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Abstract
Planning for emergency evacuation, and, more generally, for emergency movement in-

volving both evacuation (egress) of occupants and ingress of first responders, presents

important and challenging problems. A number of the current issues that arise during

emergency incidents are due to the uncertainty and transiency of environmental con-

ditions. In general, movement plans are formulated at building design-time, and those

involved, such as building occupants and emergency responders, are left to adapt rout-

ing plans to actual events as they unfold. In the context of next-generation emergency

response systems, it has been proposed to dynamically plan and route individuals dur-

ing an emergency event, replanning to take account of changes in the environment.

In this work, an emergency movement problem, the Maximal Safest Escape (MSE)

problem, is formulated in terms that model the uncertain and transient environmen-

tal conditions as a flow problem in time-dependent networks with time-varying and

stochastic edge travel-times and capacities (STV Networks). The objective of the MSE

problem is to find flow patterns with the a priori maximal probability of successfully

conveying all supply from the source to the sink in some given STV Network. The

MSE and its deterministic counterpart are proved to be NP-hard. Furthermore, due to

inherent complexity in evaluating the exact quality of candidate solutions, a simula-

tion approximation method is presented based on well-known Monte-Carlo sampling

methods.

Given the complexity of the problem, and using the approximation method for eval-

uating solutions, it is proposed to tackle the MSE problem using a metaheuristic ap-

proach based on an existing framework that integrates Evolutionary Algorithms (EA)

with a state-of-the-art statistical ranking and selection method, the Optimal Computing

Budget Allocation (OCBA). Several improvements are proposed for the framework to

reduce the computational demand of the ranking method. Empirically, the approach

is compared with a simple fitness averaging approach and conditions under which the

integrated framework is more efficient are investigated. The performance of the EA

is compared against upper and lower bounds on optimal solutions. An upper bound

is established through the “wait-and-see” bound, and a lower bound by a naı̈ve ran-

dom search algorithm (RSA). An experimental design is presented that allows for a

fair comparison between the EA and the RSA. While there is no guarantee that the

EA will find optimal solutions, this work demonstrates that the EA can still find useful

solutions; useful solutions are those that are at least better than some baseline, here the

lower bound, in terms of solution quality and computational effort. Experimentally, it
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is demonstrated that the EA performs significantly better than the baseline. Also, the

EA finds solutions relatively close to the upper bound; however, it is difficult to es-

tablish how optimistic the upper bounds. The main approach is also compared against

an existing approach developed for solving a related problem wrapped in a heuristic

procedure in order to apply the approach to the MSE. Empirical results show that the

heuristic approach requires significantly less computation time, but finds solutions of

significantly lower quality.

Overall, this work introduces and empirically verifies the efficacy of a metaheuris-

tic based on a framework integrating EAs with a state-of-the-art statistical ranking and

selection technique, the OCBA, for a novel flow problem in STV Networks. It is sug-

gested that the lessons learned during the course of this work, along with the specific

techniques developed, may be relevant for addressing other flow problems of similar

complexity.
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Chapter 1

Introduction

“Quo Vadimus?”

1.1 Motivation

Effective emergency response is often hampered by a lack of information about an

unfolding incident. This is mainly due to the highly transient and uncertain nature of

such events. For example, the fire brigade may attend an incident in a building without

knowledge of the source or state of the fire, or even the occupancy of the building.

Clearly, this uncertainty has had a huge impact on the present methods and procedures

used by emergency responders.

Projects investigating next-generation emergency-response systems, like FireGrid

(Berry et al., 2005; Upadhyay et al., 2008; Han et al., 2010), currently focussed on

emergencies in the built environment, are attempting to change the handling of inci-

dents. A key aspect of these projects involves the development of buildings that are

‘intelligent’, in that they are proactive in monitoring and responding to events in their

environment. In the case of an emergency, these buildings will have the capacity to

detect and recognise an event, like a fire, and react accordingly by, for example, acti-

vating first-line responses like sprinklers and fire alarms, and manipulating ventilation

to mitigate smoke spread. Furthermore, it is envisioned that buildings will be linked to

a wider infrastructure enabling them to escalate an incident to external emergency re-

sponders, should it be necessary. The building system would then assist responders by

continually providing up-to-date information about unfolding events, like the spread

of fire and smoke, the structural integrity of the building, and the whereabouts of oc-

cupants. Coupled with information services and analytical tools at the responders’

1
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disposal, including decision-support systems and simulation tools, this should enable

the responders to observe and predict the progression of an incident more clearly and,

thus, help them make more informed and better decisions.

An important part of emergency response is the evacuation of building occupants.

Currently, emergency evacuation plans are developed during the design phase of a

building, often using computer simulation to evaluate how humans might behave given

numerous scenarios. This process involves the consideration of a number of factors,

including, for example, occupancy and occupant knowledge of a building. In general,

when implemented the evacuation plans are then communicated to occupants by way

of a range of media, including the use of sound, signs and lighting, and through doc-

umentation like route maps. However, in the event of an actual emergency occupants

are left to adapt the plans to the unfolding events of which they most likely have am-

biguous and uncertain knowledge. In reality, the routes they choose, which may or

may not agree with the emergency plans, could be obstructed, congested or even, in

the worst case, impassable.

Using an ‘intelligent’ building’s real-time and enriched view of an incident and

knowledge of the whereabouts of its occupants, it may be possible to plan the safest

escape route for individual occupants, and monitor and respond to the execution of this

plan, adapting it to the changing environment by, for example, re-routing evacuees to

avoid untenable areas or prevent congestion. Communication of plans might be done

using a variety of existing technologies, like dynamic signs and lighting, and public

announcement systems. Incorporating the evacuation system into the wider intelligent

building infrastructure would allow other response activities to be adjusted appropri-

ately to adapt to the evacuation plan. It would also enable information to be provided

to emergency responders about the current state of evacuation, and, importantly, in-

structions to guide them to, for example, the source of the fire and occupants who have

taken refuge or are unable to evacuate due to injury.

Furthermore, movement plans are currently developed using time as the perfor-

mance criterion, such as total or last evacuation time (SFPE, 2002). Here time acts a

simple surrogate for risk; it is used as a heuristic for measuring potential exposure to

harm, and so, the argument goes, by minimising the time of potential exposure to a

hazard, the risk of harm is also minimised. While this has proven a useful approach to

date, in the context of future emergency response systems, it may be possible to model

the transiency and uncertainty of a hazardous environment more directly, and, hence,

provide a more accurate understanding of the risks posed. For example, it is not nec-
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essarily the case that the shortest or fastest path, in terms of time, is the safest. In other

words, a more direct approach could provide a better informed assessment of the risk

to individuals, such as building occupants and emergency responders; an assessment

which can then be used for determining the safest movement plans.

The goal of this project is to investigate methods for finding safe emergency move-

ment plans in dynamic and uncertain environments, specifically the built environment.

1.2 Problem Statement

Motivated by this vision of future emergency-response systems, a formal model of

the built environment is developed herein that attempts to capture the transient and

uncertain environmental conditions. For the problem of evacuation planning within

this context, an optimisation problem, called the Maximal Safest Escape Problem, is

defined with the goal of finding evacuation plans that have the highest likelihood of

successfully supporting the egress of occupants from their initial locations to places of

safety in transient and uncertain environments.

The problem is formally defined in time-dependent flow networks with time-varying,

stochastic, edge travel times and capacities. In these networks, building circulation sys-

tems are represented using nodes and edges, where nodes model distinct locations such

as doors and corridor intersections, and edges, which connect nodes, represent spaces

which people traverse, for example, corridors and stairwells. Occupants are repre-

sented homogeneously as individual units of supply that flow through the network.

Node and edge properties can be used to represent building dimensions and proper-

ties, for example, edge capacities represent the number of units of supply that begin to

traverse an edge at a particular point in time. In the networks, commonly two special

types of node are identified, namely sources from which network supply originates,

and sinks, destination nodes toward which supply moves. To model the transient and

uncertain environmental conditions, edge properties are defined as time-varying and

stochastic.

Given the network model, the Maximal Safest Escape Problem is defined as the

problem of finding a routing plan that will convey all network supply from the sources

to the sinks with the highest overall likelihood of successful traversal, given all po-

tential realisations of network stochastic elements. The computational complexity of

the problem and its deterministic counterpart are shown to be NP-hard, and thus it is

unlikely that efficient, exact algorithms will be proposed for solving either problem.
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Given the complexity results, the goal of this work is therefore to develop approximate

procedures, based on Evolutionary Algorithms, that efficiently find high-quality, but

not necessarily optimal, solutions, termed useful solutions, to the Maximal Safest Es-

cape Problem. Since optimal solutions are in general unknown, useful solutions are

defined here as those that are better than some baseline in both solution quality and in

computation time.

1.2.1 Research Hypothesis

In support of this investigation to find an effective approach for solving the Maximal

Safest Escape Problem, the research hypothesis driving this work is:

Evolutionary Algorithms will find useful solutions to the Maximal Safest
Escape Problem in time-dependent flow networks with stochastic, time-
varying edge capacities and travel times.

Once again, the complexity of the problem indicates that in general it is unlikely

that efficient, exact solution approaches will be proposed. Given this, herein high-

quality, approximate solutions are desired, specifically those that are useful, that is,

not necessarily optimal but are of high-quality and that are found within reasonable

time. Here such a baseline on solution quality and computation time is established

by a random search algorithm, and, additionally, stochastic upper bounds on optimal

solutions are also provided for comparison.

1.3 Thesis Contributions

Towards the end of evaluating the given research hypothesis, the main contributions of

the thesis are summarised as follows:

• Definition of a novel flow problem, the Maximal Safest Escape Problem (MSE),

in time-dependent flow networks with stochastic, time-varying edge capacities

and travel times.

• Formal computational complexity results for the MSE and its deterministic coun-

terpart.
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• Extension of a Statistical Ranking and Selection procedure, the Optimal Com-

puting Budget Allocation (OCBA) method, as part of a state-of-the-art frame-

work integrating EAs and the OCBA applied here to the MSE, with:

– an optimisation to improve the computational efficiency;

– a heuristic to further improve the efficiency;

– the use of informative Bayesian priors.

• Design and implementation of an Evolutionary Algorithm (EA) for solving the

MSE.

• Empirical evaluation of the application of the EA to the MSE against a com-

peting EA, a random search algorithm, stochastic upper bounds, and an existing

approach developed for a related problem.

These contributions will be described in detail in the subsequent chapters.

1.4 Thesis Outline

The rest of the thesis has the following structure:

Literature Review: Network Optimisation Chapter 2 looks at the domain of inter-

est, providing a review of approaches used for evacuation planning, in particular

focussing on those works applying network flow models or closely related mod-

els to emergency evacuation planning. It begins with simple dynamic network

models and progressively surveys more complex models, including those with

both time-varying and stochastic network elements.

Literature Review: Evolutionary Algorithms Chapter 3 focusses on the solution ap-

proach of choice: Evolutionary Algorithms. It begins with an overview of Evo-

lutionary Algorithms and briefly describes the components of a generic EA. A

number of related areas are then surveyed, including the application of EAs to

related shortest path and flow problems. Then it reviews both theoretical and

applied works studying EAs in noisy/stochastic environments more generally,

in particular focussing on a state-of-the-art framework integrating EAs with a

Ranking and Selection procedure that is applied to the problem tackled herein.
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Maximal Safest Escape Problem Chapter 4 provides a formal definition of stochas-

tic, time-varying flow networks (STV Networks), and defines the problem stud-

ied herein, the Maximal Safest Escape Problem. Furthermore, it details the com-

putational complexity of the problem. Finally, it describes a stochastic upper

bounding procedure for the MSE.

Candidate Solution Generation, Evaluation and Ranking Chapter 5 is focussed on

candidate solutions to the MSE; in particular, detailing methods for generating

approximately equiprobable candidates, describing how to evaluate the solution

quality of candidate solutions for the MSE using a simulation approximation ap-

proach, and finally detailing a state-of-the-art framework integrating EAs and

a statistical Ranking and Selection (R&S) procedure for tackling problems in

stochastic environments that is applied to the MSE. An optimisation and heuris-

tic extension are proposed for improving the computational complexity of the

R&S procedure.

Solution Approaches Chapter 6 details the proposed approaches for solving the MSE.

It also describes two further approaches: an EA using a simple averaging ap-

proach to evaluate candidate solutions, and a random search algorithm.

Experimentation and Analysis Chapter 7 details the empirical evaluation of the pro-

posed approaches for solving the MSE. It highlights some important implemen-

tation details, in particular the problem instance generator, and the experimen-

tation carried out. The chapter closes with a discussion of the results and their

implications.

Conclusions The final chapter (8) of the thesis details the conclusions of the work and

identifies a number of avenues for future research.



Chapter 2

Literature Review:

Network Optimisation

The following two chapters survey areas of the literature related to the research prob-

lem addressed in this thesis. This chapter provides the wider context of the work

described herein, focussing on applications of network optimisation models to evacua-

tion planning. The following chapter moves into a discussion of the general approach

applied to the problem described herein, and in particular closely related works.

2.1 Introduction

This chapter begins by mentioning works in the area of online decision support for

emergency evacuation for the built environment, in particular the FireGrid project. It

also provides a brief survey of work in the area of simulation models for evacuation

planning. This is followed by a discussion of a particular macroscopic branch of mod-

elling involving flow networks, beginning with a discussion on how network models

are used to represent building environments. Then, a review of works using network

optimisation to solve evacuation problems in dynamic flow networks is given; specif-

ically, works that directly address real-world evacuation planning problems and those

that tackle evacuation inspired problems. This is followed by a review of works that use

more elaborate network models, for example, those including time-varying network at-

tributes like travel times, and those that include stochastic elements. Also mentioned

are a few works that address operational evacuation planning.

7
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2.2 Online Decision-Support for Emergency Evacuation

Several works, for example (Jones and Bukowski, 2001; Jones et al., 2005; Davis,

2007; Berry et al., 2005; Miller-Hooks and Krauthammer, 2007; Miller-Hooks, 2009),

have proposed the idea of online decision support for emergency response with the

ultimate goal of improving the management and efficiency of the handling of such

hazardous scenarios. One aspect of the general response involves the safe and efficient

movement of individuals involved, that is, the building evacuation (egress) of occu-

pants and the managed ingress of responders. These works have conceptualised the

idea, expounded the requirements, and discussed potential technological solutions.

A key idea of these projects involves the development of buildings that are ‘intel-

ligent’ in the sense that they will be proactive in monitoring and responding to events

within and around them. In the case of an emergency, these buildings will have the

capacity to detect and recognise an event, such as a fire, and react accordingly by, for

example, activating first-line responses like sprinklers and fire alarms, and manipu-

lating ventilation to mitigate the effects of smoke. Furthermore, it is envisioned that

buildings will be linked to a wider infrastructure enabling them to escalate an incident

to external emergency responders, should it be necessary. The building system would

then assist responders by continually providing up-to-date information about unfold-

ing events, such as the spread of fire and smoke, the structural integrity of the building,

and the whereabouts of occupants. The data could be collected through, for example,

building sensor networks and video cameras. When coupled with information services

and analytical tools such as decision-support systems and simulation tools, this could

enable the emergency responders to observe and predict the progression of an incident

more clearly and, thus, help them make more informed and better decisions.

Recently, the FireGrid project (Berry et al., 2005; Upadhyay et al., 2008; Han et al.,

2010) designed and prototyped a system that provides the necessary infrastructure and

systems for online decision support for emergency response in the built environment.

The FireGrid project proposed a novel system architecture for improving the range and

quality of information available to emergency responders, in the first instance for fire-

fighters. The project required a system with the capabilities to capture information in

real-time, to interpret the information accurately, and to present it in an accessible and

concise manner. In order to accomplish this, an integrated architecture was designed,

including sensors for detecting, among other things, smoke and heat, which feed data

into complex computational models of fire and smoke spread, running on High Perfor-
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mance Computing resources accessed via Grid technology, and used for the prediction

of major events such as structure collapse. A knowledge-based system was also de-

veloped for reasoning about the current environmental conditions and the forecasts in

order to make accurate and concise interpretations for presentation to the responders

so as to provide decision-support information about the unfolding incident.

Another important aspect of the safe handling of such hazardous scenarios con-

cerns the safe egress of building occupants and the managed ingress of responders.

Towards this end, using a computational framework of the sort proposed by the Fire-

Grid project and knowledge of the whereabouts of its occupants, it may be possible to

plan the safest escape route for individual occupants, and monitor and respond to the

plan execution by adapting it to the changing environmental conditions. Plan changes

could include re-routing evacuees to avoid untenable areas or to prevent congestion.

The activities performed by building response systems might be adjusted appropri-

ately to the plan. Additionally, these systems could provide information to emergency

responders about the current state of evacuation, and, importantly, instructions to guide

them, for example, to the source of the fire and to occupants who have taken refuge

or who are unable to move due to injury. This is the vision that motivates the work

described in this thesis.

2.3 Simulation Models for Evacuation Planning

Over the years, a number of studies have been carried out with the goal of understand-

ing human behaviour during an emergency evacuation. This research, summarised

in (SFPE, 2002), has provided a basis for computer simulation models for predicting

the movements of occupants during egress in order to, for example, evaluate building

designs against a number of potential scenarios. The focus of these models lies in es-

timating building emergency movement times (in particular the Required Safe Egress

Time (RSET) measure) and, sometimes, in identifying issues such as potential conges-

tion bottlenecks. The models have developed significantly over the years and are now

considered an important tool in performance-based fire safety analysis.

From among this myriad of models, in general, two types of approach can be dis-

tinguished, namely those based on micro- and those on macroscopic models. In mi-

croscopic models, evacuees are considered as separate entities with individual charac-

teristics, for example, they are given dimensions, walking speeds and memory. These

details are used to determine an individual’s movement decisions, such as which walk-
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way to choose or whether to change direction. Microscopic models intend to model

humans at a fine granularity and hence purport to make accurate claims about how

people may evacuate a building. On the other hand, macroscopic models take a higher-

level approach and model occupants as a homogeneous group, and hence do not con-

sider differences among individuals. The general purpose of such models, which are

mainly based on optimisation approaches, is to provide lower bounds on evacuation

time. A common approach, which is adopted here, is to use flow network models for

modelling and optimising emergency evacuation. For extensive surveys on simulation

models, both micro- and macroscopic, see, for example, (Kuligowski and Peacock,

2005; Gwynne et al., 1999; Tjandra, 2003).

It is important to note that the majority of these models, both micro- and macro-

scopic, are used to predict human movement in the evaluation of potential building

designs, and also to investigate incidents post hoc in order to gain insight into possi-

ble events with respect to emergency evacuation. They are, however, not used in situ,

running in real-time to adapt egress plans during an actual evacuation as an incident

unfolds, or providing up-to-date information to emergency responders to help in their

response. In other words, they provide an off-line tool for analysis, not for operational

planning.

Furthermore, currently movement plans are developed using time as the decisive

parameter, such as total or last evacuation time (SFPE, 2002). Here time acts as a uni-

dimensional surrogate for risk. It is used as a heuristic in measuring potential exposure

to harm, and in general by defining the goal to minimise the time of potential exposure

to a hazard, the risk of harm is also minimised. While this has proven a useful approach

to date, in the context of future emergency response systems, e.g. FireGrid, it may be

possible to model the transiency and uncertainty of a hazardous environment more

directly, and, hence, provide a more accurate understanding of the risks posed. As a

simple example, it is not necessarily the case that the shortest or fastest path, in terms

of time, is the safest. In other words, a more direct approach could provide a better

informed assessment of the risk to involved individuals, which can then be used for

determining the safest movement plans.

The focus of this literature review is on macroscopic approaches, particularly the

application of flow networks for evacuation planning, both in the design phase and for

operational purposes.
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2.4 Modelling Emergency Evacuation with Flow Networks

Flow-network based macroscopic approaches use an abstract network representation

of a building’s means of egress or circulation systems. These networks consist of a

number of nodes, or vertices, connected by edges, or arcs.

In these models, in general, nodes in the network represent significant locations in

a building, such as rooms, building exits and corridor intersections. The exact number

of nodes in a model depends on a number of factors, including the particular building

system, the granularity required for the model, and also the modeller’s choices of “sig-

nificant locations” in the building. The nodes are connected by edges, which represent

paths connecting these locations, such as corridors and stairwells. Occupants are mod-

elled as homogeneous abstract units, where typically one unit represents one person,

and units are assumed not to interact directly but only implicitly through their common

use of paths of limited capacity. Often each edge will be given certain properties that

represent its state, such as a capacity and a traversal time. The capacity of an edge is

typically represented by the number of units that can traverse that edge per unit of time.

Traversal time is defined as the number of time units required to travel the length of an

edge, that is, to get from the head node to the target node of the edge. Additionally,

special nodes are often identified in the network, such as source nodes, that represent

locations where occupants begin, and sink nodes, that represent locations of safety,

such as refuges and fire exits towards which the occupants must move.

Given the importance of time as the main decisive parameter during emergency

evacuation these network models often include a temporal dimension as well. This is

discussed in detail below in Section 2.5.1. The specific optimisation to be performed

depends on the particular problem definition; however, often when applied to evacua-

tion the problems relate to minimising the time to evacuate building occupants, such

as total time or last time to exit (SFPE, 2002). More details on network modelling

of building circulation systems at the macroscopic level can be found in, for example,

Tjandra (2003) and Miller-Hooks (2009).

We now review studies using network optimisation for evacuation planning.

2.5 Network Optimisation for Evacuation Planning

A multitude of works have investigated flow problems in static flow networks (SFNs).

For a comprehensive introduction to the theory of flow networks and the details of a
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number of applications, see Ahuja et al. (1993). SFNs are, however, somewhat limited

as models of real problems because they do not incorporate a temporal dimension.

Without this dimension, SFNs cannot capture the evolution of a system over time; they

are limited to representing the movement of units in a single wave. Fundamentally,

they are unable to model the movement of flow over time or the transiency of network

edge properties. Time is clearly an important consideration when modelling many real-

world problems, and in particular evacuation planning where incidents are inherently

transient and in which time is the decisive parameter for evacuation. It is due to these

issues that dynamic networks, rather than static, have been more commonly applied to

the problem of evacuation modelling and planning.

Dynamic flow networks are network models that include a temporal dimension,

such that flow moves through the network over time. In this case, travel times dictate

the number of time units flow takes to traverse an edge and capacities restrict the rate

of flow on an edge. For extensive surveys of dynamic flow networks and their appli-

cations in general, see, for example, Aronson (1989); Powell et al. (1995); Kotnyek

(2003); Lovetskii and Melamed (1987), and for a comprehensive survey of the math-

ematical modelling of evacuation problems using flow networks, see Hamacher and

Tjandra (2002a). Due to the availability of extensive reviews, we only discuss works

that consider flow networks relevant for modelling evacuation or that address evacua-

tion planning directly. Also, this review focusses on models with finite, discrete time

horizons.

Table 2.1 provides a list of the main network models addressed in this survey,

highlighting the differences between them. Using a Y for ‘yes’ and a N for ‘no’,

the table indicates the properties of network elements included in the various models,

where:

D Temporal dimension is included but network properties are time-invariant.

TV Time-varying network properties.

S Stochastic but time-invariant network elements.

STV Stochastic and time-varying network elements.

Note that stochastic networks includes a number of different models, e.g. flow net-

works and queuing networks, which are united through their inclusion of stochastic

elements. The following two entries: Safest Escape Problem and Stochastic, Time-

Varying FNs are subclasses of the general Stochastic Networks class; however, they



2.5. Network Optimisation for Evacuation Planning 13

are included separately due to the relevance to the problem addressed herein. Also, the

Safest Escape Problem is not a network model but it is included because it presents a

flow problem for a specific network model that includes both deterministic and stochas-

tic elements, and is particularly relevant to the problem addressed herein.

Table 2.1: Network Models

Model D TV S STV Section

Static FNs N N N N 2.5

Dynamic FNs Y N N N 2.5.1

Time-Varying FNs Y Y N N 2.5.2

Stochastic Networks Y & N Y & N Y N 2.5.3

Safest Escape Problem Y Y Y & N Y & N 2.5.4

Stochastic, Time-Varying FNs Y Y Y Y 2.5.5

2.5.1 Dynamic Flow Networks

A number of studies address evacuation in some capacity using models based on dy-

namic flow networks. They vary in a number of ways: in the network model specifi-

cations, in the specific problems addressed and in the solution approaches. However,

in general, two different flow problems in dynamic networks have been considered for

evacuation planning. The two basic problems are:

1. Quickest Flow Problem: given a fixed supply, convey all the flow from source to

sink in the minimum time possible. This is seen as a model of the classic evac-

uation problem of planning for the egress of all of some number of occupants to

safety as fast as possible.

2. Earliest Arrival Flow Problem1: this problem involves sending the maximum

flow across a network within some time bound T and for any T ′ < T . This is

considered appropriate when the number of occupants of a building is unknown

beforehand; for example, within a shopping centre.
1There is some inconsistency in the naming of flow problems, particularly the earliest arrival problem

(for more discussion on this matter, see Kotnyek (2003)). Sometimes this problem is also referred to as
the Universal Maximum Flow problem (UMF), for example, by Ford and Fulkerson (1962). However,
UMF can also refer to the problem of maximising both the amount of flow leaving the source and flow
arriving at the sink at every interval [t,T ], 0 ≤ t ≤ T ; for example, by Fleischer and Tardos (1998) and
Orda and Rom (1995).
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An early application of networks specifically to the evaluation of emergency paths

was carried out by Berlin (1978). A network representation of building designs was

used in order to evaluate escape potential, defined as the number of possible escape

routes from a point in a building to any of the points of safety. Escape potential was

judged to provide a reasonable indication of an individual’s chance of selecting a path

to a location of safety and, thus, an objective measure of the differences in safety

between building designs.

In 1982, Chalmet et al. (1982) studied various flow networks models for building

evacuation, and introduced the idea of using networks to represent building circulation

systems. For this purpose, they argue that dynamic flow models are essential and sug-

gest that the triple optimisation result of Jarvis and Ratliff (1982) could be useful as

the optimisation objective. Briefly, the triple optimisation result highlights the equiva-

lency between optimising the minimum evacuation time of the last unit to egress, the

earliest arrival flow, and the minimum average time to evacuate all occupants. Chalmet

et al. use the flow models to study building designs to identify potential bottlenecks.

Choi et al. (1984) investigated a building evacuation problem in dynamic flow net-

works with flow-dependent capacities on edges, looking for the maximum occupancy

of a building such that in the case of an emergency evacuation all occupants can exit

within a given time horizon: the maximum dynamic flow problem. They showed that

an optimal solution exists given certain assumptions about the capacity function.

Hamacher and Tufekci (1987) studied the lexicographic2 minimum cost flows prob-

lem for evacuation modelling. They showed how to prevent unnecessary movement

within a building while optimising evacuation time using a multi-level priority sys-

tem. They described how to evacuate a building divided into prioritized zones; a valid

solution must evacuate the highest priority zone as quickly as possible, then the next

highest zone as quickly as possible, and so on.

Choi et al. (1988) investigated three flow problems in dynamic flow networks with

constant capacity values in the context of evacuation: 1) the maximum dynamic flow

problem; 2) the minimum turnstile cost problem (triple optimization results: also min-

imises building evacuation time and maximised the cumulative number of people ex-

iting the building for all time periods); 3) the minimax bottleneck problem (minimise

time last person exits). For some specially structured networks greedy approaches are

proposed, but for more general cases a linear programming method is suggested.

2Lexicographic flow problems are defined with a prioritised ordering on sources from which to ship
supply.
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Burkard et al. (1993) addressed the quickest flow problem in dynamic networks

with single source and single sink. Polynomial and strongly polynomial algorithms for

the quickest flow problem were developed.

Hoppe and Tardos (1994) then presented the first polynomial-time algorithms for

two flow problems: the quickest flow problem with a fixed number of sources and

sinks, and the lexicographic maximum dynamic flow problem; and a fully-polynomial

approximation scheme for the earliest arrival flow problem. Later, Hoppe and Tardos

(1995) proposed polynomial-time algorithms for the quickest transshipment problem,

which extends the quickest flow problem (the evacuation problem) to multiple sources

and multiple sinks. Fleischer and Tardos (1998); Fleischer (1998) extended this work

and tackled many flow problems in continuous-time domains that had only been previ-

ously studied with discrete time models; many of their results also apply to the discrete

time models. Kamiyama et al. (2009) improve on the polynomial time complexity of

the algorithms proposed by Hoppe and Tardos (1995) for the evacuation problem but

in a sub-class of problems, those with uniform path-lengths.

Later, Baumann and Skutella (2009) addressed the problem of the earliest arrival

flows problem with multiple sources in dynamic networks with continuous time (al-

though they note that their results also hold for the discrete model). They provided a

strongly polynomial algorithm in the input plus output size of the problem.

Until now, the reviewed works have assumed dynamic network models with time-

invariant network properties, such as edge travel times and capacities, and network

supply; that is, the properties themselves are not functions of time but remain constant.

The term dynamic refers only to the time-varying nature of the flow. However, the

time-varying or time-dependent nature of network properties (edge travel times, ca-

pacities, and supply) is an important consideration for evacuation modelling, given the

inherently transient conditions of an evacuation scenario. We now review works that

incorporate these properties into their models.

2.5.2 Time-Varying Flow Networks

A host of works, including (Anderson et al., 1982; Philpott, 1990; Pullan, 1993; Orda

and Rom, 1995; Pullan, 1997), have considered flow problems in dynamic networks

where time is modelled continuously, and edge capacities, storage capacities (wait-

ing) or costs are time-varying. However, these approaches do not apply when travel

times are also considered time-varying, which, as indicated earlier, can be important
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in modelling evacuation scenarios.

Cai et al. (2001a,b) provided pseudopolynomial algorithms3 for earliest arrival flow

problems and mininum cost flow problems in dynamic flow networks with network

properties, namely edge travel times and capacities, as discrete functions of time. They

solve three variants of each problem, classified by their node waiting policy: allowing

arbitrary waiting, waiting prohibited, and bounded waiting.

In (2003), Tjandra addressed several flow problems, including maximum dynamic

flow problems, earliest arrival flow problems and quickest flow problems (including the

evacuation problem) in dynamic networks with time-dependent edge capacities. So-

lution approaches are developed for each problem with pseudopolynomial time com-

plexity, and the earliest arrivals model is applied to an evacuation case-study.

Miller-Hooks and Patterson (2004) provide pseudopolynomial algorithms for sev-

eral quickest time problems in dynamic networks with time-varying network proper-

ties. They solve several flow problems in these networks, including the time-dependent

quickest flow problem (single source, single sink), the time-dependent evacuation

problem (multi-source, single-sink) and the quickest transshipment problem (multi-

source, multi-sink). They also describe an efficient procedure for converting multiple-

source, multiple-sink dynamic networks to equivalent single-source, single-sink dy-

namic networks with time-varying properties.

Building on the work in time-varying dynamic network problems, Lin et al. (2008)

propose a multi-stage time-varying quickest flow approach for the optimisation of

evacuation planning. Included in their model is the notion of phased evacuation, im-

plemented through the use of priorities for groups that are released from the source

according to the priority level. Algorithms from Hamacher and Tjandra (2002b) and

Miller-Hooks and Patterson (2004) are applied after modification to handle the multi-

stage problem formulation.

Looking towards the goal of providing approaches for operational purposes as

discussed previously (Section 2.2), rather than solely evacuation pre-planning, in the

context of, for example, future emergency response systems, Chen and Miller-Hooks

3Pseudopolynomial time algorithms are members of the class of exponential time algorithms; how-
ever, for certain bounded inputs they run in polynomial time. This is due to the fact that they run in
polynomial time in the numeric value of an input parameter, e.g. T , rather than in the size of the input pa-
rameter, which would be log(T ) (roughly the number of bits required to store T ). Since O(T ) 6= log(T ),
the algorithm cannot run in polynomial time in the size of the input. However, if T meets the similarity
assumption (as described in Ahuja et al. (1993)), that is, if T is polynomially bound by a non-number
input parameter, such as the size of the network, represented by v = |V |, where V is the set of nodes of
the network, so that T = O(vk), for some k, then the algorithm will run in polynomial time.
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(2008) formulate an evacuation problem they call the Building Evacuation Problem

with Shared Information (BEPSI). BEPSI has the goal of finding the set of routes in

time-varying flow networks such that the total time of all occupants to reach safety

is minimised (the quickest flow problem). Additionally, through problem constraints,

they consider the issue of shared information during a building evacuation, that is,

that since routing plans must be communicated to individuals at decision points and

communicating different plans to different individuals could introduce confusion they

argue that groups of individuals should receive common routing instructions. The

BEPSI problem is shown to be NP-hard and they propose an exact solution that has an

exponential worst-case computational complexity.

Up until this point, the works covered here have assumed that network attribute val-

ues are known and deterministic; however, some works have also considered that dur-

ing evacuation it is possible to face node or edge failures, such as when a passageway

is obstructed or untenable. The possibility of failure is often modelled stochastically:

for example, there may be some probability that an edge will become unavailable for

usage at a particular point in time. We will now discuss works that include stochastic

elements in their network models.

2.5.3 Stochastic Networks

Several researchers have addressed evacuation planning through models that include

stochastic elements. Some have studied stochastic flow problems as network connec-

tivity and reliability problems, where nodes or edges may fail randomly with known

probability. While not applied directly to evacuation planning, these works are still rel-

evant since they consider various problem objectives suited to stochastic environments.

Others have applied queuing networks to evacuation problems, particularly for study-

ing issues of congestion during egress. We first review works investigating stochastic

flow problems then those concerning queuing networks.

The following works produce network connectivity or system reliability measures

or metrics that are useful for evaluating network performance. The purpose of network

connectivity analysis is to evaluate the probability of the connectedness of nodes, e.g.

is there a path from the source node to the sink node. The goal of system reliability is

to assess the probability that a network can accommodate a particular level of flow. A

comprehensive review of the area of network reliability is given by Ball et al. (1995),

and for an overview of the computational complexity of reliability problems, see Ball
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(1986).

Mirchandani (1976) investigated network connectivity problems and problems of

finding the expected travel time of paths in probabilistic networks where travel time is

stochastic, and presented algorithms for both. Frank and Gaul (1982) looked at various

kinds of connectedness probabilities. Due to the complexity of finding exact values,

bounds and approximations to the probabilities are provided. In fact, the problem of

evaluating probabilistic connectedness was later shown to be NP-hard (Ball, 1986).

Due to the complexity of solving these problems exactly, works have suggested ap-

proximation methods, and central to these works are methods based on Monte Carlo

sampling approaches, for example, Fishman (1986); Fishman and Shaw (1989).

More recently, in a series of works (Lin, 2001, 2002a,b, 2003), Lin considered

system reliability in stochastic but time-invariant flow networks where nodes and edges

can fail. In (Lin, 2001, 2002b), the goal is to evaluate the system reliability — the

probability that the maximum flow of the network is not less than a given supply.

Several algorithms are given for tackling this problem. The work is extended to the

multi-commodity case in (Lin, 2002a). In (2003), Lin extended the Quickest Path

Problem (restricted case of the Quickest Flow Problem previously discussed) to the

system reliability evaluation in stochastic-flow networks.

Another approach for examining network performance of stochastic, but static,

flow networks with edge or node failures is to consider the expected value of the maxi-

mum flow. This problem is, however, also known to be NP-hard because, in summary,

it contains the probabilistic connectedness as a sub-class of problems (as discussed

in (Nagamochi and Ibaraki, 1992)). Due to the general complexity, upper and lower

bounds on the exact value have been proposed as approximations (Onaga, 1968; Carey

and Hendrickson, 1984). Later, Nagamochi and Ibaraki (1991, 1992) detailed neces-

sary and sufficient conditions for these bounds to equal the exact value.

For the analysis of the performance of evacuation systems more generally, Løvås

(1995) provides an extensive discussion on evacuation performance measures and how

to calculate them. Løvås presents a stochastic model of an evacuation system and

discusses how queuing network models can in theory be used to calculate the perfor-

mance measures, and demonstrates how in practice simulation methods can be used to

calculate such measures.

Note that no routing plans are developed in these works. Furthermore, they do not

consider the time-varying nature of network attributes that could be important in the

modelling of emergency scenarios, as discussed previously.



2.5. Network Optimisation for Evacuation Planning 19

Others have investigated stochastic, dynamic network models where routing plans

are developed but network properties are time-invariant. Karbowicz and MacGre-

gor Smith (1984) applied stochastic network models to evacuation problems in order

to find optimal evacuation routes for building occupants. They propose a simulation-

based heuristic approach based on the k-th Shortest Paths approach. Their method is

expected to perform poorly in congested networks due to significant queuing. Talebi

and MacGregor Smith (1985) compared analytical queuing network models and sim-

ulation for solving the stochastic evacuation problem. They used the expected total

evacuation time as the performance measure, and concluded that queuing networks

were effective for modelling their evacuation scenarios.

2.5.4 Opasanon’s Safest Escape Problem

Of particular relevance to the work in this thesis is Opasanon’s Safest Escape Problem

(Opasanon, 2004; Opasanon and Miller-Hooks, 2008). Opasanon and Miller-Hooks

model the uncertainty and transiency of emergency evacuation scenarios using net-

work flow problems modelling network edge properties as time-varying and stochas-

tic. Whereas previous flow problems for evacuation, in general, used either earliest

arrival or maximum flow, or minimum travel time as the criteria by which to evaluate

flow patterns, here the goal is to maximise the probability of successful traversal from

source to sink. In other words, given that edges and hence paths have a probabilistic

distribution of capacities, the goal is to find the paths from source to sink that have the

highest likelihood that the required capacity will be available. In a sense, this problem

objective is a hybrid of a reliability measure with a minimum cost flow problem.

Specifically, they formulated the Safest Escape problem (SE) with the goal of find-

ing the a priori flow pattern where the probability of the path with the minimum prob-

ability of successfully traversing a network from source to sink is maximised4. Rather

than focussing on a system-wide objective, e.g. minimum total time to exit, the SE

provides evacuation plans such that the risk taken by occupants who take the greatest

risk is minimised. Waiting is not permitted at nodes, and they focus on single-source,

single-sink networks5. They provide an exact algorithm, the Safest Escape Algorithm

(SEA), for solving the case where edge attributes are time-varying, and capacities are

stochastic but traversal times are deterministic. The SEA is based on the Successive

4This is analogous to the problem of minimising last time of arrival versus the total travel time.
5Networks with multiple sources and multiple sinks can be converted using the efficient technique

proposed in (Miller-Hooks and Patterson, 2004).



20 Chapter 2. Literature Review: Network Optimisation

Shortest Path Algorithm (see (Ahuja et al., 1993) for details) and has pseudopolyno-

mial time complexity.

2.5.5 Stochastic, Time-Varying Flow Networks

In his thesis (2004), Opasanon goes on to discuss flow problems in networks where

both travel times and capacities are time-varying and stochastic (herein shortened to

STV Networks). The rationale behind adopting this model is that in reality both at-

tributes are likely to be uncertain. Certainly, in the previously discussed context of

future response systems, where, for example, models of smoke spread may provide

predictions about future building smoke conditions, it is possible that different likeli-

hoods will be attached to the forecasts.

Nevertheless, solving flow problems in STV Networks is much harder than in the

network models considered previously. Underlying many efficient solution approaches

to simpler network flow problems are efficient shortest path (SP) techniques (e.g. the

Successive Shortest Path Algorithm) that rely on Bellman’s Principle of Optimality

(PoO) (Bellman, 1957). PoO enables flow algorithms (through subroutine shortest

path techniques) to efficiently exploit the underlying graph structure to find optimal

solutions. However, in STV Networks the PoO no longer applies, as for example

shown by Hall (1986) for the minimum expected travel time problem in uncapacitated6

networks with stochastic, time-varying travel times. Furthermore, Pretolani (2000)

showed that the minimum expected time problem for simple paths7 in uncapacitated

STV Networks is NP-hard.

It is perhaps due to this complexity that most work in STV Networks has focussed

on finding optimal paths for both a priori and adaptive policy problems in uncapac-

itated STV Networks (see (Gao and Chabini, 2006) for a comprehensive review). A

priori methods assume a fixed path must be chosen before any information is realised

so that the result is a single path, where for each node in the path, say i, the path

would include a single subsequent node j, no matter the actual arrival time at node i.

These problems are equivalent in formulation to single-stage stochastic programming

problems — static formulations with no recourse. On the other hand, adaptive policies

allow for time-adaptive route choice, that is, the result is not a single path but an adap-

tive policy, so that, for example, the subsequent node j from a node i depends on the

actual arrival time at i. Adaptive policies are equivalent to multi-stage stochastic pro-

6Networks in which edges do not have capacities but have, for example, travel times.
7Simple paths contain no repetitions of nodes (cycles).
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gramming problems that allow recourse at each stage8. Similar to (Opasanon, 2004;

Opasanon and Miller-Hooks, 2008), the focus of this thesis in on a priori problems.

To the knowledge of the author, no exact methods, efficient or inefficient, have been

proposed for solving flow problems in STV Networks. However, several heuristic ap-

proaches have been developed. Opasanon (2004) and Opasanon and Miller-Hooks

(2010) developed an Evolutionary Algorithm for the a priori minimum expected time

flow problem in STV Networks and also discussed extensions to multiobjective prob-

lems. Later Miller-Hooks and Sorrel (2008) extended the same approach and applied

it to the problem of finding the maximal expected flow in STV Networks. Details

of these works are provided in Sections 3.5.2.1 and 3.5.2.2, respectively, in order to

appropriately situate them in the literature on Evolutionary Algorithms in stochastic

combinational optimisation (Section 3.5).

2.5.6 Conclusions

The sections on network optimisation for evacuation planning have provided a survey

of works investigating a number of network models applied to evacuation problems.

They have illustrated the wide array of network models and flow problems in the liter-

ature. They have also highlighted that the incorporation of more complex network ele-

ments, such as time-varying and stochastic network attributes, while arguably increas-

ing the realism of the models, substantially increases the computational complexity of

solving optimisation problems. Due to this increasing complexity, novel approaches

based on approximation and metaheuristic methods are beginning to be applied.

2.6 Summary

The first chapter of the literature review has covered a number of works related to the

planning of emergency evacuation. It began with a brief discussion of online decision-

support systems for emergency evacuation, mentioning several works that expound the

requirements for such systems. In particular, highlighting a recent project, FireGrid,

that proposed a future emergency response system for the built environment with the

goal of providing the necessary infrastructure to allow the harnessing up-to-date in-

formation about unfolding incidents combined with analytical tools to enable better

8See (Birge and Louveaux, 1997), for example, for more details on stochastic programming formu-
lations.
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informed response decision-making. It is in the context of this project that the work

described herein is situated.

The review then briefly discussed simulation models used for evacuation planning,

distinguishing between micro- and macroscopic models. Microscopic models work at

a high-level of granularity representing occupants heterogeneously and hence focus on

the differences between people in an attempt to predict how occupants might evacu-

ate from a building. On the other hand, macroscopic models represent evacuation at

a low level of granularity such that people are modelled as homogeneous entities, and

the goal is to provide a lower bound on, for example, the duration of evacuation. The

focus of this thesis is on macroscopic models, in particular flow network models. Ad-

ditionally, comments were made about time as the principle decision parameter in eval-

uating evacuation, and that in the context of future emergency response systems using

real-time information about the environment, new dimensions for evaluating risk may

be presented. This is followed by a brief discussion on the modelling of emergency

evacuation using flow networks, explaining in general the mapping between building

circulation systems and the components of network flow models.

The rest of the chapter reviewed works addressing evacuation problems in flow net-

work models. A number of key flow problems are highlighted in relation to evacuation,

and a number of network models are surveyed from dynamic to time-varying models,

to those including stochastic elements. Particular focus is given to several works ad-

dressing flow problems in network models that include elements that are stochastic and

time-varying.

Overall, this chapter reviewed works that situate and motivate the flow problem ad-

dressed in this thesis. The following chapter focusses on works related to the proposed

solution approach.



Chapter 3

Literature Review:

Evolutionary Algorithms

In this chapter, we give an overview of the framework of the solution approach pro-

posed in this thesis, Evolutionary Algorithms (EAs). It begins with a general introduc-

tion to EAs and common EA variants, and then details how they have been applied to

relevant deterministic combinatorial optimisation problems1 (COPs). Next it discusses

their use in noisy and stochastic environments, and in particular their application to

stochastic combinatorial optimisation problems (SCOPs).

3.1 Introduction

Evolutionary Algorithms provide general algorithmic frameworks for tackling global

optimisation problems, and, as such, form a subclass of so-called metaheuristic algo-

rithms (Gendreau and Potvin, 2010). EAs are distinguished from other metaheuris-

tics in that they are inspired by the principles of Darwinian evolution2. In particu-

lar, through the metaphorical adoption of evolution they harness the principle of the

survival-of-the-fittest. This powerful idea has led to the successful application of EAs

to a number of COPs, and more widely (see, for example, (Bäck et al., 1997) for a brief

1COPs are discrete optimisation problems where the solution space is defined over combinatorial
spaces, such as graphs, matroids, etc. The classic goal of COPs is to maximise or minimise a real-valued
objective function on a large but finite set of feasible solutions. Typical examples include Travelling
Salesman, Vehicle Routing, Integer Programming, Minimum Spanning Tree and Knapsack problems.
Deterministic COPs are problems where all problem data is known a priori and with certainty. For an
introduction to COPs, see, for example, Papadimitriou and Steiglitz (1982).

2Compared with, say, swarm-intelligence inspired algorithms such as Ant Colony Optimisation and
Particle Swarm Optimisation, or Simulated Annealing and Tabu Search.

23
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list of applications).

Many EA variants exist; however the majority of approaches are based on three

independently developed frameworks: Genetic Algorithms (GA) invented by Holland

(1975); Evolutionary Programming (EP) proposed by Fogel et al. (1966); and Evo-

lutionary Strategies (ES) proposed by Rechenberg (1973). Note, that, generally, EP

and ES are applied to continuous optimisation problems, and because the focus of

this thesis is on discrete optimisation problems, much of the following discussion will

be limited to GA-type approaches. For general references to GAs, see, for example,

(Goldberg, 1989; Mitchell, 1998). For a comprehensive introduction to EAs, see (Bäck

et al., 1997). Recent overviews of EAs include (Calégari et al., 1999) and (Hertz and

Kobler, 2000), and more generally, overviews of metaheuristics, including EAs, ap-

plied to COPs are (Blum and Roli, 2003) and (Gendreau and Potvin, 2005), and to

SCOPs (Bianchi et al., 2006b).

EAs, in general, are regarded as robust, heuristic, “black-box” methods, that is,

heuristic methods that put few requirements on the search space, e.g. they do not de-

mand convexity or continuity3, and hence are particularly apt for solving hard COPs

with large search spaces, where the spaces are, for example, nonconvex4 or simply

uncharacterised (Bäck et al., 1997). EAs are often applied to NP-hard combinato-

rial optimisation problems where instances sizes are beyond the reach of exact meth-

ods that have exponential computational complexity, because, in general, they cannot

compete in time or accuracy on problems that permit efficient exact techniques. Ad-

ditionally, EAs are well-suited to multi-objective optimisation problems and are easily

parallelisable. These properties make them attractive to practitioners who are faced

with complex, often highly constrained, real-world problems. However, EAs offer no

panacea, since, while easily applicable to many problems, there are no guarantees that

they will necessarily find optimal solutions, or even solutions within some predeter-

mined distance from the optimal. Thus they are primarily suitable for scenarios that

allow a trade-off between the reliability of the method and its computational cost, or

where no efficient exact method is likely to exist, e.g. NP-hard problems.

We now give an overview of the general EA framework, then describe common

algorithmic components and the overall functioning of the approach.

3Convexity (concavity) implies that a local minimum (maximum) is also a global minimum (max-
imum), and continuity implies that the objective function is continuous over, for example, the real
numbers, R, so that small changes in the input reflect small changes in the output.

4COPs that have nonconvex search spaces may have a number of local and global extrema.
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3.2 Algorithms

Similar to other metaheuristics, EAs work in an iterative fashion, attempting to im-

prove on the best solution discovered while also exploring the problem’s search space,

until some termination criteria are met. However, unlike some metaheuristics, such

as Simulated Annealing and Tabu Search, they are population-based approaches, since

a pool, or “population”, of candidate solutions is maintained throughout the search.

The “population” acts as a memory of points searched in the space, and, in fact, EAs

proceed in a Markovian fashion since the information used at any point in time is ex-

clusively based on the current state of the search.

Algorithm 3.2.1: GENERIC EVOLUTIONARY ALGORITHM(µ,λ, pc, pm)

i← 0

Pi← InitialisePopulation(µ)

Evaluate(Pi)

while (termination conditions not met)

do



i← i+1

P̄ ← SelectMates(Pi−1,λ)

O← Crossover(P̄ , pc)

Mutate(O, pm)

Evaluate(O)

Pi← SelectReplacements(Pi−1∪O,µ)

The generic EA presented in Algorithm 3.2.1 from Blum and Roli (2003) proceeds

in the following way. First an initial population of size µ is generated and each member

is evaluated, where each member of this “population” represents a potential solution to

the problem at hand. The algorithm then enters an iterative process that continues until

some termination criteria are met. During each iteration, or “generation”, a number

of operators are applied to the current population of candidate solutions. A “mating”

selection operator is applied to select pairs of parents for “breeding”, during which a

“crossover”, or recombination, operator is used to generate a number, λ, of new indi-

viduals from the mating population to create a set of “offspring”. Next a “mutation”

operator is applied to the offspring to introduce “genetic variations” to the population

and hence increase the diversity of individuals. The rate at which the genetic operators,
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crossover and mutation, are applied is controlled by input parameters, pc and pm, re-

spectively. The progeny are then evaluated against a problem-specific fitness function

and each is assigned a fitness value, that is, a measure of the quality of the solution

represented by the individual for the given problem, or “environment”. This value,

implicitly or explicitly, dictates the likelihood that each solution will “survive” to the

succeeding generation (iteration). Finally, a replacement strategy and selection oper-

ator are combined to choose µ individuals from the current population and offspring

based on their fitness values to constitute the population of the next iteration.

The basic components of an EA (the functions in Algorithm 3.2.1) as well as a

solution representation must be properly defined in order to specify a functioning EA.

The required elements are:

• Solution Representation: the encoding used to represent candidate solutions, and

hence individuals in the population.

• Initialisation: method by which the initial population is generated.

• Mating Selection: operator that selects parents with which to generate new indi-

viduals.

• Crossover: operator used to generate new individuals based on pairs of parent

individuals.

• Mutation: operator used to perturb new individuals in order to introduce genetic

variations into the population.

• Evaluation: method that assigns a quantitative measure of solution quality for a

specific problem.

• Replacement Strategy: strategy by which the members of the current population

are replaced each iteration.

It is also necessary to define termination criteria that determine when the search pro-

cess terminates; and furthermore, it may also be required to address issues relating to

problem constraint handling and candidate solution feasibility. The choices made for

specific operators and strategies are not independent, and will depend on various fac-

tors, perhaps the most important of which are the problem being tackled and the choice

of solution representation. We now discuss typical EA elements, drawing heavily on

(Bäck et al., 1997).



3.2. Algorithms 27

3.2.1 Solution Representation

One of the first and most important decisions for the application of EAs to COPs is

that of a representation for solutions. The particular representation will depend on the

specifics of the problem at hand, and, furthermore, there may in fact be various ways in

which to represent candidate solutions. Notwithstanding the underlying representation,

and by analogy to genetics, a solution is called a chromosome, with each chromosome

consisting of a number of genes, and hence a chromosome corresponds to the geno-

type of a candidate solution. Each gene can adopt a number of different values, or

alleles, and the position of a gene in the chromosome is referred to as the locus of the

gene. Often each locus will have a distinct interpretation in terms of the problem and

the solution’s phenotype (i.e. the ‘actual’ solution which the chromosome represents).

For the canonical GA, for example, chromosomes are typically represented by binary

strings, where each bit denotes a single gene and, hence, can at any time adopt a single

value drawn from {0,1}. Other classic encodings include Gray codings, real-valued

vectors (ordered lists), and permutation encodings. See (Bäck et al., 1997) for more

details on typical representations.

An additional issue with the representation of solutions for COPs concerns the

feasibility of candidate solutions with respect to problem constraints. Problem for-

mulations may include constraints on the values decision variables5 can adopt, and it

is often required to consider these on top of problem objectives. Some approaches

for constraint handling involve modifications to solution representations, which can

often increase the general complexity of the algorithm, requiring further changes to

operators such as crossover. General constraint methodologies are often developed to

account for the specific constraints introduced by the use of a specific formulation.

This is discussed more in Section 3.2.9.

3.2.2 Initialisation

The first step of an EA is to generate an initial population (of size defined by the

parameter µ). The initial population acts as a starting point for the search and, hence,

this set of solutions is important for the success of the search. Situations may arise

where little is known about the search space and a typical approach in these cases is

to randomly sample from the search space, so that all candidate solutions that can be

5The decision variables are the variables that the decision maker is in control of, in, for example, an
optimisation problem.
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represented are equally likely to be included in the initial set. Another possibility in

order to increase the rate of convergence is to seed the initial population with solutions

discovered by, for example, heuristics or greedy methods, that will generally introduce

a bias into the direction of the search in order to focus on particular areas of the search

space. Due to the often (pseudo-)randomisation of the initial population, this acts as

the first stochastic element in the run of an EA and, therefore, it is common to run

an EA several times in order to get a sense of its average performance over different

initialisations.

The size of the population, denoted by µ, is an important consideration here. A

population size that is too small will potentially under-represent the solution space

and could lead to quick, sub-optimal convergence to a particular area of the search

space. In practice, the convergence of the population involves converge to the same

genotype or to the same fitness value. Conversely, too large a population would require

unnecessary additional computational effort for little gain. The optimal population size

is generally problem-specific and dependent on the complexity of the problem and its

solution space, the chosen selection operators and other parameters settings.

For COPs, a further issue arises in relation to the feasibility of the initial solutions,

specifically, about whether it is necessary, or even possible, to generate an initial pop-

ulation where all solutions are feasible given the problem constraints. For the types

of problems to which EAs are often applied it is in itself a hard problem to generate

feasible solutions (Coello Coello, 2002). This is part of the wider issue of dealing with

problem constraints in EAs.

3.2.3 Mating Selection

The first operator to be applied each iteration is the mating selection operator, which

selects λ parents that will be used to generate λ offspring. The crossover operator (next

section) determines how the children will be generated. Typical selection mechanisms

include fitness proportionate selection, tournament selection, rank-based selection and

random selection. We now give an overview of these selection schemes; for more

details, see (Bäck et al., 1997).

Fitness proportionate selection For this selection operator, individuals are assigned

a selection probability that is proportional to the fitness of the individual given

the current population. For selecting the individuals, a sampling mechanism

called the roulette wheel sampling algorithm is used to select the mating popu-



3.2. Algorithms 29

lation. In this method, one can think of the probability distribution as defining

a roulette wheel on which each slice has a width corresponding to the individ-

uals selection probability. Sampling from the distribution is then like spinning

the roulette wheel and testing which slice ends up at the top. An individual is

selected after each spin of the wheel, and therefore to select λ parents requires λ

spins of the wheel. Baker (1987) introduced a method for sampling individuals

with lower variance, called the stochastic universal sampling (SUS) algorithm,

which is commonly used instead of the roulette while approach. This method is

efficient requiring only a single pass over all the members of the population to

select the mating population.

Tournament selection For this scheme, individuals are randomly chosen with or with-

out replacement from the current population to compete in a tournament for

selection. Commonly, binary tournament selection is utilised, whereby two in-

dividuals are chosen to compete and the individual with the higher fitness wins

and is selected for mating. The determination of a tournament winner may be

deterministic, or stochastic so that the worse individual has some probability of

being selected. The tournament size, the number of individuals involved in each

tournament, can be generalised to an n-Tournament selection operator.

Rank-based selection In this scheme, individuals are allocated a selection probabil-

ity based on their rank ordering in the current population. This is in contrast

to fitness proportionate schemes, since the selection probability is based solely

on the rank of the individuals not their fitness values. A number of rank-based

operators exist including linear and non-linear operators. Once selection proba-

bilities are determined, the SUS algorithm mentioned previously can be used to

select the mating population.

Generally, rank-based operators are considered more robust than fitness propor-

tionate selection mechanisms (Whitley, 1989).

Random selection Unlike the previous strategies, this operator, often used with ESs,

chooses parents without direct consideration of their fitness values, that is, par-

ents are chosen uniformly randomly with replacement from the current popula-

tion.
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3.2.4 Crossover

Each iteration new individuals are generated using a crossover operator, which com-

bines the genes of a pair of selected parent individuals from the current population.

Commonly, a pair of individuals (parents), chosen by the mating selection operator,

are recombined to generate two new individuals (offspring). The particular implemen-

tation of the operator depends on the solution representation and also on other issues

such as the need to preserve feasibility. As an example, for binary string representa-

tions, one- or two-point crossover and uniform crossover are commonly used. We now

briefly describe these operators; again, for more details, see Bäck et al. (1997).

One-Point Crossover For this operator, a single crossover point is selected for both

parents, and the genes beyond the chosen point are swapped between the parents

to generate two offspring. For example, for two parents using binary represen-

tations, where parent P1 = 11111 and P2 = 00000, say a crossover point 2 is

selected, then the resulting offspring are O1 = 11000 and O2 = 00111.

Two-Point Crossover Similar to the above operator, except that two crossover points

are selected and the genes between the two points are swapped to again generate

two offspring. Using the previous parents, P1 = 11111 and P2 = 00000, and two

crossover points, say 2 and 4, then the offspring are O1 = 11001 and O2 = 00110.

Uniform Crossover In contrast to the previous operators, this operator considers each

locus for crossover and, given some probability, swaps the parents’ genes value

at each locus to produce two offspring.

For more complex representations, such as ordered lists, more elaborate operators

may be required, particularly in relation to feasibility.

Typically, crossover has a parameter, pc ∈ [0,1], that determines the rate at which

the crossover operator is applied to pairs of parents. In the case that it is not applied,

then the parents pass unaltered to the offspring population. Typical values for pc ∈
[0.5,0.95] (Bäck et al., 1997).

3.2.5 Mutation

The next operator to be applied is the mutation operator. The purpose of mutation

is to perturb the newly generated offspring so as to introduce genetic variations (i.e.,

genes that could not be produced by the crossover of the parents) into the population.
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Mutation is considered to serve as a ‘background operator’ to crossover; however, its

function is still critical, and in terms of search it has the important role of introducing

‘noise’ into the population in order facilitate the escape from local optima.

As is the case for crossover, different standard operators are available (Bäck et al.,

1997). However, a typical operator will simply replace a gene with another possible

allele. For example, for a binary string representation, a gene can be mutated by invert-

ing its value, i.e. a gene with value 1 is flipped to a 0. Again, solution feasibility may

have to be considered depending on the mechanics of the operator and the constraint

handling methodology.

Typically, a mutation rate, pm ∈ [0,1], is specified as a parameter that determines

the likelihood that any given gene of an offspring individual is mutated. Common val-

ues are pm ∈ [0.001,0.1] or even 1/l, where l is the number of genes in a chromosome

(Bäck et al., 1997).

3.2.6 Evaluation

The purpose of the evaluation is to assign a quantitative measure of the quality of a

candidate solution to a specific problem. The quality is termed the ‘fitness’ of the indi-

vidual and it is assigned using a fitness function f : Ω→R, where Ω is the search space.

The definition of the fitness function is problem dependent, and for COPs it is often

defined directly as the problem objective of the mathematical programming formula-

tion, when this is available. However, fitness functions vary enormously depending

on the problem; for example, they could be defined to evaluate a simple closed-form

expression, or run and appraise large-scale simulations, or even call on valuation by

human users. The variation in fitness functions means that often evaluating the fitness

of individuals, and hence executing the evaluation step, is the most computationally

demanding stage of an EA’s generation.

An additional aspect of the evaluation of individuals involves the use of decoders.

A candidate solution is encoded in the form of some representation and often a decoder

is necessary to transform this chromosome to give it a meaning with respect to the

actual problem. For example, before it can be evaluated it might be necessary to decode

a chromosome represented as a binary string to the list of integers it represents, where

each integer is represented by a number of genes (bits).

A number of issues may arise with the choice of the fitness function for a partic-

ular problem. It could be that the computational requirements of the function make
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it expensive to evaluate many candidates; for example, if the evaluation requires the

execution of a large-scale simulation. Or it may be possible that the fitness function

is noisy, due, perhaps, to the use of randomised simulations for evaluating candidates,

and therefore it may not be possible to determine the true fitness of individuals. The

issue of uncertain environments, in particular stochastic and noisy environments, is

dealt with extensively in Section 3.4.

For COPs, once again, the feasibility of solutions may need to be considered by

the fitness function. In fact, several of the popular methods for handling constraints,

for example penalty functions, rely on the modification of the fitness function to cope

with constraint violations. For more details, see, for example, Coello Coello (2002).

3.2.7 Replacement Strategy

Given the iterative nature of EAs, replacement strategies define how each succeeding

population will be generated from the current population plus its offspring. A common

notation originally from the ES literature is used to denote the replacement strategy in

terms of the population size, µ, and offspring size, λ. Two general strategies have

been identified: the Comma, denoted as (µ,λ), and the Plus, (µ + λ), strategies. The

Comma strategy is that at each generation the new population is replaced by the best µ

individuals from the offspring population of size λ, where λ≥ µ; whereas for the Plus

strategy the succeeding population of µ individuals is selected from the joint collection

of the current population and the offspring.

Typical replacement strategies include:

• Generational replacement: (µ,λ = µ); the current population is completely re-

placed by µ offspring. This strategy is often combined with elitism, where the

best individual/chromosome from the current population gets a free pass to the

next generation and hence µ− 1 individuals are selected from the offspring to

form the new population. Elitism is employed to prevent to the loss of the cur-

rently best individual due to stochastic mating selection operators.

• Comma-replacement: (µ,λ); a more general replacement strategy whereby the

current population is replaced by µ individuals from the offspring, where λ≥ µ.

• Steady-state replacement: (µ+1); the next population of size µ is selected from

the current population plus a single offspring.
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• Plus-replacement: (µ + λ), where 1 ≤ µ ≤ λ < ∞; this strategy implements a

deterministic elitist replacement strategy that is a generalisation of the steady-

state scheme, whereby the best µ from current population and the offspring, a

total pool of µ+λ elements, replace the current population.

A comprehensive list of replacement strategies can be found in Bäck et al. (1997).

Note that the choice of replacement strategy should be balanced with the choice of

mating selection operator to ensure that an appropriate level of selection pressure6 is

applied.

3.2.8 Termination

Finally, termination criteria are also required. These are the criteria that determine

when the algorithm terminates the search. Common criteria include a maximum num-

ber of iterations (or generations) after which the individual with the highest fitness is

returned as the solution; or possibly convergence criteria so that the process terminates

should all the members of the population converge to a single chromosome. A fur-

ther possibility is to terminate should no progress be made, that is, for example, if the

fitness of best found individual does not improve over a number of generations.

3.2.9 Constraint Handling

An important, additional issue with the application of EAs to COPs is the handling

of problem constraints. Many techniques have been developed to handle constraints

in EAs. Sometimes problem specific techniques are developed, but many general ap-

proaches have also been developed, such as the use of penalty functions, repair al-

gorithms, decoders, and constraint-preserving operators. For an extensive survey, see

Coello Coello (2002).

A core decision is whether to allow infeasible solutions into the population or not.

If they are allowed, then it is necessary to devise a method by which infeasible solutions

are penalised. A common approach is to utilise penalty functions that add additional

terms to the fitness function to reflect the degree of constraint violation. If infeasi-

ble solutions are prohibited within the population, then it is necessary to guarantee

that, firstly, the initial population is feasible, and secondly, that the genetic operators

6Selection pressure is a parameter that characterises EA selection operators (Bäck et al., 1997). Es-
sentially, selection pressure is the degree to which the better individuals of a population are favoured dur-
ing selection. The higher (lower) the selection pressure, the more (less) better individuals are favoured.
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guarantee the feasibility of any new individuals that are generated. This may involve,

for example, repair algorithms that repair infeasible solutions so that they are feasible

given problem constraints, or constraint-preserving operators.

3.3 EAs in Combinatorial Optimisation

Next, we discuss the application of EAs to related COPs, namely shortest path and

network flow problems. This is followed by sections reviewing works investigating

the use of EAs in noisy environments, and, finally, applications of EAs to SCOPs.

3.3.1 EAs for Shortest Path Problems

The application of EAs to network flow problems, and even shortest path problems

(SPP), is not common. This is most likely to do with the availability of efficient,

exact algorithms for solving many flow problems in a variety of network models (as

described in Section 2.5). Nevertheless, with the increase in the complexity of network

representations that is evident from the literature, comes a significant increase in the

computational complexity of flow problems, as seen, for example, with flow problems

in Stochastic Networks, and in particular STV Networks.

Here we first discuss applications of EAs to shortest path problems and then, sec-

ondly, to problems in flow networks.

Gen et al. (1997) applied GAs for solving the SPP. They recognised the difficulty

in encoding a path in a graph, that is, paths can have variable number of nodes (and

edges), and a random sequence of edges does not necessarily correspond to a graph. To

handle this they developed a priority-based representation, which is related to the per-

mutation representation, for encoding the paths of a graph. In this encoding, all nodes

are represented by genes and the associated value of each gene is used as the priority

of the node for constructing a path among candidates, so that for a node 1 with neigh-

bours {2,3,4} and gene values {3,6,7}, respectively, the priority value determines that

node 1 is connected to node 4 in the path represented by the chromosome. However,

it is possible that different chromosomes, different sets of priorities, may result in the

same path. For genetic operators, they use modified operators used for permutation

representations. To evaluate the approach, the GA is compared with optimal solutions

for a set of test problems. Overall, the GA found optimal solutions with a high fre-

quency, although the comparative computational cost of the GA is not commented on.
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Later work (Gen et al., 2001) provides a summary of the application of GAs to various

network design problems and the bi-criterion SPP. The earlier approach is adapted to

handle bi-criterion problem objectives.

Several other works have applied GAs to the SPP (Inagaki et al., 1999; Ahn and

Ramakrishna, 2002). Inagaki et al. (1999) proposed a GA using fixed-length chro-

mosomes to encode paths. Chromosomes are sequences of integers and each gene

represents a node ID that is selected randomly from the adjacent nodes correspond-

ing to its position number in the route. A simple crossover operator is used in order

to maintain feasibility of routes. Ahn and Ramakrishna (2002) also propose a GA

for solving the SP problem. Their genetic representation is simpler and allows for

variable-sized chromosomes. Each chromosome is a path where each gene encodes a

node in the path. The position of the node in the path is given by the position of the

gene. They propose a crossover mechanism that requires parent chromosomes to share

a common node; however, this method can introduce cycles to the path, which make

them infeasible given the problem assumptions. A simple repair function is utilised to

remove the cycles from paths. The algorithm is experimentally evaluated and shown

to perform better than the algorithm in Inagaki et al. (1999).

A few works have also proposed GAs for solving stochastic shortest path problems

(SSPP) (Ji, 2005; Davies and Lingras, 2003). Ji (2005) considers the SSPP and several

variants, and proposes a hybrid solution approach, combining genetic algorithms with

stochastic simulation. Similar to Ahn and Ramakrishna (2002), a variable-length chro-

mosome representation of a path is used, and genetic operators are defined identically

as well. Davies and Lingras (2003) apply a GA approach to the dynamic SSPP, that

is, where edge weights change as unknown functions of time. In their approach the

GA is used to reroute in order to find shortest paths given the changing network infor-

mation. The algorithm is split into two components: a Prediction Module and a GA.

The Prediction Module is used to provide updated edge travel times and the GA for

finding the shortest path given the up-to-date environment information. Like Ahn and

Ramakrishna (2002), a chromosome is defined as a path (although it can be cyclic),

where each gene is a node in the path, and, hence, it is also of a variable length. Given

the dynamic nature of the network, they also allow waiting in paths. Similarly, a sim-

ple crossover operator is defined whereby parents can only recombine if they contain

shared nodes, which, again, maintains the feasibility of offspring.
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3.3.2 EAs for Network Flow Problems

Hitherto, discussed works have only considered uncapacitated networks; in fact, only

a few works have proposed EAs for flow problems in capacitated networks. Munakata

and Hashier (1993) applied GAs to the maximum flow problem in static flow networks.

Each candidate solution is represented by a flow matrix, and a complicated scheme is

required to handle the flow constraints. Because of this complexity, special genetic

operators are designed which do not however guarantee feasibility of candidate solu-

tions, and, hence, a penalty procedure is used to decrease fitness values. Experimental

results showed that the GA performed badly in comparison with exact procedures.

Several works have applied EAs to related flow problems in traffic assignment7. An

example is (Sadek et al., 1997), who used GAs for addressing dynamic traffic assign-

ment problems, with the goal of minimising the total travel time that vehicles spend

en route. In their model, traffic flow limitations are imposed through capacity con-

straints. Chromosomes are represented by real-valued vectors (ordered lists), where

each vector element is the number of vehicles assigned to an edge during a specific

time period. Constraints are addressed through the use of a penalty function. The GA

is compared against a non-linear programming method and shown to be a viable alter-

native approach, with several advantages: one, that by using it some of the assumptions

required for the analytical approach can be relaxed, and, two, that it can handle larger

instances. In (Varia and Dhingra, 2004), a GA is applied to the dynamic optimal traffic

assignment problem with the dual goals of minimising the overall travel cost (actually

travel time) in time-varying networks and the optimisation of signal timings. For rep-

resentation, a binary-string chromosome is utilised that encodes each source-sink path

and the level of flow assigned to it, and additional bits are added to represent signal

timings. A penalty function is also used to punish individuals for signal timing con-

straint violations. The GA is evaluated on example networks and found to handle the

problem’s complexity well. Varia and Dhingra also conclude that one of the main ad-

vantages of GAs is that assumptions can be relaxed that may be required for analytical

approaches, e.g. convexity.

As previously mentioned, of particular interest here are several flow problems ad-

dressed by Opasanon (2004), Opasanon and Miller-Hooks (2010), and Miller-Hooks

and Sorrel (2008). However, again, discussion of these works is delayed until Section

3.5 where they will be described along with other EA approaches to SCOPs in order

7Traffic assignment problems concern the selection of routes (or paths) between origins and destina-
tions in transportation networks.
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to situate them more widely in context.

3.3.3 Conclusions

In summary, as previously mentioned, few works have applied EAs to network flow

and closely related COPs. The main conclusion from this section is, as might be ex-

pected, that when efficient approaches are available EAs cannot compete in either accu-

racy or efficiency. Nevertheless, EAs can be useful when larger, perhaps more realistic,

problem sizes are to be tackled.

We now discuss at some length the use of EAs in noisy environments, followed by

a review of EAs in stochastic combinatorial optimisation.

3.4 EAs in Noisy Environments

The particular problem addressed in this thesis, the Maximal Safest Escape problem

(formally defined in Section 4.3), is formulated as a SCOP. Therefore, previous work

tackling SCOPs and problems in noisy environments more generally are relevant here.

We begin with an overview of the effect noise can have on the performance of EAs;

then we survey theoretical and practical work on methodologies for coping with noise.

Finally, we discuss applications of EAs to SCOPs, discussing in detail several highly

relevant works.

Jin and Branke (2005) survey works investigating EAs applied to optimisation

problems containing a wide range of uncertainties. In particular, they identified four

types of uncertainty:

1. Noise: due to the presence of noise one is unable to measure the exact quality of

an individual, e.g. variations and noise from sensor measurements or randomised

simulations.

2. Robustness: optimal solution should be robust to perturbations, or slight changes,

in design variables.

3. Approximated Fitness Functions: due to costly fitness evaluations, see (Jin,

2005) for a comprehensive survey.

4. Dynamic Environments: time-varying, deterministic fitness functions, where op-

timal fitness values are a function of time, and hence ‘dynamic’, see (Branke,

2002) for more details.
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Note that evaluating solutions in stochastic environments using randomised simu-

lation can be seen as equivalent to evaluating solutions in noisy environments, where

fitness evaluations are subject to noise (stochastic variation) and hence modelled as

random variables. The formulation below unifies this equivalency, and it is due to this

equivalence that the survey focusses on EA approaches for handling fitness functions

in noisy environments.

3.4.1 Impact of Noise on EAs

While known for being robust, EAs were originally designed for use in deterministic

environments where fitness evaluations are assumed deterministic and tractable. How-

ever, the application of EAs to stochastic environments is not straightforward. In these

environments, often the fitness evaluations are approximate and hence it is no longer

possible to compute with finite resources the exact fitness evaluation of individuals.

This, in turn, means that it is no longer possible to discriminate between individuals

with certainty, thus inducing potential selection errors in the EA — that is, inferior

individuals may survive and reproduce while superior individuals are eliminated. As a

consequence the algorithm may be more likely not return the best solution discovered

during the run. Ultimately, these issues can result in the algorithm being ‘misled’ and

thus diminishing the effectiveness of the approach.

In general, in genetic search, there are two important issues in the evolution process

of the search: exploration and exploitation. Exploration is the creation of population

diversity by exploring the search space, and exploitation is the reduction of the diver-

sity by focusing on the individuals of higher fitness or exploiting the information rep-

resented within the population. For effective search, a careful balance must be struck

between the two. However, in noisy environments, where fitness values are uncertain,

exploitation may be limited. To counter this it is possible to spend a potentially vast

amount of effort accurately estimating the fitness of individuals. The question then

arises of how precise estimates must be to facilitate effective exploitation, and whether

the effort should instead be spent on, for example, more iterations of the algorithm.

Fitness functions that return fitness values that are noisy are called noisy fitness

functions (NFFs), and EAs that utilise NFFs are called Noisy EAs (NEAs).
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3.4.2 Noisy Fitness Functions

Numerous works address the use of NFFs, analyse the theoretical impact of noise on

the performance of EAs, and also suggest a number of approaches for dealing with the

noise.

Jin and Branke (2005) propose the following problem formulation for fitness eval-

uations under noise. Define x ∈ X as the input configuration or design variables and

the true fitness function f : X → R. Then the problem can be defined as follows.

Let the expected fitness function F(x) be defined:

F(x) =
Z

∞

−∞

[ f (x)+δ]P(δ)dδ = E[ f (x)+δ] = f (x),δ∼N (0,σ2) (3.1)

where δ is additive noise and normally distributed with mean 0 and variance σ2, and

P(δ) is the density function of δ. Often, F(x) is unavailable or too complex to evaluate

in the closed-form, but the stochastic value f (x)+ δ is available, so one can approxi-

mate the value by averaging the sum of a number of random samples:

F̂(x) =
1
n

n

∑
i=1

[ f (x)+δi]

where n is the sample size and F̂(x) is an estimate of F(x) = f (x). Justified by the

law of large numbers, we know that as n→∞, the value converges on the actual fitness

value. This is equivalent to, for example, the problem of approximating the expectation

of a solution for an SCOP via simulation (e.g. using Monte Carlo methods), where f (x)

is equal to the expected value of a particular solution.

The most straightforward approach to reducing the effect of noise as an approxi-

mation to the true fitness value is to resample the fitness function a number of times

and take the average of the fitness values. The main issue with this approach is that im-

proving the estimation by increasing the sample size converges at a slow rate O(1/
√

n),

and, furthermore, assuming that fitness evaluation is the most laborious part of an EA,

increasing sample sizes to improve estimation may be costly.

Another issue with this approach is that an a priori fixed resampling rate does not

consider possibly differing levels of noise across the space, such that δ may be depen-

dent on x, δ(x). In this case, using too few samples means the estimates may provide

poor fitness estimates and lead to incorrect selection; on the contrary, over-sampling

could lead to the unnecessary use of computational resources. Due to the issues of

choosing an appropriate sample size, many of the following works focus on methods

that do not require increasing the sample size, n.
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Jin and Branke (2005) split approaches to tackling noisy fitness evaluations (ex-

pressed by Equation 3.1) into four categories:

1. Explicit Averaging over time: the most common approach, using a fixed resam-

pling rate8 or adaptive sampling plan to estimate fitness, using the average of a

number of fitness samples.

2. Explicit Averaging over space: base average fitness value on that of similar so-

lutions, for example, by exploiting the neighbourhood of solutions;

3. Implicit Averaging: use a single fitness evaluation and increase the population

size whereby the self-averaging nature of EAs will reduce the effect of the noise;

4. Modifying EA selection to account for the presence of noise.

Early works investigating the effect of noise on EAs suggested that EAs are quite

robust to noise. Fitzpatrick and Grefenstette (1988) investigated the question of whether

it is beneficial to spend more effort obtaining accurate estimated fitness values, or to

accept less accurate estimations and use a larger population, thereby allowing a larger

sampling of points in the space, given a fixed amount of computational effort. They

concluded that in some cases increasing the population size was better.

Goldberg et al. (1992) proposed population sizing equations9 to prevent the con-

vergence of EAs being effected by the presence of noise. They also advocate the use

of larger populations to deal with noise. Building on this work, Miller and Goldberg

(1996); Miller (1997) developed theoretical models for determining the effects of noise

on the operation of EAs. They proposed methods that simultaneously optimise the pop-

ulation size and the sample size for a fixed amount of computational effort. However,

their approach requires information about the problem that is rarely available, such as

noise intensity. Miller and Goldberg also investigated the effect of noise on different

selection schemes, highlighting that the effect is similar to low selection pressure.

Rana et al. (1996) also argue that EAs ought to be robust to noise, due in part to

being population-based. They found that noise had different effects on EAs depending

on the level of noise and the actual fitness function itself. In fact, they showed that

noise can actually be useful in the initial phases of the search. They also noted that

increasing the sample size did not necessarily improve results.

8Resampling refers to sampling a (noisy) fitness function a number of times.
9Population sizing equations provide methods to estimate population sizes required for effective EA

performance. The equations, however, require knowledge of problems that in practice is rarely available.
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The works mentioned so far assume a fixed sample size for all individuals in the

population and over all generations. Aizawa and Wah (1993, 1994) were perhaps the

first to suggest adaptive sampling policies, where the number of samples is adapted

over the course of an algorithm’s execution. They recognised that if the difference

between solutions is large, less accuracy is required to discriminate between them.

They suggested two different strategies: increasing the sample size with the generation

number or using a larger sample size for individuals with higher estimated variance.

Later Stagge (1998) investigated methods to reduce the required sample size for

explicit averaging. For generational replacement, (µ,λ), and elitist, (µ+λ), selection,

Stagge suggested that the sample size for evaluating individuals should be based on

the probability of it being amongst the µ best, i.e. on its chance of surviving to the next

generation. Hypothesis tests were used to evaluate the probabilities.

Rather than investigating methods to reduce the required resampling rate, several

works, for example Sano and Kita (2000) and Branke et al. (2001), have suggested

averaging fitness values over the neighbourhood of a point to be evaluated in order to

improve fitness estimation. Rather than increasing the sample size to improve fitness

estimations, which would require additional computational effort, models can be de-

veloped to improve the estimation using the evaluation of similar individuals that have

already been discovered. However, both works make assumptions about the distribu-

tion of noise in neighbourhoods.

Boesel (1999) suggests that for linear ranking selection (and tournament selection),

selection error can be reduced by grouping individuals of similar quality into one rank

and assigning them the same selection probability. A corresponding mechanism for

grouping based on statistical ranking and selection (R&S) procedures10 is proposed.

Furthermore, expanding on this work in (Boesel et al., 2003), a screening and selection

“clean up” mechanism is suggested for use after the termination of search in order to

select the best solution visited during the search with a prespecified confidence level.

To prevent selection error, Hedlund and Mollaghasemi (2001) combined an EA

with a R&S procedure, specifically, an indifference-zone11 selection procedure is used

to select the new population by picking the best µ out of λ offspring, where λ ≥ µ,

within an EA with a prespecified level of confidence. On termination, a “clean up”

10Statistical ranking and selection (R&S) procedures often used in Simulation Optimisation are meth-
ods for selecting the best system with some level of confidence out of a number of systems where their
performance is uncertain. See, for example, Fu (2002); Kim and Nelson (2006) for more details.

11The indifference-zone is defined in terms of the maximum difference between solution evaluations
that can be considered insignificant.
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mechanism is also employed. Similarly, and based on Boesel et al. (2003), Buchholz

and Thümmler (2005) proposed an indifference-zone R&S procedure for selection in

a (µ + λ) EA, and maintain a pool of promising individuals throughout the run from

which the best solution is selected on termination.

Branke and Schmidt (2003) proposed adapting stochastic tournament selection to

take into account the inherent noise in the problem in order to determine the selec-

tion probability of the better individual based on the difference between the observed

fitnesses of the tournament individuals. Secondly, they suggested using this idea to

choose an appropriate resampling plan to discriminate between individuals for a spe-

cific tournament. Developing on their previous work, Branke and Schmidt (2004) pro-

posed an elaborate sequential sampling strategy and compared it to a state-of-the-art

indifference-zone R&S procedure, showing that both procedures can drastically reduce

the number of samples required to guarantee a maximal selection error.

Also focussed on tournament selection, Cantú-Paz (2004) proposed a sequential

sampling procedure using a hypothesis test to determine if the difference between the

means of the two individuals chosen for a tournament is statistically significant. If not,

then additional samples are allocated to the individual with the highest variance, and

the test is carried out again. The procedure continues until the test is significant at

which point the candidate with the highest fitness is the tournament winner. Cantú-Paz

demonstrates that the sequential sampling procedure is superior to a fixed resampling

rate or simply ignoring the noise (a single fitness function evaluation); however, the

adaptive method can require a substantial amount of additional computation. In fact,

for the problems tackled, using increased population sizes and direct comparison (no

resampling) performed the best — although under, perhaps, unrealistic conditions: uni-

form noise across the space, and the availability of knowledge of problem-dependent

parameters for population sizing models and noise levels.

Specifically focussed on search spaces where noise levels vary, Di Pietro et al.

(2004) proposed several adaptive resampling methods to reduce noise in the estima-

tion of fitness values. Firstly, a method to reduce the standard error below a pre-defined

threshold is given, and, secondly, a more elaborate approach is provided involving

specifying varying sample sizes for different levels of noise based on estimated stan-

dard deviations. They showed that when noise levels vary across the space it is better

to dynamically resample for each point rather than use a fixed resampling rate for all

points. However, they also concluded that applying the dynamic resampling approach

is in general more complicated than they originally thought, and it can in fact perform
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worse than simply discriminating the noise into two different regions.

3.4.3 Schmidt’s Framework: EAs and OCBA

The framework proposed by Schmidt et al. (2006) and (Schmidt, 2007) is, to the knowl-

edge of the author, the first work to suggest a general framework for combining EAs

with R&S procedures for problems in stochastic environments. In this symbiosis, the

EA guides the search and the R&S method ameliorates the effects of noise on the ef-

ficacy of the heuristic. The proposed framework is applied to the problem addressed

here and, due to this, an overview of the approach is given here and the technical details

are presented in Section 5.4.1.

Based on the results from an extensive comparative study of state-of-the-art R&S

procedures (Branke et al., 2007), Schmidt et al. (2006) and Schmidt (2007) proposed

the tight integration of EAs and the Optimal Computing Budget Allocation (OCBA)

procedure as a framework for tackling problems in stochastic environments. The

OCBA, originally defined by Chen (1996), is a sequential R&S approach based on

Bayesian statistics. The study showed that overall the OCBA was amongst the best

R&S procedures in terms of a number of criteria, including the expected number of

samples required to, say, achieve a given target probability, and how easy it is to use.

When integrated with an EA, OCBA is applied in each generation to provide a de-

gree of confidence in the ordering of individuals based on their fitness values. More

precisely, to guarantee with a predefined probability that the ranking information re-

quired for a particular EA (specifically, replacement and selection operators) to func-

tion effectively is correct. OCBA functions as an adaptive resampling scheme manag-

ing the efficient allocation of samples to individuals in order to determine the correct

ranking of individuals. The power of OCBA is that it is based on an idea from Ordinal

Optimisation12 that in stochastic environments it is easier to rank candidate solutions

than it is to precisely estimate their absolute performance.

As part of the framework, Schmidt et al. (2006) and Schmidt (2007) discuss the

ranking information required by common EA variants. In particular, they show how

common replacement operators, e.g. (µ,λ), (µ+λ) and generational replacement with

elitism, and common selection operators, such as random selection, tournament selec-

tion and linear ranking, are supported in the framework. The R&S procedure itself,

modified from vanilla OCBA, is adapted for the ranking of a set of individuals given

12See, for example, (Ho et al., 1992) for an introduction to Ordinal Optimisation.
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the information required by the replacement and selection operators for the correct

functioning of the EA. It is also noted that under these conditions only ranking-based

selection schemes for EAs apply, because selection schemes that are based directly on

fitness values, such as fitness proportionate methods, rely on accurate evaluations of

fitness values.

For evaluation, the framework was compared on a single selection problem against

various ranking configurations, including the complete ranking of all candidates, se-

lecting the best from the set of candidate solutions, and an equal sampling allocation

scheme that evaluates all individuals with an equal sample size for each stage of the

OCBA. Here the single selection problem is meant to represent a single EA iteration.

The configurations are compared on efficiency, total number of samples required, and

accuracy, that is, whether the rankings are correct given the actual fitness values. The

integrated approach is shown to be highly efficient with respect to the number of sam-

ples required. As mentioned, the framework is not, however, appraised over the entire

run of an EA, where it is expected to be even more beneficial due to the re-use of

samples of surviving individuals.

Furthermore, Schmidt (2007) discusses two distinct uses of EAs in stochastic en-

vironments, making the distinction between the EA as a ‘Generator’ and as an ‘Opti-

miser’. As a generator of solutions, the EA is adapted for use in stochastic environ-

ments to account for selection error, so that the (estimated) best solution discovered

at any point during the run is returned. In this mode the algorithm is used to generate

and store points in the space and then, once the algorithm has terminated, to utilise a

selection procedure to guarantee to some statistical confidence level that best solution

of all the points visited is returned. Boesel et al. (2003) implemented this approach

and used a screening procedure on termination of the EA to filter out obviously poor

quality solutions, before selecting the best from the remaining set of candidates. In-

stead of storing all solutions, Buchholz and Thümmler (2005) proposed a heuristic

method to maintain only an ‘elite’ population during the algorithm’s run, and then, on

termination, to apply a selection procedure to return the best from among the elite.

On the other hand, as an optimiser, the EA is used identically to the use in deter-

ministic environments. Here the returned solution is the (estimated) best solution of

the EA’s population after the algorithm has terminated. In this thesis, EAs are viewed

as optimisers; however, a method will be suggested to choose the best solution from

the last population with a high level of confidence.
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3.4.4 Conclusions

Despite a plethora of works proposing methodologies for handling optimisation prob-

lems in noisy and stochastic environments, there appears to be no clear guidelines on

how to tackle such problems in general. Further to this, and perhaps more seriously, is

that there is conflicting empirical evidence about which methodology to apply, in par-

ticular whether it is more beneficial to increase the resampling rate or the population

size (see (Jin and Branke, 2005) for a summary of the debate). Furthermore, as pointed

out by Bianchi et al. (2006b), empirical evidence is largely derived from ad-hoc con-

tinuous or discrete test functions, e.g. the sphere problem or the ONE-MAX problem.

Hence empirical validation of the proposed approaches for applying EAs to SCOPs is

still lacking. Nevertheless, as also pointed out by Bianchi et al. (2006b), and as high-

lighted above, a recent trend building on work in Simulation Optimisation13 combining

R&S procedures with EAs is showing promise. Schmidt’s framework is perhaps testi-

mony to this success; however, empirical evaluation of its overall effectiveness is still

required.

3.5 EAs in Stochastic Combinatorial Optimisation

In this section, issues relating to the application of EAs to SCOPs are discussed, and

related works from the literature are surveyed.

3.5.1 Introduction

Stochastic COPs (SCOPs) are combinatorial optimisation problems where all or part

of the information about the problem data, for example, environment variables, is un-

known, but where some knowledge about its probability distribution is assumed. Often

SCOPs have deterministic counterparts, for example, the Travelling Salesman Problem

(TSP), a COP, has as its SCOP counterpart the probabilistic TSP14. In general, due to

the complexity of solving optimisation problems under uncertainty, which commonly

involve calculations in high-dimensional spaces, classical approaches based on mathe-

13See (Fu, 2002) for a good overview of recent trends in Simulation Optimisation.
14The TSP is a canonical COP: given a set of customers (nodes) and distances between them (specified

on edges between nodes), the goal is to find the minimum distance Hamiltonian cycle, that is, the
cycle visiting all nodes exactly once with the minimum total distance. In the deterministic TSP it is
required that all customers be visited at some point; in the probabilistic TSP (introduced by Jaillet
(1985)) uncertainty is introduced so that customers have some probability of requiring a visit which we
know only probabilistically when planning the trip.
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matical and dynamic programming can only handle small problem instances and often

require considerable computational effort. This provides an ideal scenario for the use

of heuristic approaches that can find good quality, feasible, if not near-optimal, solu-

tions in generally less computation time.

Bianchi et al. (2006b) provide a detailed survey of the use of metaheuristics, in-

cluding EAs, in stochastic combinatorial optimisation. They include a discussion of

various formulations of stochastic programming problems, of different approaches to

evaluating objective functions, and a general discussion of some of the issues of the

area.

In particular, they categorise three approaches for evaluating SCOP objective func-

tions. The first is closed-form expressions, whereby analytical solutions are evaluated

to provide exact objective values. Generally, if available, the closed-form expression

will be evaluated directly to provide the exact objective value; however, for SCOPs,

while it may be available, for example as a stochastic programming problem, it is of-

ten impractical to evaluate exactly.

The second approach is the use of ad-hoc and fast approximations of the problem

objective, used when the exact evaluation is considered too time consuming during

optimisation. The design of ad-hoc methods is strongly problem dependent, and no

general rule exists for finding them. Examples include the use of a counterpart deter-

ministic COP’s objective function, truncating expressions within the objective func-

tion, or even using a set of scenarios instead of the true probabilistic model. Usually

ad-hoc methods introduce a systematic error into the solution evaluation that can only

be reduced through the design and use of a more accurate approximation.

The third and final approach involves estimating the objective value by simulation,

for example using Monte Carlo sampling, where the value is the sample mean over

a set of random samples. This approach introduces statistical error into the estimates

of the candidate solutions making it impossible to discriminate (with finite resources)

between solutions with certainty. The statistical error thus introduces a statistical selec-

tion problem whereby metaheuristics are often integrated with statistical ranking and

selection mechanisms (as seen above). Due to the complexity and problem-dependent

nature of first two classes, simulation approximation is perhaps the simplest method.

Bianchi et al. (2006b) also highlight several issues with drawing general conclu-

sions from the literature of applying metaheuristics, including EAs, to optimisation

under uncertainty, with the overall issue that there exists a schism between theory

and practice. Firstly, to date, in general, the focus of evaluating approaches has been
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limited to continuous optimisation or using ad-hoc, artificial problems, e.g. the ONE-

MAX problem. Real-world problems are often more complex and the search spaces

less well understood. Secondly, of the several methods previously mentioned for eval-

uating objective functions, no general methodology has emerged. In fact, ad-hoc ap-

proaches are commonly used in applied works, despite being hard to design and to

improve the accuracy of; in contrast with, for example, simulation approximation that

can be improved by increasing sample sizes.

In the discussion section of the work, Bianchi et al. (2006b) considers issues with

the use of simulation approximation. One of the issues concerns the trend of combining

ranking and selection (R&S) methods with metaheuristics. In particular, they observe

that such methods have been shown to have a great impact on the effectiveness of

heuristic algorithms; nevertheless, it is unclear which of these methods is best when

integrated with metaheuristics. Furthermore, another issue is whether the selection

methods should be configurable, allowing for example an increase in sample sizes

as the number of generations increases. Here they also mention that the application

of variance reduction techniques could be fruitful in speeding up the convergence of

sample estimates. A further point concerns the characterisation of noise. The relative

size of the noise compared to the ‘undisturbed’ objective function values, or the ‘degree

of randomness’, is an important factor. For example, it should not be expected that a

metaheuristic will work well both small search spaces with high noise levels, where the

focus might be on accurate objective function evaluation, and on large spaces with low

noise, where the focus might be on exploring the search space more than accurately

estimating fitness values.

3.5.2 Applications

We now provide a survey of existing works addressing the application of EAs to

SCOPs. Due to the wide range of problems tackled, the survey focusses on four gen-

eral points: the specific problem tackled; the algorithm employed; how the objective

function is evaluated; and, finally, how the approach is evaluated.

A number of works have applied EAs to SCOPs, including (Easton and Mansour,

1999; Watson et al., 1999; Jellouli and Chatalet, 2001; Yoshitomi et al., 2000; Yoshit-

omi, 2002; Yokoyama and Lewis III, 2003; Mak and Guo, 2004; Bianchi et al., 2004,

2006a; Sudhir Ryan Daniel and Rajendran, 2005; Opasanon, 2004; Miller-Hooks and

Sorrel, 2008; Opasanon and Miller-Hooks, 2010). However, only (Opasanon, 2004;
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Miller-Hooks and Sorrel, 2008; Opasanon and Miller-Hooks, 2010) address SCOPs

that are relevant to the problem addressed herein and hence these are discussed in de-

tail. For reviews of the other works, see Bianchi et al. (2006b).

3.5.2.1 Minimum Time Network Flow Problem

Opasanon (2004) developed a metaheuristic framework based on Genetic Algorithms

for solving a priori flow problems in STV Networks. The framework was first applied

to two problems in time-dependent networks with stochastic, time-varying capacities

but deterministic, time-varying travel times, namely, a variant of the Time-Dependent

Quickest Flow problem (TDQFP) (variation of (Miller-Hooks and Patterson, 2004))

and the Safest Escape Problem (see 2.5.4). In these problems waiting is not permitted.

Next, the framework was extended to tackle flow problems in STV Networks, that is,

in network models in which travel times are stochastic too; specifically, the minimum

time dynamic flow problem and multi-objective problems (Opasanon, 2004; Opasanon

and Miller-Hooks, 2010), where waiting is allowed. We now outline the framework

and discuss its evaluation.

In Opasanon’s framework, each chromosome represents a flow pattern, where each

gene is a pair consisting of a path (represented by a set of edges each with an as-

sociated departure time) and an associated flow. Different chromosomes can therefore

have different numbers of genes, depending on the number of paths and associated flow

levels they contain. Problem constraints are handled through the solution representa-

tion and genetic operators, so that only feasible solutions are generated. Initialisation

ensures that flow conservation is guaranteed by generating new solutions through iter-

atively finding random paths from the source to sink and assigning a random amount of

flow from the residual amount to the path, until all supply is allocated. For crossover,

two parents are selected and for each departure time their genes are either ranked by

their ratio of path cost, e.g. travel time, to path capacity, or alternatively, given some

crossover rate, simply randomly selected. If ranked, the paths with the highest ratio

are chosen and a random amount of flow is assigned according to the supply available

and the capacity of the path (determined by the minimum capacity found among all

the edges in the path). This procedure is carried out until all flow is allocated. Muta-

tion involves replacing with some probability the last gene for each departure time in

a chromosome by a set of new paths and flow that accommodates enough flow. For

selection, a binary tournament operator is utilised with elitism, where the fitness value

of each solution is based on the objective function for the specific problem. Since
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optimal solutions were available for the two problems considered, termination criteria

were met when either a number of generations had passed or convergence to an opti-

mal solution was achieved. The framework was empirically evaluated for each of the

two problems against the results from exact algorithms. For the variant of the TDQFP,

the GA was shown to find solutions on average within 5% of the optimal, while for the

SEscape problem the GA approach found optimal solutions or near-optimal solutions.

The framework was then extended to solve the Minimum Time Dynamic Flows

(MTDF) problem in STV Networks. In STV Networks, edge travel times are now

also stochastic, so that it is no longer possible to know a priori with certainty where

flow will be in the network at any given time (as it was previously). To cope with this

increased complexity, the framework was further developed using the concept of Noisy

Genetic Algorithms (NGAs).

Due to the complexity of evaluating candidate solutions in STV Networks, a noisy

fitness function is defined to estimate the expected performance of candidates on the

network. Evaluating the exact performance of candidates would require evaluation

across all possible network states, where a network state is a single realisation of each

of the random values (corresponding to edge properties) in the network. However, in

general this is not practical since the number of network states grows exponentially in

the number of edges, the time horizon, and the size of the support for edge capacity

and travel time distributions. To handle this, a simulation approximation approach

was developed, where in each generation individuals are evaluated on a single random

sample of network states in order to estimate their expected performance. Since the

same sample is used to evaluate all individuals of a generation, the evaluations are

correlated15. Furthermore, the variance-reduction technique stratified sampling16 is

employed in order to include rarer but large impact realisations of edge properties in

the sampled states. Additionally, an adaptive sampling plan is used based on that of

Smalley (1998) and Gopalakrishnan et al. (2001).

Due to the increased complexity of the problems in STV Networks, where it is un-

likely that in general solutions exist that are feasible on all network states, infeasible

solutions are now allowed in the population, and hence several changes were made

to the framework to handle this. Initialisation is now carried out on the most likely

state (MLS) of the network, in order to guarantee that the first generation is at least

15Correlated sampling is a well-known variance reduction technique, see, for example, Law and
Kelton (2000) for more details.

16For details on the stratified sampling technique, see, for example, Bratley et al. (1987).
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feasible on the most probable realisation of the network (however unlikely it may be).

The same method as before is used for generating the initial population. In evaluation,

a penalty function is employed to penalise candidate solutions that violate problem

constraints. For the MTDF problem, flow waiting at a node due to a lack of available

onward capacity incurs additional cost, or, in other words, forced waiting due to capac-

ity restrictions acts as a penalty. Finally, given these changes, the heuristic algorithm is

evaluated against an exact procedure for the deterministic MTDF on a network with 27

states. The exact algorithm’s performance is given as the weighted average of the result

for each of the network states. The NGA is reported to find a solution with a difference

of 4.26% from the result of the exact procedure. Note, however, that the evaluation

of the algorithm on a single problem instance does not provide a thorough empirical

evaluation of the approach, and hence it is difficult to gauge its overall effectiveness.

3.5.2.2 Maximal Dynamic Expected Flows Problem

Miller-Hooks and Sorrel (2008) applied the NGA framework from (Opasanon, 2004)

to the Maximal Dynamic Expected Flows (MDEF) problem in STV Networks. The

MDEF problem seeks the flow pattern that maximises the expected number of units

that successfully reach the sink within a time bound. Once again, due to the complexity

of the flow problem, a heuristic approach using simulation approximation to evaluate

individuals was employed.

The framework of Opasanon was adapted for the MDEF problem, and we now

discuss the modifications. The basic representation used by Opasanon was extended:

a candidate solution is now defined to be a vector (ordered list) of chromosomes (as

defined by Opasanon (2004)), one for each departure time from the source. Similarly

to the previous work, the initial population was randomly generated on the basis of the

most likely state (MLS), but now the MLS is also used in crossover and mutation. If

it is not possible to generate the required number of initial (feasible) solutions on the

MLS then the problem is deemed too difficult and the algorithm aborts.

For mating selection, parents are chosen using fitness-proportionate selection. Then,

for crossover, the genes of two parents are once again ordered by capacity to travel time

ratios when evaluated on the MLS. However, instead of choosing strictly based on the

ratios, as previously done, a ‘roulette wheel’ is used to pick paths with a probability

proportional to their ratios. Flow is then assigned based on available supply on the

MLS. Mutation is now applied to the extended chromosome, so that each chromo-

some contained in the extended chromosome for each departure time has a chance of
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getting mutated. Then, as before, with a predefined probability the last gene of the

chromosome is replaced by a set of new paths covering the same flow. Evaluation is

also implemented using a noisy fitness function that evaluates each candidate solution

on a sample of the same 20 network states in order to estimate their expected perfor-

mance17. Again, the evaluation of solutions is correlated due to this use of the same

sample of states. An elitist (µ+λ) selection is used as a replacement strategy. Finally,

the NGA approach is evaluated on a set of randomly generated instances and the per-

formance of the algorithm is analysed under different parameter configurations. No

baseline comparison is carried out or bounds provided so that it is difficult to evaluate

the overall effectiveness of the approach.

3.5.3 Conclusions

This section has discussed the application of EAs to SCOPs. It began with a dis-

cussion of the general issues, outlining the various approaches to evaluating objective

functions, discussing the gap between theory and practice, and that there is at present

no clear methodology for approaching SCOPs. This section also surveyed the applica-

tion of EAs to a number of SCOPs, including several flow problems in STV Networks

closely related to the problem addressed herein.

3.6 Summary

The literature review chapters have covered a wide array of works, and whereas the

previous chapter focussed on related optimisation problems for evacuation planning,

this chapter has explored the solution approach, Evolutionary Algorithms, proposed

for solving the problem addressed herein.

The chapter began with an overview of EAs and their common variants, and then

presented a generic EA and discussed the various components of the algorithm. It

highlighted in particular the use of EAs for combinatorial and constrained optimisa-

tion.

Next it discussed the application of EAs to a number of related combinatorial opti-

misation problems, including shortest path and network flow problems. The discussion

17Miller-Hooks and Sorrel (2008) note a practical issue with evaluating extremely small probabilities
represented by floating-point numbers. The issue arises due to their explicit need to evaluate the proba-
bility of individual network states and to normalise over sets of sampled network states. This issue does
not occur in the work described herein because probabilities are not explicitly required by the chosen
Monte-Carlo sampling method.
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concluded that EAs have not been extensively applied to such problems, perhaps due to

the availability of exact and efficient algorithms; nevertheless, as problem sizes grow

and additional constraints are required, the use of EAs becomes more appropriate.

A substantial review of EAs in noisy environments is then provided, with a focus

on noisy fitness evaluations, that is, where the evaluation of individuals is uncertain

and unascertainable with finite resources. The impact of noise on the algorithms is

expounded and a number of works addressing these issues are reviewed. In particular,

a recent framework, which is applied to the optimisation problem addressed herein,

proposing the tight integration of EAs with a state-of-the-art statistical ranking and se-

lection method is introduced. The framework is one of a number of recent researches

suggesting the combined use of EAs and statistical ranking and selection methods for

addressing noisy fitness evaluations. The review also highlighted the conflicting evi-

dence that suggests different approaches for tackling problems in noisy environments.

Finally, a review of the use of EAs in stochastic combinatorial optimisation is pro-

vided. The section began by discussing a number of important issues arising due to the

application of EAs to SCOPs, including different methods for approximating objec-

tive functions, the gap between theory and practice, and the lack of clear methodology

for approaching SCOPs in general. Furthermore, a number of applications of EAs to

SCOPs are surveyed, with focus on several works proposing EAs to solve flow prob-

lems in STV Networks that are closely related to the problem addressed herein.



Chapter 4

Maximal Safest Escape Problem

This chapter formally defines and explicates the core research problem. Firstly, it pro-

vides the necessary formal notation and preliminaries for STV Networks. Secondly, it

discusses various route selection criteria for problems in STV Networks. Then, thirdly,

it states the mathematical formulation of the Maximal Safest Escape Problem in STV

Networks, including a discussion on the combinatorics and computational complexity

of the problem. Finally, it lays out a procedure for providing stochastic upper bounds

for optimal solutions to the Maximal Safest Escape problem.

4.1 Notation and Preliminaries

We now provide the notation and preliminaries used to formally define time-dependent

flow networks with edge capacities and travel times that are both stochastic and time-

varying. This model is based on the definitions given by Opasanon (2004), Opasanon

and Miller-Hooks (2008) and Miller-Hooks and Sorrel (2008).

4.1.1 Basic Definitions

Let a time-dependent network N = (G ,M ,B,T ,R) consist of a finite directed

graph, G = (V ,E , [T ]), where V is the set of nodes, v = |V |, E ⊆ V 2 is the set of

directed edges connecting nodes, e = |E |, and [T ]≡ {0,1, . . . ,T} is the time frame of

interest.

In these networks, edge properties are modelled as discrete-time stochastic pro-

cesses. Specifically, edge capacities are represented as discrete random variables with

probability mass functions given by the set (M ,B). Associated with each edge

53
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(i, j) ∈ E at time t ∈ [T ] is a set of D ∈ N non-negative, integer-valued, time-varying

capacities, M = {µd
i j(t)|d = 1, . . . ,D}(i, j)∈E ,t∈[T ], with corresponding probabilities

B = {βd
i j(t)|d = 1, . . . ,D}(i, j)∈E ,t∈[T ]. Similarly, travel times are described by discrete

random variables with probability mass functions that vary with time, given by the set

(T ,R). For each edge (i, j)∈ E at time t ∈ [T ] is a set of H ∈N non-negative, integer-

valued, time-varying travel times, T = {τd
i j(t)|h = 1, . . . ,H}(i, j)∈E ,t∈[T ] and corre-

sponding probabilities R = {ρh
i j(t)|h = 1, . . . ,H}(i, j)∈E ,t∈[T ]. For simplicity, travel

times are assumed to be multiples of discretised time intervals. The uncertain edge

properties are assumed to be realised upon entrance to an edge at a departure time,

and fixed for those units of flow departing from the source node of the edge (so-called

frozen-link property (Orda and Rom, 1990)). The flow on edge (i, j) ∈ E that leaves

node i at departure time t ∈ [T ] is given by the function xi j(t) : E × [T ]→Z. The set of

predecessor and successor nodes of a node i ∈ V are given by Γ−1(i) = { j|( j, i) ∈ E }
and Γ+1(i) = { j|(i, j) ∈ E }, respectively.

Note that only during the time period of interest, t ∈ [T ], may edge attributes vary

with time, so that ∀t > T it is assumed that the properties are static, taking the same

values as at the last time interval T . Finally, a simplifying assumption is that travel

times and capacities are assumed to be independent over time and space.

4.1.2 Single Source, Single Sink

In the networks, we identify two special nodes, a source node, s ∈ V , and a sink node,

l ∈ V , and we assume s 6= l and (s, l) /∈ E , and also Γ−1(s) = /0 and Γ+1(l) = /0.

A general and efficient algorithm by Miller-Hooks and Patterson (2004) can convert

networks with multiple sources and sinks to equivalent single source-sink networks.

4.1.3 First-In-First-Out

Modelling of edges requires consideration of the ordering by which units can travel

along edges; that is, for an edge (i, j) units must arrive at the target node of an edge,

j, in the order that they left the edge head node, i. Problems that enforce First-In-

First-Out (FIFO) conditions are generally regarded as easier to solve, but perhaps less

realistic. A more general modelling decision is to allow edges to be non-FIFO, so that

for an edge the order in which units arrive at the target node is not necessarily the order

in which they left the head node. In this work, non-FIFO is allowed.
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4.1.4 Supply/Demand Model

The supply available at a node is the amount of flow that is ready to be shipped along

some outgoing edge at a time t. For a negative amount, this is considered a demand, or

a required level of supply. The supply/demand at a node i at departure time t is given

by the function bi(t) : V × [T ]→Z. At the source node, s, the supply is bs(t)∈N0,∀t ∈
[T ]; that is, supply at the source is defined in terms of non-negative integer values for

any departure time. For convenience, let the set of non-zero supply times be S = {t ∈
[T ]|bs(t) > 0}. At the sink node, l, bl(t) = 0,∀t ∈ [T −1], and, bl(t = T ) ∈ Z−. Also,

it is assumed there is no supply beyond the time horizon, bi(t) = 0,∀i ∈ V ,∀t > T .

At time T then, bl(T ) =−∑t∈S bs(t) =−B, that is, the demand of the network will be

equal to the negated total supply B. Thus, if flow arrives prior to time T , it simply waits

without penalty (implicit waiting) until time T in order to fulfil the demand. Units are

not allowed to wait at the source or intermediate nodes, that is, ∀i ∈ V \{l} : (i, i) /∈ E .

Finally, bi(t) = 0,∀i ∈ V \{s, l},∀t ∈ [T ].

In summary,

bs(t) ∈ N0,∀t ∈ [T ]

bi(t) =

{
0 ∀i ∈ V \{s, l},∀t ∈ [T ]

0 ∀i ∈ V ,∀t > T

bl(t) =

{
0 ∀t ∈ [T −1]

−B t = T

4.1.5 Paths and Flows

A directed s− l path in a network N is a sub-graph of the topological graph G , de-

noted by σ, consisting of a sequence of n nodes: σ =
(
i1 = s, i2, . . . , in−1, in = l

)
, with

the property that 1 ≤ k < n, (ik, ik+1) ∈ E . The directed s− l paths are assumed to

be simple, so that they contain no repetition of nodes (cycles). Henceforth, directed

simple s− l paths are called paths. The length of a path, σ, with n nodes is equal to the

number of edges in the path, n−1. The set of all paths in a network N is denoted Ω.

A flow pattern in a network N is a multiset1 ψ = (R,m), where R = Ω× [T ] is the

set of underlying elements, consisting of the set of pairs: {(σ, t)|σ ∈ Ω, t ∈ [T ]}, and

m : Ω× [T ]→ N0 is the multiset multiplicity function. Each pair (σ, t) represents a

path σ ∈Ω and departure time t ∈ [T ] from the source s to the sink l, and the function

1A multiset, or bag, is a generalisation of a set where elements can have a membership of more than
one.
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m(r), r ∈ Ω× [T ], specifies the total number of units of flow assigned to the pair r. If

the multiplicity of r ∈ R is 0, m(r) = 0, then 0 units of flow are assigned to the pair r.

The cardinality of a flow pattern is given by |(R,m)| = ∑r∈R m(r). The set of all flow

patterns for a network N is denoted Ψ.

4.1.6 Network States

A network state represents a single realisation of all random elements — all edge

travel times and capacities over time. In the a priori context, the network state to be

realised is of course as yet unknown; however, the set of possible network states can be

determined from the joint distribution of all edge travel time and capacity distributions

for all network edges over time. A network N can realise to a finite set of mutually

exclusive states, ξi, i = 1, . . . ,k, denoted by Ξ, where k = (D ·H)e(T+1). The random

event that models the uncertain network state is denoted by ξ̄.

We have a probability distribution over Ξ, P, where, given the independence of

edge properties,

P
(
ξ̄ = ξ

)
= P

( \
(i, j)∈E
t∈[T ]

µ̄i j(t) = µξ

i j(t)∩ τ̄i j(t) = τ
ξ

i j(t)
)

= ∏
(i, j)∈E
t∈[T ]

P
(
µ̄i j(t) = µξ

i j(t)
)
·P
(
τ̄i j(t) = τ

ξ

i j(t)
)

where µ̄i j(t) and τ̄i j(t) are random variables for the yet unrealised capacity and travel

time values, respectively, for edge (i, j) at time t, and µξ

i j(t) and τ
ξ

i j(t) the (hypotheti-

cally) realised capacity value and travel time value, respectively, for edge (i, j) at time

t for state ξ ∈ Ξ. For convenience, we abbreviate P(ξ̄ = ξ) to P(ξ). Then, by mutual

exclusivity, for some X ⊆ Ξ,

P(X) =
[
ξ∈X

P(ξ) = ∑
ξ∈X

P(ξ)

Given a flow pattern, in general a network state is feasible if it does not violate any

problem constraints. Let the feasible set of states given a flow pattern ψ∈Ψ be denoted

Fψ ⊆ Ξ. Conversely, F̄ψ denotes the set of infeasible states, so that Ξ = Fψ∪ F̄ψ; of

course states are either feasible or infeasible for a given flow pattern ψ∈Ψ, Fψ∩ F̄ψ =

/0.

In order to discuss the feasibility of candidate solutions a priori, that is, while the

network state is uncertain, flow patterns are referred to as:
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infeasible If Fψ = /0 then P(Fψ) = 0.

p-feasible If Fψ ⊆ Ξ then P(Fψ) ∈ (0,1].

feasible If Fψ = Ξ, then P(Fψ) = 1 almost surely. (Candidates that are feasible are

also p-feasible.)

4.1.7 Example

In this section an example is provided to illustrate the notation and preliminaries intro-

duced in the previous sections.

Figure 4.1 illustrates an example STV Network edge between two nodes: 1 and

2, with edge properties for departure time t = 1. For the edge (1,2), for example, the

probability that it can support 3 units of supply at departure time t = 1 is P(µ̄12(1) ≥
3) = 0.6. The probability of arriving at node 2 at time t ′ = 4, departing node 1 at time

t = 1, is equal to P(τ̄12(1) = 4−1 = 3) = 0.8.

1 2 µ2
12(1) = 3 β2

12(1) = 0.6

µ1
12(1) = 1 β1

12(1) = 0.4

τ2
12(1) = 5 ρ2

12(1) = 0.2

τ1
12(1) = 3 ρ1

12(1) = 0.8

Figure 4.1: Example STV Network Edge

Figure 4.2 and Tables 4.1 and 4.2 describe an example STV Network. Properties

of the network can be seen in Tables 4.1, 4.3 and 4.4. In the network, there are 3 paths

and, given the supply structure, 9 flow patterns; however, the quality and feasibility

of these flow patterns depends on the specific problem to be solved. This example

is revisited after the problem definition (Section 4.3) to provide an example problem

instance with solutions.

The previous sections have detailed the necessary notation and preliminaries for

describing STV Networks, and illustrated their use with an example. The following

sections build upon this and look to define a suitable optimisation problem for the

domain of interest under the conditions of transiency and uncertainty.
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0

1

2

3

Figure 4.2: Example STV Network: Topological Graph

Property Values

Nodes V = {0,1,2,3}
Edges E = {(0,1),(0,2),(1,2),(1,3),(2,3)}

Time Horizon T = 6; [T ] = {0,1, . . . ,6}
Source Node s = 0

Sink Node l = 3

Network Supply bs(0) = 1,bs(1) = 1; B = 2

Paths Ω = {σ1 = (0,1,3),σ2 = (0,1,2,3),σ3 = (0,2,3)}
Flow Patterns Ψ = {ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ8,ψ9} (See Table 4.2)

Network States |Ξ|= (2 ·2)5·(6+1) = 435 ≈ 1.18 ·1021

Table 4.1: Example STV Network: Network Properties

4.2 Route Selection Criteria

Based on the model of STV Networks defined above, the following sections discuss

possible route selection criteria relevant to the domain.

4.2.1 Status Quo

As discussed in the literature review, in Section 2.3, time, in measures such as the total

evacuation time or the last time to exit (SFPE, 2002), is currently used as the principle

route selection criterion in the development of emergency movement plans. In these

contexts, time acts as a proxy for measuring the exposure to danger of persons involved
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ψ1 =
(
R = {(σ1, t0),(σ1, t1)},(m((σ1, t0)) = 1,m((σ1, t1)) = 1)

)
ψ2 =

(
R = {(σ1, t0),(σ2, t1)},(m((σ1, t0)) = 1,m((σ2, t1)) = 1)

)
ψ3 =

(
R = {(σ1, t0),(σ3, t1)},(m((σ1, t0)) = 1,m((σ3, t1)) = 1)

)
ψ4 =

(
R = {(σ2, t0),(σ1, t1)},(m((σ2, t0)) = 1,m((σ1, t1)) = 1)

)
ψ5 =

(
R = {(σ2, t0),(σ2, t1)},(m((σ2, t0)) = 1,m((σ2, t1)) = 1)

)
ψ6 =

(
R = {(σ2, t0),(σ3, t1)},(m((σ2, t0)) = 1,m((σ3, t1)) = 1)

)
ψ7 =

(
R = {(σ3, t0),(σ1, t1)},(m((σ3, t0)) = 1,m((σ1, t1)) = 1)

)
ψ8 =

(
R = {(σ3, t0),(σ2, t1)},(m((σ3, t0)) = 1,m((σ2, t1)) = 1)

)
ψ9 =

(
R = {(σ3, t0),(σ3, t1)},(m((σ3, t0)) = 1,m((σ3, t1)) = 1)

)
Table 4.2: Example STV Network: Flow Patterns (pairs with multiplicity of 0 are ex-

cluded for readability)

(µd
i j(t),β

d
i j(t))

(i, j) t ≤ 3 t ≥ 4

(0,1)
(2

0

) (0.6
0.4

) (1
0

) (0.2
0.8

)
(0,2)

(3
1

) (0.6
0.4

) (3
1

) (0.6
0.4

)
(1,2)

(5
3

) (0.3
0.7

) (5
3

) (0.2
0.8

)
(1,3)

(3
1

) (0.6
0.4

) (2
0

) (0.4
0.6

)
(2,3)

(2
0

) (0.6
0.4

) (1
0

) (0.8
0.2

)
Table 4.3: Example STV Network: Network Edge Capacities

(τh
i j(t),ρ

h
i j(t))

(i, j) t ≤ 2 t ≥ 3

(0,1)
(2

1

) (0.5
0.5

) (2
1

) (0.7
0.3

)
(0,2)

(2
1

) (.99
.01

) (2
1

) (0.7
0.3

)
(1,2)

(3
2

) (0.2
0.8

) (3
2

) (0.8
0.2

)
(1,3)

(3
1

) (0.6
0.4

) (3
1

) (0.6
0.4

)
(2,3)

(3
1

) (0.4
0.6

) (3
1

) (0.4
0.6

)
Table 4.4: Example STV Network: Network Edge Travel Times
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in emergency incidents, so that by minimising the exposure to potentially hazardous

events the chance of harm is minimised. However, this need not always be the case:

for example, the fastest path is not necessarily the safest. In the context of future

emergency-response systems, given the necessary infrastructure, it may be possible to

consider the conditions of the environment more directly, whereby a more informative

model of the risks are available to decision makers.

4.2.2 Performance Criteria in STV Networks

The previous chapter surveyed a number of flow problems from the literature that

are typically applied to evacuation scenarios; for example, the quickest time problem

and universal maximum flow problem. These problems have been investigated mostly

in time-dependent or time-varying flow networks2. In stochastic environments, it is

necessary to work with the uncertainty in network elements, which in general makes

the flow problems more complex. For example, in time-varying flow networks with

stochastic edge properties, in particular edge capacities, it is no longer possible to

know a priori capacity values with certainty. Hence for different realisations of the

network, different numbers of people may be able to pass through a given passageway.

As discussed by Opasanon (2004), there are several ways in which to handle un-

certainty. One common approach is to model the uncertainty using random variables

and to work with expectations. A simple approach is to eliminate the uncertainty by

transforming a stochastic problem to a deterministic one, via, for example, the Cer-

tainty Equivalent heuristic, which replaces random variables with their expected val-

ues. Loui (1983) showed that using this conversion for stochastic, time-invariant net-

works allows for the optimal solution to be found on the transformed network; whereas

Hall (1986) demonstrated that for stochastic, time-dependent networks this conversion

will not yield the expected value for a path because the travel time (and any other time-

varying property) on an edge depends on the arrival time, which is uncertain, at the

head node of each edge in the path. In any case, an issue with expectations is that on

realisation the actual value may be significantly less or more than the expected value —

it may have a large variance. The consideration of these events could be important in

the emergency domain. Opasanon discussed several approaches, focussing on stochas-

tic edge capacities, that address this issue, such as the expected flow of an edge, and

2As a reminder, time-dependent flow networks model flow as a function of time, whereas time-
varying models additionally model network properties such as supply and edge properties also as func-
tions of time.
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the probability of successful traversal of an edge, on which the Safest Escape Problem

is based as discussed previously in 2.5.4.

Others have handled the uncertainty through the consideration of network perfor-

mance measures. The maximum expected flow, for example, is a performance mea-

sure for flow networks. It can be used to determine, for example, the likelihood that

certain level of flow is sustainable on a network. However, in general this measure

describes the asymptotic behaviour of the system, that is, it does not provide details of

the behaviour for a particular realisation but over many runs, and thus may have lim-

ited applicability in the emergency domain. Other common, related measures include

network reliability and connectedness that also investigate performance measures of

networks. For example, network reliability finds the probability that flow networks

can accommodate certain levels of supply. An issue with these measures, as noted pre-

viously, is that they do not develop routing plans; they act solely as a general measure

of performance that, again, may not be particularly suitable for the emergency domain.

The optimisation problem formulated herein takes a hybrid approach, similar to the

Safest Escape Problem (2.5.4), combining the evaluation of a performance measure

with the development of routing plans. Specifically, in STV Networks, given the time-

varying and stochastic nature of edge properties, the focus is on the feasibility of flow

patterns given the possible realisations of the network elements. For example, the flow

pattern with the maximal probability of feasibility for all potential realisations of the

network is one measure of the performance of the system that could perhaps be useful

in the emergency domain. In other words, in the context of emergency evacuation in the

built environment, it is the set of routing instructions with the highest overall chance for

building occupants to successfully egress through building circulation systems, given

the current environmental conditions and perhaps future predicted scenarios, from the

occupants’ starting locations to places of safety.

A number of route selection criteria are available for handling the uncertainty in

stochastic flow networks, from utilising expected values of the random variables that

model the uncertainty for developing routing plans, to using network performance

measures as system-wide measures of the state of the network. The work described

herein defines and addresses a problem based on a dual approach, developing routing

plans and also working as a measure of network performance.
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4.3 Maximal Safest Escape Problem

In this section, the problem, including the problem objective and constraints are de-

fined, which is followed by a redefinition of the objective as an expectation. Next, the

problem is shown to be NP-hard, and, finally, a discussion on the problem combina-

torics is provided.

4.3.1 Problem Definition

The Maximal Safest Escape (MSE) problem is defined as the problem of finding a

priori flow patterns with the maximum probability of feasibly shipping the available

supply from the network source to the network sink in STV Networks.

The objective function is defined as:

max
ψ∈Ψ

P(Fψ) (4.1)

Additionally, flows are subject to the following deterministic constraints (from

(Miller-Hooks and Patterson, 2004)), that is, constraints that apply to realised network

states:

∑
j∈Γ+1(i)

xi j(t)− ∑
j∈Γ−1(i)

∑
{t ′|t ′+τ ji(t ′)=t}

x ji(t ′) = bi(t),∀i ∈ V ,∀t ∈ [T ], (4.2)

0≤ xi j(t)≤ µi j(t),∀(i, j) ∈ E ,∀t ∈ [T ] (4.3)

To ensure that the supply/demand structure of the network is maintained, flow con-

servation constraints (4.2) are included. Also, non-negativity and capacity constraints

(4.3) are included to ensure that the flow on edges does not exceed the capacity and is

not negative.

4.3.1.1 Definition as an Expectation

It is possible to define the objective function as an expectation using the indicator

function. In this way, the objective is more conducive to approximation methods.

Define the indicator function for some X ⊆ Ξ as IX : Ξ→{0,1}, where:

IX(ξ) =

{
1 ξ ∈ X

0 ξ 6∈ X

For a set of network states, the indicator function returns 1 if the state is a member of

the set of states, or 0, if it is not.
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Then the MSE defined in terms of the expectation of the indicator function is:

P(Fψ) = ∑
ξ∈Fψ

P(ξ)

= ∑
ξ∈Ξ

IFψ
(ξ) ·P(ξ)

= E[IFψ
(ξ̄)]

Say h(ψ, ξ̄) = IFψ
(ξ̄), then

E[h(ψ, ξ̄)] = E[IFψ
(ξ̄)] (4.4)

and we can write the definition in the more traditional stochastic optimisation form,

where the objective function has the goal of maximising the expectation:

max
ψ∈Ψ

[
G(ψ) = E[h(ψ, ξ̄)]

]
(4.5)

We denote the objective value of a solution ψ by G(ψ), and the optimal solution ψ∗ =

argmaxψ∈Ψ G(ψ) with z∗ = G(ψ∗).

4.3.2 Example

Based on the example STV Network and supply structure described in Section 4.1.7,

we now provide an illustrative example of the MSE problem.

Given the example described previously, the goal of the MSE is to find flow pat-

terns with the highest likelihood of successfully conveying the supply from the source

node, 0, to the sink node 3, given the network edge properties and network supply

structure. As shown in Table 4.2, there are nine possible flow patterns for the given

supply structure, and the goal here is, therefore, to decide which of the flow patterns

is optimal by evaluating Equation 4.5. In order to do this, it is required to evaluate the

solution quality of each flow pattern: G(ψi), i = 1, . . . ,9, which is done by calculating

the proportion of feasible states over all network states for each flow pattern. How-

ever, due to the huge number of network states, it is impractical to evaluate the exact

values by summing over all network states; nevetherless, it is possible to evaluate accu-

rate approximate values using methods introduced in the following chapter (5). Table

4.5 shows the approximate solution qualities for each flow pattern listed in Table 4.2.

Given these values, the optimal solution is flow pattern ψ3.
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Flow Pattern ≈ G(·)
ψ1 0.301

ψ2 0.097

ψ3 0.372

ψ4 0.188

ψ5 0.035

ψ6 0.252

ψ7 0.348

ψ8 0.0999

ψ9 0.364

Table 4.5: Example STV Network: Flow Patterns with MSE Solution Quality

4.3.3 Problem Complexity: NP-hardness

Pretolani (2000) has shown that finding a simple path with the a priori minimum ex-

pected travel time in stochastic, time-varying (uncapacitated) networks is NP-hard.

This was proved by reduction from the well-known NP-complete Directed Hamilto-

nian Path Problem (DHPP) (Garey and Johnson, 1979). For time-dependent networks

with minimum weighted paths, Orda and Rom (1991) gave a similar proof. Based

on these proofs, we show that finding a simple path with the a priori maximum MSE

value in STV Networks is also NP-hard.

Specifically, by reduction from the DHPP we show that the case where supply

B = 1 and bs(0) = 1, which is equivalent to the problem of finding a solution ψ =

{(σ, t = 0)}, consisting of single directed simple s− l path σ with flow departure time

0, with the maximum MSE value, is NP-hard. Since the case of a single unit of supply

forms a sub-class of the more general class, where B > 1, the argument extends to the

general MSE. Similar to (Pretolani, 2000), we show that this complexity also holds for

time-varying networks with deterministic travel times and capacities (the deterministic

MSE problem), which again forms a sub-class of the general MSE.

Proof. Consider a directed graph G = (V,E) with two distinguished nodes, s ∈V and

l ∈V , s 6= l. The goal of the DHPP is to find an s− l path in G that contains all nodes

— it is a Hamiltonian path, if it exists. We assume without loss of generality that

(s, l) /∈ E, ∀i (i,s) /∈ E and ∀ j (l, j) /∈ E.

Using G as the topological graph, and setting the peak time horizon T = |V |− 1,
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expanded to {0,1, . . . ,T = |V |−1}, we define a time-dependent flow network as3:

∀(s, j) ∈ E

τs j(0) = 1, ρs j(0) = 1

µs j(0) = 1, βs j(0) = 1

∀(i, j) ∈ E, i 6= s, j 6= l

τi j(t) = 1, ρi j(t) = 1, ∀t ∈ {1, . . . ,T −2}
µi j(t) = 1, βi j(t) = 1, ∀t ∈ {1, . . . ,T −2}

∀(i, l) ∈ E

τil(t) = 1, ∀t ∈ {1, . . . ,T −1}
ρil(t) = 1, ∀t ∈ {1, . . . ,T −1}

µil(t) =

{
1, if t = T −1

0, if t < T −1
, ∀t ∈ {1, . . . ,T −1}

βil(t) = 1, ∀t ∈ {1, . . . ,T −1}
Given this definition, if a unit arrives at a node i, where (i, l)∈ E, at time t < T −1,

then µil(t) = 0 and βil(t) = 1 and therefore the solution {(σ,0)} with n = |σ| has an

MSE value of 0, it is infeasible:[
∏

1≤k<n−1
i′=ik, j=ik+1∈σ

P
(
µ̄i′ j(k−1) = 1

)
·P
(
τ̄i′ j(k−1) = 1

)]
·

[
P
(
µ̄in−1in(n−1) = 1

)
·P
(
τ̄in−1in(n−1) = 1

)]
= 1 ·0

= 0

However, if a unit arrives at any node i, (i, l) ∈ E, at t = T −1, then µil(t) = 1 and

βil(t) = 1, so that the MSE value is[
∏

1≤k<n
i′=ik, j=ik+1∈σ

P(µ̄i′ j(k−1) = 1) ·P(τ̄i′ j(k−1) = 1)
]

= 1

Since paths are assumed simple (see Section 4.1.5), the feasible path will contain

|V | − 1 edges, that is, all nodes in the graph, V , and have the optimal MSE objec-

tive function value of 1, if and only if there exists a Hamiltonian s− l path in G. Since

only a Hamiltonian s− l path will provide the optimal solution, the MSE is NP-hard.

Furthermore, note that the result holds in the size of the network, not a number input

like the peak time horizon, T , or the number of edge values, D and H.
3For convenience, since edge properties are defined to happen almost surely (deterministic), property

value indices are dropped.
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These results indicate that it is unlikely exact and efficient algorithms will be de-

veloped to solve the MSE in general, unless P=NP. Note they also indicate that it is

unlikely that exact, efficient algorithms will be proposed for the solving the problem

in deterministic, time-varying networks either.

4.3.4 Problem Combinatorics

In this section, we explore the combinatorics of the solution space. Firstly, we discuss

the combinatorics of the path-space, which underlies the general problem solutions,

flow patterns; and, secondly, we discuss bounds on the number of flow patterns.

4.3.4.1 Paths

Solutions to the MSE problem in STV Networks are flow patterns that provide routing

instructions for flow to be shipped at specific departure times from the network source

to the sink. Flow patterns are composed of paths and departure times and, thus, the

number of paths in a network, |Ω|, is an important combinatorial consideration. Note

that the feasibility of paths given network properties and problem constraints is not

considered here.

Given the network assumptions, the number of paths in a network when the un-

derlying topological digraph is complete4 provides an upper bound on the number of

paths in a graph with nodes v = |V |> 2. Here a complete graph is defined such that

∀i, j ∈ V \{s, l}, i 6= j : (i, j),( j, i) ∈ E

∀i ∈ V \{s, l} : (s, i) ∈ E

∀i ∈ V \{s, l} : (i, l) ∈ E

Paths are sequences of distinct nodes from V \{s, l} starting with node s and ter-

minating with node l, so that it is possible to disregard both s and l here. Let v̂ =

|V \{s, l}|= v−2. Given the constraints on paths, as described in the preliminaries in

Section 4.1.5, the number of nodes in the paths under consideration is > 2 with length

≥ 2. Then, given the complete topological graph, the number of s− l paths of length

k +1, where 1≤ k ≤ v̂, is the k-permutations of v̂5:

Pv̂,k =
v̂!

(v̂− k)!
4A complete graph is a simple graph, it has no loops or multiedges, with unique oriented edges

between all distinct nodes.
5This is also known as the falling factorial.
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The total number of paths is then the sum over all k-permutations of v̂, k = 1, . . . , v̂ =

v−2:

|Ω|=
v̂

∑
k=1

Pv̂,k

Finally, the total number of paths grows as a factorial and is bound O(v̂ · v̂!).

Proof of the bound:

|Ω|=
v̂

∑
k=1

Pv̂,k (4.6)

=
v̂!

(v̂−1)!
+

v̂!
(v̂−2)!

+ · · ·+ v̂!
(v̂− (k = v̂))! = 0! = 1

(4.7)

= v̂+(v̂ · (v̂−1))+ · · ·+ v̂! (4.8)

= O(v̂!)+O(v̂!)+ · · ·+O(v̂!) (4.9)

= O(v̂ · v̂!) (4.10)

4.3.4.2 Flow Patterns

This section explores the combinatorics of solutions to the MSE problem. Flow pat-

terns are multisets because units of flow can be allocated to the same pairs of paths

and departure times. However, across departure times flows departing the source may

evaluate differently due to the time-varying nature of network edge properties. Hence,

at a particular departure time, say t, we have a multiset for flow bs(t); but across depar-

ture times, order does matter and, hence, overall, for all flow patterns, we have ordered

multisets, or permutations of sets of combinations with replacement (multisets). The

total number of flow patterns denoted by |Ψ| for network N is defined by the number

of paths in the network, |Ω|, and the availability of network supply, B = ∑t∈S bs(t).

For each t ∈ S, there are
(( |Ω|

bs(t)

))
possible flow patterns ignoring problem con-

straints, where
((n

k

))
is the multiset coefficient, such that,((

|Ω|
bs(t)

))
=
(
|Ω|+bs(t)−1

bs(t)

)
=
(
|Ω|+bs(t)−1
|Ω|−1

)
=

(|Ω|+bs(t)−1)!
bs(t)!(|Ω|−1)!

Then across departure times with available supply, t ∈ S, the number of unique flow

patterns has upper bound:

|Ψ| ≤∏
t∈S

((
|Ω|

bs(t)

))
(4.11)
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This follows by the rule of product, where it provides an upper bound since the as-

sumption that the network properties are different across departure times does not nec-

essarily hold.

The maximum number of flow patterns for a given supply vector, with total supply

B, is bound: ((
|Ω|
B

))
≤ |Ψ| ≤∏

t∈S

((
|Ω|

bs(t)

))
(4.12)

Assuming network properties are different across departure times, then the r.h.s. pro-

vides an upper bound on the number of unique flow patterns, as stated previously.

However, if this assumption does not hold, then the l.h.s. provides a lower bound on

the maximum number of unique flow patterns. The bounds, however, do not consider

the network properties of specific problem instances, and therefore, may severely over-

estimate the number of candidate solutions.

Section 4.3 defined a novel stochastic optimisation problem, the MSE problem, that

attempts to capture the uncertain and transient conditions of emergency movement in

the built environment. The problem and its deterministic counterpart were proved to

be NP-hard, and the combinatorics of the solution space were discussed. Next, due

to the general complexity of the MSE, the following sections develop a method to

stochastically bound the optimal solution for the MSE problem.

4.4 Stochastic Bounds on Optimal Solutions

No known algorithms are available to find optimal solutions for the MSE and, in gen-

eral, given the above complexity results, an efficient and exact algorithm is unlikely

to be found. However, in these sections a method for providing stochastic bounds for

optimal solutions is developed that can be used to gauge the performance of solution

approaches. The bound is in general optimistic, that is, it is in general higher than the

optimal value, but it still proves useful for evaluating the proposed solution methods

and providing an indicator of the complexity of problem classes.

4.4.1 Interchange Relaxation

The following bounding approach is based on the method detailed in (Mak et al., 1999)

for approximating solutions in stochastic programs, and in (Norkin et al., 1998; Gut-

jahr et al., 1999, 2000) applied in Stochastic Branch-and-Bound approaches. It is an

application of the “wait-and-see” bound of Mandansky (1960).
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Given that the MSE is a maximisation problem, we are primarily interested in up-

per bounds on optimal solutions. A lower bound, albeit a potentially poor one, can

be evaluated simply using, for example, an interval estimate of the quality of any p-

feasible point ψ ∈ Ψ,G(ψ) > 0; or perhaps a more useful one can be found by, for

example, a naı̈ve random search algorithm (see Chapter 6). A procedure for determin-

ing a stochastic upper bound is defined as follows.

Given the objective in the form of Equation 4.5, by interchanging the maximisation

and expectation operators, we can see that

z∗ = max
ψ∈Ψ

E[h(ψ, ξ̄)]≤ E
[

max
ψ∈Ψ

h(ψ, ξ̄)
]

(4.13)

Therefore, a valid deterministic upper bound for the optimal value is given by

U .= E
[

max
ψ∈Ψ

h(ψ, ξ̄)
]

(4.14)

= ∑
ξ∈Ξ

[
max
ψ∈Ψ

h(ψ,ξ)
]
·P(ξ) (4.15)

A stochastic upper bound can thus be obtained using well-known Monte Carlo meth-

ods6. An unbiased MC estimator for U is given by

Un
.=

1
n

n

∑
i=1

[
max
ψ∈Ψ

h(ψ,ξi)
]

(4.16)

where ξi, i = 1, . . . ,n are independent and identically distributed (i.i.d.) observations

from ξ̄, that is, independent observations from Ξ according to P. It is unbiased since

E[Un] = U . By the strong law of large numbers, we have asymptotic convergence

Un
a.s.→U as n→ ∞.

In general, it is hard to analytically discern the quality of the exact stochastic bound

(Equation 4.14). By definition, the optimal solution will be the best across the network

state distribution, and the core assumption of the bound is that the better the optimal

solution is across the distribution, that is, per network state, the closer the bound. It

is therefore in general an optimistic upper bound. Potential improvements to the exact

and estimated bounds are discussed in the Future Work section (8.4).

The bounding procedure requires single network states to be generated i.i.d. from

the network state distribution. Algorithm 5.2.1 described in Section 5.2.3 provides a

procedure for simple random sampling of network states.

6For a classic overview of Monte Carlo methods, see Hammersley and Handscomb (1964).
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4.4.2 The Deterministic MSE Problem

In order to provide a stochastic upper bound for the MSE, it is necessary to solve a

number of deterministic problems, that is, to find feasible flows for single network

states. However, in general finding the optimal solution for a single network state is an

NP-hard problem, as shown by the complexity results above (Section 4.3.3).

Each network state ξ ∈ Ξ presents a Deterministic MSE (DMSE) problem, and

solving a state ξ to optimality:

max
ψ∈Ψ

h(ψ,ξ)

is, in general, a hard problem. However, since it is not required to provide routing plans

and because maxh(ψ,ξ) = max IFψ
(ξ) = 1, ∀ξ ∈ Ξ, any feasible flow for the scenario

will provide the maximum value: 1. For a sampled set of deterministic problems

(network states), the goal thus reduces to finding a feasible flow for each scenario, if

one exists, or enumerating the solution space of each problem to show that no feasible

flow exists. Note that solving one DMSE problem ensures that there exists at least one

p-feasible solution, say ψ ∈Ψ, where G(ψ) > 0, to the general MSE.

Define the set of all feasible network states for all flow patterns FΨ ⊆ Ξ, where

FΨ =
[

ψ∈Ψ

Fψ

and define the indicator function:

IFΨ
(ξ) =

{
1 ξ ∈ FΨ

0 ξ 6∈ FΨ

It is now possible to redefine the optimisation problem such that the bound is

z∗ = max
ψ∈Ψ

E[h(ψ, ξ̄)]

≤ E
[
IFΨ

(ξ)
] .= Û

and where Û can be approximated by the unbiased MC estimator

Ûn =
1
n

n

∑
i=1

IFΨ
(ξi) (4.17)

and ξi, i = 1, . . . ,n are i.i.d. samples from Ξ given P. As before, by the strong law of

large numbers, we have convergence P(limn→∞Ûn→ Û) = 1.

In general, as previously discussed, solving a deterministic problem (a single net-

work state) is also an NP-hard problem, and therefore it is unlikely that general efficient
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solution approaches will be proposed. Given the problem’s assumptions, no known

exact or heuristic algorithms are known for solving the DMSE; so for solving each

deterministic problem, we now propose a combined heuristic and greedy procedure.

4.4.3 Solving the Deterministic MSE Problem

The key to an informative upper bound is to be able to efficiently prove that no solu-

tion exists for a particular deterministic problem. If no feasible flow exists, then the

network state, assuming the source and sink are connected by at least one path, must

be over-constrained. However, to prove this requires either a complete enumeration of

the space, or a subset of the problem constraints (a proof) that shows that no feasible

flow is possible and an efficient way to check that this is the case. Due to the imprac-

ticality of using complete enumeration for even reasonably sized problem instances,

and the importance of proving that states are infeasible for the bound, several simple

heuristics have been developed to check for network properties that lead to infeasibil-

ity. A combined heuristic and greedy approach is proposed for tackling deterministic

MSE problems, and while this combined approach is not exhaustive, that is, it is not

guaranteed to decide if a solution exists or not, empirical results described in Chapter

7 suggest that for the investigation described herein indecision about a state is uncom-

mon (see Section 7.4.4 for more details).

The combined approach involves, firstly, applying two heuristics to determine whether

certain conditions arise that lead to infeasibility, and then, secondly, two greedy algo-

rithms that attempt to find a solution to a particular deterministic problem instance.

Note that the first heuristic of the two is applied to a MSE problem instance not a

particular deterministic sub-problem; whereas the second heuristic is applied to each

deterministic MSE problem. Should the heuristics fail, then a greedy algorithm is ap-

plied to attempt to find a solution for a particular network state, and should the first

greedy approach fail then a variant of the greedy approach is tried. In the case that all

the methods fail to decide whether a solution exists or not, the state is discarded and

excluded from the evaluation of the bound value.

We now discuss the heuristics and then present the greedy method.

4.4.3.1 Heuristics

Two heuristics are used to prove that no feasible solution exists for a state. This is

important since proving that no solution exists is crucial in constructing an informative
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bound.

The first heuristic is applied to a problem instance to check whether a certain case

arises whereby there is no feasible solution to the problem. This is done by inspecting

the capacities of the source node out-edges for departure times where supply is avail-

able, t ∈ S. If the sum of the maximum possible capacities for each out-edge for a

particular departure time, t, is less than the available supply:

∑
i∈Γ+1(s)

max
d

µd
si(t) < bs(t)

then no feasible flow is possible for any network realisation. In other words, for this

problem instance the flow conservation constraints will never be satisfied, since no

network state can be realised where all supply can be feasibly conveyed from the source

to the sink. In this case, the bound is 0.

The second heuristic is applied to each randomly sampled network state rather

than the MSE problem instance. The heuristic is similar to the first one, except that

it is applied to individual states where edge properties are now realised and hence

deterministic. For a sampled state, ξ, similar to before, the out-edges of the source for

each departure time, t ∈ S, are inspected and the sum of the realised capacity values:

∑i∈Γ+1(s) µξ

si(t), is checked to see whether it can support the available supply at the

source, bs(t). Additionally, for each of neighbouring nodes of the source, i ∈ Γ+1(s),

the out-edges of i, j ∈ Γ+1(i), are checked to determine whether these edges can also

support the available flow:

∑
i∈Γ+1(s)

min
(

µξ

si(t), ∑
j∈Γ+1(i)

µξ

i j(t + τ
ξ

si(t))
)

< bs(t)

If the case arises then, as before, the flow conservation constraints cannot be satisfied

and the bound value for this state is also 0.

If these simple heuristics fail to show that no feasible flow exists, then two greedy

approaches, defined next, are used to attempt to find a feasible solution.

4.4.3.2 Greedy Approach

We now propose a greedy algorithm for finding a feasible flow for a given DMSE

problem instance. While in general this approach cannot prove that no solution exists,

except in the case that not a single feasible path exists, it can prove that a solution does

exist.
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The greedy approach comprises of a best-first search algorithm for path-finding

with a top-level iterative procedure for guaranteeing that all available flow is shipped

on feasible paths. The FeasiblePathFinder (FPF) subroutine is based on a best-first

search approach (Russell and Norvig, 2003) and works by recursively exploring nodes

and building a feasible path from the source node to the sink node in the network

given a realised network state. The choice of nodes to explore is based on a best-

first criterion. Here, two greedy approaches are defined depending on the best-first

criterion: either choose the node with the out-edge that has the minimum amount of

feasible flow available or the maximum.

Algorithm 4.4.1 describes a high-level procedure implementing the FPF algorithm.

The best-first criterion is implemented using a priority queue, PQ, so that the first

element of the queue will the best according to the chosen criterion. To maintain

the current state of flow, we define the residual capacity, θi j(t), of an edge (i, j) at

departure time t, as the current amount of available capacity given the current flow:

θi j(t) = µξ

i j(t)− xi j(t). The algorithm returns a value 1 if a feasible path exists from s

to l given the current residual capacity (defined below); otherwise a 0 is returned.

In the worst-case, the FPF algorithm will have to enumerate all simple paths in a

general graph. For the complete graph, as defined before, the algorithm would have

to enumerate O(v · v!) paths. Nevertheless, in practice, for the problem classes in this

investigation (see Chapter 7 for details), the number of edges, and hence number of

paths, in the graphs is far less than that of the complete graph.

The top-level procedure, the GreedyFeasibleFlowAlgorithm (GFFA), incremen-

tally builds up a feasible solution using the FPF subroutine to find feasible paths

given the current flow. A complete solution is maintained at the top-level so that

non-negativity and capacity constraints are maintained feasible, but flow conservation

constraints are violated since not all flow has yet arrived at the sink, and hence the

network’s demand is unsatisfied. The algorithm stops once all constraints are satisfied,

that is, once a flow pattern has been found that conveys all available flow for each t ∈ S

from the source to the sink on feasible paths. If at any point the subroutine fails to find

a feasible path, then the search process terminates and then either the second greedy

approach is executed or the state is discarded from the bound.
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Algorithm 4.4.1: FEASIBLEPATHFINDER(i, l, t,σ,x)

comment: Add out-edges to queue, prioritised according to best-first criterion.

PQ.insert( j,θi j(t)),∀ j ∈ Γ+1(i)

while PQ 6= /0

do



j← PQ. f irstElement()

if j ∈ σ

then continue
x′←min(x,θi j(t))

t ′← t + τi j(t)

if x′ = 0 or t ′ > T

then continue
σ← σ∪{ j}
if j = l

then return (x′)

else x̂← FeasiblePathFinder( j, l, t ′,σ,x′)

if x̂ > 0

then return (x̂)

else σ← σ\{ j}
return (0)

Algorithm 4.4.2 describes the GFFA approach. We define an excess, e(t), for each

t ∈ [T ], which specifies the amount of flow remaining to be shipped from the source at

each time interval given the current flow. If the algorithm finds a feasible flow for the

network state, it returns a 1; otherwise a 0 is returned.
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Algorithm 4.4.2: GREEDYFEASIBLEFLOWALGORITHM(N ,ξ)

xi j(t)← 0,∀(i, j) ∈ E , t ∈ [T ]

θi j(t)← µξ

i j(t),∀(i, j) ∈ E , t ∈ [T ]

e(t)← bs(t),∀t ∈ [T ]

while {t ∈ S|e(t) > 0} 6= /0

do



t̂←min{t ∈ S|e(t) > 0}
σ←{s}
x′← FeasiblePathFinder(s, l, t̂,σ,∞)

ε←min(e(t̂),x′)

if ε = 0

then return (0)

e(t̂)← e(t̂)− ε

comment: Update flow matrix:

xikik+1(t
′)← xikik+1(t

′)+ ε,∀ik ∈ σ,1≤ k < |σ|, t ′k,k+1 = t ′k−1,k + τ
ξ

k−1,k(t
′
k−1,k)

comment: Update residual capacities:

θi j(t ′)← µξ

i j(t
′)− xi j(t ′),∀(i, j) ∈ E , t ′ ∈ [T ]

return (1)

The GFFA has worst-case computational complexity O(B ·F), where F is the com-

plexity of the path-finding algorithm. The maximum number of iterations for the GFFA

is equal to the total supply, B, and since the GBFS has a worst-case complexity O(v ·v!),

the algorithm’s worst-case complexity is O(B ·(v ·v!)). The complexity results indicate

that in the worst-case this approach is impractical, even for finding a single feasible

path. Nevertheless, for the work described herein, the graphs have a low connectivity

and hence significantly less paths than the worst-case. Furthermore, the empirical re-

sults described in Chapter 7 suggest that for the networks of interest here it is practical

and efficient to evaluate the bound.

4.5 Summary

In this chapter, a novel stochastic network flow problem, the Maximal Safest Escape

problem, was formally defined that captures the uncertainty and transiency of condi-

tions during emergency movement in the built environment. Given a network, the goal
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of the problem is to find the a priori flow patterns with the highest probability of suc-

cessfully conveying the flow in the network from the source to the sink. In other words,

the MSE problem models the task of finding the set of paths with the highest likeli-

hood of getting building occupants from their starting locations to places of safety.

The problem is formalised in STV Networks, and shown to be NP-hard. Addition-

ally, a stochastic bounding procedure is developed to provide upper bounds to optimal

solutions for gauging the performance of the proposed metaheuristic-based solution

approaches.



Chapter 5

Candidate Solution Generation,

Evaluation and Ranking

This chapter proposes methods for generating, evaluating and ranking candidate so-

lutions to the MSE. These methods are required by the herein proposed solution ap-

proaches (detailed in the following chapter (6)). In general, generating p-feasible solu-

tions is a hard problem, and so a simple method for generating approximately equally

likely solutions is presented. Furthermore, in general, the evaluation of the exact qual-

ity of solutions is impractical due to the uncertainty in the network, and hence a simula-

tion approximation method for estimating solution quality is given. In noisy domains,

the comparison of solutions with finite resources is also uncertain, and therefore the

approximation method is integrated into a statistical ranking procedure from the lit-

erature, in order to guarantee to a predefined confidence level that the comparing of

solutions based on their estimated quality is correct.

5.1 Candidate Solution Generation

A candidate solution to the MSE is a flow pattern, represented by a multiset, consist-

ing of pairs of paths and departure times with a multiplicity function that determines

the number of units of flow assigned to each path and departure time. The proposed

solution approaches require methods for generating candidate solutions, since they are

based on the well-known generate-and-test paradigm. However, the problem of gener-

ating feasible or reasonable quality solutions for hard (S)COPs is often a hard problem

too; in fact, for the MSE, in the worst case it can involve solving the optimisation

problem itself, thus also making it an NP-hard problem. This issue is exacerbated in

77
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stochastic environments where exact solution quality is often unavailable (as is dis-

cussed in the following section (5.2)). For the MSE, in general, generating p-feasible

solutions is a hard problem because accounting for feasibility would require evaluating

solutions; therefore, here candidate solutions are generated without direct considera-

tion for feasibility.

5.1.1 Random Paths and Flows in STV Networks

The herein described solution approaches require the generation of candidate solutions.

In order to generate uniformly random flow patterns a simple procedure is defined

so that all solutions, ψ ∈ Ψ, are equally likely to be generated. The method works

iteratively, finding approximately equally likely paths in the topological graph for each

of the B units of flow. In the case that more than one unit is allocated to the same path

and departure time, these units of flow are summed and allocated to a single path and

departure time pair.

Underlying this procedure is a simple method for finding random simple s− l paths

in the topological graph G of the network N . However, due to a potential bias in the

selection of paths on the topological graph, that is, that the selection of every path is

not equiprobable due to the structure of the underlying graph, a method for finding

approximately uniformly likely flow patterns for a given supply is presented. To high-

light the potential bias the problem is first demonstrated for directed acyclic graphs

and then for directed general graphs.

5.1.2 Directed Acyclic Networks

An example of such a bias can be seen in Figure 5.1. The graph contains three 0− 5

paths: (0,1,3,5), (0,1,4,5) and (0,2,5). Note that node 1 is incident on two of the

three paths. Hence, assuming that a graph traversal method, such as depth-first search,

is used for finding paths, to allow for the equiprobable selection of each path, node 1

should be selected twice out of every three path searches as the successor node of node

0. So, the probability of selecting node 1 from node 0, p0(1) = 2/3, whereas for node

2, it is p0(2) = 1/3. The transition matrix for the graph in Figure 5.1 is given by the

matrix Q = [qi j]v×v, where Q has size v2. A qi j > 0 entry means (i, j) ∈ E ; however,

qi j = 0 can either mean (i, j) 6∈ E , or that no s− l paths exist where (i, j) is incident.

Then, the probability of choosing j from i, pi( j), is given by the entry qi j; and, as

required, we have that ∑
v
j=1 qi j = 1, for each row i = 1, . . . ,v. Also, since no waiting is
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allowed, qii = 0,∀i, and since Γ+1(l) = {}, ql· = 0.

0

1

2

3

4 5

Figure 5.1: Example graph

Q =



0 2/3 1/3 0 0 0

0 0 0 1/2 1/2 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0


Given a topological graph, random simple paths are generated by a randomised

depth-first search procedure on the graph1. The randomised depth-first search pro-

cedure expands to the next node based on a given probability distribution. A simple

example would be if all nodes were equally likely, modelled by a uniform distribution,

so that each neighbouring node, j ∈ Γ+1(i), would have equal probability of being

selected from node i: pi( j) = 1
|Γ+1(i)| .

As demonstrated by the above example, to allow the uniformly likely exploration

of the path-space, the probability of choosing an adjacent node, say j from node i,

should be weighted by the number of (i, j, . . . , l) paths in the graph. The set of s− l

paths in graph G is denoted Ω (see Notation and Preliminaries (4.1.5)). A subset of

this set from a node, say i, to l, denoted Ωi ⊆ Ω, is the set of (s, . . . , i, . . . , l) paths in

G . Now to ensure a uniform selection of paths, the probability of choosing a successor

node j ∈ Γ+1(i) from node i, pi( j), is given by the number of paths where (i, j, . . . , l) =

1For a description of a generic depth-first procedure, see, for example, (Russell and Norvig, 2003).
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{σ ∈ Ωi|ik, jk+1 ∈ σ} = Ω(i, j) ⊆ Ωi, over all paths where i is incident, so that pi( j) =
Ω(i, j)

Ωi=∑ j′∈Γ+1(i) Ω(i, j′)
, and ∑ j∈Γ+1(i) pi( j) = 1, ∀i ∈ V \{l}. These distributions are then

used by a weighted depth-first search procedure for selecting successor nodes, rather

than, for example, employing a uniform choice selector of successor nodes, i.e. pi( j) =
1

|Γ+1(i)| ,∀ j ∈ Γ+1(i),∀i ∈ V \{l}.

5.1.3 Directed Cyclic Networks

As shown above, in theory a simple way to counter the bias in the graph is to count

the number of paths in the graph, and then to weight the choice of successor node

accordingly. However, the problem of counting simple s− l paths in directed general

graphs is known to be #P-complete2 (Valiant, 1979), and therefore it is highly unlikely

that efficient algorithms will be found for addressing this problem in general. To cope

with this, a method is proposed here for estimating the transition matrix in order to

generate approximately equally likely paths. The method is as follows.

A set of s− l paths Ω̂ = {σk}n
k=1 are i.i.d. generated by a random depth-first pro-

cedure, where pi( j) = 1
|Γ+1(i)| ,∀ j ∈ Γ+1(i),∀i ∈ V \{l}. For each node i ∈ V \{l}, we

have, Ω̂i, the set of paths from s− l where node i is incident, and for each j ∈ Γ+1(i),

for all i ∈ V \{l}, we have Ω̂(i, j), the set of all paths from node i to the sink l in which

the edge (i, j) is incident.

Define the transition matrix, Q̂n = [q̂i j]v×v, with initial entries3 q̂i j = 1,∀(i, j) ∈
E . Then for each (i, j) where j ∈ Γ+1(i), for all i ∈ V \{l}, we set the value q̂i j =

|Ω̂(i, j)|. On termination, the matrix Q̂n provides an approximation of the true transition

matrix Q, and as n increases and more of the path-space is discovered, Q̂n→ Q. The

matrix Q̂n is then used for weighting the random selection of nodes in order to generate

approximately uniformly random paths (and hence solutions) — where the probability

of choosing a node j ∈ Γ+1(i) from i is pi( j) = q̂i j
∑ j′∈Γ+1(i) q̂i j′

.

This procedure is executed once per problem instance. To improve the efficiency

of the process in practice, a single path search is stopped if too much backtracking

2The computational complexity class #P can be viewed as the counting version of the class NP, that
is, it is the set of enumeration or counting problems that can be solved by a non-deterministic algorithm
running in polynomial time (Garey and Johnson, 1979). Those counting problems that are #P-complete
are, analogously to NP and NP-complete, those problems in #P where all other problems in #P can be
polynomially reduced to them; they are the hardest problems in #P. Examples of counting problems
include finding the number of satisfying truth assignments for an instance of the Satisfiability problem,
or counting the number of distinct Hamiltonian circuits in a graph. For more details, see, for example,
(Garey and Johnson, 1979).

3The value is set at 1 so that no edge has a probability of 0 of getting selected.
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occurs, and the search is restarted. Pilot studies were conducted, and it was established

that for a single path, a reasonable threshold for the number of node visits is 1000000,

and 10000 is reasonable for the total number of paths searches per instance.

Paths are then generated using a random depth-first procedure with the matrix Q̂n

used for weighted sampling without replacement of the order of nodes to explore, so

that all paths are approximately equally likely to be found. Flow patterns can then

be generated by assigning a random path to each unit of flow bs(t), ∀t ∈ S, where

S = {t ∈ [T ]|bs(t) > 0} and ∑t∈S bs(t) = B. Since all paths are (approximately) likely

to be generated and assigned individually to each unit of flow, all flow patterns are

approximately likely to be generated. In the case that identical paths are generated for

the same departure time, the multiplicity value for the appropriate pair of the solution

is incremented as required.

5.2 Candidate Solution Evaluation

In stochastic environments with problem objectives that involve expectations it is of-

ten the case that the exact evaluation of the quality of potential solutions is impractical.

The complexity arises due to the need to evaluate expectations over large joint distri-

butions of random variables, of which the dimensionality can be very high. Evaluating

the MSE solution quality of candidate solutions (Equation 4.4), in general, involves

summations over potentially high dimensional spaces, where the number of network

states grows exponentially. Therefore, in the general case, it is impractical to evaluate

exact solution quality, using, for example, dynamic programming techniques, and, in

practice, it is common to employ approximations instead.

The literature on metaheuristics for SCOPs (as discussed in Section 3.5) suggests

two general approaches for evaluating the approximate solution quality of solutions,

assuming closed-form expressions are either not available or impractical to evaluate.

The first is ad-hoc and fast, but problem-specific, approximations, and the second,

simulation approximation using, for example, Monte-Carlo (MC) sampling methods.

Due to the simplicity and efficiency of simulation approximation in general, and the

absence of a reliable approximation function, MC methods are employed here.

The following sections firstly detail the formulation of the employed simulation

approach. Then, secondly, two sampling frames for use with the simulation approach

are discussed. This is followed by a brief discussion on the issues of comparing solu-

tions in stochastic domains, including the MSE. Finally, the chosen statistical ranking
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framework and its integration with the main solution approach is explicated.

5.2.1 Simulation Approximation for Estimating Solution Quality

Due to the complexity of evaluating the exact quality of solutions in general, it is

proposed to use a simulation approximation approach to estimate solution quality. A

common simulation approximation approach is given by the Monte Carlo sampling

method.

The exact solution quality of a solution, ψ ∈ Ψ, for the MSE is given by G(ψ) =

E[h(ψ, ξ̄)] (Equation 4.4), with variance4 denoted ς2
ψ. Due to the impracticality of enu-

merating the support of ξ̄ in general and hence evaluating the expected value exactly,

as discussed at the beginning of the section (5.2), it is proposed to estimate the value

using a simulation approximation approach based on MC sampling.

It is possible to estimate G(ψ) using the unbiased MC estimator

Ĝn
ψ =

1
n

n

∑
i=1

h(ψ,ξi) (5.1)

where ξ1, . . . ,ξn are i.i.d. states sampled from Ξ, the set of all network states, given P.

Since Gψ is the unknown parameter of a Bernoulli random variable, Ĝn
ψ estimates the

proportion of successes (feasible states).

We also have an estimator of ς2
ψ, the sample variance

s2
ψ,n = Ĝn

ψ(1− Ĝn
ψ) (5.2)

Then the strong law of large numbers guarantees that we have asymptotic conver-

gence almost surely, P(limn→∞ Ĝn
ψ = Gψ) = 1.

5.2.1.1 Approximation Issues

There are, however, two well-known issues with this approach. Firstly, the normal

approximation for the unknown Bernoulli parameter is known to perform poorly with

small sample sizes and when estimating tail values, i.e. values close to 0 or 1. In

fact, it is recommended not to use the approximation with small sample sizes; in this

work, where small sample sizes are used, a direct estimate of the solution quality is not

actually required during search (for more details, see Section 6.1.7 of the following

chapter (6)).

4Conventionally σ is used to denote population variance; however, here σ denotes paths in the net-
work, and therefore the alternate ς is used to prevent misreadings.
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Secondly, the approach is known to have a slow convergence rate to the true mean,

O(1/
√

n). A number of methods exist to improve the rate, common ones including

so-called variance-reduction techniques5 that attempt to reduce the variance of the es-

timates. It is often advisable to employ such techniques as they can substantially im-

prove the rate of convergence of crude MC sampling. They are however not employed

here due to the assumptions of the statistical ranking procedure, discussed in Section

5.4.1. In fact, the ranking procedure attempts to avoid the convergence rate issue alto-

gether, by focussing effort not on obtaining accurate estimates of solution quality but

on obtaining a level of confidence in the differences in quality among solutions, and

hence their ordinal ranking.

5.2.2 Precision of Simulation Approximation

An additional issue concerns the numerical precision of the estimates of the objective

of the MSE. In the context of the MSE, these values have a domain-specific interpre-

tation; for example, given environmental conditions, a solution with G(ψ) = 0.25, has

a 25% chance of successful traversal from a starting location to a place of safety in a

building. Therefore, in practice, values < 0.01 could be interpreted as practically in-

significant given the problem domain. In practice, this issue effects sample sizes and,

therefore, sample precision and the significance of the differences in quality between

solutions.

The range of the objective function is [0,1] and hence the largest observable differ-

ence between two individuals is 1−0 = 1. But what is the smallest observable fitness

difference to achieve the desired precision? The precision of the sampling procedure

is determined by the number of samples, n ∈ N, since the minimum MSE value (> 0)

is 1/n, that is, if one of the sampled states is feasible out of n. If we write n = c ·10k,

where c ∈ N,k ∈ N0, then the minimum precision of the MSE value is 1
c·10k . This

means that in order to increase the precision by an order of magnitude it is necessary

to increment k, which amounts to an increase of samples by an order of magnitude.

Table 5.1 provides examples of different sample sizes and the precision they afford.

Given the problem and domain, the minimum practically significant value is taken to

be 0.01, which represents a 1% chance of reliability; for this precision the minimum

number of samples is n = 100.

5For examples, see Bratley et al. (1987) and Law and Kelton (2000).
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Table 5.1: Precision of Sample Sizes

Sample Size Minimum Precision

1 1/1 = 1

10 1/10 = 0.1

50 1/50 = 0.02

100 1/100 = 0.01

250 1/250 = 0.004

500 1/500 = 0.002

1000 1/1000 = 0.001

5000 1/5000 = 0.0002

10000 1/10000 = 0.0001

5.2.3 Sampling Frame: Network States

In order to implement a simulation approximation approach it is necessary to decide

on the underlying distribution from which to sample, the sampling frame. Until now

it has been assumed that the frame is the population of network states, Ξ, as proposed

by Opasanon (2004) and Miller-Hooks and Sorrel (2008). In this case, as noted previ-

ously, the number of network states is (D ·H)e(T+1), thus the number of network states

grows exponentially in the size of the network, the time horizon, and the sizes of the

support for edge property random variables.

The advantages of using the population of network states as the sampling frame

include that it is problem independent and it is not a function of the specific solution

to be evaluated. For their respective SCOPs, Opasanon (2004) and Miller-Hooks and

Sorrel (2008) used similar sampling designs, so that a set of sampled network states

was used to evaluate all solutions each iteration of the heuristic algorithm. While using

network states provides a relatively simple sampling frame, it however samples many

edge property events that, given the assumptions of stochastic independence, may ac-

tually have no bearing on the evaluation of individual candidate solutions, unless the

solution includes all edges over all time periods. Nevertheless, if evaluating over all

states these non-effecting events will sum out; however, the use of a sampling approach

would imply that not all states will be enumerated in the evaluation. So, despite the

simplicity of using the population of network states, since all random variables for all

edges over time are sampled, the dimensionality of the sample space may be unneces-
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sarily high.

Algorithm 5.2.1 describes a high-level procedure for sampling from Ξ given P
by simulating the underlying random variables, since the population of states is not

directly accessible. The algorithm samples a travel time and capacity for each edge,

(i, j) ∈ E , and for each time interval, t ∈ [T ]. Note that this algorithm is generic for

STV Networks since it does not consider the problem objective or constraints.

Algorithm 5.2.1: SAMPLENETWORKSTATE(N )

comment: Initialisation of state:

τ
ξ

i j(t)←−1,∀(i, j) ∈ E ,∀t ∈ [T ]

µξ

i j(t)←−1,∀(i, j) ∈ E ,∀t ∈ [T ]

comment: Sampling of state:

for each (i, j) ∈ E

do



for each t ∈ [T ]

do



comment: Sample travel time value:

τ
ξ

i j(t)← SampleProbabilityDistribution(τi j(t),ρi j(t))

comment: Sample capacity value:

µξ

i j(t)← SampleProbabilityDistribution(µi j(t),βi j(t))

return (ξ)

The outer loop will always enumerate all edges and as such has computational

complexity Θ(e). The inner loop will always enumerate all time intervals, t ∈ [T ], so

it has complexity Θ(T ). The sampling of values from distributions in the worst-case

will loop in the size of the support of each distribution. Furthermore, in the worst-

case, the graph will be fully connected so e = O(v2), and therefore the algorithm has a

worst-case time complexity O(v2T (D+H)) and best-case complexity Ω(eT ).

The following procedure describes the method used by Algorithm 5.2.1 for ran-

domly sampling values from probability distributions. It uses the inverse transform

method6 such that given a sampled value from a uniform distribution, u ∈ (0,1), it

returns x where x = F−1(u), where F−1(·) is the inverse distribution function. The dis-

tribution is input in the form of an indexed set of values (the support of the distribution)

and associated probabilities.
6For more information see, for example, (Ross, 2007).
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Algorithm 5.2.2: SAMPLEPROBABILITYDISTRIBUTION(x, p)

sample u∼U(0,1)

i← 1

s← pi

while s < u

do

{
i← i+1

s← s+ pi

return (xi)

In the worst-case the sampling procedure will loop O(|x|) times, where |x| is the

size of the support, x.

5.2.4 Sampling Frame: Flow Pattern States

As discussed above, given the stochastic independence assumptions, evaluating candi-

date solutions on network states may include many edge property random events that

do not have any bearing on the feasibility of a solution. Although these values will sum

out when evaluating over all states, it is impractical to enumerate all states in general,

therefore we are sampling from a potentially much larger distribution than necessary.

It is possible to reduce the dimensionality of the sample space, and hence, in general,

make estimates more accurate with the same effort.

Now the sample space is a function of a flow pattern, and elements of the space are

called flow pattern states. For a flow pattern ψ ∈Ψ, the random event of a flow pattern

state is denoted ξ̄ψ, and the population of flow pattern states by Ξψ. The random events

that may actually effect the solution quality of individuals are by definition a subset of

the network state events, and hence |Ξψ| ≤ |Ξ|.

The probability of a particular flow pattern state ξψ ∈ Ξψ is given by the product of

the product of the probabilities of each assignment of capacity and travel time, for all
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edges in a path, for all paths in a flow pattern.

P2(ξ̄ψ = ξψ) = P
(\ [

ik,ik+1∈σ,
1≤k<|σ|
(σ,t0)∈ψ

µ̄ikik+1(tk) = µξψ

ikik+1
(tk)∩ τ̄ikik+1(tk) = τ

ξψ

ikik+1
(tk)
)

= ∏
[

ik,ik+1∈σ,
1≤k<|σ|
(σ,t0)∈ψ

P(µ̄ikik+1(tk) = µξψ

ikik+1
(tk)) ·P(τ̄ikik+1(tk) = τ

ξψ

ikik+1
(tk))

where tk = tk−1 + τk−1k(tk−1) for k > 1, and t1 = t0.

A drawback of this approach is that it is now necessary to consider the feasibility

of candidates directly because the generation of states is based on a candidate solution

and the set of events that have direct impact on the feasibility of the candidate.

Based on this, for a flow pattern state, ξψ ∈ Ξψ, the value of the indicator function

is extended to:

IFψ
(ξψ) =

{
1 ξψ ∈ Fψ

0 ξψ 6∈ Fψ

Then we redefine the problem objective, so that ∀ψ ∈Ψ:

P2(Fψ) = ∑
ξψ∈Ξψ

IFψ
(ξψ) ·P2(ξψ) (5.3)

= E[IFψ
(ξ̄ψ)] (5.4)

That is, the probability of the set of feasible states for flow pattern ψ is equal to the

sum of the individual probabilities of each feasible flow pattern state.

Furthermore, under the stochastic assumption of independence, we have that

E[IFψ
(ξ̄ψ)] = E[h(ψ, ξ̄)]

By the combinatorics of states, each flow pattern state is a subset of a number of net-

work states. Therefore, in the simplest case, if a flow pattern includes all edges over

all time periods, then the set of states are identical, and trivially the evaluation is equal.

In the more likely case that they do not include the same events, the values are still the

equal because, in the summation of all states, random variables that have no effect on

feasibility in the network states are summed out. Despite the reduction in dimension-

ality, it is still impractical in general to enumerate all flow pattern states; the gain is in

the reduction of dimensionality for sampling.

Algorithm 5.2.3 describes a procedure for sampling from the flow pattern state

distribution of a given solution ψ ∈ Ψ. Rather than enumerating over all edges and
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over all time intervals, as Algorithm 5.2.1 does, the algorithm evaluates only those

edges and time intervals relevant to a particular flow pattern. In the algorithm the set

Z maintains pairs of edges and departure times that represent the current state of the

joint flow. The map R̄i jt stores pairs of paths and departure times (σ, t0) ∈ R associated

with the joint flow for edge (i, j) at departure time t. A single loop of the algorithm

entails sampling a travel time and capacity value for the current edge and departure

time, ((i, j), t) ∈ Z, which is determined by the earliest available flow. Ties are broken

arbitrarily between which pair to choose for the minimum t. Once edge properties have

been sampled, then the current joint flow is advanced in time and new pairs, ((i, j), t),

are added to the set Z, and R̄i jt is updated accordingly. This cycle continues until no

pairs are left, that is, all flow has arrived at the network sink l, or it stops if the sampled

state is infeasible. If the sampled state is infeasible, then the procedure returns a ‘null’

value, otherwise the feasible sampled state, ξψ, is returned.

In the worst-case, the complexity of the algorithm is the same as sampling from

the network state distribution. For the set Z, all pairs of edges and time intervals enter

at most once, so that in the worst-case this is all edges (i, j) ∈ E over time t ∈ [T ],

O(v2T ). Again, the worst-case for the sampling of distributions will loop in the size

of the support of each distribution. Overall, the algorithm’s worst-case computational

complexity is O(v2T (D + H)); however, its lower bound may be less than that of Al-
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gorithm 5.2.1 since it is dependent on the candidate solution to be evaluated.

Algorithm 5.2.3: SAMPLEFLOWPATTERNSTATE(N ,ψ = (R,m))

comment: Initialisation of state ξψ:

τ
ξψ

i j (t)←−1,∀(i, j) ∈ E ,∀t ∈ [T ]

µξψ

i j (t)←−1,∀(i, j) ∈ E ,∀t ∈ [T ]

comment: Initialisation of data structures:

R̄i jt ← /0,∀(i, j) ∈ E ,∀t ∈ [T ]

Z←{((i1, i2), t0)|i1 = s, i2 ∈ σ,(σ, t0) ∈ R,m((σ, t0)) > 0}
R̄i jt ←{(σ, t) ∈ R|i = ik, j = ik+1 ∈ σ,m((σ, t)) > 0},∀((i, j), t) ∈ Z

comment: Sampling of state:

while Z 6= /0

do



((i, j), t)← argmin((i′, j′),t ′)∈Z t ′

τ
ξψ

i j (t)← SampleProbabilityDistribution(τi j(t),ρi j(t))

t ′← t + τ
ξψ

i j (t)

if t ′ > T

then return ( null )

µξψ

i j (t)← SampleProbabilityDistribution(µi j(t),βi j(t))

x̂← ∑(σ,t0)∈R̄i jt
m((σ, t0))

if x̂ > µξψ

i j (t)

then return ( null )

if j 6= l

then


Z′←{(( j, j′), t ′)| j = ik, j′ = ik+1 ∈ σ,(σ, t0) ∈ R̄i jt}
R̄ j j′t ′ ← R̄ j j′t ′ ∪{(σ, t0) ∈ R̄i jt | j = ik, j′ = ik+1 ∈ σ},∀(( j, j′), t ′) ∈ Z′

Z← Z∪Z′

Z← Z\{((i, j), t)}
return (ξψ)

5.3 Comparing Candidate Solutions

The preceding sections proposed an efficient way of approximating the quality of in-

dividual solutions, that is, a particular flow pattern applied to the given network. How-

ever, in the context of optimisation the problem objective is to find the best solution in
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the solution space, and thus it is necessary to be able to discriminate between solutions.

In deterministic environments, evaluating the quality of solutions is often efficient and

certain, and hence comparisons between candidate solutions are often efficient and

certain too. In stochastic domains, due to the complexity and uncertainty in evaluating

the exact quality of individuals, this is often not the case, and it is common that the

balance of effort increasingly shifts from the exploration of the search space to the

evaluation of solutions and the exploration of the search space. Comparing individuals

in stochastic environments with finite resources introduces the possibility of selection

error, where uncertainty and approximation result in the wrong solution chosen in a

comparison (e.g. of two solutions, the solution with the actual worse performance is

chosen). In cases where statistical sampling is used, as suggested above, an estimation

error is introduced due to the randomisation of the evaluation, and hence with finite re-

sources comparisons between solutions are executed with some probability of error. To

control this, statistically based techniques have been devised to guarantee to a certain

confidence level that the comparisons are in fact correct.

Since for the MSE it is not known whether the variance of each solution’s evalua-

tion will vary across the space, and it is, therefore, potentially sub-optimal, or mislead-

ing, to allocate the same number of samples to each individual; for example, by using

an a priori fixed resampling rate. The most efficient sampling design would allocate

the minimum number of samples required to discriminate between solutions with some

level of confidence, so that the algorithm is still able to find the optimal solution. Of

course, the effort required to distinguish between individuals will vary depending on

the size and variance of the difference in their qualities (the difference is also a random

variable). In particular, distinguishing between solutions that have similar qualities or

a high variance requires more effort than those with a large difference or that have a

low variance.

As discussed in the literature review (in Sections 3.4 and 3.5) a number of theo-

retical and practical approaches have been suggested for tackling problems in stochas-

tic/noisy environments using EAs. In particular, the review highlighted a trend towards

combining metaheuristics with statistical ranking and selection procedures, and noted

how effective this symbiosis can be. Based on this, as previously discussed, a recently

proposed framework by Schmidt et al. (2006) and Schmidt (2007) that tightly inte-

grates EAs with a state-of-the-art ranking and selection (R&S) procedure, the OCBA,

is applied here. Building on its introduction in Section 3.4.3, the following sections

describe in detail the original framework, and several new extensions: an optimisation
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and a heuristic procedure for speeding up each stage of the OCBA, and the use of

informative priors for Bayesian inference over multiple selection problems.

5.4 Statistical Selection and Ranking

In the stochastic/noisy context described herein, applying R&S procedures may be a

fruitful approach to handling the uncertainty, as discussed in Section 3.5. In Simula-

tion Optimisation (SO), where R&S methods are often applied, they are often used to

choose the best, or a subset of the best, simulation configuration from a set of finite al-

ternatives given some criteria, e.g. the expected performance7. In SO, the performance

of simulation systems is uncertain and as such are modelled by random variables. The

goal is then to pick the best configuration with some probability of making the cor-

rect selection, e.g. to pick the best from k systems with probability 95%. The core idea

here, taken from Ordinal Optimisation, is that ordinal ranking of systems, that is, rank-

ing based on establishing which system is first, then second, then third, etc., is easier

than ranking based on accurate estimates of system performance (Ho et al., 1992). Dai

(1996) proved exponential convergence to the correct ordering under certain conditions

for ordinal comparisons.

For sequential procedures, the general approach to the selection-of-the-best prob-

lem is as follows. Firstly, simulate each system a number of times and evaluate the

performance of each system using statistics on the evidence (the data generated). Sec-

ondly, use statistics to compare the systems to determine the current best based on the

observed performances. Finally, sequentially allocate additional simulations and com-

pare the systems again, until some goal, defined by stopping criteria, is achieved, e.g.

the selection of the best system to at least some confidence level. In these contexts,

the event of determining the true ordering is termed the ‘correct selection’, with the

likelihood of having found the actual best system the ‘probability of correct selection’

(PCS). When an indifference-zone is used this likelihood is termed the ‘probability of

good selection’ (PGS). Indifference-zones are often used when comparing uncertain

systems to reduce unnecessary effort by delineating a practical significant difference

between the systems (Kim and Nelson, 2006), so that, for example, the selected system

will have a performance within some δ∗ of the best system, but need not actually be

7See (Fu, 2002) for a good overview of the Simulation Optimisation field. For general references to
the area of R&S in Simulation Optimisation see, for example, (Bechhofer et al., 1995; Kim and Nelson,
2006). For an in-depth review of Bayesian methodology in Simulation Optimisation, see (Chick, 2006).
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the best system.

Several approaches have been proposed for solving selection problems using se-

quential procedures: indifference-zone approaches (IZ) (Kim and Nelson, 2006); ex-

pected value of information procedures (VIP) (Chick and Inoue, 2001); and optimal

computing budget allocation approaches (OCBA) (Chen, 1996). The methods differ

principally in how the evidence for the correct selection is described, e.g. by frequen-

tist or Bayesian statistics, and how simulation samples are allocated. The IZ proce-

dures are frequentist based approaches that provide correct selection guarantees over

repeated applications of a selection procedure; whereas Bayesian approaches, namely

the VIP and OCBA, use posterior distributions to quantify the evidence for correct

selection.

Branke et al. (2005, 2007) carried out an extensive empirical evaluation of the dif-

ferent approaches and a number of variants for the problem of identifying the best

system. The comparison was carried out with respect to four criteria: efficiency, with

respect to mean evidence for correct selection as a function of the mean number of

samples; controllability, specifically the ease of setting the parameters of a procedure

in order to achieve a target evidence level; robustness, the dependency of the effec-

tiveness of the procedure on the underlying problem characteristics, i.e. the general

applicability of the approach; sensitivity, the effect of the choice of parameter values

on the mean number of samples required. With these considerations, the procedures

were empirically evaluated on a number of problem sets, including structured and ran-

dom problem instances. It was concluded that overall the Bayesian procedures are the

most efficient and easiest to control (using new stopping criteria), in particular for non-

stylised problem sets. Additionally, it is known that Bayesian approaches scale better

for handling larger number of systems (Chen, 1996).

Based on the results from their study, Schmidt et al. (2006) and Schmidt (2007)

proposed the tight integration of the OCBA with EAs for solving problems in stochas-

tic/noisy environments. Due to the suitability of the framework for SCOPs, as de-

scribed in the literature review in Section 3.4, the framework is applied here for solving

the MSE problem.

We now detail the OCBA procedure after first providing additional notation and

preliminaries. This is followed by a presentation of the integrated EA and OCBA

framework.
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5.4.1 Optimal Computing Budget Allocation

Originally proposed by Chen (1996), the OCBA approach is a sequential ranking and

selection procedure based on Bayesian statistics. A number of variations of the OCBA

have been proposed (Inoue et al., 1999; Chen et al., 2000; Branke et al., 2005, 2007;

Chen et al., 2010) that differ in how they approximate the PCS and the heuristics they

use for how additional samples might improve the PCS. The OCBA procedure uses

posterior distributions to quantify the evidence for correct selection. Due to the com-

plexity of computing the exact PCS, Chen showed that an efficient lower bound can

easily be evaluated. The crux of the procedure is the rule for allocating additional

simulations, or replications, at each stage, or loop, of the procedure. The procedure

works by iteratively and greedily allocating additional samples to individuals where

the largest improvement in the overall confidence in the selection is expected, where it

is assumed the mean stays the same but that the standard error scales back accordingly.

5.4.2 Notation and Preliminaries

We now outline the basic notation and preliminaries for the OCBA method, including

the underlying sampling assumptions. We follow the notation of Schmidt (2007).

Let Yi j be a random variable whose realization yi j is the output of the j-th evaluation

of system i, for i = 1, ...,k and j = 1,2, . . . , for k systems. Let wi and ω2
i be the unknown

mean and variance8 of the performance of system i, and let w[1] ≤ w[2] ≤ ·· · ≤ w[k]

be the ordered means. In practice, due to uncertainty, the ordering [·] is unknown.

The OCBA assumes that simulation output is independent and normally distributed,

conditional on wi and ω2
i , for i = 1, ...,k:

{Yi j : j = 1,2, . . .} i.i.d.∼ N (wi,ω
2
i )

In practice, the normality assumption is not always valid, however, it is often sufficient

for the output to be approximately normal, in particular for large sample sizes.

Let ni be the number of replications for system i executed so far. Let the sample

mean be ȳi = 1
ni

∑
ni
j=1 yi j and the sample variance ω̂2

i = 1
ni−1 ∑

ni
j=1(yi j− ȳi)2. Let y(1) ≤

y(2) ≤ ·· · ≤ y(k) be the ordering of the sample means based on all simulations seen

so far. Equality of sampled means is assumed to occur with probability 0. Given

additional simulations, the quantities ni, ȳi, ω̂2
i and ordering, (i), may change.

8Once again, to prevent confusion, σ2 is not used to denote the population variance as is conven-
tional.
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From a Bayesian perspective, assuming uninformative priors, the means Wi of the

systems are distributed according to the Student’s t distribution9:

Wi ∼ St(ȳi,
ni

ω̂2 ,ni−1)

The upper case Wi is used to indicate the Bayesian perspective that wi is a realisation

of its corresponding random variable. The Student’s t distribution is used when es-

timating the mean of a normally distributed population with unknown variance, and

is more robust with small samples sizes. Using t distributions rather than Gaussians

(using sample variance in place of the population variance) has been evaluated and no

difference in efficiency was noted by Branke et al. (2007) and Chen et al. (2010).

In (Schmidt, 2007), several approximations were given for efficiently evaluating

the difference between two Student’s t variables. A method based on Welch’s approx-

imation (Welch, 1938) was found to outperform others, so that for individuals i and j,

given evidence E , we have

P(Wi > Wj|E)≈Φνi j(di j/
√

s2
i j)

where di j = ȳi− ȳ j is the observed difference, s2
i j = ω̂2

i
ni

+
ω̂2

j
n j

, the sample variance of the

estimated difference, and Φνi j(·) the cumulative distribution function of the Student’s

t distribution with degrees of freedom provided by Welch’s approximation:

νi j =

(
(ω̂i

2/ni)+(ω̂ j
2/n j)

)2

(ω̂i
2/ni)2/(ni−1)+(ω̂ j

2/n j)2/(n j−1)

where min(ni−1,n j−1)≤ νi j ≤ (ni +n j−2).

The classic selection problem is to identify the best system, individual [k]. Us-

ing the Slepian inequality10, Welch’s approximation, and given data E seen so far,

the probability PCSBayes that the individual with the best observed mean, (k), is the

individual with the best true mean, [k], can be approximated:

PCSBayes
.= P
(
W(k) ≥max

i6=(k)
Wi|E

)
≥ ∏

i:(i)6=(k)
P
(
W(k) ≥W(i)|E

)
≈ ∏

i:(i)6=(k)
Φν(k)(i)(d(k)(i)/

√
s2
(k)(i))

.= PCSSlep

9The three-parameter, or shifted, Student’s t distribution: St(µ,κ,ν), forms a generalised loca-
tion/scale family that introduces a location parameter µ and an inverse scale parameter (i.e. precision)
κ > 0, as well as the degrees of freedom ν > 0 (DeGroot, 1970). If ν > 2, then the variance of three-
parameter distribution is κ−1 ·ν/(ν−2).

10See, for example, (Kim and Nelson, 2006) for more details.
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To include an indifference-zone, δ∗, so that the approximate probability that the

difference between the selected system and the true best is no more than δ∗, we have:

PGSSlep,δ∗
.= ∏

i:(i)6=(k)
Φν(k)(i)((d(k)(i) +δ

∗)/
√

s2
(k)(i))

5.4.3 OCBA Allocation Rule

The core of the OCBA procedure involves carrying out a ‘thought experiment’ in order

to select a number of systems, q, that, given an additional number of simulations θ, are

expected to best improve the overall confidence in the selection (expected to most

improve the PGSSlep,δ∗ value, for example).

This idea is to hypothetically allocate a number of additional replications to a sys-

tem, by simulating an increase in sample size, to reduce the variance in the estimate of

the unknown mean through changing the precision from ni
ω̂2 to (ni+θ)

ω̂2 . The assumption

is that the mean stays the same and that the standard error reduces accordingly.

The means of the systems Wi, i = 1, . . . ,k with hypothetical allocations are then

modelled:

St(ȳi,
ni

ω̂2 ,ni−1) to W̄i ∼ St(ȳi,
(ni +θ)

ω̂2 ,ni−1+θ)

The effect of allocating an additional θ replications to a system i, but no samples

to others, leads to an estimated approximate probability of good selection (EAPGSi).

The goal of the OCBA procedure, described next, is to iteratively and greedily allocate

samples to those q systems that maximise

EAPGSi−PGSSlep,δ∗

In other words, the aim is to allocate additional simulations to those q systems that

individually promise the largest positive difference between the estimated approximate

probability of good selection and the current PGSSlep,δ∗ .

5.4.4 OCBA for Selecting the Best System

For the selection-of-the-best problem, the OCBAδ∗ procedure is defined as follows

(Schmidt, 2007). The procedure requires input parameters: the initial sample size,

n̄0, the number of systems to allocate additional samples per stage, q, and the number

of additional replications for each system, θ. Additionally, termination criteria are

required, which may require further input parameters; they are described in the next

section (5.4.5).
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Procedure: OCBAδ∗

1. Run n̄0 > 2 independent replications for each system, i = 1, . . . ,k.

2. Evaluate sample statistics, ȳi and ω̂i, and sample mean ordering ȳ(1) ≤ ȳ(2) ≤
·· · ≤ ȳ(k).

3. WHILE Termination criteria not met DO

(a) Compute EAPGSi for i = 1, . . . ,k.

(b) Allocate additional replications ni = ni +θ to the q systems that maximise

EAPGSi−PGSSlep,δ∗ , and none to the others.

(c) Re-evaluate sample statistics, ȳi and ω̂i, and order statistics, so that ȳ(1) ≤
ȳ(2) ≤ ·· · ≤ ȳ(k).

4. Select system with best observed mean, (k).

5.4.5 Stopping Rules for OCBA

Termination criteria must be defined as part of the OCBA procedure. The original

OCBA (Chen, 1996) allocated additional replications given a total budget, S, while

(Branke et al., 2005, 2007; Schmidt, 2007) suggested a new stopping rule based di-

rectly on the probability of good selection.

The rules are:

1. Sequential: repeat sampling if ∑
k
i=1 ni < S, for a specified total budget S.

2. Repeat while PGSSlep,δ∗ < 1−α∗, for target probability 1−α∗ and indifference-

zone δ∗ ≥ 0.

Branke et al. (2005, 2007) and Schmidt (2007) note that most previous work used

rule 1, but rule 2 has been shown to improve the efficiency and controllability of OCBA

approaches. In this work, where budget constraints are not fixed, rule 2 is adopted.

5.4.6 Integrating OCBA with EAs

For EAs in stochastic/noisy environments, Schmidt et al. (2006) and Schmidt (2007)

proposed a framework for integrating statistical ranking procedures, in particular OCBA,

with EAs. In this symbiosis, the EA is used to explore the solution space, and the
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OCBA method is used to evaluate and rank individuals with the aim of reducing the

effects of the noisy fitness evaluations on the functioning of the EA. Employing OCBA

procedures due to the conclusions from their comparative study, they demonstrated

that for typical EA configurations limiting the set of comparisons to those required can

make ranking more efficient with respect to the total number of samples over, for ex-

ample, a complete ranking of all individuals. Based on this, the OCBA approach was

modified for ranking the set of comparisons required by the EA order information.

In the context of EAs, the ‘systems’ of the OCBA procedure are synonymous with

the ‘individuals’ of the EA’s population. Their performance is analogous to the fitness

of individuals, evaluated through a noisy fitness function. Therefore, running simu-

lations or replications is analogous to resampling the noisy fitness function. The as-

sumptions of the method in relation to the MSE are discussed in the following chapter,

in Section 6.1.7.

5.4.7 EA Order Information

In the context of EAs, the correct functioning of the algorithm does not necessarily

require a complete ranking of individuals. In fact, an EA requires that only a certain

set of comparisons are correct, independently of whether all ranks are correct. In par-

ticular, Schmidt et al. (2006) and Schmidt (2007) note that there are specific steps of an

EA that are effected by noise, namely, the selection (see description in Section 3.2.3)

and replacement (3.2.7) steps (functions SelectMates and SelectReplacements respec-

tively in the generic EA, Algorithm 3.2.1 described in Section 3.2). In deterministic

environments, there will often be access to the complete ranking, and hence for pairs

of individuals it is possible to determine which one is fitter with certainty. However,

only sections of this information are actually used within an EA iteration. Therefore,

to make the sampling procedure more efficient it would be useful to determine what

information is necessary for the correct functioning of an EA. Schmidt (2007) provides

the necessary sets of comparisons for the order information required by typical EA re-

placement strategies and selection operators, of which some are detailed here. Let the

set of comparisons be denoted C .

Recall that the population size of an EA is given by µ, and λ is the number of

offspring created each generation. Then contained in the set C are those pairs of

individuals that must be compared. Comparisons are specified as pairs 〈i, j〉 where

∀〈i, j〉 ∈ C : i, j ∈ {1, . . . ,µ + λ}, i 6= j. If the observed rank of individual i is higher
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than that of individual j, and i is actually better than j, then the comparison 〈i, j〉 is

correct.

5.4.7.1 Replacement Strategies

Replacement strategies are used to decide which µ individuals out of k = µ+λ individ-

uals from the current population and the offspring survive to the next iteration. Each

individual, that is, each solution instance, can be added most once in the new pop-

ulation M, although note that this does not preclude other individuals with identical

genotypes being added.

The individuals in the current population are indexed by M′ = {1, . . . ,µ}, the off-

spring by Λ = {µ+1, . . . ,k}, and the new population as the subset M⊂{1, . . . ,k}, with

|M|= µ. The sample mean ordering (·) over all individuals is defined by x̄(1) ≤ x̄(2) ≤
·· · ≤ x̄(k), over all offspring by (·)Λ, and over all individuals in the new population as

(·)M. The orders (·)Λ and (·)M can be determined from the overall order (·) by finding

the i-th individual having ( j) ∈ Λ or ( j) ∈M for j = 1, . . . ,k.

For generational replacement, the current population is completely replaced by

the offspring, whereas generational replacement with elitism guarantees that the (ob-

served) best from the current population survives and requires that only µ−1 offspring

are generated each iteration to replace the current population minus the best. For the

former approach, no comparisons are required, since the complete population is re-

placed, and therefore no comparisons are added to C . The indices of the new popula-

tion is the set of λ offspring:

M = {µ+1, . . . ,2µ}

The latter approach adds comparisons between the best and all other individuals from

the current population, so that the best individual is determined for the next iteration.

The number of offspring generated is λ−1 and the elite individual is (µ)M′ .

C ←
µ−1[
i=1

{〈(µ)M,(i)M〉}

M = {(µ)M′,µ+1, . . . ,2µ−1}

For (µ,λ) replacement with µ > λ ≥ 1, the best µ out of λ offspring survive to the
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next generation, so that we have comparisons and the new population given by

C ←
λ[

i=λ−µ+1

{〈(i)Λ,(1)Λ〉, . . . ,〈(i)Λ,(λ−µ)Λ〉}

M = {(λ−µ+1)Λ, . . . ,(λ)Λ}

For the (µ + λ) replacement strategy with µ,λ ≥ 1, the best µ out of a combined

µ + λ individuals are selected. Note that the steady-state replacement operator typi-

cally uses (µ + 1) replacement. Therefore, the new population and comparisons are

determined by

C ←
µ+λ[

i=λ+1

{〈(i),(1)〉, . . . ,〈(i),(λ)〉}

M = {(λ+1), . . . ,(λ+µ)}

5.4.7.2 Selection Operators

Selection operators are used to determine which of the current population are selected

to be parents of the next set of offspring. Typical selection operators are mentioned in

3.2.3. Once again, we do not give an exhaustive list of the required comparisons for

operators but list a few for demonstrative purposes. For a more comprehensive list, see

Schmidt (2007).

For selection, π parents, denoted by the set P, are selected for mating from the new

population, M. Note that the set of parents can contain duplicates.

The classic tournament selection operator, 2-tournament selection, chooses two

individuals randomly from the population M and selects the better of the two as a

parent. A few variants exist, including a more general t-tournament selection, that

selects t individuals for each tournament, and stochastic tournament selection that se-

lects two individuals and picks the better according to some probability, or else the

worse of the two wins the tournament. For the general t-tournament selection, in

terms of the comparisons required, once t individuals have been chosen, it is neces-

sary that the individual with the highest fitness be chosen, and therefore it is necessary

to add comparisons to guarantee this. Denote the chosen t-tournament participants

of tournament j by c1
j , . . . ,c

t
j and by c(i)

j the ordered tournament participants, where

x̄
c(1)

j
≤ x̄

c(2)
j
≤ ·· · ≤ x̄

c(t)
j

. Then the selected parents and the set of comparisons required
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are:

C ← C
π[

j=1

{〈
c(t)

j ,c(1)
j

〉
, . . . ,

〈
c(t)

j ,c(t−1)
j

〉}
P =

{
c(t)

1 , . . . ,c(t)
π

}
Other potential selection operators include ranking operators, such as linear and ex-

ponential ranking. However, they require the complete ordering of individuals, which

can be costly, and can, in fact, be replaced by variants of tournament selection that

implement the same selection probability (see Schmidt (2007) for more information).

Finally, there is also the random selection operator commonly used with ESs that

uniformly randomly selects individuals with replacement from the population to be

parents. It does not require additional comparisons, and so adds no comparisons to C .

5.4.7.3 Size of the Comparison Set

To appreciate the gain from using the set C here, consider that a complete ordering

of k individuals requires
(k

2

)
= k(k−1)

2 = O(k2) comparisons. Assuming an (µ +(λ =

µ)) EA11, the number of comparisons for a full ranking of all individuals 2µ would

be
(2µ

2

)
= (2µ · (2µ− 1))/2 = 2µ2− µ = O(µ2); while the number of comparisons in

the set C is reduced to µ2. Table 5.2 highlights the gain of using the set C over full

ranking for various populations sizes using a (µ+µ) EA. In practice, the set C requires

approximately half the number of comparisons of a full ranking; however, it is still of

the order O(µ2). Therefore, in general the number of comparisons will not scale well

with increasing µ, and thus it is advisable to keep the number of individuals for ranking

low.

5.4.8 Using OCBA to Generate Order Information

Schmidt et al. (2006) and Schmidt (2007) showed that the OCBA can be further

adapted for use with EAs and their respective ordering information. A new criterion,

the ‘probability of good generation’ (PGG), was defined as the probability that all

pairwise comparisons in C are correct. The following equation approximates a lower

bound, using the same bounds and approximations as above, for the probability that

for every pair in C the individual with the higher observed rank has a true mean that is

11(µ+λ) EA using elitist (µ+λ) replacement selection and random mating selection.
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Table 5.2: Size of comparison set for (µ+µ) EA

µ Full Ranking |C |= µ2

10
(10+10

2

)
= 190 102 = 100

20
(20+20

2

)
= 780 202 = 400

50
(50+50

2

)
= 4950 502 = 2500

100
(100+100

2

)
= 19900 1002 = 10000

250
(250+250

2

)
= 124750 2502 = 62500

500
(500+500

2

)
= 499500 5002 = 250000

higher the true mean of the other individual.

PGGBayes
.= P
( ^
〈i, j〉∈C

Wi +δ
∗ > Wj|E

)
(5.5)

≥ ∏
〈i, j〉∈C

P
(
Wi +δ

∗ > Wj|E
)

(5.6)

≈ ∏
〈i, j〉∈C

Φνi j

(
(δ∗+di j)/

√
s2

i j
) .= PGGδ∗(C ) (5.7)

The OCBA procedure based on PGGδ∗(C ) allocation is called OCBAEA
δ∗ , and is

defined next.

5.4.9 The OCBAEA
δ∗ Procedure

Based on the new criterion, the following procedure was defined in Schmidt (2007)

for the integration of the OCBA with EAs. The procedure has a number of input

parameters: the initial sample size, n̄0; the number of individuals to allocate additional

samples each stage, q; the number of additional samples per selected individual, θ; the

indifference-zone, δ∗; and the target probability α∗. The parameters are discussed in

detail in Section 5.4.12.

Procedure OCBAEA
δ∗ (n̄0,q,θ,δ∗,α∗):

1. Sample each unevaluated individual’s fitness n̄0 times.

2. Determine sample statistics and rank individuals based on sampled fitness val-

ues.

3. Initialise C : C ← /0, and add comparisons based on EA operators.
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4. WHILE PGGδ∗(C ) < 1−α∗ DO

(a) Allocate samples θ to individuals q, according to OCBAEA
δ∗ allocation rule.

(b) Update sample statistics and rank individuals based on sampled fitness val-

ues.

(c) If ranks have changed from the previous iteration, reinitialise C (as step 3).

The OCBAEA
δ∗ is called every iteration of the EA after the offspring have been gen-

erated and before replacement. After, the EA continues using the ordering based on the

estimated fitness values to determine which individuals survive to the next generation,

and so on.

5.4.10 An Optimisation of and a Heuristic for the OCBA

Here we contribute an extension to the OCBAEA
δ∗ procedure with an optimisation and

a heuristic for reducing the computational requirements of each stage of the procedure

for a single selection problem.

In the context of an EA, a selection problem is carried out each generation of the

algorithm, and therefore a potentially large number of selection problems will be ex-

ecuted. Furthermore, since, for an EA, the evaluation step is often the most compu-

tationally demanding step, overall it may be fruitful to optimise its computational re-

quirements. Note that it is often assumed, in particular in the SO contexts for which the

OCBA was originally designed, that sampling is much more computationally demand-

ing than the OCBA procedure overhead (e.g. computing the PGGSlep,δ∗(C ) value);

however, over many applications of the procedure and as the number of individuals

increases, there may still be computational effort to save.

While these extensions are applied to the OCBAEA
δ∗ procedure, in principle they

could be adapted for the more general OCBA approach.

5.4.10.1 Faster Evaluation of Thought Experiment

The allocation rule of OCBAEA
δ∗ requires the evaluation of the estimated approximate

probability of good generation, EAPGGi, for each individual, i = 1, . . . ,k, at each stage

of the procedure. Depending on the EA configuration, for increasing number of indi-

viduals, the number of comparisons grows at different rates; however, as an example,

for the (µ+µ) EA described above, as with complete ranking, the number of compar-

isons will grow at a quadratic rate in the number of individuals, |C |= O(µ2). For this
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example, the basic procedure for evaluating the value EAPGGi for each individual,

i = 1, . . . ,2µ, at each stage of the procedure requires a total of 2µ ·µ2 = O(µ3) compar-

ison evaluations: for each of the 2µ individuals, the EAPGGi value must be evaluated

for each individual over all µ2 comparisons. We now detail a method to reduce the

computation of EAPGGi to O(µ) for each individual i = 1, . . . ,2µ, and O(µ2) for all in-

dividuals, at the expense of O(µ2) memory space. The main gain of this optimisation is

reducing the number of comparison evaluations, and hence the required computation,

across OCBA stages.

Define the subset of C that contains all comparisons involving individual i′ ∈
{1, . . . ,k}, as Ci′ = {〈i, j〉 ∈ C |i = i′∨ j = i′}. Since C = Ci′∪C\Ci′ and Ci′∩C\Ci′ = /0

for i′ = 1, . . . ,k, we have that

PGGδ∗(C ) = PGGδ∗(Ci′) ·PGGδ∗(C\Ci′) (5.8)

In order to find promising individuals we evaluate what effect allocation of addi-

tional samples, θ, would have to each individual i′ = 1, . . . ,k independently of others.

We denote the estimated approximate probability of good generation for each indi-

vidual, i′ ∈ {1, . . . ,k}, over the set C as EAPGGi′(C), and over the subset of C , Ci′ ,

as EAPGGi′(Ci′). From Equation 5.8 and since allocating additional samples to an

individual i′ can only effect the comparisons in Ci′ , it follows that

EAPGGi′(C ) .= EAPGGi′(Ci′) ·PGGδ∗(C\Ci′) (5.9)

Therefore, due to the fact that we know PGGδ∗(C ) and PGGδ∗(Ci′) from the previ-

ous OCBA sequential stage, it is possible to exploit this fact to simplify the calculations

required for each stage’s allocation of replications. This is done for each individual

i′ = 1, . . . ,k, by instead evaluating

EAPGGOPT
i′ (C ) .= PGGδ∗(C ) · EAPGGi′(Ci′)

PGGδ∗(Ci′)
(5.10)

We can therefore save computational effort by using available values from the pre-

vious OCBA stage, and only evaluate EAPGGi′(Ci′) for each individual, i′ = 1, . . . ,k.

Proposition 1. For a comparison set C and for i′ = 1, . . . ,k,

EAPGGi′(C ) = EAPGGOPT
i′ (C )



104 Chapter 5. Candidate Solution Generation, Evaluation and Ranking

Proof.

EAPGGi′(C ) = EAPGGi′(Ci′) ·PGGδ∗(C\Ci′) (Equation 5.9)

=
(

EAPGGi′(Ci′) ·PGGδ∗(C\Ci′)
)
· PGGδ∗(Ci′)

PGGδ∗(Ci′)

=
EAPGGi′(Ci′) ·PGGδ∗(C\Ci′) ·PGGδ∗(Ci′)

PGGδ∗(Ci′)

=
EAPGGi′(Ci′) ·PGGδ∗(C )

PGGδ∗(Ci′)
(by Equation 5.8)

= PGGδ∗(C ) · EAPGGi′(Ci′)
PGGδ∗(Ci′)

(Equation 5.10)

= EAPGGOPT
i′ (C )

Now to find the individuals that are expected to make the best improvement, the

allocation rule uses Equation 5.10, such that for i′ = 1, . . . ,k, the goal is to maximise:

EAPGGOPT
i′ (C )−PGGδ∗(C )

This optimisation reduces the number of comparison evaluations for each stage of the

OCBA procedure when evaluating the estimated approximate probability of good gen-

eration for each individual, and hence reduces the overall computational requirements

of the procedure. This improvement can have a significant impact for selection prob-

lems with many stages and over a series of selection problems.

The additional memory space required by this extension is O(k2). The sets Ci′ for

i′= 1, . . . ,k are determined once per stage when (re-)initialising the set C (step 3 and 4c

of the OCBAEA
δ∗ procedure above), which requires O(k2) space. Also, the PGGδ∗(Ci′)

values, i′ = 1, . . . ,k, are stored when evaluating the full PGGδ∗(C ) value (required by

step 4 of the procedure), requiring O(k) space. So, overall, the memory requirement is

O(k2).

5.4.10.2 Heuristic for Faster Selection of Best q Individuals

At each stage of the OCBA procedure q individuals are selected for allocation of ad-

ditional samples, and a heuristic is proposed here for reducing the computation further

in the selection of these individuals. The idea is to maintain an ordered list of the cur-

rent best q EAPGGi′(Ci′)
PGGδ∗(Ci′)

values, (p1, p2, . . . , pq), where p1 ≥ p2 ≥ ·· · ≥ pq. Then, when

evaluating the EAPGGi′(Ci′) value for an individual i′, its comparisons are sorted into
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ascending order by their previous stage’s probability of being correct, and after each

comparison, after the hypothetical value has been evaluated, the current EAPGGi′(Ci′)
PGGδ∗(Ci′)

is

evaluated against the current least-best value, pq. Since the value of EAPGGi′(Ci′) is

nonincreasing over the set Ci′ , if the current EAPGGi′(Ci′)
PGGδ∗(Ci′)

value is less than pq then the

process can stop and move to the next individual, i′+ 1, and so on. This reduces the

number of comparisons evaluated for individuals that will not be amongst the selected

q individuals, as soon as there is evidence that indicates they will not be chosen.

5.4.11 Informative Priors for Series of Selection Problems

To the knowledge of the author, until now, in the context of EAs, the OCBA has only

been evaluated for solving a single selection problem. However, for an EA, over a

full run, a selection problem is solved at each generation of the algorithm. The input

to each selection problem may include individuals from previous iterations that have

already been evaluated, and hence have previously been allocated a number of sam-

ples. For individuals with no samples, uninformative priors are assumed; however, for

individuals with existing samples informative priors are used instead.

Before any evidence is provided, given the assumptions of unknown mean and pre-

cision (reciprocal of the variance), uninformative priors are assumed, so that the poste-

rior marginal distribution of the unknown mean, Wi, where the data Ei = {yi1, . . . ,yin̄0}
is assumed (approximately) normally distributed, is modelled by:

Wi ∼ St(Win̄0, n̄0λin̄0, n̄0)

where Win̄0 = ȳin̄0 is the sample mean of the data, λin̄0 = ω̂
−2
in̄0

is the sample precision,

and n̄0 is the number of initial samples. As previously mentioned, using a Student’s t

distribution is consistent with the assumption of unknown variance and is more robust

with the use of small samples sizes, e.g. n̄0 < 30.

Based on Inoue and Chick (1998) and Schmidt (2007), but not previously applied

to the OCBAEA
δ∗ , after each subsequent stage of sampling, priors are modelled using

normal-gamma conjugate prior distributions. For the priors, the marginal distribution

of λin̄i is modelled:

P(λin̄i)∼ G(αi,βi)

where αi = n̄0
2 and βi = 1

2 ∑
n̄0
j=1(yi j− ȳin̄0)

2, and the conditional distribution of Wi given

λin̄i is:

P(Wi|λin̄i)∼N (ȳin̄0, n̄0λi0)
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From (DeGroot, 1970), the posterior marginal distribution of Wi given the above

prior distributions and new evidence Ei = {yi1, . . . ,yin̄i}, for n̄i additional samples, is

then the three-parameter Student’s t distribution:

P(Wi|Ei)∼ St(Win̄i,
(n̄i0 + n̄i)αin̄i

βin̄i

,2αin̄i)

where

Win̄i =
n̄0Wi0 + n̄iȳin̄i

n̄0 + n̄i

αin̄i = αi +
n̄i

2

βin̄i = βi +
∑

n̄i
j=1(yi j− ȳin̄i)

2

2
+

n̄i0n̄i(Wi0− ȳin̄i)
2

2(n̄i0 + n̄i)

Using informative priors effectively allows the OCBA to re-use samples from pre-

vious iterations, which becomes particularly helpful for individuals that survive over

many EA generations. The allocation rule for the OCBAEA
δ∗ is now modified to use

substituted values: ω̂2
i = βin̄i

αin̄i
, n = n̄i0 + n̄i and ν = 2αin̄i; and all additional samples are

allocated using informative priors as well.

5.4.12 OCBAEA
δ∗ Parameters

The OCBAEA
δ∗ procedure has a number of parameters, which are listed in Table 5.3.

The literature provides some general guidelines on effective ranges and values for pa-

rameters. However, note that on the whole these guidelines have been laid down for

the use of the OCBA in SO. In these contexts, where simulations dominate in com-

putational effort, and for the execution of a single selection problem, not necessarily

a series of selection problems as is the case for an integrated EA approach. We now

discuss each parameter individually.

Schmidt (2007) found that Bayesian procedures are quite sensitive to the size of

n̄0. It is well understood that the initial sample size should not be too small, as this

may lead to poor estimates of the mean and variance, which would result in poor

computing budget allocation (i.e. allocation of subsequent samples). However, the

value should not be too large either, which would result in a waste of computation spent

on non-promising individuals and, as this value is increased, would tend to increasingly

obviate the OCBA altogether. Bechhofer et al. (1995) recommends a value between 10

and 20.



5.4. Statistical Selection and Ranking 107

For the number of individuals selected at each stage, q, if we set q = 1 and θ = 1

then the procedure is known as fully sequential — one individual is chosen each stage

of the OCBA and allocated a single additional sample; this is common in SO where

simulation runs may be very costly, however, this is not necessarily the case here.

At the other extreme, if q = k then this equivalent to equal allocation of additional

samples, which is equivalent to not using the OCBA method, since all individuals are

allocated the same number of samples. Chen et al. (1997) found that OCBA is not

too sensitive to the size of q as long as θ is small. As a heuristic, Chen et al. (1999)

recommend q ∈ [k/20,k/10].

It is generally understood that θ should be neither too large nor too small: it is

desirable to avoid, on the one hand, devoting unnecessary computational effort to reach

an unnecessarily high confidence level and, on the other, requiring too many stages

of the procedure. Also, importantly, the value should not be so large as to diminish

the usefulness of the heuristic allocation rule. If a relatively large value of θ seems

appropriate, it may be better to increase n̄0 instead.

Schmidt (2007) also showed that Bayesian procedures are quite sensitive to the

size of the indifference-zone, δ∗. The indifference-zone is used to set the practically

significant difference between solutions; that is, it may suffice to find a solution that

is not the optimal solution, but whose quality is within some (practically insignificant)

margin of the best. It is important not to set this value too small, since computation may

be wasted on non-promising solutions; on the other hand, too large an indifference-

zone may result in significantly sub-optimal solutions. Since judging significance is

problem dependent, so too is the value of this parameter. Note that this work uses the

same value for the indifference-zone used for the stopping rule and for evaluating the

PGGδ∗ value during the selection.

The choice of α∗ value sets the target confidence level: 1−α∗. For single selec-

tion problems (in SO), typically, a value is selected from {0.1,0.05,0.01}, in corre-

spondence with conventional statistical confidence levels. Setting a low α∗ value, and

hence a high 1−α∗ value, is equivalent to requiring a high level of confidence in the

selection; naturally, this increases the required computation. Again, setting this value

too high may waste computation on non-promising solutions.

For integration with EAs, Schmidt (2007) highlights the importance, in particular,

of the values of α∗ and δ∗. The difficulty in setting these parameters for OCBAEA
δ∗

is compounded by the use of the this procedure (and its parameter values) across all

iterations of the EA. For example, in early runs of an EA, where solutions are typically
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of low quality, a high confidence in the ordering, e.g. α∗ = 0.01, may not be necessary;

whereas as the iterations progress, and the algorithm begins to focus on better areas

of the search space, the significance of the correct ordering increases. A similar situ-

ation arises for δ∗; if the value is too small then computational effort may be wasted

in discriminating between non-promising solutions in early runs. The optimal set of

parameters would allow the selection procedure to both minimise the number of allo-

cated samples and procedure stages required to meet the confidence level appropriate

for the phase of the EA’s evolution, while still allowing the EA to find good solutions

or even the optimal solution in the minimum number of generations. However, this

may be difficult in general using a predefined, static set of parameter values.

The parameter values used for empirical evaluation of the approach are given in

Chapter 7.

Table 5.3: OCBAEA
δ∗ Parameters

Parameter Range Description

n̄0 N>2 initial sample size

q [1,k] number of individuals to select at each stage

θ N number of additional samples for each of q individuals

δ∗ R indifference-zone

α∗ [0,1) target confidence level: 1−α∗

5.5 Summary

This chapter presents efficient methods for generating, evaluating solution quality and

comparing candidate solutions to the MSE. Given the computational complexity of the

MSE problem, a metaheuristic approach is proposed herein, and therefore methods are

required to generate candidate solutions to the MSE. However, generating solutions

in a straightforward manner from the underlying topological graph may bias solutions

towards certain regions of the solutions space. To counter this, an approach was pre-

sented that samples solutions with approximately equal probability from the solution

space.

In general, evaluating solutions for the MSE is a computationally hard problem, in-

volving calculations over potentially high-dimensional spaces. Therefore, as proposed
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in the literature, a simulation approximation method was presented for evaluating the

solution quality of solutions based on well-known Monte Carlo sampling methods.

Using these methods, we can show asymptotic convergence of the estimated quality

to the true solution quality. Furthermore, two sampling frames were discussed and a

procedure for sampling from a space of lower dimensionality than an approach from

the literature was proposed, improving the efficiency of sampling in practice.

In the context of optimisation, as well as evaluating the quality of individual candi-

date solutions, it is also necessary to discriminate between them. However, the afore-

mentioned approximate evaluation approach introduces potential selection error, so

that with finite resources it is not possible to differentiate between candidate solu-

tions with certainty, with respect to solution quality. In order to effectively compare

candidate solutions with uncertain evaluations, it was proposed to apply a framework

integrating a state-of-the-art statistical ranking and selection procedure, the Optimal

Computing Budget Allocation (OCBA) approach, with Evolutionary Algorithms. The

framework was explicated, introducing the OCBA approach in general, and then the

integrated framework. Additionally, an optimisation for and a heuristic extension to the

OCBA were proposed for improving the computational performance of the procedure.

Furthermore, to increase the efficiency of using the OCBA for a series of selection

problems, the procedure was modified for use with informative Bayesian priors.

Overall, this chapter has proposed efficient methods for generating, evaluating and

ranking candidate solutions for the MSE that are required by the solution method pro-

posed herein. The following chapter details the main approach.





Chapter 6

Solution Approaches

This chapter lays out the details of the main solution approach proposed for solving the

Maximal Safest Escape Problem in STV networks. Given the problem’s complexity, it

is unlikely that a general, efficient solution approach will be presented. In this work,

a metaheuristic approach based on a standard (µ + λ) Evolutionary Algorithm (EA)

integrated with the OCBAEA
δ∗ procedure is proposed. For comparison with the main

EA approach, an EA variant and a baseline random search approach are also presented.

Firsty, the main EA approach is detailed, including the various components of the

algorithm; then, secondly, the EA variant is described; and, finally, the simple random

search algorithm is presented.

6.1 Noisy Evolutionary Algorithm

The main approach proposed for solving the MSE is a based on an (µ+λ) Evolutionary

Algorithm (Bäck et al., 1997). The reasons for proposing a metaheuristic approach are

two-fold. Firstly, given the complexity of the problem (as discussed in Section 4.3.3),

it is unlikely that efficient methods can be developed for solving the problem optimally,

or even approximating the solution within a constant factor of the optimal solution.

Secondly, metaheuristic approaches, in particular EAs, have been applied to a num-

ber of NP-hard combinatorial optimisation problems, both deterministic and stochas-

tic, with some success (see sections on COPs (3.3) and SCOPs (3.5) for more details).

While EAs are not guaranteed to find optimal solutions, they can often find good qual-

ity solutions for hard problems using significantly less effort than exact algorithms

(Gendreau and Potvin, 2010). For evaluation here, the main approach is compared

against a simple EA, a baseline approach and upper bounds on optimal solutions in

111
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order to provide a reference for the performance of the metaheuristic.

The proposed algorithm described by Algorithm 6.1.1 is based on the Generic EA

described in 3.2 extended with integration of the OCBAEA
δ∗ procedure (as defined in

5.4.9). Since the EA utilises a noisy fitness function, it is henceforth called a Noisy

EA (NEA).

Algorithm 6.1.1: (µ+λ) NOISY EVOLUTIONARY ALGORITHM(Π)

i← 0

Pi← InitialisePopulation(µ)

OCBAEA
δ∗ (n̄0,q,θ,α∗,Pi)

while i < κ

do



i← i+1

P̄ ← SelectMates(Pi−1,λ)

O← Crossover(P̄ , pc)

Mutate(O, pm)

OCBAEA
δ∗ (n̄0,q,θ,α∗,Pi−1∪O)

Pi← SelectReplacements(Pi−1∪O,µ)

The set Π is the collection of input parameters to the algorithm. For the (µ + λ)

NEA, the set is Π = {µ,λ,κ, pc, pm, n̄0,q,θ,δ∗,α∗}. The EA parameters, discussed in

Section 3.2, are the subset {µ,λ,κ, pc, pm}, and for the OCBAEA
δ∗ procedure the set

{n̄0,q,θ,α∗,δ∗}, discussed in Section 5.4.12.

As a reminder, an (µ + λ) EA uses a population of size µ and an offspring size λ.

At iteration i, the current population is denoted by Pi−1, the current offspring O, and

the new population by Pi. To simplify algorithm parameters, the number of offspring

is set λ = µ, so that the algorithm is a (µ+µ) NEA.

The following sections describe the necessary particulars for the NEA: the candi-

date solution representation, the initialisation procedure, the neighbourhood function,

the crossover operator, the mutation operator, the selection strategies: mating and re-

placement schemes, the fitness evaluation method, and, finally, the stopping criterion.

A basic description of these components is given in Section 3.2.
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6.1.1 Candidate Solution Representation

The solution space for the MSE’s objective (Equation 4.1) is the set of all flow pat-

terns Ψ. As defined in the preliminaries (Section 4.1.5), each solution, or flow pattern,

ψ ∈Ψ, is a multiset of pairs of a path and a departure time, and a multiplicity function

determining the units of flow assigned to each pair. For the EA, it is not necessary

for the chromosome representation to be equivalent to the solution representation of

the optimisation problem. In practice, there are often a number of ways to represent

these formal objects; for example, tuples of integers can be represented by both binary

strings and integer-valued vectors. Nevertheless, if suitable, it is often simpler to rep-

resent candidate solutions using canonical EA representations so that standard genetic

operators and constraint handling methods are available.

For the MSE problem in particular, there are various ways to represent candidate

solutions, and several works, surveyed in the literature review Sections 3.3 and 3.5,

have addressed EA representations for flow problems (Munakata and Hashier, 1993;

Sadek et al., 1997; Varia and Dhingra, 2004; Opasanon, 2004; Opasanon and Miller-

Hooks, 2010; Miller-Hooks and Sorrel, 2008).

We briefly discuss different representations used by related works and then detail

the chosen representation.

6.1.1.1 Survey of Representations

In network flow optimisation in general (Ahuja et al., 1993), solutions for shortest

path and flow problems are typically represented by a flow matrix, where each entry

in the matrix represents the flow associated with each edge in the network, possibly

over time; for example, the number of units departing an edge (i, j) at time t, xi j(t).

This was the EA representation used by Munakata and Hashier (1993) for solving

the classic static maximum flow problem1, where each chromosome, or solution, is a

single flow matrix. However, this representation is not efficient in general for EAs since

it includes all edges in the network, and hence the flow matrix has size O(v2), or over

time, O(v2T ), and requires special genetic operators to handle problem constraints.

A more common, and perhaps simpler approach, is a representation using ordered

lists, or vectors. Sadek et al. (1997) used real-valued vectors where each entry in a

vector represents the number of vehicles assigned to an edge during a time period.

Constraints are handled though a penalty on the fitness function. In contrast, Varia and

1For details on the canonical maximum flow problem, see, for example, Ahuja et al. (1993).
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Dhingra (2004) used a binary string representation that encoded each s− l path in the

network with a level of flow assigned to it. This representation is also inefficient in

general since it encodes all paths in the network. Again a penalty function is used for

penalising infeasible candidate solutions.

Works more closely related to the MSE problem, Opasanon (2004) and Opasanon

and Miller-Hooks (2010) opted for variable-length vector representations, where each

entry in the vector represents a pair, consisting of a path in the network and an asso-

ciated flow. This approach closely matches the solution representation described for

their respective optimisation problem, and is compact, neither representing all paths in

the network nor allowing multiple duplicate path entries for common departure times.

Still, genetic operators must be designed to handle feasibility issues. Miller-Hooks

and Sorrel (2008) extended the representation so that each entry of the vector is itself

a variable-length vector. Again special operators are designed to cope with feasibility.

A number of similar representations have been suggested for solving deterministic

and stochastic shortest path problems, including permutation-based encodings, and

fixed- and variable-length vectors of nodes or edges (Gen et al., 1997; Inagaki et al.,

1999; Ahn and Ramakrishna, 2002; Ji, 2005; Davies and Lingras, 2003).

The literature indicates that a number of representations can be used for flow prob-

lems, and that often genetic operators are required to be designed to handle feasibility

issues.

6.1.1.2 MSE Representation

The representation used here, which is similar to that of Opasanon (2004) and Opasanon

and Miller-Hooks (2010), is equivalent to the abstract solution representation detailed

in Section 4.1.5. Due to this, the same notation is used to represent MSE candidate

solutions and EA candidate solutions. For the EA then, an individual flow pattern, or

candidate solution, corresponds to one of the “chromosomes” that make up the algo-

rithm’s population, and each pair, consisting of a path in the network and a departure

time, that is part of the flow pattern is represented using one “gene” for each occur-

rence (multiplicity)2. For example, for a multiset (R,m), the EA chromosome is rep-

resented by n = |(R,m)|= ∑r∈R m(r) genes, where {r1,r2, . . . ,rk} ⊆ R and m(ri) > 0,

i = 1, . . . ,k ≤ n, so that, using an alternative multiset representation3, the collection of

2Pairs with multiplicity of 0 are thus not represented.
3For more details on multiset representations, see, for example, Singh et al. (2007).
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n genes is:

{r1,1,r1,2, . . . ,r1,m(r1),r2,1, . . . ,r2,m(r2), . . . ,rk,1, . . . ,rk,m(rk)}

One advantage of this approach is that it is relatively compact, representing only those

portions of the network that are relevant to a particular solution, versus, for exam-

ple, a flow matrix representation. However, as with the reviewed representations, it

too requires specially designed operators, in particular for issues of feasibility. These

operators are described in the following sections.

6.1.2 Initialisation

Each execution of an EA requires an initial population with which to seed the search

process. In the absence of information about the search space, a common approach is to

sample the search space uniformly, so that the initial candidate solutions are uniformly

distributed across the search space. Hence, all candidates, and hence all genes, have

a probability greater than 0 of getting sampled. When knowledge is available, one

approach is to seed the population using, for example, constructive heuristics or greedy

methods, in order to introduce feasible or reasonable quality candidates.

For the MSE, due to the complexity of evaluating exact solution quality, in general

it is difficult to generate initial candidates of reasonable quality over all flow pattern

states. However, in order to reduce the space from that of all flow patterns, candidate

solutions are generated with a minimal consideration for feasibility. In particular, the

initialisation procedure generates only candidates that observe flow conservation (the

supply/demand structure) by generating enough paths and multiplicity to convey flow

from source to sink to satisfy bs(t), for t ∈ S, in an unconstrained, static network, that

is, without consideration for time and edge properties: capacities and travel times,

because these properties introduce substantial complexity for evaluation.

The initial EA population P0 is generated from this constrained solution space; that

is, a set of µ chromosomes is sampled from the constrained chromosome space. Even

though it is difficult to generate solutions that are of high quality over all flow pattern

states, the procedure proposed to solve Deterministic MSE problems defined in Chap-

ter 4, in Section 4.4.3.2, is used to generate an initial population where each solution is

at least feasible on a randomly generated network state. The procedure is used to solve

µ Deterministic MSE problems, resulting in, in the best-case, µ candidate solutions

for the MSE problem that form the initial population4. As is shown in the following
4The procedure cannot guarantee to find a feasible flow for a particular sampled network state;
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chapter, in Section 7.4, the seeding of the initial populations plays a significant role in

the successful application of the NEAs to the MSE.

If the number of candidate solutions generated is less than the required population

size, µ, then to guarantee that a total of µ candidates are generated, the remaining can-

didate solutions are approximately uniformly randomly generated from the constrained

space. The procedure for this is as follows. Each chromosome consists of a number of

genes, where each gene is a pair consisting of a path and a departure time; thus, in order

to generate equally likely candidate solutions from the constrained space, a sequence

of B paths is randomly generated with bs(t) paths assigned to each departure time with

available supply, t ∈ S. Due to the multiset representation, in the case that identical

paths are assigned to the same t, they are replaced by a single path with multiplicity

equal to the total flow assigned to the individual, identical paths. Paths are found using

the weighted depth-first path-finding procedure described in Section 5.1.3.

Finally, the algorithm’s genetic operators: crossover (6.1.4) and mutation 6.1.5,

were designed to maintain this level of feasibility.

6.1.3 The Neighbourhood

An important decision in the development of metaheuristic algorithms is the definition

of the neighbourhood function, N : Ψ→ 2Ψ, that assigns to each candidate solution,

ψ ∈Ψ, a set of candidate solutions N(ψ)⊂Ψ (Gendreau and Potvin, 2010). A candi-

date solution ψ′ in the neighbourhood of ψ, ψ′ ∈N(ψ), is called a neighbour of ψ. The

neighbourhood function defines a structure over the solution space, and a connectivity

or a metric distance between candidate solutions.

Associated with the neighbourhood function is a move operator that performs a

small change to a candidate, say ψ, to transform, or “move”, it to one of its neigh-

bours, ψ′ ∈ N(ψ). The move operator is utilised by metaheuristics to search through

the solution space by moving candidates to candidate solutions in their neighbourhood.

Here the neighbourhood structure and move operator, which are formally defined in

the following sections, are used by the EA crossover operator (6.1.4) for generating

offspring, and the EA mutation operator (6.1.5) for perturbing offspring — both oper-

ations effectively corresponding to moves in the solution space.

Applying the move operator a finite number of times, k ∈ N, to any solution in the

search space should be able to move it to any other solution in the space. In other

however, experience indicates that should a state pass the heuristic checks for infeasibility, the greedy
method finds solutions a majority of the time.
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words, all candidate solutions must be in each other’s k-neighbourhoods, so that a met-

ric is defined over the neighbourhood structure whereby for two candidate solutions,

say ψ1 and ψ2, the distance between them is the minimum number of applications of

the move operator required to “move” ψ1 to ψ2. If it were not the case that all candi-

date solutions are reachable, then the problem may not be solvable, that is, potential

solutions or even regions of the search space may exist that the algorithm cannot reach.

The neighbourhood function for the multiset representation is formally defined in

the following section.

6.1.3.1 Multiset Preliminaries

Here we introduce a number of preliminaries required for the definition of the neigh-

bourhood function that underlies the genetic operators of the EA.

Formally, a multiset is a pair (A,m), where A is some set and m is a function

m : A→ N0, which defines the number of occurrences of each member of A in the

multiset. The set A is called the set of underlying elements. The cardinality of (A,m)

is |(A,m)|= ∑a∈A m(a). A submultiset (B,n) of a multiset (A,m) is a subset B⊆ A and

a function n : B→ N0 such that ∀b ∈ B : n(b) ≤ m(b). The union of two multisets is

defined (A∪B, f ), where ∀x ∈ (A∪B), f (x) = max{m(x),n(x)}, and the intersection

is (A∩B,g), where ∀x ∈ (A∩B),g(x) = min{m(x),n(x)}. Two multisets are equal

if the sets of underlying elements are equal, A = B, and ∀a ∈ A,m(a) = n(a), and

equivalently for the elements in B.

The power set5 of (A,m), denoted P
(
(A,m)

)
, is the set of all submultisets of (A,m),

including the empty set and (A,m) itself. The set P
(
(A,m)

)
has cardinality ≤ 2|(A,m)|,

where equality occurs only if (A,m) is a set.

The symmetric difference between two sets, Y and Z, denoted Y ∆Z, is the set of

elements that are in Y or Z but not in their intersection: Y ∆Z = (Y ∪Z)\(Y ∩Z). For

multisets, it is extended to include multiplicities, and defined (A∆B, f ) with f (x) =

max{m(x),n(x)}−min{m(x),n(x)} = |m(x)− n(x)|, ∀x ∈ A∆B. The symmetric dis-

tance between multisets is then

d
(
(A,m),(B,n)

)
= |(A∆B, f )|= ∑

x∈A∆B
f (x) = |m(x)−n(x)|

Based on these definitions, we now define the neighbourhood function.

5For more details on power sets and power multisets, see, for example, Singh et al. (2007).
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6.1.3.2 Neighbourhood function

The symmetric distance between candidate solutions is taken as a metric on the search

space, and provides the formal basis for the neighbourhood function, N. The neigh-

bourhood of a candidate solution ψ, N(ψ), is defined as the set of candidate solutions

that have a single unit of symmetric distance from ψ:

N(ψ) = {ψ′ ∈Ψ : d(ψ,ψ′) = 1}

Therefore, a single application of the move operator based on the neighbourhood

function, N, will “move” or transform a candidate to a another candidate in its neigh-

bourhood that comprises of candidate solutions that have a symmetric distance of 1.

Based on a geometric interpretation of genetic operators, Moraglio and Poli (2004)

attempted to unify the theoretical foundations of EA operators, whereby crossover and

mutation are based on the same neighbourhood structure. Here that structure is defined

using symmetric difference and distance. The definition of the crossover operator is

given next, and the mutation operator follows.

6.1.4 Crossover

In each generation, the crossover operator, defined next, is applied to pairs of parents

selected by the mating selection operator (described in Section 6.1.6.1) to generate

pairs of offspring.

Several existing works have addressed the question of genetic operators for multi-

set representations. Early works (Radcliffe, 1991c, 1992; Radcliffe and George, 1993)

applied Radcliffe’s Forma Analysis (Radcliffe, 1991a,b) to recombination for set rep-

resentations. Later, Moraglio and Poli (2004) laid out a geometric framework for in-

terpreting crossover and mutation in an attempt to unify the theoretical foundations

of EA genetic operators. They argued that their geometric interpretation simplifies

the relationship between EA search operators and the fitness landscape, and leads to a

general and intuitive interpretation of the operators that are likely to perform well. In

(Moraglio and Poli, 2004), they showed that a number of existing traditional genetic

operators for binary strings fit within this framework. Later, in (Moraglio and Poli,

2006), they proposed a uniform geometric crossover operator under symmetric dis-

tance for fixed- and variable-sized multisets, which we apply here for crossover, and

in the following section, based on the same metric, for mutation.
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Note that due to the use of elitist (µ + λ) selection (see Section 6.1.6.2), which

applies strong selection pressure, the crossover rate is fixed at pc = 1. Thus in each

generation no parents will be added to the offspring directly without breeding. In

contrast, a rate pc = 0 would mean that no offspring are generated, with the parents

passing through unchanged to the set of offspring to undergo mutation and so on.

6.1.4.1 Multiset Operator

According to the geometric interpretation of crossover for multisets, given two candi-

date solutions, or multisets, ψi = (C,mC) and ψ j = (D,mD), any crossover operator

that returns offspring (O, f ) such that

(C,mC)∩ (D,mD)⊆ (O, f )⊆ (C,mC)∪ (D,mD)

is considered a geometric crossover operator under symmetric distance (Moraglio and

Poli, 2006). The operator used here is defined as follows.

To restrict the space of candidate solutions for the EA, the initialisation proce-

dure, discussed in Section 6.1.2, generates candidate solutions that cover the total net-

work supply, B, and satisfy the supply at each t ∈ S, where, as a reminder, S = {t ∈
[T ]|bs(t) > 0} and ∑t∈S bs(t) = B. To maintain this aspect of candidate feasibility,

the crossover operator is required to cross-over fixed-size multisets while maintain-

ing these constraints (see 6.1.2 for more details). To fulfil these requirements, the

operator is designed to generate ‘sub-offspring’ for each t ∈ S, given bs(t), and then

combine them to form offspring with total cardinality B. The method for generating

‘sub-offspring’ is described first, and this is followed by the method for combining

them to generate complete offspring.

For a chromosome ψi = (C,mC) define the submultiset ψi,t = (Ct ,mCt ), for t ∈ S,

where Ct = {(σ, t ′) ∈C|t ′ = t} and ∀ct ∈Ct , mCt (ct) = mC(ct), where mC(ct) > 0, as

the submultiset consisting of all those genes in ψi,t with positive flow departing s at

time t. For candidate solution ψ j = (D,mD), we then also have ψ j,t = (Dt ,mDt ), for

t ∈ S.

To generate sub-offspring for t ∈ S, we are required to sample a multiset (Ot , ft)

such that:

(Ct ,mCt )∩ (Dt ,mDt )⊆ (Ot , ft)⊆ (Ct ,mCt )∪ (Dt ,mDt ) (6.1)

The set of sub-offspring for t ∈ S, denoted by Θt , from which to sample the selected

sub-offspring (Ot , ft) , is defined as follows.
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Let the symmetric difference of submultisets (Ct ,mCt ) and (Dt ,mDt ) for time t ∈ S

be (Ct∆Dt ,nt), which is the multiset of the difference between their union and their in-

tersection, as described in the preliminaries (6.1.3.1). Let the intersection between the

submultisets for t ∈ S be (Qt ,nQt ) = (Ct ,mCt )∩ (Dt ,mDt ). Now consider the constraint

that the potential sub-offspring (Ot , ft) ∈ Θt must be a superset of the intersection of

the parents (from Equation 6.1), where (Qt ,nQt ) ⊆ (Ot , ft). Given the supply at time

t ∈ S, bs(t), it is necessary to restrict the cardinality of the potential sub-offspring, such

that, given the set

ϒt = {(Ut ,mUt ) ∈ P
(
(Ct∆Dt ,nt)

)
: |(Ut ,mUt )|= bs(t)−|(Qt ,nQt )|}

the set of potential sub-offspring is:

Θt =
[

(Ut ,mUt )∈ϒt

{
(Qt ,nQt )∪ (Ut ,mUt )

}
Due to the constrained cardinality of the elements in ϒt , the total cardinality of each

(Ot , ft) ∈ Θt is |(Ot , ft)| = bs(t), which is required to satisfy the constraint that the

generated offspring have a total cardinality B.

It follows that if the submultisets have no intersection: (Qt ,nQt ) = /0, for t ∈ S, then

Θt = ϒt . Or, if (Ct ,mCt ) = (Dt ,mDt ), then (Qt ,nQt ) = (Ct ,mCt ) = (Dt ,mDt ) and hence

ϒt = {} and Θt = {(Qt ,nQt )}, so that the number of sub-offspring is 1. In this case,

the sub-offspring and the submultisets of the parents will be genetically identical, and

if this holds for all t ∈ S, then the offspring will be identical to the parents.

To then generate the complete offspring (O, f ) from the sub-offspring, we combine

uniformly sampled sub-offspring from the sets Θt , for each t ∈ S, by taking the union

of each (Ot , ft):

(O, f ) =
[
t∈S

(Ot , ft)

To generate the set of offspring, two offspring are sampled for each pair of parents

selected by the mating selection scheme.

6.1.5 Mutation

The goal of mutation is to introduce diversity into the population’s gene pool. It works

by moving a current candidate solution, from the newly generated offspring, to a new

candidate solution. Specifically, this process is carried out by considering each gene

of a chromosome for application of a move operator (defined below). The decision of
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whether to apply the operator to any particular gene is a stochastic process governed by

a predefined mutation rate, pm ∈ [0,1]. At the extremes, a rate pm = 0 would mean no

genes are mutated and the offspring are left unperturbed; conversely, a rate of pm = 1

would mean that all genes of all offspring are mutated, which would ultimately have a

destructive effect on the search process.

Mutation is here based on the uniform geometric mutation operator defined by

Moraglio and Poli (2004) with application to fixed-size multisets.

6.1.5.1 Multiset Operator

The mutation operator is defined using the neighbourhood function, N, described in

Section 6.1.3. The neighbourhood was defined using a single unit of symmetric dis-

tance between multisets as a metric, where, for ψ, ∀ψ′ ∈ N(ψ) we have d(ψ,ψ′) = 1.

Based on this, the mutation operator is defined as a function that perturbs a candidate

solution ψ to ψ′ ∈ N(ψ) by approximately uniformly sampling the neighbourhood

N(ψ). Specifically, for each offspring, each of the n genes is sequentially considered

for mutation. If a gene, (σ, t), is chosen for mutation, then σ is replaced by another

path in the path-space, σ′ ∈ Ω,σ′ 6= σ, generated by the path-finding procedure de-

scribed in Section 5.1. Note that to maintain the feasibility of the supply structure, the

t values are not perturbed.

Under these conditions, it is possible for the mutation operator to be applied to

different genes within a candidate solution and for the net effect of these perturbations

to be such that it ends up back as the original candidate; given a large enough solution

space, which is the case here, this is unlikely.

6.1.6 Selection Strategies

As part of an EA, two selection strategies are defined: a mating selection scheme, for

selecting individuals each generation from the current population for mating to produce

offspring, and a replacement strategy, used to choose the new population based on the

current population and the offspring.

6.1.6.1 Mating Selection

For mating selection, a random mating selection operator (Bäck et al., 1997) is em-

ployed, whereby individuals from the population are sampled uniformly randomly
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(with replacement) from the population to be used to generate offspring. Two parents

are needed to produce two children, so that a total of (λ = µ) parents are selected.

As shown in Section 5.4.7, this operator adds no comparisons to the OCBAEA
δ∗ ’s

comparison set C , since the mating selection operator is not competitive (it is not based

on the relative ranking of parents).

6.1.6.2 Replacement strategy

For replacement, a standard elitist (µ + µ) (Plus-selection) EA replacement strategy

(Bäck et al., 1997) is used to determine the next generation from the combined current

population and the children. The elitist selection operator selects the µ best members

of the population and hence allows only super-fit offspring to pass through to the next

generation. Unlike some operators, it ensures that the best candidate solution (based

on observed fitness values) from the combined current population and offspring for

each generation is guaranteed to succeed to the next generation.

As described in Section 5.4.7, this operator adds the following pairs to the OCBAEA
δ∗ ’s

comparison set C :

C ←
µ+(λ=µ)[

i=(λ=µ)+1

{〈(i),(1)〉, . . . ,〈(i),(λ = µ)〉}

The new population is determined from the combined current population and offspring

Pk−1 ∪O, again as detailed in Section 5.4.7, where the top µ candidate solutions are

selected from the total ordering of the current population and the offspring:

Pk = {((λ = µ)+1), . . . ,((λ = µ)+µ)}

6.1.7 Evaluation

This subsection discusses the procedure for evaluating the fitness of candidate solutions

in the context of the NEA. Firstly, it discusses the noisy fitness function used to eval-

uate the quality of chromosomes, and, secondly, it discusses the integrated OCBAEA
δ∗

approach.

6.1.7.1 Noisy Fitness Function

The goal of the fitness function, f : Ψ→ R, is to provide a measure of the quality of

candidate solutions for the MSE problem. For COPs, it is often the case that the objec-

tive function is used directly, e.g. f = G, and for SCOPs, where the exact evaluation
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of individuals is often unavailable, the fitness is commonly defined as a simulation ap-

proximation, e.g. a Monte Carlo estimate, of the exact objective function. As shown

in Chapter 5, an exact evaluation of the solution quality of candidate solutions for the

MSE is in general impractical, and therefore the option of utilising the objective func-

tion directly as the fitness function is unavailable. However, it is possible to define a

noisy fitness function using the approximate objective function (Equation 5.1), so that

fn = Ĝn (6.2)

This fitness function is called the “original noisy fitness function”.

However, preliminary experiments indicate that due to the prevalence of poor qual-

ity, or simply infeasible, candidate solutions in initial populations, this approach is

inadequate for the effective use of the EA. The EA appears to suffer from the oft-cited

problem of generating many infeasible candidate solutions for constrained COPs, and

many poor quality candidate solutions. A common approach for resolving this prob-

lem, which is employed here, is to modify the fitness function for handling problem

constraints.

6.1.7.2 Enhanced Noisy Fitness Function

Many approaches have been suggested for handling constraints with EAs, such as

penalty functions, repair algorithms, etc. (for overviews see Michalewicz (1997);

Coello Coello (2002)). By far the most common approach is the use of exterior penalty

functions6 (Coello Coello, 2002) (herein referred to as ‘penalty functions’). In general,

penalty functions are used to penalise individuals by adjusting their fitness values de-

pending on their constraint violations, with the aim of penalising those candidates with

more violations.

The theory of penalty functions indicates that it is better to include information

about the distance of individuals from the feasible region rather than, say, a count of

the number of violations. Based on this, we introduce an enhanced fitness function

that includes a measure of the distance from the infeasible region towards the feasible

region over all network states7. Note that because the objective function of the MSE

6Exterior penalty functions start with an infeasible solution and attempt to move towards the feasible
region. The fact that they do not require an initial feasible candidate solutions is one of their main
advantages over interior penalty functions, which start with feasible candidates and make it undesirable
(costly) to approach the constraint boundary.

7The enhanced fitness function is defined for network states, however, it could easily be defined for
flow pattern states. This is discussed more later.
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(Equation 4.5) considers feasibility directly, in other words the best candidate solution

is exactly the one with the fewest constraint violations per state over all states, one

approach is to relax the problem constraints and reward candidates according to how

close they are to the feasible region, using, for example, the expected distance to fea-

sibility. For the MSE, the ideal solution has an expected distance of 0 — it is feasible

almost surely across the state distribution, and therefore has an expected distance of

0, almost surely. However, the expected value for a candidate solution is in general

unavailable as it would require enumerating all states. Nevertheless, in a manner sim-

ilar to the method described in Section 5.2, we now propose a method for efficiently

approximating the expected value using the average distance from the feasible region

of a set of i.i.d. sampled network states.

However, rather than adding an additional penalty term to the fitness function as

is customary, the enhanced noisy fitness function is based directly on the general for-

mulation for exterior penalty functions. This fitness function utilises information about

constraint violations and provides an estimate of the expected distance from feasibility.

For the MSE, this information is derived for each network state from flow conservation

constraints (Equation 4.2), and non-negativity and capacity constraints (Equation 4.3).

As a reminder, note that the network model assumes ∀t > T (i.e., beyond the time

frame of interest) that the values for edge properties remain static (for more details, see

Notation & Preliminaries in Section 4.1.1 ). Furthermore, the demand at the network

sink, l, is:

bl(t) =


0 t ∈ [T −1]

−B t = T

0 t > T

Even if flow arrives before T , it implicitly waits until time T . Therefore, if the demand

at the sink node is not satisfied by time T , the flow conservation constraint is violated.

Also, since paths are assumed finite with a maximum number of nodes v, it is assumed

that all flow will eventually reach the sink by some T ′= T +k,k∈N, such that bl(T ′) =

−B.

For the MSE problem, as previously mentioned, constraints include flow conserva-

tion constraints (Equation 4.2), and non-negativity and capacity constraints (Equation

4.3). For defining the fitness function here, we split these constraints into the two

groups: equalities and inequalities, and we transform the constraints to a suitable form

for use by the enhanced fitness function.
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For the inequalities, there are a total of w constraints, split between capacity and

non-negativity constraints, such that w = w1 +w2, where w1 is the number of capacity

constraints, and w2 the number of non-negativity constraints.

For use with the penalty function, the capacity constraints (Equation 4.3) are con-

verted to inequalities in the form:

xi j(t)−µi j(t)≤ 0,∀(i, j) ∈ E ,∀t ∈ [T + k]

which states that the flow along an edge should not exceed the capacity of that edge. We

denote the left-hand side of each constraint, given a candidate solution ψ and network

state ξ, by the function gk(ψ,ξ), where k = 1, . . . ,w1.

Similarly, the non-negativity constraints (Equation 4.3) are transformed to inequal-

ities:

−xi j(t)≤ 0,∀(i, j) ∈ E ,∀t ∈ [T + k]

which states that flow along an edge should not be negative. Again, we denote the left-

hand side of the inequality by the function gk(ψ,ξ), with k = w1 +1, . . . ,w = w1 +w2.

All MSE equality constraints, of which there are a total of z, involve flow con-

servation constraints (Equation 4.2). These constraints are transformed into equality

constraints in the form:(
∑

j∈Γ+1(i)
xi j(t)− ∑

j∈Γ−1(i)
∑

{t ′|t ′+τ ji(t ′)=t}
x ji(t ′)

)
−bi(t) = 0,∀i ∈ V ,∀t ∈ [T + k]

which states that the sum of the flow entering and that leaving a node should equal the

supply/demand at the node. For a candidate solution ψ and network state ξ, we denote

the left-hand side of the equation by the function hk(ψ,ξ), with k = 1, . . . ,z.

Then based on the general formulation of the penalty function from Coello Coello

(2002), for a candidate ψ and a network state ξ, the total distance from feasibility is

given by the function J : Ψ×Ξ→ (−∞,0] where

J(ψ,ξ) =−
[ w

∑
k=1

max(0,gk(ψ,ξ))+
z

∑
k=1
|hk(ψ,ξ)|

]
If a candidate solution is feasible on a network state then J(ψ,ξ) = 0.

Then the expected distance from feasibility for a solution ψ is given by

E[J(ψ, ξ̄)] = ∑
ξ∈Ξ

J(ψ,ξ) ·P(ξ)

If a candidate solution is feasible on all network states E[J(ψ, ξ̄)] = 0, then by the

objective function of the MSE problem (Equation 4.5), we have that G(ψ) = 1 (see

Section 4.3).
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Based on this, the enhanced fitness function is defined

f̂ (ψ) = E[J(ψ, ξ̄)]

However, evaluating this value exactly would require a full enumeration of all network

states, which in general is impractical (as discussed in 5.2). Therefore, the fitness

value for a solution is estimated using a set of i.i.d sampled network pattern states

ξi, i = 1, . . . ,n from Ξ according to P, by the unbiased MC estimator:

f̂n(ψ) =
1
n

n

∑
i=1

J(ψ,ξi)

By the law of large numbers, estimates will converge to the expected value as n→ ∞.

The variance of f̂ (ψ) can be estimated by the sample variance:

ŝ2
n(ψ) =

1
n−1

n

∑
i=1

(J(ψ,ξi)− f̂n(ψ))2

We term the function f̂n as the “enhanced noisy fitness function”, and the goal of the

NEA is now to solve the proxy optimisation problem:

max
ψ∈Ψ

f̂n(ψ)

Note, also, that it is possible to concurrently use the i.i.d. sample of network

states to evaluate the original noisy fitness function (Equation 6.2) value, fn, since

if J(ψ,ξ) = 0 then IFψ
(ξ) = 1.

While we have defined the enhanced (noisy) fitness function for network states,

we can analogously define it for flow pattern states. In fact, in practice we use it with

flow pattern states, due to the same reasons as discussed in Section 5.2.4. The follow-

ing algorithm describes how to compute the enhanced fitness function for a candidate

solution for a single flow pattern state.

Based on the approach for sampling from the flow pattern state distribution (Al-

gorithm 5.2.3), Algorithm 6.1.2 provides a high-level description of the procedure for

evaluating the distance from feasibility for a single sampled flow pattern state.

The algorithm functions almost identically to Algorithm 5.2.3, except that rather

than returning a sampled flow pattern state, it returns the distance from feasibility for

a single sampled flow pattern state. Similar to Algorithm 5.2.3, the set Z maintains

the current joint flow given the state realisation, through pairs of edges and departure
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times. Again, the set R̄i jt stores the pairs of paths and departure times associated with

the current joint flow for edge (i, j) at departure time t.

Algorithm 6.1.2: SAMPLESTATEDISTANCEFROMFEASIBILITY(N ,ψ = (R,m))

c← 0

R̄i jt ← /0,∀(i, j) ∈ E ,∀t ∈ [T ]

Z←{((i1, i2), t0)|i1 = s, i2 ∈ σ,(σ, t0) ∈ R,m((σ, t0)) > 0}
R̄i jt ←{(σ, t0) ∈ R|i = ik, j = ik+1 ∈ σ,m((σ, t0)) > 0},∀((i, j), t0) ∈ Z

while Z 6= /0

do



((i, j), t)← argmin((i′, j′),t ′)∈Z t ′

if t < T

then t∗← t

else t∗← T

τ← SampleProbabilityDistribution(τi j(t∗),ρi j(t∗))

t ′← t + τ

if j = l and t ′ > T

then c← c− (t ′−T )

µ← SampleProbabilityDistribution(µi j(t∗),βi j(t∗))

x̂← ∑(σ,t0)∈R̄i jt
m((σ, t0))

c← c−max(0, x̂−µ)

if j 6= l

then


Z′←{(( j, j′), t ′)| j = ik, j′ = ik+1 ∈ σ,(σ, t0) ∈ R̄i jt}
R̄ j j′t ′ ← R̄ j j′t ′ ∪{(σ, t0) ∈ R̄i jt | j = ik, j′ = ik+1 ∈ σ},∀(( j, j′), t ′) ∈ Z′

Z← Z∪Z′

Z← Z\{((i, j), t)}
return (c)

The algorithm has similar worst-case computational complexity to Algorithm 5.2.3,

O(v2T (D + H)), except that the time frame of interest is now unbounded. The time

horizon is unbounded since it will now evaluate (and penalise) infeasible solutions as

well; however, the maximum length of a path is finite, and limited by the number of

nodes in the network, v. In practice, it is necessary to put a limit on the unbounded

time horizon, and in this work it is assumed that each edge’s travel times are finite and

less than T , so that worst-case complexity is O(v2(vT )(D+H)) = O(v3T (D+H)).
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The enhanced (noisy) fitness function evaluates fitness values that enable the NEA

to better discriminate between candidate solutions than the original (noisy) fitness

function, in particular for poor quality candidates. It also allows the NEA to exploit po-

tentially favourable adaptations that might be present in infeasible candidate solutions

while directing the search towards the feasible region.

Note that an additional difficulty can occur due to the use of small sample sizes. A

fitness estimate based on few samples may under or overestimate the solution quality

of the individuals and ultimately reduce the effectiveness of the search, particularly

for candidate solutions with high quality estimates. Therefore, to maintain competi-

tiveness within the population additional samples, n̄0, are allocated each generation to

individuals with fitness values f̂n(·) = 0.

6.1.7.3 OCBAEA
δ∗ for the MSE

As previously discussed, due to the uncertainty in the evaluation of each candidate

solution, the statistical ranking procedure OCBAEA
δ∗ (detailed in Section 5.4.9) is in-

tegrated with the NEA. The NEA that utilises the OCBAEA
δ∗ procedure is called the

NEAOCBA. In this context, the ranking procedure is used to guarantee at some level of

confidence that the order information required by the NEA is correct, ultimately aim-

ing to reduce the effect of noisy fitness evaluations on the search process. The ranking

method is used each generation, after the offspring have been generated by crossover

and perturbed through mutation, and before the replacement operator is applied, as

shown in Algorithm 6.1.1. Once the ranking procedure has completed the NEA cycle

continues as normal.

The ranking procedure has a number of assumptions that must be met for its effec-

tive use. Two important assumptions to address are: one, that fitness samples for each

candidate solution are independent and normally distributed, and, two, that equality of

fitnesses does not occur.

The first assumption that the fitness values are independent and normally dis-

tributed is important for the effective use of the OCBA method. If this condition is not

met could lead to potentially poor, or inaccurate, sample allocations, and hence reduce

the efficacy of the procedure. Using the enhanced noisy fitness function, by appealing

to the central limit theorem, the assumption of normality is approximately satisfied for

large sample sizes. For the initial sample sizes of use here, ≥ 30, in early EA genera-

tions, the fitness values are generally well approximated by normal distributions, and

better approximated by Student’s t distributions due to longer tails (as shown, for ex-



6.1. Noisy Evolutionary Algorithm 129

ample, by the Q-Q plots in Figure 6.1). However, as the population’s quality increases,

the individual fitness distributions begin to right-skew as the number of constraint vi-

olations decreases — the candidate solutions are of higher quality. In fact, the worst

right-skew occurs for candidate solutions with feasibility almost surely, that is, those

that have no constraint violations — the ideal solution for the MSE. However, to what

extent the skew effects the performance of the ranking procedure is uncertain.
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Figure 6.1: Normal Q-Q Plots of fitness distributions for a typical candidate solution

in offspring population for respective generations. Taken from results of NEAOCBA for

instance 13 of PC3 from the experimentation detailed in Section 7.2.3.

The second issue is whether equality of fitness values can be assumed not to occur.

Two cases may arise that increase the likelihood of equality of fitnesses. The first is

due to the fact that identical genotypes may exist within the population. Identical geno-

types have equal expected fitness values, thus any variation in their estimated fitness

is due to sampling variation, and as the population converges in later EA generations,
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these cases are more likely to occur. To prevent this from causing issues with the

ranking procedure, when two genetically identical individuals exist in the population

they are not compared using the statistical ranking procedure, that is, their respective

comparison pair is not added to the set C .

The second case occurs when different genotypes have the same expected fitness

value. Again, in the later generations of an EA’s run this is more likely to occur as

candidate solutions become more genetically similar. However, unlike the previous

case, in general it is impractical to determine whether two candidates with different

genotypes have the same fitness value — this would require evaluating the expected

fitness value. Therefore, no steps are taken to explicitly prevent this case arising, but it

is assumed to be quite unlikely to occur in general.

An additional concern relates to the range of values for the enhanced noisy fitness

function. This fitness function requires that the ranking procedure also works with

candidate solutions that have estimated fitness values of 0 (and variance of 0). While

additional samples are allocated to very fit individuals to maintain competitiveness

in the population, this case may still arise, and since there is no measurable way to

determine the uncertainty in the individual’s sampled fitness, the proposed solution

is to prune comparisons from C that involve these individuals. That is, for example,

for an individual i′ that has an observed fitness of 0, all comparisons involving i′ are

pruned, C = C\{〈i, j〉 ∈ C |i = i′ ∨ j = i′}, before the ranking procedure is executed.

In general, this is more likely to occur in later EA generations due to the prevalence of

good candidates; however, as previously mentioned, additional samples are allocated to

individuals with high fitness values to reduce the chance of overestimating the quality

of good candidate solutions.

6.1.8 Stopping Criteria

An additional requirement of an EA is stopping criteria, or termination conditions,

that define the conditions under which the search process terminates. Typical criteria

include the following, often used in combination: terminate once a maximum number

of generations have passed; terminate on convergence, that is, stop if the population

converges to a single fitness value or genotype; or terminate if the optimal solution has

been discovered, assuming it can be identified. Of these three criteria, only the first

is applicable, since in general optimal solutions cannot be identified for the MSE, and

due to the use of a noisy fitness function, convergence to a single value is unlikely.
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Furthermore, due to the need to compare fairly the NEA approach with a random

search algorithm (described in Section 6.2), a simple, common termination criteria

applicable to both algorithms is desired. Therefore a number of generations is chosen,

κ, which can be utilised by the algorithms.

Determining an appropriate κ value for effective search is problem (instance) de-

pendent, determined by, for example, the size and complexity of a particular instance.

It is unlikely that a single value is suitable for all problem classes. For example, in-

stances with a large search space may require a larger number of generations than those

with small spaces. Suitable values for κ are discussed in Chapter 7.

6.1.8.1 Final Selection of Best

As described in Section 3.4.3 of the literature review, in this work EAs are seen as

‘Optimisers’, so that the result of single EA run is taken to be the best candidate of the

final population. However, due to the uncertainty in the fitness evaluation of candidate

solutions, there is no guarantee that the individual with the best observed fitness values

is the true best of the final population. Therefore, at the end of the algorithm’s run

a statistical selection procedure, the OCBA for the selection of the best (discussed in

Section 5.4.4), is employed to guarantee with a predefined level of confidence that the

returned individual is the true best candidate of the final population.

As previously discussed (in Section 3.4.3), a more general approach to the problem

of returning the best solution discovered by the search procedure is given by Boesel

et al. (2003). In this case, the EA is seen as a ‘Generator’, not an ‘Optimiser’. The

proposed method requires storing all discovered candidate solutions and then running

a post-search statistical selection method. Since this set of candidate solutions will

most likely include many clearly inferior candidate solutions, these are filtered using a

screening procedure before applying the selection method. We suggest that in practice

it is unnecessary to include all points explored due to the prevalence of poor quality

candidates at least in early iterations, and that in later generations individuals tend to

be very similar or even identical, so that we focus only on the final population of the

EA’s run. Also, with the use of a high confidence level for the generational ranking

procedure, specified by α∗, the probability that the best candidate based on observed

fitness values survives each iteration is relatively high. This approach could easily be

extended to, say, the last g generations; however, it is likely that the last few generations

contain many of the same individuals and, furthermore, it is desired to keep the number

of individuals relatively low for the selection procedure.
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It is likely that the final population will consist of many genetically similar individ-

uals, and the closer the quality of candidate solutions the greater the effort required to

discriminate between them. Therefore, one approach to reduce the required effort for

the selection is to prune individuals with the same evaluation; however, because eval-

uation is uncertain it is not possible to know whether two candidates have the same

evaluation with certainty using finite resources. Another approach, given that the al-

gorithm is expected to converge upon certain areas in the solution space, is based on

the observation that a subset of those difficult comparisons are between chromosomes

that are genetical identical: those that have the same genotype, but different estimated

values due to the sampling process. Therefore, as before, genetically identical indi-

viduals are not compared against each other. For the selection, the OCBA procedure

for the selection-of-the-best problem (detailed in 5.4.4) is executed in order to select

the best candidate solution from the final population with a target confidence level.

Furthermore, for the final selection, individuals are compared based on original noisy

fitness function values (Equation 6.2), not fitness values using the enhanced noisy fit-

ness function.

The set of parameters for the selection method are listed in Table 6.1. To evaluate

an accurate estimate of the fitness of the individuals of the last population, a large initial

sample size is utilised. A small indifference-zone is used to allow for good precision in

the comparisons (see 5.2.2 for details on the issues of precision). Furthermore, a target

confidence level 1−0.01 = 0.99 is utilised to guarantee with a high level of confidence

that the returned solution is actually the best of the final population. The remaining

parameters, q and θ, were set given the recommendations discussed in Section 5.4.12.

Table 6.1: Final Selection Parameters

Parameter Value Description

n̄0 1000 initial sample size

q 10 number of individuals to select each stage out of k

θ 10 number of additional samples for each of q individuals

δ∗ 0.01 indifference-zone

α∗ 0.01 target confidence level: 1−α∗ = .99
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6.1.9 NEAMEAN

To evaluate the effectiveness of the NEAOCBA procedure, specifically the OCBAEA
δ∗

procedure for tackling noisy evaluations, we define an additional NEA approach, called

the NEAMEAN , that utilises a predefined, static resampling rate instead of a ranking

procedure. The NEAMEAN approach takes a predetermined number of samples of the

enhanced noisy fitness function for each individual and compares the candidate solu-

tions based solely on their observed fitness values. In the literature this approach is

known as explicit averaging of noise over time (as discussed in Section 3.4.2). The

initialisation of the population is done using the same seeding as the NEAOCBA, and

the final selection procedure described above is also used.

The NEAMEAN utilises the same input parameters as the NEAOCBA procedure,

where applicable.

6.1.10 NEA Parameters

The NEA approach has a number of input parameters, as shown in Table 6.2. For the

integrated approach, NEAOCBA, the OCBAEA
δ∗ has additional parameters listed in Table

5.3, in Section 5.4.12.

Table 6.2: NEA Parameters

Parameter Range Comment

µ N Population size

λ N Offspring size, fixed λ = µ

κ N Generations

pc [0,1] Crossover Rate, fixed pc = 1

pm [0,1] Mutation Rate

6.2 Random Search Algorithm

As described in the Section 4.4, it is possible to evaluate a lower bound on solution

quality for the MSE by a point, or interval, estimate of any candidate solution for the

MSE. However, a bound based on such an approach may not be particularly useful. In

order to establish a more informative bound, and therefore provide a baseline reference
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for the NEA, a simple random search algorithm (RSA) is proposed. The results of the

RSA provide a baseline for the NEA’s performance and give some indication of the

fitness distribution of the solution space.

In order to provide a fair baseline for the performance of the NEA, the RSA is

designed identically to the NEAOCBA approach, except that the crossover and mutation

operators are, effectively, disabled. The algorithm samples uniformly random candi-

date solutions, again using the procedure described in Section 5.1.3, from the search

space and compares them using EA selection in order to find the current best, but it

does not use the candidate solutions to bias the sampling in order to improve the search,

as per the NEA, i.e. it performs no hill-climbing. In practice, to differentiate between

the algorithms, for the RSA, the crossover and mutation rates are set to 0 and 1, re-

spectively. Using these parameter values, the mating population will pass through to

the offspring population without undergoing crossover — that is, no offspring are gen-

erated using the crossover operator; and they will then undergo full mutation, which is

equivalent to generating random points in the solution space. Once again, no informa-

tion is used from the current population in generation of the offspring. The offspring

are then ranked against the current population of best candidates using the OCBAEA
δ∗

procedure, as with the NEAOCBA. The enhanced noisy fitness function of the NEA is

used for evaluating candidate solutions, and, as before, a final selection is also run on

the last population of the RSA. Given the complexities of evaluating and comparing

solutions in stochastic environments, this approach allows for a fair comparison be-

tween the NEA approaches and the RSA, in particular highlighting the performance of

the crossover and mutation operators.

6.2.1 Parameters

As with the NEA, a number of input parameters are required for the RSA. The param-

eters in common with the NEA are listed in Table 6.2. However, several parameter

values differ from the NEAOCBA approach; these are given in Table 6.3.

Table 6.3: RSA Input Parameters that differ from NEAOCBA

Parameter Value Comment

pc 0 Crossover Rate

pm 1 Mutation Rate



6.3. Summary 135

The approach also utilises identical parameter values for the final selection, as listed

in Table 6.1.

6.3 Summary

In this chapter, given the complexity of the MSE problem in general, a metaheuristic

approach based on a (µ+λ) EA combined with the OCBAδ∗ procedure defined in the

previous chapter (in Section 5.4.9), called the NEAOCBA, was proposed for solving the

MSE problem.

The chapter details the various components of the NEA approach and provides

justification for several design decisions. The NEA comprises of the solution repre-

sentation, the initialisation method, the neighbourhood function, the genetic operators:

crossover and mutation, the selection schemes: mating and replacement strategies, the

evaluation method, including the fitness function and the integrated ranking method,

and, finally, the stopping criteria and final selection procedure.

To provide a comparison with the NEAOCBA approach, two additional procedures

were also defined: an NEA variant, called the NEAMEAN , that uses a predefined, static

resampling rate for evaluating candidate solutions, and a simple random search algo-

rithm, the RSA, that provides a baseline reference for the NEA approaches.

The following chapter details the experimentation carried out to evaluate the pro-

posed approaches.





Chapter 7

Experimentation and Analysis

This chapter details the experimentation carried out for evaluating the proposed so-

lution approaches for the MSE problem. It describes some implementation details,

the experimental procedure, the preliminary experiments run for calibrating the ap-

proaches, and the main evaluation. Finally, it provides an analysis and discussion of

the results, highlighting a number of emergent issues.

7.1 Implementation

All algorithms were implemented in Java and compiled using the Java 1.5 SDK from

the Oracle Corporation1. Pseudorandom number generation within the solution ap-

proaches was implemented using the Mersenne Twister implementation of the CERN

Colt library (version 1.2.0)2. All numerical computing, e.g. evaluating the Student’s t

cumulative distribution function, was also implemented using the Colt library.

7.1.1 Problem Instance Generator

For evaluating the proposed solution approaches, a problem instance generator was

implemented to generate parameterised instances of the MSE due to the lack of an

existing generator or reference instances for the MSE. We now describe a number of

features of the generator, including the algorithms for generating topological graphs

and network edge properties. Firstly, the topological graph is generated, then, sec-

ondly, the network is “populated” with network edge properties.

1Java can be found here: http://www.java.com.
2The Colt library can be found here: http://acs.lbl.gov/software/colt/.
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The generation of problem instances is a pseudorandom process, and here in-

stances are generated using pseudorandom numbers (seeds) provided by the Linux

/dev/urandom utility3.

7.1.1.1 Graph Topology

Similar to a series of works (Miller-Hooks and Patterson, 2004; Opasanon, 2004;

Opasanon and Miller-Hooks, 2008; Miller-Hooks and Sorrel, 2008), the underlying

graphs are parameterised by a number of nodes, v, and a maximum and minimum in-

and out-degree for each node. The algorithm for generating the graphs is based on the

procedure described by Newman (2003).

Briefly, for each graph to be generated, a random source, s, and sink, l, are selected,

s 6= l, and a degree sequence is uniformly randomly generated. A degree sequence con-

sists of a number of out-edges, chosen from within the range specified by the minimum

and maximum node degree input parameters, for each node except the sink (which has

no out-edges). Based on the degree sequence, pairs of nodes, i and j, are selected uni-

formly randomly and an edge (i, j) is added to the graph, and the degree count of node

i is incremented, given the following conditions hold:

1. The head node of the edge is not the sink, i 6= l;

2. The target node is not the source, j 6= s;

3. No edge already exists between the nodes, (i, j) 6∈ E ;

4. The head node is not the source and the target node is not the sink, i 6= s and

j 6= l;

5. The head node’s out-edge count is less than the value of the out-edges in the

degree sequence;

6. The target node’s in-edge count is less than the input maximum in-degree value.

For more details on these constraints, see the Notation and Preliminaries section (4.1).

The process stops once the out-degree sequence has been satisfied for each node.

3/dev/random and /dev/urandom provide interfaces to the Linux kernel’s random number gen-
erator. /dev/urandom is the unlocking counterpart to /dev/random that does not block to wait for
a given level of entropy in the entropy pool. It is nevertheless regarded as safe for most crypto-
graphic purposes, which, in general, require a high level of security. For more information, see,
http://www.kernel.org/doc/man-pages/online/pages/man4/random.4.html

http://www.kernel.org/doc/man-pages/online/pages/man4/random.4.html
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This method of generating random graphs for a given degree sequence generates

graphs uniformly randomly from the ensemble of graphs for a particular degree se-

quence (Newman, 2003). Here the method samples graphs from all possible degree

sequences for a given in- and out-degree range, and for all random source-sink pairs.

A further constraint on the graphs is that once generated, they are checked for s− l

connectedness, that is, that there must be at least one s− l path in the graph. This is

checked using a breadth-first graph search approach (Russell and Norvig, 2003). If

no s− l path is found, then there are no feasible solutions, and so a new topological

graph is generated and checked again for connectedness, and so on. This method of

generating topological graphs thus samples from the subset of graphs that have at least

s− l connectedness.

The problem classes defined for the experimentation, described in the rest of the

chapter, concern graphs of 20 and 30 nodes; some average properties of the graphs

generated for the experiments are given in Table 7.1.

Table 7.1: Measured Properties of Generated Graphs

n = 20 n = 30

Property Mean Std. Dev Mean Std. Dev

Number of edges 85.46 7.38 130.22 9.09

In- & out-degrees 4.5 0.39 4.49 0.31

Number of paths 1,324,325.23 2,126,378 19,312,665.02 2,865,306

7.1.1.2 Edge Properties

The edge properties for the STV Networks are also pseudorandomly selected given

input ranges. Each network edge property, that is, travel times and capacities, for each

time interval, t ∈ [T ], is modelled by a discrete probability distribution (for more details

see Section 4.1). The number of elements in the distributions (the size of the supports),

D, the number of capacity values, and H, the number of travel time values, and the

range of these values are input as parameters. The number and range of values are

assumed to be constant for all edges and time intervals. Furthermore, all distributions

are assumed to be independent both over time and over space.

The method for generating random edge property probability distributions is based

on that described in (Miller-Hooks and Mahmassani, 1998). To generate a distribution
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for a particular edge property for a specific time interval, a number of elements, either

D or H, are uniformly picked without replacement from the permissible range of values

for that property, and each is assigned a real number within the range [0,1]. The values

are then normalised so that the sum of the real numbers (probabilities) is equal to 1.

This procedure is executed for all edges over time for capacities and travel times.

7.2 Experimentation

The goal of the empirical investigation detailed here is to study the performance of

the NEA proposed in the preceding chapter for finding solutions to the MSE prob-

lem. However, as explained previously, optimal solutions for the MSE problem are in

general unavailable, and the complexity results of Section 4.3.3 suggest that it is un-

likely that a general, efficient algorithm can be proposed for solving the MSE problem.

Therefore, this section aims to investigate the claim that while the main approach,

the NEAOCBA, cannot guarantee optimal solutions, it can still find useful solutions,

where useful solutions are those that are of reasonable quality and are found within

reasonable time. These criteria are established by comparing the performance of the

NEAOCBA against a baseline approach and upper bounds on optimal solutions for a

number of sub-classes of the MSE problem. Upper bounds are established through the

stochastic upper bounding method, the UB procedure, described in Section 4.4, and

the baseline by the random search algorithm, the RSA, described in Section 6.2.

Furthermore, to the knowledge of the author, the combined EA and OCBA frame-

work of Schmidt (2007), herein implemented (and extended with an optimisation and

a heuristic) as the NEAOCBA, has yet to be evaluated over a whole EA run, only for a

single generation. Therefore, a further goal of the experimentation is to study the per-

formance of the NEAOCBA over whole runs (generations > 1), investigating the effect

of different algorithm parameterisations on performance. For investigating the influ-

ence of the OCBA method in particular, a NEA variant is also utilised, the NEAMEAN

(described in Section 6.1.9), that uses a predefined resampling rate for tackling the

noise. The NEAMEAN is used to compare against the NEAOCBA approach as a baseline

method for handling noisy fitness functions, since it uses only the initial sample size

for evaluating the fitness of individuals. To provide an additional baseline comparison

with both NEA approaches, the RSA (described in Section 6.2) is also used.

The experimentation was carried out on a 16-core PC running Linux (kernel version

2.6.18) with 48GB RAM, where each CPU is an Intel Xeon 2.67GHz. Despite being
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a multi-core machine, each independent process was restricted to a single thread, did

not utilise any parallel capabilities, and was limited to 2GB RAM. The seeding of

algorithm pseudorandom number generators for experimentation was done using the

/dev/urandom utility.

This next section details the design for the experimentation, including the classes

of problem to be investigated, the performance criteria of interest, and the experimental

procedure.

7.2.1 Experimental Design

The general experimental aim is to evaluate the algorithms on a number of different

sub-classes of MSE problem, which we call a problem class and is defined by a set

of parameter values that implicitly define a (possibly infinite) number of individual

MSE problems. For each problem class, instances can be generated by the instance

generator described above to which the algorithms can then be applied. The algorithms

are compared based on their performance per problem class (that is, the performance

of each algorithm on individual problems drawn from each of the problem classes

provides some comparative indication of its overall “quality” for that class), where

performance is defined in terms of solution quality, computational time, and the total

number of fitness samples required.

The following subsections detail the problem classes and performance criteria of

interest, followed by the experimental procedure for this investigation.

7.2.1.1 Problem Classes

Given the model detailed in the Notation and Preliminaries section (4.1), there are an

infinite number of potential problem classes. For the purposes of experimentation, it

is therefore necessary to restrict the problem classes to a small number of particular

interest. The motivation for selecting a particular collection of classes could be, for ex-

ample, because the real-world problem provides restrictions or constraints on the struc-

ture of problem instances, or perhaps in order to exclude trivial or over-constrained

classes, e.g. problem classes for networks with, say, 2 nodes may not be informative.

Furthermore, as is common in the study of algorithms, if algorithms perform well on

worst-case instances, it is not unreasonable to expect them to perform well on best- or

average-case instances.

The experimental design proposed herein is based on that of several works (Miller-
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Hooks and Patterson, 2004; Opasanon, 2004; Opasanon and Miller-Hooks, 2008; Miller-

Hooks and Sorrel, 2008), which describe the application of network flow and meta-

heuristic algorithms on a number of flow problems (as described in the literature re-

view). In particular, Opasanon (2004) and Miller-Hooks and Sorrel (2008) evaluated

metaheuristic approaches on similar hard flow problems in STV Networks. In com-

mon with these works, here the problem classes of interest are chosen in order to

generate non-trivial and reasonably hard problem instances (although not so hard as to

require more time and resources than are available for experimentation). The goal is to

demonstrate the value of the proposed algorithms in finding useful solutions for these

instances.

The specific restrictions on parameters are based on the domain of interest: emer-

gency movement in the built environment. As discussed in the literature review, Sec-

tion 2.4, for this domain, network models represent building circulation systems, and

the particular optimisation problem of interest represents the task of planning effi-

cient emergency movement in the built environment during, for example, a fire hazard

scenario. An example restriction, adopted here, is that usually in a building the con-

nectivity of particular points, modelled by nodes, e.g. doors and intersections between

corridors, is low, and hence the connectivity of nodes for the generated graphs is also

low. Also, the availability of supply is limited to model the movement of units at the

beginning of the time horizon (as described in (SFPE, 2002)), for example, by taking

t = 0 as the time an alarm sounds. However, since units often do not immediately be-

gin evacuating, the time of departure of supply is modelled by the range t ∈ [0,2]. For

edges, travel times are modelled using a range of possible values to represent the notion

that some edges require a short time to traverse while others take longer, and capacities

are limited to suggest that in general passageways, e.g. corridors and stairwells, may

have varying entry capacity. Note that here a capacity value of 0 is included in the

range of values to model the possibility of untenable conditions, that is, that particular

sections of the building may not be accessible or tenable for use.

Given that the generation of problem instances involves some randomisation, in

particular the construction of the underlying topological graphs, for each problem class

a huge number of distinct networks can be generated. Due to this freedom, the varia-

tion in the underlying graph structures effectively means that to perform well in gen-

eral, algorithms cannot rely on (and hence exploit) the existence of specific problem

structures. In reality, even considering the restrictions above, a building may only have

one or two stairwells, and therefore it is likely to have substantially fewer feasible



7.2. Experimentation 143

paths than any randomly generated instances. Still, these generated instances provide

a convenient first stop for evaluating new algorithms, and in a sense represent worst-

case scenarios. Nevertheless, future work should investigate structured networks, since

these networks may exhibit common or exploitable network properties (that is, com-

mon characteristics of buildings), in particular the structure of the topological graph.

This is discussed in more detail in the Future Work section (8.4) of Chapter 8.

Based on these considerations, for the experimental work described herein, a num-

ber of the network model parameters’ values or ranges were fixed, as listed in Table

7.2. The parameter values that are not fixed are listed in Table 7.3. The chosen values

aim to give a fair representation of potential problem classes, but also represent some

trade-off with the computational effort required to solve instances. The purpose of this

experimentation is to explore the potential of the proposed solution approaches. For

specific applications, further experimentation is necessary, and this is discussed in the

Future Work Section 8.4. Then the set of all problem classes for evaluation is given by

the product of the possible values for each parameter in Table 7.3. The total number of

problem classes is 23 = 8, with parameter values and corresponding labels, as shown

in Table 7.4.

Table 7.2: Fixed Problem Class Parameters

Parameters Values/Ranges Comments

E[|Γ+1/−1(·)|] E[2,7] = 4.5 Expected in- and out-degree

S = {t ∈ [T ]|bs(t) > 0} {0,1,2} Supply availability

D 2 Number of capacity values

H 2 Number of travel times values

µd
i j(t) [0,20] Edge capacity values

τh
i j(t) [1,15] Edge travel time values

Table 7.3: Variable Problem Class Parameters

Parameters Values Comments

v {20,30} number of nodes

T {300,600} peak time horizon

bs(t) {5,10} supply at t ∈ {0,1,2}
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Table 7.4: Problem Classes

Problem Class n T bs(t)

PC1 20 300 5

PC2 20 300 10

PC3 20 600 5

PC4 20 600 10

PC5 30 300 5

PC6 30 300 10

PC7 30 600 5

PC8 30 600 10

7.2.1.2 Performance Criteria

To judge the performance of the approaches, two criteria are of particular interest: the

quality of the solutions found and the cost of finding them. Due to stochastic elements

in both the generation of problem instances and the NEAs, to evaluate the performance

of algorithms for a problem class we look to the expected solution quality given the

MSE’s problem objective (Equation 4.5) and cost for different configurations of the

algorithms on each problem class. In general, however, it is impractical to evaluate

over all possible problem instances for a problem class, and over all realisations of

an algorithm. In this case, the expected performance is estimated using a sample of

problem instances and algorithm runs.

For solution quality, for the EA-based approaches, the result of a single execution

is judged by the best observed candidate solution of the final generation. Since the

approaches are stochastic algorithms, independent runs on the same instance are ex-

pected to produce different results. In this case, the sample average over a number

of runs on a problem instance can be used to assess the performance of an algorithm.

For the stochastic algorithms using noisy fitness functions, the final result returned by

a single run is assumed to have a low, if not negligible, uncertainty in the evaluation

value of the individual. This is reasonable since the returned result is obtained from

a final selection procedure that utilises a high initial sample size (n̄0 = 1000) and a

high target confidence level (α∗ = 0.01), as shown in Table 6.1; the assumption of low

uncertainty is therefore taken to be satisfactory for the purposes of analysis.

For measuring the cost of finding the returned solution, computation time and the
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total number of fitness samples evaluated are used to gauge the required effort. For the

EA-based approaches, the computation time of the algorithm is taken to include the

initialisation of the population, the EA loop and the final selection. It does not include

however, I/O times, that is, time for reading in problem instances. However, due to

known limitations of using computation time as a performance metric4, to provide a

more balanced view we measure both the computational time of each independent run

of the algorithm and the total number of fitness function samples. The total number

of fitness samples consists of a count of all samples of individual fitness distributions,

including those sampled during the final selection. Although fitness sampling is not

the only computationally demanding part of the algorithms, e.g. initialisation of the

population can also require a nonnegligible effort, over a whole EA run it dominates.

Therefore, we expect computation time to be positively correlated with the total num-

ber of samples.

For this two-level experimental approach, where we have a distribution of problem

instances per class and a number of stochastic algorithms, a common procedural ques-

tion is: ‘How many instances, how many runs?’. In other words, for a fixed amount

of computation, where should the effort be spent in order to get a good estimate of the

expected performance of an algorithm: investigating more problem instances, or on

more algorithm replications per instance? Birattari (2009) investigated this question

and proved that the minimum variance estimator for estimating the expected cost in

this scenario for a fixed number of executions, k, is a single run of a metaheuristic on k

problem class instances. This approach is adopted here, and a simple validation of the

results of this approach is reported in Section 7.2.3.3.

7.2.1.3 Experimental Procedure

The sampling of instances of a problem class is a stochastic process due to the inclu-

sion of stochastic parameters in the model. Therefore, in order to gauge the expected

performance of algorithms across a class, the algorithms were evaluated on a set of

i.i.d. sampled instances, termed meta-replications. Furthermore, due to Birattari, only

a single algorithm replication was executed on each problem instance. The parameters

for the experimental procedure are listed in Table 7.5.

4Computation time does not provide a wholly satisfactory objective performance measure because
in practice it can be influenced by a number of factors, including, but not limited to, programming skill,
hardware and processor load.
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Table 7.5: Experimental Parameters

Parameter Description

RPC Number of instances per class (meta-replications)

RAlg Number of algorithm runs per instance (replications)

7.2.2 Parameter Tuning

Before the main experimentation, the tuning of the parameters of the main algorithms

was carried out in order to find parameter configurations that would lead to robust

algorithm performance, where robust is taken to mean finding reasonable quality so-

lutions in reasonable time. Here the solution approaches each require a number of

input parameters, which are shown in Table 7.6, where the × symbol indicates that

the parameter is used by the algorithm. Since the RSA and NEAMEAN are used to

provide a baseline reference for the NEAOCBA’s performance, the parameters are tuned

for the latter and then where appropriate the same values are used by the competing

algorithms.

Table 7.6: Algorithm Input Parameters

Parameter Description RSA NEAMEAN NEAOCBA

µ Population size × × ×
λ Offspring size × × ×
κ Number of Generations × × ×
pc Crossover Rate × × ×
pm Mutation Rate × × ×
n̄0 Initial sample size × × ×
q Individuals for allocation × ×
θ Additional sample size × ×
δ∗ Indifference-zone × ×
α∗ Significance level × ×
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7.2.2.1 Experimental Procedure

For the parameter tuning, a number of configurations were evaluated in order to choose

the parameter set that leads to robust algorithm performance. In order to reduce the ef-

fort required and amplify the difference between configurations, the parameter config-

urations were evaluated on the same set of independently generated problem instances

per problem class. Furthermore, given the number of parameter configurations and the

computation time required to run the algorithms, the evaluation samples only a small

number of problem instances. Due to this small sample size, the results are thus only

indicative of the best configuration. To gauge the performance of the configurations,

the stochastic upper bounding procedure was also used, with a sample size of 200. The

set of values for parameters for the experimental procedure are shown in Table 7.7. In

other words, for each problem class, 10 problem instances would be generated, with

each algorithm run once on each instance.

Table 7.7: Experimental Parameters for Parameter Tuning

Parameter Value

RPC 10

RAlg 1

7.2.2.2 NEAOCBA Parameters

The NEAOCBA procedure has a number of input parameters that are split between those

for the NEA and those for the OCBA procedure, as previously discussed (in Section

6.1.10). Due to the large number of parameters, in order to restrict the set of potential

parameter values a number of pilot studies were carried out to explore viable ranges

of values. Once reasonable ranges for values were discovered, an in-depth study was

carried out on a selected set of parameter configurations for the problem classes of

interest.

For practical purposes, to reduce the space of parameters in the subsequent param-

eter tuning, a number of NEA parameters were fixed; these values are shown in Table

7.8. The values for the EA were fixed as discussed in Chapter 6. The OCBA param-

eters were fixed based on recommendations from the literature, as detailed in Section

5.4.12. The results of the pilot studies are shown in Table 7.9.
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Table 7.8: Fixed Algorithm Input Parameters

Parameters Value Comments

λ µ number of offspring

pc 1 crossover rate

q 10 individuals to select each OCBA stage

θ 10 additional samples for each of the q individuals

Table 7.9: Results from Pilot Studies

Parameters Values Comments on values

µ ≤ 50 poor solution quality

κ ≤ 200 poor solution quality

pm 0.05 robust

n̄0 ≤ 20 poor estimates; poor budget allocation

n̄0 500,1000 oversampling; much effort spent on non-promising solutions

δ∗ 0.01,0.05,0.1 significant effort spent on non-promising solutions

Given the results of the pilot studies, a set of parameter values were chosen for

further investigation in order to find robust configurations across problem classes and

also to study the algorithm under different parameterisations. These values are listed

in Table 7.10. The possible variations in these values lead to a total of eight different

configurations for the parameter tuning phase; these configurations for the NEAOCBA

are shown in Table 7.11. The total number of experiments was: |PC| ·RPC ·RAlg ·C =

8 · 10 · 1 · 8 = 640, where C is the number of configurations, and the total number of

generated problem instances was: |PC| ·RPC = 8 ·10 = 80.

7.2.2.3 Results and Analysis

As previously discussed, the focus of this phase of the evaluation is to identify param-

eter configurations that lead to robust algorithm performance. In order to assess algo-

rithm performance three performance criteria have been nominated: solution quality,

computation time and total number of fitness samples, with solution quality having

priority, followed by computation time, and then the total number of fitness samples.
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Table 7.10: NEAOCBA Parameter Values for Parameter Tuning

Parameter Value(s)

µ 100

κ 500

pm 0.05

n̄0 {30,50}
δ∗ {0.5,1}
α∗ {.5, .05}

Table 7.11: NEAOCBA Configurations for Parameter Tuning

Configuration µ λ κ pc pm n̄0 q θ δ∗ α∗

C1 100 100 500 1 0.05 30 10 10 0.5 0.5

C2 100 100 500 1 0.05 30 10 10 0.5 0.05

C3 100 100 500 1 0.05 30 10 10 1 0.5

C4 100 100 500 1 0.05 30 10 10 1 0.05

C5 100 100 500 1 0.05 50 10 10 0.5 0.5

C6 100 100 500 1 0.05 50 10 10 0.5 0.05

C7 100 100 500 1 0.05 50 10 10 1 0.5

C8 100 100 500 1 0.05 50 10 10 1 0.05

The boxplots5 in Figures 7.1 and 7.2 show the distributions of the results for so-

lution quality, Figure 7.3 for computation time, and 7.4 for the total number of fitness

samples. The UB was also used to provide an upper bound on the performance per

problem class. Tables of the results for each problem instance per problem class, and

for each algorithm configuration and performance criterion are provided in Tables A.1,

A.2, A.3, A.4, A.5 and A.6 in Section A.1.

For analysis, due to the use of small sample sizes and the fact that the data was

5All boxplots were generated using the boxplot function of R (v. 2.13.0) of the R Project for Sta-
tistical Computing: http://www.r-project.org/. The boxes signify the interquartile range (IQR):
Q3-Q1, that is, half of the sample values, with the thick line inside the box indicating the median value.
The whiskers indicate the range of the values with the ends marking the minimum and maximum val-
ues, unless outliers (represented by empty circles) are present. In this case they indicate 1.5 IQR. The
function plots outliers if points are outside 1.5 IQR of the upper or lower quartile. The sample mean is
indicated using a triangle.

http://www.r-project.org/
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Figure 7.1: Parameter Tuning: SQ for PC1-PC4, C1-C8, UB

found to be unsuitable for parametric analysis6, nonparametric statistical methods were

used to study differences between the configurations. In particular, for this phase of the

experimentation, Friedman’s Two-Way Analysis of Variance by Ranks Test (Hollander

and Wolfe, 1999) was employed to evaluate whether any differences exist between the

configurations for the performance criteria and problem classes7.

In terms of solution quality, the statistical tests indicated that over all problem

classes there were no significant differences between the configurations at the 0.05

6Q-Q plots and the Shapiro-Wilk normality test were used to determine that the data was unsuitable
for parametric analysis. Overall, the results were found not to approximate the normal distribution to a
satisfactory level.

7All statistical tests for analysis were carried out using R functions included in the stats, coin and
multcomp packages.
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Figure 7.2: Parameter Tuning: SQ for PC5-PC8, C1-C8, UB

significance level. Across classes, however, as visible in Figures 7.1 and 7.2, there

appears to be a trend that higher solution values are found for odd-numbered problem

classes, i.e. PC1, PC3, PC5 and PC7; that is, those problem classes with lower supply.

Furthermore, the data also suggest that PC1 and PC3 are the “easiest” of the classes

(average solution quality > 0.6), and that PC6 and PC8 are the “hardest” (average

solution quality < .15).

While there are no significant differences between configurations based on solution

quality, there was variation in the cost of achieving the results. For computation time

and total number of samples, Friedman’s Test was used again, and the null hypothe-

sis was rejected at the 0.05 significance level for all problem classes. To inspect the

differences, post hoc analysis was carried out using the two-sided Wilcoxon-Nemenyi-
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McDonald-Thompson Test with p-value adjustment for multiple comparisons (Hol-

lander and Wolfe, 1999) and an experimentwise error rate of 0.058. Boxplots show-

ing pairwise differences for computation time and number of fitness samples for each

problem class are provided in Figures A.4 and A.5 of Appendix A.

For computation time and total number of fitness samples, of the three OCBA pa-

rameters, the choice of initial sample size, n̄0 ∈ {30,50}, appears to have least effect

on each criterion. However, the value of the indifference-zone does appear to have

an impact on the required computational effort. Configurations utilising the smaller

indifference-zone (δ∗ = 0.5), in particular C1, C2, C5, and C6, require, overall, signif-

icantly more computation time and number of samples than configurations using the

larger zone (δ∗ = 1), that is, configurations C3, C4, C7, and C8. However, there ap-

pears to be no significant gain in solution quality for this additional effort. For target

confidence levels, overall, the higher target level (α∗= 0.05) does not appear to require

significantly more effort than the lower value (0.5), despite the boxplots suggesting a

difference9. Overall, the combined smaller indifference-zone and higher confidence

target level appears to require the most computational effort, that is, configurations C2

and C6; but, again, for no gain in solution quality.

Based on these results, configurations C3 and C4 provide the best trade-off between

the achieved solution quality and the effort required to obtain it. Neither of the config-

urations requires significantly more computation time or number of samples than other

configurations across all problem classes, including between themselves. Of the two,

C4 is chosen over C3, since it uses a higher target confidence level and thus provides

more certainty in the ordering of individuals for no significant additional cost.

Building on these results, and in order to find parameters that improve solution

quality, an additional three configurations using OCBA parameter values from C4 were

evaluated to investigate the effect of more generations and larger populations. These

configurations are provided in Table 7.12. The boxplots from these experiments, in-

cluding C4, are shown in Figures 7.5 and 7.6, 7.7, and 7.8. The results are provided in

Tables A.7 and A.8 for solution quality, in Tables A.9 and A.10 for computation time,

and in Tables A.11 and A.12 for number of samples, in Appendix A.

Analysis of the results was once again done using Friedman’s Test, and for compar-

ison the C4 configuration was included in the tests. For each performance criterion and

8Friedman’s and Wilcoxon-Nemenyi-McDonald-Thompson Tests were run using R code from Galili
(2010), last accessed 1st of May 2011.

9Note that the boxplots do not consider the adjusted p-values required for the use of multiple com-
parison testing. For more on multiple comparison issues, see, for example, (Hsu, 1996).
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Table 7.12: Additional NEAOCBA Configurations for Parameter Tuning (bold values indi-

cate different values from C4)

Configuration µ λ κ pc pm n̄0 q θ δ∗ α∗

C9 100 100 1000 1 0.05 30 10 10 1 0.05

C10 200 200 500 1 0.05 30 10 10 1 0.05

C11 200 200 1000 1 0.05 30 10 10 1 0.05

each problem class, the null hypothesis was rejected at the 0.05 significance level, and

so post hoc analysis was carried out again using the two-sided Wilcoxon-Nemenyi-

McDonald-Thompson Test with p-value adjustment for multiple comparisons and an

experimentwise error rate of 0.05. Boxplots showing the pairwise differences for each

performance criterion and problem class are provided in Figure A.3 for solution qual-

ity, in Figure A.4 for computation time, and Figure A.5 for total number of fitness

samples, in Appendix A.

The tests indicated that there was no advantage to using extra generations for a

fixed population size, that is, there was no significant difference between C4 and C9,

and C10 and C11, for solution quality or computational effort. For larger population

sizes, however, there were significant differences. Configuration C11 had significant

differences with C4 and C9 over all classes both for solution quality and computational

effort. Configuration C10 had significant differences over C4 for all problem classes

for solution quality and computation effort, except for solution quality for PC1. C10

also had significant differences in solution quality over C9 for the classes PC6, PC7

and PC8; yet did not require significantly more effort on any problem class.

Overall, the tests indicate that larger populations improve solution quality, as high-

lighted by the plots in Figures 7.5 and 7.6. However, as expected, this improvement

can require significant additional effort, in particular for the “harder” classes, as shown

in Figures 7.7 and 7.8. On the other hand, using more generations does not necessarily

significantly improve solution quality, as seen from comparing the results of C4 with

C9, and C10 with C11.

Based on these results, C10 was chosen as the configuration providing the best

trade-off between solution quality and computation time over all problem classes. In

terms of solution quality, the tests indicate that across all problem classes, C11 did not

provide significantly higher values, and that for harder classes, the larger population
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was beneficial. For computational effort, it was never the case that C10 required sig-

nificantly more effort than C9 or less than C11. In summary, there does not appear to

be a significant advantage in choosing C11 over C10, but in general C10 provides a

gain over C4 and C9.

The results for parameter tuning suggest that the NEA parameters have more im-

pact on the overall performance of the algorithm than the OCBA parameters. This

observation appears justified since NEA parameters used here control the extent to

which the search space is explored, and the OCBA parameters effect the performance

of the OCBA procedure and in turn determine how well the algorithm can exploit what

it has discovered in order to guide the search, or, in other words, how mislead it is by

error in fitness estimations. This point is further addressed in the Discussion section

(7.4.1).

Finally, note that the selected parameter values are not necessarily optimal; more

extensive experimentation would be required to establish such values. These results

provide an indication of the behaviour of the main algorithm under varying parameter

values, and contribute to the goal of demonstrating that the NEAOCBA framework can

find high-quality solutions for the MSE in reasonable time; and are thus satisfactory

for the purposes of this work.

7.2.3 Evaluation

The goal of this phase is to evaluate the performance of the NEAOCBA and NEAMEAN

approaches for solving the MSE. To judge their performance, the algorithms are eval-

uated against a baseline approach and upper bounds on optimal solutions. The RSA is

used to establish a baseline and upper bounds by the UB procedure.

7.2.3.1 Experimental Procedure

The experimental procedure for this phase follows closely the procedure used for pa-

rameter tuning. As before, a number of problem instances are generated for each

of the problem classes (listed in Table 7.4) and the algorithms are evaluated on each

instance. Here, however, problem instances are generated independently for each

algorithm: NEAOCBA, NEAMEAN , RSA and UB. The experimental parameters for

this phase are shown in Table 7.13; in particular, more problem instances are used

than for the parameter tuning. The same performance criteria are of interest, and,

as previously discussed, the algorithms share parameter values where appropriate.
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The final parameter sets for the NEAOCBA, NEAMEAN and RSA are shown in Table

7.14. The UB used a sample size of 200. The total number of algorithm runs was:

|PC| ·RPC ·RAlg ·A = 8 ·30 ·1 ·4 = 960, where A is the number of algorithms, and the

number of independently generated problem instances was also 960.

Table 7.13: Experimental Parameters for Evaluation

Parameter Value

RPC 30

RAlg 1

Table 7.14: Algorithm Input Parameters for all Problem Classes (bold values are not

shared)

Parameter RSA NEAMEAN NEAOCBA

µ 200 200 200

λ 200 200 200

κ 500 500 500

pc 0 1 1

pm 1 0.05 0.05

n̄0 30 30 30

q 10 10

θ 10 10

δ∗ 1 1

α∗ 0.05 0.05

7.2.3.2 Results and Analysis

The boxplots for the results of the experiments are shown in Figures 7.9 and 7.10

for solution quality, in Figure 7.11 for computation time, and in Figure 7.12 for total

number of samples. Tables of results can be found in Section A.2 of Appendix A.

Once again nonparametric statistical methods were used for analysis because the

data was judged to have failed to meet the assumptions for parametric methods. Non-

parametric hypothesis tests were carried out to determine if the algorithms’ results
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for each problem class and each performance criterion were significantly different.

Since the algorithms were evaluated on independent samples for each problem class,

the Kruskal-Wallis Test for general significance (Hollander and Wolfe, 1999) was em-

ployed with the null hypothesis that no significant difference exists between the algo-

rithms for a given performance criterion and problem class. The null hypothesis was

rejected for all performance criteria and problem classes at the 0.05 significance level;

in other words, the differences between the algorithms were judged significant. In or-

der to investigate individual differences, post hoc pairwise comparisons were evaluated

using the two-sided Wilcoxon Rank Sum Test (Hollander and Wolfe, 1999) with Holm-

Bonferroni correction for multiple comparisons (Holm, 1979) and an experimentwise

error rate of 0.05. The p-values for the pairwise comparison tests are provided in

Section A.2, in Tables A.19 and A.20 for solution quality, Tables A.21 and A.22 for

computation time, and Table A.23 for total number of samples.

For solution quality, the tests showed that the distribution of values produced by the

UB are significantly higher than the other three algorithms across all problem classes,

while the RSA performs worst across all problem classes. For all classes, except PC1,

there were no significant differences between the NEAOCBA and the NEAMEAN ; for

PC1, the NEAOCBA performed better.

In terms of computational effort, evaluating the UB requires significantly less effort

than the other three algorithms, and the NEAMEAN requires significantly less than the

RSA and NEAOCBA for all problem classes. The NEAOCBA requires significantly less

effort than the RSA, except for PC6, the “hardest” class, where it requires more.

For the number of fitness samples, the NEAMEAN uses significantly fewer fitness

samples than the RSA and the NEAOCBA. Comparing the RSA and the NEAOCBA, the

RSA uses fewer samples for PC2, PC6 and PC8, otherwise there is no statistically sig-

nificant difference. The results also indicate that more samples are required in general

for the “harder” problem classes, the even-numbered classes.

In summary, the results indicate that the proposed NEA approaches significantly

outperform the baseline approach, the RSA, across all problem classes, but have sig-

nificantly lower values than those evaluated by the UB procedure. Also, the NEAOCBA

approach requires more computational effort than the competing NEA approach, sug-

gesting that the application of the OCBA procedure requires significant additional

computation over the sample averaging method of the NEAMEAN . The implications

of these results are discussed in detail in Section 7.4.2.
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7.2.3.3 Validation of Results

A further set of experiments was carried out to validate the results given the approach

of evaluating each algorithm once per problem instance. Each algorithm was once

more run on each of the problem instances, as before, but using different initial random

seeds. This additional set of experiments was intended to provide some assurance that

a single algorithm run on each instance was sufficient to provide a reasonable estimate

of the performance on the sampled instances of a problem class. The results of these

experiments are shown in Figures A.6 and A.7 for solution quality, Figure A.8 for

computation time, and Figure A.9 for total number of samples, in Section A.2.1 of

Appendix A.

For analysis, nonparametric statistical methods were used to evaluate whether the

original and validation results differ significantly. The two-sided Wilcoxon Rank Sum

Test for paired samples (Hollander and Wolfe, 1999) was used with the null hypothesis

that there are no differences between original experiment results and validation results

for each algorithm, each performance criterion, and each problem class. No statisti-

cally significant differences were found between each algorithm for each problem class

and for each performance criterion at the 0.05 significance level. Overall, this suggests

that the use of a single algorithm run per instance (for at least 30 instances) is sufficient

to provide a reasonable estimate of the performance of an algorithm for each problem

class.

7.3 Opasanon’s Safest Escape Algorithm

In this section, the NEAOCBA is evaluated against an existing exact and efficient ap-

proach, Opasanon’s Safest Escape Algorithm (SEA) Opasanon (2004); Opasanon and

Miller-Hooks (2008). The SEA was originally developed to solve a related problem,

the Safest Escape Problem (SE), that has the goal of finding a priori flow patterns that

maximise the minimum path probability of successful traversal from source to sink, in

time-dependent networks with time-varying travel times and stochastic, time-varying

capacities10. In comparison the MSE, as a reminder, has the goal of finding the flow

pattern with the overall maximum probability of successful traversal from source to

sink in STV Networks. Additionally, solutions to the SE are permitted to contain cy-

cles, unlike for the MSE, but waiting at nodes, like for the MSE, is forbidden.

10These networks are a subset of the more general STV Networks; that is, networks with stochastic
travel times that occur almost surely, i.e. with probability 1.
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In order to apply the SEA to the MSE in STV Networks, a procedure is required to

transform stochastic travel times to deterministic values. Here we use expectation, so

that the travel time distributions, for all edges and all time intervals, are transformed to

their expected values:11

τi j(t) = bE[τ̄i j(t)]c=
⌊ H

∑
h=1

τ
h
i j(t) ·ρd

i j(t)
⌋
,∀(i, j) ∈ E ,∀t ∈ [T ]

The procedure for applying the SEA to the MSE is then as follows. An instance

of an STV Network is transformed to a network with deterministic travel times using

the expectation conversion. The SE is then solved on the transformed network using

the SEA, and the resulting solution is evaluated on the original STV Network for the

MSE. This approach is called the Heuristic SEA (HSEA).

A solution to the SE on the transformed network is not guaranteed to provide the

optimal solution to the MSE in the original STV Network. As previously mentioned,

the goal of the SE is to maximise the likelihood of the path with the lowest probability

of successful traversal; in contrast, the MSE has a system-wide objective to maximise

overall likelihood of successful traversal. The difference is that solutions to the SE

may include cases where the overall likelihood is lower because the probability of the

path with the lowest likelihood of successful traversal is maximised. Also, solutions

to the SE are allowed to contain cycles, which are forbidden for the MSE. Finally, the

reduction to a deterministic value, here the expected value, as discussed in Section 4.2,

cannot guarantee that the optimal solution found for the reduced problem will be the

optimal solution for the general problem in STV Networks.

To evaluate the HSEA, its performance was compared with that of the NEAOCBA,

looking specifically at solution quality and computation time. To compare the ap-

proaches directly the HSEA was executed on the same problem instances as the NEAOCBA

was run on, for each problem class. Each SE solution was evaluated for the MSE us-

ing 1000 samples, and, as with the other approaches, the HSEA was implemented in

Java. The experiments were carried out under identical conditions to those detailed in

Section 7.2.

The results for the HSEA and the NEAOCBA are shown in Figures A.10 and A.11

for solution quality, and Figure A.12 for computation time. Non-parametric statistical

tests were carried out using the Wilcoxon Rank Sum Test for paired samples Hollander

and Wolfe (1999) with the null hypothesis that the results of the HSEA and NEAOCBA

11Values are rounded using the floor function because travel times are assumed to be integers.
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do not differ at the 0.05 significance level. The tests indicate that there are strongly sig-

nificant differences for both criteria, for all problem classes. Test results are provided

in Table A.24 in Section A.2.2 of Appendix A. For solution quality, the NEAOCBA find

solutions of significantly higher quality than the HSEA as seen in Figure A.13; whereas

for computation time the HSEA has significantly lower results, i.e. it is significantly

faster, as shown in Figure A.13.

Overall, the results indicate that using the described heuristic procedure, although

significantly faster than the NEAOCBA, the SEA is not competitive for solution quality

with the NEAOCBA for the MSE.

7.4 Discussion

In the final section of this chapter, a number of issues are discussed that have emerged

in the course of the experimentation.

7.4.1 Parameter Tuning

The results from the parameter tuning phase present, to the knowledge of the author,

the first reported evaluation of the integrated EA and OCBA framework over an EA

run. Due to this, a number of issues relating to the performance of the NEAOCBA with

respect to input parameters have emerged.

7.4.1.1 NEA parameters vs. OCBA parameters

The first point of discussion, noted previously, is that the EA parameters appear to

have a larger impact on the performance of the algorithm, i.e. the quality of the so-

lutions found, than the OCBA parameters. As previously mentioned, in general this

observation agrees with the idea that the role of the OCBA is to mitigate the effects

of noisy fitness evaluations on the search process; whereas the EA is used to effec-

tively balance exploration and exploitation. It follows that for a problem with a large

search space, such as the MSE, the choice of EA parameters could be considered more

important in defining an effective and robust algorithm. Or, in other words, the EA

parameters govern the maximum possible quality that can be obtained; that is, even if

at the mathematical limit the noise was reduced almost surely, the performance of the

EA would still be limited by the extent of the exploration of the search space, e.g. the

size of the population and the maximum number of generations. This is of course part
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of the trade-off between where computational effort should be spent — on evaluating

solutions more accurately or exploring the space, as discussed in Section 3.4.1.

A particular difficulty that arises out of the integrated framework is dependencies of

OCBA parameters on NEA parameters. The computational complexity of the OCBA

procedure is driven in part by EA population and offspring sizes, that is, the number

of individuals input to each selection problem, and, of course, their fitness distribu-

tions. However, in general, the larger the set of individuals, the more computationally

demanding the selection problem. This is a considerable (but known) limitation of the

procedure12, in particular when balanced against the necessity for larger population

sizes to improve overall search success. This issue motivated the proposed optimi-

sation to reduce the computational requirements of the OCBA and the heuristic for

speeding up the selection of individuals to which to allocate additional samples each

generation (detailed in Section 5.4.10). However, overall, such a limitation may re-

strict the applicability of vanilla OCBA within certain EA contexts, perhaps requiring

additional procedures such as the pre-screening of clearly poor quality candidates or

the integration of variance-reduction techniques to improve the efficiency of sampling.

7.4.1.2 OCBA as part of the NEA

A further difficulty is that the tuning of parameters for the NEAOCBA requires the con-

sideration of a number of additional factors beyond those considered for its tuning for

a single selection problem, the problem in Simulation Optimisation for which in gen-

eral the procedure was originally designed. Here a series of selection problems must

be solved, one per EA generation, and hence the dynamics of an EA’s population will

affect the requirements of each selection problem. For example, in general the popula-

tions of early generations are likely to include many poor quality candidate solutions

with high variance; whereas later populations tend to include similar individuals of

higher quality and with lower variance. Under changing population dynamics, in order

to get optimal, or merely robust, performance from the allocation procedure, different

parameter values may be appropriate at different stages of the search process. Given

the aforementioned scenario, for example, initially a small indifference-zone may be

unnecessary to differentiate between the solutions and hence rank them correctly, and,

ultimately, would waste substantial effort on non-promising solutions. On the contrary,

in the later stages of an EA’s run, where solutions are expected to be (genetically) sim-

12Although Bayesian R&S methods, such as the OCBA, are known to scale better with larger number
of individuals than competing frequentist approaches (Chen, 1996).
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ilar (and have similar fitness values), a relatively large indifference-zone could have

the opposite effect of not expending sufficient effort to distinguish between similar in-

dividuals, potentially to the detriment of the search result. This suggests that it may

be difficult to select a predetermined, static set of parameter values that can effectively

accommodate the population dynamics of an EA run.

7.4.1.3 Effect of Target Confidence Level

For the target confidence level, the results show that for the given range of parame-

ters evaluated, no significant difference in solution quality was noted between the two

confidence levels, α∗ ∈ {0.5, .05}, studied. We argue that as the number of individ-

uals input to a ranking problem, and hence comparisons, increases, the effect of the

α∗ parameter value diminishes. For k comparisons, to achieve at least a target confi-

dence level of 1−α∗, the mean13 probability of all comparisons being correct must be

≥ (1−α∗)1/k, with the probability of each comparison≥ (1−α∗). However, as k→∞,

we have that14 limk→∞(1−α∗)1/k = 1, ∀α∗ ∈ [0,1). The effort required to achieve

such a target level will depend on a number of factors, including the variance and the

sizes of the differences between candidate solutions. To demonstrate this effect, say

α∗ ∈ {0.9,0.5,0.05} and µ = λ = 200, then for the (µ+λ) EA proposed here, the (max-

imum) number of comparisons per generation is µ2 = 2002 = 40000. Given the possi-

ble α∗ values, the mean probability per comparison for each target confidence level is

approximately: (1−0.9)1/40000 = 0.999942437, (1−0.5)1/40000 = 0.999982671, and

(1− 0.05)1/40000 = 0.999998718, respectively. The additional sampling required to

achieve the target level 1−0.05 = 0.95 over 1−0.9 = 0.1, in practice, provides little

gain in the probability of each comparison (and hence the ordering) being correct. In

conclusion, as the population and offspring sizes increase, the number of comparisons

increases as well, and the choice of α∗ value has less impact on the probability of in-

dividual comparisons being correct, and, ultimately, less impact on the performance of

the OCBA.

7.4.1.4 Setting the Initial Sample Size

An additional issue surrounds the setting of the initial sample size when considering

the assumptions and requirements of the OCBA. In principle, it is desirable to re-

13Due to the multiplicative nature of the calculation of the PGG value, the geometric mean is used
instead of the arithmetic mean.

14Since limk→∞ 1/k = 0, then for any n ∈ (0,1], we have limk→∞ n1/k = n0 = 1.
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duce the sample size to minimise costs. However, in practice, a certain sample size is

necessary to get a good budget allocation, and hence there is a balance to be struck be-

tween over-sampling and achieving reasonable estimates for efficient allocation. Fur-

thermore, the underlying assumptions of the normality of fitness distribution places

additional requirements on sample sizes, in particular when appealing to the central

limit theorem15. This is particularly relevant here given the inherent skew in the fitness

distributions. Overall, it is not clear how close to normality the fitness distributions

should be in order to still be able to harness the efficiency of the allocation procedure.

7.4.1.5 Summary

In summary, the additional parameters of the OCBA procedure add complexity to the

parameter tuning phase, not just due to the number of parameters but because of their

interdependencies and, so far at least, the lack of guidance in the literature for setting

their values. Further study of the interactions between EA and OCBA parameters is

required, in particular in consideration of EA population dynamics, and furthermore,

an evaluation of the impact of approximately normally distributed fitness distributions

on the efficacy of the OCBA, would help resolve some of these issues.

7.4.2 Evaluation

In this subsection, a number of issues are discussed that arise from the evaluation

phase of the experimentation. The main points for discussion are the results of the

NEA variants, and in general the applicability of the EA and OCBA framework to the

MSE.

In this discussion, as in the literature review, the distribution of the sampling error

induced through the MC method is termed “noise”. This is reasonable since the com-

monly assumed additive and Gaussian distributed noise with mean 0 and variance σ2,

N (0,σ2), is asymptotically equivalent.

As a reminder, note that for the MSE, the noise distribution, e.g. the level and

distribution of the noise distribution across the space, is unknown a priori. In the lit-

erature, in particular for works applying EAs in noisy and stochastic environments,

approaches to problems in such environments are often evaluated using artificially

introduced noise, thus assumed known and commonly uniform across the space, on

15The central limit theorem guarantees asymptotic convergence in distribution of the sample mean to
normality assuming i.i.d. samples; however, in practice, the goal is to find high-quality solutions at low
cost, that is, using low number of samples and computation time.
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deterministic problems, e.g. ONE-MAX or SPHERE problems, with known optimal

solutions (Bianchi et al., 2006b). In practice, for noise induced through MC sam-

pling, it is unlikely that the estimated level of noise will be (exactly) uniform across

the space. Perhaps a more pertinent question is: to what extent does it vary across the

space? And, specifically, whether the variation will mislead, for example, a simple

fixed resampling rate approach, in terms of both the ranking of candidate solutions

and in the search itself, and thus warrant more computationally demanding approaches

such as the OCBA.

7.4.2.1 NEA Variants: OCBA and MEAN

The results for the NEA variants show that there are no significant differences between

the NEAOCBA and the NEAMEAN for solution quality, except for the “easiest” class,

PC1. However, they do indicate significant differences for computational time and

number of fitness samples; for both criteria, across all problem classes, the NEAOCBA

required more. For the MSE, specifically for the problem classes investigated, the

results thus suggest that the application of the OCBA procedure adds little in terms

of solution quality to the fitness averaging approach, and requires significantly more

effort. The NEAOCBA is expected to require significantly more computation than the

resampling approach, since the NEAMEAN uses only the initial sample size, n̄0, to

estimate fitness values. However, as a result of this additional effort, the NEAOCBA

would be expected to produce an increase in solution quality.

One possible explanation for the result is that the chosen sample size is sufficient to

rank16 the candidate solutions correctly, because the variances of the fitness distribu-

tions are low and/or the differences large. This would imply that additional sampling,

e.g. through the use of the OCBA, would be unnecessary; however, the fact that the

OCBA requires substantially more fitness samples for all problem classes, and hence

more computation time, suggests that this is not the case. On the contrary, it suggests

that in order to achieve the target levels of confidence in the ordering of the compar-

isons (and hence individuals), additional sampling is necessary. Nevertheless, given

that exact fitness values are unknown, this is difficult to establish definitively.

A more likely explanation is that the ranking of individuals according to the re-

quired order information for the EA, while not correct, is adequate for the NEA to

16Here rank is taken to mean to order candidate solutions given the required order information for
the EA. This is not necessarily a full ranking but dependent on the mating and replacement selection
schemes.
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successfully exploit. Certainly, the results suggest that in general the additional com-

putation utilised by the integrated OCBA procedure provides no significant gain in

solution quality, even given the order guarantees that it offers. To try to understand this

effect, it is necessary to consider the role ordering plays in an EA.

In a deterministic environment it is often assumed that the ordering of individuals is

deterministic and can be computed efficiently, and the selection pressure is controlled

through the selection operators. However, as noted by others, such as Miller (1997),

noise can reduce selection pressure since selection operators no longer know with cer-

tainty the ranking of individuals. The effect here is that strong selection pressure of the

(µ + λ) replacement operator is weakened and appears less important for the success

of the algorithm. That is, that a lower selective pressure is induced through the noise

but that this does not appear to a have significant impact on the performance of the

algorithm (as seen by comparison of the results of the NEAOCBA and the NEAMEAN).

Assuming this is the case, then the apparent success of the NEAs could be, in part,

due to the seeding of the initial population, which works to bias the exploration of the

search space with candidates that are at least feasible on a single randomly selected

state, and also the final selection procedure that guarantees to some confidence level

that the returned solution is the best of the final population.

To investigate the impact of the seeding and final selection, the NEA approaches

were once again evaluated, but for these supplementary experiments no seeding of

the initial population was carried out, so that the initial population was generated ap-

proximately uniformly randomly from the search space (using the methods described

in Section 5.1), and no final selection procedure was executed. The only concession

was to evaluate the best individual, based on observed fitness values, from the last

generation with a further 1000 samples in order to get a more accurate estimate of

its true fitness value. The revised NEAOCBA and NEAMEAN are called NEANS
OCBA and

NEANS
MEAN , respectively. The results from the additional experiments are provided in

Figures A.14 and A.15 for solution quality, Figure A.16 for computation time, and

Figure A.17 for total number of samples, in Section A.3.

For analysis, we compared the results of NEANS
OCBA with NEANS

MEAN , and also

NEANS
OCBA with NEAOCBA, and NEANS

MEAN with NEAMEAN . For the algorithms not util-

ising seeding or a final selection procedure, a two-sided Wilcoxon Rank Sum Test for

independent samples was executed for each problem class and performance criterion.

At the 0.05 significance level, the tests showed significant differences for a number

of problem classes for solution quality, and significant differences for all classes for
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computation time and number of fitness samples. Specifically, the results showed that

the NEANS
OCBA performed better than the NEANS

MEAN for the “harder” classes, that is,

PC2, PC4, PC6 and PC8, and required significantly more computation time and fitness

samples for all problem classes. The p-values for the tests are provided in Table A.25

of Appendix A. These results suggest that the additional sampling is beneficial for the

“harder” problems, in terms of solution quality, but it comes at a significant cost. Note

that the NEANS
MEAN performed particularly poorly on the PC6 and PC8 where it did no

better than the RSA.

The results for each algorithm were then compared with the results of the NEAOCBA

and NEAMEAN , respectively, using a two-sided Wilcoxon Rank Sum Test for paired

samples, with the null hypothesis that there are no differences between the algorithms

for all performance criteria and problem classes. The p-values are provided in Tables

A.26 and A.27, in Section A.3.

For the NEAOCBA, the original algorithm performed significantly better for solution

quality than the NEANS
OCBA for all problem classes, except PC6 and PC8. For computa-

tion time, there were significant differences for the same classes, where the NEANS
OCBA

required significantly more computational effort. Finally, for the number of fitness

samples, NEANS
OCBA required significantly more fitness samples for classes: PC2, PC4,

PC5, PC7 and PC8. Boxplots of the differences can be seen in Figure A.18 in Section

A.3.

The results for the NEANS
MEAN compared with the original NEAMEAN indicate that

the original algorithm performed significantly better for all problem classes. For com-

putation time, the original algorithm required more computation for PC2, PC3, PC4,

PC6 and PC8. Then, finally, for number of fitness samples, with the only difference

between the variants utilising samples being the final selection procedure, the original

algorithm, the NEAMEAN , used significantly more samples for PC1, PC2, PC4, PC6

and PC8. Boxplots of the differences can be seen in Figures A.19 in Section A.3.

Overall, the results demonstrate that the use of the additional features, namely the

seeding of initial population and the final selection procedure, are beneficial to the

performance of the NEA, improving the solution quality and reducing the required

computational effort. Furthermore, in terms of the gain of using the OCBA over the

MEAN approach for the revised algorithms, we would conjecture that the seeding of

the initial population reduces the required selection pressure, altering the balance of the

conflict between exploitation and exploration, through its biasing of the starting point

for the search; ultimately reducing the advantages of using the OCBA observed for the
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results of the algorithms not using seeding and final selection. The OCBA guarantees

at some level the confidence in the ordering of the individuals but at an additional cost,

whether it is required or not for successful search.

7.4.3 Random Search Algorithm

As discussed in Section 4.4, a lower bound for optimal solutions can be established by

any p-feasible candidate solution. Here a lower bound is established by the RSA (de-

fined in Section 6.2) that acts as a baseline performance for the NEA-based approaches.

The RSA is designed identically to the NEAOCBA approach, including seeding of the

population, the evaluation of current and offspring populations using the OCBA pro-

cedure, and also the use of the final selection method. The only difference between the

algorithms is that the genetic operators are essentially disabled for the RSA so that the

algorithm performs no hill-climbing, or, in other words, does not exploit knowledge

gained during the search. No crossover is performed to generate offspring from the

current population, and mutation is executed with probability of 1, that is, all genes

are mutated almost surely, so as to generate new approximately uniform random can-

didates from the search space. The approach was defined in this way to limit the differ-

ences between the algorithms and thus allow for a fair comparison with the NEA-based

approaches.

The empirical results indicate that both NEA approaches perform significantly bet-

ter than the RSA in terms of solution quality. This suggests that the NEA genetic

operators perform well for the MSE. In terms of computation time, the RSA required

significantly more than the other approaches, except for PC6 where it required less

than the NEAOCBA, suggesting that in general worse solutions require more computa-

tional effort to evaluate and rank. In terms of the number of fitness samples, the RSA

required more than the NEAMEAN for all problem classes, but this is to be expected,

since it uses the OCBA procedure to rank candidate solutions, and it used significantly

fewer than the NEAOCBA approach for PC2, PC6 and PC8, and with no significant

difference for the other classes.

7.4.4 Stochastic Upper Bound

In order to gauge the performance of the solution approaches, a stochastic upper

bounding procedure, the UB, was proposed. However, as previously discussed, it is

difficult to establish the effectiveness of the UB procedure as an upper bound for op-
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timal solutions. Specifically, for the work described herein, it is difficult to quantify

the success of the NEA approaches when compared with the UB results, since it is un-

known how optimistic a bound it is. In fact, even if the NEA results are optimal, there

may still be significant differences with the UB results. Nevertheless, the UB results

do indicate, as with the results of the other algorithms, that the odd-numbered problem

classes, that is, those with more available supply, are “easier” than the even-numbered

ones, the ones with lower supply.

In terms of the effectiveness of the UB itself in determining the feasibility or in-

feasibility of states, the results show that the heuristics determined that 2989 out of

48000 states (or 6.23% of all states) were infeasible; whereas only 65 (or 0.14% of all

states) were discarded due to indecision about feasibility. The success of the heuristics

in determining infeasible states implies that the majority of bottlenecks for the studied

problem instances occur at the source node.

Future work could include the implementation of a more useful bound, that is, a

less optimistic bound. An extension of the bound has been suggested in the literature;

however, it relies on being able to efficiently solve subsets of deterministic problems

to optimality rather than individual states. As suggested by (Gutjahr et al., 2000),

a metaheuristic, such as an EA, could be used to solve such problems, though not

necessarily to optimality of course. Nevertheless, this could in theory still provide

a less optimistic and perhaps more useful bound on optimal solutions for the MSE.

The improved bound applied to the MSE has not been implemented but is formally

sketched in Section 8.4.2.2.

7.5 Summary

This chapter has detailed the empirical evaluation of the proposed approaches for solv-

ing the MSE. It began with important details about the implementation, including the

problem instance generator and, specifically, how problem instances are generated.

Then the rest of the chapter details the empirical investigation carried out to evaluate

the proposed solution approaches.

The experimental design is detailed, including the problem classes of interest, the

performance measures and the general experimental procedure. The problem classes

are chosen to represent a variety of scenarios, and solution quality, computation time

and the total number of fitness samples are selected as the performance measures of

interest.
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The first phase of experimentation involves a parameter tuning of the main ap-

proach in order to find sets of parameters that lead to robust algorithm performance.

This step of the experimentation was also utilised to study the main approach under

different parameterisations.

Once parameter tuning was finished, the second empirical phase was carried out

with the goal of comparing the NEA approaches against a baseline established by

the random search algorithm. The results demonstrated that the NEA approaches,

the NEAOCBA and the NEAMEAN , can be used to find solutions that are significantly

better both in solution quality and in computational effort than the baseline established

by the RSA. Between the two NEA approaches, no significant difference was seen;

however, further experiments investigated the circumstances, in particular the seeding

of the initial population and the final selection, under which, in general, the NEAOCBA

did perform better than the NEAMEAN . The approaches were also compared against

the stochastic upper bound, and the results showed that the approaches found results

closer to the bound for the “easier” classes, but that it was difficult overall to establish

how optimistic the bounds are. Nevertheless, the bound proved useful for indicating

the comparative difficultly problem classes.

The main approach was also evaluated against an existing, efficient algorithm origi-

nally developed to solve a related problem. The efficient approach was wrapped within

a heuristic procedure allowing the approach to be applied to the MSE. Experimental

results indicate that the heuristic procedure is significantly faster than the NEAOCBA

but finds significantly worse results.
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7.5. Summary 171

●

●

●

●

● ●

C4

C9

C10

C11

UB

0.0 0.2 0.4 0.6 0.8 1.0

Parameter Tuning: Solution Quality for PC1

Maximal Safest Escape value

C
on

fig
ur

at
io

n

mean

● ●

C4

C9

C10

C11

UB

0.0 0.2 0.4 0.6 0.8 1.0

Parameter Tuning: Solution Quality for PC2

Maximal Safest Escape value

C
on

fig
ur

at
io

n

mean

●

C4

C9

C10

C11

UB

0.0 0.2 0.4 0.6 0.8 1.0

Parameter Tuning: Solution Quality for PC3

Maximal Safest Escape value

C
on

fig
ur

at
io

n

mean

●

●

●

C4

C9

C10

C11

UB

0.0 0.2 0.4 0.6 0.8 1.0

Parameter Tuning: Solution Quality for PC4

Maximal Safest Escape value

C
on

fig
ur

at
io

n

mean
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Figure 7.9: Evaluation: SQ for PC1-PC4
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Figure 7.10: Evaluation: SQ for PC5-PC8
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Figure 7.11: Evaluation: CT for PC1-PC8
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Figure 7.12: Evaluation: N for PC1-PC8



Chapter 8

Conclusions

In the final chapter of the thesis, conclusions are drawn about the work, a summary of

the thesis is provided, and the main contributions of the work are discussed in relation

to the research hypothesis. This is followed by the identification of potential directions

for future research, and the chapter closes with some concluding remarks.

8.1 Summary

This thesis has described an investigation into methods for finding evacuation plans

in transient and uncertain environments, in particular the built environment under

emergency conditions. It has explored state-of-the-art methods for evacuation plan-

ning, focussing specifically on network optimisation approaches. Building on these

approaches and in the context of future emergency-response systems, a novel opti-

misation problem, the Maximal Safest Escape Problem (MSE), has been defined for

time-dependent flow networks with stochastic and time-varying edge properties. The

definition of the MSE is an attempt to capture the transient and uncertain environmental

conditions of, for example, an emergency evacuation scenario in a building.

The MSE and its deterministic counterpart are shown to be NP-hard, and due to

this complexity, a general efficient and exact solution approach is unlikely to be pro-

posed. Moreover, evaluating the solution quality of candidate solutions is complex,

requiring calculations over potentially high-dimensional spaces. A method for ap-

proximating solution quality is developed based on simulation approximation using

Monte Carlo sampling methods. For solving the problem, a novel approach, called

the NEAOCBA was applied to the MSE. It is based on a state-of-the-art framework in-

tegrating Evolutionary Algorithms and a statistical Ranking and Selection procedure,
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called the Optimal Computing Budget Allocation. For the framework, an optimisation

and a heuristic were proposed to improve the computational efficiency of the ranking

procedure. A stochastic upper-bounding procedure was also described for providing

(optimistic) upper bounds to the quality of optimal solutions.

For evaluation of the NEAOCBA, a simpler EA-based approach, called the NEAMEAN ,

using a fitness-averaging method for evaluating candidate solutions, was also defined.

Furthermore, to provide a baseline for the EA-based approaches, a straightforward

random search algorithm, based on the NEAOCBA but that uses no hill-climbing, was

also developed. The main approach was then empirically evaluated against the ran-

dom search algorithm, the NEAMEAN , and upper bounds on optimal solutions. Over-

all, the results showed that the EA-based approaches perform significantly better than

the baseline in terms of solution quality and computation time. Furthermore, in gen-

eral, the results indicate that the NEAOCBA did not perform significantly better than

the simpler NEAMEAN ; however, conditions under which the integrated framework did

perform better than the NEAMEAN were also explored. In a qualitative sense, the re-

sults showed that the proposed EA approaches’ values were closer to the upper bound

values on “easier” problem classes than “harder” ones; the upper bound provided an

indication of the comparative difficulty of problem classes. The NEAOCBA was also

compared against an existing, efficient approach originally developed for solving a re-

lated problem. The existing approach was integrated into a heuristic procedure so that

it could be applied to the MSE. Empirical results indicate that although the heuris-

tic procedure requires significantly less computation time than the NEAOCBA, it finds

significantly worse solutions.

8.2 Main Contributions

This section discusses the main contributions of the thesis in relation to the research

hypothesis stated in Section 1.2.1. The order is chronological and the most important

contribution is the EA detailed in fourth point.

• Definition of a novel flow problem, the Maximal Safest Escape Problem (MSE),

in time-dependent flow networks with stochastic, time-varying edge capacities

and travel times.

The contributions of the thesis begin with the formal definition of a novel flow

problem in STV Networks. In the context of future emergency-response sys-
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tems, the goal of this problem formulation is to capture the transient and uncer-

tain environmental conditions of the built environment during, for example, a

hazardous fire scenario, focussing on the evacuation aspect of the response. The

idea behind this is to look beyond the use of time as the decisive parameter in

evacuation, and adopt a more direct modelling of the risk to occupants during

egress.

• Proved that the MSE and its deterministic counterpart are NP-hard.

The complexity results are an important step in understanding the problem and

working towards providing an effective solution approach. The results indicate

that it is unlikely (that is, unless P=NP) that efficient and exact algorithms will

be proposed for solving the MSE, and consequently motivates the use of approx-

imation techniques, such as metaheuristics.

• Extension of a Statistical Ranking and Selection procedure, the Optimal Com-

puting Budget Allocation (OCBA) method, as part of a state-of-the-art frame-

work integrating EAs and the OCBA applied here to the MSE, with:

– an optimisation to improve the computational efficiency;

– heuristic to further improve the efficiency;

– use of informative Bayesian priors.

These extensions contribute to improving computational efficiency of the proce-

dure; efficiency is particularly relevant in the context of EAs, given the poten-

tially large number of ranking problems per EA run.

• Design and implementation of an Evolutionary Algorithm for solving the MSE.

This is the major contribution of the thesis, in particular it provides the first

application (and evaluation) of the integrated EA and OCBA framework to a

hard optimisation problem, the MSE. The approach may be applicable to similar

hard flow problems in STV Networks.

• Empirical evaluation of the application of the EA to the MSE against a compet-

ing EA, a random search algorithm, a stochastic upper-bound, and an existing

approach developed for solving a related problem.
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This is an integral part of the contribution of the thesis and evaluation of the

hypothesis. The empirical evaluation of the EAs demonstrates their value and

suggests that further investigation could be fruitful.

These contributions were detailed in the previous chapters and contribute towards

the evaluation of the research hypothesis. To this end, the results have demonstrated

that Evolutionary Algorithms can find useful solutions to the MSE, that is, those solu-

tions that are better than the baseline in terms of both solution quality and computa-

tional effort.

Within the investigation of the hypothesis, two other research questions were also

addressed: one, looking at the gain of using the OCBA over a simple fitness averaging

approach; and, two, applying a simple, optimistic upper bounding procedure in order

to provide bounds on optimal solutions in order to gauge the performance of the EAs

from above as well as from below. The results from these investigations are promising

and suggest further research.

8.3 Modelling Assumptions

In this section, we provide a discussion on the assumptions underlying the network

model adopted for the work described herein, in the context of their realism and, where

possible, mention their impact on the problem and solution approach. These assump-

tions are defined as part of the adopted network flow model, as formally defined in the

Notation and Preliminaries section (4.1).

The following assumptions are discussed:

1. Discrete time horizon.

2. Edge property probability distributions:

• Discrete values.

• Known capacity and travel time distributions at time t = 0.

• Statistically independent across space and time.

3. Network supply: fixed and known a priori.

4. Occupant modelling:

• homogeneous units of flow.
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• no explicit interaction.

5. Solution constraints:

• No cycles allowed in paths.

• No waiting at nodes is planned for.

6. Sharing risk amongst occupants.

8.3.1 Discrete time horizon

In practice, on a machine, the discretization of time, as with other variables, is neces-

sary for computation. Hence discrete time, given appropriate intervals, can be used to

model continuous time, and in this sense, is a general approach for modelling a time

horizon.

8.3.2 Edge property probability distributions

In the network model adopted, network edge property distributions are modelled using

discrete distributions, as is common in the network flow area (as discussed in Chapter

2). The choice is based on the simplicity of handling such distributions computation-

ally, in particular when combined with assumptions about the statistical independence

of random variables (more on this later).

An important assumption is that the capacity and travel times distributions are as-

sumed known at time t = 0, in particular, for future states, i.e. at time t > 0. Non-

emergency conditions, i.e. normal working conditions, and drills for example, might

be used to gauge aggregate values and provide empirical distributions for edge prop-

erties. Under normal conditions then, these values could provide reasonable estimates

of future distributions (under non-emergency conditions, of course).

For future states, i.e. t > 0, during an incident, it is the wider context of future

emergency response systems, as envisioned by, for example, the FireGrid project, in

which such a system would find itself situated. Within the infrastructure of such sys-

tems, it is expected that a multitude of predictive tools would be available to provide

forecasts about, say, environmental conditions, for example, the conditions of building

circulation systems during fire incidents. These tools could include models that pre-

dict smoke layer height and determine the level of toxicity in particular corridors or

stairwells. Edge capacities and travel times could then be defined as functions of these
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conditions. As the conditions change, the edge values would be updated accordingly.

In practice then, given updates of edge property distributions and occupants locations,

additional optimisations would be required to adjust to the transient conditions.

Another modelling assumption for edge property distributions is that all distribu-

tions are defined as statistically independent across both time and space, that is, over

all time periods and edges. This is a common assumption for simplifying computations

across joint distributions of large numbers of random variables. In practice, however,

dependencies across space and time may exist. For example, the travel time required

to traverse an edge may be affected by the number of individuals traversing the edge,

which in turn is limited by the edge capacity. The sampling approaches proposed

herein could, in theory, be adapted to handle such dependencies.

8.3.3 Network supply

The supply of flow to the network is assumed to be fixed and known with certainty a

priori, that is, at time t = 0. The main assumptions here being, firstly, that the supply is

known, and, secondly, that no new flow is introduced or removed during the optimisa-

tion. As for the first assumption, again within the context of FireGrid, provision would

be made for the tracking of occupants movements, as would clearly be a prerequisite

for such an egress operational planning system.

As for the second assumption, the proposed approach carries out an a priori opti-

misation, that is, at t = 0, and hence the flow within the system is assumed fixed, and

additional optimisations, t > 0, could account for additional flow, and indeed for re-

moved flow (occupants reaching places of safety). However, note that the model allows

for the modelling of flow departing at t > 0, capturing the idea that individuals may

delay immediate egress, due to a slow reaction to an alarm signal (as seen in practice

and documented in the egress literature, for example, SFPE (2002)).

An appropriate model extension might explicitly model the uncertainty in the de-

parting times of flow, and model departure times as stochastic; the solution approach

would require to be extended to handle this case.

8.3.4 Occupant modelling

The modelling of occupants takes a reductionist approach, whereby individuals are

modelled homogeneously, that is, no individuals characteristics are taken into account.

This is standard for network flow models applied to evacuation, where it is common for
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individuals to be modelled as single, independent units of flow with assumed identical

characteristics.

An additional simplification in this model is that units are assumed to have no

explicit interaction, only an implicit interaction through the shared use of edge capac-

ity. The approach parallels early approaches to modelling and simulation of human

behaviour during egress Gwynne et al. (1999).

It would be possible to increase the sophistication of the occupant modelling, for

example, introducing distributions for population characteristics, or social aspects, but

this would have a significant impact on the solution approach. There is, of course,

a trade-off between increasing the complexity of the model and the computational

complexity of solving problems.

8.3.5 Solution constraints

A number of constraints are placed on solutions. The first constraint being that solu-

tions are forbidden to contain cycles. From the modelling perspective, this is a reason-

able assumption given that individuals are unlikely to be required to trace back over

previous steps during an evacuation. Additionally, from the algorithmic perspective al-

lowing cycles increases the search space substantially1; however, it potentially allows

for the existence of solutions to problems that do not permit solutions without cycles.

Related to cycles is the assumption that waiting at nodes is forbidden2. This is

restrictive as plans cannot be proposed that allow flow to wait at nodes for a number

of time periods, or, in other words, proposed solutions will not plan for occupants to

wait at decision points as a solution to, say, congestion on the next edge for traversal.

However, again, allowing waiting would increase the search space substantially. Nev-

ertheless, and perhaps more importantly, the inclusion of waiting in STV Networks

raises a number of modelling issues. A sample of these issues are:

• Should waiting be allowed at all nodes, or, say, just source nodes or major inter-

section points?

• Do nodes need capacity values?
1Technically, for an infinite time horizon (T = ∞), there are an infinite number of paths containing

cycles; with finite time horizons (n < T < ∞), there are still substantially more paths with cycles than
without.

2Note that, strictly, waiting is forbidden by the restriction on paths containing cycles, since self-
cycles are a subset of general cycles. However, in the context of emergency evacuation, given the
importance of waiting, and in (S)TV Networks given additional algorithmic requirements, it is often
considered a separate issue.
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• Should waiting, as part of the plans, be modelled as time-invariant or time-

dependent?

– Given that paths in the work described herein are time-invariant, should

waiting be invariant, such that units of flow wait the same number of time

intervals at a node in the path, no matter what time they arrive at the node?

– Or should waiting be time-adaptive, and hence require paths to be time-

adaptive as well?

Given the importance of waiting, the no waiting assumption could be relaxed.

However, allowing waiting could require substantial extensions to the model and solu-

tion approach, including modification of EA solution representation and genetic oper-

ators.

8.3.6 Sharing risk

The final assumption for discussion is that routing plans can be returned that require

occupants arriving concurrently at a decision point to be split to continue their egress

on differing routes. The main issue here, besides issues of communicating the different

routes and social aspects making it unlikely for occupants to split up, is that the risk

attached to the paths will most likely differ. In general, this raises a number of issues

to do the allocation of risk amongst occupants when there are choices.

A possible extension would be for the model to anticipate that groups will not split,

possibly combined with waiting to prevent unrealistic edge capacity requirements.

This extension would require substantial changes to the approach to accommodate

both the group constraint, and, in particular, waiting, as mentioned previously.

8.4 Future Work

In the course of the work reported here a number of potential areas of further work

have been identified, and they can be categorised into the following sub-areas:

• Network Model and Problem

• Algorithms

• Evaluation
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8.4.1 Network Model and Problem

In an effort to add realism to the network model, a number of potential extensions are

possible. For example, currently the supply of flow at the source node is determin-

istic; however, similar to network edge properties, the availability of supply could be

modelled stochastically, that is, that the availability of supply at the source node for a

departure time t, bs(t), is a priori unknown with certainty.

A further adaptation of the model would be to allow waiting of supply at source and

intermediate nodes. The addition of waiting could raise modelling issues, for example,

with the use of a priori fixed paths, and hence it may be beneficial to investigate the

use of time-adaptive paths (mentioned in Section 2.5.5).

Towards the goal of providing online plans, the approach could be adapted to ex-

ecute adaptive optimisation using updated distributions from, for example, analytic

tools such as the ones mentioned in Section 2.2 of the Literature Review.

Modifications to the network model such as these would have implications for the

solution approach, and understanding the impact on the methods would become an

element of future work as well.

Another avenue would be to extend the main solution approach and apply it to

canonical flow problems, e.g. maximum flow and minimum cost, and multiobjective

problems, in STV Networks.

8.4.2 Algorithms

There are a number of potentially interesting directions for improving the proposed

solution approaches and the upper bound.

8.4.2.1 Noisy Evolutionary Algorithms

For the integrated framework, future work could aim to make the approach more effi-

cient or, perhaps, increase its applicability. Additional extensions could include adapt-

ing the OCBA to work with non-normal distributions. In the context of EAs, perhaps

using distributions that model, for example, the skew that is common due to fitness

functions with additional penalty terms for constraint handling. Or, perhaps, modi-

fying the approach to function with nonparametric distributions in order to widen its

applicability. In terms of efficiency, one improvement would be to allow the use of

variance-reduction techniques in order to improve the efficiency of sampling and com-

parisons. Additional optimisations of the OCBA may also be possible, for example,
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by re-using more information across stages of the OCBA for a single ranking problem

or across multiple ranking problems. Finally, further experimentation of the integrated

framework is still warranted, in particular focussing on the interactions between EA

and OCBA parameters, and in consideration of EA population dynamics (as discussed

in the Discussion section (7.4) of Chapter 7).

The efficiency of the NEAMEAN could itself be improved by, for example, using

variance-reduction techniques for fitness sampling or adaptive sampling policies.

Additional experimentation would also be beneficial for both exploring the effec-

tiveness of the NEAOCBA and to gain further insight into the circumstances that warrant

the use of sophisticated evaluation methods, e.g. R&S methods, over simpler methods

such as fixed resampling.

8.4.2.2 Stochastic Upper Bound

For improving the upper bound, in order to provide a better gauge of the performance

of the algorithms, future work could include improving the estimate of the current

bound using, for example, variance-reduction techniques such as stratified sampling,

or, perhaps, improving the bound itself in order to evaluate a less optimistic bound and

hence a better gauge of the performance of proposed approaches.

From (Mak et al., 1999), a common improvement of the bound can be achieved

through “inner sampling”, that is, by solving over subsets of the ξ̄’s support, rather than

individual states. However, this requires optimising over sets of network states, rather

than single states, which makes the improvement more computationally demanding.

Note that solving over the entire support of ξ̄ is equivalent to solving the general MSE

problem.

Formally, a way to improve the upper bound (4.14) and its MC estimate (4.16)

would be to use m independent copies ξ̄ j of ξ̄ to obtain

z∗ = max
ψ∈Ψ

E[h(ψ, ξ̄)]

= max
ψ∈Ψ

E
[

1
m

m

∑
j=1

h(ψ, ξ̄ j)
]

≤ E
[

max
ψ∈Ψ

[
1
m

m

∑
j=1

h(ψ, ξ̄ j)
]]

Note that if m = 1 then this approach is identical to the bounding approach defined

in Section 4.4.1. As m increases, the closer the combination of sub-problems comes to

the general MSE.
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This method leads to the unbiased MC estimator

1
n

n

∑
i=1

max
ψ∈Ψ

[ 1
m

m

∑
j=1

h(ψ,ξi j)
]

where ξi j are i.i.d. observations from ξ̄, i = 1, . . . ,n and j = 1, . . . ,m. In other words,

instead of solving Equation 4.5 one maximises the empirical estimates of the expected

value function

Gm(ψ) =
1
m

m

∑
j=1

h(ψ,ξi j)

Solving over subsets of states is a more computationally demanding problem, and

the upper-bounding approach suggested herein is not appropriate. Gutjahr et al. (2000)

suggested using metaheuristic approaches, for example EAs, to solve the sub-problems.

However, using EAs would reduce the reliability of the bound since such an approach

would not guarantee solving the sub-problems to optimality. Nevertheless, the results

could still indicate the general direction of the optimal solution, that is, by indicat-

ing how optimistic the original bound is. Variance-reduction techniques could also be

applied in order to reduce the variance of the estimates.

8.4.3 Evaluation

As mentioned in the Experimentation and Analysis chapter (7), further experimenta-

tion is warranted, and in this section a number of potential areas for further experimen-

tation are highlighted.

As previously mentioned, more experimentation investigating the interactions and

dependencies between EA parameters and OCBA parameters would be fruitful. The

goal being to provide further insight to the performance of the integrated approach

and improving the guidelines on effective parameter choices for the framework. In

particular, highlighting how to apply the approach to maximise its effectiveness, and

also to identify its limitations.

A further possibility would be to look at evaluating the proposed approaches on

additional MSE problem classes. For example, using larger numbers of nodes and

more network supply in order to look at how the performance of the algorithm scales

with larger problems.

Another interesting, and important direction, would be to consider the domain of

interest, and to carry out experimentation on structured problem instances. The work

described herein explores the application of methods to worst-case scenarios, when
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very little can be assumed about, for example, the underlying network structure. It is

expected, however, that the algorithms’ performance would improve as more domain

knowledge is included and can be exploited. This could entail, for example, using

underlying network topologies based on prototypical building circulation systems or

specific real-world cases.

8.5 Concluding Remarks

This thesis has documented an investigation into methods for finding evacuation plans

that address the inherently transient and uncertain environmental conditions of emer-

gency scenarios in the built environment. A novel network flow problem was defined

that attempts to model the environmental conditions using stochastic and time-varying

network properties. Due to the dual complexity of the problem and of evaluating the

quality of solutions, an approximation approach based on Evolutionary Algorithms

was proposed. An empirical evaluation of the algorithm against several competing

methods demonstrated the value in the proposed approach.
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Additional Results

This supplementary chapter provides additional tables and plots of the results from the

experimentation, described in Chapter 7.

A.1 Parameter Tuning

These additional tables and plots are discussed in Section 7.2.2.3.

The results for the first eight configurations for solution quality are given in Tables

A.1 and A.2; for computation time in Tables A.3 and A.4; and for total number of

fitness samples in Tables A.5 and A.6. Boxplots showing the pairwise differences

between configurations C1-C8 for computation time and number of fitness samples,

for each problem class, are shown in Figures A.1 and A.2, respectively.

The results for the additional three configurations: C9, C10 and C11, and configu-

ration C4, for solution quality are provided in Tables A.7 and A.8, for computation time

in Tables A.9 and A.10, and Tables A.11 and A.12 for number of samples. Boxplots

showing the pairwise differences between configurations C9-C11 and C4 for solution

quality, computation time and number of fitness samples, for each problem class, are

shown in Figures A.3, A.4 and A.5, respectively.

A.2 Evaluation

Tables of results for all algorithms for solution quality are provided in Tables A.13 and

A.14, for computation time in Tables A.15 and A.16, and, finally, for total number of

samples in Tables A.17 and A.18.

191
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Figure A.1: Parameter Tuning: CT Pairwise Differences for PC1-PC8, C1-C8 (NB: y-

axis scales vary, and grey boxes indicate significant differences at 0.05 level.)
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Figure A.3: Parameter Tuning: SQ Pairwise Differences for PC1-PC8, C4, C9-C11 (NB:

y-axis scales vary, and grey boxes indicate significant differences at 0.05 level.)
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Figure A.4: Parameter Tuning: CT Pairwise Differences for PC1-PC8, C4, C9-C11 (NB:

y-axis scales vary, and grey boxes indicate significant differences at 0.05 level.)
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Figure A.5: Parameter Tuning: N Pairwise Differences for PC1-PC8, C4, C9-C11 (NB:

y-axis scales vary, and grey boxes indicate significant differences at 0.05 level.)
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The p-values for the post hoc pairwise comparison tests are provided in Tables

A.19 and A.20 for solution quality, Tables A.21 and A.22 for computation time, and in

Table A.23 for total number of samples.

A.2.1 Validation of Results

Boxplots of the results for the validation experiments are provided in Figures A.6 and

A.7 for solution quality, Figure A.8 for computation time and Figure A.9 for total

number of samples.
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Figure A.6: Validation: SQ for PC1-PC4
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Table
A

.13:
E

valuation:
R

esults
forS

Q
,P

C
1-P

C
4

PC
1

PC
2

PC
3

PC
4

m
ean

sd
m

ean
sd

m
ean

sd
m

ean
sd

N
E

A
O

C
BA

0.8403891
0.1640942

0.4222922
0.2535015

0.8411101
0.2025462

0.5594921
0.2491637

N
E

A
M

E
A

N
0.745502

0.2147726
0.4648235

0.2736969
0.8355198

0.1552798
0.4560826

0.2849092

R
SA

0.0839998
0.07931672

0.003881963
0.005441183

0.09881648
0.07448442

0.005687219
0.01370314

U
B

0.9903333
0.05205659

0.8560756
0.2623151

0.9796667
0.07790949

0.8906667
0.1953490



A.2. Evaluation 211

Ta
bl

e
A

.1
4:

E
va

lu
at

io
n:

R
es

ul
ts

fo
rS

Q
,P

C
5-

P
C

8

PC
5

PC
6

PC
7

PC
8

m
ea

n
sd

m
ea

n
sd

m
ea

n
sd

m
ea

n
sd

N
E

A
O

C
BA

0.
67

68
63

4
0.

22
61

31
5

0.
27

02
14

8
0.

19
64

04
9

0.
67

95
20

1
0.

23
28

69
9

0.
25

17
44

6
0.

17
94

21
7

N
E

A
M

E
A

N
0.

65
48

17
5

0.
23

75
63

5
0.

20
86

03
6

0.
16

12
18

5
0.

73
73

04
5

0.
18

54
24

6
0.

27
47

92
4

0.
23

14
70

3

R
SA

0.
03

37
37

51
0.

05
85

29
0.

00
07

41
87

09
0.

00
12

67
17

9
0.

02
85

02
47

0.
03

25
61

21
0.

00
03

55
98

71
0.

00
07

30
13

04

U
B

0.
96

4
0.

11
47

56
3

0.
93

62
25

0.
11

19
41

3
0.

97
05

0.
08

56
18

83
0.

91
45

0.
23

27
09

9



212 Appendix A. Additional Results
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PC1 NEAMEAN NEAOCBA RSA

NEAOCBA 0.02061903720611689 NA NA

RSA 0.00000000058503906 0.00000000014995503 NA

UB 0.00000000060156998 0.00000000534863786 0.00000000001031331

PC2 NEAMEAN NEAOCBA RSA

NEAOCBA 0.70819305290442380 NA NA

RSA 0.00000000014010457 0.00000000014010457 NA

UB 0.00000093372381656 0.00000045537504267 0.00000000007030262

PC3 NEAMEAN NEAOCBA RSA

NEAOCBA 0.46390014392935219 NA NA

RSA 0.00000000015080377 0.00000000052533769 NA

UB 0.00000000972927770 0.00000015964037916 0.00000000001419404

PC4 NEAMEAN NEAOCBA RSA

NEAOCBA 0.18717863983208879 NA NA

RSA 0.00000000022857021 0.00000000016507769 NA

UB 0.00000016796634183 0.00000118071643386 0.00000000006753308

Table A.19: Evaluation: P-values for post hoc pairwise comparison tests, SQ, PC1-PC4.

(Bold indicates significant result at 0.05 level.)
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PC5 NEAMEAN NEAOCBA RSA

NEAOCBA 0.66273036217571124 NA NA

RSA 0.00000000020297707 0.00000000020297707 NA

UB 0.00000000158288245 0.00000000463567309 0.00000000001887531

PC6 NEAMEAN NEAOCBA RSA

NEAOCBA 0.35810141979272925 NA NA

RSA 0.00000000007898858 0.00000000007898858 NA

UB 0.00000000007898858 0.00000000007898858 0.00000000004340424

PC7 NEAMEAN NEAOCBA RSA

NEAOCBA 0.40340685182518909 NA NA

RSA 0.00000000015023746 0.00000000015023746 NA

UB 0.00000003303927420 0.00000003929785358 0.00000000003122322

PC8 NEAMEAN NEAOCBA RSA

NEAOCBA 0.947355822930050606 NA NA

RSA 0.000000000039089949 0.000000000039089949 NA

UB 0.000000001573156424 0.000000001573156424 0.000000000008279932

Table A.20: Evaluation: P-values for post hoc pairwise comparison tests, SQ, PC5-PC8.

(Bold indicates significant result at 0.05 level.)
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PC1 NEAMEAN NEAOCBA RSA

NEAOCBA 0.0000000000126680700187 NA NA

RSA 0.000000000000000102 0.0000000342959129633882 NA

UB 0.000000000000000102 0.000000000000000102 0.000000000000000102

PC2 NEAMEAN NEAOCBA RSA

NEAOCBA 0.000000000000000102 NA NA

RSA 0.000000000000000102 0.1381260880781920441507 NA

UB 0.000000000000000102 0.000000000000000102 0.000000000000000102

PC3 NEAMEAN NEAOCBA RSA

NEAOCBA 0.0000000000009683034302 NA NA

RSA 0.000000000000000102 0.0000029128393119885165 NA

UB 0.000000000000000102 0.000000000000000102 0.000000000000000102

PC4 NEAMEAN NEAOCBA RSA

NEAOCBA 0.0000000000000001014674 NA NA

RSA 0.000000000000000102 0.3980033437616471991838 NA

UB 0.000000000000000102 0.000000000000000102 0.000000000000000102

Table A.21: Evaluation: P-values for post hoc pairwise comparison tests, CT, PC1-PC4.

(Bold indicates significant result at 0.05 level.)
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PC5 NEAMEAN NEAOCBA RSA

NEAOCBA 0.000000000596917716749 NA NA

RSA 0.000000000001936606860 0.008383152587827669838 NA

UB 0.000000002859009109287 0.000000000001246527050 0.000000000000009842338

PC6 NEAMEAN NEAOCBA RSA

NEAOCBA 0.0000000000017994736648 NA NA

RSA 0.0000000000365075320343 0.0243354659261669839521 NA

UB 0.000000000000000102 0.000000000000000102 0.000000000000000102

PC7 NEAMEAN NEAOCBA RSA

NEAOCBA 0.000000006260284171 NA NA

RSA 0.000000000008374697 0.001092004716304495 NA

UB 0.000000000203928984 0.000000000014526073 0.000000000000943241

PC8 NEAMEAN NEAOCBA RSA

NEAOCBA 0.000000000000000102 NA NA

RSA 0.000000000000000102 0.1193576070154743207219 NA

UB 0.0000000000009683034302 0.00000000000000656 0.0000000000000189

Table A.22: Evaluation: P-values for post hoc pairwise comparison tests, CT, PC5-PC8.

(Bold indicates significant result at 0.05 level.)
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Figure A.7: Validation: SQ for PC5-PC8

A.2.2 Evaluation of NEAOCBA with HSEA

The following boxplots show the results of the HSEA and NEAOCBA for solution qual-

ity, in Figures A.10 and A.11, and computation time, in FigureA.12, for each problem

class.

Table A.24 provides the p-values from the hypothesis tests comparing the NEAOCBA

results with the HSEA.

Figure A.13 shows the differences between the NEAOCBA and the HSEA for solu-

tion quality and computation time, respectively.
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A.3 Discussion

Boxplots of the results for the additional experiments are provided in Figures A.14 and

A.15 for solution quality, Figure A.16 for computation time and Figure A.17 for total

number of samples.

The p-values for the hypothesis tests between the NEANS
OCBA and the NEANS

MEAN are

provided in Table A.25. The p-values for the hypothesis tests between the NEAOCBA

and the NEANS
OCBA, and the NEAMEAN and the NEANS

MEAN are provided in Table A.26

and Table A.27, respectively.

Boxplots showing the differences between the NEAOCBA and the NEANS
OCBA, and

between the NEAMEAN and the NEANS
MEAN are shown in Figures A.18 and A.19, re-

spectively.



222 Appendix A. Additional Results

PC1 NEAMEAN NEAOCBA

NEAOCBA 0.00000000001563434 NA

RSA 0.00000000001563434 0.00831191165588153

PC2 NEAMEAN NEAOCBA

NEAOCBA 0.00000000001943684 NA

RSA 0.00000000001943684 0.01687053334542116

PC3 NEAMEAN NEAOCBA

NEAOCBA 0.000000000005160753 NA

RSA 0.000000000005160753 0.561874772423794244

PC4 NEAMEAN NEAOCBA

NEAOCBA 0.0000000000381038 NA

RSA 0.0000000000381038 0.2664685034622974

PC5 NEAMEAN NEAOCBA

NEAOCBA 0.00000000001233292 NA

RSA 0.00000000001233292 0.02531696007060259

PC6 NEAMEAN NEAOCBA

NEAOCBA 0.00000000002818083 NA

RSA 0.00000000002818083 0.00288294818758070

PC7 NEAMEAN NEAOCBA

NEAOCBA 0.000000000003635341 NA

RSA 0.000000000003635341 0.328034557351709111

PC8 NEAMEAN NEAOCBA

NEAOCBA 0.00000000001943684 NA

RSA 0.00000000001943684 0.00000868335417622

Table A.23: Evaluation: P-values for post hoc pairwise comparison tests, N, PC1-PC8.

(Bold indicates significant result at 0.05 level.)
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Figure A.8: Validation: CT for PC1-PC8



224 Appendix A. Additional Results

●●● ●●●

●●●●●

N
E

A
_O

C
B

A
N

E
A

_M
E

A
N

R
S

A

30 35 40 45 50 55

Validation: Number of Fitness Samples for PC1

Average Number of Fitness Samples (x10^6)

A
lg

or
ith

m

average

● ● ●●

●●●●●●●

●

N
E

A
_O

C
B

A
N

E
A

_M
E

A
N

R
S

A

40 60 80 100 120 140

Validation: Number of Fitness Samples for PC2

Average Number of Fitness Samples (x10^6)

A
lg

or
ith

m

average

●

●●

N
E

A
_O

C
B

A
N

E
A

_M
E

A
N

R
S

A

30 35 40 45 50 55

Validation: Number of Fitness Samples for PC3

Average Number of Fitness Samples (x10^6)

A
lg

or
ith

m

average

●● ●

●●●●

N
E

A
_O

C
B

A
N

E
A

_M
E

A
N

R
S

A

40 60 80 100

Validation: Number of Fitness Samples for PC4

Average Number of Fitness Samples (x10^6)

A
lg

or
ith

m

average

●●●

●●●●

N
E

A
_O

C
B

A
N

E
A

_M
E

A
N

R
S

A

30 35 40 45 50 55

Validation: Number of Fitness Samples for PC5

Average Number of Fitness Samples (x10^6)

A
lg

or
ith

m

average

●●

●●●●●

●

N
E

A
_O

C
B

A
N

E
A

_M
E

A
N

R
S

A

50 100 150

Validation: Number of Fitness Samples for PC6

Average Number of Fitness Samples (x10^6)

A
lg

or
ith

m

average

●● ●

●

N
E

A
_O

C
B

A
N

E
A

_M
E

A
N

R
S

A

30 35 40 45 50 55

Validation: Number of Fitness Samples for PC7

Average Number of Fitness Samples (x10^6)

A
lg

or
ith

m

average

●●

●●●●●●

● ●●

N
E

A
_O

C
B

A
N

E
A

_M
E

A
N

R
S

A

30 40 50 60 70 80 90 100

Validation: Number of Fitness Samples for PC8

Average Number of Fitness Samples (x10^6)

A
lg

or
ith

m

average

Figure A.9: Validation: N for PC1-PC8
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Figure A.10: HSEA Evaluation: SQ for PC1-PC4
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Figure A.11: HSEA Evaluation: SQ for PC5-PC8
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Figure A.12: HSEA Evaluation: CT for PC1-PC8
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PC SQ CT

1 0.0000000009313226 0.0000000009313226

2 0.0000000009313226 0.0000000009313226

3 0.0000000009313226 0.0000000009313226

4 0.0000000009313226 0.0000000009313226

5 0.0000008419156 0.0000000009313226

6 0.0000009955838 0.0000000009313226

7 0.000000001862645 0.0000000009313226

8 0.0000000009313226 0.0000000009313226

Table A.24: HSEA Evaluation: P-values for hypothesis tests between the HSEA and

NEAOCBA. (Bold indicates significant result at 0.05 level.)

PC SQ CT N

1 0.05744915 0.00000000000000001691123 0.000000000001720251

2 0.005437617 0.00000000000000001691123 0.00000000000121178

3 0.06566001 0.00000000000000001691123 0.000000000001720251

4 0.01694876 0.00000000000000003382247 0.00000000000121178

5 0.5641876 0.00000000000000001691123 0.00000000000121178

6 0.00000002172021 0.00000000000000006764494 0.00000000000121178

7 0.5996337 0.00000000000000001691123 0.000000000001210791

8 0.0000006352674 0.00000000000000001691123 0.00000000000121178

Table A.25: Discussion: P-values for hypothesis tests between NEANS
OCBA and

NEANS
MEAN . (Bold indicates significant result at 0.05 level.)
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Figure A.14: Discussion: SQ for PC1-PC4
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Figure A.15: Discussion: SQ for PC5-PC8
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Figure A.16: Discussion: CT for PC1-PC8
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Figure A.17: Discussion: N for PC1-PC8
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PC SQ CT N

1 0.000000001862645 0.000000001862645 0.140283

2 0.00006286614 0.00004407577 0.0000207983

3 0.000000001862645 0.000000001862645 0.5561133

4 0.000001683831 0.0000005718321 0.0000005718321

5 0.000000001862645 0.000000001862645 0.000001991168

6 0.1003974 0.1094321 0.1003974

7 0.000000001862645 0.000000001862645 0.00007910654

8 0.2449464 0.08032736 0.03453673

Table A.26: Discussion: P-values for hypothesis tests between the NEAOCBA and the

NEANS
OCBA. (Bold indicates significant result at 0.05 level.)

PC SQ CT N

1 0.00000000372529 0.8078304 0.03603169

2 0.000000001862645 0.000000314787 0.03603169

3 0.000000001862645 0.02209885 0.3710934

4 0.000000001862645 0.000000001862645 0.00588927

5 0.000000001862645 0.9515265 0.1003482

6 0.000000001862645 0.0001886003 0.0141474

7 0.000000001862645 0.9515265 −
8 0.000000001862645 0.0000002551824 0.03603169

Table A.27: Discussion: P-values for hypothesis tests between the NEAMEAN and the

NEANS
MEAN . (Bold indicates significant result at 0.05 level. Hyphen indicates identical

results.)
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Figure A.18: Discussion: Differences between NEAOCBA and NEANS
OCBA (N.B. Grey

boxes indicate significant results at 0.05 level.)
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Figure A.19: Discussion: Differences between NEAMEAN and NEANS
MEAN (N.B. Grey

boxes indicate significant results at 0.05 level.)
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and Z. Michalewicz, editors, Handbook of Evolutionary Computation, chapter C5.1.
IOP Publishing Ltd and Oxford University Press, 1997.

B. Miller. Noise, Sampling and Efficient Genetic Algorithms. PhD thesis, University
of Illinois at Urbana-Champaign, May 1997.

B. Miller and D. Goldberg. Optimal Sampling for Genetic Algorithms. IlliGAL Report
96005, Univeristy of Illinois at Urbana-Champaign, August 1996.

E. Miller-Hooks. On-Line Information and Decision-Support in Building Egress. In
Proceedings of the 4th International Symposium on Human Behaviour in Fire, pages
447–458, Cambridge, England, 2009.

E. Miller-Hooks and T. Krauthammer. An Intelligent Evacuation, Rescue and Recov-
ery Concept. Fire Technology, 43(2):107–122, June 2007.

E. Miller-Hooks and H. Mahmassani. Least Possible Time Paths in Stochastic Time-
Varying Networks. Computer & Operations Research, 25(12):1107–1125, 1998.

E. Miller-Hooks and S. Patterson. On Solving Quickest Time Problems in Time-
Dependent, Dynamic Networks. Mathematical Modelling and Algorithms, 3:39–71,
2004.



246 Bibliography

E. Miller-Hooks and G. Sorrel. The Maximal Dynamic Expected Flows Problem for
Emergency Evacuation Planning. In TRB Research Board 87th Annual Meeting,
2008.

P. Mirchandani. Shortest distance and reliability of probabilistic networks. Computer
& Operations Research, 3:347–355, 1976.

M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
1998.

A. Moraglio and R. Poli. Topological Interpretation of Crossover. In Proceedings of
Genetic and Evolutionary Computation Conference 2004, pages 1377–1388, 2004.

A. Moraglio and R. Poli. Geometric Crossover for Sets, Multisets and Partitions. In
Parallel Problem Solving for Nature IX, volume 4193, pages 1038–1047, 2006.

T. Munakata and D. Hashier. A Genetic Algorithm Applied to the Maximum Flow
Problem. In The Fifth International Conference on Genetic Algorithms, pages 488–
493, Urbana-Champaign, IL, July 1993.

H. Nagamochi and T. Ibaraki. Maximum Flows in Probabilistic Networks. Networks,
21(6):645–666, October 1991.

H. Nagamochi and T. Ibaraki. On Onaga’s Upper Bound on the Mean Values of Prob-
abilistic Maximum Flows. IEEE Transactions on Reliabilty, 41(2), June 1992.

M. Newman. Handbook of Graphs and Networks, chapter Random graphs as models
of networks, pages 35–68. Wiley, 2003.
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