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Abstract 

Embryonic stem cells are defined by two key characteristics; apparently symmetrical 

self-renewing cell division and the ability to differentiate into cells of all three germ 

layers. Self-renewal depends on several extrinsic and intrinsic cues including a gene 

regulatory network centered around Oct4, Sox2 and Nanog that has been hypothesized 

to be reinforced by positive reciprocal interactions. Studies measuring Nanog expression 

by fluorescent reporters and immunoflourescence have shown that some undifferentiated 

Oct4 positive cells do not express Nanog (Chambers et al., 2007). However, the 

mechanisms responsible for generating this heterogeneity in Nanog expression are 

unknown.  

Here I show that Oct4 heterozygote ES cells lack Nanog-negative cells. Consistent with 

a model in which ES cell differentiation proceeds effectively through Nanog-negative 

cells, these Oct4 heterozygotes are retarded in their differentiation kinetics. Importantly, 

restoring Oct4 levels towards wild type reestablished both heterogenous Nanog 

expression and rapid differentiation. 

Analysis of ES cells carrying a mutation in the Oct4 binding site in the proximal Nanog 

promoter showed that Oct4 acts as a positive activator on the endogenous Nanog. 

Finally, comparison of gene expression in Nanog expressing and Nanog non-expressing 

ES cells has identified candidate genes that may be responsible for the switch in Nanog 

expression. 
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Chapter 1 

Introduction 

 

1.1 Early mouse development 

The earliest stages of mouse development that follow fertilisation are characterised by 

multiple cleavage divisions that lead to the 8–cell embryo (Figure 1.1). At this stage an 

increase in the adhesive properties of the cells causes the embryo to adopt a spherical 

structure in a process termed compaction. Subsequently, at approximately day 3.5 a 

cavity appears on one side of the embryo (now called a blastocyst) that separates tissues 

of the inner cell mass (ICM) from the majority of exterior trophectoderm cells 

(Beddington, 1999). Later on in embryogenesis the trophectoderm develops into the 

placental tissues and the ICM develops into the embryo proper (Gardner, 1983). The 

blastocoel cavity then enlarges to occupy most of the expanded blastocyst. At day 4.5 

primitive endoderm, an extraembryonic tissue that later generates the parietal and 

visceral endoderm, occurs on the blastocoelic suface of the ICM (Tam, 1997). The rest 

of the ICM tissue is the epiblast, the source of the embryo proper. At about day 5.0 the 

blastocyst implants into the uterus and the epiblast proliferates. The process referred to 

as gastrulation begins approximately at day 6.5. This term describes a complex 

movement of epiblast cells resulting in the appearance of mesoderm that starts from  the  

proximal end  of  the  epiblast  and  proceeds to  the distal  tip of  the  epiblast. In this 

way the embryonic anterior-posterior axis including the proximal tip of the primitive 

streak appears. During this developmental process there is a change in the development 
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Figure 1.1 Pre-implantation embryo 
 
A: Embryo development until the late 8 cell stage. The particular developmental 
stages are indicated with arrows. 
B: Development from the morula stage until the late blastocyst. Days and 
particular stages are indicated. 
Pictures were kindly provided by Dr.Tilo Kunath. 

. 
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potential, or potency of the cells. Early blastomeres of the embryo are totipotent 

(Tarkowski and Wroblewska, 1967). Totipotency describes the competency of cells to 

produce all cells of the organism including extraembryonic tissues. Loss of totipotency 

is associated with the fifth cleavage division as only some single blastomeres of 16- and 

32-cell mouse embryos are still capable to develop into foetuses and mice (Suwinska et 

al., 2008).  

The inner cell mass, the origin of ES cells is pluripotent. Pluripotent cells have the 

ability to generate tissues of all three germ layers (endoderm, mesoderm and ectoderm) 

but they lack the competency to contribute to extraembryonic tissue. Pluripotency 

persists in the postimplantation epiblast until around the time of gastrulation. 

 

1.2 From teratocarcinoma to embryonic stem cells 

Research on pluripotency originated in 1954 when Stevens and Little reported that the 

mouse strain 129 spontanously generated testicular teratomas at a frequency of 1%  

(Stevens, 1954) reviewed by (Andrews, 2002; Chambers and Smith, 2004; Morange, 

2006; Solter, 2006). Teratocarcinomas differ from other neoplasms as they contain many 

distinct differentiated cells and even tissue types such as muscle, teeth, bones, hair, 

nerve and skin cells. The terms teratoma and teratocarcinoma were initialy used 

interchangeably (Damjanov and Andrews, 2007) but this later changed as it was 

understood that teratomas are benign tumors consisting of differentiated cells whereas 

teratocarcinomas also contain undifferentiated embryonal carcinoma (EC) cells. Leroy 

Stevens and Barry Pierce contributed greatly to our knowledge of the biology of 

teratocarcinomas (Andrews, 2002; Chambers and Smith, 2004; Morange, 2006; Solter, 
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2006). Stevens was able to induce teratocarcinoma in strain 129 mice by explanting 

genital ridges of fetuses between 11 and 13.5 days of development to ectopic sites 

(Stevens, 1967a; Stevens, 1970b). Teratocarcinomas could also be induced by transfer of 

1-7.5 day old inbred mouse embryos to extra-uterine sites in syngenic mice (Solter et al., 

1970; Stevens, 1970a). Interestingly, those carcinomas could not be distinguished from 

those previously described. Considering that teratocarcinomas were only induced by 

embryos prior to gastrulation and by isolated epiblast grafts, it was suspected that EC 

cells originate probably from the latter (Diwan and Stevens, 1976).  Knowing this, 

Stevens followed the first events of teratocarcinogenesis and suggested that a small nest 

of undifferentiated EC cells was the origin of teratomas or teratocarcinomas (Andrews, 

2002; Chambers and Smith, 2004; Morange, 2006; Solter, 2006). Kleinsmith & Pierce 

were able to show that a single EC cell when transplanted could give rise to complex 

teratomas (Kleinsmith and Pierce, 1964). This proved a stem cell origin for 

teratocarcinomas. From these studies Stevens suggested that oncogenesis mimics normal 

mouse development (Stevens, 1967b). Independent of the number of in vivo passages, 

embryonal carcinoma cells remained mostly in their pluripotent state able to grow into 

derivatives of the three germ layers (Stevens, 1958). 

 

Embryonal carcinoma cells were showed to be amenable to culture in vitro and to give 

rise to stable EC cell lines (Finch, 1967). Consequently, research on the topic 

accelerated and the morphological and biochemical analogy between the blastocystic 

cells in the inner mass and EC cells became more and more evident (Jacob, 1977; Martin 

et al., 1978) reviewed by (Andrews, 2002; Morange, 2006; Solter, 2006). These 
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experiments led to the transfer of EC cells into blastocysts (Brinster, 1974; Mintz and 

Illmensee, 1975; Papaioannou et al., 1975). When these blastocysts were reimplanted 

into the uterus of surrogate mothers, mosaic animals grew indicating that in the 

appropriate environment the chaotic differentiation of EC cells could be corrected. Yet 

EC cells were unable to transmit their genome through the germ line (Moragne, 2006).  

 

In 1981 permanent pluripotent embryonic stem cells (ES) lines were first established by 

direct explantation of ICMs (Evans and Kaufman, 1981; Martin, 1981). The authors 

assigned their success to three critical factors, the exact stage of cell development, the 

explantation of a sufficient number of cells from each embryo and optimised tissue 

culture conditions, especially the use of feeder layers, which were supportive for 

multiplication rather then differentiation of these cells. ES cells were able to grow 

indefinitely in culture without losing their ability to differentiate both in vitro and in 

teratocarcinomas. In contrast to EC cells, ES cells are stably diploid (Martin, 1981) and 

importantly, following chimera formation are able to transmit their genome through the 

germline to create a complete mouse in which all cells carry the ES cell genome 

(Bradley et al., 1984). 

 

1.3 The derivation of human EC and ES cells 

Research on human EC cells was, with exclusion of an attempt to study them following 

xenotransplantation into the hamster cheek pouch, for a long time non existent (Pierce et 

al., 1957) reviewed by (Andrews, 2002; Chambers and Smith, 2004; Morange, 2006; 

Solter, 2006). Development of human EC cells was achieved in vitro during the 1970s 
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(Hogan et al., 1977). Despite a limited capacity for differentiation, these cells allowed 

the identification of several features characteristic of human EC cells (Andrews, 2002; 

Solter, 2006). In the following years human EC cell lines with the ability to differentiate 

could be established (Andrews et al., 1984; Damjanov and Andrews, 1983; Pera et al., 

1989). From the start it was evident that despite some common characteristics, human 

and mouse EC cells differ highly. Similarities include for example the growth in 

clusters, as well as expression of high levels of alkaline phosphatase (Berstine et al., 

1973) reviewed by (Andrews, 2002). Differences however exist in the tendency for 

human EC cells to differentiate into trophectoderm and in the expression of cell surface 

antigens, (Andrews et al., 1980; Andrews et al., 1982; Damjanov and Andrews, 1983), 

including stage-specific embryonic antigen 1 (SSEA1) (Solter and Knowles, 1978), 

SSEA3 (Andrews et al., 1982; Shevinsky et al., 1982) and SSEA4 (Kannagi et al., 

1983). The murine EC cells characteristics persist in murine ES cells, consistent with the 

idea that both resemble cells of the ICM. In the absence of human ES cell lines and 

direct information about human embryos, these interspecies variations rendered the 

relationship of human EC cells to the early human embryo uncertain (Andrews, 2002). 

When human ES cell lines were established by Thomson et al., the resemblance to 

human EC cells became obvious and the interspecies difference appeared also to apply 

to human ES cells  (Thomson et al., 1998). Furthermore, the maintenance of 

pluripotency in both species requires different signaling pathways. Mouse ES cells 

depend on leukaemia inhibitory factor (LIF) and bone morphogenetic protein (BMP), 

whereas human ES cells rely on signaling from activin/nodal and fibroblast grow factor 

(FGF).  
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1.4 Other pluripotent cells 

Another type of pluripotent stem cells are embryonic germ cells (EG) established from 

primordial germ cells (PGCs) which were isolated either during migration or shortly 

after arriving in the gonads (Matsui et al., 1992; Resnick et al., 1992). Although EG and 

ES cell lines share similar phenotypic and molecular characteristics, EG cells can not be 

considered as completely equal to ES cells as they have undergone global erasure of 

imprints at the latter stage of PGC development and therefore have a decreased 

developmental capacity (Tada et al., 1998). The counterpart for mouse embryonic germ 

cells was as well established from human primordial germ cells. However, in contrast to 

the situation in the mouse, human EG cells vary from human ES and EC cells due to 

differences in surface antigens (Shamblott et al., 1998). 

 

Despite the fact that the post implantation embryo was shown to contain pluripotent cells 

(Stevens, 1970a), attempts to establish pluripotent cell lines from post implantation 

embryos were unsuccessful. However, in 2007 pluripotent epiblast stem cells (EpiSCs) 

were isolated from the late epiblast layer of post-implantation mouse and rat embryos 

using chemically defined, activin containing culture medium (Brons et al., 2007; Tesar 

et al., 2007). These EpiSCs share similarities with human ES cells although their nature 

still needs a careful investigation. 

 

Induced pluripotent stem cells (iPSC) were first isolated in 2006 (Takahashi and 

Yamanaka, 2006) from mouse cells and in 2007 (Takahashi et al., 2007; Yu et al., 2007) 

from human cells. These iPSC cells were produced by transfecting non-pluripotent cells 
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such as fibroblast with a limited number of particular transcription factors expressed in 

pluripotent cells and culturing transfectants in ES cells medium.  

 

1.5 Significance of pluripotent cells for basic research and regenerative 

medicine 

Embryonic stem cells allow production of genetically modified organisms, facilitate 

exploration of facets of developments difficult to investigate in vivo and hold potential 

for regenerative medicine (Smith, 2001). Genetic modifications in ES cells allow 

analysis of gene function by deletion through homologous recombination (Thomas and 

Capecchi, 1987). ES cells thereby provide a means to transmit an altered genome 

through the germline allowing analysis of gene function during development and in 

adulthood (Thompson et al., 1989). As ES cells share many features with pluripotent 

cells of the early embryo their study allows investigation of early mammalian 

development. However, it remains uncertain if ES cells are an equivalent of embryonic 

cells or if they display a culture artefact (Smith, 2001). Nevertheless, ES cells are useful 

to investigate differentiation pathways in vitro and to create a homogenous source of 

tissue specific stem cells (Conti et al., 2005; Smith, 2001). The ability of mouse ES cells 

to differentiate into many tissues in in vitro aggregation cultures (Doetschman et al., 

1985; Martin, 1981) and in vivo (Beddington and Robertson, 1989) implies that ES cells 

have great potential for medicine. iPS cells may overcome the ethical dilemma of using 

human embryos as an ES cell source for therapy while at the same time avoiding the 

problems of immune rejection (Yamanaka, 2007). 
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1.6  Exogenous signals required for ES cell self-renewal 

1.6.1  LIF/STAT3 signalling 

Early cultivation attempts of mouse ES cells depended on feeder layers necessary for 

their proliferation (Evans and Kaufman, 1981; Martin, 1981). Subsequent studies 

indicated that ES cells could be maintained in the absence of co-culture provided 

conditioned medium from Buffalo Rat Liver cells was added to the culture (Smith and 

Hooper, 1987). Fractionation of conditioned medium defined LIF as the major 

component important for ES cell self-renewal (Smith et al., 1988) reviewed by 

(Chambers, 2004b). LIF is a cytokine of the IL-6 family of cytokines that signal to cells 

via a cell surface receptor glycoprotein of 130 kD, called gp130 (Yoshida et al., 1996). 

In this context LIF becomes obsolete if IL6 together with a soluble form of the IL6 

receptor, which can induce homodomerisation of gp130, is added to culture (Yoshida et 

al., 1994) reviewed by (Chambers, 2004b; Niwa, 2001). LIF binds to the LIF-specific 

receptor and subsequently this complex binds gp130 (Yoshida et al., 1996). 

Dimerisation of the homologous intracellular domains of gp130 and LIFR activates 

receptor associated Janus kinases (JAKs) which phosphorylate tyrosine residues on the 

cytoplasmatic domain of gp130 and LIFR (Niwa et al., 1998). These phosphorylated 

tyrosine residues act as docking sites for signal transducing molecules including STAT3 

(Signal Transducer and Activator of Transcription number 3). Phosphorylation of 

STAT3 by JAKs allows STAT3 dimerisation through reciprocal interaction of a SH2 

domain and a phosphotyrosine residue (Niwa et al., 1998). This triggers translocation of 

STAT3 to the nucleus and subsequent activation of target genes (Niwa et al., 1998; 

Zhang et al., 1997). c-Myc for example is a candidate target of STAT3 (Cartwright et 
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al., 2005). LIF also stimulates ras-MAKP signaling. This is of interest, as this pathway is 

known to suppress ES cell self-renewal (Burdon et al., 1999). 

 

The significance of STAT3 for ES cell self-renewal was shown in two studies. In the 

first, overexpression of a dominant-negative form of STAT3 in ES cells led to 

differentiation although LIF was added to the culture (Niwa et al., 1998) reviewed by 

(Chambers, 2004b; Niwa, 2001). Interestingly the morphological changes resulting from 

the overexpression of the dominant-negative form of STAT3 were similar to changes 

arising from the withdrawal of LIF in culture (Niwa et al., 1998). Also, when cells were 

cultured at high density and grown in serum-supplemented medium, activation of 

STAT3 lead to maintenance of self-renewal in the absence of LIF (Matsuda et al., 1999). 

Despite this, knockout mice for LIF (Stewart et al., 1992), LIFR (Li et al., 1995), gp130 

(Yoshida et al., 1996) and STAT3 (Takeda et al., 1997) all expanded beyond the egg 

cylinder stage (Chambers, 2004b; Niwa, 2001). Further, Dani et al. reported an unknown 

factor secreted by ES cells, which they termed the ES selfrenewal factor (ESRF) 

(Chambers, 2004b; Niwa, 2001). ESRF supported ES cell self-renewal even when both 

endogenous LIF alleles were disrupted (Dani et al., 1998). It was shown that ESRF does 

not activate Stat3 (Dani et al., 1998). These findings in summary suggest the existence 

of unknown intracellular pathways (Dani et al., 1998) reviewed by (Chambers, 2004b; 

Niwa, 2001). The biological significance of LIF signaling for the blastocyst was 

subsequently shown to be during delayed implantation where lack of gp130 reduced 

embryonic survival during this diapause (Nichols et al., 2001). 
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1.6.2  BMP signalling 

In addition to LIF it has been demonstrated that serum contributes to self-renewal and 

that this requirement can be replaced by bone morphogenic proteins (BMPs) (Ying et al., 

2003). BMPs stimulate the transcriptional activation of the Id genes through the 

activation of Smads (Nakashima et al., 2001; Ruzinova and Benezra, 2003). In ES cells 

it is the expression of the Ids which is of importance for the self-renewal capacity of 

BMP (Ying et al., 2003). Cells constitutively expressing a loxP-flanked Id1 transgene or 

Cre-treated derivatives, were plated at clonal density in N2B27 with LIF or LIF plus 

BMP. Whereas loxP-flanked Id1 cells formed ES cell colonies in LIF only and were 

ably to bypass the BMP requirement, the Cre-treated derivatives were not able to 

produce ES cell colonies in the absence of BMP (Ying et al., 2003). However BMP 

alone is not sufficient to keep ES cells in an undifferentiated state. The BMP function is 

dependent on co-stimulation with LIF, which can be seen by the fact that in the presence 

of BMP alone, the cells are driven into non-neural differentiation (Ying et al., 2003). In 

LIF without serum or BMP, neural differentiation occurs. Taken together, BMP 

treatment suppresses neural differentiation and in combination with LIF is sufficient to 

sustain ES cell self-renewal without feeders or serum factors (Ying et al., 2003). 

 

1.6.3 Wnt signaling  

The Wnt signaling pathway has been implicated to have a role in self-renewal of both 

mouse and human ES cells (Sato et al., 2004). Activation of the Wnt pathway by 6-

bromoindirubin-3`-oxime (BIO), a pharmacological inhibitor of glycogen synthase 

kinase-3 (GSK3), was reported to maintain the undifferentiated phenotype of mouse and 
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human ES cells and to sustain the expression of Oct4, Rex-1 and Nanog, which are 

important for the pluripotent cell state (Sato et al., 2004). In support of this data more 

recent studies showed that GSK-3a and GSK-3b null ESCs display differentiation 

defects and sustain high expression of Nanog in EBs (embryonic bodies) at day 12 of 

differentiation (Doble et al., 2007). 

Importantly, both GSK3 isoforms (GSK-3a and GSK-3b) are equally capable of 

maintaining low levels of -catenin (Doble et al., 2007). In addition, it has been reported 

that LIF increases the level of nuclear beta-catenin, a component of the Wnt signaling 

pathway, and that this up-regulates Nanog in an Oct4-dependent manner (Takao et al., 

2007). Yet an importance for Nanog expression needs still further exploration. 

 

1.6.4 Are extrinsic stimuli indispensable for ES cell self-renewal? 

Recently, Ying et al. have questioned the importance of LIF and BMP for ES cell self-

renewal (Ying et al., 2008). By adding different small-molecule inhibitors of the 

fibroblast growth factor (PD184352), mitogen-activated protein kinase (SU5402) 

pathway and glycogen synthase kinase-3 pathways (CHIR99021), the authors were able 

to maintain ES cell self-renewal without LIF and BMP. This led to the suggestion that 

LIF and BMP do not regulate self-renewal but act downstream of phospho-Erk to block 

ES cell commitment. The authors have further hypothesised that ES cells are in a basal 

cell state, that is intrinsically self-maintaining, provided the cells are shielded from 

inductive differentiation stimuli including FGF4. Despite these interesting conjectures, 

the mechanisms of action of these inhibitors is incompletely understood. 
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1.7 Intrinsic factors required for efficient ES cell self-renewal 

Oct4, Nanog and Sox2 are transcriptional factors that play key roles in specification and 

maintenance of the epiblast during peri-implantation development and in the self-

renewal of pluripotent ES cells.  

 

1.7.1 Oct4 

Mouse Oct4 was initially identified as an octamer (ATGCTAAT) binding transcription 

factor expressed in embryonal carcinoma (EC) cells (Rosner et al., 1990; Scholer et al., 

1990). Oct4 is a member of the POU (Pit, Oct, Unc) family of transcriptional factors that 

share a homologous bipartite DNA binding domain known as the POU binding region 

that contains two domains, a specific domain (POUS) and a homeodomain (POUHD), that 

each bind in the major groove to 4 bp elements of the octamer consensus sequence 

(Chambers and Tomlinson, 2009; Williams et al., 2004) (Figure 1.2). During 

development, expression of Oct4 occurs in the unfertilised egg and at the 4- to 8-cell 

stage becomes restricted to the inner cell mass (ICM) cells at the early blastocyst stage. 

At the late blastocyst stage Oct4 is readily detected in the ICM and also in the primitive  

endoderm  of  the blastocyst  (Palmieri et al., 1994). Postimplantation Oct4 is restricted 

to the epiblast before becoming limited to the migratory primordial germ cells where its 

expression continues through the formation of the genital ridges in both sexes 

(Chambers 2004). The importance of Oct4 in mouse development was emphasized by 

Nichols et al., 1998 (Nichols et al., 1998; Niwa, 2001). By gene deletion studies the 

authors demonstrated that embryos lacking Oct4 expression  failed  to  produce  the  

pluripotent  cell  compartment and the result of this was redirection of ICM cells into the 
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Figure 1.2  Nanog, Oct4 and Sox2 protein domains  
 
(A) Nanog can be divided into an N-terminal and C-terminal half. The N-terminal 
half contains a DNA-binding homeodomain (HD) and an N-terminal domain 
(ND). The C-terminal half contains a tryptophan repeat (WR) domain, The WR 
repeat domain disconnects the C-terminal domain 1 (CD1) from the C-terminal 
domain 2 (CD2).  
(B) Oct4 contains DNA-binding domains comprising a POU-specific DNA-
binding domain (POUS) and a POU-homeodomain (POUHD), as well as 
transactivation domains located N-terminal (N-TAD) or C-terminal (C-TAD) to 
the POU domain.  
(C) Sox2 contains a single HMG (High Mobility Group) DNA-binding domain and 
a transactivation domain (TAD).  
The size of each protein is shown in amino acid residues (aa).  
Copied from (Chambers and Tomlinson, 2009) 
 



 22

 trophectoderm (Nichols et al., 1998; Niwa, 2001). Additional studies demonstrated that 

the stem cell fate depends on the precise Oct4 level (Niwa et al., 2000). Repression of 

Oct4 in ES cells induces differentiation along the trophectodermal lineage in accordance 

with the in vivo studies. When Oct4 is overexpressed ES cells differentiate into cells that 

express markers of mesoderm and endoderm (Niwa et al., 2000). This demonstrates that 

Oct4 is continuously required by ES cells in order to maintain their pluripotent identity. 

Interestingly, either the inhibition of Stat3 activity or the overexpression of Oct4 

stimulates ES cells to differentiate into a similar cell population (Niwa et al., 2000). 

Therefore the existence of an undefined co-factor of Oct4 that is activated by Stat3 has 

been suggested (Niwa, 2001).  

 

1.7.2 Sox2 

Sox2 is a member of the Sox family of transcription factors that are defined by their 

relationship to the Y specific sex determining factor Sry (Sinclair et al., 1990) and by the 

presence of a High Mobility Group (HMG) box binding domain (Chambers and 

Tomlinson, 2009). The HMG-box DNA binding domain, bends DNA (50–90°) and 

specifically recognizes variations of the consensus sequence CTTTGTT (Williams et al., 

2004). Sox2 regulates transcription of target genes in cooperation with Oct4 (Oct4/Sox2) 

binding both in ES cells and in pluripotent cells in vivo (Ambrosetti et al., 1997; Yuan et 

al., 1996). Sox2 occupies an important position in the maintenance of the pluripotent 

transcription factor network. ES specific binding sites for Oct4 and Sox2 have been 

identified in several genes, including Fgf4 (Yuan et al., 1996) Utf1 (Nishimoto et al., 
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1999), Lefty 1 (Nakatake et al., 2006), Fbx15 (Tokuzawa et al., 2003) and Nanog (Chew 

et al., 2005; Kuroda, 2005; Rodda et al., 2005). More recent global chromatin studies 

have shown that Oct4 and Sox2 co-localise to many common sites throughout the ES 

cell genome (Boyer et al., 2005; Loh et al., 2006) Interestingly, the Nanog, Oct4 and 

Sox2 genes possess binding sites that are activated by the Oct4-Sox2 complex in ES 

cells (Okumura-Nakanishi, 2005).  

The importance of Sox2 for the maintenance of the pluripotent state was emphasized by 

the finding that Sox2 deletion induced differentiation into multiple lineages (Ivanova et 

al., 2006). Also, inner cell mass explanted from embryos lacking Sox2 was unable to 

give rise to ES cells (Avilion et al., 2003). Although Sox2 heterozygote embryos 

develop normally, embryos lacking Sox2 died around E 6.5, which is a later time point 

in comparison to embryos lacking Oct4 (Avilion et al., 2003).  

 

1.7.3 Nanog 

The transcription factor Nanog was identified in two independent studies. The first 

method used expression cloning to identify cDNAs that were capable of directing self-

renewal in the absence of LIF (Chambers et al., 2003). The second method used an in 

silico substraction method to identify genes specifically expressed in ES cells (Mitsui et 

al., 2003). Nanog when overexpressed  can maintain ES cells in an undifferentiated state 

not only in the absence of LIF (Chambers et al., 2003) but also without BMP (Ying et 

al., 2003). Nanog is therefore considered a master regulator of self-renewal and 

pluripotency. 
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1.7.3.1 Nanog protein 

Mouse Nanog is a 305 amino acid protein that is closely related to mouse NK2 family 

members (Chambers et al., 2003). However, < 70% identity within the homeodomain 

means that Nanog does not belong to the NK2 family (Chambers et al., 2003) and is a 

divergent homeodomain protein (Kappen et al., 1993). Homeodomain proteins often 

form homodimeric and heterodimeric complexes through their homeodomains. Nanog 

also forms dimers but in this case through interactions mediated by the tryptophan repeat 

domain (Mullin et al., 2008; Wang et al., 2008). Expression of a mutant form of Nanog 

in which the WR domain has been deleted, gives rise to a Nanog variant that cannot 

dimerize and that has lost the ability to confer LIF-independent self-renewal upon 

transfected ES cells (Mullin et al., 2008). 

 

Prior work using reporter gene assays conducted in heterologous cells suggests that the 

N-terminal and C-terminal domains of mouse Nanog hold transactivator function (Pan 

and Pei, 2003). Only the C-terminal transactivation potential appears to be preserved in 

human Nanog (Oh, 2005). Furthermore, the mouse C-terminal domain was shown to 

contain two distinct transactivation domains: the WR and a second in CD2 (Pan and Pei, 

2005). 

 

1.7.3.2   Nanog expression and misexpression in vitro and in vivo 

In contrast to Oct4 and Sox2, Nanog is not present as a maternal transcript and is not 

expressed during early cleavage stages. Rather, Nanog expression is first detectable by 

in situ methods at the morula stage (Figure 1.3), is then restricted to the inner cell mass 
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of the blastocyst but becomes down-regulated prior to implantation (Chambers et al., 

2003; Mitsui et al., 2003). In the post-implantation embryo Nanog is expressed in the 

epiblast but is quickly down-regulated when cells proceed through the primitive streak 

to form mesoderm (Hart et al., 2004). Later in development Nanog expression can be 

detected in primordial germ cells (Chambers et al., 2003; Yamaguchi et al., 2005). 

 

The in vivo phenotype of Nanog deletion shows that it is critical for early ICM cells to 

mature into pluripotent epiblast. Cells that are allocated to the ICM but that are Nanog-/- 

increasingly degenerate between E3.5 and E4.5 (Silva et al., 2009). Interestingly Nanog/- 

cells fail to reactivate X inactivation and do not generate pluripotent cells in the embryo 

(Silva et al., 2009). This is of interest given that Nanog, Oct4, and Sox2 have been 

shown to bind within Xist intron 1 in undifferentiated ES cells (Navarro et al., 2008). 

The quick loss of all three factors from Xist intron 1 triggers ectopic accumulation of 

Xist RNA (Navarro et al., 2008). This has led to the conclusion that Oct4, Nanog and 

Sox2 cooperate to repress Xist, thus coupling the X-chromosome activation status to the 

control of pluripotency during embryogenesis (Navarro et al., 2008). 

 

However Nanog is not essential for propagation of pluripotency ex vivo (Chambers et 

al., 2007). Nanog null ES cells are more inclined to differentiate but can be grown 

indefinitely in vitro and contribute extensively to somatic chimeras (Chambers et al., 

2007). 
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Figure 1.3 In situ hybridization showing Nanog mRNA expression during     
                  embryogenesis 
 
In situ hybridization at different stages of mouse embryogenesis was used to 
detect Nanog mRNA. Panels show zygote (A), two cell (B), 6 cell (C), 8 cell (D), 
late morula (E), early blastocyst (F), expanded blastocyst, (G) hatched 
blastocyst (H), implanting blastocyst (I) and genital ridges (J).  
Taken from (Chambers et al., 2003). 
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An interesting attribute of Nanog expression is that Nanog is heterogeneously expressed 

in the ICM of the mouse embryo in a salt and pepper distribution at E3.5 (Chazaud et al., 

2006; Dietrich and Hiiragi, 2008). Interestingly the expression of Nanog is mutually 

exclusive to the expression of Gata6 which as well shows a random salt and pepper 

distribution in the ICM at E3.5 (Chazaud et al., 2006; Dietrich and Hiiragi, 2008). This 

salt and pepper distribution is resolved in the epiblast. In murine ES cells Nanog is also 

heterogeneously expressed in the Oct4 positive compartment with Nanog-negative cells 

showing an enhanced propensity towards differentiation (Chambers et al., 2007). 

Futhermore, Nanog low cultures can regenerate Nanog high cells. Therefore the 

transient downregulation of Nanog predisposes cells towards differentiation but does not 

necessary mark commitment (Chambers et al., 2007). Interestingly, this heterogenous 

expression is not exclusive to Nanog in ES cells. Further publications have reported that 

Stella (Hayashi et al., 2008), Rex1 (Toyooka et al., 2008), Hex (Canham et al., 2010) 

and Esrrb (van den Berg et al., 2008) are also heterogeneously expressed in ES cells.  

 

1.7.3.3  Nanog regulation 

A composite Oct4/Sox2 motif is present 180-166 bp upstream of the major transcription 

site of Nanog (Chambers and Smith, 2004). This motif is well conserved between 

mouse, rat and human. Mutagenesis of the Oct and Sox elements of this motif reduce the 

activity of luciferase constructs in transient expression assays (Kuroda, 2005; Rodda et 

al., 2005). Together with data from studies examining the localization of Oct4, Sox2 and 

Nanog to chromatin throughout the ES cell genome (Boyer et al., 2005; Loh et al., 

2006), this led to the hypothesis that these transcription factors feedback positively on 
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each others genes to re-inforce gene expression. This would however imply that all cells 

expressing Oct4 should express Nanog, yet as we know from immunoflourescence data 

and from the activity of the Nanog:GFP allele, this is not the case (Chambers et al., 

2007). 

As Nanog heterogeneity has functional consequences for cell fate (since Nanoglow cells 

are prone to commitment) it is important to understand how Nanog is regulated  

(Chambers et al., 2007). Amongst the various molecular pathways that have been 

reported to affect expression of Nanog, including p53 (Lin, 2005), Tcf3 (Pereira et al., 

2006) and Satb1 (Savarese et al., 2009), the MEK pathway (Hamazaki et al., 2006; 

Kunath et al., 2007) stands out due to effects on the heterogeneity of expression patterns 

in vivo. Embryos lacking Grb2 and that consequently do not activate the MEK pathway 

did not form primitive endoderm and showed Nanog expression in all ICM cells 

(Chazaud et al., 2006). These results were recently confirmed in a study in which 

blockade of Erk signalling from the 8-cell stage suppressed development of the primitive 

endoderm (Nichols et al., 2009).  

 

1.8 Aims of this thesis 

Although the understanding of how Nanog heterogeneity is controlled is crucial for an 

appreciation of how different ES cell states are regulated, knowledge in this area is 

incomplete. Therefore, this thesis investigated the controls operating to produce Nanog 

heterogeneity. As self-renewal depends on the gene regulatory network surrounding 

Oct4 and Nanog the relationship between these two factors was a particular focus of 

attention.  
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Chapter 2 

 

Materials and Methods 

Chemicals described in this chapter were, unless otherwise stated, obtained from Fisher, 

and oligonucleotides were synthesised by vhBio. The water used for all procedures was 

milliQ water (Milipore) which was monitored for electrical resistance during 

purification, and used at 18.2 mΩ.  

 

2.1 Culture and manipulation of mouse ES cells 

2.1.1 Cell culture materials 

SOLUTIONS/CHEMICALS COMPANY CATALOG NO 

l-Glutamine 200 mM Invitrogen 25030-024 

Sodium pyruvate 100 mM Invitrogen 11360-039 

MEM Non-essential amino acids (100x) Invitrogen 11140-036 

Trypsin (100x) 2.5% Invitrogen 15090-046 

Penicillin /Streptomycin  Invitrogen 15140-122 

Chick serum Sigma C5405 

Tryptose Phosphate Broth Sigma T8159 

Gelatin Sigma G1890 

2-Mercaptoethanol Sigma M6250 

G418 sulphate PAA P27-011 

Puromycin dihydrochloride Sigma P8833 

Hygromycin B (50 mg/ml) Roche 843 555 

 
Table 2.1 Overview of cell culture materials  
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Preparation : 

(All aliquoted solutions are tested for contamination for 3 days before use) 

 

Trypsin (1x): 

500 ml PBS, add 0.186 g EDTA. Filter sterilised 5 ml chick serum and 5 ml 

concentrated Trypsin (2.5%) added and mixed. Final concentration of Trypsin: 0.025%. 

Trypsin (4x): 

As above, but with 20 ml concentrated Trypsin (2.5%). Final concentration of Trypsin: 

0.1%. 

Glutamate / pyruvate: 

5.5 ml of Sodium pyruvate, 100 mM and 5.5 ml of l-Glutamine 200 mM.  

Gelatin: 

1% solution prepared in UHP water and autoclaved. 

2-Mercaptoethanol: 

200 µl of 2-Mercaptoethanol (14.3M) mixed with 28.2 ml UHP water. Final 

concentration 0.1 M. 

Testers: 

5 ml Tryptose Phospate Broth in universal. 

LIF preparation: 

Medium from transfected Cos7 cells is collected and is diluted with PBS to give a stock 

concentration of 100,000 Units/ml and frozen in 600µl aliquots.  
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ES cell Medium 

500 ml  GMEM (Sigma) 

11   ml  50 mM Sodium pyruvate / 100 mM L-Glutamine (Invitrogen) 

51   ml  Foetal Calf Serum (Invitrogen) 

5.5  ml 100x Non-essential amino acids (Gibco) 

570 µl 0.1 M 2-mercaptoethanol (BDH) 

570 µl LIF (prepared and titrated by ISCR staff and stock aliquoted at 100,000 units/ml) 

  

2.1.2 Culturing mouse ES cells 

1. Routinely cultured cells were passaged every 2-3 days when they were 

approximately 70- 80% confluent. 

2. Cells were cultured on gelatin coated plates/flasks (Iwaki). 0.1% gelatin was 

applied to the flask 10-20 min before cells were trypsinised.  

3. Spent ES cell medium was aspirated and cells were washed once with pre-

warmed PBS (Sigma). 

4. Enough Trypsin solution was added to cover the cells (0.5 -1.0 ml per 25cm2) 

and cells were incubated in the 37°C / 7% CO2 incubator for approximately 1 

min. 

5. The plate/flask was tapped to dislodge the cells. 

6. To neutralize the Trypsin, 4x volumes of ES cell media were added. 

7. Cells were transferred into a universal tube and centrifuged at 1200 rpm; 3 min 

(ALC PK120; Annita III; 250xg). 
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8. The pellet was resuspended in ES cell media and cells were split 1:5-1:10 at each 

passage.  

9. Cells were gassed with 5% CO2/air for 15 sec and returned to the 37°C incubator. 

10. Media was changed daily for wt ES cells (such as E14Tg2a) or every second day 

for some mutant cell lines.  

 

2.1.3  Freezing mouse ES cells 

1. Routinely 1-2 vials were frozen from a 80% confluent 25 cm2 flask or 3-6 vials 

from a 75 cm2 flask.  

2. When mouse ES cells were to be frozen, trypsinised cells were prepared as in 

section 2.1.2 up to step 8.  

3. Cells (~5x106) were resuspended in 1 ml culture freezing medium (ES cell media 

containing 10% DMSO), aliquoted into a cryotube (Nunc) and placed on ice.  

4. Cells were stored as soon as possible in the 80oC freezer overnight and transferred 

to a N2(lq) tank (-180°C) on the next day for long term storage. (It is important to 

cool down the cells gradually.) 

 

2.1.4 Thawing mouse ES cells 

1. A vial of frozen cells was taken from the N2(lq) tank and warmed quickly to 37oC in 

the waterbath or by contact with hands. (It is important to thaw the cells as quick 

as possible.) 

2. Cells were immediately transferred to a universal containing 10 ml of pre-warmed 

ES cell media and mixed gently.  
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3. Cells were centrifuged at 1000 rpm; 3 min (ALC PK120; Annita III; 200xg).  

4. Media was aspirated carefully and cell pellet was gently resuspended in 5 ml pre-

warmed ES cell media and transferred into a gelatinised flask. 

5. Flask was placed in a 37°C/ 7% CO2 incubator. 

6. Appropriate changes were made to the N2(lq) storage book. 

 

2.1.5  Colony forming assay 

1. The colony forming assay was performed by seeding 600 cells in a well of a six 

well plate (60 cells/cm2).  

2. Cells were cultured in a 37°C/7% CO2 incubator for 6 days in the presence or 

absence of LIF. 

3. After 6 days cells were inspected and an alkaline phospatase staining was 

performed. 

 

2.1.6  Alkaline phosphatase staining 

This was performed using an Alkaline Phosphatase kit (Sigma Cat. # 86R-1KT). All 

components were stored at 40C until their expiration dates. 

Fixative Solution (keep at 40C):  25 ml Citrate solution (18 mM Citric acid: 9 mM 

Sodium citrate: 12 mM NaCl), 8 ml Formaldehyde, 65 ml Acetone 

Staining solution:  400 µl FRV alkaline solution and 400 µl Sodium Nitrite solution 

were combined and incubated at (RT). After 2 min of incubation the Alkaline/Nitrite 

mix was added to 18 ml dH2O. At the end, 400 µl Napthol solution was added to the 

mix. 
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Procedure: 

1. Medium was aspirated and cells were washed twice with warm PBS. 

2. Enough fixative solution was added to cover each well (~2 ml in a six well) and 

cells were fixed for 45 sec. (Do not fix longer then 2 min.) 

3. Fixative was aspirated and cells were washed in dH2O. 

4. Enough stain was added to cover each well (~2 ml in a six well) and cells were 

incubated in dark for 15 min (RT). 

5. The staining solution was aspirated and cells were washed with dH2O. 

6. Plates were air dried before microscopic inspection. 

 

2.1.7 Induction of ES cells differentiation 

2.1.7.1 LIF withdrawal 

Cells were prepared until step 8 of Chapter 2.1.2. Cell pellet was resuspended in 

complete medium not containing LIF. Cells were counted and replated at low density in 

complete medium but without LIF. The density of the cells varied from preferable 103 

cells/cm2 to 104 cells/cm2. When cells were replated at higher density then 103 cells/cm2 

the proportion of undifferentiated ES cells in differentiating cultures was higher, 

however differentiation was still possible. If cells were replated at 103 cells/cm2 the 

medium was changed daily after initial 72 hours.  

 

2.1.7.2 Neural differentiation  

Cells were prepared until step 8 of section 2.1.2. The cell pellet was resuspended in 

N2B27 medium (Stem Cells Sciences) and cells were carefully counted, as the plating 
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density is very important for neural induction. In my protocol most cell lines were 

replated at a density of 104 cells/cm2 and left for one day in N2B27 medium containing 

LIF. On the second day the medium was changed into N2B27 only and changed daily 

for the time course of experiment. The first morphological changes were detected after 

2-3 days and increased quickly over the following days.  

 

2.1.8  DNA transfection into mouse ES cells 

   2.1.8.1 Stable transfection  

1. Only healthy sub-confluent ES cells were used for transfection and medium was 

changed 2 h before electroporation was performed. 

2. 9 cm diameter plates were gelatinised and 9 ml of ES cell medium was added 

into the plate and placed in the 37°C/ 7% CO2 incubator. 

3. Cells were pelleted at 1200 rpm; 3 min (ALC PK120; Annita III; 250xg), washed 

twice in 20 ml of PBS and counted using a haemocytometer. 

4. 107 cells were pelleted at 1200 rpm; 3 min (ALC PK120; Annita III; 250xg) and 

resuspended in 0.7 ml PBS. 

5. 100 µg of linearised DNA were resuspended in 0.1 ml 1x PBS and placed in a 

electroporation cuvette (Biorad). 

6. 0.7 ml (107 cells) were added to the cuvette and mixed gently. 

7. Electroporation was performed at 0.8 kV and 3 µF using a Gene Pulser (Biorad). 

8. Cells were quickly aspirated with a plugged Pasteur pipette and added to 9.2 ml 

of pre-warmed ES cell media. 
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9. 1 ml (1x106) cell suspension was added to each 9 cm diameter plate and placed 

in the 37°C/ 7% CO2 incubator. 

10.  Antibiotic selection was started 24-30h post-transfection. 

   

 2.1.8.2 Transient transfection 

1. 106 cells were plated in a six-well plate and supplemented with 2 ml media. 

2. Cells were placed in the 37°C/ 7% CO2 incubator to attach. 

3. For each transfection 3 µl Lipofectamine 2000 (Invitrogen) were resuspended in 

250 µl serum-free medium and incubated at RT for 5 min. 

4. For each transfection 3 µg plasmid DNA were resuspended in 250 µl serum-free 

medium and incubated at RT for 5 min. 

5. The two solutions were combined, mixed gently and incubated at RT for 20 min. 

6. The mixture was added directly to the cells and left for at least 24 hours in the 

37°C/ 7% CO2 incubator. 

7. Antibiotic selection was started routinely 24-30 h post transfection. 

 
ANTIBIOTIC COMPANY STOCK 

CONCENTRATION 

WORKING 

CONCENTRATION

Blastocidin S HCL Invitrogen 5 mg/ml 5-15 µg/ml 

G418 PAA 200 mg/ml 200 µg/ml 

Hygromycin Roche 50 mg/ml 100-200 µg/ml 

Puromycin Sigma 5 mg/ml 1-2 µg/ml 

 
Table 2.2 Antibiotic concentrations used for drug selection   
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2.1.8.3   Picking mouse ES cell colonies 

1. ES cell colonies were grown for 8-14 days before they were picked. 

2. Cells were washed once with pre-warmed PBS and a small amount of Trypsin 

(5µl) was picked up in a yellow tip and expelled gently onto the colony. 

3. The colony was dislodged with the pipette tip and transferred into a gelatinised 

96 well plate containing 200 µl of ES cell media. 

4. Each colony was dispersed to ensure a break up of the colony.  

5. The plate was placed in the 37oC/7% CO2 incubator. 

 

2.2  Immunochemical techniques 

2.2.1 Immunofluorescence analysis 

1. Cells were rinsed once in PBS and fixed in 4% PFA for 10 min (RT). 

2. Permeabilisation was performed by incubating in 0.3% Triton X 100/PBS twice 

for 5 min. If cells were not immediately processed they were stored in PBS at 

4oC. 

3. Blocking was performed for >20 min in 1% BSA / 3% normal serum (from same 

species as Secondary antibody) in 0.3% Triton X 100/PBS (RT). 

4. Primary antibodies were diluted in blocking solution and after addition, cells 

were incubated overnight at 4°C. 

5. Cells were washed 3 times in 0.3% Triton X 100/PBS for 10 min. 

6. Secondary antibodies conjugated to Alexa florophores (Molecular probes, 

Eugene Oregon, United States) were diluted 1:1000 in blocking solution and 

applied for 1 h (RT) in the dark. 
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7. Cells were washed 3 times in 0.3% Triton X 100/PBS for 10 min. 

8. Cells were photographed or stained additionally with DAPI and stored in PBS at 

4°C in the dark. 

 

NAME COMPANY CATALOG 

NUMBER 

ANTIBODY 

DILUTION 

CLASS 

 

75X36 

        Epitope: 

(SVGLPGPHSLPSSEE) 

Produce in house N/A 1:2000 Rabbit-HRP 

Oct-4-C-10 Santa Cruz sc-5279 1:1000 Mouse-HRP 

TBX3 Santa Cruz sc-17871 1:2000 Mouse-HRP 

Sall4 Abnova 954-1053 1:1000 Mouse-IgG1 

Esrrb R&D Systems PP-H6707-00 1: 2000 Mouse IgG2A 

Klf4 R&D Systems AF 3158 1:1000 Goat IgG 

Sox2 Santa Cruz sc-17320 1:1000 Goat IgG 

Rex1 Santa Cruz sc-50668 1:50 Goat IgG 

pERK Cell signaling 9106 S 1:50 Mouse IgG1 

TUJI Covance MMS-435P 1:1000 Mouse IgG2a 

Nestin Hybridoma Bank Rat-401-S 1:50 Goat IgG1 

 
Table 2.3 Antibodies used for immunofluorescence analysis 
 

2.2.2  FACS analysis 

Cells were trypsinised and prepared as in section 2.1.2 until step 8. The pellet was 

resuspended in ice cold PBS/10% FCS at a density of 1x106 cells/ml. Anti-SSEA1 
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antibody (mc480 IgM, Developmental Studies Hybridoma Bank, Department of 

Biological Sciences, University of Iowa, Iowa City, USA) was added to cells at 1:1,000 

dilution, cells were incubated at 4oC for 15 min and washed in PBS/10% FCS. 

Phycoerythrinconjugated anti-IgM mouse antibody (Jacksons Laboratories) was then 

added at a dilution of 1:1000 for 15 min at 4oC in the dark. Propidium iodide (Sigma) 

was added to a dilution of 1:5000 to identify dead cells. FACS Calibur (Becton 

Dickinson) and FlowJo software was used for data analysis and presentation.   

 

2.2.3 SDS-PAGE Electrophoresis and Immunoblotting 

Running Buffer:       MOPS Running Buffer (Invitrogen) 

Transfer Buffer:       25 mM Tris, 0.21 M Glycine, 20% Methanol. 

TBS:                      10 mM Tris pH 7.6-8.0, 150 mM NaCl. 

Immunoblot wash:   0.65 M NaCl, 10 mM Tris pH 7.8, 0.3% Triton X-100-  

                                  TBS. 

Stripping  Buffer:     62.5 mM Tris pH 6.8, 2% SDS 

2x Laemmli Buffer:  125 mM Tris pH 6.8, 4% SDS, 25% Glycerol, 0.01%  

                                  bromophenol blue, 5% 2-mercaptoethanol. 

 

1. Samples were prepared in 1x Laemmli buffer prior to loading. About 1x106 cells 

were lysed in 200 µl 1x Laemmli buffer. 

2. Running buffer was poured into the upper and lower chamber of the 

XCellSurelock module (Invitrogen). 
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3. If not otherwise quantified, 10 µl of lysate and 10 µl ‘See Blue Plus 2’ were 

loaded onto 10% Bis-Tris gels (Invitrogen). Electrophoresis was performed at 

200 V for ~ 70 min at RT.  

4. After electrophoresis the gel foot was cut off and the gel was soaked in ice cold 

transfer buffer. 

5. Protein transfer was performed in the cold (4°C) at 395 mA constant for 70 min. 

6. Directly after the transfer the membrane was washed briefly in TBS-T. 

7. Blocking of non-specific binding was performed overnight in 10% non-fat dry 

milk in TBS-T.  

8. Dilute solutions of primary antibodies were incubated for 2h (RT) with the 

membrane (Table 2.4). The antibodies were diluted in 5% non-fat dry milk in 

TBS-T. 

9. The membrane was washed 3x; 15 min on a roller device (Denley/Spiramix2) in 

TBS-T. 

10. Dilute solutions of secondary antibodies were incubated for 1h with the 

membrane. Antibodies were diluted in 5% non-fat dry milk in TBS-T. 

11. The membrane was washed 3x; 15 min in TBS-T. 

12. After the last wash, the membrane was incubated with Super-Signal West Pico 

reagent (Pierce) for 5 min (RT) and wrapped in cling film.  

13. The membrane was exposed directly to Hyperfilm (Amersham) for several sec- 

min depending on the signal strength. 

14. A SRX-101A developer (Konica-Minolta) was used to develop the film.  
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2.2.4  Stripping immunoblot membranes 

Stripping buffer was warmed to 70°C. The membrane was incubated with stripping 

buffer in a universal at 70°C; 40 min. After the membrane was washed extensively 3x; 5 

min the blot was ready for re-blocking and re-exposure.   

 

ANTIBODY COMPANY CATALOG 

NUMBER 

DILUTION SECONDARY 

REAGENT 

75X36 House 

Production 

N/A 1:3000 Rabbit-HRP 

Oct-4 C10 Santa Cruz Sc5279 1:1000 Mouse-HRP 

GFP Sigma MMS-101P 1:2000 Mouse-HRP 

HDAC2 Upstate 05-814 1:1000 Mouse-HRP 

mouse-HRP Amersham NA931 1:2000 N/A 

rabbit-HRP Amersham NA934 1:2000 N/A 

 
Table 2.4 Antibodies used for immunoblotting 
 
 
 

2.3. Molecular biology techniques 

2.3.1 Nucleic acid isolation  

2.3.1.1  Plasmid isolation from bacterial cells 

A colony of bacteria harboring the plasmid of interest was grown overnight at 37oC with 

shaking at 225 rpm in LB broth supplemented with the appropriate antibiotic. Plasmid 

DNA isolation was performed using the Miniprep Kit (Qiagen catalogue no. 27104) or 



 42

the Maxiprep Kit (Qiagen catalogue no. 12163) following the instructions of the 

manufacturer. Plasmid concentration and purity (A260/A280 and A260/A230 values) were 

estimated using a NanoDrop® (ND-1000) spectrophotometer.  

 

2.3.1.2  RNA isolation 

RNA isolation was performed using the RNAEasy kit (Qiagen catalogue no. 74106) 

following the instructions of the manufacture. RNA concentration and purity (A260/A280 

and A260/A230 values) were estimated using a NanoDrop® (ND-1000) 

spectrophotometer.  

 

2.3.1.3  Genomic DNA isolation 

DNA isolation was performed using the DNeasy Blood and Tissue kit (Qiagen catalogue 

no. 69504) following the instructions of the manufacturer. DNA concentration and 

purity (A260/A280 and A260/A230 values) were estimated using a NanoDrop® (ND-1000) 

spectrophotometer.  

 

2.3.1.4   Ethanol precipitation of DNA  

1. 1/10 or 1/15 volume of 3M Sodium acetate pH 4.8-5.2 were added to the DNA 

sample and mixed well.  

2. 2-2.5 volumes of 100% Ethanol were added to the DNA/Sodium acetate mix and 

left at -20°C>30 min. 

3. Sample was centrifuged at maximum speed at 4°C; 15 min. 
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4. The supernatant was carefully removed and the pellet was washed in 70% ice 

cold ethanol.  

5. DNA sample was spun at full speed at 4°C; 15 min.  

6. Ethanol was carefully removed and the pellet air dried. 

7. Dry pellet was resuspended in the appropriate volume of water or TE. 

 

2.3.2  DNA manipulation 

2.3.2.1  Restriction endonuclease digestion 

DNA was digested using restriction endonucleases from Roche or New England Biolabs 

according to the manufacture’s instructions. 

 

2.3.2.2  Blunt ending of 5’ overhang 

1. DNA was digested with the desired overhang-generating restriction enzyme. 

2. To 1-4 µg of digested DNA, dNTP’s (33µM as final concentration) and Klenow 

(1 unit per microgram DNA) were added and the reaction was incubated at RT; 

15 min. 

3. The reaction was stopped by adding EDTA to a final concentration of 10 mM 

and heating at 75°C; 10 min. 

 

2.3.2.3  Polymerase Chain Reaction (PCR) 

Routinely reactions were performed using Taq DNA polymerase. When a low mutation 

frequency was required, Phusion (Finnzymes), a high fidelity Taq DNA polymerase was 

used. 



 44

A 50 µl reaction contained the following; 

DNA template  (150ng cDNA/reaction) 

300 nM oligo 1 

300 nM oligo 2 

200 µM dNTP’s 

1x PCR Buffer (Supplied by manufacturer) 

0.5 µl Phusion (5U/µl) or Taq (5U/µl) 

Make up to volume of a final 50 µl with milliQ H2O. 

 

The following programs were used on a GeneAmp®9700 thermocycler (Applied 

Biosystems). 

 

For Phusion, high fidelity Taq DNA polymerase reaction: 

1 cycle - 98°C 1- 5min 

15-35 cyces -  98°C  15 sec-30 sec   

                        Tm  15-60 sec 

                        72°C 1min per kb 

1 cycle - 72°C 10 min 

 

For Taq DNA polymerase reaction: 

1 cycle - 95°C   1- 5 min 

15-35 cycles  -  95°C  15 sec-30 sec 

                          Tm  15-60 sec 

                          72°C 1 min per kb 
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 1 cycle - 72°C 10 min 

 

5-10 µl of PCR reaction mixture was subjected to TBE or TAE agarose gel 

electrophoresis to visualise the product. 

 

2.3.2.4 Agarose gel electrophoresis 

1. For a 1% gel, 1g agarose powder (Seakem) was measured and added to 100 ml 

0.5xTBE or 1x TAE buffer (45 mM Tris- borate, acetate, 1 mM EDTA).  

2. The agarose was melted in a microwave until the solution became clear.  

3. When the agarose solution has cooled to about 50°C (e.g. by running under a 

cold tap), Ethidium bromide was added to a final concentration of 0.25µg/ml and 

the solution was poured directly into the casting tray, ensuring that no bubbles 

got into the gel. 

4. Gels were run routinely at 100 V in a gel tank, with the DNA in 1x Ficoll Blue 

DNA loading buffer (6x stock; 15% w/v Ficoll 400 (Amersham) in dH2O/0.02% 

bromophenol blue (BHD)).  

5. After running the gel, the DNA was visualised using a GeneFlash Imager 

(Syngene). 

 

2.3.2.5  Preparing new DNA molecules 

 2.3.2.5.1 Purification of restriction DNA fragments 

1. 2-10 µg plasmid DNA were digested routinely according to the manufacture’s 

instructions (New England Biolabs or Roche). 
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2. Digested plasmid DNA was loaded onto a TAE agarose gel and separated 

according to size by gel electrophoresis.  

3. The bands were located with a long-wavelegth UV light-box.  

4. The gel slice containing the DNA fragment was excised using a clean scalpel and 

placed in a 1.5 mL eppendorf tube.  

5. The DNA was extracted from the gel using the QIAquick gel extraction kit 

(Qiagen) following the manufacturer’s instructions. 

 

2.3.2.5.2 Ligation 

1. Routinely ligation reactions were performed using either T4 DNA Ligase or 

QuickLigase (New England Biolabs) in a volume of 20 µl.  

2. The vector: insert ratio was set as 1:1 or 1:3 using 100 ng of the vector fragment.  

3. The ligation was performed at 160C overnight or at RT;30 min. 

4. Following the ligation, the DNA was transformed by adding 6 µl of the ligation 

mix to 50 µl DH5α E.coli or One Shot® Chemically Competent E. coli. 

 

2.3.2.5.3  Cloning of blunt and PCR products  

For blunt ending the Zero Blunt® TOPO® cloning kit was used (Invitrogen) following 

the manufacturer’s instructions. The pCR®-Blunt II- TOPO® vector contains EcoRI 

flanking the insert site which enables a first screening of transformants via EcoRI 

digestions. Subsequently, cloned PCR products were confirmed by sequencing. This was 

performed at the school of Biological Sequencing Service – University of Edinburgh or 
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the University of Dundee. The analysis of the data was performed using the Seqman 

software (Lasergene).  

 

2.3.3 Transformation of plasmid DNA into E.coli 

Autoclaved Luria Broth (LB) agar (1.5% w/v agar in LB, 1% w/v tryptone (Difco), 0.5% 

w/v yeast extract (Difco), 5 mM NaCl) was melted and cooled to about 50°C. The 

appropriate antibiotics were added to the agar at the concentrations indicated in Table 

2.5. A thin layer of LB Agar was poured into a sterile Petri dish.  

 

1. DH5α E.coli (Invitrogen) or One Shot® Chemically Competent E. coli 

(Invitrogen) were placed directly on ice after removing from -80oC storage.  

2. 1- 10 ng plasmid or 6 µl of a ligation reaction were added to DH5α E.coli or One 

Shot® Chemically competent E. coli with a sterile pipette. 

3. Cells were mixed very gently (do not pipette up and down) and incubated on ice 

for 30 min. 

4. Cells were heat shocked for 30 sec at 42°C and tubes were placed immediately 

on ice for at least 2 min. 

5.  The transformation mixture was added to 950 µl LB broth (DH5α) or 250 µl 

SOC medium (One Shot®).  

6. Cells were shaked at 225 rpm in 37°C for 1 h in an orbital shaker.  

7. Serial dilutions were spread onto the appropriate antibiotic containing plates 

(Table 2.5) under sterile conditions.  

8. Plates were left undistured until the inoculum was absorbed and then inverted. 
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9. Plates were incubated overnight at 37°C and stored at 4oC (until transformation 

was successful). 

10. Transformation efficiency was monitored by transfecting a 5 pg of pUC19 

plasmid. 

 

ANTIBIOTIC STOCK 

CONCENTRATION 

WORKING 

CONCENTRATION 

Ampicillin 100 mg/ml in dH2O 50 µg/ml 

Carbenicillin 100 mg/ml in dH2O 50 µg/ml 

Kanamycin 10 mg/ml inENRATdH2O 20 µg/ml 

Zeocin 100 mg/ml in dH2O 25 µg/ml 

 
Table 2.5 Antibiotic concentrations for selection of transformants in E.coli. 
 

2.3.3.1 Screeing for correct ligation products 

~ 200-400 ng of Miniprep DNA was digested with at least 2 or 3 restriction 

endonucleases to define the specific restriction fragment length pattern upon agarose 

gel electrophoresis. 

 

2.3.4 Analysis of ES cell RNA 

2.3.4.1  First strand cDNA synthesis 

First strand cDNA was synthesised from 1-2 μg of total RNA using the superscript® II 

reverse transcriptase (Invitrogen catalogue no. 12371-019) following the instructions of 

the manufacturer. 
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2.3.4.2 Quantitative PCR 

Q-PCR was performed by using the primers listed in Table 2.6 with a LightCycler 480 

probes master kit (Roche Cat. no. 04707494001) and LightCycler 480 Sybr Green 1 

master kit (Roche Cat. no. 04707516001) with cDNA equivalent to 25 ng total RNA. 

New oligos have been designed with the “Universal probe library” software (Roche; 

www.universalprobelibrary.com).  

 

Thermal cycles monocolour hydrolysis probe protocol: 

1 cycle  -    95 oC for 5 min  

45 cycles -  95 oC, 10 sec                               

                   61 oC, 10 sec    

 

Thermal cycles Sybr Green protocol:  

1 cylce -    95oC for 5 min     

45 cycles - 95 oC, 0.5sec  

                   60 oC, 10 sec                                 

                   72 oC, 20 sec    

                   81 oC ,1 sec.  

 

 

2.3.4.3 Fluidigm gene expression analysis  

Protocols are copied from BioMark Advanced Development Protocol: “Gene expression 

Analysis Using Assays designed with Probes from the Universal Probe Library (Roche 

Applied Sciences). Number 8. 
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   Preparing primer stocks: 

     1.  Primer stocks were prepared at 200 µM using TE Buffer 

2. A 100x mixture of forward and reverse primers for each of the assays was 

prepared by preparing a 1/10 dilution of the original stock. 

3. A 4x primer mixture for specific target amplification was prepared by pooling by 

pooling the primer mixes in Step2 for each assay. The concnentration of each primer 

in the 100x stock is 20 µM and the final concentration of each primer should be 200 

nM in the 4x mix. 

 

For the Specific Target Amplification the following Ingredients were mixed: 

Ingredients                                                                         Volume µl   

cDNA (from 1 to 25 ng total RNA)                                       2.5 

4x Multiplex primer Mix                                                        2.5 

2X TaqMan PreAmpMaster Mix (PN 4391128)                       5 

Total                                                                                         10 

 

Thermal cycles 

1 cycle – 95oC, 10 min 

14 cycles – 95oC, 15 sec 

                   60oC, 4 min 

 

Samples were diluted by adding 40 µl TE. Stored thereafter at -20oC. 
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The 10x Assay Mix was prepared as follow: 

 

Ingredients                                                                 Volume  µl (per assay inlet)          

DA Assay Loading Reagent (PN 85000735)                            2.5 

100X Primer Pair Mix                                                               0.5 

Probe from library                                                                     0.5 

Water                                                                                         1.5 

Total                                                                                          5.0 

 

Sample Mix  for 48 Samples: 

 

 Ingredients                                                                                     Volume µl 

TaqMan Universal PCR Master Mix  (PN 4304437)                       200  

GE Sample Loading Reagent ( PN 85000746)                                   20 

Total                                                                                                  2 

 

   1.   4 µl of the Sample Mix were added to each of the 48 well or tubes 

   2.   2.5 µl of Sta Sample were added to each of the 48 wells or tubes                                                       

 

 

Running the Chip 

Thermal cycles: 

1 cycle – 50oC, 2 min 

1 cycle – 95oC, 10 min 

40 cycles – 95oC, 15 sec 

                   70oC,   5 sec 

                   60oC, 1 min 
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PRIMER FORWARD SEQUENCE REVERSE  SEQUENCE 

Oct4 GTTGGAGAAGGTGGAACCAA 
 

CTCCTTCTGCAGGGCTTTC 
 

Oct6 CATCTCCACCCGCAAGAC 
 

CGTTCGTTAAGGCCAGGAG 
 

Bbx 
 

TGTGTGCCTCCCATTTACCT 
 

TCAGAACTTCCAGCTTCTGTGA 
 

Brachyury CAGCCCACCTACTGGCTCTA 
 

GAGCCTGGGGTGATGGTA 
 

Dnajb6 
 

TCCGGAACCCAGATGATG CACCTCGGCTTCTATTTCCTC 

Dusp6 
 

CTGGTGGAGAGTCGGTCCT 
 

CGGCCTGGAACTTACTGAAG 
 

Esrrb 
 

TGAGGGTAACCTTTCCTTGC 
 

ACGACATTCGGTTCAGCAG 
 

Fabp7 AACCAGCATAGATGACAGAAACTG 
 

ACTTCTGCACATGAATGAGCTT 
 

Fgf5 
 

GTTTCCAGTGGAGCCCTTC 
 

CTTTGCCATCCGGGTAGAT 
 

Gata6 
 

GGTCTCTACAGCAAGATGAATGG 
 

TGGCACAGGACAGTCCAAG 
 

Intronic26 
 

GGTGATACGTTGGCCTTCTAGT 
 

TTCTCAAATACACACAAGAGCCTA
 

Intronic28 
 

AGCCCAGTACTCAGGCTTGT 
 

AGCATCACAACACGCACCT 
 

Intronic29 
 

GCCAGCAGATGGCATAATTT 
 

TGATGGCAATGCTGAGGTTA 
 

Intronic32 
 

GATTCTATTCACCCAGCACCA 
 

CCTTCTGAGTGGAGGTTTATCC 
 

Intronic33 
 

CCATCTCAGCTACTGGAGCA 
 

ATTAGAACCGTGACCGCATC 
 

Klf2 
 

CTAAAGGCGCATCTGCGTA TAGTGGCGGGTAAGCTCGT 

Klf4 
 

CGGGAAGGGAGAAGACT 
 

GACTTCCTCACGCCAACG 
 

Mybl2 
 

TTAAATGGACCCACGAGGAG 
 

TTCCAGTCTTGCTGTCCAAA 
 

Nanog 
 

CCTCCAGCAGATGCAAGAA 
 

GCTTGCACTTCATCCTTTGG 
 

Nestin 
 

CTGCAGGCCACTGAAAAGT 
 

TTCCAGGATCTGAGCGATCT 
 

Nfatc4 
 

TGGTGTTCGGAGAGGAAAAG 
 

CATGGAGGGGTATCCTCTGA 
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Nfkb1 
 

CACTGCTCAGGTCCACTGTC 
 

CTGTCACTATCCCGGAGTTCA 
 

Notch3 
 

AGCTGGGTCCTGAGGTGAT 
 

AGACAGAGCCGGTTGTCAAT 
 

p53 
 

ATGCCCATGCTACAGAGGAG 
 

AGACTGGCCCTTCTTGGTCT 
 

Pax6 
 

GTTCCCTGTCCTGTGGACTC 
 

ACCGCCCTTGGTTAAAGTCT 
 

PBGD 
 

AAAGTTCCCCAACCTGGAAT 
 

CCAGGACAATGGCACTGAAT 
 

Pitx2 
 

CCTTACGGAAGCCCGAGT AAAGCCATTCTTGCACAGC 

Rex1 
 

CAGCTCCTGCACACAGAAGA 
 

ACTGATCCGCAAACACCTG 
 

Satb1 
 

ATGGCGTTGCTGTCTCTAGG 
 

CTTCCCAACCTGGATGAGC 
 

Sox2 
 

GTGTTTGCAAAAAGGGAAAAGT 
 

TCTTTCTCCCAGCCCTAGTCT 
 

TBP 
 

GGGGAGCTGTGATGTGAAGT 
 

CCAGGAAATAATTCTGGCTCA 
 

Tbx3 
 

TTGCAAAGGGTTTTCGAGAC TGCAGTGTGAGCTGCTTTCT 

Tcfap2c 
 

CGCGGAAGAGTATGTTGTTG 
 

CGATCTTGATGGAGAAGGTCA 
 

Tcfcp2l1 
 

GGGGACTACTCGGAGCATCT 
 

TTCCGATCAGCTCCCTTG 
 

Tuji 
 

GCGCATCAGCGTATACTACAA 
 

TTCCAAGTCCACCAGAATGG 
 

UTF1 
 

GTCCCTCTCCGCGTTAGC 
 

GGGGCAGGTTCGTCATTT 
 

Zfp36 
 

TCTCTTCACCAAGGCCATTC 
 

CATGGCTCATCGACTGGA 
 

Zfp57 
 

TGGCTAGAAGCAGTCTGGAAT 
 

CTGGATGGCTGGGAAGACT 

 
 
Table 2.6 Primers used for quantitative PCR 
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2.3.5 Analysis of ES cell genomic DNA 

2.3.5.1. Southern Blot analysis 

 

Digestion of DNA  

1. 4-5 µg of DNA in 40 µl total volume were digested for 1 hour at 37oC with 10 

Units of restriction enzyme. A second aliquot of 10 Units was then added and 

incubation continued for a further hour at 37oC. 

2. 4 µl of 10X loading dye were added and the sample loaded onto a 0.8% TAE gel.  

3. One large gel tray - 24.4 x 15cm, was used to prepare a > 300 ml unstained gel. 

The gel tank was filled with 1X TAE and electrophoresis was performed 

overnight at 30V. 

 

Blotting Gel 

20X SSC 3M Sodium Chloride (174.2 g/litre) 

  0.3M Tri Sodium Citrate (88.2 g/litre) 

 

Solution 1 0.5M Sodium Hydroxide (20 g/litre) 

  1M Sodium Chloride (58.4 g/litre) 

 

Solution 2  0.5M Tris (30.28 g/500 ml)  

   3M Sodium Chloride (87.6 g/500 ml) 

 Dissolve Tris and NaCl in dH2O pH 7.4  
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1. The Gel was put in a tray and stained with 500 ml dH2O containing 1 µg/ml 

ethidium bromide for 30 min gentle rocking. 

2. The gel was transferred to a new tray (using the large scoop) and photographed 

with a fluorescent ruler at the side. The gel was exposed for 1 min to 245nm UV. 

Using a short wave transilluminator (Herolab UVT-28S). 

3. The gel was washed in 500 ml of solution 1; 15 min. 

4. The gel was removed and the solution discarded. The step above was repeated 

with the remaining solution 1. 

5. Solution 1 was poured off and the gel was rinsed briefly in dH2O and washed in 

500 ml of solution 2; 45 min. 

6. 3 mm paper was prepared as follow:  

                              2 x 24 cm wide by length of paper 

                              4 x size of gel 

7. Hybond XL membrane was cut to fit the gel, and labeled and soaked in 2X SSC. 

8. The tray was set up with 20X SSC and glass plate was put on top. 

9. 2 large pieces of 3mm paper were soaked together and placed on top of glass 

plate with the ends tucked into the 20X SSC beneath. 

10. Air bubbles were rolled out with a pipette.  

11. Gel was put onto plate and the top of the gel was cut through the wells with a 

blade. Gel was sandwiched with another glass plate and turned over. 

12. More 20X SSC was added to the paper and gel was placed on top with no air 

bubbles. 

13. Saran wrap was placed up to the edges of the gel on all sides. 
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14. The membrane was placed (soaked in 2X SSC) on top with marked side down. 

Wells were marked with a pencil. 

15. 2 small pieces of 3 mm paper soaked in 2X SSC were placed on top. 

16. 2 small dry pieces of 3 mm paper were placed on top. 

17. 1 pack of paper towels was split and placed on top side by side. 

18. A metal plate and a 500 ml bottle were placed on top. 

19. Blot was left overnight. 

20. Next day, the paper towels and paper were carefully removed and the membrane 

turned upright (DNA is on top) into a tray containing 2X SSC to wash.   

21. Membrane was placed on to 3 mm paper to dry and then and baked for 2 h at 

80ºC. 

 

 

Following picture shows the blotting apparatus: 

 

 

 

 

 

Tray with 20X SSX 

2 large 3mm pieces 
of paper 

Glass plate 

Gel upside-down Nylon membrane 

2 small pieces of paper 
soaked in 2X SSX 2 small pieces 

of dry paper 

Paper towels 
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Pre-hybridisation 

1. The hybridisation bottle was washed and blue and white caps were fitted on. A 

small amount of water was put in to the bottle and warmed up in the oven at 

65ºC.  

2. 1:100 (120 µl) salmon sperm DNA (Sigma) was added to 12 ml Perfecthyb 

(Sigma, H7033) in a 50 ml corning tube and warmed up in the 65ºC oven. 

3. The filter was soaked in 2X SSC. 

4. The water was tipped out of the bottle. The filter was rolled up and put into the 

bottle (marked corner near the white end) and unrolled without any air bubbles. 

5. The Perfecthyb/salmon sperm DNA mix was added to the bottle and left for pre-

hybridisation for at least 1 h while the probe was prepared. 

 

Labeling Probe DNA 

1. 2-25 ng of probe DNA were diluted into 45µl of TE. 

2. DNA was boiled for 5 min, then snap frozen and centrifuged briefly. 

3. DNA was added to rediprime tube (GE Healthcare Catalogue no. RPN1633) (not 

mixed). 

4. 5 µl dCTP32  were added and mixed by pipetting 12 times. 

5. Incubation was performed at 37ºC; 10 min. 

6. 5 µl 0.2M EDTA were added to stop the reaction. 

7. Micro Bio-Spin 30 Chromatography Columns (Bio-RAD) were spuned at 2000 

rpm; 3 min. 
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8. Meanwhile the volume of the probe was made up to 100 µl (45 µl dH20 were 

added).   

9. After the Column was centrifuged, the probe was added to the centre of the spin 

column and spinned again at 2000 rpm; 3 min. 

10. The probe was boiled for 5 min and added to warmed Perfecthyb buffer (second 

pre-heated 12 ml containing salmon DNA). 

11. The pre-hyb was tipped off from the filter and the probe was added.   

12. Incubation was performed overnight at 65ºC. 

 

Washes 

1. The probe was tipped off and the membrane was rinsed with 0.5X SSC 0.1% 

SDS at room temperature (filtered solution). 

2. Membrane was washed with 50 ml of pre-warmed 0.5X SSC 0.1% SDS at 65ºC ; 

40 min. 

3. Membrane was washed again with 50 ml of pre-warmed 0.5X SSC 0.1% SDS at 

65ºC; 15 min. 

4. At the end membrane was wrapped in cling film and placed in a cassette and 

exposed at first overnight at -80ºC. 

 

 

 

 

 



 59

Chapter 3    

 

Oct4 influences Nanog expression 

 

3.1 Introduction 

Self-renewal depends on several extrinsic and intrinsic cues including a gene regulatory 

network centered around the transcription factors Nanog, Oct4 and Sox2. Existing ChIP 

data (Boyer et al., 2005; Loh et al., 2006) together with data from reporter assays (Chew 

et al., 2005; Kuroda, 2005; Rodda et al., 2005; Tomioka et al., 2002) have been 

interpreted to suggest that Oct4, Sox2 and Nanog positively regulate each other (Figure 

3.1). This would suggest that all Oct4 positive cells express Nanog. However, as Oct4 

positive cells exist that do not express Nanog (Chambers et al., 2007) the effects of 

alterating Oct4 expression upon Nanog heterogeneity were investigated in this Chapter. 

 

3.2 Results 

3.2.1 Functional Oct4 heterozygote ES cells express elevated level of 

Nanog mRNA and protein 

Evidence has been presented that Oct4 positively regulates Nanog through binding to an 

Oct4/Sox2 element (Kuroda, 2005; Rodda et al., 2005) located 180 bp upstream of the 

mapped transcription initiation site (Chambers, 2004a). This suggests that cells 

expressing lower Oct4 levels should express reduced levels of Nanog. 
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Figure 3.1 Model of Oct4, Sox2 and Nanog interaction 

The drawing depicts a network pattern resulting from a simple positive feedback 
between the three core transcription factors Nanog, Oct4 and Sox2. 
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This was investigated by comparing Nanog expression in three ES cell lines (Table 3.1) 

genetically modified at the Oct4 locus (ZHBTc4.1, ZHTc6 and OKO160) with three 

control ES cell lines, unmodified at the Oct4 locus (E14Tg2a, CGR8 and Zin40). 

Surprisingly, all cell lines in which Oct4 expression was reduced harboured elevated 

levels of Nanog mRNA (Figure 3.2 A). Immunoblot analysis confirmed that this 

increase in mRNA was reflected in elevated levels of Nanog protein (Figure 3.2 B).  

 

 

3.2.2 Functional Oct4 heterozygote ES cells express Nanog relatively 

homogeneously 

To investigate how the elevated Nanog expression in ES cells expressing reduced Oct4 

protein was reflected at the single cell level, immunofluorescence analysis was 

performed on colonies formed from individual cells. Nanog was detected at widely 

varying levels in individual nuclei within E14Tg2a colonies (Figure 3.3). In contrast, all 

cell lines expressing reduced Oct4 protein expressed Nanog more uniformly throughout 

the colonies and at levels comparable to those present in high Nanog expressing nuclei 

in E14Tg2a colonies. Additional ES cell specific genes such as Esrrb and Rex1 have 

been reported to be heterogeneously expressed in ES cells (Toyooka et al., 2008; van 

den Berg et al., 2008). Therefore, I investigated expression of Esrrb and Rex1 in the 

same cell lines by immunofluorescence (Figure 3.4 and 3.5). Esrrb (Figure 3.4) and  

Rex1 (Figure 3.5) were detected at widely varying levels in E14Tg2a cells, but were 

more uniformly expressed in ES cells expressing reduced Oct4 levels. To investigate the  
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CELL LINES DERIVED FROM
GENETIC 

MODIFICATIONS 

E14TG2a 129/ Ola mouse strain Deficient in HPRT 

CGR8 129/ Ola mouse strain No modifications 

ZIN40 129/ Ola mouse strain Express a randomly integrated lacZ-
ires-neo transgene 

OKO8 E14Tg2a 
An IRES-βgeopA cassette has been 
introduced into one Oct4 allele by 
homologous recombination 

OKO160 CGR8 
An IRES-βgeopA cassette has been 
introduced into one Oct4 allele by 
homologous recombination 

ZHTc6 CGR8 

Contains a Dox-suppressible Oct4 
transgene. One allele has been 
inactivated by targeted intergration 
of an IRESzeopA  cassette. 

ZHBTc4.1 CGR8 

As ZHTc6 cells but the second Oct4 
allele has been inactivated by 
targeted integration of an 
IRESBSDpA  cassette. 

D7A3 PE E14Tg2a Lif -/- cells 

 

 
Table 3.1 Overview of cell lines used in this chapter 
 
The table summarizes name, origin and genetic modification made in each 
individual cell line. This table can be additionally found in the Appendix. 
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Figure 3.2 Oct4 functional heterozygote cells express elevated level of  
                  Nanog mRNA and protein 
 
A: Q-PCR analysis for Nanog and Oct4 in ES cell lines carrying the indicated 
genetic modifications at the Oct4 locus (see Table 3.1 for details). mRNA 
expression is normalised to TBP mRNA expression. Average of three biological 
samples is shown; error bars represent standard deviation of the mean (n=3). 
B: Western Blot analysis for Nanog, Oct4 and HDAC in the same cell lines 
shows an elevated Nanog protein level in functional Oct4 heterozygote cells. 
This immunoblot was performed by Alessia Gagliardi.   
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Figure 3.3 Nanog heterogeneity is reduced in functional Oct4 heterozygote  
                  ES cells 
 
Immunofluorescence analysis in E14Tg2a (Oct4+/+), OKO160 (Oct4+/geo), ZHTc6 
(Oct4+/zeo; Oct4 transgene off) and ZHBTc4.1 cells (Oct4zeo/BSD; Oct4 transgene 
on) for Nanog (Green), Oct4 (Red) and DAPI. Nanog expression pattern is more 
homogeneous in functional Oct4 heterozygote ES cells (OKO160, ZHTc6 and 
ZHBTc4.1) in comparison to the wild type Oct4 ES cell line E14Tg2a.  
 

 

 

 

 



 65

 

 

 

 

Figure 3.4 Esrrb heterogeneity is reduced in functional Oct4 heterozygote  
                  ES cells 
 
Immunofluorescence analysis in E14Tg2a (Oct4+/+), OKO8 (Oct4+/geo), OKO160 
(Oct4+/geo), ZHTc6 (Oct4+/zeo; Oct4 transgene off) and ZHBTc4.1 cells 
(Oct4zeo/BSD; Oct4 transgene on) for Nanog (Green), Esrrb (Red) and DAPI. 
Esrrb expression pattern is more homogeneous in functional Oct4 heterozygote 
ES cells (OKO8, OKO160, ZHTc6 and ZHBTc4.1) in comparison to the Oct4 
wild type ES cell line E14Tg2a.  
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Figure 3.5  Rex1 heterogeneity is reduced in functional Oct4 heterozygote  
                   ES cells 
 
Immunofluorescence analysis of E14Tg2a (Oct4+/+), OKO8 (Oct4+/geo), OKO160 
(Oct4+/geo), ZHTc6 (Oct4+/zeo; Oct4 transgene off) and ZHBTc4.1 cells 
(Oct4zeo/BSD; Oct4 transgene on) for Nanog (Green), Rex1 (Red) and DAPI. Rex1 
expression pattern is more homogeneous in functional Oct4 heterozygote ES 
cells (ZHBTc4.1, ZHTc6 and OKO160) in comparison to the Oct4 wild type ES 
cell line E14Tg2a.  
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heterogeneity in Nanog expression further, ZHBTc4.1, ZHTc6 and OKO160 cells were 

modified by homologous recombination to introduce a GFP reporter at the Nanog locus 

(details of the Nanog locus modifications are in Figure 3.6 and an overview of the 

resulting cell lines is in Table 3.2). Southern analysis was used to evaluate the success of 

the homologous recombination (Figure 3.6). Correctly targeted clones of each genotype 

were expanded in Puromycin-containing medium for 6 days. This selects for expression 

for the targeted Nanog locus and produces uniformly GFP+ populations. Cultures of 

TNG, ZHTNG, ZHBTNG and OKOTNG were then replated in the absence of 

Puromycin. All cell lines expressed high GFP levels in a tight relatively homogenous 

pattern at the beginning of the experiment (Figure 3.7). By day 6, TNG cells had 

developed a broad range of GFP expression levels. However, all cell lines with reduced 

Oct4 protein expression retained a tight, relatively homogenous pattern of GFP 

expression until at least day 16 (Figure 3.7).  

 

3.2.3 Titration of Oct4 restores Nanog heterogeneity 

The preceding results suggest that the homogeneous expression of Nanog is due to a 

reduction in Oct4 levels in functional Oct4 heterozygotes cells. To determine whether 

elevating the expression of Oct4 in such cells would restore a heterogeneous pattern of 

Nanog expression, ZHTNG cells were deployed. These cells contain a GFP reporter at 

the Nanog locus, a Doxycycline suppressible Oct4 transgene and a Zeocin gene trap 

replacement of one of the endogenous Oct4 alleles. These cells are cultured in 

Doxycycline  to   keep   the  Oct4   transgene  off.  Removal   of   Doxycycline   causes 
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Figure 3.6 Genetic construction of Nanog:GFP reporter derivatives of  
                   functional Oct4 heterozygotes 
 
A. The 5’ end of the Nanog gene is shown schematically at the top. Exons, 
orange; 5’UTR, blue; homology arms used for construction of the targeting 
vector, red. eGFP was inserted between the homology arms precisely at the 
Nanog AUG codon in the targeting construct shown in the middle. GFP 
expression is linked through an IRES to puromycin resistance encoded by the 
pac gene and followed by a polyA site (iPpA); taken from Chambers et al., 
(2007). 
B. Southern Blot analysis of Sex AI digested genomic DNA from targeted clones 
from ZHBTc4.1 (B), ZHTc6 (C) and OKO160 (D) cells which had undergone 
homologous recombination. Southern shows one wild type clone with a 10 kb 
band only and three clones from each cell line which showed the expected 
pattern for homologous recombinants with a 10 kb wild type band and a 7.1 kb 
mutant band at the 5’ end and a mutant band of  5.2 kb at the 3’ end.  
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CELL LINE 
DERIVED 

FROM 
GENETIC MODIFICATIONS 

TNG E14Tg2a 
An eGFP IRESpacpA cassette has been inserted at 
the AUG codon of Nanog into one allele of the Nanog 
gene by homologous recombination 

OKOTNG OKO160 

An IRES-βgeopA cassette has been introduced into 
one allele of the Oct4 gene by homologous 
recombinations. 
 
In addition, an eGFP IRESpacpA cassette has been 
inserted at the AUG codon of Nanog into one allele of 
the Nanog gene by homologous recombination.   

ZHTNG ZHTc6 

Contains a Dox-suppressible Oct4 transgene in an 
Oct4+/- background. ES cells maintained with 
1000ng/ml Doxycycline. 
 
In addition, an eGFP IRESpacpA cassette has been 
inserted at the AUG codon of Nanog into one allele of 
the Nanog gene by homologoues recombination.   

ZHBTNG ZHBTc4.1 

Contains a Dox-suppressible Oct4 transgene, in an 
Oct4-/- background. ES cells maintained in the 
absence of Doxycycline. 
 
In addition, an eGFP IRESpacpA cassette has been 
inserted at the AUG codon of Nanog into one allele of 
the Nanog gene by homologoues recombination.   

 
 
Table 3.2 Overview of the Nanog:GFP reporter cell lines  
 
The table summarizes the new name, the origin and the genetic modifications 
made in the Nanog:GFP reporter cell lines. This table can be additionally found 
in the Appendix. 
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Figure 3.7 FACS analysis in Nanog:GFP reporter cell lines 
 
FACS analysis for GFP and SSEA1 expression in Oct4 wild type ES cells (TNG) 
and functional Oct4 heterozygote ES cells (ZHBTNG, ZHTNG, OKOTNG). Cells 
were selected for Nanog using the selection marker Puromycin (Day 0). The 
expression of GFP (Nanog) in the SSEA1+ undifferentiated compartment was 
monitored by FACS at day 0, 8 and 16 of experiment. The Q1 and Q4 quadrants 
represent the GFP negative compartment. The Q2 and Q3 quadrants represent 
the GFP positive compartment. The Q4 and Q3 quadrants represent the SSEA1 
negative compartment.  
In contrast to TNG cells which express Nanog heterogeneously, functional Oct4 
heterozygote ES cells express Nanog more homogenously, even until day 16. 
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overexpression of Oct4 and induces differentiation of parental ZHTc6 cells. To 

determine whether heterogeneity of GFP can be restored, ZHTNG cells were treated 

with dilutions of Doxycycline (1000, 1, 0.3, 0.1, 0.03 and 0 ng/ml). Complete removal 

of Doxycycline from the parental ZHTc6 cells causes an upregulation of differentiation 

markers (e.g. GATA4, FGF5) at 96 hours (Niwa et al., 2000). In order to eliminate 

differentiated cells from the analysis, Zeocin was added to select for expression of the 

Oct4 locus. Figure 3.8 shows that at concentrations from 1000 to 0.3 ng/ml, no changes 

in GFP expression were detectable by FACS. However at 0.1 ng/ml Doxycycline, cells 

expressing reduced GFP could be observed by day 3. This broader GFP expression 

pattern developed further by day 6. Importantly, reduction in GFP expression was not 

accompanied by a change in SSEA1 expression (Figure 3.8). To confirm that Oct4 

protein was being induced and to visualise the relationship between Oct4 protein and 

GFP expression, cells were examined by immunofluorescence for Oct4 at day 6 (Figure 

3.9). Consistent with the FACS data, no increase in the Oct4 protein level was observed 

at concentrations of Doxycycline from 1000 ng/ml to 0.3 ng/ml (Figure 3.9). However, a 

dramatic increase in the Oct4 protein level was detected upon a further semi-log dilution 

of Doxycycline. Importantly, this upregulation of Oct4 coincided precisely with a shift 

in the GFP profile. To determine if the cells in which GFP was downregulated were still 

undifferentiated, staining with the pluripotency marker Sall4 was performed at day 6 of 

this experiment (Figure 3.10). Sall4 was detected in GFP high and as well GFP low cells 

of ZHTNG cells, confirming that these cells were still undifferentiated.  
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Figure 3.8 Nanog heterogeneity can be restored by titrating back in Oct4  
                  protein 
 
FACS analysis for GFP (X-axis) and SSEA1 (Y-axis) expression in ZHTNG cells 
(Oct4+/zeo; Nanog+/GFP; contain a Doxycycline suppressible Oct4 transgene). 
Cells were cultured in the presence of Zeocin, treated with the indicated dilution 
of Doxycycline (top) and were analysed at day 1, 2, 3 and 6 of treatment. 
Heterogeneity in GFP expression appeared at day 3 at concentrations from 0.1 
to 0 ng/ml of Doxycyline and continued to increase over the next days. To avoid 
dense cell culture conditions, cells were passaged every 2-3 days. 
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Figure 3.9 Development of Nanog heterogeneity is related to Oct4 increase 
 
Figure shows immunofluorescence analysis for GFP (Nanog), Oct4 (Red) and 
DAPI in ZHTNG cells (Oct4+/zeo; Nanog+/GFP; contain a Doxycycline suppressible 
Oct4 transgene) treated with the indicated dilutions of Doxycycline (left margin) 
at day 6 of experiment. Staining confirmed an increase of Oct4 protein at 
concentrations in which GFP heterogeneity appeared (0.1-0ng/ml of 
Doxycycline). 
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Figure 3.10 GFP low expressing cells still express pluripotency markers 
 
Immunofluorescence analysis for GFP (Nanog), Sall4 (Red) and DAPI in 
ZHTNG cells (Oct4+/zeo; Nanog+/GFP; contain a Doxycycline suppressible Oct4 
transgene) at day 6 of the Doxycycline titration experiment. The Doxycycline 
dilutions are indicated on the left. Staining confirmed that GFP low cells still 
express the pluripotency marker Sall4. 
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3.2.4 Heterogenous Nanog expression within the undifferentiated 

compartment is reversible 

It was previously reported (Chambers et al., 2007) that Nanog low cells can convert 

back to a high Nanog expressing state. This raises the question of whether GFP low cells 

from heterogenous ZHTNG cells after Oct4 induction have a similar capability to 

reverse Nanog expression. Therefore, TNG and ZHTNG (1000 ng/ml Doxycycline) cells 

were cultured in parallel in the presence of Puromycin for five days, to select for Nanog 

expression. Cells were then replated without Puromycin, to enable TNG cells to develop 

a heterogenous Nanog expression. ZHTNG cells were cultured without Doxycycline (to 

induce Oct4 transgene expression) and in the presence of Zeocin (to select for continued 

expression from the Oct4 locus and thus against differentiation). After 6 days, SSEA1+ 

cells were sorted into GFPlow and GFPhigh populations. The purity of both populations in 

both cell lines was > 99% (Figure 3.11 top). Directly after the sort, cells from both 

populations were replated into separate wells at a density of 4000 cells per cm2. TNG 

cells were cultured without Puromycin. ZHTNG cells were also cultured without 

Puromycin but in these cells further expression of transgenic Oct4 was suppressed by the 

addition of 1000 ng/ml of Doxycycline, in order to prevent Oct4 induced differentiation 

Zeocin was removed from these cultures.  

 

TNG cells behaved as expected (Chambers et al., 2007). The GFPlow TNG population 

produced GFPhigh cells whose numbers increased in proportion over a 4 day period. The 

GFPhigh TNG population on the other hand produced cells with reduced GFP expression 

by day 1 and these cells increased in proportion over the following three days. The 
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GFPlow ZHTNG cells showed a similar behaviour to the GFPlow TNG cells, producing 

GFPhigh cells, by day 1 which increased in proportion over the next 3 days. In contrast 

the GFPhigh  ZHTNG population did not produce GFPlow cells.  

 

 

3.2.5  Nanog kinetics during Oct4 induction 

When the Oct4 transgene is induced in ZHTNG cells Nanog expression becomes 

heterogenous. Therefore it was important to examine more carefully the kinetics of 

Nanog and Oct4 expression during Oct4 induction in ZHTNG cells. First however, 

ZHTNG cells were treated with Puromycin for five days to ensure homogenous Nanog 

expression. Cells were then replated in the presence of Zeocin, either with 1000 ng/ml or 

without Doxycycline and were investigated by Q-PCR (Figure 3.12). Q-PCR analysis 

for Oct4 and Nanog over this timecourse showed that the upregulation of Oct4 mRNA 

happened slowly. Only small differences in Oct4 mRNA were seen over the first 2 days. 

However, at day 3 Oct4 mRNA increased ~2.5 fold (Figure 3.12). Interestingly, this 

change was not only abrupt but was also stable as similar levels were maintained for the 

next 2 days. Nanog mRNA showed initially a positive correlation with Oct4 mRNA. At 

day 2 the 30% increase in Oct4 mRNA was accompanied by a 50% increase in Nanog 

expression. However at day 3 when Oct4 was over two fold upregulated, Nanog mRNA 

decreased to 65% of its expression at 1000 ng/ml of Doxycycline. Whereas the Oct4 

mRNA level was stable from day 3-5, Nanog mRNA declined between day 3-4 before 

stabilizing. Nanog pre-mRNA (Figure 3.12 bottom) was also investigated and was 

strongly correlated with Nanog mRNA.   
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Figure 3.11 Nanog expression is reversible  
 
FACS analysis of sorted ZHTNG (Oct4+/zeo; Nanog+/GFP; contain a Doxycycline 
suppressible Oct4 transgene) and TNG (Oct4+/+; Nanog+/GFP) cells. Both cell 
lines were sorted for the GFPlow and the GFPhigh populations in the SSEA1+ 
compartment. Cells were replated directly after the sort and analysed at day 1, 
2, 3 and 4 of culture for GFP expression in both populations. Analysis showed 
that GFP expression is reversible in cells in which GFP expression was reduced 
through the induction of Oct4 similarly to the re-expression of GFPhigh cells in the 
GFPlow TNG cells. 
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Figure 3.12 Q-PCR analysis in an Oct4 induction experiment 
 
Q-PCR analysis for Oct4, Nanog and Nanog’s pre-mRNA (Intronic) in ZHTNG 
cells (Oct4+/zeo; Nanog+/GFP; contain a Doxycycline suppressible Oct4 transgene) 
treated with 1000 ng/ml (+dox) and 0 ng/ml (-dox) of Doxycycline over the time 
course of five days. mRNA expression, normalised to TBP mRNA expression, is 
represented relative to (+dox), which is set as 1. Errors bars represent the 
standard deviation of the mean (n=3).  
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3.2.6  Kinetics of Nanog expression through Oct4 downregulation 

The kinetics of Oct4 induction in ZHTNG cells, showed that the relationship between 

Nanog and Oct4 is not simple.  For that reason it was of importance to investigate this 

relationship under conditions in which Oct4 was downregulated. For that reason 

ZHBTc4.1 cells in which two Oct4 alleles were inactivated and which carry a 

Doxycycline suppressible Oct4 transgene as the only source for Oct4 expression, were 

examined following Doxycycline treatment. Cells were examined by 

immunofluorescence and Q-PCR analysis after 0, 6, 12, 18, 24, 48 or 72 hours of 

Doxycycline treatment. Oct4 mRNA was quickly downregulated (Figure 3.13) and was 

almost undetectable at 12 hours post Doxycycline treatment. Nanog however showed a 

more complicated expression pattern. Initially up to 12 hours of Doxycycline induction 

the mRNA expression correlated with Oct4 downregulation. However at 12 hours, when 

Oct4 mRNA was undetectable, Nanog mRNA was expressed at 50% of its initial level. 

Interestingly, after this initial decrease, Nanog was upregulated to a level similar to that 

at the start of the experiment. This re-expression was followed by a linear 

downregulation which was completed by 72 hours (Figure 3.13 top). A similar 

expression pattern was observed by immunofluorescence for Nanog, which showed a 

decrease in Nanog protein until 12 hours (Figure 3.14). Subsequently, Nanog was 

upregulated at 24 hours before being completely downregulated by 72 hours (Figure 

3.14). This expression pattern of Nanog raised the question of whether Nanog, was the 

only gene with this complex expression pattern. To investigate this, Q-PCR analysis was 

performed for other pluripotency genes (Figure 3.13 middle and bottom). Interestingly, 

although some genes such as Rex1 were linearly downregulated, other genes showed a  
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Figure 3.13 Kinetics of Nanog and Oct4 mRNA after Oct4 downregulation  
                    in ZHBTc4.1 cells  
 
Q-PCR analysis for Nanog and Oct4 mRNA in ZHBTc4.1 cells (Oct4zeo/BSD; 
contain a Doxycyclin suppressible Oct4 transgene) treated with 1000 ng/ml of 
Doxycycline over the indicated timecourse represented in hours (h), showed, 
that Nanog’s downregulation is disrupted through a second increase at 24 hours 
after treatment. This secondary relief of suppression evolved after Oct4 was 
completely downregulated (top). The same expression pattern was observed for 
Klf4 and slightly for Esrrb. TBX3 showed the strongest upregulation of all genes 
at 24 hours (middle). Rex1 and Sox2 showed a progressive decrease overtime. 
mRNA expression was normalised to TBP mRNA expression. 
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Figure 3.14 Immunofluorescence analysis in ZHBTc4.1 cells after Oct4  
                    downregulation 
 
Panel shows immunofluorescence analysis for Nanog and Oct4 in ZHBTc4.1 
cells (Oct4zeo/BSD; contain a Doxycycline suppressible Oct4 transgene) treated 
with 1000 ng/ml of Doxycycline over the indicated timecourse (left margin).  
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re-induction pattern between 12-24 hours similar to Nanog. Klf4 and Tbx3 behaved in 

this way, while Sox2 and Esrrb levels appeared to plateau between those time points. 

(Figure 3.13 middle and bottom). 

 

3.3 Discussion  

The data presented in this chapter demonstrates that functional Oct4 heterozygote ES 

cells express Nanog less heterogeneously than Oct4 wild type cells. Furthermore Nanog 

mosaicism can be restored by directly raising Oct4 levels in Oct4 functional 

heterozygote ES cells. Sorting of ZHTNG cells into GFPhigh and GFPlow cells, shows that 

high GFP expression can be restored to the GFPlow population by adding Doxycycline 

back to the culture. Interestingly, neither downregulation nor upregulation of Oct4 is 

accompanied by a linear down or upregulation of Nanog, but shows a more complex 

regulation pattern.  

 

3.3.1 Nanog expression in functional Oct4 heterozygote ES cells 

Oct4 heterozygote ES cells express elevated level of Nanog mRNA and protein (Figure 

3.2) and importantly express Nanog more homogenously (Figure 3.3 and 3.7). This was 

unexpected and suggested that Oct4 might directly or indirectly suppress Nanog when 

expressed at wild type levels. Interestingly, the general increase of Nanog mRNA and 

protein was not associated with an overall increase in expression in all cells in the 

population but rather reflected a reduction in the number of cells in the Nanog low 

population. This  was  not only  the  case for  Nanog but also for Esrrb and Rex1 (Figure  
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3.4  and 3.5), suggesting that Esrrb and Rex1 may be subject to similar upregulation as 

Nanog. In addition, an overall decrease in Oct4 expression may through feedback 

mechanisms act to restore Oct4 expression towards wild type levels. Therefore, genes 

that act to sustain pluripotency through activation of Oct4 would be increased in such 

cells. This would implicate Nanog, Esrrb and Rex1 as potential positive regulators of 

Oct4 (Chen et al., 2008; Kim et al., 2008). These findings are, in my opinion, significant 

and important for the stem cell field as they indicate a potential origin of transcription 

factor heterogeneity within the intrinsic circuitry of the pluripotency gene regulatory 

network and de-mystify the original observation of Niwa that an increase in Oct4 can 

cause differentiation. Rather then being a direct consequence of Oct4 action at elevated 

concentrations, these results show that Oct4 acts by providing a population of Nanog 

low cells responsive to differentiation cues.  

 

3.3.2 Titration of Oct4 restores Nanog heterogeneity 

The preceding results suggest that homogeneous Nanog expression is due to a reduction 

in Oct4 concentration in functional Oct4 heterozygote cells. To determine whether 

increasing the expression of Oct4 in such cells would restore Nanog heterogeneity, 

ZHTNG cells were deployed. In this case, Nanog-low cells could be obtained by 

decreasing the Doxycycline dosage and therefore increasing the Oct4 concentration. 

This proved that changes in Nanog expression were caused by the decrease of Oct4 

expression from wild type levels. Importantly, the reduction of Nanog:GFP expression 

(Figure 3.8) did not represent as a simple shift of the whole population towards the GFP 
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low compartment but reflected an increase of the Nanog middle and low compartments, 

therefore resembling Nanog expression in wild type ES cells. These results indicate that 

the relationship between Oct4 and Nanog that I have proposed is robust and eliminate 

the possibility that effects on Nanog expression are due to unrelated genetic alterations 

in these cells.  

 

Immunofluorescence analysis showed that the shift in GFP expression coincided 

precisely with a total increase of Oct4 protein in functional Oct4 heterozygote ES cells 

(Figure 3.9), confirming that Nanog reduction is associated with an increase of Oct4 

protein. The changes in GFP expression appeared in the SSEA1 positive compartment. 

To confirm their undifferentiated status, cells were examined by immunofluorescence 

for Sall4. Sall4 is a pluripotency marker that is expressed homogeneously in ES cells 

and whose downregulation is associated with differentiation (Lim et al., 2008; Zhang et 

al., 2006). Sall4 is detectable throughout the GFP negative colonies. It would be of 

interest to examine expression of additional pluripotency markers in future experiments.  

 

When ZHTNG cells were sorted into GFP high and GFP low populations (Figure 3.11), 

the GFP low population was able to switch back to a Nanog:GFP high expressing state. 

This indicates that these cells remain undifferentiated (Chambers et al., 2007) and that 

these changes indeed can be attributed to the levels of Oct4 expression, as the switch 

was possible when Oct4 expression from the transgene was suppressed. It will be 

important in future to eliminate the possibility that these results are attributed to 

contamination of the GFP low population with GFP high cells by replating GFP low 
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cells as single cells in individual wells and following GFP reacquisition. It will also be 

of interest to determine whether cells can switch back to GFP high state without 

suppression of the Oct4 transgene to discover alternative regulatory mechanisms 

unrelated to Oct4 levels. 

 

3.3.3 Kinetics of Nanog expression through Oct4 upregulation 

The kinetics of Nanog expression during Oct4 induction in ZHTNG were examined to 

more fully explore the relationship between these two genes. Initially, Nanog mRNA 

showed a positive correlation with Oct4 mRNA. An increase of Oct4 at day 2 was 

accompanied by an increase in Nanog expression. However at day 3, when Oct4 was 

over two fold upregulated, Nanog mRNA decreased to 65% of its expression at 1000 

ng/ml of Doxycyline and continued to decrease over the next 2 days. These results 

revealed a more complex relationship between Oct4 and Nanog. In future experiments it 

would be of importance to examine why Oct4 levels switch to a new steady state rather 

then increasing linearly. The design of primers distinguishing between expression from 

the endogenous Oct4 allele and from the transgene should help to address this question. 

Furthermore it would be helpful to visualize the expression of Oct4 and Nanog directly 

with fluorescence reporters. In this way the exact kinetics could be ascertained at the 

single cell level. Such an approach would be important for establishing the hierarchical 

relationship between these genes and the exact levels at which a switch was thrown. In 

this way the interaction between these two genes could be more precisely observed 

dynamically, particularly by time-lapse video microscopy.  
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Such an approach could profitably be extended to other pluripotency regulators 

including for example Sox2, Esrrb, Klf4 and Tbx3. However this would stretch the 

current capabilities of fluorescence reporter systems (Schroeder, 2008; Tsien) although 

variant reporters with specific subcellular localisation could be beneficial here (Okita et 

al., 2004). It would also be of interest to investigate the expression of Sox2, Essrb, Klf2 

and Tbx3 more precisely during the induction of Oct4 in ZHTNG cells. This would help 

to define whether Nanog heterogeneity could be induced through manipulation of these 

genes in the Oct4 functional heterozygote ES cells. Such experiments could help to 

unravel feedback controls operating on the gene regulatory network in ES cells.     

 

3.3.4 Kinetics of Nanog expression through Oct4 downregulation 

The kinetics of Oct4 induction in ZHTNG cells suggest a complex relationship between 

Nanog and Oct4. For further understanding ZHBTc4.1 cells were examined following 

Doxycycline mediated extinction of Oct4. This treatment causes trophectodermal 

differentiation (Niwa et al., 2000). Although Oct4 mRNA levels declined linearly upon 

Doxycycline treatment and were almost undetectable by 12 hours (Figure 3.13), changes 

in Nanog expression were more complicated. Initially, Nanog mRNA expression 

correlated with Oct4 downregulation, being reduced by 50% at 12 hours. Subsequently, 

Nanog was upregulated at 24 hours to a level similar to that at t=0, before being 

progressively and completely downregulated by 72 hours (Figure 3.13 top). A similar 

expression pattern was observed for Nanog protein by immunofluorescence. This non-

linear pattern suggests the elimination of an Oct4 dependent inhibitor of Nanog. In this 

regard potential Nanog supressors (e.g. Tcf3) may warrant investigation. In addition, 
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decreased expression of Oct4 in ZHBTc4.1 cells has been associated with a decrease in 

Prc2 activity (Endoh et al., 2008). A further candidate would be Nanog. It would, 

therefore be interesting to determine whether Nanog overexpression could restore 

heterogeneity in Oct4 functional heterozygote ES cells, similar to the action of Oct4 

(Figure 4.8). A possible approach to distinguish, whether Oct4 indirectly suppresses 

Nanog through Nanog upregulation would be to upregulate Oct4 expression in 44Cre6 

(Nanog null cells carrying the TNG reporter at one Nanog allele). If an increase in 

Nanog heterogeneity was observed in these cells, this would indicate that the repressive 

activity of Oct4 acted in a Nanog-independent manner. 
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Chapter 4 

 

Functional consequences of manipulating the levels of Oct4  

 

4.1  Introduction 

When TNG cells expressing the undifferentiated cell surface marker SSEA1 were sorted 

into GFPlow and GFPhigh populations and replated, the GFPlow population lost SSEA1 

expression faster then the GFPhigh population (Chambers et al., 2007). Together with the 

reversibility of Nanog expression this suggested a model in which Nanog low cells had 

an increased propensity for differentiation (Figure 4.1). As functional Oct4 heterozygote 

cells lack a Nanoglow population, such ES cells may be retarded in their differentiation 

kinetics compared to wild type ES cells. To investigate this hypothesis, differentiation 

assays were performed. Cultures were first selected for undifferentiated cells by adding 

Zeocin to ZHBTc4.1/ZHTc6 cells, G418 to OKO160/OKO8 and Puromycin to Oct4GIP 

cells to select for undifferentiated cells. After 7 days, selection was removed and cells 

were replated in two distinct differentiation conditions.  

 

 

4.2 Functional Oct4 heterozygote ES cells are retarded in their 

differentiation capacity 
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Figure 4.1 Model of the relationship between levels of Nanog and self- 
                  renewal and differentiation capacity of ES cells 
 
Model (Chambers et al., 2007) underlines the importance of Nanog mosaic 
expression for self-renewal and differentiation of ES cells, suggesting that 
Nanog acts to safeguard self-renewal by countering the effects of differentiation 
inducers and preventing progression to commitment. In this context Nanog low 
cells give an opportunity for an ES cell to differentiate. 
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4.2.1 LIF withdrawal 

Upon LIF withdrawal, wild type ES cells began to show morphological signs of 

differentiation by day 2, which became more clearly apparent by day 3. In contrast, all 

functional Oct4 heterozygote ES cells retained an undifferentiated morphology in the 

majority of cells at day 3 (Figure 4.2). Q-PCR analysis showed a delay in the loss of 

pluripotency markers Rex1 and FGF4 as well as a delay in the upregulation of the 

mesodermal gene Brachyury in functional Oct4 heterozygote ES cell lines (Figure 4.3).  

 

4.2.2 Neural differentiation 

The same cell lines were assessed during neural differentiation. Cells were examined by 

microscopy each day for 8 days. Subsequently, cells were fixed and stained for the 

expression of Nestin, βIII Tubulin and Oct4. Immunofluorescence analysis showed that 

βIII Tubulin and Nestin were readily detectable in E14Tg2a and Oct4GIP cells, whereas 

only isolated cells with poorly developed axonal processes were detected in OKO8, 

OKO160, ZHTc6 and ZHBTc4.1 cultures (Figure 4.4 and 4.5). To determine if cells 

were unable to make the transition to the neural lineage because they remained 

undifferentiated, rather then differentiating into non-neural cells, immunofluorescence 

analysis for Oct4 was performed. Oct4 was readily detectable in all functional 

heterozygote ES cells at day 8 but was expressed only in isolated colonies in E14Tg2a 

and Oct4GIP cultures (Figure 4.4). Q-PCR analysis confirmed the Oct4 

immunofluorescence data. This also showed that all Oct4 functional heterozygote ES 

were impaired in downregulation of Rex1 (Figure 4.5 A) and in expression of the neural 

markers Nestin βIII Tubulin and Pax6 (Figure 4.5 B).  
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Figure 4.2 Morphological changes in the LIF withdrawal differentiation  
                  assay 
 
The panel shows morphological changes in Oct4 wild type (E14Tg2a (Oct4+/+), 
Oct4GIP (Oct4+/+)) and functional Oct4 heterozygote cells (OKO8 (Oct4+/geo), 
OKO160 (Oct4+/geo), ZHTc6 (Oct4+/zeo; Oct4 transgene off), ZHBTc4.1 
(Oct4zeo/BSD; Oct4 transgene on) in an LIF withdrawal differentiation assay over 
the timecourse of three days.  
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Figure 4.3 Q-PCR analysis during the LIF withdrawal differentiation assay 
  
Q-PCR analysis shows that all functional Oct4 heterozygote ES cell lines (OKO8 
((Oct4+/geo), OKO160 (Oct4+/geo), ZHTc6 (Oct4+/zeo; Oct4 transgene off), 
ZHBTc4.1 (Oct4zeo/BSD; Oct4 transgene on) express pluripotency markers like 
Rex1 and FGF4 longer than Oct4 wild type cells (E14Tg2a (Oct4+/+), Oct4GIP 
(Oct4+/+)) during the differentiation protocol. Furthermore, the figure shows a 
significant decrease in the expression of Brachyury which is highly expressed at 
day 3 in the two Oct4 wild type cell lines. mRNA expression was normalised to 
TBP mRNA expression. Errors bars represent the standard deviation of the 
mean (n=3). 
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Figure 4.4 Immunofluorescence analysis for neural marker 
 
Immunofluorescence analysis for βIIITubulin (Tuji) and Dapi (top panels) as well 
as Nestin, Oct4 and Dapi (bottom panels) at day 8 of a neural differentiation 
protocol in Oct4 wild type cells (E14Tg2a (Oct4+/+), Oct4GIP (Oct4+/+)), and 
functional Oct4 heterozygote ES cell lines (OKO8 (Oct4+/geo), OKO160 
(Oct4+/geo), ZHTc6 (Oct4+/zeo; Oct4 transgene off), ZHBTc4.1 (Oct4zeo/BSD; Oct4 

transgene on)).  
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Figure 4.5 Q-PCR analysis during the neural differentiation assay 

Q-PCR analysis for pluripotency markers: Rex1 and Oct4 (A) and neural 
markers: Nestin, βIII Tubulin (Tuji) and Pax6 (B) over the indicated time course 
(0-8 days). mRNA expression was normalised to TBP mRNA expression. Errors 
bars represent standard deviation of the mean (n=3).  
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4.3 Retarded differentiation capacity can be rescued by restoring Nanog 

heterogeneity via induction of Oct4   

4.3.1 LIF withdrawal 

According to the hypothetical model (Figure 4.1) the block in differentiation was 

predicted as a consequence of the loss of Nanog heterogeneity in functional Oct4 

heterozygote cells. To investigate whether the retarded kinetics in Oct4 functional 

heterozygotes ES cells could be restored by re-establishing the heterogeneity in Nanog 

expression in these cells, Oct4 protein was titrated back into the cells. ZHTNG cells 

were therefore treated with Puromycin for 7 days to obtain a culture of cells with 

homogenous Nanog expression. After 7 days, cells were passaged in two conditions 

(Figure 4.6 outlines the experimental set up).  In the first condition, cells were kept in 

the presence of Zeocin and 1000 ng/ml of Doxycycline. In the second condition, cells 

were kept in Zeocin but were treated with 0.03ng/ml of Doxycycline to relieve the 

suppression of the Oct4 transgene in ZHTNG cells. At day 4, cells treated with 1000 

ng/ml of Doxycycline expressed GFP homogenously whereas cells treated with 0.03 

ng/ml were heterogenous for Nanog in the SSEA1+ compartment (Figure 4.7 top left). 

To demonstrate that this heterogeneity in GFP expression was related to the increase in 

Oct4 expression, cells were investigated for Nanog and Oct4 mRNA expression at the 

start of the differentiation experiments (Figure 4.7 top right). Indeed cultures in which 

Oct4 was upregulated showed a strong decrease in Nanog expression (Figure 4.7 top 

right). Cells were washed twice with PBS and medium was replaced with standard 

medium without LIF. At start of the differentiation assay, cells which were previously 

treated with 1000 ng/ml  were  supplemented  further  with  1000 ng/ml of  Doxycycline  
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Figure 4.6 Schematic representation of experimental set up 
 
Graph depicts a schematic representation of the experimental set up described 
in this section. Shown is the treatment of ZHTNG cells (Oct4+/zeo; Nanog+/GFP; 
contain a Doxycycline suppressible Oct4 transgene) before and after the 
differentiation assays were started (blue). The LIF withdrawal differentiation 
assay was conducted over 3 days and the neural differentiation protocol over 8 
days. The activation of the Oct4 transgene due to a dilution of Doxycycline is 
indicated in red. At the end of the differentiation protocol cells were investigated 
by some of the indicated possibilities. 
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Figure 4.7 Investigations of ZHTNG before start of differentiation assays 
 
Top left panel shows FACS analysis for GFP and SSEA1 in ZHTNG cells 
(Oct4+/zeo; Nanog+/GFP; contain a Doxycycline suppressible Oct4 transgene) 
treated either with 1000 ng/ml or 0.03 ng/ml of Doxycycline directly before the 
LIF withdrawal and neural differentiation assays were performed. Top right panel 
shows the corresponding Q-PCR results for Nanog and Oct4 to cultures 
represented by FACS.  
Bottom panel shows the microscopy analysis of the particular ZHTNG cultures 
analysed at the top. As visible by morphology, cells heterogenous for GFP were 
morphologically undifferentiated before differentiation was induced. 
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for the whole time course of experiment. This monitored effects of continued 

suppression of the Oct4 transgene. Cells which had been treated with 0.03 ng/ml of 

Doxycycline and which showed a heterogenous GFP expression pattern (Figure 4.7) 

were divided into two experimental conditions. In the first, treatment with 0.03 ng/ml of 

Doxycycline was continued. This allowed monitoring of the effects of continued high 

level expression of Oct4. In the second condition, the full Doxycycline dose of 1000 

ng/ml was added back to block further expression of the Oct4 transgene during the 

timecourse of experiment. In this situation the results could be unambiquously attributed 

to the induced heterogeneity in GFP expression at the beginning of experiment rather 

than secondary effects of ectopic Oct4 expression (Niwa et al., 2000). Differentiation 

was conducted over three days with medium being changed twice daily. ZHTNG cells 

treated with 1000 ng/ml (Figure 4.8) showed a similar morphology to ZHTc6 previously 

described in (Figure 4.2). At day two and at day three most of the cells appeared 

morphologically undifferentiated. In contrast, cells which were heterogenous for GFP 

before the start of experiment, had a higher proportion of differentiated cells, which 

increased in number at day 3 (Figure 4.8).  

 

4.3.2 Neural differentiation 

To monitor neural differentiation capacity, ZHTNG cells were treated first with 

Puromycin to obtain uniform Nanog expression and were then treated with Doxycycline 

as described in section 4.3.1 to produce an undifferentiated population of cells 

expressing Nanog homogenously or heterogenously. Medium was then removed, cells 

were washed  twice  in  PBS  and  supplemented  with  N2B27  media.  Cells  were  then  
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Figure 4.8  Morphological changes in the LIF withdrawal assay 
 
Panel shows morphological changes in ZHTNG cells (Oct4+/zeo; Nanog+/GFP; 
contain a Doxycycline suppressible Oct4 transgene) treated with the indicated 
dose of Doxycycline during the LIF withdrawal differentiation assay over the time 
course of three days. Cells treated with 0.03 ng/ml of Doxycycline before the 
start show a significant higher proportion of differentiated cells.  
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separated into three experimental conditions described in section 4.3.1. Cells were 

observed daily by microscopy and collected every second day for RNA. Q-PCR analysis 

showed that the neural progenitor markers Nestin and Pax6 (Figure 4.9) were strongly 

upregulated during differentiation of cultures in which Nanog heterogeneity had been 

induced. At day 8, cells were fixed and stained for Nestin, βIII Tubulin (Tuji) and DAPI. 

The immunofluorescence analysis showed that in ZHTNG cultures treated before and 

during the experiment with the full dose of Doxycycline, Nestin and βIII Tubulin were 

barely detectable (Figure 4.10), yet Nanog:GFP was broadly expressed in most cells. 

However, ZHTNG cultures which were heterogenous for Nanog:GFP at beginning of 

the neural differentiation assay and which were treated with 1000 ng/ml of Doxycycline 

through the 8 days of the neural differentiation protocol showed a much higher 

proportion of Nestin and βIII Tubulin positive cells by immunofluorescence (Figure 4.9 

and 4.10).  

 

The proportion of Nestin and βIII Tubulin positive cells was further increased in cells in 

which the expression of the transgene was not blocked through the continuous treatment 

with 0.03 ng/ml of Doxycycline (Figure 4.9 and 4.10). In summary, these experiments 

show that the induction of Nanog heterogeneity in cultures lacking a Nanog low 

compartment increases their differentiation ability.  
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Figure 4.9 Q-PCR for neural progenitors 

Q-PCR analysis for Nestin and Pax6 at day 0 and day 8 of neural induction. 
Cultures treated either with 1000 ng/ml or 0.03 ng/ml of Doxycycline before start 
of experiment (Day 0). The first numbers indicate the Doxycycline 
concentrations before start of neural induction and the second numbers indicate 
the Doxycycline concentrations used during the time course of experiment. 
mRNA expression was normalised to TBP mRNA expression.  
 
 



 102

 
 
Figure 4.10 Immunofluorescence analysis for neural markers 
 
Immonuflourescence analysis in ZHTNG (Oct4+/zeo; Nanog+/GFP; contain a 
Doxycycline suppressible Oct4 transgene) for Nestin (top panels), Tuji (bottom 
panels) and DAPI at day 8 of neural differentiation assay. Doxycycline dose at 
start of experiment is represented in black (left margin) and concentrations used 
during the time course are shown in red (left margin).  
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4.4 Discussion  
 

The data in this chapter show that differentiation of functional Oct4 heterozygote ES 

cells is delayed due to a lack of a Nanog negative undifferentiated population. This 

delayed differentiation can be rescued by raising the Oct4 level in functional 

heterozygotes and restoring heterogenous Nanog expression.  

 

The unexpected finding that functional Oct4 heterozygote ES cells are less mosaic than 

wild type ES cells, enabled me to investigate how a culture system lacking Nanog 

mosaicism responds to differentiation cues compared to cultures with heterogeneous 

Nanog expression. According to (Chambers et al., 2007), low levels of Nanog may 

constitute a window of opportunity in which extrinsic or intrinsic perturbations enable a 

lineage commitment decision. Therefore, I have postulated that the functional Oct4 

heterozygote cells could be retarded in their differentiation kinetics compared to wild 

type ES cells due to a smaller Nanog low compartment. To investigate this hypothesis a 

LIF withdrawal and a neural differentiation assay were performed to determine if Nanog 

heterogeneity is important to drive cells more efficiently into commitment. As shown in 

Figure 4.2–4.3 during the LIF withdrawal protocol, ES cells homogenous for Nanog 

(OKO8, OKO160, ZHTc6  and ZHBTc4.1) showed delayed morphological changes, a 

delayed loss of pluripotency markers, as well as a delayed upregulation of the 

mesodermal gene Brachyury in comparison to cells heterogeneous for Nanog (E14Tg2a 

and Oct4 GIP) (Figure 4.3). The same cell lines were assessed during neural 

differentiation. Immunoflourescence analysis showed that in E14Tg2a and Oct4GIP 
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cells, βIIITubulin and Nestin were detectable, whereas in OKO160, ZHTc6 and 

ZHBTc4.1 cultures, only isolated cells expressing βIIITubulin could be found and these 

showed poor axonal development (Figure 4.4 and 4.5). To determine if cells remained 

undifferentiated rather than made a transition into other lineages staining for the 

pluripotency marker Oct4 was performed. Oct4 was detectable in all functional 

heterozygote ES cells at day 8 of experiment but was only expressed in isolated colonies 

in E14Tg2a and Oct4GIP cultures (Figure 4.4). Q-PCR analysis confirmed the 

immunofluorescence data (Figure 4.5). Consequently a missing Nanog negative 

compartment is significant for cell fate.  

 

Nanog has previously been shown to block differentiation when overexpressed 

(Chambers et al., 2003). The experiments in this chapter suggest that in addition ES cells 

that express wild-type Nanog levels but that do so uniformly have an impaired 

differentiation capacity. These results are of interest in relation to the report by 

Shimozaki et al., that upregulated Oct4 expression enhanced neuronal differentiation of 

ES cells via an unknown mechanism (Shimozaki et al., 2003). One of the experiments 

performed by Shimozaki was to increase Oct4 levels driven from the transgene in 

ZHTc6 cells (Niwa et al., 2000). They showed that ZHTc6 cells have an impaired neural 

differentiation capacity relative to ZHTc6 cultures in which Oct4 was upregulated. 

These results may therefore be explained by a restoration in Nanog heterogeneity, as 

shown in this chapter.  
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To further investigate these findings, the kinetics of sorted Nanoghigh and Nanoglow cells 

from ZHTNG and TNG cells should be compared. This would establish whether 

reciprocal interactions between the populations were dispensable for enhanced 

differentiation of the Nanoglow cells.  

A similar mechanism might be important in the mouse embryo. Palmieri et al., reported 

a transient increase in Oct4 protein in the primitive endodermal cells of the blastocyst 

prior to its final downregulation (Palmieri et al., 1994). In this context recent publication 

by (Nichols et al., 2009) showed that that blockade of Erk signalling from the 8-cell 

stage suppresses appearance of Nanoglow cells within the ICM and blocks primitive 

endoderm development. This indicates that the development of the hypoblast is 

dependent on Erk signaling possibly downstream of FGF. As Oct4 can directly 

upregulate FGF4 (Yuan et al., 1996), it will be important in further experiments to link 

the results represented in my thesis to the ground state theory (Ying et al., 2008). 

 
 

 

 

 

 

 

 

 

 



 106

Chapter 5 

 

The consequences of deleting the Oct4 binding site in the 

Nanog promoter on Nanog expression  

 

5.1 Introduction 

The Oct4/Sox2 site in the Nanog promoter has been shown by mutagenesis to mediate a 

positive effect of Oct4 in luciferase assays (Kuroda, 2005; Rodda et al., 2005). However, 

experimental evidence in support of the action of Oct4 at this site on the endogenous 

Nanog gene is lacking. In this chapter, I have investigated the function of this site on 

Nanog regulation. 

 

5.2 Results 

5.2.1 Oct4 is a direct activator of Nanog 

As functional Oct4 heterozygote ES cells express Nanog homogenously and as Oct4 

induction in these cells induces heterogenous Nanog expression, we investigated the 

effect of mutating the Oct4 site in the context of a TNG allele at the endogenous Nanog 

locus. A mutation in the Oct4 site at 181 bp was made in the TNG targeting vector 

(Figure 5.1A) by replacing the Oct4 binding sequence TTTTGCAT with a SexA1 

restriction site to simultaneously abolish Oct4 binding and enable selection of the 

correctly targeted clones by Southern analysis (Figure 5.1B). The presence of the correct 
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A 

 

B 

 
 
Figure 5.1 Oct4 mutant vector 
 
A: Panel shows the Nanog promoter sequence around the Oct4 binding sites 
(red). Indicated are as well the binding sites for Essrb (blue) and Sox2 (green) 
(top). The sequence containing the Oct4 site mutation (red) is represented on 
the bottom of panel A.  B: The 5’ end of the Nanog gene is shown schematically 
at the top. Exons are shown in orange; 5’UTR in blue; homology arms used for 
construction of the targeting vector in red. eGFP was inserted between the 
homology arms precisely at the Nanog AUG codon in the targeting construct 
shown in the middle. The Oct4 binding site (red cross) was mutated into a 
SexA1 restriction sequence in the targeting vector. This mutated Oct4 binding 
site lies 3250 bp from the 5’ end and 370 bp from the 3’end of the 5’ homology 
arm. The positions of the flanking probes used for Southern analysis and the 
fragment sizes produced by SexAI digestion are indicated. Black box at the 
bottom indicates the non mutated TNG allele.  
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Figure 5.2 Southern Blot analysis in Oct4 mutant clones 
 
Southern Blot analysis of Sex AI digested genomic DNA from E14tg2a (top) and 
ZHBTc4.1 (bottom) cells in which the Oct4 mutant targeting vector was 
introduced by homologous recombination. The loss of the Oct4 binding 
sequence is visible in the 5’ Blot in the appearance of a 4.7 kb band. The 3’ Blot 
should show for mutated and non-mutated cells a 10 and 5.2 kb band. Wild type 
cells show one 10kb band only.  
Clone 1 and 2 from the top panel and clone 4 and 5 from the bottom panel were 
analysed further. 
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sequence in the targeting vector was confirmed by enzyme digestion and sequencing 

(not presented here). The construct was linearised and introduced into the wild type cell 

line E14Tg2a and the functional Oct4 heterozygote cell line ZHBTc4.1. Southern 

analysis of SexA1 digested genomic DNA from both cell lines was performed to identify 

homologous recombinants (Figure 5.2). Correctly targeted cells were identified for both 

E14Tg2a (3/10) and ZHBTc4.1 (9/9) derivatives and are referred to as mutant TNG 

(mTNG) and mutant ZHTNG (mZHTNG). To investigate the consequences of the Oct4 

site mutation, two clones from each cell line (clone 1 and 2 for mTNG and clone 4 and 5 

for mZHTNG) were examined in more detail.  

 

In the first instance, TNG, mTNG, ZHTNG and mZHTNG cells were plated in parallel 

in the presence of 0.5 µg/ml of Puromycin for 4 days. Cells were then replated at the 

same density and were treated with a dilution series of Puromycin, the selection drug for 

the targeting event (0.5, 0.75, 1 and 1.25 µg/ml), to examine directly the promoter 

activity in these cells. Cells were analysed by FACS and microscopy to observe the GFP 

intensities and the survival capacity of cells under these conditions. The basic hypothesis 

behind the experiments was, that if Oct4 acts as a direct repressor of Nanog, deletion of 

the Oct4 site might result in an increase of Nanog expression. FACS analysis of the two 

TNG mutant clones (Figure 5.3 top (clone 1 and 2)) showed a general shift of the GFP 

peak towards the GFP low compartment in comparison to TNG cells, suggesting that the 

mutated cells expressed Nanog at lower levels. In addition, cells showed a shoulder 

towards GFP low expression that was more pronounced than in the TNG cells. 

Microscopy (Figure 5.3 bottom) confirmed this general decrease in GFP expression. 
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Additionally, compared to TNG cells, mTNG cells showed lower survival at Puromycin 

concentrations of 1 µg/ml and higher. The expression pattern for the mZHBTNG clones 

also showed a slight general shift towards the GFP low compartment in both clones but 

in this case without a shoulder of decreased expression (Figure 5.4). Microscopy showed 

a higher survival capacity of these cells at high Puromycin concentrations compared to 

mTNG.  

 

However it was also of interest to examine the consequences of the Oct4 mutation on 

Nanog heterogeneity. To enable similar starting conditions and starting populations, the 

TNG and ZHBTNG cells were expanded in GMEMβ/FCS/LIF in the presence of 0.75 

µg/ml of Puromycin and were double sorted for GFP high cells in parallel with all Oct4 

mutant clones. The purity of the sorts is represented in Figure 5.5. Cells were replated in  

GMEMβ/FCS/LIF without Puromycin and observed over the next 18 days by FACS. 

The top panel in Figure 5.6 shows an overlap of GFP expression of TNG cells (black) 

and the two TNG-Oct4 mutant clones (red and orange). TNG-Oct4 mutant cells showed 

a high heterogenous GFP expression pattern and a general shift in GFP expression 

towards the negative compartment. However it was possible to culture the cells for many 

passages without a complete loss of GFP expression, suggesting that Oct4 is not the only 

activator of Nanog. Microscopy confirmed that the cells were more heterogenous for 

GFP than TNG cells at day 18 (Figure 5.6 bottom). The mZHBTNG clones were 

similarly  treated  and  investigated  by FACS and microscopy over the time course of 18  
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Figure 5.3 Nanog expression is reduced in mTNG cells 
 
Top panel shows FACS analysis of TNG (Oct4+/+; Nanog+/GFP) (black) and two 
mTNG clones (red and orange). Bottom panel shows brightfield and GFP photos 
of TNG cells and one representative mTNG clone treated in parallel with the 
indicated dose of Puromycin. 
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Figure 5.4 Nanog expression is reduced in mZHBTNG cells 
 
Top panel shows FACS analysis of ZHBTNG (Oct4zeo/BSD; Nanog+/GFP; Oct4 

transgene on)(black) and two mZHBTNG clones (red and orange). Bottom panel 
shows brightfield and GFP photos of ZHBTNG cells and one representative 
mZHBTNG clone treated in parallel with the indicated dose of Puromycin. 
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Figure 5.5 Purity analysis of sorted TNG, ZHBTNG and Oct4 mutant cells 

 
FACS purity analysis of TNG (Oct4+/+; Nanog+/GFP), ZHBTNG (Oct4zeo/BSD; 
Nanog+/GFP; Oct4 transgene on) and two mTNG and two mZHBTNG clones 
directly after sorting for GFP high expressing cells. The purity of the investigated 
population is indicated in percent of cells representing either the GFPhigh or the 
GFPlow compartment. 
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Figure 5.6 GFP heterogeneity is increased in mTNG cells 

Top panel shows FACS analysis of TNG (Oct4+/+; Nanog+/GFP) (black) and two 
mTNG clones (red and orange) at day 0, 6 and day 18 of experiment. mTNG 
cells show a reduction in GFP expression and therefore an increase in GFP 
heterogeneity. Bottom panel shows brightfield and GFP photos of TNG cells and 
the two mTNG clones at day 18 of experiment. 
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Figure 5.7 GFP heterogeneity is increased in mZHBTNG cells 
 
Top panel shows FACS analysis of ZHBTNG (Oct4zeo/BSD; Nanog+/GFP; Oct4 

transgene on) (black) and two mZHBTNG clones (red and orange) at day 0, 6 
and day 18 of experiment. mZHBTNG cells show a reduction in GFP expression 
and an increase in GFP heterogeneity. Bottom panel shows brightfield and GFP 
photos of ZHBTNG cells and the two mZHBTNG clones at day 18. 
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days. These cells expressed GFP in a heterogenous pattern, but not such highly mosaic 

as observed for TNG-Oct4 mutant or even TNG cells (Figure 5.7). To confirm the exact 

expression levels, RNA was prepared at day 18 and analysed by Q-PCR for Oct4, Nanog 

and GFP expression (Figure 5.8). Oct4 mRNA was expressed at the same level in the 

mutant clones and the respective parental cells. Primers located in Nanog Exon 3 and 4 

that measure expression from the unmodified Nanog allele produced similar signals in 

both mutant clones compared to the parental lines. Dramatic differences however were 

observed in the GFP expression, which showed a 3 fold decrease in the mTNG cells, and 

a 2 fold decrease in mZHBTNG cells compared to TNG and ZHBTNG cells. This result 

confirmed the previous observations and showed that at this site Oct4 acts as a positive 

activator. 

 

 
5.3 Discussion 
 

In order to determine the role of the proximal Oct4 binding site on regulation of the 

endogenous Nanog gene, I made a Nanog:GFP targeting vector in which the Oct4 site 

was mutated. This vector was introduced into wild type E14Tg2a cells to directly 

visualise effects upon heterogeneity. The same vector was introduced into ZHBTc4.1 

cells to monitor effects upon the more homogenous Nanog expression pattern of these 

cells. 
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Figure 5.8 Q-PCR analysis in Oct4 mutant cells 
 
Figure shows GFP, Oct4 and Nanog mRNA expression in TNG (Oct4+/+; 
Nanog+/GFP) (blue), two mTNG clones (red and yellow) (top panel) and in 
ZHBTNG (Oct4zeo/BSD; Nanog+/GFP; Oct4 transgene on) (blue) and two 
mZHBTNG clones (red and yellow) (bottom panel). mRNA expression, 
normalised to TBP mRNA expression, is represented relative to either TNG cells 
(top panel) or ZHTNG cells (bottom panel), which are set as 1. Errors bars 
represent the standard deviation of the mean (n=3). 
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Clones carrying the mutation could be obtained from both cell lines (Figure 5.2), 

indicating immediately that the Oct4 binding site was not essential for Nanog expression 

as suggested by transient reporter assays (Kuroda, 2005; Rodda et al., 2005) and 

suggesting that Oct4 is not the only positive activator of Nanog. The targeting efficiency 

for both lines was 100% (E14Tg2a, n=10; ZHBTc4.1, n=9), similar to the targeting 

efficiency obtained previously using non-mutant vector. In addition, all ZHBTc4.1 

derived clones had incorporated the mutation. However, only 3/10 targeted E14Tg2a 

derivatives had incorporated the mutation. The distance between the 5’end of the 3620 

bp 5’ homology arm and the mutated Oct4 binding site is 3250 bp whereas the distance 

from the mutated Oct4 site to the 3’end of the 5’ homology arm is 370 bp. One might 

therefore expect resolution of the Holliday junction in the 5’ homology arm to  

incorporate the mutated Oct4 site at a frequency of  3250/3620 x 100% (i.e. 90%). 

However, only 30% of the targeted clones contained the Oct4 mutant site (Figure 5.1). 

This suggests that E14Tg2a derived clones carrying the mutated Oct4 mutant site are at 

a strong disadvantage. In this situation the introduced mutation may have reduced 

expression towards a critical boundary for expression of drug resistance, thereby 

reducing cell survivability. This outcome was probably not seen in ZHBTc4.1 cells 

because Nanog expression in ZHBTc4.1 cells is upregulated relative to Oct4 wild type 

ES cells. These observations suggest that clones containing the Oct4 mutation express 

Nanog at lower levels. The cell response to increasing levels of Puromycin, the selection 

drug for the targeting event was consistent with this interpretation. As shown in Figure 

5.3 and 5.4, mutated cells have decreased Nanog:GFP expression in both cell lines. This 

also showed that mTNG cells exhibited reduced survival at Puromycin concentrations of 
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1 µg/ml or higher. To directly study the heterogeneity of Nanog in the mutated clones, 

the cells had to be relieved from the Puromycin selection and observed over a longer 

period of time. This resulted in an increase of Nanog heterogeneity and a shift of the 

GFP peak towards the GFP low compartment in both Oct4 mutant cell lines (Figure 5.6 

and 5.7). This reduction of GFP was confirmed by Q-PCR analysis (Figure 5.8). In 

summary the results represented in this chapter proved that deletion of the proximal 

Oct4 binding site results in a decrease in Nanog promoter activity and an increase in 

Nanog heterogeneity. However, as binding sites are described by ChIP for Oct4 at both 

the Nanog promoter and the Nanog enhancer region (Levasseur et al., 2008) it would in 

future be of interest to examine, whether deletion of the enhancer binding site would 

effect Nanog expression.  

 

As shown elsewhere in this thesis, ZHTNG are homogenous for Nanog and 

overexpression of Oct4 in ZHTNG cells reinduces heterogenous Nanog expression.  One 

approach to further examine the role of Oct4 in Nanog expression is to introduce the 

Oct4 mutant Nanog:GFP reporter construct into ZHTc6 cells to make mZHTNG cells. If 

an increase in GFP heterogeneity was observed this would suggest that Oct4 acts either 

as an indirect suppressor of Nanog or acts directly via another binding site. Conversely, 

if Oct4 acts via the Oct4 binding site in the proximal promoter to reinduce Nanog 

heterogeneity, such heterogeneous Nanog:GFP expression should not be induced in 

these cells. It would also be interesting to determine whether a regulatable form of 

Nanog could rescue heterogeneity, particular in the latter situation. A complementary 

approach would be to introduce an additive transgene into ZHTc6 cells in which 
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Nanog:GFP was expressed from the proximal promoter without the Nanog -5kb 

enhancer region. If an increase in heterogeneity could not be induced from this 

Nanog:GFP construct by upregulating of Oct4 in ZHTc6 cells this would indicate an 

important role for the enhancer region in inducing Nanog heterogeneity. 
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Chapter 6 

Solexa gene expression analysis  

 

6.1 Nanog is expressed heterogeneously in undifferentiated mouse ES  

      cells 

To investigate Nanog expression at the single cell level, the genetically unmodified ES 

cell line E14Tg2a was plated at clonal density. After four days, colonies had formed that 

morphologically contained small tightly packed cells at their centre and more elongated 

or flatter cells at their periphery. Staining for Oct4 showed the centrally located 

population to contain a higher proportion of strongly Oct4 positive cells then the 

peripheral population (Figure 6.1). In comparison to Oct4, expression of Nanog varies 

widely in ES cell colonies. Again the centrally located population contained a higher 

proportion of strongly expressing cells then the peripheral population. However, there 

does not appear to be a simple relationship between levels of Oct4 and Nanog since not 

all nuclei strongly expressing Oct4 had the highest Nanog levels. It is also noteworthy 

that on a closer observation single cells were found that expressed reasonable Nanog 

levels but in which Oct4 was weakly detectable (Figure 6.1). 

 

6.2 Gene expression analysis between Nanoghigh and Nanoglow  states   

To investigate how the different expression states of Nanog are regulated and what 

might be involved in switching between Nanoghigh and Nanoglow states, I took advantage           
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Figure 6.1 Nanog and Oct4 expression in mouse ES cells 
 
Immunofluorescence analysis of three representative colonies from the 
genetically unmodified ES cell line E14Tg2a and NIH3T3 cells, which do not 
express Nanog or Oct4. Analysis shows that Nanog expression vary widely in 
comparison to Oct4 expression. Nanog is even undetectable in some 
morphologically undifferentiated Oct4 positive cells. However it appears that 
Oct4 as well shows differences in expression between single cells.  
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of a cell line in which eGFP was expressed from the AUG codon of endogenous Nanog 

in the mouse ES cell line E14Tg2a (Chambers et al., 2007). The resulting cells (TNG for 

E14Tg2a, Nanog and GFP (Figure 6.2A)) express GFP in a heterogenous pattern and 

can be sorted into different populations according to the expression of GFP (Figure 

6.2B). To define genes that distinguish between Nanog positive and Nanog negative ES 

cells and to potentially identify genes that might influence the transition from the 

Nanoghigh to the Nanoglow state, the TNG cells were sorted into GFPhigh and GFPlow 

populations (Figure 6.3A). This sort was performed by simultaneous staining for 

SSEA1, a cell surface marker considered to identify undifferentiated ES cells (Solter and 

Knowles, 1978). The purity of the sort was 97.7% in the GFPlow population and 98.5% 

in the GFPhigh population (Figure 6.3A). To determine whether these sorted populations 

had segregated Nanog expression, the GFPhigh and GFPlow cells were assessed by 

immunoblotting (Figure 6.3B). Analysis using an anti-GFP antibody, confirmed the 

efficiency of the FACS protocol (Figure 6.3B). Importantly, an antibody against Nanog 

showed Nanog to be strongly present in the GFPhigh population but barely detectable in 

the GFPlow population (Figure 6.3B). Furthermore, Q-PCR analysis showed that the 

population with low GFP levels expressed ~37% the level of Nanog mRNA present in 

the GFPhigh population (Figure 6.4A).   

 

The aim of this sort was to identify genes that distinguish between Nanoghigh and 

Nanoglow states. In the first instance however, the pluripotency genes Oct4, Sox2, Klf4, 

Rex1, and Esrrb were investigated by Q-PCR. Interestingly, Klf4, Rex1 and Esrrb show 

a  positive correlation with Nanog.  However, the  degree of  variation was  different for  
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A 

 
 
 
Figure 6.2A Structure of the Nanog alleles in TNG cells 
 
Panel A shows the two endogenous Nanog alleles in the Nanog:GFP reporter 
cell line TNG. The TNG targeting construct contains an eGFP-ires-pac-polyA-  
cassette fused to the Nanog AUG codon of Nanog. (Adapted from Chambers et 
al., 2007) 
 
 
B 

                     
 
 
Figure 6.2B Schematic representation of the derivation of TNG cells and 
the sorted Nanog:GFP populations 
 
E14Tg2a wild type ES cells were targeted with a Nanog eGFP-ires-pacPa 
vector. As Nanog expression is reported by GFP, these cells can be sorted 
according to GFP expression. In this analysis, GFPhigh and GFPlow cells were 
sorted in the SSEA1 positive compartment. (Adapted from Chambers et al., 
2007)  

E14Tg2a

Target Nanog with 
GFP-ires- pacpA 
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Figure 6.3 FACS purity and protein analysis in sorted populations  

A: Purity analysis directly after TNG cells were sorted into GFPhigh/ SSEA1+ and 
GFPlow/SSEA1+ cells.  
B: Immunoblot analysis of the GFPhigh and GFPlow fractions from sorted TNG 
cells probed with an anti-GFP and anti-Nanog antibody reveals that Nanog is 
only weakly detectable in the GFPlow fraction. HDAC acts as a loading control.

HDAC

GFP

NANOG

GFP 
LOW 

GFP  
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each gene. The smallest differences were observed for Oct4 and Sox2, which were 

decreased by < 10% in the Nanog low population (Figure 6.4A). In contrast, Klf4 and 

Esrrb were reduced in expression by > 50% in the Nanog low cells, with Klf4 in 

particular being reduced by 75% (Figure 6.4A). To determine, if the expression of these 

genes is dependent on Nanog levels, three cell lines in which the levels of Nanog were 

genetically manipulated were investigated by Q-PCR for the expression of Nanog, Oct4, 

Sox2, Essrb and Klf4. In this analysis the following cell lines were investigated: RCN 

(Nanog overexpressers), E14Tg2a (Nanog wild type) and RCNβH(t) (Nanog null cells). 

Interestingly all genes correlated positively with Nanog (Figure 6.4 B). 

 

Genes that are expressed in differentiated cells and whose expression may be expected 

on the basis of lineage priming (Hu et al., 1997), were also monitored in the sorted 

GFPhigh and GFPlow populations. Fgf5, Brachyury and Gata4, early differentiation 

markers of ectoderm, mesoderm and endoderm, all showed a negative correlation with 

Nanog, although the degree of alteration was again different for each gene (Figure 6.4 

C). 

 

6.3 Cell lines investigated by Solexa analysis 

As the above sorted populations provided a good opportunity to investigate further 

potential genes involved in the switch between Nanoghigh and Nanoglow states, RNA was 

analysed by Solexa sequencing. In addition cell lines in which the levels of Nanog were 

genetically  manipulated  were  analysed  by  Solexa  sequencing.  Three  cell  lines were  
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Figure 6.4 Q-PCR analysis  

Shown is Q-PCR analysis for Nanog, Oct4, Sox2, Esrrb and Klf4 in sorted 
GFPhigh/SSEA1+ and GFPlow/SSEA1+ TNG populations (A) and in cell lines with 
diverse Nanog levels RCN, E14Tg2a and RCNβH(t) (B). Analysis for Brachyury, 
Gata4 and FGF5 in sorted GFPhigh/SSEA1+ and GFPlow/SSEA1+ populations is 
shown in panel C. mRNA expression was normalised to TBP mRNA expression. 
Errors bars represent standard deviation of the mean (n=3). 
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assessed; RCN(t) (Nanog levels comparable to wild type ES cells), EF4 (Nanog 

overexpressing cells), and RCNβH(t) (Nanog null cells) (Figure 6.5). The origin of the 

cells and the genetic structure of the Nanog locus is represented in detail in Figure 6.5 

and 6.6. In contrast to RCN(t) and RCNβH(t), the Nanog overexpressing cell line EF4 

was derived independently, but originated also from the wild type cells E14Tg2a in 

which a loxP Nanog construct  driven  by  a  CAG promoter has been introduced (Figure 

6.5 and 6.6).  

 

6.4 Solexa output concept of validation of candidate genes 

The Solexa sequencing was performed at the High Throughput Sequencing Facility of 

the University of Edinburgh and raw data was analysed by Florian Halbritter (Dr. Simon 

Tomlinson’s Group, University of Edinburgh). Subsequently, genes were sorted 

according to specific criteria. The first lists represent genes which differ in the sorted 

GFPhigh and GFPlow populations and in which levels correlate with Nanog (Table 6.1 A 

and B). This pattern of expression suggests that these genes may be targets of Nanog. 

Yet my interest is in genes that might regulate Nanog rather then being Nanog targets. 

Therefore two additional lists were created. Genes were selected which were differently 

expressed in Nanoghigh and Nanoglow sorted cells (cutting point 1.5 fold) and which did 

not match the same Nanog expression pattern in genetically modified cell lines. 

Therefore a gene highly expressed in sorted Nanoghigh cells should not be highly 

expressed in Nanog overexpressing and Nanog wild type ES cells in comparison to 

Nanog null cells. This  assumption ignores the  influence  of   feedback  loops,  yet  was  

important  to  simplify  the datasets. Nevertheless  genes  varying  in  this  way  between  
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Figure 6.5 Derivation tree of ES cell lines used in the Solexa analysis 
 
A: Derivation tree for RCN(t) and RCNβH(t) cells (red box). (Cre-ERT2) has been 
initially introduced into E14Tg2a wild type ES cells. RC cells were then 
transfected with a CAG driven loxP flanked Nanog transgene. Activation of Cre 
recombinase by Tamoxifen led to Nanog excision and GFP came under CAG 
control (shown in green). Two rounds of homologous recombination resulted in 
cells in which the transgene was the only source of Nanog expression. 
Tamoxifen treatment led then to a complete deletion of the Nanog sequence.  
B: Derivation tree for EF4 cells. A loxP flanked Nanog transgene driven by a  
CAG promoter was introduced into E14Tg2a cells. (Chambers et al.,2007). 
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Figure 6.6 Structure of the Nanog locus in genetically modified cell lines 

Panel show the two endogenous Nanog alleles. Exons are indicated in blue. The 
the 5’ and 3’ UTR regions are indicated in gray. 
A: In EF4 (Nanog overexpressing cells) the endogenous Nanog locus is 
unchanged. These cells however contain a CAG driven loxP-Nanog-loxP-eGFP 
trangene. 
B: In RCN(t) the endogenous Nanog locus is unchanged. RCN cells contained a 
CAG driven loxP-Nanog-loxP-eGFP transgene. Activation of Cre recombinase 
by Tamoxifen (t), led to Nanog excision and GFP came under CAG control.  
C: In RCNβH(t) the two endogenous Nanog alleles have been inactivated with 
an insertion of a SA-IRES-βgeo-polyA and a SA-IRES-hph-polyA cassette.  
Treatment with Tamoxifen (t) led to Nanog excision from the CAG driven loxP- 
Nanog-loxP-eGFP transgene and GFP came under CAG control. (Adopted from 
Chambers et al., 2007) 
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Table 6.1 Genes correlated with Nanog expression 

Lists depict genes positively (A) and negatively (B) correlated with Nanog in 
sorted GFPhigh/SSEA1+ and GFPlow/SSEA1+ TNG cells and genetically modified 
cell lines (EF4, RCN(t) and RCNβH(t)). Gene expression is sequence Taq 
counts quantile normalised 
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Nanoghigh and Nanoglow cells might affect the switch between these two states. The 

output of the two designed lists is represented in (Table 6.2 and 6.3). The first list (Table 

6.2A) contains genes highly expressed in the Nanoghigh population of sorted TNG cells. 

In total 28 genes were identified. Out of this list 8 genes were examined further on the 

basis of being involved in the pluripotency circuit (Niwa et al., 2009) or showing the 

lowest correlation with Nanog levels in the genetically modified cells (Table 6.2B). The 

second list (Table 6.3A) contains genes more highly expressed in the GFP negative 

compartment of sorted TNG cells. This list shows 24 genes. Eight of those were further 

investigated on the basis that they showed the lowest correlation to Nanog levels in the 

genetically modified cell lines (Table 6.3B).   

 

6.5 Candidate genes directly correlated with Nanog in sorted Nanog:GFP       

populations 

To determine whether the genes identified as being positively correlated with Nanog: 

GFP expression in sorted TNG cells showed a reproducible expression profile, RNAs 

were analysed by Q-PCR. Sorted GFPhigh  and  GFPlow  TNG cells expressed Nanog 

appropriately (Figure 6.7), as did EF4, RCN(t) and RCNBH(t) cells (Figure 6.7). 

Moreover, all the candidate genes showed a similar expression pattern in the sorted 

Nanoghigh and Nanoglow cells, with the fold changes in individual genes being similar to 

that observed by Solexa analysis (Figure 6.8). Analysis of the genetically modified cell 

lines, in general confirmed the Solexa results with the exception of Zfp57. Therefore, all  

7  investigated  genes  were  considered  as  potential  effectors  of  the  Nanog  switch. 
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Table 6.2 Candidate genes directly correlated with Nanog in sorted   
                  Nanog:GFP populations 

A: List of genes positively correlated with Nanog in sorted GFPhigh/SSEA1+ and 
GFPlow/SSEA1+ TNG cells, but not matching the Nanog expression pattern in 
genetically modified cell lines. Gene expression is sequence Taq counts quantile 
normalised.  B: List of candidate genes chosen for further validation. 
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Table 6.3 Candidate genes inversely correlated with Nanog in sorted  
                  Nanog:GFP populations 

A: List of genes inversely correlated with Nanog in GFPhigh/SSEA1+ and 
GFPlow/SSEA1+ TNG cells, but not matching the Nanog expression in 
genetically modified cell lines. Gene expression is sequence Taq counts quantile 
normalised.  B: List of candidate genes chosen for further validation. 
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Figure 6.7 Q-PCR analysis for Nanog expression  
 
A: Nanog expression in GFPhigh/SSEA1+ and GFPlow/SSEA1+ TNG cells. mRNA 
expression, normalized to TBP mRNA expression, is represented relative to 
GFP HIGH cells, which are set as 1. 
B: Nanog expression in the three genetically modified cell lines EF4 (Nanog 
overexpressing cells), RCN(t) (express Nanog at wild type levels) and RCNβH(t) 
cells (Nanog null cells). mRNA expression, normalized to TBP mRNA 
expression, is represented relative to RCN(t) cells, which are set as 1. Shown is 
the average of two biological replicates. 
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Figure 6.8 Q-PCR analysis for candidate genes directly correlated with 
Nanog in sorted GFPhigh and GFPlow cells 
 
A: Expression of candidate genes in GFPhigh/SSEA1+ and GFPlow/SSEA1+ TNG 
cells. mRNA expression, normalized to TBP mRNA expression, is represented 
relative to GFP HIGH cells, which are set as 1. 
B: Expression of candidate genes in genetically modified cell lines. mRNA 
expression, normalized to TBP mRNA expression, is represented relative to 
RCN(t) cells, which are set as 1. Shown is the average of two biological 
replicates. 
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6.6 Candidate genes inversely correlated with Nanog in sorted Nanog:GFP       

populations 

Similar analysis were performed on genes that showed an inverted correlation with 

Nanog in sorted GFP populations (Figure 6.9). The analysis of the sorted populations 

confirmed the Solexa results and showed differences in magnitude in gene expression 

between these populations similar to those obtained by Solexa. Expression was 

subsequently also analysed in the genetically modified cell lines (Figure 6.9). Although 

the pattern of expression did not match that obtained by Solexa analysis none of the 8 

genes showed an expression pattern mining Nanog expression. 

 

6.7 Fluidigm analysis 

The above experiments identified genes that could potentially influence fluctuations in 

Nanog expression. However, these analyses were performed on cell populations. As it 

would be of future interest to examine gene expression in single cells I decided to 

investigate the utility of the integrated fluidic circuit chip (IFC) architecture (Fluidigm) 

for genetic analysis of heterogeneity of Nanog expression. In the first analysis three 

samples containing each 1000 cells of the GFPhigh/SSEA1+ and GFPlow /SSEA1+ TNG 

compartment were sorted and amplified as described in Material and Methods. This 

analysis confirmed the previously observed differences regarding the gene expression in 

the sorted populations for Nanog only (Figure 6.10) and for the candidate genes (Figure 

6.11 and 6.12). This confirms the utility of the microfluidic system; however, further 

work will be required to optimise this system, as Satb1 expression could not be detected 

(Figure 3.12), and  to  assess  the  ability  to  measure  gene  expression  in  single  cells.  
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Figure 6.9 Q-PCR analysis for candidate genes inversely correlated with 
Nanog in sorted GFPhigh and GFPlow cells 
  

A: Expression of candidate genes in GFPhigh/SSEA1+ and GFPlow/SSEA1+ TNG 
cells. mRNA expression, normalized to TBP mRNA expression, is represented 
relative to GFP HIGH cells, which are set as 1. 
B: Expression in genetically modified cell lines. mRNA expression, normalized to 
TBP mRNA expression, is represented relative to RCN(t) cells, which are set as 
1. Shown is the average of two biological replicates. 
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Figure 6.10 Fluidigm analysis for Nanog in 1000 GFPhigh and GFPlow cells  
 
Figure shows Nanog expression in three sets (A,B,C) of each 1000 sorted 
GFPhigh/SSEA1+ (black) and 1000 sorted GFPlow/SSEA1+ (grey) cells. mRNA 
expression was normalized to TBP mRNA expression. 
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Figure 6.11 Fluidigm analysis for candidate genes directly correlated with 
Nanog in sorted GFPhigh and GFPlow cells 
 
Figure shows candidate gene expression in three sets (A,B,C) of each 1000 
sorted GFPhigh/SSEA1+ (black) and 1000 sorted GFPlow/SSEA1+ (grey) cells. 
mRNA expression was normalized to TBP mRNA expression. 
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Figure 6.12 Fluidigm analysis for candidate genes inversely correlated 
with Nanog in sorted GFPhigh and GFPlow cells 
 
Figure shows Nanog expression in three sets (A,B,C) of each 1000 sorted 
GFPhigh/SSEA1+ (black) and 1000 sorted GFPlow/SSEA1+ (grey) cells. mRNA 
expression was normalized to TBP mRNA expression. 
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6.8 Discussion 

In this chapter I have investigated gene expression in sorted Nanoghigh and Nanoglow 

cells as well as in cells genetically modified for Nanog expression using Solexa 

Sequencing. The most straight forward output from these analyses was a list of genes 

showing direct or inverse correlation with Nanog in all cells. Such genes could represent 

targets of Nanog. In contrast, genes which were either directly or inversely correlated 

with Nanog in Nanoghigh and Nanoglow cells, but which did not show the same 

expression pattern in genetically modified cell lines, might represent potential candidate 

regulators of Nanog heterogeneity. This identified 28 genes showing positive correlation 

and 24 showing a negative correlation. Eight candidate genes from the two lists (Table 

6.2 A and B and Table 6.3 A and B) were examined further on the basis of the fact that 

they were previously hypothesised to be involved in the pluripotency circuit (Niwa et al., 

2009) or showing the lowest correlation with Nanog levels in the genetically modified  

cells. Interestingly, several genes reported to influence Nanog expression, as Klf2 (Hall 

et al., 2009), p53 (Lin, 2005)  or  Satb1 (Savarese et al., 2009)  appeared   on  my   lists.  

Out  of  the  16  candidate genes two genes appear of particular interest.  

 

Satb1 is expressed at higher levels in Nanog:GFPlow cells than in Nanog:GFPhigh cells. 

Satb1 has been reported to organize chromatin into loops by periodic anchoring to the 

nuclear matrix. Satb1 also suppresses genes by histone deacetylation and nucleosome 

remodeling through interaction with chromatin modifiers (Kumar et al., 2006). 

Furthermore, Satb1-/- ES cultures contain large numbers of Nanoghigh cells, suggesting 
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that Satb1 expression in Nanoglow cells is not directly responsible for switching the cells 

back to a Nanoghigh state. However Satb1-/- ES cells have elevated expression of Satb2 

and Satb2 overexpression has been reported to antagonize differentiation-associated 

silencing of Nanog. As Satb1 and Satb2 both bind Nanog a balance between Satb1 and 

Satb2 may affect Nanog expression (Savarese et al., 2009). 

 

The second interesting gene is Oct6. However little is known about the function of Oct6 

in ES cells. Interestingly, Oct6 was reported to suppress Rex1 when highly expressed in 

ES cells (Ben-Shushan et al., 1998). Ben-Shushan et al., reported that Oct6 represses 

Rex-1 via the octamer site. My data revealed that Oct6 is almost exclusively expressed in 

the Nanoglow population. It would therefore be important to investigate the role of Oct6 

in controlling Nanog levels and in addition, to determine how expression of Oct4 target 

genes changes upon modulation of Oct6 levels, as Oct6 might antagonise the activity of 

Oct4 in ES cells.  

 

Further examination of these genes would be of interest. Immonufluorescence would be 

of use in determing whether levels of proteins reflected the observed differential 

transcript expression.  

Importantly analysis at the single cell level is important to define the precise relationship 

between Nanog heterogeneity and the timing of increase or downregulation of genes of 

interest. For example, if a gene is involved in the switch it should be expressed before 

GFP expression, if sorted Nanog;GFPlow  cells will begin switching to GFPhigh.  
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However, to confirm whether a particular gene has a role in regulating the switch in 

Nanog gene expression would require additional functional analysis. This could be 

obtained by fusing the protein of interest to a destabilizing domain (DD) that is rapidly 

and constitutively degraded in the absence of a synthetic ligand (Banaszynski et al., 

2006). Alternatively, relocalisation of a protein-of interest-ERT2 fusion to the nucleus in 

a tamoxifen-dependent manner could also be used to alter the activity level of a protein 

of interest. Varying such levels would define the directionality of their function. 
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Chapter 7 

 

Concluding remarks and future directions 

Nanog is a critical homeodomain protein responsible for establishing embryonic stem 

cell pluripotency. Although its heterogenous expression pattern has caught scientific 

attention (Chambers et al., 2007; Kalmar et al., 2009; Singh et al., 2007), the particular 

mechanisms responsible for generating this heterogeneity are unknown.  

Experiments presented in this thesis demonstrated that a potential origin of Nanog 

heterogeneity lies within the intrinsic circuitry of the pluripotency gene regulatory 

network centred around Oct4/Sox2 and Nanog.  

 

7.1 Oct4 influence Nanog heterogeneity 

In detail, it was shown that independent Oct4 heterozygote ES cell lines express elevated 

levels of Nanog mRNA and protein. This general increase in protein and mRNA 

expression was attributed to a reduction in Nanog heterogeneity resulting in cells mainly 

expressing Nanog at high levels (Chapter 3). In addition, the functional Oct4 

heterozygote ES cells showed a more homogeneous expression pattern for other 

transcription factors as Rex1 and Esrrb. This was of interest, as these genes were 

previously described to have a heterogeneous expression pattern in ES cells. Toyooka et 

al., identified at least two different populations regarding Rex1 expression, a 

Rex1+/Oct4+ and a Rex1-/Oct4+ population (Toyooka et al., 2008). They showed that 

Rex1+/Oct4+ and Rex1-/Oct4+ cells not only had the ability to convert into each other, 
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but also had different gene expression patterns and diverse differentiation abilities. In 

addition, van den Berg et al., showed that Esrrb expression resembles Nanog’s mosaic 

expression pattern in mouse ES cells (van den Berg et al., 2008). They demonstrated that 

Esrrb binds to the Nanog promoter if Oct4 is bound to the Oct4/Sox2 element to activate 

Nanog expression (van den Berg et al., 2008). Yet as Nanog may activate Esrrb (Loh et 

al., 2006), the relationship between these two genes might have a more complicated 

conduct. In addition to Esrrb and Rex1, gene heterogeneity was also described for Hex 

(Canham et al., 2009) and Stella (Hayashi et al., 2008). Interestingly the low appearance 

in expression of Stella high cells (30%) (Hayashi et al., 2008) in comparison to Nanog 

high cells (80%) (Chambers et al., 2007) suggests, that the Nanog positive compartment 

is heterogeneous in itself (Hayashi et al., 2008). 

Importantly, as shown in Chapter 3, Nanog mosaicism can be induced by simply 

restoring the levels of Oct4 in functional Oct4 heterozygote ES cells confirming that the 

reduction in Nanog heterogeneity is not due to other unrelated genetic modifications. 

Furthermore, after separation of ZHTNG cells into GFPhigh and GFPlow cells it was 

demonstrated that high GFP expression is restorable in the GFPlow population by 

addition of Doxycycline. This indicates that the magnitude of Nanog heterogeneity is a 

consequence of variations in Oct4 levels and can be manipulated in both directions. 

In this context and in contradiction to the previously suggested linear relationship 

between Nanog and Oct4, as indicated in several Luciferase reporter assays (Rodda et 

al., 2005, Kuroda et al., 2005) and colocalisation studies by ChIP (Boyer et al., 2005; 

Chen et al., 2008; Kim et al., 2008; Loh et al., 2006), neither the upregulation nor the 
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downregulation of Oct4 was accompanied by a linear up- or downregulation of Nanog 

(Chapter 3).  

These experiments indicate therefore that Oct4 directly or indirectly suppresses Nanog at 

high levels and that changes in the expression pattern for other transcription factors as 

Rex1 and Esrrb might be subject to a similar regulatory mechanism.  

In this context the POU family of transcription factors were reported to be capable of 

acting as transcriptional activators and as suppressors (Liu and Roberts, 1996; Monuki et 

al., 1993; Welter et al., 1996). In addition Oct4 itself was suggested to have a dual 

character. Ben-Shushan et al., showed that exogenous Oct4 can repress Rex1 expression 

in F9 cells and activates the Rex1 promoter in P19/RA cells, in which expression of Oct-

3/4 is not detectable (Ben-Shushan et al., 1998; Okamoto et al., 1990). These results 

indicated that the exact levels of Oct4 are critical with respect to whether Oct4 activates 

or inhibits the Rex1 promoter (Ben-Shushan et al., 1998). 

A second investigation based on Luciferase reporter assays indicated that Oct4 regulates 

Nanog biphasically (Pan, 2006). The authors suggested that Oct4 activates Nanog 

expression at steady-state concentrations and suppresses it above steady state levels. 

Although these experiments were based exclusively on artificial reporter constructs 

driven by Luciferase and no further data regarding the action of Oct4 on the endogenous 

Nanog was provided, these findings are interesting in light of the results represented in 

this thesis. As shown in Chapter 3, Nanog and Oct4 expression correlated initially 

positively, when Oct4 was only slightly upregulated. An upregulation at or above wild 

type levels in ZHTNG cells however induced a strong downregulation of Nanog. 
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To unravel the direct action of Oct4 on the endogenous Nanog, the effects of mutating 

the Oct4 site in the context of a TNG allele have been investigated in Chapter 5. This 

was of importance as evidence in support of the action of Oct4 on the endogenous 

Nanog gene is lacking in literature. The experiments performed in Chapter 5 showed 

however that the deletion of the Oct4 binding site leads to a strong decrease in Nanog 

expression, similarly to mutagenesis experiments in Luciferase assays (Kuroda, 2005; 

Pan, 2006; Rodda et al., 2005). Yet, as discussed in section 5.3, it can not be excluded 

that Oct4 suppressive activity acts directly from a different binding site, especially as a 

further binding site is described by ChIP for Oct4 at the Nanog enhancer region 

(Levasseur et al., 2008). Additionally the experiments performed in this thesis might be 

insufficient to exclude a direct suppressive activity of Oct4 from the proximal Oct4 

binding site above wild type levels. To investigate this more thoroughly a mutation of 

this Oct4 binding site should be performed in ZHTc6 cells, in which the expression 

levels of Oct4 can be upregulated, as discussed in detail in section 5.3. 

 

As it is also possible that the suppressive activity of Oct4 is indirect, further molecules 

should be examined in future. In particular, as already discussed in section 3.3, the two 

other members of the regulatory circuit Sox2 and Nanog should be investigated in more 

detail. This is of particular interest for Nanog, as the mutagenesis experiments presented 

in Chapter 5 identified Oct4 as a positive activator of Nanog. In addition the kinetic data, 

(Figure 3.12) and the data featuring the downregulation of Oct4 (Figure 3.13) unraveled 

a potential suppressive activity from Nanog on Nanog.  
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In addition, it would be important to investigate the role of other signalling pathways 

associated with Nanog and Oct4. The Wnt signalling pathway for example has been 

implicated to play a role in self-renewal of mouse ES cells (Doble et al., 2007; Sato et 

al., 2004). In support of this, Takao et al., reported that β-catenin promotes pluripotency 

by forming a complex with Oct4 that drives Nanog expression (Takao et al., 2007). 

Also, some evidence was presented that downregulation of Oct4 increases β-catenin 

protein levels (Abu-Remaileh et al., 2010). Referring to the data represented here, it 

would be important to further elucidate the role of Wnt signalling on Nanog 

heterogeneity by manipulating the Wnt signalling output and to define if levels of β-

catenin are increased in functional Oct4 heterozygote ES cells due to a downregulation 

of Oct4. Furthermore, the secreted frizzled-related protein 1 (SFRP1), a potential Wnt 

antagonist (Finch et al., 1997; Katoh and Katoh, 2006; Uren et al., 2000) is correlated 

with Nanog, as presented in Chapter 6 (Table 6.1 A). Hence, it would be important to 

test the effect of SFRP1 on Nanog heterogeneity and to define if the induction of SFRP1 

is caused by Nanog.  

Second, Oct4’s suppressive activity is possibly mediated via the FGF/Erk signaling 

pathway. It is reported that a synergistic interaction between Oct4 and Sox2 on the FGF-

4 enhancer drives the expression of FGF4 (Ambrosetti et al., 1997). Also, Nanog is 

upregulated in the presence of inhibitors of the MAP kinase/ERK pathway (Hamazaki et 

al., 2006; Kunath et al., 2007). Therefore it would be important to define, if an increase 

in Oct4 is indeed associated with an augmented activity of the ERK signaling pathway.  
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On the other hand the action of these inhibitors is incompletely understood. Therefore a 

detailed investigation of the expression levels of Oct4 in cultures treated with inhibitors 

should be performed. Such an experiment would define if under such culture conditions 

a reduction of Nanog heterogeneity associates with different expression levels of Oct4. 

Therefore a connection between the data represented in this thesis to the ground state 

theory (Silva et al., 2009) will be of importance in future experiments. 

 

In addition to the described interaction between Nanog and Oct4, the analysis of gene 

expression in cells sorted according to Nanog levels and in genetically modified ES cell 

lines (Chapter 6), provides a good source for further potential candidate genes involved 

in the regulatory mechanisms responsible for the switch in Nanog expression. The direct 

effects of those genes on Nanog should be tested in future experiments. 

 

7.2 Changes in Nanog heterogeneity influence cell fate decisions 

The levels of Oct4 (Niwa et al., 2000) and Nanog were sufficiently shown to be 

particularly critical for the cell fate (Chambers et al., 2003; Chambers et al., 2007; 

Mitsui et al., 2003; Silva et al., 2009; Suzuki et al., 2006; Ying et al., 2003). More 

importantly in the context of this thesis Chambers et al., showed that sorted 

GFPlow/SSEA1+ lost SSEA1 expression faster than the GFPhigh/SSEA1+cells (Chambers 

et al., 2007). Their investigation was however limited to SSEA1 expression and no 

direct differentiation protocols were performed on either of these populations.  

The results represented in Chapter 4 showed in addition to this data that functional Oct4 

heterozygote cells are retarded in their differentiation kinetics compared to wild type ES 
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cells in LIF withdrawal and neural conditions. These findings are consistent with the 

model presented by Chambers et al., in which low levels of Nanog constitute a window 

of opportunity for commitment decisions (Chambers et al., 2007), as the Nanog low 

compartment is underrepresented in functional Oct4 heterozygote ES cells. Importantly 

restoring Nanog heterogeneity in functional Oct4 heterozygote ES cells by transiently 

increasing the levels of Oct4 re-established their differentiation potential (Chapter 4). 

This observation also de-mystified the previous report by Niwa stating that an increase 

in Oct4 can cause differentiation (Niwa et al., 2000), as Oct4 acts primary by providing 

a population of Nanog low cells responsive to differentiation cues. As the functional 

Oct4 heterozygote ES cells provide a unique opportunity to investigate consequences 

associated with the dynamic range of Nanog heterogeneity, future experiments could 

investigate their potential in further differentiation protocols. Also such experiments 

could help to define more precisely the differences in differentiation timings associated 

with diverse states of Nanog heterogeneity. 

 

 

7.3 Theoretical models and heterogeneity 

This thesis identified Oct4 as an important player in inducing fluctuations in Nanog 

expression. The finding that a decrease only about 40-50% of wild type levels of Oct4 

can shift the heterogenous pattern of Nanog in an ES cell population will enable more 

exact modelling of Nanog heterogeneity in the context of the Oct4/Sox2/Nanog 

regulatory network, something that has so far been limited due to the lack of 

experimental data. Several attempts in the last years were performed to theoretically 
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unravel the sources of this heterogenous behaviour. Most recently, Glauche et al., 

presented a model with two fundamentally different mechanisms to explain Nanog 

variations (Glauche et al., 2010). This is interesting, as it combines two fundamentally 

different biological concepts. The oscillation scenario, which describes the transitions 

between Nanoghigh and Nanoglow cells as a consequence of a deterministic system 

behaviour (Strohman, 1997) and a noise driven, stochastic model (Elowitz et al., 2002; 

Kaern et al., 2005; Ozbudak et al., 2002; Swain et al., 2002). Deterministic system 

behaviour, which has dominated thinking about cellular organization for a long time, 

describes cell fate as being generally determined by tightly controlled regulatory 

mechanisms (Huang, 2010). Noise however, which can be further divided into intrinsic 

and extrinsic noise, is defined as the empirical measure of stochasticity, therefore 

random events (Elowitz et al., 2002; Shahrezaei and Swain, 2008; Swain et al., 2002). 

This theoretical data represented by Glauche et al., indicated that the interplay between 

deterministic transcriptional interactions and noise might be important elements of 

pluripotency, as both scenarios were able to explain the existing data on Nanog 

heterogeneity. A similar conclusion can be drawn from the model represented by Kalmar 

et al., who proposed an excitable system that produces noise-induced transient excursion 

from a Nanoghigh state (Kalmar et al., 2009). In addition they proposed, similar to 

Glauche et al., a negative feedback on Nanog. The authors attributed this finding to high 

levels of Oct4 based on published luciferase data (Pan, 2006). Considering the data 

represented in this thesis such could indeed be attributed directly or indirectly to high 

levels of Oct4. In this context attention should be paid to the fact that Oct4, despite 

being generally homogenously expressed in ES cells, does show variations in protein 
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expression on a single cell level (Figure 3.3 and 6.1). Due to the fact that only a slight 

downregulation of Oct4 in Oct4 functional heterozygote ES cells can influence the 

magnitude of Nanog heterogeneity, these variations appear to have significant 

consequences. Therefore it would be further important to determine, if the origin of the 

variations of Oct4 levels lies within the intrinsic circuitry of the pluripotency gene 

regulatory network centered around Oct4/Sox2 and Nanog and how intrinsic or extrinsic 

noise contributes to its development.  

 

Similarly to observations made in the context of stochasticity in gene expression, the 

reduction of heterogeneity in Oct4 functional heterozygote ES cells however might not 

necessary be advantageous. In this context studies performed by (Kussell and Leibler, 

2005; Thattai and van Oudenaarden, 2004; Wolf et al., 2005), indicate that maintaining 

stochasticity could be advantagous especially for organisms that need to adapt quickly to 

sudden changes in environmental conditions. Therefore switching between different 

phenotypes might be an important factor for persistent bacterial infections after 

treatment with antibiotics (Balaban et al., 2004). In addition, increased stochasticity in 

gene expression increases the survival capacity of yeast after sudden stress induction 

(Blake et al., 2006). In regard to the functional data represented in Chapter 5, the 

functional Oct4 heterozygote ES cells, which express Nanog more homogenously and 

which therefore appear to be captured mainly in the Nanoghigh expressing state, are 

retarded in their differentiation capacity compared to cells expressing Nanog 

heterogeneously. A delay in reaction to particular enviromental changes as shown in 

Chapter 5 in the LIF withdrawal and neural differentiation protocol, could have therefore 
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significance in the embryo. Such a shift in favour of the self-renewing compartment 

could be accompanied with the loss of one of the main attributes of an ES cell, the 

ability to generate effectively tissues of all three germ layers.  More generally, the shift 

in favour of self-renewal due to a reduction in heterogeneity is also interesting in the 

context that increased stochasticity has been connected to aging (Bahar et al., 2006; 

Busuttil et al., 2007) 

 

In summary the data represented in this thesis could be helpful in unravelling the 

relationship between the intrinsic circuit centered around Oct4/Sox2 and Nanog more 

precisely and to connect this knowledge to the general concept of gene heterogeneity 

observed in ES cells. However to explore this further, it will be important to visualize 

the expression of Oct4 and Nanog directly with fluorescence reporters, as only in this 

way the exact kinetics can be observed dynamically on the single cell level.  
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Appendix 

 

Cell line Appendix 

 

CELL LINES DERIVED FROM
GENETIC 

MODIFICATIONS 

E14TG2a 129/ Ola mouse strain Deficient in HPRT 

CGR8 129/ Ola mouse strain No modifications 

ZIN40 129/ Ola mouse strain Express a randomly integrated lacZ-
ires-neo transgene 

OKO8 E14Tg2a 
An IRES-βgeopA cassette has been 
introduced into one Oct4 allele by 
homologous recombination 

OKO160 CGR8 
An IRES-βgeopA cassette has been 
introduced into one Oct4 allele by 
homologous recombination 

ZHTc6 CGR8 

Contains a Dox-suppressible Oct4 
transgene. One allele has been 
inactivated by targeted intergration 
of an IRESzeopA  cassette. 

ZHBTc4.1 CGR8 

As ZHTc6 cells but the second Oct4 
allele has been inactivated by 
targeted integration of an 
IRESBSDpA  cassette. 

D7A3 PE E14Tg2a Lif -/- cells 
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CELL LINE 
DERIVED 

FROM 
GENETIC MODIFICATIONS 

TNG E14Tg2a 
An eGFP IRESpacpA cassette has been inserted at 
the AUG codon of Nanog into one allele of the Nanog 
gene by homologous recombination 

OKOTNG OKO160 

An IRES-βgeopA cassette has been introduced into 
one allele of the Oct4 gene by homologous 
recombinations. 
 
In addition, an eGFP IRESpacpA cassette has been 
inserted at the AUG codon of Nanog into one allele of 
the Nanog gene by homologous recombination.   

ZHTNG ZHTc6 

Contains a Dox-suppressible Oct4 transgene in an 
Oct4+/- background. ES cells maintained with 
1000ng/ml Doxycycline. 
 
In addition, an eGFP IRESpacpA cassette has been 
inserted at the AUG codon of Nanog into one allele of 
the Nanog gene by homologoues recombination.   

ZHBTNG ZHBTc4.1 

Contains a Dox-suppressible Oct4 transgene, in an 
Oct4-/- background. ES cells maintained in the 
absence of Doxycycline. 
 
In addition, an eGFP IRESpacpA cassette has been 
inserted at the AUG codon of Nanog into one allele of 
the Nanog gene by homologoues recombination.   
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