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Abstract

We consider linear and semilinear stochastic partial differential equations that in
some sense can be viewed as being at the “endpoints” of the classical variational
theory by Krylov and Rozovskii [25]. In terms of regularity of the coefficients,
the minimal assumption is boundedness and measurability, and a unique Lo-
valued solution is then readily available. We investigate its further properties,
such as higher order integrability, boundedness, and continuity. The other class
of equations considered here are the ones whose leading operators do not satisfy
the strong coercivity condition, but only a degenerate version of it, and therefore
are not covered by the classical theory. We derive solvability in W™ spaces and
also discuss their numerical approximation through finite different schemes.
Keywords— Stochastic PDEs, Cauchy problem, Moser’s iteration, Harnack inequality,

degenerate parabolicity, symmetric hyperbolic systems, finite differences, localization error



Lay Summary

In this thesis we investigate stochastic partial differential equations. These equa-
tions describe the evolution of a random quantity in time. They are infinite
dimensional in that at every instance of time the quantity consists of infinitely
many values. An illustrative example is the heat equation describing the prop-
agation of temperature in a certain medium: at any given time the state of the
system is given by the collection of values of temperature at each point in space,
that is, a function of space. If the source of the heat is random or there are other
uncertainties in the system then the equation modelling the evolution will have
stochastic terms.

For any mathematical model it is crucial that the model itself is self-consistent,
that is, that the equation has a solution in a reasonably defined sense. When the
solutions exist, one might be interested in further properties of it and study
whether it is a bounded function, a smooth one, or whether it is possible to
approximate it in a reasonable manner. The practical motivations of the latter
is also quite clear: while the existence of solutions may be provable in large
generality, they are rarely available explicitly, and therefore one would like to
have methods that are easily implementable numerically and yield functions that
are close to the true solution.

On the other hand, it is desirable that such properties do not require too
much from the equation, limiting the range of applicability. This is one of the
motivations to study equations which are not, or are barely covered by the usual
methods but may very well naturally appear in applications. Studying solvability,
regularity, and numerics of such equations we extend (and in some cases, sharpen)

the known results to a wider class of equations.
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Chapter 1
Introduction

Stochastic partial differential equations (SPDEs) have been the subject of very
active research in the past decades, motivated by a wide variety of applications.
One of the main approaches to analyse these equation, also referred to as the
“variational approach”, was developed in [34] and [25]. Following the latter ref-
erence, the main well-posedness result can be formulated in an abstract setting
as follows.

Fix a terminal time 7" > 0, and consider a probability space (£, F, P),
equipped with a complete, right-continuous filtration (F;)ep.r), and let (w*)72,
be a sequence of independent (F;)cjo,r-Wiener martingales. The predictable o-
algebra on 2 x [0, T is denoted by P. Let H be a separable real Hilbert space and
let V' be a separable, reflexive, real Banach space continuously and densely em-
bedded in H. Identifying H with its dual, this induces the continuous and dense
inclusions V' «— H < V* with the identity (v,h) = (v,h) for v € Vh € H,
where (-, ) is the duality pairing and (-, ) is the inner product in H. This is also
referred to as a Gelfand triple. An important example, and the one most relevant
for the present work, is the triple H® «— H*~! «— H*2 for some s € R, where
H?® = W3 are Sobolev spaces, introduced in detail below. Consider the stochastic

evolution equation
t o0 t
ut:uo—l—/ As(us)ds+2/ B (u,) dut, (1.0.1)
0 e Jo

for ¢ € [0,7], under the following assumptions (note that whenever it does
not cause confusion, certain arguments are suppressed, as, for example, w is
in (.0.1)).

Assumption 1.0.1. The operators A and B = (B*)°, are P x B(V)-measurable
functions from Q x [0,7] x V to V* and [y(H), respectively, such that for all

1



u,v,we V,w, it eQx[0,7T):

(i) (Monotonicity)

2(u — v, Au +Z!Bk () < Klu— vl

(ii) (Strong coercivity)

+Z|Bk Wi < =Allully + Klul + f;

(iii) (Linear growth)

[A(w)]

ve < Kllully + f, ZIB’“ i < llully + £;

(iv) (Hemicontinuity)
lim(u, A(v 4+ ew)) = (u, A(v))

e—0

Here K > 0 and A > 0 are constants, while f is an adapted nonnegative process

such that .
E / fsds < o0.
0

The initial condition ug is assumed to be an Fyp-measurable H-valued random
variable. The solution of ((1.0.1)) is then understood as follows.

Definition 1.0.1. An H—valued adapted continuous process (u;):cjo,r] is called
a solution of (1.0.1)) if u; € V for almost all w,t € Q x [0, 7], and almost surely

T
/ |2t < oo
0

and , o
(1:0) = (u0.0) + [ (o) ds+ D [ (B, vt
0 — Jo
for all t € [0, 7] and v € V.

Theorem 1.0.1. Let Assumption hold. Then (1.0.1) admits a unique (up

to indistinguishability) solution (ut)ico.1], and moreover, there exists a constant



N =N\ K,T), such that

T T

E sup |ul3 + E/ |usl3- ds < N (E|u0|§{ + E/ fs ds) )
te[0,7 0 0

Applying the theorem to the example H* «— H*"! < H*"2 one can get

well-posedness results for the second order parabolic stochastic PDE

du = (I14iyDi(a" Dju) + Longiva” DiDju + f(u, Du)) dt + Z(UikDiu + g*(u))dw?
k=1

in either divergence or nondivergence form (i.e. exactly one of div and nondiv
is “true”), for sufficiently nice f and g. In terms of the coefficients a and o,
Assumption here translates to

(i) A stochastic parabolicity condition:

(2a" — Zaikajk)zjzl >\
k

as symmetric matrices, for some A > 0, where [ is the identity matrix,

(ii) Certain smoothness assumptions in the spatial variable, depending on s and

the form of the equation.

In (ii), the minimal smoothness requirement occurs when s = 1 and div = true,
in which case only boundedness is required from the coefficients. This is the topic
of Chapter [2, where we investigate the further properties of the unique Lo-valued
solution provided by Theorem [[.0.I, While the established properties of the
solutions are available through much easier arguments in the case of more regular
coefficients, assuming the minimal conditions not only provides more generality,
but also sharper estimates. These results can also be used to derive new existence
results for a wide class of semilinear equations.

The (excluded) endpoint of (i) is A = 0, in this case solvability in H*® is proved
in [26]. Such degeneracy may arise naturally from applications, particularly in
the nonlinear filtering problem. It is also useful to have a theory that includes
tha A = 0 case for studying truncated equations, which may appear in numerical
approximations. We discuss solvability in W" in Chapter .

As explicit solutions are rarely available, disctretization of SPDEs are of great
interest. While the literature is extensive, similarly to the theoretical results,

much fewer is known for degenerate equations. This is what we investigate in



Chapter [4] focusing on the acceleration of the rate of convergence of finite differ-

ence approximations and the error of localization.

1.1 Notations

The probabilistic setup is already introduced above, for other basic notions in
stochastic analysis used in the following such as stopping times, stochastic inte-
gration, continuous martingales and their quadratic variation process we refer to
[16] or [35]. For a fixed d > 1, we denote Bg = {x € R : |z| < R} for R > 0.
The Lebesque measure of a set A is denoted by |A|. For a domain A C R
p € (0,00], and a Hilbert space H the norm in L,(A, H) is denoted by |- |, or
| - |p, while the norm in L,([s,r] x A, H) is denoted by || - ||p,s,x4, or, whenever
omitting the domain does not cause confusion, by || - ||,. Similarly, the norm
in L,([s,r], Ly(A, H)) is denoted by || - ||,,4- The target space H will usually be
omitted, as it will be clear from the context which function takes values where.
For a nonnegative integer m, W = W;”(]R”) denotes the Sobolev space con-
sisting of functions such that their distributional derivatives up to order m are
in L,. Here and in the following when we talk about “derivatives up to order
m”, we understand the inclusion of the zero-th derivative, that is, the function
itself. When p = 2, we often use the notation W3* = H™. The space of smooth
functions compactly supported on a domain A C R? is denoted by C>°(A). The
closure of C>°(A) in the H' norm is denoted by Hj(A), and its dual by H~*. For

(distributional) derivatives of functions on R? we use the notations

d
Dij:DiDj7 &,:ZWDZ-, VZD:(DI,”-;Dd)

=1

0
- oz

for i,5 = 1,...d. For a multiindex a = (a1,...,aq) € {0,1,...}%, we define
its length |a| = 3 . oy and D* = D{* --- D§?. By inf,sup, etc. we always mean
essential ones, although this often (for example in Theorem above) will agree
with the true inf, sup, etc. Indicators of a set A is denoted by 14. In the following
the summation convention with respect to repeated indices is used whenever not
indicated otherwise. Constants in the calculations, usually denoted by C' or N,
may change from line to line, but their dependency is indicated in the relevant

statement.



1.2 Preliminaries

We will often use classical inequalities such as Hélder’s, Young’s, Burkholder-
Davis-Gundy, Doob’s, etc. Below, let us collect some useful but perhaps less
well-known technical lemmas from the theory of function spaces and stochastic

analysis, respectively, that will also be used on one or more occasions.

Lemma 1.2.1 ((I1.3.4),[29]). Let Q@ C R? be a Lipschitz domain and suppose
that v € Ly([0,T], H}(Q)) N Lo ([0, T), Lo(Q)). Let r,q € (2,00), satisfying 1/r +
d/2q =d/4. Then v belongs to L.([0,T], L,(Q)), and

T r/q 2/r T
</ (/ |vt|qu) dt) <N ( sup / |vt|2dx+/ / |Vvt|2da:dt>
0 Q 0<i<T JQ 0 JQ
with N = N(d,|Q|,T)
Lemma 1.2.2 ((IL.5.4),[29]). Let p > 0 and v € H'(B,) such that on A C B,,

v =20. Then
pR(d+1)
/ v2dx§N—2/ Vo da,
B, [A* JB,

with N = N(d).

Lemma 1.2.3 (IV.4.7/IV.4.31,[35]). Let X be a non-negative adapted right-

continuous process, and let A be a non-decreasing continuous process such that
E(X|Fo) < E(A-|Fo)

for any bounded stopping time 7. Then for any x,y > 0,

P(SupXt 2 quT S y) S y/‘ru
t<T

and for any o € (0,1)

Esup X7 <o 7(1 — o) 'EA].
t<T
Lemma 1.2.4 ([33]). Let a = (a¥(x)) be a function defined on RY, with values
in the set of non-negative m x m matrices, such that a and its derivatives in x up
second order are bounded in magnitude by a constant K. Let V' be a symmetric

m X m matriz. Then
|Da"V? < Na"VH*yn

for every x € R4, where N = N(K, d).



Lemma 1.2.5 ([12]). Let y = (Y¢)ecpo,r) and F' = (Fy)cpo,r) be adapted nonnega-
tive stochastic processes and let m = (mt)te[ovT] be a continuous local martingale
such that

dyy < (Ny + Fy)dt +dmy  on [0,T] (1.2.2)

d(m), < (Ny? + yf(lfp)Gfp) dt on [0,T], (1.2.3)

with some constants N > 0 and p € [0,1/2], and a nonnegative adapted stochastic

process G = (Gy)iejo,r), such that

T
/ Gidt < 0 (a.s.),
0

where (m) is the quadratic variation process for m. Then for any q > 0

T q
Esupyf < C’Eyg—f—C'E{/ (F, + Gy) dt}
0

t<T

with a constant C' = C(N,q,p,T).



Chapter 2
Discontinuous coefficients

In this chapter we investigate in divergence form, with bounded but pos-
sibly discontinuous coefficients. The general theory covers this case, with the
triple H! < Lo < H~', and therefore one knows the existence of an Lo-valued
(for almost all w, ¢, H'-valued) solution. Deterministic theory suggests, however,
that more can be said about the solution: [6], [32], and [31] established Holder-
continuity of the solutions of elliptic equations Lu = 0, with merely bounded,
measurable, and elliptic coefficients. This is the celebrated De Giorgi-Nash-Moser
theory, which turned out to be a key result in the theory of nonlinear PDEs. It is
a natural question to ask whether such results hold for SPDEs. This was inves-
tigated in the author’s collaboration with Konstantinos Dareiotis in the papers
[3], [4]. The content of this chapter is based on this work.

Remark 2.0.1. The main purpose is to tackle the problems arising due to the
stochastic nature of the equation, and therefore we did not attempt full general-
ity. The directions towards which generalizations are available and are relatively
straightforward include unbounded lower order coefficients ([17],[29]), different
integrability exponents in space and time ([3],[5],[29]), and semilinear equations
([29]), with the nonlinear term growing slightly superlinearly. In fact, as seen in
[5], some nonlinearities of the leading order can also be included. Given that the
estimates for treating the additional terms arising in these generalizations can be

found in [29], we do not include (let alone unify) these approaches.

2.1 Global supremum estimates

Consider the equation

duy = (Lyuy + Oi f} 4 f7)dt + (Mtkut + gf)dwf, Uy = 1Y, (2.1.1)



on a bounded Lipschitz domain () with 0 boundary condition, where
Lyu = 0;(af Ou) + bioyu + cou, MFu = o*0mu, + pfu

We aim to derive global (i.e. up to the space-time boundary) estimates for the
supremum norm of the solution. Solutions are understood via Definition [1.0.1] on
the triple H}(Q) — L2(Q) — H'(Q). We also get the existence and uniqueness
of the solution by Theorem [1.0.1], under the following assumptions.

Assumption 2.1.1. i) The coefficients a, b’ and c are real-valued P x B(Q)
measurable functions on Q x [0, 7] x @ and are bounded by a constant K > 0,
for any i, j = 1,...,d. The coefficients 0% = (%)%, and p = (u*)32, are lo-valued
P x Q-measurable functions on Q x [0,7] x @ such that

ZZW; |2+Z|ut W< K forallw,tand z,
ik

i) f!, for I € {0,...,d}, and g = (¢*)2°, are P x B(Q)-measurable functions on
Q x [0, T] x @ with values in R and [y, respectively, such that

d
EQY N3+ Mlal3) < o
=0

iii) ¢ is an Fy-measurable random variable in Lo(Q) such that E|y|3 < oo

Assumption 2.1.2. There exists a constant A > 0 such that for all w,t,z and
for all £ = (&,...&;) € R? we have

a (2)&&; — z ()] (2)&& > N>

Let
ry— {(r, Q) € (1,000

1+d<1
r o 2q '

The following is our main result on global boundedness.

Theorem 2.1.1. Suppose that Assumptions 2.1.1] and |2.1.2 hold, and let u be
the unique Lo—solution of equation (2.1.1). Then for any (r,q) € 'y and n > 0,

Elull, < NE([Y[Z + 1£lI7, + Z £ 03020 + Mgliz13124) (2.1.2)

where N = N(U,T,(], d7 K7>‘7 |Q|aT)



We start by proving an Itd’s formula for the p-th norm, from which we then

derive some “energy inequality-like” estimates.

Lemma 2.1.2. Suppose that u satisfies equation [2.1.1)), f' € L,(Q x [0,T], P;
P(Q)) fO’/’l S {07 "'7d}> g S LP<Q X [07T]77D7 LP(Q))? and 1/} S LP(Q7F07 (Q)
for some p > 2. Then there exists a constant N = N(d, K, \,p), such that

T d
Egymﬁ+E/U/Wmﬂwv%MksNMW$+2Nﬂ%+M%J9
< 0 JQ 1=0

(2.1.3)
Moreover, almost surely
t .
/ |ug|Pdxe = / |uo|Pdx + p/ /(agké?ius + pFug 4 gF Y ug|us P2 dadw?
Q Q
/ / a¥ Oyug|ug|P205us — p(p — 1) fi0sus|u,s [P 2dxds

+/ /p(bi&-us + csts + O uslugP*drds

-1 / /Zw’“a us + pFug + ghPlugP?deds,  (2.1.4)
Q

foranyt <T.

Proof. Consider the functions

|7 [P if |r] <n
¢”(T) - 2p(p 1) 2 -1 :
nt~ (Ir| =n)* +pn?=(|r] = n) +nP if [r| > n.

Then one can see that ¢, are twice continuously differentiable, and satisfy

|6n(2)] < Nz, |6, (2)] < Nla|, ¢ (2)] < N,

where N depends only on p and n € N. We also have that for any » € R,
Gu(r) = [P, ¢7,(r) = plr[P=?r, ¢ (r) = p(p — 1)|r|P~2, as n — oo, and

Gu(r) < N|rlP, ¢l (r) < NP~ ¢ (r) < N|r[P=2, (2.1.5)

where N depends only on p. Then for each n € N we have almost surely



t
/¢n(ut)dx:/¢n(uo)dx+/ /(oékaius+uku8+gk)¢;(us)dasdwf
Q Q 0 JQ
t
—i—/ /—aijaiusd;(us)ajus—f%'é(us)aiusdxds
0 JQ
t
+/ /bi@iuscﬁ;(us)—|—csus¢;(us)—|—f§)¢;(us)dmds
0 JQ

1 [ = .
+§/ /Zloi’“@usw’“us+g§|2¢;;(us)dxds, (2.1.6)
0 J@Q

k=1

for any ¢t € [0, 7] (see for example, Section 3 in [19]). By Young’s inequality, and

the parabolicity condition we have for any € > 0,

/¢n(ut)dac < mi" +/ O (uo)dz
Q Q
t d ‘
+ / /(—/\|Vus]2 + &|Vus* + NZ | f2) @ (us)dads
0 J@Q i=1
t 00
[ [T N+ N Y b dads
0 JQ k=1
t
+/ /(bi@ius + csus + fO) B (us)dxds, (2.1.7)
0 J@

where N = N(d, K, ¢), and mE") is the martingale from (2.1.6). One can check
that the following inequalities hold,

i) |rdf,(r)] < pea(r)
i) [r2¢"(r)] < p(p — 1)a(r)
iii) [¢7,(r)|* < 4p ¢ (r)en(r)
iv) g ()PP < [p(p — PP D, (r),
which combined with Young’s inequality imply,
1) Oiusd) (us) < €l (us)|Ous|* + N (us)
i) [usy,(us)| < pon(us)
iii) [ f0r (us)| < |F16n (us) 2 |n (us) /2 < NP + Ny (us)

V) Jus|?0” (us) < N (us)

10



/
V) S lob 20 ) < Nowlu) + N( Sy latf?) "
V) S [FiE0(ue) < Now(u) + NS, |,

where N depends only on p and e.

By choosing € sufficiently small, and taking expectations we obtain

¢ ¢
E/ On(ug)dr + E/ / |Vus 2@ (us)drds < NEK, + N/ E/ On(us)dzds,
Q 0 J@ 0 Q

where N = N(d,p, K, \) and

t d
o+ / SOIFE + lgufzds.
(=0

By Gronwall’s lemma we get

t
E / on(u)dz + E / / (Vuy 260 (ug)dzds < NEK,
Q 0 JQ

for any t € [0,7T], with N = N(T,d,p, K,\). Going back to (2.1.7)), using the

same estimates, and the above relation, by taking suprema up to 7" we have

Esup/an Uy dw<NEICt+Esup|mt |.

t<T t<T

1/2

T 2
< NEKr+NE (/ > </ |0 Bius + pFus + gfl|¢i§(us)¢n(us)!“2da¢> dS)
0 7 Q

T - 1/2
< NEKy + NE (/ /(|Vus|2 Judf? + Z |g§|2)¢;;(us)dx/ gbn(us)dxds)
0 Q =1 Q

< NEK7 + = Esup/gbn ug)dr < 0o,

t<T

where N = N(T,d,p, K, \). Hence,

T
ESHP/ ¢n(ut)d£€+E/ / V|29l (us)drds < NEKr,
0o JQ

t<T JQ

and by Fatou’s lemma we get (2.1.3]). For (2.1.4), we go back to (2.1.6]), and by

letting a subsequence n(k) — oo and using the dominated convergence theorem,
we see that each term converges to the corresponding one in almost surely,
for all t < T'. This finishes the proof.

11
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Corollary 2.1.3. Let v > 1 and denote k = 4v/(y — 1). Suppose furthermore
that r,r',q,q" € (1,00), satisfying 1/r +2/r" =1 and 1/q +2/q¢" = 1. Suppose
that u satisfies the conditions of Lemma for any p € {2v",n € N}. Then,
for any p € {2v™,n € N}, almost surely, for allt <T

2yt
/\ut|pdx+p—/ / |V |?|w|P~2dzds < N'my
Q 4 Jo Q

1+ Pl .o + 2 ULFOIR + Z £ W50 2g + gliallBr2g) |+ (2:1.8)

where my is the martingale from (2.1.4)), and N, N" are constants depending only
on K7 d7 T7 )\7 ‘Q’? r? q’ 7'

Proof. By Lemma [2.1.2] the parabolicity condition, and Young’s inequality we

have

2 t
/|w|”da:+p—/ / Vs [*us[P~?deds < N'my + Ny (/ |¢["dx
o 4 Jo Jo Q

d
/ P Jug P 4l Ol + g2 S| P +p2lgs|i|“s|p_2d$] ds) |
Q i=1

t
/

Then by Holder’s inequality we have

/ / Pllusl s < [ lnal Ul 1) o1y

and by Young’s inequality we obtain

p”fO”rqHu”p (p—1)/2. (p—-1)/2 = P prOH +pH”u”p/ (p—1)/2,q' (p—1)/2
<p I

r,q + N. 2P ||u||r 'p/2,q'p/2"

Similarly, for n > 1,

/ / P lus2drds < 2] P 1R a1l ) a1

< p PN fllonag + 0" HUHp/ (1—2)/2,q (p—2) /2
SpipH]MHZT,Zq—i_N?’p HuHrp/2qp/2

The same holds for g in place of f*. The case n = 0 can be covered separately with

12



another constant Ny, and then N can be chosen to be max{N;(Ny + N3), N4}
This finishes the proof.
]

Lemma 2.1.4. Suppose that u satisfies equation (2.1.1)), f' € L,(Q x [0,T], P;
Ly(Q)) for 1 €{0,...,d}, g€ Ly(Qx[0,T],P; Lp(Q)), and ¢ € Ly(Q, Fo; Ly(Q))
for some p > 2. Then for any 0 < n < p, and for any € > 0,

2 T n/p
E (Sup | [h + —E/ / |Vu5|2|u5|p_2dmds)
t<T 4 Jo Jo

d
< ¢E||ulll + N(e.p)E |[$lp+ 1T+ > 113 + |||g|z2||3]
i=1

where N(e,p) is a constant depending only on €,n, K,d,T, \,|Q|, and p.

Proof. As in the proof of corollary [2.1.3] for any JFy—measurable set B, we have

almost surely
P ¢
IB/ |us|Pdz + —]B/ / |Vu|?|us[P~2dxds < N'Igm; + NyIp (/ ||Pdx
Q 47 Jo Q
¢ d
s | [ P £l 3 1 +p2\gs|?2|us|“d:c] ds) ,
0 [Je i=1
(2.1.9)

for any ¢ € [0,T]. The above relation, by virtue of Gronwal’s lemma implies that

for any stopping time 7 < T

t<T

sup Elp / \utrr|Pdx + Elp / / \Vug|?|us[P~2deds < NEIg¥;, (2.1.10)
Q 0 JQ

where

t d
%:z/ |¢|”daz+/ / sl ) FiP sl + |gali |us P~ dads.
Q 0 JQ i=1

Going back to (2.1.9), and taking suprema up to 7 and expectations, and having

in mind (2.1.10)), gives

Esuplp | |ufPdx < NEsupIg|mi|+ NEIg¥;.
Q t<t

t<t
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By the Burkholder-Gundy-Davis inequality and (2.1.10f) we have

B} 5\ 1/2
E81<1p13|mt\ < NEIp (/ (/ |ut|P2(|Vut|+]ut|+|g|12)dx) dt)
t<t 0 Q

- 1/2
< NEI, (/ / \ut|pd:1:/(|Vut]2—l—|ut|2+ ygyi)\u]p?dxdt)
0 J@Q Q
EsupIB/ |ug|Pde + NEIgY;.
Q

Hence,
EsupIB/ |u|Pde < NEIgY;,
Q

t<t

which combined with (2.1.10)), by virtue of Lemma m gives

2 T n/p
E (sup | |b +- p—E/ / ]Vus|2]us]p_2d:£ds) < NEY/?
t<T 4 0 Q

d n/p
< NE [l + Nullb 1l + [lull5? (Z I1£113 + |||g\z2||§>]

i=1

< ¢B||u|”, + NE

d
[l A+ IO+ D NS + |||g|z2||’27] ,

i=1
which brings the proof to an end. O

Proof of Theorem (2.1.1 Throughout the proof, the constants /N in our calcu-
lations will be allowed to depend on 7,7, q as well as on the structure constants.
Notice that we may, and we will assume that r, ¢ < oco. Without loss of generality
we assume that the right hand side in is finite. Also, in the first part of
the proof we make the assumption that v, f', 1 =0,...,d, and ¢g are bounded by
a constant M. In particular, by , uwe L,(Q,L,,) for any n,7,q.

Let us introduce the notation

d
Mieap(t) = Lo fl2g + D ILj0.0f Br2q + L0190z 5.2
i=1

Since (r,q) € Ty, if we define 7’ and ¢ by 1/r+2/r' =1, 1/q+2/¢ = 1, we have

d_1,d_ d
1S Ty T )



for some v > 1. Then # = v’ and ¢ = ¢’ satisfy

1+d_d
Poo2G 4

By applying Lemma to 7,4, and © = |v|P/?, we have, for any p > 2

T /4
E | |Y|L Vv (/o (/Q |Ut]‘jp/2dx> dt)

2 ,T n/p
[, v N (OgggT [ a2 [0 ] |wt|2|vt|f’-2dxdt) ]
<t< Q 0 Q
(2.1.11)

2n/7p

<E

To estimate the right-hand side above, first notice that, if p = 29" for some n,

then by taking supremum in (2.1.8)), we have for any stopping time 7 < 7', and

any JFo— measurable set B,

Ip sup /|vs|pdx
Q

0<s<7

S N]B <|¢|£o +pHHl[O,T]U”f/p/Q,q/p/Q +p_er,q,p(7')) —+ N,]B sup |ms|7 (2112)

0<s<t

By the Davis inequality we can write
1
2

. 2
Elg sup |mg| < NEIg (/ Z (/ (0% 0 + pFus + gk)vs|vs|17—2d:p) ds)

0<s<t

1o 1
< NEIp ( sup / |'Us]pdx) </ /p2 Z o005 + pFvs + gk\QIUSIPQd:Cds>
Q 0 Ja k

0<s<Tt
Applying Young’s inequality and recalling the already seen estimates in the proof
of Corollary (i) for the second term yields

Elgp sup |ms| <eFElp ( sup / |vs[Pd
Q

0<s<7 0<s<t

N i _ K -
257 [ [ 90 s Ll o+l

for any € > 0. With the appropriate choice of €, combining this with (2.1.12]) and
using (2.1.8) once again, now without taking supremum, we get

15



2 T
EIB(sup / |U8]pdx—|—p—/ /|VUS|2|U5|p_2dCL’dS)
0<s<rJq 4 Jo Jq

< NEI (ot +* / V0, e~ 2dads + " [ L0702, 0 g0+ P Mgl
0
< NEIs (|60 + 510y s s + 7" Mogy(7)) + N'Elm,,

and the last expectation vanishes. Now consider

2 t
= [y[5, v (sup / |vs[Pda + p_/ / \VUSIQ\USP_Qda:ds)
0<s<t.JQ 4 Jo Jo

A =Cp" (|¢|€o N ||1[0,t]v||f/p/2,q/p/2 +p_pan,p(t)>

for a large enough, but fixed C'. The argument above gives that

and

2 T
FElgX, < Elp (|@/}|§o + sup / |vs|Pdx + %/ / |VU5|2|v5|p_2dxds)
0 J@

0<s<t

< NE (1018 + P800 gy + 27" Maa (7)) < BlsA-

Therefore the condition of Proposition is satisfied, and thus for n < p we

/p
E(|w|’o’o\/ < sup /|vt|pdx+—/ /|Vv| |vg| P~ 2dxdt)>
<t<T

P -~ n/p
S e (A P R A C)

< (VLB (W [0+ Maaa(D) - (2113)

obtain

Let us choose p = p, = 27" for n > 0, and use the notation ¢, = (Np+1)7/rn pfnn

Upon combining (2.1.11)) and (2.1.13)), for p, > n we can write the following
inequality, reminiscent of Moser’s iteration:

E|w‘n \/ HUHT pn+1/2,qpn+1/2 — [lw’n v HUH pn/27q’pn/2 _'_ Np?:nMT,qJ](T)} °
(2.1.14)
Consider the minimal ny = ng(d,n) such that p,, > 2n. Taking any integer

16



m > ng we have

ﬁ Cp < H N'y’i'H /2" 277/27

n=no n=no

m n m
= exp |log(N~*1) 2777 +3 <,

n=no n=no
where Ny does not depend on m. Also,
N> p" <Ny,
n=ng

where N; does not depend on m. Therefore, by iterating (2.1.14) we get

liminf EJ¢[%, V|0, <NoN1EM, 44(T)

' pm /2,q'Dm /2
+ NoE[Y[3% Vvl

(Prg+1)/2,4 (Prg+1)/2’

and thus by Fatou’s lemma

EllvlL < NE([¢[% v ol

T (Prg+1)/2,a (Prg+1)

j2 Mg (T)), (2.1.15)

in particular, the left-hand side is finite.

By Lemma we get

P> T n/p
E (|@/}|§O v ( sup / |vg|Pdx + —/ / |Vvt|2|vt|p_2dxdt)>
0<t<T JQ 4 Jo Jo

< eBllv||%, + N(e, p) E ([Y|L, + Mi1(T)) (2.1.16)
for any € > 0. Combining (2.1.11]) and (2.1.16)) for p = p,,, gives

Bl v ol = E¢[L Vvl

(Pro+1)/2,¢' (Prg+1)/2 — Png /2,4 Prg /2

< eEl[o]lZ, + N(e, pag) E (0] + My, (T)). (2.1.17)

Choosing ¢ sufficiently small, plugging (2.1.17)) into (2.1.15)), and rearranging
yields the desired inequality

Elv][Z, < NE([Y[L + My g (T))- (2.1.18)

17



As for the general case, set
P =y Anv—n, = fianv-n, " =g"An/k)V —(n/k),

define Mﬁf;),p correspondingly, and let v™ be the solution of the corresponding
equation. This new data is now bounded by a constant, so the previous argument

applies, and thus
Elo" % < NE($™L, + M) (T) < NE([[L + Myqq(T)).

Since v — v in Ly(Q2 x [0, 7] x Q), for a subsequence k(n), v¥™ — v for almost
every w,t,x. In particular, almost surely ||v]|se < liminf, o [|[0*™ ], and by

Fatou’s lemma

Eljv)i, < liminf E|[v*™ %, < NE([[% + Myg(T)).
n—oo

2.2 Semilinear SPDEs without growth condition

In this section, we will use the uniform norm estimates obtained in the previous

section, to construct solutions for the following equation
du; = (Lywy + fi(w,))dt + (MFu, + gF)dwf, ug = (2.2.19)

for (t,z) € [0,7] x Q, where f is a real function defined on  x [0,7] x @ x R
and is P x B(R?) x B(R)—measurable.

Assumption 2.2.1. The function f satisfies the following

i) for all 7,7" € R and for all (w, t, ) we have
(r =) (fela,r) = fla,r")) < K|r —1'|?
ii) For all (w,t,x), fi(x,r) is continuous in r
iii) for all N > 0, there exists a function hY € Ly(Q2 x [0,T] x Q) with
E||hY || s < o0, such that for any (w,t, )
|ft<x77n)| < |hiv(x)|7

whenever |r| < N.

18



iv) Elplo + Elllgli,lloo < 00

Notice that other than the monotonicity and continuity, no polynomial (or
any kind of) growth is assumed for f. Therefore even for the definition of the

solution to make sense, u is required to be in L..:

Definition 2.2.1. A solution of equation is an JF;—adapted, strongly
continuous process (u¢)scfo,r] With values in Ly(Q)) such that

i) uy € H}, for dP x dt almost every (w,t) € Q x [0,T]

i) [ el + |V 3dt < oo (as.)

iii) almost surely, u is essentially bounded in (¢, x)

iv) for all ¢ € C°(Q)) we have with probability one

t
(ut7 ¢) = (¢7 Qb) + /O _<aijaiu57 aj¢) + (b;azus + CsUg, gb) + (fs(us)7 gb)ds

¢
+ [+ oyt
0
for all ¢ € [0, T7.

Notice that by Assumption iii), and (iii) from Definition [2.2.1} the term
t . .
Jo (fs(us), ¢)ds is meaningful.

Theorem 2.2.1. Under Assumptions|2.1.1,[2.1.9, and[2.2.1], there exists a unique
solution of equation .

Remark 2.2.1. From now on we can and we will assume that the function f is

decreasing in r or else, by virtue of Assumption [2.2.1} we can replace fi(x,r) by
filz,r) = fulz,r) — Kr and ¢,(z) with &(z) := ¢;(z) + K.

We will need the following particular case from [2]. We consider two equations
dui = (Lyu} + fi(ul))dt + (M]u, + gf)dwy, uf = ", (2.2.20)
for i =1,2.

Assumption 2.2.2. The functions f%, i = 1,2, are appropriately measurable,
and there exists h € Ly(2 x [0,7] x Q) and a constant C' > 0, such that for any

w, t,x, and for any » € R we have

[fi (@, )P+ 12 ()] < Clrl + [he(2).
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Theorem 2.2.2. Suppose that Assumptions|2.1.1,12.1.9, and|2.2.2 hold. Let u',
1t = 1,2 be the Lo— solutions of the equations in , for1v = 1,2 respectively.
Suppose that f1 < f2, ¥ < ? and assume that either f1 or f? satisfy Assump-
tion [2.2.1. Then, almost surely and for any t € [0,T], u; < u? for almost every

rEQ.

Proof of Theorem [2.2.1]. We truncate the function f by setting

fi(x,m) ifr>m
i) = flw,r) if —n<r<m
fi(z,—n) if r < —n,

for n, m € N we consider the equation

dup™ = (L™ + f7 (™))t + (MFu™ + gF)duf,
oy (2.2.21)

We first fix m € N. Equation ([2.2.21)) can be realised as a stochastic evolution
equation on the triple H} < L, < H~!. One can easily check that under

Assumptions 2.1.1] 2.1.2] and 2.2.1 Assumption [1.0.1] is satisfied, and therefore
equation (2.2.21]) has a unique Lo—solution (uy"")icjo.r). We also have that for
n' >mn, f*m > frm By Theorem we get that almost surely, for all t € [0, T

uf,’m(x) > uy"™(x), for almost every . (2.2.22)
We define now the stopping time

™ —inf{t >0 /(utlm + R)?>dr >0} AT.
Q

We claim that for each R € N, there exists a set {2 of full probability, such that
for each w € Qpg, and for all n > R we have that

up™ =™, for t € [0, 7M. (2.2.23)
Notice that by (2.2.22) and the definition of 7%™, for all n > R

1 (M (@) = £ (@ u ™ (@), for t € [0, 7).
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This means that for all n > R the processes u;""" satisfies

dvy = (Lyvg + ftR’m(vt))dt + (Mtkvt + gf)dwf,
v = 9, (2.2.24)

on [0,7%™]. The uniqueness of the Ly—solution of the above equation shows
([2-2.23). Notice that by Assumption (iii) and (iv), Theorem guarantees
that u™ is almost surely essentially bounded in (¢, ). Therefore, for almost every
w e Q, 7™ = T for all R large enough. On the set Q := NrenQr we define

00, m

Uy = lim,, o u;""™, where the limit is in the sense of Ly(Q). Since for each

w € Q, we have ™ = u"™ for all t < %™ and for any n > R, it follows that
the process (u;"")icjo.r] is an adapted continuous L,(Q)—valued process such
that

1) u;”™ € Hy, for dP x dt almost every (w,t) € Q x [0,T]

i) [ ™ V™ 3dt < oo(as.)

iii) u~™ is almost surely essentially bounded in (¢, )

iv) for all ¢ € C2°(Q) we have with probability one

t
(u?7m7 ¢) = / (aijaiju?7m7 ¢) + (bzazugo,m + Csu;nv (b) + (fsm(u;)o,m)u ¢)d$
0

t
4 / (™0™ 4 vFu™ 4 gF, $)dut + (1, &),
0

for all ¢ € [0, T, where

filz,m) ifr>m
fi(z,r) if r <m.

ftm(x’ ’I“) = {
Now we will let m — oco. Let us define the stopping time

™ =inf{t >0: /(uf‘*l — R)3dx > 0} AT.
Q

As before we claim that for any R > 0, there exists a set (0 of full probability,
such that for any w € Q% and any m,m’ > R,

wo™ = 2™ on [0, 7. (2.2.25)

To show this it suffices to show that for each R € N, almost surely, for all m > R,
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we have uf"™ = u""" on [0,77] for all n € N. To show this we set

B =inf{t >0: /(u?’l — R)2dx > 0} AT.
Q

For all m > R we have that the processes u;"™" satisfy the equation

dvy = (Lo + ff’R(vt))dt + (MFv, + gFYduw?,
vo(z) = (), (2.2.26)

for t < 7F. Tt follows that almost surely, u/"™ = u/"" for t < 77, for all n. We
just note here that by the comparison principle again, we have 77 < 7 and this
shows (2.2.25)). Also for almost every w € Q, we have 7% = T for R large enough.

M

Hence we can define u; = lim,, o u;"", and then one can easily see that wu; has

the desired properties.
For the uniqueness, let ©® and u® be solutions of (2.2.19). Then one can
define the stopping time

v = inf{t>0: /(|u§”\ _ NPdav / (10| = NY2de > 0},
Q Q

to see that for ¢ < 7y, the two solutions satisfy equation (2.2.21)) withn =m = N,
and the claim follows, since 7y = T almost surely, for large enough N.

]

2.3 Local supremum estimates

Contrary to [4] where the De Giorgi iteration was used and adapted to the stochas-
tic setting, here, like in Section [2.1], we will use Moser’s iteration. This approach
has the advantage of providing moment estimates but the proof is somewhat
technically more difficult and requires an additional technical assumption, see
Assumption below.

For the sake of clarity we now include only the leading order terms in both

the drift and the diffusion, that is, we consider
duy = Lyug dt + MFu, dw?, (2.3.27)
with

Lip = 0i(a8;0), MFop = ooy,
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on G, with the notations Ggr = [4 — R? 4] x Bg, and G = (5. Since in the
following we deal with local properties, restricting our attention to G is not a
loss of generality. We will also use the notation v = (d + 2)/d and note that in

Lemma [1.2.1) one can choose r = ¢ = 2.

Assumption 2.3.1. For i,j € {1,...,d}, the functions a” = a (z)(w) and ¢’ =
(oi*(z)(w)), are P x B(Bsy)-measurable functions on Q x [0, 00) x By with values

in R and [,, respectively, bounded by a constant K, such that
(207 — 0™07%) 2,2, > N z|?
for a A > 0 and for any z = (21,...,24) € R%

Assumption 2.3.2. For allp > 1, ¢ > 1,
Ellull} < oo.

Notice that, due to the lack of initial or boundary condition, we are not
formally in the framework of Theorem[1.0.1} Nevertheless, the concept of solution

is defined analogously:

Definition 2.3.1. We will say that (u):c[0,4) satisfies (or is a solution of) (2.3.27)),

if u is a strongly continuous Ly (Bs)-valued process, u; € H'(By) for almost every
(t,w),
4
Esup |uq |5 + E/ / |V Pdzdt < oo.
t<4 0 JB,

and for each ¢ € C°(By), with probability one,

(11, 6) = (o, &) — / (a9 Ohur, ;) dt + / (0™ Dpus, &)k,

for all ¢ € [0, 4].

We start by a weaker supremum estimate, where the uniform norm is esti-
mated in terms of a high L,-norm, by a localized version of the argument in the

previous section.

Lemma 2.3.1. Let Assumptions hold. Let 7 < 4 be a stopping time,

u be a solution of (2.3.27) up to 7, and let f € CE(R), with ff” > 0, having
bounded first derivative. Then for any 0 < § < R < 2 we have

B[/ (w)I]3 < VUINCE L f ()56,

00,GRr—s
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where C' depends only on d, \, K.

Proof. Denote Q = Bg, r = 4— R? let ¢ € C>°(Bg), and let ) € C*°([4 — R?,4])
be an increasing function such that 1, = 0. Let 7 > r be a stopping time and
7 =7 AT Let us apply Ito’s formula to [, ¢*¥7[f(u,)[". Note that its validity
needs to be justified, which can be done by following step-by-step the proof of
Lemma and making use of Assumption at the passage to the limit.
We get

27 + p — . ' 2 ) ! \ pd d
/Qso Vi f(u)]P =m +2/T /wasu(u)\ rds
- / /QWW?M ()| f (us) [P~ " (us)al Ojusdads
- / /ng2¢§p(p - 1)|f(us)|p_2|f,(u5)|2aijaju88iusd1;d8
_/ /Q¢2¢§pf(u5)|f<u8)|p_2f”(us>aijajusﬁiusdxds
1 [t |
* §[ /Q%D%P(P = DIf (us) P72 f (ws) [P0 Dyu [ deds
1 /[t '
i) / /Q PPV (ue)] f (us) P2 f" (us) 0" Dy | *dacds
for r <t < 7, where
my = / /Q172r902¢§l7f(us>|f(us)|p_2f’(u5)0i8iusdxdws.

Then by Young’s inequality, the parabolicity condition, and the fact that ff” > 0,

we obtain
t
[ ettr <merz [ [ o+ 0P| ) Pasds
Q r JQ
)\ t
5 et D PV s (2329
for r <t < 7. In particular, (2.3.28]) implies that

Bl [ [ #0211 () PV, Peds
T JQ
<CBLs, [ [ (Pt ougl0d) )P,
T JQ
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where C' depends only on A\. By the Burkholder-Gundy-Davis inequality we have
1/2

R 2
El,s, sup |my| < CE1,>, (/ </ wzl/fgpf(us)|f(us)|p_2f’(us)aiaiusdx) ds)
r Q

te(r,7]

1
<1p1., s / ORI f ()P
Q

te(r, 7]

L CEL,, / / PGP0 ()IP2) () 2| Vs P s,
r Q

Hence, by taking suprema in (2.3.28)) and using the two estimates above, one can
see that

1, sup /Q U2 f(u)Pdat B, / /Q PR f ()P f () [PV [P

te(r,7]

< CElrzr/ /Q(902¢5¢2 + |0 2)| f (us) [Pdds,

hence,

E]-TZT

sup /Q G2 f (ur) P + / /Q !V(sows\f(us)\p/z)\zdm]‘

ter,uAT] P

VAT
< CEszr/ /Q(sf@/)s@/); + 10092 f (ug) |Pddss

v=r’

Lemma therefore can be applied, and we obtain for ¢ > p

- q/p
El:>, <SUP /Q<P2¢152|f(ut)|pd$+/ /Q|V(g0¢s|f(us)|p/2)|2dxds>

te(r,7]

T /P
a/p av_P_p N ( 2. |22 p )‘1 .
< Cp/gyr L1, / /Q (Pt + B 202 | [ () Pilcds

By Lemma |l.2.1| we can estimate the left-hand side from below, and we get

T q/vp
Pl ( [ go%“rf(ut)\mdxdt)
r Q

T a/p
a/p a/p_P N 204" 0|22 Pd d) )
< el gl ( [ [ 0l s

We take ¢ = ¢, with |[Vp,| < C67'2" such that ¢, = 1 on Bg_s.9-mins
and ¢, = 0 outside of Bp_s,9-n5. Similarly, we take ¢ = 1, with |Vy| <
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C67222" such that ¢ = 1 on [tg — (R — 6)? — 272162 4] and = 0 outside of
[to — (R — 0)? — 272762 tg]. Let us also introduce the notation F, = [to — (R —
§)2 — 27252 to] X Br_sso-ns. Then if we apply the above estimate with p, = ¢7"

we have,

7"

E”172r1[0,7}f(u)HgnH,FnH < ( E||1T>r OT]f( )”pn F,

1
—4"CA" /4"
02 ) ™

By iteration, noting that Fy C Gr and Gr_s C NF,,, we get the desired estimate,
for 1,5, f(u) instead of f(u). Notice that the fact that the product of the pref-
actors on the right-hand side, for n = 1,..., is finite, is justified in Section [2.1]
Finally, notice that

E”17<7‘1[0,T]f( )Hoo Gr_s —
which finishes the proof. m

Now the main local supremum estimate reads as follows.

Theorem 2.3.2. Let the conditions of Lemma be satisfied. Then

Elpnf (ke < a**CElLpnf (s,

for constants a,C' > 0 depending only on d, \, K.
Proof. Let us denote

A(R) = Bl f(w)ll5ay B(R) = Elllpqf(w)l2q,

By Lemma and Hélder’s inequality we have, with the notation a’ = 2v/(1 —
7)

A(R) < 07CA(R+0)2/1B(R+6)¥7 < §“ CA(R+06)2/1B(3/2)%4, (2.3.29)

whenever R+ ¢ < 3/2. Now let us choose 6 =4, and R=R, =1+ )" ¢, for
n=0,1,..., such that R, < 3/2. Upon iterating ({2.3.29), we find

H ’[q 2)/q)" IA(R Ya=2/dl" p(3 /2)2/9) Xiz o lla-2)/al"

The exponent of the second term tends to 0, while the exponent of the third term
tends to 1. Since A(R,) < A(3/2) < oo, we obtain,

H )o'lla=2/d" B(3/2).
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Let us choose §; = i~2/4. Then

o0

H(C’é) a=2)/a"™" = exp{— 2,00Lz:0gZ 2pa§:10 il(;%z}

=1 =1 i=1

for some a > 0, where p = ¢/(q — 2) and therefore 1/p = 1 — 2/q. The function

h(t) =logt/p' has a unique maximum on [1, oc], therefore

— log i log t
Z Og.lg/ %dt—i— max h(t)
1

Py P P te[1,00]

< logt > n 1 /°° 1 b+ t
— max —
| p log 1 logp /i tpt te[l,00] pt

<0 —
=0T 10g p - Z log p
—log(1 — 1
_ —log( //)) PRSP P
log p log p 2
Therefore,
A1) < ¢"?B(3/2),
which is what we wanted to prove. O

Corollary 2.3.3. Let the conditions of Lemma be satisfied with T = 4.
Then for anyn > 1 and o > 0,

1/a

P @)]% g, = new [ f@)g, , < @) < Ce™

for constants a,C' > 0 depending only on d, \, K.

Proof. By Lemma the processes

X = ||1[0,t]f( )”p G1? anq/2||1[0,t]f(u)||g,G3/2'

satisfy the conditions of Lemma for any p, where C' can be chosen indepen-
dently of p for p > po = po(¢q). By Lemma m,

P(lf )l = ne, [f@W)5e,, < @)

aoN 1/2
“ a q*
= P @)L, =m0, O (), < Catq?) < C (—) .

nd

1/a

Choosing ¢ = (n/e)"/® and letting p — oo yields the result. O
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Finally, let us consider the case when the initial value is 0. Note that in
this case in the proof of Lemma the time-cutoff function ¢ can be omitted.

Doing so and repeating the same steps afterwards, we get the following.

Corollary 2.3.4. Let Assumptions hold. Let uw be a solution of
[2.3.27) on [s,r] C [0,4], let f € CER), with ff” > 0, having bounded first
derivative, and suppose that f(v)(s,-) =0. Then for anyn > 1 and a > 0,

_nl/a
P(ILf ()l fsrixm, = 10 [f (W2 sxm, < @) < Ce

for constants a,C' > 0 depending only on d, \, K.

2.4 A Harnack inequality and continuity of so-

lutions

Denote by A the set of functions v on [0, 4] x By such that v > 0 and
1
[z € Ba|wo(z) 2 1}| = 5| Bal.

Let us recall the Harnack inequality essentially proved in [I7]: If u is a solution
of du = 9;(a¥d;u)dt and u € A, then

infu>h
G1

with h = h(d,\, K) > 0. In the stochastic case clearly it is not expected that
such a lower estimate holds uniformly in w. It does hold, however, with h above
replaced with a strictly positive random variable, this is the assertion of our main

theorem.

Theorem 2.4.1. Let Assumptions hold. Letu be a solution of (2.3.27)

such that on an event A € %, uw € A. Then for any N > 0 there exists a set
D e .Z, with P(D) < Ce™™"" | such that on AN D,

inf  w(x)>e V.
(t,x)eG1 t( )_

where C' and a, depend only on d, A and K.

Later on we will refer to the quantity e above as the lower bound corre-

sponding to the probability Ce= Y We begin with a simple lemma.
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Lemma 2.4.2. For any ¢ > 0, there exists No(c) > 0, such that for any contin-

uous local martingale my, and for any N > Ny,

P <sup(mt —c(m)y) > N) < Qe Nel,

>0
with an absolute constant C'.

Proof. Let B be a Wiener process for which By, = m,;. Then for any 5 > 0

P (sup(mt —c(m);) > N) <P (Sup(Bs —cs) > N)

£>0 >0
< P( sup BS>N)—|-ZP( sup  Bg > icf).
s€[0,8] i=1 s€[0,(i+1)p]

Recall that for any a > 0

P(sup B, > «) 1/ 5/ e~ 28 dy = O /B o 2/28
s€[0,8] B

Therefore,

P - >N|<C e~ N?/28 o —¢%i2B/2(i+1)
(suptons = clm)) > ) < €y e +Z e

Choosing 3 = N/c yields the claim. O]
Next, we establish what can be considered a weak version of Theorem [2.4.1]

Lemma 2.4.3. Let Assumptions hold. Let u be a solution of (2.3.27)),
such that on A € %, u € A. Then for any N > 0, there exists a set D; € F
with P(Dy) < Ce™N | such that on AN DS, for all t € [0, 4],

_ 1
{(w € Bylu(t,2) = e} = B,

where p is defined by
3
B, =218,

and the constants c¢,C' > 0, depend only on d, \, K.

Proof. Clearly it is sufficient to prove the statement for N > Ny for some Nj.
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Introduce the functions

apx + by, ifz < —h/2
fu(z) = ot L
og +h if z Z —h,/2,

for h > 0 where a;, and by, is chosen such that f; and f; are continuous. Let x
be nonnegative a C'* function on R, bounded by 1, supported on {|z| < 1}, and
having unit integral. Denote x;(x) = h™'x(z/h) and

Fy = fn * Ky

We claim that Fj, has the following properties:
(i) Fu(zx) =0 for z > 1;
(ii) Fp(z) <log(2/h) for x > 0;

(i) Fp(z) > log(1/2h) for z < h/2;

(iv) Fj, € D and F}/(x) > (F}(x))? for z > 0.

The first three properties are obvious, while for the last one notice that Fj has
bounded second derivative, f/'(x) > (f;(z))? for x > —h/2, and therefore, for

x>0
2
(/ fi(x —2) /i,ll//i )m}ll//i(z) dz)

< [ Uil = 2)Prupaz) d:
/f T — 2)kpa(2) dz = Fy ().

Let us denote v = Fj(u). Applying Itd’s formula and using the parabolicity

condition, we get

t
/ ©*v; dw — / ©*vodr < / CoVVv — (A\2)p*F!(u)(Vu)? dz ds
B> Ba 0 JBy

t
+// ©? M*v dx dw” (2.4.30)
0 /B,

for any ¢ € C2°. Let us denote the stochastic integral above by m,, and notice

that provided |p| < 1,
t
) < C/ / ©?(Vv)? dx ds.
0 /B,



Let ¢ be such that ¢cC' < A/4. From Lemma [2.4.2) there exists a set D; with
P(D;) < CeNe/4 such that on D$ we have

/ v, dx—/ o vy da
B B

t
<N+ / CoVVv — (A\/2)*F (u)(Vu)? + cCp*(Vv)? dr ds.  (2.4.31)
0 /B,

On A N D¢, by the property (iv) above, we have F}(u)(Vu)* > (Vv)?, and
therefore

/ vy dr < N+C | |Vo|*dr +/ ©*vo da. (2.4.32)
B2 B2

Bs
Let us denote
Oi(h) ={z € B, : u(t,x) > h}.

Choosing ¢ to be 1 on B, by properties (i), (ii), and (iii) of F}, and (2.4.32), on
AN DS, for all t € [0, 4]

1 2
[B,\ O1(h/2) log(1/2h) < €+ N + 3 1og(2/h)| Bo| = C + N + = log(2/h) B, .

Hence
C+N  2log(2/h)

|0,(h/2)| > |B,| — log(1/2h)  3log(1/2h)

’BP’7

and choosing Ny = C and h = 2e="N for a sufficiently large C” finishes the proof

of the lemma. O

Proof of Theorem

By Lemma [2.4.3 there exists a set D; with P(D;) < Ce " such that on
AN Df we have
1
(€ Blo(t.a) > e > 5|5 (2.4.33)
for all ¢ € [0,4]. Let us denote h := e¢™¥. For 0 < € < h/2, we introduce the

function
ax +b if x < —e/2
fiw) = { G b Te s
log” 2 if x> —¢/2,

where a, and b, is chosen such that f. and f/ are continuous. Let xk be a nonneg-
ative C* function on R, bounded by 1, supported on {|z| < 1}, and having unit

integral. Denote k. (z) = e 1x(x/e) and

FE = fe X K6/4.
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Similarly to F}, in the proof of Lemma [2.4.3] F, has the following properties:
(i) Fi(x) =0 for x > h;

(i) F.(z) <log(2h/e) for = > 0;

(ili) F.(x) > log(h/(z +€)) — 1 for = > 0;

(iv) F. € D and F/(z) > (F!(x))?* for = > 0.

Let us denote v = F,(u). Similarly to (2.4.31)), there exists a set Dy with P(Ds) <

Ce ¢, such that on DS we have

/ 0>, dx—/ Y vy da
B B

<N+ /O t : CoVpVv — (A\/2)@*F! (u)(Vu)? + (A /4)*(Vv)? dx ds.

On AN DS, by property (iv), we have,

IVo|* do + / ©*vy da). (2.4.34)

Bs

4
//g02|Vvt|2dacdt§C(N+
0 /By

Bs

By choosing ¢ € C°(B;) with 0 < ¢ <1 and ¢ =1 on B, we get,
4
/ / |V dodt < C(N + | |Vo|*dx +/ vy dx).
0 JB, By Ba
Hence, by property (ii),
! 2h
/ |V |?dedt < CN + C + Clog —. (2.4.35)
0o JB, €

Using property (i), by Lemma we get for all ¢

) pRdHD) ,
ve|*de < C / Vo |“dz,
[, Jutte < Ciga [ 190

P

which, by virtue of (2.4.33) and (2.4.35]) implies

‘ 2h
/ lvg|?dr < C 4+ CN + Clog —.
0 JB, €

on AND{NDS. By Corollary and noting that G/, C [0,4] x B, we get that
there exists a set D3 € . with P(D3) < Ce™™"" | such that on AN D¢ DSN DS
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we have

2h
sup v(x) < [N(C 4+ ON + Clog =—)]"/2.
(t,x)eG1 €

By applying property (iii), we get

2h
sup log - <[N(C+CN + Clog ?)]1/2 +1,

(t,x)€Gy Uy (513)

and therefore,

inf o (z) > he—[N(C+CN+Clog2h—Cloge)]1/2—1 e
(t,x)eG1 o
Letting € = e~V with a sufficiently large ¢, it is easy to see that the right-hand
side above is bounded from below by ¢, finishing the proof. O]

Finally let us present an application of Theorem [2.4.1] which asserts the point-
wise continuity of solutions. In particular, we find that the set of discontinuity

points of the solution is a.s. of first category and has measure 0.

Theorem 2.4.4. Let Assumptions hold. Letu be a solution of (2.3.27)

and (ty,xo) € (0,4) X By. Then u is almost surely continuous at (ty,xg).

Proof. Consider the parabolic transformations B ¢ :
t— Pt 4+t

r— ar+ 2.

It is easy to see that if v is a solution of on a cylinder (), then vo ‘B;;,’:C,
is also solution of , on the cylinder P, v @), with another sequence of
Wiener martingales on another filtration, and with different coefficients that still
satisfy Assumption [2.3.1] with the same bounds. To ease notation, for a cylinder
Q let B denote the unique parabolic transformation that maps @) to G, if such
exists. Also, for an interval [s,7] C [0,4] let *Bis ) = B, 7=5,—4s/(r—s),0- Lhat is,
Bls,nls,7] X By = [0,4] x By =5, which, when r — s < 1, contains G.

Without loss of generality g = 0 can and will be assumed, as will the al-
most sure boundedness of v on G, since these can be achieved with appropriate
parabolic transformations, using the boundedness obtained on sub-cylinders in
Theorem [2.3.2] Also let us fix a probability § > 0, denote the corresponding
lower bound 3¢y obtained from the Harnack inequality, and take an arbitrary
0 <€ <ef2

Let us consider a smooth version of the function (-)*. That is, take a convex
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f € C* such that
(i) f(t) =0 for t <0;
(i) f(t) <%;

(iii) f(t) < €2/6 only if t < €2/6.

Apply Theorem twice with the function f, with the interval [tq — 4s, to + s,
and with solutions v = u — supg, 4 xp, v and v = —u + infy,45yxp, u. Also
notice that (for both choices of v)

||f(v)||§,[t0—4s,t0+s}><32 S OSHU/”gO,G - O
as s — 0 for almost every w, and thus in probability as well, in other words,

P(||f(v)”%,[to—zls,to—i-s]ng > )

can be made arbitrarily small by choosing s sufficiently small. Therefore, we
obtain an s > 0 and an event {2y, with P(€2y) > 1 — ¢, such that on €,

sup u— sup u<e/6
[to—4s,to+s|x B1 {to—4s}x B2
inf w— inf u> —€/6.
[t074s,t0+8]><31 {t0748}><32

Let us rescale u at the starting time:

U’(t7 ZE) - Sup{t0—4s}><B2 U +1
SUPfg—4s3x By W — inf{to—4s}x32 u ’

u(t,x) =+ (2

that is, supp, u/y (to — 4s,-) = 1,infp, v/ (ty — 4s,-) = —1. Now we can write
Qo = Q4 UQpg, where

o On Qy, 0SC{yy—ss)xBU < €1/3, and therefore, OSCl1g—ds,to+s]x By U < €1/3 +
262/6 < e€y;

e On Qp, [u/| <1+2(e1/6)/(e1/3) =1+ €y, on [ty — 4s,to + 5] X By.

Notice that in the event Qpg, on the cylinder [ty — 4s,to + s] X By, the functions
v, /(1+€)+ 1 take values between 0 and 2. Therefore one of (v, /(1+¢)+1)0
‘B[;}, ssto+s]| denoted for the moment by u”, satisfies the conditions of Theorem

with A = Q.
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We obtain that on an event (2
infu” > 3e,,
G1
and thus

2—3e)(l +e€
oscQu < ( 2;( 1)OSC{to—4s}xBZU < (1 — €2)o8C{ty—a5}x B U

where Q = m[;ol_4s,to+s]G1- Moreover, P(Q2p \ ) < . Also, notice that (to,0) €
Q. Let us denote Q) = Q4 U Q%. We have shown the following lemma:

Lemma 2.4.5. Let 6 > 0 and let 3¢y be the lower bound corresponding to the
probability & obtained from the Harnack inequality. For any u that is a solution
of on G, to > 0, and for any sufficiently small ¢, > 0 there exists an
s > 0 and an event €2y such that

(i) P(y) >1—26;

(i1) On Qq, at least one of the following is satisfied:
(a) oscou < €;
(b) oscqu < (1 — €)oscqu,

where () = ‘B[;O{A‘s’toﬂ](Gl).

Now take u = u® and t, = téo) from the statement of the theorem and a

sequence (6&"))2020 4 0, and for n > 0 proceed inductively as follows:

e Apply Lemma with u(™, té"), and e§">, and take the resulting QYL) and
Q™
e Let u =4 o (fpé(lm and (t)""V,0) = pUATE) (", 0).

On limsup,_,.. Q" the function u is continuous at the point (to,0). Indeed,
the sequence of cylinders Q(O),‘Bé(lo)Q(l),‘Bé(lm‘ﬁé(ll)Q(Q), ... contain (t¢,0), and
the oscillation of u on these cylinders tends to 0. However, P(limsup,, .., an)) >
1 — 2§, and since ¢ can be chosen arbitrarily small, u is continuous at (tg,0) with
probability 1, and the proof is finished.

O
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Chapter 3
Degenerate equations - solvability

The condition A > 0 in Assumption is crucial, for example the smooth-
ing property expressed by Theorem [1.0.1] can clearly not be expected to hold
otherwise. However, degenerating operators, i.e. ones for which the coercivity
condition holds only with A = 0 arise naturally from an important application of
SPDEs, the Zakai equation for the nonlinear filtering. Their solvability in W
spaces has been claimed first in [26]. However, the proof, in particular, the a priori
estimate for each partial derivative contained a nontrivial gap for the p # 2 case.
It turns out that it is actually not possible to estimate each partial derivative
separately, but one has to view the vector of derivatives as a whole, and esti-
mate it using the vector-valued equation it satisfies. This motivates to consider
systems of equations in the first place, and leads to some interesting differences
from the scalar case. We note that a quite different approach to investigate what
the “appropriate” stochastic parabolicity condition is for systems of equations
can be found in [30], with the attention restricted to the Ly scale and constant
coefficients. We also note that in the nondegenerate case a complete theory of
SPDEs in W spaces is established in [18]. One rationale behind solving equa-
tions in W)™ for large p is the following. By Sobolev embedding, the solution is n
times continuously differentiable if it is in W)™ with m — d/p > n. On the other
hand it is expected that solvability in W™ requires (roughly) m = n +d/p + ¢
bounded derivatives from the coefficients. So in order to relax the regularity
assumptions on the coefficients, one wishes to choose p sufficiently large. The
content of this chapter is based on the author’s joint work with Istvan Gyongy

and Nicolai Krylov, in the paper [11].
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3.1 Formulation

Let M > 1 be an integer, and let (-,-) and (-) denote the scalar product and the
norm in R, respectively. By T we denote the set of M x M matrices, which

we consider as a Buclidean space RM*. For an integer m > 1 we define lo(R™) as

the space of sequences v = (11,12, ...) with ¥ € R™, k > 1, and finite norm

ol = (42"

k=1

oo

We look for RM-valued functions us(z) = (u}(z),...,uM(x)), of w € Q, t €
[0, 7] and = € RY, which satisfy the system of equations

duy :[aijDijut + biDiut + cuy + ft] dt
+ [07" Dyug + vug + gf] dwf, (3.1.1)

and the initial condition
ug = P, (3.1.2)

where a; = (af’ (z)) takes values in the set of d x d symmetric matrices,
ol = (0% (2))2, €ly, bi(z) € T, ¢(x) €TV,

vi(x) € I,(TY),  fi(z) e RM,  gi(x) € I,(RM) (3.1.3)

fori =1,...,d, for allw € Q, t > 0, x € R%. Note that with the exception of a¥
and o all ‘coefficients’ in equation ([3.1.1)) mix the coordinates of the process w.
Let m be a nonnegative integer, p € [2,00) and make the following assump-

tions.

Assumption 3.1.1. The derivatives in x € R? of a”/ up to order max(m,2) and
of * and ¢ up to order m are P x B(R?)-measurable functions, in magnitude
bounded by K for all 7,5 € {1,2,...,d}. The derivatives in z of the ly-valued
functions o = (0™*)% | and the ly(T*)-valued function v up to order m + 1
are P x B(R?)-measurable lo-valued and lo(TM)-valued functions, respectively, in

magnitude bounded by K.

Assumption 3.1.2. The free data, (f¢)icjo,7] and (g¢):cjo,7] are predictable pro-
cesses with values in W' (R4, RM) and W1 (R? I5(RM)), respectively, such
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that almost surely

T
Kk, (T) :/0 (felfyye + 19t ’;V;nﬂ)dt < o0. (3.1.4)

The initial value, 1 is an Fo-measurable W" (R, RM)-valued random variable.

To formulate the parabolicity condition for the system, set
ol =249 — gk G5 =1,....d
and
=0 —o", i=1,...,d

Assumption 3.1.3. There exist a constant K, > 0 and a P x B(R?)-measurable
RM_valued bounded function h = (h(z)), whose first order derivatives in x are
bounded functions, such that for all w € , t > 0 and z € R?

\h| + |Dh| < K, (3.1.5)
and for all (A, ..., \q) € R?
d d
B SKIRON2 < Ky Y oM\ for k,l=1,..., M. 3.1.6
J

i=1 ij=1

Remark 3.1.1. Let Assumption hold with m = 0 and the first order deriva-
tives of b* in x are bounded by K for each i = 1,2, ...d. Then notice that condition
(3.1.6) is a natural extension of the degenerate parabolicity condition to systems
of stochastic PDEs. Indeed, when M = 1 then taking h' = ¢ for i = 1,...,d,
we can see that Assumption [3.1.3]is equivalent to a@ > 0. Let us analyse now
Assumption for arbitrary M > 1. Notice that it holds when « is uniformly
elliptic, i.e., o > kI with a constant x > 0 for all w, t > 0 and = € R%. Indeed,
due to Assumption there is a constant N = N(K,d) such that

d d
> (B =R\ < N NP for every k1 =1,2,..., M,

i=1 =1
which together with the uniform ellipticity of « clearly implies (3.1.6)). Notice
also that (3.1.6) holds in many situations when instead of the strong ellipticity
of a we only have @ > 0. Such examples arise, for example, when a” = ¢ g7 /2

for all 4,5 = 1,...,d, and b and v are such that 3¢ is a diagonal matrix for each

t = 1,...,d, and the diagonal elements together with their first order derivatives
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in x are bounded by a constant K. As another simple example, consider the

system of equations

duy(z) ={3D*ui(x) + Dvy(x)} dt + {Duy(x) + ve(z) } dwy
dv(z) ={3D*vy(x) — Duy(x)} dt + {Dvy(x) — we(x)} dwy

for t € [0,T], x € R, for a 2-dimensional process (us(x),v:(x)), where w is a

one-dimensional Wiener process. In this example a = 0 and § = 0. Thus clearly,

condition (3.1.6)) is satisfied.
Later it will be convenient to use condition (3.1.6) in an equivalent form,

which we discuss in the next remark.

Remark 3.1.2. Notice that condition (3.1.6) in Assumption can be refor-
mulated as follows: There exists a constant Ky such that for all values of the
arguments and all continuously differentiable R*-valued functions u = u(z) on

R? we have
d
(u, b’ Diu) — o™ (u, v* Dju) < K| Z o (Dyu, Dju)|1/2<u> + hY{Dsu,u). (3.1.7)
ij=1

Indeed, set 3* = 8 — hily;, where I is the M x M unit matrix and observe

that, (3.1.7) means that

d
(u, ' Dyu) < Ko| Y a® (Dyu, Dyu)|* (u).

ij=1

By considering this relation at a fixed point x and noting that then one can choose

u and Du independently, we conclude that

() A" Dyu)* < Kja(Diu, Dju) (3.1.8)

(2

and ([3.1.6) follows (with a different Kj) if we take D;u* = \;6*.
On the other hand, (3.1.6) means that for any ! without summation on [

| Z Bileiulf S Koaij (Diul)Djul.

But then by Cauchy’s inequality similar estimate holds after summation on [ is
done and carried inside the square on the left-hand side. This yields (3.1.8) (with
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a different constant Kj) and then leads to (3.1.7)).

The notion of solution to (3.1.1))-(3.1.2) is a straightforward adaptation of
Definition [1.0.1, Namely, u = (u!,...,u™) is a solution on [0, 7], for a stopping
time 7 < T, if it is a W, (R?,R")-valued predictable function on [0, 7],

/0 unllyy dt < 00 (as.)
and for each RM-valued ¢ = (¢!, ..., M) from Cy(R?Y) with probability one
t .. —_
(ur, ) = (¥, 0) + / {—(ad Diug, Djp) + (b Dius + cous + fs, )} ds - (3.1.9)
0
t
+ [ (Dt v+ g7 (5), ) du (3.1.10)
0
for all t € [0, 7], where b' = b — D;a"I,;. Here, and later on (¥, ®) denotes the

inner product in the Ly-space of RM-valued functions ¥ and ® defined on RZ.

The main result now reads as follows.

Theorem 3.1.1. Let Assumption[3.1.5 hold. If Assumptions[3.1.1 and[3.1.9 also
hold with m > 0, then there is at most one solution to (3.1.1)-(3.1.2) on [0,T]. If
together with Assumption Assumptions [3.1.1] and [3.1.9 hold with m > 1,
then there is a unique solution u = (u')}; to (3.1.1)-(3.1.2) on [0,T]. Moreover,

u s a weakly continuous W (R4, RM)-valued process, it is strongly continuous as

a W (R, RM)-valued process, and for every ¢ > 0 and n € {0,1,...,m}

E sup |wll. < N(E[|3. +ElC,‘ip(T)) (3.1.11)
te[0,T] P P ’

with N = N(m,p,q,d, M, K,T).

In the case p = 2 we present also a modification of Assumption |3.1.3] in order
to cover an important class of stochastic PDE systems, the hyperbolic symmetric
systems.

Observe that if in we replace S with %, nothing will change. By the
convexity of t? condition then holds if we replace 8% with (1/2)[3"*+ 3.
Since

la — b < |a+b)* + 2a* + 2b°

this implies that (3.1.6)) also holds for
Bikl — (ﬁzkl - ﬁilk)/2
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in place of 3% which is the antisymmetric part of 5° = b — 0",

Hence the following condition is weaker than Assumption [3.1.3

Assumption 3.1.4. There exist a constant K, > 0 and a P x B(R?)-measurable
RM_valued function h = (hi(z)) such that (3.1.5)) holds, and for all w € Q, t > 0
and x € R? and for all (A, ..., \g) € R?

d d
I (BM = RN < Ko Y afNA; for kil=1,.., M. (3.1.12)

i=1 ij=1

The following result in the special case of deterministic PDE systems is indi-

cated and a proof is sketched in [14].

Theorem 3.1.2. Take p = 2 and replace Assumption |3.1.5 with Assumption
in the conditions of Theorem |3.1.1. Then the conclusion of Theorem |3.1.1
holds with p = 2.

Remark 3.1.3. Notice that Assumption obviously holds with h* = 0 if the
matrices 3" are symmetric and a > 0. When a = 0 and o = 0 then the system is

called a first order symmetric hyperbolic system.

Remark 3.1.4. If Assumption does not hold then even simple first order
deterministic systems with smooth coefficients may be ill-posed. Consider, for

example, the system

du(z) =Dv(z) dt
dvy(x) = — Duy(x) dt (3.1.13)

for (u¢(x),v(z)), t € [0,T], x € R, with initial condition uy = ¥, v9 = ¢, such
that ¢, ¢ € Wi\ Wy for an integer m > 1. Clearly, this system does not
satisfy Assumption [3.1.4], and one can show that it does not have a solution with
the initial condition ug = ¥, vg = ¢. We note, however, that it is not difficult
to show that for any constant € # 0 and Wiener process w the stochastic PDE

system

du(z) =Duvy(z) dt + e Duvy(z) dw,
dvy(z) = — Duy(x) dt — eDuy(x) dwy (3.1.14)

with initial condition (ug,vy) = (¢, ¢) € WJ* (for m > 1) has a unique solution
(us; Ve)ieo,r), which is a W3-valued continuous process. We leave the proof of

this statement and the statement about the nonexistence of a solution to ((3.1.13])
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as exercises for those readers who find that interesting. Clearly, system (3.1.14))

does not belong to the class of stochastic systems considered in this paper.

3.2 The main estimate

First let us invoke It6’s formula for the L, norm. The following in the special
case M =1 is Theorem 2.1 from [20]. The proof of this multidimensional variant
goes the same way, and therefore will be omitted. Note that for p > 2 the second

derivative, D;;(x)? of the function (z1,z2,...,2)) — (z)? for p > 2 is
p(p = 2)(x)" iy + p(x)P 26,

which makes the last term in (3.2.15) below natural. Here and later on we use

the convention 0 - 0~! := 0 whenever such terms occur.

Lemma 3.2.1. Let p > 2 and let v = ("), be an L,(RY,RM)-valued Fo-
measurable random wvariable. For i = 0,1,2,...,d and k = 1,...,M let f* and
(g"")22, be predictable functions on Q x (0,T)], with values in L, and in L,(l3),

respectively, such that

T
/O(Z|ftki§p+zygf'|€p)dt<oo (a.s.).
i,k k

Suppose that for each k =1,..., M we are given a Wpl-valued predictable function
uk on Q x (0,T] such that

T
/ lug |, dt < oo (a.s.),
0 P
and for any ¢ € C§° with probability 1 for all t € [0,T] we have
t t '
(o) = (050) + [ @ oydur+ [ (£5%.0) = (£, Do) s
0 0
Then there exists a set ' C Q of full probability such that

u = 1QI(U1, ceey uk>t€[0,T]

is a continuous L,(RY, RM)-valued process, and for all t € [0,T]

/R ()P da = /R (W)de + /0 t /R D), g7 dar
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# [ (a2 12 = plug D £
~(1/2p(p — 2, £)Dyus)?
+ 3 [(1/2)p(p = D)) g0 + (1/2plu) )] ) dwds,  (3:2.15)
where f = (fMYM | and " == (¢"")M, for alli=0,1,....d andr = 1,2, ...

The following lemma presents the crucial a priori estimate to prove solvability

in L, spaces.

Lemma 3.2.2. Suppose that Assumptions|3.1.1],[3.1.2, and|3.1.5 hold with m >

0. Assume that u = (ug)icpm 95 a solution of (3.1.1)-(3.1.2) on [0,T]. Then
a.s. u is a continuous L,(RY, RM)-valued process, and there is a constant N =

N(p, K,d, M, Ky) such that

d/ (ug)? dx+(p/4)/ <ut)p_2a,’;j<Diut,Djut> dx dt
Rd Rd

< p/ <ut)p_2<ut, o™ Dyuy + Vfut + gf) dx dwf
Rd

N [d? + P+ (YD) + (Y (Db dedt.  (3.2.16)

d
R k k

Proof. By Lemma m (a.s.) w is a continuous L,(R¢, RM)-valued process and
d/ (ug)? dx = / p(ug)? " {ug, 0® Dyuy + viug + gF) do dwf
Rd R4

+/ (p(ut)pﬁ(ut, b;DZUt + cyuy + ft — Diaiijut) — p(ut>p*2<Diut, aiijuQ
Rd
—(1/2)p(p — 2){ue)”*D;(ur)* (us, ay Dju,)

+ Z {(1/2)p(p — 2)(w)? us, 07" Dyuy + viug + g;)?
k

+ (1/2)p{ug )P~ (0* Djuy + viu, + gf>2}> dx dt. (3.2.17)

Observe that

() e, fi) < () + (F)P (P2 (g5 < ()P + (3 (9",

k k

()’ S W, gFy < N{u 1 (3 (g9 < N + N (D (gh?)™?,

k k k
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()3 (e, g < ()P Y (gh)? < () + (D (9D,

k k k

()’ vFue) (e, gF) < NP1 (S0 < (uy? + (Y (b)),

2 k K
(ue)? " (ug, cug) < (ug)?~Hevu) < el {ug)?,

where |c| denotes the (Hilbert-Schmidt) norm of c.

This shows how to estimate a few terms on the right in (3.2.17). We write
¢ ~ nif € and n have identical integrals over R? and we write & < 7if £ ~ n+( and
the integral of ¢ over R? can be estimated by the coefficient of d¢ in the right-hand
side of . For instance, integrating by parts and using the smoothness of
o and gF we get

plug)? (01" Dyuy, g7) < —po*(Dy(u)’~) (us, g;) (3.2.18)

— —p(p — 2){u)” " (ur, 0 Diws) s, ),

where the first expression comes from the last occurrence of g¥ in , and the
last one with an opposite sign appears in the evaluation of the first term behind
the summation over k in . Notice, however, that these calculations are
not justified when p is close to 2, since in this case (u;)?~? may not be absolutely
continuous with respect to z* and it is not clear either if 0/0 should be defined as
0 when it occurs in the second line. For p = 2 we clearly have (o{* D;u;, gF) < 0.
For p > 2 we modify the above calculations by approximating the function (¢)P~2,
t € RM by continuously differentiable functions ¢, (t) = ¢, ((t)?) such that

lim ou(r) = [r[®™272, lim ¢, (r) = (p — 2)sign(r)|r|*~"/2
for all » € R, and

[pn(r)| < NJr|®=272 |l (r)] < Nr|P=0/2

for all » € R and integers n > 1, where ¢!, := dy,/dr and N is a constant
independent of n. Thus instead of (3.2.18]) we have

Peu((ue)*) (0} Diue, g7) = =2p], ((ue)*) (ur, 0 D) (u, g5), (3.2.19)

where

|0, () ) (g, 01" Dig) (ue, g7')| < N {ue)?~*(Djuy) (g]) (3.2.20)
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with a constant N independent of n. Letting n — oo in (3.2.19) we get

plu)?" (o Dy, g5 < —p(p — 2)(w)? (uy, 01 Dyug)(uy, g1,

where, due to (3.2.20]), 0/0 means 0 when it occurs.
These manipulations allow us to take care of the terms containing f and g¢

and show that to prove the lemma we have to prove

p(lo + I + o) + (p/2) 13 + [p(p — 2)/2|(1s + I5)

—(p/4)(ue)? "2 (Diuy, Djuy), (3.2.21)
where
I, = —(ut>p_2Dia?(ut,Djut>, I = —{(u)P~2 ]<D ug, Djug)
I = (u)"(ug, 0Dy, Iy = (u)? Y (ot Diwg + vju,)?,
k
Iy = (u)P™* Z(ut, o* Diuy + vFu)?, Iy = —(u)P Dy (uy)* (uy, aiijut).

k
Observe that

Iy = —(1/2)<ut>p_2Diaiij(ut>2 = _(1/p)Dj<Ut>pDiaij =0,
by the smoothness of a. Also notice that
I3 = (u)* 20} 0" (Djwy, Djuy) + I,

where
Is = 2{u)"~ 2 ’k<D Uy, Vkut>

It follows that
ph+ (p/2)Is < —(p/2){ur)?*af (Dyus, Djue) + (p/2)1
Next,
Iy = {ug)P™ 40§k0§k(ut,Diut><ut, Djug) + 2(u)P~ 4 ’k<ut, D, ut)<ut,yfut>

= (1/4)(u)*~*0{*a?" Di(ur)* Dy {ur)® + [2/(p — 2)(Diue)”~?) o7 (us, viue)

=< (1/4)(u )~ o0l Di(ui)* Dy (ui)® — [1/(p — 2)Is — [2/(p — 2)] 7,
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where

I; = (u)? 20 % (uy, vF Dyuy).

Hence

ph+ (p/2)Ls + [p(p — 2)/2)(Is + I5) = —(p/2){u)* ?ay (Diwe, Dju,)

~[p(p — 2)/8](us)" ™ o Dy (ue)* D (ur)* — pl,

and
L — 17 = <Ut>p_2(<ut7 biDz’Ut> - U§k<ut, VtkDiut>) = <Ut>p_2<ut; 52Diut>7

with 3¢ = b’ — o®*1*. Tt follows by Remark that the left-hand side of (3.2.21))
is estimated in the order defined by < by

~(p/2){uw)" oy’ (Dyus, Djuy)

~[p(p — 2)/8)(us)"*a Dy (us)* D; (ur)®
d
+Kop(ug)” | Z a (Dyuy, Djut>‘1/2 (ug) + 1 Di{uy)?

=< —(p/4){u)**ay (Diwy, Dju,)
= [p(p = 2)/8(u)” "oy Difw)* Dy (u)?), (3.2.22)

where the last relation follows from the elementary inequality ab < ea? + e~ 1b%.

The lemma is proved. O

Remark 3.2.1. In the case that p = 2 one can replace condition (3.1.6)) with the
following: There are constant Ky, N > 0 such that for all continuously differen-
tiable RM-valued functions u = u(x) with compact support in R? and all values

of the arguments we have

/ (u, B'Dsu)ydr < N [ (u)?®dz
Rd

Rd

+ K, /R (| 3" ¥ (D, Dyu) | (u) + W (Dyu, u)) de. (3.2.23)

ij=1

This condition is weaker than (3.1.6]) as follows from Remark and still by
inspecting the above proof we get that u is a continuous Ly(R?, R )-valued pro-
cess, and there is a constant N = N(K,d, M, Ky) such that (3.2.16) holds with
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p=2.

Remark 3.2.2. In the case that p = 2 and the magnitudes of the first derivatives
of b' are bounded by K one can further replace condition ([3.2.23) with a more
tractable one, which is Assumption [3.1.4] Indeed, for ¢ > 0

R := (u, (B8 — h'Iy)Diu) = 1™ D;(u*u') + (u, (B° — h'Iy) Dyu)

< %Bilei(ukul) + (B — ' Iy)Diu)? /2 4+ e Hu)? /2.

Using Assumption [3.1.4] we get
R < 18™MD;(ufu') + eM Koa? (Dyu, Dyu) /2 + e (u)?/2
for every £ > 0. Hence by integration by parts we have

/ (u, ' Djuydr < N [ (u)*dzx +/ (u, h' Iy Diu) dx
R4 R4 R4

+M K /Rd(g/Q)o/NDiut, Djug) + (e71/2)(u)? d.

Minimising here over € > 0 we get . In that case again wu is a continuous
Ly (R4 RM)-valued process, and there is a constant N = N(K,d, M, K,) such
that holds with p = 2.
Remark 3.2.3. If M = 1, then condition is obviously satisfied with Ky =0
and h' = b — o* V.

Also note that in the general case, if the coefficients are smoother, then by
formally differentiating equation with respect to 2 we obtain a new system

of equations for the M x d matrix-valued function
v = (v"™) = Duy = (Dyuy).

We treat the space of M x d matrices as a Euclidean M d-dimensional space, the
coordinates in which are organized in a special way. The inner product in this
space is then just ((A, B)) = trAB*. Naturally, linear operators in this space will
be given by matrices like (7)) which transforms an M x d matrix (A?)

into an M X d matrix (B™™) by the formula

m d

Brm — Z Z T (nm)(ps) APi

p=1 j=1
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We claim that the coefficients, the initial value and free terms of the system
for v; satisfy Assumptions(3.1.1] [3.1.2] and [3.1.3|with m > 0 if Assumptions[3.1.1],
13.1.2) and |3.1.3| are satisfied with m > 1 for the coefficients, the initial value and

free terms of the original system for ;.

Indeed, as is easy to see, v; satisfies (3.1.1)) with the same o and a and with

v, ¢, f, 7%, g% in place of I, ¢, f, ¥, ¢*, respectively, where

pilnm)(pg) — Dmaij(;pn + binp(gjm7 clnm)(pd) — cnpgmi | Dmbj"p, (3.2.24)

fnm _ Dmfn + UTDanT, l)k(nm)(p]) _ DmO'jkénp + Vlcnp(smj7
"™ = D,,¢*" + u" D,, """ (3.2.25)

Then the left-hand side of the counterpart of (3.1.7) for v is

d M
> K+
m=1 n=1

where (no summation with respect to m)
K, = 0" D™ — gy myET D™
and (no summation with respect to n)
J, = v"™D,,a¥ D™ — Jikv"mDmajkDiU”j.
Observe that D;v™ = D;;u™ implying that
0*D,,07* D" = (1/2) D, (0% 07%) Dyjju™,

Jn = (1/2)0"™ D0’ Dyju’.

By Lemma for any € > 0 and n (still no summation with respect to n)
Jp < Ne H{(v))? + e Dyu™Djpu™,

which along with the fact that D;u™ = D;v™ yields

> Jn < Ne ' {((v))® + ea ((Dyv, Djv)).
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Upon minimizing with respect to € we find

ST < NS o (D, D)) (o))

2,7=1

Next, by assumption for any € > 0 and m (still no summation with respect

to m)
M
K, < Ne7'(0))? + 20 D™ Djo"™ + (1/2)h'D; Y (v™™).
r=1

We conclude as above that

S Ko < N3 a¥((Duw, Do) 4(w)) + W Div, )

and this proves our claim.

The above calculations show also that the coefficients, the initial value and

the free terms of the system for v, satisfy Assumptions [3.1.1] [3.1.2] and [3.1.4]
with m > 0 if Assumptions|3.1.1},3.1.2 and are satisfied with m > 1 for the

coefficients, the initial value and free terms of the original equation for u;. (Note

that due to Assumptions with m > 1, B, given in ([3.2.24]), has first order
derivatives in z, which in magnitude are bounded by a constant.)

Now higher order derivatives of u are obviously estimated through lower order
ones on the basis of this remark without any additional computations. However,
we still need to be sure that we can differentiate equation (3.1.1).

Lemma 3.2.3. Let m > 0. Suppose that Assumptions[3.1.1,[3.1.2, and|3.1.5 are

satisfied and assume that uw = (u)iejor) is a solution of (3.1.1)-(3.1.2)) on [0, T
such that (a.s.)

T
/ |ut’€[/;n+1 dt < oo.
0

Then (a.s.) u is a continuous W) (R, RM)-valued process and for any q > 0

E sup |ulfym < N(E|Y[yn + EKL (T)) (3.2.26)
te[0,T] P P ’
with a constant N = N(m,p,q,d, M, K, Ky,T). If p =2 and instead of Assump-

tion[3.1.5 Assumption holds and (in case m = 0) the magnitudes of the first
derivatives of b are bounded by K, then u is a continuous Wi (R4, RM)-valued

process, and for any q > 0 estimate (3.2.26|) holds (with p = 2).
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Proof. We are going to prove the lemma by induction on m. First let m = 0
and denote y; := |u|j, . Then by virtue of Remark and Lemma the
process ¥ = (Y¢)iefo,r) is an adapted L,-valued continuous process, and
holds with

Foom [ 1007+ () + (k)" e

k k

t
my = p/ / (us)? 2 (ug, 0¥ Diug + viug + g%) do dw?.
0 Jrd

Notice that

2
ZZ(/ Us) ut,azTDumLutut—i-gt)dx) dt.

< 3p°(Ar + By + Cy) dt,

Z( / (ug)P~2 ”(ut,Dut>dx>2:§:(/RdaZ’"Di(ut>pdx)2,

1 r=1

with

oo oo

B =Y ( /R () ) dm)2, =Y ( /R ) s g dx)z.

r=1 r=1
Integrating by parts and then using Minkowski’s inequality, due to Assumption
3.1.1} we get A, < Ny? with a constant N = N(K, M,d). Using Minkowski’s

inequality and taking into account that

Z(u vu) Z V> < N{u Z<U79T>2 < (u)?|gl,
r=1 r=1
we obtain

2
B, < Ny;, Ci < (/d@t)pl’gt’ dl’) <y PPV g7,
R

Consequently, condition holds with G, = |gt|ﬁp, p = 1/p, and we get
(13.2.26|) with m = 0 by applying Lemma m

Let m > 1 and assume that the assertions of the lemma are valid for m — 1, in
place of m, for any M > 1, p > 2 and ¢ > 0, for any u, ¥, f and g satisfying the

assumptions with m — 1 in place of m. Recall the notation v = (v*) = (Djul)
from Remark [3.2.3] and that v, satisfies (3.1.1)) with the same o and a and with
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v, ¢, f, 0%, §* in place of Vi, ¢, f, ¥, ¢*, respectively. By virtue of Remarks
and the system for v = (v¢)sejo,7) satisfies Assumption 3.1.3, and it is easy
to see that it satisfies also Assumptions [3.1.1] and [3.1.2] with m — 1 in place of

m. Hence by the induction hypothesis v is a continuous Wf‘l(Rd,RM )-valued

adapted process, and we have

E sup |vt]?4/m , < (E|1Mq - + EKE_, (1)) (3.2.27)
te[0,T)

with a constant N = N (T, K, Ko, M, d,p, q), where ¢" = D)™,

T
BT = [ (Filipes + bl

It follows that (u;)icpo,r is a W;,”(Rd,RM )-valued continuous adapted process,

and by using the induction hypothesis it is easy to see that
EK!

m—1,p
Thus (3.2.26|) follows.
If p = 2 and Assumption [3.1.3] is replaced with Assumptions then the

proof of the conclusion of the lemma goes in the same way with obvious changes.

(T)) < N(Blfy,. + EKY, ,(T)).

The proof is complete. O

3.3 Proof of the main results

First we prove uniqueness. Let u(® and u(® be solutions to - , and
let Assumptions [3.1.1] [3.1.2 and [3.1.3| hold with m = 0. Then u := u(l) —u®
solves (3.1.1)) with uyp =0, g =0 and f = 0 and Lemma and Remark

are applicable to u. Then using It6’s formula for transforming |Ut|1£p exp(—At)

with a sufficiently large constant A, after simple calculations we get that almost

surely
0< e_)‘t|ut|1£p <m; foralltel[0,T],

where m := (my)icpp, is a continuous local martingale starting from 0. Hence
almost surely m; = 0 for all ¢, and it follows that almost surely ugl)(x) = u?)(a:)
for all ¢ and almost every z € R%. If p = 2 and Assumptions|[3.1.1] [3.1.2/and [3.1.4]
hold and the magnitudes of the first derivatives of b are bounded by K and u(

and u® are solutions, then we can repeat the above argument with p = 2 to get
1) — 2
u =u'?.
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To show the existence of solutions we approximate the data of system (3.1.1])
with smooth ones, satisfying also the strong stochastic parabolicity.To this end

we will use the approximation described in the following lemma.

Lemma 3.3.1. Let Assumptions|3.1.1) and |3.1.5 (3.1.4}, respectively) hold with
m > 1. Then for every € € (0,1) there exist P x B(R?)-measurable smooth (in
x) functions a”, b &) o &) Dyt and h) ) satisfying the following

conditions for every i,j, k=1, ...,d.

(i) There is a constant N = N(K) such that
a9 — a"| 4+ [ — b| 4 ) — ¢| + |Dra*¥ — Dra"| < Ne,

0@ — 5| + v — v < Ne
for all (w,t,x) and 1,5,k =1,...,d.
(ii) For every integer n > 0 the partial derivatives in x of a9, b, (&) ()
and V') up to order n are P x B(RY)-measurable functions, in magnitude

bounded by a constant. For n = m this constant is independent of ¢, it

depends only on m, M, d and K ;
(i4i) For the matriz o9 := 2a7 — g©* gk ye have

d
aFINN > &?Z NP for all X = (M, ..., 0% € RY

i=1

(iv) Assumption respectively) holds for the functions a9, 3% :=
b — gEEYEE and B in place of o, B' and b, respectively, with the

same constant K.

Proof. The proofs of the two statements containing Assumptions|3.1.3|and |3.1.4}

respectively, go in essentially the same way, therefore we only detail the former.

Let ¢ be a nonnegative smooth function on R? with unit integral and support in

the unit ball, and let (.(z) = e74((x/¢). Define
b = b« Ces 9 =cx Ces o =o' Ces v = v Ces h = bl x Ces

and a®¥ = a” x (. + ked;; with a constant k& > 0 determined later, where §;;
is the Kronecker symbol and ‘*’ means the convolution in the variable x € R

Since we have mollified functions which are bounded and Lipschitz continuous,
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the mollified functions, together with a*” and Dya®”, satisfy conditions (i) and

(ii). Furthermore,
0 @iry©r _ ity < 10— 51| VO] + |of||v — v] < 2K,
for every ¢ = 1, ..., d. Similarly,
0@ _ grait) < 2K%, VO 1| < Ke,  |h® —hY| < Ne
for all 4,7 = 1,2,...,d. Hence setting
B = pl&i _ @ik &k _ pei,

and using the notation B* for the same expression without the superscript ‘e’, we

have
|Bai _ le < |b(a)i o bz| + |0(a)z‘ry(a)r o Uirl/r| + \/M“,L(E)i _ hz| < Re,
|IB®" + B <R
with a constant R = R(M, K). Thus for any 21,...,z4 vectors from RM

[(B™2)" = (B'2)"| = [((B* — B')z:, (BY + B)z)]

d
< |BY - BY||BY + B[(z)(z) < dR% > (z)°.
=1

Therefore

d
(B%2)* < (B'z;)* + Cie Y _(z)?
i=1
with a constant C; = Cy (M, K, d). Similarly,

Z(Zasz‘j _ g(e)iko_(e)jkxzi’ Zj>

4,J
> (207 — 0% ) (2, 2j) + (k= Ca)e Y (2)?
(2] i

with a constant Cy = Cy( K, m,d). Consequently,

d
(57 = KO Ly)z)? < (Bizy) + Cie (=)’
=1



< KOZoz 2, 2j) —i—C'l&?Z 2)?

2,7=1

d d

S K() Z OéEij<Zi, Zj> + (K(](CQ — k’) + Cl>€ Z<ZZ'>2.

ij=1 i=1

Choosing k such that Ko(Cy — k) + C, = —Kj we get

<(ﬁ“— lIM )Zi) +K0€Z i) <K0204 (2, 2j).

4,7=1
Hence statements (iii) and (iv) follow immediately. O

Now we start the proof of the existence of solutions which are W;”(Rd, RM)-
valued if the Assumptions|3.1.1] [3.1.2] and [3.1.3| hold with m > 1. First we make
the additional assumptions that ¢, f and g vanish for |z| > R for some R > 0,
and that ¢ € [2,00) and

E|1/1|?,V1;n + EKE, (T) < o0, (3.3.28)
For each € > 0 we consider the system

du; = [0 Dius + s + ¢\ dw)

+ [ Dijus + 0 Dy + f] dt (3.3.29)
with initial condition
uf) =90, (3.3.30)

where the coefficients are taken from Lemma , and ¥, £ and ¢© are
defined as the convolution of 1, f and g, respectively, with (.(-) = e74((-/¢) for
¢ € Cg°(R?) taken from the proof of Lemma m By Theorem the above
equation has a unique solution uf, which is a Wi (R¢, RM)-valued continuous
process for all n. Hence, by Sobolev embeddings, u® is a W;”“(Rd, RM)-valued

continuous process, and therefore we can use Lemma to get

B sup [uilfy, < N, + B(C,,)(T)) (3.3.31)

te[0,T]

for p" € {p,2} and n = 0,1,2...m, where K , is defined by (3.1.4) with f© and

g% in place of f and g, respectively. Keeping in mind that 7" < max{1, T},
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and using basic properties of convolution, we can conclude that

r

T q/
E ( / 5 [y, dt) < N(E|¢|ly, + EKL ,(T)) (3.3.32)
0 P P ’

for any r > 1 and with N = N(m,p, q,d, M, K,T) not depending on r.
For integers n > 0, and any r,q € (1,00) let H ., be the space of RM_valued
functions v = v(z) = (vj(x))¥; on Q x [0, T] x R such that v = (v4(-))sepo,r] are

Wg(Rd, RM)-valued predictable processes and

T a/r
ol = E (/0 ol dt) < .

Then Hy,  with the norm defined above is a reflexive Banach space for each

n >0 and p,7,q € (1,00). We use the notation H = for HP .

By Assumption the right-hand side of ([3.3.32)) is finite for p’ = p and
also for p = 2 since ¢, f and g vanish for |x| > R. Thus there exists a sequence

(ek)ken such that €, — 0 and for p’ = p,2 and integers r > 1 and n € [0,m] the

k

sequence v" := uf* converges weakly in H”,

vrg O SOmMe v € HJP - which therefore

p'rq’
also satisfies

r

T a/
B ([ luliy i) < MBIl + L)
0 D P

for p’ = p,2 and integers r > 1. Using this with p’ = p and letting r — oo by

Fatou’s lemma we obtain
Eesssupte[O’T”vtﬂV; < N(E|¢\§1,V; + EKY (T)) forn=0,1,...,m. (3.3.33)

Now we are going to show that a suitable stochastic modification of v is
a solution of (3.1.1)-(3.1.2). To this end we fix an R¥-valued function ¢ in
Ci°(R?) and a predictable real-valued process (1)o7}, which is bounded by

some constant C', and define the functionals ®, &, ¥ and ¥, over H}D’q by
Dy (u) = E/ m/ {—(a Dius, Djip) + (b3 Diug + ™M ug, @)} ds dt,
0 0

T t
P(u) = E/ m/ {—(a¥ Dyu,, D;p) + (b Djus + csus, )} ds dt,
0 0

T ¢
U(u) = E/ 77t/ (UirDz‘Ut + v uy, @) dwy dt
0 0
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T t '
U (u) = E/O nt/o (afs’“)”Diut + Uy, @) dwy dt

for u € HY , for each k > 1, where b = b — D;aI);. By the Bunyakovsky-
Cauchy-Schwarz and the Burkholder-Davis-Gundy inequalities for all u € H}J’q

we have
®(u) < CNT* Vlulgy [olws,

t
U(u) <CTFEsup | (UirDiut + vy ug, ) dwy|
t<T Jo

. 1/2
<3CTFE {/ Z(UtiTDiUt + v U, p)° dt}
0 =

- ) 1/2
<3CTE {/ < (07" Dyuy + viug, ©)i, d:t;) dt}
0 Rd

T 1/2
0 D D P,q p

with a constant N = N(K,d, M), where p = p/(p — 1). (In the last inequality
we make use of the assumption ¢ > 2.) Consequently, & and ¥ are continuous

linear functionals over ]HIIl, o and therefore

lim ®(v*) = ®(v), lim U(v*) = ¥(v). (3.3.34)

k—o00 k—o0

Using statement (i) of Lemma [3.3.1] we get
94 () — B(u)| + [T (u) — W(w)] < Neylulsy, ol (3.3.35)

for all u € H}, with a constant N = N(k,d,M). Since v is the solution of

(3-3.29)-(3.3.30)), we have

T T
E/ nt(vf,w)dtzE/ (V¥ @) dt + ®(v*) + ¥ (v")
0 0

+ F(f)) + G(g®) (3.3.36)

for each k, where

T t
F(f) = E / " / (FH), ) dsdt,
0 0
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T t
Glg™)) = E / " / (4" ) du] dt.

Taking into account that |’Uk’H11W is a bounded sequence, from ((3.3.34)) and (|3.3.35))

we obtain

lim ®,(v") = ®(v), lim U, (v*) = U(v). (3.3.37)

k—o0 k—o0

One can see similarly (in fact easier), that

T T
i B [ (et dt = [ (o) dr (3.3.38)
k—o0 0 0
T T
im B [ n(i® o) dt=E [ nto.g)dr (3.3.30)
k—o00 0 0
lim F(fE)) = F(f), lim G(¢®¥) = G(g). (3.3.40)
k—o00 k—o00

Letting k — oo in (3.3.36)), and using (3.3.37]) through (3.3.40)) we obtain

T
E/ Ut(UtaSD) dt
0

T t
= E/ m{(w, @) + / [ — (a¥ Dijus, Djo) + (V. Djus + cous + [y, )] ds
0 0

t
+/ (0™ Dyvg + V" vs, ) dwg} dt
0

for every bounded predictable process (7;):cp,r] and ¢ from Cg°. Hence for each

¢ € Cg°

t
('Uta (10) = (7707 QO) + / [_ (a?DiUsa D]gp) + (b;Dﬂ)s + Ccsvs + fsa (P)} ds
0

t
+/ (0" Djvg + Vv + gi, @) dw?,
0

holds for P x dt almost every (w,t) €  x [0,T]. Substituting here (—1)I*/D%p in
place of ¢ for a multi-index o = (v, ..., g) of length |a| < m —1 and integrating

by parts, we see that

(Dvr, ) = (D™, ) + / [~ (I, Dyg) + (F?, o)) ds+ / (G, ) duf, (3.3.41)

for P x dt almost every (w,t) € Q x [0,T], where, owing to the fact that (3.3.33))
also holds with 2 in place of p, F' and (G")%2, are predictable processes with
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values in Lo-spaces for ¢ = 0,1, ..., d, such that

T d
/0 (Z |F|7, +|Gsl7,) ds < oo (as.).

=0

Hence the theorem on Itd’s formula from [25] implies that in the equivalence class
of v in H', there is a W3"~' (R, RM)-valued continuous process, u = (u¢)efo,7],
and with u in place of v holds for any ¢ € C§°(R?) almost surely for
all t € [0,7]. After that an application of Lemma to D% for |of < m —1
yvields that D is an L,(R% RM)-valued, strongly continuous process for every
la] <m—1, ie., uis a W (R? RM)-valued strongly continuous process. This,
(3.3.33), and the denseness of C§° in W"(RY, RM) implies that (a.s.) u is a
Wy (RY, RM)-valued weakly continuous process and holds.

To prove the theorem without the assumption that ¢, f and g have compact
support, we take a ¢ € C°(R?) such that ((x) = 1 for |x] < 1 and ((x) = 0
for |#| > 2, and define (,(-) = ((-/n) for n > 0. Let u(n) = (u¢(n))ico,n
denote the solution of — with (v, (,f and (,g in place of ¢, f
and g, respectively. By virtue of what we have proved above, u(n) is a weakly

continuous W;“(]Rd, RM)-valued process, and

E sup |Ut<n) - Ut(l)w/vy < NE‘(Cn - Cl)wlq m

t€[0,T]

T
—I—NE(/O {1(G — Q) fs €v1;n + (¢, — Cl)gs|€[,;n+1}ds)q/p_

Letting here n,l — oo and applying Lebesgue’s theorem on dominated conver-
gence in the left-hand side, we see that the right-hand side of the inequality
tends to zero. Thus for a subsequence n; — oo we have that u;(ng) converges
strongly in W (R%, RM), uniformly in ¢ € [0, 7], to a process u. Hence u is a
weakly continuous W;"(]Rd, RM)-valued process. It is easy to show that it solves

(3.1.1)-(3.1.2)) and satisfies (3.1.11)).

By using a standard stopping time argument we can dispense with condition

(3.3.28). Finally we can prove estimate (3.1.11)) for ¢ € (0, 2) by applying Lemma
in the usual way. The proof of the Theorem [3.1.1] is complete. We have

already showed the uniqueness statement of Theorem [3.1.2] the proof of the other

assertions goes in the above way with obvious changes.
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Chapter 4
Degenerate equations - numerics

As mentioned in the previous chapter, the study of degenerate equations is moti-
vated by practical applications such as the nonlinear filtering problem and there-
fore numerical methods to approximate the solution are of interest. However,
many approximation results for SPDEs rely strongly on the strong parabolic-
ity. Here we discuss finite difference approximations, motivated by [13], due to
four important favourable properties: 1) Easy implementation 2) Availability of
pointwise convergence 3) Enough flexibility to cover degenerate equations 4) Ex-
pansion of the error to a power series. The latter one is particularly useful when
combined with the classical idea of Richardson’s extrapolation from [36], to ob-
tain higher order schemes. Such an acceleration of the convergence of the spatial
discretization is established in [I3]. Below we attempt, with partial success, to
relax the smoothness conditions on the coefficients. Also, we discuss the error one
makes when they solve a truncated version of the equation, which is a necessary
but rarely discussed step to make the implementation of the scheme feasible. We
apply this error estimate, along with the results of [I3] and the analysis of the
implicit Euler method for degenerate equations, to obtain a fully discrete, imple-
mentable scheme. The content of this chapter is based on the papers [9], [10],

joint works with Istvan Gyongy.

4.1 L, estimates and acceleration - Formulation

We consider the SPDE
du(z) = [Di(af;j(x)Djut(x)) + bi(x) Diug () + co(x)ug(z) + fi(w)] dt

+ [07 Diug(z) + v (2)uy(z) + g (2)] dwy (4.1.1)
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for (t,z) € [0,T] x R, with the initial condition
up(z) = (x) x € R (4.1.2)

Because of the different form of the equation and because some different notations
will be more convenient, we formulate the similar assumptions to Chapter |3[again,
for integers m > 1.
To introduce the finite difference schemes approximating first let Ay,
A; C R? be two finite sets, the latter being symmetric to the origin, and 0 €
A1\ Ag. Denote
A=AgU—-AgUA;

and [A| =>4 [Al. On A we make the following natural assumption: If any sub-
set A’ C A is linearly dependent, then A’ is linearly dependent over the rationals.

This ensures that the following grid is locally finite. Let G; denote the grid
Gh = {h()\l ++)\n> : )\z € A,?’L: 1,2,...},
for h > 0, and define the finite difference operators

onap(r) = (1/h)(p(x + hA) — ¢())

and the shift operators
Thap(z) = o(z + hA)

for A € A and h # 0. Notice that d,0p = 0 and T} op = ¢. For a fixed h > 0

consider the finite difference equation
duy (x) = (Lf (2)uy (x) + fi(w)) dt + (M7 (2)uf (x) + gf () dwf,  (4.1.3)
for (t,z) € [0, T] x Gy, with the initial condition

ul() = v(x) (4.1.4)

for x € Gy, where

L}y = Z - (0n2p) + Z Pionye + Z ¢ hop

AEAg YEAL YEAL

and
Mo =" s dap+ > ) Thap

A€Ag yEAL
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for functions ¢ on Gy. The coefficients a3, p}, and ¢; are P x B(R?)-measurable
bounded functions on © x [0, 7] x RY, with values in R, and p? = 0 is assumed.
The coefficients sy and n} are P x B(R?)-measurable bounded functions on 2 x
[0, 7] x RY, with values in l. All of them are supposed to be defined for h = 0 as
well, and to depend continuously on h.

One can look for solutions of the above scheme in the space of adapted stochas-
tic processes with values in [, 5, the space of real functions ¢ on G such that

Tl

p,h

= lo@)lPh? < co.

zeGy,

The similar space is defined for lo-valued functions and will be denoted by 1, 5 (12).
For a fixed h equation (4.1.3)) is an SDE in [, ,, with Lipschitz coefficients. Hence

if almost surely

T
8, [ IR+ L0l e < o

then (4.1.3)-(4.1.4) admits a unique [, ,-valued solution (u}')sefo 7).

Remark 4.1.1. By well-known results on Sobolev embeddings, if m > k + d/p,
there exists a bounded operator J from W) to the space of functions with
bounded and continuous derivatives up to order k£ such that Jv = v almost ev-
erywhere. We will always identify functions with their continuous modifications
if they have one, without introducing new notation for them. It is also known,
and can be easily seen, that if m > d/p, then the for v € W, the restriction of

Jv onto the grid Gy, is in [, ,, moreover,
| Jvli,, < Clvlw, (4.1.5)

where C' is independent of v and h.

Remark 4.1.2. The h-dependency of the coefficients may seem artificial and in
fact does not mean any additional difficulty in the proof of Theorems [4.1.1H4.1.3
below. However, we will make use of this generality to extend our results to the
case when the data in the problem — are in some weighted Sobolev

spaces.
Clearly
dnap(z) — Orp()

as h — 0 for smooth functions ¢, so in order to get that our finite difference oper-
ators approximate the corresponding differential operators, we make the following

assumption.
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Assumption 4.1.1. We have, for every i, =1,...,d, r=1,...

@’ =" AN, (4.1.6)
XS
b= Z Py, ¢ = Z ¢, (4.1.7)
yEAL yeM
o' = Z SN U = Z ny’ (4.1.8)
AEAg YEAL

and for P x dt x dz-almost all (w,t, ) we have for all (2))xea,
ap(zn)? — 2psp sk 20z, >0, p) >0 for every v € Ay, h > 0. (4.1.9)

Remark 4.1.3. The restriction (4.1.6)) together with a} > 0 is not too severe, we
refer the reader to [24] for a detailed discussion about matrix-valued functions

which possess this property.
Remark 4.1.4. The parabolicity condition in (4.1.9) depends on p. This is an

essential restriction, but for example, additive and multiplicative noises are still
covered. It is worth mentioning that while unusual, there exist problems where
the stochastic parabolicity condition has to depend on p, see e.g. [I]. It is unclear

whether this is one of them or our condition can be significantly improved.

Example 4.1.1. Suppose that the matrix (a*) is diagonal. Then taking Ay =
{e; :i=1...d} and Ay = {0} U{%e; : i = 1...d}, where (e;) is the standard

basis in R?, one can set

e; __ Fe;

1 e 1% I —e; 0 __ 0 __
ah_a7phl_b+97phl_eiach_caph_ch )

521'7‘ _ O_ir’ rl(})Lr — I/r’ nie,‘r _ O,
with any #° > max(0, —b%), i =1...d.

Example 4.1.2. Suppose that (a”/) is a P x B(R?)-measurable function of (w, t, x)
with values in a closed bounded polyhedron in the set of symmetric non-negative
d x d matrices, such that its first and second order derivatives in # € R? are
continuous in = and are bounded by a constant K. Then it is shown in [24]
that one can obtain a finite set Ay C R? and P x B(R?)-measurable, bounded,
nonnegative functions a), A € Ay such that holds, and the first order

1/2

derivatives of (a})¥/? in z are bounded by a constant N depending only on K,

d and the polyhedron. Such situation arises in applications when, for example,
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(a (x)) is a diagonally dominant symmetric non-negative definite matrix for each

(w,t,x), which by definition means that
d ..
20 (z) > Z lai (x)], foralli=1,2,..,d, and (w,t,z),
j=1

and hence it clearly follows that (a*) takes values in a closed polyhedron in the
set of symmetric non-negative d x d matrices. Clearly, this polyhedron can be

chosen to be bounded if (") is a bounded function.

Since the compatibility condition (4.1.6)-(4.1.7) will always be assumed, any

subsequent conditions will be formulated for the coefficients in (4.1.3]), which then

automatically imply the corresponding properties for the coefficients in (4.1.1).

Assumption 4.1.2. The derivatives in (h, ) of a;, sy, n} (resp., p;, ¢}), up to

order m + 1 (resp., m) are P x B(R%)-measurable functions bounded by K.

Assumption 4.1.3. The free data, (f¢)icjo,7] and (g¢):cjo,r] are predictable pro-

cesses with values in W* and W;”“(Rd, l5), respectively, such that almost surely

T 1/p T 1/p
Fm,p(T) + Gmm(T) = (/ | fi %,gndt) + (/ gt ﬁ,ﬁdt) < 0.
0 0

The initial value, ¢ is an Fo-measurable Wj"-valued random variable.

We are now about to present the main results. The first three theorems
correspond to similar results in the Ly setting from [13]. The key role in their proof
is played by Theorem below, which presents an upper bound for the W
norms of the solutions to —. After obtaining this estimate, Theorems
through can be proved in the same fashion as their counterparts in
the Lo setting, therefore, only a sketch of the proof will be provided in which we

highlight the main differences; for the complete argument we refer to [13].

Theorem 4.1.1. Let k > 0 be an integer and let Assumptions[{.1.1] through[4.1.3
hold with m > 2k +3-+d/p. Then there are continuous random fields u), . . uk)
on [0,T] x R, independent of h, such that almost surely

J

uf(z) =y i!ugj>(x) + B () (4.1.10)

<

k
J=0

fort € [0,T] and x € Gy, where u'Y = wu, r* is a continuous random field on
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[0, 7] x RY, and for any q¢ > 0

E sup sup |ri(z)|?+ E sup |r}|] L < N(E\W|ym + EFL (T)+ EGY, (T))
te[0,T] z€Gy, t€[0,7] P P ’ ’

with N = N(K,T,m,p,q,d,|Al|).

Once we have the expansion above, we can use Richardson extrapolation to

improve the rate of convergence. For a given k set
(co,c1y...,c6) = (1,0,0,...,0)V (4.1.11)

where V' denotes the (k + 1) x (k + 1) Vandermonde matrix V = (V¥) =
(2=0=DG=Y) and define

where h; = h/2°.

Theorem 4.1.2. Let k > 0 be an integer and let Assumptions[4.1.1] through[{.1.5
hold with m > 2k + 3+ d/p. Then for every q > 0 we have

E sup sup |u(z) — ol (2)|? + E sup |u, — vf|§1ph
t€[0,7] z€Gy, t€[0,T7] ’

< WY N (B[4, + EFS (T) + EGY, (T))
with N = N(K7 T7m7 kap> g, d? ‘AD

Theorem 4.1.3. Let (h,)22, € l, be a nonnegative sequence for some q > 1.
Let k > 0 be an integer and let Assumptions through hold with m >
2k + 3+ d/p. Then for every e > 0 there exists a random variable & such that
almost surely

sup sup |u(x) — vl (x)] < EhFTIE
te[0,T] zeGy,

for h =h,.

Remark 4.1.5. We can use h; = h/n;, i = 1...k, with any set of different integers
n;, with n; = 1. Then changing the matrix V to V = (V#¥) = (n; /™) in {@.1.11)),
Theorems remain valid. The choice n; = i, for example, yields a more

coarse grid, and can reduce computation time.

Choosing p large enough, in some cases one can get rid of the term d/p in the

conditions of the theorems above, thus obtaining dimension-invariant conditions.
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To this end, first denote the function p,(z) = 1/(1 + |2|?)*/? defined on R? for
all s > 0. We say that a function F on R? has polynomial growth of order s if
the L., norm of Fp, is finite. For any integer m > 0, the set of functions on R?
which have polynomial growth of order s and whose derivatives up to order m
are functions and have polynomial growth of order s is denoted by P!", and its

equipped with the norm
1E|| Py = |Fpslwg < oo

The similar space is defined for ly-valued functions and is denoted by P (l5).
Note that for any integers m > k > 0, if F' € PI", then its partial derivatives up
to order k exist in the classical sense and along with F' are continuous functions.
The polynomial growth property of order s for functions on Gy, can also be defined
analogously, the set of such functions is denoted by P, ;.

Let s > 0 and m be a nonnegative integer. Consider again the equation
duy(x) = (Dy(af () Dyuy(x)) + 0y(x) Dyjuy(x) + ci(w)us() + fi(w)) dt

+ (o7 (z) Dyug () + v] (2)us(x) + " (x)) dwy (4.1.12)

for (t,z) € [0,T] x R, with the initial condition
ug(z) = (x) = € RY, (4.1.13)

where we keep all our measurability conditions from (4.1.1])-(4.1.2). However,

instead of the integrability conditions on 1, f;, g;, we now assume the following.

Assumption 4.1.4. The initial data 1 is an Fy x B(R?)-measurable mapping
from 2 x R? to R, such that v € P™ (a.s.). The free data f and g are P x B(R%)-
measurable mappings from Q x [0,7] x R? to R and [, respectively. Moreover,
almost surely (f;) is a P™-valued process and (g;) is a P(ly)-valued process,

such that almost surely

11 £

P+ g4 P;"(l2)|Loo[0,T] < 0.

Definition 4.1.1. A P x B(R%)-measurable mapping u from Q x [0, 7] x R? to
R such that (u¢)sepo,r) is almost surely a P}-valued bounded process, is called a
classical solution of (4.1.12)-(4.1.13) on [0, 77, if almost surely u and its first and

second order partial derivatives in z are continuous functions of (¢, z) € [0, 7] xR,
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and almost surely

ue(x) = () + /0 [Di(a () Djus(x)) + by(2) Djus(2) + cs(x)us(2) + fo(w)] ds

+/0 [0 (2) Diug(z) + Vi (2)ug(z) + ¢"(z)] dw”

for all (t,x) € [0,T] x R? for a suitable modification of the stochastic integral in
the right-hand side of the equation.

If m > 1, then as noted above the initial condition and free terms are contin-

uous in space. This makes it reasonable to consider the finite difference scheme

(4.1.3)-(4.1.4) as an approximation for the problem (4.1.12)-(4.1.13)).

Theorem 4.1.4. Let k > 0 be integer, and let s > s > 0 be real numbers.
Suppose that Assumptions and [{.1.4] hold with m > 2k + 3.

(i) Equation ([4.1.12)-(.1.13) admits a unique P '-valued classical solution

S

(Ut)te[o,T] .

(ii) For fized h the corresponding finite difference equation (4.1.3))-(4.1.4) admits

a unique Py z-valued solution (U?)te[o,ﬂ-

(1i1) Suppose furthermore p] > k for v € Ay, for some constant k > 0, and
Ag U —Ay C Ay
Then there are continuous random fields u™V, ... u® on [0, 7] x R4, inde-
pendent of h, such that almost surely
LI N I
uf =) ! (@) + W ()

= !

fort € [0,T] and x € Gy, where u® = u, " is a continuous random field
on [0,T] x R4, and for any q > 0

E sup sup [r}(z)ps(x)|? + E sup |r¢psl}
te[0,T) zeGy, te€[0,T] ’

< N (Bl )5 + Bl fill e + lge

q
Py (lz) ‘Loo [o,T})

with some N = N(K,T,m,s,3,q,d,|A|, k).
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() Let (h,)32, € l, be a nonnegative sequence for some ¢ > 1. Then for every

e, M > 0 there exists a random variable &, ps such that almost surely

sup sup  |ug(z) — vl (w)] < & phiTE
t€[0,T] z€Gy,,|z|<M

for h = h,,.
Remark 4.1.6. Condition p; > x in assertion (iii) of the above theorem is harm-
less, similarly to the second part of (4.1.9). As seen in Example 4.1.1) we can
always satisfy this additional requirement by adding a sufficiently large constant
to p).

4.2 L, estimates and acceleration - Proofs

First let us collect some properties of the finite difference operators. Throughout
this section we consider a fixed h > 0 and use the notation u, = D%u. It is easy

to see that, analogously to the integration by parts,

/ v(dp 2u) d:c:/ (5h,,\v)udaﬁ:—/ (O—pv)udz, (4.2.14)
R4 Rd Ré

when v € Ly/,—1 and u € L, for some 1 < ¢ < oo, with the convention 1/0 = o0

and oo/(oco — 1) = 1. The discrete analogue of the Leibniz rule can be written as
5h7,\(uv) = u(éh,,\v) + (5h,>\u) (T}L)\U). (4215)

Finally, we will also make use of the simple identities

Th,a5h75u = 5h,a+5u - 5h7au, (4216)
vy = (1/2)(0x(v?) — h(6yv)?), (4.2.17)
and the estimate
1
Gunvlz, < |/ Oy (- + 0hA) db, < [N][olwn (4.2.18)
0

valid for p € [1,00] and v € W}, h # 0 and X € R%.
Lemma 4.2.1. For any p = 2k with an integer k, A € R%, h # 0 and real

function v on R we can write
Ona(v"™h) = F N (0)dnav,
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where F"(v) > (1/2)vP~% on R. Moreover, for p > 2, ¢ = p/(p —2) and for all
v € L,(RY)

[F 2 w)l7, < (0= 1)l (4.2.19)
Proof. First we claim that
p—2
FPAv) =Y P a0 (4.2.20)
=0

This is trivial for p = 2, and we have, using (4.2.15|)
(Sh)\(l)p_l) = 5h,/\<?}2@p_3) = UQF;;é(U)5h7AU + (’Uéh,)\v + (5h7)\UTh7)\U)Th7/\’Up_3.

Thus by induction we get (4.2.20)), and (4.2.19)) follows. For the other claim,

clearly we have F"*(v) > (1/2)vP~? for p = 2. Then we can prove by induction

once again, as from (4.2.20) we have,
FIA 0) = Ty av?Fy(v) + TP~ 4 0P~

> Thav*(1/2)0P ™ 4+ T vvP ™3 + P72 = (1/2)vP (T av + v)? + (1/2)vP 2.

Introduce the notation
Az = —aﬁ(zA)2 + qﬁﬁrszrzAzM

for ¢ > 0 and z = (z))xen,, and recall that under condition (4.1.9), A,z < 0 for
q < 2p.

Lemma 4.2.2. Let m > 1 be an integer and p = 2% for some integer k > 1,
and let Assumptions |4.1.% and |4.1.5, along with the condition (4.1.9)) with p in
place of 2p be satisfied. Then for w € W), f € W)*, g € W) (ly) and for all

multi-indices v of length || < m we have

[ @)D (L) + (@)

+(1/2)p(p = Vup ()| DY (M u() + ¢ (2))[*dx

<N [l @)%y 1 (Gnatta(@)reng dot N (ullypnt 1 g +glfp,) (42:21)
R p
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for P x dt-almost all (w,t) € Q x [0,T], where N is a constant depending only on
d,p,m,|Al|, and K.

Proof. For real functions v and w defined on RY we write v ~ w if their integrals

over R? are the same. We use the notation v < w if v < w + F with a function

F whose integral over R? can be estimated by N([ulyym + Ly + 19l ;n(b)).
By Holder’s inequality we get

uﬂ_lDa(cZTh,wu) +ul o+ Ug_Q‘Da(”ZTThWU +g")* <0.
Next, notice that
ul D (phdnau) = Ul prdp AU

Then we can repeatedly use ([4.2.17) and the nonnegativity of p; to get
ub pROnata < (1/2)ul?phonaup,

< (1)l ppdpault < - < (1/25)phonau

By ([4.2.14), ppdnuf, ~ 8, _apruP. Therefore, as by (4.2.18), |6n _apr| < K|\,

we obtain
ui’lea(pﬁh’)\u) =< 0.

The remaining terms will be treated together. First notice that by Young’s and

Holders inequalities

(1/2)p(p — Dub (Y - D) dpau, Y D8 dpau+ Y n) T+ g,

A€Ag AEAQ yEAL
=< (14€)(1/2)p(p — 1)ul 25" 54" S AUk U (4.2.22)

for any € > 0, in particular, we can make the prefactor less than (1/2)p(p —1/2).
Now for a moment assume m = 0. By (4.2.14) and Lemma m

Up_lé_h)\<a2(5h7)\u) ~ —5h’/\(up_1)a25h,>\u

= —FMNu)ay(Oppu)? < (1/2)uPay (0 au)?, (4.2.23)

where F' is the functional obtained from Lemma [4.2.1, Combining this with
, the claim follows for m = 0. Assume now m > 1. Then it is easy to see
that

DSy A (apdpau) = I+ I, (4.2.24)
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with
I = ug_l Z 6_h’)\Da/a2Da”(5h’>\u

(0/70(//)614
. ,,p—1 A
]2 = ug 5_h,A(ah5h,>\ua),

where A is the set of ordered pairs of multi-indices (¢, @”) such that |o/| =1 and

o 4+ o’ = a. By (£.2.14) and Lemma [1.2.1]
Il ~ —ZFI?’)\ (Ua)\/ ag(sh,)\ua Z Da/\/ Clz(s;—h)\uau

(o ,a')eA

< EFP}L’)\(UQ)QQ((S}M)\UCJZ —+ EilNF;")\(Ua)((Sh’)\ua//)Q (4225)

for every € > 0. Using (4.2.23) with u, in place of u we get
IZ j —Flf“\(ua)az(dhy,\ua)z.

Combining this with (4.2.25)), from (4.2.24)) we obtain

I<—(1- 5)F£’A(ua)a2(5h7,\uo&)2 + 5_1NF£’)‘(ua) Z (5§uau)2

(o ,a/")eA

< (1= e)(1/2)ul 2 ay(Gppua)® + TN | [F A ua)l T+ Y (BRuar)P?]

(o, a'")eA

with ¢ = p/(p — 2). The quantity in the brackets is < 0, due to the estimates

(4.2.19) and (4.2.18)). Fixing € so that 1 —¢ > (p—1/2)/(p —1/4) and combining
the above with (4.2.22)), the proof is finished. O

Now we are ready to prove the main a priori estimate. To obtain bounds in
Sobolev norms we consider — as an SDE on the space IW". Clearly,
under Assumption u — Llu and u — M]""u are bounded linear operators
from W)™ to W and to W;"(l), respectively, with operator norm uniformly
bounded in (t,w). Therefore if Assumption is also satisfied, (4.1.3))-(4.1.4)
is a SDE in the space W with Lipschitz continuous coefficients. As such, it

admits a unique continuous solution.

Theorem 4.2.3. Let Assumptions |4.1.4 and [4.1.5 hold with m > 1, and let
condition (4.1.9) be satisfied. Then (4.1.3)-(4.1.4) has a unique continuous W"-

valued solution (u)')iepo,r), and for each q > 0 there exists a constant N =
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N(d,q,p,m, K, T,|A|) such that
Esup |uf [ty < N(E|Y|}m + EFS (T) + EGY, (T)) (4.2.26)
t<T D P > >

for all h > 0.

Proof. By the preceding argument, we need only prove estimate (4.2.26)). Fix
m > 1 and first let p = 2* for some integer £ > 1, and only assume (4.1.9)) with

p in place of 2p, along with Assumptions 4.1.2) and [4.1.3] Let « be a multi-index

such that |a| < m. If we apply It6’s formula to |D°‘uh|1£p by Lemma 5.1 in [20],
one can notice that the term appearing in the drift is the left-hand side of (4.2.21]),
with u" in place of u. Using Corollary and summing over |a| < m we get

d|ut mw <N d(Dau?)p_zﬂp,1/4(5h7>\uga)>\er dx dt
R

+ N(|ut il + |ft m + |gt €Vz§"+1> dt + dm? (4227)

with some N depending only on p,m, d, |A|, and K, where
dmh = (p—1) / (D uMP~ D (53" Sl + 0] Ty, ul + g7) doe dwj
Rd

with « also used as a repeated index. It is clear that

¢}

2
dm")y, = (p—1)*) ( / d(Dauﬁ)p—lpa(ggrah,Au? + 0 T ul + g;f)dx) dt.
R

r=1

For p = 2 Gronwall’s lemma can be readily applied as follows. Since for v € WJ",
|a] < m, and any function s with derivatives up to order m + 1 bounded by K,
we have

} *(s0ppv) dz| < N|U|Wm

(see [13]), we find that the conditions of Lemma are satisfied with y, =
uf iy, B = G = N(|filfyp + [9livy), and p = 1/2, and therefore the claim
follows for p = 2 and arbitrary ¢ > 0.

For p = 2k, from (4.2.27)) from (the classical) Gronwall’s lemma we have

sup Elull? m—I—E/ / App—1/4(Onatuf' o) aen, da dt
t€[0,7] R¢

< NE(flyp + FL,(T) + Gh, (T)). (42.28)

Therefore, after taking supremum in (4.2.27)) and using the Burkholder-Gundy-
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Davis inequality we obtain

E sup |ulbyn < NE([[E,. + F2_(T)+ G, (T)) + NE(m")}*
te[0,T] P P ’ ’

By Minkowski’s and Young’s inequality we have

T

h h|p —1 hyp—2 A\ h _ur h

(m")yr <e S[up] |y W € N/ /d(Do‘ut P85 O AUt o 5), Oty o do dt
telo,T o Jr

T
+ 5_1N/0 [t e + 19y - (4.2.29)
Noticing that
(1/4)sp up s 2 2" < (1/4)sp"up s 2 2 — Az < =AUyl ja2,

the expectation of second term on the right-hand side of (4.2.29) can be estimated
using (4.2.28]). Doing so and choosing € small enough, we get

E sup [w}[fym < NE([Yjym + Fh (T) + GE, (T) + (1/2)E sup_|ug[fym,
te[0,T] P P te[0,T] P

and since the right hand side is finite, the claim follows, for p = 2, ¢ = p.

Note that (4.2.26)) is equivalent to

S

1 1 1
(B sup iy, 1+ < N(EWfy, 15 + [EFL,J + [EGL,,)

t<T

),

which implies

([t )

for any r > 1, with another constant N, independent from r. In other words, this

31

Q=
Q=

] ), (4.2.30)

< N(E[¢lly, )7 + [EFL )0 +[G8,,)

means that for the special cases of p and ¢ considered so far the solution operator

(¥, f,9) = u"

continuously maps W x F7. x G to Uy, where

D,q’

U= L (Q W),

F = Ly(Q, Ly ([0, T], W),

p.q
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gZTq = Lq(Qv LP([O’ T]v W;:n<l2)))a
u;lq - Lq(Q,LT([O,T],W];")).

Let us denote the complex interpolation space between any Banach spaces Ay and
Ay with parameter 6 by [Ag, A1]s. Recall the following interpolation properties
(see 1.9.3, 1.18.4, and 2.4.2 from [37])

(i) If a linear operator 7' is continuous from Ay to By and from A; to By, then
it is also continuous from [Ag, A1]g to [Bo, B, moreover, its norm between
the interpolated spaces depends only on 6 and its norm between the original

spaces.

(ii) For a measure space M and 1 < pg,p; < 00,
[Lpo (Mv AO)’ Lpl (M: Al)]e = Lpe (Mv [A()? A1]9)7

where 1/pp = (1 —0)/po + 0/p1.

(iii) For m € N, 1 < pg, p1 < 00,

W, Wotle = W

Po?’ Pe?

where 1/pg = (1 —0)/po + 0/p1.

Now take any p > 2 and take p; = T(p) := 2F for the smallest k such that 28 > p.
Define 6 € [0,1] by 1/p = (1 — 0)/2 + 0/p;. Further, take ¢ > p; and define ¢q
with 1/¢ = (1 — 6)/qo + 0/p1. Notice that since (4.1.9) is assumed, (4.1.9) also

holds with p; in place of 2p. By properties (ii), (iii), we have

v = (U Uy, F = (F L F

2,907 ~ p1,P1 2,q0° p17P1]9’

mo m m m m m
gp,q - [g2,qo’ gpl,m]@’ up,q - [u2,qo7up1,p1]97

and since we know the continuity of the solution operator from Wy’ X F3" X Gy
to Uy, and from Wb < F xG o toU! by (i), the solution operator is also
continuous from W7 x Fr x G to U for any p > 2, ¢ > T'(p). Moreover, its
norm is independent of r. Hence we have (4.2.30]), and letting r — oo and keeping
in mind that u" is a continuous in W,-valued process, using Fatou’s lemma we

get (4.2.26]). The case ¢ < T'(p) can be covered by the usual application of Lemma
123 O

Proof of Theorems [{.1.1{{/.1.5 To prove Theorem [£.1.1] first consider the
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functions

1
F(h) = 6w rd(x) = / Oxd( + hON) B,

0 1
G(h) = d_p \0n 0 (x) = / / O\OY(x + hA(01 + 02))d0,db;
—1Jo

for fixed ¢ € W2 4p € WHH3 0 1 > 0. Applying Taylor’s formula at h = 0

up to n + 1 terms we get that

[6n20 — > W A Bl < NI 6]y menee,

1=0

02Ot — D KBl < NIR™ o) yrenss

1=0

with constants A; = 1/(i + 1)! and

0 if 7 i1s odd
B; = 2 e )
T if 7 is even

where N = N(|A|,d,l,n) is a constant. Similarly, or in fact equivalently to the

first inequality, we have

Thre = Y s 0helug < NI lyypren

=0

for ¢ € W+ where 9y denotes the identity operator. Without going into
details, it is clear that, due to Assumption |4.1.2, from these expansions one can
obtain operators £7, MP* for integers i € [0,m] such that £0¢ = 9;a70;¢ +

VO + e, M 6 = a8, + V4o,

|£§l)¢|W}, < N|¢|Wzl)+i+1 for ¢ Odd, 141 < m,
‘£§1)¢|Wi) < N’¢|Wzl)+i+2 for ¢ even, i +1 < m,

|m§i)¢|wll,(12) < N’¢|Wzl)+i+1 1+1<m
and

(L =722 olwy < NIB™ | @lyeres for n+1<m,
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(M}~
i=0
with N = N(|A|, K,d,p,m). The random fields «) in expansion (4.1.10]) can
then be obtained from the system of SPDEs

i

>

3] ED’t(l))gﬂwl(lg) < N|h|n+1|¢|wn+l+2 for n +l <m (4.2.35)

.

duV) = )4 Z Nt + (MO uP) 4 Z MO Iy dw?
(4.2.36)
uWW=0, j=1,..k (4.2.37)

where v(*) = u, the solution of (#.1.1)-(#.1.2). The following theorem holds, being

the exact analogue of Theorem 5.1 from [I3]. It can be proven inductively on j,
by a straightforward application of Theorem [3.1.1{ and (4.2.31)-(4.2.33).

Theorem 4.2.4. Let k > 1 be an integer, and let Assumptions and
hold with m > 2k + 1. Then there is a unique solution uV,... u® of
(£.2.36)-(3.1.2). Moreover, ul is a W% -valued weakly continuous process, it

s strongly continuous as a W;”*ijl—valued process, and

E sup \u
t€[0,T]

’ q

o2 S N(EW [y + EFL(T) + BGE,(T)

forj=1,... k, for any ¢ > 0, with a constant N = N(K,m,p,q,T,|A]).
Set

(@) = (@) = 3 (@),

for t € [0,T] and = € R?, where u" is the W) -valued solution of (4.1.3)-(4.1.4).
Then it is not difficult to verify that 7" is the solution, of the finite difference

equation

7 (2) = (L7 (2) + F'(2)) dt + (M"T}(2) + G (2)) dwj, € (0,T], x € R?

with initial condition 74 (x) = 0 for z € R?, where

k h,j k—j s
St (5 e
j=0‘7 =0



Hence by applying Theorem we get

t a/p
B sup s < NE ([Nl Gl )

t€[0,T)

Now using m — 2k — 3 > d/p, for the left-hand side we can write

E sup sup |7} ()|? + E SUP ’Tt|l < NE sup ‘F?K]/VW*WV*?’?
tel0,T] z€Gy, tel0, T t€[0,T) P

while (4.2.34)), (4.2.35)), and the theorem above yield

E sup |Fh 2 3+|Gh

< NRIFDNT B sup w2 -
t€[0,T] N Z | ' | N

m—2k—3
Wy t€[0,T

< NWE (B, + EFE (T) + EGY, ,(T)),

where N denotes some constants which depend only on K, m, d, ¢, p, T and |A|.

Putting these inequalities together we obtain the estimate

E sup sup [y (z)|" + E sup [7}]f |
t€[0,T] z€Gy, te[0,T]

k+1
< NWE (B, + EFL (T) + EGY, ,(T)), (4.2.38)

for all h > 0 with a constant N = N(K,m,d,q,p,T,|A|). Thus we have the

following theorem.

Theorem 4.2.5. Let k > 0 be an integer and let Assumptions and
hold with m > 2k + 3 + d/p. Then there are continuous random fields
u® . u® on [0,T] x RY, independent of h, such that almost surely

up(z) = > =u () + 7/ () (4.2.39)

for allt € [0,T] and x € R, where u® = u, u" is the Wt -valued solution of
[@.1.3)-([@.1.4), and 7" is a continuous random field on [0,T] x R, which for any
q > 0 satisfies the estimate (4.2.38)).

Proof. The expansion (4.2.39) holds by the definition of 7", its continuity is a
simple consequence of Sobolev embeddings and Theorems (3.1.1], 4.2.3[ and |4.2.4],
and estimate (4.2.38)) is proved above. O]

To finish the proof of Theorem we need only show that under the con-
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ditions of Theorem m the restriction of the W) -valued solution " of (4.1.3)-
(4.1.4) onto [0,T] x Gy, is a continuous [, ,-valued process which solves (4.1.3)-
(4.1.4). To this end note that under the conditions of Theorem ul is a con-
tinuous W;"_l valued process, and therefore by (4.1.5)) its restriction to [0, T x Gy,
is a continuous /, 5-valued process. To see that this process satisfies (4.1.3))-(4.1.4))
we fix a point x € G}, and take a nonnegative smooth function ¢ with compact
support in R? such that its integral over R? is one. Define for each integer n > 1
the function ¢™(2) = nip(n(z — 7)), z € R Then we have for u", the Wpr-

valued solution of (4.1.3))-(4.1.4), that almost surely
t t
(i) = () [ (Lol fop) s+ [ M+ gL )
0 0

for all t € [0,7] and for all n > 1. Letting here n — oo, for each t € [0, T we get

ul () = () + / (LM () + fu(a)) ds + / (M7 ub () + g7 (x)) dufl (4.2.40)

almost surely, since u”, 1, f,, g and the coefficients of L" and M" are continuous
in z, due to Sobolev’s theorem on embedding W/"(R?) into Cy(R?) in the case
m > d/p. Note that both uf(z) and the random field on the the right-hand
side of equation are continuous in ¢ € [0,7]. Therefore we have this
equality almost surely for all ¢t € [0,7] and x € Gy,. The proof of Theorem m

is complete.

The extrapolation result, Theorem |4.1.2] follows from Theorem by stan-
dard calculations, and hence Theorem [4.1.3]on the rate of almost sure convergence
follows by a standard application of the Borel-Cantelli Lemma, for further details

we refer to [13].
O]

Proof of Theorem . Let p(z) = ps(ex) = 1/(1 + |ex|?)¥/?, where € > 0 is
to be determined later and choose p large enough so that 1 > d/p - and therefore
m > 2k+3+d/p-, and Assumption holds for ¥ p, fp and gp in place of 1),
f and g, respectively. After some calculations one gets that u is the solution of
(4.1.12)-(4.1.13) if and only if up is the solution of the equation

dvy(r) = (Didij(x)Djvt(x) + Bz(@Dzvt(x) + &i(z)ve(w) + fip(w)) dt

+ (67" (z)ve(x) + 77 (2)ve(x) + gy p()) dwy (4.2.41)
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for (t,z) € [0,T] x R, with the initial condition

vo(x) = vp(z),
for x € R, where the coefficients are given by

~

av = q¥ ,

. i D.
=0 -2 "
= P

1,j=1 4,j=1
a_ZT — O-ZT,
d
. Dip
v=v" — E o —.
i=1 P

(4.2.42)

Due to our choice of p, these coefficients still satisfy the conditions of Theorem

3.1.1} Applying this theorem, we obtain a W;"-valued unique solution v. Using
Sobolev embedding, we get that v/p - which is a solution of (#.1.12) - is a P~ '

valued process.

One can similarly transform the finite difference equations, using (4.2.15))-

(4.2.16). Tt turns out that u" is a solution of (4.1.3)-(4.1.4)) if and only if u"p is

a solution of the equation

of(x) = {L(@)of (z) + fip(x)) dt + (M7 (2)vf (x) + g plx)) du]

for (t,z) € [0, T] x Gj, with initial condition

v (x) = ¥p(a),

for x € Gy, where

[AJ?SO = Z 5—h,>\(a25h,>\90) + Z Pronye + Z ¢ Thre,

AEAQ YyEA1L yEA1L

Mthr(p = Z §2T5h,A90 + Z ﬁZrTh,'yQpa

A€ YEA

with

(4.2.43)

(4.2.44)



) (Th,20*)0n,xp — (Thaa )0 p

pr=py+ P
A AP (0n,-70")0p,—xp — 6 20 rp + P (5h>\p
h hTh,AP Thrp
5 = 5\,
A =" P . 5hT5h,)\p

=N ,
h " Thap Thp

where a* is understood to be 0 when not defined.

As it was mentioned earlier, the restriction to Gy, of the continuous modifica-
tions of ¥p, fp, gp arein l, 5, I, p-valued, and [, ,(lz)-valued processes, respectively.
The coefficients above are bounded, so as we have already seen, there exists a

unique 1, ,-valued solution v", in particular, it is bounded. Therefore v"/p is a

solution of (4.1.3)-(4.1.4) and has polynomial growth.
By choosing e small enough, |95 1p/p| can be made arbitrarily small, uniformly
inz € R4\ € A, |h| < 1. In particular, we can choose it to be small enough such

that p] > 0. Moreover, all of the smoothness and boundedness properties of the

coefficients are preserved. Therefore (4.2.43)-(4.2.44) is a finite difference scheme
for the equation (4.2.41))-(4.2.42)) such that it satisfies Assumptions through
4.1.3, Claims (iii) and (iv) then follow from applying Theorems [4.1.1) and |4.1.3]

4.3 Localization error

Here it will be more convenient to discuss equations in the non-divergence form,
that is,

duy(z) = (Luy(x) + fi(x)) dt + Z )+ gF(x)) dwk (4.3.45)
n (t,z) € [0,T] x R =: Hp, with initial condition
uo(x) = p(x), =R (4.3.46)
where
L =a/(x)D;D; + bi(x)D; + ci(z), M" = o (2)D; + pk(z), k=1,2,..,

The following assumptions almost coincide with the ones in Chapter [3, we formu-

late them here for the convenience of the reader, and more importantly, because
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of the additional assumption on the nonnegative square root p of
ol = 241 — gtk gk,

see Assumption (c) below. Concerning this assumption we remark that is
well-known from [7] that p is Lipschitz continuous in z if « is bounded and has
bounded second order derivatives, but it is also known that the second order
derivatives of p may not exist in the classical sense, even if « is smooth with

bounded derivatives of arbitrary order.

Assumption 4.3.1. For P ® dt ® dz-almost all (w,t,z) € Q x [0,7] x R4
o ()27 >0
for all z € R%.

Assumption 4.3.2. (a) The derivatives in z € R? of a” up to order max(m, 2)
are P ® B(R%)-measurable functions, bounded by K for all 4,5 € {1,2,...,d}.
(b) The derivatives in x € R? of b* and ¢ up to order m are P ® B(R?)-
measurable functions, bounded by K for all i € {1,2,...,d}. The functions o’ =
(%)% and pu = ()32, are lo-valued and their derivatives in x up to order m+1
are P ® B(R?)-measurable l-valued functions, bounded by K.
(c) The derivatives in € R? of p = y/a up to order m + 1 are P ® B(R?)-

measurable functions, bounded by K.

Assumption 4.3.3. The initial value, ¢ is an Fy-measurable random variable
with values in W". The free data, f; and g, = (g%)2°, are predictable processes

with values in W and W;”“(lg), respectively, such that almost surely

T
K, p(T) = [y +/O (felfyye + 19t ’V’V;m) dt < oo. (4.3.47)

Let us refer to the problem (4.3.45))-(4.3.46|) as Eq(®), where © stands for
the “data”

@Z (w,a,b,c,a,,u,f,g)

with a = (a¥), b = (b'), o = (6*), g = (¢*) and p = (u¥). We are interested in

the error when instead of Eq(®D) we solve Eq(®) with

D = (¢,a,b,¢5, 0, f,7).
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Assumption 4.3.4. Almost surely
D=9 onl0,7] x{zrecR®:|z| <R} (4.3.48)

The main example to keep in mind is when each component of ® is a trun-
cation of the corresponding component of ®. Let B = {z € R? : |z| < R}
for R > 0. Define K2, (T) as K2, (T) with Y, f and g in place of ¥, f and g,

respectively. The main result reads as follows.

Theorem 4.3.1. Let v € (0,1) and let Assumptions (b)-(c) and
hold with m > 2+d/p for ® and ®. Let also Assumption hold. Then

Eq(®) and Eq(®) have a unique classical solution u and 1, respectively, and for
qg>0,r>1

E sup sup |u(x) — a(z)|? < Ne_‘SRQEI/T/(IC%:p(T) + K?;:p(T)), (4.3.49)

te[0,T] r€Byr

where N and § are positive constants, depending on K, d, T, q, ', m, p, and v.

First we collect some auxiliary results. The following lemma is a version of

Kolmogorov’s continuity criterion, see Theorem 3.4. of [§].

Lemma 4.3.2. Let x(0) be a stochastic process parametrized by and continuous
m 6 € D C RP, where D is a direct product of lower dimensional closed balls.

Then for all0 < a <1, ¢>1, and s > p/a,

Esup|z(0)|" < N(1 +[DI)
[4

sup(E|2(0)|%*)/* + sup (
0

040"

E|z () — x(9’)|qs>l/1
‘0 _ 0/|qsa

where N = N(q,s,a,p), and |D| is the volume of D.

Lemma 4.3.3. Let (ou)icjor) and (Be)icpo,r) be Fi-adapted processes with values
in R and 15(RY), respectively, in magnitude bounded by a constant K. Then for

the process
¢ ¢
Xt:/ asds—l—/ BEdwk  te0,T) (4.3.50)
0 0

there exist constants € = e(K,T) > 0 and a N = N(K,T) such that
Esup X < N

t<T

Proof. By Ito’s formula
t
Yt — e\XtPe*“t -1 +/ 6|X5\2e*us_u3{|65|2 + 2OésXs
0
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+2|B. X" — p|X,[*} ds + m
for any p € R, where (1my):cj0,77 is a local martingale starting from 0. By simple
inequalities

20X 4+ 2|BX )2 < |af* + | X2 + 2|8 |X* < K2 + 2K* + 1)| X

Hence for u = (2K? + 1) and for a stopping time 7 < T we have
t
E}/;f/\‘rn S 1 + 2K2/ E}/s/\Tn d87
0

for 7, = 7 A pn, where (p,)22, is a localising sequence of stopping times for m.

Hence, by Gronwall’s lemma,
EYip,, < T,
where N is independent from n. Letting here n — oo, by Fatou’s lemma we get
Eep@\%*ﬂ < E6|XT|26*W < 6K2T

for stopping times 7 < T'. Hence applying Lemma m for r € (0,1) we obtain

Esup "X < NeriT

t<T
[l

To formulate our next lemma we consider the stochastic differential equation

dX, = ay(X,)ds + B5(X,) dw® (4.3.51)

R

where a and 8 = (8¥) are P x B(RY)-measurable function on € x [0,7T] x R,
with values in R? and lo(R?) such that they are bounded in magnitude by K and
satisfy the Lipschitz condition in « € R? with a Lipschitz constant M, uniformly
in the other arguments. Then equation with initial condition X; = x has
a unique solution X"* = (X!*)ep7) for any t € [0,7] and = € R%

s

Remark 4.3.1. It is well known from [28] that the solution of (4.3.50) can be
chosen to be continuous in ¢, z, s. In the following, by X* we always understand

such a continuous modification.
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Lemma 4.3.4. Set X* = X' — z. Then for any R,

E sup sup X% < N(1+ R*/?), (4.3.52)
0<t<s<T |z|<R

and for any R and r

P( sup sup | X57| > r) < Ne 0 (1 + RH1/?), (4.3.53)

0<t<s<T |z|<R
where § = 0(d, K, M, T) >0 and N = N(d, K, M,T).

Proof. 1t is easy to see that (4.3.52) implies (4.3.53)), so we need only prove the

former. For a fixed §, to be chosen later, let us use the notations f(y) = elul®s
and v = 2(d 4+ 2) + 1. By Lemma [4.3.2] we have

E sup sup f()A(zx) < N(1+R% sup sup (IETf”()E'?"’“"))1/7

0<t<s<T |¢|<R 0<t<s<T |¢|<R

B|f(X4") — FXTT)P
+N(1+RY su su s $
( ) ogtgng |:c|§% (lt=t2+|s =52+ |z —a'|?
Ogt’SS’ST‘x/‘SR

1/~
)7/4) . (4.3.54)

The first term above, by Lemma {4.3.3| provided § < e/, can be estimated by
NR?. As for the second one,

1
FXE) = F(X) = /0 Of(OXL" + (L= )X (XL = X)) dv.

L)

Notice that |V f(y)| < N(6)f?*(y), therefore by Jensen’s inequality and Lemma
4.3.3| again, provided § < e/(87), we obtain

BIf(X}7) = f(XL7)[" < NEV2XD - X0,

Now the the right-hand side can be estimated by standard moment bounds for

SDEs, see e.g. Corollary 2.5.5 in [22], from which we obtain

( E|f(Xb7) — f(XL™)>
(

/(27)
1/2
|t—t/|2‘|‘|8—S/|2+|$—x’|2)7/2> < N+ R,

O

Proof of Theorem[4.3.1 Throughout the proof we will use the constant A\ =
A(d, q), which stands for a power of R, and, like N and §, may change from line
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to line. Clearly it suffices to prove Theorem with e 9F° R in place of e~%
in the right-hand side of inequality . We also assume first that ¢ > 10.

The main idea of the proof is based on stochastic representation of solutions
to linear stochastic PDEs of parabolic type, see [28], [27].

Recall that p = (p}"(2)){,—, is the symmetric nonnegative square root of

o = (207 — o™ gi%)¢, | and p is the symmetric nonnegative square root of a =

(2 — Gikgik)d Then due to Assumption (4.3.4, p =  almost surely for all

ij=1-
t €0,7) and for |z| < R.
Let (@ )¢>0,—1..a be a d-dimensional Wiener process, also independent of the

o-algebra F,, generated by JF; for ¢ > 0. Consider the problem

oy () =(Lu(w) + fu()) dt + (MPu(z) + gh(2)) dut
+ Ny () di? (4.3.55)
vo(z) =y (x), (4.3.56)

where N = p"D;. Then by Theorem and by Sobolev embeddings, —
has a unique classical solution v, and for each ¢ € [0, T] and = € R? almost
surely

u(x) = Eve(2)|F). (4.3.57)

Together with let us consider the stochastic differential equation
dY, = 5i(Ys) dt — o (Vi) dwi — pj(Yy) dw], 0<t<T, Yy=y, (43.58)
where
Bily) = —bu(y) + 0" (y) Diow(t,y) + o' (y) Dip (y), t € [0, 7],y € R™.
By the It6-Wentzell formula from [23], for

U(y) == v (Yi(y))

we have (to ease the notation we omit the parameter y from Y;(y))
dv(Y;) = (Lui(Y3) + f(Y0)) dt + (MFvi(Yy) + g7 (Vi) dug + N (V) dui;

+(BIDv(Yy) + af Dijuy(Yy)) dt — oiF Doy (Yy) dw® — NTo(Y;) da}

— 0" Di( M v (Y;) + g% (V7)) dt — N" N v () dt. (4.3.59)

84



Due to cancellations on the right-hand side of (4.3.59)) we obtain

dU(y) ={7(Yi(y))Ue(y) + ¢:(Ye(y))} dt
+ {uf V() U(y) + g8 (Vi) Y dwy,  Uoly) = ¥(y),

where

Ye(x) = co(x) — oy (2) Dipif (), de() = filx) — 07" (2) Digr'

Notice that in the special case when f =0, g =0, c =0, p =0 and ¥(z) = 2
for i € {1,...,d}, we get 0}(Yi(y)) = ¢’ for i = 1,...,d, where 9" is the solution
of (4.3.55)-(4.3.56) with f =c=0,9g=pu=0,0c =0 and () = z'. Hence
for each t € [0, T] the mapping y — Y;(y) € R? has an inverse, ¥, ', for almost

every w, and the mapping z — ¥(z) = (9i(r))L,, defined by the continuous
random field (%)) (zem, gives a continuous modification of ¥,™'. Also, we can
write v,(z) = U, (Y;!). The idea of this transformation follows [27] where this
was used to show the existence of the inverse of flows given by diffusion processes,
and to describe their dynamics.

Set Uy(y) = 0:(Yi(y)), where 9;(z) and Y;(y) are defined as v;(z) and Y;(y) in
(4.3.55)-(4.3.56) and , respectively, with ® and p in place of ® and p.

Introduce the notation Ap = Br N Q%!. Since v and @ are continuous in

both variables,

sup |u(x) — u(x)] = sup |ug(x) — w(x)| (4.3.60)
(t,IE)EIBVR (t,fL’)GAVR

Let v/ = (1 + v)/2 and define the event

H:=| sup |Y,'2)|>VR

(tvm)eBuR

Ul sup [Yy(x)| >R

(t,I)EBV/R

Then
He = D/t_l(l’) S BV/R,\V/(t,JI) S BZ/R] N [Y;(I) S BR7V(t,.T) € IBV/R] ,

and thus on H¢
Y,(z) = Yy(z) for (t,z) € B,

Y, @) = Y, (@) for (t,x) € By
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and consequently,
vi(x) = vy(x) for (¢,x) € Byg.

Therefore, by (4.3.57)) and (4.3.60]), and by Doob’s, Holder’s, and the conditional
Jensen inequalities,

E sup |w(z)—w(z)|?<E sup |E(lg sup |v.(z)— 0. (2)||F)|?

(t,x)eBy R t€[0,7INQ (ra)€Avr
< L (PH)IE( swp Jore) = @) (4361)
q (t,x)€HT
911
< f(P(H))l/TVT (4.3.62)
q—

with

Vp o= EY" sup o (2)|7 + BV sup o (2)|",
(r,z)€HT (r,z)EHT

for r > 1, " =r/(r — 1), provided ¢ > 1. By Theorem [3.1.1]
1/r v’ —qr’
Ve < NEYT(KZ (T) + K2 (T)). (4.3.63)
We can estimate P(H) as follows. Clearly,

P(H) < P( sup Y, Y2) >VR)+P( sup |Yi(z)] > R)=:J+ Jo.

(t,x)eB, R (t,x)eB,/ g

For Yy(z) = Y;(z) — z by ([#.3.53) we have

Jy <P( sup  |Yi(z)] > (1 —/)R) < NRH/2e-00-0*R

(t,x)E]BV/R

Also, we have

Ji <) PE(tx) € [0,T] x (Bysryg \ Bavn) : [Yi(x)] < vR)
=0

[ee]
<SP( swo Vi@ = @Y - )R).
=0 (tax)eBQZ+IV/R
Using (4.3.53]) again gives
J, < NZ6—5(211/—11)21%2(21+1U/R)d+1 < Ne R

=0
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We can conclude that
P(H) < Ne % (4.3.64)

where N and 0 are positive constants, depending only on d, K and T
Combining this with (4.3.62)) we can finish the proof. The case ¢ € (0,1]

follows easily from the usual arguments using Lemma [1.2.3 m

4.4 A fully discrete scheme

We now apply our localization result to present a numerical scheme approximating
([4.3.45). We make use of the results of [I3] on the rate and acceleration of
finite difference approximations, which, together with a time discretization and
a truncation - whose error can be estimated using Theorem - yields a fully
implementable scheme.

First we introduce the finite difference approximation of an equation with
arbitrary data ©. It is slightly different, and in the main aspects, more general,
than the one introduced in Section [4.1}, so let us introduce the whole formulation.
Let A, C R be a finite set, containing the zero vector, satisfying the following
natural condition: if a subset A’ C A; is linearly dependent, then it is linearly
dependent over the rationals. Set also Ag = A; \ {0}. For h # 0 define the grid

Gh:{hZAZ‘Z/\iEAlu—Al,nzl,2,...}
=1

and for A € Ag U —Ay, the finite difference operators

1 1 1
dnap(z) = E(@(l’ + hA) — o(2)), 6% = 5(5h,x +0-pa) = 5(5h,A — Oh,-2);

and let both 8,9 and 8} stand for the indentity operator. For h # 0 consider the

equation
dvy(z) = (L"v,(x) + filz)) dt + > (M" () + §f (2))dwf (4.4.65)

on [0, 7] x Gy, with initial condition
vo(z) = (). (4.4.66)

Here L" and M"* are difference operators approximating the differential opera-
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tors L, M*:

Eh: Z )\H(shéh‘i‘z A(Sh)\_q)\éh )\ th Zb)\ké

X,HEAl XS AEANL

where the coefficients a, p, q, b are related to the data D through a compatibility
condition, see Assumption below.

Notice that unless @ is compactly supported (i.e. each component of it is),
equation (4.4.65))-(4.4.66) is still an infinite dimensional system of SDEs. There-

fore to make the method practical, we truncate the system. In other words, to

get an approximation of the solution of (4.3.45))-(4.3.46]), we first take a trunca-
tion D% of D, as described below, and then apply the scheme (4.4.65)-(4.4.66))
with © = Df. First we fix a function ¢ € C$°(RY) such that ((z) = 1 for
|z] < 1 and {(x) = 0 for |z| > 1 + € for some ¢ > 0. With the notation any
¢ (2) = ¢(x)¢(x/R) for any R > 0 and function ¢ defined on R?, define

DR — (B (@) B ) (B ) (B () ((R))

Note that the bounds for D are uniform for, say, R > 1, and depend only on
the bounds for ® and the derivatives of (.

At this point our approximation is a finite dimensional SDE, and the time-
discretization of such equations are well studied. For our purposes the suitable
choice is the implicit Euler method. Let n > 1, 7 = T'/n. Consider the following
approximation of (4.4.65))-(4.4.66)):

Vi = Vj—1 + (fzﬁj(ifl)Ui + fT(i_l))T + Z(Mf(’f_l)vi_l + Qf(l,l))ff (4467)
k=1

k

fori =1,2,...,n, where & = wk, — wf(i_l), with initial condition

Remark 4.4.1. The concept of a solution of (4.4.65))-(4.4.66|), as a process with

values in Iy, that is, the space of functions ¢ : G;, — R with finite norm H¢5||122 L=

> seq, [0(x)?, is straightforward. However, similarly to the point of view in
Section [4.1] one can also consider (4.4.65)-(4.4.66) on the whole space, that is,

for (t,z) € Hr. In this case we look for a v such that the two sides of the equation

coincide almost surely for all ¢t as processes in Lo, and we will refer to such a v
to be the Lo-valued solution of (4.4.65))-(4.4.66]). The analogous concepts will be
used for solutions of (4.4.67))-(4.4.68)).
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Remark 4.4.2. In many applications, including the Zakai equation for nonlinear
filtering, the driving noise is finite dimensional. If this is not the case, one needs
another level of approximation, at which the infinite sum in (4.4.67) is replaced

by its first m terms. We shall not discuss this here.

Finally, recall the setting of Richardson extrapolation. Let r > 1, V' be the
(r +1) x (r + 1) Vandermonde matrix V¥ = (2-0=DG=1))

(co,c1,...,¢) = (1,0,...,00V1

and for a parametrized family of random fields (u")y~0, define
o = Z cul?. (4.4.69)
i=0

Assumption 4.4.1. For every 4,5 =1,...,d, k=1,...

aij — E a)\fi/\iﬁj’ bz — E (ClO)\ + a)\O +pA o q)\>/\i7 c= aOO’
\,kEA AEAo

O_ik‘ — Z b)\,k‘)\i’ ,Uk — bO,k

AEAQ

Assumption 4.4.2. For P ® dt ® dz-almost all (w,t,7) € Q x [0,T] x R4

Z <2a)\/€ _ b)\,kbﬁ,k)z)\zn >0

AKEAQ

for all z € R#{Ao}

Assumption 4.4.3. The functions a** and their derivatives in = up to order
max(m, 2) are P ® B(R?)-measurable functions, bounded by K for all A,k € A;.
The functions b* = (b*)%°, and their derivatives in x up to order m + 1 are
P @ B(R%)-measurable l,-valued functions, bounded by K, for all A € A;.

Assumption 4.4.4. The functions a**, b*, p*, g*, f, g as processes with values in
R, o, R, R, Wi, W3 (ls), respectively, are 1/2-Holder continuous in ¢ with Holder

constant 7, where 7 is a finite random variable.

Clearly, under Assumption 4.4.1] Assumption implies Assumption [4.3.2]
(a)-(b).

As for the following we confine ourselves to the Lo-scale, without weights, we
use the shorthand notation || - |, = |- [wy, ||| = [/ - [lo, and similarly for . The

main result of this section is the following.
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Theorem 4.4.1. Let Assumption |4.3.2 (c), |4.53.5 for p = 2, and through
hold for the data © with m > 2r + 3 + d/2 for an integer r > 1. Then
if T is sufficiently small, then for any R > 1,h > 0, with ® = DF, the system
of equations [EA.67)-[(.4.68) has a unique solution (u"7)", and defining its

)

extrapolation of order r by (vﬁ’h’T)?zo as in (4.4.69), we have, for any r' > 1,

ve(0,1)

S N(€*5R2 + h2(r+1) + T)E]_/r/(l + ,Czr:/)’
where N-and 0 depends on K; d; T7 m, v, and E|/’7’27J/(T’_1).

This theorem is a simple consequence of the Theorem the results of
[13], which are summarized below in Theorem and the error estimate for
the time-discretization, established in Theorem below. This can be seen by

simply writing the error as
T . .
Rh,r _ R R R,k R,h/20 R,h/20 r
Ury = 0 = (Urg — uzy) + (U7 — U7) + E :Cj<u7-i — U )-
J=0

Theorem 4.4.2. Let Assumptions[{.3.5 for p =2, 9 = 0 and[{.4.1] through[{.4.5
hold for ® with m. Then

(a) For any ¢ € W) and |y| < m

2(D7¢, D'L"¢) + ) | DM 6|* < N¢[%;
k

(b) There is a unique Lo-valued solution @" of (4.4.65))-(4.4.66), and

E'sup a2, < NEKZ,;

(c) If furthermore m > 2r + 3 + d/2, then denoting the solution of (4.3.45])-
(4.3.46) with data ® by @, and the extrapolation of " of order r by o" as in
(4.4.69), we have

E'sup max |ty () — 0" (2)|? < NRICHVER |
h

+ =€
where N depends on K, d, T, q, and m.

Theorem 4.4.3. Let Assumptions with p = 2, 9 = 0, and [{.4.1] through
[4.4.3 hold with m~+5. Then for sufficiently small T there exists a unique Lo-valued
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solution a"™ to (4.4.67)-([4.4.68)), and for any v’ > 1

Emax |[ay; — a7 ||, < Nt(1+ EV7KL),
(2

where N depends on K, d, T, m, and E|n|>"/"~1.

Proof. The solvability of (#.4.67)-(.4.68) can be seen by induction: @/"" can be

constructed from ﬁ?_Tl due to the invertibility of the operator I — Tf/;(i_l) for

sufficiently small 7. For further details we refer to [15], Section 3.2.

Let us fix a multiindex v with |y| < m+1. Substracting (4.4.67) from (4.4.65)),
we get that the error e; = @/, — &?’T is a Wi'-valued F,;-measurable random
variable, ¢ = 0,...,n, and its derivative of order ~ is the Lo-valued solution of

the equation

Dvei :D"’ei,l
+ D”I:ﬁ(i_l)eﬂ + / D7F,ds
7(i—1)

+ DYMNE e &F + / DG dw* (4.4.70)
T(i—1)
for i = 1,...,n, with zero initial condition, where with the notations x(t) =

KP(t) = |nt]/n and ko(t) = k5 (t) = (|nt] +1)/n,
Fy = (Lyay — LY ity m + fo = faw)s
~ ok ~ hk ~ .
Gf = (M, uz}fl - M O Zl(t) + gt gﬁl(t))-

Introducing the notations

g = LM ok = MF &:/ DVF, ds, 051-:/ DG dw*,

i) Ti
7(i—1) 7(1—1)

/2= / V201 + Gl ds

(i—=1)

we can express the difference

ID7e;||? = [ DYe; ||
=2(D%;, DL 1eim +Fi) +2(DVe;_1, DYME_e; 1£F + &)
+2(D%; — DVe;_y, DYME_e; 1&F + &) — ||[D7e; — DVe;y ||
= 2(D%e;, DVL;_yie;T + Fi) + 2(DVe;iy, DYME e; 18 4+ &)
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+ |DTME e 1& + il — [ DL e + Tl
<2(D%;, DL 1e;m+ i) + 2(D Ve, Dvgmk 16i— 15 + ;)
+ |IDYRE e 182 + 2(DYMFe, 1 €8, &) + || DV (4.4.71)

The second term on the right-hand side has 0 expectation. By Ito’s isometry and

integration by parts, we have

E|| D" e, &F|P =) | D Mfei [P,

E(D"MMFe; 168 &) <7N||D7e;_1||* + NERZ,
El|e]* < ES2.

Recall furthermore from Theorem m (a) that

2(D7e;, D7 Lie;) + Z 1D ei]* < Nleil |71

Therefore, by taking expectations and summing up (4.4.71)) from 1 to j and for
|7] < m + 1, keeping in mind that ey = 0, we get

Ellejlms < NZTEH@H mi1 + ER
and we can conclude by a simple induction that

maXEHeJHmH (1-N7)" ZEﬁ2<NZEﬁ2 (4.4.72)

Now let |y| < m and sum up (4.4.71)) from 1 to j without taking expectations.
We can use Theorem [4.4.2] as before and obtain

n J
ID7esll* < N _(rllealz, + 85) + 3 (mi? i i),
i=1

i=1

where
mgl) = 2<D’Y€i,1, D’Ym;ceiflff + 61)7

D= |DMbe; 1P — 7 (|D e,
k

¥ = 2D Mbe;_1 &5, 8,).
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We can write m§3> = m(g) + mf” with

i

mi? = 2(DYMEe; 1€, 8,) — 2D My, / Gids)

‘ 7(i—1)

) = Q(vamf@i—lv/ Gids),
7(i—1)

and after integration by parts,

Thus,

n J
Emax ||D7e;* < NZ(TEH&'”?,L + ER}) + E max Z(mgl) +m +m.
J J

i=1 i=1

Notice that mg-l) are martingale differences for [ = 1,2, 3, so the second term on
the right-hand side is estimated through martingale inequalities. We only detail
the contribution of m®, the other terms can be treated similarly. Remember
that & = wy, —wy,_, and note that by Itd’s formula

T T

et = [ el [l ) vk
T(i—1 T(i—1

and therefore, by the Burkholder-Gundy-Davis inequality, with the notation ¢5 =

ki(s)/T we have

t
< 2E'sup Z/O (wy — wrlﬂ(s))<D’lei(s)ei(s)7 D’ygﬁf(s)ei(s)) dw§

NI

T
<G6FE </O Z \ Z(wls — wl, () (DML €5(0), DM €4(o)) dS)
P
1

T
<6 <rg1<anxz oo [0 ) PP ds)
- k l

We can continue with estimating the maximum on the right-hand side of the last

inequality by taking the sum over ¢ and using using Young’s inequality 2ab <
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Ta? + b* /T with

=3 ) D el

i<n k

w —w DViml 5)Ci(s 2 ds,
(s)

to get

J
E max E m?
J -

<NZ rEllel ) + (1/7) / B S0 =l ) "o s

0

T
< NS (Ele) + N | Elewol ds
i=1 0
We can conclude that

B max |DYej||? < NZ TE| e, + ER2),

=1

and upon summing up over |y| < m and invoking (4.4.72)), we get

Emax lejllm < NZEﬁZ < Nsup (ENFllmir + Bl Gallm2)

=1

To estimate E||F,||,n.1 notice that due to the 1/2-Hélder continuity of f and the

coefficients of L", we can write

E|[Fillp1 < NT(1+ EV" . G212 5) + N Bl o) — i llos-
se

Furthermore, by the definition of ky and the equation of w,

Ka(t) 3 Ra(t)
Bl ~ bl = B|| [ Lhuat fds+ [ a4 gt
t t

m+3

2
ro(t) . r2(t)
<2E ( / ||L’;a?+fs||m+3ds) Y / 13T, 4 G52, 5 ds
t t

yielding

sup B 7,41
te[0,7)
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< TN+ EY sup @l + E sup || fillhes + B sup [1g0]5, ).

s€[0,T] s€[0,7 s€[0,T]

Noticing that
T
sup [ ful2ss < €T + / TACeS

s€[0,7T

similarly for g, and invoking the estimate from Theorem m (b), we get

sup E||E|%, < TN+ EYTEE).
t€[0,T]

Similarly we can prove that

sup E||Gt||fnJr2 <7tN(1+ El/Tlléf;;E)),
t€[0,T]

finishing the proof.

]

Remark 4.4.3. As it can be easily seen from the last step of the proof, Assumption

[4.4.4] can be weakened to a-Hoélder continuity for any fixed a > 0, at the cost of

lowering the rate from 1/2 to a A (1/2).

To decrease the spatial regularity conditions, in particular, the term d/2 to
d/p, one can use the results of Section . Under the additional assumptions

formulated therein, we have proved the generalizations of the results of [13], and

subsequently, of Theorem [4.4.3] to arbitrary Sobolev spaces W}".
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