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A Survey of Automated Deduction �

Alan Bundy

March 8, 1999

Abstract

We survey research in the automation of deductive inference, from its beginnings in the

early history of computing to the present day. We identify and describe the major areas of

research interest and their applications. The area is characterised by its wide variety of proof

methods, forms of automated deduction and applications.

1 A Potted History of Early Automated Deduction

Deduction is the branch of reasoning formalised by and studied in mathematical logic. The auto-
mation of deduction has a long and distinguished history in Arti�cial Intelligence. For instance,
four of the 19 papers in one of the earliest and seminal AI texts, Feigenbaum and Feldman's
\Computers and Thought", described implementations of deductive reasoning. These four were:

� a description of a theorem prover for propositional logic, called the Logic Theory Machine,
written by Newell, Shaw and Simon, [Newell et al., 1957];

� two papers on Gelernter's Geometry Machine, a theorem prover for Euclidean Geometry,
[Gelernter, 1963b; Gelernter, 1963a];

� a description of Slagle's symbolic integrator, Saint. [Slagle, 1963].

As can be seen from these examples, most of the early applications of automated deduction
were to proving mathematical theorems. The promise o�ered to Arti�cial Intelligence, however,
was the automation of commonsense reasoning. This dream is described by McCarthy in his
description of the Advice Taker, [McCarthy, 1959], which proposes an application of automated
deduction to what we would now call question answering. The earliest implemented applications
of automated deduction to commonsense reasoning were to robot plan formation, for instance, the
QA series of planners, [Green, 1969], culminating in strips, [Fikes et al., 1971].

The automation of commonsense reasoning was seen to be at the heart of the Arti�cial Intel-
ligence programme. Sensors, such as television cameras, microphones, keyboards, touch sensors,
etc, would gather information about the world. This would be used to update a world model.
Automated reasoning would then be used to draw inferences from this world model, �lling in
gaps, answering queries and planning actions. These actions would then be realised by actuators,
such as robot arms, speakers, computer screens, mobile vehicles, etc.

Automated deduction seemed a very good candidate for the automation of commonsense reas-
oning. Results from Mathematical Logic suggested that automatic deductive reasoners for �rst-
order, predicate logic could be built that were not only sound, i.e. only made correct deductions,
but were also complete, i.e. were capable of deducing anything that was true. A theorem of
Herbrand's, [Herbrand, 1930], suggested how a sound and complete automatic deduction proced-
ure could be built. Variable-free instances of predicate logic formulae should be systematically

�I would like to thank Richard Boulton, Michael Fisher, Ian Frank, Predrag Jani�ci�c, Andrew Ireland and Helen
Lowe for feedback on an earlier version of this survey. I would also like to thank Carole Douglas for help in its
preparation.
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and exhaustively generated then tested for contradiction. Many of the early implementations were
based on Herbrand's theorem, e.g. [Gilmore, 1960; Davis and Putnam, 1960].

The culmination of this line of work was Robinson's resolution method, [Robinson, 1965].
Robinson's key idea was uni�cation: an algorithm for �nding the most general common instance
of two or more logical formulae, if it exists. Uni�cation also generates a substitution, of terms for
variables, called a uni�er. This uni�er instantiates the input formulae to their common instance.
Using uni�cation, the generation and testing phases of Herbrand's procedure could be merged;
contradiction testing was carried out on partially instantiated formulae and guided their further
instantiation. Resolution could also be viewed as a process of inferring new formulae from old
by matching (using uni�cation) and combining together old formulae. Resolution proved to be
much more e�cient than earlier techniques and automated deduction researchers switched their
attention to it. Many ingenious ways were found to re�ne resolution, i.e. to reduce the generation
of new formulae without loss of completeness, thus improving the e�ciency of proof search.

Unfortunately, despite this progress in improving e�ciency, automatic deduction in the late
1960s and early 1970s was unable to solve hard problems. To prove a mathematical theorem the
axioms of the mathematical theory and the negation of the theorem to be proved were �rst put
into a normal form, called clausal form. Resolution was then applied exhaustively to the resulting
set of clauses in the search for a contradiction (the empty clause). For non-trivial theorems a
very large number of intermediate clauses needed to be generated before the empty clause was
found. This generation process exceeded the storage capacity of early computers and the timescales
involved were sometimes potentially astronomical. This phenomenon was called the combinatorial
explosion.

Work on automated deduction was subject to a lot of criticism in the early 1970s. The combin-
atorial explosion was thought to exclude resolution and similar techniques as viable candidates for
the automation of reasoning. Various rival techniques were proposed, for instance, the \proced-
ural representation of knowledge" as embodied in the Micro-Planner AI programming language,
[Sussman et al., 1971]. However, on close analysis these alternatives could be seen as o�ering very
similar functionality and performance as existing automated deduction techniques, [Hayes, 1977].
The combinatorial explosion could not be solved by either re�nements of resolution or by more ad
hoc techniques. The solution was seen to lie with the development of heuristics, i.e. rules of thumb
for pruning inference steps (with possible loss of completeness) or for guiding search through the
space of inference steps, (see x9).

Another, and more signi�cant, AI criticism of automated deduction was that reasoning is not
restricted to deductive inference steps and is not restricted to �rst-order predicate logic. The
reaction to that criticism has been to broaden the coverage of automated reasoning to include a
variety of logics, e.g. sorted, probabilistic, default, temporal and other modal, etc. Some of these
logics include non-deductive inference steps, e.g. default logics, [Brachman et al., 1991]. This
survey, however, will be restricted to deductive inference.

2 Automated Deduction Today

Despite these early criticisms, automated deduction today is in a healthy state. The combination
of much faster computers and more e�cient coding techniques has enabled resolution theorem
provers to prove non-trivial theorems | even open conjectures. A recent notable success has been
the proof by the Argonne prover, EQP1, that Robbins Algebras are boolean algebras, [McCune,
1997]. This was a famous and long standing open conjecture and its automated proof made the
front pages of national newspapers all over the world.

Automated deduction has also found signi�cant application in formal methods of system de-
velopment. Using formal methods computer programs and electronic circuits can be described as
logical formulae, as can speci�cations of their intended behaviour. Questions about such systems
can then be posed as automated deduction problems. For instance, automated deduction can be
used to ask whether a system meets its speci�cation, to synthesise a system from a speci�cation

1A variant of Otter.
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or to transform an ine�cient system into an equivalent but more e�cient one. As commercial
pressures force hardware and software producers to provide guarantees of the security and safety
of their products, automated deduction is playing an increasingly important role. The CAV con-
ference proceedings give examples of such practical applications, e.g. [Alur and Henzinger, 1996].

Automated deduction can be viewed as a form of computation. This has inspired two paradigms
for programming language design. These are: logic programming, which is based on the application
of resolution to programs expressed as sets of predicate logic clauses (see x11 and [Kowalski, 1979]);
and functional programming, which is based on the application of term rewriting to programs
expressed as sets of equations in higher-order logic, [Paulson, 1991]. Term rewriting is a rule
of inference in which one subterm of a formulae is replaced by an equivalent subterm (see x4).
The best known logic programming language is Prolog, [Clocksin and Mellish, 1981], although
there are now many variants, e.g. a higher-order, constructive version called �Prolog, [Miller
and Nadathur, 1988] and the various constraint logic programming languages, [Ja�ar and Maher,
1994]. Functional programming has been implemented in many languages, e.g. Lisp, ML, Miranda,
Haskell. There are also hybrid logical and functional languages, e.g. LogLisp, Mercury.

Resolution is no longer the dominant automated deduction technique. Formal methods, as well
as AI, has forced the �eld to broaden its coverage. The representation of hardware and software
has required the use of higher-order, richly typed, constructive, inductive, modal and linear logics
(see x6 and 7). It also puts a strong emphasis on equational reasoning, e.g. using term rewriting
(see x4). Attempts to emulate commonsense reasoning have required the exploration of default,
probabilistic, temporal and other modal logics (see x10). Some of the search problems raised
by these logics have defeated total automation, so there has been a lot of interest in interactive
theorem proving, in which the burden of �nding a proof is divided between the computer and
a human user (see x8). Interactive provers usually use more `human-oriented' presentations of
logic, such as sequent calculus, natural deduction or semantic tableaux, rather than the `machine-
oriented' resolution.

The number and size of international conferences to serve the automated deduction community
has steadily grown. The Conferences on Automated Deduction (CADEs), which started as a small
workshop series in 1974, have now grown into an annual, international series with over a hundred
of participants. There are also more specialist conferences devoted to: term rewriting (RTA),
semantic tableaux (Tableaux), �rst-order theorem proving (FTP), higher-order theorem proving
(TPHOLs), user interfaces (UITP) and formal veri�cation (CAV). The Journal of Automated
Reasoning, which specialises in automated deduction research, was founded in 1985 and is now
up to volume 212. The international Association for Automated Reasoning produces a regular
newsletter, which is circulated to most automated deduction researchers. Automated deduction
research is also reported in many journals and conference proceedings for AI, formal methods and
logic and functional programming.

3 Resolution Theorem Proving

In the late 60s and early 70s most work in automated deduction went into �nding resolution re�ne-
ments. Variants of resolution with exotic names: hyper-resolution, model elimination, semantic
resolution, RUE, etc, abounded, [Loveland, 1978; Wos et al., 1984]. There was also a technique
called paramodulation for equational reasoning, which can be viewed as a generalisation of term
rewriting, [Robinson and Wos, 1969]. Most of this re�nement activity has now died down. The
major exception is work on superposition, [Bachmair and Ganzinger, 1994], which seeks to apply
work on orderings from termination research3 to re�ne resolution.

Most work on resolution now focuses on e�cient implementation methods. The goal is to
enable resolution-based provers to generate millions of intermediate clauses in a brute force search
for a proof, running for hours or days.4. Clever indexing techniques are used to enable required

2As of August 1998.
3The use of orderings to prove the termination of rewriting is discussed in x4.
4Even, in extreme cases, years, [Slaney, 1994].
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clauses to be retrieved quickly from a database containing millions of candidates, [Overbeek and
Lusk, 1980]. Parallelism is exploited to divide the task between many processors, [Lusk et al.,
1992]. Technology for precompiling uni�cation and sharing storage is borrowed back from logic
programming | so called, Prolog technology theorem proving, [Stickel, 1984]. Algorithms are
re�ned for detecting and removing redundant clauses.

Resolution-based provers are currently evaluated on empirical grounds. Comparisons between
provers are mostly based on success rates and run times on standard corpora of problems. The
main corpus is the TPTP (Thousands of Problems for Theorem Provers) library, [Sutcli�e et al.,
1994]. This is also used as the basis for an annual competition between provers run in conjunction
with the CADE conferences, [Suttner and Sutcli�e, 1998]. There is also a lot of interest in tackling
open conjectures in mathematics. Conjectures best suited to this approach are combinatorial
problems in new areas of mathematics, where human intuitions are less well developed, [Wos,
1993]. The Robbins Algebra conjecture is a good example. Brute force search through all the
various possibilities is often an appropriate approach to such problems | and machines are much
better suited to brute force solutions than humans.

Resolution is a refutation-based procedure; it proves a conjecture when it derives a contradic-
tion in the form of the empty clause. When the conjecture is false the search for a contradiction
may terminate with failure or the search may continue unsuccessfully forever. In the case of ter-
minating failure a counterexample can be constructed from the �nite search space. This potential
can be exploited to build models of formulae from unsuccessful attempts to �nd proofs of their
negations. There has been a lot of interest in exploiting this potential recently; several model con-
structing programs have been built and successful applications developed, [Slaney, 1994]. There is
even a category in the CADE theorem prover competition for such model constructing programs.

4 Term Rewriting

A common pattern of reasoning in mathematics is to replace a subterm in an expression by an
equivalent subterm. Some proofs consist of a chain of such replacements in which one expression is
gradually transformed into another. For instance, when the conjecture is an equation the left-hand
side may be transformed into the right-hand side. This transformation procedure is formalised in
automated deduction as term rewriting using rewrite rules, [Huet and Oppen, 1980]. A rewrite
rule is an equation that has been oriented in one direction: conventionally left to right. To rewrite
an expression, �rst a subterm of the expression is identi�ed for replacement. Then a rewrite rule is
selected whose left-hand side matches this subterm using a one-side uni�cation. The rewrite rule
is instantiated so that its left-hand side is identical to the subterm. The subterm is then replaced
with the instantiated right-hand side of the rule.

Of course, this procedure is incomplete in general, i.e. when a conjecture can be proved using
some of the rewrite rules in both orientations, but not with a single orientation. Sometimes,
however, rewriting is complete, for instance, if a set of rewrite rules can be shown to be conuent.
A set of rewrite rules is conuent if, whenever an expression can be rewritten into two distinct
expressions then these two can both be further rewritten into a third common expression. A
simple inductive proof shows that whenever there is a proof using a conuent set of rewrite rules
as equations in both orientations then there is a rewriting proof.

If, in addition, the set of rewrite rules is terminating then rewriting constitutes a decision
procedure, i.e. it is terminate with either a proof or a refutation of an equational conjecture . A
set of rewrite rules is terminating if there are no in�nite chains of rewriting using them. To prove
an equation, for instance, each side of the equation is rewritten until no more rewriting is possible,
which will happen after a �nite number of steps. This �nal rewritten expression is called a normal
form. The equation is true if and only if the two normal forms are identical. Conuence also
ensures that these normal forms are unique, so there is no need to search.

In 1970 a breakthrough occurred in term rewriting with the discovery by Knuth and Bendix
of a procedure for testing a set of rewrite rules for conuence, [Knuth and Bendix, 1970]. The
Knuth-Bendix test compares the left-hand sides of rewrite rules to see whether they could give
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rise to a choice of rewriting. So called critical pairs are constructed and then tested to see if they
rewrite to an identical normal form. If all critical pairs rewrite to identical normal forms then the
set of rewrite rules is conuent. Moreover, Knuth and Bendix proposed a procedure to transform
a non-conuent set of rules into a conuent one. If a critical pair generates two non-identical
(but necessarily equal) normal forms then these are formed into the left- and right-hand side of a
rewrite rule and added to the set of rewrite rules. This new set may, in turn, generate new critical
pairs (using the new rule) and this whole process may not terminate. But if it does, then the �nal
set of rewrite rules will be conuent. The invention of this procedure triggered a huge activity in
term rewriting, which is now a major sub-area of automated deduction with its own conference
series (RTA).

This has also spurred a renewed interest in proving termination of sets of rewrite rules. Termin-
ation proving is equivalent to the halting problem, so only partial solutions are possible. However,
current techniques are capable of proving the termination of many of the sets of rewrite rules that
arise in practice, cf [Walther, 1994b], for instance. These techniques can also be automated, so
that theorem provers can establish the termination of rewrite rule sets before applying them. All
the techniques use a measure which maps expressions into a well-founded set. A well-founded set
is an ordered set of objects in which there are no in�nite descending chains. For each rewrite rule
the measure of its left-hand side is shown to be greater than that of its right-hand side under
this order. The ordering must also be shown to be preserved by the rewriting process, i.e. by
substitution and replacement of subterms. Then each rewriting strictly reduces the measure of
the rewritten expression. Since there are no in�nite descending chains of measures this reduction
cannot continue inde�nitely, so rewriting must terminate.

Simple measures use the natural numbers as the well-founded set. More sophisticated measures
use polynomials over natural numbers or combine previous measures using pairs and multi-sets
(aka bags). One of the most interesting developments is the use of term orderings, in which
the expressions themselves form the well-founded set, with the order being de�ned by a set of
syntactic inference rules. The best known of these term orderings is recursive path ordering (rpo),
[Dershowitz, 1982].

As mentioned above, term rewriting can be viewed as a special case of paramodulation. Para-
modulation extends rewriting in three ways. Firstly, equations can potentially be used in both
orientations. Secondly, two-way uni�cation rather than one-way matching is used to instantiate
the replaced subterms as well as the equations. Thirdly, the equations are disjoined with other for-
mulae to form a full clause. This relationship between paramodulation and rewriting has inspired
new developments in both areas.

Rewriting has been extended towards paramodulation in two directions. Firstly, conditions
have been added to rewrite rules. Usually these conditions must be established before the rule is
applied. Secondly, two-way uni�cation can be used to instantiate variables in the subterm. This
form of rewriting is called narrowing, [Fay, 1979; Hanus, 1994]. It is useful for proving existential
theorems, with the existential variables in the conjecture being represented by free variables and
instantiated during the narrowing proof.

Paramodulation has been re�ned by using term orderings from termination theory to restrict
its application without loss of completeness, [Bachmair and Ganzinger, 1990]. This has in turn
inspired the work on superposition mentioned in x3, in which similar ideas are applied to resolution.

Most applications of term rewriting apply the rewrite rules exhaustively, i.e. until the expression
being rewritten is in normal form. Recently, there has been interest in selective rewriting, in which
restrictions are imposed on rewriting. The best known of these selective rewriting techniques is
rippling, [Bundy et al., 1993; Basin and Walsh, 1996]. Meta-level annotations are inserted into the
expressions to be rewritten and into the rewrite rules. The e�ect of these annotations is to prevent
some sub-expressions from being rewritten and to impose restrictions on the way in which other
sub-expressions can be rewritten. The motive behind these restrictions is to direct the rewriting
to produce an expression which matches some hypothesis. The main application is to the step
cases of inductive proofs, in which the induction conclusion is directed towards a match with the
induction hypothesis. It has also been used: to �nd closed forms to sums, [Walsh et al., 1992]; to
solve limit theorems, [Yoshida et al., 1994]; and to prove equalities, [Hutter, 1997].
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5 Built-in Uni�cation

Robinson's original uni�cation was based only on the syntactic structure of the formulae to be
uni�ed. So if two formulae had instances which were equal, but not syntactically identical, then
Robinson's algorithm would declare then non-uni�able. In 1972, Plotkin built the associativity
axiom into the uni�cation algorithm, [Plotkin, 1972]. Associative uni�cation �nds a substitution
which instantiates the input formulae to instances which are equal modulo associativity, but not
necessarily identical. When using associative uni�cation the associative axiom need not be used
explicitly in the proof, i.e. it is completely built-into the uni�cation algorithm.

This work initiated a major sub-area of automated deduction in which di�erent combinations
of axioms are built-into the uni�cation algorithm, e.g. associativity, commutativity, idempotency,
distributivity, etc and combinations of these. Built-in uni�cation is especially valuable where an
axiom causes problems if included in a set of clauses or rewrite rules. For instance, the commutative
law causes non-termination when used as a rewrite rule, but commutative uni�cation is quite
e�cient. So rewriting using commutative uni�cation is an attractive solution. Many functions
are both associative and commutative, so building both of these into uni�cation (AC-uni�cation)
has received a lot of attention. A good survey of built-in uni�cation algorithms can be found in
[Jouannaud and Kirchner, 1991].

Given uni�able formulae, Robinson's uni�cation algorithm generates a unique, most-general
uni�er. \Most-general" means that any other uni�er is an instance of it. Built-in uni�cation prob-
lems are not all so well behaved. For some there is more than one uni�er { sometimes in�nitely
many. Nor does a most-general uni�er always exist. Some uni�cation problems are even undecid-
able. Uni�cation problems can be classi�ed along these various dimensions: unique/�nite/in�nite
number of uni�ers; existence of most-general uni�ers; decidable/undecidable.

Uni�cation algorithms are nowadays presented as a set of transformation rules, which rewrite
input formulae into substitutions, [Jouannaud and Kirchner, 1991]. Such presentations facilitate
proofs that the algorithms are both sound and complete and inform calculations of their com-
plexity. They also enable general-purpose uni�cation algorithms to be designed, i.e. algorithms
which take a set of axioms to be built-in as an additional input. The work on general-purpose
uni�cation algorithms derives from work on term rewriting (see x4), since the axioms must usually
be represented as a conuent rewrite rule set.

One of the major achievements of built-in uni�cation was Huet's higher-order uni�cation al-
gorithm, [Huet, 1975; Jouannaud and Kirchner, 1991], which builds-in the �, � and optionally
the � rules of �calculus. This algorithm makes automated higher-order theorem proving possible.
Higher-order uni�cation is a badly behaved problem: there can be in�nitely many uni�ers and the
problem is undecidable. Research into higher-order uni�cation is active in at least two directions:
the extension of the algorithm to new kinds of higher-order logic, such as constructive type theory;
and the search for decidable, but still useful, sub-cases of the problem, which are, therefore, better
behaved. For instance, if the input formulae are restricted to, so called, higher-order patterns then
unique, most-general uni�ers exist, [Miller, 1991].

Uni�cation �nds the most-general common instance of two formulae. The dual problem, anti-
uni�cation, �nds the least-general common generalisation, i.e. a formula which has both of the
input formulae as instances. Plotkin invented anti-uni�cation in 1969, [Plotkin, 1969], but interest
in it has recently revived in the area of machine learning, where it is used to �nd the general
form of two or more examples of some concept. For instance, in Inductive Logic Programming,
[Muggleton, 1991], it is used to learn a general logic program from instances of it.

6 Higher-Order Logic and Type Theory

Many problems in both mathematics and formal methods are more naturally represented in a
higher-order logic than in �rst-order. For instance, functional programming languages are usually
based on typed �-calculus, which is a higher-order logic, [Barendregt, 1985]. So the reasoning about
functional programs is naturally done in higher-order logic. Reasoning about limited resources can
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be done in linear logic, [Girard et al., 1995], which models resources with assumptions and places
restrictions on the number of times they can be used in proofs. Similarly, mathematics uses second
and higher-order functions, such as summation, di�erentiation, integration, etc, which are more
naturally reasoned about in a higher-order framework.

First-order automatic deduction techniques are readily adapted to higher-order deduction by
replacing �rst-order uni�cation with higher-order uni�cation. This is not quite as straightforward
as it sounds. For instance, the potentially in�nite branching of higher-order uni�cation needs to be
factored into the search space, e.g. by allowing backtracking to return alternative uni�ers. Three
examples of higher-order theorem provers are TPS [Andrews et al., 1996], HOL [Gordon, 1988]

and PVS [Owre et al., 1992].
Some applications of theorem proving require even richer logics. For instance, automated de-

duction can be used to synthesise programs (and circuits) meeting a speci�cation of their intended
behaviour. A conjecture is posed that for any inputs an output exists obeying some speci�ed
relationship with the input. For instance, if a sorting program is required the output might be
speci�ed as an ordered permutation of the input. The required program can be extracted from a
proof of the conjecture; di�erent proofs yielding di�erent programs. However, this synthesis can
fail to yield a program if the conjecture is proved in a \pure existence" proof, namely a proof which
shows the existence of an output without showing how it can be constructed from the inputs. This
problem can be avoided by proving the conjecture in a constructive logic, i.e. one from which pure
existence proofs are excluded.

Formal methods proof obligations (see x2) are also best conducted in a logic with a rich type
structure, i.e. one in which the various data-structures (e.g. integers, reals, arrays, lists, trees,
etc) and the arities of the procedures (e.g. lists to integers) are represented as types. Rich type
structures, higher-order logic and constructive proofs are combined in constructive type theories,
[Martin-Lof, 1970]. There are now a number of theorem provers based on constructive type
theories, e.g. Coq [Dowek et al., 1991], NUPRL [Constable et al., 1986], LEGO [Luo and Pollack,
1992], ALF, [Augustsson et al., 1990]. Due to the di�culty of automating interesting proofs in
some of these logics, most of these theorem provers are interactive (see x8).

A wide variety of di�erent logics have been developed for formal methods. These include many
di�erent: constructive type theories, temporal logics for reasoning about changing behaviour over
time, process algebras for reasoning about concurrent programs, dynamic logics for reasoning about
imperative programs, etc. Building theorem provers for each of these logics is a massive challenge,
especially since the logic design is itself often a variable in the research programme, so that the
theorem prover is under constant modi�cation. One answer to this is to build generic theorem
provers, which take a speci�cation of the logic as an input. the theorem prover is then easily
recon�gured. One of the most popular of these is Paulson's Isabelle, [Paulson, 1986]. Constructive
type theories also turn out to be well suited as meta-logics for the speci�cation of the input
logic. They also have technical advantages, like providing a generic uni�cation algorithm. Generic
theorem provers taking this approach are usually called logical frameworks, [Huet and Plotkin,
1991].

7 Inductive Theorem Proving

In mathematics, formal methods and common-sense reasoning we often want to reason about
repetition. Repetition might arise from: recursively de�ned mathematical objects, data-structures
or procedures; iteration in programs; feedback loops in circuits; behaviour over time; or general
object descriptions with a parameter. This repetition is often unbounded. To reason about
unbounded repetition it is usually essential to use a rule of mathematical induction. Such rules
are used to reduce a universally quanti�ed conjecture into some number of base and step cases. In
the base cases the conjecture is proved for some initial values, e.g. the number 0. In the step cases
the theorem is assumed for a generic value, e.g. n and, using this assumption, proved for some
subsequent value, e.g. n + 1. In this way the conjecture is incrementally proved for an in�nite
succession of values.
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Logical theories which include induction rules are subject to some negative theoretical results
which cause problems for automation.

1. They are usually incomplete, i.e. they contain true but unprovable formulae, [G�odel, 1931].
This manifests itself in requiring an unlimited number of distinct induction rules.

2. They do not admit cut elimination, which means that arbitrary intermediate formulae may
need to be proved and then used to prove the current conjecture, [Kreisel, 1965]. This
manifests itself in requiring the generalisation of conjectures and/or the introduction of
intermediate lemmas. In contrast, resolution generates any necessary intermediate formulae
as a side e�ect.

Both of these negative results introduce potentially in�nite branching points into the search space.
At any stage: an unbounded number of induction rules can be specially constructed and applied;
the current subgoal can be generalised in an unbounded number of ways; or any formula can be
introduced as an intermediate lemma. Special heuristics are required to control these branching
points. Some use the failure of initial, restricted proof attempts to introduce patches which extend
the search space. Failures in rippling (see x4) have proved especially fruitful in suggesting such
proof patches, [Ireland and Bundy, 1996].

Two main approaches have been developed for automating inductive proof: explicit and im-
plicit. In explicit induction additional inductive rules of inference are added to the logic and used
in the search for a proof, [Walther, 1994a]. Since there are potentially in�nitely many induction
rules, it is usual to have a method for dynamically creating new rules customised to the current
conjecture, [Walther, 1993]. It is also necessary to have a cut rule for generalising conjectures
and creating intermediate lemmas. Explicit induction theorem provers include: Nqthm [Boyer
and Moore, 1988], INKA [Biundo et al., 1986], RRL [Kapur and Zhang, 1995] and Oyster/CLaM
[Bundy et al., 1990].

A conjecture is an inductive consequence of a theory if and only if it is consistent to add it to
that theory. Implicit induction is based on this theorem. This method is also called inductionless
induction or inductive completion. Consistency is usually tested by trying to express the extended
theory as a conuent and terminating set of rewrite rules and then rewriting the conjecture to
normal form, [Kapur et al., 1991]. Although explicit and implicit induction sound very di�erent,
close analysis of the rewriting process in implicit induction reveals proof steps which are very
similar to the base and step cases of explicit induction. In fact, implicit induction can be viewed
as a form of explicit induction using a term order, such as recursive path order, as the induction
order, [Reddy, 1990]. Implicit induction provers include: RRL [Kapur and Zhang, 1995] (which
uses both implicit and explicit induction) and SPIKE [Bouhoula et al., 1992].

8 Interactive Theorem Proving

The state of the art of automated deduction is that theorem proving programs will often fail to
prove non-trivial theorems. One solution to this is to develop interactive theorem provers, where
the task is divided between the computer and a human user. The role of the user can vary from
specifying each proof step to setting some global parameters for an otherwise automated run.
Usually, the human role is to make the di�cult proof guidance decisions while the computer takes
care of the book-keeping and the routine steps. All proof systems lie on a continuum between fully
automatic and fully interactive; most `automatic' systems have some facility for user interaction
and most `interactive' systems have some degree of automation. So although this is a survey of
automated deduction, interaction must be discussed.

Many interactive provers provide some kind of macro facility so that users can apply multiple
proof steps with one command. Of these, the best developed macro facility is called tactics,
[Gordon et al., 1979]. A tactic is a computer program which directs a theorem prover to apply
some rules of inference. A primitive tactic applies one rule of inference. Tactics are composed
together, using tacticals, into sequences, conditional cases, iterations, etc. They are typically used
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for: simplifying expressions by putting them into normal form; applying decision procedures; and
following other common patterns of reasoning. Tactics are organised hierarchically with big tactics
de�ned in terms of smaller ones and ultimately in terms of rules of inference. There are many
tactic-based provers, e.g. HOL [Gordon, 1988], Nuprl [Constable et al., 1986], Isabelle [Paulson,
1986].

In order to be able to guide an interactive prover it is vital for a human user to interpret
the structure of the emerging proof. One way to achieve this is for the interactive prover to, use
a logic which presents proofs in a `natural' format, such as Gentzen's sequent calculus, natural
deduction or semantic tableaux. Resolution, with its clausal form and powerful single inference
rule is usually considered too `machine-oriented' for interactive provers5.

Interactive provers frequently have elaborate graphical user interfaces to try to present emer-
ging proofs and the operations on them in a congenial and accessible way. For instance, some
systems present the overall structure of a proof as a tree in which the nodes represent formulae
and the branches represent proof steps connecting them. These trees can be organised hier-
archically, with nodes representing big tactics unpacking into sub-trees representing their smaller
sub-tactics. This can be used to show the overall structure of the proof succinctly with the detail
being revealed on demand. Menus, buttons, mouse clicks, etc can be used to present the various
options to the user in a user-friendly way. For instance, the \proof by pointing" style selects rules
of inference by clicking the mouse on appropriate parts of the conjecture. As well as guiding the
proof, the user may need access to libraries of theories, conjectures, de�nitions, previous lemmas,
etc. They may want to: store and recover partial proofs; reset global options; load or delete
de�nitions, lemmas, heuristics, etc. Providing all the functionality that users may want, while
orienting them in the partial proof and not overwhelming them with too much information is a
very hard and unsolved problem. The annual workshops on User Interfaces for Theorem Provers
(UITP) is a good source of research in this area, [Backhouse, 1998].

9 Meta-Reasoning and Proof Methods

Human mathematicians do not �nd proofs by combining low level rules of inference. They adopt a
higher-level of abstraction combining common patterns of proof using meta-reasoning. To emulate
their success it is necessary to automate such higher-level reasoning. Tactics are one route to do
this by providing powerful, high-level reasoning steps for the prover. They are used to encode
proof methods in a meta-language, like ML [Paulson, 1991].

One common pattern of reasoning in proofs is the application of a decision procedure to solve
a decidable subproblem. Popular decision procedures are available for:

Propositional logic: There has been a lot of recent interest in using tautology checkers to verify
digital electronic circuits which can be modelled as propositional formulae. Very e�cient
tautology checkers have been built, of which the best known are based on Ordered Binary De-
cision Diagrams (OBDDs), [Bryant, 1992]. However, tautology checking is an NP-complete
problem so, failing a favourable solution to P = NP , even the most e�cient tautology
checkers are exponential in the worse case.

Presburger arithmetic: The additive fragments of integer and real number arithmetic is de-
cidable, [Presburger, 1930]. Sub-goals in this fragment often occur when reasoning about
iteration in program veri�cation. Various more e�cient variants of Presburger's original
algorithm have been developed, [Cooper, 1972; Hodes, 1971], although they are all super-
exponential in the worse case. Much work has limited to the quanti�er-free sub-case, since
this is all that is required for veri�cation proofs and has much lower complexity, [Bledsoe,
1974].

Euclidian geometry: Decision procedures for decidable subsets of geometry can be obtained
by translating geometric problems into algebraic ones and then using algebraic decision

5Although, the logic programming work has shown that resolution proofs can be quite `natural'.
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procedures such as those for Presburger arithmetic, [Wu, 1997; Chou, 1988]. These are
available for a range of geometries.

There are also techniques for combining together decision procedures for disjoint decidable theories,
[Nelson and Oppen, 1979; Shostak, 1984].

Many decision procedures are embedded in computer algebra systems. There is a lot of interest
in interfacing theorem provers to computer algebra systems to be able to access these procedures.
There is also interest in the other direction in using theorem provers to verify decision procedures
or for checking their preconditions. A special issue of JAR addresses both of these interactions,
[Kapur and Wos, 1998].

Many proof methods of use in automated deduction systems are for non-decidable fragments of
theories. Even though these are not decision procedures, they can have a high heuristic success rate
and so be of practical use. One such family of useful, heuristic methods are for di�erence reduction,
i.e. they identify di�erences between two formulae to be shown equal and then systematically
reduce these di�erences. One of the best known such methods is rippling (see x4).

Meta-reasoning is used to reason about (object-level) logic theories in a meta-theory. The
domain of discourse of the meta-theory is the formulae and proof methods of the object-level theory.
For instance, meta-reasoning might be used to analyse the current goal, choose an appropriate
method of proof and apply it. This lifts the search space from the object-theory to the meta-theory,
which is often better behaved, i.e. has a smaller search space. One example of meta-reasoning is
reection, in which theorems in a meta-theory are related, via reection rules, to theorems in an
object-theory, and vice versa, [Weyhrauch, 1980]. Another example is proof planning, in which
meta-reasoning is used to build a global outline of a proof, which is then used to guide the detailed
proof, [Bundy, 1991]. A third example is analogy, in which an old proof is used as a plan to guide
the proof of a new theorem, [Owen, 1990]. Fourthly, many decision procedures reason at the
meta-level. Meta-reasoning can also be used to explain the high-level structure of proofs, e.g. to
the user of an interactive prover, [Lowe and Duncan, 1997].

10 Commonsense Reasoning

The everyday reasoning of humans involves knowledge, belief, time, uncertainty and guessing based
on sparse information. A variety of `non-classical' logics have been developed to capture these
`commonsense' aspects of reasoning. Modal logics contain special operators for representing beliefs
of agents and time, [Chellas, 1980]. Uncertainty logics associate degrees of certainty with logical
formulae, [Pearl, 1988]. Default logics have rules which infer defeasible steps, in that conclusions
which can be assumed but later withdrawn in the face of contradictory evidence, [Brachman et
al., 1991]. Commonsense reasoning can be automated by building automatic theorem provers for
these logics.

From an automated proof viewpoint most of these non-classical logics are much worse behaved
than classical, �rst-order, predicate logic, i.e. they generate an even bigger combinatorial explosion.
A common approach to solving this problem is to restrict the logic to reduce the amount of search.
For instance, lots of work on modal logics is restricted to the propositional fragment, i.e. to
propositional logic with modal operators. Many of these propositional, modal logics are decidable
with relatively e�cient decision procedures, [Halpern and Moses, 1992].

Another popular approach to automating reasoning in non-classical logics is to reify them into
classical logics. This is done by formalising the semantics of the non-classical logic in a classical
logic, [Wallen, 1990; Ohlbach, 1991]. For instance, the semantics of modal logics is expressed in a
system of linked `possible worlds'. To formalise this semantics each predicate of the classical logic
is given an additional argument which speci�es a possible world in which it is asserted. Universal
and existential quanti�cation over these possible worlds then represents the modal operators.
Links between the possible worlds are expressed as relations between them, which can often be
embedded into the uni�cation algorithm. In this way modal reasoning can be automated (for
instance) via a conventional resolution prover.
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11 Logic Programming & Deductive Databases

Prolog gives a procedural interpretation to a fragment of �rst order, predicate logic. It applies
resolution to Horn clauses, which are disjunctions of negated propositions and at most one un-
negated proposition. This fragment has a natural procedural interpretation, [Kowalski, 1979], but
if two unnegated propositions are included in a clause this interpretation begins to break down.
There is signi�cant interest in trying to give a procedural interpretation to more expressive logics.
This is most readily done, not in classical predicate logic, but in constructive logics. One of the
best developed examples is Miller's �Prolog logic programming language, [Miller and Nadathur,
1988], which is based on a higher-order, constructive logic. Other researchers have given a logic
programming interpretation to constructive type theory [Pfenning, 1991], linear logic and temporal
logic..

Since logic programs are logical formulae they seem especially well suited to the application of
formal methods. Unfortunately, practical logic programming languages, like Prolog, often contain
non-logical features for the sake of e�ciency, practicality and to support meta-programming.
Prolog, for instance, has: an unsound uni�cation algorithm6; predicates for asserting and retracting
clauses; predicates for syntactic analysis; and the `cut' for cutting out part of the search space.
Research is directed at developing semantics of logic programming languages which capture some
of the non-logical features, [Borger and Rosenzweig, 1994]. These semantics are then used to
reason about the operation of logic programs. For instance, we might want to transform Prolog
programs into programs with the same run time behaviour (except, perhaps for their speed) and
not just into programs which are logically equivalent but, for instance, explore the search space in
a di�erent order.

There is also research at developing logic programming languages with a more declarative
semantics. The challenge is to provide comparable power and e�ciency to Prolog within a purely
logical language. For instance, meta-programming facilities can be provided with an explicit
and cleanly separated meta-level. One of the best known attempts to do this is the G�odel logic
programming language, [Hill and Lloyd, 1994].

One method for improving the e�ciency of logic programs is partial evaluation, [Komorowski,
1982]. Suppose a program is to be run successively on similar input. The computation performed
on each run might have large parts in common, leading to redundancy if it is re-performed each
time. This can be prevented by performing the common computation once and saving it in the
form of a transformed version of the original program. This can be implemented by running the
original program on a generalised form of the inputs which captures their similarities and using
the result as the transformed program.

Running logic programs on generalised or abstract data can also be used as an analysis tech-
nique called abstract interpretation. The abstraction might, for instance, throw away all details of
the data except for its type or its mode7. Running a logic program on this abstract data can be
used to infer its type or mode signature, [Mellish, 1987].

One of the most successful extensions to logic programming is to combine it with constraint
reasoning, called constraint logic programming, [Ja�ar and Maher, 1994]. Formulae are divided
between those to be treated by logic programming and those to be treated as constraints. The
latter are typically equations, inequalities, etc. The constraints are solved by a decision procedure,
e.g. an equation or inequality solver or optimiser, such as the Simplex algorithm. Constraint
logic programming has found many industrial applications. It enables the smooth combination of
qualitative and quantitative methods of problem solving. It allows traditional operational research
methods to be augmented with symbolic reasoning techniques.

Logic programming languages provide a form of default reasoning by interpreting the failure to
prove a goal as evidence for its negation, so called negation as failure. There is research to relate
this technique to other forms of default reasoning, e.g. non-monotonic logics, circumscription,
etc. There is also interest in relating this default technique to the use of integrity constraints in
databases, [Kowalski et al., 1987].

6Missing the `occurs check'.
7The mode of a logic program speci�es which arguments can be input, output or either.
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In fact, logic programs can be seen as a logical extension of relational databases, in which rules
can be used to derive new data not explicitly stored in the original database. Datalog is the best
known of the logic programming languages adapted for use as extended databases, [Ceri et al.,
1990]. It is purely relational, i.e. it di�ers from Prolog, say, by having no functions, but extends
relational databases with the use of rules.

12 Conclusion

Automated deduction has grown into a broad �eld in which a wide variety of proof methods is used
on a wide variety of logics and applied to a wide variety of applications. Proof methods range from
interactive to automatic | and include every stage in-between. Both machine-oriented methods,
such as decision procedures and resolution, and human-oriented methods, such as natural deduc-
tion and rewriting, are used and mixed. The logics range from classical �rst-order to constructive
type theory and take in temporal, other modal, default, uncertainty, etc on the way. All these are
applied to: proof obligations in formal methods; the design and implementation of programming
languages; commonsense reasoning in arti�cial intelligence; relational databases; knowledge-based
systems; etc. The system descriptions in the CADE proceedings contain a good record of the rich
variety of implemented automated deduction provers.

Automated deduction techniques are being integrated with other techniques into practical
systems. For instance, the Amphion system, [Lowry et al., 1994], uses a theorem prover for
synthesising programs to control space probes from a library of subroutines. The theorem prover is
hidden from the user and a graphical front-end enables people unfamiliar with automatic deduction
or logic to use it. Hybrid approaches are being developed. For instance, the Stanford temporal
prover, [Manna, 1994] combines automatic deduction with model checking.

Throughout its development automated deduction has drawn on and fed back to work in math-
ematics and especially logic. Most of the logics have come from mathematical or philosophical
logic. However, some logics, such as default and uncertainty logics, arose from automated de-
duction and then attracted mathematical interest. The interests of automated deduction have
also refocussed mathematical interest, cf. the rising mathematical interest in constructive logics
because of their computational applications. Mathematicians have also been interested to solve
some of the mathematical problems that arise from automated deduction. These problems in-
clude: �nding termination proofs; proving soundness, completeness and complexity results for
proof methods; inventing new decision procedures.

There is no end to the variety of problems, methods and applications thrown up by automated
deduction. The amount of work being conducted is greater than ever in its history, but the
number of open research problems has grown, not diminished. We are entering an exciting phase
of research as new application areas are coming into maturity and exciting new research directions
are being identi�ed.
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