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Abstract 
In modern wormhole-routed multicomputer interconnection networks, contention 

plays an increasingly significant role in limiting performance at high loads, espe-

cially if there is poor communication locality in the workload or if the communi-

cation load is non-uniform. 

However, the relationship between the level of contention in the communica-

tion network and performance degradation in a running workload is complex. At 

high loads, the communication network may be affecting the rate of injection of 

new packets into the network just as much as the workload's packet injection rate 

is affecting performance in the network. 

In this thesis we will aim to provide a way of untangling this relationship. We 

will present a methodology based on discrete event simulation which will allow 

us to separately identify the cost of contention to a running program, and the 

amount of contention actually occurring. 

We describe a dedicated discrete event simulator used to host performance 

evaluations of a set of workloads on a 2-D mesh of wormhole routing elements 

based on the T9000 transputer and its associated C104 routing device. Our 

simulator is capable of selectively running without contention effects, allowing 

us to observe not only the amount of contention taking place in the network but 

also the performance degradation it is causing relative to an ideal, contention-free 

environment. 

We describe a set of metrics which can be used to measure these contention 

effects. We make a strong distinction between contention internal to the commu- 

nication network and contention taking place at or before the injection buffers into 

the network: these are shown to have very different implications for performance. 

We also describe a method of classifying synchronisation properties of work-

loads for which packet injections are not necessarily independent. If there is a 

feedback loop between network performance and workload performance, then we 

need to understand if and how the workload may react to changes in the network's 

performance before we can predict the impact of contention. 

Finally we show that the workload classifications and contention metrics we 

have identified do allow us to distinguish between different levels of workload 

sensitivity to contention in our networks. 
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Chapter 1 

Introduction 

We live in a time which is seeing an explosive yet sustained growth in the power 

of computer hardware. Computing power unheard of a few years ago is now 

common-place in homes, and yet the users of these systems are continually press- 

ing for even more power. In many fields of scientific and numerical computation, 

the demands of users and of applications have continually exceeded the ability 

of traditional CPUs to deliver on their own. The parallel multicomputer has 

emerged as a way of providing unrivaled performance by combining many fast 

CPUs together into a single unit. 

As CPU speeds have increased, it has been necessary to develop better in-

terconnection networks for these multicomputers in order to maintain a balance 

between computation and communication performance. As the power of multi-

computers has grown, more and more CPUs have been combined together. As 

a result, there is a demand not only for faster interconnection networks, but for 

more scalable networks too. 

Wormhole routing [Dal87, DS87] has emerged as the favoured way to achieve 

speed and scalability. By allowing packet routers to begin routing packets as 

soon as enough of the packet's header has arrived to determine its destination, 

the per-hop cost of forwarding data is reduced to a constant factor, independent 

of the message's length. Packets can be incrementally routed through a network, 

being in various stages of transmission by subsequent routers at the same time. 

The bogeyman of wormhole-routed network performance is contention [Lee85, 

KP86, LK90]. If a packet is to be forwarded on a link which is already busy, then 

that packet must wait for the link to become free. This enormously increases the 

forwarding latency of that hop, and as path lengths through the network grow, 

so does the opportunity for contention: contention can take place at each and 

every hop through the routing network. The onset of contention is hard to model 

exactly: not only do the characteristics of the workload incur contention, but the 
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response of the communication network will also have its own effect on the rate 

at which the workload can inject packets. 

In this thesis we will aim to provide a way of untangling this relationship. We 

will present a methodology based on discrete event simulation which will allow 

us to separately identify the cost of contention to a running program, and the 

amount of contention actually occurring. 

Our main contributions will be: 

The development of a simulator tool which is instrumented to observe con-

tention, and which can run with contention effects selectively disabled to 

measure the speedup possible with contention removed. 

The identification of synchronisation patterns within the workload which 

affect the workload's sensitivity to contention. 

The observation of two very different contention effects: flow-control effects 

which merely throttle packet injection by the workload, and true internal 

contention within the communications network. We identify ways of mea-

suring the presence of internal contention reliably in the presence of other 

throttling contention. 

We observe separately the onset of contention in the communication net-

work, and the onset of contention-induced performance degradation in the 

workloads, and describe how this relationship depends on the synchronisa-

tion characteristics present in the workload. 

Chapter 2 will describe the background of wormhole routing networks and 

of parallel performance evaluation techniques. In chapter 3, we will present a 

description of the models of communication and computation we shall be using 

in our investigation, and will present in more detail the simulation tool and the 

methodology used to carry out that investigation. The simulator tool will be 

validated in chapter 4. 

Chapter 5 will look at the problems of measuring contention, and its impact 

on workload performance, in the presence of other conflicting factors affecting 

performance. This chapter will identify some of the ways in which increasing 

contention affects performance. It will also introduce a classification of workload 

synchronisation characteristics which have a significant effect on the workload's 

sensitivity to contention. 

In chapter 6, we will look more closely at the relationship between communica-

tion performance—the time it takes for the communications network to transport 
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a packet from source to destination router—and workload performance, the actual 

amount of work achieved by the workload. We will see how different workloads 

may be sensitive to contention in different ways. 

Chapter 7 will summarise our work and our conclusions, and will present some 

thoughts for possible future work on this subject. 



Chapter 2 

Background 

In this chapter, we wish to lay out the background for our investigation of con-

tention in multicomputer routing networks. We will look at the various forms 

of interconnect router and wormhole routers available, and will describe known 

performance models for these routers and for contention in them. We shall also 

describe various techniques used to evaluate the performance of parallel systems. 

2.1 Multicomputer Interconnection Routers 

If scalability is not an objective in designing a multicomputer router, then single-

stage routers such as a bus, star or crossbar scheme may be used. However, any 

truly scalable router architecture will require the ability for multiple routers to be 

connected together to form arbitrarily large routing networks. We refer to these 

multiple-node networks as multistage interconnection networks. 

Whenever we have got multiple routers passing packets between them, we need 

to be aware of the possibility of deadlocking. There are many ways of dealing with 

this problem. One technique is to incorporate enough buffering in the network 

routers to guarantee that we cannot ever block, but the required buffering in this 

scenario is dependent on the application workload, which is not typically under 

the network designer's control. Another method is not to avoid deadlock, but to 

detect it once it has happened and to break it somehow. 

The preferred mechanisms for deadlock avoidance in contemporary multicom-

puter routers are to either use a routing algorithm which can be proven never to 

deadlock, or to use a randomised algorithm in which the system is only probabilis-

tically deadlock-free (the probability that a packet is delivered in time t converges 

to one as t -+ oc). 

There are other classifications of routers which can be made: 

. A router is minimal if it always routes packets along a minimally- lengthed 
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path. 

. A router in which the path is uniquely determined by the start and desti-

nation of the packet is said to be oblivious; 

Conversely, a non-oblivious router which can choose between multiple routes 

may be free to choose the least loaded route: such a router is adaptive. 

. A deterministic router always behaves the same way given a certain current 

state and a certain packet to route, whereas 

A router need not always route a packet on the same channel given a cer-

tain state, or always route the same packets in the same order. Routers 

which uses random decisions as part of its routing algorithm are termed 

randomised. 

Other terms are used to describe the routing algorithm (the process of deciding 

when and where to forward a received packet). In traversing any multidimensional 

network of routing nodes, a packet may have to travel in more than one dimension 

to arrive at its destination. We say that a packet needs dimension i if its current 

coordinate in that dimension is different from the destination's. On a given router, 

a certain output channel is profitable for a packet if forwarding the packet on that 

channel will take it closer to its destination. A packet is derouted if it is forwarded 

on a non-profitable channel. 

2.1.1 Deterministically deadlock-free routing 

The archetypal deadlock free router for grid and hypercube architectures is the 

greedy dimension-order router [Gun8l]. This has been extended to arbitrary 

k-ary n-cubes and toruses by Daily and Seitz [DS87] in the extended e-cube rout-

ing algorithm, which breaks links into separately-flow-controlled virtual channels. 

This router has the property that there is only one possible path for any message 

delivery through the network, but that the set of paths for all possible messages 

is such that cycles can never form and so deadlock cannot occur. This router has 

numerous advantages: it is simple to implement, its paths are always minimal 

and its behaviour is well understood. 

The main disadvantage of the dimension-order router is that it is necessarily 

oblivious—packets always have exactly one possible next hop as they traverse 

the network, and there is no scope for choosing the least heavily loaded route 

amongst alternative paths. A number of ways of overcoming this have been pro-

posed, such as the Planar-Adaptive Router [CK92], which use minimal adaptive 
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routing (which is not normally deadlock free in its simplest formulations). The so-

lutions usually revolve around the use of virtual channels to remove the deadlock 

potential inherent in the adaptive communication patterns, either by restrict-

ing the adaptive flow of packets or by imposing extra packet priorities to avoid 

deadlock. 

2.1.2 Probabilistically deadlock-free routing 

Probabilistic deadlock freedom is another way of avoiding deadlock. Probabilis-

tically deadlock-free systems are often non-minimal, in that they incorporate the 

ability to randomly deroute packets and hence do not always result in minimal 

path lengths for packet delivery. However, this independence of any given path 

through the network means that these systems cannot get caught in a cycle of 

path dependencies, so they are trivially deadlock free. A harder property to 

prove is livelock freedom, and various techniques are used to ensure this, includ-

ing forms of timestamping which ensure that the oldest packet in the system is 

always guaranteed to be delivered. 

One of the more interesting ways of achieving livelock freedom is simply to in-

corporate an element of pure randomness into the routing algorithm. By selecting 

packets to deroute at random, rather than (say) oldest first, we break the regular 

repeating loops which are a feature of livelock occurrence. In such systems we can 

prove that the probability that a packet has still not been delivered after time t 

decreases exponentially in t, and this is usually considered a satisfactory bound 

on performance. 

2.1.3 Wormhole Routing 

Traditionally, most multicomputer routers have used store-and-forward routing: 

a packet had to be completely received by a router before the router could be-

gin to forward it out on another channel. Daily and Seitz {DS86} introduced 

wormhole routing to improve performance. Wormhole routers allow a packet to 

be forwarded once only its header has fully arrived, reducing the per-hop packet 

latency enormously and making larger diameter communication networks effi-

cient. A Survey of wormhole routers can be found in [NM911. [MJTR94] surveys 

collective communication techniques for wormhole-routed networks. 
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2.2 Existing Routing Algorithms 

2.2.1 Greedy Routing 

Perhaps the most common and certainly the simplest routing algorithm for many 

cases is the dimension-order greedy router. This router is the standard basic 

router for k-ary n-cube networks (regular networks of dimension n and with k 

nodes per edge). It works by imposing an arbitrary order on the dimensions of the 

network, and always routing packets along the most significant needed dimension. 

The imposition of dimension order on the network guarantees that the network 

is deterministically deadlock-free in all cases. 

Greedy routing can be adapted for use on torus networks. The basic greedy 

router suffers from deadlock conditions when used naïvely on a torus, but in [DS87], 

Dally and Seitz propose a way of avoiding this problem. By splitting communica-

tion edges into pairs of independently buffered, virtual channels, they can impose 

a strict ordering on packets which guarantees deadlock-freedom. However, due 

to the way in these virtual channels are assigned to communication edges, the 

resulting torus is not completely uniform. 

An important property of the greedy router is that, being both oblivious and 

fully deterministic, any packet's entire route is determined purely by its source 

and destination address. 

2.2.2 Two-phased Random Routing 

In [Va182], Valiant introduces a randomised, oblivious routing strategy called 

Two-phase Random Routing. The problem Valiant identified was that many 

common parallel algorithms require communication patterns which, under the 

greedy router, result in highly non-uniform utilisation of the underlying commu-

nication network. Such a pattern is usually bad for performance, since the most 

heavily loaded edges act as bottlenecks, limiting the utilisation possible on the 

rest of the network. 

Valiant observed that while many common permutation communication pat-

terns resulted in this non-uniform load, a random permutation would be expected 

to result in a much more even load. He proposed that instead of routing each 

packet deterministically to its destination, they should first be routed to an inter-

mediate node, chosen uniformly at random, and then forwarded to the ultimate 

destination. (Note that to avoid deadlock, it is important that these two phases 

of the communication not interfere with each other; in practice this is most eas-

ily achieved by reserving separate physical communication channels for the first 
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and second phases.) The result is that the original permutation workload has 

been broken up into two random permutation exchanges, and Valiant was able 

to prove that this random routing had optimal average-case behaviour for per-

forming permutations in O(log(N)) time on sparsely-connected networks of N 

nodes. 

The two-phase random router is particularly important in our transputer-

oriented study due to the fact that the C104 transputer routing device is capable 

of performing random routing in hardware. The C104 allows any input channel to 

be configured such that a packet entering that channel gets prefixed with a new, 

randomly chosen destination address; or that a packet is stripped of its initial 

header and routed according to the remaining header. These two mechanisms 

can be used to route newly injected packets into the first-phase network and 

to forward them into the second-phase network once they have arrived at their 

intermediate random destination. 

2.2.3 The Chaos Router 

The chaos router [Bo193, BFS941 is an example of an adaptive, randomised, prob-

abilistically livelock-free router. The chaos router adds to the normal input and 

output buffers a multiqueue, a buffer large enough to hold d packets where d is the 

degree of the router node (including injection and delivery channels). All buffers 

are virtual cut-through. 

The routing algorithm for a dimension i proceeds as follows: 

A dimension i is interesting if output frame i is empty and a packet 

in either the multiqueue or one of the input frames needs dimension 

Z. 

If the current output frame is interesting, the router performs, in the 

following order: 

Select the oldest packet in the multiqueue that needs the current 

channel. Move it into the output queue and, if the current input 

frame is non-empty, move that packet into the multiqueue. 

Randomly select an input dimension containing a packet that 

needs the current output channel. If the selected input dimension 

is the same as the current output dimension, move the packet 

into the output frame. Otherwise, if the current input input 

channel is not empty, do the following. If the multiqueue is full, 
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deroute a random packet in the multiqueue by moving it to the 

current output frame. Read the current dimension packet into 

the multiqueue. If the selected input dimension is not the current 

dimension, and the current dimension is empty, move the selected 

input packet to the current dimension output frame. 

By choosing packets to deroute at random, probabilistic livelock-freedom is 

achieved although the possible time to deliver any packet is strictly speaking 

unbounded. The fact that derouting can happen makes this a non-minimal router. 

2.2.4 The Forced Router 

In [GBES93], Germain et al. present the forced routing strategy, an algorithm 

designed for efficient implementation on silicon. Like the Chaos router, Forced 

routing uses non-deterministic derouting of packets to try to avoid blocking pack-

ets for too long. 

The Forced router makes use of the observation that if our communications 

hardware uses symmetric bidirectional channels, then the total input bandwidth 

of any router is precisely equal to its output bandwidth. This parity means that 

if we never buffer any incoming data, it is always possible to route any incoming 

packet immediately (although not necessarily on a profitable channel, of course). 

The forced router is a simple routing algorithm which randomly routes packets 

along any available profitable edge, and if none are available, along a randomly 

chosen non-profitable edge. The router is trivially deadlock free for any network 

topology, but Germain et al. also prove that for the case of the 2D grid, forced 

routing is also livelock free. 

2.2.5 Other routing strategies 

There are many other variants of routing strategy. In particular: 

Displacement router. Similar to the forced router, the displacement router 

optimises the number of profitable forwardings at each time step. However, 

it is a synchronous router in which all packets are similarly sized and arrive 

in lock step, and in which the routing decision is performed simultaneously 

on all buffered packets once per timestep. The transputer communication 

architecture is fully asynchronous and is not suitable to this form of routing. 

Hot-potato routing (and the related Hot-spot avoiding router). These were 

both implemented on T800 based systems and so are oriented towards 
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software-based packet forwarding systems. They go to great lengths to 

balance not only the communication load over each edge, but also the rout-

ing load at each CPU. Being software based, these routers can cheaply 

piggy-back local load information on outgoing packets and extract such 

information about their neighbours from incoming packets. 

Chinn [Chi95] describes a minimal adaptive router for nxn grids, using con-

stant sized queues and basing routing decisions on the distance a packet is from 

its destination; it routes permutations in 0(n) time. 

Other objectives for wormhole routing networks include fault-tolerance. Lin-

der and Harden [LH91] introduce an adaptive, fault-tolerant router using virtual 

channels on k-ary n-cubes, 

Work has also been done to produce performance models of wormhole routers 

based on physical characteristics. Chien [Chi93] models performance on just two 

key characteristics: router delay and flow control delay, and [KC94] looks at cost 

models including software costs, again identifying flow control as a major cost. 

A number of other routers have been proposed; see [NM91] for a description 

of some of the various other routers known. 

2.3 Topologies 

The 2-D mesh and hypercube, both examples of a k-ary n-cube, are amongst the 

most familiar network topologies available to the the multicomputer designer, but 

are by no means the only ones. Daily [Da191] introduces the "express cube", an 

augmentation of the k-ary n-cube which adds extra paths which skip a number 

of intermediate nodes in a single dimension, reducing the total diameter of the 

network in each dimension. 

Leiserson [Lei85] describes the "fat tree" topology, a scalable variant on the n-

ary tree. The Connection Machine CM-5 [LAD92] uses a 4-ary fat tree. Youssef 

and Narahari [YN90] describe a hybrid Banyan-Hypercube network with better 

diameter and average distance than a similar hypercube. Others include the 

"De Bruijn network" [SP89] and "star graph" [AHK87]. 

2.4 Contention and Hot Spots 

Lee [Lee85] studied simple hot-spot patterns on multi-stage store-and-forward 

communication networks, and observed that in some cases extra buffering in 

the routers could alleviate some of the performance degradation. Lang and 
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Kurisaki [LK90] also look at this problem, and claim that in cases of conges-

tion, derouting of packets—forwarding a blocked packet to a non-optimal next 

hop—can improve the performance around the hot spot substantially. 

Kumar and Pfister [KP86] also study the onset of hot-spot contention, looking 

at the time it takes for a hot-spot to disrupt traffic patterns. They conclude that 

a hot-spot can seriously degrade network performance in a very short period of 

time (10 to 50 instruction execution times in their simulations). 

Enbody two workload measures and a model to predict contention based on 

those measures: [KE95] introduces the metrics "max load traffic" (the ratio of 

maximum to average process graph traffic rates), and "path contention level", 

the average number of virtual circuits whose paths share any given physical link 

on the network. These two metrics are shown to give good ability to predict the 

performance of uniform and non-uniform loads. 

2.5 Performance Evaluation Tools 

It is often infeasible to obtain performance data about parallel systems by directly 

benchmarking a running system. The system to be evaluated may not exist in 

physical form, benchmarking may he too intrusive, or the system may simply not 

support the required instrumentation. Hence, we often want to build a model of 

some parallel system and to evaluate its performance algorithmically. 

There are two main classes of performance evaluation tool which we can use: 

analytical tools and simulations. Simulations generally allow more detail to be 

included about the running system, but they are usually much slower to generate 

their results than analytical tools. Analytical methods, on the other hand, make 

simplifications about the system which allow them to solve its performance using 

numerical methods. 

2.5.1 Queuing Networks 

Queuing networks [Kle76, A1190] are the most commonly used tools for analytical 

performance evaluation. Queuing networks model a system as a set of intercon-

nected queues. As resources or jobs enter these queues, they are consumed at 

a rate controlled by random variables. This is the essence of queuing theory: it 

does not model the precise movement of resources from one queue to the next: 

queue states are represented not as definite occupancies but by statistical prob-

ability distributions. The solution of the queuing network involves solving the 

equilibrium state of all the queues. 
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A summary of queuing theory applications to computer science performance 

problems appears in Lavenberg [Lav89]. 

2.5.2 Petri Nets 

The Petri net [Pet8l, Rei851 is another way of describing a parallel system, in 

terms of resources ("tokens") passing between states ("places") according to pre-

defined possible transitions. An attraction of Petri nets is that concrete state-

ments may be made about their state spaces; tools such as GreatSPN [CFRR95] or 

others [KL92, Lin92, GKZH95] can automate the state-space reachability analysis 

of a Petri net, for example. A second advantage is that although the performance 

of a Petri net can be solved by constructing an equivalent queuing network to 

the Petri net, it is also possible to solve Petri nets directly by simulation thus 

encapsulating more of the fine detail of the system's behaviour. 

2.5.3 Simulation 

The use of simulation as a performance modelling tool has many advantages. A 

simulation model does not need to suffer from the statistical approximations which 

affect models such as queuing networks; complex timing effects can be mimicked 

precisely on a simulation. There are a number of ways in which a simulation may 

be driven. It may be performed automatically from a descriptive input such as a 

Petri net, or the simulation instructions may be written in a dedicated language 

such as SIMULA [P0087]. (Of course, any general-purpose programming may 

also be used to construct a dedicated simulator.) 



Chapter 3 

Models and Tools 

In this chapter, we will put in place the background behind the experimental 

results in subsequent chapters. We will describe the model of computation and 

communication used and the tools used to perform the study. 

The first major section of the chapter will deal with our models. We identify 

the model of communication used in our experiments—the low level wormhole 

routing model we assume and the topology of our multicomputer interconnection 

networks. We also describe the computation model within which we will define 

our workloads. Much of this explanation will refer to discussion about what we 

are trying to achieve in our experimental work, identifying parts of the model 

whose performance we are interested in studying and parts which are of only 

incidental value to the work. 

Our second major section concerns the methodology and tools we will be using 

to investigate performance in multicomputers. We will consider why discrete 

event simulation was chosen as the method for obtaining our performance data, 

and will describe the design and implementation of the software tools used to 

perform the simulations. 

In this section we will also discuss aspects of the experimental methodology we 

used, and the software tools implemented to support that methodology. We will 

describe the front end used to run multiple simulations over the course of a single 

experiment, and the back end data extraction tools used to parse simulation log 

files. 

3.1 Selecting a Multicomputer Architecture 

Our first task will be to identify a multicomputer hardware architecture to use 

as the base for our communications models. We are interested only in wormhole 

routed architectures, but within that boundary we also want a model which is 
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realistic. For results obtained from experiments on a constructed communications 

model to be useful, the model must be reasonably close to at least some real 

implementations of multicomputer routing networks. 

We have chosen to base our communication model on an existing wormhole 

routing architecture: the T9000 transputer plus its associated wormhole rout-

ing device, the C104. There are a number of attractive characteristics of this 

architecture: 

The T9000 and C104 are genuinely realistic: they have been commercially 

available and real, production multicomputers have been built from these 

components. 

The T9 transputer communications have been well documented [MTW93]. 

It is possible to build a model of the T9000/C104 which models their com-

munications performance quite closely. These two points together are the 

most compelling reasons for having chosen the transputer architecture for 

the basis of our work: few production-quality multicomputer interconnec-

tion components have as much good quality documentation on their be-

haviour available. 

The C104 is a routing component with large in- and out-degree. Each C104 

has 32 full duplex communication links, and this allows great flexibility 

when connecting routers together to form a multicomputer network. Many 

useful topologies may be realised using these devices. 

The T9000 is also well suited for execution of parallel programs, providing 

efficient and standard hardware support for multiple threads of execution 

and for inter-process communication over virtual links. 

Communication in the C104 network possesses several attractive properties: 

it is 

- deterministically deadlock-free (typically using greedy dimension-order 

routing) 

- lossless 

- self regulated—no software flow-control is necessary. 

Note that when we look at our simulation environment later on in this chapter, 

we will identify a number of simplifications which can be made in the T9000 

communication model for the purpose of increasing simulator efficiency. We will 
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describe these simplifications in more detail when we come to look at the simulator 

implementation in section 3.5.4 and will evaluate them in chapter 4, but for now 

it is sufficient to note that we are using the transputer model as a base for our 

own implementation, but are not necessarily bound to implement the transputer 

hardware precisely in every detail. 

3.1.1 Features of the T9000/C104 Communications Model 

The validation of the realism of our communication models will necessarily de-

pend on the details of the real target architecture: in chapter 4, we will be using 

the documented behaviour of the T9000 family as an important tool in evaluating 

our simplified communication models. Furthermore, we will see in chapter 5 that 

there are a number of characteristics of the transputer's communication architec-

ture which can substantially affect the interconnection network's behaviour under 

heavy load, so we now need to describe the important details of the T9000 and 

C104's communication mechanics. 

3.1.1.1 T9000 Inter-Process Communication 

Communication between two T9000 processes on different processors occurs over 

objects known as virtual links, which are supported directly by the T9000 hard-

ware. (Note that these are very different from the virtual links described in chap-

ter 2 as a mechanism for breaking deadlock in multicomputer packet routers.) 

Instructions for sending and receiving data over virtual links are present in the 

basic T9000 instruction set. A descriptor in memory for each virtual link de-

termines the destination for data messages sent over that link. Communication 

between two local processes is implemented by a simple memory copy operation, 

but communication between processes on distinct processors invokes the T9000's 

internal communication hardware. 

An important consequence of the use of virtual links is that communication 

can never exhaust available buffer space. We can only ever send to an existing 

virtual link, and there is always space reserved for one incoming packet for each 

virtual link. 

Whenever a data message must be sent over an external link, the message is 

broken up into packets of not more than 32 bytes each plus a small routing header 

(defined in the virtual link control block). This distinction between packets and 

messages is important; the packet is the smallest unit of data transferred by 

the communication network, but the message is the smallest unit of data sent 

or received by a process. Every packet is part of a message, and every message 
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delivered to a non-local process is encapsulated for routing in one or more packets. 

Each packet is acknowledged by its receiver upon receipt of the packet's 

header, but the acknowledgement will be deferred until buffer space becomes 

available if the receiving T9000 has not allocated space into which the incoming 

message may be copied. A sender will not start to transmit another packet on any 

virtual link until the previous packet's acknowledgement has been received—in 

short, the architecture naturally enforces flow control on each virtual link. 

The use of separate, independently-flow-controlled virtual links for each vir-

tual inter-process communication channel allows the physical communication links 

to fairly service all of their virtual links. No virtual link can monopolise a physical 

link by sending large messages; the component data packets will be queued on 

a first-in, first-out (FIFO) queue local to each physical link. Data and acknowl-

edgement packets are queued separately at each link, and acknowledgements take 

priority over data packets. 

3.1.1.2 Inter-Processor Communication: the DS-Link 

The input and output links of both T9000 and C104 devices are completely com-

patible with each other. They conform to a standard referred to by Inmos as the 

DS-Link. 

A DS-Link is a bi-directional, full-duplex serial communication link with inte-

gral flow control and dedicated input and output buffering on each link. Current 

DS-Link implementations operate at a transmission speed of 100 Mbits/s. Each 

T9000 and C104 can communicate simultaneously over its DS-Links; there are 

four such links on a T9000 and 32 on a C104. 

Physically, communication takes place as the transmission of tokens, which 

can take one of five forms: 

Null token : merely a filler token for an idle link. 

End-of-packet : marks the end of a packet. 

End-of-message : marks then end of the final packet of a (possibly multi-

packet) message. 

Flow-control : grants the receiver permission to send a further eight tokens. 

Data : transfers a single byte of data belonging to a packet (either a header byte 

or the packet data contents). 

Flow control is managed by the exchange of flow control tokens. Receipt of 

such a token on a DS-Link confers permission to send another 8 data tokens on 
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that link. Thus, a data stream in one direction over a DS-Link generates a small 

amount of traffic in the opposite direction. This means that the bandwidth of a 

DS-Link is different for uni- and bi-directional data loads. 

3.1.1.3 The C104 Wormhole Routing Chip 

The C104 routing chip consists of 32 buffered, bi-directional communication links, 

with routing logic duplicated on each link, plus a central crossbar switch. Incom-

ing packets can be routed as soon as their routing headers have arrived. If the 

packet's destination output link is currently in use by another input link, then 

the packet will be queued for delivery once that output link becomes free. 

The C104 maintains a small amount of buffering on each input and output 

link. The buffers are large enough to hold two normal data packet, assuming that 

the data packets are of the size generated by T9000 processors (the router will 

happily route much larger packets if they are injected into the network, however). 

3.2 Multicomputer Model 

We have now defined the individual components used in our model multicomputer 

architecture, but we have yet to assemble them into a complete multicomputer. 

There are two levels at which we need to define the multicomputer layout: 

. the format of each node in the multicomputer, where the T9000 processing 

element meets the C104 routing network; and 

the overall, high-level topology of the routing network. 

Format of the Multicomputer Nodes We start by looking at the individual 

nodes. Throughout this study, we will be using as a basic building component a 

single unit formed of one T9000 CPU connected directly to its own router, as in 

figure 3.1. 

In every case, the T9000 is acting as a source and sink of data, but is not 

participating in the routing of messages (except for the case of communication 

between two local processes). 

One of the important features of this model is that we permit a multiple-link 

("wide") connection between the CPU and the router. Given that each C104 node 

in our network is eventually going to be connected to more than one neighbour 

at once, it will be possible for any one router to be transmitting multiple packets 

into the network simultaneously. If we restrict the CPU's direct connection to 
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Figure 3.1: Basic multicomputer building block 

one packet at a time then the bottleneck in the system may in fact occur at 

the introduction of the stimulus workload into the network, and not inside the 

network itself. Widening the CPU link enables us to reduce or avoid this effect 

and to concentrate on observing the behaviour of the network itself. This effect 

will be looked at more closely later on (see section 4.2.2). 

The C104 allows these wide links to be configured very simply. A "fat link" 

is simply a set of DS-Links grouped together for routing purposes. The grouped 

set of DS-Links is referred to as a "hunt group". Any packet queued for output 

on one of the DS-Links in the hunt group may be forwarded as soon as any one 

of the DS-Links in that group becomes free. 

We will use a consistent labelling of DS-Links to distinguish between links 

between the T9000 and C104, and links between adjacent C104s in the routing 

network: 

Definition 3.1 

An "injection" link is defined as an output link from a T9000, injecting packets 

into the communication network; 

A "delivery" link is defined as an output link from a C10 which is connected to 

a T9000 and which delivers packets to that processor. Both delivery and injection 

links are known as "external" links; and 

An "internal" link is a link between adjacent C104s which forms part of the 

routing network itself and is not connected to any processing elements. 
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The Multicomputer Topology We also need to define how these individual 

nodes will be assembled to form a complete multicomputer for our experiments. 

Throughout our study, we will be looking exclusively at 2-dimensional square grid 

configurations . This was not a completely unrealistic choice at the time when 

we began our work, but it certainly does not represent the state of the art in 

multicomputer design. Most current multicomputers use a 3-dimensional torus as 

the minimum interconnection network, with hypercube and fat-tree configurations 

also popular. 

However, the 2-dimensional grid, although it suffers from relatively low in-

terconnection degree and (hence) relatively high network diameter, is in fact a 

good choice to start with when studying contention, precisely because of the large 

network diameters. The increased opportunity for packets to meet and interact 

within the network may make it much easier to identify contention effects. 

Our simulation tool is not restricted to 2-dimensional grids, and it is possible 

to run experiments on higher-dimensional grids or hypercubes in its current form, 

but all of the experiments described in this study will be using the basic 2-

dimensional grid format. 

3.3 A Model of Parallel Computation 

Our main area of interest in this study is the performance under contention of mul-

ticomputer wormhole routing networks. However, to exhibit different behaviours 

in the network we of course need to start off by creating a workload to run on 

that network. In the final analysis, this workload is only required as a source of 

message injections and receives to exercise the communication network, so our 

model of computation need not be complex—all we want is to be able to produce 

various patterns of communication load. 

We have already mentioned that our workload is only interesting in that it 

serves to inject a certain pattern of messages into the communication network: we 

have no interest in modeling the contents of the messages being passed between 

processes or the results of any computations. However, we do place some restric-

tions on the computation model. In particular, although the workloads we will be 

running in later experiments shall be synthetic and not necessarily characteristic 

of any particular parallel algorithm, we do require that the computation model, 

as the communication model, be realistic. 

We first of all start by identifying exactly what we are modelling. Figure 3.2 

illustrates the general process by which a parallel program is first expressed, 
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then compiled and executed. We can split the entire run-time system into two 

parts. The first part is the one which is responsible for coordinating the many 

individual processes which make up the parallel program. This layer may decide 

how to partition the workload into individual processes, and how to map those 

processes to the available processors. 

The layer in which we are particularly interested for the purpose of this study 

is a layer below this. In other words, we want to consider the workload only as 

some set of communicating processes, ignoring the details of how those processes 

were requested by the application programmer. We are looking at the workload 

from below. At this level, we model the application as quite discrete processes, 

and any communication between these processes (either requested explicitly in 

the programmer's source code, or undertaken on the programmer's behalf by the 

run-time libraries or skeletons) forms the communication workload that this layer 

sees. 

So, we define the workload not in terms of any high-level application or compu-

tation, but simply as a fixed set of distinct processes which consume CPU time and 

communication bandwidth in a fixed pattern. We explicitly ignore the possibil- 

ity of an application which adapts dynamically to the architecture's performance 

under load. Considering such applications would create a feedback loop—the 

application behaviour depending on the network performance depending on the 

workload behaviour—which would distort the behaviour we want to measure. 

Studying these adaptive applications is a legitimate exercise, but not the one we 

are performing here. 

The fact that we are adopting a computation model which requires the set of 

communication processes to be fixed does not necessarily constrain our ability to 

model algorithms in which processes are created or die, but it does make simu-

lating such algorithms more difficult. Such processes would have to be modelled 

as a set of long-lived processes which become active or inactive at various points 

in their lifetime. 

In figure 3.2, we describe the interface between the workload and the routing 

hardware as being governed in the general case by an intermediate Operating 

System. In the case of the transputer architecture, process communication actu-

ally takes place without any 0/S intervention, using dedicated machine language 

instructions for communications. Operating System operation is therefore not 

represented at all in our computation model. 
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Figure 3.2: The parallel program's path to execution 
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3.4 Simulation Methodology 

We now come to look at the experimental approach we will take to study the 

performance of wormhole-routed interconnection networks. We have a number of 

points to discuss: 

The selection of discrete event simulation as our performance modelling 

tool; 

Description and properties of the simulator code developed for this study; 

and 

Our experimental methodology: the tools and techniques used to run entire 

experiments composed of multiple simulation runs, and to extract mean-

ingful data from those experiments. 

3.4.1 Selecting a Performance Modelling Technique 

The first question is, why was discrete event simulation selected as the tool for 

performance modelling? We described in chapter 2 a number of approaches to 

performance evaluation, including benchmarking, simulation, queuing networks 

and petri nets. In our case, benchmarking was eliminated as an option straight 

away, partly due to the unavailability of appropriate hardware, but more impor-

tantly because much of our work will involve making observations on systems 

which would not easily be made using software instrumentation on a live system, 

and also because using a real multicomputer as our platform would prevent us 

from changing some of the properties of the communications network in ways we 

would like to do. 

Both queuing networks and petri nets are quite popular as tools for perfor-

mance modelling. However, our investigation here is concerned with communica-

tion contention, and contention is a property which arises from the coincidence of 

specific events—coincident injection of packets or arrival of packets for forwarding 

between a specific pair of nodes. Moreover, we will be trying later on to investi-

gate the effects of synchronisation properties within the workload on contention 

patterns. To perform this work, we will need an evaluation platform which will 

allow us to reproduce these synchronisation effects. 

Unfortunately, while queuing networks are useful for evaluating throughput 

effects, they are not good at encapsulating synchronisation effects. Queuing net-

works are solved for the average occupancy and average throughput of queues, 



but they take a statistical approach to encoding queue traffic and are not as well 

suited for investigating effects concerning the precise timings of certain events. 

Petri nets are in theory capable of modelling these timing effects in detail. 

Performance evaluation of a Petri net can be done using either simulation of 

the Petri net itself or by decomposing the Petri net into an underlying queuing 

network model, but packages which implement the simulation method [GKZH95, 

CFRR95] are currently too slow for use on accurate models of large multicomputer 

interconnection networks, and our goal is to be able to evaluate networks of 

hundreds or indeed thousands of nodes. Using an analytic solution via queuing 

networks would involve the same sacrifice of timing precision as if we were to 

use queuing networks directly as our model. We will see in later chapters that 

certain details of timing synchronisation between processes or of packet ordering 

properties in the communications network can produce large effects on overall 

performance, and we want to be able to capture and study such effects. 

Hence, discrete event simulation is our chosen performance evaluation tech-

nique. This is a technique which has been much used in the past for studying 

wormhole routing networks ([Chi95, KE95]...) and contention ([Lee85, KP86, 

LK90]...). The MIMD [Gui88, GCS89] modelling system, built from Simula [Poo87, 

Bir86] was already in use at Edinburgh when this project started, but suffered 

from performance problems: in previous work using MIMD grid-topology simu-

lations, 4 by 4 was a common size for the processor grid and the upper limit was 

about 8 by 8 processors. To achieve our required network scales of hundreds of 

nodes, we chose to implement our own dedicated simulator for wormhole routed 

networks. 

3.5 A Discrete Event Simulator for Wormhole 
Routed Interconnect Networks 

In this section we will outline the design of the simulator we constructed for 

performance evaluation of wormhole-routed multicomputer networks. We will 

describe the design of the communications model as well as the overall way in 

which the software was built. 

First of all, we decided to construct the simulator in C++. This gave us 

the performance advantages of dedicated compiled code, without sacrificing the 

object-oriented software approach which Simula proved so appropriate for simu-

lation design. Portability was another main design goal which suggested the use 

of C++: much of the development work (and indeed the experimental work) was 
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performed on PCs running the Linux operating system, and the use of the g++ 

C++ compiler has allowed our code to run without modifications on Sparc work-

stations running either Solaris or SunOS and on Alpha and PC systems running 

Linux. 

The simulator core is purely event-driven, without any of the threading fea-

tures of Simula. Generic C++ objects are used to represent most of the interesting 

"things" in a multicomputer, including processors, processes, packets and routers. 

Programming the simulator is done at compile-time, not at run-time----again, this 

was a deliberate decision aimed at improving performance. 

Programming is generally performed by creating a specialised class derived 

from some core base class in the simulator, and defining functions within that 

class to modify the behaviour of the object. For example, to program a process 

with a given behaviour, one would create a class derived from the parent "Process" 

class and define various member functions to specify that process's behaviour on 

events such as "completed the last request to compute" or "request to receive a 

packet has completed". 

The simulator has a highly modular design which makes much use of the C++ 

language's features for object inheritance. The design makes it simple for specific 

components of the simulator to be removed and replaced with alternative ver-

sions. For example, this feature is used to allow the simulator to support many 

different implementations of the transputer communications architecture: a com-

piled simulation can be built against any one of these different implementations 

simply linking the existing object files against a different communication library. 

In the rest of this chapter we will see several places where the modular design 

allows the user to pick and choose between different underlying implementations 

when building a simulation experiment. 

3.5.1 Components of the Simulator 

In the sections which follow, we will describe the major components of the simu-

lator. These broadly fall into three categories: 

Core system At the heart of the simulator sits a central event loop which han-

dles all timing and event dispatching for all components of the system. The 

simulator core also includes various general-purpose components designed 

for use by other parts of the system, including flexible random number 

generation and results logging facilities. 

Computation support There is a fairly simple implementation of the T9000 
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processor and the user process, sufficient to allow construction of simulation 

workloads fitting the models above. 

Communication support This is by far the largest and most complex part of 

the simulator. The communications support includes a number of high-level 

C++ objects which encapsulate key concepts such as messages and packets, 

routers and communication links. Separate to this, we provide a number of 

distinct low-level objects which implement the communications architecture 

in different ways. 

3.5.2 The Simulator Core 

The Primary Event Loop The simulator core provides a single place where 

all of the setup, running and termination of a simulation run takes place. The 

core simulator event routines are not simply functions provided for the user to 

call from the customised program code when an experiment is run: rather, the 

simulator provides a complete program skeleton which makes calls out to setup 

routines which the user can customise to create the multicomputer objects and 

initialise the workload objects when a simulation begins. 

These core functions track the progress of simulated time in the multicom-

puter. They provide a mechanism by which simulated events may be queued for 

dispatch at some future simulation time. This simulated clock runs at nanosecond 

resolution, but the core event loop does not have to run for every clock tick: we 

simply dispatch the event with the soonest expiration timestamp at each iteration 

of the event loop. 

Random Number Generation Random number generation is an important 

function within the simulator. We provide functions by which random numbers of 

various distributions may be obtained. Most of these functions use the underlying 

random number distributions provided by the libg++ class library supplied with 

the GNU C++ compiler. 

One feature of the random number support is particularly worth mentioning. 

We support the use of several distinct random number streams, and these separate 

streams may be initialised individually with distinct starting seeds. This allows 

different components of the simulator to use different but repeatable random 

number streams. 

For example, the setup routines supplied by the user to initialise the simulated 

workload may use a different random number stream from the routines which 

control the communications layers, so that we can repeat an experiment with 
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a different communication implementation (which may use its random stream 

in a different order) without changing the workload when we run the second 

experiment. 

Simulator Instrumentation We have provided our simulator with a logging 

engine to automatically log summaries of any simulation measurements recorded 

by any other components of the simulator. All of these results are written in a 

standard, machine-readable format to a log file after each simulation run. Just 

as importantly, we have integrated logging of all the input parameters to any 

simulation run into the same log, so that for every simulation run we record 

precisely the conditions set up for that run. 

For each variable x observed in the simulation, we record the values N (number 

of samples), i x, x and E x3 , as well as the minimum and maximum sample. 

These recordings are enough to calculate the mean, variance, standard error and 

skew for the distribution of each variable. By storing the raw data as E x... > 

rather than preprocessing them into their statistical summaries, we are able to 

combine variables together at a later date and still accurately determine the 

distribution of the new variable. For example, we record separately the delivery 

times of data and acknowledgement packets, but we can still combine these later 

to list the distribution of delivery times over all packets if we choose. 

Builtin log variable types include a basic integer log, logging samples of in-

teger variables; time-average logs, which record the average value over time of 

any variable whose value changes at distinct points in time (for example, the 

occupancy of a buffer or the utilisation of a resource); and the time-average-set, 

which records the distribution of time-average values for a set of resources. For 

example, each CPU in a simulation will have its own utilisation log, but the final 

log recorded will be the distribution of the utilisations over all processors in the 

network. 

3.5.3 The Process and Processor models 

As we do not need to model computation in a great deal of detail for the purposes 

of our study, both our process and processor models are simple. The computation 

side of the processor has very little functionality: all it can do is maintain a run-

queue of runnable processes, which it schedules on a first-come, first-served basis. 

Time-sharing is supported by allowing the processor to reschedule a process to 

the tail of the run-queue after it has consumed its scheduling time quantum. 

The process model is not much more complex. Processes are connected to- 
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gether by "sockets" (analogous to UNIX sockets). A socket is merely a two-ended 

pipe which represents a potential virtual link within the multicomputer network. 

Every socket is associated with a sending process, a receiving process or both; if 

one endpoint is not connected then any process may act as that endpoint, allow-

ing a process to listen from messages from any other process or to send messages 

to any process. (This is an extension to the transputer communications model 

which allows us to code complex communication interactions more easily without 

having to create virtual links for all possible sender/receiver pairs in advance.) 

As described above, the user programs the simulator by creating a derived 

process class which defines the process's response to certain events, so our model 

of the process is necessarily event-oriented. A process can respond to the following 

events: 

Initialisation 

Send completed Passes in the sending socket 

Receive completed Passes in the receiving socket and number of bytes received 

Compute or sleep completed 

and must take one of the following actions following the event: 

Sleep(c) c is the time to sleep for (in clock cycles) 

Compute(c) c is the time to compute for (in clock cycles) 

Send(s, n) s is the socket to send on; send n bytes 

Receive() Wait for a packet to arrive on any socket 

In addition, send() actions may be either blocking or non-blocking. The only 

difference between the Sleep() and Compute() actions are that Computes grant 

exclusive use of the CPU if there are multiple processes running on the same 

processor. 

3.5.4 The Communication Subsystem 

We now describe the communication components of our simulator. As we men-

tioned before, modularity is an importing feature of their implementation, so we 

will describe here both the overall design of the communication subsystem and 

the various implementations available to model packet transmission. 
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The Simulator Communications Design The base C++ classes which make 

up the simulator's communications architecture are designed to allow the user to 

manipulate a multicomputer network topology without knowing any details of 

the implementation of the communications between the nodes in that network. 

There are two sets of top-level abstract objects which implement this: first of 

all, a set of communications objects which tie communicating processes together, 

and secondly a set of multicomputer objects which bind processors and routers 

together into a network with a given topology. 

Inter-process communication is implemented by a set of classes including: 

Socket A Socket is the object which processes use to communicate over. All 

transmit and receive traffic is passed through a Socket object. The Socket 

may implement transmit or receive buffering on behalf of the process. The 

Socket is an abstract class which does not actually implement any sending 

or receiving methods itself. 

SendSocket A SendSocket is a Socket which implements transmission routines. 

There are two main implementations of SendSocket provided: one which 

sends all transmitted data directly to the recipient Socket (allowing a par-

allel workload to be run without modeling any underlying communications 

hardware), and a second which injects all non-local transmissions into the 

local T9000's data queues. 

ReceiveSocket A number of receiving socket classes are also implemented. The 

SimpleSocket implements reception of packets, either from a local Send-

Socket (if the communication is within a single processor) or from a router 

object (if the communication is non-local). This socket implementation 

does not buffer any data above the single packet of buffering required in 

the T9000 architecture: if there is not currently a process waiting to receive 

an incoming packet, then the transmission of an initial acknowledgement 

to that packet is deferred until some process becomes ready to accept the 

data. 

There are several other receiving Socket classes derived from the Simple-

Socket, and they implement various amounts of buffering to allow data to 

be received asynchronously even before any process is ready to accept it. 

To select the appropriate buffering semantics for use in any given simulation 

run, C++ multiple inheritance is used: the user simply declares a class which is 

derived both from the required SendSocket and ReceiveSocket classes, and the 



shared base Socket class will provide the top-level primitives required to access 

the resulting hybrid object. 

We also have a number of objects which represent communication between 

processors, not between processes: 

Router A Router object represents any device which can accept incoming pack-

ets and do something appropriate with them to ensure their delivery. 

DSLink A DS-Link communication channel is managed by three types of object: 

a DSPacket, an extension which adds various performance monitoring fea-

tures to the basic Packet class; the DSILink, which acts as a packet source 

to a Router object; and the DSOLink, which transmits packets out from 

a Router object. The DSILink and DSOLink types are both abstract base 

classes: they do not by themselves implement the mechanism by which a 

packet gets from one output link to the next input link. They do however 

form a framework by which a network topology can be constructed and 

within which a Router can perform its routing and buffering operations. 

Node A Node object simply represents a computing element in the network. It 

contains both a Processor object for scheduling workload processes and a 

Router object for passing packets between the workload and the network. 

The T9000 class is a subtype of class Node, and T9000 objects are respon-

sible for splitting long messages into multiple packets and for generating 

acknowledgement packets in response to received data. 

Using these Router, Node and DSLink types, a muilticomputer interconnection 

network can be laid out without any knowledge of the mechanisms being used to 

actually transfer data between the Routers. Two built-in layouts are supported 

by the simulator libraries: the 2-torus (of which the 2-grid is a special case) and 

the hypercube. 

The layout libraries provide general purpose routing functions which describe, 

for any pair of Routers (current, destination), a list of all DSLinks from the 

current Router which are profitable for the given destination. The geometry 

part of the routing algorithm is thus separated out from the decision of which 

profitable channel to use for routing. Using this basic routing function, we can 

implement both greedy dimension-order routing and adaptive routers such as the 

chaos router. 

The Simulator Communications Implementations The communications 

framework we have described allows us to implement multiple different commu- 
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nications infrastructures inside our simulator. The user can select which of these 

infrastructures to use simply by linking against the appropriate communications 

library. The C++ type system ensures that no recompilation is necessary: all 

of the different classes implemented by the different communications models are 

derived from the same set of base classes and thus look the same to the rest of 

the software. 

Why do we have multiple implementations of the communications subsystem? 

There are two main reasons: 

For performance reasons, we provide simplified but more efficient commu-

nications implementations. In fact, the simulator contains three distinct 

implementations of the communication model. Each implementation is suc-

cessively more simple (and therefore more efficient to execute) than the pre-

vious. In the absence of a real machine against which to compare it, the 

most costly but most accurate implementation will be a valuable tool by 

which to validate the simulator. 

We have the ability to selectively disable elements of the run-time cost of 

the system. Specifically, we can run our workloads in a contention-free 

environment in which point-to-point communication delays are modelled 

accurately, but network links are all assumed to be of infinite width; and 

we can re-run the workload with no communication costs at all, to get an 

indication of the true amount of parallelism inherent in the chosen workload 

mapping. This facility will be crucial to our quantification of contention 

costs in chapters 5 and 6. 

The simulator fully implements T9000 message decomposition into multiple 

data and acknowledgement packets. The C104 architecture of input and output 

links connected via a central crossbar is also modelled accurately. However, de-

tailed modelling of the low-level DS-Link communication involves transmitting 

large numbers of tokens for each packet sent over each hop in the multicomputer 

network. It has been our aim to simplify this level of DS-Link communication 

as much as possible without losing the realistic behaviour of the simulator as a 

whole: dispatching separate simulator events for every single token of a packet 

can be rather expensive. 

To this end, we present three distinct models of DS-Link communication: 

Token-passing: we model the real-life DS-Link accurately by transferring 

individual data and control tokens over each link. This provides us with a 

36 



reference model against which to compare the other models, but is expensive 

to simulate: a separate simulation event must be dispatched for each token's 

arrival over the link. 

Stream-passing: the passage of a packet over a DS-Link is modelled as 

a continuous, undifferentiated data stream. A packet is simply a period of 

activity on a link: the length of the packet determines the necessary period 

of activity. Flow control is implemented on demand. Rather than requiring 

the receiver to explicitly grant permission to send data, we allow data to 

flow freely until explicitly blocked by out-of-band block and unblock signals 

on the link. In the absence of blocking, the simulator need generate no 

events other than the start and end of the packet at each hop. 

Under simulation, this model of communication does execute substantially 

faster than the token-passing model on lightly loaded networks. However, 

the requirement of out-of-band signalling to propagate flow control mes-

sages upstream enormously increases the cost of flow control transitions, 

and we found in practice that under moderate to high network load, this 

model executed no more quickly than the token-passing model. Since the 

only reason to simplify the model is to improve simulation performance, we 

decided not to pursue this model any further. 

Packet-passing: packets are still undifferentiated data streams, but now 

all flow control is performed at the packet level, rather at the data-stream 

level. Once a packet is sent, the sender will not send another packet until 

the receiver has sufficient buffering space left to receive it in its entirety. 

This has a major implication for flow control behaviour. In effect, we can 

only send a flow control token at the start of a packet, giving permission 

to send an entire packet at once. This may leave packets pending in an 

upstream buffer for longer than the realistic, token-passing model would. 

We investigate this effect in the following chapter. 

In implementation, these three schemes are progressively more efficient to 

run, but represent progressively more simplified views of the complexities of flow 

control synchronisation occuring within the multicomputer network. In chapter 4, 

we will justify the use of the more efficient but more abstract models of T9000 

communication. 

Note that we completely ignore the effects of latency delays within DS-Links 

and over communication wires themselves. In practice, these delays may be negli-

gible when compared to the routing latency delay incurred within a C104 routing 
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chip, so this is not important. (Accurate data on the precise number of clock 
cycles taken by the C104 to perform its routing function was not available when 
construction on the simulator began.) Furthermore, buffering within the routing 
network allows network throughput to remain largely unaffected by small changes 

in such low-level latency characteristics [BGT93, pp.91-94]. 
In our model, we also assume that an acknowledgement packet can be gener-

ated by a T9000 immediately upon receipt of an incoming packet header, ignor-
ing any realistic processing delays. The simulator model is capable of modelling 
these delays, but an investigation of their effects is beyond this particular study. 
In practice, this effect only has an impact on bandwidth when the DS-Link is 
carrying a single virtual link's traffic, since the latency is hidden in the presence 

of multiple senders [BGT93, pp.94-95]. 
Also note that the two less-detailed DS-Link models perform flow control by 

control mechanisms within the simulator which do not correspond to real DS-Link 
behaviour. These two models do not try to model the realistic negotiation of flow 

control by low-level token passing, and so are not capable of exhibiting the real 
DS-Link's difference between uni- and bi-directional data throughput capacities. 

3.5.5 Simulator Performance 

Our objective here has been to design an efficient and flexible discrete event sim-
ulator. Have we succeeded? Before we leave our discussion of the simulator tool, 
we need to give some idea of how rapidly it can run relatively large experiments. 
We also need to look at how much memory it consumes, as that can easily become 
a limiting factor when running large simulations. 

We can demonstrate performance by running a synthetic workload on a fairly 
modest machine by today's standards—a PC running Linux, with a 200MHz 

Pentium-MMX processor. We will define the workload more fully in chapter 5.1, 
but to summarise it, we have a grid of 32 by 32 T9000s and C104s, with one 

process on each processor sending messages randomly to other processors on the 
network. Each process waits 1 microsecond between sending each message. The 

performance of the simulator over a run of 20 simulated milliseconds for each 

communications model is show in table 3.1. 
On this simulation run over 1024 processors, a total of 844,342 packets were 

sent through the network, over an average path of 16.6 hops, or a total of over 
14,000,000 individual packet forwarding operations. The entire simulation com-

pleted in a little under 12 minutes for our simplified, efficient communications 
model, in contrast to nearly an hour for the laborious token-passing implementa- 
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Communications Events Elapsed Memory 
model dispatched time (mins) consumed (kB) 

Token-passing 394975769 54:59 19608 
Packet-stream 75927848 15:40 24604 
Packet-passing 40564755 11:54 17300 

Table 3.1: Performance of Each Simulator Communication Model 

tion which models each transmitted token individually. For the efficient model, 

the simulator was dispatching over 55,000 internal events every second. 

Memory consumption was quite acceptable: a simulation of 1024 processors 

occupied only around 17 or 18MB of memory (rising to nearly 25MB for the 

most complex communications model). The resources consumed by our simplified 

communications model are quite modest enough to allow us to run experiments 

involving many tens of such simulation runs within a reasonable timescale. 

3.6 Experimental Methodology 

So far, we have described only our basic simulation tool. However, running a 

single simulation under a single set of conditions is not enough to provide any 

meaningful data: we really need to have a framework in which we can make 

multiple simulation runs and extract useful trends from their results. 

In this next section we will describe some of the methods and tools which we 

use to create complete experiments out of the raw simulator tool. We will look 

both at the front end—the code and techniques we use to run and control the 

simulator over the course of a full experiment—and the back end—the tools used 

to extract results from the data accumulated over that experiment. 

3.6.1 Controlling the Simulator 

There are three issues we need to look at when moving from running single sim-

ulations to setting up and executing entire experiments: 

First of all, we need a mechanism by which we can automate the repeated 

running of the simulation core with all of the parameters set correctly for 

each run within the experiment; 

We have to be able to record the results of these experiments in a way which 

will allow us to extract useful data later; and 
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We need some form of quality control, both to ensure that the simulation 

experiments are run for an appropriate length of time and to provide a 

numerical confidence interval in our results once the experiment completes. 

3.6.1.1 The Experiment Support Tools 

To address the requirement for automated running of multiple simulations, we 

implemented a front-end control tool, "front", for controlling entire experiments. 

This tool is a script-driven program which can run a pre-compiled simulator 

instance multiple times and assemble the results together into a single machine-

readable log file for the experiment. 

Option handling Central to the operation of the front program is the uniform 

way in which options are passed to the simulator program. One of the C++ classes 

provided by the simulator is a complete option-passing class. The simulator is 

a command line program, and as such it can accept a number of options on the 

command line when it is run, and the option-passing classes take care of this 

automatically: declaring a new variable of Option type transparently tells the 

simulator to look for the appropriate named option on the command line during 

startup and to use that to initialise the variable. The values of all such options 

are automatically recorded in the simulator log file at the end of the run, so we 

have a record of which parameters were set for each simulation run during the 

experiment. 

The script file allows for parameters to be set to single values, ranges of values 

or enumerated sets of values. It also allows the value of one parameter to be 

computed based on the value of another parameter. The regular parsing of options 

by the simulator allows the front-end tool to pass these arbitrary parameters to 

each simulator run on the command line. All the user has to do is to record, in 

the script file, all the parameters which must be set for the experiment, and the 

ranges of values which they must take. The front tool will then run the simulator 

multiple times, once for every possible combination of parameter values from the 

script file. 

"Backend" Mode The normal operation of the simulator is to output all of 

its results to the screen in human-readable format at the end of each run, and 

to append both the results and the values of all simulator options in machine-

readable format to a named log file. However, the front-end tool uses a separate, 

back-end mode of the simulator, in which it produces no human-readable output 
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but simply prints out all of its results in the machine-readable format directly. 

front then appends these results to its own log file, also recording information 

which delimits the start and end of entire experiments, and time-stamping the 

experiment as a whole. 

Parallel Execution One final feature of front is its ability to run multiple 

executions of the simulator at once. Remote execution is also supported, so that 

an experiment may run over multiple machines simultaneously. The number of 

processes we may launch on each machine, and the maximum load we allow each 

machine to reach, can be specified in the script file. This raises the possibility 

that different executions of the simulator will complete out-of-order, but front 

simply buffers the output of each simulation run until all previously launched 

simulations have completed and have been appended in correct order to the log 

file. 

Extracting Experimental Results The second auxiliary tool we use to deal 

with entire experiments is the "extract" program for parsing the machine-

readable log files created by front. extract reads the log file simulation by 

simulation, and outputs one line of ASCII, space-separated numbers for each set 

of data recorded. This output is suitable for post-processing by awk or gnuplot if 

further manipulation of the data or plotting of the results is required. The fields 

which are output can be selected by command-line options to extract. Fields 

may also be output with error-bars if desired. 

Sometimes, however, we do not want to have one line of output for each sepa-

rate simulation run. This is particularly true if we have rerun a given simulation 

multiple times, varying between each run only parameters which are of no interest 

to the experiment as a whole. For example, a simulation might be repeated with 

different initial values of the random number seeds, to increase the accuracy of the 

results obtained, extract automatically merges together simulation runs which 

were run with the same input parameters, and it can optionally also merge runs 

which differ only in such non-interesting parameters. This allows us to repeat 

experiments to improve our confidence intervals without having to perform any 

tedious reprocessing of the data already gathered. 

3.6.2 Simulator Stability 

One other issue we need to pay close attention to when building entire experiments 

from our simulator is the question of the reliability of our results. To obtain 
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sufficiently accurate results, we do need to make sure that the simulation is run 

for a sufficiently long time, but we do not want to have to run it for any longer 

than necessary. 

A standard statistical method used to indicate the accuracy of a result is the 

"confidence interval" [FW87], which we can use to determine how much confidence 

we have that our measurements of some variable in the simulation have become 

sufficiently accurate. We can observe our ever-improving confidence intervals 

on some privileged metric at regular intervals to determine at what point our 

observations are sufficiently accurate. 

There is a second, slightly less obvious issue which also arises. A common 

problem when running simulations of any system is that the behaviour of the 

system may change significantly over time. In this study, we are really interested 

in the equilibrium state of an application running on some multicomputer, since 

it is this equilibrium which determines our long-term performance. Even when 

it does reach an obvious equilibrium state, the behaviour during the startup 

transient period may be markedly different to the equilibrium behaviour. 

If we want to make efficient use of simulation run time, it may well be impor-

tant to identify the transient startup period and to discard observations taken in 

that period. By taking simple steps to eliminate this obviously inaccurate data, 

we can improve the accuracy with which we measure the equilibrium state, given 

a fixed run time; or conversely, we can reduce the run time required to achieve a 

predetermined accuracy in our equilibrium observations. 

The way we address this is by adopting some (quite arbitrary) measure of 

performance, such as the number of computation steps completed per given sim-

ulated time interval, as an indicator of system activity. We observe this measure 

over time, sampling it at regular intervals, and once it stabilises we assert that 

the startup transient period has completed. 

This has an effect on the way in which we gather observations about other 

variables in the network. At any point in time, we may decide that we know 

when the transient completed. However, we may conclude that the transient 

actually ended at some point in the deep past in simulated time. We also want to 

throw out any samples we made of logged simulator variables during the transient 

period, but we don't know in advance just how many such samples we will need to 

discard. To get around this, we checkpoint our samples of each recorded variable 

at regular intervals, and we keep all of these checkpoints stored separately. Once 

the length of the initial transient is known, we simply discard all observation 

checkpoints which overlap with that transient period. 



3.6.2.1 Periodicity and the sampling rate 

It is also possible that the system will behave in a cyclic manner if observed 
at sufficiently short intervals. If there is indeed a bottleneck, then events at 
that point may radiate brief storms of activity outwards; and the applications 
themselves may have a periodic nature. 

All of these factors have implications when we consider how long to run our 
simulations for. However, this is dealt with in [Jai9l, pp.423-433], with the 
method of "batch means". This method relies on on recombining existing, fine-
grained observations to allow us to choose an appropriate sampling interval after 

the samples have been taken. The number of samples combined together in this 

way at once - the batch size - is chosen so as to minimise the time-dependency 

and periodicity in the observations. 
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Chapter 4 

Validating the Simulator 

In earlier chapters we have presented a model of a multicomputer network and 

have discussed a simulator tool for studying the behaviour of this model. We can 

now move on to examine the results obtained with this toolset. 

In this chapter, we will not be interested in studying contention in any detail. 

What we need to do here is to establish some groundwork for our later experiments 

on contention performance. 

It is possible to make many distinctions between different types of effect which 

occur in a complex multicomputer system. It will be useful to consider one such 

distinction here—the distinction between the local, microscopic properties of the 

system, and the global, or macroscopic properties. Note that this distinction is 

entirely arbitrary and is only being used to organise our results. 

By "macroscopic", we refer to those properties which emerge only when we 

consider a number of routing components joined together to form a network, and 

we are interested in the interactions between different messages as they travel 

their separate paths through the network. At this level of detail, we are explic-

itly looking at overall network throughput, as measured (say) by average channel 

utilisation or by the distribution of end-to-end message throughput and latency. 

In this study, we look upon different routing strategies and their effects as macro-

scopic features of the system. 

By "microscopic", we refer to the properties of the system visible at a smaller 

scale. We still consider bandwidth and latency measurements, but we look at the 

performance of individual components in the system. We do still consider inter-

actions between colliding packets, but in this case we are interested in the local 

details of how we buffer and prioritise these packets, not of how we route them 

forward through the network as a whole. Of course, the microscopic properties 

will affect the overall performance of our networks, but the effects we class as 

microscopic are visible even when we consider the simple case of communication 
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between two adjacent routers or CPU elements. 

This chapter will be concentrating purely on the microscopic properties of the 

simulator. We will be explicitly avoiding looking at overall contention perfor-

mance. Rather, our aims will be to: 

. Assert the correctness of the simulator output, including: 

- verification of the simulator components; 

- validation of the simplified communication model described in chap-

ter 3, by comparison with the more accurate but more inefficient forms. 

Study the performance impact of certain specific microscopic properties, 

involving: 

- the exploration of the model's performance by studying the effects of 

changes in purely local properties of the communication system. For 

example, we can control the local queuing strategies employed at each 

node of the network, the buffer sizes, and the width of each inter-

processor communication link. 

- enabling the creation of more complex experiments by establishing 

suitable values for these local properties to be fixed when we start to 

consider more global properties of the system in the next section. 

As a side effect of this work we will identify certain interesting performance 

relationships, but a more important goal of this section will be to find and 

eliminate parameters of the architecture which are uninteresting, and which 

do not substantially affect the performance trends that we observe under 

load. This information will be particularly useful as a preliminary to the 

set of more complex experiments presented in chapter 5. 

4.1 Validation of the Transputer Implementa- 
tions 

In this section we will address the issue of testing the correctness of our simulator. 

We can divide this into two major tasks: 

Verification of the individual simulator components; and 

Validation of both the simulator as a whole, and of the simplifications made 

in our efficient communication model. 
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Our task is first of all to ensure that our simulated components 	primarily 

the T9000 cpu and the C104 router are correct, by measuring the performance 

between these components in simple scenarios where the expected performance 

(bandwidth and latency) can be precisely calculated. 

We then move to examine more complex systems, combining larger numbers 

of components into examples of realistic multicomputer configurations. Our aim 

here will be to show that the simplifications we have made in our efficient com-

munication implementation (the packet-passing model) do not substantially alter 

the properties of the system, and that we can use this model to investigate large 

multicomputers without losing accuracy. Of course, some differences between the 

token-passing and packet-passing models are expected, but we aim to understand 

those differences. In particular, we wish to show that the difference between the 

observed performance of the two systems can be explained in terms of the known 

differences between the implementations. Only with this reassurance can we be 

reasonably certain that in scaling our simplified implementation up to large scales 

we do not introduce unrealistic artificial effects into our results later on. 

4.1.1 Low level verification of the individual components 

As described in chapter 3, our communication model includes a network of in-

terconnected wormhole routing devices with a single CPU device connected by 

a dedicated channel to each router. In the simulator, we model the router and 

CPU devices on the C104 and T9000 members of the Transputer family. 

In this model, the T9000 devices always communicate with each other through 

two or more intermediate C104 routers. However, the implementation of these 

components in the simulator also allows us to create networks in which T9000s 

are connected together directly. We can exploit this in our verification of the 

simulator components to test the T9000 implementation both separately and in 

combination with the C104 implementation. 

We also have the advantage of Inmos's own published performance models 

([BGT93]) against which we can test our components. 

4.1.2 Validating the T9000 implementation 

In our model of the T9000, we are ignoring the only significant latency present in 

communication between two adjacent T9000s (the acknowledgement processing 

latency described in section 3.5.4 on page 38). The only significant sources of 

latency present in our model are 
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Competition for CPU processing time between processes; 

Competition for insertion into the output channel of a T9000 or C104; and 

Forwarding delay as the C104 router cannot start to forward an incoming 

packet until its header has been received, and similarly the T9000 cannot 

generate an acknowledgement packet for a message until it receives the 

header of the final packet for that message. 

We first of all consider the T9000 component, for now ignoring the C104 

router. Without routing support, the T9000 cannot forward any incoming data, 

but it can still perform useful communication with neighbouring T9000s. Since 

no forwarding is possible, we can ignore the router forwarding latency entirely. 

It is possible for us to consider the CPU and communication competition 

effects separately. Our process model allows us to simulate communication-only 

processes which impose no CPU load at all, so that we can concentrate on observ-

ing only the behaviour of the communication network. Likewise, we can generate 

compute-only processes which allow us to test the time-sharing properties of the 

simulated T9000. 

4.1.3 The T9000 CPU 

The computation model we employ is extremely basic. Processes may consume 

CPU time on demand, but we do not implement any hidden, implicit CPU load. 

A genuine T9000 will incur extra CPU latency on scheduling interrupt or on 

process wakeup due to an incoming message, but since the T9000 has a built-in 

scheduler and is designed for fast context-switching, these costs are small, and 

our simplified model of computation ignores them entirely. 

Our CPU implementation is a straight-forward FIFO scheduler with the abil-

ity to perform time-sharing context switching. A simulator Process object may 

request periods of computation, and the Processor implementation notifies the 

Process when that period has expired. The Process may then either block (sleep-

ing for a fixed real time period or waiting for JO), or continue to run by requesting 

a further computation period. 

An optional time-sharing feature in our Processor implementation allows the 

Processor to move a running Process to the back of the run-queue after a certain 

fixed interval (measured from the time this process reached the head of the run-

queue). This feature will be rarely used, however, since in typical multicomputer 

environments, if we have processes running with long communication-free periods 

47 



(relative to the scheduling interval), then we tend to have only one process running 

per processor anyway. 

As a brief check that our CPU model is fair, we run a number of extremely 

simple processes in parallel on a single processor. Each process simply loops 

infinitely around the operation 

compute(period) 

We observe both the total work done per ms, and the number of cycles com-

pleted by each separate process per ms, in figure 4.1 (a period of 1000ns is used 

in this figure). As we expect, the total work completed is constant as we change 

the number of processes, and represents a perfect 100% cpu load. Fairness is 

reflected in the fact that for any given run, all processes complete precisely the 

same amount of work per ms. If we repeat the test with a larger or smaller 

compute period (testing values substantially smaller or greater than, or close to, 

the scheduler's constant timeslice interval), the results show similarly consistent 

behaviour. 
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Figure 4.1: Compute-bound throughput on a single T9000 

4.1.4 T9000 Communication Properties 

We next look at our implementation of the T9000's communication facilities. 

There are essentially three separate properties we have to consider: throughput 



and bandwidth, properties common to all communicating systems, and the queu-

ing of packets when more than one message is being sent down a single physical 

DS-Link. 

4.1.4.1 T9000 Bandwidth 

Several factors reduce the bandwidth available to messages crossing a raw DS-

Link, quite apart from any delays in queueing incurred while waiting to enter the 

DS-Link. The best-case scenario for raw bandwidth is of unobstructed one-way 

communication between processes in adjacent processors. Even in this case, the 

full theoretical bandwidth of the DS-Link bit-stream will not be realised. The 

primary extra cost is the packetisation overhead due to extra packet termination 

and header bytes in the data stream, but flow control tokens and acknowledgement 

packets will also drop the bandwidth available for data bytes. 

In a DS-Link carrying data in only one direction, these effects will be small, 

but present. The outgoing and incoming data streams are almost independent, so 

that the incoming acknowledgement packets arrive independently of the outgoing 

data packets. There is a small hidden cost to the outgoing data stream, however 

flow control packets on behalf of the incoming data stream must be interleaved 

with the outgoing data. 

Bi-directional data is significantly more expensive to carry. Each direction 

must carry not only data, but also acknowledgement packets; furthermore, it 

must carry flow control tokens not only for returning acknowledgements, but also 

for the opposing data stream. 

May, Thompson and Welch [BGT93] present models of this ideal uni-directional 

and bi-directional bandwidth, parameterised by message size m and header size 
s. In this chapter we ignore the variable header size, and assume that s = 1 in all 

cases, although in real life larger headers will be used to address random-routed 

destinations and/or machines with more than 256 processors. 

Given a message of length m bytes, and given that the T9000 breaks up 

messages into packets of at most 32 bytes, we require n packets to carry each 
message, where 

n= 
[,n] - 
32 

Since there is a per-packet overhead of 10 bits per header byte, plus a 4-bit end- 

of-packet token, or 14 bits, the number of bits required to represent the entire 

message is 

bd = 10m + 14n 



There must also be an incoming acknowledgement packet for each data packet 

transmitted. The acknowledgement is represented by an empty message, so for 

our implementation, 14 bits comprising two tokens are required for an ack, the 

number of acknowledgement bits required for the message is 

dt = 2n 

Since one flow control token is sent for every eight received tokens, the outgoing 

link must carry 

dt 
Tift 

8 
rip  
4 

flow control tokens per message. Each token being 4 bits long, so the total number 

of outbound bits required per message is 

B = bd+4nf t  

= 

The number of actual data bits transferred in a m byte message is 8m, so the 

total uni-directional bandwidth available to the CPU over a DS-link is 

D = 
8m
--  x 100 Mbits/sec 	 (4.1) 

We can apply similar calculations to the bi-directional case, where there is a 

single sending process and a single receiving process at each end of the DS-link. 

As before, 
[m 

n = 
321 

but our data rate is different because outgoing data packets must be interleaved 

with acknowledgement packets for the incoming data stream. Since the link 

is symmetrical, we consider just the outgoing data stream. For each outgoing 

message, we must transmit: 

. n data packets, including lOs + 4 bits of header and trailing information; 

One acknowledgement packet of lOs + 4 bits; 

. Flow control tokens for the incoming data and acknowledgement packets. 

The number of non-flow-control bits sent is 

bd = (10m+(10s--4)ri)+(10s--4)ri 

= 10m+28n 
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and the number of tokens required to encode this is 

dt 	(m+(s+l)n)+(s+l)n 

m+4ri 

The incoming data link must also carry ndt data and acknowledgement tokens, so 

that we must add the necessary flow control tokens to the outgoing data stream: 

dt 
8 

The total number of outgoing data bits per message is then 

B = bd + 4n1 

and the bandwidth is 

D = 	x 100 Mbits/sec 	 (4.2) 

We can validate the simulator's T9000 component by comparing against these 

models. We connected two T9000s together via a single DS-link, and repeatedly 

sent fixed-size messages from a process on one to a process on the other. For the 

bi-directional case, we simply created a sender and a receiver on each processor. 

In figure 4.2, we see both the bandwidths we observed, and the theoretical 

bandwidths according to equations 4.1 and 4.2. Link bandwidth (measured in 

data bytes transmitted per second) is plotted against message size. 

Since messages are divided up into 32-byte packets, the total packet overhead 

per message increases once for every 32 bytes in the message. The corresponding 

drops in bandwidth are clearly visible. Also obvious is the drop in bandwidth in 

each direction which occurs when data is being sent in two directions simultane-

ously. 

More significantly, the observed and predicted throughputs are in extremely 

close agreement. The small discrepancy in the observed bi-directional throughput 

can be easily explained. The T9000 can queue an acknowledgement packet as soon 

as only the header of a data packet has been received, and we would expect this 

to allow a sender to transmit data packets back-to-back. 

However, if we start up the sending processes on each processor simultaneously, 

the outgoing and incoming packets will be transmitted in lock step. This means 

that the acknowledgement for an incoming data packet cannot be sent until the 

incoming packet has been completely accepted (because the outgoing link will be 

in step with the incoming link, and hence will be sending a corresponding data 

packet itself). Outgoing data therefore stalls while the incoming acknowledgement 

is received. 
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If we stagger the processes so that we start up the sending process on one 

processor a short interval after we start the other, we observe the behaviour 

in figure 4.3, and the discrepancy between observed and predicted throughput 

is entirely eliminated. The residual differences between predicted and observed 

bandwidths (excluding packets of length less than 4 bytes) can be seen in table 4.1. 

Maximum Average Experimental 
deviation deviation standard error 

Lock-step Uni-directional 0.50% 0.09% 0.14% 
Lock-step bi-directional 1.38% 0.94% 0.14% 
Staggered uni-directional 0.64% 0.14% 0.165c 
Staggered bi-directional 0.79% 0.25% 0.12% 

Table 4.1: Deviation between expected and observed T9000 bandwidth 

So, accounting for latency problems when the two units work in lock step, we 

find no difference between observed and expected performance above 0.8%, and a 

typical difference of only a quarter of one percent for the bi-directional case (and 

less for the uni-directional case). 

4.1.4.2 The Simplified DS-Link Implementation 

We recall that our simplified implementation of the T9000 model ignores per-

byte flow control, synchronising at the start of each packet only. The actual 

cost of transmitting flow control data is ignored. We can adjust the predicted 

throughput of the DS-link to compensate for this by eliminating the flow control 

tokens from the calculated value of bd,  the bits transmitted per message. We 

obtain the following models for theoretical uni- and bi-directional throughput. 

For uni-directional data transmission: 

ID 	 - 

= 10m+14n 

and for bi-directional data, 

= 10m-1-28n 

As before, the total data bandwidth 

D = 
8m-h- x 100 Mbits/sec 	 (4.3) 
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Plotting the predicted and observed throughputs in figure 4.4, we again see 

that our implementation's performance is correct. Table 4.2 shows as before the 

deviation between predicted and observed performance, and the difference is well 

within experimental error, being less than 0.1% on average. 

Maximum Average Experimental 
deviation deviation standard error 

Uni-directional 0.81% 0.09% 0.13% 
Bi-directional 0.40% 0.06% 0.13% 

Table 4.2: Deviation between expected and observed T9000 bandwidth for the 
simplified (packet-passing) implementation 
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Figure 4.4: Packet-passing T9000 output bandwidth against message length 

4.1.5 Validation of C104 Routing Network Models 

The introduction of C104 routers into a T9000 network introduces two new timing 

effects which do not affect communication between adjacent T9000s. First of all 

there is the routing latency experienced by packets as they pass through a C104. 

Secondly, there is the contention for output links within the crossbar of a C104. 

We considered again the timing experiments from section 4.1.4.1, but this time 

the two T9000s were not communicating directly but were connected indirectly 
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through a single C104 routing switch. We can compare both the throughput 

(number of messages transmitted in a given time) and transit time (time elapsed 

between initial transmission of a message and final receipt by the destination) 

between two T9000s with and without an intervening C104, for various message 

lengths. 

Message 
Length 

Throughput 
Direct 	C104 

Transit time(ns) 
Direct 	C104 

0 2667 1482 212 362 
1 2623 1468 312 462 
2 2424 1454 412 574 
3 1951 1454 512 674 
4 1632 1428 612 775 
5 1403 1403 712 863 
6 1230 1230 812 962 

We can see that although the time taken for a message to pass from source to 

destination was consistently and uniformly longer for the C104-connected trans-

puters than for the directly-connected ones, the total throughput was identical 

as long as the packets were sufficiently long. This pattern is repeated for larger 

message lengths when the last packet of a message is small enough. 

The differences in message transit times are a direct result of the extra rout-

ing latency incurred through the C104, and results indicate that this latency is 

precisely that expected. The throughput of the system is largely unaffected by 

this latency; only for small packets is the handshaking between the two T9000's 

delayed sufficiently by the C104 to cause extra interruptions in the flow of data 

between the processors. If two processes attempt to send data simultaneously 

over two virtual links on the same DS-Link in this environment, the latency due 

to the C104 is completely hidden by the extra traffic and the presence or absence 

of the C104 no longer has any effect on the bandwidth. 

4.2 Considering Connectivity 

We will now progress to study the behaviour of somewhat more complex systems. 

We have up to now looked only at two or three components connected together 

in a simple configuration whose expected performance can be easily calculated. 

We now turn to look at larger systems, where we will have a larger number of 

independent communicating units in the network. 

Before we start, we must carefully define the workload we will be using in 

the rest of this chapter. We will then look in more detail at some of the design 

55 



decisions we have to take when setting up our large-scale routing experiments. In 

this examination we will be paying particular attention to two things. First, we 

want to tune some of the parameters of our simulator to avoid introducing artifi-

cial bottlenecks into the system. Secondly, we will identify the specific differences 

between our efficient and our accurate DS-linkcommunication implementations, 

and show that even for these more complex simulations, we can fully explain the 

differences between their behaviours in terms of the known differences in their de-

sign, giving us confidence that the simplifications have not introduced side effects 

which would invalidate their use on large-scale simulations. 

4.2.1 A Synthetic Workload 

In the following sections we will be much more interested in looking at the raw 

throughput of our simulated multicomputer than at any contention effects. This 

will be an initial test-drive of the simulator, and we will not yet be trying to draw 

any conclusions about contention performance. As a result, all that we require of 

a workload at this stage is the ability to inject a fairly high rate of messages into 

the network (especially when we start to look at network bottlenecks below). 

As the multicomputer architecture for these experiments, we will use a reg-

ular grid-connected combination of the basic building blocks (figure 3.1). The 

synthetic application will also be organised as a regular grid of communicating 

processes, but torus- rather than grid-connected. This creates a very artificial 

workload but for now we are still validating the simulator, not drawing perfor-

mance conclusions about multicomputers in general, so realism is not as important 

a factor as it will be in subsequent chapters. This topology will serve our pur-

poses well for the current chapter. It can exert a high load on the network (due 

to the large numbers of packets being exchanged with neighbouring processors) 

while still generating enough long-distance traffic between the edges of the grid 

to allow us to probe timing and ordering effects of packet routing. 

The workload shall be a simple boundary exchange. Each process shall be 

supplied with 4 virtual communication channels 80.. .  s, connecting it with each 

neighbour, so that the channels for a process P(i,j)  on an N x N grid, are 

S0 = {P(i,j),P((i+i) mod N)j)} 

{P(i,j),P(i,(j-1) mod N)} 

{P(i,j),P((i-i) mod N, J)} 

83 = {P(i,j),P(i,(j+1) mod N)} 

and the process loop is 
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compute (period) 
send(so, m) 
send(s1, m) 
send(s2, m) 
send(s3, m) 
recv(so) 
recv(s1) 
recv(s2) 
recv (.93) 

For deadlock avoidance, non-blocking sends are used here. 

For the purpose of measuring performance, we count one complete iteration 

of this loop by one process as a single application exchange. To realistically 

compare the results obtained from different sizes of workload we would hence 

have to normalise the total application exchange rate by dividing by the number 

of processes, N2. 

The workload is completely parameterised by (N, rn, period). Unless otherwise 

stated, we will be using 32-byte messages (the maximum size for a single packet) 

in all the experiments in this chapter. 

The other characteristic of the workload we define is the mapping from pro-

cess to processor. We will employ a processor grid of dimension N/2 for our 

experiments, and will use a mapping function 

= 

so that four adjacent processes are mapped onto each processor. 

There is one other factor which we must determine to define our experiments: 

the network routing strategy. Unless indicated otherwise, we will be using a 

simple, greedy routing strategy, which routes deterministically, first by column 

and then by row. 

4.2.2 Providing fat links into the network 

In section 3.2, we described the basic components which we use to construct our 

simulated multicomputers: the networks we construct consist of interconnected 

C104 routers with a single T9000 connected at each node. We also observed that 

if we are limited to passing a single packet into the network at once, then the 

bottleneck in our system may be the introduction of packets into the multicom-

puter network. Since it is our aim to study the response of that network itself, 

we don't want it to stall simply because there is not enough bandwidth between 

the running workload and the network. 
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It is easy to demonstrate that this danger is very real. Figure 4.5 shows the 
performance (in application exchanges per millisecond) of the multicomputer as 
we increase the number of links working in parallel between the CPU and the 
network. We see no performance improvement in increasing the parallelism of 
the CPU link beyond 4. This is expected, since it is not possible under any 
conditions for the C104 router to send more than 4 packets out at once (one in 
each direction) from the CPU, at least in this configuration (and the incoming 
bandwidth is similarly limited). In the study below (4.2.4) of the effects of local 
queuing policy on performance, we will again see no case where increasing the 
CPU link parallelism beyond 4 offers any performance improvement. 

64 processors (8x8 grid), greedy routing 
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Figure 4.5: Performance dependency on CPU—router link width 

It is reasonable to assume that a good policy would be to make the width 
of the link between a CPU and its router equal to the degree of the network at 
the point where the router is attached. Our experiments here confirm that this 
policy removes the risk of this link becoming an obstructive bottleneck in the 
network. Basak and Panda [BP96] also identify the width of the external link as 
an important factor limiting performance, and they conclude that a link width of 
2-4 is typically effective. 

4.2.3 The size and placing of routing buffers 

We recall from chapter 3 that the C104 router is organised as sets of paired input 

and output links connected by a central crossbar switch, and that there is a small 
amount of buffering available at both the input and the output channels. 

It is a property of the T9000 family's communication design that no data sink 
(the T9000's input link) will ever block, and that no router input will ever block 



unless either its connected output has blocked, or there is contention within the 

crossbar between two input links attempting to send a packet to the same output 

link. The former case is simply a matter of an existing blockage propagating 

backwards through the network; it is only crossbar contention which can introduce 

new blocking into the network. 

The presence of buffering is designed to help to alleviate this problem. If 

the crossbar can offload a packet into a local output channel, then the crossbar 

is free to continue accepting new packets even if that output channel is itself 

blocked. Buffering does not eliminate crossbar contention, but it does reduce 

the effect of that contention propagating backwards through the network and 

reducing performance upstream too. 

We can see a similarity between this effect and the effect of the flow con-

trol strategy we have adopted for our efficient, packet-passing communication 

implementation. The genuine T9000, and our accurate DS-linkimplementation, 

perform flow control with 8-byte granularity; every flow control token received 

grants permission to send another eight tokens of data. The effect of our simpli-

fication is to perform only packet-level flow control, so we don't start to accept 

any packet on any input link unless we know we have enough buffering available 

to completely accept that packet. The primary consequence we expect to observe 

is that if our buffers fill, the simplified implementation will take longer to start 

accepting new data than the accurate implementation. 

A second property of our simplified implementation is that it has no output 

buffering. If we look at figure 4.6, we can consider the difference between having a 

large buffer on our output buffers, at A, or at the input buffer at B. If the buffers 

are at A then the switch's crossbar can drain data rapidly into that buffer, as 

this involves only local on-chip communication. If the buffering is at B, in the 

input buffer, then draining data through the crossbar is limited by the speed of 

the physical DS-Link's serial data line. 

Router I 

------- Flow control 
Data 

Crossbar 	 Router 2 

Crossbar 

Figure 4.6: Connecting buffers in adjacent routers 

Whereas the real T9000 implements a small amount of buffering on both 
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the output and the input links, our simplified implementation has only an input 

buffer. The impact of this will be that the crossbar will be occupied for longer 

in sending data out over the DS-link, perhaps delaying any subsequent packet 

buffered in the input link feeding into that crossbar. 

To study these buffering effects, we set up a simple boundary-exchange ex-

periment. We used a simple 8x8 processor grid carrying an optimally mapped 

16x16 logical grid of processes. We now look at how the performance of this sys-

tem varied as we changed the amount of buffering available for two experiments: 

one run on the accurate, token-passing communication implementation (with the 

buffering shared equally between the input and output links), and the other on 

the more efficient packet-passing implementation. 

In figure 4.7, we show the results when greedy routing is used. The first 

observation is that, as seen in §4.2.2, performance is markedly degraded when we 

only have a single link between the CPU and the router. This does not come as 

too much of a surprise, and we have already decided to use a link width equal to 

the degree of the routing network (four, in this case) for our experiments. 

The second obvious point is that performance increases in steps on the packet-

passing implementation. Since this model performs flow control on packet bound- 

aries, not byte boundaries, we cannot transmit a packet until there is a complete 

packet's worth of free space in the destination input buffer. Adding a few extra 

bytes of buffering has no impact; only when we add enough space for an extra 

complete packet in the input buffer does performance improve. 

We observe that the packet-passing implementation performs noticeably worse 

than the token-passing implementation. However, we have already predicted that 

the packet-passing throughput is going to suffer somewhat from the lack of any 

output buffers on the router, and in figure 4.8 we try to mimic this effect in 

the token-passing implementation. This graph shows how performance varies as 

we move buffering space from the output buffer to the input buffer, keeping the 

combined input plus output buffering space constant at 200 bytes throughout. 

This does show that there is a drop-off in performance at each extreme, and 

the best performance occurs when we have at least one packet's worth of buffering 

at both the input and the output link. The most important observation however 

is that when we reduce the amount of input buffering on the token-passing im-

plementation towards zero, the performance approaches precisely that observed 

with the packet-passing implementation. 

Table 4.3 lists the observed results numerically. We record here the perfor-

mance of the packet-passing implementation with 200 bytes of buffer space, and 
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CPU link Token-passing Packet-passing Adjusted token- Residual 
width model model passing model difference 

1 1753 1804 1840 2.00% 
2 2569 2625 2697 2.74% 
3 2770 2814 2908 3.34% 
4 2780 2835 2919 2.96% 

Table 4.3: Performance of the token- and packet-passing implementations 

of the token-passing implementation with 198 bytes of input buffer and only two 

bytes of output buffer. The token-passing implementation has got to transmit 

flow-control tokens interleaved with data. These tokens account for 4 bits for 

every 8 data tokens (of 10 bits each) sent, or 5% of the system throughput. In 

column 4 we account for this by normalising the token-passing performance by a 

factor of 1.05, and we now observe a numerical correspondence between the two 

implementations of within about 3%. 

We can repeat the experiment using two-phase random routing throughout, 

and figure 4.9 shows the observed performance. Again we see the same steps in the 

packet-passing model's performance curve, and again the performance with packet 

passing is asymptotically nearly 10% worse than the token-passing performance. 

This time the performance of the token-passing implementation with 198 bytes 

of input buffer and 2 bytes of output buffer in figure 4.10 is equal to the perfor-

mance of the packet-passing implementation with a 200 byte buffer in figure 4.9, 

to within under 2%. 

4.2.4 Local Queuing Policy 

The final experiments we will look at in this section involve the effects of the 

local queuing policy implemented by the routing hardware. There are two places 

where packets get prioritised: 

The T9000 maintains separate internal queues for data and acknowledge-

ment packets, and always transmits any pending acknowledgements first; 

and 

When the crossbar switch of the C104 router relinquishes a connection be-

tween an input link and an output link, it must arbitrate between any other 

input links which are presenting a packet destined for that output link. 
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We will refer to these as "ack prioritising" and "crossbar queue ordering" respec-
tively. 

The real transputer devices implement ack prioritising in the T9000, but do 
not do so in the C104. The only ordering implemented between contending input 

links at the C104 is simple FIFO queuing. However, a simple synthetic workload 
can identify possible problems with this regime. Recall that we are mapping a 
torus-connected boundary-exchange problem onto a grid-connected routing net-
work. This will obviously exhibit edge effects, since the logically adjacent pro-
cesses mapped onto opposite edges of the processor grid will have to transmit 
their packets over the entire diameter of the network, while other processes are 
communicating with nearest neighbours. 

This is a pathological example which is worth looking at, since this type of 
bottleneck, where just a few logical message paths are unusually long, is not 

uncommon in real parallel systems. The trouble is that if we do not prioritise the 
packets which are travelling the longest distance, we may end up delaying these 

packets at each and every hop of their path. The cumulative effect is that the 
packets with the longest paths - the bottleneck packets, that is - are also the 

packets which suffer most from queuing delays in the network. 

We implemented a number of alternative packet queuing policies to determine 

whether we can improve things at all. The alternatives we chose are: 

FIFO (the default behaviour as implemented on the C104) 

Random: select an input link at random from the possible alternatives 

Net-first: Prioritise packets already in the routing network over packets 
arriving from a CPU, to try to expedite multi-hop packets 

Oldest-first: chose the oldest available packet to send 

Hops-first: chose the packet with the highest hop count so far to send 

In addition, we implemented optional prioritisation of acknowledgements over 
data packets in the C104 router. 

The results show a quite surprising difference in performance between these 

different mechanisms. Figure 4.11 shows how the different combinations of queu-

ing policy with or without ack prioritisation behaved on networks of 64, 256 and 
576 processors. For efficiency, we used the packet-passing transputer implemen-
tation. The first observation is that in every case, implementing ack prioritisation 
in the router improved performance over the equivalent queuing policy without 
such prioritisation. 
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Secondly, we see that the best queuing mechanisms are consistently the age 

sensitive hops-first and oldest-first policies. There is little to choose between these 

two in the experiments here, which is reassuring since in a real implementation 

of packet queuing, it will be much easier to attach a simple hop count to packets 

than to add packet timestamping throughout the communication system. Even 

without ack prioritisation, these two policies outperformed every other. 

With the exception of net-first queuing, every ordering policy outperformed 

the default C104 FIFO policy. 

Before we leave this experiment, we will take a last chance to validate our 

simplified packet-passing communication simulation against the accurate token-

passing model for this more realistic experiment. In figure 4.12, we show the 

results of repeating the 16-processor experiment from this section with a number 

of different implementations of the communication system. We used the packet-

passing and token-passing (both with balanced buffers and with all buffer space 

allocated to the input buffer) implementations, and we ran both with the default 

70 bytes of total buffering and with double-sized buffers. 

Although there is a clear difference between the responses of the token-passing 

and packet-passing implementations, this difference vanishes when we remove the 

output buffer from the token-passing experiment. This behaviour closely follows 

the pattern we saw in section 4.2.3. 

4.3 Conclusions 

We have developed a simulator which closely follows the behaviour of the T9000 

processor and C104 wormhole router. We believe that this system allows us to 

accurately investigate the timings and synchronisation characteristics of large T9-

based multicomputer networks, but the implementation simulates each individual 

token passed on each communication link individually, and so suffers from poor 

performance. 

We have presented an alternative communication model which promises the 

possibility of much more efficient simulation without losing the ability to express 

the complex behaviours of large communication networks. This packet-passing 

implementation generally runs complex simulations about an order of magnitude 

faster than the reference model. 

We have validated the simplifications made in this implementation against 

the reference model, and have found that the simplified system behaves just as 

we would expect from a real transputer modified to have all of its buffer space 
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placed on its input links rather than shared between the input and output links. 

Although the faster implementation does not correspond precisely with the real 

transputer architecture, it does correspond to a possible and realistic variation 

of that architecture, and thus it satisfies the requirements of the simulator to be 

used to investigate complex routing phenomena in large multicomputer networks. 

Existing empirical studies of simulated multicomputer performance have rarely 

considered networks of more than 128, or occasionally 256, processors. We con-

clude that a carefully designed simulator running on today's sequential compute 

servers should easily be able to handle networks over an order of magnitude 

larger than this, so that it becomes possible to investigate of the performance of 

the much larger communication networks made possible by modern wormhole-

routing interconnection networks. 



Chapter 5 

Measuring Contention Effects 

5.1 Introduction 

How do we measure the performance of a multicomputer interconnection network? 

When we measure its "performance", what exactly are we measuring? In this 

chapter we will try to give some answers to these two questions, paying particular 

attention to the cost of communication contention within the network. 

Up until now, we have been setting the scene. We have established that we 

can simulate, with accuracy, the transmission of packets through a transputer 

interconnection network. We can now start to at some of the effects which can be 

probed with this simulator. As we do so, we retain one primary goal: to be able 

to separately quantify the cost of contention against the network, and against the 

workload running on that network. 

To this end, we will be asking three questions in this chapter: 

How do we measure performance? We will introduce two quite distinct per-

formance metrics to measure first of all the performance of the communi-

cation network, in terms of the communication time required for individual 

packets; and secondly the performance of the workload running on that 

network, in terms of the aggregate amount of useful work being achieved. 

What performance are we measuring? We will also identify a number of 

different effects which affect "performance". In particular, we will need to 

clearly distinguish between flow-control effects in which packets are queuing 

up in a strict queue for injection into the network, and true contention in 

which packets already accepted into the network are interfering with each 

others' routing. 

How do we quantify the cost of contention? An important objective of our 

measurement of performance is that we would like to be able independently 
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to measure both the presence of contention in the network, and the actual 

cost of that contention to the performance of the workload. In order to 

measure that cost, we will introduce three separate communication models 

which will allow us to run our experiments with contention effects selectively 

disabled: this will allow us to tell exactly how much faster the workload 

might have progressed if it were not for contention. 

5.1.1 Packet Interactions 

The complexity we will be trying to deal with throughout this chapter is the 

presence of many different types of interaction between separate communication 

packets in our network. Every interaction between any two packets during a 

simulation experiment creates some form of synchronisation between those two 

packets. Contention is the obvious form of interaction between packets in a 

communication network. At a higher level, applications also impose ordering 

constraints between packets. 

As a result of contention, any given packet journey through an interconnection 

network may take a variable amount of time, and as a result of interactions in 

the workload, that variability may change the activity of the application. How 

do we untie this knot? Ultimately, we can make as many measurements as we 

want about contention in our network, but we still need to be able to relate that 

information to predictions about workload performance. 

In this chapter we concentrate on trying to unravel this chain of cause and 

effect. To properly understand the effects of contention on performance, we need 

to be able to quantify two separate things: 

. The amount of contention taking place in the network, and 

the overall effect this contention has on the performance not only of the 

communications network, but of the workload as a whole. 

This chapter will lay the groundwork required to measure these effects. We 

will define a synthetic workload which allows us to simulate different degrees 

of interaction within the workload. Using this synthetic workload to drive our 

simulator, we then identify different interactions which can occur between packets, 

and we show that we can measure both the presence of contention, as measured by 

an increase in packet delivery times, and the effect of that contention as measured 

by a decrease in workload performance. Critical to the measurement of contention 

costs will be the ability to selectively disable internal network contention in the 

simulator. 
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One very specific effect we will have to identify in this chapter is flow con-

trol. During this chapter we will have to distinguish between true contention—

congestion within the network—and flow control effects where we are merely 

queuing packets up for injection into the network. 

5.2 Network and Workload Synchronisation Ef-
fects 

In the rest of this chapter we will be looking both at packet interactions which 

arise from properties of an interconnection network and those which result from 

properties of the workload. Before we start to define a workload to express these 

properties, it will be useful to summarise the types of interactions we expect to 

see. In particular, in both the workload and in the communications network, there 

is a clear distinction between two quite different forms of interactions between 

packets: 

Predetermined interactions in which the interaction is entirely deterministic 

and predictable. The packets are strictly ordered: one packet cannot be 

generated by a particular processing node until another packet has been 

received at that node 

Incidental interactions in which the interaction results from a coincidental 

meeting between two packets. 

There are many examples of both types of interactions. Predetermined inter-

actions include 

Application ordering constraints: the flow graph for a workload may dictate 

that a process receives certain data, performs some computation and then 

passes on a result to neighbouring processes. In this case, there is an obvious 

predetermined ordering between the packets received by a process and those 

sent by it. 

Message processing: a T9000 communicates by sending data packets of up 

to 32 bytes and receiving acknowledgement packets in return. Acknowl-

edgement packets cannot be sent from a node until the arrival of a data 

packet at that node; subsequent data packets cannot be sent until the ac-

knowledgement for the prior packet has been received. Flow control can 

be considered to be a form of this type of interaction if the workload uses 

blocking sends. 
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In addition, both the workload and the communications network may result 

in extra, incidental interactions between packets: 

Contention between packets results when one packet is awaiting output on 

a given communications channel but another packet is already occupying 

that channel; 

The T9000 maintains separate output queues for acknowledgement packets 

over data packets and transmits acknowledgements in preference to data, 

imposing an extra ordering constraint between the two packet types; 

If the workload is not entirely deterministic (its flow graph is not fixed in 

advance), then the behaviour of any process—and hence the injection of new 

packets—is to some extent a response to the delivery of other packets to that 

process, creating an implicit interaction between incoming and outgoing 

messages. 

5.3 Selecting an Appropriate Workload 

We can now start to define a workload which will be used to look at these syn-

chronisation effects. In this chapter, we are primarily concerned with being able 

to observe and to measure synchronisation properties inside the communication 

network, and their effect on overall workload performance. As a result, we are 

not necessarily bound to use a workload modelled on any one specific real-world 

application. It is much more important for now that our workload is capable of 

being tuned to display different synchronisation properties. 

Broadly speaking, the workload stimulus used in existing work on performance 

analysis of parallel systems (including experimental, analytical and simulation 

studies) can be divided into two classes: workloads generated purely at random 

according to some parameters, and workloads which follow the pattern of some 

definite algorithm, either generated from a trace of a running program or produced 

on-the-fly. In this chapter we will be using a specific class of the former variety 

of random synthetic workloads. 

One of the most important features of a synthetic workload is one which is 

frequently overlooked, especially in analytical models of multicomputer perfor-

mance. The synchronisation characteristics of a parallel workload—the way in 

which activity of any one process in the workload depends on the order and timing 

of the arrival of incoming messages—can have a profound impact on the perfor-

mance of that workload, and on the response of its performance to changes in the 
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underlying communication network. 

To put the synchronisation issue into context, consider first the situation when 

intra-application synchronisation is ignored. A very common simplifying assump-

tion made when dealing with random synthetic workloads is that the parallel 

workload consists of multiple independent processes, where each process is gen-

erating messages to other points in the network in a manner oblivious to the 

activity on those other nodes. 

There are number of reasons why this assumption is commonplace. First of 

all, there is a substantial body of literature dealing with the properties of large, 

telecoms networks which are similar in many ways to multicomputer interconnec-

tion networks. A telecoms provider can, to a large degree, safely assume that the 

sources of data coming into the network are independent of each other, although 

they may still be correlated through dependence on common variables such as 

the time of day. 

Secondly, there exist powerful analytical tools for performance analysis, such 

as queueing theory, which rely on the assumption that the workload is generated 

by independent processes with exponentially distributed generation of new work. 

However, there is a large class of applications which behave substantially dif-

ferently to this. Many parallel applications are decomposed into a set of commu-

nicating processes, where each process performs a repeated cycle of exchanging 

information with some of its neighbours and then performing some local compu-

tation with the information obtained for this timestep. The Bulk Synchronous 

Processes paradigm employs workloads of this form, and many common numeri-

cal codes such as the physical domain decomposition found in fluid analysis or the 

solving of systems of linear differential equations also reduce to processes which 

communicate with a fixed set of near neighbours at each time step. 

The important property of these applications is that between computations, 

any one process in the workload communicates synchronously with a subset of 

the other processes in the system. The workload is not fully synchronous 	the 

processes never synchronise themselves to any global clock. Rather, it is loosely 

synchronous. 

In such a system, if one process stops, its neighbours will stop as soon as they 

try to exchange information with it; those stalled neighbours will in turn stall 

more distant processes at the next timestep; and in time the entire application 

will come to a complete stop. It is a fundamental property of loosely synchronous 

systems that although two logically distant processes can operate independently 

in the short term, in the long term all processes in the application must progress 
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at the same rate. They are all bound by the speed of the slowest process. 

Throughout this chapter, unless specifically stated otherwise, the phrase "syn-

chronous workload" will be used strictly to refer to a "loosely-synchronous work-

load". Globally clocked, tightly-synchronous workloads will not be discussed 

further here. 

Note that we are explicitly excluding from our discussion here workloads which 

are adaptive and non-deterministic. Some classes of parallel workloads have the 

ability to adapt to the running speed of each process, giving more work to pro-

cesses which complete quickly or mapping more processes to underutilised pro-

cessors and thus avoiding the bottleneck which a slow process (or communication 

link) incurs in a loosely synchronous workload. The task farm is an obvious, 

extreme example of an adaptive workload. Studying such systems encounters 

the problem that the workload can no longer be considered to be constant: it is 

now a function (at least in part) of the communication network response, and so 

determining the response of that network to the workload becomes much harder. 

By explicitly considering only non-adaptive workloads with predefined process 

dependency graphs, we avoid this feedback loop. 

5.3.1 Properties Required of the Synthetic Workload 

What properties do we require of the synthetic workload? Obviously, our aims 

in this chapter require that we have control over the synchronisation properties 

of the workload. If we are to observe how the network responds under different 

load conditions, we also need to be able to control the amount of work generated 

by the workload. 

To achieve these aims, we want to have control over: 

Synchronisation diameter The workload must be able to display synchroni-

sation over different ranges, from direct communication with nearest neigh-

bours up to communication over the entire diameter of the processor net-

work. 

Communication/ CPU ratio The amount of communication occurring rela-

tive to CPU time consumed, including both the frequency and size of the 

communications. 

Local synchronisation Amongst the most important factors we want to be able 

to control are the synchronisation characteristics of the workload. We can 

identify both local and global synchronisation characteristics. We define 

local synchronisation to be concerned only with the existence of events 
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where a process synchronises itself with purely local events, where the event 

is local in either time or space. 

For example, if a process uses blocking message transmits (ie. it waits in 

any way for an acknowledgement from the receiving CPU), then it is nec-

essarily subject to local synchronisation, in that it is subject to the packet 

load experienced over some path through the network at some point in 

time. However, it is not necessarily subject to global synchronisation—just 

because it has to wait for a message to get through the communication net-

work does not mean it has to wait for any specific process to reach a certain 

point in its lifetime. 

Global synchronisation Global synchronisation we can define as the property 

characteristic of loosely-synchronous workloads. It is marked by repeated 

points in the lifetime of a process when that process must synchronise itself 

with a specific point in the lifetime of neighbouring processes, with the tran-

sitive closure of the adjacency function fully connecting the entire process 

graph. 

There is a profound difference between local and global synchronisation. The 

workload-wide loose coupling of processes which characterises global synchronisa-

tion requires that processes synchronise at pre-defined intervals in their lifespans, 

and no matter how far ahead in its operations one process has progressed in ad-

vance of another, on a synchronisation event the first processes must simply wait 

until the second process has reached its own synchronisation point. As long as 

the dependency graph between processes in the workload is fully connected, it is 

simply impossible for any process to get arbitrarily far ahead of any other process 

in the system as execution proceeds. 

Note that the existence of synchronisation points between two processes does 

not by itself constitute global synchronisation. Take the client-server model of 

computation as an example; when a client submits a request to a server, the 

ensuing dialogue may require both processes to wait for messages from the other. 

However, the server does not have any pre-determined list of requests which have 

to be processed in order: it simply deals with requests on demand. There is no 

synchronisation between fixed points in the life of the server and any points in the 

life of the clients. The ordering of synchronisation events in the client is reactive 

to the incoming workload, not predestined. Such client-server communication 

would only count as local synchronisation. 

A workload need not necessarily display even that much synchronisation. A 
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process could be created which would perform computation for some time and 

then fire off some outgoing communication message asynchronously. If that mes-

sage is to be carried reliably to its destination, then we obviously cannot afford 

to forget the message: the message must either be retained locally in the send-

ing process for retransmission on failure or in the communication subsystem for 

guaranteed delivery. We must assume that the buffering space for these messages 

is finite, and so if the workload generates messages faster than they can be trans-

mitted to their destination, then either messages must be dropped or the sending 

process must eventually stop creating new messages. 

If the process performs reliable communication under these conditions, then 

it is still locally synchronised to the communication medium—there is a flow 

control mechanism to stall the process when communications saturate, which 

counts as an implicit synchronisation between the process and the current state 

of the communication network. However, if packets are simply dropped silently 

under these loads, then the workload is truly unsynchronised. 

It is possible to criticise these unsynchronised workloads as somewhat unrep-

resentative of real parallel programs. However, they are widely used as synthetic 

communication load generators in many studies of multicomputer routing net-

works, where the simulated load consists of the random injection of independent 

messages; in such cases, communication saturation does result in packet loss, 

the saturation level being used to characterise the network's performance under 

stress. 

We may construct a workload that displays none of these properties, purely 

local synchronisation, or both local and global synchronisation, but we need to 

do so carefully. If we are to be able to accurately observe the effects of global 

synchronisation on overall performance, we need to be careful when selecting our 

workloads so that we can change the synchronisation characteristics while not 

preserving as many as possible of the other properties of the workload. 

Given the constraints above, we can now define the workload which we shall 

use throughout this chapter. 

5.3.2 Definition of our Synthetic Workload 

Our experiments in this chapter shall all take place on the same simple 2-dimen-

sional grid of transputers as used in chapter 4. The network is parameterised by 

its diameter D, resulting in a network of N = D * D nodes each composed of 

a single T9000 processor connected by a fat link of 4 DS-Links to a single C104 

router (following the result from chapter 4 that the width of this link be at least 
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as wide as the degree of the routing network). 

Given the 2D grid as our standard multicomputer architecture, we restrict 

ourselves for now to similarly organised workloads. We will make a number 

of extensions to the very simple process grid network with nearest neighbour 

communications as used in chapter 4. However, we will retain the uniformity of 

that workload, with precisely the same workload running on each processor in 

the network. 

Our workload for this chapter uses a Process very similar to the simple Pro-

cess used in chapter 4, but with a different pattern of communication. We place 

a constant number n of identical processes on each CPU in the system. At each 

communication point in the process's lifetime, it sends a constant number of mes-

sages, m, each of length M (where M may be constant or may be a random 

variable). The amount of time each process spends computing between commu-

nication activity is defined by another random variable c. Finally, each message's 

destination is chosen uniformly at random from amongst all of the processes in 

the d * d square grid centered on the sending process: d is the communication 

diameter for the workload. The set of possible destinations is simply truncated 

at the edges of the processor grid: near the edges, processes select uniformly be-

tween all those processes whose x and y coordinates are both no more than d/2 

removed from the sending process. 

The synchronisation characteristics of the workload can also be selected from 

amongst three alternatives: 

Loosely-synchronous In this mode, processes are loosely bound in lock-step. 

Processes need not synchronise with their all of their neighbours on every 

iteration, but only when they happen to select a neighbour as destina-

tion for a message. When a message is transmitted, it is both transmit-

ted synchronously by sender and received synchronously by the destination 

process—once a process has sent all of its messages for the current workload 

iteration, it blocks until all of those messages have been acknowledged by 

the receiving process and all incoming messages for the current iteration 

have been received. 

The result of this exchange is that although any two processes may become 

out of step with each other as they proceed, they are forced back into step 

as soon as either tries to communicate with the other. 

Asynchronous with blocking sends The workload may also operate without 

any loose synchronisation between processes, by eliminating the synchro- 
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nisation of processes with incoming messages. In this asynchronous mode, 

there is no global synchronisation, but messages are still always sent syn-

chronously, using blocking sends. The difference here is that incoming mes-

sages for each process are always acknowledged immediately they arrive 

(although the messages are ignored by the receiving process: to do other-

wise would reintroduce global synchronisation back into the system). 

The reason for using blocking sends is simply to maintain the same local 

synchronisation characteristics as in the first, loosely-synchronous mode. 

Upon sending a message, a process must wait for it to reach its destination 

and for the acknowledgement to return before proceeding. This naturally 

limits the number of messages which can be outstanding at any time, so that 

the workload can necessarily consume only a finite amount of buffer space 

at any time. The blocking send provides a natural flow control mechanism 

which prevents the network from ever saturating. 

Asynchronous with non-blocking sends In this final mode, we not only dis-

card global synchronisation but local synchronisation too. The process ac-

tivity is the same as for the previous mode, except that non-blocking mes-

sage sends are used. Now, each process simply repeats a loop in which it 

computes for some interval and then queues its outgoing messages for the 

current interval for asynchronous transmission. 

In this mode, the workload processes have no synchronisation with either 

outgoing or incoming messages. There is no flow control at all between the 

workload and the communication network, so it becomes possible to saturate 

the network if sufficiently many messages are generated. The transputer 

architecture has no mechanism for dealing with saturation: the architecture 

defines that there must always be at least a buffer for the first packet of any 

message on a virtual channel, so there is always enough buffering available 

for as many outstanding messages as may be present at any time. 

In our simulations, we deal with effective saturation by keeping a count for 

each process of the number of messages queued for transmission but not 

yet acknowledged as received. If this reaches a certain arbitrary threshold, 

we deem the network to be saturated and any further transmit requests are 

dropped and accounted as a saturation failure rather than being queued. 

This is equivalent to giving each process a finite number of virtual channels 

over which to send outgoing messages; once the quota is exceeded, the 

process simply cannot generate new messages until a transmission completes 
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on one of the existing channels. 

To summarise: 

Definition 5.1 We define our synthetic workload by the variables 

(D, d, n, c, m, M) 

and one of the modes loosely-synchronous, blocking asynchronous or non-blocking 
asynchronous, where 

D is the diameter of the CPU network, a constant; 

d is the communication diameter, a constant; 

n is the number of processes per processor, a constant; 

c is the per-iteration computation period, a random variable, in 1us; 

m is the number of messages generated per iteration of each process, a random 
variable; and 

Al is the size of each message, a random variable, in bytes. 

5.4 Three Workloads: Initial Observations 

In the remainder of this chapter, we will be looking at the observed performance 
of the three variants of workload we have described—asynchronous, locally syn-
chronous and globally synchronous. In this first section, we will not be concen-
trating specifically on contention. Rather, we will be getting a feel for how the 
workloads behave under load. 

We will be looking briefly at some of the various alternative performance 

metrics available to us, to get an idea of the sort of load being placed on the 

network by the three workload classes. We will look in quite some detail at the 
interactions between application and network when we approach saturation, and 
will see that some initially counter-intuitive results can arise when we ignore the 

precise packet ordering behaviour of the network and the precise flow control 
mechanism used by the workload. 

We will then look at the alternative performance metric we are using—packet 
delivery times. Finally we will look at the same three workloads under our al-

ternative communication models, to see how we can determine the performance 
being lost due to contention. 
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Throughout most of this chapter we will be using a standard setup for our 

workload: we run a single synthetic workload as described in definition 5.1. In 

our first examples we use a uniform processor grid of 16 by 16 nodes with one 

process running per processor, with our workload set to send exactly one 32-byte 

message per timestep over a distance up to 50% of the processor diameter, and 

messages of length 32 bytes used throughout. These are quite natural values 

to use for now: the use of a grid of this size allows us to generate long enough 

communication path lengths to see interesting contention effects, and limiting the 

message size to 32 bytes for now avoids the splitting of messages into multiple-

packet by the T9000 (which would introduce extra synchronisation effects into 

the communications load). 

To exercise the system at various load levels, we vary one parameter which 

is under our complete control in the workload, the inter-communication process 

compute period. Recalling the basis of our system's timings in section 3.1.1, a 

complete point-to-point communication of a 32-byte message takes 3.4s plus a 

per-hop latency of at least lOOns. We run our processes with compute periods of 

between 1s and 200bts, corresponding to compute cycles from about a third of a 

best-case message latency up to around 60 messages'-worth. 

In terms of our workload parameters from definition 5.1, we are using the 

parameters (16, 8, 1, c, 1, 32), where 1 < c < 200. We run the experiment with 

each of the three workload models: loosely synchronous, and asynchronous with 

and without blocking sends; and we run it on each of the three communication 

models defined below: full, throttled contention-free and fully contention-free. All 

simulations are run until the observation of the primary response variable (mean 

successful packet sends per unit time) is accurate to within a 95% confidence 

interval of ±1%. 

The communication diameter of this workload, 50% of network diameter, is 

quite high. Although not quite at the 100% level equivalent to a truly random 

choice of destination for each packet transmitted, it is certainly high enough to 

induce fairly long message paths through the network. This high average path 

length is deliberately selected for our first experiments as a tool for provoking 

contention. 

5.4.1 Parameters and Responses: Measuring Workload 
Performance 

Before we start to look at some of the performance characteristics of simple sim-

ulated synchronous and asynchronous workloads, we should look more closely at 



some relationships between input parameters to the simulations, and response 

variables in the experimental results. 

Specifically, we need to look at the expected differences in response variables 

when we change between the three classes of application workloads described 

above in section 5.3.2. This is particularly important to get straight because of 

some fundamental differences between the classes: a variable which is an input 

parameter for simulations of one class may become a response variable for another 

class. This has implications for the choice of which response variable to use to 

represent aggregate performance of the parallel workload. 

Since our ultimate interest is in the performance of parallel applications, an 

obvious candidate for our primary performance response variable is simply the 

amount of work performed per unit time by the workload (or its inverse, the 

amount of time taken to perform a fixed amount of work). 

Given our workload model of fixed processes each performing some period 

of computation followed by a communication exchange with some neighbours, 

we have several equivalent measures of how many computation cycles any given 

process has completed in a given time interval. In particular, since the number of 

messages generated by each process in each time interval is constant (or at least, 

in cases where the messages are more randomly generated, has a fixed mean 

and is therefore convergent over time), the number of communication messages 

generated by the workload is just as good an indicator of progress as is the amount 

of CPU time accumulated or the number of iterations of the workload completed. 

However, on a fully asynchronous system, the number of packets generated 

by the workload is in fact not a response variable at all. We have already noted 

that our asynchronous workload (with non-blocking sends) is quite permitted to 

generate messages faster than the communication network can consume them, 

and that messages may be dropped in this situation. Another property of the 

fully asynchronous workload is that its message generation rate is fully defined 

by parameters under our control when we set up the experiment. As a result, this 

single variable—message generation rate—can realistically be used as a response 

variable when we are running locally or globally synchronous workloads, but the 

same variable is merely a trivial function of our input parameters when used on 

a fully-asynchronous workload. 

Using the number of messages successfully transmitted as our primary per-

formance metric does not suffer from this problem. In the following experiments, 

we will indeed be using the number of complete messages sent (per unit time) as 

our primary indicator of workload progress. 



Another obvious choice of metric might be to use the percentage CPU utilisa-

tion, and indeed for the globally- and locally-synchronous workloads this works 

well. However, it is worth noting here that the CPU utilisation breaks down 

as a useful metric on the asynchronous, non-blocking workload: that workload, 

by definition, is guaranteed to consume 100% of available CPU time, ignoring 

any errors if the communication network is unable to keep up with the demands 

placed on it. 

5.4.2 System utilisation for three workloads 

As we begin our initial observations of the three workloads it may be useful 

to relate the applied load level parameter for these experiments, c in this case, 

to some traditional measurements of the amount of activity taking place in a 

multicomputer: processor and communication utilisation levels. In figure 5.1 

we can see the load on the communications network expressed as an average 

percentage utilisation for all of the active internal network DS-links. We can 

see that we are covering a wide range of network load levels, starting from a 

utilisation of only a few percent and proceeding up to a maximum saturation 

of 50% of total network bandwidth. The accompanying figure 5.2 shows the 

corresponding percentage CPU utilisation at each load level. 

As expected, the asynchronous, non-blocking workload has 100% CPU utilisa-

tion throughout, but there is a dramatic drop in CPU utilisation as we move into 

the region where we are dominated by communication costs. It is worth noting 

at this point that there is an obvious difference in the responses of the loosely 

and globally synchronous workloads. We now want to look more carefully at the 

differences between the workloads by using the metric identified above: the rate 

of injection of new messages into the network. 

5.4.3 Message delivery rates for three workloads 

As mentioned in section 5.4.1 above, the measurement of the rate of successful 

injection of new packets into the network, as opposed to the attempted injection 

rate, allows us to measure the actual amount of useful work achieved by the 

communications network under the three different types of workload. 

In figure 5.3, we are observing this performance (specifically, the number of 

messages successfully transmitted per CPU per millisecond) for each of the three 

workloads using the full communications model. The first thing to observe is 

that although at low levels of load (corresponding to long inter-communication 

compute periods and hence a low communication-to-computation ratio), the num- 
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her of messages we can generate is relatively insensitive to the synchronisation 

characteristics of the workload. In this domain, communication is simply not a 

dominant cost, and having to wait for communication to occur does not substan-

tially degrade performance. 

Compute period Loosely sync. Async, blocking Async 
1 46.4 52.6 53.4 
2 45.6 52.1 57.1 
4 44.1 52.2 57.4 
8 42.0 49.0 52.4 

12 38.2 45.7 58.1 
16 35.2 41.3 56.5 
30 24.3 28.5 33.3 
60 14.1 15.8 16.7 

120 7.6 8.2 8.3 
200 4.7 4.9 5.0 

Table 5.1: Table of message rates (per CPU per ms) for the three workloads 

Compute period Loosely sync. Async, blocking 
1 87% 98% 
2 80% 91% 
4 77% 91% 
8 80% 93% 

12 66% 77% 
16 62% 73% 
20 63% 74% 
30 73% 85% 
60 84% 96% 

120 92% 98% 
200 95% 99% 

Table 5.2: Table of message rates as percentage of maximum rate 

Table 5.1 summarises the same data in numeric form, and the accompanying 

table 5.2 shows the performance of our two internally synchronised workloads as 

a percentage of the work rate achieved by the fully asynchronous workload. The 

effect of synchronisation effects within the workload becomes very obvious in this 

format: we can see that at the point of greatest divergence in the workload's 

performance, our loosely synchronous workload is achieving only 62% of the data 

throughput of the fully asynchronous workload, and at that same level of applied 

load, the asynchronous workload with blocking sends itself achieves only 73% of 

the throughput of the highest level. 

Our first conclusion here is that as the applied load on the network increases, 



the synchronisation characteristics of that workload become more important in 

determining overall performance, and that the greater that level of synchronisa-

tion - the more that each process depends on other communications to arrive 

before it can proceed 	the greater more its achieved performance will degrade 

relative to a fully asynchronous workload. 

The second observation is less obvious. Although our three performance curves 

do diverge as CPU periods decrease and load increases, this effect seems to re-

verse as we near saturation of the network. In this particular experiment, the 

performance achieved by the fully asynchronous workload became saturated at 

load levels corresponding to CPU periods c < 16, and it is at this point that 

the locally and globally synchronous workloads begin to catch up again with the 

asynchronous workload. At the very highest levels of applied load, corresponding 

to essentially no computation between communications, the locally synchronous 

workload achieves fully 98% of the throughput of the asynchronous workload, and 

the loosely-synchronous workload achieves 87% itself. 

Why should this be so? Note especially that in figure 5.1, we saw a diver-

gence in the network utilisation between the fully asynchronous workload and 

the other, locally or globally synchronous workloads which persisted right up 

to the maximum load levels. Yet now we see that the workloads are actually 

achieving the same amount of work under these same conditions. In short, we 

are observing substantially different network loads under the asynchronous and 

locally-synchronous workloads with no difference in the overall achieved applica-

tion performance. To understand why, we need to look much more closely at the 

behaviour of the network and of the workload at or near saturation. 

5.4.4 Behaviour near saturation 

We have just seen our first hint that something peculiar may be happening in our 

simulated system near saturation: two different workloads achieving the same 

aggregate amount of work are resulting in two very different amounts of network 

traffic. We will now look in some detail at the behaviour of our system under 

high load. Remember that in this chapter we are interested in identifying some of 

the different types of interaction between packets which are possible. We will find 

that this study of saturated networks illuminates some important and unexpected 

interaction effects. 

As we push our networks to the limit, the precise behaviour which results will 

depend on where our system bottlenecks appear. We have already described some 

very obvious bottlenecks which we might expect: in the loosely-synchronous and 



globally-synchronous workloads, the workload is defined in such a way that we 

simply cannot transmit packets faster than the network can return their replies. 

The same is not true of the fully asynchronous workload, and we have already 

mentioned this: in section 5.3.2 we had to define a mechanism to prevent our 

fully asynchronous workload from creating more messages than could possibly 

be transmitted and hence growing the network buffers without limit on the host 

T9000. Our mechanism was to impose a limit on the number of unacknowledged 

messages that are allowed to be in transit from any one process at any one time. 

If that limit is reached, further attempts to send a message will fail until the final 

packet of an existing outstanding message has been acknowledged. We in fact 

limited the number per process to 16. 

However, given the long path lengths being generated by this workload, it is 

quite possible for 16 messages per process to be in circulation at once inside the 

network—we are not necessarily guaranteeing that the T9000's output queues are 

full by imposing this limit. If we are to fully explore network saturation behaviour, 

we need to be able to push our workload model right up to the point where the 

output queues can be kept full and we have no artificial workload-imposed limits 

on the amount of traffic outstanding at once. 

We can try instead to impose a limit which at first glance seems as if it ought to 

saturate the network, by placing an upper bound not on the outstanding message 

count but on the outgoing data packet queue size on the local T9000. For now, the 

actual value of the threshold does not matter much: we wish only to demonstrate 

some general properties of the system near saturation. We set the threshold to 

16 messages in each case. 

Figure 5.4 shows the performance achieved when we impose both of the two 

limits under otherwise identical load. At the same applied load level, c < 16, 

where we identified saturation in the network above, we find a sudden change in 

behaviour: at the very highest performance drops to a level around 20% lower 

when using the queue length limiting than when using outstanding message lim-

iting. 

What could be happening here? The first clue is to be found if we look at 

the statistical distribution of the number of packets successfully transmitted by 

each processor in the network. In figure 5.5 we are plotting the average number of 

messages transmitted by each processor (averaged over the whole network for each 

load level), with the error bars at each point indicating the standard deviation of 

the message rates for the different processors during each single simulation run. 

We can see that at very high load levels, the amount of work being achieved is far 
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Figure 5.4: Performance at and beyond saturation 
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from constant over the network: the increasing error bars indicate an increasing 

disparity between the amount of work being achieved by the fastest and the 

slowest node in the network during each run, suggesting that we need to look at 

the exact distribution of load over the network to understand why our aggregate 

performance is falling. 

5.4.4.1 Load Distribution in Saturated Networks 

Figure 5.6 shows the observed distribution of load over our 16 by 16 processor 

network for loads corresponding to c = 1000, c = 10000 and c = 100000. The left-

hand column displays the achieved workload: the number of packets successfully 

injected into the network by each processor per millisecond. The right-hand 

column shows the number of packets routed by each C104 per millisecond (hence 

the overall numbers in the right hand column are scaled by the average packet 

path length compared to the left hand column). 

Two effects are dramatically illustrated here. First of all, we can see that 

under low load conditions, it is the application which is determining the amount 

of work achieved, as expected. At c = 100000, there is no significant variation of 

achieved performance from one CPU to the next. 

Equally clear is that something unexpected is happening under conditions of 

high load. The first two sets of surfaces in figure 5.6 show a marked rotational 

asymmetry where none exists in the workload itself, and they show that processors 

along the lines x = 0 and x = 15 are achieving absolutely no work at all over the 

course of the simulation. Indeed, at the very highest load level this effect extends 

inwards toward the center of the network as far as x <4 and x > 11. 

There is only one place in our communications model where we have a clear 

asymmetry between the x and y axes, and that is in our use of greedy dimension-

order routing: we always route packets in the x direction before routing them 

in the y direction. Could this be responsible for the observed asymmetry? It is 

very easy to reproduce the previous experiment using a modified router which 

routes along y first and then x, and figure 5.7 shows the resulting workload and 

router load for c = 1000. The pattern we see is identical to that which we saw 

in figure 5.6, only rotated though 90 degrees. The direction of our asymmetry is 

indeed dictated by the the dimension order in which we are routing our packets. 

What is the origin of this behaviour? One last clue as to what is happening 

here was observed during the running of the experiments presented above: during 

these runs, the physical memory in use by the simulator was seen to increase 

steadily during the experiment, a behaviour not seen on any previous experiments. 
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Although this was initially assumed to be a due to a coding error, it turned 

out that it was indeed a side effect of a genuine property of the system be-

ing simulated: the acknowledgement packet queues in certain T9000 processors 

were growing without bound. To be specific, this effect was seen on precisely 

those processors where the achieved workload remained at zero throughout the 

experiment. The lack of any workload progress is in fact quite expected if the 

acknowledgement queues are never fully emptied: it is a property of the T9000 

that acknowledgement packets are always sent in preference to any data packets 

which may also be queued. 

This observation, together with the fact that the direction of symmetry in the 

resulting load map depends on our routing dimension order, allows us to explain 

these results. There are two factors we need to consider: 

Because of our use of dimension order routing, the T9000 output queues 

at any point in time are much more likely to be full of packets waiting 

for transmission on the x axis than the y axis of the router network. If our 

workload is able to keep these output queues busy, then there is an unlimited 

queue of packets waiting at each C104 for routing in the x direction. On the 

other hand, most packets waiting to be routed in the y direction arrive at 

the C104 not from the connected T9000, but from neighbouring C104s. We 

can therefore expect these packets to be arriving at a rate already restricted 

by the performance of the network. 

The net result of this is that routing in the x direction is much more likely 

to be a bottleneck than routing in y in our network. Indeed, we see that 

achieved workload performance for any given node at high load is almost 

completely insensitive to the y coordinate of the node within our routing 



grid. 

We know that even at low load levels, the center of our network is carrying 

more traffic than the edges simply due to grid edge effects: the network load 

surface for c = 100000 in figure 5.6 is evidence enough for this. For a uniform 

rate of message arrival at each router, we may expect that those messages 

travelling from the center of the network towards the edge will experience 

less contention than messages travelling in the opposite direction. 

If we put these together, we might predict that traffic in the x direction will be 

more congested when routing towards the center of the network—towards the 

region 7 < x < 8—than towards the edges at x = 0 and x = 15. If we consider 

messages being sent from nodes near the edge towards nodes in the center, then 

the effect of this will be that the data packets experience more congestion than the 

return acknowledgements. However, for data travelling in the opposite direction, 

towards the edges, it will be the acknowledgements which are more congested. 

This can result in pathological behaviour. We have already had to introduce 

limits on the injection of messages into the network, either by throttling the num-

ber of outstanding packets per process or (less realistically) the size of the T9000 

data output queues, in order to flow-control our workload. No such throttling 

exists on the generation of acknowledgement packets; we must generate such a 

packet for every single data packet received regardless of the local load condi-

tions, even if conditions are such that data is arriving faster than we can send 

the responses. 

5.4.4.2 Workload Throttling and Saturation Behaviour 

We now ask: is this effect important? Is it relevant to real transputers, or is it 

merely an artifact of our synthetic workload? 

Looking back to figure 5.4, we recall that the odd effect of aggregate perfor-

mance dropping with increased load only affected the fully asynchronous workload 

when we implemented per-node throttling by limiting the size of the T9000 send 

buffer. When we only limited the total number of outstanding messages per 

process, performance did level off but did not actually drop with increased load. 

However, the limiting of the T9000 buffer size is a rather artificial limit: in 

particular, removing the limit on the number of outstanding messages per node 

is not necessarily realistic. It is a reasonable thing to try, on the assumption that 

packet acknowledgements travel through the network faster than data packets 

(for in this case the number of outstanding packets in the network cannot grow 
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indefinitely). If that assumption breaks down, then certainly we expect to see 

unusual effects. 

In real life, the T9000 architecture requires that buffer space for virtual chan-

nels be preaflocated. There can only be a finite number of virtual channels on 

each T9000, and there can be at most one outstanding acknowledgement packet 

for each such channel at once. In this more realistic model, can we still reproduce 

the effect of nodes being unable to send any useful traffic? 

It is important to recognise that there are two distinct issues here: 

. the constant presence of packets on the T9000 acknowledgement packet 

queue, suppressing outgoing data packets; and 

the growth without limit of the acknowledgement queue. 

There is a difference between these two. Unbounded growth of the acknowl-

edgement queue implies that we will never be able to send any data packets, but 

the reverse implication does not hold: data starvation can occur whenever we 

have a constantly busy acknowledgement queue, even without unbounded growth 

of that queue. The unbounded acknowledgement queue growth may be impos-

sible in a realistic workload model, but now that we have identified why that 

model results in starvation at some nodes, we may try to reproduce the effect of 

a constantly active acknowledgement queue in a realistic workload. 

Recall that in figure 5.4, we were comparing workloads in which either the 

T9000 send buffer, or the total number of outstanding packets per process, was 

limited to 16. Let us now look at the latter, more realistic case, but with a larger 

limit on the outstanding packets. In figure 5.8 we reproduce the load maps for 

c = 1000 on this workload but with workload bounds of 16, 32 and 64 packets 

outstanding per process at once. We can see that the load surface is indeed 

sensitive to the number of outstanding packets we allow at once, and at the 

highest end, with up to 128 packets queued per process in the network at any 

time, we observe the same effects we were seeing on the unrealistic load before: 

translational symmetry along y, and starvation of processes along the edge of the 

grid at x = 0 and x= 15. 

In other words, this effect is not only an artifact of an artificially high-load 

workload with no relevance to real transputer architectures. Using the normal 

transputer communications model, with a large but finite number of channels 

per processor, we may well see starvation of processes due to the priority of 

acknowledgement packets over data packets. 
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There is one last thing we can do to verify that this acknowledgement pri-

oritising is in fact responsible for the effects we are seeing here, and that is to 

modify our communication model to eliminate that prioritising. Our simulator 

supports this functionality: the "--noackpri" switch commands the simulator to 

place both data and acknowledgement packets in the same T9000 output queue, 

so that the communications code does not distinguish between them and they are 

routed in true first-in, first-out order. Figure 5.9 shows the results when we do 

this: it gives the load maps of exactly the same experiments as we ran in Fig-

ure 5.8, only without acknowledgement packet prioritising. That single change to 

the simulation is enough to completely eliminate the bands of starved processes 

at x = 0 and x = 15, confirming our hypothesis that the buildup of acknowl-

edgement packets is indeed responsible for starving processes of data sending 

bandwidth under high load conditions. 

5.4.4.3 Saturation Performance: Summary 

To conclude this section on performance in saturated- or nearly-saturated sys-

tems, we can summarise by stating that under very high load, there are a number 

of unanticipated effects which can arise from the specific way in which packets 

interact with each other. 

First of all, we saw that the normally benign behaviour of prioritising acknowl-

edgement packets over data packets can, under extreme load, result in starvation 

of processes unable to send data packets: the data's injection into the network can 

be stalled indefinitely by a constant stream of acknowledgement packets. This is 

most likely to be observed in a system under non-uniform load (such as a grid 

topology with its edge effects), where packets in one direction experience greater 

congestion than those in the opposite direction. 

Conclusion 5.1 The implicit ordering of one type of packet over another by a 

component of a multicomputer interconnect has the capacity to starve packets of 

another type. The T9000 architecture can exhibit this effect by stalling data packet 

delivery indefinitely under conditions of sufficiently high load. 

Secondly, we saw that the x/y asymmetry inherent in greedy dimension-order 

routing can cause more congestion when routing packets in one dimension rather 

than another, and that this asymmetry can be reflected in the map of work 

achieved by processes at different locations in the network. Indeed, this effect 

can be so great as to dominate the overall shape of the network's load surface. 
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Conclusion 5.2 The precise order in which individual packets traverse their 

routing links can give rise to gross overall structures in the multicomputer load 

surface. We cannot make the simplifying assumption that only the overall link 

load matters without losing the power to predict these effects. 

Finally, we have seen that the assumption that we can realistically probe 

network behaviour by simulating a workload in which messages are injected fully 

independently at each node has an unexpected complication if all those messages 

require acknowledgements to be sent in return: we cannot successfully throttle the 

network load simply by putting a bound on the number of packets buffered at each 

point of packet injection in the network. There is an interaction between those 

injected data packets and the network's internally-generated acknowledgements: 

by explicitly generating a packet at one point in the network we are also implicitly 

generating an acknowledgement elsewhere. Placing a limit on the size of our 

outgoing data queues at any point ignores the fact that we also need to limit 

the size of the acknowledgement queues at those nodes where the data is being 

received. 

Conclusion 5.3 If there are implicit dependencies between packets in a network, 

such as the transputer's association of acknowledgement packets with data pack-

ets, then we cannot necessarily assume that we can inject messages at each node 

independently. The implicit generation of new packets at other nodes in response 

to our injected packets creates a dependency between the loads at and between 

those two nodes which we may not be able safely to ignore. 

5.5 Measuring Contention 

So far, we have been looking at defining our workload and have observed several 

effects which are related to interactions between packets but which do not really 

constitute contention. We have seen the impact of ignoring certain dependen-

cies between packets, but we have not concentrated on the overall performance 

degradation due to contention within the network. 

In the following sections, we will begin looking at the measurement of con-

tention costs and of system performance when contention is present in the in-

terconnection network. In particular, we will be looking very carefully at the 

definition of "performance" as applied to the routing network. It is common to 

view a routing network as a means of carrying multiple individual messages from 

point to point, and from this point of view the key characteristic of network per-

formance may be the amount of data it can carry between two points, or the 
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latency between one point and another, performance being defined in terms of 

the delivery of individual messages. 

However, these performance characteristics do not necessarily tell us how fast 

some specific application will run on the network. In the following experiments, 

we will be looking at ways of observing separately the network performance and 

the workload performance, and of the cost to each of contention. 

Contention is, by definition, the blocking of a packet in a network buffer while 

waiting for an output link to become available to forward it to its next hop. This 

is a relatively straightforward factor to measure: in the first instance, a fairly 

simple metric such as the total time each packet spends in this blocked state may 

serve as an indicator of how much contention is taking place. 

If our overall objective is to improve the delivery times of packets through the 

network, then the net effect of contention on individual delivery times may be a 

sufficient measurement not only of the presence of contention but also of its effect. 

However, in both the globally and locally synchronous workload models defined 

above, our workload's processes will block regularly waiting for a specific packet 

to arrive before proceeding. This extra synchronisation means that packet deliv-

ery times may not be a sufficient measurement of overall performance, and that 

communication performance degradation due to contention does not necessary 

equate directly with workload performance degradation. 

In particular, the following effects may be present: 

Latency hiding At moderate loads, and especially given more than one process 

per processor, the effects of contention may be sufficiently low that they have 

no effect at all on overall application performance. If a packet is delayed, 

there may be sufficient work left to do on the same processor that overall 

performance is unaffected. 

Latency sensitivity At high loads, however—especially on loosely synchronous 

workloads—we may find that the delaying of the arrival of one message at a 

process may itself delay the sending of the next message from that process. 

Increases in overall latency may result in a knock-on delaying effect which 

the workload cannot hide. 

One of the tools we have available in our simulation environment is the ability 

to selectively disable communication contention, routing packets through the net-

work without interfering with other packets travelling the same paths at the same 

time. By repeating a simulation experiment with all contention effects disabled, 

we may hope to quantify the total net effect of contention on the performance 
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of the system as a whole. It is a more simple matter to observe the distribution 

of delivery times of individual messages. Putting both of these observations to-

gether under varying conditions of network load, we may start to investigate the 

differences between the effect of contention on individual messages, and its effect 

on the overall performance of the workload. 

5.5.1 Contention and Throttling 

Now that we are beginning to make quantitative measurements of contention, we 

need to make one very important distinction. The fact that any given network 

link can carry only a single packet, and that other packets may have to queue 

up behind it, has consequences for both the packet's sender and its receiver. If a 

single packet is injected into the network and its progress is blocked at multiple 

points along the way, then contention is at work and it is the receiver who has to 

wait. This is the effect normally referred to as contention, and it is this effect we 

have been thinking of as "contention" up until now. 

However, there is another important effect of the serialisation of packets 

through network links, and that is flow control of the packet source. Consider as 

a simple example the case when two processors on an otherwise idle network are 

exchanging packets as rapidly as possible. In this case, the serialisation of packets 

entering the link has no effect on the overall network performance—there being 

no other traffic on the network, each packet is delivered in the minimum possible 

time after entering the network. However, contention still has a strong effect on 

performance: flow control effects working backwards from the first network link 

in the path connecting the two communicating processors limit the workload's 

achievable packet transmission rate. 

We can expect to see this effect whenever a processor can rapidly generate 

multiple packets for injection into the network. The individual packets, once 

they enter the network, may experience no contention, and yet the contention 

between packets for transmission on the first network link on their path acts as 

a natural limiter on the transmission rate. 

Indeed, when we were describing our initial experiments in section 5.4, one of 

the most important effects we had to consider was this flow control. When we were 

looking at performance near saturation, we described how we could "throttle" 

the workload by limiting in some way the number of outstanding messages it was 

allowed to generate. This mechanism for limiting outgoing data rate acts in such 

a way as to prevent messages from being injected into the network faster than 

the network can consume those messages, but that rate depends very much on 



the amount of contention present. This is the very essence of flow control. 

It makes sense, therefore, to differentiate between these two effects of con-

tention: 

the limiting of the rate at which packets can enter the network, and 

the impact on packet transmission times due to other unrelated activity on 

the network. 

In other words, we distinguish the effect that contention has on packet sources 

from the effect on packet destinations. We use the term throttling to refer explic-

itly to the first effect: 

Definition 5.2 Throttling is defined as contention between two packets competing 

for output on the same DS-link, where both are queued waiting for their first hop 

within the routing network (not counting the hop between the T9000 and the C104 

router). 

There is an important reason for making this distinction. If we ignore throt-

tling, then we effectively allow arbitrarily high message generation rates at each 

node. We want to be able to observe the effects of interference between packets 

travelling different paths through the network, but unless we distinguish this in-

ternal contention from workload throttling, we are in danger of measuring nothing 

more than the bottleneck of packet injection into the network. 

One last point about contention is worth remembering explicitly here: there 

is potential for contention to occur every single time a packet passes through a 

router on its way through a multicomputer network. The potential for contention 

therefore increases as we increase the number of hops in a packet's path. In the 

experiments that follow, therefore, provoking contention is not only a matter of 

achieving high levels of network load as measured by, say, network utilisation: we 

also need to keep in mind that controlling path length will be an important factor 

in observing contention. 

5.5.2 Contention-Free Communication Models 

We have already defined the synthetic workload we are going to be running in 

this chapter. Let us now look at the communications model which will be used 

in the simulated interconnection network. Remember that we want to be able to 

observe the cost of contention in our network: we are proposing to achieve this 

by seeing the difference in performance when we disable contention entirely. In 



this section, we describe in detail how we can modify our communications model 

to this end. 

We define three different models for interaction between packets travelling 

through the network. In any given run of the simulator, exactly one of the 

following must be chosen: 

Full contention model This is the basic, realistic model which observes con-

tention fully, as discussed in chapter 4. 

Contention-free model In the contention-free model, all contention between 

packets is ignored entirely. Note that the timings for any single packet 

passing through the communications network are unaffected: the network's 

bandwidth and point-to-point latency are still modeled correctly. 

The difference in this model only occurs when two packets attempt to route 

along the same transputer DS-link at once. Whereas the full contention 

model forces packets to wait at the C104 crossbar switch until an appropri-

ate output channel becomes free, the contention-free model allows packets 

to be transmitted along a DS-link even if it is already carrying another 

packet. The net effect is precisely as if each DS-link in the network were 

replaced by an infinitely wide fat link; individual packets cannot be carried 

any faster, but under conditions of contention, the overall network capacity 

is increased. Every packet achieves its best-case delivery time regardless of 

the existing load on the network. 

Throttled contention-free model In the throttled contention-free communi-

cation model, contention is largely ignored: as in the fully contention-free 

model, most packets proceed without regard to any other packets using the 

same DS-link at the same time, eliminating the effects of contention on the 

overall workload performance. However, in the special case of the throttled 

model, we do observe throttling as defined above. Any packets routed out 

on any DS-link for their first hop through the network are placed into a 

separate per-DS-link queue, and these packets are serialised with respect 

to each other so that only one such packet can be in active transmission 

along the DS-link at once. (There is no interference between packets on this 

queue and any other packets passing through the network.) 

If the fully contention-free model gives the effect of a network of infinitely 

wide fat links, the throttled model is equivalent to a similar network but 

where one single link out of each fat link is reserved especially for first-hop 
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packets, and all such first-hop packets must queue for transmission down 

that single DS-link. 

Why do we choose precisely this definition of throttled contention-free commu-
nications? At first glance it may seem more natural to throttle packets entering 
the network by preserving the flow-control properties of the communication links 
between processing elements and routing elements in the network, ignoring con-

tention altogether for communication between routing elements. 
However, this model of communication suffers from hopelessly unrealistic 

throttling, due to the presence of parallel links between the T9000s and C104s in 
our model network. Consider a pair of processes communicating with each other 
from adjacent processors. If we eliminated all contention within the network from 
our model, then in this case the processes can send data to each other as fast as 

the T9000s can carry traffic down their fat links to the network. This completely 

fails to model the real flow control effect expected when we send data packets 

down a single path through the network. Instead of one packet being sent at a 
time down that path, we have as many packets at once as there are links between 

each T9000 and the network. 
The problem is that by throttling data in the T9000, we are enforcing the flow 

control delay at the point at which packets enter the T9000-to-C104 link, not the 
point at which they enter the internal C104 network itself. By serialising packets 
as they wait for transmission on their first hop inside the C104 internal network, 
instead of in the T9000, we are applying flow control just as packets enter that 

network. 

5.5.3 Performance with Contention Effects Eliminated 

We have now fully defined both the workload and the communications models 

we will be using to probe contention effects, so we can begin to look at actual 

simulated performance of the workloads under these models. At first, all we want 

to do here is to demonstrate our ability to pick out the cost of contention on 
network and workload performance. 

Figures 5.10-5.12 present the observed network performance, measured by the 
number of successful messages transmitted per CPU per millisecond, against c, the 

workload compute period. We plot each of the three workload types separately; 

for each workload, the results obtained for the workload when run under each of 

the three communications models in section 5.5.2 are overlayed. In these figures, 

the right hand graphs are merely reproductions of the left hand data with a 

restricted X axis. 
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Figure 5.10: The loosely synchronous workload 
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Figure 5.11: The asynchronous workload with blocking sends 
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Figure 5.12: The fully asynchronous workload 
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5.5.3.1 Throttled and un-throttled performance 

We start by looking at the distinction between throttling and contention. In the 

first case—the loosely-synchronous workload, in figure 5.10—perhaps the most 

obvious feature is that there is in fact no difference at all between the performance 

of the fully contention-free and the throttled contention-free models. This is the 

workload in which every process performs a cycle of both sending and receiving 

messages, and then performing a fixed period of computation. The rate at which 

the workload can progress is naturally limited by the rate at which messages can 

arrive at the process, and so it is not surprising to see that in this case imposing 

extra throttling within the network itself has no effect on workload throughput. 

The very nature of the workload practically guarantees that it cannot generate 

messages faster than the network can carry them. 

This contrasts with the behaviour of the workloads which do not wait for their 

incoming messages on each iteration. In the asynchronous workload with blocking 

sends, the workload is free to continue once the acknowledgement from its last 

transmitted message has arrived, and in the T9000 architecture the recipient 

of a message is free to send that acknowledgement as soon as just the header 

of the last packet has arrived at its destination. There is nothing to stop that 

acknowledgement arriving before the previous message has been fully sent, and 

indeed this property is essential to maintain throughput when we are sending 

large sequences of packets to the same recipient. As long as an acknowledgement 

can arrive while the original packet is still being transmitted, we are open to 

the possibility of generating messages faster than they can be consumed by the 

network. Of course, the fully asynchronous workload does not have even this 

small level of inherent throttling, and there is no limit to the rate at which it 

could theoretically inject messages into the network. 

This is why the distinction between throttling and contention is important: 

if we ignore throttling, then when we introduce our contention-free model, we 

are measuring not only the hypothetical performance improvement possible by 

eliminating contention inside the communications network; we are also measuring 

the improvement obtained by being allowed to inject arbitrarily high numbers of 

messages into the network in the first place. 

The important point to emphasise here is that what we want to study is 

the performance of the communication network itself, under a given load. To 

observe the true cost of contention, we want to be able to disable contention 

inside the network, but to maintain the same level of packet load being placed on 

the network by the workload. However, at high loads and for our asynchronous 
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workloads, throttling becomes the main mechanism by which the applied load is 

limited. Throttling only affects the rate at which new packets can appear inside 

the communications network; it does not at all apply to packets which are already 
inside the network. 

We can see this in figures 5.11 and 5.12, corresponding to the asynchronous 

workloads with blocking- and non-blocking sends. In these cases, we can see a 

sharp distinction at the highest levels of applied load between performance under 

the contention-free and the throttled models. This is particularly pronounced—

and expected—under the fully asynchronous workload. In this case, the work-

load's ability to generate new messages is fully independent of the ability of 

the network to transport them. The difference between the throttled and non-

throttled performance curves tells us just how much performance gain we would 

see if we disabled throttling, and the answer is that at the highest levels of work-

load activity, throttling is by far the largest effect limiting performance. 

In the locally synchronous workload, we start to see this divergence at around 

c < 5, but by the region c = 0 we are achieving about 290 communications per 

CPU per millisecond in the throttled contention-free model against 530 for the 

non-throttled model, an increase of 85%. For the fully asynchronous workload, 

the corresponding figures are 544 against 5000, an increase of over 800% with 
throttling disabled. 

Conclusion 5.4 At high loads there is a major difference difference between the 

two effects of contention and throttling. We have demonstrated that this distinc-

tion can have a substantial impact on expected performance, and we conclude 
that we must make this distinction if we are to hope to understand the impact of 

performance on a real system under heavy load. 

In the light of this observation, we will concentrate exclusively on throttled 

performance from now on. This way, we maintain as much as possible of the 

pattern of messages being injected into the network when we move between the 

full and throttled, contention-free communications models: the difference between 

these two models is confined entirely to the behaviour of packets already inside 
the network. 

Our second conclusion at this point is that although flow control may be an 

important factor in understanding performance, that flow control does not neces-

sarily have to arise from throttling, that is from the behaviour at the sending node 

in the communications network. In the case of our loosely synchronous workload, 

we can observe no difference between its performance under the throttled and 

un-throttled contention-free models. 
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5.6 Workload Performance versus Communica-
tions Performance 

So far we have been looking almost exclusively at workload performance: the 

aggregate amount of work being achieved by the all of the processes running on 

our system. We now consider the other main measure of system performance 

which interests us in this chapter: the performance not of the workload, but of 

the underlying network itself, as measured by the time taken for that network 

to carry individual packets between source and destination. We will be using 

precisely the same synthetic workloads for this as we used earlier to look at 

workload performance. 

In these next experiments, measuring contention would appear to be straight-

forward. If we were running adaptive routing, a blocked packet might have the 

option of selecting a different output link to look for an alternative route to its 

destination, but under the greedy routing in use here, a packet which cannot be 

forwarded due to contention has no option but to wait, remaining queued until its 

desired output link becomes free. With greedy routing, then, the path taken by 

any given packet between source and destination is constant, and so therefore is 

the ideal, contention-free time taken to route that packet. If the communication 

routes are constant over our experiments, then any changes in the time spent by 

packets inside the network from one experiment to the next can only be a result 

of contention. 

This allows us to try to observe the effect contention inside the network by 

looking at packet delivery times. Inherent in the definition of our synthetic work-

load is the fact that although the rate of new message generation is variable, the 

distribution of possible messages destinations from any given process is not. The 

average distance traveled per packet must be invariant under changes in workload 

type or throughput, except for one possible effect: in the non-loosely-synchronous 

workloads, it is conceivable that processes near the edge of the system might be 

affecting the average packet path length due to a combination of two effects: 

The grid of possible packet destinations is truncated at the grid's edges, so 

that processes near the edge may have different average neighbour distances 

to processes in the center of the grid; and 

without any global synchronisation between processes, it may be possible 

for these edge processes to run at different rates relative to the more central 

processes according to the applied workload. 
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It is worth checking therefore that we are in fact dealing with the same average 

path lengths in each experiment to make sure that this is not an issue. Taken 

over the entire set of experiments we are about to present, including each applied 

load level for each workload, we find a mean path length of 9.50 hops, with 

a standard deviation in the distribution of +0.29% and a bounding range of 

[-0.83%,+0.39%]. Given that we have only run the experiments as a whole to 

an accuracy of +1% at the 95% confidence interval, average path length does not 

appear to vary significantly over the experiment. 

5.6.1 Measuring Packet Delivery Times 

We can now look at the actual time taken to send data through the network at 

various load levels, for each of the three workloads. We are forced now to consider 

exactly what we want to measure here. There are a number of points at which 

we could begin and end our stopwatch to time the data's passage, including 

. The initial generation of the message by a process; 

. The queuing of a packet for transmission inside a T9000; or 

The initial injection of the packet into the communication network itself, 

marked either by the start of transmission on its first T9000 output link or 

its arrival at its first C104 input link. 

as definitions of the staring point, and 

complete arrival of a packet at its destination T9000, or 

delivery of the message to its receiving process 

as end points. Our easiest choice is to eliminate message (as opposed to packet) 

creation and arrival as useful metrics: the transmission of multi-packet messages, 

in particular, involves multiple packet transmissions from both ends of the virtual 

circuit, and may not tell us a great deal about the time it takes for a single packet 

to travel through the network. Message delivery times also depend on what is 

happening in the workload as much as the state of the network underneath, since 

in the transputer architecture, we do not deliver a message to a process, or even 

acknowledge the first packet of a multi-packet message, until the receiving process 

has started to read data from the virtual circuit. Our simulator does allow us to 

collect message delivery times, but we will ignore these for now. 

So, we want to time the transmission of individual packets, not entire mes-

sages, through our communication network in order to get a good idea of how 
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much contention is occurring in that network. To that end, in figures 5.13 

and 5.14, we are measuring, respectively, the total time taken for a data or ac-

knowledgement packet newly generated by a T9000 to be completely delivered to 

its destination T9000. This time includes time spent in the source T9000 awaiting 

injection plus the full time spent within the network. 

The first, most obvious property of these results is that our free-rein workload, 

the fully asynchronous workload, is generating very substantially longer transport 

times at high load levels than the other workloads. The rise starts at c < 30, 

and by the region c < 15 we are seeing over 700% longer transport times in the 

fully asynchronous workload than in the other workloads. In figure 5.3, we saw 

a difference of up to 40% in the throughput achieved by the three workloads at 

this level of applied load, but no sign of anything like the large degree of variation 

between the workloads that figures 5.13 and 5.14 display. 

At this point we need to recall the distinction already made between throttling 

and contention. We have already observed that the fully asynchronous workload 

is able to saturate our communications network; beyond the saturation point, 

we can be creating new packets in the T9000 faster than they can be consumed 

by the network. Although we do use the queue limiting mechanism described in 

section 5.3.2 to limit the number of messages queued in any single T9000, we can 

still maintain quite a backlog of such messages. 

Once we achieve this saturation, then increasing the rate of new packet injec-

tion can only increase the average backlog queue size of packets awaiting output 

from the T9000. There is now a bottleneck at the point where packets are being 

injected into the network: we can only offload packets from the T9000 at a certain 

maximum rate, and attempts to create packets faster than this are throttled by 

the flow control feedback from the C104 attached to the source T9000. Increasing 

the size of the backlog in the T9000 cannot increase the rate at which packets are 

injected into the network, but it will increase the time which these packets must 

spend queued inside the T9000 before they can start being transmitted into the 

C104 routing network. 

By measuring packet transport time from the point of packet creation, we are 

including in this measure the time spent queued in T9000 output links. This is 

demonstrated graphically in figure 5.15, where we display the average time each 

packet spends queued in the T9000 before its first transmission. This time forms 

part of the throttling effect limiting packet injection rate, and has nothing to do 

with contention inside the C104 routing network itself. 
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Figure 5.13: T9000 to T9000 data packet transport times: 
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Figure 5.15: Mean time per packet spent in T9000 output queues 

We can see in this figure that although this T9000 queueing time is simply 
absent in the self-throttled workloads (which can only ever permit one outstanding 
packet per process in the experimental setup under consideration here), for the 

fully asynchronous workload the situation is rather different. At precisely the 
load levels where we saw the peak in transport times in figures 5.13 and 5.14, 

figure 5.15 displays the onset of long queueing delays in the T9000. If we want 

to eliminate this effect, then we need to start timing packet transmissions from 

the point at which they enter the routing network—ie, the time of their initial 
transmission from T9000 to C104—rather than simply the time the packets were 

generated. 
Unfortunately, throttling is still more complex than this. We have already 

described that our network architecture in this experiment consists of a grid of 

singly-connected C104 routers each connected to a T9000 via a fat link of width 4. 
At any point in time, up to four packets may be queued at a C104's injection 

links, but of those four packets it is likely (given a random destination for each 
packet) that they will be competing for fewer than the four output links from the 

C104. If the T9000 has used its wide link to inject multiple packets destined for a 

single router link in the network, then we are still seeing packets being delayed for 
reasons other than contention within the network - although these competing 
packets have all arrived at the first router along their desired path, none of them 
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have yet been transmitted along any link internal to the routing network itself. 
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Figure 5.16: Mean transmission time per packet timed from various starting 
points 

Figure 5.16 shows the packet delivery times for our fully asynchronous work-

load again, still timed up until the point at which the complete packet is delivered 

to its destination T9000 but this time beginning the timings from: 

. The time of packet creation; 

The time at which the packet begins to be transmitted by its source T9000 

towards the routing network; and 

The time at which the packet first starts to be transmitted along a DS-link 

internal to the routing network. 

The results are quite striking. We can see that even at the highest levels of 

load on the network, the time spent crossing the network itself accounts for only 

a fraction of the lifetime of an average packet. By far the largest part of the 

packet's lifetime is spent blocked in one of the injection links in the first router it 

encounters, and this is a throttling effect, not true internal network contention. 

Looking at the very highest load levels here, the packet lifetimes measured 

from these three starting points are listed in table 5.3. We can see that at this 
load level, on average only 32% of a packet's lifetime remains once it has begun to 
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be forwarded within the routing network, despite the fact that only one hop in the 

packet's history is behind it at that point out of an average distance of 9.5 hops 

traveled per packet. Of the throttling effect visible, only 13% of the packet's 

lifespan is accounted for in the T9000's output queues; fully 55% of its lifetime 

elapses between the packet's injection into the routing network commencing and 

its first forwarding within the network. 

Measured from: Lifetime (us) %age of total lifetime 

Creation 111.6 100% 
First T9 output 87.0 87% 

First C104 output 32.2 32% 

Table 5.3: Average packet lifetimes at saturation 

From this we gain further support for our previous assertion that throttling 

and internal network contention are two very different effects, and that any in-

vestigation of contention levels within a network must address this distinction, 

especially at high workload packet generation rates, or risk the observations being 

overwhelmed by effects taking place at the boundary between the network and 

the processing elements, rather than fully within the network. 

Definition 5.3 The routed lifetime of a packet is defined as the lifetime of the 

packet from the point of its first transmission over a DS-link internal to the net-

work (ie. not an injection link) to its complete delivery to the destination pro-

cessing node. 

With this definition, we can also now say: 

Conclusion 5.5 The most appropriate metric by which to measure the amount 

of contention taking place within a network is the routed lifetime of a packet. 

5.7 Conclusions 

In this chapter we have looked at the measurement of network performance, both 

in terms of achieved throughput and in terms of time taken to transmit a single 

message. Our conclusions are both positive and negative. We have identified 

a number of potential pitfalls which can disturb our attempts to observe and 

quantify contention and performance. On the other hand, we have seen that, 

given care in choosing our performance metrics, our simulator provides us with a 

tool which does enable contention and its effect on workload performance to be 

measured. 
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To begin with the problems encountered, we found that: 

Multicomputer network performance is not simple. We have identified at 

least two specific instances of effects where the precise details of the inter-

actions between specific packets can affect the gross behaviour of the net-

work: the prioritising of acknowledgement packets over data packets, and 

the order in which the greedy dimension-order router prioritises dimensions 

(conclusions 5.1 and 5.2). 

We cannot necessarily assume that packets are generated independently at 

each node when modelling the network load. We have seen that the presence 

of automatically-generated acknowledgement packets in the network can 

result in the implicit injection into our network of packets at a rate dictated 

by conditions elsewhere in the network, and that we ignore these packets at 

our peril (conclusion 5.3). 

The main conclusion that we draw from these problems is that when modelling 

multicomputers under heavy load, a simulator is a very valuable tool to have. 

There are methodologies which allow us to deal with complex performance mod-

elling scenarios by numerically attacking the time-averaged behaviour, but the 

fact that we need to model specific interactions between packets at such a level 

of detail, combined with the fact that we cannot reliably assume that packet gen-

eration processes are independent and exponential, means that we cannot safely 

make the simplifying assumptions needed to use these models. At the very least, 

we need a more accurate way of modelling packet interactions in order to validate 

any simplified models we may come up with. 

But we have done more than to simply discover obstacles. We have laid the 

foundation for the measurement, by simulation, of the presence of contention in 

a multicomputer, and of its effect both on the performance of the network and of 

the workload running over that network. In particular: 

We have defined a synthetic workload which will allow us to explore differ-

ent classes of workload synchronisation properties. We have proposed that 

ordering constraints in the workload may affect the workload's overall sen-

sitivity to increased contention, and the workload defined in definition 5.1 

will allow us control over those ordering constraints. 

We have defined two performance metrics—the rate of successful packet 

injection by the workload, and the packet routed lifetime (definition 5.3)—

by which to measure the performance of our workload and of our network. 
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. We have identified throttling (definition 5.2) as a special case of contention 

which needs careful separate treatment. 

We have defined three separate communication models for the simulated 

interconnection network—the full, contention-free and throttled contention-

free models (5.5.2)—by which we can selectively disable contention and so 

measure just how much performance is being lost due to that contention. 
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Chapter 6 

Communication and Workload 
Performance 

6.1 Introduction 

In chapter 5, we looked at the problems of measuring the behaviour of multicom-

puter routing networks at high loads, especially at or near saturation. We have 

shown that we can measure contention carefully, in that we can: 

distinguish between internal contention inside our communications network, 

and flow control at the point of message injection; 

measure separately the presence of contention, in terms of message delivery 

times ("communication performance"), and the effect of that contention on 

the running application ("workload performance"); and 

quantify the cost of contention relative to the equivalent workload without 

contention present. 

However, in most of the previous chapter we looked at these measurements in 

isolation: we considered communications performance and workload performance 

separately. To justify making such a distinction between these two metrics, and 

(more importantly) to show how our contention-free communication models can 

allow us to measure contention costs precisely, we now need to compare these 

two measurements side by side for the same experiments. In this chapter we will 

be doing precisely that, looking at how different workloads respond differently to 

contention levels in the network. 

Our ultimate aim here is twofold: to demonstrate 

that workloads with different internal synchronisation characteristics react 

differently to the onset of contention in the communications network; and 

114 



that our methodology—the study of both communication and workload 

performance, and our use of cost measures which quantify performance loss 

due to contention—is useful in determining those workload reactions. 

6.2 Basic Workload Synchronisation Effects 

We will start by looking at the same workloads we have used before, but looking 

at them in a somewhat different light; the questions here is, just what extra 

insight can we achieve by using both of our cost metrics and by looking at the 

relative cost due to contention as well as the absolute performance response? 

There are a number of effects that we will find. In particular, we will look at 

the impact of two properties of the workload: 

the synchronisation properties as defined in §5.3.2: we will be looking at all 

three synchronisation types—loosely-synchronous, and asynchronous with 

both blocking- and non-blocking sends; and 

timing effects, especially for the loosely-synchronous workload in which the 

overall workload tends to run in lock-step and activity in the network may 

exhibit bursts of high load rather than being uniform over time. 

In both cases, we will see that there can be clear differences between the response 

of the network to increased load (in terms of longer message delivery times), and 

the impact of that changed network response on the workload. 

To start with, we will use precisely the same workloads that we used in chap-

ter 5. These workloads have been shown to be able to stimulate a very high load 

on the network (especially when running the fully asynchronous workload), and 

we have also seen in §5.4 that the three different workload types do show different 

behaviours under load when contention begins to be a problem. 

To summarise, we are using our standard workload in its loosely synchronous, 

asynchronous with blocking sends, and fully asynchronous forms. According to 

the parameterisation in definition 5. 1, the workload is specified by the parameters 

(16,8, 1, c, 1,32), where c is the inter-communication compute period on each run-

fling process, this being the variable we use to control the level of communication 

load applied to the network. Our underlying platform as before is a 16 by 16 

grid of C104s each connected horizontally and vertically by a single bi-directional 

link with a fat link of width 4 between each C104 and its corresponding T9000 

processing element. 
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6.2.1 Synthetic Workload Performance: Communication 
and Workload Responses 

We will first of all look at the picture which emerges when we study the per-

formance of these three workloads under increasing load when we consider both 

the communications performance and the workload performance. For now we 

will look only at the results using the full communication model, rather than 

the contention-free models from §5.5.2—that is, we are looking at what can be 

seen when we measure only the overall performance responses, not the relative 

performance loss due to contention. 

Figures 6.1 and 6.2 recall from the previous chapter the achieved rate of packet 

delivery, and the mean packet routed lifetime (definition 5.3), for our workloads at 

various levels of applied load. We have already looked at the differences between 

the three workload classes in some detail, so we will not dwell on that here. 

What we are interested in now is the difference in the two performance metrics 

presented, and more importantly in their differing responses to increased load. 

The most obvious feature we see when comparing figures 6.1 and 6.2 is that 

the second figure, representing packet delivery times, shows an enormous plateau 

when running the fully asynchronous workload at high loads, and yet this feature 

is simply not present at all in the packet throughput response. 

Recall that the metric in figure 6.2, packet routed lifetime, is defined as the 

lifetime of a packet from its first forwarding on an internal (non-injection) link in 

the routing network, until its final delivery. We described in chapter 5 how this 

metric is a product of only two factors: the path length taken by a packet (the 

mean of which is constant over this experiment), and the amount of contention 

experienced by the packet once it has entered the network. A change in the value 

of this metric is directly attributable to contention in the network. 

In short, figure 6.2 is demonstrating a very sharp increase in the levels of 

contention in the communications network at high loads, but only for the fully 

asynchronous workload. The increase is not only sudden, it is also large: tables 6.1 

and 6.2 enumerate the packet throughput and routed lifetime metrics at various 

load values. We can see that at the highest load level the average time taken to 

transmit a packet through the network for the fully asynchronous workload, even 

after accounting for all throttling effects, is at 32.9s over four times greater than 

for the loosely synchronous workload and over three times greater than for the 

asynchronous workload with blocking sends. 

Just as significant, however, is what is absent from this data. Two noticeable 

features of the packet delivery time data are absent from the throughput rate 
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Compute period 
(microseconds) 

 Workload: 
Globally sync. Locally sync. Asynchronous 

2 45.9 52.4 52.4 
10 39.9 47.6 53.6 
14 36.8 43.7 52.0 
18 33.0 39.2 54.1 
30 24.3 28.5 33.3 

100 9.0 9.7 10.0 

Table 6.1: Throughput for the three workloads (packets delivered per CPU per 
millisecond) 

Compute period 
(microseconds) 

 Workload: 
Globally sync. Locally sync. Asynchronous 

2 6.1 9.3 32.9 
10 5.0 6.5 32.8 
14 4.6 5.5 32.9 
18 4.3 4.9 16.7 
30 4.2 3.8 4.2 

100 4.1 2.7 2.8 

Table 6.2: Packet routed lifetimes for the three workloads (microseconds) 

data. First of all, at the point of sharpest increase in the amount of congestion, 

14 < c < 18, we see the individual packet delivery times approximately double, 

with almost no change at all in the total number of packets being delivered. 

Secondly, there is a great deal of difference in the way that packet delivery 

times relate to overall throughput in the different workloads. We have seen that at 

the highest loads, packet delivery time in the fully asynchronous workload is much 

greater than for the other workloads. However, we do not see a commensurate 

difference in the total amount of traffic sent under the various workloads: the 

throughput figures for the fully asynchronous workload and the asynchronous 

workload with blocking sends are almost identical to each other at the highest 

load (at which point their communication times differ by a factor of over three), 

and the loosely synchronous workload is achieving only 12% less work than the 

other two. 

The massive increase in packet delivery times for the fully asynchronous work-

load is certainly by far the largest effect here. To explain it, we need to refer back 

to figure 5.8, in which we looked at the observed workload performance separately 

at each CPU on our multicomputer grid, for the same asynchronous workload we 

are using in this section. When we last looked at this experiment we were more 
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interested in workload performance than in message transmission times, and we 

saw that at high loads, there was an uneven distribution of load over our CPU 

grid: some CPUs were achieving much more useful work than others. Even when 

the complete starvation of some CPUs' data delivery queues was addressed, there 

still remained significant non-uniformity in the amount of work being achieved 

by different processors on the same grid at high load. 

The results we see now are entirely consistent with this observation that at 

high loads, we can experience increasing contention with no increase in the over-

all aggregate workload performance (recall that in §5.4.4, we even saw a drop 

in workload performance averaged over the network at sufficiently high loads). 

However, our interest right now is not in the actual dynamics of any one specific 

experiment, but in our ability to measure these effects. If we were to concen-

trate purely on either workload performance or the communication latency of our 

network as a measure of the system, we would have missed these effects entirely. 

We have seen that by changing the synchronisation properties of our work-

load, we can reproduce very different levels of contention in our network without 

substantially altering the actual overall number of messages being carried by that 

network, and this leads us to draw two conclusions: 

Conclusion 6.1 We cannot properly understand the response of a multicomputer 

interconnect without some knowledge of the internal synchronisation properties of 

the workload running on it; 

and 

Conclusion 6.2 Observing the performance of a multicomputer network purely 

by looking at the delivery times of individual messages is not necessarily sufficient 

to describe the network's response: if we are interested in real workloads running 

on that network, then we need, in addition, some measure of workload achieved 

performance. 

6.2.2 Contention-Free Performance as a Baseline 

We described in chapter 5 not only our ability to measure contention during a 

simulation run, but also our ability to determine that contention's effect on overall 

performance by observing performance gained when contention is eliminated. We 

presented alternative communication models in which we could selectively disable 

packet contention in our network to measure the relative performance gain. We 

identified a throttled contention-free model (5.5.2) which removed contention 

interactions while still preserving flow control behaviour on the workload, and 
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proposed this as a way of measuring the relative performance loss in the workload 

due to communication contention. 

In this section, we will utilise this ideal, contention-free performance to provide 

a baseline against which the actual achieved performance can be measured. 

To be specific, we will be re-examining our two main performance metrics, 

communication performance and achieved performance as measured already in 

this chapter, but expressing both in terms of performance relative to the per-

formance in the absence of contention. For workload performance, we will be 

recasting our primary performance metric, packets delivered per CPU per unit 

time, into a relative form: packets delivered as a percentage of the rate achieved 

under the ideal, throttled contention-free communication model. Similarly, we 

will be measuring communication times as the ratio of ideal to realised packet 

delivery times (still measured in both cases from the point of first entry into an 

internal link within the routing network). 

We introduce two new variables, Ot  and O to describe these ratios for packet 

transmission times and transmission rates respectively: 

Definition 6.1 

Ot is defined as the ratio of the ideal packet transmission time to the achieved 

packet transmission time; and 

Or  is defined as the ratio of the achieved packet transmission rate to the ideal 

rate 

where the ideal observation is the observation made using simulation under the 

full communications model, and the ideal observation is that made using the 

throttled contention-free model under identical input parameters. 

Note that both of these variables are defined to be in the range 0 < 0 < 100%. 

In particular, since the ideal packet rate is expected to be greater than that 

achieved, and the ideal packet transmission time less than that achieved, we 

invert the ratio used for Ot  to be ideal:achieved instead of achieved:ideal. 

The fact that the definitions of Ot  and Or  are made in this manner allows these 

variables to be compared like-for-like. If we were to make a naïve assumption 

that improved communications time translates linearly into higher throughput, 

then by these definitions we ought to find Ot  = Or. Any differences between 

the two variables tell us that there is more going on, and that communication 

performance within the network, while it may be important, is not sufficient on 

its own to predict the overall performance of our workload. 

A good way to look on these variables is that °r represents the cost to work-

load throughput of contention in the network, and Ot  represents the amount of 
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contention present. In fact, 9t  can be considered to be a direct measure of the 

amount of contention in the network: I is precisely the factor by which packet ot  
routed lifetimes are being increased by contention effects. 

6.2.2.1 Contention Costs for our Synthetic Workloads 

Up to now in this chapter we have looked at the use of our two performance 

metrics—communication performance and achieved workload performance—both 

separately and together. Previously, we have also looked (in chapter 5) at the 

measurement of these two metrics not as absolute values, but as costs relative to 

an idealised, contention-free communications model. However, we have not yet 

considered communications and workload performance at the same time, for the 

same experiments, when studying these relative performance metrics. It is now, 

finally, time to think about the relative costs of contention to both communication 

latencies and to workload performance at once. 

As before, we will be starting off with the three workloads described above. 

As before 

Figures 6.3-6.5 chart the values of Ot  and °r  for our three workload types at 

various levels of load. Presented this way, the data reveals a number of impor-

tant characteristics of the relationship between workload throughput and packet 

delivery performance. One of the main points is that: 

. at low load levels, significant levels of contention may have little impact on 

achieved workload performance, but 

under high load, the impact of contention on workload performance may 

catch up with and overtake its impact on the delivery of individual packets. 

We can see this clearly in both the globally synchronous and the locally syn-

chronous workloads (figures 6.3 and 6.4). First of all, when we look at low levels of 

network load, corresponding to high compute times (c), contention is still present 

in both workloads and is still hurting packet delivery times. For the globally syn-

chronous workload, at c = 100js contention is still capping packet delivery speed 

to 58% of its contention-free ideal time, but the workload is still achieving 94% 

of ideal throughput. For the locally synchronous workload the values are 91% of 

delivery speed but 99% of workload throughput achieved. 

Burst Patterns in Communication Load It is not hard to understand the 

high rates of contention cost on packet delivery performance here when one re-

members that our workloads consist of processes performing a cycle of computa- 
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tion then communication with (in this case) fixed computation periods between 

each communication. In the globally synchronous workload in particular, all of 

our processes tend to run in lock step as far as possible, so at high values of c, 

we end up with short bursts of communication activity throughout the network 

followed by relatively long periods of idleness. The only effect which can cause 

processes to relax this lock-step is variability in the time taken for the commu-

nication part of each process iteration to complete, but there is a limit to how 

far any two processes may drift apart: by their nature, all processes in a loosely 

synchronous workload must run at approximately the same speed over the long 

term, and the regular synchronisation of processes with their neighbours ensures 

that there is a limit to how far ahead any process can get of another. 

In short, when there are synchronisation forces acting to keep processes in lock-

step with each other, our communications network is may be subject to periodic 

bursts of load. (This need not necessarily apply to the same workload under 

heavy load: once the communication cost comes to dominate the performance, 

the repeating compute period will have much less effect on the overall pattern of 

message injection.) We will look more closely at this effect below. 

Latency Sensitivity at High Load On the other hand, under heavy load, 

we see exactly the opposite effect. Under low load, a modest amount of commu-

nication contention has little effect on the workload performance, but we can see 

clearly in figures 6.3 and 6.4 that, for the loosely-synchronous and asynchronous 

workload with blocking sends, this is reversed when we increase the communica-

tion load. 

When we last looked at these workloads and their performance under increas-

ing load, the only effect that was immediately obvious was that as we increased 

the amount of traffic in the network by decreasing c, both packet transmission 

times and the achieved workload rate increased monotonically. We were get-

ting uniformly "better" workload performance and worse transmission times as 

load increased. Nothing from those performance results told us just how much 

contention was costing us. 

Looking at Ot  and 0, on the other hand, tells us much more about the actual 

cost of contention. We can see that in both of these workloads, contention in 

the network is having a measurable but small effect which starts off growing only 

slowly as we increase the load, but which by the time we are running under heavy 

load (c < 20), grows to have an enormous impact on performance. 

This is expected, yes, but without being able to use the contention-free model 
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as a baseline, it is hard to precisely quantify this impact. With these results 

available, we can see quite clearly that for these workloads under light load, the 

impact of contention on individual packet delivery times is much more than its 

impact on the workload as a whole; but under heavy load, the overall workload 

performance becomes more sensitive to contention and a given drop in packet 

delivery times has a much greater impact on the workload. Most importantly, we 

can finally quantify how much more sensitive the workload is to contention under 

high load. 

6.2.3 Distribution of Compute Periods 

We mentioned above that in our loosely-synchronous workload, we saw here a new 

source of contention. We described how we can experience a lock-step between 

adjacent processes in the process graph which results in a high rate of collision 

between messages even although the overall network load is fairly low. 

There is good reason to want our processes to proceed in lock-step, however, if 

the process graph is fixed in advance. If processes are proceeding at substantially 

different rates, then when a pair of adjacent processes synchronise with each 

other through a blocking communication, then the faster of the two processes 

much wait idly for the slower to complete its work, reducing the CPU utilisation 

achieved. This is not just a significant effect, it can indeed be one of the most 

significant factors affecting performance—Candlin and Phillips [CFPS92, CP93] 

use standard statistical modelling techniques to model the performance of parallel 

workloads and find that the standard deviation of process compute periods is in 

many cases the single most significant factor contributing to overall workload 

performance in their models. 

However, we might think that changing the distribution of compute periods, 

although it will adversely affect workload performance, might be sufficient to 

eliminate the contention effects resulting from these simultaneous communication 

events. So far, we have defined the compute period c to be a constant value, but 

in our original formulation of the workload in definition 5.1, we permitted c to be 

a random variable too. In this section we look at the results of using a random 

variable for C: we let be the mean process compute period and o be the standard 

deviation in c. Do our performance metrics allow us to observe the change? 

We will choose four different distributions for the random variable c: 

Constant, a, = 0; 

Normally distributed, 	ë * 10%; 
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Normally distributed, o = ë * 50%; and 

Negative-exponentially distributed. 

Figures 6.6 and 6.7 show the raw performance results: the mean packet routed 

lifetime and workload throughput for the loosely synchronous workload and asyn-

chronous workload with blocking sends respectively, with each plot showing all 

four of the different distributions of c. We can see immediately that for the asyn-

chronous workload, the exact distribution of the compute period is completely 

irrelevant: the processes are not synchronised with each other in the long term 

anyway, so as long as the mean load (and hence the level of network traffic) 

remains constant, the exact distribution of message injection intervals at each 

processor is seen to be completely unimportant. 

We are much more interested in the loosely-synchronous workload, the work-

load in which we saw contention even at low load. Looking just at the figure 6.6 

for now, the throughput metric shows exactly the expected trend: as o increases, 

adjacent processes become more out-of-step and communication exchange events 

force the slower process to block for longer and longer, so overall performance is 

degraded. 

However, a more important effect is demonstrated in figure 6.6: the substantial 

plateau in packet delivery times that we identified under the loosely synchronous 

workload is entirely eliminated if we allow adjacent processes to drift apart rather 

than maintaining lock-step over the system. As we allow cr to increase, packet 

delivery times at light load levels do start to converge to a lower value. 

Of even more interesting to our themes in this chapter is the picture which 

emerges when we look not at the absolute performance results when varying o, 

but at the relative performance compared to the contention free baseline mod-

els. In figure 6.8, we display these values, Ot  and O, for the loosely-synchronous 

workload. Does looking at the results this way shed any more light on the per-

formance? 

For a start, when we look at Ot  in figure 6.8, we can see quite clearly the 

contention effect which prompted us to look at variance in the workload period in 

the first place. For o, = 0, the continued presence of contention in the network is 

evident: Ot  approaches but does not exceed a value of about 63% as c increases, 

indicating that even at the lowest load levels, contention is degrading packet 

delivery times by over 50%. 

In general, there might be a number of explanations for these unexpectedly 

long packet delivery times at low network loads. If we were simply looking at the 

complete message delivery times on their own, we would not know whether flow 
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control was causing longer delivery times, or whether the packet path lengths were 

longer due to variability in the workload's communication patterns, or whether it 

was true contention internal to the communications network. The use of packet 

routed lifetime allows us to eliminate flow control effects as a possible cause, 

but the Ot  is an unambiguous indicator that contention is truly the cause of the 

communications slowdown. 

But what of the actual achieved workload performance? We can see in fig-

ure 6.6 that although at low loads there is a great deal of difference in the packet 

delivery times between the workloads o 	0 and or, = * 10%, there is absolutely 

no difference at all in their achieved workload performance. It would be easy to 

leave it at that, and to conclude that the small 10% standard deviation in the 

compute periods is not interesting from the point of view of contention effects. 

Figure 6.8 reveals that there is more to it than this. We can see here that if 

we remove contention effects, there is a difference between these two workloads' 

achieved throughput rates: in other words, it is only due to residual contention 

in the network that the or, = 0 workload proceeds no faster than the Or, ë * 10% 

workload. In the absence of this contention, the lower variance workload would 

indeed proceed more quickly, and the value of °r  tells us precisely how much 
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faster. 

6.2.3.1 Normalising Network Applied Load 

There is only one more step we need to take before we can really assess the impact 

which these different levels of application period variance have on the network. 

One effect remains which we have not yet accounted for: when we change o, 
we inevitably risk changing the amount of communication traffic we are injecting 

into the network. Since the loosely synchronous workload must synchronise each 

process to every other in the long term, adding extra, slower compute periods into 

the one process's cycle will necessarily cause longer stalls to any other processes 

which wait for a message from it. 

So far we have been able to compare like for like: we have seen that there is 

not necessarily a requirement that increased contention in one workload's simu-

lation run produces a commensurate decrease in that same workload's achieved 

performance. However, until we find a scale by which we can normalise our differ-

ent workloads (bearing in mind that these workloads may impose very different 

stresses on the network for the same value of c), we cannot reliably compare 

different simulation runs at once. 

One scale might be simply the total amount of network traffic per unit time. 

There are a number of good reasons why such a scale would have served as a very 

poor x axis for most of our previous experiments: 

. The network traffic itself has been an important performance response in 

most of our previous experiments; and 

For the asynchronous workloads, there was no guarantee that the message 

injection rate was constant over the entire network (and in fact we saw 

good evidence that it would not be constant), so comparing experiments 

with equivalent average injection rates would give no guarantee that we 

were comparing equivalent network traffic. 

However, we are now looking not at absolute performance but at relative per-

formance degradation due to contention, and the workloads we are interested in 

here are all loosely synchronous (implying that the time-averaged network load 

at each node is constant over the network), so these objections no longer hold. 

If we use this as our x axis and look again at our contention costs Ut  and 0, we 

should be able to see the level and the impact of contention for each of the differ-

ent workload period variances c given equivalent overall network load. The only 
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difference left between the different o  plots here will be the timing characteristics 

of the message injections. We see the results in figure 6.9. 
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Finally, we can really look the effect of changing the workload timing char-

acteristics on the network. We can see precisely the amount of contention being 

generated, and the impact of that contention on workload performance, for several 

different workloads, for constant average network load. 

Some of the features we observe are striking. The most important difference 

we see between these plots and the previous, non-normalised data in figure 6.8 

is that there is in fact a lot less difference between the contention costs for each 

workload at high load levels than we saw previously. Having replotted the graph 

against real network throughput, we can see that a lot of the difference between 

workloads under heavy load is simply due to the different way in which the applied 

load parameter c affects overall load levels for different values of o. 

On the other hand, we can see that the choice of workload timing distribution 

has a significant impact on the amount of contention at low load, as we saw 

before. More importantly, the difference between the cost of that contention on 

achieved workload performance (°) at light load levels has not been eliminated 

by the x-axis rescaling, unlike the situation we saw under heavy load. We can 
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confidently state that workload performance under light load is being hurt by 

approximately 10% due to the presence of contention for the o = 0 workload, 

but that the other workloads would show absolutely no improvement at all at the 

same network load levels if we eliminate contention. 

These properties remaining in figure 6.8 are true indicators of how much of the 

contention we see for a given load level depends on some workload characteristic 

(or, here) rather than on the average amount of traffic in our network, and how 

much better the workload at each load level could run in the absence of that 

contention. We find here that the amount of contention, and its cost to the 

workload, is not simply a function of the network load. The internal properties 

of the workload are involved in the equation too. 

6.3 Impact of Per-Processor Message Synchro-
nisation 

We have now covered all of the tools and techniques we are presenting for the 

study of the cause-and-effect relationship between contention and the workload. 

This has been half of our goal throughout this thesis, and we have just now begun 

to round off the other half—to validate our assertion that this is an important 

relationship, and that we cannot really understand contention, or the true cost 

of contention, without understanding the properties of the workload running on 

our network. 

In this final example section, we will demonstrate the application of our tools 

to a different workload property. Again, our aim is not so much to understand 

exactly what effect a certain workload change has on performance as to give 

an example of the types of effect which we need to be aware of when looking 

at contention, and how we can observe these effects with the tools now at our 

disposal. 

In particular, we want to continue to look at how properties of the workload 

may materially affect the way contention affects system performance. So far, we 

have been using a synthetic workload with one process per CPU, transmitting 

and receiving an average of one message per compute cycle. What happens if 

we increase the number of messages being sent between each CPU during each 

compute cycle? 

There are two very different ways in which we can send more messages: we can 

either simply run more processes on each CPU, or we can increase the number of 

messages being sent by each process. There is a great deal of difference between 
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these two methods. 

On the one hand, if we increase the number of messages being sent by a given 

process on each cycle, we are increasing the number of other processes which are 

forced to synchronise with that process on each iteration. We are increasing the 

degree of the task graph, causing the loosely-synchronous workload to become 

more tightly synchronised; there is less opportunity for processes to drift apart 

over time. 

On the other hand, increasing the number of processes on each CPU has ex-

actly the opposite effect on the the task graph. The degree of the task graph 

remains constant, but the number of processes increases, so the number of itera-

tions required for a stall in one process to affect all other processes is increased, 

not reduced. The entire workload becomes less tightly synchronised, and there is 

room for increased latency hiding in the application. 

In this next experiment, we look at the difference between these two types of 

behaviour. There is good reason to think that the impact of contention will be 

depend on which path we choose: the more tightly synchronised our workload is, 

the more we might expect any delays in individual message deliveries to affect 

the overall performance. 

To exhibit these two effects, we choose to increase the number of messages 

sent per cycle on each CPU from one to four by varying both n (the number of 

processes per processor in our workload model), and m (the number of messages 

sent per process per iteration) such that n * m = 4 (ie. m = n/4). We also need to 

modify c, the compute period per process, so that the overall compute cycle period 

per processor remains constant as we increase n: if our experiment specifies a per-

processor compute period of c, then in any given simulation run each individual 

process needs to use a period of c" = c/n. According to our workload definition 

(definition 5. 1), we are using a workload (16, 8, n, c/n, 4/n, 32) for various levels 

of applied load c and for n E 11, 2, 4}. 

Figure 6.10 shows the absolute performance results we see when we run these 

modified workloads for 0 < c < 200. We mentioned above that the workload 

becomes more tightly synchronised as we increase m, and we saw in earlier ex-

periments (especially when comparing the asynchronous and loosely-synchronous 

workloads) that extra synchronisation within the workload leads to increased sen-

sitivity to contention. We might therefore expect to see reduced performance and 

increased packet routed lifetimes for workloads with higher m. 

In fact, figure 6.10 does show reduced performance under the heaviest loads for 

the m = 4 workload: there is up to a 30% deficit in performance for the same c 
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compared to the workload m = 1. However, that is not reflected in a simple 

increase in contention for the more tightly synchronised workload. Under light 

loads, the more synchronised workloads show longer packet routed lifetimes as 

expected (presumably to the fact that messages are being injected in bursts), but 

at heavy loads, this effect does not persist: contention in fact increases sharply for 

the workload m = 1 as we increase the load, especially as we reduce c below about 

30js, but packet lifetimes for the other workloads increase much more slowly as 

load increases. 

Does the methodology we described in section 6.2.3.1 help us to understand 

what is going on? In figure 6.11, we apply those techniques: we plot not absolute 

performance but performance relative to the ideal, contention-free model, and we 

plot those cost metrics against the actual rate of network packet injection, not 

against the applied load parameter c. We are now looking at the actual amount of 

contention, and the cost to the workload of that contention, against the average 

load on the network. 

We can see that indeed, the different workloads do have substantially different 

responses to contention. Looking at O  in particular, we see that for any given 

level of overall load on the network, the more tightly synchronised workloads suffer 

much more from the impact of contention. Indeed, at a load corresponding to an 

average of 30is between packet injections, we can see that the m = 1 workload 

is almost completely unaffected by the contention present in the network, but 

the m = 4 workload, while generating the same amount of network traffic, is 

achieving only about 70% of its potential performance. 

The important point to realise here is that in real life many real applica-

tions may behave much more like the tightly synchronised workload than the 

less synchronised one. Applications such as VLSI simulation and finite element 

analysis all involve the decomposition of irregular data onto the multicomputer 

and the subsequent regular exchange of batches of messages between processes. 

However, if when modelling multicomputer performance we make an assumption 

that message injections are independent of each other, we lose this effect. We 

can see in figure 6.11 that if we ignore such workload interactions, we risk grossly 

underestimating the impact that network contention will have on our workload. 

6.4 Summary 

We have looked at communication performance and workload performance sep-

arately in previous chapters, but in this chapter we looked at the two together. 
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During this chapter we were interested in two main questions: how to properly 

measure contention effects, and to see if the nature of the workload was important 

when studying contention. 

From the point of view of the workload's sensitivity to contention, we de-

fined two variables, Ot  and 9 to be the relative loss of packet transmission time 

and throughput performance due to contention (relative to performance in an 

idealised, contention-free environment). We saw that these variables allow us 

to separately quantify the amount of contention present in a network, and the 

impact that contention is having on aggregate workload performance. 

We found that although the throughput of the fully asynchronous workload 

displays little or no sensitivity to contention up until the point at which the 

network saturates, both the locally and globally synchronous workloads display 

low sensitivity to contention only at low load levels (indeed, the phase-locked 

bursty nature of message injection in the loosely synchronous workload results 

in a high level of contention between packets even at low time-averaged load 

levels, with little performance degradation to the workload). However, as the 

load increases, so does the sensitivity to contention. 

We saw that when we tried to look at the impact of modifying the charac-

teristics of our workload, we risked changing the actual load on the network in 

unpredictable ways, making it hard to see what change in performance was due 

only to the reformalisation of the workload and what was actually caused by 

contention. We showed that we were able to overcome this by plotting Ot  and 0, 

against the actual average rate of packet injection into the network. 

Given these techniques, we were able to identify two specific characteristics of 

the workload—the variance in the process compute periods over time, and the rate 

of synchronisation between processes—which markedly changed the workload's 

response to contention. We showed that for a given load on the network, different 

workloads could suffer very differently from contention, some workloads being 

insensitive even to quite high levels of contention and other workloads suffering 

more from relatively low levels of contention in the network. 
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Chapter 7 

Summary and Conclusions 

In this thesis we have presented an approach to the investigation of contention 

effects on the performance of wormhole-routed multicomputer interconnection 

networks. Our main achievement has been that we were able to separately identify 

the presence of contention in our networks and the effect that contention was 

having on workload performance. 

In chapter 3, we described the models and tools used for the investigation. We 

presented a model of computation which abstracted out the important character-

istics of the workload—in our case, the pattern and ordering of communication 

requests made of the multicomputer network by the workload. We presented an 

efficient monolithic simulator developed specifically to investigate these workloads 

running on a simulated multicomputer network modelled on the T9000/C104 

communication architecture. We described simplifications to the communication 

architecture which were made to improve the performance of the simulator. 

In chapter 4, we performed our verification and validation of the simulator. 

We verified that the simulator produced correct results for a number of easily 

predictable workloads, and validated our simplified model of the T9000 commu-

nication mechanism. Finally, we layed out the groundwork for more complex 

experiments by assessing the impact of certain design decisions in the layout of 

our multicomputer networks. In particular, we identified the width of the con-

nection between each T9000 processing element and its associated C104 router 

as a key variable; with a link width less than the degree of the communications 

network, we may end up bottlenecked waiting for injection or delivery of packets 

rather than fully exercising the interconnection network. 

Chapter 5 introduced a class of workloads which display various synchroni-

sation characteristics, from loosely-synchronous behaviour through to oblivious 

behaviour with no flow control at all. We used these workloads to stimulate lev-

els of stress on our multicomputer network from very light loads up to saturation 
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loads. 

We identified contention between newly injected packets for forwarding along 

their first internal DS-Link as a major factor influencing performance, and defined 

throttling as this natural flow control effect on packets entering the internal rout-

ing network. We looked at the time spent by packets in various components of 

the network, and found that under high load, well over 50% of a packet's lifetime 

could be accounted for in throttling, either inside the T9000 output queues pend-

ing a free injection link, or in the C104 input buffer of an injection link awaiting 

forwarding onto an internal routing link. We defined a packet's routed lifetime to 

be the time a packet spends in communication starting at the point at which it 

succeeds in entering its first internal routing link, to provide a metric of packet 

transmission times independent of throttling effects. 

We also looked at the measurement of ideal throughput performance achieved 

by eliminating contention costs, and concluded that it was important here too to 

take into account throttling effects, and to preserve throttling contention in our 

otherwise contention-free simulations to avoid distorting the workload's packet 

injection behaviour. 

Finally, we observed that there can still be contention in the absence of any 

serious time-averaged load on the network if the message injections are strongly 

bunched; and that at the very highest levels of load, it is possible to see static 

or even decreased overall network throughput by injecting more packets into the 

network. In particular, we saw that certain low-level details of the communica-

tions model, such as the prioritising of one packet type over another, could lead 

to dramatic unfairness in the network under very high load. 

Chapter 6 used the techniques presented in chapter 5 to study the relation-

ships between the performance of a workload, as measured by the amount of 

work achieved per unit time (or, equivalently, the number of successful commu-

nications per unit time) and the effect of contention on the performance of the 

communication network itself, as measured by the time taken to completely route 

a packet through the network (the packet routed lifetime). We introduced two 

new variables, Ot  and °r,  to represent the relative loss in network routing time 

and workload throughput performance respectively due to contention. 

We found that although the fully asynchronous workload remained largely 

oblivious to contention in the routing network up until saturation, the other 

workloads displayed a behaviour increasingly sensitive to contention as load in-

creased. We also found that varying other properties of the loosely-synchronous 

workload could significantly affect its sensitivity to contention, and that different 



workloads could suffer from substantially different levels of contention even at the 

same overall network load. 

7.1 Conclusions 

There are some very general conclusions we can draw about multicomputer net-

work behaviour from this study. 

Details matter. We have looked at a number of apparently minor ordering prop-

erties of the communications architecture, including the prioritising of pack-

ets at the C104 crossbar and acknowledgement prioritising in the T9000, 

and have seen that these details can have a profound impact on performance 

in some situations. 

The workload matters. The precise details of our workload have also been 

shown to substantially affect the way contention affects overall performance. 

The level of synchronisation between processes, the use of blocking or non-

blocking sends, the number of messages sent at once by a single process 

and the randomness in the timing of compute cycles—all of these have been 

shown to change the way in which the workload responds to contention. 

The presence of a certain amount of contention in the network does not, 

on its own, tell us how the performance of an application running on that 

network will suffer due to that contention. 

As a result, we can conclude that in modelling the workload performance of 

systems experiencing contention, it may not be valid to assume that message 

arrivals are independent—the workload with independent message injections does 

not show the same behaviour under load as the workloads which do experience 

packet dependencies. 

One of the reasons that it is attractive to assume independent message injec-

tion when modelling multicomputer performance is that this leads to tractable 

models. In this thesis, we have presented a simulator and methodology which is 

sufficiently efficient to be able to serve as a viable alternative to these models, but 

which retains the ability to take account of the fine details of packet interactions 

which we have found to be so important. 

7.2 Future Work 

So far, we have described a tool and a set of metrics for observing contention-

related effects. We have shown these to be useful in understanding the behaviour 
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at high loads of a simple class of workloads. However, we have only begun to 

scratch the surface of effects which could be studied using these tools. There are 

a number of different ways in which this work could be extended. 

In looking at our workload performance, we have concentrated on a single 

synthetic workload model. There are many other workloads worth studying; in 

particular, non-uniform traffic is often particularly prone to contention and would 

be well worth investigation. It would also he interesting to follow up this work 

by using workloads modelled after real-life algorithms or applications. 

There are also a number of techniques available which aim to reduce contention 

in networks. The entire genre of adaptive routers exists precisely to achieve 

this, and the contention responses of networks based on such routers might be 

substantially different to the basic dimension-order greedy router used throughout 

this study. 

Perhaps most importantly, this study could be used as the basis of a per-

formance model of multicomputer networks which takes into account workload 

synchronisation patterns. Phillips et al. [CFPS92, CP93] use standard statistical 

modelling techniques to generate models for parallel workload performance, and 

these techniques could be used to form a performance model incorporating the 

features described here. Enbody [KE95, ENHS94] proposes a model of contention 

effects which assumes independent messages arrivals, and it would be useful to 

know how well that model could be used under workloads exhibiting synchroni-

sation features. 
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