
T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Laboratory for Foundations of Computer Science

Decidability of Bisimulation Equivalence for Pushdown Processes

by

Colin Stirling

Informatics Research Report EDI-INF-RR-0005

Division of Informatics January 2000
http://www.informatics.ed.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429721556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Decidability of Bisimulation Equivalence for Pushdown
Processes

Colin Stirling

Informatics Research Report EDI-INF-RR-0005

DIVISION of INFORMATICS
Laboratory for Foundations of Computer Science

January 2000

Abstract : We show that bisimulation equivalence is decidable for pushdown automata without epsilon-transitions.

Keywords : Decidability,Bisimulation Equivelance,Pushdown Automata

Copyright c 1999 University of Edinburgh. All rights reserved. Permission is hereby granted for this report to be
reproduced for non-commercial purposes as long as this notice is reprinted in full in any reproduction. Applications to
make other use of the material should be addressed to Copyright Permissions, Division of Informatics, University of
Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, Scotland.

Decidability of Bisimulation Equivalence for
Pushdown Processes

Colin Stirling
Division of Informatics

University of Edinburgh
Edinburgh EH9 3JZ, UK

email: cps@dcs.ed.ac.uk

Abstract

We show that bisimulation equivalence is decidable for pushdown au-
tomata without ε-transitions.

1 Introduction

Automata and language theory studies finitely presented mechanisms for generat-
ing families of words. The Chomsky hierarchy of languages can be generated using
grammars or using automata. For example pushdown automata were introduced
as a counterpart to context-free grammars. Both accept the same languages,
the context-free languages. A slight shift in focus is very revealing. Instead of
grammars and automata as language generators, one views them as propagators
of labelled transition graphs. Pushdown automata are then strictly more expres-
sive than context-free grammars. Concurrency theory as developed using process
calculi views the behaviour of a process as a transition graph. Consequently
we can view configurations of grammars and automata as processes. Concur-
rency theory requires a more intensional exposition of behaviour than provided
by language theory because language equivalence is not preserved by communi-
cating automata. Numerous finer equivalences have been proposed. Bisimulation
equivalence, due to Park and Milner, has received much attention.

In this paper we show that bisimulation equivalence is decidable for pushdown
processes (which are pushdown automata without ε-transitions). The result fol-
lows a line of research initiated by Baeten, Bergstra and Klop [1] who proved that
bisimulation equivalence is decidable for normed context-free processes (which

1

was then generalised to all context-free processes in [7]). The author showed de-
cidability of bisimilarity for normed pushdown processes in [17]. It is this result
which is generalised here.

An important development in the technology for showing decidability was
the proof of decidability of language equivalence for deterministic pushdown au-
tomata, DPDA, by Sénizergues [13, 14]. DPDA include ε-transitions which are
not considered here. This problem had been open for over thirty years. However
the proof is formidable, and when spelt out in full takes up over 70 pages of
the full 166 page paper [14]. Sénizergues generalised this proof to decidability
of bisimilarity for PDA with deterministic popping ε-transitions [15]. Although
a generalisation of the case considered here, the proof is even more formidable
than his DPDA proof (and is over 100 pages long [16]). A simplification of the
DPDA equivalence proof was presented by the author [18] using ideas from con-
currency theory (for showing decidability of bisimilarity [10, 17]) and insights
from Sénizergues’s intricate proof. Using techniques within this proof, and a no-
tion of determinization, we provide here a manageable proof of decidability of
bisimulation equivalence for pushdown processes: in fact the method extends to
the more general case considered by Sénizergues, as we note later.

2 Pushdown processes

Ingredients for pushdown automata without ε-transitions, PDA, over a finite
alphabet A are a finite set of states P = {p1, . . . , pk}, a finite set of stack symbols

Γ = {X1, . . . , Xn} and a finite set of basic transitions, each of the form pX
a−→ qα

where p and q are states in P, a ∈ A, X is a stack symbol and α is a sequence
of stack symbols. A pushdown configuration or process is any expression of the
form pα where p ∈ P and α ∈ Γ∗, whose transition graph is determined by the
basic transitions together with the following prefix rule, where β ∈ Γ∗

if pX
a−→ qα then pXβ

a−→ qαβ

This account follows the presentation of Caucal [4]. It is a slight redescription of
classical PDA without ε-transitions and final states, as for instance in [9] viewing
them as transition graph generators instead of language acceptors. The extended
transition relation pα

w−→ qβ for words w ∈ A∗ is defined in the usual way.
No restictions are imposed on a PDA. In [17] we assumed normedness, which is

the condition that for every configuration pα there is word w such that pα
w−→ qε

for some state q. In particular a process may only have perpetual behaviour, or it
may be a “sink” without transitions. In fact we can “normalise” the PDA so that
it avoids sink configurations. First one can assume that for any basic transition
pX

a−→ qα the length of α, written |α|, is at most 2. Auxiliary stack symbols
can be introduced to ensure this condition. Next one can assume that the PDA

2

contains no sinks. Let t be a new letter not in the alphabet. For any state p
and any stack symbol X such that pX has no transitions add a new transition

pX
t−→ pX, so t registers termination. Next assume a new stack symbol Y such

that for every state p there is a basic transition pY
t−→ pY . Two configurations

pα and qβ are bisimulation equivalent in the original PDA with sinks iff pαY
and qβY are bisimulation equivalent in the normalised PDA1. In the following
we assume normalised PDA.

Example 1 P = {p, q, r, s}, Γ = {X, Z} and A = {a, b, c, d}. The basic transi-
tions are as follows.

pZ
a−→ pXZ qZ

d−→ pZ pX
a−→ pXX qX

c−→ qε

pZ
b−→ qZ rZ

d−→ pZ pX
b−→ qX rX

c−→ sε

pZ
b−→ rZ sZ

c−→ rZ pX
b−→ rX sX

c−→ rX

The transition graph generated by pZ is as follows.

rZ
c←− sZ

c−→ rXZ
c←− sXZ

c←− rXXZ
c←− . . .

d ↓ ↑ b ↑ b ↑ b

pZ
a−→ pXZ

a−→ pXXZ
a−→ . . .

d ↑ ↓ b ↓ b ↓ b

qZ
c←− qXZ

c←− qXXZ
c←− . . .

For any n > 0 the transition pXnZ
b−→ qXnZ is derived from the basic transition

pX
b−→ qX using the prefix rule when β is Xn−1Z. 2

Example 1 illustrates how a pushdown configuration may generate an infinite
state transition graph. Such a graph exhibits a “regular” structure, as defined by
Muller and Schupp [12]. A rooted connected graph of bounded degree over a finite
alphabet is said to be “context-free” if it contains only finitely many isomorphism
classes under end-isomorphisms. Let G be a labelled transition graph of bounded
in and out degree with root v. A vertex u has distance n from the root v if there
is a shortest path from v to u whose length is n, where this path can traverse
transitions in both directions. In Example 1 sZ has distance 2 from pZ. Let
Gn be the subgraph of G when all vertices whose distance from v is less than n
are removed. If u has distance n from the root then let Gn(u) be the connected
subgraph of Gn rooted at u. G is context-free if the family

⋃

n≥0

{Gn(u) : u has distance n from the root v in G}

has only finitely many isomorphism classes. Muller and Schupp show that the
transition graphs of pushdown processes are exactly the “context-free” graphs.

1The definition of bisimulation equivalence appears below in Definition 1.

3

This characterisation of pushdown processes is independent of syntactic mecha-
nisms, such as grammars and automata, for generating graphs.

Caucal provided two further characterisations of the graphs of pushdown pro-
cesses. First he showed that they can be defined in terms of “pattern graphs”
using deterministic graph grammars [4]. Secondly they are the transition graphs
generated by Type 0 grammars under prefix rewriting. Assume a finite family of
nonterminals N and a finite alphabet A. A Type 0 grammar under prefix rewrit-
ing is given by a finite family of basic transitions of the form α

a−→ β where α
and β belong to N∗. The transition graph generated by a configuration δ ∈ N∗ is
determined by the basic transitions together with the prefix rule if α

a−→ β then
αγ

a−→ βγ for any γ ∈ N∗.
In concurrency theory the behaviour of a process is represented as a labelled

transition graph. A more intensional account of process equivalence is needed
than that given by recognising the same language (as language equivalence is
not preserved by communicating automata). A pivotal notion, due to Park and
Milner, is bisimilarity which is finer than language equivalence on processes.

Definition 1 A binary relation R between processes is a bisimulation relation
provided that whenever (E, F) ∈ R, for all labels a,

if E
a−→ E ′ then ∃F ′.F a−→ F ′ and (E′, F ′) ∈ R,

if F
a−→ F ′ then ∃E ′.E a−→ E ′ and (E′, F ′) ∈ R.

Two processes E and F are bisimulation equivalent, or bisimilar, written E ∼ F ,
if there is a bisimulation relation R relating them. For instance, rXZ ∼ qXXZ
but rXZ 6∼ qXZ in Example 1.

Caucal [4] showed that with respect to bisimilarity pushdown automata are
more expressive than context-free grammars. Example 1 is an illustrative in-
stance: there is not a context-free grammar with root configuration C such that
C ∼ pZ. Burkart and Steffen provide additional insight [3] by showing that, un-
like context-free grammars, pushdown automata are closed under Hoare parallel
composition with finite-state processes (with respect to bisimilarity). Moreover
they demonstrate that the family of pushdown automata is the smallest extension
of context-free grammars with this closure property.

Baeten et al. proved that bisimulation equivalence is decidable for normed
context-free grammars [1]. The decidability result was generalised in [7] to all
context-free grammars, and then refined in [2] to give an exponential upper
bound. Groote and Hüttel proved that other standard equivalences on processes
(traces, failures, simulation, 2

3
-bisimulation, etc.) are all undecidable for context-

free grammars [8] (and therefore for pushdown automata). The author showed
decidability of bisimulation equivalence for normed pushdown automata [17]. In
the special case that the stack symbols Γ contains just one element, decidability
of bisimilarity for pushdown automata without the restriction to normedness was

4

shown by Jancar [11]. The key idea, elegantly presented using regular colourings,
in this restricted case is that a witness for bisimilarity is semi-linear.

An important development in the technology for proving decidability was
the proof of decidability of language equivalence for deterministic pushdown au-
tomata, DPDA, by Sénizergues [13, 14]. He generalised this proof to decidability
of bisimilarity for PDA with deterministic popping ε-transitions [15, 16]. Al-
though more general than the case considered here, the proof is very intricate
and very long (over 100 pages). The author simplified Sénizergues’s proof of
decidability of language equivalence for DPDA [18]. This proof uses ideas from
concurrency theory (in particular tableaux and decomposition for proving decid-
ability of bisimilarity [10, 17]) as well as insights from Sënizergues’s proof. It
is our intention here to show that there is a manageable proof of decidability
of bisimulation equivalence for pushdown processes using a similar technique to-
gether with a means for determinizing. In fact the method also generalises to the
case considered by Sénizergues with ε-transitions, as we note in the conclusion.

Decidability of bisimilarity for pushdown processes is harder to show than
for context-free grammars. The structural method used in [7], which appeals to
decomposition and congruence, is not immediately applicable because it is not
clear what are the components of a pushdown configuration. A configuration of
a context-free grammar in Greibach normal form is just a sequence of nontermi-
nals N1 . . . Nm and is therefore built from the components Ni, 1 ≤ i ≤ m. A
pushdown process pX1 . . .Xm does not contain Xi as a component. Part of the
decidability proof is to expose enough structure within pushdown processes to
permit decomposition into components.

The proof of decidability consists of two semi-decision procedures (for which
we are unable to provide a complexity measure, as is the case with Sénizergues’s
proof). One half of the proof is straightforward because bisimilarity is charac-
terizable using approximants when processes, such as pushdown processes, are
image-finite: E is image-finite if for each w ∈ A∗, the set {F : E

w−→ F} is
finite.

Definition 2 The family {∼n : n ≥ 0} is defined inductively as follows:

E ∼0 F for all E, F
E ∼n+1 F iff for all a ∈ A

if E
a−→ E ′ then ∃F ′.F a−→ F ′ and E ′ ∼n F ′, and

if F
a−→ F ′ then ∃E ′.E a−→ E ′ and E ′ ∼n F ′

The following is a standard result.

Proposition 1 If E and F are image-finite then E ∼ F iff ∀n ≥ 0. E ∼n F .

For each n ≥ 0, the relation ∼n on pushdown processes is decidable, and therefore
bisimulation inequivalence is semi-decidable using the simple procedure which

5

seeks the least i such that pα 6∼i qβ. Therefore we just need to establish semi-
decidability of bisimilarity. The crux of this part of the proof is that there is a
finite tableau proof of pα ∼ qβ. As finite proofs can be enumerated, this amounts
to a semi-decision procedure.

In the next section we expose structure within pushdown configurations using
auxiliary stack symbols, and in section 4 we introduce the important notion of a
bisimulation witness. In sections 5 and 6 we isolate crucial combinatorial prop-
erties which underpin the tableau proof system which is presented in section 7.

3 Measures and auxiliary stack symbols

Assume a fixed normalised PDA over a finite alphabet A with state set P =
{p1, . . . , pk} and stack symbols Γ. The decision problem is “are two processes
pα and qβ (where p, q belong to P and α and β are in Γ+) bisimilar?”2. We
shall now introduce a variety of supplementary notions that will be used in the
decidability proof.

A total ordering is assumed on the state set P, so that p1 < . . . < pk. The size
of a process pα is is the length of α, |α|. For each stack symbol X and state p the
norm of pX, written n(pX), is a k-tuple (w1, . . . , wk) where each wi ∈ A+ ∪ {⊥}.
The component wi is either a shortest length word such that pX

wi−→ piε or there
is no such word and wi =⊥. The notation n(pX)i stands for the ith element of
n(pX). Note that norm is easily computable. We say that pX is unnormed if
n(pX)i is ⊥ for all i. If pX is unnormed then it has only perpetual behaviour,
and therefore it follows that pX ∼ pXα for any α. An important measure of the
PDA is M which is just larger than the size of the longest word in a norm:

M
def
= 1 + max { |wi| ∈ A+ : wi is an entry in some n(pX)}

Assume a process pαδ. We need a notion of its “components”. By itself δ is
not a process. However for each state pi, piδ can be viewed as a “part” of pαδ.
Therefore one can think of pαδ as implicitly having the form pα(p1δ, . . . , pkδ)
where the bracketing notation (p1δ, . . . , pkδ) picks out the continuing behaviour

depending on the terminating state of pα: if pα
u−→ pjε then pα(p1δ, . . . , pkδ)

u−→
pjδ. This implicit form allows substitutivity of equivalents: if piδ ∼ riγi for each
i then it follows that pαδ ∼ pα(r1γ1, . . . , rkγk). This can be slightly refined
because not every component piδ may be accessible. Let T(pα) be the indices

of the “terminating” state set, {i : pα
w−→ piε for some w}. If piδ ∼ riγi for

each i ∈ T(pα) then pαδ ∼ pα(r1γ1, . . . , rkγk). However instead of explicitly
introducing bracketing it is introduced implicitly using auxiliary stack symbols.

2Because the disjoint union of two PDAs is a PDA, one can assume the decision question
over configurations of a single PDA instead of between two different PDAs.

6

The fixed PDA is extended with a finite family of auxiliary stack symbols

W. Each new stack symbol W has an associated definition W
def
= (q1δ1, . . . , qkδk)

where each qi ∈ P and each δi is a sequence of stack elements, possibly including
auxiliary symbols. Let Wi be the ith component of W , the configuration qiδi.
For each state pj ∈ P the behaviour of pjW is that of qjδj , the jth component
of W . An extended pushdown process is an expression of the form pα where
α ∈ (Γ∪W)∗. Basic transitions still have the form pX

a−→ qα, where X ∈ Γ and
α ∈ Γ∗. However the prefix rule is slightly generalised as follows (which turns
out to be sufficient for the processes considered later).

if pX
a−→ qα and α 6= ε then pXβ

a−→ qαβ

if pX
a−→ piε and Y ∈ Γ then pXY β

a−→ piY β

if pX
a−→ piε and W

def
= (q1δ1, . . . , qkδk) then pXWβ

a−→ qiδiβ

The auxiliary family of stack symbols W is partitioned into two. First are

simple elements, each of which has a definition U
def
= (q1γ1, . . . , qkγk) where each

γi ∈ Γ∗ and 0 ≤ |γi| ≤ 2M. Auxiliary stack symbols are not allowed in their
definition. Therefore there are only finitely many different simple stack elements.
The other elements in W are recursive. A recursive stack symbol can only appear

as a final element in a process. Each recursive stack symbol has a definition V
def
=

(q1λ1V, . . . , qkλkV) where λi is a sequence of stack symbols which may contain
simple but not recursive auxiliary stack symbols, and V is the defining element.
A component Vi for which λi is ε is said to be a “terminating configuration”.
We impose some conditions on these configurations. If Vi = pjV then pj ≤ pi

(where < is the ordering on P), and Vj = pjV . Therefore by the transition rules
terminating configurations are “sinks”3. Although there is no upper bound on
the number of different recursive stack symbols, in the decidability proof we only
appeal to a finite subset of them.

In the decidability proof we are only interested in particular pairs of processes
pα and qβ. First is the case when neither contain recursive auxiliary symbols.
Second is the case that both contain the same recursive stack symbol, and so α
then has the form α′V and β has the form β ′V . We never need to consider the
case where the pair of processes contains different recursive stack symbols. Next
is a slight refinement of the definition of bisimulation equivalence to take account
of terminating configurations.

Definition 1 A binary relation R between extended PDA processes is a bisim-
ulation relation provided that whenever (pα, qβ) ∈ R, for all a ∈ A,

if Vi = piV then p = pi and α = V iff q = pi and β = V, and

if pα
a−→ p′α′ then ∃q′β ′.qβ a−→ q′β ′ and (p′α′, q′β ′) ∈ R, and

if qβ
a−→ q′β ′ then ∃p′α′.pα a−→ p′α′ and (p′α′, q′β ′) ∈ R.

3Note that sinks have been introduced into extended PDA processes: the reason for this will
become clearer below, and as the proof proceeds.

7

As before two processes are bisimilar if there is a bisimulation relation R relating
them. The relation ∼ is still used for the equivalence. The equivalence between
two processes which do not contain recursive stack symbols is not affected by this
refinement. However two processes with recursive symbols must agree on their
terminating states.

The definition of bisimulation approximant is similarly refined.

Definition 2 The family {∼n : n ≥ 0} on extended pushdown processes is
defined inductively as follows:

pXα ∼0 qY β if X, Y ∈ Γ, and
if Vi = piV then piV ∼0 pjV iff pi = pj

pα ∼n+1 qβ iff pα ∼0 qβ and for all a ∈ A

if pα
a−→ p′α′ then ∃q′β ′.qβ a−→ q′β ′ and p′α′ ∼n q′β ′, and

if qβ
a−→ q′β ′ then ∃p′α′.pα a−→ p′α′ and p′α′ ∼n q′β ′

The following result follows from image-finiteness of pushdown processes.

Fact 1 pα ∼ qβ iff ∀n ≥ 0. pα ∼n qβ.

The new definition of bisimilarity precludes terminating configurations pV and qV
being equivalent except when state p is the same as q. One reason for this slightly
more intensional notion of bisimilarity is to support refinement of recursive stack

symbols. A recursive stack symbol V
def
= (q1λ1V, . . . , qkλkV) is said to “refine”

another stack symbol W
def
= (r1γ1W, . . . , rkγkW) if the following two conditions

hold

if γi 6= ε then qi = ri and λi = γi

if Wi = Wj then Vi = Vj

A refined recursive stack symbol agrees on the definitions of nonterminating com-
ponents and preserves equality of definitions, but may contain fewer terminating
components. Because equivalence of processes includes agreement of state in the
case of terminating configurations, equivalence is preserved by refinement.

Fact 2 If V refines W and pαW ∼ qβW then pαV ∼ qβV .

4 Bisimulation witnesses

This section is devoted to another auxiliary notion that is used in the decidability
proof. A “bisimulation witness” D for a pair of nonidentical processes (pα, qβ),
where p 6= q or α 6= β, is a tree of depth d ≥ 0 which is a partial witness
for showing that pα and qβ are bisimilar. The root of D is (pα, qβ). If D has
depth 0 then it consists of the single root node (pα, qβ). Otherwise for each

transition pα
ai−→ piαi there is a transition qβ

ai−→ qiβi and for each transition

8

qβ
ai−→ qiβi there is a transition pα

ai−→ qiαi such that there is a subtree D′

for (piαi, qiβi) of depth d − 1 directly beneath the root node (pα, qβ). We write

D
ai−→ D′(piαi, qiβi), or more succinctly D

ai−→ Di when the new root is known,
to represent this situation. A further condition required of a witness D is that if
(p′α′, q′β ′) is a leaf node of D then p′α′ ∼0 q′β ′. If a pair of processes (pα, qβ) are
equal, p = q and α = β, then we assume that its witness is the special identity
witness I consisting of the single node (pα, qβ). I counts has having arbitrary
depth.

The depth of a witness D is denoted by d(D). If D is a witness for (pα, qβ)
with depth d then it follows immediately that pα ∼d qβ. Because pα ∼n pα
for any n it is not necessary to unravel I(pα, pα) into a tree of depth n. The
transition relation for subwitnesses is extended to words. If w = a1 . . . an and
D

a1−→ . . .
an−→ Dn then this is abbreviated to D

w−→ Dn.
The definition of bisimilarity is extended to cover when pα is bisimilar to qβ

relative to witness D(pα, qβ), written D |= pα ∼ qβ.

Definition 1 D |= pα ∼ qβ is defined inductively on d(D) as follows.

1. If d(D) = 0 then D |= pα ∼ qβ iff pα ∼ qβ.

2. If d(D) > 0 and D 6= I then D |= pα ∼ qβ iff D′ |= piαi ∼ qiβi for all

witnesses D′(piαi, qiβi) such that D
ai−→ D′ for all ai ∈ A.

3. I |= pα ∼ pα.

The definition of bisimulation approximant is also extended to when pα ∼n qβ
relative to witness D(pα, qβ), written D |= pα ∼n qβ.

Definition 2 D |= pα ∼n qβ is defined by induction on n and d(D) as follows.

1. If n = 0 then D |= pα ∼n qβ.

2. If d(D) = 0 then D |= pα ∼n qβ iff pα ∼n qβ.

3. If d(D) > 0 and n > 0 and D 6= I then D |= pα ∼n qβ iff D′ |= piαi ∼n−1

qiβi for all witnesses D′(piαi, qiβi) such that D
ai−→ D′ for all ai ∈ A.

4. I |= pα ∼n pα.

The following results are straightforward to show.

Fact 1

1. If pα ∼ qβ then for all m ≥ 0 there is a witness D for (pα, qβ) of depth
m such that D |= pα ∼ qβ.

2. If pα ∼n qβ then for all m : 0 ≤ m ≤ n there is a witness D for (pα, qβ)
of depth m such that D |= pα ∼n qβ.

9

3. For any pair (pα, qβ) and depth d there are only finitely many different
witnesses D(pα, qβ) with d(D) ≤ d.

The decision procedure for bisimilarity utilises tree surgery on witnesses. Here
we consider some useful basic operations on, and relations between, witnesses. A
witness D may be extended to a deeper witness D′, written D < D′, by extending
the leaves of D. Formally D′ > D if d(D′) > d(D) and D′ restricted to depth
d(D) is the witness D. If D(pα, qβ) is a witness to depth d then Dc is the
“converse” witness of depth d with root (qβ, pα) which is the result of replacing
all nodes (p′α′, q′β ′) in D with (q′β ′, p′α′). Witnesses may also be composed. If
the root of D is (pα, qβ) and the root of D′ is (qβ, rγ) then the witness D◦D′ has

root (pα, rγ). If d(D) or d(D′) equals 0 then d(D ◦D′) = 0. Otherwise if D
a−→

D1(p
′α′, q′β ′) and D′ a−→ D′

1(q
′β ′, r′γ′) then D ◦D′ a−→ (D1 ◦D′

1)(p
′α′, r′γ′). In

the special case that D or D′ is I, we assume that D ◦ I = D and I ◦D′ = D′.
The following result captures elementary properties of witnesses which will be

used in later sections.

Fact 2

1. If D |= pα ∼ qβ and m > d(D) then there is a D′ > D with d(D′) = m
such that D′ |= pα ∼ qβ.

2. If D |= pα ∼n qβ and D′ < D then D′ |= pα ∼n qβ.

3. I |= pα ∼ pα.

4. D |= pα ∼ qβ iff Dc |= qβ ∼ pα.

5. D |= pα ∼n qβ iff Dc |= qβ ∼n pα.

6. If D |= pα ∼ qβ and D′ |= qβ ∼ rγ then D ◦D′ |= pα ∼ rγ.

7. If D |= pα ∼n qβ and D′ |= qβ ∼n rγ then D ◦D′ |= pα ∼n rγ.

8. If d(D) ≥ d(D′) and D |= pα ∼n qβ and D′ |= qβ 6∼n rγ then D ◦D′ |=
pα 6∼n rγ.

9. If d(D′) ≥ d(D) and D |= pα 6∼n qβ and D′ |= qβ ∼n rγ then D ◦D′ |=
pα 6∼n rγ.

5 Imbalance

Consider trying to show that pα ∼ qβ. One approach is goal directed. Start with
the goal pα = qβ (to be understood as “is it true that pα ∼ qβ?”) and then
reduce it to subgoals. Keep reducing to further subgoals until one reaches either

10

obviously true subgoals, such as rδ = rδ, or obviously false subgoals, such as
rλ = sγ where rλ 6∼1 sγ. This naive technique which is described more formally
later in terms of tableaux is the approach adopted, except that goals will also
involve bisimulation witnesses.

The “imbalance” between a pair of processes is the length of the longest prefix
of stack sequences before they have a common tail. For instance, the imbalance
between pαδ and qβδ is max{|α|, |β|}. An important step in the proof is that
imbalance can be bounded when reducing goals to subgoals. The following result
utilises the feature of a normalised PDA that if γ does not contain auxiliary stack
symbols and pγ

w−→ p′γ′ then |γ| − |w| ≤ |γ′| ≤ |γ|+ |w|.
Proposition 1 If pXα ∼ qβδ and |β| = M+1 and β does not contain auxiliary

stack elements and |u| = M and pX
u−→ p′α′ and α′ 6= ε and qβ

u−→ q′β ′ and
p′α′α ∼ q′β ′δ then there is a simple stack symbol U such that p′α′Uδ ∼ q′β ′δ.

Proof: Assume pXα ∼ qβδ and |β| = M + 1, and β does not contain auxiliary
stack elements. We define a simple stack symbol U by cases on the entries
of n(pX). If n(pX)i = wi then pX

wi−→ piε and so pXα
wi−→ piα. Because

pXα ∼ qβδ it follows that qβδ
wi−→ riλ such that piα ∼ riλ, for some riλ. However

|wi| < M and therefore riλ has the form riγiδ where 1 < |γi| ≤ 2M and γi does not
contain auxiliary stack symbols . Therefore the ith component of U is riγi and
piα ∼ Uiδ. The other case is that n(pX)i =⊥ and then the ith component of U is

piε. Therefore U is a simple stack symbol. Assume that pX
u−→ p′α′ and α′ 6= ε

and qβ
u−→ q′β ′ and therefore β ′ 6= ε p′α′α ∼ q′β ′δ. Because T(p′α′) ⊆ T(pX)

and piα ∼ Uiδ for each i ∈ T(pX) the result p′α′Uδ ∼ q′β ′δ follows. 2

Proposition 1 can be used to reduce imbalance. If pXα ∼ qβδ and G =
p′α′α ∼ q′β ′δ obey the conditions in the Proposition then the result permits G
to be reduced to a true subgoal p′α′Uδ ∼ q′β ′δ, whose imbalance is bounded
because 2 ≤ |α′U | ≤ M+2 and 1 ≤ |β ′| ≤ 2M+1. In fact Proposition 1 is only a
prelude. It presupposes that the goals are true, and we want to reduce imbalance
when trying to establish that they are true. Moreover the result only tells us
that there is a simple stack symbol with the correct property. If n(pX)i = wi

and pXα
wi−→ piα. then there may be many processes riγi such that qβ

wi−→ riγi,
and not all of them may have the property that piα ∼ riγiδ. A solution to both
problems is to use bisimulation witnesses.

D |= pα = qβ represents that D is a bisimulation witness whose root is
(pα, qβ). This is the goal, “is it true that D |= pα ∼ qβ?”, which may or may
not be true. However if d(D) = m then at least D |= pα ∼m qβ. Assume
D |= pXα = qβδ and d(D) ≥ M and |β| = M + 1 and β does not contain

auxiliary stack symbols. Assume that pX
u−→ p′α′ where |u| = M and α′ 6= ε,

and D
u−→ D′(p′α′α, q′β ′δ) and G is the goal D′ |= p′α′α = q′β ′δ. We show that

G can be reduced to a balanced subgoal. The information as to which simple
stack symbol to use is already contained in D because its depth is at least M. If

11

n(pX)i = wi then there is a subwitness Di such that D
wi−→ Di(piα, riγiδ). The

ith component of U , namely riγi
4, can be scanned from D. The other case is

when n(pX)i =⊥ and then Ui is piε: there cannot then be a subwitness of D
with root (piα, rλ). However it is also necessary to know which witness justifies
an entry of U . An “extended” simple stack symbol is a pair (U, Di) where U is a
simple stack symbol and Di is the family of justifying witnesses Di(piα, Uiδ) for
each i ∈ T(pX). We say that (U, Di) is an extended simple stack symbol for the
goal D |= pXα = qβδ, when it is derived from D as described.

Using (U, Di) the goal D′ |= p′α′α = q′β ′δ can be reduced to a balanced
subgoal D′′ |= p′α′Uδ = q′β ′δ. The issue is the witness D′′, which is the result
of surgery on D′ using the witnesses Di. The construction is iterative with
intermediate trees which are not proper witnesses. Assume D′

0 = D′ and D′
m is

the current tree in the iteration. Consider any subtree E(pjαjα, rλ) of D′
m which

has maximal depth and has α as a tail in the left process. There are two cases.

1. αj 6= ε. The root of E is changed to (pjαjUδ, rλ). The result of this change
to D′

m is D′
m+1 and the iteration continues.

2. αj = ε. The subwitness E is replaced with the witness Dc
j ◦ E whose root

is (Ujδ, rλ). The result of this change to D′
m is D′

m+1 and the iteration
continues.

After a finite number of steps the iteration terminates with the tree D′
s, whose root

is (p′α′Uδ, q′β ′δ), because D′ has finite depth and at each stage d(D′
j+1) = d(D′

j).
D′

s is a proper witness for (p′α′Uδ, q′β ′δ). Let B(D′) be the result, D′
s, of this

iterative transformation on D′ using the extended witness (U, Di). This is the
required witness D′′.

Introducing balanced subgoals is both “complete” and “sound”. The exact
formulation of soundness below will become clearer when the tableau proof system
is introduced in section 7.

Proposition 2 Assume |β| = M + 1 and β does not contain auxiliary stack
symbols and d(D) ≥ M and (U, Di) is an extended simple stack symbol for D |=
pXα = qβδ. Also assume pX

u−→ p′α′ where α′ 6= ε and |u| = M and D
u−→

D′(p′α′α, q′β ′δ).

1. If D |= pXα ∼ qβδ then B(D′) |= p′α′Uδ ∼ q′β ′δ.

2. If n > M and D |= pXα ∼n qβδ and D′ |= p′α′α 6∼(n+1)−M q′β ′δ then
B(D′) |= p′α′Uδ 6∼(n+1)−M q′β ′δ

Proof: If D |= pXα ∼ qβδ and (U, Di) is an extended simple stack symbol

for this true goal then Dj |= pjα ∼ Ujδ for each Dj in Di. Assume D
u−→

4There may be more than one candidate as also D
wi−→ D′

i(piα, r′
iγ

′
iδ), but we only need to

choose one.

12

D′(p′α′α, q′β ′δ) and therefore D′ |= p′α′α ∼ q′β ′δ. We show by induction on
d(E) that if E |= p′iα

′
iα ∼ q′λ′ then B(E) |= p′iα

′
iUδ ∼ q′λ′. If d(E) = 0

then the result follows because p′iα
′
iα ∼ p′iα

′
iUδ. Otherwise there are two cases.

B(E)
a−→ F (p′′α′′Uδ, qλ) and α′′ 6= ε. By the construction E

a−→ E ′(p′′α′′α, qλ)
and F = B(E ′), and therefore by the induction hypothesis B(E ′) |= p′′α′′Uδ ∼ qλ.

The second case is similar except that α′′ = ε. Therefore B(E)
a−→ F (Ujδ, qλ),

and by the construction E
a−→ E′(pjα, qλ) and F = Dc

j ◦ E ′. However Dc
j |=

Ujδ ∼ pjα and E ′ |= pjα ∼ qλ and therefore by Fact 2.6 of the previous section
F |= Ujδ ∼ qλ. From both of these cases it follows that B(E) |= p′iα

′
iUδ ∼ q′λ′.

Assume n > M and D |= pXα ∼n qβδ. Therefore it follows that Dj |=
pjα ∼(n+1)−M Ujδ for each Dj in Di. We show by induction on d(E) that if
E |= p′iα

′
iα 6∼(n+1)−t q′λ′ then B(E) |= p′iα

′
iUδ 6∼(n+1)−t q′λ′ where t ≥ M and E

is a subwitness of D′. If d(E) = 0 then the result follows because p′iα
′
iα ∼(n+1)−M

p′iα
′
iUδ. Otherwise there is a subwitness E ′ of E such that E

a−→ E ′(p′′α′′α, qλ)

and E ′ |= p′′α′′Uδ 6∼n−t qλ. Therefore B(E)
a−→ F (p′′α′′Uδ, qλ). There are two

cases. First α′′ 6= ε and F = B(E ′), and therefore by the induction hypothesis
B(E ′) |= p′′α′′Uδ 6∼n−t qλ. Secondly α′′ 6= ε and p′′ = pj. By the construction
F = Dc

j ◦ E ′. However Dc
j |= Ujδ ∼(n+1)−M pjα and E ′ |= pjα 6∼n−t qλ. Clearly

d(E ′) < d(Dc
j). Therefore using Fact 2.8 of the previous section F |= Ujδ 6∼n−t qλ.

In both these cases it therefore follows that B(E) |= p′iα
′
iUδ 6∼(n+1)−t q′λ′. 2

There is a symmetric definition of when (U, Di) is an extended simple stack
symbol for D |= qβδ = pXα. Each witness Dj in Di has root (Ujδ, pjα). The
goal D′ |= q′β ′δ = p′α′α is then reduced to the balanced subgoal B(D′) |= q′β ′δ =
p′α′Uδ. Here the same notation is used for the transformation: it appeals to
the symmetric iterative construction where, for example, there is the symmetric
witness E ◦Dc

j in case 2. Completeness and soundness of this subgoal reduction
is justified by the symmetric version of Proposition 2.

6 Canonical recursive stack symbols

Bounding imbalance is not enough for showing decidability. The sizes of the
“tails” δ may continually grow. The next step in the argument is a mechanism
for eliminating them. It is at this point that we appeal to recursive stack symbols.
The balanced goal D |= pαδ = qβδ can be reduced to a subgoal D′ |= pαV = qβV
where V is a recursive stack symbol. The mechanism involves constructing V from
a subsidary family of goals D′

i |= p′iα
′
iδ = q′iβ

′
iδ where 1 ≤ i ≤ k + 1, each with

the same tail as the original goal (and where k = |P|). As with Proposition 2
of the previous section care must be taken with its exact formulation in order to
obtain a suitable witness D′ from the witnesses D and D′

i. As this is a central
insight for the decision procedure, the desired result is built in stages.

13

Proposition 1 If pαδ ∼ qβδ where α, β 6= ε and do not contain recursive

symbols then there is a recursive stack symbol V
def
= (r1λ1V, . . . , rkλkV) such that

1. pαV ∼ qβV and

2. pjδ ∼ rjλjδ for all j : 1 ≤ j ≤ k

Proof: Assume pαδ ∼ qβδ and assume α, β 6= ε and do not contain recursive
stack symbols. A “canonical” recursive symbol V is constructed in stages as

follows. First let V 0 def
= (p1V

0, . . . , pkV
0). Clearly 2 holds for V 0. Next assume

that V i has been constructed and V i def
= (r1λ1V

i, . . . , rkλkV
i) and 2 holds for

V i. If 1 also holds, pαV i ∼ qβV i, then V i is the required recursive stack symbol
V . Otherwise pαV i 6∼ qβV i and therefore there is a least n > 0 such that
pαV i 6∼n qβV i. Without loss of generality, assume that pαV i a−→ p′α′V i and
p′α′V i 6∼n−1 q′β ′V i for all transitions qβV i a−→ q′β ′V i. However pαδ ∼ qβδ.

Because pαδ
a−→ p′α′δ there is a transition qβδ

a−→ q′β ′δ with p′α′δ ∼ q′β ′δ.
Thus we have the situation p′α′V i 6∼n−1 q′β ′V i whereas p′α′δ ∼ q′β ′δ. We keep
repeating this construction for increasing j yielding pairs p′′α′′V i 6∼n−j q′′β ′′V i

and p′′α′′δ ∼ q′′β ′′δ. One possibility is that for some j > 0 the choice of transitions
“enters” V i. That is we have pairs rlλlV

i 6∼n−j q′′β ′′V i and plδ ∼ q′′β ′′δ (and
similarly if V i is entered in the right process). By 2 we know that rlλlδ ∼ plδ,
and therefore we can continue the construction with the pairs rlλlV

i 6∼n−j q′′β ′′V i

and rlλlδ ∼ q′′β ′′δ. In this way we maintain the same heads in the processes.
Therefore eventually we must reach the situation where the pairs have the form
plV

i 6∼n−j q′′β ′′V i and plδ ∼ q′′β ′′δ and (V i)l, the lth entry of V i, is plV
i (and

similarly if plV
i is the right process). At this point V i is refined to V i+1 in such

a way that 2 is maintained. The argument proceeds by cases on q′′β ′′.
Case 1 is that β ′′ 6= ε. Therefore we change the entry (V i)l to q′′β ′′V i+1

and the same for any other entry (V i)l′ such that (V i)l′ = (V i)l. For all other
entries of V i we merely replace occurrences of V i with V i+1. The result is a refined
recursive symbol V i+1. Note it is well defined because β ′′ cannot contain recursive
symbols (because the starting sequence β does not contain them). Moreover 2 is
maintained because plδ ∼ q′′β ′′δ and if pl′δ ∼ plδ then also pl′δ ∼ q′′β ′′δ.

Case 2 is that β ′′ = ε. Consider the states pl and q′′. Clearly pl 6= q′′ (for
otherwise plV

i ∼n−j q′′V i). Therefore pl < q′′ or q′′ < pl, where < is the ordering
on states. Assume the first, the other case is similar. Assume q′′ is pl′. We
update the entry (V i)l′ to plV

i+1 and the same for any other entry (V i)l′′ such
that (V i)l′′ = (V i)l′ . For all other entries of V i we replace occurrences of V i with
V i+1. The result is a refined recursive symbol V i+1. Note that we maintain the
requirement on a recursive symbol V that if Vj′ = pjV then pj ≤ pj′. Moreover
2 is maintained because plδ ∼ q′′δ.

A sequence of recursive symbols V 0, . . . , V i, . . . is constructed, each member
of which refines previous entries. However at each stage i ≥ 0 exactly one entry of

14

the form (V i)j = pjV
i is directly updated (and others indirectly). Therefore after

stage k it is not possible to directly update another entry. The final part of the
argument is to show that 1 must hold for some stage V i for 0 ≤ i ≤ k. Suppose
it fails for all i < k. It is now an easy argument to show that pαV k ∼ qβV k using
the fact that pαδ ∼ qβδ and that V k obeys 2. If pαV k 6∼n qβV k for some n > 0
then we build the sequence of pairs p′′α′′V k 6∼n−j q′′β ′′V k and p′′α′′δ ∼ q′′β ′′δ, as
above, for increasing j. But now we cannot reach a situation where α′′ or β ′′ is ε
and the appropriate entry for V k is p′′V k or q′′V k. That means we must reach a
situation where p′′α′′ has an a-transition but q′′β ′′ does not (or vice-versa) where
α′′ and β ′′ are not ε. But this contradicts that p′′α′′δ ∼ q′′β ′′δ. 2

The recursive stack symbol V is said to be canonical for pαδ ∼ qβδ when given
by the construction in the proof of this result. There is also a “depth” associated
with V . At each stage i of the construction before V is reached there is the
recursive symbol V i and a least index ni such that pαV i 6∼ni

qβV i. The depth of
V for pαδ ∼ qβδ is the sum of the indices ni appealed to in the construction.

The next result extends the notion of canonical recursive stack symbol to
more than one true goal with the same tail.

Proposition 2 Assume V is canonical for pαδ ∼ qβδ. If p′α′δ ∼ q′β ′δ and α′,
β ′ 6= ε and do not contain recursive symbols then there is a recursive stack symbol

U
def
= (r′1λ

′
1U, . . . , r′kλ

′
kU) which refines V such that

1. pαU ∼ qβU and

2. p′α′U ∼ q′β ′U and

3. pjδ ∼ r′jλ
′
jδ for all j : 1 ≤ j ≤ k

Proof: The construction extends the proof of Proposition 1. Assume V
def
=

(r1λ1V, . . . , rkλkV) is canonical for pαδ ∼ qβδ. Let U0 def
= (r1λ1U

0, . . . , rkλkU
0).

If p′α′U0 ∼ q′β ′U0 then the result is proved with U = V . Otherwise there is a
least n such that p′α′U0 6∼n q′β ′U0 and so U0 is refined to U1 using the technique
in the proof of Proposition 1. The refinement preserves pαU1 ∼ qβU1, see Fact 2
of section 3. Thus U0 is continually refined until the result holds, as in the proof
of Proposition 1. 2

The construction can be extended to a family of goals with the same tail. Because
a recursive stack symbol can only be refined at most k times, assume l ≤ k + 1,
and the family

{p′iα′
iδ ∼ q′iβ

′
iδ : 1 ≤ i ≤ l}

where each α′
i and β ′

i 6= ε and does not contain recursive stack symbols. There is a
canonical recursive stack symbol for this family. First one constructs a canonical

15

V for the initial member of the family p′1α
′
1δ ∼ q′1β

′
1δ as in Proposition 1. Next

one refines this to a possibly new V for p′2α
′
2δ ∼ q′2β

′
2δ as in Proposition 2. This

symbol is then refined for further members of the family, using Proposition 2,

with result V
def
= (r1λ1V, . . . , rkλkV) such that for each i ≤ l, p′iα

′
iV ∼ q′iβ

′
iV and

for each j ≤ k, pjδ ∼ rjλδ. Again there is a depth associated with V , which is
the sum of the indices ni appealed to when refining V i into V i+1.

The final result before introducing witnesses is that there are only finitely
many different canonical recursive stack symbols for families of goals which have
the same heads but different tails.

Proposition 3 Let l ≤ k + 1 and let {(p′iα′
i, q

′
iβ

′
i) : 1 ≤ i ≤ l} be an indexed

family of heads where each α′
i, β ′

i 6= ε and does not contain recursive stack symbols.
Let ∆ be a family of sequences of stack symbols such that for each δ ∈ ∆, for
all i : 1 ≤ i ≤ l, p′iα

′
iδ ∼ q′iβ

′
iδ. There is a finite family V of recursive stack

symbols such that for each δ ∈ ∆ there is a V ∈ V which is canonical for the
family p′iα

′
iδ ∼ q′iβ

′
iδ, 1 ≤ i ≤ l.

Proof: The finite family V is built iteratively starting from the initial pair

(p′1α
′
1, q

′
1β

′
1). First let V 0

∆
def
= (p1V

0
∆, . . . , pkV

0
∆). At subsequent stages there is a

finite family V i
∆1

, . . . , V i
∆ni

where ∆1, . . . , ∆ni
is a finite partition of ∆ (which

may be an infinite set) such that if δ ∈ ∆j and V i
∆j

def
= (r1λ1V

i
∆j

, . . . , rkλkV
i
∆j

)

then pnδ ∼ rnλnδ for 1 ≤ n ≤ k. For the next stage consider the family V i
∆j

.

If for all j, p′1α
′
1V

i
∆j
∼ q′β ′

1V
i
∆j

then consider the next pair (p′2α
′
2, q

′
2β

′
2), and

continue refining the family of recursive stack symbols. Otherwise there is at
least one stack symbol V i

∆j
such that there is a least n with p′1α

′
1V

i
∆j
6∼n q′1β

′
1V

i
∆j

.

However for all δ ∈ ∆j we know that p′1α
′
1δ ∼ q′1β

′
1δ. Without loss of generality

p′1α
′
1V

i
∆j

a−→ p′′1α
′′
1V

i
∆j

and for all transitions q′1β
′
1V

i
∆j

a−→ q′′1β
′′
1V i

∆j
, p′′1α

′′
1V

i
∆j
6∼n−1

q′′1β
′′
1V i

∆j
. For each δ ∈ ∆j, p′1α

′
1δ

a−→ p′′1α
′′
1δ, and therefore for each such δ

there is a transition q′1β
′
1δ

a−→ q′′1β
′′
1δ such that p′′1α

′′
1δ ∼ q′′1β

′′
1δ. However the set

{q′′β ′′ : q′1β
′
1

a−→ q′′β ′′} is finite: assume it is {q′′11β11, . . . , q
′′
1mβ1m}. Therefore

there is a finite partition of ∆j = ∆j1, . . . , ∆jm such that p′′1α
′′
1V

i
∆j
6∼n−1 q′′1β

′′
1sV

i
∆j

and for all δ ∈ ∆js, p′′1α
′′
1δ ∼ q′′1sβ

′′
1sδ. The argument is now repeated for each ∆js

until V i
∆j

is refined as in the proof of Proposition 1. However here the recursive

symbol V i
∆j

will be refined to a family V i+1
∆j1

, . . . , V i+1
∆jm

where each V i+1
∆js

refines

V i
∆j

. There can only be k refinements, and at each stage each recursive stack
symbol is refined into a finite family, and so the result follows. 2

Proposition 3 is an important finiteness result. Given a family of heads
{(p′iα′

i, q
′
iβ

′
i) : 1 ≤ i ≤ l} where l ≤ k+1, there are finitely many canonical recur-

sive stack symbols {V 1, . . . , V n} such that for any tail δ if for all i, p′iα
′
iδ ∼ q′iβ

′
iδ

then there is a V j which is canonical for this family of true goals. Consequently
we can extend the notion of “depth” to families of heads. The depth associated

16

with the family {(p′iα′
i, q

′
iβ

′
i) : 1 ≤ i ≤ l} is the maximum of the depths of the V j

as given by the construction in Proposition 3. There is no claim that this value
is computable, only that it exists5.

The next stage of the argument is to include bisimulation witnesses, and goals
which need not be true. Assume l ≤ k + 1 and assume a family of goals with a
common tail

D′
1 |= p′1α

′
1δ = q′1β

′
1δ

...
D′

l |= p′lα
′
lδ = q′lβ

′
lδ

where each α′
i, β

′
i 6= ε and does not contain recursive stack symbols. We wish to

define a “canonical” recursive stack symbol V for this family of goals by “reading
off” its entries from the witnesses D′

1, . . . , D
′
l. We will also need to know which

witnesses justify the entries of V . Following the construction of the previous
section for simple stack symbols, an extended recursive stack symbol is a pair
(V, Di) where Di is a family of justifying witnesses: if Vi = riλiV then witness
Di has root (piδ, riλiδ). An extended recursive stack symbol is built iteratively.

It also has an associated depth. The base case is (V 0, D0
i) with depth 0 where

V 0 def
= (p1V

0, . . . , pkV
0) and for each j, D0

j is the identity witness I(pjδ, pjδ).

Assume s ≤ l and (V j , Dj
i) with depth dj is canonical for the family of goals

D′
n |= p′nα′

nδ = q′nβ ′
nδ when n < s ≤ l. Consequently if (V j)i = riλiV

j then Dj
i is

a witness with root (piδ, riλiδ). The next goal in the family is D′
s |= p′sα

′
sδ = q′sβ

′
sδ.

An iterative subconstruction on D′
s with respect to (V j, Dj

i) is now defined. Both

D′
s and (V j, Dj

i) may be updated. The updating of D′
s is a tree which is not

a proper witness but contains well formed subwitnesses. Assume D′
s0 = D′

s

and D′
sm with respect to (V j′, Dj′

i) with depth dj′ is the current pair in the
iteration, j′ ≥ j. Consider any subwitness E(piδ, qλδ) or E(qλδ, piδ) of the tree
D′

sm which has maximal depth and where E is not the identity witness I. Let d
be d(D′

s)− d(E). There are three cases to examine:

1. pi = q and λ = ε. D′
sm is updated to D′

s(m+1) by replacing E with the

identity witness I(piδ, piδ) of depth 0 and the construction is repeated for

D′
s(m+1) with respect to (V j′, Dj′

i).

2. (V j′)i = riλiδi and either ri 6= pi or λi 6= ε. D′
sm is updated to D′

s(m+1)

as follows. If E has root (piδ, qλδ) then E is replaced with (Dj′
i)c ◦ E. If

E has root (qλδ, piδ) then it is replaced with E ◦Dj′
i . The construction is

repeated for D′
s(m+1) with respect to (V j′, Dj′

i).

5This turns out to be the reason why there is not a complexity bound on the decision method
of this paper.

17

3. Otherwise pi 6= q or λ 6= ε and Dj′
i is the identity witness I(piδ, piδ). In

which case V j′ is refined to V j′+1. Assume E has root (qλδ, piδ), as the other
case is similar. There are the two subcases. First is that λ 6= ε. Then V j′

is refined to V j′+1 as in the proof of Proposition 1, with (V j′+1)i = qλV j′+1

and any other l′ such that (V j′)l′ = piV
j′ is also updated, V j′+1

l′ = qλV j′+1.

The witnesses are also updated Dj′+1
i is Ec, and Dj′+1

l′ = Dj′
l′ ◦ Ec. The

rest of the entries are unchanged. The second case is that λ = ε. Consider
which is the least state pi or q with respect to the ordering on states.
Assume it is q which is pm′ . Therefore V j′ is refined to V j′+1 as in the
proof of Proposition 1 with (V j′+1)i = pm′V j′+1 and any other l′ such that

(V j′)l′ = piV
j′ is similarly updated. The witnesses are also updated Dj′+1

i

is Ec, and Dj′+1
l′ = Dj′

l′ ◦ Ec. The rest of the entries are unchanged. The

result is a refined extended recursive stack symbol (V j′+1, Dj′+1
i) whose

depth is dj′+1 = dj′ + d. The construction is repeated for D′
sm with respect

to (V j′+1, Dj′+1
i) with depth dj′+1.

The subconstruction must terminate after a finite number of steps with the
pair D′

sm and (V j′, Dj′
i) with depth dj′. There can be at most k refinements of

the extended stack symbol. D′
s has a finite depth and the construction iterates

down the depth (and at each stage d(D′
si) ≤ d(D′

s)). When it terminates if D′
sm

6

has a subwitness of the form E(piδ, qλδ) or E(qλδ, piδ) then pi = q and λ = ε

and E is the identity witness I. (V j′, Dj′
i) is then canonical for the family of

goals D′
n |= p′nα′

nδ = q′nβ
′
nδ when n ≤ s ≤ l. The outermost construction is then

repeated for the next goal in the family. However if s = l then the extended stack
symbol (V j′, Dj′

i) with depth dj′ is said to be canonical for the whole family of
goals.

Below are properties of the witnesses in a canonical extended stack symbol,
which underpin completeness and soundness of the construction.

Proposition 4 Assume (V, Di) with depth d is canonical for the family of goals
D′

i |= p′iα
′
iδ = q′iβ

′
iδ, where 1 ≤ i ≤ l.

1. If D′
i |= p′iαiδ ∼ q′iβ

′
iδ for all i, and Dj in Di has root (pjδ, rjλjδ) then

Dj |= pjδ ∼ rjλjδ.

2. If D′
i |= p′iα

′
iδ ∼n q′iβ

′
iδ for all i and n > d and Dj in Di has root (pjδ, rjλjδ)

then Dj |= pjδ ∼n−d rjλjδ.

Proof: Initially 1 holds for the witnesses in the initial extended stack symbol
(V 0, D0

i). We show that it is preserved by the iterative subconstruction. Assume

it is true for (V j′, Dj′
i), and assume D′

s |= p′sα
′
sδ ∼ q′sβ

′
sδ. Therefore every

6Note that D′
sm is not technically a witness. However when the tail δ is replaced throughout

D′
sm with V j′

it is then a witness, as we note later in the proof.

18

subwitness of D′
s has a true root. This property is preserved by the iteration for

D′
sm with respect to (V j′, Dj′

i): for instance, in case 2 of the subconstruction
E |= piδ ∼ qλδ (when E has root (piδ, qλδ), the symmetric case is similar) and

(Dj′
i)c |= riλiδ ∼ piδ and therefore by Fact 2.6 of section 4 (Dj′

i)c ◦ E |= riλiδ ∼
qλδ. Consequently if (V j′, Dj′

i) is refined as in case 3 of the subconstruction it

follows that E |= qλδ ∼ piδ and therefore if V j′+1
i = qλV j′+1 then Dj′+1

i |= piδ ∼
qλδ, and similarly for other updates to (V j′, Dj′

i).

For the proof of 2 we show the following iterative property. If (V j , Dj
i) with

depth dj is the current extended stack symbol and Dj
i has root (piδ, riλiδ) then

Dj
i |= piδ ∼n−dj

riλiδ. The result therefore follows. Initially, the property holds

for (V 0, D0
i) with depth 0 because I |= piδ ∼n piδ. Assume it is true for (V j′, Dj′

i)
with depth dj′ and assume D′

s |= p′sα
′
sδ ∼n q′sβ

′
sδ and d(D′

s) = ds. Consider the

iteration for D′
sm with respect to (V j′, Dj′

i). Every subwitness E(piδ, qλδ) or
E(qλδ, piδ) whose depth is d′ of D′

sm obeys E |= piδ ∼n−(dj′+(ds−d′)) qλδ. This

clearly holds for D′
s0. Assume a step of the subconstruction of case 2 when E has

root (piδ, qλδ) and E has depth d′ and E |= piδ ∼n−(dj′+(ds−d′) qλδ. By assump-

tion (Dj′
i)c |= riλiδ ∼n−dj′ piδ, and therefore (Dj′

i)c |= riλiδ ∼n−(dj′+(ds−d′)) piδ.

From Fact 2.7 of section 4 it follows that (Dj′
i)c ◦ E |= riλiδ ∼n−(dj′+(ds−d′)) qλδ.

When (V j′, Dj′
i) is refined using the subwitness E with root (piδ, qλδ), the

symmetric case is similar, it follows by the definition of depth that Dj′+1
i |=

piδ ∼n−dj′+1
qλδ because dj′+1 = dj′ + (ds − d′), and similarly for any other up-

date. 2

The completeness property is subtle. Assume (V, Di) with depth d is canonical
for the family of true goals {D′

i |= p′iα
′
iδ = q′iβ

′
iδ : 1 ≤ i ≤ l}. Consider the new

true goal D |= pαδ = qβδ with the same tail (where α and β are nonempty and
do not contain recursive stack symbols). We would like to conclude with the

subgoal D′ |= pαV = qβV , where D′ is a witness built from D using (V, Di). The

iterative subconstruction above is applied to D with respect to (V, Di). There are

two possible outcomes. First is that (V, Di) is refined at some stage. In which case
we extend the family of true goals with the extra true goal D |= pαδ = qβδ, and
refine (V, Di). However this can only happen at most k times, when considering
new true goals with the same tail. The other outcome is that (V, Di) is not
updated. The result of the iteration on D is the tree D′′ which has the feature
that if E is a subwitness of D′′ with root (piδ, rλδ) or (rλδ, piδ) then E is the
identity witness I. A simple operation on D′′ can be performed: replace every
tail δ throughout D′′ with the recursive symbol V . Let C(D) with respect to
(V, Di) be the transformation of D involving these two stages, the construction
of D′′ and tail replacement. We assume that C(D) is only defined when the
first stage does not update the extended stack symbol (V, Di). The definition of

19

this transformation does not depend on the truth of any of the goals. Moreover,
when defined C(D) is a well-formed witness. For instance, case 2 of the iterative

subconstruction guarantees that if pX
a−→ pjε and E(pXV, rλ) is a subwitness

of C(D) whose depth is at least 1 then there is a transition E
a−→ F (rjλjV, r′λ′)

when Vj = rjλjV .
If C(D) |= pαV = qβV is a true goal then the goal D |= pαδ = qβδ reduces to

it, and the tail δ, which may have arbitrary size, is thereby eliminated. Otherwise
C(D) |= pαV 6∼ qβV . Because C(D) is a witness this means that it has a
leaf (p′α′V, q′β ′V) and p′α′V 6∼ q′β ′V . There is a similar leaf of D′′, the tree
constructed in the first stage of the transformation C(D), which has the form
(p′α′δ, q′β ′δ) and p′α′δ ∼ q′β ′δ. Therefore V is not yet sufficiently canonical for
the whole family of true goals and further refinement is necessary. There is a
deeper witness D′ > D such that D′ |= pαδ ∼ qβδ, and the iterative construction
when applied to D′ with respect to (V, Di) refines this extended stack symbol.

There is also a finiteness property to highlight. Consider families Gδ of goals
{D′

δi |= p′iα
′
iδ = q′iβ

′
iδ : 1 ≤ i ≤ l} with the same heads, for each δ ∈ ∆. Assume

that for each i and δ, d(D′
δi) ≤ d. Clearly there are only finitely many different

recursive stack symbols V in the family

{(V, Di) : (V, Di) is canonical for some family Gδ, δ ∈ ∆}
because any such (V, Di) has depth at most kd: no subwitness involved in a
refinement can have depth more than d and therefore each λj in an entry Vj =
rjλjV has bounded size. The definition of when an extended recursive stack
symbol (V, Di) is canonical for a family of true goals Gδ is an “approximation”
to when a recursive stack symbol V is canonical for the family without witnesses
in the sense of Propositions 1, 2 and 3. If the depth d is sufficiently large and
(V, Di) is canonical to depth d for the family of true goals Gδ, {D′

δi |= p′iα
′
iδ =

q′iβ
′
iδ 1 ≤ i ≤ l}, and Gδ contains appropriate witnesses then V is canonical for

the family {p′iα′
iδ ∼ q′iβ

′
iδ : 1 ≤ i ≤ l}. To see this assume p′1α

′
1δ ∼ q′1β

′
1δ.

Let V 0 = (p1V
0, . . . , pkV

0). If p′1α
′
1V

0 ∼ q′1β
′
1V

0 then there is a witness D′
δ1

for p′1α
′
1δ ∼ q′1β

′
1δ such that D′

δ1 does not contain a subwitness E(piδ, qλδ) or

E(qλδ, piδ) where pi 6= q or λ 6= ε and therefore (V 0, D0
i) where each D0

j is I is

canonical for the true goal D′
δ1 |= p′1α

′
1δ = q′1β

′
1δ. Next assume p′1α

′
1V

0 6∼ q′1β
′
1V

0

and so there is a least n such that p′1α
′
1V

0 6∼n q′1β
′
nV

0. Therefore for any witness
D′

δ1 for p′1α
′
1δ ∼ q′1β

′
1δ of sufficient depth n there is a subwitness E(piδ, qλδ) or

E(qλδ, piδ) where pi 6= q or λ 6= ε and d(D′
δ1)− d(E) = n + 1. V 0 is then refined

to V 1 and (V 0, D0
i) is refined to (V 1, D1

i) for the goal D′
δ1 |= p′1α

′
1δ = q′1β

′
1δ, and

so on.
Soundness is more straightforward than completeness. The exact formulation

will become clearer in the next section.

Proposition 5 Assume (V, Di) with depth d is canonical for the family of goals
{D′

i |= p′iα
′
iδ = q′iβ

′
iδ : 1 ≤ i ≤ l}, and for each i, D′

i |= p′iα
′
iδ ∼n q′iβ

′
iδ.

20

If (d + m) ≤ n + 1 and D |= pαδ 6∼(n+1)−(d+m) qβδ and for each Dj ∈ Di,
d(Dj) ≥ d(D) and C(D) is defined then C(D)) |= pαV 6∼(n+1)−(d+m) qβV .

Proof: Assume (V, Di) is canonical for the family {D′
i |= p′iα

′
iδ = q′iβ

′
iδ : 1 ≤

i ≤ l}, and for each i, D′
i |= p′iα

′
iδ ∼n q′iβ

′
iδ. By Proposition 4.2 when n > d

it follows that for each Dj ∈ Di with root (pjδ, rjλjδ) that Dj |= pjδ ∼n−d

rjλjδ. Suppose d + m ≤ n + 1 and let s = (n + 1) − (d + m) and assume
D |= pαδ 6∼s qβδ and C(D) is defined, but assume that C(D) |= pαV ∼s qβV .

We show this is impossible. Without loss of generality D
a−→ D′(p′α′δ, q′β ′δ)

and D′ |= p′α′δ 6∼s−1 q′β ′δ. There are two cases. First α′, β ′ 6= ε and so by the

iterative construction C(D)
a−→ C(D′) and C(D′) |= p′α′V ∼s−1 q′β ′V . Without

loss of generality assume for the second case that α′ = ε and p′ = pj . If p′ = q′

and β ′ = ε then D′ is I which is impossible. So either p′ 6= q′ or β ′ 6= ε. Assume
β ′ 6= ε as the other case is similar. Therefore Vj = rjλjV and C(D)

a−→ E and
E |= rjλjV ∼s−1 q′β ′V . However we know that Dj |= pjδ ∼s−1 rjλjδ and because
d(Dj) ≥ d(D), Dc

j ◦ D′ |= rjλjδ 6∼s−1 q′β ′δ by Fact 2.7 of section 4. Moreover
E = C(Dc

j ◦ D′) by the iterative construction. The argument is repeated for
increasing j. There are subwitnesses D′′ where D′′ |= p′′α′′δ 6∼s−j q′′β ′′δ but
C(D) |= p′′α′′V ∼s−j q′′β ′′V . This leads to a contradiction when j = s. 2

7 Tableaux

The proof of decidability is completed with a proof system for demonstrating
bisimulation equivalence of processes. The proof system is goal directed and
consists of two kinds of rules, “local” and “conditional”. Local rules have the
form

Goal

Subgoal1 . . . Subgoaln
C

where Goal is what currently is to be proved and the subgoals are what it reduces
to, provided the side condition C holds. A conditional rule has the form

Goal1
...

Goalj
... C

Goal
Subgoal

where Goal is the current goal to be shown and there is a single subgoal to which
it reduces provided that the goals Goal1, . . ., Goalj occur above Goal on the path
between it and the root (the starting goal) and provided that the side condition
C holds.

21

EXT
D |= pα = qβ

D′ |= pα = qβ
D′ > D

UNF
D |= pα = qβ

D1 |= p1α1 = q1β1 . . . Dn |= pnαn = qnβn
C

where C is the condition

1. d(D) ≥ 1, and

2. {D′ : D
a−→ D′ for a ∈ A} = {D1, . . . , Dn}

Figure 1: Simple tableau rules

There is also the important notion of when a current goal counts as final. Final
goals are classified as either “successful” or “unsuccessful”. A tableau proof for
Goal is a finite proof tree whose root is Goal and all of whose leaves are successful
final goals, and all of whose inner subgoals are the result of an application of one
of the rules.

A goal has the form D |= pα = qβ where D is a bisimulation witness for
(pα, qβ) to some depth d. D acts as an oracle which “determinizes” the develop-
ment of the proof. We assume that we start with an initial goal D |= pα = qβ
where d(D) = 0 and α and β do not contain auxiliary stack symbols.

The simple rules are presented in figure 1. The rule EXT allows one to
extend the depth of a witness. The second rule UNF (unfold) reduces a goal
D |= pα = qβ to all its immediate subgoals as in the witness D. UNF obeys
local completeness and soundness. Completeness is that if the goal is true then
so are all the subgoals. This is clear from the definition of D |= pα ∼ qβ (and
that d(D) ≥ 1). Soundness is that if all the subgoals are true then so is the
goal, or equivalently if the goal is false then so is at least one of the subgoals.
A finer version uses approximants, which provide a measure of how false a goal
is. Consider the smallest n such that D |= pα 6∼n qβ. In the case of UNF if the
goal is false at n + 1 then at least one of the subgoals is false at n. Soundness
also clearly holds for EXT. However the statement of completeness is different,
namely that there are correct applications of it, see Fact 2.1 of section 4.

The conditional rules are given in figure 2. The BAL rules introduce balanced
subgoals and CUT cuts the common tail and replaces it in the subgoal with a
recursive stack symbol. Completeness for BAL is that if the premise goals (those
above the subgoal) are true then so is the subgoal, which follows from Proposi-
tion 2.1 and its symmetric version of section 5. The statement of completeness
for CUT is that there are correct applications of it. The extended recursive stack

22

BAL(L)

D |= pXα = qβδ
...

... C1

D′ |= p′α′α = q′β ′δ
D′′ |= p′α′Uδ = q′β ′δ

BAL(R)

D |= qβδ = pXα
...

... C1

D′ |= q′β ′δ = p′α′α
D′′ |= q′β ′δ = p′α′Uδ

where C1 is

1. d(D) ≥ M and |β| = M+1 and β does not contain auxiliary stack symbols.

2. There are precisely M applications of UNF between the top goal and the
bottom goal, and no application of any other rule.

3. D′′ is B(D′) using (U, Di) which is an extended simple stack symbol for the
initial goal.

CUT

D′
1 |= p′1α

′
1δ = q′1β

′
1δ

...
...

D′
l |= p′lα

′
lδ = q′lβ

′
lδ

...
... C2

D |= pαδ = qβδ
D′ |= pαV = qβV

where C2 is

1. l ≤ k + 1 and no α′
i, β ′

i, α, β contains recursive stack symbols.

2. (V, Di) with depth d is canonical for {D′
i |= p′iα

′
iδ = q′iβ

′
iδ : 1 ≤ i ≤ l}.

3. There are at least d applications of UNF between the goal D′
l |= p′lα

′
lδ =

q′lβ
′
lδ and D |= pαδ = qβδ: there may also be applications of BAL but there

are no applications of EXT.

4. C(D) with respect to (V, Di) is defined, and D′ = C(D).

Figure 2: Conditional tableau rules
23

Successful final goals

D |= pα = qβ
... UNF
... at least once

I |= pα = pα D |= pα = qβ

Unsuccessful final goals

D |= pα = qβ and D |= pα 6∼1 qβ

Figure 3: Final goals

symbol (V, Di) is canonical for the first l premises and C(D) is well-formed, and
therefore there will be occasions when the subgoal follows as discussed in the
previous section.

To understand soundness of the conditional rules, we need to examine global
soundness of the proof system. If there is a successful tableau whose root is
false then there is a path through the tableau within which each subgoal is false.
The idea is refined using approximants. If the root is false then there is an
offending path (of false goals) through the tableau within which the approximant
indices decrease whenever rule UNF has been applied, and hence this would
mean that a successful final goal is false (which is impossible). Soundness of
the conditional rules is that if the premises are on an offending path then the
subgoal preserves the falsity index of the goal immediately above it. In the case
of BAL(R) assume that the offending path passes through the premise goals.
There is a least n such that for the initial premise D |= qβδ ∼n pXα and
D |= qβδ 6∼n+1 pXα. As there are exactly M applications of UNF between the
initial and final premise it follows that D′ |= q′β ′δ ∼n−M p′α′α because D′ is
a subwitness of D and d(D′) = d(D) − M. However as this is the offending
path D′ |= q′β ′δ 6∼(n+1)−M p′α′α, and therefore by the symmetric version of
Proposition 2.2 of section 5 D′′ |= q′β ′δ 6∼(n+1)−M p′α′Uδ. The same argument
shows soundness of BAL(L). There is a similar argument for CUT. Assume that
for each i, D′

i |= p′iα
′
iδ ∼n q′iβ

′
iδ and that D′

l |= p′lα
′
lδ 6∼n+1 q′lβ

′
lδ. There are

s ≥ d applications of UNF between it and the final premise, and so if this is
an offending path D |= pαδ 6∼(n+1)−s qβδ. Because (V, Di) has depth d and is
canonical for the first l premises and C(D) is defined D′ |= pαV 6∼(n+1)−s qβV by
Proposition 5 of the previous section.

Final goals are presented in figure 3. There is just one case for an unsuccessful
final goal which is the situation when the bisimulation witness has depth 0 and
cannot be extended because pα 6∼1 qβ. A final goal is successful if it is either
an identity or a repeat. An offending path of false goals with decreasing falsity

24

indices cannot include either kind of successful goal. Clearly it is not possible
for I |= pα 6∼n pα for any n. For the other case, suppose the offending path
passes through D |= pα = qβ twice. At the first instance there is an n such that
D |= pα ∼n qβ and D |= pα 6∼n+1 qβ, but as there is at least one application
of UNF between the two goals this would imply that D |= pα 6∼n qβ which is a
contradiction.

The first main result is that a successful tableau for D |= pα = qβ indeed
constitutes a proof that D |= pα ∼ qβ.

Theorem 1 If there is a successful tableau for D |= pα = qβ then D |= pα ∼ qβ.

Proof: Suppose there is a successful tableau for D |= pα = qβ but D |= pα 6∼ qβ.
Then there is a least n such that D |= pα 6∼n qβ. We construct an offending path
of false goals through the tableau within which the approximant indices decrease
whenever UNF is applied. But this is impossible, as we must reach a successful
final goal because the tableau is finite. 2

In particular Theorem 1 applies to an initial goal, D |= pα = qβ where
d(D) = 0 and α and β do not contain auxiliary stack symbols. More intricate is
the proof of the converse that if D |= pα ∼ qβ then there is a successful tableau
for D |= pα = qβ. The general idea is that given a true goal one applies the
tableau proof rules, preserving truth, according to the strategy described below.
It is therefore not possible to reach an unsuccessful final goal. Thus the main
issue is how to guarantee that there is a finite tableau proof.

The strategy is parameterised with a depth md which is the maximal depth
of a witness. This measure is appealed to whenever EXT is applied where the
witness in the subgoal will have depth md. However the application of EXT is
severely restricted, as we shall see, and this guarantees that every tableau built
is finite. If there is not a successful tableau for a particular value of md with all
possible choices of witnesses then the construction is restarted with an increased
value of md. However if the initial goal is true then, as will be shown, at some
stage there is a successful tableau. We shall also control the number of simple
auxiliary stack symbols in a process pα to be at most two, and we shall maintain

that for any recursive stack symbol V if Vi
def
= rλV then there is at most one

simple stack element in λ.
We start with a simple observation

(1) For any m ≥ 0 and md≥ 0 and recursive stack symbol V there are only
finitely many different goals of the form D |= pα = qβ where d(D) ≤ md
and |α| ≤ m and |β| ≤ m and where either both α and β do not contain
recursive stack symbols or both only contain V (as their final element).

The size of an application of BAL is the size of the process qβδ in the initial
premise of the rule (see Figure 2), and the application is said to use qβδ. Next

25

a value S for a process pα is introduced. If pα does not have a recursive stack
symbol then S is M2 +2M+2. If it contains V then S is M2 +2M+2+max{|λi| :
Vi = riλiV }. A process whose size is less than or equal to S is said to be “small”.
A goal is small if both processes within it are small. Otherwise a goal is large.

We now describe the strategy. First we consider all the situations where EXT
is applied to a goal G equal to D |= pα = qβ

1. G is the initial goal.

2. G is small and the result of an application of UNF

3. G is the result of an application of CUT

The strategy starts with the initial true goal and applies EXT to it so that the
resulting witness has depth md. UNF is then repeatedly applied. If goals are
small then EXT is also applied.

BAL is only permitted if the size of its application is more than S. The result of
a BAL contains the process p′α′Uδ. We say that p′α′ is a “head” of an application
and Uiδ is a tail for each i : 1 ≤ i ≤ k. Assume it is an application of BAL(L) as
follows.

qβδ
... BAL(L)

(∗) D′′ |= p′α′Uδ = q′β ′δ

Just one new simple stack symbol is introduced into the subgoal (∗). If δ contains
at most one simple stack symbol then there are at most two in p′α′Uδ. Moreover
the sizes of the configurations in the subgoal are bounded in the size of qβδ. If
the size of qβδ is m then m−M ≤ |β ′δ| ≤ m + M and (m + 1)−M ≤ |α′Uδ| ≤
m + 1. The strategy is to repeatedly apply BAL(L) wherever possible, and UNF
otherwise.

However BAL(R) is permitted once the “tail” of an application of BAL(L) is
exposed. Assume an application of BAL(L) using q′β ′δ′, see Figure 4, resulting
in the subgoal with witness D1. Between this result and the goal D2 |= U ′

iδ
′ =

qjλ there are no further applications of BAL(L), and U ′
iδ
′ is a tail of the BAL

application. BAL(R) is now permitted provided it uses a process below, and
including, U ′

iδ
′. BAL(R) is not permitted using a process from a goal above

D2 |= U ′
iδ
′ = qjλ. BAL(R) is not enforced, for one can still apply BAL(L). The

strategy is always to apply a BAL rule whenever it is permitted. If BAL(R)
is applied then the strategy is to repeatedly apply BAL(R), and to use UNF
otherwise. BAL(L) is then only permitted when a tail of an application of BAL(R)
is the right hand process of a goal.

This strategy ensures that at most one new simple stack symbol is introduced
in a goal. Repeatedly applying BAL(L) either updates this stack symbol on the

26

q′β ′δ′
... BAL(L)

D1 |= p′α′U ′δ′ = q′′β ′′δ′
... UNFs and EXTs

D2 |= U ′
iδ
′ = qjλ

...
D3 |= pγ = rλ′

Figure 4: A potential switch from BAL(L) to BAL(R)

left hand side or reintroduces one. BAL(R) is only permitted once the left hand
configuration no longer contains the new simple stack symbol. There is a bound
on the number of UNFs between an application of BAL and when the other BAL
rule becomes permitted when goals remain large. Consider the application of
BAL(L) in Figure 4 with result D1 |= p′α′U ′δ′ = q′′β ′′δ′. Between this goal and
D2 |= U ′

iδ
′ = qjλ there are no applications of BAL(L). The maximum number of

applications of UNF between these goals is M(M + 1). The size of α′ is at most
M + 1. Suppose it has the form X ′

1 . . .X ′
l , where l ≤ M + 1. For BAL(L) not

to apply after M applications of UNF there must be a process piX
′
2 . . .X ′

lU
′δ′.

Within M applications of UNF from the goal with this process there must be a
process p′iX

′
3 . . .X ′

lU
′δ′, for otherwise BAL(L) would apply. And so on. Within

M(M + 1) applications of UNF therefore there must be a goal with process U ′
iδ
′.

Moreover if there is a sequence of large goals and both BAL rules are permitted
but do not apply then the size of the goals must be decreasing. If the initial goal
in the sequence is D |= pX1 . . .Xnα = qY1 . . . Ynβ then within nM applications
of UNF there is a subgoal D′ |= piα = rλ and a subgoal D′′ |= r′λ′ = qiβ. If the
sequence is sufficiently long then eventually there must be a small goal.

Next we consider when a CUT is applied. First note that there can not be an
infinite path of goals containing infinitely many small goals. By observation (1)
such a path must contain infinitely many final goals (repeat goals). So consider a
sequence of large goals whose applications of BAL are all at least as large as m.
Assume that the initial process used in a BAL in this sequence has size m and
has the form qβδ1δ where |βδ1| = M2 +2M+2. Then it follows that every process
used in an application of BAL has the form rλδ with the same tail δ (and where
therefore |λ| ≥ M2 + 2M + 2). For suppose not, consider the first application of
BAL where this condition fails. There are two possibilities pictured in Figure 5.
In both cases the first offending process used in an application of BAL is r2λ2δ

′.
The previous application of BAL uses r1λ1δ. The first case on the left is when
there is not a switch of BAL, and for simplicity we assume that they are both
applications of BAL(L). The second case on the right involves a switch which

27

r1λ1δ r1λ1δ
... BAL(L)

... BAL(L)
r′1λ

′
1δ . . . = r′1λ

′
1δ

...
...

piδ Ujλ
′′
1δ

...
...

r2λ2δ
′ piδ
... BAL(L)

...
r2λ2δ

′
... BAL(R)

Figure 5: Two possibilities

for simplicity we have assumed is from BAL(L) to BAL(R). For the property
to fail there must be a process which “enters” the tail δ, represented by piδ, in
both cases. However the processes r1λ1δ and r2λ2δ

′ have size at least m, and so
|λ1| ≥ M2 +2M+2. Consider the left case. Clearly |λ′1| ≥ M2 +M+2. Therefore
there must be at least as many applications of UNF between it and piδ. Because
there are no applications of BAL it follows that BAL(R) is now permitted and
therefore must apply somewhere between piδ and r2λ2δ

′ (as there must be at least
M2 +2M+2 applications of UNF which increase the size of the stack). Similarly
for the right hand case |Ujλ

′
1| ≥ M2 +M+3. BAL(R) is permitted and therefore

must apply somewhere between piδ and r2λ2δ
′ because again there must be at

least M2 + 2M + 2 applications of UNF which increase the size of the stack.
Consider a sequence of true large goals where all applications of BAL have

size at least m. There are therefore no applications of EXT within this sequence
(and therefore the length of the sequence is bounded because there can be at
most md applications of UNF). Assume that the initial process used in a BAL is
q1β1δ1δ where |β1δ1| = M2 + 2M + 2. The result of this BAL (say BAL(L)) is the
true goal

D1 |= p′1α
′
1U

1δ1δ = q′1β
′
1δ1δ

This is to be the initial premise of a CUT with respect to the tail δ. The “heads”
p′1α

′
1U

1δ1, q′1β
′
1δ1 are bounded in size (no more than M2 + 3M + 3). This bound

is independent of the size of δ. Let (V 1, D1
i) with depth d1 be the canonical

extended recursive stack symbol for this goal with respect to the tail δ. Note
that no entry in V 1 contains more than a single simple stack element, namely
U1. Consider the first application of BAL after d1 applications of UNF in this
sequence. Suppose it uses q2β2δ2δ where δ is the same tail. The result of this

28

application, say a BAL(R) is the true goal

D2 |= q′2β
′
2δ2δ = p′2α

′
2U

2δ2δ

One possibility is that (V 1, D1
i) is refined to (V 2, D2

i) with depth d2, which is
then canonical for the pair of goals with witnesses D1 and D2. These two goals
are potentially premises for CUT. Moreover if (V 2)i = riλiV

2 then λi contains
at most one simple stack symbol, either U1 or U2. The construction is then
repeated. Consider the first application of a BAL after d2 applications of UNF
from the goal with witness D2, and so on.

There can be at most k refinements of (V 1, D1
i). Thus there is an l ≤ k + 1

and true goals D′
i |= p′iα

′
iδ = q′iβ

′
iδ for 1 ≤ i ≤ l and an extended stack symbol

(V, Di) with depth d which is canonical for this family. And the result of the
next application of BAL after d applications of UNF from the goal with witness
D′

l is D |= pαδ = qβδ and C(D) with respect to (V, Di) is defined. This means
that (V, Di) is canonical for the enlarged family of goals. The strategy is now to
apply CUT with result C(D) |= pαV = qβV . EXT is applied to this result and
the tableau construction continues with possibly further applications of CUT.

Any infinite path of goals with infinitely many applications of CUT must
contain infinitely many repeats. There are only finitely many different heads
(p′1α

′
1, q

′β ′
1) in an initial premise of a CUT. Moreover the heads of each subsequent

premise of a CUT also has bounded size (the heads can not increase their size by
more than md because that is the maximum number of UNFs which are allowed in
a block). Therefore there are only finitely many different recursive stack symbols
and finitely many different results of CUT.

The application of CUT does not necessarily preserve truth. The resulting
goal C(D) |= pαV = qβV may be false. In which case the tableau construction
will fail. A second possibility for failure is that a sequence of goals in a block
ends with a subgoal whose witness has depth 0 before CUT is applicable. The
measure md is an upper bound on the number of applications of UNF within a
block. When the construction fails for all choices of witnesses the depth md is
increased, and the construction is restarted. However if md is sufficiently large
then CUT will preserve truth because V in (V, Di) will be canonical for the family
p′iα

′
iδ ∼ q′iβ

′
iδ together with pα ∼ qβ. Moreover, as we saw in the previous section,

there are only finitely many canonical recursive stack symbols for families of goals
with the same heads. This means that if the initial goal is true then there is a
finite tableau proof for it. This concludes the decidability proof.

8 Conclusion

We have shown that bisimulation equivalence is decidable for pushdown processes.
However no complexity measure is available because the decision procedure es-
sentially relies on the introduction of canonical recursive stack symbols. Extra

29

Type Basic transitions

Type −2 R1
a−→ R2

Type −1 R1
a−→ β

Type 0 α
a−→ β

Type 11
2

α
a−→ β where |α| = 2 and |β| > 0

Type 2 X
a−→ β

Type 3 X
a−→ β where |β| ≤ 1

Figure 6: Caucal’s hierarchy

insight is needed as to whether there is a bound on the size of a canonical re-
cursive stack symbol in terms of the sizes of the heads α and β in the case of
Proposition 1 of section 6.

Context-free grammars in Greibach normal form and pushdown processes are
two means for generating the context-free languages (without the empty string).
This class of languages is also generable using richer descriptions. Let N be a finite
family of nonterminals and A a finite alphabet. We can then define a process as
a sequence of nonterminals whose behaviour is determined by basic transitions
together with a the following prefix rule.

PRE if α
a−→ β then αδ

a−→ βδ

Figure 6 is Caucal’s hierarchy of process descriptions according to how the
family of basic transitions are specified. In each case we assume a finite family
of rules. Type 3 captures finite-state systems. Type 2 captures BPA processes in
Greibach normal form, and Type 1 1

2
, in fact, captures pushdown processes. As

noted in section 2 Type 0 also captures pushdown processes: Caucal proved that
their transition graphs coincide (up to isomorphism) with pushdown processes
[4]. For Type 0 and below in the hierarchy, in each case there are only finitely
many basic transitions. One consequence of this is that the in and out degrees of
vertices in their transition graphs are bounded. In the other two cases R1 and R2

are regular expressions over the nonterminals. The idea is that each rule R1
a−→ β

stands for the possibly infinite family of basic transitions {α a−→ β : α ∈ L(R1)}
and R1

a−→ R2 stands for the family {α a−→ β : α ∈ L(R1) and β ∈ L(R2)}. For

instance, a Type−1 rule of the form X∗Y a−→ Y includes for each n the basic
transition XnY

a−→ Y and a Type−2 rule X∗Y a−→ Z∗Y includes for each n
and m the basic transition XnY

a−→ ZmY . Consequently vertices of transition
graphs of Type−1 processes may have infinite in degree but must have finite (and
possibly unbounded) out degree. Vertices of Type−2 transition graphs may have
infinite in and out degree.

Caucal’s hierarchy is implicit in his work on understanding context-free graphs,
and when the monadic second-order theory of a graph is decidable [4, 5, 6]. He

30

proves that the monadic second-order theory of a Type−2 graph is decidable [6].
With respect to language equivalence, there is no distinction between Type−2
and Type 2. With respect to bisimulation equivalence, there is a hierarchy as
follows.

Type 2 < Type 1
1

2
= Type 0 < Type − 1 < Type − 2

The result in this paper proves that bisimulation is decidable for Type 0 pro-
cesses. This leaves as open questions whether it is also decidable for Type−1
and Type−2 processes.

A different perspective on the Caucal hierarchy uses pushdown automata with
ε-transitions. Basic transitions have the form pX

a−→ qβ where a ∈ A ∪ {ε}.
However we assume the following disjointness property

if pX
ε−→ qβ then not(∃qβ.∃a ∈ A. pX

a−→ qβ)

A pushdown process is either “stable”, unable to perform ε-transitions or “unsta-
ble”, only able to perform ε-transitions. Our interest is in the collapsed graph of
such a pushdown process, when ε-transitions are swallowed. It suffices to consider

only stable processes and to define pα
a−→ qβ if pα

a−→ p′α′ ε∗−→ qβ, as expected.
Various constraints can be placed on the basic transitions of these pushdown

automata.

ε−determinism : if pX
ε−→ qβ and pX

ε−→ rγ then q = r and β = γ

A−determinism : if a ∈ A and pX
a−→ qβ and pX

a−→ rγ then q = r and β = γ

ε−popping : if pX
ε−→ qβ then β = ε

If a PDA obeys the condition of ε-determinism then it has a normal form which
also obeys ε-popping.

The classical DPDA problem, “do two DPDAs accept the same language?”,
is equivalent to the bismilarity problem on collapsed PDA graphs obeying ε-
determinism and A-determinism. This was solved by Sénizergues [13, 14], and
the proof was simplifed by the author [18],in effect, by viewing it as a bisim-
ulation equivalence problem. Sénizergues generalised his proof to bisimulation
equivalence between PDA obeying ε-determinism [15, 16]. The proof in this pa-
per can also be extended to this case. A next step is to consider PDA which obey
the weaker constraint ε-popping. It turns out that these coincide with Type−1
processes. Type−2 processes coincide with PDA without constraints. The proofs
of these characterisations are very straightforward.

References

[1] Baeten, J., Bergstra, J., and Klop, J. (1993). Decidability of bisimula-
tion equivalence for processes generating context-free languages. Journal of
ACM, 40, 653-682.

31

[2] Burkart, O., Caucal, D., and Steffen, B. (1995). An elementary bisimulation
decision procedure for arbitrary context-free processes. Lecture Notes in
Computer Science, 969, 423-433.

[3] Burkart, O., and Steffen, B. (1994). Pushdown processes: parallel composi-
tion and model checking. Lecture Notes in Computer Science, 836, 98-113.

[4] Caucal, D. (1992). On the regular structure of prefix rewriting. Theoretical
Computer Science, 106, 61-86.

[5] Caucal, D. (1995). Bisimulation of context-free grammars and of pushdown
automata. CSLI Lecture Notes, 53, 85-106.

[6] Caucal, D. (1996). On infinite transition graphs having a decidable monadic
theory. Lecture Notes in Computer Science, 1099, 194-205.

[7] Christensen, S., Hüttel, H., and Stirling, C. (1995). Bisimulation equiva-
lence is decidable for all context-free processes. Information and Computa-
tion, 121, 143-148.

[8] Groote, J., and Hüttel, H. (1994). Undecidable equivalences for basic pro-
cess algebra. Information and Computation, 115, 354-371.

[9] Hopcroft, J., and Ullman, J. (1979). Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley.

[10] Hüttel, H., and Stirling, C. (1991). Actions speak louder than words: prov-
ing bisimilarity for context free processes. Proceedings 6th Annual Sympo-
sium on Logic in Computer Science,IEEE Computer Science Press, 376-386.

[11] Jancar, P. (1997). Decidability of bisimilarity for one-counter processes.
Lecture Notes in Computer Science, 1256, 549-559.

[12] Muller, D., and Schupp, P. (1985). The theory of ends, pushdown automata,
and second-order logic. Theoretical Computer Science, 37, 51-75.

[13] Sénizergues, G. (1997). The equivalence problem for deterministic push-
down automata is decidable. Lecture Notes in Computer Science, 1256,
671-681.

[14] Sénizergues, G. (1998). L(A) = L(B)? Tech. Report LaBRI, Université Bor-
deaux I, pp. 1-166. (Submitted to Theoretical Computer Science.)

[15] Sénizergues, G. (1998). Decidability of bisimulation equivalence for equa-
tional graphs of finite out-degree. Procs. IEEE 39th FOCS, 120-129.

[16] Sénizergues, G. (1998). Γ(A) ∼ Γ(B)?. Manuscript, pp1-113.

32

[17] Stirling, C. (1998). Decidability of bisimulation equivalence for normed
pushdown processes. Theoretical Computer Science, 195, 113-131.

[18] Stirling, C. (1999). Decidability of DPDA equivalence. Tech. Report LFCS-
99-411, University of Edinburgh, pp1-25. (Submitted to Theoretical Com-
puter Science.)

33

