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Abstract 

In some optimization problems the evaluation of the objective function is very 

expensive. It is theiefore desirable to find the global optimum of the function 

with only comparatively few function evaluations. Because of the expense of 

evaluations it is justified to put significant effort into finding good sample points 

and using all the available information about the objective function. One way 

of achieving this is by assuming that the function can be modelled as a stochas-

tic process and fitting a response surface or surrogate function to it, based on 

function evaluations at a set of points determined by an initial design. Parame-

ters in the model are estimated when fitting the response surface to the available 

data. In determining the next point at which to evaluate the objective function, 

a balance must be struck between local search and global search. Local search 

in a neighbourhood of the minimum of the approximating function has the aim 

of finding a point with improved objective value. The aim of global search is to 

improve the approximation by maximizing an error function which reflects the 

uncertainty in the approximating function. Such a balance is achieved by using 

the expected improvement criterion. In this approach the next sample point is 

chosen where the expected improvement is maximized. The expected improve-

ment at any point in the range reflects the expected amount of improvement of 

the approximating function beyond a target value (usually the best function value 

found up to this point) at that point, taking into account the uncertainty in the 

approximating function. 

In this thesis, we present and examine the expected improvement approach 

and the maximization of the expected improvement function. Sometimes the 

data are deceptive and parameters estimated from the data can give misleading 

approximating and error functions. We discuss a variation of the expected im-

provement criterion which takes into account the potential error in the estimated 

parameters, and we consider a different stopping rule. We also investigate how 

the availability of derivatives may be exploited and the use of a non-constant 

regression function in the approximating function. As test functions we mainly 

use our own functions. These are sample paths of stochastic processes generated 

for this purpose. The generating process of these functions is also described. 
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Chapter 1 

Introduction 

In many applications, for example in industrial design and engineering problems, 

the evaluation of the objective function can take a long time, and in that sense 

be very expensive. The expense of function evaluations makes it particularly 

desirable to find the global optimum of the objective function with as few function 

evaluations as possible. Typically, such optimization problems from industry have 

only a small number of variables, but often little or nothing is known about the 

mathematical structure of the problem. This can make the choice of optimization 

method and the setting of the parameters of the method difficult, and a good 

choice often relies on the experience of the user. 

The optimization problem considered in this thesis is of the form 

min{y(x)x e D - [0, i]d}. 

By scaling the variables, a general box constrained optimization problem can be 

written in this form. Throughout we assume deterministic functions, i.e. repeated 

evaluations at the same point give the same value. 

Problems where function evaluations are'expensive are for example helicopter 

rotor blade design, investigated by Booker et al. in [8], or aerodynamic wing 

optimization, considered by Alexandrov et al. in [1]. Another example, used by 

Schonlau in [63] is piston design, where the aim is to design a piston for an 

automobile engine which has minimal undesirable motion and friction below a 

certain value. Other applications include thermal energy storage systems, where 

a 'utility index' depends on the freezing/melting temperature of the phase change 

material and the thickness of its layer; this problem is considered for example by 

Currin et al. in [15]. Function evaluations in these examples are expensive, since 

they involve the simulation of a realistic physical system. 

When searching for the global optimum of any function a major difficulty lies 

in getting trapped at a stationary point or local minimizer. Different strategies 

have been suggested in an attempt to overcome this problem. Generally, most 
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global optimization methods have both local and global search strategies, but 

how to combine these strategies is a dilemma: a balance must be struck between 

"local refinement" and "global reliability". The global search strategy should 

ensure that the method does not get trapped at a local minimizer, the local strat-

egy should ensure that regions of good minimizing points are investigated. The 

added difficulty of the expense of function evaluations means that the number 

of function evaluations should be kept low, and as much available information 

about the function as possible should be exploited in the optimization process. 

This can be done as follows: initially, the objective function is evaluated at a set 

of initial sample points, then in the following optimization process it is only eval-

uated at promising points in an attempt to keep the number of evaluations low. 

Promising candidate points are found by optimizing a merit function, which is 

itself a global optimization problem and requires some effort to solve. However, if 

objective function evaluations are expensive it is justified to put significant effort 

into finding good, new candidate points at which to evaluate the function. Most 

merit functions used in practice are a combination of an approximating function, 

often called response surface or surrogate function, and an error function, the lat-

ter reflecting the uncertainty in the approximating function. Such functions thus 

incorporate both a local and a global search strategy for a good candidate point, 

with the aim of globally improving the approximating function while investigating 

the regions of its minima. 

One type of approach to optimizing expensive functions is the often termed 

"random function" approach. This assumes that the objective function can be 

modelled by a realization of a stationary Gaussian stochastic process. This then 

allows for statistical interpretation, and the objective function value y(x) at any 

unsampled point x E D can be interpreted as a random variable Y(x) with a 

certain distribution. This approach has entered global optimization from Kriging 

in Geostatistics. The term Kriging refers to an interpolation method, and derives 

from the name of a South African mining engineer D. G. Krige, who developed the 

method to predict ore reserves. The Kriging method is based on the assumption 

that points close together have a certain degree of spatial correlation, whereas 

points a large distance apart are statistically independent (cf. [21]). The data 

obtained from evaluating the function at a set of initial sample points are inter-

polated with a linear combination of basis functions and regression functions, to 

give a function which approximates the objective. This approximating function 

is used as a posterior mean. The basis functions have parameters that are tuned 

in the process of fitting the approximating function to the data. An error func-

tion reflects the uncertainty in the approximating function and, at any point, can 



be interpreted as a variance of Y(x), i.e. a measure of deviation from the mean 

value, given by the approximating function, at that point x E D. A combina-

tion of minimizing the approximating function and maximizing the error function 

therefore incorporates both a local and a global search strategy and could be 

used as a merit function to find new candidate sample points. One particular 

such merit function, the expected improvement function, and possible variants of 

it, are examined in detail in this thesis. 

A review of global optimization methods in general is given in Chapter 2. 

Chapter 3 concentrates more specifically on the background of a certain type of 

method, the random function method, with a view on the particular search strat-

egy for new sampling points which is investigated and of which new variants are 

presented later in this thesis, the expected improvement criterion. The necessary 

mathematical tools are given and the setting is described. In the approach ex-

plained in Chapter 3, it is assumed that the objective function can be modelled 

by a stationary Gaussian stochastic process. This means that the optimization 

method should be particularly well suited for sample paths of such processes 

when used as objective functions. The generation of such sample paths as test 

functions is described in Chapter 4. These test functions can easily be generated 

in large numbers and are useful when analyzing and comparing the global opti-

mization methods investigated. Most of the test functions used as examples in 

the later chapters are of this kind. Some failure cases in the global optimization, 

and some possible improvements and extensions to the expected improvement 

method are examined in Chapter 5. Sometimes the optimization stops prema-

turely. This happens if the data are deceptive, the estimated parameters do not 

match the objective function well, or the model that is used for the objective 

function is not very accurate. Some ways of overcoming this problem by means 

of trying to overcome the misleading parameter values are investigated in Chap-

ter 5. Also addressed are the issues of a good choice of number of initial sample 

points and the setting of a stopping tolerance, and some computational results 

are presented. The use of non-constant regression functions and derivatives is ex-

plained in Chapter 3 and the necessary theory developed. Chapter 6 examines the 

use of these in practice. Some computational results are presented for variants of 

the algorithm using quadratic regression functions and derivatives, respectively, 

and these are compared to results for variants using constant regression only and 

no derivatives. To conclude the presented work, Chapter 7 summarizes problems 

and achievements and gives pointers to possible future work. 

The relevant implementations are in Fortran77 or Fortran90, using the Harwell 

Subroutine Library Release 12, and the NAG Fortran 77 Library Mark 18. 
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Chapter 2 

Review 

This chapter gives an overview of existing global optimization techniques. Section 

2.1 concentrates on global optimization methods in general, and Section 2.2 deals 

in more detail with a certain kind of stochastic approach methods using a 

response surface. We give more detailed reviews of methods which are more 

relevant to our work. 

The optimization literature contains numerous accounts of global optimiza-

tion techniques. A wide range of global optimization methods are summarized 

and explained for example in Torn and ilinskas' book [71], and the contribution 

by Boender and Romeijn to the book [5]. Focusing on computational aspects and 

the methods being put to use in practice are for example Mongeau et al. in [49]; 

here different public-domain software products for global optimization of black 

box functions are compared for their efficiency and ease of use. In [32] Jones 

gives an overview of response surface methods in global optimization, which are 

the methods investigated in this thesis. Other, local optimization, methods are 

sometimes used as heuristics for global optimization. Some such local optimiza-

tion methods are summarized and investigated for example by Powell in [57] and 

by Kolda et al. in [39]. 

2.1 Global Optimization Techniques 

The aim of this section is to give an overview of global optimization techniques 

in general. It would be practically impossible to cover all existing methods and 

variants of methods, therefore we distinguish several larger classes of methods 

and give an introduction to each class and to representative or typical methods 

in each class. To be able to do this we need a classification of global optimization 

methods. Many different classifications have been proposed. To draw the line be-

tween two classes we need to take into consideration crucial differences between 

various methods. Pardalos et al. in [53] state that the "the major difference 
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between optimization problems is based on the presence or absence of convex-

ity" but this is immediately followed by the comment that "in most optimization 

problems convexity of the objective function or the feasible domain is not easily 

recognizable". In their paper about recent developments in the field of global 

optimization [53], Pardalos et al. divide methods into deterministic approaches 

and stochastic approaches, and subclasses of these. Very generally, deterrninis-

tic approaches exploit known analytical properties of the optimization problem. 

Stochastic approaches are methods for which the outcome in some sense is ran-

dom. These are suitable for problems where nothing is known about analytical 

properties or structure. 

Torn and Zilinskas in [71] suggest dividing the methods into methods with 

guaranteed accuracy, which implies exhaustive search for the global optimum in 

the region over which the function is to be optimized, and the remaining methods 

are divided into two classes, direct methods, and indirect methods. The two latter 

classes are divided up further and the more refined classification looks as follows: 

. Methods with guaranteed accuracy 

TZ.1 Covering Methods 

. Direct methods 

TZ.2 Random search methods 

TZ.3 Clustering methods 

TZ.4 Generalized descent methods 

. Indirect methods 

TZ.5 Methods approximating the level sets 

TZ.6 Methods approximating the objective function. 

Not all of these types of methods are relevant for our work. Therefore we will 

adapt our classification slightly for our purposes and only consider the kind of 

indirect methods which use approximations of the objective function, and split 

this up into random function methods and trust region methods. So the following 

modification of the above classification will be used, without any claim regarding 

completeness: 

. Methods with guaranteed accuracy 

M. 1 Covering Methods 
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. Direct methods 

M.2 Random search methods 

M.3 Clustering methods 

. Indirect methods 

Methods approximating the objective function 

M.4 Random function methods 

M.5 Trust region methods. 

We will now give a summary of certain types of global optimization methods, 

according to the above classification. Details of the methods can be found for 

example in Torn and ilinskas' book [71], or in other references, as given in the 

relevant text passages. 

Methods called direct search methods are presented in Powell [57] and Kolda 

et al. in [39]. Note however that these do not correspond to direct methods in 

the classification above. We explain the terminology and give a short summary 

of these methods in Section 2.1.4. 

2.1.1 Methods with Guaranteed Accuracy 

If the objective function has a known bounded rate of change, the global optimum 

of the function can be determined up to a prescribed accuracy by evaluation of the 

objective function at points close enough together, for example points on a dense 

enough grid. The construction of a grid is also called a covering and methods with 

guaranteed accuracy are often referred to as covering methods. It should be noted 

however, that it is often not possible to find a bound on the rate of change of the 

objective function. An estimate can be used, but then the method can no longer 

guarantee to find the global optimum. 

2.1.1.1 Covering Methods 

An example of a basic covering method is a search for the global optimum on a 

regular grid. The higher the density of the grid, the more likely it is that we find 

the global optimum of the objective function. Using a grid of high density requires 

the objective function to be evaluated at a large number of points. It would seem 

to make more sense and be more efficient to concentrate the search for the global 

optimum, and therefore the sample points, around promising areas rather than 

sampling the whole of D with the same density. This gives rise to branch and 
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bound type methods which subdivide the feasible region adaptively. At any stage 

in branch and bound a region is either excluded from further sampling because 

the bounds show that it cannot include the global optimum, or it is split into 

smaller subregions. By continuing this process the global optimum can be found 

to within any specified tolerance. For more details see for example Torn and 

ilinskas' book [71]. 

2.1.2 Direct Methods 

In direct methods local information, i.e. function values, is used, but no attempt 

is made to construct a model of the objective function from it. Boender and 

Romeijn's contribution to the book [5], and in Torn and ilinskas' book [71]. 

2.1.2.1 Random Search Methods 

The most basic algorithm of the type of a random search method is pure random 

search. In this method the objective function is evaluated at a number of ran-

domly chosen points from a prespecified distribution over D. Often the uniform 

distribution is used. The best objective function value is used as an estimate of 

the global optimum. To have a good chance of finding the global optimum the 

objective function has to be evaluated at a large number of points. 

Iterative variants are pure adaptive search and adaptive search. In pure adap-

tive search a new sample point is chosen from a (uniform) distribution on the set 

of points which improve the objective function value compared to previous sample 

points. In practice, however, these improving regions are difficult to construct. 

In adaptive search in every iteration the objective function is evaluated at a num-

ber of randomly chosen points from a distribution over D, and the distribution 

changes adaptively. 

Another related approach is simulated annealing. This method avoids get-

ting trapped at a local minimum by not only allowing iterations that lead to an 

improvement in the objective function value, but also, in a limited way, allow-

ing iterations where the objective function:value gets worse. As the algorithm 

progresses, the probability of accepting a deterioration in the objective function 

value decreases. This is called cooling and is done according to a cooling schedule, 

the choice of which can be a difficult issue. 

Other quite simple random search methods include sin glestart and multistart 

methods, also often called two-phase methods. Besides the random sampling global 

phase, these methods contain a phase of local refinement: the local phase. The 

function is initially evaluated at a number of randomly chosen points. This data 

is then used to find a candidate global optimum. In the singlestart and multistart 
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algorithms for example, an initial design is generated from a uniform distribution 

over D. In singlestart a single local search is started from the best point. In 

multistart a local search is started from each of these initial points (or a subset) 

to find different local optima. The best result of the local optimizations is used 

as an estimate of the global optimum. 

Basic random search methods are quite popular because they are easily un-

derstood and implemented. But generally these methods require a large number 

of function evaluations in D and tend to be inefficient. This leads us on to the 

development of other methods. For example, several variants of multistart have 

been proposed and investigated, where an attempt is made to find every local 

optimum only once. Clustering methods are such methods. 

2.1.2.2 Clustering Methods 

Earlier publications on clustering methods include papers by Becker and Lago 

in 1970, and Torn in 1973. Essentially clustering methods are improved random 

search methods, and rely on a 'sensible' mixture of random sampling and local 

optimization. The aim is to prevent the algorithm from finding a local mini-

mum more than once. If sample points can be clustered around local optima, 

and each cluster identifies the neighbourhood of a local optimum, such that the 

neighbourhoods of all local optima are captured in this way, then starting a lo-

cal optimization from each cluster would give all the local optima, and therefore 

the global optimum. Clustering methods vary in the way the clusters are formed. 

Usually clusters are initiated by a seedpoint and other points are added to existing 

clusters in a stepwise fashion, depending on a distance criterion. 

An algorithm for a clustering method starts by sampling an initial number of 

points in D. Then these points are pushed towards the local optima by performing 

a few steps of a local optimization starting from each of the points. Alternatively 

the points with a function value above a threshold could be discarded and only a 

predetermined number of points kept. Next, the points are grouped into clusters, 

and the resulting clusters are identified. Ideally, the points would now be in 

clusters around the local optima and all local optima would be captured in this 

way. If a stopping criterion is met, then, starting from the best point in each 

cluster, a local optimization is performed to determine the local optima. The 

best resulting local optimum is chosen as an estimate of the global optimum. If 

the stopping criterion is not met, we continue by for example treating points in 

better clusters (better in the sense of better objective function values at points 

in the cluster) as starting points for a new search. An alternative to using better 

clusters as new problems is retaining one point from every cluster and adding a 



new set of randomly chosen points from a uniform distribution over D. Then the 

process is repeated. 

Clustering methods, or techniques inspired by these, include linkage type algo-

rithms. One such is the random linkage algorithm. Here a single point randomly 

chosen from the uniform distribution over D is sampled in each iteration. With 

a probability depending on the distance to the closest point with better objective 

function value, a local search is started from that point. Another example is 

single linkage where all points within a critical distance of points in a cluster are 

added to that cluster. For more details of this and other related algorithms see 

for example Locatelli and Schoen's work in [43]. 

2.1.3 Indirect Methods 

Indirect methods use available local information to build an approximation of the 

objective function, which is used to guide the search for promising sample points. 

We classify such methods according to whether or not the model attempts to be 

globally valid, and distinguish here between random function methods and trust 

region methods. 

2.1.3.1 Random Function Methods 

This is the type of method we are most interested in, and will be most concerned 

with later on. These methods attempt to find a global minimum of the objective 

function by modelling it and taking into account the uncertainty of the model. 

We will only give a short introduction to the idea behind the methods here and 

will introduce some existing algorithms in more detail later on. Kushner in [40] 

was the first to investigate the random function approach in a global optimization 

setting in 1962. In 1964 Kushner proposed a global optimization algorithm using 

a statistical model (Wiener process) of the objective function, see [41]. Ran-

dom function methods have since attracted a lot of attention and more recent 

developments will be summarized later on. 

In this approach a function is assumed to be the sample path or realization of 

an a priori stochastic process. As a consequence, the unknown function values of 

the objective function are treated as random variables. Known objective function 

values at the sample points can be used to determine a posterior distribution 

of the objective function value at any point x e D. In this sense a conditional 

mean and variance give the expected function value at any point x E D and 

how uncertain this approximation to the function is at the point x. We will also 

refer to these methods as response surface methods. This kind of method stems 

from a Bayesian approach to global optimization. A prior (a priori) distribution 



is fixed on a set of functions y(x). This distribution is then updated to take 

into account observations ((), y j ), i = 1,. . . , n of the objective function, using 

laws of conditional probability. The updated distribution is called a posterior (a 

posteriori) distribution. The posterior distribution can be used to determine the 

next point of observation by minimizing a risk function which reflects the 

expected deviation from the global minimum at any point in D. See for example 

the papers by Mockus [47, 48]. 

Other methods combining approximations of the objective function with trust 

region methods have been investigated. A brief introduction to some of these will 

be given now, before we describe other response surface methods in more detail 

later on. 

2.1.3.2 Methods using Trust Regions 

The use of response surfaces in conjunction with trust regions has been investi-

gated by a number of people, see for example the work of Alexandrov et al. in 

[1] and Conn et al. in [10, 11, 12]. Generally, a model of the objective function 

is assumed to be valid within a certain distance of the current point: the trust 

region. The model is minimized to find new promising points, hopefully with bet-

ter objective function value than the previous best value found. These methods 

do not model uncertainty about the objective function and only attempt to find 

local minima. 

Alexandrov et al. in [1] investigate a trust-region Approximation Management 

Framework. AMF uses cheaper to compute lower-fidelity models in iterative pro-

cedures, and monitors the progress of the algorithm by occasionally returning 

to the higher-fidelity models. At the current point a response surface is used to 

find new promising points. The response surface is optimized within a prescribed 

maximum distance from the current point, a trust region. The new point can 

be used to update the model and optimize it again, or to serve as a new current 

point. Properties of the model are assessed and the model, the current point, 

and maximum distance are updated. Conn et al. in [10, 11, 12] propose approx-

imating the objective by a quadratic model. The quadratic model is assumed 

to be a good approximation to the objective function within a region of a given 

radius around a point, the current iterate, see for example [12]. The model is 

minimized within this trust region. The actual objective function is evaluated at 

the optimum point and the reduction in the objective function and the model are 

compared. With a good ratio between these reductions, the trust region radius is 

increased. Then the model, the trust-region, and the current point are updated. 

An important difference between this approach and other trust-region methods 
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is the following: besides the interpolation conditions for the quadratic model mk 

in iteration k, mk(x) = y(x (0 ), i = 1,.. . , n, some geometric conditions are 

imposed on the interpolation set {x ( ') ,. .. , x ( ' ) } to "ensure existence and unique-

ness of the quadratic interpolant" (Conn et al. [10] p.  6). This might lead to 

removal of points from the interpolation set in the course of the algorithm. It 

might also lead to finding new points with better function values at the stage 

in the algorithm where the function is evaluated at new points to improve the 

geometry of the interpolation set. For details see for example the paper by Conn 

et al. [10]. In [12], Conn et al. investigate an extension of this method to certain 

constrained optimization problems. 

In 1969, Winfield used objective function values to build a quadratic inter-

polant of the objective function, which he then minimized within a trust region 

to find new promising points. For the main idea of Winfield's approach see Win-

field's thesis [73]. Several years later, Powell proposed a related method: certain 

geometric properties of the interpolation set were preserved, avoiding some dif-

ficulties that were encountered in earlier methods. For more details of Powell's 

work see [55] and [56]. The work of Conn et al. is largely based on Powell's work. 

2.1.4 Alternative Definition of Direct Search Methods 

The term direct search is used differently by different authors. For example Pow-

ell in [57] defines a direct search method as one that only uses function values. 

However, these may or may not be used to build a model of the objective func-

tion. They therefore include both direct methods and indirect methods as defined 

above. The methods described by Powell are essentially local optimization meth-

ods. However because they sample the function at well spaced points they may 

avoid getting trapped in narrow local optima. 

Generally direct search methods as defined by Powell are non-derivative meth-

ods and often used when derivatives of the objective function are not available. 

Several methods have been proposed, some with the aim to prove convergence of 

the method, some with the aim to make any improvement in the best function 

value. Methods considered by Powell in [57] which have not been mentioned here 

so far, are line search methods, discrete grid methods, simplex methods, conjugate 

direction methods, linear approximation methods, and quadratic approximation 

methods. 

The idea of line search methOds is that for a current iterate a direction is cho-

sen, and the objective function is minimized along the line which passes through 

the current iterate and has the chosen direction. Extra rules can be imposed to 

help avoid bad behaviour like cycling. Conjugate direction methods are line search 
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methods, but the directions are required to satisfy a conjugacy criterion. These 

methods are originally designed to be efficient for unconstrained minimization 

when the objective function is a convex quadratic. 

Simplex methods are based on the use of simplices. A simplex is the convex 

hull of n + 1 points in R?.  At the beginning of each iteration such a simplex is 

available. The objective function values at the vertices of the simplex are used 

to determine a new simplex for the next iteration. Usually the vertex with the 

worst function value is reflected through the centroid of the other vertices, to give 

a new vertex, and therefore the new simplex. Extra rules must be imposed to 

avoid cycling. Under certain conditions a new simplex is obtained by shrinking 

the current simplex, rather than reflecting a vertex. 

Discrete grid methods are suitable for bound constrained problems. A mesh 

of gridpoints is chosen, on which it is attempted to reduce the objective function 

value. The refinement of the grid can be altered as the algorithm proceeds. 

The linear approximation methods and quadratic approximation methods are 

based on local approximations to the objective function by linear polynomials and 

quadratic polynomials, respectively. These approximations interpolate the objec-

tive in a certain number of points, for example the best points found. Minimizing 

the approximation gives new points at which the objective is evaluated. Under 

certain circumstances a simplex step is performed, which discards certain points 

and replaces them by new ones, to be then interpolated by the approximating 

linear or quadratic polynomial. These methods lead on to the kind of trust region 

method described earlier in this chapter. 

2.1.5 Conclusions 

Most of the summarized methods have been studied and used in practice. Some of 

the methods are appealing because they are easily understood and implemented, 

but many of them, in particular methods with guaranteed accuracy and direct 

methods, often require the objective function to be evaluated at a large number' of 

points. This is prohibitive if function evaluations are expensive. In this situation 

indirect methods are more attractive. 

2.2 Random Function Methods 

In this section some recent developments in global optimization of expensive func-

tions using stochastic approaches are introduced. The methods are based on the 

use of response surfaces to approximate the objective function. These are then 

used to choose new sample points and thus guide the optimization. The opti- 
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mization problem is of the form 

min y(x) 

s.t. X ED=[O,1]d 

where x is a (scaled) input vector and the continuous function y(x) is multimodal, 

in the sense of having several local optima, and expensive to evaluate. Note that 

we use the term response surface as an alternative name for a surrogate function. 

These methods follow the same paradigm: the objective function is sampled at 

a number n of initially chosen sample points, also called an experimental design. 

A surface, called the response surface, is fitted to the sampled points and used as 

a predictor for the values of the function at unsampled points. A utility function 

based on this predictor is optimized to find the next sampling point The 

predictor is then updated and the process repeated until a stopping criterion is 

met. 

An account of such methods is given for example in Jones' paper [32], the 

outline of which will to some extent be followed here. 

2.2.1 Interpolating Surfaces 

Several methods that interpolate a set of scattered data have been investigated 

and described in the literature. These include for example cubic splines, thin-

plate splines, and Kriging. Another approach, not interpolating the data, is to fit 

a surface to the function by least squares using polynomial terms and to minimize 

this surface to find a new sample point. A problem with this approach is that 

the response surface might not improve much as new sample points are added, 

and might fail to even find a local minimum, as Jones demonstrates in [32] for a 

quadratic surface. This problem can be avoided with interpolating surfaces, which 

have the desirable property that with every new sample point added the surface 

becomes more accurate. Minimizing such a surface to find a new sample point, 

updating it, and repeating, can be expected to lead to finding a local optimum 

of the objective function. As a way of interpolating the data we consider the 

basis function approach. Here the model consists of polynomial terms as well as 

basis function terms. Suppose we have sampled the function y(x) at n points 

where is a d-dimensional vector (') = (xv ,. . , x )t and the 

functions values at these points are y 2  = y(x () ). Let {ir(x)i = 1,. . , m} be a 

basis of the space of all polynomials in x of degree g. The predictor (x) is of 

the form 
m 	 n 

(x) = E ak7rk(x) + 	bp(x - 	 (2.1) 
k=1 	 j=1 
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Possible basis functions are for example 

P(Z) = iIzI 
P(Z) = 11z11 2  log(z) 

P(Z) = exp (_9lzlPi) 

where IIzII is the Euclidean norm. These are the basis functions used for cubic 

splines, thin-plate splines, and Kriging respectively. Some special cases of the 

Kriging basis functions are often considered separately: the exponential correla-

tion functions where p j  = 1, i = 1,. . . , d, and the Gaussian correlation functions 

where pj  = 2, i = 1,. . . , d. Following for example Sacks et al. in [60] we focus on 

the Kriging approach where 

P(Z) = 	 Zkl pk 	 (2.2) 

is used, with parameters Oi  > 0 and 0 < p2  < 2. Kriging has a statistical 

interpretation. Not only can we compute the interpolator or predictor, which at 

each point can be interpreted as the expected function value, but also the error 

in the predictor. This will be zero at sample points and will rise between sample 

points. The function in (2.1) has n + m parameters and is required to interpolate 

ii values. With basis functions of the form given, this can be done for example 

with a constant polynomial term, i.e. with m = 1 and g = 0. 

2.2.2 Kriging and the BLUP 

In Kriging we assume that the covariance and the correlation between two func-

tion values Y(x) and Y(z) depends only on the distance between the points x 

and z, i.e. cov(Y(x),Y(z)) = c(x - z) and cor(Y(x),Y(z)) = p(x - z). As a 

surrogate of the objective function in the Kriging approach we need to calculate 

a predictor of the function, the best linear unbiased predictor (BLUP). We first 

describe the case when the polynomial term in the predictor is a constant, p. This 

corresponds to (2.1) with m = 1, 7r, = 1, and a 1  = ji. Later on, the polynomial 

terms will be introduced. The reason for this is that if the objective function 

can be approximated well by a polynomial, then fewer function evaluations will 

be needed if the predictor contains polynomial terms. In the derivation of the 

best linear unbiased predictor (BLUP) we follow Jones' "gentle introduction to 

kriging" as described in [32]. Suppose we want to predict the value of a function 

at a point x in the domain. We can model our uncertainty about the value of 

the function at this point by assuming that it is the realization of a normally 
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distributed random variable Y(x) with mean u and variance a2  Consider two 

points x and z. We are uncertain about the value of the function at these points 

before we have sampled there. But if the function is continuous, y(x) and y(z) 

will be close if the distance between the two points lix - zil is small. Statistically 

we can say that Y(x) and Y(z) will be highly correlated if 11x 
- zil is small. The 

correlation, see Definition 3.1.2, is assumed to have the form 

PK(XZ) = corK [Y(x),Y(z)I 

= exp (- >9kXk - ZkIPk) 

which corresponds to (2.2), with parameters 6k > 0 and 0 <Pk < 2, which have 

to be estimated from the data. As before, assume that the function has been 

evaluated at points X M ,  . . . , x and let the observed values be denoted by y = 

(y,.. . , yJ. Let R denote the n x n matrix with entries 	= corK [Y(x () ), Y(x (3) )]. 

This matrix R is positive definite, and therefore invertible. We can use the like-

lihood function 

L(y) = 2a2 R 1/2 exp  
K-1) 

(y - 1t)t0,_2R_1 ( - 1t)] 

to find the maximum likelihood estimates of the parameters ii, a, °k,  and Pk  For 

practical convenience usually the log-likelihood is maximized, which is 

lnL(y) = 	in (12ra2 R) - (y - 1t)ta_2R_1 (y - 1k). 	(2.3) 

Taking derivatives with respect to p and a and setting these to zero gives the 

maximum likelihood estimates (MLE) for M and a, they are 

/2 = (1tR_1 1) ltR_ly 	 (2.4) 

a = 1  - ( - 
	)t  R' (y - 1/2). 	 (2.5) 

Ti 

These depend on °k  and pk.  Substituting (2.4) and (2.5) into (2.3) gives 

inL (y) = —[n1n (0,2 ) + 1n(lR)] + const. 

This is maximized to find the estimates °k  and Pk,  which are then substituted 

into (2.4) and (2.5) to find /2 and &. 

The Kriging predictor or best linear unbiased predictor (BLUP) is often de-

rived as the unbiased linear predictor cy of Y(x) that minimizes the mean 

squared error (MSE) of prediction subject to the unbiasedness constraint. Here 

we look at Jones' way of deriving the BLUP. Suppose that we have guessed the 
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function value y" at a new point x  and we add this to our sampling points as the 

(n + 1)th observation. The likelihood function is updated to include this point 

and, using the previously calculated parameters, we maximize the log-likelihood 

as a function of y. The idea is to find the y" that is most consistent with the 

previously observed variation in the function values at the n sample points. Let 

(corK(Y(x*), Y(x ( ') )) 

r*=I 
corK (y(x*),y(x(n))) 

Augmenting the log-likelihood function to include the new point ( x* ,  y*) we get 

fl + 1 	
(2ira2) 	

1 	/l R  r* 

2 	

I\ 
lnL(y) = - 	in 	_in(j r*t 1 

1( y _1f\t7R r*\'( y _1i 

-_) 	
r*t 1) 

The only part of In L(y) that depends on y is the term 

1 (y-1 t (R r*( y _1 
y*f1 ) 
	 i) 

Substituting 

(

R r - 1 ( (1 - r*tR_lr*)R_l + R_l r* r*tR_l _R_l r* 
r*t  

)_1 

 - (1 - r*tR_lr*) _(R_lr*)t 1 

into (2.6) gives the function we have to maximize with respect to y". The terms 

involving y in this function are 

—1 	1 	I r *tR_l( y  - 12) 
2 2 (1 - r*tR_1r*)] (y*

- )
2+

a21 - r*tR_1r*)] (y* - 

This is a quadratic function of y' with negative second derivative, 

—1 
&2(1 - r*tR_lr*) 

-(1 .-.- 

so maximizing can be achieved by taking the first derivative and setting it equal 

to zero, 

—1 1 	1 r *tR_l( y  - 1) 1 
r*tR_1r*)] (y* - ) + L21 - r*tR_1r*)j = 0. 

Solving this for y gives the Kriging predictor or BLUP 

= (x*) = /2 + r*tR_l(y - 1/2). 

This corresponds to (2.1) with m = 1, 7r 1  = 1, a 1  = /2, and 	bkqk(x - ()) = 

r *tR_l( y  - 1/2). 

(2.6) 

16 



function 

6 

4 

2 

-2 

-4 

-6 

-8 

-10 
0 
	

0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 

Figure 2.1: Test Function y(x) 

The mean squared error (MSE) of the predictor is 

82 (x *) = E[y * - 

a2 	r t 	(1 - 
- 

R

1 r* + 	11R1 

More details of how to derive the MSE will be given later. To illustrate some 

characteristics of the BLUP and the MSE and their dependence on 8 and p we 

look at the function 

y(x) = —lOx sin(10x 2 ) 

where x E [0, 11, and we choose evenly spaced sampling points 	= 0, X 2  = 

0.25, 	= 0.5, x = 0.75 and 	= 1. Figure 2.1 shows the function y(x), on 

the interval [0, 1]. It has two local minima, one of which is the global minimum. 

Figure 2.2 shows the best linear unbiased predictor for y(x) for different values 

of 8 and p. First of all it can be seen that the BLUP always interpolates the 

function at the points . , x. For p = 2 the BLUP is a smoother function 

than for p = 1. Smaller values of 0 correspond to higher correlations between 

function values at different points. That means that when looking at a new point 

between two previously sampled points we would expect the function value at the 
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new point to be close to the values at the surrounding sample points, so for points 

a small distance apart the function values at those points will be close together. 

The larger 0, the faster the BLUP returns to a certain value, A, between sample 

points. For this example, minimizing the BLUP as a surrogate function to find a 

new sample point, updating it, and repeating would lead to a search concentrated 

around the local minimum of the function, not capturing the global minimum. 

Figure 2.3 shows the mean squared error of the predictor for different values 

of 0 and p. It can be seen that the MSE is always zero at sample points and rises 

in between them, more rapidly and to a greater value the larger the value of 0. 

2.2.3 Alternative Random Function Methods 

In this section we will summarize different random function methods. It might 

seem appealing just to minimize (x) but this has the disadvantage that the 

global optimum of the function might be missed completely as the algorithm 

would concentrate new sample points exclusively around the area where (x) is 

lowest and not explore any other regions. This is what would have happened 

for the test function in Figure 2.1 with 5 initial sample points. This approach 

might be suitable for local optimization but not for global optimization. A way 

of avoiding this is to take the error of the predictor into account when choosing 

new sample points. The idea is that when the area around the currently known 

minimum of (x) has been sufficiently explored, new points where the error of 

the predictor is high will be added to the sample, and because of this it is more 

likely that the global optimum of the function will be found. Different approaches 

to this are described in the following. 

2.2.3.1 Merit Functions 

Torczon and Trosset [70] investigate the approach of minimizing the predictor 

(x) using grid search strategies. The grid is used partly for reasons of robustness 

and convergence results, using additional refinements of the grid. Again, if there 

is no initial data in the basin of attraction of the global minimizer, this area is not 

investigated further: a local optimum is found and the global optimum missed. 

To overcome this problem they suggest an alternative strategy which uses a merit 

function of the form 

Mi(x) = (x) - w i öi (x) 	 (2.7) 

where w 1  > 0, 9 is an interpolating function and 

öi (x) = min Ix - x (i) 112 i = 1,. . . , n. 



The merit function M1  consists of the two components and ä (x) so, to min-

imize M1 , the minimization of the interpolating function (x) is balanced with 

a maximization of ö i (x) = mm IkE - xII2, the distance from x to the nearest 

previous sample point. With w 1  = 0 the search is completely based on (x) and 

most likely will find a local optimum of the function. As w 1  is chosen to be a 

larger number, more emphasis is placed on maximizing ö (x) = min I Ix - x 11 2 
and the search becomes more global. The quantity w 1  could be kept constant, or 

could be varied in each iteration: letting w 1  - 0 as the optimization progresses, 

encourages convergence to a local minimum. The choice of w 1  seems to be based 

on experiments. According to Torczon and Trosset, applying this strategy to a 

multimodal test function, even where none of the points of the initial sample lies 

in the basin of attraction of the global minimizer, leads to a favourable result. 

Pattern search methods using response surfaces are also further investigated by 

Torczon and Trosset in [69] with a different pattern search strategy, not described 

in more detail here. The search criterion suggested is 

M2 (x) = (x) - W2\/ 	 (2.8) 

where s 2 (x) is the mean squared error of prediction at x. Figure 2.4 illustrates 

the dependence of M2 (x) on the choice of w2 . As above, with w 2  = 0 the search 

is completely based on (x) and most likely will find a local optimum of the 

function. As w2  is chosen to be a larger number, more emphasis is placed on 

maximizing s(x) and the search becomes more global. Again, letting w 2  -* 0 as 

the optimization progresses encourages convergence to a local minimum. 

2.2.3.2 Statistical Lower Bound 

Cox and John in [13] use the following method. A grid of points is selected in the 

domain of interest of the function. At a number n of these points, . . . , x() 

the function is evaluated and these points form the observation sites. The lowest 

function value, denoted by YOn,  is recorded. The remaining k grid points will form 

the prediction sites. Based on the initial design, i.e. the set of observation points, 

the BLUP and MSE s 2  are computed. These are used to compute a "lower 

confidence bound" (lcb) at any prediction site by 

M3 (x) = 	- w3 & 82(x (i)), i = 1,. . . , k, 	 (2.9) 

where (()) is the BLUP and & is the maximum likelihood estimate of the 

standard deviation. The prediction site with the smallest lower confidence bound 

is selected as a possible approximation to the minimum of the objective function. 
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Figure 2.4: Merit Function M2 (x) 
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The objective function is evaluated at this point, the point added to the set of 

observation sites, and YOn,  BLUP, MSE, etc. are updated. The stopping criterion 

is based on either a user-specified maximum number of function evaluations or 

iterations, or the following convergence criterion, 

YOn < 

As Jones demonstrates in [32] this can fail to find the global optimum for a one-

dimensional test-function. In this example the global optimum is not picked up 

in the initial sample and as M3 (x () ) is minimized the algorithm concentrates on 

a local optimum. 

The lower confidence bound M3 (x () ) in (2.9) is similar to the second merit func-

tion M2 (x) in (2.8) and the location of the new sampling point X(n+l)  depends 

very much on the choice of w 3  and on a. 

2.2.3.3 Probability of Improvement 

Another approach finds new sample points where the probability of improving 

the function beyond a target value T is high. The target value T should be 

set such that T < Yon where YOn  is the best function value found up to this 

point. The probability of improvement beyond the target value at point x is then 

P(Y(x) <T). An approach like this was suggested by Kushner as early as 1964, 

see the article by Kushner [41]. This approach was later taken up by Zilinskas 

as the so-called P-algorithm, see for example [74] and [75]. A variant of this, the 

so-called P*algorithm  was later proposed: in areas with a great density of sample 

points the objective function is modeled by a polynomial rather than a statistical 

model, for more details see for example [71]. 

We will now briefly look at the idea behind the probability of improvement and 

then give some more details about the P-algorithm and ilinskas' axiomatic jus-

tification for it. Assuming that the random variable Y(x) is normally distributed 

with mean (x) and standard deviation s(x) the probability of improving beyond 

the target value T is 

P(Y(x) <T) = 
\ s(x) 

where 1 is the standard normal cumulative distribution function. Probability of 

improvement is high where (x) is small or s(x) is large. This leads to sampling 

around the current best point until the standard error s(x) in that region becomes 

too small. Usually T < (x), and for small s(x), the term 
T 	

becomes 

extremely negative. Then the probability of improvement becomes small around 
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the current best point and this leads to sampling elsewhere, where the standard 

error is higher. A difficulty is the choice of T. Lower values of T will lead to a 

more local search in the region where is least, higher values of T will lead to 

more emphasis on global search. In [32] Jones suggests overcoming the difficulty 

of choosing a value for T by using expected improvement, as will be explained 

later, or using several values of T in every iteration, leading to a selection of 

several sample points at once. Jones also points out a correspondence between T 

in the probability of improvement and w 3  in the lower confidence bound approach. 

2.2.3.4 The P-algorithm 

In [75] 2ilinskas introduces an axiomatic way of treating the probability of im- 

provement method. This is explained here. The Gaussian random variables 

x E D are used as a statistical model of the function y(x), where the 

distribution function P(.)  of Y(x) depends on the sampled points and their 

function values y, i = 1,. . . , n. Let y" be a target value that it is desirable to 

reach, for example an estimate of the global minimum. The choice of the next 

sample point (Th+l)  E D can be interpreted as a choice of distribution function 

P(n+1) E {Px E D}. Under some "rational requirements" the preferences of 

choice of P(.)  are reflected by a unique utility function ut(.) satisfying certain 

axioms. The statement is preferable over P 2 " is also written as P 1  > P2  

and defined by 

00  P1 1  >_ P12 rooUtYPZ1YdY > f:Ut(Y)Pz2(Y)dY• 

Since Pzk(.)  are Gaussian, preferences in the choice of Pzk(.)  correspond to pref- 

erences in the choice of uk and 8k,  the mean and standard deviation of Y(zk) 

respectively, and we write 	s 1 ) > (.t2, 8 2 ) if P 1  is preferable over P 2 . In [75] 

ilinskas gives four axioms to "characterize the requirements of rational search", 

A.1 If Al < A2, S1 > 0, 1L2 > 	then there exists s > 0 such that (, s) > 

(42, s2 ) if s2  < s. 

A.2 If Al,  8 1  > 0, /22 > y, then it is true that (Al,  s 1 ) > (/22, 0). 

A.3 If s 1  > 0, A2 > y, s2 , then there exists IL, with /22 > Al > y, such that 

(11 1 ,s i ) > (/22 ,s2 ). 

A.4 ut(.) is continuous from the left. 

In [75] Zilinskas then proves a theorem stating the following. 
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Theorem 2.2.1 

The unique (to within linear transformation) function satisfying A. 1-A.4 is 

fut(t)= 	
1 	t y  

0 	t> y * .  

Therefore the utility of evaluating the function at the point x is proportional to 
p(y*) where y is a value we are hoping to reach, for example an estimate of the 

global minimum. This is the probability that Y(x) <y, 

P(Y(x) <y* )  = 	
s(x) 

) 

where is the standard normal cumulative distribution function. The new point 
X(1) will be chosen to maximize the utility, 

	

= argmaxP(y*). 	 (2.10) 
xED 

	

ilinskas investigates the dependence of the point 	on y". In particular he 

proves a theorem that says that if y' = minX ED (x) then the set of points that 

maximize P(y*)  is identical to the set of points that minimize (x). If y —* — 00 

then infZ EB Ix(') — zil —~ 0 where B is the set of points that maximize s(x). 

He proceeds to show that as y decreases, s(x)(fl+1)  increases. The conclusion 

drawn from these two theorems is that the P-algorithm searches more globally 

as y decreases. Different y can be used to achieve better efficiency of the P-

algorithm. 2ilinskas also provides a proof of convergence of the P-algorithm under 

certain assumptions. See also [76] for more details and [74] for further background 

reading. 

2.2.3.5 Expected Improvement 

A method can be devised that balances global and local search without requiring 

the setting of a target value. This uses expected improvement (El) as sampling 

criterion, and this is the method which will be used in this thesis. 

Let Yon  as before be the best function value found at sample points and let 

Y(x) be a random variable describing the uncertainty about y(x). Then the 

expected improvement is given by 

E[I(x)} = E[max(yo  - Y, 0)] 

= f
YOn 

(yo—y)(y)dy 

where 	is the probability density function of Y(x). Splitting up the integral 

into two terms and integrating by substitution gives 

E[I(x)] = (Yon — 	
(Yon_ 

) + 

s  (Y0n —  3 

) 
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where 
(.) 

and 
 (.) 

are the standard normal probability density and the cumula-

tive distribution function respectively. Schonlau for example uses this approach 

in [63]. 

Where the probability of improvement method uses the utility function 

ut(Y)={ 
Y > Y* 

the expected improvement takes into account the amount of improvement by 

using this amount of improvement as the utility function 

= [ 

YOn - Y 	Y YOn 
10 	Y>YO n . 

The preference of choice of distribution function is 

Pz 1  ~ Pz2 
f-00 	 : I(tPzit)dt ~ fI(t)Pz2(t)dt 

and maximizing the expected utility is the same as maximizing the expected 

improvement. The utility function I(.) satisfies Zilinskas axioms A.1, A.2, and 

A.4. In the case where j = /i2 it tells us to choose the distribution function 

P(.) for which s, i = 1, 2 is greater. 

The use of expected improvement was also studied for example by Locatelli 

in [42], where a Wiener process is used to model the objective function. 

2.2.3.6 Goal Seeking 

Assume that we want to achieve a target value or "goal" function value, y. 

Making a hypothesis about the location where this value is achieved, for example 

at the point x' we can compute the conditional likelihood of the data given that 

the surface passes through the point ( x* ,  y*). The conditional likelihood is given 

by 

(2a2)I2ICl'/2 
exp 	

- )tC_1(y 
- 

2a2  

where JL = 1 + r(f* 
- ) 

and C = R - rr  are the conditional mean and corre-

lation matrix respectively. The conditional log-likelihood can be used to evaluate 

the "credibility" that the surface passes through ( x * ,  y*). The parameters A , a2 , 

9k, and Pk  are adjusted to maximize the conditional likelihood. This method has 

been suggested by Jones, see [32]. 
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2.2.3.7 Minimizing Bumpiness 

If is a guess of the global minimum we can choose any point x in the domain 

and assume that this is where the minimum y" is attained. Then a response 

surface is fitted through the point (x, y*)  and the previously sampled points. If 

this response surface is very bumpy, intuitively we would not expect x to be 

the global minimizer. As a new sample point we choose the point that achieves 

the target and minimizes the bumpiness. Gutmann in [28] and Björkman and 

Holmström in [4] investigate this approach based on a general response surface 

technique proposed by Jones [30], using radial basis functions as interpolants. Let 

be the points at which the objective function values y 2  are known. 

The radial basis function interpolant is of the form 

m 	 n 

(x) = 	akrk(x) + 	bpx - 	 ( 2.11) 
k=1 	 j=1 

where {7rk(x)Ik = 1,.. . , m} is a basis of the space of all polynomials in x of 

degree g. The coefficients ak and b are defined by the system 

= y, i = 1,. . . , n 	 (2.12) 

= 0, 	j = 1,... ,m. 	 (2.13) 

The equations (2.12) guarantee that the interpolant does interpolate the points 

(x ( ' ) , y'),.. . , (x () , y); the additional m equations (2.13) are there to "guarantee 

existence and uniqueness of an interpolant" (Gutmann, [28]). The measure of 

bumpiness used by Gutmann is derived from the theory of natural cubic splines 

in one dimension: for which satisfies (2.12) and (2.13) it is known that 

= arg mm 1(g) := fR 
(gl,(X))2 dx 

s.t. g(Xj) = y, i = 1,. . . , n 

among all g : R —* R for which 1(g) exists and is finite. With the basis function 

matrix 1 defined by (1)jj := p(Mx -xIl) = (Mx — xM) 3 , 
i,j = 1,... ,n, one gets 

I() = 12bTb .  The measure of bumpiness Gutmann uses in [28] is based on the 

fact that 

(_1)m0+lbTb> 0 

for all b 0 which satisfy condition (2.13) and where the choice of m0 = —1, 0, 1 

depends on the radial basis functions used. This property can be used to define 
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a semi-inner product and a semi-norm for p and m > m0 . For 

m 	 N(v) 

v(z) = 	ak 7rk(z) + E b3pz - x (j )  11 
k=1 	 j=1 

and 
N(w) 

w(z) = E gkk(z) + 
	

h3pz - 1j)11 ,  

j= 1  

for N(v), N(w) e N, and where b and h satisfy (2.13), the semi-inner product is 

defined by 

N(v) 

(v, w) := (_1)mo+1 >i: bw(x') 
j=1 

The semi-norm is used as a measure of bumpiness o) for interpolants of the 

form (2.11) by means of o() = (, ). 
Now consider the following interpolation conditions 

= y, i = 1, . . . ,n 	 (2.14) 

(x) = 	 (2.15) 

and let 	be a radial basis function satisfying (2.14), and for each unsampled 

x 0 {x ( ' ) ,. . . , x () } let 	be a radial basis function satisfying (2.14) and (2.15). 

For a target value y and a point x E D \ {x (1) ,. . . , x(1) } the radial basis function 

can be written as 

= (z) + (y* - (x))1(z, x), z E 

where l(z, x) is the radial basis function which satisfies the conditions 

l(x,x') = 0, 	i=1,...n 

l(x,x) = 1. 

Then 1(z, x) can be written in the form (2.11) as follows 
n 	 rn 

l(z,x) = 

where the coefficients (a1 (z),...,a(z)), (131 (Z),...,0m(Z)), and i(z) are de-

fined by a system of equations. Gutmann uses the semi-inner product and semi-

norm as defined above and takes o) = (, ) as the measure of bumpiness of , 

and deduces the following formula 

cT(y) = a(j) + (_ 1)m+h,n(X)[y* - 

for the bumpiness cr() of 

A rough outline of Gutmann's algorithm is as follows, 



• Pick a radial basis function p. Find the radial basis function interpolant 

of the form (2.11) that minimizes the bumpiness o() subject to the 

interpolation condition (2.14). 

• Choose a target value yP  e [—oo, minXED (x)]. Find X(fl±)  that minimizes 

the bumpiness a() = a(j,) + (_ 1)m0+it(x)[y* - ( x)] 2 . Set n = n + 1. 

Stop if n> a prescribed maximum number of function evaluations. 

Further, Gutmann investigates the similarities between the radial basis function 

method he presents in [28] and the P-algorithm. He also proves a convergence 

result for the radial basis function method in the case where the basis functions 

used are linear, cubic, or thin plate splines. 

2.2.4 Other Developments 

The work presented in the remainder of this thesis is mainly based on the ex-

pected improvement criterion as presented in the papers by Sacks et al. [60, 61] 

or Schonlau's thesis [63]. Since that time, research in the area has included work 

on constrained optimization problems, see for example Schonlau et al. in [66], 

and Sasena's thesis [62]. Some investigation of better means of controlling global 

versus local search has been pursued further by Schonlau et al. in [66]. These 

approaches are all based on the expected improvement criterion. Schonlau in [63] 

also addresses the issue of sampling several points at a time. 

2.2.5 Conclusions 

This chapter summarizes different techniques for global optimization. We concen-

trate on the approaches where a sampling criterion is optimized to find promis-

ing new points at which to evaluate the objective function. Both minimizing a 

quadratic surface that is fitted to the sampling points and minimizing a surrogate 

function that interpolates the sampling points might lead to local search only and 

the global minimum might be missed. Overall the surrogate function can be im-

proved if new points are added where the uncertainty about the surrogate is high. 

This leads to more emphasis on global search. Some of the sampling criteria, for 

example the merit functions and the statistical lower bound, are direct combina-

tions of minimizing the expected objective function value minus a multiple of the 

error. The different terms, and therefore the emphasis on local or global search, 

are balanced by weights, the choice of which is not straightforward, and is often 

based on experiments. The probability of improvement and P-algorithm depend 

very much on the choice of the target value, as can be seen from ilinskas' theo-

rems. Jones in [32] suggests overcoming this difficulty of choosing a target value 
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by using several target values in every iteration or by using expected improvement 

which does not require this choice to be made. Good results are reported with 

Gutmann's approach. 
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Chapter 3 

Background 

This chapter gives the necessary background for the methods used in the rest of 

the thesis. We begin by summarizing the general approach to global optimizing 

of expensive functions. 

Computer simulations are widely used in engineering decision making. Often 

these pose optimization problems where the evaluation of the objective function 

is very expensive. In solving the optimization problem the aim is to keep compu-

tational cost low, but if one function evaluation on its own is very expensive this 

justifies putting some effort into trying to avoid having to make function evalua-

tions. The strategy is the following: the function is evaluated at a set of initial 

points. Then a comparatively simple approximation to the function is found and 

used as a surrogate function. Based on the idea that interpolating methods be-

come more and more accurate as new points are added, often a surrogate function 

which interpolates the original objective function at the known points is chosen. 

Using the surrogate function we then try to find new promising points at which to 

evaluate the true function. An issue here is the balance between local and global 

search. We want to find points at which we expect the function to be lower than 

the lowest function value we have found so far. However, at the same time we 

want to keep improving our surrogate function, keeping in mind that it might not 

always be very accurate, so we look for new sample points that are far away from 

the points sampled at up to this point. That means we look for points where the 

surrogate function value is low and where the error in the current surrogate is 

expected to be high. Since these two objectives usually conflict, we need to decide 

on their relative importance, and this is usually done by defining a merit func-

tion which combines the surrogate and the error function. A general algorithmic 

structure is: 

evaluate the objective function at a set of n initial points { () } 11  

form the approximating function and the error function, 
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optimize a merit function based on the approximating function and the 

error function to find a promising new sample point 

if the stopping criterion is met, stop, otherwise continue, 

evaluate the objective function at X(n+l), 

set m := n + 1, go to step 2. 

After each new evaluation of the objective function, the approximating function 

and the error function, and thus the merit function, are recalculated to take the 

new data point into account. The stopping criterion can be based on the value 

of the merit function. One example of a merit function is the expected improve-

ment function. The expected improvement at any point in the range reflects the 

expected amount of improvement of the approximating function beyond a tar-

get value (usually the best function value found up to this point) at that point, 

taking into account the uncertainty in the approximating function, i.e. the error 

function. The next sample point is chosen where the expected improvement is 

maximized. 

In this approach to global optimization of expensive functions it is assumed 

that the objective function can be modelled as a regression term plus a stochastic 

process term. Therefore stochastic processes play an important role, and we 

will start here by introducing some terminology and background on stochastic 

processes before explaining the background of the global optimization method of 

interest for this thesis. 

3.1 Stochastic Processes 

We are interested in certain properties of stochastic processes, such as covariances 

and correlations. The aim of this section is to give the background we need to 

work with stochastic processes, and their specific properties we are interested in. 

More details can be found for example in Grimmett and Stirzaker's book [27], 

along with the following definitions. 

Definition 3.1.1 

A random or stochastic process Y is a family {Y(x) : x e X} of random 

variables which map the sample space ci into some set S. 

For any fixed w e ci there is a corresponding set {Y(x) : x E X} C 8; this 

is called the realization or sample path of Y at w. 

We assume throughout that X = W1  and that .S = R, i.e. the processes are real- 

valued. For fixed w E ci, Y(x) is a function value at point x. The stochastic 
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process can be interpreted as defining a family of functions Y(x) of x e X, 
each function with some probability assigned to it. How do two random variables 

Y(x) and Y(v) depend on each other? This dependency can be captured in the 

covariance cov(Y(x), Y(v)) and the correlation cor(Y(x), Y(v)), v, x E X. Note 

again that Y(x), Y(v) are random variables and for fixed w e Q, Y,(x), Y(v) 

are possible outcomes. We will not focus on w and in line with our interpretation 

of Y(x) as a function value at the point x, we will also use the notation Y(x) 

instead of Y(x). 

We will now introduce some essential definitions for working with random 

variables and then progress to looking at stochastic processes, i.e. families of 

random variables. 

Definition 3.1.2 

Let Y, Y 1 , and Y2  be scalar random variables and let y be the possible values of 

Y. 

If Y has probability density function p, then the expectation of Y is given by 

E(Y) 
= 00

yp(y)dy. 

The covariance of Y 1  and Y2  is defined to be 

cov(Y i , Y2 ) = E[(Y1  - E(Y1 ))(Y2  - 

The variance of Y is 

var(Y) = cov(Y Y). 

The correlation (coefficient) of Y 1  and Y2  is 

cor(Y1 ,Y2 ) = __ cov(Y i , Y2
) 

(var(Y1 )var(Y2 )) 1/2  
Note that, from the definition of covariance and variance of a random variable Y, 

the variance of Y can be calculated by the following 

var(Y) = E[(Y - E(Y))(Y - E(Y))] 

= E(Y 2 ) - (E(Y)) 2 . 

For every w E Q we can form a vector of random variables Y = (Y(x(')),. . . , 

at the points 	. . . , 	E X. If S c IR, then the vector (Y(x(')),. . . , Y( x (n)))t 

has joint distribution function P : IRTh -* [0, 1] given by 

P(z) = P(Y(x 1 )< z1 ,. . . , Y(x) 	z,2 ) 

= f
ZI 

... fp(t)dt ... dt i , xRTh 

for suitable p: TR -* [0, oo); p is the joint probability density function of Yr . 
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Definition 3.1.3 

If Z is an m x n matrix of random variables, then E(Z) is the m x n matrix 

with (i,j)th entry E(Z 3 ). 

For a random vector Z the matrix E[(Z - E(Z))(Z - E(Z))t] = Cov(Z) is 

the covariance matrix of Z. Its (i, j)th entry is Cov ij  = cov(Z, Z3 ). 

The following lemma summarizes some useful properties of the expectation and 

the variance, for more details see for example [2]. 

Lemma 3.1.1 

If Z is an m x m matrix of random variables, A is an 1 x m real matrix and F 

is an n x q real matrix, then 

E(AZF) = A(E(Z))F. 

If V = AY, where Y is a random vector, then 

E(V) = AE(Y) 

Cov(V) = ACov(Y)A t . 

Part (i) can be proved by comparing elements of the matrices E(AZF) and 

A(E(Z))F, part (ii) follows from (i). 

Closely related to the notions of covariance and correlation are the autoco-

variance and autocorrelation. 

Definition 3.1.4 

Let Y = {Y(x) : x E X} be a stochastic process. 

The function 

c(x, x (2) ) = cov(Y(x'), Y(x 2 )) 

is called autocovariance function of Y. 

The autocorrelation function of a process Y with autocovariance function c is 

p(x',x 2 ) = 
c(x (1 ), x (2) ) 

(var(Y(x( 1 ) 
) 
)var(Y(x(2)  ) ) ) 1/2 

cov(Y(x(')), Y(x (2) ) 
(var(Y(x( 1 ) 

) 
)var(Y(x(2)  ) ) ) 1/2 

= cor(Y(x'), Y(x 2 )). 

Definition 3.1.5 

(i) The real-valued process Y = {Y(x) : x E X} is called strongly stationary 

if the families {Y(x ( ') ),.. . , Y(x (2))} and {Y(x(') + h),.. . , Y(x ()  + h)} have 

the same joint distribution for all h and . , such that E X and 

x + h E X, i = 1,. . . , m. This means that the processes' finite-dimensional 
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distributions are invariant under shifts. 

(ii) The real-valued process Y = {Y(x) : x e X} is called weakly stationary if 
for all 	E X and 	+h,x 2 +h E X 

E(Y(x ( ') )) = E(Y(x 2 )) 	 (3.1) 

and 

cov(Y(x 1 ), Y(x 2 )) = cov(Y(x" + h), Y(x 2  + h)). 	(3.2) 

This means that the process has constant mean and its autocovariance is invariant 

under shifts. 

It follows that a strongly stationary process is also weakly stationary. 

Definition 3.1.6 

If the vector of random variables Y = (Y(x ( ') ), . . . , Y(x('))) has joint density 

function 

P(Y) = ((2C1/2exp (-( - )C'(y - ) t) 

where C is a positive definite symmetric matrix, then Y is said to have the 

multivariate normal distribution N(/2 (y), C(y)). 

Note that if Y has the multinormal distribution N(, C) then E(Y) = ji, i.e. 
E(Y(x())) = j, and the matrix C is called the covariance matrix because C23  = 
cov(Y(x(2)),Y(x(3))) = Cov j . Since (Y - t)(Y - p;)t is a matrix with (i,j)th 
entry (Y(x()) - )(Y(x(i)) - j) and 

E((Y(x()) - )( Y(x)) - jij)) = cov(Y(x), Y(x)) 

the covariance matrix is often written as 

C=E[(Y—,4(Y—) t ] 

Definition 3.1.7 

A real-valued continuous process Y is called Gaussian if for each finite-dimensional 

(x ( ') ,. . . , x() ) the corresponding random vector Y = (Y(x(')),. . . , Y(x())) has 

the multivariate normal distribution N(/2, C) for a mean vector it and a covari-
ance matrix C. 

The joint density function of a Gaussian stochastic process is completely 

determined by its mean and covariance. Therefore a Gaussian stochastic pro-

cess is strongly stationary if and only if it is weakly stationary, and we will 

call a Gaussian stochastic process with this property stationary. By definition, 
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a stationary Gaussian stochastic process has constant mean vector such that 

tt = E(Y(x))1 for any x E X, by (3.1), and it has constant irocess variance, 

var(Y(x)) = cov(Y(x),Y(x)) = cov(Y(v),Y(v)) = var(Y(v)) for any x,v E X, 

by (3.2). We will also denote this variance by a 2 . 

Definition 3.1.8 

The scalar random variable Z is said to have the gamma distribution with 

parameters A, q> 0, if it has density function 

1(z) = 	 z > 0. 
f0 	

1 

z'-e-dz 

Let N 1 ,. . . , N be independent N(0, 1) variables and let 

Then Z is said to have chi-squared distribution, denoted by X 2 , with u degrees of 

freedom. The density function for x2  with u degrees of freedom is given by the 

gamma distribution with A = and q = i.e. Z has probability density function 

it 

1 
1(z) = 	u_i z 	edz 	

) z_1e_, z > 0. 

Definition 3.1.9 

We define G(6, k 2 ) as a probability distribution with parameters 6 and k with 

density function 

9(v,6,k 2 ) = K6k6v61 exp 
(k2v2) 

for some suitable normalizing constant K6 . 

The C distribution is related to the x2  distribution as follows: let 

w = (kv) 	 (3.3) 

then 

K5 k 5v 5 ' exp (- 
(2) 

dv = 	
exp (-) 

dw. 

This is a x2  distribution with S degrees of freedom. To generate x2  random 

deviates with S degrees of freedom, the following method can be used: if S is 

a small even integer, the random deviate w can be obtained from 8/2 uniform 

U(0, 1) random deviates U by 

(rI
J/2 \

w = —2log 	 u) . 	 (3.4) 
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If 5 is odd, the random deviate w can be obtained by 

w=-2log H U)+N2 	 (3.5) 

where N has standard normal distribution, i.e. N N(0, 1). This method can be 

found for example in Gentle's book [25]. Then to obtain a random sample v from 

the C(5, k) distribution we generate a w using (3.4) or (3.5) and then calculate v 

using (3.3). 

3.2 Derivation of the BLUP and the MSE 

The expected improvement criterion, which is examined later on in this thesis, is 

based on an interpolating approximation to the objective function and an error 

function. The derivation of these is given in this section. This can also be found 

for example in papers by Sacks et al. [60, 61] and Schonlau's thesis [63]. 

The approach described here is based on the Kriging model approach used in 

Geostatistics. The Kriging model consists of two components. The first compo-

nent is a general linear model, the second component is the departure from the 

linear model which is treated as the realization of a stationary Gaussian stochas-

tic process. Let D = [0, 1]d  denote the design or sample space, let x E D be a 

(scaled) vector of input values. The Kriging approach models the response as 

Y(x) = 	f(x) + e(x), 	 (3.6) 

where e(x) is a stationary Gaussian stochastic process with expectation E(e(x)) = 

0, process variance a 2 , and covariance cov(e(x), e()) = 0,2cor(e(x), ()) for in-

put vectors x, and a correlation function cor(., .), and where (fi (x), . . . , 
are m known (regression) functions. We consider the case where the functions 

(f1 (x),. . . , fm (X)) t  form a polynomial basis. For any x e D the output y(x) is 

a sample path or realization of a Gaussian stochastic process with expectation 

E /33  f3 (x) and variance a2 . There are different possible choices of correlation 

functions, some of which were mentioned in Chapter 2. A generalized exponen-

tial autocorrelation function PK  is used here, which is defined by 

d 

PK(X,X) = flexp(_-Ojlxj _ j ji) 	 (3.7) 
j=1  

where 03  > 0 and 0 <Pi < 2. For details of this approach see for example the 

papers by Sacks et al. [60, 61], and Schonlau's thesis [63]. The p and 0 influence 
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the smoothness of the response surface and how global or local the estimator 

is. Larger 9 will make correlation smaller in general. The Pi  are smoothness 

parameters. Note that if derivatives are to be used, the correlation function has 

to be at least twice differentiable, that is Pj = 2 for j = 1,. . . , d. Details of 

conditions for differentiability can be found in [54]. The autocorrelation function 

PK controls properties of f(.). In particular, with the above definition (3.7) the 

correlation pK(x, ) and the covariance cov(€(x), €()) are functions of 1x3 - 

Only, j = 1,. . . , d. The correlation will be near one when the distance between 

two points is small and it will be near zero for points that are a large distance 

apart, depending on the values of the 6 3 . 

	

Suppose we have n d-dimensional vectors 	. . . , 	e D at which the 

response y(x) has been evaluated and the corresponding response values are y = 

(yi,. . . , 
y)t. Let R denote the matrix (pK(X, x(i))) 1<<  and let r(x) or r 

denote the vector (pK(x, x () )) 1<< , so that 

	

r(x) =exp Oj I xj - 	 (3.8) 

and r x  is the vector of correlations between a previously unsampled point x and 

the sample points 	. . , 	The following notation will be used, 

fX = 

F = 

thus F denotes the n x m matrix of m polynomial basis elements evaluated at 

ri sample points. For the data Y = (Y 1 ,. . . , Y )t the above Gaussian stochastic 

process model (3.6) looks as follows, 

Y=F/3+€(x) 

where €(x) is the departure from the linear model c(x) = Y - F/3, and it has 

expectation E(c(x)) = E(Y) - F3 = 0. Since €(x) is a stationary Gaussian 

stochastic process, the E(x) have the same variance a 2 . The expectation and 

covariance of Y are, respectively 

E(Y) = Ff3 

cov(Y(x),Y()) = apK(x,x). 

Consider a linear predictor ky of Y(x). The best linear unbiased predictor 

(BLUP) finds the k x  that minimizes the mean squared error (MSE) of prediction 

subject to the unbiasedness constraint. The MSE is given by 



s2 [ky] = E[ky - 

= (E[ky - Y(x)]) 2  + var(ky - Y(x)) 

= (kF/3 - fj3) 2  + var(ky) - cov(ky, Y(x)) 

—cov(Y(x), ky) + var(Y(x)) 

= (kF/3 - f3) 2  + kvar(y)k - kcov(y, Y(x)) 

—cov(Y(x), y)k + a 2  

= (kF13 - fj3) 2  + ka2Rk - 2ka 2  r + a 2 	(39) 

Equating E(ky) = kF/3 and E(Y) = f/3 gives the unbiasedness constraint 

kF=f, 

this makes ky an unbiased estimate of Y. With this unbiasedness constraint 

expression ( 3.9) simplifies to 

s2[ka,y] = kcr2Rk + a2  - 2ka2r. 	 (3.10) 

To find the BLUP we have to solve the following minimization problem 

minimize s 2 [ky] 	 (3.11) 

s.t. kF = f. (3.12) 

Scaling the constraint (3.12) and introducing Lagrange multipliers the problem 

takes the form 

minimize ka2Rk - 2ka 2r + a2 - 2a2At(Ftk - fr). 

Taking derivatives yields the necessary first-order optimality conditions for k to 

be an optimum for problem (3.11)—(3.12), 

Rk—'r—FA = 0 

kF—f = 0 

which corresponds to the following system, 

fo Ft\  (—A\(f\
rx  F R) 	k ) - 	

(3.13) 

The matrix 

(0 Ft  
FR 
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is non-singular, and therefore invertible, under the following conditions: the ma-

trix R is positive definite, m < n, and F has full rank m. The matrix F of 

polynomial basis functions has full row rank m if the number of sample points m 

is greater than the maximum degree of any of the basis functions. In our case the 

matrix R is always positive definite and we assume that the number of sample 

points exceeds the maximum degree of any of the basis functions. Consequently, 

there exists a unique solution to the necessary optimality conditions. The BLUP 

is then = ky for the k that solves the above problem (3.11)—(3.12), so 

(x) = ky = (—A t
, k) ( °) 

O Ft\'tO\ 
= 	'F R) 	Y ) 

which can be written as 

(x) = fT3 + rR'(y - Ff3) 

where 
= (FtRF)FtR y.  

To see this note that 

(0 F\( 
\F R)\R'(y—F))\y 

Note that the correlation matrix R is positive definite, as is shown in Chapter 5. 

It is therefore invertible, and it can be factorized in Cholesky factors which can 

be used to solve any systems involving the matrix R. The /3 is the generalized 

least squares and also the maximum likelihood estimate of 3 as in (3.6). Most 

commonly only a trivial regression function is. used, f = 1. This gives a constant 

regression term and in this case the BLUP simplifies to 

(x) = /Tt + rR'(y - lfi) 

where / is the generalized least squares and the maximum likelihood estimator 

of u, 

= (ltR_hl)_lltR_ly.  

At any design point 	i = 1, . . . , m the predictor satisfies 

(x(i)) = f3 + e () (y - Ff3) 

= 
EUI 



where e 2  is the n-vector with 1 in position i and 0 everywhere else. So interpo-

lates the objective function in 	. . , x. 

To derive a formula for the mean squared error we consider the above expressions 

for the MSE s2  (3.10) and the system (3.13). From (3.13) it follows that 

kRk - 2kr kFA - kr = fA - 

and we can derive the following expression for the mean squared error, 

82((x)) = E[ky - 
= a2  + ka 2  Rk - 2ka2r 

= a2 [1 + kRk - 2kr] 

= or 2 	(f,r) ( 
	) ]  	

(3.14) 

0 Ft\'(f\] = a2 [1_ (f,r) F R) 
	r )j 	

(3.15) 

It is not difficult to see that 

(0 Ft'\ (_(Ft R_ l F)_l f + (FtR_ l F)_lFtR_ lr,  
F R) k R_ l F(FtR_ l F)_l f + R'r - R_1F(FtR_1F)_1FtR_lrx 

_(f 
r 

and using this expression, (3.15) can be rewritten as 

82 ((x)) = 	- rR'r + f(FtRF)f - 2rR'F(FtRF)1f 

+ rR_ l F(FtRF)_ l FtR_ lr]. 	 (3.16) 

In the case where f = 1 and F = 1 this simplifies to 

8 2 ((x)) = 0
,2  [i - rR'r 

+ (1 - 1 tR_ lr)2 I ltRhl 	
(3.17) 

At any design point 	i = 1,. . . , n the mean squared error satisfies 

= 0. 

This can be shown by substituting R'r() = 	and Fte(i) = f() into (3.16). 
We have now found a linear predictor (x) of Y(x), and an estimate 8

2 (x) 
of the error of this linear predictor. At every point x e [0, l]', (x) can be 

interpreted as an expected value of the objective function y(x) at that point, given 

the known data points (x ( '), yi),. . . , (x ('), y). The MSE s2 (x) is an estimate of 

how good or bad an estimate this expected value is. For fixed 8 and 0r2 , s2 (x) only 

depends on the distance of x from any previous sample points, x( 1 ) ,.  . , l (' ) . At 
the previous sample points, x( 1 ) ,..  . , the objective function values are known, 

and there is no uncertainty about the BLUP. At these points the MSE is 0. 
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Figure 3.1: Latin Hypercube with 11 points. 

3.3 Initial Sample 

Minimizing the objective function requires choosing a set of n initial sample points 

in the sample space D = [0, 1]d,  also called an irfitial design, at which the objective 

function is to be evaluated to start with. As the optimization proceeds, more 

points will be added according to a sampling criterion, but no such criterion 

is available for the initial points, and they are often chosen from a so-called 

experimental design. There are a number of different experimental designs that 

can be used to find an initial design. Koehler and Owen for example in [38] look 

at different designs, variations of them, and their properties We use a common 

variant of Latin hypercube sampling, also called Latin hypercube sampling with 

centered points, or lattice samples, to find the initial design with n points. In d 
variables or dimensions and with n sample points the points are found by 

- 	(i) - 0.5 
n 

where 	j = 1, . . . , d are independent uniform random permutations of the 

integers 1,. . . , n. By this design the range [0, 1] of any input variable x 3  is split 

into i-i intervals of the same length and the Latin hypercube sample projected 

onto any one of these input variables has exactly one point at the centre of any 

of these intervals, and therefore each of the input variables is explored in each of 

the n intervals. Figure 3.1 shows an example of a Latin hypercube with n = 11 

centered points in 2 dimensions. 

Latin Hypercubes as initial designs have the advantage that besides having 

a random element, every dimension is explored in the sense described above. 

Advantage over regular grids are particularly relevant when working in higher 
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dimensions, where the number of points sampled on a regular grid can be pro-

hibitively large; this advantage is particularly prominent if the function depends 

very strongly on few input variables. At the same time the design space is ex-

plored better in every variable than if the choice of initial points were made by 

uniform sampling over the hyperrectangle. 

3.4 Parameter Estimation 

The model has parameters which have to be estimated. This could be parameters 

o = ( Or ,. . . , 04 and p = (p1,. . ,pd), or parameters 0 = (01, . . . , 04, if the pj  are 

fixed. Once these have been found, the estimates A or /3 and ô can be computed. 

Two popular methods for parameter estimation are introduced here, Maximum 

Likelihood Estimation (MLE) and Cross Validation (CV). 

Both of these methods give a single point estimate of the parameters, in 

contrast to Bayesian parameter estimation where the entire posterior distribution 

of the parameters is taken into account. 

3.4.1 Maximum Likelihood Estimation 

By using maximum likelihood estimation we find the parameters for which the 

given set of observations has maximum probability. With observations y = 

(Yi,. . . , y4, a random sample from the normal distribution with mean F0 and 

variance-covariance matrix a2 R, the likelihood function is 

L(y) = 2a2 RJ 1/2 exp 	(y - F/3)ta_2R_l (y -Ff3)]. 	(3.18) 

Often it is more convenient to use the log-likelihood function instead. This is 

lnL(y) = h (2ira2R'/ 2) - (y - F/3) t a 2 R' (y - Ff3) 

= - In (27ra2) - In (R) - (y - Ff3) t  0,2R' (y - Ff3) 

= —[n1n (2a2) + In (IRI) + (y - F/3)t 2 R' (y - Ff3)].(3.19) 

Assuming that 0 and p are known, differentiating with respect to /3 and a2  and 

setting the derivatives to zero gives the maximum likelihood estimate (MLE) of 

/3 and of 01 2  respectively, 

= (FtR 1 F) - 'FtRly  

a = 1  —(y—Ff3)tR'(y—F/3). 
Ti 
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Substituting and ô 2  into (3.19) we obtain 

lnL (y) = —[nln (2)  + in (IRI)] - [n1n(2ir) + n] 

= = —[n1n (a2) + in (IRD] + const 

as the function to be maximized to find the maximum likelihood estimates of 8 
and p. See for example Schonlau's thesis [63] and for further background reading 

the book by Mardia et al. [46] or Seber [68]. 

3.4.2 Cross Validation 

How well does the BLUP function (x) agree with our observations? For given 

parameters we compare the observations of the objective function with the val-

ues of the BLUP at the respective sample points. One of the n points which 

we have already sampled at, say, is left out of the sample and the BLUP 

for the function value at that point is found using the remaining n - 1 points, 

this is denoted by . We calculate the BLUP as a function of the parameters 

Od, Pi,• . Pd, evaluate the sum of squares of the differences between the 

actual function values and the corresponding values of and minimize this sum 

with respect to Oi,. . . , Od and Pi, . . . ,Pd 

- 

Cross validation can be used to validate the model, see for example the paper 

by Schonlau et al. [64], or to estimate the model parameters. The problem with 

cross validation here is that for every iteration in the optimization routine, has 

to be evaluated n times and each of these evaluations involves inverting matrices 

and is expensive for large n. For the estimation of the model parameters we shall 

prefer maximum likelihood estimation. 

3.5 Expected Improvement 

While we want to sample the function at points where the expected function value 

i, the BLUP, is low, we also want to keep sampling at points far from previous 

sampling points, where the uncertainty in the function value s2 , the MSE, is 

high. This aim can be quantified by the expected improvement function, and by 

maximizing it we find new points where we expect maximal improvement in the 

function values. With the two different aspects of sampling where is low and 
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2 is high, expected improvement (El) is a way of balancing global versus local 

search. 

We only know a few points of our function y(x) that is to be minimized. We 

model the uncertainty in y(x) at a point x E D by treating it as the realization of 

a normally distributed random variable Y(x) with mean and standard deviation 

given by the BLUP and s = So Y(x) is N((x), s 2 (x)) distributed and 

Y(x)—(x) is N(0, 1) distributed. Let YOn  be the best function value found up 
S(X) 

to this point, then the improvement at the point x is 

1(x) = max(yon  Y,0). 

The expected improvement is 

E[I(x)] = E[max(y o  - Y, 0)] 

= f
YOn 

(you - y)(y)dy 

where 	is the probability density function of Y(x). This can be written as 

E[I(x)] = (Yon - 	
(YOn - 	7YOn_—  + sçb 

where (.) and  (.) are the standard normal probability density and the cumu-

lative distribution function respectively. Jones et al. in [34] state an interesting 

property of the expected improvement. This property becomes obvious when 

taking the derivatives of E(I) with respect to s and . This gives 

E(I) - - (Yon—) (yon) 
	

(YO.\ 
- 	

. 	
) 

+ . (yons2 - 
	

( Yo% 
) ) 

= - (YOn — 	
< 0 	 (3.20) 

\8) 

and 

ÔE(I) - 	Yon 	
(YO.

__ __
a 	- (Yon 	

_ ) 
+ (Yon_ ) +((Yon; )2) (

YOn_  ) 
= 	(YOm) >0. 	 (3.21) 

Hence E(I) is monotonic in s and , more specifically strictly monotonically in-

creasing in s and strictly monotonically decreasing in . 
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The expected improvement is now used as a criterion for finding new sample 

points at which the original function is to be evaluated. The expected improve-

ment function is multimodal and maximizing it to global optimality therefore 

requires a global optimization technique. It should be observed that all merit 

functions which include an error term will be multimodal and therefore require 

global optimization. This global optimization can be achieved by branch and 

bound, to which we will now give a short introduction before returning to the 

problem of applying it to the expected improvement function. 

3.6 Branch and Bound 

Generally in branch and bound the original problem is divided into a sequence 

of subproblems which are solved to give the solution to the original problem. 

Since we use branch and bound only for maximizing we will explain it only in 

the maximization context. Branching is done by the bound constraints. We start 

with the initial box, here D = [0, i]d,  and find a lower and an upper bound for 

the maximum of the objective function, here the expected improvement function, 

on this box. To find a lower bound on the maximum we can use any value of the 

objective function on that box. The box is then split into two smaller boxes in the 

following way: it is split in half along the longest side and if there is more than 

one side with the same length we choose the one with the lowest index. One of 

these boxes, for example the box with the lower half of the side we have just split, 

is kept to work on while the other box is stored on a waiting list. Alternatively 

the two boxes are put onto the waiting list and the box on the waiting list with 

the highest upper bound on the objective function is used as the new working 

box - this corresponds to best-first search, rather than depth-first search, and 

best-first search is the method we use. Now a lower and an upper bound for the 

maximum of the objective function on the new box are found. If the upper bound 

on the box is lower than the largest previously found lower bound, then that box 

is discarded as nonpromising and a new box to work on is taken from the waiting 

list. So in brief, if we are working on a box, we split the box, choose a box to 

work on, find the bounds, either discard the box to be replaced by a box from the 

waiting list or keep it, start again by splitting it etc. If there is more than one 

boxon the waiting list we choose the one with the highest upper bound. If there 

are several with the same upper bound we choose the one nearest the bottom of 

the list. Thus we create a binary tree of boxes or subproblems and if it becomes 

clear that one node of the tree does not yield the optimum, we do not look into 

the rest of the branch any further but work on a different one instead. 



For details on branch and bound methods see for example the book by Nemhauser 

and Wolsey [51]. 

3.7 Maximizing the Expected Improvement 

By maximizing the expected improvement we find new promising points to eval-

uate the original function at. One way of maximizing the expected improvement 

function is by branch and bound. For details see for example the paper by Jones 

et al. [34], this is the approach that is followed in this section. Maximizing the 

expected improvement by branch and bound requires finding upper bounds on 

the expected improvement on the boxes. By the above stated monotonicity prop-

erties (3.20) and (3.21) these can be found by maximizing 82 (x) and minimizing 

(x). Here s2 (x) and (x) are regarded as functions of the variables x and r and 

the relation between x and r is fixed in the constraints. So we have the following 

two problems 

Problem 1: 

mm 	(x, r) = fJ3 + rR'(y - Ft3) 	 (3.22) 

s.t. r - 	( I 	- 	= 0 	i = 1,... 

x<xj <xy 	j=1,...,d 

Problem 2: 

max .s2(x, ) = u2[1 - rR'r + f(FtRF)_lf - 2rR'F(FtRF)1f 

	

+ rR'F(FtRF)'FtR'r] 	 (3.23) 

s.t. ri - 	exp(—Ox - xi) = 0 	j = 1,... 

xfx3x 	j=1,...,d. 

The lower bounds 	and the upper bounds xV on the x3  give lower and upper 

bounds on the Ti. So we get the additional bound constraints r 

i = 1,.. . , n. Rather than maximizing s 2  we will look at the equivalent problem 

of minimizing _2  The two problems to be solved now are the following 

Problem 1: 

mm 	(x, r) = fà + rR'(y - F) 

s.t. Ti — Hexp(—Ojx—xI 3 )=0 	i=1,...,n 

xx j  x , 	 d 

T<T<T 	i=1,...,n 
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Problem 2: 

mm —s 2 (x, r) = -0,2[1 - rR'r + f(FtRF)_lf - 2rR'F(FtRF)'f 

+ rR 1 F(FtRF)'FtR'r] 

s.t. r - 	exp(_0lx - 	= 0 	i = 1,... 

xx 3 x 	j=1,...,d 

r<r<r 	i=1,...,ri. 

In the case where f x  = 1, and s 2  are functions of r x  only, is even linear 

in r. 

Both of the above problems are non-convex. In the following we will take a 

closer look at how Jones et al. in [34] deal with the constraints and the objective 

functions. The constraints 

d 
. r— 	exp(—Oj Ixj —x

(i) 
 j p3)=0 	z=1,...,n 

j= 1  

can be written as 

ln(r) +(9j Ix  — xIi) = 0 	i = 1,.. .,n. 

These constraints are non-convex. Jones et al. in [34] replace them by linear 

underestimators. First the n equality constraints are split up into 2n inequality 

constraints 

<0 	i= 1,...,n 

and 

<0 	i= 1,...,n. 

Then the term ln(r) for example is replaced by a linear function a + bri  that 

underestimates it over [ri, re]. Similar underestimators are used to replace the 

other terms. In the case of ln(r) and - Ix.i - 
	
JPi the underestimators are chords 

and in the case of I x - 	i and - ln(r) the underestimators are tangents. The 

tangents are computed at the midpoint of the relevant interval for x 3  or r. This 

leads to a linearly constrained problem. So due to the relaxation of the constraints 

we now have a convex feasible region. To minimize —s 2  Jones et al. in [34] use a 

convex relaxation, aBB. This is described in detail in [23]. A nonconvex relaxation 

is used to minimize . These values are then used to calculate upper bounds on 

the expected improvement in the branch and bound. 



3.8 Gradients 

For some functions, the gradient at a point may be readily evaluated via known 

analytic expressions or techniques of automatic differentiation. They provide ad-

ditional information about the behaviour of the function, and can be incorporated 

into the model to allow a better approximation of the function. This possibility 

of using gradients in the Kriging framework was investigated briefly by Morris 

et al. in [50], whose work is closely followed here, up to notational changes. We 

consider the unknown objective function Yo : [0, 1]d —* R, and let Y0  denote the 

corresponding Gaussian stochastic process with p0 (x) = E[Yo (x)], 

Yo (x) = A(x) + €(x), 

where €(x) is the realization of a stationary Gaussian stochastic process. Let the 

partial derivatives of y0 (x) and Yo (x) with respect to x 2  be denoted by 

-  
y2(x) 

- 
Dyo(x) 

 Dxi 

-- 

Y 	
DY0(x) 

(x) 	 ,i=1...d. 

Also let a = (a 1 ,. . . ,ad) be a d-vector with Ei  a2  = k, where a, k = 0, 1, i = 
1,.. . , d, and let 

y(al .... ad)() = 
aky 

dxv' . dx 

So for e(i)  a unit vector with a unit entry in position i and all other entries zero, 

	

1 0 	=  

We shall use the analogous notation for p o . The mean and covariance of the 

derivative process are given by 

	

E (y(al .... ad) 	 (al,...,ad) 
0 	(x)) = 	(x) 

(ai 	,ad) 
ad)(X) y(bi 

.... bd)()) = a 2 cor(Y0  '• 	(x), y(bi .....bd)()) 

where 

V(al .....ad) cor(i 0 	(x), y (bi 	__ .....bd)()) 	= 

where pcj  is the autocorrelation function 

d 
(_l)>bi 11 (a3+b3) 

(x3 -;) (3.24) 
j=1  

= exp(-9x 2 ). 
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This autocorrelation function is a special case of the previously introduced auto-

correlation function pK3 (x) = exp(_Oj Ixi). 

This approach for using derivatives and the notation can be used for higher 

order partial derivatives, but here we are only interested in at most the first 

partial derivatives of the objective function and the Gaussian stochastic process. 

Therefore in our case the a3  and b3  can take values of 0 and 1 only so we are only 

interested in the cases where a and b are unit vectors or the zero vector 0. For 

notational convenience we will also denote the zero vector by e °  = 0, and we are 

interested in the cases where a = ( ai,.. . ,ad) = e(c) and b = (b1 ,.. . , bd) = e 1  

for 0<k,l<d. Thus 

y(a) = y(e('))() 
= Yk(x) 

y(b) = y(e(l))() = ( x) 

are the partial derivatives of Y0  with respect to Xk and x 1 , respectively. As before 

we consider the situation where we have sampled at n initial points 	, 

where this time, besides the objective function values, we also know the first 

partial derivatives. Let 

y = (y0(x ' ), . . . , yo(x), y1(x ') ),. . . , yi(x),. . . , y(x'), . . . , 

be the vector of known function values and first partial derivatives. We assume 

that the regression term in our model is a constant, so t0 (x) = ,a. The correlation 

matrix R is the ((d+ 1)n x (d+ 1)n)-matrix computed from (3.24) at the n design 

points 

(e(l)) 
R = cor((x () ), Y 	(x)) 	i,j = 1,. . . , n, 	k, 1 = 0,.. . , d. (3.25) 

The correlation vector r x  is the (d + 1)n-vector 

	

= cor(Yo(x)' 
y(0e(k))((i))) 	

i = 1,. . . , n, 	k = 0,.. . , d 

with entries computed from (3.24). The structure becomes clearer if we look at 

a partitioning of the correlation matrix I?, 

(R°  R't  
R=(R, R11 ) - 

Here R°  is the n x n matrix containing the correlations of the function values. Its 

entries are 

130 —cor(Yo (x() ),Yo (xU) )), 	j,j = 1,. ..,ri, lLj ,j - 
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and it corresponds to the part of matrix R with k, 1 = 0 in (3.25). The matrix 

R' is the nd x n matrix containing the correlations of the first partial derivatives 

with the function values. Its entries are 

	

= cor(2 	 Yo (x)), 	i, j = 1, . . . , ri, 	k = 1, . . . d, 

it corresponds to the entries with I = 0 in (3.25). Similarly, RIFt  contains the 

entries with k = 0 in (3.25). And R" is the nd x nd matrix containing the 

correlations of the first partial derivatives with first partial derivatives 

R_1)d+k,(_1)d+1 = cor(Y0 	(x), y(e(1)) (xU, 	i, j = 1,.. . , n, 	k, 1 = 1, . . . d. 

The correlation vector r x  can be partitioned similarly into one vector r 0  of length 

n containing correlations of function values, and a part r' of length dn containing 

correlations of function values with first partial derivatives 

(rO = 

such that r() for i E 11,. . . , n} is the same as the i-th column of the correlation 

matrix R. The vector 	is the (d + 1)n-vector 
ax1 

ar 	(e(1)) 	(e(k)) 
= cor( 	(x), 	(x)) 	i = 1,. ..,n, 	1 = 1 ) .. .,d, 	k = 0,... ,d 

which contains the correlations between derivatives at a point x and function 

values or derivatives at sample points. For any sample point i = 1,. . . , n, 

the vector 23 () 
is the same as the (n + (i - 1)d + l)th column of the correlation 

matrix R. As before, where we used only function values, we can find the predictor 

(x) = 4+rR'(y —4v) 

where 4 = (VtR_1V)_lVtR_ly is the maximum likelihood estimate of jt, and ii 

is a vector with entries 1 in the n positions corresponding to the positions of the 

function values in y and 0 otherwise, so 

n 	dn 

v = (1,... , 1,0, . . . 

Thus the predictor interpolates the objective function values at the points 

i=1,...,n, 

= 4 + V(i)R(y - 4v) 

= 4+e(y-4v) 

=yi. 
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The predictor (x) also interpolates the first partial derivatives at the points x, 

i = 1, . . . , m. To see this note that 	X is the same as the (n + (i - 1)d + j)th 
(IXj 

row of the correlation matrix R. Therefore 

DT(j) R' = 
e+_ 1 )d+j) 

(9xi  

and 

(xi)) = arX()Rl() 
ax3 	axj  

= 	 - fw) 

= Yn+(i-1)d+j 

= 

So the predictor (x) interpolates the objective function and the first partial 

derivatives of the objective function at the n sample points. As before, we can 

use (x) to predict the objective function value at any point x e [0, 1]d,  and now 

we can also use it to predict first partial derivatives. 

Example 3.8.1 

To give an idea of what the correlation matrix R and the vectors r x  and ii look 

like when using gradients, we give a small example with d = 1 and n = 2. With 

d = 1 there is only one partial derivative to be considered and 

(e'' ) ) cor(Y (  (x), 
y0(e(l))(X(i))) = 

cor(Yk(x), 1'(x)) 

= (-1) 1p"(x - 

The derivatives of the Gaussian correlation function in one dimension, Pc1  (x), 

are 

(0) 
Pci(x) = exp(-6x2 ) 

 
Pci(x) = —2Oxexp(-0x 2 ) 

 
Pci(x) = —2Oexp(-0x 2 ) + (-29x) 2 exp(-0x 2 ). 

We have two sample points 	e [0, 1]. As a shorthand notation for the 

differences between the two sample points we use 

d1  = 	
- 

d2 = 	- XM 

and as a shorthand notation for the exponentials of the differences we use 

exp 1  = exp(—Od) 

exp2  = exp(—Od). 
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The 4 x 4 correlation matrix R in this case is, using (3.24), 

1 	exp 1 	 0 	 20d1 exp 1  
exp2 	1 	 20d2 exp2 	 0 

0 	—20d 1  exp 1 	29 	(29 - (20d1 ) 2 ) exp 1  

	

—29d2  exp2 	0 	(20 - (20d2 ) 2 ) exp2 ) 	 20 

The upper left 2 x 2 submatrix is the correlation matrix of the function values at 

the two sample points and corresponds to the entries with k, 1 = 0 in (3.25). The 

lower right 2 x 2 submatrix is the correlation matrix of the derivative values at 

the two sample points and corresponds to the entries with k, I = 1 in (3.25). The 

remaining two submatrices contain the correlations between function values and 

derivative values and correspond to k = 1 1  1 = 0, and k = 0, 1 = 1 in (3.25). 

The correlation vector r for any point x is 

exp(-9(x - 

rx 	
exp(-9(x - x (2) ) 2 ) 

( 

) 

= 	20(x - x( 1)) exp(-9(x - 
20(x - x (2) ) exp(-0(x - 

and the vector ii is 

1 
1 

1= 
0 
0 

	

The two sample points 	and 	using Latin hypercubes with centered points 

	

are chosen to be 	= 0.25 and 	= 0.75. The function (x) as given in (3.8) is 

used as a predictor for function values and first derivatives at any point x e [0, 1]. 

With this approach as described above gradient information can be used to make 

the predictor more accurate. As we have seen, the predictor interpolates the 

function values at the n sample points, and it interpolates the derivatives at 

these points. For cases where derivatives of the objective function are readily 

available and can be computed without too much extra computational cost, this 

approach seems to be worth further investigation. 
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Chapter 4 

Generating Sample Functions 

Our algorithm is based on the Kriging approach. In the Kriging approach to 

optimizing expensive functions it is assumed that the objective function consists 

of a regression term and a realization of a stationary Gaussian stochastic process. 

What do such realizations of Gaussian stochastic processes look like? How does 

the algorithm perform with such realizations as test functions? After all the algo-

rithm should be particularly well suited for such functions. To help answer these 

questions and to test how well the algorithm works we generate such realizations 

of Gaussian stochastic processes. These stochastic processes have certain proper-

ties, i.e. known mean and covariance, which make it easier to monitor and assess 

the progress and success of the algorithm. In this chapter we explain how to gen-

erate realizations or sample functions of Gaussian stochastic processes which have 

given autocorrelation and autocovariance functions. Because of their properties 

these functions are useful as test functions for our program. 

Recall that we used Y : [0, 1]' -p R with 

Y(x) = 	 + €(x) 

as a model for the objective function, where c(x) is a stationary Gaussian stochas-

tic process with expectation E(E(x)) = 0 and variance var(E(x)) = a 2 . An exam-

ple of an autocorrelation function of €(x) and c(), x, Y E [0, i]d  is the Gaussian 

autocorrelation function 

pc(x,x) =flexp(_Oj(xj - j) 2 ) 	 (4.1) 

where O > 0, j = 1,. . , d, and this is the form of autocorrelation function and 

autocovariance function which will be used in what follows. 

A stationary stochastic process has constant variance, a 2  say, and in this 

case the relationship between the covariance cov(.,.) and correlation cor(.,.) is 
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given by cov(.,.) = o-2cor(., .), and similarly for the autocovariance c(.,.) and the 

autocorrelation p(.,.) of a stationary process, c(.,.) = a2p(., .). 

4.1 Generating Functions using the Correlation 
Matrix 

Let us consider the (sample) points 	. . . , x and a correlation matrix R with 

the correlations between these points as entries Rj  = p(x() , x(j)).  We can use this 

to generate samples from random variables Y(x(')),.. . , Y(x()) with covariance 

and correlation matrix R. This can be done by the following method: Since R 

is a correlation matrix, it is positive semi-definite and we can decompose it such 

that 

R=MMt .  

This decomposition could, for example, be a Cholesky decomposition LLt,  or 
LLt = L/ 2 / 2 Lt with lower triangular and diagonal matrix L and E, re-

spectively. Alternatively we could use an eigenvalue-eigenvector decomposition 
V EVI = Vh/ 21 /2 Vt with the columns of V being the eigenvectors of the matrix 

R, and E being a diagonal matrix with the eigenvalues of R as its entries. Now 

let 

Y(x) = MZ(x) 
	

(4.2) 

where Z(x) = (Z(x(')),. . . , Z(a(n))) is an n-vector of independent standard nor-

mal, N(O, 1) variables. By the definition of Y(x) as a linear combination of normal 

random variables, it follows that Y(x) is also normal. Because (Z(x(')),.. . , 

are independent standard normal, the covariance matrix of the stochastic process 

Z(x) is the identity matrix, i.e. Cov(Z(x () ), Z(x())),_ 1 ,.., = I. Now Y(x) 

as defined in (4.2) is a stochastic process and it is easy to see that for 

i = 1,. . . , n, the expectation of Y(x()) is 

E(Y(x)) = E(MZ(x)) 

= ME(Z(x)) 

=0, 

since Z(x () ) is standard normal, N(0, 1). For 	ij = 1,. . . , n the covari- 

ance matrix of Y(x) is 

Cov(Y(x),Y(x)) = Cov(MZ(x),MZ(x)) 

= E(MZ(x)(MZ(x)) t ) 
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Figure 4.1: Function generated from exponential autocorrelation function with 
n = 100 and 0 = 1000. 

= ME(Z(x)(Z(x)) t )Mt  

= MCov(Z(x), Z( x )Mt 

= MIMt  

Therefore Y(x) is a stochastic process with identical covariance and correlation 

matrices Coy = R and process variance a 2  = 1. Note that this approach can 

be used for any covariance matrix or. correlation matrix, since covariance and 

correlation matrices are always positive semi-definite. Figure 4.1 shows an 

outcome using an autocorrelation function as given in (4.1) with d = 1, n = 100 

and 0 = 1000. The 100 points are evenly spaced points . , x in the 

interval [0, 1]. We used an eigenvector-eigenvalue decomposition for the 100 x 100 

correlation matrix R = V>Vt and set Y(x) = V'/ 2 Z(x), so that Y(x) is a 

linear combination of the eigenvectors of R. The entries of Y(x) are plotted as * 

against x. Figure 4.2 shows the first six eigenvectors of R, i.e. the first six columns 

of the matrix V. These plots show functions interpolating the 100 components of 

the eigenvectors in the interval [0, i]d.  Unfortunately this outcome is not given in 

function form and we cannot evaluate it at points other than . . , x() . The 

number of frequencies occurring in the eigenvectors is limited by ri, the number of 

points used. Therefore large n should lead to a better, more general result with 

more frequencies used, but it leads to difficulties in the matrix decomposition of 

the correlation matrix, especially if correlations are high. On the other hand, the 
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Figure 4.2: Eigenvectors of R, corresponding to the 6 largest eigenvalues 
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limitation on the number n of points depending on the correlation between the 

points seems to be largely self-correcting. High correlation means slowly changing 

function values, low correlation means rapidly changing function values, and to 

characterize a function whose function values do not display a lot of variation 

requires fewer points than to characterize a rapidly oscillating function. Thus 

only being able to use a small number of points n when correlations are high 

may still allow the function to be well specified. However, there remains the 

problem of not being able to evaluate the resulting functions at new points. This 

problem could be resolved if it were possible to find a closed form expression 

for the eigenvectors, and then the resulting function could be written as a linear 

combination of these. This problem is as yet unresolved and, in practice, we use 

another way of generating realizations of the stochastic process, which allows us 

to evaluate the resulting function at new points. This will be described in the 

rest of this chapter. Most of the background needed on stochastic processes was 

introduced in Section 3.1. More details can be found, for example, in Grimmett 

and Stirzaker's book [27]. 

4.2 Generating Functions Using the Autocovari-
ance Function 

Let us recall that a typical random or stochastic process is a family of random 

variables {Y(x): x E X} for some set X. We are interested in the following 

theorem, which can also be found in [27]. 

Theorem 4.2.1 

Given a function c: R' -* R such that, for all x, x 	, 	E Rd, z 1 ,. . . , z,, e 

c(—x) = c(x) 
	

(symmetry) 

Ej,k 
c(x(c) - X () )ZJZk > Q, 
	 (non-negative definiteness) 

there exists a strongly stationary process Y(x) with autocovariance function c. 

Our aim is now to generate samples from a Gaussian stochastic process, also in 

higher dimensions, that has a given autocovariance or autocorrelation function 

with properties as specified in Theorem 4.2.1. Note that every strongly stationary 

process is weakly stationary, and the covariance cov(.,.) and the autocovariance 

c(.,.) of a weakly stationary stochastic process is invariant under shifts and only 

depends on distances between points. Therefore 

c(O, h) = cov(Y(0), Y(h)) 
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= cov(Y(x), Y(x + h)) 

= c(x,x+h) 

for all x, h, and we define 

c(h) = c(O, h). 

Further, a weakly stationary stochastic process has constant variance a 2 , and we 

can define the autocorrelation function p(x) in terms of the shift h by 

From the theorem above, given a positive definite symmetric function, we know 

there exists a stochastic process with that function as autocovariance function. 

We will now discuss how to generate realizations of such a stochastic process, 

given an autocorrelation or autocovariance function. 

4.2.1 One Dimension 

First, we describe how to generate functions in one dimension, which map [0, 1] -* 

R. Let c(x) be a non-negative definite, symmetric function. Let 

00 

Y(x) = 1 f /5[Ni (w) cos(xw) + N 2 (w) sin(xw)]dw 	(4.3) 

where (w) is the Fourier transform of c(x), i.e. 

o(w) = 

and where Ni (w) and N2 (w) are independent normal processes. The function c(.) 

is symmetric, and therefore its Fourier transform is its cosine transform, i.e. 

(w) = 
foo 

c(x) exp(—iwx)dx 

= 
foo 

c(x) cos(wx)dx. 

Then {Y(x), x E X} is a stationary Gaussian stochastic process with expectation 

E(Y(x))=0 

and the covariance of Y(v) and Y(x), v, x E X, is 

cov(Y(v),Y(x)) = E(Y(v)Y(x)) 
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= E 
(00

1VC7(-UJ) [cos(vw)N1(w) + sin(vw)N 2 (w)]dw 
71 

100 	 )[cos(xZJ)Ni () + sin(x)N2 (ZJ)]dJ) 

= 	f J 	)E [(cos(vw)Ni () + sin(vw)N2 (w)) 
7r 0  

(cos(x)Ni (Z) + sin(xJ)N2 (J))] dwdZY 

J 1 t = 	1 00 

 (cos(vw) cos(xLJ)E[Ni (w)Ni (Zi)] 

+ sin(vw) cos(x)E[N2 (w)Ni (W)] 

+ cos(vw) sin(x)E[Ni (w)N2 (W] 

+ sin(vw) sin(x?J)E[N2 (w)N2 (J)]) dwdJ 

= I (w)(cos(vw) cos(xw) + sin(vw) sin(xw))dw
7r  

(w) cos((v - x)w)dw 	 (4.4) 
27r  f 00 

c(v—x). 

This relies on the fact that, since N1  and N2  are independent with normal distri-

bution, 

E[Ni (w)N i (W)] = E[N2 (w)N 2 (01 

= 

where ö(.) is the Dirac 5 function, and 

E[N2 (w)N i (W)] = E[N1 (w)N2 (W] 

=0, 

and since c(.) is an even function (4.4) is the inverse cosine transform of c(.). For 

a definition and properties of the Dirac S function see for example [27] or [59]. 

Therefore Y(x) has the autocovariance function c(v - x) = cov(Y(v), Y(x)) and 

is stationary. The above expression (4.3) for Y(x) requires the calculation of two 

normal deviates and the evaluation of a sine and cosine. 

A common way of calculating normal deviates is to use the Box-Muller method. 

This method generates pairs of independent normal random variables with joint 

distribution 

/ 
f(v,z) = 1 —exp 	

2 

v2+z2 

) 	
(4.5) 

27r 
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Details of the Box-Muller method as used here can be found in [16] for example. 

Let U(w) and V(w) be independent and uniformly distributed on [0, 11, and let 

L(w) = /1n(U(w)). 

We consider the following transformation from U(w) and V(w) to Ni (w) and 

N2 (w), 

Ni (w) = L(w)cos(V(w)27) 

N2 (w) = —L()sin(V(w)27). 

The random variables Ni (w) and N2 (w) can be shown to have joint distribution 

function f(.,.) as in (4.5), and are independently normally distributed. From this 

it follows that 

Ni (w) cos(xw) + N 2 (w) sin(xw) = L(c) cos(V(w)2ir) cos(xw) 

—L(w) sin(V(w)27) sin(xw) 

= L(w) cos(xw + V(w)27r) 

and so (4.3) can be written in the following form 

1 J Y(x) = 	
°° 

/L(w) cos(xw + V(w)27r)dw. 	 (4.6) 

Therefore, for the random variables L(w) and V() as above, this is a Gaussian 

stochastic process. The form (4.6) avoids the evaluation of the sine, and is more 

efficient than (4.3). 

For realizations (specific outcomes) of L(w) and V(w), Y(x) is a realization 

of such a process and a function of x only. In practice we use a discrete ap-

proximation to the integral in (4.6), and we want the autocovariance CD(.) of 

this discrete approximation to be a good approximation to c(.). Generally, for a 

discrete approximation of Y(x) as in (4.6) we can use points wn  e and let 

00 

Y(x) = 	 V/c7(-wT) Ln  cos(xw + V27r), 	 (4.7) 

where every point w, has an interval size or area a associated with it. The points 

Wn do not have to be equally spaced. Indeed there is an argument for not spacing 

them equally, but increasing their distances where the autocovariance function 

c(.) varies less, for example if c(.) is an exponential and dies down rapidly. Then 

larger values of an  could be taken for higher values of w. But we can of course use 

equally spaced points w E R with w = nh, in which case all points nh for ni > 1 
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have an interval of length h associated with them, and the point with n = 0 has 

an interval of length h/2 associated with it. In this case (4.7) becomes 

v
[ 	

+ 	 )L cos(xnh + V2)]. 	(4.8) 
n=1 

From (4.8) and by analogy with (4.4) we can see that the the autocovariance 

function CD(.) of the stochastic process {Y(x), x E X} as in (4.8) is 

CD(V - x) = cov(Y(v),Y(x)) 	 (4.9) 

h  
= 

- (

(0) +
00 

(nh) cos((v - x)nh)) 

h 00 

= 	 (nh) cos((v - x)nh) 
fl -00 

h 00 

= 	 (nh) exp(i(v - x)nh). 
27 

n=-00 

Using the Poisson summation formula, for this see for example [20] ,we can rewrite 

(4.9) as 

	

00 

 M
CD(V — X) = 	c+v—x). 	 (4.10) 

What is a good choice for the interval size h here to achieve a good approximation 

to the autocovariance function c(.)? The error of the autocovariance function CD(.) 

of the process generated by (4.8) compared with the autocovariance function c(.) 

is 

00 I 2rn 

	

C D(V — X) — C(V — X) = 	C+v_X)_c(v_X) 	(4.11) 
fl- 00 

( .27rn 	
(4.12) 

n~4 O 

and this sum has to be small to achieve a good approximation to c(.). For the 

case of the exponential autocovariance function c(x) = exp(—x 2 ) the error term 

is 

2'rn 
CD(V — X) — C(V — X) = 	exp 

n$O 	( ( 
	

+ V 
- a))

2 

, 	
(4.13) 

and we should choose h to make this small. If v and x are in an interval of 

length 1 the sum in (4.13) is dominated by the term exp 
(- ( - 

1)2) and we 

should choose h to be small compared with 27r so that 	- 1 > 0 and is large 
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enough to make this leading term small. For example a choice of h = 1 gives 

exp (- (2ir - 1)2) 7.55 x 1013.  Now we can also fix a maximum leading error 

term and find the maximum stepsize h that is needed to make the actual leading 

error term smaller than this fixed maximum error. For example if we want 

exp (- 
(27r - )2) 

exp(-36) 

then we have to choose h such that 

2ir 	
(4.14) 

In practice we use a finite sum to approximate (4.8): if N is large enough and 

h is small enough then 

N 

V L
+ 	) L cos(xnh + Vfl 2)] 	(4.15) 

should give a good approximation to a realization of a Gaussian stochastic process 

with autocovariance function 

This method of generating functions with autocovariance function c(x) can 

be generalized to the case where a scaling parameter 0 is introduced into the 

autocovariance function, as in the autocorrelation function introduced in Chapter 

3, 

CG = 	(-0x). 	 (4.16) 

Processes with this autocorrelation or autocovariance function can be generated 

by scaling Y(x) where Y(x) is generated as described above. The scaling can be 

done as follows: define 

Y(x) = 

For Y(x) generated by 

Y(x) =f 	L(w) cos(xw + V(w)2)dw 	(4.17) 

the covariance of Y(v) and Y(x) is 

cov(Y(v),Y(x)) = E(Y(v),Y(x)) 

= 	L (w) cos((v - x))dw 

= c(./(v—x)). 	 (4.18) 
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For c(x) = exp(—x 2 ) this is 

Y rO 	= exp (-9(v - 

as required. 

How does applying such a scaling affect the stepsize or number of frequencies 

we should use in the discretization? For large 9 more frequencies and a smaller 

stepsize will be needed to achieve a good approximation to the autocovariance 

function. Therefore we return to the question of what can be used as a guideline 

for the choice of the stepsize in a regular discretization to achieve a good ap-

proximation to the autocovariance function c, and consider the example of the 

Gaussian autocovariance function as in (4.16). An analogous derivation to (4.9) 

gives 

CD.J(VX) = cov(Y(v),Y \/(x)) 

= 	E a(nh) cos(\/(v - x)nh) 

°° 	
(27rn + VFO(V  _ x) ) = 

and similarly to before, the leading error term for the exponential autocorrelation 

or autocovariance function is 

exp (( )2) ,  

and h should be chosen small compared withto make this small. 

As a guideline for the 1-dimensional case we choose the smallest number of 

frequencies n which makes the maximum leading error term < exp(-36), i.e. 

7r 
exp 	

2

- 	
- )2)  exp(-36). 

With a fixed upper bound Wub for the frequencies, the stepsize h and the number 

of frequencies n, are related by 

h
ub 

- nw - 1' 

and by (4.19), similarly to (4.14), h should be no larger than 6 
	

. So we set 

271 	Wub 

6 + 	- n w  - 1 
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Figure 4.3: Autocovariance function CD of process generated with n = 27 and 

Wub = 10 

and use as a guideline for the number of frequencies n, 

Wub (6 + v/'O-) 

2ir 

Figure 4.3 shows an example of an autocovariance function CD (x) of a process 

generated with C(x) = exp(-100x 2 ), n, = 27, and Wub = 10. Enough frequencies 

and a high enough upper bound on the frequencies are used, and the function 

CD(X) is a good match to the function C(x) = exp(-100x 2 ). Figure 4.4 shows an 

autocovariance function of a process generated with too few frequencies. With 

n = 11 used to generate the process, the autocovariance function CD(x) is pe- 
2ir 

riodic with period -= 0.628. An example where a too small upper bound 

Wub = 2 was used is shown in Figure 4.5. 

4.2.2 Two Dimensions 

Essentially the same approach as described above can be used to generate func-

tions of more variables. We use wM  to denote the Euclidean or 2-norm of w such 

that 

IwH= 
(d)V2 
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of process generated with n, = 11 and of process generated with n = 27 and 

WublO 

In higher dimensions the autocovariance function Cd(X)  with x = (x 11 . . . 

has Fourier transform 

cd(w) = 
fRd exp(_i(xt,))cd(x)dx. 

For the case when d = 2 we can obtain a2  as follows. Let 

w1x1 + w2x2 
Si 	= 	ii 	II 

4 )2X1 + Q1X2 
82 = 

IIwM 
RES 

(Si \\ - 	( w 1  w 2 \ ( x 1  
52) - IwM — W2 Wi) X2 

- ( cosq sin\(x i  
- \ —sinq cos) 

where 

cos 
= Wi 

sln = 
MwlI 

and integrate over s 1  and 82.  The determinant of the Jacobian of the transfor-

mation is 1, therefore

00  c2(w) 
= f I: exp(—i wIs1)c(s1,  s2)ds2dsi 

= f   exp(—iIl:jIsi) f C(8i, s2 )ds2ds i , 
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where 

0(Sl,82) = c2 (8 1 cos-82sin,sisin+82cos). 

Let 

C1D(S1) = 	 (4.19) 

then 

=  J00  
00 

exp(—iI181)cD(s1)ds1 	 (4.20) 

= 'lD(II"ID 	 (4.21) 

Note that if the autocovariance function c2 (x) is circularly symmetric then the 

above transformation is independent of the angle of rotation, and CD  O is inde-

pendent of 0, and depends only on the distance of the point w from the origin. 

This result holds for general d. We can use 2 (w) to generate a realization of a 

2-dimensional Gaussian stochastic process as follows, 

1I 
Y(x) = 

cos((xtw) + V(ci..)27r)d, 	(4.22) 

such that 

cov(Y(x),Y(v)) = E(Y(x)Y(v)) 
1 = 	j /)cos(x_v)twdw

2 

= c2 (x—v). 

As mentioned before, a possible choice for the autocovariance function in one 

dimension is c(x) = exp(—x 2 ). This has Fourier transform 

= /exp (4). 
In the 2-dimensional case the corresponding circularly symmetric autocovariance 

function is c2 (x 1 , x 2 ) = exp(—(x + x)) and from (4.19) it follows that 

00  C1D(81) = f exP_s _ sds2  :  

= /exp(—s) 

and from (4.20), 

C2(W1,W2) = 
I k.'II 2  = 7rexp-
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For a discrete approximation of Y(x) we can use points 1c) on a grid and 

split the area of integration into small areas surrounding the points W(C).  Let N 

denote the total number of points, then (4.22) can be approximated by 

	

Y(x) = 	
[ 	

)Lk cos(xt 	+ Vk 2 )] 	(4.23) 

where ak denotes the area of volume associated with the point 	for purposes 

of approximating the integral. 

We now consider alternative discretizations (grids) for functions of two vari-

ables, i.e. d = 2. One possible choice of grid is a rectangular grid with points 

(nh, mh), h an interval size or stepsize and n, m e Z, such that 

Y(x i , x2) = 	 ö(nh, mh)L nm  cos((x i nh + x2mh) + Vnm2) 
n=—N m=—N 

where ak = h2  is the area associated with each point (nh, mh) for ii 0. The 

two points (nh, mh) and (—nh, mh) have the same contribution to the function 

Y(x 1 , x2 ) and we can restrict ourselves to one half of the grid used above, which 

introduces a factor of \/, and Y(x i , x2 ) becomes 

Y(x i , x2) 	

[ 	

mh)L m  cos(x 2 mh + Vm2) 
m=—N 

+ 	

,n 	
(nh, mh)L nm  cos((x inh + x2mh) + Vnm2)]. 

n=1 =—N 

In practice we leave out the points for which 11W11 > Wub. With Wub  large enough 

and the autocovariance function we are using, D(l'Il) is small for IwI > Wub 

and the contribution of the points w with Ik'M > Wub to the function generated 

is negligible. Figure 4.6 shows an example of a regular rectangular grid with 

11 x 21 squares and 169 points for which IIwM < 10 (indicated by the dashed half 

circle). If the discretization used is fine enough, then all discretization methods 

will produce an accurate approximation to the continuous stochastic process. 

However, with a small number of grid points, different discretizations or different 

grid-spacing will produce different stochastic processes. For example a function 

generated from a uniform rectangular grid for w1 = nh, w2  = mh, ii, m < N can 

display obvious periodicity if N is not large and h not small enough. This can 

be avoided by choosing N to be larger and h smaller, or for example by using a 

circular grid as a discretization for (W1, w2). In some cases functions generated 

using a rectangular grid display obvious periodicity, whereas functions generated 

using a circular grid with almost the same number of points (wi, w2) as in the 
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Figure 4.6: Rectangular grid with Figure 4.7: Circular grid with 11 radii and 173 points 
11 intervals and 169 points 

rectangular case, display no obvious periodicity. To construct a circular grid we 

choose an upper bound Wub for the frequencies W1,  w2 , such that 2 (w 1 , w2 ) is small 

and a number na  of radii a2  with 0 < a2  < Wub for i = 1,. . . , n. We choose 

a2  equally spaced: a 2  = ( i - 1)La where La = - 1). On each of the 

n circles we then choose a number of equally spaced points around the circle as 

the points for our discretization. The number of points chosen on the circle with 

radius a, is k, the smallest odd number which is greater than or equal to the 

integer part of 7ra i /Aa, 

ki  = 2 	 ± 1. 

The reason for choosing k 2  odd is to avoid two points w with the same radius 

I IwII = a2  and angle ir apart, as these would generate the same terms in the Fourier 

expansion. The angles of the points on the circle are determined by 27r/k, where 

the first point has a random angle from a uniform U[0, 27r/k] distribution. So on 

the circle of radius a 2  we choose the points (w 1 , w2 ) given by 

= U[0]+j 

= acos 

= asin 
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for j = 0,. . . , k - 1 as our discretization. Figure 4.7 shows an example of a 

circular grid with 11 radii and 173 points. As in the rectangular grid shown in 

Figure 4.6, we used points c' in this grid for which jjwjj < 10. The single point 

corresponding to c = 0 now has an area of 

2  
a0  = it 

(1) 

associated with it. Any other point lying on the circle of radius a, 1 < i 

has area 

[ ((i + ) 	
)2 	

((i - ) 	
)2 

ai 
= 
	

ki 

] 

- ir2i& 2  
k, 

associated with it, and the corresponding terms in the summation are scaled by 

the square root of the associated area, Jã. To generate 2-dimensional sample 

functions from the circular grid, let 

N = 

so that N is the total number of points on the circular grid, and we use (4.23) 

as above to generate functions Y(x 1 , x 2 ). 

Similarly to the 1-dimensional case with evenly spaced points we can find an 

error estimate for the regular rectangular grid in two dimensions. By analogy 

with (4.9) and (4.11) the error is 

t 
c2( 

2irn 	2irm 
---+v1—x1, 

h 
 +2_2) i 	 ) 

(n,m)(0,0) 

and as in the 1-dimensional case h should be small compared with 27r to make 

the leading term in the error small. This leads to the same choice of h as in the 

1-dimensional case, see (4.14). 

In two dimensions, as in the 1-dimensional case, scaling factors 8 can be 

introduced into the autocovariance function by scaling Y(x). Let Y(x) be as in 

(4.22), generated from the function 

= 	
(—x), 

and let 

Y(x 1 ,x 2 ) = Y(\/x i) \/x 2). 	 (4.24) 
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By analogy with (4.18), the covariance of Y(x 1 , x2 ) and Y(v i , v 2 ) is 

cov(Yj (vi , v2 ), Y,(x i , z 2 )) = exp (-91(vi - 	- 	- x 2 ) 2 ) 

as required. 

More generally, by applying a map A: Rd jjd to x E Rd and defining 

YA(x) = Y(A(x)) 

other Gaussian processes can be generated. These processes are not necessarily 

stationary and there is not always a simple form for the corresponding autoco-

variance function. This is the case for example if A(x) is a non-linear distortion 

of x. If we apply a linear transformation M : Rd Rd to x e Rd then the 

corresponding covariance and autocovariance function are 

cov(Y M (v),Y M (x)) = E(YM (v),Y M (x)) 

= E(Y(Mv),Y(Mx)) 

= c(M(x - v)) 

=: CM((X — V)), 

so we can generate realizations YM(x) from a stationary Gaussian process with 

autocovariance function CM(.) by applying the transformation M to x. Examples 

of transformations which could be of interest are rotations. The particular trans-

formation mentioned above in (4.24) is a special case of a linear transformation 

with 

M=( 	
). 

How does applying such a scaling affect the stepsize or number of frequencies 

we should use in the discretization? For large 0 more frequencies and a smaller 

stepsize will be needed to achieve a good approximation to the autocovariance 

function. So we return to the question of what we can be used as a guideline for 

the choice of the stepsize in a regular grid in two dimensions to achieve a good 

approximation to the autocovariance function c, and consider the example of 

the exponential autocovariance function. In two dimensions the error estimation 

and choice of stepsize works similarly to the 1-dimensional case, and the leading 

error term for the exponential covariance function is 

1 	2 
exP 	

ir L() ( 2 ) 2) 
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Figure 4.8: Autocovariance function of a stochastic process generated with a 
rectangular grid 

and h 1  should be chosen small compared with 	and h2  small compared with 

to make the leading error term small. 

In two dimensions we use the same guideline for the number of frequencies 

and the stepsize as in one dimension. In half a rectangular grid we choose n, and 

h by the above guidelines, and similarly in the circular grid, where we use Ar = h 

for the difference in the radii and n, as the number of different radii used. For 

example for 0 = 100 using this guideline gives 

no)  > [wub( 6 + 10 )1 + l 
2ir 

and with Wub = 10, 

= 27 

in one dimension. Figure 4.8 shows the autocovariance function of a process 

generated with 

c(x) 
= 	

exp (-0x) 

and 01  = 02 = 100. The number of frequencies used on the rectangular half grid 

is 1085, which is 27 x 53 minus the number of frequencies w with 11W11 > 10. 
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Figure 4.9: Autocovariance function of a stochastic process generated with a 
circular grid 

Figure 4.10 shows a contour plot of this autocovariance function. While it is a 

good approximation to an exponential on [0, 11 2 , it is periodic with period 

and 
h = Wub , and not a good approximation to an exponential function much 

n - 1 
outside [0, 11 2 . Figures 4.8 and 4.10 are plots of 

CD(X1,X2) = 	
- [ 	

2(0,mh)cos(x2mh) 
rn=—N 

2 (nhmh)cos(xinh+x2mh)] 
n=rl m=—N 

which should be a good approximation to c(x) for a large number of frequencies 

used, i.e. for large N. Similarly, Figures 4.9 and 4.11 show the autocovariance 

function and its contours for a process generated from a circular grid. Again, this 

is a good approximation to an exponential on [0, 11 2 , but not outside this region. 

Examples of sample paths for frequencies chosen from a rectangular grid and a 

circular grid are shown in Figures 4.12 and 4.13. In both cases the autocovariance 

function c(x) = fl3 exp(—O 3 x) = exp(—(O 1 x + O2x)) with 01 = 02 = 400 

was used. Figure 4.12 shows the contours of a function which was generated 

using the rectangular grid, as shown in Figure 4.6. The function is obviously 
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Figure 4.10: Contours of autocovariance Figure 4.11: Contours of autocovariance 
function CD for a process generated from function CD for a process generated from 
a rectangular grid a circular grid 

periodic. Figure 4.13 shows the contours of a function which was generated using 

the circular grid as shown in Figure 4.7 with the same autocovariance function 

c(x). It shows no obvious periodicity. The points w on the grids shown all satisfy 

IwM < 10. Note that for 11w1l = 10, () = 7rexp(—JI2/4) 4.363 x lO  is 

small and terms involving 11 w i l > 10 are negligible. 

The sample path generated from the circular grid displays no obvious period-

icity, and therefore might make using the circular grid seem more appealing than 

the rectangular grid. However, neither grid gives a good approximation to the 

continuous autocovariance function C(.) if the number of frequencies used is not 

large enough. Error estimates for the autocovariance function for the rectangular 

grid are relatively easy to obtain by extending the analysis for functions of one 

variable. 

In all the cases reported in this thesis we choose the number of grid points large 

enough, and their spacing small enough, such that the error in the autocovariance 

of the discretely generated process is small. In what follows we use both the 

circular grid and the rectangular grid to generate functions. A similar spacing as 

for the rectangular grid is chosen for the circular grid, which seems likely also to 

give accurate approximations. 

4.2.3 Higher Dimensions 

So far we have discussed how to generate (stationary) Gaussian stochastic pro-

cesses with a given autocovariance function, or at least a good approximation to 

it, in the 1-dimensional and the 2-dimensional case. Essentially the same method 

could in theory be used to generate Gaussian stochastic processes and sample 

paths of these in higher dimensions. In d dimensions, by analogy with (4.22), a 

stochastic process with autocovariance function Cd(X)  can be generated using 
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Figure 4.12: Function generated from a rectangular grid with 169 points and 
01=02=400 

Y(x) = (27r)2 f ./(L(w) 

cos((xtw) + V(4,)27r)dw, 	(4.25) 

but there is the issue of the discretization to approximate the integral in (4.25). 

Using frequencies w from a regular grid is easily generalized to d dimensions, 

but since the number of frequencies increases to the power of d, the number of 

frequencies quickly becomes too large. Another option might be frequencies from 

a spherical grid, but generating a spherical grid in d dimensions is not straight-

forward. As an alternative to systematically dividing up the frequency space we 

could choose frequencies at random and use a Monte Carlo method. This seems 

to work well in the case of the bell-shaped exponential autocovariance function, 

and how this can be done, and how random processes can be generated from this 

will be explained in the following. In theory as the number of frequencies goes 

to infinity, the random processes we generate would have the bell-shaped expo-

nential autocovariance function. Using a finite number of the random frequencies 

the process covariance function will only be approximately the bell-shaped expo-

nential. 
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Figure 4.13: Function generated from a circular grid with 173 points and 9 = 
92 = 400 

Let the autocovariance function c(.) : Rd — R be the exponential autocovari-

ance function 

c(x) = exp (—Hx112) 

The Fourier transform of c(.) is 

= fRd 
exp (_ix t c4.,) c (x )dx  

= 	exp
(— 

and the inverse Fourier transform is 

c(x) = (2)_d 
fR 

(w) exp (ixtw)  dw 

= (27r)_d 
fRd 

d/2 exp (— 11w112) exp (ixtw)  dw 

= (4)_d/2 
fR 

exp 
 (—_ ' ) 

exp (ixtw)  dw. 

Because of the symmetry properties of exp (-11wI12) this is 

c(x) = (47r)_d/2f exp( Mu) cos(x tw)dw. 	(4.26) 
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We can choose N frequencies w (1 ,. . . , w ( ")  for our discretization at random, from 

the density function 

lw 2 \ 
1(w) = (4)_d/2 exp 

(- 	 ) 

so that each component of 	i = 1,. . . , N, is N(O, 2) distributed. Now generate 

a stochastic process by 

N 
1 

(X2  cos(xtw)  + Z2  sin (xtw )) 	 (4.27) 
j=1 

or by 

N 
1 

Y(x) = 	 Li  cos(xtw + 1421r). 

using the Box-Muller transform. 

To see the motivation for this, consider the autocovariance of Y(x) and Y(v) 

as in (4.27), this is 

CD(X — V) = cov(Y(x),Y(v)) 

= E(Y(x)Y(v)) 

1 (0 = 	(cos(xw) cos(vtw)  + sin (x tw ) sin (v tw )) 

= 	cos((x - 

Now from the definition of the expectation and by (4.26) 

E(cos (x tw )) = I (4)d/2 p  (—tL'~T)  cos (x tw )dw  
JRd 

= exp(—IxI 2 ) 

and therefore the expected value of the autocovariance function of Y(.) at any 

point x E R' is 

IN 
1 	cos(xtw)) E(cD (x)) = —E 
N 

i=1 

Nexp ( - Hx11 2 ) 
N 

= exp(—HxH 2). 

Thus at any point x E Rd the expected value of the autocovariance function of the 

discrete process Y(x) generated using (4.27) is the exponential autocovariance 
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Figure 4.14: Autocovariance mean and variance 

function c(x) = exp(—IxI2), the autocovariance function we wanted Y(x) to 

have. Now that we know the expected value of CD (x), can we estimate the error, 

i.e. the variance of CD(X)? This will follow directly from the variances of the 

cos (xtw (i)), i = 1,.. . , N by 

var(cD (x)) = var 	 - v )tw )) 

= var (cos((x - 	 . 	 (4.28) 

The variance of cos(xt.')  is given by 

var (cos (x tw )) = E(cos (x t i.,(2))) 2  - (E(cos (x tw ))) 2  

and 

11w11 2 \ 
E(cos(xtw))2 

= 
 IR  

(4)d/2p 

_ 4 	
cos(xtw))2dw

d 

= (4 )_dI2 exp  
fRd 	

(_H'H2" 
 4 )  G cos(2x w) + 	dw 

 1 ) 

	

= !(47)_d/2 / exp
P~f  JRd 	 4 ) (cos(2xtw) + 1) dw 

= (4)_d/2 

[fRd 
exp 
 (- 

4 
) 

cosx')+ 

exp 	IIwH2 

	

fRd 	(- 
4 

)] 
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Figure 4.15: Error distribution 

= 	+exp(-4HxI 2  )dw. 

Therefore the variance of cos(xtw(i))  is  

var (cos (xtw )) = 	+ exp (-4IxI2) - exp ( -2 1x1 2 ) 

= 	(1_ exp(_2II x M 2 )) 2  

and it follows from (4.28) that the variance of CD(X) is 

var(cD (x)) = 	(1— exp (_21 1x11 2)) 2 . 	 (4.29) 

For small I IxII, exp (-2I1xH 2 ) is close to 1 and hence the variance is small. For 

large I I x 11, exp (-2IxII2) is small, and the dominating term in (4.29) is 

Therefore, for any x an upper bound on the variance is 

var(cD (x)) < 1 

Figure 4.14 shows an example with 1000 frequencies in 100 dimensions. Plotted 

	

are the theoretical expected error and standard deviation 1 - exr(_2
x 	

and 
00 

the expected error and standard deviation obtained using the 1000 frequencies. 

Figure 4.15 shows a corresponding error distribution, obtained by averaging over 

all x and scaling errors at x by 
1 - exp( -2IIxI 2 ) 
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4.2.4 Mean and Variance 

If Y(x) has been generated from the autocorrelation function p(.) by the above 

methods, and has mean p = 0 and variance a2 = 1, and if we set 

Z(x) = aY(x) + u, 

then the expectation of Z(x) is E(Z(x)) = IL and the covariance of Z(x) and 

Z(v) by (3.1.2) is 

cov(Z(x), Z(v)) = E[(Z(x) - 1a)(Z(v) 
- 

,u)] 

= E[aZ(x)aZ(v)] 

= 01 2 E[Z(x)Z(v)] 

= 01 2p(x—v). 

4.3 Conditional Functions 

Here the 1-dimensional case is considered only, but it extends to higher dimen-

sions in much the same way as function generating described previously. Sup-

pose that in the process of optimizing the objective function we have sampled 

at n points . . . , x and the vector of function values is y = (yi, . . , 
y ) t .  

We might be interested in possible functions with certain parameter values for 

9, z, and a2 , that interpolate the objective function in the known data points 

(x (1) , yl),. . . , (x() , y). These functions can be used for example to tell where a 

sample path with the given parameter values, and which interpolates the data, is 

most likely to attain its minimum. Here we will show how to generate stochastic 

processes and sample paths, conditional on the n points. Suppose the autoco-

variance c is approximated by 

CD(X) = 	(w) cos(xw). 

As before the unconditional Y(x) with autocovariance CD(X) can be generated by 

00 

Y(x) = 	 /(wk)Lk cos(xw(k) + Vk27r), 
k=O 

and we can use Y(x) to generate Z(x) conditional on Z(x3) = y3  for j = 1,.. . , n, 

as follows: let R be the n x n autocorrelation or autocovariance matrix with 

entries 1 3  = cD(x - x (i ) ). Let a be the n-vector with entries ak = Yk - 

and let b = Th'a, so ak = Ej  Rkb 3 . Then letting 

Z(x) = Y(x) + E bo(w) cos((x - 
ij 
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Figure 4.16: Conditional functions using maximum likelihood estimates of 8, 

and ci 

Z(x) has the required interpolating property, since 

Z(x) = Y(x) + E b() cos((x - 
ij 

= Y(x) + 	bj 	Z(W(i)) cos((x - 

= Y(x) + 	bcD(x - 

= Y(x(Jc))+>bjRkj 

= Y(x)+ak 

= Y(x) + Yk - 

Yk• 

By properties of the Gaussian distribution, the conditional functions generated 

by this method also have Gaussian distribution. 

Figure 4.16 shows an example of 100 conditional functions. The data points 

are the final set of sample points from one of our test problems on which the 

optimization algorithm misses the global optimum value by more than 0.1 and 

finds a local optimum at x = 1, where the actual global optimum is at x = 

0.2417. The parameters 0, ,a, a are the maximum likelihood estimates given 

the available data points and the 100 plotted functions all have these values for 

8, ,i, a. For comparison, Figure 4.17 shows the BLUP (x) plus-minus three 

r.p 
nh 
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Figure 4.17: Confidence interval, (x) ± 3s(x) 

standard deviations s(x), i.e. (x) ± 3s(x). The (x) is the posterior mean and 

the plot essentially shows a confidence interval for the function values at the 

points x e [0, 1] for the given parameters 0, M , a. We would expect most parts of 

most of the possible functions with these parameter values to lie within the outer 

curves plotted in Figure 4.17, and this is the case here. 

4.4 Priors and Posteriors 

There are several possible ways of addressing the problem of modelling the ob-

jective function. The model can involve parameters which can be fixed, or esti-

mated by some means. So one way of modeling the function is to assume that the 

stochastic process which the function is assumed to be a realization of is known 

entirely. In this case there are no parameters to be estimated. Another possibility 

is to estimate certain parameters from available data, for example by maximum 

likelihood estimation. A third possibility is to allow for possible uncertainty in 

the parameters. This then leads to the Bayesian approach,, where prior distribu-

tions are assumed or known for the parameters, which are then used to obtain 

posterior distributions conditional on available function data. The issue of prior 

and posterior distributions will be addressed in this section. 

To start with we describe a family of probability density functions which can 

be used both as prior and posterior probability density functions for 0, a and p. 

The form of these functions has several advantages: 



It is easy to generate samples from these distributions. 

• If the prior probability is of this form then so too is the posterior probabil-

ity. This simplifies a Bayesian approach to updating the parameters of the 

stochastic process. 

It is possible to find marginal distributions by integrating analytically. 

The distributions are defined in terms of the random variables 'r, a-, p, where 

1 	_1 
T=-, a=—, 	 (4.30) 

0 

and the density function p(r, a-, ) can be written in the form 

p(T, a, )drda-dp. = 	 a-)c4L). 

To obtain a sample from a distribution of this form, we first sample r from PT, 

then a- from p, and then jt from p,1,  and finally find 0 and a from (4.30). For 

both prior and posterior distributions p is a normal and p &  is a C distribution, 

as in Definition 3.1.9. 

4.4.1 Prior Distributions 

We assume that p has a normal prior distribution, ,u - N (0, 2),  i.e. it has 

probability density function 

ptl 	= (2)aa-exp (_a 2&22), 

where a is a function of T only. Note that the mean of M is zero, and the standard 

deviation of ji is proportional to a. 

For a- we assume a G(y, b 2  ) distribution as a prior distribution, i.e. a- has 

probability density function 

p(a-I) = Kba-'exp 
(b2a-2) 	

(4.31) 

where b is function of r only. 

The pT  posterior distribution has no simple closed form so deviates of that dis-

tribution have to be calculated numerically. Because of this there is no advantage 

in taking any special form for the prior pT. 

One family of problems has been generated using a G(4, 2 x 122)  distribution 

for r, a G(4, 2) distribution for a-, i.e. b2  = 2 in (4.31), and a N (0, ) for t, i.e. 02 

a = 1 in (4.31), a constant independent of T. 



4.4.2 Posterior Distributions 

Once the values y of the objective function are known at a set of sample points 

{ x ( ') ,.. . , we can calculate the posterior distribution of the parameters r, 

a. and p. This has the form 

= 	 (4.32) 

where L is the likelihood function, i.e. the probability of the data given the 

parameters. The K 1  is a constant to normalise the cumulative probability to 1, 

and in what follows Ki  will denote a similar constant. 

From (3.18) we know that L has the form 

L(y) = 	
(_ a.2  ( - 1)tR_1 ( - 1), 	

(4.33)exp 

and R is the correlation or covariance matrix, which depends on 7 and x only. 

We wish to express this posterior probability in the following form 

p(r,a,p4y) _PT(TY)P(UIT,Y)PL(PiT,a,Y), (4.34) 

which will allow us to obtain samples as described earlier by successively sampling 

r, then a. then it. 

Substituting for the prior 	a.) and the likelihood function L(ylr,  M , a.) 

in (4.32) gives 

/ a2 a.2 /i2  
p(T,a.jty) = K2p()p(r)aa.exp— 

2 ) 

exp (- 2 ( - 
1)t R (i _1/1) 

2
) 

= 

p ( ex
a.2 (a22  + (y - 1)tR_1 (i  

= 

exp (a.
2 ((a2  + 1tR_ 1 1) i2  - 21tR_1y,i + Y tR_ 1 Y)) 

2 

= 

	

/ a2 A2 '\ 	( a.2 ó 2 (1—i) 2 \ 
exp(—  

2 	- 	2 	)' 

where 

62  = a2 +ltR_hl 
1tR y  

a 
= ytR_ 1y62 l 2  

01 



Note that 6, 4 and A depend only on T. It follows that for fixed r and a, i is 

normally distributed with mean 4 and variance 11(6a) 2 . 

Now integrating this from —oo to oo with respect to , we get the marginal 

posterior distribution with respect to r and a 

p(T,y) = K3p(r)aIRl_112 	
py)flexp (2A2) 

If p(o) is a G('y, b 2  ) distribution (see (4.31)) then 

/ 

p(T,ly) = K4p(r)aIRI"2'b'exp 	
b2a-2 

ü'exp 
(_2) 

 2 ) 	' 2 
/ a 2 (b2  + A2 ) 

= 	
2 	)' 

so for fixed r, d has a G('y + n, b2  + A 2 ) distribution. 

Now integrating this from 0 to oo with respect to O we get the marginal 

posterior distribution with respect to r: 

p(ry) = K5p()alR
11261

b(b2  + 

Here all the terms are functions of r only. Samples of T from this distribution can 

be found by calculation an approximation to its cumulative distribution function. 

4.5 Test Sets 

The functions used as test functions in the following chapters are functions gener-

ated by the methods described earlier in this chapter. These sets of problems con-

sist of functions generated with the autocorrelation function p(x) = exp(-0x 2 ). 

One set of 500 functions is generated with 0 = 25, = 0 and a = 1, and this set 

is referred to as T025. Another set of 500 functions is generated with 0 = 225, 

= 0 and a = 1, which is referred to as T225. To reflect real life situations more 

accurately where the parameters 9, p and a are unknown, another set of 500 test 

functions is generated with the parameters 0, ti and a all chosen at random from 

prior distributions as described in the previous Section. This set of functions is 

denoted by Txxx. Figure 4.18 shows 100 such functions, with the parameters 9, 

i, a sampled from the above distributions, and Figure 4.19 shows the distribution 

of r =for the sample paths plotted in Figure 4.18. 

These three sets of functions described here, each consisting of 500 functions, 

are the main test functions used. 
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Figure 4.20: Conditional functions with parameters sampled from their posterior 
distributions 

4.6 Conclusions 

The generated processes are (stationary) Gaussian stochastic processes with spec-

ified autocorrelation or autocovariance, mean, and variance. Particular outcomes 

or sample paths of these Gaussian stochastic processes are obtained here by choos-

ing a set of frequencies and outcomes for the random variables in the generating 

process. These sample paths can be expected to have the same properties as the 

stochastic process, and this makes them useful as test functions since they are of 

the form assumed in the theory of the optimization algorithm. This helps in mon-

itoring the progress and performance of the algorithm in the optimization process. 

The generation of test problems like this can be automated, and generating large 

numbers of test functions is relatively easy. This allows us to run our algorithm 

on a large number of test problems and to make a reliable comparison between 

different optimization algorithms, and get reliable statistics on the proportion of 

runs that fail and the reasons for this. 

Figure 4.20 suggests that taking into account the uncertainty in the estima-

tion of the parameters 0, ,u, and a could save the algorithm from terminating 

prematurely which occurs when using a maximum expected improvement based 

on a single estimate of the parameters. An approach which makes use of this 

observation is introduced in Chapter 5. 
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Chapter 5 

Implementation 

In this chapter certain features of our implementation are introduced. Our algo-

rithm is based on the Kriging approach and the expected improvement criterion 

as described in Chapter 3. This method brings with it certain problems and draw -

backs which we will discuss here, along with possible ways of addressing them. 

As test functions we use functions generated as described in Chapter 4. 

A potential problem in this method of optimization is near-singularity of the 

correlation matrix. This can occur if 6 is small or if two or more sample points are 

too close together. We briefly explain different methods by which this problem 

can be addressed. 

A possible way of maximizing the expected improvement function by branch 

and bound was described in Chapter 3. This requires finding upper bounds on the 

expected improvement in given boxes. The bounding can be done by separately 

minimizing the BLUP (x) and maximizing the MSE 82 (x), or equivalently min-

imizing —s 2 (x), subject to non-linear constraints. The BLUP is a linear function 

of r, and the nonlinear constraints, by which r is related to x, can be linearized, 

but the question remains whether —s 2 (x) is convex in r. If —s 2 (x) is convex then, 

subject to the linearized constraints, the resulting problem is a convex QP. Jones 

et al. [34] leave open the possibility that the function —s 2 (x) is nonconvex, and 

use the aBB branch and bound method, which convexifies the objective function 

if necessary, to solve this potentially non-convex optimization problem. Details 

of aBB can be found for example in Andraloukis et al. [3]. It is shown in this 

chapter that if the n x n correlation matrix R is positive definite, and if only 

constant regression terms are used, then the Hessian matrix of —8 2 (x) is positive 

semi-definite, and therefore the minimization of —s 2 (x) is easier than previously 

thought. 

Bounding the BLUP and MSE separately to find an upper bound on the 

expected improvement typically yields tight bounds on the expected improvement 

only when the box B is small. This is because minima of the BLUP and maxima 
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of the MSE do not usually occur at the same point x e D. A possible better 

bounding procedure will be discussed in this chapter. 

As described in Chapter 3, Jones et al. [34] not only use a convexification for 

the MSE function but also approximate the nonlinear equations by linear over-

and under-estimators. These are not tight and in this chapter it is shown that 

there is considerable scope for improvement in the linear approximations of these 

equations. 

In the maximization of the expected improvement function, typically the 

branch and bound requires a lot of branching before useful upper or lower bounds 

on the expected improvement are found. It can be expected that the number of 

boxes examined will be reduced significantly by finding tighter upper bounds on 

the expected improvement or tighter linearizations of the constraints. However, 

it might not be necessary to use a global optimization method like branch and 

bound. As an alternative to branch and bound we also use a simple grid search 

plus local search. 

A problem with the type of response surface optimization method we are 

investigating here, is what is called overfitting in the estimation of the model 

parameters. The sample can be deceptive and 0 estimated to be considerably 

smaller than would be appropriate for the objective function. As a consequence 

the algorithm might stop prematurely without even having got near a local min-

imum. Similarly, estimates of ,a and a might not match the objective function 

well and can lead to failure of the algorithm. 

5.1 Near-Singularity and Regularization 

Here we briefly address the problem of near-singularity in the correlation matrix 

R and possible ways of overcoming it. Some ways of dealing with near-singularity 

have been suggested in the global optimization literature. 

5.1.1 Near-Singularity 

When two or more sample points are very close together, the matrix R has, 

respectively, two rows and columns which are near-dependent. When the entries 

of 0 are very small, all entries of R are close to unity. In both of these situations 

the matrix R is near-singular, in which case operations involving R' will be 

ill-conditioned and a source of numerical error when using inexact arithmetic. 

The estimation of the parameters 0 by maximum likelihood requires operations 

with R', and if this is ill-conditioned numerical errors are introduced into the 

calculations and the estimates of the parameters themselves become less reliable. 
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In the parameter estimation we therefore avoid values of 8 which lead to a near-

singular correlation matrix R, by putting a large penalty on parameters which 

lead to a near-singular matrix R. So near-singularity will occur only if points are 

sampled very close together, for example when homing in on a local optimum. 

In the following we will introduce some remedies to the problem of R becoming 

near-singular. 

5.1.2 Remedies 

In trying to find remedies for the problem of near-singularity of the correlation 

matrix R we face a trade-off. While R is near-singular, either because two sample 

points are too close together or elements of 0 are very small, we will lose out be-

cause of the ill-conditioning of the systems we have to solve. We can omit some of 

the information we have about the objective function to improve the condition-

ing. For example a sample point could be omitted, but since evaluations of the 

objective function are expensive we do not want to drop too much information. 

Essentially we want to improve the conditioning of the correlation matrix R by 

dropping or altering the rows or columns that lead to linear dependencies, but at 

the same time the aim is to lose as little valuable information about the objective 

function as possible. In particular we want to avoid resampling at or near a point 

which has been omitted. 

5.1.2.1 Omitting Eigenvalues 

In order to perform operations with R' it is best to factorize the matrix R in 

some way. One possible factorization, unfortunately an expensive one, is the 

decomposition using eigenvectors and eigenvalues of the matrix. Let ),.. . , 

denote the eigenvalues of R and 	. . , v denote the corresponding eigenvec- 

tors. The eigenvectors v M, . . . , 	are computed such that they are orthonormal. 

It is shown in (5.1) that the matrix R is positive definite, therefore A i  > 0 for 

i = 1,. . . , n, but if R is almost singular, some of the eigenvalues will be very small. 

We assume here, without loss of generality, that the eigenvalues are ordered by 

magnitude so that ) ... > ). Let E be the diagonal matrix with entries 

A 1  > ... > An  and let V be the matrix with the eigenvectors 	. . . , 	as its 

columns. Since 	. . , 	are orthonormal the matrix V is orthogonal. Then 

R can be written as 

R= VVt 

= 	AkvV 
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Since V is orthogonal, 

R' = V 1 Vt 

where the diagonal matrix 	has entries 1/Ar, . . ., 1/A,. If any of the eigenval- 

ues are very small, say smaller than a tolerance 5, we set the corresponding entry 

in to zero. So if A s ,. . . , A < 8 then we set the pseudo-inverse of E to 

have diagonal entries 1/A 1 ,. . ., 1/A_, 0,.. . , 0 and let 

R = VE+Vt 

= 

Note that (1) for q < r = rank(R) the matrix 

Rq 
= 

is the matrix of rank q which is closest to R with respect to the 2-norm, i.e. 

mill HR - A112 = MR - R q Il 2 , 
rank(A)=q 

and note that (2) the least squares problem of minimizing llRz - b112 with (near) 

rank-deficient matrix R has the solution ZLS = R+b and  R+  is the unique solution 

of 

mill IIRA — InllF AERflxfl 

where 

IRII F  = 

j,k=1 

For details of this see for example Golub and Van Loan's book [26]. The properties 

(1) and (2) above mean that R+  is the "best" pseudo-inverse of the matrix R, 

and it can be used as such when R becomes near-singular. 

5.1.2.2 Perturbation 

One way to solve systems involving the correlation matrix R is to find its Cholesky 

factorization R = LLt, where L is a lower triangular matrix. The systems can 

then be solved by forward and backward substitution. If the matrix R is near-

singular, one or more diagonal entries of the Cholesky factors can be very small 

leading to numerical growth in the factors. This may be prevented by perturbing 

small diagonal entries of the Cholesky factor L as they are encountered. The 

resulting factorization then corresponds to a perturbation of the matrix R. 

91 



5.1.2.3 Regularization 

Lophaven, Nielsen, and Sondergaard in [44, 45] consider the regularized matrix 

R = R + (I with > 0, for which Rv = (A + i = 1,. . . , ri. Therefore ] 

has the same eigenvectors as R and the eigenvalues of R are the eigenvalues of R 

increased by C. In particular in [44] Lophaven, Nielsen, and Sondergaard suggest 

using (= (10 + fl)EM where EM is the machine precision. 

5.1.2.4 Leaving out points 

If at some stage in the algorithm two or more sample points are very close together 

this can lead to ill-conditioning of the matrix R. It seems justified to think that if 

we drop the point with the worst function value and keep the one or more points 

in that region with better values, we can improve the conditioning of the matrix R 

without losing too much valuable information about the objective function. Only 

sample points very close to other sample points with better objective function 

value would be left out, and it can be hoped for/expected that the BLUP will 

not be compromised too much and we will not sample the point we have just 

discarded again. However, this would require further tests in practice. One way 

of implementing this is whenever the Euclidean distance of two points is too small, 

to just drop the one with the higher function value. 

5.2 Convexity 

Let us first consider the definiteness of the correlation matrix R. According 

to Searle in [67] it is justified to assume non-negative definiteness for a variance-

covariance and therefore a correlation matrix. Lophaven et al. in [44] also address 

the issue of the definiteness of R, this is the approach which we will follow here. 

Let us remind ourselves that previously we were looking at the objective func-

tion values Y = (Y(x ( ') ),. . . , Y(x () )) for sample points . . , x() , and the 

stochastic process model 

Y(x)= F/3+c(x) 

where c(x) is assumed to have covariance matrix u2 R. Let E W and consider 

CT Y(x) = (Ff3 + T€(x). 

Then 

E(CT€(x)CTc(x)) = CT E(c(x)€(x) T )C 
= CT Cov(c(x), €(x))C 
= ci 2 CTR 
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and since E(CT €(x) T €(x)) > 0 if C 0 it follows that 

	

U2 CTRC>0 VCER0 	 (5.1) 

and hence R is positive definite. It follows directly from the positive definiteness 

of R that R' is also positive definite. 

We will now address the convexity issue in the problem of maximizing the 

mean squared error (MSE). Taken as a function in the variables r x  = (r1,. . . , r) 

and x = (x 1 ,. . . , Xd), the objective function to be minimized is 

= _0'2[1 - r,R'r + f(FtRF)_lf - 2rR'F(FtRF)1f 

+ rR_lF(FtRF)_lFtR_lrxI. 

In the case where f x  = 1 and F = 1 this simplifies to 

—8 2 ((x)) = — 0'2  [i - rR'r 
+ (1 - 1R'r) 2

]  

1 
ltRhl 	

(5.2) 

In the simplified case with f x  = 1 and F = 1 the function —s 2 ((x)) only depends 

on r, not directly on x, so the Hessian matrix H52 of the function —s 2 ((x)) is 

of the form 

H32=(

Hrr 0 ' 
O o) 

where R_hlltR_hl 
Hrr  = 2a2  IR1 - ltRhl j• 

The eigenvalues of H3 2 are the eigenvalues of the upper left portion Hrr of the 

matrix II2, and 0. Jones et al. [34] allow for the matrix Hrr to be indefinite, and 

aBB is used to solve the potentially non-convex optimization problem. We will 

show here that since R is positive definite, the matrix Hrr  is positive semi-definite, 

that is 

	

VtHrrV 2a
ltRhl ] v > 0 
	Vv e R. 	(5.3) 

v [R-1 - R_hlltR_l 

The matrix R is positive definite, therefore non-singular Cholesky factors can 

be found, such that R = LLt. Then 

v tL_tL_l lltL_tL_ 1 V  

1tR1 

((L_ 1 V)tL_l 1) 2  

R_hlltR_l I Vt IR-1 - ltRhl 	
v = v tL_tL_l v  - 

= (L_lv )tL_l v  - 

By the Cauchy-Schwartz inequality 

(L' 1) tL—1  1 

((L_l v )tL_ 1 1) 2  < (L 1 v) tL'V(L 1 1) t L 1 1 
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and therefore 

Therefore 

(L v )tL_l v  - 
((L_lv)tL_l 1) 2  

(L_u1)tL1 
>0. 

R_hlltR_l I
Vt  [R-1 -

ltR'l 	
v ~ 0 Vv E 	R' 

and Hrr  and hence II2 is positive semi-definite. 

The Hessian is generally not positive semi-definite if regression functions other 

than the constant one are used. In the case of a linear basis used for i.e. 

f tX = (1, x 1 ,. . . , x) for example, the Hessian of —8 2  becomes 

H52=2cr2 	 1 	t 

	

[R 1  - R'F(FtRF)'FtR 	[RF(FtRF)]1 I  ([RF(FtRF) ]) —[(FtRF)']1,1 
(5.4) 

where [R_1F(FtRF)_l]_1  denotes the ri x m matrix obtained by leaving out the 

first column of the matrix R_1F(FtRF)_l,  and similarly, [(FtRF)_l]_1,_1  denotes 

the m x m matrix obtained by leaving out the first column and row of the matrix 

(FtRF)_l. Using Cholesky factors, the matrix R can be written as R = LLt, 

where L is a lower-triangular matrix. Then applying Householder factorization 

to L'F gives L'F = Qtu, where Q is an orthogonal ii x n matrix and U is an 

upper-triangular n x m matrix. U is of the form 

U= ( U1  

where U1  is an m x m upper triangular matrix. Let Qi  be the m x n matrix such 

that 

LF = QU1 . 

Then we can rewrite the Hessian matrix as 

1  
H82 	

2a2[R' - L_tQQ 1 L_ 1] 2a2[LtQUjt}_ i  1 
-t 	I . 	 (5.5) 

= L 	(2u2 [L_t QUj t ] _ i ) t 	—2 2 [Uj'U1  j-i,-i j 

The matrix UjUt  is positive semidefinite, and so is [UjUjt]_1,_1.  It follows 

that the matrix _2a2[UjUjt]_1,_1  is not positive semi-definite, and therefore 

the matrix H52 is not positive semi-definite. 

We conclude that when, as is typically the case, a constant regression func-

tion is used, the Hessian matrix H82 of the negative mean squared error function 

—8 2 ((x)), which we are minimizing, is positive semi-definite and no convexifica-

tion of this function is necessary. This is not generally true for example in the case 

of higher order polynomial regression functions, where the Hessian matrix k132 of 

the negative mean squared error function —s 2 ((x)) is not necessarily positive 

semi-definite. 



5.3 Maximizing the Expected Improvement 

From Chapter 3 we know that the expected improvement may be maximized 

using branch and bound, where an upper bound on the expected improvement 

Elu  on a region can be calculated from the maximum, Smax, of the root MSE and 

the minimum, min,  of the BLUP via 

EIu = (Yon - min) 
(yon_—_Yrnin 

+ Sma 
(Yon_—_Yrnin 	 (5.6) 

S 	,1 	\ 9max ) 
where YOn  is the best objective function value found at the first n sample points, 

and where .9max  and min  are obtained by solving the following two subproblems 

Problem 1: 

mm 	(x, r) = fJ3 + rR'(y - F,?3) 	 (5.7) 
d 

s.t. r2  - fJexp(_Ojxj - 	 = 0 	i = 1,... ,n 
j=1 

	

x~ x3x 	j=1,...,d 

	

r<r<r' 	i=1,...,n 

Problem 2: 

mm —s 2 (x,r) = —a2(1 - rL_t L_ lrx  + fUiUj t f 	(5.8) 

_2rL_tQi U t f + rL_tQQi L_ lrx ) 

s.t. ri — exp( — OjIxj — xI)=O 	i= 1,...,n 

	

xxj x T 	j=1,...,d 

r<r<rY 	i=1,...,n. 

Bounds on the expected improvement resulting from bounds on and s2  as solu-

tions of (5.7) and (5.8) respectively, can be poor, as min' and maxs 2  are typically 

not attained at the same sample point x e B, where B is the current working 

box. This is clear intuitively since mm is typically at a point close to the best 

sample point and max s 2  at the point furthest from any sample point. An exam-

ple of this can be seen in Figures 5.1 and 5.2, which show the objective function 

and , and log(s2 ) and log(EI), respectively. The minimum of the BLUP is 

attained at a sample point (see Figure 5.1), where the MSE 82  is zero (see Figure 

5.2). Figure 5.2 also shows that the maximum expected improvement and the 

maximum of the MSE do not coincide. An example of the effect of this is shown in 

Figure 5.3. In this plot some contours of the expected improvement function are 

displayed, and also the locus of (, 
82 ) is shown as x ranges between 0 and 1. For 
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Figure 5.1: Objective function and best linear unbiased predictor 

x = 0, s2  takes a large value and takes, essentially, a mean value. As x increases 

from 0 to 1, the locus touches s2  = 0 at sample points, i.e. where interpolates 

function values. Midway between sample points, and at the endpoints of [0, 1], 
2  approaches its maximum value. The minimum value of and the maximum 

value of s2  are indicated by a dotted vertical and a horizontal line, respectively. 

The upper bound on the expected improvement obtained from mink and maxs 2  

is indicated where these two lines intersect in the top lefthand corner - this is 

EIu  = 0.2275. The minimum value of is the best actual function value found 

so far. The maximum expected improvement value of 0.0695 is attained at the 

point indicated, i.e. where the locus touches the El = 0.0695 contour. As can 

be seen in Figure 5.1 and Figure 5.2, mini and maxs 2  are not attained at the 

same point x, and the upper bound on El derived from mink and max.s 2  is out 

by a factor of more than three. 

The two problems (5.7) and (5.8) are non-convex problems by virtue of the 

nonlinear constraints. The linearizations of the nonlinear constraints as con-

structed by Jones et al. [34] and the fact that —s 2 (r) is a convex function, as 

shown earlier, mean that solving to find an upper bound on max s 2  and a lower 

bound on mm is a convex QP and LP in the case of constant regression func-

tions being used. The solutions to this QP and LP give an upper bound son 

max s 2  and a lower bound L  on mm . However, the linearizations are not tight 

and therefore the bounds s and L  are poor. Coupled with the fact that, even 

without the linearizations of the constraints, the bounds on max 8 
2  and mm are 

not attained at the same point x E B, the linearizations lead to further weakness 

of the upper bound on the expected improvement, which is now obtained using 
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Figure 5.2: log(s 2 ) and log(EI) 

the bounds 5u  on maxs and YL  on mink, via 

EIu = (Yon - yL) (YOn - YL + u
1  - YL\ 

su ) 	

YOn 5u 

j 
I 	I. 

An example of this is shown in Figure 5.4. Here the and s 2  are the same as 

in Figure 5.3, but the linearization of the constraints has led to a worse lower 

bound L = — 1.0191 on than before. Using this lower bound YL  and the 

upper bound s= 0.3253 on s2  to calculate an upper bound on the expected 

improvement gives EI u  = 0.3736, compared with an upper bound on the expected 

improvement of EI u  = 0.2275 in the previous figure, and an actual maximum 

expected improvement of EI max  = 0.0695. The bounds on and s2  do become 

tighter as boxes become much smaller in the process of the branch and bound, 

but much branching is required before boxes are small enough, and before this 

method gives bounds on and s 2  which lead to useful upper bounds on the 

expected improvement. There are two issues here that can be addressed: 

improvement of the bounding procedure for El 

improvement of the linearizations of the constraints. 

An improvement of the bounding procedure for El can be achieved by ensuring 

that it corresponds to values of and s 2  which are near feasible, in terms of being 

attained at the same point x E B, or at two points close together in B. 

In the following we will discuss these two issues, starting with the improved 

bounding for the expected improvement, then introducing improved linearizations 

of the constraints. 
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Figure 5.3: Upper bound on El 

5.3.1 Bound on El 

Consider the problem of maximizing 

(Ymin - 	
(Ymin_ 

) + 
s (Ymin_ 

) 	
( 5.9) 

as a function of and s. For points x in a box B the points [(x) s2(x) ] form 

a feasible region T and the problems 

max EI(x) 

x E B 

and 

max EI(, 2)  

[Q(x) s2(x)]t  E T 

are equivalent. The feasible region T is bounded by the lower bound L  on (x) 

and the upper bound s on s2 (x) for x E B. When linearizing the nonlinear 

constraints, more feasible points [(x) s2(x) ]t  are introduced. Let the feasible 

set of points [(x) s2(x)]t  with respect to the linearized constraints be denoted 

by T. The lower bound L  and the upper bound s on the set T are the bounds 

that were previously used to find an upper bound on El by means of (5.9). Clearly, 

82 (x) > 0 and, by solving a further LP, an upper bound can be found for (x), 

so that we have upper and lower bounds on s2 (x) and (x). These bounds are 

illustrated in Figure 5.4. For any (fixed) constants a < 0 and b > 0, solving the 

concave QP problem 

max a(x)+bs2 (x) 	 (5.10) 

xEB 

subject to the linearizations of the nonlinear constraints yields a bound on T, 

since the line ai + bs2 = c' passing through the point [Q* s2"  ] at which the 

9.11  



rOSPAM 

A 

y 

-1.0191 	 0.5862 

WI 

Figure 5.4: Upper bound on El subject to linearized constraints 

maximum of (5.10) is achieved, is either tangential to T D T or lies entirely 

outside T. 
Further, along any line a + bs2  where a < 0, b > 0, it can be shown that 

El - 0 as -* oo. Although not yet proved, there is good reason to believe 

that along any such line a + bs 2  the expected improvement function only takes 

one local maximum, therefore a local optimization method would suffice to find 

max El along any such line. Then, (for any a < 0, b> 0) 

EI(,s2) < maxEI(,s 2 ) 

a + bs2  <c' 	a + bs2 = c 

by the monotonicity properties of the expected improvement. Therefore 

maxEl < maxEI(,s 2 ) 

xEB 	a +bs2 = c* 

so max EI(, s2 ) for and 8 2  on the line a + bs2 = c" is an upper bound on the 

feasible max El. Values for a and b are chosen heuristically, in an attempt to find 

a good upper bound on the expected improvement on T. Figure 5.5 shows an 

example of the tighter upper bounds on the expected improvement. The bold 

straight lines are the lines a + bs2 = c' for a sequence of values of a and b 

determined heuristically, and the maxima of the expected improvement along 

these lines are indicated. The fainter piecewise straight line is an approximation 

to the boundary of T obtained by solving (5.10) for a large number of values of 

a and b. The upper bound on the expected improvement found by the above 

method is EIu  = 0.1060, compared with the upper bound as found by Jones et 
al. of Elu  = 0.3736, the upper bound of 0.0882 on the (approximate) boundary of 

T, and the actual maximum of the expected improvement El max  = 0.0695. The 

work presented here on improving the expected improvement bounds is ongoing 

work together with Dr. Julian Hall. 
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Figure 5.5: Improved upper bound on El 

5.3.2 Constraints 

As we have seen, the dependence of r x  on x is determined by the constraints 

ri - 	 - 	 = 0 	i = 1,... ,n. 	 (5.11) 

As nonlinear equations, these constraints are non-convex. By relaxation of these 

constraints we can obtain a linearly constrained problem with a convex feasible 

region. Let us also recall that given lower bounds XL and upper bounds XU on x 

we can compute lower bounds rL and upper bounds ru on rx  using the fact that 

ri  depends on only one of the n sampling points, namely 	and the value of 

ri at any point only on the distance of that point to 	As mentioned earlier, 

Jones et al. [34] split up the n equality constraints into 2n inequality constraints 

and replace them by linear underestimators. In the 2n inequality constraints 

ln(T) +(Ox — xIi) <0 	i = 1,.. .,n 	 (5.12) 

and 

d 

—ln(T) 
- 	

(O1x - xIi) :~ 0 	i = 1,... ,n, 	 (5.13) 

relaxing the first set of constraints (5.12) gives the overestimators and relaxing 

the second set of constraints (5.13) gives the underestimators of the actual con-

straints (5.11). Jones et al. relax the constraints by underestimating the terms 

involving ri and X(i)  separately. The terms ln(T) for example are replaced by 

linear functions of the form a + bT2  which underestimate it over [r', Tv]. Similar 

underestimators are used to replace the other terms: in the case of ln(T) and 

- 1x 
- x Pj  the underestimators are chords and in the case ofx 3  - Xc2 IP. and 
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Figure 5.6: Constraints as found by Figure 5.7: Lower constraint replaced 
Jones et al. in [34] 	 by 'optimal' lower constraint 

- ln(r) the underestimators are tangents. The tangents are computed at the 

midpoint of the relevant interval for x3  OF Ti. It can be seen when plotting Ti and 

the linear over- and under-estimators, that when looking at larger boxes these 

linearizations are not very tight and typically are nowhere equal to r. As the 

branch and bound proceeds and the working boxes become smaller, these con-

straints do become tighter. Still, tighter constraints can be found, and by using a 

larger number of these tighter linear constraints, the feasible region can be made 

smaller. The limit of this is the convex hull of ri on the relevant hyperrectangle 

[XL, XU]. One different underestimator is found easily. Rather than finding a 

tangent to - ln(T) at the midpoint of the box [rL, vu] we can find a tangent that 

intersects the curve at an 'optimal' point. Denoting the tangent by t(r) we can 

write our condition for this 'optimal' tangent as 

- ln(rL) - t(TL) = - lfl(TU) - t(Tu), 

i.e. the difference between the function and the tangent should be the same at 

both ends of the interval. This condition ensures that the maximum error in the 

linearization is minimized. Using t(r) = --(r - Tt) - ln(rt ) as the equation of 

the tangent that intersects the curve in the point Tt we find 

TL - TU 
Tt = 

lfl(TL) - lfl(TU) 

to be the desired point at which to construct the tangent. Note that the tangent 

to ln(T) which intersects the curve at Tt has slope 

mt 
= ln(TL) I ln(Tu) 

 TU rL 

and is therefore parallel to the chord to ln(r) through the points (TL, lfl(TL)) and 

(TU, ln(Tu)). Figures 5.6 and 5.7 show the function r2  = exp(—O(x - ())) for 
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= 0.25, 0 = 10, and p = 2. Figure 5.6 shows upper and lower bounds on r2  

and linear over- and underestimators on the box [0, 1], as found by Jones et al. 

in [34]. For comparison, Figure 5.7 shows the function and the same bounds and 

linear overestimators as before, but the 'optimal' underestimators for the function 

on the box [0, 1]. 

Other, tighter constraints can be constructed if, instead of bounding the terms 

ln(r2 ) and - 	- x j Pj separately, upper and lower estimates are found for ri = 
(i) 	 (i) H exp(-8,(x, - Xk )11). Figure 5.8 shows the function r2  = exp(-9(x - x 

for X() = 0.25, 0 = 10, and p = 2, the bounds on r2 , and two upper and two lower 

constraints. These constraints are tighter than the ones shown in the previous 

plots. In this particular case the two lower estimates are tangents: one is a 

tangent to r(x) at the bound of the box which is further away from x = 0.25, 

and the other is a tangent which intersects the curve at the nearer bound relative 

to the point x. The upper estimates here are both tangents. Depending on 

the position of the point x relative to the lower bounds XL and upper bounds 

XU of the box, these upper and lower estimates can be tangents or chords. It is 

clear that the function Ti = H exp(—&k(xk - x)2) attains its maximum at the 

point 	and if 	is not in the interval only one upper constraint is necessary. 

Other points of interest are the points of inflection of the function Ti, which are 

x ±. If the point of inflection on one side of the maximum is not in the 

current interval, but the maximum is, then it is clear that the linear overestimator 

on that side has to be a tangent. If neither point of inflection is in the interval, 

the one linear underestimator will be a chord. Over- and underestimators can be 

constructed in a similar way in d dimensions. 

As the algorithm progresses new sampling points will be added close to previ- 

ous sampling points, so that at some point we have say X(i)  and 	1 < i, j < n 
such that X(i) - 	< J. The difference of the two correlation functions r(x) and 

r(x) - r(x) = exp(-0(x - 	- exp(—O(x - 

will only take small values. Note that this is also the case if 0 is small. Bounding 

this difference of the two correlation functions leads to a further reduction of 

the size of the feasible region of the relaxed problem. In one dimension we use 

two overestimators and two underestimators for these cuts on the differences. 

With a general way of obtaining the overestimators, the underestimators can be 

obtained easily by symmetry properties of the difference function about the point 
- 

2 	
Figure 5.9 shows an example of such difference cuts obtained from one 

of our test functions, starting with an initial design of size n = 8 and adding the 
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Figure 5.8: correlation function with tighter constraints 

first set of cuts, as shown, after the next sample point is added. It is clear from 

Figure 5.9 that it is useful to know the position of the maximum, or minimum, 

of the function r(x) - r(x) to be able to decide which cuts to use. We can 

calculate these using a little trick. Essentially the function r (x) - r3  (x) depends 

only on the distance between the two points and x. So we can, instead of 

the function 

	

r(x) - r(x) - exp(—O(x - 	- exp(—O(x - 

consider the function 

r5 (x) = exp(—O(x - 5)2) - exp(-0x 2 ) 

Then we have 

rö(x) = exp(—O(x - 5)2) - exp(-0x 2 ) 
dr5 - 

dx 	
—20(x - 8) exp(—O(x - 8)2) + 28x exp(-0x 2 ) 

d2r5 - 
(-20 + 402(x - 8)2) exp (-0(x - 5)2) + ( 20 - 402 x 2 ) exp (—Ox 2 ) 

and using the Taylor expansion T5/ 	5 of 	we can get a good approximation to 
dx 

the point where 	is zero. Substituting 
dx 

= a0  + a1 5 
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Figure 5.9: Difference cuts 

into T gives 

= (-2Oexp(—Oa)(2Oa - 1))6 + 0(6 2 ) .  

The coefficient of the 6 term in this series depends only on a 0  and we can solve 

T = 0 to find the coefficient 

1 
a0 = 20  

Then setting 

1 
x =+ a1 6 + a2 62  

and substituting into T gives 

drj 	= (_203/ 2 ex
p(-) 2

2 (2a - 1)) 62 + 0(6) 

and we can solve T = 0 to find the coefficient 

1 
a1 = 

This process can be continued in this manner, and gives a good approximation 

i to the stationary point of r5. This could be further refined for example with a 

few Newton-Raphson iterations starting with x 1  = i. 

When working to construct the overestimators or underestimators, knowing 

the position of the maximum helps to decide which overestimator to use. To the 
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x y(x) max El 
number of boxes in branch and bound 

best I Jones 	new 	Jones, cut 	new, cut 
0.0676 -1.045935 0.10270516 99 101 99 101 99 

0. -0.039352 0.02478984 65 93 79 79 77 
0.1722 -0.700189 0.01318763 109 147 145 115 111 
1.0000 0.091607 0.01287883 33 93 83 57 53 
0.0764 -1.061679 0.00726441 33 105 93 71 71 
0.5147  0.00099238 77 251 181 133 125 

Table 5.1: Numbers of boxes used in branch and bound for different constraints 

left of the maximum of the difference function the overestimator is a tangent or 

chord with positive slope, to the right of the maximum the overestimator is a 

tangent or chord with negative slope. In particular, if the maximum is not in the 

interval, only one overestimator is required. 

The tightening of the constraints can lead to tighter bounds in the branch 

and bound and can help to reduce the number of boxes used. An example of this 

is shown in Table 5.1 where branch and bound and different types of constraints 

were used to solve the same problem, all with 6 initial points. Displayed are the 

sample points found, the function value, the maximum expected improvement, 

and the numbers of boxes that were used in the branch and bound to find the 

maximum expected improvement, and therefore the new sample point. The last 

row shows the iteration where the stopping tolerance of 0.001 on the expected 

improvement is met, and the objective function is not evaluated anymore at the 

point shown. The limit to what can be done by just tightening the linearizations 

of the constraints, is to satisfy the constraints exactly. The number of boxes in the 

maximization of the expected improvement based on this is shown under "best" 

in the table. It should be noted that this approach requires exhaustive search 

here and is not practical. Compared with it are the linearized constraints as done 

by Jones et al. in [34], the new linearizations as shown in 5.8, and both of these 

kinds of constraints with cuts, respectively. For the maximization of 8 2 (x) and 

the minimization of (x) an optimization routine from the Harwell Subroutine 

Library is used, see for example [29]. 

A combination of improved calculation of the bounds on the expected im-

provement and tighter constraints could bring more improvement, but this has 

yet to be investigated. 

105 



5.4 Grid Search versus Branch and Bound 

As discussed in the previous section, the bounds on the expected improvement 

obtained for the branch and bound are typically not tight and much branching 

is required before these bounds become useful and some boxes can be discarded. 

Two obvious solutions to this problem are (1) improving the bounding in branch 

and bound and (2) not to use branch and bound at all. The possibility of the 

former of these two solutions, improving the branch and bound, was investigated 

in previous sections, where it was shown how the bounding of the expected im-

provement can be improved and how the linearizations of the constraints can be 

tightened. The best that can possibly be done by tightening the relaxations of 

the constraints is to find the actual s ma., and min,  i.e. satisfying the constraints 

exactly, and calculate the upper bound for the expected improvement via (5.6). 

Even then a considerable number of boxes is required, as can be seen in Table 

5.2. Here the six initial sample points are shown and then the new sample points 

for the following iterations, along with their objective function value, maximum 

expected improvement and the number of boxes used to find the maximum ex-

pected improvement. The last maximum expected improvement displayed in the 

table is smaller than the tolerance of 0.001 and the algorithm stops. Combining 

better bounding with tighter constraints will improve the branch and bound even 

further than applying each of these two improvements separately, but it is not 

clear to what extent it leads to a reduction in the number of boxes used. If the 

branch and bound is prohibitively expensive then one should resort to solution 

(2) and consider another optimization method as a compromise, for example by 

using a grid search, for optimizing the expected improvement. Besides investi-

gating the branch and bound method for maximizing the expected improvement 

function, we use a grid search combined with a local search method. The ex-

pected improvement is evaluated at a number of grid points and, optionally, a 

local search can be started from the grid point with the best function value. The 

resulting point is used as a new sampling point. 

Notably, while Jones et al. in [34] use branch and bound to maximize the 

expected improvement to global optimality, the same group of people later state in 

[641, quoting Mockus in [47], that maximizing the expected improvement to global 

optimality is not necessary, since it is only used to determine the point of the next 

observation. In our experience, if a local maximizer of the expected improvement 

is used as the new sampling point, other local maxima, and particularly the global 

maximum of the expected improvement function are more or less preserved in the 

next iteration and it is likely that, even if we only search for a local maximum, 
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x y(x) max El boxes 
0.5833 -0.011582 
0.7500 0.799848 
0.9167 1.120453 
0.4167 0.653336 
0.2500 -2.274116 
0.0833 -1.049753 
0.2042 -2.348656 0.18000015 67 
0.2213 -2.439180 0.03591238 27 
0. -0.126714 0.00530989 31 
0.2245 -2.440447 0.00248054 31 
0.2237 0.00015942 26 

Table 5.2: Data points, maximum expected improvement and number of boxes 
used in branch and bound 

we will eventually find the global one and use the point as a new sample point. 

If we do choose the global maximizer as a new sampling point it is likely that the 

algorithm still explores the other local maxima in the following iterations anyway. 

Solving the maximization problem only to local optimality is easier and cheaper 

to do. 

An issue is that a global method in some iteration could tip the balance be-

tween finding the global maximum of the expected improvement and continuing, 

because the maximum is higher than the stopping tolerance, and stopping because 

the global maximum was missed and the stopping tolerance satisfied. Table 5.2 

and Figure 5.10 shows an example where this could be the case. Plotted in Figure 

5.10 are the objective function as a solid line, the BLUP as a dashed line, and the 

expected improvement, scaled to make it more pronounced. Indicated are also the 

global minimum of the objective function by a + and the sample points by dots. 

The actual maximum expected improvement value here is EI m  = 0.00248054. 

Continuing to a stopping tolerance of 0.001 on the maximum expected improve-

ment, the objective function would be evaluated and the algorithm would con-

tinue. Maximizing by another method, it is not unlikely that this peak in the 

expected improvement would have been missed, and the algorithm would have 

stopped. In such a situation maximizing the expected improvement to global op-

timality can lead to a more accurate solution of the minimization of the objective 

function. On the other hand, insisting on sampling at global maxima only of the 

expected improvement function does certainly not guarantee successful optimiza-

tion of the objective function. The expense of branch and bound and the fact 

that the usefulness of maximizing the expected improvement to global optimality 

(except maybe in the potentially final iteration) is doubtful, leads us to think 
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Figure 5.10: Objective function, BLUP, and El 

that, unless the method of globally maximizing the expected improvement can 

be improved significantly, local optimization methods are preferable. 

5.5 Parameter Estimation 

Sometimes the algorithm fails to locate the global optimum of a function, and 

occasionally it even fails to locate a local minimum. One reason for this can 

be that in the parameter estimation the d parameters 0 are underestimated, 

and the BLUP becomes too smooth and the MSE becomes too small. This 

causes a problem if the termination condition is met in this iteration. If it is not 

met and the algorithm carries on at the next sample point x the newly found 

objective function value y(x) is unlikely to match the value of the predictor (x) 

well, and 8 in the following iteration will be estimated to be something more 

appropriate for the shape of the actual function. However, this is not always 

the case: if at the next sample point x the newly found objective function value 

y(x) matches the value of the predictor (x) well, then 0 is again underestimated 

in the following iteration. A drastic example of this is shown in Figure 5.11. 

Displayed are the objective function, a sample path from a process with 0 = 225, 

IL = 0, and a = 1, the BLUP (dashed), and at the bottom of the plot the 

expected improvement function (shifted down). The parameters are estimated 

to be 0 6.80645, /2 0.05571, and & 1.43520. One sample point is added, 

= 0, at which the objective function and the BLUP are in close agreement. 

The new parameter estimates are 9 	6.12500, ft 	0.20861, & 	1.47324, and 
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Figure 5.11: Objective function, BLUP, and El at first iteration for Problem 48, 
generated with 0 = 225, 6 initial sample points 

the maximum expected improvement is very small, so the algorithm stops. The 

best point found is which is not even a local minimizer, and its objective 

function value is more than 0.5 above the global minimum. This example is an 

extreme failure case which is difficult to fix and might just have to be put down 

as bad luck, it is the worst failure case found in the 500 problems in T225, but it 

is a good example of how a problem solve can go wrong. 

Problems can also occur if the objective function has, besides the global op-

timum, a good local optimum, and if the initial design has sampled points with 

good function values near the local optimum but not near the global one. It can 

then be the case that 0 is underestimated, so we expect high correlation and 

less variation in the function values, therefore keep sampling around the local 

optimum and miss the global one. To spot this kind of problem our generated 

test functions as described in Chapter 4 are useful. The estimated parameters 0 

can be expected to be close to the values which we used to generate the objective 

function, and we can directly compare these values. The estimates 0 are obtained 

through maximum likelihood estimation and often the log likelihood function is 

very fiat around the maximizer 0*  such that if we increase 0 away from 0*  and 

the origin, the log likelihood at 0 and 0*  differs only by a small amount. That 

means that larger values for 0 are often almost equally likely as 0*.  This suggests 

that larger 0 matches our data almost equally well, and in fact an increase in 0 

can sometimes mean a more successful run of the algorithm. Figure 5.12 shows 

the stopping situation in an example where the BLUP for the 12 initial sample 

109 

1.5 

0.5 

0 

-0.5 

-1 

-2 

-2.5 



015 

Figure 5.12: Final situation in the opti-
mization of problem 24 generated with 
o = 225, 12 initial points, 0 estimated 
by maximum likelihood 

0.5 

Figure 5.13: Final situation in the opti- 
mization of problem 24 generated with 
0 = 225, 12 initial points, 0 fixed to 225 

points captures a good local optimum, but misses the nearby global optimum. 

Displayed are the BLUP (dashed), the objective function, the sample points and 

the global optimum. Had 9 been known to be 225 and set to that value through-

out the optimization process, the stopping situation would have been as in Figure 

5.13 and the global optimum of the objective function would have been found. 

Another problem, related to the underestimation of 0, seems to be the under-

estimation of a 2 . We have observed a number of cases in our generated functions 

where cr2  is underestimated and the algorithm does not allow for functions with 

more variation from the predictor. An example of this is shown in Figure 5.14. 

The objective function is generated from 0 = 225, ,u = 0, and a = 1. The 

maximum likelihood estimates of the parameters in this particular iteration are 

O 255.8, /2 0.065358, and & 0.571866. The algorithm terminates here 

having missed the global minimum by more that 0.8. Figure 5.15 shows the final 

state if the value of a had been known to be 1 and this value had been used 

throughout the optimization, with the maximum likelihood estimates used for 

O and IL only. In this case the algorithm terminates correctly having found the 

global minimum. 

To summarize, in most cases of observed difficulties or failures in the global 

optimization, the 0 or a2  were underestimated and the BLUP became too smooth 

or the MSE too low. Can this be taken into account in the expected improvement 

criterion? This question and possible answers will be investigated later in this 

chapter. 
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Figure 5.14: Final situation in the opti-
mization of problem 20 generated with 
0 = 225, 8 initial points, a estimated 
by maximum likelihood 
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Figure 5.15: Final situation in the opti-
mization of problem 20 generated with 
0 = 225, 8 initial points, a fixed to 1 

5.6 Stopping Criterion and Number of Initial 
Points 

The performance of the algorithm depends very much on the stopping criterion 

used. In every iteration Jones et al. in [34] compare the expected improvement 

with the current best function value, the criterion is to stop when the maximum 

expected improvement at a point x E D is less than 1% of the absolute value of 

the current best function value. We have experimented with a stopping criterion 

derived from this. If the current best function value is close to zero the stopping 

tolerance used by Jones et al. can be very small. We therefore use two values to 

specify the stopping criterion and stop when the expected improvement is less 

than the maximum of a tolerance t 1  as used by Jones et al. and another absolute 

tolerance t 2 . So the algorithm stops if 

max EI(x) < max( yo t i ,t2 ). 	 (5.14) 
XE [0,1] d 

For example Jones et al. suggest using t1 = 10 2  and for t 2  we usually use 

t2  = 0.5t 1 . Figure 5.16 shows the total average number of sample points (i.e. 

function evaluations) for 500 1-dimensional test problems generated as described 

in Chapter 4, with 0 = 225, 1a = 0 and a 2  = 1, plotted against the average final 

maximum improvement (i.e. the difference between the global minimum and the 

best point found) for different numbers of starting points 2, 4,. . . , 20. Each curve 

corresponds to runs with a particular number of starting points, and the nine 

points on the curve correspond to nine different stopping tolerances used, with 

the lines only serving the purpose of connecting these points. The values used 
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for t 1  are t1 = 1 - i0I, i = 0,. . . , 8 and the stopping rule used is as in (5.14). 

An observation can be made regarding the number of initial sample points here: 

the use of 18 or 20 initial sample points, for example, for this set of test functions 

T225 with 0 = 225, while pushing up the average of the total number of sample 

points, does not improve the performance significantly. 

The actual stopping tolerance for the expected improvement depends on the 

value yo,, here, and it is difficult with this relative criterion to draw any conclu-

sions regarding performance. We therefore decided to use an absolute stopping 

tolerance, independent of any function values, and stop whenever 

max EI(x) <t 
XE[O,1]d 	- 

for some tolerance t. Figure 5.17 shows a similar plot to Figure 5.16, but for 

the absolute stopping tolerance. For a fixed stopping tolerance on the expected 

improvement, the average total number of sample points (i.e. function evalua-

tions) and the average final maximum improvement (i.e. the difference between 

the global minimum and the best function value at a sample point) are found. 

Shown in Figure 5.17 are the total average number of sample points for the set of 

test problems T225, plotted against the average final maximum improvement on 

the x-axis, for a range of different stopping tolerances on the expected improve-

ment. Most results will be presented in this way, since what we are interested in is 

to achieve a small final error with few sample points. For this family of problems 

the best number of starting points depends on the required average final error. 

Figure 5.18 shows the results for the set of test problems T025. For this family of 

problems 4 starting points is optimal for the entire range of required final errors. 

It becomes clear from these pictures that we cannot make a single recommenda-

tion for a sensible number of starting points, as the performance depends strongly 

on the values of 0 and on the required accuracy. Figure 5.18 shows that for these 

functions with 0 = 25, the use of 10 starting points increases the total number of 

function evaluations but does not improve performance significantly. Figure 5.19 

shows the results for the set of test problems Txxx. 

If the algorithm stops because the expected improvement satisfies the stop-

ping criterion, the global optimization run counts as 'proper' completion of the 

algorithm. The algorithm can be expected to produce more accurate results for 

a smaller stopping tolerance, but using a very small stopping tolerance makes it 

more likely that the problem becomes near-singular in the process of the algo-

rithm. 

The expected improvement criterion often seems to underestimate the actual 

possible improvement and the algorithm stops prematurely, missing the global 
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Figure 5.17: Average total number of points and average value difference for 
absolute stopping tolerance, test set T225 

24 

22 

20 

18 

16 

14 

12 

10 

113 



12 
2 points - 
4 points --
6 points 

11 
	

8 points ..... 

10 points 

10 

9 

8 

7 

6 

5 

41 
0 
	

0.05 	 0.1 	 0.15 	 0.2 

Figure 5.18: Average total number of points and average value difference for 
absolute stopping tolerance, test set T025 

optimum in some cases. From Figure 4.20 in Chapter 4 it became clear that, 

had the uncertainty in the estimated parameters been taken into account, the 

optimization process would have continued and quite likely the global optimum 

of the objective function would have been found. Is it possible to incorporate 

this into a stopping rule? In the following we will investigate the possibility of 

expected improvement variants based on this idea. 

5.7 Expected Improvement Variants 

As the examples in Section 5.5 have demonstrated, in some cases the expected 

improvement criterion based on the maximum likelihood estimates of the param-

eters, fails to pick up the true improvement in the objective function and the 

algorithm stops prematurely. This often happens because the parameters 0 or a, 

and therefore the variation in the objective function, are underestimated. Is it 

possible to take the uncertainty in the estimates of the parameters into account 

in the expected improvement criterion? The aim is to pick up previously missed 

global minima of the test functions while not increasing the number of objective 

function evaluations in successful runs. Another difficulty is that the choice of 

the number of initial points for a problem solve is not straightforward, but the 
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Figure 5.19: Average total number of points and average value difference for 
absolute stopping tolerance, test set Txxx 

effectiveness and success of the solve depends on the number of starting points 

used. Is there a possibility that with another sampling criterion this choice would 

be less crucial, and a small number of starting points would suffice? 

One possible solution is to take into account a measure of the width of the 

likelihood function and to vary the parameters accordingly. Another possibility 

is to use a Bayesian approach to find the posterior distribution of the parame-

ters and use this, rather than the single point estimate produced by maximum 

likelihood, to calculate the expected improvement. One way to find the expected 

improvement corresponding to the posterior distribution of parameters is to use 

Monte Carlo sampling to generate alternative values for the parameters. For each 

combination of parameters generated we can then generate a conditional func-

tion passing through the sample points using the technique described in Section 

4.3, and by averaging these get an estimate of the expected improvement. These 

issues motivate the experiments presented in the remainder of this chapter. 

5.7.1 Varying Parameters 

In this subsection we describe a method which calculates several different expected 

improvement functions using different estimates of the parameters of the function: 
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The different parameter values are chosen to be other likely values, and in choosing 

them we take into account the width of the likelihood function. A weighted 

average of these expected improvement functions can then be used as a sampling 

and stopping criterion. The estimate of the width of the likelihood function, 

in terms of 0 that we use, is the change in 0 needed to produce a drop in a 

local approximation of the likelihood function to 60% of the maximum likelihood 

value. For fixed 0 the maximum likelihood estimates of u and ci, can be found. 

These are / and a respectively. Then the deviation in a is approximated by 
n ____  

— 	— 	
, and the deviation in terms of is taken to be 

1tR-11 
 Taking 

combinations of parameters, increased or decreased by multiples of the estimates 

of their deviation, takes into account the uncertainty in the parameters. Sampling 

is initially done as before, by maximizing the expected improvement function 

based on the maximum likelihood estimates of the parameters. When the stopping 

tolerance on the expected improvement is satisfied, the maximum of the weighted 

average of several expected improvement functions based on different estimates of 

the parameters is computed, and if this exceeds the stopping tolerance a sample 

point is added where the maximum of the weighted average expected improvement 

was found. Then we continue as before using maximum likelihood parameters. 

If the maximum of the weighted average expected improvement does not exceed 

the tolerance, the algorithm stops. The steps of the algorithm are: 

evaluate the objective function at a set of n initial points { () } 1 , 

maximize the expected improvement function to find a promising new sam-

ple point X(n+i).  If the maximum expected improvement at this point is 

greater than the tolerance go to 4, 

maximize the weighted average expected improvement to find a promising 

new sample point 	If the maximum weighted average expected im- 

provement at this point is greater than the tolerance go to 4, otherwise 

stop 

evaluate the objective function at the point 	at which the sampling 

criterion is maximized, 

set n = n + 1, go to 2. 

The weights for the expected improvement parameters were tuned empirically 

using data from runs of the Txxx problems with 4 and 6 starting points. The 

aim was to get the best balance between improving the final error and increasing 

the total number of function evaluations. The result for the 500 test functions 
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Figure 5.20: Expected improvement with varied parameters for 6 initial points 
on the test set Txxx 

using these tuned weights is shown in Figure 5.20. Compared with the sizes 

of the problem sets used, i.e. 1000 for tuning and 500 for running, the number 

of parameters, i.e. 8, is small. Thus overfitting of the parameters is unlikely. 

The run for 6 starting points using the tuned parameter settings and weighted 

average expected improvement competes well over the entire range of final average 

improvements with the normal run for 6 starting points. 

An alternative to using a fixed set of weights for the weighted average ex-

pected improvement is to calculate the weights using a Bayesian update. We first 

illustrate this for a situation where there are only two possible values for 0, and 

where a and p are fixed. The set of test functions is 1000 functions, the 500 in 

T025 and the 500 in T225. The expected improvement used as a sampling and 

stopping criterion is a weighted average of the expected improvement obtained by 

using 0 = 25 and 0 = 225. The weights are obtained as follows: the prior prob-

ability that 0 is 25 or 225 is 0.5. This is multiplied by the respective likelihood 

value L 25  = L(0 = 25) or L 225  = L(0 = 225) and normalized, 

0.5L 25  
W25 = 0.5L25  + 0.5L25  

0.5L225  
W225 

= 0.5L25  + 0.5L 25  

The weights w25  and w 225  are the posterior probability of the sample having 

parameters 0 = 25 or 0 = 225 respectively. Figure 5.21 shows the performance of 
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Figure 5.21: Expected improvement variants for different numbers of initial sam-
ple points, T025/T225 test functions 

16 
maximum likelihood 

maximum likelihood, 2 parameters fixed 
15 
	

posterior parameters --------- 

14 

13 

12 

11 

10 

9 

8 

7 

6 

I; 

0 0.05 0.1 0.15 0.2 
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the maximum likelihood variant and the weighted parameter variant for different 

numbers of starting points. It is clear that the weighted variant for two initial 

points performs well compared with other runs. To make the difference between 

the two variants more clear, Figure 5.22 shows the lower envelopes of the curves 

for maximum likelihood parameters and weighted parameters as in Figure 5.21. 

Also shown is the curve for a variant with i and a fixed to i = 0 and a = 1, 

and 0 estimated by maximum likelihood estimation. This clearly performs better 

than the maximum likelihood variant estimating p, a, and 0, but throughout the 

method using the weighted parameters achieves the same average final error with 

fewer function evaluations. 

The method of selecting parameter weights by tuning seems quite ad-hoc and 

although it did produce an improved performance this was not large. On the other 

hand, selecting parameter weights using a posterior distribution on the 9 has a 

clear theoretical justification and in this example did produce good results. This 

motivates us to investigate how to calculate the expected improvement using more 

general posterior distributions for the parameters. The method uses conditional 

functions, and how to do this is described in the following section. 

5.7.2 Expected Improvement by Conditional Functions 

Given a set of data points { (x ( ' ) , yi),. . . (x () , yTh) } and a distribution of values for 

the parameters 8, jt, and a, a family of conditional functions which interpolate 

the set of data points can be generated. For each of the functions in this family 

a curvature bound can be derived and then used to bound the function values 

on subintervals. Areas where it is clear that the function does not take values 

below a fixed target value, i.e. the best function value at the sample points, 

are excluded from further search. This method can be used to find the actual 

improvement at every point x and also the improvement at the minimum of the 

conditional function. By averaging over the entire family we can find the average 

improvement at every point x and the average total improvement, i.e. the average 

of the improvements at the minima of the conditional functions. If enough such 

conditional functions are generated these averages should give a good estimate of 

the expected improvement at every point x and the total expected improvement 

over all points. 

This technique has been used with the Txxx problems described in Chapter 4 

4.5. The parameters 0, p, and a are sampled using their posterior distributions as 

in 4.4, and the conditional functions interpolating the given data are generated by 

the method described in 4.3. The global minimum of each function is found and 

the maximum improvement and the improvement at each x calculated. These 
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Figure 5.23: Expected improvement using conditional functions versus expected 
improvement using maximum likelihood, Txxx test functions 
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Figure 5.25: Expected improvement stopping tolerance and average final error, 
Txxx test functions 

results are averaged over all the conditional functions to get estimates of the 

pointwise and total expected improvement. 

Like the expected improvement obtained from the maximum likelihood esti-

mates of the parameters, either of these expected improvements based on condi-

tional functions can be used as the stopping criterion, and the pointwise expected 

improvement can be used for selecting the next sample point. Figure 5.23 com-

pares the normal maximum likelihood variant for different numbers of starting 

points with a variant using 2 initial points that uses total expected improvement 

based on conditional functions for stopping and the pointwise expected improve-

ment based on conditional functions for selecting the next sample point. The 

plot shows the average number of function evaluations plotted against the aver-

age final improvement/error on the x-axis, obtained by setting different stopping 

tolerances. The variant using conditional functions, in terms of efficiency, com-

petes well with the normal runs for different starting points. Most average final 

errors are achieved with fewer sample points, which is crucial if function eval-

uations are expensive. Figure 5.24 shows the lower envelope of the maximum 

likelihood outcomes in Figure 5.23, and the conditional functions results. In-

dicated on the maximum likelihood envelope are the numbers of initial sample 

points with which the corresponding errors were achieved with the smallest av-

erage total number of sample points. The fact that the expected improvement 

method based on conditional functions works well for two initial points only is 
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Figure 5.26: Cumulative proportion of the Txxx test functions with an average 
error the given x-value for a tolerance leading to an average total of ten iterations 

encouraging. There is no dilemma here of how many initial points to choose, a 

very small number suffices to achieve good results. Figure 5.25 shows how the 

stopping tolerance on the expected improvement and the average final error are 

related. Clearly, the expected improvement from the conditional functions is a 

much more reliable predictor of the average improvement possible on termination. 

There are two parameters which have to be selected when using the maxi-

mum likelihood stopping method: the number of initial points and the stopping 

tolerance. With this method there is no simple relation between the number of 

initial sample points or the stopping tolerance set, and the average error achieved. 

To achieve a desired average error we need to do the following steps. First use 

a graph of the form of Figure 5.24 to find the optimal number of initial sample 

points for the desired average error. Then use the graph corresponding to this 

number of intial sample points in a figure like Figure 5.25 to select the stopping 

tolerance to achieve the desired average error. In the conditional function variant 

of the expected improvement there is a much clearer relationship between the 

final average error and the stopping tolerance. 

Previous plots of average number of function evaluations and average final 

error showed the averages over all 500 test problems in the test set used. It is 

interesting to know how the different methods compare in terms of the distribution 
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Figure 5.29: Test function 1 	 Figure 5.30: Test function 2 

of errors about the average, and the number of problems with large errors. For an 

investigation of this we look at runs using conditional functions with two starting 

points and runs using maximum likelihood estimation with six starting points - 

the maximum likelihood runs with six starting points performed well on average. 

For a stopping tolerance for each method that achieves an average number of 

ten iterations, Figure 5.26 shows the cumulative proportion of errors for the runs 

using conditional functions and for the runs using maximum likelihood estimation. 

Shown are the sizes of errors on the x-axis and the proportion of functions with 

an error less than this on the y-axis; the vertical line shows the average error. 

It can be seen that the maximum likelihood runs have more large final errors 

and more small final errors, therefore a bigger error variance, compared with the 

conditional functions runs. 

Figures 5.27 and 5.28 show the average of the two variants for all 500 Txxx 

problems. These are the same as the curves shown in Figure 5.23. Superimposed 

are curves showing the distribution of the errors. The plots are obtained as 

follows: for a fixed stopping tolerance, the average number of function evaluations 

is found, and the worst errors which occurred in all 500 problems. The 10% line 

in the plot indicates the lower bound of the 50 of 500 worst errors that occurred. 

It can be seen that the maximum likelihood variant with six starting points has 

more large final errors than the conditional functions variant. 

5.7.2.1. Non-Stationary Test Functions 

Examples of a different kind of test functions, i.e. not realizations of stationary 

Gaussian stochastic processes, are shown in Figures 5.29 and 5.30. Compared 

with test function 1, shown in Figure 5.29, test function 2, shown in Figure 5.30, 

has an added deep narrow dip and therefore a different global optimum. While 
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Test Function 1 Test Function 2 
variant best pt no pts min value best pt no pts min value 
conditional 2 pts 7 14 -0.39733771 21 41 -0.89370861 
max LLH 2 pts 10 15 -0.39737467 4 6 -0.35310863 
max LLH 4 pts 11 13 -0.39737468 11 12 -0.39816149 
max LLH 6 pts 10 10 -0.39737467 10 11 -0.39816137 
max LLH 8 pts 10 11 -0.39737508 12 12 -0.39816047 
max LLH 10 pts 14 17 -0.39737495 15 23 -0.39816137 

Table 5.3: Results for test functions 1 and 2 

the expected imptovement method based on maximum likelihood works well on 

test function 1, and uses only small numbers of iterations, it misses the dip and 

therefore the global optimum in test function 2 almost entirely. The expected 

improvement method based on conditional functions in this case picks up the dip 

in test function 2, and finds the global optimum. Results of runs on these functions 

are presented in Table 5.3, shown are the number of the iteration in which the best 

point was found, the total number of iterations, and the best function value found. 

For reference, the minimum value of function 1 is approximately —0.3973752124, 

and the minimum value of function 2 is approximately —0.8937086124. 

A function of this form is very unlikely to be generated from a stationary 

Gaussian process. The curvature around the narrow dip is much higher than 

anywhere else, hence the appropriate value for 9 is much higher locally around 

the dip, than it is anywhere else. If it happens that no sample point falls deep 

enough into the dip, the value of 0 will have a low estimate, whereas if points 

are sampled from the dip, the estimate of 0 will be much higher. The maximum 

likelihood cases fail to sample deep enough in the dip and have low estimates 

of 0, for example the final estimate of 0 in the run using maximum likelihood 

estimation with 8 initial sample points is approximately 56.5. In contrast, the 

conditional functions method finds a point nearer the bottom of the dip after 19 

function evaluations, and the maximum likelihood estimate of 9 increases from 

about 146 to about 3300. This leads to samples being taken fairly uniformly 

throughout the interval, hence the large number of sample points. Figures 5.31 

and 5.32 show the function and the sample points chosen by the two different 

methods investigated. Figure 5.31 also shows the BLUP as a dashed line. 

5.8 Conclusions 

One of the issues discussed in the chapter is how to perform the maximization of 

the expected improvement function as a sampling criterion. It would be reassuring 

to be able to maximize the expected improvement to guaranteed global optimality, 
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Figure 5.31: Final situation in the op- Figure 5.32: Final situation in the opti-
timization of test function 2, maximum mization of test function 2, conditional 
likelihood with 8 initial points functions with 2 initial points 

and some improvements in how to do this are pointed out. However, this remains 

a difficult and time consuming task, and there is little evidence that it is really 

necessary. 

When the parameters are estimated by maximum likelihood it is not straight-

forward how to choose the best number of starting points or find the stopping 

tolerance to achieve the desired accuracy. We have described a systematic method 

for carrying this out, however this is a complex process which would have to be 

repeated for each new family of functions. The problem with the maximum like-

lihood estimator is that it is a single point estimate and it is often misleading, 

and as a consequence the expected improvement often underestimates the actual 

improvement. 

The benefit of expected improvement by conditional functions is that it takes 

into account the uncertainty in the parameters, whereas normal expected improve-

ment using just one set of parameter estimates, as with maximum likelihood, can 

be inaccurate. The conditional function approach results in a more predictable 

algorithm with a better average performance in terms of number of function eval-

uations. It is also less likely than the normal expected improvement criterion to 

significantly underestimate the real improvement. It also takes care of the choice 

of number of initial points in the cases investigated here. Further, there is a more 

straightforward relation between the expected improvement stopping tolerance 

and the average final error, which means a stopping tolerance could be chosen to 

meet a certain required accuracy in the result. 

Because of these advantages the conditional function approach is preferable 

when function evaluations are expensive. However, as implemented here the con- 

II 
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ditional function approach does require more work per iteration than the max-

imum likelihood approach, so will not be superior computationally if function 

evaluations are cheap enough. Further work is needed to find if it can be made 

efficient enough to be used for more than one dimension. 

Unfortunately, when using expected improvement based on maximum likeli-

hood estimates of the parameters, the ranges of optimality for different numbers 

of initial points and the form of stopping tolerance as a function of average er-

ror are very sensitive to the family of functions being minimized. It is therefore 

necessary to do the analysis separately for each new family. In contrast, using a 

Bayesian approach to estimating the parameter distributions, is a much simpler 

process. All that is required is that a prior distribution of the parameters is pro-

vided. There is no advantage in this method in using a different number of initial 

sample points for different desired final average tolerances. Also the curve of ex-

pected improvement tolerance as a function of average error has a straight line 

through the origin, so its gradient is the only parameter needed when selecting 

the stopping tolerance. 
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Chapter 6 

Generalized Regression and 
Derivatives 

As an extension to the methods that were described in Chapter 3, we investigate 

here the use of generalized regression in the model of the objective function, and 

the use of derivatives of the objective function. 

6.1 Generalized Regression 

In Chapter 3 we introduced the background of the Kriging approach. In partic-

ular, in Kriging the objective function is modeled by 

Y(x)= 
	

f(x) + E(x) 

where the first term fT1  is a general linear model and the second component 

e(x) is the departure from the linear model, which is treated as the realization 

of a stationary Gaussian stochastic process. We also introduced the best linear 

unbiased predictor (BLUP) and the mean squared error (MSE), and used these to 

calculate the expected improvement (El) at any point x E [0, 1]drn  As mentioned 

in Chapter 3, commonly only a trivial regression function f = 1, so that fTf3 

is used. We investigate here how to use general regression functions and compare 

results for some examples. 

Recall from Chapter 3 that the best linear unbiased predictor for a constant 

regression term is given by 

(x)=/Tt+rR 1 (y— 1j2) 

and the mean squared error is 

s2((x)) 	2  [i - rR 1
r + (1 - 1tR_lr)21 

ltRhl 	j 
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We also introduced the BLUP and MSE for the general case, where f contains 

known regression functions. The BLUP for generalized regression is 

(x) = fI3 + rR'(y - F/3) 

and the MSE is 

\ s2((x))_a2 	 o Ft _ h 1f 	l [1(ftrt) (F R) 

and we showed that this can also be written as 

s2 ((x)) = 0,2[1 - rR'r + f(FtRF)_lf - 2rR'F(FtRF)'f 

+ rR'F(FtRF)'FtR'r]. (6.1) 

For the constant regression case we use the gradients and Hessian matrices of 

the BLUP and MSE to evaluate the BLUP and MSE at any point x E [0, 1]d 

by c + gtx  + x tHx,  where c is the constant term, g the gradient, and H the 

Hessian matrix of the respective function. In the case when generalized regression 

is used the linear algebra gets more difficult, and we know from our calculations 

in Chapter 5 that the Hessian matrix of the MSE function is not generally nega-

tive semi-definite. This in particular makes using branch and bound to find the 

maximum El by finding upper bounds on the MSE s2  and lower bounds on the 

BLUP more difficult, as it requires maximizing the MSE function s2 . So in the 

case of generalized regression we evaluate the BLUP and the MSE s 2  by other 

means as shown below, and do not use branch and bound for the maximization 

of the expected improvement, but only a grid search, and a local search from 

the best point found in the grid search. In particular this means that the MSE 

function does not have to be maximized to find an upper bound for the expected 

improvement. The BLUP, in terms of f and r, which both depend on x, is of 

the form 

(x)= f/3+rp 

and we can find the rn-vector 0 and the n-vector p by solving the following 

augmented system 

"0 Ft " //3'\ 	to" 

	

F R)p)y) 	 (6.2) 

The second set of n equations in (6.2) 

Rp+F/3=y 

129 



is the matrix form of the n equations 

= f () /3 + r()P = yi, i = 1,. . . , n 

which state the condition that interpolates the objective function in every pre-

vious sample point. The next set of m equations corresponds to the unbiasedness 

constraint. The system (6.2) is not solvable if m> Ti. This is obvious from the 

structure of the augmented matrix, which is singular if m > n. 

To find the MSE for general regression we can use expression (6.1) or solve an 

augmented system similar to the one in (6.2), derived from the expression (6.1) 

for the MSE. This augmented system is of the form 

o Ft\(q'\(f 
(6.3) 

(F R) t) 	rx )  

and the MSE is given by 

82((x)) =0,2 [i_ ( f r) 
( 	)]. 

To solve the two augmented systems (6.2) and (6.3) we use NAG routines [52]: 

the matrix of the augmented system is factorized into LU factors and these are 

then used to solve the systems. 

What we want to investigate here is whether for an objective function with a 

clear trend, the algorithm works better with regression functions capturing this 

trend. What is also of interest is how such an algorithm performs on an objective 

function with no trend. 

As a particular example for the regression functions in f we will in the 

following consider a quadratic polynomial basis, such that in one dimension 

f = (1,x,x)' and in two dimensions f = (1,x 1 ,x2 ,x1 x2 ,x,x)t. 

6.1.1 Computational Results 

The test functions used for the regression experiments are the Txxx sample paths 

of Gaussian stochastic processes as described in Section 4.5 of Chapter 4, with 

quadratic terms added. In one dimension the added quadratic terms are of the 

form A(x - 0.5)2 = Ax 2  - Ax + and vary in their curvature 2A. The quadratic re-

gression term in the stochastic process model is of the form ft213 = ao+a1 x+a2x2 . 

Table 6.1 shows that, when using quadratic regression for objective functions with 

a quadratic trend and A = 25, i.e. a curvature of 2A = 50 (problems C33 in the Ta-

ble), the coefficients a0 , a 1 , a2  are estimated quite accurately, i.e. a0  , a 1  —A, 

and a2 	A, so in these cases the quadratic regression term appears to capture 

the trend in the function well. 
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Figure 6.1: Quadratic regression versus constant regression for 500 test functions 
in Txxx with strong quadratic trend 

quadratic regressidn, 4 initial points 
constant regression, 4 initial points -------
constant regression, 6 initial points -------- 
constant regression, 8 initial points ................ 

constant regression, 10 initial points 

0.15 
	

0.2 
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Figure 6.3: Quadratic regression versus constant regression for 500 test functions 
in Txxx with no trend 
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Figure 6.4: Lower envelopes of the plots for the constant and quadratic regression 
variants for 500 test functions in Txxx with no trend 
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variant avgpts fundist fin El a0 	a 1 	a2  
C00/AVO.04 11.976 0.254E-01 0.357E-03 0.736E-01 
C00/AV2.04 11.252 0.360E-01 0.371E-03 0.398 	-1.43 	1.37 
C33/AVO.04 10.894 0.194E-01 0.210E-03 3.03 
C33/AV2.04 8.568 0.188E-01 0.204E-03 6.45 	-25.5 	25.5 
C00/AVO.06 11.988 0.221E-01 0.359E-03 0.618E-01 
C00/AV2.06 11.944 0.170E-01 0.310E-03 0.228 	-0.753 	0.735 
C33/AVO.06 10.550 0.209E-01 0.252E-03 2.79 
C33/AV2.06 9.796 0.138E-01 0.184E-03 6.29 	-24.8 	24.8 

Table 6.1: Comparison of variants using constant and using quadratic regression 
for test functions with no trend and test functions with quadratic trend 

For a quadratic term with a large curvature of 200, added to the 500 test 

functions in Txxx, some results are shown in Figure 6.1. Plotted are the average 

total number of points against the average improvement/error. The best results 

are clearly obtained when using 4 initial points and quadratic regression, such that 

f = (1, x, x2 ). This requires fewer iterations and achieves better results than the 

variant with constant regression for 4, 6, 8, or 10 initial points. For a smaller 

curvature of 50, the differences between the curves are much less pronounced, 

but using 4 initial sample points and quadratic regression functions still clearly 

outperforms the other variants. This is shown in Figure 6.2. For test functions 

with no trend, Figures 6.3 and 6.4 illustrate that using only a constant regression 

term performs slightly better than using quadratic regression functions. Figure 

6.3 shows the outcome of the constant and the quadratic regression runs for 4, 6, 

8, and 10 initial points. It is not very clear here which variant is the most effective, 

therefore the lower envelopes of the plots for the constant regression case and the 

quadratic regression case are plotted in Figure 6.4. These lower envelopes show 

the most efficient variant of the relevant algorithm on different numbers of initial 

points. Larger average final errors are achieved with fewer sample points in the 

best cases when using constant regression rather than quadratic, but for smaller 

average final errors the best cases of the two variants are almost equally efficient. 

Table 6.2 shows average results for 12 two-dimensional test functions with 

no trend (COO) and with quadratic trend (C23). Compared are the variant of 

the algorithm using a constant regression term (AVO.20) and the variant using 

quadratic regression (AV2.20). It should be noted that 12 such test functions 

are a small sample and not representative of all possible such sample paths. In 

terms of final error the variant with constant regression outperforms the quadratic 

regression variant on the test functions with no trend, but there is a tendency 

that the quadratic regression variant takes fewer sample points even here. For 
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variant 	avgpts 1/v' 11v 	fundist 	fin El 
C00/AV0.20 47.833 0.131 0.131 0.265E-01 0.764E-03 
C00/AV2.20 44.750 0.117 0.122 0.570E-01 0.663E-03 
C23/AV0.20 39.583 0.202 0.181 0.376E-01 0.767E-03 
C23/AV2.20 28.417 0.120 0.108 0.383E-02 0.349E-03 

Table 6.2: Constant regression versus quadratic regression for 12 test functions 
in two dimensions with no trend, and with quadratic trend 

the test functions with quadratic trend the quadratic regression variant achieves 

a smaller final error with fewer sample points than the constant regression vari-

ant. An observation that can be made when running these problems, is that if 

the quadratic trend in the objective function dominates, then the problems in 

the constant regression variant tend to become near-singular because of small 0 

values. In the variants with regression the regression part of the model picks up 

the strong trend and the problem does not become near-singular so easily. 

6.1.2 Conclusions 

In the cases investigated here, the algorithmic variant using constant regression 

slightly outperforms the variant with quadratic regression for objective functions 

with no clear trend. If there is a clear quadratic trend in the objective function, 

the variant using quadratic regression picks this up well and performs consider-

ably better than the variant with constant regression terms. This leads to the 

conclusion that, as opposed to the apparently existing opinion that generalized 

regression has no benefits in the Kriging approach, generalized regression may 

have benefits and may lead to an improvement in efficiency and performance. 

6.2 Derivatives 

For some objective functions gradients might be readily available, or at least not 

very expensive to compute by direct evaluation or automatic differentiation. The 

issue addressed here is whether it is worth the extra effort to incorporate gradient 

information into the Kriging model. If obtaining gradients involves extra evalua-

tions of the objective functions, which would be the case for example if gradients 

had to be calculated by numerical methods, then this might be a prohibitively 

expensive task. On the other hand, in some physical applications for example, 

gradient information is available. We face a trade-off between the added benefit 

of using gradients and the cost of obtaining them. Some cases where gradient 

information is used are investigated, and compared to cases where no gradient 
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id error bounds 
1 0.001 < IYrnin - Ygop 
2 0.005 < IYrnin - Ygop 
3 0.010 < IYrnin - Ygop 
4 0.050 < IYrnin - Ygop 
5 0.100 < IYrnin - Ygop 
6 0.500 < IYrnin - Ygop 

Table 6.3: Number codes for failure cases 

information is used. The theoretical background of how gradients can be used to 

achieve a better approximation to the objective function was covered in Chapter 

3. Recall that we can use the BLUP and MSE in much the same way as be-

fore, only now the BLUP interpolates derivatives as well as function values, and 

the correlation matrix R contains as entries also the relevant derivatives of the 

correlation function. 

When comparing different runs of the algorithm we sometimes use failure 

codes as given in Table 6.3 for the difference IYrnin - Ygopl of the best objective 

function value found Ymin,  compared to the actual global optimum of the objective 

function Ygop 

6.2.1 Computational Results 

Table 6.4 shows results of 500 normal runs with different numbers of starting 

points, and of 500 runs using derivatives with the same number of starting points, 

all with a stopping tolerance of 0.001 on the expected improvement. As test func-

tions the set of 500 functions Txxx as described in Section 4.5 is used. Displayed 

are occurrences of errors of type 1 - 6, as detailed in Table 6.3, average total 

number of sample points (avgpts), i.e. average number of objective function and 

derivative evaluations, average difference of the best function value found and the 

global minimum (fundist) and its standard deviation (distdev), and the average 

final expected improvement (fin El). It is clear from the table that the average 

number of sample points used when optimizing using derivative information is 

smaller than when not, a so-called "normal run". For example the average to-

tal number of sample points in the normal run starting with two initial points 

(AVO.02) is 12.180, compared with 9.536 in the row underneath for the variant 

using derivatives starting with two points (AV1.02). If derivatives of the objective 

function are not directly available, and if finding a derivative value involves evalu-

ating the objective function itself, then this reduction in the average total number 

of points does not seem to make it worthwhile to use derivatives. If derivatives 
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variant 	1 	2 	3 	4 	5 	6 avgpts fundist distdev 	fin El 
AVO.02 108 49 39 30 26 11 12.180 0.0349 0.1971 0.326E-03 
AV1.02 65 16 9 6 5 1 9.536 0.0040 0.0360 0.219E-03 
AVO.04 93 44 33 23 20 5 11.978 0.0237 0.1608 0.356E-03 
AV1.04 55 19 13 4 4 0 9.104 0.0033 0.0299 0.222E-03 
AV0.06 100 40 33 24 23 8 11.988 0.0221 0.1302 0.359E-03 
AV1.06 63 15 9 3 2 0 9.476 0.0022 0.0229 0.215E-03 
AV0.08 84 31 21 12 10 2 12.536 0.0089 0.0732 0.309E-03 
AV1.08 59 10 4 2 2 0 10.430 0.0011 0.0095 0.147E-03 
AVO.10 92 29 21 7 4 1 13.548 0.0040 0.0320 0.268E-03 
AV1.10 62 16 9 1 0 0 12.088 0.0010 0.0043 0.959E-03 

Table 6.4: Normal runs compared with runs using derivatives for 2, 4, 6, 8, 10 
initial sample points, Txxx test problems 

are expensive to compute, the number of derivative evaluations necessary might 

be too high. On the other hand, the number of failure cases of the algorithm 

is clearly reduced when derivatives are used. For example, there are 11 cases 

of missing the actual global minimum of the objective function by more than 

0.5 in the 500 normal runs, compared with only one such error in the 500 runs 

with derivatives. The number of errors in category 4 when using derivatives are 

one fifth or less of the corresponding number of failure cases in the runs without 

derivatives. The average amount by which the global optimum is missed is clearly 

reduced when using derivatives, and the corresponding standard deviations are 

noticeably smaller, so on average the derivative variant pins down the final er-

ror much better for this stopping tolerance. Figure 6.5 shows the average total 

number of points plotted against the average difference between the best objective 

function value found and the global optimum for 500 test functions. Again the 

plot suggests that 10 starting points are too many for these test problems. Most 

successful on average seem to be the runs starting with 4 or with 6 initial sample 

points. From the plots it is more clear how the average final error and the average 

number of sample points are related in each of the run variants. In the case of 

4 initial points, for example, it can be seen in Figure 6.5 that a comparison of 

average number of sample points for a given achieved final error is more in favour 

of the run using derivatives than the table suggested. An average error of about 

0.025, which is achieved with an average of approximately 12 points in the non-

derivative run, requires an average total of 7.5 - 8 points when using derivatives. 

With an absolute stopping tolerance on the maximum expected improvement of 

0.00001, the variants using derivatives achieve smaller final errors on average than 

the variants without derivatives. However, it is also clear here that the reduction 

in the number of sample points when using derivatives might be too small to 
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Figure 6.5: Comparison of derivative and non-derivative variant on Txxx test 
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Figure 6.6: Lower envelopes of the plots for derivative and non-derivative variants 
on Txxx test problems 
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variant 1 2 3 4 5 6 avgpts fundist fin El funval 
AV0.20 7 2 2 1 1 0 47.833 0.265E-01 0.764E-03 -2.59 
AV1.20 7 5 0 0 0 0 34.750 0.320E-02 0.779E-03 -2.62 

Table 6.5: Normal variant and variant using derivatives for 12 test functions in 
two dimensions 

make it worthwhile. As before, what we are interested in is how the best cases of 

the variants compare. This is shown in Figure 6.6, where the lower envelope of 

the plots for the non-derivative case and the lower envelope of the plots for the 

derivative case are displayed. Also displayed is two times the lower envelope of 

the plots for the derivative case. This shows that if derivative evaluations are as 

costly as function evaluations, and if at every sample point the function as well as 

the derivative are evaluated, using derivatives is considerably less efficient than 

using the non-derivative variant of the algorithm. Only if derivative evaluations 

are less than half the cost of function evaluations might this approach be worth 

using. 

Table 6.5 contains the outcome for 12 test functions in two dimensions for 

the normal variant and for the variant using derivatives, the test functions are 

the same as used for Table 6.2. When using derivatives the average final error is 

clearly reduced, as is the average number of sample points. No failures with code 

> 3 occur in the runs using derivatives. 

Another example in two dimensions is given in Figures 6.7, 6.8, 6.9, 6.10, 

6.11. Figure 6.7 shows the contours of an objective function, for which the variant 

without derivatives fails entirely to find the global minimum, whereas the variant 

using derivatives successfully finds it. The global minimum of the function is 

at (0.6135, 0.2533), and is marked by 'x' here. Figure 6.8 shows the contours 

of the BLUP at the start of the run of the non-derivative variant. This BLUP 

is based on the initial 20 sample points which are indicated by Y. The global 

minimum of the objective function again is indicated by 'x'. It becomes clear in 

Figure 6.9, which shows the stopping situation in this variant, that the global 

minimum of the function is missed. The sample points which were added in 

the optimization process are indicated by little squares, and these concentrate 

around a local minimum, while this algorithmic variant never samples near the 

global minimum. The contours of the BLUP for the variant using derivatives are 

shown in Figure 6.10. The starting situation is plotted, with the BLUP based on 

the indicated 20 initial sample points. The final situation of this variant using 

derivatives is displayed in Figure 6.11. Indicated are the 20 initial points and 

the global optimum of the function, as well as the sample points added in the 
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variant fc pts best fun dist 	pt dist 	max El value 	X 1 	x2 

AVO.20 6 40 	32 	0.920642 0.256165 0.95E-03 -2.600 0.360 0.218 
AV1.20 1 30 	30 	0.003991 0.003585 0.28E-03 -3.516 0.615 0.257 

Table 6.6: Example of the outcome of a run in two dimensions, comparing the 
non-derivative variant and the derivative variant 

optimization process; these are again marked by squares. As opposed to the 

non-derivative variant, the variant using derivatives picks up the global optimum 

very well, and does so with fewer sample points than the non-derivative variant 

which fails on this problem. A summary of the outcome of the two runs, not 

using derivatives and using derivatives, is displayed in Table 6.6. Here fc denotes 

the failure code. The total number of sample points (pts) and the number of the 

best sample point (best) are shown, as are the error in function value (fun dist), 

the distance of the best point from the global minimum (pt dist), the maximum 

expected improvement (max El), the best objective function value found, and 

the best point found. Both variants were run with a stopping tolerance on the 

expected improvement of 10. It becomes clear again, that the non-derivative 

variant (AVO.20) with a total of 40 sample points fails to find the global minimum 

of the objective, while the derivative variant (AV1.20) with a total of 30 sample 

points performs well and achieves a final error of 0.003991, as opposed to an error 

of 0.920642 in the non-derivative variant. 

Note that it can be the case that derivative evaluations are cheaper than 

function evaluations. A brief example of a function where this is the case is now 

given. 

Example 6.2.1 

For an objective function such as 

y(x) = 	exp(sin(ax)) +exp(cos(a jx)) 

the results of the calculation of the sine, cosine, and exponential from the function 

evaluation could be stored and reused in the derivative calculation. Therefore the 

derivative evaluation would be comparatively cheap, and the use of derivatives 

probably worthwhile. 

6.2.2 Conclusions 

When using derivatives the number of sample points and therefore the number of 

objective function evaluations is clearly reduced on average. However, the benefit 
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Figure 6.7: Objective function, 20 initial sample points 

of using derivatives depends on the cost of obtaining them. If derivatives are 

calculated at every sample point and if an evaluation of a derivative is as costly 

as a function evaluation, then using derivatives is probably more expensive than 

it is worth. Only if derivative evaluations are noticeably cheaper than function 

evaluations is this approach of incorporating derivatives into the Kriging model 

worth using. It might be worth trying to evaluate and use derivatives only for 

certain sample points, thereby improving the model, while not spending too much 

resources on derivative calculations. 
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Figure 6.9: BLUP, normal variant, 20 initial sample points, 40 points in total 
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Chapter 7 

Conclusions and Possible Future 
Work 

To round off the work presented in this thesis, we conclude with a summary of 

achievements, and summarize conclusions drawn from the results of the global 

optimization method examined. Further, some open questions are identified and 

ideas for possible future work are given. 

7.1 Conclusions 

The random function approach to global optimization seems to be well suited 

to the optimization of expensive functions, and the expected improvement cri-

terion a promising criterion for finding new sample points. The kind of random 

function optimization method investigated in this thesis requires many auxiliary 

calculations in every iteration of the optimization process. However, these can be 

justified when the objective function is expensive to evaluate, since they generally 

lead to the finding of more efficient sample points. 

The Kriging approach assumes that the objective function can be treated as a 

sample path of a Gaussian stochastic process. Therefore the examined expected 

improvement method, which uses this approach, should be particularly well suited 

to such sample paths. For the algorithm these should be the ideal objective 

functions: if it does not perform well on these, how can it be expected to perform 

well on other objective functions? This is why such sample paths have been used 

as test functions here. A way of generating sample paths of stochastic processes 

has been introduced and explained. Generating these functions can be automated. 

This makes it possible to generate substantial numbers of functions to test the 

algorithm on, and to get a feel for some statistics: what sort of functions or sample 

paths are more likely outcomes of the stochastic process, and how many failure 

cases of the algorithm occur when applied to a large set of functions. Conditional 
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functions, i.e. sample paths interpolating the given data, show that it can be 

possible to turn failure cases of the algorithm into successful runs when taking 

into account the uncertainty in the estimated parameters. 

The expected improvement function is used as a sampling criterion, and as 

such it might not be necessary to optimize it to global optimality. However 

sometimes, if the expected improvement is not maximized to global optimality, 

the stopping criterion is met and the algorithm terminates. Finding the true 

global maximum and adding another point at it could yield a smaller function 

value and lead to a better result. If the expected improvement is to be maximized 

to global optimality, one method of doing this is branch and bound. It has 

been shown that minimizing the negative mean squared error function (without 

taking into account any constraints here) is a convex problem and not so difficult 

to solve as previously thought, which simplifies the bounding of the expected 

improvement. New ways of improving the bounds for the expected improvement 

have been developed, and these have been shown to improve the performance 

of the branch and bound algorithm. Despite these improvements it seems that 

there is a possibility that branch and bound might still be too expensive as a 

method of maximizing the expected improvement. A lot of branching is required 

before useful bounds are obtained and boxes can be discarded. Therefore we 

have resorted to using a grid and local search for finding a local maximum of the 

expected improvement, and this gives good results in practice. 

Usually, maximum likelihood estimates of the parameters are used in the 

model of the objective function and to calculate the expected improvement. These 

estimates often do not reflect the properties of the objective function well, and 

the expected improvement as a result is underestimated, leading to a premature 

termination of the algorithm. It has been shown that taking into account the 

uncertainty in the estimated model parameters leads to good results, and these 

methods perform better than the standard maximum likelihood method. Two 

methods which take into account the uncertainty in the estimated model pa-

rameters when calculating the expected improvement have been developed and 

comparative results have been presented. An ad-hoc method of shifting the pa-

rameters to calculate a weighted average expected improvement has been used 

as a stopping rule. In the other method a Bayesian approach is taken and the 

expected improvement is found by generating conditional functions. Both these 

approaches take into account that for a smaller number of sample points the es-

timates of the model parameters are often not accurate, and that there is more 

uncertainty in the estimates, than when more data points are available. The 

method based on expected improvement by conditional functions works well for 
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a small number of starting points, which makes it more reliable in terms of a 

good choice of number of initial sample points. A recommendation for a sensible 

number of initial points for the expected improvement criterion based on maxi-

mum likelihood estimates of the parameters does not seem to be possible. When 

using the method based on conditional functions, there is also a clear correlation 

between the set stopping tolerance and the average final error. This is beneficial 

since a requested accuracy can be achieved by setting the stopping tolerance to 

the appropriate value. These results are very useful in practice, since they can 

solve the issue of how many initial points to use and what stopping tolerance to 

set. 

It has been argued by Jones et al. in [34] that the Kriging model is very 

powerful and that the regression term can be dispensed with. The results in 

Chapter 6 suggest that this may not be the case. The use of constant and of 

quadratic polynomial regression functions have been compared for test functions 

with no trend, and test functions with a quadratic trend. The more dominating 

the quadratic trend in the objective function, the better the algorithm using 

quadratic polynomial regression functions performs compared to the algorithm 

using only a constant regression term. For functions with no trend, using the 

constant regression term seems to work slightly better. 

The benefit of using derivatives in the Kriging model has been investigated. 

The number of necessary function evaluations is substantially reduced, but deriva-

tive evaluations are required. The value of using derivatives therefore depends 

very much on the cost of obtaining the derivative information. 

It has been attempted in the past to make a statement about how many 

initial sample points should be used for these algorithms. If nothing is known of 

the structure of the objective function, there is no sensible guideline in terms of 

overall performance and achieving a good end result of the expected improvement 

algorithm. As we have shown, knowing something about the structure of the 

problem can make it easier to solve. Despite the advances developing a general 

global optimization method to solve any black box function is not an easy task. 

7.2 Future Work 

There are several open questions and issues which allow for future work to be 

done. How likely is it that functions which arise from practical applications or 

functions which are commonly used as test functions could be generated from the 

stochastic processes being considered? So how well does the stochastic process 

model used in the optimization method capture and match these functions? How 
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plausible is this model, are such test or real-life functions describable by a single 

stationary model, and what is the evidence for or against this? Would it be more 

appropriate to think about model parameters having local validity, rather than 

global? So should the model take this into account by for example letting the 

parameters vary in different regions? In our experiments we have concentrated 

on the exponential autocorrelation function with smoothness parameters p i  = 2. 

Generating functions using other smoothness parameters, or generating functions 

from more generally parameterized autocorrelation functions and experimenting 

with these new functions could be interesting. 

Another issue closely related to the validity of the model is the estimation of 

the parameters. We have pointed out that the estimates of the parameters are 

often inaccurate. The method investigated so far chooses the next sample point 

solely to maximize the expected improvement. However, a different choice may 

be better for producing a narrower posterior distribution for the parameters, so 

may ultimately lead to a better solution. Is it possible to select sample points 

to give better estimates of the parameters? If so, this could be incorporated into 

a merit function for finding new sample points, with the aim of getting a good 

balance between finding good function values and improving the global validity 

of the model and the approximating function by improving the estimates. It also 

might be interesting to further investigate the use of the posterior distributions 

of the parameters 0, p, and a. 

There is scope for improvement in the global maximization of the expected 

improvement function. However, it is not clear how effective a more efficient 

calculation of the maximum expected improvement would be, and whether max-

imizing to global optimality brings with it an improvement of the optimization 
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