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Abstract

Adaptation is one of the basic phenomena of biology, while adaptability is an im-

portant feature for neural network. Young barn owl can well adapt its visual and audi-

tory integration to the environmental change, such as prism wearing.

At first, a mathematical model is introduced by the related study in biological ex-

periment. The model well explained the mechanism of the sensory map realignment

through axongenesis and synaptogenesis. Simulation results of this model are consis-

tent with the biological data.

Thereafter, to test the model’s application in hardware, the model is implemented

into a robot. Visual and auditory signals are acquired by the sensors of the robot

and transferred back to PC through bluetooth. Results of the robot experiment are

presented, which shows the SC model allowing the robot to adjust visual and auditory

integration to counteract the effects of a prism.

Finally, based on the model, a silicon Superior Colliculus is designed in VLSI cir-

cuit and fabricated. Performance of the fabricated chip has shown the synaptogenesis

and axogenesis can be emulated in VLSI circuit. The circuit of neural model provides

a new method to update signals and reconfigure the switch network (the chip has an

automatic reconfigurable network which is used to correct the disparity between sig-

nals). The chip is also the first Superior Colliculus VLSI circuit to emulate the sensory

map realignment.
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Chapter 1

Introduction

1.1 Overview

The aim of this project is to build a bridge between neuroscience and engineering

for the adaptive integration of sensory information. The computational abilities of

human beings have been developed tremendously with the assistance of the modern

computer. Complex computation can be finished in a moment. For some aspects, the

ability of man-made computer is far beyond human beings, especially for computing

speed, precision and long term memory storage. However, compared to animal intel-

ligence, computers cannot work well in tasks such as imagination, creation, sensation

and associative memory. This may be due to the lack of adaptation in the computer

architecture. In biology, connections between different computing units, namely the

neurons, can be generated or deleted through axon growth/retraction and synapse for-

mation/elimination. In this project, concentration is on the architecture connections

between the visual and auditory maps. By gaining a deeper understanding of the align-

ment between sensory maps, a bio-inspired adaptive information integration mecha-

nism can be created and implemented in hardware, so providing a new method for

hardware to emulate the developing brain. This mechanism can also pave a way to

better understand the other parts of brain where spatial maps are formed.

Vision and audition are the most important senses for many mammals and birds,

with both visual and auditory cues being used to locate an object of interest. Although

the cognitive pathways and the organization of sensors are disparate, we experience the

world as a single place. However, when a disparity occurs, or is introduced, between

different sensory pathways, objects cannot be localized correctly. A large amount of

biological experiments have been carried out on the barn owl. It is known that of a

1



Chapter 1. Introduction 2

young age, the brain develops at an exceptional rate. For example, the juvenile barn

owl is able to adapt its localization to prism wearing. If the prisms are applied early

in life, the owl can adapt to this change over its eyes, so that it carries out a foveation

correctly on the source of auditory stimuli. According to Rucci et al. (1997), the visual

field is chronically shifted. The main site of plasticity is believed to be the alignment

between the Inferior Colliculus auditory map and the Superior Colliculus (SC) auditory

map, as revealed by anatomical and physiological experiments.

By studying the newest biological discoveries in the SC, a mathematical model was

developed and implemented with both a robot and a neuromorphic Very Large Scale

Integration (VLSI) chip.

1.1.1 Why the Barn Owl ?

The barn owl is a nocturnal predator with a strong auditory and visual localization

system. The barn owl was chosen because of its special ocular system, which is al-

most stationary with respect to the head, and its eye balls have no significant range of

movement Fowler & Cubas (2001).

The echolocation system of the bat and the localization system of the barn owl,

which is a passive method compared to the bat, are two neural systems that create an

accurate representation of auditory space. While the bat has developed specialized

algorithms to implement an active sonar system, barn owl and some other animals use

similar techniques to perform auditory localization (Konishi, 2000).

1.1.2 Robots

Much effort has been made to fill the gap between autonomous robots and higher

animals. Like animals, autonomous robot is expected to confront changes in an un-

predictable environment. However, the performance of autonomous robots and higher

animals are quite different in many aspects. It is common that the autonomous robot

lack robustness and adaptibility to the rapid changing environment. In this thesis the

visual and auditory system of barn owl is emulated in a robot to increase the adaptabil-

ity.

Previous works on visual and auditory information integration concentrate on the

coordination between different visual and auditory frames (Arnoldi, 1990), but few

of them have cared about the changes in environment. In this project, the robot is
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equipped with a prism which caused the disparity between visual and auditory local-

ization, just as was done to the young barn owl.

Robots made good demonstrators for neuroscience, as neuroscientists have recog-

nised that robots offer the means to quantitatively test and analyse brain theories. This

is the reason why the SC model developed in this thesis is embedded into a robot to

test its ability to recover from prism wearing. This thesis presents the first robotic

experiment to emulate barn owl prism wearing.

1.1.3 Neuromorphic VLSI

The computational abilities of hardware equipment, even the super computer, is still

far behind the animal brain. For example, it took 50 days on a beowulf cluster of 27

processors(3GHz each) to simulate just one second of spike neurons in 300×300mm2

of mammalian thalamo-cortical surface Izhikevich (n.d.). On the other hand, this ex-

ample also shows that real time data processing is a computationally demanding task.

This requires the computer to do computation in a high speed. However, computers can

not process sensory data directly. The adaptation process is programmed and stored

in registers, and the computation speed depends on the complexity of the programme,

this make the computation in an indirect way. Therefore, a VLSI chip is designed to

process neural computation more directly. The system which mimics neurobiologi-

cal functions in silicon, primarily in analogue silicon is called Neuromorphic system

Smith & Hamilton (1998).

1.2 Thesis statement

One of the most important aspects of the brain is its adaptability to a changing envi-

ronment. This project draws on some of these abilities to generate similar adaptability

in artificial computing systems. In this project, the following hypothesis is explored:

The adaptability of the SC in the barn owl can be modeled to allow its central

mechanisms to be transferred to an artificial computing system and thereby imbue it

with a new form of adaptability to its environment.

The project will study axon growth and synaptic plasticity, aVLSI neuromorphic

chip, and embed the findings in a small robot to demonstrate adaptibility. The adaptibil-

ity of this hardware was tested in a changing environment. The environmental change

is studied extensively in the context of the barn owl - the wearing of a prism to create
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a relative displacement between auditory and visual cues.

The above hypotheses guide the investigation in both biological engineering in the

following chapters and suggest the practical benefits that it can generate.

1.3 Thesis outline

The structure of this thesis is as follows:

Chapter 2: Background

This chapter gives the literature review of both biological and engineering background.

Firstly, literature on the barn owl SC is reviewed, from this basic structure to its sensory

map alignment. The adaptation of the visual and auditory map misalignment caused

by prism wearing is explained. Recent neurophysiological discoveries pave a way to

better understand the adaptation in sensory integration of SC. This is also the most

important point for modeling work in chapter 3. The application of the biological

knowledge in bio-inspired engineering in robots and neuromorphic VLSI design which

are related to visual and auditory integration is also discussed.

Chapter 3: Modeling Neural Processing In the SC

In this Chapter we present a model of visual and auditory integration in the barn owl

SC. Literature of the previous models is introduced first.

The novelties of this model are as follows: (a) sensory map alignment is explained

as axon projection between maps, map realignment is due to the rearrangement of axon

connections; (b) this is a model for axon growth; (c) the axon growth cue is controlled

by an inhibitory network within which inhibition is modulated by Spike Timing De-

pendent Plasticity (STDP); (d) the model proved that during brain development, the

dynamic change of the neural network is a result of interactions between axonogensis

and synaptogensis.

Simulation results with two different kinds of input spike train are analyzed: Pois-

son spike train and fixed spike pattern. Simulation results of inhibition in the SC are

compared with the biological data and the consistency between biology and simulation

is proven.
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Chapter 4: Sensor Fusion in an Artificial SC Robot

This chapter shows the robotic experiment for the SC model. Previous literature in

visual, auditory localization and sensor fusion is reviewed. The SC model of Chapter

3 is implemented in an e-puck robot and tested in real-time for visual and auditory

integration. The experimental results are analyzed and show the real-time sensory map

shift after prism training eliminating the disparity between visual and auditory input

signals.

Chapter 5: aVLSI Circuits for a Compact, Low-Power SC

Literature of the previous approaches to model basic neurons, synapses and axons are

reviewed first. Then the mixed signal VLSI circuit equivalent of the SC is presented.

The results include both Cadence simulations and chip test results. The performance

of the circuit is demonstrated. The function of the circuit which is expected to be equal

to the neurons and synapses used in the computational model is tested. Results from

the fabricated chip match the simulation results.

Chapter 6: Summary & Conclusion

The thesis is summarized and concluded in this chapter. It also provides a critical

analysis of the thesis in summary. Future work is also discussed.



Chapter 2

Background

2.1 Introduction

Biology has always been the knowledge source for solving problems in neural engi-

neering. Superior Colliculus (SC), perhaps more so than any other brain structure, has

been widely discussed as the interface of sensory and motor processing. In this chap-

ter, the relevant biological subjects and engineering subjects are reviewed. Firstly, the

visual & auditory sensory maps and information pathways are introduced. We review

brain development and how visual and auditory maps are realigned through axogenesis

and synaptogenesis. Since the engineering functions of SC have also been studied in

different ways, the adaptive biological neural network is supposed to be used in robot

sensor fusion and Very Large Scale Integration (VLSI) chip design.

This chapter lays the biological background first and then introduces some basic

engineering knowledge for the next chapters.

2.2 Biological background

2.2.1 Visual map

A visual map is formed in many animal brains. It is the description of the spatial

organization of the neuronal responses to visual stimuli. The location of the visual

map is not limited to only one place in the brain. The location of visual map in this

thesis is mainly in the visual field in the retina and SC of barn owl. As indicated in

section 1.1.1, the barn owl is chosen as the study subject because of the special bony

structures in its skull called sclerotic rings, which means the owl cannot roll its eyes, so

6
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Figure 2.1: Firing rate distribution of ON type ganglian cell from a Matlab simu-

lation. The ON type ganglion cell is represented as Laplacian Gaussian filter kernel

(Petreska, 2004).

it can only look straight ahead. However, the basic visual mechanism is quite similar

to human and other animals, thus the owl still can see objects in 3 dimensions, and

its way to measure distances is similar to humans. Humans have a field of view that

covers 180 degrees, of which 140 degrees is binocular.

The eye functions like a camera, forming crisp, clear images of the world on the

retina. The retina is a thin layer of cells in the back of the eye-ball which converts

the light into neural signals (Bear et al., 2001a). Ganglian cells are on the surface of

the retina, and they relay the processed visual information through the optic nerve into

the brain. There are two types of retina ganglion cells, ON and OFF types. The ON

responds maximally to a white spot on a black background, whereas the OFF cell likes

a dark spot on a white background. In this project, we concentrate on ON type cell.

The retina cells’ response to normal light stimuli has a center surround profile, which

looks like a Mexican hat. The neuron firing rate in the center is much higher than

the neuron firing rate in neighboring area. The firing rate distribution usually used in

computer vision to emulate the ganglion cells can be seen in Fig. 2.1.

2.2.2 Auditory map

2.2.2.1 Sound Localization

Most animals (birds and mammalian) have two ears to access sound and localize the

target with binaural cues (Platt et al., 1998). The biological binaural cue is the time

delay between the two ears, in other words, the interaural time difference (ITD). The

ITD is zero when the sound source is located directly in front of the owl. Binaural
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localization relies on the comparison of these two auditory inputs. Signal intensity

difference between the two ears is called interaural intensity difference (IID). ITDs

are used as cues for location in the azimuth and changed systematically with azimuth.

ITD analysis provides a high azimuthal resolution. It works best with onsets and low-

frequent or broadband sounds like the human voice. In many owls, IIDs for high-

frequency sounds are the principal cues for locating sound elevation, in which the

sound frequencies are higher than 4 or 5 kHz. Experiments in barn owl have found

that the difference in intensity did not vary appreciably in horizon Konishi (1993). But

it did increase as the speaker was moved up or down from eye level. The barn owl

can identify the up and down difference of the input sound direction because its left

ear is higher than eye level but points downward, whereas the right ear is lower but

points upward. This special ear shape results in the left ear more sensitive to sounds

coming from below and the right more sensitive to sounds from above. In this project,

we mainly consider ITD cues and horizontal localization.

2.2.2.2 Auditory pathway

The auditory pathway appears more complex than the visual pathway. The sound wave

arrives at the cochlea first and is transferred to be a neuron response in the cochlea

nucleus. The cochlea then projects it to the nucleus magnocellularis (NM), starting the

time-coding pathway. Our ability to localize sound sources is based on the physical

distance of our two ears, which causes the sound to arrive at them slightly differently.

Then the auditory signal is transferred from NM to nucleus laminaris (NL) where the

ITD is calculated between the two ears. The whole auditory pathway is shown in Fig.

2.2(a).

Over 50 years ago, Lloyd Jeffress proposed what has become the textbook view

of how the brain computes ITDs (Carr & Konishi, 1988, 1990). The Jeffress model,

consists of an array of coincidence-detector neurons that fire maximally when action

potentials arrive simultaneoulsy from each ear in the nucleus (McAlpine, 2005). Audi-

tory information is transferred between neurons by axons in NL. Since these neurons

in an array, their axon connection lengths are different and the difference is arranged

in a systematic fashion, which can be derived from Fig. 2.2. Thus, each neuron in

the array encodes for a ITD, and by extension a different spatial position. For ITD

encoding, evidence has also been found for Jeffress model in many aspects (Jeffress,

1948).

The neural activity in NL is then transferred to Inferior Colliculus (IC). The audi-
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(a) (b)

Figure 2.2: Auditory pathway of the barn owl and the Jeffress model for measuring

and encoding interaural time differences. (a) Auditory pathway. (b) Jeffress model.

Fibers from the left and right NM converge on the NL. Each fiber has a uniform time

delay. The position in the array encodes the interaural time difference. Adapted from

(Takahashi & Konishi, 1986).

tory stimuli to the SC comes from external nucleus of the Inferior Colliculus (ICx)(Fig.

2.3) (Gold & Knudsen, 2001; Rucci et al., 1997). The remainder of IC, the central nu-

cleus (ICc) occupies most of IC area and the ICx wraps around it. The IC is the first

place where vertically orienting data from the fusiform cells (wide in the middle and

tapering at both ends) in the cochlear nucleus can synapse with horizontally orienting

data. The vertically orienting data and horizontally orienting data form an auditory

map.

The auditory information in the ICc shows phase ambiguity due to the tonotopic

organization of ICc neurons, while the neurons in the nontonotopic ICx respond to the

specific position in space. ICc neurons are largely initial receptors of auditory infor-

mation in the IC. The neural activity in the ICc and the ICx is sensitive to the interaural

time difference (ITD) (Takahashi et al., 2003). In other words, auditory inputs of sim-

ilar pitch project to similar regions of the ICc. This information then converges during

projection from the ICc to the ICx and frequency information is accordingly lost, as

ICc neurons within the same ITD laminae but with different frequency responses are

connected to a single ICx neuron. This means that each neuron in the ICx is sensitive

to the specific ITD, namely its ”best ITD”. The auditory maps formed in the ICx and

the ICc also show different sensitivity to changes in the visual map. The projection of
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auditory information onto the ICx is able to adapt as the visual map in SC is shifted, for

example, by a prism. ICc neurons do not react to such a change (Knudsen, 1982). Axon

sprouting and/or retraction (axonogenesis) and synapse formation/removal (synatoge-

nesis) in the ICx give rise to this auditory map shift (Gold & Knudsen, 2001; Hyde &

Knudsen, 2000). Details of this process will be discussed in section 2.3.3.

2.2.3 The Superior Colliculus

Animals process multiple sensory systems with which they can simultaneously sample

a wide variety of physical changes in their environment. As a hub of sensory map

information, the SC is part of the tectum in the midbrain. Histological staining shows

the SC is a laminated structure. Anatomically and functionally, it can be subdivided

into superficial and deep layers.

(a) (b)

Figure 2.3: Biological structure of SC and Inferior Colliculus. (a) The biological cell

layers of the SC in a barn owl (Knudsen, 1982). To the right are strips from transverse

sections taken midway along the length of the SC showing the 15 cell layers of the SC.

(b) The IC is composed of the ICc and the ICx. The ICx wraps around the ICc. The

arrows show projections between layers. The solid arrows show the auditory stimulus

pathway. The hollow arrows send the map adaptation cue (MAC) signals from SC

neurons to ICx neurons. The dashed arrows are the new connections resulting from

prism experience. This figure is modified from Gold & Knudsen (2001).

In the superficial layer of the SC, visual and auditory maps of spatial localization
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are accessed from the other parts of the brain separately (Knudsen, 1982). In the barn

owl, visual and auditory pathways are believed to be integrated in the deeper layer

of the SC, which is a paired structure that is part of the brain’s tectal area (C.Hall &

Moschovakis, 2004). The deeper layers of the SC are also connected to many sensori-

motor areas of brain and the SC is involved in orientation-initiated behaviors such as

eye saccades.

Visual stimuli are elicited from the retina and projected to the superficial SC in

such a way that a particular SC neuron will respond to visual input from a particular

location in the retinal map (Bear et al., 2001b).

Most of the neurons in the deep SC are bimodal neurons which can react to both

visual and auditory stimuli, they are super-additive neurons. In the owl, nearly all

(90%) deep layer units are bimodal (Knudsen, 1982). It is believed the SC represents

the visual space topographically and thus provides a template for the ICx map shift.

Some visually driven activity from retina is transferred from the SC to the ICx. An

inhibitory network in the SC modulates the visual signal to allow adaptation only when

auditory and visual maps are misaligned. Visual activity does not, therefore, excite the

ICx neurons if visual and auditory localization cues are aligned. Visual driven activity

that appears on the ICx can be strong, if visual and auditory maps are not in register.

The modulated visual signal that triggers adaptation is called the ”Map Adaptation

Cue” (MAC).

2.2.3.1 Motor map in deep SC

The effect of prisms on the owl also influences the motor map in the deep SC, whose

units are connected to motor system. The primary role of the SC is to translate a sen-

sory stimulus into a signal that will produce an appropriate orientation of the peripheral

sensory organs. Analogously, the SC contains a ”motor map” composed of output neu-

rons having ”movement fields” in the deep layer. Rather than encoding the position of

a sensory stimulus in space, the locus of activity in the motor map encodes a displace-

ment vector, a movement command that reorients the eyes, ears, head, or body, a given

distance in a particular direction. Given that the goal is to translate a sensory signal

into an appropriate motor command, the alignment of the sensory maps to each other,

and to the motor map, must surely be a critical factor.

It has been shown that the motor map contains the so-called fixation neurons in

saccadic eye movement. These neurons are active when eyes are on target and inac-

tive otherwise (Massone & Khoshaba, 1995). Prism experience also causes changes
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Figure 2.4: Audio-visual integration in barn owls. The black arrow represents the

pathway of sensory information integration in a normal barn owl before prism wearing.

The red dashed line represents the new axon connection after prism wearing. ITD is

measured and mapped in frequency-specific channels in the brain stem. This infor-

mation ascends to the ICc, and converges across frequency channels in the projection

from the ICc to the ICx, where a map of space is created. The connections between

visual map and SC do not change. The green arrow from SC to ICx is the instructive

signal, Map Adaptation Cue (MAC), generated by the inter neuron in SC. The target light

is originally projected to the visual map center, the orange circle, which represented 0∘.

After the owl wearing prism, the orange circle does not represent the 0∘ any more. In-

stead, the yellow circle which was 30∘ is corresponding to the 0∘ in space. This change

promoted the visual and auditory map shift.
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in other visually guided behaviors. Just as human adjust reaching and throwing when

wearing prisms, owls adjust their behaviors in flight and strike. Biological experiments

have shown visual and motor maps have a spatial registration. Owls adapt visuomo-

tor behavior in response to binocular displacing prisms, both as adults and as babies.

With prisms on, improvement of strike accuracy takes place over a period of weeks.

The improvement in accuracy results from the modification of movements used to ap-

proach objects. Just like the visual and auditory map alignment, visual map is also a

template in visuomotor behavior change. The motor map is shifted in visuomotor be-

havior during prism wearing (Knudsen & Knudsen, 1989). Therefore, we assume the

motor map and visual map have the similar relationship as the auditory map and visual

map. On the other hand, visuomotor adjustment occurs more rapidly than audio-visual

realignment and does not decline with age. The plasticity that underlies visuomotor

adjustment is distinct (Knudsen, 2002). The adjustment in visuomotor behavior can

also help in driving auditory-visual realignment.

2.3 Brain development

Brain development plays an important role in visual and auditory map realignment.

Neural development includes the birth and differentiation of neurons from stem cell

precursors, the migration of immature neurons from their birthplaces in the embryo to

their final positions, outgrowth of axons and dendrites from neurons, the generation of

synapses between these axons and their postsynaptic partners, and finally the lifelong

changes in synapses which are thought to underlie learning and memory (Bear et al.,

2001a). The main neural development methods in this thesis are axon growth and

synaptic plasticity. An axon or nerve fiber is a long, slender projection of a nerve cell,

or neuron, which transfers electrical impulses away from the neuron’s cell body or

soma. Synapses are at the terminal of axons, through which axons make contact with

other cells.

Establishment of appropriate connectivity is a crucial process in the construction

of a nervous system. This consists of two stages: axons are guided to target regions

largely independent of neural activity, followed by the activity-dependent refinement

of synaptic connections (Goodhill, 2003). The plasticity in SC (SC) during barn owl

prism wearing is introduced in the following sections.
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2.3.1 Hebbian learning

It is generally believed that there is not enough generic information to specify all

synaptic connections and their strengths. Instead some limited set of rules might be

at work. The most famous rule for learning is Hebbian learning, which is stated as:

”When an axon of cell A is near enough to excite a cell B and repeatedly or per-

sistently takes part in firing it, some growth process or metabolic change takes place

in one or both cells such that A’s efficiency, as one of the cells firing B, is increased”

(Hebb., 1949).

The theory is often summarized as ”cells that fire together, wire together”, although

this is an oversimplification of the Hebb’s statement. The theory is commonly evoked

to explain some types of associative learning and unsupervised learning, in which si-

multaneous activation of cells leads to increases in synaptic strength. Usually, the Heb-

bian plasticity is in the form of long-term potentiation (LTP) and depression (LTD).

Evidence of Hebbian learning in the SC is shown in Fig. 2.5. When visual and

auditory input stimuli are from the same target in space, the response from the bimodal

neuron is enhanced. The bimodal neuron generated much more postsynaptic spikes

than the simple summation of visual and auditory input. Otherwise, if there is a dis-

parity between the visual and auditory inputs, an obvious depression in the bimodal

neuron is observed. It has therefore been suggested that the neuron enhancement and

depression is via a Hebbian mechanism of synaptic modification. As early as 1988,

(Gelfand & Pearson, 1988) suggested that the registration in barn owl map alignment

is achieved through Hebbian learning in the SC. However, in a later paper Rucci et al.

(1997) criticized that their models do not seem to be directly applicable, although the

demonstration that the site of plasticity is the ICx is given. Rucci et al. (1997) has sug-

gested a new Hebbian model with a value dependent neuron and synapse. However,

inhibition of visual input in the ICx has not been discussed in Rucci et al. (1997).

In this thesis, Hebbian learning is not directly used in model building, but it is

the foundation for understanding the synaptic development in multisensory map align-

ment.

2.3.2 Spike Timing Dependent Plasticity

Hebb originally conjectured the effective of synapses at evoking a response, but over

time, Hebbian plasticity has now come to mean one form of synaptic modification.

One form of experimentally observed Hebbian models of development and learn-
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Figure 2.5: Response features of an auditory-visual neuron to single- and

combined-modality stimulation. In A, an auditory stimulus (square-wave, 100 ms

duration, broadband noise burst) evoked a response on each of 8 presentations and

these responses are represented by the dot raster and prestimulus time histogram be-

low the stimulus trace. Each dot in the raster represents one neuronal impulse. These

same conventions apply to B-D and to subsequent figures. In C, when the auditory and

visual stimuli were combined (VA) and presented at the same location in space (within

their respective and overlapping receptive fields), the number of discharges, the dura-

tion of the discharge train, and the discharge frequency of the response were markedly

increased over those evoked by either stimulus presented alone. In D, when the au-

ditory stimulus was shifted out of its receptive field and into ipsilateral auditory space

(Ai), combining it with the visual stimulus now evoked fewer impulses (i.e., response

depression), a shorter discharge duration, and a lower discharge frequency than did

the most effective single-modality stimulus. (This is from (Meredith et al., 1987))
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ing in synapse is spike-timing-dependent plasticity (STDP). STDP can be seen as a

spike-based formulation of a Hebbian learning rule (Sjäström & Gerstner, 2010). Neu-

rons mainly communicate using SPIKES, these are a brief (1ms), stereotypical excur-

sions of the neuron’s membrane voltage. Experimental evidence from several different

sources suggests that both the sign and degree of synaptic weight change arise from

repeated pairing of pre- and postsynaptic spikes and depend on their relative timing.

Experiments on associative plasticity were carried out by Levy & Steward (1983). In a

later experiment, Bi & Poo (1998) presented the most important discovery for the new

mapping of the whole time course relating pre- and post-synaptic spike and synaptic

change. Experiments about STDP have been done with neocortical slices, hippocam-

pal slice and cell cultures, and tadpole tectum in vivo, it has been shown that long-term

strengthening of synapses occurs if presynaptic action potentials precede postsynap-

tic firing by no more than about 50 ms. Presynaptic action potentials which follow

postsynaptic spikes produce long-term weakening of synapses. The largest changes in

synaptic efficacy occur when the time difference between pre- and postsynaptic action

potentials is small, and there is a sharp transition from strengthening to weakening as

this time difference passes through zero (Song et al., 2000). STDP has been found in

species as different as rat, frog, locust, zebra finch, cat, and probably also humans (Ca-

porale & Dan, 2008; Sjöström et al., 2008). It is also been identified in different brain

regions, such as prefrontal, entorhinal, somatosensory, and visual cortices (Sjäström &

Gerstner, 2010).

Hebbian learning is also observed in the SC as described in section 2.3.1. Further

experimental proven evidence in Meredith et al. (1987) has shown that stimuli time in-

terval will also influence the bimodal neuron enhancement. Hereby in our hypothesis,

the STDP is applied to the synapses that are connected with the bimodal neuron.

Here, the STDP is stated as: the synaptic weight is increased when a pre-synaptic

spike precedes a post-synaptic spike and the weight is decreased when the post-synaptic

spike arrives first. Here equation 2.1 is used to represent it. A function F(∆t) ad-

justs the synaptic weight change for a single pair pre- and postsynaptic spikes with

the time interval ∆t. The parameters τ+ = τ− = 20ms determine the ranges of pre-

to-postsynaptic inter spike intervals over which synaptic strengthening and weaken-

ing occur, A−/A+ = 1.05 determines the maximum amounts of synaptic modification

when ∆t is close to zero.
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F(t) =

{
A+exp(∆t/τ+) if ∆t < 0

−A−exp(∆t/τ−) if ∆t ≥ 0
(2.1)

Figure 2.6: Learning Window for STDP. (a) Window from biological experiment in

(Zhang et al., 1998). It represents the cooperation and competition among developing

retinotectal synapses. (b) STDP for modeling in this thesis. ∆t = tpre− tpost , F(∆t)

determines the amount of synaptic weight modification.

Later after (Song et al., 2000), it has been shown that strong synapses have rel-

atively less potentiation than weak synapses whereas depression is independent of

synaptic strength (van Rossum et al., 2000). Thus weight dependence in STDP has

dramatic impact on the last weight distribution. For weight independent STDP, after

training, a bimodal weight distribution emerges from the learning process. Synaptic

weights reached either the maximum or the minimum hard limits, which is caused by

the competition between synapses. For weight dependent STDP, because the weight

change is inverse to the weight value, higher synaptic weight value is less likely to

be potentiated, smooth unimodal weight distribution develops. Strong competition in

weight independent STDP is eliminated here (Bofill-I-Petit & Murray, 2004).

There is ongoing debate about the STDP in recent research. The properties of

STDP are not the same in different areas of the brain. Previous studies that focus

on the temporal rules of changes in synaptic strength during spike timing-dependent

plasticity (STDP) have paid little attention to the time delay between spikes along

the dendrites and axons (Letzkus et al., 2006a). The new discovery in Letzkus et al.

(2006a) questions whether STDP learning rules depend on synapse location and firing
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mode.

Further research on STDP examines the interaction between spikes. Usually, equa-

tion 2.1 is used for all presynaptic spikes and postsynaptic spikes and the last result is

a sum. All spike pairs contribute equally. But in some papers, the interaction between

spikes are restricted to near neighbors (Sjäström & Gerstner, 2010). Only the most

recent presynaptic spike can influence the synaptic weight. There is also research on

input spike pairs. Classical experiments on STDP use a protocol based on pairs of

presynaptic and postsynaptic spikes repeated at a certain frequency to induce synaptic

potentiation or depression. Therefore, standard STDP models show the weight change

as a function of pairs of presynaptic and postsynaptic spike. However, those pair-based

STDP models cannot explain the dependence on the repetition frequency of the pairs

of spike (Pfister & Gerstner, 2006). In a triplet model of Pfister & Gerstner (2006), the

elementary building block of LTP is a new combination of 1 pre and 2 postsynaptic

spikes.

Besides the different definition of spike pairs, recent STDP models also vary tremen-

dously across synapse types and brain regions (Abbott & Nelson, 2000). Compared to

the classical form of STDP, some STDP timing windows are inverted, like Bell et al.

(1997), Fino et al. (2005) and Holmgren & Zilberter (2001). For some STDP, the order

of the input spike timing is different from the classical one. For example, in neocorti-

cal layer-5 pyramidal neurons, the timing requirements depend on synapse location in

the dendritic tree, and the STDP rule in distal synapses is even inverted (Letzkus et al.,

2006b).

Although the STDP models can vary in different ways, only the classical STDP

model is used for model building in chapter 3.

2.3.3 Axon guidance

2.3.3.1 Basic biology knowledge

Axon growth involves the extension of distal tips and the formation of new processes

by branching. By ”connecting the dots”, the axons find their way to their final destina-

tion. The tip of the growing axon is called growth cone, which was first described by

Ramón y Cajal (Cajal, 1890). Although this subject has a long history, unlike the study

of electrical activity in neurons and neuronal networks, currently there are no general

simulation tools available for axon guidance (Krottje & van Ooyen, 2007).

As the growth cone moves forward, it adds new material to the cell membrane and
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so extends the axon. Interactions of these cell surface molecues with guidance cues in

the environment determine the direction and amount of growth. The growth cone is

guided by molecular signals called guidance cues. There are different kinds of molec-

ular signals, some attract the axons while others repel axons, such as netrins, ephrins

and semaphorins and growth factors. Here we mainly concerned about one extracellu-

lar molecule, neurotrophic factor, which played the main role in map alignment in this

work.

Neurotrophic factors have multi-functional roles. They can regulate adult nervous

system plasticity by promoting neuronal survival and originate axonal growth (Gille-

spie, 2003). Present molecular evidence suggests that neurotrophic factors and axon

guidance molecules regulate the same signaling pathways in neurons (Baqnard, 2007).

They also share pathways with the other axon guidance molecules, which also include

the intracellular molecues. Therefore when we are modeling axon guidance in the

next chapter, neurotrophin is selected to play the main role as the axon growth cue.

Recent studies have shown that an axon is sensitive to the concentration of guidance

cues. The spatial concentration differences form a gradient along a direction. The

popular notion, suggested by Cajal, is the spatial gradient of guidance cues, and this

hypothesis has been gradually proved by later experiments (Baier & Bonhoeffer, 1992;

Bonhoeffer & Gierer, 1984; Tessier-Lavigne & Placzek, 1991). On the other hand, the

nervous system has been shown to be refined by activity dependent processes. In the

experiment of Goldberg et al. (2002), axon growth is profoundly potentiated by elec-

trical activity while the growth is slow with only injected trophic factors. In (Huang &

Reichardt, 2001), it is shown that postsynaptic action potentials can trigger the release

of possible neurotrophins such as BDNF and NO from the spiking neuron. When the

growth cone grows, at the source point, it is pushed by the arrival of material trans-

ported along the axon from the cell body. The intracellular signals also contribute to

axon growth. It is reported that the intracellular electrical activity induces the turning

of growth cones to another direction (Zheng, 2000). Li et al. (1999) also noted that

axon growth is an integration of both intracellular and extracellular changes of [Ca2+].

Above all, the release of growth molecule and the electrical potential change are the

main factors for triggering direction change of axon growth. The whole axon growth

process can be seen from Fig. 2.7.

In the barn owl nervous system, neurons located in the lateral regions of the ICc

send axons radially into the ICx. The axon connection between ICc and ICx is point

to point projection. This topographic axon map can be changed when the visual map
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Figure 2.7: Schematic illustration of the axon growth process. The purple dashed

line is labeled as the turning point when the intracellular [Ca2+] increases. Axon guid-

ance cues are released from the blue circle. (a) The original axon direction is in hori-

zontal. The growthcone is attracted by the guidance cue and become exaggerated. (b)

Growth cone turned its direction to the target.

Figure 2.8: Axon projection from the ICc to the ICx, resulting from prism experi-

ence. Digital image drawings of labeled axons (Knudsen, 2002).
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is shifted by a prism as shown in Fig. 2.8. The visual input from the environment,

which appears in the ICx under these conditions, arrives well after the associated au-

ditory input primarily as a result of the substantial transduction delays (about 50 ms)

in the retina (Gutfreund et al., 2002). The visual response of the ICx is affected by the

auditory stimulus. The strength of the visual response is consistently reduced when the

ITD of the auditory stimulus was near the ITD value corresponding to the location of

the visual stimulus. This reduction is shown in Fig. 2.9. The shift of the visual map

reduces the inhibition of visual stimuli towards the ICx map. One hypothesis is that,

these stimuli trigger the release of the axon guidance cue in the ICx layer. Although

the ICx is where the auditory map is formed, visual driven activity could be revealed

by blocking inhibition in the SC.

Figure 2.9: The relationship between auditory stimuli on visual responses in the

ICx from biological experiment. This figure shows the subtraction of the response to

the auditory stimulus alone from the response to the combined auditory-visual stimulus.

Subtraction was performed for each ITD in 10-ms bins. ITD in these two figures is the

disparity between the corresponding ITD of visual and auditory stimuli’s location. This

result demonstrates a consistent reduction in visually driven responses when the ITD of

the auditory stimulus was near the ITD value of the visual stimulus. This demonstrates

the influence of disparity between visual and auditory localization on visual stimuli ex-

pressed on ICx.( Both diagrams taken from (Gutfreund et al., 2002))

It is suggested that the purpose of the intrusion of visual activity into the auditory

system is to adjust the representation of auditory localization cues in the map of spaces

and the visual activity could act selectively: visual activity does not excite ICx neurons

if they have been activated strongly by an auditory stimulus in the immediate past.

In the other words, the visual instructive signal will not interfere with the auditory

processing if auditory and visual map are registered (Knudsen, 2002).

The visual activity in the ICx is controlled by GABA, the main inhibitory trans-
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mitter. GABA synapses are often found close to the cell body, the inhibitory reversal

potential can be close to, or even above the resetting potential and still inhibit the cell.

This is called shunting inhibition, as the inhibitory conductance effectively increases

the leak conductance (Knudsen, 2002).

Besides the guidance cue, synaptic weight change can also influence axon growth

and withdrawal. As described in Colman et al. (1997), an increasing disparity in the

synaptic strengths of two inputs was recorded from new born and adult mouse muscle

fibers temporarily innervated by two axons. The connection that survived becomes

stronger, whereas the other input became progressively weaker and subsequently re-

moved. These experiments provide a connection between experience-driven changes

in synaptic strength and long-term changes in axon connection.

Permanent removal of axonal input to postsynaptic cells helps to shape the pattern

of neuronal connections in response to experience. After new axon connection is estab-

lished, the axon connection will be fastened further by nerve growth factor according

to Hebbian learning described in section 2.3.1.

2.3.3.2 Axon growth modeling

Hentschel & Ooyen (1999) used a model in which axons growing on a plane are mod-

eled by means of differential equations, which are coupled to diffusion equations that

describe the concentration fields of diffusible guidance molecules. (Taba & Boahen,

2006) modeled an activity-dependent axon for silicon growth cone, in which neu-

rotrophin is modeled by charging diffusing in transistor channels. The diffusible neu-

rotrophin’s release and uptake is gated by neuron spikes. Neurotrophin is assembled

from contributions from all active release sites, but decayed with distance by a kernel

function. In (Goodhill, 1998), the gradients of target derived diffusible factors are also

modeled as a function of distance from the target. The concentration varies inversely

with the distance from the release center and it is also limited by time. At a particular

time, gradient constraint starts to rapidly reduce the range of guidance. (Krottje & van

Ooyen, 2007) modeled a framework for axon growth, where growth cones and target

neurons were represented by finite-dimensional state vectors. Concentration gradients

can also be seen in (Goodhill et al., 2004; Xu et al., 2005). Above all, axon growth can

be modeled as an accumulation process of guidance cues and electrical activity, which

will also be referred to in the following sections. The effect of the guidance cue comes

from different intracellular and extracellular molecues. For this reason, although in the

study of this chapter, neurotrophic factor is the main axon growth cue, the symbol of



Chapter 2. Background 23

neurotrophin actually represents results of all growth cues in our model. From now on,

we will use the term neurotrophin instead of neurotrophic factor, although the model

is not specific to any particular factor.

There are also other methods for modeling axon development that do not use gradi-

ents. For example, (Borisyuk et al., 2008) described axon growth by a system of three

nonlinear differential equations. In this system, the axon growth cone does not have a

specific target and the axon grows according to some general gradient following rules.

It connects to the rest of the nervous system with some probability.

2.4 Engineering background

One application of the sensor integration is in a robot, which also provides a test envi-

ronment for biological models. Most robots carrying out navigation tasks need to know

position and orientation information to achieve useful tasks like: registering perception

data to build models and/or maps. At present, most humanoid robot use a camera and

sound localization to determine how to best track a planned path.

2.4.1 Robot sensor fusion & problem

The term ”sensor fusion” always refers to the use of multiple sensor data in an in-

telligent system. Data acquired in parallel from different sensors are compared with

each other among simultaneous readings. Sensor data fusion is viewed as an important

perceptual activity in robotics. Usually, one single sensor is not enough to provide

sufficient information, so data from multiple sensors are integrated to get accurate

measurements. This is because data from one single sensor can be easily biased for

physical or mathematical reasons.

Dam (1998) has concluded that there are three reasons for the uncertainty of sen-

sors when making measurements. Sensor fusion is expected to reduce the uncertainty.

The first uncertainty is caused by limited resolution. An example is localization using

only an ultrasonic range sensor. The direct reflection of the sonar can only measure the

distance between the sensor and the obstacle, but the angle from the center axis is still

uncertain. Another uncertainty comes from the random measurement noise, for ex-

ample unstable electrical power. The third uncertainty comes from inaccurate conver-

sion of the physical measurements, which include systematic measurement errors and

non-systematic measurement errors. Systematic errors are caused by environmental
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influences and can be either constant, or be related to the actual value of the measured

quantity, such as the scale zero error and scale calibration error Wikipedia (2010). A

visual sensor that is biased by a prism is also an example of a systematic error. In com-

parison, the non-systematic error is caused by inherently unpredictable fluctuations in

the readings of a measurement apparatus. An example of non-systematic errors is the

occurrence of reflections, when a transducer does not measure an obstacle which is,

in fact, there. There are various and different kinds of sensor fusion computational

methods. Some of them use probability and Bayesian inference techniques which has

the assumption that the uncertainty in sensor information may be modeled by uncor-

related random noise (Goodridge, 1997). Because most often the system cannot rely

on a single sensor to provide sufficient information, it can only obtain more accurate

information through multiple sensor measurements. Popular data fusion methods in-

clude the Kalman Filter for optimal filter/estimator, Bayesian techniques for image

restoration and pixel classification, and map decision rules for pattern recognition and

classification (Lee, 1990).

From 1960s, Fuzzy set theory becomes a popular tool for control applications.

This allows ambiguous information to be classified into sets (Goodridge, 1997). On

the other hand, a robot is a machine which is automatically guided and does tasks on

its own. Therefore, adaptability and flexibility to the environment is very important

for a robot. With the development of neural network training algorithms for multi-

layer feedforward networks and backpropagation networks, bio-inspired neural net-

works were introduced to the sensor community (Goodridge, 1997).

For visual and auditory fusion, many previous studies used visual cues and audi-

tory cues separately. The input information needs to be integrated, because information

from the sensor has been translated from a different framework. For example, in the

model of a knocking door, three sensory estimates about the location of the knock-

ing event must be derived: visual(V), auditory(A) and proprioceptive(P). For signal

integration, visual and auditory signals have to be transformed into body coordinates

and the process is non-linear, at a later stage, the three signals are integrated with the

same framework (Ernst & Bulthoff, 2004; Landy et al., 1995). In Okuno et al. (2004),

for each sound source, the visual image is processed by using corner detection algo-

rithm. Visual direction is combined with head direction. These are combined with the

auditory direction calculation and are used as hypothesis of the direction. The proba-

bility of the auditory cue is then calculated by matching values obtained from auditory

processing.
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Obviously, the above methods integrate visual and auditory information indirectly.

Furthermore, different sensory inputs also have their own features of data. Besides

the azimuth angle, visual features include dimension, color and depth while auditory

features include amplitude and frequency. Therefore, visual and auditory data streams

cannot be integrated directly. In addition, this kind of sensor fusion suffers from the

problem that the number of parameters grows with the size of sensor away, so that the

models can quickly become unwieldy.

In contrast, in biological system, the nervous system collects information in a rather

direct way. To perceive the external environment, our brain uses multiple sources of

sensory information. The sensors access the environmental stimuli and transfer the

stimuli into neural pulses. These neural spikes are transmitted along the axons and

synapses, and are then integrated in a multimodal neuron. There are some publications

for robots based on the neurophysiological background of multisensory integration

(Arnoldi, 1990; Rucci et al., 2000; Schauer & Gross, 2003; Webb & Harrison, 2000).

They embedded bio-inspired neural model into a robot. For example, Schauer & Gross

(2003) used Amari-type dynamic neural fields for the evaluation of ambiguous local-

ization hypothesis, in which all neurons are simulated by a spike response model. The

sound’s angle is selected by a winner-take-all (WTA) network. Visual and auditory

information are integrated in a SC bimodal neuron, and enhancement and depression

of bimodal neuron are well explained. However, adaptation to the prism wearing is not

one of its points.

2.4.2 Neuromorphic system

2.4.2.1 General Introduction of Neuromorphic System

In 1875, Richard Canton first discovered electrical signals in the brain. However,

”Neuromorphic” is a rather new term, having first being seen in the 1980s. It is usually

described as a very-large-scale integration (VLSI) system or an other electronic sys-

tem which mimics specific neurobiological functions (Smith & Hamilton, 1998). The

electronic system is not only the analogue, digital or mixed-mode analog/digital VLSI

systems that implement a model of a neural system, but is also extended to the robot

system and adaptive hardware system (Mead, 1989). Generally, it is not restricted to a

specific implementation technology.

When attempting to match the computational efficiency of biological systems by

translating neurocircuitry into silicon circuits, complex large-scale artificial neural sys-
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tems with elaborate computational properties can now be designed, such as spike-based

plasticity and soft winner take all (WTA) behavior. These silicon circuits can be used

to build complete artificial sensory-motor systems, which can assist the system to ro-

bustly process signals in real-time using neuromorphic VLSI technology. However,

there is still a large gap between the neuromrophic systems currently available, and

the sophistication of processing that we could regard as effective cognition. Currently,

VLSI is a physical system with which it is feasible to implement a neural model. Sev-

eral realizations of neurons and synapses in hardware have been reported (Douence

et al., 1999; Lazzaro & Mead, 1989; Mead, 1989).

For navigation and localization projects, it is very common to embed a bio-inspired

neural network into the computation in an intelligent system. However, detailed pro-

cessing of sensory information is a computationally demanding task. The information

acquired by sensors always exceeds the processing capacity of the computing system,

the microcontroller. That is why we are considering using a VLSI chip to replace the

processing unit. For example, in Chapter 4, an e-puck robot is used for visual and

auditory integration. The e-puck robot’s camera has a resolution of 640(h)× 480(l)

pixels, but the robot’s processor only has 8k of RAM, not sufficient to even store one

single image, far less than complex computation. Thus the neural network must be

emulated in a more direct way. For example, Indiveri et al. (2001) introduced a chip

which can sequentially select the spatial locations of salient regions in the vision sen-

sor’s field of view. Salient regions are selected by a neural network model. The model

circuit is directly interfaced with the VLSI sensor array. The space and computation

time for signal relay and memory storage are saved. The chip is connected with motors

on which the imagers are mounted and to orient it to the selected regions.

2.4.2.2 Neuromorphic system for SC

Brain cells can be viewed as special purpose analogue-digital circuits. The similarity

between nervous system signals and electronic signals suggested the possibility that

electronic circuits can be used to emulate biological neural networks. Previous studies

have tried to process sensory input directly in hardware by implementing a SC model.

In the 1990s, researchers implementing the SC in hardware mainly concentrated on

the superficial layer of the SC, where the visual map is formed. Deweerth (1992);

Etienne-Cummings (1999) have used an ON-set detectors network as an SC for cen-

troid saccade eye movement. When an edge of the target appears at a pixel, the ON-set

detector is triggered for target localization. Later, Horiuchi (1995) constructed a spike-
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based VLSI model that can produce responses similar to the projection in primates

from auditory cortical areas to the deeper layers of the primate superior colliculus. But

the details about how the sensory information is integrated in the SC have not been

presented. Since the deeper layer Superior Colliculus is an important site for sensory

information integration, the circuit is a novel discussion of the deeper layer SC for

adaptive visual and auditory information integration.

2.5 Neural circuit components in VLSI

In neural network designed in VLSI, neurons and synapses are the basic components

for a larger network.

2.5.1 Neuron circuit

Neurons are the core components of any neural network. As early as the 1940’s, many

different kinds of artificial neurons were proposed (Indiveri, 2008). There are two

main classes of VLSI neurons: membrane voltage based neurons, Integrate & Fire

(IF) neurons and conductance based neurons (Hodgkin-Huxley neuron)(Mahowald &

Douglas, 1991; Mead, 1989).

The Hodgkin-Huxley circuit is composed of connected compartments, each of

which represents a particular ionic conductance. Each component is analogous to the

biophysical reality. In the neuron model, the membrane is represented by a capaci-

tance, voltage-gated ion channels are represented by nonlinear electrical conductance.

The IF neuron model circuit is shown in Fig. 2.10, which is modified from Bofill-

I-Petit & Murray (2004). The synaptic current (IsynArray) is integrated on the mem-

brane capacitor Cm and generates activity voltage V . A postsynaptic spike is generated,

when the activity voltage V passes the threshold Vth. The pulse width of the postsy-

naptic spike depends on the parameters of Vleak, Vdown and the value of Cm. Cm is

discharged by Vdown, Vre f r and Vleak. Vdown is the bias voltage on N3. Vleak is the bias

voltage on N1. The time of the discharge process on Cm depends on the resistance of

Vleak and Vdown. The pulse width of Vre f r also affect activity voltage V . Vre f r is con-

trolled by an RC circuit, which is composed of a transistor of Vbre f r and a capacitor

Cre f r.
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Figure 2.10: Neuron circuit. IsynArray is the sum of Isyn from each synapse circuit.

IsynArray is integrated on Cm and when the membrane voltage passes the threshold of

the comparator, a postsynaptic spike is generated. At the same time, Vref provides a

pulsed feedback to the IsynArray and discharges Cm. Vleak controls the leakage current.

Vbre f r controls the pulse width of Vre f r.

2.5.2 Silicon synapse

In modern computers, the basic memory unit is digital, which only stores ‘0’ or ‘1’.

However, in the nervous system, learning and memory are attributed to changes in

neuronal synapses, which are mediated by long-term potentiation (LTP) and long-term

depression (LTD). In biology, an electrical synapse is a mechanical and electrical con-

ductive link between two neurons. To emulate the synapse, we use an analogue circuit.

It is common to use a current mirror as the synapse and the synaptic weight is stored on

a capacitor and adapted by a particular learning rule, such as Spike Timing Dependent

Plasticity (STDP) and Hebbian learning. There are two different kinds of synapses:

excitatory synapse and inhibitory synapse. Spikes from strong excitatory synapses

will trigger another spike in the postsynaptic cell. Conversely, spikes from inhibitory

synapses will reduce the likelihood of a postsynaptic spike.

The simplest VLSI synapse is just one transistor, which introduces a current flow

every time it is switched on by a spike potentiation (Diorio et al., 1996). Although it is

a simplification to describe a biological synpase as a simple switched transconductor, it

represents the main feature of the synapse in the brain which also provides the current

flow to the Integrate and Fire neuron. Fig.2.11(a) shows a simple synaptic circuit

which converts a downward voltage pulse into the undirectional current output I. This

circuit allows voltage pulses to be multiplied by a weight set by Vw Mead (1989). Fig.
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(a) (b)

Figure 2.11: The simple synapse circuits. Figures are modified from Lazzaro &

Wawrzynek (1993a).

2.11(b) used current mirror to produce larger current pulse I which is proportional to

the input external current I0. This VLSI structure illustrates the core design for the

implementation of many dynamic synapses. Similar implementations of this kind of

synapses can be found in Diorio et al. (1996); Liu et al. (2001), which are typically

connected with integrate-and-fire neurons.

In the above methods, the electronic synapses are simple interfacing elements or

just wires for transmitting signals across neurons. Some other VLSI synapses have

more complex structure and demonstrated biological synaptic characters in details.

Lazzaro & Wawrzynek (1993b) presents a synapse circuit with an exponentially de-

caying synaptic current after each spike event. However, the synaptic current is always

reset to the maximum value and is not suitable for the summation of rapid bursts of

spikes. Chicca et al. (2003) introduced an adaptive silicon synapse which can produce

voltage change on capacitor similar to synaptic potentiation and depression in terms of

input spike timing. As synapse is a basic component for neural network, the area of the

neural network is determined by the size of the synapse and other basic components.

The size of the synapse is thus needed to be as small as possible. This is the reason

why in chapter 5, my design process of both excitatory synapse and inhibitory synapse

tried as less transistors as possible.
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(a)

(b)

Figure 2.12: Weight dependent STDP circuit. (a) Voltage Vw on Cw represents the

synaptic weight W(Bofill-I-Petit & Murray, 2004). It should be noted that learning window

of Vw in this circuit is in inverse proportion to STDP. Vw is lower to GND, the synapse

is stronger. (b) STDP learning window on the circuit. Weight modification ∆Vw changes

for different time intervals between the presynaptic and postsynaptic spike (Bofill-I-Petit

& Murray, 2004).

2.5.2.1 STDP circuitry for synaptic weight change

In this project, the synaptic weight change follows the rule of STDP. Fig. 2.12 shows

the synapse and weight modification circuit in Bofill-I-Petit & Murray (2004). The

prominent characteristic of this circuit is weight dependent. Synaptic weight Vw is

stored on the MOS capacitor Cw. Vw is inversely proportional to synaptic weight W.

When a postsynaptic spike fires shortly after a presynaptic spike, voltage across Cw

is increased while voltage on Cw is decreased by current flowing through N2 and N3.
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Figure 2.13: Weight independent STDP circuit.

The amount of current discharged from Cw is controlled by VpotC, which is determined

by P4 and P5. This can be seen as a feedback from Vw to STDP. Consequently, when

the synaptic weight is increasing (Vw is decreasing), the discharging current is pro-

portional to Vw. The decaying current, Idep, which controls the weight depression,

comes from a causal circuit switched on by postsynaptic spike (Bofill-I-Petit & Mur-

ray, 2004). Since this STDP is weight dependent, if Vw is initiated by different values,

the synaptic weight modification will be carried out in different proportion. The level

of STDP potentiation is larger for high voltage values. Fig. 2.12(b) shows the learning

window of this STDP circuit, in which the weight change is in terms of different time

intervals and the direction of weight increase is opposed to that of Vw.

In Bofill-I-Petit & Murray (2004), it is claimed that the learning process in weight-

independent STDP is unstable if the number of input synapses is low, thus it used

the weight dependence mechanism to stabilize the learning process and this makes

correlation the main cause for synaptic weight bifurcation. This method has been

successfully implemented in synchronization detection in a small network.

Besides Adria’s circuit, (Indiveri, 2002) shows a circuit works in subthreshold

value and the weight change shown as voltage is in direct proportion to the STDP.

STDP circuit in this thesis’ project is therefore modified from Fig. 2.13. Details of the

modification can be seen in Chapter 5.
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2.5.3 Silicon axon

If the neuron model is to be implemented in VLSI circuitry, an axon circuit is also

required. The axon circuit appeared in Mead (1989) used switch transistors and state

capacitors to compose one section of the axon delay line, which is a cascade of non-

retriggerable monostables, each with a voltage output either at VDD or at ground po-

tential (Lazzaro & Wawrzynek, 1993a). The design in Mead (1989) is in analogy with

the behavior of a real nerve cell.

A similar method is also used in Paul et al. (1995), which used five transistors

and two small capacitors in one section of the axon cascade. This circuit includes an

excitation threshold, a brief refractory period after pulse competition, pulse amplitude

restoration, and pulse width restoration.

These designs for a VLSI axon share a number of features with a biological axon,

however, they all only concerned about the static axon connection. In addition, the

delay in normal VLSI wires is six orders of magnitude shorter than neural delays.

Although axon delay is important for computing the time coincidence of two nerve

pulses, the computing speed in Mead (1989) is sacrificed. Taba & Boahen (2006)

showed a dynamic axon network which can rearrange axon connections. It described

a self-configuring neuromorphic chip that uses a model of activity-dependent axon

to automatically wire topographic maps which are based on input correlations. The

extracellular environment is represented by a monolithic pFET channel laid out as

a hexagonal lattice, neurotrophin release is represented as charge spreading within

the lattice. Axon growthcone detected the neurotrophin through integration of the

neurotrohpin charge onto capacitors.



Chapter 3

Modeling Neural Processing In the SC

3.1 Introduction

Based on the biological background that was introduced in the last chapter, we present

a new mathematical model of the Superior Colliculus (SC), which can explain the

phenomenon of visual and auditory map shift. The novelties of this model include:

(1) Description of the information path, visual and auditory map integration by axon

projection and axon growth. (2) Explanation of the inhibition of visual stimuli which

appears on the ICx layer but disappears when visual and auditory maps are registered.

(3) Exploration of the relationship between the inhibition of SC and axon growth. We

use Matlab simulation to test the model’s performance with two different hypotheses

of spike train generation.

3.1.1 Other Superior Colliculus models

Previous research has suggested several different kinds of models for the barn owl Su-

perior Colliculus. They have used different mathematical models to represent several

neurons and synapses, from rate-based to spiking neurons. (Arnoldi, 1990; Gelfland

et al., 1988; Rucci et al., 1997) have used Hebbian learning mechanisms. (Schauer

& Gross, 2004) explored the integration of visual and auditory inputs using a nonlin-

ear, bimodal neuron model, but without adaptation and plasticity. (Mysore & Quartz,

2005) discussed the role of STDP (Spike Timing Dependent Plasticity) in the Superior

Colliculus. Although STDP has been successfully applied to neighbouring synapses,

it has not been extended to network level in SC models. Axonogenesis (growth of

new axons) is also absent from the model in Mysore & Quartz (2005). However, at

33
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their time, between 1998 and 2002, the newest biological discoveries like inhibitory

networks in the Superior Colliculus had not been published. The model proposed in

this chapter uses neurobiologically consistent computational mechanisms that can re-

construct the adaptive network and prism-induced plasticity. Simulation results from

this model are presented.

3.2 Modeling methodology

3.2.1 Simulation environment

Figure 3.1: Virtual simulation environment. The position of the target depends on the

owl head.

We set the virtual owl at the center of a fixed, head-centered reference system with

the origin centered on the perch. The auditory and visual stimuli are small buzzers

and light-emitting diodes respectively. Both the environment and neural maps are uni-

dimensional because we only consider the azimuth of the sound source. Visual and

auditory stimuli are co-located in a semicircular array as shown in Fig. 3.1.

3.2.2 STDP in this model

In Chapter 2, different kinds of STDP model were introduced. In this Chapter, the

classical STDP is used for model building, which is weight independent. No matter

whether the synapse is strong or weak, its potentiation and depression is independent of



Chapter 3. Modeling Neural Processing In the SC 35

synaptic strength. The spike interaction between each other is all-to-all, which means

all spike pairs contribute equally to synaptic weight change.

3.2.3 Axon growth

To establish an appropriate connectivity is a crucial process in the construction of a

nervous system. Although many details of axon growth are still unknown, electrical

activity and release of axon guidance cues are important for axon connection rear-

rangement as described in Chapter 2.

3.2.4 Network structure

Fig.3.2 shows a single visual and auditory signal processing pathway and Fig.3.3

shows the entire 10-pathway network in our experiments.

Figure 3.2: The auditory and visual signal processing pathway (schematic). Neu-

rons are shown as circles, excitatory connections as filled thin arrows and the inhibitory

connection between the SC’s bimodal neuron and interneuron as an open arrow. The

auditory input (A) represents the peak response, namely the site in the auditory map

that corresponds most closely to the stimulus. The visual input (V) is the correspond-

ing “best-match” site in the visual map. If the A and V inputs correspond, indicating

aligned A and V stimuli, synapses connected to the bimodal neuron are strengthened,

its output spike rate increases dramatically and the interneuron is inhibited strongly. In

contrast, when the A and V signals do not match, indicating disparity, the synapses are

weakened and inhibition reduced.

The single pathway can be divided into two basic sections, called blocks. Block I

comprises the ICc, ICx and the neuronal pathways that map between them. Block II is
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Figure 3.3: The network response to visual and auditory misalignment created by

a prism. The visual stimulus arrives in the retina at N42, N22 receives the strongest

MAC. However, the (misaligned) auditory stimulus arrives at ICc neuron N13, whose

axon growth cone is consequently attracted by neurotrophin released by N22. A new

connection is made between N13 and N22, shown as a dashed line. Although the orig-

inal connection between N13 and N23 is still extant, the information path is blocked in

the model, by depression of the axonal conductance.
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(a) (b)

Figure 3.4: (a) The average difference between the response to the auditory-visual

stimulus and the response to the auditory stimulus alone (AV-V) versus the ITD of the

sound relative to the best ITD. This figure comes from (Gutfreund et al., 2002) with the

permission of the author. (b) Variability of the neuron response in terms of interaural

time difference (ITD) tuning recorded in a single site in SC. (The figure is from (Brainard

& Knudsen, 1995))

.

both the detector of any shift between visual and auditory cues and the controller of the

ICx/ICc mapping in block I. Map adaptation in Block I is initiated and directed by a

learning-control signal from an inter neuron in Block II. The interneuron in Fig.3.2 is a

unimodal unit, separate from the bimodal neuron, but the interneuron and the bimodal

neuron correspond to the same pathway. They are connected by an inhibitory synapse.

It has been shown that some inter neurons in each layer can be driven by visual stimuli

alone (Gutfreund et al., 2002).

The arrangement of the interneuron is based on the observation that the visual

activity in the ICx is gated by an inhibitory network in the SC. While little is known

about the connection between the bimodal neuron and the interneuron, the inhibition

of the visual response is inversed to the bimodal neuron response as shown in Fig. 3.4.

The modeled inhibitory synapse between the bimodal neuron and inhibitory neuron

has the hypothesized inhibitory function and results in the modulation of the visual

activity, the Map Adaptation Cue (MAC).

In both the biological ICx/ICc and our model, axon growth, synapse formation and

subsequent synaptic plasticity between ICx and ICc are initiated by the MAC(Map

Adaptation Cue) signal (Gillespie, 2003; Toni et al., 2007). The activity of the vi-

sual response from block II releases the guidance factor called neurotrophin between
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ICc and ICx. Although it has not been shown that neurotrophin is released from the

ICx neuron, neurotrophin release stimulated by electrical activity is widely observed

in the SC and other central nervous system (Goldberg et al., 2002). During develop-

ment, neurons create interconnections by growing and extending dendritic precursors

which have a neurotrophin “sensor” (a growth cone at the tip) that guides axon growth

along a concentration gradient of neurotrophin. Linear concentration gradients of neu-

rotrophic factor are important to axon guidance. We describe the neurotrophin release

mathematically in a similar manner to (Taba & Boahen, 2006).

3.2.5 Generation of new connections

To index the neurons, we use i to represent the layer and j to label the neuron position

(the pathway) in the layer. The development of the axon growth cone is activated by

presynaptic spikes from its source layer ICc (layer 1). The direction of the growth

cone is computed by recognizing the target node N2 j(tag) in ICx layer (layer 2). As

each ICx neuron N2 j is excited by the MAC spikes of ICx, it releases neurotrophin

with a concentration c2 j. In Fig.3.3, N2 j(cen) is the ICx neuron that receives strongest

stimulation from the visual signal, via the retina and the SC. The concentrations of

neurotrophin released by neurons N2 j depends upon the distance between neuron N2 j

and N2 j(cen).

As the MAC spikes trigger neurotrophin release, c2 j is set to be linearly propor-

tional to the total MAC synaptic activity of N2 j, because c2 j is contributed by all ac-

tive release sites. However, this contribution decays with distance. The MAC spikes

from the ICx layer neurons are summed by P2 j. P2 j is weighted by a spreading ker-

nel D(N2 j−N2 j(cen)). D(N2 j−N2 j(cen)) is an exponential decay function with the

decay variable ∥N2 j−N2 j(cen)∥, where ∥N2 j−N2 j(cen)∥ is the distance from the neu-

rotrophin release center N2 j(cen). As N2 j and N2 j(cen) are in the same layer, the value

of ∥N2 j−N2 j(cen)∥ equals to j− j(cen). A similar method of describing the growth

cone has been used in Taba & Boahen (2006).

D(N2 j−N2 j(cen)) = e−λ∥N2 j−N2 j(cen)∥

c(N2 j(cen)) = ∑
N2 j

P(N2 j)D(N2 j−N2 j(cen)) (3.1)

For the axon sprouting source layer ICc, the growth cone activity is bounded by

the presyanptic factor which is a summation filter representing the linear sum of the

presynaptic spikes of the corresponding neuron N1 j. The most active growth cone from
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source neuron N1 j(sou) has the highest probability to be extended.

N2j(tag) is the target direction of growth cone. At this site, the neurotrophin is

the most along the whole ICx layer. The N2j(tag) is identified when the accumulated

neurotrophin c2 j(tag) exceeds the threshold, the new connection between N1 j(sou) and

N2 j(tag) is validated, meanwhile the neurotrophin is reset to the initial state. For the

old connection from N1 j(sou), we assume that axon conduction block occurs when the

new axonal connection is establishing. This activity dependent manner is based on the

observation of biological experiment in (Dent & Gertler, 2003; Hatt & Smith, 1976).

N2j(tag) = argmaxN2j(tag)∈Y(N2j)c2j (3.2)

Block II (Fig. 3.2) of this model includes the inhibitory connection. The inhibitory

network integrates the visual and auditory signal at the bimodal neuron, via excitatory

synapses whose strength is adjusted by STDP, to capture correlations between vision

and audition. The interneuron is the source of the MAC in the ICx layer.

3.2.6 The neural model

The Leaky Integrate-and-Fire (LIF) neuron is used in this model (Equation 3.3). ge

is the excitatory synaptic conductance, which is associated with the excitatory rever-

sal potential Vexc. Similarly, gi, the inhibitory conductance, is associated with the in-

hibitory reversal potential Vinh. gl is the membrane leak conductance, where the mem-

brane resistance in this case is given by Rm = 1/gl . When the membrane potential V (t)

reaches the threshold value of about -50 to 55mV , V (t) is reset to a value Vreset (Abbott

& Dayan, 2001). In this model, Vreset is chosen to be equal to Vrest , the rest membrane

potential, here Vrest =Vreset =−70mV . The other parameters of the neuron model are

as follows: Vexc = 0mV , Vinh =−70mV , τm =CmRm = 5ms.

Cm
dV (t)

dt
=−gl(V(t)−Vrest)−ge(V(t)−Vexc)−gi(V(t)−Vinh) (3.3)

3.2.7 Input spike train generation

The stimuli are applied in one position repeatedly. Visual stimuli in our experiments

are luminous points, which are projected to the retina. The retinal cells respond by

adjusting their output spike rate in proportion to the light intensity. The visual space

angle is expressed as distance across the retina (Bear et al., 2001a). The position of

the auditory stimuli is measured by ITD. These stimuli are transferred to become spike
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Figure 3.5: The center surround profile of the neuron response in visual map (retina

layer ) or auditory map (ICx layer). Each circle represents an neuron, their neuron

response is represented by the black lines just above them. The receptive center has

the highest firing rate of spikes triggered by the stimuli.

trains by Poisson process or spike timing templates. The software simulations are

written in Matlab code.

We generate repeated stimuli from the same position in space to shorten the training

time, because in the natural environment, the prism learning process takes a period of

weeks or months (Knudsen & Knudsen, 1989). Our motivation for using spikes is

that differences in spike timing carry information about the location of objects in the

environment (Roberts & Bell, 2002). Spikes are generated by neuron response in the

previous stage of sensory information processing.

Physically, the neuron response of the visual receptive field of the retina has a

center surround profile. This is similar to the auditory receptive field in auditory map

(Knudsen & M, 1978). In this model, the receptive center has the highest firing rate

of spikes triggered by the stimuli. The firing rate of the neighboring neurons decayed

exponentially with the distance from the center.

This simulation includes two groups of input spike trains. Physiological studies

show that neural spikes are stochastic events (Amemori & Ishii, 2001). The first group

of spike trains in our experiments is therefore generated by an inhomogeneous Poisson

process whose mean firing rate is related to the visual and auditory stimuli strength.

The second group consists of repeated, manually-generated patterns of spiking activ-

ity. The spike patterns repeatedly applied are not arbitrary, because it is observed in

vivo and in vitro that the spike patterns repetitively exist in the brain through different

measurements (Nadasdy et al., 1999).

3.2.7.1 Algorithmic spike-train generation: poisson process

The input stimuli in our experiment each trigger short bursts of equal-amplitude spikes,

forming a spike “cluster” (Lo & Mize, 1999; Schaette et al., 2005). Within each burst,
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the mean firing rate is described by a half-wave rectified sine function. As described

in Fig. 3.5, the center neuron in ICx or retina layer has the maximum average firing

rate of the input spike train, the average firing rate is labeled as Ri j(cen). The value

of Ri j(cen) is proportional to the corresponding stimulus strength. The firing rate of

neuron in retina layer is represented by R4 j. R1 j is the firing rate of neuron in ICc layer.

R4 j = R4 j(cen)exp−k∣∣N4 j−N4 j(cen)∣∣ (3.4)

R1 j = R1 j(cen)exp−k∣∣N1 j−N1 j(cen)∣∣ (3.5)

We choose a periodic function for the amplitude envelope of R1 j and R4 j in order

to generate periodic stimuli. We choose a half wave sine (Fig. 3.6) as the function of

varying spike intensity as a simple way of emulating the neural behaviour in (Meredith

et al., 1987), where each stimulus evoked a spike cluster with a rapid rise in firing rate,

followed by a smooth fall of indeterminate shape. The cluster lasts for a period of time

T.

Therefore, the instantaneous firing rate of visual and auditory inputs are represented

as:

F(t) =

⎧⎨⎩1, nT ≤ t ≤ nT + T
2 (n = 0,1,2,3...)

0, elsewhere
(3.6)

R4 j(t) = R4 j(1+ϕV (t))∗ sin(
2π

T
(t +θ4))F(t +θ4) (3.7)

R1 j(t) = R1 j(ϕA(t)+(1+ϕV (t)CV ))sin(
2π

T
(t +θ1))F(t +θ1) (3.8)

Where the θ is defined to emulate the time delay between the visual and auditory

signal(in the barn owl superior colliculus, the visual inputs arrive the ICx later after the

associated auditory input due to transduction delays (Gutfreund & Knudsen, 2006)).

Another effect of θ is to reduce the correlation between inputs if they are in different

pathways.

ϕV (t) and ϕA(t) are random numbers from Gaussian distributions with zero mean

and standard deviation δV and δA.

ϕV (t)∼N (0,δV ) (3.9)

ϕA(t)∼N (0,δA) (3.10)
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Figure 3.6: The firing rate and its corresponding spike train. The firing rate varies

as half wave sine function.

The correlation between visual and auditory spike inputs is modeled via CV in

equation 3.8. This correlation decays with the distance between the corresponding

visual and auditory input pathway difference ∣ jA− jV ∣.

δ
2
A +C2

V = δ
2
V (3.11)

CV = δV exp−λ∣ jA− jV ∣ (3.12)

3.2.7.2 Manual spike-train generation: templates

Poisson processes generate spike trains that approach biological neural firing (Softky

& Koch, 1993). Artificial systems need not, however, follow biological exemplars

slavishly and, indeed, alternative patterns of spiking behavior may produce more rapid

adaptation by eliminating the randomness intrinsic to stochastic Poisson processes. For

this reason, we have also explored the system’s behavior in response to spike “tem-

plates” triggered by both auditory and visual stimuli.

We use spike templates within which the fixed time intervals between spikes are

set manually, with two discrete values of mean firing rate, high and low. Templates are

repeated in time to create a whole spike train as is shown in Fig 3.7.

Visual and auditory neurons generate template spike trains with a high firing rate

when their characteristic direction matches that of the stimulus source. Adjacent neu-

rons respond with low firing rate of template spike trains. The remaining neurons have

negligible activity.
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(a) (b)

Figure 3.7: Manually generated spike train using templates. Each template repeats

3 times. (a) High firing rate template. (b) Low firing rate template.

3.3 Results & discussion

3.3.1 Auditory map shift

Initially, the visual and auditory maps are aligned correctly. It will be shown that,

during adaptation with a prism to misalign these maps, the auditory map shifts for

both Poisson and template spike inputs. During learning, sensory stimuli trigger the

release of neurotrophin from the ICx. Neurotrophin accumulation is shown in Fig.3.8.

When the maximal neurotrophic threshold is reached, as described in section 3.2.5, the

neurotrophin concentration ci j is reset to its original value. As a result, the ICc node

with the most active growth cone updates its target location.

In the initial axon arrangement, axons from ICc neurons are projected to corre-

sponding ICx neurons. The total azimuth angle of the visual field is 180∘. Insertion

of a 36∘ prism misaligns the auditory and visual maps by 2× 18∘, equivalent to two

discrete light/sound source positions. After the learning process, the auditory map in

the ICx can be seen to be shifted two places to the left, corresponding to an azimuth

shift of 2×18∘, as shown in Fig. 3.9.

3.3.2 Plasticity in the inhibitory neural network

Here we test the plasticity of a single pathway shown in Fig.3.2.
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Figure 3.8: Neurotrophin contributed by the target ICx neurons. Here the activity

of the 5th ICx neuron is strong enough to be identified as the maximum neurotrophic

update point N2 j(tag).

Figure 3.9: The arrangement of axon connection between maps. The small square

represents the original point to point connection. The big blocks represent the new

connection after adaptation.
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3.3.2.1 Plasticity: poisson spike trains

The learning process for map adjustment in the barn owl takes weeks, when given

infrequent, randomly-timed stimuli (Knudsen & Knudsen, 1989). We apply continuous

stimuli, reducing the time scale significantly. Each neuron receives a different spike

train. First, we apply visual localization cues that match their corresponding auditory

localization cues (i.e. jN1 j(cen) = jN4 j(cen)), the visual and auditory input spike trains

are represented by inhomogeneous Poisson processes. The maximum firing rates of

the center neuron (input of N1 j(cen) labeled as V and input of N4 j(cen) labeled as A

in Fig. 3.3) are R4 j(cen) = R1 j(cen) = 150. As shown in Fig. 3.10(a)(c)(e), both the

visual excitatory synapse (the arrow between N2 j and N3 j in Fig. 3.3) and auditory

excitatory synapse (the arrow between N3 j and N4 j in Fig. 3.3) are strengthened. As a

result, the interneuron output in Fig. 3.10(e) is close to zero. Fig. 3.10(e) also shows

the comparison of the average number of spikes between the bimodal neuron and the

interneuron, starting from the 6th time bin, when the synaptic state is stable. The high

firing rate of the bimodal neuron introduces a low firing rate in the interneuron.

Fig. 3.10(b)(d)(f) shows the effects of mismatched visual and auditory stimuli. We

apply a visual input spike train to the centre neuron in the retina, whose maximum

firing rate is R4 j(cen) = 150. Mismatch is introduced by applying an auditory input

to neuron N1 j+2 at an angular separation of 36∘. As described in section 3.2.7, the

response of neighboring neurons decrease. Since the maximum firing rate of the center

neuron is 150, in this test the decreased firing rate of the auditory input is 50.

The correlation between the spike trains is also decreased as the auditory and visual

spike rates in equations (9) and (10) are related by a correlation coefficient CV = 0.13.

The strength of the auditory synapse connecting ICx with the bimodal neuron is

decreased, as shown in Fig. 3.10(b)(d)(f). Meanwhile, the visual excitatory synapse is

strengthened. This is because the visual input spike train has a higher firing rate and

thus dominates the STDP learning process (Huo & Murray, 2005). Therefore the firing

rate of the MAC spikes is decreased in the bimodal neuron. The lowered strength of

the auditory synapse connecting ICx with the bimodal neuron means that the inhibition

of the interneuron is reduced. As a result, the firing rate of the interneuron rises and it

becomes easier for the interneuron to reach its membrane threshold. The dominance

of the visual excitatory signal described above means that the interneuron output will

largely “follow” the change in the visual input.

To find the influence of this disparity of the visual and auditory maps on the in-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Synaptic weight changes and postsynaptic spike rates. As the visual

and auditory maps are matched in (a)(c)(e), the visual and auditory input spike trains are

highly correlated, the bimodal neuron fires frequently and interneuron is inhibited. The

visual and auditory maps are mismatched in (b)(d)(f), and the correlation CV between

visual and auditory input spike trains is therefore low. As a result, the auditory synaptic

weight (b) is decreased. In (f), firing rate of the bimodal neuron is lower and that of the

interneuron consequently higher.
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Figure 3.11: The average spikes number in each time bin of the inter neuron out-

put in 20 simulations. The error bars indicate the standard deviation between simula-

tions. In this simulation, the visual input keeps the same, but the auditory input varies.

The interneuron output is consistent with the biological observation in Fig. 3.4(a).

terneuron in single pathway, like the pathway Ni2 in Fig. 3.3, the disparity is calculated

by varying the auditory input center while holding all the other parameters constant.

The auditory input of pathway Ni2 is generated by equation 3.4. The interneuron output

spikes were measured by parameter ζ= ( j− jcen)∗18/90. ζ represents the normalized

space distance between auditory map center and visual map center. For example, as

shown in Fig. 3.3, the pathway difference between visual center V and auditory center

A is 1, ζ = 0.2. The averaged number of spikes of 10 group simulations for a single

interneuron is shown in Fig. 3.11. In each group of simulation, every ζ point is tested

20 times and the mean interneuron response over 10 neuron pathways is calculated.

The error bar in this figure represents the standard deviation between these groups

of simulation. In view of the average response outline, the interneuron is inhibited

strongly when visual and auditory stimuli are correlated at the point ζ = 0, j = jcen.

At this point the visual and auditory stimuli originate from the same localization. The

interneuron becomes more active as the disparity between visual and auditory input

increases, consistent with Fig.3.11, which showed that the visual response in the ICx

depends on its angular distance from the neuron’s “best ITD site”(Gutfreund et al.,

2002). In the other words, this ICx neuron responds maximally to stimuli located at a

specific position of space, corresponding to the “best ITD” value. This is in line with

the finding expressed in Fig. 3.4(a) (Gutfreund et al., 2002), Fig. 3.11 compares well

with biological results.



Chapter 3. Modeling Neural Processing In the SC 48

3.3.2.2 Plasticity: template spike trains

In this section, we present a slightly more complex extension of the previous experi-

ment in which the prism is present initially, then removed and subsequently replaced.

This places greater demands on the network’s ability to adapt and explores its ability

to replicate a real owl’s ability to adjust to this procedure.

The results shown in Fig. 3.12 are consistent with, but more dramatic than those

in Fig. 3.10. There is, however, a difference between the network’s responses to spike

templates and the Poisson processes. The spike sequence is predictable and therefore

the individual synaptic weight changes are predictable. The mismatched visual and

auditory input spike trains induce the depression of both visual and auditory synapses,

rather than auditroy synapse itself. This difference results in a more regular interneuron

output in Fig. 3.12(b).

This more regular and predictable results from template spike trains indicate that

they may be more appropriate than random spike trains when this model is considered

to be implemented in robot or the other artificial systems.

3.4 Summary

We have demonstrated a model of visual/auditory map realignment that incorporates

several recent insights into the sensory integration in the Superior Colliculus of the

barn owl. Our model provides help to explain the mechanism behind visual and audi-

tory signal integration. Spike-Timing Dependent Plasticity is accompanied by modu-

lation of the signals between ICc and ICx neurons. The model provides the first clear

indication of the possible role of a “Map Adaptation Cue” in map realignment. The

mechanism eliminates disparity between visual and auditory cues for target localiza-

tion. This model may also provide a new solution for engineering design of sensor

fusion in robotic systems, where the regular and repeatable results from template spike

trains will prove valuable.

3.5 Discussion

Determining the proper level of abstraction to represent a neurophysiological network

through mathematical formulas is very important in theoretical analysis. In the real

biological environment, there are millions of neurons in the Superior Colliculus. How-
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(a) (b)

(c) (d)

Figure 3.12: The statistics of the input and output spikes in the inhibitory net-

work.(a) The input spike pattern to the SC bimodal neuron. The visual input is strong

while the auditory spike train is weak and not correlated with visual input at first. After

prism learning, a new connection introduces the strong and correlated auditory input

spike train, for example, the dashed line in Fig. 3.3. This process is repeatable in the

next cycle from 10th time bin. (b) The output spike comparison between SC bimodal

neuron and interneuron. The more regular interneuron output in contrast to Fig. 3.10 is

due to the arbitrary setting of the spike template. (c) The weight change of the synapse

from ICx neuron to SC. (d) The weight change of the synapse from retina to SC.
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ever, in our model, we simplified the network and selected the representative direction

for neurons. The neural network in this model is robust and extendible. This is the rea-

son why the extension of the visual field to be 180∘ is reasonable, although in biology

visually responsive neurons in the superficial layers are organized into a retinotopic

map of up to 80∘ of the visual field.

In order to convert sensory stimuli into corresponding motor output, a motor map

will be added into the present model in future work. It is widely believed that a major

function of collicular circuitry is to access and process various sensory stimuli to a

common motor map (Meredith et al., 1987). In (Rucci et al., 1997), a simplified motor

map is connected with the Superior Colliculus bimodal neuron directly, in which motor

commands are generated from the bimodal neuron’s output. Some biological exper-

iments have shown an overlap between descending visual layer axons and ascending

motor layer dendrites, in accord with direct anatomical connections between corre-

sponding regions of the maps (Purves et al., 2001). In Fig. 3.13, there is signal delay

between the visual layer and the motor layer. The motor system is connected with the

bimodal neuron or trimodel neuron of the deep Superior Colliculus. However, in biol-

ogy, the details of the connection between motor map and the other sensory maps are

not enough. As in the connection between the ICc and the ICx, a coarse topographi-

cal organization also existed in the connectivity between the sensory and motor maps

in the Superior Colliculus. (Friedel & van Hemmen, 2008) has proposed that in SC

sensory maps are aligned with each other and with the motor map. A further inter-

esting study would be to model the connections between the motor map and the other

controlling areas of brain. The exploration of motor output from the SC will help us

better understand how multimodal information is processed and how new commands

are generated.
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Figure 3.13: Visual and motor maps are registered with each other in the deep

Superior Colliculus. In biological experiments, there is a short interval between the

onset of the visual layer and motor layer. This figure is modified from (Purves et al.,

2001).



Chapter 4

Sensor Fusion In An Artificial Superior

Colliculus Robot

4.1 Introduction

The model of barn owl Superior Colliculus(SC) described in Chapter 3 has laid the

ground for this chapter. Here, the model is applied to a robotic system and emulates

the head-orientation process of the barn owl, thus demonstrating an adaptive real-time

visual and auditory integration. Techniques for visual localisation, auditory localisa-

tion and sensor fusion are first reviewed. Real-time auditory localisation is tested in

both an anechoic chamber and a noisy environment. Results of the experiments are

compared and show the adaptability of the system. In the main experiment, the robot’s

visual map was changed by a prism and the robot was able to adapt its sensory integra-

tion to this change and relocate the target. This is a novel method for a robot to adapt

itself to its environment and realign the visual and auditory maps with the bio-inspired

Superior Colliculus model embedded in. It is also the first prism wearing real-time ex-

periment as a barn owl robot. It is a new implementation of an unsupervised learning

paradigm for spiking neural networks, Spike Timing Dependent Plasticity (STDP).

4.2 Sensor fusion in robot

There are different levels for sensor fusion and some papers defined them in different

ways(Center, 2000; Stenberg & Bowman, 2004). One method is to categorise these

levels as: data level, feature level and decision level. For robotic sensor fusion in

data level, the common methods used for data adaptation are coordinate transforms

52
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and unit adjustments(Arnoldi, 1990; Nashman et al., 1997; Yang et al., 2006). For

the estimation and adjustment of parameters, Kalman filter and bayesian network are

very popular methods (Drolet et al., 2000; Durrant-Whyte, 1987, 1988). The above

methods are concerned with the numerical fusion of information from multiple data

sources. Popular methods for higher level sensor fusion are fuzzy logic, pattern recog-

nition and some more complex neural networks. These methods extract high level

knowledge for decisions and actions based on basic data adaptation. Sensors in these

methods are usually consistent with each other. Errors which are filtered out by meth-

ods such as Kalman filter and Byesian networks are usually caused by noise or scale

error. In this project, the mismatch between vision and auditory sensor is caused by

prism wearing, which is a specialised mismatch. To achieve a better performance, the

mapping between sensors is expected to be changed. This is not a simple coordination

problem, because the old framework under which the sensor data is coordinated needs

to be adapted and changed. Therefore, in this chapter, the neural network of the SC is

used for sensor fusion as a trial of new adaptation method inspired by neuroscience.

4.2.1 Visual localisation & auditory localisation in robot

For a robot to fix its current position using information from the surrounding environ-

ment, features must be extracted from the data that is being acquired through sensors.

For visual localisation, normally, the image acquisition is basically a 3D to 2D trans-

form, which is based on a simplified geometry, in which data are pixel values. The

main concern of visual localisation is to find unique image attributes that represent

the main feature efficiently (Erhard et al., 2010). The method used for feature ex-

traction of the image depends on the task and the complex nature of the environment.

The work in this chapter is concerned with salient object detection. It is based on the

center-surround features of the biological visual map.

For the sound localisation, there are two kinds of bio-inspired techniques from

animals. One is passive sound localisation, which has been introduced in Chapter

2. The other one is active sound localisation, which is used by bats. Bats generate

acoustic pulses which propagate towards different directions with various intensities.

The echolocation pulses are processed by the nervous system of bats and locate the

objects (Aytekin et al., 2004). Many other mammals use passive sound localisation;

they use two ears to acquire the sound waves from the sound source. For passive sound

localisation in robotic applications, the common techniques for the binaural calculation
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of Interaural Time Difference (ITD) are cross-correlation, level difference and phase

differences.

4.2.1.1 Cross correlation

The cross correlation model of what is claimed to have been shown biologically based

(Jeffress, 1948; Lazzaro & Mead, 1989). In robot experiments, it is applied into micro

controller in signal process (Murray et al., 2005a). Here two signals L(t) and R(t) are

the sounds received at the left and right microphones during recording.

Corr(L,R)(k) =
N−1

∑
n=0

L(n)R(n+ k) (4.1)

Corr(L,R) is a finite time sequence of data used to compute the cross-correlation

of the two signals. The value of k which corresponds to the maximum Corr(L,R)(k)

is chosen as the delay time between the left and right sounds. Cross correlation is

good at excellent time delay estimation for noisy sounds, but for periodic waveforms,

its accuracy of time difference is not good, this is because during cross-correlation,

sometimes peaks at intervals of the fundamental frequency are ambiguous (Goodridge,

1997).

4.2.1.2 Level difference

Interaural level difference plays a role of hearing for many animals, and gives impor-

tant cues that humans and animals use to localize higher frequency sounds. However,

this method is only available for nearby sound sources, because the high frequency

sound waves decay at a short distance from the source position.

4.2.1.3 Phase difference

The phase difference between the left and right signals can be compared by taking the

Fourier transform of each microphone signal at each frequency. The ITD can be got

by dividing the phase delay by its corresponding frequency, a characterized frequency.

In this chapter, this method is going to be used in this robot experiment. Another

method for azimuth calculation is to use a phase difference plane which uses the phase

pattern for various frequencies. Data was extracted from the measured phase difference

spectrum after filtering. In the phase difference plane, the azimuth on the horizontal

plane for a single source, which is located relatively distant from the two sensors,
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is identified from the general linear relationship on the frequency. This is because

when the sound velocity is constant, the relationship between phase difference ∆φ

and the sound propagation difference (between left ear and right ear) ∆d is certain

(Shimoyama & Yamazaki, 2003). In equation 4.2, v is the sound velocity (constant), f

is the characteristic frequency corresponding to the phase used in Fourier equation.

∆φ

f
=

∆d
v
∗360∘ (4.2)

After comparison of the above methods, phase difference is used as a preferred

method in this project to identify the azimuthal angle in the plane.

4.2.2 Barn owl robot & prism wearing

In visual and auditory sensor fusion experiments, it has been observed that there are

two kinds of sensor bias: systematic bias and unsystematic bias. For unsystematic bias,

one example is measurement noise. Measurement noise can be reduced by adding a

signal filter or formation adaptation (Gustavi & Xiaoming, 2006). Systematic bias

between senses arose from consistent distortion, like glasses or gloves.

The visual field can be shifted by a prism or glasses, which cause disparity in sensor

fusion. Disparity caused by prism wearing has been studied in (Rucci et al., 2000)

which emulated the barn owl is SC. However, for the robotic experiment described in

Rucci et al. (2000), the prism wearing of the barn owl over the eyes is replicated by

systematically translating the visual field by 20∘ to the right, which means the prism in

this experiment is not real.

The barn owl robot in this thesis implements a spiking neural network model, in

which synaptic plasticity and axon growth keep the visual and auditory maps aligned

with each other after prism insertion.

4.3 Robotic experiments of Superior Colliculus model

For the model in the robotic experiment, each pathway in Fig. 3.4 of Chapter 3 rep-

resents 18∘ field in space. We label the neurons corresponding to the azimuth angles

(−90∘,−72∘), pathway 1, so that azimuth angle (0∘,18∘) is represented by pathway 6.
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pathway number azimuth angle

pathway 1 (−90∘,−72∘)

pathway 2 (−72∘,−54∘)

pathway 3 (−54∘,−36∘)

pathway 4 (−36∘,−18∘)

pathway 5 (−18∘,0∘)

pathway 6 (0∘,18∘)

pathway 7 (18∘,36∘)

pathway 8 (36∘,54∘)

pathway 9 (54∘,72∘)

pathway 10 (72∘,90∘)

We have explored the capability of the model in a real-time robotic system. The e-

puck robot is equipped with two lateral microphones, and a camera. A 36∘ prism covers

the camera, displacing the visual data laterally. The whole configuration is shown in

Fig. 4.1. The e-puck robot communicates with the host computer by Bluetooth.

The experiment proceeded in two steps:

(1) The owl-head robot prism was pointed in different azimuthal directions in a

random sequence. For every orientation, visual or auditory stimuli were presented at

one of the 10 available locations.

(2) The owl-head robot, wearing a prism with angle 36∘, was presented to randomly

selected directions in azimuth. For each direction, the target stimulus was repeated 75

times and averaged. Visual and auditory stimuli are generated at the same time but

separately from LEDs and loudspeakers.

This experiment concentrates on the calibration of the visual and auditory direc-

tions from sensory input and the update of axon connections.

4.3.1 Visual direction

The camera received the target image shown at the top of Fig. 4.2. The image has

120 pixels in one dimension, each pixel corresponds to 0.5∘ in the semicircle. As the

robot camera is a normal camera, its visual field is limited to −30∘ to 30∘. The target

is a luminous point, a white LED. The target point is recognized by identifying the

peak value in the image matrix. We use a grayscale image, the numerical pixel value

represents the brightness of the pixel. Each pixel value ranges from 0 to 255. As is
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(a) (b)

(c)

Figure 4.1: (a) E-puck robot wearing a prism. (b) Real-time experiment. (c) Visual and

auditory input. The visual direction as acquired from the image by identifying the posi-

tion of the brightest pixel. The auditory signal is subjected to a Fast Fourier Transform

(FFT) to identify the phase difference between left and right ear and thus the auditory

direction.

shown in Fig. 4.2(b), the 40th pixel has the maximum pixel value, therefore the visual

direction is −10∘.

4.3.2 Auditory direction

For auditory localisation, the location cues are not contained in the receptor cells as

they are on the retina in vision. In order to locate a sound-source within the environ-

ment, the calculation of azimuth with respect to the robot is required. Here in our

experiment, the azimuth represents the angle to the sound-source with respect to the

robot’s internal frame of reference. For the internal frame of reference in this thesis,

0∘ is always directly ahead of the robot, and the sound source’s location is in a plane

parallel with the floor and level with the microphones.

The loudspeaker produces 1 second bursts of sine wave in the frequency of 1 kHz.

Each burst lasts 1s. The sound signal is sampled at 33kHz and stored in an array.
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(a)

(b)

Figure 4.2: Matlab interface for visual and auditory data acquisition. (a) At the top is

the one dimensional camera image. The fowllowing two panels show the visual and

auditory direction in the real time. (b) The peak pixel value is in the 40th pixel.
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The sound signal is processed by a Fast Fourier Transform (FFT) in a time window.

Unlike many previous sound localisation experiments (Murray et al., 2005b; Rucci

et al., 2000), we do not use cross correlation. When the average amplitude of the input

signal is above a chosen threshold, the characteristic frequency f and phase difference

∆φ between the left and right ear are calculated. The characteristic frequency is the one

with the highest amplitude in the Fourier series from the left or right signal. Equations

4.4 then yield the interaural time difference ∆t and the target azimuth direction θ. In

these equations, V is the speed of sound and L the diameter of the robot head. The

above can be described in equation 4.4. In the e-puck robot, the distance between the

left and right microphones is 62mm which is similar to the owl head. The maximum

interaural time difference for this robot is 0.18ms.

There are three microphones in total in the e-puck robot. Their positions are shown

as black circles (B,C,D) in Fig. 4.3 and Fig. 4.4. B and C are in the diametrical line

of the robot, another one D is located at the back semicircle with equal distance to

the other two microphones. Every pair of microphones can locate the target in a 180∘

field. With all three microphones, we can locate the target in 360∘ azimuth. Three

microphones have also been used in Huang et al. (1997) to remove the front-back

confusion, but each microphone is set at a vertex of an equilateral triangle.

4.3.2.1 Localisation using two microphones

Two microphones allow determination of direction about half a circle field in front of

the robot, this is because θ and arcsinθ was a one to one point projection in the range

[−90∘,90∘]. Fig. 4.3 shows the geometry used for calculating sound direction based

on interaural delay. Since the sound direction is from the sound source to the robot

center, the target direction is defined as θ, the azimuth angle between 0∘ line and the

sound source line.

In order to determine angle θ, we need to find the possible factors for trigonometric

functions. We assume in reality the target is always in a long distance from the barn

owl. Therefore, in Fig. 4.3, the sound source point (A) is far away compared to the

robot diameter. The left target distance ∣AB∣ is approximately equal to ∣AE∣+ ∣BE∣. In

geometry, EC is orthogonal to the sound direction line AO, so ∣AE∣ = ∣AC∣. BE is a

line parallel to AO, as E is a point on the circle ∠AOC =∠AOE =α. Since θ =∠ECB,

sinθ = ∣BE∣
∣BC∣ =

∆tV
L .
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Figure 4.3: The geometry of sound localisation with two microphones. The three

circles represent the microphones. ∣AB∣ ≈ ∣AE∣+ ∣BE∣. Since ∣AE∣= ∣AC∣, ∣BE∣ is the

difference of the sound distances between the two microphones. The robot direction θ

is calculated by inverse trigonometric function.

∆t =
∆φ

2π f
= IT D (4.3)

θ = arcsin(
∆tV

L
) (4.4)

4.3.2.2 Three microphones localisation

If we want the barn owl robot to localize sound in 360∘ azimuth, the configuration

can be changed. The three microphones are opened. As shown in Fig. 4.4, each pair
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quarant sinθ1 sinθ2 sinθ3

I [0,1] [
√

2
2 ,1] [−

√
2

2 ,
√

2
2 ]

II [-1,0] [−
√

2
2 ,
√

2
2 ] [−1,−

√
2

2 ]

III [-1,0] [−1,−
√

2
2 ] [−

√
2

2 ,
√

2
2 ]

IV [0,1] [−
√

2
2 ,
√

2
2 ] [

√
2

2 ,1]

Table 4.1: Quadrant and trigonometric value.

quadrant sinθ1 ∣sinθ2∣ ∣sinθ3∣
I ≥ 0 ≥

√
2

2 ≤
√

2
2

II ≤ 0 ≤
√

2
2 ≥

√
2

2

III ≤ 0 ≥
√

2
2 ≤

√
2

2

IV ≥ 0 ≤
√

2
2 ≥

√
2

2

Table 4.2: Quadrant and absolute trigonometric value. 0 and
√

2
2 are thresholds for the

absolute trignometric value.

of microphones can get one virtual direction from the method of two microphones

localisation in section 4.3.2.1. By calculating interaural time difference, we can get

sinθ1, sinθ2 and sinθ3 seperately from each pair of microphones. θ1 is the target

direction. However, sinθ is not a monotonic function of θ, which means that, although

sinθ is known, the exact θ value still can not be figured out through the inverse function

of sinθ, arcsin. This can also be explained by a unit circle, which is a radius of one, the

y axis value of the point on the circle represents its sine value (Korn & Korn, 1961).

Since the robot experiment only concerns about angles in [0∘,360∘], in each quadrant

of the unit circle, the localisation direction θ is a unique value derived from sinθ, the

projection between them is one to one. To identify to which quadrant the θ belongs

to, here is an example, for a sound source, three θ values are derived by the three

microphones, θ1, θ2 and θ3. sinθ1 ranges [0,1], while the absolute value of sinθ2 is

more than
√

2
2 and the absolute value of sinθ3 is less than

√
2

2 . Compared the value

in different quadrants in table 4.2, the target location is identified to be in quadrant

1. Generally speaking, the target direction can be accurately located by checking the

table 4.1 and 4.2, which shows the relationship between quadrants and θ1,θ2,θ3.
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Figure 4.4: The geometry of sound localisation with three microphones. Each pair

of the microphones has one direction. B,C - θ1, B,D - θ2, C,D - θ3. θ1 is defined as

the direction of the robot. sinθ2 and sinθ3 are used to locate the quadrant of the robot

direction θ1.



Chapter 4. Sensor Fusion In An Artificial Superior Colliculus Robot 63

actual direction ∘ average robot angle ∘ error(STD) ∘

6 5.9950 0.1962

-10 -9.3286 0.1208

0 -0.5310 0.2233

-24 -23.9937 0.2594

.. .. ..

Table 4.3: localisation in anechoic chamber.

4.3.2.3 Anechoic environment

In an anechoic chamber, the error for the sound localisation is very small. We use

standard deviation to measure the errors of the direction after data processing.

Part of the test anechoic chamber test results are shown in table 4.3, each actual

direction has more than 20 sound sample groups. Accuracy of sound localisation in an

anechoic champer is nearly 100%. The averaged test results are approaching the actual

target direction and the error expressed as standard deviation is small. The standard

deviation of the error in the anechoic chamber is within 1∘.

4.3.2.4 Echo effects

In an open environment, the error is increased due to echoes and the presence of am-

bient noise. The accuracy of sound localisation is obviously degraded in the normal

environment compared to an anechoic room. However, the robot can still locate the

object in the general right direction if the walls or other obstacles on the sound propa-

gation path are far away.

To test the effect of sound reflection, a board is put on the right hand side of the

robot for about 1.5m away. This disturbance of sound wave is so near to the robot,

the robot can not locate the object any more. Fig. 4.5 shows the reason for the echo

noise. The board is like a mirror to the sound wave. It changed the path of part of the

sound from the sound source and shifted its phase. It is assumed the later wrong target

position comes from a virtual target on the other side of the board. Another part of the

sound went to the microphone directly. It can be seen from experiment results shown

in Fig. 4.6 that sound which travels directly from the source arrives at the microphones

before its corresponding echoes. This result suggests that the time difference between

sound onsets can be immune to errors which are introduced by reverberation effects if
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without board with board

robot directoin ∘ error(STD) ∘ robot direction ∘ error(STD) ∘

-24 1.5527 -24 4.2221

-10 1.7872 -10 9.7957

20 2.9528 6 4.4026

30 0.7630 30 7.1803

Table 4.4: localisation in reverberant environment, not in anechoic chamber.

the sound data is sampled at an early time.

Figure 4.5: The echo scenario with reflection from a nearby object. The reflection

of the sound wave shifted the phase. The position of the object is ”mirrored” to the other

side. The board is put 1.5m away.

Sound localisation data in reverberant room is shown in table 4.4. When there are

no objects near the robot, the reverberation comes from far away and the localisation

accuracy is still high, although the error obviously increased compared to results of

anechoic chamber in table 4.3. When a board is put near the robot, the error caused by

the reflection is much higher and sound localisation accuracy becomes very low.

4.4 Results & discussion

At the beginning of the robot experiment, without a prism, visual and auditory objects

are aligned. The results for localisation of a target at 0∘ azimuth are shown in Fig.
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Figure 4.6: Sound localisation tests in the environment of Fig.4.5. 25 groups of

sound wave amplitude are acquired before FFT processing during a 1 second sound

buzz. The sound source direction is −6∘ while a board is put on the right hand side.

Echo sound arrived at the sensor later than the direct sound and showed a ”mirrored”

direction which is actually where the board is located.

.

4.7. Since visual and auditory signals are registered with each other, both the visual

excitatory synapse (the arrow between N4 j and N3 j in Fig. 3.3) and auditory excitatory

synapse (the arrow between N2 j and N3 j in Fig. 3.3) are strengthened. Visual and

auditory input spike trains are highly correlated. The visual synapse of pathway 6

Fig. 4.8(c) and the auditory synapse of pathway 6 Fig. 4.8(d) increase rapidly to

their maximum value of 0.5 and the bimodal neuron becomes more active. Because

of the inhibitory relationship between the bimodal neuron and the interneuron, the

interneuron is strongly inhibited and its firing rate is close to zero. This also means

that very few MAC spikes are generated. Therefore, no neurotrophin is released by

the ICx neuron, as shown in Fig. 4.7(a). Although the input spike train density in the

source layer, ICc, is high enough to activate the growth cone, the lack of neurotrophin

means that the growth cone does not extend and there is therefore no change to the

original axon connection, Fig. 4.7(b).

For the second step of the experiment, the robot wears a prism over its camera. The

results of localisation for a 0∘ target in the second experiment are shown in Fig. 4.8 and

Fig. 4.9. In Fig. 4.8, the prism places the visual receptive centre and auditory receptive
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Figure 4.7: Visual and auditory localisation signals from a same target are registered

with one another. (a) No neurotrophin is released by the ICx layer at any time dur-

ing the experiment. (b) The axon connection between ICc and ICx does not change.

(c)(d) Here the target direction is in 0∘. Both the visual and auditory receptive centres

correspond to pathway 6 and their synaptic weights increase simultaneously.
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centre in different pathways (pathway 8 and pathway 6 respectively). Visual and audi-

tory input spike trains in pathway 8 are now quite different from one another and are

uncorrelated. Both the visual and the auditory synapses connected to the bimodal neu-

ron are weakened. Thus the SC bimodal neuron in pathway 6 becomes less active and

fewer postsynaptic spikes are triggered. As a result, inhibition of the interneuron by

the bimodal neuron is decreased and the output spike rate of the interneuron increases.

This stimulates the release of neurotrophin in pathway 8. In the axon source layer ICc,

we measure the axon activity by counting the input auditory spike train density. As

a result of the prism, the pathway 6 growth cone is now the most active in the source

layer. When the accumulated neurotrophin reaches its threshold value (here set to 20)

in target layer of pathway 8 and growth cone in pathway 6 also reaches its threshold

and becomes ready, the axon connection network is updated, as shown in Fig. 4.9(b).

A new connection between pathway 8 and pathway 6 is created (the rectangle turns

white) and the original connection pathway 8 to pathway 8 is blocked (the rectangle

turns black).

The camera is limited by its visual angle −30∘ ∼ 30∘ and the real-time robot ex-

periment was only able to test pathways 4 ∼ 7. For the wider range of angles, data

was shifted artificially. Fig. 4.10 shows the fully-shifted map after growth has been

achieved in all 10 directions.

4.5 Discussion

In this robot experiment, one issue should be defined carefully: what is the proper level

of abstraction required to represent a biological function in a robot. The higher the

level, the less the details. Although some of the biological processes like the gradient

neurotrophin distribution have been ignored, the bio-inpired model has been equipped

with basic neurophysiology characters with the newest biological discoveries. Com-

pared to previous methods (Drolet et al., 2000; Okuno et al., 2004), which are usually

activated with simplified artificial patterns that bear little resemblance to natural stim-

uli, this neurophysiological model is better at adaptation and is more robust.

As mentioned in the last section, in the present experiment, the camera can not

cover the whole 360∘ space. The auditory localisation can do it with three micro-

phones. Thus the visual and auditory maps are not symmetrical. One method to im-

prove this is to use a fish eye lens, which can extend the visual field. Alternatively, we

can use 6 normal cameras around the robot. The prism in this experiment is 36∘. In
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Figure 4.8: Visual and auditory localisation signals are misaligned. (a) Neurotrophin is

released by the target ICx neurons and accumulated. (b) The axon connection between

ICc and ICx does not change as the neurotrophin and growthcone do not reach their

thresholds. Here the visual receptive center is in pathway 8, while the auditory receptive

center is in pathway 6. (c)(d) Both the visual and auditory synapses are weakened

because the input spike trains are independent of one another.
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Figure 4.9: A new axon connection is formed. (a) The axon connection has been

updated and the neurotrophin reset to its original (zero) status. (b) The new axon

connection is formed and the old connection is inhibited. (c)(d) Both visual and auditory

synapses begin to increase once the visual and auditory signal have been re-registered

with one another again.
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Figure 4.10: The arrangement of axon connections between maps. The small squares

represent the original point to point connections. The black blocks represent the new

connections after adaptation.

the real barn owl experiment Knudsen & F.Knudsen (1989), the owl wore 34∘ prisms

shifted its visual field to adjust itself, which is also the maximum degree indicated for

effective adjustment. The owls’ ability for adaptation is in doubt after 34∘. This means

for error correction between different sensors, the function of the SC model is not un-

limited. Here it is assumed, 36∘ is approximately near the critical point of adaptation

for visual and auditory realignment.

In future work, the error in auditory localisation, caused by echo should be im-

proved. This may be achieved, for example, by spectrum plane (Shimoyama & Ya-

mazaki, 2003).

We noted that the bluetooth communication between robot and PC is a serial port.

The data is transmitted in a queue. To get a better computation performance, we can

use a new mixed signal VLSI chip to replace part of the microcontroller function and

make the robotic computation completely independent. The robot itself is difficult

to modify, it is a SMD (surface mount device) component and it is difficult to patch

something to it directly, but we can develop a PCB using an extension connector which

allows us to add more devices into the robot including a new computation chip which

will be described in the next chapter.

US academic Patrick Lin who was recently committed by the US military said to

the media, ”When you talk about autonomous robots, a natural response might be to

program them to be ethical. Isn’t that what we do with our computers?” (Bowlby,

2010). This means that the most popular method, at present, of embedding a neural
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network model is to program an FPGA, microcontroller or central processing unit.

To increase the capacity of neural computation, it is better to scale the hardware and

generate a new computing unit. Additionally, for autonomous and robustness, the com-

putation process is expected to be finished by the robot independently. Therefore, in

the next chapter, we are going to introduce a neuromorphic chip, which will emulate

the SC model with an adapted neural network. A chip for input sensory data process-

ing is part of the future plans for this work. The interaural time difference which is

based on Lazzaro & Mead (1989) can be transferred to a custom ASIC VLSI chip with

Xilinx’s Virtex II-pro. Another future work is a motor map, which will be added into

the present model and the two wheels of the e-puck robot.

4.6 Conclusion

Adaptability is a crucial issue in the design of autonomous systems and biological sys-

tems adjust many environment changes dynamically. In this chapter, we demonstrated

an implementation of a robust model to a robot emulating the barn owl head. The

robot barn owl can adjust its visual and auditory map integration automatically. This

new method eliminates the visual and auditory localisation disparity introduced by a

prism over the robotic visual system. This generic method has the potential to correct

other disruptions to the senses of a robot. The real-time application in a robotic barn

owl head shows that the model can work in a real world environment. The use of

robotic systems has provided a phenotype and subject to a set of environmental con-

straints which are similar to animal brains have to face during development. Study of

the adaptation of spatial localisation under these conditions resulted in a fair and rig-

orous evaluation of the proposed learning paradigm. It appears that neuroscience and

robotics are now two mature fields for systematic and fruitful collaborations.



Chapter 5

VLSI Circuits For A Superior Colliculus

5.1 Introduction

In the previous chapters, the Superior Colliculus (SC) model has been implemented

in a robot. However, the robot needs to communicate with the host computer first

before processing data. To integrate the computation with the robot and increase the

computing speed, a bio-inspired mixed-signal integrated circuit is designed to emulate

the brain development in the Superior Colliculus of a barn owl. This circuit demon-

strates hardware neural networks are capable of eliminating the disparity between the

visual and auditory maps at a hardware level. The SC chip is designed using a 0.35µm

CMOS process. The chip structure was designed to correspond to the neural model

and include an ‘inhibitory network’ and ‘axon network’. The analog part of the circuit

is the ‘inhibitory network’, which is composed of Spike Timing Dependent Plasticity

(STDP) synapses and Leaky Integrate and Fire (LIF) neurons. The digital part of the

circuit is the ‘axon network’, which is composed of switch bars and a status register

network. The ‘axon network’ controls the connections between neurons input spike

pathways. Results are presented from both Cadence simulation and chip test, which

show the visual and auditory disparity induced STDP modulation of the inhibitory

network. The STDP modulation plays an important role in updating signals which

rearrange the switch bar network.

5.2 SC circuit overview

The VLSI circuit of SC designed is part of the whole SC network in Fig. 3.3. Two

pathways of the total 10 pathways are used to test the adaptability of the circuit.

72
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Figure 5.1: Neural model of this silicon circuit. It is part of the SC network in Chapter

3. Every circle represents a neuron. A spikein2 and V spikein1 are high spike density

train named as spike train 1. Spike train 1 encodes the stimuli center in the sensory

map. Neurons with the same labels are in the same pathway and they are named in the

form “layer name - pathway name”, e.g. ICc-1, retina-2. The synapses connected with

the bimodal neurons are named and shown in the figure as well.

The study of neuromorphic SC starts from the basic computing units: neurons

and synapses. They are the key circuit components in VLSI neural network. As in

the biological nervous system, silicon neurons process and transmit information by

electrical signal. Synapses connect each neuron. The neural network model of the

SC circuit is shown in Fig. 5.1. Chapter 2 has described the basic knowledge of the

VLSI design of neurons and synapses. The whole circuit has two parts: the digital

block and analog block, it has been shown in Fig. 5.1. In the analog block, there

are 2 bimodal neurons and 2 inter neurons. The digital block has 2× 2 switch bar

connections. Details of neurons and synapses used in the SC circuit design can be seen

in the following sections.

5.3 Analog block: the inhibitory neural network

The analog block is corresponding to the inhibitory neural network of SC, which in-

cludes bimodal neuron, inter neuron and synapses. Its structure is shown in Fig. 5.2.

The circuits of IF neuron and synapse are described in section 5.3.1 and 5.3.2. The

output of the IF inter-neuron is MAC(Map Adaptation Cue, which is released to guide

the growth cone direction. It has been introduced in Chapter 2) and set to be triggered

by visual input. The parameters of the circuit in Fig. 5.3 are modified as required for
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Figure 5.2: Inhibitory network schematic. The synapses connected with the bimodal

neuron following the rule of STDP. Since there is only one synapse connected with the

inter neuron, its electronic weight value Vw is fixed.

this configuration. For example, the inter neuron firing rate is assumed to be lower

than the other IF neuron, its neuron membrane threshold, which is described as the Vth

in Fig. 2.10 is set to be higher than the other neurons.

The output of inter neuron is inhibited through the inhibitory synapse from bimodal

neuron. This kind of inhibition is called shunting inhibition. Shunting is an important

type of gain control in biology to regulate neural responses. VLSI circuit for shunt

inhibition can also be seen from Mead (1989), where it is made as simple as merely

one conductance.

5.3.1 IF neuron circuit

Although compared to Hodgkin-Huxley circuit, IF neurons are less realistic than conductance-

based ones in terms of biology, they are composed of fewer transistors and less silicon

real-estate. Details of the physical membrane change is not that important in visual

and auditory map alignment and taking into account the desire to extend to a larger SC

neural network in the future, the decision was made here to use LIF neurons. Details of

the circuit are in Chapter 2. The circuit in this chapter is based on that in Bofill-I-Petit

& Murray (2004), but was translated and re-designed from a 0.6µm CMOS process to

a 0.35µm CMOS process.
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(a) (b)

Figure 5.3: VLSI synapses used in this circuit. (a) Excitatory synapse. (b) Inhibitory

synapse. Details of parameters can be seen in Appendix 3, table C.3 and table C.4.

5.3.2 Silicon synapse

Based on the simple synapse structure introduced in section 2.5.2.1, synapses are de-

signed for this circuit shown in Fig. 5.3. The excitatory synapse of Fig. 5.3(a) is based

on the simple synaptic structure and does not need an input current source. The output

current (Isyn) is controlled by Vw and Vbias and is connected to IsynArray of the neuron

circuit. Vspike is the train of input spike pulses, which switch on N2 and induce the

spike current. Fig. 5.3(b) is the inhibitory synapse which discharges the current of

IsynArray in Fig. 2.10.

Fig. 5.3(b) is the inhibitory synapse which has been used in Bofill-I-Petit & Murray

(2004). Vdec is a bias voltage to limit the inhibitory current. If Vshunt is above the NMOS

threshold, currents are withdrawn from membrane capacitor of IF neuron.

In Fig. 5.2, the inhibitory synapse short-circuits currents of excitatory synapses.

The output firing rate of the inter neuron is inverse to the output firing rate of the

bimodal neuron. The degree of the inhibition is determined by Vpbias and Vdec. By

adjusting the Vpbias and Vdec, the inhibitory current which is withdrawn from the IF

neuron is modulated. For the inhibitory synapse, higher voltage value of Vshunt on

the transistor gate increases the inhibitory synapse conductance. Increasing Vpbias or

decreasing Vdec can increase Vshunt, otherwise Vshunt will be decreased.

Synaptic weight change is crucial for information transmission and storage in neu-

ral networks to maintain consistency with the neural model. As described in chapter

2, the STDP has weight dependent and weight independent models. Circuit in Bofill-
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(a) (b)

Figure 5.4: Synapse and weight change circuit. (a) The STDP module dynamically

increases or decreases Vw with (casual or anti-casual) co-occurrence of pre- ad post-

synaptic spikes. Cp and Cd are the two MOS capacitance of transistors P7 and N2. De-

tails of parameters can be seen in Appendix 3. table C.5 and C.6. (b) The STDP learn-

ing window comparison. The STDP learning window of Bofill-I-Petit & Murray (2004) in

section 2.5.2.1 is drawn in gray line while the STDP learning window of (a) is drawn in

blue ∗. They are scaled for the same axis, although their actual axes are different. The

synaptic weight change is on ∆t = tpre− tpost .

I-Petit & Murray (2004) has weight-dependent potentiation and weight-independent

depression. This circuit is designed to have a stable learning process. In comparison,

(Indiveri, 2002) is a typical weight independent circuit.

5.3.2.1 STDP circuit

The STDP circuit used in this project is modified from (Indiveri, 2002). The original

circuitry was described in Chapter 2 Fig. 2.13. Circuit used in the SC network is

modified and shown in Fig. 5.4.

Every input presynaptic spike discharges NMOS capacitor(N2) and depC. During

each pre-synaptic spike input, VdepC decays immediately and then rises gradually with
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time. Similarly, the inversed postsynaptic spike charges the right PMOS capacitor.

∆VW is in inverse proportion to MOS capacitance(Cp and Cd). Because the larger the

MOS capacitance, the smaller ∆VW is in each time step. This is due to the relationship

described in the following equations. ∆t is the pre- and post- synaptic width. Ipot

injects current into capacitor Cw while Idep removes current from capacitor Cw.⎧⎨⎩∆VW =
Ipot(t)

Cp
∆t if tpre < tpost

∆VW =
Idep(t)

Cd
∆t if tpre > tpost

Because Idep and Ipot are subthreshold current, their relationships between the bias

voltage such as Vp, Vd and VdepC, VpotC are complex equations involving exponential

functions. A hypothetical equation can be seen from (Indiveri, 2002).

The circuit in Fig. 5.4(a) shows that VdepC is the voltage of point depC in Fig.

5.4(a); VpotC is the voltage on point potC. Cp and Cd are the combinations of a MOS

capacitor (N2,P7) and the parasitic capacitance(N1,P6). This allows the decay time of

VdepC and VpotC to be extended significantly. For example, the decay time of VdepC can

be extended from 0.5ms to 5ms. This is because of the rule of RC circuit, which means

larger capacitor will induce longer RC time constant.

The STDP learning window in this project is different from section 2.6, but it fol-

lows the basic Hebbian Learning rule for a paired presynaptic spike and postsynaptic

spike. The blue curve in Fig. 5.4(b) is the cadence simulation result of changes in

synaptic efficacy. It shows the weight change (∆W ) algorithm implemented by the cir-

cuitry in Fig. 5.4. The weight change ∆VW was measured using Cadence simulations.

This circuit increases or decreases the analog voltage Vw, depending on the relative

timing of the pulses ‘pre’ and ‘post’. The ‘pre’ pulses are controlled by axon net-

work in section 5.4 and post-synaptic pulses are generated by IF neurons, of the type

described in section 5.3.1.

Another STDP circuit, Bofill-I-Petit & Murray (2004) described in section 2.5.2.1,

claimed that the learning process in weight-independent STDP is unstable if the num-

ber of input synapses is low, thus it used the weight dependent mechanism to stabilise

the learning process and this makes correlation the main cause for synaptic weight bi-

furcation. Its method has been successfully implemented in synchronization detection

in a small network. However, circuit of Fig. 5.4(a) can also realize the functions in

neural networks and is in direct proportion to STDP. This is because the input spike

train is composed of spike patterns; the input spikes are clustered and arranged in cer-

tain sequences. This induces a stable learning process. In comparison of Fig. 5.4(b),
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the gray curve is more similar to computational STDP window. Therefore, the circuit

of Bofill-I-Petit & Murray (2004) can be seen as a backup for future simulation which

requires more accurate analogy of STDP and it is also suitable for the future circuitry

with more complex and random spike train input.

5.4 Digital block: axon network

The common methods used for axon circuit design have been introduced in section

2.5.3. However, they all used capacitors as the state storage. However, in CMOS cir-

cuit design, charge leakage from capacitor storage cannot be avoided. More specific

discussion with regards to leakage in chip test is shown in section 5.7.1. If the circuit

expects long time state storage, the capacitor must be larger to increase its capacitance,

but the axon circuit is used as a block to build a more complex computational net-

work. Since the whole circuit is expected to be compact and low power, the capacitor

which costs large circuit area will reduce the number of axon connections we can have.

Therefore, in the following sections of our circuit, a novel axon circuit is introduced.

The axon circuit is shown in Fig. 5.5(a), where the axon network is represented

by crossbar switch, each switch is a transmission gate, a parallel combination of an

NMOS and a PMOS transistor. It can effectively isolate the output from the input and

conduct the current in either direction. Output spikes from the transmission gates are

sent to an OR gate before they arrive at the LIF neuron. The OR gate here works as a

buffer.

The gate voltage of each switch, the state, is stored in a register. The fundamental

storage element of the register is a simple latch. Transmission gate 1 is used as a

switch to update the register. As shown in Fig. 5.6, Vact being high indicates the

virtual growth cone in the circuit is active. Vupdate represents the neurotrophin update

signal. The register updates its state and reads Vact when the reading-control signal

Vupdate is high. The conflict between Vact and feedback of the latch is avoided by

adding transmission gate 2. The register can keep the storage as long as the circuit

power is on. Input and output signals of the switches in Fig. 5.5(a) are all digital. This

results in nearly ideal switching in this network.

To identify whether the spike train density is high enough, spike calculator is used

to estimate whether there is a spike cluster arrived in the input. In Fig. 5.5(a), Vact

and Vup are asserted by their own spike calculator, growth cone and neurotrophin. The

spike calculator is a digital component which counts the number of spikes and the time
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interval in a spike train. A spike calculator is composed of Toggle flip-flop counters.

Its circuit is shown in Fig. 5.5(b). Counter 1 counts clock pulses ”clk”, which is a

regular clock signal from out source. It is used to estimate the time interval. Each clk

adds 1 to counter 1 until it reaches 7. The counter 1 will be reset to 0 if a new spike

comes. Meanwhile, counter 2 counts the input spikes. For both counters, if there are

more then 7 spike inputs, the output can be turned up high. Counter 2 will not start

counting until the time interval between two spikes is small enough. This means if

time interval is small that the counter 1 counted less than 7 pulses before counter 2

gets a new spike. If the counter 1 counted more than 7 pulses, it will reset the counter

2, counter 2 has to start counting from 0.

The reset signal is turned off at first. This enables the (3-bit) counter 1 to count

clock pulses. Clock pulses here come from an external source. When counter 1 reaches

its maximum value, it resets both the Toggle flip-flop and counter 2. Counter 2 sums the

input spike train and generates the update signal when it reaches its maximum value.

The high output of counter 2 represents the growth cone is activated. When the system

finishes updating, all counters are returned to their initial state. In this simulation, the

period of each clock is 2ms, which means that if the time interval between two spikes is

more than 14ms, counter 2 will be reset. In Fig. 5.5(a), the spike calculator of growth

cone counts the auditory input spikes in the ICc layer and generates output Vact. The

input clk frequency in this project is 33kHz. For Vup, the spike calculator counts the

MAC spikes. The input clk frequency in this project is 6kHz.

5.4.1 Initial status

In Fig. 5.5(a) the switch status represents whether the switch between each neuron

is on or off. The initial status of the register and the synaptic weight is defined at

the beginning of the simulation. The initial value of the status is gated through a

transmission gate, which is switched on by the initial pulse at the beginning of the

simulation. We use transmission gates because in the source and drain channel, current

can flow in either direction and it effectively isolates the input and output. In the initial

status, all the synaptic weight values are set to be 1.6V. All the digital components are

reset. The initial axon connection in Fig. 5.5(a) is 1-1, 2-2, which are in the circles.
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(a)

(b)

Figure 5.5: Digital circuit for single pathway block I. All the switches are controlled

by switch status. Corresponding to Fig. 5.1, the pathways are labeled as number 1 and

2. The horizontal labels are input signals while the vertical labels are output signals.

Lines without dots are by-pass. (a) This is the axon connection circuit. OR gates

are used between the transmission gates and the IF neurons to integrate the axon

inputs. The switches which are initially switched on are in the green circles. The status

of the transmission gate is stored in a register cell. Each gate has a corresponding

register cell. (b) is the spike calculator for neurotrophin block and growth cone block.

It is composed of two counters and two OR gates. The digital inputs are spikes from

postsynaptic spikes in neurotrophin and presynaptic spikes in growth cone.
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Figure 5.6: The circuit of register cell. In contrast to the basic latch, a transmission

gate 2 is added in the feedback part. This is to avoid any conflict between the input and

the feedback. Transmission gate 1 works as a switch to a llow current to flow between

Vact and the register. The register reads a new value from Vact when Vupdate is high.

Vupdate is connected to the gates of 1 and 2.

5.4.2 Input spike train generation

Repeated stimuli are generated from the same position in space to shorten the training

time. The motivation for us to use spikes is the same as in the spike generation sec-

tion in Chapter 3. Differences in spike timing carry information about the location of

objects in the environment (Roberts & Bell, 2002). As in Chapter 3, there are two dif-

ferent methods to generate spike trains: Inhomogeneous Poisson spike train and spike

pattern.

In the first Cadence simulation, we generated spike trains by an Inhomogeneous

Poisson Process. The instant firing rate of the center stimuli induced a spike train,

A spikein and V spikein in Fig. 5.1, is generated by the following equations:

r(t) = k(t)∗Rmax∗ cos(
2πt
T

) (5.1)

k(t) =

⎧⎨⎩r(t), r(t)> 0

0, r(t)<= 0
(5.2)

In this work, the period T is 20ms, Rmax = 400. r(t) is the spike firing rate, which

changes with time. Since there is rising and decaying area in cosine function., similar



Chapter 5. VLSI Circuits For A Superior Colliculus 82

as described in Chapter 3, the density of this spike train varies with time and is analo-

gous to spike clusters. In biology, sensory stimuli induce spikes in clusters, therefore

in this simulation, spikes are clustered. The firing rate of neighboring neurons is a

random sequence with a low average density.

Spike patterns were then used as input. The time interval between spikes was

set according to the choice of spike pattern, the time interval between clusters is a

fixed value. There are two kinds of spike patterns, high firing rate and low firing

rate. The high firing rate spike pattern represents the stimuli direction in the visual or

auditory map center as shown in Fig. 5.1. The low firing rate pattern corresponds to

the neighboring neurons of the stimuli center. The high firing rate spike pattern and

the low firing rate spike pattern are independent of each other.

5.5 Cadence simulation and results

The initial axon connection in Fig. 5.5 is 1-1, 2-2, and every synaptic weight is set to

be 1.5 V. In the first simulation, the visual and auditory stimuli are not aligned with

each other.

This setting emulates the barn owl wearing a prism, so that visual and auditory

maps are mismatched. Therefore, the visual stimuli center and the auditory stimuli

center correspond to different pathways. Retina-1 gets the weak visual stimuli and

ICx-1 accesses the strong auditory stimuli. The input spike train is weak which means

that information in this spike train is independent of the other spike trains and the

distribution of spikes is sparse and not clustered.

In SC neuron pathway 1, the visual and auditory inputs are not correlated with

each other. In Fig. 5.7(1), visual synaptic weight VwV1(retina-1->SC-1) is weak-

ened nearly to 0 V. The auditory synaptic weight VwA1 (ICx-1->SC-1) in Fig. 5.7(2)

is strengthened to its maximum value, nearly 3.3V. This is because the postsynaptic

spikes of the SC neurons are triggered by the visual and auditory spike cluster. In terms

of Spike Timing Dependent Plasticity (STDP), if a postsynaptic spike is triggered after

a presynaptic spike, within a certain time window, the synapse is potentiated. Because

of the weak visual input, the firing rate of the SC neuron is too low to inhibit the

generation of spikes from the interneuron.

Fig. 5.7(c)(d) shows the synaptic weight in pathway 2. Retina-2 gets strong vi-

sual stimuli, but the auditory input is weak, so the auditory synapse (ICx-2->SC-2) is

weakened. At time 183ms, the system update signal changed the spike transfer rou-
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Figure 5.7: Simulation results of the unregistered input spike pattern, analog out-

put. (1)(2)(3)(4) The positions of synaptic weights and neurons are corresponding to

Fig. 5.1. (5) The system update signal. VwA1 is depressed at first and increased after

the update signal in (5).

tine. SC neuron 1 now accesses its presynaptic spike train from pathway 2, as shown

in Fig. 5.8(a), the spike train density is changed. Since the auditory input in pathway

2 is strong and is highly correlated to strong visual input in pathway 1, the visual and

auditory inputs register with each other again on SC-1. The auditory synaptic weight

(ICx-2->SC-2) is then increased to its maximum value.

In Fig. 5.8(d), MAC spikes are generated continuously before the system update

signal. When the spike calculator finds seven postsynaptic spikes, the neurotrophin

update signal V up 1 becomes high. The growth cone circuit has detected the active

strong stimuli from pathway 2 and V act 2 is high. Therefore, in Fig. 5.8(b)(c), register

1-1 reads the low input V act 1 and switch 1-1 turns off, while register 2-1 reads the

high input V act 2 and turns on switch 2-1. The new axon connection becomes 2-1,

2-2, and the old connection 1-1 is switched off.

In the second simulation, visual and auditory inputs are aligned. Pathway 1 is given

strong visual and auditory stimuli, visual and auditory input are highly correlated with

each other, and the firing rate of the spike train is high. Visual and auditory inputs
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Figure 5.8: Simulation results of the unregistered input spike pattern, digital out-

put. (1) The A spikeout spike train. (2) Gate voltage of switch 2-1. (3) Gate voltage of

switch 1-1. (4) The postsynaptic spikes from intern neuron 1. (5) The system update

signal. The spike train of A spikein1 is changed on the time of update signal.

to pathway 2, pathway 1’s neighbor, are weak. Visual synapse (retina-1->SC-1) and

auditory synapse (ICx-1->SC-1) are strengthened, and VwA1 and VwV1 increase to

their maximum value of 3.3V. Meanwhile, synapses in pathway 2 stay at their original

value. The firing rate of the SC bimodal neuron becomes much higher, but because

of the inhibitory relationship between the bimodal neuron and the inter-neuron, the

inter-neuron is strongly inhibited and its output is close to zero. Thus no neurotrophin

signal or system update signal is generated in Fig. 5.9. The state of the crossbar switch

remains the same and there is no change to A spikeout 1-1.

5.5.1 MAC modulated by STDP

The output of MAC is adapted by STDP. As shown in Fig. 5.9, with the same fir-

ing rate, the number of output MAC spikes decrease as synaptic weight Vw increase

(V wA = V wV = V w). If visual and auditory inputs are highly correlated with each

other and their firing rates are high, namely, visual and auditory spike trains are trig-

gered from the same stimuli source, the strengthened SC bimodal neuron strongly
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Figure 5.9: Weight evolution of registered input. Visual and auditory inputs are all high

firing rate spike pattern.

inhibits the inter neuron and decreases the MAC spikes.

5.6 VLSI chip description and test configuration

The SC circuitry described above was designed using the AMS 0.35µm C35 process.

Fig. 5.10 is a micrograph of this chip, in which digital block and analog block are

besides each other. The chip test environment is shown in Fig. 5.11. The FPGA

on the Opal Kelly board is connected by USB and controlled by a PC. The input is

programmed by Verilog. Commands are sent from the PC to initiate the chip and input

spikes generation. Once initiated, the FPGA began to generate spikes continuously in

terms of spike patterns on the edge of the clock. Tristate buffers are set via Verilog

programming between FPGA pins and chip pins. The inputs and outputs of the chip

are buffered via on-chip unity-gain buffers. The buffer essentially just makes a copy
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(a)

Figure 5.10: Micrograph of mixed signal chip. The size of the chip is 0.6mm×0.5mm.

at the output of the input voltage, but it protects the measurement of voltage from

disturbance. Because the buffer is an operational amplifier, its input impedance is high

and output impedance is low.

All the analog outputs and part of the digital outputs of this chip are sampled by

an oscilloscope (Agilent 54622D). In the layout, the digital and analog blocks kept

separated and their power inputs are also separated. The digital circuit is surrounded

by P+ guard-rings and analog circuit is surrounded by N+ guard-rings. This is done to

reduce noise for analog circuit and maintain signal paths that have a minimal amount

of interference from digital switching.

5.7 Chip test and results

This section shows the test process and the snapshots of the chip test results. The

switch bar network is initiated before the spike train is generated by the FPGA. The

bias voltage in the STDP circuit is provided by a voltage regulator on the PCB test

board as shown in Fig. 5.12. In Fig. 5.5, the switches 1-1 and 2-2 are initially switched
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Figure 5.11: Chip test environment configuration. FPGA is programmed through USB

interface and communicate with PC. PC sent commands to start and stop FPGA running

and also access part of the digital outputs from chip. The connections between FPGA

and chip pins are buffered via tristate gates.

Figure 5.12: Voltage regulator on PCB test board. It is composed of potentiometer

and amplifier. The Amplifier AD8680 which has rail-to-rail input and output, here is

used as voltage follower to isolate the potentiometer and chip pins, because it has high

impedance output. The output of this voltage regulator ranges from 0V to 3.3V.

on while neurons in 1-2 and 2-1 are switched off. The chip test results are consistent

with the Cadence simulation results described in section 5.5, Vstatus represents the

gate voltage that is stored in the register, V status11 =V status22 = 3.3v, V status12 =

V status21 = 0v.

After the initiation was finished, regular streams of spikes were sent to neurons and

the network training was started. There are two kinds of input spike patterns shown

in Fig. 5.13. Corresponding to Fig. 5.1, V spikein1 is shown in Fig. 5.13(a) as D1
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(a)

(b)

Figure 5.13: Chip test results of Integrate & Fire neuron. (a) ”1” is the postsynaptic

spike pulse. ”2” is the membrane voltage on Cm. D1, D2 are the digital input spike

trains. Each spike cluster triggers a postsynaptic spike. The time scale is 5ms/div. (b)

The changed membrane voltage is on with higher injected current. The time scale is

1ms/div.

with a high spike density and A spikein1 is D2 with a low spike density. D1 indicates

the visual input V spikein1, D2 is the auditory input A spikein1. The time interval

between neighboring spikes is 1.5ms within a cluster and 31ms between clusters. The

spike input integrated on the neuron membrane capacitor, the effect of presynaptic

spikes on the neuron is signal ”2” in Fig. 5.13(a). Although the IF neuron membrane

voltage threshold is 1.5V, the peak-to-peak amplitude of signal ”2” is 2.5V. This is

assumed to be due to the spike feedback of Cfb, the decaying speed of the membrane

voltage. Refractory time (the amount of time neurons needed to wait for next stimuli)

of this IF circuit can be adjusted by parameters Vleak and Vdown in circuit Fig. 2.10 or by

changing the injected synaptic current. For example, if Vleak is large, this increases the

conductance of N1, it takes longer time for the membrane voltage V to reach threshold

Vth again.

The changing Vm signal is shown in Fig. 5.13(b), if we increase the value of Vw
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Figure 5.14: Chip measurement in different circuit points. Postsynpatic spikes

charge potC. VpotC gets to the maximum voltage immediately and decays gradually.

Presynaptic spikes discharge depC. IF is the membrane voltage V of IF neuron in Fig.

2.10. The time scale is 5ms/div.

Figure 5.15: Postsynaptic spikes and synaptic weight change in SC. The time scale is

1s/div. Since the scope probe used for signal 1 is×10, the voltage scale for both signal

1 and signal 2 are 1V.

in Fig. 5.3(a). Fig. 5.13 represents the bimodal neuron in pathway 1 of SC network

in Fig. 5.1. The inter neurons have nearly the same parameters as the bimodal neuron

except its input synapses. The circuit of the excitatory synapse is the same as the

bimodal neuron. But the parameter settings of the inter neuron synapses are separated

from the other synapses. In this stage, inter neurons in both pathway 1 and pathway 2

were not fired.

In Fig. 5.15, because these presynaptic spikes are before the postsynaptic spikes,
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(a)

Figure 5.16: Snapshot of axon switch bar test taken from Agilent Oscilliscope. The

switches from ICc-1 to ICx-1, ICc-2 to ICx-1 are on, while the switch in layer 2 is off.

Eventually, the synaptic output from ICx is the summation of input 1 and input 2. The

time scale is 5ms/div.

the synaptic weight kept on increasing from 1.6V to 3.3V in 17 steps, synaptic weight

increase 0.1V upon each postsynaptic spike. When the synaptic weight got to its

maximum value, the synaptic weight became stable. The auditory synapse weight

is strengthened faster than the visual synapse weight.

Because D1 only has 1 spike in a cluster, the spike time interval between two spikes

is large. The axon growth cone is not activated at first, command is sent from PC to

send D1 to FPGA. The new spike train is composed of 4 spikes in a cluster. When the

growth cone detects the new A spikein, the counter counted to 7, an update signal V up

is generated, which represents that the axon growth cone is activated. Meanwhile,

inter neuron starts firing. After several seconds training, we read the digital output

from oscilloscope. As shown in Fig. 5.16, Vstatus21 becomes high while Vstatus22

becomes low, this means switch bar network has been updated. Outputs from ICx sum

the input from nodes ”1” and ”2”.

Fig. 5.14 is the measurement of the voltages on several different points of STDP

circuit. The change of VpotC and VdepC determines the synaptic weight modification

amount.
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(a)

Figure 5.17: The equal circuit of the leakage in STDP circuit.

5.7.1 Leakage of capacitor

The synaptic weight is held on a capacitor, but his capacitor is also connected to the

sources and drains of several transistors, and leakage current from the capacitor flows

through these reverse biased diodes into the substrate. The charge transfer and re-

tention characteristics of these capacitors are discussed in this section. As shown in

Fig. 5.4, Cw is connected with the other transistors. Current flows from the capacitor

through the drains and sources of transistors. This process is simplified in Fig. 5.17.

For the MOSFET switch, cutoff is achieved by requiring that VGS <VT H . The best case

is VGS <= 0V . However, in reality, the current flow can not be completely blocked due

to leakage paths that exist in the device. Due to the internal physics and construction of

a MOSFET, the leakage current Ileak consists of several terms, such as junction reverse

leakage and subthreshold leakage. These leakages are unavoidable but can be mini-

mized. The leakage time tleak depends on how long it takes to discharge the capacitor

load CW from high voltage to approximately stable low voltage. In the Fig. 5.18, Ileak

is approximately to be a constant. This means the reverse leakage current through the

source/drain to bulk diodes played a main role in the leakage. In this circuit, tleak is

approximately 175s. If we describe Q as the total charge and Vw decayed from Vmax

to Vmin, then tleak is given by the following equations:

Ileak =
dQ
dt

(Q =CVmax) (5.3)

tleak =
C

Ileak
(Vmax−Vmin) (5.4)

In the present study, the synaptic inputs are continuous and the time interval be-

tween each spike is several milliseconds. In Fig. 5.15, we can measure that one weight
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(a)

Figure 5.18: Leakage of the synaptic weight Vw from chip test. Vw is reset to 1.7V at

first, which is 50% of the full synaptic weight voltage, before the leakage started. The

total voltage drop is 1.66V. The time scale is 20s/div.

change step ∆V w is nearly 0.2V and takes 200ms. Since the leakage current is nearly

constant, the leakage drop for each weight change step in 1s is 1.66/175. It is only

0.03% of ∆V w. The influence of leakage on the synaptic weight change is therefore

not serious. For long term synaptic memory storage, it has been suggested to decrease

leakage current using a current compensation circuit. This method has been used in

(Barzdénas & Navickas, 2007; Mizuno et al., 1998). An alternative method has been

suggested using a new technology involving floating gate to hold the electrical charge

for an extended period of time even without power support.

5.8 Discussion

It is known that computers and brains are very different systems. A brain consists of

about a trillion(1012) or so neurons that act as both processor and memory. Besides

that, there are approximately a thousand trillion(1015) synapses that connect the net-

work of neurons, which allow the brain to act as a single system. The chip described

here has an area of approximately 0.48mm2 and could only compare to the smallest part

of a brain. The size of the silicon circuits is still too large compared to nervous system

in the brain. If neural circuit is to be used as a building block in a large-scale computa-

tional system, it would have to be replicated many times. Therefore, the basic elements

of the circuit should be made as simple as possible. However, the detailed biological

characteristics of neural networks require more electronic components to compose the

functions. For example, the Hodgkin Huxley neuron requires more transistors than
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integrate and fire neuron. The comparison can be seen from Indiveri (2008). The three

conductance channels need more transistors to demonstrate. In the design of this the-

sis, LIF neuron is designed with fewer transistors than the Hodgkin Huxley neuron,

but will be simplified further in future work.

The STDP circuit we used in this paper is working in subthreshold. Synaptic

weight change is affected by the environment and device fabrication process. By ad-

justing the bias voltage, these effects can be compensated.

When comparing the results, the Cadence simulation and the chip test are consis-

tent with each other. In Cadence simulation, the input spike trains are Inhomogeneous

Poisson spike trains, the spike sequence is random and the spike density is chang-

ing with time variance. This induced the irregular synaptic weight change. However,

STDP ∆W in each step seems to be different with the chip test result. One of the rea-

sons is that spike source from FPGA is programmed with regular pattern rather than

random sequence, another reason is that the STDP circuit is working in subthreshold

level and the current flow along the transistor is changed in real environment although

transistor parameters were the same.

If we modify the present PCB chip test board to have an RS232 interface, the chip

can communicate with the e-puck robot as described in Chapter 4.

5.9 Summary

This is the first chip to emulate the adaptive visual and auditory information integration

in the Superior Colliculus. For autonomous systems in neuroscience, adaptability is an

important issue. This chapter presents a VLSI circuit designed for visual and auditory

stimuli integration in the Superior Colliculus.

In this mixed-signal VLSI chip, the digital area and analog area communicate with

each other by spikes. The digital area is the axon connection which is controlled by

signals from analog area. Axon growth in this circuit has been designed in a novel

way. The axon connection is represented by a crossbar switch and it is extendable

and reconfigurable. Neurotrophin is triggered by an inhibitory network which is mod-

ulated by STDP. This is a new implementation of STDP in hardware level and the

first VLSI circuit for adaptive visual and auditory integration in midbrain. The up-

dated axon connection in this circuit shows bio-inspired axon growth can increase the

reconfigurability and adaptivity of VLSI circuit.

In chapter 4, we successfully applied the Superior Colliculus model to a robotic
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system emulating the behavior of barn owl and proved this model can increase the

adaptability for the robot. However, in the real-time experiment, the robot communi-

cated with the PC through serial port for sensory data processing, this slowed down

the computation speed. Therefore in this paper, an analog VLSI circuit is designed to

implement this model with higher computation performance. A larger chip is proposed

to be studied which includes more pathways for complete sensory map projection and

implementing this chip into e-puck robot which we have described in paper Huo et al.

(2008). The hypothesis of adaptive visual and auditory integration in Superior Collicu-

lus has therefore been proven.



Chapter 6

Summary & Conclusion

This thesis has investigated how visual and auditory maps are realigned with each other

in the barn owl Superior Colliculus (SC) and sets up a direct link between neuroscience

and engineering. In particular, chapter 3 has presented a new SC model which has

adaptive visual and auditory map alignment. With this model, robot in Chapter 4 can

correct the visual and auditory localization error caused by prism wearing over the

robot. Finally, silicon SC, a mixed signal VLSI chip is introduced in chapter 5.

This chapter summarizes the works carried out by this thesis in section 6.1 and

presents the future work in section 6.2.

6.1 Work Carried Out

This section is the work of this thesis we have carried out until now.

6.1.1 Superior Colliculus model

Chapter 3 has explored a novel approach to modelling the map realignment in the

Superior Colliculus (SC) by using axonal and synaptic plasticity. Compared to the

previous SC model, this model abstracts the newest biological details. It is the first

SC model that uses inhibitory network to modulate axon guidance cues during visual

and auditory map alignment. In the other words, the axon guidance cue is gated by the

Spike Timing Dependent Plasticity in an inhibitory network.

The key point of this model is the adaptability of the Superior Colliculus in the barn

owl. There are assumptions in this model, some of them are computational, for exam-

ple: (a) no frame coordination is needed, because all the sensory inputs are transferred

95
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to be neural spikes first; (b) visual and auditory stimuli are integrated on the bimodal

neuron of the SC through Spike Timing Dependent Plasticity. Other assumptions are

biologically correct, for example: (a) visual and auditory map realignment is through

axon growth and retraction which are modulated by the inhibitory network in the Su-

perior Colliculus; (b) axon growth is a result of extracellular molecular attraction and

intracellular electrical activity.

Results of the simulation are compared to the biological process and appears to be

valid. This model is then used as the foundation for an engineering implementation.

6.1.2 Robot with SC model

Chapter 4 has presented robotic experiments which are used as demonstrators for the

SC model. Firstly, we consider how to get the right data from sensors with little noise.

Sensory localization, especially sound localization methods, are discussed at the be-

ginning. The image is firstly simply processed to identify the light center. For sound

localization, this is different from traditional method:crosscorrelation. FFT is used to

analyze the sound spectrum first and extract the direction. Data are sent from the robot

microcontroller to PC through Bluetooth and the model is processed inside the PC.

In previous robotic experiments for visual and auditory integration Arnoldi (1990);

Rucci et al. (2000), the robot did not wear the prism. To emulate the prism wearing,

Rucci et al. (2000) shifted the image received from the camera. In comparison, the

robot in the experiment in this thesis wears a real prism in an environment which is

similar to that experienced by the barn owl. In the real-time experiment, excitatory

synaptic weight and axon guidance cues are recorded to match those used in the com-

puter simulation of the model. As a result of training, the final output from the SC

sensory map is once more unique and there is no disparity in the sensory map integra-

tion.

This shows that knowledge from biology can be used to influence robotics. It also

shows the ability of the SC model to assist the robot to cope with an environmental

change.

6.1.3 Superior Colliculus circuits & chip

Animal sensory systems are essential to both survival and competition. They, and their

analogues in robots, are not limited to converting input signals into internal represen-

tations. Their tasks are complex and they must do them efficiently if they are to act
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rapidly on the sensory input (Indiveri, 2000). Circuits were designed and fabricated to

implement the model in hardware. The novel features of this implementation are:

∙ The axon network is a digital circuit. This reduces chip area compared to previ-

ous designs Mead (1989); Taba & Boahen (2006). Because the axon connection

status is bistable, the status of the axonal connection is stored in a simple register.

∙ The register cell is modified from the basic latch. Unlike in a traditional design,

a transmission gate is added between the inverters of the latch to avoid signal

conflict between the input and the feedback.

∙ The axon growth process its also digital. The calculation of the axon growth cue

and growth cone internal activity are in digital counters.

∙ STDP is used to modulate the inhibitory network. This is a new approach to

rewiring the information pathway in hardware.

The circuit was implemented in the form of a silicon chip using the AMS 0.35µm

CMOS process. Results of the chip tests are presented and show the circuit’s function-

ality and performance. Chip tests show similar performance to the simulation results

(in Cadence). This chip is capable of redirecting the auditory stimuli to a new path-

way where the visual stimuli are centred. This VLSI implementation of SC model

also provides a new, biologically-inspired mechanism for a particular form of sensory

information processing in electronic circuits.

6.2 Recommendations for future work

6.2.1 Model

Map alignment is one of the basic mechanisms in sensory integration in the brain.

The model we have built offers new insights into this mechanism, which explained

the adaptibility between the visual map and the auditory map through axogenesis and

synaptogenesis.

However, although the present model demonstrates adaptability between the visual

and auditory maps, the effect of motor behaviour has not yet been modeled. The bi-

modal neurons in the deep Superior Colliculus compose sensory maps that project to

the motor system. It is not clear at present how the motor map interacts with the visual

and auditory bimodal neurons. To permit future research, more biological details are
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needed of the motor neuron structure and its behaviour in the deep Superior Collicu-

lus. The motor map and visual map alignment is more complex than the visual and

auditory map alignment. Knudsen & F.Knudsen (1989) mentioned that after the prism

is removed, barn owl visuo-motor behaviour can be recovered sooner than auditory

localization. It is, however, clear that these sensory maps are aligned in the SC. There-

fore we have an assumption that axon projections between the motor map and the other

sensory maps are similar to the present model for visual and auditory map alignment.

The present neural network has been simplified and covers 10 localization direc-

tions (10 pathways) in space. In the real Superior Colliculus, there are millions of

neurons to cover all the directions in space. To increase the similarity with the biolog-

ical environment, the number of neurons should be increased, along with the number

of axon and synapse connections between neurons. For example, the synapses at the

terminals of axons between ICc and ICx will be strengthened when visual and audi-

tory stimuli are registered at the axon terminal, which happens after the new axon is

connected. Also the synapse will be weakened when visual and auditory stimuli are

unregistered, which always happens before its axon is going to withdraw.

The model can also be extended to other animals. In human beings, the disparity

between visual and auditory information can also cause neural activity. It has been

shown that saccadic latency gradually increased when spatial distance between the

auditory and visual targets increased (Darrien et al., 2001). Harrington & Peck (1998)

showed the significant influence of the disparity between visual and auditory stimuli

for saccadic reaction times. It provides the evidence for neural summation over a wide

range of spatial disparities. This would be a useful direction for future research.

6.2.2 Engineering work

6.2.2.1 Robot

Although the ability of the robot to localize sound in 360∘ space with three micro-

phones has been shown in Chapter 4, the present results of prism experiments used

only two microphones to detect the target in a semicircular area. In the discussion in

Chapter 4, we noted that the e-puck should be equipped with more cameras to have the

same sensitivity as the auditory system in 360∘. A better image processing algorithm

is needed for a robot in a more complex environment. Visual localization requires data

preprocessing such as edge detection, motion detection, classification and data dimen-

sion reduction. These methods, using more complex processing can reduce the data
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size before the visual data are accessed by the processor.

At present, the motor map is not involved in the robot localization. With the devel-

opment of the model, the robotic experiment should also be improved. As described

in section 6.2.1, the motor map can be connected to the other sensory maps. There are

two wheels in our robot. The robot should run in the direction it gets from the PC. This

can make the robotic performance approach better the barn owl predatory behaviour in

its natural environment.

Real-time experiments need high computing speed. However, in our present robot

experiment, data acquisition and calculation are separated. The microcontroller ac-

quires data and sends them to the PC through Bluetooth, acting as a serial port. The

speed of data transmission is limited, as only one byte can be sent at a time. In future

work, more complex algorithms for data processing also need more memory for com-

putation. One solution is to use a specialized VLSI chip which is embedded into the

robot to carry out computation directly.

6.2.2.2 Circuit

The low power VLSI SC chip can redirect the axon connection correctly between dif-

ferent nodes. However, there are still some points to be improved.

Firstly, the STDP circuits works in subthreshold mode. Although this allows a

simpler circuit to be used, it makes the circuit vulnerable to environmental change,

particularly to temperature. The influence of temperature can be seen from the follow-

ing equation. In an NMOS transistor, the current flow is expressed as:

I = I0e
Vg
VT (e

Vs
VT − e

Vd
VT ) (6.1)

VT only changes with temperature. In real environment, the effect of VT cannot be

ignored.

Synaptic weight change is stored on a capacitor and the synaptic weight decays to

approximately to 0 within 1 minute. One possible method of improving this is to use

floating gate technology, details of which can be found in Liu et al. (2002). Another

method is to digitise the synaptic weight, but since the weight change procedure is in

several steps, the circuit will be more complex.

In the chip test, spikes are generated from Field-Programmable Gate Arrays (FPGA)

through programming. The mathematically defined spike trains are sent to the axon

network directly as sensory signals. This causes a problem for future work in which
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it is expected that the whole signal processing will be finished inside the robot micro-

controller. In real-time experiments, data received by the robot through sensors are

not processed directly to be neural spikes. Instead, the input sensory data is usually

numerical. To transfer these numerical data into neural spikes needs complex calcula-

tion. For the robot, the memory of the microcontroller is limited and therefore cannot

afford to this work. To address this problem, many researches on bio-inspired VLSI

chips have made silicon retina and cochlea whose role is to represent natural signals

as neural spikes (Lazzaro & Mead, 1989; Mahowald, 1994; Shiraishi, 2004). These

circuits can be integrated to make robot in future work.

6.2.3 Hippocampus

Map alignment is not restricted to the Superior Colliculus. It is believed that map

alignment also plays an important role for learning, perception and memory. Although

the basic function of computer memory and hippocampal memory are the same, to

store information, hippocampus memory has special functions that computer memory

does not. For example, autoassociative memory allows the brain to retrieve the whole

entire memory from only pieces of itself. However in a computer, database damage

can not be recovered without an entire backup.

The most well studied memory structure in the real world context is that of place

cells in the rat. These are neurons that respond to a particular position in space. This

is similar to what we are studying in the sensory system of Superior Colliculus. The

neural response to external stimuli is characterized in the sensory map. But neurons

in the hippocampus do not simply conform to a two-dimensional topographical map

as does the sensory map (Shapiro & Eichenbaum, 1999). More study of the details

should be continued in the future.

It is expected this work can also pave a way to better understand the other parts of

the brain where spatial maps are formed, for example in the prefrontal cortex (Jr. &

Sereno, 2006).

6.2.4 Adaptation in sensor fusion

Potential applications for sensory map realignment are wide spread. One of the ap-

plications is a better robot which can automatically eliminate the error caused by en-

vironmental change. For example, a robot is equipped with multiple sensors, and if

one of the sensors is damaged by accident, the other sensors can adjust themselves to
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this change. Another application is in robots that work in difficult environments, an

extreme example being the robot in another planet, like the ”Mars Rover”, which has

to adjust itself to different gravity and land surfaces. At present, all these parameters

need to be calculated before landing. However it is expected that the robot’s motor

behaviour can be well adapted to an unknown environment.

6.3 Conclusion

Adaptation is a key feature that makes neural networks, in the brain and in artificial

systems, interesting, useful and distinct from conventional computer programmes. The

adaptability of the Superior Colliculus in the barn owl can be modeled to allow its cen-

tral mechanisms to be transferred to an artificial computing system and thereby imbue

it with a new form of adaptability to its environment. In this project, the following

hypothesis (as presented in Chapter 1) was investigated:

∙ 1) the barn owl can adapt the alignment of its visual and auditory maps, in re-

sponse to misalignment created by a prism, via axogenesis and synaptogenesis

∙ 2) this adaptability in the Superior Colliculus of the barn owl can be modeled

accurately in simulation

∙ 3) this neural model can be demonstrated as a mixed signal VLSI chip, in the

context of a robot experiment

∙ 4) the artificial axogenesis and synaptogenesis demonstrated in 2-3 above has

potential for use in practical engineering applications

A computational model of the Superior Colliculus has been demonstrated with re-

configurable axon connections between the visual and auditory maps. The Superior

Colliculus model is a practical work which is not only biologically plausible, but also

can be used to do more exploration in sensory integration and adaptive neural network.

Simulation results of this model support the first and second parts of the above hypoth-

esis. The model is embedded in a demonstrator robot. The performance of the robot

wearing a prism demonstrated the success of (3). Real-time processing of detailed

sensory information is a computationally demanding task for both biological and ar-

tificial systems. Implementation of the SC in a robot is a step towards filling the gap

between robots and natural creatures in terms of robustness and flexibility. Finally, a
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low power VLSI circuit has been designed including the SC model, which showed the

axon rewiring itself in silicon. The silicon SC is a new example of hardware that can

process novel data without explicit supervision. This further upholds element (3) of

the multi-part hypothesis above.

Adaptation is a general concept, which is pervasive and is unlikely to have a sin-

gle theoretical framework. In this thesis, we concentrate on sensory adaptation in the

midbrain, which can adjust its neural network to a changed environment. Both sim-

ulation results and engineering implementation have proved the SC model is capable

of the same adaptability as the biological SC. The adaptation here between visual and

auditory maps can be expected to explain the integration between other sensors, and

even between other areas of the brain.



Appendix A

Acronyms and abbreviations

SC Superior Colliculus

IC Inferior Colliculus

STDP Spike Timing Dependent Plasticity

ITD Interaural time difference

VLSI Very Large Scale Integration

ITD Interaural Time Difference

IID Interaural Intensity Difference

MAC Map Adaptation Cue

LIF Leaky Integrate and Fire
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Appendix C

Robot Parameters

C.1 Robot configuration

The compiler supporting the dsPIC processor of the e-puck is GNU. It is included in

the MPLAB environment of Microchip running only on Windows.

C.2 Sound localization

The quality of the signal is of course very dependent from the type of sound source. In

this experiment, the sound source is generated from Matlab.

Microphones distributed on the e-puck robot are sensitive to sound amplitudes. If

the sound source is within two meters of the robot, the three microphones will have dif-

ferent average sound amplitudes, so the sound amplitude is direction dependent. This

is one of the reasons we use phase detection rather than cross-correlation to calculate

the sound source direction. Cross-correlation methods need to multiply the wave am-

plitudes from different microphones, while phase detection will firstly calculate phase

from within the data from a single microphone.

Fig.C.1 shows an experiment in which two sound bursts are tested in different

directions.

C.3 Visual detection

The e-puck robot camera has a resolution of 640(h)× 480(l) pixels and is colour.

However, the processor only has 8k of RAM, which is not sufficient. The image is

subsampled and in grey scale mode. This setting is completed in DSP.
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(a) (b) (c)

Figure C.1: Amplitude differences of sound waves from 3 microphones. Blue line

represents the data from left microphone; green line represents the data from right

microphone; red line represents the data from back microphone. (a) Sound source is in

the left. (b) Sound source is in the right. (c) Sound source is at front.



Appendix D

Circuit Parameters

D.1 Tables of device parameters

Tables in this section give device sizes and bias values for the VLSI circuits in Chap-

ter 5. The input bias voltages in the table are suggested starting points. All transis-

tor dimensions in the following tables are in µm(micrometers) and the voltage unit is

V(volts).

There are two kinds of capacitors. One is composed of CPOLY, the other one is

MOSCAP, which is at the transistor gate area. Here we list parameters of the main

components of the analogue circuit, the IF neuron and Spike Timing Dependent Plas-

ticity.

Parameters for circuit in Chapter 5
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Bias Value

Vleak 300m

Vdown 1

VdecIhn 600m

Vth 1.5

Vrefr 650m

Table D.1: Bias voltages

Fig 5.1

Component Value

N1 W=3.5 L=10

N2 W=5 L=1

N3 W=4 L=1

N4 W=4 L=1

N5 W=2 L=15

Cm 3.1pF

Crefr 837fF

Table D.2: Device parameters

Fig 5.1

Component Value

P1 W=10 L=1

P2 W=1 L=10

N1 W=1 L=3

N2 W=1 L=5

Table D.3: Parameters of Fig. 5.3(a)

Component Value

N1 W=1 L=1

N2 W=5 L=1

N3 W=1 L=10

Table D.4: Parameters of Fig. 5.3(b)

Bias Value

Vtp 2.8

Vp 2.45

Vd 600m

Vtd 300m

Table D.5: Bias voltages of Fig. 5.4

Component Value

P1...P6 W=2 L=1

N1,N3...N7 W=1 L=1

P7(MOSCAP) W=1 L=15

N2(MOSCAP) W=1 L=10

Cw(CPOLY) 5pF

Table D.6: Device parameters of Fig. 5.4
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Figure D.1: Schematic of the circuit in Cadence. The left one is the digital part and

the right one is analog part. Signal pathways from digital block to analog block are

connected by two OR gates, which can also filter out the input noise from the digital

block.

Circuit schematic

The digital circuit and analog circuit are connected through two OR gates, which play

a role of buffer between digital axon and analog neuron.
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