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THE STUDY OF RIN3: A SUSCEPTIBILITY GENE FOR PAGET’S 

DISEASE OF BONE 

Mahéva VALLET 

College of Medicine and Veterinary Medicine 

Deanery of Molecular, Genetic and Population Health Sciences 

University of Edinburgh 

 

ABSTRACT 

Paget’s disease of bone (PDB) shows a strong genetic component and mutations in 

SQSTM1 (Sequestosome 1) are observed in about 10% of sporadic PDB patients.  

My PhD investigated the RIN3 gene (Ras and Rab interactor protein 3), previously 

implicated in the pathogenesis of PDB by GWAS. The RIN3 gene encodes a guanine 

exchange factor (GEF), involved in the activation of GTPases which are crucial in 

osteoclast activity. It also has a role in endocytosis and recycling of tyrosine kinase 

receptor. The role of RIN3 in bone remodelling is unclear, however some 

investigations revealed some associations with bone: RIN3 has been associated with 

high lower limb bone mineral density in children in a meta-analysis of GWAS studies, 

and was shown to be expressed in primary calvarial osteoblasts. The expression of 

RIN3 was down regulated during human primary osteoclast differentiation, and also in 

iliac bone biopsies from osteoporotic patients compared to healthy postmenopausal 

donors (Kemp et al, 2014). 
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In Chapter 1, I present normal bone structure, composition and remodelling before 

detailing PDB and its genetics. I then introduce RIN3 as a candidate gene for PDB. In 

Chapter 2, I describe all methods performed and materials used for the completion of 

this project. This includes primary cell cultures, RNA and protein work, 

immunostaining, immunochemistry and phenotype analysis on Rin3-/- mice. Chapter 3 

presents the fine mapping of RIN3 using Sanger and next generation sequencing 

performed on PDB cases and controls. 18 variants were detected and one common 

variant (p.R279C) showed a strong association with PDB. Rare variants were also 

over-represented in cases, and many were shown to be on the same haplotype as 

p.R279C. Chapter 4 details the association study performed on a UK cohort and 

includes the investigation of the clinical phenotype severity in patients against the 

RIN3 mutations. Chapter 5 presents the expression pattern of RIN3 in bone cells and 

bone microenvironment. Important variations of RIN3 mRNA and protein were 

detected during the differentiation of bone marrow derived osteoclasts. Protein levels 

of RIN3 were also found in osteoclasts from human osteoclastoma, human 

osteosarcoma, PDB patients, giant cell tumour (GCT) and healthy controls. Within all 

the mouse tissues analysed, Rin3 mRNA was expressed the highest in bone after lung. 

Chapter 6 focuses on the work performed on mice deficient of the Rin3 gene. They 

showed a higher trabecular bone volume and a smaller active resorption surface 

occupied by osteoclasts in trabecular bone.  

In conclusion, the combined in vitro and in vivo analyses have uncovered that RIN3 

plays a role in bone metabolism and is a strong gene candidate for PDB.  
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LAY ABSTRACT 

Paget’s disease of bone (PDB) is a common skeletal disease where too much bone is being 

formed, and too quickly. Typically, this is caused by an over-activation of osteoclasts, the 

cells responsible for bone resorption. This results in a weak bone and patients can develop 

important bone pain and deformities, leading to complications such as nerve compression 

and fractures.  

The origin of PDB is still not fully understood, however it has been shown that specific 

DNA mutations can predispose to it. The most important gene is SQSTM1, but mutations 

are present in only 10% of patients without family history. More genes need to be 

investigated to allow a better diagnosis and prevention of the disease in patients. My PhD 

consisted in investigating a new gene called RIN3, thought to be involved in PDB and 

bone remodelling.  

A common mutation and many rare mutations were found to be more present in patients 

than in controls. The expression of Rin3 was also confirmed for the first time in osteoclasts 

generated from mice, and was also the highest in bone tissue from mice compared to all 

other organs investigated. RIN3 was also found to be expressed in human osteoclasts in 

both healthy and Pagetic patients.  
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I additionally investigated bone changes in mice for which the Rin3 gene was inactivated. 

These mice had increased bone mass, as well as a smaller surface area occupied by active 

osteoclasts compared to control mice.  

This confirms that RIN3 is expressed in mouse and human bone. It also shows that 

removing the Rin3 gene in mice provokes changes in bone metabolism, leading us to 

think that it would normally lower bone mass and increase resorption surface. These 

being important features of PDB, RIN3 becomes a strong candidate to consider. The 

mutations detected follow this trend as well and could, with more investigation, help 

us understand the complexity of PDB in more depth. 
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1 INTRODUCTION 

1.1 BONE ANATOMY AND FUNCTION 

1.1.1 Bone structure 

The skeleton is a strong and supportive structure, made of two connective tissues that 

are mineralised bone and cartilage. In association with the muscles, the bones offer 

mechanical strength and motion to the body, as well as organ protection and mineral 

storage. Based on their structure, bones are organised in four categories: long, short, 

flat, and irregular (Clarke, 2008).  

Long bones are made of a hollow shaft called diaphysis, closed by larger and rounder 

ends called epiphyses, allowing articulation. The central medullary cavity of the 

diaphysis contains the haematopoietic marrow which confers a supply of growth 

factors, cytokines and haematopoiesis for the body. Growth plates are located at the 

metaphyses, between the diaphysis and the epiphyses of the bone. The joints at the end 

of long bones are protected by cartilage, while the outer surface of the rest of the bones 

are covered by a membrane called periosteum. This connective tissue is held tightly 

against the cortical bone by collagenous fibres called Sharpey’s fibers, running through 

the underlying bone (Figure 1.1). Examples of long bones would be clavicles, 

humerus, radius, femurs, tibiae, or phalanges. They are involved in weight bearing and 

movement (Clarke, 2008).  

Short bones are usually of cubic shape and are as large as they are wide. They typically 

include the carpal bones of the wrist and tarsal bones of the feet and are involved in 

movement. Flat bones can be of many shapes such as the skull, scapulae, sternum or 

the ribs, and they are involved in internal organ protection.  
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Irregular bones such as vertebrae, sacrum, or coccyx have complex structures and have 

a protective role as well (Clarke, 2008). 

 

 
Figure 1.1: Structure of a long bone.  

Adapted using Servier medical art (Servier, 2017). 

 

The adult skeleton is made of 80% cortical bone, which has a solid and compact 

architecture. The rest is made of spongy like cancellous bone, called trabecular bone. 

The ratio between the two can vary a lot from one bone to the other (Clarke, 2008). 
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Cortical bone has a white dense characteristic look and is located on the outer side of 

the bones to protect the marrow. It has low metabolic activity and is made of multiple 

cylinders called osteons, or Haversian systems. Each cylinder is a succession of 

concentric lamellae made of collagen fibres, surrounding a Haversian canal where 

nerve fibres and blood vessels are passing through (Figure 1.2) (Clarke, 2008). 

Cancellous bone, also called trabecular or spongy bone, is softer and less dense. It fills 

the cortical bone and has a spongy aspect. The empty spaces are filled with bone 

marrow, making trabecular bone more metabolically active than cortical bone. It is 

highly present in flat bones and in the epiphyses and metaphyses of the long bones 

(Figure 1.1). Trabecular bone is also constituted of osteons called packets, made of 

concentric lamellae organised in a parallel fashion (Clarke, 2008).  

Bone is made of an inorganic matrix (70-90%), an organic matrix (20-40%), cells 

(osteoblasts, osteocytes, and osteoclasts) and water (Clarke, 2008). The main mineral 

compound which constitutes bone is a close analogue of a naturally occurring crystal, 

called hydroxyapatite (Ca10[PO4]6[OH]2) (Rosen, 2013). Additional minerals such as 

phosphate, carbonate and magnesium are also found, although composition varies with 

environment and diet (Rosen, 2013). 
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Figure 1.2: Schematic representation of an osteon structure in cortical bone.  

Adapted using Servier medical art (Servier, 2017).
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The organic matrix is mostly constituted of collagen type I (90%) which confers 

strength to the bone. Collagen fibrils are made of triple helixes of polypeptides chains, 

organised in a parallel fashion. Non-collagenous proteins and molecules are however 

also present (10%). Although some are of exogenous origin like albumin, most are 

synthesised by osteoblasts and are involved in the bone turnover process. Typical 

proteins would be alkaline phosphatase (ALP) involved in mineralization, osteonectin 

(OSN) involved in collagen organisation and bone formation, osteopontin (OPN) 

which is able to bind to cells and collagen, and may be involved in mineralization and 

cell proliferation, or osteocalcin (OCN, or bone GLA protein (BGP)) which may be 

involved in the regulation of osteoclast activity (Rosen, 2013). 

Microscopically, bone appears in a woven or lamellar pattern. Lamellar bone is seen 

in the mature skeletons. It is found in cortical and trabecular bone and has, as its name 

implies, a lamellar organised appearance. Woven bone is observed during skeletal 

growth, but it can also be found in adult pathological bone with increased bone 

turnover. This includes fractures or Paget’s disease of bone (PDB), which is a bone 

remodelling disorder with weak and disorganised bone (Section 1.2). Woven bone is 

characterized by a distinctive disorganised pattern and results in a significant reduction 

of mechanical strength (Clarke, 2008).  
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1.1.2 Bone cells 

Osteoclasts and bone resorption 

Osteoclasts are part of the monocyte macrophage family and are the only cell type 

responsible for the resorption of bone. They make up 1 to 2% of the total bone cells 

(Rosen, 2013).  

Mononuclear precursor (pre-osteoclasts) proliferation and differentiation are under the 

control of the macrophage-colony stimulating factor (M-CSF, also called CSF1 for 

colony stimulating factor-1). These pre-osteoclasts then fuse into a polykaryon in 

response to the receptor activator of NFκB (RANK) stimulation, triggered by the 

pairing of RANK ligand (RANKL) to the RANK membrane receptor. This will result 

in the activation of the nuclear factor κB (NFκB) pathway, involved in 

osteoclastogenesis. Typical osteoclast genes such as tartrate-resistant acid phosphatase 

(TRAP) will also be activated (Figure 1.3) (Boyle et al, 2003). 

RANKL is a member of the tumour necrosis factor super family (TNF), and is 

expressed in the bone microenvironment (Boyle et al, 2003). Knock out of RANK or 

RANKL in mice resulted in inhibition of osteoclast development and osteopetrosis 

which, in contrast with osteoporosis, leads to excess bone formation, denser and brittle 

bone (Dougall et al, 1999; Kong et al, 1999). 
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Figure 1.3: Schema of osteoclast differentiation (Boyle et al, 2003). 

The M-CSF cytokine binds to the CSF1R receptor of the osteoclast precursor to induce proliferation and differentiation of the mononuclear cells. RANKL, 
produced by osteoblasts, interacts with RANK localised on the membrane of immature osteoclasts and of bone marrow stromal cells. This will result in 
the fusion of pre-osteoclasts into a polykaryon until full differentiation to become an active osteoclast capable of bone resorption. OPG, also produced by 
osteoblasts acts as a decoy of RANK, and regulates RANK activation to avoid over-activated bone resorption. RANKL also activates TRAP gene 
expression in the fused polykaryon and mature osteoclast. Adapted using Servier medical art (Servier, 2017). 
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M-CSF is also a key regulator for osteoclast survival, proliferation and differentiation 

of precursors by binding to the CSF1R receptor which is located on the osteoclast 

precursors membrane. CSF1R is encoded by C-FMS. As RANKL, it is produced by 

osteoblasts and stromal cells (Boyle et al, 2003). It was also shown that mutations in 

the M-CSF gene, CSF1, induces osteopetrosis in mice and that cell cultures from those 

were deficient in osteoclasts and mature macrophages (Yoshida et al, 1990).  

In vitro osteoclasts can be obtained from M-CSF-stimulated bone marrow derived 

macrophages cells (BMDMs) with a combination of RANKL and M-CSF, or from 

peripheral blood mononuclear cell (PBMCs) (Rosen, 2013). 

Osteoprotegerin (OPG) is produced by osteoblasts and has an inhibitory effect on the 

NFκB pathway. OPG has a strong affinity to RANKL and acts as a decoy receptor 

inhibiting resorption of the bone. As a result, the proportion of RANKL and OPG is a 

key regulatory factor for regulating bone resorption (Rosen, 2013). Mice lacking OPG 

show increased osteoclast activity, vascular calcification (Bucay et al, 1998) and 

osteoporosis (Mizuno et al, 1998). 

The investigation of the pro-inflammatory cytokine interleukin 6 (IL-6) in bone 

resorption has led to complex outcomes and is not yet well understood. It was showed 

that a combination of soluble IL-6 receptor and IL-6 induces osteoclast formation in 

co-cultures of osteoblasts and bone marrow cells, with a resorption activity similar to 

control osteoclasts (Tamura et al, 1993). Osteoclast differentiation was promoted in 

the same way in human PBMC cultures, however a lower resorption activity was 

observed compared to control osteoclasts stimulated with RANKL and M-CSF (Kudo 

et al, 2003).  
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Some studies demonstrated that mice deficient in IL-6 showed more trabecular bone, 

a higher number of TRAP-positive osteoclasts and apoptotic osteoclasts, and a delayed 

bone remodelling compared to littermate controls (Liu et al, 2014). However, 

neutralization of the IL-6 receptor in mice resulted in a reduction of osteoclast 

differentiation and bone resorption activity (Axmann et al, 2009). It was also found 

that IL-6 could inhibit osteoclastogenesis by influencing the production of RANKL 

through osteoblasts (Duplomb et al, 2008).  

Bone resorption starts by the creation of a space between the osteoclast and the bone 

surface, through the formation of actin sealing rings (Figure 1.4). Transmembrane 

integrins, particularly integrin αvβ3, allow the attachment of the cell to the bone by 

recognising the specific amino acid motif Arg-Gly-Asp of bone proteins, such as OPN 

(Rosen, 2013). Integrin αvβ3 is expressed in a similar way to TRAP during osteoclast 

differentiation and appears in osteoclasts stimulated by RANKL, while is absent in 

macrophages stimulated with M-CSF only (Teitelbaum, 2005). Specific ligands can 

also compete with integrin αvβ3 and inhibit bone resorption (Rosen, 2013).  

Type I collagen (COL1A1) is then exposed from the inorganic mineral by the 

generation of an acidic environment. For this, the enzyme carbonic anhydrase II 

produces hydrogen and bicarbonate ions in the osteoclast. Bicarbonate ions are 

exchanged for chloride ions from the extracellular matrix in order to maintain normal 

intracellular pH. The protons and chloride ions are then brought to the bone-cell 

surface through the ATPase proton pump and a chloride channel (respectively) in order 

to lower the pH to 4.5 (Teitelbaum & Ross, 2003).  
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Enzymes, mainly cathepsin K and matrix metalloprotease 9 (MMP9), are then secreted 

in the resorptive microenvironment to start the degradation of the organic matrix of 

bone (Rosen, 2013).  

 
Figure 1.4: Summary of the osteoclastic resorption (Rosen, 2013).  

The osteoclast seals to the bone to be resorbed by recognising the Arg-Gly-Asp motif found 
on bone proteins. Carbonic anhydrase II converts CO into hydrogen ions (H+) and bicarbonate 
ions (HCO3

-) in the intracellular compartment of the osteoclast. HCO3
- is replaced by chloride 

ions (Cl-) through an anion exchanger, to maintain the intracellular pH. The H+ and Cl- ions 
are then transferred to the bone/cell surface respectively by a proton pump and a chloride 
channel, which reduces the pH of the resorption zone down to 4.5 to degrades the non-organic 
matter of the bone. Collagenases such as cathepsin K and MMP9 can then degrade the organic 
proteins present in bone such as type I collagen. Adapted using Servier medical art (Servier, 
2017). 

 

Many components of this process have been associated with bone disorders. Firstly, 

mice deficient in the integrin αvβ3 show an increased bone mass (Rosen, 2013; 

McHugh et al, 2000). MMP9 deficient mice show delayed endochondral ossification, 

abnormal vascularisation and ossification in growth plates (Vu et al, 1998).  
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A lack of carbonic anhydrase II expression has been described in patients affected by 

osteopetrosis with renal tubular acidosis and cerebral calcification (Sly et al, 1983). 

Mutations in the a3 subunit of the proton pump were described in patients with human 

malignant osteopetrosis, where the osteoclasts were unable to form a resorptive 

microenvironment (Michigami et al, 2002). Mutations in the chloride channel are 

associated with osteopetrosis and resorption deficiency in osteoclasts (Kornak et al, 

2001). Mutations in the cathepsin K enzyme have been detected in Pycnodysostosis 

patients, a hereditary form of osteopetrosis (Gelb et al, 1996). Cathepsin K inactivated 

in mice results in osteopetrosis where the osteoclasts were not able to degrade the 

collagen accumulated in the resorption environment (Saftig et al, 1998). 

Osteoblasts 

Osteoblasts are mononuclear bone cells differentiated from bone marrow 

mesenchymal stem cells (MSCs). They make up about 4-6% of the total bone cells 

(Rosen, 2013). Osteoblasts are responsible for the secretion of bone matrix 

constituents, such as OCN, OPN or COLIA1. They are also able to synthesise 

RANKL, M-CSF and OPG, key cytokines involved in osteoclast formation and bone 

resorption (Figure 1.3) (Rosen, 2013). 

Osteoblast differentiation depends on many growth factors and cytokines. Flat 

quiescent osteoprogenitors are found lining on the outer surface of the trabecular bone 

(called endosteum) and under the periosteum of the cortical bone. Cell-cell adhesion 

is promoted by cadherins and desmosomes through the cell cytoskeletons (Rosen, 

2013).  
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Upon osteoblast differentiation, the cell develops a very recognisable cubic shape. 

Active osteoblasts, able to synthesize bone structures such as collagen, show a large 

and round nuclei, enlarged organelles such as Golgi, and extensive endoplasmic 

reticulum (Rosen, 2013).  

Although many pathways are known to be involved in osteogenesis, only the most 

important ones will be described here. The activation of the Runx2 transcription factor, 

also called core binding factor α subunit (CBFα1) or acute myeloid leukaemia 3 

(AML3), is well established in osteoblast differentiation. The importance of Runx2 in 

osteoblast differentiation was described in knock out mice which died shortly after 

birth. The few mice which survived had no osteoblasts nor bone (Otto et al, 1997). 

Mutations in the RUNX2 gene are also associated with Cleidocranial dysplasia, a 

congenital disorder with poorly developed bones (Mundlos, 1999). Runx2 is able to 

positively or negatively control the expression of key osteoblast genes, such as 

COL1A1, ALP, OPN, OSN, or OCN (Rosen, 2013). The osteoblastic differentiation is 

pursued by the activation, through Runx2, of a transcription factor called Osterix. 

MSCs from mice lacking Osx, the gene encoding OSTERIX, are also not able to 

differentiate into osteoblasts (Nakashima et al, 2002).  

Additional growth factors involved in bone formation are bone morphogenic proteins 

(BMPs). They are part of the transforming growth factor-β (TGF-β) superfamily and 

have an important role in fracture healing for which they are used therapeutically. 

BMP-2 is known to increase the expression of Osx (Rosen, 2013). TGF-β has different 

effects on bone remodelling depending on the environment and concentration.  
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In vitro investigations showed that it increases osteoblast activity in human MSC 

whereas it inhibits osteoblast differentiation at later stages (Alliston et al, 2001).  

Osteogenesis from MSCs is also under the control of the canonical Wnt/β-catenin 

signalling pathway. Binding of Wnt to the Frizzled (Fzd) receptor, low-density 

lipoprotein receptor-related protein 5 (LRP5) and LRP6 co-receptors allows 

cytoplasmic accumulation of β-catenin which activates a downstream signalling 

leading to bone formation. Lack of β-catenin in limb and head osteoblast precursors 

inhibits osteoblast differentiation and shows abnormal skeletal development in mice 

(Hill et al, 2005). Increased bone mass disorders are also associated with LRP5 

mutations (Rosen, 2013). 

The Indian hedgehog (Ihh) signalling is part of the Hedgehog family along with sonic 

and desert hedgehogs. The role of Ihh in osteogenesis has been showed in mice lacking 

Ihh, which prevented the development of osteoblasts in endochondral bone and formed 

abnormal long bones. Most pups died either during gestation or upon birth due to 

respiratory failure (St-Jacques et al, 1999).  

It has also been shown that parathyroid (PTH) treatment controls bone formation in a 

time dependant manner. A continuous PTH treatment increases RANKL and M-CSF 

secretion by the osteoblasts favouring osteoclastic bone resorption, while intermittent 

treatment results in an increased bone resorption, but more significantly osteoblast 

differentiation and bone formation through the activation of Runx2 and Wnt/β-catenin 

pathway (O'Brien et al, 2008). 
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Additional factors mediating osteogenesis are insulin-like growth factor-1 (IGF-1), a 

protein mediating the osteoblast proliferation and function through the Ras-ERK 

MAPK pathway, and fibroblast growth factors (FGFs) which are involved in 

endochondral bone formation and osteoblast survival through the Ras-ERK MAPK 

and Runx2 pathways. NOTCH proteins also negatively affect osteoblast 

differentiation through Runx2 (Rosen, 2013). 

Osteocytes 

Osteocytes make up to 90-95% of the total bone cells. Osteocytes differentiate from 

osteoblasts following bone formation. They are located in the lacunae in the cortical 

bone. They have a dendritic shape with elongated processes traveling through 

canaliculi, forming a network which allows cellular contact with other osteocytes and 

lining osteoblasts (Rosen, 2013). The expression profile and function of the osteocytes 

are not yet as clear as for osteoblasts, however they are thought to be involved in the 

perception of mechanical loading of the bones through the canaliculi network. 

Osteocytes also have an important role in phosphate homeostasis by producing the 

hormone FGF23 (Feng et al, 2006; Rosen, 2013). 

Typical osteocyte markers include E11/gp38, a mucin-like glycoprotein involved in 

mechanical strain and dendrite formation, fimbrin, involved in dendrite formation, 

CD44, associated with cytoskeleton, dentin matrix protein 1 (DMP1), involved in 

phosphate metabolism and sclerostin, shown to inhibit bone formation (Rosen, 2013). 

Sclerostin is encoded by the SOST gene, for which mutations were associated with 

patients affected by Sclerosteosis, where bone mass is increased (Balemans et al, 

2001).  
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Chondrocytes 

Chondrocytes have a crucial role in embryonic skeletal development and limb 

patterning, where they form a cartilage model for future ossification. They differentiate 

from MSCs. Typically, during embryogenesis, MSCs will condense to form either 

chondrocytes or osteoblasts through the expression Sox9 or Runx2 pathways. As 

described in the osteoblast section above, an increased Runx2 will trigger osteoblast 

differentiation by mediating the Wnt/β-catenin and the Ihh pathways. Once expressing 

high levels of Sox9 however, chondrocyte differentiation is prioritised. They are also 

present in adult cartilage at the end of long bones, which tempers mechanical loading 

and ease the movement of the articulations (Rosen, 2013).  

  



Chapter 1: Introduction 

17 
 

1.1.3 Bone remodelling 

Maintenance and repair of the skeleton occur in the process of bone remodelling. This 

process is performed by a coupled effort from osteoclasts and osteoblasts and involves 

the removal of the old bone to be replaced by new bone. This temporary arrangement 

is called basic multicellular unit (BMU). It has been estimated that 2 to 10% of the 

adult skeletal mass is being renewed every year (Fleisch, 2000).  

The bone remodelling is organised in four steps: activation, resorption, reversal, and 

formation. This is summarised in Figure 1.5. 

Activation 

Firstly, mononuclear osteoclast precursors are recruited from the marrow to the area 

to be resorbed. Quiescent lining osteoblasts are activated and produce RANKL and M-

CSF, leading to the fusion of osteoclast precursors into multinucleated polykaryons. 

Active osteoclasts attach to the bone through integrins like αvβ3, triggering re-

polarization and structural re-organisation of the cell. Podosomes, made of the actin 

cytoskeleton of the cell, form a strong circular binding called actin ring, between the 

cell and the bone. It create the sealing zone which will contain the acidic environment. 

The cell membrane of the osteoclast broadens to the inside of the sealed zone and form 

the ruffled border responsible for protein and mineral exchanges (Figure 1.4). MMP9, 

cathepsin K, protons and chloride ions are synthesised by osteoclasts, and secreted in 

the cell/bone surface to create a low pH environment rich in proteases (Clarke, 2008).  
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Resorption 

The bone is degraded in two ways. First, the acidic environment created by the 

accumulation of protons and chloride ions in the ruffled border via (respectively) the 

ATPase pumps and chloride channels, will dissolve the non-organic content of the 

bone. Proteases such as MMP9 and cathepsin K will then be responsible for the 

degradation of the newly exposed organic matter, such as type I collagen. The 

degraded molecules then undergo endocytosis and are transported in cellular vesicles 

where they will travel to the outer membrane of the cell and be released in the 

extracellular compartment. This will create a resorption pit in the bone. The osteoclast 

resorption is thought to take up to 4 weeks between each cycle and is done under the 

control of mediators like RANKL, OPG, M-CSF, or IL-6 (Clarke, 2008). 

Reversal 

Cavities formed in the bone by osteoclastic resorption will now be prepared for the 

addition of newly formed bone by osteoblasts. The transition, although not fully 

understood, is thought to be initiated by TGF-β which is released from the bone matrix 

during resorption and stimulates bone formation (Clarke, 2008).  

Additional membrane bound factors called ephrins (ligands) and Ephs (receptors) act 

as mediators through inter-cellular contact. Although this is not well understood, such 

interactions result in the activation of bi-directional signalling in the Eph-cell (forward 

signalling) and the ephrin-cell (reverse signalling). Ephrin/Eph roles in 

osteoclast/osteoblast interactions and bone metabolism have been described for EphB4 

and ephrinB2 (Brandi et al, 1995).  
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Forward signalling from the activation of osteoblast bearing-EphB4 by osteoclast 

bearing-ephrinB2 results in increased calvarial osteoblast differentiation through the 

Osx and Runx2 transcription factors. Reverse signalling, triggered by the binding of 

EphB4 with ephrinB2, was found to inhibit osteoclast differentiation from BMDMs 

(Brandi et al, 1995). Additionally, protein and mRNA levels of EphrinB2 were 

detected in osteoblasts and osteocytes and a dose dependent increase of EphrinB2 was 

established in calvarial osteoblasts following treatment with PTH (Allan et al, 2008). 

mRNA levels of EphrinB2 were found to be constant during differentiation of Kusa 

4b10 stromal osteoblastic cells (Allan et al, 2008). Although this has not yet been 

studied in the context of the BMU, the cellular proximity between osteoclasts and 

osteoblasts occurring during the reversal phase makes is a perfect environment for 

such interactions. Ephrin and Eph signalling have also been investigated in the context 

of PDB and are described in Section 1.5.4. 

Formation 

Bone formation is a process which takes up to 6 months. In addition to those present 

in the pit, mature osteoblasts are differentiated from recruited osteoblast precursors 

through activation of Runx2 and Osx as described in Section 1.1.2. This will induce 

the activation of osteoblast genes such as OPN, OSN, OCN or ALP. Extracellular 

matrix, mainly composed of type I collagen, is then synthesized to create an osteoid 

(Clarke, 2008).  
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Formation of hydroxyapatite crystals occurs within extracellular membrane-bound 

matrix vesicles (MVs) formed by osteoblast membrane blebbing. For this, calcium 

phosphate concentrates in MVs following phosphatase activity until precipitating. 

Once the vesicles are broken down, the newly formed hydroxyapatite crystals join the 

organic matrix and give strength to the bone. Calcium ions come in the MVs through 

Ca2+ ion channels, while inorganic phosphate (Pi) comes from the enzymatic 

degradation of inorganic pyrophosphate (PPi), a mineralisation inhibitor (Houston et 

al, 2004). The most described phosphatase is ALP (Narisawa et al, 2007), which binds 

to the outer face of MVs and controls the extracellular PPi/Pi ratio. Pi is thought to 

then enter the MVs through phosphate transporters (Roberts et al, 2004). PHOSPHO-

1, located in the MVs, has also been showed to generate Pi by hydrolysing 

phosphoethanolamine and phosphocholine (Roberts et al, 2004). PHOSPHO-1 is a 

phosphohydrolase highly present in mineralised tissues and has an important role in 

endochondral ossification (Houston et al, 2004). Mice lacking PHOSPHO-1 showed 

fractures, long bone deformity, Osteomalacia and Scoliosis (Yadav et al, 2011).  

It has been suggested that the SOST gene is associated with the cessation of osteoblast 

activity. Sclerostin has been shown to inhibit osteoblast activity and differentiation and 

decrease ALP expression in hMSC cell cultures. hMCS upon treatment with sclerostin 

also show an increased apoptotic phenotype (Sutherland et al, 2004).  

Once the mineralisation is over, most of the osteoblasts undergo apoptosis (50-70%), 

while the others will be either buried in the newly formed bone to become osteocytes 

or differentiated into lining cells again (Clarke, 2008).  
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Figure 1.5: Schematic illustration of the bone remodelling.  

Activated osteoclasts attach to bone to start the degradation process. Reversal phase involves removal of osteoclasts and recruitment of pre-osteoblasts 
found in the resorbed environment and from lining cells. Once differentiated into mature osteoblasts, they will start forming an osteoid, which will then 
be mineralised and becomes the new bone. The osteoblasts left will become either lining cells, or osteocytes if embedded with the newly formed bone 
until remodelling is needed again. Adapted using Servier medical art (Servier, 2017).
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1.2 PAGET'S DISEASE OF BONE 

1.2.1 Historical aspect 

PDB was first described in 1877 by Sir James Paget, a highly respected English 

surgeon and pathologist. He then named it Osteitis Deformans, and suspected it to be 

an inflammatory bone disorder as described in his publication called “On a form of 

chronic inflammation of bones” (Paget, 1877). 

 
Figure 1.6: Sir James Paget and Paget’s disease of bone.  

A/ Photography of Sir James Paget (Paget's Association, 2017). B/ Illustrations drawn by Sir 
James Paget of his first Osteitis Deformans case (Paget, 1877). 
 

We now know that PDB is a disorder of bone remodelling, and is today the second 

most common skeletal disorder after osteoporosis. It is a focal skeletal disorder, affects 

one or multiple sites at a time and is characterised by increased bone turnover. 

Although many patients are asymptomatic, the fragile and woven Pagetic bone can 

progress to cause significant bone pain, fractures and additional skeletal and neural 

complications (Ralston, 2008b).  
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Although the cause of PDB is not fully understood yet, segregation of the disease 

within family members led to genetic investigations. Mutations in the SQSTM1 gene 

were detected in about 40% of familial cases and 10% of sporadic cases (Section 

1.4.1). Additional candidate genes have been suggested and associated with PDB and 

PDB-like disorders, and are described in Section 1.4. Additional factors such as diet, 

pet ownership, repetitive mechanical loading and environmental toxins have also been 

considered to be involved in the development of PDB (Section 1.5.1), but the true role 

of these factors is still unclear (Ralston, 2008b).  

1.2.2 Epidemiology 

The incidence of PDB is quite low in younger subjects, but increases steeply in patients 

aged over 55. Overall prevalence in the UK is estimated around 8% in men and 5% of 

women over the age of 80 (Van Staa et al, 2002).  

Great geographical differences in the prevalence of PDB have been observed. During 

the first epidemiological studies, a particularly high incidence was found in 

Lancashire, an industrial area from the North West of England (8.3%) (Barker et al, 

1980). An archaeological study also reinforced the hypothesis of a Western European 

origin of the disease, as 94% of the European roman and medieval Pagetic samples 

examined were excavated in Britain (Mays, 2010).  

PDB is also commonly found in countries with a high proportion of British migrants 

such as Australia and New Zealand (Gardner et al, 1978), North America (Altman et 

al, 2000) and South Africa (Guyer & Chamberlain, 1988).  
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Affected patients have also been reported in Northwest Europe such as France (up to 

2.7%), Spain (up to 1.3%), Germany (up to 1.3%) and Italy (up to 1%) (Detheridge et 

al, 1982). More recent studies have shown high numbers of affected cases in rural areas 

of Italy (Merlotti et al, 2005) and Spain (Miron-Canelo et al, 1997). No difference of 

prevalence in PDB was reported between African Americans and Caucasian America, 

in contradiction to the low prevalence in Africa (Guyer & Chamberlain, 1980). The 

reasons are unclear, but are suspected to be due to genetic admixture in the US. 

Although PDB is rarely observed in non-Caucasian populations, several recent cases 

of patients with Chinese (Wat et al, 2013), Indian (Bhadada et al, 2006), Japanese 

(Hashimoto et al, 2006) or Saudi Arabian (Alshaikh et al, 2011) descent have been 

reported and the prevalence in these countries may be underestimated. 

A general decrease in prevalence of PDB has been noticed. A decline of about 40% 

has been described in the UK over the past two decades, with Lancashire keeping the 

highest prevalence in the country, estimated at 3.7% (Cooper et al, 1999). Additional 

reductions of prevalence have been recorded, with almost 50% in Australia (Cundy, 

2006) and 30% in Minnesota (Tiegs et al, 2000).  
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1.2.3 Clinical features  

Typical bone from Pagetic sites have an increased density with a disorganised and 

weak structure (Figure 1.7), and a loss of osteon organisation. This results in a loss of 

mechanical strength, although lamellar patterns may still be present (Meunier et al, 

1980). 

 
Figure 1.7: Trabecular biopsies of Pagetic bones. 

WB = Woven bone; BM = Bone marrow; OC = Osteoclasts; LB = Lamellar bone. Courtesy 
of Prof Stuart H. Ralston. A/ Unstained section of bone visualised under polarised light. B/ 
Section of bone stained with toluidine blue.  
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PDB is a focal disorder which can be monostotic or polyostotic. It is observed on the 

axial skeleton with pelvis (67.4%), spine (39.2%), femur (33.3%), skull (24.6%) and 

tibia (19.0%) for the most common affected sites (Langston et al, 2007). 

Although many patients are asymptomatic, musculoskeletal complications are 

frequently encountered in patients with bone pain reported in up to 15% of cases (Tan 

& Ralston, 2014). Bone deformity is also a common feature of PDB, which can lead 

to numerous disabling complications. Osteoarthritis can occur particularly near joints 

of the lower limbs (Siris, 1993) and nervous system damages can result from 

compression of the brain and cranial nerves (Seton et al, 2011). Hearing loss is 

commonly seen when the petrous temporal bone is affected (Monsell et al, 1999), but 

vision impairment and headaches can also be the result of an enlarged skull (Seton et 

al, 2011). Dental issues can occur when facial bones are affected (Seton et al, 2011).  

Cardiovascular complications were also observed in severely affected patients, such 

as heart enlargement, arteriovenous malformation, aortic valves calcification or 

hypervascularisation (Hultgren, 1998; Parvizi et al, 2006). The latter could lead to 

excessive blood loss during bone fracture or surgery, making such interventions more 

challenging (Parvizi et al, 2006).  

Osteosarcoma may occur but is uncommon, affecting less than 1% of the cases 

(Hansen et al, 2006). Rare GCT of bone can also be associated with PDB, and is 

usually seen in the already affected sites (Gebhart et al, 1998). Most GCT cases were 

reported on patients of Italian descent (Rendina et al, 2015).  
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1.2.4 Cellular abnormalities  

Osteoclasts are abnormal in PDB. Their number, size, and number of nuclei are highly 

increased in Pagetic sites. As a result, a 7-fold increase of osteoclastic resorption 

surface has been reported in trabecular Pagetic iliac samples compared to controls 

(Meunier et al, 1980). The number of osteoclasts is also significantly increased in 

trabecular samples from active Pagetic biopsies compared to PDB samples from non-

active biopsies (Meunier et al, 1980).  

Changes in osteoblasts and increased bone formation in PDB cases are also reported, 

but are thought to be secondary to increased bone resorption. Osteoid surface has been 

reported to be about 4 times higher in Pagetic iliac samples compared to controls, and 

osteoid borders were shown to be thinner. Additionally, a 2-fold increase in 

mineralisation rate was also observed in Pagetic osteoblasts from the same samples 

compared to controls. This increase in bone formation was not found in the few 

lamellar areas from the sections analysed (Meunier et al, 1980).  
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1.3 MANAGEMENT OF PAGET’S DISEASE OF BONE 

Guidelines are widely available for the diagnosis and treatment of PDB. The diagnosis 

is firstly assessed by the search of active turnover sites or lesions, using bone 

scintigraphy and X-ray analysis of the bone. High total serum ALP is as a marker of 

elevated bone turnover, although normal levels of ALP can occur in patients with 

limited disease. The diagnosis is usually made because of the apparition of bone pain, 

however many cases are reported during the investigation of another disorder (Selby 

et al, 2002). 

1.3.1 Bisphosphonates 

The most common treatment given for patients are bisphosphonates. They are 

structural analogues of inorganic pyrophosphate and have a strong affinity for the 

mineral part of the bone (Roelofs et al, 2006).  

Two generations of bisphosphonates exist. The first one is represented by non-

nitrogen-containing bisphosphonates such as Clodronate and Etidronate. Essentially, 

they induce apoptosis in osteoclasts by converting into methylene-containing ATP 

analogues and accumulating in the cell cytoplasm (Roelofs et al, 2006).  

Nitrogen containing bisphosphonates such as Pamidronate, Ibandronate, Alendronate, 

Zoledronate, or Risedronate are more efficient in many ways including duration and 

method (oral or intravenous) of treatment. They are the second generation of 

bisphosphonates and are currently most widely used for the treatment of PDB. They 

inhibit farnesyl pyrophosphate (FPP) synthase, preventing the normal process of the 

mevalonate pathway (Roelofs et al, 2006).  
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This will block the post-translational modification of intracellular proteins such as 

small GTPases, which then accumulate in the cells. This leads to a disruption of the 

cellular trafficking and cellular apoptosis (Roelofs et al, 2006). Zoledronate offers a 

long duration of effect due to its strong inhibition with FPP synthase and high affinity 

for hydroxyapatite, and is therefore often the first treatment offered to Pagetic patients 

(Avramidis et al, 2008). 

The administration of bisphosphonates for asymptomatic cases has shown some 

efficiency in regulation of the total serum levels of ALP but there is no evidence that 

it can prevent complications (Langston et al, 2010b).  

The PRISM study (Paget’s disease of bone: a randomized trial of intensive versus 

symptomatic management (Langston et al, 2010b)) investigated the effects of intensive 

bisphosphonate treatment on symptomatic patients, against a control group undergoing 

symptomatic therapy (anti-inflammatory or analgesics – bisphosphonates if needed). 

As a result, the patients of the intensive group showed a decrease in ALP serum levels 

compared to the symptomatic group, but there was no difference in their quality of life, 

numbers of clinical fractures or orthopaedic surgeries.  

The ongoing ZiPP study (Zoledronate in the Prevention of Paget’s, 

ISRCTN11616770) was initiated in 2009 and aims at investigating the prevention of 

focal bone lesions with Zoledronic acid treatment on patients with SQSTM1-mediated 

PDB. It also aims to evaluate the impact of the mutation screening on the quality of 

life on SQSTM1 positive and negative PDB patients. 
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1.3.2 Other treatments 

Other treatments can also be used for the therapy of PDB, while some others are still 

under investigation. 

Denosumab is one of the most common alternative to bisphosphonates in osteoporosis. 

It is a human monoclonal antibody targeting RANKL and inhibits the NFκB pathway. 

Denosumab is beneficial for cancer-associated bone disease and post-menopausal 

osteoporosis (Romas, 2009). It is administrated subcutaneously. Recent case reports 

have shown its efficiency in reducing serum levels of ALP and bone turnover (Reid et 

al, 2016; Schwarz et al, 2012). 

Non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics can also help to 

manage bone pain. The PRISM study showed that 49.9% of the symptomatic group 

were administrated bisphosphonates, while 75.6% of the patients in the intensive group 

received it (P < 0.001). All patients from both groups received analgesic during the 

trial (Langston et al, 2010b).  

Calcitonin treatment is a less commonly used alternative to bisphosphonates. It has a 

short duration of action and can cause nausea and flushing. It is now offered by 

physicians for short term use, only for Pagetic patients for whom all other alternative 

treatment were insufficient (Selby et al, 2002). 
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1.3.3 Non-pharmacologic treatments 

Vitamin D and calcium supplements might be necessary during bisphosphonate 

treatment in order to reduce the risk of hypocalcaemia (Wat, 2014). 

Acupuncture, hydrotherapy and physiotherapy can help improving muscle strength 

and maintaining joint flexibility. Occupational therapy, use of orthotics and walking 

devices for patients with affected lower limbs can also improve quality of life 

(Langston & Ralston, 2004).  

1.3.4 Monitoring  

As no definite cure exists for PDB, the follow-up of the disease activity and effect of 

treatments is a lifelong monitoring. The frequency of the monitoring essentially 

depends on the activity of the disease and symptoms. 

Following a course of bisphosphonates, a significant reduction of serum ALP levels 

can be detected from the first 3 to 6 months. It is advised by the guidelines to check 

the level of serum ALP periodically thereafter (Selby et al, 2002).  

1.3.5 Surgery 

Surgery for PDB may be necessary in about 7% of the patients and can improve their 

quality of life significantly (Langston et al, 2010a). It is usually considered for the 

purpose of correcting orthopaedic complications such as osteoarthropathy, fracture 

management or spinal stenosis (Parvizi et al, 2006).  

Surgery on PDB patients can be quite challenging. Delayed union from fractures has 

been observed in Pagetic bone, particularly in patients with active PDB (Kaplan, 

1994).  
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The angular and irregular shapes of the affected bones complicate the surgeries 

(Kaplan, 1994). Hypervascularity also increases the risk of blood loss, and although 

the efficiency is still unclear, the administration of bisphosphonates before surgery is 

often given (Parvizi et al, 2006). Cochlear implantations for patients with affected 

temporal bone and suffering deafness were proven to be efficient, and surgeries were 

reported to have reversed hearing loss (Takano et al, 2014). Heart enlargement in 

patients with active PDB could lead to high output cardiac failure and must be 

monitored carefully (Parvizi et al, 2006).  
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1.4 GENETICS AND PAGET'S 

As mentioned in Section 1.2.1, PDB has a strong genetic component which led to 

various pedigree and genetic studies. It was found that members from affected families 

have 7 times more chance to develop the disease compared to a patient without affected 

relatives (Siris, 1994). Although assessing family history can also be a difficult task 

considering that many patients are asymptomatic, pedigree studies concluded that PDB 

is inherited in an autosomal dominant fashion with high, but incomplete penetrance 

(Ralston & Albagha, 2014).  

This part of the introduction focuses on the candidate and causing genes of PDB. PDB-

like disorders, which share many clinical features with classic PDB, are also presented.  

The loci described were found using linkage analyses in affected families. More 

specific investigations like genome wide association studies (GWAS), whole genome 

sequencing, whole exome sequencing or Sanger sequencing enabled the detection of 

several genes of interest.  
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1.4.1 Classical Paget’s 

The detail of genes associated with classic PDB is summarised in Table 1.1.  

Table 1.1: Summary of genes associated with Paget’s disease of Bone. 
Gene (Protein) Mutation(s) Mechanism described 

SQSTM1  
(p62) 

28 mutations detected in PDB 
cases. p.P392L has the largest 
effect and is associated with 
more severe PDB. 

Most mutations are located in UBA domain 
and reduce inhibition of NFκB signalling by 
affecting ubiquitin protein binding. 

TNFRSF11A 
(RANK) 

4 SNPs and 2 missense 
mutations have been detected 
in Pagetic cohorts. 

Additional effect of p.V192A with p.P392L on 
increasing NFκB activity. 

CSF1  
(M-CSF) 

3 SNPs have been detected in 
Pagetic cohorts. 

M-CSF is involved in osteoclastogenesis but 
the role of the variants is still unknown in PDB. 

GSTM4 
(GSTM4) 

1 SNP has been detected in 
Pagetic cohorts. 

GSTM4 has an NRF-2 binding site. NRF-2 is 
a transcription factor involved in the regulation 
of cytoprotective genes and has been described 
in PDB: p.S349T mutation in SQSTM1 impairs 
binding to Keap1, which controls NRF-2.  

ZNF687 
(ZNF687) 

1 missense mutation has been 
associated with PDB. 

p.S242I is associated with a younger age of 
onset and an increased number of Pagetic sites 
in patients. 

TNRFSF11B 
(OPG) 

1 SNP and 2 missense 
mutations were detected in 
Pagetic cases. 

OPG levels are increased in serums of PDB 
patients. p.T950C and p.G1181C were 
associated with female cases. p.G1181C was 
suggested to affect OPG transport through the 
cytoplasm. 

OPTN  
(OPTN) 

2 SNPs were associated with 
PDB. 

Silencing Optn increases osteoclastogenesis 
and NFκB signalling. OPTN also interacts 
with CYLD, which inhibits NFκB signalling. 

TM7SF4  
(DC-STAMP) 

1 SNP and one missense 
mutation were detected in 
Pagetic patients. 

An increased risk allele was associated with 
DCSTAMP and other genes. DCSTAMP has 
been associated with osteoclastogenesis. 

NUP205  
(NUP 205) 

1 SNP was associated with 
PDB in patients carrying the 
p.P392L mutation in 
SQSTM1. 

NUP 205 is involved in cellular trafficking, but 
its role in PDB is unknown. 

CNOT4 
(CNOT4) 

1 SNP was associated with 
PDB. 

CNOT4 is involved in ubiquitin mechanisms 
but its role in PDB is unknown. 

VCP 
(VCP/p97) 

1 SNP was detected in PDB 
patients. 

The variant is located upstream of the gene and 
has been suggested to have an effect on the 
expression of VCP. Autophagy implications 
are also a possibility. 

PML 
(PML) 

1 coding variant was 
associated with PDB. 

The mechanism of this variant is unknown but 
PML is involved in bone metabolism and 
regulates TGF-β signalling. 
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5q35 locus (SQSTM1) 

p62 is a protein encoded by the gene Sequestosome 1 (SQSTM1). It is a scaffolding 

protein in the NFκB signalling pathway and is involved in osteoclast differentiation 

and activity, following RANK/RANKL activation (Chung & Van Hul, 2012). p62 has 

many motifs, such as (from the N-terminal to the C-terminal) a Src-Homology 2 (SH2) 

domain, an acidic interaction domain which binds to atypical PKCs (aPKCs), a ZZ 

finger which interacts with aPKCs recruiting receptor interaction proteins (RIP) (Sanz 

et al, 2000), a binding site for TNF receptor-associated factor 6 (TRAF6), and two 

PEST sequences rich in proline, glutamic acid, serine, and threonine amino acids 

(Geetha & Wooten, 2002). Finally, p62 has a LC3 Interacting region (LIR) and a 

ubiquitin-associated (UBA) domain (Chung & Van Hul, 2012). 

It is thought that under normal conditions, p62 polyubiquitylates the TRAF6 protein, 

following binding of RANKL to the RANK receptor. This interaction is regulated by 

the UBA domain of p62. p62 then interacts with aPKC, a protein involved in cell 

survival, thereby activating the IKK (Iκβ kinase) complex, which in turn activates IkB 

(Inhibitor of NFκB). VCP-mediated degradation of Ikβ releases NFκB, which 

translocates to the nucleus and proceeds to the activation of osteoclast specific genes 

(Geetha & Wooten, 2002) (Figure 1.8). p62 is also part of a negative regulation of 

NFκB by recruiting the deubiquitinating CYLD protein. CYLD binds to TRAF6 to 

avoid over-ubiquitination of TRAF6. This results in a decrease of NFκB signalling and 

a reduced osteoclast activity (Jin et al, 2008) (Figure 1.8).  
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Figure 1.8: Regulation of the bone resorption activity through the NFκB pathway (Rea et al, 2013).  

The first level of bone resorption regulation is at the cell membrane. RANKL can either bind to a decoy receptor called OPG, or to RANK. Once paired 
with the latter, a complex is formed with RANK, p62 and TRAF6, and TRAF6 is polyubiquitinated by p62. aPKC binds to this complex to then activate 
the IKK complex. This will result in the phosphorylation and VCP-mediated ubiquitination of Ikβ which will be degraded through a proteasome. NFκB 
is then released to translocate to the nucleus to process transcription of osteoclast activity promoting genes. Intervention of CYLD before the 
polyubiquitination results in the interruption of the downstream signalling. Adapted using Servier medical art (Servier, 2017).
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The SQSTM1 locus was associated with PDB by two linkage analyses and positional 

cloning performed on familial cases by two independent groups (Hocking et al, 2001; 

Laurin et al, 2001). Saturation mapping was then investigated in French Canadian 

families which refined the region of interest to a 300kb area, including the SQSTM1 

gene. Subsequent analyses of this gene revealed the presence of the p.P392L mutation 

in 46% of the members analysed from 24 families and 16% of the sporadic affected 

cases (Laurin et al, 2002). Since then, 27 additional mutations in the SQSTM1 gene 

associated with PDB from worldwide cohorts were described. They are overall 

detected in 20-50% of the familial cases and in about 5-15% of the sporadic cases, 

with p.P392L being the most common mutation (Rea et al, 2013).  

Most of the mutations related to PDB were detected in or around the UBA domain, 

which has a key role in the NFκB pathway and autophagy. It is involved in the transport 

of ubiquitinated proteins to autophagosomes through the binding of LC3 (Chung & 

Van Hul, 2012). Mutations in p62 are also thought to prevent the recruitment and 

binding to CYLD, thus reducing the inhibitory effect of p62 on the RANK/RANKL 

signalling pathway and increasing osteoclast activity (Rea et al, 2009). Additionally, 

Cyld-/- mice were found to develop osteoporosis by increasing osteoclast 

differentiation and activity, but no changes were observed in osteoblasts (Jin et al, 

2008). 

In mice, up to 95% of the homozygous p.P394L+/+ (equivalent to the p.P392L mutation 

in human) showed a PDB phenotype by 12 months of age (Daroszewska et al, 2011). 

Contradictorily, an earlier study on p.P394L+/+ mice aged up to 12 months showed no 

Pagetic bone phenotype (Hiruma et al, 2008).   
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This last study was however performed on the analysis of the first five lumbar 

vertebrae using histomorphometry, while Daroszewska and colleagues performed a 

more sensitive full microCT analysis on the lower limbs and the lumbar vertebrae and 

only 1 mouse out of 8 showed vertebrae abnormalities (Daroszewska et al, 2011). 

Mutations in the SQSTM1 gene have been associated with a more severe form of PDB, 

such as a significant younger age of diagnosis, a higher number of affected bones, and 

an increased need for orthopaedic surgeries and bisphosphonate treatments (Morissette 

et al, 2006; Visconti et al, 2010). This was particularly true in mutations leading to the 

truncation of the p62 as compared with missense mutations (Hocking et al, 2004). 

Offspring of PDB patients carrying the p.P392L mutation have also been reported, 

where some were healthy and others had a delayed PDB (Cundy et al, 2015). This 

emphasises the incomplete penetrance of the disease, as well as the possibility of an 

additional genetic or environmental marker in the development of PDB. 

18q21-22 locus (TNFRSF11A and BCL2) 

Associations for rs663354, rs2980996, rs2957128 and rs3018362 in this locus were 

reported by a GWAS performed on a Pagetic cohort (Albagha et al, 2010). Borderline 

significance was described for the last two. These polymorphisms are also near 

recombination sites which are involved in genetic rearrangements of DNA segments. 

They are both located downstream the TNFRSF11A gene which encodes for RANK 

(Albagha et al, 2010), and were detected in a Dutch and British Pagetic cohorts (Chung 

et al, 2010).  
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A recent study has detected the coding variants p.H141Y and p.V192A in Italian 

subjects and confirmed an increase of the NFκB signalling in presence of p.192A, 

especially when co-transfected with p.P392L mutations compared to the p.192A 

mutated alone or the SQSTM1 mutated alone (Gianfrancesco et al, 2012).  

BCL2, in the same locus, was also considered as a gene candidate for PDB as it shows 

increased mRNA and protein levels in Pagetic individuals. Its promoter region has 

been sequenced on 20 patients but no variant has been associated with the disease. 

BCL2 encodes an apoptosis suppressor, but has been not been well investigated and 

further work is necessary to understand its role in bone and PDB (Brandwood et al, 

2003). 

1p13 locus (CSF1) 

In 2010, a GWAS showed strong signals for rs10494112, rs499345 and rs484959 in 

the locus 1p13 of PDB patients. This locus is localised upstream the CSF1 gene. 

Independent associations were described for rs10494112 and rs484959, with a stronger 

signal for the latter (Albagha et al, 2010). Those three polymorphisms also reached 

GWAS significance in a British and Dutch study, with a stronger effect for rs484959 

in the Belgium cohort (Chung et al, 2010). Allelic association in a French Canadian 

cohort has also revealed the polymorphisms rs499345 and rs10494112, with a stronger 

effect for rs499345 (Beauregard et al, 2014). 
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In the same locus, the variant rs650985 located in the GSTM4 gene was also found in 

a French Canadian Pagetic cohort (Beauregard et al, 2014). The protein GSTM4 has a 

NRF-2 binding site. The Nrf2 transcription factor expression is involved in mediating 

gene response to cellular stress and has been recently associated with the p.S349T 

mutation in SQSTM1. The p.S349T variant is not present in the UBA domain of p62 

but interferes with osteoclast activity by impairing the binding of p62 to Keap1, which 

binds to NRF-2 (Wright et al, 2013).  

1q21.3 locus (ZNF687) 

The locus 1q21.3 was associated with PDB using a genome-wide linkage analysis on 

a large affected Italian family (Gianfrancesco et al, 2013). p.S242I has been recently 

described in the ZNF687 gene of the affected members using whole genome 

sequencing and was associated with an increased number of affected sites and 

decreased age of onset. In silico predictions suggests that the mutation is highly 

pathogenic (Divisato et al, 2016).  

Very little is known about the role of ZNF687, but recent mass spectrometry based 

analyses showed that it is part of the Z3 transcriptional co-regulator complex, along 

with ZMYND8 and ZNF592. It has also been described to have C2H2 zinc fingers 

which interact with DNA (Malovannaya et al, 2011). ChIP-seq analysis on peripheral 

blood also revealed that ZNF687 is a downstream target of the NFκB pathway 

(Divisato et al, 2016).  



Chapter 1: Introduction 

41 
 

8q24.2 locus (TNFRSF11B) 

Shortly after the involvement of TNFRSF11A in FEO (Section 1.4.2), investigations 

of the TNFRSF11B gene were pursued for PDB. TNRFSF11B encodes the OPG 

protein. In Pagetic samples, OPG serum levels are increased (Alvarez et al, 2003). 

Several mutations were described in the TNRFSF11B gene of Pagetic individuals. 

Firstly, a 400 + 4 C>T intronic variation (intron 2) was more common in familial cases 

suggesting a potential allelic predisposition (Wuyts et al, 2001). PDB was associated 

with the more common variant p.G1181C (Daroszewska et al, 2004). Another study 

performed on a Belgian cohort investigated the gender specificity of variants in PDB 

and the polymorphisms p.T950C and p.G1181C were significantly associated with 

PDB in female cases only (P = 0.026 and 0.007, respectively). The same outcome was 

found in a UK cohort (Beyens et al, 2007). The variant p.G1181C was also showed to 

be in linkage disequilibrium (LD) with p.T950C and was suggested to affect the 

transport of OPG through the cell cytoplasm, however further work is necessary to 

prove such speculations (Daroszewska et al, 2004). 

10p13 locus (OPTN) 

The locus 10p13 was first described by genome wide search in Pagetic British families 

not mutated for SQSTM1 (Lucas et al, 2008). Three GWAS confirmed the interest of 

this locus for PDB as rs1561570, a polymorphism within an intronic region of the 

Optineurin (OPTN) gene, showed a strong association with the disease (Albagha et al, 

2010; Albagha et al, 2011; Chung et al, 2010). The rs825411 variant was also 

associated with PDB in a meta-analysis of two of those GWAS, combining British, 

Belgium and Dutch cohorts (Chung et al, 2010). 
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OPTN stands for optic neuropathy inducing. Mutations in this gene have been 

associated with glaucoma (Rezaie et al, 2002) and more recently, Amyotrophic lateral 

sclerosis (ALS) (Maruyama et al, 2010). It is a multifunctional protein, involved in 

membrane vesicle trafficking, signal transduction, autophagy, cell survival, Golgi 

ribbon formation and mitosis. Among many structural domains, OPTN has a ubiquitin-

binding domain (UBD) and an NFκB essential modulator (NEMO)-like domain. 

NEMO participates in the activation of NFκB, by binding to the K63-linked 

polyubiquitinated chain of RIP, which interacts with p62. It was shown that these two 

domains confers OPTN the same ability in order to compete with NEMO, necessary 

to activate NFκB. Over-expression of OPTN in HEK293 cells has shown an inhibition 

of NFκB (Zhu et al, 2007). OPTN has an important role in autophagy regulation, by 

binding to ubiquitinated proteins and LC3 (Wong & Holzbaur, 2014).  

A recent study showed that the silencing of Optn using shRNA enhances 

differentiation of osteoclasts from BMDMs and stimulates NFκB signalling. It was 

also showed that the mutation p.D477N (rs1561570) impairs binding between OPTN 

and CYLD (Obaid et al, 2015). RANKL, although involved in osteoclastogenesis, 

negatively regulates osteoclast activity by inducing IFNβ expression. This same study 

demonstrates that osteoclasts from OptnD477N/D477N mice have a lower increase in IFNβ 

compared to WT mice (Obaid et al, 2015). 
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8q22.3 locus (TM7SF4) 

The locus 8q22 was initially associated with PDB by GWAS with the variant 

rs2458413, near the transmembrane 7 superfamily member 4 gene (TM7SF4) 

(Albagha et al, 2011). This polymorphism was also detected in a second GWAS, 

although of borderline significance, in a Belgian and Dutch study (Chung et al, 2010). 

However, when combined with the results of Albagha and colleagues’ GWAS, 

rs2458413 reached significance. This last study also suggests that the cumulated risk 

alleles within TM7SF4, CSF1, OPTN and TNFRSF11A increase the risk of developing 

PDB by up to 67% (Chung et al, 2010).  

The p.L397F missense (rs62620995) was also recently detected by sequencing on a 

French Canadian cohort (although of borderline significance) and categorised as 

probably damaging by in situ investigations (Beauregard et al, 2014). The TM7SF4 

gene encodes dendritic cells - specific transmembrane protein (DC-STAMP). It is 

preferentially, as its name indicates, expressed in dendritic cells (Hartgers et al, 2000) 

and is a strong candidate gene for PDB.  

DC-STAMP was associated with increased osteoclastogenesis upon RANKL 

stimulation (Kukita et al, 2004) and higher bone mass and inhibition of osteoclast 

precursor’s fusion were observed in mice lacking Dcstamp (Yagi et al, 2005). 
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7q33 locus (NUP 205 and CNOT4) 

The locus 7q33 was firstly associated with PDB by GWAS, with a strong signal for 

the variant rs4294134, located in the 22nd intron of the Nucleoporin 205 gene (NUP 

205) (Albagha et al, 2011). Although nominal, an allelic association was established 

between rs4294134 and PDB using genome sequencing study in patients carrying the 

p.P392L mutation (Beauregard et al, 2014). NUP 205 is involved in the regulation of 

macromolecules trafficking between the cytoplasm and nucleus via Nuclear Pore 

Complexes (NPC), which could be an interesting characteristic to consider knowing 

the importance of molecular traffic in osteoclasts during bone resorption (Section 

1.1.2) (Grandi et al, 1997).  

CNOT4, also present in this locus, produces a protein with an E3 ubiquitin ligase 

activity. The p.A7G change was detected in PDB patients, however was predicted to 

be benign. CNOT4 could however be potentially relevant in the crucial ubiquitin 

mechanism observed in osteoclastogenesis (Beauregard et al, 2014). Further 

investigations are necessary to confirm such suggestions. 

9p13.3-p12 locus (VCP) 

The chromosomic locus 9p13.3-p12 includes the VCP gene, which encodes the 

VCP/p97 protein. VCP is a member of the type II ATPases associated with a variety 

of activities (AAA) proteins. As presented in Figure 1.8, it is involved in the activation 

of NFκB through ubiquitin mediated proteasome degradation of phosphorylated IκBα, 

an NFκB inhibitor (Lucas et al, 2006).  
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Although the first genetic screening study of PDB families revealed no association 

with VCP (Lucas et al, 2006), a second one performed on non-carriers of the 

SQSTM1/p.P392L mutation showed an allelic association with rs565070. This variant 

is however located 2kb downstream of VCP, and in silico prediction to excluded any 

damaging effect on the protein (Chung et al, 2011).  

15q24.1 locus (PML) 

The p.F645L variant (rs5742915), located in the promyelocytic leukemia (PML) gene, 

was significantly associated with PDB in a GWAS and is surrounded by two 

recombination hotspots (Albagha et al, 2011). An allelic association for PDB was also 

detected in a French Canadian cohort with p.F645L, particularly in patients carrying 

the SQSTM1/p.P392L mutation (Beauregard et al, 2014). PML was shown to be a 

regulator of TGF-β signalling. Although known to be involved in bone resorption and 

bone metabolism, the role of PML has not yet been established in the bone 

microenvironment (Lin et al, 2004). 

14q32.12 locus (RIN3) 

The 14q32 locus was initially associated with areal bone mineral density in healthy 

individuals, with a greater significance in men (Peacock et al, 2009). In the purpose of 

identifying new loci involved in the development of PDB, a GWAS was performed in 

our group in 2010 using 692 PDB cases of UK origin (597 from the PRISM study, 

others from UK and British migrant countries), against 1002 Scottish controls. The 

cases were not carrying SQSTM1 mutations.   
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As a result, the variant rs10498635, located in the Rab and Ras interactor 3 gene (RIN3) 

was detected. It showed a borderline significance to PDB with a p-value of 9.69x10-8 

(OR = 0.66); while the cut-off point was P = 5x10-8 (Albagha et al, 2010). In order to 

confirm those findings, another GWAS was performed in 2011 with a more 

appropriate control group from the British 1958 birth cohort, as the samples were 

collected from all over the UK. A total of 749 PDB individuals (692 previous cases 

and 57 newly recruited samples from the PRISM study) and 2930 controls were used. 

The rs10498635variant was detected again, and this time showed a strong association 

with the disease (P = 2.55x10−11; OR = 1.44) (Albagha et al, 2011). Recombination 

rates in the 14q32 locus were investigated using the European haplotype data from 

Hapmap as a reference (release 22), and recombination sites were found around the 

rs10498635 variant and throughout the RIN3 gene (between exons 3 and 8), increasing 

the candidacy of RIN3 in the context of PDB. 

In the purpose of identifying additional rare variants in loci described from previous 

GWAS (Albagha et al, 2010; Albagha et al, 2011), Beauregard and colleagues 

sequenced candidate genes and genotyped previously described SNP in affected 

French-Canadian samples, along with healthy controls. The rs10498635 variant 

showed no association with PDB (Beauregard et al, 2014). 

Protein expression of RIN3 was investigated in several human tissues and was found 

to be mostly expressed in peripheral blood cells. It was however also present in brain, 

muscle and colon (Kajiho et al, 2003). Another study showed that RIN3 is highly 

expressed in human mast cells. However, levels of expression in B cell, myeloblast, T 

cell, fibroblast and glioblastoma cell lines were found to be low (Janson et al, 2012). 
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RIN3 is part of the RIN family, along with RIN1 and RIN2. RIN3 is a guanine 

exchange factor (GEF) and is able to activate small GTPases. Small GTPases are 

divided in five families: Ras, Rho, Ran, Arf and Rab where Ras is currently the biggest 

and most described family (Itzstein et al, 2011). Small GTPases are activated when 

bound to a GTP, and inactivated when bound to a GDP. This inactivation is performed 

by GAP proteins (GTPase-activating proteins), which are enzymes responsible for 

hydrolysing a GTP molecule down to a GDP. Inactivated small GTPases can be 

activated again through a GEF protein such as RIN3, by binding to a GTP (Figure 1.9).  

 
Figure 1.9: Schema of GTPase activation cycle (Nielsen et al, 2008).  

The activation cycle of small GTPases is controlled by GEF proteins (guanine nucleotide 
exchange factor), through GTP binding. This results in the appropriate mediation of the 
cellular downstream signalling. Small GTPases are inactivated by GAP proteins (GTPase-
activating protein), responsible for GTP hydrolyse into a GDP. Adapted using Servier medical 
art (Servier, 2017). 
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Small GTPases are involved in the mediation of downstream cellular signalling, 

controlled by their activation status (Itzstein et al, 2011). Their role in highly 

metabolically active osteoclasts is crucial and places RIN3 as an interesting candidate 

gene for PDB. Small GTPases from the Arf and Rho families have been associated 

with many steps of the cytoskeletal polarisation during osteoclast activation. Rab small 

GTPases are involved in vesicular trafficking, which is crucial for the formation and 

function of the ruffled border of the osteoclast, receptor recycling, and transport of 

proteins and enzymes in and out the resorption environment (Itzstein et al, 2011). Rab, 

but most importantly Ras small GTPases have been associated with cell survival and 

have a key role in autophagy as described in Section 1.5.3 (Ao et al, 2014). Finally, 

activation of small GTPases was found to be inhibited under bisphosphonate treatment 

(Itzstein et al, 2011). Up to this date, RIN3 has been described to activates Rab5, which 

is involved in the fusion of early endosomes (Kajiho et al, 2003) and Rab31, a homolog 

of Rab5, thought to be involved in vesicular trafficking to late endosomes (Kajiho et 

al, 2011).  

Little is known about the role of RIN3 in the bone microenvironment. Protein levels 

of RIN3 are low in Saos-2 (human osteosarcoma cell line) (Janson et al, 2012). RIN3 

was recently associated with lower limb bone mineral density (LL-BMD) in children 

using a meta-analysis of GWAS on total-body DXA scans where rs754388 was 

associated with the phenotype (Kemp et al, 2014). In this same study, RIN3 was found 

to be downregulated during osteoclast formation from human PBMCs, and expressed 

in primary calvarial osteoblast cultures. RIN3 expression was also reduced in 

osteoporotic iliac biopsies compared to healthy postmenopausal controls (Kemp et al, 

2014).  
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RIN3 is also involved in vesicular trafficking of proteins such as transferrin to early 

endosomes and interacts with Amphiphysin II, involved in the regulation of 

endocytosis. It was shown to have a cytoplasmic vesicular location in HeLa cells. 

(Kajiho et al, 2003). RIN3 has been showed to be involved in the internalisation of 

receptor tyrosine kinase KIT in human mast cells upon stem cell factor (SCF) 

stimulation (Janson et al, 2012).  

From N-terminal to C-terminal, RIN3 has an SH2 domain, a proline rich region (PRR), 

a Ras-association (RA) domain, a vacuolar protein sorting 9 (VPS9) domain conferring 

its GEF activity, and a ubiquitin like domain (Geer et al, 2010). The latter increases 

interest, following the ubiquitin deficiency of SQSTM1 in PDB (Kajiho et al, 2003). 

RIN3 also has an adaptor CD2-associated protein (CD2AP) interaction domain, 

recognised by the SH3 domain of CD2AP (Rouka et al, 2015).  

RIN3 shares the SH2, VPS9 and RA domains with RIN1 and RIN2 (Bliss et al, 2006). 

As a result, the GEF activity for the Rab5 small GTPase has been detected in all three 

RIN members (Kajiho et al, 2011; Saito et al, 2002; Tall et al, 2001). Additionally, 

RIN1 is known for ABL tyrosin-protein kinase activation (Hu et al, 2005) and RIN2, 

like RIN3, interacts with Amphiphysin II (Kajiho et al, 2003). 

In mice, four isoforms of RIN3 are predicted. The biggest one, of 980 amino acids (aa) 

is followed by an isoform of 900aa for which the first 80aa of RIN3 are missing, 

including the first 17aa of the SH2 domain. The other two isoforms are 198 and 127aa 

long, and share the first 176 and 122aa of the biggest isoform, respectively.  
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In human, five isoforms are described. The biggest isoform is made of 985aa, as shown 

in Figure 1.10. The next biggest isoform is 913aa long and lacks most of the PRR 

region of RIN3. The isoform of 420aa matches most of the C-terminal region of the 

985aa isoform and starts from the end of the PRR region. Two smaller isoforms of 159 

and 78aa are also predicted, and share the first 60 and 16aa of the biggest RIN3, 

respectively.  
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Figure 1.10: Schematic illustration of the human RIN3 gene and its domains.  

The biggest isoform of RIN3 in is made of 10 exons and has many domains such as the SH2 motif, a proline-rich region, a vacuolar protein sorting 9 
domain, and a ubiquitin like protein domain (GRCh37).
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1.4.2 Paget’s disease-like disorders 

Five rare inherited disorders with very similar clinical features to PDB have been 

described (Table 1.2).  

Familial expansile osteolysis (FEO) (Hughes et al, 2000), early onset familial PDB 

(EoPDB) (Nakatsuka et al, 2003) and expansile skeletal hypophosphatasia (ESH) are 

caused by mutations in the TNFRSF11A gene (Whyte & Hughes, 2002). They typically 

show osteolytic lesions and/or sclerotic lesions, with earlier onset than in PDB. 

Different parts of the skeleton are usually affected and they show a strong penetrance 

(Ralston & Albagha, 2014).  

Inclusion body myopathy, Paget's disease, and frontotemporal dementia (IBMPFD) 

has been associated with mutations in the VCP gene. IBMPFD is also inherited in an 

autosomal dominant manner and is described as a myopathy complicated in most cases 

by classic PDB. Dementia also appears later in life (Watts et al, 2004).  

The last is the syndrome of Juvenile PDB (JDP), caused by mutations in the 

TNFRSF11B gene. Again its clinical features overlap with the classic PDB, but is 

developed during childhood. It is an inherited in a recessive fashion (Chong et al, 

2003).  

The genes associated with these five rare syndromes are presented in this section. 
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 Table 1.2: Clinical features of rare inherited syndromes similar to Paget’s disease of bone. 
Syndrome Main features Inheritance Mutation 

Familial expansile osteolysis 
(FEO) (Ralston, 2008a). 

Osteolytic lesions in long bones, and is less likely to be observed in the 
axial skeleton. Generalized and focal activity, bone pain, early-onset 
deafness and tooth loss. Overall more aggressive than classic PDB. 
Onset during childhood and young adulthood. 

AD 
Insertion mutations in 
TNFRSF11A - Gain of 
function 

Expansile skeletal 
hyphosphatasia (ESH) (Ralston, 
2008a). 

Excessive bone growth which can be seen in the full skeleton but is more 
frequent in long bones and fingers. Early-onset deafness and tooth loss. 
Onset during childhood. 

Highly 
penetrant 

AD 

Insertion mutations in 
TNFRSF11A - Gain of 
function 

Early onset PDB (EoPDB) 
(Ralston, 2008a). 

Bone expansion and osteosclerotic lesions in the axial skeleton. Early-
onset deafness and tooth loss. Onset during second to third decade of 
life.  

AD 
Insertion mutations in 
TNFRSF11A - Gain of 
function 

Juvenile Paget (JPD) or 
idiopathic hyperphosphatasia 
(IHH) (Ralston, 2008a). 

Bone expansion and osteosclerotic lesions in the axial skeleton. Early 
deformities, pathological fractures, progressive deafness and Protrusio 
Acetabuli. Onset during early infancy. 

AR 

Deletions, insertions and 
missense mutations in 
TNFRSF11B - Loss of 
function 

Inclusion body myopathy, 
Paget’s disease and 
frontotemporal dementia 
(IBMPFD) (Ralston, 2008a). 

Affected muscles are mostly proximal and osteolytic lesions from PDB 
are seen in the axial skeleton. Asymmetric and patchy myopathy of 
muscles appear in the fourth decade of life, while dementia is found in 
the fifth decade. Death caused by respiratory and cardiac failure. Onset 
during fourth decade of life. 

AD Missense mutations in 
VCP- Loss of function 

IBMPFD and amyotrophic lateral 
sclerosis (ALS) (Nalbandian et al, 
2011) (Kim et al, 2013). 

IBMDFP with muscle weakness and atrophy, dysarthria and dysphagia. 
Death from respiratory failure is seen 3 to 5 years after apparition of the 
symptoms. Onset during adulthood for ALS. 

AD 
Missense mutations in 
HNRNPA1 – Loss of 
function 

PDB with giant cell tumour 
(PDB-GCT) (Rendina et al, 
2015). 

Deformity of bones or extra-skeletal tissues. GCT increases the clinical 
severity of PDB and is mostly multifocal. GCT develops mostly in the 
already PDB affected sites. Onset during fifth decade of life. 

AD 
Missense mutations 
ZNF687 – Unknown 
mechanism 

AD = Autosomal Dominant; AR = Autosomal Recessive.
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18q21-22 locus (TNFRSF11A) 

The 18q locus was discovered by a genetic linkage analysis performed in 1994 on FEO 

(Hughes et al, 1994). This locus has then been refined to a 4.5Mb region, for which (at 

the time) no genes seemed to be good candidates for FEO (Hughes & Barr, 1996). 

Additional linkage analyses were undertaken in 1997 confirmed that FEO and PDB 

are both allelic disorders for that locus (Cody et al, 1997).Duplications in TNFRSF11A 

interfering with NFκB were additionally described for FEO (Hughes et al, 2000), ESH 

(Whyte & Hughes, 2002) and EoPDB (Nakatsuka et al, 2003). 

Mutations in TNFRSF11A have also been described in patients affected by osteoclast-

poor osteopetrosis with decreased gammaglobulin production (Guerrini et al, 2008). 

1p13 locus (CSF1) 

A missense mutation (p.L408P) was also found recently in the exon 6 of CSF1 using 

next generation sequencing, in one sporadic JPD patient. However, this mutation 

(rs1058885) is quite common with a minor allele frequency (MAF) of 42.15% in 1000 

Genome and is predicted as unlikely to be functional (Donath et al, 2015). 
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1q21.3 locus (ZNF687) 

As presented in Section 1.4.1, genome-wide linkage analysis was performed on a large 

Italian family of 14 affected members. Four of those individuals were also affected by 

GCT, a disease associated with PDB in up to 1% of the cases (Gianfrancesco et al, 

2013). The whole exome sequencing performed on this family revealed the missense 

p.P937R in the ZNF687 gene of all affected members, including patients affected by 

GCT. Additional sequencing on 7 unrelated individuals confirmed the co-segregation 

of the p.P937R with GCT (Divisato et al, 2016).  

In the bone microenvironment, ZNF687 expression was showed to increase during 

differentiation of cultured PBMCs cultured osteoclasts obtained from PDB patients 

affected by GCT. The expression levels of ZNF687 were also higher in PBMCs from 

affected patients compared controls (up to 3 fold), and even more (5-fold) from 

PBMCs of patients carrying the p.P937R missense. Additionally, osteoclasts cultured 

from individuals with the p.P937R mutation showed a higher number of nuclei and a 

larger size than control osteoclasts. p.P937R was also associated with p.S242I, in 

additional families severely affected by PDB (Section 1.4.1). ZNF687 expression also 

increased during the differentiation of osteoblasts extracted from molar follicles, from 

healthy paediatric individuals (Divisato et al, 2016). 
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8q24.2 locus (TNFRSF11B) 

Many mutations detected in the TNFRSF11B gene from worldwide cohorts were also 

found to cause JPD. Whyte and colleagues firstly presented two Navajo cases who 

showed no circulating OPG and carried a homologous 100kb deletion (Whyte et al, 

2002). Additional deletions were then detected in the exon 3 of TNFRSF11B and 

resulted in a reduced affinity of OPG for RANKL (Chong et al, 2003; Cundy et al, 

2002). A homozygous deletion/insertion was found in the exon 5 of the OPG gene of 

a JPD case, which leads to a frameshift and creates a stop codon. This results in the 

truncating of the last 76 amino acids of the OPG protein, also affecting greatly its 

ability to bind to RANKL (Janssens et al, 2005). The deletion of the Aspartate 182, 

located in one of the four cysteine rich domains constituting OPG, is thought to induce 

hyperglycosylation of OPG. This results in a reduced ability of OPG to bind to 

RANKL and therefore failure to inhibit osteoclastogenesis (Middleton-Hardie et al, 

2006). Additional variants in the cysteine rich domains (Chong et al, 2003; Saki et al, 

2013), disrupting the start codon of OPG (Grasemann et al, 2013) or in exon 2 (Chong 

et al, 2003) were also described. 

Recently, the sequencing of two patients with JPD showed a deletion of exons 2 to 5 

of TNRFSF11B in the most severely affected patients, and a novel missense mutation 

(p.T76P) in a mildly affected patient (Naot et al, 2014).   
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9p13.3-p12 locus (VCP) 

The VCP gene was first associated with the syndrome of IBMPFD by genome wide 

scan (Kovach et al, 2001). Mutations described in VCP are localised in the N-terminal 

domain of the protein, and interfere with the binding of VCP to ubiquitinated proteins, 

similarly to p62 and PDB (Dai et al, 1998). The loss of VCP in U-2 OS cell line results 

in an accumulation of autophagosomes unable to continue the normal process of 

protein degradation (Ju et al, 2009). 

The IBMPFD syndrome is characterised by muscle weakness, early onset PDB, and 

premature frontotemporal dementia (FTD). Six missense mutations (p.R95G, 

p.R155H, p.R155C, p.R155P, p.R191Q and p.A232E) were initially described in 13 

affected IBMPFD families (61 individuals) by linkage analysis, followed by positional 

cloning. Ten of the 13 families had a change at codon 155 (Watts et al, 2004). Many 

additional missense mutations were then quickly detected by sequencing including 

p.R159H, in an Austrian family (Haubenberger et al, 2005), p.R93C in a French family 

(Guyant-Marechal et al, 2006), p.G157R in a German family (Djamshidian et al, 

2009), p.P137L in a Finnish family (Palmio et al, 2011) and p.N387H and p.L198W, 

from two Polish and North American families (Watts et al, 2007).  

VCP mutations were also associated with ALS by exome sequencing (Johnson et al, 

2010). 
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7p15.2 and 12q13.13 loci (HNRNPs) 

A recent study presents a family affected by IBMPFD/ALS which showed no mutation 

in the VCP gene (Kim et al, 2013). Additional exome sequencing and linkage analyses 

showed novel mutations in the heterogeneous nuclear ribonucleoprotein (HNRNP) 

A2B1 and A1 genes. They encode prion-like domain containing proteins, involved in 

the mediation of RNA metabolism and ribonucleoprotein granule accumulation 

through TDP-43 binding. Mutations in HNRNPA2B1 and HNRNPA1 increase the 

assembly of organelles into RNA granules, causing cellular toxicity in neurones and 

muscle cells (Kim et al, 2013).  

Mutations in hnRNPA1 were also detected in additional ALS families (Kim et al, 

2013). 

15q24.1 locus (GOLGA6A) 

In the golgin A6 family member A gene (GOLGA6A) the mutations p.I40V and 

p.D52G were detected, although in silico investigations have not predicted a functional 

effect on the protein. GOLGA6A is a coiled-coil protein able to interact with the Golgi 

apparatus, which is involved in the transport of proteins and post-translational 

modifications. GOLGA6A is thought to participate in the membrane fusion and 

structural support of the cisternae, which forms the Golgi apparatus (Galson & 

Roodman, 2014). The role of GOLGA6A in bone is unknown, but studies have showed 

other members of the Golgin family carrying mutations causing lethal skeletal 

dysplasia (Smits et al, 2010) and severe form of osteoporosis (Hennies et al, 2008). 
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1.5 CANDIDATE PATHOPHYSIOLOGICAL MECHANISMS 

Despite the aberrant NFκB signalling and genetic involvement of PDB (Section 1.4.1), 

the cause of the disease still remains unclear. Additional components such as 

environmental factors or autophagy dysfunction have been investigated, and this 

section focuses on the mechanisms thought to be involved in the development of PDB. 

1.5.1 Environmental factors 

The decreased prevalence over the recent years suggests a change in exposure of an 

environmental influence responsible for the evolution of PDB (Cooper et al, 1999). 

Low calcium and vitamin D intake during childhood (Barker & Gardner, 1974; Siris, 

1994), exposure to environmental toxins (Lever, 2002), repetitive mechanical stress 

onto affected bones (Gasper, 1979; Solomon, 1979), preponderance of cases in rural 

areas (Merlotti et al, 2005), dog exposure (O'Driscoll & Anderson, 1985), consumption 

of viscera or sick livestock of bovine cattle during childhood (Lopez-Abente et al, 

1997) and chronic viral infections have been suggested to be associated with PDB. 

The most widely studied possible trigger is viral infections. Microtubular inclusion 

bodies in the nuclei of Pagetic osteoclasts were first detected by Rebel et al., and were 

thought to be mRNA viruses from the Paramyxovirus family (Rebel et al, 1974). 

Several methods have been used to assess the specificity and frequency of their 

presence in Pagetic osteoclasts. Despite over 40 years of extensive investigations and 

conflicting results, this remains a debate. 
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Shortly after this publication, a study searched for the presence of nuclear inclusion 

bodies using electron microscopy. They were found in an average of 85% of 

osteoclasts per slide of embedded Pagetic biopsies, compared to controls. It was also 

suggested that the number of inclusions increased with the severity of the histological 

phenotype (Harvey et al, 1982).  

 
Figure 1.11: Electron microscopy photography of the nucleus of a Pagetic osteoclast 

(Mills & Singer, 1976).  
A/ Photography of two nuclear inclusions at x21400 magnification showing paracrystalline 
structures. B/ Photography at higher magnification (x49400) showing cross section of 
filaments.  
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Another approach was to detect epitopes of viruses from the Paramyxovirus family 

using monoclonal antibodies. Measles virus (MV), simian virus 5, and human 

parainfluenza virus 3 were detected exclusively in osteoclasts from bone samples from 

Pagetic patients using immunohistochemistry. Respiratory syncytial virus (RSV), 

mumps, influenza and adenovirus type 5 were not detected in those samples (Basle et 

al, 1985).  

An earlier study showed that RSV was detected by immunofluorescence on bone 

biopsies and cell cultures from Pagetic patients. In this same study, evidence of 

measles, mumps, herpes simplex, parainfluenza viruses, rubella, and influenza viruses 

were all absent (Mills et al, 1981). 

Similarly, additional conflicting results were seen for measles. RNA was initially 

detected by in situ hybridization (Basle et al, 1986) and by PCR amplifications of the 

MV nucleocapsid protein (MVNP) on bone marrow samples of PDB patients 

(Friedrichs et al, 2002). Sequencing of the PCR products showed point mutations from 

the Edmonston strain MVNP, which varied amongst patients. This study asserts the 

validity of the results by the nature of their controls and the use of a PCR machine and 

room that has never been in contact with positive MVNP control samples (Friedrichs 

et al, 2002). Measle viruses were however not detected in other studies investigating 

cultured cells, bone marrow and bone samples from Pagetic patients using nested RT-

PCR techniques, immunofluorescence, or in situ hybridisation. Here, cross 

contamination risks were overcame by analysing the samples and/or using samples 

from different cities (Helfrich et al, 2000; Matthews et al, 2008; Ralston et al, 2007). 
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Following the hypothesis suggesting that dog ownership was associated with PDB 

(O'Driscoll & Anderson, 1985), Canine Distemper Virus (CDV) was investigated and 

RNA was detected using techniques such as in situ-reverse transcriptase-polymerase 

chain reaction (Gordon et al, 1991; Mee et al, 1998). Here again, other studies have 

shown contradictory results in long term bone marrow cultures from Pagetic patients 

(Ooi et al, 2000). Osteoclastogenesis was also induced using CDV viral infection on 

human osteoclasts precursors (Selby et al, 2006). 

All studies presented above were performed on limited number of patients and 

samples. To counter this, a recent case-control study used 463 Pagetic patients and 220 

controls from the PRISM trial to investigate antibodies from measles, rubella, mumps, 

varicella zoster virus, RSV and CDV in serum. Mumps antibodies were significantly 

detected in Pagetic cases compared to controls. This study also suggested an 

association for the severity of PDB with antibody levels from clinical background, and 

no differences between the groups was detected (Visconti et al, 2017). 

One study, despite not detecting the virus at a molecular level, observed nuclear 

inclusions in PDB samples (Helfrich et al, 2000). They confirmed a tight and parallel 

organisation observed by Rebel and al, but refuted the possibility of those being MV 

nucleocapsides. To support this, they analysed a brain sample extracted from a 

subacute sclerosing panencephalitis patient, a disease triggered by persistent measle 

infection. Those inclusions were smooth, diffused and spread within the cells. They 

suggested that Pagetic inclusions are more structurally similar to what is seen in 

multinuclear muscle skeletal cells from inclusion body myositis (Helfrich et al, 2000).  
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Similar nuclear inclusion bodies were also observed in osteoclasts from other bone 

disorders, such as primary oxalosis, osteopetrosis, osteoclastomas or pycnodysostosis 

(Bianco et al, 1992) which have a stronger genetic than environmental component. 

Studies have also shown that human osteoclasts cultured from healthy donors display 

a Pagetic like phenotype after transduction of nucleocapsid genes construct of measles 

viruses. A higher sensitivity to 1,25-dihydroxyvitamin D3 (also called 1,25(OH)2D3), 

another typical feature of PDB presented below, was also detected (Kurihara et al, 

2000). 

The inconsistency of these data and the presence of inclusion bodies in other bone 

disorders only increases the speculations about the subject. It seems unlikely that these 

viral infections would be causing PDB. However it could be considered as an 

additional factor predisposing individuals to the disease, once associated with a genetic 

background or another environmental factor. 
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1.5.2 Osteoclastic factors of Paget’s disease of bone 

Osteoclastic hypersensitivity to RANKL and Vitamin D 

Osteoclastic factors are essential for the differentiation and function of normal 

osteoclasts. In the Pagetic context, osteoclasts show increased sensitivity to several 

factors that stimulate osteoclast differentiation. As mentioned in Section 1.2.4, 

osteoclasts from Pagetic patients are bigger and more active at resorbing bone. This is 

thought to be partially due to a cellular hypersensitivity to RANKL (Menaa et al, 2000) 

and to 1,25(OH)2D3 (Kukita et al, 1990), two critical factors involved in cellular 

differentiation and function of the cells. TAFII-17, a vitamin D binding receptor co-

factor (Kurihara et al, 2004), and TRAP (Neale et al, 2000) expression are all increased 

in Pagetic osteoclasts.  

A recent study has however detected a significant down regulation of six key 

osteoclastic genes, in cultured osteoclasts from PDB patients compared to healthy 

controls: CASP3 (Caspase-3 gene) and TNFRSF10A, both involved in apoptosis, 

TNFRSF11A, TRAP, CTSK (Cathepsin K), and MAPT which encodes the Tau protein 

which interacts with tubulin and stabilises microtubules (Michou et al, 2010). 

Although these down-regulations can be contradictive to the increased osteoclastic 

activity seen in Pagetic lesions, more genes need to be investigated in order to 

understand the full molecular signature of Pagetic osteoclasts and have a better 

comprehension of the disease. 
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M-CSF 

As presented in Sections 1.1.2 and 1.4.1, M-CSF is a key cytokine in 

osteoclastogenesis. Serum levels of M-CSF were shown to be significantly higher in 

PDB samples compared to controls and patients under treatment, suggesting a potential 

role in PDB (Neale et al, 2002).  

Variation of M-CSF concentration in cultures of osteoclasts from Pagetic patients has 

however not shown any effect on bone resorption activity compared to controls (Neale 

et al, 2000). 

Mice carrying the op mutation develop osteopetrosis, a disorder of osteoclastic 

dysfunction for which bone density is increased. The op mutation consists in the 

insertion of a thymidine in the CSF1 gene, which leads to the inactivation of the gene 

and complete systemic absence of M-CSF in mice. Op/op mice were found to have 

low number of osteoclasts and macrophages, and a decrease in breeding performance 

and life expectancy. Osteopetrosis was rescued by administration of recombinant M-

CSF (Wiktorjedrzejczak et al, 1990). 

M-CSF plays a crucial role in osteoclast formation and is as a result an important factor 

of bone resorption. Although mutations in CSF1 were also associated with PDB, 

further investigations are needed to fully understand the precise role of M-CSF in the 

disease.  
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IL-6 

IL-6 is an anti-inflammatory cytokine secreted by macrophages, osteoblasts and T-

cells. Its role in osteoclastogenesis is not clearly understood since contradictory results 

were found from many studies (Section 1.1.2).  

In the context of PDB, IL-6 and its receptor IL-6R were found to be more expressed 

in blood from patients compared to controls (Mossetti et al, 2005), as well as in long 

term osteoclasts cultures from Pagetic marrow samples (Roodman et al, 1992). 

Cultured osteoclasts precursors from mice carrying the p.P392L mutation and 

expressing MVNP showed a significant increase in IL-6 expression. Additionally, 

MVNP-expressing mice crossed with Il-6-/- mice showed reduced bone formation and 

mineralisation compared with MVNP overexpressing mice on a wild type background 

(Kurihara et al, 2011). Contradictory studies showed that mRNA levels of IL-6 from 

Pagetic bone biopsies were the same as in controls (Ralston et al, 1994). No increase 

in osteoclast formation nor bone resorption activity was also observed in an 

osteosarcoma cell line (UMR 106), co-cultured with mononuclear cells from 

peripheral blood of Pagetic patients, in the presence of IL-6 (Neale et al, 2000). The 

addition of a human anti-IL-6 antibody did not show any effect either and no 

significant differences of IL-6 levels were found in the conditioned media of these co-

cultures compared to control co-cultures (Neale et al, 2000). Increased levels of IL-6 

have also been associated with other bone disorders, such as postmenopausal 

osteoporosis (Girasole et al, 1992) or rheumatoid arthritis (Kotake et al, 1996).  

Although it seems to have an effect on osteoclastogenesis, the role of IL-6 is still 

unknown in the pathogenesis of PDB and needs more work.   



Chapter 1: Introduction 

67 
 

1.5.3 Autophagy 

Autophagy is the process by which damaged proteins are degraded and recycled. As a 

result, it is responsible to the control of many cellular mechanisms such as cell 

differentiation, cell death, or response to cellular stress (Hocking et al, 2012). 

Autophagy is also essential for the regulation of bone signalling pathways such as 

Wnt/β-catenin and NFκB, thus influencing osteoblast and osteoclast function and 

differentiation, and playing an important role in the development of PDB (Shapiro et 

al, 2014). 

Several proteins relevant to PDB have been correlated with autophagy. Firstly, p62 

has been associated with accumulation of inclusion bodies in several 

neurodegenerative diseases such as Alzheimer’s, Parkinson’s diseases or ALS (Arai et 

al, 2003). p62 is thought to specifically bind to the autophagic marker LC3 and recruit 

protein clusters before their degradation in the autophagosome. This is performed by 

p62’s ability to bind to polyubiquitinated proteins, using its UBA domain (Bjorkoy et 

al, 2005). Azzam and colleagues established three HEK293 cell lines expressing each 

one p62 mutation found in PDB patients (p.P392L, p.E396X and p.G425R), and the 

number of cells with nuclear inclusions was increased for p.P392L (+8%) and 

p.G425R (+4%) (Azzam et al, 2012). It has also been showed than LC3 and SQSTM1 

expression levels are increased in osteoclasts precursors from p.P394L+/+ mice, 

suggesting that the mutation impairs autophagy (Daroszewska et al, 2011). 
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As a result, the inclusion bodies described in osteoclasts (Section 1.5.1), were 

suggested to be protein aggregates, due to a dysfunction of the autophagy mechanism 

in Pagetic osteoclasts as in neurodegenerative disorders such as Parkinson’s and 

Alzheimer’s diseases (Daroszewska et al, 2011). 

OPTN also acts as an autophagic receptor and is too, associated with the recruitment 

of ubiquitinated proteins to LC3. It was associated with mitophagy, process by which 

damaged mitochondria is sent to autophagosomes (Wong & Holzbaur, 2014), and 

autophagosome maturation (Tumbarello et al, 2012). It has also been found that 

phosphorylated OPTN enhances LC3 binding in Salmonella (Wild et al, 2011). 

IBMPFD-causing mutations in the VCP gene have been described. VCP is thought to 

be involved in the maturation of autophagosomes, and the described mutations 

(Section 1.4.2) result in the accumulation of autophagic vesicles in the cells (Tresse et 

al, 2010). Similarly, loss of VCP in U2OS cell line leads to an accumulation of 

autophagosomes unable to continue the normal process of protein degradation (Ju et 

al, 2009). Such mechanisms can be considered similar to what is observed with p62 

and could underline the importance of autophagy in the disease.  

Small GTPases are involved in a variety of cellular process through mediation of 

cellular signalling. They are particularly known to be responsible for membrane 

trafficking and fusion of vesicles, key features of autophagy (Bento et al, 2013). The 

Rab proteins, part of the Ras GTPase superfamily, have been well described, especially 

Rab5 which interacts with RIN3 (Section 1.4.1) and is involved in early endocytic 

pathway (Kajiho et al, 2003).  
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Many Rab small GTPases are associated with different levels of autophagy such as 

autophagosome formation (Rab1, Rab5, Rab7, Rab9A, Rab11, Rab23, Rab32, 

Rab33B) or maturation (Rab7, Rab8B, Rab24) (Ao et al, 2014; Tresse et al, 2010). In 

association with the discovery of RIN3 in the context of PDB, a disruption in the 

regulation of the small GTPases activation status and thus autophagy, is an important 

new mechanism to consider.  

1.5.4 Ephrins 

Following the suggestion of ephrin/Eph bearing cells interactions during the reversal 

phase of bone remodelling (Section 1.1.3), Teremachi and colleagues (2016) showed 

higher levels of ephrinB2 and EphB4 in osteoclasts and osteoblasts (respectively) in 

MVNP-expressing mice bone. Osteoclasts cultured from PDB patients expressing 

MVNP and the SQSTM1/p.P392L mutation were found to have increased protein 

levels of ephrinB2 compared to healthy donors and patients with the p.P392L mutation 

alone (Teramachi et al, 2016). Osteoblasts from MVNP expressing mice treated with 

EphB4-Fc (inducing reversal signalling) were found to have an increased osteoblastic 

differentiation and activity as well (Teramachi et al, 2016). This suggests an important 

additional coupling mechanism to further investigate for PDB.  
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1.6 AIMS OF THIS THESIS 

PDB is a complex, but fascinating disorder. The encouraging and intense work of 

researchers and clinicians aims to improve the diagnosis and quality of life of patients. 

Although the last decades of research in PDB have offered great advances in the 

prevention and management of the disease in patients, its exact aetiology is yet to be 

understood. The incomplete penetrance observed in affected families and recent 

decrease of prevalence in many countries suggest that environmental factors play a 

role in the development of the disease. Diet, animal contact, viral infection and 

mechanical loading are considered. Although mutations in the SQSTM1 gene have 

been associated with PDB, they account for less than half of the affected familial 

individuals and show a wide range of phenotype severity, stressing the need of finding 

additional causal genes. The purpose of this thesis is to investigate the role of RIN3, a 

gene described for PDB by GWAS. For this, genetic, functional and in vivo 

experiments were used to assess the effect of RIN3 in osteoclasts and osteoblasts cells. 

The aims of this study were the following: 

• To investigate the possible presence of causal variants in RIN3, using a 

sequencing effort in Pagetic patients and controls 

• To assess the expression pattern of Rin3 in mouse tissues, measure RIN3 

mRNA and protein levels in cells from the bone microenvironment, and 

investigate the subcellular location of RIN3 in human and mouse bone cells 

• To evaluate the effect of the Rin3 deletion on bone phenotype C57BL/6 x 

129/OlaHsd mice at 8 weeks old  

• To assess the functional role of Rin3 in bone resorption and formation, using 

in vivo and in vitro techniques. 
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2 MATERIALS AND METHODS 

2.1 MUTATION SCREENING 

The RIN3 gene was sequenced using Sanger and next generation sequencings in order 

to identify new candidate variants for PDB. The samples used for this analysis were 

selected on their age of diagnosis and family history.  

2.1.1 Sanger sequencing  

The patient cohort 

For Sanger sequencing, 101 Pagetic individuals were selected from the ZiPP study and 

an additional 24 cases from the PRISM study (Section 1.3.1). In both cohorts, the 

criteria of selection included that patients tested negative for SQSTM1 mutations 

(exons 7 and 8), had a young age of diagnosis (average of 51.4 years old), and/or had 

family history (concerns 40% of the patients here). 

DNA extraction 

The DNA samples were extracted from blood using the Chemagen MSM I (Perkin-

Elmer) or the Maxwell 16® (Promega) instruments according to the NHS Molecular 

Genetic laboratory instructions. The DNA concentrations were estimated using the 

Nanodrop ND-8000 (Thermoscientific) and the extraction quality was assessed using 

the A260/A280 ratio. 
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Primer design 

The coding regions, about 100bp of the intron/exon boundaries, the promoter region 

(2kb upstream the first exon), the 5’UTR and the 3’UTR of RIN3 were sequenced. 

The primers were designed using the NM_024832.3 sequence from Ensembl Genome 

Browser (www.ensembl.org). Detail of their sequences is summarised in Appendix 

2.1. The primer properties used for their design included a GC content of about 40%, 

an annealing temperature of about 58°C, an absence of hairpin formation and 3’ 

complementarity, and an absence of regions of self-annealing. These criteria were 

validated using the software OligoCalc (Kibbe, 2007). The primers also had a range of 

length varying between 18 to 25bp and were amplifying 400 to 550bp of the RIN3 

region of interest. Non-specific bindings against the chromosome 14 and the presence 

of SNPs were also excluded using SNPcheck (https://secure.ngrl.org.uk/SNPCheck/).  

The sequencing reaction was performed using tag M13 as primers. These tags were 

added to the polymerase chain reaction (PCR) primers, on the 5’ extremity for the 

forward primer and on the 3’ for the reverse primer (Table 2.1). 

Table 2.1: Sequences of the M13 primers used for sequencing PCR reactions. 

  Sequence 

Forward (5') primer tag 5’-GTAGCGCGACGGCCAGT-3’ 

Reverse (3') primer tag 5’-CAGGGCGCAGCGATGAC-3’ 
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PCR Reactions 

Amplifications were performed using the GeneAmp 9700 thermocyclers (Applied 

Biosystem). Two types of reactions were chosen depending on the quality of sequence 

that had to be amplified. The universal PCR mix was used for non-repetitive and low 

GC content sequences, while the multiplex PCR mix was used for repetitive and GC 

rich regions of RIN3. Both PCR reactions were set up by the Biomek NX robot 

(Beckman Coulter), on a 96 plate. 

The Master mix used for universal PCR reactions was CM-102A 2X Reddymix custom 

(Thermo Scientific, Fermentas) (Table 2.2). 

Table 2.2: Master mix used for universal PCR. 

Reagents Initial 
concentration 

Final 
concentration 

Amount for 1 
reaction (µl) 

Reddy mix custom  
PCR master mix 2X 1X 6 

Primers (F+R) 5µM 0.83µM 2 

DNA 20ng/µl 3.33ng/µl 2 

Nuclease free H2O     2 

Total 12µl 

 

The thermal cycling protocol consisted of an initial incubation for 4 minutes at 94°C, 

followed by 30 cycles of 1 minute at 94°C, then 1 minute at 58°C and 1 minute at 

72°C. There was a final incubation for 10 minutes at 72°C and the samples were kept 

at 15°C until further use. 
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The multiplex PCR mix (Qiagen) was used for sequences that were not amplified by 

the universal PCR mix, due to the presence of highly repetitive and/or GC rich regions 

(Table 2.3). 

Table 2.3: Master mix used for GC rich PCR. 

Reagents Initial 
concentration 

Final 
concentration 

Amount for 1 
reaction (µl) 

Qiagen multiplex PCR 
master mix 2X 1X 6 

Primers (F+R) 5µM 0.83µM 2 

DNA 20ng/µl 3.33ng/µl 2 

Qiagen Q solution 5X 0.83X 2 

Total 12µl 

The thermal cycling protocol consisted of an initial incubation for 15 minutes at 94°C, 

followed by 35 cycles of 1 minute at 94°C, then 1 minute at 56°C and 1 minute at 

72°C. There was a final incubation for 10 minutes at 72°C and the samples were kept 

at 15°C until further use. The type of PCR used for each exon is summarized in Table 

2.4. 

Table 2.4: PCR conditions used for each exon of the RIN3 gene.  
Exon Type of PCR Exon Type of PCR 

RIN3_PROM_A_01 Universal PCR RIN3_EX07_A_01 Universal PCR 
RIN3_PROM_B_01 Universal PCR RIN3_EX07_B_01 Universal PCR 
RIN3_PROM_C_01 Universal PCR RIN3_EX08_01 Universal PCR 
RIN3_PROM_D_01 Universal PCR RIN3_EX09_01 Universal PCR 

RIN3_EX01_01 Universal PCR RIN3_EX10_D_01 Universal PCR 
RIN3_EX02_01 Universal PCR RIN3_EX10_E_01 Universal PCR 
RIN3_EX03_01 Universal PCR RIN3_PROM_E_01 GC rich PCR 
RIN3_EX04_01 Universal PCR RIN3_PROM_F_04 GC rich PCR 
RIN3_EX05_01 Universal PCR RIN3_EX06_A_03 GC rich PCR 

RIN3_EX06_B_01 Universal PCR RIN3_EX10_A_01 GC rich PCR 
RIN3_EX06_C_01 Universal PCR RIN3_EX10_B_01 GC rich PCR 
RIN3_EX06_D_01 Universal PCR RIN3_EX10_C_01 GC rich PCR 
RIN3_EX06_E_01 Universal PCR    

PROM = Promoter; EX = Exon.  
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Purification of the PCR product  

The Agencourt AMPure XP purification system (Beckman Coulter) was used on PCR 

products to eliminate salt residues and other contaminants such as primers and dNTPs 

leftovers, which can interact with the sequencing PCR reaction.  

The AMPure XP purification uses a magnetic bead-based technology, as shown in 

Figure 2.1. The AMPure reagent, containing magnetic beads, is added to the PCR 

products. The PCR amplicons bind to the beads and the plates are then placed on a 

rack, for which each well contains a magnetic ring. The beads are attracted to the 

magnets, allowing ethanol washes. The amplicons are then detached from the beads 

using an elution buffer, before being transferred to a new plate. This technique was 

robotised, using the Biomek NXP robot (Beckman Coulter).  

 
Figure 2.1: AMPure XP purification process (Beckman Coulter, 2017a). 

PCR products (10µl) were purified from contaminants by adding 18µl of AMPure reagent, 
which contains magnetic beads. Once bound to the DNA, the beads are attracted to the outside 
of the well using a magnetic field, allowing ethanol washes and elution in 30µl of water. The 
program used was the Agencourt AMPure PCR Purification system, optimized by Beckman 
Coulter. 



Chapter 2: Materials and Methods 

77 
 

Sequencing PCR reaction 

Following the AMPure XP purification, a sequencing master mix for 96 and 384 well 

plates was prepared as described in Table 2.5. The sequencing PCR reaction was 

performed using the M13 primer, mentioned previously (Section 2.1.1).  

Table 2.5: Master mix composition for the sequencing reaction (96 and 384 well plates). 

96 well plate 384 well plate 

Reagents Amount (µl) Reagents Amount (µl) 

Sequencing 
reaction mix 8 Sequencing 

reaction mix 3.5 

DNA from the 
AMPure plate 2 DNA from the 

AMPure plate 1.5 

Total 10µl Total 5µl 

The thermal cycling protocol consisted of an initial incubation for 1 minute and 15 

seconds at 96°C, followed by 30 cycles of 15 seconds at 94°C, then 10 seconds at 50°C 

and 4 minutes at 60°C. There was a final incubation 15°C at which point the plate 

remained in the thermocycler until further use. The sequencing reaction mix 

composition is described in Table 2.6.  

Table 2.6: Sequencing mix composition (96 and 384 well plates). 

96 well plate 384 well plate 

Reagents Amount 
(µl) Reagents Amount 

(µl) 

Big dye v3.1 0.5 Big dye v3.1 0.25 

Sequencing buffer (5X) 1.75 Sequencing buffer (5X) 0.875 

M13 tag primers 
forward or reverse  

(3.2 µM) 
1 

M13 tag primers 
forward or reverse  

(3.2 µM) 
0.5 

dH2O 4.75 dH2O 1.875 

Total 8µl Total 3.5µl 
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Purification of the sequencing reaction products  

The Agencourt CleanSEQ (Beckman Coulter) kit is also a magnetic bead-based 

sequencing purification system and was used for the elimination of contaminants from 

the sequencing PCR reaction products, such as primers and big dye leftovers which 

can interact with the sequence analysis. The different steps of the process are shown 

in Figure 2.2. This technique was also robotised using the Biomeck NXP robot 

(Beckman Coulter). 

 
Figure 2.2: CleanSEQ purification process (Beckman Coulter, 2017b). 

The sequencing reaction mix (10µl) was purified from contaminants by adding 10µl of 
CleanSeq reagent, which contains magnetic beads. Once bound to the DNA, the beads are 
attracted to the outside of the well using a magnetic field, allowing ethanol washes and elution 
in 80µl of EDTA. The program used was the Agencourt CleanSeq Dye Terminal Removal, 
optimized by Beckman Coulter. 

Sequence analysis 

CleanSEQ products were then analysed using the Sanger method (Sanger et al, 1977) 

and capillary electrophoresis (Kan et al, 2004) on the ABI 3130 and 3730 sequencers 

(Applied Biosystems). Each sequence was processed manually using the Mutation 

surveyor® V3.30 software (Softgenetics, US) and compared to the reference sequence 

NM_024832.3 of RIN3 from Ensembl Genome Browser (www.ensembl.org). The 

severity of the DNA variations was analysed using the Alamut® Visual Version 2.1 

software (Interactive Biosoftware, France). 
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Summary of the general process  

Below is a schematic representation of the general process used from collection of 

blood to sequencing.  

 

 
Figure 2.3: General process of sequencing reaction for RIN3. 

Adapted using Servier medical art (Servier, 2017).  
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2.1.2 Next generation sequencing 

Next generation sequencing was also performed to identify additional variants in the 

RIN3 gene, and confirm results from the Sanger sequencing. 

This work was supervised by Dr. Omar Albagha and Dr. Sachin Wani (Vallet et al, 

2015). 

The patient cohort 

This mutation screening was performed on 121 Pagetic patients. 95 of those were 

obtained from the PRISM study, and the other 26 were familial cases. The criteria of 

selection included the absence of SQSTM1 mutation and an age of diagnosis younger 

than 65 years old. 49 non-Pagetic controls were also investigated, where 40 were from 

the PRISM control cohort and 9 were unaffected members of familial cases.  

The sequencing was performed using a Haloplex kit (Agilent technologies). The entire 

RIN3 gene (175,211bp) and 20kb of flanking regions on either side were screened. The 

experiment was performed following the manufacturer instructions and an Illumina 

HiSeq2000 platform, available at the NHS Molecular Genetic laboratory, was used for 

the preparation and the labelling of the libraries.  
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Analysis 

The sequences were analysed against the human genome version hg19/b37, using the 

Burrows-Wheeler Aligner software package (Li & Durbin, 2009). 

The Picard command line tools (version 1.89, http://broadinstitute.github.io/picard/) 

was used to exclude duplicate reads. Local re-alignment around potential indel sites 

and base quality scores calibrations were adjusted using the genome analysis toolkit 

(version 1.6, GATK, https://software.broadinstitute.org/gatk/). 

The unified genotyper (GATK) was used to analyse the different SNPs and indel with 

a quality score higher than 20 and coverage higher than x5. 

2.1.3 Frequency analysis 

The next generation sequencing data was combined with the Sanger sequencing results 

and analysed together.  

Chi-square allelic test was used to investigate common variants while Fisher’s exact 

test was chosen to perform a Burden test on rare variants (MAF < 1%) in cases and/or 

controls.  

Frequencies were analysed against 379 European subjects from the 1000 Genomes 

(phase I version 3, www.1000genomes.org/) and 4300 European-American subjects 

from the NHLBI project (http://evs.gs.washington.edu/EVS/).  

Finally, a haplotype analysis was performed using Haploview (Barrett et al, 2005). 
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2.1.4 Imputation 

An imputation performed on Pagetic patients by Albagha and colleagues in 2011 

revealed an association for a 60kb region of the RIN3 gene. A conditional analysis 

performed on the top hit (rs10498635) confirmed the independency of the signal and 

recombination hotspots were also detected in and around the RIN3 gene (Albagha et 

al, 2011). This imputation was performed using the Hapmap CEU dataset (release 22). 

Using the same European descent cohort of 741 PDB patients and 2,699 controls from 

the WTCCC, a second imputation was here carried out on the same locus (14q32) 

using Markov chain haplotyping (MACH) (Li et al, 2009). The 1000 Genomes 

European phased haplotype data (phase I version 3) (www.1000genomes.org/) was 

used as a reference, increasing the number of samples from 60 (Hapmap) to 379 (1000 

Genomes).  

Based on the estimated correlation between imputed and true genotypes (r2 < 0.3), 

variants with low imputation quality as well as variants of MAF < 1% were excluded. 

The software ProbABEL (Aulchenko et al, 2010) was used to translate the allelic 

dosage of imputed variants into genotypes and identify a significant association 

between a variant and PDB, using a logistic regression analysis. The tool LocusZoom 

was used to generate regional association plots (Pruim et al, 2010). PLINK (version 

1.07; http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al, 2007) was used to 

perform a conditional analysis on the top hit variant described in the 2011 GWAS 

study (rs10498635), using logistic regression. LD was investigated using Haploview 

(Barrett et al, 2005).  
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2.1.5 In silico analysis of variant pathogenicity 

Predicted regulatory regions in non-coding variant’s locations were identified using 

Ensembl Genome Browser (www.ensembl.org) and ENCODE 

(https://www.genome.gov/encode/).  

The nomenclature used for the description of sequence variants was using version 

2.120831 of the human genome variation society (Den Dunnen & Antonarakis, 2000). 

The pathogenicity level of each coding variants was estimated using six bioinformatic 

tools: SIFT (Kumar et al, 2009), PolyPhen-2 (Adzhubei et al, 2010), Condel 

(Gonzalez-Perez & Lopez-Bigas, 2011), MutationTaster (Schwarz et al, 2014; 

Schwarz et al, 2010), GERP conservation (Cooper et al, 2005), and Grantham scores 

(Grantham, 1974) obtained from the MutationTaster program. Severity scores were 

established by giving a point for each software considering the variant as damaging 

for the structure of RIN3. Mutations predicted as “damaging” by SIFT, “possibly or 

probably damaging” by PolyPhen-2, “deleterious” by Condel, “disease causing” by 

MutationTaster, had a GERP score higher than 2.0, or a Grantham score higher than 

50 were given a point each. The final score ranges from 0 (low estimated 

functional/structural effect) to 6 (high estimated functional/structural effect). 

Additional in silico analyses of the coding variants were performed with the help of 

Dr. Dinesh Soares to further assess their impact on the RIN3 protein structure. For this, 

the SH2 and VPS9 domains of RIN3 were modelled using Modeller 9v12 (Sali & 

Blundell, 1993). Structure stability modifications between the mutated and wild type 

RIN3 were investigated using FoldX (Schymkowitz et al, 2005), by measuring their 

differences of delta delta Gibbs free energy (ΔΔG).  
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Prediction of intrinsic disorder in the full RIN3 protein was assessed using two meta 

servers, MetaPrDOS (Ishida & Kinoshita, 2008) and MetaDisorder (Kozlowski & 

Bujnicki, 2012). Finally, the evaluation of order/disorder changes translated in 

PONDR score were undertaken using PONDR VL-XT (Li et al, 1999) for each coding 

variant located in the PRR of RIN3.  
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2.2 GENOTYPING FOR ALLELIC ASSOCIATION  

Most of the variants analysed from the previous sequencing data (Section 2.1) were of 

rare frequency and were detected using a cohort with patients diagnosed at a young 

age and/or family history. In order to confirm those findings and investigate in more 

depth the effect of the rare variants, those SNPs were genotyped using a bigger cohort 

with different levels of severity of PDB. A disease severity association was also 

performed. 

2.2.1 Cohort 

For this study, 974 UK samples (712 cases and 262 controls) from the PRISM cohort 

were genotyped for RIN3 variants, in relation to disease activity. All samples were 

analysed on genomic DNA extracted from peripheral blood using standard procedure. 

2.2.2 Variants analysed 

The details of the 16 variants genotyped, selected from the mutation screening 

presented in Section 2.1 are summarised in Table 2.7.  

Four coding variants (p.T425M, p.R427Q, p.P447S, and p.G613A) were located in 

repetitive areas making the genotyping assay technically impossible to design. In an 

attempt to find alternative assays, an LD analysis was carried out using Haploview 

version 4.2 (Barrett et al, 2005). SNPs in strong LD with the four coding variants will 

offer similar genomic patterns and can be used as alternative SNPs. This LD was 

performed on the results obtained from the 101 ZiPP samples sequenced by Sanger 

(Section 2.1.1), and only variants in association with a r2 > 0.8 were considered. The 

alternative variants are described in Table 2.7. 
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Table 2.7: Summary of genotyped variants in RIN3. 
Genotyped variants In LD with the following alternative variants: 

Variant ID Protein change 
Position 

(GRCh37 
/hg19) 

Gene 
region Variant ID Protein change 

Position 
(GRCh37 

/hg19) 
Location r2 

N/A c.[1-926A>G];[=] 92979351 Promoter — — — — — 

rs368389701 c.-21C>A 92980256 5'UTR — — — — — 

N/A c.[422C>T], p.A141V 93081806 Exon 4 — — — — — 

rs8022440 c.[440+74G>T];[=] 93081898 Intron 4 rs74074812 c.[1429C>T];[=], p.P477S 93118823 Exon 6 1 

rs113876303 c.[441-103A>C];[=] 93107480 Intron 4 rs12434929 c.[1838G>C];[=], p.G613A 93119232 Exon 6 1 

N/A c.[691C>T];[=], p.R231C 93118085 Exon 6 — — — — — 

rs147329151 c.[751C>A];[=], p.Q251K 93118145 Exon 6 — — — — — 

rs3814830 c.[804C>T];[=] 93118198 Exon 6 rs3742717 c.[1274C>T];[=], p.T425M 93118668 Exon 6 0.891 

N/A c.[866T>C] ;[=], p.L289P 93118260 Exon 6 — — — — — 

N/A c.[874T>C] ;[=], p.C292R 93118268 Exon 6 — — — — — 

N/A c.[880C>T];[=], p.P294S 93118274 Exon 6 — — — — — 

N/A c.[916G>C] ;[=], p.A306T 93118310 Exon 6 — — — — — 

rs201271121 c.[1156C>T];[=], p.P386S 93118550 Exon 6 — — — — — 

rs3818321 c.[2013C>T];[=] 93119407 Exon 6 rs74074811 c.[1280G>A];[=], p.R427Q 93118674 Exon 6 1 

rs145292991 c.[2311G>A] ;[=], p.D771N 93125790 Exon 7 — — — — — 

rs147042536 c.[2377T>C];[=], p.Y793H 93142861 Exon 8 — — — — — 

N/A = Indicates that the SNP does not have an rs number.
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A Taqman® SNP genotyping (Thermo Fisher Scientific) reaction was performed using 

a QuantStudio 12K Flex Real Time PCR System (Thermo Fisher Scientific) at the 

Wellcome Trust Clinical Research facility Genetic Core, Edinburgh. Allelic 

discrimination was performed using a PCR, where 2 types of probes recognising either 

allele were added. Each probe was associated with a different fluorochrome which was 

freed during the polymerisation step. This generated a signal, read by the QuantStudio. 

This procedure is summarised in Figure 2.4.  

2.2.3 Analysis 

The samples were analysed on a Taqman® Genotyper Software (version 1.3, Thermo 

Fisher Scientific) at the Genetic core facility. Variants with a call rate < 97% were not 

analysed. All statistical analyses were then performed on SPSS Version 22 (SPSS Ltd, 

UK).  

Frequencies within each cohort were established first. A case/control analysis was then 

performed with Fisher’s exact test on rare variants (MAF < 1%), or one-way ANOVA 

for common variants (MAF > 1%). A Burden test was also performed on rare variants 

with Fisher’s exact test.  

Haplotypes were estimated using the Phase software (version 2.1.1) for the cases 

compared to controls (Stephens & Scheet, 2005; Stephens et al, 2001). A 90% 

imputation accuracy was used, while a frequency threshold of 0.0001 was chosen. The 

data was run 5 times to get the best estimated haplotypes, as advised by the user’s 

instructions.  
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Figure 2.4: Summary of the Taqman SNP Genotyping assay (Life Technologies, 2011).  

The template DNA is initially prepared with classic polymerase chain reaction reagents. After 
denaturation of the DNA, two probes are added to the reaction. Each recognise specifically 
one of the possible allele (A1 or A2) of the variant to analyse and are attached to a different 
fluorochrome (here VIC or FAM). The corresponding probe will then recognise the allele of 
interest following the annealing step and the fluorochrome will be released during 
polymerisation. The fluorochrome is measured by the system and the allele is deducted from 
the VIC or FAM fluorescence. Adapted using Servier medical art (Servier, 2017).  
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A severity analysis using clinical information was additionally performed on the 

PRISM cases. For this, data was collected from Pagetic patients for relevant clinical 

variable including gender, number of bisphosphonates previously received, presence 

of family history of PDB, age at diagnosis, age at which the patient has joined the trial 

(age at recruitment), the number of affected bones, whether the patient had orthopaedic 

surgery, fractures (associated with PDB or not), skull involvement and use of a hearing 

aid. Bone pain was also assessed, and clinicians evaluated if it was caused by PDB 

(Table 2.8). A clinical deformity score was assessed by the physician, for which 

0 corresponds to no deformity; 1 corresponds to mild deformity; 2 corresponds to 

moderate deformity; and 3 corresponds to severe deformities. An overall PDB severity 

score was deducted from those observations. For this, the number of affected bones 

was added to the presence of bone pain (yes = 1; no = 0; unsure 3), previous fractures 

(yes = 1; no = 0), previous surgeries (yes = 1; no = 0), the severity of bone deformities 

for which the score of the severity was cumulated for each affected bone (range 0-7), 

and the use of hearing aids if the skull of the patient is affected (yes = 1; no = 0) 

(Visconti et al, 2010).  

Data from the allelic dosage of the p.R279C variant was imported from a GWAS 

performed by Albagha and colleagues (Albagha et al, 2011). A first association study 

was performed on the genotyping data for each common variant (p.R279C and 

p.T425M; No-mutation, heterozygote mutation or homozygote mutation) and all rare 

variants grouped together (no mutation or at least one rare variant mutated). This was 

investigated in all Pagetic cases (PRISM), in cases who were positively mutated for 

SQSTM1 (PRISM/SQSTM1+), as well as in the cases who were not mutated for 

SQSTM1 (PRISM/SQSTM1-).  
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The clinical phenotypes investigated are summarised in the Table 2.8, as well as the 

type of statistical test performed on SPSS Version 22 (SPSS Ltd, UK).  

Table 2.8: Clinical phenotypes investigated in presence of RIN3 mutations (Visconti et al, 
2010). 

Analysis Description Test 

Gender Female/Male Chi square 

Family history of PDB Presence or not of family history for the 
patient Chi square 

Orthopaedic surgery Whether the patient had surgery or not Chi square 

Any fractures Whether the patient had fractures or not Chi square 

Skull disease and 
hearing aid 

Whether the patient has PDB located in 
his or her skull and wears hearing aid Chi square 

Bone pain Whether the patient has bone pain or not Chi square 

Fracture in Pagetic 
bone Whether the fractures were due to PDB Chi square 

Bisphosphonates Number of bisphosphonates the patient 
has received Anova 

Age at diagnosis Age at which the patient was diagnosed 
with PDB Anova 

Age at recruitment Age at which the patient joined the trial Anova 

Number of bones 
affected 

Number of affected bones the patient 
has Anova 

Pagetic pain 
Confirmation from the clinician that the 
bone pain felt by the patient is 
associated to PDB 

Anova 

Deformity score Severity of deformities the patient has Anova 

Paget Severity score Overall severity of PDB based on the 
other phenotypes  Anova 
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A second association for disease severity was performed on the most common 

haplotypes of those 16 variants (including p.R279C), which were obtained from the 

cases by using Phase (version 2.1.1) (Stephens & Scheet, 2005; Stephens et al, 2001). 

The settings used were the same as those presented above. As the Phase software 

estimates haplotypes from the genotyping data by imputing missing information, 

numbers detected in this last analysis will differ slightly from the association 

performed on true genotypes.  
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2.3 TISSUE CULTURE 

All experimental protocols were approved by the Ethics Committee at the University 

of Edinburgh and were conducted in accordance with the UK Animals (Scientific 

Procedures) Act 1986 (project licence number PPL 70/7964).  

2.3.1 Osteoclast cell culture 

Bone marrow was isolated from the hind limbs (tibias and femurs) of C57BL/6 x 

129/OlaHsd female mice aged between 9 and 14 weeks old, sacrificed by cervical 

dislocation according to Schedule 1 of the Animals (Scientific Procedures) Act. The 

bone marrow was kept in PBS buffer at room temperature and were processed within 

30 minutes of collection.  

All steps described below were performed in a sterile environment using a laminar 

flow hood. Before use, the hood was cleaned with Trigene, Mycoplasma off, and 70% 

(v/v) ethanol and UV sterilisation (including all inert material) was applied for 10 

minutes.  

Bone marrows were flushed out of the long bones using a 25-gauge (G) needle and 

using non glutamax α-minimum essential medium (αMEM, Invitrogen) supplemented 

with 1% L-Glutamine, 100U/ml penicillin and 100μg/ml streptomycin and 10% foetal 

calf serum (Hyclone). The bone marrow was then broken down to a cell suspension by 

passing successively through decreased size needles (19G – 25G). The cells were 

isolated by a 3 minute centrifugation at 300g and the pellet was resuspended in αMEM 

supplemented with 100ng/ml of M-CSF (Prospec) to be plated in a 10cm petri dish. 

The plates were then incubated at 37oC, with 5% CO2, 95% air in a humidified 

atmosphere.   
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After two days of incubation, adhered cells enriched in macrophages (Zhang et al, 

2008) were scraped off using dissociation buffer (Gibco cell dissociation buffer) for 3 

minutes at 37oC and a soft rubber scraper. The macrophages were plated in 12 well 

plates at 1.5x105 cells per well in 1ml of standard αMEM supplemented with 100ng/ml 

of human RANKL and 25ng/ml of M-CSF to initiate osteoclast differentiation. The 

plates were incubated at 37oC, 5% CO2 for 72 hours when the media was changed, 

keeping the same conditions. The plates were incubated for 24 hours before 

terminating the cultures. A summary of the bone marrow cell procedure is shown in 

Figure 2.5.  

 
Figure 2.5: Summary of bone marrow osteoclast culture.  

BM = Bone marrow. Adapted using Servier medical art (Servier, 2017). 
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For the investigation of survival of osteoclasts, 25ng/ml of human RANKL was used 

for the differentiation of the cells. The RANKL cytokine was then removed from the 

media, and the cells were cultured for an additional three days. Cultures were 

terminated at 0h, 4h, 8h, 24h, 48h, and 72h. 

Tartrate-resistant Acid Phosphatase staining 

Tartrate-resistant acid phosphatase (TRAcP) staining was performed on osteoclast like 

cells. For this, the cultures were terminated by removing the medium from the cells 

and washing them in PBS buffer twice. The cells were then fixed in 4% (v/v) 

formaldehyde in PBS for 15 to 20 minutes at room temperature. They were then rinsed 

in PBS twice, and stored in fresh PBS at 4oC until future use.  

A TRAcP staining solution was freshly prepared, all in sterile clean glass tubes as 

shown in Appendix 2.2. First, solution A was made of veronal buffer, acetate buffer, 

acetate buffer with tartrate, Naphthol-AS-BI-phosphate in dimethylformamide. Aside, 

solution B was prepared, including pararosanilin, and sodium nitrite.  

The detailed concentrations used for solution A and B can be found in Appendix 2.2. 

The two solutions were mixed, and filtered through a 0.45µM filter. 

The cells were rinsed in PBS twice, and the TRAcP staining solution was added to 

cover all wells. Plates were incubated at 37oC for one hour until red staining developed. 

The staining solution was removed and the cells were rinsed twice with PBS. The cells 

were kept in 70% (v/v) ethanol and stored at 4oC. Red cells with at least 3 nuclei were 

counted using a Zeiss Axiovert light microscope (Carl Zeiss Ltd., UK) under a 

magnification x10. 
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2.3.2 Osteoblast cell culture 

Osteoblasts were obtained from isolated calvarial from 2 days old pups, which were 

decapitated according to Schedule 1 of the Animals (Scientific Procedures) Act. All 

pups from each litter were used for each experiment. The number of pups varied from 

5 to 9 for each litter.  

The calvaria was carefully removed using scissors and tweezers before being washed 

in Hank’s balanced salt solution (HBSS) to remove any unwanted tissue. The samples 

were then moved into a tube containing 2ml of collagenase type I at 1 mg/ml in HBSS, 

and were left at 37oC for 10 minutes. The tube was shaken every 2 minutes to help the 

enzymatic digestion. The supernatant was discarded, and 4ml of collagenase type I at 

1mg/ml in HBSS was added. After 30 min of incubation at 37oC and regular shaking, 

the supernatant was transferred to a tube containing 6ml of standard αMEM for future 

use. The samples were washed carefully in PBS, and 4ml of EDTA at 4mM were then 

added for 10 minutes at 37oC under regular shaking. The supernatant was then 

transferred to a tube containing 6ml of standard αMEM for future use. The samples 

were washed carefully in PBS, and 4ml of collagenase type I at 1mg/ml in HBSS were 

then added for 20 minutes at 37oC under regular shaking. Finally, the supernatant was 

transferred to a tube containing 6ml of standard αMEM for future use. The three 

supernatants kept aside during the digestion were centrifuged at 300g for 3 minutes 

and the pellets were resuspended together in standard αMEM. The final cell 

suspension was plated in a 75cm2 and incubated at 37oC, 5% CO2 for 24 hours. The 

media was then refreshed to remove non-adherent cells every two days until cellular 

confluence was reached, about 4 to 5 days after isolation. 
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Once the osteoblasts reached 95-100% confluence, the adherent cells were carefully 

rinsed with PBS before adding 4ml of trypsin. The flask was incubated at 37oC, 5% 

CO2 for 3 minutes. Full cell dissociation was assessed by microscopic observation, and 

once confirmed, 8ml of standard αMEM were added to the flask to inactivate the 

trypsin. The suspension was then centrifuged for 3 minutes at 300g and the pellet was 

resuspended in standard αMEM. The cell number was estimated using a Neubauer 

haemocytometer. Osteoblasts were plated at 8x103 cells/well in 150μl of standard 

αMEM in a 96 well plate, or 1x105 cells/well in 1ml standard αMEM in a 12 well 

plate. The cells in the 96 well plate were used for measuring ALP activity (described 

below, in this section) while the cells in the 12 well plates were used for the Alizarin 

red/bone nodule assay (described below, in this section). The plates were incubated 

for 48h, at 37oC, 5% CO2. 

The media of the 12 well plate was replaced by standard αMEM supplemented with 

50μg/ml vitamin C and 3mM beta-glycerophosphate (β−GP) called osteogenic 

medium, for 48h at 37oC, 5% CO2. The cells were kept in those conditions until cell 

viability was assessed using AlamarBlue® (10% v/v) (Thermo Fisher Scientific) at 

weeks 1, 2 and 3. AlamarBlue® is a blue non-toxic reagent, which becomes red 

fluorescent once metabolised by viable cells. The fluorescence is directly proportional 

to the amount of viable cells present in the media.  
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The plate was incubated for 1 hour before being measured on a plate reader at an 

excitation wavelength of 540nm and an emission wavelength of 590nm. The measured 

fluorescence was corrected against blanks without cells, which were added on the last 

day the media was changed from the cells before test. The cells were then washed once 

in PBS and fixed in 70% ethanol (v/v). The cells were kept at 4 degrees until future 

analyses. 

Osteoblasts cultured in a 96 well plate were used for the ALP activity assay. For this 

experiment media of the 96 well plate was refreshed using standard αMEM, and the 

cells were incubated for an additional 24h, at 37oC, 5% CO2. Cell viability was 

assessed using AlamarBlue® for 2 hours, before being washed in PBS once. Cells 

were then incubated in 150µl of ALP lysis buffer (Appendix 2.3) for 15 minutes at 

room temperature before successive pipetting. The cells were stored in the plate at -

20oC until future use.  

 

The procedure of osteoblast culture is summarised in Figure 2.6. 

 
Figure 2.6: Summary of calvarial osteoblast culture. 

Adapted using Servier medical art (Servier, 2017). 
  



Chapter 2: Materials and Methods 

98 
 

Alizarin Red staining and quantification 

Alizarin red staining is a biochemical assay used to quantify calcium deposits produced 

by osteoblast cultures, in presence of osteogenic media. The staining process induces 

the chelation of calcium with Alizarin red and results in a dark red colour. Free calcium 

ions also precipitate with Alizarin red to form red deposits. The coloured complexes 

are then dissolved in a destaining solution and measured at 562nm. 

For this, Alizarin red was initially dissolved in distilled water to a final concentration 

of 40mM, and adjusted to a pH of 4.1 to 4.3 using 10% (v/v) ammonium hydroxide. 

The fixed osteoblasts were carefully rinsed 4 times in distilled water to remove all 

traces of 70% (v/v) ethanol. 800µl of Alizarin red solution was added to each well and 

the plates were then left on a shaker for 20 minutes at room temperature to stain all 

calcium nodules. The staining solution was then removed and the wells were rinsed at 

least 5 times with water until leftovers of the staining solution were completely 

removed. Plates were then left to air-dry overnight at room temperature and 

mineralized nodules were imaged the following day by scanning the plates. A 

destaining solution was prepared by adding 10% (w/v) cetylpyridinium chloride 

solution to 10mM sodium phosphate (pH 7.0). The pH was adjusted to 4.1 to 4.3 with 

concentrated hydrochloric acid. 800µl of the destaining solution was added to each 

well and the plates were left on a shaker overnight at room temperature. The Alizarin 

red was quantified in duplicates at 562nm on a Bio-Tek Synergy HT, along with a 

standard curve prepared in the same destaining solution (0 to 10mM). The amount of 

Alizarin red (mM) from the samples was then deducted using the standard curve and 

once corrected over cell viability, was compared between both groups.  
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Alkaline phosphatase assay 

The ALP assay is used as a biochemical marker for osteoblast differentiation. Its 

activity is measured by colorimetric assay, through the conversion of p-nitrophenyl 

phosphate (no colour) to p-nitrophenol (yellow). 

The monolayer of osteoblasts previously resuspended in lysis buffer (Section 2.3.2) 

was measured by colorimetric assay. A standard curve made of serial dilutions of p-

nitrophenol (0 to 30nM) was measured against each sample, in duplicates. The plate 

was then analysed on a Bio-Tek Synergy HT at 405nm at 2 minute of intervals for 20 

minutes. ALP activity was determined from the slope of the linear part of the kinetics 

curve and was corrected over cell number.  
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2.4 RNA RELATED INVESTIGATIONS  

The expression of mRNA for Rin3 has been quantified at different stages of osteoclast 

differentiation from primary BMDMs to assess its level and variation of expression, 

as well as in primary osteoblast cells. It was also quantified in mouse tissues, such as 

brain, kidney, liver, lung and total crushed bone. 

2.4.1 TRizol® sample collection 

Total RNA isolation was performed using TRizol® reagent (Invitrogen). Flushed out 

bone marrows were centrifuged at 1200rpm for 3 minutes, and the medium was 

carefully removed. The cells were washed at least once in PBS. The cells were 

centrifuged again at 1200rpm for 3 minutes, and the pellet was resuspended in 

TRizol® (Thermo Fisher Scientific). For plated cells, the media was removed from 

wells, and two PBS washes were done. TRizol® was added in excess and the cells 

were lysed by pipetting up and down thoroughly. The amount of TRizol® used varied 

depending on the number of wells (50μl per well in a 12 well plate) and size of tissue 

(1ml TRizol® per 50-100mg of tissue). Tissues were homogenised for about 20 

seconds in TRizol® using the OMNI general laboratory homogeniser (OMNI GLH). 

The homogeniser was washed before and after each sample in nuclease and protease 

free Hyclone ultrapure water, followed by a wash in DNAse out, then in RNAse out, 

and two final washes in Hyclone ultrapure water. Each lasted at least 5 seconds, except 

for the RNAse out wash (10-20 seconds). 

After lysis, the TRizol® samples were incubated in ice for 10 min before being stored 

at -80oC. 
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2.4.2 RNA isolation 

All RNA isolation and qPCR steps were performed using diethyl pyrocarbonate 

(DEPC) – treated 1.5ml eppendorf tubes. 

The RNA was separated from the DNA and proteins using 200μl of chloroform per 

millilitre of TRizol® used and by vortexing for 15 seconds. After 3 minutes of 

incubation at room temperature, the samples were centrifuged for 15 minutes at 

12000g, at 4oC. The aqueous phase containing exclusively the RNA was precipitated 

in isopropyl alcohol in order to remove the TRizol® left in the samples. After 10 

minutes of incubation at room temperature, the samples were centrifuged for 10 

minutes at 12000g, at 4oC. The pellets were then washed twice with 1ml of 75% (v/v) 

cold ethanol, followed by a centrifugation at 7500g for 5 minutes at 4oC. Once dried, 

the pellets were dissolved on ice in DEPC - treated water depending on the size of the 

pellet (about 20μl). Once done, the samples were heated at 65oC for 5 minutes before 

being homogenised by pipetting up and down. The samples were kept at -80oC until 

further use. 

The concentration and quality of RNA samples was also measured using a Nanodrop 

ND-8000 (Thermoscientific).  
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2.4.3 Reverse transcription 

The RNA was then transcribed into cDNA by reverse transcription. After diluting the 

RNA to the same concentration across all samples in a final volume of 11µl, the 

following reaction was added to each sample:  

1µl of oligo(dt)20 at 50µM 

 1µl of 10mM dNTP mix 

 1µl of DEPC-treated H2O  

The negative controls had 11µl of DEPC water instead of diluted RNA.  

The plate was heated for 5 minutes at 65oC and incubated on ice for 1 minute. After 

briefly spinning down the samples by centrifugation, the following reagents were 

added in each well: 

 4µl of 5X first-strand buffer 

 1µl of DTT at 0.1M 

 1µl of RNaseOut Recombinant RNase Inhibitor at 40U/µl 

 1µl of SuperScript III Reverse Transcriptase at 200U/µl 

The plate was incubated in an MJ Research cycler firstly at 50oC for 60 minutes, then 

at 70oC for 15 minutes.  

The samples were then stored at -20oC until further use. 
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2.4.4 Quantitative real-time PCR 

Quantitative real-time PCRs (qPCRs) were performed on cDNA to investigate the 

level of Rin3 mRNA expression in the bone microenvironment.  

The primers were designed manually using the mouse sequence NM_024832.3 from 

Ensembl Genome Browser (www.ensembl.org). The forward primer overlaps between 

exon 1 and 2, while the reverse primer is at the beginning of exon 4, yielding a size of 

357bp. This results in the specific amplification of the heaviest isoform (980aa) of 

Rin3, as the 900aa isoform starts from the last 9 nucleotides of exon 2. A probe located 

in this region was also used (Roche, Probe #13).  

This amplification was performed on mRNA measured from cells and tissues from 

WT mice. Details of primer sequences are shown in Table 2.9.  

The PCR reaction master mix was set up for each reaction as shown below: 

 10µl of 2X Sensifast probe no-ROX mix 

 0.8µl of Forward primer at 10µM 

 0.8µl of Reverse primer at 10µM 

 0.2µl of Probe at 10µM  

 4.2µl of DEPC-treated H2O 
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Table 2.9: qPCR primers of Rin3 and probe library number and sequence. 

Primer  Primer sequence 
Annealing 

temperature 
(oC) 

GC content 
(%) 

Probe 
number Probe sequence 

Forward  5’-GCCGGTCCTATTCCAGATG-3’ 59.5 58 

13 AGGCAGAG 
Reverse  5’-AAGAACTGAGCCTTCCAGGTA-3’ 59.5 48 
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4µl of template was added to each well of a 96 well microplate, followed by 16µl of 

the master mix described above. The plate was then read in the Chromo 4 Real Time 

PTC-200 PCR thermocycler (MJ Research) after a brief centrifugation. 

The thermal cycling protocol consisted of an initial incubation for 10 minutes at 95°C, 

followed by 35 cycles of 15 seconds at 95°C, 30 seconds at 61.9°C, and 15 seconds at 

72°C. Each sample was run in duplicate, except for the tissues which were run in 

triplicates. 

Successive ten-fold dilutions of a Rin3 standard were run in parallel to samples. The 

standard was made from a qPCR product with strong signal, purified using the 

QIAquick PCR Purification Kit. The product was then loaded on an agarose gel to 

validate its specificity and purity (data not shown). The concentrations and quality 

were measured using the Nanodrop ND-8000 (Thermoscientific). 

The number of molecules per reaction was assessed from the standard dilutions using 

these two formulas: 

 

The Opticon Monitor software v3.1 (Genetic Research Instrumentation Ltd, UK) was 

used to translate each curve of the standard into a linear plot of the logarithmic amount 

of DNA against the cycle number (C(t) cycle).  
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The intensity of fluorescence from each sample, within range of the ones from the 

standard, could then be measured and translated into a number of molecules. A 

negative control was also added to each experiment performed to avoid amplification 

from contaminants (Figure 2.7).  

 

 
Figure 2.7: Screenshots of the Opticon Monitor 3.1 quantification curves.  

A/ Amplification curves from the standard successive dilutions, where fluorescence is plotted 
against the C(t), or number of cycles. The negative control has the highest C(t) value. B/ Linear 
plot of standard where the logarithmic number of molecules is against the C(t) cycle. This is 
adjusted by manual threshold adjustment until reaching an equation offering an r2 value as 
close as possible to 1. C/Amplification graph of the standard and samples. D/ Linear plot with 
addition of the samples (red arrows) values. 
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The copy number values were normalised against the housekeeping gene Eukaryotic 

18S ribosomal RNA (rRNA) measured alongside the Rin3 gene in ten-fold dilutions. 

The 18S endogenous control master mix was set up as shown below, for each reaction: 

 10µl of 2X Sensifast probe no-ROX mix 

 1.5µl of TaqMan® Gene Expression Assay Mix for 18S ribosomal RNA 

 4.5µl of DEPC-treated H2O 

4µl of template was aliquoted in the microplate per sample tested before adding the 

master mix described above.  

The thermal cycling protocol consisted of an initial incubation for 10 minutes at 95°C, 

followed by 40 cycles of 15 seconds at 95°C, then 10 seconds at 60°C and 15 seconds 

at 72°C. 

The estimation of number of molecules for each sample was determined using the 

formula described in page 105, as for the Rin3 reaction. Each test was amplified in 

duplicate except for the mouse tissues which were done in triplicate.  

The specificity of the housekeeping gene and RIN3 amplifications were confirmed by 

running the qPCR products on an agarose gel (data not shown).  
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2.5 PROTEIN RELATED INVESTIGATION 

Protein expression of RIN3 was measured during osteoclast differentiation cultured 

from BMDMs. The same experiment was performed as a time course following the 

RANKL stimulation where cells were lysed on a daily basis from the first day of 

RANKL stimulation up to four days after. 

2.5.1 Protein isolation 

The protein extraction was performed on cell lysates from cultured cells washed in 

cold PBS and scraped in cold RIPA lysis buffer (Appendix 2.4) supplemented with 

20mM sodium fluoride, 1mM of EDTA, 0.4% (v/v) phosphatase and 2% (v/v) protease 

inhibitor cocktails (Sigma). Flushed out bone marrows were centrifuged at 1200rpm 

for 3 minutes, the pellets were resuspended in cold PBS, centrifuged again and finally 

resuspended in RIPA buffer. The samples were left on ice for 15 minutes before being 

centrifuged for 15 minutes at 13000 rpm (4°C). The supernatants were kept at -20oC 

until further use. 

2.5.2 Protein quantification 

The protein concentration was then quantified from the cell lysates against a bovine 

serum albumin standard pre-diluted set (Thermo Fisher Scientific), using the copper 

(II) sulphate-bicinchoninic acid (Sigma) method. Once incubated at 37°C for 15 

minutes, the plate was read at 562nm using the BioTek™ SynergyHT plate reader and 

the values were obtained with the Gen5™ software (Appendix 2.5). 14µg of protein 

lysate was loaded per sample.  
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2.5.3 Gel electrophoresis 

Western blots were performed in 12% Criterion™ XT Bis-Tris pre-cast gels (Bio-

Rad), held in a vertical tank filled with XT MOPS (Bio-Rad) electrophoresis buffer 

diluted twenty times in H2O (Appendix 2.5).  

Protein lysates were denaturated for 3 minutes at 100°C in loading buffer (Appendix 

2.5). The samples were then loaded along with MagicMark XP western protein 

standard (Invitrogen) and Kaleidoscope pre-stained standard (Bio-Rad) ladders, at 

200V for 45 minutes.  

2.5.4 Electrophoretic transfer 

Proteins were then transferred on a methanol-activated polyvinylidene difluoride 

(PVDF) Hybond-P membrane (GE Healthcare Life Sciences), using a semi-dry 

technique. A blotting sandwich of pre-soaked blot paper, membrane, polyacrylamide 

gel and pre-soaked blot paper was carefully prepared on the transfer tank to allowed 

the negatively charges protein to transfer from the gel to the membrane. The sandwich 

was topped with 1X transfer buffer (Appendix 2.5), and the tank was programmed at 

90mA for 2 hours and 30 minutes.  
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2.5.5 Immunostaining and antibody detection 

Once the transfer finished, the membrane was saturated in 5% non-fat dry milk 

(Marvel) diluted in 0.1% TBST (Tris-Buffered Saline and Tween 20; Appendix 2.5) 

for an hour at room temperature before being washed in 0.1% TBST every 5 minutes 

for 30 minutes, at room temperature. 

The membrane was then incubated overnight at 4ºC under slow agitation in the primary 

antibody (anti-RIN3 from Proteintech or anti-β-actin from Sigma) diluted at 1:1000 in 

3% BSA, in 0.1% TBST. After being washed with 0.1% TBST every 10 minutes for 

one hour, the membrane was incubated with the second antibody (Peroxidase-

AffiniPure donkey anti-rabbit IgG [H+L], Jackson Immunoresearch) at a dilution of 

1:5000 in 5% milk made in 0.1% TBST at room temperature for 1 hour. 

The membranes were washed again with 0.1% TBST every 10 minutes for one hour 

before being visualised using the Clarity western ECL substrate (Bio-Rad) on a 

Syngene GeneGnome bio imaging system. The intensities of the bands were quantified 

using the GeneSnap software from Syngene.  

Stripping was necessary for the membranes that were previously incubated with a 

RIN3 antibody, before being probed with β-actin. To do this, the membranes were 

incubated in stripping buffer (Appendix 2.5) supplemented with DTT at 50°C until the 

ECL substrate did not detect any band. The stripped membranes were then blocked in 

milk again, probed and visualised as described above. 
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2.6 IMMUNOFLUORESCENCE 

The localisation of RIN3 was also investigated using immunostaining on RANKL-

induced osteoclasts, from mouse bone marrow.  

The cells were obtained as described in Section 2.3.1. After 2 days of incubation in M-

CSF, the macrophages were then plated in a 96 well plate at 2x104 cells per well. After 

four days of culture in RANKL, the cells were fixed for 10 minutes in 4% 

paraformaldehyde in PBS, at room temperature. The cells were carefully washed in 

PBS three times, to remove all traces of formaldehyde. Cell permeabilisation was 

performed using cold 0.5% (v/v) Triton X-100 in 10% milk in PBS, for 10 minutes at 

room temperature. After three washes in PBS, the cells were incubated at room 

temperature with a primary anti-RIN3 antibody (Proteintech) diluted 20 times in 10% 

FCS in PBS for 1 hour, at room temperature. Negative controls were incubated in 10% 

FCS in PBS. Cells were washed three times in PBS again, and were incubated one 

hour at room temperature in Alexa Fluor® 488 goat anti-rabbit IgG (H+L) secondary 

antibody (Life technologies), diluted 500 times in 10% FCS in PBS. The cells were 

washed 3 times in PBS and a 10 minutes Hoechst staining (DAPI) was performed. The 

cells were finally washed three times in PBS and an anti-fading agent (DABCO, 

Sigma) was added before imaging. Pictures were taken using Zeiss Axiovert light 

microscope (Carl Zeiss Ltd., UK) at x20 magnification.  
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2.7 IMMUNOHISTOCHEMISTRY 

Immunohistochemistry was performed to investigate the cellular location of RIN3 in 

human bone samples. The tissues selected for this experiment included frozen sections 

of osteosarcoma and formalin-fixed paraffin-embedded (FFPE) sections of 

osteoclastoma, patients affected with PDB, GCT and healthy controls. The negative 

controls used included osteosarcoma and lung samples, while positive controls were 

performed on lung tissue where RIN3 is highly expressed 

(http://www.proteinatlas.org). 

Samples prepared in FFPE were fixed in formalin overnight. A decalcification 

treatment with Decalcifier II (Leica) was performed. The tissue was then processed 

through a series of graded alcohol, xylene and wax using the Excelsior AS tissue 

processor (Thermos). The tissue was then embedded in molten wax using the Leica 

embedding centre and wax was then allowed to set. The sections were cut at 3-4µm 

using the Leica microtome and were placed in a flotation bath to flatten them before 

being transferred to glass slides. The glass slides were then dried overnight at 37°C, or 

at 60°C for smaller sections, which detach easily.  

The frozen samples were embedded in Optimal Cutting Temperature compound 

(CellPath, UK) medium on dry ice, onto cryostat chucks and was left to harden. Using 

a Leica cryostat (CM1850), the blocks were sectioned at a thickness of 3-4µm. The 

sections were then transferred onto glass slides, and were fixed with acetone for 5 

minutes.  
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The envision immuno protocol was performed, using Heat Induced Epitope Retrieval 

(HIER) technique on FFPE sections only. For this, the sections were dewaxed in 3 

successive batches of xylene for 5 minutes each, before being hydrated through 

batches of graded alcohol (2x100%, then 80%, then 50%) for two minutes each. After 

being washed briefly with tap water, the antigen retrieval was performed on slides 

placed in a microwavable pressure cooker, containing a solution of warm 0.1M sodium 

citrate and 0.1M citric acid at pH6. The cooker was heated up for 5 min in a 

microwave. Once cooled, the slides were washed in PBS-Tween (0.1%) for 5 minutes 

under slow agitation. Endogenous peroxidase activity was inactivated with a solution 

of 3% hydrogen peroxide in water for 10 minutes. The slides were then washed in 

PBS-Tween (0.1%) for 5 minutes before being loaded in a carefully sealed Sequenza 

rack. Non-specific binding was prevented using Dako total protein blocking solution 

(Agilent) for 10 minutes. 120µl of the primary antibody diluted 100 times (Or Dako 

antibody diluent for the negative controls) were prepared in Dako antibody diluent 

(Agilent), and incubated on the slides for 1 hour at room temperature or overnight at 

4oC. The antibody used for detecting human RIN3 was produced in rabbit (Sigma). 

After 2 washes in PBS-Tween (0.1%), the sections were incubated in secondary 

antibody Dako Envision labelled polymer (Agilent) for 30 minutes. After 2 washes in 

PBS-Tween (0.1%), 120µl of H2O2-containing DAB substrate diluted fifty times in 

DAB buffer were added for 5-20 minutes (usually 10 minutes) until colour develops. 
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After one wash in PBS-Tween (0.1%) and a two minutes wash in tap water, the 

sections were counterstained with Haematoxylin for 10 minutes. They were then 

washed successively in water, Scotts tap water solution and water again for 10 seconds 

each. Sections were dehydrated through graded alcohol (50%, then 80% for 30 seconds 

each, followed by 2 batches at 100% for 2 minutes each) before being incubated in 3 

successive batches of xylene for 5 minutes each. 

Sections were mounted with a cover slide covered in DPX mounting medium (Sigma) 

and analysed on an Olympus BX51 microscope (Olympus, UK). 
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2.8 MICE EXPERIMENTATION 

2.8.1 Mice 

Rin3-/- mice were obtained from the Jackson Laboratory which used embryonic stem 

cells provided by the International Mouse Phenotyping Consortium. A deletion was 

performed by inserting a Velocigene cassette (ZEN-Ub1) follow by a Cre-mediated 

excision of the neomycin cassette. 29,890bp were removed from the Rin3 gene, 

corresponding to the amino acids 2 to 101 (end of exon 1, all exon 2 most of exon 3) 

of the protein where the SH2 domain is localised (Figure 2.8). The knock out status of 

the mice was assessed by qPCR, using the primer set described in Section 2.4.4. This 

set targets the deleted area of Rin3, and a complete knock out was confirmed (data not 

shown). 

 
Figure 2.8: Area deleted of Rin3 by the Internal Mouse Phenotyping Consortium.  

The amino acids (aa) 2 to 101 of Rin3 were deleted.  

All experiments were performed on Rin3-/- and wild type (WT) mice generated from 

mating heterozygous breeding pairs. To generate those, a Rin3-/- female C57BL/6NJ 

was crossed with a WT 129/OlaHsd male mouse to create a mixed background 

C57BL/6NJ and 129/OlaHsd line. All mice were housed in a designated animal facility 

in pathogen-free rooms maintained at constant temperature, with 12 hours light/12 

hours dark cycles. They had free access to water and pelleted standard commercial diet 

(SDS, Special Diets Service). Genetic status were assessed by genotyping as described 

in Section 2.8.2.  
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Hind legs and spines were isolated for micro computed tomography (microCT) 

analysis (Section 2.8.3). Hind legs were selected for histomorphometry, and osteoclast 

cell cultures (Section 2.8.4). All were collected at 8 weeks old. Calvarial osteoblast 

cultures were performed on 2 days old pups, that were generated from Rin3-/- or WT 

parents (Section 2.3.2).  

Intraperitoneal injections of 200µl of calcein at 2g/L were given 6 and 2 days prior to 

collection of samples for histomorphometry analyses.  

The sample size for the in vivo experiment was chosen to provide at least 80% power 

to detect a 1.3 standard deviation difference in BV/TV between Rin3-/- and WT mice. 

Power calculations were performed using G*Power software, version 3.1.9.2 

(Heinrich Heine University Düsseldorf, Germany). 

2.8.2 Genotyping methods 

The knock out status was assessed by extracting genomic DNA from ear notches. The 

DNA was extracted using the Invisorb® Spin Tissue Mini Kit following the 

manufacturer’s instructions. The product was either stored at -20oC until further use, 

or analysed directly by PCR amplification. 

For this, two sets of primers were designed and used for each PCR reaction (Table 

2.10). The first set specifically targeted WT genotypes by amplifying a region of 

275bp, located in the intron 2 of Rin3. As this amplicon is completely absent in 

mutated mice, this product will not be amplified in Rin3-/- samples.  
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The second set of primers however, revealed Rin3-/- mice genotypes. The forward 

primer targets a sequence located in the Velocigene cassette, present in case of 

successful knock out only. The reverse primer amplifies a region located at the 5’ 

extremity of the third intron of Rin3. The result of this reaction showed a product of 

513bp. Rin3-/- samples showed a band at 513bp while the Rin3+/- ones showed both 

amplicons (Table 2.9).  

All PCR reactions were performed as below, for a total volume of 25μl: 

Water: 15.8μl 

5X Kapa 2G HS buffer: 5μl (final 1X – with 0.3mM MgCl2) 

10mM dNTP KAPA: 0.5μl (final 0.2mM) 

10μM Forward Rin3 primer: 0.4μl (final 0.33μM)  

10μM Reverse Rin3 primer: 0.4μl (final 0.33μM)  

10μM Forward WT primer: 0.4μl (final 0.33μM) 

10μM Reverse WT primer: 0.4μl (final 0.33μM) 

5U/μl Kapa 2G HS taq: 0.1μl (final 0.02U/μl) 

DNA: 2μl 

Amplification of both fragments was performed in a MJ Research thermocycler. The 

thermal cycling protocol consisted of an initial incubation for 2 minutes at 94oC, 

followed by 35 cycles of 20 seconds at 94oC, 15 seconds at 61.4oC and 7 seconds at 

72oC. A final extension step at 72oC for 2 minutes in the last cycle (Figure 2.9).  
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Table 2.10: Sets of primers used for the determination of the mice genotypes. 

 Primer set Forward Location Reverse Location Amplicon size 

Wild Type  5’-CTGTGCCAACAACAGCATCT-3’ Intron 2 5’-CTCCTCTTGTCCCAGCACTC-3’ Intron 2 275bp 

Rin3-/-  5’-CGGTCGCTACCATTACCAGT-3’ Velocigene 
cassette  5’-CTGTGGGGAGCATTCTGAGT-3’ Intron 3 513bp 

 
Figure 2.9: DNA gel electrophoresis to determine Rin3 mice genotype.  

Lane 1: 100bp DNA ladder; Lane 2: Wild Type; Lane 3: Heterozygote for the Rin3 mutation; Lane 4: Homozygote for the Rin3 mutation; Lane 5: Wild 
Type control; Lane 6: Wild Type control; Lane 7: Negative control.  
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A non-specific band was observed just below 400bp. This was also present in the 

genotyping guidelines provided by Jackson lab, and seems to be amplified for the WT 

genotype, as it is also seen in heterozygote genotypes but not in the homozygote one. 

This band was present in all gels including positive controls.  

2.8.3 Micro computed tomography 

Female mice aged 8 weeks were sacrificed by cervical dislocation and the hind legs 

and spine were isolated. They were initially fixed in 4% (v/v) paraformaldehyde in 

PBS overnight, before being carefully washed twice in PBS and stored in 70% (v/v) 

ethanol at 4oC until further use.  

Both legs were scanned as well as the L6 vertebra of the spine was also analysed. The 

microCT sample preparation consisted in carefully removing the muscle tissue around 

the bones with a scalpel. The muscle was cut around the spine using small scissors. 

Each bone was tightly wrapped in stretched parafilm in order to assure a straight 

upright position during the scan, to avoid dehydration and allow it to fit properly in 

the respective holder (Figure 2.10). The cortical analyses were performed on the 

femoral diaphysis while trabecular analyses were done on both femoral and tibial 

metaphysis using a SkyScan 1172 scanner (Bruker, Belgium).  

The scanner settings chosen included an X-ray radiation source of 60kV and 167μA, 

a 0.5mm aluminium filter, and a pixel size of 5μm, an average of 2 images per level 

and a rotation step of 0.6 degrees of the samples.   
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Figure 2.10: Holders used for the microCT analyses. 
The left tube was used for spines, while the right tube, longer and narrower was used for legs. 
The tweezers are used for size comparison.  

 

Once the scans were finished, the cross-section images were reconstructed using the 

Skyscan N-recon software (Bruker, Belgium). The reconstruction allows a better stack 

of all the images, through reduction of noise, rectification of low energy X-ray not 

absorbed by the aluminium filter on the outside of the sample, and amelioration of 

pixel artefacts. The different settings are summarised in Table 2.11.  

Table 2.11: NRecon software parameters for reconstruction (Campbell & Sophocleous, 
2014). 

Parameter Description Setting 

Smoothing Smoothes images and removes 
noise Width; 1 pixel 

Beam Hardening factor 
correction 

Corrects for the absorption of 
lower energy x-ray on the 
outside of specimen  

0.09 

Ring correction level 
Corrects for the non-linear 
behaviour of pixels causing ring 
artefacts 

3 

The stack of images was then straightened using Dataviewer (Bruker, Belgium). 
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The transaxial view of the 3D reconstructed model was then analysed to measure 

trabecular and cortical bone, using the CTAn software (Bruker, Belgium). For the 

analysis of the limbs, the end of the growth plate was used as a reference point. 

The trabecular bone was first measured on the proximal femoral metaphysis by 

selecting a set of 450 slices, located 150 slices distally from the end of the growth 

plate. Each slice has a thickness of 5µm. It was then analysed at the distal tibial 

metaphysis for 200 slices, located 100 slices distally from the end of the growth plate. 

The cortical bone was assessed using 200 slices proximally from the midpoint of the 

femur, evaluated at 1000 slices. Finally, the trabecular bone was measure on the 

lumbar vertebrae 6 and the frame showing the transverse process connecting with the 

vertebral axe was used as a reference. The analysis was then performed 50 slices from 

this baseline, for 200 slices distally from the secondary spongiosa. All regions of 

interest are summarised in Figure 2.11. 

The CTAn software (Bruker, Belgium) uses a free hand tracing of the region of interest 

(ROI). The trabecular bone was drawn excluding the endocortical surface of the bone, 

while the cortical analysis included cortex surface and trabecular bone. The total 

volume of interest (VOI) is then deducted by the software after auto-interpolation of 

the ROI traced levels. The VOI goes through a process of amelioration, such as 

reduction of background noise or closing pores (Table 2.12). 
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Figure 2.11: Summary of the area traced from bone for microCT analysis.  

Area analysed: All bones illustrated here are presented in an upright position. Each picture 
analysed corresponds to a transversal slice of the bone, taken every 5µm by the microCT 
scanner. The number of slices written in light grey correspond to the distance between the 
reference point (growth pate) until the area analysed, written in black.  
Reference point: This row shows examples of reference points used with the CtAn software 
(Bruker, Belgium). For the long bones, this corresponds to the picture for which at least two 
growth plates touched each other, from the knee. For the spine, this corresponds to the first 
picture (from the secondary spongiosa) where the transverse process connects with the 
vertebral axe on both sides. The growth plates connection points are showed by white arrows.  
First frame traced: This row shows the region traced (in red) on the first transversal picture, 
from the reference point.  
Last frame traced: This row shows the region traced (in red) on the last transversal picture. 
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Once performed on all samples, the VOI goes through a specific trabecular or cortical 

task list, in order to measure the following parameters: trabecular bone volume 

corrected by total volume (BV/TV, %), trabecular thickness (µm), trabecular 

separation (µm), trabecular number (1/mm), cortical bone volume (mm3), cortical 

thickness (µm), medullary cavity diameter (µm), and cortical diameter (µm).  

3D modelling of the scans was also performed using CTVol (Bruker, Belgium) on 

each region investigated to visually observe changes in the bones and confirm the 

results from the CTAn analysis.  

Table 2.12: CTAn software parameters outcome (Campbell & Sophocleous, 2014). 
Parameter Description Setting 

Smoothing Smoothes images and removes 
noise Median filter; 2D space, radius 1 

Threshold Segments the foreground from 
background to binary images 

Global; low level 100, high level 
255 

Despeckle Removes speckles from binary 
images 

Image; remove white speckles 
< 150 voxels 

3D-Model Creates a 3D surface from 
binary images 

Adaptive rendering; file saved as 
.p3g 

3D-Analysis Calculates 3D parameters of 
binary images 

Requested for basic values, 
trabecular thickness, number and 
separation 
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2.8.4 Bone histomorphometric analysis 

Sample embedding 

Once all samples were scanned, the femurs were embedded in plastic blocks for further 

histomorphometry analyses.  

As the legs were scanned as whole, the first step was to carefully separate the tibia 

from the femur by cutting all ligaments around the knee. The samples were then 

dissected using an electric saw to remove the area not analysed and to keep the size of 

the sample as small as possible (Figure 2.12).  

 
Figure 2.12: Site of dissection of femur for plastic embedding and histomorphometry.  

The knee, metaphysis and most of the diaphysis were kept for histomorphometry, as shown 
within the double arrow. 

Once isolated, the samples were placed in disposable baskets divided in four parts, 

which were then placed in a Leica automatic tissue processor in a solution of 70% 

ethanol.  
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The femurs were taken through a program lasting 23h30, through which they were 

dehydrated and defatted in xylene as shown in Table 2.13. 

Table 2.13: Embedding process program used with the Leica tissue processor. 
Step Reagent Duration Temperature 

Dehydration 

1 70% Ethanol 30 min Room temperature 

2 80% Ethanol 2h Room temperature 

3 96% Ethanol 2h Room temperature 

4 100% Ethanol 3h Room temperature 

5 100% Ethanol 3h Room temperature 

Defatting 

6 Xylene I 1h Room temperature 

7 Xylene II 12h Room temperature 

 

The samples were then transferred into a freshly made 2-methoxyethyl acetate (MEA) 

solution prepared as shown below (Table 2.14), and were kept into a vacuum 

desiccator for 7 days at 4oC to be infiltrated. The samples were then ready for 

embedding into blocks. 

Table 2.14: Composition of the methoxyethyl acetate infiltration solution. 

  Quantities to prepare 100ml 

Methyl Methocrylate (MMA) 89ml 

Di-butyl-phtalate 10ml 

Perkadox 16 1g 

Novoscave 0.01g 
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For this, the samples were delicately placed in moulds in an orientation favouring 

coronal sectioning. They were immersed in one week old MEA and tightly closed by 

metal lids screwed on top of the sample. The samples were then incubated in a 

waterbath pre-warmed at 30oC for 48 to 72 hours until polymerisation. The blocks 

were then completed by adding a resin made of 2 parts of dibenzoylperoxide for 1 part 

of N,N-dimethyl-p-toluidine in an embedding ring placed tightly above the samples. 

Following an overnight incubation at room temperature, the blocks were removed from 

the moulds and stored at room temperature.  

The blocks were then loaded on a Leica microtome and were trimmed automatically 

at a speed not exceeding 5mm/sec until reaching the sample. The sections were then 

cut at a thickness of 5µm, using a diamond knife. The block was moisturised with 90% 

ethanol during this process. The sections were carefully placed and straightened on a 

saline coated microscope slide and covered in Kisol foil.  

The excess ethanol was removed with a filter paper. The slides were then kept under 

mechanical pressure in a 37oC oven, and left to dry for 3 days. 

Once dried, the Kisol foil was carefully removed and the slides were stored in hermetic 

boxes at room temperature until further use. 
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Tartrate-resistant-acid-phosphatase staining 

The sections underwent TRAcP staining, a coloration allowing the identification of 

multinucleated osteoclasts by turning them red. The MEA resin was removed from the 

sections using an auto-stainer, which incubated the slides in a succession of MEA, 

xylene, and series of ethanol solutions with decreasing concentration as shown in 

Table 2.15. 

Table 2.15: MEA resin removal steps in preparation of TRAcP staining. 

Solution Incubation time 

Fresh MEA 20 minutes 

Fresh MEA 20 minutes 

Fresh MEA 20 minutes 

Fresh Xylene 10 minutes 

Fresh Xylene 10 minutes 

100% Ethanol 2 minutes 

100% Ethanol 2 minutes 

80% Ethanol 2 minutes 

70% Ethanol 2 minutes 

50% Ethanol 2 minutes 

Distilled water 2 minutes 

Distilled water 2 minutes 
 

The slides were then placed in a TRAcP staining solution (Table 2.16) for 2 hours at 

37oC, until the red staining developed. The samples were then washed four times in 

distilled water. 
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Table 2.16: Tartrate-resistant-acid-phosphatase staining solution composition for 
histomorphometry. 

Reagent  Amounts to prepare 100ml 

Napthol AS-TR phosphate 140mg 

N-N Dimethyl formamide 500µl 

0.2M Sodium acetate anhydrous buffer, 
pH5.2 (pre-warmed at 37oC) 100ml 

Sodium tartrate dihydrate 230mg 

Fast red salt TR 140mg 

Every physical transfer of the slides was done with high care, as without the resin, the 

sample can move easily from the slide and float, or detach completely from the slide. 

Once drained, the slides were counterstained in Aniline blue, prepared at a final 

concentration of 0.332g/L with phosphotungstic acid at 6g/L in water. The samples 

were incubated at room temperature for 5 minutes, before being washed in water four 

times.  

The slides were quickly mounted using apathy syrup (Appendix 2.6) and were left to 

air dry for 1 hour before being imaged. Each sample was imaged within the same day 

of staining, to avoid Aniline blue fading.  

The microscope used for imaging at magnification x10 was a confocal Zeiss LSM800 

(Carl Zeiss Ltd., UK). The trabecular analysis was performed using TrapHisto (Van't 

Hof et al, 2017), allowing semi-automatic recognition and measuring of bone (blue) 

and osteoclast (red) parameters using the colour discrimination (Figure 2.13). 

Information such as osteoclast resorption surface, number of osteoclasts, bone surface 

and bone volume could be determined (Table 2.17).  
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Figure 2.13: Process of the TrapHisto software to identify and measure bone and 
osteoclast parameters.  

The red area is traced to define the region to analyse, and the software automatically identifies 
bone (blue) from osteoclasts (in red) due to the TRAcP and Aniline blue counterstaining. 
Manual edition was then used to refine the tracing. 

 

 
Table 2.17: TrapHisto software outcome data. 

Parameter Abbreviation Unit 

Bone area B.Ar µm2 

Bone perimeter B.Pm µm 

Osteoclast surface per bone 
surface Oc.S/BS % 

Osteoclast number per 
bone surface Oc.N/BS mm-1 
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Calcein staining 

Calcein blue is a calcium chelating fluorochrome, used to evaluate bone growth.  

Calcein labelled bone sections (Section 2.8.1) were incubated in a calcein blue solution 

at 0.1% in water (pH 8) solution for 3 minutes. They were then washed three times in 

distilled water and were transferred to an auto-stainer Leica ST5020. The specimen 

were then dehydrated through a series of decreasing concentrated ethanol solutions.  

They were incubated in xylene for three minutes and mounted using a Leica CV5030 

cover-slipper in xylene, using Eukitt® Quick-hardening mounting medium. 

The slides were left to air dry in a fume hood with low lightening for an hour before 

being imaged. The slides from this point on were stored in a hermetic box.  

Imaging of the sections was performed using a confocal Zeiss LSM800 (Carl Zeiss 

Ltd., UK), at magnification x20. The mineralised bone was analysed by using a DAPI 

fluorescent filter and appeared in blue, while the calcein labelling appeared green 

under FITC fluorescent filter. The distance between the two calcein labels was 

reflective of bone growth within the four days of interval between injections.  

The trabecular analysis was performed using the CalceinHisto software (Van't Hof et 

al, 2017). As for the TRAcP analysis, the differences in colours were recognised 

automatically, and were used to measure bone and label parameters (Figure 2.14). 

Manual adjustment was then performed to refine the label tracing. Information such as 

label width, bone volume/total volume, minimum acquisition rate, mineralised surface, 

bone formation rate and bone surface were then determined (Table 2.18).  
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Figure 2.14: Images of the calcein labelling analysed by the CalceinHisto software.  

The mineralized bone appears in blue, while the calcein labelling appears in green. The space between the 2 labels corresponds to 4 days of bone formation. 
Double labelling is pointed by red arrows while single labelling is pointed by white arrows. 
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Table 2.18: CalceinHisto software outcome data. 

Parameters Abbreviation Expression Significance 

Single labelled 
perimeter sLS µm 

Measure of the length of 
single labels through the 
ROI 

Double labelled 
surface perimeter dLS µm 

Measure of the length of 
double labels through the 
ROI 

Labelled width L.Wi µm Interlabel distance 
through the ROI 

Bone volume per 
total volume BV/TV % Bone volume through the 

ROI 

Mineral 
acquisition rate MAR  µm/day Rate of mineral formation 

per day through the ROI 

Mineralising 
surface per bone 

surface 
MS/BS % 

Translates the percentage 
of labelled surface relative 
to the total bone surface 
through the ROI 

Bone formation 
rate per bone 

surface 
BFR/BS µm3/µm2/day 

Translates how much 
mineralised bone is 
formed per day, relative 
the bone surface of the 
ROI 

Bone formation 
rate per bone 

volume 
BFR/BV %/day 

Translates how much 
mineralised bone is 
formed per day, relative to 
the bone volume of the 
ROI 

ROI = Region of interest. 

2.8.5 Data analysis 

Mean values were calculated using SPSS Version 22 (SPSS Ltd, UK). Statistical 

significances within groups were analysed using independent-samples t test, on SPSS. 

P-values were considered significant when lower than 0.05. A generalized linear 

models (GLM) analysis was performed on mineralised nodule assay, for time, 

genotype and staining using Minitab Version 12 (Minitab Inc., UK).   
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3 TARGETED SEQUENCING OF THE PAGET’S DISEASE 
ASSOCIATED 14Q32 LOCUS  

3.1 SUMMARY 

The candidacy of the 14q32 locus in PDB was initiated by a GWAS performed in 2011 

on a Pagetic cohort, which revealed the rs10498635 variant located in the RIN3 gene 

(Albagha et al, 2011). The rs754388 variant, also located in RIN3, was associated with 

an increased lower limb bone mineral density DXA scans in children (Kemp et al, 

2014). Here, RIN3 was sequenced in order to identify new PDB associated variants. 

An imputation was performed based on the one described in the 2011 GWAS, which 

used Hapmap SNP database for reference. The same cohort of 741 PDB patients and 

2699 controls was used, but the 1000 Genomes database was chosen as a reference to 

increase the sample size. It confirmed the independent signal of rs10498635. 

Frequencies of the 18 RIN3 variants detected by sequencing 295 affected individuals 

were compared to public databases, and an association was found for p.R279C (OR = 

0.64; P = 1.4x10−9). In silico analysis of p.R279C showed no predicted functional 

effect. p.R279C and rs10498635 are in LD and share the same risk haplotype, which 

was over-represented in cases (81.2%; OR = 1.48; P= 2.8x10−6). Many rare variants 

were also described and an association was found for those once combined (OR = 3.72; 

P = 8.9x10−10). Most were on the same haplotype as p.R279C’s risk haplotype.  

Functional work is still needed for the p.R279C variant despite the in silico prediction. 

Indeed, previous experience has shown that the SQSTM1/p.P392L change was 

predicted to be benign when in fact is disease causing (Hocking et al, 2004). 

Nevertheless, these results still confirm an association between RIN3 with PDB. 
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3.2 INTRODUCTION 

PDB is a skeletal disorder with high bone turnover. Although the origin of the disease 

is yet to be understood, an inherited component has been described as PDB can be 

passed onto family members in an autosomal dominant manner (Ralston & Albagha, 

2014). A total of 28 mutations in the SQSTM1 gene are described to be associated with 

PDB. Most are located in the UBA domain of the protein, and result in a loss of 

function or truncation of the protein. They are detected in about 20-50% of familial 

cases, and 5-15% of the sporadic cases, and the most reported mutation is the p.P392L 

variant (Rea et al, 2013). Although mutations in the SQSTM1 gene have greatly helped 

in the diagnosis of PDB and the understanding of its molecular signature, additional 

loci need to be investigated. To this end, and as described in Section 1.4.1 (14q32.12 

locus (RIN3)), a GWAS performed in our group identified the RIN3 gene by using 

PDB cases which did not carry SQSTM1 mutations (Albagha et al, 2011). The strong 

signal came from the rs10498635 intronic variant (P = 2.55x10−11; OR = 1.44), which 

was also surrounded by genetic recombination sites. Such genetic results place RIN3 

as a great candidate gene for the investigation of PDB, however the role of RIN3 in 

bone has not been investigated much. Only one study so far has showed that RIN3 is 

associated with higher bone density in lower limbs from children and that it is 

expressed in osteoclast and osteoblast mouse primary cells (Kemp et al, 2014). 

Additionally, RIN3 was found to have a role in endocytosis (Kajiho et al, 2003), kinase 

receptor recycling (Janson et al, 2012) and activating small GTPases such as Rab5 and 

Rab31 through its GEF activity. This chapter aims to further investigate the association 

between PDB and the RIN3 gene, by identify new potentially pathogenic variants using 

next-generation and Sanger sequencings, and in silico analyses.  
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3.3 METHODS 

Here, the RIN3 gene was sequenced to identify new variants which could be involved 

in PDB and bone metabolism. For this, Sanger sequencing was performed in 101 cases 

from the ZiPP study and 24 cases from the PRISM study on all 10 exons of RIN3 as 

well as the promoter and UTRs (Section 2.1.1). Next generation sequencing was also 

performed in 95 PRISM cases and 26 familial cases using the Haloplex kit (Agilent 

technologies), on the RIN3 gene and 20kb surrounding areas on either side (Section 

2.1.2). All patients were selected on a young age of diagnosis basis and/or family 

history. 

The variants discovered from both techniques were categorised in groups of rare (MAF 

< 1%) or common incidence (MAF > 1%). Frequencies were compared to 379 

European subjects from the 1000 Genomes (www.1000genomes.org/) and 4300 

European-American subjects from the NHLBI project 

(http://evs.gs.washington.edu/EVS/) as controls. The combined effect of rare variants 

was investigated using a Burden test, by Fisher’s exact test (Section 2.1.2). An 

imputation, based on the one performed in the 2011 GWAS (Albagha et al, 2011) 

which highlighted RIN3, was performed using MACH (Section 2.1.4) (Li et al, 2009). 

The same cohort of 741 PDB patients and 2699 controls from the WTCCC (Wellcome 

Trust Case Control, 2007) was used. The 1000 Genomes European phased haplotype 

data (phase I version 3) (www.1000genomes.org/) was used as a reference. An LD and 

a haplotype analysis were performed on Haploview (Barrett et al, 2005) (Section 

2.1.3).   
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In silico analysis of those variants was performed by using bioinformatic tools (SIFT, 

PolyPhen-2, Condel, MutationTaster, GERP conservation score and Grantham score). 

One point was given for each bioinformatic program predicting the effect of the 

mutation to be “damaging” by SIFT (Kumar et al, 2009), “possibly or probably 

damaging” by PolyPhen-2 (Adzhubei et al, 2010), “deleterious” by Condel (Gonzalez-

Perez & Lopez-Bigas, 2011), “disease causing” by MutationTaster (Schwarz et al, 

2014; Schwarz et al, 2010), have a GERP score higher than 2.0 (Cooper et al, 2005), 

or to have a Grantham score higher than 50 (Grantham, 1974). 

3D modelling was also performed to validate such predictions. For this, stability 

energy calculations of the mean ΔΔG were determined to investigate the destabilising 

effect of variants in ordered regions of RIN3. Structural changes were established for 

coding variants located in the PRR of RIN3 by using PONDR scores (Section 2.1.5). 
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3.4 RESULTS 

3.4.1 Imputation of the 14q32 locus 

The imputation performed here was used to confirm the effect of the intronic 

polymorphism rs10498635 previously described (Albagha et al, 2011). European 

haplotype data from the 1000 Genomes project was used in order to increase power, 

compared to the imputation performed in the GWAS study in 2011 (Albagha et al, 

2011).  

Although not predicted to be structurally damaging for RIN3, rs10498635 was 

detected in this repeated analysis with an association signal of about 1x10−5 (Figure 

3.1, plot A). Conditional analysis for the rs10498635 variant excluded additional 

signals in the area which indicates that the association was driven by rs10498635, or 

by variants in LD with rs10498635 (Figure 3.1, plot B).  
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Figure 3.1: Association plots for the 14q32 locus and conditional analysis for rs10498635.  
The X axis corresponds to the chromosomic position, the left Y axis corresponds to the -Log10 P-value, and the right Y axis shows the recombination 
rate (cM/Mb) from Hapmap (release 22, CEU population). Vertical lines represent the recombination rate. On the plots, the GWAS hit rs10498635 which 
is represented as diamond purple. Each circle corresponds to a SNP either genotyped or imputed, and a colour code translating the r2 value of LD against 
(red = strong LD; blue = weak LD). The plot A shows regional association for the 14q32 locus, and the plot B shows the same following conditional 
analysis for the rs10498635.  
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3.4.2 Detection of variants in RIN3 

In order to investigate additional variants which were either missed by the GWAS or 

not described by the 1000 Genomes project, deep sequencing of the RIN3 gene was 

carried out. For this, Haloplex (Agilent technologies) and Sanger sequencing were 

carried out as described in Sections 2.1.1 and 2.1.2.  

A total of 18 variants were detected, 7 of those were not previously described in public 

databases such as 1000 Genomes or NHLBI. 15 variants were of rare frequency (MAF 

< 1%) and detected only in patients. Statistical analysis for those variants is shown in 

Table 3.1, and representative location of the coding variants within the RIN3 protein 

is summarised in Figure 3.2. 

Frequencies in cases from both sequencing techniques were analysed against European 

subjects from the 1000 Genomes and the NHLBI project as controls. A strong 

association was observed for the p.R279C variant (rs117068593) once analysed 

against 1000 Genomes (OR = 0.60; 95% CI = 0.43 to 0.84; P = 3.1x10−3), or NHLBI 

(OR = 0.50; 95% CI = 0.38 to 0.67; P = 2.0x10−6). When combined, a p-value of 

1.4x10-9 was detected (OR = 0.64; 95% CI = 0.55 to 0.74). Subsequently, imputed data 

for p.R279C was extracted from the GWAS analysis and confirmed such significance 

(OR = 0.68; 95% CI = 0.58 to 0.81; Imputed P = 5.7x10−6). p.R279C was also in strong 

LD with the GWAS hit rs10498635 (r2 = 0.96, D′ = 0.98), as shown in Figure 3.3.  
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Table 3.1: Statistical analysis of frequencies from potential pathogenic variants detected by sequencing in RIN3.  

Variant ID Position 
(hg19) 

Reference 
allele 

Sample 
allele 

Gene 
region 

Protein 
variant 

AF casesa 

(%) 
AF 1000Gb 

(%) P-value AF NHLBId 
(%) P-valuee Prediction 

scoref 
N/Ag 92979351 A G Promoter — 2/492 (0.41) 0 (0.0) 0.15 — — NFE2L1/MafG 

rs368389701h 92980256 C A 5′UTR — 1/492 (0.20) 0 (0.0) 0.39 — — TFBS (TAF1; 
POLR2A) 

N/Ag 93081806 C T Exon 4 p.A141V 1/492 (0.20) 0 (0.0) 0.39 0 (0.0) 0.05 5 
rs3829947g,h 93118038 A G Exon 6 p.H215R 257/492 (52.2) 427 (56.3) 0.15 4902 (57.0) 0.04 0 

N/Ag 93118085 C T Exon 6 p.R231C 1/492 (0.20) 0 (0.0) 0.39 0 (0.0) 0.05 4 
rs147329151g 93118145 C A Exon 6 p.Q251K 2/492 (0.41) 0 (0.0) 0.15 2 (0.02) 0.02 1 

rs117068593g,h 93118229 C T Exon 6 p.R279C 54/492 (10.97) 129 (17.0) 3.1x10−3 1687 (19.6) 2.0x10−6 4 
N/Ag 93118260 T C Exon 6 p.L289P 1/492 (0.20) 0 (0.0) 0.39 0 (0.0) 0.05 1 
N/Ag 93118268 T C Exon 6 p.C292R 1/492 (0.20) 0 (0.0) 0.39 0 (0.0) 0.05 2 
N/Ag 93118274 C T Exon 6 p.P294S 1/492 (0.20) 0 (0.0) 0.39 0 (0.0) 0.05 1 
N/Ah 93118310 G A Exon 6 p.A306T 1/492 (0.20) 0 (0.0) 0.39 0 (0.0) 0.05 0 

rs201271121g 93118550 C T Exon 6 p.P386S 1/492 (0.20) 0 (0.0) 0.39 0 (0.0) 0.05 4 
rs3742717g,h 93118668 C T Exon 6 p.T425M 77/492 (15.65) 165 (21.8) 7.5x10−3 1458 (16.9) 0.45 1 
rs74074811g 93118674 G A Exon 6 p.R427Q 2/492 (0.41) 0 (0.0) 0.15 10 (0.12) 0.11 0 
rs74074812g 93118823 C T Exon 6 p.P477S 1/492 (0.20) 0 (0.0) 0.39 2 (0.02) 0.14 3 
rs12434929g,h 93119232 G C Exon 6 p.G613A 4/492 (0.81) 7 (0.92) 0.24 57 (0.66) 0.19 1 
rs145292991g 93125790 G A Exon 7 p.D771N 1/492 (0.20) 0 (0.0) 0.39 2 (0.02) 0.14 3 
rs147042536g 93142861 T C Exon 8 p.Y793H 5/492 (1.02) 5 (0.66) 0.19 54 (0.63) 0.11 6 

aAllele frequency (AF) shown as number of alleles observed/total number of alleles. bAllele frequency in European subjects from 1000 Genomes (n = 379). 
cP-value from testing sequenced cases (n = 246) and European subjects from 1000 Genome. dAllele frequency in European-American subjects in NHLBI 
data set (n = 4300). eP-value from testing sequenced cases (n = 246) and European-American subjects from NHLBI data set. fFor missense variants, as 
assessed by SIFT, PolyPhen-2, Condel, MutationTaster, GERP conservation score and Grantham score. gVariant detected in sporadic cases. hVariant detected 
in familial cases. N/A = Indicates that the SNP does not have an rs number.
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Figure 3.2: Schematic illustration of missenses on the RIN3 protein sequence.  

Most of the coding variants detected by Sanger and next generation sequencing were located 
or around the PRR or RIN3. One was located in the SH2 domain, and another 3 were in the 
VPS9 domain of RIN3.  

 

 
Figure 3.3: Screenshot of the Hapmap LD analysis for the GWAS hit against common 

variants detected in RIN3 by fine-mapping.  
Out of the three common variants detected in this study, the p.R279C variant shows a strong 
LD for the GWAS hit rs10498635 (r2 = 0.96, D′ = 0.98).  
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To look for any statistical association amongst the variants detected, a haplotype 

analysis was performed on the GWAS cohort. Due to the rare frequency of most 

polymorphisms analysed, only two common haplotypes were found for the p.R279C 

and the GWAS hit rs10498635 (both polymorphisms changing from a C allele to a T). 

The risk allele rs10498635C–rs117068593C was over-represented in the GWAS cases 

with a frequency of 86.4%, against 81.2% in the controls (OR = 1.48; 95% CI = 1.25 

to 1.74; P = 2.8x10−6). The other haplotype (T alleles) was found with a frequency of 

18.2% in the GWAS controls. Additional haplotypes detected had frequencies lower 

than 0.2%. Although not significant, the risk allele rs117068593C was found to be 

more present in familial cases (n = 9; 17.3%) than in sporadic Pagetic patients (n = 45; 

10.3%). 

Two additional common variants, p.T425M and p.H215R, were also detected. None 

showed association for the disease whether they were compared to control subjects 

from 1000 Genomes or from the NHLBI. This was confirmed in the GWAS cohort as 

well. Finally, they did not show to be in LD with the GWAS top hit, as shown in Figure 

3.3.  

The 15 rare variants (MAF < 1%) were also investigated. Most were found to be near 

the p.R279C missense, on exon 6. Although all but p.D771N showed a higher 

frequency in cases than controls, none reached statistical significance. A combining 

effect of those rare variants was found to be strongly associated with PDB (OR = 3.72; 

95% CI = 2.38 to 5.82; P = 8.9x10−10). Amongst those 15 rare polymorphisms, two 

were detected in familial cases, one in both sporadic and familial cases and 12 in 

sporadic cases (Table 3.1).  
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The three variants found in families (rs368389701, p.A306T, p.G613A) were 

additionally genotyped in related members of the proband tested here, to investigate 

the inheritance pattern of the variant. In one family the missense p.G613A was found 

in father and daughter, both affected by PDB. Similar investigations for the additional 

p.A306T or the rs368389701 variant were not possible as the DNA was only available 

from the probands. Additionally, most rare variants (n = 24; 96%) occurred on the 

rs10498635C–rs117068593C risk haplotype described above.  

3.4.3 In silico analysis of RIN3 mutations 

The noncoding variants located in the promoter and UTRs regions of RIN3 were 

analysed using the ENCODE database. Two variants, one located in the promoter (no 

rs number) and one in the 5’UTR (rs368389701), were found to be of interest (Table 

3.1). The variant located in the promoter is thought to interfere with the MafG 

transcription factor motif (also called V-maf musculoaponeurotic fibrosarcoma 

oncogene homologue G), which is part of the small Maf family of proteins involved 

in repression of transcriptional regulation. rs368389701 is located at the binding site of 

the transcription initiation factor TFIID subunit 1 (TAF1) for the lymphoblastoid, 

human embryonic stem cells and neuroblastoma cell lines. TAF1, or TATA box 

binding protein associated factor, plays a crucial transcriptional role as part of the RNA 

polymerase IID (TFIID) transcription factor complex. 
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The predicted pathogenicity of the coding variants was investigated by assigning a 

score, deducted from six in silico prediction tools (Section 2.1.5). p.A141V, p.R279C, 

p.R231C, p.P386S, and p.Y793H showed the highest scores (4 or higher). p.A141V is 

located in the SH2 domain of RIN3, p.Y793H is in the VPS9 domain, and p.R279C, 

p.R231C and p.P386S are located in the PRR of RIN3 as shown on Figure 3.2. The 

p.R279C variant also lies in a PXXP protein-binding motif, able to interact with 

domains such as SH2 and SH3 (Kay et al, 2000; Rouka et al, 2015). 

Recent in silico studies have shown that proline is the most “disorder promoting” 

amino acid, therefore categorising the PRR of RIN3 to be an intrinsically disordered 

protein regions (IDPRs) (Theillet F-X., 2013). Tools mentioned above, used to 

establish a prediction score, investigate the functional effect of the variant by detecting 

changes in structures and conservation of amino acid which result in a loss of accuracy 

for variants located in IDPRs (Vacic & Iakoucheva, 2012). To counter this, meta-

server consensus disorder predictor programs (MetaPrDOS (Ishida & Kinoshita, 2008) 

and MetaDisorder (Kozlowski & Bujnicki, 2012)) were used to assess and model the 

disordered regions of RIN3 before incorporating each missense from the PRR region.  

The analysis was performed using PONDR VL-XT (Li et al, 1999), to detect a loss or 

a gain of disorder within the protein (Figure 3.4). A slight disorder-to-order shift was 

observed for p.R279C, p.P386S and p.P477S, while a more perceptible order-to-

disorder transition shift was seen in p.R427Q. No effect was predicted for the other 

variants lying in this area.  
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Figure 3.4: PONDR VL-XT disorder predictions of the coding variants locating in the 

PRR region of RIN3.  
PONDR score was used to investigate the effect of mutations on the disordered regions of 
RIN3, symbolised in green on the PONDR plot (A), on scale with the protein sequence showed 
in the panel B. PONDR scored < 0.5 were considered to go towards an ordered structure, while 
values > 0.5 tend to predict a disordered effect on the protein. Disordered effect generated by 
the variants (dotted lines) were assessed against the WT sequence (full line). The mutated 
alleles of p.R279C, p.P386S and p.P477S show a minor drop of the PONDR score suggesting 
an ordering effect. p.R427Q shows a higher score than the WT sequence however, predicting 
an increased in disorder effect of the variant.  
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To analyse the coding variants located in alternative domains, protein stability between 

the WT and mutated RIN3 was measured by FoldX (Schymkowitz et al, 2005). For 

this, the SH2 domain, in which p.A141V was detected, and the VPS9 domain, where 

p.G613A, p.D771N and p.Y793H were found, were modelled using Modeller 9v12 

(Sali & Blundell, 1993) (Figure 3.5).  

 
Figure 3.5: 3D Homology model of the SH2 and VPS9 domains.  

p.A141V is located in the SH2 domain but is showed to be poorly conserved, as for p.D771N 
located in the VPS9 domain. They are both exposed on the surface of the protein. p.G613A is 
also poorly conserved. p.Y793H is however conserved, and largely buried in RIN3. 

 

p.A141V which had a predicted score of 5 and p.D771N, with a score of 3, were both 

solvent exposed and were thus unlikely to impact the structure of RIN3. p.G613A was 

predicted to be unlikely functional by previous tools (score of 1) and here shows 

similar results due to low amino acid conservation, as for p.A141V and p.D771N. 

Confidence in the model was performed using MetaMQAPII, and p.G613A was in a 

low confidence area (Figure 3.6) (Pawlowski et al, 2008). The p.Y793H variant 

however is located in a more defined region of the modelled VPS9 domain.  
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Figure 3.6: Evaluation of the 3D Homology model of the VPS9 domain using 

MetaMQAPII.  
A coloured spectrum extending from blue (correct) to red (incorrect) was used to easily 
visualize the confidence and accuracy of the model. p.G613A is located in a region of low 
confidence in the model. 

p.Y793H was the only missense with the prediction score of 6, and the WT tyrosine is 

predicted to be structurally buried within RIN3 which could subsequently have a 

bigger effect on the 3D structure of the protein (Figure 3.7).  

 
Figure 3.7: Assessment of the exposition of p.G613A and p.Y793H in the VPS9 domain. 

Amino acid concerned by the mutations are red. The top two pictures show the outer-shell of 
RIN3, for which the tyrosine at 793 is predicted to largely buried, with the exception of its 
hydroxyl group.  
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The VPS9 domain is made of a succession of helices conferring overall stability of 

RIN3. Particularly, two helices called αV4 and αV6 form a hydrophobic indentation 

responsible for protein interactions and overall structure of the domain (Figure 3.8, A). 

p.Y793H is located within the αV4 helix of the VPS9 domain (Figure 3.8, B) and 

induces a loss of hydrophobic interactions with 4 amino acids compared to the wild 

type RIN3 (Figure 3.8, C). FoldX predicts a delta delta Gibbs (ΔΔG) of 2.02kcal/mol 

for the mutant RIN3, which is considered to be destabilising (> 1.6kcal/mol). ΔΔG 

translates the free energy between folded and unfolded states of the protein. This was 

constantly observed in equivalent amino acid changes from the templates used for 

modelling this domain (Table 3.2). 

 
Figure 3.8: Importance of helical structures in the VPS9.  

In the WT RIN3 (A), helices αV4 and αV6 for a V-shape creating a hydrophobic environment, 
indispensable for protein interactions and overall structure of the domain. The tyrosine amino 
acid located at position 793 makes hydrophobic interactions with p.L727, p.V729, p.M739 
and p.V794 (shown in green), and hydrogen interactions with p.P789, p.V790, p.L791, p.L795, 
p.A796, p.R797 (shown in blue) (B). Upon mutation (C), all hydrophobic interactions are lost 
while hydrogen bonds remain.   
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Table 3.2: FoldX stability calculations for equivalent residues in template structures.  

Mutation (Protein) Stability energy calculation on mutant 
VPS9 domain structure (Mean ΔΔG) 

p.Y793H in human RIN3-VPS9 domain 
homology model 2.02kcal/mol 

p.Y193H in Arabidopsis VPS9A domain 
(2.08 Å crystal structure; PDB ID: 

2EFE_A) 
2.32kcal/mol 

p.Y321H in human RABX5 domain (2.1 Å 
crystal structure; PDB ID: 2OT3_A) 2.06kcal/mol 

p.Y321H in human RABX5 domain (2.35 
Å crystal structure; PDB ID: 1TXU_A) 2.91kcal/mol 

ΔΔG was measured between WT and mutated RIN3 on the model which was used for this 
project, as well as on each template used for its creation. Values > 1.6kcal/mol are considered 
destabilising for the protein. 
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3.5 DISCUSSION 

As described in Section 1.4.1 (14q32.12 locus (RIN3)), the RIN3 gene has been 

suggested as a candidate for PDB as the rs10498635 intronic variant was tagged by a 

GWAS performed in 2011 (Albagha et al, 2011). This chapter focused on confirming 

such findings, and investigates variants in the RIN3 gene which could be associated 

with PDB. 

The repeated imputation, based on the one performed during the GWAS study of 2011, 

was performed using 1000 Genomes database to increase the power of the 

analysis.This database offers 379 European individuals while the original imputation, 

which used the Hapmap database (release 22), had 60 (Albagha et al, 2011). As for the 

imputation from the 2011 study, a conditional analysis for the GWAS top hit 

rs10498635 showed that it was the only signal for the 14q32 locus. This suggests that 

the rs10498635 variant, or a variant in strong LD with it would be a good candidate 

variant for PDB. 

Knowing the genetic component of the disease (Section 1.4), screening for pathogenic 

mutations in RIN3 was the first logical step of the project. The combining effort of 

next generation and Sanger sequencings led to the finding of 18 mutations, 7 of which 

were not present in controls nor described in public databases. To look at the 

significance of their incidence in the cases, frequencies were compared to controls 

from the NHLBI and 1000 Genomes databases. One common variant, rs117068593 

(p.R279C), showed statistical association for PDB (P = 1.4x10-9; OR = 0.64; 95% CI 

= 0.55 to 0.74). This SNP is a C>T change, thus the odd ratio suggests that the minor 

rs117068593T (p.279C) allele is more present in controls than in cases.  
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It could then be suggested that the rs117068593T (p.279C) allele would have a 

protective effect over the disease for the patient. Other mutations have been described 

to have a similar effect, such as the ε2 allele in the APOE gene, which encodes a 

cholesterol carrier. Indeed, the ε2 allele has a protective effect against Alzheimer 

disease with an incidence of 8.4% in Caucasian, compared to the ε3 (77.9%) or ε4 

alleles (13.7%) (Liu et al, 2013). Further analysis of the rs117068593 variant revealed 

that is in strong LD with the GWAS hit rs10498635. Following the results from the 

conditional analysis presented in section 3.4.1, this places rs117068593 as a good 

candidate for PDB. Furthermore, haplotype analysis also showed that this variant was 

on the same allele than the GWAS hit (rs10498635C–rs117068593C).  

Kemp and al. recently reported an association for the intronic rs754388 variant located 

in RIN3 with an increased BMD in lower limbs, using DXA scans. They performed 

fine mapping by imputing variants from the 1000 Genomes database, which detected 

the p.R279C variant. Both rs754388 and p.R279C are in strong LD (r2 = 0.96). They 

also found that p.R279 was associated with increased lower limb BMD, as well as 

total-body less head in children (Kemp et al, 2014). In the context of PDB, bones are 

enlarged and osteosclerosic lesions can lead to an increased BMD. This has however 

not been investigated at a large scale and only a few isolated cases have been described 

for increased BMD of the spine (Vasireddy & Halsey, 2001). This has also not been 

reported in lower limbs. Our analysis suggests that the p.R279 allele predisposes to 

PDB but it is difficult to predict an association with BMD. Kemp and colleagues has 

also analysed samples from children with growing bones while PDB is a late onset 

disease. Additionally, their discovery of p.R279C resulted from imputation, which is 

not as reliable as the Sanger sequencing we used.   
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The two other common variants (p.H215R and p.T425M) showed no statistical 

association in this cohort, and were not in LD with the top hit, thus unlikely to be 

involved in PDB. The other variants detected were of rare frequency. All but one were 

more commonly present in cases than controls. Taken individually, they did not show 

any association with the disease. However, a strong p-value was detected once their 

incidence was put together and as a result, a combined effect could be suggested here. 

Additionally, 96% of the rare variants were sharing the rs10498635C–rs117068593C 

haplotype described above.  

In silico analyses were performed on coding variants. Firstly, six bioinformatic tools 

investigating structural effect and amino acid conservation changes were used to 

deduct a predicted functionality score. p.A141V, p.R231C, p.R279C, p.P386S and 

p.Y793H showed the highest scores (4 or higher out of 6). Prediction tools like the 

ones used here have however been showed to have limited performance and studies 

have reported than most common programs offer an accuracy lower than 82% 

(Walters-Sen et al, 2015). Although they can be useful for well conserved variants 

inducing a big structural change in proteins, such predictions are to be considered 

carefully. Similarly, the p.P392L variant in the SQSMT1 gene was initially predicted 

to be benign by in silico tools but is now known to be disease causing (Hocking et al, 

2004). In order to try and reinforced the reliability of the prediction scores, two 

additional and more complex analyses were performed, depending on the location of 

the variants in the RIN3 protein. For this, variants located in the intrinsic disordered 

regions of RIN3 were analysed using PONDR scores. As mentioned above, 

bioinformatics tools such as SIFT or Polyphen-2 use amino acid alignments and/or 

conservation to evaluate the effect of the missense.   
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Such tests have been found to be irrelevant to disordered regions like PRR, as they are 

prone to low phylogenetical conservation and do not have a fixed 3D structure like 

variants in ordered regions would display resulting (Vacic et al, 2012). To counter this, 

PONDR scores are used to investigate the impact of variants by searching for 

“ordering shifts”, meaning that the introduction of a variant brings “order” to a 

“disordered” region. Studies have shown that about 20% of disease mutations in such 

disordered regions cause local disorder-to-order transitions (Vacic & Iakoucheva, 

2012; Vacic et al, 2012). As a result, only four missense mutations p.R279C, p.P386S, 

p.R427Q and p.P477S lead to order shifting. Here, p.R279C, p.P386S, and p.P477S 

induced such transition, while p.R427Q was found to enhance disorder. All were 

however minor, as none shifted the PONDR score from > 0.5 to < 0.5. This suggests 

that they are predicted to be unlikely pathogenic.  

Finally, the four variants located in ordered regions of the protein (p.A141V, p.G613A, 

p.D771N and p.Y793H) were analysed using 3D homology of RIN3, before and after 

introduction of the coding variant. Only p.Y793H was shown to have a pathogenic 

effect on the structure. This variant is located in the VPS9 domain of RIN3, which 

confers the GEF activity of the protein. p.793H triggers a loss of crucial hydrophobic 

interactions in the helical hydrophobic bundle formed in the VPS9 domain. A previous 

study has shown that mutations in the helical bundle of RIN3 amino acid impairs the 

GEF activity for Rab31 (Kajiho et al, 2011). Although p.Y793H was not investigated 

in this study, they induced a p.P789A/p.D785A change in RIN3. p.P789 was found in 

our analysis to interact with p.Y793 via hydrogen binding, which was not lost upon 

the introduction of p.793H.  
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Although p.Y793H could be a good candidate from this in silico analysis, no 

association with PDB was found by looking an incidence of the mutation in cases 

compared to controls.  

It is not clear yet if the genetic association of RIN3 with PDB is due to an effect of the 

rare variants combined, common variants or a mixture of both and sequencing 

additional patients is needed to answer this question. However, looking at the 

frequency, LD and haplotype analyses, the p.R279C variant seems to be a good 

candidate for PDB. Although the in silico analysis predicts that it is unlikely to be 

functional, it is important to notice that arginine to cysteine changes are predicted to 

be amongst the most “order-enhancing” mutations in regions such as PRR and thus 

should not be excluded (Vacic & Iakoucheva, 2012; Vacic et al, 2012). Additional 

functional analyses are necessary to confirm the involvement of p.R279C. 
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4 RIN3 VARIANTS AND DISEASE SEVERITY IN PDB 

4.1 SUMMARY 

The analysis presented in Chapter 3 places p.R279C as a good candidate for PDB. 

Additionally, many rare variants were over-represented in the cases and a combined 

effect was detected. Here, a genotyping and a severity association were performed on 

those variants using a bigger Pagetic cohort (PRISM) in order to confirm previous 

results and understand their clinical effect. 

Taqman® SNP genotyping (Thermo Fisher Scientific) was performed on p.T425M 

and all rare variants previously detected, in 712 Pagetic cases and 262 controls from 

the PRISM study. The frequencies were compared between cases and controls and 

confirmed that most rare variants were over-represented in the cases, although this was 

not significant. The rare variant p.R427Q detected at a frequency of 0.41% in chapter 

3 was detected here at a frequency of 2.1%. No combined effect was observed for the 

rare variants, however haplotype analysis confirmed that the common allele of all 

variants analysed (i.e. reference allele) were more present in cases than controls 

(82.31%; OR = 1.25; P = 0.008). The severity association showed that patients 

carrying the variant (rs117068593T) had a younger age of diagnosis (P = 0.034).  

Although a younger age of diagnosis for the p.279C change opposes the findings from 

Chapter 3, the association was nominal and lost once corrected over the number of 

clinical features investigated and is unlikely to be a true effect. Such findings suggests 

however that the association with PDB is unlikely to be driven by a large effect from 

common and rare variants combined, but could be of a more modest effect from the 

p.R279C variant.  
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4.2 INTRODUCTION 

The previous chapter identified 18 variants in RIN3 using next generation and Sanger 

sequencing, including 16 missense mutations and 7 novel variants.  

The analysis of the common variant p.R279C (rs117068593) is suggestive of a strong 

association with PDB, as it is in LD with the GWAS hit described by Albagha and 

colleagues (rs10498635) (Albagha et al, 2011), and both share the same risk haplotype 

(rs10498635C–rs117068593C) associated with PDB.  

Fifteen out of the 18 variants were of rare frequency (MAF < 1%) and most were 

clustering in the exon 6, a PRR. Such regions are categorised as “disordered”, have 

important cellular roles and have been associated with diseases (Theillet F-X., 2013). 

All but one rare variant were more frequent in cases than controls, and although none 

showed individual statistical significance for PDB, a combined effect was found to 

have a strong association with PDB. Finally, 96% of those variants were on the same 

rs10498635C–rs117068593C haplotype described above. Although no variant with an 

association for PDB was predicted to be functional using bioinformatic tools, it is 

important to keep in mind that such programs need to be supported by functional 

analyses. 

This chapter aims to repeat the analysis performed in Chapter 3, using a bigger cohort 

from the PRISM trial, to evaluate the effect that these rare and/or common variants 

have on PDB, including a combined effect with variants such as p.P392L from 

SQSTM1 or p.R279C from RIN3. This chapter will also investigate the clinical effect 

of the variants using Pagetic information from each patient. This includes features like 

bone pain, deformity of clinical fractures.  
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4.3 METHODS 

The rare coding variants and p.T425M described in Table 2.7 were genotyped using a 

Taqman® SNP genotyping (Thermo Fisher Scientific) in 712 Pagetic cases and 262 

controls from the PRISM study. Only variants with a call rate > 97% were analysed. 

Frequency differences between cases and controls were investigated by Fisher’s exact 

test for the rare variants (MAF < 1%) and Anova for the common variants using SPSS 

Version 22 (SPSS Ltd, UK) (Section 2.2.3). The overall effect of the rare variants was 

assessed using a Fisher’s Burden test, and a haplotype analysis was performed using 

Phase version 2.1.1 (Section 2.2.3) to confirm previous data reported in Chapter 3 

(Stephens & Scheet, 2005; Stephens et al, 2001).  

Associations between the variants and clinical Pagetic features were investigated. For 

this, a severity analysis was performed on the PRISM cases (Section 2.2.3). The 

following parameters were considered as shown in Table 2.8: gender, family history, 

if the patient had an orthopaedic surgery, fractures (and if they were Pagetic), bone 

pain (and if it was related to PDB or not), if the patient has a Pagetic skull and wears 

a hearing aid, how many bisphosphonate treatments the patient received, the age at 

diagnosis and at recruitment for the trial, the number of bones affected, bone 

deformities and an overall severity score deducted from this data (Visconti et al, 2010). 

The effect of the p.R279C variant was also analysed, using the GWAS hit rs10498635 

data as a surrogate. Indeed, both variants are in strong LD (r2 = 0.96) thus will show a 

similar genetic pattern. As data was already available for the rs10498635 variant from 

the 2011 GWAS the p.R279C was not genotyped (Albagha et al, 2011).   
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The analysis was performed on all cases PRISM (noted PRISM) and two subgroups: 

patients not carrying SQSTM1 mutation (noted PRISM/SQSTM1-), and patients 

carrying at least one mutation in the SQSTM1 gene (noted PRISM/SQSTM1+). The 

genotypes used from those 3 cohorts were the following: common variants (p.R279C 

and p.T425M) were investigated for “no mutation”, “heterozygote mutation”, or 

“homozygote mutation”, while the rare variants were combined, and analysed for “no 

mutation”, or “at least one of the rare variants is mutated” (Section 2.2.3).  

Another association study was performed on the most common haplotypes found in 

the PRISM/SQSTM1- cases, estimated by Phase version 2.1.1 (Stephens & Scheet, 

2005; Stephens et al, 2001). For both, an ANOVA was performed on quantitative traits 

while a Chi square test was used for the others using SPSS Version 22 (SPSS Ltd, 

UK). 

Genotyping of the variant p.L289P resulted in no amplification and was not 

interpretable. The variants p.T425M, p.R427Q, p.P447S, and p.G613A were located 

in regions of RIN3 for which the assay was not designable. Alternative variants which 

were in LD (r2 > 0.8) with those were genotyped instead, using data from Sanger 

sequencing as described in Table 2.7.  
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4.4 RESULTS 

4.4.1 Case and control investigations 

The three rare variants p.C292R, p.A306P and p.P386S were not detected in controls 

nor cases. Out of the 10 rare variants previously described, 7 were found in this study 

to be more common in the cases. The p.R427Q missense mutation, detected as a rare 

variant in the previous investigation (0.41%), was found with a frequency of 2.1% in 

the cases here. 

A nominal significance was reached for p.T425M with PDB (OR = 0.72; 95% CI = 

0.55 to 0.95; P = 0.021), however once corrected the association was lost. Overall, no 

statistical difference between the two cohorts was observed. The results can be found 

in Table 4.1. 

An aggregative Burden test was then performed on the same cohort, but there was not 

association for PDB (OR = 0.98; 95% CI = 0.50 to 1.93; P = 0.45). Results are shown 

in Table 4.2. 

Table 4.1: Burden test analysis on rare variants genotyped in RIN3. 
 

# of minor allele 
observed in all rare 

variants 
AF in controlsa AF in casesa p-value 

≥ 1 12/262 (4.58%) 32/712 (4.49%) 0.45 
aAllele frequency (AF) shown as number of observed patients/total patient count. 
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Table 4.2: Statistical analysis of frequencies from rare variants genotyped in RIN3.  

Variant ID DNA change Protein 
change 

Reference 
allele 

Sample 
allele 

AF controlsa  

(%) n = 262 
AF casesa 

(%) n = 712 p-value 

N/A c.[1-926A>G];[=] - A G 0/518 (0) 2/1378 (0.15) 1 

N/A c.-21C>A - C A 5/494 (1.01) 5/1420 (0.35) 0.137 

N/A c.[422C>T] ;[=] p.A141V C T 0/522 (0) 1/1416 (0.07) 1 

N/A c.[691C>T];[=] p.R231C C T 0/510 (0) 1/1414 (0.07) 1 

rs147329151 c.[751C>A];[=] p.Q251K C A 0/504 (0) 3/1420 (0.21) 0.571 

N/A c.[874T>C] ;[=] p.C292R T C 0/520 (0) 0/1420 (0) - 

N/A c.[880C>T];[=] p.P294S C T 1/506 (0.20) 1/1394 (0.07) 0.462 

N/A c.[916G>C] ;[=] p.A306T G C 0/522 (0) 0/1390 (0) - 

rs201271121 c.[1156C>T];[=] p.P386S C T 0/512 (0) 0/1416 (0) - 

rs3742717 c.[1274C>T];[=] p.T425M C T 93/512 (18.16) 189/1366 (13.84) 0.021 

rs74074811 c.[1280G>A];[=] p.R427Q G A 5/516 (0.97) 30/1418 (2.12) 0.12 

rs74074812 c.[1429C>T];[=] p.P477S C T 0/514 (0) 1/1408 (0.07) 1 

rs12434929 c.[1838G>C];[=] p.G613A G C 3/516 (0.58) 13/1416 (0.92) 0.58 

rs145292991 c.[2311G>A] ;[=] p.D771N G A 0/510 (0) 1/1380 (0.07) 1 

rs147042536 c.[2377T>C];[=] p.Y793H T C 3/520 (0.58) 6/1378 (0.44) 0.712 
aAllele frequency (AF) shown as number of minor alleles observed/total number of alleles. N/A = Indicates that the SNP does not have an rs number. 
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A haplotype analysis was also performed on the PRISM cases and controls using Phase 

(Appendix 4.1). Because of the rarity of most variants, only two common haplotypes 

were detected by the software (Appendix 4.2). The most common haplotype 

(Haplotype 1), which corresponds to the major alleles of all 15 variants, was more 

frequent in cases (82.31%) than in controls (78.97%). This was statistically significant 

(OR = 1.25; 95% CI = 0.98 to 1.61; P = 0.008). The second most common haplotype 

(Haplotype 6 containing p.T425M) corresponds to a change for the p.425M missense 

only, and was also over-represented in the controls at 17.73%, while found at 13.22% 

in the cases. This was also statistically significant (OR = 0.7; 95% CI = 0.53 to 0.91; 

P = 0.001). All others 12 haplotypes showed a frequency < 1.55%. 

4.4.2 Association study with disease activity 

From Genotyping data 

An association study was performed on the genotyping results of PRISM cases, to 

investigate any effect of the variants on the severity of the disease.  

Each clinical feature was investigated against allele dosage of p.R279C (+/+, +/-, -/-), 

p.T425M (+/+, +/-, -/-) and all other variants combined (no mutation or at least one 

mutation). The data is summarised in Appendices 4.3 to 4.11. Nominal significance 

was achieved for the age of diagnosis of the PRISM and the PRISM/SQSTM1+ 

cohorts carrying the p.425M allele (P = 0.002 and P = 0.003 respectively) (Appendices 

4.3 and 4.5).  
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Age at recruitment, which corresponds to the age at which the patient has joined the 

trial, was also significant for all three cohorts tested (PRISM P = 0.001; 

PRISM/SQSTM1- P = 0.019; PRISM/SQSTM1+ P = 0.047) for patients carrying the 

p.425M allele (Appendices 4.3 to 4.5). Nominal significance was additionally 

achieved for the age at diagnosis in the PRISM/SQSTM1- subgroup, for patients 

carrying the p.279C change (P = 0.034) (Appendix 4.7). This was not detected in the 

whole cohort or PRISM/SQSTM1+ subgroup. 

From haplotype data 

A second haplotype analysis was performed on all PRISM cases after importing 

information from the GWAS top hit rs10498635C, to represent p.R279C changes 

(Appendix 4.1). All haplotypes detected are presented in Appendix 4.12. Three 

common haplotypes were detected. The first two were similar to the previous 

haplotype data: the most common haplotype corresponding to the major allele of all 

16 polymorphisms was found in 69% of the PRISM cases (haplotype 1). The second 

most common haplotype, for which only the minor allele p.425M was detected, was 

present in 13% of the PRISM cases (haplotype 7 containing p.425M). Finally, the third 

and new haplotype found corresponds to patients carrying only the p.279C allele and 

was detected in 12% of the PRISM cases (haplotype 18 containing p.279C). Other 

haplotypes were detected at frequencies of < 1.8%. The effect of those haplotypes on 

PDB severity markers was investigated for haplotypes 1,7 and 18 on the 

PRISM/SQSTM1- patients. The results are summarised in Tables 4.3 to 4.5. Nominal 

significance (P = 0.026) was achieved for the age of diagnosis in patients carrying the 

haplotype 18 (containing p.279C). The other variables did not show significance. 
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Table 4.3: Statistical analysis of the severity association on haplotype 1 from PRISM/SQSTM1- cases. 

Haplotype 1 

Variable -/- (n = 61) +/- (n = 258) +/+ (n = 308) p-value 

Gender (Male) 36/61 (59.02%) 137/258 (53.10%) 170/308 (55.19%) 0.685 

Family history of PDB 2/61 (3.28%) 29/258 (11.24%) 41/307 (13.36%) 0.078 

Orthopaedic surgery 10/61 (16.39%) 49/258 (18.99%) 39/308 (12.66%) 0.117 

Any fracture 23/61 (37.70%) 105/258 (40.70%) 126/308 (40.92%) 0.894 

Skull disease and hearing aid 5/61 (8.20%) 14/258 (5.43%) 24/308 (7.79%) 0.492 

Bone pain 44/59 (74.58%) 170/242 (70.25%) 221/298 (74.16%) 0.561 

Fracture in Pagetic bone 4/23 (17.39%) 26/105 (24.76%) 28/126 (22.22%) 0.728 

Bisphosphonates 1.20 ± 1.33 1.21 ± 1.04 1.26 ± 1.05 0.821 

Age at diagnosis 62.69 ± 10.78 65.98 ± 9.84 64.70 ± 10.79 0.064 

Age at recruitment 72.16 ± 8.82 73.93 ± 7.92 72.99 ± 7.81 0.194 

Number of bones affected 1.48 ± 0.79 1.76 ± 1.04 1.77 ± 1.02 0.102 

Pagetic pain 1.64 ± 0.89 2.00 ± 7.52 1.42 ± 0.69 0.487 

Deformity score 0.50 ± 0.85 0.56 ± 0.96 0.56 ± 0.93 0.888 

Paget severity score 5.27 ± 2.06 5.59 ± 2.45 5.64 ± 2.39 0.539 
Values are allele frequency shown as number of alleles observed/total number of alleles, or mean ± SD.  



 
 
 

Chapter 4: RIN3 variants and disease severity in PDB 

167 
 

Table 4.4: Statistical analysis of the severity association on haplotype 7 containing p.T425M from PRISM/SQSTM1– cases. 

Haplotype 7 containing p.T425M 

Variable -/- (n = 481) +/- (n = 135) +/+ (n = 11) p-value 

Gender (Male) 258/481 (53.64%) 77/135 (57.04%) 8/11 (72.73%) 0.375 

Family history of PDB 59/480 (12.29%) 13/135 (9.63%) 0/11 (0%) 0.335 

Orthopaedic surgery 71/481 (14.76%) 25/135 (18.52%) 2/11 (18.18%) 0.553 

Any fracture 193/481 (40.12%) 56/135 (41.48%) 5/11 (45.45%) 0.908 

Skull disease and hearing aid 35/481 (7.28%) 8/135 (5.93%) 0/11 (0%) 0.57 

Bone pain 333/461 (72.23%) 94/127 (74.02%) 8/11 (72.73%) 0.924 

Fracture in Pagetic bone 42/193 (21.76%) 16/56 (28.57%) 0/5 (0%) 0.266 

Bisphosphonates 1.25 ± 1.05 1.19 ± 1.14 1.18 ± 1.40 0.85 

Age at diagnosis 65.31 ± 10.45 64.26 ± 10.60 62.27 ± 7.43 0.399 

Age at recruitment 79.38 ± 7.84 73.26 ± 8.58 70.36 ± 5.07 0.463 

Number of bones affected 1.74 ± 1.01 1.77 ± 1.00 1.36 ± 0.81 0.437 

Pagetic pain 1.44 ± 0.71 2.50 ± 10.09 1.50 ± 0.76 0.157 

Deformity score 0.57 ± 0.97 0.54 ± 1.04 0.36 ± 0.67 0.753 

Paget severity score 5.58 ± 2.34 5.66 ± 2.58 4.73 ± 1.49 0.458 
Values are allele frequency shown as number of alleles observed/total number of alleles, or mean ± SD. 
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Table 4.5: Statistical analysis of the severity association on haplotype 18 containing p.R279C from PRISM/SQSTM1– cases. 

Haplotype 18 containing p.R279C 

Variable -/- (n = 471) +/- (n = 144) +/+ (n = 12) p-value 

Gender (Male) 264/471 (56.05%) 72/144 (50%) 7/12 (58.33%) 0.429 

Family history of PDB 60/470 (12.77%) 12/144 (8.33%) 0/12 (0%) 0.156 

Orthopaedic surgery 69/471 (14.65%) 28/144 (19.44%) 1/12 (8.33%) 0.299 

Any fracture 194/471 (41.19%) 54/144 (37.5%) 6/12 (50%) 0.583 

Skull disease and hearing aid 31/471 (6.58%) 11/144 (7.64%) 1/12 (8.33%) 0.889 

Bone pain 334/450 (74.22%) 91/138 (65.94%) 10/11 (90.91%) 0.063 

Fracture in Pagetic bone 43/194 (22.16%) 15/54 (27.78%) 0/6 (0%) 0.276 

Bisphosphonates 1.25 ± 1.06 1.16 ± 1.08 1.58 ± 1.51 0.354 

Age at diagnosis 64.68 ± 10.63 66.64 ± 9.15 59.50 ± 14.65 0.026 

Age at recruitment 73.03 ± 7.91 74.17 ± 7.98 73.50 ± 9.91 0.317 

Number of bones affected 1.77 ± 1.02 1.66 ± 0.99 1.42 ± 0.52 0.284 

Pagetic pain 1.73 ± 5.38 1.51 ± 0.78 1.20 ± 0.63 0.879 

Deformity score 0.55 ± 0.95 0.53 ± 0.88 1.08 ± 0.99 0.138 

Paget severity score 5.63 ± 2.43 5.38 ± 2.26 6.25 ± 1.91 0.328 
Values are allele frequency shown as number of alleles observed/total number of alleles, or mean ± SD.  
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4.5 DISCUSSION 

Chapter 3 led to the identification of new RIN3 mutations for PDB. Most were of rare 

frequency but one common variant (p.R279C) showed a strong association for PDB. 

The GWAS hit rs10498635, which was confirmed to be the only independent signal 

in this locus (Section 3.4.1), is in strong LD with p.R279C. Both also share the same 

risk haplotype, placing p.R279C as good candidate for PDB. The many rare variants 

detected were found to be over-represented in cases and although no individual 

association for the disease was found for those, a combined effect was observed. Most 

(96%) were found on the same risk haplotype as the GWAS hit and p.R279C. 

It is not yet understood if the rare variants have a combined effect with common 

variants (such as p.P392L from SQSTM1 or p.R279C from RIN3), or if a common 

variant has an independent effect. To answer this question, 712 Pagetic cases and 262 

controls from the PRISM study were genotyped here, for the variants described in 

Chapter 3. Allele and haplotype frequencies between both groups were compared and 

a clinical severity association was performed on genotyped data, as well as on 

haplotype results.  

Some differences were found in this analysis in comparison to the previous one. The 

p.C292R, p.A306P and p.P386S rare variants were not detected in cases nor controls. 

The p.P386S variant was, in the previous chapter, observed in the ZiPP cohort by 

Sanger sequencing but not in PRISM samples analysed by next generation sequencing. 

From this PRISM group, only 95 samples overlap with the genotyping cohort. 

Similarly, the p.A306T and p.C292R mutations previously detected in familial and 

sporadic cases (respectively), were not analysed here.   
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The p.R427Q variant, which was found at a rare frequency in the previous chapter was 

detected at 2.1% of the cases by genotyping. Here, 27 cases showed a mutation for 

p.427Q (allele count of 30), and only 4 were also sequenced in the previous chapter. 

Finally, although most of the rare variants (7/10) were also over-represented in cases 

here and no individual association was found, the combined effect from the rare 

variants was not confirmed (OR = 0.98; 95% CI = 0.50 to 1.93; P = 0.45). Although 

there are differences in the samples used in the analysis, such changes in the 

frequencies were not expected. This can be due to a chance factor, but also to the type 

of cohort used. Indeed, the previous analysis focused on a cohort that was selected on 

stricter PDB criteria (no SQSTM1 mutation, young age of diagnosis and/or family 

history), while the PRISM cohort used here have an important range of disease 

severity. It is also important to note that the previous analysis used two public datasets 

for controls (379 European subjects from 1000 Genomes and 4300 from European-

American subjects in NHLBI study), while only 262 PRISM controls were used here.  

A nominal association for PDB was achieved for p.T425M, where p.425M was more 

present in controls (OR = 0.72; CI = 0.55 to 0.95; P = 0.021) suggestive of a protective 

effect over PDB (similarly to p.279C). However, this association was lost once 

corrected, making these results consistent with Chapter 3.  

The haplotype analysis performed on the PRISM cases and controls showed two 

common haplotypes. The most frequent one, as described in Chapter 3, represents all 

SNPs on their major allele and was significantly more present in cases (OR = 1.25; 

95% CI = 0.98-1.61; P = 0.008).  
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The second most common haplotype corresponds to a change for p.425M only, which 

as for the genotyping analysis, was more present in controls than cases (OR = 0.7; 95% 

CI = 0.53 to 0.91; P = 0.001).  

The clinical effect of those variants was also investigated, after important data for the 

rs10498635 variant from the GWAS. The common allele p.425M showed nominal 

associations with age of diagnosis and age recruitment for all PRISM and 

PRISM/SQSTM1+ patients, while PRISM/SQSTM1- negative patients showed an 

association for age at recruitment only. The interpretation is however uncertain, as the 

statistics seem stronger in patients carrying SQSTM1 mutations. Additionally patients 

carrying SQSTM1 mutations were over-represented in the PRISM cohort affected by 

a homozygote mutation of p.425M (26.32%). This suggests that the SQSTM1 gene is 

driving this association. 

Patients carrying the p.279C allele but no SQSTM1 mutation had a younger age of 

diagnosis (P = 0.034) than patients without any of those two mutations, or with both. 

This is contradictory to the previous findings. Indeed, sequencing of RIN3 showed that 

the p.279C was more present in controls and was thought to have a protective effect 

over PDB. This was also found in haplotype analyses detailed in Chapter 3 and this 

chapter, as the major alleles are significantly over-represented in cases.  
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There are several reason why this association is unlikely to be reliable. Firstly, this is 

only a nominal association, lost once corrected over the number of clinical features 

investigated. Secondly, when compared to a similar study performed on mutations 

from the SQSMT1 gene (Visconti et al, 2010), additional phenotypic associations such 

as deformity, bone pain, or numbers of fractures would have made this finding more 

credible. Additionally, the age of diagnosis can be a subjective feature to investigate 

on its own, as many other factors can impact its reliability such as patients being 

asymptomatic. Finally, looking at the detail of p.R279C allelic dosage in patients not 

carrying SQSTM1 mutations (Appendix 4.7), it seems that the association is driven by 

the C/C genotype as the mean age is 59.5 years old, compared to 64.26 for the R/R 

genotype and 66.45 years old for the R/C genotype. There is an inconsistency in the 

allele dosage as the mean age is the highest in the heterozygote genotype. The small 

size of the C/C subgroup (12 individuals) is also not comparable to the size of the other 

genotypes (467 for the R/R, and 145 for the R/C). This would need to be analysed in 

a cohort with a higher number of patients affected by the C/C genotype.  

A second haplotype analysis was performed on all PRISM cases, this time with the 

addition of the p.R279C variant. This resulted in haplotypes of similar frequencies than 

the ones described above, with the addition of one common haplotype containing a 

change for the p.279C allele only. A severity study was performed on those haplotypes 

(not mutated, mutated for p.425M only, mutated for p.279C only) in the 

PRISM/SQSTM1- patients only in order to eliminate the association to be driven by 

mutations from the SQSTM1 gene.  
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Here too, a nominal significance (P = 0.026) was reached for patients carrying the 

p.279C variant, for which the age of diagnosis was younger. Similar ages and C/C 

group size were found as in the association discussed above, confirming this result 

unlikely to be a true match.  

 

As an overall result, it would seem that the association with PDB is more likely to be 

driven by the common variant p.R279C with a modest effect size rather than by the 

rare variants. This is opposite to the effect of mutations from the SQSTM1 gene, for 

which rare variants have a large and cumulative effect associated with PDB (Albagha 

et al, 2013). Although disease severity association was found for the variants that were 

investigated, an adding effect on other markers of PDB such as environmental factors 

stays a possibility, and were not available from the PRISM trial data. Functional 

analyses are necessary to investigate the effect of those mutations on bone 

microenvironment, as well as to understand the mechanism of RIN3 in bone 

metabolism.  
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5 EXPRESSION OF RIN3 IN BONE AND BONE CELLS 

5.1 SUMMARY 

Genetic investigations have shown that RIN3 is a good candidate gene for PDB. In the 

context of bone metabolism, little is known about this gene. RIN3 expression was 

found to decrease during differentiation of osteoclasts from PBMCs and was detected 

in calvarial osteoblasts (Kemp et al, 2014). High levels of RIN3 were reported in 

human mast cells (Janson et al, 2012) and peripheral blood cells (Kajiho et al, 2003). 

Here, I sought to investigate the expression pattern and localisation of RIN3. 

Rin3 mRNA was investigated in mouse tissues and was highly expressed in lung and 

total crushed bone, while present at lower levels in brain and muscles. During 

osteoclast differentiation from BMDMs, Rin3 mRNA decreased during macrophage 

differentiation before increasing during osteoclast formation to a level similar than 

found in bone marrow. Rin3 mRNA expression in calvarial osteoblasts was 8.5 times 

lower than in osteoclasts. Protein levels of the 98kDa isoform of RIN3 tend to decrease 

gradually during osteoclast differentiation, while the 108kDa isoform seems to follow 

the mRNA pattern described above. This however needs to be repeated in additional 

experiments. Using a time course experiment, RIN3 protein levels of the 98kDa 

isoform dropped during the first 24h of RANKL stimulation, and remained as such for 

the next 72h. RIN3 was detected throughout the cytoplasm of osteoclasts from 

BMDMs and bone sections from Pagetic patients and controls.  

In conclusion, I confirmed that RIN3 is expressed in bone, especially in osteoclast cells 

where it is diffusely expressed in the cytoplasm. Variation of RIN3 during osteoclast 

differentiation was also assessed for mRNA and protein expression in mice.  
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5.2 INTRODUCTION 

The previous genetic investigations highlighted a potential role for RIN3 in PDB. 

However, the current knowledge about RIN3’s role in bone metabolism is very limited.  

RIN3 is a GEF involved in the activation of small GTPases, proteins responsible for 

normal downstream signalling in the cell. More specifically, RIN3 is known to interact 

with Rab5 and Rab31, involved in vesicular trafficking and fusion of early endosomes 

(Kajiho et al, 2003; Kajiho et al, 2011). This could place RIN3 as a good candidate 

protein for PDB. Indeed, the role of small GTPases is well characterised in osteoclasts 

function, especially Rab proteins and their role in vesicular trafficking near the ruffled 

border, crucial for bone resorption and the transport of molecules and protein, from 

and to the resorption area (Itzstein et al, 2011). RIN3 is also involved in endocytosis, 

and binds to Amphiphysin II, a protein involved in the mediation of receptor-induced 

endocytosis (Kajiho et al, 2003). RIN3 was additionally shown to be involved in the 

internalization of the receptor tyrosine kinase KIT after SCF stimulation of mast cells 

(Janson et al, 2012).  

RIN3 is highly expressed in human mast cells, but not in B cells, myeloblasts, T cells, 

fibroblasts and glioblastoma cell lines (Janson et al, 2012). RIN3 was also detected in 

human peripheral blood cells in high amount, but showed lower levels in brain and 

muscle (Kajiho et al, 2003). In the bone microenvironment, RIN3 expression was 

found to decrease during the first 3 days of osteoclast differentiation from PBMCs, 

and was detected in calvarial osteoblasts (Kemp et al, 2014).  

The aim of this chapter was to establish the expression pattern of RIN3 in the bone 

microenvironment and its cellular location in both human and murine osteoclast cells. 



Chapter 5: Expression of RIN3 in bone and bone cells 

178 
 

5.3 METHODS 

The expression of mRNA Rin3 was measured in the following mouse tissues: lung, 

total crushed bone, liver, kidney, brain and muscle. For this, cDNA was obtained by 

reverse transcription, was used for quantitative real time PCR as described in Section 

2.4. mRNA and protein levels (Section 2.5) were assessed by qPCR and western blot 

on the three key stages of osteoclast differentiation from primary BMDMs: bone 

marrow, upon tissue collection, macrophages, which have been stimulated in M-CSF 

for two days, and osteoclasts, differentiated after 4 days of RANKL and M-CSF 

stimulation from those macrophages (Section 2.3.1). RIN3 protein levels were also 

investigated through a daily time course, during the four day-RANKL stimulation of 

osteoclasts (Section 2.5). Expression of mRNA Rin3 in calvarial osteoblasts was also 

analysed (Section 2.3.2).  

Localisation of RIN3 was assessed using immunostaining as described in Section 2.6, 

for which the protein of interest was labelled by green fluorescence in cultured 

osteoclasts differentiated from BMDMs. Nuclei were counterstained using DAPI.  

Immunohistochemistry was performed as described in Section 2.7, on human bone 

samples from Pagetic, GCT, osteosarcoma and osteoclastoma affected patients. Non-

Pagetic controls were also verified. Lung was used as positive and negative controls, 

and osteosarcoma sections were used as negative control.   
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5.4 RESULTS 

5.4.1 Expression of Rin3 in mouse tissues 

mRNA levels of Rin3 were quantified in different tissues. The expression was found 

to be the highest in lung and gradually lowers in decreasing order from total crushed 

whole bone, to liver, kidney, brain and muscle as shown in Figure 5.1. Variations of 

the housekeeping gene were observed, where muscle showed the highest expression 

of ribosomal 18S RNA, followed by bone and the other tissues (data not shown). 

 
Figure 5.1: Expression of mRNA Rin3 in mouse tissues.  

mRNA levels were measured in lung, total crushed bone, liver, kidney, brain and muscle from 
mice. The expression of Rin3 was normalised with 18S rRNA. Values are presented as mean 
± SEM from one independent experiment in triplicates for all. *p<0.05 from all, ** p<0.05 
from all but liver. ***p<0.05 from all but brain and muscle.  
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5.4.2 Rin3 mRNA is expressed in cells of the bone micro environment 

The expression of Rin3 was then measured during osteoclast differentiation from M-

CSF and RANKL stimulated osteoclasts. mRNA Rin3 expression levels were also 

compared to calvarial osteoblasts and murine total crushed bone (Figure 5.2). 

 
Figure 5.2: mRNA expression of Rin3 in the bone microenvironment.  

mRNA levels of Rin3 in bone marrow (BM), M-CSF-stimulated macrophages (Mɸ), M-CSF 
and RANKL-stimulated osteoclasts (OC), total crushed bone from mice and calvarial 
osteoblasts (OB). The expression of Rin3 was normalised with 18S rRNA. Values are 
presented as mean ± SEM from three independent experiments in duplicates for all but OB 
and bone (one experiment in triplicates). *p<0.05 from all, **p<0.05 from BM and OC. 
 

Rin3 expression was found to significantly vary at each steps of osteoclast 

differentiation. The mRNA levels decrease after macrophage differentiation, before 

increasing again during OC differentiation to a similar level than originally found in 

bone marrow samples. Expression in osteoclasts is found to be about 8.5 times more 

abundant than in osteoblasts, while total crushed bone seems to be expressing Rin3 the 

most from these samples.  
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5.4.3 RIN3 protein is expressed in the murine bone micro environment 

Protein expression of RIN3 was also assessed during osteoclast differentiation from 

BMDMs. Two bands were observed around the expected size of interest (108KDa). 

One, slightly below 100kDa corresponds to the 98KDa isoform of RIN3. The second 

band, slightly below 120kDa is likely to correspond to the biggest isoform of RIN3 

(108kDa). This was the size expected to be found by the manufacturer’s instructions. 

Figure 5.3 shows the deduced levels of RIN3 (panel A) for each band, corrected by β-

actin (panel B). For the lightest isoform (98kDa), RIN3 gradually decreases during 

osteoclast differentiation (panel C). For the 108kDa isoform, the bands were 

particularly faint and although a similar pattern to the one found by mRNA could be 

suggested, no significant variation of expression was observed (panel D).  

The expression of RIN3 was then investigated in more detail during osteoclast 

differentiation, from M-CSF derived macrophages. Proteins were extracted first on M-

CSF differentiated macrophages (d0) and this was repeated daily until full osteoclast 

formation under RANKL and M-CSF stimulation (d1, d2, d3, d4). The results are 

showed in Figure 5.4, and were measured again for each band (panels A and B). The 

isoform at 98kDa shows a significant drop of the RIN3 protein expression during the 

first 24h of RANKL addition in the cell medium (panel C). The low levels did not vary 

from day one until termination of the culture. For the isoform of 108kDa, no significant 

variation could be observed. However, in agreement with Figure 5.3, it seems that 

RIN3 tends to increase during osteoclast differentiation (panel D).  
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Figure 5.3: Expression of protein RIN3 in BM, Mɸ and OC under RANKL stimulation.  

RIN3 shows two bands at 98kDa and 108kDa (A) while Actin is expected at 42kDa (B). 
Protein levels of the 98KDa and 108kDa isoforms of RIN3 were quantified in bone marrow 
(BM), M-CSF-stimulated macrophages (Mɸ), M-CSF and RANKL-stimulated osteoclasts 
(OC). Both 98kDa (C) and 108kDa (D) isoforms of RIN3 were normalised by Actin. Values 
are presented as mean ± SEM from four independent experiments.  
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Figure 5.4: Expression of protein RIN3 during osteoclast differentiation under RANKL 

stimulation.  
RIN3 shows two bands at 98kDa and 108kDa (A) while Actin is expected at 42kDa (B). 
Protein expression was measured during RANKL stimulation (d0), every day for 4 days (d1, 
d2, d3, d4) until development of osteoclasts from primary BMDMs. Both 98kDa (C) and 
108kDa (D) isoforms of RIN3 were normalised by Actin. Values are presented as mean ± SEM 
from three independent experiments. *p<0.05 from all.  
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5.4.4 RIN3 is expressed through the cytoplasm of osteoclasts cultured from 
mice 

The cellular localisation of RIN3 was investigated on osteoclasts stimulated with M-

CSF and RANKL for 4 days, obtained from mouse BMDMs. The cells were studied 

using immunofluorescence as described in Section 2.6. RIN3 was stained using Alexa 

Fluor® labelled antibodies. The pictures were captured using inverted microscopy and 

green fluorescence is observed thorough the cytoplasm of the osteoclasts (Figure 5.5, 

panel D). A stronger signal can be observed near the plasma membrane (blue arrows, 

panel D) and stronger specks can be see through the cytoplasm (red arrows, panel D).  

 
Figure 5.5: Pictures of cultured M-CSF and RANKL stimulated mouse bone marrow 

derived-osteoclasts stained by immunofluorescence for RIN3.  
Panels A (phase) and B (merged) show the negative control where the primary anti-RIN3 
antibody was replaced by the diluent. Panels C (phase) and D (merged) show the osteoclasts 
labelled with RIN3. Cultured osteoclasts are pointed by white arrows, specks by red arrows 
and concentrated staining by blue arrows. RIN3 is green-fluorescent and nuclei are dyed in 
blue by DAPI counterstaining. The pictures were merged using ImageJ. Magnification x40.  
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5.4.5 RIN3 is highly expressed through the cytoplasm of human osteoclasts 

Finally, the expression of RIN3 was investigated in human bone samples using antigen 

retrieval immunohistochemistry (Section 2.7). Osteosarcoma was used as a negative 

control (Figure 5.6, panel A) and human lung was used as a negative (Figure 5.6, panel 

B) and positive control (Figure 5.6, panel C). Bone samples from Pagetic (Figure 5.6, 

panel D), non-Pagetic (Figure 5.6, panel E), osteoclastoma (Figure 5.6, panel F), GCT 

(Figure 5.6, panel G), and osteosarcoma (Figure 5.6, panel H) patients were 

investigated. All osteoclasts showed a strong and specific staining for RIN3 (black 

arrows).  

Although RIN3 is expressed diffusely in the cytoplasm of the cells for all samples 

analysed here, a stronger staining can be seen near the membrane of the osteoclasts, 

particularly in the Pagetic and GCT samples (red arrows).  

Osteoblasts and osteocytes were however not expressing RIN3 in those samples (data 

not shown).  
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Figure 5.6: Pictures of tissue sections stained by immunohistochemistry for RIN3.  
Sections of osteosarcoma (A) used as negative control, and of human lung used as negative (B) and positive (C) controls against Pagetic sample (D), non-
Pagetic sample (E), osteoclastoma (F), GCT sample (G), and osteosarcoma sample stained for RIN3 (H). All at magnification x40 but controls (x10) and 
non-Pagetic sample (x60). Example of stained osteoclasts are pointed by black arrows, and enhanced staining are pointed by red arrows. 
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5.5 DISCUSSION  

Previous studies showed that RIN3 was highly expressed in human mast cells, 

compared to  B cells, myeloblasts, T cells, fibroblasts, glioblastoma cell lines and 

osteosarcoma cell lines showed a low expression of RIN3 (Janson et al, 2012). RIN3 

was detected in calvarial osteoblasts and is down-regulated during human PBMCs 

osteoclasts. RIN3 expression is also decreased in osteoporotic iliac biopsies compared 

to healthy postmenopausal controls, suggestive of a role in bone metabolism (Kemp et 

al, 2014).  

Here, Rin3 was measured in six tissues extracted from mice, using qPCR. Total 

crushed bone had the second highest relative level of mRNA Rin3, and was 

significantly different from all tissues except from liver. Lung was found to have the 

highest amount of Rin3, which was 1.6 times greater than in bone. This was expected 

as mast cells were found to be abundant in investigations reported by Janson and 

colleagues (2012). The lowest levels of Rin3 were found in muscle and brain and were 

100 and a 25 times fold respectively, lower than in lung. Similar findings were reported 

in human tissues as described by Kajiho and colleagues (Kajiho et al, 2003). The 

mRNA for Rin3 was also quantified during osteoclast differentiation from M-CSF and 

RANKL stimulated osteoclasts from BMDMs. For this, cells were analysed upon bone 

marrow flushing, after 2 days of M-CSF stimulation (macrophages), and after 4 days 

of M-CSF and RANKL stimulation (osteoclasts).  
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Rin3 was shown to significantly vary during osteoclast differentiation, suggestive of a 

role in osteoclastogenesis. Indeed, the Rin3 mRNA expression decreased almost by 

half after macrophage differentiation and proliferation, before increasing in osteoclasts 

to a level similar than initially found in bone marrow. A similar trend was detected in 

osteoclasts from PBMCs by Kemp and colleagues (2014). A pattern of expression 

showing a down-regulation of RIN3 during early differentiation phase (up to day 3), 

before modestly increasing again and stabilising during late differentiation phase (day 

7 to day 21) (Kemp et al, 2014). Although this final increase was not as significant as 

in osteoclasts derived from murine BMDMs, there was a similar pattern of expression 

between the two studies. Calvarial osteoblasts were also investigated here and showed 

a low expression of mRNA. In comparison to osteoclasts, the level of Rin3 was about 

8.5 times lower. The RNA expression of RIN3 was also investigated during calvarial 

osteoblast differentiation by Kemp and colleagues, but there was no comparison 

between the Rin3 mRNA levels of expression in osteoclasts and osteoblasts (Kemp et 

al, 2014). Total crushed bone showed a trend towards a higher level of mRNA Rin3, 

once compared to bone marrow, macrophages, osteoclasts and osteoblasts. 

As for the mRNA, the protein levels of RIN3 were assessed on bone marrow, 

macrophages and osteoclasts samples from BMDMs. It is likely that two isoforms of 

RIN3 were detected. The most predominant one corresponded to the isoform of 98kDa, 

and showed a band at the expected size. Unexpectedly, this isoform of RIN3 showed 

a trend towards a decrease from bone marrow to macrophage, and further decrease 

from macrophages to osteoclasts. Correlations between mRNA and protein levels have 

not always been clear.   
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Differences of expression pattern between Rin3 mRNA and protein detected here 

could be explained by variations in the stability of mRNA, post-transcriptional 

mechanisms, or a short protein half-life, although this is not clear yet (Greenbaum et 

al, 2003).  

Another isoform was seen and most likely corresponds to the heaviest isoform of 

RIN3, expected at 108kDa. According to the manufacturer’s instructions, this was the 

expected band. Analysis of this isoform during osteoclast differentiation revealed a 

similar trend of expression than the mRNA one, for which the probe was targeted in a 

region only found in the 108kDa isoform only. Indeed, a trend where RIN3 decreases 

during macrophage differentiation and increases again during osteoclast 

differentiation to a level similar than initially observed in bone marrow was observed. 

This was however not significant, probably due to the faintness of the bands, and 

additional experiments with a higher amount of protein loading are needed to confirm 

this expression pattern. The other two known isoforms of RIN3 are of small sizes (22 

and 14kDa) and were not seen on the western blots.  

To further investigate the decrease of RIN3 protein levels during osteoclast formation, 

a time course was performed on M-CSF derived macrophages. Cells were collected 

daily, until full osteoclasts differentiation. The protein expression of the lightest 

isoform of RIN3 (98kDa) was corrected by β-actin and interestingly showed a 

significant decrease of a 4.5-fold during the first 24 hours of RANKL stimulation and 

stayed low for the next 72 hours.  
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The heaviest isoform (108kDa) did not show significant variation of expression, 

however a slight increase of RIN3 can be suggested during the first 48h, before slightly 

decreasing. As explained previous this is probably due to the faintness of the bands 

and additional experiments with a higher protein concentration is needed to confirm 

such trend.  

Overall, the expression of RIN3 is in accordance with what is published in the 

literature, whether it is for expression pattern in different generic tissues, during 

BMDMs differentiation or in calvarial osteoblasts. Within my investigation, it seems 

that protein and mRNA levels of the 108KDa are following similar trends (although 

this needs to be pursued for confirmation by additional western blot analyses), and one 

explanation comes to mind as RIN3 expression seems to oppose M-CSF stimulations 

in BMDM cultures. Knowing the role of RIN3 in the recycling of tyrosine kinase 

receptors (Janson et al, 2012), it could be involved in the downregulation of CSF1R. 

It is not clear however as to why the lighter isoform, which is the most abundant, is 

downregulated during osteoclast expression.  

Localisation of RIN3 in cultured osteoclasts was assessed by immunofluorescence. 

RIN3 was expressed diffusely in the cytoplasm of those cells, and showed a stronger 

staining by the border of the cell. This would be justified by the GEF activity of RIN3 

for Rab5 and Rab31, both involved in membrane trafficking to early and late 

endosomes respectively, as described by Kajiho and colleagues (Kajiho et al, 2003). 

Specks were also detected through the cells and could correspond to a vesicular 

location of RIN3, as described by the same group in HeLa transfected cells (Kajiho et 

al, 2003). 
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Finally, immunohistochemistry was used to assess the levels of RIN3 in human bone 

samples. For this, Pagetic bone, non-Pagetic control, GCT, osteoclastoma and 

osteosarcoma were stained, and all showed a strong staining for RIN3 in osteoclasts. 

Similarly to the immunofluorescence, the control and GCT show a stronger staining 

by the border of the cells, in accordance with the immunofluorescence result.  

Interestingly, the reported protein expression of RIN3 in the Saos-2 osteosarcoma cell 

line was quite low, especially compared to HMC1 and LAD2 cell lines (Janson et al, 

2012). An explanation could be that osteoclasts make up a small percentage of the total 

bone cells (up to 2 % in a normal bone environment, see Section 1.1.2) and as my 

immunocytochemistry suggest, osteoblasts and osteocytes do not express much RIN3. 

The Saos-2 cell line is used as osteoblastic model, and is unlikely to see great amount 

of RIN3 (Pautke et al, 2004). It also is in accordance with the small quantities that 

were seen in western blots here, despite loading sufficient amount of protein lysate. 

No specks were seen by immunohistochemistry in the osteoclasts, however this is 

probably due to the sensitivity of the assay, compared to immunofluorescence.  

In conclusion, the work found in the literature is in accordance with what was detected 

here. RIN3 is expressed in the human and mouse bone microenvironment, and 

significantly fluctuates during osteoclast differentiation from BMDMs, suggestive of 

a role in the bone metabolism.
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6 PHENOTYPE ANALYSIS OF Rin3 DEFICIENT MICE 

6.1 SUMMARY 

RIN3 expression pattern was established in mice for the first time in the previous 

chapter. It is highly expressed in total crushed bone and varies significantly during 

osteoclast differentiation. RIN3 is localised through the cytoplasm of osteoclasts, 

especially by the border of the cells. Rin3 was also detected at low levels in calvarial 

osteoblasts. 

In order to further understand the role of RIN3 in bone metabolism, skeletal and 

cellular changes were investigated in young female mice lacking the Rin3 gene (Rin3-

/-) and were compared to wild type mice (WT). MicroCT analyses showed that Rin3-/- 

mice had an increased bone mass and trabecular number in both tibia and femur. 

Histomorphometric analyses of trabecular femur showed that Rin3-/- mice had an 

increased trabecular bone surface and a decreased resorption surface, which is 

occupied by active osteoclasts. Calvarial osteoblasts cultured from Rin3-/- mice show 

a trend towards increased differentiation level and mineralised nodule formation, 

however additional experiments are necessary to confirm this. Osteoclasts 

differentiated from mice bone marrow showed no difference in number, formation or 

survival patterns between the two groups.  

In conclusion, RIN3 was proven to play a role in bone in young mice and could have 

a positive effect on osteoclast activity. Additional in vitro and ex vivo experiments on 

bone resorption need to be repeated to confirm such suggestions.  
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6.2 INTRODUCTION  

The role of RIN3 in bone metabolism has been poorly studied so far. RIN3 has been 

detected at low levels in the osteosarcoma Saos-2 cell line (Janson et al, 2012) and 

calvarial osteoblasts (Kemp et al, 2014). RIN3 has been also analysed in osteoclasts 

from PBMCs and was found to decrease in the first 3 days of differentiation before 

increasing again and stabilising until the end of the 21 days culture (Kemp et al, 2014).  

The functional work presented in Chapter 5 place as a strong candidate for PDB. Total 

crushed bone from mice showed a high level of Rin3 mRNA, and mRNA and protein 

levels were established during osteoclast differentiation. The 98kDa isoform of RIN3 

was found to drop drastically from the addition of RANKL to the cells used for 

osteoclast differentiation, and stayed low until termination of the culture. The 108kDa 

isoform of RIN3 however, as for its mRNA, showed a decrease during macrophage 

proliferation and an increase during RANKL stimulation. Low levels of mRNA were 

detected in calvarial osteoblasts, and were about 8.5 times lower than found in cultured 

osteoclasts. RIN3 was found to be expressed diffusely through the cytoplasm of 

osteoclasts in human bone and cultured osteoclast from BMDMs, and a stronger 

concentration of RIN3 was noticeable by the border of the cells. Although RIN3 was 

not detected in osteoblasts or osteocytes in human bone samples, RIN3’s expression 

in osteoclasts places it as a good candidate in the context of PDB where osteoclasts are 

over-active (Meunier et al, 1980).  
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The main role of RIN3 is the activation of small GTPases, through its GEF function. 

Small GTPases are known to have a crucial role in osteoclast resorption function, as 

they act as switches of molecular signalling pathways. As a result they are involved in 

many cellular mechanisms, including autophagy or cytoskeletal re-organisation, 

crucial for osteoclast activation during bone resorption (Itzstein et al, 2011). RIN3 

interacts with Rab5, which is the most described small GTPase (Kajiho et al, 2003), 

as well as Rab31 (Kajiho et al, 2011). Both are involved in molecular trafficking in 

early and late (respectively) endosomes, which are key features of the osteoclastic 

bone resorption. Another mechanism in which RIN3 can be relevant is tyrosine kinase 

receptor recycling (Janson et al, 2012). Indeed, as mentioned in Section 1.1.2, the 

differentiation of osteoclasts is mediated by cytokines like RANKL and M-CSF which 

bind to receptors located on the membrane of the cells. CSF1R is recognised by M-

CSF for differentiation of macrophages from osteoclast progenitors is a key tyrosine 

kinase receptor of osteoclastogenesis and a potential target for RIN3. Small GTPases 

are also involved in autophagy as described in Section 1.5.3 (Ao et al, 2014). 

Autophagy-related proteins have been reported in PDB and PDB-like diseases (p62, 

OPTN, VCP - Section 1.4) and is a mechanism to consider for RIN3’s role in PDB. 

The aim of this chapter was to investigate Rin3-deficient young mice on a mixed 

C57BL/6 x 129/OlaHsd background, to confirm a functional role for RIN3 in bone 

metabolism on an in vivo scale. Skeletal phenotypes were investigated using microCT 

scanning and cellular changes in bone sections were assessed by histomorphometry in 

metaphysis of the femur. Osteoblast differentiation and mineralisation rate were 

measured on cultured calvarial osteoblasts and calcein stained bone sections, while 

formation and survival pattern were assessed in osteoclasts cultured from BMDMs.  
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6.3 METHODS 

Bone phenotypes were investigated in 8 week old C57BL/6 crossed with 129/OlaHsd 

Rin3-/-mice, and WT littermates were used as controls. Mice used for calvarial 

osteoblast cultures were from 2 days old pups, generated from Rin3-/- or WT parents 

(Section 2.3.2). Changes in trabecular bone were analysed in femurs, tibias and spines 

by microCT, while cortical bones were investigated in femurs as described in Section 

2.8.3. This was performed on 14 Rin3-/- and 11 WT 8 weeks old female mice. Cellular 

changes were assessed by histomorphometric studies on the proximal metaphysis of 

the right femurs as described in Section 2.8.4. Osteoclast phenotypes were investigated 

by TRAcP staining on 13 Rin3-/- and 10 WT mice. Osteoblast phenotypes and bone 

mineralisation rates were analysed by calcein staining of 9 Rin3-/- and 10 WT femurs. 

Changes in cultured osteoclasts and osteoblasts from Rin3-/- and WT were investigated 

(Sections 2.3.1 and 2.3.2). Once M-CSF and RANKL-generated, TRAcP-positive 

osteoclasts with 3 or more nuclei were manually counted, and a second count was 

performed on large osteoclasts with at least 10 nuclei. A survival assay was also carried 

out. For this, BMDMs-generated osteoclasts were counted at 0h, 4h, 8h, 24h, 48h, and 

72h after RANKL being removed from the media. Mineralised nodule formation was 

also investigated in cultured osteoblasts. For this, the cells were stimulated using 

osteogenic medium (50μg/ml vitamin C and 3mM β-GP) for up to three weeks. The 

cultures were then fixed at the end of one week, two weeks and three weeks of 

incubation, and nodules were stained using Alizarin red staining. Once dried, the 

deposits were destained and absorbance was measured at 562nm against a standard 

curve. Differentiation levels in osteoblasts were also assessed by measuring the 

activity of ALP in cell lysates.  
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6.4 RESULTS 

6.4.1 Rin3 deficient mice have a normal body weight 

Body weight was investigated in Rin3-/- mice before tissue collection. They were of 

similar size and weight compared to WT littermates, and were generally healthy 

(Figure 6.1).  

 
Figure 6.1: Body weight of Rin3-/- female mice at age 8 weeks.  

Values are mean ± SEM from 14 Rin3-/- mice and 11 WT mice.  
 

6.4.2 Rin3 deficient mice have an increased bone mass and trabecular 
number 

Skeletal phenotypes in young female mice lacking the Rin3 gene were investigated 

using microCT analysis. Trabecular bone was investigated in femur, tibia and spine, 

and cortical bone was studied in femur. Results are summarized in Figures 6.2 to 6.5 

and Table 6.1.  
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Figure 6.2: MicroCT results on the Rin3-/- mice and WT controls, for the femoral trabecular bone.  

Young Rin3-/- and WT female mice were analysed for trabecular phenotypes in metaphysis of both left and right femurs. The following parameters were 
investigated: A/ Trabecular bone volume (BV/TV); B/ Trabecular thickness (Tb. Thickness); C/ Trabecular separation (Tb. Separation); D/ Trabecular 
number (Tb. Number). Values are mean ± SEM of 14 Rin3-/- mice and 11 WT mice. *p<0.05 and **p<0.001 from WT controls.  
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Figure 6.3: MicroCT results on the Rin3-/- mice and WT controls, for the tibial trabecular bone. 
Young Rin3-/- and WT female mice were analysed for trabecular phenotypes in metaphysis of both left and right tibias. The following parameters were 
investigated: A/ Trabecular bone volume (BV/TV); B/ Trabecular thickness (Tb. Thickness); C/ Trabecular separation (Tb. Separation); D/ Trabecular 
number (Tb. Number). Values are mean ± SEM of 14 Rin3-/- mice and 11 WT mice. *p<0.01, **p<0.001 from WT controls.  
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Figure 6.4: MicroCT results on the Rin3-/- mice and WT controls, for the trabecular bone of the spine.  

Young Rin3-/- and WT female mice were analysed for trabecular phenotypes in spines. The following parameters were investigated: A/ Trabecular bone 
volume (BV/TV); B/ Trabecular thickness (Tb. Thickness); C/ Trabecular separation (Tb. Separation); D/ Trabecular number (Tb. Number). Values are 
mean ± SEM of 14 Rin3-/- mice and 11 WT mice. 
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Figure 6.5: MicroCT results on the Rin3-/- mice and WT controls, for the femoral cortical bone. 

Young Rin3-/- and WT female mice were analysed for cortical phenotypes in both left and right femurs. The following parameters were investigated: 
A/ Bone Volume; B/ Cortical thickness (Ct. Thickness); C/ Med. Cav. Diameter (Medullar Cavity Diameter); D/ Cortical Diameter (Ct. Diameter). 
Values are mean ± SEM of 14 Rin3-/- mice and 11 WT mice. 
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Table 6.1: Summary of statistical analyses of the microCT scanning results on the Rin3-/- mice and WT controls.  
 

    WT Rin3-/- 95% CI p-value  
(T-test) 

Femur 

BV/TV 10.08 ± 0.42 12.53 ± 0.58 -3.90 to -0.99 0.001 

Tb separation (µm) 50.57 ± 0.99 45.54 ± 0.95 2.23 to 7.83 0.001 

Tb number (1/mm) 0.011 ± <0.01 0.014 ± <0.01 -0.01 to -0.005 <0.001 

Tibia 

BV/TV 12.20 ± 0.36 13.80 ± 0.40 -2.70 to -0.50 0.005 

Tb separation (µm) 42.77 ± 0.77 39.43 ± 0.69 1.27 to 5.42 0.002 

Tb number (1/mm) 0.014 ± <0.001 0.016 ± <0.001 -0.003 to -0.001 <0.001 

Tb = Trabecular; BV/TV = Bone volume/Total volume. Values are mean ± SEM of 14 Rin3-/- mice and 11 WT mice.
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Rin3-/- mice showed similar results for femur and tibia. Indeed, microCT analysis has 

shown that long bones from both legs of Rin3-/- mice have a significantly increased 

trabecular bone volume (BV/TV; Figures 6.2 and 6.3, A) (Femur +24.29%, 95% CI = 

-3.90 to -0.99, P = 0.001; Tibia +13.12%, 95% CI = -2.70 to -0.50, P = 0.005) and 

trabecular number (Femur +23.86%, 95% CI = -0.01 to -0.005, P = <0.001; Tibia 

+14.81%, 95% CI = -0.003 to -0.001, P = <0.001) (Figures 6.2 and 6.3, D). As a result, 

trabecular separation in Rin3-/- mice was significantly decreased (Femur -9.95%, 95% 

CI = 2.23 to 7.83, P = 0.001; Tibia -7.81%, 95% CI = 1.27 to 5.42, P = 0.002) (Figures 

6.2 and 6.3, C).  

No differences between WT and Rin3-/- mice in the trabecular bone of the spine, or the 

cortical bone of the femur were detected (Figures 6.4 and 6.5).  

3D modelling pictures from the scans were generated using the CTVol (Bruker, 

Belgium) (Figure 6.6). Increased bone volume and trabecular number described above 

can be seen in the trabecular bone of the tibia and femur between WT and Rin3-/-. 
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Figure 6.6: 3D remodelling pictures of the scanned bones in Rin3-/- and WT controls.  

These reconstructions were performed with the CTVol program and show either trabecular or 
cortical bone, in femur, tibia and spine.  
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6.4.3 Rin3 deficient mice show an osteoclastic phenotype 

Metaphyses of the right femurs were analysed using histomorphometry in WT and 

Rin3-/- mice to investigate cellular changes due to the Rin3 deletion (Figures 6.8 and 

6.10).  

Bone sections showed a significantly increased bone area and perimeter in Rin3-/- mice 

compared to WT (Figure 6.7, A and B). In particular, TRAcP staining showed an 

overall significant decrease in osteoclast active resorption surface (surface occupied 

by red osteoclasts corrected over trabecular bone surface) in Rin3-/- mice compared to 

WT mice (Figure 6.7, C).  

Calcein staining and labelling were additionally performed to investigate 

mineralisation rate and osteoblast activity. Increased single label perimeter was seen 

in Rin3-/- mice (Figure 6.9, A), but this significance was lost once bone formation 

parameters were investigated. Bone volume was suggested to increase in Rin3-/- mice, 

which would be in agreement with the more sensitive microCT analysis, however this 

was not statistically significant (Figure 6.9, D).   
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Figure 6.7: Histomorphometric results on the Rin3-/- mice and WT controls for TRAcP staining and osteoclast analysis.  

This investigation was performed on the metaphysis of the right femurs. A/ B.Ar = Bone area; B/ B.Pm = Bone perimeter; C/ Oc.S/BS = Surface occupied 
by osteoclasts per bone perimeter; D/ N.Oc/BS = Number of osteoclasts per bone surface. Values are mean ± SEM of 13 Rin3-/- mice and 10 WT mice. 
*p < 0.05 from WT controls.  



Chapter 6: Phenotype analysis of Rin3 deficient mice 

208 
 
 
 

 
Figure 6.8: Representative sections of the WT and Rin3-/- mice after TRAcP staining.  

The bone is stained using Aniline blue while osteoclasts are red (arrows) from TRAcP staining. Trabecular bone is increased in Rin3-/- mice compared 
to WT and the number of active osteoclasts (laying on the trabecular bone surface) is reduced in Rin3-/- mice once corrected over bone surface. Analysis 
was done using the TrapHisto (Van't Hof et al, 2017) program by using colour thresholding and manual editing. Bubbles (black circles) were also 
removed during the analysis by excluding the colour black.   
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Figure 6.9: Dynamic histomorphometric analysis from calcein labelling on Rin3-/- mice and WT controls.  

This investigation was performed on the metaphysis of the right femurs. A/ Single label Perimeter = sL.Pm; B/ Double label Perimeter = dL.Pm; C/ Label 
width = L.Wi; D/ Bone volume over total volume = BV/TV; E/ Minimum Acquisition rate = MAR; F/ Mineralised surface over bone surface = MS/BS; 
G/ Bone formation rate over bone surface = BFR/BS; H/ Bone formation rate over bone volume = BFR/BV. Values are mean ± SEM of 9 Rin3-/- mice 
and 10 WT mice. *p < 0.05 from WT controls. 
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Figure 6.10: Representative sections of the WT and Rin3-/- double calcein labelling staining. 

The bone is stained with calcein blue, and is detected using a blue fluorescent filter. Single calcein labelling (white arrows) and double calcein labelling 
(red arrows) are showed using green fluorescence, from injections performed at 6 and 2 days before collection. The CalceinHisto program (Van't Hof 
et al, 2017) detected the trabecular bone and calcein labelling using colour thresholding and manual editing. More single labelling was detected in the 
Rin3-/- mice, while double labelling and mineralisation rate were similar between the two genotypes. 
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6.4.4 Osteoblasts cultured from Rin3 deficient mice  

To investigate the impact of the Rin3 deletion on the function of isolated osteoblasts, 

calvarial osteoblast differentiation levels in Rin3-/- and WT mice were measured by 

quantifying ALP activity. Values were normalised by cell number. A modest trend 

towards increased ALP activity can be suggested in osteoblasts from Rin3-/- mice 

compared to WT mice, but this did not reach statistical significance (Figure 6.11).  

 
Figure 6.11: Calvarial osteoblasts ALP activity levels from Rin3-/- mice and WT controls.  

ALP levels were normalised to cell number. Values are mean ± SEM of three experiments 
with 10 replicates for each. 
 

The results of Alizarin red staining are shown in Figure 6.12. The absorbance 

measured was normalised to cell number. The amount of Alizarin red varied 

significantly red over time (P < 0.001) and between experiments (P = 0.012). No 

differences in Alizarin red was however detected between the Rin3-/- and WT cultures, 

although a slight increase is noticeable in Rin3-/- mice. Taken individually, all three 

experiments showed more staining in the Rin3-/- cultures, however only two out were 

statistically significant, at both week 2 and week 3 (data not shown). This significance 

was lost once all three experiments were put together (P = 0.091) (Figure 6.12, B).  
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Figure 6.12: Alizarin red staining of mineralised nodules from Rin3-/- mice and WT 

calvarial osteoblasts.  
A/ Photomicrographs of mineralised nodules stained with Alizarin red from Rin3-/- and WT 
mice over the period of three weeks analysed. B/ Quantification of Alizarin red from nodules 
in A by measuring absorbance at 562nm. Values are mean corrected by cell number ± SEM of 
three experiments with 6 replicates for each.   
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6.4.5 Osteoclasts cultured from Rin3 deficient mice show the same 
formation and survival pattern than wild type mice 

To investigate the role of RIN3 on osteoclast formation in vitro, M-CSF and RANKL 

generated osteoclasts from Rin3-/- and WT mice were cultured and TRAcP-stained. 

TRAcP positive cells with a nuclei number higher than 3 and higher than 10 were 

counted for each time point. 

Although there was a trend towards a reduced total osteoclast number (Figure 6.13, A) 

and large osteoclast number (Figure 6.13, B) in cultures from Rin3-/- mice compared 

to WT, this did not reach statistical significance. 

The survival of osteoclasts from BMDMs was also assessed at different time points in 

the absence of RANKL. As showed in Figure 6.14, the amount of osteoclasts 

drastically falls following 8h in the absence of RANKL for both groups, and no 

difference in cell survival was observed between Rin3-/- and WT mice. 
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Figure 6.13: Osteoclast numbers from RANKL and M-CSF stimulated osteoclast cultures, from Rin3-/- and WT control mice.  

A/ Number of TRAcP positive osteoclasts with at least 3 nuclei from Rin3-/- and WT cultures. B/ Number of large TRAcP positive osteoclasts with at 
least 10 nuclei from Rin3-/- and WT cultures. C/ Ratio of large osteoclasts over all osteoclasts between WT and Rin3-/- cultures. D/ TRAcP staining of 
osteoclasts cultures for WT and Rin3-/- mice. Magnification x5. Values are mean ± SEM of three experiments with 10 replicates each.
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Figure 6.14: Survival assay in RANKL and M-CSF stimulated osteoclasts from Rin3-/- and 

WT control mice.  
A/ TRAcP staining of osteoclast cultures for each time point. Magnification x5. B/ Number of 
TRAcP positive osteoclasts with at least 3 nuclei from WT and Rin3-/- cultures. Values are 
mean ± SEM of three experiments with at least 5 replicates each.  
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6.5 DISCUSSION 

Although the role of RIN3 in bone is not yet established, a genetic association has been 

made between RIN3 and PDB in 2011 and variants were detected in this study 

(Albagha et al, 2011). Kemp and colleagues showed that RIN3 levels were found to 

decrease during the first stages of PBMCs osteoclast differentiation before increasing 

again (Kemp et al, 2014). Similar results were found in Chapter 5, for protein and 

mRNA levels of RIN3 (isoform 108kDa) in BMDMs. Kemp and colleagues also 

detected RIN3 in osteoblasts, which was confirmed here too (Kemp et al, 2014). I also 

showed that RIN3 is expressed through the cytoplasm of osteoclasts with a stronger 

concentration by the borders of the cells. This could be expected as RIN3 is able to 

interact with small GTPases, involved in molecular trafficking of early and late 

endosomes. Immunofluorescence also showed that RIN3 could be expressed in 

vesicles through the cytoplasm of the cell, in accordance with the study from Kajiho 

and colleagues for which RIN3 was over expressed in HeLa cells (Kajiho et al, 2003). 

These recent findings, in combination with the ones described here place the RIN3 

gene as a good candidate as a regulator of bone metabolism.  

To answer this, this chapter investigates skeletal and cellular changes in mice lacking 

the Rin3 gene. The full knock out status of the mice was confirmed by qPCR (Section 

2.8.1) however it is necessary to validate the complete absence of RIN3 at a functional 

level and will be done in the near future as no previous Rin3 knock out mouse model 

have been presented in the literature. The antibody used throughout this study 

recognises the last 349aa of RIN3 (C-terminal end), carried by both main isoforms and 

would then be an ideal choice to use in a western blot analysis of Rin3-/- mice samples.  
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Measuring a downregulation in RIN3’s function would also be another way to confirm 

the full knock out status of the mice. This can be investigated by monitoring the release 

of [3H]GDP from Rab5 activation (Hama et al, 1999) or the migration of mast cell 

towards SCF (Janson et al, 2012).  

The two other isoforms seen in mice are of 198aa and 127aa. Following the deletion, 

the 198aa isoform becomes 97aa long, while the 127aa isoform becomes 26aa long. 

None will be recognised by the antibody as they are from the N-terminal part of the 

protein, but if the deletion was confirmed in the 900 and 980aa isoforms, the effect of 

these smaller isoforms could be negligible.  

Phenotype effects of the deletion of the RIN3 gene was performed in age-matched (8 

weeks old) WT and Rin3-/- female mice on a mixed C57BL/6 x 129/OlaHsd 

background. Considering the late onset of PDB, it would have been more ideal to look 

into an older model, however time constraints led me to use young adult mice. The 

microCT analysis showed that Rin3-/- mice have a significantly increased bone mass 

and trabecular number, and a significant decreased trabecular separation once 

compared to controls. This suggests that the higher bone volume is due to an extended 

pattern of the trabecular network rather than an increased thickness of it. Similar results 

were also described in the MVNP mice, although they also reported an increased 

trabecular thickness (Kurihara et al, 2006). Quantitative histomorphometric analyses 

in Pagetic individuals are actually difficult to find, however Seitz and colleagues 

investigated a total of 247 Pagetic samples from iliac crest biopsies of German patients. 

They reported an increased bone volume, trabecular number, but not increased 

trabecular thickness (Seitz et al, 2009).   
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No differences between the Rin3-/- and WT groups were seen in trabecular bone from 

the spine. Although it is also commonly involved in Pagetic patients (Langston et al, 

2007), such outcome can be expected considering the bone anatomy of the mice and 

the differences in weight bearing on the spine with human (Bagi et al, 2011). Similarly, 

lesion in lower limbs from mice carrying the p.P394L mutation were more frequent 

than in spines (Daroszewska et al, 2011). No differences were also found in the cortical 

bone between the two groups.  

To further investigate the origin of those changes, histomorphometry was performed 

in the metaphysis of the right femurs previously scanned. This showed that Rin3-/- mice 

had a significantly higher trabecular bone area and perimeter in accordance with the 

microCT results. The surface occupied by TRAcP-positive osteoclasts, relative to the 

total surface of the trabecular bone was significantly reduced in Rin3-/- mice. This 

could suggest that the Rin3-/- mice have less osteoclasts, or less active osteoclasts. The 

number of osteoclast in the trabecular bone was however not reduced in those sections 

analysed. RIN3 could then impact either osteoclastogenesis or osteoclast resorption 

activity. To confirm this, osteoclasts were cultured from Rin3-/- mice and WT bone 

marrows, and osteoclasts were counted after 4 days of RANKL-stimulation. 

Accordingly to the histomorphometry analysis, no differences in osteoclasts numbers 

was detected between the two experimental groups, although a trend was noticed 

towards a smaller number of osteoclasts as well as larger osteoclasts in Rin3-/- mice. 

This could imply that the increased bone mass is due to a decreased bone resorption 

from the osteoclasts and not from osteoclast formation or number. However, there is 

still the possibility that the decreased trend seen in the number of BMDMs is simply 

not significant because of the power of the assay.   
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Indeed, the counting of the cells is was performed manually, and only three 

experiments were done because of time constraints. Additional experiments are 

necessary to confirm the validity of this result, and the implication of RIN3 in 

osteoclast formation and activity. Additionally, considering that overall osteoclast 

activity is increased and that their survival has been suggested to be increased in 

Pagetic conditions (Chamoux et al, 2009; Roodman & Windle, 2005), the survival of 

RANKL and M-CSF stimulated osteoclasts from Rin3-/- and WT mice was also 

investigated. Interestingly, no changes in survival was observed.  

Osteoblast phenotypes were also investigated. Osteoblast activity was assessed by 

histomorphometry and only showed an increase of single calcein labelling in the Rin3-

/- mice. Overall, no increased bone formation was overall detected. The increased 

single label parameter can be due to the fact that calcein does not fix to the calcium 

while osteoblasts are actively forming bone. A way to know if the increase in single 

labelling is from the first or second injection would have been to use two different 

fluorochromes such as Alizarin red, or demeclocycline (Erben et al, 1997). Using one 

fluorochrome for both injections is however common to evaluate mineralisation and 

bone formation rates, when the marker interval is chosen carefully (Erben & 

Glosmann, 2012). Overall, increased number of single labelling can still suggest a mild 

increase in osteoblast activity. Bone mass was also found to be higher in Rin3-/- 

samples although this was not statistically significant. This is not as obvious as what 

was observed by microCT analysis, but it can be expected considering that 

histomorphometry is not as sensitive as it does not consider the totality of the bone but 

two sections.  
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Maturation levels and function of primary calvarial osteoblasts were also investigated 

and no major differences between the two groups were observed. Osteoblasts from 

Rin3-/- mice show a trend towards increased mineralised nodule formation. Two of the 

three experiments showed a significant increased nodule formation, however this was 

lost once put together. Additional experiments are necessary to confirm such results, 

as it would be in accordance with the increase of single calcein labelling seen by 

histomorphometry. Rin3-/- calvarial osteoblasts also seem to have increased ALP 

activity, a marker of osteoblast differentiation. This was however not statistically 

significant. Here too, additional experiments might be necessary considering that 

significance was achieved for one out of the 3 experiments performed.  

Such variations between the in vivo and in vitro analyses can suggest that the bone 

phenotype would actually be due to a coupled osteoblast/osteoclast effect, which 

would have been missed from the osteoclasts and osteoblast cultures. It would be 

analysed by investigating co-cultures of stromal cells with non-adherent cells obtained 

from the bone marrow (Cao et al, 2005). Another explanation would be that osteoblasts 

could also have a focal effect which cannot be seen by histomorphometry. The use of 

factors which would enhance osteoblast differentiation, such as PTH (Sophocleous et 

al, 2011), could be more indicative whether Rin3-/- osteoblasts are lagging in cell 

differentiation and whether this was due to resistance to such factors. Moreover, the 

impact of Rin3-/- deficiency on osteoblast differentiation and function would need to 

be investigated in bone marrow-derived osteoblasts, which are portrayed as early-stage 

differentiated osteoblasts compared to calvarial osteoblasts (Rosales-Rocabado et al, 

2014).   
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PDB being a late onset disease (Van Staa et al, 2002), additional work on older mice 

would be necessary to confirm those findings and maybe reveal more obvious 

phenotypes or a focal abnormality missed here. Nevertheless, this chapter indicates 

that RIN3 clearly has a role in bone metabolism and suggests a positive effect on 

osteoclast resorption as its deletion induces an increase in bone mass, and a reduction 

in osteoclast active surface with a possible effect on osteoblast differentiation.
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7 DISCUSSION AND CONCLUSIONS 

PDB is a disease of bone remodelling, for which osteoclasts are abnormal and over-

active. They are characterised by a bigger size, an increased number of nuclei and 

increased bone resorption activity compared to healthy osteoclasts (Meunier et al, 

1980). Osteoblasts also show an increased activity in bone mineralization, however 

this is thought to be in response to the osteoclastic phenotype (Meunier et al, 1980). 

As a result, the bone formed is woven and fragile, leading to many orthopaedic 

complications such as clinical fractures, deformities, or bone pain. Deformities can 

lead to nerve and artery compressions, while an affected skull can also result in brain 

pressure and hearing loss (Langston et al, 2007).  

Although the origin of the disease is yet to be fully understood, PDB has a strong 

genetic component and is distributed in families in an autosomal dominant fashion. 

Causing variants have been described for PDB and PDB-like disorders (Ralston & 

Albagha, 2014). The p.P392L mutation in the SQSTM1 gene was showed to have the 

largest effect in Pagetic cohorts, and is found in 20-50% of the familial cases and in 5-

15% of the sporadic cases (Rea et al, 2013). Patients affected by p.P392L show a more 

severe phenotype, including an earlier age of diagnosis, higher number of affected 

bones, and an increased need for surgeries and treatments (Visconti et al, 2010). 

Additional mutations were described in the SQSTM1 gene and most (including 

p.P392L) result in the loss of ubiquitin binding of p62 which is necessary for protein 

ubiquitination and autophagy function. This leads to an over-activation of the NFκB 

pathway which controls osteoclasts resorption (Chung & Van Hul, 2012). 
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In order to identify additional genes associated with PDB, a GWAS was performed in 

our group on PDB patients and rs10498635 was detected in the RIN3 gene. 

Subsequently, rs10498635 was found to be surrounded by genetic recombination 

hotspots and to be the only independent signal, increasing our interest in this gene 

(Albagha et al, 2011). The aim of this study is to investigate the genetic and functional 

involvement of RIN3 in PDB and bone metabolism.  

In order to confirm the findings of this GWAS and further investigate RIN3 in the 

context of PDB, Sanger and next generation sequencings were performed in affected 

patients. A total of 18 variants, including 7 novel ones were described. 15 rare variants 

were associated with PDB once their effect was combined (OR = 3.72; P = 8.9x10−10), 

but the common variant p.R279C (rs117068593) is the most likely candidate for PDB. 

First, it showed a strong association for PDB (OR = 0.64; P = 1.4x10−9) where the 

p.279C allele is likely to be protective of the disease. Second, this missense mutation 

was found to be in strong LD with the GWAS hit previously described (rs10498635). 

Third, both variants share the same risk haplotype rs10498635C–rs117068593C which 

was over-represented in the cases, and most rare variants share this same haplotype. 

The effect of the rare variants combined was also lost on the PRISM cohort. Finally, 

the rs754388 variant detected by Kemp et al., which associates RIN3 with lower BMD 

in children was found to be in strong LD with p.R279C (Kemp et al, 2014).  

  



Chapter 7: Discussion and conclusions 

226 
 

Severity associations showed that patients carrying the p.279C allele but carried no 

mutations in the SQSTM1 gene had a younger age of diagnosis. This association was 

however nominal and the significance was lost once corrected over the number of 

phenotypes investigated. Although it would be important to confirm such findings in 

a bigger cohort, this result is for now contradicting the hypothesis that the p.279C 

allele would have a protective effect of the disease and seems unlikely to be a true 

association. Both analyses (sequencings and genotyping) were performed on different 

cohort. The sequenced individuals were selected on the basis that they had a young 

age of diagnosis and/or family history, while the genotyped cohort includes patients 

with different levels of severity of PDB. Additionally, the control cohort from the 

sequencing analysis was also including public databases (379 European subjects from 

1000 Genomes and 4300 European-American subjects from NHLBI) and offered a 

higher power in that respect. These findings all point to p.R279C being likely involved 

in PDB, with an effect more subtle than mutations detected in the SQSTM1 gene. A 

cumulative allelic effect can however be another mechanism to consider, as 

susceptibility loci (including 14q32.12) were described from GWAS data in patients 

who do not carry SQSTM1 mutations (Albagha et al, 2011). Although the rare variants 

might not be as relevant, the p.R279C could be used for genetic profiling and could, 

speculatively, be a potential therapeutic target for the disease.  

I then sought to investigate the expression pattern of Rin3 in mouse tissues and primary 

bone cells. In the literature, protein levels of RIN3 were reported to be high in human 

peripheral blood cells and mast cells, but lower in brain, muscle, colon and cell lines 

such as the osteosarcoma Saos-2 line, B cell, myeloblast, T cell, fibroblast and 

glioblastoma (Janson et al, 2012; Kajiho et al, 2003).   
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Accordingly in this study, the mRNA expression of the 980aa (108kDa) isoform of 

Rin3 was low in brain and muscle and high in lung. I also report that Rin3 is highly 

expressed in total crushed bone and varies significantly during osteoclast 

differentiation from murine BMDMs. This suggests that RIN3 could have a role in the 

generation of osteoclasts. Janson and colleagues showed that RIN3 is involved in the 

recycling of receptor tyrosine kinase KIT in human mast cell line, upon SCF cell 

stimulation (Janson et al, 2012). As discussed in Section 5.5, it can be speculated that 

RIN3 could have a similar mediation role in the regulation of CSF1R recycling, 

another tyrosine kinase receptor. Indeed, looking at the mRNA expression pattern of 

Rin3, it is less expressed during macrophage proliferation where the M-CSF/CSF1R 

binding is crucial, and expressed again during osteoclast formation to a level similar 

to what was originally seen in bone marrow. During this phase, the M-CSF/CSF1R 

gives priority to the RANKL/RANK binding to promote osteoclast formation (Boyle 

et al, 2003). Similar trends of expression were found for protein investigations of RIN3 

and its larger isoform (108kDa/980aa), however this needs to be repeated with higher 

protein loading concentrations as the RIN3 bands were particularly faint and generated 

graphs with high values of standard error of mean. This could however be in 

accordance with the low protein levels detected in the osteosarcoma Saos-2 line by 

Janson and colleagues (Janson et al, 2012). The smaller isoform of RIN3 

(98kDa/900aa) showed stronger bands and was more predominant than the heavier 

isoform. It was found to be constantly downregulated during BMDM differentiation, 

and particularly once RANKL was added in the media to promote osteoclast 

formation.  
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The protein expression suggests that this isoform is unlikely to be involved in this 

process however there is still the possibility for it to indirectly impact key signalling 

pathways, or to be downregulated to allow the expression of the heavier isoform. This 

requires additional work. I have also reported that Rin3 is expressed at low levels in 

calvarial osteoblasts. Total RNA was investigated in such cells by Kemp and 

colleagues and although Rin3 was also detected, it was not compared to the levels in 

osteoclasts (Kemp et al, 2014).  

I additionally established the cellular location of RIN3 in osteoclasts derived from 

mouse BMDMs, human bone samples of non-Pagetic subjects and patients affected by 

Paget’s, osteosarcoma, osteoclastoma, and GCT. RIN3 is expressed through the 

cytoplasm of the osteoclasts, and is more concentrated by the borders of the cells. This 

can be expected considering the GEF activity of RIN3, which activates small GTPases 

such as Rab5 and Rab31, crucial for vesicular trafficking of molecules to early 

endosomes (Kajiho et al, 2003). Additionally, strong specks of fluorescence were 

detected in osteoclasts from BMDMs, which could be in accordance with previous 

work published by Kajiho and colleagues, where RIN3 was over-expressed in HeLa 

cells and was found to be sitting in vesicles in the cell cytoplasm (Kajiho et al, 2003). 

Finally, the role of RIN3 in bone metabolism was investigated using an in vivo mouse 

model. Young female mice lacking the Rin3 gene (Rin3-/-) were analysed for bone 

phenotypes using microCT and for cellular changes in the bone microenvironment 

using histomorphometric assays. Rin3-/- mice showed an increased trabecular bone 

volume and trabecular number in tibias and femurs, suggesting that RIN3 would 

negatively regulate bone formation.   
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No changes were observed in the trabecular bone of the spine and cortical bone of the 

femur, probably due to differences in genetic determinants (Paternoster et al, 2013). 

As discussed in Section 6.5, similar findings were reported by Daroszewska and 

colleagues who investigated p.P394L+/+ mice, and very few lesions were found in 

lumbar vertebrae compared to the long bones (Daroszewska et al, 2011). This can be 

expected when taking into account the anatomy of the mouse compared to human, and 

how much less weight is put on their spine. Although mice are an established in vivo 

model, it is important to take such differences into consideration when extrapolating 

the results (Bagi et al, 2011). In our case nevertheless, a clear bone phenotype is 

reported in both tibia and femur, confirming a definite role for RIN3 in bone 

metabolism. Additional work is however necessary to prove that the knock out of the 

three first crucial exons of the gene is affecting all isoforms of Rin3, as it is a multi-

domain protein and although unlikely, remaining functional activity is still a 

possibility. Such findings cannot however be compared to the suggested Pagetic effect 

of p.R279C mentioned above, as this is a point mutation. Similarly, introduction of the 

p.P394L missense in mice models leads to the development of PDB (Daroszewska et 

al, 2011) while a full knock out of the SQSTM1 gene is associated with mature-onset 

obesity (Rodriguez et al, 2006).  

Using histomorphometry, the trabecular bone area was also found to be significantly 

increased in mice lacking Rin3, confirming the microCT analysis. A reduction of 

resorption surface occupied by active osteoclasts was also detected in Rin3-/- mice 

while only an increase in single calcein labelling was detected when investigating 

osteoblast phenotypes. This, along with the expression pattern discussed above, 

suggests that RIN3 could act on osteoclasts rather than osteoblasts.   
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Although the number of osteoclasts in the trabecular bone was the same between both 

groups, it does not exclude the possibility that the deletion resulted in generating less 

osteoclasts. For this, BMDM cultures have been considered. RIN3 can also affect the 

function of the osteoclasts, and knowing its role in vesicle trafficking, an effect in the 

formation of the ruffled border can be speculated.  

To evaluate the role of RIN3 in the formation of osteoclasts, BMDMs were cultured 

from the Rin3-/- and WT mice. Although less osteoclasts seem to be formed from the 

Rin3-/- mice, this was not significant. Similarly, the osteoclasts lifespan was the same 

between the two genotypes. It is important to bear in mind that such results are only 

analysed from three experiments. Since then, three additional BMDM cultures have 

been performed and confirmed that no differences in osteoclast number was observed 

(data not shown). This suggests that the reduction of active resorption surface in Rin3-

/- mice is unlikely to be due to the formation of osteoclasts. Such result was also 

confirmed from the histomorphometry analysis. 

Calvarial osteoblasts were also cultured from both groups and although they showed a 

trend towards being more differentiated and forming more mineralised nodules, no 

significant difference was observed.  

Again, additional work is necessary as this was obtained from three experiments only. 

The osteoblastic phenotypes analysed from those cultures could be more likely to 

result into true significance, particularly for the Alizarin red assay. Indeed, two of the 

three experiments performed showed significant increased mineralised nodule 

formation in the Rin3-/- mice. The appearance of the nodules was also different in all 

cultures, somehow bigger in the Rin3-/- mice (Figure 6.12, panel A).   
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Since then, one additional experiment has been performed indicating a clear difference 

between the two genotypes. Such findings would also reflects the increased single 

calcein labelling found by histomorphometry, and offer the possibility that the 

reduction in active resorption surface is due to a communication effect between 

osteoclast and osteoblasts.  

Future studies 

In order to confirm the trends observed in osteoblast for ALP activity and Alizarin red 

staining, two additional calvarial osteoblast cultures are currently undergoing. 

Additional experiments could also be performed using PTH to enhance the subtle 

phenotypes seen in the calvarial cultures as mentioned in Section 6.5 (Sophocleous et 

al, 2011).  

Following the suggestion that the decreased resorption surface in the trabecular bone 

is due to an interference with the osteoclast/osteoblasts coupling effect, which would 

have been missed by individuals osteoclasts cultures, an ex vivo model has since been 

optimised using co-cultures of murine bone marrow osteoblasts with bone marrow 

cells. At this stage however, co-cultures with Rin3-/- mice have not been performed. 

Osteoclasts formed at the end of the culture will be counted using TRAcP staining and 

differences between both genotypes will be analysed according to the protocol used 

by Cao and colleagues (Cao et al, 2005).  

In the same context, it would be interesting to investigate the involvement of RIN3 in 

the mediation of Eph tyrosine kinase receptors (Section 1.1.3 and 1.5.4), which are 

important in bi-directional signalling and involved in osteoclast/osteoblast cellular 

communication (Brandi et al, 1995).   
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If no differences are observed in the ex vivo model, RIN3 is then more likely to affect 

the function of osteoclasts, rather than their formation. In that case, it would be 

interesting to investigate differences in osteoclast resorption. For this, osteoclasts will 

be cultured on dentine slices using a low pH to simulate in vivo conditions. Osteoclasts 

will then counted following TRAcP staining, and resorption pits will be visualized 

using light microscopy (Van't Hof et al, 2004).  

Knowing the importance of Rab proteins in vesicular trafficking, disruption in the 

osteoclast ruffled border function and formation could be assessed using electronic 

microscopy (DeSelm et al, 2011). Similarly, investigating the role of RIN3 in 

autophagy could be another interesting path to follow, particularly in autophagosome 

formation in which Rab5 plays an important role. This could be performed using 

electron microscopy, or fluorescence (Ao et al, 2014). 

In order to increase our insight on RIN3 in the context of bone signalling pathways, an 

RNA-sequencing is also currently under investigation on calvarial osteoblasts and 

osteoclasts cultured from BMDMs.  

Environmental factors could also be investigated. By looking at the literature, most of 

the evidence considering such lines of work are quite dated (most are from the 

1980/1990’s) except for viral infections, which by now, do not seem the way forward 

for PDB. Indeed, as discussed in Section 1.5.1, there is a lot of inconsistency in the 

data. The appearance of the inclusion bodies as has also been refuted once they were 

compared to the density and organisation pattern of other measles infection caused-

disorders (Helfrich et al, 2000).  
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Finally, studies have shown that MVNP expressing osteoclasts are thought to show a 

Pagetic phenotype, it is likely not representative of PDB, but of any infected cell for 

which their machinery has been enhanced by viruses and in the case of osteoclasts, 

their bone resorption activity (Ruddle et al, 1993). However, the impact of the diet on 

the disease has not been investigated much. Somehow, older studies which have 

associated PDB to diet such as vitamin D and calcium intake (Barker & Gardner, 1974; 

Siris, 1994) have been slightly overlooked. Recently, a lot of research has been 

focusing on the understanding of the intestinal microbiome, following a change in 

dietary consumption in the general population over the last few decades. In the context 

of bone, the term osteo-microbiology was introduced in 2015 reporting that changes 

in diet and microbiome was associated with bone phenotypes (Ohlsson & Sjogren, 

2015). Our increased overall knowledge in this field might be an opportunity to 

investigate this further, and could be interesting to consider in the context of RIN3 and 

PDB. 

The introduction of the p.R279C mutation in osteoclasts using site directed 

mutagenesis is also another experiment to perform, hoping it will lead to typical PDB 

phenotypes such as increased number, size and number of nuclei in osteoclasts.  

Lastly, the mice selected for this thesis were of a young age due to time restrictions. 

However, as PDB is a late onset disease, Rin3-/- mice are currently being aged up to 12 

months old. Indeed, mice carrying the p.P394L change in p62 showed lesions from 8 

months of age, while none were detected at 4 months (Daroszewska et al, 2011).  
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It is difficult to predict what the phenotype of these 12 months old Rin3-/- mice will be, 

from lesions to additional trabecular and cortical changes, but it will be interesting to 

see the evolution of the phenotypes (also considering ageing parameters) over time. 

In conclusion, this work led to an insight for the role of RIN3 in the bone 

microenvironment and PDB. I have described a strong candidate variant for PDB, 

established for the first time the expression pattern of Rin3 in mice tissue, with a high 

expression in total crushed bone. RIN3 was found to be located in the cytoplasm of 

osteoclasts, and may be sitting in vesicles as well. Rin3 was found to vary significantly 

during osteoclast differentiation, suggestive of a role in osteoclastogenesis. Rin3 was 

found to be lowly expressed in calvarial osteoblasts. Mice lacking Rin3 showed an 

increased bone mass and lower active resorption surface of osteoclasts in the trabecular 

bone, which places RIN3 as strong candidate for a role in the normal bone 

microenvironment.  
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APPENDIX 1. MATERIALS, REAGENTS, TECHNICAL EQUIPMENT AND 

SOFTWARE 

 

Materials and reagents Supplier 

12 Well TC-treated microplates Corning, UK 
1ml pasteur pipettes Fisher Scientific, UK 

2-Propanol Sigma Aldrich, UK 
5X first-strand buffer Invitrogen, Paisley, UK 

96 Well TC-treated microplates Corning, UK 
Acetic acid glacial Sigma Aldrich, UK 

Adhesive PCR plate seals Thermo Fisher Scientific, UK 
AlamarBlueTM reagent Thermo Fisher Scientific, UK 

Alizarin red S Sigma Aldrich, UK 
Amersham hybondTM-P  GE Healthcare Life Sciences, UK 

α-Minimum essential medium (αMEM) Sigma Aldrich, UK 
Ammonium hydroxide Sigma Aldrich, UK 

Axygen MaxiClear microcentrifuge tubes Corning Axygen, UK 
β-glycerophosphate disodium Sigma Aldrich, UK 

BCA protein assay Sigma Aldrich, UK 
Bovine serum albumin Sigma Aldrich, UK 

Bromophenol blue. BDH Laboratory Supplies, UK 
Calcein Sigma Aldrich, UK 

Cell scrapers Sarstedt, UK 
Centrifuge tubes (15 and 50ml) Greiner, UK 

Cetylpyridinium chloride  Sigma Aldrich, UK 
Chloroform Sigma Aldrich, UK 

Clarity western ECL substrate  Bio-Rad Laboratories, UK 
Collagenase (Type 1A) Sigma Aldrich, UK 

Copper (II)-sulfate Sigma Aldrich, UK 
Cover slips Scientific Laboratory supplies Ltd, UK 

CriterionTM XT pre-cast gels (12% Bis-
Tris) Bio-Rad Laboratories, UK 

DAPI Sigma Aldrich, UK 
DEPC treated water Thermo Fisher Scientific, UK 

Dibutyl phthalate Sigma Aldrich, UK 
Diethanolamine Sigma Aldrich, UK 

DL-Dithiothreitol (DTT) Sigma Aldrich, UK 
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Materials and reagents Supplier 

DMSO Sigma Aldrich, UK 
DNA Ladder 1kb New England Biolabs, UK 

DNA loading buffer New England Biolabs, UK 
dNTPs Thermo Fisher Scientific, UK 

DPX mounting medium Sigma Aldrich, UK 
EDTA Sigma Aldrich, UK 

Embedding baskets Leica Microsystems, UK 

Embedding molds Custom-made by the University 
workshop, UK 

Embedding rings Leica Microsystems, UK 
Eppendorf tubes (0.5, 1.5, 2ml) Greiner, UK 

Ethanol absolute Fisher Scientific, UK 
EU non skirted 96 well qPCR plate BIOplastics, UK 
EU Optical robust flat 8-Cap Strip BIOplastics, UK 

Extra thick blot papers Bio-Rad Laboratories, UK 
Fast red salt TR Sigma Aldrich, UK 

Fetal calf serum (FCS) Hyclone, UK 
Filter paper Thermo Fisher Scientific, UK 

Filter tips axygen Starlab, UK 
Forceps World precision instrument, UK 
Glycerol VWR, UK 
Glycine BDH Laboratory Supplies, UK 

Hanks buffer (HBSS) Sigma Aldrich, UK 
HistoResin mounting medium Leica Microsystems, UK 

HotStart PCR kit with dNTPs 250U Kapa Biosystem LTD, UK 
Human recombinant RANKL R&D, UK 
Invisorb® spin tissue mini kit Stratec, UK 

Isopropanol Sigma Aldrich, UK 
Jackson ImmunoResearch anti-rabbit 

secondary antibody Stratech Scientific Unit, UK 

Kaleidoscope ladder Bio-Rad Laboratories, UK 
Kisol foil Taab Lab, UK 

L-Glutamine Invitrogen, UK 
Low molecular weight DNA ladder New England Biolabs, UK 

Magic marker Thermo Fisher Scientific, UK 
Magnesium chloride Sigma Aldrich, UK 

M-CSF mouse recombinant Prospec, US 
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Materials and reagents Supplier 

Methanol Thermo Fisher Scientific, UK 
Methyl methacrylate (MMA) Sigma Aldrich, UK 

MicroAmp® 8-Cap strip, clear Thermo Fisher Scientific, UK 
Multiplex PCR master mix Qiagen, UK 
N,N-Dimethylformamide Fisher Scientific, UK 
Napthol-AS-BI-phosphate Sigma Aldrich, UK 
Napthol AS-TR phosphate Sigma Aldrich, UK 
Needles (19, 21 and 25G) BD, US 
Neubauer haemocytometer Hawksley, UK 

Novoscave Novochem, The Netherlands 
Optimal cutting temperature Embedding 

Matrix CellPath, UK 

Oligo(dt)20 primer Thermo Fisher Scientific, UK 
Paraformaldehyde Taab Lab, UK 

Pararosanilin Sigma Aldrich, UK 
PBS tablets Thermo Fisher Scientific, UK 

PCR Plate, 96-well, low profile, non-
skirted Thermo Fisher Scientific, UK 

PCR primers Thermo Fisher Scientific, UK 
Penicillin/Streptomycin Invitrogen, Paisley, UK 

Perkadox 16 Akzo Nobel Polymer Chemicals, The 
Netherlands 

Pipette tips (All sizes) Starlab, UK 
p-Nitrophenol Sigma Aldrich, UK 

p-Nitrophenol-phosphate Sigma Aldrich, UK 
QIAquick PCR Purification Kit Qiagen, UK 

Rabbit Anti-Actin IgG Sigma Aldrich, UK 
Reddy Mix Custom PCR Master mix Thermo Scientific, Fermentas, UK 

RIN3 Antibody, rabbit polyclonal Proteintech, UK 
RIPA Santa Cruz, UK 

RNA plate, PCR Plate, 96-well, low 
profile, skirted Thermo Fisher Scientific, UK 

RnaseOut Recombinant RNAse Inhibitor Thermo Fisher Scientific, UK 
Scalpel, disposable VWR International LTD, UK 

Scissors (Fine points and spring bow 
handles) S Murray & Co Ltd, UK 

SensiFAST™ Probe No-ROX Kit Bioline, UK 
Silver nitrate Sigma Aldrich, UK 

Slide press cover slips Taab Lab, UK 
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Materials and reagents Supplier 

Sodium acetate anhydrous Sigma Aldrich, UK 
Sodium barbiturate BDH Laboratory Supplies, UK 

Sodium chloride Sigma Aldrich, UK 
Sodium dodecyl sulphate (SDS) Bio-Rad Laboratories, UK 

Sodium phosphate Sigma Aldrich, UK 
Sodium tartrate dihydrate Sigma Aldrich, UK 

Steel knife 16cm “c” Leica Microsystems, UK 
Sterile filter (0.45mm) Merk Millipore, UK 

Stripettes (5, 10, 25 and 50ml)  Costar, UK 
SuperScript III reverse transcriptase Thermo Fisher Scientific, UK 

SYBR safe DNA gel stain Thermo Fisher Scientific, UK 
Syringes (All sizes) BD, US 

Taq DNA Polymerase Invitrogen, Paisley, UK 
TaqMan® Gene Expression Assay Mix 

for 18S rRNA Applied Biosystems, UK 

TBE buffer 10X Fisher Scientific, UK 
TBS Fisher Scientific, UK 

Teknovit Mounting powder Taab Lab, UK 
Tissue culture 10mm Dishes Greiner, UK 
Tissue culture 75cm2 flasks Greiner, UK 

Tissue Tack (+ Charged) Microscope 
Slides Polyscience, US 

Transfer buffer Fisher Scientific, UK 
Tris Bio-Rad Laboratories, UK 

Triton X-100TM Sigma Aldrich, UK 
TRizol® Reagent Thermo Fisher Scientific, UK 

Trypsin/EDTA Thermo Fisher Scientific, UK 
Tween-20 Bio-Rad Laboratories, UK 

UPL probes Roche Diagnostics Ltd., UK 
Vacuum desiccator Fisher Scientific, UK 

Vitamin C (Ascorbic acid) BDH Laboratory Supplies, UK 
XT-MOPS Bio-Rad Laboratories, UK 

Xylene Sigma Aldrich, UK 
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Technical equipment Supplier 

311DS Environmental shaking incubator Labnet, UK 

AA Hoefer® protein transfer apparatus Fisher Scientific, UK 

Autostainer  Leica Microsystems, UK 

Axiocam 506 mono camera Carl Zeiss Ltd., UK 

Axiovert 200 inverted research microscope Carl Zeiss Ltd., UK 

Bench-top centrifuge Sigma, Germany 

Bench-top Eppendorf centrifuge Sigma, Germany 

Bio2 safety cabinets  Envair, UK 

Bio-Tek Synergy HT plate reader Fisher Scientific, UK 

BX51 microscope Olympus, UK 

Captair Bio DNA/RNA flow workstation Erlab, US 

Coverslipper Leica Microsystems, UK 

Cryostat  Leica Microsystems, UK 

Decalcifier II Leica Microsystems, UK 

Excelsior AS Automatic tissue processor  Leica Microsystems, UK 

Explorer pro balance Ohaus, Switzerland 

Fume cabinet Envair, UK 

Grant OLS 200 water bath Thistle Scientific, UK 

Horizontal electrophoresis tanks Fisher Scientific, UK 

Hotplate/stirrer Thistle Scientific, UK 

Laminar flow biosafety hood Class II Nuaire, UK 

LSM 800 microscope Carl Zeiss Ltd., UK 

Microtome Leica Microsystems, UK 
MJ Research Chromo 4 real time PCR 

thermocycler 
Genetic Research  

Instrumentation Ltd, UK 
Nanodrop ND-8000 Thermoscientific, UK 

Odyssey ® Fc imaging system Li-Cor, UK 

Origo PSU-400/200 power supply for 
electrophoresis Anachem, UK 

Pipettes (2, 10, 100, 200 and 1000ml) Gilson, UK 

PowerPac basicTM Bio-Rad Laboratories, UK 
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Technical equipment Supplier 

QImaging Retiga 4000R CCD camera Media Cybernetics, UK 

Rocking shaker WT 14 Biometra, Germany 

Rotary microtome Leica Microsystems, UK 

Rotary tool Dremel UK, UK 

SkyScan 1172 X-ray microtomography 
system SKYSCAN, Belgium 

Syngene GeneGenius Gel Bio-Imaging 
system Fisher Scientific, UK 

Tetrad 2 thermal cyclers Bio-Rad Laboratories, UK 

Vertical CriterionTM gel tanks  Bio-Rad Laboratories, UK 

Vortex Fisher Scientific, UK 
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Software Supplier 

Alamut® Visual Version 2.1 software  Interactive Biosoftware, France 

Bio-Tek Gen5TM plate reader software BioTek, UK 

Burrows-Wheeler Aligner tool Wellcome Trust Sanger Institute, 
UK 

CalceinHisto software  University of Liverpool, UK 

Condel Universitat Pompeu Fabra, Spain 

FoldX  EMBLEM, Spain 

G*Power software Heinrich Heine University 
Düsseldorf, Germany 

Gen5™ software BioTek, UK 

Genome Analysis Toolkit, GATK Broad institute, US 

Genomic Evolutionary Rate Profiling (GERP) Sidow lab, US 

Haploview Version 4.2 Broad institute, US 

ImageJ software National Institutes of Health, US 

LocusZoom  University of Michigan, US 

Markov Chain Haplotyping MaCH, US 

Minitab Minitab Inc., UK 

MetaDisorder  Polish Ministry of Science and 
Higher Education, Poland 

MetaPrDOS  
Ministry of Education, Culture, 
Sports and Technology of Japan 

and (BIRD-JST), Japan 

Modeller 9v12  UCSF, US 

Mutation surveyor® V3.30 software  Softgenetics, US 

MutationTaster  Charité, Germany 

OligoCalc software Northwestern University, US 

Opticon Monitor analysis software version 3 Genetic Research  
Instrumentation Ltd, UK 

PLINK v1.07 

Human Longevity Inc, NIH-
NIDDK, BGI Cognitive Genomics, 
University of Minnesota, Puracell 

Lab, US  
PolyPhen-2  PolyPhen-2, US 

PONDR VL-XT  Molecular Kinetics, US 
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Software Supplier 

ProbABEL  
CMSB, NGI, NOW, Radboud 

University Medical Centre, RFBR, 
PolyOmica, Netherland, Russia 

QCapture Pro software Media Cybernetics UK, Berkshire, 
UK 

SIFT  J. Craig Venter Institute, US 

Skyscan 1172 microCT software SKYSCAN, Bruker, Belgium 

Skyscan CTAn analysis software SKYSCAN, Bruker, Belgium 

Skyscan CTVol software SKYSCAN, Bruker, Belgium 

Skyscan Dataviewer software SKYSCAN, Bruker, Belgium 

Skyscan NRecon reconstruction system SKYSCAN, Bruker, Belgium 

SNPcheck software NGRL Manchester, UK 

SPSS Version 22 SPSS Ltd., UK 

Syngene GeneSnap software Synoptics Ltd., UK 

Syngene GeneTool software Synoptics Ltd., UK 

Taqman® genotyper Version 1.3 Thermo Fisher Scientific, UK 

TrapHisto software  University of Liverpool, UK 

Unified genotyper, GATK Broad institute, US 
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APPENDIX 2.1. PRIMER SEQUENCES FOR RIN3 AMPLIFICATION 

 

M13 unique sequences are showed in grey. PROM = Promoter; EX = Exon; F = 

Forward, R = Reverse. Letters A to F corresponds to the parts of RIN3 amplified with 

this pair of primers.  

Primer name Primer sequence 

RIN3_PROM_A_F GTAGCGCGACGGCCAGTTAATTCAGCCTCTGGAGGAG 

RIN3_PROM_B_F GTAGCGCGACGGCCAGTATCACTAGAGTATTTTCTGTCTCT 

RIN3_PROM_C_F GTAGCGCGACGGCCAGTGGCCATATGCTTAACTTGACG 

RIN3_PROM_D_F GTAGCGCGACGGCCAGTTAGAGACATTTCTGGTCGTTAC 

RIN3_PROM_E_F GTAGCGCGACGGCCAGTAACACCCAGGCACTTAGAAGA 

RIN3_PROM_F_F GTAGCGCGACGGCCAGTAAGGCTGTGGCTCCGAGT 

RIN3_EX01_F GTAGCGCGACGGCCAGTTGACAAAAAAACCCTTGACCAC 

RIN3_EX02_F GTAGCGCGACGGCCAGTATAAGTAAGCGTGGCTGAATG 

RIN3_EX03_F GTAGCGCGACGGCCAGTCTCATCATTTCAGGAACCTTC 

RIN3_EX04_F GTAGCGCGACGGCCAGTTAATCTCCTGAAATCTCAATGGA 

RIN3_EX05_F GTAGCGCGACGGCCAGTAACCAAGGAGAAGCAGTGAC 

RIN3_EX06_A_F GTAGCGCGACGGCCAGTAGCACAGCAACACCTAGTCC 

RIN3_EX06_B_F GTAGCGCGACGGCCAGTCTCTTGGAAATTGCCCTGCA 

RIN3_EX06_C_F GTAGCGCGACGGCCAGTGGAAGCGATGAAGCCAGG 

RIN3_EX06_D_F GTAGCGCGACGGCCAGTAGCTCTGCACACAGGCGA 

RIN3_EX06_E_F GTAGCGCGACGGCCAGTACTTTGGCAGCCTGGTGC 

RIN3_EX07_A_F GTAGCGCGACGGCCAGTTTTCTCTTGAATAAACTGTGCTCT 

RIN3_EX07_B_F GTAGCGCGACGGCCAGTAAGGATGGTTCGCTGCAGC 

RIN3_EX08_F GTAGCGCGACGGCCAGTGTCCTCTCTGTCCTGAGAG 

RIN3_EX09_F GTAGCGCGACGGCCAGTTTGAAGCAGGTGTTTGCAGAT 

RIN3_EX10_A_F GTAGCGCGACGGCCAGTACTCGCAGACAGCTTGGC 

RIN3_EX10_B_F GTAGCGCGACGGCCAGTGGAGAAGTTCGCGGTGGA 

RIN3_EX10_C_F GTAGCGCGACGGCCAGTCTTCCTGTGAGGCCCTC 

RIN3_EX10_D_F GTAGCGCGACGGCCAGTATTCCCCATGAGTCCCCC 

RIN3_EX10_E_F GTAGCGCGACGGCCAGTCGGTTAAGAGACAGGCCTC 
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Primer name Primer sequence 

RIN3_PROM_A_R CAGGGCGCAGCGATGACGTACTGGCACATGCTACACC 

RIN3_PROM_B_R CAGGGCGCAGCGATGACATCTGAGCATACACGAAAAGTC 

RIN3_PROM_C_R CAGGGCGCAGCGATGACTGCTTTGTTATTAAACCTCCTTCA 

RIN3_PROM_D_R CAGGGCGCAGCGATGACCATCAAGCCTGGCATCTAATT 

RIN3_PROM_E_R CAGGGCGCAGCGATGACGGAGAGGGAAACTTAGAGAAAA 

RIN3_PROM_F_R CAGGGCGCAGCGATGACCCTTCTACTTCCTGTATCGG 

RIN3_EX01_R CAGGGCGCAGCGATGACAAAGTTTAGCCAACATCGGGT 

RIN3_EX02_R CAGGGCGCAGCGATGACAAAGGGAAATAAACATGCAGTCAT

RIN3_EX03_R CAGGGCGCAGCGATGACAATGTGGCCATGAGAATGCAAA 

RIN3_EX04_R CAGGGCGCAGCGATGACAAGCCTCAGAGCCAACACAT 

RIN3_EX05_R CAGGGCGCAGCGATGACGAAACTGGACAATCTCTCTATC 

RIN3_EX06_A_R CAGGGCGCAGCGATGACAGTCTCTCGCAGGTCATCAT 

RIN3_EX06_B_R CAGGGCGCAGCGATGACACTTTGGTCTTCTAAGGACAC 

RIN3_EX06_C_R CAGGGCGCAGCGATGACTCTGGAGAGCTCTGGGAAT 

RIN3_EX06_D_R CAGGGCGCAGCGATGACCTGCAGCAGGTAGCTCTTG 

RIN3_EX06_E_R CAGGGCGCAGCGATGACATGGCAGGGAGTAATTGGCA 

RIN3_EX07_A_R CAGGGCGCAGCGATGACGGTGAACTTCTGCAGGATCTT 

RIN3_EX07_B_R CAGGGCGCAGCGATGACAAGAGGGCCCAGGAATTACA 

RIN3_EX08_R CAGGGCGCAGCGATGACCTAATCTGTGAGCTCCTGCA 

RIN3_EX09_R CAGGGCGCAGCGATGACGTGGGGAGTCTCACTGCT 

RIN3_EX10_A_R CAGGGCGCAGCGATGACGGCCGGTAGACAAAGTGG 

RIN3_EX10_B_R CAGGGCGCAGCGATGACTTGGACGAGCGTCATGTTATTT 

RIN3_EX10_C_R CAGGGCGCAGCGATGACGCTCCTTCCTAGGCCAGT 

RIN3_EX10_D_R CAGGGCGCAGCGATGACAATTCTCCCCACACGATGG 

RIN3_EX10_E_R CAGGGCGCAGCGATGACTGGTTCTGATCCTAAGCTGG 
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APPENDIX 2.2. SOLUTIONS FOR TRACP STAINING IN CULTURE 

PLATES 

• Naphthol-AS-BI-phosphate 

10mg/ml Naphthol-AS-BI-phosphate in Dimethylformamide 

• Veronal buffer 

1.17g sodium acetate anhydrous and 2.94g sodium barbiturate both dissolved 

in 100ml of dH2O 

• Acetate buffer 

0.82g sodium acetate anhydrous dissolved in 100ml of dH2O and pH adjusted 

to 5.2 with 0.6ml glacial acetic acid made up to 100ml with dH2O 

 

TRAcP Staining Solution was obtained by mixing the following two solutions 
(3ml): 

• Solution A 
150ml of Napthol-AS-BI-phosphate 

750ml of Veronal buffer 

900ml Acetate buffer 

900ml Acetate buffer with 100mM Sodium Tartate 

• Solution B 
120ml of Pararosanilin 

120ml of Sodium Nitrate (4% w/v) 
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APPENDIX 2.3. ALP ASSAY SOLUTIONS 

 

• Diethanolamine (DEA)/MgCl2 buffer 

1M DEA and 1mM MgCl2 made up in 100ml dH2O and pH adjusted to 9.8 

• Lysis buffer 

[1M DEA/1mM MgCl2 buffer] + 0.05% Triton X-100 

• p-Nitrophenol standard solution 

p-Nitrophenol standards at 0 to 30nM, prepared in lysis buffer 

• PNP Substrate solution 

20mM p-nitrophenol-phopshate made up in [1M DEA/1mM MgCl2 buffer] 
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APPENDIX 2.4. SOLUTION FOR CELL LYSIS 

 

• RIPA Lysis buffer 
1% Triton 100X 

0.5% (w/v) Sodium Deoxycholate 

0.1% (w/v) Sodium Dodecyl Sulphate (SDS) 

50mM Tris-HCl (pH 7.4)  

150nM Sodium Chloride were dissolved in dH2O. 

 

• Modified Lysis buffer 

These reagents were added to the RIPA lysis buffer extemporaneously before 

use: 

2% (v/v) Protease inhibitor cocktail 

0.4% (v/v) Phosphatase inhibitor cocktail  

1mM EDTA 

20mM Sodium Fluoride 
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APPENDIX 2.5. WESTERN BLOT SOLUTIONS 

• Protein quantification (Pierce™ BCA Protein Assay Kit, Thermo Fisher 
Scientific) 

10µl of lysed cells or pre-diluted standard (0; 0.125; 0.25; 0.5; 0.75; 1; 1.5; 

2µg/ml) were loaded in a 96 well plate in duplicates of triplicates. 

200µl of Copper blue diluted at 1/50 in BCA Pierce were added to each samples 

and standard.  

The plate was then incubated at 37ºC for 15 minutes 

The plate was read at 562nm using the BioTek™ SynergyHT plate reader 

• Electrophoresis running buffer 1:20 

50ml of XT-MOPS (20X) in 1L of dH2O 

• Samples loading protein buffer (5X stock) 

5.2ml of 1M Tris-HCl pH adjusted to 6.8, 1g of DL-dithiothreitol (DTT), 3g 

SDS, 6.5ml glycerol and 130ml of 10% (w/v) Bromophenol Blue. Stored at -

20°C. 

• Transfer buffer 

3.63g of Tris, 14.4g of glycine, 200ml of methanol and 3.75ml of 10% (w/v) 

SDS made up to 1000ml with dH2O. Stored at room temperature. 

• 10X TBS 

87.66g Sodium Chloride and 78.8g Tris-HCl dissolved in 800ml dH2O. Adjust 

pH to 7.6 and make up to final volume (1000ml). Stored at room temperature. 

• TBST 

0.1% (v/v) Tween-20 in TBS. Stored at room temperature. 

• Stripping buffer 

1mM DTT, 2% (w/v) SDS and 62.5mM Tris-HCl (pH 6.7). Stored at room 

temperature.  
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APPENDIX 2.6. APATHY SYRUP COMPOSITION 

 

The syrup was obtained by mixing the following ingredients, in order: 

• Hot water (Pre-warmed at 80oC): 120ml 

• Saccharose: 100g 

• Gum Arabic: 100g 

• Thymol: 1 crystal 

The syrup is then centrifuged for 10 minutes at 3000g. The bubbles were removed 

using a spatula and the solution was aliquoted in syringes kept at 4oC.  
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APPENDIX 4.1: HAPLOTYPE DIAGRAM 

 
The two extreme haplotypes are presented in blue (major alleles) and in orange (minor alleles) for the 15 genotyped variants and the rs10498635 which 
was added from the GWAS data to represent p.R279C. The r2 values for the 4 SNPs (And rs10498635) used as alternatives to coding variants are showed 
above the RIN3 sequence. 
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APPENDIX 4.2. ESTIMATED HAPLOTYPE FREQUENCIES FOR THE PRISM COHORT 

Haplotype ID Haplotype Estimated frequencies (%) ± standard deviation  
Controls and cases Controls (n = 262) Cases (n = 712) 

1 (WT)  ACCGACCCTCGCCGT 81.41 ± 0.35 78.97 ± 0.37 82.31 ± 0.38 
2 ACCGACCCTCGCCGC 0.43 ± 0.06 0.58 ± 0.03 0.37 ± 0.08 
3 ACCGACCCTCGCCAT 0.05 ± 0.01 0 ± 0 0.07 ± 0.01 
4 ACCGACCCTCGCTGT 1.55 ± 0.09 0.79 ± 0.16 1.83 ± 0.09 
5 ACCGACCCTTGCCGT 0.06 ± 0.04 0.13 ± 0.09 0.04 ± 0.04 

6 (p.425M) ACCGACCTTCGCCGT 14.43 ± 0.32 17.73 ± 0.34 13.22 ± 0.35 
7 ACCGACCTTCGCCGC 0.03 ± 0.04 0 ± 0 0.04 ± 0.06 
8 ACCGACCTTCGCTGT 0.26 ± 0.08 0.19 ± 0.15 0.28 ± 0.08 
9 ACCGACCTTTGCCGT 0.02 ± 0.03 0.06 ± 0.09 < 0.01% 

10 ACCGACACTCGCCGT 0.03 ± 0.04 0 ± 0 0.04 ± 0.05 
11 ACCGACACTCGCCGC 0.02 ± 0.03 0 ± 0 0.03 ± 0.04 
12 ACCGACATTCGCCGT 0.11 ± 0.05 < 0.01% 0.15 ± 0.06 
13 ACCGACATTCGCCGC < 0.01% 0 ± 0 < 0.01% 
14 ACCGATCCTCGCCGT 0.03 ± 0.03 0 ± 0 0.04 ± 0.04 
15 ACCGATCCTTGCCGT 0.03 ± 0.03 0 ± 0 0.03 ± 0.04 
16 ACCGCCCCTCGCCGT 0.80 ± 0.04 0.58 ± 0.03 0.89 ± 0.05 
17 ACCGCCCTTCGCCGT 0.02 ± 0.03 0 ± 0 0.03 ± 0.04 
18 ACCTACCCTCGCCGT 0.05 ± 0 0 ± 0 0.07 ± 0 
19 ACTGACCCTCGCCGT 0.05 ± 0 0 ± 0 0.07 ± 0 
20 AACGACCCTCGCCGT 0.51 ± 0.03 0.94 ± 0.10 0.35 ± 0.01 
21 AACGACCTTCGCCGT 0.01 ± 0.02 0.03 ± 0.07 0 ± 0 
22 GCCGACCCTCGCCGT 0.09 ± 0.03 0 ± 0 0.12 ± 0.04 
23 GCCGACCTTCGCCGT 0.02 ± 0.02 0 ± 0 0.02 ± 0.03 

Frequency of SQSTM1 + 72/699 (10.30%) 
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APPENDIX 4.3. DETAILS OF THE ASSOCIATION STUDY FOR P.T425M IN THE PRISM CASES 

p.T425M 

Variable T/T (n = 514) T/M (n = 149) M/M (n = 20) p-value 

Gender (Male) 267/507 (52.66%) 85/144 (59.03%) 10/19 (52.63%) 0.398 

Family history of PDB 80/506 (15.81%) 17/144 (11.81%) 4/19 (21.05%) 0.378 

Orthopaedic surgery 79/507 (15.58%) 29/144 (20.14%) 4/19 (21.05%) 0.380 

Any fracture 201/507 (39.64%) 60/144 (41.67%) 8/19 (42.11%) 0.895 

Skull disease and hearing aid 40/507 (7.89%) 9/144 (6.25%) 2/19 (10.53%) 0.717 

Bone pain 345/485 (71.13%) 101/135 (74.81%) 16/19 (84.21%) 0.350 

Fracture in Pagetic bone 46/201 (22.89%) 18/60 (30%) 1/8 (12.50%) 0.389 

Bisphosphonates 1.30 ± 1.06 1.21 ± 1.14 1.58 ± 1.46 0.345 

Age at diagnosis 64.74 ± 11.31 63.84 ± 11.68 55.37 ± 12.41 0.002 

Age at recruitment 73.39 ± 7.87 73.37 ± 8.11 66.42 ± 9.29 0.001 

Number of bones affected 1.81 ± 1.03 1.83 ± 1.07 1.84 ± 1.30 0.958 

Pagetic pain 1.48 ± 0.73 2.4 ± 9.73 1.44 ± 0.73 0.204 

Deformity score 0.55 ± 0.93 0.56 ± 1.02 0.58 ± 0.84 0.994 

Paget severity score 5.68 ± 2.43 5.70 ± 2.69 6.42 ± 3.15 0.451 

Frequency of SQSTM1 + 51/507 (10.06%) 11/144 (7.64%) 5/19 (26.32%) 0.039 
Values are shown as number of patients observed/total number of patients, or mean value ± SD.
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APPENDIX 4.4. DETAILS OF THE ASSOCIATION STUDY FOR P.T425M IN THE PRISM CASES NOT CARRYING SQSTM1 

MUTATIONS 

p.T425M 

Variable T/T (n = 456) T/M (n = 133) M/M (n = 14) p-value 

Gender (Male) 246/456 (53.95%) 77/133 (57.89%) 8/14 (57.14%) 0.713 

Family history of PDB 58/455 (12.75%) 12/133 (9.02%) 1/14 (7.14%) 0.434 

Orthopaedic surgery 68/456 (14.91%) 25/133 (18.80%) 3/14 (21.43%) 0.476 

Any fracture 183/456 (40.13%) 55/133 (41.35%) 6/14 (42.86%) 0.952 

Skull disease and hearing aid 35/456 (7.68%) 8/133 (6.02%) 0/14 (0%) 0.466 

Bone pain 309/436 (70.87%) 92/125 (73.60%) 11/14 (78.57%) 0.707 

Fracture in Pagetic bone 41/183 (22.40%) 16/55 (29.09%) 0/6 (0%) 0.231 

Bisphosphonates 1.24 ± 1.03 1.20 ± 1.14 1.14 ± 1.23 0.867 

Age at diagnosis 65.20 ± 11.29 64.03 ± 11.74 59.86 ± 9.76 0.148 

Age at recruitment 73.43 ± 7.90 73.53 ± 8.04 67.36 ± 10.30 0.019 

Number of bones affected 1.74 ± 1.01 1.77 ± 1.00 1.36 ± 0.74 0.334 

Pagetic pain 1.45 ± 0.71 2.51 ± 10.20 1.55 ± 0.82 0.184 

Deformity score 0.55 ± 0.89 0.53 ± 1.04 0.43 ± 0.65 0.879 

Paget severity score 5.54 ± 2.36 5.56 ± 2.66 5.21 ± 1.76 0.875 
Values are shown as number of patients observed/total number of patients, or mean value ± SD.  
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APPENDIX 4.5. DETAILS OF THE ASSOCIATION STUDY FOR P.T425M IN THE PRISM CASES CARRIERS OF SQSTM1 
MUTATION 

p.T425M 

Variable T/T (n = 51) T/M (n = 11) M/M (n = 5) p-value 

Gender (Male) 21/51 (41.18%) 8/11 (72.73%) 2/5 (40%) 0.157 

Family history of PDB 22/51 (43.14%) 5/11 (45.45%) 3/5 (60%) 0.769 

Orthopaedic surgery 11/51 (21.57%) 4/11 (36.36%) 1/5 (20%) 0.567 

Any fracture 18/51 (35.29%) 5/11 (45.45%) 2/5 (40%) 0.812 

Skull disease and hearing aid 5/51 (9.80%) 1/11 (9.09%) 2/5 (40%) 0.132 

Bone pain 36/49 (73.47%) 9/10 (90%) 5/5 (100%) 0.241 

Fracture in Pagetic bone 5/18 (27.78%) 2/5 (40%) 1/2 (50%) 0.744 

Bisphosphonates 1.78 ± 1.24 1.36 ± 1.12 2.8 ± 1.48 0.107 

Age at diagnosis 60.61 ± 10.68 61.55 ± 11.20 42.8 ± 10.76 0.003 

Age at recruitment 73.04 ± 7.71 71.36 ± 9.14 63.8 ± 5.67 0.047 

Number of bones affected 2.43 ± 1.06 2.55 ± 1.57 3.2 ± 1.64 0.395 

Pagetic pain 1.69 ± 0.86 1.22 ± 0.44 1.2 ± 0.43 0.153 

Deformity score 0.59 ± 1.20 0.82 ± 0.75 1 ± 1.22 0.656 

Paget severity score 6.92 ± 2.75 7.36 ± 2.54 9.8 ± 3.90 0.097 
Values are shown as number of patients observed/total number of patients, or mean value ± SD.
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APPENDIX 4.6. DETAILS OF THE ASSOCIATION STUDY FOR P.R279C IN THE PRISM CASES  

p.R279C 

Variable R/R (n = 522) R/C (n = 160) C/C (n = 13) p-value 

Gender (Male) 290/522 (55.56%) 77/160 (48.13%) 7/13 (53.85%) 0.257 

Family history of PDB 85/521 (16.31%) 17/160 (10.63%) 1/13 (7.69%) 0.160 

Orthopaedic surgery 82/522 (15.71%) 32/160 (20%) 1/13 (7.69%) 0.303 

Any fracture 212/522 (40.61%) 61/160 (38.13%) 6/13 (46.15%) 0.773 

Skull disease and hearing aid 36/522 (6.90%) 14/160 (8.75%) 1/13 (7.69%) 0.733 

Bone pain 374/498 (75.10%) 104/154 (67.53%) 10/12 (83.33%) 0.131 

Fracture in Pagetic bone 48/212 (22.64%) 18/61 (29.51%) 0/6 (0%) 0.208 

Bisphosphonates 1.31 ± 1.10 1.21 ± 1.08 1.62 ± 1.45 0.313 

Age at diagnosis 63.63 ± 11.96 65.74 ± 9.29 61.38 ± 15.59 0.088 

Age at recruitment 72.97 ± 7.88 73.68 ± 8.19 74.38 ± 10.01 0.527 

Number of bones affected 1.84 ± 1.07 1.76 ± 1.05 1.46 ± 0.52 0.331 

Pagetic pain 1.71 ± 5.09 1.51 ± 0.79 1.2 ± 0.63 0.876 

Deformity score 0.55 ± 0.93 0.59 ± 1 1 ± 1 0.233 

Paget severity score 5.74 ± 2.51 5.64 ± 2.52 6.15 ± 1.86 0.754 

Frequency of SQSTM1 + 55/522 (10.54%) 15/160 (9.38%) 1/13 (7.69%) 0.873 
Values are shown as number of patients observed/total number of patients, or mean value ± SD.  
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APPENDIX 4.7. DETAILS OF THE ASSOCIATION STUDY FOR P.R279C IN THE PRISM CASES NOT CARRYING SQSTM1 
MUTATIONS  

p.R279C 

Variable R/R (n = 467) R/C (n = 145) C/C (n = 12) p-value 

Gender (Male) 262/467 (56.10%) 71/145 (48.97%) 7/12 (58.33%) 0.309 

Family history of PDB 59/466 (12.66%) 13/145 (8.97%) 0/12 (0%) 0.215 

Orthopaedic surgery 68/467 (14.56%) 29/145 (20%) 1/12 (8.33%) 0.226 

Any fracture 193/467 (41.33%) 55/145 (37.93%) 6/12 (50%) 0.617 

Skull disease and hearing aid 31/467 (6.64%) 11/145 (7.59%) 1/12 (8.33%) 0.907 

Bone pain 332/446 (74.44%) 92/139 (66.19%) 10/11 (90.91%) 0.064 

Fracture in Pagetic bone 43/193 (22.28%) 15/55 (27.27%) 0/6 (0%) 0.298 

Bisphosphonates 1.25 ± 1.06 1.17 ± 1.07 1.58 ± 1.51 0.364 

Age at diagnosis 64.24 ± 11.80 66.45 ± 9.11 59.5 ± 14.65 0.034 

Age at recruitment 73.02 ± 7.90 74.03 ± 8.04 73.5 ± 9.91 0.412 

Number of bones affected 1.77 ± 1.02 1.66 ± 0.99 1.42 ± 0.51 0.300 

Pagetic pain 1.73 ± 5.40 1.52 ± 0.79 1.2 ± 0.51 0.890 

Deformity score 0.55 ± 0.95 0.53 ± 0.87 1.08 ± 1.00 0.141 

Paget severity score 5.59 ± 2.48 5.41 ± 2.25 6.25 ± 1.91 0.458 
Values are shown as number of patients observed/total number of patients, or mean value ± SD.
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APPENDIX 4.8. DETAILS OF THE ASSOCIATION STUDY FOR P.R279C IN THE PRISM CASES CARRIERS OF SQSTM1 
MUTATION  

p.R279C 

Variable R/R (n = 55) R/C (n = 15) C/C (n = 1) p-value 

Gender (Male) 28/55 (50.91%) 6/15 (40%) 0/1 (0%) 0.474* 

Family history of PDB 26/55 (47.27%) 4/15 (26.67%) 1/1 (100%) 0.188 

Orthopaedic surgery 14/55 (25.45%) 3/15 (20%) 0/1 (0%) 0.774* 

Any fracture 19/55 (34.55%) 6/15 (40%) 0/1 (0%) 0.703* 

Skull disease and hearing aid 5/55 (9.09%) 3/15 (20%) 0/1 (0%) 0.465* 

Bone pain 42/52 (80.77%) 12/15 (80%) 0/1 (0%) 0.141* 

Fracture in Pagetic bone 5/19 (26.32%) 3/6 (50%) UND/1 (0%) 0.278* 

Bisphosphonates 1.84 ± 1.30 1.6 ± 1.12 2 ± UND 0.804* 

Age at diagnosis 58.45 ± 12.14 58.93 ± 8.50 84 ± UND 0.096* 

Age at recruitment 72.53 ± 7.75 70.33 ± 9.12 85 ± UND 0.188* 

Number of bones affected 2.45 ± 1.26 2.67 ± 1.18 2 ± UND 0.778* 

Pagetic pain 1.57 ± 0.74 1.42 ± 0.79 UND ± UND 0.531* 

Deformity score 0.53 ± 0.84 1.13 ± 1.77 0 ± UND 0.145* 

Paget severity score 7.04 ± 2.47 7.87 ± 3.81 5 ± UND 0.442* 
Values are shown as number of patients observed/total number of patients, or mean value ± SD. *Analysis performed on the R/R and R/C columns only. 
UND = Undetermined.  
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APPENDIX 4.9. DETAILS OF THE ASSOCIATION STUDY FOR THE RARE VARIANTS IN THE PRISM CASES  

Rare variants 

Variable No rare variant (n = 653) Rare variant present (n = 59) p-value 

Gender (Male) 349/642 (54.36%) 29/57 (50.88%) 0.613 

Family history of PDB 95/641 (14.82%) 8/57 (14.04%) 0.873 

Orthopaedic surgery 105/642 (16.36%) 11/57 (19.30%) 0.567 

Any fracture 259/642 (40.34%) 21/57 (36.84%) 0.605 

Skull disease and hearing aid 48/642 (7.48%) 3/57 (5.26%) 0.538 

Bone pain 450/615 (73.17%) 40/53 (75.47%) 0.716 

Fracture in Pagetic bone 63/259 (24.32%) 4/21 (19.05%) 0.586 

Bisphosphonates 1.29 ± 1.11 1.26 ± 1.04 0.838 

Age at diagnosis 64.12 ± 11.56 64.32 ± 10.88 0.904 

Age at recruitment 73.25 ± 7.88 72.53 ± 9.11 0.512 

Number of bones affected 1.82 ± 1.06 1.77 ± 1.07 0.746 

Pagetic pain 1.66 ± 4.65 1.63 ± 0.81 0.962 

Deformity score 0.57 ± 0.97 0.46 ± 0.76 0.368 

Paget severity score 5.74 ± 2.51 5.46 ± 2.46 0.410 

Frequency of SQSTM1 + 65/642 (10.12%) 7/57 (12.28%) 0.608 
Values are shown as number of patients observed/total number of patients, or mean value ± SD.
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APPENDIX 4.10. DETAILS OF THE ASSOCIATION STUDY FOR THE RARE VARIANTS IN THE PRISM CASES NOT 
CARRYING SQSTM1 MUTATIONS 

Rare variants 

Variable No rare variant (n = 577) Rare variant present (n = 50) p-value 

Gender (Male) 316/577 (54.77%) 27/50 (54%) 0.917 

Family history of PDB 65/576 (11.28%) 7/50 (14%) 0.564 

Orthopaedic surgery 89/577 (15.42%) 9/50 (18%) 0.630 

Any fracture 236/577 (40.90%) 18/50 (36%) 0.498 

Skull disease and hearing aid 40/577 (6.93%) 3/50 (6%) 0.802 

Bone pain 402/553 (72.69%) 33/46 (71.74%) 0.889 

Fracture in Pagetic bone 55/236 (23.31%) 3/18 (16.67%) 0.518 

Bisphosphonates 1.24 ± 1.07 1.20 ± 1.05 0.804 

Age at diagnosis 64.61 ± 11.42 66 ± 10.38 0.406 

Age at recruitment 73.32 ± 7.93 73.04 ± 8.47 0.811 

Number of bones affected 1.74 ± 1.00 1.68 ± 1.06 0.678 

Pagetic pain 1.67 ± 4.92 1.67 ± 0.85 0.998 

Deformity score 0.56 ± 0.95 0.44 ± 0.76 0.365 

Paget severity score 5.58 ± 2.41 5.20 ± 2.43 0.288 
Values are shown as number of patients observed/total number of patients, or mean value ± SD.  
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APPENDIX 4.11. DETAILS OF THE ASSOCIATION STUDY FOR THE RARE VARIANTS IN THE PRISM CASES CARRIERS 
OF SQSTM1 MUTATION  

Rare variants 

Variable No rare variant (n = 65) Rare variant present (n = 7) p-value 

Gender (Male) 33/65 (50.77%) 2/7 (28.57%) 0.264 

Family history of PDB 30/65 (46.15%) 1/7 (14.29%) 0.106 

Orthopaedic surgery 16/65 (24.62%) 2/7 (28.57%) 0.818 

Any fracture 23/65 (35.38%) 3/7 (42.86%) 0.696 

Skull disease and hearing aid 8/65 (12.31%) 0/7 (0%) 0.325 

Bone pain 48/62 (77.42%) 7/7 (100%) 0.159 

Fracture in Pagetic bone 8/23 (34.78%) 1/3 (33.33%) 0.960 

Bisphosphonates 1.78 ± 1.28 1.71 ± 0.95 0.888 

Age at diagnosis 59.8 ± 11.97 52.29 ± 5.82 0.107 

Age at recruitment 72.62 ± 7.41 68.86 ± 13.09 0.245 

Number of bones affected 2.51 ± 1.25 2.43 ± 0.98 0.872 

Pagetic pain 1.58 ± 0.79 1.43 ± 0.53 0.621 

Deformity score 0.66 ± 1.14 0.57 ± 0.79 0.839 

Paget severity score 7.18 ± 2.86 7.29 ± 1.98 0.928 
Values are shown as number of patients observed/total number of patients, or mean value ± SD.  
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APPENDIX 4.12. ESTIMATED HAPLOTYPE FREQUENCIES FOR THE 
PRISM CASES, INCLUDING THE GWAS HIT IMPORTED DATA 

Haplotype ID Haplotype Estimated frequencies (%) 
± standard deviation 

1 (WT) ACCGCACCCTCGCCGT 69.32 ± 0.50 
2 ACCGCACCCTCGCCGC 0.39 ± 0.05 
3 ACCGCACCCTCGCCAT 0.07 ± 0.01 
4 ACCGCACCCTCGCTGT 1.79 ± 0.10 
5 ACCGCACCCTCHCCGT < 0.01% 
6 ACCGCACCCTTGCCGT 0.02 ± 0.03 

7 (p.425M) ACCGCACCTTCGCCGT 13.14 ± 0.41 
8 ACCGCACCTTCGCCGC 0.01 ± 0.03 
9 ACCGCACCTTCGCTGT 0.17 ± 0.10 
10 ACCGCACACTCGCCGT 0.02 ± 0.04 
11 ACCGCACACTCGCCGC 0.01 ± 0.02 
12 ACCGCACATTCGCCGT 0.11 ± 0.09 
13 ACCGCACATTCGCCGC 0.08 ± 0.10 
14 ACCGCATCCTCGCCGT 0.02 ± 0.03 
15 ACCGCATCCTTGCCGT 0.05 ± 0.03 
16 ACCGCCCCCTCGCCGT 0.91 ± 0.04 
17 ACCGCCCCTTCGCCGT 0.01 ± 0.03 

18 (p.279C) ACCGTACCCTCGCCGT 12.84 ± 0.30 
19 ACCGTACCCTCGCCGC < 0.01% 
20 ACCGTACCCTCGCTGT 0.02 ± 0.06 
21 ACCGTACCTTCGCCGT 0.25 ± 0.20 
22 ACCGTACCTTCGCTGT 0.13 ± 0.05 
23 ACCGTCCCCTCGCCGT < 0.01% 
24 ACCTCACCCTCGCCGT 0.04 ± 0.04 
25 ACCTTACCCTCGCCGT 0.03 ± 0.03 
26 ACTGCACCCTCGCCGT 0.07 ± 0 
27 AACGCACCCTCGCCGT 0.31 ± 0.08 
28 AACGTACCCTCGCCGT 0.04 ± 0.08 
29 GCCGCACCCTCGCCGT 0.14 ± 0.03 
30 GCCGCACCTTCGCCGT 0.01 ± 0.02 

Frequency of SQSTM1 + 72/699 (10.30%) 
 




