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Abstract

We consider linear and semilinear stochastic partial differential equations that in

some sense can be viewed as being at the “endpoints” of the classical variational

theory by Krylov and Rozovskii [25]. In terms of regularity of the coefficients,

the minimal assumption is boundedness and measurability, and a unique L2-

valued solution is then readily available. We investigate its further properties,

such as higher order integrability, boundedness, and continuity. The other class

of equations considered here are the ones whose leading operators do not satisfy

the strong coercivity condition, but only a degenerate version of it, and therefore

are not covered by the classical theory. We derive solvability in Wm
p spaces and

also discuss their numerical approximation through finite different schemes.

Keywords— Stochastic PDEs, Cauchy problem, Moser’s iteration, Harnack inequality,

degenerate parabolicity, symmetric hyperbolic systems, finite differences, localization error
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Lay Summary

In this thesis we investigate stochastic partial differential equations. These equa-

tions describe the evolution of a random quantity in time. They are infinite

dimensional in that at every instance of time the quantity consists of infinitely

many values. An illustrative example is the heat equation describing the prop-

agation of temperature in a certain medium: at any given time the state of the

system is given by the collection of values of temperature at each point in space,

that is, a function of space. If the source of the heat is random or there are other

uncertainties in the system then the equation modelling the evolution will have

stochastic terms.

For any mathematical model it is crucial that the model itself is self-consistent,

that is, that the equation has a solution in a reasonably defined sense. When the

solutions exist, one might be interested in further properties of it and study

whether it is a bounded function, a smooth one, or whether it is possible to

approximate it in a reasonable manner. The practical motivations of the latter

is also quite clear: while the existence of solutions may be provable in large

generality, they are rarely available explicitly, and therefore one would like to

have methods that are easily implementable numerically and yield functions that

are close to the true solution.

On the other hand, it is desirable that such properties do not require too

much from the equation, limiting the range of applicability. This is one of the

motivations to study equations which are not, or are barely covered by the usual

methods but may very well naturally appear in applications. Studying solvability,

regularity, and numerics of such equations we extend (and in some cases, sharpen)

the known results to a wider class of equations.
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Chapter 1

Introduction

Stochastic partial differential equations (SPDEs) have been the subject of very

active research in the past decades, motivated by a wide variety of applications.

One of the main approaches to analyse these equation, also referred to as the

“variational approach”, was developed in [34] and [25]. Following the latter ref-

erence, the main well-posedness result can be formulated in an abstract setting

as follows.

Fix a terminal time T > 0, and consider a probability space (Ω,F , P ),

equipped with a complete, right-continuous filtration (Ft)t∈[0,T ], and let (wk)∞k=1

be a sequence of independent (Ft)t∈[0,T ]-Wiener martingales. The predictable σ-

algebra on Ω× [0, T ] is denoted by P . Let H be a separable real Hilbert space and

let V be a separable, reflexive, real Banach space continuously and densely em-

bedded in H. Identifying H with its dual, this induces the continuous and dense

inclusions V ↪→ H ↪→ V ∗, with the identity 〈v, h〉 = (v, h) for v ∈ V, h ∈ H,

where 〈·, ·〉 is the duality pairing and (·, ·) is the inner product in H. This is also

referred to as a Gelfand triple. An important example, and the one most relevant

for the present work, is the triple Hs ↪→ Hs−1 ↪→ Hs−2 for some s ∈ R, where

Hs = W s
2 are Sobolev spaces, introduced in detail below. Consider the stochastic

evolution equation

ut = u0 +

∫ t

0

As(us) ds+
∞∑
k=1

∫ t

0

Bk
s (us) dw

k
s , (1.0.1)

for t ∈ [0, T ], under the following assumptions (note that whenever it does

not cause confusion, certain arguments are suppressed, as, for example, ω is

in (1.0.1)).

Assumption 1.0.1. The operators A and B = (Bk)∞k=1 are P×B(V )-measurable

functions from Ω × [0, T ] × V to V ∗ and l2(H), respectively, such that for all
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u, v, w ∈ V , ω, t ∈ Ω× [0, T ]:

(i) (Monotonicity)

2〈u− v,A(u)− A(v)〉+
∞∑
k=1

|Bk(u)−Bk(v)|2H ≤ K|u− v|2H ;

(ii) (Strong coercivity)

2〈u,A(u)〉+
∞∑
k=1

|Bk(u)|2H ≤ −λ‖u‖2
V +K|u|2H + f ;

(iii) (Linear growth)

‖A(u)‖2
V ∗ ≤ K‖u‖2

V + f,

∞∑
k=1

|Bk(u)|2H ≤ ‖u‖2
V + f ;

(iv) (Hemicontinuity)

lim
ε→0

(u,A(v + εw)) = (u,A(v))

.

Here K ≥ 0 and λ > 0 are constants, while f is an adapted nonnegative process

such that

E

∫ T

0

fs ds <∞.

The initial condition u0 is assumed to be an F0-measurable H-valued random

variable. The solution of (1.0.1) is then understood as follows.

Definition 1.0.1. An H−valued adapted continuous process (ut)t∈[0,T ] is called

a solution of (1.0.1) if ut ∈ V for almost all ω, t ∈ Ω× [0, T ], and almost surely∫ T

0

‖ut‖2
V dt <∞

and

(ut, v) = (u0, v) +

∫ t

0

〈As(us), v〉 ds+
∞∑
k=1

∫ t

0

(Bk
s (us), v)dwks

for all t ∈ [0, T ] and v ∈ V.

Theorem 1.0.1. Let Assumption 1.0.1 hold. Then (1.0.1) admits a unique (up

to indistinguishability) solution (ut)t∈[0,T ], and moreover, there exists a constant
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N = N(λ,K, T ), such that

E sup
t∈[0,T ]

|ut|2H + E

∫ T

0

‖us‖2
V ds ≤ N

(
E|u0|2H + E

∫ T

0

fs ds

)
.

Applying the theorem to the example Hs ↪→ Hs−1 ↪→ Hs−2, one can get

well-posedness results for the second order parabolic stochastic PDE

du = (IdivDi(a
ijDju) + Inondiva

ijDiDju+ f(u,Du)) dt+
∞∑
k=1

(σikDiu+ gk(u))dwkt

in either divergence or nondivergence form (i.e. exactly one of div and nondiv

is “true”), for sufficiently nice f and g. In terms of the coefficients a and σ,

Assumption 1.0.1 here translates to

(i) A stochastic parabolicity condition:

(2aij −
∑
k

σikσjk)di,j=1 ≥ λI

as symmetric matrices, for some λ > 0, where I is the identity matrix,

(ii) Certain smoothness assumptions in the spatial variable, depending on s and

the form of the equation.

In (ii), the minimal smoothness requirement occurs when s = 1 and div = true,

in which case only boundedness is required from the coefficients. This is the topic

of Chapter 2, where we investigate the further properties of the unique L2-valued

solution provided by Theorem 1.0.1. While the established properties of the

solutions are available through much easier arguments in the case of more regular

coefficients, assuming the minimal conditions not only provides more generality,

but also sharper estimates. These results can also be used to derive new existence

results for a wide class of semilinear equations.

The (excluded) endpoint of (i) is λ = 0, in this case solvability in Hs is proved

in [26]. Such degeneracy may arise naturally from applications, particularly in

the nonlinear filtering problem. It is also useful to have a theory that includes

tha λ = 0 case for studying truncated equations, which may appear in numerical

approximations. We discuss solvability in Wm
p in Chapter 3.

As explicit solutions are rarely available, disctretization of SPDEs are of great

interest. While the literature is extensive, similarly to the theoretical results,

much fewer is known for degenerate equations. This is what we investigate in
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Chapter 4, focusing on the acceleration of the rate of convergence of finite differ-

ence approximations and the error of localization.

1.1 Notations

The probabilistic setup is already introduced above, for other basic notions in

stochastic analysis used in the following such as stopping times, stochastic inte-

gration, continuous martingales and their quadratic variation process we refer to

[16] or [35]. For a fixed d ≥ 1, we denote BR = {x ∈ Rd : |x| < R} for R ≥ 0.

The Lebesque measure of a set A is denoted by |A|. For a domain A ⊂ Rd,

p ∈ (0,∞], and a Hilbert space H the norm in Lp(A,H) is denoted by | · |Lp or

| · |p, while the norm in Lp([s, r]× A,H) is denoted by ‖ · ‖p,[s,r]×A, or, whenever

omitting the domain does not cause confusion, by ‖ · ‖p. Similarly, the norm

in Lp([s, r], Lq(A,H)) is denoted by ‖ · ‖p,q. The target space H will usually be

omitted, as it will be clear from the context which function takes values where.

For a nonnegative integer m, Wm
p = Wm

p (Rn) denotes the Sobolev space con-

sisting of functions such that their distributional derivatives up to order m are

in Lp. Here and in the following when we talk about “derivatives up to order

m”, we understand the inclusion of the zero-th derivative, that is, the function

itself. When p = 2, we often use the notation Wm
2 = Hm. The space of smooth

functions compactly supported on a domain A ⊂ Rd is denoted by C∞c (A). The

closure of C∞c (A) in the H1 norm is denoted by H1
0 (A), and its dual by H−1. For

(distributional) derivatives of functions on Rd we use the notations

Di = ∂i =
∂

∂xi
, Dij = DiDj, ∂v =

d∑
i=1

viDi, ∇ = D = (D1, . . . , Dd)

for i, j = 1, . . . d. For a multiindex α = (α1, . . . , αd) ∈ {0, 1, . . .}d, we define

its length |α| =
∑

i αi and Dα = Dα1
1 · · ·D

αd
d . By inf, sup, etc. we always mean

essential ones, although this often (for example in Theorem 1.0.1 above) will agree

with the true inf, sup, etc. Indicators of a set A is denoted by 1A. In the following

the summation convention with respect to repeated indices is used whenever not

indicated otherwise. Constants in the calculations, usually denoted by C or N ,

may change from line to line, but their dependency is indicated in the relevant

statement.
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1.2 Preliminaries

We will often use classical inequalities such as Hölder’s, Young’s, Burkholder-

Davis-Gundy, Doob’s, etc. Below, let us collect some useful but perhaps less

well-known technical lemmas from the theory of function spaces and stochastic

analysis, respectively, that will also be used on one or more occasions.

Lemma 1.2.1 ((II.3.4),[29]). Let Q ⊂ Rd be a Lipschitz domain and suppose

that v ∈ L2([0, T ], H1
0 (Q))∩L∞([0, T ], L2(Q)). Let r, q ∈ (2,∞), satisfying 1/r+

d/2q = d/4. Then v belongs to Lr([0, T ], Lq(Q)), and

(∫ T

0

(∫
Q

|vt|qdx
)r/q

dt

)2/r

≤ N

(
sup

0≤t≤T

∫
Q

|vt|2dx+

∫ T

0

∫
Q

|∇vt|2dxdt
)

with N = N(d, |Q|, T )

Lemma 1.2.2 ((II.5.4),[29]). Let ρ > 0 and v ∈ H1(Bρ) such that on A ⊂ Bρ,

v = 0. Then ∫
Bρ

v2 dx ≤ N
ρ2(d+1)

|A|2

∫
Bρ

|∇v|2 dx,

with N = N(d).

Lemma 1.2.3 (IV.4.7/IV.4.31,[35]). Let X be a non-negative adapted right-

continuous process, and let A be a non-decreasing continuous process such that

E(Xτ |F0) ≤ E(Aτ |F0)

for any bounded stopping time τ . Then for any x, y > 0,

P (sup
t≤T

Xt ≥ x,AT ≤ y) ≤ y/x,

and for any σ ∈ (0, 1)

E sup
t≤T

Xσ
t ≤ σ−σ(1− σ)−1EAσT .

Lemma 1.2.4 ([33]). Let a = (aij(x)) be a function defined on Rd, with values

in the set of non-negative m×m matrices, such that a and its derivatives in x up

second order are bounded in magnitude by a constant K. Let V be a symmetric

m×m matrix. Then

|DaijV ij|2 ≤ NaijV ikV jk

for every x ∈ Rd, where N = N(K, d).
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Lemma 1.2.5 ([12]). Let y = (yt)t∈[0,T ] and F = (Ft)t∈[0,T ] be adapted nonnega-

tive stochastic processes and let m = (mt)t∈[0,T ] be a continuous local martingale

such that

dyt ≤ (Nyt + Ft) dt+ dmt on [0, T ] (1.2.2)

d〈m〉t ≤ (Ny2
t + y

2(1−ρ)
t G2ρ

t ) dt on [0, T ], (1.2.3)

with some constants N ≥ 0 and ρ ∈ [0, 1/2], and a nonnegative adapted stochastic

process G = (Gt)t∈[0,T ], such that∫ T

0

Gt dt <∞ (a.s.),

where 〈m〉 is the quadratic variation process for m. Then for any q > 0

E sup
t≤T

yqt ≤ CEyq0 + CE

{∫ T

0

(Ft +Gt) dt

}q
with a constant C = C(N, q, ρ, T ).
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Chapter 2

Discontinuous coefficients

In this chapter we investigate (1.0.1) in divergence form, with bounded but pos-

sibly discontinuous coefficients. The general theory covers this case, with the

triple H1 ↪→ L2 ↪→ H−1, and therefore one knows the existence of an L2-valued

(for almost all ω, t, H1-valued) solution. Deterministic theory suggests, however,

that more can be said about the solution: [6], [32], and [31] established Hölder-

continuity of the solutions of elliptic equations Lu = 0, with merely bounded,

measurable, and elliptic coefficients. This is the celebrated De Giorgi-Nash-Moser

theory, which turned out to be a key result in the theory of nonlinear PDEs. It is

a natural question to ask whether such results hold for SPDEs. This was inves-

tigated in the author’s collaboration with Konstantinos Dareiotis in the papers

[3], [4]. The content of this chapter is based on this work.

Remark 2.0.1. The main purpose is to tackle the problems arising due to the

stochastic nature of the equation, and therefore we did not attempt full general-

ity. The directions towards which generalizations are available and are relatively

straightforward include unbounded lower order coefficients ([17],[29]), different

integrability exponents in space and time ([3],[5],[29]), and semilinear equations

([29]), with the nonlinear term growing slightly superlinearly. In fact, as seen in

[5], some nonlinearities of the leading order can also be included. Given that the

estimates for treating the additional terms arising in these generalizations can be

found in [29], we do not include (let alone unify) these approaches.

2.1 Global supremum estimates

Consider the equation

dut = (Ltut + ∂if
i
t + f 0

t )dt+ (Mk
t ut + gkt )dwkt , u0 = ψ, (2.1.1)
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on a bounded Lipschitz domain Q with 0 boundary condition, where

Ltu = ∂j(a
ij
t ∂iu) + bit∂iu+ ctu, M

k
t u = σikt ∂iut + µkt u.

We aim to derive global (i.e. up to the space-time boundary) estimates for the

supremum norm of the solution. Solutions are understood via Definition 1.0.1, on

the triple H1
0 (Q) ↪→ L2(Q) ↪→ H−1(Q). We also get the existence and uniqueness

of the solution by Theorem 1.0.1, under the following assumptions.

Assumption 2.1.1. i) The coefficients aij, bi and c are real-valued P × B(Q)

measurable functions on Ω × [0, T ] × Q and are bounded by a constant K ≥ 0,

for any i, j = 1, ..., d. The coefficients σi = (σik)∞k=1 and µ = (µk)∞k=1 are l2-valued

P ×Q-measurable functions on Ω× [0, T ]×Q such that∑
i

∑
k

|σikt (x)|2 +
∑
k

|µkt (x)|2 ≤ K for all ω, t and x,

ii)f l, for l ∈ {0, ..., d}, and g = (gk)∞k=1 are P × B(Q)-measurable functions on

Ω× [0, T ]×Q with values in R and l2, respectively, such that

E(
d∑
l=0

‖f l‖2
2 + ‖|g|l2‖2

2) <∞

iii) ψ is an F0-measurable random variable in L2(Q) such that E|ψ|22 <∞

Assumption 2.1.2. There exists a constant λ > 0 such that for all ω, t, x and

for all ξ = (ξ1, ...ξd) ∈ Rd we have

aijt (x)ξiξj −
1

2
σikt (x)σjkt (x)ξiξj ≥ λ|ξ|2.

Let

Γd =

{
(r, q) ∈ (1,∞]2

∣∣∣∣1r +
d

2q
< 1

}
.

The following is our main result on global boundedness.

Theorem 2.1.1. Suppose that Assumptions 2.1.1 and 2.1.2 hold, and let u be

the unique L2−solution of equation (2.1.1). Then for any (r, q) ∈ Γd and η > 0,

E‖u‖η∞ ≤ NE(|ψ|η∞ + ‖f 0‖ηr,q +
d∑
i=1

‖f i‖η2r,2q + ‖|g|l2‖
η
2r,2q), (2.1.2)

where N = N(η, r, q, d,K, λ, |Q|, T ).
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We start by proving an Itô’s formula for the p-th norm, from which we then

derive some “energy inequality-like” estimates.

Lemma 2.1.2. Suppose that u satisfies equation (2.1.1), f l ∈ Lp(Ω × [0, T ],P ;

Lp(Q)) for l ∈ {0, ..., d}, g ∈ Lp(Ω× [0, T ],P ;Lp(Q)), and ψ ∈ Lp(Ω,F0;Lp(Q))

for some p ≥ 2. Then there exists a constant N = N(d,K, λ, p), such that

E sup
t≤T
|ut|pp + E

∫ T

0

∫
Q

|∇us|2|us|p−2dxds ≤ NE(|ψ|pp +
d∑
l=0

‖f l‖pp + ‖|g|l2‖pp).

(2.1.3)

Moreover, almost surely

∫
Q

|ut|pdx =

∫
Q

|u0|pdx+ p

∫ t

0

∫
Q

(σiks ∂ius + µkus + gk)us|us|p−2dxdwks

+

∫ t

0

∫
Q

−p(p− 1)aijs ∂ius|us|p−2∂jus − p(p− 1)f is∂ius|us|p−2dxds

+

∫ t

0

∫
Q

p(bis∂ius + csus + f 0
s )us|us|p−2dxds

+
1

2
p(p− 1)

∫ t

0

∫
Q

∞∑
k=1

|σiks ∂ius + µkus + gks |2|us|p−2dxds, (2.1.4)

for any t ≤ T .

Proof. Consider the functions

φn(r) =

{
|r|p if |r| < n

np−2 p(p−1)
2

(|r| − n)2 + pnp−1(|r| − n) + np if |r| ≥ n.

Then one can see that φn are twice continuously differentiable, and satisfy

|φn(x)| ≤ N |x|2, |φ′n(x)| ≤ N |x|, |φ′′n(x)| ≤ N,

where N depends only on p and n ∈ N. We also have that for any r ∈ R,

φn(r)→ |r|p, φ′n(r)→ p|r|p−2r, φ′′n(r)→ p(p− 1)|r|p−2, as n→∞, and

φn(r) ≤ N |r|p, φ′n(r) ≤ N |r|p−1, φ′′n(r) ≤ N |r|p−2, (2.1.5)

where N depends only on p. Then for each n ∈ N we have almost surely

9



∫
Q

φn(ut)dx =

∫
Q

φn(u0)dx+

∫ t

0

∫
Q

(σiks ∂ius + µkus + gk)φ′n(us)dxdw
k
s

+

∫ t

0

∫
Q

−aijs ∂iusφ′′n(us)∂jus − f iφ′′n(us)∂iusdxds

+

∫ t

0

∫
Q

bis∂iusφ
′
n(us) + csusφ

′
n(us) + f 0

s φ
′
n(us)dxds

+
1

2

∫ t

0

∫
Q

∞∑
k=1

|σiks ∂ius + µkus + gks |2φ′′n(us)dxds, (2.1.6)

for any t ∈ [0, T ] (see for example, Section 3 in [19]). By Young’s inequality, and

the parabolicity condition we have for any ε > 0,∫
Q

φn(ut)dx ≤ m
(n)
t +

∫
Q

φn(u0)dx

+

∫ t

0

∫
Q

(−λ|∇us|2 + ε|∇us|2 +N
d∑
i=1

|f is|2)φ′′n(us)dxds

+

∫ t

0

∫
Q

(ε|∇us|2 +N |us|2 +N
∞∑
k=1

|gks |2)φ′′n(us)dxds

+

∫ t

0

∫
Q

(bis∂ius + csus + f 0
s )φ′n(us)dxds, (2.1.7)

where N = N(d,K, ε), and m
(n)
t is the martingale from (2.1.6). One can check

that the following inequalities hold,

i) |rφ′n(r)| ≤ pφn(r)

ii) |r2φ′′(r)| ≤ p(p− 1)φn(r)

iii) |φ′n(r)|2 ≤ 4p φ′′n(r)φn(r)

iv) [φ′′n(r)]p/(p−2) ≤ [p(p− 1)]p/(p−2)φn(r),

which combined with Young’s inequality imply,

i) ∂iusφ
′
n(us) ≤ εφ′′n(us)|∂ius|2 +Nφn(us)

ii) |usφ′n(us)| ≤ pφn(us)

iii) |f 0
s φ
′
n(us)| ≤ |f 0

s ||φ′′n(us)|1/2|φn(us)|1/2 ≤ N |f 0
s |p +Nφn(us)

iv) |us|2φ′′n(us) ≤ Nφn(us)
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v)
∑

k |gks |2φ′′n(us) ≤ Nφn(us) +N
(∑

k |gks |2
)p/2

vi)
∑d

i=1 |f is|2φ′′n(us) ≤ Nφn(us) +N
∑d

i=1 |f is|p,

where N depends only on p and ε.

By choosing ε sufficiently small, and taking expectations we obtain

E

∫
Q

φn(ut)dx+ E

∫ t

0

∫
Q

|∇us|2φ′′n(us)dxds ≤ NEKt +N

∫ t

0

E

∫
Q

φn(us)dxds,

where N = N(d, p,K, λ) and

Kt = |ψ|pp +

∫ t

0

d∑
l=0

|f ls|pp + |gs|ppds.

By Gronwall’s lemma we get

E

∫
Q

φn(ut)dx+ E

∫ t

0

∫
Q

|∇us|2φ′′n(us)dxds ≤ NEKt

for any t ∈ [0, T ], with N = N(T, d, p,K, λ). Going back to (2.1.7), using the

same estimates, and the above relation, by taking suprema up to T we have

E sup
t≤T

∫
Q

φn(ut)dx ≤ NEKt + E sup
t≤T
|m(n)

t |.

≤ NEKT +NE

(∫ T

0

∑
k

(∫
Q

|σik∂ius + µkus + gks ||φ′′n(us)φn(us)|1/2dx
)2

ds

)1/2

≤ NEKT +NE

(∫ T

0

∫
Q

(|∇us|2 + |us|2 +
∞∑
k=1

|gks |2)φ′′n(us)dx

∫
Q

φn(us)dxds

)1/2

≤ NEKT +
1

2
E sup

t≤T

∫
Q

φn(ut)dx <∞,

where N = N(T, d, p,K, λ). Hence,

E sup
t≤T

∫
Q

φn(ut)dx+ E

∫ T

0

∫
Q

|∇us|2φ′′n(us)dxds ≤ NEKT ,

and by Fatou’s lemma we get (2.1.3). For (2.1.4), we go back to (2.1.6), and by

letting a subsequence n(k)→∞ and using the dominated convergence theorem,

we see that each term converges to the corresponding one in (2.1.4) almost surely,

for all t ≤ T . This finishes the proof.
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Corollary 2.1.3. Let γ > 1 and denote κ = 4γ/(γ − 1). Suppose furthermore

that r, r′, q, q′ ∈ (1,∞), satisfying 1/r + 2/r′ = 1 and 1/q + 2/q′ = 1. Suppose

that u satisfies the conditions of Lemma 2.1.2 for any p ∈ {2γn, n ∈ N}. Then,

for any p ∈ {2γn, n ∈ N}, almost surely, for all t ≤ T∫
Q

|ut|pdx+
p2

4

∫ t

0

∫
Q

|∇ut|2|ut|p−2dxds ≤ N ′mt

+N

[
|ψ|pp + pκ‖u‖pr′p/2,q′p/2 + p−p(‖f 0‖pr,q +

d∑
i=1

‖f i‖p2r,2q + ‖|g|l2‖
p
2r,2q)

]
, (2.1.8)

where mt is the martingale from (2.1.4), and N,N ′ are constants depending only

on K, d, T, λ, |Q|, r, q, γ.

Proof. By Lemma 2.1.2, the parabolicity condition, and Young’s inequality we

have

∫
Q

|ut|pdx+
p2

4

∫ t

0

∫
Q

|∇us|2|us|p−2dxds ≤ N ′mt +N1

(∫
Q

|ψ|pdx

+

∫ t

0

[∫
Q

p2|us|p +p|f 0
s ||us|p−1 + p2

d∑
i=1

|f is|2|us|p−2 + p2|gs|2l2|us|
p−2dx

]
ds

)
.

Then by Hölder’s inequality we have∫ t

0

∫
Q

|f 0
s ||us|p−1dxds ≤ ‖f 0‖r,q‖u‖p−1

q′(p−1)/2,r′(p−1)/2,

and by Young’s inequality we obtain

p‖f 0‖r,q‖u‖p−1
q′(p−1)/2,r′(p−1)/2 ≤ p−p‖f 0‖pr,q + pκ‖u‖pr′(p−1)/2,q′(p−1)/2

≤ p−p‖f 0‖pr,q +N2p
κ‖u‖pr′p/2,q′p/2.

Similarly, for n ≥ 1,

p2

∫ t

0

∫
Q

|f is|2|us|p−2dxds ≤ p2‖f i‖2
2r,2q‖u‖

p−2
r′(p−2)/2,q′(p−2)/2

≤ p−p‖f i‖p2r,2q + pκ‖u‖pr′(p−2)/2,q′(p−2)/2

≤ p−p‖f i‖p2r,2q +N3p
κ‖u‖pr′p/2,q′p/2.

The same holds for g in place of f i. The case n = 0 can be covered separately with

12



another constant N4, and then N can be chosen to be max{N1(N2 + N3), N4}.
This finishes the proof.

Lemma 2.1.4. Suppose that u satisfies equation (2.1.1), f l ∈ Lp(Ω × [0, T ],P ;

Lp(Q)) for l ∈ {0, ..., d}, g ∈ Lp(Ω× [0, T ],P ;Lp(Q)), and ψ ∈ Lp(Ω,F0;Lp(Q))

for some p ≥ 2. Then for any 0 < η < p, and for any ε > 0,

E

(
sup
t≤T
|ut|pp +

p2

4
E

∫ T

0

∫
Q

|∇us|2|us|p−2dxds

)η/p

≤ εE‖u‖η∞ +N(ε, p)E

[
|ψ|ηp + ‖f 0‖η1 +

d∑
i=1

‖f i‖η2 + ‖|g|l2‖
η
2

]
where N(ε, p) is a constant depending only on ε, η,K, d, T, λ, |Q|, and p.

Proof. As in the proof of corollary 2.1.3, for any F0−measurable set B, we have

almost surely

IB

∫
Q

|ut|pdx+
p2

4
IB

∫ t

0

∫
Q

|∇us|2|us|p−2dxds ≤ N ′IBmt +N1IB

(∫
Q

|ψ|pdx

+

∫ t

0

[∫
Q

p2|us|p +p|f 0
s ||us|p−1 + p2

d∑
i=1

|f is|2|us|p−2 + p2|gs|2l2|us|
p−2dx

]
ds

)
,

(2.1.9)

for any t ∈ [0, T ]. The above relation, by virtue of Gronwal’s lemma implies that

for any stopping time τ ≤ T

sup
t≤T

EIB

∫
Q

|ut∧τ |pdx+ EIB

∫ τ

0

∫
Q

|∇us|2|us|p−2dxds ≤ NEIBVτ , (2.1.10)

where

Vt :=

∫
Q

|ψ|pdx+

∫ t

0

∫
Q

|f 0
s ||us|p−1 +

d∑
i=1

|f is|2|us|p−2 + |gs|2l2|us|
p−2dxds.

Going back to (2.1.9), and taking suprema up to τ and expectations, and having

in mind (2.1.10), gives

E sup
t≤τ

IB

∫
Q

|ut|pdx ≤ NE sup
t≤τ

IB|mt|+NEIBVτ .
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By the Burkholder-Gundy-Davis inequality and (2.1.10) we have

E sup
t≤τ

IB|mt| ≤ NEIB

(∫ τ

0

(∫
Q

|ut|p−2 (|∇ut|+ |ut|+ |g|l2) dx

)2

dt

)1/2

≤ NEIB

(∫ τ

0

∫
Q

|ut|pdx
∫
Q

(|∇ut|2 + |ut|2 + |g|2l2)|u|p−2dxdt

)1/2

≤ 1

2
E sup

t≤τ
IB

∫
Q

|ut|pdx+NEIBVτ .

Hence,

E sup
t≤τ

IB

∫
Q

|ut|pdx ≤ NEIBVτ ,

which combined with (2.1.10), by virtue of Lemma 1.2.3 gives

E

(
sup
t≤T
|ut|pp +

p2

4
E

∫ T

0

∫
Q

|∇us|2|us|p−2dxds

)η/p
≤ NEV η/p

T

≤ NE

[
|ψ|pp + ‖u‖p−1

∞ ‖f 0‖1 + ‖u‖p−2
∞

(
d∑
i=1

‖f i‖2
2 + ‖|g|l2‖2

2

)]η/p

≤ εE‖u‖η∞ +NE

[
|ψ|ηp + ‖f 0‖η1 +

d∑
i=1

‖f i‖η2 + ‖|g|l2‖
η
2

]
,

which brings the proof to an end.

Proof of Theorem 2.1.1 Throughout the proof, the constants N in our calcu-

lations will be allowed to depend on η, r, q as well as on the structure constants.

Notice that we may, and we will assume that r, q <∞. Without loss of generality

we assume that the right hand side in (2.1.2) is finite. Also, in the first part of

the proof we make the assumption that ψ, f l, l = 0, . . . , d, and g are bounded by

a constant M . In particular, by (2.1.3), u ∈ Lη(Ω, Lr,q) for any η, r, q.

Let us introduce the notation

Mr,q,p(t) = ‖1[0,t]f
0‖pr,q +

d∑
i=1

‖1[0,t]f
i‖p2r,2q + ‖1[0,t]|g|l2‖

p
2r,2q.

Since (r, q) ∈ Γd, if we define r′ and q′ by 1/r+ 2/r′ = 1, 1/q+ 2/q′ = 1, we have

d

4
<

1

r′
+

d

2q′
=: γ

d

4
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for some γ > 1. Then r̂ = γr′ and q̂ = γq′ satisfy

1

r̂
+

d

2q̂
=
d

4
.

By applying Lemma 1.2.1 to r̂, q̂, and v̄ = |v|p/2, we have, for any p ≥ 2

E

|ψ|η∞ ∨
(∫ T

0

(∫
Q

|vt|q̂p/2dx
)r̂/q̂

dt

)2η/r̂p


≤ E

[
|ψ|η∞ ∨Nη/p

(
sup

0≤t≤T

∫
Q

|vt|pdx+
p2

4

∫ T

0

∫
Q

|∇vt|2|vt|p−2dxdt

)η/p]
.

(2.1.11)

To estimate the right-hand side above, first notice that, if p = 2γn for some n,

then by taking supremum in (2.1.8), we have for any stopping time τ ≤ T , and

any F0− measurable set B,

IB sup
0≤s≤τ

∫
Q

|vs|pdx

≤ NIB

(
|ψ|p∞ + pκ‖1[0,τ ]v‖pr′p/2,q′p/2 + p−pMr,q,p(τ)

)
+N ′IB sup

0≤s≤τ
|ms|, (2.1.12)

By the Davis inequality we can write

EIB sup
0≤s≤τ

|ms| ≤ NEIB

(∫ τ

0

∑
k

(∫
Q

p(σiks ∂ivs + µkvs + gk)vs|vs|p−2dx

)2

ds

) 1
2

≤ NEIB

(
sup

0≤s≤τ

∫
Q

|vs|pdx
) 1

2

(∫ τ

0

∫
Q

p2
∑
k

|σiks ∂ivs + µkvs + gk|2|vs|p−2dxds

) 1
2

Applying Young’s inequality and recalling the already seen estimates in the proof

of Corollary 2.1.3 (i) for the second term yields

EIB sup
0≤s≤τ

|ms| ≤ εEIB

(
sup

0≤s≤τ

∫
Q

|vs|pdx

+
N

ε
p2

∫ τ

0

∫
Q

|∇vs|2|vs|p−2dxds+ pκ‖1[0,τ ]v‖pr′p/2,q′p/2 + p−p‖1[0,τ ]|g|l2‖
p
2r,2q

)
for any ε > 0. With the appropriate choice of ε, combining this with (2.1.12) and

using (2.1.8) once again, now without taking supremum, we get
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EIB

(
sup

0≤s≤τ

∫
Q

|vs|pdx+
p2

4

∫ τ

0

∫
Q

|∇vs|2|vs|p−2dxds

)

≤ NEIB

(
|ψ|p∞ + p2

∫ τ

0

∫
Q

|∇vs|2|vs|p−2dxds+ pκ‖1[0,τ ]v‖pr′p/2,q′p/2 + p−pMr,q,p(τ)
)

≤ NEIB

(
|ψ|p∞ + pκ‖1[0,τ ]v‖pr′p/2,q′p/2 + p−pMr,q,p(τ)

)
+N ′EIBmτ ,

and the last expectation vanishes. Now consider

Xt = |ψ|p∞ ∨
(

sup
0≤s≤t

∫
Q

|vs|pdx+
p2

4

∫ t

0

∫
Q

|∇vs|2|vs|p−2dxds

)
and

At = Cpκ
(
|ψ|p∞ ∨ ‖1[0,t]v‖pr′p/2,q′p/2 + p−pMr,q,p(t)

)
for a large enough, but fixed C. The argument above gives that

EIBXτ ≤ EIB

(
|ψ|p∞ + sup

0≤s≤τ

∫
Q

|vs|pdx+
p2

4

∫ τ

0

∫
Q

|∇vs|2|vs|p−2dxds

)
≤ NEIB

(
|ψ|p∞ + pκ‖1[0,τ ]v‖pr′p/2,q′p/2 + p−pMr,q,p(τ)

)
≤ EIBAτ .

Therefore the condition of Proposition 1.2.3 is satisfied, and thus for η < p we

obtain

E

(
|ψ|p∞ ∨

(
sup

0≤t≤T

∫
Q

|vt|pdx+
p2

4

∫ T

0

∫
Q

|∇vt|2|vt|p−2dxdt

))η/p

≤ (Npκ+1)η/p
p

p− η
E
(
|ψ|p∞ ∨ ‖v‖

p
r′p/2,q′p/2 + p−pMr,q,p(T )

)η/p
≤ (Npκ+1)η/p

p

p− η
E
(
|ψ|η∞ ∨ ‖v‖

η
r′p/2,q′p/2 + p−ηMr,q,η(T )

)
. (2.1.13)

Let us choose p = pn = 2γn for n ≥ 0, and use the notation cn = (Npκ+1
n )η/pn pn

pn−η .

Upon combining (2.1.11) and (2.1.13), for pn > η we can write the following

inequality, reminiscent of Moser’s iteration:

E|ψ|η∞ ∨ ‖v‖
η
r′pn+1/2,q′pn+1/2

≤ cnE
[
|ψ|η∞ ∨ ‖v‖

η
r′pn/2,q′pn/2

+Np−ηn Mr,q,η(T )
]
.

(2.1.14)

Consider the minimal n0 = n0(d, η) such that pn0 > 2η. Taking any integer
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m ≥ n0 we have

m∏
n=n0

cn ≤
m∏

n=n0

(Nγκ+1)ηn/2γ
n

e2η/2γn

= exp

[
log(Nγκ+1)

m∑
n=n0

ηn

2γn
+

m∑
n=n0

η

γn

]
≤ N0,

where N0 does not depend on m. Also,

N
m∑

n=n0

p−ηn ≤ N1,

where N1 does not depend on m. Therefore, by iterating (2.1.14) we get

lim inf
m→∞

E|ψ|η∞ ∨ ‖v‖
η
r′pm/2,q′pm/2

≤N0N1EMr,q,η(T )

+N0E|ψ|η∞ ∨ ‖v‖
η
r′(pn0+1)/2,q′(pn0+1)/2,

and thus by Fatou’s lemma

E‖v‖η∞ ≤ NE(|ψ|η∞ ∨ ‖v‖
η
r′(pn0+1)/2,q′(pn0+1)/2 +Mr,q,η(T )), (2.1.15)

in particular, the left-hand side is finite.

By Lemma 2.1.4 we get

E

(
|ψ|p∞ ∨

(
sup

0≤t≤T

∫
Q

|vt|pdx+
p2

4

∫ T

0

∫
Q

|∇vt|2|vt|p−2dxdt

))η/p
≤ εE‖v‖η∞ +N(ε, p)E (|ψ|η∞ +M1,1,η(T )) (2.1.16)

for any ε > 0. Combining (2.1.11) and (2.1.16) for p = pn0 gives

E|ψ|η∞ ∨ ‖v‖
η
r′(pn0+1)/2,q′(pn0+1)/2 = E|ψ|η∞ ∨ ‖v‖

η
r̂pn0/2,q

′pn0/2

≤ εE‖v‖η∞ +N(ε, pn0)E (|ψ|η∞ +M1,1,η(T )) . (2.1.17)

Choosing ε sufficiently small, plugging (2.1.17) into (2.1.15), and rearranging

yields the desired inequality

E‖v‖η∞ ≤ NE(|ψ|η∞ +Mr,q,η(T )). (2.1.18)
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As for the general case, set

ψ(n) = ψ ∧ n ∨ −n, f l,(n) = f l ∧ n ∨ −n, gk,(n) = gk ∧ (n/k) ∨ −(n/k),

define M(n)
r,q,p correspondingly, and let vn be the solution of the corresponding

equation. This new data is now bounded by a constant, so the previous argument

applies, and thus

E‖vn‖η∞ ≤ NE(|ψ(n)|η∞ +M(n)
r,q,η(T ) ≤ NE(|ψ|η∞ +Mr,q,η(T )).

Since vn → v in L2(Ω× [0, T ]×Q), for a subsequence k(n), vk(n) → v for almost

every ω, t, x. In particular, almost surely ‖v‖∞ ≤ lim infn→∞ ‖vk(n)‖∞, and by

Fatou’s lemma

E‖v‖η∞ ≤ lim inf
n→∞

E‖vk(n)‖η∞ ≤ NE(|ψ|η∞ +Mr,q,η(T )).

2.2 Semilinear SPDEs without growth condition

In this section, we will use the uniform norm estimates obtained in the previous

section, to construct solutions for the following equation

dut = (Ltut + ft(ut))dt+ (Mk
t ut + gkt )dwkt , u0 = ψ (2.2.19)

for (t, x) ∈ [0, T ] × Q, where f is a real function defined on Ω × [0, T ] × Q × R
and is P × B(Rd)× B(R)−measurable.

Assumption 2.2.1. The function f satisfies the following

i) for all r, r′ ∈ R and for all (ω, t, x) we have

(r − r′)(ft(x, r)− ft(x, r′)) ≤ K|r − r′|2

ii) For all (ω, t, x), ft(x, r) is continuous in r

iii) for all N > 0, there exists a function hN ∈ L2(Ω × [0, T ] × Q) with

E‖hN‖∞ <∞, such that for any (ω, t, x)

|ft(x, r)| ≤ |hNt (x)|,

whenever |r| ≤ N .
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iv) E|ψ|∞ + E‖|g|l2‖∞ <∞

Notice that other than the monotonicity and continuity, no polynomial (or

any kind of) growth is assumed for f . Therefore even for the definition of the

solution to make sense, u is required to be in L∞:

Definition 2.2.1. A solution of equation (2.2.19) is an Ft−adapted, strongly

continuous process (ut)t∈[0,T ] with values in L2(Q) such that

i) ut ∈ H1
0 , for dP × dt almost every (ω, t) ∈ Ω× [0, T ]

ii)
∫ T

0
|ut|22 + |∇ut|22dt <∞ (a.s.)

iii) almost surely, u is essentially bounded in (t, x)

iv) for all φ ∈ C∞c (Q) we have with probability one

(ut, φ) = (ψ, φ) +

∫ t

0

−(aijs ∂ius, ∂jφ) + (bis∂ius + csus, φ) + (fs(us), φ)ds

+

∫ t

0

(Mk
s us + gks , φ)dwks ,

for all t ∈ [0, T ].

Notice that by Assumption 2.2.1 iii), and (iii) from Definition 2.2.1, the term∫ t
0
(fs(us), φ)ds is meaningful.

Theorem 2.2.1. Under Assumptions 2.1.1, 2.1.2, and 2.2.1, there exists a unique

solution of equation (2.2.19).

Remark 2.2.1. From now on we can and we will assume that the function f is

decreasing in r or else, by virtue of Assumption 2.2.1, we can replace ft(x, r) by

f̃t(x, r) := ft(x, r)−Kr and ct(x) with c̃t(x) := ct(x) +K.

We will need the following particular case from [2]. We consider two equations

duit = (Ltu
i
t + f it (u

i
t))dt+ (Mk

t u
i
t + gkt )dwkt , u

i
0 = ψi, (2.2.20)

for i = 1, 2.

Assumption 2.2.2. The functions f i, i = 1, 2, are appropriately measurable,

and there exists h ∈ L2(Ω× [0, T ]×Q) and a constant C > 0, such that for any

ω, t, x, and for any r ∈ R we have

|f 1
t (x, r)|2 + |f 2

t (x, r)|2 ≤ C|r|2 + |ht(x)|2.
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Theorem 2.2.2. Suppose that Assumptions 2.1.1, 2.1.2, and 2.2.2 hold. Let ui,

i = 1, 2 be the L2− solutions of the equations in (2.2.20), for i = 1, 2 respectively.

Suppose that f 1 ≤ f 2, ψ1 ≤ ψ2 and assume that either f 1 or f 2 satisfy Assump-

tion 2.2.1. Then, almost surely and for any t ∈ [0, T ], u1
t ≤ u2

t for almost every

x ∈ Q.

Proof of Theorem 2.2.1. We truncate the function f by setting

fn,mt (x, r) =


ft(x,m) if r > m

ft(x, r) if − n ≤ r ≤ m

ft(x,−n) if r < −n,

for n, m ∈ N we consider the equation

dun,mt = (Ltu
n,m
t + fn,mt (un,mt ))dt+ (Mk

t u
n,m
t + gkt )dwkt ,

un,m0 = ψ (2.2.21)

We first fix m ∈ N. Equation (2.2.21) can be realised as a stochastic evolution

equation on the triple H1
0 ↪→ L2 ↪→ H−1. One can easily check that under

Assumptions 2.1.1, 2.1.2, and 2.2.1, Assumption 1.0.1 is satisfied, and therefore

equation (2.2.21) has a unique L2−solution (un,mt )t∈[0,T ]. We also have that for

n′ ≥ n, fn
′,m ≥ fn,m. By Theorem 2.2.2 we get that almost surely, for all t ∈ [0, T ]

un
′,m
t (x) ≥ un,mt (x), for almost every x. (2.2.22)

We define now the stopping time

τR,m := inf{t ≥ 0 :

∫
Q

(u1,m
t +R)2

−dx > 0} ∧ T.

We claim that for each R ∈ N, there exists a set ΩR of full probability, such that

for each ω ∈ ΩR, and for all n ≥ R we have that

un,mt = uR,mt , for t ∈ [0, τR,m]. (2.2.23)

Notice that by (2.2.22) and the definition of τR,m, for all n ≥ R

fn,mt (x, un,mt (x)) = fR,mt (x, un,mt (x)), for t ∈ [0, τR,m].
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This means that for all n ≥ R the processes un,mt satisfies

dvt = (Ltvt + fR,mt (vt))dt+ (Mk
t vt + gkt )dwkt ,

v0 = ψ, (2.2.24)

on [0, τR,m]. The uniqueness of the L2−solution of the above equation shows

(2.2.23). Notice that by Assumption 2.2.1 (iii) and (iv), Theorem 2.1.1 guarantees

that u1,m is almost surely essentially bounded in (t, x). Therefore, for almost every

ω ∈ Ω, τR,m = T for all R large enough. On the set Ω̃ := ∩R∈NΩR we define

u∞,mt = limn→∞ u
n,m
t , where the limit is in the sense of L2(Q). Since for each

ω ∈ Ω̃, we have u∞,mt = un,mt for all t ≤ τR,m, and for any n ≥ R, it follows that

the process (u∞,mt )t∈[0,T ] is an adapted continuous L2(Q)−valued process such

that

i) u∞,mt ∈ H1
0 , for dP × dt almost every (ω, t) ∈ Ω× [0, T ]

ii)
∫ T

0
|u∞,mt |22 + |∇u∞,mt |22dt <∞(a.s.)

iii) u∞,mt is almost surely essentially bounded in (t, x)

iv) for all φ ∈ C∞c (Q) we have with probability one

(u∞,mt , φ) =

∫ t

0

(aijs ∂iju
∞,m
s , φ) + (bis∂iu

∞,m
s + csu

m
s , φ) + (fms (u∞,ms ), φ)ds

+

∫ t

0

(σiks ∂iu
∞,m
s + νksu

∞,m
s + gks , φ)dwks + (ψ, φ),

for all t ∈ [0, T ], where

fmt (x, r) =

{
ft(x,m) if r > m

ft(x, r) if r ≤ m.

Now we will let m→∞. Let us define the stopping time

τR := inf{t ≥ 0 :

∫
Q

(u∞,1t −R)2
+dx > 0} ∧ T.

As before we claim that for any R > 0, there exists a set Ω′R of full probability,

such that for any ω ∈ Ω′R and any m,m′ ≥ R,

u∞,m
′

t = u∞,mt on [0, τR]. (2.2.25)

To show this it suffices to show that for each R ∈ N, almost surely, for all m ≥ R,
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we have un,mt = un,Rt on [0, τR] for all n ∈ N. To show this we set

τRn := inf{t ≥ 0 :

∫
Q

(un,1t −R)2
+dx > 0} ∧ T.

For all m ≥ R we have that the processes un,mt satisfy the equation

dvt = (Ltvt + fn,Rt (vt))dt+ (Mk
t vt + gkt }dwkt ,

v0(x) = ψ(x), (2.2.26)

for t ≤ τRn . It follows that almost surely, un,mt = un,Rt for t ≤ τRn , for all n. We

just note here that by the comparison principle again, we have τR ≤ τRn and this

shows (2.2.25). Also for almost every ω ∈ Ω, we have τR = T for R large enough.

Hence we can define ut = limm→∞ u
∞,m
t , and then one can easily see that ut has

the desired properties.

For the uniqueness, let u(1) and u(2) be solutions of (2.2.19). Then one can

define the stopping time

τN = inf{t ≥ 0 :

∫
Q

(|u(1)
t | −N)2

+dx ∨
∫
Q

(|u(2)
t | −N)2

+dx > 0},

to see that for t ≤ τN , the two solutions satisfy equation (2.2.21) with n = m = N ,

and the claim follows, since τN = T almost surely, for large enough N .

2.3 Local supremum estimates

Contrary to [4] where the De Giorgi iteration was used and adapted to the stochas-

tic setting, here, like in Section 2.1, we will use Moser’s iteration. This approach

has the advantage of providing moment estimates but the proof is somewhat

technically more difficult and requires an additional technical assumption, see

Assumption 2.3.2 below.

For the sake of clarity we now include only the leading order terms in both

the drift and the diffusion, that is, we consider

dut = Ltut dt+Mk
t ut dw

k
t , (2.3.27)

with

Ltϕ = ∂i(a
ij
t ∂jϕ), Mk

t ϕ = σikt ∂iϕ,

22



on G, with the notations GR = [4 − R2, 4] × BR, and G = G2. Since in the

following we deal with local properties, restricting our attention to G is not a

loss of generality. We will also use the notation γ = (d + 2)/d and note that in

Lemma 1.2.1 one can choose r = q = 2γ.

Assumption 2.3.1. For i, j ∈ {1, ..., d}, the functions aij = aijt (x)(ω) and σi =

(σikt (x)(ω))∞k=1 are P×B(B2)-measurable functions on Ω× [0,∞)×B2 with values

in R and l2, respectively, bounded by a constant K, such that

(2aij − σikσjk)zizj ≥ λ|z|2

for a λ > 0 and for any z = (z1, . . . , zd) ∈ Rd.

Assumption 2.3.2. For all p > 1, q > 1,

E‖u‖qp,G <∞.

Notice that, due to the lack of initial or boundary condition, we are not

formally in the framework of Theorem 1.0.1. Nevertheless, the concept of solution

is defined analogously:

Definition 2.3.1. We will say that (ut)t∈[0,4] satisfies (or is a solution of) (2.3.27),

if u is a strongly continuous L2(B2)-valued process, ut ∈ H1(B2) for almost every

(t, ω),

E sup
t≤4
|ut|22 + E

∫ 4

0

∫
B2

|∇ut|2dxdt <∞.

and for each φ ∈ C∞c (B2), with probability one,

(ut, φ) = (u0, φ)−
∫ t

0

(aijt ∂iut, ∂jφ)dt+

∫ t

0

(σikt ∂iut, φ)dwkt ,

for all t ∈ [0, 4].

We start by a weaker supremum estimate, where the uniform norm is esti-

mated in terms of a high Lq-norm, by a localized version of the argument in the

previous section.

Lemma 2.3.1. Let Assumptions 2.3.1-2.3.2 hold. Let τ ≤ 4 be a stopping time,

u be a solution of (2.3.27) up to τ , and let f ∈ C2
b (R), with ff ′′ ≥ 0, having

bounded first derivative. Then for any 0 < δ < R ≤ 2 we have

E‖1[0,τ ]f(u)‖q∞,GR−δ ≤ δ2γ/(1−γ)CE‖1[0,τ ]f(u)‖qq,GR ,
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where C depends only on d, λ,K.

Proof. Denote Q = BR, r = 4−R2, let ϕ ∈ C∞c (BR), and let ψ ∈ C∞([4−R2, 4])

be an increasing function such that ψr = 0. Let τ ′ ≥ r be a stopping time and

τ̂ = τ ∧ τ ′. Let us apply Itô’s formula to
∫
Q
ϕ2ψ2

t |f(ut)|p. Note that its validity

needs to be justified, which can be done by following step-by-step the proof of

Lemma 2.1.2 and making use of Assumption 2.3.2 at the passage to the limit.

We get∫
Q

ϕ2ψ2
t |f(ut)|p = mt + 2

∫ t

r

∫
Q

ϕ2ψsψ
′
s|f(us)|pdxds

−
∫ t

r

∫
Q

2ϕ∂iϕψ
2
spf(us)|f(us)|p−2f ′(us)a

ij
s ∂jusdxds

−
∫ t

r

∫
Q

φ2ψ2
sp(p− 1)|f(us)|p−2|f ′(us)|2aijs ∂jus∂iusdxds

−
∫ t

r

∫
Q

φ2ψ2
spf(us)|f(us)|p−2f ′′(us)a

ij
s ∂jus∂iusdxds

+
1

2

∫ t

r

∫
Q

ϕ2ψ2
sp(p− 1)|f(us)|p−2|f ′(us)|2|σiDius|2dxds

+
1

2

∫ t

r

∫
Q

ϕ2ψ2
spf(us)|f(us)|p−2f ′′(us)|σiDius|2dxds

for r ≤ t ≤ τ̂ , where

mt =

∫ t

r

∫
Q

1τ≥rϕ
2ψ2

spf(us)|f(us)|p−2f ′(us)σ
i
s∂iusdxdws.

Then by Young’s inequality, the parabolicity condition, and the fact that ff ′′ ≥ 0,

we obtain∫
Q

ϕ2ψ2
t |f(ut)|p ≤ mt + 2

∫ t

r

∫
Q

(ϕ2ψsψ
′
s + |∂iϕ|2ψ2

s)|f(us)|pdxds

− λ

8

∫ t

r

∫
Q

ϕ2ψ2
sp(p− 1)|f(us)|p−2|f ′(us)|2|∇us|2dxds (2.3.28)

for r ≤ t ≤ τ̂ . In particular, (2.3.28) implies that

E1τ≥r

∫ τ̂

r

∫
Q

p2ϕ2ψ2
s |f(us)|p−2|f ′(us)|2|∇us|2dxds

≤ CE1τ≥r

∫ τ̂

r

∫
Q

(ϕ2ψsψ
′
s + |∂iϕ|2ψ2

s)|f(us)|pdxds,
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where C depends only on λ. By the Burkholder-Gundy-Davis inequality we have

E1τ≥r sup
t∈[r,τ̂ ]

|mt| ≤ CE1τ≥r

(∫ τ̂

r

(∫
Q

ϕ2ψ2
spf(us)|f(us)|p−2f ′(us)σ

i
s∂iusdx

)2

ds

)1/2

≤ 1

2
E1τ≥r sup

t∈[r,τ̂ ]

∫
Q

ϕ2ψ2
t |f(ut)|pdx

+ CE1τ≥r

∫ τ̂

r

∫
Q

p2ϕ2ψ2
s |f(us)|p−2|f ′(us)|2|∇us|2dxds.

Hence, by taking suprema in (2.3.28) and using the two estimates above, one can

see that

E1τ≥r sup
t∈[r,τ̂ ]

∫
Q

ϕ2ψ2
t |f(ut)|pdx+E1τ≥r

∫ τ̂

r

∫
Q

p2ϕ2ψ2
s |f(us)|p−2|f ′(us)|2|∇us|2dxds

≤ CE1τ≥r

∫ τ̂

r

∫
Q

(ϕ2ψsψ
′
s + |∂iϕ|2ψ2

s)|f(us)|pdxds,

hence,

E1τ≥r

[
sup

t∈[r,v∧τ ]

∫
Q

ϕ2ψ2
t |f(ut)|pdx+

∫ v∧τ

r

∫
Q

|∇(ϕψs|f(us)|p/2)|2dxds

] ∣∣∣∣∣
v=τ ′

≤ CE1τ≥r

∫ v∧τ

r

∫
Q

(ϕ2ψsψ
′
s + |∂iϕ|2ψ2

s)|f(us)|pdxds

∣∣∣∣∣
v=τ ′

.

Lemma 1.2.3 therefore can be applied, and we obtain for q > p

E1τ≥r

(
sup
t∈[r,τ ]

∫
Q

ϕ2ψ2
t |f(ut)|pdx+

∫ τ

r

∫
Q

|∇(ϕψs|f(us)|p/2)|2dxds

)q/p

≤ Cq/p(p/q)q/p
p

p− q
E1τ≥r

(∫ τ

r

∫
Q

(ϕ2ψsψ
′
s + |∂iϕ|2ψ2

s)|f(us)|pdxds
)q/p

.

By Lemma 1.2.1 we can estimate the left-hand side from below, and we get

E1τ≥r

(∫ τ

r

∫
Q

ϕ2γψ2γ|f(ut)|pγdxdt
)q/γp

≤ Cq/p(p/q)q/p
p

p− q
E1τ≥r

(∫ τ

r

∫
Q

(ϕ2ψsψ
′
s + |∂iϕ|2ψ2

s)|f(us)|pdxds
)q/p

.

We take ϕ = ϕn, with |∇ϕn| ≤ Cδ−12n, such that ϕn = 1 on BR−δ+2−(n+1)δ

and ϕn = 0 outside of BR−δ+2−nδ. Similarly, we take ψ = ψn with |∇ψ| ≤
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Cδ−222n such that ψ = 1 on [t0 − (R − δ)2 − 2−2(n+1)δ2, t0] and ψ = 0 outside of

[t0 − (R − δ)2 − 2−2nδ2, t0]. Let us also introduce the notation Fn = [t0 − (R −
δ)2− 2−2nδ2, t0]×BR−δ+2−nδ. Then if we apply the above estimate with pn = qγn

we have,

E‖1τ≥r1[0,τ ]f(u)‖qpn+1,Fn+1
≤ (

1

δ2
4nCγn)1/γn γn

γn − 1
E‖1τ≥r1[0,τ ]f(u)‖qpn,Fn

By iteration, noting that F0 ⊂ GR and GR−δ ⊂ ∩Fn, we get the desired estimate,

for 1τ≥rf(u) instead of f(u). Notice that the fact that the product of the pref-

actors on the right-hand side, for n = 1, . . ., is finite, is justified in Section 2.1.

Finally, notice that

E‖1τ<r1[0,τ ]f(u)‖q∞,GR−δ = 0,

which finishes the proof.

Now the main local supremum estimate reads as follows.

Theorem 2.3.2. Let the conditions of Lemma 2.3.1 be satisfied. Then

E‖1[0,τ ]f(u)‖q∞,G1
≤ qaq/2CE‖1[0,τ ]f(u)‖q2,G3/2

,

for constants a, C > 0 depending only on d, λ,K.

Proof. Let us denote

A(R) = E‖1[0,τ ]f(u)‖q∞,GR , B(R) = E‖1[0,τ ]f(u)‖q2,GR .

By Lemma 2.3.1 and Hölder’s inequality we have, with the notation a′ = 2γ/(1−
γ)

A(R) ≤ δa
′
CA(R+δ)(q−2)/qB(R+δ)2/q ≤ δa

′
CA(R+δ)(q−2)/qB(3/2)2/q, (2.3.29)

whenever R + δ ≤ 3/2. Now let us choose δ = δn and R = Rn = 1 +
∑n

i=1 δi, for

n = 0, 1, . . ., such that Rn ≤ 3/2. Upon iterating (2.3.29), we find

A(1) ≤
n∏
i=1

(Cδi)
a′[(q−2)/q]i−1

A(Rn)[(q−2)/q]nB(3/2)(2/q)
∑n−1
i=0 [(q−2)/q]i .

The exponent of the second term tends to 0, while the exponent of the third term

tends to 1. Since A(Rn) ≤ A(3/2) <∞, we obtain,

A(1) ≤
∞∏
i=1

(Cδi)
a′[(q−2)/q]i−1

B(3/2).
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Let us choose δi = i−2/4. Then

∞∏
i=1

(Cδi)
a′[(q−2)/q]i−1

= exp{−2ρa′
∞∑
i=1

log i

ρi
− 2ρa

∞∑
i=1

logC

ρi
} ≤ exp{a/2

∞∑
i=1

log i

ρi
}

for some a > 0, where ρ = q/(q − 2) and therefore 1/ρ = 1 − 2/q. The function

h(t) = log t/ρt has a unique maximum on [1,∞], therefore

∞∑
i=1

log i

ρi
≤
∫ ∞

1

log t

ρt
dt+ max

t∈[1,∞]
h(t)

≤

[
log t

ρt log 1
ρ

]∞
t=1

+
1

log ρ

∫ ∞
1

1

tρt
dt+ max

t∈[1,∞]

t

ρt

≤ 0 +
1

log ρ

∞∑
i=1

1

iρi
+

e

log ρ

=
− log(1− 1/ρ)

log ρ
+

e

log ρ
≤ 2

q

2
log

q

2
.

Therefore,

A(1) ≤ qaq/2B(3/2),

which is what we wanted to prove.

Corollary 2.3.3. Let the conditions of Lemma 2.3.1 be satisfied with τ ≡ 4.

Then for any n > 1 and α > 0,

P (‖f(u)‖2
∞,G1

≥ nα, ‖f(u)‖2
2,G3/2

≤ α) ≤ Ce−n
1/a

for constants a, C > 0 depending only on d, λ,K.

Proof. By Lemma 2.3.2, the processes

Xt = ‖1[0,t]f(u)‖qp,G1
, At = Cqaq/2‖1[0,t]f(u)‖q2,G3/2

.

satisfy the conditions of Lemma 1.2.3 for any p, where C can be chosen indepen-

dently of p for p ≥ p0 = p0(q). By Lemma 1.2.3,

P (‖f(u)‖2
p,G1
≥ nα, ‖f(u)‖2

2,G3/2
≤ α)

= P (‖f(u)‖qp,G1
≥ nq/2αq/2, Cqaq/2‖f(u)‖2

2,GR+2
≤ Cαq/2qaq/2) ≤ C

(
qaq

nq

)1/2

.

Choosing q = (n/e)1/a and letting p→∞ yields the result.
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Finally, let us consider the case when the initial value is 0. Note that in

this case in the proof of Lemma 2.3.1 the time-cutoff function ψ can be omitted.

Doing so and repeating the same steps afterwards, we get the following.

Corollary 2.3.4. Let Assumptions 2.3.1-2.3.2 hold. Let u be a solution of

(2.3.27) on [s, r] ⊂ [0, 4], let f ∈ C2
b (R), with ff ′′ ≥ 0, having bounded first

derivative, and suppose that f(v)(s, ·) ≡ 0. Then for any n > 1 and α > 0,

P (‖f(u)‖2
∞,[s,r]×B1

≥ nα, ‖f(u)‖2
2,[s,r]×B2

≤ α) ≤ Ce−n
1/a

for constants a, C > 0 depending only on d, λ,K.

2.4 A Harnack inequality and continuity of so-

lutions

Denote by Λ the set of functions v on [0, 4]×B2 such that v ≥ 0 and

|{x ∈ B2| v0(x) ≥ 1}| ≥ 1

2
|B2|.

Let us recall the Harnack inequality essentially proved in [17]: If u is a solution

of du = ∂i(a
ij∂ju)dt and u ∈ Λ, then

inf
G1

u ≥ h

with h = h(d, λ,K) > 0. In the stochastic case clearly it is not expected that

such a lower estimate holds uniformly in ω. It does hold, however, with h above

replaced with a strictly positive random variable, this is the assertion of our main

theorem.

Theorem 2.4.1. Let Assumptions 2.3.1-2.3.2 hold. Let u be a solution of (2.3.27)

such that on an event A ∈ F , u ∈ Λ. Then for any N > 0 there exists a set

D ∈ F , with P (D) ≤ Ce−N
1/a

, such that on A ∩Dc,

inf
(t,x)∈G1

ut(x) ≥ e−N .

where C and a, depend only on d, λ and K.

Later on we will refer to the quantity e−N above as the lower bound corre-

sponding to the probability Ce−N
1/a

. We begin with a simple lemma.

28



Lemma 2.4.2. For any c > 0, there exists N0(c) > 0, such that for any contin-

uous local martingale mt, and for any N ≥ N0,

P

(
sup
t≥0

(mt − c〈m〉t) > N

)
≤ Ce−Nc/4,

with an absolute constant C.

Proof. Let B be a Wiener process for which B〈m〉t = mt. Then for any β > 0

P

(
sup
t≥0

(mt − c〈m〉t) > N

)
≤ P

(
sup
s≥0

(Bs − cs) > N

)

≤ P ( sup
s∈[0,β]

Bs > N) +
∞∑
i=1

P ( sup
s∈[0,(i+1)β]

Bs > icβ).

Recall that for any α > 0

P ( sup
s∈[0,β]

Bs ≥ α) ≤
√

2

πβ

β

α

∫ ∞
α

x

β
e−x

2/2β dx = C

√
β

α2
e−α

2/2β.

Therefore,

P

(
sup
t≥0

(mt − c〈m〉t) > N

)
≤ C

√
β

N2
e−N

2/2β +
∞∑
i=1

C

√
(i+ 1)

c2i2β
e−c

2i2β/2(i+1).

Choosing β = N/c yields the claim.

Next, we establish what can be considered a weak version of Theorem 2.4.1.

Lemma 2.4.3. Let Assumptions 2.3.1-2.3.2 hold. Let u be a solution of (2.3.27),

such that on A ∈ F , u ∈ Λ. Then for any N > 0, there exists a set D1 ∈ F ,

with P (D1) ≤ Ce−cN , such that on A ∩Dc
1, for all t ∈ [0, 4],

|{(x ∈ Bρ| v(t, x) ≥ e−N}| ≥ 1

8
|Bρ|,

where ρ is defined by

|Bρ| =
3

4
|B2|,

and the constants c, C > 0, depend only on d, λ,K.

Proof. Clearly it is sufficient to prove the statement for N > N0 for some N0.
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Introduce the functions

fh(x) =

{
ahx+ bh if x < −h/2
log+ 1

x+h
if x ≥ −h/2,

for h > 0 where ah and bh is chosen such that fh and f ′h are continuous. Let κ

be nonnegative a C∞ function on R, bounded by 1, supported on {|x| < 1}, and

having unit integral. Denote κh(x) = h−1κ(x/h) and

Fh = fh ∗ κh/4.

We claim that Fh has the following properties:

(i) Fh(x) = 0 for x ≥ 1;

(ii) Fh(x) ≤ log(2/h) for x ≥ 0;

(iii) Fh(x) ≥ log(1/2h) for x ≤ h/2;

(iv) Fh ∈ D and F ′′h (x) ≥ (F ′h(x))2 for x ≥ 0.

The first three properties are obvious, while for the last one notice that Fh has

bounded second derivative, f ′′h (x) ≥ (f ′h(x))2 for x ≥ −h/2, and therefore, for

x ≥ 0

(F ′h(x))2 =

(∫
f ′h(x− z)κ

1/2
h/4(z)κ

1/2
h/4(z) dz

)2

≤
∫

(f ′h(x− z))2κh/4(z) dz

≤
∫
f ′′h (x− z)κh/4(z) dz = F ′′h (x).

Let us denote v = Fh(u). Applying Itô’s formula and using the parabolicity

condition, we get∫
B2

ϕ2vt dx−
∫
B2

ϕ2v0 dx ≤
∫ t

0

∫
B2

Cϕ∇ϕ∇v − (λ/2)ϕ2F ′′h (u)(∇u)2 dx ds

+

∫ t

0

∫
B2

ϕ2Mkv dx dwks (2.4.30)

for any ϕ ∈ C∞c . Let us denote the stochastic integral above by mt, and notice

that provided |ϕ| ≤ 1,

〈m〉t ≤ C

∫ t

0

∫
B2

ϕ2(∇v)2 dx ds.
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Let c be such that cC ≤ λ/4. From Lemma 2.4.2, there exists a set D1 with

P (D1) ≤ Ce−Nc/4, such that on Dc
1 we have∫

B2

ϕ2vt dx−
∫
B2

ϕ2v0 dx

≤ N +

∫ t

0

∫
B2

Cϕ∇ϕ∇v − (λ/2)ϕ2F ′′h (u)(∇u)2 + cCϕ2(∇v)2 dx ds. (2.4.31)

On A ∩ Dc
1, by the property (iv) above, we have F ′′h (u)(∇u)2 ≥ (∇v)2, and

therefore ∫
B2

ϕ2vt dx ≤ N + C

∫
B2

|∇ϕ|2 dx+

∫
B2

ϕ2v0 dx. (2.4.32)

Let us denote

Ot(h) = {x ∈ Bρ : u(t, x) ≥ h}.

Choosing ϕ to be 1 on Bρ, by properties (i), (ii), and (iii) of Fh and (2.4.32), on

A ∩Dc
1, for all t ∈ [0, 4]

|Bρ \ Ot(h/2)| log(1/2h) ≤ C +N +
1

2
log(2/h)|B2| = C +N +

2

3
log(2/h)|Bρ|.

Hence

|Ot(h/2)| ≥ |Bρ| −
C +N

log(1/2h)
− 2

3

log(2/h)

log(1/2h)
|Bρ|,

and choosing N0 = C and h = 2e−C
′N for a sufficiently large C ′ finishes the proof

of the lemma.

Proof of Theorem 2.4.1

By Lemma 2.4.3, there exists a set D1 with P (D1) ≤ Ce−cN such that on

A ∩Dc
1 we have

|{(x ∈ Bρ| v(t, x) ≥ e−N | ≥ 1

8
|Bρ|, (2.4.33)

for all t ∈ [0, 4]. Let us denote h := e−N . For 0 < ε ≤ h/2, we introduce the

function

fε(x) =

{
aεx+ bε if x < −ε/2
log+ h

x+ε
if x ≥ −ε/2,

where aε and bε is chosen such that fε and f ′ε are continuous. Let κ be a nonneg-

ative C∞ function on R, bounded by 1, supported on {|x| < 1}, and having unit

integral. Denote κε(x) = ε−1κ(x/ε) and

Fε = fε ∗ κε/4.
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Similarly to Fh in the proof of Lemma 2.4.3, Fε has the following properties:

(i) Fε(x) = 0 for x ≥ h;

(ii) Fε(x) ≤ log(2h/ε) for x ≥ 0;

(iii) Fε(x) ≥ log(h/(x+ ε))− 1 for x ≥ 0;

(iv) Fε ∈ D and F ′′ε (x) ≥ (F ′ε(x))2 for x ≥ 0.

Let us denote v = Fε(u). Similarly to (2.4.31), there exists a set D2 with P (D2) ≤
Ce−Nc, such that on Dc

2 we have∫
B2

ϕ2vt dx−
∫
B2

ϕ2v0 dx

≤ N +

∫ t

0

∫
B2

Cϕ∇ϕ∇v − (λ/2)ϕ2F ′′ε (u)(∇u)2 + (λ/4)ϕ2(∇v)2 dx ds.

On A ∩Dc
2, by property (iv), we have,∫ 4

0

∫
B2

ϕ2|∇vt|2 dxdt ≤ C(N +

∫
B2

|∇ϕ|2 dx+

∫
B2

ϕ2v2 dx). (2.4.34)

By choosing ϕ ∈ C∞c (B2) with 0 ≤ ϕ ≤ 1 and ϕ = 1 on Bρ we get,∫ 4

0

∫
Bρ

|∇vt|2 dxdt ≤ C(N +

∫
B2

|∇ϕ|2 dx+

∫
B2

ϕ2v0 dx).

Hence, by property (ii),∫ 4

0

∫
Bρ

|∇vt|2 dxdt ≤ CN + C + C log
2h

ε
. (2.4.35)

Using property (i), by Lemma 1.2.2 we get for all t∫
Bρ

|vt|2dx ≤ C
ρ2(d+1)

|Ot(h)|2

∫
Bρ

|∇vt|2dx,

which, by virtue of (2.4.33) and (2.4.35) implies∫ 4

0

∫
Bρ

|vt|2dx ≤ C + CN + C log
2h

ε
.

on A∩Dc
1∩Dc

2. By Corollary 2.3.3 and noting that G3/2 ⊂ [0, 4]×Bρ we get that

there exists a set D3 ∈ F with P (D3) ≤ Ce−N
1/a

, such that on A∩Dc
1∩Dc

2∩Dc
3
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we have

sup
(t,x)∈G1

vt(x) ≤ [N(C + CN + C log
2h

ε
)]1/2.

By applying property (iii), we get

sup
(t,x)∈G1

log
h

ut(x) + ε
≤ [N(C + CN + C log

2h

ε
)]1/2 + 1,

and therefore,

inf
(t,x)∈G1

ut(x) ≥ he−[N(C+CN+C log 2h−C log ε)]1/2−1 − ε.

Letting ε = e−c
′N with a sufficiently large c′, it is easy to see that the right-hand

side above is bounded from below by ε, finishing the proof.

Finally let us present an application of Theorem 2.4.1 which asserts the point-

wise continuity of solutions. In particular, we find that the set of discontinuity

points of the solution is a.s. of first category and has measure 0.

Theorem 2.4.4. Let Assumptions 2.3.1-2.3.2 hold. Let u be a solution of (2.3.27)

and (t0, x0) ∈ (0, 4)×B2. Then u is almost surely continuous at (t0, x0).

Proof. Consider the parabolic transformations Pα,t′,x′ :

t→ α2t+ t′,

x→ αx+ x′.

It is easy to see that if v is a solution of (2.3.27) on a cylinder Q, then v ◦P−1
α,t′,x′

is also solution of (2.3.27), on the cylinder Pα,t′,x′Q, with another sequence of

Wiener martingales on another filtration, and with different coefficients that still

satisfy Assumption 2.3.1 with the same bounds. To ease notation, for a cylinder

Q let PQ denote the unique parabolic transformation that maps Q to G, if such

exists. Also, for an interval [s, r] ⊂ [0, 4] let P[s,r] = P2/
√
r−s,−4s/(r−s),0. That is,

P[s,r][s, r]×B1 = [0, 4]×B2/
√
r−s, which, when r − s ≤ 1, contains G.

Without loss of generality x0 = 0 can and will be assumed, as will the al-

most sure boundedness of u on G, since these can be achieved with appropriate

parabolic transformations, using the boundedness obtained on sub-cylinders in

Theorem 2.3.2. Also let us fix a probability δ > 0, denote the corresponding

lower bound 3ε2 obtained from the Harnack inequality, and take an arbitrary

0 < ε1 < ε2/2.

Let us consider a smooth version of the function (·)+. That is, take a convex
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f ∈ C∞ such that

(i) f(t) = 0 for t ≤ 0;

(ii) f(t) ≤ t;

(iii) f(t) ≤ ε21/6 only if t ≤ ε21/6.

Apply Theorem 2.3.4 twice with the function f , with the interval [t0− 4s, t0 + s],

and with solutions v = u − sup{t0−4s}×B2
u and v = −u + inf{t0−4s}×B2 u. Also

notice that (for both choices of v)

‖f(v)‖2
2,[t0−4s,t0+s]×B2

≤ Cs‖u‖2
∞,G → 0

as s→ 0 for almost every ω, and thus in probability as well, in other words,

P (‖f(v)‖2
2,[t0−4s,t0+s]×B2

> α)

can be made arbitrarily small by choosing s sufficiently small. Therefore, we

obtain an s > 0 and an event Ω0, with P (Ω0) > 1− δ, such that on Ω0,

sup
[t0−4s,t0+s]×B1

u− sup
{t0−4s}×B2

u < ε21/6

inf
[t0−4s,t0+s]×B1

u− inf
{t0−4s}×B2

u > −ε21/6.

Let us rescale u at the starting time:

u′±(t, x) = ±

(
2

u(t, x)− sup{t0−4s}×B2
u

sup{t0−4s}×B2
u− inf{t0−4s}×B2 u

+ 1

)
,

that is, supB2
u′±(t0 − 4s, ·) = 1, infB2 u

′
±(t0 − 4s, ·) = −1. Now we can write

Ω0 = ΩA ∪ ΩB, where

• On ΩA, osc{t0−4s}×B2u < ε1/3, and therefore, osc[t0−4s,t0+s]×B1u < ε1/3 +

2ε21/6 < ε1;

• On ΩB, |u′±| < 1 + 2(ε21/6)/(ε1/3) = 1 + ε1, on [t0 − 4s, t0 + s]×B1.

Notice that in the event ΩB, on the cylinder [t0 − 4s, t0 + s]× B1, the functions

u′±/(1 + ε1) + 1 take values between 0 and 2. Therefore one of (u′±/(1 + ε1) + 1) ◦
P−1

[t0−4s,t0+s]

∣∣∣
G

, denoted for the moment by u′′, satisfies the conditions of Theorem

2.4.1 with A = ΩB.
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We obtain that on an event Ω′B

inf
G1

u′′ > 3ε2,

and thus

oscQu <
(2− 3ε2)(1 + ε1)

2
osc{t0−4s}×B2u < (1− ε2)osc{t0−4s}×B2u,

where Q = P−1
[t0−4s,t0+s]G1. Moreover, P (ΩB \Ω′B) < δ. Also, notice that (t0, 0) ∈

Q. Let us denote Ω1 = ΩA ∪ Ω′B. We have shown the following lemma:

Lemma 2.4.5. Let δ > 0 and let 3ε2 be the lower bound corresponding to the

probability δ obtained from the Harnack inequality. For any u that is a solution

of (2.3.27) on G, t0 > 0, and for any sufficiently small ε1 > 0 there exists an

s > 0 and an event Ω1 such that

(i) P (Ω1) > 1− 2δ;

(ii) On Ω1, at least one of the following is satisfied:

(a) oscQu < ε1;

(b) oscQu < (1− ε2)oscGu,

where Q = P−1
[t0−4s,t0+s](G1).

Now take u = u(0) and t0 = t
(0)
0 from the statement of the theorem and a

sequence (ε
(n)
1 )∞n=0 ↓ 0, and for n ≥ 0 proceed inductively as follows:

• Apply Lemma 2.4.5 with u(n), t
(n)
0 , and ε

(n)
1 , and take the resulting Ω

(n)
1 and

Q(n);

• Let u(n+1) = u(n) ◦P−1
Q(n) and (t

(n+1)
0 , 0) = PQ(n)(t

(n)
0 , 0).

On lim supn→∞Ω
(n)
1 the function u is continuous at the point (t0, 0). Indeed,

the sequence of cylinders Q(0),P−1
Q(0)Q

(1),P−1
Q(0)P

−1
Q(1)Q

(2), . . . contain (t0, 0), and

the oscillation of u on these cylinders tends to 0. However, P (lim supn→∞Ω
(n)
1 ) ≥

1− 2δ, and since δ can be chosen arbitrarily small, u is continuous at (t0, 0) with

probability 1, and the proof is finished.
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Chapter 3

Degenerate equations - solvability

The condition λ > 0 in Assumption 1.0.1 is crucial, for example the smooth-

ing property expressed by Theorem 1.0.1 can clearly not be expected to hold

otherwise. However, degenerating operators, i.e. ones for which the coercivity

condition holds only with λ = 0 arise naturally from an important application of

SPDEs, the Zakai equation for the nonlinear filtering. Their solvability in Wm
p

spaces has been claimed first in [26]. However, the proof, in particular, the a priori

estimate for each partial derivative contained a nontrivial gap for the p 6= 2 case.

It turns out that it is actually not possible to estimate each partial derivative

separately, but one has to view the vector of derivatives as a whole, and esti-

mate it using the vector-valued equation it satisfies. This motivates to consider

systems of equations in the first place, and leads to some interesting differences

from the scalar case. We note that a quite different approach to investigate what

the “appropriate” stochastic parabolicity condition is for systems of equations

can be found in [30], with the attention restricted to the L2 scale and constant

coefficients. We also note that in the nondegenerate case a complete theory of

SPDEs in Wm
p spaces is established in [18]. One rationale behind solving equa-

tions in Wm
p for large p is the following. By Sobolev embedding, the solution is n

times continuously differentiable if it is in Wm
p with m− d/p > n. On the other

hand it is expected that solvability in Wm
p requires (roughly) m = n + d/p + ε

bounded derivatives from the coefficients. So in order to relax the regularity

assumptions on the coefficients, one wishes to choose p sufficiently large. The

content of this chapter is based on the author’s joint work with István Gyöngy

and Nicolai Krylov, in the paper [11].
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3.1 Formulation

Let M ≥ 1 be an integer, and let 〈·, ·〉 and 〈·〉 denote the scalar product and the

norm in RM , respectively. By TM we denote the set of M ×M matrices, which

we consider as a Euclidean space RM2
. For an integer m ≥ 1 we define l2(Rm) as

the space of sequences ν = (ν1, ν2, ...) with νk ∈ Rm, k ≥ 1, and finite norm

‖ν‖l2 =
( ∞∑
k=1

〈νk〉2
)1/2

We look for RM -valued functions ut(x) = (u1
t (x), ..., uMt (x)), of ω ∈ Ω, t ∈

[0, T ] and x ∈ Rd, which satisfy the system of equations

dut =[aijt Dijut + bitDiut + cut + ft] dt

+ [σikt Diut + νkt ut + gkt ] dwkt , (3.1.1)

and the initial condition

u0 = ψ, (3.1.2)

where at = (aijt (x)) takes values in the set of d× d symmetric matrices,

σit = (σikt (x))∞k=1 ∈ l2, bit(x) ∈ TM , ct(x) ∈ TM ,

νt(x) ∈ l2(TM), ft(x) ∈ RM , gt(x) ∈ l2(RM) (3.1.3)

for i = 1, ..., d, for all ω ∈ Ω, t ≥ 0, x ∈ Rd. Note that with the exception of aij

and σik, all ‘coefficients’ in equation (3.1.1) mix the coordinates of the process u.

Let m be a nonnegative integer, p ∈ [2,∞) and make the following assump-

tions.

Assumption 3.1.1. The derivatives in x ∈ Rd of aij up to order max(m, 2) and

of bi and c up to order m are P × B(Rd)-measurable functions, in magnitude

bounded by K for all i, j ∈ {1, 2, ..., d}. The derivatives in x of the l2-valued

functions σi = (σik)∞k=1 and the l2(TM)-valued function ν up to order m + 1

are P ×B(Rd)-measurable l2-valued and l2(TM)-valued functions, respectively, in

magnitude bounded by K.

Assumption 3.1.2. The free data, (ft)t∈[0,T ] and (gt)t∈[0,T ] are predictable pro-

cesses with values in Wm
p (Rd,RM) and Wm+1

p (Rd, l2(RM)), respectively, such

37



that almost surely

Kpm,p(T ) =

∫ T

0

(
|ft|pWm

p
+ |gt|pWm+1

p

)
dt <∞. (3.1.4)

The initial value, ψ is an F0-measurable Wm
p (Rd,RM)-valued random variable.

To formulate the parabolicity condition for the system, set

αij = 2aij − σikσjk i, j = 1, . . . , d

and

βi = bi − σirνr, i = 1, . . . , d.

Assumption 3.1.3. There exist a constant K0 > 0 and a P×B(Rd)-measurable

RM -valued bounded function h = (hit(x)), whose first order derivatives in x are

bounded functions, such that for all ω ∈ Ω, t ≥ 0 and x ∈ Rd

|h|+ |Dh| ≤ K, (3.1.5)

and for all (λ1, ..., λd) ∈ Rd

|
d∑
i=1

(βikl − δklhi)λi|2 ≤ K0

d∑
i,j=1

αijλiλj for k, l = 1, ...,M . (3.1.6)

Remark 3.1.1. Let Assumption 3.1.1 hold with m = 0 and the first order deriva-

tives of bi in x are bounded by K for each i = 1, 2, ...d. Then notice that condition

(3.1.6) is a natural extension of the degenerate parabolicity condition to systems

of stochastic PDEs. Indeed, when M = 1 then taking hi = βi for i = 1, ..., d,

we can see that Assumption 3.1.3 is equivalent to α ≥ 0. Let us analyse now

Assumption 3.1.3 for arbitrary M ≥ 1. Notice that it holds when α is uniformly

elliptic, i.e., α ≥ κId with a constant κ > 0 for all ω, t ≥ 0 and x ∈ Rd. Indeed,

due to Assumption 3.1.1 there is a constant N = N(K, d) such that

|
d∑
i=1

(βikl − δklhi)λi|2 ≤ N
d∑
i=1

|λi|2 for every k, l = 1, 2, ...,M,

which together with the uniform ellipticity of α clearly implies (3.1.6). Notice

also that (3.1.6) holds in many situations when instead of the strong ellipticity

of α we only have α ≥ 0. Such examples arise, for example, when aij = σirσjr/2

for all i, j = 1, ..., d, and b and ν are such that βi is a diagonal matrix for each

i = 1, ..., d, and the diagonal elements together with their first order derivatives
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in x are bounded by a constant K. As another simple example, consider the

system of equations

dut(x) ={1
2
D2ut(x) +Dvt(x)} dt+ {Dut(x) + vt(x)} dwt

dvt(x) ={1
2
D2vt(x)−Dut(x)} dt+ {Dvt(x)− ut(x)} dwt

for t ∈ [0, T ], x ∈ R, for a 2-dimensional process (ut(x), vt(x)), where w is a

one-dimensional Wiener process. In this example α = 0 and β = 0. Thus clearly,

condition (3.1.6) is satisfied.

Later it will be convenient to use condition (3.1.6) in an equivalent form,

which we discuss in the next remark.

Remark 3.1.2. Notice that condition (3.1.6) in Assumption 3.1.3 can be refor-

mulated as follows: There exists a constant K0 such that for all values of the

arguments and all continuously differentiable RM -valued functions u = u(x) on

Rd we have

〈u, biDiu〉 − σik〈u, νkDiu〉 ≤ K0

∣∣ d∑
i,j=1

αij〈Diu,Dju〉
∣∣1/2〈u〉+ hi〈Diu, u〉. (3.1.7)

Indeed, set β̂i = βi − hiIM , where IM is the M ×M unit matrix and observe

that, (3.1.7) means that

〈u, β̂iDiu〉 ≤ K0

∣∣ d∑
i,j=1

αij〈Diu,Dju〉
∣∣1/2〈u〉.

By considering this relation at a fixed point x and noting that then one can choose

u and Du independently, we conclude that

〈
∑
i

β̂iDiu〉2 ≤ K2
0α

ij〈Diu,Dju〉 (3.1.8)

and (3.1.6) follows (with a different K0) if we take Diu
k = λiδ

kl.

On the other hand, (3.1.6) means that for any l without summation on l

∣∣∑
i

β̂iklDiu
l
∣∣2 ≤ K0α

ij(Diu
l)Dju

l.

But then by Cauchy’s inequality similar estimate holds after summation on l is

done and carried inside the square on the left-hand side. This yields (3.1.8) (with
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a different constant K0) and then leads to (3.1.7).

The notion of solution to (3.1.1)-(3.1.2) is a straightforward adaptation of

Definition 1.0.1. Namely, u = (u1, ..., uM) is a solution on [0, τ ], for a stopping

time τ ≤ T , if it is a W 1
p (Rd,RM)-valued predictable function on [0, τ ],∫ τ

0

|ut|pW 1
p
dt <∞ (a.s.),

and for each RM -valued ϕ = (ϕ1, ..., ϕM) from C0(Rd) with probability one

(ut, ϕ) = (ψ, ϕ) +

∫ t

0

{−(aijs Dius, Djϕ) + (b̄isDius + csus + fs, ϕ)} ds (3.1.9)

+

∫ t

0

(σirs Dius + νrsus + gr(s), ϕ) dwrs (3.1.10)

for all t ∈ [0, τ ], where b̄i = bi −Dja
ijIM . Here, and later on (Ψ,Φ) denotes the

inner product in the L2-space of RM -valued functions Ψ and Φ defined on Rd.

The main result now reads as follows.

Theorem 3.1.1. Let Assumption 3.1.3 hold. If Assumptions 3.1.1 and 3.1.2 also

hold with m ≥ 0, then there is at most one solution to (3.1.1)-(3.1.2) on [0, T ]. If

together with Assumption 3.1.3, Assumptions 3.1.1 and 3.1.2 hold with m ≥ 1,

then there is a unique solution u = (ul)Ml=1 to (3.1.1)-(3.1.2) on [0, T ]. Moreover,

u is a weakly continuous Wm
p (Rd,RM)-valued process, it is strongly continuous as

a Wm−1
p (Rd,RM)-valued process, and for every q > 0 and n ∈ {0, 1, ...,m}

E sup
t∈[0,T ]

|ut|qWn
p
≤ N(E|ψ|qWn

p
+ EKqn,p(T )) (3.1.11)

with N = N(m, p, q, d,M,K, T ).

In the case p = 2 we present also a modification of Assumption 3.1.3, in order

to cover an important class of stochastic PDE systems, the hyperbolic symmetric

systems.

Observe that if in (3.1.6) we replace βikl with βilk, nothing will change. By the

convexity of t2 condition (3.1.6) then holds if we replace βilk with (1/2)[βilk+βikl].

Since

|a− b|2 ≤ |a+ b|2 + 2a2 + 2b2

this implies that (3.1.6) also holds for

β̄ikl = (βikl − βilk)/2
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in place of βikl, which is the antisymmetric part of βi = bi − σirνr.
Hence the following condition is weaker than Assumption 3.1.3.

Assumption 3.1.4. There exist a constant K0 > 0 and a P×B(Rd)-measurable

RM -valued function h = (hit(x)) such that (3.1.5) holds, and for all ω ∈ Ω, t ≥ 0

and x ∈ Rd and for all (λ1, ..., λd) ∈ Rd

|
d∑
i=1

(β̄ikl − δklhi)λi|2 ≤ K0

d∑
i,j=1

αijλiλj for k, l = 1, ...,M . (3.1.12)

The following result in the special case of deterministic PDE systems is indi-

cated and a proof is sketched in [14].

Theorem 3.1.2. Take p = 2 and replace Assumption 3.1.3 with Assumption

3.1.4 in the conditions of Theorem 3.1.1. Then the conclusion of Theorem 3.1.1

holds with p = 2.

Remark 3.1.3. Notice that Assumption 3.1.4 obviously holds with hi = 0 if the

matrices βi are symmetric and α ≥ 0. When a = 0 and σ = 0 then the system is

called a first order symmetric hyperbolic system.

Remark 3.1.4. If Assumption 3.1.4 does not hold then even simple first order

deterministic systems with smooth coefficients may be ill-posed. Consider, for

example, the system

dut(x) =Dvt(x) dt

dvt(x) =−Dut(x) dt (3.1.13)

for (ut(x), vt(x)), t ∈ [0, T ], x ∈ R, with initial condition u0 = ψ, v0 = φ, such

that ψ, φ ∈ Wm
2 \ Wm+1

2 for an integer m ≥ 1. Clearly, this system does not

satisfy Assumption 3.1.4, and one can show that it does not have a solution with

the initial condition u0 = ψ, v0 = φ. We note, however, that it is not difficult

to show that for any constant ε 6= 0 and Wiener process w the stochastic PDE

system

dut(x) =Dvt(x) dt+ εDvt(x) dwt

dvt(x) =−Dut(x) dt− εDut(x) dwt (3.1.14)

with initial condition (u0, v0) = (ψ, φ) ∈ Wm
2 (for m ≥ 1) has a unique solution

(ut, vt)t∈[0,T ], which is a Wm
2 -valued continuous process. We leave the proof of

this statement and the statement about the nonexistence of a solution to (3.1.13)
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as exercises for those readers who find that interesting. Clearly, system (3.1.14)

does not belong to the class of stochastic systems considered in this paper.

3.2 The main estimate

First let us invoke Itô’s formula for the Lp norm. The following in the special

case M = 1 is Theorem 2.1 from [20]. The proof of this multidimensional variant

goes the same way, and therefore will be omitted. Note that for p ≥ 2 the second

derivative, Dij〈x〉p of the function (x1, x2, . . . , xM)→ 〈x〉p for p ≥ 2 is

p(p− 2)〈x〉p−4xixj + p〈x〉p−2δij,

which makes the last term in (3.2.15) below natural. Here and later on we use

the convention 0 · 0−1 := 0 whenever such terms occur.

Lemma 3.2.1. Let p ≥ 2 and let ψ = (ψk)Mk=1 be an Lp(Rd,RM)-valued F0-

measurable random variable. For i = 0, 1, 2, ..., d and k = 1, ...,M let fki and

(gkr)∞r=1 be predictable functions on Ω × (0, T ], with values in Lp and in Lp(l2),

respectively, such that∫ T

0

(∑
i,k

|fkit |
p
Lp

+
∑
k

|gk·t |
p
Lp

)
dt <∞ (a.s.).

Suppose that for each k = 1, ...,M we are given a W 1
p -valued predictable function

uk on Ω× (0, T ] such that ∫ T

0

|ukt |
p
W 1
p
dt <∞ (a.s.),

and for any φ ∈ C∞0 with probability 1 for all t ∈ [0, T ] we have

(ukt , φ) = (ψk, φ) +

∫ t

0

(gkrs , φ) dwrs +

∫ t

0

((fk0
s , φ)− (fkis , Diφ)) ds.

Then there exists a set Ω′ ⊂ Ω of full probability such that

u = 1Ω′(u
1, ..., uk)t∈[0,T ]

is a continuous Lp(Rd,RM)-valued process, and for all t ∈ [0, T ]∫
Rd
〈ut〉p dx =

∫
Rd
〈ψ〉p dx+

∫ t

0

∫
Rd
p〈us〉p−2〈us, grs〉 dx dwrs
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+

∫ t

0

∫
Rd

(
p〈us〉p−2〈us, f 0

s 〉 − p〈us〉p−2〈Dius, f
i
s〉

−(1/2)p(p− 2)〈us〉p−4〈us, f is〉Di〈us〉2

+
∑
r

[
(1/2)p(p− 2)〈us〉p−4〈us, grs〉2 + (1/2)p〈us〉p−2〈grs〉2

])
dx ds, (3.2.15)

where f i := (fki)Mk=1 and gr := (gkr)Mk=1 for all i = 0, 1, ..., d and r = 1, 2, ....

The following lemma presents the crucial a priori estimate to prove solvability

in Lp spaces.

Lemma 3.2.2. Suppose that Assumptions 3.1.1, 3.1.2, and 3.1.3 hold with m ≥
0. Assume that u = (ut)t∈[0,T ] is a solution of (3.1.1)-(3.1.2) on [0, T ]. Then

a.s. u is a continuous Lp(Rd,RM)-valued process, and there is a constant N =

N(p,K, d,M,K0) such that

d

∫
Rd
〈ut〉p dx+ (p/4)

∫
Rd
〈ut〉p−2αijt 〈Diut, Djut〉 dx dt

≤ p

∫
Rd
〈ut〉p−2〈ut, σikDiut + νkt ut + gkt 〉 dx dwkt

+N

∫
Rd

[
〈ut〉p + 〈ft〉p +

(∑
k

〈gkt 〉2
)p/2

+
(∑

k

〈Dgkt 〉2
)p/2]

dx dt. (3.2.16)

Proof. By Lemma 3.2.1 (a.s.) u is a continuous Lp(Rd,RM)-valued process and

d

∫
Rd
〈ut〉p dx =

∫
Rd
p〈ut〉p−2〈ut, σikDiut + νkt ut + gkt 〉 dx dwkt

+

∫
Rd

(
p〈ut〉p−2〈ut, bitDiut + ctut + ft −Dia

ij
t Djut〉 − p〈ut〉p−2〈Diut, a

ij
t Djut〉

−(1/2)p(p− 2)〈ut〉p−4Di〈ut〉2〈ut, aijt Djut〉

+
∑
k

{
(1/2)p(p− 2)〈ut〉p−4〈ut, σikt Diut + νkt ut + gkt 〉2

+ (1/2)p〈ut〉p−2〈σikt Diut + νkt ut + gkt 〉2
})

dx dt. (3.2.17)

Observe that

〈ut〉p−2〈ut, ft〉 ≤ 〈ut〉p + 〈ft〉p, 〈ut〉p−2
∑
k

〈gkt 〉2 ≤ 〈ut〉p +
(∑

k

〈gkt 〉2
)p/2

,

〈ut〉p−2
∑
k

〈νkt ut, gkt 〉 ≤ N〈ut〉p−1
(∑

k

〈gkt 〉2
)1/2 ≤ N〈ut〉p +N

(∑
k

〈gkt 〉2
)p/2

,
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〈ut〉p−4
∑
k

〈ut, gkt 〉2 ≤ 〈ut〉p−2
∑
k

〈gkt 〉2 ≤ 〈ut〉p +
(∑

k

〈gkt 〉2
)p/2

,

〈ut〉p−4
∑
k

〈ut, νkt ut〉〈ut, gkt 〉 ≤ N〈ut〉p−1
(∑

k

〈gkt 〉2
)1/2 ≤ 〈ut〉p +

(∑
k

〈gkt 〉2
)p/2

,

〈ut〉p−2〈ut, ctut〉 ≤ 〈ut〉p−1〈ctut〉 ≤ |ct|〈ut〉p,

where |c| denotes the (Hilbert-Schmidt) norm of c.

This shows how to estimate a few terms on the right in (3.2.17). We write

ξ ∼ η if ξ and η have identical integrals over Rd and we write ξ � η if ξ ∼ η+ζ and

the integral of ζ over Rd can be estimated by the coefficient of dt in the right-hand

side of (3.2.16). For instance, integrating by parts and using the smoothness of

σikt and gkt we get

p〈ut〉p−2〈σikt Diut, g
k
t 〉 � −pσikt (Di〈ut〉p−2)〈ut, gkt 〉 (3.2.18)

= −p(p− 2)〈ut〉p−4〈ut, σikt Diut〉〈ut, gkt 〉,

where the first expression comes from the last occurrence of gkt in (3.2.17), and the

last one with an opposite sign appears in the evaluation of the first term behind

the summation over k in (3.2.17). Notice, however, that these calculations are

not justified when p is close to 2, since in this case 〈ut〉p−2 may not be absolutely

continuous with respect to xi and it is not clear either if 0/0 should be defined as

0 when it occurs in the second line. For p = 2 we clearly have 〈σikt Diut, g
k
t 〉 � 0.

For p > 2 we modify the above calculations by approximating the function 〈t〉p−2,

t ∈ RM , by continuously differentiable functions φn(t) = ϕn(〈t〉2) such that

lim
n→∞

ϕn(r) = |r|(p−2)/2, lim
n→∞

ϕ′n(r) = (p− 2)sign(r)|r|(p−4)/2/2

for all r ∈ R, and

|ϕn(r)| ≤ N |r|(p−2)/2, |ϕ′n(r)| ≤ N |r|(p−4)/2

for all r ∈ R and integers n ≥ 1, where ϕ′n := dϕn/dr and N is a constant

independent of n. Thus instead of (3.2.18) we have

pϕn(〈ut〉2)〈σikt Diut, g
k
t 〉 � −2pϕ′n(〈ut〉2)〈ut, σikt Diut〉〈ut, gkt 〉, (3.2.19)

where

|ϕ′n(〈ut〉2)〈ut, σikt Diut〉〈ut, gkt 〉| ≤ N〈ut〉p−2〈Diut〉〈gkt 〉 (3.2.20)
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with a constant N independent of n. Letting n→∞ in (3.2.19) we get

p〈ut〉p−2〈σikt Diut, g
k
t 〉 � −p(p− 2)〈ut〉p−4〈ut, σikt Diut〉〈ut, gkt 〉,

where, due to (3.2.20), 0/0 means 0 when it occurs.

These manipulations allow us to take care of the terms containing f and g

and show that to prove the lemma we have to prove

p(I0 + I1 + I2) + (p/2)I3 + [p(p− 2)/2](I4 + I5)

� −(p/4)〈ut〉p−2αijt 〈Diut, Djut〉, (3.2.21)

where

I0 = −〈ut〉p−2Dia
ij
t 〈ut, Djut〉, I1 = −〈ut〉p−2aijt 〈Diut, Djut〉

I2 = 〈ut〉p−2〈ut, bitDiut〉, I3 = 〈ut〉p−2
∑
k

〈σikt Diut + νkt ut〉2,

I4 = 〈ut〉p−4
∑
k

〈ut, σikt Diut + νkt ut〉2, I5 = −〈ut〉p−4Di〈ut〉2〈ut, aijt Djut〉.

Observe that

I0 = −(1/2)〈ut〉p−2Dia
ij
t Dj〈ut〉2 = −(1/p)Dj〈ut〉pDia

ij
t � 0,

by the smoothness of a. Also notice that

I3 � 〈ut〉p−2σikt σ
jk
t 〈Diut, Djut〉+ I6,

where

I6 = 2〈ut〉p−2σikt 〈Diut, ν
kut〉.

It follows that

pI1 + (p/2)I3 � −(p/2)〈ut〉p−2αijt 〈Diut, Djut〉+ (p/2)I6.

Next,

I4 � 〈ut〉p−4σikt σ
jk
t 〈ut, Diut〉〈ut, Djut〉+ 2〈ut〉p−4σikt 〈ut, Diut〉〈ut, νkt ut〉

= (1/4)〈ut〉p−4σikt σ
jk
t Di〈ut〉2Dj〈ut〉2 + [2/(p− 2)](Di〈ut〉p−2)σikt 〈ut, νkt ut〉

� (1/4)〈ut〉p−4σikt σ
jk
t Di〈ut〉2Dj〈ut〉2 − [1/(p− 2)]I6 − [2/(p− 2)]I7,
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where

I7 = 〈ut〉p−2σikt 〈ut, νktDiut〉.

Hence

pI1 + (p/2)I3 + [p(p− 2)/2](I4 + I5) � −(p/2)〈ut〉p−2αijt 〈Diut, Djut〉

−[p(p− 2)/8]〈ut〉p−4αijt Di〈ut〉2Dj〈ut〉2 − pI7,

and

I2 − I7 = 〈ut〉p−2(〈ut, bitDiut〉 − σikt 〈ut, νktDiut〉) = 〈ut〉p−2〈ut, βitDiut〉,

with βi = bi−σikνk. It follows by Remark 3.1.2 that the left-hand side of (3.2.21)

is estimated in the order defined by � by

−(p/2)〈ut〉p−2αijt 〈Diut, Djut〉

−[p(p− 2)/8]〈ut〉p−4αijt Di〈ut〉2Dj〈ut〉2

+K0p〈ut〉p−2
∣∣ d∑
i,j=1

αijt 〈Diut, Djut〉
∣∣1/2〈ut〉+ hiDi〈ut〉p

� −(p/4)〈ut〉p−2αijt 〈Diut, Djut〉

− [p(p− 2)/8]〈ut〉p−4αijt Di〈ut〉2Dj〈ut〉2〉, (3.2.22)

where the last relation follows from the elementary inequality ab ≤ εa2 + ε−1b2.

The lemma is proved.

Remark 3.2.1. In the case that p = 2 one can replace condition (3.1.6) with the

following: There are constant K0, N ≥ 0 such that for all continuously differen-

tiable RM -valued functions u = u(x) with compact support in Rd and all values

of the arguments we have∫
Rd
〈u, βiDiu〉 dx ≤ N

∫
Rd
〈u〉2 dx

+K0

∫
Rd

(∣∣ d∑
i,j=1

αij〈Diu,Dju〉
∣∣1/2〈u〉+ hi〈Diu, u〉

)
dx. (3.2.23)

This condition is weaker than (3.1.6) as follows from Remark 3.1.2 and still by

inspecting the above proof we get that u is a continuous L2(Rd,RM)-valued pro-

cess, and there is a constant N = N(K, d,M,K0) such that (3.2.16) holds with
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p = 2.

Remark 3.2.2. In the case that p = 2 and the magnitudes of the first derivatives

of bi are bounded by K one can further replace condition (3.2.23) with a more

tractable one, which is Assumption 3.1.4. Indeed, for ε > 0

R := 〈u, (βi − hiIM)Diu〉 = 1
2
βiklDi(u

kul) + 〈u, (β̄i − hiIM)Diu〉

≤ 1
2
βiklDi(u

kul) + ε〈(β̄i − hiIM)Diu〉2/2 + ε−1〈u〉2/2.

Using Assumption 3.1.4 we get

R ≤ 1
2
βiklDi(u

kul) + εMK0α
ij〈Diu,Dju〉/2 + ε−1〈u〉2/2

for every ε > 0. Hence by integration by parts we have∫
Rd
〈u, βiDiu〉 dx ≤ N

∫
Rd
〈u〉2 dx+

∫
Rd
〈u, hiIMDiu〉 dx

+MK0

∫
Rd

(ε/2)αij〈Diut, Djut〉+ (ε−1/2)〈u〉2 dx.

Minimising here over ε > 0 we get (3.2.23). In that case again u is a continuous

L2(Rd,RM)-valued process, and there is a constant N = N(K, d,M,K0) such

that (3.2.16) holds with p = 2.

Remark 3.2.3. If M = 1, then condition (3.1.7) is obviously satisfied with K0 = 0

and hi = bi − σikνk.
Also note that in the general case, if the coefficients are smoother, then by

formally differentiating equation (3.1.1) with respect to xi we obtain a new system

of equations for the M × d matrix-valued function

vt = (vnmt ) = Dut = (Dmu
n
t ).

We treat the space of M × d matrices as a Euclidean Md-dimensional space, the

coordinates in which are organized in a special way. The inner product in this

space is then just 〈〈A,B〉〉 = trAB∗. Naturally, linear operators in this space will

be given by matrices like (T (nm)(pj)), which transforms an M × d matrix (Apj)

into an M × d matrix (Bnm) by the formula

Bnm =
m∑
p=1

d∑
j=1

T (nm)(pj)Apj.
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We claim that the coefficients, the initial value and free terms of the system

for vt satisfy Assumptions 3.1.1, 3.1.2, and 3.1.3 with m ≥ 0 if Assumptions 3.1.1,

3.1.2, and 3.1.3 are satisfied with m ≥ 1 for the coefficients, the initial value and

free terms of the original system for ut.

Indeed, as is easy to see, vt satisfies (3.1.1) with the same σ and a and with

b̃i, c̃, f̃ , ν̃k, g̃k in place of bi, c, f , νk, gk, respectively, where

b̃i(nm)(pj) = Dma
ijδpn + binpδjm, c̃(nm)(pj) = cnpδmj +Dmb

jnp, (3.2.24)

f̃nm = Dmf
n + urDmc

nr, ν̃k(nm)(pj) = Dmσ
jkδnp + νknpδmj,

g̃knm = Dmg
kn + urDmν

knr. (3.2.25)

Then the left-hand side of the counterpart of (3.1.7) for v is

d∑
m=1

Km +
M∑
n=1

Jn,

where (no summation with respect to m)

Km = vnmbinrDiv
rm − σikvnmνknrDiv

rm

and (no summation with respect to n)

Jn = vnmDma
ijDiv

nj − σikvnmDmσ
jkDiv

nj.

Observe that Div
nj = Diju

n implying that

σikDmσ
jkDiv

nj = (1/2)Dm(σikσjk)Diju
n,

Jn = (1/2)vnmDmα
ijDiju

n.

By Lemma 1.2.4 for any ε > 0 and n (still no summation with respect to n)

Jn ≤ Nε−1〈〈v〉〉2 + εαijDiku
nDjku

n,

which along with the fact that Diku
n = Div

nk yields

M∑
n=1

Jn ≤ Nε−1〈〈v〉〉2 + εαij〈〈Div,Djv〉〉.
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Upon minimizing with respect to ε we find

M∑
n=1

Jn ≤ N
( d∑
i,j=1

αij〈〈Div,Djv〉〉
)1/2〈〈v〉〉.

Next, by assumption for any ε > 0 and m (still no summation with respect

to m)

Km ≤ Nε−1〈〈v〉〉2 + εαijDiv
rmDjv

rm + (1/2)hiDi

M∑
r=1

(vrm)2.

We conclude as above that

d∑
m=1

Km ≤ N
( d∑
i,j=1

αij〈〈Div,Djv〉〉
)1/2〈〈v〉〉+ hi〈〈Div, v〉〉

and this proves our claim.

The above calculations show also that the coefficients, the initial value and

the free terms of the system for vt satisfy Assumptions 3.1.1, 3.1.2, and 3.1.4

with m ≥ 0 if Assumptions 3.1.1, 3.1.2, and 3.1.4 are satisfied with m ≥ 1 for the

coefficients, the initial value and free terms of the original equation for ut. (Note

that due to Assumptions 3.1.1 with m ≥ 1, b̃, given in (3.2.24), has first order

derivatives in x, which in magnitude are bounded by a constant.)

Now higher order derivatives of u are obviously estimated through lower order

ones on the basis of this remark without any additional computations. However,

we still need to be sure that we can differentiate equation (3.1.1).

Lemma 3.2.3. Let m ≥ 0. Suppose that Assumptions 3.1.1, 3.1.2, and 3.1.3 are

satisfied and assume that u = (ut)t∈[0,T ] is a solution of (3.1.1)-(3.1.2) on [0, T ]

such that (a.s.) ∫ T

0

|ut|pWm+1
p

dt <∞.

Then (a.s.) u is a continuous Wm
p (Rd,RM)-valued process and for any q > 0

E sup
t∈[0,T ]

|ut|qWm
p
≤ N(E|ψ|qWm

p
+ EKqm,p(T )) (3.2.26)

with a constant N = N(m, p, q, d,M,K,K0, T ). If p = 2 and instead of Assump-

tion 3.1.3 Assumption 3.1.4 holds and (in case m = 0) the magnitudes of the first

derivatives of bi are bounded by K, then u is a continuous Wm
2 (Rd,RM)-valued

process, and for any q > 0 estimate (3.2.26) holds (with p = 2).
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Proof. We are going to prove the lemma by induction on m. First let m = 0

and denote yt := |ut|pLp . Then by virtue of Remark 3.2.2 and Lemma 3.2.2, the

process y = (yt)t∈[0,T ] is an adapted Lp-valued continuous process, and (1.2.2)

holds with

Ft :=

∫
Rd

[
〈ft〉p +

(∑
k

〈gkt 〉2
)p/2

+
(∑

k

〈Dgkt 〉2
)p/2]

dx,

mt := p

∫ t

0

∫
Rd
〈us〉p−2〈us, σiks Dius + νksus + gks 〉 dx dwks .

Notice that

d[mt] = p2

∞∑
r=1

(∫
Rd
〈ut〉p−2〈ut, σirt Diut + νrt ut + grt 〉 dx

)2

dt.

≤ 3p2(At +Bt + Ct) dt,

with

At =
∞∑
r=1

(
p

∫
Rd
〈ut〉p−2σirt 〈ut, Diut〉 dx

)2

=
∞∑
r=1

(∫
Rd
σirt Di〈ut〉p dx

)2

,

Bt =
∞∑
r=1

(∫
Rd
〈ut〉p−2〈ut, νrt ut〉 dx

)2

, Ct =
∞∑
r=1

(∫
Rd
〈ut〉p−2〈ut, grt 〉 dx

)2

.

Integrating by parts and then using Minkowski’s inequality, due to Assumption

3.1.1, we get At ≤ Ny2
t with a constant N = N(K,M, d). Using Minkowski’s

inequality and taking into account that

∞∑
r=1

〈u, νru〉2 ≤ 〈u〉4
∞∑
r=1

|νr|2 ≤ N〈u〉4,
∞∑
r=1

〈u, gr〉2 ≤ 〈u〉2|g|,

we obtain

Bt ≤ Ny2
t , Ct ≤

(∫
Rd
〈ut〉p−1|gt| dx

)2

≤ |yt|2(p−1)/p|gt|2Lp .

Consequently, condition (1.2.3) holds with Gt = |gt|pLp , ρ = 1/p, and we get

(3.2.26) with m = 0 by applying Lemma 1.2.5.

Let m ≥ 1 and assume that the assertions of the lemma are valid for m−1, in

place of m, for any M ≥ 1, p ≥ 2 and q > 0, for any u, ψ, f and g satisfying the

assumptions with m − 1 in place of m. Recall the notation v = (vnlt ) = (Dlu
n
t )

from Remark 3.2.3, and that vt satisfies (3.1.1) with the same σ and a and with
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b̃i, c̃, f̃ , ν̃k, g̃k in place of bi, c, f , νk, gk, respectively. By virtue of Remarks 3.2.3

and 3.2.2 the system for v = (vt)t∈[0,T ] satisfies Assumption 3.1.3, and it is easy

to see that it satisfies also Assumptions 3.1.1 and 3.1.2 with m − 1 in place of

m. Hence by the induction hypothesis v is a continuous Wm−1
p (Rd,RM)-valued

adapted process, and we have

E sup
t∈[0,T ]

|vt|qWm−1
p
≤ N(E|ψ̃|q

Wm−1
p

+ EK̃qm−1,p(T )) (3.2.27)

with a constant N = N(T,K,K0,M, d, p, q), where ψ̃nl = Dlψ
n,

K̃pm−1,p(T ) :=

∫ T

0

(|f̃t|pWm−1
p

+ |g̃t|pWm
p

) dt.

It follows that (ut)t∈[0,T ] is a Wm
p (Rd,RM)-valued continuous adapted process,

and by using the induction hypothesis it is easy to see that

EK̃qm−1,p(T )) ≤ N(E|ψ|qWm
p

+ EKqm,p(T )).

Thus (3.2.26) follows.

If p = 2 and Assumption 3.1.3 is replaced with Assumptions 3.1.4, then the

proof of the conclusion of the lemma goes in the same way with obvious changes.

The proof is complete.

3.3 Proof of the main results

First we prove uniqueness. Let u(1) and u(2) be solutions to (3.1.1)-(3.1.2), and

let Assumptions 3.1.1, 3.1.2 and 3.1.3 hold with m = 0. Then u := u(1) − u(2)

solves (3.1.1) with u0 = 0, g = 0 and f = 0 and Lemma 3.2.2 and Remark 3.2.2

are applicable to u. Then using Itô’s formula for transforming |ut|pLp exp(−λt)
with a sufficiently large constant λ, after simple calculations we get that almost

surely

0 ≤ e−λt|ut|pLp ≤ mt for all t ∈ [0, T ],

where m := (mt)t∈[0,T ] is a continuous local martingale starting from 0. Hence

almost surely mt = 0 for all t, and it follows that almost surely u
(1)
t (x) = u

(2)
t (x)

for all t and almost every x ∈ Rd. If p = 2 and Assumptions 3.1.1, 3.1.2 and 3.1.4

hold and the magnitudes of the first derivatives of bi are bounded by K and u(1)

and u(2) are solutions, then we can repeat the above argument with p = 2 to get

u(1) = u(2).
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To show the existence of solutions we approximate the data of system (3.1.1)

with smooth ones, satisfying also the strong stochastic parabolicity.To this end

we will use the approximation described in the following lemma.

Lemma 3.3.1. Let Assumptions 3.1.1 and 3.1.3 (3.1.4, respectively) hold with

m ≥ 1. Then for every ε ∈ (0, 1) there exist P × B(Rd)-measurable smooth (in

x) functions aεij, b(ε)i, c(ε), σ(ε)i, ν(ε), Dka
εij and h(ε)i, satisfying the following

conditions for every i, j, k = 1, ..., d.

(i) There is a constant N = N(K) such that

|aεij − aij|+ |b(ε)i − bi|+ |c(ε) − c|+ |Dka
εij −Dka

ij| ≤ Nε,

|σ(ε)i − σi|+ |ν(ε) − ν| ≤ Nε

for all (ω, t, x) and i, j, k = 1, ..., d.

(ii) For every integer n ≥ 0 the partial derivatives in x of aεij, b(ε)i, c(ε), σ(ε)i

and ν(ε) up to order n are P × B(Rd)-measurable functions, in magnitude

bounded by a constant. For n = m this constant is independent of ε, it

depends only on m, M , d and K;

(iii) For the matrix αεij := 2aεij − σ(ε)ikσ(ε)jk we have

αεijλiλj ≥ ε
d∑
i=1

|λi|2 for all λ = (λ1, ..., λd) ∈ Rd;

(iv) Assumption 3.1.3 (3.1.4, respectively) holds for the functions αεij, βεi :=

b(ε)i − σ(ε)ikν(ε)k and h(ε)i in place of αij, βi and hi, respectively, with the

same constant K0.

Proof. The proofs of the two statements containing Assumptions 3.1.3 and 3.1.4,

respectively, go in essentially the same way, therefore we only detail the former.

Let ζ be a nonnegative smooth function on Rd with unit integral and support in

the unit ball, and let ζε(x) = ε−dζ(x/ε). Define

b(ε)i = bi ∗ ζε, c(ε) = c ∗ ζε, σ(ε)i = σi ∗ ζε, ν(ε) = ν ∗ ζε, h(ε)i = hi ∗ ζε,

and aεij = aij ∗ ζε + kεδij with a constant k > 0 determined later, where δij

is the Kronecker symbol and ‘∗’ means the convolution in the variable x ∈ Rd.

Since we have mollified functions which are bounded and Lipschitz continuous,
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the mollified functions, together with aεij and Dka
εij, satisfy conditions (i) and

(ii). Furthermore,

|σ(ε)irν(ε)r − σirνr| ≤ |σ(ε)i − σi||ν(ε)|+ |σi||ν(ε) − ν| ≤ 2K2ε,

for every i = 1, ..., d. Similarly,

|σ(ε)irσ(ε)jr − σirσjr| ≤ 2K2ε, |b(ε)i − bi| ≤ Kε, |h(ε)i − hi| ≤ Nε

for all i, j = 1, 2, ..., d. Hence setting

Bεi = b(ε)i − σ(ε)ikν(ε)k − h(ε)iIM ,

and using the notation Bi for the same expression without the superscript ‘ε’, we

have

|Bεi −Bi| ≤ |b(ε)i − bi|+ |σ(ε)irν(ε)r − σirνr|+
√
M |h(ε)i − hi| ≤ Rε,

|B(ε)i +Bi| ≤ R

with a constant R = R(M,K). Thus for any z1,...,zd vectors from RM

|〈Bεizi〉2 − 〈Bizi〉2| = |〈(Bεi −Bi)zi, (B
εj +Bj)zj〉|

≤ |Bεi −Bi||Bεj +Bj|〈zi〉〈zj〉 ≤ dR2ε
d∑
i=1

〈zi〉2.

Therefore

〈Bεizi〉2 ≤ 〈Bizi〉2 + C1ε

d∑
i=1

〈zi〉2

with a constant C1 = C1(M,K, d). Similarly,∑
i,j

(2aεij − σ(ε)ikσ(ε)jk)〈zi, zj〉

≥
∑
i,j

(2aij − σikσjk)〈zi, zj〉+ (k − C2)ε
∑
i

〈zi〉2

with a constant C2 = C2(K,m, d). Consequently,

〈(βεi − h(ε)iIM)zi〉2 ≤ 〈Bizi〉2 + C1ε
d∑
i=1

〈zi〉2
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≤ K0

d∑
i,j=1

αij〈zi, zj〉+ C1ε

d∑
i=1

〈zi〉2

≤ K0

d∑
i,j=1

αεij〈zi, zj〉+ (K0(C2 − k) + C1)ε
d∑
i=1

〈zi〉2.

Choosing k such that K0(C2 − k) + C1 = −K0 we get

〈(βεi − h(ε)iIM)zi〉2 +K0ε
d∑
i=1

〈zi〉2 ≤ K0

d∑
i,j=1

αεij〈zi, zj〉.

Hence statements (iii) and (iv) follow immediately.

Now we start the proof of the existence of solutions which are Wm
p (Rd,RM)-

valued if the Assumptions 3.1.1, 3.1.2 and 3.1.3 hold with m ≥ 1. First we make

the additional assumptions that ψ, f and g vanish for |x| ≥ R for some R > 0,

and that q ∈ [2,∞) and

E|ψ|qWm
p

+ EKqm,q(T ) <∞. (3.3.28)

For each ε > 0 we consider the system

duεt = [σ
(ε)ir
t Diu

ε
t + ν

(ε)r
t uεt + g

(ε)r
t ] dwrt

+
[
aεijt Diju

ε
t + b

(ε)i
t Diu

ε
t + f

(ε)
t

]
dt (3.3.29)

with initial condition

u
(ε)
0 = ψ(ε), (3.3.30)

where the coefficients are taken from Lemma 3.3.1, and ψ(ε), f (ε) and g(ε) are

defined as the convolution of ψ, f and g, respectively, with ζε(·) = ε−dζ(·/ε) for

ζ ∈ C∞0 (Rd) taken from the proof of Lemma 3.3.1. By Theorem 1.0.1 the above

equation has a unique solution uε, which is a W n
2 (Rd,RM)-valued continuous

process for all n. Hence, by Sobolev embeddings, uε is a Wm+1
p (Rd,RM)-valued

continuous process, and therefore we can use Lemma 3.2.3 to get

E sup
t∈[0,T ]

|uεt |
q
Wn
p′
≤ N(E|ψ(ε)|qWn

p′
+ E(Kεn,p′)q(T )) (3.3.31)

for p′ ∈ {p, 2} and n = 0, 1, 2...m, where Kε
n,p′ is defined by (3.1.4) with f (ε) and

g(ε) in place of f and g, respectively. Keeping in mind that T 1/r ≤ max{1, T},
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and using basic properties of convolution, we can conclude that

E

(∫ T

0

|uεt |rWn
p′
dt

)q/r
≤ N(E|ψ|qWn

p′
+ EKqn,p′(T )) (3.3.32)

for any r > 1 and with N = N(m, p, q, d,M,K, T ) not depending on r.

For integers n ≥ 0, and any r, q ∈ (1,∞) let Hn
p,r,q be the space of RM -valued

functions v = vt(x) = (vit(x))Mi=1 on Ω× [0, T ]×Rd such that v = (vt(·))t∈[0,T ] are

W n
p (Rd,RM)-valued predictable processes and

|v|qHnp,r,q = E

(∫ T

0

|vt|rWn
p
dt

)q/r
<∞.

Then Hn
p,r,q with the norm defined above is a reflexive Banach space for each

n ≥ 0 and p, r, q ∈ (1,∞). We use the notation Hn
p,q for Hn

p,q,q.

By Assumption 3.1.2 the right-hand side of (3.3.32) is finite for p′ = p and

also for p = 2 since ψ, f and g vanish for |x| ≥ R. Thus there exists a sequence

(εk)k∈N such that εk → 0 and for p′ = p, 2 and integers r > 1 and n ∈ [0,m] the

sequence vk := uεk converges weakly in Hn
p′r,q to some v ∈ Hm

p′,r,q, which therefore

also satisfies

E

(∫ T

0

|vt|rWn
p′
dt

)q/r
≤ N(E|ψ|qWn

p′
+ EKqn,q(T ))

for p′ = p, 2 and integers r > 1. Using this with p′ = p and letting r → ∞ by

Fatou’s lemma we obtain

Eesssupt∈[0,T ]|vt|
q
Wn
p
≤ N(E|ψ|qWn

p
+ EKqn,p(T )) for n = 0, 1, ...,m. (3.3.33)

Now we are going to show that a suitable stochastic modification of v is

a solution of (3.1.1)-(3.1.2). To this end we fix an RM -valued function ϕ in

C∞0 (Rd) and a predictable real-valued process (ηt)t∈[0,T ], which is bounded by

some constant C, and define the functionals Φ, Φk, Ψ and Ψk over H1
p,q by

Φk(u) = E

∫ T

0

ηt

∫ t

0

{−(aεkijs Dius, Djϕ) + (b̄εkis Dius + c(εk)
s us, ϕ)} ds dt,

Φ(u) = E

∫ T

0

ηt

∫ t

0

{−(aijs Dius, Djϕ) + (b̄isDius + csus, ϕ)} ds dt,

Ψ(u) = E

∫ T

0

ηt

∫ t

0

(σirt Diut + νrt ut, ϕ) dwrt dt
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Ψk(u) = E

∫ T

0

ηt

∫ t

0

(σ
(εk)ir
t Diut + ν

(εk)r
t ut, ϕ) dwrt dt

for u ∈ H1
p,q for each k ≥ 1, where b̄εi = b(ε)i −Dja

εijIM . By the Bunyakovsky-

Cauchy-Schwarz and the Burkholder-Davis-Gundy inequalities for all u ∈ H1
p,q

we have

Φ(u) ≤ CNT 2−1/q|u|H1
p,q
|ϕ|W 1

p̄
,

Ψ(u) ≤CTE sup
t≤T
|
∫ t

0

(σirt Diut + νrt ut, ϕ) dwrt |

≤3CTE

{∫ T

0

∞∑
r=1

(σirt Diut + νrt ut, ϕ)2 dt

}1/2

≤3CTE

{∫ T

0

(∫
Rd
|〈σirt Diut + νrt ut, ϕ〉|l2 dx

)2

dt

}1/2

≤CTNE
{∫ T

0

|ut|2W 1
p
|ϕ|2W 1

p̄
dt

}1/2

≤ CNT q/2|u|H1
p,q
|ϕ|W 1

p̄

with a constant N = N(K, d,M), where p̄ = p/(p − 1). (In the last inequality

we make use of the assumption q ≥ 2.) Consequently, Φ and Ψ are continuous

linear functionals over H1
p,q, and therefore

lim
k→∞

Φ(vk) = Φ(v), lim
k→∞

Ψ(vk) = Ψ(v). (3.3.34)

Using statement (i) of Lemma 3.3.1, we get

|Φk(u)− Φ(u)|+ |Ψk(u)−Ψ(u)| ≤ Nεk|u|H1
p,q
|ϕ|W 1

p̄
(3.3.35)

for all u ∈ H1
p,q with a constant N = N(k, d,M). Since uε is the solution of

(3.3.29)-(3.3.30), we have

E

∫ T

0

ηt(v
k
t , ϕ) dt = E

∫ T

0

ηt(ψ
k, ϕ) dt+ Φ(vk) + Ψ(vk)

+ F (f (εk)) +G(g(εk)) (3.3.36)

for each k, where

F (f (εk)) = E

∫ T

0

ηt

∫ t

0

(f (εk)
s , ϕ) ds dt,
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G(g(εk)) = E

∫ T

0

ηt

∫ t

0

(g(εk)r
s , ϕ) dwrs dt.

Taking into account that |vk|H1
p,q

is a bounded sequence, from (3.3.34) and (3.3.35)

we obtain

lim
k→∞

Φn(vk) = Φ(v), lim
k→∞

Ψk(v
k) = Ψ(v). (3.3.37)

One can see similarly (in fact easier), that

lim
k→∞

E

∫ T

0

ηt(v
k
t , ϕ) dt = E

∫ T

0

ηt(vt, ϕ) dt, (3.3.38)

lim
k→∞

E

∫ T

0

ηt(ψ
(εk)
t , ϕ) dt = E

∫ T

0

ηt(ψ, ϕ) dt, (3.3.39)

lim
k→∞

F (f (εk)) = F (f), lim
k→∞

G(g(εk)) = G(g). (3.3.40)

Letting k →∞ in (3.3.36), and using (3.3.37) through (3.3.40) we obtain

E

∫ T

0

ηt(vt, ϕ) dt

= E

∫ T

0

ηt

{
(ψ, ϕ) +

∫ t

0

[
− (aijs Dius, Djϕ) + (b̄isDius + csus + fs, ϕ)

]
ds

+

∫ t

0

(σirDivs + νrvs, ϕ) dwrs

}
dt

for every bounded predictable process (ηt)t∈[0,T ] and ϕ from C∞0 . Hence for each

ϕ ∈ C∞0

(vt, ϕ) = (ψ, ϕ) +

∫ t

0

[
− (aijs Divs, Djϕ) + (b̄isDivs + csvs + fs, ϕ)

]
ds

+

∫ t

0

(σirDivs + νrvs + grs , ϕ) dwrs

holds for P ×dt almost every (ω, t) ∈ Ω× [0, T ]. Substituting here (−1)|α|Dαϕ in

place of ϕ for a multi-index α = (α1, ..., αd) of length |α| ≤ m−1 and integrating

by parts, we see that

(Dαvt, ϕ) = (Dαψ, ϕ) +

∫ t

0

[
− (F j

s , Djϕ) + (F 0
s , ϕ)

]
ds+

∫ t

0

(Gr
s, ϕ) dwrs (3.3.41)

for P × dt almost every (ω, t) ∈ Ω× [0, T ], where, owing to the fact that (3.3.33)

also holds with 2 in place of p, F i and (Gr)∞r=1 are predictable processes with
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values in L2-spaces for i = 0, 1, ..., d, such that

∫ T

0

( d∑
i=0

|F i
s |2L2

+ |Gs|2L2

)
ds <∞ (a.s.).

Hence the theorem on Itô’s formula from [25] implies that in the equivalence class

of v in Hm
2,q there is a Wm−1

2 (Rd,RM)-valued continuous process, u = (ut)t∈[0,T ],

and (3.3.41) with u in place of v holds for any ϕ ∈ C∞0 (Rd) almost surely for

all t ∈ [0, T ]. After that an application of Lemma 3.2.1 to Dαu for |α| ≤ m − 1

yields that Dαu is an Lp(Rd,RM)-valued, strongly continuous process for every

|α| ≤ m− 1, i.e., u is a Wm−1
p (Rd,RM)-valued strongly continuous process. This,

(3.3.33), and the denseness of C∞0 in Wm
p (Rd,RM) implies that (a.s.) u is a

Wm
p (Rd,RM)-valued weakly continuous process and (3.1.11) holds.

To prove the theorem without the assumption that ψ, f and g have compact

support, we take a ζ ∈ C∞0 (Rd) such that ζ(x) = 1 for |x| ≤ 1 and ζ(x) = 0

for |x| ≥ 2, and define ζn(·) = ζ(·/n) for n > 0. Let u(n) = (ut(n))t∈[0,T ]

denote the solution of (3.1.1)-(3.1.2) with ζnψ, ζnf and ζng in place of ψ, f

and g, respectively. By virtue of what we have proved above, u(n) is a weakly

continuous Wm
p (Rd,RM)-valued process, and

E sup
t∈[0,T ]

|ut(n)− ut(l)|qWm
p
≤ NE|(ζn − ζl)ψ|qWm

p

+NE
( ∫ T

0

{|(ζn − ζl)fs|pWm
p

+ |(ζn − ζl)gs|pWm+1
p
} ds

)q/p
.

Letting here n, l → ∞ and applying Lebesgue’s theorem on dominated conver-

gence in the left-hand side, we see that the right-hand side of the inequality

tends to zero. Thus for a subsequence nk → ∞ we have that ut(nk) converges

strongly in Wm
p (Rd,RM), uniformly in t ∈ [0, T ], to a process u. Hence u is a

weakly continuous Wm
p (Rd,RM)-valued process. It is easy to show that it solves

(3.1.1)-(3.1.2) and satisfies (3.1.11).

By using a standard stopping time argument we can dispense with condition

(3.3.28). Finally we can prove estimate (3.1.11) for q ∈ (0, 2) by applying Lemma

1.2.3 in the usual way. The proof of the Theorem 3.1.1 is complete. We have

already showed the uniqueness statement of Theorem 3.1.2, the proof of the other

assertions goes in the above way with obvious changes.
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Chapter 4

Degenerate equations - numerics

As mentioned in the previous chapter, the study of degenerate equations is moti-

vated by practical applications such as the nonlinear filtering problem and there-

fore numerical methods to approximate the solution are of interest. However,

many approximation results for SPDEs rely strongly on the strong parabolic-

ity. Here we discuss finite difference approximations, motivated by [13], due to

four important favourable properties: 1) Easy implementation 2) Availability of

pointwise convergence 3) Enough flexibility to cover degenerate equations 4) Ex-

pansion of the error to a power series. The latter one is particularly useful when

combined with the classical idea of Richardson’s extrapolation from [36], to ob-

tain higher order schemes. Such an acceleration of the convergence of the spatial

discretization is established in [13]. Below we attempt, with partial success, to

relax the smoothness conditions on the coefficients. Also, we discuss the error one

makes when they solve a truncated version of the equation, which is a necessary

but rarely discussed step to make the implementation of the scheme feasible. We

apply this error estimate, along with the results of [13] and the analysis of the

implicit Euler method for degenerate equations, to obtain a fully discrete, imple-

mentable scheme. The content of this chapter is based on the papers [9], [10],

joint works with István Gyöngy.

4.1 Lp estimates and acceleration - Formulation

We consider the SPDE

dut(x) = [Di(a
ij
t (x)Djut(x)) + bit(x)Diut(x) + ct(x)ut(x) + ft(x)] dt

+ [σirt Diut(x) + νrt (x)ut(x) + gr(x)] dwrt (4.1.1)

59



for (t, x) ∈ [0, T ]× Rd, with the initial condition

u0(x) = ψ(x) x ∈ Rd. (4.1.2)

Because of the different form of the equation and because some different notations

will be more convenient, we formulate the similar assumptions to Chapter 3 again,

for integers m ≥ 1.

To introduce the finite difference schemes approximating (4.1.1) first let Λ0,

Λ1 ⊂ Rd be two finite sets, the latter being symmetric to the origin, and 0 ∈
Λ1 \ Λ0. Denote

Λ = Λ0 ∪ −Λ0 ∪ Λ1

and |Λ| =
∑

λ∈Λ |λ|. On Λ we make the following natural assumption: If any sub-

set Λ′ ⊂ Λ is linearly dependent, then Λ′ is linearly dependent over the rationals.

This ensures that the following grid is locally finite. Let Gh denote the grid

Gh = {h(λ1 + . . .+ λn) : λi ∈ Λ, n = 1, 2, ...},

for h > 0, and define the finite difference operators

δh,λϕ(x) = (1/h)(ϕ(x+ hλ)− ϕ(x))

and the shift operators

Th,λϕ(x) = ϕ(x+ hλ)

for λ ∈ Λ and h 6= 0. Notice that δh,0ϕ = 0 and Th,0ϕ = ϕ. For a fixed h > 0

consider the finite difference equation

duht (x) = (Lht (x)uht (x) + ft(x)) dt+ (Mhr
t (x)uht (x) + grt (x)) dwrt , (4.1.3)

for (t, x) ∈ [0, T ]×Gh, with the initial condition

uh0(x) = ψ(x) (4.1.4)

for x ∈ Gh, where

Lht ϕ =
∑
λ∈Λ0

δ−h,λ(a
λ
hδh,λϕ) +

∑
γ∈Λ1

pγhδh,γϕ+
∑
γ∈Λ1

cγhTh,γϕ

and

Mhr
t ϕ =

∑
λ∈Λ0

sλrh δh,λϕ+
∑
γ∈Λ1

nγrh Th,γϕ
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for functions ϕ on Gh. The coefficients aλh, p
γ
h, and cγh are P × B(Rd)-measurable

bounded functions on Ω× [0, T ]× Rd, with values in R, and p0
h = 0 is assumed.

The coefficients sλh and nγh are P × B(Rd)-measurable bounded functions on Ω×
[0, T ]×Rd, with values in l2. All of them are supposed to be defined for h = 0 as

well, and to depend continuously on h.

One can look for solutions of the above scheme in the space of adapted stochas-

tic processes with values in lp,h, the space of real functions φ on Gh such that

|φ|plp,h =
∑
x∈Gh

|φ(x)|phd <∞.

The similar space is defined for l2-valued functions and will be denoted by lp,h(l2).

For a fixed h equation (4.1.3) is an SDE in lp,h, with Lipschitz coefficients. Hence

if almost surely

|ψ|plp,h +

∫ T

0

|ft|plp,h + |gt|plp,h(l2) dt <∞,

then (4.1.3)-(4.1.4) admits a unique lp,h-valued solution (uht )t∈[0,T ].

Remark 4.1.1. By well-known results on Sobolev embeddings, if m > k + d/p,

there exists a bounded operator J from Wm
p to the space of functions with

bounded and continuous derivatives up to order k such that Jv = v almost ev-

erywhere. We will always identify functions with their continuous modifications

if they have one, without introducing new notation for them. It is also known,

and can be easily seen, that if m > d/p, then the for v ∈ Wm
p the restriction of

Jv onto the grid Gh is in lp,h, moreover,

|Jv|lp,h ≤ C|v|Wm
p
, (4.1.5)

where C is independent of v and h.

Remark 4.1.2. The h-dependency of the coefficients may seem artificial and in

fact does not mean any additional difficulty in the proof of Theorems 4.1.1-4.1.3

below. However, we will make use of this generality to extend our results to the

case when the data in the problem (4.1.1)-(4.1.2) are in some weighted Sobolev

spaces.

Clearly

δh,λϕ(x)→ ∂λϕ(x)

as h→ 0 for smooth functions ϕ, so in order to get that our finite difference oper-

ators approximate the corresponding differential operators, we make the following

assumption.
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Assumption 4.1.1. We have, for every i, j = 1, . . . , d, r = 1, . . .

aij =
∑
λ∈Λ0

aλ0λ
iλj, (4.1.6)

bi =
∑
γ∈Λ1

pγ0γ
i, c =

∑
γ∈Λ1

cγ0 , (4.1.7)

σir =
∑
λ∈Λ0

sλr0 λ
i, νr =

∑
γ∈Λ1

nγr0 (4.1.8)

and for P × dt× dx-almost all (ω, t, x) we have for all (zλ)λ∈Λ0

aλh(zλ)
2 − 2psλrh sµrh zλzµ ≥ 0, pγh ≥ 0 for every γ ∈ Λ1, h ≥ 0. (4.1.9)

Remark 4.1.3. The restriction (4.1.6) together with aλ0 ≥ 0 is not too severe, we

refer the reader to [24] for a detailed discussion about matrix-valued functions

which possess this property.

Remark 4.1.4. The parabolicity condition in (4.1.9) depends on p. This is an

essential restriction, but for example, additive and multiplicative noises are still

covered. It is worth mentioning that while unusual, there exist problems where

the stochastic parabolicity condition has to depend on p, see e.g. [1]. It is unclear

whether this is one of them or our condition can be significantly improved.

Example 4.1.1. Suppose that the matrix (aij) is diagonal. Then taking Λ0 =

{ei : i = 1 . . . d} and Λ1 = {0} ∪ {±ei : i = 1 . . . d}, where (ei) is the standard

basis in Rd, one can set

aeih = aii, peih = bi + θi, p−eih = θi, c
0
h = c, p0

h = c±eih = 0,

seirh = σir, n0r
h = νr, n±eirh = 0,

with any θi ≥ max(0,−bi), i = 1 . . . d.

Example 4.1.2. Suppose that (aij) is a P×B(Rd)-measurable function of (ω, t, x)

with values in a closed bounded polyhedron in the set of symmetric non-negative

d × d matrices, such that its first and second order derivatives in x ∈ Rd are

continuous in x and are bounded by a constant K. Then it is shown in [24]

that one can obtain a finite set Λ0 ⊂ Rd and P × B(Rd)-measurable, bounded,

nonnegative functions aλ0 , λ ∈ Λ0 such that (4.1.6) holds, and the first order

derivatives of (aλ0)1/2 in x are bounded by a constant N depending only on K,

d and the polyhedron. Such situation arises in applications when, for example,
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(aijt (x)) is a diagonally dominant symmetric non-negative definite matrix for each

(ω, t, x), which by definition means that

2aiit (x) ≥
d∑
j=1

|aijt (x)|, for all i = 1, 2, .., d, and (ω, t, x),

and hence it clearly follows that (aij) takes values in a closed polyhedron in the

set of symmetric non-negative d × d matrices. Clearly, this polyhedron can be

chosen to be bounded if (aij) is a bounded function.

Since the compatibility condition (4.1.6)-(4.1.7) will always be assumed, any

subsequent conditions will be formulated for the coefficients in (4.1.3), which then

automatically imply the corresponding properties for the coefficients in (4.1.1).

Assumption 4.1.2. The derivatives in (h, x) of aλh, s
λ
h, n

γ
h (resp., pγh, c

γ
h), up to

order m+ 1 (resp., m) are P × B(Rd)-measurable functions bounded by K.

Assumption 4.1.3. The free data, (ft)t∈[0,T ] and (gt)t∈[0,T ] are predictable pro-

cesses with values in Wm
p and Wm+1

p (Rd, l2), respectively, such that almost surely

Fm,p(T ) +Gm,p(T ) :=

(∫ T

0

|ft|pWm
p
dt

)1/p

+

(∫ T

0

|gt|pWm
p
dt

)1/p

<∞.

The initial value, ψ is an F0-measurable Wm
p -valued random variable.

We are now about to present the main results. The first three theorems

correspond to similar results in the L2 setting from [13]. The key role in their proof

is played by Theorem 4.2.3 below, which presents an upper bound for the Wm
p

norms of the solutions to (4.1.3)-(4.1.4). After obtaining this estimate, Theorems

4.1.1 through 4.1.3 can be proved in the same fashion as their counterparts in

the L2 setting, therefore, only a sketch of the proof will be provided in which we

highlight the main differences; for the complete argument we refer to [13].

Theorem 4.1.1. Let k ≥ 0 be an integer and let Assumptions 4.1.1 through 4.1.3

hold with m > 2k+ 3 +d/p. Then there are continuous random fields u(1), . . . u(k)

on [0, T ]× Rd, independent of h, such that almost surely

uht (x) =
k∑
j=0

hj

j!
u

(j)
t (x) + hk+1rht (x) (4.1.10)

for t ∈ [0, T ] and x ∈ Gh, where u(0) = u, rh is a continuous random field on
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[0, T ]× Rd, and for any q > 0

E sup
t∈[0,T ]

sup
x∈Gh
|rht (x)|q + E sup

t∈[0,T ]

|rht |
q
lp,h
≤ N(E|ψ|qWm

p
+ EF q

m,p(T ) + EGq
m,p(T ))

with N = N(K,T,m, p, q, d, |Λ|).

Once we have the expansion above, we can use Richardson extrapolation to

improve the rate of convergence. For a given k set

(c0, c1, . . . , ck) = (1, 0, 0, . . . , 0)V −1, (4.1.11)

where V denotes the (k + 1) × (k + 1) Vandermonde matrix V = (V ij) =

(2−(i−1)(j−1)), and define

vh =
k∑
i=0

ciu
hi ,

where hi = h/2i.

Theorem 4.1.2. Let k ≥ 0 be an integer and let Assumptions 4.1.1 through 4.1.3

hold with m > 2k + 3 + d/p. Then for every q > 0 we have

E sup
t∈[0,T ]

sup
x∈Gh
|ut(x)− vht (x)|q + E sup

t∈[0,T ]

|ut − vht |
q
lp,h

≤ hq(k+1)N(E|ψ|qWm
p

+ EF q
m,p(T ) + EGq

m,p(T ))

with N = N(K,T,m, k, p, q, d, |Λ|).

Theorem 4.1.3. Let (hn)∞n=1 ∈ lq be a nonnegative sequence for some q ≥ 1.

Let k ≥ 0 be an integer and let Assumptions 4.1.1 through 4.1.3 hold with m >

2k + 3 + d/p. Then for every ε > 0 there exists a random variable ξε such that

almost surely

sup
t∈[0,T ]

sup
x∈Gh
|ut(x)− vht (x)| ≤ ξεh

k+1−ε

for h = hn.

Remark 4.1.5. We can use hi = h/ni, i = 1 . . . k, with any set of different integers

ni, with n1 = 1. Then changing the matrix V to Ṽ = (Ṽ ij) = (n−j+1
i ) in (4.1.11),

Theorems 4.1.2-4.1.3 remain valid. The choice ni = i, for example, yields a more

coarse grid, and can reduce computation time.

Choosing p large enough, in some cases one can get rid of the term d/p in the

conditions of the theorems above, thus obtaining dimension-invariant conditions.
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To this end, first denote the function ρs(x) = 1/(1 + |x|2)s/2 defined on Rd for

all s ≥ 0. We say that a function F on Rd has polynomial growth of order s if

the L∞ norm of Fρs is finite. For any integer m ≥ 0, the set of functions on Rd

which have polynomial growth of order s and whose derivatives up to order m

are functions and have polynomial growth of order s is denoted by Pm
s , and its

equipped with the norm

‖F‖Pms = |Fρs|Wm
∞ <∞.

The similar space is defined for l2-valued functions and is denoted by Pm
s (l2).

Note that for any integers m > k ≥ 0, if F ∈ Pm
s , then its partial derivatives up

to order k exist in the classical sense and along with F are continuous functions.

The polynomial growth property of order s for functions on Gh can also be defined

analogously, the set of such functions is denoted by Ph,s.

Let s ≥ 0 and m be a nonnegative integer. Consider again the equation

dut(x) = (Di(a
ij
t (x)Djut(x)) + bit(x)Djut(x) + ct(x)ut(x) + ft(x)) dt

+ (σirt (x)Diut(x) + νrt (x)ut(x) + gr(x)) dwrt (4.1.12)

for (t, x) ∈ [0, T ]× Rd, with the initial condition

u0(x) = ψ(x) x ∈ Rd, (4.1.13)

where we keep all our measurability conditions from (4.1.1)-(4.1.2). However,

instead of the integrability conditions on ψ, ft, gt, we now assume the following.

Assumption 4.1.4. The initial data ψ is an F0 × B(Rd)-measurable mapping

from Ω×Rd to R, such that ψ ∈ Pm
s (a.s.). The free data f and g are P×B(Rd)-

measurable mappings from Ω × [0, T ] × Rd to R and l2, respectively. Moreover,

almost surely (ft) is a Pm
s -valued process and (gt) is a Pm

s (l2)-valued process,

such that almost surely

∣∣‖ft‖Pms + ‖gt‖Pms (l2)

∣∣
L∞[0,T ]

<∞.

Definition 4.1.1. A P × B(Rd)-measurable mapping u from Ω× [0, T ]× Rd to

R such that (ut)t∈[0,T ] is almost surely a P 1
s -valued bounded process, is called a

classical solution of (4.1.12)-(4.1.13) on [0, T ], if almost surely u and its first and

second order partial derivatives in x are continuous functions of (t, x) ∈ [0, T ]×Rd,
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and almost surely

ut(x) = ψ(x) +

∫ t

0

[Di(a
ij
s (x)Djus(x)) + bis(x)Djus(x) + cs(x)us(x) + fs(x)] ds

+

∫ t

0

[σirs (x)Dius(x) + νrs (x)us(x) + grs(x)] dwrs

for all (t, x) ∈ [0, T ]× Rd for a suitable modification of the stochastic integral in

the right-hand side of the equation.

If m ≥ 1, then as noted above the initial condition and free terms are contin-

uous in space. This makes it reasonable to consider the finite difference scheme

(4.1.3)-(4.1.4) as an approximation for the problem (4.1.12)-(4.1.13).

Theorem 4.1.4. Let k ≥ 0 be integer, and let s > s ≥ 0 be real numbers.

Suppose that Assumptions 4.1.1, 4.1.2, and 4.1.4 hold with m > 2k + 3.

(i) Equation (4.1.12)-(4.1.13) admits a unique Pm−1
s -valued classical solution

(ut)t∈[0,T ].

(ii) For fixed h the corresponding finite difference equation (4.1.3)-(4.1.4) admits

a unique Ph,s-valued solution (uht )t∈[0,T ].

(iii) Suppose furthermore pγh ≥ κ for γ ∈ Λ1, for some constant κ > 0, and

Λ0 ∪ −Λ0 ⊂ Λ1.

Then there are continuous random fields u(1), . . . u(k) on [0, T ] × Rd, inde-

pendent of h, such that almost surely

uht =
k∑
j=0

hj

j!
u

(j)
t (x) + hk+1rht (x)

for t ∈ [0, T ] and x ∈ Gh, where u(0) = u, rh is a continuous random field

on [0, T ]× Rd, and for any q > 0

E sup
t∈[0,T ]

sup
x∈Gh
|rht (x)ρs(x)|q + E sup

t∈[0,T ]

|rht ρs|
q
lp,h

≤ N
(
E‖ψ‖qPms + E

∣∣‖ft‖Pms + ‖gt‖Pms (l2)

∣∣q
L∞[0,T ]

)
with some N = N(K,T,m, s, s, q, d, |Λ|, κ).
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(iv) Let (hn)∞n=1 ∈ lq be a nonnegative sequence for some q ≥ 1. Then for every

ε,M > 0 there exists a random variable ξε,M such that almost surely

sup
t∈[0,T ]

sup
x∈Gh,|x|≤M

|ut(x)− vht (x)| ≤ ξε,Mh
k+1−ε

for h = hn.

Remark 4.1.6. Condition pγh ≥ κ in assertion (iii) of the above theorem is harm-

less, similarly to the second part of (4.1.9). As seen in Example 4.1.1, we can

always satisfy this additional requirement by adding a sufficiently large constant

to pγh.

4.2 Lp estimates and acceleration - Proofs

First let us collect some properties of the finite difference operators. Throughout

this section we consider a fixed h > 0 and use the notation uα = Dαu. It is easy

to see that, analogously to the integration by parts,∫
Rd
v(δh,λu) dx =

∫
Rd

(δh,−λv)u dx = −
∫
Rd

(δ−h,λv)u dx, (4.2.14)

when v ∈ Lq/q−1 and u ∈ Lq for some 1 ≤ q ≤ ∞, with the convention 1/0 =∞
and ∞/(∞− 1) = 1. The discrete analogue of the Leibniz rule can be written as

δh,λ(uv) = u(δh,λv) + (δh,λu)(Th,λv). (4.2.15)

Finally, we will also make use of the simple identities

Th,αδh,βu = δh,α+βu− δh,αu, (4.2.16)

vvλ = (1/2)(δλ(v
2)− h(δλv)2), (4.2.17)

and the estimate

|δh,λv|Lp ≤ |
∫ 1

0

∂λv(·+ θhλ) dθ|Lp ≤ |λ||v|W 1
p
, (4.2.18)

valid for p ∈ [1,∞] and v ∈ W 1
p , h 6= 0 and λ ∈ Rd.

Lemma 4.2.1. For any p = 2k with an integer k, λ ∈ Rd, h 6= 0 and real

function v on Rd we can write

δh,λ(v
p−1) = F h,λ

p (v)δh,λv,
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where F h,λ
p (v) ≥ (1/2)vp−2 on R. Moreover, for p > 2, q = p/(p− 2) and for all

v ∈ Lp(Rd)

|F h,λ
p (v)|qLq ≤ (p− 1)|v|pLp . (4.2.19)

Proof. First we claim that

F h,λ
p (v) =

p−2∑
i=0

vp−2−iTh,λv
i. (4.2.20)

This is trivial for p = 2, and we have, using (4.2.15)

δh,λ(v
p−1) = δh,λ(v

2vp−3) = v2F h,λ
p−2(v)δh,λv + (vδh,λv + δh,λvTh,λv)Th,λv

p−3.

Thus by induction we get (4.2.20), and (4.2.19) follows. For the other claim,

clearly we have F h,λ
p (v) ≥ (1/2)vp−2 for p = 2. Then we can prove by induction

once again, as from (4.2.20) we have,

F h,λ
p (v) = Th,λv

2F h,λ
p−2(v) + Th,λvv

p−3 + vp−2

≥ Th,λv
2(1/2)vp−4 + Th,λvv

p−3 + vp−2 = (1/2)vp−4(Th,λv + v)2 + (1/2)vp−2.

Introduce the notation

Aqz = −aλh(zλ)2 + qsλrh sµrh zλzµ

for q ≥ 0 and z = (zλ)λ∈Λ0 , and recall that under condition (4.1.9), Aqz ≤ 0 for

q ≤ 2p.

Lemma 4.2.2. Let m ≥ 1 be an integer and p = 2k for some integer k ≥ 1,

and let Assumptions 4.1.2 and 4.1.3, along with the condition (4.1.9) with p in

place of 2p be satisfied. Then for u ∈ Wm
p , f ∈ Wm

p , g ∈ Wm+1
p (l2) and for all

multi-indices α of length |α| ≤ m we have∫
Rd
pup−1

α (x)Dα(Lht u(x) + f(x))

+(1/2)p(p− 1)up−2
α (x)|Dα(Mhr

t u(x) + gr(x))|2dx

≤ N

∫
Rd
up−2
α (x)Ap−1/4(δh,λuα(x))λ∈Λ0 dx+N(|u|pWm

p
+|f |pWm

p
+|g|pWm

p (l2)) (4.2.21)
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for P ×dt-almost all (ω, t) ∈ Ω× [0, T ], where N is a constant depending only on

d, p,m, |Λ|, and K.

Proof. For real functions v and w defined on Rd we write v ∼ w if their integrals

over Rd are the same. We use the notation v � w if v ≤ w + F with a function

F whose integral over Rd can be estimated by N(|u|pWm
p

+ |f |pWm
p

+ |g|pWm
p (l2)).

By Hölder’s inequality we get

up−1
α Dα(cγhTh,γu) + up−1

α fα + up−2
α |Dα(nγrh Th,γu+ gr)|2 � 0.

Next, notice that

up−1
α Dα(pλhδh,λu) � up−1

α pλhδh,λuα.

Then we can repeatedly use (4.2.17) and the nonnegativity of pλh to get

up−1
α pλhδh,λuα ≤ (1/2)up−2

α pλhδh,λu
2
α

≤ (1/4)up−4
α pλhδh,λu

4
α ≤ · · · ≤ (1/2k)pλhδh,λu

2k

α .

By (4.2.14), pλhδh,λu
p
α ∼ δh,−λp

λ
hu

p
α. Therefore, as by (4.2.18), |δh,−λpλh| ≤ K|λ| ,

we obtain

up−1
α Dα(pλhδh,λu) � 0.

The remaining terms will be treated together. First notice that by Young’s and

Hölders inequalities

(1/2)p(p− 1)up−2
α (

∑
λ∈Λ0

Dαsλrh δh,λu,
∑
λ∈Λ0

Dαsλrh δh,λu+
∑
γ∈Λ1

nγrh Th,γu+ gr)l2

� (1 + ε)(1/2)p(p− 1)up−2
α sλrh sµrh δh,λuαδh,µuα (4.2.22)

for any ε > 0, in particular, we can make the prefactor less than (1/2)p(p− 1/2).

Now for a moment assume m = 0. By (4.2.14) and Lemma 4.2.1

up−1δ−hλ(a
λ
hδh,λu) ∼ −δh,λ(up−1)aλhδh,λu

= −F h,λ
p (u)aλh(δh,λu)2 ≤ (1/2)up−2aλh(δh,λu)2, (4.2.23)

where F is the functional obtained from Lemma 4.2.1. Combining this with

(4.2.22), the claim follows for m = 0. Assume now m ≥ 1. Then it is easy to see

that

up−1
α Dαδ−h,λ(a

λ
hδh,λu) � I1 + I2, (4.2.24)
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with

I1 := up−1
α

∑
(α′,α′′)∈A

δ−h,λD
α′aλhD

α′′δh,λu

I2 := up−1
α δ−h,λ(a

λ
hδh,λuα),

where A is the set of ordered pairs of multi-indices (α′, α′′) such that |α′| = 1 and

α′ + α′′ = α. By (4.2.14) and Lemma 4.2.1

I1 ∼ −2F h,λ
p (uα)

√
aλhδh,λuα

∑
(α′,α′′)∈A

Dα′
√

aλhδh,λuα′′

≤ εF h,λ
p (uα)aλh(δh,λuα)2 + ε−1NF h,λ

p (uα)(δh,λuα′′)
2 (4.2.25)

for every ε > 0. Using (4.2.23) with uα in place of u we get

I2 � −F h,λ
p (uα)aλh(δh,λuα)2.

Combining this with (4.2.25), from (4.2.24) we obtain

I ≤ −(1− ε)F h,λ
p (uα)aλh(δh,λuα)2 + ε−1NF h,λ

p (uα)
∑

(α′,α′′)∈A

(δhλuα′′)
2

≤ −(1− ε)(1/2)up−2
α aλh(δh,λuα)2 + ε−1N

|F h,λ
p (uα)|q + |

∑
(α′,α′′)∈A

(δhλuα′′)
2|p/2

 ,
with q = p/(p − 2). The quantity in the brackets is � 0, due to the estimates

(4.2.19) and (4.2.18). Fixing ε so that 1− ε > (p− 1/2)/(p− 1/4) and combining

the above with (4.2.22), the proof is finished.

Now we are ready to prove the main a priori estimate. To obtain bounds in

Sobolev norms we consider (4.1.3)-(4.1.4) as an SDE on the space Wm
p . Clearly,

under Assumption 4.1.2 u → Lht u and u → Mh,r
t u are bounded linear operators

from Wm
p to Wm

p and to Wm
p (l2), respectively, with operator norm uniformly

bounded in (t, ω). Therefore if Assumption 4.1.3 is also satisfied, (4.1.3)-(4.1.4)

is a SDE in the space Wm
p with Lipschitz continuous coefficients. As such, it

admits a unique continuous solution.

Theorem 4.2.3. Let Assumptions 4.1.2 and 4.1.3 hold with m ≥ 1, and let

condition (4.1.9) be satisfied. Then (4.1.3)-(4.1.4) has a unique continuous Wm
p -

valued solution (uht )t∈[0,T ], and for each q > 0 there exists a constant N =
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N(d, q, p,m,K, T, |Λ|) such that

E sup
t≤T
|uht |

q
Wm
p
≤ N(E|ψ|qWm

p
+ EF q

m,p(T ) + EGq
m,p(T )) (4.2.26)

for all h > 0.

Proof. By the preceding argument, we need only prove estimate (4.2.26). Fix

m ≥ 1 and first let p = 2k for some integer k ≥ 1, and only assume (4.1.9) with

p in place of 2p, along with Assumptions 4.1.2 and 4.1.3. Let α be a multi-index

such that |α| ≤ m. If we apply Itô’s formula to |Dαuh|pLp by Lemma 5.1 in [20],

one can notice that the term appearing in the drift is the left-hand side of (4.2.21),

with uh in place of u. Using Corollary 4.2.2 and summing over |α| ≤ m we get

d|uht |
p
Wm
p
≤ N

∫
Rd

(Dαuht )
p−2Ap−1/4(δh,λu

h
t,α)λ∈Λ0 dx dt

+N(|uht |
p
Wm
p

+ |ft|pWm
p

+ |gt|pWm+1
p

) dt+ dmh
t (4.2.27)

with some N depending only on p,m, d, |Λ|, and K, where

dmh
t = (p− 1)

∫
Rd

(Dαuht )
p−1Dα(sλrh δh,λu

h
t + nγrh Th,γu

h
t + grt ) dx dw

r
t

with α also used as a repeated index. It is clear that

d〈mh〉t = (p− 1)2

∞∑
r=1

(∫
Rd

(Dαuht )
p−1Dα(sλrh δh,λu

h
t + nγrh Th,γu

h
t + grt )dx

)2

dt.

For p = 2 Gronwall’s lemma can be readily applied as follows. Since for v ∈ Wm
2 ,

|α| ≤ m, and any function s with derivatives up to order m + 1 bounded by K,

we have ∣∣ ∫
Rd
vαD

α(sδh,λv) dx
∣∣ ≤ N |v|2Wm

2
,

(see [13]), we find that the conditions of Lemma 1.2.5 are satisfied with yt =

|uht |2Wm
2

, F = G = N(|ft|2Wm
2

+ |gt|2Wm
2

), and ρ = 1/2, and therefore the claim

follows for p = 2 and arbitrary q > 0.

For p = 2k, from (4.2.27) from (the classical) Gronwall’s lemma we have

sup
t∈[0,T ]

E|uht |
p
Wm
p

+ E

∫ T

0

∫
Rd
−(uht,α)p−2Ap−1/4(δh,λu

h
t,α)λ∈Λ0 dx dt

≤ NE(|ψ|pWm
p

+ F p
m,p(T ) +Gp

m,p(T )). (4.2.28)

Therefore, after taking supremum in (4.2.27) and using the Burkholder-Gundy-
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Davis inequality we obtain

E sup
t∈[0,T ]

|uht |
p
Wm
p
≤ NE(|ψ|pWm

p
+ F p

m,p(T ) +Gp
m,p(T )) +NE〈mh〉1/2T

By Minkowski’s and Young’s inequality we have

〈mh〉T ≤ ε sup
t∈[0,T ]

|uht |
p
Wm
p

+ ε−1N

∫ T

0

∫
Rd

(Dαuht )
p−2sλrh δh,λu

h
t,αs

µr
h δh,µu

h
t,α dx dt

+ ε−1N

∫ T

0

|uht |
p
Wm
p

+ |gt|pWm
p (l2) dt. (4.2.29)

Noticing that

(1/4)sλrh u
h
t,αs

µr
h z

λzµ ≤ (1/4)sλrh u
h
t,αs

µr
h z

λzµ − Apz ≤ −Ap−1/4z,

the expectation of second term on the right-hand side of (4.2.29) can be estimated

using (4.2.28). Doing so and choosing ε small enough, we get

E sup
t∈[0,T ]

|uht |
p
Wm
p
≤ NE(|ψ|pWm

p
+ F p

m,p(T ) +Gp
m,p(T )) + (1/2)E sup

t∈[0,T ]

|uht |
p
Wm
p
,

and since the right hand side is finite, the claim follows, for p = 2k, q = p.

Note that (4.2.26) is equivalent to

[E sup
t≤T
|uht |

q
Wm
p

]
1
q ≤ N([E|ψ|qWm

p
]

1
q + [EF q

m,p]
1
q + [EGq

m,p]
1
q ),

which implies

[E

(∫ T

0

|uht |rWm
p

) q
r

]
1
q ≤ N([E|ψ|qWm

p
]

1
q + [EF q

m,p]
1
q + [ Gq

m,p]
1
q ), (4.2.30)

for any r > 1, with another constant N , independent from r. In other words, this

means that for the special cases of p and q considered so far the solution operator

(ψ, f, g)→ uh

continuously maps Ψm
p,q ×Fmp,q × Gmp,q to Ump,q, where

Ψm
p,q = Lq(Ω,W

m
p ),

Fmp,q = Lq(Ω, Lp([0, T ],Wm
p )),
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Gmp,q = Lq(Ω, Lp([0, T ],Wm
p (l2))),

Ump,q = Lq(Ω, Lr([0, T ],Wm
p )).

Let us denote the complex interpolation space between any Banach spaces A0 and

A1 with parameter θ by [A0, A1]θ. Recall the following interpolation properties

(see 1.9.3, 1.18.4, and 2.4.2 from [37])

(i) If a linear operator T is continuous from A0 to B0 and from A1 to B1, then

it is also continuous from [A0, A1]θ to [B0, B1]θ, moreover, its norm between

the interpolated spaces depends only on θ and its norm between the original

spaces.

(ii) For a measure space M and 1 < p0, p1 <∞,

[Lp0(M,A0), Lp1(M,A1)]θ = Lpθ(M, [A0, A1]θ),

where 1/pθ = (1− θ)/p0 + θ/p1.

(iii) For m ∈ N, 1 < p0, p1 <∞,

[Wm
p0
,Wm

p1
]θ = Wm

pθ
,

where 1/pθ = (1− θ)/p0 + θ/p1.

Now take any p > 2 and take p1 = T (p) := 2k for the smallest k such that 2k > p.

Define θ ∈ [0, 1] by 1/p = (1 − θ)/2 + θ/p1. Further, take q ≥ p1 and define q0

with 1/q = (1 − θ)/q0 + θ/p1. Notice that since (4.1.9) is assumed, (4.1.9) also

holds with p1 in place of 2p. By properties (ii), (iii), we have

Ψm
p,q = [Ψm

2,q0
,Ψm

p1,p1
]θ, Fmp,q = [Fm2,q0 ,F

m
p1,p1

]θ,

Gmp,q = [Gm2,q0 ,G
m
p1,p1

]θ, Ump,q = [Um2,q0 ,U
m
p1,p1

]θ,

and since we know the continuity of the solution operator from Ψm
2,q0
×Fm2,q0×G

m
2,q0

to Um2,q0 and from Ψm
p1,p1
×Fmp1,p1

×Gmp1,p1
to Ump1,p1

, by (i), the solution operator is also

continuous from Ψm
p,q × Fmp,q × Gmp,q to Ump,q for any p ≥ 2, q ≥ T (p). Moreover, its

norm is independent of r. Hence we have (4.2.30), and letting r →∞ and keeping

in mind that uh is a continuous in Wm
p -valued process, using Fatou’s lemma we

get (4.2.26). The case q < T (p) can be covered by the usual application of Lemma

1.2.3.

Proof of Theorems 4.1.1-4.1.3. To prove Theorem 4.1.1, first consider the
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functions

F (h) = δh,λφ(x) =

∫ 1

0

∂λφ(x+ hθλ) dθ,

G(h) = δ−h,λδh,λψ(x) =

∫ 0

−1

∫ 1

0

∂λ∂λψ(x+ hλ(θ1 + θ2))dθ1dθ2

for fixed φ ∈ W n+l+2
p , ψ ∈ W n+l+3

p , n, l ≥ 0. Applying Taylor’s formula at h = 0

up to n+ 1 terms we get that

|δh,λφ−
n∑
i=0

hiAi∂
i+1
λ φ|W l

p
≤ N |h|n+1|φ|Wn+l+2

p
,

|δ−h,λδh,λψ −
n∑
i=0

hiBi∂
i+2
λ ψ|W l

p
≤ N |h|n+1|ψ|W l+n+3

p

with constants Ai = 1/(i+ 1)! and

Bi =

{
0 if i is odd

2
(i+2)!

if i is even
,

where N = N(|Λ|, d, l, n) is a constant. Similarly, or in fact equivalently to the

first inequality, we have

|Th,λϕ−
n∑
i=0

hi

i!
∂iλϕ|W l

p
≤ N |h|n+1|ϕ|Wn+l+1

p

for ϕ ∈ W n+l+1
p , where ∂0

λ denotes the identity operator. Without going into

details, it is clear that, due to Assumption 4.1.2, from these expansions one can

obtain operators L
(i)
t ,M

(i)k
t for integers i ∈ [0,m] such that L0

tφ = ∂ia
ij∂jφ +

bi∂iφ+ cφ, M
(0)k
t φ = σik∂iφ+ νkφ,

|L(i)
t φ|W l

p
≤ N |φ|W l+i+1

p
for i odd, i+ l ≤ m, (4.2.31)

|L(i)
t φ|W l

p
≤ N |φ|W l+i+2

p
for i even, i+ l ≤ m, (4.2.32)

|M(i)
t φ|W l

p(l2) ≤ N |φ|W l+i+1
p

i+ l ≤ m (4.2.33)

and

|(Lht −
n∑
i=0

hi

i!
L

(i)
t )φ|W l

p
≤ N |h|n+1|φ|Wn+l+3

p
for n+ l < m, (4.2.34)
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|(Mh
t −

n∑
i=0

hi

i!
M

(i)
t )φ|W l

p(l2) ≤ N |h|n+1|φ|Wn+l+2
p

for n+ l < m (4.2.35)

with N = N(|Λ|, K, d, p,m). The random fields u(j) in expansion (4.1.10) can

then be obtained from the system of SPDEs

du
(j)
t = (L

(0)
t u

(j)
t +

j∑
l=1

(
j
l

)
L

(l)
t u

(j−l)
t ) dt+ (M

(0)r
t u

(j)
t +

j∑
l=1

(
j
l

)
M

(l)r
t u

(j−l)
t ) dwrt

(4.2.36)

u
(j)
0 = 0, j = 1, ..., k, (4.2.37)

where v(0) = u, the solution of (4.1.1)-(4.1.2). The following theorem holds, being

the exact analogue of Theorem 5.1 from [13]. It can be proven inductively on j,

by a straightforward application of Theorem 3.1.1 and (4.2.31)-(4.2.33).

Theorem 4.2.4. Let k ≥ 1 be an integer, and let Assumptions 4.1.1, 4.1.2 and

4.1.3 hold with m ≥ 2k + 1. Then there is a unique solution u(1), . . . , u(k) of

(4.2.36)-(3.1.2). Moreover, u(j) is a Wm−2j
p -valued weakly continuous process, it

is strongly continuous as a Wm−2j−1
p -valued process, and

E sup
t∈[0,T ]

|u(j)
t |

q

Wm−2j
p

≤ N(E|ψ|qWm
p

+ EF q
m,p(T ) + EGq

m,p(T ))

for j = 1, . . . , k, for any q > 0, with a constant N = N(K,m, p, q, T, |Λ|).

Set

rht (x) = uht (x)−
k∑
j=0

hj

j!
u

(j)
t (x),

for t ∈ [0, T ] and x ∈ Rd, where uh is the Wm
p -valued solution of (4.1.3)-(4.1.4).

Then it is not difficult to verify that rh is the solution, of the finite difference

equation

rht (x) = (Lht r
h
t (x) + F h

t (x)) dt+ (Mhr
t r

h
t (x) +Ghr

t (x)) dwrt , t ∈ (0, T ], x ∈ Rd

with initial condition rh0(x) = 0 for x ∈ Rd, where

F h
t =

k∑
j=0

hj

j!

(
Lht −

k−j∑
i=0

hi

i!
L

(i)
t

)
u

(j)
t ,

Gh
t =

k∑
j=0

hj

j!

(
Mhr

t −
k−j∑
i=0

hi

i!
M

(i)r
t

)
u

(j)
t .
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Hence by applying Theorem 4.2.3 we get

E sup
t∈[0,T ]

|rht |
q

Wm−2k−3
p

≤ NE

(∫ t

0

|Ft|pWm−2k−3
p

+ |Gt|pWm−2k−3
p

dt

)q/p
.

Now using m− 2k − 3 > d/p, for the left-hand side we can write

E sup
t∈[0,T ]

sup
x∈Gh
|rht (x)|q + E sup

t∈[0,T ]

|rht |
q
lp,h
≤ NE sup

t∈[0,T ]

|rht |
q

Wm−2k−3
p

,

while (4.2.34), (4.2.35), and the theorem above yield

E sup
t∈[0,T ]

|F h
t |
q

Wm−2k−3
p

+ |Gh
t |
q

Wm−2k−3
p

≤ Nhq(k+1)

k∑
j=0

E sup
t∈[0,T ]

|u(j)
t |

q

Wm−2j
p

≤ Nhq(k+1)(E|ψ|qWm
p

+ EF q
m,p(T ) + EGq

m,p(T )),

where N denotes some constants which depend only on K, m, d, q, p, T and |Λ|.
Putting these inequalities together we obtain the estimate

E sup
t∈[0,T ]

sup
x∈Gh
|rht (x)|q + E sup

t∈[0,T ]

|rht |
q
lp,h

≤ Nhq(k+1)(E|ψ|qWm
p

+ EF q
m,p(T ) + EGq

m,p(T )), (4.2.38)

for all h > 0 with a constant N = N(K,m, d, q, p, T, |Λ|). Thus we have the

following theorem.

Theorem 4.2.5. Let k ≥ 0 be an integer and let Assumptions 4.1.1, 4.1.2 and

4.1.3 hold with m > 2k + 3 + d/p. Then there are continuous random fields

u(1), . . . u(k) on [0, T ]× Rd, independent of h, such that almost surely

uht (x) =
k∑
j=0

hj

j!
u

(j)
t (x) + rht (x) (4.2.39)

for all t ∈ [0, T ] and x ∈ Rd, where u(0) = u, uh is the Wm
p -valued solution of

(4.1.3)-(4.1.4), and rh is a continuous random field on [0, T ]×Rd, which for any

q > 0 satisfies the estimate (4.2.38).

Proof. The expansion (4.2.39) holds by the definition of rh, its continuity is a

simple consequence of Sobolev embeddings and Theorems 3.1.1, 4.2.3 and 4.2.4,

and estimate (4.2.38) is proved above.

To finish the proof of Theorem 4.1.1 we need only show that under the con-
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ditions of Theorem 4.2.5 the restriction of the Wm
p -valued solution uh of (4.1.3)-

(4.1.4) onto [0, T ] × Gh is a continuous lp,h-valued process which solves (4.1.3)-

(4.1.4). To this end note that under the conditions of Theorem 4.2.5 uh is a con-

tinuous Wm−1
p valued process, and therefore by (4.1.5) its restriction to [0, T ]×Gh

is a continuous lp,h-valued process. To see that this process satisfies (4.1.3)-(4.1.4)

we fix a point x ∈ Gh and take a nonnegative smooth function ϕ with compact

support in Rd such that its integral over Rd is one. Define for each integer n ≥ 1

the function ϕ(n)(z) = ndϕ(n(z − x)), z ∈ Rd. Then we have for uh, the Wm
p -

valued solution of (4.1.3)-(4.1.4), that almost surely

(uht , ϕ
(n)) = (ψ, ϕ(n)) +

∫ t

0

(Lhsu
h
s + fs, ϕ

(n)) ds+

∫ t

0

(Mhr
s u

h
s + grs , ϕ

(n)) dwrs

for all t ∈ [0, T ] and for all n ≥ 1. Letting here n→∞, for each t ∈ [0, T ] we get

uht (x) = ψ(x) +

∫ t

0

(Lhsu
h
s (x) + fs(x)) ds+

∫ t

0

(Mhr
s u

h
s (x) + grs(x)) dwrs (4.2.40)

almost surely, since uh, ψ, f ,, g and the coefficients of Lh and Mh are continuous

in x, due to Sobolev’s theorem on embedding Wm
p (Rd) into Cb(Rd) in the case

m > d/p. Note that both uht (x) and the random field on the the right-hand

side of equation (4.2.38) are continuous in t ∈ [0, T ]. Therefore we have this

equality almost surely for all t ∈ [0, T ] and x ∈ Gh. The proof of Theorem 4.1.1

is complete.

The extrapolation result, Theorem 4.1.2, follows from Theorem 4.1.1 by stan-

dard calculations, and hence Theorem 4.1.3 on the rate of almost sure convergence

follows by a standard application of the Borel-Cantelli Lemma, for further details

we refer to [13].

Proof of Theorem 4.1.4. Let ρ(x) = ρs(εx) = 1/(1 + |εx|2)s/2, where ε > 0 is

to be determined later and choose p large enough so that 1 > d/p - and therefore

m > 2k+ 3 + d/p -, and Assumption 4.1.3 holds for ψρ, fρ and gρ in place of ψ,

f and g, respectively. After some calculations one gets that u is the solution of

(4.1.12)-(4.1.13) if and only if uρ is the solution of the equation

dvt(x) = (Diâ
ij
t (x)Djvt(x) + b̂it(x)Divt(x) + ĉt(x)vt(x) + ftρ(x)) dt

+ (σ̂irt (x)vt(x) + ν̂rt (x)vt(x) + grt ρ(x)) dwrt (4.2.41)
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for (t, x) ∈ [0, T ]× Rd, with the initial condition

v0(x) = ψρ(x), (4.2.42)

for x ∈ Rd, where the coefficients are given by

âij = aij,

b̂i = bit − 2
d∑
j=1

aij
Djρ

ρ
,

ĉ = c−
d∑

i,j=1

aij
DiDjρ

ρ
−

d∑
i,j=1

Dia
ijDjρ

ρ
−

d∑
i=1

b̂i
Diρ

ρ
,

σ̂ir = σir,

ν̂r = νr −
d∑
i=1

σir
Diρ

ρ
.

Due to our choice of ρ, these coefficients still satisfy the conditions of Theorem

3.1.1. Applying this theorem, we obtain a Wm
p -valued unique solution v. Using

Sobolev embedding, we get that v/ρ - which is a solution of (4.1.12) - is a Pm−1
s̄ -

valued process.

One can similarly transform the finite difference equations, using (4.2.15)-

(4.2.16). It turns out that uh is a solution of (4.1.3)-(4.1.4) if and only if uhρ is

a solution of the equation

vht (x) = {L̂ht (x)vht (x) + ftρ(x)) dt+ (M̂hr
t (x)vht (x) + grt ρ(x)) dwrt (4.2.43)

for (t, x) ∈ [0, T ]×Gh with initial condition

vh0 (x) = ψρ(x), (4.2.44)

for x ∈ Gh, where

L̂ht ϕ =
∑
λ∈Λ0

δ−h,λ(â
λ
hδh,λϕ) +

∑
γ∈Λ1

p̂γhδh,γϕ+
∑
γ∈Λ1

ĉγhTh,γϕ,

M̂hr
t ϕ =

∑
λ∈Λ0

ŝλrh δh,λϕ+
∑
γ∈Λ1

n̂γrh Th,γϕ,

with

âλh = aλh,
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p̂λh = pγh +
(Th,−λa

λ)δh,−λρ− (Th,λa
−λ)δh,λρ

ρ
,

ĉλh = cλh
ρ

Th,λρ
− (δh,−λa

λ)δh,−λρ− aλδh,−λδh,λρ+ p̂λδh,λρ

Th,λρ
,

ŝλrh = sλrh ,

n̂γrh = nγrh
ρ

Th,λρ
− sλrh δh,λρ

Th,λρ
,

where aλ is understood to be 0 when not defined.

As it was mentioned earlier, the restriction to Gh of the continuous modifica-

tions of ψρ, fρ, gρ are in lp,h, lp,h-valued, and lp,h(l2)-valued processes, respectively.

The coefficients above are bounded, so as we have already seen, there exists a

unique lp,h-valued solution vh, in particular, it is bounded. Therefore vh/ρ is a

solution of (4.1.3)-(4.1.4) and has polynomial growth.

By choosing ε small enough, |δh,λρ/ρ| can be made arbitrarily small, uniformly

in x ∈ Rd, λ ∈ Λ, |h| < 1. In particular, we can choose it to be small enough such

that p̂γh ≥ 0. Moreover, all of the smoothness and boundedness properties of the

coefficients are preserved. Therefore (4.2.43)-(4.2.44) is a finite difference scheme

for the equation (4.2.41)-(4.2.42) such that it satisfies Assumptions 4.1.1 through

4.1.3. Claims (iii) and (iv) then follow from applying Theorems 4.1.1 and 4.1.3.

4.3 Localization error

Here it will be more convenient to discuss equations in the non-divergence form,

that is,

dut(x) = (Lut(x) + ft(x)) dt+
∞∑
k=1

(Mkut(x) + gkt (x)) dwkt (4.3.45)

on (t, x) ∈ [0, T ]× Rd =: HT , with initial condition

u0(x) = ψ(x), x ∈ Rd, (4.3.46)

where

L = aijt (x)DiDj + bit(x)Di + ct(x), Mk = σikt (x)Di + µkt (x), k = 1, 2, ...,

The following assumptions almost coincide with the ones in Chapter 3, we formu-

late them here for the convenience of the reader, and more importantly, because
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of the additional assumption on the nonnegative square root ρ of

αij = 2aij − σikσjk,

see Assumption 4.3.2 (c) below. Concerning this assumption we remark that is

well-known from [7] that ρ is Lipschitz continuous in x if α is bounded and has

bounded second order derivatives, but it is also known that the second order

derivatives of ρ may not exist in the classical sense, even if α is smooth with

bounded derivatives of arbitrary order.

Assumption 4.3.1. For P ⊗ dt⊗ dx-almost all (ω, t, x) ∈ Ω× [0, T ]× Rd

αijt (x)zizj ≥ 0

for all z ∈ Rd.

Assumption 4.3.2. (a) The derivatives in x ∈ Rd of aij up to order max(m, 2)

are P ⊗ B(Rd)-measurable functions, bounded by K for all i, j ∈ {1, 2, ..., d}.
(b) The derivatives in x ∈ Rd of bi and c up to order m are P ⊗ B(Rd)-

measurable functions, bounded by K for all i ∈ {1, 2, ..., d}. The functions σi =

(σik)∞k=1 and µ = (µk)∞k=1 are l2-valued and their derivatives in x up to order m+1

are P ⊗ B(Rd)-measurable l2-valued functions, bounded by K.

(c) The derivatives in x ∈ Rd of ρ =
√
α up to order m + 1 are P ⊗ B(Rd)-

measurable functions, bounded by K.

Assumption 4.3.3. The initial value, ψ is an F0-measurable random variable

with values in Wm
p . The free data, ft and gt = (gk)∞k=1 are predictable processes

with values in Wm
p and Wm+1

p (l2), respectively, such that almost surely

Kpm,p(T ) := |ψ|pWm
p

+

∫ T

0

(
|ft|pWm

p
+ |gt|pWm+1

p

)
dt <∞. (4.3.47)

Let us refer to the problem (4.3.45)-(4.3.46) as Eq(D), where D stands for

the “data”

D = (ψ, a, b, c, σ, µ, f, g)

with a = (aij), b = (bi), σ = (σki), g = (gk) and µ = (µk). We are interested in

the error when instead of Eq(D) we solve Eq(D̄) with

D̄ = (ψ̄, ā, b̄, c̄, σ̄, µ̄, f̄ , ḡ).

80



Assumption 4.3.4. Almost surely

D = D̄ on [0, T ]× {x ∈ Rd : |x| ≤ R}. (4.3.48)

The main example to keep in mind is when each component of D̄ is a trun-

cation of the corresponding component of D. Let BR = {x ∈ Rd : |x| ≤ R}
for R > 0. Define K̄pm,p(T ) as Kpm,p(T ) with ψ̄, f̄ and ḡ in place of ψ, f and g,

respectively. The main result reads as follows.

Theorem 4.3.1. Let ν ∈ (0, 1) and let Assumptions 4.3.1, 4.3.2 (b)-(c) and

4.3.3 hold with m > 2 + d/p for D and D̄. Let also Assumption 4.3.4 hold. Then

Eq(D) and Eq(D̄) have a unique classical solution u and ū, respectively, and for

q > 0, r′ > 1

E sup
t∈[0,T ]

sup
x∈BνR

|ut(x)− ūt(x)|q ≤ Ne−δR
2

E1/r′(Kqr′m,p(T ) + K̄qr′m,p(T )), (4.3.49)

where N and δ are positive constants, depending on K, d, T , q, r′, m, p, and ν.

First we collect some auxiliary results. The following lemma is a version of

Kolmogorov’s continuity criterion, see Theorem 3.4. of [8].

Lemma 4.3.2. Let x(θ) be a stochastic process parametrized by and continuous

in θ ∈ D ⊂ Rp, where D is a direct product of lower dimensional closed balls.

Then for all 0 < α < 1, q ≥ 1, and s > p/α,

E sup
θ
|x(θ)|q ≤ N(1 + |D|)

[
sup
θ

(E|x(θ)|qs)1/s + sup
θ 6=θ′

(
E|x(θ)− x(θ′)|qs

|θ − θ′|qsα

)1/s
]

where N = N(q, s, α, p), and |D| is the volume of D.

Lemma 4.3.3. Let (αt)t∈[0,T ] and (βt)t∈[0,T ] be Ft-adapted processes with values

in Rd and l2(Rd), respectively, in magnitude bounded by a constant K. Then for

the process

Xt =

∫ t

0

αs ds+

∫ t

0

βks dw
k
s , t ∈ [0, T ] (4.3.50)

there exist constants ε = ε(K,T ) > 0 and a N = N(K,T ) such that

E sup
t≤T

eε|Xt|
2 ≤ N.

Proof. By Itô’s formula

Yt := e|Xt|
2e−µt = 1 +

∫ t

0

e|Xs|
2e−µs−µs{|βs|2 + 2αsXs
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+2|βsXs|2 − µ|Xs|2} ds+mt

for any µ ∈ R, where (mt)t∈[0,T ] is a local martingale starting from 0. By simple

inequalities

2αX + 2|βX|2 ≤ |α|2 + |X|2 + 2|β|2|X|2 ≤ K2 + (2K2 + 1)|X|2.

Hence for µ = (2K2 + 1) and for a stopping time τ ≤ T we have

EYt∧τn ≤ 1 + 2K2

∫ t

0

EYs∧τn ds,

for τn = τ ∧ ρn, where (ρn)∞n=1 is a localising sequence of stopping times for m.

Hence, by Gronwall’s lemma,

EYt∧τn ≤ e2K2T .

where N is independent from n. Letting here n→∞, by Fatou’s lemma we get

Ee|Xτ |
2e−µT ≤ Ee|Xτ |

2e−µτ ≤ eK
2T

for stopping times τ ≤ T . Hence applying Lemma 1.2.3 for r ∈ (0, 1) we obtain

E sup
t≤T

er|Xτ |
2e−µT ≤ NerK

2T .

To formulate our next lemma we consider the stochastic differential equation

dXs = αs(Xs) ds+ βks (Xs) dw
k
s , (4.3.51)

where α and β = (βk) are P × B(Rd)-measurable function on Ω × [0, T ] × Rd,

with values in Rd and l2(Rd) such that they are bounded in magnitude by K and

satisfy the Lipschitz condition in x ∈ Rd with a Lipschitz constant M , uniformly

in the other arguments. Then equation (4.3.51) with initial condition Xt = x has

a unique solution X t,x = (X t,x
s )s∈[t,T ] for any t ∈ [0, T ] and x ∈ Rd.

Remark 4.3.1. It is well known from [28] that the solution of (4.3.50) can be

chosen to be continuous in t, x, s. In the following, by X t,x
s we always understand

such a continuous modification.
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Lemma 4.3.4. Set X̂ t,x = X t,x − x. Then for any R,

E sup
0≤t≤s≤T

sup
|x|≤R

e|X̂
t,x
s |2δ ≤ N(1 +Rd+1/2), (4.3.52)

and for any R and r

P ( sup
0≤t≤s≤T

sup
|x|≤R

|X̂ t,x
s | > r) ≤ Ne−δr

2

(1 +Rd+1/2), (4.3.53)

where δ = δ(d,K,M, T ) > 0 and N = N(d,K,M, T ).

Proof. It is easy to see that (4.3.52) implies (4.3.53), so we need only prove the

former. For a fixed δ, to be chosen later, let us use the notations f(y) = e|y|
2δ

and γ = 2(d+ 2) + 1. By Lemma 4.3.2, we have

E sup
0≤t≤s≤T

sup
|x|≤R

f(X̂ t,x
s ) ≤ N(1 +Rd) sup

0≤t≤s≤T
sup
|x|≤R

(Efγ(X̂ t,x
s ))1/γ

+N(1 +Rd) sup
0≤t≤s≤T

0≤t′≤s′≤T

sup
|x|≤R
|x′|≤R

(
E|f(X̂ t,x

s )− f(X̂ t′,x′

s′ )|γ

(|t− t′|2 + |s− s′|2 + |x− x′|2)γ/4

)1/γ

. (4.3.54)

The first term above, by Lemma 4.3.3, provided δ ≤ ε/γ, can be estimated by

NRd. As for the second one,

f(X̂ t,x
s )− f(X̂ t′,x′

s′ ) =

∫ 1

0

∂f(ϑX̂ t,x
s + (1− ϑ)X̂ t′,x′

s )(X̂ t,x
s − X̂

t′,x′

s′ ) dϑ.

Notice that |∇f(y)| ≤ N(δ)f 2(y), therefore by Jensen’s inequality and Lemma

4.3.3 again, provided δ ≤ ε/(8γ), we obtain

E|f(X̂ t,x
s )− f(X̂ t′,x′

s′ )|γ ≤ NE1/2|X̂ t,x
s − X̂

t′,x′

s′ |
2γ.

Now the the right-hand side can be estimated by standard moment bounds for

SDEs, see e.g. Corollary 2.5.5 in [22], from which we obtain(
E|f(X̂ t,x

s )− f(X̂ t′,x′

s′ )|2γ

(|t− t′|2 + |s− s′|2 + |x− x′|2)γ/2

)1/(2γ)

≤ N(1 +R1/2).

Proof of Theorem 4.3.1. Throughout the proof we will use the constant λ =

λ(d, q), which stands for a power of R, and, like N and δ, may change from line
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to line. Clearly it suffices to prove Theorem 4.3.1 with e−δR
2
Rλ in place of e−δR

2

in the right-hand side of inequality (4.3.49). We also assume first that q > 10.

The main idea of the proof is based on stochastic representation of solutions

to linear stochastic PDEs of parabolic type, see [28], [27].

Recall that ρ = (ρirt (x))di,r=1 is the symmetric nonnegative square root of

α = (2aij − σikσjk)di,j=1 and ρ̄ is the symmetric nonnegative square root of ᾱ =

(2āij − σ̄ikσ̄jk)di,j=1. Then due to Assumption 4.3.4, ρ = ρ̄ almost surely for all

t ∈ [0, T ] and for |x| ≤ R.

Let (ŵrt )t≥0,r=1...d be a d-dimensional Wiener process, also independent of the

σ-algebra F∞ generated by Ft for t ≥ 0. Consider the problem

dvt(x) =(Lvt(x) + ft(x)) dt+ (Mkvt(x) + gkt (x)) dwkt

+N rvt(x) dŵrt (4.3.55)

v0(x) =ψ(x), (4.3.56)

where N r = ρriDi. Then by Theorem 3.1.1 and by Sobolev embeddings, (4.3.55)-

(4.3.56) has a unique classical solution v, and for each t ∈ [0, T ] and x ∈ Rd almost

surely

ut(x) = E(vt(x)|Ft). (4.3.57)

Together with (4.3.55) let us consider the stochastic differential equation

dYt = βt(Yt) dt− σkt (Yt) dw
k
t − ρrt (Yt) dŵrt , 0 ≤ t ≤ T, Y0 = y, (4.3.58)

where

βt(y) = −bt(y) + σikt (y)Diσk(t, y) + ρrit (y)Diρ
r
t (y), t ∈ [0, T ], y ∈ Rd.

By the Itô-Wentzell formula from [23], for

Ut(y) := vt(Yt(y))

we have (to ease the notation we omit the parameter y from Yt(y))

dvt(Yt) = (Lvt(Yt) + ft(Yt)) dt+ (Mkvt(Yt) + gkt (Yt)) dw
k
t +N rvt(Yt) dŵ

r
t

+(βitDivt(Yt) + aijt Dijvt(Yt)) dt− σikt Divt(Yt) dw
k
t −N rv(Yt) dŵ

r
t

− σikt Di(M
kvt(Yt) + gk(Yt)) dt−N rN rvt(Yt) dt. (4.3.59)
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Due to cancellations on the right-hand side of (4.3.59) we obtain

dUt(y) ={γt(Yt(y))Ut(y) + φt(Yt(y))} dt

+ {µkt (Yt(y))Ut(y) + gkt (Yt(y))} dwkt , U0(y) = ψ(y),

where

γt(x) := ct(x)− σkit (x)Diµ
k
t (x), φt(x) = ft(x)− σkit (x)Dig

k
t .

Notice that in the special case when f = 0, g = 0, c = 0, µ = 0 and ψ(x) = xi

for i ∈ {1, ..., d}, we get ṽit(Yt(y)) = yi for i = 1, ..., d, where ṽi is the solution

of (4.3.55)-(4.3.56) with f = c = 0, g = µ = 0, σ = 0 and ψ(x) = xi. Hence

for each t ∈ [0, T ] the mapping y → Yt(y) ∈ Rd has an inverse, Y −1
t , for almost

every ω, and the mapping x → ṽt(x) = (ṽit(x))di=1, defined by the continuous

random field (ṽit)(t,x)∈HT gives a continuous modification of Y −1
t . Also, we can

write vt(x) = Ut(Y
−1
t ). The idea of this transformation follows [27] where this

was used to show the existence of the inverse of flows given by diffusion processes,

and to describe their dynamics.

Set Ūt(y) = v̄t(Ȳt(y)), where v̄t(x) and Ȳt(y) are defined as vt(x) and Yt(y) in

(4.3.55)-(4.3.56) and (4.3.58), respectively, with D̄ and ρ̄ in place of D and ρ.

Introduce the notation AR = BR ∩ Qd+1. Since u and ū are continuous in

both variables,

sup
(t,x)∈BνR

|ut(x)− ūt(x)| = sup
(t,x)∈AνR

|ut(x)− ūt(x)| (4.3.60)

Let ν ′ = (1 + ν)/2 and define the event

H :=

[
sup

(t,x)∈BνR
|Y −1
t (x)| > ν ′R

]
∪

[
sup

(t,x)∈Bν′R
|Yt(x)| > R

]
.

Then

Hc =
[
Y −1
t (x) ∈ Bν′R, ∀(t, x) ∈ BνR

]
∩ [Yt(x) ∈ BR,∀(t, x) ∈ Bν′R] ,

and thus on Hc

Yt(x) = Ȳt(x) for (t, x) ∈ Bν′R,

Y −1
t (x) = Ȳ −1

t (x) for (t, x) ∈ BνR ,
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and consequently,

vt(x) = v̄t(x) for (t, x) ∈ BνR.

Therefore, by (4.3.57) and (4.3.60), and by Doob’s, Hölder’s, and the conditional

Jensen inequalities,

E sup
(t,x)∈BνR

|ut(x)− ūt(x)|q ≤ E sup
t∈[0,T ]∩Q

|E(1H sup
(τ,x)∈AνR

|vτ (x)− v̄τ (x)||Ft)|q

≤ q

q − 1
(P (H))1/rE1/r′( sup

(τ,x)∈HT
|vτ (x)− v̄τ (x)|qr′) (4.3.61)

≤ 2q−1q

q − 1
(P (H))1/rVT (4.3.62)

with

VT := E1/r′ sup
(τ,x)∈HT

|vτ (x)|qr′ + E1/r′ sup
(τ,x)∈HT

|v̄τ (x)|qr′ ,

for r > 1, r′ = r/(r − 1), provided q > 1. By Theorem 3.1.1

VT ≤ NE1/r′(Kqr′m,p(T ) + K̄qr′m,p(T )). (4.3.63)

We can estimate P (H) as follows. Clearly,

P (H) ≤ P ( sup
(t,x)∈BνR

|Y −1
t (x)| > ν ′R) + P ( sup

(t,x)∈Bν′R
|Yt(x)| > R) =: J1 + J2.

For Ŷt(x) = Yt(x)− x by (4.3.53) we have

J2 ≤ P ( sup
(t,x)∈Bν′R

|Ŷt(x)| > (1− ν ′)R) ≤ NRd+1/2e−δ(1−ν)2R2

.

Also, we have

J1 ≤
∞∑
l=0

P (∃(t, x) ∈ [0, T ]× (B2l+1ν′R \B2lν′R) : |Yt(x)| ≤ νR)

≤
∞∑
l=0

P ( sup
(t,x)∈B

2l+1ν′R

|Ŷt(x)| ≥ (2lν ′ − ν)R).

Using (4.3.53) again gives

J1 ≤ N

∞∑
l=0

e−δ(2
lν′−ν)2R2

(2l+1ν ′R)d+1 ≤ Ne−δR
2
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We can conclude that

P (H) ≤ Ne−δR
2

, (4.3.64)

where N and δ are positive constants, depending only on d, K and T .

Combining this with (4.3.62) we can finish the proof. The case q ∈ (0, 1]

follows easily from the usual arguments using Lemma 1.2.3.

4.4 A fully discrete scheme

We now apply our localization result to present a numerical scheme approximating

(4.3.45). We make use of the results of [13] on the rate and acceleration of

finite difference approximations, which, together with a time discretization and

a truncation - whose error can be estimated using Theorem 4.3.1 - yields a fully

implementable scheme.

First we introduce the finite difference approximation of an equation with

arbitrary data D̃. It is slightly different, and in the main aspects, more general,

than the one introduced in Section 4.1, so let us introduce the whole formulation.

Let Λ1 ⊂ Rd be a finite set, containing the zero vector, satisfying the following

natural condition: if a subset Λ′ ⊂ Λ1 is linearly dependent, then it is linearly

dependent over the rationals. Set also Λ0 = Λ1 \ {0}. For h 6= 0 define the grid

Gh = {h
n∑
i=1

λi : λi ∈ Λ1 ∪ −Λ1, n = 1, 2, . . .}

and for λ ∈ Λ0 ∪ −Λ0, the finite difference operators

δh,λϕ(x) =
1

h
(ϕ(x+ hλ)− ϕ(x)), δhλ =

1

2
(δh,λ + δ−h,λ) =

1

2
(δh,λ − δh,−λ),

and let both δh,0 and δh0 stand for the indentity operator. For h 6= 0 consider the

equation

dvt(x) = (L̃hvt(x) + f̃t(x)) dt+
∞∑
k=1

(M̃h,kvt(x) + g̃kt (x))dwkt (4.4.65)

on [0, T ]×Gh, with initial condition

v0(x) = ψ̃(x). (4.4.66)

Here L̃h and M̃h,k are difference operators approximating the differential opera-
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tors L̃, M̃k:

L̃h =
∑
λ,κ∈Λ1

aλκδhλδ
h
κ +

∑
λ∈Λ0

(pλδh,λ − qλδh,−λ), M̃h,k =
∑
λ∈λ1

bλ,kδhλ,

where the coefficients a, p, q, b are related to the data D̃ through a compatibility

condition, see Assumption 4.4.1 below.

Notice that unless D̃ is compactly supported (i.e. each component of it is),

equation (4.4.65)-(4.4.66) is still an infinite dimensional system of SDEs. There-

fore to make the method practical, we truncate the system. In other words, to

get an approximation of the solution of (4.3.45)-(4.3.46), we first take a trunca-

tion DR of D, as described below, and then apply the scheme (4.4.65)-(4.4.66)

with D̃ = DR. First we fix a function ζ ∈ C∞0 (Rd) such that ζ(x) = 1 for

|x| ≤ 1 and ζ(x) = 0 for |x| ≥ 1 + ε for some ε > 0. With the notation any

φ(R)(x) = φ(x)ζ(x/R) for any R > 0 and function φ defined on Rd, define

DR = (ψ(R), (a(R))(R), b(R), c(R), σ(R), µ(R), f (R), g(R))

Note that the bounds for DR are uniform for, say, R ≥ 1, and depend only on

the bounds for D and the derivatives of ζ.

At this point our approximation is a finite dimensional SDE, and the time-

discretization of such equations are well studied. For our purposes the suitable

choice is the implicit Euler method. Let n ≥ 1, τ = T/n. Consider the following

approximation of (4.4.65)-(4.4.66):

vi = vi−1 + (L̃hτ(i−1)vi + f̃τ(i−1))τ +
∞∑
k=1

(M̃h,k
τ(i−1)vi−1 + g̃kτ(i−1))ξ

k
i (4.4.67)

for i = 1, 2, . . . , n, where ξki = wkτi − wkτ(i−1), with initial condition

v0 = ψ̃. (4.4.68)

Remark 4.4.1. The concept of a solution of (4.4.65)-(4.4.66), as a process with

values in l2,h, that is, the space of functions φ : Gh → R with finite norm ‖φ‖2
l2,h

=∑
x∈Gh |φ(x)|2, is straightforward. However, similarly to the point of view in

Section 4.1, one can also consider (4.4.65)-(4.4.66) on the whole space, that is,

for (t, x) ∈ HT . In this case we look for a v such that the two sides of the equation

coincide almost surely for all t as processes in L2, and we will refer to such a v

to be the L2-valued solution of (4.4.65)-(4.4.66). The analogous concepts will be

used for solutions of (4.4.67)-(4.4.68).
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Remark 4.4.2. In many applications, including the Zakai equation for nonlinear

filtering, the driving noise is finite dimensional. If this is not the case, one needs

another level of approximation, at which the infinite sum in (4.4.67) is replaced

by its first m terms. We shall not discuss this here.

Finally, recall the setting of Richardson extrapolation. Let r ≥ 1, V be the

(r + 1)× (r + 1) Vandermonde matrix V ij = (2−(i−1)(j−1)),

(c0, c1, . . . , cr) = (1, 0, . . . , 0)V −1,

and for a parametrized family of random fields (uh)h>0, define

vh =
r∑
i=0

ciu
h/2i . (4.4.69)

Assumption 4.4.1. For every i, j = 1, . . . , d, k = 1, . . .

aij =
∑
λ,κ∈Λ0

aλκλiκj, bi =
∑
λ∈Λ0

(a0λ + aλ0 + pλ − qλ)λi, c = a00,

σik =
∑
λ∈Λ0

bλ,kλi, µk = b0,k

Assumption 4.4.2. For P ⊗ dt⊗ dx-almost all (ω, t, x) ∈ Ω× [0, T ]× Rd

∑
λ,κ∈Λ0

(2aλκ − bλ,kbκ,k)zλzκ ≥ 0

for all z ∈ R#{Λ0}.

Assumption 4.4.3. The functions aλκ and their derivatives in x up to order

max(m, 2) are P ⊗ B(Rd)-measurable functions, bounded by K for all λ, κ ∈ Λ1.

The functions bλ = (bλr)∞r=1 and their derivatives in x up to order m + 1 are

P ⊗ B(Rd)-measurable l2-valued functions, bounded by K, for all λ ∈ Λ1.

Assumption 4.4.4. The functions aλκ, bλ, pλ, qλ, f, g as processes with values in

R, l2,R,R,Wm
2 ,W

m
2 (l2), respectively, are 1/2-Hölder continuous in t with Hölder

constant η, where η is a finite random variable.

Clearly, under Assumption 4.4.1, Assumption 4.4.3 implies Assumption 4.3.2

(a)-(b).

As for the following we confine ourselves to the L2-scale, without weights, we

use the shorthand notation ‖ · ‖m = | · |Wm
2

, ‖ · ‖ = ‖ · ‖0, and similarly for K. The

main result of this section is the following.
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Theorem 4.4.1. Let Assumption 4.3.2 (c), 4.3.3 for p = 2, and 4.4.1 through

4.4.4 hold for the data D with m > 2r + 3 + d/2 for an integer r ≥ 1. Then

if τ is sufficiently small, then for any R ≥ 1, h > 0, with D̃ = DR, the system

of equations (4.4.67)-(4.4.68) has a unique solution (uR,h,τi )ni=0, and defining its

extrapolation of order r by (vR,h,τi )ni=0 as in (4.4.69), we have, for any r′ > 1,

ν ∈ (0, 1)

E max
i=0,...,n

max
x∈Gh∩BνR

|uτi(x)− vR,h,τi (x)|2

≤ N(e−δR
2

+ h2(r+1) + τ)E1/r′(1 +K2r′

m ),

where N and δ depends on K, d, T , m, ν, and E|η|2r′/(r′−1).

This theorem is a simple consequence of the Theorem 4.3.1, the results of

[13], which are summarized below in Theorem 4.4.2, and the error estimate for

the time-discretization, established in Theorem 4.4.3 below. This can be seen by

simply writing the error as

uτi − vR,h,τi = (uτi − uRτi) + (uRτi − v
R,h
τi ) +

r∑
j=0

cj(u
R,h/2j

τi − uR,h/2
j ,τ

i ).

Theorem 4.4.2. Let Assumptions 4.3.3 for p = 2, ϑ = 0 and 4.4.1 through 4.4.3

hold for D̃ with m. Then

(a) For any φ ∈ Wm
p and |γ| ≤ m

2(Dγφ,DγL̃hφ) +
∑
k

‖DγM̃h,kφ‖2 ≤ N‖φ‖2
m;

(b) There is a unique L2-valued solution ũh of (4.4.65)-(4.4.66), and

E sup
t
‖ũht ‖qm ≤ NEK̃qm;

(c) If furthermore m > 2r + 3 + d/2, then denoting the solution of (4.3.45)-

(4.3.46) with data D̃ by ũ, and the extrapolation of ũh of order r by ṽh as in

(4.4.69), we have

E sup
t

max
x∈Gh
|ũt(x)− ṽh(x)|q ≤ Nhq(r+1)EK̃qm,

where N depends on K, d, T , q, and m.

Theorem 4.4.3. Let Assumptions 4.3.3 with p = 2, ϑ = 0, and 4.4.1 through

4.4.3 hold with m+5. Then for sufficiently small τ there exists a unique L2-valued
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solution ũh,τ to (4.4.67)-(4.4.68), and for any r′ > 1

Emax
i
‖ũhτi − ũ

h,τ
i ‖2

m ≤ Nτ(1 + E1/r′K̃2r′

m+5),

where N depends on K, d, T , m, and E|η|2r′/(r′−1).

Proof. The solvability of (4.4.67)-(4.4.68) can be seen by induction: ũh,τi can be

constructed from ũh,τi−1 due to the invertibility of the operator I − τL̃hτ(i−1) for

sufficiently small τ . For further details we refer to [15], Section 3.2.

Let us fix a multiindex γ with |γ| ≤ m+1. Substracting (4.4.67) from (4.4.65),

we get that the error ei = ũhτi − ũh,τi is a Wm
2 -valued Fτi-measurable random

variable, i = 0, . . . , n, and its derivative of order γ is the L2-valued solution of

the equation

Dγei =Dγei−1

+DγL̃hτ(i−1)eiτ +

∫ τi

τ(i−1)

DγFs ds

+DγM̃h,k
τ(i−1)ei−1ξ

k
i +

∫ τi

τ(i−1)

DγGk
s dw

k
s (4.4.70)

for i = 1, . . . , n, with zero initial condition, where with the notations κ1(t) =

κn1 (t) = bntc/n and κ2(t) = κn2 (t) = (bntc+ 1)/n,

Ft = (L̃ht ũ
h
t − L̃hκ1(t)ũ

h
κ2(t) + f̃t − f̃κ1(t)),

Gk
t = (M̃h,k

t ũht − M̃
h,k
κ1(t)ũ

h
κ1(t) + g̃kt − g̃kκ1(t)).

Introducing the notations

Li = L̃hτi, M
k
i = Mh,k

τi , Fi =

∫ τi

τ(i−1)

DγFs ds, Gi =

∫ τi

τ(i−1)

DγGk
s dw

k
s ,

K2
i =

∫ τi

τ(i−1)

‖Fs‖2
m+1 + ‖Gs‖2

m+2 ds,

we can express the difference

‖Dγei‖2 − ‖Dγei−1‖2

= 2(Dγei, D
γLi−1eiτ + Fi) + 2(Dγei−1, D

γMk
i−1ei−1ξ

k
i + Gi)

+ 2(Dγei −Dγei−1, D
γMk

i−1ei−1ξ
k
i + Gi)− ‖Dγei −Dγei−1‖2

= 2(Dγei, D
γLi−1ieiτ + Fi) + 2(Dγei−1, D

γMk
i−1ei−1ξ

k
i + Gi)
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+ ‖DγMk
i−1ei−1ξ

k
i + Gi‖2 − ‖DγLi−1eiτ + Fi‖2

≤ 2(Dγei, D
γLi−1eiτ + Fi) + 2(Dγei−1, D

γMk
i−1ei−1ξ

k
i + Gi)

+ ‖DγMk
i−1ei−1ξ

k
i ‖2 + 2(DγMk

i ei−1ξ
k
i ,Gi) + ‖DγGi‖2. (4.4.71)

The second term on the right-hand side has 0 expectation. By Itô’s isometry and

integration by parts, we have

E‖DγMk
i ei−1ξ

k
i ‖2 =

∑
k

‖DγMk
i ei−1‖2τ,

E(DγMk
i ei−1ξ

k
i ,Gi) ≤ τN‖Dγei−1‖2 +NEK2

i ,

E‖Gi‖2 ≤ EK2
i .

Recall furthermore from Theorem 4.4.2 (a) that

2(Dγei, D
γLiei) +

∑
k

‖DγMkei‖2 ≤ N‖ei‖2
m+1.

Therefore, by taking expectations and summing up (4.4.71) from 1 to j and for

|γ| ≤ m+ 1, keeping in mind that e0 = 0, we get

E‖ej‖2
m+1 ≤ N

j∑
i=1

τE‖ei‖2
m+1 + EK2

i ,

and we can conclude by a simple induction that

max
j
E‖ej‖2

m+1 ≤ (1−Nτ)n
n∑
i=1

EK2
i ≤ N

n∑
i=1

EK2
i . (4.4.72)

Now let |γ| ≤ m and sum up (4.4.71) from 1 to j without taking expectations.

We can use Theorem 4.4.2 as before and obtain

‖Dγej‖2 ≤ N
n∑
i=1

(τ‖ei‖2
m + K2

i ) +

j∑
i=1

(m
(1)
i +m

(2)
i + m̂

(3)
i ),

where

m
(1)
i = 2(Dγei−1, D

γMk
i ei−1ξ

k
i + Gi),

m
(2)
i = ‖DγMk

i ei−1ξ
k
i ‖2 − τ

∑
k

‖DγMk
i ei−1‖2,

m̂
(3)
i = 2(DγMk

i ei−1ξ
k
i ,Gi).
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We can write m̂
(3)
i = m

(3)
i + m̄

(3)
i with

m
(3)
i := 2(DγMk

i ei−1ξ
k
i ,Gi)− 2(DγMk

i ei−1,

∫ τi

τ(i−1)

Gk
sds)

m̄
(3)
i := 2(DγMk

i ei−1,

∫ τi

τ(i−1)

Gk
sds),

and after integration by parts,

j∑
i=1

|m̄(3)
i | ≤ N

n∑
i=1

(τ‖ei‖2
m + K2

i ).

Thus,

Emax
j
‖Dγej‖2 ≤ N

n∑
i=1

(τE‖ei‖2
m + EK2

i ) + Emax
j

j∑
i=1

(m
(1)
i +m

(2)
i +m

(3)
i ).

Notice that m
(l)
j are martingale differences for l = 1, 2, 3, so the second term on

the right-hand side is estimated through martingale inequalities. We only detail

the contribution of m(2), the other terms can be treated similarly. Remember

that ξi = wti − wti−1
and note that by Itô’s formula

ξki ξ
l
i − 1k=lτ =

∫ τi

τ(i−1)

(wks − wkκ1(s)) dw
l
s +

∫ τi

τ(i−1)

(wls − wlκ1(s)) dw
k
s ,

and therefore, by the Burkholder-Gundy-Davis inequality, with the notation is =

k1(s)/τ we have

Emax
j

j∑
i=1

m
(2)
i

≤ 2E sup
t≤T

∑
k

∫ t

0

∑
l

(wls − wlκ1(s))(D
γMl

i(s)ei(s), D
γMk

i(s)ei(s)) dw
k
s

≤ 6E

(∫ T

0

∑
k

|
∑
l

(wls − wlκ1(s))(D
γMl

i(s)ei(s), D
γMk

i(s)ei(s))|2 ds

) 1
2

≤ 6E

(
max
i≤n

∑
k

‖DγMk
i−1ei−1‖2

∫ T

0

‖
∑
l

(wls − wlκ1(s))D
γMl

i(s)ei(s)‖2 ds

) 1
2

We can continue with estimating the maximum on the right-hand side of the last

inequality by taking the sum over i and using using Young’s inequality 2ab ≤
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τa2 + b2/τ with

a2 :=
∑
i≤n

∑
k

‖DγMk
i−1ei−1‖2

b2 :=

∫ T

0

‖
∑
l

(wls − wlκ1(s))D
γMl

i(s)ei(s)‖2 ds,

to get

Emax
j

j∑
i=1

m2
i

≤ N
n∑
i=1

(τE‖ei‖2
m+1) + (1/τ)

∫ T

0

E‖
∑
l

(wls − wlκ1(s))D
γMl

i(s)ei(s)‖2 ds

≤ N

n∑
i=1

(τE‖ei‖2
m+1) +N

∫ T

0

E‖ei(s)‖2
m+1 ds.

We can conclude that

Emax
j
‖Dγej‖2 ≤ N

n∑
i=1

(τE‖ei‖2
m+1 + EK2

i ),

and upon summing up over |γ| ≤ m and invoking (4.4.72), we get

Emax
j
‖ej‖2

m ≤ N
n∑
i=1

EK2
i ≤ N sup

s≤T
(E‖Fs‖m+1 + E‖Gs‖m+2) .

To estimate E‖Fs‖m+1 notice that due to the 1/2-Hölder continuity of f̃ and the

coefficients of L̃h, we can write

E‖Ft‖2
m+1 ≤ Nτ(1 + E1/r′ sup

s∈[0,T ]

‖ũhs‖2r′

m+3) +NE‖ũhκ2(t) − ũht ‖2
m+3.

Furthermore, by the definition of κ2 and the equation of u,

E‖ũhκ2(t) − ũht ‖2
m+3 = E

∣∣∣∣∣∣ ∫ κ2(t)

t

L̃hsus + f̃s ds+

∫ κ2(t)

t

M̃h,k
s ũhs + g̃ks dw

k
s

∣∣∣∣∣∣2
m+3

≤ 2E

(∫ κ2(t)

t

‖L̃hs ũhs + f̃s‖m+3 ds

)2

+ 2E

∫ κ2(t)

t

‖M̃h,k
s us + g̃ks‖2

m+3 ds,

yielding

sup
t∈[0,T ]

E‖Ft‖2
m+1
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≤ τN(1 + E1/r′ sup
s∈[0,T ]

‖ũhs‖2r′

m+5 + E sup
s∈[0,T ]

‖f̃s‖2
m+3 + E sup

s∈[0,T ]

‖g̃s‖2
m+3).

Noticing that

sup
s∈[0,T ]

‖f̃s‖2
m+3 ≤ ξ2T +

∫ T

0

‖f̃s‖2
m+3 ds,

similarly for g, and invoking the estimate from Theorem 4.4.2 (b), we get

sup
t∈[0,T ]

E‖Ft‖2
m+1 ≤ τN(1 + E1/r′K̃2r′

m+5).

Similarly we can prove that

sup
t∈[0,T ]

E‖Gt‖2
m+2 ≤ τN(1 + E1/r′K̃2r′

m+5),

finishing the proof.

Remark 4.4.3. As it can be easily seen from the last step of the proof, Assumption

4.4.4 can be weakened to α-Hölder continuity for any fixed α > 0, at the cost of

lowering the rate from 1/2 to α ∧ (1/2).

To decrease the spatial regularity conditions, in particular, the term d/2 to

d/p, one can use the results of Section 4.1. Under the additional assumptions

formulated therein, we have proved the generalizations of the results of [13], and

subsequently, of Theorem 4.4.3, to arbitrary Sobolev spaces Wm
p .
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[14] I. Gyöngy and N.V. Krylov, Expansion of solutions of parametrized equa-

tions and acceleration of numerical methods, Illinois Journal of Mathemat-

ics, 50 (2006), 473-514. Special Volume in Memory of Joseph Doob (1910 -

2004)
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[29] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasi-

linear equations of parabolic type. (Russian) Translated from the Russian

by S. Smith. Translations of Mathematical Monographs, Vol. 23 American

Mathematical Society, Providence, R.I. 1968 xi+648 pp

[30] S. V. Lototsky and J. Zhong, Stochastic evolution systems with constant

coefficients. Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), no. 4,

687-711

[31] J. Moser, On Harnack’s theorem for elliptic differential equations. Comm.

Pure Appl. Math. 14 (1961), 577-591

[32] J. Nash, Continuity of solutions of parabolic and elliptic equations. Amer.

J. Math. 80, 1958, 931954

[33] O. A. Olejnik and E. V. Radkevich, Second Order Equations with Nonneg-

ative Characteristic Form, AMS, Providence 1973
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