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ABSTRACT 

The Hepatitis B virus (I-IBV) possesses a partially double-stranded 

circular DNA genome. 	The virions carry an endogenous polymerase that 

uses the minus strand as a template to fill in the single-stranded gap. 

Since attempts to purify this enzyme have been unsuccessful the origin 

of this DNA polymerase has not been established. 	It may be virally 

encoded or a host polymerase which is encapsulated during maturation 

of the virion. Sequence analysis of the viral genome revealed the 

presence of a long open reading frame (L.ORF) with the coding capacity 

of 93kd, the expected size of a DNA polymerase. 	The predicted amino 

acid sequence of the L.ORF revealed the existence of amino acid 

homologies with the reverse transcriptase of some other viruses. The 

size, and the belief that HBV replication involves a reverse 

transcriptase activity of the endogenous polymerase led to the 

assignment of the long ORF as the putative polymerase gene. 

Segments of the putative polymerase gene were fused in frame to 

the 3' end of the -galactosidase gene of Escherichia coli, and 

expressed as fusion proteins. 	Antisera raised to these fusion 

proteins recognise distinct epitopes in the amino and central regions 

of the putative polymerase gene product. Using immunoblotting, 

convalescent sera from chimpanzees infected with HBV were shown to 

contain antibodies that cross-reacted with the fusion proteins. These 

antibodies were found only transiently, and reached a maximum titre 

about 25 weeks after inoculation with the virus at which stage the 

animals still exhibited HBe antigenaemia, but were also producing 

antibodies to all the HBV antigens. 	Antibodies that cross-reacted 

with the fusion protein were not found in the serum of a chimpanzee 

that had been vaccinated prior to inoculation with HBV. Furthermore, 
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antibodies raised to HBV surface, core, e and X antigens did not react 

with the -ga1actosidase-po1yrnerase fusion product. 

Extracts of E.coli expressing the gene fusion products were also 

shown to exhibit a polymerase activity with the characteristics of the 

endogenous Hepatitis B polymerase. 

These experiments show that the HBV long ORE encodes a protein with 

polyrnerase activity; also the gene is expressed during viral infection 

and antibodies to its product are found in convalescent sera during HBV 

infection. 	These findings leave little doubt that the endogenous 

polymerase associated with HBV is indeed encoded by the long ORE and is 

not a host polymerase. 
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A : 	Adenosine 

A 	: Ampere 

AMPS : 	Ammonium persuiphate 

ATP : 	Adenosine 5' 	triphosphate 

bp : 	Base pair 

BSA : 	Bovine serum albumin 

c : 	 Cytosine 

Degree Celsius 

Ci : 	Curie (1 Ci 	= 2.2 x 1012  dpm) 

D : 	Dalton (1/12 of the mass of one atom of 

nuclide 12C, 	i.e. 	1.663 x 10-24 g) 

(d)dATP : 	2'(3'-di) deoxy adenine-5'-triphosphate 

(d)dCTP : 	2'(3'-di) deoxycytidine-5'-triphosphate 

(d)GTP : 	2'(3'-di) deoxyguanosine-5'-triphosphate 

(d)TTP : 	2'(3'-di) deoxythymidine-5'-triphosphate 

(d)NTP : 	2'(3'-di) deoxynucleotide-5'-triphosphate 

dH20 : 	Distilled water 

DMSO : 	Dimethyl 	suiphoxide 

DNA : 	Deoxyribonucleic acid 

DNase : 	 Deoxyri bonucl ease 

dpm : 	 Decompositions per minute 

DTT : 	 Dithiothreitol 

EDTA : 	 Ethylene-diamine-tetracetic acid. 

G : 	 Guanosine 

g : 	 Gram 

9 : 	 Acceleration due to gravitiy (9.81 m.s 2 ) 

HEPES 4-(2-hydroxyethyl )-1-peperazine-ethanesulphonic acid 

h hour 
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I PTG 	: Isopropyl 	-D-thi ogal actos ide 

k 	: Kilo 	(10). 	e.g. 	kg: 	kilogram 

kb 	: Kilobase of double-stranded DNA or of single-stranded RNA 

1 	: Litre 

M 	: Molar 

m 	: Metre 

m 	: Milli 	(io- ). 	e.g. 	ml 	: 	millilitre 

min Minute 

MOPS 	: 4-Morpholine-propane-sulphoniC acid. 

mRNA 	: Messenger ribonucleic acid 

Mw 	: Molecular mass 

Nano (io-) 	e.g. 	nm 	: 	nanometre 

NP40 	: Nonidet P-40 

OD.600nm : Optical density with respect to light of wavelength 600nm 

ORE 	: Open reading frame 

p 	: Pico (10-12 ). 	e.g. 	pM 	: 	picomolar 

A s-emitting radioactive isotope of phosphorus 

pCp 	: Cytidine 3', 5'-bisphosphate 

PEG 	: Polyethylene-glycol 

pH 	: Hydrogen ion concentration - log100  

RNA 	: Ribonucleic acid 

RNase 	: Ribonuclease 

rpm 	: Revolutions per minute 

rRNA 	: Ribosomal 	ribonucleic acid 

.s 	: Second (time) 

A s-emitting radioactive isotope of sulphur 

SDS 	: Sodium dodecyl 	sulphate 

I 	: Thymidine 
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TCA 	: Tricholoro acetic acid 

TEMED 	: N, N, N', N'-Tetramethyl-ethylenediamine 

Tr is 2-Amino-2-hydroxymethyl -propane-i ,3-di ol 

tRNA 	: Transfer ribonucleic acid 

Tween 20 Polyoxyethylene(20)-sorbitan-monolaurate 

U 	: Uracil 

U.V. 	: Ultra-violet light 

V Volt 

v/v 	: Volume per unit volume 

w/v 	: Weight per unit volume 

micro (10-6).  e.g. ul : microlitre 
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STANDARD AMINO ACID ABBREVIATIONS 

A 
	

Alanine 

C 
	

Cysteine 

U 
	

Aspartic acid 

E 
	

Glutamic acid 

F 
	

Phenyl al ani ne 

G 
	

Glycine 

H 
	

Histidine 

I 
	

Iso] eucine 

K 
	

Lysine 

1 
	

Leucine 

M 
	

Methionine 

N 
	

Asparagine 

p 
	

Proline 

Q 
	

Glutamine 

R 
	

Arginine 

S 
	

Serine 

T 
	

Threonine 

V 
	

Valine 

w 	Tryptophan 

x 	Any amino acid 

V 
	

Tyrosine 
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The first reference to epidemic jaundice has been ascribed to 

Hippocrates (460-375 BC). 	Many epidemics have been described since. 

However, it was not until 1940 that epidemic jaundice was found to be 

caused by inflammation of the liver, i.e. hepatitis. 	A virus was 

later discovered by Blumberg to be the causative agent of this severe 

form of hepatitis (Blumberg, et al., 1967). This virus is now known 

as Hepatitis B virus (HBV). 

Evidence of infection with HBV has been obtained in every 

population in the world irrespective of geographical location, but the 

prevalence of HBV infection varies according to the region of the world 

(Fig.1.1a). In many African and Asian countries infection is almost 

universal. 	In South America, North Africa, Middle East and South 

Eastern Europe around 1%-5% of the population is infected while the 

lowest incidence of HBV infection (0.3% of the population) is found in 

the developed countries of Western Europe, U.S.A., Canada, Australia, 

New Zealand and the Scandinavian countries. 

1.1. The Virus 

Three distinct structures can be consistently detected in the 

serum of HBV individuals infected with HBV: 	a) small spherical 

particles approximately 22rim in diameter, 	b) tubular structures that 

are approximately 22nm in diameter and vary in length, and c) enveloped 

particles with a diameter of approximately 42nm (Fig.1.1b). 	This 42nm 

enveloped particle was later shown to be the infectious agent (also 

known as the Dane particle). 	It possesses an inner nucleocapsid 

structure, approximately 28nm in diameter, which contains the genetic 

information of the virus (a partially double-stranded, partially single 

strand circular DNA genome), and an endogenous polymerase activity 

(Fig.1.1c). 
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(Robinson 1977, Kaplan et al., 1973). 	The smaller particles and 

tubular structures associated with infection contain no viral genetic 

material and result from the over-production, during infection, of the 

viral coat proteins which subsequently aggregate to form these 

structures. 

1.2 Components of the Virus Particle 

1.2.1 	The envelope and surface structure. 

The virion is surrounded by an envelope, which is proposed to 

originate from the endoplasmic reticulum (Persing et al., 1986). The 

surface antigen protein and the glycoproteins are embedded in the lipid 

bil ayer. 

The three surface proteins of the virion, and of the spherical and 

tubular structures are pre Si (p39), pre S2 (p31) and the major surface 

protein (p24). 	These 3 proteins share the same carboxy terminus but 

have different amino termini reflecting the different translational 

start sites used within the surface ORE, which has 3 inframe AUG 

initiation codons at the beginning of the surface gene (Fig.1.2a). The 

distribution of these 3 proteins is not equal among the circulating 

forms of HB5Ag. The pre Si protein is found in higher abundance in 

viral particles and filaments than in the more numerous 22nm subviral 

particles, while the converse is true of the more abundant preS2 and S 

proteins. These findings suggest that pre Si determinants may be 

important in virus assembly and/or infectivity (Persing et al., 1987). 

The major surface protein is 226 amino acids in length. 	It has two 

forms; a protein of 24kd (p24) and a glycosylated form with a molecular 

weight of 27kd (GP27). 	The latter possesses a complex N-linked glycan 

at ASN146. HBsAg is an extremely hydrophobic molecule rich in cysteine 
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FIGURE 1.2(a) 	Structure of the HBV surface antigen showing 

the location and sizes of the three major domains 

(Harrison et al., 1986). 

FIGURE 1.2(b) 	The genome of HBV. 	Heavy lines denote the DNA 

strands, the broken line showing the region of variable 

length of the short strand. 	Arrows represent the four 

open reading frames (as coding sequences) with the numbers 

of initiation and termination triplets in the system 

adopted by Pasek et al., (1979). 
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and praline residues. 	The transmembrane region of the protein is 

between amino acid residues 80-100 (Valenzuela et al., 1982). The 

central part of the protein contains 2 hydrophilic domains at 

positions 45-80 and 110-150, the latter region containing the main 

group epitope and subtype determinants. 	1-IBsAg is a conformational 

antigen, the dimer linked by disulphide bridges representing the 

structural unit that bears full HBsAg antigenicity (Tiollais et al., 

1985). 

The pre S2 protein is 281 amino acids long with a molecular weight 

of 31kd (p31) composed of the 24kd surface protein and an additional 55 

amino acids of the pre S region. 	It can undergo two types of 

glycosylation to produce either GP33 which has an additional glycan 

unit at residue 4 or GP36 which has a second additional glycan attached 

near the amino terminus. 	Both glycosylated forms also contain the 

glycan that occurs at ASN146 in GP27 (Machida et al., 1983). 	An 

immunodominant epitope resides on the hydrophillic 55 amino acid region 

of the pre S2 protein and antibodies which react with this determinant 

have been found in both humans and chimpanzees recovering from HBV 

infection (Neurath et al., 1985). 

The pre S protein is composed of the pre Si, pre S2 and surface 

region. The length of the protein varies according to the subtype of 

virus. 	It can be either 389 or 400 amino acids long and with a 

corresponding molecular weight of 39kd (p39) or 42kd which represents 

the glycosylated form (Tiollias et al., 1985). 	The most variable 

region between hepadna viruses occurs at the N-terminal region of the 

pre Si protein, and has been implicated in attachment of FIBV to 

hepatocytes (Neurath et a]., 1985). 
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1.2.2 	The Nucleocapsid 

The nucleocapsid of the virus encloses the viral DNA, and has 

associated with it the DNA polymerase activity and a protein kinase 

activity (Robinson 1975; Kaplan et al., 1973 and Albin and Robinson, 

1980). 

The nucleocapsid of the virion is composed of one major 

polypeptide, the core antigen HBcAg, p22, which has a molecular weight 

of 22kd. 	The deduced polypeptide sequence of the core gene is 

interesting as the carboxy terminal region (residues 150-183) has 

extensive homology with protamines; 16 out of 34 amino acids are 

arginines 	(Pasek et al., 1979). 	This feature infers that the C- 

terminal region binds the HBV DNA within the nucleocapsid while the 

rest of the protein participates in other structural roles. 	The 

core protein contains four cysteine residues with the potential for 

both intra- and inter-molecular disulphide bridge formation, which 

offers a possible explanation for some of the higher molecular weight 

values observed for core antigen. 	The major core protein p22 is also 

phosphorylated by the protein kinase associated with the nucleocapsid. 

Determination of the complete viral DNA sequence revealed the presence 

of a second inframe initiation site 87 nucleotides upstream from the 

initiating AUG of the major core protein. This region, known now as the 

pre core region,encodes a largely hydrophobic amino acid sequence 

resembling a peptide leader sequence (Pasek et al., 1979). 	This was 

shown to be cleaved after synthesis of the pre core protein in vitro 

(Enders et al., 1985). 	Expression studies in bacteria (Stahl et al., 

1982) and in eukaryotic cells (Will et a]., 1984) have shown that this 

region is not necessary for the production of the core antigen or for 

assembly of core particles which are structurally and morphologically 



similar to the virus core particles (Cohen and Richmond,1982), although 

these core particles have not been shown to interact with other viral 

components in the assembly of virus particles. 

In the sera of infected patients there is no circulating core 

antigen. 	There is, however, a soluble antigen distinct from the 

surface and core antigen known as the HBeAg. 	The origin of this 

antigen was unknown for a long time.The presence of HBeAg was not 

detected on the surface of the virion and anti HBeAg was shown not to 

precipitate the virions (Takahashi et al., 1979). However, when the 

nucleocapsid of the virion was treated with either proteolytic enzymes 

or SDS, the presence of HBeAg was detected. (Ohari et al., 1979). This 

demonstrates that HBeAg existes in a cryptic form on the nucleocapsid 

of the virions. 	The definitive experiment that showed that HBeAg was 

found on the core protein was performed by Mackay et al., (1981). 

They found that HBcAg produced by bacterial cells could be converted to 

HBeAg by treatment with proteolytic enzymes or reducing agents thereby 

showing HBeA9 is a cryptic form of HBcAg. 	Two distinct e epitopes 

have been localized on the HBcAg polypeptides which are exposed when 

the molecule is unfolded (Ferns and Tedder, 1986). These are called 

HBeA9/1 and HBeAg/2. 

HBeAg resides on a polypeptide of 15.5kd (Takahashi et al., 1979). 

Amino acid sequencing of the C-terminal sequence revealed that the C-

terminus of this protein lies 33 amino acids from the carboxy end of 

the major core polypeptide (Tiollais et al., 1985). Miller (1977) 

proposed that HBeAg may be produced by proteolytic self-cleavage 

of the core protein as a protease-like amino acid sequence was 

identified at the amino terminus of the core sequence. As well as the 

two HBeAg epitopes in this polypeptide there is also a distinct epitope 
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for the core antigen. 

HBeAg in the serum occurs either as a 15.5kd pol,ypeptide or in 

association with IgG. 	Analyses of HBeAg purified from the Dane 

particles and the serum have shown that they are practically identical 

in amino acid composition and antigenic determinants (Takahashi et al., 

1979). 	Despite their close relationship, HBeAg has been accepted as 

an entity separate from HBcAg since HBeAg may be detected in sera that 

contain anti-FIBcAg in high titres. 	High levels of HBeAg are accepted 

as an indication of high titres of virions and of relative infectivity 

(Zuckerman,1982). 

HBe antigen is postulated to be secreted from the infected cells 

via the pre core region. Ou and Rutter (1985) expressed the core 

protein with and without the pre core region in eukaryotic cells, and 

showed that the pre-core region is not required for expression 

of core antigen or HBe antigen. 	However, it is required for the 

secretion of HBeAg. 

The nucleocapsid core also contains a DNA polymerase activity 

(Kaplan et al., 1973). 	This DNA polymease will fill in the single- 

stranded gap in the viral genome in vitro when supplied with deoxy- 

nucleotide triphosphates (dNTP). 	The origin of this polymerase has 

not yet been determined. 	Attempts to purify the polymerase from the 

virus particle have failed and comparative studies of the properties of 

the HBV and mammalian polymerases are inconclusive (Hirschman and 

Garfinkel, 1977(b); Hess et al., 1981; Goto et al., 1984). 

An uncharacterized protein is bound to the 5' terminus of the long 

strand (Gerlich and Robinson, 1980) which has been proposed to be 

encoded by the X gene. 	Recent experiments have shown that this gene 

is expressed by the virus and antibodies directed against it are 



produced during HBV infection. (Gough and Murray 1982, Pugh et al., 

1986; Moriarty et al., 1985; Kay et al., 1985, Meyers et al., 1986). 

Although these experiments have demonstrated that the virus uses this 

gene, its function remains unknown. 

1.3 Structure of the Viral Genome and its Genetic Organisation 

HBV is the prototype of a family of viruses called Hepadnaviruses. 

Other members of this family include: Woodchuck Hepatitis Virus (WHV) 

(Summers et al., 1978), Ground Squirrel Hepatitis Virus (GSHV) (Marion 

and Robinson, 1983), Duck Hepatitis B Virus (DHBV) (Mason et al., 

1980) and Tree Squirrel Hepatitis B Virus (THBV) (Feitelson, et al., 

1986). All viruses of the family have a narrow host range and are not 

readily propagated in cell culture. 	They possess a partially double- 

stranded, partially single-stranded circular DNA genome (see Fig.1.2b) 

(Marion et al., 1980). 	Neither strand is a covalently closed circle, 

but the circular configuration is maintained by a 5' complementary 

sequence at the termini of the two strands. 	By heating under the 

appropriate conditions, the circular genome can be converted to a 

linear form with single-stranded cohesive ends (Sattler and Robinson, 

1979). The single-stranded portion varies in length from approximately 

15-50% of the circle length with a preferred minimum length of 650-700. 

nucleotides. The shorter of the two strands has a fixed 5' terminus 

and a variable 3' terminus (Delius et al., 1983). In HBV the longer of 

the two strands is approximately 3200 nucleotides in length and has a 

nick at a unique site, with a protein bound at its 5' terminus (Gerlich 

and Robinson, 1980). At both sides of the cohesive ends there is an 

llbp direct repeat, DR1 and DR2. The nucleotide sequence of cloned HBV 

defined the major viral coding regions (Pasek et al., 1979). 	The 



organisation of the genetic information is compact, with four open 

reading frames (ORE) found in the longer of the two strands (minus 

strand). 	The assignment of the ORFs to the viral proteins was based 

on partial amino acid sequencing of purified HBsAg (Peterson et al., 

1977) and the expression of HBcAg in Escherichia coil (Burrell et al., 

1979). 	As the virion carries an endogenous polymerase (Kaplan et al., 

1973) and there is a long ORF coding for a protein that is the expected 

size for a polymerase, this has been assumed to be the polymerase gene. 

The last and smallest ORE is referred to as the X gene. 	The short 

strand has one small open reading frame but this is not conserved in 

all sub-types, or across the hepadna virus family. 

1.4 Mode of Transmission 

HBV is present in blood and other body fluids, including saliva, 

seminal fluids, menstrual and vaginal discharges. 	Transmission of 

infection has been associated with transfusion of contaminated blood, 

sexual intercourse, and the use of contaminated syringes and hypodermic 

needles. 	Transmission occurs through the inoculation of blood with 

either blood or body fluids contaminated with the virus. 	Infection 

has also been shown to be transmitted vertically, from infected mother 

to child shortly after birth (Gust and Crowe, 1986). 

The primary site of replication of HBV in the infected host is the 

liver. However, in both ducks and humans infected with DHBV and HBV 

respectively, all forms of viral DNA and RNA which are characteristic 

of active synthesis of the virus have also been found in the pancreas 

and kidneys (Halpern et al., 1983, Dejean et al., 1984). 
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1.5 Disease 

The incubation period of HBV varies from 14-180 days. 

There are two major forms of HBV infection; the first is short-

lived and is known as acute hepatitis; the second, chronic hepatitis, 

is defined as a persistent infection (Zuckerman, 1982). 

An acute infection with HBV is marked by the appearance of the 

following in the serum: surface antigen appears first (see Fig.1.3a), 

followed by the viral polymerase activity and the e antigen. 

Detection of these in the serum precedes an increase in the level of 

amino transferase and the development of jaundice. Antibodies against 

core antigen can be detected 2-4 weeks after the appearance of surface 

antigen and is followed by the production of antibodies against e 

antigen and finally, antibodies against surface antigen (Burrell, et 

al., 1980). 

Chronic hepatitis (carrier state) develops from acute hepatitis 

in approximately 10% of infected adults and 98% of infected new-born 

children (see Fig.1.3b) (Lever and Thomas, 1986). 	This form of 

infection is characterised by the persistence of surface antigen in the 

serum and absence of antibodies against surface antigen (Floofnagle et 

al., 1973). The carrier state can be life-long and is associated with 

liver damage, ranging from minor changes in the nuclei of hepatocytes 

to chronic persistent hepatitis (CPH), chronic active hepatitis (CAH) 

and cirrhosis (Wright, 1980). 	In total, 50% of carriers will 

die of a liver-related disease and 5% will develop primary hepato-

cellular carcinoma (Lever and Thomas, 1986). 

Within the population, there are well defined groups which have 

a tendency to develop chronic infection. 	These 'risk' groups include 

the following: 
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those infected at a young age, and those who suffer from natural or 

acquired immune deficiencies. 	Figures have also revealed that males 

are more likely than females to develop chronic hepatitis, the ratio 

of male to female carriers being 2:1 (Beasley and Hiwang, 1984). 

Sero-epidemiological surveys reveal that in the world today there 

are at least 200 million carriers of Hepatitis B (Zuckermann, 1982). 

These carriers represent a serious medical problem as they act as a 

large reservoir for the infectious virus. 	Approaches to eradicate 

this virus require an understanding of its life cycle at a molecular 

level. 	However, progress has been hindered until recently by the lack 

of a cell culture system for HBV. 	Nevertheless, some of the basic 

strategies employed by the virus during its life cycle are now 

understood and are discussed below. 

1.6 Life Cycle of the virus 

1.6.1 	Attachment and Entry 

The first step in the life cycle of HBV is the attachment of the 

virus to the hepatocyte. 	Several theories have been proposed to 

explain the mechanism of attachment. 

It was shown by several groups that the 55 amino acids at the N-

terminus of the pre S2 protein have the capacity to bind polymerised 

human serum albumin (pHSA). 	This protein was shown to bind only 

polymerised albumin from animals susceptible to HBV. (Machida et al., 

1983; Tiollais et al., 1985). 	It was also found that hepatocytes 

have the ability to bind pHSA (Machida et al., 1983). 	Hence it was 

proposed that HBV attaches to the hepatocyte via a polymeric albumin 

bridge, and the HBV polyalbumin complex is then internalised by 

endocytosi s. 
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Recently, however, Ishihara et al., 1987 have demonstrated that 

the interaction between HBsAg particles and pHSA is inhibited by 

physiological concentrations of mature serum albumin. Also, Neurath et 

al., 1985 found that antibodies to pHSA did not affect binding of HBsAg 

(HBV) to a human hepatocyte cell line. 	These latter results indicate 

that the ability of pre S2 to bind to pHSA may not play a role in virus 

uptake as has previously been suggested. Neurath et al., 1986, showed 

that antibodies to the pre S region, but not to the surface region, 

inhibited the binding of HBV to Hep G2 cells (human hepatoma cells), 

indicating that the pre S region may be essential for recognition of 

the Hep G2 cell receptor. 	Further investigation, using synthetic 

peptides from pre Si and pre S2 regions, showed that the antisera 

against synthetic peptides from pre Si region very strongly inhibited 

binding of HBV, while antisera to synthetic peptides from pre S2 

inhibited binding by only 50%. 	This would suggest that pre Si has a 

region essential for HBV binding hepatocytes while pre S2 sequence has 

only an ancilliary role in HBV binding to the cells. 

Interestingly, there is very little amino acid sequence homology 

between pre S regions of the different hepadna viruses. In contrast, 

the major surface gene between these viruses is very well conserved. 

This may be the region that affords the tight host specificity within 

the hepadna virus family. At present some groups are trying to make 

viable recombinants between GSHV and WHBV which will be very useful in 

discovering the region of the virus responsible for species specificity. 

Once the virus is attached to the surface of the hepatocyte, 

penetration of the virus could occur via two mechanisms. 	Firstly, by 

endocytosis of intact virions with subsequent release from endosomes, 

or secondly, by fusion of the viral envelope and liver cell plasma 
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membrane with penetration of the nucleocapsid into the cytoplasm. 	As 

yet, no evidence supporting either mechanism exists. 

1.6.2 	Transcription 

After the virus enters the hepatocyte the DNA reaches the nucleus 

where transcription can occur. 	The template for transcription is a 

supercoiled viral genome produced by conversion of the partially 

double-stranded DNA into a supercoiled form by the endogenous DNA 

polymerase activity (Kaplan et al., 1973). 	The genomic structure of 

the virus with the single-stranded region and the nick has been shown 

to be unnecessary for initiating HBV infection. 	This was demonstrated 

by Catteneo et al., (1984a) who were able to initiate acute viral 

hepatitis in chimpanzees when they injected liver cells transformed 

with the cloned double-stranded FIBV molecules directly into their 

livers. 

The mammalian hepadna viruses contain coding information for at 

least seven distinct proteins. 	The HBV sequence provides some 

information on potential transcription signals such as 5'-TATTAAA-3' 

boxes and AATAAA directed polyadenyJation sites. 	However, these are 

not sufficient to define the actual viral transcription units. 	The 

exact location of HBV promoters has been hampered by the lack of a 

tissue culture system for the propagation of HBV although the recent 

demonstration of the production of virus in transformed hepatoma cell 

lines could solve this problem (Surrea et al., 1986). Various 

approaches, including the transcription of HBV DNA in cell-free 

transcription systems and the introduction into mammalian cells of HBV 

DNA via viral vectors or by co-transformation have led to an increased 

understanding of the expression of HBV and the tentative identification 

of some promoters. 
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The first attempts to analyse the expression of HBsAg were 

performed in cell lines that were found to express the surface antigen. 

One particular cell line PLC/PRF/5 (Alexander et al., 1976), has been 

extensively used to analyse expression of the surface gene, a 2.3 kb 

HBV-specific minus strand transcript, which hybridised to the HBsAg 

gene, has been assigned as the HBsAg messenger RNA (mRNA) (Edman et 

al., 1980; Pourcel et al., 1982; Chakrabarty et al., 1980). 	Further 

analysis has shown that two classes of mRNA exist for HB5Ag. One class 

initiates upstream of pre Si and can encode the 39 kd pre Si protein. 

The other initiates within the pre S2 region and can encode both the 

pre S2 and major surface proteins (Fig.1.4). 

Gough and Murray (1982) and Pourcel et al., (1982) using permanent 

fibroblast cell lines transformed with HBV, mapped the 5'initiation 

site of 1-IBsAg mRNA and found that it initiated upstream of the pre Si 

region. 	The results from in vitro experiments agreed with these 

results and showed that 1-IBsAg mRNA initiated upstream of the pre Si 

region between nucleotides 900-910 in accordance with the numbering 

system of Pasek et ai.,(1979), Schaul et ai.,(1983), Rail et al., 1983) 

(Fig.1.4). This mRNA has the potential to produce the 39kd pre Si 

protein. 	Sequence analysis of the region upstream from this mRNA 

start site identified a consensus 5'-TATTAAA-3' box at position 876 

which could form part of the promoter which expressed this mRNA. 

However, mapping experiments performed by Cattaneo et al.,(1983) with 

HBsAg mRNA isolated from infected chimpanzee livers and from rat cell 

lines transformed with HBV disagreed with the above findings suggesting 

that the 5' initiation start site for HBsAg mRNA was at nucleotide 

position 1256, i.e. within the pre S2 region (Fig.1.4). Standring et 

al.,(1984), Enders et al.,(1985) and Buscher et al., (1985), using HBV, 
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GSHV and DHBV systems respectively, all showed the presence of a mRNA 

species initiating within the pre S2 region and also demonstrated that 

this mRNA displayed 5' heterogeneity. 	This mRNA could produce the pre 

S2 (p31).Upstream from this 5' start site there were no TATA box-like 

sequences. However, at position 1215 there is a sequence which bears 

strong homology with the late promoter of Simian virus 40. This 

promoter controls the transcription of a major structural protein of 

5V40 and interestingly also exhibits 5' heterogeneity for initiation of 

transcription (Brady, 1982). Perhaps these regions represent an 

unusual viral control sequence. 

The fact that the 5' heterogeneity exhibited by the HB5Ag mRNA, 

initiating around the p31 AUG. occurs in all systems and for all 

hepadna viruses studied tends to support the theory that variability 

in initiation of this mRNA has functional significance for hepadna 

virus gene expression. 

Siddiqui et al., (1987), by putting the promoter sequences 

upstream of the bacterial chioramphenicol acetyl transferase (CAT) 

marker gene and measuring the relative levels of CAT produced, showed 

that both the promoters described for HBsAg mRNA are equally active and 

show little cellular specificity. 	However, these results may not 

reflect the relative activities of these promoters in the normal 

infected cell as the promoters have been separated from their normal 

products and other viral gene products which may exert control on these 

promoters. 	This is supported by the findings of Ou and Rutter (1985) 

who found that only 2% of HBsAg niRNA isolated from PLC/PRF/5 originated 

upstream of pre Si which may indicate that it is a weaker or more 

controlled promoter than the promoter at 1215. 
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In summary, there appear to be two distinct promoter regions 

associated with the HBsAg gene; one positioned upstream from the 

second conserved ATG which could produce the major surface and pre S2 

protein (1215), the other lies upstream of pre Si (876) and could 

produce the pre Si protein. 

It is now generally accepted that the mRNA for the surface antigen 

is not spliced although Simonsen and Levinson (1983) and Cattaneo et 

al., (1983) have reported the presence of a spliced species of HBsAg 

mRNA, but these are believed to be artefacts of the system used. 

Both classes of HB5Ag mRNA terminate and are polyadenylated 

approximately 20 nucleotides downstream from a variant polyadenylation 

signal at nucleotide position 16 TATAAA 21 which is situated within the 

core gene (Cattaneo et al., 1983). 

A second class of HBV specific poly A+ minus strand transcripts 

has also been described in both in vitro and in vivo experiments. 

These transcripts are greater than genomic length. 	Rall et al., 

(1983) showed, using in vivo and in vitro experiments, that the 5' 

initiation site of this mRNA mapped upstream of the core gene. 	Gough 

(1983), using rat cells transformed with FIBV DNA, proved that these 

large mRNAs are required for HBcAg and HBeAg expression as cells 

without these messages did not express the core protein. 	The large 

mRNAs were present in the livers of ducks, humans and ground squirrels 

infected with DHBV, HBV and GSI-IV respectively (Enders et al., 1985; 

Cattaneo et al., 1983, 1984; Buscher et al., 1985). 	More detailed 

analysis using S 1 nuclease and primer extension experiments revealed 

that this message covers the complete genome plus an additional 

sequence of 120 nucleotides. 	This message also displays the same 5' 

heterogeneity as the surface messenger RNA (Yaginuma et al., 1987). 5' 
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mapping has revealed that GSHV, DHBV and HBV transcripts from infected 

cells, have three core-specific messenger RNA initiation sites 

distributed over a 30-nucleotide region (Enders et al., 1985, Moroy et 

al., 1985 and Yaginuma et al., 1987). 	In the case of HBV the mRNAs 

were shown to initiate at nucleotide 3063 and 3072 (upstream of the 

pre-core region and therefore able to express the pre-core region) and 

at 3099 downstream of the pre-core initiating AUG, but still has the 

capability to code for mature core protein. Zelent et al., (1987) 

demonstrated that without the latter message no core protein was 

produced even when the larger message was present. It has also been 

proposed that the larger messenger RNAs are used as a template for the 

synthesis of viral minus strands as part of the replicative process. 

The production of these larger than genome messages would require 

read through of the polyadenylation and termination signals within the 

core gene during the first round of transcription with termination and 

polyadenylation occurring during the second round of transcription. 

This is similar to the strategy adopted by polyoma virus to transcribe 

its late messenger RNA5 (Tooze et al., 1973). 

No mRNA has been detected that contains the first AUG codon in the 

polymerase frame as its 5' proximal AUG indicating that such a 

transcript may only be present in very low amounts if at all. 

Translation of the polymerase frame may start at an internal AUG of the 

core mRNA (and/or longer mRNA) as is known for other polycistronic 

mRNAs (Kozak, 1986). 	Alternatively, the polymerase may be translated 

as a fusion protein with the core protein. 	This would involve a 

frameshift during translation and the subsequent cleavage of the 

polymerase from the polyprotein precursor. 	Such strategies are used 

for the production of the polymerase gene from retroviruses (Beveren et 



al., 1985). 	Will et a] (1986) have inferred the presence of a 

polymerase-core fusion in a hepatoma carcinoma. As discussed 

previously, the NH 2  terminus of the core protein has protease-like 

sequences which may be active in the cleavage of HBcAg to FIBeAg. 	This 

may also act in the processing of core-polymerase fusion proteins 

(Miller, 1987). 	It was postulated that due to the absence of the core 

protein NH2 terminus in the core-polymerase fusion protein described 

by Will et al., (1986), the viral protease is absent and thus fusion 

polyproteins would be able to accumulate. 

The presence of a small poly(A)+  minus strand message, which 

hybridises specifically to the X region in cell lines transformed with 

HBV, has been described by Gough (1983) and Treinin and Laub (1987), 

showed that this message is produced from its own independent promoter 

positioned within the region 2524-2629 (Treinin and Laub, 1987). 

The 51  end of this messenger displayed heterogeneity with 

multiple start sites at 2590, 2612 and 2620. 	The X gene promoter, 

like the internal I-IBV surface promoter, lacks a TATA box-like sequence. 

The discovery of a new promoter located upstream from the X ORE 

provides more evidence that these sequences represent a functional gene 

which is expressed from its own transcription unit. 

In summary, the two major classes of viral mRNA for the core and 

surface genes and the less abundant X message are unspliced, poly-

adenylated co-terminal and display 5' heterogeneous ends that encode 

proteins with different amino termini. 	Hence one could conclude that 

the heterogeneity displayed must have a functional significance for 

hepadna viral gene expression. 

These experiments have identified active promoters but they do not 

indicate how these promoters are regulated. 	The contrast between the 
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weak promoter activity in non-primate and non-hepatic cell types and 

the production of large amounts of core antigen during HBV infection 

in humans prompted the investigation of whether an HBV enhancer 

influences promoter activity. 

Using the CAT gene system, Shaul et al., (1985) defined a HBV 

transcriptional enhancer element. 	This enhancer element was located 

450 bp upstream of the HBcAg gene (at position 2279-2529) and was shown 

to increase the promoter activity of both the core and the X gene. The 

enhancer was shown to have strict host and tissue specificity (Jameel 

and Siddiqui, 1986) and was functional only in the liver cells of human 

origin. 	This enhancer activity functioned independently of HBV gene 

products present in the cell lines tested. 	From their data it could 

easily be assumed that some component present within the human liver 

cells is required to activate this enhancer. 	Using a nitrocellulose 

filter-binding assay and DNA5e I footprinting techniques, Shaul and 

Ben-Levey (1987) indeed found that specific liver cell nucleic proteins 

are bound to the enhancer and its adjacent sequence. 	Other DNA 

binding proteins have been discovered which modulate promoter activity 

by binding near the promoter, e.g. the SV40 large T antigen promoter 

(Dynan and Tijan, 1985). 	One particular factor, nuclear factor 1 

(NFl) is required for efficient activity of the S gene promoter which 

binds within the pre Si region. 	Standring et al., (1983) have shown 

that a short ORE (700 HBV) in the short strand is transcribed by RNA 

p01111 in an in vitro transcription system. 	This transcript could 

encode a polypeptide of 164 amino-acids starting with a methionine 

start codon. However, the sequence of theliollais group (Tiollais et 

a]., 1985) predicts an open reading frame truncated to 86 amino acids 

by an extra stop codon, while the equivalent reading frame in Woodchuck 
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virus contains no methionine start codon. 	Hence a protein encoding 

region appears unlikely for 700 HBV. As this RNA is complementary to 

the minus strand messenger RNA it may serve a regulatory or processing 

function. 

To determine whether hormonal or physiological conditions affect 

the expression of the HBV genome, Babinet et al., (1985), produced 

transgenic mice that had HBV DNA (except for the core gene) inserted 

into their genome. 	These mouse strains had high levels of HBsAg in 

their serum and HBV-specific mRNA in their livers. 	Analysing the 

amount of HBsAy and HBsAg mRNA at different times during development 

and maturation revealed that HBsAg expression varied. 	This variation 

was shown to be due to the direct effect of sex hormones on HBV 

expression as the levels rose and fell during development. 

Interestingly, it was found that in adult male mice, HBsAg levels were 

5-10 times higher than in adult females (Farza et al., 1987). 	The 

expression of HBsAg appears to be controlled at the transcriptional 

level as HBsAg mRNA levels rose, HBsAg production was increased but a 

more detailed analysis is required before this can be proven. The above 

results may explain at a molecular level epidemiological data which 

reveals that males have an increased risk of becoming a carrier of HBV 

than females have. (Beasley and Hiwang, 1984). 

In conclusion, hepadna viruses exploit the genetic information 

which is encoded in its small genome by using a mixture of 

heterogeneous transcription and translation initiation start signals to 

increase its coding capacity. 	HBV expression appears to be under 

strict specific cellular control and is regulated by both trans-

activating proteins and hormonal control. 
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1.6.3 	Replication 

Once HBV has expressed the necessary viral proteins, the virus can 

begin to replicate. 

Summers and Mason (1982) isolated viral core-like particles from 

the cytoplasm of hepatocytes of ducks infected with DHBV. 	these 

particles were shown to incorporate deoxynucleoside triphosphates into 

DNA. 	This was found to be a different polymerase reaction from that 

observed with the mature virions, as these particles synthesized the 

viral DNA minus strand as well as the plus strand. 	Plus strand and 

not minus strand synthesis was sensitive to actinomycin D which was 

consistent with plus strand synthesis from a DNA template and minus 

strand synthesis from an RNA template. 	Analysis of the products and 

template of liver cores at various times after infection revealed that 

the minus strand DNA was synthesised by copying viral RNA which was 

rapidly degraded behind the growing point, possibly by a ribonuclease 

H activity. 	Therefore, replication of DHBV involves a reverse trans- 

cription step. 	Evidence that this is a common mechanism for hepadna 

viral replication has come from analyses of DNA from HBV, WHy, DHBV and 

GSHV infected liver using specific hybridization probes. 	All these 

investigations revealed the presence of DNA or RNA intermediates of 

replication (Monjardino et al., 1982; Blum et al., 1983; Weiser et 

al., 1983; Mason et al., 1982). 	Miller et al., (1984) have also 

isolated cores from human livers that appear to synthesise HBV minus 

strands from an RNA template and hence resemble those particles 

isolated from duck livers. 

The poly(A) minus strand transcript found in the liver core 

particles is known as the pre-genome, it is longer than the minus 

strand, and has a terminal redundancy of approximately 120 nucleotides. 
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The template for transcription of this pre-genome is most likely to be 

the supercoiled viral genome present in the infected hepatocyte. As 

neither chimpanzees infected with HBV, nor ducks infected with DFIBV 

have been shown to exhibit integrated viral sequences as an immediate 

consequence of infection, it is assumed that unlike retroviruses, 

hepadna viruses do not require an integration step for replication. 

Once the full length pre-genome is transcribed, it is proposed 

that it is packaged with the endogenous polymerase within core-like 

structures referred to by Summers and Mason (1982), as immature cores 

(Fig .1.5) 

The RNA might be packaged before reverse transcription for several 

reasons. 	Since the pre-genome RNA serves as both a template for 

reverse transcription and as a rnRNA for the core antigen and since it 

is unlikely that both processes can occur simultaneously on one strand, 

it may be more efficient to separate the mRNA required for viral 

replication from the pool of other messengers. 	Reverse transcription 

may also be more efficient in a compartment separated from the 

cytoplasm as it allows close association of template and enzyme. 

Analysis of the 5' ends of packaged RNA revealed which of the 

three large mRNAs transcribed from the core promoter is used as the 

template for reverse transcription. This showed that the shortest core 

message, which initiates within the pre-core region, is present within 

the core particles while the other two longer messages are found 

associated with polyribosomes (Yaginuma et a]., 1987; Enders et a]., 

1987). 	These findings suggest that there exists a packaging system 

capable of specifically selecting which mRNA species is packaged-based 

on different 5' termini. 

Using primer extension techniques on deproteinised DNA, the 5' end 
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of the minus strand was mapped to the direct repeat DR1 (Seeger et al., 

1986; Will et a]., 1987). 	However, as there are two copies of DR1 in 

the pre-genome, initiation could occur either at the 3' end or the 5' 

end of the pre-genome (see Fig.1.5). Initiation at the 5' end would 

allow only synthesis of a few nucleotides of minus strand DNA and then 

require an early template switch, whereas initiation at the 3' end 

would not require any switch for a complete DNA minus strand to be 

synthesised. Reverse transcription could proceed up to the 5' end of 

the pre-genome and produce a full length DNA minus strand. 	The latter 

possibility appears to occur as the minus strand seems to be terminated 

at the 5' end of of the template RNA (Will et al., 1987). The fact 

that even the shortest minus strands in infected livers (Weiser et al., 

1983), or in isolated core particles (Molner-Kimber et a]., 1984) are 

linked to protein, suggests that this protein may prime minus strand 

synthesis. 	This protein has not been characterised but it may be the 

same protein attached to the 5' end of the minus strand in mature 

virions. 	Very little plus strand synthesis is seen until the minus 

strand is completed, indicating that plus strand uses the minus strand 

for its template. 	The 5' end of DHBV and HBV plus strand has been 

shown to map to the 5' side of DR2 (Will et a]., 1987; Seeger et a]., 

1986). Lien et a]., 1986 demonstrated that a small 20bp RNA is 

covalently linked to the 5' end of DHBV plus strand which suggests that 

this is the primer for second strand synthesis. 	Sequencing of the 

oligoribonuc]eotide showed that this RNA is derived from the 5' end of 

the pre-genome RNA which contains the DR1 sequence. It was therefore 

proposed that an oligomer containing DR1 from the 5' end of the pre-

genomic RNA was translocated to the DR2 site of the minus strand DNA to 

24 



prime synthesis of plus strand DNA (See Fig.1.5). After transfer of the 

primer to DR2, DNA plus strand synthesis can only proceed up to the 3 

end of the DNA minus strand. 	For further elongation, a template 

switch has to take place which could use the short terminal redundancy 

of the minus strand. This would allow an intramolecular template switch 

to take place resulting in the circular DNA conformation of the 

HBV genome. 	The DNA plus strand could then be elongated. 	The 

initiation of plus strand synthesis may cause a structural change in 

the core particles that allows it to be packaged regardless of whether 

the plus strand is completed. 	Following packaging, the nucleocapsid 

is coated with surface Ag from the host cell. 

1.6.4 	Assembly and Export of the Virus 

At some point before the completion of plus strand synthesis the 

nucleocapsid interacts with the surface antigen and is exported from 

the infected cell. 	The pre-core region of the core protein may be 

important for this. 	Experiments by Ou et al., (1986) have shown that 

the pre-core region apparently facilitates the transportation of the 

core antigen from the cytoplasm into the endoplasmic reticulum where 

interaction between the surface coat and its nucleocapsid occurs. 

The pre Si region has also been implicated in viral morphogenesis. 

Pre Si proteins, unlike the pre S2 and. surface proteins, are not 

secreted into the culture medium despite the presence of secretory 

information (Persing et al., 1986). 	Furthermore, when surface and pre 

Si proteins are synthesised together, secretion of the surface proteins 

is strongly and specifically inhibited. 	Persing et al., (1987) found 

that the pre Si protein but not the other surface proteins have been 

modified at the N-terminus by the addition of myristic acids. 	They 
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postulated that myristillation may anchor the pre Si protein in the 

endoplasmic reticulum thus preventing it from being spontaneously 

secreted and thereby allowing it to interact with the nucleocapsid. 

However, by what mechanism the pre Si protein inhibits HBsAg secretion 

remains unknown. 	As yet the exact mechanism of viral assembly is not 

understood but perhaps experiments in which both the pre-core, core, 

pre Si, pre S2 and surface proteins are expressed in hepatoma cell 

lines will allow some insight into the interactions between the viral 

components. 	Using this system it will also be possible to use site- 

directed mutagenesis and deletion studies to gain a better 

understanding of viral morphogenesis. 

1.6.5 	Integration 

A number of hepatoma cell lines and liver biopsies from chronic 

carrier patients have been analysed and found to contain integrated 

HBV DNA in their genome (Chakrabarty et al., 1980; Edman et al., 

1980). However, as neither chimpanzees infected with HBV nor ducks 

infected with DHBV have been shown to contain integrated viral 

sequences as an immediate consequence of infection, it would appear 

that an integration step is not an essential requirement for the 

propagation of hepadna viruses. 	It is more likely that integration of 

DNA is a consequence of high levels of viral sequences present in the 

cell for long periods of time. 

1.7 HBV and Hepatocellular Carcinoma 

HBV carriers have been shown to be at a much greater risk of 

developing primary hepatocellular carcinoma (HCC) compared to non-

carriers. In contrast to the very good epidemiological data linking 
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I-IBV with liver cancer, molecular biological investigations have not 

revealed any particular function or effect of HBV infection which could 

prove that HBV causes liver cancer. 

Evidence for the integration of HBV DNA into the genomic DNA in 

the livers of carrier patients and HCC patients originally led to the 

speculation that integration of HBV sequences may be the catalyst for 

oncogenesis. 	However, from extensive analysis of cell lines 

particularly from the human hepatoma cell line PLC/PRF/5 (Ziemer et 

al., 1985) of the integrated sequences it was concluded that there was 

no specificity in either HBV DNA or host DNA at or near the integration 

site. 

It was therefore proposed that HBV might encode a protein with 

oncogenic potential analogous to retroviruses. 	These viruses are 

known to assimilate pieces of cellular genes, oncogenes, into their 

genonies, which have transforming functions. If this were the case with 

HBV, it would mean that one particular gene would have to be present 

in all the hepatomas investigated. 	The only HBV gene that fulfils 

these criteria is the gene for HBsAg. 	However, it seems extremely 

unlikely that HBsAg has oncogenic activity as it is expressed for many 

years by chronic carriers without producing tumours. Moriarty et al., 

(1985) proposed that the X gene may be an oncogene as they found that 

patients with HCC had a high titre of antibody to its gene product 

although recent evidence reported by Weber et al., (1987) queries these 

findings. 	Using computer-assisted DNA and protein sequence analyses, 

Miller and Robinson (1986), found that both the X gene and the enhancer 

region have the same codon usage as genes from eukaryotic cells, in 

contrast with the other hepadna viral genes which clearly share the 
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same codon usage for virus genes (Siddiqui et al., 1987) thus 

indicating that perhaps both the enhancer and the X gene, like the 

retroviral oncogenes, were acquired recently from the host cell. It is 

still unlikely that the HBV has an oncogenic function as viruses that 

carry oncogenes result in rapid tumour formation in contrast to I-ICC 

which develops over a long period, often taking many years. 

Another possibility is that one of the FIBV genes may have a 

transactivating function capable of activating cellular genes which may 

cause tumour formation over a long period in a similar fashion to the 

pX gene of HIV I, II and III. P. Hofschneider (personal communication) 

has performed experiments indicating that the X gene of I-IBV has trans.. 

activating functions. 	Interestingly, like pX, this gene is also 

located at the 3' end of the genome (Miller and Robinson, 1986). 

Alternatively, perhaps the presence of HBV DNA within the genome may 

cause enhanced mutability in the region of the inserted DNA, or perhaps 

the viral promoters and/or the enhancer may cause regulatory genes to 

be switched on. At this stage one can only speculate how HBV may induce 

tumour formation. It may be possible that the progression from chronic 

liver disease to liver cancer is due to the continual presence of 

foreign material in the body which eventually wears down the immune 

system such that the immune surveillance breaks down, no longer 

destroying the abnormal cells and thus allows them to grow and multiply. 

1.8 Approach to the Eradication of Hepatitis B 

HBV is still a major problem in the world. With the existence of 

over 200 million carriers world-wide. 	The effect of this virus and 

the suffering it causes, produces a very large burden both economically 

and medically on the social services. 	Several approaches have been 
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suggested to eradicate HBV and these fall roughly into two directions. 

Firstly, a successful vaccination programme to protect those people 

most at risk would interrupt the transmission cycle. Secondly, the 

development of suitable drugs to terminate the carrier state would 

destroy the large infectious reservoir for HBV. 	Research into both 

these areas has reached an advanced stage and is discussed below. 

1.8.1 	Vaccination 	In the developed world a limited programme of 

vaccination has been initiated for people in high risk groups. 	The 

vaccine presently used is a purified preparation of the 22nm particles 

isolated from the serum of infected individuals (Zuckerman, 1980). 

These particles are treated with heat and formalin and have been shown 

to be effective and safe. 	The vaccine has disadvantages as it relies 

upon a supply of infected human serum and requires very elaborate 

purification and safety checks. 	This makes it very costly to produce 

and is too expensive for Third World countries, which have the highest 

incidence of HBV, other types of vaccine have been investigated. 

Valenzuela et al., (1982) were the first of many groups to 

synthesise FIB5Ag gene in yeast. 	The HB5Ag purified from these yeast 

cells has been shown to be an effective vaccine (Murray et al., 1984) 

and is now commercially available. 

The use of live vaccines has also been explored. 	Vaccinia virus 

recombinants, which are able to produce FIBsAg, have been used in trials 

with chimpanzees and shown to almost completely protect chimpanzees 

from HBV (Smith et al., 1983). 	These trials indicate the feasibility 

of using a recombinant virus as a vaccine. 	The advantage of vaccinia 

virus recombinant vaccines include low cost and ease of administration 

all of which is critically important for the Third World. 	However, 
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vaccinia is known to have some adverse effects in some populations and 

its adoption is at present fraught with both technical and political 

problems 

Experiments performed by Milich et al (1985) and Neurath et al., 

(1985) have shown that epitopes residing on the pre S region elicit a 

very strong immune response. 	It was also found that if the pre S 

region is presented with HBsAg to animals that had previously not 

responded to HBsAg, antibodies were produced to both the major surface 

and pre S proteins. 	Therefore, the inclusion of the pre S region 

allowed the animal to be converted from a non-responder to a responder. 

As these regions are also known to be involved in hepatocyte receptor 

recognition, it has been proposed that the pre S region should be 

included in present HBV vaccines. 	However, recent reports suggest 

that patients in control studies make antibodies against their own 

livers (G. Better, personal communication). 

The low titre of HBV virus in carriers producing antibodies 

against HBeAg suggests that HBeAg may also be usefully incorporated 

into a vaccine. 	Murray et al., (1984) inoculated preparations of 

HBcAg and HBeAg into two chimpanzees. 	These were subsequently 

challenged with HBV. 	One was found to be partially protected and the 

other, which had low titres of HBeAg antibodies, was completely 

protected. Similar results were seen by Stephen et al., (1984). 	These 

results imply that antibodies to HBeAg and HBcAg protect the animals 

partly or completely from HBV infection. 	These antigens are thought 

to stimulate a cell-mediated response and may play a role in future 

vaccination programmes. 

Preliminary data from Zuckerman (1986) shows that vaccination has 

been successful in the interruption of HBV infection in some areas. 
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It will be interesting, when a more widespread vaccination campaign is 

undertaken to determine whether the levels of primary hepatocellular 

carcinoma fall along with reduction in the incidence of HBV infection. 

1.8.2 	Chemotherapy 

Several types of chemotherapy have been used to treat patients 

with chronic hepatitis; most of these use drugs which inhibit the 

endogenous DNA polymerase activity, which may act in inhibiting viral 

replication. 	Hess et al., (1981) showed that the arabinoside AraA, 

(vidarabine) a nucleoside analogue, inhibited DNA polymerase. 	In 

clinical trials of the drug, 40% of the patients treated serconverted 

from HBeAg positive to anti-HBe positive (Bassendine et al., 1981). 

However, in other studies the results were not as convincing though 

combined treatment with AraA and Leucocyte A Interferon did convert 

some chronic persistent patients from HBV DNA positive to HBV DNA 

negative (Scullard et al., 1981; Smith et al., 1983). 

Acyclovir which has been so successful with the herpes virus was 

also tried but although it initially decreased the titres of hepatitis 

DNA in the serum, as soon as treatment was stopped levels in the serum 

rose again (Weller et al., 1982). 

The use of a Interferon has shown some promising results in 

limited studies reported with 50% of treated patients showing loss of 

HBV DNA and HBeAg for prolonged follow-up periods (Thomas and Scully, 

1985). 

So far the most successful treatment reported is treatment with 

the steroid Prednisolon and then subsequent treatment with AraA or 

Interferon (Omata et al., 1985). 	This combined treatment appears to 

give a higher success rate for clearing the virus from the chronic 
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carrier's system. 	All of these treatments have a higher success rate 

if the patient is treated within two years of the onset of infection; 

This may reflect the ability to eliminate the virus from the patient 

before it can integrate into the host genome. 

As yet no universal treatment is employed in the treatment of 

chronic carriers. 	Although most of the drugs discussed are targeted 

against the endogenous polymerase, not enough is known about this 

enzyme as it has not yet proved possible to purify and completely 

characterise this endogenous polymerase. 	Perhaps when this polymerase 

has been more extensively analysed, it may be possible to develop 

better and more specific drugs, which could interfere with the enzyme's 

action. 

1.9 DNA Polymerase of HBV 

In 1972, Paul Kaplan and co-workers found that a DNA polymerase 

activity was present in the serum of hepatitis B carriers (Kaplan et 

al., 1973). 	Further investigation established that this polymerase 

activity was associated with the virions. Fractionation of the serum 

showed that this enzyme activity was found in the density range 

characteristic of Dane particles on a sucrose gradient, and after 

removal of the surface coat (with NP40), it was found within the 

density range of the core particles. 	Electron microscopy of these 

fractions revealed that the enzyme activity was co-sedimenting with 

the core particles. 	The DNA polymerase activity could be precipitated 

from the infected serum using antibodies to the surface antigen and 

after NP40 treatment using antibodies to the core antigen (Robinson and 

Greenman 1974). 

These findings were consistent with the DNA polymerase activity 

being a component of the nucleocapsid. 	The DNA polymerase reaction 
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was found to be dependent on the presence of magnesium and the four 

deoxynucleoside triphosphates. 	The inhibition of the enzyme activity 

by actinomycin D indicated that the template was DNA and not RNA. 

Several pieces of evidence pointed to not only the DNA polymerase 

activity being an internal component of the nucleocapsid but the 

template and the reaction product being so as well. 	Treatment with 

DNAse and RNAse had no effect on the template or the product. 

However, when these were extracted from the nucleocapsid and then 

treated with DNAse and RNAse, they were found to be completely degraded 

by DNAse but insensitive to RNAse. 	The addition of a wide variety of 

polynucleotides which are accepted as primer/templates by other DNA 

polymerases were not utilised by the endogenous polymerase activity, 

suggesting that either the enzyme could not utilise the templates or 

that the enzyme had no access to them. 

So what is the nature of the template and primer, and what is the 

structure of the product? 

To identify the primer for DNA synthesis Robinson and Lutwick 

(1976) examined the sedimentation of the virion DNA in alkali sucrose 

gradients after being labelled for very short reaction times. 	They 

found the radioactive DNA product was attached to a molecule with a 

sedimentation coefficient close to that of the double-stranded region 

of the circular molecule before the reaction. 	This suggested that the 

open strand of the circular DNA molecule serves as the primer for the 

DNA polymerase reaction rather than a smaller DNA or RNA primer. 

The amount of DNA synthesised during the endogenous DNA polymerase 

reaction has been determined using COT analysis, electron microscopy 

and variation in electrophoretic mobility (Lutwick and Robinson 1977; 

Hruska et al., 1977). 	This established that the DNA synthesised 
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corresponded to approximately a quarter of the viral genome. 	Summers 

et al., (1978) demonstrated that the reaction product corresponded to 

the filling in of the single-stranded gap. 	Using the reverse 

transcriptase from avian myoblastosis virus (AMy), and DNA extracted 

from Dane particles as a template in an in vitro polymerase reaction, 

it was shown that the nucleotides were incorporated in the same 

restriction fragments as in the in vivo polymerase reaction by the HBV 

associated enzyme (Summers et al., 1978). These fragments corresponded 

to the region of the single-stranded gap. 	In neither reaction did the 

filling in of the single-stranded gap produce a closed circular 

molecule as detected by Si sensitive sites. 

In conclusion, the hepatitis B particles have an endogenous DNA 

polymerase which uses the minus strand as the template to fill in the 

single-stranded gap. 	The biological advantage of a virus having a 

single-stranded gap is not clear. 

1.9.1 The Origin of the Endogenous DNA Polymerase 

The origin of the HBV associated DNA polyrnerase activity has not 

been established. The small size of the HBV genome originally led to 

the belief that the virus would not have the coding capacity to encode 

its own polymerase but instead would utilise the available eukaryotic 

polymerase. 	However, sequence analysis revealed the presence of a 

long open reading frame (L.ORF) coding for a protein with a predicted 

mol. wt. of 93kd, the expected size of a DNA polymerase (Pasek et a]., 

1979). 	The assignment of this L.ORF as the gene encoding the 

endogenous DNA polymerase and the characterisation of this polymerase 

has been difficult for two reasons. 	Firstly, attempts to purify the 

polymerase have been unsuccessful and so biochemical studies have been 
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restricted to purified virion particles, and secondly, since no cell 

culture system was available until very recently for HBV (Surrea et 

al., 1986), the source of the virus particles was limited to infected 

humans and chimpanzees. 	Despite these difficulties, however, the 

evidence for the DNA polymerase being encoded by the long ORF is now 

convincing. 

(a) The Long ORF 

The protein encoded by this open reading frame is within the size 

range expected for a DNA polymerase. 	The long ORE and the potential 

products encoded by it are highly conserved across the hepadna virus 

family. 	The size and the conserved nature of this gene leaves little 

doubt that it does have a coding function. 

Using computer-assisted protein sequence analysis, it was found 

that the predicted amino acid sequence of the long ORE contains regions 

of homology with retroviral reverse transcriptase but not with 

bacterial or eukaryotic polymerases (See Fig.1.6) thereby implying that 

this homology is indicative of a protein with reverse transcriptase 

activity (Mandart et al., 1984; TO et a]., 1983, 1985). 

Examples 	 Reverse Transcriptase Motif 

RSV 	 Y.MDDLLL 

MMLV 	 VVDDLLL 

HTLVI 	 YMDDLLL 

HTLVIII 	 YMDDLYV 

ATLV 	 YMDDILL 

CAM 	 YVDDILV 

HBV 	 YMDDVVL 

(From Feutterer and Hohn et al., 1987) 
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As hepadna viruses replicate via an RNA intermediate this requires 

an enzyme that has RNA-dependent DNA polymerase activity, an activity 

not normally found in eukaryotic cells. 	It was thus proposed that the 

L.ORF does encode a DNA polymerase and that replication of HBV uses a 

reverse transcriptase activity of this protein. 	It should be noted 

that the putative polymerase gene does not appear to have any 

homologous sequences associated with the ribonuclease -I, endonuclease 

and protease activities of the polymerase genes of retroviruses 

(Johnson et al., 1986; Feutterer and Hohn, 1987). 

(b) Biochemical Analysis:- 

The endogenous polymerase has been extensively characterised in 

vitro by several groups using purified virions, and its properties have 

been compared with those exhibited by host polymerases and the reverse 

transcriptases of several retroviruses. 	These results are summarised 

in Table 1. 

Higher eukaryotic cells contain three distinct polymerases, a, 8 

and y • 	These enzyme activities can be separated easily on the basis 

of their chromatographic properties, molecular weights, sensitivity to 

N ethylmaleimide (NEM) salts and their ability to copy various 

templates:- 

a - is ubiquitous in growing cells and is believed to be the principal 

replicating enzyme. 	it is a large enzyme with an approximate 

molecular weight of lSOkd and is associated with smaller proteins 

forming a hetero oligomer. 	The enzyme is specific for polydeoxy- 

nucleotide templates and shows little activity with synthetic ribo- 

polymers such as poly (A) or RNA. 	It has optimal activity with gapped 

DNA and will use either deoxy or ribo primers. 	a has an absolute 
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Table 1. 
Physical and Chemical Pro 
Transcri ptase 
FN.—T. = not tested) 

ies of FIBV. z Polymerases and Reverse 
= inhibition) 
= no inhibition) 

Physical and 	 HBV 	 y 	 RT 
Chemical Props. 

MuLv-84 
Mol.Wt. (kd) 	 220 	43 	119 	AMV C 65 
(Native) 	 AMV B 95 

Aphidocolin 	 + 	- 	- 	 - 

PEA + - - - + 
PAA - - - - + 

ddTTP + - + + + 

Ara CTP + + - - + 
Ara A + N.T. N.T. N.T. N.T. 

Act.D + + + + + 

N.E.M. - + - + + 

Cationic Reqs., Mg2  
with 

activated DNA Mg 2  Mg2  Mg2  Mn2  
synth. polymers Mn2  Mn2  Mn2  Mg2  

High Ionic 
Strength Stimul. Inhib. Stimul. Stimul. Stimul. 

Template(T)/Primer(P) 
Complex: 

Homopolymers: 

deoxy(T)/deoxy(P) (daT inhib.) Yes Yes Yes (dA inhib.) 

deoxy(T)/ribo(P) No Yes No No Yes 

ribo(T)/deoxy(P) No No Yes Yes Yes 

poly C(T)IdG12 (P) No No No No Yes 

2'-O-methyl 	citidy- 

late(T)/oligo dG 12 (P) N.T. No No No Yes 

'Natural: 

activated d.s. 

gapped DNA No Yes Yes Yes Yes 

Native DNA No No No No Yes - poor 



Table 1 cont. 

HBV 	 RT 

RNA primed DNA 	 No 	Yes 	No 	No 	Yes 

Inhibition by 

Abs Against: 
a N.T. Yes No No No 
a N.T. No Yes No N.T. 

C) y N.T. No No Yes N.T. 
d) rev.trans. N.T. No No No Yes 

Orthophenanthraline + + + + + 

Eth. 	Br. + + + + + 

Misincorporation High 1:10-4 1:104 1:10 4  High 

pH Optimum 7.2-8.0 7.2 8.5-9.0 8.0 8.3 

Associated DNase 

enzyme activities: 
3'---5' 	exo. N.T. No No No No 
5'---3' 	exo. N.T. No No No No 
RNase H N.T. No No No Yes 
endonuclease N.T. No No No Yes 



requirement for Mg2  or Mn2  and is inhibited by high salt 

concentrations. 	The requirement for sulphydryl groups for activity 

makes it very sensitive to NEM, a sulphydryl alkylating agent. It is 

resistant to ddTTP but is very sensitive to Aphidicolin, a fungal 

antibiotic, and Ara CTP, an arabinosyl nucleoside (Kornberg, 1980). 

- the level of 	activity is a tenth of a activity and is associated 

with repair and recombination functions. It is a small protein of 43kd 

and is located in the nucleus. 	0 copies gapped duplex DNA efficiently 

and, to a lesser extent, can copy poly(A) template primed with 

oligo(dT). 	However, it does not use this polymer in the presence of 

Mg2+ ions or in the presence of high concentrations of phosphate 

buffer. 	has no requirement for suiphydryl groups and is therefore 

insensitive to NEM. 	Unlike a it is not inhibited by Ara CTP or 

Aphidicolin (Kornberg, 1980). 

- - is found in the nucleus and in the mitochondria and is postulated 

to be responsible for the replication of mitochondrial DNA. 	It is a 

large enzyme with a molecular weight of 119kd. 	The enzyme is 

distinguished by its ability to copy ribohomopolymers at higher rates 

than gapped duplex DNA. 	However, both a and are inactive on any 

natural RNA used as a template whether primed or unprimed. They also 

cannot use poly 2'-O-methylcytidylate, a very specific template for a 

reverse transcriptase (Gerrard et al., 1974). 	Neither of these 

polymerase activities is inhibited by antibodies to reverse 

transcriptase. Therefore these enzymes are not reverse transcriptases 

but the synthetic templates in the presence of Mn2 1  can form a 

structure which both of these enzymes can utilise. 	requires 

sulphydryl groups for maximum activity and is inhibited by NEM. 	It 

is, like , insensitive to Ara CTP and Aphidicolin (Kornberg, 1980). 
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Reverse Transcri ptase 

An RNA-dependent DNA polymerase can be found in the virions of 

retroviruses and infected cells (Temin and Baltimore, 1972). The 

reverse transcriptase of murine retroviruses is a monomeric protein of 

approximately 80kd (Roth et a]., 1985), while AMV reverse transcriptase 

is a heterodimer of two subunits a and a . 	The a sub-unit is the 

cleavage produce of o , releasing a polypeptide of 32kd. The alpha 

subunit exhibits the DNA polymerase activity while the p32 protein 

contains a specific nuclease. The a subunit contains both of these 

activities and is thought to help stabilise the enzyme template 

reactions (Tanese et al., 1986). 

There are three enzymatic activities associated with reverse 

transcri ptase: 

(1) 	A ribonuclease H (RNAse H) activity which degrades the RNA strand 

of a DNA:RNA hybrid but does not degrade either single-stranded 

or double-stranded RNA (Johnson et al., 1986). 

A DNA-polymerase capable of copying RNA on a DNA template. 

A DNA endonuclease/integrase function. 

The DNA polymerase and RNA5e H activity resides on the same poly-

peptide but have different functional sites. 	Reverse transcriptase 

is active on a wide variety of RNA and DNA templates. 	Gerrard et al., 

(1974) showed that the enzyme can utilise poly 2 1 -O-methylcytidylate 

oligo (dG) very efficiently. 	Reverse transcriptase is sensitive to 

Ara, CTP, ddTTP and NEM. The RNA:DNA synthesis is resistant to 

actinomycin D, but the DNA:DNA synthesis is sensitive to it. 

Hepatitis B polymerase 

The endogenous polymerase of HBV was characterised in a similar 

fashion to the other DNA polymerases described. 	The endogenous 
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hepatitis B polymerase is dependent on the presence of magnesium, 

though the optimal concentration was slightly higher than for other 

polymerases [20-200m mol/l] (Hess et al., 1981). 	The enzyme had a 

strict preference for magnesium and had only very little activity when 

magnesium was replaced by other divalent cations i.e. manganese and 

zinc (Hess et al., 1981). It was active at remarkably high 

concentrations of salt (0.4M - 0.8M KCL) and this allowed the 

development of an assay that could measure HBV associated DNA 

polymerase activity in a mixture of bacterial DNA poll and a 

polymerases (Hirschman and Garfinkel, 1977b). FIBV DNA polymerase was 

found to be highly sensitive to organic solvents (Nath et a]., 1982) 

and to be insensitive to NEM. 	The insensitivity of this polymerase to 

the zinc-chelating agent 1,10 phenathroline suggests that it is not a 

zinc netaloenzyme. (Goto et al., 1984). 	In the search for anti- 

viral drugs against Hepatitis B, various compounds have been tested to 

discover whether or not they inhibit the endogenous DNA polymerase of 

HBV. 	The arabinoside analogues Ara ATP and Ara CTP wereshown to 

inhibit this enzyme activity (Hess et al., 1981. Nordenfelt et a]., 

(1979) demonstrated that although HBV-DNA polymerase is resistant to 

the anti-viral drug phosphonoacetate (PAA), which is a pyrophosphate 

analogue, it is very sensitive to phosphonoforniate(PFA). 

Intercheláting agents, ethidium bromide and actinomycin D were also 

inhibitory as was ddTTP (Hirschman and Garfinkel, 1977). 

The above results show that the HBV-DNA polymerase has a different 

biochemical profile from a and 	polymerases. 	It is similar in some 

respects to a , the repair enzyme of the host, as it operates under high 

salt concentrations, is insensitive to NEM, and is resistant to PAA. 

Interestingly, it is also very similar to the reverse transcriptase 

enzyme. 
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1.10 The Objective of the Present Study 

In conclusion, the studies performed on the HBV-associated 

polymerase cannot prove or disprove that this polymerase is an 

encapsulated eukaryotic polymerase. 	The definitive experiment would 

be to express this long ORF in either bacteria or eukaryotic cells and 

show that the protein it encodes has a DNA polymerase activity with the 

same properties as the endogenous polymerase. 

The aim of the work presented in this thesis was to determine 

whether or not the long open reading frame, present in F-IBV, is 

expressed during the course of viral infection and if so what is the 

function of the gene product. 
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2.1 Suppliers of Laboratory Reagents:- 

Restriction endonucleases were purchased from Amersham International 

P.O. Box 16, Amersham, Buckinghamshire, NP7 9LL. 

Boehringer Mannheim, Boehringer Mannheim House, Lewes, East Sussex, 

BN7 1LG. 

New England Biolabs or Pharmacia, Pharmacia House, 351 Midsummer 

Boulevard, Central Milton Keynes, MK9 3YY. 

E.coli DNA polymerase I (Kienow fragment and holoenzyme) was purchased 

from Boehri nyer Mannheim. 

Deoxynucleoside triphosphates were purchased from Bethesda Research 

Laboratories. 

Dideoxynucleoside triphosphates were purchased from P-L Biochemicals. 

Radiochemicals were purchased from Amersham International. 

Ultra-pure agarose and low melting point agarose were purchased from 

Sigma. 

Standard Laboratory reagents were purchased from BDH, Fisons or Sigma. 



2.2 Solutions:- 

IE 	 Iris-I-IC] (10mM, pH 7.5), EDTA (1mM) 

Sequencing TE 	 Tris-I-IC1 (10mM, pH 8.0), EDTA (0.1mM) 

10 x TBE 	 Iris-base (0.89M), boric acid (0.89M), 

EDTA (10mM) 

DNA gel sample buffer 	EDTA (10mM), ficoil (1%, w/v), bromphenol 

blue (0.025%, w/v), xylene cyanol FF (0.05%, w/v) 

4 x Nick Translation buffer Tris-HC1 (210mM, pH 7.5), MgC1 2  (21mM), 

BSA (20.ig/ml), -mercaptoethanoi (140mM), 

dGTP, dAIP, dTIP (0.08mM each) 

OLB 	 Solution 0: MgC1 2  (0.125M), Tris-HC1 

(1.25M, pH 8.0) 

Solution A: 0.95ml of solution 0 was added 

to the following mixture: -mercaptoethano1 

(18l, 14M), dATP (251,20mM), dGTP ( 250, 

20mM), and dTTP (25iii, 20mM) 

Solution B: Hepes (2M, pH 6.6) 

Solution C: Hexadeoxyribonucleotides 

(Pharmacia) resuspended in TE to give a 

final concentration of 90 OD units/ml 

Solution OLB was made by mixing solutions 

A, B and C in the ratio 2:5:3 and was stored 

at -20°C 
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T4 DNA Ligase Buffer 	Tris-KC1 (50mM, pH 7.8), Mg C1 2  (10mM), 

OTT (20mM), ATP (10mM) 

20 x SSC 	 NaCl (3M), trisodium citrate (300mM), 

adjusted to pH 7.0 with NaOH 

50 x Denhardt's Reagent 	Ficoll (1%, w/v), polyvinyl pyrrolidine 

(1%, w/v), BSA (1%, w/v) 

Denatured salmon sperm DNA Was made up as 5mg/ml stock and sonicated 

(50 seconds, Soniprobe, Dawe Instruments) 

X-gal (BCIG) 	 5-bromo-4-chloro-3-i ndoyl--gaiactoside 

(20mg/mi in dimethyl formamide) 

IPTG 	 Isopropyl--D thiogalactoside (20mg/mi) 

10 x MOPS 	 MOPS (0.2M), Na acetate (50mM), EDTA (10mM), 

adjusted to pH 7.0 with 5M NaOH. 

Formamide sample buffer 	Formamide (50%, v/v), formaldehyde (7.5%, 

v/v), MOPS (x 1) 

RNA loading buffer 	 Glycerol (50%,v/v), EDTA (1mM), bromo- 

phenol blue (0.4%, w/v), xylene cyanol FE 

(0.4%, w/v). 

40% Acrylamide stock 	Acrylamide (38%, w/v), N-N-methylene bisacryla- 

mide (2%, w/v). Filtered and stored at 4 0C. 
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TM 	 Tris-HC1 (100mM, pH 8.0), Mg C1 2  (100mM) 

Formamide loading buffer 	Xylene cyanol (0.3%, w/v), bromophenol 

blue (0.3%, w/v), EDTA (10mM), in 100% 

formami de 

TEMED 	 NNN'N'-tetra-methyl-1, 2 diamino-ethane 

(BD H) 

AMPS 	 Ammonium persuiphate (10%, w/v) 

30% Acrylamide stock 	Acrylamide (30%, w/v), N-N'-methylene 

bis-acrylamide (0.2%, w/v), filtered and 

stored at 4 0 C 

1 x Protein gel buffer 	Iris-base (50mM, pH 6.8), glycine (384mM), 

SDS (1%, w/v) 

LTB 	 Tris-HC1 (20mM, pH 7.9), MgC1 2  (20mM), 

EDTA (1mM) 
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2.3 Microbiological Strains and Media. 

Microbiological Strains. 

All bacterial strains, plasmid vectors and bacteriophage vectors 

used in this study are described in Section 2.3 to 2.5. Bacterial stocks 

were preserved by drying, using the Stamp method (Stamp et al., 1947) and 

were also maintained on the appropriate plates. 	M13 bacteriophage were 

stored as DNA in sequencing TE at -20 0C or in LTB at 4 0C. 

Media 

Media were sterilised by autoclaving. 	Unless otherwise stated, 

all quantities below refer to 1 litre of solution. 	Where 

appropriate, antibiotics were added to plates and media: ampicillin 

(100tg/m1), tetracycline (50 jig/mi), or kanamycin (25jig/mi). 

Luria broth (LB) 	 Difco Bacto Tryptone (10 g), Difco Bacto 

yeast extract (59), NaCl (5g); pH 7.2 

Luria agar (L-agar): 	Agar (15g, Difco) added to LB (1L) 

BBL top agar 	 Trypticase (lOg, Baltimore Biological 

Laboratories), NaCl (Sg) and agar (6.5g, Difco) 

Spizizen minimal salts 	(NH4) 2  SO4  (lOg), K2HPO4  (20g), KH2PO4  

(30g),tri-sodium citrate (5g), MgSO4(19) 

Minimal agar 	 Spizizen minimal salts (80m1), glucose (4ml, 

20%, w/v), Vitamin B 1  (0.2ml,lmg/ml), Difco Bacto 

agar (6g); made up to 400 mis with water 
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2.4 Bacterial strains 

Strain 	 Genotype 	 Reference 

HB101 	 F 	hsdS20 	 Boyer and 

recA13 ara14 2A2 lacYl, 	Roulland- 

gjK2 LpsL20 (SMr) 	j5 	 Dussoix, 1969 

intl-i LupE44 A 

NM522 	 hsd(MSR) 41ac A2ro 	 Gough, 1983 

yE t h i F' 

iaciq lacZM15 

NFl 	 K12Hi42lacZ am 	 Stanley and Luzio, 

xNani7 Nam53 c1857A1-l1 	 1984 

WL542 	 F 	DT65minA 	Ex- 	 Manson et al., 

pdxc minB his 5 r T3N 	 1986 

x,yl ilv SyCAN çBN it 

SG935 	 Flac(am) j(am) 	am) 	 S. Goff(unpublished) 

LuRC (ts) LpsL i(!) 	R(am) 

tsx::TN10 lon100 
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2.5 Plasmid and Bacteriophage Vectors. 

Vector 	 Description 
	

Source/Reference 

pEX1/2/3 	Aff I pr(_ga1acto s idas e_ 	 Stanley and 

fusion protein expression vector) 	Luzio, 1984. 

ptac322 	 AIflP r (Expression vector 	 Stahl 

using tac promoter) 	 (unpublished) 

M13mplO, 11, 	E.coli bacteriophage 	 Norrander 

18 and 19 	M13-based vectors; 	 et a]., (1983) 

lacZ gene 

2.6 Other Plasmids Used. 

P1 asmi d 	 Description 	 Source/Reference 

pRl-11 	 Ampr (contains HBV core 	 Stahl, et al., 

gene under the control of 	 1982 

the Lac promoter) 

pI-IBVCB 	 Tetr (contains the HBV 	 Gough and Murray, 

genome inserted into Pstl 	 1982. 

site of pBR322). 
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pHPL-1 	 Ampr (contains the sequences 	McGarvie 

encoding the first 28 amino acids 	(unpublished) 

of HBV core antigen fused to the 

sequences encoding residues, 40-210 

of the HBV polyrnerase gene. 
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2.7 General Nucleic Acid Methods. 

2.7.1 Deproteinisation of nucleic acids. 

DNA or RNA solutions were deproteinised by extraction with an 

equal volume of phenol. 	This was accomplished by vortexiny until a 

white homogeneous emulsion was formed. 	The phases were then separated 

by centrifugation (17,500 g, 2 mm.) and the upper aqueous layer 

recovered. 	The aqueous layer was extracted three times with ether to 

remove residual phenol and the nucleic acid was then precipitated with 

ethanol (see below). 

2.7.2 Precipitation of Nucleic Acids with Ethanol 

DNA was precipitated from aqueous solutions by the addition of 

sodium acetate (0.1 vol., 3M, pH 5.8) and ethanol (2.5 vol.). 	The 

solution was cooled (-70 0C, 15 mm.) and the DNA pelleted by 

centrifugation (17,500 g, 15 mm.). 	The supernate was removed and the 

pellet dried in a vacuum desiccator before being redissOlved in TE. 

2.7.3 Quantification of Nucleic Acids 

The optical density at 260nm was used to quantify nucleic acids. 

An 0D260  of 1.0 is equivalent to 50ig/m1 for DNA or 40ig/m1 for RNA. 



2.7.4 Gel photography 

Nucleic acid was visualised in gels stained with ethidium bromide 

using an ultraviolet transilluminator (254nm). 	Photographs were taken 

through a red (Al) filter on Ilford HP5 film (f 4.5, 20s). 	Films were 

developed in Ilford microphen (5 mm.), stopped in acetic acid (3%, v/v, 

30s), and fixed in Ilford Hypam (5 mm.) at room temperature. Films were 

washed well in water, dried, and the relative mobilities of the bands 

measured directly from the negative (distance migrated is inversely 

proportional to log10  M wt.). 

2.7.5 Autoradiography 

Autoradiography was performed using Cronex 4 X-ray film and 

cassettes. 	For 32P, films were preflashed and exposed at -70 0 C 

using intensifying screens. 	Films were developed in an Agfa x 1 

automatic film processor. 

2.7.6 Measurement of Radioactivity incorporated into Nucleic Acids 

The efficiency of incorporation of radiolabel into nucleic acids was 

estimated by measuring acid-precipitable counts. 	Aliquots (2 pl) were 

transferred onto Whatman GF/C glass fibre discs and dried, then 

placed in a beaker containing ice-cold TCA (5%, w/v) and incubated 

for 10 mm. on ice. Following this the filters were washed three times 

with ice-cold TCA (5%,w/v) and twice with 100% ethanol and dried. As a 

control, another aliquot (2j.l) was spotted directly onto a Whatman GF/C 

filter and dried. Each filter was transferred into a scintillation vial, 

immersed in scintillant (butyl-PBD, 6g/L in toluene) and counted in a 

liquid scintillation spectrometer. 	The percentage incorporation of 

label into nucleic acid was estimated by comparing the two values. 
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2.8 Nucleic Acid Methods 

2.8.1 	Small-scale Preparation of Plasmid DNA 

(Modified from Birnboim and Doly, 1974). 

Small-scale plasmid DNA preparations were obtained by a modification 

of the rapid extraction method of Birnboim and Doly (1974). 	Cells were 

grown overnight in 2 mis of LB-ampiciiiin or LB-tetracycline, pelleted 

by centrifugation (17,500 g, 2 mm.), resuspended in 1 ml of Tris-HC1 

(10mM, pH 8.5), EDTA (1mM) and peileted as above. 

The cells were resuspended in 150l sucrose mix; sucrose (15%, w/v), 

Tris-HC1 (50mM, pH 8.5), EDTA (50mM), lysozyme (0.25mg), and incubated 

at room temperature (30 mm.), then at 40C (30 mm.). 	Water (400i.il, 

40C) was then added, mixed and incubated at 4 0C (10 mm.). 

Following this, the Eppendorf tube was incubated at 70 0C (15 mm.) and 

the cell debris and chromosomal DNA pelleted by centrifugation (17,500 g, 

15 mm.). 	The supernate was transferred to another microcentrifuge tube 

and DNA precipitated by the addition of NaC10 4  (75ul. 5M) and 

isopropanol (200.1). The DNA was pelleted by centrifugation (17,500 g, 

15 mm.) and the supernate removed. 	The DNA was resuspended in Na acetate 

(100i1, 0.3M, pH5.8) and reprecipitated by the addition of ethanol 

(300il). 	Following centrifugation (17,500, 15 mm.) the DNA pellet was 

resuspended in TE (801il). 

2.8.2 Large-scale Preparation of Plasmid DNA 

(Modified from Maniatis et al., 1982) 

A single bacterial colony was used to inoculate L-broth (lOml, with 

added antibiotics) and grown to stationary phase (normally at 370C). 

The culture was diluted 1:50 in L-broth (with added antibiotics) and 
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grown at 37 0C to A650=1. Chioramphenicol was added (final 

concentration of 150g/ml) and the culture grown for a further 12 h. 

Cells were pelleted by centrifugation (4,000g, 10 mm, 4 0C) and 

resuspended in 6m1 of sucrose solution [sucrose (25%, w/v), Tris-HC1 (50mM, 

pH 8.1) and EDTA (40mM)]. Lysozyme (imi, 10mg/mi, in sucrose solution) 

and EDTA (0.5m1, 0.5M, pH 8.1) were added. Following incubation (4 0C, 

5mm.), 13ml of triton mix [Triton X-100 (0.1%, v/v), EDTA (62.5mM, pH 

8.1), Tris-HC1 (50mM, pH 8.1)] were added, mixed and left at 4 0C (10 

mins.). 	Cell debris was then peileted by centrifugation (31,000g, 30 

min., 4 0C) and the supernate recovered. CsC1 (9g) and ethidium 

bromide (0. 8m1, 10mg/mi) were added to supernate (9m1) and the mixture 

transferred to a polyaliomer centrifuge tube (1.6 x 7.6 cm, Beckman). 

Following centrifugation (95,0009, 60 h, 20 0C) DNA was visualised 

with long wavelength UV light and plasmid DNA (the lower of the two 

fluorescent bands) recovered through the side of the tube with a 19-gauge 

needle and syringe. 	Ethidium bromide was removed by repeated extraction 

with an equal volume of butan-2-ol (equilibrated with TE). The CsCl was 

then removed by dialysis against several changes of TE (4 0C), and the 

DNA precipitated with ethanol. 

2.8.3 Agarose gel Electrophoresis of DNA 

DNA was fractionated according to size by agarose gel 

electrophoresis. Molten Sigma agarose (0.75 - 1.5%, w/v in 1 x TBE gel 

buffer) was cooled to 600C and ethidium bromide (final concentration 

of 0.5ig/ml) added. The mixture was poured into horizontal gel formers. 
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Set gels were submerged in Bethesda Research Laboratories electrophoresis 

tanks containing 1 x TBE gel buffer. 	DNA gel sample buffer (0.25 vol.) 

was added to the DNA sample and then applied to the sample well. 

Electrophoresis was performed at various voltages (5-100 V/cm) until the 

required separation was achieved. 

2.8.4 Digestion of DNA with Restriction Endonucleases. 

DNA was incubated with a three-fold excess of restriction 

endonuclease in a microcentrifuge tube for 1 h. (using the manufacturers' 

recommended conditions). 	Digestion was terminated by extraction with an 

equal volume of phenol or by heating. 

2.8.5 Modification of the 3' and 5 termini of DNA. 

Treatment with the Klenow fragment of E.coli DNA polymerase I will 

convert a 3' recessed terminus to a blunt-ended terminus. DNA (2-10g) 

was incubated (37 0C, 60 mm.) with 5-15 units of the Klenow fragment in 

the following: Tris-FIC1 (lOmM,pH 8.0), MgC12 (10mM) and dATP, dCTP, 

dGTP and dTTP (0.25mM each). 

Treatment with Si nuclease will remove single-stranded tails from 

DNA fragments to produce blunt ends. 	DNA (2-10Mg) was incubated at 

4 0C, (1 h.) with 4 to 8 units of 51 nuclease (Sigma) in 51 buffer; Na 

acetate (30mM,pH 4.8), zinc acetate (3mM), Na Cl (300mM) (final volume 

100M1). 
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2.8.6 Ligation of DNA 

Linearised vector and insert DNA bearing complementary cohesive ends 

were mixed at a molar ratio of 1:3 (final vector concentration of 

5-30igIml) in a volume of 10.l containing 1 x T4 DNA ligase buffer and 1 

unit of T4 DNA ligase. The reaction was incubated at 16 0C for 18 h. 

For ligation of DNA molecules with a blunt end, reactions were carried 

out in a similar fashion to those with cohesive ends, but with higher 

concentrations of DNA (200-500pg/ml). 

2.8.7 Extraction of DNA from low melting point Agarose. 

The required DNA fragment was excised from the gel and transferred 

into a microcentrifuge tube. An equal volume of 1 x TBE, NaCl (0.2M) was 

added, and the tube incubated at 65 0C for 15 mm. 	The mixture was 

extracted twice with phenol at room temperature (saturated with 1 x TBE, 

NaCl (0.1M)). To remove residual phenol and reduce the volume to 200.il 

the aqueous phase was extracted several times with butan-2-ol. 	Finally 

the DNA was precipitated from sodium acetate/ethanol, pelleted and re-

dissolved in TE. 

2.8.8 Transformation of E.coli with DNA 

E.coli strains were made competent for the uptake of plasmid DNA by 

the following method: 

Cells were grown at the appropriate temperature to stationary phase 

in L broth, diluted 1:10 in L.-broth and grown to A650=0.5 (A650=0.25 

for NM522). 	Cells were pelleted by centrifugation (4,000 g 10 mm., 

4 0C), resuspended in CaC1 2  (0.5 vol., 100mM) and left on ice 

for 30 mm. 	Cells were pelleted as above and resuspended in CaCl2 

(0.05 vol., MOM). 	After incubation (30 mm., 4 0C) cells were then 

transformed with DNA. 
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Competent cells (0.2ml) were added to the DNA sample (<bong) in 

glass tubes and left on ice for 30 mm. 	The tubes were transferred to 

420C for 4 minutes, imi of L-broth was added and the mixture shaken for 

45 mm. at 37 0c or 30 0c. Aliquots of the mixture were plated onto 

selective media. 

Labelling of DNA 

2.8.9. Nick Translation (Rigby et al., 1977). 

Plasmid DNA (1ig) was incubated at 14 0C for 1-3h. with 2 x 10 5 .ig 

of DNase I and 0.5 unit of E.coii DNA polymerase I in 201 of 1 x nick 

translation buffer containing 32P dCTP (final concentration of bOrn Ci/mi). 

Labelled DNA was separated from unincorporated nucleotides by two 

precipitations from sodium acetate/ethanol with the addition of 5ig 

E.coli tRNA. 

2.8.10 Random-priming (Feinberg and Vogeistein 1983, 1984) 

The desired DNA fragment was excised from a low melting point gel, 

weighed and placed in a 1.5m1 microcentrifuge tube. 	Water was added 

(3ml/g of agarose) and the tube incubated at 100 0C (7 mm.), to melt 

the agarose and denature the DNA. The reaction was set up by adding the 

following: 

OLB (100), BSA (2jtl, 10mg/mi), DNA (60ng), Klenow fragment of 

E.coii DNA polymerase I (5 units), and dCTP (final concentration of 

bOrn Ci/ml). The reaction was incubated at room temperature for 2 h. 
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2.8.11 Labelling DNA Termini 

The termini of DNA fragments were labelled when the appropriate 

( 32 P)dNTP was used in the repair of recessed 3' termini using the 

Kienow enzyme as described in section 2.8.5. 

2.8.12 Colony Blotting (Grunstein and Hogness, 1975). 

Transformed E.coli colonies were arranged in a grid formation on L-

agar containing the appropriate antibiotic and grown overnight at the 

appropriate temperature. 	Plates were placed at 4 0C for 30 mm. then a 

nitrocellulose membrane (0.4 pm pore size, Schleicher and Schull) was 

gently laid on top and left for 2 mm. 	The membrane was lifted off 

gently and cells were lysed and DNA bound to the nitrocellulose membrane 

by the following method: The membranes were placed, colony-side up, onto 

filter paper soaked in NaOH (0.5M) for 7 mm. then neutralised by trans-

ferring the nitrocellulose to filter paper soaked in Tris-HC1 (1M, pH 7.4) 

for 4 mm. The nitrocellulose filters were then transferred onto filter 

paper soaked in Tris-HC1 (0.5M, pH 7.4) containing NaCl (1.5M), for 4 mm. 

The membranes were dried and baked at 80 0C for 90 mm. under vacuum. 

2.8.13 Southern Blotting (Southern et a] 1975). 

After electrophoresis of DNA through an agarose gel, the gel was 

soaked in HCl (0.25M, 15 mm.) to partially depurinate the DNA, then 

rinsed in water. The gel was then immersed in NaOH (0.5M) containing NaCl 

(1.5M) for 30 mm. to denature the DNA and then in NaOH (0.02M) 

containing ammonium acetate (1M) to neutralise the gel. To allow 

bidirectional transfer, two sheets of nitrocellulose (Schleicher and 

Schull) were soaked in the neutralising solution described above. 	These 

were placed on both sides of the gel and sandwiched with 3MM Whatman 

63 



filter paper. 	After leaving for 8 to 18 h. the nitrocellulose membrane 

was removed and rinsed in 2 x SSC then baked for 90 mm. at 80 0C under 

vacuum. 

2.8.14 Hybridisation of Membrane Filters with Radioactive Probes 

Filters were prehybridised in 10-30 mls of hybridisation solution 

[1 x Denhardt's reagent, 4 x SSC, formamide (50%, v/v), sonicated salmon 

sperm DNA (100ig/ml)] at 37 0C for 30 mm. with constant agitation. 

The filters were then incubated overnight (37 0C) in hybridisation 

solution (lOmi) containing the denatured radiolabelled probe. 	Following 

hybridisation, filters were washed twice in the following solution: 

2 x SSC, SDS (0.1%, w/v) then in a buffer containing 1 x SSC, SDS (0.1%, 

w/v) for a further two hours. 	Filters were then dried and exposed to 

X-ray film. 

2.8.15. RNA Preparation (Squires et al., 1981) 

A single bacterial colony was used to inoculate a lOmi culture in 

L-broth (with antibiotics as required) and grown to stationary phase. 

The culture was diluted 1:50 in L-broth (with antibiotics) and grown to 

A650=1.0. 	Cells were harvested by centrifugation (4,000 g, 10 mm.) 

washed in 50m1 of TE and harvested again as above. 

Cells were resuspended in 6.5m1 of the following solution: KC1 

(10mM), MgCl2  (5mM), Tris-HC1 (10mM, pH 7.3) containing 2mg of lysozyme. 

Following incubation at -700C for 30 mm. the suspension was allowed to 

thaw and SDS (0.9m1, 10%, w/v) was added. 	After incubation (64 0C, 5-10 

mm.) sodium acetate (0.33m1, 2.5M, pH 5.2) was added and the solution 

mixed with hot phenol (64 0C) and shaken at 64 0C for 4 mm. 

Following centrifugation (2000g, 10 mm.) the aqueous phase was removed 

and NaCl (ig) was added. 
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2.8.16 Electrophoresis of RNA 

RNA was fractionated according to size by electrophoresis through 

a 1.3% agarose gel. Agarose (1.95g) was melted in 109 mis of H20 and 

allowed to cool to 600C, 10 x MOPS (15 ml) and formaldehyde (26 ml) were 

added and the mixture poured into horizontal gel formers. RNA samples 

were added to formamide sample buffer, incubated at 60 0C for 5 mm. and 

cooled immediately on ice. 	Following addition of RNA loading buffer 

(0.25 vol.) the samples were subjected to electrophoresis (5V/cm for 18 

h. in 1 x MOPS gel buffer at room temperature). Gels were stained for 20 

mm. with ethidium bromide (5g/ml) in ammonium acetate (0.1M) at room 

temperature and destained for 2 h. in ammonium acetate (0.1M). 	Xenopus 

borealis 18S and 28S RNA were used as size markers. 

2.8.17 Northern Blotting (Thomas, 1983). 

Following electrophoretic separation of RNA, the gel was directly 

assembled into a capillary blot. 	For this purpose, a glass plate was 

placed over a reservoir of 20 x SSC and a large double sheet of Whatman 

3MM paper (pre-soaked in 20 x SSC) positioned on the plate with its ends 

dipping into the reservoir. 	The gel was then placed on top of this, 

followed by a nitrocellulose sheet (cut to the exact dimensions of the 

gel) and several sheets of 3MM Whatman paper (soaked in 20 x SSC). Twenty 

sheets of dry, Whatman 3MM paper were placed on top of this assembly and 

held in place by a large weight. 	Blotting was carried out for at least 

16 h. after which the nitrocellulose membrane was removed, dried and baked 

at 800C for 90 mm. under vacuum. 	The nitrocellulose membrane was 

treated for hybridisation as described previously (see section 2.8.14). 
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2.9 DNA Sequencing by the Dideoxynucleotide Chain Termination Method 

(Sanger et al., 1977). 

2.9.1 Preparation of Double-Stranded Replicative Form (RF) DNA of the 

Bacteriophage M13. 

A single blue plaque was used to inoculate a 2.5m1 culture of NM522 

(A650=0.25) and shaken at 37 0C for 6 h. 	Following growth, imi of 

this culture was added to 2 x 250m1 cultures of NM522 (A650=0.25) and 

grown for a further 4 h. at 37 0C with constant agitation. 	The RE 

form of the bacteriophage M13 DNA was then isolated as described in 

Section 2.8.2. 

2.9.2 Cloning into M13mp 10, 11, 18 and 19 

DNA to be sequenced was purified as a convenient restriction 

fragment from a low melting point agarose gel and sub-cloned into M13 

vectors. 	The a fragment of the -galactosidase coding region, along with 

its operator and promoter regions have been inserted into the intergenic 

region of M13. 	Many unique restriction sites have been engineered into 

this region to facilitate sub-cloning of DNA fragments with many different 

termini. 	Insertion of DNA into this poly-linker region results in the 

inactivation of the a fragment and provides a convenient screening 

procedure for the identification of recombinant plaques. 	Insertional 

inactivation prevents the cleavage of X-gal. Hence recombinant phages 

show up as "white" plaques and non-recombinants as blue plaques in the 

presence of X-gal and IPTG. 

2.9.3 Plaque Hybridisation (Benton and Davis, 1977). 

"White" plaques were picked, using a toothpick, and transferred into 

50il of LTB. 	Aliquots of the mixture were placed in a grid formation on 
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minimal plates overlaid with 3 mis BBL top agar containing 0.2mls NM522 

(A650=0.25), IPTG (201, 20mg/mi) and X-gal (201i1, 20mg/mi), and 

incubated at 37 0C (16 to 18 h.). The plates were then incubated at 4 0 C 

for 30 mm. and a nitrocellulose membrane was placed in contact with the 

plaques (2 mm.). The membrane was then gently lifted off and placed 

sequentially, plaque side up, onto filter paper soaked in NaOH (0.5M), 

NaCl (1.5M) for 2 mm. then Tris-HC1 (0.5M, pH 7.4), NaCl (3M) for 5 mm. 

The filters were then washed twice (5 mm. each) in 2 x SSC, dried and 

baked at 800C for 90 mm. under vacuum. 	The filters were then 

hybridised as described previously (section 2.8.14). 

2.9.4 Preparation of Template DNA 

Single-stranded template DNA was prepared for sequence analysis 

by the following method. Cultures of NM522 (1.5ml, A650=0.25) were 

inoculated with individual recombinant plaques. The cultures were grown 

for 4 to 5 h. at 37 0C and then transferred to microcentrifuge tubes and 

cells pelleted by centrifugation (17,5009, 5 mm.). The supernate was 

transferred to a fresh tube and the phage precipitated by the addition of 

200jil of: PEG (20%, w/v), NaCl (2.5M). 	Following incubation (30 mm., 

room temperature) phage were pelleted by centrifugation (17,500g, 5 mm.). 

The supernate was discarded and the pellet re-suspended in sequencing TE 

(100il). To remove the capsid proteins, phenol (Soul) was added, vortexed 

and left at room temperature for 30 mm. After centrifugation (17,500g, 

5mm.) single-stranded template DNA was precipitated from the aqueous phase 

by ethanol precipitation (twice) and the pellet redissolved in sequencing 

TE (500) and stored at -20 0C. 
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2.9.5 Sequencing Reactions 

Annealing 

The yield of the single-stranded template DNA prepared as described 

above was approximately 5iig. 	To template DNA (8pl), in a 1.5m1 micro- 

centrifuge tube, TM (1l) and M13 univeral primer (1l,0.2 pmol/il, New 

England Biolabs) were added. This mixture was incubated at 60 0C for 

60 mm. then briefly centrifuged to drive any condensation to the bottom 

of the tube. 

2.9.6 Primed Synthesis 

All sequencing reactions were carried out in 1.5ml uncapped Sarstedt 

tubes in plastic 10-hole centrifuge racks. 	Aliquots (2iil) of the 

annealed mix were dispensed into the 4 sequence reaction tubes containing 

21,1 of.dideoxy A/G/C/T nucleotide mixes respectively (see Table 2.1). 

Finally, 21tl of Klenow mix [lii Ci [a35S]-dATP (400 Ci/m mol), Klenow 

enzyme (0.4 units),Tris-I-ICl (10mM, pH 8.5), DTT (10mM)] were added to 

each reaction tube. After 20 mm. at room temperature, 2il of sequencing 

chase (dATP, dTTP, dCTP, dGTP, 0.25mM) were added to each tube, 

centrifuged briefly and left for a further 15 mm. at room temperature. 

Sequencing reactions can be stored at -20 0C at this stage. Prior to gel 

electrophoresis,231l of formamide loading dye were added to each tube and 

centrifuged again. 	Racks were placed into a boiling water bath for 3 

mm. and reaction products analysed by polyacrylamide gel electrophoresis 

(PAGE). 



TABLE 2.1 Composition of ddNTP Solutions. 

(all volumes in rnicrolitres) 

"T a  mix "C" mix 	"G" mix "A" mix 

50mM dTTP - 2.5 2.5 2.5 

50mM dCTP 2.5 - 2.5 2.5 

50mM dGTP 2.5 2.5 - 2.5 

10mMddTTP 30 - - - 

1OmMddCTP - 7.5 - - 

1OmMddGTP - - 15 - 

1mMddATP - - 
- 15 

0.5mM dTTP 12.5 - - - 

0.5mM dCTP - 12.5 - - 

0.5mM dGTP - - 12.5 - 

Sequencing TE 500 500 500 250 

H20 500 500 500 750 

2.9.7 Separation of DNA Fragments in Acrylamide Gels 

The Standard Gel System 

Electrophoresis was performed on a 0.3mm x 20cm x 40cm gel, cast 

between flat glass plates. 	The notched plate was siliconised on the 

inner surface before assembly. The glass plates were assembled by placing 

0.5cm x 40cm x 0.3mm spacers along both 40cm edges between the plates, 

and then the sides and bottom were sealed with PVC tape. 	Each gel 

required approximately 35ml of gel mix, [acrylamide stock (6%, v/v), 1 x 

TBE, urea (7M)]. 	Polymerisation of this mixture was initiated by the 

addition of AMPS (240.i1,10%, w/v) and TEMED (35i.il) then poured into the 

prepared glass plates and a well-former placed in position. 	After the 

gel was set, the tape was removed, the gel mounted on the gel tank, and 

the reservoirs filled with 1 x TBE. 
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Samples were prepared as described above and applied to the sample wells. 

The gel was run at constant power (40 watts). 

Following electrophoresis gels were fixed in acetic acid (10%, vlv), 

methanol (10%, v/v), for 15 mm. The gels were then transferred to 

Whatman 3MM paper, covered in Saran Wrap and dried in a vacuum gel drier. 

When the gel was dry, the Saran Wrap was removed and the gel subjected to 

autoradiography (see section 2.7.5). 

2.9.8 Buffer Gradient Gels 

The gradient gel was prepared as follows: 40m1 of 0.5 x TBE gel mix 

[urea (17g), sucrose (2g), 10 x TBE (2m1), acrylamide stock (6m1) made up 

to 40 ml with dH201, AMPS (240pl, 10%, w/v) and TEMED (35Ml) were mixed. 

lOmi 2.5 x TBE gel mix [urea (4.25g), acrylamide stock (1.5ml), 10 x TBE 

(2.5ml), made up to lOmi with dH201,  AMPS (70111, 10%, w/v) and TEMED 

(7i.il) were mixed: 4m1 of the polymerising 0.5 x TBE gel mix were taken up 

in a lOmi pipette, then 6m1 polymerising 2.5 x TBE gel mix were taken up 

in the same pipette, a crude gradient was formed by introducing 4 air 

bubbles then pipetting the mixture between the glass plates assembled as 

described above. The rest of the polymerising 0.5 x TBE gel mix was added, 

a well-former was inserted and the gel allowed to set. When the gel had 

set,the tape was removed and the gel mounted on the vertical gel tank. 

The top reservoir was filled with 0.5 x TBE and the bottom reservoir was 

filled with 1 x TBE. 	The rest of the procedure was as described above. 
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2.10 	Protein and Antibody Techniques 

2.10.1 Lowry Protein Assay. 

Protein concentrations were estimated as described by Lowry et al., 

(1951). 	The reagents used were as follows: Solution A anhydrous Na 2  

CO 3  (2%, w/v in 0.1M NaOH), Solution B CuSO4.5 H 20 (0.5%, w/v) in 

sodium citrate (1%, w.v), 	Solution C (lml Solution B plus 50m1 Solution 

A); Solution D (Folin and Ciocalteau's phenol reagent diluted with 

dH20, 50:50). 

Various concentrations of BSA,ranging from 0 to 300.tg/ml (total 

volume of 0.4ml) were used to provide a standard protein concentration 

curve. Test samples were diluted to 1:50, 1:100 and 1:200 in 400l 

dH20. 	Each sample was mixed with 2m1 of Solution C in a glass tube and 

the mixture incubated for 10 mm. at room temperature. Solution D (0.2m1) 

was then added, and the mixture incubated for a further 30 mm. The 

absorbance of these samples was measured at A550nm  and the absorbance 

related to protein concentration using the standard protein concentration 

curve. 

2.10.2 Electrophoresis of Proteins in Polyacrylamide Gels 

Polyacrylamide gel electrophoresis (PAGE) was carried out using the 

discontinuous buffer system of Laemmli (1976). Stacking gels of 170mm x 

150mm x 1.5mm were polymerised between glass plates separated by perspex 

spacers. 	The composition of the separating and stacking gel is described 

in Table 2.2. The gel mould was sealed by placing it in a trough in which 

lOmi of the separating gel solution had been polymerised by the addition 

of AMPS (1501,10%, w/v) and TEMED (lOiil). After 15 mm. the 

polyacrylamide in the trough had set and the remainder of the separating 

gel, following the addition of SDS (400ul,10% wlv), AMPS (200il,10%, w/v) 
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and TEMED (20i.il) was poured. The polymerising gel was overlaid with 

dH20 and allowed to set (2 hours). The water was then poured off and the 

gel left to drain (2 mm.). SDS (150i1, 10%, w/v), AMPS (10il, 10%, w/v) 

and TEMED (10u1) were added to the stacking gel which was then poured 

above the running gel. 	A well-former was placed in position and the gel 

was allowed to set. To protein samples were added an equal volume of 2 x 

loading buffer. [2 x contains Tris-HC1 (2m1, 0.6M, pH 6.8), glycerol (2m1) 

SOS (4ml, 10%, w/v), H 20 (2m1)] and DTT to a final concentration of 0.06M 

and heated to 1000C for 5 mm. before loading. 	Gel electrophoresis was 

carried out at 2-12 V/cm for 12-16 h. in 1 x protein gel buffer. 

TABLE 2.2 Composition of SDS-Polyacrylamide Gel Mixes (All volumes in ml) 

Stock 	 Stacking Gel Mix 	Separating Gel Mix 

Solutions 	 (3.75% acrylamide) 	7% acrylamide 	10% acrylamide 

30% (w/v) Acrylamide 	1.875 	 11.6 	 16.67 

0.2% (w/v) bis-Acrylamide 	1.875 	 11.6 	 16.67 

3M Tris-HC1 pH 8.8 	 - 	 6.25 	 6.25 

1M Tris-HC1 pH 6.8 	 1.875 	 - 	 - 

dH20 	 9.35 	 20.5 	 10.4 

2.10.3 Staining of Protein Gels 

Following electrophoresis, gels were stained with Coomassie Brilliant 

Blue R to reveal protein bands. This was carried out by gently agitating 

the gel for 30 mm. at room temperature in staining solution: Coomassie 

Brilliant Blue R (2g/L), methanol (45%, v/v), glacial acetic acid (10%, 

vlv), distilled water (45%, v/v). The gel was then destained by gentle 

agitation at room temperature in repeated changes of the above solution, 

lacking Coomassie Brilliant Blue R. 
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2.10.4 Protein molecular Weight Markers 

To calibrate SDS-PAGE, high and low molecular weight markers 

(Pharmacia) were loaded on one track of each gel. 	For a Coornassie 

Brilliant Blue R stained gel, one fifth of a high and one tenth of a low 

molecular weight marker kit vial was loaded per track. 	One high 

molecular weight marker kit vial contained: ferritin (220K and 18.5K, 

50ig), albumin (67K, 40pg) catalose (60K, 36ig) and lactate dehydrogenase 

(30K, 48iig). 	One low molecular weight marker kit vial contained: 

phosphorylase b (94K, 64kg) albumin (67K, 83.ig), ovalbumin (43K, 147iig) 

carbonic anhydrase (30K, 83ig), trypsin inhibitor (20.1K, 80g) and a-

lactalbumin (14K, 121.ig). 

2.10.5 Small-scale Preparation of Protein from E.coli 

For rapid screening procedures, a single colony was used to inoculate 

L-broth (with the appropriate antibiotic added). After growth to 

stationary phase the culture was diluted 1:50 in L-broth and grown at 

370C or 300C to A650nm=O.5. 	At this stage the cells carrying the 

recombinant plasmids were induced according to the respective promoters. 

For Tac and Lac promoters, transcription was induced by adding IPTG to a 

final concentration of 2mM for 1 hour. 	For the rightward promoter of 

lambda, induction was produced by incubating the cells at 42 0C for 30 

mm. Cells were harvested from a lml culture by centrifugation (17,500g, 

2 mm.), the pellet resuspended in sample loading buffer (40iil), lysed by 

incubation at 100 °C (5 mm.) and loaded onto the gel. 
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2.10.6 Large-scale Preparation of Fusion Protein from E.coli 

A single colony was used to inoculate L-broth (with the appropriate 

antibiotics added) and the culture grown until it reached stationary 

phase. The culture was diluted 1:50 in 500m1 of L-broth and grown at 

300C until A650  = 0.5. 	Cells were incubated at 44 0C for 45 mm. 

with constant agitation and then returned to 30 0C for a further 30 mm. 

Cells were harvested by centrifugation (4,000g, 10 mm.) and the bacteria 

resuspended in 2mls of 1 x PBS or 2mls of TEN [Tris-HC1 (50mM, pH 7.5), 

EDTA (0.5mM), NaCl (0.3M)]. 	The mixture was sonicated 5 times (10 

seconds each time, Soniprobe, Dawe Instruments type 7530A), then centri-

fuged (4,000g, 10 mm.). The pellet, which contained the majority of the 

insoluble fusion protein was resuspended in 2mls of 1 x PBS or 2mls of TEN. 

2.10.7 Analysis of Plasmid Gene Products expressed by E.coii Minicells 

The miniceli-producing strain, WL542, carrying the plasmid of 

interest was grown to stationary phase in 2 Litres of L-broth from a 2m1 

inoculum. Cells were peileted by centrifugation (4,000g, 3 mm.) and the 

supernate collected and centrifuged again (8,200g. 10 mm.). 	The pellet 

was resuspended in 18m1 of L-broth then agitated vigorously for 10 mm. 

using a magnetic stirrer (at 4 0C). 	The mixture was layered onto 4 	x 

35m1 sucrose gradients (in 50m1 polycarbonate tubes). These gradients 

were prepared by making 20% (w/v) sucrose in M9 glucose (M9 glu) [water 

lOOml, M9 x 4 (25m1), glucose (1ml,20%, w/v), MgSO4 (O.lmi, 1M), 

Vitamin B 1  (0.025m1, 0.8mg/mi)] freezing (-20 0C) and then thawing (at 

40C overnight) prior to use. The gradients were centrifuged (4,000g. 20 

mm., 4 0C), and the minicell band, which lies midway down the gradient, 

was removed with a syringe and a needle (which had been bent at an angle 

of 900 ). 	The miniceils were harvested by centrifugation (20,000g, 
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10 mm.), and the pellets were resuspended in a total of 5ml M9 glu. This 

mixture was layered onto 2 x 35ml sucrose gradients and the minicell 

band collected and pelleted as above. 	The pellet was resuspended in 

2.5rnl M9 glu and layered on one 35m1 sucrose gradient and the minicell 

band collected as described above. The minicells were harvested finally 

by centrifugation (8,000g, 10 mm.). 	The pellet was resuspended in lml 

M9 glu, glycerol (30%, v/v), and the minicells were frozen at -70 0C. 

2.10.8 Labelling Protein Products expressed by Minicells 

The minicell preparation was thawed at room temperature, the 

preparation was diluted with M9 glu to A600=0.2 and cells harvested by 

centrifugation (17,500g, 2 mm.). 	The pellet was resuspended in M9 glu 

(0.1rnl) and incubated at 37 0C for 60 mm. Methionine [ 35s] (20 P Ci; 

1,000 Cl/rn rnol:Amersham) in 20jil of methionine assay medium (Difco) was 

added and incubated for 45 mm. at 37 0C. This was followed by the 

addition of unlabelled methionine (51, 8mg/ml) and incubation for a 

further 5 mins. 	Cells were collected by centrifugation (17,500g, 2 mm.) 

washed with Tris-HC1 (lrnl, 0.05M, pH 6.8), pelleted as above and 

resuspended in sample loading buffer (401il). 	Samples were heated at 

100°C for 5 mm. and subjected to SDS-PAGE. After electrophoresis the 

gel was stained, destained, dried and exposed to X-ray film. 

2.10.9 Immunisation of Rabbits 

A sample of the required fusion protein was prepared by 

electrophoresis of 1.5m1 of the induced E.coli cell extract on the whole 

width of a protein gel. 	Three narrow longitudinal strips were cut from 

the gel, one from each side and one from the middle. 	These were stained 

with Coomassie Blue and destained. With reference to the stained strips, 
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the region of unstained gel that contained the protein band of interest 

was excised with a scalpel blade and homogenised in 3-5 volumes of PBS. 

The rabbits used in this study were New Zealand Whites. 	Before any 

injection, 5m1 of blood was taken from the ear as a preimmune control. 

The protein solution (400il, lOOpy protein) was mixed with Freund's 

complete adjuvant (400pl) for the first injection and with Freund's 

incomplete adjuvant for the second and subsequent injections. At 

intervals of one month the preparation was injected subcutaneously at 

several locations on a single rabbit, and 8-9 days after each 

injection approximately lOml of blood was collected from the ear vein. 

Collected blood was transferred to a glass tube, incubated at room 

temperature for 30 mm. and the clot removed. 	After incubation at 4 0C 

for 6-15 h.,serum was decanted into centrifuge tubes, cleared by 

centrifugation (17,500g, 30 seconds) and stored at -20 0C. 

2.10.10 Purification of Antiserum 

A single colony of NFl carrying the vector was used to inoculate a 

lOmi culture of L-broth (with added ampicillin), and grown to stationary 

phase, diluted 1:50 in 500m1 of L-broth and grown to A 650=0.5. 

Following induction of expression by incubation at 42 0C (45 mm.), the 

cells were incubated at 300C (30 mm.) and harvested by centrifugation 

(4,000g, 10 mm.). 	The pellet was resuspended in IS [NaC1 (0.15M), Iris- 

HC1 (10mM, pH 7.4)], and added to SDS (final concentration of SDS was 1%, 

w/v), prior to heating (100 0C, 5 mm.). 	This lysate was then diluted 

1:10 with IS. 	Equal volumes of the lysed cell mixture and antiserum were 

mixed by rotation for 12-16 h. (4 0C). 	This was centrifuged (17,500g, 

15 mm.), supernate transferred to a fresh tube, and an equal volume of 

lysed cell mixture added. The procedure was repeated 4 times and the 

supernate stored at -20 0C. 
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2.10.11 Western Blotting 

Proteins were electrophoretically transferred from SDS-polyaCrylamide 

gels to nitrocellulose filters by the Western blotting procedure of Towbin 

et al., (1979). 	A gel sandwich was constructed in a Bio-Rad transfer 

cassette. All components were first soaked in transfer buffer, and 

layered onto the cassette in the following order: Scotchbrite pad, 3 

sheets of blotting paper cut to the same size as the gel, the gel, 

nitrocellulose (0.45.im Schleicher and Scheul) the same size as the gel, 

3 more sheets of blotting paper, and finally another Scotchbrite pad. The 

cassette was closed and placed in a Bio-Rad electrotransfer kit, 

(nitrocellulose towards the anode), containing transfer buffer [Tris base 

(12.11g), glycine (55.8g), methanol (1 litre) and dH 20 (4 litres)]. 

Proteins were transferred at 60V for 5 hours at 4 0C. 	After transfer, 

the nitrocellulose membrane was stained with Ponceau S (0.5%, w/v), in 

TCA (3%), and washed in dFl 20 to visualise the transferred proteins. 

2.10.12 Immunological detection of Antigens Bound to Nitrocellulose 

This procedure was used to detect antigens bound to nitrocellulose 

membrane. 	Following transfer of proteins to the nitrocellulose 

membrane,unoccupied binding sites were blocked by agitation for at least 1 

hour at room temperature in IS containing ovalbumin (5%, w/v) (Sigma) 

(OIS). Immunological probingwas carried out by agitation at room 

temperature with antibody diluted in OTS (for 12-16h.). 	Before and after 

each antibody was applied, the nitrocellulose was washed in 5 changes of 

IS over a 30 minute period. 	After washing the filter, it was incubated 

for 2 hours at room temperature with either affinity purified goat anti-

human IgG conjugated to peroxidase or goat anti-rabbit IgG when rabbit 

antisera was used. Both IgG fractions were diluted 500-fold in OTS. 
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After extensive washing in TS at room temperature, the colour was 

developed by incubation in imidazole (0.01M, pH 7.4), dianisidine 

(250jg/ml),hydrogen peroxide (0.3% vlv); this reagent was prepared 

immediately prior to use. 	Brown bands appeared after approximately 5 

mm. at positions where the first antibody had bound. 	The reaction was 

stopped by washing in water. 	Filters were blotted dry and stored in 	the 

dark at room temperature. 

2.11 Reverse Transcriptase Assays 

2.11.1 Preparation of Crude Lysates of E.coli for Reverse Transcriptase 

Assays 

Crude lysates were prepared by a modification of a method described 

by Kleid et al., 1981. 	E.coii NFl cells carrying the plasmids were grown 

at 300C to stationary phase in L-broth (containing ampicillin) diluted 

1:50 in L-broth (500 mls) and grown at 30 0C to A650  = 0.4. 	Shifting 

the temperature to 42 0C induced expression. 	Cells were harvested by 

centrifugation (4,000g, 10 mm.). The bacteria were resuspended in 1:200th 

vol. of TEN: Tris-HC1 (50mM, pH 7.5), EDTA (0.5mM), NaCl (0.3M). 

The suspension was then sonicated (5 times, 10 seconds each time, 

Soniprobe, Dawe Instruments, type 7530 A) and 4.5m1 of the following: 

NaCl (1.5M), MgC1 2  (12mM), and deoxyribonuclease (final concentration 

of 2ig/m1), was added and stirred on ice for 1 hour. 	This treatment 

produced an E.coli lysate in which the -gaiactosidase fusion proteins 

were largely insoluble. These were recovered by centrifugation (4,000g. 

10 mm.) and washed three times by resuspension in TEN (2 mis) and 

centrifugation. The final pellet was resuspended in 1:200th the original 

culture volume in TEN. 
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2.11.2 Assay for Reverse Transcriptase Activity 

Crude lysates were adjusted to; 50mM Tris-HC1 (pH 8.3), 50mM KC1, 

10mM MgC1 210  0.1% NP40, 90g/ml poly rC:oligo dG( 1 2_ 18) (Sigma), 5mM 

DTT, 14.2 PM [ 3 H]-dGTP (16.9 Ci in mole 	Amersham) (Takatsuji et al., 

1986). 	After incubation (37 0C, 60 mm.), acid precipitable material 

was collected by adding sonicated salmon sperm DNA (100p1, lmg/ml), 

Na pyrophosphate (lOOjil, 0.1M) and TCA (ml, 10%, w/v, 4 0C), incubating 

on ice (10 mm.) and centrifugating (17,500g, 10 mm.). The pellet was 

washed twice with TCA (imi, 10%, w/v, 4 0C), once with ethanol (imi, 100%, 

v/v),dried and counted in a liquid scintillation spectrometer after 

addition of scintillation fluid (Butyl PBD, 0.5m1, 6g/L in toluene). 

2.11.3 Inhibition of Reverse Transcriptase Activity by Phosphonoformate 

(PFA) 

PFA, a gift from Astra Ltd., was prepared as an aqueous solution (2%, 

w/v), stored at 4 0C and adjusted to p1-I 7.4 with FIC1 (2M) prior to use. 

PFA was mixed with template and reaction buffer (as described in Chapter 

6) before addition of crude lysates. 
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INTRODUCTION  

Expression of the large open reading frame (L.ORF) of KBV in 

bacterial cells could provide an abundant and safe source of the 

protein encoded by this gene and, it is hoped, allow detailed analysis 

of its product. 

Synthesis of a protein at high rates in Escherichia coli (E.coli) 

depends upon frequent transcription of its gene and efficient 

translation of the transcript. 	In contrast to the expression of 

cloned bacterial genes, those from eukaryotes are expressed poorly, if 

at all, in E.coli. 	In order to express efficiently in bacteria, 

cloned eukaryotic genes must be placed under the control of bacterial 

transcription and translation signals. 

Transcription of a gene is controlled by the binding of RNA 

polymerase to the promoter, normally located upstream of the gene. 

In E.coli it has been shown that a promoter contains, at the nucleotide 

level, two highly conserved regions. The first is located approximately 

35 base pairs upstream from the transcription initiation site (-35 

region), the second is found 10 base pairs upstream of the initiation 

site (Pribnow box or "core" recognition region). The consensus sequence 

of these two regions is 5'-TTGACA-3' and 5'-TATAAT-3' respectively 

(Rosenberg and Court, 1979). 	Promoters from the lactose (Lac) and 

tryptophan (Trp) operons (Backman and Ptashne, 1978, and Hershfield et al., 

1974), the left hand promoter of the bacteriophage lambda (FL)  (Moir 

and Brammar, 1976) and a synthetic hybrid of the Trp and Lac promoters 

(Tac) (de Boer et al., 1982) have been incorporated into cloning 

vectors for this purpose. 	The choice of vector is limited, to some 

extent, by the restriction enzyme sites used to place the gene under 

the control of the promoter. 	For the expression of the recombinant 



HBV long ORF, vectors that carried the bacterial promoters Lac and Tac 

were used. 

The Lac promoter is subject to two forms of control; positive 

regulation by the catabolite gene activator (CAP) system, and negative 

control by the Lac repressor (Reznikoff and Abelson, 1978). 	The 

version of the Lac promoter most widely used in cloning vectors is the 

promoter Lac UV5. 	Lac UV5 carries the regulatory region of the Lac 

operon and contains the L8 mutation conferring CAP independence and the 

UV5 "up-promoter" mutation which enhances the rate of transcription 

(Backman et al., 1976). 	This has been used successfully to express a 

number of viral and eukaryotic genes in E.coli (Table 3.1). 

Promoter strength has been shown to be directly proportional to 

the degree of similarity with the consensus sequence of the -35 region 

and Pribnow Box (Russell and Bennett 1982). 	Therefore a hybrid 

promoter has been constructed, which consists of the optimal consensus 

sequence, by fusing the -35 region of the Trp promoter to the -10 

region of the Lac promoter. 	This promoter, known as the Tac promoter, 

has been used for the expression of the Human Growth Hormone (HGH) 

(Table 3.1) (de Boer et al., 1982). 



	

0.05% 	 Charnay et al., 
1980. 

	

0.3% 	 Gilmer and 
Erikson, 1981. 

0.2-0.3% Garapin et al., 
1981. 

0.15% Horwich et al., 
1980. 

0.8% Roberts et al. 
1-5 x 103 1979. 

Table 3.1 	Expression of viral and Eukaryotic Proteins in E.coli. 

Protein 
(mol .wt.) 

Promoter Construction Level 	of 
Expression 
(% Total 
cell 	protein) 

Reference 

Rat Lac s-gal fusion Low Talmadge et al. 
proinsulin 1980. 

Human Lac s-gal fusion 12mg/3229 Wetzel 	et al. 
proinsulin wet cells 1981. 

-endorphin Lac -gal fusion 5% Shine et al., 
1980. 

Chicken Lac Short s-gal 1-1.5% Fraser and 
Ovalbumin fusion Bruce, 1978. 

Hepatitis B Lac s-gal fusion Low Stahl 	et al., 
virus core 1982. 
antigen. 

Hepatitis B Lac Long s-gal 
virus surface (in phage) fusion 
antigen. 

Rous Sarcoma Lac 8 amino acid 
virus protein s-gal 	fusion 
kinase (Src) 

HSV thymidine Lac Short s-gal 
kinase (TK) fusion 

Polyoma Small Lac s-gal 	linker 
t antigen fusion 

SV40 t ag Lac rbs fusion 

mol/cell 

Human 	 Tac 	rbs fusion 
	

de Boer et al., 
Growth 
	

1982. 
Hormone (HGH) 



Inducible control is important when over-expressing genes in 

E.coli as the resulting gene product may be toxic to the cells. 

An example of this was found by Shimatake and Rosenberg (1981) 

when they tried to express large amounts of the Acil protein using the 

L promoter. 	They found that clones carrying ?LcII could transform a 

A lysogen (carrying a ts c1857 gene) very well but could not, however, 

transform cells that did not make any A repressor, demonstrating that 

the Acli protein is toxic to E.coli. 	Expression of Acil could be 

induced by growing the cells at 42 0C. 

Both the Lac and Tac promoters are regulated by the Lac repressor. 

However, when these promoters are carried on multicopy plasmids, they 

over-titrate the Lac repressor within the cell resulting in 

constitutive transcription. 	These promoters can be repressed in 

strains which over-produce the Lac repressor, i.e. Lac 1q  (Backman et 

al., 1976; O'Farrel et al., 1978) and then induced by the presence of 

lactose or by the addition of a non-metabolisable inducer isopropyl-

thiogalactosidase (IPTG) which binds to the repressor and removes it 

from the operator. 

Efficient translation of mRNA in prokaryotic cells requires the 

presence of an efficient ribosome-binding site. 	For most E.coli 

messenger RNAs the ribosome-binding site consists of two components; 

the initiation codon AUG, and a Shine Dalgarno sequence (SD). The SD 

sequence is found 3-12 bases upstream of the initiation codon and is 

complementary to the 3' end of the 16S ribosomal RNA (Shine and 

Dalgarno, 19Th). 

A common strategy to ensure translation of a gene normally 

expressed in E.coli is to generate a fusion protein by joining the 

initial portion of a gene which is efficiently translated to the gene 
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whose expression is sought. 

AUG of the E.coli gene provid 

proceeds into the cloned gene 

has been used successfully in 

(Stahl et al., 1982). 

To detect the expression 

The ribosome-binding site and initiating 

the start signals for translation which 

producing a fusion protein. This method 

expressing the HBcAg in E.coli(Table 3.1) 

of the cloned genes one can either use 

immunological methods, or phenotypic selection to detect the synthesis 

of the gene product. 	However, to detect the expression of cloned 

genes when the function is not known, or when a specific antibody is 

not available, is more difficult. 	In these cases one can directly 

analyse the protein if expressed at a high level, or if not, use 

mutant E.coli cells in which the background of the host proteins is 

minimised, e.g. minicells or alternatively an in vitro transcription 

translation system could be used. 

Minicells are small, spherical cells which are produced throughout 

the growth cycle of minicell-producing mutant strains of E.coli. They 

contain RNA and protein but little or no chromosomal DNA. 	Because 	of 

their size difference, minicells and normal cells can be separated 

easily on sucrose gradients. 	Plasmid DNAs segregate into minicells, 

and purified minicell preparations allow the labelling of plasraid-

encoded proteins in the absence of any background from chromosomal 

proteins (Frazer and Curtis, 1975), and hence are ideal for detecting 

the expression of novel proteins carried by recombinant plasmids. 

In vitro transcription and translation systems are very useful for 

two reasons. Firstly, incorporation of radioactive label into 

protein in vitro is much more efficient than in vivo thus increasing 

its sensitivity. 	Secondly, the apparent inability to express some 

genes in E.coli has been due to proteolytic degradation of the foreign 
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gene product. 	This problem can be overcome using an in vitro 

transcription translation system. An example of this was described by 

Mellado and Murray (1983) when they cloned histone genes under the 

control of a bacterial promoter and were unable to detect the presence 

of any histone protein in vivo. 	However, using an in vitro 

transcription translation system, histones expressed from the 

recombinants were visualised. 

In conclusion, using the methods and approaches discussed, this 

chapter describes the construction and expression of the I-IBV long open 

reading frame in E.coli. 

3.1 The origin of HBV Genomic Clones 

HBV DNA isolated from Dane particles from a single FIB5Ag and HBcAg 

donor was labelled with 3H-dTTP using the endogenous polymerase. 

This DNA was then digested with EcoRI or BamHI and hybrid plasmids 

constructed by insertion of these HBV DNA fragments into pBR322 at the 

PstI cleavage site via a 3' oligo dG and oligo dC tail (Burrell et al., 

1979). 	Two of these clones, pHBV130 and pHBVCB, carried inserted 

fragments with slightly over a genome length of viral HBV DNA 

(Fig.3.1a) (Gough and Murray, 1982). 	Unfortunately, neither of these 

constructs contained the long open reading frame in an intact form,thus 

the cloning of this gene involved the reconstruction of this long ORE 

piece by piece using several fragments (Fig.3.1b). 

3.2 Construction of pR1-pol8 and pTac-pol8 

The plasmid pR1-11, expresses the core antigen of HBV as a fusion 

with 8 amino acids of 8-galactosidase, using the Lac promoter to drive 

expression (Stahl et a]., 1982) (Table 3.1). This plasmid contains 1kb 

Th 



FIGURE 3.1(a) 

pHPV130, and pHBVCB. 	The heavy lines represent HBV 

sequences and the thin lines represent pBR322 sequences. 

The location and direction of open translational reading 

frames within the I-IBV genome are indicated by arrows. 

The surface antigen and putative polymerase genes are 

interrupted by pBR322 sequences (Gough and Murray, 1982). 

FIGURE 3.1(b) 	The genome of HBV. 	Heavy lines denote the DNA 

strands, the broken line showing the region of variable 

length of the short strand. 	Arrows represent the four 

open reading frames (as coding sequences) with the numbers 

of initiation and termination triplets in the system 

adopted by Pasek et al., (1979). 
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of HBV DNA. 	Removal of a 439bp BqlII fragment, which deletes most of 

the core gene, results in a fused product consisting of the first 84 

nucleotides (equivalent to the N-terminal 28 amino acids of the core 

antigen gene fused to the polymerase gene at a position corresponding 

to amino acid residue 40). This construct, pHPL-1, was kindly given by 

Dr. Michael McGarvie (Fig.3.2). 

The reading frame of the polymerase component of pHPL-1 was 

extended by the insertion of a 1678 bp BamHI fragment from pHBV130. 

pI-IBV130 was digested with BamHI and the resulting restriction fragments 

separated by agarose gel electrophoresis. 	The desired fragment was 

purified by electro-elution and then added to Bami-lI linearised pHPL-1 

in a ligation reaction containing 14 DNA ligase. 	Following ligation, 

the mixture was used to transform competent E.coli w111  cells and 

plated out in the presence of ampicillin. 	Plasmid DNA was prepared 

from overnight cultures of ampicillin-resistant transformants using a 

rapid isolation technique. 	Recombinant plasmids were identified on 

the basis of size by agarose gel electrophoresis. 	A recombinant 

containing the insert in the correct orientation was then identified by 

restriction mapping; this construct is called pR1-130. 

pR1-pol8 was constructed in a manner analogous to that used for 

pR1-130, i.e. by ligating an XbaI fragment from pHBV CB into XbaI-

digested pR1-130, thereby introducing the rest of the coding region 

including the translation termination signal of the long ORF. 	The 

identity of this construct was confirmed by restriction mapping 

Conservation -of the reading frame at the BglII deletion was 

verified by sequencing across the junction. 	This was achieved by sub- 

cloning the EcoRI-BamHI fragment covering the junction sequence of the 

recombinant plasmid into M13 mpll and sequencing by the dideoxy chain 



FIGURE 32 	The construction of pR1-.pol8 and ptac-po180 

pHPL-1 contains HBV DNA sequences equivalent to the 

first 28 amino acids of the core protein fused in frame to 

amino acids 40 to 201 of the polymerase gene product,. 

A BamHI fragment encoding the internal sequences of 

the putative polymerase gene was inserted into the unique 

BamHI site of pHPL-1 to form pRl-130. 3) The rest of the 

coding information, including the translation termination 

signal of the long ORF, was inserted into an XbaI fragment 

from pHBVCB to form pR1-pol8. 4) ECORI and Sail sites 

flank the polymerase region of pR1-pol8. 	This plasmid 

was restricted with these enzymes and the fragment 

containing the polymerase gene was inserted into the 

unique EcoRI and Sail sites of the expression vector pBR-

Tac to produce ptac-pol8. 

Key: filled area, HBV Long ORF. 
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termination procedure. 	Likewise, an XhoI-PstI fragment was sub-cloned 

into M13 mp19 and sequenced to confirm that insertion of the XbaI 

fragment from pHBVCB into pR1-130 did not disrupt the reading frame. 

pBR Tacl is a vector that carries the tacl promoter inserted into 

pBR322. 	It has unique EcoRland Sail sites. 	EcoRI and Sail sites 

flank the polymerase region of pR1-pol8. 	Restriction of this plasmid 

with these enzymes and isolation of the appropriate fragment allowed 

the polymerase recombinant gene to be inserted between the EcoRI and 

Sail sites of pBR tad. 	This construct, called plac-pol8,a derivative 

of pRl-pol8, would express the recombinant polymerase gene under the 

control of the Tac promoter. Its identity was confirmed by restriction 

mapping and,like pR1-pol8, was made and propagated in WjjOIq cells. 

Both pTac-pol8 and pR1-pol8 have all but the first 38 amino acids of 

polynierase fused to the N-terminal 28 amino acids of core (HBV core Ag) 

3.3. Construction of pT.R.T 

A third plasmid was constructed (Fig. 3.3) which contained all the 

coding information of the long ORE of IIBV except for the first N-

terminal 11 amino acids which were replaced by 8 amino acids from the 

N-terminal -ga1actosidase protein (Fig. 3.3). 

The plasmid pHBVCB which contains HBV DNA inserted into pBR322 

(see Section 3.2) was restricted with jjII and treated with Si 

nuclease. 	The reaction was stopped by phenol extraction and then 

ethanol-precipitated. 	The products were then digested with XbaI and 

separated on a 1% low melting point (L.M.P.) agarose gel. The purified 

fragment containing the N-terminal region of the long ORE was ligated 

to M13 mph, digested with Smal and XbaI. Following ligation, the 

reaction was used to transform competent NM522 cells. 	White plaques 

MWI 



FIGURE 3.3 	The construction of pT.R.T. (1) The plasmid 

pHBVCB was restricted with jII treated with Si nuclease, 

and digested with XbaI. 2) The purified fragment 

containing the N-terminal region of the long ORF was 

inserted into M13 mpii, and digested with Smal and XbaI to 

form clone 8. 3) Clone 8 was opened at the EcoRI site, 

treated with the Klenow fragment in the presence of dTTP 

and dATP, and digested with SalI. 	A 1075bp fragment 

containing the long ORF region was isolated. pBR-tac was 

restricted with EcoRI, treated with Kienow in the presence 

of dTTP and dATP, digested with Sail, and the 1075 bp 

fragment was inserted to produce pEM1. 	The remainder of 

the coding information was supplied by inserting an XbaI 

fragment from pHBVCB. 	This construct is called pT.R.T. 

Key: Filled area, HBV long ORE. 
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were picked and purified and a battery of recombinants was sequenced to 

determine the extent of Si nuclease digestion. One recombinant, clone 

8 (nucleotide position 454) was selected for further use (Fig. 3.3). 

Clone 8 was opened at the EcoRI site and treated with the Kienow 

fragment of E.coli DNA poll in the presence of dTTP and dATP to 

maintain the reading frame restricted with Sail and the digestion 

products separated on a 1% L.M.P. agarose gel. 	A 1075bp fragment 

containing the putative polymerase region was isolated. pBR tacl was 

restricted with EcoRI and the recessed end was made blunt by treating 

with the Klenow fragment as described above after which it was digested 

with SalI and the 1075bp fragment was inserted using T4 DNA ligase. 

Competent W110Iq cells were transformed with the ligation reaction 

mixture and plated out in the presence of ampicillin. 	Anipicillin-. 

resistant, tetracycline-sensitive transformants were characterised and 

a recombinant plasmid identified by restriction mapping. This 

construct is called pEM1. 

The remainder of the coding information, including the translation 

termination signal of the long ORF, was supplied as described for the 

construct pRl-pol8 by inserting an XbaI fragment (nuleotide position 

1529-90) from pHBVCB. 	This construct is called pT.R.T. and has been 

characterised by restriction mapping. 

Conservation of the reading frame at the point of fusion of the 

vector and inserted sequence was confirmed by sequencing across the 

junction. This was achieved by transferring the HindII- .j!jI fragment 

into M13 mp18 and M13 mp19 and sequencing by the dideoxy chain 

terination procedure. An Xho-PstI fragment from pT.R.T. was sub-

cloned into M13 mp19 and sequenced to ensure that the reading frame had 

not been disrupted by the insertion of the XbaI fragment from pFIBV CB 

into pEM1. 
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3.4 Expression of the recombinant long ORF in E.co]i 

The minicell system was used to identify novel proteins expressed 

from the recombinant plasmid in the absence of an antibody specific for 

the translation product from the long ORF. 	The expected molecular 

weight from the computer predicted amino acid sequence for the 

recombinants as follows: 

Table 3.2. 	Predicted Molecular Weight of the Recombinant Proteins 

Recombinant Plasmids 	 Molecular Weight 

(Kd) 

pRi-11 22 

pHPL-1 27 

pEM1 57 

pRl-130 79 

pR1-pol8 93 

plac-pol8 93 

pT.R.T. 93 

The composition of these proteins is illustrated in Figure 3.4. 

Recombinant plasmids were used to transform the competent, 

minicell-producing strain W1542. 	Transformants were selected as 

ampicillin-resistant colonies and minicells were prepared from them. 
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FIGURE 3.4 	The composition and molecular weight of the 

translation gene products expressed by the recombinant 

plasmids. 

Key: Open area, -galactosidase polypeptide; crossed 

area, N terminal, 28 amino acids of the core protein; 

filled area, HBV polymerase polypeptide; dotted area, 

amino acids encoded by the pBR322 sequence. 
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Plasmid-encoded proteins were labelled for 30 minutes by incubation of 

the min icells in a medium containing [ 35 S]-L-methionine, amino acids 

and 2mM IPTG then analysed by electrophoresis in SOS polyacrylamide 

gels. 	Figure 3.5 shows that the recombinant plasmid, pRi-11, directs 

the synthesis of a novel protein of about 22kd, which has been 

previously identified as the FIBcA9 (Stahl et al., 1982). 	pHPL-1 also 

expresses a novel protein of the expected molecular weight. 	However, 

neither pR1-130 nor pR1-pol8 appeared to express any novel proteins. 

Similarly, polypeptide produced by pEM1, pT.R.T., and pTac-pol8 were 

analysed. It was found that none of these plasmids appeared to 

produce a novel protein. 	These experiments were repeated several 

times using various induction times ranging from 10 minutes to 3 hours, 

but the expected translation products could not be detected. 

In conclusion, although HBcAg could be readily detected in 

minicells, there was no evidence for the synthesis of polypeptides of 

the anticipated size in minicells carrying pR1-130, pR1-pol8, pEM1 and 

pT.R.T., or indeed, significant quantities of any polypeptide that did 

not appear in cells harbouring the vector alone. 

The constructs which do not produce the expected translation 

products may not be transcribed, but this is unlikely as they are under 

the inducible control of the strong bacterial promoters Tac and Lac. 

It is unlikely that failure to detect the anticipated synthesis of the 

fused -galactosidase-polymerase polypeptides results from a lack of 

sequences necessary for translation of the corresponding messenger RNA, 

as this ribosomal binding site was shown to direct efficent translation 

when fused to the coding sequence for FIBcAg, and the first 160 amino 

acids of the putative polymerase gene. 

It is possible that the secondary structure of the messenger RNA 
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FIGURE 3.5 	Identification of polypeptides encoded by 

recombinant plasmids. 	Proteins encoded by the 

recombinant plasmids were detected in minicells of WL542 

transformed with pRi-11, pHPL-1, pR1-130 and pR1-pol8, 

The polypeptides were labelled with [ 35S]L-methionine in 

the presence of IPTG and separated on a 10% (w/v) 

polyacrylamide gel containing SDS, and visualised by 

autoradiography. 1) pR1-pol8; 2) pR1-11; 3) markers; 

4) pR1-130; and 5) pHPL-1. 
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transcribed from pUll or pT.R.T. leads to very inefficient translation 

(Inserentant and Fiers, 1980) or, in the case of pHPL-1, when 

additional sequences are inserted the resulting messenger RNA may form 

undesirable secondary structures thus reducing the efficiency of 

translation. Alternatively, the messenger RNA produced may be labile, 

or the polypeptides produced may be particularly sensitive to E.coli 

proteases. 

In order to establish that the recombinant DNA sequences were 

being transcribed, RNA from these clones was extracted and analysed. 

The predicted secondary structure of messenger RNA produced by these 

constructs was also deduced and using an in vitro-coupled transcription 

translation system, the polypeptides from the recombinant plasmid were 

analysed in vitro. 

3.5 Analysis of RNA produced by pEM1, pTac-pol8, pT.R.T. etc. 

E.coli cells (strain W110,)  harbouring the recombinants were 

grown in the presence of ampicillin to A650  = 0.5. 	Cells were then 

induced by the addition of 2mM IPTG and grown for a further 60 minutes. 

The RNA was extracted and fractionated by electrophoresis on a 1.3% 

agarose formaldehyde-denaturing gel, and transferred to a nitro- 

cellulose filter. 	The filter was then baked and hybridized with an 

HBV genome-specific probe (3.2kb XhoI fragment from HBV130) which had 

been labelled with 32P, using the random oligonucleotide method. The 

HBV-specific probe hybridised to mRNA produced by cells carrying either 

pEM1 or plac-pol8. 	The same probe did not hybridise to mRNA produced 

by cells carrying the vector pBRtac alone (Fig. 3.6a). 

Treating the RNA with RNAse and DNA5e confirmed that the probe was 

hybridising to RNA transcripts and not to any contaminating plasmid DNA 

93 



FIGURE 3.6(a) Identification of long ORF-related transcripts 

in E.coli transformed with the recombinant plasmids. 	RNA 

was prepared as in Methods Section and separated on 1.3% 

(w.v) agarose gel containing formaldehyde. 	The RNA was 

transferred to nitrocellulose and probed with a  32 P- 

labelled HBV-specific probe. 	The transcripts which 

hybridised to the probe were visualised by auto- 

radiography. Markers were yeast ribosomal RNA. 	The 

samples were as follows: tracks 2 and 3, Ri-li, bug and 

16ig respectively of RNA; tracks 4 and 5, ptac-pol8, 10.ig 

and 16jig respectively of RNA; tracks 6 and 7, pEM1, iOig 

and 16ug respectively of RNA; tracks 8 and 9, pBR-tac, 

lOug and 16ig respectively of RNA. 

FIGURE 3.6(b) 	Northern blot analysis of the recombinant 

plasmid transcripts using a 32P-labelled HBV-specific 

probe. 10g of each of the RNA samples were loaded in the 

following order: Lane 1, yeast ribosomal markers; 

Lane 2, pHBV GB digested with BamHI; Lane 3, Ri-li; 

Lane 4, ptac-pol8; Lane 5, pEM1; Lane 6, pBR-tac; 

Lane 7, pEM1 treated with DNase 1 before loading; Lane 8, 

pRi-11 treated with DNase 1 before loading; Lane 9, ptac-. 

p018 treated with RNase before loading; Lane 10, pRi-11 

treated with RNase before loading; 	Lane ii, ptac-pol8 

treated with RNase before loading; Lane 12, pEM1 treated 

with RNase before loading. 
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(Fig. 3.6b). The fact that the RNA from Ri-li did not hybridise to the 

probe is puzzling as the plasmid expresses HBcAg; perhaps this mRNA 

has a very short half-life. 

This experiment shows that the recombinant plasmids are being 

transcribed within E.coli. 	Transcription is initiated at nucleotide 

position -22 in both the Lac and Tac promoter region but it is not 

clear where the transcription terminates. 

As the HBV DNA has been cloned into the T etr gene of pBR322, it 

is reasonable to expect that RNA polymerase will recognise the 

transcription termination signals used in the normal expression of the 

Tetr gene (Stuber et al., 1981). 	If this were so then transcripts 

of approximately 4kb and 1kb ought to be produced from pTac-pol8 and 

pEM1 respectively. 	However, single bands on the Northern blot, 

corresponding to such species of ruRNA, were not detected though smears 

were identified which did not extend beyond approximately 4kb for plac-

p018 and 1kb for pEM1. 

Two observations led to the conclusion that the RNA has not been 

degraded during extraction. 	Firstly, on ethidium bromide-stained 

agarose gels of the RNA from the recombinant plasmids and the vector, 

the E.coli ribosomal bands are clearly visible, although as these RNA5 

have a very strong secondary structure they are not as susceptible to 

degradation. 	Secondly, RNA extracted in the presence of RNAse 

inhibitors still displayed the same pattern of hybridisation. Smearing 

may be the result of premature termination, or rapid degradation within 

the cell, or alternatively the product of partial transcription which 

is interrupted by extraction. 

In conclusion, these experiments show that the recombinant 

plasmids are being transcribed but they do not give any indication of 

the processing or stability of these transcripts. 
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3.6 Messenger RNA Secondary Structure 

Initiation of translation involves interaction between an 

activated 30S ribosomal subunit and the 5' terminal region of a 

messenger RNA which is already folded in a specific secondary 

structure. 	Greater efficiency of translation occurs if the initiated 

codon and, to a lesser extent, the Shine Dalgarno sequence is freely 

accessible to the 30S ribosomal subunits (Iserentant and Fiers, 1980). 

The predicted secondary structure for mRNA of the -ga1actosidase gene 

and the recombinant plasmids pT.R.T and pTac-pol8 around the initiation 

codon was determined (Fig. 3.7) and the thermodynamic stability of each 

structure was calculated following the rules of Tinocco et a]., 1973. 

The initiation codon AUG in pTac-pol8 is freely accessible in a 

hairpin loop. 	In the case of pT.R.T, a third of the initiation codon 

is in a hairpin loop while the other two bases are involved in base 

pairing within a stem structure. 	However, this is identical to the 

environment of the initiation codon of the -galactosidase messenger 

RNA which is translated very efficiently. 	Therefore, the predicted 

secondary structure of the mRNA produced by the recombinant plasmids 

shows that the initiation codon and the Shine Dalgarno sequence are in 

a favourable position for the initiation of translation. 

3.7 Coupled in vitro-Transcription Translation Systems 

The previous experiments showed that the recombinant plasmids are 

being transcribed and that these transcripts should be translated. The 

translation products from these transcripts were analysed using an in 

vitro-coupled transcription-translation system. 	As incorporation of 

label into proteins is more efficient in vitro, and the presence of 

E.coli proteases is reduced in this system, it was hoped that 
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FIGURE 37 	Postulated secondary structure of the mRNA 

synthesised by the recombinant plasmids,. 	The thermo- 

dynamic stability of each structure was calculated 

following the rules of Tinoco et a]0, 1973 
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previously unidentified proteins expressed from these constructs would 

be detected. 

DNA from the recombinant plasmids and vector controls were used as 

templates. The polypeptides synthesized were labelled with [ 35S]-L-

methionine and analysed by gel electrophoresis and autoradiography 

(Fig. 3.8). 

The protein which was detected in minicells harbouring pHPL-1 was 

again found in vitro. 	A very faint novel polypeptide of approximately 

80kd was seen when pR1-130 was used as a template. 	High molecular 

weight polypeptides were synthesised uniquely when pTac-pol8 was used 

as a template though these were not found with pR1-pol8. 	Using pEM1 

as a template, a novel protein of approximately 60kd, the expected size 

of a translation product from this construct, was synthesised 

efficiently. 	A series of weak, high molecular polypeptides was also 

detected when pT.R.T. was used as a template. 

In conclusion, novel proteins within the size range expected for 

translation products were synthesised by the recombinant plasmids 

(with the exception of pR1-pol8) which had not been detected in vivo. 

Disappearance of the proteins from the gel, if the insert DNA is 

cleaved, would confirm that the novel protein products were coded for 

byHBV DNA. 	This experiment, however, proved to be technically 

difficult as a linear template was transcribed so poorly that it did 

not allow comparison of products from the linear and supercoiled 

templates. Alternatively, 35S-labelled polypeptides could be purified 

and characterised via Edman degradation but with the exception of pEM1 

and pHPL1, the proteins of interest are not expressed in high enough 

quantities to allow such analysis. 



FIGURE 3.8 	Proteins encoded by the recombinant detected by 

transcription and translation of plasmid DNA in a cell-

free system from E.coli. 	The polypeptides were labelled 

with [35S]L-methionine and separated on a 16% (w/v) 

polyacrylamide gel containing SDS and visualised by auto-

radiography. The samples were as follows: 1) pRi-11; 

2) ptac-core; 3) pR1-pol8; 4) ptac-pol8; 5) pHPL-1; 

6) pR1-130; 7) pEM1; 8) pT.R.T; 9) pBR-tac; 10) ptac-

core; 11) pBR-322; 12) markers. (Gel by Mohamed El 

Aihama, Biogen, S.A.). 
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In summary, novel proteins of the expected size are being 

synthesised by the recombinant plasmids. 	This allows one to 

tentatively conclude that these polypeptides are being expressed from 

these constructs and represent -galactosidase-polyrnerase fusion 

proteins. Why these proteins have not been detected in vivo is not 

clear, particularly the abundant protein expressed by the construct 

pEM1. 	As RNA has been shown to be produced from these constructs 

(Section 3.5), and the RNA is most likely to be translated, the problem 

with the synthesis of these proteins in vivo may be due to some 

translational event within the cellular environment, and the simplest 

explanation is that hybrid s-gal actosi dase polymerase molecules 

expressed from pRl-130, plac-pol8, pRl-pol8, pEM1 and pT.R.T. are 

susceptible to attack by one or more of the proteases that are present 

in E.coli. 

If the instability of the newly synthesised polypeptides is indeed 

the reason for the failure to detect these novel proteins, transferring 

these recombinants into protease-deficient strains may allow the - 

galactosidase polymerase fusion to be expressed in vivo. 

3.8 Expression of the Recombinant Plasmids in Protease-minus Strains 

of E.coli 

S. Goff and co-workers have constructed an E.coli cell line, 

SG935, which is deficient in La, an ATP-dependent protease encoded by 

the ion gene (Goff and Goldberg, 1985). 	This protease has been shown 

to play an important role in the degradation of abnormal proteins and 

Ion mutants have been found to degrade abnormal proteins two or four 

times more slowly than the wild-type cell. 

pDM1, a plasmid which carries the 1q gene of the lac operon, and 
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the kanamycin resistance gene, is compatible with pBR322 (D. Simmons, 

personal communication). 	Competent SG935 cells were transformed with 

this plasmid and kanamycin-resistant cells were selected; these were 

then made competent and were transformed with the recombinant plasmids. 

kanamyciri-resistant, ampicillin-resistant transformants were 

characterised. 	Cells harbouring the recombinant plasmids were grown 

to stationary phase in L-broth containing kanamycin and ampicillin 

(LB.amp/kan) diluted 1:50 in LB.amp/kan and grown to A6 50=0.2. Cells 

were induced by adding IPTG to a concentration of 2mM and grown for a 

further 60 minutes. 	Cells were harvested and the proteins analysed by 

electrophoresis on an SDS-polyacrylamide gel (Fig. 3.9) 

Figure 3.9, track 3 shows that cells harbouring pEM1 synthesise a 

novel protein of approximately 60kd, corresponding to the protein 

detected during in vitro-transcription translation of this construct 

and also is the correct size for the translation product expected from 

this recombinant plasmid. 	A smaller, unique protein migrating at 

approximately 45kd is also seen in these cells and is presumably a 

breakdown product of the larger protein. 	The 27kd protein, which is 

shown to be expressed by pHPL-1 in vivo and in vitro, is also 

synthesised in these protease-minus strains. 	The translation product 

from pHPL-1 is obviously present in greater abundance in the Lon-minus 

strains as this protein can be visualised, by staining with Coomassie 

blue, from extracts of the protease-minus strains, but is not detected 

by this method using minicells. 	The recombinant plasmids which 

should express longer segments of the long ORE did not synthesise any 

novel polypeptides. 	Perhaps the additional polypeptide sequence 

contains a site which is particularly sensitive to proteolytic 

degradation. 



FIGURE 39 	Expression of the recombinant plasmids in 

protease-minus strains of E.coli. The bacteria were grown 

to OD.4. 	After inducing for 1 hour at 37 0C with 2mM 

WIG the proteins were separated on a 10% (w/v) polyacryl- 

amide gel containing SDS. 	The gel was stained with 

Coomassie blue. Lane 1, pT.R.T; Lane 2, pHPL1; Lane 3, 

pEM1; Lane 4, pBR-tac; Lane 5, pR1-pol8; Lane 6, ptac-

po18 and Lane 7, pR1-130. 
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3.9 	Dicussion 

A number of proteases are present in E.coli which are used to 

degrade abnormal and normal proteins throughout the life cycle of the 

bacteria. 	These are also involved in processing secretory and 

membrane proteins. 	At present seven proteolytic activities have been 

isolated which are capable of hydrolysing polypeptides to acid-soluble 

material; these are - Do, Re, Mi, Fa, So, La and P1, and these are 

found in different locations within the cell; in the cytoplasm, the 

periplasmic space, and the cell membrane (Goldberg et al., 1982). 

These proteases have also been found to rapidly breakdown proteins when 

the cells are in a stationary phase or are starved (Goldberg and St. 

John, 1976). 

Proteolytic degradation appears to involve an initial endo 

proteolytic hydrolytic incision rather than exoproteolytic cleavage. 

This would imply that a specific recognition signal is required for a 

protein to be degraded by proteases. 	This is supported by the work of 

Bachmairet_al.,(1986) who found that the half lives of different 

proteins can be correlated with the amino-terminal amino acid of the 

protein (N- end Rule) ranging from proteins with methionine, serine, 

alanine, threonine, valine and glycine at their N-terminus which have 

half lives of more than 20 hours to proteins with half lives of 2 

minutes which have an arginine N-terminus. 	Rogers et al (1986) have 

also proposed that selective proteolytic degradation is a result of a 

"signal sequence". 	Using a eukaryotic system, it was found that 

proteins which contain one or more regions rich in proline (P), 

glutamic acid (E), serine (S) and threonine (T) in PEST sequences are 

subject to rapid intracellular degradation. 

Eukaryotic proteins expressed in E.coli have been shown to be very 



susceptible to proteolytic degradation (Davis et al., 1981). 	The 

problem of degradation of foreign proteins may be difficult to resolve. 

The observation that hybrid sequences can be used to transport insulin 

into the periplasmic space which increased its half life by a factor of 

ten, allows one to build constructs designed to ensure secretion 

(Talmadge et al., 1982; Talmadge and Gilbert, 1982). Alternatively, 

the gene of interest could be fused to various amounts of a bacterial 

gene. 	Heiland and Gething (1981) obtained low levels of haernoglutin 

activity (HA) in E.coli cells with constructs carrying the Lac promoter 

directing transcription of short -galactosidase HA fusion. 	However, 

high levels of expression of HA (5-7% of total cell protein) were 

achieved by using long -glactosidase fusions (Davis et al., 1981). 

It was found that these longer fusions are insoluble and thereby 

partially protected from proteolysis (Stanley and Luzio, 1984). 

The use of bacterial cells lacking one or more of the normal 

complement of proteins may be another way of slowing down degradation 

of eukaryotic proteins. 	The ATP-dependent protease La, the product of 

the ]on gene, has been shown to play an important role in the 

degradation of abnormal proteins. 	Interestingly, it was found that 

the presence of the abnormal proteins increases transcription of the 

lon gene via positive induction of a heat-shock regulatory gene htpR. 

E.coli mutants are now available which are deficient for the function 

of htpR and ion (Goff and Goldberg, 1985). Simon et al.,(1984) showed 

that the bacteriophage T4 carries a gene which causes the decrease in 

the degradation of abnormal proteins. 	This gene was identified and is 

called Pin, protease inhibition gene. 	It was found that the labile 

eukaryotic proteins, e.g. fibroblast interferon, expressed in E.coli is 

stabilised in cells in which the 14 gene is expressed. 
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At present there are few studies on the stability of the analogue 

of eukaryotic messenger RNA in E.coli. 	Structural features, but not 

the size of the messenger RNA, determine its susceptibility to decay 

(Belasco et al., 1986). 	Protection of the messenger RNA by 3 

terminal structures act as barriers against nucleolytic attack and a 

site-specific incision will generate an exposed 3' terminus. Three 

enzymes appear to be involved in degradation. RNAse III appears to be 

an endonuclease and RNAseII and polynucleotide phosphorylse act as 3' 

exonuclease. 	Messenger RNA from a eukaryotic source has been 

stabilised in strains lacking polynucleotide phosphorylase and the 

expression of dehydroquinase from N.crassia and insulin has been 

increased. 

In conclusion, it is highly probable that the N-terminus of the 

protein encoded by the long ORF does not contain a region which is 

particularly sensitive to degradation, or if it does, it lies in a 

conformation not readily accessible. 	Addition of the rest of 	the 

protein may introduce such a site, or alternatively could cause 

unfolding, and hence exposure of this region thus causing the protein 

to be rapidly degraded. 

The inability to express the mature form of the HBV long open 

reading frame in E.coli has also been reported in other laboratories: 

G. Darby, Wellcome, England, and W. Gerlich, Hygiene Institut, 

University of Gottingen, West Germany, (personal communication). 

In an effort to obtain greater expression of the N-terminal region 

and to express other regions of the long ORF, recombinant plasmids were 

made in which various segments of the long ORF were fused to 

practically all the 8-galactosidase genes. 	(This is discussed in 

Chapter 4). 
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CHAPTER 4 

GENERATION OF ANTISERA TO THE PUTATIVE POLYMERASE GENE PRODUCT 
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INTRODUCTION 

Segments of the long open reading frame of HBV were fused in 

frame to a truncated cro--ga1actosidase gene carried on expression 

vectors which were constructed by Stanley and Luzio (1984) (Fig.4.1). 

These vectors contain all the necessary signals for transcription and 

translation of foreign DNA fragments in E.coli. 	The righthand 

promoter (ER)  of the bacteriophage X directs the expression of the 

cloned DNA, which can be inserted in all three reading frames via a 

polylinker at the 3' end of the LacZ gene. 	Immediately downstream of 

this polylinker are transcription and translation stop signals. 	The 

fusion proteins should be expressed with equal •efficiencies as 

inserting the fragment at the 3' end of the gene should not affect the 

5' secondary structure of the messenger RNA. 	Expression of the 

desired product can be controlled by using a bacterial strain which 

expresses the temperature-sensitive lambda repressor. 	The E.coli 

strain NFl (Stanley and Luzio, 1984) carries the Xc1857 gene on a 

defective lambda prophage. 	Amplifying the plasmids at 30 0C blocks 

transcription from the P R  promoter and by shifting the temperature to 

420C, transient expression of the fusion protein can be induced. 

This chapter describes the expression of the hybrid cro-LacZ-L.ORF 

gene (LacZ-pol gene) in E.coli and the generation of antiserum to the 

cloned gene product. 

4.1 Construction of the recombinant Plasmids; pRCT, pRCD and pRCJ 

The recombinant plasmids pHPL-1 and pR1-130 (see Section 3.2) 

contain DNA which codes for 28 amino acids of the core gene fused to 

either 160 or 719 amino acids respectively of the putative polymerase 

gene product. 	EcoRI and SalI sites flank the polymerase regions of 
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BclI 

MstII 

oumni 
Smcil EcoRI 

FIGURE 4.1 	Map of pEX2. Unique restriction enzymes sites 
are shown. 



both pFIPL-1 and pR1-130 (Fig. 4.2). The plasmids were restricted with 

these two enzymes and the resulting fragments separated on a 1% low 

melting point gel. 	The appropriate fragments were purified and 

ligated to EcoRI and SalI digested pEX2. 	The ligated mix was used to 

transform competent E.coli NFl cells and plated out in the presence of 

ampicillin and grown overnight at 30 0C. Plasmid DNA was prepared from 

overnight cultures (grown at 30 0C) of ampicillin-resistant 

transformants and recombinant plasmids were identified by restriction 

mapping. The two resulting recombinant plasmids are called pRCT and 

pRCD. 	pRCJ was constructed in a similar manner to that used for pRCT 

and pRCD. 	Plasmid pI-IBVCB carries the HBV genome (Section 3.1). This 

was digested with BgIII and Pstl to produce a fragment that codes for 

424 amino acids of polynierase and none of the core antigen (Fig. 4.3). 

This fragment was isolated as described above and inserted between the 

BamHI and Pstl sites of pEX3 to give the recombinant plasmid pRCJ which 

was characterised by restriction mapping. 

Conservation of the reading frame at the point of fusion between 

vector and insert DNA was confirmed by sequencing across the junction. 

This was achieved for pRCT and pRCD by transferring the EcoRV-iII 

fragments covering the junction sequences of the recombinant plasmids 

into M13 mp18 and for pRCJ by cloning the Smal Pstl fragment covering 

the LacZ-pol fusion into M13 mp19. 	The junctions were then sequenced 

by the dideoxy chain termination procedure. 

4.2 Analysis of Proteins encoded by pRCT, pRCD and pRCJ 

E.coli NFl cells transformed with pRCT, pRCD or pRCJ were grown at 

300C to a stationary phase in L-broth containing ampicillin and grown 

at 300C to A650  = 0.4. 	Cells were induced by shifting the 
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FIGURE 4.2 	The construction of pRCT and pRCD. 1) PHPL-1 

contains HBV DNA sequences equivalent to the first 28 

amino acids of the core protein fused in frame to amino 

acids 40 to 201 of the polyrnerase gene product. 2) A 

Bami-lI fragment encoding the internal sequences of the 

polymerase gene was inserted into the unique BamHI site of 

pHPL-1 to form pRl-130. 3) pR1-130 and pHPL-1 were 

digested with EcoRI and SalI, the fragments carrying HBV 

sequences recovered, and transferred to the expression 

vector pEX2. 

Key: hatched area, HBV core gene; filled area, HBV 

polymerase gene; open area, X-cro-lacZ. 
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temperature to 42 0C for 45 minutes, then returning to 30 0C for a 

further 30 minutes. 	Cells were harvested and resuspended in protein 

loading buffer, boiled for 5 minutes and the proteins separated by 

electrophoresis on an SDS-polyacrylamide gel. 	The gel was then 

stained with Coomassie blue to visualise the proteins. 	Novel proteins 

were synthesised in cells harbouring pRCD, pRCT or pRCJ with molecular 

weights of 143,000, 195,000 and 158,000, respectively, which correspond 

to the size of the expected B-galactosidase polymerase fusion products 

(Fig. 4.4). 	As cells harbouring the recombinant plasmid only 

synthesise the novel proteins under conditions in which transient 

expression from P R is induced, one can conclude that this promoter is 

driving the expression of these unique polypeptides. 

Interestingly, pRCD, which is a derivative of pRl-130, was shown 

previously to synthesise no novel proteins in vivo (Section 3.4). 

However, when the polymerase region of pR1-130 is preceded by a large 

portion of the .-galactosidase protein (as in pRCD), the fusion protein 

of the expected size is produced. 	Thus it would appear that the - 

galactosidase polypeptide stabilises or protects the foreign gene 

product from degradation. 	Using various induction times it was shown 

that the fusion protein synthesised in cells harbouring pRCD was 

sensitive to proteolytic degradation. 	Figure 4.5, tracks 7 and 8, 

shows that after induction at 42 0C for 30 minutes the fusion protein 

is synthesised in high amounts by pRCD. 	However, if it is induced for 

a further 60 minutes, the fusion protein is completely degraded. 

Although there is a slight reduction in the amount of fusion protein 

synthesised by pRCT, under these conditions there is not a dramatic 

degradation as seen with pRCD. Interestingly, pRCT is a derivative of 

pHPL-1 which does produce a novel protein in vivo (Section 3.4). 
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FIGURE 44 	Polypeptides encoded by pRCT, pRCD and pRCJ. 

Extracts from E.coli cells were fractionated on 7% (w/v) 

polyacrylamide gel containing SDS. 	The gel was stained 

with Coomassie blue. 	The arrows identify the -galacto- 

sidase and fusion proteins produced by pEX2, pRCT pRCD, 

and pRCJ, respectively. 	The samples were the following: 

1) NFl cells; 2) pEX2 at 30 0C; 3) pEX2 induced for 30 

min at 42 0C; 4) pRCT at 30 °C; 5) pRCT induced for 30 

min at 420C; 6) pRCD at 30 0C; 7) pRCD induced for 30 

min at 42 0C; 8) pRCJ at 30 0C; 9) pRCJ induced for 30 

min at 420C. 



0 
0 	C) 

(Y) 

0 
c 
-4 

0 
C) 
() 

0 
'.j 

-4 

0 
C) 
(Y) 

0 
(N 
4 

0 
C) 

0 

'I 	>( >< () (_) 
0 
(j 

0 
() 

- 

C) 
- 

C) 
LL 	w 

Mr 	 z 	ci 
uj 
Q 

c 
Q 

c 
ci 

c 
ci 

ct 
ci 

c 
ci 

	

156,000 — 	 - 
-.- 4 

	

116,000— 	 ._ 

	

94,000 - 	 ___ 	- - 	
down* 

67,000 - 

- 	 UL 

Jum 

	

43,000— 	- 

	

L 345 	678 	9 



FIGURE 4.5 	Analysis of polypeptides encoded by pRCT and 

pRCD at various times of induction 	Extracts from E,col 

cells were fractionated on a 7% (w/v) polyacrylamide gel 

containing SOS. 	The gel was stained with Coomassie blue. 

The arrows identify the -ga1actosidase and fusion 

proteins produced by pEX2, pRCT and pRCD respectively. 

The samples were the following: 2) NFl cells; 3) pEX2 

induced for 90 min at 42 0C; 4) pRCT induced for 10 mm 

at 420C; 5) pRCT induced for 30 min at 42 0C; 6) pRCT 

induced for 90 min at 42 0C; 7) pRCD induced for 30 mm 

at 420C; 8) pRCD induced for 90 min at 420C; 9) pRCT 

induced for 90 min at 420C. 
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This observation suggests that when the cells reach stationary 

phase, during the extended induction times, the proteolytic activity 

which is stimulated under these conditions (Goldberg and St. John, 

1976) is recognising a particular sequence or conformation present in 

the polymerase region encoded by pRCD but not pRCT. 

Protein extracts from cells harbouring the recombinant plasmids 

and vector control were separated electrophoretically and transferred 

to nitrocellulose membranes. 	The identity of these proteins as 

products of the gene fusion was confirmed by immuno-blotting these 

membranes with antiserum raised against -galactosidase (Fig. 4.6). 

4.3 Preparation of Antiserum to the Putative Polymerase Gene Product 

To prepare antiserum that should recognise a wide spectrum of 

epitopes on the putative polymerase protein, three types of 

immunisation procedures were performed, using different antigen 

preparations. 	Isolating the recombinant -galactosidase polymerase 

fusion proteins from an SDS-polyacrylamide gel will expose linear 

sequential determinants, purification of the fusion proteins using 

sonicated cell extracts, and gel exclusion chromatography will allow 

the polypeptide to be isolated such that the conformational epitopes 

will be exposed and lastly, by using HBV core preparations treated with 

non-ionic and ionic detergents a wide variety of antigens of the in 

vivo product will be exposed. 

The 143,000 and 195,000 Dalton proteins synthesised by cells 

containing pRCT and pRCD respectively were used for the preparation of 

antiserum for two reasons; both are present at higher levels than the 

novel proteins synthesised by either pHPL-1 or pEM1, and since they are 

high molecular weight proteins, they migrate to a region of the gel 
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FIGURE 4.6 	Reaction of -galactosidase antiserum with 

polypeptides encoded by recombinant plasmids. 	Western 

blot analysis of E.coli cells NFl transformed with 

recombinant plasmids. 	Samples were run on a 7% (wlv) 

polyacrylamide gel containing SOS. 	After transfer to 

nitrocellulose the samples were probed with antiserum to 

the denatured -galactosidase protein. 	The reactions 

were visualised by addition of peroxidase-conjugated 

donkey anti-rabbit serum and stained in 0.01M imidazole 

p117.4, dianisidine (250 ug/ml, 0.3% (v/v) hydrogen 

peroxide. 	The arrows identify the t3-galactosidase and 

fusion proteins produced by pEX2, pRCT, pRCD and pRCJ 

respectively. The smaller sized species of immunoreactive 

proteins are breakdown products of the larger fusion 

proteins. 	1) pRCJ induced for 30 min at 42 0C; 2) pRCJ 

at 30 0C. 3) pRCD induced for 30 min at 42 0C; 4) pRCD 

at 300C; 5) pRCT induced for 30 min at 42 0C; 6) pRCT 

at 30 0C; 7) pEX2 induced for 30 min at 42 0C; 8) pEX2 

at 300C; 9) NFl induced for 30 min at 420C. 
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where there is less likelihood of contamination with other E.coli 

proteins. 	The fusion proteins were fractionated from an E.coli lysate 

by electrophoresis in a 7.5% polyacrylamide gel in SOS and identified 

by staining strips cut from the edge of the gel with Coomassie blue. 

The corresponding band was cut from the remainder of the gel and 

homogenised in an equal volume of PBS. 	Samples of the homogenate, 

containing about lOOjig of protein, were emulsified with Freund's 

complete adjuvant and injected into rabbits. 	The immunisation 

procedure is described in more detail in the Materials and Methods 

Section. 	Cultures of cells containing pRCT or pRCD were grown at 

300C to A650  = 0.4 induced by raising the temperature to 42 0 C, as 

described previously, harvested and then sonicated in 0.5% of the 

original culture volume of TEN buffer. 	The membrane and supernatant 

fraction were separated by centrifugation. 	Repeated attempts to 

purify the fusion proteins to homogeneity were unsuccessful because of 

the insolubility of the hybrid proteins which precipitated with the 

pellet fraction. 	These pellets were therefore used as antigens and 

emulsified with an equal volume of Freund's complete adjuvant. 	As the 

fusion proteins are synthesised at high levels in the cells, it was 

hoped that an antibody response would still be mounted against these 

polypeptides as was reported by Burrell et a]., (1979) who injected 

whole E.coli cell extracts of clones producing minute quantities of 

HBsAg and induced an anti HBsAg response. 

Hepatitis B core particles were isolated from the liver at the 

autopsy of a patient suffering from chronic hepatitis B virus. 	These 

core preparations were treated with 1% SOS and 5% NP40 and incubated at 

370C for 30 minutes. 	The mixture was diluted 1:10 with PBS and 

emulsified with an equal volume of Freund's adjuvant and injected into 

rabbits as before. 
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4.4 Analysis of Antisera 

Antisera raised against the fusion proteins extracted from an SDS 

polyacrylamide gel, will react with numerous epitopes present on these, 

including the highly immunogenic -ga1actosidase moiety. In order to 

determine whether the antisera contain antibodies which react with the 

polymerase region of the fusion proteins, antibodies against -ga1acto-

sidase were first removed. Removal of such antibodies was carried out 

by incubating the antisera with cellular extracts of E.coli, containing 

the vector pEX2. The resulting immunoprecipitate was removed by 

centrifugation. 	This process of adsorption was repeated three more 

times and allowed the detection of antibodies in the antisera that 

react specifically with the polymerase moiety of the fusion proteins 

(Fig. 4.7 and Fig. 4.8). 	However, while the antiserum against the 

fusion product encoded by pRCD also cross-reacted strongly with the 

gene fusion product from pRCJ, cross-reaction with the pRCT fusion 

product was weak (Fig. 4.8). 	Antibodies against the fusion protein 

synthesised by pRCT also cross-reacted weakly against the two 

heterologous antigens (Fig. 4.7). These results suggest that at least 

two distinct epitopes are located in the amino terminal and central 

regions of the gene product. 

The antiserum raised to the pellet fraction from crude lysates of 

pRCD and pRCT, barely recognised the fusion protein using the Western 

blot technique. 	Likewise, the rabbits that were exposed to core 

preparations treated with NP40 and SOS, produced anti HBcAg, and anti 

HBe antibodies respectively (detected by using radioimmuno- assays) but 

not antibodies that cross-react with the fusion protein. 

These results suggest that the antibodies produced by the latter 

two procedures recognise, perhaps, only conformational epitopes and so 
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FIGURE 4.7 	Reaction of monospecific antiserum with 

polypeptides encoded by recombinant plasmids. 	Extracts 

from cells bearing pEX2, pRCT, pRCD and pRCJ were 

separated electrophoretically and transferred to nitro- 

cellulose membranes. 	After transfer samples were probed 

with antiserum raised to the -ga1actosidase-po1ymerase 

fusion protein synthesised by pRCT. 	The antiserum was 

preabsorbed with extracts from cells carrying the vector 

the following number of times: panel A, once, panel C 

twice, and panel B, three times. The blot was hybridised 

and developed as described in Section 2.10.12. 	Lane 1, 

pRCJ; Lane 2, pRCT; Lane 3, pRCD; Lane 4, pRCJ; Lane 

5, pRCD; Lane 6, pRCT, and Lane 7, pEX2. 	The samples in 

Lanes 8-11 are duplicates of those in Lanes 4-7. 

FIGURE 4.8 	Reaction of monospecific antiserum with 

polypeptides encoded by recombinant plasmids. Samples 

were run on a 7% (w/v) polyacrylamide gel containing SDS. 

After transfer to nitrocellulose the samples were probed 

with antiserum raised to the -ga1actosidase-po1ymerase 

fusion protein synthesised by pRCD. The antiserum had 

been previously adsorbed three times, with extracts from 

cells carrying the vector. The blot was hybridised and 

developed as described in Section 2.10.12. 	Lane 1, pRCD; 

Lane 2, pRCT; Lane 3, pEX2, and Lane 4, PRCJ. 
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would not react with the fusion proteins in Western blots. 	To 

determine whether or not the antisera produced against cell pellet 

fractions, or Dane particles treated with detergents, recognise 

conformational antigens on the fusion proteins, one would have to use 

the techniques of either radioirnmunoassay or irnmunoprecipitation. Due 

to the lack of purified antigen and the presence of a large variety of 

antibodies capable of cross-reaction with E.coli proteins, it has not 

yet been possible to carry out such experiments. 	Further work, 

involving purification of the fusion proteins and removal of non-

specific antibodies, will have to be carried out before the antibodies 

raised against the crude preparations of fusion proteins and Dane 

(core) preparations can be properly analysed. 

4.5 Discussion 

In conclusion, segments of the long ORE of HBV were fused in frame 

to the -ga1actosidase gene of E.coli. 	Expression of the recombinant 

plasmids in E.coli produced fusion proteins which were sufficiently 

abundant and stable for direct detection after electrophoresis of the 

total bacterial proteins. 	The fusion proteins contained regions of 

the putative polymerase polypeptide which had not been previously 

synthesised. 	Rabbit antisera were raised to the hybrid proteins and 

this was shown to contain antibodies that recognised epitopes on the 

putative polymerase protein. Cross-reaction experiments tentatively 

identified at least two distinct epitopes located in the central and 

amino terminal region of this I-iBV polypeptide. 

This rabbit antisera can now be used as a probe to confirm that 

the protein encoded by the HBV long ORF is present within the virion 

particle and expressed during the course of the virus life cycle. At 
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present Professor Eddleston (King's College, London) is using this 

antiserum to detect any cross-reactivity with proteins from liver 

biopsies of patients infected with HBV. 	In future experiments this 

antiserum will be used to analyse Dane particles and cell lines 

transformed with HBV for the presence of the putative polymerase gene 

product. 	The polymerase gene fusion product synthesised in E.coli 

also provides a reagent for the detection of antibodies to HBV 

polymerase. 
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INTRODUCTION 

The polymerase gene fusion products provide a reagent which allows 

one to determine firstly, if and how this gene is expressed during the 

life-cycle of HBV, and secondly, whether or not the infected host 

mounts an antibody response to it. 

It may be expected that a viral polymerase, normally an internal 

component, would not induce an antibody response. 	However, it has 

been shown that, in the course of infection of both human immuno-

deficiency virus (HIV) and Moloney murine Leukaemia virus (M-MuLV), an 

antibody response against the viral polymerase is induced. 	Antibodies 

to M-MuLV reverse transcriptase and some but not all antibodies to HIV 

reverse transcriptase have also been shown to inhibit enzyme activity 

in disrupted virions (Aaronson et al., 1971; Oroszlan et al., 1977; 

Laurence et al., 1987). 	Likewise, Cappel et a]., (1976) reported the 

presence of antibodies to the endogenous HBV DNA polymerase in the sera 

of patients infected with HBV. 	These antibodies, which appeared 

transiently, were detected by their ability to inhibit the repair of 

the single-stranded gap in the HBV genome by the endogenous polymerase. 

They were found to be specific in that they did not inhibit Rous 

sarcoma or bacterial polymerases (Cappel et al., 1977). 	However, it 

is not obvious how these antibodies could inhibit the endogenous DNA 

polymerase within the intact core particle. 	This inhibition of the 

HBV polymerase by antibodies has not been observed by others (Hess et 

a]., 1980. 	Therefore, the inhibitory antibodies observed by Cappel 

and his co-workers have yet to be proven unequivocally to be specific 

to the hepatitis B associated polymerase. 

To investigate this phenomenon immunoblotting experiments with 
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bacterial extracts carrying the -ga1actosidase polymerase fusion 

protein were performed and are discussed in this chapter. 	The results 

showed that convalescent sera from chimpanzees infected with FIBV 

contain antibodies that cross-react with the -ga1actosidase polymerase 

fusion but with no other polypeptide encoded by HBV. 

5.1 Detection of Antibodies to the Polymerase Gene Product in 

Convalescent sera. 

Before trying to detect antibodies against the putative polymerase 

gene product in convalescent sera, using the fusion proteins produced 

by pRCD and pRCT as antigens, it was necessary to show that the N-

terminal segment of HBcAg, present in both of the fusion proteins, did 

not show detectable cross-reaction with antibodies against either HBcAg 

or 1-IBeAg. 	Crude extracts from cells carrying the recombinant plasmids 

or vectors were fractionated electrophoretically on an SDS polyacryl- 

amide gel and transferred onto nitrocellulose membranes. 	Serum 

samples from nine separate rabbits that were anti-HBcAg positive after 

being immunised against various native or denatured core preparations 

were then tested against the proteins bound to nitrocellulose 

(Fig. 5.1a). Bound antibodies were detected by incubating with either 

alkaline phosphatase or peroxidase conjugated to anti-rabbit/human IgG 

and stained as described in Materials and Methods section. 	No anti- 

bodies that cross-react with either of the fusion protein were found. 

In addition, the antiserum generated to the fusion proteins showed no 

reactivity in immunoblotting experiments with HBcA9 or HBeAg. 	Hence 

one can conclude from the data that in the first 28 amino acids of the 

core polypeptide there is no epitope for HBcAg or HBeAg, which agrees 

with extensive epitope mapping of the HBeAg carried out by R. Tedder 
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FIGURE 5.1(a) 	Antibodies against HBcAg do not cross-react with 

fusion proteins. 	Proteins from cell lysates harbouring 

pRi-11, pEX2, pRCD and pRCT were fractionated by 

electrophoresis in a 10% polyacrylamide gel containing SDS 

and transferred electrolytically to a cellulose nitrate 

membrane. 	This membrane was probed with HBcAg 

antibodies. 	The reactions were detected by addition of 

peroxidase-conjugated donkey anti-rabbit serum and stained 

as described.previously. The arrows identify where the 

fusion protein migrates. Cross-reacting polypeptides 

across all tracks may be due to the serum (raised against 

a bacterial preparation of HBcAg) containing antibodies to 

these E.coli proteins. 1) NFl; 2) pEX2 induced at 42 0C 

for 30 mm; 3) pRCT at 30 °C; 4) pRCT induced at 42 0C 

for 30 mm; 5) pRCD at 30 0C; 6) pRCD induced at 42 0 C 

for 30 mm; 7) Purified HBcAg expressed by Ri-il. 

FIGURE 5.1(b) 	Antibodies against HB5Ag do not cross-react 

with fusion proteins. 	Purified HB5Ag expressed by yeast 

and crude lysates of cells carrying the plasmids of 

interest were run on a 10 (w/v) polyacrylamide gel 

containing SDS, then transferred onto nitrocellulose. The 

blot was probed with HBsAg antibodies and developed as 

described in Section 2.10.12. The arrows identify where 

the fusion proteins migrate. 1) FIBsAg; 2) pRi-11; 

3) pBBX-1 expressing FIBxA9; 4) pRCD induced at 42 0 C 

for 30 mm; 5) pRCT induced at 42 0C for 30 mm; 

6) pEX2 induced at 42 0C for 30 mm; 7) NFl. 
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(personal communication). 	It also shows that the fusion proteins, 

synthesised by pRCT, pRCD and pRCJ, the latter of which has no core 

sequences, can be used as antigens to detect antibodies to the gene 

product of the long ORF. 

As the levels of the HBeAg and the endogenous Hepatitis B 

polymerase activity rise and fall at the same time during the course of 

HBV infection it was postulated that an antibody response to the 

endogenous polymerase would correlate with the appearance of anti-

HBeAg. 	Therefore, serum samples taken serially from three chimpanzees 

recovering from HBV infection, which were anti-HBeAg positive, were 

tested against the fusion proteins bound to nitrocellulose. 	Cross- 

reacting antibodies were found in the serum of the infected animals 

(Fig. 5.2 and 5.3), but these antibodies were present only transiently 

and reached a maximal level 25 weeks after inoculation of the virus, 

which correlates exactly with the maximal levels of anti-HBe. 

Similar cross-reacting antibodies were not found in the serum of 

chimpanzees that had been vaccinated prior to inoculation with HBV 

(Fig.5.2b). 	Furthermore, antibodies raised against HBsA9 (Fig.5.1b), 

as well as HBcAg and HBeAg (Fig. 5.1a), did not react with the - 

galactosidase-polymerase fusion products. 	Hence these results clearly 

show that during HBV infection a specific antibody response, directed 

against the gene product of the long ORE, is elicited. 

A panel of human sera from patients infected with HBV was examined 

for the presence of antibodies to the putative polymerase gene product. 

None of the human sera contained antibodies which cross-reacted with 

the -galactosidase-po1ymerase fusion proteins. 	The negative results 

for the human serum may reflect the small panel of blood samples (five) 

used and the stage of infection when they were taken; late acute and the 
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FIGURE 5.2 	Detection of antibodies that cross-react with 

the fusion proteins expressed by pRCT and pRCJ. 	Extracts 

from cells bearing pEX2, pRCT and pRCJ were separated 

electrophoretically and transferred to nitrocellulose 

membranes. 	These membranes were either stained with 

Coomassie blue, or incubated with chimpanzee serum samples 

listed below. 	Membranes incubated with serum were then 

washed and incubated with goat anti-human serum conjugated 

with horse radish peroxidase for staining with peroxidase 

as described in the Methods section. 	A) Membranes 

incubated with serum samples from a convalescent 

chimpanzee following acute hepatitis B infection. 	Lanes 

1,2,12,13 and 14, correspond to pEX2, pRCT, pRCJ, pRCT and 

molecular weight markers stained with Coomassie blue. 

Lanes 3-5 are pRCJ, pEX2 and pRCT, respectively, probed 

with pre-immune serum. 	The samples in Lanes 6-8 are 

duplicates of those in Lanes 3-5, but incubated with serum 

taken 25 weeks after HBV challenge. 	Lanes 9-11 are 

duplicates of the two previous groups, but probed with 

serum taken 30 weeks after HBV challenge. 	B) Membranes 

probed with serum from a chimpanzee vaccinated (with 

purified HBsAg synthesised in yeast) prior to inoculation 

with HBV. 	The samples in Lanes 4-6 contain pRCJ, pEX2 

and pRCT incubated with pre-immune serum. The samples in 

Lanes 1-3 are duplicates of those in Lanes 4-6 probed with 

serum taken 25-30 weeks after challenge with the virus, 



CM 
L. 

I I 	 I 

>( 	° 	() >< ° 	(_) )< 	() U )< 	U 	() 	() 	L 

cuiccc 	a 
c 	c 	c 	o c 	c 	c c 	D 

4 eq 	4 
4 

4 

-1 04 I— -(N I-  
o)< U UXU 

M oLiJc 
QOcL 

gift 
I,  

Mr 

!A1 

- 	- 9/+000 

-67,000 

- /43,000 

- 	
— 	 - 30,000 

4 5 6 7 8 	9 10 11 	12 13 14 

Pre-immune 25 weeks after 30 weeks 
HBV challenge after HBV 

challenge 

123 	/4 56 

25 to 30 	Pre-immune 
seeks after 
HBV challenge 



carrier state. 	As the antibodies present in the chimpanzees were 

shown to occur only transiently, it is possible that such antibodies 

have been produced but are no longer present in the sera. 	At present 

a larger panel of human sera, consisting of over 50 samples (some of 

which had been taken very early in the course of the disease), are 

being tested for the presence of the cross-reacting antibodies. 	To 

investigate whether or not the antibodies found in the chimpanzee serum 

also react with the homologous polymerase gene products of Moloney 

murine Leukaemia virus (M-MuLV), and Avian murine Leukaemia virus 

(AMy), samples of the purified reverse transcriptase from both these 

viruses were separated electrophoretically on an SOS polyacrylarnide gel 

and transferred onto nitrocellulose membranes. These membranes were 

then probed with serum samples which cross-reacted with the - 

galactosidase-polymerase fusion proteins. 	It was found that the 

convalescent chimpanzee sera showed no cross-reaction with either 

reverse transcriptase and hence is specific for the putative polymerase 

of HBV (Fig. 5.4). 

5.2 Discussion 

These experiments provide clear evidence that the putative 

polymerase gene of HBV is expressed and its product exposed to the 

immune system of the host during normal viral infection. 	They also 

show that the two epitopes tentatively identified at the amino terminal 

and central regions of the gene product (Section 4.4) elicit an 

antibody response during HBV infection. 

Whether the antibodies described by Cappel et al., (1976), which 

inhibited the endogenous DNA polymerase, are related in any way to the 

antibodies generated to the translation product of the long ORF remains 
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FIGURE 5.3 	Demonstration of antibodies to the - 

galactosidase-polymerase fusion proteins in serum by 

immunoblotting. Proteins were separated by SDS-PAGE on a 

10% gel and transferred onto nitrocellulose strips. 

These strips were incubated with chimpanzee serum samples 

as described below. 	The reactions were visualised by the 

addition of goat anti-human serum conjugated with 

peroxidase and stained as described in the Materials and 

Method Section. 	Lanes 1-5; extracts from cells carrying 

pRi-11, pRCD, pRCT, pEX2 and NFl, respectively probed with 

serum taken 30 weeks after HBV challenge. 	The samples in 

Lanes 18-22 were duplicates of those in lanes 1-5 but 

incubated with serum taken 11 weeks after HBV challenge. 

Lanes 6-11; extracts from cells carrying pR1-11, pEX2, 

pRCT, pRCD, pRCJ and pRCJ respectively, incubated with 

serum taken 25 weeks after HBV challenge. 	Finally, Lanes 

12-17 are duplicates of those samples in Lanes 6-11, 

probed with pre-immune serum serum. 

FIGURE 5.4 	Antibodies which cross-react to the recombinant 

fusion protein do not recognise either AMV or M-MuLV 

reverse transcriptase. 	Crude extracts from cells 

carrying the recombinant plasmids and purified reverse 

transcriptase from AMV and M-MuLV were separated on a 10% 

(w/v) polyacrylamide gel. 	Proteins were Western-blotted 

onto nitrocellulose and probed with antiserum from a 

chimpanzee taken 25 weeks after HBV challenge. 	The blot 

was developed as described in Section 210.12. 1) pRi-11; 

2) pEX2; 3) pEX2; 4) NFl; 5) M-MuLV; 6) AMV; 7) pRCD 

8) pRCT. 
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to be determined. 	It is of interest to note, however, that both sets 

of antibodies appeared transiently in the early stages of infection. 

The transient nature of the antibodies showing cross-reaction with the 

fusion proteins may reflect the system used. 	The Western blot method 

will only detect antibodies which recognise linear epitopes rather than 

conformational epitopes. 	Antibodies raised to sequential 

determinants are known to be shorter lived (Weber et a]., 1987). 

Perhaps, by using immunoprecipitationmethods,a more persistent class 

of antibody to the gene product of the long ORE could be identified. 

The production of antibodies against the X antigen has been 

observed in the same group of animals (Weber et a]., 1987). This is 

interesting as both the endogenous polymerase and the HBxAg are 

believed to be internal components of HBV and the appearance of 

antibodies may reflect exposure of both of these antigens to the 

immune system. 	Perhaps at a particular stage in HBV morphogenesis 

these proteins are exposed due to their presence in the cell membrane. 

This is the method by which the core antigen is proposed to elicit a 

humoral response. 	The polymerase of M-MuLV, which induces an 

antibody response, has also been detected on the membrane of cells 

infected with mutant M-MuLV, which are unable to complete the latter 

stages of viral assembly (Aaronson et al., 1971; Witte and Baltimore, 

1978). 	Alternatively, the cellular components may be exposed as a 

result of host cell lysis. 

In conclusion, it remains to be seen whether or not antibodies 

against the polymerase protein are produced in humans, and if so, 

whether or not such antibodies play a protective role. 
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INTRODUCTION 

In the previous chapter it was shown that the long ORE of HBV is 

expressed by the virus during HBV thfection. 	As discussed earlier, 

this long ORE is thought to encode the endogenous polymerase. 

However, to definitively assign this function to the long ORE it is 

n.ecessary to prove that the translation product has DNA polymerase 

activity. 

The polymerase gene of both M-MuLV and HIV have been expressed 

in E.coli either as a fusion or native protein and shown to induce the 

synthesis of reverse transcriptase activity. 	In the case of M-MuLV 

reverse transcriptase, part of this gene, when fused to the TrpE gene, 

was shown to produce high levels of reverse transcriptase activity even 

though the amino and carboxy termini of the protein product were not 

present (Tanese et al., 1985) 

It was also found that when the HIV polymerase gene was expressed 

as a fusion protein with TrpE much of the polymerase gene could be 

removed without affecting activity but the TrpE portion of the 

construct was essential for good activity (Tanese et al., 1986). 

As a result of the above observations, it was decided to test 

extracts of cells expressing the -galactosidase HBV fusion proteins 

for a novel DNA polymerase activity. 	Although originally described as 

a DNA-dependent polymerase (Kaplan et al., 1973), the HBV polymerase is 

now believed to function as a reverse transcriptase in the generation 

of an RNA intermediate during viral replication (Summers and Mason, 

1982). Accordingly an assay for reverse transcriptase was adopted. 

The assay measures the incorporation of radioactively labelled dGTP 

into acid precipitable material in a reaction that uses poly r(C) as 

template and oligo d(G) as primer (Takatsuji et al., 1986). 	The 
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results presented in this chapter show that extracts of E.coli 

expressing the HBV gene fusion products exhibit a polymerase activity 

with the characterisatics of a reverse transcriptase. 

6.1 The -galactosidase-Polymerase Fusions induce Reverse 

Transcriptase Activity 

Cultures of E.coli NFl transformed with the vector pEX2 and the 

three recombinant plasmids, pRCT, pRCJ, and pRCD, were grown at 30 0C 

to A650=0.4 induced for 45 minutes at 42 0C, harvested and 

resuspended in Tris EDTA NaCl buffer (T.E.N.) (See Methods Section). 

The cells were lysed by sonication and treated with deoxyribonuclease 

1. 	Cell debris was pelleted by centrifugation and the supernatant and 

pellet fractions were separated. 	The pellet was washed three times by 

resuspension in TEN and centrifugation, and used in various assay 

reactions. 	Aliquots of the crude lysate mixture from cells carrying 

pRCT, pRCD and pRCJ, and the vector were added to the following:- the 

reaction buffer, poly r(C) oligo dG( 12_ 18 ), and radioactive labelled 

3H dGTP. 	After incubation at 37 0C for 60 minutes, acid- 

precipitable material was collected and counted (see Methods Section). 

Extracts from cells carrying the vector exhibited small but 

significant activity in this assay, but equivalent extracts from cells 

carrying the plasniids pRCD, pRCJ or pRCT consistently gave 

significantly higher activity in the polyrnerase assay than cells 

carrying the vector. 	The highest specific activity was obtained 

repeatedly with extracts of pRCT (Fig.6.1a) and cells transformed with 

this plasmid were therefore used for further experiments. 	Extracts 

from cells harbouring pRCD and pRCJ had polymerase activities 

approximately twice that of cells carrying the vector. 
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FIGURE 6d(a) 	Lysates prepared from E.coli NFl cells carrying 

pEX2 and pRCT assayed for polymerase activity. 

FIGURE 6.1(b) 	Lysates prepared from E.coli NFl cells carrying 

pEX2 and pRCT assayed for polymerase activity in the 

presence of PEA. 
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The polymerase activity of cells carrying pRCT was for the most 

part associated with the insoluble material which made purification 

very difficult. The crude lysate mixture was therefore used for all the 

studies of enzyme activity. 

The basal polymerase activity of the E.coli cells carrying pEX2 

could be due to the ability of E.coli DNA polymerase I (DNA poll) to 

carry out either DNA or RNA directed DNA synthesis and its ability to 

utilise the template poly r(C) oligo dG(12_18) (Karkas, 1973; 

Loeb et al., 1973). The polymerase activity of crude extracts from 

cells carrying pEX2 and pRCT were therefore compared (Table 1). 

Table 1 

Assay dGTP incorporated Specific Activity Specific Activit, 
Conditions (Cpm/60 mm.) (Cpm/jig protein/60 mm.) (pmoles/ng protei 

pEX2 pRCT pEX2 pRCT pEX2 pRC 

 703 12466 5.6 99 0.17 3. 

 149 1042 1.2 8.2 0.04 0. 
Heat 	(c) 164 154 1.3 1.8 0.04 0. 
No Mg2  229 0 1.9 0 0.05 0 
Mn2 (d) 2326 5575 18.0 44 0.53 1. 

Lysates were prepared from E.coli NFl cells carrying pEX2 and pRCT 

were assayed for polymerase activity (see Methods). In all the 

reactions, unless otherwise stated, lOpl of the preparation was 

used 

These reactions were as in (a), but with liil  of the preparation. 

Crude lysates were heated for 15 mm. at 70 0c, cooled on ice 

then assayed. 

Mn2  at 2mM replaced Mg2  (10mM) in the assay conditions 

described in the Methods Section. 
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The polymerase activity of both lysates could be abolished by heat 

treatment and was shown to be dependent on the presence of a divalent 

cation. 	The activity from the vector extracts was stimulated when 

manganese replaced magnesium, but the activity from cells carrying pRCT 

was markedly reduced in the presence of manganese. 	This is of twofold 

interest. Firstly, it supports the hypothesis that DNA poll is 

responsible for the basal polymerase activity of the vector cells as 

the reverse transcriptase activity of DNA poll is stimulated by 

manganese (Karkas, 1973), and secondly, the loss of polymerase activity 

from pRCT in the presence of manganese reflects the cation 

requirement for the polymerase activity associated with HBV (Goto et 

al., 1984). 

6.2 Inhibition of the Polymerase Activity by Phosphonoformate 

Phosphonoformate (PFA), a pyrophosphate analog, is an inhibitor of 

reverse transcriptase and other viral polymerases (Nordenfelt et al., 

1980; Hess et al., 1980). 	It has also been shown to inhibit HBV 

polyrnerase and has in fact been used to treat patients with fulminant 

Hepatitis (Heden et al., 1986). 

Treatment of extracts of E.coli carrying pRCT with PFA inhibited the 

polymerase activity while the addition of PFA to extracts of E.coli 

carrying pEX2 had little effect on the polymerase activity (Fig. 6.1B). 

The sensitivity of the polymerase activity in cells carrying pRCT is 

therefore similar to the endogenous HBV polymerase. 

6.3 Discussion 

It is interesting that cell extracts carrying the smallest of the 

recombinant gene fusion, pRCT, has the highest polymerase activity and 
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that extension of the 3' end of the gene results in a dramatic loss in 

enzyme activity. 	This is analogous to the situation found with M-MuLV 

reverse transcriptase gene fusions. It was found that progressive 

deletions at the 3' end of the gene resulted in increased levels of 

reverse transcriptase activity in cell extracts carrying these 

deletions (Roth et al., 1985). 	This may reflect the fact that these 

smaller fusion proteins are more soluble than the parental fusion 

proteins and therefore more accessible to the substrates, or 

alternatively the template or triphosphate binding sites are in a more 

favourable conformation for efficient synthesis. 

To try to specifically inhibit the DNA polymerase activity in 

cells carrying pRCT, cell extracts synthesising the -galactosidase-

polymerase fusion protein were incubated with rabbit and chimpanzee 

sera that had previously been shown to cross-react with this protein in 

immunoblotting experiments. These experiments were unsuccessful which 

may be a correct indication of cross-reaction without blocking enzyme 

activity as has been observed in other systems(e.g. several antibodies 

that cross-reacted with HIV reverse transcriptase were found not to 

inhibit its enzyme activity (G.Derby, personal communication). 	The 

sensitivity of the polymerase activity in extracts of cells carrying 

pRCT to PFA, and the marked preference for magnesium, leads to the 

conclusion that the major component of the polymerase activity is due 

to the polymerase activity encoded by the segment of the long ORE of 

HBV. 	The limited tests carried out so far show that the biochemical 

profile of the cloned enzyme activity is similar to that of the 

endogenous Hepatitis B polymerase and the gene product of the long ORF 

does have polymerase activity. 
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In the world today there are same 200 million carriers of HBV. 

The prognosis for any patient carrying FIBV is not good. 	Although some 

carriers spontaneously revert, and eliminate the virus, more than 50% 

will die of a liver-related disease. 	At present no universal 

chemotherapy is employed in the treatment of HBV carriers. 	The main 

approach is to use drugs that have been shown to inhibit the endogenous 

DNA polymerase with the assumption that this will stop viral 

replication. 	The major limitation in this approach is that the drug 

is being analysed with respect to the repair function of the endogenous 

polymerase and it may or may not affect the reverse transcriptase 

activity of this enzyme which is believed to be involved in the 

replication of HBV (Summers and Mason, 1982). 	Hence it is important 

that more is known about this enzyme, in particular the origin of this 

encapsulated polymerase. 

The main purpose of this study was to determine whether the long 

ORE of HBV, previously assigned as the putative polymerase gene is 

expressed during the course of viral infection and whether its product 

has polymerase activity. 	The long term aim was to provide a safe and 

abundant source of the HBV polymerase, using recombinant DNA techniques 

thereby allowing detailed analysis of the DNA-. and RNA-dependent 

polymerase activities of the enzyme with the hope of providing an 

effective and specific drug against the HBV polymerase. 

7.1 Expression of the long ORF in E.coli 

Several fragments of the putative polymerase gene were expressed 

in E.coli under the inducible control of the Lac and Tac promoters. It 

was found that the only construct that synthesised a detectable novel 

protein of the expected size was one that expressed 160 amino acids 
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from the N-terminal putative polymerase gene product. 	Synthesis of 

novel proteins by E.coli cells carrying plasmids with extended 

polymerase coding information could not be detected. Although the 

translation products could not be detected it was shown, using Northern 

blotting, that plasmids were producing HBV-specific transcripts. 

The predicted secondary structure of the messenger RNA showed that 

the initiation codon and the Shine dalgarno sequence were in a 

favourable position for the initiation of translation. 	These 

observations indicated that the failure to detect novel proteins was 

possibly due to instability of the protein products as opposed to any 

block during expression. 	This was confirmed by using a coupled in 

vitro transcription translation system. Using this system, novel 

proteins of the predicted size were expressed by the recombinants which 

had not been detected in vivo. 

Therefore, in an attempt to overcome this problem in vivo, the 

plasmids were transferred to a protease-deficient strain of E.coli 

(SG935). 	This bacterium is deficient in the protease La which plays 

an important role in the degradation of abnormal or foreign proteins 

(Goff and Goldberg, 1985). 	Using this strain it was possible to 

detect a novel protein with the expected molecular weight in cells 

carrying pEM1. 	It was also found that the level of the translation 

product expressed by pHPL-1 was dramatically increased. 	However, the 

larger constructs, pR1-130, pR1-pol8, ptac-pol8 and pT.R.T., which 

should have expressed the rest of the putative polymerase gene product, 

did not produce any novel polypeptides. 	Therefore it is highly 

probable that the central or carboxy region of the translation product 

from the long ORF carries a region that is particularly sensitive to 

proteolytic degradation, e.g. the PEST sequence (Rogers et al., 
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1986). Similarly, the polymerase gene products of HIV and M-MuLV, have 

been found to be sensitive to proteolytic degradation when synthesised 

in bacteria (Tanese, et al., 1985, 1986; Kotewicz et al., 1985). 	For 

M-MuLV, stable expression of its reverse transcriptase was achieved by 

the removal of DNA from the 3' terminus of the gene (Roth et al., 

1985). 	Likewise when the reverse transcriptase of HIV was expressed 

in a mature form, most of its protein product was present in smaller 

sized species (Farmierie et al., 1987). 	The use of Lon mutants to 

express the M-MuLV recombinant, doubled the enzyme activity previously 

seen in Lon+  cells (Kotewicz et a]., 1985). 

The fusion of a eukaryotic or viral sequence to a bacterial gene 

has often led to the stable synthesis of the hybrid fusion protein 

whereas the expression of the same recombinant gene fused to only a 

short bacterial polypeptide has been unsuccessful. 

Therefore, in an effort to obtain greater expression of the N-

terminal region and to express other regions of the long ORF stably in 

bacteria, recombinant plasmids were constructed in which various 

segments of the long ORF were fused in-frame to practically all of the 

-galactosidase genes of E.coli. 

Expression of the -galactosidase-polymerase fusion genes in 

E.coli produced proteins that were sufficiently abundant and stable 

for direct detection after electrophoresis of the total bacterial 

proteins. 	Interestingly, this included regions of the putative 

polymerase gene, the product of which had previously been undetectable 

in vivo. 	However, during extended induction times constructs 

containing the central and carboxy termini of the putative polymerase 

protein were selectively degraded. 	This suggests that when the cells 

are allowed to reach stationary phase, the proteolytic activity 
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stimulated under these conditions recognises a particular sequence or 

conformation encoded at the central or carboxy terminus of the fusion 

proteins (Goldberg and St. John, 1976). However, constructs containing 

only the N-terminus of the putative polymerase protein express their 

translation product in a native form in E.coli without such specific 

proteolytic degradation. 

7.2 Analysis of Antisera that cross-react with the Putative 

Polymerase Gene Product 

Rabbit antisera were raised to the hybrid fusion proteins. 	The 

antiserum recognised specific epitopes on the putative polymerase 

protein. 	Cross-reaction experiments with this antiserum and the 

various fusion proteins demonstrated that at least two distinct 

epitopes were located in the central and amino terminal regions of the 

putative polymerase. 

The polymerase gene fusion product synthesised in E.coli provided 

a reagent for the detection of antibodies to FIBV polymerase. 	Cross- 

reacting antibodies that recognise these fusion proteins were found in 

the sera of chimpanzees recovering from acute Hepatitis B infection. 

The presence of these antibodies was found to be transient; they were 

not observed in the serum of a chimpanzee that had been vaccinated 

prior to inoculation with HBV. 	Furthermore, antibodies raised to HBV 

surface, core, e and X antigen showed no cross-reaction with the - 

galactosidase polymerase fusion proteins. 

These experiments provide clear evidence that the putative 

polymerase gene of HBV is in fact expressed and antibodies to its 

protein product are produced during FIBV infection. 
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At present it still remains to be estabished whether or not 

antibodies that cross-react with the putative polymerase gene product 

are produced in humans following HBV infection. 	However, it is very 

likely that they are, as antibodies against HBxAg which have been 

observed in the same group of animals have also been observed in humans 

(Weber et al., 1987). 	It is not clear whether antibodies to the 

putative polymerase gene product would play a protective role. 	In the 

case of HIV, antibodies to the endogenous polymerase have been shown to 

interfere with virion assembly, and budding in vitro (Wong et I., 

1987).They may also reflect a particular point in the course of viral 

infection. 	Laurence et al., (1987) showed that asymptomatic HIV sero 

positive carriers with high titres of antibodies to reverse 

transcriptase lost these antibodies prior to the development of the 

acquired immune deficiency syndrome (AIDS). 	However, it is more 

likely that the antibodies seen to the putative HBV polymerase gene 

product and also the X antigen, are actually surrogate markers for a 

protective cellular immune response. 	In this way both HBcAg and HBeAg 

have been shown to play a protective role in stopping HBV infection by 

stimulating cell mediated response (Vento et al., 1985; Murray et a]., 

1984). 	It is possible that both the HBV polymerase and HBxA9 may also 

be involved in this process if only to a limited extent. 

7.3 The Protein Product of the Long ORE has Polymerase Activity 

Extracts of E.coli expressing the recombinant -ga1actosidase 

polymerase fusions had significantly higher polymerase activity than 

cells bearing the vector. Interestingly, the smallest gene fusion 

alone, expressing 160 amino acids of the N-terminal polymerase 

polypeptide, gave the highest specific activity. This may be due to 
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the increased solubility of the smaller fusion product and greater 

accessibility to the substrate. 	This portion excludes the region of 

strong homology which exists between the reverse transcriptases of a 

number of viruses located in the centre of the polypeptide (Toh et al., 

1983, 1985); this particular motif is homologous with an amino acid 

sequence in the ce-subunit of the E.coli DNA-directed RNA polymerase 

which has been suggested to have a role in template of primer binding 

(Kamar and Argos, 1987). 

For HIV reverse transcriptase it has also been shown recently that 

the amino terminal region of the polypeptide is essential for 

polymerase activity. 	By changing an asparagine residue to a glutamine 

residue within this region, enzyme activity was completely lost. 

(Larder et al., 1987). These experiments pinpoint a small area of 

the putative polymerase protein which carries several important 

regions for the polymerase activity. 	Using site-directed mutagenesis 

of pRCT it should be possible to pinpoint the amino acid residues that 

are responsible for polymerase activity. 

7.4 Inhibition of the Polymerase Activity by Phosphonoformate 

Since the polymeraseactivity produced by pRCT is sensitive to 

PFA, a site of action of this drug must reside within amino acid 

residues 40 to 201 of the Hepatitis B polymerase. 	Interestingly, the 

N-terminal region of the reverse transcriptase of HIV has been shown to 

be essential for inhibition by PEA. Hence pRCT provides a useful 

substrate for the study of PEA action. 	Using site-directed 

mutagenesis of pRCT it should be possible, by creating drug-resistant 

mutants, to identify a site of drug action. 	Hence by understanding 
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drug interaction at this level it should also be possible to design 

more specific drugs which would interact and interfere with the 

function of the polymerase activity encoded by the HBV long ORF. 

Although one can use the recombinant polymerase expressed in E.coli to 

some extent to identify drugs that inhibit the enzyme activity, this 

approach is limited as the clone produces only part of the polyrnerase 

protein and is expressed in a bacterial environment. 	A more 

comprehensive approach to screening would be to express the polymerase 

gene in eukaryotic cells. 	To this end the long ORE of HBV had been 

cloned into a vaccinia virus. The recombinant virus should express the 

polymerase gene under the control of vaccinia transcription signals. 

At present the products of this recombinant virus are being analysed by 

Dr. M. Mackett, Paterson Laboratory, Manchester. 

7.5 Conclusion 

Segments of the long ORE of the Hepatitis B virus genome have been 

fused to the E.coli -galactosidase gene and expressed as fusion 

proteins. 	Antisera raised to these fusion proteins recognise two 

distinct epitopes in the amino and central regions of the putative 

polymerase gene product. Using imniunoblotting, convalescent sera from 

chimpanzees infected with HBV were shown to contain antibodies that 

cross-reacted with the fusion proteins. Extracts of E.coli expressing 

the gene fusion products were also shown to exhibit a polymerase 

activity with the characteristics of the authentic endogenous Hepatitis 

B polymerase. 

Thus, the long ORE of HBV is expressed during the course of viral 

infection and its product has polymerase activity (McGlynn and Murray, 

1987). 
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Indeed from these findings there is little doubt that the 

endogenous polymerase associated with HBV is encoded by the long ORE 

and is not a host polymerase encapsidated during maturation of the 

virus. 	The antibodies that specifically recognise the polymerase 

could be used to detect the presence of this protein in hepatomas, Dane 

particles, and cell lines transformed with HBV. 	The biochemical 

characteristics of the polymerase and the action of antivirals upon 

it can now be investigated using the fusion proteins. Information of 

this nature will be of fundamental interest and may lead to the 

development of more effective drugs against hepatitis B virus. 

134 



RE FE R E N C E S .  



Aaronson, S.A., Parks, W.P., Scolnick, E.M., and Todaro, G.J. (1971). 
Proc. Natl. Acad. Sd. USA 68, 920-924. 

Albin, C. and Robinson, W.S. (1980). 
Journal of Virology 34, 297-302. 

Alexander, J.J., Bey, E.M., Geddes, E.W. and Lechtas, G. (1976). 
South African Medical Journal 50, 2124-2132. 

Babinet, C., Farza, H., Morello, D., I-ladchouel, M. and Pourcell, C. 
(1985). 	Science 230, 1160-1163. 

Backman, K., Ptashne, M. and Gilbert, W. (1976). 
Proc. Natl. Acad. Sd. USA 73, 4174-4178. 

Backman, K., and Ptashne, M. (1978). 
Cell 13, 65-71. 

Bachmair, A., Finley, D. and Varshavasky, A. (1986). 
Science 234, 179-186. 

Bassendine, M.F., Chadwick, R.G., Salmeron, J. (1981). 
Gastroenterology 80, 1016-1022. 

Beasley, R.P. and Hiwang, L.Y. (1984). 
In Viral Hepatitis and Liver Disease. Ed. Vyas, G.W. 
(Grune, A. and Orlando, F.L.) pp.  209-224. 

Belasco, J.G., Gisela, N., Von Gabain, A. and Cohen, S. (1980). 
Cell 46, 245-251. 

Benton, W.D. and Davis, R.V. (1977). 	Science 196, 180-182. 

Beveren, V., Coffin, J. and Hughes, S. (1985). 
In RNA Tumour Viruses/Supplements and Appendices. 
Eds. Weiss, R., Teich, N., Varmus, H. and Coffin, J. 
(Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.), 
2nd Edition, pp.589-594; 773-779. 

Birnboim, H.C. and Doly, J. (1979). Nucleic Acids Res. 7, 1513-1523. 

Blumberg, B.S., Gerstley, D.J.S., Hungerford, D.A., London, W.I., and 
Sutwick, A.I. (1967). 
Annals of International 

Blum, N.E., Stowring, L. and Figus, A. (1983). 
Proc. Natl. Acad. Sci. USA 80, 6685-6688. 

Boyer, H.W. and Roulland-Dussoix, D (1969). J. Mol. Biol. 41, 459-472. 

Brady, J. (1982). 	Cell 31, 625-632. 

Burrell, C.J., Mackay, P., Greenaway, P.J., Hofschneider, P.H. and 
Murray, K. (1979). 	Nature 279, 43-47. 

Burrell, C.J. (1980). 
In Virus Hepatitis, Ed. S. Sherlock, Saunders Company Ltd., 
Philadelphia, pp.47-63. 

Medicine 66, 924-931. 

136 



Buscher, M., Reisser, W., Will, H. and Schaller, H. (1985). 
Cell 40, 717-724. 

Cappel, R., De Cuyper, F., and Van Beers, D. (1977). 
Journal of Infectious Diseases 136, 617-621. 

Cappel, R., Desmyter, J., Badburne, A.F., and Thiry, L. (1976). 
Biomedicine 25, 209-211. 

Cattaneo, R., Will, H., Hernandez, N. and Schaller, H. (1983). 
Nature 305, 336-338. 

Cattaneo, R., Will, H., Daral, G., Pfaff, E. and Schaller, H. (1984a). 
EMBO J. 2, 511-514. 

Cattaneo, R., Will, H. and Schaller, H. (1984b). 
EMBO J. 3 9  2191-2196. 

Chakrabarty, P.R., Ruiz-Opazo, W. Shouval, D. and Shafritz, D.A.(1980). 
Nature 286, 531-533. 

Charnay, P., Gervais, M., Louise, A., Galibert, F. and Tiollais, P. 

	

(1980). 	Nature, 286, 893-895. 

Cohen, B.J. and Richmond, J.E. (1982). 
Nature 296, 677-678. 

Dane, D.S., Cameron, C.H. and Briggs, M. (1970). 
Lancet 1,, 695-698. 

Davis, A.R., Nayak, D.P., Cueda, M., Hiti, A.L., Dowbenko, D. and 
Kleid, D.G. (1981). 
Proc. Natl. Acad. Sci. USA 78, 5376-5380. 

de Boer, H.A., Comstock, L.J., Yansura, D.G. and Heynecker, H.L.(1982). 
Promoter Structure and Function (Eds. Rodriguez, R.C. and 
Chamberlain, M.J.) Praeger Publishers, New York. 

Dejean, A., Lugassy, L., Zafrini, S., Tiollais, P. and Brechot, L. 
(1984). Proc. Natl. Acad. Sci. USA 81 9  5350-5354. 

Delius, H., Gough, N., Cameron, C.H. and Murray, K. (1983). 
Journal of Virology 47, 337-343. 

Dynan, W.J. and Tijian, R. (1985). 
Nature 316, 774-778. 

Edman, J.C., Gray, P., Valenzuela, P. Rall, L.B. and Rutter, W.J. 

	

(1980). 	Nature 286, 535-538. 

Enders, G.H., Ganem, D. and Varmus, H. (1985). 
Cell 42, 297-308. 

Enders, G.H., Ganem, D., and Varmus, H.E. (1987). 
Journal of Virology  61., 35-41. 

137 



Farmierie, W.G., Loeb, D.D., Casavani, N.C., Hutchison, G.III, 
Edgell, M.H. and Swant Strorn.R (1987). 
Science 236, 305-308. 

Farza, H., Salmon, A.M., Hadchouel, M., Moreau, J.L., Babinet, C., 
Tiollais, P. and Pourcell, C. (1987). 
Proc. Natl. Acad. Sd. USA 84, 1187-1191. 

Feitelson, M.M., Millman, I., Halbherr, T., Simmons, H. and Blumberg, 
B.S. (1986). Proc. Natl. Acad. Sci. USA 83, 2233-2237. 

Feinberg, A.P. and Vogeistein, B. (1983). Anal. Biochem. 132, 6-13. 

Feinberg, A.P. and Vogeistein, B. (1984). Anal. Biochem. 132, 266-267. 

Ferns, R.B. and Tedder, R.S. (1986). 
Journal of Medical Virology 19, 193-203. 

Feutterer, A.B. and Hohn, B (1987). 
TIBS 12, 92-95. 

Frazer, T.H. and Bruce, S.A. (1978). 
Proc. Natl. Acad. Sci. USA 75, 5936-5940. 

Frazer, A.C. and Curtis, R. (1975). 
Curr. Topic. Microbiol. Immunol. 69, 1-84. 

Garapin, A.C., Colbere-Garapin, F., Cohen-Solal, M., Horodniceanu, F. 
and Kourilsky, P. (1981). 
Proc. Natl. Acad. Sci. USA 78, 815-819. 

Gerlich, W.H. and Robinson, W.S. (1980). 
Cell, 21, 801-809. 

Gerrard, G.F., Rottman, E., and Green, M. (1974). 
Biochemistry 13, 1632-1634. 

Gilmer, T.M. and Erikson, R.L. (1981). 
Nature 294, 771-773. 

Goff, S., and Goldberg, A.L. (1985). 
Cell 41, 587-595. 

Goldberg, A.L. and St. John, A.C. (1976). 
Ann. Rev. Biochem. 45, 747-803. 

Goldberg, A.L., Swarny, K.H.S., Chung, C.H. and Larimore, F. (1982). 
In Methods in Enzymology, Ed. L. Lorand, New York; 
Academic Press, 80, 680-702. 

Gough, N.M. and Murray, K. (1982). 
J. Mol. Biol. 162, 43-67. 

Gough, N.M. (1983). 
J. Mol. Biol. 165, 683-699. 

Goto, V., Yamashita, T., Arens, M., Takahashi, T. and Hashimoto, T. 

(1984). 	Japanese Journal of Medical Science Biology 37, 9-18. 

138 



Grunstein, M. and Hogness, D.S. (1975). Proc. Nat]. Acad. Sci. USA, 
72, 3961-3965. 

Gust, I. and Crow, E.S. (1986). 
In Clinics in Tropical Medicine and Communicable Diseases, Viral 
Hepatitis. 	Eds. A.J. Zuckermann, W.B. Saunders Company Toronto, 
pp. 281-301. 

Halpern, N.S., England, J.M., Deery, D.T., Petcu, D.J., Mason, W.S. and 
Molner-Kimber, K.L. (1983). 
Proc. Natl. Acad. Sci. USA 80, 4865-4869. 

Harrison, T.J., Chen, J.A. and Zuckerman, A.J. (1986). In Clinics in 
Tropical Medicine and Communicable Diseases, Viral Hepatitis, 
pp. 395-409. 

Hedin, G., Weiland, 0., Ljunggren, K., Stromberg, A., Nordenfelt, E., 
Hansson, B.G. and Oberg, B. (1986). 
In The Hepatitis Delta Virus and its Infection. 	Eds. M. Rizzetto 
et al., A.R. Liss Inc. pp.  200-205. 

Heiland, I. and Gething, M.J. (1981) 
Nature, 292, 851-852. 

Hershfield, M.V., Boyer, M.W., Yanofsky, C., Lovett, M. and Helinsky, 
D.R. (1974). Proc. Natl. Acad. Sd. USA 71, 3455-3459. 

Hess, G., Arnold, W., and Meyer Zum Buschenfelde K.H. (1980). 
Journal of Medical Virology 5, 309-316. 

Hess, G., Arnold, W. and Meyer Zum Buschenfelde, K.H. (1981). 
Klinische Wochem Schrift 59, 691-697. 

Hirschman, S.Z. and Garfinkel, E. (1977a). 
Clinical Research 25, (3) 377A. 

Hirschman, S.Z. and Garfinkel, E. (1977b) 
Clinical Research 25 (3) 490A. 

Hoofnagel, J.H., Seeff, L.B., Bales, Z.B., Gerety, R.J. and Tabor, E. 
(1973). 	In Viral Hepatitis (Eds.) Vyas G.N., Cohen, S.N. and 
Schmidt, R. pp.219-242. 	Philadelphia Franklin Institute Press. 

Horwich, A., Koop, A.H. and Eckhart, W. (1980). 
J. Virology, 36, 125-132. 

Hruska, J.F. (1977). 	Journal of Medical Virology 11, 119-131. 

Iserentant, D., and Fier, W. (1980). 
Gene 9, 1-12. 

Ishihara, K., Water, J.A., Pignatelli, M. and Thomas, H. (1987). 
Journal of Medical Virology 21, 89-95. 

Jameel, S. and Siddiqui, S. (1986). 
Molecular and Cellular Biology 6, 710-715. 

Johnson, M.S., McClure, M.A., Feng, D.F., Gray, J. and Doolittle, R.F. 
(1986). 	Proc. Nat]. Acad. Sci. USA 83, 7648-7652. 

139 



Kamar, G. and Argos, P. (1987). 
Nucleic Acid Res. 12, 7269-7282. 

Kaplan, P.M., Greenman, R.L., Germ 	J.L., Purcell, R.H. and 
Robinson, W.S. (1973). 
Journal of Virology, 12, 995-1005. 

Karkas, J.D. (1973). 	Proc. Natl. Acad. Sd. USA, 70, 3834-3838. 

Kay, A., Mandart, E., Trepo, C. and Galibert, F. (1985). 
EMBO J. 4, 1287-1292. 

Kleid, D.G., Yansura, D., Small, B., Downbenko, D., Moore, D.M., Grubman, 
M.J., McKercher, P.D., Morgan, D.0., Robertson, B.H. and Machrach, 
H.L. (1981). Science, 214, 1125-1129. 

Kornberg, A. (1980). 	DNA Replication. W.H. Freeman and Company, 
San Francisco. 

Kotewicz, M.L., Alessio, J.M.D., Driftmier, K.M., Blodgett, K.P. and 
Gerard, G.D.F. (1985). 	Gene 35, 249-258. 

Kozak, M. (1986). 	Cell 47, 481-483. 

Laemmli, U.K. (1970). Nature, 227, 680-685. 

Larder, B.A., Purifoy, D.J.M., Powell, K.L. and Darby, G. (1987). 
Nature 327, 716-717. 

Laurence, J., Saunders, A., Kulokosky, J. (1987). 
Science 235, 1501-1504. 

Lever, A.M.L. and Thomas, A. (1986). 
Clinics in Tropical Medicine and Communicable Diseases. 
Viral Hepatitis. Eds. A.J. Zuckermann, W.B. Saunders 
Company Toronto, pp.377-398. 

Lien, J.M., Aidrick, A. and Mason, W.S. (1986). 
Journal of Virology 57, 229-236. 

Loeb, L.A., Tartof, K.D. and Traveglini, E.C. (1973). 
Nature New Biology 242, 66-69. 

Lowry, 0.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). 
J. Biol. Chem. 193, 265-275. 

Lutwick, L.I. and Robinson, W.S. (1977). 
Journal of Virology 21, 96-104. 

Machida, A., Kishimoto, S. and Ohnuma, H. (1983). 
Gastroenterology 85, 268-274. 

Mackay, P., Lees, J. and Murray, K. (1981). 
Journal of Medical Virology 8, 237-243. 

140 



Mackay, P., Pasek, M., Magazin, M., Kovacic, R.T., Allet, B., Stahl, S. 
Gilbert, W., Schaller, H., Bruce, S.A. and Murray, K. (1981). 
Proc. Natl. Acad. Sd. USA 78, 4510-4514. 

McGlynn, E. and Murray, K. (1987) 
Journal of Medical Virology (in press) 

Mandart, E., Kay, A. and Galibert, E. (1984). 
Journal of Virology 49, 782-792. 

Maniatis, 1., Fritsch, E.F. and Sambrook, J. (1982). Molecular cloning: 
A laboratory Manual, Cold Spring Harbour Press, New York. 

Manson, J.C., Liddel, A.D., Leaver, C.J. and Murray, K. (1986). 
EMBO J. 5, 2775-2780. 

Marion, P.L., Oshiro, L.S., Regeney, D.C., Scullard, G.H. and 
Robinson, W.S. (1980). 
Proc. Natl. Acad. Sd. USA 77 2941-2945. 

Marion, P.L., and Robinson, W.S. (1983). 
Curr. Topic Microbiol. and Immunol. 105 99-121. 

Mason, W.S., Seal, G. and Summers, J. (1980) 
Journal of Virology 35, 829-833. 

Mason, W.S., Aldrich, C., Summers, J. and Taylor, J.M. (1982). 
Proc. Natl. Acad. Sci. USA 79, 3997-4001. 

Mellado, R. and Murray, K. (1983). 
J. Mol. Biol. 168, 489-503. 

Meyers, M.L., Trepo, L.V., Nath, N. and Sninsky, J.J. (1986). 
Journal of Virology 57, 101-109. 

Milich, D.R., Thornton, G.B. and Neurath, A. (1985). 
Science 228, 1195-1199. 

Miller, R. and Robinson, W.S. (1986). 
Proc. Natl. Acad. Sd. USA 83, 2531-2535. 

Miller, R. (1987). 	Science 236, 722-724. 

Miller, R.H., Iran, C.-T., Marion, P.L. and Robinson, W.S. (1984). 
Replication of Hepatitis B Virus DNA. In Viral Hepatitis and 
Liver Disease, Eds. G.N. Vyas, J.L. Dienstag and J.H. Hoofnagel, 
p. 529. New York, Grune and Stratton. 

Molner-Kimber, K.L., Summers, J.W. and Mason, W.S. (1984). 
Journal of Virology 51, 181-191. 

Moir, A. and Brammar, W.J. (1976). 
Molec. Gen. Genet. 149, 87-99. 

141 



Monjardino, J., Fowler, M.J.E., Montano, L., Weller, I., Tsiquaue, K.N. 
Zuckermann, A.J., Jones, D.M. and Thomas, H. (1982). 
Journal of Medical Virology 9, 189-199. 

Moriarty, A.M., Alexander, H., Lerner, R. and Thornton, G.B. (1985). 
Science 277, 420-433. 

Moroy, T., Etiemble, J., Trepo, L., Tiollais, P. and Buendia, M.(1985). 
EMBO J. 4, 1507-1514. 

Murray, K., Bruce, S.A., Hinnen, A., Wingfield, P., Van Erd, P.M.C.A. 
de Reus, A. and Schellekens, H. (1984). 
EMBO J. 3, 645-650. 

Murray, K. (1986). In Clinics in Tropical Medicine and Communicable 
Diseases, Viral Hepatitis, pp. 321-360. 

Nath, N., Tfang, C. and Dodd, R.Y. (1982). 
Journal of Medical Virology 10, 131-140. 

Neurath, A.R., Kent, S.B.H., Strick, N., Taylor, P. and Stevens, C.E. 
(1985). 	Nature 315, 154-156. 

Neurath, A.R., Kent, S.B.H., Strick, W. and Parker, N. (1986). 
Cell 46, 429-436. 

Nordenfelt, E., 1-lelgestrand, E. and Oberg, B. (1979). 
Acta. Path. Microbiol. Scand. Sect. B, 87, 75-76. 

Nordenfelt, E., "O"Berg, B., Helgestrand, E. and Miller, E. (1980). 
Acta Path. Microbiol. Scand. Sect.B 88, 169-175. 

Norrander, J., Kempe, T. and Messing, J. (1983). Gene-26, 101-106. 

O'Farrell, P.H., Polisky, B. and Gelfawn, D.H. (1978). 
J. Bact. 134, 645-654. 

Omata, M., Yokosuka, G., Imazeka, F. and Okuda, K. (1985). 
International Congress of Gastroenterology, Lisbon, Portugal 

Ohari, H., Onodera, S. and Ishida, N. (1979). 
Journal of General Virology 43, 423-42 

Ou, J.H. and Rutter, W.J. (1985). 
Proc. Natl. Acad. Sci. USA 82, 83-87. 

Ou, J.H., Laub, 0. and Rutter, W.J. (1986). 
Proc. Nat]. Acad. Sd. USA 83, 1578-1582. 

Oroszlan, S., Hatanaka, M., Gilden, R.V., Huebner, R.J. (1971). 
Journal of Virology.  8, 816-811. 

Pasek, N., Goto, 1., Gilbert, W., Zink, B., Schaller, H., Mackay, P., 
Leadbetter, G. and Murray, K. (1979). 
Nature 282, 575-579. 

Persing, D.H., Varmus, H.E. and Ganem, D. (1986). 
Science 234, 1388-1391. 

142 



Persing, D.H., Varmus, H.E. and Ganem, D. (1987). 
Journal of Virology 61, 1672-1677. 

Peterson, D.L., Roberts, I.M., and Vyas, G.N. (1977). 
Proc. Natl.Acad. Sci. USA 74, 1530-1534. 

Petit, M.A. and Picot, J. (1985). 	Journal of Virology 53, 543-551. 

Pourcel, C., Louise, A., Gervais, M., Chenciner, N., Dubois, M.-F. and 
Tiollais, P. (1982). 
Journal of Virology 42, 100-105. 

Pugh, J.C., Weber, G., Houston, H. and Murray, K. (1986). 
Journal of Medical Virology 20, 229-246. 

Rail, L.B., Standring, D.N., Laub, 0. and Rutter, W.J. (1983). 
Molecular and Cellular Biology 3, 1766-1773. 

Reznikoff, W.S. and Abelson, J.N. (1978). 
The "Operon". (Eds. J.H. Miller and W.S. Reznikoff), Cold Spring 
Harbor Laboratory, New York. pp. 221-243. 

Rigby, P.W.J., Dieckmann, M., Rhooes, G. and Berg, P. (1977). 
J. Mol. Biol. 113, 237-251. 

Roberts, T.M., Kacich, R. and Ptashne, M. (1979). 
Proc. Natl. Acad. Sci. USA 76, 760-764. 

Robinson, W.S. (1975). Am. J. Med. Sd. 270, 151-159. 

Robinson, W.S. and Greenman, W.S. (1974). 
Journal of Virology 15, 1231-1236. 

Robinson, W.S. and Lutwick, L.I. (1976). 
Animal Virology 4, 787-811. 

Robinson, W.S. (1977). Ann. Rev. Microbiol. 31, 353-370. 

Rogers, S., Wells, R. and Rechstiner, M. (1986). 
Science 234, 364-368. 

Rosenberg, M., and Court, D. (1979). 
Ann. Rev. Genetics 13, 319-353. 

Roth, M.J., Tanese, N. and Goff, S.P. (1985). 
J. Biol. Chem. 260, 9326-9335. 

Russell, P.R. and Bennett, G.N. (1982). 
Gene 20, 231-243. 

Saito, I., Oya, Y. and Shimojo, H. (1985). 
Journal of Virology 58, 554-566. 

Sanger, F., Nicklen, S., Coulson, A.R. (1977). Proc. Natl. Acad. Sci. 
USA, 74, 5463-5467. 

143 



Sattler, F. and Robinson, W.S. (1979). 
Journal of Virology 32. 226-233. 

Scuilard, G.H., Pollard, R.B., Smith. C.I. (1981). 
Journal of Infectious Diseases 143, 772-783. 

Seeger, C., Ganem, D. and Varmus, H.E. (1986). 
Science 232, 477-484. 

Shaul, Y., Standring, D., Ziemer, P., Garcia, P., Hsu, H., Laub, 0., 
Rail, L., Vaienzuela, P. and Rutter, W.J. (1983). 
Journal of Infectious Disease and Antimicrobial Agents 4, 71-77. 

Shaul, V., Rutter, W.J. and Laub, 0. (1985). 
EMBO J. 4, 427-430. 

Shaul, V. and Ben-Levey, R. (1987). 
EMBO J. 6, 1913-1928. 

Shimatake, H. and Rosenberg, M. (1981). 
Nature 292, 128-132. 

Shine, J. and Dalgarno, L. (1975). 
Nature 254, 34-38. 

Shine, J., Fettes, I., Lan, N.C.Y., Roberts, J.L. and Baxter, J.D. 

	

(1980). 	Nature 285, 456-461. 

Siddiqul, A., Jameel, S. and Mapoces, J. (1987). 
Proc. Natl. Acad. Sci. USA 84, 2513-2517. 

Simon, L.D., Randolp, B., Irwin, N. and Binkowski, G. (1983). 
Proc. Natl. Acad. Sd. USA 80, 2059-2062. 

Simonsen, C. and Levinson, A. (1983). 
Molecular and Cellular Biology 3, 2250-2258. 

Smith, C.I. (1983). 	Journal of Infectious Diseases 148, 907-913. 

Smith, G.C., Mackett, M. and Moss, B. (1983). 
Nature 302, 490-495. 

Southern, E.M. (1975). 	J. Mol. Bid. 98 503-517. 

Squires, C., Kraimer, A., Barry, G., Schen, W.-F. and Squires, C.L. 

	

(1981). 	Nucleic Acids Res. 9, 6827-6840. 

Stahl, S., Mackay, P., Magazin, M., Bruce, S.A. and Murray, K. (1982). 
Proc. Natl. Acad. Sci. USA 79, 1606-1610. 

Stamp, A. (1947). J. Gen. Microbiology pp. 251-265. 

Standring, D., Rail, L.B., Laub, 0. and Rutter, W.C. (1983). 
Molecular and Cellular Biology 3, 1774-1782. 

Standring, D.N., Rutter, W.J., Vannus, H. and Ganem, D. (1984). 
Journal of Virology 50, 563-571. 

Stanley, K.K. and Luzio, P.J. (1984). EMBO J. 3, 1429-1434. 

144 



Stephan, W., Prince, A.M. and Brotman 1984). 
Journal of Virology 51, 420-424. 

Stuber, D. and Bujard, H. (1981). 
Proc .Natl. Acad. Sci. USA 78, 167-171. 

Summers, J., Smolec, J. and Snyder, J. (1978). 
Proc. Natl. Acad. Sd. USA 75, 4533-4537. 

Summers, J. and Mason, W.S. (1982). 
Cell 2, 403-415. 

Surrea, C., Romet-Lemonne, J.-L., Mullins, J.I. and Essex, M. (1986). 
Cell 47, 37-47. 

Szmuness, W., Alter, H.J. and Maynard, J.E. (1978). 
In Viral Hepatitis International Symposium, Philadelphia, Franklin 
Institute Press. 

Takahashi, K., Alkahane, V. and Gotanda, T. (1979). 
Journal of Immunology 122. 275-279. 

Takatsuji, H., Hirochika, H., Fukushi, T. and Ikeda, J.E. (1986). 
Nature 39, 240-243. 

Talmadge, K., Stahl, S. and Gilbert, W. (1980). 
Proc. Natl. Acad. Sci. USA 22, 3369-3373. 

Talmadge, K., and Gilbert, W. (1982). 
Proc. Natl. Acad. Sci. USA 77, 1830-1833. 

Tanese, N., Roth, M. and Goff, S.P. (1985). 
Proc. Natl. Acad. Sci. USA 82, 4944-4947. 

Tanese, N., Sodroski, J., Haseltine, W.A. and Goff, S.P. (1986). 
Journal of Virology 59, 744-745. 

Ternin, H. and Baltimore, D. (1972). 
Advances in Virus Research 17, 129-186. 

Tinoco, J.R.T., Borer, P.N., Dengler, B., Levine, M.D. Uhlenbeck, 0.C., 
Crothers, D.M. and Gralla, J. (1973). 
Nature New Biol. 246, 40-41. 

Tiollais, P., Pourcel, C. and Dejean, A. (1985). 
Nature 317, 489-495. 

Thomas, H. and Scully, L.J. (1985). 
British Medical Bulletin 41, 374-380. 

Toh, H., Hayashida, H. and Miyata, T. (1983). 
Nature 305, 827-829. 

Toh, H., Kikuno, R., Flayashida, H., Miyata, T., Kujimiya, W., Induye, 
S., Nuki, S. and Saiso, K. (1985). 
EMBO J. 4, 1267-1272. 

145 



Tooze, J. (1973). 	The Molecular Biology of Tumour Viruses. 
Cold Spring Harbor Laboratory. 

Towbin, H., Staehflin, T. and Gordon, J. (1979). 
Proc. Natl. Acad. Sci. USA 74, 4350-4354. 

Treinin, M. and Laub, 0. (1987). 
Molecular and Cellular Biology 7, 545-548. 

Tur-Kaspar, 	Burk, R.D., Schaul, Y., and Schafritz, D.A. (1986). 
Proc. Natl. Acad. Sd. USA 83, 1627-1631. 

Valenzuela, P., Medina, A., Rutter, W.J., Awnerer, G. and Hall, B.D. 
(1982). 	Nature 298, 347-350. 

Vento, S., Hegarty, J.E., Alberti, A., O'Brien, C.J., Alexander, 
G.J.M., Eddleston, A.L.W.F. and Williams, R. (1985). 
Hepatology J. 5, 192-197. 

Weber, C., Bruce, S.A., Peutherer, J.F., Pugh, J.C. and Murray, K. 
(1987). 	Journal of Medical Virology (in Press). 

Weiser, B., Ganem, 0., Seeger, C. and Varmus, H.E. (1983). 
Journal of Virology 48, 1-9. 

Weller, I.V.D., Carreno, V., Fowler, M.J.F. (1982). 
Journal of Antimicrobial Chemotherapy 11, 223-237. 

Wetzel, R., Kleid, D.G., Crea, R., Heynecker, 	Yansura, D.G., 
Hinose, T., Kraszgeuski, A., Riggs, A.D., Itafura, F. and 
Goeddel, D.V. (1981). 
Gene 16, 63-71. 

Witte, O.N. and Baltimore, D. (1978). 
Journal of Virology 26, 750-755. 

Will, H., Catteneo, R., Pfaff, E., Kuhn, C., Roggendorf, M. and 
Schaller, H. (1984). 	Journal of Virology 50, 335-342. 

Will, H., Salfeld, J., Pfaff, E., Manso, C.,Theilmann, L. and 
Schaller, H. (1986). 	Science 231, 594-596. 

Will, H., Reisser, W., Weimer, 1., Pfaff, E., Buscher, M., Spengel, R. 
Cattaneo, R., Schaller, H. (1987). 
Journal of Virology 61, 904-911. 

Wong, G., Temple, A., Leary, A., Witen-Giannotti, J., Yu-Chung, V., 
Ciarletta, A., Chung, M., Murth, P., and Kriz, R. (1987). 
Science 235, 1502-1504. 

Wright, R. (1980). 	In Virus Hepatitis. Ed. S. Scherlock pp.  97-117. 
W.D. Saunders Company Ltd., London. 

Yaginuma, K., Shirakat, V., Kobayashi, M. and Koike, K. (1987). 
Proc. Natl. Acad. Sci. USA 84, 2678-2682. 

146 



Zelent, A., Sells, M.A., Price, P.M., Mohamad, A., Als, G. and 
Christman, J.(1987). 
Journal of Virology 61, 1108-1115. 

Ziemer, M., Garcia, P., Schaul, Y. and Rutter, W.J. (1985). 
Journal of Virology 53, 885-892. 

Zuckermann, A.J. (1980). 	New Scientist 88, 167-168. 

Zuckermann, A.J. (1982). 	British Medical Journal 284, 686-688. 

Zuckermann, A.J. (1986). 	In Clinics in Tropical Medicine and 
Communicable Diseases, Viral Hepatitis pp.  425-441. 

147 


