 1U19 6947 EU17 7272 
226 
227 -) 
228 
229 
230 
231 Str 
232 
233 US 	Store ) 

234 11:23 	7393 	EU 0 	7400 	C: 0 7399 tU15 7394 [':21 6923 EU19 6947 1U17 7372 
235 
236 
237 
238 LRU Store 
239 [':19 	6947 	tU17 	7372 	11:23 7393 1U15 7394 C: 	0 7399 1' 	0 7400 
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241 
242 
243 PFF Store 
244 [':23 	7393 	t1 	0 	7400 	C: 	0 7399 1U15 7394 [U21 6923 1'19 6947 	[':17 	7372 
245 () 
246 
247 
248 

) 

249 
250 Str 
251 
252 US 	Store 
253 [':23 	7493 	0 	0 	7500 	C: 0 7499 D15 7494 1'17 7472 
254 
255 
256 
257 LRU Store 

) 

258 I'U9 	6947 	D17 	7472 	11:23 7493 ti:15 7494 C: 	0 7499 LU 0 7500 
259 
260 

) 

261 
262 PFF Store 
263 [1:23 	7493 	o: 0 	7500 	C: 0 7499 ['U5 7494 [1:21 6923 1U19 6947 	1U17 	7472 
264 
265 
266 
267 
268 
269 Str 
270 
271 US 	Store 
272 [':23 	7593 	D 	0 	7600 	C: 0 7599 ['U5 7594 1U17 7572 
273 
274 
275 

) 

276 LRIJ Store 
277 11:19 	6947 	1U17 	7572 	11:23 7593 IIUS 7594 C: 0 7599 0 7600 
278 
279 
280 
281 PFF Store 
282 11:23 	7593 	D 	0 	7600 	C: 0 7599 t':15 7594 1U21 6923 1U19 6947 	[1:17 	7572 
283 
284 
285 
286 
287 
288 Str 
289 
290 US 	Store 
291 [':23 	7693 	ii: 	0 	7700 	C: 	0 7699 t':15 7694 [':17 7672 
292 
293 

 
294 
295 LRU Store 
296 [':19 	6947 	1U17 	7672 	[':23 7693 1U15 7694 C: 	o 7699 D 	0 7700 
297 
298 
299 
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301 [':23 	7693 	o: 	0 	7700 	C: 	0 7699 0:15 7694 021 6923 [U19 6947 [':17 7672 
302 
303 
304 
305 
306 
307 Str 
308 
309 US 	Store 
310 [':23 	7793 	ii: 	0 	7800 	C: 	0 7799 [':15 7794 t'U7 7772 

( 311 
312 
313 
314 LRU Store 
315 t'U9 	6947 	t'U7 	7772 	0:23 7793 0U5 7794 C: 0 7799 o: 0 7800 
316 
317 
318 
319 PFF Store 
320 0:23 	7793 	0 	0 	7800 	C: 0 7799 11:15 7794 021 6923 1U19 6947 017 7772 
321 
322 

( 323 ) 

324 
325 
326 Str 
327 
328 US 	Store 
329 0:23 	7893 	ii: 	0 	7900 	C: 	0 7899 [':15 7894 11U7 7872 
330 
331 
332 
333 LRU Store 
334 [':19 	6947 	017 	7872 	[':23 7893 L'U5 7894 C: 0 7899 0 	0 7900 
335 
336 
337 
338 PFF Store 
339 0:23 	7893 	o: 0 	7900 	C: 0 7899 [':15 7894 1U21 6923 019 6947 1U17 7872 
340 
341 
342 
343 
344 ) 

345 Str 
346 

• 	( 347 US 	Store 
348 .0:23 	7993 	0 	0 	8000 	C: 0 7999 [':15 7994 [':17 7972 
349 
350 
351 
352 LRU Store 
353 [U19 	6947 	1U17 	7972 	[':23 7993 r':15 7994 C: 	o 7999 0 	0 8000 
354 
355 
356 
357 PFF Store 
358 0:23 	7993 	0: 0 	8000 	C: 0 7999 0:15 7994 0:21 6923 0:19 6947 ['U7 7972 
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361 
362 
363 
364 Str 

4. 365 
366 US 	Store 
367 [':23 	8093 	0 	0 	0100 	C: 0 8099 1U15 8094 [U17 8072 

( 
368 
369 
370 
371 LRU Store 
372 [U19 	6947 	0U7 	8072 	0:23 8093 t':15 8094 C: 	0 8099 o: 	0 8100 

373 

4 374 
375 
376 PFF Store 
377 0:23 	8093 	ti: 	0 	8100 	C: 	0 8099 1U15 8094 1U21 6923 1U19 6947 0:17 	8072 

378 
379 
380 1) 
381 
382 

( 
383 Str 
384 
385 US 	Store 
386 [':23 	8193 	ti: 	0 	8200 	C: 	0 8199 1U15 8194 1U17 8172 

387 
388 

4 389 
390 LRU Store 
391 11:19 	6947 	0:17 	8172 	11:23 8193 tu:15 8194 C: 	0 8199 ii: 	o 8200 

392 
393 
394 
395 PFF Store 
396 [':23 	8193 	D: 0 	8200 	C: 0 8199 o:15 8194 tU21 6923 [':19 6947 EU17 	8172 

397 
398 
399 
400 
401 
402 Str 
403 
404 US 	Store 
405 0:23 	8293 	EU 0 	8300 	C: 0 8299 t':15 8294 11:17 8272 

406 
407 
408 
409 LRU Store 
410 [1:19 	6947 	[1:17 	8272 	[1:23 8293 ti41 15 8294 C: 0 8299 EU 0 8300 

411 
412 

4 413 
414 PFF Store 
415 [':23 	8293 	ru: 	0 	8300 	C: 	0 8299 ri:15 8294 [1:21 6923 tU19 6947 [1:17 	8272 

416 
417 
418 



here are:- 

Program Restructuring 

Swapped Working Sets 

Critical Working Sets 

4.4.1 Program Restructuring 

Hatfield and Gerald (Hat 71) and Hatfield (Hat 72) 

developed techniques for examining programs that are to 

be run in virtual memory systems, and for reducing their 

physical memory requirements with little or no recoding. 

A program is divided into sectors, which represent 

contiguous locations which are logically associated 

one with another. A "nearness matrix" is constructed 

during a pre-run of the program wherein the numbers of 

references from each sector to another are filled into 

the relevant position in this matrix. 

Different sector orderings can be selected where refer -

ences out of blocks of sectors are reduced to a minimum. 

This can be represented by a clustering around the 

diagonals of the matrix (see Example 4.4.1.1). 

The authors themselves present some criticisms of this 

technique: 

The matrix only presents global nearness and 

does not show any time dependent behaviour. - 

A new nearness matrix might have to be generated 

every time a program is run with new data. 
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EXAMPLE 4.4.1.1 

Sectors =[l ,2,3,4,5,6  

Nearness matrix = C. 	where 

1 	2 	3 	4 	5 	6 

1 	213 	43 	- 612 

2 	769 

3 	 3 416 	541 
C.. 

- 
13 	4 	 317 

5 	 684 

6 	39 	297 	 291 

which can be restructured to give 

15 	3 	6 	4 	2 

1 	213  61243 

- - - 684: 

3 	 :416541, 	3 
C.. = 13 	6 	39 	29721,' 

4 	 317 

2 	 769 

Their own experiments have tended to show that:- 

program behaviour improves with restructuring 

based on this technique 

programs which are commonly used tend to show 

data independent behaviour. 

For the actual running of programs, the blocks of sectors 

achieved by the restructuring are allocated to pages in a 
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minimal fashion. That is to say, in a manner which will 

minimise the number of inte.r-oage references. 

The techniques described have been shown to produce a 

reduction in paging of between two-to-one and ten-to-one. 

The major problem with this technique is that the tracing 

program takes about 30 to 60 times as long as the traced 

program to run. This seems to be a prohibitively long 

time for all but the most frequently used programs. 

4.4.2 Swapped Working Sets 

If when a program starts a period of execution its 

complete working set is not in store, a considerable 

amount of page traffic occurs while it builds up its 

working set. Experimental evidence reported by Adams 

(Ada 76) indicates that more than fifty per cent of page 

traffic comes from these faults. 

A solution to this problem is to pre-load the working 

set of a program when it is re-activated. This is, in 

effect, an exact implementation in this respect of the 

Working Set policy, since that technique requires that 

a process have its complete current working set in store 

before it is allowed to run. In practice, this was often 

ignored for implementation reasons. 

This technique has two effects:- 

1. The number of individual page faults is reduced. 

(Although the volume of page traffic is not reduced) 
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2. A bulk request is made to secondary memory for 

the absent working set pages, and this allows 

optimisation at the level of secondary memory. 

This technique, reported by Potier (Pot 77) was implemented 

on the Edinburgh Multi-Access System (EMAS) (Ada 75). 

The only drawback of this technique occurs if a program is 

re-activated at the time of a locality transition. The 

working set that is pre-loaded will be out-of-date and 

will not refer to the new locality. Consequently, the 

program will demand-page up to its new working set and 

will remain with an over-large store alloçtion for some 

period which depends on the exact implementation of the 

Working Set principle. 

4.4.3 Critical Working Sets 

This technique also aims at program locality improvement 

by means of restructuring (Fer 74). 

In this technique, a working set, W(t,T), is said to be 

a critical working set if 

r(t + 1) . W(t,T). 

That is to say, a page fault occurs at r(t + 1). 

The idea behind this algorithm is to consider two 

reference strings 5b and S 	5b is the reference string 

with respect to the logical blocks of a program, and S ,  

is the reference string with respect to the pages of the 

program. Any mapping of the program blocks into pages 
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transforms the block reference string into a page 

reference string. It is shown that a page fault in S 

always corresponds to a block fault in Sbl  although all 

block faults do not have corresponding page fault. The 

aim of the Critical Working Set algorithms is to mini-

mise the number of critical working sets in S r,. 

A critical working set matrix is created which is an 

n x n matrix whose entry c is the number of criticalij  

working sets having i as their critical reference and 

containing j. Consequently, c 	+ c.. is the number of 

critical working sets which disappear if i and j are 

mapped onto the same page. 

This matrix is then used to produce an optimal allocation 

of blocks to pages. 

It is reported that this technique is as successful as 

that reported by Hatfield and Gerald (see 4.4.1) in 

practical situations. 

Again the major drawback of such a method is the con-

siderable amount of processing time required to obtain 

all the necessary information for restructuring. 

4.5 Conclusions 

A number of conclusions can be drawn from the results and 

comments above:- 

1. No real measure, of how well a program behaves 

with respect to a particular page replacement 
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algorithm has been established. Mathematical 

models of program behaviour only extend to 

some types of reference strings and do not, in 

general, deal with locality transitions. 

Equally, no "standard" reference string has 

been produced against which the behaviour of 

algorithms can be measured. 

Given a replacement algorithm, it is all too 

easy to find "real" programs which will behave 

badly under that algorithm. Indeed, even the 

"near-optimal" Working Set algorithm is shown 

to have unexpected far-from-optimal behaviour 

in simple cases. 

If a process behaves badly with respect to a 

page replacement algorithm, it will always 

behave badly with respect to that algorithm no 

matter how many times it runs. 

Replacement algorithms tend to make assumptions 

about the reference behaviour of programs, 

whether they display this behaviour or not. 

A program is a deterministic entity, yet most 

algorithms are based on a probabilistic 

approach to program behaviour which completely 

ignores any prior information that may be 

available about the program's behaviour. 

Attempts to improve locality by restructuring 

the address space of programs to fit the 
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replacement algorithms have met with some 

success but are extremely costly. 

In the next chapter an alternative approach which 

attempts to mould a flexible algorithm to each individual 

program is proposed and subsequently developed. 
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CHAPTER 5 	A PROPOSAL FOR MEMORY MANAGEMENT SYSTEMS 

BASED ON A KNOWLEDGE OF PROGRAM STRUCTURE 

5.1 Introduction 

In the previous chapter, it has been shown that each of 

the major replacement algorithms suffers from major 

practical deficiencies. In this chapter the background 

to a somewhat different approach to storage management is 

presented. 

5.2 Program Structure and Program Behaviour 

With the development of high-level languages into 

complex software tools, it is only natural that programs 

have, themselves, grown more complex and more structured. 

Due to the timing of the work done on replacement 

algorithms, much of the work related to reference strings 

produced by FORTRAN or Assembler programs. It is one 

of the contentions of this thesis that analysis of the 

localities in such strings has produced algorithms that 

are appropriate only to such strings. 

This, in itself, would be no great disadvantage if it 

were not for the fact that reference behaviour within 

languages which maintain a very linear and static address 

space is radically different from that type of behaviour 

displayed in the dynamically changing block-based address 

space in wide-spread use today. 
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At this point, then, it is useful to examine some of 

the language features available and to consider how these 

features affect the notion of program locality. 

5.2.1 Block Structure 

This feature, in itself, gives good support to the notion 

of a program going through a series of localities during 

its execution. This is a significant diversion from the 

early static languages. Dijkstra (Dij 76) examines the 

idea of accessibility of variables and states:- 

"From the point-of-view of flexibility and general 

applicability, the random access of store is, of 

course, a splendid invention, but comes the moment 

that we must realise that each flexibility, each 

generality of our tools requires a discipline for 

its exploitation. That moment has come." 

Dijkstra identifies first the notion of a declaration as a 

useful form of redundancy, not present in the original 

version of FORTRAN. Declaring variables meant that data 

items could not deliberately (or accidentally) be created 

at run-time in a haphazard manner by simply placing the 

new name in the text of the program. Block structure 

itself was a great departure from the FORTRAN background. 

The idea of being able to nest blocks and their associated 

variable declarations has led to the idea of global and 

local variables. 

When a program is executing in a given block, variables 
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declared in an inner block are protected by the scope 

rules and are inaccessible. Thus a program can access 

only a subset of its total address space at a given time, 

thereby supporting the idea of locality. However in a 

given block of program, everything outside that block is 

accessible (except for those identifiers which have 

been re-declared in some of the nested blocks). It has 

proved to be the case that fledgling programmers have been 

encouraged to use local variables widely and global 

variables sparingly because of "good style". It is also 

true that the use of local variables improves the locality 

of a program, whereas reference to variables global to a 

given block increases the size of the locality. 

It is interesting to note that current notions of departing 

from this extensive block context will tend to improve 

locality. The idea presented by Dijkstra and others of 

maintaining textual context but explicitly enumerating the 

names that make up this context at block entry, further 

restricts the address space accessible to a program at a 

given time and effectively defines the data locality of the 

program at that instant (cf, for example (Lam 77) ). 

5.2.2 Procedures and Functions 

Even early implementations of FORTRAN and some assemblers 

allowed the idea of procedures and functions (or sub-

programs). These were the first occurrences of explicit 

locality in a program text. Statements performing a 
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logically distinct.f unction were physically gathered into 

a distinct textual unit. During the execution of this 

distinct function, the program maintained a distinct 

locality (up to the restrictions mentioned above). It is 

useful to note that procedures and functions used the 

first primitive import and export list for their para-

meter lists. 

Again it is useful to note that "good programming style" 

tends towards good locality. Within the context of 

procedures and functions (particularly the latter) side-

effects are frowned upon. Such entities, it is recommended, 

should only affect their environment through their para-

meters or result. This is another way of restricting the 

accessible address space of a program at a given time. 

However for procedures and functions, the most interesting 

aspects of locality behaviour are displayed by the use and 

implementation of parameters. Three types of parameter are 

identifiable: - 

Name-type parameters 

Reference-type parameters 

Value-type parameters. 

These have different effects on locality;- 

1. Name-type parameters:- Such parameters, have 

addresses calculated at each time of use within 

the body of the procedure. This is unfortunate 

for locality, as it is impossible at the point 

of locality transition to determine exactly the 
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extent of the locality. It is fortunate, 

from a locality point-of-view, that this method 

of parameter passing has gone out of favour. 

In fact, the reasons that this technique has 

gone out of favour are similar to those used 

from arguing the locality viewpoint. 

2. Reference-type parameters:- This type of para-

meter passing mechanism is widely used to en-

able the effect of procedures and functions to 

be passed out to the environment. However two 

implementation techniques result in different 

locality behaviour: -  

Reference: the address of the parameter is 

worked out at the call of the 

procedure or function and this 

address is used throughout the 

body of the procedure wherever 

the parameter name occurs. 

Value-result: a variable local to the pro-

cedure or function is set up 

with the same type and same 

value as the actual parameter 

- 	 at the time of the call. At 

the end of the procedure or 

function the value in this 

local variable is copied back 

to the actual parameter. 

Although these techniques are often used inter- 
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changeably in the implementations of a 

programming language, the reference behaviour 

produced is radically different. In the case 

of "pure" reference, this technique will almost 

certainly add to the locality size of the 

program at this point. A (not necessarily 

distinct) page (or pages) will be added for 

each reference parameter used. This addition 

could be critical in the case of LRU where the 

stack length is exceeded. 

On the other hand, value-result packs the 

parameter-inspired variables in the local data 

space at the cost of an extra page fault for 

each parameter (approximately) at procedure 

exit. This could be a poor technique, in that 

retrospective algorithms will maintain the pages 

containing the actual parameters anyway for a 

strobe period. However from an aesthetic 

viewpoint the purely internal locality (in the 

absence of explicit globals) has its attractions. 

Value-result is not very popular for dealing 

with array parameters due to the copying in-

volved. 

3. value-type parameters: these are essentially 

implemented as the first half of value-result 

parameters, i.e. the result is not passed back 

at exit time. The same comments can be made as 

of value-result above. 
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Another feature of procedures and functions is their 

relationship to the Page-Fault Frequency algorithm 

mentioned above. It is clear that at orocedure/function 

entry a program will attempt to acquire pages relating 

to the new locality quickly. This is the point at which 

PFF is likely to behave badly, since the previous 

locality is only removed at the first non-critical page 

fault. A program which displays good locality in its 

procedures using value-result parameters etc might well 

have a small locality over-estimated by PFF in this 

situation. 

5.2.3 Arrays and Records 

In that these structures are inherently similar - arrays 

being named collections of objects of identical type and 

records being named collections of objects of not 

necessarily the same type - it is useful to consider them 

together. However it is important to note that in typical 

applications arrays are significantly larger objects than 

records. 

The important feature of these structures is that the 

whole structure may be referenced with a single textual 

reference. (It is assumed that "reasonable" languages 

allow record/array assignment and, at least, comparison 

for equality and inequality on records and some arrays, 

e.g. strings). As far as arrays are concerned, single 
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items within the structure are identified by indices that 

may themselves be program variables. This implies that 

the actual items being dealt with cannot be identified, in 

many cases, by simply examining the program text. This is 

not usually true of records whose fields are usually 

identified by fixed names which are extensions of the 

record name and cannot be variables. 

The implications of the above are two-fold. Firstly, as 

was shown earlier single instructions at the high-level 

language level and even at the machine-level language level 

can generate large numbers of references. If this number 

is large enough it can tend to saturate a retrospective 

page replacement algorithm. In fact this saturation can 

occur without the array/record assignment statement, 

consider: -  

for i: = 1 to 2048 do au) :=O; 

If the system on which this little program runs has a page 

size of 256 words and utilises, say, an LRU algorithm with 

a stack size of 8 pages, then the stack is rapidly filled 

up with the pages of the array being initialised. Only the 

context of the program after this statement will say if 

this is reasonable or not. 

It is interesting to note that Dijkstra (Dij 76) hesitates 

to allow array assignments in languages because they are 

not "nice". That is to say, their implications are not 

really clear at the language level. 
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The second point that arises, chiefly from arrays, is 

the notion of access to the mapped linear form of the 

array in store. In the case of two dimensional arrays, 

two possibilities exist, namely to store by rows or to 

store by columns (see Diagram 5.1 a) 	and Diagram 

5.1 b ). 

To illustrate the point a worst-case can be constructed. 

Assume a system with a page size of 256 words, and assume 

the following (PASCAL) array definition:- 

A : arrayIl..256,1..256of integer; 

Assume further (though this is not necessary) that A is 

aligned 

Ci 	C2 	 Cr 

a) Storing by columns 
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R  

R2 

R  

b) Storing by rows 

Diagram 5.1 

to a page boundary . Consider the following two pieces 

of code:- 

for i: = 1 to 256 do 

for j: = 1 to 256 do A[i,jl 	:= 0; (5.1) 

for i: = 1 to 256 do 

for j: = 1 to 256 do A[ j,i] 	: 0; (5.2) 

The effect of these two pieces of code is identical, 

namely the elements of A are set to zero. 
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However, (5.1) assigns zeros on a row by row basis and 

(5.2) assigns zeros on a column by column basis. 

(Assuming the convention of row index followed by column 

index in the ordering of array indices). 

In the case of arrays stored by row (Diagram 5.j 	b) ) 

then (5.1) will generate a page fault every 256 references. 

Similarly in the case of arrays stored by column 

(Diagram 5.1 	a) ) then (5.2) will generate a page 

fault every 256 references. However if the code of (5.1) 

is used in the situation where arrays are stored by 

column or vice versa, unless the store set size is 

allowed to reach 256 pages then this code will generate a 

page fault on every reference to the array. 

There is nothing that a retrospective algorithm looking 

at the reference string can do about this. It is un- 

fortunate that the behaviour penalty for not knowing about 

how the arrays have benn implemented is so severe (256 

times more page faults in this phase). 

5.2.4 Complex Data Structures and Pointers 

In this category are considered the so-called dynamic and 

recursive data structures e.g. lists, queues, trees, etc. 

Although such structures can be implemented using the 

static data structures the tendency has been to implement 

them using pointers. Both techniques have their dis-

advantages. 
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If an array is used to simulate any dynamic structure, 

two deficiencies are apparent. Firstly, over-estimation 

of the space required is necessary in many problems to 

deal with all the contingencies. Secondly, the penalty 

of random access to a linear store is incurred. For 

example, in a list structure it is common to have an 

array of list-heads (depending on how many lists are 

required) and an available space list which initially 

links all the items in the data array (see Dia- 

gram 5.2 ). 

Avuilct4e Space List 

List Heads 

List E 

Diagram 5.2 
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However as these items are added, in whatever way the 

problem requires, to the individual lists and possibly 

transferred from list to list, the overall structure 

becomes less orderly. As can be seen in Diagram 5.3, 

references to logically associated items, i.e. they are 

currently on the same list, can lead to accesses to 

physically distant areas of store. 

Diagram 5. 3 
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Implementation of dynamic data structures using 

pointers and the ability to create and destroy elements 

of a given type during the run of a program implies more 

complex storage management structures for the program 

itself (e.g. the "heap" construct) and tends to require 

effective garbage collection to tidy up disposed-of 

items. 

Apart from this overhead, the problem of less disciplined 

access to store is not resolved. If list items are 

created as they are needed and then used in any order 

than the one in which they were created, the tendency 

towards random access is just as strong as in the first 

case. 

It is not fair to use this as a criticism of page 

replacement algorithms alone, because it is difficult to 

see how any storage management technique could accommodate 

such potentially undisciplined behaviour. This section 

has been included rather to show what potential there is 

for poor behaviour in even relatively simple problems. 

In the above sections, some aspects of data representations 

have been related to data locality behaviour, in the 

following sections program structures will be related to 

program locality behaviour. 
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5.2.5 Procedures and Functions 

Such program elements as these represent the support 

for an intuitive belief in program locality. As well 

as being able (if the suggestions in 5.2.2 are 

implemented) to completely define the data locality, 

the program (or code) locality is restricted to the 

code of the procedure and that of any other procedures 

or functions it calls. Under these constraints it is 

almost possible to completely define the locality and 

the locality transitions during the lifetime of a 

program. 

For a procedure or function can be defined the following 

objects: -  

IMPORTS - Values imported from its environment. 

These represent the values of para-

meters etc defined outside the 

procedure and used within the 

procedure. 

EXPORTS - Values exported from the procedure at 

its exit. Again, these represent the 

variables defined in its environment 

changed by the procedure. 

ASSOCIATES - The procedures and their environ-

ments that are possibly used by 

the procedure during its lifetime. 

The relationship between these objects is shown graphic-

ally in Diagram 5.4. 
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It is not sufficient to look only at this macro-

structure. The program constructs described below have 

an effect on the duration of time spent in particular 

localities and in the choice of possible localities 

used by a program during its lifetime. 

+ 	 ASSOCIATES 

Diagram 5.4 
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5.2.6 Loop Structures 

There are three common loop structures: - 

the for loop - fori:=ltondo ........ 

the while loop - while' con& do ........ 

C) the repeat loop - repeat ........until cond' ; 

As far as program reference behaviour is concerned, the 

body of a loop represents a locality which consists of 

a section of code that is repeated a (not necessarily 

pre-determinable) number of times. This is further 

complicated by the fact that, if a loop is considered 

as a locality, it would be desirable to standardise the 

treatment of localities. Consequently, an import and 

export list is required. This is not as easy to handle 

as the procedure/function case where the import and 

export lists can legitimately be prespecified. However, 

as will be shown later, the contents of the import and 

export lists can be predetermined with little extra cost. 

The associates of a loop locality can be identified in a 

similar fashion to those of a procedure or function. 

The two remaining sections deal with two constructs that 

can control the particular localities chosen during the 

execution of a program. 

5.2.7 Conditions 

Here are considered the two conditional constructs:-

a) if <cond then ...... 
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and the more general form of the condition 

b) case .... of 

Each of these constructs represents the selection of 

one out of one or more actions depending on the value 

of some expression. Diagram 5.5 	below shows the 

relationship between the if statement and the case 

statement. 

If the condition is true then At 

is carried out, otherwise A  is 

performed (A f  may be null). 

The selection is 

performed with more 

components than the 

boolean in the if 

statement. Any of 

the A i may be null. 

Diagram 5.5 
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Obviously, if the actions selected represent a signifi-

cant amount of code then each action could be considered 

to be a locality. This implies that the direction, in 

terms of locality, which is taken by a program cannot be 

determined until the condition is tested. 

5.2.8 The goto Statement 

The goto statement, often combined with a conditional 

statement, represents an almost arbitrary selection of 

the next locality. This can cause a complete change of 

locality, "at a stroke". Similar criticisms are made of 

the goto statement from the program structure point-of-

view. Such a statement which can cause control to be 

moved around a program structure in an unrestrained 

fashion represents bad style and a positive hindrance 

to reliable program development. 

However the issue that the goto statement raises in the 

terms of program locality is that of the successor to a 

given locality. For a given locality, there can be 

identified two associated sets of localities:- 

Predecessors: these are the localities which have 

the given locality as a successor 

Successors: these are the localities which may be 

entered on exit from this locality. 

It is the successor relationship that is the most 

important. The problem that exists is to determine which 

of the possible successors (if there are more than one) 
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will be chosen when the program is executed. 

5.3 The Formalisation of the Program Structure Approach 

It is not the intention of this thesis to present a 

theoretical description of the basis of the program 

structure approach to storage management. It is all too 

often the case that a theoretical approach to any topic 

is forced to make concessions to the tractability of 

theoretical analysis which ultimately reduces the 

applicability of the results. This criticism can be 

made of the theoretical approach to the state-of-the-art 

presented in the earlier part of this thesis. A funda-

mental flaw with such approaches is that, although the 

final algorithm may match the theory well, practical 

programs have a habit of diverging from the theory at a 

critical point. The particular problem area for previous 

algorithms has been at locality changes. It is intuitively 

obvious and easy to demonstrate that any retrospective 

algorithm will fail when the past and future diverge. 

Consequently, the approach of this thesis has been to 

identify localities and to determine the constituents of 

all future localities for a given locality. 

A locality is defined as follows:- 

DEFINITION 5.1 Locality 

A program locality is a 7 - tuple 

C,L,I,E,P,S,A 

where 
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C - the code executed in this locality 

L - the variables local to this locality (if any) 

that are accessed in this locality 

I - the values of variables global to this 

locality that are accessed in this locality 

E - the variables global to this locality whose 

values may be changed in this locality 

P - that set of localities that have the given 

locality as a successor 

S - that set of localities which may be entered 

on exit from this locality 

A - that set of localities which may be entered 

from this locality but return control to 

this locality. 

NOTE: Thus, as was introduced above, for each 

locality is identified the local code and 

variables, import and export lists, pre-

decessor, successor, and associate locality 

sets. 

Two particular locality types can be identified:-

DEFINITION 5.2 	Initial Locality 

An initial locality is a locality with no predecessor 

in the current program context. This will correspond 

to the locality entered at the beginning of a program. 

DEFINITION 5.3 	Final Locality 

A final locality is a locality with no successor in 

the current program context. Such a program locality 
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will represent a locality in which the program can 

halt under program control. 

For a orogram, there will be a unique locality with no 

predecessor. However if the system allows pre-compiled 

procedures to be available with multiple entry points, 

then these may have multiple initial localities. 

If a programming language provides halt/stop instructions 

then there may be multiple localities in which the 

program can halt under program control. However if no 

such instruction exists then there will be only one such 

locality. 

As a result, if normal execution of a program is con-

sidered to be running a program until it halts under 

program control, then the following formal definition 

can be made:- 

DEFINITION 5.4 Normal Program Execution 

Normal program execution is described as a path from 

an initial locality to a final locality. At the 

exit from a locality the next locality is chosen 

from among the successors of the current locality. 

If a program is assumed to have only one initial locality 

and one final locality then the possible execution paths 

can be represented as shown in Diagram 5.6. 

At this point it should be noted that the structure in 

Diagram 5.6 implies that there might be some potential 

for lattice structure analysis of programs. 
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5.4 	Conclusion 

In this chapter, the aim has been to show how program 

structure relates to program locality, and further to 

show that in many instances good program structure and 

potentially good program behaviour from a memory manage-

ment point-of-view go hand-in-hand. From the point-of- 

view of program structure, components of program localities 

can be identified and this led to a formal definition of 

a program locality. 

In the next chapter, it will be shown how program 

localities can be identified at the time of compilation of 

a program, thereby providing the run-time environment with 

a behavioural description of the complete program. 
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CHAPTER 6 AN EXPERIMENTAL IMPLEMENTATION 

6.1 Introduction 

In this chapter a description of a practical implementation 

of a program structure oriented approach to storage 

management is given. One of the main aims was to show 

that this approach could be implemented without, signifi-

cant changes to existing systems and without significant 

reductions in their efficiency. The implementation 

described is of modifications made to a PASCAL (Jen 74) 

compiler running on a PDP-11 computer under the UNIX 

operating system (Rit 78) at the University of Stirling. 

6.2 Implementation Aims 

The aim of the work was to extract at compile time 

information sufficient to identify and describe program 

segments in the manner introduced above (Chapter 5). 

This information would then be made available to the run-

time system and consequently the complete nature of 

localities and locality changes would be known at run-time. 

This approach is in direct contrast to that of conventional 

paged systems. The major practical attractions of paging 

are worth recounting at this point. 	Firstly, the 

technique is inherently simple. Programs are all divided 

into the same fixed size units and these units become the 

units of primary and secondary memory allocation as well as 

being the unit of transfer between main and secondary 
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memory. Secondly, the programmer need know nothing 

about how the system works. This technique does not hinder 

program portability in any way (cf overlaying). 

On the other hand, paging has brought its own problems. 

Firstly, the choice of page size is critical and difficult. 

Secondly, large amounts of system storage space can be 

occupied by tables. Thirdly, the use of demand paging 

systems has also tended to mean the use of retrospective 

page replacement algorithms whose drawbacks have been out- 

lined above. 

The proposed system returns to the idea of segmentation 

thereby removing the problems associated with page size. 

Equally, the proposed system directly identifies localities 

and locality changes thereby overcoming the uncertainty 

and capacity for error inherent in retrospective systems. 

Another aim of the system described here was to implement 

the proposals starting from an existing compiler. Apart 

from reducing the amount of ancillary work to be carried 

out, this approach has two advantages. Firstly, as no 

modifications were to be made to the compilation process 

itself, it would be impossible to lay the criticism that 

such a technique would only work in a controlled test 

situation with the desired end always in view. Secondly, 

a "normal" programming language could be considered and 

not, again, a limited test vehicle. 

The programming language, ultimately, chosen was PASCAL. 

The PASCAL system used was written by R G Clark at the 
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University of Stirling and the compiler produces code for 

a simple stack machine which is subsequently interpreted. 

In the approach described below, this simple machine 

language is considered to be the machine language of a 

"real" machine. This is consistent with either micro-

code interpretation or with the design of language-

oriented hardware, both of which techniques seem to be 

gaining an increasing number of adherents. 

To return to the choice of PASCAL, a number of reasons 

can be identified. Firstly, the compiler was available 

and access to, and modification of, the code of the com-

piler was possible. Secondly, PASCAL seemed to be an 

important language. While it is still not clear that 

PASCAL itself will be-of the utmost importance, itis 

clear that PASCAL embodies many of the current ideas con-

cerning structured programming and it is likely that 

PASCAL will form the basis of a number of future languages. 

Consequently, it was decided that, if in the limited 

context of this thesis only one language could be studied, 

PASCAL should be that language. It is fair to say that 

PASCAL is not totally suited to this research due to the 

fact that it lacks suitable constructs to describe data 

access and locality. Such facilities are only recently 

becoming available in languages like LIS (Ich 76 ) and 

EUCLID (Lam 77 

The technique employed was to divide the program being 

compiled, during the compilation process, into units of 

program or data space (subsequently called segments for 
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want of a better word) where the constituents of each 

unit were logically associated. For these segments the 

features described in Chapter 5 would be identified. 

The units identified fall into two categories: 

Data segments 

Program segments 

These will be considered in turn. 

6.2.1 Data Segments 

As has been shown above, it is unwise to consider program 

and data locality together. In order that one does not 

swamp the other, the locality in each area should be 

considered separately. 

As was mentioned earlier it would be ideal if the data 

structure itself could mirror the access that will be made 

to it, much as, say, the structure of a rooted tree mirrors 

access made to it via the root. In such an example the 

notion of the data locality for a given element could be 

identified as its parent and children (see Diagram 6.1) 



/ 

Diagram 6.1 

That is to say that having accessed node N it is likely 

that the next node to be accessed will be in the set 

Cl, C2, C31 

Languages exist now in which the access methods for a data 

structure can be matched to the structure itself at the 

implementation level. PASCAL is not such a language. 

Consequently only the most rudimentary data localities are 

identified within PASCAL programs. Within any given block 
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can be identified:- 

constants: this is not strictly (or at all) 

necessary since such identifiers are changed 

when generating code into the equivalent numerical 

constant. However it seemed that it might be a 

good idea to consider these as initialised 

variables (own variables) - a feature unavailable 

in PASCAL. 

local variables: the variables local to this block. 

arrays: each arrayis a separate data segment. 

This can be done at compiler time due to the fact 

that PASCAL allows only static arrays. Consequently 

the size of such a segment is known at compile time. 

Under b) more than one segment can be created if array 

declarations are mixed lexically with scalar declarations. 

This is a relatively trivial point but it is possible to 

support such an action in that the layout of variable 

declarations ought to have some logical significance. 

Equally a minor modification could produce all local 

scalars in a single segment. 

6.2.2 Program Segments 

Each block (program, procedure/function) is considered to 

be a separate unit, although the nesting structure of 

the original program is retained for convenience. 

Such program segments come under the general heading of 
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code segments and the following types can be identified:- 

Compound statements:- Loops, "if" statements, 

and "case" statements. 

Simple statements. 

Each compound statement represents a segment and the nesting 

of compound statements particularly loops is significant. 

Similarly a sequence of simple statements represents a 

segment. In this way it is hoped that logically associated 

statements can be grouped together. 

For each program segment, its associates (which includes 

variables used by this segment) are identifiable and retained 

with the segment. Since a complete division has been made 

between data and program segments all variables are, strictly, 

imported. However it is probably useful to distinguish 

between variables local to the block to which this segment 

belongs and those local to other blocks. In other words 

some variables are more important than others. 

It is simple to identify successors since, in the worst case, 

the "go tow,  all labels must be declared and consequently 

the segments to which a label refers can be extracted from 

the symbol table. Another bad case is that of a procedure 

call and return. The successor of a procedure call is the 

segment containing the call. 

Procedure parameters are specified at call and these 

are treated as associates to that particular instance of 

the procedure segment. 
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In the demonstration case the compiler produces output 

which divides the object code into segments. Each of 

which has its own associates identified (see Example 6.1). 

The implementation is described fully in the next section. 

6.3 Implementation 

The first modification to the compiler is to extend the 

symbol table entry for all named items. This extension 

contains all the segment information for that given item. 

A segment has the following information held on it:-

no: its number 

block: its block number 

actuálseg: whether it is, for code segments, a real 

segment (i.e. has code in it) 

unit: its unit number 

kind: the type of the segment 

start: starting address of the segment 

finish: finish address of the segment 

.assocst: the starting position in the associate 

table (q.v.) for the associates of this 

segment 

assocend: the finish position in the associate 

table for the associates of this segment. 

Each segment has associates, other segments referred to 

during the lifetime of that segment. These associates are 

held in an array which is passed to the run-time system, 
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after the code and other information. Each segment has 

itself as an associate. This is to enable the code for 

loading associates to be dumped at the start of a segment 

before the ultimate extent of the segment or its 

associates is known. 

The other major modification is to extend the instruction 

set of the virtual machine by one instruction. This 

instruction is the "fldctxt" instruction. 

The function of this instruction is to load the context of 

the segment about to be entered. That is to say it causes 

the loading of the segments containing the associates of 

the current segment. It has a second, subsidiary, function 

and that is the marking as free any areas of store 

occupied by segments no longer required by the system. 

These, then, are the only major modifications to the 

operation of an existing compiler to support this approach. 

The system identifies two basic segment types:- 

Data segments 

Code segments 

These are discussed more fully in the following sections. 

6.3.1 Data Segments 

As was mentioned in Chapter 5, data segments in PASCAL are 

easy to identify and delineate. The reasons for this are 

as follows:- 
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No dynamic structures (other than those 

created by the facility "now) exist. 

The data element descriptions are constructed 

in such a way that only one pass is required 

of the compiler. In other words, when the 

compiler encounters a declaration of a data 

element, it has all the necessary information 

to compute the size of the element available 

to it. 

Within the area of data segments, these types can be 

identified:- 

Constants 

Arrays 

Others 

These are considered below: 

1. Constants: Strictly these should not be data 

segments at all, since they are 

implemented by substituting the 

value whenever a constant identifier 

is encountered in the text. However, 

since it seems possible that 

initialised variables might be in-

corporated in PASCAL programs in a 

similar textual fashion it was thought 

a useful experiment to examine such 

segments. 
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Arrays: 	Each array is a segment. This is 

the first step towards data struct-

ures with accessing methods as 

segments. 

Others: 	The number of other data segments 

for variables depends on the layout 

of the declaration of arrays, but 

it was thought that, at least 

initially, the total number of 

segments was not important. 

Each data element has its segment information associates 

with it in its symbol table entry. 

6.3.2 Code Segments 

These are somewhat more complex entities. The major 

features identified in PASCAL were:- 

Procedures and functions 

Repeat / White / For loops 

Other compound statements 

1. Procedures and functions 

These represent the main block structure of PASCAL. A 

check of the nesting level of the current block is kept 

in the segment information (module.block). An index of 

the sub-units within each block is also kept (module.unit) 

as well as a simple number to identify the segment 

(module. no) 

6.11 



The procedure/function has a unique segment id associated 

with its total extent, so that the complete environment of 

a procedure/function may be loaded when that procedure/ 

function is called. 

At procedure/function call any variable parameters cause 

their segment to be loaded as well. Consequently the 

total environment of a procedure/function when called is:- 

All associates created by the procedure/function 

body 

All associates created by the parameters. 

2. Repeat / While / For loops 

Loops represent localities in which programs can reside 

for indefinite amounts of time, consequently they are 

allocated segments of their own. The problem of nested 

loops is considered fully in Chapter 7, but each loop with 

code of its own is considered to be a separate loop. If 

two nested loops exist as in the example below:- 

for 	i:= itondo 

for j : = 1 tomdo 

begin 

end; 

then this can be considered to be a single segment. 
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3. Other Compound Statements 

Here can be considered 

if .... then (Compound Statement' else'Compound 

Statement> 

case .... of 

Each of these constructs is in effect made out of a number 

of sub-segments representing the compound statements. 

They can be grouped together into an encompassing 

segment since it is normal for only one of these sub-

segments to be executed. 

Program statements not covered in the above categories are 

grouped into segments of an indeterminable nature, but it 

is hoped that their close proximity would make this a 

defensible action. 

It should be mentioned at this point that labels should 

indicate the start of a new segment since it is possible 

to jump to a label from a distant point, and consequently 

the context must be loaded when the jump is completed. 

Alternatively since Pascal requires labels to be declared 

it is possible to load the correct context immediately 

before the jump takes place. 

Since labels were not available in the reduced compiler 

used, and since the use of "goto"s: is currently considered 

bad practice, it was not thought to be sufficiently 

important to implement this feature. 
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6.4 Conclusion 

This chapter has presented a brief description of the 

implementation of the proposed program structure approach. 

Examples of the operation of the system are presented in 

detail in Chapter 7. 
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CHAPTER 7 RESULTS 

7.1 Introduction 

The results presented arise from the running of the 

compiler and interpreter mentioned in the previous 

chapter. The results show that it may be possible 

to implement systems which make no storage allocation 

decisions other than at locality transitions. The 

task of directly comparing this system with current 

paging systems is difficult. To do this effectively, 

complete operating systems must be built assuming the 

use of one of the techniques. In this way it would 

be possible to do something which is significantly 

lacking in the fieldat present. That is, obtain 

information on how well given systems run. Up to 

this point, there has been a tendency to obtain only 

crude qualitative assessment of the behaviour of 

paging systems. What comparisons have been made - 

between systems have not attempted to ascertain what 

can ultimately be done with memory management systems 

but rather have attempted to find which system is 

better than the others. 

rhat is not shown in the results below therefore, is 
how a complete system can be built round the proposed 

technique. What has been done, however, is to show 

how such a system might he expected to behave, where 

its strengths and weaknesses, lie, and how it compares 

on a number of counts with existing systems. A 
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side-effect of these measurements is that the 

sensitivity of some of the existing techniques to 

variations in their operational parameters is amply 

demonstrated. 

7.2 Quantitative Assessment 

As has been indicated earlier, to measure the behaviour 

of the memory management techniques interpreters were 

written which simulated the behaviour of the compiled 

programs under different management strategies and 

under similar strategies with different parameters. The 

four strategies used were:- 

the proposed segmented approach 

Working Set 

Page Fault Frequency 

Least Recently Used. 

At this point it is necessary to indicate the signifi-

cant limitations placed on the experiments by this 

implementation. 

Firstly, the relatively small available address space 

of the PDP 11/34 significantly constrained the size of 

program that could be compiled and run. 

Secondly, the speed of the 11/34 meant that relatively 

long programs could not be simulated readily (e.g. full 

bubblesort). 

Finally, no assessment could be made of the behaviour 

of each strategy in a multi-programming environment. 
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As a consequence, many of the measurements made below 

are scaled-down to this environment, but it is suggested 

that extrapolation to "real" systems is both reasonable 

and valid. 

In this context then the following measurements could be 

made: - 

a) for all approaches: 

the number of allocation decisions made 

the amount of program plus data space occupied 

during the execution of the program 

the traffic between backing store and main 

store 

the number of entries in the page/segment 

tables 

the time (in number of references) between 

allocation decisions. 

b) for the segmented approach: 

(i) 	the number, of segments moved in. 

c) for the paged approaches: 

the effect of variations in page size 

the effect of variations in LRU stack size 

the effect of variations in PFF critical 

frequency 

the effect of variations in WS strobe interval 

and window size. 

These measurements were carried out during the execution 

of four programs:- 

a) / 
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Permutation generation program 	(Example 7.2.1) 

Knight's tour program 	 (Example 7.2.2) 

C) Stable marriage program 	 (Example 7.2.3) 

d) Bubblesort (reduced) program 	(Example 7.2.4) 

These programs were chosen for a number of reasons but 

it was hoped that they would show up different types of 

program and data locality thereby enabling the algorithms 

to be tested satisfactorily. 
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EX 	7.2 
rorarn pe rrriute (input, output) 	- 

corist lirnit=20 
var perrla1'T'aEi,.1iITiitJ of integer;  

lirie:arraC1+ • lirnitJ of integer;  
ecnarraC14+191 of inteer 
a,ivst3rtv3l,IJPin,n,countir,teEer 
up boo 1 cart; 

function rniri(1astiriiriteer)irtteerj 
var iiniteeri 
begin 

i : =i; 
while((i-<r,)arid(lirie[i.J.(:::.0)) do 
i. - 1; 
if i<lastini then 
bej. 

line[i]44 =1;  
m i ri = i 

end 
else rniri-O 

end 

function rnax(lastiriiriteer)in;teer 
'.ar inter 
beg i ri 

irii 
• .. 	while((i>1)and(liriecj].:::).0)) do 

i :=j-i; 

if i>lastini then 
hein / 

l 44.nie[i1=1; 
max '0= 

end 
else niaxO 

end 

function rnak(xiriteer).jnteer 
var i,J,tenipirteer 

i11eaUhooieari; 
begin 

errn11J startvaU 
lirtccstartval]=i; 
ill a1=f1se 
for 1= 1 to x do 
heir: 

if lirieCperrnCiJ+ec -iCiJJ=O then, 
heiri 

per-,1i+13=periiCj3+cr,Cj3 
1irieCperiCi+133=1 

end 
else illeal.=true 

end 
if not illegal then 

if ((xO)or(x.::"n,-3)or ((x= n-3) arid(ahs(ec.nEn,-2J)•(=ahs(ecn,[r,-11))))th 
begin 

:= x+; 
while( 	 )and not illegal) do 
heir 

J:=i+1; 

if (up and (J dlv. 2 *2i+1))or(niot. up arid(J di'/ 2*2<>i+1))) t 



-'

. 4-  

4 -  

else J:=o; 
case J of 

0perrnCi+11rniri(perniCi]) 
1:perEi+11:=rnax(perrnCi:J) 

end 
if perrnCi+10 then 

illealtrue 	 - 
- 	else ecn[i]perrnEi+lJ -perrnCiji 

i. : =1+1; 
end;  

	

end 	- 
else 

if xn-3 then 
- beiri- 

teni 	-1*ecnuCrr-13 
eQniCri-11 	-i * ecriEn-21; 
ecrCr-21: temp;  
pernCn-1JperiiEri-23+eQriErr21; 
Per'!iCriJ 	perrri[rr-13+eQr,Cr;-13 

	

enid 	- 

	

for i 	1 to n do lirieci3-:0 
if not illegal then 

rnakec =1 
else niakecO 

	

er,o; 	 - 

procedure errnrint 
VaT .  flirteer 
he sl i ni 

for i 	I to ri do 
write( perrnCi]) 

writeiri 
count 	courit+1 

end;  

function search(xiriteer)iriteer 
var i ,ex integer 
begin 

ecxecriCxJ 
if x>O then 

if ccx>O then 
ecriExJ : e ax,  -1 

else erXJeGXf1 
eQxecniCxJ 
if >>1 then 

if ah(e <)ahs(ecriC-1J) then 
if ecx>O then 

ecniCxJ ecx-1 
else ecriCxJ= e ,.,+1 

if eniExJ<>O then 
if nuakeo(x)1 then 
begin,  

perrTiprinit 
search -ni--3 

end 
else search., 

else- 
end;  

- 	 - 



- 	

D• , t 	 - 	 .. 	 0 

-. 	 •. 	 . 	
0 	

0 

iri(*rnain*) 
writelri( / Input number of iriteers to he Permuted');  

writelri('1<ri<=20') 
read(ri); 
while rr:O do 
begin 

courutOi 
while (MO) or W20)) do 

Dc i ri 
write1ri('Rarie is 1,,20') 
writelru('Te 0 to finish');  

read(r); 

for A= 1 to n-i do eQr,ciJ:0; 
for A= 1 to n do lirieci3:0; 

writeln('Ineut direction of Permutation');  
writelr,('UP-DOWN = 1,tIOWN-UP = 
read(upiri) 
while ((upirr(>1) and (upjn.:::>0)) do 
begin 

writeln('tlirection is either 1 -> UP-DOWN or 0-.:::. DOWN-UP.');  

read(uiri) 
end;  
if upinl then 

ujptrije 
else up:fle 
writelnwritelruwritelri('PerrnUtatiorts are:'); 
if UP then 
begin 

	

for startval 	1 to ru-i do 
if make?c(0)1 then 
begin 

perrnprirut; 
if ri>3 then 
begin 

an-3 
repeat 

asearch(a) 
until 

end;  
crud 

end 

	

else for startval 	ri dowruto 1 do 
if makec(0)i then 
begin 

permpriruti 
if ri>3 then, 
begin 

an-3 
repeat 

asearch(a) 
until a= o; 

end;  
end;  

writeln writelri('Numher of permutations is'vcount)i 
writelru 

uritelnu('Iri'it No-. of riurruhers to he permuted) 
writeln('Tee 0 to finish');  
read-(n) i 



EX 7.2.2 

Program kriihtstoijr(outPut) 
const n=3 ; 

var j,Jinteer 
success: hooleari 
a,harraE1..83 of integer;  
tablearradC1. .ri,1,,ri] of integer; 

Procedure tr(i,x,'diriteer) 
(*i is the number of moves made4 x and v live the current Position* 

var k,u,vinteer 
begin 

k:= O; 
writelri(i,x') ;. 
repeat k=k+i; 

(*set up next move*) 
ux+aCk]v+bCk] 
(*test if the move is acceptable*) 

if (,j :::.=1)ani d(u.:::=n)and(v:::.=1)anld(v<:r1) then 

if tableCu,v30 then 
begin 

tahleEu,vJi(*reCOrd rruove*) 
(*test if board is full*) 
if i=ri*ri then s'Jccess: =true else 

begin 
tr(i+1,u,v)(*tr next move*) 
(*if the move is unsuccessful then erase move*) 
if not success then tahleEu,v30 

end 
e cid 

until success or (k=8); 
er,d(*tr*) 

begin 
(*initialise difference arrays and board sQuares*) 
a C12aE2J1aE3_1aC4]2aC5J26J 17JlBJ4 

hc1J:=1;hc2J:=2;b3]:=2bE4]=lihC5J - 1hC6J_2 ;bC 7 ] 2 PB 

for i1 to ni do 
for J1 to ri do tahleEi,j30 
(*initialise tour frdm position 1,1*) 
successfalseitahleE1,13l 
tr(2,1,1) 
if success then 
begin 

(*write out table*) 
for i1 to n do 
begin 

for J=i to ni do write(tahleCi,jJ) 
writeln (output) 

end 
end else writelniYrio solution') 

end 



EX 	7.2 
1 rorarn rnarri age (iriput,output) 
2 corist 
3 
4 var 
5 ITiir,teer; 
6 wiriteer 
7 ; 	 r** integer 
8 wrirrraC1,4r,,1,4r,:] 	of 	inteer 
9 rnwrarraL1.,ru,1,4r] 	of 	iriteser, 
10 rrnwarraE1,,ri,14,rtJ 	of 	inter, 
11 rwrnarraCl,,n,i,,r;J 	of 	integer; 
12 :arrac14,rJ 	of 	irpteer4 
13 v 	arraC144riJ 	of 	iriteeri 
14 sir;le 	arrajC14.riJ 	of 	hoo1cari 
15 
16 
17 procedure Print;  
18 var. 
19 n:iriteer; 
20 rrn,rwiruter; 
21 	• esir, 
22 rni=0 
23 rw0 
24 for rn=i to r, do 
25 begin 
26 . 	 write(,,,[!i)) 
27 rrnrrn4rrr,wCrn,xEmJJ; 
28 rwrw+rwrnCx[rnJyiJ; 
29 end; 
30 :ritelri( rrn' rw) 
31 . 	 end'-  
32 
33 	-... procedure tr(niiriteier) 
34 var 
35 r:iriteer 
36 w1iriteer 
3_i 
39 function 	stahlehoolear,; 
39 var 
40 Pffi:irteer; 
41 wiriteer 
42. i,lii:irteer; 
43 shooleari 
44 hoiri 
45 strue 
46 
47 while 	(i<r) 	and s do 
48 begin 
49 
50 
51 if 	not 	siri1e[pwJ 	then 	srwrriCpw,rn]<rwrriCpw,cpwJJ; 
52 end 
53 
54 lirn;=rwrn[w1 all r 
55 while 	(i<ligi) 	and s do 
56 heir, 
57 prri 	=mw rcw,iJ; 
58 . 	 i:=i+l; 
59 if 	Pm 	•(n, 	then 	s:=riwcpni,w]:::.raiwcpni,>cpiJJ; 
60 end;  



stable: s 
end;  

beigin 
for r=1 to ri do 
bestin 

if siriileCwJ then 
if stable then 
he i ri 

C , 	-i ,sLITI.J •._ W 

sirIle1w]4=f.3lse; 
if rn<r' then t.r(rn+1) else rirt 
sirt1e1wJ : true 

end;  
end 

end;  

be i r 
for IT ,  '4=1 to r, do 

for r=1 to ri do 
he i ri 

read(w,iirCci,rj); 
rrnwcrn,wrrircrci,r3]:r; 

end;  
for w=1 to r do 

for r=1 to ri do 
• heiiri 

read (mw r[w, j 
rwrri[w,ruwr[w,r]]:r; 

erio 

for w-1 to ri do sirile[w]:=true; 
tr(1) 

end. 



Example 7.2.4 

This is the same biibblesort algorithm that was 

used in Example 4.1.1. This example will be 

used to describe in detail the output generated 

by the experimental system. 

Two sets of output are produced for each program:- 

a descriptive listing produced by the compiler 

the object code generated by the compiler. 

These are considered below. 

i) Compiler Listing:- 

The output is divided into segments, the start 

of each segment being indicated by the "New. 

Segment" message. Along with this message three 

numbers are produced. These represent a) the 

block level of this segment, b) the unit 

number of this segment (i.e. the number of the 

segment with respect to this level) and C) the 

number of this segment. In data segments, only 
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the size of the segment is produced as any 

further information. In this example can be 

seen the division of the program variable area 

into two segments. The first segment corresponds 

to the three scalars "i,j,k" and the second to 

the array "element". 

Code segments have the code displayed before 

the corresponding source line. Here also can be 

seen the listing of the associates of the current 

segment. Each segment has itself as an associate, 

this is an operational convenience with no 

special significance. 

At the head of each segment can be seen the 

"fldctxt" instruction, which loads the context 

for this given segment. The second operand 

field for this segment indicates where the 

contextual information for this segment may be 

found in an array that is passed to the run- 

time system. (This array is described in part ii) 

below). Two further points can be observed in 

this example. Firstly, the problem of jumps 

(occurring here in loops) which may go to the 

middle of segments, thereby avoiding the loading 

of that segment's context. This has been removed 

by identifying the segment containing the jump 

address and passing this segment identifier to 
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the run-time system as the second operand of 

the jump instruction. Secondly, due to the 

time of the generation of the code produced 

with the listing, some jumps have not had 

their addresses and segment identifiers 

determined, the full code output in section ii) 

has the complete correct code. 

Object Code:- 

The object code output consists of a complete 

listing of the, object code in a numerical form, 

followed by the symbol table, string constants, 

the segment context information, and error 

information. 

The significant part is the segment context 

information. This has the following components:- 

the line number in this table 

the actual segment number 

the start of the associates of this segment 

the finish of the associates of this segment 

(both of these are line indexes for this table) 

the start of the area reserved for this segment 

the end of the area reserved for this segment 

(for data segments the end is the size of 

the segment) 

It is this table that is referred to by the second 

operand of all jump instructions and the "fldctxt't 

instruction. 
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EX 	7.2L 

1 prorai bubblesort( iriput,outut) 
2 var 
3 i,J,k:irteer; 
4 e1ernerItarraC1,420483of 	iriteer 
5 beir, 
6 
7 for i1 to 2048 do 
8 beirt 
9 
•10 
11 e1erneritCi]i+.J-k 
12 end;  
.13 for i:=2 to 5 do 
14 for J2048 dowrto i do 
15 begin 
16 if 	e1ernerttEJ-1D'e1ciiientCJJ 	then 
17 besl 
18 k:=e1ernrtEJ-1J; 
19 eiernentLj-1Je1ernenitEJJi 
20 e1errientEJJk 
21 end;  

end;  
23 end. 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

********** New Segment = 	1 	0 	0 ********** 
0001 Program bubblesort(ir,put,output) 

********** New Segment = 	1 	1 	1 ********** 
0002 var 

	

0003 	i,j,k:iriteer; 
Size= 	3 words 

********** New Segment = 	1 	2 	2 ********** 

	

0004 	e1euieritarraE1.,20483of integer;  
Size= 2048 words 

********** New Segment = 	1 	3 	3 ********** 

	

0 	 fldctxt 	0 	4 

	

1 	 fJsub 	2 	0 

	

2 	 fsave 	2051 	1 

Associates: 
Segment No 	3 

se 	3 

Size= 	3 words 
0005 begin 

********** New Segment = 	1 	4 	4 ********** 

	

3 	 fldctxt 	0 	5 

	

4 	 fidlit 	1 	1 

	

5 	 fidlit 	0 	1 

	

6 	 fass 	0 	0 

	

7 	 fidlit 
	

1 	2 

	

8 	 fidlit 
	

0 	0 

	

9 	 fidlit 
	

0 	1 

	

10 	 fsub 
	

0 	0 

	

11 	 fass 	0 	0 
0006 

Associates: 
Segment No 	4 

se 	4 
se 	1 

Size= 	9 words 

********** New Segment = 	1 	5 5 ********** 



- - 	 4T*u Jan 48 i 	t 	 -i;-------- st2 10 	i ,,  * 	, • 	 . ll - W —a 	. 

- T 
61 13 fidlit 1 0 
62 14 fidlit 0 1 

) 

63 15 fass 0 0 

64 16 fload 1 0 

65 17 f'ldlit 0 2048 
) 

66 18 fle 0 0 
67 19 fJfalse 0 0 

C 68 0007 for i1 to 2048 do 
69 0008 begin 

C 
70 
71 
72 
73 20 fidlit 1 1 

( 
74 21 fidlit 0 0 

) 

75 22 fload 1 1 
76 23 fidlit 0 1 

• 
77 24 fadd 0 0 ) 

78 25 fsub 0 0 
• 79 26 fass 0 0 

80 0009 J=-(J+1) ) 

81 

82 
83 ) 

84 27 fldlit 1 2 
85 •28 fidlit 0 0 
86 29 fload 1 2 

) 

87 30 fldlit 0 1 
Be 31 fsub 0 0 
89 32 fsub 0 0 
90 33 fass 0 0 
91 0010 
92 

) 

93 

94 
95 34 fload 1 0 
96 35 fin 1 2048 
97 36 firnod 1 2 
98 37 fload 1 0 ) 

99 38 fload 1 1 
100 39 fadd 0 0 
101 40 f load 1 2 
102 41 fsub 0 0 
103 42 fass 0 0 
104 0011 elenieritti]=i+J-k 
105 

106 
107 
108 43 fidlit 1 0 
109 44 fload 1 0 
110 45 fidlit 0 1 U 
111 46 fadd 0 0 
112 47 fass 0 0 
113 48 fjump 16 0 
114 49 furidef 1 0 
115 0012 erid 
116 
117 Associates 
118 
110 

Segment No 
------ ---------------------------------- 

5 



t 

4 

4 

4 

4 

4 

I 

I 

I 

I 

I 

I 

I 

I 

I 

t 

a 

121 se 	 1 
122 se 	2 
123 
124 Size= 	38 words 
125 
126 ********** New 8enperit 	1 6 6 ********** 
127 
120 
129 
130 50 fldctxt 0 10 
131 51 fidlit 1 0 
132 52 fidlit 0 2 
133 53 fass 0 0 
134 54 fload 1 0 
135 55 fidlit 0 2048 
136 56 fle 0 0 
137 57 fJfolse 0 0 
138 0013 for i2 to 2048 do 
139 
140 Associates 
141 Segment No 	6 
142 
143 se 	6 
144 se 	 1 
145 
146 Size= 	8 words 
147 
148 ********** New Segment = 	1 7 7 ********** 
149 
150 
151 
152 58 fldctxt 0 12 
153 59 fidlit 1 1 
154 60 fidlit 0 2048 
155 61 fass 0 0 
156 62 fload 1 1 
157 63 fload 1 0 
158 64 fe 0 0 
159 65 fifalse 0 0 
160 0014 for J2048 dowrito i do 
161 0015 begin 
162 
163 Associates 
164 Segment No 	7 
165 
166 segl# 	7 
167 se 	 1 
168 
169 Size= 	8 words 
170 
171 ********** New Segment = 	1 8 8 ********** 
172 
173 
174 
175 66 fldctxt 0 14 
176 67 fload 1 1 
177 68 fidlit 0 1 
178 69 fsub 0 0 
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181 72 fload 1 1 
182 73 fin 1 2048 
183 74 fliridmod 1 2 
184 75 ft 0 0 
185 76 fJfalse 0 0 
186 0016 if elenieritEJ-1]>elerneritEJ] then 
187 0017 begin, 
188 
189 
190 
191 77 fidlit 1 2 
192 78 f'load 1 1 
193 79 fidlit 0 1 
194 80 fsub 0 0 
195 81 fin 1 2048 
196 82 f1irdrnod 1 2 
197 83 fass 0 0 
198 0018 k.e1enientEJ-13 
199 
200 
201 
202 84 fload 1 1 
203 85 fidlit 0 1 
204 86 fsub 0 0 
205 87. fin 1 2048 
206 88 firnod 1 2 
207 89 fload 1 1 
208 90 fin 1 2048 
209 91 fliridmod 1 2 
210 92 fass 0 0 
211 0019 elenuenitEi-13 :=e1eniertEJ 
212 
213 
214 
215 93 fload 1 1 
216 94 fin 1 2048 
217 95 firnod 1 2 
218 96 fload 1 2 
219 97 fass 0 0 
220 0020 elerner,t[J]:=k 
221 
222 Associates: 
223 8enier,t No 	8 
224 
225 SO 	 8 
226 se 	 2 
227 se 	 1 
228 
229 Size= 	32 words 
230 0021 end;  
231 
232 ********** New Segment = 	1 9 9 ********** 
233 
234 
235 
236 98 fldctxt 0 17 
237 99 fidlit 1 1 
238 100 fload 1 1 

ml A I 



1 st2 

fass 0 0 
fJujrnp 62 12 
furidef 1 1 

fidlit 1 0 
fload 1 0 
fidlit 0 1 
fadd 0 0 
fass 0 0 
fJunip 54 10 
furidef 1 0 

rae 5 Thu Jan 18 15:05:52 1979 

241 103 
242 104 
243 105 
244 
245 
246 
247 106 
248 107 
249 108 
250 109 
251 110 
252 111 
253 112 
254 0022 	 end 
255 
256 
257 
258 113 
259 0023 	end, 
260 
261 
262 
263 
264 
265 
266 
267 
268 

f stop 	 0 	0 

Associates: 
Segment No 	9 

se 	 9 

Size= 	16 words 



1 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

113 18 
34 0 4 
27 2 0 
21 2051 1 
34 0 5 

1 1 1 
1 0 1 
4 0 0 
1 1 2 
1 0 0 
1 0 1 

14 0 0 
4 0 0 

34 0 7 
1 1 0 
1 0 1 
4 0 0 
2 1 0 
1 0 2048 
5 0 0 

18 49 7 
1 1 1 
1 0 0 
2 1 1 

.1 0 1 
11 0 0 
14 0 .0 

4 0 0 
1 1 2 
1 0 0 
2 1 2 
1 0 1 

14 0 0 
14 0 0 

4 0 0 
2 1 0 

30 1 2048 
28 1 2 

2 1 0 
2 1 1 

11 0 0 
2 1 2 

14 0 0 
4 0 0 
1 1 0 
2 1 0 
1 0 

•11 0 0 
4 0 0 

17 16 7 
32 1 0 
34 0 10 

1 1 0 
1 0 2 
4 0 0 
2 1 0 
1 0 2048 
5 0 0 

1R 112 17 



roc 19 

61 1 1 1 
62 1 0 2048 
63 4 0 0 
64 2 1 1 
65 2 1 0 
66 7 0 0 
67 18 105 17 
68 34 0 14 
69 2 1 1 
70 1 0 1 
71 14 0 0 
72 30 1 2048 
73 29 1 2 
74 2 1 1 
75 	. 30 1 2048 
76 29 1 2 
77 10 0 0 
78 18 98 17 
79 1 1 2 
80 2 1 1 
81 1 0 1 
82 14 0 0 
83 30 1 2048 
84 29 1 2 
85 .4 0 0 
86 2 1 1 
87 1 0 1 
Be 14 0 0 
89 30 1 2048 
90 28 1 2 
91 2 1 1 
92 30 1 2048 
93 29 1 2 
94 4 0 0 
95 2 1 1 
96 30 1 2048 
97 28 1 2 
98 2 1 2 
99 4 0 0 
100 34 0 17 
101 1 1 1 
102 2 1 1 
103 1 0 1 
104 14 0 0 
105 4 0 0 
106 17 62 12 
107 32 1 1 
108 1 1 0 
109 2 1 0 
110 1 0 1 
111 11 0 0 
112 4 0 0 
113 17 54 10 
114 32 1 0 
115 0 0 0 
116 16 
117 scr 1 
118 abs 2 

0 	8 	1 
0 	8 	1 



121 chr 5 2 0 8 1 
122 Pred 6 2 0 8 2 
123 succ 7 2 0 8 2 
124 false 0 3 0 1 0 
125 true 1 3 0 1 0 
126 input 1 60 1 0 0 
127 output 2 60 1 0 0 
128 i 0 1 1 0 0 
129 J 1 1 1 0 0 
130 k 2 1 1 0 0 
131 element 2 1 1 5 1 
132 1 1 2048 6 1 
133 0 
134 1 	0 1 0 0 0 
135 2 	1 2 2 0 3 
136 3 	2 3 3 02048 
137 4 	3 4 4 0 2 
138 5 	4 5 6 3 11 
139 6 	1 2 2 0 3 
140 7 	5 7 9 12 49 
141 8 	1 22 0 3 
142 9 	2 3 3 0 2048 
143 10 	6 10 11 50 57 
144 11 	1 2 2 0 3 
145 12 	7 12 13 58 65 
146 13 	1 2 2 0 3 
147 14 	8 14 16 66 97 
148 15 	2 3 3 02048 
149 16 	1 2 2 0 3 
150 17 	9 17 17 98 113 
151 18 	10 18 12 50 57 
152 19 	0 0 0 0 0 
153 1 0 2 0 3 0 	4 	0 	5 	3 	6 	12 
cont 10 	34 11 43 12 50 13 	58 	14 	66 	15 	66 	1 
cont 93 	20 98 21 98 22 113 	23 	114 	-1 	-1 

7 	20 	8 	20 	9 	27 
77 	17 	77. 	18 	84 	19 

Thu Jar, 18 1:08:34 1979 	 ot2 
	

ae 3 



7.3 Experimental Results 

The results presented in this section are given both 

in tabular and graphical form with comments being made 

on the appropriate graph or table where necessary. 
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Table 7.3.1 Variations in operational paraneters used in 
simulation runs. 

Page sizes: 	64, 128, 256, 512 words 

LRU stack size: 6, 8 pages 

PFF critical frequency: 500, 1000 references 

Working Set window: 1000, 10000 references 

Working Set strobe: 1000 references 

The results presented on the following tables and graphs have 

the following, layout:- 

Segmentation result 

PFF (page size64) Cr freq 500 Cr freq 1000 

h's (page size 64) Window 1000 Window 10000 

..LRU (page size 64) Stack 6 Stack 8 

PFF (page sz 128) Cr freq 500 Cr freq 1000 

WS (page sz 128) Window 1000 window 10000 

ERU (page sz 128) Stack 6 Stack 8 

PFF (page sz 256) Cr freq 500 Cr freq 1000 

WS (page sz 256) Window 1000 Window 10000 

LIRU (page sz 256) Stack 6 Stack 8 

PFF (page sz 512) Cr freq 500 Cr freq 1000 

WS (page sz 512) Window 1000 Window 10000 

E.LRU (page sz 512) Stack 6 Stack 8 
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Table 7.3.2.1 Average memory space allocated for progrcn 7.2.1 

Segmentation 34 34 

PFF (pa 64) 457 481 

WS 	(pa 64) 581 726 

LRU (pa 64) 378 497 

PFF ( 128 ) 632 570 

WS 	C 128 ) 787 919 

ERU ( 128 ) 742 512 

PET C 256 ) 640 640 

ws 	C 256 ) 1110 1192 

ERU ( 256 ) 640 640 

PFF C 512 ) 768 768 

WS 	C 512 ) 1756 1934 

LRU C 512 ) 768 768 

Comments 

Note how the scone variation of parameters for PFF and ERU with 

page sizes 64 and 128 produce in the first case an increase in 

the amount-of memory allocated but in the second case produces 

a reduction in the allocated space. 

Note generally the very considerable difference between the 

allocated memory in the segmentation approach and the amount 

allocated by the paged approaches. 
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Graph 7.3.2.1 Graphical representation of Table 7.3.2.1 

30 

10 

64 128 
	

2S6 
	

512 

page size 

ConDnents 

In this and all subsequent graphs the values from the left-hand 

column of the table are joined by solid lines whereas those from 

the right-hand column are joined by dashed lines. 

Note the significantly poorer performance of the WS algorithm. 
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Table 7.3.2.2 Average memory space allocated for program 7.2.2 

Segmentation 27 27 

PFF C 64 ) 250 241 

WS (64 ) 285 352 

E1RU C 64 ) 261 256 

PFF C 128 ) 298 296 

WS C 12 ) 375, 452 

ERU (128 ) 256 256 

PFF C 256 ) 384 384 

h's C 256 ) 723 803 

LRUC256) 384 384 

PFF C 512 ) 512 512 

h's C 512 ) ' 1422 1422 '  

ERU C 512 ) 512 512 

Convnents 

Note that the sane variation of parameters as in Table 7.3.2.1 

produces the opposite effect, namely a reduction of allocated 

memory, for page size 64, for the PFF and ERU algorithms. 
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Graph 7.3.2.2 Graphical representation of Table 7.3.2.2 
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Table 7.3.2.3 Average memory space allocated for program 7.2.3. 

Segmentation 50 50 

PFF ( 64 ) 436 430 

WS (64 ) 595 697 

ERU(64 ) 383 511 

PFF C 128 ) 565 546 

WS C 128 ) 832 889 

ERU C 128 ) 767 512 

PFF C 256 ) 512 512 

WS C 256 ) 1201 1268 

LRU C 256 ) 512 512 

PFF C 512 ) 512 512 

W3 C 512 ) 1.667 	. . 1531 

ERU C 512 ) 512 512 

Comments 

Note how for both LRU and PFF the average amount of memory 

allocated has a tendency to level out, whereas for WS this 

is not so. 
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Table 7.3.2.4 Average memory allocated for program 7.2.4 

Segmentation 703 703 

PFF 	( 64 ) 1251 1120 

WS 	(64) 384 426 

ERU 	(64) 383 502 

PEE C 128 ) 1280 1152 

WS 	C 128 ) 557 613 

ERU ( 128) 767 970 

PEP C 256 ) 1280 1280 

WS 	C 256 ) 1006 1095 

IZRU ( 256 ) 1424 1838 

PEP C 512 ) 2001 1536 

WS 	C 512 ) 1928 2017 

ERU C 512 ) 2583 1536 

Comments 

It is interesting to note again how LRU and PEP seem 

to come together in the right-hand column. In this 

example the poor data locality measure in the current 

segmented approach causes the average store set sine 

to increase significantly over the previous examples. 
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Graph 7.3.2.4 Graphical representation of Table 7.3.2.4 
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Table 7.3.3.1 Total amount of program and data traffic into 
memory for program 7.2.1 

Segmentation 22028 22028 

PFF ( 64 ) 1280 1216 

WS 	( 64 ) 6016 6016 

ERU C 64 ) 14912 10176 

PFF C 128 ) 2304 1408 

WS 	C 128) 6272 1152 

ERU C 128 ) 13312 1152 

PEF C 256 ) 1536 1536 

WS 	C 256 ) 3072 1536 

ERU 1 256 ) 1536 1536 

PFF C 512 ) 2048 2048 

WS 	C 512 ) 5120 2048 

ILRU C 512 ) 2048 2048 

Coniinents 

Note the fact that the segmentation approach moves a considerably 

greater amount of information into memory during program execution 

than the paged approaches. This is the penalty for small memory 

allocations. 

Note also that ERU tends to "blow—up" as the page sizes reduce. 

Equally note that as page sizes get larger the amount of information 

moved in tends to become the same for all the paged approaches. 
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Table 7.3.3.2 Total amount of program and data traffic into 
memory for program 7.2.2 

Segmentation 9993 9993 

PFF C 64 ) 768 576 

WS C 64 ) 704 640 

LRUC64 ) 704 576 

PFF C 128 ) 768 768 

WS C 128 ) 768 768 

11W C 128 ) 640 640 

PFF C 256 ) 1024 1024 

WS C 256 ) 1280 1280 

ERU C 256 ) 1024 1024 

PF' C 512 ) 1536 1536 

WS C 512 ) 1536 1536 

ERU C 512 ) 1536 1536 

Comments 

All the data movement tables assume that only the required amount 

of data need be moved from backing store when required and that 

there is no need to access or transfer any encapsulating block. 

This is reasonable for the larger page sizes but will tend to 

favour the smaller page sizes and particularly the segmented 

approach. 

7. :20 



Graph 7.3.3.2 Graphical representation of Table 7.3.3.2 
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Only one set of results is shown in the interests of clarity. 

Note generally how badly the segmented system behaves 
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Table 7.3.3.3 Total amount of program and data traffic into 
memory for program 7.2.3 

Segmentation 1057007 1057007 

PEF ( 64 ) 1472 1408 

WS C 64 ) 32704 1344 

ERU ( 64 ) 477248 227136 

PFF C 128 ) 1536 1408 

WS C 128 ) 14336 1536 

ERU C 128 ) 344416 1152 

PFF C 256 ) 1280 1280 

WS C 256 ) 26312 1792 

£RU C 256 ) 1280 1280 

PFF C 512 ) 1536 1536 

WS C 512 ) 1536 1536 

LRIJ C 512 ) 1536 1536 

Comments 

In this example the segmented approach fares particularly badly. 

Again note the tendency for the ERU algorith'n's performance to 

detiorate rapidly as the page size decreases and that, in this 

case, the WS algorit7m shows similar but less extreme behaviour. 
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Table 7.3.3.4 Total amount of program and data traffic into 
memory for program 7.2.4 

Segmentation 17217176 17217176 

PFF ( 64 ) 2816 2304 

WS ( 64 ) 49252 12352 

ERU ( 64 ) 539392 13960 

PFF ( 128 ) 2304 2048 

WS ( 128 ) 32640 12416 

ERU ( 128 ) 16384 11264 

PFF ( 256 ) 2816 2816 

WS C 256 ) 13056 12544 

ERU C 256 ) 12288 11264 

PFF C 512 ) 11264 3584 

WS ( 512 ) 13824 12800 

ERU C 512 ) 11264 3584 

Comments 

It is again interesting to note that after an initial blow 

up ERU comes very close to PFF for large page sizes. 

Note also just how large the amount of information moved by 

the segmented approach is. This is due to moving the whole 

data array in and out of store. 
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Graph 7.3. 3.4 Graphical representation of Table 7.3.3.4 
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Cominnents 

Only one set of data has been shown for clarity. 

It is interesting to see how under these conditions, the 

data traffic for 	each algorithm.  remain relatively 

constant. 
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Table 7.3.4.1 Frequency of memory allocation decisions for 
program 7.2.1 

Segmentation 47 refs 47 

PEP C 64 ) 2068 2176 

WS (64 ) 306 725 

ERU C 64 ) 177 260 

PEP C 128 ) 2297 3760 

WS C 128 ) 459 827 

LRU C 128 ) 397 4595 

PEP C 256 ) 6893 6893 

WS (256) 780 880 

ERU C 256 ) 6893 6893 

PEP C 512 ) 10340 10340 

WS C 512 ) 811 919 

E,RU C 512 ) 10340 10340 

Corizinents 

Here again the penalty of relativel small locality sizes is 

shown for the' segmented approach. 

However it is interesting to note the relatively poor performance 

of both ERU and WS with small page sizes. 

Equally it is interesting to see just how similarly PEP and ERU 

behave under favourable circumstances. 
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Graph 7.3.4.1 Graphical representation of Table 7.3.4.1 
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Table 7.3.4.2 Frequency of memory allocation decisions for 
program 7.2.2 

Segmentation 49 49 

PFF ( 64 ) 2031 2708 

WS (64 ) 696 717 

rJRU ( 64 ) 2216 2708 

PFF ( 128 ) 4063 4063 

ws ( 128 ) 812 812 

ERU ( 128 ) 4876 4876 

PFF C 256 ) 6095 6095 

WS C 256 ) 4876 4876 

ERU C 256 ) 6095 6095 

PIF C 512 ) 8126 8126 

WS C 512 ) 8126 8126 

ERU C 512 ) 8126 8126 

Comments 

Note here the tendency for the behaviour of all the algorithms 

to come together. This implies that here can be seen some of 

the few cases so far where the WS algorithm has not been "worse" 

than PFF and ERU. 

Again the segmented approach behaves poorly. 
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Graph 7.3.4.2 Graphical representation of Table 7.3.4.2 
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Table 7.3.4.3 Frequency of memory allocation decisions for 
program 7.2. 3 

Segmentation 34 34 

PFF C 64 ) 31937 33389 

WS (64 ) 590 972 

EIRU (64 ) 98 206 

PFF C 128 ) 61213 66778 

WS (128) 776 984 

TJRU C 128 ) 270 81618 

PFF C 256 ) 146912. 146912 

WS C 256 ) 876 991 

ERU C 256 ) 146912 146912 

PFF C 512 ) 244584 244584 

WS C 512 ) 996 996 

ERU C 512 ) 244584 244584 

Comments 

Note again the sensitivity of the ERU algorithm to the page size 

variations and how this can be alleviated by increasing the stack 

length. 
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Table 7.3.4.4 Frequency of memory allocation decisions for 
program 7.2.4 

Segmentation 46 46 

PET ( 64 ) 25765 31490 

WS (64) 590 857 

ERU ( 64 ) 134 5966 

PFF C 128 ) 62925 59665 

WS C 128 ) 699 921 

LRU C 128 ) 4429 12322 

PFF ( 256 ) 103059 103059 

WS ( 256 ) 957 959 

ERU C 256 ) 23617 25764 

PET C 512 ) 51529 161950 

WS C 512 ) 977 979 

ERU ( 512 ) 51529 161950 

Comments 

PFF shows some sensitivity here particularly with the large 

page size. 
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Table 7.3.5.1 Reference density for program 7.2.1 

Segmentation 1.38 1.38 

PFF ( 64 ) 4.52 4.52 

WS (64 ) .52 .99 

LR(J(64 ) .46 .52 

PFF ( 128 ) 3.63 6.59 

WS (128) .58 .89 

ERU ( 128 ) .54 8.97 

PFF C 256 ) 10.7 10.7 

WS (256) .70 .74 

I,RU C 256 ) 10.7 10.7 

PFF ( 512 ) 13.4 13.4 

WS (512) .46 .48 

ERU C 512 ) 13.4 13.4 

Comments 	 - 

The reference density is estimated by dividing the average number 

of references between reference decisions by the average amount of 

memory allocated. This should give an idication of how successful 

the algorithm has been at estimating locality. 

It is interesting to note here how poorly the WS algorithm behaves, 

this is perhaps due to counting strobe decisions as actual memory 

decisions. 
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Graph 7.3. 5.1 Graphical representation of table 7.3.5.1 

15 - 

13 

l'l 

$ 

c5 

* 
1 

ER Pi 
* Seg. 

- - / 

-_--& 

64 	128 	256 	 512 
page size 

7- 

7. _35 



Table 7.3.5.2 Reference density for program 7.2.2 

Segmentation 1.81 . 	 1.81 

PFF ( 64 ) 9.2 11.2 

WS (64 ) 2.4 .2.03 

ERU ( 64 ) 8.4 10.5 	- 

PET ( 128 ) 13.6 13.6 

h'S ( 128 ) 2.16 1.79 

ERU ( 128 ) 19.0 19.0 

PET ( 256 ) 15.8 	
: 

15.8 

WS C 256 ) 6.74 6.07 

ERU C 256 ) 15.8 15.8 

PET C 512 ) 15.8 15.8 

WS C 512 ) 5.71 5.71 

LRU C 512 ) 15.8 15.8 

Comments 

In this example the segmented approach does not compare as well 

as in the previous case. 
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Graph 7.3.5.2 Graphical representation of Table 7.3.5.2 
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Table 7.3.5.3 Reference density for program 7.2.3 

Segmentation .68 .68 

PFF( 64 ) 73. 78. 

WS ( 64 ) .99 1.39 

ERU ( 64 ) .25 .40 

PFF C 128 ) 109. 122. 

WS C 128 ) .93 1.1 

ERU C 128 ) .35 159. 

PET C 256 ) 287. 287. 

h's C256) .70 .78 

ERU C 256 ) 287. 287. 

PFFC 512 ) 478. 478. 

WS C 512 ) .55 .55 

LRU C 512 ) 478. 478. 

Comments 

Again PET seems to be clearly the best approach. 

LRU graphically displays the effects of its "blow-up" in its 

reference densities. 

WS also displays what happens to the reference density when 

memory is over-allocated when the page size is 512. 
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Graph 7.3. 5.3 Graphical representation of Table 7.3.5.3 
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Table 7.3.5.4 Reference density for progrcvn 7.2.4 

Segmentation .06 .06 

PFF ( 64 ) 20.6 28. 

WS ( 64 ) 1.6 1.89 

LRU ( 64 ) 2.9 11.8 

PFF ( 128 ) 49. 51.7 

WS ( 128 ) 1.3 1.5 

ERU ( 128 ) 5.8 12.6 

PFF ( 256 ) 80.5 80.5 

WS (256) .V5 .88 

LRU ( 256 ) 16.58 14.01 

PFF ( 512 ) 25.75 105.43 

WS (512) .50 .48 

ERU ( 512 ) 19.9 105.43 

Comments 

It is possible to see here how an increase in the page size 

causes even PFF ( which has up to now appeared to be a fairly 

stable algorithn ) to have its reference density reduced when 

changing the page size from 256 to 512 and increased in 

the sane cicwnstances under different operational parameters. 
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Graph 7.3.5.4 Graphical representation of Table 7.3.5.4 
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Comments 

Again only one set of results has been shown for clarity. 

7.41 



7.4 Conclusions 

A number of conclusions can be drawn from the above 

results. 

Firstly, the segmented approach significantly reduces 

the amount of space occupied by a program during its 

execution. This can be explained by the relatively small 

size of, particularly, code localities established by the 

segmentation approach. This space reduction is not, 

however, achieved without cost. The cost is first of all 

shown by the high number of allocation decisions made 

during the execution time of the program. This would 

cause a significant increase in the run-time overheads of 

a program, particularly when coupled with the second 

high-cost factor - data transfers. The segmented 

approach causes a very significant increase in traffic 

between main store and backing store. This is a severe 

limitation of the proposed approach. 

Secondly, the segmented approach does not, in general, 

give rise to improved locality behaviour when compared 

particularly with favourable versions of PFF and LRU. 

This is shown in the reference density figures of the 

previous section. 

Thirdly, compaction overheads would appear to be almost 

negligible with this segmented approach due to the fact 

that in most cases relatively small amounts of memory 

are allocated to programs. 
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• Fourthly, it is clear that multiprogramming systems 

would not fare very well with the segmented system 

since the small amount of main store occupied by a 

program would imply an increase in the multi- 

programming level which would give rise to severe 

congestion on the main store to backing store data 

pathway. 	 - 

Fifthly,. without further investigation of data locality 

it is not possible to estimate the performance of the 

segmentation approach for large unstructured data areas. 

Currently the system would require that, say, a large 

array would have to be loaded in its entirety to satisfy,  

the context requirements. As well as being potentially 

wasteful this might even be physically impossible on some 

system configurations. This physical limitation however, 

tends not to arise on PDP-11 configurations where the 

maximum addressable space of a program is usually less 

than the available memory. 

Sixthly, the investigations have tended to show that the 

paged systems are, as was hypothesised earlier, extremely 

sensitive to variations in their operational parameters 

and that the degree of sensitivity is not the same from 

program to program. Equally it has been shown that if 

strobes are taken - as being allocation decisions for the 

Working Set algorithm then this algorithm behaves 

relatively poorly compared with PFF and LRU. This is 

perhaps unfair but it does show that if pure WS is not 
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used then practical performance may differ significantly 

from theoretical predictions. 

Finally, it may be concluded that paged systems, when 

behaving optimally, will easily outperform the proposed 

approach. However, it is hard to be convinced that 

paged systems always or frequently behave optimally. 

Whether an improved segmented approach or some combination 

of the paged and segmentation strategies could produce 

stable and satisfactory performance figures in most cases 

must remain an open question. Any future developments must 

therefore critically depend on an answer to this question. 
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CHAPTER 8 	FUTURE DEVELOPMENTS 

The techniques described above relate strongly the 

ideas of program structure and program behaviour. It 

is tempting, therefore, to associate these ideas with 

the capability concept of Dennis and Van Horn (Den 65). 

If this were done, it would be possible to implement 

program modules with protection, locality and behaviour 

information built-in to them. This, in effect, creates 

totallyseif-sufficient program modules, and as such, 

would present a totally unifying construct for all 

aspects of program behaviour. 

To implement such a system requires an implementation of 

a language such as EUCLID with a segment-based operating 

system. Such a system would require a compiler which 

would extract locality information as well as access 

information and divide programs into distinct modules 

with their associated environments. All this information 

would then be passed to the run-time system. 
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